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Abstract

The random design nonparametric regression model with short-range dependent and long-

range dependent errors is investigated. The asymptotic behaviour of the robust local polyno-

mial M-estimator is investigated under two conditions.

Asymptotic results are established by decomposing the local polynomial estimator into

two terms: a martingale term and a conditional expectation term. It is found that the local

polynomial M-estimator is asymptotically normal when errors are short-range dependent.

When the errors are long-range dependent, a more complex behaviour is observed that

depends on the size of the bandwidth. If the bandwidth is small enough, the long-range

dependent scenario is similar to the short-range dependent case. If the bandwidth is relatively

large the asymptotic result is more intricate and the long-range dependent variables dominate.

Moreover, the optimal bandwidth in the case of short-range dependence is determined.
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1
Introduction

Regression analysis is a very common issue in statistics. It explores the relationship between

explanatory variables X and response variables Y , and seeks to explain how the change

of X influences Y . Sometimes the relationship is not complex so parametric techniques

can be applied; however, parametric techniques are not flexible and sometimes not suitable.

Intuitively, a data-driven technique is required to complete the task, and the suitable technique

is called nonparametric regression estimation. In this thesis, we focus on a specific method

of nonparametric regression estimation, the local polynomial estimator, which has numerous

advantages compared with the traditional local constant estimators, such as the Naradaya-

Watson estimator and the Gasser-Müller estimator. We show that the asymptotic behaviour of

a robust local polynomial estimator on a regressionmodelwith dependent errors is determined

by the strength of dependence. When errors are short-range dependent, the asymptotic law

is the same as the independent case. When errors are long memory, it is found that different

bandwidths can result in different asymptotic behaviours. Before exhibiting our results, we

shall introduce some useful concepts.
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1.1 PARAMETRIC REGRESSION

The most common regression technique is linear regression and the aim of it is to fit a linear

relationship between X and Y , and for those parts deviating from the line they are regarded

as errors. Thus, the relationship can be modeled as

Y = a + bX + ε,

where ε is the error term and it is assumed that �ε = 0. A very basic case of this model is

that the conditional mean is linear:

m(x) =: �(Y |X = x) = a + bx.

As a and b are unknown, the fitted model is constructed by estimating them with â and b̂ via

different approaches, the most common being least squares estimation.

However, the case that the conditional mean appears to be linear is not always guaranteed

so a validation on the linearity needs to be conducted. To this end, diagnostic validation is

conducted with a scatter plot of X against Y and a residual analysis. If there is no linearity

in the scatter plot or a pattern in the residuals is observed, then linear regression is no longer

suitable to fit the data. There are some techniques which can be used to fit a nonlinear

regression and a superior one among them is called polynomial regression which assumes

that the conditional mean has the structure of a polynomial. Consequently, polynomial

regression satisfies

m(x) = a0 + a1x + · · · + apxp, ai ∈ �, i = 0,1,2, · · · , p.

This polynomial structure is assumed to occur on the entire global domain of x. However,

high order polynomial parametric models are fitted on a global scale in the data. That is, each

ai is fixed for all x in the domain. This has disadvantages where in nonlinear data the fitted

curves are sensitive to the observed data, and higher order polynomial parametric models can

overfit the trend in the data. Nonparametric regression methods are a superior alternative

when the data is nonlinear with no obvious simple structure.

1.2 NONPARAMETRIC ESTIMATION METHODS

In this section, some key techniques for nonparametric regression estimation will be intro-

duced and the local polynomial regression estimation will be discussed in detail.
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1.2.1 Kernel estimators

It is difficult to obtain much information about the value of m(x0) from the y points with

corresponding x far from x0 if there is not a specific form of the functionm. Intuitively, we can

take a locally weighted average for the y variables to be the estimator, and kernel estimators

are this class of estimators. Among numerous nonparametric regression estimators based on

the kernel function, the Nadaraya-Watson estimator and the Gasser-Müller estimator are two

very classic ones.

The Nadaraya-Watson estimator was proposed independently by Naradaya (1964) and

Watson (1964). Given a kernel function K : � → � , which is usually a symmetric

probability density function, and a bivariate set of observations (X,Y ), the Nadaraya-Watson

estimator follows

m̂(x0) =

∑n
i=1 K( Xi−x0

h )Yi∑n
i=1 K( Xi−x0

h )
,

where h is the bandwidth of the estimator. This estimator is regarded as the local constant

estimator where m(x0) is estimated locally by a constant. Fan and Gijbels (1996) exhibit

several drawbacks of the Nadaraya-Watson estimator. The first one is that it has a large bias

especially when the regression function or the design density have a large derivative, and it

is found that even when the true regression curve is linear the bias is still large. Another

problem is that the estimator has zero minimax efficiency which is a benchmark to efficiency

of linear estimation.

Due to the form of the Nadaraya-Watson estimator, it is not convenient to take derivatives

of the estimator and to find out the asymptotic properties. Therefore, Gasser and Müller

(1979) proposed an estimator called the Gasser-Müller estimator. Assume that the data are

sorted by the variable X , and then the estimator follows

m̂(x0) =

n∑
i=1

∫ si

si−1

1
h

K
(u − x0

h

)
du Yi,

with si = (Xi + Xi+1)/2, X0 = −∞ and Xn+1 = +∞. The Gasser-Müller estimator is regarded

as a local constant estimator as well. It should be pointed out that this estimator fits not

only equispaced designs but also non-equispaced designs. The Gasser-Müller estimator

resolves the problem of large bias which the Nadaraya-Watson estimator has; however, this

improvement brings in another problem of increasing the variability. Moreover, it is found

that there exists a large order of bias for both the Nadaraya-Watson estimator and the Gasser-

Müller estimator when estimating a curve at a boundary region. More details of these issues
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are discussed by Fan and Gijbels (1996).

Kernel estimators are not what we are interested in so more details will not be given. The

interested reader can check Härdle (1990) and Fan and Gijbels (1996).

1.2.2 Local polynomial estimator

Assuming a regression function m has at least (p + 1) derivatives, then Taylor’s expansion

can locally approximate the function by

m(u) ≈
p∑

j=0

m( j)(x0)

j!
(u − x0)

j ≡

p∑
j=0

β j(u − x0)
j (1.1)

for u in a neighbourhood of x0. It is said that m(u) is estimated locally by (1.1) with a simple

polynomial model. Then, the locally weighted least squares polynomial regression is the

solution to
1
h

n∑
i=1

{
Yi −

p∑
j=0

β j(Xi − x0)
j
}2

K
( Xi − x0

h

)
, (1.2)

where K(·) is a kernel function and h is a bandwidth. Therefore, the estimators of β j ( j =

0,1, · · · , p) are expected to minimize (1.2). The bandwidth h is a critical parameter in this

method. The reason is that a too large bandwidth can produce a smoother estimate while

paying the price of a highmodeling bias; in contrast, choosing a too small bandwidth can lower

the bias while causing high variability. Thus, a theoretical choice of the bandwidth is required.

However, due to some unknown quantities, it is not easy to find the theoretical bandwidth,

and then some practical techniques on bandwidths selection need to be explored. Moreover,

the choice of another parameter, the order of the polynomial p, is also an important issue

to be discussed. For a given bandwidth h, a higher order can decrease the bias by bringing

in a high variance; oppositely, a lower order has low variability while the bias is large. A

reasonable choice of the order will be given in the following discussion.

Compared with local constant estimators such as the Nadaraya-Watson estimator and the

Gasser-Müller estimator, the local polynomial estimator has more advantages. First, the local

polynomial estimator is more efficient in minimizing the mean squared error (MSE)

MSE = {Bias[m̂(x)]}2 + Var[m̂(x)] (1.3)

as well as the integrated mean squared error (MISE); in particular, when the order of the

polynomial approximation p is odd, there exists a decrease in the bias without increasing in
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the variability compared to the case of p − 1. In Fan and Gijbels (1996), they recommend

using the lowest odd order, i.e. p = 1, or occasionally p = 3. Second, the local polynomial

estimator adapts to both random designs and fixed designs. Third, boundary effects do not

influence the local polynomial estimator which can adapt automatically to the estimation

at boundaries. Furthermore, it turns out that local polynomial estimators are the best linear

smoother both in the interior and at the boundary in terms of its high linear minimax efficiency

and this method has a high overall minimax efficiency as well.

1.2.3 Other methods

There are some other popular nonparametric estimation methods, such as orthogonal series

based methods, the spline smoothing and the logspline density estimator. Interested readers

are referred to Fan and Gijbels (1996) and Wasserman (2006), and we will not display those

methods here.

1.3 M-ESTIMATOR

It is found that the least squares criterion in (1.2) is sensitive to outliers or aberrant obser-

vations, so how to reduce the influence of outliers on estimation is an issue to overcome.

Intuitively, some robust procedures are concerned. Huber (1964) proposed the Huber’s loss

function which is an M-type estimator, and then Huber (1973) introduced M-estimators in

the context of regression the first time. Beaton and Tukey (1974) considered the application

of M-estimation in the regression model and proposed a biweight (or bisquare) loss function.

A procedure called locally weighted scatterplot smoothing (LOWESS) which employs an

iterative reweighted least squares scheme to decrease the influence of outliers was introduced

by Cleveland (1979). Cox (1983) investigated robustified smoothing splines, Fan and Gijbels

(1996) applied the local polynomial estimator in a quantile regression and Fan and Jiang

(1999) studied an M-type local polynomial estimator. The robust approach used in this thesis

is the M-estimator so the following content will give the concept of the M-estimator.

Denote ε̂ the estimator of errors ε, an estimator Tn is called M-estimator (or maximum

likelihood type estimator) if it minimizes
∑n

i=1 ρ(ε̂i; Tn) or satisfies
∑n

i=1 ψ(ε̂i; Tn) = 0, where

ρ, a loss function, is called the objective loss function and ψ, the derivative of ρ, is called the

influence curve. The objective loss function should satisfy the following properties:
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Method Objective Loss Function Influence Curve

Huber ρ(ε̂) =


1
2 ε̂

2, for |ε̂ | ≤ k

k |ε̂ | − 1
2 k2, for |ε̂ | > k

ψ(ε̂) =


−k, for ε̂ < −k

ε̂, for − k ≤ ε̂ ≤ k

k, for ε̂ > k

Biweight ρ(ε̂) =


k2

6 {1 − [1 − (
ε̂
k )

2]3}, for |ε̂ | ≤ k

k2

6 , for |ε̂ | > k
ψ(ε̂) =


0, for ε̂ < −k

ε̂ − 2ε̂3

k2 +
ε̂5

k4 , for − k ≤ ε̂ ≤ k

0, for ε̂ > k

Table 1.1: Objective loss and influence function of Huber’s and the biweight estimator.

• Nonnegativity, ρ(ε̂) ≥ 0

• Equal to zero at the origin: ρ(ε̂) = 0

• Symmetricity: ρ(ε̂) = ρ(−ε̂)

• Monotonicity: ρ(ε̂i) ≥ ρ(ε̂ j) if |ε̂i | > |ε̂ j |

The Huber’s loss function and the biweight loss function wementioned previously are two

very common M-type objective loss functions. Table 1.1 shows the two functions and their

respective influence curves. The value k in both the Huber’s loss function and the biweight

loss function is called the tuning constant, and smaller values of k produce more resistance to

outliers at the cost of lower efficiency when the errors follow a normal distribution. A feature

of the Huber’s estimator is that as the residual ε̂ departs from 0 the value of the objective

loss function increases boundlessly; in contrast, there are no longer increases for the biweight

function when |ε̂ | > k. There are several other robust methods, such as the L-estimator

and the R-estimator. We recommend readers to go through Huber (1996) where elaborating

details of these different methods are given.

Now, it is clear that by the M-estimator, (1.2) can be re-written as

1
h

n∑
i=1

ρ
{
Yi −

p∑
j=0

β j(Xi − x) j
}
K

( Xi − x
h

)
.

