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SUMMARY 

Visual object recognition is a complex problem, with much still to be discovered about how 

the visual system achieves this task. Several studies have examined the emergence of object 

category structure, focusing particularly on animacy as an overarching principle of the neural 

organisation of object representations. Results from fMRI studies have highlighted 

additional organisational principles for category structure, such as real-world size, and 

biological class, however the temporal dynamics of these category organisations are yet to 

be established. The aim of this thesis is to build upon our understanding of visual object 

recognition, with a specific focus on evaluating the temporal dynamics of object category 

structure as measured with MEG. Using representational similarity analysis applied to MEG 

data, the first empirical chapter compares the temporal dynamics of animacy and real-world 

size dimensions of object representations. The results replicate previous findings for the 

animacy time-course, however there was no evidence for a distinct time-course associated 

with real-world size. The second empirical chapter examines alternatives to the animacy 

category organisation of object representations, using a novel stimulus set that includes 

objects which do not clearly belong to the typically evaluated ‘animate’ or ‘inanimate’ 

categories (e.g., robots and human-/animal-like toys). This study evaluates a range of models 

based on current theories of object categorisation including animacy, and the biological 

classes based ‘animacy continuum', as well as novel behaviourally-generated models related 

to human-similarity and experience. Results show that the model of human-similarity is the 

best predictor of object representations late in the time-course of visual object processing. 

The aim of the third empirical chapter is to link these human-similarity results from the MEG 

data to behaviour. This study shows that object categorisation reaction times predict 

representational distance not only for object animacy (as shown in previous studies), but also 

when objects are grouped according to human-similarity. In contrast, other plausible object 

category organisations for the same stimulus set (i.e., living/non-living; has movement/no 
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movement) do not show the same relationship between brain activation patterns and 

behaviour. To conclude, the findings from these three studies are discussed within the 

broader context of the current literature related to object representations in the human brain. 

This thesis highlights the efficacy of a new human-similarity model of object category 

representations and critically evaluates what aspects of decodable neural representations are 

informative for understanding the link between brain and behaviour.  
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Contini E.W., Wardle S.G., Carlson T.A. (2017). Decoding the time-course of object 

recognition in the human brain: From visual features to categorical decisions. 

Neuropsychologia, 105, 165–176. 
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i. Introduction to Thesis Topic 

 The aim of this thesis is to investigate the temporal dynamics of object recognition, 

with a particular focus on object category representations. Recognising the numerous objects 

we encounter in our daily existence is a fundamental part of human visual processing. 

Decades of research have been dedicated to better understanding this seemingly effortless 

process, with much still to be discovered about how the visual system achieves this complex 

task. While artificial intelligence systems have recently advanced to such a degree that they 

are able to recognise objects at a level similar to human performance (He, Zhang, Ren, & 

Sun, 2015), establishing the correspondence with human visual processing is ongoing (e.g., 

see Cadieu et al., 2014; Cichy, Khosla, Pantazis, Torralba, & Oliva, 2016).  

 Early studies of object recognition deficits in human patients with localised lesions 

laid the groundwork for much of the neuroimaging research in the field of object 

categorisation to date (Capitani, Laiacona, Mahon, & Caramazza, 2003; Warrington & 

McCarthy, 1983, 1987, 1994; Warrington & Shallice, 1984). Evaluation of patients’ 

recognition abilities revealed an interesting pattern of deficits related to specific categories 

of objects. Deficits with recognising animate/living (Sheridan & Humphreys, 1993; Silveri 

& Gainotti, 1988; Warrington & Shallice, 1984) or inanimate/non-living objects (Sacchett 

& Humphreys, 1992; Warrington & McCarthy, 1983, 1987) suggested a dichotomous 

organisation of object representations in the brain. These findings shaped our current 

understanding of how the brain processes objects.  

A prominent goal in visual neuroscience is to use brain activity to evaluate the 

categorical structure and processes underlying object representations. Neuroimaging allows 

us to ask these questions about object recognition noninvasively in healthy adults. 

Researchers in the field of object recognition have employed multivariate pattern analysis 

(MVPA) methods to study the brain’s representation of objects, identifying patterns that are 

consistent across human subjects (Haxby et al., 2001) and species (Kiani, Esteky, Mirpour, 



4 

& Tanaka, 2007; Kriegeskorte et al., 2008). These consistencies suggest a common 

underlying organisation to object representations (Op de Beeck, Torfs, & Wagemans, 2008). 

However, much of the literature to date has focused on spatially localising brain regions 

which respond preferentially to particular object categories (e.g., Beauchamp, Lee, Haxby, 

& Martin, 2002; Chao, Haxby, & Martin, 1999; Downing, Jiang, Shuman, & Kanwisher, 

2001; Epstein & Kanwisher, 1998; Ishai, Ungerleider, Martin, Schouten, & Haxby, 1999; 

Kanwisher, McDermott, & Chun, 1997; Martin, Wiggs, Ungerleider, & Haxby, 1996), with 

more to discover about how these representations unfold over time. There is a growing body 

of evidence from recent studies using time-series decoding methods, showing that object 

recognition processes evolve dynamically following exposure to a stimulus (for a review, 

see Contini, Wardle, & Carlson, 2017 in this chapter below). These recently established 

temporal decoding methods reveal details about object processing that may be lost in 

spatially focused neuroimaging methods (i.e., fMRI) which have low temporal resolution. 

Evaluating the temporal dynamics of object representations is thus an important 

complementary direction for research into visual object processing.  

 Here I begin by reviewing the literature related to time-series decoding of object 

representations in the brain. This review, published in Neuropsychologia (Contini et al., 

2017), provides an overview of how investigating the time-course of object representations 

has added to our understanding of visual object processing. I summarise the current findings 

related to the hierarchical category structure of object representations, including a focused 

section for the special category of faces, which are shown to be of particular importance to 

the human visual system. Next, I evaluate the evidence surrounding the integrity of object 

category structure in the context of research that highlights the potentially confounding 

influence of low-level image properties on measured brain activity. Following this review, I 

describe recent studies that use categorisation reaction times and attention modulations to 

link brain-derived object representations to behavioural processes, with the goal of 
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advancing our understanding of how measured activity from neuroimaging techniques 

relates functionally to human behaviour. 

While the scope of the review covers the broad field of object decoding related to 

time-series data, my thesis focuses on the time-course of object category structure. 

Following this review, I provide a brief summary of our current understanding of the 

temporal dynamics of object category representations and outline the contributions of this 

thesis.  
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1.1. Abstract 

Visual object recognition is a complex, dynamic process. Multivariate pattern analysis 

methods, such as decoding, have begun to reveal how the brain processes complex visual 

information. Recently, temporal decoding methods for EEG and MEG have offered the 

potential to evaluate the temporal dynamics of object recognition. Here we review the 

contribution of M/EEG time-series decoding methods to understanding visual object 

recognition in the human brain. Consistent with the current understanding of the visual 

processing hierarchy, low-level visual features dominate decodable object representations 

early in the time-course, with more abstract representations related to object category 

emerging later. A key finding is that the time-course of object processing is highly dynamic 

and rapidly evolving, with limited temporal generalisation of decodable information. Several 

studies have examined the emergence of object category structure, and we consider to what 

degree category decoding can be explained by sensitivity to low-level visual features. 

Finally, we evaluate recent work attempting to link human behaviour to the neural time-

course of object processing.  
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1.2. Introduction 

Visual object recognition is a complex problem. In everyday life, we experience an 

overwhelming number of objects that the brain needs to rapidly differentiate and identify. 

How is it that we are able to identify a chair, for example, despite large variability in lighting, 

colour, design, materials and viewpoint? The human brain does a remarkable job of 

efficiently solving this problem, and has inspired decades of behavioural, neuroscience, and 

computer science research. The ventral visual processing stream, which involves a number 

of regions throughout the occipito-temporal cortex, is well-established as the neural pathway 

for object recognition (e.g., Grill-Spector, Kourtzi, & Kanwisher, 2001; Haxby et al., 2001; 

Ishai, Ungerleider, Martin, Schouten, & Haxby, 1999). Functional neuroimaging methods 

have identified a number of object-selective areas in human visual cortex that are 

preferentially activated by specific object categories including animals (Chao, Haxby, & 

Martin, 1999; Martin, Wiggs, Ungerleider, & Haxby, 1996), faces (Ishai et al., 1999; 

Kanwisher, Mcdermott, & Chun, 1997), bodies (Downing, Jiang, Shuman, & Kanwisher, 

2001), places (Epstein & Kanwisher, 1998), and tools (Beauchamp, Lee, Haxby, & Martin, 

2002; Chao et al., 1999; Martin et al., 1996). However, the number of object-selective 

regions identified to date accounts for only a handful of the numerous object categories that 

exist (Biederman, 1987). This highlights that while identification of these regions has 

advanced our understanding of the neural pathways involved in higher-level visual 

processing, we are yet to fully understand how the brain solves the many challenges 

associated with object recognition.  

Recent studies in visual object recognition have been influenced by advances in 

neuroimaging analysis methods, which allow for a fundamental change in the type of 

information that can be extracted from neuroimaging data. Early neuroimaging studies 

employed univariate analysis techniques that focus on identifying differences in the average 

activation of individual voxels or sensors for different experimental conditions. In contrast, 
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more recent multivariate analysis techniques (e.g. multivariate pattern analysis; MVPA) 

analyse patterns of activation associated with experimental conditions from multiple 

voxels/sensors simultaneously. In the field of neuroimaging, multivariate methods have the 

potential to detect differences in activation which are lost when averaging data for univariate 

analyses, making them more sensitive (Carlson, Schrater, & He, 2003; Cox & Savoy, 2003; 

Grootswagers, Wardle, & Carlson, 2016; Haxby et al., 2001; Haynes & Rees, 2006). While 

univariate and multivariate analyses are complementary in the information they provide, 

there is a fundamental difference in the types of experimental questions these methods 

address. Univariate magneto/electro-encephalography (M/EEG) analyses evaluate 

differences in activation, quantifying relative differences in average activity between 

experimental conditions, while multivariate methods have the potential to examine 

differences in information, for example by comparing differences in distributed patterns of 

brain activation between experimental conditions (Grootswagers et al., 2016; but see also 

de-Wit, Alexander, Ekroll, & Wagemans, 2016).  

Decoding methods are a form of MVPA that have provided important insights into 

how the brain processes information (Grootswagers et al., 2016; Haxby, Connolly, & 

Guntupalli, 2014; Haynes, 2015; Pereira, Mitchell, & Botvinick, 2009). In the field of object 

recognition, decoding methods aim to map differences in complex neural activity patterns 

associated with perceiving objects. Early studies adopting these methods marked an 

important first step in our understanding of how objects are processed in the brain (Carlson 

et al., 2003; Carlson, Hogendoorn, Kanai, Mesik, & Turret, 2011; Alex Clarke & Tyler, 

2014; Cox & Savoy, 2003; Haxby et al., 2001; Kriegeskorte, Mur, Ruff, et al., 2008; Liu, 

Agam, Madsen, & Kreiman, 2009; O’Toole, Jiang, Abdi, & Haxby, 2005). A particular 

strength of applying decoding methods to M/EEG data with the aim of understanding visual 

object recognition is that it can reveal how visual object representations change over time 

with high temporal resolution. The focus of this review is on what has been learned about 
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visual object processing in the human brain with the application of these recent, powerful 

temporal decoding methods. 

To date, decoding methods have been used in conjunction with a variety of 

neuroimaging and neurophysiology approaches to investigate the neural mechanisms 

underlying object recognition. For example, brain decoding using single cell recordings has 

revealed category structure within monkey inferior temporal cortex (IT) (Hung, Kreiman, 

Poggio, & DiCarlo, 2005), with differentiable neural patterns associated with animate and 

inanimate objects, as well as more specific animate subcategories, including human and 

animal faces and bodies (Kiani, Esteky, Mirpour, & Tanaka, 2007). Decoding of fMRI data 

has shown commonalities between object response patterns in both human and monkey 

brains, with similar differentiation of animate/inanimate categories and face/body 

subcategories identified in both species (Kriegeskorte, Mur, Ruff, et al., 2008). Categorical 

representations are not limited to localised brain regions, as activity evoked by objects and 

faces often overlaps between the categories and is distributed throughout ventral temporal 

cortex (Haxby et al., 2001). Moreover, there has been a recent move towards looking beyond 

representing object categories in terms of dichotomies, such as the animate/inanimate 

distinction. Instead, a continuum has been proposed that spans from inanimate objects to 

humans, with objects categorised in terms of their biological similarity to humans (Connolly 

et al., 2012; Sha et al., 2015). Together, these studies emphasise a role for distributed patterns 

of activity in the neural representation of object category, building on the original 

observation of overlapping activation patterns in the human ventral stream (Haxby et al., 

2001).  

Decoding of time-series data using M/EEG has offered the potential to examine the 

time-course of object representations in the human brain, revealing a dynamic evolution of 

object category structure over time (e.g., Barragan-Jason, Cauchoix, & Barbeau, 2015; 

Carlson et al., 2011; Carlson, Tovar, Alink, & Kriegeskorte, 2013; Cauchoix, Barragan-
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Jason, Serre, & Barbeau, 2014; Cichy, Pantazis, & Oliva, 2014; Clarke, Devereux, Randall, 

& Tyler, 2014; Goddard, Carlson, Dermody, & Woolgar, 2016; Kaiser, Azzalini, & Peelen, 

2016; Simanova, Gerven, Oostenveld, & Hagoort, 2010). As visual information moves 

through the ventral pathway, the content of visual representations changes rapidly between 

brain regions. fMRI decoding studies have revealed much about the representation of objects 

in the human brain, however the coarse temporal resolution of fMRI limits the examination 

of dynamic visual processes. As a complement to the static snapshot of representational 

structure revealed with fMRI, neuroimaging techniques with higher temporal resolution such 

as M/EEG facilitate investigation of the dynamic processes of visual object recognition. The 

aim of this review is to discuss how time-series decoding studies have advanced our 

understanding of the complexities of visual object recognition by focusing on the dynamic 

processes involved. Time-series decoding is a relatively new approach to studying object 

recognition, and here we highlight the potential of this new direction to inform the field. 

Note that we focus on what has been learned about object processing by applying time-series 

decoding methods, for a more thorough discussion of the technical details of time-series 

decoding analyses see Grootswagers et al. (2016). 

1.3. Decoding the Object Recognition Time-Course 

1.3.1. Initial Insights into Time-Series Decoding  

It is well-established that the process of visual object recognition requires a number 

of hierarchically organised stages that progress through the occipito-temporal pathway 

(Grill-Spector & Malach, 2004; Malach, Levy, & Hasson, 2002). Early retinotopic visual 

areas are more sensitive to changes in low-level stimulus properties, while higher cortical 

areas within the ventral temporal lobe produce more complex responses to whole objects, 

and appear to account for more abstract properties such as object category (Altmann, 

Bülthoff, & Kourtzi, 2003; Grill-Spector & Malach, 2004; Van Essen, Anderson, & 

Felleman, 1992). Single-unit recordings in macaques have shown that these different 
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processing stages progress successively in time as information passes through the occipito-

temporal pathway (Schmolesky et al., 1998). With the development of M/EEG techniques, 

we are able to evaluate the temporal dynamics of visual object recognition in the human 

brain with millisecond resolution, allowing us to delve into more specific and fine-grained 

processes occurring in the various stages of visual object processing. 

Differences in early versus late stages in object processing have been examined by 

comparing MEG and fMRI data for the same stimulus set. By linking both temporal and 

spatial neuroimaging data, Cichy et al. (2014) showed that activity early in the MEG time-

course correlated more strongly with fMRI activity in V1, while later MEG activity was 

more strongly associated with activity in IT. The stimulus set were 96 colour images of 

animate and inanimate objects used in previous studies (Kiani et al., 2007; Kriegeskorte, 

Mur, Ruff, et al., 2008). The activity patterns associated with viewing each individual object 

were first compared using representational similarity analysis (RSA; Kriegeskorte, 2008), 

where a matrix is created based on the difference in brain activation patterns for every 

pairwise comparison of object images. This was done separately for the fMRI and MEG 

data. These 'dissimilarity matrices' provide an index of the difference in the brain response 

between object representations. The dissimilarity matrices were then compared across 

imaging modalities by examining when the relative similarity between the activation patterns 

for each object pair in the fMRI data most closely resembled that in the MEG data. The 

finding that the representational structure early in the MEG data more closely resembles V1 

activity while later MEG data is closer to the structure observed in IT with fMRI is consistent 

with the known features of the visual processing hierarchy, and thus provides a source of 

validation for MEG decoding methods. 

Time-series decoding methods have also expanded our understanding of the temporal 

intricacies associated with processing low-level stimulus properties. For example, Goddard 

et al. (2016) investigated temporal differences in the contribution of low and high spatial 
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frequencies to the representation of object identity. Stimuli were greyscale images of objects 

that were matched in their amplitude spectrum to control for low-level visual properties. 

Phase randomisation was applied selectively to spatial frequency bands such that object 

identity information was confined to a restricted spatial frequency band in each stimulus. 

Decoding analysis revealed that the activation pattern of the whole-brain MEG recordings 

contained information related to object identity, but there were critical differences in the 

processing of low versus high spatial frequencies. They found that low spatial frequencies 

provided object identity information earlier and in more occipitally located regions than high 

spatial frequency information, which supported decoding of object identity later in the time-

course. Further, by applying Granger causality analysis, they found evidence for both an 

early feedforward and later feedback flow of information related to object identity (Goddard 

et al., 2016). 

Most of the existing temporal decoding literature on object recognition has focused 

on decoding object categories and investigating the representational structure of object 

representations. These results are discussed in detail in the following sections. 

1.3.2. Temporal Decoding of High-Dimensional Distributed Category Representations 

Understanding population coding is one of the overarching aims of neuroscience 

(Averbeck, Latham, & Pouget, 2006). A significant and influential recent development in 

understanding the neural mechanisms underlying object representation has been the 

theoretical shift away from identifying specific localised regions associated with particular 

object categories towards focusing on more distributed activity patterns that extend 

throughout higher-level visual cortex (Haxby et al., 2001). A current focus in object 

recognition is on interpreting the highly multidimensional activation patterns elicited by 

object stimuli. Specifically, one of the main themes centres on understanding the structure 

of object category representations. In this section we outline what temporal decoding 

methods have so far revealed about the neural architecture of object categories.  
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A useful and intuitive way to think about the highly multidimensional activation 

patterns evoked by viewing objects is to conceptualise them in terms of an abstract 

representational space (DiCarlo & Cox, 2007; Kriegeskorte & Kievit, 2013). The complex 

activation pattern across M/EEG sensors elicited by viewing a particular object exemplar 

(e.g., shoe, horse, face) can be considered as a single point in an abstract representational 

space. Thus in this abstract representation, the proximity between data points indicates the 

degree of similarity, such that a greater distance between object exemplars represents more 

disparate neural activation patterns, while exemplars with closer points have more similar 

activation patterns. Consequently, object exemplars further away from each other in 

representational space are easier to "decode" from each other using machine learning 

classification than objects which are closer together, as they share more similar activation 

patterns and are less separable in higher-dimensional space.  

Multidimensional scaling (MDS) is a technique that can be used as a tool for 

visualising the representational space of objects in the brain. An example of an MDS plot 

for object representations is shown in Figure 1. Carlson et al. (2013) studied the first    1000 

ms of the visual object recognition time course using MEG decoding. MEG recordings were 

acquired as participants viewed a series of single object images while performing an 

unrelated attention task (reporting whether a letter superimposed on top of the object image 

was a vowel or a consonant). Using MDS to visualise the differences in object 

representations as a function of time, we can appreciate the emergence of category structure 

throughout the time course (Figure 1). Early in the time-course (~60 ms post-stimulus onset), 

the representations of individual exemplars are almost wholly overlapping in the 

representational space, reflecting poor decodability of the individual objects based on the 

MEG data. This is expected given the time it takes for an image on the retina to transition to 

a cortical representation that is accessible to MEG (see Nowak & Bullier, 1997 for a review). 

By ~120 ms, differences between individual exemplars have emerged such that the 

exemplars are spread out in the representational space. This is the time of peak decoding for 
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this image set; the point at which individual exemplars are most easily distinguished from 

one another. As we progress through the time course, category structure begins to emerge. 

From 120 ms, some subcategories appear to start to cluster: note the grouping of faces and 

animals in the centre. By 240 ms a clear categorical distinction between animate and 

inanimate objects is apparent (diagonal black lines in Figure 1 indicate the category 

boundary). Interestingly, this animacy category distinction is maintained at 360 ms, despite 

much less differentiation of individual object exemplars, which are clustered tightly together 

in the later stages of the time-course. This is an example of the advantage of time-series 

decoding, as the emergence of categorical clustering over time is not captured by other 

neuroimaging methods with lower temporal resolution such as fMRI. 
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Figure 1. MDS plots demonstrating the evolution of object representations over time with MEG. 

Individual MDS panels show the representational geometry of a set of objects at a particular time-

point (shown as ms post-stimulus onset). Distances between objects represent the level of similarity 

between the neural patterns measured with MEG such that larger distances indicate greater 

dissimilarity (i.e., more distinct neural patterns). The representational geometry evolves from initially 

entirely overlapping (poorly discriminated) objects, to maximal differentiation at 120 ms (peak 

decoding for this sample). The animate/inanimate category distinction (black dividing line represents 

the boundary) peaks at 240 ms and is maintained even at 360 ms, although differences between 

individual object exemplars become less defined. Images adapted with permission of the Association 

for Research in Vision and Ophthalmology, from Carlson et al. (2013); permission conveyed through 

Copyright Clearance Center, Inc. 
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As MDS has been used in several fMRI and MEG studies with the same object 

stimuli (Carlson et al., 2013; Cichy et al., 2014; Kriegeskorte, Mur, Ruff, et al., 2008) it is 

possible to visualise the reliability and consistency of object representations across 

neuroimaging modalities by comparing across studies - a rare opportunity in neuroimaging 

(Figure 2). All three studies used the object set (or subset of the set) originally used by Kiani 

et al. (2007) in monkey IT. Kriegeskorte et al. (2008) and Cichy et al. (2014) both used fMRI 

to evaluate the representational geometry of objects in human IT (Figure 2a and b). The 

animate/inanimate divide is clearly visible in IT, and additional subcategory groupings such 

as animals and humans also cluster together. These fMRI MDS plots can be compared to 

those from MEG time-series decoding studies (Figure 2 c and d; Carlson et al., 2013; Cichy 

et al., 2014). MEG data is shown at the time of peak animacy decoding in each study: 240 

ms (Figure 2c) and 157 ms (Figure 2d). Note that the time of peak decoding is dependent on 

the stimulus set being evaluated as well as the noise and variability in a particular data set, 

complicating the comparison of specific decoding onset times across studies. The emergence 

of feature information or category structure is better discussed in terms of relative timing 

within individual studies. A critical difference between the MDS plots for fMRI versus MEG 

is that the MEG plots represent similarity in whole-brain activation patterns, whereas the 

fMRI analysis is localised to IT. Considering this substantial difference, the degree of 

similarity in the categorical representation is remarkable (compare top and bottom rows of 

Figure 2). 
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Figure 2. Comparison of MDS plots from fMRI and MEG studies. Top MDS plots (a and b) show 

the representational geometry in human IT using fMRI; bottom MDS plots (c and d) show the 

representational geometry using MEG at the time of peak decoding for the animate/inanimate 

(animacy) category distinction. Animacy peak decoding times for the individual studies are listed 

below the MEG MDS plots. Note that (a) has been normalised and rigidly aligned (Procrustes 

alignment) for visualisation, producing a more regular spacing between object exemplars in the MDS 

plot compared to panels b-d. Black lines in each plot mark the (approximate) animacy boundary. 

Black lines in each plot mark the (approximate) animacy boundary. Panel (a) image from 

Kriegeskorte et al. (2008), reprinted with permission from Elsevier. Panel (c) image from Carlson et 

al. (2013) reprinted with permission of the Association for Research in Vision and Ophthalmology; 

permission conveyed through Copyright Clearance Center, Inc. Panels (b) and (d) images from Cichy 

et al. (2014) reprinted with permission from Macmillan Publishers Ltd: Nature Neuroscience, 

copyright (2014).  
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Another advantage of using time-series decoding to investigate object processing is 

that we can examine to what degree information related to object category is maintained in 

the brain activation patterns over time (see King & Dehaene, 2014 for a review of temporal 

generalisation methods). This is achieved by performing time-point by time-point 

comparisons across the entire time-course, whereby a classifier is trained on data from one 

time-point and then tested at every other time point. If information is maintained within the 

signal for some period of time, then the classifier is expected to generalise and successfully 

classify the test data, regardless of the time difference between the training and test data sets. 

The results of temporal generalisation are visualised in two-dimensional heat maps 

indicating the magnitude of classification performance for each pair of time points (Figure 

3). 

A number of MEG studies have examined the temporal generalisation of decoding 

to evaluate the dynamics of object representations (Figure 3). For each plot in Figure 3, the 

diagonal represents standard decoding analysis when the classifier is trained and tested on 

data from the same time-point, thus classification accuracy is expected to be highest along 

the diagonal. If decoding performance is significant off the diagonal, it is indicative of some 

degree of temporal generalisation of the decodable signal related to object classification. 

Note that the decoded category differs across studies: Isik et al. (2014) and Cichy et al. 

(2014) decoded object exemplars, while Carlson et al. (2013) and Grootswagers et al. (2016) 

decoded object animacy. 
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Figure 3. Examples of temporal cross-decoding of MEG data. Temporal generalisation of MEG 

decoding from (a) Isik et al. (2014), (b) Cichy et al. (2014) (c) Carlson et al. (2013), and (d) 

Grootswagers et al. (2016). Generalisation of decoding performance across time is assessed by 

training and testing the classifier on MEG data from different time points. Points on the diagonal 

represent training and testing on data from the same time point (i.e., regular classification). Colour 

indicates classifier performance as a function of time for each study; hotter colours indicate higher 

levels of classifier performance (measured using decoding accuracy percent (a, b, d) and d-prime in 

(c). Panel (a) image from Isik et al. (2014) reprinted with permission from ©The American 

Physiological Society. Panel (b) image from Cichy et al. (2014) reprinted with permission from 

Macmillan Publishers Ltd: Nature Neuroscience, copyright (2014). Panel (c) image from Carlson et 

al. (2013) reprinted with permission of the Association for Research in Vision and Ophthalmology; 

permission conveyed through Copyright Clearance Center, Inc. Panel (d) image from Grootswagers 

et al. (2016) reprinted with permission from the Massachusetts Institute of Technology © 2016, 

published by the MIT Press.  
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The most striking similarity between the temporal generalisation plots from these 

different studies is that the MEG signal underlying object decoding evolves relatively 

quickly, with little information generalising across time. Where there is generalisation, it 

tends to cluster closely around the diagonal, suggesting that the structure of object 

representations accessible in the whole-brain MEG signal evolves rapidly, and follows a 

specific neural trajectory. Another interesting feature is that the period where there is the 

greatest generalisation occurs relatively late after stimulus onset (see particularly Figures 3c-

d). This suggests maintenance of object representations at later stages of processing (Carlson 

et al., 2013). Alternatively, it may reflect the gradual accumulation of multiple related 

information processing stages of variable duration throughout the visual processing 

hierarchy, leading to a greater temporal spread of information over time. Paradoxically, there 

are also some periods of below chance decoding, whereby a classifier systematically 

categorises an object incorrectly as the opposite category (e.g. see blue regions in Figure 3c). 

Carlson et al. (2013) suggest this may represent adaptation or inhibition following a period 

of excitation, resulting in later inversion of the neural representation. Consistent with this 

explanation, anticorrelated MEG signals have also been identified around the time of 

stimulus offset for both visual (Carlson et al., 2011) and auditory (Chait, Poeppel, 

Cheveigné, & Simon, 2007) stimuli.  

An exception to the general lack of generalisation is seen in the results of Cichy et 

al. (2014), where there is a period of significant generalisation of early information across 

most of the time-course (Figure 3b; grey dotted rectangle shows the period of significant 

temporal generalisation). This could be because this analysis used pair-wise object decoding 

as opposed to leave-one-exemplar-out category classification (see Carlson et al., 2013; 

Grootswagers et al., 2016). With pairwise object decoding, low-level information diagnostic 

of object is contained in both the training and test sets for the classifier, thus maintenance of 

early visual information is consistent with low-level properties being useful for 

classification. There is a similar pattern of generalisation in Figure 3c, and this analysis also  
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included exemplars in both training and test sets (Carlson et al., 2013). However, in leave-

one-out exemplar decoding (Figure 3d) the test exemplar is not included in the training set 

so early processing reflecting sensitivity to low level image properties is less likely to be 

used by the classifier. Kaiser et al. (2016) took this idea further by using temporal 

generalisation to directly examine decoding of low-level shape versus object category in a 

matched stimulus set (see Section 1.3.5, Figure 6).  

The studies in this section demonstrate the utility of examining the change in 

representational structure of object representations over time. Studies to date have shown 

that the brain's response to visual objects is highly dynamic, evolving rapidly from sensitivity 

to low-level visual properties to more category-like representations. There is also evidence 

for a robust categorisation distinction between animate and inanimate objects that is 

sustained. In the following section we examine what has been learnt from time-series 

decoding about the hierarchical structure of object category representations. 

1.3.3. Uncovering the Hierarchy of Object Category Representations 

Visual object categorisation can be understood as a dynamic process of evidence 

accumulation over time (Mack & Palmeri, 2011; Nosofsky & Palmeri, 1997; Philiastides & 

Sajda, 2006). Functionally, the accumulation of evidence for object category membership is 

likely to exploit the complex network of feedback and feedforward connections within the 

object-selective ventral pathway, rather than operating as a linear progression of 

representation from low-level features through to semantic concepts of increasing 

abstraction (Kravitz, Saleem, Baker, Ungerleider, & Mishkin, 2013). This is a recent 

development and extension of the earlier idea of sequential processing stages, where objects 

are first categorised at an intermediate/basic level (Mervis & Rosch, 1981) (e.g., cat), with 

superordinate (e.g., animal) and subordinate (e.g., Siamese cat) categorisation occurring later 

in the visual processing hierarchy (Grill-Spector & Kanwisher, 2005).  
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MEG decoding methods have been applied to understanding the timing of category 

abstraction by selecting stimuli with a planned hierarchical category structure and assessing 

when these category level distinctions emerge. Results from two MEG decoding studies 

(Carlson et al., 2013; Cichy et al., 2014) provide insights into the category processing 

hierarchy by evaluating the time course of hierarchically organised object categories. The 

stimulus sets across both studies followed the same planned hierarchical structure (see 

Figure 4): the highest (most general/abstract) category tier was the commonly evaluated 

animate/inanimate distinction. The animate domain was then further subdivided into 

intermediate categories of faces/bodies as well as humans/animals, with the lowest (most 

specific) category level being that of human faces/human bodies, animal faces/animal 

bodies. For the inanimate domain, these objects could be further subcategorised into man-

made and natural objects.   

To investigate the dynamics of hierarchical object category representations, these 

studies looked at two critical moments in the MEG object decoding time-course: the time at 

which decoding first reaches significance (decoding onset) and the time that the category 

distinction is maximally differentiated (peak decoding time). A visual comparison of the 

decoding time course in both Carlson et al. (2013) and Cichy et al. (2014) for object 

categories at different levels of the category hierarchy is shown in Figure 5. Carlson et al. 

(2013) found the onset of significant decoding for individual object exemplars occurred 

around 80 ms after stimulus onset, which was also similar to the decoding onsets of 

individual categories; all falling between 80 – 100 ms. Cichy et al. (2014) similarly found 

little variability between overall exemplar decoding onset (~48 ms) and individual category 

onsets (~51 - 61 ms post-stimulus onset).  
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Figure 4. Hierarchical category structure of the object stimuli used in both Carlson et al. (2013) and 

Cichy et al. (2014). Diagram shows the three levels of category abstraction: lower tier (animal and 

human faces and bodies), intermediate tier (bodies and faces), and highest tier (animacy). Note, 

number of stimuli differed between the two studies: Carlson et al. (2013) used 24 images (as shown), 

while Cichy et al. (2014) employed 92. Image reprinted from Carlson et al. (2013). Image reprinted 

with permission of the Association for Research in Vision and Ophthalmology, from Carlson et al. 

(2013); permission conveyed through Copyright Clearance Center, Inc. 
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Evaluation of peak decoding times for the category hierarchy in Carlson et al. (2013) 

revealed a largely linear organisation of the category tiers (see Figure 5, red bars), such that 

lower tier categories (e.g., human faces, animal bodies) showed peak decoding times from 

120 - 180 ms, followed by intermediate tier categories (faces, bodies, human, animal) which 

ranged from 160 - 240 ms, with the superordinate tier animacy category (animate vs. 

inanimate) peaking at 240 ms. The results suggest evolving hierarchical representations of 

object categories that progress from specific, individual exemplar individuation through to 

more abstract semantic groupings. Results from Cichy et al. (2014) largely support these 

findings (see Figure 5, blue bars), with peak decoding between intermediate tier categories 

(natural vs. artificial and faces vs. bodies, 122 and 136 ms respectively) occurring earlier 

than the superordinate animacy category peak (157 ms).  

Although there is similar evidence in the results of both Carlson et al. (2013) and 

Cichy et al. (2014) for a roughly linear emergence of object categories from specific to more 

abstract object category representations, the data are not entirely straightforward. For 

example, for the subordinate tier categories in Cichy et al. (2014), this linear hierarchy does 

not hold, with subcategory peaks occurring later in the time-course than some of the 

intermediate tier category peaks: human versus animal faces peaked at 127 ms, while human 

versus animal bodies peaked at 170 ms. Furthermore, in Carlson et al. (2013), the 

intermediate tier categories of faces and bodies are best discriminated at a similar time point 

to the more specific lower tier categories (e.g., human faces, animal bodies), and similarly, 

Cichy et al. (2014) found no significant difference between the peak latency at which 

individual images were discriminated early in the time course compared to a higher tier 

category grouping of human versus non-human bodies.  
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Figure 5. Onset and peak decoding times for category tiers within the object category hierarchy, as 

evaluated by Carlson et al. (2013) and Cichy et al. (2014). Each coloured bar represents the time 

from the onset of significant category decoding to the time of peak decoding (relative to post-stimulus 

onset) for Carlson et al. (2013) (red) and Cichy et al. (2014) (blue). Note, the intermediate tier 

categories are evaluated using different stimulus comparisons by Carlson et al. (2013) and Cichy et 

al. (2014) (specific comparisons are noted in brackets).   

 

It is plausible that these anomalies in the emergence of hierarchical category structure 

reflect that category representations are not a strict linear hierarchy, consistent with recent 

ideas on the importance of recurrent processing such as lateral connections and feedback on 

feedforward visual object processing (Kravitz et al., 2013). Carlson et al. (2013) suggest 

these discrepancies may be partially explained by the inclusion of face and body stimuli in 

the design, as there is evidence for special processing systems specifically tuned for the 

detection of faces and bodies in both human and primate ventral temporal cortex (Downing 

et al., 2001; Kanwisher et al., 1997). If some categories are processed differently than others, 

a straightforward linear emergence of category structure is not expected. A further caveat is 
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that these results are specific to the selected stimulus set and the imposed category structure 

of the experimental design.  

1.3.4. Decoding the Time-Course of Face Processing 

The object category of faces stands out as having a particularly strong contribution 

to decoded brain representations measured with EEG (Kaneshiro, Guimaraes, Kim, Norcia, 

& Suppes, 2015) and MEG (Van de Nieuwenhuijzen et al., 2013). For example, in the MDS 

results for large object sets, human faces tend to cluster prominently (Figure 2). Two EEG 

decoding studies have examined the temporal dynamics of face representations in detail 

(Barragan-Jason et al., 2015; Cauchoix et al., 2014). A strong feature of these studies is that 

they used large natural image stimulus sets containing pictures of faces with natural 

backgrounds, and faces were not repeated in the experimental design. This is in contrast to 

the majority of temporal object decoding studies to date, which tend to repeat the same object 

exemplars multiple times within the experiment to increase signal-to-noise. Both studies had 

participants complete a go/no-go task and trained a classifier to detect the target versus non-

target faces across the EEG time-course (human vs. animal in Cauchoix et al., 2014, and 

famous vs. unfamiliar faces in Barragan-Jason et al., 2015). In both studies, the time-course 

of face decoding follows a similar pattern: there is an initial sharp rise in performance of the 

classifier early in the time-course, shortly followed by a relatively brief plateau or drop in 

decoding, before a second, more gradual rise in decoding accuracy, with peak decoding 

occurring relatively late in the time-course (350 ms and 600 ms for humans/animals and 

familiarity respectively). They suggest that the two (early vs. late) peaks in decoding reflect 

different levels of processing within the object recognition hierarchy. An initial fast 

feedforward signal driven by low-level stimulus properties is later modified to incorporate 

more detailed feedback from higher cortical areas (Barragan-Jason et al., 2015; Cauchoix et 

al., 2014).  
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A recent study which combined MEG decoding with fMRI localization provides 

further insight into different levels of face processing. Vida, Nestor, Plaut and Behrmann 

(2017) evaluated time-series decoding performance of face identity in specific regions of the 

brain linked to face processing. They used an fMRI localiser to identify two regions that 

were preferentially activated by faces, over and above activity associated with objects more 

broadly: right lateral occipital cortex and the right fusiform gyrus. At these sites, and a 

control site (left V1) they related the time-course of face decoding to three models of face 

processing: one that represented low-level, V1-like responses (“image-based” model), a 

higher-level “identity-based” face model, and a behavioural-rating model where participants 

rated a subset of the images as to how similar the face identities were on a scale from 1 to 8. 

