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ABSTRACT 

This thesis presents methods for processing and interpreting magnetic gradient tensor data, 

new approaches to estimation of source magnetisations from analysis of magnetic 

anomalies, and improved geological interpretation of magnetic surveys using magnetic 

petrological principles and predictive magnetic exploration models. The thesis emphasises 

the importance of an approach that integrates an understanding of the geological processes 

that create and destroy magnetic minerals with extra information obtained from magnetic 

gradient tensor data, and with petrophysical and palaeomagnetic information, to derive 

better geological models and to improve exploration success.  

  



 
 

ii 
 

TABLE OF CONTENTS  
 
 
PREAMBLE 
 

iii 

CHAPTER 1: INTRODUCTION 1 
 
CHAPTER 2: UTILITY OF MAGNETIC TENSOR GRADIOMETRY  
AND PROPERTIES OF THE MAGNETIC GRADIENT TENSOR 
 

 
5 

CHAPTER 3: NEW METHODS FOR INTERPRETATION OF MAGNETIC  
VECTOR AND GRADIENT TENSOR DATA I: EIGENVECTOR ANALYSIS  
AND THE NORMALISED SOURCE STRENGTH 
 

35 

CHAPTER 4: NEW METHODS FOR INTERPRETATION OF MAGNETIC  
VECTOR AND GRADIENT TENSOR DATA II: APPLICATION TO THE  
MOUNT LEYSHON ANOMALY, QUEENSLAND 
 

85 

CHAPTER 5: INTERPRETATION OF THE MAGNETIC GRADIENT  
TENSOR AND NORMALIZED SOURCE STRENGTH APPLIED TO THE  
TALLAWANG MAGNETITE SKARN DEPOSIT, NEW SOUTH  
WALES, AUSTRALIA 
 

123 

CHAPTER 6: CORRECTION OF ELECTRIC AND MAGNETIC FIELDS AND 
GRADIENTS MEASURED WITHIN AND AROUND AN INSULATING  
SENSOR CAPSULE IN SEAWATER 
 

133 

CHAPTER 7: NEW APPROACHES TO DEALING WITH REMANENCE: 
MAGNETIC MOMENT ANALYSIS USING TENSOR INVARIANTS AND  
REMOTE DETERMINATION OF IN SITU MAGNETISATION USING A  
STATIC TENSOR GRADIOMETER 
 

155 

 CHAPTER 8: METHODS FOR DETERMINING REMANENT AND TOTAL 
MAGNETISATIONS OF MAGNETIC SOURCES - A REVIEW.  
 

173 

CHAPTER 9: MAGNETIC EFFECTS OF HYDROTHERMAL ALTERATION IN 
PORPHYRY COPPER AND IRON-OXIDE COPPER-GOLD SYSTEMS: A REVIEW 
 

277 

CHAPTER 10:  CONCLUSIONS 341 

  



 
 

iii 
 

PREAMBLE  
 

This thesis comprises an introductory section dealing with the properties and utility of 

magnetic gradient tensor data, followed by a series of chapters, each of which represents a 

published paper, published extended abstract or, in the case of Chapter 8, an accepted  

manuscript.  Chapter 3 presents new methods for interpretation of magnetic gradient tensor 

data, with emphasis on the utility of the normalised source strength. Chapters 4 and 5 apply 

these methods to analysis of magnetic gradient tensor data at the Mount Leyshon gold 

deposit, Queensland, and the Tallawang magnetite skarn in New South Wales. 

 

Chapter 6 addresses the issue of relating electric and magnetic field and gradient 

measurements made in an insulating capsule within a conductive medium to the 

unperturbed quantities that prevailed before insertion of the capsule.  The effects of water 

flow around the capsule are also analysed This has implications for marine controlled 

source electromagnetic surveys,  magnetic gradient tensor measurements in the ocean, and 

marine magnetotellurics, as well as potential application to satellite measurements within 

the magnetosphere. 

 

Chapter 7 describes two new methods for remote determination of magnetisation of 

isolated magnetic bodies, (i) Helbig analysis of rotational invariants of the gradient tensor 

and (ii) a combined vector magnetometer/gradiometer in base station mode that exploits 

local perturbation of natural geomagnetic variations by a magnetic source, which are 

particularly useful for remanence-dominated magnetic sources. Chapter 8 gives an 

extensive review of methods for estimation of total and remanent magnetisations of 

magnetic sources, incorporating some of the new approaches presented elsewhere in this 

thesis, and Chapter 9 reviews the effects of hydrothermal alteration on magnetic properties 

of rocks within mineralised systems, including implications for mineral exploration. A 

major emphasis in chapter 9 is on predictive magnetic exploration models for porphyry 

copper and iron oxide copper-gold deposits. Chapter 10 summarises the thesis and presents 

conclusions. 
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CHAPTER 1: INTRODUCTION 

 

Magnetic surveys rapidly provide cost-effective information on the magnetisation 

distribution of the Earth’s crust, at all scales from local to global.  In particular, 

aeromagnetics is the most widely used geophysical method in hard rock mineral 

exploration from prospect to province scales.  Over time, improvements in acquisition, 

processing, display, and interpretation of magnetic survey data have led to new 

applications and greater acceptance by geologists, archaeologists and other non-specialists. 

New types of magnetic sensor, in particular tensor gradiometers, are being deployed or are 

under development.  There is therefore a particular need to develop new methods that 

efficiently process gradient tensor data, exploit the extra information, and improve 

interpretability.  All the methods presented in this thesis for interpretation of magnetic 

gradient tensor data can also be applied to tensor components calculated from conventional 

magnetic survey data of sufficiently high quality.  This means that value can be added to  

existing high resolution surveys, by reprocessing them to exploit the latent, but cryptic,  

information that is present in single component data, although it can be shown that best 

results will be obtained from measured, rather than calculated, gradient tensor data.  

Regardless of new acquisition and processing techniques, it should be noted that better 

geophysical models are of limited use if they are not interpreted in terms of plausible 

geological models. 

 

Chapter 3 presents new methods for interpretation of magnetic gradient tensor data, either 

measured directly or calculated from high quality conventional surveys, with emphasis on 

the utility of the normalised source strength (NSS).  The NSS is a rotational invariant, 

calculated from the eigenvalues of the tensor, that has many attractive properties. In 

particular for dipole sources the NSS peaks directly over the source and is completely 

independent of the direction of magnetisation.  This property extends to axially magnetised 

pipes (pole-type sources) and all 2D sources.  Because the NSS is not a potential field, care 

must be exercised when calculating vertical derivatives or continuing it to a different level 

above the sources. Chapter 3 presents an algorithm for this purpose.  Besides the 

geological applications, the algorithms for the dipole model are readily applicable to the 

detection, location and characterization (DLC) of magnetic objects, such as naval mines, 

unexploded ordnance, shipwrecks,  archaeological artefacts and buried drums.  
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Chapter 4 applies the newly developed methods for source location and determination of 

magnetisation to analysis of the well-known remanence-dominated magnetic anomaly at 

the Mount Leyshon breccia-hosted, porphyry-related gold deposit in Queensland.  Chapter 

4 also discusses the merits of calculated, versus measured, magnetic vector and tensor data. 

Chapter 5 is a case study that analyses magnetic gradient tensor data over the Tallawang 

magnetite skarn in New South Wales.  

 

Although considerable attention has been paid to magnetic gradient tensor data acquired in 

a non-conductive environment such as air, where the tensor is symmetric, there has been 

little analysis of measurements made in an electrically conductive medium, such as 

seawater. In the presence of electric current distributions, the gradient tensor is 

asymmetric. This raises the question of how the symmetric gradient tensor measured 

within an insulated capsule relates to the asymmetric tensor within the surrounding 

medium.  Chapter 6 addresses the issue of relating electric and magnetic field and gradient 

measurements made in an insulating capsule to the unperturbed quantities that prevailed 

before insertion of the capsule.  The effects of water flow around the capsule are also 

analysed.  This has implications for marine controlled source electromagnetic surveys,  

magnetic gradient tensor measurements in the ocean, and marine magnetotellurics, as well 

as potential application to satellite measurements within the magnetosphere. 

 

Chapter 7 describes two new methods for remote determination of magnetisation of 

isolated magnetic bodies, which are particularly useful for remanence-dominated magnetic 

sources. The first method estimates the magnetic moment and location of the source from 

integral moments of rotational invariants of the gradient tensor.  This method was 

successfully applied to analysis of several remanently magnetised intrusions, hosted by  

weakly magnetic sediments, in northern New South Wales, yielding results that agreed 

well with detailed inversions of the magnetic survey data.  Chapter 7 also gives the theory 

behind a second proposed method to determine magnetic properties, which exploits local 

perturbation of natural geomagnetic variations by a magnetic source.  This method yields 

estimates of the resultant magnetisation direction, the direction of remanence, and the 

Koenigsberger ratio of the source, without making any assumptions about its geometry.  

Furthermore, if the source is compact, this method gives a direct indication of direction to 

source, which can be exploited for drill targetting.  
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Assuming without evidence that magnetic sources are magnetised parallel to the 

geomagnetic field can seriously mislead interpretation and can result in drill holes missing 

their targets.  In Chapter 8  I review methods that are available for estimating, directly or 

indirectly, the natural remanent magnetisation (NRM) and total magnetisation of magnetic 

sources, noting the strengths and weaknesses of each approach. Characterising the total 

and remanent magnetisations of sources is important for several reasons:  

1. knowledge of total magnetisation is often critical for accurate determination of 

source geometry and position,  

2. knowledge of magnetic properties such as magnetisation intensity and 

Koenigsberger ratio constrains the likely magnetic mineralogy (composition and 

grain size) of a source, which gives an indication of its geological nature,   

3. determining the direction of a stable ancient remanence gives an indication of the 

age of magnetisation, which provides useful information about the geological 

history of the source and its environs,  

4. several methods exist for estimating the magnetic moment vector of a source, 

without any knowledge of its shape. This yields directions of the resultant 

magnetisation (remanent plus induced), which is crucial for accurate modelling, 

and gives an indication of the size of the source, when plausible magnetisation 

intensities are assumed. 

 

Predictive magnetic exploration models for porphyry copper and iron oxide copper-gold 

(IOCG) deposits can be derived from standard geological models by integrating magnetic 

petrological principles with petrophysical data, deposit descriptions, and modelling of 

observed magnetic signatures of these deposits.  Even within a particular geological 

province, the magnetic signatures of similar deposits may differ substantially, due to 

differences in the local geological setting.  Searching for “look-alike” signatures of a 

known deposit is likely to be unrewarding unless pertinent geological factors are taken into 

account. These factors include the tectonic setting and magma type, composition and 

disposition of host rocks, depth of emplacement and post-emplacement erosion level, depth 

of burial beneath younger cover, post-emplacement faulting and tilting, remanence effects 

contingent on ages of intrusion and alteration, and metamorphism.  Because the effects of 

these factors on magnetic signatures are reasonably well understood, theoretical magnetic 

signatures appropriate for the local geological environment can qualitatively guide 

exploration and make semiquantitative predictions of anomaly amplitudes and patterns.  
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The predictive models also allow detectability of deposit signatures to be assessed, for 

example when deposits are buried beneath a considerable thickness of nonmagnetic 

overburden, are covered by highly magnetic heterogeneous volcanic rocks, or there is a 

strong regional magnetic gradient.  

 

Chapter 9 provides a review of the effects of hydrothermal alteration on magnetic 

properties within mineralised systems, including implications for mineral exploration.  In 

particular, Chapter 9 discusses magnetic signatures of porphyry copper and iron oxide 

copper-gold (IOCG) systems and presents examples of magnetic exploration models, and 

their predicted signatures, in various geological settings, including circumstances in which 

remanence may make an important contribution to their magnetic signatures.    

 

The theme of this thesis is that maximum benefit can be obtained from future 

developments in magnetics by adopting an integrated approach, whereby new technologies 

that generate information-rich, but complex multicomponent data, are efficiently processed 

to produce more interpretable parameters, which are used to generate source locations and 

inferred magnetisations that can then be interpreted geologically. Information on total 

magnetisation and remanence that is derived from analyses of these information-rich data 

sets can be used to constrain geometry, probable lithology, and geological history of 

sources.   A final geological interpretation that is used to define exploration targets should 

incorporate insights from magnetic petrological principles and predictive exploration 

models. 

 

Because the majority of the chapters in this thesis are in the form of published or accepted   

papers, each chapter has its own reference list at the end.  



 
 

5 
 

CHAPTER 2: UTILITY OF MAGNETIC TENSOR GRADIOMETRY AND 
PROPERTIES OF THE MAGNETIC GRADIENT TENSOR 
 
Introduction 

Airborne, ground and marine magnetic surveys have improved dramatically over the past 

three decades with advances in data acquisition, image processing, potential theory-based 

signal processing, and automated interpretation techniques (Nabighian et al., 2005a). 

Magnetic surveys form an integral part of exploration programs and are now routinely 

undertaken before geological mapping programs. The availability of mature, affordable 

sensing technologies, particularly optical pumping magnetometers, that can measure the 

absolute magnitude of the geomagnetic field, generally called the total magnetic intensity 

(TMI), at a high sampling rate has revolutionised data acquisition. TMI measurements with 

these sensors can be made with great precision, to sub nanoTesla (nT) levels, at sampling 

rates of 10 Hz or greater. The precision and accuracy of modern TMI surveys is generally 

limited by the quality of compensation for magnetic effects of the sensor platform (e.g. the 

aircraft for airborne surveys), the ability to remove geomagnetic variations during the 

survey, and practical constraints on line spacing, rather than by instrumental noise. For 

these reasons the overwhelming majority of modern magnetic surveys, on the ground as 

well as in the air, use TMI sensors. 

These advances have been made despite relying only on scalar information and, in many 

processing methods, by treating the measured anomalous TMI as a potential field, which is 

strictly true only as a first order approximation. For anomalous fields that are much smaller 

than the background geomagnetic field, the first order approximation is quite accurate and 

the anomalous TMI is essentially equivalent to a single vector component, namely the 

projection of the anomalous field vector onto the regional geomagnetic field direction 

(Hughes and Pondrom, 1947). If accurate full three-component vector information could 

be retrieved, either by direct measurement or by mathematical manipulation, magnetic 

surveys could be improved even further. The extra information provided by the two 

additional vector components could help to constrain source geometries. Furthermore, for 

strong anomalies vector data could be used to correct the measured TMI, so it represents a 

true potential field.  

Vector surveys, where the direct measurement of vector components has been attempted, 

have met with mixed success. An example of a successful airborne vector magnetic survey, 

in which useful extra information about remanently magnetised banded iron-formations 
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(BIFs) was provided by vector measurements, is given by Dransfield et al. (2003). In this 

case, very large anomalies due to BIFs,  accurate measurements of aircraft attitude, and 

careful aircraft compensation gave an acceptable signal-to-noise ratio for the orientation-

corrected vector magnetic data. The accuracy of direct measurement of the field vector is 

largely governed by orientation errors, which for mobile platforms are generally so large 

that the theoretical derivation of the components from densely sampled TMI is usually 

preferable. For example, an orientation error of 0.1° produces an error of up to ~100 nT in 

an unfavourably oriented vector component. For this reason, and others listed below, it is 

desirable to measure the field gradient(s), rather than the field vector.  

Gradient measurements are much less sensitive to sensor orientation than vector 

measurements. This is because gradients arise largely from relatively near anomalous 

sources, which are the targets of interest, whereas the background (core field)  

geomagnetic gradient is relatively low (typically 0.01 – 0.03 nT/m). This contrasts with the 

field vector, which is dominated almost everywhere by the background field that arises 

from the Earth’s core and has a typical magnitude of ~50,000 nT.  Gradient measurements 

are therefore most appropriate for mobile applications.  

Another advantage of gradient measurements is that they suppress, through common mode 

rejection, time-varying background fields such as diurnal variations, geomagnetic 

pulsations and magnetic storms, which arise from distant electric currents in the ionosphere 

and magnetosphere,.  This obviates the need for base stations. They also greatly reduce the 

need for regional corrections, which are required for interpretation of TMI surveys because 

regional fields arise from deeper crustal sources that are normally not of exploration 

interest, or from the normal (quasi-) latitudinal intensity variation of the global field. 

Gradient measurements also provide valuable additional information, compared to 

conventional total field measurements, when the field is undersampled.  Undersampling is 

common perpendicular to flight lines in airborne surveys, is usual in ground surveys, and 

always pertains in down-hole surveys. Conditions under which calculation of vectors and 

gradient tensors from sufficiently densely and accurately sampled TMI data is actually 

preferable to direct measurement of these quantities have hitherto not been characterised 

by modelling and case studies.  Chapters 3 and 5 present a case study from the Tallawang 

magnetite deposit, in central NSW, that compares measured gradient tensor data with 

calculated gradient tensors, derived from a detailed TMI survey.  Criteria for the maximum 
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permissible sample spacing for which vector components and gradient tensors can be 

reliably calculated are developed in Appendix II of Chapter 4. Synergistic interpretation of 

calculated vectors and measured gradients may allow significantly more information to be 

extracted from airborne surveys. 

General advantages of gradient measurements 

The advantages of magnetic gradient surveys for mineral exploration and detailed 

geological mapping are well known and have been discussed by a number of authors, 

including Hood (1965, 1981) and Hood and Teskey (1981), who emphasise vertical 

gradient of TMI measurements,  Harrison and Southam (1991), who discuss applications to 

marine magnetic anomalies, and Hardwick (1996, 1999) and Reford (2006), who 

emphasise transverse horizontal gradient of TMI measurements.  These advantages 

include: 

1. Gradiometry gives better resolution of shallow features, and closely spaced sources 

and structural features, compared to TMI or vector measurements 

2. Gradiometry suppresses regional anomalies due to deep sources 

3. Gradiometry is particularly useful as a subvertical contact mapper 

4. Gradient anomalies are tighter around compact sources than field anomalies 

5. Gradiometry aids detection and delineation of pipe-like sources 

6. Gradiometry along widely spaced lines constrains local strike direction* 

7. Gradiometry determines on which side of a profile the source lies*  

8. Gradiometry  provides common mode rejection of geomagnetic variations 

9. Gradiometry is relatively insensitive to rotation noise 

10. Gradiometry constrains interpolation between profiles* (important as all airborne 

surveys are aliased to some extent across flight lines; similarly marine surveys and 

some ground surveys are aliased across profiles) 

11. IGRF corrections are less important for gradiometry (usually unnecessary) 

12. Gradiometry provides direct indication of Euler structural index when combined 

with measurements of field 

13. Higher resolution of gradiometric surveys compared to conventional TMI surveys 

can be offset against survey height, allowing somewhat higher, therefore 

considerably safer, flying. 

*not vertical TMI gradients 
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Nobukazo et al. (1993) discussed the extra information obtainable from vector, as opposed 

to scalar, measurements for marine magnetic surveys with typically wide line spacing. In 

particular, the location and strike direction of boundaries between crustal units of 

contrasting magnetisation are better constrained by vector data.  As mentioned above, 

vector measurements are afflicted by orientation noise and are generally not practical for 

airborne or ground surveys. However the theoretical advantages of vector measurements 

also apply to three-axis TMI gradient surveys and a fortiori to gradient tensor 

measurements. 

Regarding point 9 above, consider a simple numerical example.  Directly above a 

vertically magnetised dipole source of moment 5 × 105 Am², 100 m below the sensor, in a 

vertical geomagnetic field of 60,000 nT, the anomalous field components are bx = by = 0, bz 

= 100 nT, so the resultant vertical field is 60,100 nT.  The corresponding nonzero  

anomalous gradient tensor elements are Bxx = Byy = −1.5 nT/m, Bzz = 3 nT/m and the IGRF 

gradients are Gxx = Gyy = −0.015 nT/m, Gzz = 0.03 nT/m. As the tensor is diagonal in the 

geographic reference frame, the diagonal components are also the eigenvalues of the 

tensor. A 1° error in sensor orientation produces apparent anomalous vector components, 

after subtraction of the IGRF field, of 90.85 nT (vertical) and 1049 nT (horizontal). The 

apparent magnitude of the anomalous field vector is overestimated by a factor of ten and 

the apparent direction to the source is off by 85°.  On the other hand, the apparent gradient 

tensor components are  Bxx = Byy = −1.515 nT/m, Bzz = 3.03 nT/m, with an off-diagonal 

component of 0.079 nT/m.  The apparent tensor magnitude is only in error by ~1% if the 

regional gradient is ignored, and 0.02% if the regional gradient is subtracted.  The apparent 

direction to source, given by the major eigenvector, is 1° off vertical, simply reflecting the 

misorientation of the sensor.  The effect on the estimated source direction of ignoring the 

regional gradient is only 0.01°. 

Total field gradient surveys, using two, three or four total field sensors, are common. An 

array of four TMI sensors provides an approximation to the vector gradient of the TMI, 

which represents a comparable amount of information to a three vector component survey, 

but with much less dramatic sensitivity to orientation. While TMI gradiometer surveys 

share many of the advantages of tensor gradients, such as obviating or ameliorating the 

need for base stations and regional corrections, total field gradients are not true potential 
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fields (Schmidt and Clark, 2006) and do not provide as much information as the full 

gradient tensor, which has five independent components.   

Properties of the magnetic gradient tensor 

The magnetic gradient tensor B is defined as the vector gradient of the magnetic field 

vector b:  

.bB ∇=           (1) 

For static fields in the absence of conduction currents, 

,0=×∇ b           (2) 

which implies that b can be expressed as the gradient of a scalar potential: 

,Ω−∇=b           (3) 

where Ω  is the magnetic scalar potential.  

With respect to Cartesian axes B has nine components, Bij (i, j = x, y, z),  which may 

displayed as a matrix: 
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In a source free region Ω  and its derivatives of all orders are continuously differentiable 

functions, so the order of differentiation on the RHS of (4) can be reversed. This implies 

that the tensor is symmetric: 

,,, jiBB jiij ∀=          (5) 

a conclusion which also follows directly from (2). 

Furthermore, since 
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,0=
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b zyx.b         (6) 

it follows that the tensor is traceless: 

.0=++ zzyyxx BBB          (7) 

The symmetry and tracelessness of the tensor imply that, of the nine tensor components,   

only five are independent.  

Equations (3) and (6) also imply that Ω obeys Laplace’s equation in the source free region: 
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Differentiation of eqn (8) shows that each of the field and gradient tensor components also 

obeys Laplace’s equation: 
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Equations (9) and (10) have important implications for analytic continuation of field and 

tensor components and for interrelationships between different components in the space 

and spatial frequency domains. 

Advantages of gradient tensor data 

Pedersen and Rasmussen (1990) discuss in some detail the practical problems encountered 

in the collection and processing of gradient tensor data and the benefits obtainable from 

acquisition of tensor data. For instance, these workers point out that resolution is enhanced 

compared to conventional magnetic surveys and that rotational invariants calculated from 

tensor data have attractive properties for interpretation. Christensen and Rajagopalan 

(2000) suggested that the next breakthrough in magnetic exploration is likely to be the 

measurement of the gradient tensor and demonstrated the utility of analytic signal 
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amplitudes (total gradients) of vector components, which can be derived directly from 

gradient tensor components, for locating boundaries and interpreting source geometries in 

the presence of remanence. 

The recent development of full tensor gravity gradiometry and derived, highly refined, 

systems such as FALCONTM have revolutionised marine, and particularly airborne, gravity 

surveys (Nabighian et al., 2005b). This renewed interest in the gravity gradient tensor has 

stimulated interest in interpretation methods for magnetic gradient tensor data, as there are 

many mathematical similarities between the two types of data.  

Schmidt and Clark (2006) have summarised benefits of gradiometry in general and tensor 

gradiometry in particular. Benefits that are specific to gradient tensor surveys include: 

1. Gradient tensor surveys retain benefits of vector surveys, without disadvantage of 

extreme orientation sensitivity. 

2. Tensor elements are true potential fields, with desirable mathematical properties 

(important in areas with strong anomalies), which allows rigorous continuation, 

RTP, magnetisation mapping, etc. 

3. Very rapid sampling rate of SQUID sensors allows unaliased detection of high 

frequency aircraft noise and efficient removal by filtering, whereas total field 

magnetometers have much slower sampling, causing compensation problems. 

4. Redundancy of tensor components gives inherent error correction and noise 

estimates. 

5. A wide range of new types of processed data is possible with full tensor data: 

invariants, directional filters, depth slicing, source moments and dipole location 

unaffected by sensor misorientation. 

6. Rotational invariants, which are inherently robust against sensor misorientation, are 

readily calculated from the tensor elements. 

7. Invariant quantities, with higher resolving power than the analytic signal, can be 

derived from tensor data. 

8. Gradient tensor surveys allow direct determination of the 3D analytic signal 

(defines source outlines; width/depth determinations that are only weakly sensitive 

to remanent magnetisation). 

9. Each tensor component represents a directional filter, emphasising structures in 

particular orientations. 
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10. Measurement of the tensor allows calculation of parameters unaffected by aliasing 

across flight lines. 

11. Superior Euler deconvolution solutions can be obtained using true measured 

gradients along and across lines. 

12. Tensor elements are independent of skewing caused by the geomagnetic field 

direction, which improves interpretability. 

13. Combinations of tensor components give information on magnetisation directions. 

14. Measurement of the full tensor allows rotation of co-ordinate system, yielding 

transformed tensor components that emphasise specified structural orientations. 

15. Full tensor data defines the direction to a compact (dipole) source and its magnetic 

moment directly from as few as two station measurements. 

16. Full tensor data gives improved resolution of pipe-like bodies and sources 

subparallel to the flight path. 

17. Full tensor data improves delineation of N-S elongated sources in low latitudes. 

18. Development of full tensor sensors should have spin-off applications to down-hole 

magnetics and remote determination of source magnetic properties in situ. 

Barnes et al. (2008) showed very clearly the advantages of gravity gradient tensor 

measurements over single component measurements for locating sources between survey 

lines and for determining orientations of contacts, even for compact sources, when survey 

lines are too widely spaced to completely define the field between the lines. In these 

circumstances, robust and accurate solutions for source parameters such as source density 

contrast, location and orientation can be obtained by inverting single lines of gradient 

tensor data, whereas inversion of single component data for the same sources produces 

inaccurate and misleading solutions. Those authors also showed that the same principle 

applies to the regional-residual separation problem, which is much more clear-cut when 

gradient tensor data are available. These advantages of gravity gradient tensor 

measurements apply a fortiori to magnetic gradient tensor data, because magnetic 

anomalies have  additional complexity due to possible variations in magnetisation 

directions. Inverting for  source magnetisation directions, as well as intensities, requires 

extra information that is best supplied by full magnetic gradient tensor data. 

Apart from their uses in systematic magnetic surveys, gradient tensor measurements have a 

specific application to manoeuvrable search platforms that home onto compact magnetic 

targets, such as buried land mines, naval mines and unexploded ordnance (UXO). For 
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example, Wiegert and Oeschger (2006) and Wiegert et al. (2007) describe the application 

of sensor platforms with multiple tensor gradiometers for guidance towards a magnetic 

target and real time detection, localisation and classification (DLC) of targets. 

Calculation of gradient tensors from TMI surveys 

Vestine and Davids (1945) showed that three orthogonal components of a potential field 

vector could be derived from knowledge of a single component, along a fixed direction, 

over a horizontal plane that lies above all the sources. Hughes and Pondrom (1947) 

presented a method for deriving vertical and horizontal components of the anomalous 

magnetic field from TMI data, which was just becoming available due to the introduction 

of the proton precession magnetometer, so that newer surveys could be compared to older 

data sets acquired with fluxgate magnetometers. Baranov (1975) gives a comprehensive 

treatment of relationships in the space and wavenumber domains between field 

components, including TMI, their continuations and derivatives.  Purucker (1990) 

described  and evaluated the strengths and weaknesses of the available methods (Fourier 

filtering, convolution filtering, and equivalent source techniques) for calculating vector 

components from TMI, and Lima and Weiss (2009) give a detailed treatment of the 

underlying mathematical assumptions and numerical stability of algorithms for calculating 

all field components from a single measured component. 

Schmidt and Clark (1998) discussed the calculation of vector components from the TMI, 

drawing on the Fourier domain method of Lourenço and Morrison (1973), then used 

integral moments of these components to calculate magnetic moments of isolated sources  

according to a modification of the method originally proposed by Helbig (1963), and 

finally compared the theoretical derivations with laboratory measurements to demonstrate 

the validity of the approach. Helbig’s approach is attractive because it does not make any 

assumptions about source geometry, apart from a prohibition on the body extending to 

infinity in any direction. Phillips (2005) has since taken these ideas further by using a 

moving window to generalise the technique to tackle larger areas, and also to search for 

sources with specified directions of magnetization. Recently, Caratori Tontini and 

Pedersen (2008) have extended Helbig’s method to calculation of second order integral 

moments of gridded magnetic component data to estimate the depth and horizontal  

location of the centres of magnetisation of extended, but finite, sources. Helbig’s method 
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can also be applied to gradient tensor data. Phillips et al. (2007) show that second moments 

of the tensor elements provide information about the magnetic moment. 

Over local and small regional scales, computation of magnetic vector components from 

gridded TMI data on a horizontal plane can be performed efficiently using the Fast Fourier 

Transform (FFT) algorithm. The 2D Fourier transform of a function f(x, y) is given by: 
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where kx and ky are the wavenumbers along the horizontal x and y axes respectively, and 

the radial wavenumber |k| = √( kx²+ ky²). 

In the wavenumber domain the grid north, grid east and vertical down components (bx, by, 

bz) of the anomalous field vector b are related to the anomalous TMI, ∆T, by (Blakely, 

1996, p.329, 342-343) 
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where (l, m, n) are the direction cosines of the regional geomagnetic field F = F(l, m, n) = 

(Fx, Fy, Fz) with respect to x, y, z, and ∆T is given by the projection of the anomalous field 

vector onto the regional field direction: 
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Equation (16) implies that ∆T is harmonic, i.e. it obeys Laplace’s equation, because it is a 

linear combination of field components, each of which is harmonic by eqn (9).  

It should be noted, however, that calculation of vector components from measured TMI 

surveys requires high quality, well levelled data, densely sampled to avoid aliasing. This 

applies even more strongly to calculation of gradient tensor components from TMI, 

because of the amplification of high frequencies, including noise, associated with 

differentiation of the field components. Furthermore, this processing becomes unstable 

close to the geomagnetic equator (Blakely, 1996, p.342-343). When the regional field 

inclination is zero, small to moderate anomalous field components in the magnetic E-W 

vertical plane have negligible effect on the measured TMI. In the presence of remanently 

magnetised elongated structures parallel to the magnetic meridian, which can produce 

substantial vertical and east components, these components cannot be reliably recovered 

from the TMI when the field inclination is too low.  

These considerations also apply to calculation of gradient tensor elements from measured 

TMI surveys, which can in principle be accomplished by Fourier domain filtering of high 

quality TMI surveys by applying derivative filters to calculated vector components. The 

relationships in the Fourier domain between elements Bij of the anomalous gradient tensor 

B = ∇b and anomalous TMI can be derived from relationships between a potential field 

and its directional derivatives. The DC (|k| = 0) components of the spectra are set to zero 

for all anomalous field and tensor components, as these components average to zero over 

the horizontal plane, for sources of finite horizontal and vertical extent. In practice with 

real data, after removal of regional trends the average value of each component is 

subtracted from its gridded values, to comply with this constraint. Applying relationships 

given by Blakely (1996, p.324-326) yields for |k| > 0 and n ≠ 0: 
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Equations (17)-(22) show that the gradient tensor elements measured on a plane above the 

sources are interrelated. For |k| > 0: 
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Nelson (1988) derived relationships (23)-(28), from which it follows that, at least in 

principle, knowledge of Bzz everywhere on a horizontal plane determines all other tensor 
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elements on that plane, and hence everywhere in the source free region above and below 

the plane. For example,  
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The other tensor components can be determined similarly from the Fourier transform of 

Bzz. However knowledge of the vertical derivatives of both horizontal field components  

(i.e. of  Bxz and Byz), or alternatively knowledge of Bxx and Byy, is required to determine the 

other tensor components. 

In a similar vein, Nelson (1988) showed how TMI gradient data can be processed in the 

frequency domain to calculate grids of gradient tensor elements. For example: 
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from which all other tensor elements can be calculated by using (17)-(21). Equations (13)-

(15), (23)-(28) and (30) yield the following expressions for the field components in terms 

of the TMI gradients: 
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Either the vertical gradient of the TMI, or both horizontal gradients, is sufficient to 

calculate all vector and tensor components. 

As usual, some caveats must be placed on Fourier domain processing of potential fields. 

Sampling must be sufficiently dense to reduce aliasing to negligible levels and precautions, 

such as removal of regional trends and judicious windowing of the data, must be taken to 
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minimise Gibbs phenomenon “ringing” and spectral leakage due to mismatches between 

opposite grid boundaries.  A detailed discussion of the sampling density required to 

calculate vector and gradient tensor components accurately is given in the next section. 

Another, fundamentally different, problem with calculation of vector components and 

gradient tensor elements from TMI survey data arises when very intense anomalies are 

present, so that the TMI locally departs significantly from a potential field. Schmidt and 

Clark (2006) give expressions for the departures of the Laplacian of the measured TMI 

from zero. In this case an iterative method can be employed to calculate the vector 

components correctly, as outlined by Schmidt and Clark (1998) and presented in detail by 

Clark (2013).   