Correspondingly, β̂ j , the estimator of β j , should satisfy

1
h

n∑
i=1

ψ
{
Yi −

p∑
j=0

β̂ j(Xi − x) j
}
K

( Xi − x
h

)
X = 0 (1.4)

where X = [1,Xi − x, . . . , (Xi − x)p]T .
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1.4 LONGMEMORY

Most of the methods we mentioned above mainly investigate independent and identical dis-

tribution (i.i.d.) cases. There are some authors focusing on dependent cases as well, such as

Csörgo and Mielniczuk (1995a) using kernel estimators to fit a fixed-design nonparametric

regression model with short-range dependent (SRD) errors and Cai and Ould-Saïd (2003)

investigating stationary time series sequence under α-mixing conditions by using an M-type

local polynomial estimator. As a special case of dependence, long memory (or long-range

dependence) (LRD) has become of interest in recent years, and a number of articles are con-

tributed to this case. Hall andHart (1990) studied the convergence rate of the density estimator

of a fixed-design regression function with LRD errors. Csörgo and Mielniczuk (1995b) and

Csörgo and Mielniczuk (1999) respectively investigated the kernel density estimator with

LRD variables and the Nadaraya-Watson estimator for a random-design regression model

with LRD errors, and Wu and Mielniczuk (2002) and Mielniczuk and Wu (2004) extended

the results. Beran et al. (2002) gave the optimal bandwidth of the robust local polynomial

estimator for a fixed-design regression function with LRD errors. In this thesis, we focus on a

random-design regression function with SRD and LRD errors respectively, and the following

content in this section will give the concept of SRD and LRD for a linear process.

Definition 1.4.1. A random sequence is said to be stationary if its joint probability distribution

is invariant over time.

Let {Zn,n ∈ �} be a stationary sequence and we assume that it follows a linear process

Zi =

∞∑
t=0

atηi−t (1.5)

where {ηi, i ∈ �} is an i.i.d. sequence with mean of 0 and finite variance and coefficients ai

satisfy
∑∞

i=0 a2
i < ∞. We also assume that a0 = 1. Define

ai = L(i)i−α,

where L(·) is slowly varying for i →∞ and α is a self-similarity parameter, and ai is said to

be regularly varying at infinity with index α. It is found that the strength of dependence of

the linear process depends on α.

Definition 1.4.2. Zn is said to be SRD if α > 1, and in this case,
∞∑

i=0
|ai | < ∞
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holds.

Definition 1.4.3. Zn is said to be LRD if 1/2 < α < 1, and in this case,

∞∑
i=0
|ai | = ∞

holds.

Moreover, there are three very useful results from Bojanic and Seneta (1973) and Seneta

(1976) to bound the regularly varying sequences at the boundaries near zero and infinity:

i)

sup
i≥n

i−pL(i) ∼ n−pL(n), for p > 0 (1.6)

ii)

lim
n→∞

1
n1+pL(n)

n∑
i=1

ipL(i) =
1

1 + p
, for p > −1

iii)

lim
n→∞

n∑
i=1

ipL(i) = C, for p < −1. (1.7)

1.5 THESIS OUTLINE

This thesis is organized as follows. The notations and assumptions used throughout this

thesis are listed in Chapter 2. Chapter 3 displays the main result via two theorems. Chapter

4 gives the conclusion and discusses the potential work of this thesis in the future, and our

proofs to derive the result are provided in Chapter 5.



2
Notations and Assumptions

This chapter exhibits the notations and the assumptions used throughout this thesis. Section

2.1 gives the regression model and the corresponding local polynomial M-estimator. Section

2.2 exhibits the assumptions used to depict the asymptotic behaviour of the estimator.

2.1 NOTATIONS

Assume that {Yi,Xi}
∞
−∞ are a stationary sequence, then we consider the regression model

Yi = m(Xi) + Zi, (2.1)

where errors {Zi}
n
i=1 are a stationary sequence and are independent of {Xi}

n
i=1, and {Zi}

n
i=1

also satisfy �Zi = 0 almost surely. We assume {Zi}
n
i=1 to be a linear process in the form of

(1.5) with ai = LZ (i)i−αZ and {Xi}
n
i=1 to be i.i.d. satisfying �Xi = 0 and �X2 < ∞.

Let Wi = (Zi,Xi) and Wi,j = �(Wi |Fj), where Fj = σ(. . . , η j−1,X j−1, η j,X j) is a filtration,

and correspondingly, Zi,j = �(Zi |Fj) and Xi,j = �(Xi |Fj). Note that since {Xi}
n
i=1 are i.i.d.,

then Xi,j = 0 when j < i.
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Denote f1 the density function of (η,X) with the marginal density functions fη and fX

respectively and f∞ the density function of (Z,X) with the marginal density functions fZ and

fX respectively. Due to the independence between {Zi}
n
i=1 and {Xi}

n
i=1, f1 and f∞ satisfy

f1 = fη · fX and f∞ = fZ · fX .

Denote fi,Z the density function of Zi − Zi,i−1 =
∑i−1

t=0 atηi−t .

Let β = (β0, β1, . . . , βp)
T and β̂ = (β̂0, β̂1, . . . , β̂p)

T . Our purpose is to investigate the

asymptotic behaviour of β̂ − β. Define

Ψn(β) =
1

nh

n∑
i=1

ψ

{
Yi −

p∑
j=0

β j(Xi − x0)
j

}
K

( Xi − x0
h

)
X,

so Ψn(β) can be expanded at β̂ by Taylor’s theorem to turn into

Ψn(β̂) = Ψn(β) + ∇Ψn(β
∗) · (β̂ − β), (2.2)

where β∗ = (β∗0, β
∗
1, . . . , β

∗
p)

T and each β∗i is between βi and β̂i , and

∇Ψn(β
∗) =

1
nh

n∑
i=1

ψ′

{
Yi −

p∑
j=0

β∗j (Xi − x0)
j

}
K

( Xi − x0
h

)
XXT

and ∇ denotes the gradient operator. Due to (1.4), it can be obtained that Ψn(β̂) = 0, and

then (2.2) indicates

β̂ − β = −[∇Ψn(β
∗)]−1 · Ψn(β). (2.3)

Define the remainder of m(Xi) and its Taylor’s expansion about x0 with

R(Xi) = m(Xi) −

p∑
j=0

m( j)(x0)

j!
(Xi − x0)

j ≡ m(Xi) −

p∑
j=0

β j(Xi − x0)
j .

From (2.1), it is possible to decompose Ψn(β) into

Ψn(β) =
1

nh

n∑
i=1

ψ

{
Yi −

p∑
j=0

β j(Xi − x0)
j

}
K

( Xi − x0
h

)
X

=
1

nh

n∑
i=1

ψ

{
Yi − m(Xi) + m(Xi) −

p∑
j=0

β j(Xi − x0)
j

}
K

( Xi − x0
h

)
X

=
1

nh

n∑
i=1

ψ[Zi + R(Xi)]K
( Xi − x0

h

)
X

=
1

nh

n∑
i=1

ψ(Zi)K
( Xi − x0

h

)
X +

1
nh

n∑
i=1

ψ′(Zi)R(Xi)K
( Xi − x0

h

)
X

+
1

nh

n∑
i=1

{
ψ
[
Zi + R(Xi)

]
− ψ(Zi) − ψ

′(Zi)R(Xi)

}
K

( Xi − x0
h

)
X

≡ ∆n,1 + ∆n,2 + ∆n,3.
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We also apply a decomposition in ∇Ψn(β
∗). Let

δi = R(Xi) +

p∑
j=0
(β j − β

∗
j )(Xi − x0)

j, (2.4)

then ∇Ψn(β
∗) can be decomposed into

∇Ψn(β
∗) =

1
nh

n∑
i=1

ψ′

{
Yi −

p∑
j=0

β∗j (Xi − x0)
j

}
K

( Xi − x0
h

)
XXT

=
1

nh

n∑
i=1

ψ′

{
Yi −

p∑
j=0

β j(Xi − x0)
j +

p∑
j=0
(β j − β

∗
j )(Xi − x0)

j

}
K

( Xi − x0
h

)
XXT

=
1

nh

n∑
i=1

ψ′

{
Yi − m(Xi) + R(Xi) +

p∑
j=0
(β j − β

∗
j )(Xi − x0)

j

}
K

( Xi − x0
h

)
XXT

=
1

nh

n∑
i=1

ψ′(Zi + δi)K
( Xi − x0

h

)
XXT

=
1

nh

n∑
i=1

ψ′(Zi)K
( Xi − x0

h

)
XXT +

1
nh

n∑
i=1

[
ψ′(Zi + δi) − ψ

′(Zi)
]
K

( Xi − x0
h

)
XXT

≡ ∆n,4 + ∆n,5.

Therefore, (2.3) is equivalent to

β̂ − β + (∆n,4 + ∆n,5)
−1
∆n,2 = −(∆n,4 + ∆n,5)

−1(∆n,1 + ∆n,3). (2.5)

Wu and Mielniczuk (2002) and Mielniczuk and Wu (2004) proposed a decomposition to

study the behaviour of regression estimators with LRD errors, and we will extend this method

to our robust local polynomial estimator. Let ζ i,1 = ψ(Zi)K((Xi − x0)/h)X, then ∆n,1 can be

decomposed into

nh∆n,1 =

n∑
i=1

[
ζ i,1 − �(ζ i,1 |Fi−1)

]
+

n∑
i=1

�(ζ i,1 |Fi−1)

≡ Mn,1 + Nn,1.

We do a similar decomposition to ∆n,2, ∆n,4 and ∆n,5. Let ζ i,2 = ψ
′(Zi)R(Xi)K((Xi − x0)/h)X,

ζ i,4 = ψ
′(Zi)K((Xi − x0)/h)XXT and ζ i,5 =

[
ψ′(Zi + δi) − ψ

′(Zi)
]
K((Xi − x0)/h)XXT , then

we have

nh(∆n,k − �∆n,k) =

n∑
i=1

[
ζ i,k − �(ζ i,k |Fi−1)] +

n∑
i=1

[
�(ζ i,k |Fi−1) − h�∆n,k

]
≡ Mn,k + N̄n,k

where k = 2,4 and 5.
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Definition 2.1.1. On a probability space (X,F ,P), a stochastic sequence {Xt}
∞
−∞ is said to

be a martingale difference sequence if it satisfies

�|Xt | < ∞ and �[Xt |Ft−1] = 0 a.s.

By the tower property of conditional expectations, it follows that each Mn,i (i = 1,2,4,5)

forms a martingale difference sequence. Thus by the martingale central limit theorem, it can

be shown that with a particular norming sequence, Mn,i has a Gaussian limit (see Lemma

2). We find that the asymptotic behaviours of ∆n,2, ∆n,4 and ∆n,5 under SRD stay equivalent

to the case of LRD (see Lemma 4). It is also found that ∆n,3 is negligible to ∆n,1 and the

asymptotic law of β̂ is determined by ∆n,1. Further, when {Zi}
n
i=1 are SRD, Mn,1 determines

the asymptotic behaviour of the estimator; however, when {Zi}
n
i=1 are LRD, there exists a

dichotomous phenomenon: if the bandwidth h is small enough, then Mn,1 still determines the

limit, and if h is large enough, then the asymptotic law is dominated by Nn,1.

Define

Λ
2
n = 2nΘ2

2n +

∞∑
i=1
(Θn+i − Θi)

2, Θn =

n∑
i=1

θi, θi = |ai−1 |
√

Ai−1 and Ai =

∞∑
j=i

|a j |
2,

it is found that Λn is a key sequence to depict the asymptotic behaviour of ∆n,1 (see Lemma

5). Mielniczuk and Wu (2004) finds that when |ai | = O(LZ (i)i−αZ ) for some αZ > 1/2, then

Λn = O
[√

n
∑2n

i=1 i1/2−2αZ L2(i) + n2−2αZ L2(n)
]
. Thus, by (1.6)-(1.7), the order of Λn is able

to be divided into

Λn =


O(
√

n), αZ >
3
4

O
(
n2−2αZ L2(n)

)
,

1
2
< αZ <

3
4
.

