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Abstract

Dedekind sums arose out of the study of elliptic functions and modular forms. They were

initially discovered by Dedekind but have since been studied for their many arithmetic

properties. Much work has been done on Dedekind sums and in 1972 Rademacher and

Grosswald released a book that summarised much of what was known, as well as providing

a history of Dedekind sums. This encouraged greater interest in this topic and provided

groundwork for further research. In our essaywe seek to update Rademacher andGrosswald’s

book by providing an overview of some of the research that has been done since its publication.

We will also extend some results of Myerson and Phillips, regarding fixed points of Dedekind

sums. It is our intention that our findings will provide a foundation for future research in the

study of Dedekind sums.
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1
Introduction

We define the Dedekind sum for integers h and k, where k is positive, by

s(h, k) =
k∑
µ=1

((
hµ
k

)) ((
µ

k

))
. (1.1)

The symbol ((x)) is the sawtooth function (see Figure 1.1), which is defined by

((x)) =




x − [x] − 1/2 if x is not an integer,

0 if x is an integer,
(1.2)

where [x] is the integer part of x.

Dedekind sums arose out of the study of the Dedekind-eta function,

η(τ) = e
πiτ
12

∞∏
m=1

(
1 − e2πimτ

)
, Im(τ) > 0, (1.3)

and of modular forms. They were observed by taking the modular transformation

η

(
aτ + b
cτ + d

)
= η(τ) +

1
2
log

cτ + d
isign(c)

+ πi
a + d
12c

+ πis(d, |c|) (1.4)



2 Introduction

−3 −2 −1 1 2 3

−0.4

−0.2

0.2

0.4

Figure 1.1: The Sawtooth Function

where a, b, c and d are integers and ad − bc = 1. Within this study Dedekind proved the

now well-known reciprocity formula for Dedekind sums. However, Dedekind sums have

been studied independently of modular forms due to their arithmetic properties. Dedekind

sums have found applications in number theory, as well as topology, geometry and computer

science. We will discuss some of these applications in this essay.

The main resource on Dedekind sums is a book by Rademacher and Grosswald [29].

This book stated many of the known facts about Dedekind sums and laid a foundation for

further research. It also provided some open questions which have since been answered.

We note that there has been no attempt to synthesise all the work that has been done on

Dedekind sums in the 40 years since the publication of [29]. The purpose of our research

is to present many of the new results over this period of time and add to the literature on

Dedekind sums. Due to the sheer volume of papers that have been published it would be

impossible to provide a complete account of all that has been researched on Dedekind sums.

However, we have provided a small snapshot of some of the significant advances in this area

and we hope that by presenting this information it will encourage more research and further

our collective knowledge of Dedekind sums. In the final chapter we also present a number

of original results that we have been able to prove, many of which extend previous results

of Myerson and Phillips [21]. In our thesis we also lay the groundwork for our own further

research on this topic.



2
Elementary Properties

2.1 Basic Properties

In this chapter we will discuss some of the elementary properties of the Dedekind sum.

Although these results appear in [29], they will be instrumental in progressing further in our

discussion.

Theorem 2.1.1. Suppose gcd(h, k)=1. Then

s(−h, k) = −s(h, k),

s(h,−k) = s(h, k),

s(h, k) = s(h′, k) where h ≡ h′ (mod k),

s(h, k) = s(h′, k) where hh′ ≡ 1 (mod k),

s(ah, ak) = s(h, k).

(2.1)

Before we prove these we provide the following lemma which is given in [29, Ch. 2].
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Lemma 2.1.1. Suppose x is a real number and k is a positive integer, then∑
λ mod k)

((
λ + x

k

))
= ((x)).

Proof. Consider D(x) =
∑
λ mod k

((
λ+x

k

))
− ((x)). We can see that this function is periodic

in x with period 1. So we can consider 0 ≤ x < 1. Now,

D(0) =
k−1∑
λ=1

(
λ

k
−
1
2

)
=

k − 1
2
−

k − 1
2
= 0.

Similarly, for x , 0,

D(x) =
k−1∑
λ=0

(
λ

k
+

x
k
−
1
2

)
−

(
x −

1
2

)
=

k − 1
2
+ x −

k
2
− x +

1
2
= 0.

�

We now prove our theorem.

Proof. The first two of these equations are proved trivially due to the sawtooth function being

an odd function. The third result is due to the periodicity of the sawtooth function. That is,

we can suppose h′ = nk + h for some integer n. Then,

s(h′, k) =
k∑
µ=1

((
(h + nk)µ

k

)) ((
µ

k

))

=

k∑
µ=1

((
hµ
k
+ nµ

)) ((
µ

k

))

=

k∑
µ=1

((
hµ
k

)) ((
µ

k

))
= s(h, k).

The fourth equation we can prove by observing that µ runs through a complete residue

system modulo k. Hence, h′µ also runs through a complete residue system modulo k since

the gcd(h, k) = 1. Therefore

s(h, k) =
k∑
µ=1

((
hµ
k

)) ((
µ

k

))

=

k∑
µ=1

((
h(h′µ)

k

)) ((
(h′µ)

k

))

=

k∑
µ=1

((
µ

k

)) ((
h′µ
k

))
= s(h′, k).
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For this final equation we first need to show that s(h, k) =
∑k
µ=1

u
k

(( hµ
k

))
. We observe by

Lemma 2.1.1 that
∑k
µ=1

(( hµ
k

))
= 0. Now, by our definition of the sawtooth function, we

obtain

s(h, k) =
k∑
µ=1

(
µ

k
−

[
µ

k

]
−
1
2

) ((
hµ
k

))

=

k∑
µ=1

(
µ

k
−
1
2

) ((
hµ
k

))

=

k∑
µ=1

µ

k

((
hµ
k

))
.

Therefore we have,

s(ah, ak) =
ak∑
µ=1

µ

ak

((
ahµ
ak

))

=
1

ak

ak∑
µ=1

µ

((
hµ
k

))

=
1

ak
*.
,

k∑
µ=1

µ

((
hµ
k

))
+

k∑
µ=1

(µ + k)
((

hµ
k

))
+ · · · +

k∑
µ=1

(µ + (a − 1)k)
((

hµ
k

))
+/
-

=
a

ak

k∑
µ=1

µ

((
hµ
k

))
= s(h, k).

�

Due to the final equation of Theorem 2.1.1 we only need to consider Dedekind sums for

coprime variables h, k. For the remainder of our discussion we will assume h and k are

coprime. We will also assume that 0 < h < k unless stated otherwise.

In general, there is no closed form for evaluating Dedekind sums. However, there are

some values for which it is possible to give an explicit evaluation. Some of these are listed in
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[2, Ch. 3], and we will show some new ones in a later section. Here we will evaluate s(1, k):

s(1, k) =
k∑
µ=1

((
µ

k

))2
=

k−1∑
µ=1

(
µ

k

(
µ

k
−
1
2

))

=

k−1∑
µ=1

((
µ

k

)2
−

µ

2k

)
=

(k − 1)(2k − 1)
6k

−

(
k
4
−
1
4

)
=

k2 − 6k + 2
12k

+
1
4

= −
1
4
+

1
6k
+

k
12
.

(2.2)

Theorem 2.1.2. 2kθs(h, k) is an integer, where θ = gcd(k, 3).

Proof. We observe,

s(h, k) =
k−1∑
µ=1

µ

k

(
hµ
k
−

[
hµ
k

]
−
1
2

)

=
h
k2

k−1∑
µ=1

µ2 +
A
2k

=
h(k − 1)(2k − 1)

6k
+

A
2k
,

where A is some integer. We now notice that if 3 doesn’t divide k then 3 divides (k − 1)

or (2k − 1) , so our denominator divides 2k. Now if 3 divides k it is easy to see that our

denominator divides 6k, hence 2kθs(h, k) is an integer. �

Salié showed [33] that 6ks(h, k) always satisfies one of the congruences

6ks(h, k) ≡ 0,±1,±3 (mod 9). (2.3)

2.2 The Reciprocity Formula

The most remarkable result concerning the Dedekind sum is the well-known reciprocity

formula.
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Theorem 2.2.1 (The Reciprocity Formula). Suppose h and k are positive integers and

gcd(h, k) = 1. Then

s(h, k) + s(k, h) = −
1
4
+

1
12

(
h
k
+

k
h
+

1
hk

)
. (2.4)

The reciprocity formula was proved by Dedekind in his study of the Dedekind eta-

function and of modular forms. However, it exists as a purely arithmetic result and many

strictly arithmetic proofs of the reciprocity formula exist. Indeed, Rademacher andGrosswald

provide several examples [29, Ch. 2]. This result allows for significantly faster computation

of the Dedekind sum and helps to provide us with more properties which will be mentioned

throughout our discussion. Wewill provide one proof of the reciprocity law but we encourage

the reader to research some of the other proofs.

Proof. The proof we provide is given by Berndt [6] and makes use of contour integrals. We

note, as Berndt did, that other proofs involving contour integration exist; indeed one is given

in [29, Ch. 2], but this one differs somewhat in its construction. The proof relies on a result

given in [6],

s(h, k) =
1
2π

∞∑
n=1

n.0 (mod k)

cot(πhn/k)
n

. (2.5)

We will discuss the above result in Section 2.3. Now we consider CN , the positively oriented

circle with radius RN , 1 ≤ N < ∞, centred at the origin. We assume that RN is increasing to

infinity and is chosen so the distance from our circle to the points m/h and n/k, for integers

m and n, is greater then some fixed number. Let,

IN =
1
2πi

∫
CN

cot(πhz) cot(πkz)
dz
z

=
1
2π

∫ 2π

0
cot(πhRN eiθ ) cot(πkRN eiθ )dθ.

(2.6)

We can now evaluate this integral in two different ways. First we consider the 2nd expression

and observe

cot(Reiθ ) =
eiReiθ + e−iReiθ

−i(eiReiθ − e−iReiθ )

= i
eiR(cos θ+i sin θ) + e−iR(cos θ+i sin θ)

eiR(cos θ+i sin θ) − e−iR(cos θ+i sin θ)

= i
eRi cos θe−R sin θ + e−Ri cos θeR sin θ

eRi cos θe−R sin θ − e−Ri cos θeR sin θ .