Denote the local field vector by F′ =  F+b. Then the measured total field anomaly is given 

by: 
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( ) ..22 222222 bFFFBBFB mmm ++=+=+∆+∆=+∆∴ bFbF       (35) 

Rearranging and using eqn (16): 
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It can be seen from eqn (37) that the measured total field anomaly is only equal to ∆T to 

first order in |b|/F. When anomalies are strong (thousands of nanoteslas) the difference 

between the two “total field” anomalies becomes significant. It can also be seen from (37) 

that the maximum error, for a given magnitude of the anomalous field vector b, occurs 

when the anomalous field is oriented such that F′ and F form an isosceles triangle, with 

base b, in which case ∆Bm = 0. For example, the difference between the two types of total 

field anomaly can be as large as 1000 nT for a 10,000 nT anomaly in a 50,000 nT regional 

field.  
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Clark (2000) discussed the case of the magnetite-rich Osborne iron-oxide Cu-Au deposit in 

the Clocurry belt of NW Queensland, which is associated with a TMI anomaly of ~12,000 

nT. The regional geomagnetic field in the vicinity of the deposit is locally deflected by the 

anomalous field, producing a significant difference between ∆Bm and ∆T.  Figure 1(a) 

shows this difference for a profile across the deposit. Figure 1(b),(c) illustrate how this 

discrepancy is in fact fortuitously small for this deposit, due to a favourable geometry that 

partially suppresses the anomaly through self-demagnetisation.  If the dip of the magnetite-

rich body were vertical, or to the SW, rather than approximately perpendicular to the 

effective inducing field, the anomaly would be much larger and the deflection of the 

geomagnetic field, particularly on the SW flank of the anomaly, would be much greater. In 

these cases, the discrepancy between ∆Bm and ∆T would produce modelled dips that depart 

significantly from the true dip, if the modelling software calculated ∆T, according to the 

usual practice, and matched it to the measured TMI anomaly. This error is in addition to 

the very substantial error in interpreted dip if self-demagnetisation is neglected.  

For this reason, it is recommended that magnetic modelling software should calculate ∆Bm 

rather than, or in addition to, ∆T for comparison with measured TMI data. This requires a 

simple modification of most programs, which calculate anomalous vector components as 

an intermediate step, then calculate ∆T using (16). Alternatively, ∆Bm can be calculated 

from the components using (34). 

The gridded measured TMI, ∆Bm, is converted to the projection of the anomalous field 

vector onto the regional geomagnetic field direction, ∆T, which is a true potential field, 

from which the three orthogonal field components can then be reliably calculated. An 

initial estimate of the vector components on a regular grid is obtained by assuming that 

∆Bm = ∆T. These approximate components are then used to estimate the difference 

between ∆Bm and ∆T, which is then used to obtain a better estimate of ∆T. The components 

are recalculated and the process is repeated, generally converging rapidly, until further 

improvement is negligible. The explicit correction procedure is given in Appendix I of 

Chapter 3.  

Another useful attribute of  ∆T anomalies is that contributions from multiple sources obey 

linear superposition (provided magnetostatic interactions between the sources can be 

neglected), whereas the ∆Bm anomaly due to multiple strongly magnetic sources is not  
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Fig.1. Modelled ∆Bm and ∆T profiles for a sheet-like source representing the main 

ironstone body (the original drill target) of the Osborne IOCG deposit (Clark, 2000). The 

assumed susceptibility, based on drill core measurements, is 0.5 G/Oe = 6.3 SI. (a) 

Geometry and anomalies that approximate the actual deposit, dipping NE. (b) Anomalies 

for the same body if it had vertical dip. (c) Anomalies for a SW dip. 
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Fig.2. Observed (solid line) and calculated ground magnetic anomalies along line 1770N 

(Keel grid) over the Osborne deposit, showing a twin dipping sheet model, constrained by 

drill intersections. The first diamond drill hole (TTNQ1) was sited to intersect an 

interpreted SW dipping target and failed to intersect ironstone. TTNQ3 was the first hole 

based on incorporation of self-demagnetisation into modelling, which indicated a NE dip. 

About 5° of the error in interpreted dip is attributable to neglecting the difference between 

∆Bm and ∆T. Note that the ∆Bm anomalies of the individual sheets do not strictly obey 

linear superposition. The convergent solution for ∆T represents a true potential field, from 

which field and gradient tensor components can be more reliably calculated.  
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exactly the sum of their individual anomalies. For direct comparison of modelled TMI 

anomalies from multiple sources with measured TMI, vector component anomalies from 

each body should be combined first, then the ∆Bm anomaly calculated from the 

components using eqn (34). Using the Osborne deposit again as an example, Fig.2 

illustrates the differences between correctly combined ∆Bm anomalies from two magnetite-

rich sheets and the anomaly obtained by simply adding the contributions from each sheet. 

Although Fourier domain processing is very efficient, the computational advantages of 

Fourier filtering over space domain convolution filtering have become less significant as 

computer power has increased. Moreover, Fourier-based filters are somewhat inflexible, as 

they must be applied to a regular grid on a plane. Convolution filters are more flexible and, 

in some circumstances, can be more accurate than Fourier-based filters (Wang et al., 

2008). It is therefore useful to give the space domain equivalents of the Fourier-based 

transformations given above. 

The magnetic scalar potential at a height h above a horizontal plane can be calculated from 

the TMI on the plane z = 0 (Hughes and Pondrom, 1947; Robinson, 1970): 
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where R = √[(x−ξ)²+(y−η)²+h²] and I is the geomagnetic inclination. 

Differentiating (43) with respect to h gives for the vertical field component on the plane     

z = −h: 
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where the convolution kernel K is given by: 



 
 

23 
 

( ) ( )
[ ]

[ ]
[ ] .

cos)(sin 

cos)(sin2

cos)(sin 

sincoscos
, 23

2

2 IxIhRR

IxIhRh

IxIhRR

IhxIRI
yxK

ξ
ξ

ξ
ξηξ

−++
−+++

−++
+−+−=−−      (46) 

The convolution integral (45) is the space domain equivalent of eqn (15). Robinson (1970) 

also gives analogous expressions for the horizontal field components on the plane z = −h. 

These components can also be calculated by numerical differentiation of the scalar 

potential, calculated using (43), or from the following convolution integrals (Nabighian, 

1984; Nelson, 1988): 
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The five independent tensor elements Bxx, Bxy, Byy, Bxz, Byz on the plane z = −h can be 

calculated from (45), (47), (48) by numerical differentiation. Bzz is, of course, determined 

once Bxx and Byy are known, but it can also be calculated directly from knowledge of bz  on 

the same plane, using the following relationship (Baranov, 1975, p.73): 
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where ρ = √[(x−ξ)²+(y−η)]² and  
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is the average value of bz(ρ) on a circle of radius ρ centred on (x,y). The term bz(0) in the 

numerator of the integrand is required to remove the singularity at ρ = 0. In Cartesian co-

ordinates eqn (50) becomes: 
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The reverse procedure is also straightforward. If the tensor element Bzz is measured on a 

horizontal plane, then bz at a height h above the same plane can be derived using a 

convolution filter:  
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Equation (52) represents the solution to the Neumann problem of potential theory 

(Baranov, 1975) and is similar to the relationship between the TMI anomaly above a 

horizontal plane and its vertical derivative on the plane (Henderson, 1970). 

As h → 0, the relationship between the vertical field and its azimuthally averaged vertical 

derivative on the same plane can be expressed as: 
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Equation (53) is analogous to an expression, due to Ackerman and Dix (1955), that relates 

the first and second vertical derivatives of a gravity anomaly. 

Knowledge of Bzz over a plane can determine all other gradient tensor elements, using the 

following convolution relationships (Nelson, 1988): 
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In practice, convolution integrals of the type given above can be calculated efficiently and 

with good precision using cubic B splines (Wang et al., 2008). For the case h = 0, knots of 

the splines must not coincide with sample points, to avoid singularities.  

A detailed TMI survey over the Tallawang magnetite skarn deposit afforded an opportunity 

for comparison of Fourier-based processing of TMI data with measured full gradient tensor 

data (Schmidt et al., 2004), acquired with a prototype rotating axial gradiometer 

(GETMAG).  Figure 3(a) presents an image of the TMI, gridded from closely sampled (< 1 

m spacing) measurements along profiles, perpendicular to strike, with a 10 m line spacing.  

Since the geological structure is approximately 2D and the depth to top of the magnetic 

bodies is essentially the depth of weathering, which is typically greater than 10 m, this 

sampling density is clearly adequate to sample the magnetic signature of the main 

geological sources, which are strongly magnetic magnetite skarn bodies within weakly 

magnetic sedimentary rocks, adjacent to a relatively weakly magnetic granite.  

TMI measurements were made in a vertical gradient configuration, with Caesium vapour 

magnetometers at 0.5 m and 1.5 m above the ground. Grids of tensor elements were 

calculated using eqns (17)-(22) applied to the gridded  TMI, which was recalculated from 

mean of the two independent TMI grids, each continued to 1 m height to correspond with 

the height of the GETMAG tensor gradiometer. These calculated tensor elements exhibit 

coherent, smoothly varying, but somewhat sharper images of the geological structures 

(Figures 3(b)-(d)). The calculated values could be checked against direct measurements of 

the gradient tensor that were made by GETMAG along three profiles. 

Direct comparison of calculated and measured gradient tensor elements along these 

profiles showed excellent quantitative agreement between the measured values and those 

calculated from the TMI survey. Figure 4 shows the comparison between measured and 

calculated gradient tensors along a profile that passed over the mid-section of the major 

skarn body. The overall agreement between the measured and calculated gradient tensors 
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confirmed the ability of the Fourier-based processing to accurately calculate gradient 

tensors from TMI surveys of sufficiently high quality, and also verified the accuracy of 

calibration of the tensor gradiometer. 

The advantages of measured gradient tensor data for relatively widely separated lines are 

well known (see Chapters 3-5). For example, the location and magnetic moments of 

compact sources can be uniquely determined from measurements along a single profile that 

passes within the detection range, or even from a few isolated measurements within an 

anomaly. On the other hand, obtaining equivalent information from total magnetic 

intensity (TMI) or TMI gradient data requires closely spaced lines to allow accurate 

characterisation of the field between the lines. If the field or its gradient in a fixed direction 

is accurately defined over the whole extent of the anomaly, the gradient tensor can be 

calculated, at least in principle, as shown above. Appendix II of Chapter 3 discusses the 

criteria for reliable estimation of gradient tensor elements from TMI or TMI gradient data.  

In 1981 the SEG published a collection of excellent papers on applications of 

superconducting quantum interference devices (SQUIDs) to geophysics (Weinstock and 

Overton, 1981), which emphasised the potential for exploitation of the extreme sensitivity 

and high bandwidth of low temperature (liquid He-cooled) SQUID magnetometers and 

gradiometers.  Until recently, practical difficulties such as cost of He, size of liquid He 

dewars, and logistical problems with obtaining liquid He in remote areas have limited use 

of low T SQUIDs for routine geophysical applications. Slow but steady progress has been  

made with low T SQUID magnetometer/gradiometer systems (Wynn et al., 1975; Wilson 

et al., 1994; Clem, 1995; Clem et al., 1997, 2001), particularly for military applications 

such as naval mine detection and unexploded ordnance detection.  Over the last decade the 

first practical low T SQUID-based system for geophysical gradient tensor surveys has been 

developed by the Jena (Germany) group (Stolz et al., 1999, 2006a,b;  Chwala et al.,  2012). 

Chapter 3 reviews recent developments of magnetic tensor gradiometry, including high T 

and low T SQUID-based systems.  
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Fig.3(a). Image of measured TMI data over the Tallawang South magnetite skarn deposit, 

central N.S.W, with survey lines superimposed. Grid north is 340°TN/329°MN. TMI 

values are given in nT. 

 

 

Fig.3(b). Image of Bzz (downward derivative of the vertical down feld component) over the 

Tallawang South deposit, calculated from the measured TMI using Fourier methods 

(eqn(22)). Gradient values are in nT/m. 
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Fig.3(c). Image of Byy (grid east derivative of the grid east field component) over the 

Tallawang South deposit, calculated from the measured TMI using Fourier methods. 

Gradient values are in nT/m. 

 

 

Fig.3(d). Image of Byz (grid east derivative of the vertical down field component) over the 
Tallawang South deposit, calculated from the measured TMI using Fourier methods. 
Gradient values are in nT/m.  
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Fig.4(a). Comparison of gradient tensor elements, measured along a profile approximately 

perpendicular to the strike of the Tallawang magnetite skarn, with those calculated from 

the TMI grid. Note the good agreement between the two data sets. 

 

Fig.4(b). Comparison of gradient tensor elements, measured along a profile perpendicular 

to the strike of the Tallawang magnetite skarn, with those calculated from the TMI grid. 

Both sets of tensor elements have been rotated into a co-ordinate system with the x axis 

across strike and y along strike, such that Byy and Byz are minimised. Two dimensional 

structure is assumed for calculation of the eigenvalue of the tensor, which then has 

magnitude √(Bxx² + Bxz²). Note the excellent quantitative agreement between the two data 

sets. 
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ABSTRACT 

Acquisition of magnetic gradient tensor data is likely to become routine in the near future.    

New methods for inverting gradient tensor surveys to obtain source parameters have been 

developed for a number of elementary, but useful, models. These include point dipole 

(sphere), vertical line of dipoles (narrow vertical pipe), line of dipoles (horizontal 

cylinder), thin dipping sheet, and contact models.  A key simplification is the use of 

eigenvalues and associated eigenvectors of the tensor.  The normalised source strength 

(NSS), calculated from the eigenvalues, is a particularly useful rotational invariant that 

peaks directly over 3D compact sources, 2D compact sources, thin sheets and contacts, and 

is independent of magnetization direction.  In combination the NSS and its vector gradient 

determine source locations uniquely.  NSS analysis can be extended to other useful 

models, such as vertical pipes, by calculating eigenvalues of the vertical derivative of the 

gradient tensor.  Inversion based on the vector gradient of the NSS over the Tallawang 

magnetite deposit obtained good agreement between the inferred geometry of the tabular 

magnetite skarn body and drill hole intersections.  Besides the geological applications, the 

algorithms for the dipole model are readily applicable to the detection, location and 

characterization (DLC) of magnetic objects, such as naval mines, unexploded ordnance, 

shipwrecks,  archaeological artefacts and buried drums.   

 

Key words: Magnetic gradient tensor, magnetic field vector, eigenvalues, eigenvectors, 

normalised source strength, dipole localization, magnetization. 
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INTRODUCTION   

This paper presents theory underlying some novel methods for interpretation of magnetic 

vector component and gradient tensor data.  It is accompanied by a second paper (Clark, 

2012, submitted to Exploration Geophysics), hereafter referred to as paper II, which 

applies some of these methods to analysis of the well-known magnetic anomaly at Mount 

Leyshon, Queensland. 

The magnetic gradient tensor B is defined as the vector gradient of the magnetic field 

vector b.  Pedersen and Rasmussen (1990) and Schmidt and Clark (2006) have reviewed 

the basic theory of the magnetic gradient tensor and discussed its applications.   

With respect to Cartesian axes B has nine components,  Bij (i, j = x, y, z),  which may be 

represented by a 3 × 3 matrix. Maxwell’s equations imply that the gradient tensor is 

symmetric (in the absence of electric currents) and traceless.  These constraints reduce the 

number of independent components to five, e.g. Bxx, Bxy, Bxz, Byy, Byz.  Since derivatives of  

the magnetic scalar potential Ω  of all orders are potential fields,  vector and tensor 

components measured over a plane can be continued to different levels and vertical 

derivatives can be calculated using standard techniques (see Blakely, 1996, Chapter 12).  

Advantages of gradient tensor measurements 

A number of authors (e.g. Pedersen and Rasmussen, 1990; Christensen and Rajagopalan, 

2000; Schmidt and Clark, 2006; Foss, 2006) have discussed theoretical advantages of 

magnetic gradient tensor measurements over conventional magnetic surveys.   The 

overwhelming majority of modern  magnetic surveys measure the total magnetic intensity 

(TMI).  In most circumstances, for which the anomalous magnetic fields are small relative 

to the background geomagnetic field, the anomalous TMI is well approximated by the 

projection of the anomalous field vector onto the regional geomagnetic field direction (e.g. 

Emerson et al., 1985).  To this approximation, the anomalous TMI represents a single 

magnetic field component that obeys Laplace’s equation and is therefore a potential field.  

Unlike the TMI, all Cartesian vector and tensor components are true potential fields, 

irrespective of the anomaly magnitude.  The anomalous field vector comprises three 

independent components and the gradient tensor has five independent components.  In 

principle therefore, for a given number of observations the gradient tensor contains more 
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information about the magnetic sources than the vector, and considerably more than the 

TMI.   

In addition to the extra information provided by the gradient tensor, gradient measurements 

suppress geomagnetic noise from the ionosphere and magnetosphere through common 

mode rejection and they largely remove long wavelength regional fields, while providing 

higher resolution by emphasising shallow sources and local structures.   

The advantages of gradient tensor measurements are particularly apparent in low latitudes, 

where TMI surveys are insensitive to vertical and easterly components of the anomalous 

field. These components arise from compact sources, whether or not they are magnetized 

parallel to the geomagnetic field.  In bodies that are elongated approximately  along the 

magnetic meridian, vertical and easterly components of the anomalous field  arise 

predominantly from magnetization components that are perpendicular to the geomagnetic 

field. These components, which are generally present to some extent due to remanence and 

anisotropy, contain valuable information about such sources, to which TMI surveys are 

almost blind.  In areas of rugged topography, where TMI surveys struggle to produce 

reliable interpolated data on either constant elevation or draped surfaces, even relatively 

sparse, irregularly spaced measurements of the gradient tensor on an uneven surface are 

sufficient to locate sources and provide information on their magnetization. 

Recent developments in magnetic tensor gradiometer systems 

Recently there has been growing interest in developing new high sensitivity full tensor 

magnetic gradiometer systems.   Slow but steady progress has been made with SQUID 

magnetometer/ gradiometer systems, both low T SQUID-based (LTS) liquid He-cooled 

(e.g. Clem et al., 1997) and high T liquid nitrogen-cooled (Clem et al., 2001; Young et al., 

2010; Leslie et al., 2007), particularly for military applications such as naval mine 

detection and unexploded ordnance detection.  Over the last decade the first practical low 

T SQUID-based system for geophysical gradient tensor surveys has been developed by the 

Jena (Germany) group (Stolz et al., 1999, 2006a,b;  Chwala et al., 2012). The intrinsic 

noise of the LTS planar gradiometers developed by this group is 0.2 pT/m (integrated 

between 0.01 Hz and 10 Hz). Noise spectral density of the full tensor gradiometer system 

in motion is about 1-10 pT/m/√Hz over a frequency range of 0.1-2 Hz in a bird towed 

beneath a helicopter.  A survey carried out in 2006 using a fixed wing aircraft achieved 

rms noise levels of 5-10 pT/m in a bandwidth of 4.5 Hz (Chwala et al., 2012). 
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The discovery of high T (liquid nitrogen temperatures and above) superconducting 

materials in the late 1980s has created opportunities for cheaper, smaller devices that can 

be readily transported and refilled, but retain very high sensitivities.  Liquid nitrogen 

cooled SQUIDs and gradiometers are very sensitive, with noise levels that are about an 

order of magnitude higher than those of low T SQUIDs.  Clark et al. (1998) suggested the 

use of combined vector field and gradient tensor measurements, using high T 

superconducting devices, for separating contributions of induced and remanent 

magnetization to magnetic anomalies and for inferring source properties, such as total 

magnetization direction, remanence direction and Koenigsberger ratio. 

Humphrey et al. (2005) have demonstrated a high T SQUID-based gradiometer, designed 

for use on a mobile platform, with correction for common mode signals provided by vector 

sensors, combined with active compensation of ambient fields. This system attained white 

noise levels, above ~3 Hz, of 1 pT/m/√Hz while undergoing roll/pitch/yaw motions of ±5°.  

At 1 Hz the noise level was 80 pT/m/√Hz. 

 

The availability of flexible high T superconducting tapes has allowed development of an 

intrinsic axial gradiometer (Tilbrook, 2004).  Substantial improvements in common mode 

rejection of ambient magnetic fields and reduction in noise are achieved by spinning the 

gradiometer and detecting the second harmonic of the rotation frequency (Leslie et al., 

2005; Tilbrook et al., 2006). This concept was the basis for a prototype manually rotated 

full tensor gradiometer for ground measurements, which was successfully demonstrated 

over the Tallawang deposit , central NSW (Schmidt et al., 2004).  Further development has 

seen a successful helicopter-borne trial of a spinning gradiometer system (Leslie et al., 

2007), which measured gradient tensor components with sensitivities down to 50 pT/m at a 

sampling rate of 10 Hz.  A target intrinsic sensitivity of 1 pT/m is believed to be ultimately 

achievable with this system.  The CSIRO-developed rotating axial gradiometer concept has 

also been applied to a downhole magnetic tensor gradiometer system that uses AMR 

sensors operating at ambient temperatures (K. Leslie, pers. comm., 2012). 

Although the inherent sensitivity of fluxgate magnetometers is far inferior to that of 

superconducting devices, a practical fluxgate-based tensor gradiometer, capable of 

mapping anomalies greater than about 10 nT/m in mobile operation, has been developed  

(Bracken and Brown, 2006).  Wiegert et al. (2007) describe a multiple tensor gradiometer 
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system, comprising an array of eight triaxial low noise fluxgate magnetometers, that has a 

sensitivity of about 0.25 nT/m in hand-carried mobile operation.  

 

Other proposed technologies include a stiff metallic string carrying an AC current tuned to 

the second eigenmode of mechanical vibration, which is sensitive to an off-diagonal term 

of the gradient tensor (Veryaskin, 2001; McRae et al., 2004; Sunderland et al., 2009). 

Although this technique only measures a single tensor component, the full gradient tensor 

could in principle be obtained from an array of differently oriented string sensors.  The 

noise spectrum of this instrument is very flat over the frequency range of interest, with the 

1/f corner at ~ 2.5 mHz.  The current white noise floor, measured in the geomagnetic field, 

obtained with this method is 0.4 nT/m/√Hz from 0.01-0.625 Hz (Sunderland et al., 2009), 

which corresponds to a rms noise level of 0.3 nT/m over this bandwidth.  The target 

sensitivity for static measurements is 0.01 nT/m. 

 

The developments discussed above suggest that we may be at the dawn of a new era in 

applied magnetic surveys, where magnetic gradient tensor surveys will become routine.  

Efficient use of the extra information provided by gradient tensor surveys will require 

creative new processing and interpretation.  The seminal paper by Pedersen and 

Rasmussen (1990) demonstrated applications of eigenvalues, eigenvectors and rotational 

invariants to analysis of gravity and magnetic gradient tensor data.  Other contributors to 

this effort include Schmidt et al. (2004) and Schmidt (2006), who extended the Euler 

deconvolution method to magnetic gradient tensor data and demonstrated its utility for 

mapping depth to sources and structural index variations over the Tallawang magnetite 

deposit ; Fitzgerald and Holstein (2006) and Fitzgerald et al., (2009, 2010), who developed 

improved methods for gridding and levelling of gradient tensor data;  and Heath (2007) 

who derived expressions for magnetic gradient tensor component anomalies produced by 

simple geological models and multipole sources. More recently  Clark et al. (2009) and 

Clark (2010) presented new methods for dipole detection, localization and characterization 

(DLC) ;  Holstein et al. (2011) developed efficient interpretation methods for gradient 

tensor data over dykes; Beiki et al. (2011) gave methods for estimation of source depths 

and strike directions from eigenvector analysis of the pseudo-gravity gradient tensor, 

calculated from TMI data;    Clark (2012a,b) presented methods for interpreting vector and 

tensor data, using components calculated from high quality TMI data over the Mount 

Leyshon gold-mineralized system and the Tallawang magnetite skarn deposit as 
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illustrations; and Beiki et al. (2012) developed an algorithm for depth estimation using 

Euler deconvolution of the NSS and applied it to analysis of gradient tensor data calculated 

from a TMI survey. 

 

New methods developed for analysis of magnetic gradient tensor data can also be applied 

to high quality conventional TMI surveys that have been processed using Fourier filtering 

techniques, or otherwise,  to calculate magnetic vector and tensor components (see paper 

II).  This approach is, in fact, the only practical way at present to analyse vector component 

data, as measurements of vector components are seriously afflicted by motion noise, which 

is not as serious a problem for gradient components.   In many circumstances, an optimal 

approach to extracting maximum information from magnetic surveys would be to combine 

analysis of measured gradient tensor data with vector components calculated from TMI 

measurements.   In paper II,  I apply some of the  methods presented in this paper to the 

analysis of vector and tensor components calculated from a TMI survey over the Mount 

Leyshon area, Queensland. 

 

Eigenvector analysis of the tensor 

 

Eigenvalues and eigenvectors are discussed in many textbooks on linear algebra, e.g. 

Anton and Rorres (2000).  Eigenvectors, v, of the magnetic gradient tensor, B, satisfy by 

definition the relationship Bv = λv, for some scalar λ, which is the eigenvalue 

corresponding to v. The eigenvalues are found by solving the characteristic equation det(B 

− λI ).  Expanding the determinant gives a cubic equation in λ: 

 

,021
3 =−+ II λλ          (1) 

 

where 
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The coefficient of λ² in the cubic equation for λ vanishes because the tensor is traceless.  It 

can be shown that the quantities I1 and I2 are unchanged by rotation of the coordinate axes, 

i.e they are rotational invariants of the tensor.   They have the property that they can be 

simply expressed directly in terms of the tensor components with respect to any Cartesian 

reference frame.  In their seminal paper Pedersen and Rasmussen (1990) introduced these 

canonical invariants to the geophysical literature and discussed applications to 

interpretation of potential field surveys.  Like all rotational invariants, I1 and I2 have the 

useful property that they are independent of sensor orientation and are therefore much less 

sensitive to orientation errors than the individual tensor components. 

 

Each distinct root of the cubic equation defines an eigenvalue of the tensor.  For each 

eigenvalue λi, the corresponding eigenvectors can be found as non-zero vectors vi that 

satisfy Bvi = λi vi, which can then be normalised to define unit eigenvectors iii vvv /ˆ = .  

Since B is a symmetric real  3 × 3 matrix, all its eigenvalues are real, eigenvectors 

corresponding to distinct eigenvalues are orthogonal, and an orthonormal set of three 

eigenvectors can always be found, including the case of degenerate (i.e two equal) 

eigenvalues (Anton and Rorres, 2000, p.357-358).  The matrix R that has these three unit 

eigenvectors as its columns is a rotation matrix that diagonalises B (Anton and Rorres, 

2000, p.349).  That is,  with respect to Cartesian axes along the eigenvectors the rotated 

tensor B′, is given by 

 

[ ].ˆ,ˆ,ˆ  ; 32
1 vvvRBRRBRRB 1===′ − T       (4) 

 

Hereafter, the eigenvalues will be labelled in non-increasing order: λ1 ≥ λ2 ≥λ3.   Since the 

tensor is traceless, the sum of the eigenvalues is zero.  Thus only two of the eigenvalues 

are independent.  It  also follows that λ2 is always the eigenvalue with the smallest absolute 

value.   

 

It is easily shown that the eigenvalues of B are rotational invariants of the tensor.  

Evidently, any combination of the eigenvalues is also a rotational invariant.  Conversely, 

any rotational invariant f(Bxx, Bxy, Bxz, Byy, Byz, Bzz) can be expressed as a combination of 

eigenvalues since, by definition, this function of the tensor elements is unchanged by 
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rotation into the principal axis frame, where it is equal to f(λ1, 0, 0, λ2, 0, 0, λ3).  For 

example the canonical invariants are given by 

 

,)/λλ(λλλλλλλI 022
3

2
2

2
11332211 ≤++−=++=       (5) 

 

.212 3= λλλI           (6) 

 

As will be shown in the following section, a particularly useful rotational invariant is the 

normalised source strength, which can be expressed as the following combination of 

eigenvalues:  

 

.31
2
2 λλλ −−=µ                              (7) 

 

For a dipole source, Wilson (1985) showed that equation (7) equals the normalised dipole 

moment, which is a particularly useful parameter for interpretation that is proportional to 

the magnitude of the dipole moment, but independent of the magnetization direction. 

 

For 2D sources the gradients parallel to the strike direction are zero.  If we choose axes 

such that y is parallel to the strike, the gradient tensor takes the form 
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which has only two independent components, Bxx and Bxz, since Bzz = − Bxx  by the 

tracelessness property. 

 

The characteristic equation is 
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for which the three roots are: 

 

.    , 2222
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From (2), (3) and (10), the canonical invariants of the full 3×3 tensor are: 
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Thus the determinant of the full tensor is zero everywhere for a 2D source. The invariant I1 

is equal to the determinant of the 2 × 2 minor matrix of Byy.  Hereafter, the 2 × 2 matrix 

that contains the only nonzero gradient tensor elements when the geology is two-

dimensional will be denoted B2D, i.e. 
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From (7) and (10), in the 2D case the normalised source strength reduces to 
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Thus the 2D normalised source strength is equal to the total gradient, or the analytic signal 

amplitude (ASA) of Nabighian (1972), of either the vertical field component, bz, or of the 

strike-perpendicular horizontal component, bx.  Since, in the 2D case, the total gradient of 

TMI is independent of magnetization direction (Li, 2006), the normalised source strength 

also has this desirable property.   

 

Denote the along-profile, across-profile (i.e. along-strike) and vertical direction cosines of 

the geomagnetic field by l1, l2, l3. In the weak anomaly approximation, the conventional 
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TMI anomaly is given by T = bxl1 + byl2 + bzl3 = bxl1 + bzl3, since the along-strike field 

component, by, is zero .  

 

Then 
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so for 2D sources, the ASA of TMI, A(T), is given by 
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Conversely, gradient tensor elements for the 2D case can be calculated from total field 

gradients by: 
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The analytic signal amplitude of the total field anomaly is proportional to A(bi), where bi is 

any field component perpendicular to strike, including bx and bz.  If the strike is magnetic 

E-W, so that the profile is along the magnetic meridian, then l2 = ±1 and A(T) = A(bi). 

Otherwise the A(T) profile has the same shape as A(bi), but smaller magnitude by a factor 

of (1 − l2²) = (1−cos²βcos²I), where β is the angle between the strike direction and 

magnetic north and I is the field inclination.  For approximately N-S striking structures at 

low latitudes, where the inclination is small, A(T) becomes much smaller than the 

normalised source strength µ2D, which is equivalent to A(bi). 

 

Since 
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an eigenvector corresponding to the zero eigenvalue is (0,1,0)T, i.e. along strike, parallel to 

the y  axis.  In practice, when |λ2| << |λ1|,|λ3| and the eigenvector v2 is subhorizontal, its 

azimuth can be taken to represent the local strike direction.  When the geology is 

approximately two dimensional, rotating the coordinate system so that the y axis aligns 

with the local strike direction greatly simplifies analysis, as essentially only two 

independent gradient components are significant.   Pedersen and Rasmussen (1990) 

illustrated the utility of eigenvector analysis in determining local strike directions of 

elongated structures.   

 

Analysis of dipole sources 

The point dipole model is applicable to any sufficiently compact magnetized body.   

Outside a spherical surface that completely encloses an arbitrary magnetized body, the 

field can be expressed as a sum of multipole contributions, with a 1/r3 fall-off for the 

dipole term, 1/r4 fall-off for the quadrupole, 1/r5 fall-off for the octupole term, and so on.  

Thus for any compact body with a non-zero dipole moment the far field is always 

dominated by the dipole term.  More specifically, the external fields and gradients due to a 

uniformly magnetized sphere are identical to that of a point dipole, because the quadrupole 

and all higher multipole moments vanish identically.  As well as its importance in a 

geological context, the point dipole model is widely used in other applications.  These 

include detection, location and classification of magnetic objects, such as naval mines, 

unexploded ordnance, shipwrecks, archaeological artefacts, and buried drums.   

 

The magnetic field vector at observation point r  produced by a point dipole of magnetic 

moment m is (Blakely, 1996, p.75) 

 

[ ],ˆ)ˆ(3)(
3

mrr.mrb −=
r

C
                  (18) 

 

where for convenience the origin is placed at the dipole location.  In equation (18) and 

thereafter, C has a numerical value of 100 if distances are in metres, field components are 

in nT (so gradients are in nT/m), and magnetisations are in A/m. 
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The gradient tensor elements are obtained by differentiating the Cartesian components of b 

with respect to x, y, z.  Note that the dipole field falls off as 1/r3, so the gradient tensor falls 

off as 1/r4.  Wilson (1985) gave the following expression for the tensor elements 

  

),,,(     ,)ˆ(5)ˆ( zyxjinnnnB jiijijjiij =⋅−⋅++= rµrµ δµµ            (19) 

  

where ||/ˆ rrr =  is the unit displacement vector, directed from source to observation point, 

with components (n1, n2, n3), δij is the Kronecker delta, and  
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is called the normalised magnetic moment vector (Wilson, 1985) or the scaled moment 

vector (Wynn, 1999).  Its magnitude µ is simply called the normalised magnetic moment 

and has the same units as the gradient tensor elements.  It is a natural scalar parameter of 

the dipole DLC application that characterizes the strength of the gradient at a given range 

(Wynn et al., 1975; Wilson, 1985). 

 

If  we choose the Cartesian coordinate system shown in Figure 1, with ,ˆˆ( 1 rx =  

|,ˆˆ|/ˆˆˆ2 rmrmx ××=  )213 ˆˆˆ xxx ×= , so that the observation point has coordinates  x1 = r, x2 = 

x 3 = 0, m1 = mcosφ , m2 = 0, and m3 = msinφ,  the gradient tensor takes a simple form 
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which has characteristic equation 

 

( ) .0]sin)cos)(cos2[(cos)det( 22 =+−+−−=− φµλφµλφµλφµλIB               (22) 

 

It is immediately apparent from equation (21) that T]0,1,0[ˆˆˆ 2 =×= rmx  is an eigenvector of 

B, with eigenvalue λ2 = µcosφ.  Then from equation (22), the remaining eigenvalues are 

found by solving the quadratic equation  



 

 

 

 

 

Figure 1.  Canonical co-

 

47 

 

 

 

 

 

 

-ordinate system for a dipole source. 

 

 



 

 

 

 

 

 

 

 

 

Figure 2.  Angular dependence of tensor invariants 

and detB = I2  around a dipole source.  The dipole is horizontal and located at the origin.  

The polar plots show the magnitude of each invariant as a function of the  angle 

the dipole moment and the source

moment µ is isotropic around the dipole.
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Figure 2.  Angular dependence of tensor invariants µ, ||B|| = [Trace(BTB)]½,  

around a dipole source.  The dipole is horizontal and located at the origin.  

The polar plots show the magnitude of each invariant as a function of the  angle 

the dipole moment and the source-sensor displacement vector.  Only the 

is isotropic around the dipole. 

