REFERENCES

Australian Bureau of Statistics (ABS), 1986; National Energy Survey, Household Appliances, Facilities \& Insulation, Australia 1985-86.

Barron, R.A., 1972; Aggression as a function of ambient temperature and prior anger arousal. Journal of Personality \& Social Psychology Vol. 21, 2, 183-189.

Bell, P.A., 1981; Physiological, comfort, performance, and social effects of heat stress, Journal of Social Issues Vol. 37, Number 1, 1981: 71-95.

Blong, R.J., 1992; Impact of Climate Change on Severe Weather Hazards, Australian Government Publishing Service, Canberra.

Blong, R. J., 1991; Natural Disasters: The role of El Niño. Australian Insurance Institute. July 14, 4: 27-32.

Blong, R.J., 1989; Disasters and opportunities- hazards in the Greenhouse Era, in Planning for the Greenhouse, McKracken, K. \& Blong, (eds) 19-38.

Bridger, C.A., Ellis, F.P \& Taylor, H.L, 1976: Mortality in St. Louis during heat waves in 1936, 1953, 1954, 1955 \& 1966. Environ. Res. 12, 38-48.

Bridger, C.A. \& Helfand, L.A., 1968; Mortality from heat during July 1966 in Illinois, International Journal of Biometeorology, 12, 51-70.

Budd, G. M., 1979; Effects of Heat on Health, Comfort and Performance. J. Aust. N.Z. Soc. Occupational Medicine, Vol 3: 16-22.

Budd, G.M., 1990; Health Implications of Climatic Change; Comments for Questionnaire on "Direct Effects of Climatic Extremes", unpublished.

Buechley, R.W., van Bruggen, J \& Truppi, L.E., 1972; Heat Island = Death Trap, Environmental Research, 5, 85-92.

Bull, G.M. \& Morton, J., 1978; Environment, temperature and death rates, Age and Ageing 7, 210224.

Bureau of Meteorology, 1991; Sydney Climatic Survey, AGPS, Canberra.
Bureau of Meteorology, 1994; Heatwaves in Adelaide 1895-1993, unpublished.
Bureau of Meteorology, unpublished; The El Nino-Southern Oscillation. Pamphlet from Bureau of Meteorology, Queensland Regional Office, Climate \& Consultative Services Section.

Burton, I., Kates, K. W. \& White G.F., 1978; The Environment as Hazard, Oxford University Press, New York, 240pp.

Cech, I., Weisberg R., Kacker, C. \& Lane, R., 1976; Relative contribution of land uses to the urban heat problem of the coastal subtropics. Int. J. Biometeorology, 3: 45-67.

Chang, F. \& Wallace, J.M., 1987; Meteorological conditions during Heat Waves and Droughts in the United Stated Great Plains, Monthly Weather Review, Vol 115, p1253-1269.

Clare, R. \& Tulpule, A., 1994; Australia's Ageing Society, Economic Planning Advisory Council. Background Paper No. 37, ACT, Australia.

Coates, L., Blong, R. \& Siciliano, F., 1993; Lightning Fatalities in Australia, 1824-1991, Natural Hazards 8: 217-233, 1993.

Coughlan, M., Hounam, C.E. \& Maher, J.V., 1979; Drought Hazard in Australia, In Heathcote, R.L. \& Thom, B.G. (eds) Natural Hazards in Australia, Academy of Science, Canberra.

Coughlan, M.J., 1985; Drought in Australia, Australian Academy of Technological Sciences, Ninth Invitation Symposium, Sydney, October 1985 Natural Disasters in Australia.

Coulter, C.G., 1988; The Greenhouse Effect and Electricity Generation in New South Wales.in Pearman, G.I. (ed), Greenhouse; Planning for Climate Change: 613-623, CSIRO Publications, Melbourne.

Crabb, P., 1986; Australia's Water Resources: Their Use and Management. Longman Cheshire, Melbourne.

Crowe, J.P. \& Moore, R.E., 1973; Physiological and behavioural responses of aged men to passive heating. J. Physiol 236: 43-5.

Curson, P., 1991; Climate change in human health - Social Vulnerability in Australia. In Clarke, J. \& Zaba, B. (eds). Environment and Population Change, Ordina.

Curson, P., 1989; Human Health in the Greenhouse Era. In McCracken, K. \& Blong, R. (eds) Planning for the Greenhouse, Macquarie University.

Danks, D.M., Webb, D.W. \& Allen, J., 1962; Heat Illness in infants and young children, British Medical Journal, 2, p287.

Deen, A.R., 1988; Planning For Climatic Changes in the Sydney Water Board. In Pearman, G.I. (ed), Greenhouse; Planning for Climate Change: 350-357, CSIRO Publications, Melbourne.

Dury, 1972, High temperature extremes in Australia. Annals of American Geographers, 62, 388-400.
Ellis, F. P., 1972; Mortality from Heat Illness and Heat-Aggravated Illness in the United States, Environmental Research, 5, 1-58.

Ellis, F. \& Nelson, F. 1978; Mortality in the elderly in a heatwave in New York City, August 1975, Environmental Research 15, 504-512.

Ellis, F.P., Nelson, F. \& Pincus, L., 1975; Mortality during Heat Waves in New York City, July 1972 and August and September, 1975, Environmental Research, 10:1-13.

Ellis, F.P., Prince, H.P., Lovatt, G. \& Whittington, R.M., 1980; Mortality and Morbidity in Birmingham during the 1976 Heatwave, Quarterly Journal of Medicine, New Series, XLIX, No. 193, 18.

Ewan, C., Bryant, E., \& Calvert, D. (eds), 1991; Health Implications of Long Term Climatic Change, Australian Government Publishing Service, Canberra.

Fitzhenry, R.I. \& Barker, A., 1994; The Book of Quotations. Allen \& Unwin.
Friedfeld, L., 1949; Prophylaxis and Treatment of heat-reaction states, N. Engl. J. Med. 240, 10431047.

Gabe, M., 1985; Weather information- Valuable economic tool in an era of low growth. Tokyo newsletter, Corporate Communications Office, Mitsubishi Corporation, Tokyo.

Gannon, P., 1992; Temperature and Daytype Correction of Monthly Energy and Annual Peak Demand. A presentation to the 1992 ESAA Forecasting Forum. Pacific Power, Sydney, Australia.

Gentilli, J., 1979; Atmospheric Factors in disaster: An appraisal of their role. In Natural Hazards in Australia, Heathcote, R.L. \& Thom, B.G (eds), Australian Academy of Science, Canberra.

Gentilli, J., 1980; The environment and Human Health, some climatic factors in Australian health, Social Science and Medicine, Vol 14D, p85-100.

Giles, B.D. \& Balafoutis, C.J., 1990; The Greek Heatwaves of 1987 and 1988, International Journal of Climatology, 10(5), p505-517.

Gover, M., 1938; Mortality during periods of excessive temperature. Public Health Rep. 53, 11221143.

Hamer, M., 1990; The Year the Taps ran Dry, New Scientist, 18: 12-13.
Heathcote, R.L., 1969; Drought in Australia: a problem of perception. Geog. Rev. 59(2), 175-194.
Heathcote, R.L., 1979; The Threat from Natural Hazards in Australia, In Heathcote R.L. \& Thom, B.G. (eds), Natural Hazards in Australia, Australian Academy of Science, Canberra.

Heathcote, R.L., 1985; Extreme Event Analysis. In Climate Impact Assessments: studies of the interactions of climate and society, J.Wiley \& Sons, Chichester.

Heathcote, R.L. \& B.G. Thom, eds, 1979; Natural Hazards in Australia, Australian Academy of Science, Canberra.

Hennessy, K. J., 1994; Climate Change Scenarios For Australia in the Year 2030. Proceedings of the 44th Australian Cereal Chemistry Conference, 12-13 September, Ballarat, Royal Australian Chemical Institute.

Hennessy, K.J. \& Pittock, A.B., (in press); Greenhouse warming \& threshold temperatures events in Victoria, Australia. International Journal of Climatology.