Their results showed that firstly, while face identity was decodable at all three regions from 

~50 - 400ms, the image-based model was a better predictor of the neural data than the 

identity-based model until ~200 ms, after which its performance dropped below that of the 

identity-based model at a number of time-points. However, this shift occurred in the face-

selective regions only, with the image-based model outperforming others in the V1 control 

region throughout the time-course.  

These results are in line with previous findings (see Section 1.3.1) that suggest low-

level visual features are associated with activity in early visual areas, while high-level 

conceptual information is represented in cortical regions further down the ventral processing 

stream. The behavioural-rating model similarly correlated with the neural data significantly 

in all three regions from ~50-400 ms, however, after controlling for representations in the 

V1 control region, this significant time-window reduced to 100 - 250 ms in the face-selective 

regions. Notably, behavioural ratings were significantly more similar to the identity-based 

model than the image-based model. Significantly, by using time-series decoding methods, 

Vida et al. were able to show that face-selective regions process information related to both 

low-level image properties as well as higher-level face identity-based representations, 

highlighting the potential shortcomings of associating localised regions with single 
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functions.  The challenges involved in empirically separating out the contribution of low-

level properties from more abstract object representations in object decoding studies is 

discussed in detail in the following section. 

1.3.5. Is a Category a Category?  

Above we reviewed several studies focusing on uncovering the dynamic category 

structure of object representations. However, when evaluating object representations, it is 

important to separate effects related to the abstract concept of an object "category" from 

other potentially confounding features that co-vary with category membership such as low-

level visual properties including shape, colour, and luminance contrast (Wardle & Ritchie, 

2014). For example, items within the category of tools tend to have handles, resulting in a 

characteristic long and often slender feature to their appearance (e.g., hammer, scissors, 

screwdriver, toothbrush). This relatively consistent information within this category could 

result in decoding based on low-level feature similarities related to shape, such that instead 

of decoding the category of “tools” compared to “faces”, we may instead be erroneously 

decoding “long and thin” versus “round”.  Low-level stimulus properties such as orientation 

(Cichy, Ramirez, & Pantazis, 2015; Ramkumar, Jas, Pannasch, Hari, & Parkkonen, 2013) 

are readily decodable from whole-brain MEG signals, and perceptual similarity is a strong 

determinant of the decodability of abstract visual stimuli (Wardle, Kriegeskorte, 

Grootswagers, Khaligh-Razavi, & Carlson, 2016). 

Time-varying decoding studies investigating object recognition have attempted to 

account for potential low-level confounds using a variety of different approaches. In fMRI 

studies, V1 is often used as a control region to show that unsupervised categorical clustering 

of object representations (e.g., by animacy) do not emerge in V1, but are present in IT (Cichy 

et al., 2014; Kriegeskorte, Mur, Ruff, et al., 2008). As this degree of spatial localisation is 

not possible with MEG, time-varying decoding studies often exploit the time-course to 

demonstrate that models of early visual processing may perform well early on in the time-
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course but later the contribution from categorical models such as animacy emerges. For 

example, Carlson et al. (2013) used RSA to evaluate the performance of low-level feature-

based models of vision on object representations measured with MEG. The models of early 

visual processing included a shape-based model that compared the image silhouettes 

(Jaccard, 1901), a colour-based model (CIE), and a hierarchical visual processing model 

(HMAX) containing layers tuned to process varying levels of stimulus complexity 

(Riesenhuber & Poggio, 1999; Serre et al., 2007). Notably, these models were able to 

successfully differentiate human faces from other objects (silhouette model), humans from 

human bodies (CIE), and man-made objects from other objects (HMAX). While the models 

were only able to distinguish a maximum of two out of a possible 10 object categories in 

that particular data set, these results highlight the importance of accounting for the potential 

influence of low-level stimulus properties on object category decoding. 

Although there is evidence that visual similarity accounts for at least some of the 

representational similarity shared by objects within the same category, it is unlikely to 

account for all observed category effects. As a control for low-level stimulus properties when 

decoding object category, Carlson et al. (2011) evaluated decoding accuracy of cars and 

faces from MEG activation patterns compared to artificially generated car and face textures 

which preserved local image statistics but removed recognisable form. If classification of 

object category is heavily based on low-level image statistics, it is expected that the classifier 

would find it difficult to discriminate between objects and their matched texture images, 

which share low-level image properties (e.g., classifying 'car' vs. 'car-texture'). However, 

object categories were able to be accurately decoded from their texture counterparts in the 

whole-brain MEG activation patterns, and this distinction emerged earlier in the time course 

than information differentiating the two object categories of cars and faces (Carlson et al., 

2011). These results are consistent with a transition from decoding based on V1-like image 

properties to IT-like object category over the MEG decoding time course (Cichy et al., 2014).  
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The contribution of semantic meaning to category representations was explored in a 

study by Clarke et al. (2014), which compared the performance of both low-level visual 

processing and feature-based semantic models for their 302 object stimuli from 11 

categories.  They found that a model which combined both category-specific semantic 

information and low-level visual features best accounted for variability in neural object 

representations later in the MEG time course, over and above what could be achieved by 

using the HMAX model alone (A. Clarke et al., 2014). These results suggest there is a 

contribution of abstract category membership (as indexed by semantic similarity) to the brain 

representation. Similarly, an EEG study evaluating event-related potentials (ERPs) 

associated with object representations aimed to provide evidence for the involvement of 

conceptual category membership by examining decoding of the categories 'animals' versus 

'tools' across three modalities of visual pictures, spoken words and written words (Simanova 

et al., 2010). However, classifier performance was much higher for visual pictures than for 

spoken or written words, complicating the critical cross-classification analysis across 

modality.   

Similar to the frequently-used approach of assessing the potential contribution of 

low-level properties to object representations with the HMAX model (Carlson et al., 2013; 

A. Clarke et al., 2014; Isik et al., 2014; Kriegeskorte, Mur, Ruff, et al., 2008), recently Cichy, 

Khosla, Pantazis, Torralba and Oliva (2016) compared MEG object decoding performance 

with the performance of deep neural networks (DDNs). DNNs are a powerful form of 

computer vision model, comprised of multiple non-linear processing layers with the ability 

to learn tasks such as object categorization (see Kriegeskorte, 2015). The recent 

advancement of these models has propelled computer modelling of object recognition to a 

level that is beginning to rival human object categorisation performance (He, Zhang, Ren, 

& Sun, 2015). By comparing the decoding performance of the DNN model to MEG and 

fMRI brain data, Cichy et al. (2016) showed a hierarchy of both spatially and temporally 

ordered processes that correlated with the DDN processing layers in an ordered fashion; 
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deeper layers were associated with later brain activity in higher cortical processing regions. 

Furthermore, by analysing activity throughout the entire brain, they identified involvement 

of not only the ventral, but also the dorsal pathway in object recognition. A key issue for the 

future is to understand to what degree deep-neural networks mimic the object recognition 

processes in the human brain, and in what respects the two systems are different.  

The above approaches are data-driven, and aim to show that categorical structure that 

emerges in the neuroimaging data cannot be completely explained by sensitivity to lower 

level visual properties confounded with object category. A more compelling line of evidence 

against reducing category representations entirely to low-level properties involves 

experimental manipulations designed to separate the two factors. A recent MEG/fMRI study 

(Kaiser, Azzalini, et al., 2016) sought to specifically identify object category representations 

independent of shared visual properties by purposefully selecting visually similar stimuli 

that belonged to the semantic categories of body parts and clothing (e.g., gloves vs. hands, 

shirts vs. torsos). With this stimulus set, visual similarity is balanced across category 

membership. While their fMRI results showed overlapping spatial representations for both 

shape and category information, the MEG data showed a specific, comparatively late time 

window within which category-selective information was present (Figure 6b) and in contrast 

to this, shape dependent responses (Figure 6a) were decoded relatively early on, from 90 ms 

post-stimulus onset, and was sustained throughout the time-course. Interestingly, a recent 

MEG study (Proklova, Kaiser, & Peelen, 2018) employing human behavioural judgements 

of perceptual similarity, did not show a distinct time-course for object category, but rather, 

object shape and texture drove object decoding performance. Further investigation is 

necessary to determine the circumstances that lead to dissociable category representations 

across neuroimaging modalities, and how these relate to each other.  
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Figure 6. Temporal cross decoding of object category (body parts vs. clothing). The black outlined 

areas in both plots indicate when cross-decoding of (a) shape or (b) object category was significantly 

above chance. Images reprinted from Kaiser et al. (2016a) with permission from ©The American 

Physiological Society. 

 

Object invariance is both an interesting theoretical question for investigation and an 

experimental manipulation that minimises the contribution of low-level features.  Object 

invariance is the ability to successfully recognise objects despite high variability in their 

appearance, for instance, due to differences in viewpoint and size. Carlson et al. (2011) 

showed that object category information for faces and cars could be decoded from the neural 

data despite changes in retinal location of the image; evidence for a position-invariant object 

representation. They tested a classifier on information from a novel retinal location that was 

not included in the original training set, and were able to successfully recover information 

about the object category as early as 135 ms, suggesting that position-invariant category 

information is present early in the neural signal. Furthermore, this was not simply due to 

low-level image statistics, as category information could not be decoded from abstract 
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textures generated to preserve the local low-level image statistics of the object images 

(Carlson et al., 2011).  

Invariant object decoding was further investigated by Isik et al. (2014). Isik et al. 

showed position invariant decoding across three stimulus locations for a set of six object 

exemplars, while also evaluating size invariance. Using three different stimulus sizes for 

each exemplar, they showed that size-invariant information was present in the signal from 

around 125 ms post-stimulus onset, earlier in the time-course than position-invariant 

information which emerged around 150 ms for their stimulus set. Furthermore, by comparing 

the decoding latencies for the different train-test conditions, they found that comparisons 

which required a greater transformation of the data from the train to the test condition (e.g., 

for small, middle and large sized stimuli, train small/test large requires a bigger 

transformation than train middle/test large) resulted in later decoding onsets.  

Successful object decoding across changes in retinal size or position suggests access 

to more abstract object representations, which is likely to reflect higher-level visual 

processing. Isik et al. (2014) compared their results to the different levels of the 

computational HMAX model (Riesenhuber & Poggio, 1999; Serre et al., 2007), which 

includes multiple stages representing early V1 processing (layer C1), mid-ventral processing 

(layer C2), and higher level IT-like processing (layer C3). Comparison of the experimental 

results with the response of the HMAX model for their six object exemplars revealed that 

only the IT layer of HMAX could successfully decode object exemplars across all 

transformations of size and position. Isik et al. suggest their observed relationship between 

the degree of image transformation and decoding time (i.e., that decoding occurs later for 

larger visual transformations across object size and position) is consistent with a feedforward 

processing hierarchy supporting invariant object representations. In the next section we 

consider the link between object category representations and human behaviour. 
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1.4. Linking Dynamic Object Category Representations to Human Behaviour 

One of the critical limitations of decoding approaches in neuroscience is that 

successful decoding of a stimulus property or experimental condition does not entail that this 

information is explicitly used by the brain for behaviour (cf. de-Wit et al., 2016; Ritchie, 

Kaplan, & Klein, in press). An emerging goal is to find ways to link measured brain 

activation patterns to behaviour (Philiastides & Sajda, 2006). In this section we review two 

recent approaches to linking the decoded dynamic object representations from time-series 

neuroimaging data with human behaviour. In the first approach, the goal is to link reaction 

times (RTs) for object categorisation to the brain's evolving representation of the objects in 

multidimensional space (Section 1.4.1). The second involves uncovering the effects of 

attention on decodable object representations (Section 1.4.2).  

1.4.1. Categorisation Reaction-Times  

One fruitful approach to evaluate the relationship between brain and behaviour has 

been to link human RTs for categorisation to the multidimensional representation of object 

exemplars in neuroimaging data (Ritchie & Carlson, 2016). Human categorisation behaviour 

can be conceptualised as a process of evidence accumulation leading to a decision. 

Behavioural RTs, such as those measured by a simple button press to categorise a stimulus 

(e.g., fish as 'animate', boot as 'inanimate'), can be thought of as a proxy for the point at 

which a decision has been made. Carlson, Ritchie, Kriegeskorte, Durvasula, and Ma (2014) 

tested this idea by combining previously collected fMRI data from human IT (Kriegeskorte, 

Mur, Ruff, et al., 2008) with separately collected behavioural RTs for categorising the same 

92 object images as either 'animate' or 'inanimate'. Carlson et al. (2014) linked the decision 

boundary from the fMRI data (boundary is that used by a classifier to categorise stimuli by 

animacy) to RTs for human observers to complete the same categorisation task. They 

showed that the distance to the classifier decision boundary predicted reaction times for 

animacy categorisation. Specifically, objects represented further from the animacy decision 



43 

boundary were associated with faster behavioural categorisation RTs (i.e., more easily 

categorised by human observers) than objects represented closer to the boundary (Figure 7a). 

Ritchie, Tovar, and Carlson (2015) expanded on this idea by studying the dynamic 

coupling between emerging object representations and behaviour using MEG decoding. 

Their findings replicated the relationship between representational distance and RTs found 

by Carlson et al. (2014) for fMRI, as a larger distance from the classifier boundary was 

associated with a faster reaction time for animacy categorisation. The key advantage of 

examining this relationship with MEG is that its emergence following stimulus onset can be 

tracked over time, which cannot be determined from the fMRI data. Ritchie et al. (2015) 

found that as decoding accuracy increased following stimulus onset (indicating greater 

separability of individual object representations with more processing time), the correlation 

between representational distance and RTs similarly increased. Importantly, this suggests 

that the strength of the association between representations and behaviour appears to follow 

decoding performance over time (Ritchie et al., 2015). The significance of this result is that 

it implies that the brain "reads out" information at the optimal time for making a categorical 

decision. This highlights the utility of time-series decoding methods, as this result could not 

be accessed by examining time-averaged activation patterns as in fMRI.  

Interestingly, in both the fMRI and MEG studies, the relationship between 

representational distance and RTs appeared to be driven by animate rather than inanimate 

objects (Carlson et al. 2014, Richie et al., 2015). This is shown in Figure 7b by comparing 

the left (animate) and right (inanimate) RT correlation panels. For animate object decoding, 

a negative correlation is observed with RTs around the time of peak decoding (indicating 

that faster RTs were associated with greater distances from the decision boundary for 

animacy). However, this relationship is not found with inanimate objects. The authors 

suggest this asymmetry may be because inanimacy is a negatively defined category (i.e., 'not 

animate').  



44 

 

Figure 7. Linking behavioural RTs for object animacy categorisation to dynamic object 

representations measured with MEG. (a) Diagram illustrating how representational distance from the 

classifier category boundary relates to RTs. (b) Left panel shows the correlation between RTs and 

the MEG decoding time-course for animate objects, while the right panel shows the same for 

inanimate objects. Grey bar in both plots indicates the window of peak decoding. Red stars along the 

x-axis indicate time-points at which the correlation between representational distance and reaction 

time is significant. Images from Ritchie et al. (2015) reprinted with permission from the author. 

 

1.4.2. Attention 

Attention has strong modulatory effects on neural processing (Gandhi, Heeger, & 

Boynton, 1999; Kastner & Ungerleider, 2000; Moran & Desimone, 1985). A recent MEG 

study by Kaiser, Oosterhof, & Peelen (2016) evaluated the effects of top-down attention on 

object category representations. Participants performed a category search task by detecting 

the presence of either a car or a person embedded in cluttered natural scenes. This design 

allows comparison of the neural signal associated with the attended versus unattended object 

category. The classifier was trained on data from viewing car and people exemplars that 

were separate to the experimental data set and presented as segmented objects on a plain 

background. The classifier was then tested on the data for when the objects were embedded 

in complex natural scenes as either a target or a distractor.  
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The results demonstrate a substantial effect of attention on object representations. 

Under attended conditions, object category could be decoded rapidly in under 200 ms even 

though the objects were in highly cluttered scenes (Figure 8c). However, unattended object 

categories embedded in complex scenes were decoded much later (Figure 8c), demonstrating 

a strong top-down modulation of attention on visual processing. Attended objects were 

decoded more easily than unattended objects across all early (180 – 220 ms), mid (230 – 340 

ms), and late (350 – 500 ms) time windows (Figure 8a, b). The greater temporal 

generalisation of cross-decoding during the late time window indicates that the 

representational similarity shared by isolated objects and objects in scenes is sustained for 

longer in the late processing stages, which is particularly evident for attended objects 

(Kaiser, Oosterhof, et al., 2016). These results suggest that top-down attention rapidly 

modulates object category representations, facilitating rapid target detection in natural 

scenes (Thorpe, Fize, & Marlot, 1996). By using temporal decoding, this study was able to 

reveal the time course of category-specific attentional enhancement, extending previous 

EEG findings which instead focused on comparing evoked potentials to target presence 

versus absence (Codispoti, Ferrari, Junghöfer, & Schupp, 2006; Thorpe et al., 1996). 
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Figure 8. MEG decoding of attended versus unattended targets. Temporal cross-decoding heat-maps 

of (a) target category and (b) unattended distractor category (training on isolated objects, testing on 

objects embedded in cluttered natural scenes in both instances); (c) Time-course of decoding 

performance for the target and distractor conditions separately. Dots indicate above-chance decoding 

performance. Images reprinted with permission of Society for Neuroscience, from Kaiser et al. 

(2016b); permission conveyed through Copyright Clearance Center, Inc. 

 

1.5. Summary and Conclusions 

Above we have reviewed how time-series decoding methods have expanded our 

understanding of the neural processes underlying human object recognition. Object 

recognition remains a significant area of interest within the field of vision research and the 

recent implementation of time-series decoding methods has allowed researchers to unpack 

some of the neural processes that underlie how the brain achieves this highly complex and 

multifaceted task. Complementing other neuroimaging techniques, such as fMRI, which 

provide static snapshots of the visual object processing hierarchy, time-series decoding has 

unveiled a system of dynamically changing processes that extend throughout the brain. This 

new perspective brings a host of interesting avenues for further exploration. For example, at 

what point in time do high-level constructs of attention and consciousness modulate the 

dynamics of object processing, and what is the effect of this modulation on perception? How 

do space- and feature-based attention processes differentially influence the processing 



47 

hierarchy? There remain unanswered questions about the processes involved in visual 

working memory and how these representations in the mind’s eye compare to the perception 

of a physical stimulus; are they fundamentally different or is visual working memory a 

process of revisiting points within these dynamic representations? Finally, it would be of 

particular interest to know how these various modulations of object representations 

differentially influence behaviour, further strengthening our understanding of the connection 

between brain and behaviour. Time-series decoding methods have greatly enriched our 

knowledge of neural object recognition processes, and show great potential for further 

advances in this and many other domains. 

 

 

 

 

 

 

Author contributions:  

E.C, S.W, T.C reviewed the literature and developed the ideas  

E.C wrote the paper 

SW and TC provided critical revisions on the paper 

 

Acknowledgements: This research was supported by an Australian Research Council (ARC) 

Discovery project (DP160101300). T.A.C is supported by an ARC Future Fellowship 

(FT120100816). S.G.W. is supported by an Australian NHMRC Early Career Fellowship 

(APP1072245).  



48 

1.6. References 

Altmann, C. F., Bülthoff, H. H., & Kourtzi, Z. (2003). Perceptual Organization of Local 

Elements into Global Shapes in the Human Visual Cortex. Current Biology, 13(4), 

342–349. https://doi.org/10.1016/S0960-9822(03)00052-6 

Averbeck, B. B., Latham, P. E., & Pouget, A. (2006). Neural correlations, population 

coding and computation. Nature Reviews Neuroscience, 7(5), 358–366. 

Barragan-Jason, G., Cauchoix, M., & Barbeau, E. J. (2015). The neural speed of familiar 

face recognition. Neuropsychologia, 75, 390–401. 

https://doi.org/10.1016/j.neuropsychologia.2015.06.017 

Beauchamp, M. S., Lee, K. E., Haxby, J. V., & Martin, A. (2002). Parallel visual motion 

processing streams for manipulable objects and human movements. Neuron, 34(1), 

149–159. 

Biederman, I. (1987). Recognition-by-components: a theory of human image 

understanding. Psychological Review, 94(2), 115. 

Carlson, Schrater, P., & He, S. (2003). Patterns of Activity in the Categorical 

Representations of Objects. Journal of Cognitive Neuroscience, 15(5), 704–717. 

https://doi.org/10.1162/jocn.2003.15.5.704 

Carlson, T. A., Hogendoorn, H., Kanai, R., Mesik, J., & Turret, J. (2011). High temporal 

resolution decoding of object position and category. Journal of Vision, 11(10), 9. 

https://doi.org/10.1167/11.10.9 

Carlson, T. A., Ritchie, J. B., Kriegeskorte, N., Durvasula, S., & Ma, J. (2014). Reaction 

Time for Object Categorization Is Predicted by Representational Distance. Journal 

of Cognitive Neuroscience, 26(1), 132–142. https://doi.org/10.1162/jocn_a_00476 



49 

Carlson, Tovar, D. A., Alink, A., & Kriegeskorte, N. (2013). Representational dynamics of 

object vision: The first 1000 ms. Journal of Vision, 13(10), 1–1. 

https://doi.org/10.1167/13.10.1 

Cauchoix, M., Barragan-Jason, G., Serre, T., & Barbeau, E. J. (2014). The Neural 

Dynamics of Face Detection in the Wild Revealed by MVPA. The Journal of 

Neuroscience, 34(3), 846–854. https://doi.org/10.1523/JNEUROSCI.3030-13.2014 

Chait, M., Poeppel, D., Cheveigné, A. de, & Simon, J. Z. (2007). Processing Asymmetry 

of Transitions between Order and Disorder in Human Auditory Cortex. Journal of 

Neuroscience, 27(19), 5207–5214. https://doi.org/10.1523/JNEUROSCI.0318-

07.2007 

Chao, L. L., Haxby, J. V., & Martin, A. (1999). Attribute-based neural substrates in 

temporal cortex for perceiving and knowing about objects. Nature Neuroscience, 

2(10), 913–919. 

Cichy, R. M., Khosla, A., Pantazis, D., Torralba, A., & Oliva, A. (2016). Comparison of 

deep neural networks to spatio-temporal cortical dynamics of human visual object 

recognition reveals hierarchical correspondence. Scientific Reports, 6. 

https://doi.org/10.1038/srep27755 

Cichy, R. M., Pantazis, D., & Oliva, A. (2014). Resolving human object recognition in 

space and time. Nature Neuroscience, 17(3), 455–462. 

https://doi.org/10.1038/nn.3635 

Cichy, R. M., Ramirez, F. M., & Pantazis, D. (2015). Can visual information encoded in 

cortical columns be decoded from magnetoencephalography data in humans? 

NeuroImage, 121, 193–204. https://doi.org/10.1016/j.neuroimage.2015.07.011 



50 

Clarke, A., Devereux, B. J., Randall, B., & Tyler, L. K. (2014). Predicting the Time Course 

of Individual Objects with MEG. Cerebral Cortex. 

https://doi.org/10.1093/cercor/bhu203 

Clarke, A., & Tyler, L. K. (2014). Object-Specific Semantic Coding in Human Perirhinal 

Cortex. Journal of Neuroscience, 34(14), 4766–4775. 

https://doi.org/10.1523/JNEUROSCI.2828-13.2014 

Codispoti, M., Ferrari, V., Junghöfer, M., & Schupp, H. T. (2006). The categorization of 

natural scenes: Brain attention networks revealed by dense sensor ERPs. 

NeuroImage, 32(2), 583–591. https://doi.org/10.1016/j.neuroimage.2006.04.180 

Connolly, A. C., Guntupalli, J. S., Gors, J., Hanke, M., Halchenko, Y. O., Wu, Y.-C., … 

Haxby, J. V. (2012). The Representation of Biological Classes in the Human Brain. 

Journal of Neuroscience, 32(8), 2608–2618. 

https://doi.org/10.1523/JNEUROSCI.5547-11.2012 

Cox, D. D., & Savoy, R. L. (2003). Functional magnetic resonance imaging (fMRI) ‘brain 

reading’: detecting and classifying distributed patterns of fMRI activity in human 

visual cortex. NeuroImage, 19(2 Pt 1), 261–270. 

de-Wit, L., Alexander, D., Ekroll, V., & Wagemans, J. (2016). Is neuroimaging measuring 

information in the brain? Psychonomic Bulletin & Review, 23(5), 1415–1428. 

https://doi.org/10.3758/s13423-016-1002-0 

DiCarlo, J. J., & Cox, D. D. (2007). Untangling invariant object recognition. Trends in 

Cognitive Sciences, 11(8), 333–341. 

Downing, P., Jiang, Y., Shuman, M., & Kanwisher, N. (2001). A cortical area selective for 

visual processing of the human body. Science, 293(5539), 2470–2473. 



51 

Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual 

environment. Nature, 392(6676), 598–601. 

Gandhi, S. P., Heeger, D. J., & Boynton, G. M. (1999). Spatial attention affects brain 

activity in human primary visual cortex. Proceedings of the National Academy of 

Sciences, 96(6), 3314–3319. https://doi.org/10.1073/pnas.96.6.3314 

Goddard, E., Carlson, T. A., Dermody, N., & Woolgar, A. (2016). Representational 

dynamics of object recognition: Feedforward and feedback information flows. 

NeuroImage, 128, 385–397. https://doi.org/10.1016/j.neuroimage.2016.01.006 

Grill-Spector, K., Kourtzi, Z., & Kanwisher, N. (2001). The lateral occipital complex and 

its role in object recognition. Vision Research, 41(10–11), 1409–1422. 

Grill-Spector, K., & Malach, R. (2004). THE HUMAN VISUAL CORTEX. Annual 

Review of Neuroscience, 27(1), 649–677. 

https://doi.org/10.1146/annurev.neuro.27.070203.144220 

Grill-Spector, K., & Kanwisher, N. (2005). Visual recognition as soon as you know it is 

there, you know what it is. Psychological Science, 16(2), 152–160. 

Grootswagers, T., Wardle, S. G., & Carlson, T. A. (2016). Decoding dynamic brain 

patterns from evoked responses: A tutorial on multivariate pattern analysis applied 

to time-series neuroimaging data. Journal of Cognitive Neuroscience. 

https://doi.org/10.1162/jocn_a_01068 

Haxby, J. V., Connolly, A. C., & Guntupalli, J. S. (2014). Decoding Neural 

Representational Spaces Using Multivariate Pattern Analysis. Annual Review of 

Neuroscience, 37(1), 435–456. https://doi.org/10.1146/annurev-neuro-062012-

170325 



52 

Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). 

Distributed and Overlapping Representations of Faces and Objects in Ventral 

Temporal Cortex. Science, 293(5539), 2425–2430. 

https://doi.org/10.1126/science.1063736 

Haynes, J.-D. (2015). A primer on pattern-based approaches to fMRI: principles, pitfalls, 

and perspectives. Neuron, 87(2), 257–270. 

Haynes, J.-D., & Rees, G. (2006). Decoding mental states from brain activity in humans. 

Nature Reviews Neuroscience, 7(7), 523–534. https://doi.org/10.1038/nrn1931 

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving Deep into Rectifiers: Surpassing 

Human-Level Performance on ImageNet Classification. In Computer Vision 

(ICCV), 2015 IEEE International Conference on (pp. 1026–1034). IEEE. Retrieved 

from http://ieeexplore.ieee.org/abstract/document/7410480/ 

Hung, C. P., Kreiman, G., Poggio, T., & DiCarlo, J. J. (2005). Fast readout of object 

identity from macaque inferior temporal cortex. Science, 310(5749), 863–866. 

Ishai, A., Ungerleider, L. G., Martin, A., Schouten, J. L., & Haxby, J. V. (1999). 

Distributed representation of objects in the human ventral visual pathway. 

Proceedings of the National Academy of Sciences, 96(16), 9379–9384. 

https://doi.org/10.1073/pnas.96.16.9379 

Isik, L., Meyers, E. M., Leibo, J. Z., & Poggio, T. (2014). The dynamics of invariant object 

recognition in the human visual system. Journal of Neurophysiology, 111(1), 91–

102. https://doi.org/10.1152/jn.00394.2013 

Jaccard, P. (1901). Etude comparative de la distribution florale dans une portion des Alpes 

et du Jura. Impr. Corbaz. 



53 

Kaiser, D., Azzalini, D. C., & Peelen, M. V. (2016). Shape-independent object category 

responses revealed by MEG and fMRI decoding. Journal of Neurophysiology, 

115(4), 2246–2250. https://doi.org/10.1152/jn.01074.2015 

Kaiser, D., Oosterhof, N. N., & Peelen, M. V. (2016). The Neural Dynamics of Attentional 

Selection in Natural Scenes. The Journal of Neuroscience, 36(41), 10522–10528. 

https://doi.org/10.1523/JNEUROSCI.1385-16.2016 

Kaneshiro, B., Guimaraes, M. P., Kim, H.-S., Norcia, A. M., & Suppes, P. (2015). A 

Representational Similarity Analysis of the Dynamics of Object Processing Using 

Single-Trial EEG Classification. PLOS ONE, 10(8), e0135697. 

https://doi.org/10.1371/journal.pone.0135697 

Kanwisher, N., Mcdermott, J., & Chun, M. M. (1997). The Fusiform Face Area: A Module 

in Human Extrastriate Cortex Specialized for Face Perception. Journal of 

Neuroscience, 17, 4302–4311. 

Kastner, S., & Ungerleider, L. G. (2000). Mechanisms of Visual Attention in the Human 

Cortex. Annual Review of Neuroscience, 23(1), 315–341. 

https://doi.org/10.1146/annurev.neuro.23.1.315 

Kiani, R., Esteky, H., Mirpour, K., & Tanaka, K. (2007). Object Category Structure in 

Response Patterns of Neuronal Population in Monkey Inferior Temporal Cortex. 

Journal of Neurophysiology, 97(6), 4296–4309. 

https://doi.org/10.1152/jn.00024.2007 

King, J.-R., & Dehaene, S. (2014). Characterizing the dynamics of mental representations: 

the temporal generalization method. Trends in Cognitive Sciences, 18(4), 203–210. 

https://doi.org/10.1016/j.tics.2014.01.002 



54 

Kravitz, D. J., Saleem, K. S., Baker, C. I., Ungerleider, L. G., & Mishkin, M. (2013). The 

ventral visual pathway: An expanded neural framework for the processing of object 

quality. Trends in Cognitive Sciences, 17(1), 26–49. 

https://doi.org/10.1016/j.tics.2012.10.011 

Kriegeskorte, N. (2015). Deep neural networks: a new framework for modelling biological 

vision and brain information processing. BioRxiv, 029876. 

https://doi.org/10.1101/029876 

Kriegeskorte, N., & Kievit, R. A. (2013). Representational geometry: integrating cognition, 

computation, and the brain. Trends in Cognitive Sciences, 17(8), 401–412. 

https://doi.org/10.1016/j.tics.2013.06.007 

Kriegeskorte, N., Mur, M., & Bandettini, P. A. (2008). Representational similarity analysis 

- connecting the branches of systems neuroscience. Frontiers in Systems 

Neuroscience, 2(4). https://doi.org/10.3389/neuro.06.004.2008 

Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., … Bandettini, 

P. A. (2008). Matching Categorical Object Representations in Inferior Temporal 

Cortex of Man and Monkey. Neuron, 60(6), 1126–1141. 

https://doi.org/10.1016/j.neuron.2008.10.043 

Liu, H., Agam, Y., Madsen, J. R., & Kreiman, G. (2009). Timing, Timing, Timing: Fast 

Decoding of Object Information from Intracranial Field Potentials in Human Visual 

Cortex. Neuron, 62(2), 281–290. https://doi.org/10.1016/j.neuron.2009.02.025 

Mack, M. L., & Palmeri, T. J. (2011). The Timing of Visual Object Categorization. 

Frontiers in Psychology, 2. https://doi.org/10.3389/fpsyg.2011.00165 

Malach, R., Levy, I., & Hasson, U. (2002). The topography of high-order human object 

areas. Trends in Cognitive Sciences, 6(4), 176–184. 



55 

Martin, A., Wiggs, C. L., Ungerleider, L. G., & Haxby, J. V. (1996). Neural correlates of 

category-specific knowledge. Retrieved from 

http://www.nature.com/nature/journal/v379/n6566/abs/379649a0.html 

Mervis, C. B., & Rosch, E. (1981). Categorization of natural objects. Annual Review of 

Psychology, 32(1), 89–115. 

Moran, J., & Desimone, R. (1985). Selective attention gates visual processing in the 

extrastriate cortex. Frontiers in Cognitive Neuroscience, 229, 342–345. 

Nosofsky, R. M., & Palmeri, T. J. (1997). An exemplar-based random walk model of 

speeded classification. Psychological Review, 104(2), 266. 

Nowak, L. G., & Bullier, J. (1997). The Timing of Information Transfer in the Visual 

System. In K. S. Rockland, J. H. Kaas, & A. Peters (Eds.), Extrastriate Cortex in 

Primates (pp. 205–241). Springer US. https://doi.org/10.1007/978-1-4757-9625-

4_5 

O’Toole, A. J., Jiang, F., Abdi, H., & Haxby, J. V. (2005). Partially distributed 

representations of objects and faces in ventral temporal cortex. Journal of Cognitive 

Neuroscience, 17(4), 580–590. 

Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning classifiers and fMRI: a 

tutorial overview. Neuroimage, 45(1), S199–S209. 

Philiastides, M. G., & Sajda, P. (2006). Temporal characterization of the neural correlates 

of perceptual decision making in the human brain. Cerebral Cortex, 16(4), 509–

518. 



56 

Proklova, D., Kaiser, D., & Peelen, M. V. (2018). MEG sensor patterns reflect perceptual 

but not categorical similarity of animate and inanimate objects. BioRxiv, 238584. 

https://doi.org/10.1101/238584 

Ramkumar, P., Jas, M., Pannasch, S., Hari, R., & Parkkonen, L. (2013). Feature-Specific 

Information Processing Precedes Concerted Activation in Human Visual Cortex. 

The Journal of Neuroscience, 33(18), 7691–7699. 

https://doi.org/10.1523/JNEUROSCI.3905-12.2013 

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. 

Nature Neuroscience, 2(11), 1019–1025. https://doi.org/10.1038/14819 

Ritchie, J. B., & Carlson, T. A. (2016). Neural decoding and “inner” psychophysics: a 

distance-to-bound approach for linking mind, brain, and behavior. Frontiers in 

Neuroscience, 10. 

Ritchie, J. B., Kaplan, D. M., & Klein, C. (in press). Decoding the brain: Neural 

representation and the limits of multivariate pattern analysis in cognitive 

neuroscience. British Journal for the Philosophy of Science. 

Ritchie, J. B., Tovar, D. A., & Carlson, T. A. (2015). Emerging Object Representations in 

the Visual System Predict Reaction Times for Categorization. PLoS Comput Biol, 

11(6), e1004316. https://doi.org/10.1371/journal.pcbi.1004316 

Schmolesky, M. T., Wang, Y., Hanes, D. P., Thompson, K. G., Leutgeb, S., Schall, J. D., 

& Leventhal, A. G. (1998). Signal Timing Across the Macaque Visual System. 

Journal of Neurophysiology, 79(6), 3272–3278. 

Serre, T., Kreiman, G., Kouh, M., Cadieu, C., Knoblich, U., & Poggio, T. (2007). A 

quantitative theory of immediate visual recognition. Progress in Brain Research, 

165, 33–56. 



57 

Sha, L., Haxby, J. V., Abdi, H., Guntupalli, J. S., Oosterhof, N. N., Halchenko, Y. O., & 

Connolly, A. C. (2015). The Animacy Continuum in the Human Ventral Vision 

Pathway. Journal of Cognitive Neuroscience, 27(4), 665–678. 

https://doi.org/10.1162/jocn_a_00733 

Simanova, I., Gerven, M. van, Oostenveld, R., & Hagoort, P. (2010). Identifying Object 

Categories from Event-Related EEG: Toward Decoding of Conceptual 

Representations. PLOS ONE, 5(12), e14465. 

https://doi.org/10.1371/journal.pone.0014465 

Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. 

Nature, 381(6582), 520–522. 

Van de Nieuwenhuijzen, M. E., Backus, A. R., Bahramisharif, A., Doeller, C. F., Jensen, 

O., & van Gerven, M. A. (2013). MEG-based decoding of the spatiotemporal 

dynamics of visual category perception. NeuroImage, 83, 1063–1073. 