(2.7)

We can see that as R → ∞ and 0 < θ < π then cot(Reiθ ) tends to −i and similarly on

π < θ < 2π it tends to i. It follows that IN → −1 as N → ∞.
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We now evaluate the integral by contour integration and the residue theorem. We consider

the first equation for IN and notice that there are simple poles at m/h and n/k, where m and n

are not zero and the respective fractions are not integers. There is a double pole at each

non-zero integer µ and there is a triple pole at 0. The Laurent expansion of the cotangent

function enables us to calculate the residues of IN . Thus,

IN =
2
π

∑
0<m/h<RN
m.0 (mod h)

cot(πkm/h)
m

+
2
π

∑
0<n/k<RN
n.0 (mod k)

cot(πhn/k)
n

−
2

π2hk

∑
0<µ<RN

1
µ2
−

k
3h
−

h
3k
.

(2.8)

We now let N → ∞, and by our initial evaluation for this integrand and by (2.5) we obtain

− 1 = lim
N→∞

IN = 4s(k, h) + 4s(h, k) −
1

3hk
−

k
3h
−

h
3k
. (2.9)

This finishes our proof of the reciprocity formula. �

We can multiply the reciprocity formula by 12hk to arrive at the following result:

12hks(h, k) + 12hks(k, h) = −3hk + h2 + k2 + 1. (2.10)

We now recall that 2θks(h, k) is an integer, where θ = gcd(k, 3). We also assume that h and k

are coprime. Therefore,

12hks(h, k) ≡ h2 + 1 (mod θk). (2.11)

Rademacher and Grosswald [29, Ch. 3] used this result to show that s(h, k) is an integer

if and only if k divides (h2 + 1) and the only integer s(h, k) can take is 0. In particular,

if k doesn’t divide (h2 + 1) then 12s(h, k) is not an integer. The proof of this is quite

simple. First, assume that h2 + 1 ≡ 0 (mod k). Then, hh′ ≡ 1 (mod k) has the solution

h′ = −h, and by Theorem 2.1.1 s(h, k) = s(h′, k) = s(−h, k) = −s(h, k) = 0. Conversely,

suppose 12s(h, k) is an integer. Then, by (2.10), and recalling 6hs(k, h) is an integer, we

have h2 + 1 ≡ 0 (mod k). This proves our result.

We also note that the reciprocity formula has been generalised to a three term reciprocity

formula, given by Rademacher in 1954 [27].

Theorem 2.2.2. For coprime integers a, b and c we have,

s(bc′, a) + s(ca′, b) + s(ab′, c) = −
1
4
+

1
12

(
a
bc
+

b
ca
+

c
ab

)
, (2.12)

where aa′ ≡ 1 (mod bc) and similarly for bb′ and cc′.
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It is clear that the three term reciprocity law can be simplified to the two term case by

taking c = c′ = 1 and recalling s(a′, b) = s(a, b). Another reciprocity law is given by

Pommersheim [25] as a consequence of relating the Todd class of a toric variety to Dedekind

sums, but we will not discuss the details of Pommersheim’s proof here.

Theorem 2.2.3. Let p, q, u, v, u′ and v′ be natural numbers with (p, q) = 1 and (u, v) = 1 and

u′, v′ chosen such that uu′ + vv′ = 1. Let x = qv′ − pu′ and y = pv + qu. Then

s(p, q) + s(u, v) + s(x, y) = λ(q, v, y), (2.13)

where λ(q, v, y) = −1
4 +

1
12

( q
vy +

v
yq +

y
qv

)
.

Two independent proofs are also given by Girstmair [13]; the first of which shows the

equivalence of Pommersheim’s result to the 3 term reciprocity law (2.12) and the second we

will describe below.

Proof. It can be shown that the residue class of x mod y is independent of the choices of

u′ and v′. We can then define

∆(p, q, u, v) = s(p, q) + s(u, v) + s(x, y) − λ(q, v, y). (2.14)

Our proof will then be to show that this is 0. We note that this is true for v = 1 and the above

equation reduces to the two term reciprocity law since

x = qv′ − pu′

= q(1 − uu′) − pu′

= q − u′(p + qu)

= q − u′y.

(2.15)

Hence

s(p, q) + s(u, v) + s(x, y) = s(y, q) + 0 + s(q, y) = λ(q, 1, y). (2.16)

Our proof will therefore be to reduce our equation to one where v = 1. Due to periodicity we

have, for u > v,

∆(p + q, q, u − v, v) = ∆(p, q, u, v). (2.17)

Also, it can be shown by using the identity λ(q, v, y) + λ(p, u, y) = λ(p, q, 1) + λ(u, v, 1),

∆(q, p, v, u) = −∆(p, q, u, v). (2.18)
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By repeated application of (2.17) and (2.18) we obtain

∆(p, q, u, v) = ∆(p∗, q∗, u∗, 1) = 0 (2.19)

for some natural numbers p∗, q∗ and u∗. �

2.3 Alternative Forms Of The Dedekind Sum

The Dedekind sum can be written in a few different forms, which may be more useful in

dealing with certain problems. We note that we have already given one example of a different

form and an application in which it is useful, with

s(h, k) =
k∑
µ=1

µ

k

((
hµ
k

))
.

We can also express the Dedekind sum in terms of kth roots of unity. The proof of this and

the related sum in terms of cotangents is given in [29, Ch. 2].

s(h, k) =
1
4k

k−1∑
m=1

1 + ηm

1 − ηm
1 + η−hm

1 − η−hm (2.20)

Here, η is any primitive kth root of unity. By specifying η = e2πi/k , we obtain

s(h, k) =
1
4k

k−1∑
m=1

cot
πm
k

cot
πhm

k
. (2.21)

We have another result which we provided as part of the proof of the reciprocity formula:

s(h, k) =
1
2π

∞∑
n=1

n.0 (mod k)

cot(πhn/k)
n

.

A proof of this is given in [6]. Berndt arrives at this result by expressing the sawtooth function

as the Fourier series

((x)) = −
∞∑

m=1

sin(2πmx)
πm

. (2.22)

After some manipulation and recognising a sum that relates the sine and cotangent functions,

he arrives at his result.

Another form of the Dedekind sum is proved as part of a larger result due to Hickerson

[17]. We will provide this result and its proof in the following chapter.
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The Distribution Of Dedekind Sums

3.1 Continued Fractions And The Dedekind Sum

From here on we will define

[a0, a1, . . . , an] = a0 +
1

a1 +
1

a2 +
1

· · · +
1

an

as the finite simple continued fraction. It should not come as a surprise that a relationship

exists between the Dedekind sum and the simple continued fractions as the reciprocity law

evaluates the Dedekind sum in a way that is equivalent to the Euclidean algorithm. Here

we will prove Hickerson’s alternative form of the Dedekind sum, as well as providing some

other results proved by the use of continued fractions. We first observe that we can set

s(h, k) = s(h/k) by Theorem 2.1.1. We can now prove Hickerson’s result.
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Theorem 3.1.1. Let h/k = [a0, a1, . . . , an] and n ≥ 0. Then,

s(h/k) =
−1 + (−1)n

8
+

1
12

([0, a1, . . . , an] + (−1)n+1[0, an, . . . , a1]

+ a1 − a2 + · · · + (−1)n+1an). (3.1)

Proof. Our proof will follow that of Hickerson [17] and it will rely on induction on n. We

first note that when n = 0 both sides of our equation are equal to 0 since h/k = a0/1, and

s(a0, 1) = 1. Now we assume our result is true for n − 1. We suppose 0 < h < k and

h/k = [0, a1, . . . , an] and recall that this means [a1, . . . , an] = k/h. Now, by our reciprocity

formula,

s(h/k) = −
1
4
+

1
12

(
[0, a1, . . . , an] + [a1, . . . , an] +

1
hk

)
− s([a1, . . . , an]).

We can now apply our inductive step on s([a1, . . . , an]). Hence,

s(h/k) = −
1
4
+

1
12

(
[0, a1, . . . , an] + [a1, . . . , an] +

1
hk

)
−

(
−1 + (−1)n−1

8
+

1
12

([0, a2, . . . , an] + (−1)n[0, an, . . . , a2] + a2 − · · · + (−1)nan)
)

=
−1 + (−1)n

8
+

1
12

([0, a1, . . . , an] + (−1)n+1[0, an, . . . , a2] +
1

hk

+ a1 − a2 + · · · + (−1)n+1an)

where we notice that [a1, . . . , an] − [0, a2, . . . , an] = a1. To complete our proof we need

(−1)n+1[0, an, . . . , a2] +
1

hk
= (−1)n+1[0, an, . . . , a1].

By a suitable substitution, this is equivalent to

[0, b1, . . . , bn] − [0, b1, . . . , bn−1] =
(−1)n+1

hk
.

This is a well known result of continued fractions (see [30, Ch. 13]) and completes our

proof. �

Rademacher and Grosswald [29, Ch. 3] asked whether the points (h/k, s(h, k)) lie

everywhere dense in the plane. Hickerson [17] used the previous result on continued fractions

to answer Rademacher andGrosswald’s question. We present Hickerson’s result as a theorem.

Theorem 3.1.2. The set of points (h/k, s(h, k)) is dense in the plane.
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A corollary of this is that the values of s(h, k) are dense on the real-axis. Recently,

Girstmair [15] followed up the above results by asking what values can s(h, k) take. We

know that the Dedekind sum produces rational numbers, and Girstmair showed that the

fractional part of S(h, k) = 12s(h, k) takes all possible values for suitable choices of h and k.

We present his result in the following theorem.