Henschel, A., Burton, L., Margolies, L. \& Smith, J.E, 1969; An analysis of the heat deaths in St. Louis during July 1966. Amer. J. Public Health 59, 2232-2242.

Hounam, C.E., 1976; Assessment and Recognition of Drought. In Chapman, T.G. (ed) Drought: Australian UNESCO Seminar: 18-36, AGPS Canberra.

Hufchka, E. R., 1970; (ed) Glossary of Meteorology, American Meteorological Society.
ICD, 1977; International Classification of Disease, 1975 Revision. Manual of the International Statistical Classification of Disease, WHO, Geneva.

ICD, 1967; International Classification of Disease, 1965 Revision. Manual of the International

Statistical Classification of Disease, WHO, Geneva.
IPPC 2 (Intergovermental Panel on Pollution Control). Executive Summary, draft report.
Isbister, C., 1980; Heatstroke in Infants, The Medical Journal of Australia, Vol 1, p97-98.
Johnson, S.R., McQuigg, J.D. \& Rothrock, T.P., 1969; temperature modification and costs of electric power generation, Journal of Applied Meteorology, Vol. 8: December 1969, 919-926.

Jones, T.S., et al, 1982; Morbidity associated with the July 1980 heat wave in St. Louis and Kansas City, Missouri, J. Amer. Med. Assoc., 247, 3327-3331.

Kalkstein, L.S. \& Davis, R.E. 1989; Weather and Human Mortality; An evaluation of Demographic and interregional responses in the United States, Annals of the Association of American Geographers, 79(1), 44-64.

Karl, T.K. \& Quayle, R.G., 1981; The Summer Heat Wave and Drought in the Contiguous United States, Weatherwise, 6: 35-56.

Keig, G. \& McAlpine, J.R., 1977; Mortality and climate in Adelaide. Paper to Annual Conference, Melbourne (Aust. N. Zeal. Assoc. Adv. Sci.)

Kilbourne, E.M., 1989; Heatwaves, in Gregg, M.B. (ed) The Public Health Consequences of Disasters 1989, US Department of Health and Human Services, Public Health Service, Atlanta, Georgia.

Kilbourne, E.D., Choi, K, Jones, T.S, Thacker, S.B, 1982; Risk Factors for Heatstroke, A CaseControl Study, Journal of the American Medical Association, Vol 247, No. 24, p 3332-3336.

Kutschenreuter, P.H., 1969; Weather does affect mortality. ASHRAE J. 2, 39-43.
Lambert, G.E. 1963. Work, sleep, comfort. Arid Zone Res. 22, 239-72.
Le Comte, D.M. \& Warren, H.E., 1981; Modeling the Impact of Summer Temperatures on National Electricity Consumption, Journal of Applied Meteorology, December 1981, Vol. 20: 1415-1419.

Lee, D.H.K.; 1980; Seventy-five years searching for a Heat Index, Environmental Research, 22, 331356.

Lowe, I., 1988; The Energy Policy Implications of Climate Change. In Pearman, G.I. (ed), Greenhouse; Planning for Climate Change: 602-612, CSIRO Publications, Melbourne.

MacFarlane, A., \& Walker, R.E., 1976; Short term increases in mortality during heatwaves. Nature (Lond.) 264:434-436.

Macpherson, R.K., Ofner, F, \& Welch, J.A., 1967; Effect of the prevailing Air Temperature on Mortality, Brit. J. Preo. Soc. Med., 21, p13-21.

Marmor, M., 1978; Heatwave mortality in nursing homes. Environ. Res. 17, 102-15.
Marthick, J. \& Bryant, E., 1990; Health Implications of Long Term Climate Change, Literature Review, in Health Implications of Long Term Climate Change Vol. 2. Ewan, C., Bryant, E. \& Calvert, D. (eds), AGPS Canberra.

Martinez, B.F., Annest, J.L., Kilbourne, E.M., Kirk, M.L., Lui, K. \& Smith, S.M., 1989; Geographic distribution of heat-related deaths among elderly persons, JAMA October 27, 1989 - Vol 262 No. 16:

2246-2250.
Maunder, W.J., 1973; Weekly Weather \& Economic Activities on a National Scale: an Example using United States Retail Trade Data. Weather 28:2-18.

Maunder, W.J., 1989; The Human Impact of Climate Uncertainty: Weather Information, Economic Planning \& Business Management. Billings \& Sons Ltd, Worchester.

McBride, J.L. \& Nicholls, N., 1983; Seasonal Relationships Between Australian Rainfall and the Southern Oscillation. Monthly Weather Review, Vol. 111:1998-2004.

McCutchan, A.I., 1976; Drought - the General View. In Chapman, T.G. (ed) Drought: Australian UNESCO Seminar: 5-17, AGPS Canberra.

McInnes, K.L., Hennessy, K.J., Whetton, P.H. \& Beer, T., 1994; Climatic Impacts, in Mitchell, C.D., Hennessy, K.J. \& Pittock, A.B., (eds), Regional Impact of the Enhanced Greenhouse Effect on New South Wales. EPA, Sydney.

McPherson, R.K. \& Muncey, R. W., 1962; The disturbance of sleep by excessive warmth. Aust. J. Sci. 24, 454-6.

Mearns, L.O., Katz, R.W., \& Schneider, S.H., 1984; Extreme high temperature events, changes in their mean probabilities with changes in mean temperatures, J. Climate Appl. Meteor, 23, 1601-1613.

Metaxas, D.A. \& Kallos, G., 1980; Heat waves from a synoptic point of view. Riv. di Meteor. Aeronaut, IL, 2-3, 107-119.

Miller, W.H., 1968; Santa Anna winds and crime. Prof. Geogr. 20, 23-7.
Mitchell, C.D., Hennessy, K.J. \& Pittock, A.B., 1994a; Regional Impact of the Greenhouse Effect on New South Wales. Annual Report 1992/93, CSIRO.

Mitchell, C.D., Hennessy, K.J. \& Pittock, A.B., 1994b; Regional Impact of the Enhanced Greenhouse Effect on the Northern Territory. Annual Report 1992/93, CSIRO.

Mitchell, C.D., Hennessy, K.J. \& Pittock, A.B., 1994c; The Greenhouse Effect: Regional Implications for Western Australia. Final Report 1992/93, CSIRO.

MMWR, 1980); Heatwave Related Mortality, United States, Morbidity and Mortality Weekly Report. Vol 29: 30.

MMWR, 1981; Heatstroke, United States, Morbidity and Mortality Weekly Report. Vol 310:23-24..
MMWR, 1984; Ilness \& Death Due to Environmental Heat, Morbidity and Mortality Weekly Report, Vol.33, 23: 325-326.

MMWR, 1989; Heat-Related Deaths - Missouri, 1979-1988, Morbidity and Mortality Weekly Report,Vol. 38 No. 25: 437-439.

Nicholls, N., 1983; Predicability of the 1982 Australian Drought. Search, 14, No. 5-6; 154-155.
Nicholls, N., 1985; Towards the Prediction of Major Australian Droughts. Aust. Met. Mag. 33:161166.

Nicholls, N., 1986; Use of the Southern Oscillation to Predict Australian Sorghum Yield. Agricultural and Forest Meteorology, 38:9-15.

Nicholls, No., 1987; The El Niño-Southern Oscillation Phenomena. In Glantz, M., Katz, R. \& Krenz, M. (eds) The Societal Impacts Associated with the 1982-83 World-wide Climate Anomalies. Environment and Societal Impacts Group National Center for Atmospheric Research.

Nicholls, N., 1988a; El Niño-Southern Oscillation. Impact Prediction, Bulletin of the Am. Met. Soc. Vol. 69 No. 2:4-6.

Nicholls, N., 1988b; El Niño-Southern Oscillation and Rainfall Variability. Journal of Climate, Vol 1, No.4: 418-421.

Nicholls, N., 1988c; More on Early ENSOs Evidence from Australian Documentary Sources. Bulletin of the American Meteorological Society, Vol 69, No. 1: 4-6.

Nicholls, N., 1990; The El Nino-Southern Oscillation and Australian Vegetation. Proceedings of Conference.