 

,  I1 = −||B||²/2, 

around a dipole source.  The dipole is horizontal and located at the origin.  

The polar plots show the magnitude of each invariant as a function of the  angle φ between 

sensor displacement vector.  Only the normalised 
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,0)sincos2()cos( 2222 =+−+ φφµλφµλ              (23) 

 

Therefore in terms of the scaled moment µ and the angle φ, the three eigenvalues in non-
increasing order are  
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where  λ1 ≥ λ2 ≥ λ3 and λ2 is always the eigenvalue with the smallest absolute value.  This 

is the form given by Wilson (1985).  

 

Note that the eigenvalues are functions of φ, so they depend on the direction of the 

magnetic moment.  Rotational invariants can always be expressed in terms of eigenvalues, 

by referring the tensor to its principal axes, so they can be also be expressed in terms of µ 

and φ, by using equation (24).  Thus in most cases rotational invariants are sensitive to the 

orientation of the moment, via their dependence on φ.  For example the canonical 

invariants  I1, I2,  and the dimensionless ratio I = −27 I2²/4I1
3 , which were introduced by 

Pedersen and Rasmussen (1990), are given by 
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However,  if follows from equation (24) that the particular combination of eigenvalues on 

the RHS of equation (7), first introduced by Wilson (1985), equates to the normalised 

magnetic moment µ, is independent of φ and does not depend on the orientation of the 

dipole.  Figure 2 compares the angular dependences of µ and other invariants, which have 

been more commonly used, around a dipole source.  Unlike the tensor magnitude 
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(Frobenius norm ) ||B||, I1 and I2; µ is completely isotropic around the dipole.  This  makes 

it an ideal parameter for homing applications (guidance towards a target) such as  

underwater mine-hunting, since increasing values of µ unambiguously indicate closer 
approach to a target. 

 

The angle between the source-sensor displacement vector and the magnetic moment is 

constrained by 

 

./cos 2 µλφ =                 (28) 

 

At a given observation point, the magnitude, but not the sign of sinφ, is determined by 

equation  (28), which is the fundamental reason for the ambiguity of the single point 

inversion of the gradient tensor, along with the fact that reversing both r  and m in equation 

(19) leaves the tensor elements unchanged. 

 

A number of eigenvector-based methods have been developed for locating dipole targets 

from magnetic gradient tensor data (e.g. Wynn et al. 1975; Wilson, 1985).   Wynn (1999) 

gives an excellent summary of dipole DLC methods.   An accessible summary of Wilson’s 

(1985) inversion algorithm can be found in Schmidt et al. (2004).  There is an inherent 

four-fold ambiguity in obtaining solutions for dipole location and orientation of its moment 

from point-by-point analysis of gradient tensors (Wynn et al., 1975; Wilson, 1985; Wynn, 

1995, 1997, 1999), which must be resolved by comparing solutions from different sensor 

locations, rejecting those that are not consistent (the so-called “ghost” solutions) and 

retaining the solutions that exhibit the best clustering.  In addition to this geometric 

ambiguity, the range and the magnitude of the moment cannot be determined 

independently from a point measurement of the gradient tensor, but only as the 

combination m/r4, unless there is an extra constraint.   

 

Figure 3 illustrates the two types of ambiguity.   In practice, this ambiguity can be fairly 

easily resolved in a number of ways: 

1. Some or all of the false solutions can often be ruled out a priori. For example, if the 

source is known to lie below the sensor, the two “ghosts” that are above the sensor 

can be eliminated from consideration. If in addition there is information about 

which side of the sensor the source lies, the true solution is identifiable. 
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2. Gradient tensor measurements at more than one location produce four possible 

solutions for each measurement site, but only the solutions that correspond to the 

true location of the source are consistent, whereas the false solutions are scattered 

(see Figure 4).  Once the location of the dipole is known, determination of the 

magnetic moment is straightforward.  

3. If the magnetic field components are measured, even crudely, in addition to the 

gradient tensor, the extra information resolves the ambiguity. In fact, the sign of the 

field components is sufficient to eliminate the ghosts and confirm the true solution.  

Accurate values of the anomalous field vector allow the range ambiguity to be 

eliminated, due to the inverse cube fall-off, as opposed to the inverse fourth power 

fall-off of the gradients.  The magnitude of the moment is then unambiguous. 

4. Similarly, if some second order gradients of the magnetic field, in addition to the 

gradient tensor, are known at a given point, this extra information can resolve the 

ambiguity.  

 

In practice, noise in the data results in estimated directions-to-source that do not quite 

intersect, so  the source position must be estimated from the “near misses”.  Beiki and 

Pedersen (2010) give a method for least-squares estimation of source location, using 

estimated directions-to-source from several locations. 

 

Methods based on point-by-point analysis of the eigenvectors of the tensor, or 

combining point vector and tensor measurements, tend to be adversely affected by 

noise in individual measurements of the components, and they are also not robust to the 

contamination of the measured signal by background gradients, interfering anomalies, 

instrument drift or departures of the target from a pure dipole source.  Clark (2010) 

developed a method that analyses gradient tensor data collected along a profile passing 

near a dipole target.  Unlike most other gradient tensor inversion techniques, this 

method can correct for contamination of the dipole signature by effects such as those 

given above.  This method also reduces noise by incorporating a number of successive 

tensor values in the solutions. Clark’s (2010) method separates the scalar and vector 

aspects of the inversion, by first deriving scalar parameters from an invariant quantity 

that is independent of moment orientation, then incorporating the inverted scalar 

parameters into inversion of the tensor elements to obtain vector parameters.  An 

invariant that is independent of the dipole orientation is given by  
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Figure 3.  Intrinsic ambiguity of the inverse solution of the gradient tensor due to a 

point dipole source, measured at a single point (taken as the origin). The true source 

with magnetic moment m is indicated by the solid circle. The displacement vector from 

the source to the observation point is r . An equivalent source with moment m* , parallel 

to m, and displacement vector r* , parallel to r , such that µ* = µ, is shown. Three ghost 

solutions, symmetrically disposed with respect to the principal axes within the plane 

containing m and r , are indicated by hatched circles. 
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Figure 4.  Disambiguation of gradient tensor inversion by elimination of ghost solutions. 

Gradient tensor measurements at stations 1 and 2 each produce two potential solutions in 

the subsurface for the direction to a dipole source and for its reduced moment vector. The 

ghost solutions are inconsistent, whereas the consistent solutions for the two stations 

correspond to the true source. Intersection of vectors to source determines the dipole 

location, hence the range from each station, which allows the magnetic moment to be 

calculated from the scaled moment. 
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ν = √(µ/3) = {[√(−λ2²−λ1λ3)]/3} ½.      (29) 

 

For a pure dipole signature ν is proportional to √m/r2.  Then at any point around an 

isolated dipole source ν  can be estimated from the measured eigenvalues. In the presence 

of background gradients or interference from neighbouring bodies, at successive points x = 

xi (i = 1, 2,..., n) along a straight and level path, defined by y − y0 = Y, ν  determined from 

the measured data can be modelled as: 
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where S = √(Y² + h²) is the slant distance from the point of closest approach to the dipole, x 

= x0 is the point of closest approach, h is the depth of the dipole, a is the base level, and b, c 

are linear and quadratic terms that represent interference from other anomalies.   The scalar 

inversion problem is to solve for the unknown parameters x0, S, m, a, b, c.  This is 

equivalent to conventional Werner deconvolution (e.g. Ku and Sharp, 1983)  of the TMI 

anomaly of a thin sheet, although in this case the source is 3D.   

 

Once the origin of x and slant distance are determined and the scaled moment, µi, and 

distance to source, r i, at successive points are known, the measured gradient tensor 

elements can be modelled by: 
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with similar terms for the other four independent tensor elements, where the distances 

along the profile, xi, are now with respect to an origin at the point of closest approach,  M′ 

= MY−Nh is the direction cosine of the slant component of magnetization and a quadratic 

interference term is assumed for each component.  The vector inversion problem is to solve 

for the unknown parameters L, M, N, (direction cosines of the magnetization direction) Y, h 

and the interference terms aij, bij, cij.  This is carried out in a similar way to the 

deconvolution of the invariant ν (Clark, 2010).  At this stage it is recommended to remove 

the interference terms from the measured tensor elements and recalculate the eigenvalues 



 

55 
 

and ν.  Using the new estimates of x0, S, m the deconvolution of the tensor elements can be 

repeated. The process is generally rapidly convergent, the revised interference terms 

become small and the source parameters become more precisely determined.  

 

Properties of the normalised source strength 

 

Equation (7), which expresses normalised moment µ of a dipole source in terms of the 

eigenvalues of the tensor, can be interpreted more generally as a normalised source 

strength (NSS), which has a simple physical interpretation for a number of elementary 

source types and has generally desirable properties.  For simple narrow sources, for 

spheres, and for horizontal cylinders, µ peaks directly above the centre of the source and 

for wide sheet-like bodies and prisms it peaks directly above the edges.  For all 2D sources, 

for spheres, for compact 3D bodies that can be represented by a dipole, and for narrow, 

axially magnetized pipe-like bodies (pole-type sources) µ is completely independent of the 

magnetization direction.  Beiki et al. (2012) show that for more complex 3D sources µ is 

only weakly dependent on magnetization direction, substantially less so than the 3D total 

gradient  (which is the usual generalization of the ASA to 3D).   

 

For several useful 2D and 3D models  (e.g. the point pole,  point dipole, line of dipoles 

(horizontal cylinder), thin dipping sheet, and contact models)  the  NSS is a homogeneous 

function with a simple 1/rn fall-off, suitable for Euler deconvolution, and the width of the µ 

anomaly is simply related to the source depth.  Beiki et al. (2012) and Clark (2012b) 

expressed the NSS of some simple sources as 

 

,
nr

Cq=µ           (32) 

 

where q is a geometry-dependent source term and n is the structural index (SI) pertaining 

to gradient anomalies.  Using this formulation, Beiki et al. (2012) demonstrated the 

efficacy of Euler deconvolution of the NSS for simultaneous estimation of structural 

indices, locations of geological boundaries, and source depths in an area that exhibits 

strong remanent magnetization.   Clark (2012b) showed the utility of the NSS for 

interpreting the gradient tensor anomaly over a tabular magnetite skarn.  
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The NSS is not harmonic in general.  For example µ for a dipole source is proportional to 

1/r4, so ∇²µ is proportional to ∇²(1/r4) = 12/r6, and does not satisfy Laplace’s equation.  

The definitions and properties of the NSS for simple source types are summarized in  

Table 1.   

 

Generalization of the Nara and modified Nara methods to other source types 

 

For the source types listed in Table 1, the anomalous vector and tensor components obey 

Euler’s homogeneity equation.  This fact can be exploited to generalize the Nara et al. 

(2006) inversion method for dipole sources, and the Clark et al. (2009) modification of it, 

to these other sources.  The Appendix gives expressions for the vector and tensor 

components for these models, as a basis for the following general treatment.   

 

Figure 5 illustrates the physical basis for the inversions.  Along a fixed direction r̂ , the 

field vector  b is equal to a geometric factor, depending only on the magnitude and 

orientation of magnetization, divided by rs, where s = n − 1 is the SI of the field 

components, i.e. 
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where c is a constant vector for specified r̂ .  Therefore the directional derivative of b 

along r̂  is: 
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It follows that r  obeys the matrix equation 
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which has solution 
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which, provided detB = I2 is nonzero, gives the displacement vector from the source to the 

measurement point independent of the magnetization direction, even though each tensor 

element and vector component on the RHS of this expression depends on the direction of 

J.  For 2D sources, equation (36) reduces to 
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Once the location of the source is known, determination of the magnetization direction and 

source strength becomes a straight-forward linear inversion problem.  For example, for a 

dipole source the moment m = m(L, M, N) = (mx, my, mz)  can be calculated as (Lima et al., 

2006): 
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The dipole inversion method of Clark et al. (2009) and Clark (2012a,b) can be generalized 

similarly.  Along a fixed direction r̂ , the gradient tensor B is equal to a geometric factor, 

depending only on the magnitude and orientation of magnetization, divided by rn, where n 

is the SI of the gradient components, i.e. 
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where G is a constant tensor for specified r̂ .  For example, in the dipole case n = 4 and the 

explicit form of G can be obtained from (19)-(20).  The directional derivative of B along r̂  

is 
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Figure 5.  Physical basis of the Nara (2006) and Clark et al. (2009) methods for dipole 

DLC.  Along a fixed direction 

depending only on the magnitude and orientation of 

gradient tensor maintains the same structure, and falls off as 1/

gradients fall off as 1/r5.  Measurements at a

order gradient tensor, or of a subset of the first order and second order gradient 

components,  provide enough information to uniquely determine the source

r .  Given r , the moment vector m
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.  Physical basis of the Nara (2006) and Clark et al. (2009) methods for dipole 

DLC.  Along a fixed direction r̂ , the field vector b is equal to a geometric factor, 

depending only on the magnitude and orientation of m, divided by r3.  Similarly, the 

gradient tensor maintains the same structure, and falls off as 1/r4, while the second order 

.  Measurements at a single location r  = r r̂  of the vector and first 

order gradient tensor, or of a subset of the first order and second order gradient 

components,  provide enough information to uniquely determine the source-

m can be determined from either b or B. 

 

.  Physical basis of the Nara (2006) and Clark et al. (2009) methods for dipole 

is equal to a geometric factor, 

.  Similarly, the 

, while the second order 

of the vector and first 

order gradient tensor, or of a subset of the first order and second order gradient 

-sensor vector 
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.)( BBr. n−=∴ ∇                  (41) 

 

Equation (41) provides an overdetermined set of linear equations relating the components 

of r  to tensor components and their spatial derivatives.  Only a subset of the second order 

gradients is needed to obtain a unique location.  If the gradient tensor is measured along a  

profile segment, parallel to the x axis, the source location can be calculated directly from 

the tensor and its along-profile derivative, which can be calculated by numerical 

differentiation: 
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Thus measurements of the gradient tensor along a short profile segment are sufficient to 

uniquely determine the source location.  If the gradient tensor is known over a portion of a 

horizontal plane, so that y as well as x derivatives can be calculated, all tensor elements can 

be incorporated into a column vector on the RHS and the overdetermined system can be 

solved in a least squares sense using the generalized inverse.    

 

Once the source location is determined, the source strength and magnetization direction 

can be determined from the gradient tensor through linear inversion.  Clark et al. (2009) 

and Clark (2012a,b) give an explicit solution for the dipole moment vector.  This can be 

generalized by noting that, for any source type,  the geometric factor G can be rewritten as 

a 5 × 1 matrix (column vector) and expressed as the product of a  5 × 3 matrix K  of terms 

that involve only direction cosines of r  and a column vector Q = q[Jx, Jy, Jz]
T, which 

represents a source strength.  Then (39) takes the form 
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Figure 6.  Determination of source location using the vector gradient of the NSS 

sphere (point dipole), (b) 2D cylinder (horizontal line of dipoles), (c) semi

sheet, and (d)  contact models.  Directions to source are defined by 

vector from observation point to source is proportional to 
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.  Determination of source location using the vector gradient of the NSS 

2D cylinder (horizontal line of dipoles), (c) semi

Directions to source are defined by ∇µ.  The displacement 

vector from observation point to source is proportional to µ/∇µ. 

 

.  Determination of source location using the vector gradient of the NSS µ, for (a) 

2D cylinder (horizontal line of dipoles), (c) semi-infinite thin 

.  The displacement 
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which implies that 
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where K* denotes the pseudoinverse of the non-square matrix K .  Equation (44) 

determines the source strength qJ and the direction (L, M, N) of magnetization. 

 

Vector gradient of the normalised source strength 

 

Consider a densely sampled grid of magnetic gradient tensor elements.  The data are 

assumed to be of sufficient quality to allow accurate calculation of horizontal derivatives 

of tensor components by numerical differentiation or Fourier domain processing and 

calculation of vertical derivatives by Fourier domain filtering or convolution filtering.  The 

scaled moment µ can be calculated at each grid point from the tensor elements and its 

horizontal derivatives can then be obtained by numerical differentiation.   Because µ does 

not obey Laplace’s equation, however, its vertical derivative cannot be obtained using 

standard Fourier filters that perform this task for potential fields.  In principle, the vertical 

derivative of µ can be estimated by numerical differentiation of its values, evaluated at 

slightly different levels, calculated from the continuations of the tensor elements.   

 

An alternative approach, which is generally more accurate, is to calculate the vertical 

derivative from the tensor elements and their vertical derivatives, by repeatedly using the 

product rule of differentiation.  Since the canonical invariants I1 and I2 can be simply 

expressed in terms of the tensor elements, using equations (2) and (3), their vertical 

derivatives can be written in terms of tensor elements and their vertical derivatives 
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The vertical derivatives of tensor elements can be obtained by standard Fourier processing 

techniques, because the tensor elements are harmonic.  However, the vertical derivatives 

can also expressed in terms of horizontal derivatives of tensor elements, by swapping the 

order of differentiation: 
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Thus the vertical derivative of I1 can be obtained directly from the tensor elements 

measured on a plane, using horizontal derivatives calculated by numerical differentiation. 

 

Similarly, 
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Expressions for vertical derivatives of the eigenvalues can be derived by differentiating  

the characteristic equation of the tensor, equation (1), and rearranging: 
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This expression becomes indeterminate in the case of degenerate eigenvalues, for which λ2 

= λ3 = −λ1/2.  This applies, for example, everywhere for the point pole model (representing 

a long, narrow, axially magnetized pipe) and everywhere along the magnetization axis for 

a dipole source.  When the eigenvalues are degenerate in a neighbourhood of a 

measurement point for the gradient tensor, ,33 2
3

2
21 λλ −=−=I so their vertical derivatives 

are given by: 
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The vertical derivative of the scaled moment can then be calculated from 
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Horizontal derivatives of µ can be calculated directly from measurements on a plane, by 

numerical differentiation, or by using analogous expressions to eqn (50), simply replacing 

z by  x and y.  Equation (50) breaks down at isolated points where the gradient disappears, 

in which case µ = 0. This can occur, for example, where neighbouring sources fortuitously 

produce precise cancellation of the gradient tensor elements at a point.  It is also possible 

in principle for regional trends in the gradient tensor, superimposed on a local anomaly, to 

produce cusps in eigenvalue profiles at points of degeneracy, so that the derivative is 
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discontinuous at those points.  Such cases are easily recognised and should be excluded 

from analysis of the vector gradient of the NSS. 

 

Since the isosurfaces of the scaled moment around a dipole are spheres centred on the 

dipole source and the magnitude falls off with distance, the vector gradient of µ points 

directly towards the dipole, as shown in Figure 6a.  Specifically 
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Therefore the direction from the observation point to the source is 
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and the distance from the observation point to the source is 
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These two relations are sufficient to locate the dipole with respect to the grid point.  This 

approach may be generalized to other simple models, as shown in Figure 6 and listed in 

Table 1.    For sources for which the NSS conforms to eqn (32), the location of the source 

with respect to an observation point, −r , is given by 
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µ
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Note that this allows estimation of source location directly, without triangulation based on 

estimated directions to source.  In this context, source location refers to the centre of the 

source for the sphere, horizontal cylinder and horizontal line current models, to the top of a 

narrow, axially magnetized pipe that can be represented by a point pole, to the top of a thin 

dipping sheet, and to the top corner of a contact.  When the source type is uncertain, the 

appropriate structural index can be estimated as the value of n for which the clustering of 
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location solutions is tightest.  For n too small the converging vectors to source fail to meet, 

for n too large they overshoot. 

 

Estimation of source location and magnetization direction for a vertical pipe 

 

The bottomless narrow vertical pipe model provides a useful representation of many 

igneous plugs, diatremes and pipe-like magnetite- or pyrrhotite bearing orebodies.  

Exploration for potentially diamond-bearing kimberlite and lamproite pipes is a major 

economic application.  Kimberlites and lamproites tend to be vertically emplaced into 

stable cratonic areas, so post-emplacement tilting is unlikely, and their geometry is 

typically pipe-like.  Remanent magnetization is often important in these intrusions, so their 

magnetization directions may depart significantly from the present geomagnetic field 

direction.   

 

The magnetic gradient tensor elements for a narrow vertical pipe with arbitrary 

magnetization direction can be calculated by integrating the tensor elements, due to a 

dipole with the same magnetization direction, with respect to depth from the top of the pipe 

to infinity.  If the cross-section area of the pipe is A and the magnetization vector is J, this 

is equivalent to summing the effects of discs of area A and thickness dz, each with dipole 

moment dm = JAdz, from z = h to z = ∞.  The resulting expressions for the tensor elements 

are not as simple as those for the other simple models discussed in this paper, and will not 

be given here.  Furthermore, the expressions for the eigenvalues and the NSS derived from 

them are much more complicated and difficult to interpret, unless the magnetization is 

vertical, in which case the model reduces to a point pole with pole strength  p = −JzA, 

where Jz is the vertical component of magnetization (Emerson et al., 1985).  When a 

horizontal component of magnetization is present, µ does not peak perfectly above the 

pipe. 

 

This difficulty can be resolved, however, by considering the vertical derivative of the 

gradient tensor over the pipe.  The process of differentiation undoes the vertical integration 

and produces tensor elements that are equivalent to those of a thin disc of small diameter at 

the top of the pipe (see Figure 7).  Therefore, provided the height of the sensor above the 

top of the pipe is large compared to the pipe diameter, the components of ∂B/∂z  

correspond to those of a point dipole with magnetic moment parallel to the pipe  



 

 

Figure 7.  Relationship between 

µ′, for a vertical pipe; and the gradient tensor

with identical magnetization direction, located at the top of the pipe. 

 

 

 

66 

Figure 7.  Relationship between ∂B/∂z, and its associated eigenvalues and modified NSS 

the gradient tensor B, its eigenvalues and NSS, for a thin disc 

th identical magnetization direction, located at the top of the pipe.  

 

, and its associated eigenvalues and modified NSS 

, its eigenvalues and NSS, for a thin disc 
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magnetization.  The eigenvalues of the matrix [∂Bij/∂z ], denoted by λ′i, can be calculated 

and used to construct the modified NSS parameter given by 
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which forms a symmetric anomaly, peaking directly over the top of the pipe, and can be 

used to locate it using the methods developed for dipole sources.  If the elements of B are 

in nT/m, the units of µ′ are nT/m².  The magnetization direction of the pipe can be found 

from the elements of  ∂B/∂z, using the methods applicable to dipole sources.  Note that µ′ 

is not equal to the vertical derivative of the usual NSS µ, because eigenvalues and their 

combinations are not linear functions of the tensor elements.  This means that, although 

tensor elements from composite sources are simply the sum of contributions of all the 

elements that comprise the sources, eigenvalues do not exhibit linear superposition in the 

same way.  If the pipe has non-vertical plunge, the radial symmetry of µ′ about the pipe is 

distorted, particularly if the depth extent is limited.  This provides an indication of plunge 

direction.  Analysis of plunging and depth limited pipes will be the subject of a separate 

paper. 

 

Example of source inversion for a horizontal cylinder source 

 

Figure 8 shows theoretical vector and tensor components over a buried horizontal cylinder, 

calculated using equations (A7) and (A8).  The components are contaminated by white 

Gaussian noise (WGN) with standard deviation equal to 10% of the respective rms 

anomaly magnitudes (|b| for the vector, µ for the tensor).  The cross-section radius of the 

cylinder is 50 m, the depth to centre is 100 m, the centre of the cylinder lies beneath x = 70 

m, the magnetization inclination is 55°, measured downwards from the +x axis, and the 

magnetization intensity is 1 A/m.  Figure 9 shows Nara-type solutions for the centre of the 

horizontal cylinder, obtained by inverting the vector and tensor data shown in Figure 8, 

using equation (37) with s = 2.   The mean estimated location (± 1 SE) for solutions from 

data points between  x = −50 m and +170 m is both precise and accurate: x0 = 70.0 ± 1.9 m, 

h = 101.1 ± 1.4 m (N = 23).  If different values of s that are inappropriate for the source 

geometry are used, the vector endpoints are more scattered (if s < 2 the converging vectors 

to source fail to meet, if s > 2, they overshoot). The standard errors become slightly smaller  



 

 

Figure 8.  Theoretical vector (top)

profile over a 2D horizontal cylinder, with 10% additive WGN.  

line indicates bx, black  indicates 

 

 

Figure 9.  Inverted solutions for the centre 

anomalies shown in Figure 8, based on equation (

indicate estimated source locations, with lines connecting them to the corresponding 

observation point. 
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(top) and tensor (bottom) components along a principal 

profile over a 2D horizontal cylinder, with 10% additive WGN.  In the top plot

indicates bz . In the bottom plot, grey = Bxx, black = Bx

Figure 9.  Inverted solutions for the centre of the horizontal cylinder that produces the 

anomalies shown in Figure 8, based on equation (37), the Nara-type  method.  Dots 

indicate estimated source locations, with lines connecting them to the corresponding 

 

components along a principal 

In the top plot, the grey 

xz. 

 

of the horizontal cylinder that produces the 

type  method.  Dots 

indicate estimated source locations, with lines connecting them to the corresponding 
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when the analysis is restricted to a range with higher signal-to-noise ratio.  For data points 

that are more distant from the source, the solutions become much more scattered.  

Inversion based on the vector gradient of µ, using equation (54), gave a less precise mean 

estimated location for solutions from the same 23 data points: x0 = 76 ± 10 m, h = 99 ± 6 

m.  This is to be expected, as numerical differentiation of the NSS amplifies the noise.  By 

restricting the analysis to stations in the range x = 0-120 m, the estimated location becomes 

x0 = 69 ± 5 m, h = 102 ± 3 m.    

 

Given the inverted location, the source term for the horizontal cylinder (the linear dipole 

density) can be estimated by ,
4

3
2
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r
AJm D

L

µ=′=      (56) 

 

and the direction of effective magnetization by 
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where L′ = Jx/J ′, N ′ = Jz/J ′, n1 = (x − x0)/r,  n3 = −h/r.   

 

 To gain a better understanding of the robustness and reliability of the inversions for source 

location, they were repeated another 25 times in a Monte-Carlo simulation.  For the Nara-

type method, the resulting average inverted parameters, ± 1 sd with the true value in 

parentheses,  are x0 = 70.4 ± 1.6 (70) m, h = 100.3 ± 1.8 (100) m, mL = 7690 ± 240 (7854) 

Am, Inc = 52.9° ± 2.0° (55°), when 23 solutions from  x = −50 m to  +170 m are used.    If 

the profile segment is restricted to 13 solutions from the interval x = 0 to  x =120 m, the 

corresponding results are: x0 = 70.4 ± 1.2 m, h = 99.7 ± 1.3 m, mL = 8100 ± 240 Am, Inc = 

54.0° ± 2.1°. 

 

For the vector gradient of NSS method the inverted location and source strength 

parameters are x0 = 69.6 ± 5.4 m, h = 98.6 ± 5.4 m, mL = 9460 ± 970 Am (x = −50 to 170 

m; N = 23); and x0 = 70.7 ± 2.8 m, h = 102.8 ± 2.3 m, mL = 8900 ± 970 Am (x = 0 to 120 

m; N = 13).  Because the localization is less accurate for this method, although still quite 

acceptable, the inverted inclinations are also less accurate. 
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Analysis of the NSS over the Tallawang deposit 

 

The Tallawang magnetite deposit, located 18 km north of Gulgong, NSW, is a tabular  

skarn body along the western margin of the Carboniferous Gulgong Granite,  dipping 

steeply to grid west.  Schmidt et al. (2004) described the geology of the deposit and 

analyzed three profiles of gradient tensor data acquired using the CSIRO GETMAG 

system along with a detailed conventional ground magnetic survey. Figure 10 shows 

profiles of the two dominant gradient tensor elements (Bxx and Bxz, with +x along grid east)  

over the main portion of the southern extension of the Tallawang deposit. Gradient tensor 

elements calculated from the ground magnetic survey using Fourier filtering were in 

excellent quantitative agreement with the measured gradient tensors along the profiles.  

Figure 11 shows solutions for the source location, derived using equation (54) with n = 2, 

which is appropriate for the thin sheet geometry of the skarn.  The solutions cluster around 

the top of the fresh magnetite zone, with a mean location of 97.4 ± 0.7 mE, depth 19.9 ±1.1 

m (1 SE, N = 15). As the observation point moves away from the skarn to the east, the 

solutions tend to deepen a little and dip slightly to the west. This is consistent with 

magnetization increasing somewhat down dip, as partial oxidation of magnetite to hematite 

decreases with increasing depth. The choice  n = 2 is justified by the convergence of the 

vectors to source, confirming the appropriateness of the thin sheet model. This indicates 

that the source has considerable depth extent, because the SI should be greater than two if 

the depth extent is limited, approaching  n = 3 for a body with depth extent comparable to 

the depth to top. 

 

CONCLUSIONS 

 

Eigenvector analysis; source inversions based on point-by-point combined vector and 

gradient tensor measurements such as the Nara (2006) method, or on tensor measurements 

along a profile segment (Clark et al., 2009; Clark, 2010); and new methods that exploit the 

properties of the normalised source strength parameter, calculated from eigenvalues of the 

tensor,  provide powerful tools for exploiting the extra information provided by magnetic 

gradient tensor surveys.  In the absence of gradient tensor measurements, Fourier 

processing of TMI data of sufficiently high quality can, in suitable circumstances, yield 

useful calculated estimates of anomalous magnetic field vectors and gradient tensors.  The 
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methods that are being developed for vector and gradient tensor data are equally applicable 

to calculated data.    

 

Therefore, new methods for analysing gradient tensor data can both assist interpretation of 

tensor gradiometer data from new systems that are under intense development and, in the 

meantime, add value to existing high quality TMI surveys by exploiting cryptic 

information that resides in single component data.  Calculation is generally better than 

measurement for field vectors, whereas measurement is highly desirable for gradient 

tensors.  In many cases the optimal scenario is to integrate measured tensor data with 

vector data derived from TMI.   

 

Analysis of calculated vector and tensor data over  Mount Leyshon, which is presented in 

paper II,  demonstrates the utility of these data types for locating sources and defining 

magnetizations, even when the source does not match the assumed models perfectly.  Plots 

of field vectors and major eigenvectors of the gradient tensor aid qualitative interpretation 

of the distribution of magnetic material at Mount Leyshon, including possible extensions 

of the mineralized system at depth, and the inversion methods discussed in this paper 

provide estimates of the centroid of magnetization and total moment of the magnetized 

zone that are consistent with the geological and petrophysical information. 

 

Inversion based on the vector gradient of the NSS has also been successfully applied to 

analysis of gradient tensor data over the Tallawang magnetite deposit, obtaining good 

agreement between the inferred geometry of the tabular magnetite skarn body and drill 

hole intersections.  

 

ACKNOWLEDGMENTS  

 

This work comprises part of a Ph.D. project in the Department of Earth and Planetary 

Sciences at Macquarie University, under the supervision of Dr Mark Lackie. 

 



 

 

Figure 10.  Gradient tensor element profiles

the Tallawang magnetite skarn deposit, central NSW

indicate tensor elements calculated from a detailed 

dots indicate measured gradient tensor data obtained using the CSIRO GETMAG system 

(Schmidt et al., 2004). The narrow anomaly to the west of the main

caused by a steel drill collar. 

 

72 

Gradient tensor element profiles, perpendicular to strike, along line 60 mN 

the Tallawang magnetite skarn deposit, central NSW:  (a) Bxx, (b) Bxz.  Solid black lines 

indicate tensor elements calculated from a detailed TMI ground survey and grey lines and 

dots indicate measured gradient tensor data obtained using the CSIRO GETMAG system 

The narrow anomaly to the west of the main skarn signature is 

 

perpendicular to strike, along line 60 mN over 

Solid black lines 

survey and grey lines and 

dots indicate measured gradient tensor data obtained using the CSIRO GETMAG system 

skarn signature is 



 

 

 

 

 

 

 

 

 

Figure 11. Solutions for the location of the top of the sheet

derived using equation 

connect the solution with the station from which it was derived. The approximate outline 

of the skarn body is dashed, the high magnetite zone wit
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Solutions for the location of the top of the sheet-like skarn at Tallawang

derived using equation (54) with n = 2.  The profile is along 60 mN. Solid black lines 

connect the solution with the station from which it was derived. The approximate outline 

of the skarn body is dashed, the high magnetite zone within the skarn is outlined in gr

 

 

like skarn at Tallawang, 

is along 60 mN. Solid black lines 

connect the solution with the station from which it was derived. The approximate outline 

hin the skarn is outlined in grey. 
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Table 1. Properties of the Normalised Source Strength for Simple Sources 

 

 Model type λ1 λ2 λ3 NSS µ Source term HWHM 
of NSS 

Location wrt  
observ. point 

Harmonic 
NSS? 

Sphere (µ/2)[−cosφ + 
√(4+5 cos²φ)] 

µcosφ (µ/2)[−cosφ  
−√(4+5 cos²φ)] 

3Cm/r4 q = 3m = 3JV 0.64h 4µ∇µ/|∇µ |²  anharmonic 

Point pole     2Cp/r3 (p > 0) 
−Cp/r3 (p < 0) 

−Cp/r3 

 
−Cp/r3 (p > 0) 

   2Cp/r3 (p < 0) 
C |Jz|A/r3 q = |p| = |Jz|A 0.77h 3µ∇µ/|∇µ |² anharmonic 

Horizontal 
cylinder 

4CJ′A/r3 0 −4CJ′A/r3 4CJ′A/r3 q = 4mL = 4J′A 0.77h 3µ∇µ/|∇µ |² anharmonic 

Thin sheet 2CJ′t/r2 0 −2CJ′t/r2 2CJ′t/r2 q = 2J′ t h 2µ∇µ/|∇µ |² anharmonic 
Contact 2CJ′/r 0 2CJ′/r 2CJ′/r q = 2J′  1.73h µ∇µ/|∇µ |² harmonic 

Horiz. line current 2C|i|/r2 0 −2C|i|/r2 2C|i|/r2 q = 2|i| h 2µ∇µ/|∇µ |² anharmonic 
 

The parameters µ and φ  for a dipole are defined in Figure1.  For gradients in nT/m, magnetizations in A/m, distances in m, C = 100 nTm/A or 

nH/m.  Units of  the geometry-dependent source term q are Am² for the sphere model, Am for the point pole and horizontal cylinder (2D line of 

dipoles) models, A for the thin sheet and line current models, and A/m for the contact model.  Jz is the vertical component of magnetization in 

A/m; V is the volume of the sphere; A is the area of the flat top of the narrow pipe represented by a point pole, or the cross-section area of the 

horizontal cylinder; p is the pole strength in Am; J′ = √( Jx² + Jz²) is the magnitude of the effective magnetization (the component normal to 

strike); mL = J′A is the linear density of effective  dipole moment for the horizontal cylinder model;  h (m) is the height of the sensor above the 

source location (centre for sphere, horizontal cylinder and line current models, top of the pipe for the point pole model, top of the sheet for the 

thin sheet model, top corner for the contact model); r (m) is the distance between the source location and the observation point. 
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Appendix.  Vector and tensor components of simple models 

 

Expressions for the anomalous vector components due to commonly used models, with the 

exception of the horizontal line current, are based on Emerson et al. (1985), and largely 

follow the  notation of that publication.  Expressions for gradient tensor elements are 

obtained by differentiation of the vector components and eigenvalues are calculated by 

solving the characteristic equation for 3D models, or by using eqn (13) in the 2D case. 