Van Essen, D. C., Anderson, C. H., & Felleman, D. J. (1992). Information Processing in 

the Primate Visual System: An Integrated Systems Perspective. Science, 255(5043), 

419. 

Vida, M. D., Nestor, A., Plaut, D. C., & Behrmann, M. (2017). Spatiotemporal dynamics 

of similarity-based neural representations of facial identity. Proceedings of the 

National Academy of Sciences, 114(2), 388–393. 

Wardle, S. G., Kriegeskorte, N., Grootswagers, T., Khaligh-Razavi, S.-M., & Carlson, T. 

A. (2016). Perceptual similarity of visual patterns predicts dynamic neural 

activation patterns measured with MEG. NeuroImage, 132, 59–70. 

https://doi.org/10.1016/j.neuroimage.2016.02.019 



58 

Wardle, S. G., & Ritchie, J. B. (2014). Can Object Category-Selectivity in the Ventral 

Visual Pathway Be Explained by Sensitivity to Low-Level Image Properties? 

Journal of Neuroscience, 34(45), 14817–14819. 

https://doi.org/10.1523/JNEUROSCI.3566-14.2014 

  

 

  



59 

iii. Interim Summary and Chapter Outline 

With the development of M/EEG methods, the temporal dynamics of object category 

processing is being established. Much of the research into object category structure has 

pointed to object animacy as an overarching organisational principle (e.g., Caramazza & 

Shelton, 1998; Chao et al., 1999; Cichy, Pantazis, & Oliva, 2014; Kiani et al., 2007; 

Kriegeskorte et al., 2008; Lu, Li, & Meng, 2016; Mahon & Caramazza, 2009; Proklova, 

Kaiser, & Peelen, 2016). More recently, other principles that may govern the wide-ranging 

patterns of activation related to object processing have been proposed (such as object size: 

Julian et al., 2017; Konkle & Caramazza, 2013; and a biological class-based animacy 

continuum: Connolly et al., 2012; Sha et al., 2015). However, the temporal dynamics of 

these are still being explored. 

The primary goal of this thesis is to investigate the temporal dynamics of object 

category representations, with a focus on testing the limits of the animacy dichotomy. In 

pursuit of this goal, I use MEG to evaluate the time-course of a range of established and 

hypothesised organisation principles related to object categorisation. I use brain decoding 

methods and the representational similarity analysis framework (Kriegeskorte & Kievit, 

2013; Nili et al., 2014) to investigate how well these proposed principles account for the 

representational geometry throughout the time-course of object processing and to what 

degree these findings link to behaviour.  

It is important to note here that this thesis does not cover the related field of 

speeded categorisation, which is concerned with how the timing of behavioural 

categorisation judgements relates to different levels of category abstraction (i.e., 

comparing the speed at which participants are able to categorise an object as a kookaburra 

versus the more abstract category of a bird (see Grill-Spector & Kanwisher, 2005; Mack, 

Alan, Gauthier, Tanaka, & Palmeri, 2009; Palmeri & Blalock, 2000; Rosch, Mervis, Gray, 

Johnson, & Boyes-Braem, 1976; Thorpe, Fize, & Marlot, 1996; Wu, Crouzet, Thorpe, & 
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Fabre-Thorpe, 2014). While a number of theories regarding a processing hierarchy exist, 

there is ongoing debate as to what level of object category abstraction emerges first, under 

what specific conditions this occurs, and indeed whether it is beneficial to relate levels of 

categorisation to particular stages of visual processing (for discussion of the different 

theoretical and computational accounts related to this topic see Mack & Palmeri, 2011, 

2015). This thesis however, focuses on how the brain represents object categories by 

comparing their differing temporal signatures, and examines whether the emergent 

geometry of these representations is also useful for behavioural categorisation. Relatedly, 

while acknowledging that there is considerable research into localising where in the brain 

object processing occurs (see Grill-Spector & Weiner, 2014; Haxby et al., 2001, 2011; 

Ishai, Ungerleider, Martin, Schouten, & Haxby, 1999), with a particular focus on the 

ventral-visual processing stream and involvement of the inferior temporal cortex, MEG as 

a neuroimaging technique is better utilised for asking questions related to time, rather than 

space. Other studies that have combined both MEG and fMRI neuroimaging techniques 

(e.g., Cichy, Pantazis, & Oliva, 2014, 2016; Hebart, Bankson, Harel, Baker, & Cichy, 

2018; Kaiser, Azzalini, & Peelen, 2016; Khaligh-Razavi, Cichy, Pantazis, & Oliva, 2018) 

provide a more thorough discussion of questions related to the spatial evolution of these 

processes over time. The following sections provide an overview of how each empirical 

chapter contributes to the goals of this thesis. 

In the field of object categorisation, few wide-ranging organizational principles have 

been successfully identified. The concept of object animacy has been evaluated using both 

fMRI and MEG neuroimaging techniques, however, the more recently proposed 

organisation related to an object’s real-world size has yet to be established with MEG. In 

Chapter 2, I sought to investigate the temporal dynamics of real-world size as an 

organisational principle in brain object representations, and evaluate how these temporal 

patterns compare to the time-course of object animacy. 
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As I was unable to detect time-varying representations related to real-world size in 

the MEG data, I shifted my focus to the animacy dichotomy. Recent fMRI research has 

extended upon the animacy dichotomy, leading to the suggestion that objects are represented 

along a continuum from humans to inanimate objects, with the position of a category along 

this continuum dependent on its biological class (Connolly et al., 2012; Sha et al., 2015). In 

Chapter 3, I evaluated the temporal dynamics of this, and other plausible models of the 

organisation of object category representations. In particular, I sought to test how well 

models related to human experiences and similarity accounted for variability in object 

representations. My stimulus set was specifically designed to test the limits of the 

contemporary animacy model by incorporating objects that would be difficult for 

categorisation according to standard animacy criteria. 

The focus of Chapter 4 is to link findings from neuroimaging results to human 

behaviour, with the important goal of determining whether the patterns I observe in the MEG 

data in Chapter 3 are useful for behavioural processes (Carlson, Goddard, Kaplan, Klein, & 

Ritchie, 2017; de-Wit, Alexander, Ekroll, & Wagemans, 2016; Krakauer, Ghazanfar, 

Gomez-Marin, MacIver, & Poeppel, 2017; Ritchie & Carlson, 2016). Uncovering the 

relationship between brain and behaviour processes remains a challenge in cognitive 

neuroscience, but is a vital step in clarifying the utility of measured brain activity. Linking 

reaction times (RTs) to brain representations is one approach to uncovering this relationship, 

and this method has been implemented successfully in studies using fMRI (Carlson et al., 

2014) and MEG (Grootswagers, Ritchie, Wardle, Heathcote, & Carlson, 2017; Ritchie et al., 

2015). Following on from my results in Chapter 3, which showed that a model based on 

human-similarity best accounted for object representations throughout the decoding time-

course, I investigated whether this, and other plausible category organisations, could be used 

to reveal a correlation between brain and behaviour processes. This method of linking 

behavioural categorisation RTs to brain representations had previously only been 

implemented for categorisation based on animacy. As such, it is important to also see 
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whether my novel neuroimaging result related to human-similarity also relates to behaviour 

in this way. 

Finally, Chapter 5 provides a general discussion of the findings throughout this 

thesis, synthesising the common themes that emerge across my empirical studies. My 

findings related to the temporal dynamics of object category representations are discussed 

in the context of recent advancements in the field, and suggestions for future research are 

highlighted.  
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2.1. Abstract 

 In the field of human object recognition, object animacy has become a widely 

accepted principle in the organization of object representations. More recently, evidence 

from fMRI studies supporting a real-world size distinction in object representations has also 

emerged, with size-selective regions identified adjacent to those that show a preference for 

object animacy properties. While research has focused on the spatial patterns of activation 

related to object size properties, the temporal dynamics of real-world size representations 

are yet to be determined. Using representational similarity analysis of 

magnetoencephalography data, we sought to establish the temporal evolution of real-world 

size dimensions, and evaluate how this relates to the time-course of object animacy. Using 

a stimulus set that was balanced for object interactivity, we replicated previous findings 

related to the time-course of object animacy. Surprisingly, we were unable to detect 

modulations related to real-world size in the brain activation patterns. Our results are 

interpreted in the context of recent spatial and temporal findings showing a real-world size 

dimension for object category representations.  Our findings highlight the importance of 

carefully considered stimulus sets, and the difficulty in separating out the unique 

contributions of individual object properties that contribute to multifaceted object 

representations.  
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2.2. Introduction 

Understanding the neural processes involved in object recognition is an ongoing 

challenge in visual neuroscience. A key goal is to unveil the intricacies of higher-level object 

representations which afford us the ability to rapidly differentiate, with remarkable accuracy, 

the vast array of objects we encounter on a day-to-day basis. Several fMRI studies have 

evaluated the brain activity patterns in response to specific object categories, with a 

particular focus on brain regions within ventral occipital-temporal cortex - a region widely 

accepted as a central hub for object recognition processes (Caramazza & Shelton, 1998; 

Grill-Spector & Malach, 2004; Haxby et al., 2001; Ishai, Ungerleider, Martin, Schouten, & 

Haxby, 1999). These studies identified several specialised category-selective regions which 

respond preferentially to particular objects including faces (Ishai et al., 1999; Kanwisher, 

McDermott, & Chun, 1997), bodies (Downing, Jiang, Shuman, & Kanwisher, 2001), 

animals (Chao, Haxby, & Martin, 1999; Martin, Wiggs, Ungerleider, & Haxby, 1996), 

places (Epstein, Harris, Stanley, & Kanwisher, 1999; Epstein & Kanwisher, 1998) and tools 

(Beauchamp, Lee, Haxby, & Martin, 2002; Chao et al., 1999; Chao & Martin, 2000). While 

a number of category-selective regions have been identified, these account for only a subset 

of object categories encountered in everyday life (Biederman, 1987), and by attributing 

particular brain regions to relatively broad category definitions we limit the extent to which 

we can account for fine-grained variations at the subcategory level (Haxby et al., 2001; for 

discussion, see also Vida, Nestor, Plaut, & Behrmann, 2017).  

In addition to clustered category-selective regions, findings from multivariate pattern 

analysis (MVPA) studies have evaluated coarse-scale patterns of category-selective activity 

distributed throughout occipital-temporal visual cortex (Haxby et al., 2001), with a particular 

focus on the organisational principle of animacy, which suggests that object representations 

are at least partly structured according to whether an object is animate or inanimate 

(Caramazza & Shelton, 1998; Chao et al., 1999; Huth, Nishimoto, Vu, & Gallant, 2012; 

Kriegeskorte, Mur, Ruff, et al., 2008; Mahon & Caramazza, 2011; Martin, 2007). More 
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recently, real-world size has been identified as another potential principle underlying the 

large-scale organization of object representations in the ventral visual stream. Using fMRI 

to measure patterns of BOLD activation while participants viewed a range of big (e.g., car, 

dishwasher) and small (e.g., coin, mug) inanimate object images, Konkle and Oliva (2012) 

found large-scale regions in ventral temporal cortex which showed preferential activation 

depending on an object’s real-world size. These size-coding regions overlapped with other 

known category-selective regions in a logical manner: regions that responded preferentially 

to big objects overlapped with regions that have been shown to respond to landmarks and 

buildings (i.e., the parahippocampal place area; PPA), while localised activity associated 

with small objects was adjacent to regions known for their involvement with processing 

faces, bodies and tools (Konkle & Oliva, 2012). This pattern of differential activation across 

cortical regions as a function of real-world size was robust to changes in retinal size, and 

was also evident during mental imagery of big and small inanimate objects, which the 

authors conclude indicates higher-level conceptual processing of size independent of 

physical stimulus properties.  

Further support for coding of size within the object representations is shown in an 

fMRI study by Konkle and Caramazza (2013), who evaluated the relationship between the 

real-world size of objects and object animacy in the large-scale organization of object 

representations in the human brain. Their results similarly show a size distinction within 

inanimate objects, however the same was not apparent for animate objects. They concluded 

that the structure of object representations is best encompassed by a “tripartite” organization, 

where object representations are primarily coded as either animate, big-inanimate, or small-

inanimate objects. Further, the order of preferential activation in these regions for each of 

the three categorical distinctions displayed an interesting pattern. The cortical region that 

showed a preference primarily for big-inanimate objects had the next highest preferential 

activation in response to small-inanimate objects, and the lowest activity for animate objects, 

thus preserving the established animate-inanimate distinction. However, this pattern was 
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markedly different for regions with a preference for small-inanimate objects, which instead 

showed the next highest activation in response to animate objects, and the lowest response 

to big-inanimate objects (Konkle & Caramazza, 2013). The authors highlight that this region, 

encompassing the lateral temporal cortex, has historically been linked to activity in response 

to manipulable objects, and interactions between object and agent (Beauchamp et al., 2002; 

Bracci, Cavina-Pratesi, Ietswaart, Caramazza, & Peelen, 2012; Bracci & Peelen, 2013), 

which may explain why the dissociation between animate and inanimate objects is somewhat 

blurred in this region. 

While these studies show activity patterns that differentiate large from small objects, 

they do not evaluate whether these size-coding regions are also able to differentiate objects 

of different semantic subcategories. For example, patterns of activity in a particular brain 

region may be able to differentiate a wardrobe (large object) from a shoe (small object), but 

can it also differentiate the wardrobe (large object) from a sofa (another large object)? To 

answer this question, a recent fMRI study by Julian et al. (2017) extended upon previous 

univariate size findings (e.g., Konkle & Caramazza, 2013; Konkle & Oliva, 2012) using 

multivariate analyses to evaluate whether real-world object size is important for object 

category representations. To do so, they first created representational similarity matrices 

(RSMs), where individual cells of the matrix corresponded to the correlation value for each 

pair of object activity patterns, evaluating 10 big (e.g., arm chair, stove) and 10 small (e.g., 

hat, mobile phone) inanimate object categories. They then performed a split-half 

classification analysis, where they evaluated how well the pattern information in one half of 

the data could classify objects in the remaining half according to object size or category. In 

line with previous results (Konkle & Caramazza, 2013; Konkle & Oliva, 2011, 2012), they 

found differential regional activation corresponding to big and small objects, with the 

additional novel finding of greater similarity between objects of similar sizes, despite 

differences in object subcategory. They argued that this provided evidence for coding of 

object size within object categories and suggested that the distinction between big and small 
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objects may reflect a fundamental difference related to object stability. This is in line with 

previous findings which suggest that stable, landmark-qualities of large objects may drive 

activity in the typically scene-selective regions of cortex that seem to also show preferential 

activation to large objects (Troiani, Stigliani, Smith, & Epstein, 2014).  

To date, the majority of studies evaluating the neural mechanisms underlying object 

processing have focused on spatially localising the corresponding activity in specific brain 

regions. Studies using fMRI typically localise patterns of BOLD activation in object-centred 

regions that span the ventral temporal lobe and occipital cortex, providing a temporally 

blurred snapshot of the response of these regions. Consequently, they are unable to account 

for distinct variations in the timing of patterns of activity associated with processing different 

object categories (Carlson, Tovar, Alink, & Kriegeskorte, 2013). Recently, studies using 

magnetoencephalography (MEG) have examined the temporal dynamics of object 

representations and found differences in the timing of activations associated with object 

categories. Information that differentiates objects at an exemplar level can be decoded early 

on in the time course of object processing, while more complex conceptual information 

related to semantic category, including the animacy dimension, is decodable later on in the 

neural signal from around 150 ms post-stimulus onset (Carlson et al., 2013; Cichy, Pantazis, 

& Oliva, 2014; Grootswagers, Wardle, & Carlson, 2016; for a review, see Contini, Wardle, 

& Carlson, 2017). Together with findings from fMRI studies showing category sensitive 

regions throughout the ventral stream (for a review, Grill-Spector & Weiner, 2014), MEG 

studies provide support for highly dynamic representations of object categories. While 

previous studies have evaluated the decoding time-course of animacy (Carlson et al., 2013; 

Chan, Halgren, Marinkovic, & Cash, 2011; Cichy et al., 2014), the temporal dynamics of 

real-world size and its relation to object animacy are yet to be established. If real-world size 

is also a primary organisation principle for object representations then it is plausible that it 

may have its own unique set of temporal dynamics, which emerge independently of object 

animacy in the decoding time-course. 
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Building on the proposed “tripartite” organisation of object representations (Konkle 

& Caramazza, 2013), the current study used MEG decoding to investigate the temporal 

dynamics of object representations in relation to the dimensions of real-world size and object 

animacy. We created a novel stimulus set which included 36 objects, divided evenly into 

animate, big-inanimate, and small-inanimate objects. Previous studies have noted that big-

inanimate objects tend to be more spatially stable in the natural environment (e.g., a sofa or 

stove) and activate brain regions associated with processing non-manipulable, landmark-

type objects (He et al., 2013; Julian et al., 2017; Troiani et al., 2014). Differences in 

manipulability of objects have also been shown to influence behavioural reaction times 

(Filliter, McMullen, & Westwood, 2005). We controlled for this apparent difference between 

big and small object categories by including objects designed for human interaction (and are 

thus, manipulable) in both the big- (e.g., car), and small- (e.g., scissors) inanimate object 

categories. By testing models related to these different dimensions of object processing using 

the representational similarity analysis (RSA) framework (Kriegeskorte, Mur, & Bandettini, 

2008), we evaluated whether differences in multivariate patterns could be explained by a 

large-scale organisation related to object size in addition to object animacy.  

2.3. Method 

2.3.1. Participants 

 A total of 22 English-speaking healthy adults (13 female; mean age = 26.23 years; 

SD = 8.07; range = 18 - 45) were recruited from the Macquarie University community. 

Informed written consent was obtained prior to participation, and all brain recordings were 

conducted in the KIT-Macquarie Brain Research (MEG) Laboratory. Participants were paid 

$20/h for their time. All participants self-reported normal or corrected-to-normal vision, 

were free from significant medical conditions, and were not currently taking any neuroactive 

medications. This study was approved by the Macquarie University Human Research Ethics 

Committee.  
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2.3.2. Stimuli 

Stimuli consisted of 36 naturalistic images of objects with a planned categorical 

structure (see Figure 1). The category structure had three tiers: the highest tier in the 

hierarchy contained the three main categories of interest in line with the findings of Konkle 

et al. (2013) (specifically animals, big-inanimate objects, and small-inanimate objects), with 

equal numbers of exemplars in each (12 exemplars per category). Below this tier, objects 

were grouped according to whether they were interactive (six exemplars) or non-interactive 

(six exemplars). The lowest tier category was only within the interactive object categories, 

whereby the interactive objects were divided into equal numbers of instruments (3 

exemplars) and other objects (3 exemplars) which differed depending on size as follows: in 

the small-inanimate object category, these were hand-held tool-type objects, while in the 

big-inanimate object category, these items were vehicles of various forms. All stimuli were 

segmented object images, presented on a uniform grey background.  

 

 

Figure 1. Stimuli design and categorical structure. Stimuli are shown divided into the tripartite 

categorical structure of interest: animals, big-inanimate objects, and small-inanimate objects. 

Brackets show additional embedded subcategory groupings.  
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2.3.3. Experimental Design and Attention Task 

Prior to the experimental task, participants viewed a simple PowerPoint 

presentation of each of the 36 objects in their real-world context (i.e., participants were 

shown the object image prior to segmenting the objects from their backgrounds to create the 

stimuli for the experiment) to provide participants with information about the relative real-

world size of the objects. This presentation was also used to ensure that participants 

successfully recognised all the objects prior to the experiment, with all participants 

demonstrating adequate knowledge of the objects in the stimulus set by naming and/or 

providing semantic information. 

For the experimental task, participants completed six blocks of 216 trials, with the 

block order pseudorandomised for each participant. Within a single block, each of the 36 

exemplars was presented six times in pseudorandom order, resulting in a total of 1296 trials 

per participant (36 exemplars x 6 presentations x 6 blocks). In an individual trial, participants 

viewed a single exemplar presented centrally on a grey background for 50 ms, with a random 

inter-trial interval ranging between 900 and 1200 ms, totaling approximately one hour of 

MEG recording time (see Figure 2). Participants were instructed to maintain fixation on 

central dot (diameter of 0.1 DVA), which remained on the screen at all times (with stimuli 

presented behind this dot). During the stimulus presentation, participants completed a simple 

attention task, where they were required to press a button whenever they saw the same image 

repeated consecutively. After a repeat trial, there was a minimum of three non-repeat trials, 

while the fourth and subsequent trials had a 30% chance of being a repeat, with this process 

resetting once a repeat had occurred. There were on average 242 repeats per participant 

(range 239 – 247) which remained in the analysed trials. Feedback was provided to the 

participant after stimulus offset (during the ISI) by a change in colour of the central fixation 

dot, which briefly (250 ms) turned green for correctly identified repetitions, and red for false-

alarms or missed repetitions. Participants were also provided with summary statistics of their 

overall performance at the end of each block. The overall mean accuracy across participants 
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was 96% (SD = 5.1%), with an average participant reaction time of 514 ms (SD = 107 ms; 

for correct trials only).   

2.3.4. Display Apparatus 

Participants lay supine in the magnetically sealed recording chamber. Stimuli were 

projected onto a mirror using an InFocus IN5108 projector situated outside the chamber. 

This mirror reflected the image onto the ceiling of the room, located 113 cm above the 

participant (stimulus visual angle = 9 degrees). The experiment was run on a Dell PC desktop 

computer using MATLAB software (Natick, MA) and the Psychophysics Toolbox 

extensions (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997).  

 

 

 

Figure 2. Experiment design. Example showing two trials of the experimental design. ISI = 

interstimulus interval.  
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2.3.5. MEG Data Acquisition and Analysis 

Using a 160-channel whole-head axial gradiometer (KIT, Kanazawa, Japan), 

continuous neuromagnetic data were acquired at a sampling rate of 1000 Hz, and filtered 

online from 0.03 to 200 Hz. MATLAB (Natick, MA) was used for all processing and 

statistical analyses of the data. Offline, we down-sampled the data to 200 Hz for the analysis, 

and created a single trial epoch with a time window from -100 ms to 600 ms relative to 

stimulus onset. We then applied Principal Components Analysis (PCA) to reduce the 

dimensionality of the epoched data, retaining the n components that accounted for 99% of 

the variance in the data. For each participant, the number of components retained ranged 

from 20 to 94 (M = 62.14, SD = 21.49). 

2.3.5.1. Classification analysis. For each participant, we trained a classifier (linear 

discriminant analysis (LDA); Duda, Hart, & Stork, 2001) to discriminate MEG data (the 

PCA component weightings) for one exemplar from data for a second exemplar, then we 

repeated this process for each pair of exemplars. We employed a 10-fold cross validation 

procedure, where we trained the classifier on 90% of the data, and then measured 

classification performance using the remaining 10%, such that the classifier was never 

trained and tested on the same data. We repeated this process 10 times ensuring that all trials 

were used once as the test data. This results in a measure of how well the classifier can 

discriminate each exemplar identity from the PCA components for every possible pairwise 

comparison of the 36 stimuli.  Classification accuracy is reported using d-prime (d’).  

2.3.5.2. Representational similarity analysis (RSA). We then used representational 

similarity analysis (RSA; Kriegeskorte, Mur, & Bandettini, 2008) to compare the differences 

in classification performance across exemplars, providing an indication of the structure of 

object representations as evidenced by similarities between object activity patterns. To do 

so, we firstly created a Representational Dissimilarity Matrix (RDM; Kriegeskorte, Mur, & 

Bandettini, 2008), where each cell contains the  average classifier accuracy (d’) for one pair 

of object exemplars, generating a separate RDM for each time point. This creates a matrix 
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of decoding performance that can then be compared to our model predictions (described 

below). The observed RDM for this experiment is a 36 x 36 matrix (see example frames in 

Figure 3B) that is symmetric along the negative diagonal. At each time point, we compared 

this observed RDM from each participant’s MEG data with our model RDMs (models 

described in detail below, and see also Figure 6). 

2.3.5.3. Model Matrices. To account for the potential impact of low-level visual 

similarity between exemplars on decoding performance, we first computed the Jaccard 

silhouette model RDM (Jaccard, 1901), which compares the abstract shape of each object 

by identifying the pixels the object occupies within the image. The model RDM is 

subsequently generated by computing the difference between the overlapping silhouette 

regions of two object images at a time, with each cell of the RDM corresponding to ‘one 

minus the correlation value’ for each exemplar pair, such that higher cell values indicate 

greater dissimilarity between the image silhouettes. We used Spearman’s rank correlation 

coefficient to test the relationship between object shape and object decodability (see Results, 

Figure 4). To exclude the contribution of object shape, we partialled out this correlation 

between the Jaccard model and the observed RDM (partial Spearman’s r) when testing the 

relationship between our theoretical models and the observed data. We then used a 

nonparametric Wilcoxon signed rank test to assess significance at each time point, averaged 

across all participants. To control for false-positive results due to multiple comparisons we 

employed a false-discovery rate (FDR) threshold of 0.01.  

In light of recent findings suggesting a tripartite organisation of object 

representations (Konkle & Caramazza, 2013), where real world size is reflected in inanimate 

object representations (Julian et al., 2017; Konkle & Oliva, 2011, 2012), we created the 

following eight theoretical models (shown in Figure 6) to evaluate the time course of object 

real-world size and how this relates to the animacy time course: 
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2.3.5.3.1. Main models 

Model 1) Animacy model: Dichotomous model based on organizational principles proposed 

in previous studies (Caramazza & Shelton, 1998; Carlson et al., 2013; Cichy et al., 2014; 

Kriegeskorte, Mur, & Bandettini, 2008) comparing animals to all inanimate objects (big- 

and small-inanimate objects combined).  

Model 2) Tripartite model: Depicting three groups of object representations, whereby 

objects are not only coded according to animacy, but inanimate object representations are 

also organized according to real-world size: big or small (Julian et al., 2017; Konkle & 

Caramazza, 2013; Konkle & Oliva, 2011, 2012). As such, this model depicts representations 

grouped according to whether they are animate, big-inanimate, or small-inanimate objects.  

2.3.5.3.2. Binary category models 

 The binary category models evaluated a subset of the data, by including only two of 

the three major categorical distinctions in the stimulus set. Previous studies have identified 

a size distinction when inanimate objects are evaluated independently of animate objects 

((Julian et al., 2017; Konkle & Oliva, 2012), therefore, we expected to see this represented 

in the decoding time-course.  

Model 3) Animacy versus big-inanimate model: This binary category model compares only 

the animals and big-inanimate objects in the data set, with small-inanimate objects removed.  

Model 4) Animacy versus small-inanimate model: This binary category model compares 

only the animals and small-inanimate objects in the data set, with big-inanimate objects 

removed. 

Model 5) Big- versus small-inanimate model: This binary category, inanimate size model 

compares only the big-inanimate and small-inanimate objects in the data set, with animal 

objects removed. 

2.3.5.3.3. Cluster models 

 The three cluster models evaluated whether representations within a single category 

show more similar patterns of activity compared to all other objects, which will not show 
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clustering of their representations. Studies have shown clustering of object representations 

related to object animacy in ventral temporal cortex (Clarke & Tyler, 2014; Kriegeskorte, 

Mur, Ruff, et al., 2008), so if real-world size is a similarly large-scale organisation principle, 

it is plausible that a similar clustering of representations may be seen for each of the size 

dimensions.  

Model 6) Animal cluster model: This single category model predicts that animal object 

representations would be more similar to each other while being dissimilar to all other 

inanimate objects, which are predicted to not cluster together into groups.  

Model 7) Big-inanimate cluster model: This single category model predicts that big-

inanimate object representations will be more similar to each other while being dissimilar to 

all other animal and small-inanimate objects. Animal and small-inanimate object are 

predicted to show no group clustering. 

Model 8) Small-inanimate cluster model: This single category model predicts that small-

inanimate object representations will be more similar to each other while being dissimilar to 

all other animal and big-inanimate objects. Animal and big-inanimate object are predicted 

to show no group clustering. 

2.4. Results 

 We recorded participants’ neuromagnetic signals using MEG while they viewed a 

series of briefly presented object stimuli to test predictions about the categorical organisation 

of neural object representations. Firstly, we evaluated whether we could decode the 

individual object images from participants’ MEG recordings throughout the time course of 

visual processing (Figure 3A). To do so, we trained and tested classifiers on their ability to 

differentiate each pair of the 36 objects in our stimulus set from the MEG activation patterns, 

creating an RDM at each time point (see Figure 3B for a sample of these RDMs throughout 

the time course). Consistent with image decoding results from previous MEG studies 

(Carlson et al., 2013; Cichy et al., 2014; Redcay & Carlson, 2014; Ritchie, Tovar, & Carlson, 

2015), we found significant decoding of object exemplars from 70 ms, which is sustained 
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throughout the time-course evaluated (i.e., until the final time-point of the trial epoch at 600 

ms post-stimulus onset; one-tailed Wilcoxon signed-rank test, corrected for multiple 

comparisons using an FDR threshold of 0.01). Exemplar decoding performance peaks at 120 

ms post-stimulus onset. When inspecting the RDMs across time (Figure 3B), coherent 

structure begins to appear in the RDMs late in the time course (as seen from 200 ms onwards 

in Figure 3B), with a cool-coloured square emerging in the top left of the plot, indicating 

greater similarity in activity patterns for the animal objects. This structure is sustained for a 

considerable period throughout the time course (clearly apparent in the 200 – 400 ms RDMs 

shown in Figure 3B).   
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Figure 3. Overall decoding time course and average decoding RDMs over time for all exemplars. A) 

Exemplar decoding performance (measured in d’) as a function of time, averaged across decoding 

performance for all exemplar pairs. Grey bar indicates the period the image was on the screen. Error 

bars indicate 95% between-subject confidence intervals. Blue dots along the x-axis indicate time 

points at which decoding performance was significantly above chance (Wilcoxon signed-rank test, 

corrected across time points for multiple comparisons with an FDR threshold of 0.01). B) Average 

rank-ordered decodability of exemplar pairs across participants. RDMs shown at 100 ms intervals 

throughout the decoding time course. Individual cells in the RDMs represent the degree of 

dissimilarity between pair-wise comparisons of response patterns, reported as the percentile of d-

prime. Warm colours (red to yellow) indicate greater dissimilarity (more distinct neural 

representations), while cool colours (green to blue) indicate greater similarity (overlapping neural 

representations). 
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2.4.1. Model Testing Across Time  

 Once we established that the individual objects could be decoded from the MEG 

signal, we first evaluated the shape-dependent Jaccard model to test how well low-level 

shape properties correlated with the neural representations. It is important to account for 

differences in low-level features inherent to the different object images as it is possible for 

the classifier to simply rely on these conflated perceptual differences to successfully decode 

object category membership (Baldassi et al., 2013; Kay, Naselaris, Prenger, & Gallant, 2008; 

but see also Kaiser, Azzalini, & Peelen, 2016; Proklova, Kaiser, & Peelen, 2016; Wardle & 

Ritchie, 2014). The Jaccard RDM and time-series correlation with the MEG data are shown 

in Figure 4, with the onset of significant decoding from 75 ms post-stimulus onset, and two 

correlation peaks at 90 ms and 120 ms (peak Spearman’s r of 0.25 at both time points). 

 

 

 

 

Figure 4. Jaccard model correlation over time. Left panel shows the Jaccard silhouette model 

generated by comparing the overlapping pixels for each exemplar pair. Cells in the RDM represent 

‘1 minus the proportion of overlapping pixels’, with warm colours indicating greater dissimilarity, 

and cool colours indicating greater similarity between the object shapes. The right panel shows the 

Spearman correlation between the Jaccard model and the time-series MEG data. Shaded error bars 

indicate the 95% confidence interval of the between-subject means. Coloured dots along the x-axis 

indicate time points at which the model correlation is significantly above chance (Wilcoxon signed-

rank test, corrected for multiple comparisons using an FDR threshold of 0.01). 
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As there was a significant correlation between the Jaccard silhouette model and the 

MEG data throughout the time course, this suggests that low-level shape related information 

accounts for a considerable degree of variation in the MEG signal that is being picked up by 

the classifier to decode object identity. Therefore, when evaluating other models, we 

considered their partial correlation (given the correlation of the data with the Jaccard RDM) 

as a partial correlation to control for object shape when evaluating each of the theoretical 

models of interest.  

Results from the time-series model testing are shown in Figure 5, with significant 

onset and peak-decoding times listed in Table 1 (note: these should not be interpreted as 

absolute timings1). We first sought to replicate the established animacy dichotomy identified 

in previous MEG object decoding studies (Carlson et al., 2013; Cichy et al., 2014; 

Grootswagers et al., 2016). Our results similarly show that object animacy provides a good 

account of the pattern of decoding performance (Figure 5A). In addition, when evaluating 

the tripartite model (Figure 5B), based on the results of Konkle et al. (2013), we also see a 

significant relationship between the model and the MEG data, with this relationship 

appearing more sustained throughout the time-course than that seen for animacy. If this 

model is truly capturing the brain representations better than a model based on an animacy 

dichotomy, then we should also see a significant relationship with dichotomous models 

(using a subset of the data), evaluating every possible dichotomous comparison between the 

                                                

1 After the completion of this study, a delay in the stimulus projector timing was identified such that 

images were being displayed to participants after the stimulus onset trigger was being sent to the 

MEG recording. Timing delays of up to 60 ms have been identified, however due to changes in the 

experimental equipment, we are unable to determine the precise delay for the present study. 

Consequently, absolute timings are uncertain, with results indicative of relative timings only. This 

delay was accounted for in future experiments using a photodiode on the stimulus presentation 

screen.    
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animal, big-inanimate, and small-inanimate object categories (Figure 5, C-E). These 

dichotomous models also account for the potential influence of unbalanced category 

numbers, as they have equal stimulus numbers in each category (cf. animacy model, which 

has only 12 animal objects compared to 24 inanimate). Upon evaluation of these three 

dichotomous comparisons, both the animal vs. big-inanimate (Figure 5C), and animal vs. 

small-inanimate object (Figure 5D) models show a significant correlation throughout the 

time-course, however the model comparing only big- and small-inanimate objects (Figure 

5E) does not reach significance at any time-point. This result suggests that the animate 

objects are likely driving the results seen in the animacy (A) and tripartite (B) model results.  

 

 

Table 1 

Onsets and peaks of significant correlation time points for each of the theoretical models 

Model Onset (ms) Peak (ms) 

A) Animacy 155 175 

B) Tripartite model 145 175 

C) Animals vs. big-inani. 145 175 

D) Animals vs. small-inani. 150 175 

E) Big-inani. vs. small-inani. - - 

F) Animal cluster 150 220 

G) Big cluster - - 

H) Small cluster - - 

Note: inani. = inanimate objects. All reported values are significant, correcting for multiple 

comparisons using an FDR threshold of 0.01. Where no value is present, results did not reach 

significance at the desired threshold. 
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Figure 5. Representational similarity analysis with model testing. Left panels: The theoretical RDM 

models under investigation. Inani. = inanimate objects. Model colours indicate the predicted degree 

of similarity between object pairs, with blue indicating more similar object representations and 

yellow indicating greater dissimilarity. Comparisons coded in grey were removed for the purposes 

of that model prediction. Each model was correlated with the MEG classifier data at each time point 

(right panel), and included the Jaccard model RDM as a partial correlation to control for the effects 

of object shape. Right panels: Shaded error bars indicate the 95% confidence interval of the between-

subject means. Coloured dots along the x-axis indicate time points at which the correlation for each 

model is significantly above chance (Wilcoxon signed-rank test, corrected for multiple comparisons 

using an FDR threshold of 0.01). 
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However, it is interesting to note that the tripartite model (Figure 5B) appears to 

provide a better, more sustained account of the neural signal than the animacy model (Figure 

5A). The only difference between these two models is that the animacy model groups both 

the big and small objects together into one ‘inanimate object’ category; predicting that there 

will be greater similarity between these objects (irrespective of size) and that these objects 

will show greater dissimilarity compared to animate objects. The tripartite model on the 

other hand, predicts that for the three categories of animate, big-inanimate, and small-

inanimate objects, each individual category will show greater within-category similarity, and 

greater dissimilarity when compared to the other two object categories. As a result, the 

tripartite model predicts more variability in activation patterns within the ‘inanimate objects’ 

category, and this provides a better account of the brain activity patterns observed, even 

though we do not see an effect for size when evaluated as a separate subset.  

To further investigate how much each of the three object categories in the tripartite 

model drive the observed effects, we evaluated a series of cluster models (Figure 5, F – H). 