Nicholls, N. \& Wong, K.K., 1990; Dependence of Rainfall Variability on Mean Rainfall, Latitude and the Southern Oscillation. Joumal of Climate, Vol. 3, 1:163-170.

Oeschli, F.W. \& R. W. Buechley, 1970; Excess Mortality associated with three Los Angeles September Hot Spells, Environmental Research, 3, p277-284.

Oke, T.R., 1990. Boundary Layer Climates. Routledge London.
Pacific Power, 1992; Untitled, Sydney, Australia.
Palutikof, J.P., 1987; 1982-83 Climatic Anomalies over Western Europe and their Impacts, in Glantz, M., Katz, R. \& Krenz, M. (eds) The Societal Impacts Associated with the 1982-83 World-wide Climate Anomalies. Environmental and Societal Impacts Group National Center For Atmospheric Research.

Parry, M. L \& Carter, T.R., 1985: The effect of Climatic variations on Agricultural risk, Climatic Change, Vol 7: 95-110.

Pitovranov, S.E., 1987; The Impact of 1982-83 Weather Anomalies on Some Branches of the Economy of the USSR, in Glantz, M., Katz, R. \& Krenz, M. (eds) The Societal Impacts Associated with the 1982-83 World-wide Climate Anomalies. Environmental and Societal Impacts Group National Center For Atmospheric Research.

Pittock, A.B., 1988; Actual and Anticipated Changes in Australia's Climate, in Pearman, G.I. (ed), Greenhouse; Planning for Climate Change: 35-51, CSIRO Publications Melbourne.

Pittock, A.B. \& Whetton, P.H. (eds), 1991; Regional Impact of the enhanced Greenhouse effect on New South Wales, SPCC, NSW Government, Sydney.

Posey, C., 1980; Heat Wave, Weatherwise, 33 (3), p112-116.
Prezerakos, N.G., 1989; A Contribution to the study of the extreme heatwave over the south Balkan in July 1987, Meteorology and Atmospheric Physics, 41(4), p261-271.

Qualye, R.G \& Diaz, H.F., 1980; Heat degree data applied to residential heating energy consumption. Journal of Applied Meteorology, 19: 241-246.

Quinn, W.H., Neal, V.T. \& Antunez de Mayolo, S.E., 1987; El Niño occurrences over the past four and a half centuries. J. Geophys. Res. Vol. 92. No. C13:14,449-14,461.

Rankin, D.W., 1959; Mortality associated with Heatwave conditions in Melbourne Metropolitan Area, January and February, 1959, Australian Meteorological Magazine, 26, 96-98.

Rasmusson, E.M. \& Wallace, J.M., 1983; Meteorological aspects of El Nino/Southern Oscillation. Science 222:1195-1202.

Riebsame, W.E., 1985; Climate Hazards, lessons from recent events in the United States, Disasters, 9(4), 295-300.

Riebsame, W.E., H.F Diaz, T. Moses \& M.Place, 1986; The Social burden of Weather and Climate Hazards, Bulletin of the American Meteorological Society, Vol 67, No. 11, p 1378-1388.

Rim, Y. 1975; Psychological test performance during climatic heat stress from desert winds. Int. J. Biometeor. 19, 37-40.

Robbins, M.C., de Watt, B. R. \& Pelto, J., 1972; Climate and behaviour: a biocultural study. J. Cross-Cultural Psychol. 3, 331-44.

Rogot, E. \& Padgett, S.J., 1976; Associations of coronary and stroke mortality with temperature and snowfall in selected areas of the United States, 1962-1966. American Journal of Epidemiology, 103: 565-575.

Ropelewski, C.F. \& Halpert, M.S., 1987; Global and Regional Scale Precipitation Patterns Associated with the El Niño/Southern Oscillation. Monthly Weather Review Vol. 115: 1606-1625.

Rosenthal, K.M. \& Hammer, G.L., 1979; Heatwave and maximum temperature probabilities. Queensland Agric. J. 105, 72-93.

Schneider, F.W., Lesko, W.A. \& Garrett, W.A., 1980; Helping behaviour in hot comfortable, and cold temperatures, Environment \& Behavior, June 1989, Vol. 12 No. 2: 231-240.

Schuman, S.H., 1972; Patterns of Urban Heatwave Deaths and Implications for Prevention; data from New York and St. Louis during July 1966. Environmental Research 5, 59-75.

Schuman, H., Arbor, A., Anderson, M.D. \& J.T. Oliver, 1964; Epidemiology of successive heat waves in Michigan in 1962 and 1963. J. Amer. Medic. Assoc. 189, 733-8.

Shattuck, G.C. \& Hilferty, M.M., 1932; Sunstroke and Allied Conditions in the United States. American Journal of Tropical Medicine, 12:223-45.

State Rail, 1988; Track Buckling Statistics, Internal Document.
States, S.J., 1977; Weather and Deaths in Pittsburgh, Pennsylvania: A comparison with Birmingham, Alabama. Int. J. Biometeorology, 21. 1:7-15.

Sydney Water Board, 1968; Summary of Water Restrictions 1940-1967. Internal Document.
Tew, G.P., 1989; A Theoretical Analysis of Track Buckling. The Fourth International Heavy Haul Railway Conference 1989: 467-473.

The Macquarie Dictionary, 1991; The Macquarie Library Pty Ltd, Sydney.

Thompson, S.A., 1982; Trends and Development in Global Disasters, 1947 to 1981. Working Paper 45, Natural hazards research and Application Information Centre, University of Colorado, Boulder, 25pp.

Tout, D. G., 1980; The Discomfort Index, mortality and the London summers of 1976 and 1978. International Journal of Biometeorology 24, 323-328.

Tromp, S.W., 1967; Climate and evolution. In Fairbridge, R.W. (ed) The Encyclopedia of Atmospheric Sciences and Astrogeology: 660-666, Reinhold.

Wolfson, N., Atlas, R. \& Sud, Y. C., 1987; Numerical Experiments related to the Summer 1980, U.S. Heat Wave, Monthly Weather Review, Vol 15, p 1345-1356.

Yoshino, M.M. \& Yasunari, T., 1987; Climatic Anomalies of El Niño and Anti-El Niño years and their Socio-economic Impacts in Japan. In Glantz, M., Katz, R. \& Krenz, M. (eds) The Societal Impacts Associated with the 1982-83 World-wide Climate Anomalies. Environmental and Societal Impacts Group National Center For Atmospheric Research.

Ziesel, H., 1950; How temperature affects sales. Printers Ink, 223: 40-42.

APPENDIX 1

Heatwave Days at Sydney according to Definition 2
(temperatures $>=35 \mathrm{C}$)

Temperature $>=35 \mathrm{C}$								
Year	Mo	Day	Temperature		Year	Month	Day	Temperature
1859	01	18	36.9		1869	11	18	36.2
1859	02	7	35.6		1869	12	27	37.5
1859	10	10	35		1870	01	13	40.7
1859	12	10	36.6		1870	12	7	37.3
1860	01	12	37.4		1871	12	22	39.9
1861	03	4	35.6		1872	01	17	36.8
1861	03	24	36.1		1873	12	16	37.8
1862	01	11	35.3		1874	10	12	35.6
1862	01	16	36		1874	12	23	35.7
1862	11	8	36.6		1875	01	29	36.1
1862	11	20	37.8		1875	02	4	37.2
1862	12	6	38.1		1875	12	1	35.3
1863	01	5	41.6		1876	02	25	36.1
					1876	02	26	35.8
1863	12	10	36.6					
					1877	12	23	36.3
1865	02	3	36.2					
					1877	12	28	35.3
1865	02	7	36.7					
					1878	11	21	39.3
1865	10	27	35					
					1879	10	23	35
1865	11	1	36.2					
					1879	12	1	35.8
1865	12	14	36.1					
					1881	02	13	38.1
1865	12	21	38.9					
					1882	02	16	35.5
1866	02	19	38.3					
					1882	12	19	37.7
1867	10	24	36.7					
					1883	12	6	35.1
1867	11	16	37.3					
					1883	12	12	37.6
1868	12	25	38.6					
					1884	01	7	37.8
1869	01	6	35.4					
					1884	01	14	38.2
1869	03	1	35.8					
					1885	01	9	35.9
1869	03	3	39.2					
					1885	01	31	35.9