Equation (7) then gives expressions for the NSS. 

 

Sphere 

Vector and tensor components are given by equations (25) and (26) respectively.  The 

eigenvalues are given by (32) and the NSS is 
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where m is the magnetic moment, J is the magnetization intensity and V is the volume of 

the sphere. 

 

Point pole 

The point pole approximation represents a long narrow pipe-like body with nearly axial 

magnetization.  The anomalous magnetic vector points directly away from a positive pole 

source and towards a negative pole.  Its components at an observation point (x, y, 0) due to 

a point pole of strength p at (x0,y0,h) are given by 
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is the distance from the source to the measurement point.  The pole strength p is given by 

the product of the area of the top face of the pipe, multiplied by the outward normal 

component of magnetization.  The tensor components are  
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The eigenvectors are radial, analogous to the eigenvectors of the gravity gradient tensor of 

a point mass (Pedersen and Rasmussen, 1990).  Eigenvalues in non-increasing order of 

absolute value are 
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Note that, at every observation point the eigenvalues are proportional to the vertical 

component of the anomalous field.  The NSS is 
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Horizontal cylinder (2D line of dipoles) 

The vector and tensor components are 
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where Jx and Jz are the along-profile (normal to strike) and vertical down components of 

magnetization respectively. The  nonzero eigenvalues and NSS are given by 
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Thin sheet 

It is a consequence of the well-known dip ambiguity of infinite depth-extent sheet models 

(see e.g. Blakely, 1996, p.246-248) that the apparent magnetization direction of a vertical 

sheet can be converted into the effective magnetization direction of an equivalent dipping 

sheet by rotating the magnetization vector and the plane of the sheet together about the 

strike.  Equivalent sheets have identical magnetization-thickness products, J′t, where J′ is 

the intensity of the effective magnetization in the vertical plane perpendicular to strike and 

t is the perpendicular thickness of the sheet. 

 

For a vertical sheet of thickness t << h, the anomalous magnetic field components are 

given by: 
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The independent nonzero tensor elements are: 
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The nonzero eigenvalues and the NSS tensor are 
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Contact 

Sloping contacts exhibit dip ambiguity analogous to that of a dipping sheet.  The vector 

components become infinite as the depth to bottom goes to infinity. The tensor components 

of an infinite depth-extent vertical contact with top corner at x = x0, z = h  can be calculated 

by differentiating vector components of a finite thickness contact  (sloping step) model and 

taking the limit as the bottom goes to infinity.   This gives 
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which has nonzero eigenvalues and NSS given by 
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Horizontal line current 

The vector components (in nT) due to a quasistatic horizontal line current at a horizontal 

displacement x, perpendicular to the conductor, and height h above the conductor, with 

current i amperes along +y are 
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The nonzero independent tensor elements are 
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and the nonzero eigenvalues and the NSS are given by 
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CHAPTER 4: NEW METHODS FOR INTERPRETATION OF MAGNETIC VECTOR 
AND GRADIENT TENSOR DATA II: APPLICATION TO THE MOUNT LEYSHON 
ANOMALY, QUEENSLAND 

 
Clark, D.A., 2013. New methods for interpretation of magnetic vector and gradient tensor 
data II: Application to the Mount Leyshon Anomaly, Queensland, Exploration Geophysics, 
44, 114–127  
( http://dx.doi.org/10.1071/EG12066). 
 

Abstract 

Acquisition of magnetic gradient tensor data is anticipated to become routine in the near 

future.  In the meantime, modern ultrahigh resolution conventional magnetic data can be 

used, with certain important caveats, to calculate magnetic vector components and gradient 

tensor elements from total magnetic intensity (TMI) or TMI gradient surveys.   An 

accompanying paper presented new methods for inverting gradient tensor data to obtain 

source parameters for a number of elementary, but useful, models. These include point 

dipole (sphere), vertical line of dipoles (narrow vertical pipe), line of dipoles (horizontal 

cylinder), thin dipping sheet, and contact models. A key simplification is the use of 

eigenvalues and associated eigenvectors of the tensor. The normalised source strength 

(NSS), calculated from the eigenvalues, is a particularly useful rotational invariant that 

peaks directly over 3D compact sources, 2D compact sources, thin sheets and contacts, 

independent of magnetisation direction.  Source locations can be inverted directly from the 

NSS and its vector gradient. 

 

Some of these new methods have been applied to analysis of the magnetic signature of the 

Early Permian Mount Leyshon gold-mineralised system, Queensland.  The Mount Leyshon 

magnetic  anomaly is a prominent TMI low that is produced by rock units with strong 

reversed remanence acquired during the Late Palaeozoic Reverse Superchron.  The 

inferred magnetic moment for the source zone of the Mount Leyshon magnetic anomaly is 

~ 1010 Am2.  Its direction is consistent with petrophysical measurements.  Given estimated 

magnetisation from samples and geological information, this suggests a volume of  ~1.5 

km × 1.5 km × 2 km (vertical).  The inferred depth of the centre of magnetisation is about 

900 m below surface, suggesting that the depth extent of the magnetic zone is ~1800 m.  

Some of the deeper, undrilled portion of the magnetic zone could be a mafic intrusion 

similar to the nearby coeval Fenian Diorite, representing part of the parent magma chamber 

beneath the Mount Leyshon Intrusive Complex. 
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Key words: Magnetic gradient tensor, magnetic field vector, eigenvalues, eigenvectors, 

normalised source strength, dipole localisation, magnetic moments, Mount Leyshon 

 

Introduction   

An accompanying paper (Clark, 2012a), hereafter referred to as Paper I, presented 

theoretical background regarding the magnetic gradient tensor B, which is defined as the 

vector gradient of the magnetic field vector b = [bx, by, bz]
T, i.e.  

.bB ∇=           (1) 

Outside magnetic sources and in the absence of conduction currents, B is a symmetric and 

traceless tensor whose elements can be expressed as second derivatives of a scalar 

potential Ω  
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The symmetry and tracelessness of the tensor imply that, of the nine tensor components, 

only five are independent.  The magnetic potential Ω and  its derivatives of all orders obey 

Laplace’s equation (Blakely, 1996, p.117), i.e. they are potential fields that can be 

continued analytically in source-free space. Therefore vector and tensor components 

measured over a plane can be continued to different levels and vertical derivatives can be 

calculated using standard techniques (Blakely, 1996, Chapter 12).  

A number of authors (e.g. Pedersen and Rasmussen, 1990; Christensen and Rajagopalan, 

2000; Schmidt and Clark, 2006; Foss, 2006) have discussed theoretical advantages of 

magnetic gradient tensor measurements over conventional magnetic surveys (see paper I 

for a summary).   However, the overwhelming majority of modern  magnetic surveys 

measure the total magnetic intensity (TMI).  In most circumstances, for which the 
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anomalous magnetic fields are small relative to the background geomagnetic field, the 

anomalous TMI (i.e. the residual obtained after subtracting the regional total field from the 

measured TMI) is well approximated by the projection of the anomalous field vector onto 

the regional geomagnetic field direction (see e.g. Emerson et al., 1985).  To this 

approximation, the anomalous TMI represents a single magnetic field component that 

obeys Laplace’s equation and is therefore a potential field.  Unlike the TMI, all Cartesian 

vector and tensor components are true potential fields, irrespective of the anomaly 

magnitude.  The anomalous field vector comprises three independent components and the 

gradient tensor has five independent components.   

In theory therefore, for a given number of observations, the gradient tensor contains more 

information about the magnetic sources than the vector, and considerably more than the 

TMI.  However  potential field theory shows that, given perfect knowledge and complete 

coverage of a single field component over a horizontal plane, in principle the potential and 

all other field and gradient components of all orders can be calculated at all levels above 

the magnetic sources (Blakely, 1996, chapter 12).  In practice, deficiencies in TMI surveys 

limit the accuracy with which vector and tensor components can be calculated from TMI 

measurements.  

 

In this paper, I analyse the well-known Mount Leyshon anomaly in the Charters Towers 

area, Queensland, using some of the new approaches to interpretation of calculated vector 

and gradient tensor data that were presented in paper I. 

 

Calculation versus Measurement for Magnetic Vectors and Gradient Tensors 

 

In paper I, I reviewed recent developments in emerging technologies, which should see 

routine deployment of magnetic tensor gradiometer systems in the near future.  In the 

meantime, new methods developed for analysis of magnetic gradient tensor data can also 

be applied to high quality conventional TMI surveys that have been processed using 

Fourier filtering techniques, or otherwise,  to calculate magnetic vector and tensor 

components.  This approach is, in fact, the only practical way at present to analyse vector 

component data, as measurements of vector components are seriously afflicted by motion 

noise, which is not as serious a problem for measurement of gradient components.   
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Vestine and Davids (1945) showed that, in principle, three orthogonal components of a 

potential field vector could be derived from knowledge of a single component, along a 

fixed direction, over a horizontal plane that lies above all the sources. Hughes and 

Pondrom (1947) presented a method, based on convolution filtering,  for deriving vertical 

and horizontal components of the anomalous magnetic field from TMI data (which was 

just becoming available due to the introduction of the proton precession magnetometer), so 

that newer surveys could be compared to older data sets acquired with fluxgate 

magnetometers.  Baranov (1975) gives a comprehensive treatment of relationships in the 

space and wavenumber domains between field components, including TMI, their 

continuations and derivatives.  Nelson (1988) gave expressions for calculation of gradient 

tensor elements, in either the space or Fourier domains, from total field gradient surveys.   

Pedersen et al. (1990) gave Fourier domain expressions for calculation of vector 

components from TMI and noted that, in practice, it is often necessary to reduce aliasing 

by applying upward continuation before calculating vector components.  Blakely (1996, 

chapter 12) provides an accessible account of the necessary underlying theory.  Appendix I 

outlines the Fourier filtering process that calculates magnetic potential, vector components 

and gradient tensor components from gridded TMI data. 

 

Schmidt and Clark (1998) discussed the calculation of vector components from the TMI, 

drawing on the Fourier domain method of Lourenço and Morrison (1973), then used 

integral moments of these components to calculate magnetic moments of isolated sources 

according to a modification of the method originally proposed by Helbig (1963).  Magnetic 

moments derived in this manner from a TMI survey over the Early Permian Tuckers 

Igneous Complex, Queensland, which exhibits strong  remanence effects, were compared 

with laboratory measurements to demonstrate the validity of the approach (Schmidt and 

Clark, 1998). 

 

While it should be stressed that direct measurement of the gradient tensor will provide 

superior results, useful gradient tensor data can be obtained by Fourier processing of TMI 

surveys, provided a number of caveats are addressed.  These include: effective removal of 

regional trends and careful windowing of survey areas, to minimise artefacts such as Gibbs 

phenomenon “ringing”and spectral leakage; a density of sampling (particularly across 

lines) that is sufficient to effectively eliminate aliasing of high frequencies in the measured 

fields; reliable interpolation algorithms to provide accurate (not just visually gratifying) 
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gridded TMI data for Fourier domain calculation of gradient tensor elements; and accurate 

reduction of TMI data to a common level before Fourier processing, using equivalent 

source methods or otherwise, which is a very challenging requirement in areas of rugged 

topography.   

 

It can be shown by an analysis similar to that of Reid (1980) that the grid spacing of TMI 

measurements can be no more than about half the depth to the sources, for accurate 

calculation of tensor components, with negligible aliasing, when there are isolated compact 

sources or complex 3D geology.  Appendix II  gives a theoretical analysis of aliasing when 

calculating vector and tensor components from gridded TMI data, and Table I summarises 

aliasing effects for a range of grid spacings relative to source depth. 

Careful regularisation of the filtering process is essential when the geomagnetic inclination 

is low, because calculation of vector components from TMI surveys becomes unstable 

close to the geomagnetic equator (Blakely, 1996, p.342-343).  This is true a fortiori for 

calculation of gradient tensor elements.  When the regional field inclination is zero, small 

to moderate vertical or magnetic east anomalous field components have negligible effect 

on the measured TMI.  In the presence of remanently magnetised elongated structures 

parallel to the magnetic meridian, which can produce substantial vertical and east 

components, these components cannot be reliably recovered from the TMI when the field 

inclination is too low.  

 

Furthermore, if intense anomalies are present, measured TMI data must be corrected to a 

true potential field, as suggested by Lourenço and Morrison (1973), and elaborated by 

Schmidt and Clark (2006).  Appendix I outlines the required correction procedure.  Gordin 

et al. (2006) demonstrated an equivalent source algorithm that accomplishes the same 

purpose.  This method inverts the observed data to a source distribution that can account 

for the measured TMI, then calculates the true field components from this source 

distribution.  This approach is more  computationally expensive than Fourier filtering.  

Importantly, Gordin et al. (2006) also provide a proof that, if the iterative corrections of the 

observed TMI converge to a stable solution, that solution for the true projection of the 

anomalous field vector onto the regional field direction (which represents a true potential 

field) is correct.  
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Eigenvalues, eigenvectors and the normalised source strength 

 

Paper I discussed calculation of the eigenvalues and eigenvectors of the gradient tensor and 

their applications to interpretation.  Since B is a symmetric real  3 × 3 matrix, all its 

eigenvalues are real, eigenvectors corresponding to distinct eigenvalues are orthogonal, 

and an orthonormal set of three eigenvectors can always be found, including the case of 

degenerate (i.e. two equal) eigenvalues.  Rotational invariants can be calculated from the 

tensor and are often simpler to interpret than the tensor elements.  Since they are 

independent of sensor orientation, they are more robust to measurement errors in sensor 

orientation.   Invariants can always be expressed in terms of the eigenvalues.   A 

particularly useful rotational invariant is the scaled or normalised source strength (NSS) 

(Clark, 2012a,b,c; Beiki et al., 2012a,b), which can be expressed as the following 

combination of eigenvalues of the tensor, labelled in nonincreasing order, λ1 ≥ λ2 ≥ λ3:  

 

.31
2
2 λλλµ −−=                    (3) 

 

Note that the sum of the eigenvalues is always zero (the tracelessness property of the 

tensor), so that λ1 > 0, λ3 < 0, and λ2 is always the eigenvalue with the smallest absolute 

value. These properties ensure that the expression under the square root sign in equation 3 

is always positive, so that µ is a real, positive definite quantity.   

 

For 2D sources  λ2 = 0 and λ1 = −λ3, so the NSS is simply equal to the absolute value of 

the nonzero eigenvalues, i.e. µ = λ1 = −λ3.  As shown in paper I, in this case the NSS is 

also equal to the total gradient (analytic signal amplitude) of the vertical field component 

or, equivalently, the total gradient of the strike-perpendicular horizontal component.  It is 

proportional to, but always larger than, the total gradient of the TMI, particularly for 

meridionally striking structures at low latitudes.  In the 2D case, therefore, µ has the 

desirable property, like the 2D total gradient, that it is independent of magnetisation 

direction.  For approximately 2D sources the intermediate eigenvalue (with the smallest 

absolute value) is close to zero and the corresponding eigenvector indicates the strike.  The 

NSS is also completely independent of magnetisation direction for uniformly magnetised 

spheres and for compact 3D sources that can be represented by a point dipole.  For general 

3D sources the NSS is only weakly dependent on magnetisation direction, significantly 
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less so than the 3D total gradient (Beiki et al., 2012a; Pilkington and Beiki, 2012), which 

simplifies determination of source location. 

 

For several useful 2D and 3D  models  (e.g. the point pole, line of poles, point dipole 

(sphere), line of dipoles (horizontal cylinder), thin dipping sheet, and contact models), µ 

peaks directly above the source. Here the source location is defined as the centre for the 

sphere and horizontal cylinder models; as the top of the narrow, axially magnetised pipe 

for the point pole model; the top of the thin sheet model; and the top corner of the contact 

model.    For these models the NSS calculated from the eigenvalues can be expressed as 

 

,
nr

Cq=µ           (4) 

 

which is a homogeneous function with a simple 1/rn fall-off, suitable for Euler 

deconvolution (Beiki et al.,  2012a).  In equation 4 C is a constant that depends on the 

system of units, q is a source strength term, and r is the source-sensor distance.  The width 

of the µ anomaly is simply related to the source depth, as shown in paper I. 

 

For a number of important magnetic model types, eigenvector analysis of the gradient 

tensor yields some simple direct solutions for model parameters.  For point pole and line of 

pole models the major eigenvectors (associated with the largest magnitude eigenvalue) 

point directly toward the source, allowing its location to be obtained by triangulation 

(Pedersen and Rasmussen, 1990; Clark, 2012b).   A gradient tensor anomaly for which, at 

all points within the main anomaly, two eigenvalues are approximately equal and the third 

is opposite in sign and double the magnitude, is diagnostic of a pole-like source. The 

magnetic anomaly vector b is radial, pointing directly away from the pole of strength p if p 

is positive and directly towards the pole if p < 0.  At every observation point the 

eigenvalues are proportional to the vertical component of the anomalous field,  

and the ratio of the vertical component over an eigenvalue provides an estimate of the 

depth of the source (Clark, 2012b).  For a point pole, the scaled source strength is simply 

equal to the absolute value of the degenerate eigenvalues (µ = |λ2|). 

 

The point dipole model is applicable to any sufficiently compact magnetised body, i.e. 

when the largest dimension of the body is small compared to the minimum source-sensor 
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separation.    Outside a spherical surface that completely encloses an arbitrary magnetised 

body, the field can be expressed as a sum of multipole contributions, with a 1/r3 fall-off for 

the dipole term, 1/r4 fall-off for the quadrupole, 1/r5 fall-off for the octupole term, and so 

on.  Thus for any compact body with a non-zero dipole moment the far field is always 

dominated by the dipole term.  More specifically, the external fields and gradients due to a 

uniformly magnetised sphere are identical to that of a point dipole, because the quadrupole 

and all higher multipole moments vanish identically.   

 

Nara et al. (2006) have presented a neat solution to the single point dipole location problem 

that uses measurements of the anomalous field vector and gradient tensor, if accurate 

values of both are available.  They showed the displacement vector from the dipole to the 

measurement point,  independent of the orientation of its moment m, is given by: 

 

r  = −3B−1b,                      (5) 

 

even though each tensor element and vector component on the right hand side of this 

expression depends on m.  Equation 5 is applicable provided detB is nonzero, so that the 

matrix representation of the tensor is invertible.  The special case where B is singular 

occurs when the measurement point lies within the plane orthogonal to the dipole axis, and 

is easily treatable separately.   

 

Although Nara et al. (2006) did not treat this aspect, once the location of the dipole is 

known, determination of the moment becomes a straight-forward linear inversion problem. 

If the anomalous field vector b is known to sufficient accuracy, the moment m = 

zyx ˆˆˆ zyx mmm ++    can be calculated as (Lima et al., 2006): 
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Clark et al. (2009) showed that this simple method could be extended to analysis of 

gradient tensor data along a short profile segment,  without requiring vector data (see also 

paper I).  Clark (2010) developed a more sophisticated method, which analyses gradient 

tensor data collected along a profile that passes near a dipole target.  Unlike most other 
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gradient tensor inversion techniques, this method can correct for contamination of the 

dipole signature by geological gradients, interfering anomalies, or instrumental drifts.  

Analysis of anomalous vector and tensor components at Mount Leyshon 

The mineralised system associated with the former Mount Leyshon gold mine in 

Queensland produces a prominent TMI magnetic low due to strong remanent 

magnetisation, acquired in the Early Permian, of reverse polarity (Lackie et al., 1991; 

Sexton et al., 1995; Clark and Lackie, 2003).  Sexton et al. (1995) showed that the 

magnetic anomaly is substantially attributable to early potassic (biotite-magnetite) 

alteration of Palaeozoic host rocks (dolerite and metasiltstones) and associated quartz-

magnetite veins.  This magnetic alteration zone is largely peripheral to the mineralised 

breccia and porphyry complex, which is dominated by felsic compositions that are strongly 

overprinted by magnetite-destructive phyllic alteration and is accordingly very weakly 

magnetic, so that the anomaly is slightly offset to the SW of the mine.  The bottom of the 

magnetic potassic alteration zone has not been determined by drilling, but its depth extent 

in the centre of the Mount Leyshon anomaly is known to be at least 800 m (Sexton et al., 

1995). The hydrothermal magnetite grains are generally quite fine-grained, with a 

substantial proportion within the pseudosingle domain size range (~1-20 µm), and retain a 

stable remanence that is directed south and steeply down. 

Magnetic vector components and gradient tensor elements were derived from publicly 

available TMI data (flown by Fugro Airborne Surveys in 1987/88 and downloaded from 

Geoscience Australia’s Geophysical Archive Data Delivery System) by Fourier filtering.  

Clark (2012b) presented a preliminary analysis of this data set.  Figure 1 shows images 

over the Mount Leyshon area of the TMI and quantities derived from it (vector 

components; the total gradient of TMI, also known as the analytic signal amplitude; and 

the Bzz component of the gradient tensor).  The most prominent magnetic anomalies in this 

area are the pronounced TMI lows associated with Mount Leyshon and, to the NE of 

Mount Leyshon in the Mathews Pinnacle area, with two lobes of a coeval mafic intrusion, 

the Fenian Diorite, which carries a strong remanence of reverse polarity.  Figure 2 shows 

profiles of the vector components along line 423400 mE, which passes through the centre 

of the Mount Leyshon anomaly, over the potassic alteration zone.  Figures 3-4 show 

gradient tensor component profiles along this line and Figure 5 plots a number of rotational 

invariants derived from the full tensor, including the normalised source strength. 
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The vertical component Bz is dominant within the anomaly, reflecting the subvertical down 

magnetisation, which produces negative poles on the upper surface of the subcropping 

source region, with much lower pole density on the sides of the steep-sided causative body.  

The field vector over the source is downward pointing, producing a Bz high, and opposing 

the geomagnetic field, so the corresponding TMI anomaly is a low.  The north component 

Bx is approximately antisymmetric about the centre of the source, as expected for a pole-

type anomaly, and the east component By is relatively weak.  The asymmetry of the east 

component reflects the fact that the magnetic alteration zone is somewhat elongated SW-

NE, so that the majority of the magnetised material lies west of the southern portion of the 

profile and east of the profile in the north. 

Compared to the field components, the tensor element profiles show higher resolution of 

heterogeneity within the magnetic alteration zone, with emphasis on shallower sources.  

The double-humped form of the Bzz profile, in particular, highlights the presence of two 

lobes within the Mount Leyshon anomaly.  The peaks in the NSS profile in Figure 5 

provide a good indication of the northing of these strong magnetic zones. 

 

The source region of the Mount Leyshon anomaly evidently does not conform closely to 

either a point pole or a sphere (point dipole) model, but it is nevertheless of interest to 

apply simple methods of analysis developed for these models, to test their robustness in 

less-than-ideal conditions.  Such simple models would work better on magnetic data that 

has been continued upward to a level where the source zone can be considered compact, at 

least in lateral extent. However, upward continuation also tends to merge the anomaly of 

interest with those of surrounding sources.  Figure 6 shows simplified models, representing 

two end members, each of which is consistent with drilling  information about the depth 

extent of the magnetic zone.  Given the steep down magnetisation of the magnetic 

lithologies at Mount Leyshon, if the magnetic zone extends to great depths, the source of 

the magnetic anomaly can be regarded as a distribution of negative magnetic poles at the 

top of the zone. If, on the other hand, the bottom of the magnetic zone lies just below the 

maximum depth of drilling, then the source has a dipolar character, with a steep down 

magnetic moment. 

 

Along line 42300 mE the anomalous field vectors lie almost in the N-S vertical plane.   

Figure 7 shows projections of these vectors onto the vertical plane containing the profile.   



 

 

Figure 1.  Magnetic anomalies over the Mount Leyshon 
component, By = calculated east component, Bz = calculated down component, TMI TG = total gradient (analytic signal amplitude) of TMI, 
calculated vertical gradient of Bz.  Note that the total gradient (like the NSS) is positive definite, so anomalies are always highs, i.e. they do not 
distinguish between sources with positive and negative magnetisation contrasts.  The TMI image has a normalised stretch with 
to +500 nT. All other images have linear stretches, with the following ranges (TMI TG: 0 to +6.05 nT/m; 
+964 nT;  ; By: −763 to +949 nT; Bz: −638 to +1797 nT. The Mount Leyshon anomaly is the prominent TMI low/verti
SW of the image. The prominent TMI lows in the NE quadrant of the image are associated with two outcropping lobes of the rema
magnetised Early Permian Fenian Diorite, which wrap around the SW side of the TMI high associated 
The Fenian Diorite is coeval with the Mount Leyshon Complex and has a primary remanence direction that is indistinguishable f
at Mount Leyshon (Clark and Lackie, 2003). The black vertical lines indicate
7-8. 
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Figure 1.  Magnetic anomalies over the Mount Leyshon – Mathews Pinnacle area.  TMI = total magnetic intensity, 
= calculated down component, TMI TG = total gradient (analytic signal amplitude) of TMI, 

.  Note that the total gradient (like the NSS) is positive definite, so anomalies are always highs, i.e. they do not 
distinguish between sources with positive and negative magnetisation contrasts.  The TMI image has a normalised stretch with 
to +500 nT. All other images have linear stretches, with the following ranges (TMI TG: 0 to +6.05 nT/m; Bzz: −

638 to +1797 nT. The Mount Leyshon anomaly is the prominent TMI low/verti
SW of the image. The prominent TMI lows in the NE quadrant of the image are associated with two outcropping lobes of the rema
magnetised Early Permian Fenian Diorite, which wrap around the SW side of the TMI high associated with Devonian granodiorite intrusions.  
The Fenian Diorite is coeval with the Mount Leyshon Complex and has a primary remanence direction that is indistinguishable f
at Mount Leyshon (Clark and Lackie, 2003). The black vertical lines indicate line 43400 mE, corresponding to the profiles shown in Figures 2

 

Mathews Pinnacle area.  TMI = total magnetic intensity, Bx = calculated north 
= calculated down component, TMI TG = total gradient (analytic signal amplitude) of TMI, Bzz = 

.  Note that the total gradient (like the NSS) is positive definite, so anomalies are always highs, i.e. they do not 
distinguish between sources with positive and negative magnetisation contrasts.  The TMI image has a normalised stretch with a range of −1300 

−2.69 to +7.15 nT/m; Bx: −869 to 
638 to +1797 nT. The Mount Leyshon anomaly is the prominent TMI low/vertical component high in the 

SW of the image. The prominent TMI lows in the NE quadrant of the image are associated with two outcropping lobes of the remanently 
with Devonian granodiorite intrusions.  

The Fenian Diorite is coeval with the Mount Leyshon Complex and has a primary remanence direction that is indistinguishable from that found 
line 43400 mE, corresponding to the profiles shown in Figures 2-5, 
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For a narrow vertical pipe, of great depth extent, with steep downward magnetisation, the 

extensions of the field vectors should converge on the top of the pipe, which acts as a point 

south pole.  However, the Mount Leyshon magnetic zone is wide compared to the depth 

below the sensor, so the top surface corresponds to a sheet of poles, rather than a point 

pole.  Thus the lateral extent of the magnetic source zone produces subparallel, near-

vertical vectors over the central portion of the anomaly.  The steepness of the vectors either 

side of the source zone, which results in convergence well below the mapped top of the 

magnetic zone, indicates a “centre of pole density” that appears to lie well below the 

surface.  This suggests that the magnetisation may be larger at depth than near the surface, 

which would produce a pole distribution within the magnetic zone as well at its upper 

surface.   

 

Figure 8 shows the corresponding projections of major eigenvectors of the tensor, which 

should also point directly towards a pole-type source.  The pattern is similar to that of 

Figure 7, lending support to the applicability of a pole-type model, and to the qualitative 

interpretation given above.  For a point pole source, the ratio of the vertical field 

component, Bz, and the dominant eigenvalue (with absolute value double that of the other 

two, degenerate, eigenvalues), λm, is proportional to the depth of the source (Clark, 2012b).  

Depth estimates h = 2Bz/λm,  calculated along profile 423400 mE over the Mount Leyshon 

anomaly between 7753500 mN and 7756000 mN, range from 200 m to 840 m beneath the 

surface, with an average of 500 m (N = 251) and a standard deviation of 185 m.  The 

considerable width of the magnetic zone, contrary to the assumption of a narrow source, 

biases the calculated h to greater depths.  Thus the true layer of strongest pole density, 

corresponding to maximum vertical gradient of magnetisation (or, in the limit, 

discontinuity in magnetisation at the top of the magnetic zone), is somewhat shallower than 

the apparent depths derived from the point pole assumption.  

 

The method of Clark et al. (2009) (equations 5 and 6), extending the algorithm of Nara et 

al. (2006), calculates the location and magnetic moment of a dipole source.  This method 

was applied to vector and tensor data over the main anomalous zone along line 423400 

mE.  This method can only be expected to produce meaningful results if the depth extent of 

the magnetic zone is limited, so that the anomaly reflects the bottom of the zone as well as 

its top.  Figure 9 plots the solutions obtained for the location of the “centres of 

magnetisation”, assuming a dipole source, and the corresponding magnetic moment. 



 

 

Figure 2.  Magnetic vector component profiles 

Leyshon anomaly, with approximate extent of the magnetic potassic alteration zone 

indicated.  Bx,y,z are the north, east, and down field components respectively. All grid 

coordinates given in this paper are Australian Map Grid (AMG84), zone 55.

 

Figure 3.  Diagonal elements of the calculated gradient tensor 
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Figure 2.  Magnetic vector component profiles along line 423400 mE

Leyshon anomaly, with approximate extent of the magnetic potassic alteration zone 

are the north, east, and down field components respectively. All grid 

coordinates given in this paper are Australian Map Grid (AMG84), zone 55.

Figure 3.  Diagonal elements of the calculated gradient tensor along line 423400 mE.

 

along line 423400 mE over the Mount 

Leyshon anomaly, with approximate extent of the magnetic potassic alteration zone 

are the north, east, and down field components respectively. All grid 

coordinates given in this paper are Australian Map Grid (AMG84), zone 55. 

 

along line 423400 mE. 
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The average location for the three southernmost solutions is 423360 mE, 7754700 mN, 

depth below sensor (surface) 960 m (880 m), and for solutions from the four northernmost 

stations is 423820 mE, 7755420 mE, depth below sensor (surface) 1040 m (960 m).  The 

corresponding inferred magnetic moments are 9.1 × 109 Am² (dec = 82°, inc = +81°) and 

1.3 × 1010 Am² (dec = 55°, inc = +37°) for the southern and northern solution clusters 

respectively.   

 

These clusters of solutions correspond to the two main lobes of the Mount Leyshon 

anomaly, with the southern lobe centred just west of the line and the northern lobe centred 

about 400 m east of the the line, consistent with the patterns exhibited by the full anomaly  

grid.  This illustrates the power of full vector and tensor measurements along widely 

spaced lines, as sources that lie to one side of the lines can be defined.  If we take the 

dipole solutions at face value, the depth estimates put the equivalent centre of depth-

integrated magnetisation about 900 m below the surface, suggesting a total vertical extent 

of about 1800 m for the magnetic zone. 

 

The resultant magnetisation direction at Mount Leyshon represents competition between a 

dominant south and steep down remanence and induced magnetisation, directed just east of 

north with moderate upward inclination.  The inverted magnetic moments suggest that 

remanence is strongly dominant in the southern lobe, and less dominant over induction in 

the northern lobe.  The overall magnetic moment of the magnetic zone appears to be about 

1010 Am².  A magnetic zone with dimensions of 1.5 km × 1.5 km × 2 km (vertical) has a 

volume of 4.5 ×109 m3, which requires an average magnetisation of about 2 A/m to 

account for the moment.  Reducing the available volume to 1 × 1 × 2 km3  increases the 

required magnetisation to 5 A/m.   

 

Such magnetisations are well within the range of measured magnetic properties for the 

potassic zone at Mount Leyshon (Sexton et al., 1995; Clark and Lackie, 2003).  The 

AMIRA P700 database (Clark et al., 2004) gives average remanent intensities of 7.5 A/m 

(SI susceptibility k = 0.06, Koenigsberger ratio Q = 3.1) for biotite-magnetite altered 

dolerite and 4.2 A/m (k = 0.048 SI, Q = 2.2) for biotite-magnetite altered Puddler Creek 

Formation.  Resultant magnetisations in this case are approximately given by the 

remanence intensity multiplied by (1−1/Q), as the induced magnetisation is roughly 

antiparallel to the remanence. 



 

 

 

 
Figure 4.  Off-diagonal elements of the calculated gradient tensor 

 

Figure 5.  Rotational invariants of the calculated gradient tensor 

and I2 are the canonical invariants of Pedersen and Rasmussen (1990). The square root of 

I1 and the cube root I2 of have been taken so that all quantities are in t

as the gradient tensor elements. The scaled source strength 

equation 3. 
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diagonal elements of the calculated gradient tensor along line 423400 mE.