These models predict that objects within a category cluster show more similar patterns of 

activity to other same-category members than to all other objects, and that all other objects 

show more disparate object representations (i.e., show no clustering). Results from these 

analyses only showed clustering of animal object representations (Figure 5F), with big- 

(Figure 5G) and small-inanimate objects (Figure 5H) showing no clustering of object 

representations throughout the time-course. This suggests that there is greater cohesion of 

object representations within the animate object category, whereas object representations for 

inanimate objects may be more disparate. This may reflect a difference in how each of these 

categories are defined, since the definition for what constitutes an animate object is relatively 

constrained, with greater conceptual and visual similarity between individual category 

members than what may be expected for objects in both the big and small inanimate object 

categories.  
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2.5. Discussion 

 The focus of this study was to examine the time-course of object representations 

related to real-world size, and specifically how the time-course of object size relates to that 

of object animacy. Previous fMRI studies have established activation related to big- and 

small-inanimate objects in cortical regions adjacent to those which respond to animate 

objects (Julian et al., 2017; Konkle & Caramazza, 2013; Konkle & Oliva, 2012), however, 

the temporal evolution of size-based object representations has yet to be established. As 

object size is often related to object stability and manipulability (with large objects typically 

more stable and non-manipulable compared to small objects; Mullally & Maguire, 2011; 

Troiani et al., 2014), we designed our stimulus set to include objects designed for human 

interaction in both the big- and small-inanimate object categories. Controlling for low-level 

properties related to object shape, we replicated previous MEG findings which show that 

animacy representations emerge relatively late and remain sustained throughout the time 

course of object processing (Carlson et al., 2013; Cichy et al., 2014), however we observed 

no evidence for representations related to object size in the patterns of MEG activation.  

 That we identified patterns of activation reflecting object animacy yet did not find 

evidence for category representations organized by real-world size raises the question of 

why there is a discrepancy between the current MEG study and the fMRI findings reported 

by others (see Julian et al., 2017; Konkle & Caramazza, 2013; Konkle & Oliva, 2012). Here 

we discuss several possible reasons for this result.  

One possibility is that the object size organisation is less accessible using MEG than 

fMRI. As studies have identified activation consistent with object size in regions adjacent to 

those associated with object animacy (Julian et al., 2017; Konkle & Caramazza, 2013; 

Konkle & Oliva, 2012) we hypothesized that these would be similarly detectable using 

MEG. Since we were unable to detect any size-related modulations in the signal, it may be 

that representations associated with object animacy are comparatively more widespread 

throughout the brain (Haxby et al., 2001), allowing for better detection when using whole-
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brain analyses as in the current study, while potentially missing more localised activation, 

as may be the case for real-world size representations. Relatedly, the activation signal 

associated with object size may be comparatively weaker than that for object animacy. As a 

result, MEG may not have the power to detect these subtle modulations, particularly given 

the potential for competing information from multiple sensors which can affect the signal to 

noise ratio (for an example of this, see Hebart, Bankson, Harel, Baker, & Cichy, 2017).  

On the contrary, a recent study (Khaligh-Razavi, Cichy, Pantazis, & Oliva, 2018) 

conducted after we had obtained our data, was able to detect real-world size modulations in 

the MEG signal, suggesting potential effect size issues related to the MEG signal are less 

likely to explain our inability to detect these representations. This study simultaneously 

compared size- and animacy-induced spatiotemporal activations obtained from fMRI and 

MEG recordings using a similarity-based fusion approach (Cichy, Pantazis, & Oliva, 2016). 

This study showed significant decoding of object animacy and real-world size throughout 

the time-course of object processing, however upon qualitative inspection of their results 

(this was not tested statistically), the effect for size appears to be somewhat weaker than that 

of animacy. This difference in the strength of the relationship between object size and 

animacy was also reflected in the tripartite results of Konkle et al. (2013; additional results 

not included in paper; T. Konkle, personal comminication, January 21, 2015), with a 

considerable discrepancy between the beta weights associated with animacy and size 

dimensions in their fMRI results, suggesting that response modulations associated with 

object size are comparatively weaker than those identified for object animacy. In light of 

these findings, it is likely that this difference in the strength of size-based modulations 

similarly impacted our ability to detect these subtle differences, as we also used a 

comparatively limited stimulus set (36 stimuli compared to 240 in the study by Konkle & 

Caramazza, 2013, and 118 in Khaligh-Razavi et al., 2018. Interestingly, Khaligh-Razavi et 

al. (2018) showed a real-world size effect in both inanimate objects and animate objects, 

unlike the tripartite model (Konkle & Carramazza, 2013) which suggested the size effect 
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was limited to inanimate objects. Further investigation of the representation of real-world 

size is needed to establish how this factor is differentially coded within animate and 

inanimate object categories.  

Another important point for consideration is whether the effects that we see across 

previous studies, in fact, reflect a size dimension, or alternatively, some other covarying 

factor that may similarly explain these apparent size-based modulations in brain 

representations. When trying to account for real-world size effects, researchers often 

highlight the problem of differentiating the individual contributions of additional factors that 

are often conflated with large inanimate object properties, such as object fixedness (i.e., how 

fixed an object is within its environment) or contextual stability (i.e., how strongly associated 

an object is to its contextual setting) (Julian et al., 2017; Troiani et al., 2014). If the coding 

of object size is mostly related to object stability and landmark presence, then it makes sense 

that a size distinction would not appear when comparing big and small animals (Konkle & 

Caramazza, 2013), as animals are inherently mobile and consequently should not activate 

regions associated with stable-, landmark-type feature preferences. Similarly, stimulus 

feature properties may also pose a potential confound when evaluating real-world size 

representations, as a recent study (Long, Konkle, Cohen, & Alvarez, 2016) showed that 

visual search performance was enhanced when a target differed in real-world size from the 

distractor objects, with this effect eliminated when mid-level perceptual features of the 

objects (e.g., texture and contour information) were removed. This suggests that real-world 

size may dictate certain form properties of objects in such a way that distinguished big from 

small objects at a perceptual level. These potential semantic and physical-feature confounds 

have implications for the interpretation of size effects, and warrant further investigation to 

tease apart any unique contributions of these differing object properties. 

The idea of manipulability has also been posited as a potential driver of the size 

distinction, with activity in the PPA (which shows selectivity for large objects) showing 

preferential activation in response to large non-manipulable objects compared to both tools 
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and animals (He et al., 2013). Konkle et al. (2013) also note a fundamental difference in how 

humans interact with animate versus inanimate objects, with inanimate object size dictating 

whether we interact with objects using our hands (small inanimate objects) or our whole 

body (big inanimate objects), with this clear size/function association not typically evident 

for animate objects. This supports the idea of a tripartite organisation for object 

representations that does not necessarily rely on the coding of object size. Here we 

specifically tried to control for this by including objects in our stimulus set that are designed 

for human interaction in both the big and small object categories. Therefore, if the activity 

associated with object size identified in previous studies is, in part, related to an imbalance 

in object interactivity across big and small object categories, then this may provide an 

alternative explanation as to why we do not see a similar effect in the present study. It would 

be of interest for future studies to investigate whether properties related to object interactivity 

or object size better explain the size-related brain representations identified in previous 

studies.  

While a tripartite organization of object representations makes theoretical sense, and 

with emerging evidence suggesting that factors related to size or object 

stability/manipulability may contribute to such an organisation, evidence from a patient case 

study by Masullo et al. (2012) suggests this distinction may not be quite so well-defined. By 

assessing the semantic memory of a patient (MR) who demonstrated severe apperceptive 

agnosia, they discovered that MR made significantly more errors when asked questions 

pertaining to musical instruments compared to other inanimate objects, and the number of 

errors was similar to that made for animate objects. This result does not neatly fit into a 

tripartite organization of object processing, as it appears that the breakdown in MR’s object 

processing similarly affects the instrument (i.e., an inanimate object subcategory) and 

animate representations, which are predicted to be somewhat well differentiated by the 

tripartite model. The authors suggest their findings support models of object processing that 

differentially weight the sensory and action-related features of objects for categorisation 
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(Warrington & McCarthy, 1983, 1987; Warrington & Shallice, 1984; for reviews of studies 

supporting this theory see Gainotti, 2006, and Martin, 2007). Similarly, Bracci and Peelen 

(2013) used fMRI to identify overlapping responses in the lateral occipitotemporal cortex to 

parts of the body related to the execution of actions (e.g., hands, limbs), and inanimate 

objects that are used to extend upon the body (e.g., tools, sporting equipment). They 

conclude that these object representations appear to also contain information about the 

relationship between object and body. Together, the results from these studies highlight 

some potential difficulties in defining dimensions related to object animacy and size when 

attempting to account for variations in object representations. Further studies need to employ 

carefully designed stimulus sets in order to tease apart the contributions of these various 

object properties, and test models that evaluate a range of object-related features in order to 

establish what underlying concepts are coded in object representations. 

In sum, using a stimulus set where we aimed to balance across exemplars for aspects 

of object interactivity, we replicated previous findings which identify activity patterns 

consistent with an animacy organisation throughout the time course of object processing, 

however we were unable to detect object real-world size modulations in our MEG data. 

Establishing what aspects of neural object representations are uniquely related to real-world 

size remains a challenge for this field, as a number of object properties, such as stability and 

manipulability, are conflated with object size, posing a challenge for the creation of carefully 

controlled stimulus sets.  

In the following chapter, the focus shifts towards investigating the intricacies of 

object animacy, with the aim of testing alternative explanations that may provide a better 

account of the organisation of object representations. Recent studies have identified a 

biological classes continuum within the animate subcategory (Connolly et al., 2012; Sha et 

al., 2015), whereby object representations exist along a spectrum from humans to inanimate 

objects. We investigate this further by comparing the efficacy of a biological classes 
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continuum model to a range of models representing factors related to the human condition, 

as well as one specifically related to the broad idea of human-similarity.  
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3.1. Abstract 

Neuroimaging studies into human visual object recognition have largely focused on a 

relatively small number of object categories (for example, faces, bodies, scenes, and 

vehicles). Recent studies have taken a broader focus, investigating a hypothesised animate-

inanimate distinction in object representations. However, such studies have evaluated 

representations of objects using stimuli that are clearly identified as animate or inanimate, 

neglecting to include objects that may not fit neatly into this dichotomy. For example, objects 

such as robots and animal- or human-like toys do not easily fit into this rubric as they 

encompass concepts like agency and human-like experiences, which are known to influence 

human perception. As such, it is unknown how the animate-inanimate dichotomy accounts 

for neural representations of these ambiguous objects. Here we generated a novel stimulus 

set including objects from ambiguous categories, along with new exemplars from standard 

object categories. We used time-series decoding methods applied to MEG data from 24 

human subjects (18 female) to compare contemporary object models, such as the animacy 

dichotomy, to new models of human agency/experience. We show that early neural 

responses were best accounted for by low-level, visual similarity models of the objects, while 

performance later in time (>155 ms post-stimulus onset) was dominated by the 

agency/experience models. In particular, a graded model of human-similarity provided the 

best account for the representation of objects, demonstrating the brain’s “human-centric” 

focus in the construction of higher order object representations, and highlighting the 

importance of using broad and diverse stimulus sets when investigating visual object 

processing.   
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3.2. Introduction 

Object recognition is fundamental for human vision and is accomplished remarkably 

quickly by the brain (Thorpe, Fize, & Marlot, 1996). However, the neural processes 

underlying these perceptual abilities remain unclear. The ventral temporal cortex (VTC) is 

widely known for its involvement in visual object perception (Caramazza & Shelton, 1998; 

Haxby et al., 2001; Ishai, Ungerleider, Martin, Schouten, & Haxby, 1999; Mahon et al., 

2007). Within VTC, objects belonging to the same semantic category evoke more similar 

neural responses, while objects from separate categories evoke more dissimilar responses. 

In particular, an animate-inanimate dichotomy has been proposed as an overarching 

categorisation principal in humans and primates (Kiani, Esteky, Mirpour, & Tanaka, 2007; 

Kriegeskorte, Mur, Ruff, et al., 2008; Pinsk et al., 2009), with neuroimaging studies 

revealing a medial to lateral organization of animate and inanimate objects respectively 

across this region (Chao, Haxby, & Martin, 1999; Kanwisher, Mcdermott, & Chun, 1997; 

Konkle & Caramazza, 2013; Mahon et al., 2007; Taylor & Downing, 2011). Regions within 

VTC also respond preferentially to images from particular subcategories, including faces, 

animals, bodies (Downing, 2006; Downing, Jiang, Shuman, & Kanwisher, 2001; Haxby et 

al., 1994; Puce, Allison, Asgari, Gore, & McCarthy, 1996; Sergent, Ohta, & Macdonald, 

1992), tools (Chao et al., 1999; Chao & Martin, 2000) and places (Epstein, Harris, Stanley, 

& Kanwisher, 1999; Epstein & Kanwisher, 1998; Taylor & Downing, 2011). However, these 

localisation studies focus on coarse distinctions between a relatively small number of object 

categories; a mere sample of the wide array of objects that we see in everyday life.  

A complementary alternative to localising object categories within specific brain 

regions or subregions, is to characterise the representational structure of distributed patterns 

of brain activity (Haxby et al., 2001; Ishai et al., 1999). Using multivariate pattern analysis 

(MVPA) methods (Grootswagers, Wardle, & Carlson, 2016; Haynes, 2015; Pereira, 

Mitchell, & Botvinick, 2009), researchers can evaluate systematic variations within complex 

neural data and test specific hypotheses about the neural representation of object categories 
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without limiting analyses to a specific region of interest (Kriegeskorte & Kievit, 2013; 

Kriegeskorte, Mur, & Bandettini, 2008). Objects categorised collectively as animate can also 

be reliably separated into individual species, such as human, monkey, bird, and fish 

(Connolly et al., 2012; Kiani et al., 2007; Sha et al., 2015). Furthermore, the relative 

similarity/dissimilarity of object representations suggests that objects may be represented 

along an animacy continuum, whereby animate subcategories are grouped according to how 

biologically similar the species are to humans, with those most dissimilar appearing closer 

to inanimate objects in the representational space (Connolly et al., 2012; Sha et al., 2015). 

The animacy continuum, however, does not provide a clear prediction for subcategory 

differentiation within the inanimate domain, nor for how the brain would represent objects 

that blur the animate-inanimate distinction (e.g., robots and human-/animal-like toys). It is 

also unclear whether a continuum centred around ‘animacy’ best captures the stimulus 

dimension along which neural responses vary. As an alternative, Sha et al. (2015) propose 

that the neural representation of objects may be better characterised as varying with the 

object’s ability to perform goal-directed actions. Notably, similar factors related to agency 

and certain human-related experiences are also known to influence human perception of 

these types of objects (Gobbini et al., 2011; Gray, Gray, & Wegner, 2007), which raises 

these factors as other candidate organisational principles for the brain’s neural representation 

of objects.  

In the present study, we used MEG to characterise the organisation of neural object 

representations, and to explore their temporal dynamics. We studied the brain’s emerging 

representation of 120 object stimuli from both animate and inanimate object categories, and 

tested a wide range of models that might account for the brain’s representation of these 

objects using the representational similarity analysis (RSA) framework (Kriegeskorte, Mur, 

& Bandettini, 2008). We found behaviourally-generated models of agency and other human-

related experiences can account for the neural representations of these objects, and show the 
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model which best accounted for our data was a “human-centric” model that describes objects 

in terms of their similarity to humans.  

3.3. Method 

3.3.1. Participants 

Twenty-four English-speaking volunteers (18 female) with an average age of 24.7 years 

(SD = 5.47; range = 18-37) were recruited from the Macquarie University community. 

Informed written consent was obtained prior to participation, and participants were paid 

$20/h for their time. All participants self-reported normal or corrected-to-normal vision 

(wearing of contacts was allowed), were free of medical conditions, and were not currently 

taking any neuroactive medications. This study was approved by the Macquarie University 

Human Research Ethics Committee.  

3.3.2. Stimuli  

Stimuli consisted of 120 naturalistic images of objects (Figure 1), which were 

displayed on a uniform grey background. Twelve object categories were used in the study: 

six animate (humans, primates, domestic animals, birds, fish, invertebrates) and six 

inanimate (plants, robots, machines, tools, toys, other non-moving objects). In this stimulus 

set, animate is defined as living animals, in line with previous research (Caramazza & 

Shelton, 1998; Carlson, Tovar, Alink, & Kriegeskorte, 2013; Connolly et al., 2012; Gobbini 

et al., 2011; Kriegeskorte, Mur, Ruff, et al., 2008; Sha et al., 2015). Categories were selected 

to include ones similar to those used by Sha et al. (2015), with the addition of robots and 

toys to address the questions about agency and experience. We also included machines, 

which, like robots, had moving parts, but did not have the humanistic/animalistic/agentic 

properties. Stationary objects were also included, which neither moved nor had 

humanistic/animalistic/agentic properties. 
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Figure 1. Stimuli from each of the 12 object categories. Animate object categories are ordered 

vertically according to the biological classes animacy continuum (Sha et al., 2015). Brackets show 

two examples of different groupings of the stimuli: living vs. non-living and animate vs. inanimate. 

 

 

3.3.3. MEG Experimental Procedure 

For the experimental task, participants completed eight blocks of 398 trials (3184 trials 

in total). Within each block exemplars were presented for 100 ms, with a random inter-trial 

interval ranging between 750 and 1000 ms. The eight blocks were collected in a single 

session totalling approximately one hour of MEG recording time. Stimuli were presented in 

a predetermined pseudo-randomised order, such that for each trial, the preceding and 
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following images had an equal probability of being from any one of the 12 object categories. 

The ordering of the 8 blocks was pseudo-randomised across participants.  

Across trials, object images were manipulated in two ways to reduce the effects of 

low-level stimulus properties on our data. Firstly, a left-right flipped version of each image 

was included in the stimulus set, resulting in a total of 240 stimuli from 120 object images. 

Secondly, during image presentation, stimuli appeared in one of four locations while 

participants maintained fixation on a central marker, thus varying retinal location of the 

stimulus images. The four locations were defined by a shift from central presentation 

towards each of the four corners of the screen, where each stimulus location overlapped the 

central fixation point (details in Display Apparatus below). Each stimulus was presented 

three times at each location. This resulted in a total of 2880 trials (240 stimuli x 4 locations 

x 3 repetitions = 2880 trials). The additional trials were not included in the analysis: these 

included the first and last trial of each block, as well as 288 repeat trials that were added for 

the attention task (see below).  

3.3.4. Attention Task 

During the experiment, participants completed a one-back attention task, where they 

were required to press a button whenever an object image was repeated consecutively. 

Participants received feedback about their accuracy on the task at the completion of each 

block.  The mean accuracy across participants was 87.38% (SD = 7.28%), with an average 

reaction time of 535 ms (SD = 51 ms). Due to a malfunction of the response button during 

the experiment, accuracy and reaction times were missing for one of our 24 participants, as 

well as for one out of the eight blocks for each of two further participants. These participants 

were still instructed to perform the task and were unaware that the button was not recording 

their responses.   

3.3.5. Display Apparatus  

Participants lay supine in the magnetically sealed recording room. Using an InFocus 

IN5108 projector situated outside the chamber, stimuli were projected onto a mirror, which 
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reflected the image onto the ceiling, located approximately 113 cm above the participant. 

The total screen area was 20x15 degrees of visual angle (DVA). Throughout the experiment 

the screen background was held at a mean grey, and subjects were instructed to fixate on a 

black central fixation point (diameter of 0.1 DVA) that was always present. All stimulus 

locations were within a 6.9 DVA square, centred on the fixation point. Each stimulus 

consisted of a 256x256 pixel image (containing the segmented colour object) that was drawn 

to a 4.9x4.9 DVA square. Stimuli were presented one at a time, in one of four locations 

aligned with the upper left, upper right, lower left, or lower right corner of the 6.9 DVA 

square. A central square of 150 pixels (2.9 DVA) was common to all four stimulus locations. 

All stimuli were drawn as full colour segmented objects against a mean grey background (as 

in Figure 1): the same mean grey as the screen outside the stimulus location. Upon stimulus 

presentation, a 50x50 pixel (1x1 DVA) white square simultaneously appeared in the bottom 

right corner of the projection, which was aligned with a photodetector attached to the mirror 

to accurately record the stimulus presentation time in the MEG recording. The experiment 

was run on a Dell PC desktop computer using MATLAB software (Natick, MA) and the 

Psychophysics Toolbox extensions (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997).  

3.3.6. MEG Data Acquisition and Analysis 

MEG data were recorded in the KIT-Macquarie Brain Research Laboratory using 

a 160-channel whole-head axial gradiometer (KIT, Kanazawa, Japan). Continuous data 

were acquired at a sampling rate of 1000 Hz, and were band-pass-filtered online from 0.03 

to 200 Hz.  MATLAB (2013b, Natick, MA) was used for all processing and statistical 

analyses of the data. Offline, we down-sampled the data to 200Hz and epoched each trial 

into an event with a time window from -100 ms to 600 ms relative to stimulus onset. To 

reduce the dimensionality of the data, we applied Principal Components Analysis to the 

epoched data from the 160 gradiometers, and retained the first n components that 

accounted for 99% of the variance. The number of components retained for each 

participant ranged from 14 to 72 (Mean = 34.21, SD = 18.90).  
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3.3.6.1. Classification analysis. For each participant, we used linear discriminant 

analysis (Duda, Hart, & Stork, 2001) to classify object/exemplar identity at the single trial 

level, training and testing classifiers on their ability to discriminate every possible exemplar 

pair of the 120 object images. We used cross-validated classification accuracy as a measure 

of how dissimilar the patterns of brain activity were for one exemplar compared to another 

(Nili et al., 2014). We did not attempt to model the effects of spatial position or left-right 

flip in our classification analysis, but instead used a single data label (the object identity) for 

data obtained from both the standard and left-right-flipped versions of the stimuli, as well as 

all four stimulus presentation locations. By including data from all variations of the stimuli, 

we sought to force the classifier to generalise beyond lower-level visual features, (such as 

the presence or absence of stimulation at a given location in the visual field), and instead use 

any neural correlate of object identity. These modifications to the stimulus presentation 

would have introduced extra noise into the signal across trials, so would tend to reduce 

classifier performance relative to unvarying stimuli, but they allowed us to better target 

higher-level object representations. For each time-point, we trained and tested a separate 

classifier to discriminate each pair of exemplar identities from the PCA components. We 

used a 10-fold cross-validation procedure, where the classifier was trained on data from 90% 

of the trials and then its accuracy was evaluated using its performance when classifying the 

remaining 10% of the data, so that the classifier was never tested on data that were included 

in the training set.  This process was repeated 10 times, so that all trials were used as test 

data once each. D-prime (d’) was used as the metric for classification accuracy.  

3.3.6.2. Representational Similarity Analysis (RSA). Classifier accuracies (d’) 

were averaged across exemplar pairs to obtain the mean classifier performance for each time 

point. Additionally, to capture the pattern of classifier performance across exemplar pairs 
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and compare this pattern with model predictions, we constructed a Representational 

Dissimilarity Matrix (RDM) for each time point. The RDM is a 120x120 matrix, symmetric  

along the negative diagonal, where each cell is the classification accuracy (d’) for that pair 

of exemplars. 

For each time point we compared each participant’s observed RDM with model 

RDMs, where each model RDM was a 120x120 matrix derived from theory, computational 

modelling, or behavioural data (as described in detail below). This analysis, known as 

‘Representational Similarity Analysis’ (RSA) (Kriegeskorte, Mur, & Bandettini, 2008) tests 

the relationship between models of interest and the group data, measuring how well the 

model RDMs account for the observed pattern of results. At each time point we used 

Kendall’s tau-a to compute the rank order correlation between each candidate model and the 

data, and used these correlation values to compare alternative models in their ability to 

account for the neural data. Figure 2 shows the model RDMs. 

 

 

 



 119 

 

Figure 2. RDMs used for model testing. Models are grouped according to whether they are low-level 

models (A), contemporary models (B), or behavioural models (C). See text for descriptions of each 

model. Model axes refer to all 120 image exemplars (grouped by category in the same order as in the 

RDM based on average decoding of the MEG data in Figure 5). Colour bar indicates predicted degree 

of dissimilarity between exemplar pairs. 

 

3.3.6.2.1. Low-level models. The HMAX and Jaccard silhouette models were 

included to test for the effects of low-level stimulus properties on the similarity/dissimilarity 

of neural responses, as measured using classifier performance.  

HMAX (1): Computational model of low-level visual processes. We applied the HMAX 

model (Riesenhuber & Poggio, 1999; Serre et al., 2007) as detailed in Serre et al., (2007) to 

simulate the responses of low-level visual areas. HMAX was applied to images at only a 

single image location and based on the standard orientation of each stimulus (i.e. not left-
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vectorized. We then generated the model RDM by taking the Euclidean distance between 

the vectorized model responses for each pair of stimuli.  

Jaccard (silhouette model; 2): An abstract shape model that measures the shape of each 

object in terms of the pixels that the image occupies (Jaccard, 1901). We generated the model 

RDM by comparing the overlapping silhouette regions of two images at a time and obtaining 

a measure of the difference. This model was generated based on the standard orientation of 

each stimulus (i.e., not flipped), independent of location. 

3.3.6.2.2. Contemporary models of object representations. The ‘contemporary’ 

models (Figure 2, models 3-9) were created based on organisational structures proposed in 

previous studies, with the term ‘contemporary’ used to highlight that these reflect the current 

understanding of object category structure. Descriptions of each model are provided below.   

Dichotomy models (3 and 5): The animate vs. inanimate dichotomy model (Caramazza & 

Shelton, 1998; Carlson et al., 2013; Cichy, Pantazis, & Oliva, 2014; Kriegeskorte, Mur, Ruff, 

et al., 2008), is a multi-category model that grouped all animate and inanimate objects 

separately (implying that objects within these groupings were more similar to each other, 

and more dissimilar to objects in the other grouping). Similarly, the living vs. non-living 

dichotomy model (Gainotti, 2000; Huth, Nishimoto, Vu, & Gallant, 2012; Warrington & 

Shallice, 1984) grouped all living and non-living objects separately. The living category 

included the same items as the animate category but with the addition of plants. 

Cluster models (4 and 6): The animal cluster model (4) is a single-category model that only 

grouped all animate objects together, suggesting that animate objects will be more similar to 

each other, and more dissimilar to all other objects, but that inanimate objects will not cluster. 

The living cluster model (6) follows the same principles, but grouping all living objects 

together. The cluster models were created to determine whether the effect of the dichotomy 

models was driven by cohesion within the in-group alone (i.e., animate, living), with more 

disparate object representations in the out-group category (i.e., inanimate, non-living) 

(Clarke & Tyler, 2014).  
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Faces/bodies model (7): Faces and bodies stand out as special categories for object 

recognition (Barragan-Jason, Cauchoix, & Barbeau, 2015; Cauchoix, Barragan-Jason, Serre, 

& Barbeau, 2014; Gobbini et al., 2011; Haxby et al., 2001; Van de Nieuwenhuijzen et al., 

2013), and so were of interest given the inclusion of toys and robots in our stimulus set. As 

such, the faces/bodies model is single-category model, grouping together all object 

categories that had faces or bodies, including all animate objects, as well as robots and toys. 

Category model (8): The category model was included as a measure of category 

individuation, as it proposes that items within individual categories have distinctly related 

patterns due to common visual and semantic properties, and these patterns are more different 

to those of objects from other categories (Clarke & Tyler, 2014). This model grouped each 

individual category as being more similar to within-category items and more dissimilar to 

other categories. 

Continuum model (9): The continuum model is a graded model based on the animacy 

continuum proposed by Sha et al. (2015; see also Connolly et al., 2012). The continuum 

included a gradient of similarity between object categories that varied along a dimension 

related to biological classes, such that categories more similar to humans (biologically), 

would have more similar activity patterns, and those more dissimilar to humans would have 

activity patterns more similar to inanimate objects. For this model, plants were included on 

the continuum as they are a biological category, and were represented on the continuum 

between invertebrates and inanimate objects. All non-living inanimate objects were treated 

as a single category, most dissimilar to the human category.	

3.3.6.2.3. Behavioural models. The behavioural models include the 

agency/experience models (Figure 2, models 10 – 16) and the human model (17). These 

models were created by obtaining behavioural ratings of the stimuli according to a specific 

question (detailed below). A total of 325 Amazon’s Mechanical Turk workers residing in 

either the United States of America or Canada, completed one of the eight surveys online 

(number of participants per survey ranged from 40 – 43). Participants included 146 females 
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(1 other, 1 no response), and had an average age of 35.27 years (SD = 10.26, range = 18.9 – 

70.8; one age value missing). In each survey we asked workers to answer a single question 

for each of the stimuli: 

 
10. Fear – How much is it capable of feeling afraid or fearful? 

11. Pleasure – How much is it capable of experiencing physical or emotional pleasure? 

12. Desire - How much is it capable of longing or hoping for things? 

13. Consciousness - How much is it capable of having experiences and being aware of 

things? 

14. Thought - How much is it capable of thinking? 

15. Emotion-recognition - How much is it capable of understanding how others are feeling? 

16. Self-Control - How much is it capable of exercising self-restraint over desires, emotions 

or impulses? 

17. Human – How similar is this to a human? 

 
Surveys 10-16 were based on a subset of the mental capacity surveys used in Gray 

et al. (2007), which vary as to how much they loaded onto the author’s ‘Experience’ and 

‘Agency’ factors that were established in their study. The seven agency/experience models 

were based on the results of these surveys. The ‘Human’ survey (17) was added to address 

a meta-representational idea of categorization, that of “human-ness”: a complex factor which 

may encompass biology, agency, and visual similarity. Each survey required participants to 

rate all 120 images on a 7-point scale from ‘Not at all’ to ‘Very much so’ in response to the 

specific question. Each survey took approximately 10 minutes to complete and participants 

were paid $1.50 for their time. The surveys were created and administered using the 

Qualtrics online survey platform. For each survey, participants provided voluntary consent 

and basic demographic information before completing the survey. Participants were only 

allowed to complete one of the eight surveys available, resulting in unique individuals for 

each survey. Stimulus order was randomised separately for each participant. 
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To construct the models based on agency and experience (shown in Figure 2), an 

RDM was created for each set of survey responses by obtaining the absolute difference 

between image ratings for each pairwise comparison of the 120 images, using the mean 

ratings of each image. These RDMs, based on the survey ratings, provide hypothetical 

models of the degree of dissimilarity between the neural responses associated with each 

image. For graphical purposes, we scaled these difference values between 0 and 1 for each 

model, such that warmer colours indicate greater dissimilarity, while cooler colours depict 

greater similarity between the neural representations in the pair-wise comparison. 

3.3.6.3. Model intercorrelations. As the models we used in this study were not 

orthogonal, we measured the degree of overlap by performing correlations (Spearman) 

between each of the models (see Figure 3A). By evaluating the strength of these correlations, 

we obtained an estimate of how much the models overlap in terms of the hypotheses being 

tested. Of particular note, the mTurk behavioural models based on the agency and experience 

factors from Gray, et al. (2007) and the human model we created are all highly correlated 

(see clustering in Figure 3B MDS plot of the representational geometry): this was expected, 

since each of these models capture slightly different aspects of similarity to humans.  
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Figure 3. Model intercorrelations. A) Model correlation matrix. Cell colour indicates correlation 

strength (*p < .05, adjusted for multiple comparisons across time points using a FDR of q < .01), 

with yellow cells indicating a stronger correlation between models, while blue indicates a weak/no 

correlation. B) MDS plot showing the representational geometry of model similarity. 
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We deliberately chose stimuli that were visually diverse within each subcategory, to 

minimise the extent to which visual similarity would produce seemingly ‘categorical’ 

patterns of results. The model correlation data suggests that our stimulus set provided good 

separation of visual similarity and object category, since few models correlated with the 

visual feature confound models. Importantly, this should minimise the confounding 

contribution of low-level visual similarity when we evaluate our hypothesis driven models. 

Exceptions to this included the animal cluster, category, and faces/bodies models, which 

each showed a significant correlation with one, or both of the HMAX and Jaccard models. 

This suggests that despite our stimulus diversity, there was still greater visual homogeneity 

of exemplars within the category groupings in these models than between category 

groupings. This means that, particularly for the animal cluster, category, and faces/bodies 

models, any correlation between these models and the observed pattern of classifier 

performance may have been driven by low-level visual similarity rather than by the higher-

level category structure represented by these models.  

3.3.6.4. Noise ceiling. We computed a noise ceiling for our data following the 

methods of Nili et al, (2014). The noise ceiling provides an estimate of the theoretical 

maximum model correlation that is possible given the noise in the data. To compute the noise 

ceiling we generated a theoretically ‘ideal’ model by taking the between-subjects average 

RDM, then correlating each subject’s data with this ideal model using Kendell’s tau-a. The 

upper bound of the noise ceiling is the average of these correlation values. To calculate the 

lower bound of the noise ceiling we repeated a similar process, except that when we 

correlated each subject’s data with the ‘ideal’ model, we excluded that subject’s own data 

from the average. Model correlations that approach the noise ceiling indicate that the model 

provides a near-complete account of the explainable variance in the data, whereas greater 
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distance from the noise ceiling indicates that a better model could account for further 

variance in the data.  

3.4. Results 

We scanned participants using MEG while they viewed briefly presented object 

stimuli. We trained and tested classifiers on their ability to discriminate each pair of the 120 

objects in our stimulus set, using the MEG sensor recordings. Evaluation of the overall time-

varying object decoding performance revealed significant sustained decoding of individual 

exemplars commencing from 50 ms post stimulus-onset (Figure 4), with peak decoding 

performance at approximately 105 ms post stimulus onset. Across individuals, there was a 

tendency for classifier performance to show a second smaller peak at a later time, which is 

reflected in the smaller peak in the averaged data, at around 180-195 ms post stimulus-onset. 

These results are consistent with results from previous MEG decoding studies (Carlson et 

al., 2013; Cichy et al., 2014; Goddard, Carlson, Dermody, & Woolgar, 2016) and align with 

what we know about the time taken for visual information to reach cortical areas (Thorpe et 

al., 1996).   
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Figure 4. Average decoding performance (measured in d-prime) over time for all exemplar pairs. 

Grey bar indicates the period the image was on the screen. Error bars indicate 95% between-subject 

confidence intervals. Blue dots along the x-axis indicate time points at which decoding performance 

was significantly above chance (one-tailed t-test, adjusted for multiple comparisons across time 

points using a FDR of q < .01). 

 

 

We next examined the pattern of classifier performance across different stimulus 

object pairs. Figure 5 shows an RDM of decoding performance averaged across participants 

and across all time-points with above chance classifier decoding. Upon inspection, decoding 

performance varies widely depending on the exemplar comparison, however the human 

stimuli tend to be more dissimilar to other objects from categories that are further down the 

“continuum” (seen in the frequency of yellow cells). An exception to this is seen with the 

robot and toy stimuli, which appear more similar to the human and animate objects than 
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other inanimate objects (seen in the bluish horizontal bands on the left side of the RDM at 

the level of ‘robots’ and ‘toys’). 

Having established that we could decode the individual object images from the MEG 

data, we then tested a range of hypotheses about category representations by comparing the 

observed RDM with a series of model RDMs (Figure 6). We first considered the maximum 

correlation with the data that would be possible for any model to achieve, by calculating the 

noise ceiling. The noise ceiling (Figure 6-1) increases steadily from around 55 ms post 

stimulus onset, peaking at 100 ms (lower-bound tau-a correlation of 0.26), before gradually 

returning to baseline noise levels over the subsequent ~500ms. As expected, the noise ceiling 

varies with average decoding accuracy (see Figure 4): where decoding accuracy is higher, 

the noise ceiling is higher and there is also less disparity between the lower and upper limits 

of the noise ceiling, indicating that there is more variance in the RDM that could potentially 

be captured by one or more models. However, as the peak correlation for the noise ceiling 

is still relatively low, this suggests a high degree of between-subject noise, or ‘unexplainable 

variance’ in the data.  
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Figure 5. RDM showing average decoding performance over time (50-600 ms post stimulus onset) 

using scaled d’ (proportion of maximum d’).  The colour of each cell indicates the degree of similarity 

between the neural responses to that pair of objects (as measured in classification performance). 

Warm colours (red to yellow) indicate greater dissimilarity (more distinct neural representations), 

while cool colours (green to blue) indicate greater similarity (overlapping neural representations).  
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Figure 6. Noise ceiling and RSA model testing correlations over time. 1) Noise ceiling time-course. 

The boundaries of the grey shaded area indicate the upper and lower limits of the noise ceiling (the 

maximum expected correlation of any model). 2) Correlation between the classifier data and (A) the 

low-level visual feature models, (B) contemporary models, and (C) behavioural-rating models. Red 

dotted line in (1) indicates the maximum value of the y-axis (Kendall’s tau-a = 0.1) to aid comparison 

with the plots in (2). Shaded error bars in A, B and C indicate the 95% confidence interval of the 

between-subject means. Plotting conventions as in Figure 4.  
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3.4.1. Model Testing Across Time  

At every time point, we rank-correlated each subject’s RDM with each model RDM 

using Kendall’s Tau-a (Figure 6-2). We then tested whether the group subjects’ mean 

correlation was significantly above zero at each time point (one-tailed t-test p < .05, adjusted 

for multiple comparisons across time points using a false discovery rate (FDR) of q < .01).  