Theorem 3.1.3. Let integers n and q, 0 ≤ q ≤ n − 1, gcd(q, n) = 1, be given. Then there are

integers m, n′, 0 ≤ m ≤ n′ − 1, (m, n′) = 1, such that

S(m, n′) ∈
q
n
+ Z. (3.2)

Girstmair’s proof is constructive in the sense that it allows one to find integers h, k such

that S(h, k) = q/n + Z for any choice of q/n. Indeed, he gives a helpful example of applying

his proof to show that the fractional part of the Dedekind sum being 7/132 occurs when we

take S(1319, 134376) = 120 + 7/132.

Myerson and Phillips [21] also used continued fractions in their paper. They sought

to answer a question, asked by Neville Robbins, of what are the solutions of the equation

s(h, k) = h/k, which we can consider as finding fixed points of Dedekind sums. Here we out-

line the important results of [21]. We first recognise that we can write any rational as a simple

continued fraction in exactly two ways: with an even number of terms or with an odd number

of terms. Suppose h/k = [a0, . . . , at] with t even. We define I (h, k) =
∑t

j=0(−1) j+1a j . It

is clear that if h′/k = [0, at, . . . , a1] then hh′ ≡ −1 (mod k). We can rewrite the Dedekind

sum as

s(h, k) =
1
12

(
h
k
−

h′

k
+ I (h, k)

)
. (3.3)

Using this result we have the following theorem.

Theorem 3.1.4. For rational α the following are equivalent:

1. s(h, k) = αh/k,

2. (12α − 1)h + h′ = I (h, k)k,

3. −(12α − 1)h/k = [−I (h, k), at, . . . , a1]. Moreover, each of these imply

4. k |(12α − 1)h2 − 1.

Myerson and Phillips use these results to prove the following:
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Theorem 3.1.5. If α , 1/12 is rational, then there are infinitely many x such that s(x) = αx.

Theorem 3.1.6. {x : s(x) = x} is dense in the reals.

A constructive proof is given in [21] which we can use to find a rational number h/k

which satisfies s(h, k) = h/k, arbitrarily close to any given number. The proof of the previous

theorem is a consequence of a sequence of lemmas and expressing the continued fraction

[a0, a1, . . . , at] in terms of the matrix expansion

*.
,

0 1

1 0
+/
-

*.
,

0 1

1 a0

+/
-
× · · · ×

*.
,

0 1

1 at

+/
-
=

*.
,

u h

h′ k

+/
-

where u is given by uk − hh′ = 1. It is currently unknown whether the solutions of s(x) = αx

for fixed α , 1/12 are dense in the reals. It is also unknown whether there are solutions to

the problem s(x) = αx + β for fixed rational α and β. A solution to this problem would

enable us to find the range of s(h, k), by considering the case when α = 0, which is still an

open question mentioned in [29, Ch. 3].

3.2 Exceptional Values Of The Dedekind Sum

We have previously stated that the Dedekind sum satisfies the congruences

6ks(h, k) ≡ 0,±1,±3 (mod 9).

The question can then be asked, will the Dedekind sum achieve every integer that satisfies

these congruences? We will let 6ks(h, k) = t(h, k). Salié stated [33], without proof, that

t(h, k) takes all possible values up to 150 except for 12, 17, 44 and 107. We are unsure how

Salié proved this; however we follow the work of Asai [3], Nagasaka [23] and Saito [32] in

verifying Salié’s result and proving a stronger one.

Definition 3.2.1. We define an integer W ≡ 0,±1,±3 (mod 9) to be an ‘exceptional value’ if

t(h, k) , W for any integers h, k.

Asai [3] developed a series of lemmas, involving Dedekind sums and Farey fractions, to

arrive at the following theorem regarding exceptional values.

Theorem 3.2.1. If D is the value of t(h, k) then it can be attained by taking k < 2D for some

suitably well chosen h and k.
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This result is significant in the further study of exceptional values as it allows one to

consider a finite number of sums in determining if some integer is an exceptional value of the

Dedekind sum. Asai used his results and computation to show that 152, 172, 197 and 530

are the next 4 exceptional values, as well as verifying the results of Salié.

Nagasaka [23] used Asai’s result to find all the exceptional values up to 56645. Nagasaka

noticed that all of these exceptional values, except for 12 and 172, are congruent to−1 (mod 9).

He used his results to make the following conjecture.

Conjecture 3.2.1. Suppose W ∈ N and W2 ≡ 0, 1 (mod 9). Then W is exceptional if and

only if W − 1 is a square not divisible by any prime ≡ ±3 (mod 8), or W = 12, 44, 107, 152

or 172.

Saito[32] managed to prove the "if" statement of this conjecture, that is, any W as defined

abovewill be an exceptional value. Hewas not able to prove the "only if" part of the statement,

and as far as we are aware, this remains an open problem.

3.3 Equality Of Dedekind Sums

The question has been asked when are two Dedekind sums, s(a, c) and s(b, c), equal. It has

been shown that they can only be equal under certain conditions. Jabuka, Robins and Wang

[18] proved the following theorem.

Theorem 3.3.1. If s(a, c) = s(b, c), then

c|(1 − ab)(a − b). (3.4)

Proof. The proof is a consequence of the reciprocity law. We recall,

b(12acs(a, c) + 12acs(c, a)) = b(−3ac + a2 + c2 + 1)

a(12bcs(b, c) + 12bcs(c, b)) = a(−3bc + b2 + c2 + 1).

We now subtract the above equations and use s(a, c) = s(b, c), to obtain

12abcs(c, a) − 12abcs(c, b) = a2b + c2b + b − (ab2 + c2a + a).

Now we recall that 6as(c, a) is an integer. Therefore,

0 ≡ a2b + b − (ab2 + a) (mod c),

0 ≡ (1 − ab)(a − b) (mod c).
(3.5)

�
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We immediately have the following corollary:

Corollary 3.3.2. Let p be prime. Then s(a, p) = s(b, p) if and only if

ab ≡ 1 (mod p), or

a ≡ b (mod p).

Girstmair [14] extends the previous theorem with the following result.

Theorem 3.3.3. Let S(h, k) = 12s(h, k) and let a and b be integers relatively prime to c.

Then S(a, c) − S(b, c) ∈ Z if, and only if, (3.4) holds.

Proof. By (3.1) and by denoting the convergents to a/c by s0/t0, . . . , sn/tn = a/c, we have

S(a, c) =
n∑

j=1
(−1) j−1a j +




a+tn−1
c − 3 if n is odd,

a−tn−1
c if n is even.

We can then use (3.3) to arrive at the result

S(a, c) ≡
a + a′

c
(mod Z). (3.6)

It is then clear that S(a, c) − S(b, c) ∈ Z if, and only if,

a + a′ ≡ b + b′ (mod c). (3.7)

Now, by multiplying by ab,

a2b + b ≡ ab2 + a (mod c),

ab(a − b) ≡ a − b (mod c),

(ab − 1)(a − b) ≡ 0 (mod c).

To complete the proof in the opposite direction wemultiply the final line of the above equation

by a′b′ to obtain (3.7). �

Girstmair goes further by providing a result which allows us, under certain conditions, to

find the number of b such that S(a, c) − S(b, c) ∈ Z, given a and c.

Theorem 3.3.4. Let c = p1 . . . pt be square free, pi prime. For a given a such that

gcd(a, c) = 1, we have

|{b : 0 ≤ b < c, (b, c) = 1, S(a, c) − S(b, c) ∈ Z}| = 2s

where s = |{ j : 1 ≤ j ≤ t, a , ±1 (mod p j )}| .
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3.4 Distribution Results

Much attention has been given to the distribution of Dedekind sums. In this section we will

provide an overview of some of these results.

The large values of theDedekind sumare considered [9] by taking 2mthmoments averaged

over reduced fractions on the interval [0,1] with denominator k.

Theorem 3.4.1. Suppose that k is a large prime number and m ≥ 1. Then,
k−1∑
h=1

s(h, k)2m = 2
ζ (2m)2

ζ (4m)

(
k
12

)2m

+O
((

k9/5 + k2m−1+ 1
m+1

)
log3 k

)
.

The proof of this relies on a sequence of lemmas and the Hardy-Littlewood circle method.

An estimate is also given for arbitrary k.

Theorem 3.4.2. Suppose k is large and m ≥ 1. Then,
k∑

h=1
(h,k)=1

s(h, k)2m = fm(k)
(

k
12

)2m

+O
((

k9/5 + k2m−1+ 1
m+1

)
log3 k

)
where

∞∑
k=1

fm(k)
k s = 2ζ (s)

ζ (2m)2ζ (s + 4m − 1)
ζ (4m)ζ (s + 2m)2

.

It is easy to check that the values of the Dedekind sum satisfy |s(h, k) | < k
12 and

s(1, k) → k
12 as k → ∞. It has been shown by Vardi [35] that the limiting distribution of

s(h, k)/ log k is the Cauchy distribution. That is to say,

lim
N→∞

#{0 < h < k < N, gcd(h, k) = 1 : s(h, k) < x log(k)}
#{0 < h < k < N, gcd(h, k) = 1}

=
1
π

(
arctan(2πx) +

π

2

)
.

(3.8)

If we study the graph of the Dedekind sum for large, prime, k (see Figure 3.1) we can see that

there is a large positive spike near the origin and a corresponding negative spike near h = k−1.

We can also see other, smaller spikes near rational numbers with small denominators. For

example, there is also a large negative spike to the left of 1/2. This phenomenon is easily

verified by considering our continued fraction expansion of the Dedekind sum.

Girstmair and Schoissengeier also study [16] the arithmetic mean of the Dedekind sum.

They again define S(h, k) = 12s(h, k). We let x(N ) = min{
√

N/ log N,
√

N/τ(N )}, where

τ(N ) is the number of divisors of N . Then let c, d be integers such that 0 ≤ c ≤ d ≤ x and

(c, d) = 1. Then define

Ic/d = [0, N] ∩ {z ∈ R : |z − Nc/d | ≤ x/d}.
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Figure 3.1: Values of s(h, k) for k = 1999

Finally, we define

F =
⋃

1≤d≤x

⋃
0≤c≤d
(c,d)=1

Ic/d .

We now present the main result of [16].