Let σ2
n,Z = �(

∑n
i=1 Zi)

2. By Mielniczuk and Wu (2004),

σ2
n,Z ∼ C(αZ )n3−2αZ L2

Z (n),

where C(αZ ) is a constant depending on αZ and C(αZ ) = O(1), so

Λn

σn,Z
= o(1), for

1
2
< αZ < 1.

Moreover, Mielniczuk and Wu (2004) also point out that∑n
i=1 Zi

σn,Z

d
→ N(0,1),

where N(0,1) is a standard normal random variable.
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2.2 ASSUMPTIONS

Now we list some conditions which are required in the proofs of the theorems.

Assumption 1. The kernel function K(·) has a compact support [−1,1].

Assumption 2. f1 is bounded and twice continuously differentiable with bounded derivatives.

Assumption 3. The regression functionm(·) is at least (p+2) times continuously differentiable

at the given point x0.

Assumption 4. The bandwidth h is positive and satisfies h→ 0 and nh→∞ as n→∞.

Assumption 5. ψ(·) is continuous and is once differentiable almost everywhere, and�[ψ′(Z)]

and �[ψ2(Z)] are bounded. Furthermore, there exists a positive constant λ such that for

l = 0 and 1, �[|ψ(l)(Z)|λ] is bounded.

Assumption 6. ψ(·) and ψ′(·) satisfy the following two conditions:

i) �
[
sup
|r |≤δ

��ψ′(Z + r) − ψ′(Z)
�� ���X = x

]
= o(1)

ii) �
[
sup
|r |≤δ

��ψ(Z + r) − ψ(Z) − ψ′(Z)r
�� ���X = x

]
= o(δ)

as δ→ 0 uniformly in x in a neighbourhood of x0

Assumption 7. Let Ri(z) = fi−1,Z (z − Zi,1) − fi−1,Z (z − Zi,0) + f ′i−1,Z (z − Zi,0)ai−1η1. There

exists a C > 0 such that for sufficiently large i ∈ �,

sup
z∈�

 ∫
�

ψ(z)
[

f ′i−1,Z (z − ζ) − f ′i−1,Z (z)
]
dz

 ≤ C‖ζ ‖

holds for ζ = Zi,0 and Zi,1, and

sup
z∈�

 ∫
�

ψ(z)Ri(z)dz
 ≤ Ca2

i−1,

where ‖ · ‖ = (�| · |2)1/2.

In Lemma 1, we prove that if Assumption 1 holds then f∞ has the same properties as f1.

Assumption 5 is useful in deriving the behaviours of ∆n,1, ∆n,2 and ∆n,4, and i) in Assumption

6 contribute to find the asymptotic law of ∆n,5. ii) in Assumption 6 is used to show that

∆n,3 is negligible to ∆n,1. Note that in Assumption 3, m(·) is assumed to be at least (p + 2)
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times differentiable instead of (p + 1) times, and the reason is that the approximation of ∆n,2

depends on the parity of p (see Lemma 4).

Assumption 7 is used in Lemma 5 to prove that Nn,1 can be split into a dominated term

and a remainder. In fact, this assumption is a special case of C4 in Mielniczuk and Wu

(2004) where they investigate a model with errors based on two variables both following

linear processes.



3
Results

In this chapter, the asymptotic behaviour of the SRD case is considered first, and then we dis-

cuss the LRD case. For LRD, it is found that the approximation behaves differently regarding

to different bandwidths. Before exhibiting the theorems, some notations for simplicity are

given. Define

µl =

∫
�

ulK(u)du and νl =

∫
�

ulK2(u)du.

Further define the matrices H = diag(1, h, h2, · · · , hp),

Sp =
(
µ j+k

)
0≤ j,k≤p =

©«

µ0 µ1 · · · µp

µ1 µ2 · · · µp+1
...

...
...

µp µp+1 · · · µ2p

ª®®®®®®®¬
and S̃p =

(
µ j+k+1

)
0≤ j,k≤p
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S∗p =
(
ν j+k

)
0≤ j,k≤p =

©«

ν0 ν1 · · · νp

ν1 ν2 · · · νp+1
...

...
...

νp νp+1 · · · ν2p

ª®®®®®®®¬
and S̃∗p =

(
ν j+k+1

)
0≤ j,k≤p

3.1 Consistency

The existence of a consistent solution is established first before the convergence rate properties

of those solutions is analysed in the SRD and LRD cases respectively.

Theorem 1. If Assumptions 1 – 6 hold then the solution to the minimisation problem is

consistent. That is,

H
(
β̂ − β

) p
−→ 0.

3.2 SRD SEQUENCES

In the SRD case, it satisfies thatαZ > 1, and it is found that Mn,1 dominates the asymptotic law.

Theorem 2. If
∑∞

i=n |ai | < ∞ and Assumptions 1-7 hold, then

√
nh

[
H(β̂ − β) − Bias(H(β̂ − β))

]
d
−→ N

(
0,

�[ψ2(Z)]

� [ψ′(Z)]2 fX(x0)
S−1

p S∗pS
−1
p

)
where the Bias term is,

h1+p

fX(x0)

(
S−1

p − h
f ′X(x0)S

−1
p S̃pS

−1
p

fX(x0)

) [
fX(x0)θp+1cp + h

(
f ′X(x0)θp+1 + fX(x0)θp+2

)
c̃p

]
,

where θp = m(p)(x0)/p!.

The theorem shows that for odd and even p, the only difference is the bias term, and the

reason of this is that odd moments of K(·) are zero (see Lemma 4). Lemma 6 shows that the

asymptotic distribution N
[
0,Σ1(x0)

]
is only determined by Mn,1. Moreover, the above result

is equivalent to the asymptotic behaviour under the case of independence.
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Based on the theorem, we can derive the optimal bandwidths for those two conditions.

When p is odd, then the asymptotic mean squared error (AMSE) of m̂(x0) is

AMSE(x0) =
h2+2p

[
µ1+pm(p+1)(x0)

]2[
(p + 1)!

]2 +
eT

1S
−1
p S∗pS

−1
p e1�

[
ψ2(Z)

]
nh fX(x0)�2

[
ψ′(Z)

] ,

where �2(·) ≡ [�(·)]2. Thus, the optimal bandwidth is

hopt =

{
eT

1S
−1
p S∗pS

−1
p e1�

[
ψ2(Z)

]
·
[
(p + 1)!

]2

n(2 + 2p) fX(x0)
[
µ1+pm(p+1)(x0)

]2
�2

[
ψ′(Z)

] } 1
3+2p

.

Note that when p = 1, the optimal bandwidth is of order n−1/5 which is the optimal order of

the kernel density estimator under independence.

3.3 LRD SEQUENCES

Assume that h = n−αh Lh(n), where αh > 0 and Lh(n) is a slowly varying function. When

αh > 2 − 2αZ , then h1/2σn,Z = o(n1/2), and we regard this case as small bandwidths. In

this case, it is found that the asymptotic behaviour of the estimator is the same as the SRD

case. When 0 < αh < 2/3 − (2/3)αZ , then n1/2 = o(h3/2σn,Z ), and this case is regarded as

large bandwidths. In this case, it follows that the asymptotic behaviour is determined by Nn,1,

then with a particular norming sequence the asymptotic behaviour of the estimator follows a

different Gaussian distribution from the SRD case.

Theorem 3. If
∑∞

i=n |ai | = ∞ and Assumptions 1-7 hold, then

i) when h1/2σn,Z = o(n1/2), then the convergence result in Theorem 2 holds;

ii) when n1/2 = o(h3/2σn,Z ), then,

n
σn,Z

[
H−1
∗ H

(
β̂ − β

)
− BiasLRD(H−1

∗ H(β̂ − β))
]

d
→ N

(
0,
S−1

p c∗p(c
∗
p)

TS−1
p C2

LRD

� [ψ′(Z)]2 f 2
X (x0)

)
where the Bias term is defined,

BiasLRD(H−1
∗ H(β̂−β)) = H−1

∗

h1+p

fX(x0)

[
fX(x0)θp+1cp + h

(
f ′X(x0)θp+1 + fX(x0)θp+2

)
c̃p

]
where H∗ = diag

(
hk( j)

)
0≤ j≤p

and k( j) is 0 or 1 if j is even or odd respectively, the

vector c∗p is defined,

c∗p =
(
µ j fX(x0) + µ j+1 f ′X(x0)

)
0≤ j≤p = cp fX(x0) + c̃p f ′X(x0)
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and the constant CLRD =
∫
�
wφ(w)

∫
�
ψ(z) fη(z − szw) dz dw where sZ = ‖Zi,i−1‖.

The theorem implies that when errors are LRD, if the bandwidth is small enough, the

asymptotic behaviour of β̂ is still determined by Mn,1 and is the same as the SRD case. While

if the bandwidth is large enough then the estimator behaves differently. The reason is that

with the norming sequence n/σn,Z , Mn,1 is negligible to Nn,1 resulting in that the asymptotic

law is dominated by Nn,1 (see Lemma 6). This result is analogous to the the Nadaraya-Watson

estimator in regression with LRD errors (see Mielniczuk and Wu (2004)). Furthermore, note

that when the bandwidth is large, both the bias terms and the variances are different between

odd and even p.

We can derive the corresponding AMSE of m̂(x0) in the case of large bandwidths based

on above results.The AMSE of m̂(x0) is

AMSE(x0) =
h2+2p

[
µ1+pm(p+1)(x0)

]2[
(p + 1)!

]2 +
σ2

n,ZC2
LRDe

T
1S
−1
p c∗p(c

∗
p)

TS−1
p e1

n2 (
�

[
ψ′(Z)

] )2 . (3.1)

Note that n1/2 = o(h3/2σn,Z ) implies σ2
n,Z/n > 1/h3, and this indicates that there does not

exist the minimum value of the AMSE, so the optimal bandwidth in this case is not able to

be derived. Since 0 < αh < 2/3 − (2/3)αZ indicates h ∈ (n(2/3)αZ−2/3Lh(n), Lh(n)), then a

feasible approach to minimize the AMSE in (3.1) is choosing a sufficiently small h in the

interval.

It should be pointed out that the asymptotic behaviour of β̂ in the case that 2/3−(2/3)αZ <

αh < 2 − 2αZ is not exhibited here. In this case, n1/2 = o(h1/2σn,Z ) holds while n1/2 =

o(h3/2σn,Z ) does not hold. Mielniczuk and Wu (2004) show that when n1/2 = o(h1/2σn,Z )

the limit of the Nadaraya-Watson estimator is dominated by a conditional expectation term,

and then follows a Gaussian distribution asymptotically; however, for the local polynomial

M-estimator, we find that neither Mn,1 nor Nn,1 dominate the asymptotic law so the behaviour

is more intricate. This is beyond the scope of this thesis and needs to be studied in the future

work.



4
Conclusion

In this thesis, we extend the method proposed by Wu and Mielniczuk (2002) and Mielniczuk

and Wu (2004) to the local polynomial M-estimator in random design regression with de-

pendent errors. Consistent with similar results in the literature, it is found that the asymptotic

behaviour of the estimator is determined by the strength of dependence. The estimator is

decomposed into ∆n,k (k = 1,2,3,4 and 5) by Taylor’s expansion, then we find that ∆n,1

determines the asymptotic behaviour. Further, ∆n,1 can be decomposed into a martingale

term Mn,1 and a conditional expectation term Nn,1. When errors are SRD, we prove that Mn,1

dominates the asymptotic behaviour, and in terms of the martingale central limit theorem,

with a norming sequence
√

nh the estimator asymptotically follows a Gaussian distribution.