Year	Month	Day	Temperature		Year	Month	Day	Temperature
1885	11	5	36.4		1899	12	1	38.9
					1899	12	2	36.7
1886	02	12	36.3					
					1900	01	19	35.6
1888	01-	18	36.8					
					1900	10	20	36.3
1889	01	14	39.3					
					1900	12	17	40.1
1889	02	27	35.9					
					1901	11	26	36.7
1889	12	6	36.1					
					1901	12	17	40
1889	12	27	37.5					
					1902	02	6	35.7
1891	01	9	36.3					
					1902	02	20	35.4
1891	01	27	35.4					
					1902	03	26	36.1
1891	12	16	36.2					
					1902	11	7	35
1891	12	30	36.4					
					1902	12	24	37.8
1894	01	12	36.1					
					1903	02	3	36.7
1894	02	12	36.1					
					1903	11	26	35.1
1894	11	26	36.4					
					1904	01	26	36
1895	12	16	35.6					
					1904	12	15	35.6
1896	01	4	35.1					
					1904	12	31	41.9
1896	01	6	40.7					
					1905	02	23	35.3
1896	01	10	36.9					
1896	01	11	37.8		1905	11	12	35.2
1896	01	12	36.5					
1896	01	13	42.5		1905	11	17	36.7
		\cdots						
1896	01	18	37.2		1906	02	22	36.3
1896	02	1	36.7		1908	11	3	35.1
1896	12	28	38.6		1908	11	7	38.8
1897	11	12	36.7		1908	12	30	35.6
1897	11	20	37.4		1909	01	3	40
					1909	01	4	37.3
1897	11	25	36.9					
					1909	11	10	35.9
1898	01	19	36.7					
					1909	12	14	39.3
1898	10	19	37.2					-
					1909	12	29	36.7
1899	11	28	37.2					

Year	Month	Day	Temperature		Year	Month	Day	Temperature
1910	12	27	35.9		1919	12	22	37.8
1911	12	8	36.8		1920	11	24	36.7
1911	12	11	38.3		1921	03	25	37.3
1912	01	5	38.2		1922	01	5	36.1
1912	01	15	39.4		1922	11	3	35.6
1912	11	15	37.3		1922	11	14	37.4
1913	01	25	38.1		1922	12	10	35.1
1913	02	5	36.7		1922	12	24	39.8
1913	02	18	38.1		1922	12	30	38.6
1913	12	25	35.1		1923	01	15	39.3
1914	01	2	35.8		1923	02	18	38.8
1914	01	27	35.2		1923	02	23	38.2
1914	10	30	35.6		1923	03	12	35.4
1914	12	12	38.6		1923	03	30	37.6
1915	01	26	40.3		1923	11	27	37.7
1915	01	28	39.6		1923	12	15	36.8
1915	03	1	37.1		1924	01	9	36.7
					1924	01	10	36.4
1915	03	7	35.1					
1915	03	8	38.2		1925	01	28	36.4
1915	03	13	36.7		1925	11	29	36.1
1915	11	14	36.2		1925	12	19	40.2
1915	11	18	35		1926	01	13	39.9
1916	01	11	36.1		1926	01	27	35.5
1917	01	12	36		1926	01	28	38.3
								-
1917	12	23	37.8		1926	02	8	42.1
1918	12	2	35.4		1926	02	15	39
1918	12	7	37.8		1926	02	17	40.6
1918	12	20	38.3		1926	03	10	38
								\cdots
1919	01	21	36.6		1926	10	20	35.4
1919	02	18	36.3		1926	10	23	36.2

Year	Month	Day	Temperature		Year	Month	Day	Temperature
1926	10	24	36.1		1934	01	24	39.7
					1934	01	25	35.7
1926	11	23	35.7					
					1935	01	23	38.7
1926	12	10	39.9					
					1935	10	27	35.3
1927	02	5	36.4					
					1936	01	16	36.9
1927	03	18	38.1					
					1936	10	8	35.9
1927	10	19	36.8					
					1936	11	4	35.1
1927	10	31	35		1936	11	5	36.2
					1936	11	6	37.7
1928	01	1	38.1					
					1937	01	19	36.7
1928	10	7	36.7					
					1937	03	23	35.1
1928	11	7	36.1					
					1937	12	13	35.7
1928	11	29	35.5					
1928	11	30	37.6		1938	11	10	35.2
1929	01	8	36.6		1938	12	5	36.2
1929	01	9	41.2					
					1938	12	7	35
1929	01	30	37.8					
					1938	12	10	36.8
1929	12	9	36.9					
					1939	01	14	45.3
1929	12	11	36.1					
					1939	02	14	38.8
1930	01	2	35.4					
					1939	02	17	36.4
1930	01	18	37.8					
					1939	12	4	36.6
1930	02	22	41.1					
					1939	12	12	38.8
1930	12	23	35.7					
					1940	01	25	41.3
1931	01	11	36					
					1940	01	28	40.6
1931	01	13	35.9		1940	01	29	35.1
1931	02	20	40.1		1940	02	11	39.4
1932	01	9	35.1		1940	03	28	38.7
1932	01	22	40.9		1940	10	15	35.3
1932	02	2	36.1		1940	11	11	35.1
1932	02	20	38.1		1941	02	1	39.3
1932	12	28	36.3		1941	11	19	35.2
1933	01	11	38.6		1941	11	30	39.6

Year	Month	Day	Temperature	Year	Month	Day	Temperature
1958	02	27	36.4	1971	12	4	35.2
1958	10	30	35.7	1972	12	11	36
1960	01	25	39.4	1972	12	15	37.3
1960	01	26	41.1				
1960	01	27	42.4	1972	12	21	36.1
1960	01	28	39.7				
				1972	12	23	39.9
1960	03	31	35				
				1973	01	31	36.8
1961	01	29	41.6				
				1973	02	4	36.3
1962	02	8	36.9				
				1973	02	6	39.6
1963	02	8	35.1				
				1973	11	20	36.2
1963	12	25	36.7				
				1974	11	12	38.4
1964	01	7	40.8				
				1975	01	2	39.6
1964	11	26	38.3				
				1975	01	23	36.9
1964	12	1	37.2				
				1975	11	20	37.4
1965	03	6	38.8				
				1975	12	12	39.5
1965	03	9	35.6				
				1976	12	3	36.7
1965	11	5	37.9				
				1976	12	7	37.3
1965	12	28	36.4				
				1977	01	1	36.9
1966	03	9	35.8				
				1977	01	30	40.4
1966	11	24	35.4				
				1977	02	1	41.4
1966	11	30	35.1				
				1977	10	29	35.8
1967	01	10	36.4				
				1977	12	10	37.2
1967	01	20	37.1				
				1977	12	27	35.4
1967	01	22	38.8				
				1978	01	15	37.4
1967	11	13	35.8				
1967	11	14	36.1	1978	02	9	36.7
1968	02	1	36.3	1978	02	11	37
1968	11	17	35.8	1978	02	20	37.2
1969	01	8	38.9	1979	01	10	39.6
1969	01	18	37.7	1979	02	13	38.4
1969	12	19	35.2	1979	12	2	36.4
1970	12	18	36	1979	12	5	39.9