Theorem 3.4.3. Let N tend to∞. Then

1
φ(N )

∑
m∈F

(m,N )=1

|S(m, N ) | =
3
π2

log2 N +O(log2 N/ log log N )

where F is defined as above and φ(N ) is the Euler function.

An obvious corollary is

1
φ(N )

∑
0≤m<N
(m,N )=1

|S(m, N ) | ≥
3
π2

log2 N +O(log2 N/ log log N ).

It is also known [16], by considering the continued fraction expansion of the Dedekind

sum, that
1

φ(N )

∑
0≤m<N
(m,N )=1

|S(m, N ) | ≤
6
π2

log2 N +O(log N ).
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Vardi [34] and Myerson [22] related Dedekind sums to Kloosterman sums to observe

more distribution results. We define the Kloosterman sum by

K (m, n; c) =
∑

0≤d≤c
(d,c)=1

ad≡1 (mod c)

e
(

am + dn
c

)
(3.9)

where e(x) = e2πix .

Theorem 3.4.4. Let m ∈ N. Then∑
0≤d≤c
(d,c)=1

e(12ms(d, c)) = K (m,m; c). (3.10)

Proof. To prove this we first need to show that 12s(d, c) − a+d
c is always an integer when

ad ≡ 1 (mod c). This is true by (3.6). Now we prove the theorem. First,∑
0≤d≤c
(d,c)=1

e(12ms(d, c)) =
∑

0≤d≤c
(d,c)=1

ad≡1 (mod c)

e
(

am + dm
c

)
= K (m,m; c).

The first equality is achieved by considering

12ms(d, c) = 12ms(d, c) −
am + dm

c
+

am + dm
c

= M +
am + dm

c

for some integer M . �

Vardi also proves in [34]:

Theorem 3.4.5. Let m ∈ N. Then∑
0<c<x

∑
0≤d≤c
(d,c)=1

e(12ms(d, c)) < x3/2+ε, ∀ε > 0. (3.11)

The proof is a consequence of the previous theorem and the Kloosterman sum satisfying

Weil’s estimate [36]. Vardi used (3.10) and (3.11) to prove the following theorem.

Theorem 3.4.6. {〈12ms(d, c)〉} c>0
0<d<c
(d,c)=1

is uniformly distributed on [0, 1).

A sequence u1, u2, . . . of terms in [0, 1) is defined to be uniformly distributed if for all

a and b with 0 < a < b < 1 we have

lim
n→∞

#{k < n : a < uk < b}
n

= b − a. (3.12)

The proof of the previous theorem uses Weyl’s criterion for uniform distribution [37]. This

result is further generalised to give:
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Theorem 3.4.7. Let r ∈ R+. Then, {〈rs(d, c)〉} c>0
0<d<c
(d,c)=1

is uniformly distributed on [0, 1).

Obviously, the case when r = 1 shows us that the Dedekind sum is uniformly distributed

on [0, 1). Myerson [22] follows much of Vardi’s working but proves the 2-dimensional result:

Theorem 3.4.8. Let r ∈ R+. Then, {〈rs(d, c), d/c〉} c>0
0<d<c
(d,c)=1

is uniformly distributed (modulo

one).



4
Related Sums, Applications and Other

Properties of Dedekind Sums

4.1 Introduction

Dedekind sums, and various related sums, have lent themselves to applications in a wide

range of mathematics. In this chapter we will outline areas of mathematics where these sums

appear, as well as developing further theory of Dedekind sums.

4.2 Generalised Dedekind Sums

The classical Dedekind sum has been generalised in a number of different ways. Here we

will mention one of these ways and we will call it the generalised Dedekind sum.

Definition 4.2.1. Let h and k be positive integers and c be real. We define the generalised
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Dedekind sum to be

σ(h, k, c) =
k−1∑
j=0

((
h j + c

k

)) ((
j
k

))
. (4.1)

This is often also called the Dedekind-Rademacher sum.

The generalised Dedekind sum has found applications in the study of pseudo-random

numbers [20]. In this section we will outline many of the properties of the generalised

Dedekind sum and also mention some of these applications.

We observe that the generalised sum reduces to the regular Dedekind sum if we just take

c = 0. We now want to prove analogous results to the ones we have for ordinary Dedekind

sums for the generalised sum. We recall,

∑
λ mod k

((
λ + x

k

))
= ((x)) (4.2)

and obtain the following lemmas.

Lemma 4.2.1. Let (h, k) = 1 and d be a positive integer. Then

σ(dh, dk, dc) = σ(h, k, c). (4.3)

Proof. We have

σ(dh, dk, dc) =
dk−1∑
j=0

((
h j + c

k

)) ((
j

dk

))

=

k−1∑
j=0

d−1∑
i=0

((
h j + c

k

)) ((
ik + j

dk

))
.

(4.4)

We now apply (4.2) and obtain

σ(dh, dk, dc) =
k−1∑
j=0

((
h j + c

k

)) ((
j
k

))
= σ(h, k, c).

(4.5)

�

Wealso have the following interesting lemma, which enables us to evaluate the generalised

Dedekind sum by only considering integer values.
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Lemma 4.2.2. Suppose h, k and c are integers, hh′ ≡ 1 (mod k) and 0 < θ < 1. Then,

σ(h, k, c + θ) = σ(h, k, c) +
1
2

((
h′c
k

))
. (4.6)

Proof. We first define

δ(x) =




1 if x is an integer,

0 otherwise.
(4.7)

Now,

σ(h, k, c + θ) =
k−1∑
j=0

((
h j + c + θ

k

)) ((
j
k

))
. (4.8)

Since 0 < θ < 1, we have

=

k−1∑
j=0

(((
h j + c

k

))
+
θ

k
−
1
2
δ

(
h j + c

k

)) ((
j
k

))

=

k−1∑
j=0

((
h j + c

k

)) ((
j
k

))
+

k−1∑
j=0

((
j
k

)) (
θ

k
−
1
2
δ

(
h j + c

k

))

=

k−1∑
j=0

((
h j + c

k

)) ((
j
k

))
+ 0 −

1
2

k−1∑
j=0

((
j
k

))
δ

(
h j + c

k

)
.

(4.9)

It is clear that h j + c ≡ 0 (mod k) when j = −h′c. Hence

σ(h, k, c + θ) =
k−1∑
j=0

((
h j + c

k

)) ((
j
k

))
−
1
2

((
−h′c

k

))

=

k−1∑
j=0

((
h j + c

k

)) ((
j
k

))
+
1
2

((
h′c
k

))
.

(4.10)

�

We can also establish a reciprocity law for the generalised Dedekind sum as follows.

Theorem 4.2.1. Let h, k and c be integers and suppose 0 ≤ c < k. Furthermore, we will

suppose

hh′ + kk′ = 1. (4.11)

Then,

σ(h, k, c)+σ(k, h, c) = s(h, k)+s(k, h)+
c(c − 1)
2hk

+
1
2

(((
h′c
k

))
+

((
k′c
h

))
−

[ c
h

])
. (4.12)
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Proof. Our proof will follow that given in [20], however we make some changes in our

presentation. We first note,((
h j + c + 1

k

))
=

((
h j + c

k

))
+
1
k
−
1
2
δ

(
h j + c

k

)
−
1
2
δ

(
h j + c + 1

k

)
(4.13)

and now, by applying a similar construction to that of the previous lemma, we obtain

σ(h, k, c + 1) = σ(h, k, c) +
1
2

((
h′c
k

))
+
1
2

((
h′(c + 1)

k

))
. (4.14)

It follows that,

σ(h, k, c) = σ(h, k, 0) +
c−1∑
j=1

((
h′ j
k

))
+
1
2

((
h′c
k

))
. (4.15)

We now observe from (4.11) that((
h′ j
k

))
=

((
j

hk
−

k′ j
h

))
= −

((
k′ j
h
−

j
hk

))
= −

((
k′ j
h

))
+

j
hk
−
1
2
δ

(
k′ j
h

)
.

(4.16)

We now apply (4.15) and (4.16) together and, noticing σ(h, k, 0) = s(h, k), we obtain

σ(h, k, c) + σ(k, h, c)

= s(h, k) + s(k, h) +
c−1∑
j=1

((
h′ j
k

))
+
1
2

((
h′c
k

))
+

c−1∑
j=1

((
k′ j
h

))
+
1
2

((
k′c
h

))

= s(h, k) + s(k, h) +
c−1∑
j=1

(
j

hk
−
1
2
δ

(
k′ j
h

))
+
1
2

((
h′c
k

))
+
1
2

((
k′c
h

))
= s(h, k) + s(k, h) +

c(c − 1)
2hk

+
1
2

(((
h′c
k

))
+

((
k′c
h

))
−

[ c
h

])
.

(4.17)

�

We see from above that this expression is not quite symmetric. Lack of symmetry is due

to a missing [c/k], but given our restriction on c it is clear that this is 0. We also note that our

previous lemma allows us to have a reciprocity law for c being any real. It is also sufficient

to consider 0 ≤ c < k as the sawtooth function reduces any larger c to one in this interval.

Lemma 4.2.3. Let c be real and h and k be integers. Then, 12kσ(h, k, c) is an integer.
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Proof. From our previous theorem we saw for each integer c that

12kσ(h, k, c) = 12ks(h, k) + 12k
c−1∑
j=1

((
h′ j
k

))
+ 6k

((
h′c
k

))
. (4.18)

We know that 12ks(h, k) is an integer, and by our definition of the sawtooth function it

follows that our remaining terms are also integers. Also, if c were to not be an integer we add

the term 6k
((

h′c
k

))
, which is also an integer. �

Knuth [19] has been able to use the generalised Dedekind sum in his study of random

numbers and applying them to the determination of serial correlation coefficients. In [20]

Knuth also provides an algorithm for choosing an integer c such that σ(h, k, c) is maximised

for given h and k.

4.3 Further Generalisations Of Dedekind Sums

Many other generalisations of Dedekind sums exist. Many of these are mentioned in [29] as

Rademacher and Grosswald provide a brief history of Dedekind sums and their variations.