When errors are LRD, the bandwidth h is found to be a factor which influences the asymp-

totic law: if the bandwidth is small enough, then the scenario is the same as the SRD case;

however, if the bandwidth is large enough, then Nn,1 dominates the limit, and this results in a

different Gaussian distribution where the norming sequence is n/σn,Z . Furthermore, we find

that for both SRD and LRD cases, odd and even p behave differently. The reason of this is
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that if the kernel function K(·) is symmetric then its odd moments are zero. To avoid this

issue, Taylor’s theorem is used to obtain even moments of K(·) replacing odd moments.

For the SRD case, the optimal bandwidth minimizing the AMSE of m̂(x0) is determined.

If p is odd, then the optimal bandwidth is order of n−1/(3+2p); and when p is even, then the

optimal bandwidth is order of n−1/(5+2p). This result is the same in the case of independent

errors; particularly, when p = 1, the optimal bandwidth is order of n−1/5 which is the optimal

order of the kernel density estimator under independence. For the LRD case, the optimal

bandwidth cannot be derived when n1/2 = o(h3/2σn,Z ) since the corresponding AMSE does

not have theminimum value. The onlyway tominimize the AMSE is choosing the sufficiently

small bandwidth h in (n(2/3)αZ−2/3Lh(n), Lh(n)).

There are some potential extensions of this thesis. One extension is to investigate the

asymptotic law for the case that 2/3 − (2/3)αZ < αh < 2 − 2αZ . A reasonable conjecture

of this case is that with a particular norming sequence both Mn,1 and Nn,1 contribute to the

asymptotic behaviour, and the interval in which the optimal bandwidth locates in this case is

able to be depicted. The other extension is to extend the regression model used in this thesis

to a more general one. The general model

Yi = m(Xi) + εi (4.1)

assumes that errors εi = G(Zi,Xi) where {Zi}
n
i=1 are latent variables and both {Zi}

n
i=1 and

{Xi}
n
i=1 are linear processes. Mielniczuk and Wu (2004) study the Nadaraya-Watson estima-

tor on that model (4.1), and they find that the asymptotic behaviour depends on the strength

of dependence of both {Zi}
n
i=1 and {Xi}

n
i=1. Therefore, we conjecture that the asymptotic

behaviour of the local polynomial M-estimator is also determined by the strength of depen-

dence of both {Zi}
n
i=1 and {Xi}

n
i=1. Moreover, some bandwidth selection techniques, such as

the plug-in method, can be applied in practice to derive the optimal bandwidth based on our

results.



5
Proofs

This chapter gives the proofs of the theorems, and to this end, some useful lemmas are given.

Before stating the lemmas, we discuss R(Xi) first. By Assumption 3 and Taylor’s thoerem

with Lagrange remainders, due to the fact that |Xi − x0 | < h, then there exists a ξ1 between

Xi and x0 satisfying

R(Xi) =m(Xi) −

p∑
j=0

m( j)(x0)

j!
(Xi − x0)

j

=

p∑
j=0

m( j)(x0)

j!
(Xi − x0)

j +
m(p+1)(ξ1)

(p + 1)!
(Xi − x0)

1+p −

p∑
j=0

m( j)(x0)

j!
(Xi − x0)

j

=
m(p+1)(x0)

(p + 1)!
(Xi − x0)

1+p +
m(p+2)(x0)

(p + 2)!
(Xi − x0)

2+p

+
1

(p + 2)!
(Xi − x0)

2+p
(
m(p+2)(ξ1) − m(p+2)(x0)

)
(5.1)

and further, we get

sup
Xi :|Xi−x0 |<h

R2(Xi) ≤ Op(h2+2p).

Since all ∆n,k (k = 1,2,4 and 5) are multivariate, for convenience, we only investigate the
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behaviour of the element of ∆n,k throughout the lemmas. Let

∆
j
n,1 =

1
nh

n∑
i=1

ψ(Zi)K
( Xi − x0

h

)
(Xi − x0)

j

=
1

nh

n∑
i=1

{
ψ(Zi)K

( Xi − x0
h

)
(Xi − x0)

j − �

[
ψ(Zi)K

( Xi − x0
h

)
(Xi − x0)

j |Fi−1

]}
+

1
nh

n∑
i=1

�

[
ψ(Zi)K

( Xi − x0
h

)
(Xi − x0)

j |Fi−1

]
≡

M j
n,1

nh
+

N j
n,1

nh
. (5.2)

Give the analogous definitions to ∆ j
n,k (k = 2,4 and 5), so we get

∆
j
n,k − �∆

j
n,k =

M j
n,k

nh
+

N̄ j
n,k

nh
. (5.3)

Lemma1. If the density function f1 of (ηi, γi) is Lipschitz continuous, then the density function

f∞ of (Zi,Xi) satisfies

f∞(z, x) = � f1(z − Zi,i−1, x) (5.4)

and is Lipschitz continuous as well. Moreover, if Assumption 2 holds then f∞ also has the

same properties.

Proof of Lemma 1. Since {Xi}
n
i=1 are independent of {Zi}

n
i=1, then to prove (5.4) is equivalent

to showing that

fZ (z) = � fη(z − Zi,i−1)

and fZ is Lipschitz continuous. Assume that C > 0 is the Lipschitz constant of fη, then by

Lipschitz continuity, we have�| fη(z−Zi,i−1)− fη(z)| ≤ �
(
C |Zi,i−1 |

)
≤ C ·

[
�(Zi,i−1)

2] 1
2 < ∞.

Thus, it is clear that � fη(z − Zi,i−1) is finite. Denote FZ and Fη the cumulative functions of

Zi and ηi respectively and f̃η the density function of Zi,i−1. Obviously, since a0 = 1, then FZ

is a convolution of Fη and f̃η,

FZ (z) =
∫
�

Fη(z − y) f̃η(y)dy.
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Thus, for a ξ > 0, by Lagrange’s mean value theorem,

|FZ (z + ξ) − FZ (z) − ξ� fη(z − Zi,i−1)|

= |

∫
�

Fη(z − y + ξ) f̃η(y)dy −
∫
�

Fη(z − y) f̃η(y)dy − ξ
∫
�

fη(z − y) f̃η(y)dy |

≤

∫
�

|Fη(z − y + ξ) − Fη(z − y) − ξ fη(z − y)| · f̃η(y)dy

=

∫
�

|ξ fη(z − y + ξδ) − ξ fη(z − y)| · f̃η(y)dy

≤ Cξ2,

where −ξ < δ < 0. Hence, let ξ → 0, then

lim
ξ→0

���FZ (z + ξ) − FZ (z)
ξ

− � fη(z − Zi,i−1)
��� = 0,

and this indicates fZ (z) = � fη(z − Zi,i−1). Thus, | fZ (z) − fZ (y)| ≤ �| fη(z − Zi,i−1) − fη(y −

Zi,i−1)| ≤ C |z − y |, which implies the Lipschitz continuity of fZ . Similarly, we are able to

find that f ′Z (z) = � f ′η(z − Zi,i−1) and f ′′Z (z) = � f ′′η (z − Zi,i−1) then to show that fZ is twice

continuously differentiable with bounded derivatives, and further, proving that f∞ satisfies

the condition of Assumption 2. Details are omitted here. �

Lemma 2. Let {Zi}i∈� be a linear process and g a measureable function such that� |g(Z)| <

∞ then,

�

�����1n n∑
i=1

∫
�

g(z) fη(z − Zi,i−1) dz −
∫
�

g(z) fZ (z) dz

����� = o(1)

Proof of Lemma 2. The linear process {Zi}i∈� is strictly stationary and ergodic (c.f. Section

2.1.1.2 of Beran et al. (2013)). This also implies that
{

Zi,i−1
}

i∈� is also strictly stationary

and ergodic. Define Wi =
∫
�
g(z) fη(z − Zi,i−1) dz, then by Theorem 1.3.3 of Taniguchi and

Kakizawa (2000), {Wi}i∈� is stationary and ergodic. Further,

� |W | ≤ |g(z)|
∫
�

� fη(z − Zi,i−1) dz

=

∫
�

|g(z)| fZ (z) dz < ∞.

The result of the Lemma therefore follows by the mean ergodic theorem, (c.f. Corollary 3.5.2

of Stout (1974)). �

Lemma 3. If Assumption 5 holds, then (nh1+2 j)−1/2M j
n,1 →

d N[0, σ2
1,j(x0)], where

σ2
1,j(x0) = ν2 j fX(x0)

∫
�

ψ2(z) fZ (z)dz
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Proof of Lemma 3. Let

ζ1,i,j =
1

√
nh1+2 j

ψ(Zi)K
( Xi − x0

h

)
(Xi − x0)

j and ξ1,i,j = ζ1,i,j − �(ζ1,i,j |Fi−1). (5.5)

By themartingale central limit theorem, it is required to show that the following two conditions

hold:
n∑

i=1
�(ξ2

1,i,j |Fi−1)
P
→ σ2

1,j(x0) (5.6)

and the Lindeberg condition

n�[ξ2
1,i,jI[|ξ1,i, j |>ε]] = o(1), (5.7)

where ε is any positive constant. Exploit the fact that Zi,i−1 = Op(1) and use a first order

Taylor expansion of ψ to yield,����[
ψ(Zi)K

( Xi − x0
h

)
(Xi − x0)

j |Fi−1

] ���
=

���∬
�2
ψ(z + Zi,i−1)K

( x − x0
h

)
(x − x0)

j f1(z, x)dzdx
���

=

���∬
�2
ψ(z + Zi,i−1)K

( x − x0
h

)
(x − x0)

j fX(x) fη(z)dzdx
���

=

���h1+ j
∬

�2
ψ(z + Zi,i−1)K(u)u j fX(uh + x0) fη(z)dzdu

���
≤h1+ j

∫
�

��K(u)u j fX(uh + x0)
�� du ·

{
|� [ψ(η)]| +

��Zi,i−1
�� |� [ψ′(η)]|

+
��Zi,i−1

�� ∫
R

fη(z)
��ψ′(z + τz,i Zi,i−1) − ψ

′(z)
�� dz

}
= Op(h1+ j), (5.8)

where |τz,i | < 1 forms the remainder of the Taylor expansion. The last line follows since the

expectations are assumed bounded and ψ′ is assumed to be Lipschitz. Therefore, we have the

following result,��� n∑
i=1

�[ζ2
1,i,j |Fi−1] −

n∑
i=1

�[ξ2
1,i,j |Fi−1]

���
≤

n∑
i=1

����[ζ2
1,i,j |Fi−1] − �[ξ

2
1,i,j |Fi−1]

���
=

n∑
i=1

����[ζ2
1,i,j |Fi−1] − �[ζ

2
1,i,j |Fi−1] + 2�2[ζ1,i,j |Fi−1] − �

2[ζ1,i,j |Fi−1]
���

=

n∑
i=1

�
2[ζ1,i,j |Fi−1]

=

n∑
i=1

1
nh1+2 j�

2
[
ψ(Zi)K

( Xi − x0
h

)
(Xi − x0)

j |Fi−1

]
≤
Op(h2+2 j)

h1+2 j = Op(h) = op(1). (5.9)
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Thus, to show (5.6) is equivalent to showing

n∑
i=1

�(ζ2
1,i,j |Fi−1)

P
→ σ2

1,j(x0). (5.10)

By Lemma 1 in Brown (1971), (5.10) is equivalent to

lim
n→∞

�

��� n∑
i=1

�(ζ2
1,i,j |Fi−1) − σ

2
1,j(x0)

��� = 0. (5.11)

Now, we prove (5.11). In view of the continuity of fX , we have

lim
n→∞

∬
�2
ψ2(z)K2(u)u2 j f∞(z,uh + x0)dzdu = ν2 j fX(x0)

∫
�

ψ2(z) fZ (z)dz,

so it suffices to show limn→∞�|
∑n

i=1�(ζ
2
1,i,j |Fi−1)−

∬
�2 ψ

2(z)K2(u)u2 j f∞(z,uh+ x0)dzdu| =

0. Note that due to Lemma 2 and Assumption 5,

�

��� n∑
i=1

�[ζ2
1,i,j |Fi−1] −

∬
�2
ψ2(z)K2(u)u2 j f∞(z,uh + x0)dzdu

���
= �

��� n∑
i=1

1
nh1+2 j

∬
�2
ψ2(z)K2

( x − x0
h

)
(x − x0)

2 j f1(z − Zi,i−1, x)dzdx

−

∬
�2
ψ2(z)K2(u)u2 j f∞(z,uh + x0)dzdu

���
= �

��� ∫
�

K2(u)u2 j fX(uh + x0)du
∫
�

ψ2(z)
n∑

i=1

1
n

(
fη(z − Zi,i−1) − fZ (z)

)
dz

���
= fX(x0)

∫
�

K2(u)u2 j du · �
��� ∫

�

ψ2(z)
n∑

i=1

1
n

(
fη(z − Zi,i−1) − fZ (z)

)
dz

��� · (1 + O(h)) = o(1).