$[33]$

Year	Month	Day	Temperature	Year	Month	Day	Temperature
1979	12	8	38.3	1986	02	9	39.7
1979	12	16	38.3	1986	03	27	35.4
1979	12	23	37.1	1987	01	14	35.4
1980	01	18	39.3	1987	01	16	35.3
1980	02	21	41.3	1987	02	3	37
1980	02	24	35.3	1988	01	21	35.2
1980	03	19	37.3	1988	02	28	35
1980	11	14	38.1	1988	03	11	35
1980	11	18	39.2	1988	10	29	36.8
1980	11	27	38.5	1988	11	3	39.2
1981	03	20	35.4	1988	12	10	35
1981	12	5	38.8	1989	12	26	36.7
1981	12	7	35.7	1990	11	1	35.4
1982	02	9	37.9	1990	12	8	35.2
1982	02	16	36	1990	12	18	39.8
1982	11	25	41.8	1990	12	23	40
1983	01	9	40	1991	01	5	35.6
1983	01	10	35.6				
				1991	02	14	40.8
1983	03	9	39.8				
				1991	02	26	36.8
1983	12	21	35				
				1991	11	26	36.1
1983	12	25	37.9				
				1992	01 :	23	35.6
1984	01	25	36.3				
				1992	02	3	35.2
1984	02	12	35				
1984	02	13	35.9	1993	01	17	37
1985	01	9	36.1	1993	02	4	36
1985	03	2	37.8	1994	01	3	37.1
1985	03	4	35.4	1994	01	5	36
				1994	01	6	37.3
1985	12	20	39	1994	01	7	36.4
1985	12	21	36.4				

APPENDIX 2

Heat Related Illnesses (from Kilbourne, 1989)

Heatstroke occurs when perspiration and the vasomotor, haemodynamic, and adaptive behavioural responses to a heat stress are insufficient to prevent a substantial rise in core body temperature. A patient's condition is usually designated as heatstroke when rectal temperature rises to greater or equal to $105 \mathrm{~F}\left(40.6^{\circ} \mathrm{C}\right)$ as a result of high environmental temperatures (although standardised diagnostic criteria do not exist). Mental status is affected, and the patient may be delirious, stuporous, or comatose. Classically, sweating is said to be absent in heatstroke, but this is not always so. The outcome of heatstroke is often fatal, even with expert care. The death-to-case ratio in reported case series varied from 0 to about 40% and averaged about 15%.

Heat exhaustion is much less severe than heatstroke, and occurs due to a fluid and electrolyte imbalance due to increased perspiration in response to intense heat. Patients complain of dizziness, weakness, or fatigue. Body temperature may be normal or slightly to moderately elevated.

Heat syncope refers to the sudden loss of consciousness, usually associated with exercise, by persons who are not acclimatised to the hot weather. The cause is thought to be circulatory instability due to superficial vasodilation in response to the heat.

Heat cramps occur during exercise done by persons unaccustomed to the heat, and are thought to be due to mild fluid and electrolyte imbalances which generally cease to be a problem after acclimatisation.

APPENDIX 3

Total Sum of Squares for Sydney and Broken Hill (Involved in calculation of threshold temperature)

The Threshold temp: 25.0000
TSS <IYEAR 6892.68
TSS 1-9 - 2167.63
TSS 10-19 3839.64
TSS 20-29 8885.28
TSS 30-39 9099.92
TSS 40-49 14865.2
TSS 50-59 43205.9
TSS 60+ 646407.
TSS TOTAL 778794.
The Threshold temp: $\quad 26.0000$
TSS <1YEAR 6985.40
TSS 1-9 2232.24
TSS 10-19 3880.09
TSS 20-29 9098.45
TSS 30-39 9183.31
TSS 40-49 15117.6
TSS 50-59 43606.3
TSS 60+ 674527.
TSS TOTAL 809182.

The Threshold temp: 27.0000
TSS <lYEAR 7080.10
TSS 1-9 2267.50
TSS 10-19 3914.73
TSS 20-29 9115.01
TSS 30-39 9394.57
TSS 40-49 15292.9
TSS 50-59 44465.7
TSS 60+ 692380.
TSS TOTAL 829609.
The Threshold temp: $\quad 28.0000$
TSS <lYEAR 7221.21
TSS 1-9 2289.28
TSS 10-19 4001.96
TSS 20-29 9266.14
TSS 30-39 9515.80
TSS 40-49 15453.9
TSS 50-59 45079.8
TSS 60+ 712009 .
TSS TOTAL 851897.
The Threshold temp: 29.0000
TSS <IYEAR 7326.41
TSS 1-9 2309.27
TSS 10-19 4050.23

TSS 20-29 9468.74
TSS 30-39 9672.05
TSS 40-49 15676.3
TSS 50-59 45803.5
TSS 60+ 725856.
TSS TOTAL 867654.

The Threshold temp: $\quad 30.0000$
TSS <1YEAR 7331.26
TSS 1-9 2338.26
TSS 10-19 4080.29
TSS 20-29 9516.35
TSS 30-39 9698.61
TSS 40-49 15799.3
TSS 50-59 46237.6
TSS 60+ 728170.
TSS TOTAL 868724.
The Threshold temp: $\quad 31.0000$
TSS <1YEAR 7426.68
TSS 1-9 2358.11
TSS 10-19 4113.07
TSS 20-29 9569.09
TSS 30-39 9837.21
TSS 40-49 15870.9
TSS 50-59 46584.1
TSS 60+ 733511.
TSS TOTAL 877014.

The Threshold temp: $\quad 32.0000$
TSS <1YEAR 7420.81
TSS 1-9 2351.89
TSS 10-19 4114.28
TSS 20-29 9583.76
TSS 30-39 9840.54
TSS 40-49 15977.6
TSS 50-59 46505.3
TSS 60+ 734581.
TSS TOTAL 877436.

The Threshold temp: $\quad 33.0000$
TSS <1YEAR 7441.74
TSS 1-9 2360.33
TSS 10-19 4114.02
TSS 20-29 9580.56
TSS 30-39 9836.40
TSS 40-49 15995.0
TSS 50-59 46532.4
TSS 60+ 733713.

TSS TOTAL 876443.
The Threshold temp: $\quad 34.0000$
TSS <1YEAR 7450.67
TSS 1-9 2369.67
TSS 10-19 4119.98
TSS 20-29 9566.79
TSS 30-39 9859.71
TSS 40-49 15989.6
TSS 50-59 46636.9
TSS 60+ 735631.
TSS TOTAL 877560.

The Threshold temp: $\quad 35.0000$
TSS <1YEAR 7440.49
TSS 1-9 2371.53
TSS 10-19 4123.92
TSS 20-29 9626.63
TSS 30-39 9839.71
TSS 40-49 16015.4
TSS 50-59 46650.6
TSS 60+ 736350.
TSS TOTAL 879107.
The Threshold temp: $\quad 36.0000$
TSS <1YEAR 7454.53
TSS 1-9 2376.23
TSS 10-19 4134.21
TSS 20-29 9634.81
TSS 30-39 9873.56
TSS 40-49 16010.6
TSS 50-59 46725.9
TSS 60+ 734310 .
TSS TOTAL 875967
The Threshold temp: $\quad 37.0000$
TSS <1YEAR 7460.33
TSS 1-9 2379.34
TSS 10-19 4133.76
TSS 20-29 9625.41
TSS 30-39 9885.03
TSS 40-49 16001.8
TSS 50-59 46754.9
TSS 60+ 736910.
TSS TOTAL 879665.
The Threshold temp: $\quad 38.0000$
TSS <IYEAR 7465.62
TSS 1-9 2377.25

TSS 60+ 737397.
TSS TOTAL 880432.
The Threshold temp: 43.0000
TSS <1YEAR 7470.15
TSS 1-9 2381.75
TSS 10-19 4140.56
TSS 20-29 9644.51
TSS 30-39 9905.08
TSS 40-49 16057.3
TSS 50-59 46839.6
TSS 60+ 737435.
TSS TOTAL 880516.
The Threshold temp: $\quad 44.0000$
TSS <IYEAR 7470.15
TSS 1-9 2381.75
TSS 10-19 4140.56
TSS 20-29 9644.51
TSS 30-39 9905.08
TSS 40-49 16057.3
TSS 50-59 46839.6
TSS 60+ 737435.
TSS TOTAL 880516.