3.4.1.1. Low-level visual feature models. Both the Jaccard and HMAX models 

(Figure 6-2A) were significantly above zero only in the early stages of the time course, 

peaking at 75 and 105 ms respectively, with neither model reaching significance after 250 

ms post stimulus onset. This is in line with the established literature about the time-course 

of visual object recognition, with responses related to lower-level visual stimulus properties 

occurring earlier on, and more complex semantic (and thus category-relevant) responses 

occurring later in the time-course (Carlson, Simmons, Kriegeskorte, & Slevc, 2014; Carlson 

et al., 2013; Cichy et al., 2014; Clarke, Devereux, Randall, & Tyler, 2015). However, it 

should be noted that both models show high correlations despite the fact that our design 

incorporated left-right flips of the images and spatial displacement of the images to control 

for some low-level stimulus properties; changes which would have reduced the performance 

of these models. The low-level models were generated using only the standard orientation 

of each stimulus, and yet they performed well at predicting the pattern of classifier 

performance when the classifier was required to generalise across left-right flips and the four 

spatial locations. That these models were still significantly correlated with the data affirms 

the importance of low-level visual similarity in neural representations, which may have 

contributed to categorical effects, both historically and in the present study. 

3.4.1.2. Contemporary models. For the contemporary models (Figure 6-2B), there 

was variability in the onset of significant correlation with the MEG data, with onsets ranging 

from 60 ms (category model) to 120 ms (living-cluster model). The peak correlation times 

varied amongst these models, and did not follow the same order as the onsets: the living-

cluster model had the earliest peak correlation at 140 ms (tau-a = .043), followed by animal-
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cluster and faces/bodies models at 175 ms (tau-a = .044 and .077 respectively), living/non-

living and category models at 260 ms (tau-a = .029 and .022 respectively), continuum model 

at 280 ms (tau-a = .052), and animate/inanimate model at 285 ms (tau-a = .024). The models 

with the earliest peaks tended to have higher peak correlations, but notably two of these 

models (animal-cluster and faces/bodies) were among those showing significant overlap 

with one or both of the low-level feature models (see Figure 3), suggesting that low-level 

visual similarity may have contributed to the earlier onset and high peaks for these models. 

Interestingly, the cluster versions of the animal and living models had higher and earlier peak 

correlations than their non-cluster counterparts. While, in both instances, objects in these 

cluster categories are more likely to be visually similar, they also represent specific 

conceptually inclusive criteria, with the inanimate and non-living categories likely thought 

of as not meeting the criterion of ‘animate’ or ‘living’. Previous studies have found similar 

effects of an animate advantage using reaction times (RTs) (Carlson, Ritchie, Kriegeskorte, 

Durvasula, & Ma, 2014; Ritchie, Tovar, & Carlson, 2015), showing a significant relationship 

between RTs and representational distance from a categorisation boundary for objects within 

the animate category, which did not hold for inanimate objects. These results suggest that it 

is less useful to think of inanimate objects as a grouped category, and emphasise the need to 

re-evaluate how we conceptualise and model neural object categorisation. 

3.4.1.3. Behavioural rating models. Figure 6-2C shows the correlations over time 

for the behavioural rating models. Due to the generally high level of overlap between the 

internal structure of these models (see Figure 3), it is not surprising that as a group they have 

similar correlation time courses. In each case, the onset of above chance correlation with the 

model was approximately 70 ms, and they tended to show a peak correlation at later times 

than the visual similarity and contemporary models, with peaks ranging from 245 to 280 ms.  

Despite their similarity, the human-factor model appears to have a slightly higher peak 

correlation (tau-a = .083) than the other behavioural models, which have peaks from .046 to 

.064.  
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3.4.2. Model Testing: Early Versus Late Time Windows 

Across all models tested, there was a broad early versus late division between the 

low-level stimulus property models, and the more category-related models respectively. As 

such, we elected to perform statistical comparisons across average model performance in 

separate early and late time-windows. As overall decoding was significant from 50 ms, we 

excluded time points before this, as this period would largely represent noise. The remaining 

data were separated into early and late time windows based on the two peaks evident in the 

overall decoding performance (Figure 4), such that the early time-window (50 – 150 ms) 

captures the first peak, while the late time-window (155 – 600 ms) captures the second peak. 

In Figure 7 we illustrate the representational geometry of the data using multidimensional 

scaling (MDS) for the early and late time-windows separately. For each RDM, we used MDS 

to provide a visualisation of these dissimilarities in a 2-dimensional space, using the 

(default) Kruskal's normalized stress1 criterion. When visually comparing the MDS plots, 

objects in the late time-window tend to cluster into their individual object categories, 

whereas objects in the early time-window appear more disparate. Of particular note, in the 

late time-window, the animate/inanimate distinction is somewhat apparent (right/left halves 

of the MDS plots respectively), however, the clusters for toys and robots seem to fall closer 

to the animate objects, located on the right/animate side of the MDS plot.  
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Figure 7. MDS plots showing the representational geometry of the 120 object images for A) early 

(50 – 150 ms), and B) late (155 – 600 ms) time-windows. In each case the data are plotted in a space 

defined by the first two dimensions extracted using MDS (where each dimension has arbitrary units). 

Upper MDS dot plots show category clustering, where colours indicate the different object categories 

(see key for category labels) and each spot represents a different object. Lower MDS image plots 

show the same data, replacing the dots with the corresponding object image. 
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We computed the correlation between each of our models and the average classifier 

performance across the early and late time-windows (Figure 8). To facilitate comparison 

between the early and late time windows (with different noise ceilings) we plotted model 

performance as a proportion of the average noise ceiling (lower bound) for each time 

window. Due to this, we shortened the late-time window to only cover the period of 155 – 

350 ms, so as not to artificially inflate the results in this time window where the noise-ceiling 

gradually returns to baseline levels. We also conducted a series of repeated measures t-tests 

to assess between-model performance in each of these time windows separately (adjusted 

for multiple comparisons across time points using a FDR of q < .01, Figure 8). 

In the early time window, the low-level feature models and faces/bodies had the highest 

average correlations, with the Jaccard model achieving the highest average correlation, 

followed by HMAX and then faces/bodies. Each of these models performed significantly 

better than all lower-correlated models (with the exception of HMAX, which did not 

significantly differ from the face/bodies model). Few of the lower-correlated models differed 

significantly, though of particular note, the animal and living cluster models were 

significantly better than their counterparts (the animate/inanimate and living/non-living 

dichotomous models) suggesting that the correlation of the animate/inanimate and 

living/non-living dichotomous models is primarily driven by the similarity between objects 

within the animate and living categories rather than by homogeneity within the inanimate 

and non-living categories. 
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Figure 8. Average model correlations (tau-a) as a proportion of the noise ceiling across early (A) and 

late (B) time windows. Models are arranged in order of highest average rank correlation within each 

time window (highest on the left), and error bars indicate 95% confidence intervals of the between-

subjects average correlation. Paired t-tests determined significant differences between model 

correlations (lines indicate significance at p < .05, adjusted for multiple comparisons across time 

points using a FDR of q < .01). Note, the y-axis range for the late time-window is double that of the 

early time-window.  
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Conversely, the later time window is dominated by the human model, which 

performs significantly better than all other models in this time window. This model is also 

the only model that significantly outperforms the faces/bodies model, suggesting that the 

organisation of neural representations according to this human-centric model is not merely 

driven by the presence of faces/bodies, which are well-established as significant factors in 

object processing (Farah, 1996; Kanwisher et al., 1997; Thorpe et al., 1996). After the human 

model, the agency/experience models tend to have the next best fit with the data overall, 

along with the faces/bodies and continuum models. The faces/bodies and continuum models 

were the only contemporary models to outperform both low-level feature models in the late 

time-window.  As such, the organisation of representations depicted by these models appears 

more relevant to the higher level conceptual organisation of object representations than the 

other contemporary models we evaluated. Overall, the contemporary and low-level feature 

models tend to have the lowest average correlations for the later time window, with the 

category, animate vs. inanimate, and living vs. non-living models not significantly different 

from either Jaccard or HMAX. As in the early time window, the animal and living cluster 

models have again performed significantly better than their dichotomous counterparts.  

3.5. Discussion 

Many candidate categories, such as animate-inanimate and living/non-living, have 

been proposed as organisational principles in the brain’s representation of visual objects. 

However, these models vary in the extent to which their proposed categories overlap with 

low-level stimulus feature differences, and the contribution of these factors is not always 

tested. Additionally, these models have typically not been tested with stimuli that are 

ambiguous in their category. Here we sought to provide an in-depth evaluation of 

contemporary models of visual object categorisation by directly comparing their ability to 

account for neural responses to a diverse range of object stimuli, as measured using MEG. 

In addition to contemporary models, we created new theoretical and behaviour-based 

models, and models based on low-level visual similarity, which we compared with 
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contemporary models. To test the predictive power of contemporary models for non-

standard stimuli, we included novel stimuli that did not conform to the typical categories of 

contemporary models such as the frequently evaluated concept of animacy. Overall, our 

results showed that the best performing model was one based on a broad concept of human-

similarity.  

The evolution of the classifier performance and model correlations over time 

reported here are consistent with the established temporal flow of information associated 

with object recognition and categorisation processes (Contini, Wardle, & Carlson, 2017). 

These complex and multi-stage processes begin with initial cortical responses that primarily 

vary with the low-level visual properties of the stimulus (DiCarlo, Zoccolan, & Rust, 2012); 

information about the stimulus accumulates over time (from 80-800ms), with the influence 

of semantics (Clarke & Tyler, 2014) and category structure at intermediate (e.g. face, body), 

and subsequently higher (e.g. animate/inanimate) levels emerging at later times (Carlson et 

al., 2013; Cichy, Khosla, Pantazis, Torralba, & Oliva, 2016; Cichy et al., 2014; Contini et 

al., 2017). Our results are consistent with this evolution: at early times the best performing 

models were the low-level feature models (Jaccard and HMAX), while the more complex 

categorisation models (contemporary and behavioural models) had stronger correlations 

with the data at later times. While low-level stimulus properties contribute to the rich 

representation of object categories, particularly in the early stages of the object recognition 

time-course, our late time-window results and those from a growing number of studies have 

shown that low-level features are unable to wholly account for the complexities of object 

categorisation (Bracci & Op de Beeck, 2016; Carlson et al., 2013; Cichy et al., 2014; 

Coggan, Baker, & Andrews, 2016; Kaiser, Azzalini, & Peelen, 2016; Kriegeskorte, Mur, 

Ruff, et al., 2008; Proklova, Kaiser, & Peelen, 2016; Van den Hurk, Van Baelen, & Op de 

Beeck, 2017). Since the later time epoch is of greater relevance to the question of higher-

level object representation, in the remainder of our discussion we consider how the model 
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correlations from this later time window inform our understanding of the neural 

representation of objects.  

One of the most surprising results in the later time window is that the animate vs. 

inanimate model was among the lowest performing models, even though the 

animate/inanimate dichotomy is well-established in the visual object recognition literature 

(Kiani et al., 2007; Kriegeskorte, Mur, Ruff, et al., 2008; Carlson et al., 2013; Cichy et al., 

2014; Proklova et al., 2016; Caramazza & Shelton, 1998). Our study, however, specifically 

included stimuli from subcategories that do not fall at polar ends of the animate/inanimate 

spectrum, while previous studies tend to use objects that have clear membership to animate 

or inanimate categories (Bracci & Op de Beeck, 2016; Konkle & Caramazza, 2013; Proklova 

et al., 2016) with some studies, in addition, utilising stimuli from the same stimulus set 

(Carlson et al., 2013; Cichy et al., 2014; Kiani et al., 2007; Kriegeskorte, Mur, Ruff, et al., 

2008). The performance of the animate vs. inanimate model (and similarly with the living 

vs. non-living model) in our study was likely reduced by the inclusion of robots and toys as 

we grouped these ambiguous categories with the inanimate objects, reasoning that they are 

man-made and not animals/living. When visually inspecting the MDS plots showing the 

approximate representational geometry in the late time-window (Figure 7), these objects are 

represented closer to humans and animate objects than to the inanimate objects, suggesting 

that an animate/inanimate distinction may not the best way to classify this stimulus set, and 

highlighting the impact of stimulus selection on defining the organisation of object 

categories. Indeed, a recent fMRI study by Bracci,	Kalfas,	&	Op	de	Beeck	(2017)	similarly	

showed	that	visually	confusing	objects	 (e.g.,	a	mug	 in	 the	shape	of	a	cow)	exhibited	

neural	 activity	 patterns	 that	 were	more	 similar	 to	 animate	 objects	 objects	 (i.e.,	 an	

actual	 cow)	 than	 inanimates.	 Furthermore, as exemplar typicality affects the 

distinctiveness of category representations (Iordan, Greene, Beck, & Fei-Fei, 2016), the 

inclusion of these ambiguous object categories may have disproportionately affected a strict 

dichotomous categorisation model, like that of animate vs. inanimate. Further testing of any 
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category boundary effects (including the animate/inanimate boundary) should attempt to 

replicate the effect with new stimulus sets which include categories and stimuli that are 

visually diverse.  

The superior performance of the human model is an interesting finding which builds 

on our existing understanding of the representational geometry of object categories. The 

model builds on the continuum idea of Connolly et al. (2012) and Sha et al. (2015) as it 

represents a kind of human-similarity continuum. However, unlike the animacy continuum 

which is based on biological classes, the human model was not limited by biology, and could 

incorporate factors such as faces/bodies, which are important to the system irrespective of 

biology (i.e., as seen with the traditionally inanimate, and non-biological categories of robots 

and toys) (Gobbini et al., 2011; Tong, Nakayama, Moscovitch, Weinrib, & Kanwisher, 

2000). Results from an fMRI study by Gobbini et al. (2011) are consistent with a level of 

cross-over between animate/inanimate object categories that does not fit into a dichotomy, 

nor a continuum based on biological classes. The authors compared human observers’ 

perception of human faces and robots, and found that robots evoked activation in areas 

associated with faces (though to a lesser extent than humans), while also activating object 

areas and areas associated with mechanical movements. This supports the idea of more a 

complex model of object categorisation that incorporates factors such as agency and human-

related experiences; factors which are not given great weight in contemporary models of 

neural object representations. Given the relative strength of our human-centric model in 

accounting for the data, the idea of “humanness” as an important dimension in the neural 

representation of objects warrants further exploration.   

Our best performing human-centric model likely encompasses a complex set of 

features, including both visual and conceptual factors associated with being human. In our 

study, we did not impose a definition or any criteria against which people should rate the 

objects when asked ‘How similar is it to a human?’ (with responses from this survey used to 

generate the human model). Accordingly, we do not know which features people were using 
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to rate object ‘humanness’, raising an interesting area for further investigation. The brain 

likely makes use of both visual and semantic information for representing objects (Carlson, 

Simmons, et al., 2014; Clarke & Tyler, 2014; Coggan, Baker, et al., 2016; Coggan, Liu, 

Baker, & Andrews, 2016), with our data suggesting that the semantic component 

encompasses information about concepts such as function, agency, and human experience. 

Indeed, a recent study by Connolly et al. (2016) showed an overlap between regions sensitive 

to the perceived threat of animals and those associated with social cognition in humans, 

highlighting the importance of agent-related dimensions to object processing.  

Presently, we still do not have a clear understanding of how different semantic 

concepts relate to object representations and category structure. A recent paper by Martin 

(2016) puts forward a model of neural object representations that attempts to explain how 

concepts such as these are encompassed in multifaceted representations of object categories. 

Martin (2016) suggests that neural patterns are formed from complex interactive circuits 

based on a range of systems throughout the brain, including those associated with action, 

perception and emotion. This idea shifts the focus away from models based on broad 

categories, with a view to a more holistic approach to object representations that considers 

interactions between various circuits throughout the brain. The success of the humanness 

model, which includes complex constructs such as function, agency, and human experience, 

lends support to the interactive and multifaceted proposal by Martin (2016). Finally, it is 

noteworthy that while the human centric model was the best performing model in the present 

study, the model was well below the theoretical maximum correlation (i.e. the noise ceiling), 

which highlights that there remains considerable work to be done in understanding how 

objects and object categories are represented in the brain.  
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4.1. Abstract 

A recent approach to linking brain and behaviour processes in visual neuroscience is to relate 

behavioural categorisation reaction times (RTs) to brain representations measured with 

neuroimaging. In this framework, objects are assumed to be represented in a 

multidimensional activation space, with the distances between object representations 

indicating their degree of similarity. Previous studies have shown that faster RTs are 

associated with greater distances from a classification decision boundary for categorisation 

according to object animacy, however no other object categorisation tasks have been 

evaluated using this method. Using one stimulus set (which included typically animate and 

inanimate objects but was also designed to include visually confusing objects for 

classification; i.e., robots and toys) we conducted four categorisation tasks assessing 

animacy, living, moving, and human-similarity concepts and linked the categorisation RTs 

to MEG time-series decoding data. Our results show a sustained RT-distance relationship 

throughout the time course of object processing for not only animacy, but also categorisation 

according to human-similarity. Interestingly, this sustained RT-distance relationship was not 

observed for the living and moving category organisations, despite comparable classification 

accuracy of the MEG data across all four category organisations. Our findings show for the 

first time that behavioural RTs predict representational distance for an organisational 

principle other than animacy, however further research is needed to determine why this 

relationship is observed only for some category organisations and not others.  
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4.2. Introduction 

Despite decades of research into human visual object recognition, we still do not 

have a clear understanding of the neural processes that afford us this rapid and efficient 

ability. With the implementation of multivariate pattern analysis (MVPA), neuroimaging 

studies have revealed coherent structure within neural object representations related to 

categorical concepts, for example, based on whether objects are animate or inanimate 

(Carlson, Tovar, Alink, & Kriegeskorte, 2013; Cichy, Pantazis, & Oliva, 2014), and this 

organisation is observed in both human and non-human primates (Kriegeskorte et al., 2008). 

Magnetoencephalography (MEG) studies evaluating object recognition processes have 

revealed that early neural activity is associated with the processing of low-level properties 

of visual stimuli, while more complex semantic and categorical information related to object 

category is represented relatively late (~120 - 240 ms) after stimulus onset (Carlson et al., 

2013; Cichy et al., 2014; Clarke, Devereux, Randall, & Tyler, 2015; Goddard, Carlson, 

Dermody, & Woolgar, 2016). This temporal hierarchy of processing stages is consistent with 

fMRI data showing the flow of neural activity throughout the ventral-temporal processing 

stream, from early visual cortex (V1) through to the inferior temporal cortex (IT); a region 

known for its involvement in object processing (Cichy et al., 2014; Kriegeskorte et al., 2008; 

Vida, Nestor, Plaut, & Behrmann, 2017). Further evaluation suggests a hierarchy of object 

representations which initially include information that distinguishes individual object 

exemplars, with more abstract conceptual category information, like the animate/inanimate 

distinction, emerging later (Carlson et al., 2013; Cichy et al., 2014; Contini, Wardle, & 

Carlson, 2017; Kriegeskorte et al., 2008).  

The categorical distinction of animate versus inanimate objects has been proposed as 

one of the fundamental organisational principles in the neural representation of complex 

objects. In recent years, a number of studies have extended this organisational principle, to 

incorporate factors such as real-world size (Julian, Ryan, & Epstein, 2017; Konkle & 

Caramazza, 2013; Konkle & Oliva, 2012) and biological class (Connolly et al., 2012; Sha et 
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al., 2015), the latter of which depicts object categories along a continuum based on biological 

similarity of species, spanning from humans at one end of the continuum, to invertebrates, 

and lastly inanimate objects at the other. Our previous work also provided support for the 

idea of a continuum, as opposed to a dichotomous representation of object categories, with 

a graded model of human-similarity (see Chapter 3). This model, generated from human 

behavioural ratings, outperformed a biological classes continuum model as well as the more 

established animacy dichotomy model when ambiguous object categories (toys and robots) 

were included in the stimulus set.  

Despite the aforementioned findings, it remains unclear whether any of these neural 

representations is predictive of perception and behavior. While these studies aimed to 

characterise brain activity involved in object processing, detecting a pattern of activity using 

neuroimaging methods does not necessitate functional involvement of that signal in 

behavioural processes. For example, Williams et al. (2007) showed that patterns of activity 

in the lateral occipital cortex (LOC), as measured using fMRI, were related to correct object 

categorisation behaviour, while activity in retinotopic regions was not, despite both of these 

regions containing information about object category. This highlights the importance of 

looking beyond measured brain activation patterns to determine how this information is used 

functionally, and whether information contained in these patterns of activity is predictive of 

our daily experiences and behaviour - a fundamental goal of neuroscience research (Carlson, 

Goddard, Kaplan, Klein, & Ritchie, 2017; de-Wit, Alexander, Ekroll, & Wagemans, 2016; 

Krakauer, Ghazanfar, Gomez-Marin, MacIver, & Poeppel, 2017; Ritchie & Carlson, 2016).  

One approach to link brain processes to behaviour is to evaluate the relationship 

between reaction times (RTs) and neural representations (Carlson, Ritchie, Kriegeskorte, 

Durvasula, & Ma, 2014; Grootswagers, Ritchie, Wardle, Heathcote, & Carlson, 2017; 

Philiastides & Sajda, 2006; Ritchie, Tovar, & Carlson, 2015). A seminal study evaluating 

this relationship was conducted by Carlson et al. (2014), who evaluated the relationship 

between object representations in human inferior temporal cortex (IT), as measured with 
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fMRI and behavioural categorisation RTs. To delineate the object representations from the 

fMRI data into categories (such as animate and inanimate), the authors employed a linear 

classifier to categorise the object representations. This classifier creates a categorisation 

decision boundary, whereby objects positioned far from this boundary have clearer evidence 

of belonging to a particular category while those close to the decision boundary are less 

certain. The authors used decision-making theory to hypothesise that a correlation between 

the distance to classifier boundary and category decision RT would suggest that the 

representational space is meaningful for behavioural categorisation processes.  

As predicted, Carlson et al. (2014) found that representational distance from a 

decision boundary can be used as a proxy for the decision-making process. They found a 

negative correlation between representational distance from the object classifier boundary 

and behavioural RTs, indicating that participants had faster RTs for objects that were 

represented further from the decision boundary, with slower RTs for less distinctly 

represented objects that appeared closer to the classifier boundary. One caveat to this result 

was noted when the relationships between representational distance and RT for animate and 

inanimate objects were evaluated separately. This analysis revealed that the animate objects 

alone were driving the correlation between RT and representational distance, with the 

authors suggesting that the inanimate object category may lack the cohesion that the animate 

category possesses (Carlson et al., 2014).  

In light of this evidence for a potential link between brain and behaviour data for 

object categorisation, the RT-distance approach has more recently been applied to the brain 

activation patterns measured with MEG to evaluate the time-course of this relationship. 

Using MEG, Ritchie et al. (2015) replicated the animacy results from Carlson et al. (2014), 

showing a negative relationship between representational distance and RTs that was 

similarly driven by the animate objects. The authors additionally built on these findings by 

tracking this relationship throughout the time course of object processing. Ritchie et al. 

(2015) highlighted that the correlation between RT and representational distance became 
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significant for the animate objects around the peak decoding time, suggesting this is the 

optimal time for the brain to “read-out” object category information for use in behaviour. 

Grootswagers et al. (2017) also showed an asymmetrical relationship between MEG-derived 

brain representations and behaviour for animate compared to inanimate objects, and 

additionally evaluated this relationship using degraded stimuli, thus increasing task 

difficulty. They showed that degrading a stimulus resulted in the expected compression of 

the representational space for animate but not inanimate objects, further supporting an 

asymmetry in the representations of these two object categories (Grootswagers et al., 2017). 

These studies highlight the utility of RT data as a means to gain insight into which neural 

processes or organisational principles are likely relevant for behaviour.  

Research using the RT-distance method to evaluate object categorisation processes 

has focussed on the animate versus inanimate distinction. However, in light of our previous 

findings, which show that a model based on human-similarity best accounted for the 

organisation of neural object representations (beyond that achieved by animacy), we sought 

to test whether a judgement of human-similarity also shows a relationship between 

representational distance and behavioural categorisation RTs. In addition to the established 

animacy dimension, and our recently proposed dimension of human-similarity, we also 

evaluated categorisation based on living and moving concepts. A number of both 

neuroimaging (Clarke, Taylor, & Tyler, 2010; Huth, Nishimoto, Vu, & Gallant, 2012) and 

behavioural (Filliter, McMullen, & Westwood, 2005) studies have evaluated the 

contribution of living and moving factors to object representations and categorisation 

processes, including patient studies that highlight category-specific deficits consistent with 

these factors (Gainotti, 2000; Masullo et al., 2012). As we are yet to fully understand how 

the brain processes object representations and object category structure, it is important that 

we continue to test alternate models and theories, such as these, against the widely researched 

animacy distinction, with the aim of finding better accounts of neural object recognition 

processes.  



 159 

Here, we used a single stimulus set across all four of these plausible category 

organisations (animacy, living, moving, human-similarity), with the stimulus set designed 

such that it could be carved up in different ways depending on the categorisation task at 

hand. For example, a tree stimulus would be categorised as inanimate for an animacy 

categorisation task, but for a living/non-living categorisation, it would be categorised as 

living. Thus, the tree would be grouped together in a category with animals for the living 

task, but not for the animacy task. To provide a more stringent test of the established animacy 

dimension as well as the plausible related dimensions of living, moving and human-

similarity, we included stimuli that did not have clear category membership based on the 

established animacy criteria, namely those of robots and toys. These stimuli have physical 

features that resemble animate objects (i.e., faces/bodies) but are man-made and thus 

technically inanimate objects, so if the animacy category is the true organisational principle 

for these neural representations then these inanimate objects should be categorised as such.  

4.3. Method 

Data for the behavioural and MEG components of the study were collected 

separately, with two different sets of participants. Details for each component are provided 

below.  

4.3.1. Stimuli 

The same set of object stimuli was utilised for both the behavioural and MEG 

components of the study. Stimuli were 120 naturalistic object images (see Chapter 3, Figure 

1), including a range of objects from twelve object categories including six animate 

categories (humans, primates, domestic animals, birds, fish, invertebrates), and six inanimate 

categories (plants, robots, machines, tool, toys, and other stationary objects). 

4.3.2. Behavioural Experiment and Reaction-Time Data 

A total of 400 Amazon’s Mechanical Turk workers, residing in either Canada or the 

United States of America, each completed one of four behavioural RT categorisation tasks 

online (n = 100 per task). Each task followed a similar format, whereby a trial consisted of 
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a single object exemplar presented centrally on a grey background. Using a two-alternative 

forced-choice paradigm, participants were required to categorise each of the 120 objects as 

quickly as possible, using a standard keyboard button press. Images were each presented for 

500ms, with the next trial triggered when the participant pressed a button to make their 

categorisation choice. No feedback was given to participants. Participants’ categorisation 

choice and reaction time data were collected for each of the 120 object exemplars. 

Experimental tasks and associated categorisation2 options were as follows:  

Task 1) Animacy: ‘animals (living human/animal/insect)’ or ‘not an animal’;  

Task 2) Living: ‘living’ or ‘non-living’;  

Task 3) Moving: ‘has movement’ or ‘no movement’;  

Task 4) Human: ‘more like a human’ or ‘less like a human’.  

Participants completed a pre-test practice task prior to commencing the experimental 

task to familiarise themselves with the task requirements and to also serve as a screening 

task to ensure participants were responding in line with the task instructions. The stimuli for 

the pre-test practice task consisted of eight trials using novel exemplars (these were not 

included in the experimental stimulus set) which participants were required to categorise, 

with a minimum accuracy rate of 75% to continue to the experimental task (however, no 

feedback was given to participants). Pre-test exemplars were the same for each of the four 

tasks, and included four animals (giraffe, parrot, bear, penguin) and four inanimate objects 

(laptop computer, palm tree, lamp, arm chair). Instructions differed slightly for Task 4 

(Human), where participants were provided with a diagram showing four of the practice set 

exemplars along a continuum from more like a human to less like a human (i.e., bear, parrot, 

                                                

2 For clarity, category organisations used for the tasks and to group the stimuli in the current study are identified 

with a capital letter (e.g., Animacy, Living). Instances where no capital letter is used (e.g., animacy) refer to 

the concept itself, rather than the experimental task or design.  
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tree, lamp), so that participants understood that an object did not have to be a human to be 

categorised as more like a human.  

4.3.3. MEG Experiment 

 The MEG experimental data were reused from our previous experiment (see Chapter 

3). An overview of the methods for the MEG experiment is provided below. 

4.3.3.1. Participants. Participants for the MEG component included 24 healthy 

adults from the Macquarie University community (18 female; mean age = 24.7, range = 18 

- 37). All participants reported normal or corrected-to-normal vision, provided informed 

consent prior to participation, and were paid $20/h for their time. The research in this study 

was approved by the Macquarie University Human Research Ethics Committee.  

4.3.3.2. MEG experimental task procedure. The MEG experimental task was run 

on a Dell PC desktop computer using Matlab (Natick, MA), with the Psychophysics Toolbox 

extensions (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997). Stimuli were projected onto a 

mirror located inside the MEG magnetically sealed room (MSR), using an InFocus IN508 

projector. The mirror reflected this image onto the ceiling of the MSR, approximately 113 

cm above the participant, who lay supine in the MEG chamber. Object images were 

segmented and presented on a grey background. The stimuli were approximately 4.9 x 4.9 

degrees of visual angle (DVA), and were presented in one of four centrally overlapping 

screen quadrants located around a black central fixation cross (diameter of 0.1 DVA; see 

Chapter 3 for a detailed description). A left-right flipped version of each of the 120 object 

images was also included in the stimulus set, resulting in a total stimulus set of 240 images. 

we included the four stimulus locations and flipped version of the stimuli to reduce the 

effects of low-level stimulus properties on the data. Each stimulus was presented at each 

location three times, resulting in a total of 2880 trials for data analysis (240 stimuli x 4 

locations x 3 repetitions). Additional trials, which were not analysed, included the first and 
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last trials of each block, and the 288 repeat trials that were included for the attention task 

(see below).  

 Subjects completed a one-back attention task during the MEG experiment, where 

they pressed a button whenever a stimulus was repeated consecutively. Participants received 

feedback about the accuracy of their performance on this task at the end of each block. In a 

single testing session of approximately one hour duration, participants completed eight 

blocks (pseudo-randomised across participants) consisting of 398 trials (3184 total trials). 

On each trial, the stimulus was presented for 100 ms, followed by a random inter-stimulus 

interval between 750 and 1000 ms where just the fixation cross was present on the screen. 

Stimulus presentation times were recorded using a photodetector attached to the mirror. The 

photodetector was aligned with a white square (1x1 deg) that appeared simultaneously on 

the screen with each image presentation. Within each block, the stimuli appeared in a 

predetermined pseudo-randomised order, such that there was equal probability that the 

preceding and following images for each trial would belong to any one of the 12 object 

categories.  

4.3.4. MEG Data Acquisition and Processing 

 The neuromagnetic signal was recorded using a 160-channel whole-head axial 

gradiometer (KIT, Kanazawa, Japan) in the KIT-Macquarie Brain Research Laboratory. 

Data were acquired continuously, sampled at a rate of 1000 Hz, and were filtered online 

from 0.03 to 200 Hz. we then down-sampled the data offline, to 200 Hz, and epoched the 

individual trials into single events with a time window from 100 ms pre-stimulus to 600 ms 

post-stimulus. For the MEG decoding analyses, we subsequently reduced the dimensionality 

of the epoched data from the 160 gradiometers using Principal Components Analysis (PCA). 

A threshold was set to retain the first n components that accounted for 99% of the variance 

in the data, resulting in an average of 34 retained components (range = 14 – 72).  
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4.3.5. Classification Analysis 

For each MEG participant's data, we trained classifiers to perform a series of 

classifications on the components resulting from PCA of the MEG sensor recordings. In each 

case, we trained the classifier using linear discriminant analysis (LDA), which we 

implemented using the Matlab function fitcdiscr.m (from the Statistics and Machine 

Learning Toolbox) with 'DiscrimType' set to 'diaglinear'. For each classification, we divided 

the set of stimuli into two groups which differed according to the behavioural categorisation 

task in question (see Behavioural experiment and reaction time data section above for details 

of the behavioural tasks). For Task 1 (Animacy), the stimuli were grouped for the classifier 

according to the contemporary animacy definition used in previous studies (Carlson et al., 

2013; Cichy et al., 2014; Sha et al., 2015) with the data from each trial labelled as 'animate' 

or 'inanimate' based on the whether the stimulus for that trial was animate (human or animal) 

or inanimate (plant, robot, machine, tool, toy or other inanimate object). Similarly, for Task 

2 (Living), the classification groupings were the same as for animacy, except that plants were 

grouped with the other animate objects to form the ‘living’ group, while the remaining 

objects comprised the ‘non-living’ group. The procedure for determining classification 

grouping differed for Tasks 3 and 4 (Moving and Human), as these categorisations do not 

specify clear category membership definitions for all stimuli within the data set.  As such, 

the data were divided into two groups for the classifier according to the mean behavioural 

categorisation response for each stimulus (see Figure 2, plots C and D). For all four tasks, 

we balanced the number of stimuli in each of the two groups for the classifier by removing 

stimuli from the larger grouping until both groups were even. Stimuli to be removed were 

randomly selected such that, where possible, an even number were removed from each 

subcategory (e.g. humans, primates, tools etc) so as to maintain an even distribution of 

subcategory exemplars. This process resulted in slightly different stimulus numbers for each 

of the four tasks. To control for differences in power due to variations in set size, we repeated 

the analysis with a subset of the data, in which the number of stimuli for each of the four 
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tasks was reduced to 100 (50 per category subdivision for the classifier). Furthermore, we 

ran a second control analysis for the Animacy and Living category organisations where, 

instead of using predetermined category groupings, we divided the stimuli into groups for 

the classifier based on the mean behavioural categorisation performance (in line with the 

procedure for the Moving and Human category organisations) to ensure that any differences 

observed between the tasks in the results were not due to methodological differences in how 

the categories were defined.  

Across all four category organisations, we performed two classifications for data 

from each time bin. First, we measured classifier performance by performing classification 

with four-fold cross-validation, in each case training on data from 75% of the trials and 

testing the classifier's accuracy in predicting the category (e.g. animate or inanimate) for the 

remaining 25% of trials in order to avoid circularity. Across the four instances, where we 

trained on 75% of the data and tested on the remainder, data from each trial were included 

in the test data set once. We averaged accuracy across these four cross-validation folds to 

obtain a single accuracy value for each MEG participant at each time bin. 

Second, for each of the four category organisations, we trained a classifier on the 

same categorisation where data from all trials were included in the training set, in order to 

also obtain a single decision boundary for the classifier at each time bin, for each MEG 

participant. This decision boundary is a linear hyperplane in an n-dimensional space, 

where n is the number of components that were retained following the PCA reduction of the 

data. Data from each trial defined a point in this n-dimensional space, and linear discriminant 

analysis (LDA) seeks to find the linear hyperplane that best divides these points according 

to the labels given to each trial's data, so that data from one category (e.g. ‘animals’ trials) 

fall on one side of the decision boundary and data from the other category (e.g. ‘not an 

animal’) fall on the other side of the decision boundary. For each trial, we computed the 

Euclidean distance between the data point corresponding to that trial, and the single decision 

boundary. Since LDA often does not perfectly separate data according to their category 
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labels, some data points will be on the incorrect side of the decision boundary. To preserve 

this information (discussed in greater detail below), we multiplied the distance by negative 

one where the point was on the incorrect side of the decision boundary (i.e. if it would be 

labelled incorrectly by the classifier). Once we had the signed distance values for each trial, 

we averaged data across trials of the same exemplar to obtain a single signed distance value 

for each exemplar (for an example, see Figure 4). We then tested whether these signed 

distance values from the decision boundary calculated from the MEG data were correlated 

with reaction times for each categorization task, as described below.  

4.3.6. Correlating Distances in Activation Space with Reaction-Times 

 In order to test whether decodable information about category membership in the 

neural signal is also predictive of behaviour, we correlated the representational distances 

obtained from the classification analysis (see above) with behavioural reaction times 

following methods used previously (Carlson et al., 2014; Grootswagers et al., 2017; Ritchie 

et al., 2015) with minor modifications as described below. For each of the four different 

behavioural categorisation tasks, individual RTs for the 120 object exemplars were 

normalised within subjects. We then calculated Spearman’s rank-order correlation between 

the median normalised RT (from the behavioural categorisation task) and the mean exemplar 

representational distance from the decision boundary. We computed this correlation for each 

participant, at every time-point from -100 to 600 ms relative to stimulus onset, and then 

obtained a participant-averaged correlation providing a single overall time-course of the 

relationship between representational distance and RTs for each of the different 

categorisation tasks, as well as individual subcategory division time-course correlations. 