Therefore, (5.11) is proven. For the Lindeberg condition (5.7), we can use the Corollary 5.9.2

in Chow and Teicher (1997),

n�[ξ2
1,i,jI[|ξ1,i, j |>ε]] ≤ 4n�[ζ2

1,i,jI[|ζ1,i, j |>
ε
2 ]
]

= 4
∬
|ψ(z)K(u)u j |>

√
nhε
2

ψ2(z)K2(u)u2 j f∞(z,uh + x0)dzdu.

Since nh→∞ as n→∞ and K(·) has a compact support, then we can see n�[ξ2
1,i,jI[|ξ1,i, j |>ε]]

= o(1) almost everywhere. Thus, (5.7) holds. �

Note that ‖Zi,i−1‖
2 = ‖η‖2

∑∞
t=1 a2

t , n∑
i=1

Zi,i−1

 = 
O(
√

n), under SRD;

O(n
3
2−αZ LZ (n)), under LRD.

(5.12)
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Lemma 4. When Assumptions 5 and 6 hold, for both SRD and LRD cases, if nh3 →∞, then

we have the following three results:

i)

∆
j
n,2 =


h1+ j+p

�[ψ′(Z)]µ1+ j+p fX(x0)
m(p+1)(x0)

(p + 1)!
+ op(h1+ j+p), j + p is odd

h2+ j+p
�[ψ′(Z)]µ2+ j+p

(
f ′X(x0)

m(p+1)(x0)

(p + 1)!
+ fX(x0)

m(p+2)(x0)

(p + 2)

)
+ op(h2+ j+p), j + p is even

ii)

∆
j
n,4 =


h j µ j fX(x0)�[ψ

′(Z)] + op(h j), j is even

h1+ j µ1+ j f ′X(x0)�[ψ
′(Z)] + op(h1+ j), j is odd

iii)

∆
j
n,5 = op(h1+ j).

Proof of Lemma 4. i) By (5.3), we have ∆ j
n,2 = ∆

j
n,2 − �∆

j
n,2 + �∆

j
n,2 = (nh)−1M j

n,2 +

(nh)−1N̄ j
n,2 + �∆

j
n,2.

�∆
j
n,2 =

1
nh

n∑
i=1

�

[
ψ′(Zi)R(Xi)K

( Xi − x0
h

)
(Xi − x0)

j
]

=
1
h

∬
�2
ψ′(z)R(x)K

( x − x0
h

)
(x − x0)

j f∞(z, x)dzdx

=
1
h

∫
�

R(x)K
( x − x0

h

)
(x − x0)

j fX(x)dx
∫
�

ψ′(z) fZ (z)dz

=
1
h

∫
�

R(x)K
( x − x0

h

)
(x − x0)

j fX(x)dx · �[ψ′(Z)]

= h j
∫
�

R(uh + x0)K(u)u j fX(uh + x0)du · �[ψ′(Z)]

= hp+ j+1
�[ψ′(Z)]

∫
�

K(u)up+ j+1
[
m(p+1)(x0)

(p + 1)!
+

m(p+2)(x0)

(p + 2)!
hu

]
fX(x0 + hu) du

+
hp+ j+2

(p + 2)!
�[ψ′(Z)]

∫
�

K(u)
[
m(p+2)(x0 + τhu) − m(p+2)(x0)

]
fX(x0 + hu) du

=
hp+ j+1�[ψ′(Z)]
(p + 1)!

[
µp+ j+1m(p+1)(x0) fX(x0) + hµp+ j+2

(
f ′X(x0)m(p+1)(x0) +

m(p+2)(x0) fX(x0)

(p + 2)

)]
+ o(hp+ j+2) (5.13)

For M j
n,2, we can show that M j

n,2 = Op(
√

nh3+2 j+2p) by the method of Lemma 3. Let

ζ2,i,j =
1

√
nh3+ j+p

ψ′(Zi)R(Xi)K
( Xi − x0

h

)
(Xi − x0)

j and ξ2,i,j = ζ2,i,j − �(ζ2,i,j |Fi−1).
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Similarly to earlier in the proof of Lemma 3, exploit the Lipschitz smoothness in ψ′. Note

from (5.13) that
∫
�

R(uh + x0)K(u)u j fX(uh + x0)du = O(hp+1)

����[
ψ′(Zi)R(Xi)K

( Xi − x0
h

)
(Xi − x0)

j |Fi−1

] ���
=

��� ∫
�

ψ′(z + Zi,i−1) fη(z)dz · h1+ j
∫
�

R(x0 + hu)K(u)u j fX(uh + x0) du
���

≤

(
|�ψ′(η)| +

∫
R

��ψ′(z + Zi,i−1) − ψ
′(z)

�� fη(z) dz
)

h1+ j
����∫
�

R(x0 + hu)K(u)u j fX(uh + x0) du
����

=


Op(h2+ j+p), p + j odd

Op(h3+ j+p), p + j even

Hence
∑n

i=1�
2(ζ2,i,j |Fi−1) ≤ (nh3+2 j+2p)−1 ∑n

i=1 Op(h4+2 j+2p) = Op(h) = op(1). So (5.9) and

(5.10) imply that it suffices to show the convergence of the conditional variance.

�

��� n∑
i=1

�[ζ2
2,i,j |Fi−1] −

∫
�

[ψ′(z)]2 fZ (z) dz fX(x0)ν2+2 j+2p

(
m(p+1)(x0)

(p + 1)!

)2 ���
≤ �

�����1n ∫
�

[ψ′(z)]2
n∑

i=1
fη(z − Zi,i−1) dz

(∫
�

(
m(p+1)(x0)

(p + 1)!

)2

K2(u)u2+2 j+2p fX(x0 + hu)du + o(1)

)
−

∫
�

[ψ′(z)]2 fZ (z) dz fX(x0)ν2+2 j+2p

(
m(p+1)(x0)

(p + 1)!

)2�����
=�

�����∫�[ψ′(z)]2 1
n

n∑
i=1

(
fη(z − Zi,i−1) − fZ (z)

)
dz

(
m(p+1)(x0)

(p + 1)!

)2

fX(x0)ν2+2 j+2p(1 + o(1))

�����
= o(1).

The proof of the Lindeberg condition follows the method of Lemma 3. Therefore, M j
n,2 =

Op(
√

nh3+2 j+2p) ⇒ (nh2+ j+p)−1Mn,2 = Op((nh)−1/2) = op(1). Use Lemma 2 and Assumption
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6 to bound N̄n,2,

N̄ j
n,2 =

n∑
i=1

{
�

[
ψ′(Zi)R(Xi)K

( Xi − x0
h

)
(Xi − x0)

j |Fi−1

]
− h�∆ j

n,2

}
=

n∑
i=1

{∬
�2
ψ′(z)R(x)K

( x − x0
h

)
(x − x0)

j f1(z − Zi,i−1, x)dzdx

−

∬
�2
ψ′(z)R(x)K

( x − x0
h

)
(x − x0)

j f∞(z, x)dzdx

}
=

∫
�

R(x)K
( x − x0

h

)
(x − x0)

j fX(x) dx
∫
�

ψ′(z)
n∑

i=1

[
fη(z − Zi,i−1) − fZ (z)

]
dz

=

∫
�

R(x)K
( x − x0

h

)
(x − x0)

j fX(x) dx
∫
�

ψ′(z)
n∑

i=1

[
fη(z − Zi,i−1) − fZ (z)

]
dz

= h1+ j
∫
�

R(x0 + hu)K(u)u j fX(x0 + hu) du
∫
�

ψ′(z)
n∑

i=1

[
fη(z − Zi,i−1) − fZ (z)

]
dz

Then by Lemma 2 and Assumption 5,

�

���N̄ j
n,2

��� = 
o(nh2+ j+p), when j + p is odd;

o(nh3+ j+p), when j + p is even.

This completes the proof of ∆n,2.

ii) By (5.3), it follows ∆ j
n,4 = ∆

j
n,4 −�∆

j
n,4 +�∆

j
n,4 = (nh)−1M j

n,4 + (nh)−1N̄ j
n,4 +�∆

j
n,4. We

first discuss �∆ j
n,4,

�∆
j
n,4 =

1
nh

n∑
i=1

�

[
ψ′(Zi)K

( Xi − x0
h

)
(Xi − x0)

j
]

=
1
h

∬
�2
ψ′(z)K

( x − x0
h

)
(x − x0)

j f∞(z, x)dzdx

= h j
∫
�

K(u)u j fX(uh + x0)du ·
∫
�

ψ′(z) fZ (z)dz

= h j
�[ψ′(Z)]

[
µ j fX(x0) + hµ j+1 f ′X(x0) + o(h)

]
.
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We can obtain similar results from N̄ j
n,4. Analogous to N̄ j

n,2,

N̄ j
n,4 =

∬
�2
ψ′(z)K

( x − x0
h

)
(x − x0)

j fX(x)

(
n∑

i=1
fη(z − Zi,i−1) − fZ (z)

)
dzdx

= h1+ j
∫
�

K(u)u j fX(uh + x0)du ·
∫
�

ψ′(z)

(
n∑

i=1
fη(z − Zi,i−1) − fZ (z)

)
dz

= h1+ j [
µ j fX(x0) + hµ j+1 f ′X(x0) + o(h)

]
·

∫
�

ψ′(z)

(
n∑

i=1
fη(z − Zi,i−1) − fZ (z)

)
dz,

Using Lemma 2 and Assumption 5,

�

���N̄ j
n,4

��� = nh1+ j
��µ j fX(x0)

�� · � �����∫�ψ′(z)
(

1
n

n∑
i=1

fη(z − Zi,i−1) − fZ (z)

)
dz

����� · [1 + o(1)]

=


o(nh1+ j), when j is odd;

o(nh2+ j), when j is even.

so by Markov’s inequality,

N̄ j
n,4

nh
=


op(h j), when j is odd;

op(h1+ j), when j is even.

Hence (nh)−1N̄ j
n,4 = op(hk) where k = j or 1 + j for odd and even j respectively. Use the

method of Lemma 3 to establish convergence of the martingale part,(nh)−1M j
n,4. Let

ζ4,i,j =
1

√
nh1+2 j

ψ′(Zi)K
( Xi − x0

h

)
(Xi − x0)

j and ξ4,i,j = ζ4,i,j − �(ζ4,i,j |Fi−1).