In this section we will mention some variations, how they came to be studied and their

reciprocity law. We first mention a slightly more generalised version of the Dedekind sum

from the previous section. For integers h and k and real numbers x and y we define

s(h, k; x, y) =
∑

j (mod k)

((
h

j + y

k
+ x

)) ((
j + y

k

))
. (4.19)

We note that if x and y are both integers, then our sum reduces to the classical Dedekind

sum. Dieter and Ahrens [11] also consider these in their study of pseudo-random numbers.

They presented a series of lectures which, as far as we are aware, remain unpublished. They

show that the exact number of pairs of pseudo-random numbers in a given rectangle can be

reduced to the evaluation of these generalised Dedekind sums. Many of their results appear

in [10]. We again have a reciprocity formula which is our most useful tool when evaluating

these sums.

Theorem 4.3.1. Assume at least one of x and y is not an integer and h and k are integers.

Then,

s(h, k; x, y) + s(k, h; y, x)

= ((x))((y)) +
1
2

(
h
k
B2(y) +

k
h
B2(x) +

1
hk
B2(hy + k x)

)
,

(4.20)
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where B2(x) denotes the second Bernoulli function, which is given by

B2(x) = (x − [x])2 − (x − [x]) +
1
6
. (4.21)

Many proofs of this exist and the first one is credited to Dieter [12], although he only

considers x and y being rationals. For examples of later proofs, that consider real x and y, see

[7] and [26]. As in the case of the classical Dedekind sum, a three-term reciprocity formula

also exists for these sums. A statement of the theorem and proof are given in [7].

Another generalisation of the Dedekind sum that has received attention is the Fourier-

Dedekind sum. We define it by

sn(a1, a2, . . . , ad; b) =
1
b

b−1∑
k=1

ξkn
b

(1 − ξka1
b )(1 − ξka2

b ) . . . (1 − ξkad
b )

, (4.22)

where ξb is a primitive bth root of unity and n is a non-negative integer. These sums form

the foundations of Erhart quasipolynomials [5], as well as generalising the Dedekind sum.

We first show how this returns the classical Dedekind sum.

Theorem 4.3.2. Let a and b be positive integers. Then,

s0(a, 1; b) = −s(a, b) +
b − 1
4b

. (4.23)

Proof. We have

s0(a, 1; b) =
1
b

b−1∑
k=1

1
(1 − ξka

b )(1 − ξk
b )

=
1
b

b−1∑
k=1

*
,

1
1 − ξka

b

−
1
2

+
-

*
,

1
1 − ξk

b

−
1
2

+
-

+
1
2b

b−1∑
k=1

*
,

1
1 − ξk

b

+
1

1 − ξka
b

+
-
−

1
4b

b−1∑
k=1

1

=
1
4b

b−1∑
k=1

*
,

1 + ξka
b

1 − ξka
b

+
-

*
,

1 + ξk
b

1 − ξk
b

+
-
+
1
b

b−1∑
k=1

1
1 − ξk

b

−
b − 1
4b

.

(4.24)

Our first expression on the right hand side is simply −s(a, b), by recalling the alternative form

of the Dedekind sum, (2.20), from Chapter 2. It can also be shown that the middle expression

1
b

b−1∑
k=1

1
1 − ξk

b

=
1
2
−

1
2b

; (4.25)

see [5, Ch. 1] for details. It follows, that

s0(a, 1; b) = −s(a, b) +
b − 1
4b

. (4.26)

�
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In order to give a reciprocity formula for these sums we need to mention some of the

theory of where they came from. A more complete explanation is given in [5, Ch. 1, 8], and

we will be using this as our reference point.

We define the restricted partition function to be

pA(n) = #{(m1, . . . ,md) ∈ Zd : all m j ≥ 0, m1a1 + · · · + mdad = n}, (4.27)

where A = {a1, . . . , ad } is a set of integers. It also is related to our Fourier-Dedekind sum.

We first consider the two dimensional set A = {a, b}, gcd(a, b) = 1, and consider the function

1
(1 − za)(1 − zb)

=
∑
k≥0

∑
l≥0

zak zbl =
∑
n≥0

p(a,b) (n)zn. (4.28)

The last equality is simple to check from the previous expression and our definition of pA(n).

It then follows immediately that

f (z) =
1

(1 − za)(1 − zb)zn =
∑
k≥0

p(a,b) (k)zk−n. (4.29)

Hence, p(a,b) (n) is the constant term of this series. To evaluate this we expand f (z) into

partial fractions

f (z) =
A1
z
+

A2

z2
+ · · · +

An

zn +
B1

z − 1
+

B2

(z − 1)2
+

a−1∑
k=1

Ck

z − ξk
a
+

a−1∑
j=1

D j

z − ξ j
b

, (4.30)

where ξl is a primitive lth root of unity. It can be shown that

Ck = −
1

a(1 − ξkb
a )ξk (n−1)

a

,

D j = −
1

b(1 − ξ ja
b )ξ j (n−1)

b

,

B2 =
1

ab
,

B1 =
1

ab
−

1
2a
−

1
2b
−

n
ab
.

(4.31)

The first n terms don’t contribute to our constant term, so we evaluate the remaining terms

when z = 0 to obtain

p(a,b) (n) =
1
2a
+

1
2b
+

n
ab
+
1
a

a−1∑
k=1

1
(1 − ξkb

a )ξkn
a
+
1
b

b−1∑
j=1

1
(1 − ξ ja

b )ξ jn
b

. (4.32)

We can now extend the above results to A = {a1, . . . , ad }, gcd(ai, a j ) = 1 for each i , j,

and obtain

pA(n) = const( f (z)) (4.33)
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that is the constant term of f (z), where

f (z) =
1

(1 − za1 )(1 − za2 ) . . . (1 − zad )zn

=
A1
z
+

A2

z2
+ · · · +

An

zn +
B1

z − 1
+ · · · +

Bd

(z − 1)d

+

a1−1∑
k=1

C1k

z − ξk
a1

+ · · · +

ad−1∑
k=1

Cdk

z − ξk
ad

.

(4.34)

As before, we can show

C1k = −
1

a1(1 − ξka2
a1 ) . . . (1 − ξkad

a1 )ξk (n−1)
a1

(4.35)

and we can obtain a similar expression for each of the other Cik . Putting these into each of

our sums we arrive at the following theorem.

Theorem 4.3.3. For A = {a1, . . . , ad } and gcd(ai, a j ) = 1, for each i , j, we have

pA(n) = −B1 + B2 − · · · + (−1)d Bd + s−n(a2, a3, . . . , ad; a1)

+ s−n(a1, a3, a4, . . . , ad; a2) + · · · + s−n(a1, a2, . . . , ad−1; ad)
(4.36)

where the Bi’s are given by the partial fraction expression discussed previously.

We now note that the Bi’s are polynomials in n, and, as in [5, Ch. 8], we let

polyA(n) = −B1 + B2 − · · · + (−1)d Bd . (4.37)

It is also clear from the definition that for all ai being positive, pA(0) = 1. We use this to

arrive at our reciprocity result.

Theorem4.3.4 (ZagierReciprocity). For pairwise relatively prime positive integers a1, . . . , ad ,

s0(a2, a3, . . . , ad; a1) + s0(a1, a3, a4, . . . , ad; a2) + · · · + s0(a1, a2, . . . , ad−1; ad)

= 1 − polyA(0).
(4.38)

The first few expressions of polyA(n) are given in [5, Ch. 8], and these can be used to

obtain both the two term and three term reciprocity laws for the classical Dedekind sum. We

finally mention one more reciprocity law given in [5, Ch. 8], which we will state without

proof.

Theorem 4.3.5 (Rademacher Reciprocity). For pairwise relatively prime positive integers

a1, . . . , ad and for n = 1, 2, . . . , (a1 + · · · + ad − 1),

sn(a2, a3, . . . , ad; a1) + sn(a1, a3, a4, . . . , ad; a2) + · · · + sn(a1, a2, . . . , ad−1; ad)

= −polyA(−n).
(4.39)
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Wemention briefly one of the generalisations of theDedekind sum involving the Bernoulli

function, which was defined for m = n = 2 in (4.21). We define the Bernoulli-Dedekind sum

by

sm,n(a; b, c) =
∑

k (mod b)
Bm

(
kb
a

)
Bn

(
kc
a

)
(4.40)

where Bm(x) = Bm(x − ((x))), Bm(x) is the mth Bernoulli polynomial, which is defined in

[4]. These were studied by Apostol [1] and Carlitz [8] and are mentioned by Beck in [4].

We can again collapse these down to our classical Dedekind sums by taking m = n = 1 and

c = 1.

We note that in this chapter we have only mentioned a couple of generalisations of the

Dedekind sum. This is by no means an exhaustive list, in fact many different generalisations

exist. A long list of references of these is given in [5, Ch. 8]. We also mention [7], which

provides examples of other generalisations and even proves reciprocity in some of these cases,

as well as [4] which provides many more examples and relates many of these generalisations

to a generalised Dedekind sum involving cotangents.

4.4 The Farey Series

Although this section seems out of place in this chapter, the relationship between theDedekind

sum and the Farey series is of interest and is worth including in our essay. In [29, Ch. 3]

Rademacher and Grosswald provide a quick introduction to Farey fractions. We define the

Farey series of order N to be all the reduced rational fractions h/k, arranged in ascending

order and with 1 ≤ k ≤ N . We recall, if h1/k1 < h2/k2 are two consecutive Farey fractions,

then �������

h1 h2

k1 k2

�������
= −1. (4.41)

Hence,

h1k2 ≡ −1 (mod k1),

h2k1 ≡ 1 (mod k2).
(4.42)

This has been used [29, Ch. 3] to relate the Dedekind sum to the Euler phi-function.