The Threshold temp: 45.0000
TSS <1YEAR 7470.15
TSS 1-9 2381.75
TSS 10-19 4140.56
TSS 20-29 9644.51
TSS 30-39 9905.08
TSS 40-49 16057.3
TSS 50-59 46839.6
TSS 60+ 737435.
TSS TOTAL 880516.
The Threshold temp: $\quad 46.0000$
TSS <IYEAR 7470.15
TSS 1-9 2381.75
TSS 10-19 4140.56
TSS 20-29 9644.51
TSS 30-39 9905.08
TSS 40-49 16057.3
TSS 50-59 46839.6
TSS 60+ 737435.
TSS TOTAL 880516.

The Threshold temp: $\quad 47.0000$
TSS <lYEAR 7470.15

TSS 1-9 2381.75
TSS 10-19 4140.56
TSS 20-29 9644.51
TSS 30-39 9905.08
TSS 40-49 16057.3
TSS 50-59 46839.6
TSS 60+ 737435.
TSS TOTAL 880516.

Broken Hill

The Threshold temp: 22.0000
TSS <1YEAR 42.6612
TSS 1-9 - 13.9502
TSS 10-19 34.7997
TSS 20-29 45.4889
TSS 30-39 52.4269
TSS 40-49 70.7143
TSS 50-59 267.063
TSS 60+ 2680.48
TSS TOTAL 3265.75

The Threshold temp: $\quad 23.0000$
TSS <1YEAR 41.6826
TSS 1-9 13.9469
TSS 10-19 32.8274
TSS 20-29 42.5608
TSS 30-39 48.5286
TSS 40-49 67.7405
TSS 50-59 261.258
TSS 60+ 2681.56
TSS TOTAL 3255.56

The Threshold temp: 24.0000
TSS <1YEAR 41.6849
TSS 1-9 11.9636
TSS 10-19 34.7974
TSS 20-29 44.5128
TSS 30-39 52.4319
TSS 40-49 73.5958
TSS 50-59 263.061
TSS 60+ 2685.39
TSS TOTAL 3259.14
The Threshold temp: 25.0000
TSS <IYEAR 41.6825
TSS 1-9 13.9517
TSS 10-19 32.8259
TSS 20-29 43.5345
TSS 30-39 52.4265
TSS 40-49 68.7186
TSS 50-59 262.331
TSS 60+ 2737.70
TSS TOTAL 3312.47

The Threshold temp: $\quad 26.0000$
TSS <IYEAR 41.6850
TSS 1-9 13.9495
TSS 10-19 20.8885

TSS 20-29 44.5161
TSS 30-39 52.4267
TSS 40-49 72.6533
TSS 50-59 257.811
TSS 60+ 2728.66
TSS TOTAL 3260.46

The Threshold temp: 27.0000
TSS <1YEAR : 41.6861
TSS 1-9 12.9573
TSS 10-19 34.8025
TSS 20-29 45.5028
TSS 30-39 51.4528
TSS 40-49 70.7379
TSS 50-59 261.604
TSS 60+ 2752.16
TSS TOTAL 3327.41
The Threshold temp: $\quad 28.0000$
TSS <1YEAR 40.7037
TSS 1-9 13.9484
TSS 10-19 31.8381
TSS 20-29 43.5494
TSS 30-39 52.4218
TSS 40-49 70.7309
TSS 50-59 265.003
TSS 60+ 2748.65
TSS TOTAL 3322.39

The Threshold temp: 29.0000
TSS <lYEAR 38.7070
TSS 1-9 12.9575
TSS 10-19 34.7976
TSS 20-29 41.5819
TSS 30-39 48.4859
TSS 40-49 70.7421
TSS 50-59 239.706
TSS 60+ 2763.05
TSS TOTAL 3273.79

The Threshold temp: $\quad 30.0000$
TSS <IYEAR 42.6689
TSS 1-9 13.9492
TSS 10-19 34.8027
TSS 20-29 45.4891
TSS 30-39 50.4871
TSS 40-49 69.7581
TSS 50-59 261.680
TSS 60+ 2753.58

TSS TOTAL 3313.58

The Threshold temp: $\quad 31.0000$
TSS <1YEAR 41.6879
TSS 1-9 13.9454
TSS 10-19 34.8050
TSS 20-29 45.5013
TSS 30-39 53.4106
TSS 40-49 72.6448
TSS 50-59 266.294
TSS 60+ 2778.38
TSS TOTAL 3361.25

The Threshold temp: $\quad 32.0000$
TSS <IYEAR 42.6646
TSS 1-9 12.9541
TSS 10-19 32.8286
TSS 20-29 45.5079
TSS 30-39 53.3985
TSS 40-49 73.6188
TSS 50-59 267.120
TSS 60+ 2724.87
TSS TOTAL 3312.63
The Threshold temp: $\quad 33.0000$
TSS <IYEAR 38.7077
TSS 1-9 13.9445
TSS 10-19 33.8102
TSS 20-29 45.5148
TSS 30-39 52.4225
TSS 40-49 73.6339
TSS 50-59 265.211
TSS 60+ 2771.99
TSS TOTAL 3354.30

The Threshold temp: $\quad 34.0000$
TSS <1YEAR 42.6681
TSS 1-9 13.9383
TSS 10-19 33.8023
TSS 20-29 42.5798
TSS 30-39 53.3762
TSS 40-49 72.6797
TSS 50-59 269.024
TSS 60+ 2791.87
TSS TOTAL 3377.44

The Threshold temp: $\quad 35.0000$
TSS <IYEAR 42.6569
TSS 1-9 13.9275

TSS 10-19 34.7901
TSS 20-29 45.5109
TSS 30-39 52.3845
TSS 40-49-72.6687
TSS 50-59 261.492
TSS $60+2762.41$
TSS TOTAL 3329.60

The Threshold temp: $\quad 36.0000$
TSS <1YEAR 42.6426
TSS 1-9 13.9135
TSS 10-19 34.7962
TSS 20-29 45.5190
TSS 30-39 51.4322
TSS 40-49 72.6660
TSS 50-59 269.953
TSS 60+ 2778.74
TSS TOTAL 3364.08
The Threshold temp: $\quad 37.0000$
TSS <1YEAR 39.7291
TSS 1-9 11.9579
TSS 10-19 34.8025
TSS 20-29 45.5155
TSS 30-39 47.5187
TSS 40-49 72.6555
TSS 50-59 270.841
TSS 60+ 2771.51
TSS TOTAL 3357.54

The Threshold temp: $\quad 38.0000$
TSS <1YEAR 42.6646
TSS 1-9 13.9331
TSS 10-19 34.8058
TSS 20-29 45.4945
TSS 30-39 52.4415
TSS 40-49 71.6991
TSS 50-59 269.046
TSS 60+ 2804.99
TSS TOTAL 3392.71

The Threshold temp: $\quad 39.0000$
TSS <IYEAR 42.6539
TSS 1-9 9.96982
TSS 10-19 34.8090
TSS 20-29 44.5292
TSS 30-39 52.4346
TSS 40-49 71.7361
TSS 50-59 269.207

TSS 60+ 2825.75
TSS TOTAL 3389.80
The Thres̀hold temp: $\quad 40.0000$
TSS <lYEAR 41.6876
TSS 1-9 13.9569
TSS 10-19 34.8120
TSS 20-29 45.4722
TSS 30-39. 53.4141
TSS 40-49 73.6336
TSS 50-59 272.603
TSS 60+ 2821.94
TSS TOTAL 3410.26
The Threshold temp: $\quad 41.0000$
TSS <IYEAR 41.6940
TSS 1-9 13.9566
TSS 10-19 34.8142
TSS 20-29 43.5694
TSS 30-39 53.4205
TSS 40-49 73.5454
TSS 50-59 270.874
TSS 60+ 2814.03
TSS TOTAL 3405.95
The Threshold temp: $\quad 42.0000$
TSS <1YEAR 42.6762
TSS 1-9 13.9571
TSS 10-19 34.8132
TSS 20-29 45.5252
TSS 30-39 53.4251
TSS 40-49 72.6707
TSS 50-59 271.847
TSS 60+ 2837.84
TSS TOTAL 3427.67
The Threshold temp: $\quad 43.0000$
TSS <lYEAR 42.6770
TSS 1-9 13.9569
TSS 10-19 34.8143
TSS 20-29 45.5274
TSS 30-39 53.4278
TSS 40-49 72.7080
TSS 50-59 272.392
TSS 60+ 2839.76
TSS TOTAL 3430.42