����[
ψ′(Zi)K

( Xi − x0
h

)
(Xi − x0)

j |Fi−1

] ���
=

��� ∫
�

ψ′(z + Zi,i−1) fη(z)dz · h1+ j
∫
�

K(u)u j fX(uh + x0) du
���

≤

(
|�ψ′(η)| +

∫
R

��ψ′(z + Zi,i−1) − ψ
′(z)

�� fη(z) dz
)

h1+ j
����∫
�

K(u)u j fX(uh + x0) du
����

=


Op(h1+ j), p + j odd

Op(h2+ j), p + j even

Hence
∑n

i=1�
2(ζ4,i,j |Fi−1) ≤ (nh1+2 j)−1 ∑n

i=1 Op(h2+2 j) = Op(h) = op(1). So (5.9) and (5.10)
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imply that it suffices to show the convergence of the conditional variance.

�

��� n∑
i=1

�[ζ2
4,i,j |Fi−1] −

∫
�

[ψ′(z)]2 fZ (z) dz fX(x0)ν2 j

���
≤ �

�����1n ∫
�

[ψ′(z)]2
n∑

i=1
fη(z − Zi,i−1) dz

(∫
�

K2(u)u2 j fX(x0 + hu)du + o(1)
)

−

∫
�

[ψ′(z)]2 fZ (z) dz fX(x0)ν2 j

����
=�

�����∫�[ψ′(z)]2 1
n

n∑
i=1

(
fη(z − Zi,i−1) − fZ (z)

)
dz fX(x0)ν2 j(1 + o(1))

�����
= o(1).

The Lindeberg condition is verified by a similar method as earlier. Therefore, M j
n,4 =

Op(
√

nh1+2 j) ⇒ (nh2+ j)−1Mn,4 = Op((nh3)−1/2) = op(1) which completes the proof for the

convergene of ∆ j
n,4.

iii) By (5.1), (2.4) indicates that for Xi satisfying |Xi − x0 | < h,

sup
i∈{Xi :|Xi−x0 |<h}

|δi | = sup
Xi :|Xi−x0 |<h

���R(Xi) +

p∑
j=0
(β j − β

∗
j )(Xi − x0)

j
���

≤ sup
Xi :|Xi−x0 |<h

��R(Xi)
�� + sup

Xi :|Xi−x0 |<h

p∑
j=0

��β j − β
∗
j

�� · ��Xi − x0
�� j

≤ Op(h1+p) + sup
Xi :|Xi−x0 |<h

p∑
j=0

��β j − β
∗
j

�� · ��Xi − x0
�� j .

By Theorem 1, it is known that β̂
p
−→ β0. Denote Sζ the sphere centred at β0 with radius ζ .

By the fact that
��Xi − x0

�� < h and β ∈ Sζ , we have

|δi | ≤ Op(h1+p) + (1 + p)ζ = Op(h1+p ∨ ζ) = op(1) as ζ → 0.

So by conditioning and exploiting Assumption 5 we can show that ∆n,5 = op(h1+ j).

�

Before giving proofs of the theorems, it is necessary to point out that ∆n,3 is negligible

to ∆n,1. This is since in terms of Assumption 5 which implies that �|ψ′(Zi)| is bounded, we
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have

�|∆
j
n,1 | ≤

n∑
i=1

1
nh
�

���ψ(Zi)K
( Xi − x0

h

)
(Xi − x0)

j
���

≤
1
h

∫
�

���K ( x − x0
h

)
(x − x0)

j
��� fX(x)dx · �|ψ′(Zi)|

= h j
∫
�

|K(u)u j | fX(uh + x0)du · �|ψ′(Zi)| = O(h j)

which leads ∆ j
n,1 = Op(h j) = op(1); however, for ∆ j

n,3, by Assumption 6 and (5.1), we have

�|∆
j
n,3 |

≤

n∑
i=1

1
nh
�

���{ψ [
Zi + R(Xi)

]
− ψ(Zi) − ψ

′(Zi)R(Xi)
}
K

( Xi − x0
h

)
(Xi − x0)

j
���

≤
1
h
�

���{ψ [
Zi + R(Xi)

]
− ψ(Zi) − ψ

′(Zi)R(Xi)
}
K

( Xi − x0
h

)
(Xi − x0)

j
���

=
1
h
�

{��ψ [
Zi + R(Xi)

]
− ψ(Zi) − ψ

′(Zi)R(Xi)
�� · ���K ( Xi − x0

h

)
(Xi − x0)

j
���}

=
1
h
�

{
�

[��ψ [
Zi + R(Xi)

]
− ψ(Zi) − ψ

′(Zi)R(Xi)
�� ���X]

·

���K ( Xi − x0
h

)
(Xi − x0)

j
���}

≤
1
h

∫
�

�

[
sup

x:|x−x0 |<h

��ψ [
Zi + R(Xi)

]
− ψ(Zi) − ψ

′(Zi)R(Xi)
�� ���X = x

]
·

���K ( Xi − x0
h

)
(x − x0)

j
��� fX(x)dx

≤ h j
∫
�

|K(u)u j | fX(uh + x0)du · o(hp) = o(hp+ j)

which leads ∆ j
n,3 = op(hp+ j) = op(∆

j
n,1). Therefore, we have ∆n,3 = op(∆n,1) and ∆n,3 = op(1).

Proof of Theorem 1. The proof of the Theorem follows an adapted method of Jiang and

Mack (2001) and Cai and Ould-Saïd (2003). The equivalent minimisation problem can be

expanded,

`(β) =
1

nh

n∑
i=1

ρ(Yi −

p∑
i=0

β j(Xi − x0)
j)K

(
Xi − x0

h

)
= `(β0) + ∇`(β0) · (β − β0) +

1
2
(β − β0)

T∇2`(β∗)(β − β0)
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where the partial derivatives are defined with,

∇`(β0) = −
1

nh

n∑
i=1

ψ

(
Yi −

p∑
i=0

β j(Xi − x0)
j

)
K

(
Xi − x0

h

)
X

= −
1

nh

n∑
i=1
[ψ (Zi + R(Xi)) − ψ(Zi) − ψ

′(Zi)R(Xi)]K
(

Xi − x0
h

)
X

−
1

nh

n∑
i=1

ψ (Zi)K
(

Xi − x0
h

)
X −

1
nh

n∑
i=1

ψ′ (Zi) R(Xi)K
(

Xi − x0
h

)
X

∇2`(β∗) =
1

nh

n∑
i=1

ψ′

(
Yi −

p∑
i=0

β∗j (Xi − x0)
j

)
XXT

=
1

nh

n∑
i=1
[ψ′ (Zi + δi) − ψ

′(Zi)]K
(

Xi − x0
h

)
XXT

+
1

nh

n∑
i=1

ψ′(Zi)K
(

Xi − x0
h

)
XXT

By adapting the proof of Lemma 2 it can be shown that ∇`(β0) = op(1). For the second

partial derivative, assume β ∈ Sδ =
{
β : ‖β − β0‖| ≤ δ

}
, which implies that β∗ is also in a

δ-neighbourhood of β0. Then,

sup
i,|Xi−x0 |≤h

|δi | ≤ sup
i,|Xi−x0 |≤h

|R(Xi)| + sup
i,|Xi−x0 |≤h

p∑
j=0
(Xi − x0)

j(β j − β
∗
j ) ≤ C(hp+1 + (1+ p)δ) → 0

as h→ 0 and δ→ 0. Therefore by Assumption 6,

�

����� 1
nh

n∑
i=1
[ψ′(Zi + δi) − ψ

′(Zi)]K
(

Xi − x0
h

)
(Xi − x0)

k+l

����� = o(hk+l) = o(1).

On the other hand, an elementary calculation gives,

1
nh

n∑
i=1

ψ′(Zi)K
(

Xi − x0
h

)
XXT = fX(x0)�ψ

′(Z)T1H(1 + op(1))

The remainder of the proof follows an analagous argument as seen in Jiang and Mack (2001)

and Cai and Ould-Saïd (2003) and is left to the reader. �
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Define

Ñ j
n,1 = −

n∑
i=1

∬
�2
ψ(z)K

( x − x0
h

)
(x − x0)

j f (1,0)∞ (z, x)dzdx × Zi,i−1

= −

∬
�2
ψ(z)K

( x − x0
h

)
(x − x0)

j fX(x) f ′Z (z)dzdx ×
n∑

i=1
Zi,i−1

= � [ψ′(Z)]
∫
�

K
( x − x0

h

)
(x − x0)

j fX(x)dx ×
n∑

i=1
Zi,i−1

≡ α
j
n,1

n∑
i=1

Zi,i−1.

Note that

α
j
n,1 = −

∬
�2
ψ(z)K

( x − x0
h

)
(x − x0)

j fX(x) f ′Z (z)dzdx

= −h1+ j
∬

�2
ψ(z)K(u)u j fX(uh + x0) f ′Z (z)dzdu

= h1+ j
� [ψ′(z)]

(
µ j fX(x0) + hµ j+1 f ′X(x0) + o(h)

)
,

Therefore, it follows,

Ñ j
n,1 = h1+ j

� [ψ′(z)]
(
µ j fX(x0) + hµ j+1 f ′X(x0) + o(h)

) n∑
i=1

Zi,i−1. (5.14)

Lemma 5. If Assumptions 2 and 7 hold, thenN j
n,1 − Ñ j

n,1

 = O(h j+1
Λn)

Proof of Lemma 5. Define the functions,

S′i (x0) = −

∫
�

ψ(z) fX(x) f ′Z (z) dz, Si(x0) = S′i (x0)Zi,i−1

Kh,j(x) = K(x/h)x j, Ti(x0) =

∫
�

ψ(z) fη(z − Zi,i−1) fX(x) dz.

Then the terms N j
n,1 and Ñ j

n,1 can be rewritten as,

N j
n,1 =

n∑
i=1
(Kh,j ∗ Ti)(x0), Ñ j

n,1 =

n∑
i=1
(Kh,j ∗ Si)(x0),

where ∗ is the convolution operator, that is, f ∗ g is the convolution of functions f and g.

Also consider that K is assumed bounded with compact support implies that for any (ξt)t∈�

�

[∫
�

Kh,j(x − x0)ξx, dx
]2
≤

∫
�

∫
�

|Kh,j(x − x0)| |Kh,j(y − x0)|�|ξx | |ξy | dxdy

≤ Ch2 j+2 sup
x:|x−x0 |≤h

‖ξx ‖
2
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The rest of the proof will use a modified approach of Lemmas 4 and 5 in Mielniczuk

and Wu (2004). In the notation of Mielniczuk and Wu (2004), for a random variable

ξ define the projection operator Pkξ = � [ξ |Fk] − � [ξ |Fk−1]. Then it follows that,

−Pj(Kh,j ∗ Si)(x0) = (Kh,j ∗ S′i )(x0)Pj Zi,i−1. Also note that, −P1(Kh,j ∗ Si)(x0) =
∫
�

Kh,j(x −

x0)ψ(z) f ′z (z) fX(x) dxdz × P1Zi,i−1. Further, the projection Pk Zi,i−1 = ai−kηk and P1Zi,i−1 =

ai−1η1. The norm of the projection on the discrepancy is,

‖P1(Kh,j ∗ (Ti − Si))(x0)‖ =

∫
�

Kh,j(x − x0)ψ(z) fX(x)
[
P1 fη(z − Zi,i−1) + f ′Z (z)ci−1η1

]
Then note, Assumption 7 is a special case of C4 in Mielniczuk andWu (2004). Consequently,

by applying the same equivalent steps in Lemma 4 and 5 of Mielniczuk and Wu (2004) the

result follows. �

Lemma 6. If Assumptions 1, 4 and 5 hold, then

i) for the SRD case,
√

nhH−1
∆n,1

d
→ N

[
0, fX(x0)�

[
ψ2(Z)

]
S∗p

]
; (5.15)

ii) for the LRD case, when h1/2σn,Z = o(n1/2), then (5.15) holds; and when n1/2

= o(h3/2σn,Z ) and (ηi)i∈Z are Gaussian random variables, then

nH̃−1

σn,Z
∆n,1

d
→ N

[
0, c∗p(c∗p)TC2

LRD

]
(5.16)

where CLRD =
∫
�
wφ(w)