Rademacher asked [28] the following problem regarding Farey fractions: If h1/k1 < h2/k2

are adjacent Farey fractions and if s(h1, k1) and s(h2, k2) are both positive, is s(h1+k1, h2+k2)

non-negative? This questionwas answered negatively independently byPinzur [24] andRosen
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[31] who both were able to give an infinite class of examples such that this fails. Asai [3]

extends these results by giving a way of constructing these counter examples when given

some h and k. Asai calls a pair of adjacent Farey fractions H/K < h/k a Rademacher’s pair

if it satisfies s(h, k) > 0, s(H, K ) > 0 and s(h + H, k + K ) < 0. We present his result as a

theorem.

Theorem 4.4.1. For each reduced fraction 0 < h/k < 1with s(h, k) > 0 there exists a unique

reduced fraction H/K such that H/K < h/k is a Rademacher’s pair, unless k2 ≡ −1 (mod h).

If k2 ≡ −1 (mod h) there are no such pairs.

If h1/k1 < h2/k2 are adjacent Farey fractions, we define the mediant to be

h/k = (h1 + k1)/(k1 + k2). This gives a new adjacent Farey sequence h1/k1 < h/k < h2/k2.

We call h/k the left parent of h1/k1. Asai used this to present the following theorem in con-

structing Rademacher’s pairs.

Theorem 4.4.2. For all fractions h/k, k . −1 (mod h), whose common left parent is a fixed

fraction 0 < h0/k0 < 1, the Rademacher’s pair H/K < h/k is given by

H = k − 12hs(k, h), K = 3k − h + 12ks(h, k). (4.43)

Furthermore,

h = 3H − K + 12Hs(K, H), k = H − 12Ks(H, K ). (4.44)

The proof of these theorems comes as a consequence of a series of lemmas, many of which

aren’t trivial. We omit these lemmas and the proof of the greater theorems and encourage the

reader to work through them.



5
New Results

5.1 On A Conjecture Of Myerson And Phillips

In this chapter we present some new results by considering a conjecture presented in [21].

We provide a proof of this conjecture and we present our findings as a theorem.

A weaker version of the following result was left as a conjecture in [21]. However, it was

Myerson and Phillips’ intention to leave a stronger conjecture which we prove and present

below as a theorem.

Theorem 5.1.1. If 11ab ≡ 1 (mod c), then

δ = s(a, c) + s(b, c) −
a
c
−

b
c

(5.1)

is an integer.

To prove it we will need the following lemmas given in [2, Ch. 3].
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Lemma 5.1.1. If k is odd, then

12ks(h, k) ≡ k − 1 + 4
∑

r<k/2

[
2hr

k

]
(mod 8). (5.2)

A complementary result to this is provided in [29, Ch. 3].

Lemma 5.1.2. Let k be even, h ≥ 1 and k = 2λk1, where k1 is odd. Then

12hks(h, k) ≡ h2 + k2 + 1 + 5k − 4kT1 (mod 2λ+3), (5.3)

for some integer T1.

We can now prove our theorem.

Proof. We recall the following result as a consequence of the reciprocity formula,

12hks(h, k) ≡ h2 + 1 (mod θk) (where θ = gcd(k, 3)). (5.4)

Applying the previous equation, we obtain the following,

12abcδ ≡ a2b + b + ab2 + a − 12a2b − 12ab2 (mod θc)

≡ (a + b)(1 − 11ab) (mod θc)

≡ 0 (mod c).

(5.5)

We also know 2θks(h, k) is an integer. Therefore, when θ = 1, 12cδ ≡ 0 (mod 3).

Putting this together with the above, and observing that a and b don’t divide c, we ob-

tain 12cδ ≡ 0 (mod 3c) for θ = 1. For θ = 3 we return to our above congruences to

obtain

12abcδ ≡ (a + b)(nc) ≡ 0 (mod θc) (n = 0, 1, 2). (5.6)

Weobtain the final congruence by observing, when 11ab ≡ 1 (mod c), that± a ≡ ∓b (mod 3).

Since a, b don’t divide 3c, 12cδ ≡ 0 (mod 3c).

We now split our argument into two cases. First, we suppose that c is odd. By (5.2) we

have,

12cδ ≡ 2c − 2 − 12(a + b) + 4T (mod 8)

≡ 2(c − 1) − 12(a + b) + 4T (mod 8)

≡ 0 (mod 4),

(5.7)
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where T is some integer. We observe that gcd(4, 3c) = 1, due to c being odd. Therefore

12cδ ≡ 0 (mod 12c), hence δ is an integer.

We now suppose that c is even and c = 2λc1, where c1 is odd. We observe that a and b

are both odd, hence a + b is even. Therefore by (5.3),

12abcδ ≡ −11ab(a + b) + c2(a + b) + (a + b)

+ 5c(a + b) − 4c(aT2 + bT1) (mod 2λ+3)

≡ (a + b)(−11ab + c2 + 1 + 5c) (mod 2λ+2).

(5.8)

We recognise that the expression within the right parentheses is a multiple of c since

11ab ≡ 1 (mod c). Now if a + b ≡ 0 (mod 4) the above equation becomes 0 (mod 2λ+2)

and our proof is complete. Let’s suppose a + b ≡ 2 (mod 4). Then a ≡ b ≡ ±1 (mod 4).

Therefore, 11ab ≡ −1 (mod 4). If we let 11ab = cc′ + 1 for some integer c′, then the only

possible solutions to both congruences is for c′ to be odd and c to be 2c1 for some odd c1.

We substitute this back into the above congruence to find that

12abcδ ≡ (a + b)(−(cc′ + 1) + c2 + 1 + 5c) (mod 2λ+2)

≡ c(a + b)(c + 5 − c′) (mod 2λ+2)

≡ 0 (mod 2λ+2).

(5.9)

The last line comes fromour definition of c and that the expressions in both pairs of parentheses

are now even. Clearly a and b don’t divide 2λ+2. Hence, 12cδ ≡ 0 (mod 2λ+2). We now

observe gcd(2λ+2, 3c) = 2λ . Therefore, 12cδ ≡ 0 (mod 12c). This completes our proof.

�

We note that we can generalise the previous theorem by the following result.

Theorem 5.1.2. Let 12α − 1 = Q, where Q is an integer, and let d = gcd(12,Q + 1). If

Qab ≡ 1 (mod c), then

δ =
12
d

(s(a, c) + s(b, c)) −
Q + 1

d

(
a
c
+

b
c

)
(5.10)

is an integer.

Proof. The proof of this will use the techniques shown in the previous theorem. We note the

case Q = 11 is what we proved previously. Now,

dabcδ ≡ a2b + b + ab2 + a − (Q + 1)a2b − (Q + 1)ab2 (mod θc)

≡ (a + b)(1 −Qab) (mod θc)

≡ 0 (mod c).

(5.11)
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This immediately establishes our theorem for d = 1. For d = 3 and d = 6, we note

that dcδ ≡ 0 (mod 3) when θ = 1, since 3|(Q + 1) and 3|(s(a, c) + s(b, c)). Hence,

dcδ ≡ 0 (mod 3c). For θ = 3,

dabcδ ≡ (a + b)(nc) ≡ 0 (mod θc) (n = 0, 1, 2). (5.12)

We obtain the final congruence by observing that if c ≡ 0 (mod 3), then Q + 1 ≡ 0 (mod 3),

hence Q ≡ −1 (mod 3). Now, Qab ≡ 1 (mod 3) so a ≡ −b (mod 3), thus a + b ≡ 0 (mod 3).

Also, gcd(a, c) = 1 and gcd(b, c) = 1, so dcδ ≡ 0 (mod 3c). This completes the proof for

d = 3.

For d = 2, 4, 6, 12 we first suppose c is odd and we apply (5.2) to deduce that

dcδ ≡ 2c − 2 − (Q + 1)(a + b) + 4T (mod 8)

≡ 2(c − 1) − (Q + 1)(a + b) + 4T (mod 8).
(5.13)

We notice that the final line is 0 (mod 2) when d = 2, 6 and 0 (mod 4) when d = 4, 12.

Therefore, by applying the conditions (mod 3c) if necessary, dcδ ≡ 0 (mod dc), d = 2, 4, 6, 12.

We now suppose c is even and we apply (5.3) to obtain

dabcδ ≡ −Qab(a + b) + c2(a + b) + (a + b)

+ 5c(a + b) − 4c(aT2 + bT1) (mod 2λ+3)

≡ (a + b)(−Qab + c2 + 1 + 5c) (mod 2λ+2).

(5.14)

We now observe that the right side of the previous congruence is a multiple of c, and since

c is even it follows that a + b is necessarily even. Therefore, the above is ≡ 0 (mod 2λ+1).

Combining this with our previous results completes our proof for d = 2, 6. For d = 4, 12 we

note that Q ≡ −1 (mod 4). If a + b ≡ 0 (mod 4) there would be nothing to prove. Suppose

a + b ≡ 2 (mod 4). Then a ≡ b ≡ ±1 (mod 4) and thus Qab ≡ −1 (mod 4). We let

Qab = cc′ + 1. It follows that c′ is odd and c = 2c1 where c1 is also odd. Then,

12abcδ ≡ (a + b)(−(cc′ + 1) + c2 + 1 + 5c) (mod 2λ+2)

≡ c(a + b)(c + 5 − c′) (mod 2λ+2)

≡ 0 (mod 2λ+2).

(5.15)

Now, a and b don’t divide c and so it follows that dcδ ≡ 0 (mod 2λ+2). Now, since

gcd(2λ+2, c) = 4c, our proof is established for d = 4. Similarly, since gcd(2λ+2, 3c) = 12c,

our proof is also established for d = 12. �
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We also provide an alternate, direct proof for the case d = 2 and Q = 1.

Proof. For Q = 1, we have ab ≡ 1 (mod c). Therefore,

6(s(a, c) + s(b, c)) −
a
c
−

b
c
= 12s(a, c) −

a
c
−

b
c

= 12s(b, c) −
a
c
−

b
c
.

(5.16)

We then multiply both sides by ac and obtain

12acs(a, c) ≡ a2 + 1 (mod θc). (5.17)

We also know that 6cs(a, c) is an integer. Using this we obtain

12acs(a, c) − a2 − ab ≡ 0 (mod a) (5.18)

together with,

12acs(a, c) − a2 − ab

≡ a2 + 1 − a2 − ab (mod c)

≡ 0 (mod c).