Figure 5.  Rotational invariants of the calculated gradient tensor along line 423400 mE.  

are the canonical invariants of Pedersen and Rasmussen (1990). The square root of 

of have been taken so that all quantities are in t

as the gradient tensor elements. The scaled source strength µ is the NSS, given by 

along line 423400 mE. 

 

along line 423400 mE.  I1 

are the canonical invariants of Pedersen and Rasmussen (1990). The square root of 

of have been taken so that all quantities are in the same units (nT/m) 

is the NSS, given by  
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Confirmation that the inferred magnetic moment for the magnetic zone is reasonable 

comes from  two other lines of evidence: (i) modelling of the Mount Leyshon TMI 

anomaly, and (ii) a Helbig-type analysis of the gradient tensor elements, using the method 

of Phillips et al. (2007).  The 3D model of Lackie et al. (1991) fitted TMI profiles across 

the anomaly (see Figure 10), incorporating petrophysical data from outcrop and drill core 

samples.  The model comprised multiple cylinders, with a large deep body of great depth 

extent overlain by a number of apophyses that extend to shallow depths.  Originally it was 

thought that the modelled source probably represented a mafic intrusion, similar to the 

Fenian Diorite, assumed to be genetically related to the Mount Leyshon porphyries and 

associated mineralisation.  However Sexton et al. (1995) subsequently showed that the 

upper 800 m, at least, of the magnetic zone consists of potassically (biotite-magnetite) 

altered host rocks. Therefore the “apophyses” of the model shown in Figure 10 represent 

pipe-like and sheet-like zones of intense alteration along structurally controlled fluid 

pathways.  The igneous source of the high temperature fluids that produced this 

paragenetically early potassic alteration has not been intersected by drilling to 800 m 

depth.  

 

Assuming that the deep body (top 560 m below surface) that accounts for most of the long 

wavelength signature extends to a depth of 2 km below the sensor, the total moment of the 

model (including the shallower bodies that account for the short wavelength features) is 1.3 

× 1010 Am², with a total volume of 3.5 × 109 m3.  The corresponding average magnetisation 

intensity of the model is 3.8 A/m, with a declination of 163°, inclination of +88°. The 

average susceptibility of the model is 0.037 SI and the NRM intensity is 4.9 A/m, (dec = 

184°, inc = +77°), which corresponds to a Koenigsberger ratio of 3.3. The magnetic 

moment calculated from the resultant magnetisation and volume of the model is consistent 

with that obtained from the Nara-type solutions. 

 

The second confirmatory analysis uses integral moments of gradient tensor elements, 

following the method of Phillips et al. (2007), to estimate the total magnetic moment of the 

source.  This method has some limitations: in principle it requires estimation of integrals 

over the entire horizontal plane and assumes that interference from neighbouring sources is 

negligible.  On the other hand, the magnetic moment vector can be estimated using this 

method, irrespective of the source geometry (provided it is finite in all directions).  

Estimation of magnetisation direction is quite robust when the integration area is limited,  



 

 

Figure 6. Idealised models that may approximate the gross features of the source of the 
Mount Leyshon anomaly.  The LHS shows a bottomless vertically
cylinder, which is equivalent to a disc of negative poles at the top surfac
an equidimensional truncated cylinder with discs of negative (positive) pole density at the 
top (bottom) surface. At distances several times the radius of the cylinder, or greater, the 
LHS model corresponds to a point pole source and the 
point dipole. 
 
 

 
Figure 7.  Projected magnetic field vectors along 
pole-type sources at the top of a reversely magnetised magnetic zone.  The putative extent 
in cross-section of the potassic alteration zone is indicated by the box.  The bottom of the 
zone has not been delineated by drilling.
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Figure 6. Idealised models that may approximate the gross features of the source of the 
Mount Leyshon anomaly.  The LHS shows a bottomless vertically-downward magnetised 
cylinder, which is equivalent to a disc of negative poles at the top surfac
an equidimensional truncated cylinder with discs of negative (positive) pole density at the 
top (bottom) surface. At distances several times the radius of the cylinder, or greater, the 
LHS model corresponds to a point pole source and the RHS model approximates a vertical 

Figure 7.  Projected magnetic field vectors along line 423400 mE, indicating directions to 
type sources at the top of a reversely magnetised magnetic zone.  The putative extent 

the potassic alteration zone is indicated by the box.  The bottom of the 
zone has not been delineated by drilling. 
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however estimation of the magnetic moment magnitude requires a correction for the finite 

integration area (Schmidt and Clark, 1998; Caratori Tontini and Pedersen, 2008).  

Fortunately, the Mount Leyshon anomaly is large and relatively isolated, which allows 

correction for the missing tails of the truncated integrals. 

 

The Helbig-type analysis of Phillips et al. (2007) yields a steep down estimated 

magnetisation direction for the Mount Leyshon anomaly source (dec = 213°, inc = +61°),  

which is quite compatible with the petrophysical data and with the Nara-type inversion and 

the 3D modelling.  The estimated magnetic moment was corrected for the finite range of 

integration using a new algorithm that will be the subject of another paper [see Chapters 7 

and 8 of this thesis].  The depth of the centre of magnetisation h is first estimated from 

integral moments of tensor invariants and the estimated components of magnetic moment 

are then corrected for the finite radius of integration R using a correction term that is a 

function of R/h.  Using this method the depth to the centroid of the magnetic zone is 

estimated to be 880 m beneath the surface and the estimated magnetic moment is 8.3 × 109 

Am², which is quite consistent with the estimates from Nara-type dipole inversion and 3D 

modelling.  Note that the method based on integral moments is complementary to the 

point-by point dipole inversion, as it uses data over the whole anomaly.  The agreement 

between these independent approaches is encouraging. 

 

To supplement the analysis of line 423400 mE, which passes directly over the anomaly, 

data from line 422500 mE, which passes to the west of the main anomaly, were also 

analysed. Figures 11 and 12 show, respectively, field vectors and major eigenvectors in 

plan view.  The vectors shown all have shallow plunges to the east and converge at 

moderate depths within the magnetic source region.  This again illustrates the ability of 

vector and tensor data to aid interpretation of off-line sources.  The data hint at an 

extension of the magnetic zone at depth to the north, passing beneath the Mount Leyshon 

pit, although some of the signature could result from a negative magnetisation contrast 

between the nonmagnetic porphyries and mineralised breccias of the mine area, which 

have been strongly overprinted by magnetite-destructive phyllic alteration, and the slightly 

magnetic Fenian Granite host rock . 

 

  



 

 

 

 
Figure 8.  Projected major eigenvectors of the gradient tensor along 
The  approximate extent of the potassic alteration zone is indicated by the box.
 
 

 
Figure 9.  Locations of equivalent dipoles, inverted from anomalous field vectors and 
gradient tensors, shown as dots terminating inferred displacement vectors from 
measurement locations (dashed arrows).  Solid arrows indicate projected magnetic moment 
vectors corresponding to each solution.  The box shows the approximate outline of the 
potassic alteration zone, whose bottom has not been found by drilling.
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Analysis of the normalised source strength over Mount Leyshon 

 

The TMI survey from which the vector and tensor components, and derived quantities such 

as the NSS, over Mount Leyshon were calculated was flown at an altitude of 80 m above 

the surface and had a line spacing of 400 m.  Contributions to the gradient anomalies from 

shallow, narrow sources are therefore aliased.  However the gross features of the deeper 

portions of the magnetic zone should be well defined by the calculated tensor components.  

Aliasing is reduced compared to the worst case considered in Appendix II, a point dipole 

source, due to the width of the source region.   The lateral dimensions of the Mount 

Leyshon magnetic zone ensure that the anomaly is intersected by about six north-south 

lines, which adequately define the general features of the near surface source region, as 

well as those of roughly east-west oriented shallow features, although fine detail of north-

south oriented and equidimensional features is lost.  On the other hand, the width of the 

magnetic zone implies that the point pole and point dipole models provide at best only a 

crude representation of the source region, so inverse solutions based on these models 

cannot be expected to be very accurate.  It is nevertheless interesting to test the robustness 

of the simple inversion approach in the face of these problems.  Aliasing of the signal 

could be ameliorated by calculating tensor components from upward continued TMI data, 

at the expense of losing all fine detail within the anomaly. 

 

The profile of the NSS shown in Figure 5 exhibits a broad high over the Mount Leyshon 

magnetic zone, as expected, but also shows local peaks, troughs and inflections that are 

clear signs of the near-surface heterogeneity discussed above.  A grid of the NSS 

calculated from a detailed gradient tensor survey would produce a high resolution map of 

the shallow magnetic zones and structural controls, with greater detail than that obtainable 

from a TMI survey with the same line spacing.  NSS anomalies also would exhibit 

negligible offset from the source locations, whereas TMI anomalies are displaced due to 

geomagnetic inclination and source magnetisation effects.   

 

An estimate of the horizontal location of the centroid of the magnetic zone yx,  can be 

obtained from first integral moments of the NSS grid over the whole Mount Leyshon 

anomaly, normalised by 2D integrals of the NSS: 

 

  



 

 

 

Figure 10. Top: TMI anomaly profiles alo
observed data, the solid line shows the calculated anomaly derived from the 3D model of 
Lackie et al. (1991). Bottom: projection of 3D model onto vertical section along TMI 
profile, shown at the same horizontal scale
Horizontal and vertical scales are indicated by the arrows. The model comprises a large 
and deep vertical cylinder of great depth extent, centred on the profile, with pipe
apophyses, offset slightly east and west
grey body to the north represents the Mount Leyshon mineralised zone, comprising weakly 
magnetic breccias and felsic porphyries with strong phyllic overprinting. The ground 
surface is indicated by the horiz
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Figure 10. Top: TMI anomaly profiles along 423500 mE. Dashed line indicates the 
observed data, the solid line shows the calculated anomaly derived from the 3D model of 
Lackie et al. (1991). Bottom: projection of 3D model onto vertical section along TMI 
profile, shown at the same horizontal scale as the observed anomaly shown above.  
Horizontal and vertical scales are indicated by the arrows. The model comprises a large 
and deep vertical cylinder of great depth extent, centred on the profile, with pipe
apophyses, offset slightly east and west of the profile, extending to shallow depths. The 
grey body to the north represents the Mount Leyshon mineralised zone, comprising weakly 
magnetic breccias and felsic porphyries with strong phyllic overprinting. The ground 
surface is indicated by the horizontal black dashed line. 

 

 

ng 423500 mE. Dashed line indicates the 
observed data, the solid line shows the calculated anomaly derived from the 3D model of 
Lackie et al. (1991). Bottom: projection of 3D model onto vertical section along TMI 

as the observed anomaly shown above.  
Horizontal and vertical scales are indicated by the arrows. The model comprises a large 
and deep vertical cylinder of great depth extent, centred on the profile, with pipe-like 

of the profile, extending to shallow depths. The 
grey body to the north represents the Mount Leyshon mineralised zone, comprising weakly 
magnetic breccias and felsic porphyries with strong phyllic overprinting. The ground 
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where the integrals are in principle over the entire horizontal plane.  However both theory 

and numerical tests show that if a preliminary estimate of yx,  is obtained using a limited 

range of integration around the anomaly, recalculating the integrals over a new range 

symmetrically disposed about this approximate centroid greatly reduces the location errors.  

If necessary, this procedure can be iterated, although normally the first correction is 

sufficient. 

 

Application of equation 7 to the Mount Leyshon anomaly gives an estimated centroid 

location of 423320 mE, 7754680 mN.  As this incorporates all of the data over and around 

the anomaly, rather than relying on point-by-point inversions, effects of local heterogeneity 

within the magnetic zone tend to average out.  The estimated “centre of magnetisation” is 

consistent with the known distribution of magnetisation within the Mount Leyshon 

magnetic zone, the horizontal coordinates of the dipole solutions in Figure 9 and the 

intersection points of directions to source shown in Figures 11 and 12. 

 

In paper I it was shown that, for sources for which the NSS conforms to eqn (4), the 

location of the source with respect to an observation point, −r , is given by 

 

.2 µ
µ
µ ∇

∇
n=− r                       (8) 

 

Paper I gives an algorithm for calculating the vector gradient of the NSS µ, which is 

required to use equation 8.  For the contact model, the appropriate value of the gradient 

structural index is n = 1. Figure 13 shows solutions with this value of n, obtained for 

observation points approaching the southern and northern margins of the magnetic zone.  

Given the simplified model, the depth and horizontal locations of the margins of the 

magnetic zone are quite well determined by this method. Note that the margins of the 

magnetic zone are gradational, because of weathering effects at shallow depths, gradually 

decreasing over tens of metres, and a broad zonation of the alteration from proximal 

magnetite-dominant to distal hematite-dominant (Clark and Lackie, 2003).  The absence of 

a sharp margin may contribute to some of the spread of solutions. 



 

 

 

 

 

 

 

 Figure 11.  Plan view of magnetic field 
vectors along line 422500 mE.  The 
potassic alteration zone in plan view is 
indicated by the dashed outline.  The 
cross indicates the Mount Leyshon 
mine. 
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 Figure 11.  Plan view of magnetic field 
tors along line 422500 mE.  The 

potassic alteration zone in plan view is 
indicated by the dashed outline.  The 
cross indicates the Mount Leyshon 

Figure 12.  Plan view of major 
eigenvectors along line 422500 mE.  
The potassic alteration zone in plan 
view is indicated by the dashed outline.  
The cross indicates the Mount Leyshon 
mine. 
 

 

Figure 12.  Plan view of major 
eigenvectors along line 422500 mE.  
The potassic alteration zone in plan 
view is indicated by the dashed outline.  
The cross indicates the Mount Leyshon 
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Figure 14 shows solutions obtained across the magnetic zone using the gradient structural 

index applicable to a pole model, n = 3.  The solutions tend to cluster around the top of the 

modelled deep body and within the inferred overlying pipe-like bodies.  The solutions lie 

almost beneath the profile - the mean lateral offset is 57 ± 18 m east of the profile.  The 

solutions can be reasonably interpreted as providing a crude map of excess magnetic pole 

density, representing discontinuities or strong vertical gradients in the steep magnetisation 

of the magnetic zone.  The mean depth beneath the surface of the solutions for n = 3 is 371 

± 11 m (1 SE).  This can be taken as a crude proxy for the top of the strongest 

magnetisation zone. If the gradient structural index appropriate to a dipole source, n = 4, is 

used the solutions are shifted deeper and are better clustered laterally, due to the overall 

convergence of the directions to source with increasing depth that is evident from Figure 

14.  If n = 4 is used, rather than n = 3, the rays from the measurement points to the inferred 

source locations in Figure 14 are simply extended by a factor of 4/3.  In this case the 

average source location is 7754880 ± 45 mN, 4423475 ± 25 mE, at a depth of 520 ± 15 m.  

For a quasispherical source the n = 4 solutions should cluster around the centre of the 

source.  For n = 4  solutions analogous to those  shown in Figure 14, the still considerable 

north-south spread of solutions indicates that the source geometry departs significantly 

from the idealised model (a uniformly magnetised sphere). The gross geometry of the 

magnetic zone is in fact better represented by a steep sided prism, which biases solutions 

towards the edges; with depth extent greater than its width, which tends to shift solutions 

above the centroid of the prism.  Thus the the mean depth of the solutions given above for 

n = 4 represents a minimum depth to the centre of magnetisation of the source zone. 

 

The quality of this data set is inadequate for detailed analysis of the internal magnetisation 

distribution of the Mount Leyshon magnetic zone, using equation 8.  However, it is 

encouraging that a first order analysis using equation 7 gives results that are broadly 

consistent with the known nature of the source of the Mount Leyshon anomaly When 

source geometry conforms more closely to a model that has a well-defined structural index, 

such as at the Tallwang magnetite deposit (Clark, 2012a,c), source location using the 

vector gradient of the NSS works well, as shown in paper I.  Application of equation 7 to 

upward continued data should produce clustering of source location solutions for n ≈ 4 

near the centre of magnetisation of the Mount Leyshon magnetic zone.  This would be at 

the expense of losing any indication of the extent of the upper surface. 

 



 

 

Figure 13.  Inverted source locations from data points along 
and northern margins of the Mount Leyshon magnetic zone, using equation 8 with 
which is appropriate for a contact model.  The approximate extent of the magnetic zone, 
inferred from surface mapping of alteration and limite
grey.  The bottom of the zone is shown dashed, as the full depth extent has not been 
determined by drilling.  The ground surface is indicated by the horizontal black dashed 
line. 

Figure 14.  Inverted source location
Mount Leyshon magnetic zone, using equation 8 with 
structural index appropriate for a pole model.  The projection of the detailed 3D 
multicylinder model of Lackie et al. (1991) is
represents the weakly magnetic Mount Leyshon mineralised zone, and the ground surface 
is indicated by the horizontal black dashed line.
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Figure 13.  Inverted source locations from data points along 423400 mE near the southern 
and northern margins of the Mount Leyshon magnetic zone, using equation 8 with 
which is appropriate for a contact model.  The approximate extent of the magnetic zone, 
inferred from surface mapping of alteration and limited drilling information, is outlined in 
grey.  The bottom of the zone is shown dashed, as the full depth extent has not been 
determined by drilling.  The ground surface is indicated by the horizontal black dashed 

Figure 14.  Inverted source locations from data points along 423400 mE over the the 
Mount Leyshon magnetic zone, using equation 8 with n = 3, which is the gradient 
structural index appropriate for a pole model.  The projection of the detailed 3D 
multicylinder model of Lackie et al. (1991) is also shown.  The dotted outline to the north 
represents the weakly magnetic Mount Leyshon mineralised zone, and the ground surface 
is indicated by the horizontal black dashed line. 

 

423400 mE near the southern 
and northern margins of the Mount Leyshon magnetic zone, using equation 8 with n = 1, 
which is appropriate for a contact model.  The approximate extent of the magnetic zone, 

d drilling information, is outlined in 
grey.  The bottom of the zone is shown dashed, as the full depth extent has not been 
determined by drilling.  The ground surface is indicated by the horizontal black dashed 
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CONCLUSIONS 

Eigenvector analysis and other methods for interpretation of magnetic gradient tensor data, 

including those outlined in paper I, provide powerful tools for exploiting the extra 

information provided by gradient tensor surveys.  In the absence of gradient tensor 

measurements and in suitable circumstances, Fourier processing of TMI data of 

sufficiently high quality can yield useful calculated estimates of anomalous magnetic field 

vectors and gradient tensors.  The methods that are being developed for vector and gradient 

tensor data are equally applicable to calculated data.  Processing of high quality TMI  data  

can add value to existing surveys by exploiting cryptic information that resides in single 

component data.  Calculation is generally more accurate than measurement for field 

vectors, but measurement is highly desirable for gradient tensors.  An optimal scenario is 

to integrate measured tensor data with vector data derived from TMI. 

 

Preliminary analysis of calculated vector and tensor data over the remanently magnetised  

Mount Leyshon system has demonstrated the utility of these data types for locating sources 

and defining magnetisations, even when the source does not match the assumed models 

perfectly.  The analysis accords with petrophysical and geological information and 

constrains the depth extent, magnetic moment, total volume, and possible northward 

extensions at depth, of the magnetic zone. 

 

The inferred magnetic moment for the source zone of the Mt Leyshon magnetic anomaly is 

~ 1010 Am2.  Its direction is consistent with petrophysical measurements.  Given estimated 

magnetisation from samples and geological information, this suggests a volume of    ~1.5 

km × 1.5 km × 2 km (vertical).  The inferred depth of the centre of magnetisation is about 

900 m below surface, suggesting that the depth extent of the magnetic zone is ~1800 m.  

Some of the deeper, undrilled portion of the magnetic zone could be a mafic intrusion with 

a composition similar to that of the Fenian Diorite, representing part of the parent magma 

chamber beneath the Mount Leyshon Intrusive Complex. 
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Appendix I. Fourier domain processing of TMI to calculate magnetic potential, vector 

and tensor components 

 

The relationships in the Fourier domain between elements Bij of the anomalous gradient 

tensor B = ∇b and anomalous TMI can be derived from relationships between a potential 

field and its directional derivatives. The DC (|k| = 0) components of the spectra are set to 

zero for all anomalous field and tensor components, as these components average to zero 

over the horizontal plane, for sources of finite horizontal and vertical extent. In practice 

with real data, after removal of regional trends the average value of each component is 

subtracted from its gridded values, to comply with this constraint.  Over local and small 

regional scales, computation of magnetic vector components from gridded TMI data on a 

horizontal plane can be performed efficiently using the Fast Fourier Transform (FFT) 

algorithm.  The 2D Fourier transform of a function f(x, y) is given by: 
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which has inverse 
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where kx and ky are the wavenumbers along the horizontal x and y axes respectively,  

 and the radial wavenumber |k| = √( kx²+ ky²). 

 

In the wavenumber domain the magnetic potential Ω, and the grid north, grid east and 

vertical down components (bx, by, bz) of the anomalous field vector b are related to the 

anomalous TMI, ∆T, by (Blakely, 1996, p.328-329, 342-343) 
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where (l, m, n) are the direction cosines of the regional geomagnetic field F = F(l, m, n) = 

(Fx, Fy, Fz) with respect to x, y, z, and ∆T is given by the projection of the anomalous field 

vector onto the regional field direction: 
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Equation (A7) implies that ∆T is harmonic, i.e. it obeys Laplace’s equation, because it is a 

linear combination of field components, each of which is a derivative of  the harmonic 

function Ω  along a fixed direction in space.  In fact, the measured TMI, ∆Bm, is only equal 

to ∆T to first order in |b|/F and is accordingly not a true potential field.  In many cases, 

where the anomalous field is much smaller than F,  the error is negligible, but when 

anomalies of thousands of nT occur, the measured TMI should be corrected to a true 

potential field (Lourenço and Morris, 1973; Schmidt and Clark, 2006, Gordin et al., 2006; 

Munschy and Fleury, 2011).  Schmidt and Clark (2006) show that 
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When anomalies are strong the difference between the two “total field” anomalies becomes 

significant.  It can also be seen from (A8) that the maximum error, for a given magnitude 

of the anomalous field vector b, occurs when the anomalous field is oriented such that F′ = 

F+b and F form an isosceles triangle, with base b, in which case ∆Bm = 0. For example, 

the difference between the two types of total field anomaly can be as large as 1000 nT for a 

10,000 nT anomaly in a 50,000 nT regional field.  
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The gridded measured TMI, ∆Bm, is converted to the projection of the anomalous field 

vector onto the regional geomagnetic field direction, ∆T, which is a true potential field, 

from which the three orthogonal field components can then be reliably calculated. An 

initial estimate of the vector components on a regular grid is obtained by assuming that 

∆Bm = ∆T.  These approximate components are then used to estimate the difference 

between ∆Bm and ∆T, which is then used to obtain a better estimate of ∆T.  The 

components are recalculated and the process is repeated, generally converging rapidly, 

until further improvement is negligible.  The explicit correction procedure is: 

1. Set the initial estimate of ∆T equal to the measured TMI, i.e. 

∆T1 = ∆Bm.         (A9) 

2. Calculate initial estimates of the field components from ∆T1 using equations (A4)-

(A6) and transforming back to the space domain: 
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3.  Rearrange eqn (A8) to calculate a corrected estimate of ∆T: 
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4. Repeat steps 2 and 3 with the updated estimate of ∆T. 
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At convergence, successive estimates of ∆T should differ by less than a threshold 

determined by the expected noise level. A further check on the solution is provided by 

comparison between the estimated ∆Bm calculated from equation (A8), using the final 

estimates of the anomalous components, and the measured ∆Bm.  

 

Appendix II. Aliased power of calculated vector and tensor components 

 

The maximum permissible line spacing to resolve isolated compact sources using TMI or 

TMI gradient data can be estimated using the approach of Reid (1980).  Reid’s analysis can 

also be extended to the vertical gradient of the reduced-to-pole (RTP) TMI, which can be 

regarded as equivalent to Bzz, as shown below.  Total aliased power is defined as the ratio 

of the integrated power spectral density above the Nyquist frequency to the total power 

(i.e. power spectral density integrated from DC to infinite frequency).   Reid’s approach to 

the 2D integration of the power spectrum of the RTP TMI involves integrating the radial 

power spectrum P(k) of a dipole source with respect to wavenumber k, i.e. along a single 

direction in 2D Fourier space.  This is reasonable for estimating aliased power in the cross-

line direction, assuming the along-line sampling interval is small enough that the along-

line aliasing is negligible.  

 

For an equidimensional grid, however, the 2D power spectrum must be integrated over the 

whole plane in Fourier space.  In this case the differential area element dkxdky is equal to 

kdkdθ in polar co-ordinates, which increases the proportion of aliased power, due to the 

extra factor k in the integrand. Closely sampled data collected along lines is useful for 

detailed analysis of individual profiles.  In practice, however, much of the detailed along-

line data is effectively discarded when grid based analysis, such as calculating gradient 

tensor elements, is performed.   

 

For a given source depth beneath the sensor, the sharpest anomaly that a survey is normally 

required to resolve is that of a point dipole.  To simplify the discussion we consider the 

RTP TMI signature of a dipole.  According to Blakely (1996), the spectrum of the RTP 

TMI signature due to a vertically magnetised dipole, at depth h below the sensor, is 

radially symmetric and is given by: 

 

],exp[][ khkBz −=∆ℑ α         (A14) 
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where α  is a constant. The power spectrum is therefore: 

 

].2exp[][)( 222
khkBkP z −=∆ℑ= α        (A15) 

 

For a square grid of measurements at intervals of  ∆x, the aliased power for ∆Bz is: 
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where 

,
x

kN ∆
= π

          (A18) 

 

is the Nyquist wavenumber.   Pedersen and Rasmussen (1990) carried out a similar 

analysis, but used what amounts to a more liberal cutoff criterion for a square grid, with 

their radial cutoff wavenumber κ chosen to make the area  of the disc k ≤ κ equal to the 

square area defined by |kx|,|ky| ≤ kN , i.e. πκ² = 4(kN)².  This criterion produces a cutoff 

wavenumber that is 1.13 kN along the cardinal (x, y) directions and 1.6 times the effective 

Nyquist wavenumber (kN/√2) along the diagonal directions.  Accordingly, I prefer the more 

conservative criterion given above. 

 

The spectrum of the vertical derivative of ∆Bz is obtained by simply multiplying by |k| 

(Blakely, 1996, p.326), i.e. 
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The power spectrum is therefore: 
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and the aliased power fraction is: 
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Figure 15 plots the proportion of aliased power relative to signal power for calculated 

magnetic components and  gradient tensor elements over a dipole source, as a function of 

measured grid spacing ∆x divided by depth h.  It can be seen from Figure 15 that even a 

relatively liberal criterion of less than 10% aliased power in the measured signal requires a 

grid spacing less than ~ h for the TMI and less than ~0.7h for the TMI gradient or for 

calculation of gradient tensor elements from TMI data.  Reid (1980) suggests that 5% 

aliased power is the maximum acceptable for reliable contouring of the data.  The 

corresponding maximum allowable grid spacings are 0.8h for field components and 0.6h 

for gradients.  

 

Table 1 summarises the aliased power for field and gradient components due to a point 

dipole source as a function of grid spacing.  As Reid (1980) pointed out, detailed 

modelling of an anomaly source requires aliased power to be negligible, as most of the  

diagnostic information resides in the higher frequencies.  It is clear from Table 1 that 

sampling at a grid interval greater than ~0.5 h produces unacceptable errors in calculated 

gradients.  The tabulated values also apply to other elementary sources of practical interest.  

For example the aliasing of the gradient signal from a point pole source is comparable to 

the aliasing of the field components from a dipole.  Similarly the frequency content of field 

components from a quadrupole source resembles the spectrum of gradient components 
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from a dipole.  In geological applications a narrow pipe-like body can often be reasonably 

represented by a point pole model.  Ferrous objects at shallow depths often exhibit strong 

quadrupole moments, particularly if they are irregular in shape.  The quadrupole signature 

can therefore be important in near-surface geophysical applications.  

 

This analysis shows that surveys using total field sensors require a very close line spacing, 

comparable to the survey altitude (plus depth to magnetic basement if there is nonmagnetic 

cover), to provide similar information to that given by relatively sparse lines of tensor data, 

even if the sensor noise levels are comparable.  For reliable  modelling of isolated compact 

sources or for accurate calculation of gradients from TMI data when the geology is 

heterogeneous, without a consistent trend,  the sampling interval should be no more than 

about half the depth.   

 

This very strict criterion can be relaxed if the sources are elongated along regional trends 

and are crossed by several survey lines.  Reasonably accurate interpolation between lines is 

then possible, so the effective sample spacing becomes less than the line spacing and 

aliasing is reduced substantially.  In the limit of perfectly 2D geology, a single line across 

strike contains all the information present in the measured field,  the Nyquist wavenumber 

is determined by the sample interval along the line, and in most cases the aliasing becomes 

negligible.    

 

It should be stressed that sufficiently close sampling is necessary, but not sufficient, for 

accurate determination of field and gradient tensor components from TMI surveys.  If the 

stringent criteria for accurate calculation of gradient tensors from TMI or TMI gradient 

data are not fulfilled, the gradient tensor must be determined by measurement.  The extra 

information provided by accurately measured gradient tensor data greatly reduces the need 

for close sampling, as sources that are offline can be located and characterised from just a 

few gradient tensor measurements within the anomalies produced by the sources. 

  



 

 

 

 

Figure 15.  Proportion of aliased power relative to signal power for calculated magnetic 
components and  gradient tensor elements over a dipole source, as a function of measured 
grid spacing ∆x divided by depth 
dashed line indicates aliased power for gradient components.  For typical aeromagnetic and 
ground magnetic surveys over isolated compact sources, the effective measurement 
spacing ∆x is the line spacing. 
 
Table 1. Percentage aliased power in calculated components as a function of scaled 
grid spacing for elementary sources

Scaled grid 

spacing ∆x/h 

Field of Point Dipole/ 

Gradient of Point Pole

% aliased power

4 92.5 

3 84.0 

2 61.6 

1.5 39.7 

1 12.8 

0.75 3.3 

0.5 0.15 

0.25 4 × 10−6 
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Figure 15.  Proportion of aliased power relative to signal power for calculated magnetic 
components and  gradient tensor elements over a dipole source, as a function of measured 

divided by depth h.  The solid line pertains to vector components, the 
dashed line indicates aliased power for gradient components.  For typical aeromagnetic and 
ground magnetic surveys over isolated compact sources, the effective measurement 

Table 1. Percentage aliased power in calculated components as a function of scaled 
grid spacing for elementary sources 

Field of Point Dipole/ 

Gradient of Point Pole 

% aliased power 

Gradient of Point Dipole/ 

Field of Point Quadrupole

% aliased power 

99.4 

98.0 

90.1 

75.5 

40.1 

15.9 

1.4 

0.0001 

Figure 15.  Proportion of aliased power relative to signal power for calculated magnetic 
components and  gradient tensor elements over a dipole source, as a function of measured 

.  The solid line pertains to vector components, the 
dashed line indicates aliased power for gradient components.  For typical aeromagnetic and 
ground magnetic surveys over isolated compact sources, the effective measurement 

Table 1. Percentage aliased power in calculated components as a function of scaled 

Gradient of Point Dipole/ 

Quadrupole 
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CHAPTER 5: INTERPRETATION OF THE MAGNETIC GRADIENT TENSOR AND 
NORMALIZED SOURCE STRENGTH APPLIED TO THE TALLAWANG MAGNETITE 
SKARN DEPOSIT, NEW SOUTH WALES, AUSTRALIA  
 

Clark, D.A. 2012,  Interpretation of the magnetic gradient tensor and normalized source 
strength applied to the Tallawang magnetite skarn deposit, New South Wales, Australia. 
Society of Exploration Geophysicists Annual Meeting Expanded Abstract. 
http://dx.doi.org/10.1190/segam2012-0700.1 
 
Summary 
Acquisition of magnetic gradient tensor data is likely to become routine in the near future.  

In the meantime, significant value can be added to conventional TMI surveys of 

sufficiently high quality by calculating vector and tensor components and applying newly 

developed methods to interpretation of these more complex data forms.  New methods for 

inverting gradient tensor surveys to obtain source parameters have been developed for a 

number of elementary, but useful, models. These include point dipole (sphere), vertical line 

of dipoles (narrow vertical pipe), line of dipoles (horizontal cylinder), thin dipping sheet, 

and contact models.  A key simplification is the use of eigenvalues and associated 

eigenvectors of the tensor.  The normalized source strength (NNS), calculated from the 

eigenvalues, is a particularly useful rotational invariant that peaks directly over 3D 

compact sources, 2D compact sources, thin sheets and contacts, independent of 

magnetization direction.  In combination the NSS and its vector gradient determine source 

locations uniquely.  

 

Introduction 

Pedersen and Rasmussen (1990) and Schmidt and Clark (2006) have strongly advocated 

the advantages of magnetic gradient tensor surveys for exploration applications. Magnetic 

tensor gradiometer systems, based on a variety of technologies, are under active 

development as discussed in a recent review by Clark (2012). In the near future  magnetic 

gradient tensor surveys are likely to become routine. In the meantime, however, in 

favorable circumstances, high resolution total magnetic intensity (TMI) surveys can be 

reprocessed to produce grids of vector and tensor components (Lourenço and Morrison, 

1973, Pedersen et al. (1990), Schmidt and Clark, 1998).  New methods for interpretation of 

vector and tensor data, which have been developed in anticipation of new acquisition 

systems, can also be profitably applied to calculated component data. 
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Pedersen and Rasmussen (1990) and Schmidt and Clark (2006) inter alia have reviewed 

the properties of the magnetic gradient tensor and this background information will not be 

repeated here.  

 

The normalized source strength 

Use of gradient tensor data for detection, localization and characterization (DLC) of 

compact ferrous sources, which can be well represented by a point dipole source, is a topic 

of great practical importance and has been the subject of much research (Wynn, 1999).  

Algorithms for point-by-point inversion of the gradient tensor, to solve for dipole location 

and magnetic moment vector, have been developed by Wynn et al. (1975), Wilson (1985, 

Analysis of the magnetic gradient tensor, DREP Technical Memorandum 85-13, Defence 

Research Establishment Pacific, Canada), hereafter referred to as Wilson (1985), and a 

number of other workers.  