∫
�
ψ(z) fη(z − szw) dz dw and c∗p = cp fX(x0) + c̃p f ′X(x0)

Proof of Lemma 6. i) By the Crámer-Wold theorem, to prove (5.15) is equivalent to proving

that for any real numbers b0, b1, · · · , bp such that b = (b0, b1, · · · , bp)
T , 0, ∆ j

n,1 satisfies∑p
j=0(nh1−2 j)1/2b j∆

j
n,1 →

d N
[
0, fX(x0)�

[
ψ2(Z)

]
bTS∗pb

]
. Here, we do the same decomposi-

tion as (5.2) to
∑p

j=0(nh1−2 j)1/2b j∆
j
n,1,

p∑
j=0

b j

√
nh1−2 j∆

j
n,1 =

1
nh

n∑
i=1

p∑
j=0

ψ(Zi)K
( Xi − x0

h

)
b j

√
nh1−2 j(Xi − x0)

j

=
1

nh

{
n∑

i=1

p∑
j=0

[
ψ(Zi)K

( Xi − x0
h

)
b j

√
nh1−2 j(Xi − x0)

j

− �

(
ψ(Zi)K

( Xi − x0
h

)
b j

√
nh1−2 j(Xi − x0)

j
���Fi−1

)]
+

n∑
i=1

p∑
j=0

�

[
ψ(Zi)K

( Xi − x0
h

)
b j

√
nh1−2 j(Xi − x0)

j
���Fi−1

]}
≡

1
nh
(M∗n,1 + N∗n,1).
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First, we investigate the bahaviour of (nh)−1M∗n,1. We can show the asymptotic Gaussian limit

in (nh)−1M∗n,1 via the method of Lemma 3. Let

ζ∗1,i =
1

nh
ψ(Zi)K

( Xi − x0
h

) p∑
j=0

b j

√
nh1−2 j(Xi − x0)

j and ξ∗1,i = ζ
∗
1,i − �(ζ

∗
1,i |Fi−1).

Observe that by (5.8),������[
ψ(Zi)K

( Xi − x0
h

) p∑
j=0

b j

√
nh1−2 j(Xi − x0)

j
���Fi−1

] �����
=

����� p∑
j=0

b j

√
nh1−2 j�

[
ψ(Zi)K

( Xi − x0
h

)
(Xi − x0)

j
��Fi−1

] �����
≤ Op(

√
nh3),

and this indicates
∑n

i=1�
2(ζ∗1,i |Fi−1) ≤ (nh)−2 ∑n

i=1 Op(nh3) = Op(h) = op(1). Furthermore,

it is straightforward to check the Lindeberg condition by the same argument used previ-

ously in Lemma 3. Thus (5.9) implies that it suffices to show
∑n

i=1�
[
(ζ∗1,i)

2 |Fi−1
]
→p

fX(x0)�
[
ψ2(Z)

]
bTS∗pb. Note that

n∑
i=1

�
[
(ζ∗1,i)

2 |Fi−1
]

=

n∑
i=1

p∑
j=0

�

[ b2
j

nh1+2 j ψ
2(Zi)K2

( Xi − x0
h

)
(Xi − x0)

j
��Fi−1

]
+

n∑
i=1

p∑
k,t=0
k,t

�

[ bk bt

nh1+k+t ψ
2(Zi)K2

( Xi − x0
h

)
(Xi − x0)

k+t
��Fi−1

]
=

n∑
i=1

p∑
j=0

b2
j�(ζ

2
1,i,j |Fi−1) +

n∑
i=1

p∑
k,t=0
k,t

bk bt�

(
ζ2

1,i,k+t2

��Fi−1

)
,

where ζ2
1,i,j ( j = 0,1, · · · , p and (k + t)/2, and k, t = 0,1, · · · , p and k , t) are defined in (5.5).

Therefore, by Lemma 3, we have

n∑
i=1

�
[
(ζ∗1,i)

2 |Fi−1
] P
→

p∑
j=0

b2
jσ1,j(x0)

2 +

p∑
k,t=0
k,t

bk btσ
2
1,k+t2
(x0)

= fX(x0)�
[
ψ2(Z)

]
bTS∗pb,

and further, (nh)−1M∗n,1 →
d N

[
0, fX(x0)�

[
ψ2(Z)

]
bTS∗pb

]
. Now we study the behaviour of

(nh)−1N∗n,1. Note that (nh)−1N∗n,1 =
∑p

j=0(nh1+2 j)−1/2b j N
j
n,1 =

∑p
j=0(nh1+2 j)−1/2b j(Ñ

j
n,1 +
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N j
n,1 − Ñ j

n,1), so it is supposed to derive the behaviours of Ñ j
n,1 and the remainder, N j

n,1 − Ñ j
n,1.

In (5.14), it is known that α j
n,1 = O(h

1+ j) when j is even and α j
n,1 = O(h

2+ j) when j is odd.

So it follows

�
��Ñ j

n,1

�� = ����α j
n,1

n∑
i=1

Zi,i−1

��� = ��α j
n,1

�� · ���� n∑
i=1

Zi,i−1

���
≤

��α j
n,1

�� ·  n∑
i=1

Zi,i−1


=


O(n

1
2 h1+ j), j is even

O(n
1
2 h2+ j), j is odd.

Thus, for both even and odd j, �|(nh1+2 j)−1/2Ñ j
n,1 | = o(1), and then by Markov’s inequality,

it follows that (nh1+2 j)−1/2Ñ j
n,1 = op(1) ⇒

∑p
j=0(nh1+2 j)−1/2b j Ñ

j
n,1 = op(1). Similarly, for

the remainder term, by Lemma 5,
p∑

j=0
(nh1+2 j)−1/2b j

(
N j

n,1 − Ñ j
n,1

)
= Op(h1/2) = op(1)

Therefore,
∑p

j=0(nh1−2 j)−1/2b j∆
j
n,1 →

d N
[
0, fX(x0)�

[
ψ2(Z)

]
bTS∗pb

]
, and then (5.15) is

proven.

ii) First, we consider the case that h1/2σn,Z = o(n1/2). In terms of part i), it follows that∑n
i=1(nh1−2 j)1/2b j∆

j
n,1 = (nh)−1(M∗n,1 + N∗n,1). The behaviour of (nh)−1M∗n,1 is the same as the

SRD case. For N∗n,1, we still investigate Ñ j
n,1 and the remainders respectively. Note that (5.12)

implies
∑n

i=1 Zi,i−1 = Op(σn,Z ) under the LRD condition, so by (5.14)

Ñ j
n,1

√
nh1+2 j

=
α

j
n,1

∑n
i=1 Zi,i−1

√
nh1+2 j

=
α

j
n,1

h1+ j ·

∑n
i=1 Zi,i−1

σn,Z
·

h1+ jσn,Z
√

nh1+2 j

=
α

j
n,1

h1+ j ·

∑n
i=1 Zi,i−1

σn,Z
·

h
1
2σn,Z

n
1
2

=


op(1), j is even

op(h), j is odd.

This indicates that for both even and odd j, (nh1+2 j)−1/2Ñ j
n,1 = op(1) holds. Hence,∑p

j=0(nh1+2 j)−1/2b j Ñ
j
n,1 = op(1). By Lemma 5 and (5.12)

p∑
j=0
(nh1+2 j)−1/2b j

(
N j

n,1 − Ñ j
n,1

)
= Op(h1/2

Λnn−1/2) = op(1).
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Indeed, for αZ > 3/4, Λn = O(n1/2) and the result is obvious. On the other hand, for

αZ ∈ (1/2,3/4), note that Λn = O(σ
2
n,Z/n) and,

h1/2
Λnn−1/2 =

h1/2σn,Z

n1/2 ·
σn,Z

n
= o(1),

when αZ ∈ (1/2,3/4). Therefore, we have (nh)−1N∗n,1 = op(1). Thus, (5.15) follows∑p
j=0(nh1−2 j)−1/2b j∆

j
n,1 →

d N
[
0, fX(x0)�

[
ψ2(Z)

]
bTS∗pb

]
.

Now, consider the case of n1/2 = o(h3/2σn,Z ). Recall, ∆ j
n,1 = (nh)−1(M j

n,1 + N j
n,1).

From earlier, it is known that M j
n,1 = Op(

√
nh1+2 j) which implies that σ−1

n,Z h−1− j−k( j)M j
n,1 =

Op(n1/2/(h1/2+k( j)σn,Z )) = op(1) for both even and odd j. Consider the dependent part N j
n,1

when Zi,i−1 is a Gaussian LRD variable. Evaluating the term directly,

N j
n,1 =

n∑
i=1

�

[
ψ(Zi)K

(
Xi − x0

h

)
(Xi − x0)

j
����Fi−1

]
= h1+ j

n∑
i=1

∫
�

ψ(z) fη(z − Zi,i−1) dz
∫
�

K(u)u j fX(x0 + hu) dx

= h1+ j
n∑

i=1

(
µ j fX(x0) + hµ j+1 f ′X(x0) + o(h)

) ∫
�

ψ(z) fη(z − Zi,i−1) dz

= h1+ j
n∑

i=1

(
µ j fX(x0) + hµ j+1 f ′X(x0)

) ∫
�

ψ(z) fη(z − Zi,i−1) dz (1 + o(1))

= h1+ j+k( j)
n∑

i=1
Cj(x0)

∫
�

ψ(z) fη(z − Zi,i−1) dz (1 + o(1))

≡ h1+ j+k( j)
n∑

i=1
G j(Wi, x0)(1 + o(1))

where the functions

k( j) =


0, if j even;

1, if j odd.
and c j(x0) =


µ j fX(x0), if j even;

µ j+1 f ′X(x0), if j odd.

Also, by Jensen’s inequality, �G j(Wi, x0)
2 < ∞. So by Corollary 5.1 in Taqqu (1975), it

is sufficient to check the Hermite rank of the summand in N j
n,1 to establish convergence of

a non-central limit theorem. G j(Wi, xo) =
∫
�
ψ(z) fη(z − sZWi) dz

(
µ j fX(x0) + hµ j+1 f ′X(x0)

)
and Wi ∼ N(0,1) and sz =

√
�Z2

i,i−1. To evaluate the Hermite rank, re-express the integrand

in terms of a convolution. By assumption, η is a Gaussian variable, therefore fη is a Gaussian
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density and thus an even function. Therefore, we can write,∫
�

ψ(z) fη(z − szw) dz =
∫
�

ψ(z) fη(sz(w − z/sz)) dz

= sz

∫
�

ψ(szu) fη(sz(w − u)) dz

= sz(ψsz ∗ fη,sz )(w)

where ψsz (u) = ψ(sZu) and fη,sz (u) = fη(szu). Also, by assumption ψ is an odd function

which implie ψsz is an odd function. Since fη is even is also implies fη,sz is even. Therefore,

the convolution ψsz ∗ fη,sz is an odd function. The proof is omitted but can be shown directly

or via the use of Fourier transforms. Furthermore, sz(ψsz ∗ fη,sz )(0) = �ψ(η) = 0. Define

C1,j(x0) = �
[
WiG j(Wi, x0)

]
. Then checking the Hermite rank, consider the following,

C1,j(x0)

Cj(x0)
=

1
Cj(x0)

�
[
WiG j(Wi, x0)

]
= sz

∫
�

wφ(w)(ψsz ∗ fη,sz )(w) dw =
∫
�

q(w) dw > 0

The last inequality holds since the integrand q(w) = szwφ(w)(ψsz ∗ fη,sz )(w) is even function

with q(w) = 0. The function q(w) is even since it is a product of two odd functions, w and

(ψsz ∗ fη,sz )(w); and one even function φ(w).