APPENDIX 4

Consequences of Heatwaves Documented in The Sydney Morning Herald, 1803-83

A. SICKNESS

1. Melbourne- fire and sickness prevailed after 3-4 days of excessive heat-SMH19/1 1854-2c
2. Bathurst- many people suffering from diarrohoea after 3 very hot days- SMH 17/1 1857-4e
3. Around Brisbane- great deal of sickness among all ages- SMH 18/4 1859-5a
4. Deniliquin- diptheria has appeared-SMH 7/2 1860-3F
5. Deniliquin- a great deal of sickness especially among children- SMH 25/1 1862-7a, and also SMH 5/2 1862-8b
6. Sydney-high heat and humidity caused marked increase in Skin complaints, gastric trouble - SMH 2/3 1858-3
7. Sydney-heat influenza affecting many-SMH 29/1 1960-4

B. OTHER HUMAN EFFECTS

1. Hot nights- people sleeping on the beaches in Adelaide and Melbourne-SMH 11/1 1939-15h,16a
2. Adelaide- police blame heat for record number of calls to husband and wife disputes-SMH 22/1 1973-3
C. EFFECT OF AIR CONDITIONING
3. Hay-owners of AC opened their homes to all babies, and saved dozens of babies from heat exhaustion-SMH 18/1 1960-1
4. 6 heatstruck babies recovered in AC hospital wards-SMH 28/1 1960-4
D. FOOD SHORTAGES AND PRICE INCREASES
5. Townsville-milk shortages and vegetable prices have increased by up to 400%-SMH 10/1 1939-13h
6. NSW- Milk yields dropping and prices increasing- SMH 5/1 1946-1
7. Sydney-prices of green vegetables would be "forced up"-SMH 22/12 1953-1

E. WATER

1. WATER CONSUMPTION

a) Adelaide- water consumption increased from 16.5 million gallons a day - to 40 million- SMH 31/12 1931-10c
b) Perth- 20 million gallons of water consumed daily-SMH 12/12 1931-14g
c) Canberra- consumption has neary doubled since the heatwave began- SMH 11/1 1939-15h,16a
d) Sydney-record consumption of 230 million gallons-SMH 28/10 1948-3
e) Sydney- according to the Metropolitan Water Board Consumption for previous 7 days was the highest ever recorded at 1607.2 million gallonsSMH 18/11 1953-1
f) Sydney- very high water consumption- SMH 4/1 1955-1,4
g) Perth-all time record consumption of 81287000 gallons - SMH 13/1 1956-4
h) Sydney- record April consumption of 225.6 million gallons - SMH 14/4 1957-29
i) Sydney- 275 million gallons used compared with previous years Oct average of 191 million gallons and highest consumption of 248 million gallons -SMH 11/10 1957-1
j) Sydney- 307 million gallons of water used. 100 million more than usualSMH 22/ 1973-3
k) Melbourne- water consumption rose rapidly-SMH 22/1 1973-3

2. WATER SHORTAGE

a) Canberra- the possibility of imposing water restrictions is being consideredSMH 11/1 1939-15h,16a
b) Ivanhoe- water is being brought from Menindie at a cost of $1 / 6$ a 100 gallons, and ice is being brought from Broken Hill at a cost of 8 / a hundreth weight- SMH 11/1 1939-15h,16a
c) Adelaide-ice is being rationed in some districts-SMH 11/1 1939-15h,16a

3. WATER RESTRICTIONS

a) Sydney- record consumption of 230 million gallons restrictions in some areas (see reference)-SMH 28/10 1948-3
b) Water Board banned the use of fixed hoses in Manly Warringah- SMH $31 / 10$ 1958-1

4. WATER SUPPLY FAILURE

a) Water supplies failed at Arcadia, Orchard Hills and Plumpton-SMH 22/1 1953-1
b) Sydney-very high water consumption- some areas without water- SMH 4/1 1955-1,4
c) Sydney- some areas without water- SMH 11/10 1957-1
d) Sydney- water supply failed in many suburbs for up to 11 hours- SMH 31/10 1958-1
e) Sydney-widespread water failure- SMH 28/1 1960-1
f) Temporary failures at Lugarno and Auburn-SMH 30/1 1961-1,8

F. BUSINESS

1. RESTRICTIONS / PROBLEMS DUE TO HEAT

a) Adelaide-very hot and very little business doing-SMH 17/1 1859-5d
b) The Lachlan- farm workers desisted between 1-5pm-SMH 8/2 1860-5e
c) Adelaide-very hot and very little bussiness doing-SMH 10/1 1861-4d
d) Rockhampton- midday work suspended during hot period-SMH 6/3 18665b
e) Adelaide- several factories and businesses closed early, and some will stay closed tommorrow. General Motors Holden closed at 3pm but employees will recieve a full days wageSMH 11/1 1939-15h,16a.
f) Melbourne-blacksmiths given time off work-SMH 20/1 1908-8b
g) Sydney- 500 waterside workers walked off - up to 44 C inside ships- some ships sprayed on the side to cool them downlater decided that " men not required to work extra shift due to heat"- SMH 26/1 1960-12
h) Sydney-many factories and offices closed before noon due to heat and absenteeism- SMH 28/1 1960-1
i) Wharf labourers stopped work-SMH 28/1 1960-1
j) Fifteen Overseas and interstate ships were delayed due to loading delaysSMH 29/1 1960-1
k) Melbourne - more than 1000 waterside workers stopped work when temps topped 37.7C-SMH 8/2 1962-6

1) Sydney- factories and department stores closed at lunchtime due to heatSMH 6/2 1973-1
m) Sydney- wharf workers stop work again- SMH 6/2 1973-1

2. FACTORY CONDITIONS

a) Parramatta- 54.5 F in the square of a factory-SMH 17/12 1853-7d
b) Temp in the workshop of J.Shearer and sons was $51.7 \mathrm{~F}-\mathrm{SMH} 11 / 1$ 193915h,16a
c) North Sydney- a printing office was closed with an inside temp of 48.9C. The heat shrank printing paper-SMH 27/1 1960-1
d) Pagewood-50C inside a motor plant-SMH 28/1 1960-1
e) Lidcombe-45C recorded inside an aircraft factory-SMH 27/1 1960-1
3. INCREASEDSALES
a) Sydney-

1) steady rush for cold drinks and ice creams, hotels well frequented-SMH 5/2 1949-11.
2) Many milkbars sold out of soft drinks and ice cream by the afternoonSMH 7/2 1949-1
3) "Beer Scare" due to excess demand and low supply-SMH 15/1 1949-1
b) Sydney-
4) increased sale of hats and cool clothes-SMH 9/12 1850-1
5) milk bar business up by 100%-SMH $9 / 12$ 1850-1
c) Sydney-milkbars reported record trade-SMH 22/12 1953-1
d) Sydney-
6) hotels ran out of beer- SMH 4/1 1955-1,4
7) milk bars ran out of supplies of milk, drink and ice creamone ran out by 9am-SMH 4/1 1955-1,4
e) Sydney-increased sale of salt tablets-by up to 1000%. Emergency supplies - being shipped from Melbourne-SMH 29/1 2960-4
f) Sydney- soft drink factories at maximum production- SMH 31/1 1960-9
g) Sydney-fans sold out- SMH 31/1 1960-9

G. ECONOMIC CONSEQUENCES

1. from 180000 to 250000 Queensland-loss of stock and damages to crops are estimated at costing the primary producer pounds- SMH 31/1 1940-14