 

A natural scalar parameter of the dipole inversion problem is known as the scaled moment 

or normalized moment, which has the same units as gradient tensor elements, is directed 

parallel to the dipole moment, is proportional to moment (i.e. the source strength), and falls 

off as the inverse fourth power of distance. Wilson (1985) recognized that the normalized 

moment could be calculated from the ordered eigenvalues of the gradient tensor, λ1≥λ2≥λ3: 
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431
2
2

r

Cm=−−= λλλµ          (1) 

 

where m is moment magnitude in Am², r is the source-sensor separation in meters, and C = 

100 nTm/A if µ is given in nT/m.  

 

Note that the RHS of equation (1) represents a positive definite function that exhibits a 

unimodal peak directly above the dipole source, where r is a minimum, completely 

independent of the dipole orientation.  Therefore if a grid of gradient tensor data is 

available over an isolated dipole source, the normalized moment can be calculated from the 

eigenvalues of the tensor and used to locate the dipole (horizontal location beneath the 

peak, depth equal to 1.55 times the half width at half maximum (HWHM)), irrespective of 

the source magnetization.  Once the source is located, determination of the moment vector 

becomes a straightforward linear inversion problem. 
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In a geological context, equation (1) is applicable not only to quasispherical magnetic 

bodies, but to any sufficiently compact source, except possibly very close to the body.  

Furthermore, the relationships in equation (1) can be generalized to other simple source 

types that are often reasonable approximations to geological sources.   Equation (1), which 

expresses normalized moment µ of a dipole source in terms of the eigenvalues of the 

tensor, can be interpreted more generally as a normalized source strength (NSS), which has 

a simple physical interpretation for a number of elementary source types and has generally 

desirable properties.  For simple narrow sources, for spheres, and for horizontal cylinders, 

µ peaks directly above the centre of the source and for wide sheet-like bodies and prisms it 

peaks directly above the edges.  For all 2D sources, for spheres, for compact 3D bodies 

that can be represented by a dipole, and for narrow, axially magnetized pipe-like bodies 

(pole-type sources) µ is completely independent of the magnetization direction.  Beiki et 

al. (2012, submitted to Geophysics, under revision) show that for more complex 3D 

sources µ is only weakly dependent on magnetization direction, substantially less so than 

the 3D total gradient (also known as the analytic signal amplitude). For these sources, the 

generalization of (1) can be written 

 

,2 2
2131

2
2 nr

Cq
I =−−=−−= λλλλµ        (2) 

 

where n = s +1 is the Euler structural index (SI) of magnetic gradients for the particular 

source type (s is the SI for field components) and q is a source term. I1 is the first canonical 

invariant of Pedersen and Rasmussen (1990). The width of the µ anomaly is simply related 

to the source depth. For sources that obey equation (2), µ is clearly a homogeneous 

function that is suitable for Euler deconvolution.  Beiki et al. (2012) have demonstrated the 

efficacy of Euler deconvolution of the NSS for simultaneous estimation of structural 

indices, locations of geological boundaries, and source depths in an area that exhibits 

strong remanent magnetization.  Table 1 summarizes properties of the NSS. 

 

For 2D sources, the intermediate eigenvalue λ2 is zero and the NSS reduces to 
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Thus the 2D normalized source strength is equal to the total gradient, or the analytic signal 

amplitude (ASA) of Nabhigian (1972), of either the vertical field component, Bz, or of the 

strike-perpendicular horizontal component, Bx.  Since, in the 2D case, the total gradient of 

TMI is independent of magnetization direction (Li, 2006), the normalized source strength 

also has this desirable property.  The analytic signal amplitude of the total field anomaly is 

proportional to A(Bi), where Bi is any field component perpendicular to strike, including Bx 

and Bz.  If the strike is magnetic E-W, so that the profile is along the magnetic meridian,  

A(T) = A(Bi). Otherwise the A(T) profile has the same shape as A(Bi), but smaller 

magnitude by a factor of (1−cos²βcos²I), where β is the angle between the strike direction 

and magnetic north and I is the field inclination.  For approximately N-S striking structures 

at low latitudes, where the inclination is small, A(T) becomes much smaller than the 

normalized source strength µ2D, which is equivalent to A(Bi). 

 

An eigenvector corresponding to the zero eigenvalue is (0,1,0)T, i.e. along strike, parallel to 

the y  axis.  In practice, when |λ2| << |λ1|,|λ3| and the eigenvector v2 is sub-horizontal, its 

azimuth can be taken to represent the local strike direction.  When the geology is 

approximately two dimensional, rotating the coordinate system so that the y axis aligns 

with the local strike direction greatly simplifies analysis, as essentially only two 

independent gradient components are significant.   Pedersen and Rasmussen (1990) 

illustrated the utility of eigenvector analysis in determining local strike directions of 

elongated structures.   

 

Source location from the vector gradient of the NSS 

For simple sources that obey equation (2), it is evident that the isosurfaces of  µ are spheres 

centered on the source point.  Since µ falls off with distance, the vector gradient of  µ  

points toward this source point, as shown in Fig.1. If ∇µ is known at two or more  

observation points, the location of the source can therefore be estimated by triangulation. 

Furthermore, since the fall off rate for the gradient of µ is one power of r faster than the 

fall of for µ itself, the distance to the source can also be estimated.  In combination, these 

two pieces of information allow the source location to be estimated from µ and ∇µ at a 

single location. If gradient tensor data are available over a horizontal plane, the NSS can be 

calculated from the tensor and the horizontal derivatives obtained by numerical 

differentiation. Determination of the vertical derivative is not as straightforward. Because 

µ is not harmonic, except for the special case where n = 1 in equation (2), its vertical 
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derivative cannot be calculated by the normal Fourier filtering techniques that apply to 

potential fields. 

 

The vertical derivative of the NSS can be calculated by continuation of the gradient tensor 

elements to a slightly higher level, calculating the NSS at this level from the eigenvalues, 

subtracting the NSS values at the two levels and dividing by the continuation distance. A 

generally more accurate method employs several steps. First the vertical derivatives of the 

canonical invariants I1 and I2 are calculated by applying the product rule of differentiation 

to the  expressions given by Pedersen and Rasmussen (1990) for these invariants in terms 

of tensor elements. The resulting expressions involve vertical derivatives of tensor 

elements, which can be calculated by Fourier filtering. Alternatively, by  interchanging the 

order of differentiation, the vertical derivatives of tensor elements can all be replaced by 

horizontal derivatives (e.g. ∂Bxx/∂z = ∂Bxz/∂x), which can calculated numerically without 

filtering. The results are  
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Expressions for the vertical derivatives of the eigenvalues are obtained by differentiating 

the characteristic equation that defines them.  The result is 
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Finally the vertical derivative of the NSS can be found by differentiating the first 

expression on the RHS of (2) 
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Clearly, from (2), the vertical derivative of µ can also be expressed in terms of vertical 

derivatives of the eigenvalues (Beiki et al., 2012), but the formulation of (4)-(7) allows 

∂µ/∂z to be calculated without any Fourier filtering.  Analogous expressions for the 

horizontal derivatives can be obtained by replacing z by x and y in (4)-(7). 

    

For sources for which the NSS conforms to eqn (2), the location of the source with respect 

to an observation point, −r , is given by 
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Note that this allows estimation of source location directly, without triangulation based on 

estimated directions to source.  In this context, source location refers to the center  of the 

source for the sphere, horizontal cylinder and horizontal line current models, to the top of a 

narrow, axially magnetized pipe that can be represented by a point pole, to the top of a thin 

dipping sheet, and to the top corner of a contact.  When the source type is uncertain, the 

appropriate structural index can be estimated as the value of n for which the clustering of 

location solutions is tightest.  For n too small the vectors to source fail to meet, for n too 

large they overshoot. 

 



 

 

 
Figure 1: Determination of source location using the vector gradient of the NSS 
Directions to source are defined by 
source is proportional to 
 

Figure 2:  Normalized source 
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Determination of source location using the vector gradient of the NSS 
Directions to source are defined by ∇µ.  The displacement vector from observation point to 
source is proportional to µ/∇µ. 

:  Normalized source strength over the Tallawang magnetite deposit.
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Determination of source location using the vector gradient of the NSS µ.  
.  The displacement vector from observation point to 
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Analysis of magnetic data over the Tallawang deposit 

The Tallawang magnetite deposit, which is situated 18 km north of Gulgong, NSW, occurs 

as a skarn along the western margin of the Late Carboniferous Gulgong Granite.  The 

deposit is roughly tabular, striking generally NNW and dipping steeply to the west.  

Schmidt et al. (2004) described the geology of the deposit and analyzed three profiles of 

gradient tensor data acquired using the CSIRO GETMAG system along with a detailed 

conventional ground magnetic survey. Gradient tensor elements calculated from the  

ground magnetic survey using Fourier filtering were in excellent quantitative agreement  

with the measured gradient tensors along the profiles. Figure 2 shows an image of the NSS, 

calculated from the eigenvalues of the gridded tensor data, over the Tallawang deposit. 

Apart from the main ridge of high values that overlies the skarn, several strong, very 

localized anomalies are seen. These correspond to steel drill collars. 

 

Figure 3 shows solutions for the source location, derived using equation (8) with n = 2, 

which is appropriate for the thin sheet geometry of the skarn.  The solutions cluster around 

the top of the fresh magnetite zone, with a mean location of 97.4 ± 0.7 mE, depth 19.9 ±1.1 

m (1 SE, N = 15). As the observation point moves away from the skarn to the east, the 

solutions tend to deepen a little and dip slightly to the west. This is consistent with 

magnetization increasing somewhat down dip, as partial oxidation of magnetite to hematite 

decreases with increasing depth. The choice  n = 2 is justified by the convergence of the 

vectors to source, confirming the appropriateness of the thin sheet model. This indicates 

that the source has considerable depth extent, because the SI should be greater than two if 

the depth extent is limited, approaching  n = 3 for a body with depth extent comparable to 

the depth to top. 

 

Conclusions 

The normalized source strength is a parameter derived from the eigenvalues of the 

(measured or calculated) magnetic gradient tensor that is minimally sensitive to 

magnetization direction. It obeys Euler’s homogeneity equation for a number of useful 

models.  For these source types the NSS and its vector gradient can be combined to 

directly determine source locations.  This concept has been demonstrated using gradient 

tensor data from the Tallawang magnetite deposit. 
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Table 1.  Properties of the NSS for Simple Sources  

Model type NSS µ Source term Location wrt  

observ. point 

Sphere 3Cm/r4 q =  3JV 4µ∇µ/|∇µ |²  

Point pole C |Jz|A/r3 q = |p| =|Jz|A 3µ∇µ/|∇µ |² 

Hor. cylinder 4CJ′A/r3 q = 4J′A 3µ∇µ/|∇µ |² 

Thin sheet 2CJ′t/r2 q = 2J′ t 2µ∇µ/|∇µ |² 

Contact 2CJ′/r q = 2J′  µ∇µ/|∇µ |² 

Horizontal line current 2C|i|/r2 q = 2|i| 2µ∇µ/|∇µ |² 

 

Jz is the vertical component of magnetization in A/m; V is the volume of the sphere; A is 

the area of the flat top of the narrow vertical pipe represented by a point pole, or the cross-

section area of the horizontal cylinder; p is the pole strength in Am; J′ is the magnitude of 

the effective magnetization (the component normal to strike); I is the current in A; h is the 

height of the sensor above the source location (centre for sphere, horizontal cylinder and 

line current models, top of the pipe for the point pole model, top of the sheet for the thin 

sheet model, top corner for the contact model) in meters; r is the distance between the 

source location and the observation point in meters. 

 

 

 

 

 

 



 

 

Figure 3.  Solutions for the location of the top of the sheet

profile is along 60 mN. Solid black lines connect the solution with the station from which 

it was derived. The approximate outline of the skarn body is dashed, the high magn

zone within the skarn is outlined in gray.
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Solutions for the location of the top of the sheet-like skarn at Tallawang.  The 

profile is along 60 mN. Solid black lines connect the solution with the station from which 

it was derived. The approximate outline of the skarn body is dashed, the high magn

zone within the skarn is outlined in gray. 

 

like skarn at Tallawang.  The 
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CHAPTER 6: CORRECTION OF ELECTRIC AND MAGNETIC FIELDS AND 
GRADIENTS MEASURED WITHIN AND AROUND AN INSULATING SENSOR 
CAPSULE IN SEAWATER 
 
Clark, D.A., 2010. Correction of Electric and Magnetic Fields and Gradients Measured 
Within and Around an Insulating Sensor Capsule in Seawater. OCEANS ’10 IEEE 
Conference, Sydney,  24-27 May 2010. 9p. doi: 10.1109/OCEANSSYD.2010.5603523 
(https://wiki.csiro.au/confluence/download/attachments/457769088/CLARK+OCEANS10
+paper+IEEE.pdf) 
 
Abstract  

The presence of a highly conductive medium around a measurement capsule influences 

electromagnetic measurements made in the ocean and fundamentally alters the structure of the 

magnetic gradient tensor.  Additional effects arise if seawater is flowing past the sensor package.  

This paper presents a quantitative analysis of these effects and describes the corrections that need 

to be applied to obtain accurate absolute measurements of electromagnetic fields and gradients in 

the ocean.  For example, for a small spherical cavity within a 1D horizontal quasistatic electric 

current distribution, the electric field within the cavity is parallel to the unperturbed applied field 

and larger by 50%, and the magnetic field at the centre of the cavity is equal to the unperturbed 

magnetic field  that existed at the same point in the conductive medium, prior to insertion of the 

measurement capsule.  The symmetric magnetic gradient tensor within the cavity is uniform.  If the 

unperturbed electric current is parallel to the x axis, the only non-zero components of the magnetic 

gradient tensor within the cavity are Byz = Bzy.  These components are each equal to half the value 

of ∂By/∂z that is produced by the unperturbed current flow in the conductive medium.  The external 

perturbation of the electric field around the cavity has the configuration of a dipole field and the 

external magnetic field due to the cavity is that of an elementary current dipole.  An ellipsoidal 

cavity has an anisotropic response, except in the degenerate case where all axes are equal and the 

cavity is spherical.  Unless the applied field lies along a principal axis of the ellipsoid, the internal 

field is not parallel to the applied field, but is deflected away from the major axis and towards the 

minor axis.  An applied electric field is amplified within the cavity. For a disk-like cavity the 

amplification of the applied electric field normal to the disk can be very large within the cavity.  

The anomalous magnetic field within the ellipsoidal cavity due to electric current flow around the 

cavity is nonuniform, but has a uniform gradient.  At the center of the ellipsoidal cavity the 

magnetic field is equal to the field that existed at that point before insertion of the cavity.  The 

resultant internal magnetic gradient tensor is symmetric and traceless, as required.  Seawater 

motion past a sensor package produces easily detectable effects that can represent an important 

source of electromagnetic  noise.  In the vicinity of a measurement capsule,  water velocities of the 

order of 1 ms-1 produce perturbations of ~45 µVm−1 in electric field, ~75 pT in magnetic field, and 

produce magnetic gradients of ~150 pT/m. 
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INTRODUCTION 

   The CSIRO Division of Materials Science and Engineering is developing sensitive 

magnetic tensor gradiometers, based on high-temperature SQUID technology, for 

deployment in the marine environment. The applications include gradient measurements as 

an adjunct to electric and magnetic measurements in marine CSEM surveys, unexploded 

ordnance detection in  shallow water, and exploration for seafloor mineralization.  

   Electric (E) and magnetic (B) fields within a conductive medium are perturbed by the 

measurement process. In particular, sensors located within or around an insulating 

measurement capsule measure fields that are modified by the diversion of conduction 

currents around the capsule. For quasistatic field measurements in air or free space, where 

conduction and convection currents are absent and displacement currents are negligible, 

the magnetic gradient tensor, which has elements Bij = ∂Bj/∂xi (i,j = 1,2,3), is symmetric, as 

well as traceless. In this case the tensor only has five independent components (e.g. B11, 

B22, B12, B13, B23).  On the other hand, in the presence of conduction currents the curl of B 

is non-zero and the gradient tensor is asymmetric, with eight independent components.    

   This raises the question of what is actually measured by magnetometers and 

gradiometers immersed in the electrically conductive ocean. In particular, how does the 

signal measured within a sealed capsule (within which the gradient tensor is symmetric) 

relate to the field components and the asymmetric gradient tensor that existed in the 

surrounding medium prior to insertion of the measurement package? The answer to this 

question depends on the configuration of the sensors, in particular whether conduction 

currents flow between individual sensors or the entire sensor package is contained within 

an insulating capsule. In the quasistatic limit, which applies to measurements made for 

magnetotelluric and typical marine controlled source EM surveys, and to oceanographic 

applications, the effects depend only on geometry and are independent of frequency. 

   This paper presents theoretical relationships between measured electric and magnetic 

fields and gradients and the corresponding quantities that would exist in the unperturbed 

medium, for a variety of geometries, including ellipsoidal measurement capsules.  The 

effects of water flow around the capsule are also considered. 
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EFFECT OF AN ELLIPSOIDAL CAVITY  

WITHIN A CONDUCTIVE MEDIUM 

 

   Consider an infinite ohmic medium of conductivity σ subject to a uniform applied 

electric field E0. Insertion of an insulating  measurement capsule into the initially uniform 

electric current distribution, of density j0 = σE0, distorts the current flow and the associated 

electric field.  Ellipsoidal cavities can be used to model a wide variety of capsule shapes, 

whilst conveniently allowing analytic solutions.  Let us represent the capsule by a triaxial 

ellipsoidal cavity, centered at the origin, with semiaxes a > b > c along x1, x2, x3 

respectively.  The ellipsoidal coordinates ξ, η, ζ  are the roots, in descending order, of the 

cubic equation in λ 
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where ξ > −c2, −c2 > η > −b2, −b2 > ζ >  −a2 ([1], [2]).  The boundary of the ellipsoidal 

cavity is defined by ξ = 0.  In terms of  Cartesian coordinates, the potential V0 associated 

with a uniform applied electric field E0 is 
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In terms of  ξ, η, ζ,  the applied potential is given by 

  

( )

( )

( ) .
))((

))()((
   

))((

))()((
   

))((

))()((

2222

222

30

2222

222

20

2222

222

100

cacb

ccc

cabc

bbb

caba

aaa
V

−−
+ζ+η+ξ−

−−
+ζ+η+ξ−

−−
+ζ+η+ξ−=

E

E

E

                        (3) 

 

   The electric potential V obeys Laplace’s equation every-where, is continuous at the 

cavity boundary, asymptotically approaches V0 at large distances (ξ ~ r2 >> a2), and is 

subject to the boundary condition ∂V/∂n → 0 as ξ → 0+, since the external electric field is 
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proportional to the electric current within the ohmic medium and no current crosses the 

cavity boundary.  Solving the boundary value problem in ellipsoidal coordinates gives  

 

( ) ( ) ( )
,

111
0)( 3

3

30
2

2

20
1

1

10 x
D

x
D

x
D

V
−

−
−

−
−

−=≤
EEE

ξ                 (4) 

 

for the internal potential, and  
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   In (7)-(8) ))()(( 222 csbsasRs +++= .  The Di (i = 1,2,3) are demagnetizing (or 

depolarizing) factors of the ellipsoid along its major, intermediate and minor axes 

respectively. Explicit expressions in terms of standard elliptic integrals for D1 =  

abcA(0)/2, D2 =  abcB(0)/2, D3 =  abcC(0)/2, and for the functions A(ξ), B(ξ), C(ξ) are 

given in [3].  If two or more axes are equal, or if an axis becomes infinite, the elliptic 

integrals reduce to elementary functions. 

 

Equation (2) implies a uniform internal field given by: 
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   The demagnetizing factors sum to unity. Since D1 ≤ D2 ≤ D3, an ellipsoidal cavity has an 

anisotropic response, except in the degenerate case where all axes are equal and the cavity 

is spherical.  In that case D1 = D2 = D3 = 1/3.  Unless the applied field lies along a principal 

axis of the ellipsoid, the internal field is not parallel to the applied field, but is deflected 

away from the major axis and towards the minor axis.  It is obvious from (9) that an 

applied electric field is amplified within the cavity. For a disk-like cavity D3 → 1 as c/a → 

0, so the amplification of the applied electric field normal to the disc can be very large 

within the cavity. 

 

The corresponding external field components are obtained from (5)-(8) by differentiation: 
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Reference [3] gives explicit expressions for the demagnetizing factors, the functions A(ξ), 

B(ξ), C(ξ) and their derivatives with respect to ξ, and the derivatives ∂ξ/∂xi.  For a 

spherical cavity Di = 1/3, so (9) implies that the internal electric field is parallel to the 

applied field, but amplified by a factor of 1.5.  The external field around a spherical cavity 
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is identical to that of an elementary current dipole located at the center of the cavity, 

immersed in an infinite homogeneous conductive medium, in the limit as frequency goes to 

zero [4]. The moment p of this equivalent current dipole is 

 

p = I∆x = −2π a3j0 = −2π a3σE0.              (13) 

 

where ∆x (<< a) is the length and I is the current carried by the dipole. 

 

Fig.1 shows the variation of the local electric field around a spherical cavity.  Also shown 

is the average electric field over a finite baseline, which is what is measured by a standard 

marine electrometer that estimates the electric field from the potential difference between 

two electrodes, symmetrically disposed about an electronics capsule, divided by the 

electrode separation.  For a long cylindrical cavity, oriented perpendicular to the applied 

field, the internal field is also parallel to the applied field, but in this case is approximately 

doubled in strength, because D2 = D3 = 1/2  for an infinite cylinder. 

 

For a spherical cavity, the perturbation of the electric current corresponds to a ball of 

impressed current j ′ = −j 0, with a return flow that conforms to a dipole field. In this case 

the anomalous magnetic field B′ due to the perturbation of the electric current distribution 

can be calculated by applying Ampere’s circuital law to circular contours centered on an 

axis passing through the sphere, parallel to the applied electric field. In terms of spherical 

polar coordinates r, θ, ϕ with the polar axis along x1, parallel to the applied electric field, 

the anomalous internal magnetic field is 
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The nonzero Cartesian components are 
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and the nonzero anomalous gradient tensor elements are 
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The anomalous magnetic field B′ and corresponding gradient tensor G′ within a spherical 

cavity can also be written in coordinate-free form as 
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where 332211 ˆˆˆˆˆˆ xxxxxxI ++=  is the identity dyadic or  idemfactor. 

 

In vector form the anomalous external magnetic field is 
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and the gradient tensor is 
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The magnetic field configuration given by (19) is identical to that of an infinitesimal 

current element, given by the Biot-Savart law, which is applicable in this case because the 

contributions of the return currents in the medium integrate to zero around the return paths 

[5].  

 

Ampere’s circuital law cannot be used in the same way for a nonspherical cavity, due to 

the lower symmetry of the problem.  Consider initially an ellipsoidal cavity with major 

axis aligned with the applied electric field.  The volume of the cavity τ  = 4πabc/3.  The 

effect of the ellipsoidal cavity can be regarded as the superposition of an ellipsoidal 

distribution of impressed current j ′ = −j0, together with its ohmic return currents in the 

surrounding medium, and the uniform applied current flow j0. The anomalous magnetic 

field B′ arising from the perturbation j ′ of the current distribution is continuous at the 



 

140 
 

cavity surface and satisfies ∇× B′ = µ0j ′ and ∇. B′ = 0 everywhere inside and outside the 

ellipsoid. Outside the ellipsoid j ′ is equal to σ(E−E0), where E is given by (10)-(12). The 

components of B′ that satisfy these conditions are 
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   The anomalous field given by (21)-(25) is solenoidal, has the correct curl everywhere 

and is continuous across the cavity boundary (ξ = 0), as required.  It is therefore the unique 

solution to the boundary value problem.  As confirmation, the anomalous magnetic field, 

given by (24)-(25), conforms to the field of a current dipole at large distances.  Noting that 

for r >> a, ξ → r² and A(ξ), B(ξ), C(ξ)→2/3r3, asymptotic expressions for the field 

components are 
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   It can be seen by comparison with (19) that the expressions on the RHS of (26) and (27) 

are consistent with the corresponding expressions for a spherical cavity of equal τ/(1−D1), 

where D1 = 1/3 for a sphere. 

 

So far only a specific orientation of the ellipsoid has been considered. In general the 

ellipsoid may have arbitrary orientation with respect to the current flow.  If the components 

of the unperturbed current flow with respect to the ellipsoid axes are j1, j2, j3 then the 

resultant anomalous field represents the superposition of the effects that would be 

produced by currents along each of the ellipsoid axes.  The result, obtained analogously to 

(21)-(25), is 
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The anomalous magnetic field within the ellipsoidal cavity is nonuniform, but has a 

uniform gradient.  At the center of the ellipsoidal cavity (x1 = x2 = x3 = 0) the magnetic 

field is equal to the field that existed at that point before insertion of the cavity.  The 

resultant internal magnetic gradient tensor is symmetric and traceless, as required.  Its 

components are given by 
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where the unperturbed gradient tensor is G0 = [ 0
ijG ], which  depends on the configuration of 

the unperturbed current flow, on geological anomalies and on other magnetic sources.  As 

an example, Fig.2 shows magnetic gradient tensor components within and around a 

spherical cavity placed within a 1D current distribution in the ocean.  These results allow 

measurements by sensors that have been calibrated in air to be corrected for the effect of a 

conductive medium.  For a capsule adjacent to a conductivity interface, such as the sea 

surface or seafloor, the interaction effects can be approximately evaluated using the 

method of images.  

 

  



 

 

Fig.1.  Normalized electric field (E) profile, parallel to the uniform applied field, passing 
through the centre of a spherical cavity.  Solid line indicates the local field; the horizontal 
dashed line represents the unperturbed applied field; the line with dots shows the average 
field over a baseline defined by  symmetrically placed potential electrodes.

Fig.2. Magnetic gradient tensor elements along a vertical profile through the centre of a 
spherical cavity within a horizontal current flow distribution of limited depth extent. The 
assumed conductivity of the seawater is 4 Sm
applied electric field of 1 
of thickness D equal to five times the diameter of the cavity.  Within the current flow, but 
beyond the influence of the cavity, the only nonzero gradient tensor component is 
Bzy (solid line). The dashed horizontal line is the unperturbed value of 
current distribution. The dots indicate 
the cavity is significant out to 
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through the centre of a spherical cavity.  Solid line indicates the local field; the horizontal 

the unperturbed applied field; the line with dots shows the average 
field over a baseline defined by  symmetrically placed potential electrodes.

Fig.2. Magnetic gradient tensor elements along a vertical profile through the centre of a 
thin a horizontal current flow distribution of limited depth extent. The 

assumed conductivity of the seawater is 4 Sm−1. Magnetic gradients are normalized to an  
applied electric field of 1 µV/m.  The current flow is confined to an infinite horizontal slab

equal to five times the diameter of the cavity.  Within the current flow, but 
beyond the influence of the cavity, the only nonzero gradient tensor component is 

(solid line). The dashed horizontal line is the unperturbed value of 
current distribution. The dots indicate Byz.  Within the cavity Bzy = 
the cavity is significant out to r ≈ 3a. 
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ELECTRIC AND MAGNETIC EFFECTS OF WATER FLOW 

So far it has been assumed that the conductive medium is stationary.  If the seawater is 

moving with respect to the sensor with velocity v, however, Maxwell’s equations must be 

modified to take the Lorentz field into account.  Scaling arguments show that the 

conduction current totally dominates other sources of magnetic field in the ocean and that 

the contribution of electromagnetic induction to the electric field is minor at low 

frequencies and for quasistatic water flow [6].  We consider steady state water flow and 

static fields and neglect transport of free charges, which  can be shown to be effectively 

absent within the seawater.  Maxwell’s equations for moving media are then [7] 

 

( ) ,00 =+ε PE.∇                   (35) 

 

,0E =×∇                   (36) 

 

,0=.B∇                   (37) 

 

( )[ ],0 vPjB ××+µ=× ∇∇                  (38) 

 

with constitutive equations 

 

( ),FvEj ×+σ=                   (39) 

 

( ),)( 0 FvEP ×+ε−ε=                  (40) 

 

where E = −∇V is the electric field in a stationary reference frame and F is the 

geomagnetic field.  In principle F includes the local anomalous magnetic field due to 

electric current flow, but this contribution is orders of magnitude less than the geomagnetic 

field, so in practice this perturbation can be ignored and F can be taken to be the 

background geomagnetic field, assumed uniform.  The magnetic body force j  × F acting on 

the seawater can be safely ignored because it is minuscule compared to the pressure and 

buoyancy forces that drive the water motion.    
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Equation (38) includes the magnetic effect of the moving electrically polarized medium, 

which is equivalent to that of a magnetized material with magnetization M = P × v.  

However,  the second term in the brackets on the RHS of (38) can be neglected because it 

is many orders of magnitude less than the conduction current.  For example, taking σ  = 4 

Sm−1, ε = 80ε0,  v ≤ 10 ms−1, and a characteristic length L  ~ 1-10 m, implies that the ratio 

of the contribution to the curl of B from motion of the polarized medium to that of the 

conduction current is less than (ε  − ε0)v/σL ≈ 10−9 - 10−10.  Thus we may safely drop the 

term involving P from (38) when determining the electro-magnetic fields.  

 

Incorporating seawater motion into the analysis is straightforward, provided the water is 

assumed to be incompressible (an excellent approximation) and its flow is irrotational, 

which is an idealization that is reasonable in many circumstances, provided the flow is not 

too rapid or turbulent.  Incompressibility implies that 

 

.0=.v∇                   (41) 

 

For irrotational flow 

 

,0=× v∇                   (42) 

 

which implies that 

 

,φ= ∇v                    (43) 

 

where φ  is the velocity potential.  For initially uniform water flow v0 the unperturbed 

velocity potential is φ0 = r. v0.  From (41) and (43), φ  obeys Laplace’s equation.  For ideal 

fluid flow around an ellipsoid the boundary value problem for φ  is identical in form to the 

problem for −V  around an ellipsoidal cavity in a stationary conductive medium.  For 

example, the perturbed velocity potential and corresponding velocity around a spherical 

cavity are 
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The perturbation of the velocity field is given by: 
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   The electric potential associated with flow of a conductive medium is not necessarily 

harmonic.  For this type of ideal fluid flow, however, the electric potential does obey 

Laplace’s equation.  From (35) and (40)  
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because v is irrotational and F is uniform.   

 

Assuming for the moment that there is no applied electric field in the stationary reference 

frame, from (39) the boundary condition that there is no electric current flow into the 

cavity implies 

 

( ) ( )[ ] .0ˆ ˆˆ  =×+′σ= == arar r.Fvr.Erj.                (47) 

 

   Therefore 
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where E′ = −∇V′  here is the electric field due to the charge distribution on the cavity wall 

that is established initially by the Lorentz field associated with the moving medium. 

   From (45) and (48), the boundary condition is 

 

[ ]( ) [ ], ˆ
2

3
 ˆ)ˆ(ˆ

2

3
 000 Fv.rFrr.vv.r ×=×−=









∂
′∂

=arr

V                    (49) 

 



 

147 
 

since [ ] .0ˆˆ =×Fr.r  

 

   Equation (49) gives a Neumann boundary condition for the external potential. The 

solution is 
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   The electric potential given by (50) is that of an elementary current dipole in a 

homogeneous medium of conductivity σ with moment 

 

.
4

9
3 00

3 FvFvp ×στ−=×πσ−= a                 (51) 

 

   The internal potential is determined by the Dirichlet boundary condition that matches the 

potential across the cavity boundary, yielding 
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3
)( 0 Fvr. ×−=≤′ arV                  (52) 

 

   The corresponding internal electric field due to the water flow in the surrounding 

medium is therefore 

 

. )(
4

3
)( 0 FvE ×=<′ ar                  (53) 

 

Equation (53) implies that the internal electric field arising from the perturbed water flow 

is 0.75 times the Lorentz field that pertains to the unperturbed flowing medium.  

 

   Differentiating (50) gives the external electric field components due to the water flow 

around the cavity. Combining these, the anomalous external electric field vector is 
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It is obvious from (53)-(54) that only the component of the unperturbed water flow that is 

perpendicular to the geomagnetic field contributes to the anomalous electric field in and 

around the cavity.  

 

The average electric field components between symmetrically placed potential electrodes, 

as measured by a triaxial electrometer, are 
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As an example, (55)-(57) show that a favorably oriented water flow speed of 1 ms−1 in a 

geomagnetic field of 60 µT produces a substantial internal electric field of up to 45 µVm−1.  

As the potential electrodes are moved away from the cavity wall, the measured average 

field decreases from that value to  ~5.7 µVm−1 at r = 2a, i.e. when the electrometer 

baseline is twice the cavity diameter, and to  ~1.7 µVm−1 at r = 3a.  In general an applied 

electric field is also present and the perturbation of this field by the cavity, which is 

discussed above, supplements the effects of water flow around the cavity. 

 



 

149 
 

There are two contributions to the magnetic effects of flow of a conductive fluid around a 

measurement capsule.  The Lorentz field associated with water flow produces an electric 

current, which is diverted around the insulating capsule.  A magnetic field and associated 

gradient are produced by this perturbed electric current flow.  Additionally, the diversion 

of water flow around the capsule produces a local perturbation of the Lorentz field, with 

associated induced currents and a secondary magnetic field.   The vortex sources of the 

magnetic field may be separated into contributions EB′ from the anomalous conduction 

current and vB′  from the perturbation of the water flow, with  

 

,0 EB ′σµ=′× E∇                  (58)  

 

.0 FvB ×′σµ=′× v∇                  (59) 

 

   In (59) the contribution of moving polarized fluid has been neglected, as justified above.  

The external magnetic field associated with the equivalent current dipole (51) is given by 

the Biot-Savart law.  The result is 
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The magnetic field lines due to this effect alone circulate around an axis of the sphere that 

is perpendicular to both v0 and F.  The Cartesian components of the magnetic field due to 

this current dipole are harmonic.  The continuation of this field into the cavity is 

 

[ ]
.