Thus, by Corollary 5.1 of Taqqu (1975), we have,

1
h1+ j+k( j)σn,Z

N j
n,1

d
−→ N(0,C2

1,j(x0))

To complete the result, consider now themultivariate casewith, Nn,1. Define H̃ =
(
h j+k( j)

)
0≤ j≤p

and H∗ =
(
hk( j)

)
0≤ j≤p

yielding H̃ = H ·H∗. Then by the Crámer-Wold device, for any b , 0,

bTH̃−1Nn,1

hσn,Z
=

1
σn,Z

n∑
i=1
(bT cp fX(x0) + bT c̃p f ′X(x0))

∫
�

ψ(z) fη(z − Zi,i−1) dz(1 + o(1))

≡
1
σn,Z

n∑
i=1

G(Wi, x0)(1 + o(1)).

For convenience define, c∗p = (bT cp fX(x0)+ b
T c̃p f ′X(x0)). Then with an equivalent argument

to the N j
n,1 case it follows, that �WiG(Wi, x0)/(b

T c∗p) =
∫
�

q(w) dw > 0 and consequently,

bTH̃−1Nn,1

hσn,Z

d
−→ N(0, bT c∗p(c

∗
p)

T b)

and the result is proven. �
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Before giving proofs of the theorems, it is necessary to point out that ∆n,3 is negligible

to ∆n,1. This is since in terms of Assumption 5 which implies that �|ψ′(Zi)| is bounded, we

have

�|∆
j
n,1 | ≤

n∑
i=1

1
nh
�

���ψ(Zi)K
( Xi − x0

h

)
(Xi − x0)

j
���

≤
1
h

∫
�

���K ( x − x0
h

)
(x − x0)

j
��� fX(x)dx · �|ψ′(Zi)|

= h j
∫
�

|K(u)u j | fX(uh + x0)du · �|ψ′(Zi)| = O(h j)

which leads ∆ j
n,1 = Op(h j); however, for ∆ j

n,3, by Assumption 6 and (5.1), we have

�|∆
j
n,3 |

≤

n∑
i=1

1
nh
�

���{ψ [
Zi + R(Xi)

]
− ψ(Zi) − ψ

′(Zi)R(Xi)
}
K

( Xi − x0
h

)
(Xi − x0)

j
���

≤
1
h
�

���{ψ [
Zi + R(Xi)

]
− ψ(Zi) − ψ

′(Zi)R(Xi)
}
K

( Xi − x0
h

)
(Xi − x0)

j
���

=
1
h
�

{��ψ [
Zi + R(Xi)

]
− ψ(Zi) − ψ

′(Zi)R(Xi)
�� · ���K ( Xi − x0

h

)
(Xi − x0)

j
���}

=
1
h
�

{
�

[��ψ [
Zi + R(Xi)

]
− ψ(Zi) − ψ

′(Zi)R(Xi)
�� ���X]

·

���K ( Xi − x0
h

)
(Xi − x0)

j
���}

≤
1
h

∫
�

�

[
sup

x:|x−x0 |<h

��ψ [
Zi + R(Xi)

]
− ψ(Zi) − ψ

′(Zi)R(Xi)
�� ���X = x

]
·

���K ( Xi − x0
h

)
(x − x0)

j
��� fX(x)dx

≤ h j
∫
�

|K(u)u j | fX(uh + x0)du · o(hp) = o(hp+ j)

which leads ∆ j
n,3 = op(hp+ j) = op(∆

j
n,1). Therefore, we have ∆n,3 = op(∆n,1).

Proof of Theorem 2. ByLemma4, it follows∆n,4 =
(
h j+k(µ j+k fX(x0) + hµ j+k+1 f ′X(x0) + op(h))

)
1≤ j,k≤p

and ∆n,5 =
(
op(h j+k)

)
. Further, define Sp =

(
µ j+k

)
0≤ j,k≤p and S̃p =

(
µ j+k+1

)
0≤ j,k≤p. There-

fore, it follows that there exists a matrix An =
(
a j,k(n)

)
0≤ j,k≤p such that a j,k(n)

p
−→ 0 and,

∆n,4 + ∆n,5 = � [ψ
′(Z)]H

(
fX(x0)Sp + h f ′X(x0)̃Sp + An

)
H (5.17)

For convenience, define Bn = fX(x0)Sp + h f ′X(x0)̃Sp. This has inverse,

B−1
n =

(
fX(x0)Sp + h f ′X(x0)̃Sp

)−1

=
S−1

p

fX(x0)
− h

f ′X(x0)S
−1
p S̃pS

−1
p

f 2
X (x0)

+ Op(h2)

=
1

fX(x0)

(
S−1

p − h
f ′X(x0)S

−1
p S̃pS

−1
p

fX(x0)

)
+ Op(h2)
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and this leads to the inverse,(
∆n,4 + ∆n,5

)−1
=

1
� [ψ′(Z)]

[H (Bn + An)H]−1

=
1

� [ψ′(Z)]
H−1

(
I + B−1

n An

)−1
B−1

n H−1

=
1

� [ψ′(Z)]
H−1

(
B−1

n − B−1
n AnB−1

n

)
H−1

=
1

� [ψ′(Z)]
H−1

(
B−1

n − B−1
n AnB−1

n

)
H−1

=
1

� [ψ′(Z)] fX(x0)
H−1

(
S−1

p − h
f ′X(x0)S

−1
p S̃pS

−1
p

fX(x0)

)
H−1(1 + op(1)) (5.18)

Define cp =
(
µ j

)
0≤ j≤p and c̃p =

(
µ1+ j

)
0≤ j≤p then Lemma 4 also yields

∆n,2 =



�
[
ψ′(Z)

]
©«

h1+pµ1+p fX(x0)
m(p+1)(x0)
(p+1)!

h3+pµ3+p

(
f ′X(x0)

m(p+1)(x0)
(p+1)! + fX(x0)

m(p+2)(x0)
(p+2)

)
h3+pµ3+p fX(x0)

m(p+1)(x0)
(p+1)!

...

h2+2pµ2+2p

(
f ′X(x0)

m(p+1)(x0)
(p+1)! + fX(x0)

m(p+2)(x0)
(p+2)

)

ª®®®®®®®®®®¬
[1 + op(1)], p is odd

�
[
ψ′(Z)

]
©«

h2+pµ2+p

(
f ′X(x0)

m(p+1)(x0)
(p+1)! + fX(x0)

m(p+2)(x0)
(p+2)

)
h2+pµ2+p fX(x0)

m(p+1)(x0)
(p+1)!

h4+pµ4+p

(
f ′X(x0)

m(p+1)(x0)
(p+1)! + fX(x0)

m(p+2)(x0)
(p+2)

)
...

h2+2pµ2+2p

(
f ′X(x0)

m(p+1)(x0)
(p+1)! + fX(x0)

m(p+2)(x0)
(p+2)

)

ª®®®®®®®®®®®¬
[1 + op(1)], p is even

=
h1+p�[ψ′(Z)]H
(p + 1)!

[
fX(x0)m(p+1)(x0)cp + h

(
f ′X(x0)m(p+1)(x0) + fX(x0)

m(p+2)(x0)

(p + 2)

)
c̃p

]
× [1 + op(1)] (5.19)

Denote, θp+1 = m(p+1)(x0)/(p + 1)!. Thus, by (5.17) and (5.24),

(∆n,4 + ∆n,5)
−1 · ∆n,2

=
h1+p

fX(x0)
H−1

(
S−1

p − h
f ′X(x0)S

−1
p S̃pS

−1
p

fX(x0)

) [
fX(x0)θp+1cp + h

(
f ′X(x0)θp+1 + fX(x0)θp+2

)
c̃p

]
(5.20)

By (2.5), we have

√
nh

[
β̂ − β + (∆n,4 + ∆n,5)

−1 · ∆n,2
]
= −
√

nh(∆n,4 + ∆n,5)
−1(∆n,1 + ∆n,3). (5.21)
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Since ∆n,3 is negligible to ∆n,1, then we can find

√
nh(∆n,1 + ∆n,3) =

√
nh∆n,1[1 + op(1)]

By (5.15) in Lemma 6, we have

√
nhH−1

∆n,1
d
→ N

[
0, fX(x0)�

[
ψ2(Z)

]
S∗p

]
. (5.22)

Therefore, by the above and (5.18),

√
nh(∆n,4 + ∆n,5)

−1(∆n,1 + ∆n,3)

=
1

� [ψ′(Z)] fX(x0)
H−1

(
S−1

p − h
f ′X(x0)S

−1
p S̃pS

−1
p

fX(x0)

)
√

nhH−1
∆n,1(1 + op(1)), (5.23)

and then (5.20)-(5.23) leads to

√
nh

[
H(β̂ − β) −

h1+p

fX(x0)

(
S−1

p − h
f ′X(x0)S

−1
p S̃pS

−1
p

fX(x0)

) [
fX(x0)θp+1cp + h

(
f ′X(x0)θp+1 + fX(x0)θp+2

)
c̃p

] ]
d
−→ N

(
0,

�
[
ψ2(Z)

]
� [ψ′(Z)]2 fX(x0)

S−1
p S∗pS

−1
p

)
�

Proof of Theorem 3. i) Same as the proof of Theorem 2, omitted here.

ii) Again, decompose the estimator in a similar to way as used in the proof of Theorem 2.

Note that the matrices Sp are symmetric and therefore diagonalisable implying that S−1
p is

also symmetric and diagonalisable. From (5.20),

n
σn,Z

H−1
∗ H(∆n,4 + ∆n,5)

−1
∆n,2

=
n
σn,Z

H−1
∗

h1+p

fX(x0)

(
S−1

p − h
f ′X(x0)S

−1
p S̃pS

−1
p

fX(x0)

) [
fX(x0)θp+1cp + h

(
f ′X(x0)θp+1 + fX(x0)θp+2

)
c̃p

]
=

n
σn,Z

H−1
∗

h1+p

fX(x0)

[
fX(x0)θp+1cp + h

(
f ′X(x0)θp+1 + fX(x0)θp+2

)
c̃p

]
(1 + o(1))

= BiasLRD(H−1
∗ H(β̂ − β))(1 + o(1)) (5.24)



42 Proofs

Note that two diagonalisable matrices are commutative. Therefore, from (5.18)

n
σn,Z

H−1
∗ H(∆n,4 + ∆n,5)

−1

=
1

� [ψ′(Z)] fX(x0)
H−1
∗ HH−1

(
S−1

p − h
f ′X(x0)S

−1
p S̃pS

−1
p

fX(x0)

)
H−1(1 + op(1))

=
1

� [ψ′(Z)] fX(x0)

(
S−1

p − h
f ′X(x0)S

−1
p S̃pS

−1
p

fX(x0)

)
H−1
∗ H−1(1 + op(1))

=
1

� [ψ′(Z)] fX(x0)
S−1

p H̃−1(1 + op(1)) (5.25)

The last two lines follow since both H−1
∗ and S−1

p are symmetric and diagonalisable and

therefore commute. Recall ∆n,3 = op(∆n,1) then from (2.5), the estimator has decomposition,

n
σn,Z

H−1
∗ H

(
β̂ − β + (∆n,4 + ∆n,5)

−1
∆n,2

)
= −

n
σn,Z

H−1
∗ H(∆n,4 + ∆n,5)

−1
∆n,1(1 + op(1))

Then apply (5.24) and (5.25) to yield,

n
σn,Z

H−1
∗ H

(
β̂ − β

)
− BiasLRD(H−1

∗ H(β̂ − β)) = −
n

σn,Z� [ψ′(Z)] fX(x0)
S−1

p H̃−1
∆n,1(1 + op(1))

Then by (5.16) in Lemma 6 we have,

nS−1
p H̃−1

σn,Z� [ψ′(Z)] fX(x0)
∆n,1

d
→ N

(
0,
S−1

p c∗p(c
∗
p)

TS−1
p C2

LRD

� [ψ′(Z)]2 f 2
X (x0)

)
�
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