This follows the method performed by Grootswagers et al. (2017), which differs slightly 

from that of Ritchie et al. (2015) who computed the time-series correlation at the group level 

(rather than individual level, as done here) after averaging distances and RTs across all 

participants. Using bootstrapping to test for significance, we generated a null distribution of 

correlations by shuffling the 120 exemplar labels for each participant’s MEG data and 
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correlated these with the median RTs for the object exemplars, whose labels had also been 

shuffled. We repeated this procedure 10000 times to obtain the null distribution of 

correlation values. We then compared the experimental correlation between representational 

distance and RTs with this null distribution (two-tailed t-test, adjusted for multiple 

comparisons across time points using a false discovery rate (FDR) of q < .01). 

4.4. Results 

4.4.1. Behavioural Task Performance 

 Using the same set of 120 object exemplars as the MEG study, we ran four separate 

behavioural categorisation tasks (Animacy, Living, Moving, and Human; see Methods for 

task descriptions) with a two-alternative forced choice design. Task accuracy was measured 

for the Animacy and Living tasks, as these two tasks have clearly defined category 

membership. Participants demonstrated good categorisation performance overall, obtaining 

89% accuracy on average for both the Animacy and Living tasks. It was not possible to 

compute a meaningful accuracy score for the Moving and Human tasks as they do not have 

clearly defined binary category membership for each of the object exemplars. As such, 

category membership (for the classifier analysis) was based on participant categorisation, 

creating circularity if we were to compute measurements of accuracy. Furthermore, we did 

not specify a definition for the categorisation of “has movement” or “no movement”, with 

participants able to define their own criteria for categorisation. This, for example, could have 

centred around concepts such as voluntary movement, or moving parts, and as such is not 

clearly delineated. Similarly, the “more like a human” and “less like a human” categorisation 

is more of a continuum than a binary distinction, as we have shown previously (see Chapter 

3).  

Upon inspection of the median reaction times for each exemplar, we noted that the 

stingray exemplar was a consistent outlier, with a slower categorisation reaction time across 

each of the four tasks. This consistently slow response time may indicate that participants 

had difficulty identifying the object depicted in this exemplar. As such, ambiguity in 
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exemplar identity may be conflated with categorisation RT, causing the RT to no longer be 

a meaningful representation of categorisation decision time. Therefore, the RT and MEG 

data for this object were removed from further analyses. Overall median reactions times are 

shown in Figure 1 (excluding the stingray exemplar), and were similar across all four 

categorisation tasks (range 542 – 609 ms).  

We conducted a series of correlations between the median exemplar RTs for each of 

the four categorisation tasks in order to assess how similar the behavioural processes were 

across tasks (see Table 1). Results showed significant correlations between every pair-wise 

comparison of the four sets of categorisation RTs (Pearson correlations, corrected for 

multiple comparisons using a false discovery rate (FDR) of q < .05). Given the same stimulus 

set was used for each of these tasks, with only a subset of exemplars expected to shift 

category grouping across tasks, it is perhaps unsurprising that we see this level of overlap in 

the RTs.  

 

Figure 1. Median categorisation reaction times for each of the four categorisation tasks. Error bars 

indicate one standard deviation.  
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Table 1  

Correlations Between Categorisation Task Reaction-Times  

Task Animacy Living Moving Human 

Animacy 1    

Living .705 1   

Moving .630 .729 1  

Human .668 .453 .398 1 

Note: Values represent Pearson correlations. All values are significant, corrected for multiple 

comparisons using a false discovery rate (FDR) of q < .05). 

 

 

 
The relationship between mean categorisation performance and normalised RT for 

the exemplars is plotted in Figure 2 for each of the four categorisation tasks. These plots 

only include exemplars used for the classification analysis for each task (where some 

exemplars have been removed to balance the stimulus sets; see Section 4.3.5). As expected, 

for each task the fastest RTs were for those exemplars which were most consistently 

categorised, while those exemplars that were less consistently categorised tended to have 

slower RTs. 

 

 

 

 

 

 

 

 

 



 169 

 

 

Figure 2. Categorisation performance and reaction time for the different behavioural tasks. Objects 

were categorised as per the following binary categorisation tasks: A) Animacy: living 

human/animal/insect vs. not an animal; B) Living: living vs. non-living; C) Moving: has movement 

vs. no movement; and D) Human: more like a human vs. less like a human. RTs were normalised to 

have a mean of zero. The x-axis shows the behavioural categorisation for each exemplar as a 

proportion of all categorisations, with objects represented towards the extreme ends of the axis 

(closer to a categorisation value of 1) indicating greater consistency in their categorisation as that 

category (a score of 1 indicates all participants consistently categorised the exemplar as that 

category). Objects represented towards the centre of the x-axis (closer to a proportion of 0.5) had 

greater variability in categorisation across participants. Note, the stingray data were removed from 

the data set as RTs to this exemplar were consistent outliers.  



 170 

4.4.2. Exemplar Decoding from MEG Time-Series Data 

 We first sought to determine whether the four different category organisations 

(Animacy, Living, Moving, and Human) of the stimulus set could be decoded from the MEG 

time-series data at the individual trial level. Results from the overall time-varying decoding 

performance (Figure 3) revealed significant and sustained decoding of object category 

membership for all four category organisations, consistent with results from previous time-

series decoding studies (Carlson et al., 2013; Cichy et al., 2014; Goddard et al., 2016; 

Grootswagers et al., 2017; Kaiser, Azzalini, & Peelen, 2016; Kaiser, Oosterhof, & Peelen, 

2016; Ritchie et al., 2015; Simanova, Gerven, Oostenveld, & Hagoort, 2010). The time of 

decoding onset (i.e. first time-point of significant decoding) was similar for all four category 

organisations, with onsets ranging from 70 – 85 ms. There was slightly more variation in the 

peak decoding times (i.e. the time-point at which decoding performance is highest) across 

the four category organisations, with the Living organisation showing the earliest peak 

decoding time, at 230 ms, followed by Moving (255 ms), Human (265 ms), and lastly 

Animacy, with a peak at 270 ms. Overall decoding performance across the four category 

organisations was very similar, ranging from 58 – 59% accuracy at their respective peak 

decoding times. It is unsurprising that the decoding time-courses are so similar, as there is 

substantial overlap in the way the objects were categorised for each of the four different 

tasks (i.e., only a subset of the exemplars are swapping category label across the four 

decoding plots).  
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Figure 3. Overall MEG decoding performance for all stimuli according to the different category 

organisations for the classifier. Object exemplars in the upper plots were divided into two groups for 

the classifier based on the established standard category definitions of A) Animacy 

(animate/inanimate) or B) Living (living/non-living), while for the lower plots, categories for the 

classifier were determined based on mean behavioural task categorisation of objects from the Moving 

(has movement/no movement) and Human (more like a human/less like a human) categorisation 

tasks. Grey bar indicates the period the image appeared on the screen. Error bars indicate 95% 

between-subject confidence intervals. Blue dots along the x-axis indicate time points at which 

decoding performance was significantly above chance (two-tailed t-test, corrected for multiple 

comparisons using a false discovery rate (FDR) of q < .01). 

 

 



 172 

4.4.3. Overall Representational Distance and Reaction-Time Correlations 

 The scatter plots in Figure 4 show the signed representational distance (i.e., mean 

classifier weight distance) as a function of median normalised RT for each object exemplar 

in each of the four category organisations (Animacy, Living, Moving, and Human). For each 

individual category organisation, we computed Spearman’s r using the group means for a 

50 ms time window that centred on the peak decoding time for each of the four category 

organisations. For each, we computed the overall correlation (Figure 4, green solid line), 

with all object exemplars included, as well as separate correlations (Figure 4, red and blue 

dashed lines) for each of the two category subdivisions provided for the classifier (e.g., 

correlations for ‘animal’ and ‘not an animal’ exemplars separately). When evaluating the 

correlations with all objects included, results showed a significant negative correlation 

between representational distance and RT for Animacy (Spearman's r = -.45, p < .001) and 

Human (Spearman's r = -.50, p < .001), indicating that greater representational distance from 

the category decision boundary is associated with faster behavioural categorisation RTs 

around the time of peak decoding for these two category organisations. We did not find the 

same relationship for Living (Spearman's r = -.17) or Moving (Spearman's r = -.12), with 

no significant overall correlation for either of these category organisations (p > .05 for both).  

Interestingly, both subdivisions within the Animacy category organisation show a 

similar relationship, with sustained significant negative correlations between 

representational distance and RT. This differs from previous studies which only found a 

significant relationship for animate objects (Carlson et al., 2014; Ritchie et al., 2015), or 

otherwise a comparatively shorter period of significance for inanimate objects 

(Grootswagers et al., 2017). Below we discuss differences between our stimulus set and 

those used by others that may account for this discrepancy. Like the Animacy category 

organisation, the Human category organisation also shows a negative correlation that is 

significant and sustained for each of its subdivisions.  
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Figure 4. Scatter plots for the rank-order correlation between exemplar representational distance 

and reaction time for each of the four category organisations. Plots are based on the mean results 

over a 50 ms period centred around the MEG peak decoding time for each of the four tasks as 

follows: A) Animacy peak at 270 ms; B) Living peak at 230 ms; C) Moving peak at 255 ms; D) 

Human peak at 265 ms. Individual objects are shown as either filled dots or hollow dots to indicate 

category membership according to the relevant classifier, while colours indicate subcategory 

membership (see key for subcategory descriptions). The dashed line at zero on the x-axis shows the 

decision boundary for the classifier. Objects categorised correctly by the classifier have a positive 

x-value, while those incorrectly categorised (according to individual category organisations) have a 

negative x-value. Coloured lines show Spearman’s r for all objects combined (green line), as well 

as correlations for each category subdivision (red and blue lines) (*p < .05; **p < .01 ***p < .001).  
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Our calculation of the representational distance differed to that used in previous 

studies (Carlson et al., 2014; Grootswagers et al., 2017; Ritchie et al., 2015) as we used 

signed distance values (as opposed to taking the absolute value of the distance) to preserve 

incorrect classifier performance (i.e., when exemplars are classified on the wrong side of 

the decision boundary according to the task-dependent category membership). The 

distance to the classifier boundary includes a sign: exemplars of the first predicted category 

have a positive sign and those of the second predicted category have a negative sign. 

Taking the absolute value of this distance means that a linear correlation can be used to test 

the prediction that RT will be longest for stimuli that are closest to this boundary. Instead 

of taking the absolute distance, we achieved this transformation by multiplying the signed 

distances of exemplars of the second category by -1. This subtle difference in analysis only 

makes a difference where there are exemplars that the classifier consistently misclassifies. 

In previous studies, where the stimulus set was comprised of exemplars that clearly 

belonged to one category or the other, it would likely not have made a difference to take 

the absolute value of the distance. However, when there are exemplars that the classifier 

consistently misclassifies (as for our stimulus set, which deliberately included ambiguous 

exemplars such as robots and toys), the absolute value is inappropriate, since it treats an 

object for which the classifier is significantly below chance in the same way as one for 

which the classifier is significantly above chance. This is equivalent to predicting that 

those exemplars that are consistently misclassified will have shorter RTs than those for 

which the classifier is at chance. By using the signed distance, we instead predicted that 

exemplars which the classifier consistently misclassifies would have the longest RTs, since 

it would suggest that the subject would have to actively suppress the information carried on 

this neural representation in order to perform the task successfully. For comparison to 

previous studies, we also verified these results using the absolute value distance method 

(see Section 4.7 Appendix), and found that the results were overall consistent with the 

current analysis. 
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4.4.4. Evaluating Representational Distance as a Predictor of Categorisation RTs 

Throughout the Decoding Time-Course 

Having established that there is a relationship between representational distance and 

RT for at least two of our tasks around the time of peak decoding, we then evaluated the 

time-course of this relationship. Categorisation reaction times were correlated with the 

representational distance calculated from the MEG data from 100ms prior to stimulus onset, 

to 600ms after stimulus onset. The time-series correlations for each of the four category 

organisations are shown in Figure 5. Results for each category organisation are presented 

two-fold: one version showing the correlation between representational distance and RTs 

throughout the time-course for individual subcategories (i.e., depicting ‘animal’ and ‘not an 

animal’ category subdivisions separately), and a second version showing the overall 

correlation for both categories combined. This was done for comparison with previous 

studies, which showed the overall correlation of RTs with representational distance was 

primarily driven by one subcategory correlation (i.e., animate objects; see Carlson et al., 

2014; Grootswagers et al., 2017; Ritchie et al., 2015). For the Animacy category organisation 

(Figure 5A), RTs correlated with the representational distance from the classifier boundary, 

with a significant and sustained negative correlation from 115 ms post stimulus-onset for the 

overall combined correlation, and from 120 ms for both category subdivisions individually. 

This result replicates previous findings relating behavioural categorisation RTs for animacy 

to representational distances (Carlson et al., 2014; Grootswagers et al., 2017; Ritchie et al., 

2015) while using a new stimulus set. 
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Figure 5. Time-series correlations between representational distance from the decision boundary set 

by the classifier and categorisation reaction times for each of the different category organisations. 

Time-varying rank-order correlation (Spearman’s r) between the mean object representational 

distance and the median normalised behavioural categorisation RT for the four category 

organisations: A) Animacy, B) Living, C) Moving, and D) Human. In each plot, overall correlations 

are plotted for all stimuli combined, as well as separately for each category subdivision (see figure 

legends). Shaded error bars indicate the 95% confidence interval of the between-subject means. 

Coloured dots along the x-axis indicate time points at which the correlation is significantly above 

chance (two-tailed t-test, corrected for multiple comparisons using a false discovery rate (FDR) of q 

< .01). 
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Next, we extended this approach by evaluating the relationship between 

categorisation reaction time and MEG representational distance for three new tasks. Previous 

studies have only considered animacy categorisation, which does not allow for comparison 

of the animacy model with alternatives. RTs for the Human category organisation (Figure 

5D) were also correlated with representational distance throughout the time-course, with a 

significant and sustained overall combined correlation from 115 ms, and significant 

sustained individual category subdivision correlations from 125 ms. Notably, the same 

sustained relationship was not exhibited for the Living and Moving categorisation tasks 

(Figure 5B and C), despite similarly successful decoding of the individual exemplars (Figure 

3B and C; discussed above). The overall combined correlation between RT and 

representational distance for the Living category organisation reached significance from 135 

– 170 ms, and was sustained again for a later period, from 225 – 405 ms, with only patchy 

periods of significance between 260 – 360 ms for the individual category subdivisions. 

Similarly for the Moving task, the overall correlation between representational distance and 

RT was significant for patchy periods of the time-course from 130 – 395 ms, with no 

significant time-points for the category subdivisions individually. Furthermore, the peak 

times for the overall combined RT-distance correlation did not consistently coincide with 

peak classifier decoding times (cf.  Figure 3). Peak RT-distance times occurred before the 

classifier decoding peak for Animacy (RT-distance peak at 150 ms; decoding peak at 270 

ms), and Moving (RT-distance peak at 190 ms; decoding peak at 255 ms) category 

organisations. In contrast to this, the timing peaks for the Human category organisation were 

similar (RT-distance peak at 250 ms; decoding peak at 265 ms), while the Living category 

organisation had a peak RT-distance correlation that occurred after the classifier peak 

decoding time (RT-distance peak at 354 ms; decoding peak at 230 ms). The variability in 

results across the four category organisations provides evidence for differing relationships 

between RTs and representational distances depending on task and classification criteria, 

indicative of a more complex relationship than suggested by previous studies.   
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For the main analyses above, we used predefined category organisations for the 

Animate and Living tasks when splitting the data for the classifier (i.e., the data were split 

into animate/inanimate and living/non-living subcategories using standard definitions of 

these category labels). However, this process differed from that used for the Moving and 

Human classifier divisions, which were based on the mean behavioural categorisation choice 

(as these tasks do not have clearly defined subcategory groupings). Furthermore, by using 

predefined groupings for Animacy and Living, some stimuli were categorised by participants 

on average in the behavioural task as belonging to the category contrary to this standard 

definition. If neural category representations are similar to the categorisation used by 

participants in the behavioural task, this may affect the reported link between RTs and the 

structure of the object representations measured with MEG.  

Given this methodological difference between the definition of the four 

categorisation tasks, we ran an additional set of control analyses for the Animacy and Living 

tasks whereby we split the data for the classifier based on categorisation in the behavioural 

tasks, in order to be consistent with the method used for the Moving and Human tasks. 

Overall decoding performance and time-series correlations between RT and representational 

distance are shown in Figure 6 for these control analyses. The results from using behavioural 

performance to define the Animate and Living category boundaries are consistent with the 

results obtained using the predefined category boundaries in the original analysis (cf. Figures 

3 and 5, panels A and B). The onset of significant decoding for the Animacy (behaviour-

based) category organisation was at 85 ms (peak at 255 ms), while decoding onset for the 

Living (behaviour-based) organisation was slightly later than in the original analysis, at 90 

ms (peak at 265 ms). Classifier decoding accuracy was 60% and 58% for the behaviour-

based Animacy and Living organisations respectively. There is a significant and sustained 

relationship between representational distance and RT for the Animacy task, and as observed 

previously, there is also a significant correlation between representational distance and RT 

for the Living task, though this is across considerably fewer time-points than for Animacy 
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when evaluating the category subdivision correlations individually. Overall, the control 

analysis reveals that the results of the original analysis are robust, with little difference in 

the relationship between representational distance and RT when using standard definitions 

of Animacy and Living category groupings, compared to when objects are grouped based on 

participant categorisation behaviour.  

 

 

 

Figure 6. Overall MEG decoding performance and time-series correlations of representational 

distance and categorisation reaction times for the Animacy and Living tasks using participant 

categorisation behaviour to define category membership for the classifier. Upper panels: Overall 

decoding performance for the control analysis, using behaviour-based category organisations for A) 

Animacy and B) Living tasks. Grey bar indicates the period the stimulus was visible on the screen. 

Lower panels: Time-series correlation between representational distance and RTs for the control 

analysis, using behaviour-based category organisations for A) Animacy and B) Living tasks. Plotting 

conventions as in Figure 5.  
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There were slight differences in the number of stimuli included in the analysis for 

each of the four category organisations as a product of balancing the category subdivisions 

for the classifier (described in the Methods). Stimulus set numbers for the original analysis 

ranged from 100 to 118 across the four category organisations, split evenly into two 

subgroups for training the classifier. To account for any effects of these differences in 

stimulus numbers on the observed differences between the results for the four category 

organisations, we conducted a second control analysis where we adjusted the number of 

stimuli in each set so that all correlations between RTs and representational distances were 

based on 100 stimuli (50 per category subdivision for the classifier). While every effort was 

made to include the same stimuli for each of the four category organisations, the different 

inclusion criteria for each necessitated minor differences in individual exemplars between 

stimulus sets. Using matched stimulus set numbers, the decoding onsets and peaks remained 

mostly similar to the main analysis, with the Living category organisation showing the 

earliest onset at 70 ms (peak at 235 ms), and all three other category organisations showing 

decoding onsets at 90 ms, though with slightly different peaks: the Moving organisation had 

a peak at 235 ms; Animacy at 260 ms, and Human at 265 ms. The overall classifier decoding 

performance was again similar for each of the four category organisations (classifier 

decoding accuracy range = 58 – 59%; see Figure 7), and remains consistent with the main 

analysis which included some variation in stimulus set numbers across tasks (cf. Figure 3).  
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Figure 7. Overall MEG decoding performance for the different categorisation tasks, using size-

matched stimulus sets. Object exemplars in the upper plots were divided into two groups for the 

classifier based on the standard category definitions of A) Animacy (animate/inanimate) or B) Living 

(living/non-living), while for the lower plots, categories for the classifier were determined based on 

mean behavioural task categorisation of objects from the Moving (has movement/no movement) and 

Human (more like a human/less like a human) categorisation tasks. Stimulus sets for each of the four 

category organisations were matched in number, to each contain 100 stimuli (50 per subdivision for 

the classifier). Grey bar indicates the period the image appeared on the screen. Error bars indicate 

95% between-subject confidence intervals. Blue dots along the x-axis indicate time points at which 

decoding performance was significantly above chance (two-tailed t-test, corrected for multiple 

comparisons using a false discovery rate (FDR) of q < .01). 

 



 182 

 Similarly, when evaluating the time-series correlations using matched stimulus set 

numbers (Figure 8), we see the same pattern of results as the original analysis (cf. Figure 4). 

Focusing on the category subdivision correlations (red and blue lines in Figure 8), significant 

and sustained correlations are again observed throughout the time course for both Animacy 

and Human category subdivisions, with a comparatively shorter period where the 

subdivision correlations are significant for Living, and no significant correlations observed 

for the Moving organisation.  

 

 

 

Figure 8.  Time-series correlations between representational distance from the classifier boundary 

and categorisation reaction times for the size-matched stimulus sets. Time-varying rank-order 

correlation (Spearman’s r) between the mean object representational distance and the median 

normalised behavioural categorisation RT using matched number sets of stimuli for the four category 

organisations: A) Animacy, B) Living, C) Moving, and D) Human. Plotting conventions as in Figure 

5.  
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In sum, the results from both sets of control analyses support the original analysis, 

consistently showing a significant and sustained relationship between representational 

distance and RT throughout the time-course for the individual subdivisions of the Animacy 

and Human category organisations. In comparison, for the Living category organisation, this 

relationship is significant for a much shorter time period, and neither subdivision reaches 

significance at any time for the Moving category organisation.  

4.5. Discussion 

In this study, we aimed to evaluate how categorisation task type influences the 

relationship between object representational distance and behavioural categorisation RTs; a 

relationship which has previously been established for categorisation based only on animacy 

(Carlson et al., 2014; Grootswagers et al., 2017; Ritchie et al., 2015). In addition to 

categorising objects as either animate or inanimate (Animacy task), we evaluated separate 

behavioural categorisation RT data according to whether or not an object was living (Living 

task), whether or not it had movement (Moving task), and whether it was more or less like a 

human (Human task). This study also employed a new stimulus set specifically designed to 

include objects that test the limits of the animacy dichotomy. Our results showed that the 

binary object category membership for all four task-dependent category organisations of the 

stimulus set could be successfully decoded from the MEG data (see Figure 3). However, 

representational distances from the classification decision boundary predicted behavioural 

categorisation RTs for some, but not all, of the four categorisation tasks. Specifically, using 

a novel stimulus set, we found a sustained relationship between representational distance 

from the category classification boundary and behavioural RTs throughout the time-course 

for categorisation based on animacy, consistent with previous work (Carlson et al., 2014; 

Grootswagers et al., 2017; Ritchie et al., 2015). Importantly, we did not find the same clear 

relationship between representational distance and RTs for the living and moving 

categorisations. We did, however, find a consistent relationship between representational 

distance and behavioural RTs based on categorisation according to human-similarity, which 
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showed a sustained relationship throughout the time-course, at a level similar to that seen 

with animacy. This is the first time that representational distance has been shown to correlate 

with behavioural categorisation RTs for any task other than animacy.  

The finding that representational distance was related to only certain categorisation 

behavioural tasks is particularly interesting. The same stimulus set was used for all the RT 

categorisation tasks and to obtain the neural representation data, with passive viewing of the 

stimuli in the MEG (i.e., so that the measured brain representations were independent of 

categorisation behaviour; see Bracci, Daniels, & Op de Beeck, 2017; Harel, Kravitz, & 

Baker, 2014; Hebart, Bankson, Harel, Baker, & Cichy, 2018). The classification of the neural 

data was similar for all four category organisations (range 58 – 59% classifier decoding 

accuracy), yet there was substantial variability in how well the representational distance from 

the classifier decision boundary correlated with behavioural categorisation RTs. This 

highlights an important caveat to decoding analyses: the fact that a classifier can learn a 

given category boundary does not necessarily indicate that this classification is based on 

information that is important or useful for behaviour (de-Wit et al., 2016; Ritchie & Carlson, 

2016; Ritchie et al., 2015).  

Given the same stimulus set was used for all four categorisation tasks, any 

differences in RTs should reflect the different categorisation strategies used by participants 

in each task. The behavioural categorisation tasks used in the current study were specifically 

employed such that participants would have to adopt different decision criteria to complete 

each of the four tasks, requiring them to effectively carve up the same stimulus set in 

different ways depending on task requirements. When correlating the RTs, significant 

correlations are observed between exemplar RTs across all four categorisation tasks. 

However, there appears to be some variability in the strength of the correlations between 

tasks: while Animacy and Human categorisation RTs are strongly correlated, Animacy RTs 

are also strongly correlated with both the Living and Moving RTs, whereas the Human RTs 

are only moderately correlated with the Living and Moving RTs. If all four tasks were 
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equally correlated with each other, there may be concerns that the different categorisation 

tasks are ultimately tapping into the same concept. However, perhaps these different 

relationships between task RTs indicate the presence of unique, task-dependent variance that 

is being captured in the Animacy and Human RTs. Even so, the question remains: what 

aspects of these categorisation tasks does the RT-distance relationship actually reflect? We 

discuss this question further in later paragraphs. 

One interesting finding from the current experiment is that there was a comparatively 

strong relationship between representational distance and behavioural RTs for both animate 

and inanimate categories individually (and similarly for the individual categories of ‘more 

like a human’ and ‘less like a human’). This differs from findings in the previous literature 

which have either shown no clear relationship for inanimate objects, with the overall 

correlation driven by objects in the animate category (Carlson et al., 2014; Ritchie et al., 

2015), or otherwise a comparatively weaker effect for the inanimate objects (Grootswagers 

et al., 2017). The stimulus set for the current study included categories of objects that were 

designed to be more difficult to categorise, namely by the inclusion of robots and toys, which 

represent typically animate objects but would traditionally be categorised as inanimate due 

to being man-made. Across all four behavioural categorisation tasks, participants appear to 

be less certain of how to categorise these objects, with comparatively slower median RTs, 

and with mean behavioural categorisation values closer to the mid-point between the two 

category options, indicating greater inconsistency in how participants categorised these 

objects (see Figure 2). As a result, we observe a reasonable degree of variation in RTs and 

categorisation responses to (traditionally defined) “inanimate” objects using these 

subcategories. It is possible that the weaker effect for inanimacy observed in previous studies 

is driven by the use of inanimate stimuli that are more homogenous and easier to categorise 

than the set used in the current study.  

In addition to the relative difficulty observed when participants categorised robots 

and toys compared to less ambiguous subcategories, evaluating the representational 
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distances for the individual exemplars reveals that the classifier also appears to have 

difficulty categorising these objects. Exemplars from both the robot and toy subcategories 

are positioned closer to the classifier decision boundary, and in many cases, categorised on 

the incorrect side of the boundary, across all four categorisation groupings (see Figure 4). 

The classifier appears to have difficulty categorising these objects and, in many cases, is 

opting to incorrectly classify these items to obtain optimal classification of the data set, 

grouping robots and toys in the ‘animate’/‘living’/‘has movement’/‘more like a human’ 

category subdivision despite being trained with these objects belonging to the opposite 

category. This may indicate that the classifier is using brain responses based on low or mid-

level visual features in order to categorise these objects. Similarly, participants may be taking 

time to override the uncharacteristic visual features of these items in order to categorise the 

objects in the opposing category, thus explaining the slower categorisation RTs seen across 

tasks for these objects.  

 The classifier’s grouping of the robot and toy exemplars with more animate 

categories is perhaps not surprising given that these object exemplars include features such 

as faces and bodies, which are visually more similar to features typical of animate objects 

than inanimate objects. Separating out the contribution of visual properties to the underlying 

object representations remains an ongoing challenge in the field of object recognition (Bracci 

& Op de Beeck, 2016; Carlson et al., 2013; Kaiser, Azzalini, et al., 2016; Proklova, Kaiser, 

& Peelen, 2016), with a recent study showing that animal appearance, as opposed to 

animacy as a semantic concept, dominates object representations in the ventral visual cortex 

(Bracci, Kalfas, & de Beeck, 2017). Faces and bodies are readily decoded from brain 

activation patterns (Carlson et al., 2013; Kaneshiro, Guimaraes, Kim, Norcia, & Suppes, 

2015; Kriegeskorte et al., 2008; Van de Nieuwenhuijzen et al., 2013) and typically are 

processed very efficiently by the visual system (Fabre-Thorpe, 2011; Farah, Wilson, Drain, 

& Tanaka, 1998; Rossion, Joyce, Cottrell, & Tarr, 2003). Specific regions of cortex, notably 

regions along the right fusiform gyrus, have been shown to exhibit preferential activation in 
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response to faces and bodies (Downing, Jiang, Shuman, & Kanwisher, 2001; Ishai, 

Ungerleider, Martin, Schouten, & Haxby, 1999; Kanwisher, McDermott, & Chun, 1997), 

and these regions overlap with other cortical regions associated with animate object 

processing (Downing, 2006; Downing, Jiang, Shuman, & Kanwisher, 2001; Haxby et al., 

2001; Kanwisher, McDermott, & Chun, 1997; Peelen & Downing, 2017; Proklova et al., 

2016). Objects with faces likely create a difference in the overall activation level in face 

areas compared to when there is no face present, and consequently, it is plausible that this 

localised difference in activation magnitude may be enough to drive differences in the whole 

brain MEG signal. The advantage of including difficult categories such as robots and toys in 

our stimulus set is that participants are unable to adopt a “has face/body” criterion for 

categorisation, as these features do not reliably predict category membership. The 

consistently slow RTs and short representational distances for the robot and toy exemplars 

highlight the difficulty these categories pose for both the visual system and human 

categorisation behaviour.  

In light of our results, what can be said about the RT-distance method as a means of 

linking brain and behaviour processes? The relationship we observe between 

representational distance and RTs for object animacy replicates work from previous studies 

(Carlson et al., 2014; Grootswagers et al., 2017; Ritchie et al., 2015). This effect generalises 

across stimulus sets, including the current one, which was designed to incorporate objects 

that would be challenging for both the classifier, and human behavioural categorisation. 

Additionally, we have the novel finding of showing a similar relationship between 

representational distance and RTs for human-similarity. This is consistent with the results 

from our previous study showing the concept of human-similarity to be an important 

principle in the organisation of object representations (see Chapter 3). It could be argued that 

these consistent results across studies validate the RT-distance approach as a reliable method 

of linking brain and behaviour processes. Consequently, as we did not observe an RT-

distance relationship for the Living and Moving category organisations, one possibility is 
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that the underlying large-scale brain representations are naturally organised along 

dimensions related to both animacy and human-similarity. Or alternatively, given that a 

model based on human-similarity outperformed the animacy model in our previous 

experiment (Chapter 3), perhaps what we see in previous animacy studies is actually a 

reflection of this human-similarity principle, and a product of using similar stimulus sets 

with object categories that have clear animate or inanimate category membership. Evaluating 

more varied stimulus sets that are specifically designed to push the boundaries of the 

categories being tested is central to tackling questions about the neural representations of 

semantic concepts.  

Linking brain processes to behaviour is one of the major goals in neuroscience, and 

a vital step in validating neuroimaging findings, however identifying adequate and 

meaningful ways of doing so remains a difficult task. While we acquired the MEG and 

behavioural data on separate occasions, and from two separate participant populations, this 

method was also used by Carlson, et al. (2014), who were the first to show a relationship 

between representational distance and behavioural categorisation RTs for animacy. As the 

RT-distance relationship is observed despite using separate data sets, this result likely 

represents something coarse about the relationship between RTs and brain representations 

overall, rather than a tight link between individual categorisation behaviour and brain 

activity measured with MEG. Nevertheless, correlating representational distances with RTs 

does not imply a causal process, as it is not possible to determine from the correlations 

whether this is a direct relationship or is otherwise mediated by another variable (or multiple 

variables) that have yet to be identified. It may be the case that an RT-distance relationship 

for living and moving category organisations is being masked by some other confounding 

variable that we have not accounted for. Consequently, that we observe the RT-distance 

relationship with only half of our category organisations could be a consequence of these 

issues in the method rather than reflecting anything informative about the underlying 

representational structure.  
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The RT-distance method used here is only one approach to linking brain and 

behaviour processes (Ritchie & Carlson, 2016). Other researchers have taken alternative 

approaches by evaluating how changes in task requirements modulate brain representations. 

For example, studies have manipulated participants’ attention to particular stimulus features 

during neurophysiological recordings, in which participants make different conceptual (i.e., 

semantically related) or physical (i.e., stimulus related) decisions about the same stimuli, 

showing how task-based attention modulates the brain representations measured with fMRI 

or MEG (Harel et al., 2014; Hebart et al., 2018; Nastase et al., 2016). At a more global level, 

Kaiser, Oosterhof, and Peelen (2016) evaluated the decodability of attended versus 

unattended objects as a whole within a scene, linking shifts in covert attention to the strength 

of the brain representations. These studies (as well as ours) employ linear classification 

methods to construct the representational spaces, and as such, may miss important 

information about representations that deviates from a strictly linear organisation (Ritchie & 

Carlson, 2016). Finding more detailed and sophisticated methods of linking behaviour to 

brain representations remains a necessary goal for future studies.  

Our study is the first to use the RT-distance method for categorisation tasks other 

than animacy. Here, we report a novel relationship between RTs and representational 

distance from a classification decision boundary for categorisation based on human-

similarity. However, this relationship was not consistently found for all categorisation tasks 

evaluated, and given the correlational nature of these findings, conclusions regarding 

causation are difficult. An important task that remains for future studies will be to determine 

why a relationship is observed between representational distance and behavioural RTs for 

some category organisations but not others. Despite these caveats, identifying a novel 

human-similarity category organisation highlights the need to evaluate a range of theories 

and models that extend beyond animacy. Studies should endeavour to evaluate theories and 

models with both strongly grounded predictions, as well as those for which predictions may 

be less well defined, to extend research beyond the current state, and ensure we are not 
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limiting our exploration due to any underlying confirmation biases (Kriegeskorte & Kievit, 

2013). While it is far from a complete explanation of the neural mechanisms underlying 

object categorisation, the link between representational distance and behavioural RTs for a 

novel category organisation provides a necessary step in the right direction towards linking 

brain and behavioural processes in order to understand the complexities of object recognition 

(Ritchie & Carlson, 2016).  
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4.7. Appendix 

 

Supplementary Figure 1. Correlations between reaction times and classifier weight distances using 

the absolute value of the distance from the classifier decision boundary. Plots are based on the mean 

results over a 50 ms period centred around the MEG peak decoding time for each of the four tasks 

as follows: A) Animacy peak at 270 ms; B) Living peak at 230 ms; C) Moving peak at 255 ms; D) 

Human peak at 265 ms. Individual objects are shown as either filled dots or hollow dots to indicate 

category organisation grouping for the classifier, while colours indicate subcategory membership 

(see key for subcategory descriptions). The dashed line at zero on the x-axis shows the decision 

boundary for the classifier. Objects categorised correctly by the classifier have a positive x-value, 

while those incorrectly categorised (according to individual category organisations) have a negative 

x-value. Coloured lines show Spearman’s r for all objects combined (green line), as well as 

correlations for each category subdivision (red and blue lines) (*p < .05; **p < .01 ***p < .001).  
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Supplementary Figure 2.  Time-series correlations between categorisation reaction times and 

representational distance from the classifier boundary when using the absolute value for the 

distances. Time-varying rank-order correlation (Spearman’s r) between the mean object absolute 

value representational distance and the median normalised behavioural categorisation RT for the four 

category organisations: A) Animacy, B) Living, C) Moving, and D) Human. In each plot, overall 

correlations are plotted for all stimuli combined, as well as separately for each category subdivision 

(see figure legends). Shaded error bars indicate the 95% confidence interval of the between-subject 

means. Coloured dots along the x-axis indicate time points at which the correlation is significantly 

above chance (two-tailed t-test, corrected for multiple comparisons using a false discovery rate 

(FDR) of q < .01). 
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5. General Discussion 

This thesis presented three MEG decoding studies which investigated the temporal 

dynamics of object category representations. In the following sections, I firstly provide an 

overview of the findings from each of my empirical chapters (Section 5.1), before discussing 

the overarching themes. In Section 5.2, I discuss the utility of temporal decoding studies in 

advancing our understanding of object recognition processes. Section 5.3 discusses the 

veracity of object category representations, and highlights some of the methodological issues 

that make studying these concepts difficult. The importance of linking brain data to 

behavioural processes is discussed in Section 5.4, followed by the overall concluding 

statement for this thesis.  

5.1. Results summary 

 In Chapter 2, using a stimulus set which controlled for object interactivity, I was 

unable to detect variations in brain representations related to the real-world size of an 

observed object. This finding was surprising given the growing number of studies which 

have identified a size-based dimension to object representations (Julian, Ryan, & Epstein, 

2017; Khaligh-Razavi, Cichy, Pantazis, & Oliva, 2018; Konkle & Caramazza, 2013; Konkle 

& Oliva, 2012). I did, however, replicate previous findings of an organisation according to 

animacy, with these representations emerging relatively late, and shown to be sustained 

throughout the time course of object processing. These findings emphasise an ongoing 

challenge in the interpretation of object representations from neurophysiological data: the 

multifaceted and interrelated nature of object properties, such as real-world size and 

landmark stability, as well as low-level image properties, make measurement of the unique 

contributions of these aspects difficult.  