(5.19)

Therefore,

12acs(a, c) − a2 − ab ≡ 0 (mod ac). (5.20)

�

5.2 A Corollary Of The Reciprocity Formula

In our study of Myerson and Phillips’ conjecture we discovered the following result.

Theorem 5.2.1. Let a, b, c and d be integers and (d − 1)ab + 1 = cc′. Then,

12
d

(s(a, c) − s(b, c)) −
a
c
+

b
c
=

12
d

(s(a, c′) − s(b, c′)) −
a
c′
+

b
c′
. (5.21)

Proof. Since cc′ ≡ 1 (mod a) and cc′ ≡ 1 (mod b), we know s(c, a) = s(c′, a) and similarly

s(c, b) = s(c′, b). So we can relate s(a, c) to s(a, c′) by the reciprocity formula. Indeed,

s(a, c) = s(a, c′) +
1
12

(
a
c
+

c
a
+

1
ac
−

a
c′
−

c′

a
−

1
ac′

)
= s(a, c′) +

1
12

(
a(c′ − c)

cc′
−

c′ − c
a
+

c′ − c
acc′

)
= s(a, c′) +

1
12

(
(c′ − c)(a2 − ((d − 1)ab + 1) + 1)

acc′

)
= s(a, c′) +

(
c′ − c
12cc′

)
(a − (d − 1)b).
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An equivalent relation exists for s(b, c). We obtain,

12
d

(s(a, c) − s(b, c)) −
a
c
+

b
c

=
12
d

(
s(a, c′) − s(b, c′) +

(c′ − c)(a − b + (d − 1)(a − b))
12cc′

)
−

a
c
+

b
c

=
12
d

(
s(a, c′) − s(b, c′)

)
+

(
c′ − c

cc′

)
(a − b) −

a
c
+

b
c

=
12
d

(
s(a, c′) − s(b, c′)

)
−

a
c′
+

b
c′
.

�

We can use the above result to evaluate Dedekind sums in special cases. In all these cases

we suppose b = 1 and recall

s(1, c) = −
1
4
+

1
6c
+

c
12
=

(c − 1)(c − 2)
12c

.

a) If c′ = 1, i.e. (d − 1)a + 1 = c, or equivalently c ≡ 1 (mod a), then,

12
d

(s(a, c) − s(1, c)) −
a
c
+
1
c

=
12
d

(s(a, 1) − s(1, 1)) − a + 1

= −a + 1.

Rearranging and observing that d = (c + a − 1)/a we obtain an identity given in [2, Ch. 3],

s(a, c) =
(c + a − 1)(1 − a)(c − 1)

12ac
+

(c − 1)(c − 2)
12c

=
(c − 1)((c + a − 1)(1 − a) + a(c − 2))

12ac

=
(c − 1)(c − a2 − 1)

12ac
.

(5.22)

b) If c′ = 2, or equivalently 2c ≡ 1 (mod a), then we note that a must be odd and d must

be even. Thus,

12
d

(s(a, c) − s(1, c)) −
a
c
+
1
c

=
12
d

(s(a, 2) − s(1, 2)) −
a
2
+
1
2

=
1
2
−

a
2
.

We rearrange the previous equation to obtain an equation equivalent to that in [2, Ch. 3] with

different conditions,

s(a, c) =
(c − 2)(−a2 + 2c − 1)

24ac
. (5.23)
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c) If (d − 1)a + 1 = cc′, or equivalently cc′ ≡ 1 (mod a), and a ≡ 1 (mod c′), then

12
d

(s(a, c) − s(1, c)) −
a
c
+
1
c

=
12
d

(
s(a, c′) − s(1, c′)

)
−

a
c′
+

1
c′

=
1
c′
−

a
c′
.

We now rearrange this equation to deduce that

s(a, c) =
(c − 1)(c − 2)

12c
+

(cc′ + a − 1)(1 − a)(c − c′)
12acc′

. (5.24)

d) If (d − 1)a + 1 = cc′, or equivalently cc′ ≡ 1 (mod a), and a ≡ −1 (mod c′), then

12
d

(s(a, c) − s(1, c)) −
a
c
+
1
c

=
12
d

(
s(a, c′) − s(1, c′)

)
−

a
c′
+

1
c′

= −2
12
d

(c′ − 1)(c′ − 2)
12c′

+
1
c′
−

a
c′
.

Therefore,

s(a, c) =
(c − 1)(c − 2)

12c
−

(c′ − 1)(c′ − 2)
6c′

+
(cc′ + a − 1)(1 − a)(c − c′)

12acc′
. (5.25)

e) If (d − 1)a + 1 = cc′, or equivalently cc′ ≡ 1 (mod a), and a ≡ ±2 (mod c′), then, by

recalling 24cs(2, c) = (c − 5)(c − 1),

12
d

(s(a, c) − s(1, c)) −
a
c
+
1
c

=
12
d

(
s(a, c′) − s(1, c′)

)
−

a
c′
+

1
c′

=
12
d

(
±

(c′ − 5)(c′ − 1)
24c′

−
(c′ − 1)(c′ − 2)

12c′

)
−

a
c′
+

1
c′
.

Again we rearrange to obtain

s(a, c) =
(c′ − 1)(±(c′ − 5) − 2(c′ − 2))

24c′
+

(c − 1)(c − 2)
12c

+
(cc′ + a − 1)(1 − a)(c − c′)

12acc′
.

(5.26)

5.3 Dense Lines Of Dedekind Sums

We wish to prove that solutions to the problem s(h, k) = αh/k, α , 1/12 are dense in the

reals. We will only be considering cases where 12α − 1 is a positive integer and we will
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follow similar techniques to those shown in [21]. In this section we prove the density of the

solutions for α = 1/6 and α = 1/4.

First we define the following quantities. Let h/k = [a0, a1, . . . , at], with t even, and define

I (h, k) =
t∑

i=0
(−1)i+1ai . (5.27)

Similarly, if h/k = [a0, a1, . . . , ap], with p odd, then we define

J (h, k) =
p∑

i=1
(−1)i+1ai . (5.28)

It is easy to see that J (h, k) = I (h, k) + [h/k] + 2.

Let γ = 12α − 1. Suppose h, k are integers, k > 0 and (γh, k) = 1. We define h′, r, r′′

and m as follows:

hh′ ≡ −1 (mod k), 0 < h′ < k,

{−γh/k} = r/k,

rr′′ ≡ 1 (mod k), 0 < r′′ < k, and

m = (γr′′ − h′)/k .

(5.29)

Lemma 5.3.1. With the above definitions, m is an integer, and 0 ≤ m ≤ γ − 1.

Proof. It is clear that r ≡ −γh (mod k). If we multiply both sides by r′′h′ we obtain

h′ ≡ 11r′′ (mod k), hence m is an integer. Since r′′ > 0 and h′ < k we have m > −1. From

r′′ < k, h′ > 0 we get m < γ so 0 ≤ m ≤ γ − 1. �

Lemma 5.3.2. Given h, k integers, k > 0 and (γh, k) = 1, let h/k = [a0, . . . , at] with t even.

Let −γh/k = [−b0, b1, . . . , bp] with p odd. Suppose there are positive integers c1, . . . , cn,

n odd, satisfying
t∑
0

(−1)iai +

n∑
1

(−1)ici −

p∑
1

(−1)ibi + b0 = 0, (5.30)

and

ma + γb − c = 0, (5.31)

where m is defined as above and a, b and c are defined by

*.
,

0 1

1 c1

+/
-

*.
,

0 1

1 c2

+/
-
× · · · ×

*.
,

0 1

1 cn

+/
-
=

*.
,

a b

c d

+/
-
.

Let x = [a0, . . . , at, c1, . . . , cn, bp, . . . , b1]. Then s(x) = αx.
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Proof. We note that

*.
,

0 1

1 1
+/
-

*.
,

0 1

1 a0

+/
-
× · · · ×

*.
,

0 1

1 at

+/
-
=

*.
,

u h

h′ k

+/
-

with u defined by uk = hh′ = 1, and

*.
,

0 1

1 bp

+/
-
× · · · ×

*.
,

0 1

1 b1

+/
-
=

*.
,

*.
,

0 1

1 b1

+/
-
× · · · ×

*.
,

0 1

1 bp

+/
-

+/
-

t

=
*.
,

v r′′

r k

+/
-
,

with v defined by vk − rr′′ = −1. If we let x = H/K, K > 0, (H, K ) = 1, it follows that

*.
,

u h

h′ k

+/
-

*.
,

a b

c d

+/
-

*.
,

v r′′

r k

+/
-
=

*.
,

U H

H′ K

+/
-
,

where HH′ ≡ −1 (mod K) and 0 < H′ < K . We need to prove that γH +H′−K I (H, K ) = 0

as this is equivalent to s(x) = αx. By our definitions it is easy to see that I (H, K ) = b0. We

can multiply out our matrices to see

H = ur′′a + ukb + hr′′c + hkd,

H′ = h′va + h′rb + kvc + krd,

K = h′r′′a + h′kb + kr′′c + k2d.

(5.32)

Then γH + H′ − K I (H, K ) = Aa + Bb + Cc + Dd. We then solve for A, B,C and D

in a way analogous to [21] and find A = m, B = γ,C = −1, D = 0. We can see that

γH + H′ − K I (H, K ) = ma + γb − c = 0. Hence, by Theorem 3.1.4, s(x) = αx.

�

Our proof then relies on the existence of ci as given in the previous lemma. Myerson and

Phillips [21] deal with this problem for the case α = 1. We will provide a proof of the density

in the reals of solutions of s(x) = αx for α = 1/6 and α = 1/4.

When α = 1/6 we note that m = 0. Therefore the previous lemma requires that b = c and

t∑
i=0

(−1)iai +

n∑
i=1

(−1)ici −

p∑
i=1

(−1)ibi + b0 = 0.