4

)(3
)(  00 rFv

B
××−

=≤′ σµ
 ar E                (61) 

 

There is an additional contribution to the anomalous magnetic field, however, from the 

electric current associated with the Lorentz field of the perturbed water flow.   From (59) it 

can be seen that, unlike EB′ , the Cartesian components of vB′  are not harmonic outside the 

cavity, since  
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The last three terms on the RHS drop out by (41) and the fact that F is uniform. Therefore 

 

.)(0 vF.BB ′σµ−=′=′ ∇∇∇ 22
v                 (63) 

 

where B′ is the total anomalous field arising from currents associated with the perturbed 

electric field and the Lorentz field of the perturbed water flow.  

 

The general solutions of the Poisson equations (63) for the Cartesian components of B′ 

comprise particular solutions supplemented by harmonic functions.  It can be verified by 

calculating the Laplacian of each of the following equations, and the divergence and curl 

of the vector formed from all three components, that solutions of (63) that yield the correct 

divergence and curl everywhere for the total exterior field are 
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The radial component of B′ is therefore 
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At the surface of the cavity this becomes 
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Within the cavity there are no currents and B′ is therefore derivable from a harmonic scalar 

potential Ω, i.e. 

 

B′ = −∇Ω,                  (69) 

 

where 

 

.02 =′−=Ω∇ B.∇                  (70) 

 

Matching the radial component of the field across the cavity wall gives the Neumann 

boundary condition: 
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The solution of (70) subject to (71) is: 
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The internal field components, obtained by differentiation of (72),  are therefore 
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and the gradient tensor elements are 
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Since B′ as given by (64)-(66), (73) is continuous, has the correct divergence and curl 

everywhere, and is regular at the origin and at infinity, it represents the unique solution to 

the boundary value problem. Note that the internal field components vary linearly with the 

Cartesian co-ordinates and that the internal gradient is uniform. 

 

The contributions of water flow parallel to the geomagnetic field (which produces no 

background Lorentz field) and perpendicular to the geomagnetic field produce different 

configurations of the anomalous electric and magnetic fields in and around the cavity.  For 

water flow parallel to F, there is no anomalous electric field. The magnetic field arises 

solely from the diversion of water flow around the cavity, producing flow components that 

are not parallel to F.  The electric currents induced by this flow circulate about the x1 axis 

(parallel to v0 and F) and effectively simulate a gradient coil set, with coils in series 

opposition, wound around the cavity. The magnetic field is rotationally symmetric about v0 

and F.  Fig.3 shows the resulting magnetic field pattern.  

 

For the component of water flow that is perpendicular to F the internal magnetic field lines 

are confined to planes perpendicular to v0 × F,  and the only nonzero gradient tensor 

element is Bxy, if y is taken to be parallel to F.  The internal magnetic field lines are 

hyperbolas given by x² − y² = ±C² (see Fig.4). The external field configuration is more 

complex than for the case of v0 parallel to F, but the overall field fall-off is 1/r² for all 

cases.  From (64)-(66) and (73)-(74), the magnetic effects of seawater flow can be 

substantial.  For example, for a geomagnetic field of 60 µT and a cavity of radius 0.5 m 

within a 1 ms-1 flow, the field perturbation adjacent to the cavity boundary is up to ~75 pT 

and the gradients are of the order of 150 pT/m. 
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Fig.3. Lines of anomalous magnetic field within and around a spherical cavity due to the 
water flow component parallel to the geomagnetic field. The view is a section containing 
v0 and F, through the centre of the sphere. The field is rotationally symmetric about the x 
axis. Inside the cavity the gradient is uniform, with maximum gradient parallel to the  
x axis. 
 

 

Fig.4. Lines of anomalous magnetic field within and around a spherical cavity due to the 
water flow component perpendicular to the geomagnetic field. The view is a section 
containing v0 and F, through the centre of the sphere. Inside the cavity the only nonzero 
gradient tensor element is Bxy , which is uniform, and gradients perpendicular to the section 
are zero. 
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CONCLUSIONS 

This study has shown that perturbation of electric and magnetic fields and gradients by the 

measurement process is significant in the marine environment. Accurate measurements 

require corrections for diversion of electric currents and water flow around measurement 

capsules. This has implications for marine magnetotelluric and CSEM measurements and 

for magnetic tensor gradiometry surveys in the ocean. 
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CHAPTER 7:  NEW APPROACHES TO DEALING WITH REMANENCE:  
MAGNETIC MOMENT ANALYSIS USING TENSOR INVARIANTS AND  
REMOTE DETERMINATION OF IN SITU MAGNETISATION USING A  
STATIC TENSOR GRADIOMETER 
 
Clark, D.A., 2013. New approaches to dealing with remanence: magnetic moment analysis 
using tensor invariants and remote determination of in situ magnetisation using a static 
tensor gradiometer (Extended Abstract), ASEG-PESA Conference, Melbourne. 
  
 
SUMMARY 
 

Assuming without evidence that magnetic sources are magnetised parallel to the 

geomagnetic field can seriously mislead interpretation and can result in drill holes missing 

their targets.  I present two new methods for providing information about magnetisation of 

anomaly sources, independent of the geometry of the causative bodies.  The first method is 

based on analysis of magnetic gradient tensor data.  Integral moments of tensor invariants 

locate the horizontal and vertical centres of magnetisation and estimate the magnetisation 

direction.   The depth estimate allows correction of the integral moments for the finite 

range of integration, which can accordingly be restricted to the main part of the anomaly. 

This reduces interference from neighbouring sources.  This method provides information 

on location, total magnetic moment (magnetisation × volume), and magnetisation direction 

of a compact source, without making any assumptions about its shape. 

  

The second method employs a single combined gradiometer/magnetometer, operating in 

base station mode within a magnetic anomaly of interest.  The response to geomagnetic 

time variations allows the contributions of induced magnetisation and remanence to the 

anomaly to be separated.  This method allows remote estimation, prior to drilling of (i) the 

total magnetisation direction of the source, which is a key to accurate modelling (ii) the 

remanence direction, which can provide geological information such as age of intrusion or 

alteration, (iii) the Koenigsberger ratio Q, which is indicative of the magnetic mineralogy 

of the source. If the source is compact, the method also provides a direct indication of the 

direction to its centroid. 

 

Key words: magnetisation, remanence, tensor invariants, normalised source strength, 

geomagnetic variations 
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INTRODUCTION 

  

A major source of ambiguity in interpretation of magnetic survey data lies in the fact that 

the physical property contrast  that produces the observed magnetic anomalies is a vector, 

the magnetisation, which may in principle have any orientation. In the absence of 

independent information about source magnetisation, magnetic modelling usually proceeds 

on the assumption that the source is magnetised parallel to the local geomagnetic field. 

However, if the source magnetisation direction differs  significantly from the present field 

direction, due to remanent magnetisation or strong anisotropy, models that fit the data may 

be grossly in error. For example, interpreted dips of sheet-like bodies and plunges and 

locations of pipes will be erroneous, with serious consequences for drill targeting. For 

highly magnetic sources, self-demagnetisation effects may  cause similar problems. 

 

This paper presents two methods for analysis of individual magnetic anomalies that allow 

remote estimation of source magnetisation, while making minimal assumptions about 

source geometry. The first method relies on integral moments,  calculated over a 

measurement plane, of tensor invariants.  These invariants are calculated from magnetic 

gradient tensor data, which can be either measured directly or derived from high quality 

conventional magnetic surveys through Fourier filtering or equivalent source techniques.   

 

The integral moments yield estimates of the horizontal and vertical location of the source 

centroid, the total magnetic moment (magnetisation × volume), and the magnetisation 

direction.  Although integral moment methods are based on integrals calculated over the 

entire horizontal plane, the centroid depth estimate can be corrected for the finite radius of 

integration. Once this depth is known, the integral moments of vector and tensor 

components, as used in Helbig (1963) analysis and its offshoots, can also be accurately 

corrected for the finite radius of integration, allowing numerical integrations to be confined 

to the main part of the anomaly, thereby reducing contamination of the integral moments 

by neighbouring sources and greatly improving parameter estimation.   

 

Provided the area of integration extends well beyond the horizontal dimensions of the 

source, and the source can be assumed to be depth limited, with bottom depth comparable 

to the radius of integration or smaller, integral moment methods are in principle 

independent of source geometry. With the above caveats, estimated parameters are quite 
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robust and do not depend on assumptions about source shape and size. The method is 

sensitive, however, to erroneous base levels in the vector and tensor components, and to 

regional trends, which must be removed before applying the method. 

 

The second method is a variant of the differential vector magnetometry (DVM) approach 

of Clark et al. (1998), which is only now becoming feasible due to improving sensor 

technology. The original DVM method employs two carefully aligned vector 

magnetometers, operating in base station mode, with one placed within a magnetic 

anomaly of interest and the other outside the anomaly to monitor unperturbed geomagnetic 

time variations.  The new method replaces the two vector magnetometers with a single 

gradiometer plus magnetometer package, placed within an anomaly of interest.  The 

response to geomagnetic time variations allows the contributions of induced magnetisation 

and remanence to the anomaly to be separated.  This method allows remote estimation, 

prior to drilling of (i) the total magnetisation direction of the source, which is a key to 

accurate modelling (ii) the remanence direction, which can provide geological information 

such as age of intrusion or alteration, (iii) the Koenigsberger ratio Q, which is indicative of 

the magnetic mineralogy of the source. If the source is compact, the method also provides 

a direct indication of the direction to its centroid. 

 

With current measurement capabilities the modified DVM method can be applied to 

anomalies for which contribution of   induced magnetisation to the anomalous field and 

gradient is sufficiently large (>100 nT and > 1 pT/m respectively),  by monitoring 

geomagnetic time variations (diurnal, pulsations, substorms etc.) of tens of nT. Given an 

adequate signal-to-noise ratio, the estimated magnetic properties are completely 

independent of any assumptions about source geometry, including bodies of effectively 

infinite depth extent. Thus this method can in principle resolve pathological cases of 

ambiguity associated with 2D dipping sheets and axially magnetised plunging pipes of 

great depth extent. 

 

METHOD I: INTEGRAL MOMENTS OF TENSOR INVARIANTS AND  

COMPONENTS 

 

Helbig (1963) showed that it was possible in principle to determine the magnetic moment 

vector of an arbitrary finite source by calculating various integral moments of magnetic 
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vector components over an entire horizontal plane above the source.  This method was 

largely neglected over subsequent decades, probably because vector data were rarely 

available. Schmidt and Clark (1997, 1998) revived the method, with some modifications, 

by applying it to vector components calculated by Fourier processing of a conventional 

TMI survey. Since then, a number of researchers, including Phillips (2005), Li et al. 

(2004), Foss (2006), and Caratori Tontini and Pedersen (2008), have developed and 

applied this concept. Phillips et al. (2007) extended the analysis to integral moments of the 

magnetic gradient tensor. 

 

Consider an isolated source with magnetisation M , which produces an anomalous field 

vector b. The anomalous magnetic gradient tensor B is a symmetric traceless second order 

tensor (Pedersen and Rasmussen, 1990) given by the vector gradient of b. Rotational 

invariants of the tensor, such as the canonical invariants I1, I2 of Pedersen and Rasmussen  

(1990), can always be expressed in terms of the eigenvalues of the tensor. The normalised 

source strength (NSS) µ is a particularly useful invariant, because it is completely 

independent of magnetisation direction for a number of simple, but useful source types: 

spheres, compact sources that can be represented by a dipole, axially magnetised thin 

pipes, and 2D sources of arbitrary shape (Beiki et al. 2012; Clark, 2012a,b,c), and is only 

weakly dependent on magnetisation direction for 3D sources in general (Pilkington and 

Beiki, 2012). The NSS is defined by 

 

,31
2
2 λλλµ −−=          (1) 

 

where λ1 ≥ λ2 ≥ λ3 are the eigenvalues of the tensor in nonincreasing order, which sum to 

zero due to the tracelessness of the tensor. For a dipole source at (x0, y0, h) the NSS takes 

the simple form 
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where C = µ0/4π, m is the magnitude of the magnetic moment m and r is the distance from 

the dipole to the measurement point (x,y,0).  Clearly from equation 2, the NSS measured 

over a plane peaks directly over a dipole source (where r is a minimum) and is independent 

of orientation of m. The depth of the dipole is simply related to the halfwidth of the NSS 
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anomaly. This suggests that measurements of µ over a plane can provide robust estimates 

of dipole location, unaffected by magnetisation direction. 

 

The intermediate eigenvalue λ2  for a dipole source is given by Clark (2012b) as 

 

,
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cos
42 r

C rm.== φµλ         (3) 

 

where φ is the angle between the magnetic moment vector and the displacement vector r  

from the dipole to the observation  point. Equation 3 shows that λ2 depends on the 

orientation of the moment, and therefore can provide information about the magnetisation 

direction. 

 

The horizontal location (x0, y0) of the centre of magnetisation can be estimated from first 

integral moments of µ or µ²: 
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In practice the numerical integration is carried out over a finite area to obtain initial 

estimates of (x0, y0).  The area of integration is then centred on this point and the integrals 

recalculated to make any necessary small corrections to the location, which is subsequently 

used as the origin of coordinates for calculation of all other integral moments. The depth of 

the centre of magnetisation, h, can be found from 
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The magnitude of the magnetic moment, m, is given by 
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Equations 4-7 are exact for a point dipole source, which is equivalent to a uniformly 

magnetised sphere, and are also very accurate for compact sources of arbitrary shape and 

for fairly equidimensional sources buried at moderate depths, for which the dipole 

contribution dominates the anomaly.  The horizontal location of the centre of 

magnetisation is also well estimated, even for sources of complex geometry, due to the 

high centricity of the NSS over arbitrary 3D sources (Pilkington and Beiki, 2012).  The 

depth of the centre of magnetisation can be expected to be reasonably accurate, provided 

the depth extent of the source is smaller than the radius of integration. 

 

Corrections of the calculated integrals for the finite ranges of x and y are necessary to 

account for the tails of the anomaly, which are buried in noise, obscured by interfering 

anomalies or may lie outside the survey area. The first step is to correct the initial 

estimated depth of the centroid, h′, obtained from equation 6 when the integration is 

perfomed over a disc of radius R: 
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In equation 8 ρ and ϑ are polar coordinates centred on (x0, y0). Solving equation 8 for the 

true depth h in terms of the known quantities R and h′ gives 
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Once the true depth of the centroid has been estimated, all other integral moments used in 

the subsequent analysis can be corrected for the finite area of integration using analytic 

integrals based on the theoretical fall-off rate of a point dipole anomaly, as done for 

conventional Helbig analysis by Schmidt and Clark (1998) and Caratori Tontini and 

Pedersen (2008).  

 

While it is often more convenient to carry out 2D integrations over square or rectangular 

areas, rather than discs, it turns out that the corrections for finite discs and for squares of 

equivalent area (with side X = R√π) are almost identical for the integral moments of 

interest, differing by at most about 1% over a wide range of R/h.  Therefore the corrections 

based on discs of integration, which are much easier to calculate, can be used, even though 

the integrations are performed using square windows. 

 

The corrected magnitude of the magnetic moment, based on the initial estimate m′ is 

 

].)/(3)/(31[ 42 RhRhmm ++′=                    (10) 

 

The corrected components of the magnetic moment m =  

(mx, my, mz) are given by 
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Note that the declination of the magnetisation, given by dec = atan2(mx,my), is independent 

of the radius of integration (provided the integral is centred correctly above the source).  

On the other hand, the inclination of the magnetisation, given by I = sin−1(mz/m), requires a 

correction for the finite range of integration. 

 

METHOD I: FIELD EXAMPLE  

 

The methodology outlined in the previous section has been applied to analysis of publicly 

available aeromagnetic data from northern NSW, over the southern part of the Thompson 

Fold Belt.  Anomalies over inferred intrusions, corresponding to four prominent discrete 

equidimensional anomalies within a relatively subdued background field, have been 

studied in detail. Pratt et al. (2012) modelled the sources of these anomalies, which they 

labelled Pipes A-D, and estimated magnetisations of the causative bodies. The northern 

pair of pipes are clearly reversely magnetised (Figure 1), indicating that their 

magnetisations are dominated by reverse polarity remanence, whereas the southern pair of 

anomalies (Figure 2) have magnetisations of normal polarity, making the presence of 

remanence less obvious.  However, detailed analysis of these latter anomalies shows that 

their magnetisations are somewhat oblique to the present field direction, showing that 

remanence also contributes to the total magnetisation of these bodies. 

 

Vector and gradient tensor components were calculated from the gridded TMI data by 

Fourier filtering, as described by Schmidt and Clark (1998). Grids of tensor invariants 

were then calculated from the tensor elements. Figure 3 shows images of the invariants µ 

and λ2 over the northernmost anomaly (Pipe A). The NSS is almost radially symmetric and 

lies within a very quiet background, implying that the source is isolated and compact, with 

minimal interference from neighbouring anomalies, hence it is ideal for application of 

Helbig-type analyses. NSS anomalies for the other pipes are qualitatively very similar. The 

centroid of the source is inferred to lie directly beneath the centre of the NSS anomaly. The 

negative sign of the λ2 anomaly indicates that the magnetisation is reversed and its slight 

asymmetry suggests  that the magnetisation is steep, but slightly off vertical. 

 

Source centroid locations and magnetic moments were calculated using equations (4)-(13) 

for each of the four anomalies.  The results were then compared with parameters obtained 

using several other methods: 
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A. conventional Helbig analysis based on integral moments of vector components, 

B. Helbig-type analysis of gradient tensor elements, following Phillips et al. (2007), 

C. point-by-point inversion of the anomalous vectors and tensors as described by 

Clark et al. (2009) and Clark (2012a,b), 

D. quadratic regressions of 1/√µ versus x and y, which from equation 2, yield 

estimates of  x0, y0, h, m. 

E. linear regressions of 1/√µ versus x, y, and ρ² = x²+y² which from equation 2, yield 

radially averaged estimates of  x0, y0, h, m. 

F. source location based on the vector gradient of the NSS (Clark, 2012b) 

G. the inversion results of Pratt et al. (2012). 

H. Table 1 summarises the results obtained for the four pipes using method I of the 

previous section. 

 
Table 1. Inverted parameters for Pipes A-D using Method I 
 
Parameter PIPE A PIPE B PIPE C PIPE D 
x0 (mN) 6693498 6691678 6675979 6673529 
y0 (mE) 476931 476293 504074 505905 
 h (m) 312 287 547 741 
m (Am²) 1.09×108 1.06×108 1.34×108 3.88×108 
mx (Am²) 2.42×106 -2.54×107 2.57×107 1.31×107 
my (Am²) 2.77×107 -5.39×106 3.38×106 2.55×107 
mz (Am²) 7.42×107 7.43×107 -9.84×107 -2.83×108 

m* (Am²) 7.92×107 7.84×107 1.02×108 2.84×108 
Dec (°) 85.0 192.4 7.5 62.8 
Inc (°) +69.5 +71.4 −75.2 −84.2 
*magnitude of moment calculated from components of m 
 
 

Table 2 compares magnetisation directions obtained using method I, methods A-C and the 

inversion results (G). All the  other methods give quite good agreement with the directions 

from the inversion model, which are assumed to be accurate due to the good fits to the data 

and the palaeomagnetic plausibility of the results. Directions from tensor Helbig analysis 

(method C) are inherently insensitive to the radius of integration and agree particularly 

well with the inversion results, but accurate estimates of moment magnitudes depends on a 

substantial correction that requires accurate estimation of h using method I.  Caratori 

Tontini and Pedersen (2008) suggested a method for estimating the centre of magnetisation 

from second order integral moments of vector components, but it fails to estimate depths 
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correctly for this data set, possibly because of the steepness of the magnetisations and the 

large corrections required for finite integration area because of the slow fall-off of the 

integrands.  

 

All methods indicate moments of about 108 Am² for pipes A-C and a somewhat larger 

moment, ~3 ×108 Am², for pipe D. Methods C-F, which directly estimate source location 

are in good agreement for both horizontal location and depth. Table 3 compares magnetic 

moment and depth estimates for all pipes. Note that Pratt et al. (2012) give depths to the 

tops of the modelled pipes, not depths to centroids. Twice the  difference between the two 

depths may give an indication of the depth extent of the pipes. 

 
Table 2. Directions of resultant magnetisation of northern NSW pipes obtained using 
different methods 
 
 
Method 

Direction of magnetisation: dec°, inc°; (angular difference from inversion result °) 
PIPE A PIPE B PIPE C PIPE D 

Method I (this paper) 85.0, +69.5; (12.6) 192.4, +71.4; (11.4) 7.5, −75.2; (7.6) 62.8, −84.2; 
(10.8) 

A (vector Helbig) 58.6, +65.0; (4.8) 219.5, +58.1; (15.4) 226.9, −83.3; 
(19.9) 

219.5, −78.2; 
(15.5)  

B (tensor Helbig) 60.7, +63.4; (3.0) 222.9, +64.2; (9.1) 349.2, −80.6; (7.3) 332.2, −83.6; 
(2.1) 

C (vector-tensor 
invers.) 

60.8, +71.6; (11) 208.6, +61.8; (13.6) 350.4, −70.9; (4.3) 344.8, −83.7; 
(3.3) 

G (inversion model) 63.3, +60.5; (0) 229.6, +73.0; (0) 337.2, −74.1; (0) 321.5, −82.0; (0) 
 

 
Table 3. Magnetic moment and depth estimates for northern NSW pipes obtained using 
different methods 
 
Method PIPE A 

m (Am²); h (m) 
PIPE B 

m (Am²); h (m) 
PIPE C 

m (Am²); h (m) 
PIPE D 

m (Am²); h (m) 
Method I (this paper) 9.4 ± 1.5 ×107; 312 9.2 ± 1.4 ×107; 287 1.02 ± 0.16 ×108; 

547 
2.84 ± 0.52 ×108; 

741 
A (vector Helbig) 9.2 ×107; - 9.2 ×107; - 1.2 ×108; - 3.2 ×108; - 
B (tensor Helbig) 9.9 ×107; - 9.0 ×107; - 1.0 ×108; - 3.6 ×108; - 
C (vector-tensor 
invers.) 

8.1 ×107; 279 8.6 ×107; 313 1.4 ×108; 594 2.3 ×108; 660 

D (1/√µ[x,y, x²,y²]) 1.1 ×108; 276 1.4 ×108; 211 1.6 ×108; 554 2.5 ×108; 653 
E (1/√µ[x,y, ρ²]) 8.9 ×107; 278 9.1 ×107; 257 1.2 ×108; 554 2.5 ×107; 653 
G (inversion model) -; 160* -; 115* -; 370* -; 470* 
*depths to top of models (not centroids) 

 
METHOD II: USING A STATIC GRADIOMETER TO DETERMINE 

MAGNETISATION 

The second method presented here extends the theory given by Clark et al. (1998) to 

exploit the sensitivity of SQUID-based magnetometers and gradiometers to detect local 

perturbations of anomalies associated with time-varying magnetisation induced by 

geomagnetic variations. Figure 4 illustrates the principle of the method. Clark et al. (1998) 
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Figure 1. TMI anomalies over the northern pair of pipes (A & B of Pratt et al. (2012)), 
showing evident reversed polarity. Normalised colour stretch, contour interval is 25 nT. 

 

 

Figure 2. TMI anomalies over the southern pair of pipes (C & D of Pratt et al. (2012)), 
showing subtle signs of normal polarity magnetisation steeper than the present field. Linear 
colour stretch, contour interval is 10 nT. 

A 
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showed that the anomalous field vector b, measured at a fixed location within the anomaly, 
is related to the source magnetisation vector J by the matrix equation 

 

b = AJ,          (14) 

 

where A is the second order gradient tensor of the pseudo-gravitational potential. The 

susceptibility is assumed to be isotropic and the magnetisation of the source is assumed to 

be uniform, at least in direction. A depends on the geometry and location of the source, but 

is independent of the magnetisation. A geomagnetic variation δF produces a change δJ = 

kδF in the induced magnetisation, which also equals the change in the resultant 

magnetisation Jres, because the remanence is unaffected. This in turn produces a change in 

the anomalous field and its gradient.  By continuously monitoring  geomagnetic variations 

and gradient perturbations the contributions of induced and remanent magnetisations can 

be separated. Fluctuations in the vertical gradients of b, for example, are given by 
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Time series of the gradients and δF yield least squares estimates of the elements of k∂A/∂z. 

The resultant magnetisation of the source, divided by the unknown susceptibility, can then 

obtained by inverting the relationship, analogous to equation (14), between the gradient 

anomaly and the resultant magnetisation 
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Equation (16) determines the direction of the resultant magnetisation, which is  crucial 

information for accurate modelling, but not its absolute magnitude. Similar analysis of the 

orthogonal gradients provides data redundancy, allowing consistency checks and 

improving error estimates. Because the direction of the induced magnetisation is known, 

the direction of remanence and the Koenisberger ratio Q can also be calculated, using 

 

,)/()/( resrem FJJ −= kk                     (17) 
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./// remrem FkkFQ JJ ==                     (18) 

 

As noted by Clark et al. (1998) eigenvector analysis of the matrix A (or its derivatives) can 

also provide a direct indication of the direction towards the centroid of a compact source.  

 

The original differential vector magnetometry method trialled by Clark et al. (1998) 

required two sensitive vector magnetometers, separated by hundreds of metres and aligned 

to within seconds of arc. The method proposed here requires only a single rigidly mounted 

package containing a vector magnetometer and gradiometer, that can be placed anywhere 

within the anomaly and monitored over several hours to allow sufficient geomagnetic field 

variation.  The Superconductivity and Magnetism Group at CSIRO Materials Science and 

Engineering is adapting a sensitive high-temperature SQUID magnetometer and tensor 

gradiometer package with gradient sensitivity of about 2 pT/m, developed for underwater 

UXO detection (Young et al., 2010), for this purpose. Field trials using this instrument are 

planned for April 2013. 

  

CONCLUSIONS 

Value can be added to existing high quality TMI surveys by calculating vector and tensor 

components and using methods developed for analysis of these types of data, although 

direct measurement of the gradient tensor is optimal (Clark, 2012a,b,c). For relatively 

isolated anomalies, analysis of integral moments of tensor invariants, particularly the 

normalised source strength and the intermediate eigenvalue (method I), provides useful 

information on source location, direction of magnetisation and total magnetic moment, 

even when the numerical integrations are restricted to the main portion of the anomaly. 

The horizontal location of the centre of magnetisation is very robust, particularly when 

determined from the first integral moment of  µ², and for compact sources the depth of the 

centroid can be reliably estimated when a correction for the finite radius of integration is 

made.  The centroid depth is not only important in its own right, but is a crucial parameter 

for applying corrections to Helbig-type analyses of vector and tensor components, which 

are in principle independent of source shape (for finite sources).  

 

Magnetic moment vectors estimated using method I and other Helbig-type analyses yield 

directions of the resultant magnetisation (remanent plus induced), which is crucial for 
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accurate modelling, and give an indication of the size of the source, when plausible 

magnetisation intensities are assumed. 

 

Method I, like all Helbig-type analyses, is not applicable to sources of great depth extent 

relative to the resolvable width  of the anomaly. Vertical pipe-like bodies, not necessarily 

narrow or equidimensional, can be analysed by applying these methods to vertical 

derivatives of the field and/or tensor components and invariants derived from them (Clark, 

2012b).  

 

Method II uses time series of vector and gradient measurements to determine the following 

properties without making any assumptions about source geometry or  location: 

1. direction of total magnetisation (required for   accurate modelling; eliminates most 

ambiguity), 

2. direction of remanence, which provides useful geological information such as age 

of formation or alteration,  

3. Koenigsberger ratio Q, which gives information on the magnetic mineralogy of the 

source,  

4. total magnetic moment of a compact source, which is analogous to the total 

anomalous mass inferred from a gravity anomaly and can indicate probable size of 

the source for plausible magnetisation strengths,  

5. a direct indication of direction to a compact source, which can be used to site initial 

drill holes,  

6. depth and horizontal location of the centroid of a compact source from two stations, 

occupied simultaneously or consecutively. 

 

Points 1-4 can assist prioritisation of targets prior to drilling and points 1 and 4-6 aid in 

drill targeting. Method II is not restricted to sources of limited depth extent, allowing it to 

resolve pathological cases of ambiguity associated with 2D dipping sheets and axially 

magnetised plunging pipes of great depth extent. However, for sources of great strike 

extent that are effectively 2D, only the components of magnetisation in the plane normal to 

strike (which are the only contributors to the observed anomaly) can be determined. 

 

  



 

 

Figure 3. Tensor invariants over Pipe A. LHS is the NSS 

eigenvalue λ2. Contour inteval for both is 50 pT/m.  

 

 

 
Figure 4. Principle of remote determination of 

geomagnetic field F undergoes a fluctuation 

Jind, but does not affect the contribution of remanence J

Jres. The change in source magnetisation produces a change in the observed field and its 

gradient within the anomaly.
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Figure 3. Tensor invariants over Pipe A. LHS is the NSS µ, RHS is the intermediate 

. Contour inteval for both is 50 pT/m.   

Figure 4. Principle of remote determination of in situ magnetic properties. The regional 

geomagnetic field F undergoes a fluctuation δF, which perturbs the induced magnetisation 

affect the contribution of remanence Jrem to the resultant magnetisation 

. The change in source magnetisation produces a change in the observed field and its 

gradient within the anomaly. 

 

 

, RHS is the intermediate 

 

situ magnetic properties. The regional 

F, which perturbs the induced magnetisation 

to the resultant magnetisation 

. The change in source magnetisation produces a change in the observed field and its 
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CHAPTER 8: METHODS FOR DETERMINING REMANENT AND TOTAL 
MAGNETISATIONS OF MAGNETIC SOURCES - A REVIEW.  
 

Clark, D.A., 2014.  Methods for determining remanent and total magnetisations of 
magnetic sources - a review, accepted by Exploration Geophysics. 

Abstract 

Assuming without evidence that magnetic sources are magnetised parallel to the 

geomagnetic field can seriously mislead interpretation and can result in drill holes missing 

their targets.  I review methods that are available for estimating, directly or indirectly, the 

natural remanent magnetisation (NRM) and total magnetisation of magnetic sources, 

noting the strengths and weaknesses of each approach. These methods are: (i) magnetic 

property measurements of samples, (ii) borehole magnetic measurements, (iii) inference of 

properties from petrographic/petrological information, supplemented by palaeomagnetic 

databases, (iv) constrained modelling/inversion of magnetic sources, (v) direct inversions 

of measured or calculated vector and gradient tensor data for simple sources, (vi) 

retrospective inference of magnetisation of a mined deposit by comparing magnetic data 

acquired pre- and post-mining, (vii) combined analysis of magnetic and gravity anomalies 

using Poisson’s theorem, (viii) using a controlled magnetic source to probe the 

susceptibility distribution of the subsurface, (ix) Helbig-type analysis of gridded vector 

components, gradient tensor elements, and tensor invariants, (x) methods based on 

reduction to the pole and related transforms, and (xi) remote in situ determination of NRM 

direction, total magnetisation direction and Koenigsberger ratio by deploying dual vector 

magnetometers or a single combined gradiometer/magnetometer to monitor local 

perturbation of natural geomagnetic variations, operating in base station mode within a 

magnetic anomaly of interest.   

 

Characterising the total and remanent magnetisations of sources is important for several 

reasons. Knowledge of total magnetisation is often critical for accurate determination of 

source geometry and position. Knowledge of magnetic properties such as magnetisation 

intensity and Koenigsberger ratio constrains the likely magnetic mineralogy (composition 

and grain size) of a source, which gives an indication of its geological nature.  Determining 

the direction of a stable ancient remanence gives an indication of the age of magnetisation, 

which provides useful information about the geological history of the source and its 

environs.  
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Key words: remanence, susceptibility, magnetisation, magnetic anomalies, inversion, 

Koenigsberger ratio 

 

Introduction   

Magnetic anomalies are perturbations of the geomagnetic main field that are produced by 

magnetisation contrasts within the Earth’s lithosphere. Although the distribution of 

magnetisation is heterogeneous over a wide range of scales, in many cases magnetic 

sources can be adequately represented by discrete bodies with effectively uniform 

magnetisation, surrounded by a uniformly magnetised medium.  These sources may 

represent distinct rock units, ore bodies, zones of alteration (metamorphic or 

hydrothermal), buried ferrous objects etc., depending on the geological environment and 

the scale of the anomalies.  

 

The total magnetisation M  of a source is the vector sum of two contributions: induced 

magnetisation and natural remanent magnetisation (NRM): 

 

M  = MNRM + M IND         (1) 

 

where M IND is a function of the applied field F and MNRM is independent of F. Because the 

geomagnetic field is relatively weak, the induced magnetisation is proportional to F, to a 

good approximation. For most geological sources the induced magnetisation vector is 

parallel to the inducing field, so  

 

M IND = kF,          (2) 

 

where k is a scalar quantity, the (isotropic) magnetic susceptibility. Clark (1997) has 

reviewed the susceptibility and remanence properties of magnetic minerals and the rocks 

that contain them.   

 

However for rocks with well-defined layers of differing magnetic mineral contents (e.g. 

banded iron-formations), or with preferred orientation of magnetic minerals (e.g. many 

metamorphic rocks  and pyrrhotite-bearing ores and rocks), M IND is not always parallel to 
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F and the constant of proportionality between these vectors is then a second order tensor, 

K , which characterises the anisotropic susceptibility, i.e.  

 

M IND = KF .          (3) 

 

Equation (3) is a matrix equation, where M IND and F are column vectors and K  is a 3 × 3 

symmetric matrix with the susceptibility tensor components as its elements. If the 

susceptibility is isotropic K  = kI , where I  is the identity matrix. Note that in SI 

susceptibilities are dimensionless and magnetisations are conventionally expressed in A/m, 

so F in equations (2)-(3) must also be given in A/m. For example, if the geomagnetic field 

is given as B = 50,000 nT, then F = 50,000×10−9/(4π×10−7) = 39.8 A/m.  