Given that the results observed in Chapter 2 remained consistent with a 

representational organisation based on animacy, together with recent findings of a biological 

classes continuum within the animate domain (Connolly et al., 2012; Sha et al., 2015), I 

shifted my focus in Chapter 3 to test possible alternative explanations for the observed 
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animacy result. To do so I firstly created a stimulus set that was designed to test the limits 

of the animacy dichotomy, by including objects that visually resembled animate objects, yet 

are inanimate (e.g. robots, toys). Secondly, I tested a range of plausible conceptual and 

behavioural models of object category representations in addition to animacy. These 

included a model based on the biological classes continuum (Connolly et al., 2012; Sha et 

al., 2015), a faces/bodies model (which grouped objects irrespective of whether they were 

animate or inanimate, resulting in the robot and toy stimuli being grouped with all the 

animate objects), and a range of behaviourally generated models based on categorisation 

along a range of human-related agency/experience dimensions (e.g., ability to experience 

fear, desire, conscious thought). In addition, I tested a behaviour-based model measuring the 

broad concept of human-similarity. The latter model provided the best account of object 

decoding late in the time-course of object processing (>155 ms after stimulus onset), while 

the low-level models dominated earlier on (50 – 150 ms after stimulus onset). Interestingly, 

despite being outperformed by the human-similarity model, many of the agency/experience 

models exceeded the performance of models evaluated in previous studies, such as animacy, 

living/non-living, and biological classes continuum models. These results highlight the 

multifaceted nature of object representations, which likely encompass concepts related to 

human-similarity, including agency and human experience dimensions.  

In Chapter 4 I linked this result obtained from the MEG data to behavioural 

categorisation reaction times, to investigate whether the information decoded from the 

neurophysiological data is meaningful for categorisation behaviour. I showed that 

categorisation based on human-similarity parallels the animacy categorisation performance: 

in both cases, there was a sustained relationship between categorisation RTs and 

representational distance from a classification decision boundary. This is the first time that 

a categorical organisation other than animacy has shown this link between brain and 

behaviour using the RT-distance method. Interestingly, this was the only other organisation 

which showed an RT-distance relationship that rivalled object animacy performance, despite 
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adequate decoding of other object category organisations from the brain data. The results 

from this study highlight three important points: firstly, that categorisation tasks other than 

animacy also predict representational distances in MEG, secondly, that a human-similarity 

based dimension provides a comparable account of time-varying object representations and 

warrants further investigation, and finally, that further research is required to determine why 

we see a relationship between brain and behaviour for some categorisation tasks and not 

others.  

In sum, while I was unable to detect real-world size representations in the time-

varying brain representations using MEG, we now have evidence for additional categorical 

factors present in the organisation of neural object representations. Most prominently, object 

representations appear to also be characterised by a dimension related to human-similarity, 

and this dimension also relates to categorisation behaviour. I discuss the implications of 

these findings below.  

5.2. Insights into the temporal dynamics of object representations 

Our ability to visually recognise an object is so rapid and automatic (Fabre-Thorpe, 

2011; Mack & Palmeri, 2011, 2015; Thorpe, Fize, & Marlot, 1996; VanRullen & Thorpe, 

2001) that differentiating the underlying neural processes is not an easy feat. At any moment, 

we can efficiently integrate multiple facets of an object’s properties, including information 

such as its orientation, colour, contrast, and shape into a global structure to which we can 

assign meaning, and associate with other object concepts stored in our memories (Kiefer & 

Pulvermüller, 2012; Mahon & Caramazza, 2009; Martin, 2007, 2016; Nosofsky, 1986). This 

occurs within as little as 150 ms after first seeing an object image (Thorpe et al., 1996). 

When one considers the overwhelming number of possible objects that humans manage to 

differentiate, and the ease with which this transpires, it is remarkable that this is achieved in 

such a short period of time. Given the clearly complex nature of object recognition, 

evaluating the temporal intricacies of this process provides valuable insights into what 

information is important, and how this is utilised during the short period of time required to 
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achieve this complex task. These temporal details are necessary to develop a full 

understanding of how the brain processes visual object properties.  

Upon seeing an object, cortical activity systematically varies from stimulus onset 

through to the point that a conscious behavioural decision is made. Object processing begins 

with an initial feedforward sweep of activity, predominantly related to low-level feature 

processing, with top-down feedback related to higher-level conceptual information of an 

object occurring later in time (for reviews, see Grill-Spector & Malach, 2004; Grill-Spector 

& Weiner, 2014; Logothetis & Sheinberg, 1996). Differences in minimum latencies required 

for rapid object detection (a mostly feature-based process) versus the comparatively slower 

recognition (involving higher conceptual analysis) highlight the temporal disparity between 

feedforward and feedback processes required to make these decisions (Bar, 2003; Goddard, 

Carlson, Dermody, & Woolgar, 2016). This important variability in the object processing 

signal is blurred in more spatially sensitive neuroimaging modalities such as fMRI; changes 

in the neural activity are measured indirectly via the temporally sluggish BOLD response 

(~5 s; see Logothetis, 2002; Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001), at a 

temporal resolution that is usually >1 Hz, compared to the millisecond resolution of MEG, 

where the measured perturbations of magnetic fields are directly related to neural activity. 

Consequently, spatially sensitive modalities such as fMRI are more appropriate for 

addressing questions about where activity is occurring rather than the processes that led to 

its occurrence. Trying to understand the processes involved in object recognition by focusing 

only on localised activity in the brain, is akin to gazing into a bakery store window to figure 

out how the cakes were made. While localisation of activity has a firm place in the 

neuroscience of object recognition, research in the temporal domain allows us to further 

unpack the evolving processes required to achieve this complex task, allowing us to ask new 

and exciting questions that extend our understanding beyond simply what is represented 

where.  
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For my analyses, I took advantage of recent advancements in the analysis of time-

series data by employing multivariate decoding methods, including representational 

similarity analysis (RSA; Kriegeskorte, Mur, & Bandettini, 2008), and multidimensional 

scaling. These methods have aided a new and exciting direction of research within the field 

of object recognition (e.g., Carlson, Tovar, Alink, & Kriegeskorte, 2013; Cichy, Pantazis, & 

Oliva, 2014; Grootswagers, Wardle, & Carlson, 2016; Hebart, Bankson, Harel, Baker, & 

Cichy, 2018; Isik, Meyers, Leibo, & Poggio, 2014; Kaiser, Azzalini, & Peelen, 2016; Kaiser, 

Oosterhof, & Peelen, 2016; Kriegeskorte et al., 2008). By using these methods across 

multiple experiments in this thesis, I demonstrated how a range of computational and 

conceptual models of object representations show temporal variability in the extent to which 

they account for object decoding performance. In Chapter 3, the computational low-level 

visual models provide the best account of the data early in the time-course of object 

processing, while the conceptual models have peaks comparatively later. These findings are 

consistent with those from previous studies showing processing of low-level feature 

information progressing to more concept based, categorical distinctions in the evolving 

object representations (Carlson, Tovar, Alink, & Kriegeskorte, 2013; Cichy, Pantazis, & 

Oliva, 2014; Clarke, Devereux, Randall, & Tyler, 2015; Hebart, Bankson, Harel, Baker, & 

Cichy, 2018; for a review, see Contini, Wardle, & Carlson, 2017).  

While this important distinction between early and late representations is evident in 

the temporal dynamics observed from the MEG data, we are still limited as to how we can 

interpret relative differences in the observed timings of the different models. For example, 

in Chapter 3, most of the conceptual models of object representations follow a similar time-

course, including similar peak decoding times (see Chapter 3, Figure 6). Does this similarity 

indicate some common underlying representation that is being captured despite the 

conceptual differences that the models were designed to assess? Given the millisecond 

temporal resolution of MEG, why don’t we see greater variation between these models? For 

my experiments, I utilised whole-brain MEG data to evaluate object representations. While 
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activity related to object processing extends throughout the brain (Grill-Spector & Malach, 

2004; Haxby et al., 2001), comparatively stronger activation of particular regions, such as 

the fusiform face area, may dominate this whole-brain signal and thus hamper our ability to 

obtain more fine-grained distinctions of object representations. Furthermore, as the MEG 

recordings were limited to 160 MEG sensors, we are already averaging the signal over 

multiple brain regions at each sensor. Studies that link MEG with fMRI data are beginning 

to tackle this problem, allowing for better temporal resolution of activity in particular regions 

of interest (Cichy, Kriegeskorte, Jozwik, Bosch, & Charest, 2017; Cichy et al., 2014; Hebart 

et al., 2018). Indeed, results from a recent study that linked fMRI and MEG neuroimaging 

data suggested that neither category membership nor low-level visual feature information 

could sufficiently explain the relationship between the object stimuli used, the associated 

neural representations, and categorisation behaviour (Cichy et al., 2017). These results 

emphasise the complex interplay between the different processes involved in object 

recognition, and the importance of behavioural relevance in shaping these multifaceted 

representations. 

There is also the peculiar finding of a sustained relationship with MEG exemplar 

decoding performance long after the image is removed from view. This pattern is observed 

across many of the concept-based models tested in Chapter 3, as well as the animacy and 

tripartite models in Chapter 2. This is even present for models which show comparatively 

weaker performance, such as the animacy model in Chapter 3: despite having one of the 

lowest average correlations across the late time-window (see Chapter 3, Figure 8B) it 

remains significant until just prior to the end of the 600 ms trial epoch. Similarly, the RTs in 

Chapter 4 correlated with classifier decoding performance for both animacy and human-

similarity categorisation throughout most of the time-course. This sustained relationship is 

not unique to my experiments, appearing in several previous MEG decoding studies 

(Carlson, Ritchie, Kriegeskorte, Durvasula, & Ma, 2014; Carlson et al., 2013; Cichy et al., 

2014; Grootswagers, Ritchie, Wardle, Heathcote, & Carlson, 2017; Kaiser, Azzalini, et al., 
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2016). Given that we know object representations are dynamic, with little generalisation of 

activity patterns across time (Carlson et al., 2013; Cichy et al., 2014; Grootswagers et al., 

2016; Isik et al., 2014), better methods are needed to determine what information remains in 

this dynamic signal at late latencies and how this relates to behaviour.  

5.3. Is a Category Truly a Category?  

5.3.1. Human-similarity versus animacy. A key goal in visual neuroscience is to 

identify the semantic and conceptual features that characterise how objects are represented 

throughout the brain. The animacy dichotomy is arguably the most widely replicated large-

scale organisation that has been identified to date (e.g., Caramazza & Shelton, 1998; Chao, 

Haxby, & Martin, 1999; Cichy et al., 2014; Kiani, Esteky, Mirpour, & Tanaka, 2007; 

Kriegeskorte, Mur, Ruff, et al., 2008; Lu, Li, & Meng, 2016; Mahon & Caramazza, 2009; 

Proklova, Kaiser, & Peelen, 2016). More recently, researchers have identified organisational 

factors related to real-world size (Julian, Ryan, & Epstein, 2017; Khaligh-Razavi, Cichy, 

Pantazis, & Oliva, 2018; Konkle & Caramazza, 2013; Konkle & Oliva, 2012) and a 

biological classes animacy continuum (Connolly et al., 2012; Sha et al., 2015). In light of 

these recent advancements in our understanding of object representations, one of the primary 

aims of this thesis was to evaluate the temporal dynamics of alternative categorical 

organisation principles to that of animacy, and to examine how these fit with our current 

understanding of object processing. The results from both Chapters 3 and 4 provide 

consistent evidence for a dimension related to human-similarity in object representations 

which emerges relatively late in the time-course of object processing. As discussed in 

Chapter 3, this result is consistent with emerging ideas about categorical representations 

existing along a continuum rather than a strict dichotomy (Connolly et al., 2012; Sha et al., 

2015), and highlights the potential contributions of more functional, goal-related concepts 
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linked to behaviour in the formation of these representations (for discussion, see Martin, 

2016; Peelen & Downing, 2017).  

While the results from Chapter 4, using the RT-distance approach, show a similar 

relationship between brain and behaviour processes for both animacy and human-similarity, 

there is greater discrepancy between the efficacy of models based on these same concepts in 

the RSA analysis of Chapter 3. Here, I observed considerably better performance of the 

human-similarity model compared to an animacy model, with animacy one of the lowest 

performing models evaluated (see Chapter 3, Figures 6 and 8). It is important to note here 

that the human-similarity model in Chapter 3 was generated based on human behavioural 

ratings, which resulted in considerably more variability in how category structure was 

specified in the model compared to the animacy model for that experiment, which employed 

a standard binary categorical definition of animate and inanimate objects. When evaluating 

the time-series results for these models, there was a tendency for models with greater 

variability to better account for the neural representations in the late time-window (see 

Chapter 3, Figure 8). Hence, one might argue that evaluating the performance of a graded 

model versus a binary model is not a fair comparison when accounting for highly complex 

data. Consequently, the use of more variable RT data (in Chapter 4) may explain the similar 

correlations for both the Animacy and Human category organisations seen in my RT-

distance results.  

However, the difference in model construction for the RSA model testing in Chapter 

3 cannot entirely account for the pattern of results across these two studies. If it were merely 

a matter of model gradation, then in Chapter 4 we might expect the Living category 

organisation to show a similar relationship between representational distance and RTs to that 

seen with Animacy, since binary category models based on these organisations showed 

comparable performance in Chapter 3. This, however, was not the case in Chapter 4, where 

the Animacy category organisation clearly outperformed the Living organisation in the RT-

distance analysis. Given that model variability alone does not predict its performance, and 
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that the human-similarity factor provided the best account of the data across the two studies 

(Chapters 3 and 4), it seems reasonable to conclude that a human-similarity dimension 

accounts for some unique aspects of object representations and warrants further 

investigation. This is consistent with the work of Connelly et al. (2012) and Sha et al. (2015), 

who highlighted the idea of agency and human-related factors as having importance for how 

objects are represented in the brain.  

The identification of category-specific deficits from studies of patients with brain 

lesions has inspired much of the research into object category representations to date (Forde, 

1999; Kiefer & Pulvermüller, 2012; Mahon & Caramazza, 2009; Warrington & Shallice, 

1984). A review of 79 patient case studies highlights that animate objects appear to be 

overrepresented in category-specific deficits, with fewer cases showing a selective inanimate 

deficit by comparison (Capitani, Laiacona, Mahon, & Caramazza, 2003). In the context of 

this, studying semantic categories centred on animate object representations seems justified. 

However, results from a recent patient case study by Panis, Torfs, Gillebert, Wagemans, and 

Humphreys (2017) suggest that semantics play a weaker role in explaining the deficits in 

object processing. The authors instead propose that problems with the cycling of feedforward 

and feedback information between semantic and feature-based processes may be at play. The 

documentation of object representations using healthy adults is essential to providing a full 

account of how objects are represented in the brain, however these results are often not 

related back to deficits observed in patients. Relating findings from neuroimaging studies 

using healthy adults to those seen in patient populations is essential for advancing theoretical 

and computational models of object recognition.  

5.3.2. The role of experimental design in investigating object category 

representations. Evaluating the structure of object category representations is inherently 

difficult, with the reality that stimulus selection ultimately shapes what we are able to 

discover with neuroimaging tools (Carlson, Goddard, Kaplan, Klein, & Ritchie, 2017). As 

discussed in Chapter 2, categorical organisations that are proposed by researchers may 
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reflect categorical dimensions that are correlated with the concepts under investigation, 

rather than the concepts themselves. For example, in Chapter 2 I discussed the potential 

overlap between the object properties of landmark stability and the big real-world size 

dimension, which has been raised in multiple studies (see Julian et al., 2017; Mullally & 

Maguire, 2011; Troiani, Stigliani, Smith, & Epstein, 2014). Therefore, despite large objects 

being readily dissociable from small objects in certain temporal or spatial brain activity 

patterns, this dissociation may not be purely related to object size per se, but some other 

correlated dimension. Further discussion of what we can conclude from neuroimaging 

results continues below in Section 5.4.  

 Separating out the contribution of low-level stimulus properties from higher-level 

conceptual information is crucial to developing our understanding of object categorisation 

processes, and remains a challenge in this field. A number of results suggest that low-level 

visual properties on their own cannot completely account for representations related to 

animacy throughout the time-course of object processing (Bankson, Hebart, Groen, & Baker, 

2017; Carlson, Hogendoorn, Kanai, Mesik, & Turret, 2011; Carlson et al., 2013; Cichy et 

al., 2014; Clarke & Tyler, 2014; Isik et al., 2014; Kaiser, Azzalini, et al., 2016; Kriegeskorte, 

Mur, Ruff, et al., 2008). In Chapter 3, I compare multiple higher-level conceptual models of 

object categorisation to low-level visual models, highlighting that while visual features 

dominate early in the time-course, their relationship with the decoding data later on is 

significantly weaker than most of the conceptual models tested (see Chapter 3, Figure 8), in 

particular that of human-similarity.  

Despite these findings, there are examples in which visual properties appear to 

contribute to object category representations. Schmidt, Hegele, and Fleming (2017) recently 

showed that mid-level perceptual shape features of objects (e.g., symmetry, repetitive 

features, curvature) can be used in visual processing to determine where an object sits along 

an animacy-based continuum, with these features accurately separating the categories of 

animals, plants, and minerals. While I did not specifically measure mid-level properties for 
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each of the stimuli used in my second RSA and model testing experiment (Chapter 3), I did 

include multiple screen locations across trials and a left-right flipped version of each 

stimulus to minimise the influence of low-level features on classifier performance. 

Additionally, I evaluated two visual feature models (HMAX and Jaccard silhouette), with 

neither model providing a good account of the MEG data late in the decoding time-course, 

where the other conceptual models performed well. Therefore, I interpret these findings to 

be indicative of a dimension, related to or correlated with human-similarity, that cannot be 

fully explained by low-level features.  

In Chapter 4, I raised the point that inanimate objects in my stimulus set which had 

faces (e.g., robots and toys) were challenging for the classifier, with the classifier opting to 

incorrectly classify many of these stimuli as animate objects in order to optimise the 

positioning of the decision boundary. A similar result has recently been shown in an fMRI 

study by Bracci, Kalfas, and Op de Beeck (2017), who compared human behavioural 

categorisation performance to that of deep neural networks, and activity in the ventral 

occipitotemporal cortex (VTC). Results showed that while DNNs categorised objects 

similarly to human behavioural performance, activity in VTC differed, representing object 

appearance rather than animacy by depicting inanimate objects that looked like animate ones 

(e.g., a cow-shaped mug), as being closer to animate objects. My results, combined with 

those of Bracci et al. (2017), draw attention to how our ability to uncover the intricacies of 

object category representations is heavily dependent on the kinds of stimuli we employ, and 

emphasise the importance of designing stimulus sets in ways that challenge theories of 

categorisation, to test the limits and generalisability of results.   

Even with carefully designed stimulus sets, the limitation remains that results for any 

given study are, to some extent, specific to the stimulus set employed. Many neuroimaging 

studies that have evaluated aspects of object category representations have used the same 

stimulus set (or a subset thereof) from Kriegeskorte, Mur, Ruff, et al. (2008) (e.g., Carlson 

et al., 2013; Cichy et al., 2014; Goddard et al., 2016; Mur et al., 2013). A problem inherent 
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in decoding analyses applied to neuroimaging data is that it is not possible to know exactly 

what aspects of the neuroimaging data the classifier is employing to make its decision 

(Carlson & Wardle, 2015; de-Wit, Alexander, Ekroll, & Wagemans, 2016; Naselaris & Kay, 

2015). Additionally, the inclusion or exclusion of certain object categories could plausibly 

result in a marked shift in boundary location. Consequently, even though the stimulus set 

employed in Chapters 3 and 4 was designed to test the limits of object animacy as well as 

other plausible category organisations, the results are still dependent on the exemplars and 

subcategories included in this stimulus set. Future studies should endeavour to replicate the 

present findings of the dimension of human-similarity using new stimulus sets in order to 

test for the generalisability of these results.  

A similar generalisation issue applies to how models of categorisation are created to 

compare neuroimaging data to behavioural judgements using RSA. For example, in the RSA 

experiment in Chapter 3, I had participants categorise each of the objects individually, along 

a 7-point scale which represented a continuum between two category distinctions (e.g., more 

like a human versus less like a human). Other studies have focused on similarity judgements 

between items within a stimulus set, employing methods such as the inverse MDS approach 

(Kriegeskorte & Mur, 2012) as used in a study by Mur et al. (2013), where participants 

arranged all objects from a stimulus set in a prescribed two-dimensional space based on how 

similar participants felt the objects were. Other studies have employed pair-wise 

dissimilarity judgements (e.g., Connolly et al., 2012; Cooke, Jäkel, Wallraven, & Bülthoff, 

2007; Cortese & Dyre, 1996), or an odd-one-out procedure (e.g., Connolly et al., 2012; Sha 

et al., 2015) to create models of object similarity for testing using the RSA framework. 

Future studies should compare how these different approaches to obtaining models of 

behavioural categorisation differentially account for object representations throughout the 

time-course. This is particularly important to ascertain whether we are measuring behaviour 

in the most appropriate way for the investigation of brain representations.   
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5.4. Addressing the Connection Between Brain and Behaviour 

A fundamental goal in cognitive neuroscience is finding adequate methods to link 

brain activation patterns observed using sophisticated neuroimaging techniques to human 

behaviour processes. In Chapter 4, I used the RT-distance method to evaluate how neural 

representations from the MEG data related to behavioural categorisation reaction times. 

Despite being able to similarly decode the object exemplars for each of the four category 

organisations from the MEG data, successful decoding performance did not predict a 

relationship with behavioural RTs, with only some of the category organisations showing a 

consistent relationship between representational distances and RTs throughout the decoding 

time-course. This pattern of results highlights an important issue in the field of cognitive 

neuroscience: information that may be readily decoded from neurophysiological and 

neuroimaging data does not necessarily entail its functional use in human behaviour. 

Furthermore, this result speaks to concerns that have been raised about interpreting decoding 

results as behaviourally relevant “information” in the brain activation patterns (de-Wit et al., 

2016). While the classifier may be able to determine a reasonable classification boundary to 

differentiate object categories from the corresponding whole-brain MEG activation patterns, 

it is difficult to determine what features of the underlying neural representations are being 

used by the classifier to decode one category from another in the MEG data. The classifier 

could utilise features in the neural signal that do not underlie categorisation behaviour in a 

human observer, resulting in representational distances that are not functionally relevant for 

behaviour. Defining what features are pertinent to neural and behavioural object 

categorisation processes remains an ongoing challenge for cognitive neuroscience, and one 

that is not easily solved.  

Addressing the influence of task-related effects on measured brain activity is also an 

important consideration when trying to define the processes underlying object recognition. 

I obtained data from separate people for the brain and behaviour components of my 

experiment in Chapter 4 to avoid potential confounds related to the neural processes for 
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active categorisation. Previous research has evaluated the effect of active categorisation 

versus passive viewing on MEG-derived neural representations, showing little difference 

between decoding performance of these two data sets (Ritchie, Tovar, & Carlson, 2015). To 

show this, Ritchie et al. (2015) had participants view object images in two task conditions 

during an MEG recording: via a categorisation task, where participants categorised each 

stimulus according to whether the object was animate or inanimate; and a distracted viewing 

task, where participants categorised a letter superimposed over the object images as either a 

consonant or a vowel. This study found similar object exemplar decoding performance from 

the MEG data for both the active and distracted viewing tasks, with the authors suggesting 

that this was indicative of a ‘core representation’ of object category structure that is 

independent of task-related processes.  

 The independence of object category representations using MEG data is an 

interesting finding, one which is somewhat at odds with research from other neuroimaging 

modalities which do show a role of task requirements on object representations (Bracci, 

Daniels, & Op de Beeck, 2017; Harel, Kravitz, & Baker, 2014; Hebart et al., 2018; Nastase 

et al., 2016). Studies using fMRI have shown that the geometry of object representations 

shifts depending on task requirements, with attention enhancing features relevant to 

categorisation task requirements and minimising irrelevant information in the signal (Dobs, 

Schultz, Bülthoff, & Gardner, 2018; Kaiser, Oosterhof, et al., 2016; Nastase et al., 2016). A 

similar effect of task is seen in a study by Harel, Kravitz and Baker (2014), who used fMRI 

to measure multivariate pattern responses to objects while participants performed a range of 

physical (e.g. colour) versus conceptual (e.g. size) categorisation tasks for the same set of 

objects. Results showed that object information in early visual areas was independent of task, 

with decoding performance maintained across both categorisation tasks in these areas. 

However, in object processing regions further along the ventral visual pathway, information 

related to specific object identities was task-dependent, such that the ability to decode object 

identity information was reduced when attempting to decode across different conceptual 
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tasks (Harel et al., 2014). Importantly, they note that while there was a reduction in decoding 

performance across tasks in some object-related regions, it was still possible to decode object 

identity in these regions despite differences in task requirements, suggesting the presence of 

some stable object identity information that is independent of task-related modulations. In 

light of these findings, it could be the case that my results using passive viewing of objects 

which show a relationship between brain representations and behaviour (Carlson et al., 2014; 

Ritchie et al., 2015), provide an indication of these stable aspects of object representations 

that are independent of task requirements.  

Alternatively, there is recent research to suggest that the absence of task-related 

effects may be due to the neuroimaging modality utilised. In a follow-up study linking the 

fMRI data from Harel et al. (2014) to time-series MEG data, Hebart, Bankson, Harel, Baker, 

and Cichy (2018) evaluated object identity decoding performance between tasks in the MEG 

data alone. While their results showed differences in object identity decoding performance 

for conceptual versus physical tasks emerged from 530 ms post stimulus onset, they found 

no difference in classification accuracy between tasks. The authors suggest that the effect of 

task seen in the fMRI data (Harel et al., 2014) may be hidden by information originating 

from multiple brain sources in the MEG signal. That task dependent modulations of 

information appear somewhat undetectable in the MEG data in previous studies (Hebart et 

al., 2018; Ritchie et al., 2015) suggests that this may represent a signal-to-noise issue in 

whole-brain MEG data. In light of these findings, the RT-distance approach to linking MEG 

brain processes to behaviour may lack the sensitivity to identify subtle nuances of 

categorisation behaviour that are detectable via other neuroimaging modalities. Given the 

equivocal evidence for both stable and task-dependent components of object representations 

in the literature, delineating the contributions of these components of object representations 

remains an important task for future research (Hebart et al., 2018). 
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5.5. Conclusion   

 The work in this thesis has contributed to our understanding of the temporal 

dynamics of object representations. While I was unable to detect a real-world size dimension 

in the MEG object representations, this result highlights the difficulties that exist in defining 

and subsequently measuring specific conceptual properties of object categories. In my 

subsequent experiments, I employed a stimulus set that was designed to pose challenges for 

categorisation based on the current dominating principle in this field: the animacy 

dichotomy. I have shown that a large-scale organisation principle related to human-similarity 

provided the most consistent concept-based account of the time-varying object 

representations obtained using MEG. In addition, I made the important contribution of 

linking these human-similarity based brain representations to behaviour, showing for the 

first time, that representational distance relates to categorisation behaviour for categorisation 

other than that based on animacy. I have discussed the utility of evaluating the temporal 

aspects of object processing, and the challenges that exist in separating the contribution of 

low-level visual feature information from higher-level concepts which vary throughout the 

object processing time-course. I raised important issues related to stimulus set, and task 

design, and discussed the current evidence for task-related effects on neurophysiological 

data. Research into the brain processes that underlie visual object categorisation must 

develop better methods of linking findings to behaviour, to ensure that what we measure 

using these sophisticated neuroimaging techniques is ultimately meaningful for human 

behaviour.  
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A B S T R A C T

Visual object recognition is a complex, dynamic process. Multivariate pattern analysis methods, such as
decoding, have begun to reveal how the brain processes complex visual information. Recently, temporal
decoding methods for EEG and MEG have offered the potential to evaluate the temporal dynamics of object
recognition. Here we review the contribution of M/EEG time-series decoding methods to understanding visual
object recognition in the human brain. Consistent with the current understanding of the visual processing
hierarchy, low-level visual features dominate decodable object representations early in the time-course, with
more abstract representations related to object category emerging later. A key finding is that the time-course of
object processing is highly dynamic and rapidly evolving, with limited temporal generalisation of decodable
information. Several studies have examined the emergence of object category structure, and we consider to what
degree category decoding can be explained by sensitivity to low-level visual features. Finally, we evaluate recent
work attempting to link human behaviour to the neural time-course of object processing.

1. Introduction

Visual object recognition is a complex problem. In everyday life we
experience an overwhelming number of objects that the brain needs to
rapidly differentiate and identify. How is it that we are able to identify a
chair, for example, despite large variability in lighting, colour, design,
materials and viewpoint? The human brain does a remarkable job of
efficiently solving this problem, and has inspired decades of behaviour-
al, neuroscience, and computer science research. The ventral visual
processing stream, which involves a number of regions throughout the
occipito-temporal cortex, is well-established as the neural pathway for
object recognition (e.g., Grill-Spector et al., 2001; Haxby et al., 2001;
Ishai et al., 1999). Functional neuroimaging methods have identified a
number of object-selective areas in human visual cortex that are
preferentially activated by specific object categories including animals
(Chao et al., 1999; Martin et al., 1996), faces (Ishai et al., 1999;
Kanwisher et al., 1997), bodies (Downing et al., 2001), places (Epstein
and Kanwisher, 1998), and tools (Beauchamp et al., 2002; Chao et al.,
1999; Martin et al., 1996). However, the number of object-selective
regions identified to date accounts for only a handful of the numerous
object categories that exist (Biederman, 1987). This highlights that
while identification of these regions has advanced our understanding of

the neural pathways involved in higher-level visual processing, we are
yet to fully understand how the brain solves the many challenges
associated with object recognition.

Recent studies in visual object recognition have been influenced by
advances in neuroimaging analysis methods, which allow for a funda-
mental change in the type of information that can be extracted from
neuroimaging data. Early neuroimaging studies employed univariate
analysis techniques that focus on identifying differences in the average
activation of individual voxels or sensors for different experimental
conditions. In contrast, more recent multivariate analysis techniques
(e.g. multivariate pattern analysis; MVPA) analyse patterns of activa-
tion associated with experimental conditions from multiple voxels/
sensors simultaneously. In the field of neuroimaging, multivariate
methods have the potential to detect differences in activation which
are lost when averaging data for univariate analyses, making them
more sensitive (Carlson et al., 2003; Cox and Savoy, 2003;
Grootswagers et al., 2016; Haxby et al., 2001; Haynes and Rees,
2006). While univariate and multivariate analyses are complementary
in the information they provide, there is a fundamental difference in
the types of experimental questions these methods address. Univariate
magneto/electro-encephalography (M/EEG) analyses evaluate differ-
ences in activation, quantifying relative differences in average activity
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between experimental conditions, while multivariate methods have the
potential to examine differences in information, for example by
comparing differences in distributed patterns of brain activation
between experimental conditions (Grootswagers et al., 2016; but see
also de-Wit et al., 2016).

Decoding methods are a form of MVPA that have provided
important insights into how the brain processes information
(Grootswagers et al., 2016; Haxby et al., 2014; Haynes, 2015; Pereira
et al., 2009). In the field of object recognition, decoding methods aim to
map differences in complex neural activity patterns associated with
perceiving objects. Early studies adopting these methods marked an
important first step in our understanding of how objects are processed
in the brain (Carlson et al., 2011; Carlson et al., 2003; Clarke and Tyler,
2014; Cox and Savoy, 2003; Haxby et al., 2001; Kriegeskorte et al.,
2008; Liu et al., 2009; O’Toole et al., 2005). A particular strength of
applying decoding methods to M/EEG data with the aim of under-
standing visual object recognition is that it can reveal how visual object
representations change over time with high temporal resolution. The
focus of this review is on what has been learned about visual object
processing in the human brain with the application of these recent,
powerful temporal decoding methods.

To date decoding methods have been used in conjunction with a
variety of neuroimaging and neurophysiology approaches to investigate
the neural mechanisms underlying object recognition. For example,
brain decoding using single cell recordings has revealed category
structure within monkey inferior temporal cortex (IT) (Hung et al.,
2005), with differentiable neural patterns associated with animate and
inanimate objects, as well as more specific animate subcategories,
including human and animal faces and bodies (Kiani et al., 2007).
Decoding of fMRI data has shown commonalities between object
response patterns in both human and monkey brains, with similar
differentiation of animate/inanimate categories and face/body subca-
tegories identified in both species (Kriegeskorte et al., 2008).
Categorical representations are not limited to localised brain regions,
as activity evoked by objects and faces often overlaps between the
categories and is distributed throughout ventral temporal cortex
(Haxby et al., 2001). Moreover, there has been a recent move towards
looking beyond representing object categories in terms of dichotomies,
such as the animate/inanimate distinction. Instead, a continuum has
been proposed that spans from inanimate objects to humans, with
objects categorised in terms of their biological similarity to humans
(Connolly et al., 2012; Sha et al., 2015). Together, these studies
emphasise a role for distributed patterns of activity in the neural
representation of object category, building on the original observation
of overlapping activation patterns in the human ventral stream (Haxby
et al., 2001).

Decoding of time-series data using M/EEG has offered the potential
to examine the time-course of object representations in the human
brain, revealing a dynamic evolution of object category structure over
time (e.g., Barragan-Jason et al., 2015; Carlson et al., 2011; Carlson
et al., 2013; Cauchoix et al., 2014; Cichy et al., 2014; Clarke et al.,
2014; Goddard et al., 2016; Kaiser et al., 2016a, 2016b; Simanova
et al., 2010). As visual information moves through the ventral pathway,
the content of visual representations changes rapidly between brain
regions. fMRI decoding studies have revealed much about the repre-
sentation of objects in the human brain, however the coarse temporal
resolution of fMRI limits the examination of dynamic visual processes.
As a complement to the static snapshot of representational structure
revealed with fMRI, neuroimaging techniques with higher temporal
resolution such as M/EEG facilitate investigation of the dynamic
processes of visual object recognition. The aim of this review is to
discuss how time-series decoding studies have advanced our under-
standing of the complexities of visual object recognition by focusing on
the dynamic processes involved. Time-series decoding is a relatively
new approach to studying object recognition, and here we highlight the
potential of this new direction to inform the field. Note that we focus on

what has been learned about object processing by applying time-series
decoding methods, for a more thorough discussion of the technical
details of time-series decoding analyses see Grootswagers et al. (2016).

2. Decoding the object recognition time-course

2.1. Initial insights into time-series decoding

It is well-established that the process of visual object recognition
requires a number of hierarchically organised stages that progress
through the occipito-temporal pathway (Grill-Spector and Malach,
2004; Malach et al., 2002). Early retinotopic visual areas are more
sensitive to changes in low-level stimulus properties, while higher
cortical areas within the ventral temporal lobe produce more complex
responses to whole objects, and appear to account for more abstract
properties such as object category (Altmann et al., 2003; Grill-Spector
and Malach, 2004; Van Essen et al., 1992). Single-unit recordings in
macaques have shown that these different processing stages progress
successively in time as information passes through the occipito-
temporal pathway (Schmolesky et al., 1998). With the development
of M/EEG techniques, we are able to evaluate the temporal dynamics of
visual object recognition in the human brain with millisecond resolu-
tion, allowing us to delve into more specific and fine-grained processes
occurring in the various stages of visual object processing.

Differences in early versus late stages in object processing have
been examined by comparing MEG and fMRI data for the same
stimulus set. By linking both temporal and spatial neuroimaging data,
Cichy et al. (2014) showed that activity early in the MEG time-course
correlated more strongly with fMRI activity in V1, while later MEG
activity was more strongly associated with activity in IT. The stimulus
set were 96 colour images of animate and inanimate objects used in
previous studies (Kiani et al., 2007; Kriegeskorte et al., 2008). The
activity patterns associated with viewing each individual object were
first compared using representational similarity analysis (RSA;
Kriegeskorte, 2008), where a matrix is created based on the difference
in brain activation patterns for every pairwise comparison of object
images. This was done separately for the fMRI and MEG data. These
'dissimilarity matrices' provide an index of the difference in the brain
response between object representations. The dissimilarity matrices
were then compared across imaging modalities by examining when the
relative similarity between the activation patterns for each object pair
in the fMRI data most closely resembled that in the MEG data. The
finding that the representational structure early in the MEG data more
closely resembles V1 activity while later MEG data is closer to the
structure observed in IT with fMRI is consistent with the known
features of the visual processing hierarchy, and thus provides a source
of validation for MEG decoding methods.

Time-series decoding methods have also expanded our under-
standing of the temporal intricacies associated with processing low-
level stimulus properties. For example, Goddard et al. (2016) investi-
gated temporal differences in the contribution of low and high spatial
frequencies to the representation of object identity. Stimuli were
greyscale images of objects that were matched in their amplitude
spectrum to control for low-level visual properties. Phase randomisa-
tion was applied selectively to spatial frequency bands such that object
identity information was confined to a restricted spatial frequency band
in each stimulus. Decoding analysis revealed that the activation pattern
of the whole-brain MEG recordings contained information related to
object identity, but there were critical differences in the processing of
low versus high spatial frequencies. They found that low spatial
frequencies provided object identity information earlier and in more
occipitally located regions than high spatial frequency information,
which supported decoding of object identity later in the time-course.
Further, by applying Granger causality analysis, they found evidence
for both an early feedforward and later feedback flow of information
related to object identity (Goddard et al., 2016).
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Most of the existing temporal decoding literature on object recogni-
tion has focused on decoding object categories and investigating the
representational structure of object representations. These results are
discussed in detail in the following sections.