H. TRAINS

1. Townsville- 3 trains delayed for 2 hrs due to buckled rails-SMH 12/3 1946-3
2. Sydney-rails buckled on several suburban services causing delays-SMH 22/12 1953-1
3. Sydney- Buckled rails on north and south coast lines delayed trains by 30 mingSMH 21/12 1957-1
4. Granville-rail buckled resulting in a train colliding with the platform- caused disorganisation among electric train services for 2.5 hours-SMH 31/10 1958-1
5. Sydney- buckled lines at Normanhurst and 30 feet of buckled lines at Narwee (East Hills System) and a points failure on the North Shore disrupted services. Gallons of water were poured on the track at Normanhurst-SMH 27/1 1960-1
6. Sydney- buckled lines at St Allawah, St Peters, Gordon,Normanhurst-SMH 28/1 1960-1
7. Lines buckled at Beecroft and Macdonaldtown-SMH 29/1 1960-4
8. Train delayed for $10-15$ ming when lines buckles and 12 signals failed-SMH 30/1 1961-1,8
I. CAR BREAKDOWNS
9. NRMA STATISTICS
a) Sydney- NRMA assisted around 500 motorists with breakdowns due to vapour locks in petrol feed lines-SMH 9/12 1850-1
b) Sydney- NRMA unable to keep up with demands-more than 1100
calls by 8 pm - mostly caused by vapourised petrol blocking fuel systemsSMH 18/11 1957-1
c) Sydney- NRMA 2000 calls for assistance- worst period 2-4pm90 \% of calls were for vapour locks- SMH 21/12 1957-1
d) Sydney- NRMA answered thousands of calls-SMH 28/1 1960-1
e) Sydney- 1486 calls by 6 pm -double the average- SMH 30/1 1961-1,8
f) Sydney- 815 calls- 300 more than usual-SMH 22/1 1973-3

2. OTHER

a) Sydney-

1) many flat tyres as heat caused air to expand and defective valves brokeSMH 22/12 1953-1
2) radiators boiled-SMH 22/12 1953-1
b) Ambulances broken down due to fuel blockages- SMH 27/1 1960-1

J. ROADS AND BRIDGES

1. Sydney Harbour Bridge- 13in longer than 6 months ago-SMH 9/12 1850-1
2. Gladesville Bridge-
a) Jammed open between $4.45 \mathrm{pm}-6.25 \mathrm{pm}$ when the metal expanded.
b) Caused one of the worst traffic jams seen in Sydney- traffic was banked back to Pyrmont Bridge- SMH 18/11 1957-1
3. Sydney- traffic jams on Pacific Highway, Harbour Bridge and roads to Gladesville Bridge due to car breakdowns and bridge jamming openSMH 18/11 1957-1
4. Gladesville Bridge jammed open (about 12 ft from fully closed position), 15 ming after it was opened. It was jammed from 3.30 to 5.20 pm . Firemen hosed it till it could close. The bridge has a normal finch clearance SMH 27/1 1960-1
5. Sydney Harbour Bridge- rose tin, and expanded 9.5in. The Bridge is made to cope with a rise or fall from average min/ max temps of 15.5C-SMH 31/1 1960-9
6. Glebe island, Gladesville and Pyrmont Bridges were hosed by workmen to prevent them buckling-SMH 30/1 1961-1,8

K. ROAD MATERIALS

1. Hay-soggy bitumen roads-SMH 18/1 1960-1
2. Sydney-car wheels spun in soft bitumen-SMH 27/1 1960-1
3. Mascot- bitumen hosed down to prevent passengers burning
their feet as they boarded planes-SMH 27/1 1960-1
4. Sydney- a man burnt his foot after loosing his shoe in melted bitumen-SMH 27/1 1960-1
5. Sydney- women lost stilettos in melted bitumen-SMH 27/1 1960-1

L. FURNITURE

1. Furniture not in sun "disagreeably hot"- Goulburn-SMH 14/2 1851-2f
2. Lower Murrumbidgee-furniture hot too touch-SMH 18/2 1860-7f
3. Murrumbidgee- 14 days of excssive heat -max temp was 48 F everything very hot- handles, glasses etc.-SMH 29/1-1862-5e,f
4. Sydney-furniture, bedding and floors hot to the touch-SMH 16/1 1939-12b

M. AGRICULTURAL

1. DAMAGE TO CROPS $(1823-1866,1939)$
a) Windsor-SMH 12/1 1843-3c
b) Windsor-SMH 5/2 1849-3a
c) Windsor-SMH $24 / 10$ 1849-2g
d) Wollombi-SMH 27/12 1849-2f
e) Windsor- SMH 1/1 1850-2f
f) Camden-SMH 12/1 1850-3c
g) Goulburn-SMH 30/11 1850-4c
h) Camden-SMH 11/1 1851-5c
i) Parramatta-SMH 10/2 1851-2f
j) Hexham-SMH 4/2 1853-2f
k) Braidwood-SMH 6/1 1854-3h
1) Braidwood-SMH 15/11 1855-8a
m) Campbelltown, Hunter District, Singelton- SMH 19/11 1855-

2f,3a,c
n) Windsor-SMH 20/11 1855-2a
o) Gundaroo-SMH 4/12 1855-2d
p) Windsor-SMH 14/1 1858-3a
q) Yass-SMH $31 / 1$ 1860-3b
r) Carcoar-SMH 26/11 1861-3f
s) Bathurst-SMH13/1 1862-8c
t) Braidwood-SMH 9/1 1864-6f
u) Sydney?-SMH 22/12 1953-1
2. STOCK LOST (1823-1866, 1905-)
a) Goulburn SMH $2 / 2$ 1848-2g
b) Lower Murrumbidgee-SMH $17 / 2$ 1857-

5b
c) Deniliquin-SMH 7/2 1850-3f
d) Cobar-SMH 6/2 1939-7b
e) Parramatta-SMH 3/1 1905-6f
f) Newcastle-SMH 6/1 1909-10e
g) Homebush-SMH 28/2 1911-9f
h) Queensland- estimated that 50000 fowls died thru stateloss of aprox 12500 pounds to poultry owners-SMH 30/1 1940-9
i) Sydney??- SMH 22/12 1953-1
j) Flemington- SMH 28/1 1960-4
3. POSITIVE IMPACTS (1823-1866, 1939)
a) Camden-Good for wine-SMH 11/11 1851-5c
b) Moreton Bay-Vegetable produce growing amazingly fast-SMH 2/1 1857-5b
c) Shoalhaven- Maize promises to be a good crop after 2 days of $32.5 \mathrm{~F}-$ SMH 16/2 1859-3f

N. EFFECT ON ANIMALS

1. Two horses died running the Newcastle Mail- SMH 6/2 1855-5b.

Nb . this is not an isolated incidence- many horses collapsed and/ or died while running the mail or working as coach horses.
2. Lake Hope- Millions of fish killed by the heat-SMH $28 / 3$ 1863-7f
3. Leeton- dead fish in the Murrumbidgee whose waters are luke warm-SMH 11/1 1939-15h,16a
4. Castle Hill-Koala Park-bears sprawled in exhaustionsprinklers sprayed on eucalypts all the time-SMH 14/1 1939-11f
5. Isisford, Queensland- lack of natural shade meant birds were baked under galvanised iron or boiled in drains-hundreds perished-SMH 23/2 1932-13c

O. OTHER

1. Melbourne- trees planted in streets to "ward off sunstrokeSMH 10/3 1855-6f
2. The Lachlan- water in bland creek evaporated 29in in 24 hours with a fall of 29in in a mile- SMH 8/2 1860-5e
3. Pilots reportes unusually high temps in the atmosphers up to $12500 \mathrm{ft}-\mathrm{SMH} 11 / 1$ 1939-15h,16a and SMH 13/1 1939-11e.
4. Trangie-motors in several large refrigerators burnt out- a max of 44.5 was recordered-SMH 22/1 1952-3
5. Car windscreens shatteres due to expansion of air insideSMH 28/1 1960-4
6. PAN AM jet delayed at Kingsford Smith for 3 hours due to heat- air too thin and runway too short-SMH 29/1 1960-4
7. GPO weather service answered 131928 calls; 650002 days prior, and less than 6000 the week before-SMH 29/1 1960-4
8. Sydney-cream filling of biscuits melted, as did floor and boot polishes-SMH 31/1 1960-9
9. Pianos out of tune due to expanded strings- SMH 31/1 1960-9
10. RSPCA- received many calls for advice in cooling pets- SMH 31/1 1960-9