If we consider (c1, c2, c3), it is easy to check that under these conditions c1 = c3. Therefore,

c2 =
p∑

i=1
(−1)ibi −

t∑
i=0

(−1)iai − b0 = −(I (−h, k) − I (h, k) + 2) = −J (b, d). (5.33)
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We note that we require ci to be strictly positive and so the above case deals with J being

negative. If J were positive, we can consider the construction (c1) = (J). Finally, by our

construction of the ai and bi having even and odd length respectively, it will be impossible

for J = 0, so these cases are sufficient. This gives us the following theorem.

Theorem 5.3.1. The set {x : s(x) = x/6} is dense in the reals.

Proof. Given y inR and ε > 0, choose integers h and k, k >
√
2/ε , such that gcd(h, k) = 1 and

|y−h/k | < ε/2. Let h/k = [a0, . . . , at], t even, and let −h/k = −b0+r/k = [−b0, b1, . . . , bp],

p odd. Then there exists c1, . . . , cn, n odd, such that

J (b, d) = I (−h, k) − I (h, k) + 2 (5.34)

and

b = c (5.35)

for a, b, c and d defined previously. Therefore, for x = [a0, . . . , at, c1, . . . , cn, bp, . . . , b1],

s(x) = x/6. Furthermore, |x − h/k | < k−2 < ε/2. Hence, |y − x | < ε . �

We will provide an example. Suppose y = 1/2 and ε = 1/10, therefore k ≥ 5. So we will

take h/k = 5/11 = [0, 2, 5]. Therefore, h′ = 2, −h/k = −b0+r/k = −1+6/11 = [−1, 1, 1, 5].

Hence,

J = I (−h, k) − I (h, k) + 2 = 4 − (−3) + 2 = 9.

Since J is positive we take the case (c1) = (9). Therefore, x = [0, 2, 5, 9, 5, 1, 1] = 516/1133.

And it is easy to check s(516/1133) = 86/1133, as required.

Wenote that our constructionwill always give us a symmetric continued fraction in the entries

beyond a0, since if a1 , 1 and h/k = [a0, a1, . . . , an], then−h/k = [−a0−1, 1, a1 − 1, a2, . . . , an]

and if a1 = 1 and h/k = [a0, 1, a2, . . . , an] then −h/k = [−a0 − 1, a2 + 1, a3, . . . , an]. So our

required x, when n is even, will be

x = [a0, a1, . . . , an, c1, . . . , ct, an, . . . , a2, a1 − 1, 1]

= [a0, a1, . . . , an, c1, . . . , ct, an, . . . , a2, a1]

or

x = [a0, 1, a2, . . . , an, c1, . . . , ct, an, . . . , a2 + 1]

= [a0, 1, a2, . . . , an, c1, . . . , ct, an, . . . , a2, 1]
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respectively. Since the ci’s are symmetric, it follows that x will always be symmetric. We

observe from looking at values when s(x) = x/6 that every continued fraction expansion of

x can be written as a symmetric continued fraction. We leave our findings as a conjecture.

Conjecture 5.3.1. If x is a rational number and s(x) = x/6, then x can be written as a simple

continued fraction of the form

[a0, a1, . . . , an−1, an, an−1, . . . , a1].

We now consider the case when α = 1/4. To prove our result we will need the following

lemmas.

Lemma 5.3.3. Let h and k be integers, k > 0, with gcd(3h, k) = 1. Let m be as in (5.29)

(we note m can only take 0 or 1). Then I (−2h, k) − I (h, k) + 2 ≡ m (mod 3), where I (h, k)

is defined as in (5.27).

Proof. We recall from (3.3) that 12s(h, k) = h/k − h′/k + I (h, k). We also note that

−2hr′ ≡ −1 (mod k), where r′ = k − r′′. Therefore,

I (−2h, k) = 12s(−2h, k) +
2h
k
+

r′

k
= −12s(r′, k) +

2h
k
+

r′

k
.

Then

I (−2h, k) − I (h, k) − m

= 12s(r′, k) +
2h
k
+

r′

k
− 12s(h, k) +

h
k
−

h′

k
−
2r′′

k
+

h′

k

= 3
h
k
+ 3

r′

k
− 12s(h, k) − 12s(r′, k) − 2

= 12
(

h
4k
+

r′

4k
− s(h, k) − s(r′, k)

)
− 2.

(5.36)

We note that this expression is an integer and since 3 doesn’t divide k it follows that(
h
k
+

r′

k
− 4s(h, k) − 4s(r′, k)

)
(5.37)

is an integer. Therefore, I (−2h, k) − I (h, k) + 2 ≡ m (mod 3). �

We now show that the c1, . . . , cn exist for this case.

Lemma 5.3.4. Let there be given integers J and m, m defined as in (5.29). If J ≡ m (mod 3)

then there exist positive integers c1, . . . , cn, n odd, such that J (b, d) = J and ma+2b− c = 0,

where a, b, c and d are defined as before.
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Proof. We split our proof into two cases depending on the value of J.

1. Assume J = m + 3q, q = 1, 2, . . . . Let (c1, c2, c3) = (m + 1 + 2q, 1, q). It is easy to

check J (b, d) = J and this does indeed satisfy ma + 2b − c = 0.

2. Assume J = m−3q+3, q = 1, 2, . . . . Let (c1, . . . , c5) = (m+2, q, 1, 2q+1, 1). Again,

we can check this does satisfy the required conditions. �

Theorem 5.3.2. The set {x : s(x) = x/4} is dense in the reals.

Proof. Given y in R and ε > 0, choose integers h and k, k >
√
2/ε , such that gcd(3h, k) = 1

and |y−h/k | < ε/2. Let h/k = [a0, . . . , at], t even, and−2h/k = −b0+r/k = [−b0, b1, . . . , bp],

p odd. Then, by our previous lemma, there exists c1, . . . , cn, n odd, such that

J (b, d) = I (−2h, k) − I (h, k) + 2 (5.38)

and

ma + 2b − c = 0 (5.39)

for a, b, c and d defined previously. Therefore, for x = [a0, . . . , at, c1, . . . , cn, bp, . . . , b1],

s(x) = x/4 . Furthermore, |x − h/k | < k−2 < ε/2. Hence, |y − x | < ε . �

We now provide an application of our theorem. Suppose we take y = 1/5 and ε = 1/10.

Then it is clear we are allowed to take h/k = 1/5. Now, h/k = [0, 4, 1],

−2h/k = −b0 + r/k = −1 + 3/5 = [−1, 2, 1, 1], h′ = 4 and m = 0. We calculate,

J = I (−2h, k) − I (h, k) + 2 = 1 − 3 + 2 = 0.

Therefore, we take (c1, . . . , c5) = (2, 1, 1, 3, 1) and x = [0, 4, 1, 2, 1, 1, 3, 1, 2, 1, 1] = 210/991.

Clearly, |1/5 − 210/991| < ε and we can check that s(x) = 105/1982, as required.

We also note that Theorem 5.1.1 allows us to simplify the proof of Theorem 4 of [21].

We state the following lemma as a consequence of our result.

Lemma 5.3.5. Let h and k be integers, k > 0, with gcd(γh, k) = 1, and d = gcd(12, γ + 1).

Let m be as in (5.29). Then

I (−γh, k) − I (h, k) + 2 ≡ m + 2 − γ (mod d).

Proof. By a similar argument to Lemma 5.3.3 we obtain

I (−δh, k) − I (h, k) − m = d
(
γ + 1

d

(
h
k
+

r′

k

)
−
12
d

(
s(h, k) − s(r′, k)

))
− γ.
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By Theorem 5.1.2, it follows that

J (b, d) = I (−γh, k) − I (h, k) + 2 ≡ m − γ + 2 (mod d).

�

We now provide a simpler proof of another lemma in [21].

Lemma5.3.6. Let there be given integers J andm, m defined as before. If J ≡ m+3 (mod 12)

then there exists positive integers c1, . . . , cn, n odd, such that J (b, d) = J and ma+11b−c = 0,

where a, b, c and d are defined as before.

Proof. We use the results of [21], however, by our construction we only need to consider the

cases such that J ≡ m + 3 (mod 12). We thus split our proof into 3 cases.

1. Assume m− J = 12q−3, for q = 1, 2, . . . . Let (c1, . . . , c5) = (m+11, q, 1, 11q+10, 1).

2. Assume J − m = 12q + 3, for q = 1, 2, . . . . Let (c1, . . . , c5) = (11q + m + 4, 1, 2, 2, q).

3. Assume J − m = 3. Let (c1, c2, c3) = (m + 12, 10, 1).

It is simple to check that these cases do indeed satisfy the required conditions. �

We now provide the statement of the theorem given and provide the simpler proof.

Theorem 5.3.3. {x : s(x) = x} is dense in the reals

Proof. Given y inR and ε > 0, choose integers h and k, k >
√
2/ε , such that gcd(11h, k) = 1

and |y − h/k | < ε/2. Let h/k = [a0, . . . , at], with t being even. Furthermore, let

−11h/k = − b0 + r/k = [−b0, b1, . . . , bp], with p being odd. Then, by our previous

lemma, there exists c1, . . . , cn, n odd, such that

J (b, d) = I (−11h, k) − I (h, k) + 2 and

ma + 11b − c = 0
(5.40)

for a, b, c and d defined previously. Therefore, for x = [a0, . . . , at, c1, . . . , cn, bp, . . . , b1],

s(x) = x . Furthermore, |x − h/k | < k−2 < ε/2. Hence, |y − x | < ε . �
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6
Conclusion

Our work on Dedekind sums has provided an overview of some of the results that have been

proven in the years following the publication of Rademacher and Grosswald’s book. We

have provided a foundation for our own further research in this topic, particularly in studying

whether solutions of the problem s(x) = αx are dense in the real line, for all α , 1/12. Our

results in the final chapter lead us to believe, at least for x being a rational with denominator

dividing 12, that these solutions will be dense in the reals. However, we observe, in its current

form, we would require increasingly many cases to give an explicit construction of x when

α increases. We hope that our presentation encourages further study of Dedekind sums, to

further our collective knowledge of this interesting topic of mathematics.
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