2.2. Temporal decoding of high-dimensional distributed category
representations

Understanding population coding is one of the overarching aims of
neuroscience (Averbeck et al., 2006). A significant and influential
recent development in understanding the neural mechanisms under-
lying object representation has been the theoretical shift away from
identifying specific localised regions associated with particular object
categories towards focusing on more distributed activity patterns that
extend throughout higher-level visual cortex (Haxby et al., 2001). A
current focus in object recognition is on interpreting the highly
multidimensional activation patterns elicited by object stimuli.
Specifically, one of the main themes centres on understanding the
structure of object category representations. In this section we outline
what temporal decoding methods have so far revealed about the neural
architecture of object categories.

A useful and intuitive way to think about the highly multidimen-
sional activation patterns evoked by viewing objects is to conceptualise
them in terms of an abstract representational space (DiCarlo and Cox,
2007; Kriegeskorte and Kievit, 2013). The complex activation pattern
across M/EEG sensors elicited by viewing a particular object exemplar
(e.g., shoe, horse, face) can be considered as a single point in an
abstract representational space. Thus in this abstract representation,
the proximity between data points indicates the degree of similarity,
such that a greater distance between object exemplars represents more
disparate neural activation patterns, while exemplars with closer points
have more similar activation patterns. Consequently, object exemplars
further away from each other in representational space are easier to
"decode" from each other using machine learning classification than
objects which are closer together, as they share more similar activation
patterns and are less separable in higher-dimensional space.

Multidimensional scaling (MDS) is a technique that can be used as
a tool for visualising the representational space of objects in the brain.
An example of an MDS plot for object representations is shown in
Fig. 1. Carlson et al. (2013) studied the first 1000 ms of the visual

object recognition time course using MEG decoding. MEG recordings
were acquired as participants viewed a series of single object images
while performing an unrelated attention task (reporting whether a
letter superimposed on top of the object image was a vowel or a
consonant). Using MDS to visualise the differences in object represen-
tations as a function of time, we can appreciate the emergence of
category structure throughout the time course (Fig. 1). Early in the
time-course (~60 ms post-stimulus onset), the representations of
individual exemplars are almost wholly overlapping in the representa-
tional space, reflecting poor decodability of the individual objects based
on the MEG data. This is expected given the time it takes for an image
on the retina to transition to a cortical representation that is accessible
to MEG ( see Nowak and Bullier, 1997 for a review). By ~120 ms,
differences between individual exemplars have emerged such that the
exemplars are spread out in the representational space. This is the time
of peak decoding for this image set; the point at which individual
exemplars are most easily distinguished from one another. As we
progress through the time course, category structure begins to emerge.
From 120 ms, some subcategories appear to start to cluster: note the
grouping of faces and animals in the centre. By 240 ms a clear
categorical distinction between animate and inanimate objects is
apparent (diagonal black lines in Fig. 1 indicate the category bound-
ary). Interestingly, this animacy category distinction is maintained at
360 ms, despite much less differentiation of individual object exem-
plars, which are clustered tightly together in the later stages of the
time-course. This is an example of the advantage of time-series
decoding, as the emergence of categorical clustering over time is not
captured by other neuroimaging methods with lower temporal resolu-
tion such as fMRI.

As MDS has been used in several fMRI and MEG studies with the
same object stimuli (Carlson et al., 2013; Cichy et al., 2014;
Kriegeskorte et al., 2008) it is possible to visualise the reliability and
consistency of object representations across neuroimaging modalities
by comparing across studies - a rare opportunity in neuroimaging
(Fig. 2). All three studies used the object set (or subset of the set)
originally used by Kiani et al. (2007) in monkey IT. Kriegeskorte et al.
(2008) and Cichy et al. (2014) both used fMRI to evaluate the
representational geometry of objects in human IT (Fig. 2a and b).
The animate/inanimate divide is clearly visible in IT, and additional
subcategory groupings such as animals and humans also cluster

Fig. 1. MDS plots demonstrating the evolution of object representations over time with MEG. Individual MDS panels show the representational geometry of a set of objects at a
particular time-point (shown as ms post-stimulus onset). Distances between objects represent the level of similarity between the neural patterns measured with MEG such that larger
distances indicate greater dissimilarity (i.e., more distinct neural patterns). The representational geometry evolves from initially entirely overlapping (poorly discriminated) objects, to
maximal differentiation at 120 ms (peak decoding for this sample). The animate/inanimate category distinction (black dividing line represents the boundary) peaks at 240 ms and is
maintained even at 360 ms, although differences between individual object exemplars become less defined. Images adapted with permission of the Association for Research in Vision and
Ophthalmology, from Carlson et al. (2013); permission conveyed through Copyright Clearance Center, Inc.
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together. These fMRI MDS plots can be compared to those from MEG
time-series decoding studies (Fig. 2c and d; Carlson et al., 2013; Cichy
et al., 2014). MEG data is shown at the time of peak animacy decoding
in each study: 240 ms (Fig. 2c) and 157 ms (Fig. 2d). Note that the time
of peak decoding is dependent on the stimulus set being evaluated as
well as the noise and variability in a particular data set, complicating
the comparison of specific decoding onset times across studies. The
emergence of feature information or category structure is better
discussed in terms of relative timing within individual studies. A
critical difference between the MDS plots for fMRI versus MEG is that
the MEG plots represent similarity in whole-brain activation patterns,
whereas the fMRI analysis is localised to IT. Considering this sub-
stantial difference, the degree of similarity in the categorical represen-
tation is remarkable (compare top and bottom rows of Fig. 2).

Another advantage of using time-series decoding to investigate
object processing is that we can examine to what degree information
related to object category is maintained in the brain activation patterns
over time (see King and Dehaene, 2014 for a review of temporal
generalisation methods). This is achieved by performing time-point by
time-point comparisons across the entire time-course, whereby a
classifier is trained on data from one time-point and then tested at
every other time point. If information is maintained within the signal
for some period of time, then the classifier is expected to generalise and
successfully classify the test data, regardless of the time difference
between the training and test data sets. The results of temporal
generalisation are visualised in two-dimensional heat maps indicating
the magnitude of classification performance for each pair of time points
(Fig. 3).

A number of MEG studies have examined the temporal general-
isation of decoding to evaluate the dynamics of object representations
(Fig. 3). For each plot in Fig. 3, the diagonal represents standard
decoding analysis when the classifier is trained and tested on data from
the same time-point, thus classification accuracy is expected to be
highest along the diagonal. If decoding performance is significant off
the diagonal, it is indicative of some degree of temporal generalisation
of the decodable signal related to object classification. Note that the
decoded category differs across studies: Isik et al. (2014) and Cichy
et al. (2014) decoded object exemplars, while Carlson et al. (2013) and
Grootswagers et al. (2016) decoded object animacy.

The most striking similarity between the temporal generalisation
plots from these different studies is that the MEG signal underlying
object decoding evolves relatively quickly, with little information
generalising across time. Where there is generalisation, it tends to
cluster closely around the diagonal, suggesting that the structure of
object representations accessible in the whole-brain MEG signal
evolves rapidly, and follows a specific neural trajectory. Another
interesting feature is that the period where there is the greatest
generalisation occurs relatively late after stimulus onset (see particu-
larly Fig. 3c-d). This suggests maintenance of object representations at
later stages of processing (Carlson et al., 2013). Alternatively, it may
reflect the gradual accumulation of multiple related information
processing stages of variable duration throughout the visual processing
hierarchy, leading to a greater temporal spread of information over
time. Paradoxically, there are also some periods of below chance
decoding, whereby a classifier systematically categorises an object
incorrectly as the opposite category (e.g. see blue regions in Fig. 3c).

Fig. 2. Comparison of MDS plots from fMRI and MEG studies. Top MDS plots (a and b) show the representational geometry in human IT using fMRI; bottom MDS plots (c and d) show
the representational geometry using MEG at the time of peak decoding for the animate/inanimate (animacy) category distinction. Animacy peak decoding times for the individual studies
are listed below the MEG MDS plots. Note that (a) has been normalised and rigidly aligned (Procrustes alignment) for visualisation, producing a more regular spacing between object
exemplars in the MDS plot compared to panels b-d. Black lines in each plot mark the (approximate) animacy boundary. Panel (a) image from Kriegeskorte et al. (2008), reprinted with
permission from Elsevier. Panel (c) image from Carlson et al. (2013) reprinted with permission of the Association for Research in Vision and Ophthalmology; permission conveyed
through Copyright Clearance Center, Inc. Panels (b) and (d) images from Cichy et al. (2014) reprinted with permission from Macmillan Publishers Ltd: Nature Neuroscience, copyright
(2014).
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Carlson et al. (2013) suggest this may represent adaptation or
inhibition following a period of excitation, resulting in later inversion
of the neural representation. Consistent with this explanation, antic-
orrelated MEG signals have also been identified around the time of
stimulus offset for both visual (Carlson et al., 2011) and auditory (Chait
et al., 2007) stimuli.

An exception to the general lack of generalisation is seen in the
results of Cichy et al. (2014), where there is a period of significant
generalisation of early information across most of the time-course
(Fig. 3b; grey dotted rectangle shows the period of significant temporal
generalisation). This could be because this analysis used pair-wise
object decoding as opposed to leave-one-exemplar-out category classi-
fication (see Carlson et al., 2013; Grootswagers et al., 2016). With
pairwise object decoding, low-level information diagnostic of object is
contained in both the training and test sets for the classifier, thus
maintenance of early visual information is consistent with low-level
properties being useful for classification. There is a similar pattern of
generalisation in Fig. 3c, and this analysis also included exemplars in
both training and test sets (Carlson et al., 2013). However, in leave-
one-out exemplar decoding (Fig. 3d) the test exemplar is not included
in the training set so early processing reflecting sensitivity to low level
image properties is less likely to be used by the classifier. Kaiser et al.
(2016a) took this idea further by using temporal generalisation to
directly examine decoding of low-level shape versus object category in a

matched stimulus set (see Section 2.5, Fig. 6).
The studies in this section demonstrate the utility of examining the

change in representational structure of object representations over
time. Studies to date have shown that the brain's response to visual
objects is highly dynamic, evolving rapidly from sensitivity to low-level
visual properties to more category-like representations. There is also
evidence for a robust categorisation distinction between animate and
inanimate objects that is sustained. In the following section we
examine what has been learnt from time-series decoding about the
hierarchical structure of object category representations.

2.3. Uncovering the hierarchy of object category representations

Visual object categorisation can be understood as a dynamic
process of evidence accumulation over time (Mack and Palmeri,
2011; Nosofsky and Palmeri, 1997; Philiastides and Sajda, 2006).
Functionally, the accumulation of evidence for object category mem-
bership is likely to exploit the complex network of feedback and
feedforward connections within the object-selective ventral pathway,
rather than operating as a linear progression of representation from
low-level features through to semantic concepts of increasing abstrac-
tion (Kravitz et al., 2013). This is a recent development and extension
of the earlier idea of sequential processing stages, where objects are
first categorised at an intermediate/basic level (Mervis and Rosch,

Fig. 3. Examples of temporal cross-decoding of MEG data. Temporal generalisation of MEG decoding from (a) Isik et al. (2014), (b) Cichy et al. (2014) (c) Carlson et al. (2013), and (d)
Grootswagers et al. (2016). Generalisation of decoding performance across time is assessed by training and testing the classifier on MEG data from different time points. Points on the
diagonal represent training and testing on data from the same time point (i.e., regular classification). Colour indicates classifier performance as a function of time for each study; hotter
colours indicate higher levels of classifier performance (measured using decoding accuracy percent (a, b, d) and d-prime in (c). Panel (a) image from Isik et al. (2014) reprinted with
permission from ©The American Physiological Society. Panel (b) image from Cichy et al. (2014) reprinted with permission from Macmillan Publishers Ltd: Nature Neuroscience,
copyright (2014). Panel (c) image from Carlson et al. (2013) reprinted with permission of the Association for Research in Vision and Ophthalmology; permission conveyed through
Copyright Clearance Center, Inc. Panel (d) image from Grootswagers et al. (2016) reprinted with permission from theMassachusetts Institute of Technology © 2016, published by the
MIT Press.
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1981) (e.g., cat), with superordinate (e.g., animal) and subordinate
(e.g., Siamese cat) categorisation occurring later in the visual proces-
sing hierarchy (Mack and Palmeri, 2011).

MEG decoding methods have been applied to understanding the
timing of category abstraction by selecting stimuli with a planned
hierarchical category structure and assessing when these category level
distinctions emerge. Results from two MEG decoding studies (Carlson
et al., 2013; Cichy et al., 2014) provide insights into the category
processing hierarchy by evaluating the time course of hierarchically
organised object categories. The stimulus sets across both studies
followed the same planned hierarchical structure (see Fig. 4): the
highest (most general/abstract) category tier was the commonly
evaluated animate/inanimate distinction. The animate domain was
then further subdivided into intermediate categories of faces/bodies as
well as humans/animals, with the lowest (most specific) category level
being that of human faces/human bodies, animal faces/animal bodies.
For the inanimate domain, these objects could be further subcate-
gorised into man-made and natural objects.

To investigate the dynamics of hierarchical object category repre-
sentations, these studies looked at two critical moments in the MEG
object decoding time-course: the time at which decoding first reaches
significance (decoding onset) and the time that the category distinction
is maximally differentiated (peak decoding time). A visual comparison
of the decoding time course in both Carlson et al. (2013) and Cichy
et al. (2014) for object categories at different levels of the category
hierarchy is shown in Fig. 5. Carlson et al. (2013) found the onset of
significant decoding for individual object exemplars occurred around
80 ms after stimulus onset, which was also similar to the decoding
onsets of individual categories; all falling between 80–100 ms. Cichy
et al. (2014) similarly found little variability between overall exemplar
decoding onset (~48 ms) and individual category onsets (~51−61 ms
post-stimulus onset).

Evaluation of peak decoding times for the category hierarchy in
Carlson et al. (2013) revealed a largely linear organisation of the
category tiers (see Fig. 5, red bars), such that lower tier categories (e.g.,
human faces, animal bodies) showed peak decoding times from

120−180 ms, followed by intermediate tier categories (faces, bodies,
human, animal) which ranged from 160−240 ms, with the super-
ordinate tier animacy category (animate vs. inanimate) peaking at
240 ms. The results suggest evolving hierarchical representations of
object categories that progress from specific, individual exemplar
individuation through to more abstract semantic groupings. Results
from Cichy et al. (2014) largely support these findings (see Fig. 5, blue
bars), with peak decoding between intermediate tier categories (natural
vs. artificial and faces vs. bodies, 122 and 136 ms respectively)
occurring earlier than the superordinate animacy category peak
(157 ms).

Although there is similar evidence in the results of both Carlson
et al. (2013) and Cichy et al. (2014) for a roughly linear emergence of
object categories from specific to more abstract object category
representations, the data are not entirely straightforward. For example,
for the subordinate tier categories in Cichy et al. (2014), this linear
hierarchy does not hold, with subcategory peaks occurring later in the
time-course than some of the intermediate tier category peaks: human
versus animal faces peaked at 127 ms, while human versus animal
bodies peaked at 170 ms. Furthermore, in Carlson et al. (2013), the
intermediate tier categories of faces and bodies are best discriminated
at a similar time point to the more specific lower tier categories (e.g.,
human faces, animal bodies), and similarly, Cichy et al. (2014) found
no significant difference between the peak latency at which individual
images were discriminated early in the time course compared to a
higher tier category grouping of human versus non-human bodies.

It is plausible that these anomalies in the emergence of hierarchical
category structure reflect that category representations are not a strict
linear hierarchy, consistent with recent ideas on the importance of
recurrent processing such as lateral connections and feedback on
feedforward visual object processing (Kravitz et al., 2013). Carlson
et al. (2013) suggest these discrepancies may be partially explained by
the inclusion of face and body stimuli in the design, as there is evidence
for special processing systems specifically tuned for the detection of
faces and bodies in both human and primate ventral temporal cortex
(Downing et al., 2001; Kanwisher et al., 1997). If some categories are

Fig. 4. Hierarchical category structure of the object stimuli used in both Carlson et al. (2013) and Cichy et al. (2014). Diagram shows the three levels of category abstraction: lower tier
(animal and human faces and bodies), intermediate tier (bodies and faces), and highest tier (animacy). Note, number of stimuli differed between the two studies: Carlson et al. (2013)
used 24 images (as shown), while Cichy et al. (2014) employed 92. Image reprinted with permission of the Association for Research in Vision and Ophthalmology, from Carlson et al.
(2013); permission conveyed through Copyright Clearance Center, Inc.
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processed differently than others, a straightforward linear emergence
of category structure is not expected. A further caveat is that these
results are specific to the selected stimulus set and the imposed
category structure of the experimental design.

2.4. Decoding the time-course of face processing

The object category of faces stands out as having a particularly
strong contribution to decoded brain representations measured with
EEG (Kaneshiro et al., 2015) and MEG (Van de Nieuwenhuijzen et al.,
2013). For example, in the MDS results for large object sets, human
faces tend to cluster prominently (Fig. 2). Two EEG decoding studies
have examined the temporal dynamics of face representations in detail
(Barragan-Jason et al., 2015; Cauchoix et al., 2014). A strong feature of
these studies is that they used large natural image stimulus sets
containing pictures of faces with natural backgrounds, and faces were
not repeated in the experimental design. This is in contrast to the
majority of temporal object decoding studies to date, which tend to
repeat the same object exemplars multiple times within the experiment
to increase signal-to-noise. Both studies had participants complete a
go/no-go task and trained a classifier to detect the target versus non-
target faces across the EEG time-course (human vs. animal in Cauchoix
et al., 2014, and famous vs. unfamiliar faces in Barragan-Jason et al.,
2015). In both studies, the time-course of face decoding follows a
similar pattern: there is an initial sharp rise in performance of the
classifier early in the time-course, shortly followed by a relatively brief
plateau or drop in decoding, before a second, more gradual rise in
decoding accuracy, with peak decoding occurring relatively late in the
time-course (350 ms and 600 ms for humans/animals and familiarity
respectively). They suggest that the two (early vs. late) peaks in
decoding reflect different levels of processing within the object
recognition hierarchy. An initial fast feedforward signal driven by
low-level stimulus properties is later modified to incorporate more
detailed feedback from higher cortical areas (Barragan-Jason et al.,
2015; Cauchoix et al., 2014).

A recent study which combined MEG decoding with fMRI localiza-
tion provides further insight into different levels of face processing.
Vida et al. (2017) evaluated time-series decoding performance of face
identity in specific regions of the brain linked to face processing. They
used an fMRI localiser to identify two regions that were preferentially
activated by faces, over and above activity associated with objects more
broadly: right lateral occipital cortex and the right fusiform gyrus. At
these sites, and a control site (left V1) they related the time-course of
face decoding to three models of face processing: one that represented

low-level, V1-like responses (“image-based” model), a higher-level
“identity-based” face model, and a behavioural-rating model where
participants rated a subset of the images as to how similar the face
identities were on a scale from 1 to 8. Their results showed that firstly,
while face identity was decodable at all three regions from
~50−400 ms, the image-based model was a better predictor of the
neural data than the identity-based model until ~200 ms, after which
its performance dropped below that of the identity-based model at a
number of time-points. However, this shift occurred in the face-
selective regions only, with the image-based model outperforming
others in the V1 control region throughout the time-course.

These results are in line with previous findings (see Section 2.1)
that suggest low-level visual features are associated with activity in
early visual areas, while high-level conceptual information is repre-
sented in cortical regions further down the ventral processing stream.
The behavioural-rating model similarly correlated with the neural data
significantly in all three regions from ~50–400 ms, however, after
controlling for representations in the V1 control region, this significant
time-window reduced to 100−250 ms in the face-selective regions.
Notably, behavioural ratings were significantly more similar to the
identity-based model than the image-based model. Significantly, by
using time-series decoding methods, Vida et al. were able to show that
face-selective regions process information related to both low-level
image properties as well as higher-level face identity-based representa-
tions, highlighting the potential shortcomings of associating localised
regions with single functions. The challenges involved in empirically
separating out the contribution of low level properties from more
abstract object representations in object decoding studies is discussed
in detail in the following section.

2.5. Is a category a category?

Above we reviewed several studies focusing on uncovering the
dynamic category structure of object representations. However, when
evaluating object representations, it is important to separate effects
related to the abstract concept of an object "category" from other
potentially confounding features that co-vary with category member-
ship such as low-level visual properties including shape, colour, and
luminance contrast (Wardle and Ritchie, 2014). For example, items
within the category of tools tend to have handles, resulting in a
characteristic long and often slender feature to their appearance (e.g.,
hammer, scissors, screwdriver, toothbrush). This relatively consistent
information within this category could result in decoding based on low-
level feature similarities related to shape, such that instead of decoding

Fig. 5. Onset and peak decoding times for category tiers within the object category hierarchy, as evaluated by Carlson et al. (2013) and Cichy et al. (2014). Each coloured bar represents
the time from the onset of significant category decoding to the time of peak decoding (relative to post-stimulus onset) for Carlson et al. (2013) (red) and Cichy et al. (2014) (blue). Note,
the intermediate tier categories are evaluated using different stimulus comparisons by Carlson et al. (2013) and Cichy et al. (2014) (specific comparisons are noted in brackets).
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the category of “tools” compared to “faces”, we may instead be
erroneously decoding “long and thin” versus “round”. Low-level
stimulus properties such as orientation (Cichy et al., 2015;
Ramkumar et al., 2013) are readily decodable from whole-brain MEG
signals, and perceptual similarity is a strong determinant of the
decodability of abstract visual stimuli (Wardle et al., 2016).

Time-varying decoding studies investigating object recognition
have attempted to account for potential low-level confounds using a
variety of different approaches. In fMRI studies, V1 is often used as a
control region to show that unsupervised categorical clustering of
object representations (e.g., by animacy) do not emerge in V1, but are
present in IT (Cichy et al., 2014; Kriegeskorte et al., 2008). As this
degree of spatial localisation is not possible with MEG, time-varying
decoding studies often exploit the time-course to demonstrate that
models of early visual processing may perform well early on in the
time-course but later the contribution from categorical models such as
animacy emerges. For example, Carlson et al. (2013) used RSA to
evaluate the performance of low-level feature based models of vision on
object representations measured with MEG. The models of early visual
processing included a shape-based model that compared the image
silhouettes (Jaccard, 1901), a colour-based model (CIE), and a
hierarchical visual processing model (HMAX) containing layers tuned
to process varying levels of stimulus complexity (Riesenhuber and
Poggio, 1999; Serre et al., 2007). Notably, these models were able to
successfully differentiate human faces from other objects (silhouette
model), humans from human bodies (CIE), and man-made objects
from other objects (HMAX). While the models were only able to
distinguish a maximum of two out of a possible 10 object categories in
that particular data set, these results highlight the importance of
accounting for the potential influence of low-level stimulus properties
on object category decoding.

Although there is evidence that visual similarity accounts for at
least some of the representational similarity shared by objects within
the same category, it is unlikely to account for all observed category
effects. As a control for low-level stimulus properties when decoding
object category, Carlson et al. (2011) evaluated decoding accuracy of
cars and faces from MEG activation patterns compared to artificially
generated car and face textures which preserved local image statistics
but removed recognisable form. If classification of object category is
heavily based on low-level image statistics, it is expected that the
classifier would find it difficult to discriminate between objects and
their matched texture images, which share low-level image properties
(e.g., classifying 'car' vs. 'car-texture'). However, object categories were
able to be accurately decoded from their texture counterparts in the
whole-brain MEG activation patterns, and this distinction emerged
earlier in the time course than information differentiating the two
object categories of cars and faces (Carlson et al., 2011). These results
are consistent with a transition from decoding based on V1-like image
properties to IT-like object category over the MEG decoding time
course (Cichy et al., 2014).

The contribution of semantic meaning to category representations
was explored in a study by Clarke et al. (2014), which compared the
performance of both low-level visual processing and feature-based
semantic models for their 302 object stimuli from 11 categories. They
found that a model which combined both category-specific semantic
information and low-level visual features best accounted for variability
in neural object representations later in the MEG time course, over and
above what could be achieved by using the HMAX model alone (Clarke
et al., 2014). These results suggest there is a contribution of abstract
category membership (as indexed by semantic similarity) to the brain
representation. Similarly, an EEG study evaluating event-related
potentials (ERPs) associated with object representations aimed to
provide evidence for the involvement of conceptual category member-
ship by examining decoding of the categories 'animals' versus 'tools'
across three modalities of visual pictures, spoken words and written
words (Simanova et al., 2010). However, classifier performance was

much higher for visual pictures than for spoken or written words,
complicating the critical cross-classification analysis across modality.

Similar to the frequently-used approach of assessing the potential
contribution of low-level properties to object representations with the
HMAX model (Carlson et al., 2013; Clarke et al., 2014; Isik et al., 2014;
Kriegeskorte et al., 2008), recently Cichy et al. (2016) compared MEG
object decoding performance with the performance of deep neural
networks (DDNs). DNNs are a powerful form of computer vision
model, comprised of multiple non-linear processing layers with the
ability to learn tasks such as object categorization (see Kriegeskorte,
2015). The recent advancement of these models has propelled compu-
ter modelling of object recognition to a level that is beginning to rival
human object categorisation performance (He et al., 2015). By
comparing the decoding performance of the DNN model to MEG and
fMRI brain data, Cichy et al. (2016) showed a hierarchy of both
spatially and temporally ordered processes that correlated with the
DDN processing layers in an ordered fashion; deeper layers were
associated with later brain activity in higher cortical processing regions.
Furthermore, by analysing activity throughout the entire brain, they
identified involvement of not only the ventral, but also the dorsal
pathway in object recognition. A key issue for the future is to under-
stand to what degree deep-neural networks mimic the object recogni-
tion processes in the human brain, and in what respects the two
systems are different.

The above approaches are data-driven, and aim to show that
categorical structure that emerges in the neuroimaging data cannot
be completely explained by sensitivity to lower level visual properties
confounded with object category. A more compelling line of evidence
against reducing category representations entirely to low-level proper-
ties involves experimental manipulations designed to separate the two
factors. A recent MEG/fMRI study (Kaiser et al., 2016a) sought to
specifically identify object category representations independent of
shared visual properties by purposefully selecting visually similar
stimuli that belonged to the semantic categories of body parts and
clothing (e.g., gloves vs. hands, shirts vs. torsos). With this stimulus set,
visual similarity is balanced across category membership. While their
fMRI results showed overlapping spatial representations for both shape
and category information, the MEG data showed a specific, compara-
tively late time window within which category-selective information
was present (Fig. 6b) and in contrast to this, shape dependent
responses (Fig. 6a) were decoded relatively early on, from 90 ms
post-stimulus onset, and was sustained throughout the time-course.

Object invariance is both an interesting theoretical question for
investigation and an experimental manipulation that minimises the
contribution of low-level features. Object invariance is the ability to
successfully recognise objects despite high variability in their appear-
ance, for instance, due to differences in viewpoint and size. Carlson
et al. (2011) showed that object category information for faces and cars
could be decoded from the neural data despite changes in retinal
location of the image; evidence for a position-invariant object repre-
sentation. They tested a classifier on information from a novel retinal
location that was not included in the original training set, and were
able to successfully recover information about the object category as
early as 135 ms, suggesting that position-invariant category informa-
tion is present early in the neural signal. Furthermore, this was not
simply due to low-level image statistics, as category information could
not be decoded from abstract textures generated to preserve the local
low-level image statistics of the object images (Carlson et al., 2011).

Invariant object decoding was further investigated by Isik et al.
(2014). Isik et al. showed position invariant decoding across three
stimulus locations for a set of six object exemplars, while also
evaluating size invariance. Using three different stimulus sizes for each
exemplar, they showed that size-invariant information was present in
the signal from around 125 ms post-stimulus onset, earlier in the time-
course than position-invariant information which emerged around
150 ms for their stimulus set. Furthermore, by comparing the decoding
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latencies for the different train-test conditions, they found that
comparisons which required a greater transformation of the data from
the train to the test condition (e.g., for small, middle and large sized
stimuli, train small/test large requires a bigger transformation than
train middle/test large) resulted in later decoding onsets.

Successful object decoding across changes in retinal size or position
suggests access to more abstract object representations, which is likely
to reflect higher-level visual processing. Isik et al. (2014) compared
their results to the different levels of the computational HMAX model
(Riesenhuber and Poggio, 1999; Serre et al., 2007), which includes
multiple stages representing early V1 processing (layer C1), mid-
ventral processing (later C2), and higher level IT-like processing (layer
C3). Comparison of the experimental results with the response of the
HMAX model for their six object exemplars revealed that only the IT
layer of HMAX could successfully decode object exemplars across all
transformations of size and position. Isik et al. suggest their observed
relationship between the degree of image transformation and decoding
time (i.e., that decoding occurs later for larger visual transformations
across object size and position) is consistent with a feedforward
processing hierarchy supporting invariant object representations. In
the next section we consider the link between object category repre-
sentations and human behaviour.

3. Linking dynamic object category representations to
human behaviour

One of the critical limitations of decoding approaches in neu-
roscience is that successful decoding of a stimulus property or
experimental condition does not entail that this information is
explicitly used by the brain for behaviour (cf. de-Wit et al., 2016;
Ritchie et al., in press). An emerging goal is to find ways to link
measured brain activation patterns to behaviour (Mack and Palmeri,
2011; Nosofsky and Palmeri, 1997; Philiastides and Sajda, 2006). In
this section we review two recent approaches to linking the decoded
dynamic object representations from time-series neuroimaging data
with human behaviour. In the first approach, the goal is to link reaction
times (RTs) for object categorisation to the brain's evolving representa-
tion of the objects in multidimensional space (Section 3.1). The second
involves uncovering the effects of attention on decodable object
representations (Section 3.2).

3.1. Categorisation reaction times

One fruitful approach to evaluate the relationship between brain
and behaviour has been to link human RTs for categorisation to the
multidimensional representation of object exemplars in neuroimaging
data (Ritchie and Carlson, 2016). Human categorisation behaviour can
be conceptualised as a process of evidence accumulation leading to a
decision. Behavioural RTs, such as those measured by a simple button
press to categorise a stimulus (e.g., fish as 'animate', boot as 'inani-
mate'), can be thought of as a proxy for the point at which a decision
has been made. Carlson et al. (2014) tested this idea by combining
previously collected fMRI data from human IT (Kriegeskorte et al.,
2008) with separately collected behavioural RTs for categorising the
same 92 object images as either 'animate' or 'inanimate'. Carlson et al.
(2014) linked the decision boundary from the fMRI data (boundary is
that used by a classifier to categorise stimuli by animacy) to RTs for
human observers to complete the same categorisation task. They
showed that the distance to the classifier decision boundary predicted
reaction times for animacy categorisation. Specifically, objects repre-
sented further from the animacy decision boundary were associated
with faster behavioural categorisation RTs (i.e., more easily categorised
by human observers) than objects represented closer to the boundary
(Fig. 7a).

Ritchie et al. (2015) expanded on this idea by studying the dynamic
coupling between emerging object representations and behaviour using
MEG decoding. Their findings replicated the relationship between
representational distance and RTs found by Carlson et al. (2014) for
fMRI, as a larger distance from the classifier boundary was associated
with a faster reaction time for animacy categorisation. The key
advantage of examining this relationship with MEG is that its
emergence following stimulus onset can be tracked over time, which
cannot be determined from the fMRI data. Ritchie et al. (2015) found
that as decoding accuracy increased following stimulus onset (indicat-
ing greater separability of individual object representations with more
processing time), the correlation between representational distance
and RTs similarly increased. Importantly, this suggests that the
strength of the association between representations and behaviour
appears to follow decoding performance over time (Ritchie et al.,
2015). The significance of this result is that it implies that the brain
"reads out" information at the optimal time for making a categorical

Fig. 6. Temporal cross decoding of object category (body parts vs. clothing). The black outlined areas in both plots indicate when cross-decoding of (a) shape or (b) object category was
significantly above chance. Images reprinted from Kaiser et al. (2016a) with permission from ©The American Physiological Society.
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decision. This highlights the utility of time-series decoding methods, as
this result could not be accessed by examining time-averaged activation
patterns as in fMRI.

Interestingly, in both the fMRI and MEG studies, the relationship
between representational distance and RTs appeared to be driven by
animate rather than inanimate objects (Carlson et al., 2014, Richie
et al., 2015). This is shown in Fig. 7b by comparing the left (animate)
and right (inanimate) RT correlation panels. For animate object
decoding, a negative correlation is observed with RTs around the time
of peak decoding (indicating that faster RTs were associated with
greater distances from the decision boundary for animacy). However,
this relationship is not found with inanimate objects. The authors
suggest this asymmetry may be because inanimacy is a negatively
defined category (i.e., 'not animate').

3.2. Attention

Attention has strong modulatory effects on neural processing
(Gandhi et al., 1999; Kastner and Ungerleider, 2000; Moran and
Desimone, 1985). A recent MEG study by Kaiser et al. (2016b)
evaluated the effects of top-down attention on object category repre-
sentations. Participants performed a category search task by detecting
the presence of either a car or a person embedded in cluttered natural
scenes. This design allows comparison of the neural signal associated
with the attended versus unattended object category. The classifier was
trained on data from viewing car and people exemplars that were

separate to the experimental data set and presented as segmented
objects on a plain background. The classifier was then tested on the
data for when the objects were embedded in complex natural scenes as
either a target or a distractor.

The results demonstrate a substantial effect of attention on object
representations. Under attended conditions, object category could be
decoded rapidly in under 200 ms even though the objects were in
highly cluttered scenes (Fig. 8c). However, unattended object cate-
gories embedded in complex scenes were decoded much later (Fig. 8c),
demonstrating a strong top-down modulation of attention on visual
processing. Attended objects were decoded more easily than unat-
tended objects across all early (180 – 220 ms), mid (230 – 340 ms),
and late (350 – 500 ms) time windows (Fig. 8a, b). The greater
temporal generalisation of cross-decoding during the late time window
indicates that the representational similarity shared by isolated objects
and objects in scenes is sustained for longer in the late processing
stages, which is particularly evident for attended objects (Kaiser et al.,
2016b). These results suggest that top-down attention rapidly mod-
ulates object category representations, facilitating rapid target detec-
tion in natural scenes (Thorpe et al., 1996). By using temporal
decoding, this study was able to reveal the time course of category-
specific attentional enhancement, extending previous EEG findings
which instead focused on comparing evoked potentials to target
presence versus absence (Codispoti et al., 2006; Thorpe et al., 1996).

Fig. 7. Linking behavioural RTs for object animacy categorisation to dynamic object representations measured with MEG. (a) Diagram illustrating how representational distance from
the classifier category boundary relates to RTs. (b) Left panel shows the correlation between RTs and the MEG decoding time-course for animate objects, while the right panel shows the
same for inanimate objects. Grey bar in both plots indicates the window of peak decoding. Red stars along the x-axis indicate time-points at which the correlation between
representational distance and reaction time is significant. Images from Ritchie et al. (2015) reprinted with permission from the author.

Fig. 8. MEG decoding of attended versus unattended targets. Temporal cross-decoding heat-maps of (a) target category and (b) unattended distractor category (training on
isolated objects, testing on objects embedded in cluttered natural scenes in both instances); (c) Time-course of decoding performance for the target and distractor conditions separately.
Dots indicate above-chance decoding performance. Images reprinted with permission of Society for Neuroscience, from Kaiser et al. (2016b); permission conveyed through Copyright
Clearance Center, Inc.
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4. Summary and conclusions

Above we have reviewed how time-series decoding methods have
expanded our understanding of the neural processes underlying human
object recognition. Object recognition remains a significant area of
interest within the field of vision research and the recent implementa-
tion of time-series decoding methods has allowed researchers to
unpack some of the neural processes that underlie how the brain
achieves this highly complex and multifaceted task. Complementing
other neuroimaging techniques, such as fMRI, which provide static
snapshots of the visual object processing hierarchy, time-series decod-
ing has unveiled a system of dynamically changing processes that
extend throughout the brain. This new perspective brings a host of
interesting avenues for further exploration. For example, at what point
in time do high-level constructs of attention and consciousness
modulate the dynamics of object processing, and what is the effect of
this modulation on perception? How do space- and feature-based
attention processes differentially influence the processing hierarchy?
There remain unanswered questions about the processes involved in
visual working memory and how these representations in the mind's
eye compare to the perception of a physical stimulus; are they
fundamentally different or is visual working memory a process of
revisiting points within these dynamic representations? Finally, it
would be of particular interest to know how these various modulations
of object representations differentially influence behaviour, further
strengthening our understanding of the connection between brain and
behaviour. Time-series decoding methods have greatly enriched our
knowledge of neural object recognition processes, and show great
potential for further advances in this and many other domains.
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