 

Even if remanence is negligible and the susceptibility of the source is isotropic, the 

direction of the  induced magnetisation may diverge significantly from that of the inducing 

field if the susceptibility of the source is sufficiently high. A source with strong 

magnetisation produces an internal field (the self-demagnetising field) that perturbs the 

geomagnetic field significantly. The effect is to reduce the effective inducing field and, if 

the source is not equidimensional, to deflect the induced magnetisation away from the 

inducing field direction. In this case the effective susceptibility is smaller than the intrinsic 

susceptibility and is anisotropic (Clark and Emerson, 1999).  This  macroscopic anisotropy, 

associated with self-demagnetisation, deflects the induced magnetisation towards the plane 

of a sheet-like source and towards the long axis of an elongate source. Self-

demagnetisation modifies the remanent and total magnetisations analogously to an induced 

magnetisation (Emerson et al., 1985).  As a rule of thumb, self-demagnetisation corrections 

are significant for susceptibilities above ~0.1 SI and are crucial for k > 0.5 SI. 

 

Exact analytic corrections for self-demagnetisation are only available for ellipsoidal 

sources with homogeneous properties. The resultant magnetisation M ′ of an ellipsoid, in a 

uniform external applied field F0, with uniform intrinsic  remanence MNRM and 

homogeneous, but anisotropic, intrinsic susceptibility K , corrected for self-

demagnetisation, is given by: 

 

M ′ = (I + KN)−1(MNRM + KF0),       (4) 
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where N is the demagnetising tensor (Clark et al., 1986). N is a symmetric second order 

tensor, with unit trace if SI units are used. If CGS units are used the trace of N is 4π. 

Because the CGS susceptibility is a factor of 4π lower than the SI susceptibility, the 

product kN is the same in both systems of units. The eigenvectors vi (i = 1,2,3) of the 

demagnetising tensor are parallel to the ellipsoid axes. The corresponding eigenvalues of N 

are the demagnetising factors N1, N2, N3 along the ellipsoid axes. Clark et al. (1986) give 

expressions for the demagnetising factors of ellipsoids. If the susceptibility is isotropic, the 

magnetisation components with respect to these principal axes are: 
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Emerson et al. (1985) give formulae for the exact demagnetising factors of useful limiting 

cases of ellipsoids (spheres, infinite circular and elliptic cylinders, infinite sheets, prolate 

spheroids, and oblate spheroids), as well as approximate demagnetising factors for prisms 

and vertical cylinders.  

 

The ellipsoid model has proved its worth in areas such as the Tennant Creek Field (Farrar, 

1979;  Clark and Tonkin, 1987; Hoschke, 1991), where discrete ironstone bodies that host 

Cu and Au mineralisation generally have approximately ellipsoidal shapes, and for some 

massive sulphide orebodies, e.g. the Elura Zn-Pb-Ag orebody (Clark and Tonkin, 1994), 

which occurs as two vertical pyrrhotite-rich pipes. However there are circumstances in 

which simple corrections for self-demagnetisation are insufficiently accurate. Hillan 

(2013a,b) discusses new approaches to dealing with self-demagnetisation when simple 

approximations break down (e.g. very magnetic sources with edges, corners, or irregular 

shapes that produce highly non-uniform demagnetising fields; inhomogeneous sources; or 

complex magnetic environments with interactions between neighbouring sources).   

 

The computational burden of correcting calculated magnetisation distributions for self-

demagnetisation and interactions can be reduced when the susceptibility is isotropic and 

homogeneous and the remanent magnetisation vector is uniform inside each body. The 

internal field within each body is given by F = F0 + HD, where HD = −NM ′ is the self-

demagnetising field of the body, which is generally not uniform. The total magnetic flux 
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density inside the body is B = µ0(F + M′), which obeys Maxwell’s equation ∇.B = 0.  

Therefore, if the properties are homogeneous 

 

∇.F = ∇.B/µ0 − ∇.M ′ = −∇.M ′ = = −∇.(kF + MNRM) = −k∇.F, 

 

which implies that  ∇.F = 0. It follows immediately that  ∇.(F0 + HD) = ∇.HD = 0 and 

∇.M ′ = 0.  

 

The magnetostatic field produced by a magnetised body is attributable to (i) a volume 

distribution of pole density given by −∇.M ′, and (ii) a surface distribution of poles with 

density M ′.n (Blakely, 1996, p.84-85). Since the divergence of M ′ vanishes inside a body 

with uniform NRM and  homogeneous isotropic susceptibility, as shown above, the 

magnetostatic field of such a body, both external and internal, arises solely from its surface 

and can be calculated using a surface integral. This justifies the use of surface integrals 

alone to calculate self-demagnetisation and interaction effects, as in the integral equation 

approach developed by Eskola and Tervo (1980), which was  modified in order to handle 

thin bodies by Furness (1999, 2001). 

 

On the other hand, the inhomogeneous demagnetising field interacts with anisotropic  

susceptibility to produce a non-vanishing divergence of the induced magnetisation. If the 

susceptibility is anisotropic, therefore, self-demagnetisation corrections for complex or 

multiple interacting bodies require a full volume integral approach. Some highly magnetic 

bodies, such as banded iron-formation (BIF) units, banded quartz-magnetite units and 

massive pyrrhotite orebodies, are highly anisotropic, so in certain environments there is a 

need to iteratively calculate volume integrals, using an finite volume discretisation with 

appropriate boundary conditions. Algorithms that can in principle incorporate anisotropic 

susceptibility as well as remanence into forward modelling and inversion in highly 

magnetic environments include those of Lelièvre and Oldenburg (2006), Hillan et al. 

(2013a,b), and Fullagar and Pears (2013). 

 

Clark (2000) presented a case study where self-demagnetisation of highly magnetic sheet-

like ironstone bodies significantly affects the form of the magnetic anomaly – the Osborne 

iron-oxide copper-gold deposit. Failure to account for self-demagnetisation in the early 

stages of exploration at Osborne produced an approximately 50° error in interpreted dip of 
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the ironstones, resulting in initial holes drilling down-dip and missing the target. Austin et 

al. (2014) modelled a complex, highly magnetic environment at the La Candelaria iron-

oxide copper gold deposit in Chile, including self-demagnetisation and interactions 

between strongly magnetised bodies, which strongly distort the associated anomalies. The 

modelling, which used the algorithm of Hillan et al. (2013a,b) and incorporated magnetic 

property measurements, demonstrated that the anomalies arise predominantly from induced 

magnetisation, contrary to earlier suggestions that strong remanent magnetisation is 

required to explain the observed magnetic signatures.  

 

The Koenigsberger ratio Q describes the relative strength of remanent and induced 

magnetisations, i.e.  

 

Q = |MNRM|/|M IND|.         (6) 

 

Q  is a scalar parameter that is independent of the magnetisation direction. Other useful 

parameters that characterise the importance of remanence are the angular differences θ and 

θNRM between the inducing field and, respectively, the resultant magnetisation and the 

remanence, i.e.  
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where the hats indicate unit vectors.   

 

These quantities are related by 
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Given Q ≥ 1, θNRM is uniquely determined by θ : 
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whereas if Q < 1, there are two possible values of  θNRM, given by 
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Pratt et al. (2012) call θ  the Apparent Resultant Rotation Angle (ARRA) when it is 

determined by inversion of a magnetic anomaly.  

 

Cordell and Taylor (1971) noted that the minimum value of Q is constrained when the 

ARRA is known. In terms of our notation, their expression can be written 
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which implies that the minimum NRM intensity is 
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Equation (11) implies that remanence is at least as important as induced magnetisation if θ  

≥ 90°, and is at least half as intense as the induced magnetisation if θ  is as small as 30°.  

Of course, Q can also be much larger than the values given by equation (11). 

 

If Q is specified, the direction of remanence can be determined from the direction of total 

magnetisation (Cordell and Taylor, 1971). Using our notation, their expressions are 

equivalent to:  
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Note that the direction of remanence is uniquely determined by the direction of resultant 

magnetisation and the value of Q  for Q ≥ 1, but for Q < 1, there are two possible solutions. 

Usually Q is not known, so equation (13) gives a range of possible remanence directions, 

corresponding to different values of Q, within the plane containing F and M . 

 

Conversely, if the direction of remanence is specified, from palaeomagnetic information 

for example, then Q can be determined if the direction of total magnetisation is known, 

using: 
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where θ and θNRM are given by equation (7). 

 

Macnae (1994) suggests an alternative parameter to Q given by: 

 

R = |M stable|/|M IND + MVRM| = |M stable|/|kF + MVRM| ≈ |M stable|/keffF,   (15) 

 

where M stable is the stable ancient remanence, MVRM represents the viscous remanent 

magnetisation (VRM) acquired in the recent geomagnetic field, and keff is an effective 

susceptibility that incorporates the viscous component of magnetisation. Note that the 

contribution of VRM to keff is not measured by susceptibility meters. R is therefore a 

measure of the relative importance of stable ancient remanence, which is generally oblique 

to the present field direction, and the effective long-term induced magnetisation that is 

more-or-less along the present field direction. The approximate equality on the RHS of 

equation (15) arises because the VRM is acquired mostly over the last 780,000 years of the 

Brunhes normal chron and therefore is a time-averaged vector that lies close to the present 

dipole field (PDF) direction as calculated from the axial geocentric dipole model, whereas 

the pure induced direction is parallel to the present field (PF), which reflects secular 

variation and may differ from the PDF by up to ~20°.  

 

Although use of R is a reasonable suggestion, the motivation for its introduction stems 

from a belief that VRM is often a major contributor to the magnetisation of remanence-

dominated sources (Macnae, 1994). This is almost never the case, as will be discussed 
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below. As described in the next section, standard palaeomagnetic techniques can resolve 

measured NRMs into stable and viscous components, which is useful for evaluating the 

contributions of each to the total remanence. 

 

Characterising the total and remanent magnetisations of sources is important for several 

reasons. Knowledge of total magnetisation is often critical for accurate determination of 

source geometry and position. Knowledge of magnetic properties such as magnetisation 

intensity and Koenigsberger ratio constrains the likely magnetic mineralogy (composition 

and grain size) of a source, which gives an indication of its geological nature.  Determining 

the direction of a stable ancient remanence gives an indication of the age of magnetisation, 

which provides useful information about the geological history of the source and its 

environs. Several methods exist for estimating the magnetic moment vector of a source, 

without any knowledge of its shape. This yields directions of the resultant magnetisation 

(remanent plus induced) and gives an indication of the size of the source, when plausible 

magnetisation intensities are assumed. 

  

MAGNETIC PROPERTY MEASUREMENTS ON SAMPLES 

 

Clark and Emerson (1991) describe some of the methods used to determine magnetic 

properties of rock and ore samples. Measurement of magnetic properties of samples taken 

from a magnetic source provides the most direct and, in principle, most reliable estimate of 

source induced, remanent and total magnetisations.  In many cases samples are not 

available and, even if they are, there are many pitfalls and subtleties to interpretation of 

petrophysical measurements. Austin et al. (2013a,b) discuss some of these issues.  Schmidt 

and Lackie (2014) presented a method for measuring remanent and induced magnetisations 

in the field. This method is an elaboration of a technique, originally described in 1973, that 

can be found in Breiner (1999). Magnetic property measurements on even a small set of 

samples can provide a qualitative guide to interpretation and semiquantitative constraints 

on modelling. However reliable quantitative estimation of magnetisation of a source (e.g. a 

rock unit, orebody, alteration zone, structural zone) from samples requires: 

1. extensive sampling of a representative portion of the source (and its surroundings, 

if the environment is magnetic), 

2. well-calibrated susceptibility and NRM  measurements on standard samples (or 

with accurately determined corrections for non-standard samples), 
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3. correction of apparent susceptibility and remanence measurements for self-

demagnetisation effects, to obtain the corresponding intrinsic properties, for sample 

susceptibilities greater than ~0.1 SI, 

4. careful analysis of measured remanence data to determine if measured sample 

NRMs are contaminated by spurious components, such as drilling-induced 

remanence, lightning effects, or isothermal components acquired since sampling 

(e.g. from logging with pencil magnets),  to remove these spurious components by 

palaeomagnetic cleaning, and to decompose complex multi-component NRM into 

its constituent components (each of which records a separate geological event or 

geomagnetic environment),  

5. rigorous statistical analysis to estimate bulk mean properties, with error estimates, 

that recognises the vector nature of magnetisation and, if the samples are 

anisotropic, the tensor nature of susceptibility. 

 

With regard to point 1 above, care should be taken to make the sample collection as 

representative as possible, avoiding the temptation to select the most magnetic portions, 

and sampling zones with obviously distinct properties (veins, shear zones etc.) in 

proportion to their occurrence.  

 

Regarding point 2, laboratory susceptibility instruments are generally calibrated using 

known masses of chemically pure paramagnetic salts. This is very reliable for weak 

susceptibilities, but the accuracy of the calibration for stronger samples relies on the 

linearity of the instrument over many decades of susceptibility, which depends on the 

physical principles that underlie operation of the instrument. For example, instruments that 

employ air-cored coils are inherently more linear (albeit less sensitive) than those that use 

coils with ferromagnetic cores. It is important to have independently measured calibration 

specimens at the upper end of the susceptibility range for rocks. 

 

Hand-held susceptibility meters are calibrated for measurements on flat slabs and are best 

suited for  measurements made on smooth, flat, fresh outcrops. For the commonly used 

hand-held meters calibration standards in the form of blocks or cakes with diameter ≥ 30 

cm and thickness ≥ 15 cm are equivalent to infinite slabs. The fall-off with distance from 

the surface of the sample can be  determined empirically using nonmagnetic spacers and 

used to make approximate corrections for  outcrops with pronounced rugosity or a 
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weathered crust. Use of these meters on drill core samples, split cores, small blocks etc. 

requires empirically determined correction factors that take the core diameter or block size 

into account (Schmidt and Lackie, 2014). 

 

Hand-held susceptibility meter measurements made on strongly magnetic materials are 

affected by self-demagnetisation.  The meter produces a primary field, which induces a 

magnetisation distribution in the sample. The meter detects the secondary field arising 

from this magnetisation distribution. For a homogeneous magnetic half-space of 

susceptibility k, the boundary conditions for B and H at the rock-air interface imply that 

the secondary field above the half-space is everywhere proportional to k /(1+ k /2). This 

result can be obtained using the method of images. Provided that the susceptibility output 

of the meter is proportional to this secondary field, it follows that the apparent 

susceptibility k′ of the half-space measured by the instrument is: 

 

k′ = k /(1 + k /2).         (16) 

 

Equation (16) implies that the effective SI demagnetising factor at the interface for a 

homogeneous half-space is ½. The true susceptibility, found by inverting equation (9), is 

therefore: 

 

k = k′/(1 − k′/2)     [hand-held meter, large flat slab].     (17) 

 

For strongly magnetic rocks, equation (17) should be used to correct the apparent 

susceptibilities given by hand-held susceptibility meters, assuming the output of the 

instrument is linear in the induced secondary field. It should be checked with the 

manufacturer whether or not the inherent nonlinearity described by equation (16) has been 

incorporated into the displayed output. 

 

Regarding point 3 above, equation (5) implies that both susceptibility and remanence 

measurements on strongly magnetic specimens need to be corrected for self-

demagnetisation, in order to obtain the intrinsic properties of the sampled material. The 

effect on susceptibility is dependent on the geometry of the sample/measuring instrument 

system, not just the sample shape. For isotropic susceptibility and equidimensional 

specimens, the intrinsic susceptibility of the specimen is given by: 



 

184 
 

 

k = k′/(1 – k′N1),         (18) 

 

and the intrinsic remanence is given by: 

 

MNRM = (1 + kN2) M ′NRM,        (19) 

 

where k is the intrinsic susceptibility, k′ is the apparent susceptibility as measured by the 

instrument, N1 is the demagnetising factor for the susceptibility instrument/sample 

configuration, MNRM is the true remanence, M′NRM is the apparent remanence and N2 is the 

isotropic demagnetising factor of the isolated specimen.  In the most general case, for 

inequidimensional, anisotropic specimens, the generalisations of (18) and (19) that yield 

demagnetisation-corrected intrinsic properties are: 

 

K  = (I − K ′N)−1K ′;  MNRM = (I + KN)M ′NRM ,     (20) 

 

Analysis of the reluctance of the magnetic circuit for a ferromagnetic-cored transformer 

bridge shows that the SI demagnetising factor N1 is approximately equal to the total 

residual gap between the specimen and the poles of the magnetic core, divided by the total 

gap length. Therefore, if the specimen fills the entire gap, the demagnetising factor is 

effectively zero (neglecting leakage flux) and if the specimen is a very thin disc the 

demagnetising factor approaches its maximum value of 1. 

 

For standard palaeomagnetic specimens, which have an isotropic demagnetisation tensor, 

the SI demagnetising factor N2 is 1/3, so 

 

MNRM = M ′NRM (1 + k/3),        (21) 

 

where k is determined from (18).  

 

Ideally, susceptibility instruments should operate at (i) field strengths comparable to the 

geomagnetic field in order to minimise nonlinearity effects, which are important for 

multidomain (MD) pyrrhotite grains larger than about 30 µm (Clark, 1984; Worm et al., 

1993; Martín-Hernández et al., 2008),  for some high-Ti titanomagnetite-bearing rocks 
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(Jackson et al., 1998), and for large MD hematite crystals (Guerrero-Suarez and Martín-

Hernández, 2012), and (ii) at low frequencies (≤ 1 kHz) to minimise the effects of 

frequency dependent susceptibility and to ensure that measured susceptibility 

measurements are not unduly affected by high sample conductivity of, for example, 

massive sulphide ores (Worm et al., 1993; Yang and Emerson, 1997).  

 

Regarding point 4 above, measured NRMs of samples are often contaminated by 

palaeomagnetic noise.  In this context, palaeomagnetic noise refers to components that are 

unrepresentative of the in situ remanence, such as isothermal remanence (IRM) 

components acquired through exposure to moderate to strong magnetic fields; drilling-

induced remanence acquired in the magnetic field inside the core barrel, due to stress 

release during coring (Audunsson and Levi, 1989; Pinto and McWilliams, 1990); chemical 

remanent magnetisation (CRM) components associated with alteration of magnetic 

minerals in surface samples by weathering; or short term viscous remanence (VRM) 

components acquired post-collection in weak ambient fields, either by very “soft” large 

MD grains or by ultrafine single domain (SD) grains around the superparamagnetic (SPM)-

stable SD transition.  However long term VRM acquired in the geomagnetic field since the 

last geomagnetic reversal is representative of the bulk in situ magnetisation and is not 

categorised here as noise, although it is an annoyance to palaeomagnetists (unless it is used 

for core orientation), who are mainly interested in ancient remanence components. 

Lightning strikes are common sources of IRM noise in outcrop and very near surface 

samples, particularly on hilltops and in areas with low erosion rates.  Mining operations 

and logging with pencil magnets often contaminate measured NRMs.  

 

The most common palaeomagnetic cleaning methods are alternating field (AF) 

demagnetisation, which initially removes remanence carried by grains with low coercivity 

then, as it proceeds, progressively higher coercivities, and thermal demagnetisation, which 

successively unblocks increasingly stable components of remanence (Butler, 1992; Dunlop 

and Özdemir, 1997). Low temperature demagnetisation, accomplished by cooling 

specimens in liquid nitrogen and then rewarming to room temperature in zero magnetic 

field, is a useful pre-treatment for removing soft palaeomagnetic noise components, such 

as IRMs and  drilling-induced remanence, carried by MD magnetite or hematite grains, 

while leaving more stable remanence components relatively unaffected (Schmidt, 1993).  

Other less used demagnetisation methods include chemical demagnetisation (Dunlop and 
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Özdemir, 1997, p.457-458) which can potentially preferentially remove weathering 

associated CRM and can resolve CRM overprints from primary detrital remanent 

magnetisation (DRM) in sedimentary rocks, and microwave demagnetisation (Walton et 

al., 1992; Suttie et al., 2010), which can simulate thermal demagnetisation of the magnetic 

grains with negligible heating of the matrix, thereby avoiding potential production of new 

magnetic minerals in the samples during demagnetisation. 

 

Figure 1 illustrates the principle of palaeomagnetic cleaning of measured NRMs that are 

unrepresentative of the bulk in situ remanence, in order to estimate the true contribution of 

remanence to the magnetisation of the sampled source.  The measured NRM of the sample 

comprises three components: a stable ancient TRM, a VRM overprint acquired over the 

Brunhes chron, and an IRM noise component. If the stability spectra of three components 

do not overlap, appropriate stepwise demagnetisation of the NRM allows the components 

to be separated cleanly. In that case, successive remanence vector end-points define three 

linear segments; the initial segment corresponds to the IRM, the intermediate segment 

represents the VRM, and the final segment, which heads directly towards the origin, 

corresponds to the TRM.  Decomposition of the NRM vector into its three constituent 

components is then straightforward.  

 

As can be seen in Figure 1, if the stability spectra of the different components overlap, the 

demagnetisation paths are curved through the transition between linear segments, where 

two or more components are being demagnetised simultaneously. If overlap of stability 

spectra is not complete, the directions of the remanence components can be determined by 

fitting least-squares best-fit lines to the linear segments from individual specimens 

(Kirschvink, 1980; Kent et al., 1983) or groups of specimens (Schmidt, 1982). If overlap of 

spectra precludes well-defined linear segments, other analysis methods such as Hoffman-

Day plots (Hoffman and Day, 1978; Halls, 1979) or remagnetisation circles (Halls, 1976; 

McFadden and McElhinny, 1988), with the caveats discussed by Schmidt (1985), can be 

used to extract the component directions. Once the directions associated with each 

component are determined, the contribution of each component to the measured NRM can  



 

 

 
Figure 1. Palaeomagnetic cleaning of contaminated NRM to remove unrepresentative IRM  
noise and to estimate representative 
TRM component and VRM acquired in the recent geomagnetic field. The dots represent 
successive remanence vector end
presentation the three components are assumed to be coplanar. Cleaned NRM1 has not 
completely removed the IRM contamination, whereas cleaned NRM2 has essentially 
removed all the IRM, but has also removed some of the original VRM. The 
demagnetisation curves (top) and corresponding stability spectra (middle) of the three 
remanence components are also 
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t and VRM acquired in the recent geomagnetic field. The dots represent 
points during stepwise demagnetisation. For simplicity of 
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emoved the IRM contamination, whereas cleaned NRM2 has essentially 

removed all the IRM, but has also removed some of the original VRM. The 
demagnetisation curves (top) and corresponding stability spectra (middle) of the three 
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be estimated, from which the “cleaned NRM”  that represents the uncontaminated in situ 

remanence of the sample can be calculated.   

 

For the scenario shown in Figure 1, the cleaned NRM directions of multiple samples will 

be distributed along a great circle path between the stable TRM and the recent field 

direction. The uncleaned measured NRMs of a sample collection are scattered away from 

this trend due to the IRM contamination.  Note that the vectors denoted “cleaned NRM1” 

and “cleaned NRM2” in Figure 1 serve as approximate estimates of the uncontaminated in 

situ NRM. The former is somewhat “undercleaned”, the latter slightly “overcleaned”. The 

uncertainty in identifying the cleaned NRM direction simply by inspection, without using 

the quantitative analyses of multicomponent remanence mentioned above, arises because 

of overlapped stability spectra for the IRM and the other components. This overlap also 

means that a portion of the in situ VRM has been demagnetised by the time the IRM has 

been eliminated. However, the original intensity of the VRM can be approximately 

estimated by extrapolation back to “zero demagnetisation” of the demagnetisation curve 

(intensity of vector differences versus demagnetisation step) from the corresponding linear 

portion of the vector demagnetisation diagram. A similar procedure can be applied to 

estimate the original uncleaned TRM intensity.  

 

It is clear from the discussion above that determination of representative bulk in situ 

remanence of a source from measurements on samples can be a non-trivial task, and that 

careful palaeomagnetic cleaning and analysis of demagnetisation trends is essential if the 

NRM is multicomponent, or if significant contamination of measured NRMs occurs. Clark 

and Tonkin (1994) present an example of a magnetic anomaly associated with strong , 

relatively complex, multicomponent remanent magnetisation carried by pyrrhotitic 

metasediments in the Cobar area of New South Wales. Careful analysis of detailed AF and 

thermal demagnetisation data on oriented drillhole samples enabled resolution of sample 

magnetisations into a normal component of moderate stability, overprinting a more stable 

component that could be of either polarity. Evaluating the average contributions of each 

component to the bulk magnetisation of the unit, and incorporation of drilling data that 

defined the geometry of the magnetic zone, enabled excellent quantitative agreement 

between the predicted and observed anomalies, confirming that the source had been 

intersected and the anomaly was predominantly associated with remanence.  In simple 

cases, where measured NRMs have well-grouped directions that are clearly ancient and 
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intensities are fairly consistent, analysis of NRM measurements is straightforward and very 

useful for constraining magnetic modelling. 

 

Regarding point 5 above, it should be noted that magnetic properties of samples from a 

given unit often vary over a wide range and may exhibit strongly skewed unimodal or even 

multimodal distributions. Naïve application of standard statistical analyses can lead to 

serious errors in estimating appropriate averages. The aim of the statistical analysis should 

be to calculate the population mean susceptibility and the population mean remanence 

vector from a representative sample collection (as shown in Figure 2), because each 

approximately homogeneous small portion of a heterogeneous source contributes to the 

total magnetic moment in proportion to its magnetisation times its volume. This means 

that, at distances that are large compared to the scale of heterogeneity, the magnetic 

anomaly is proportional to the arithmetic mean magnetisation vector. In some 

petrophysical studies other measures of central tendency are used (e.g. median, mode, 

geometric mean) on the grounds that they may better represent a “typical” value of 

susceptibility when the probability distribution is highly skewed. However, as argued 

above, these measures are not the most appropriate for estimating susceptibility for 

modelling purposes. 

 

Whatever the susceptibility distribution, the arithmetic mean of the sample susceptibilities 

is an unbiased estimator of the population mean, but it may not be the best estimator if the 

distribution is non-Gaussian. The arithmetic mean is not robust for strongly skewed or 

multimodal distributions, as it can be strongly influenced by a few outliers. In many cases 

the susceptibility distribution is unimodal, but is strongly skewed, so it is not well 

represented by a Gaussian curve.  In most  such cases, however, the distribution is 

approximately lognormal. If so, appropriate parametric statistical tools exist for estimation 

of the population mean from the minimum variance unbiased estimator and for calculating 

its confidence limits (Aitchison and Brown, 1957).   

 

For multimodal distributions, one possible approach is to analyse each mode separately 

and combine the results afterwards. Nonparametric statistical methods, such bootstrapping, 

can be applied to data with complicated distributions. Bootstrap methods have been 

developed for susceptibility anisotropy data (Constable and Tauxe, 1990) and 

palaeomagnetic data (Tauxe et al., 1991), but as yet no published studies of nonparametric 
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methods applied to analysis of full vector data, with a range of intensities and variable 

directions, have appeared. 

 

Although more rigorous methods for analysis of magnetisation vectors require 

development, there is no excuse for some abuses of data that are occasionally perpetrated.  

Remanent intensities should not be averaged without regard for the corresponding 

directions. As an example, the contribution of scattered magnetisations to the bulk 

magnetisation of a source is obviously much less than that of well-grouped vectors with 

similar magnitudes. Similarly, Koenigsberger ratios should not be averaged. The 

representative value of Q should be calculated from the best estimates of the mean 

remanence vector and the mean susceptibility. 

 

BOREHOLE MEASUREMENTS 

 

The susceptibility of a source can be measured in situ by a borehole logging tool, or on 

samples extracted from the hole. If the hole intersects the source, a triaxial vector 

magnetometer with its orientation monitored continuously can measure the anomalous 

magnetic field within the source.  Levanto (1963) and Bosum et al. (1988) describe 

orientation methods, presentation of data, and data analysis for borehole vector field 

measurements. For a uniformly magnetised source the anomalous internal H field of the 

source is 

 

∆H = −NM ,          (22) 

 

where N is the demagnetising tensor determined by the shape of the source.  For ellipsoidal 

bodies, including limiting cases such as spheres, infinite circular and elliptic cylinders, and 

infinite sheets, N is uniform throughout the body (Clark et al., 1986).  In the interior of 

uniformly magnetised non-ellipsoidal bodies, N is a slowly varying function of position 

within the body.  

 

As shown in Figure 3, a magnetometer in a borehole does not measure the field ∆B = 

µ0∆H  that is  given by equation (22).  Instead it measures the field within the cylindrical 

borehole cavity, ∆B′ = µ0∆H′, which has components parallel to (||) and perpendicular to 

(⊥) the borehole that are given by 



 

 

 

Figure 2. Calculation of vector mean NRM from measurements on five samples. The 
dashed line indicates the vector sum; the thick solid arrow represents the vector mean, 
calculated as the vector sum divided by the number of samples.

 

 
Figure 3.  Relationship between internal anomalous field within a magnetised body, given 
by equation (22), and th
body perpendicular to the hole produces poles on the flanks of the borehole. These poles 
give rise to a cavity field 
perpendicular to the borehole. 
= −NM . The magnetisation component that is parallel to the borehole produces negligible 
cavity field, except near the boundary of the magnetic source.
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∆B||′ = µ0∆H||,  ∆B⊥′ = µ0(∆H⊥+ M⊥/2).        (23) 

 

Hoschke (1991) presented examples of anomalous vector components within drillholes that 

penetrate highly magnetic ironstones. The field components are reasonably consistent 

within the source and show clearly the self-demagnetising field, as modified by the cavity. 

Other downhole vector magnetometer survey datasets have been published that clearly 

show abrupt changes in anomalous field direction as the sensor passes into a magnetic 

body, with  the internal field broadly reversed with respect to the nearby external field. 

Internal field directions frequently have superimposed high frequency noise but, if 

smoothed, exhibit relatively consistent, slowly varying directions inside the source. 

Examples can be found in Levanto (1963), Hattula (1986), Bosum et al. (1988), Smith and 

Hall (1995), Mueller et al. (1997) and Liu et al. (2013). Pariso and Johnson (1993) have 

shown that magnetisation determined from borehole measurements through moderately 

magnetic gabbros (layer 3 of oceanic crust) is consistent with, but smoother and less 

variable than, magnetisation determined from palaeomagnetically cleaned small core 

samples, and is much more representative of bulk magnetisation than measurements on 

uncleaned samples, which are affected by drilling-induced remanence. 

 

Equation (23) is valid for a smooth-walled borehole within the body, when measurements 

are taken at least several borehole diameters beneath its upper boundary, or above its lower 

boundary,  provided the magnetisation is uniform over several borehole diameters around 

the measurement point. Close to the boundary more complicated equations given by Pozzi 

et al. (1988) or  Gallet and Courtillot (1989) can be used. If the geometry of the source is 

known or assumed, N is specified and the magnetisation can then be deduced from 

equations (22) and (23).   

 

In practice small scale heterogeneity adjacent to the borehole and rugosity of its wall often 

make vector measurements inside a strongly magnetic source quite  noisy. However these 

local perturbations average to zero over larger distances, so the bulk magnetisation of the 

source can be estimated reasonably accurately by averaging measured vectors throughout 

the borehole intersection.  The major source of noise in downhole vector measurements is  

misorientation of the magnetometer.  Orientation errors of ~0.1° produce errors of several 

tens of nT in vector components, which translate to errors in estimated magnetisation 

components of ~10-100 mA/m. 



 

 

 
 
 
 
 

 
 

Figure 4.  Determination of magnetisation vector for a thick homogeneously magnetised 

layer,  using borehole vector magnetometry. The external anomalous field is zero. Within 

the layer the internal anomalous field is uniform and is antiparallel to the magn

component that is perpendicular to the plane of the magnetised sheet. For a horizontal 

sheet, as shown, the anomalous internal field is vertical: 

vertical  borehole the anomalous horizontal components of the field are 

=  µ0My/2, ∆Bz = − µ0M

measured, M NRM can be obtained from 

(Hx, Hy, Hz − Mz). 
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layer,  using borehole vector magnetometry. The external anomalous field is zero. Within 

the layer the internal anomalous field is uniform and is antiparallel to the magn

component that is perpendicular to the plane of the magnetised sheet. For a horizontal 

sheet, as shown, the anomalous internal field is vertical: ∆B = µ0∆H

vertical  borehole the anomalous horizontal components of the field are 

Mz, so M  = (1/µ0) (2∆Bx, 2∆By, −∆Bz). If the susceptibility is also 

can be obtained from M  by subtraction: MNRM = 

 

 

Figure 4.  Determination of magnetisation vector for a thick homogeneously magnetised 

layer,  using borehole vector magnetometry. The external anomalous field is zero. Within 

the layer the internal anomalous field is uniform and is antiparallel to the magnetisation 

component that is perpendicular to the plane of the magnetised sheet. For a horizontal 

H = − µ0Mzẑ. Within a 

vertical  borehole the anomalous horizontal components of the field are ∆Bx = µ0Mx/2, ∆By 

). If the susceptibility is also 

= M  − kH′, where H′ = 
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One simple case where the magnetisation of the rock units intersected by a borehole can be 

determined unambiguously is that of a layered earth, with horizontal or dipping layers 

(Pozzi et al. 1988; Gallet and Courtillot, 1989). If the susceptibility of the layers is also 

measured, the remanent magnetisation can be calculated using equations (1) and (2). A 

particularly simple case occurs when the borehole intersects a single sheet-like source in a 

nonmagnetic background.  For this case the demagnetising factor in the plane of the sheet 

is zero and the SI demagnetising factor normal to the sheet is 1.  If the sheet is thick 

compared to the hole diameter and the hole is perpendicular to the sheet, then the field 

components well inside the sheet are ∆B|| = − µ0M || parallel to the hole and  ∆B⊥′ = µ0M⊥/2 

perpendicular to the hole, i.e. in the plane of the sheet (see Figure 4).  This method actually 

determines the magnetisation contrast across each interface. However, by keeping track of 

successive magnetisation contrasts from the surface, the absolute magnetisations in each 

layer can be determined. 

 

INFERENCE FROM PETROLOGIC AND PALAEOMAGNETIC INFORM ATION 

 

Detailed petrographic descriptions of samples, including estimates of magnetic mineral 

grain size ranges, compositions and modal percentages can be used to infer their magnetic 

properties, particularly susceptibility.  If the rock unit has a known simple geological 

history, palaeomagnetic data can also be used to infer probable remanence directions. 

Clark (1997) plotted ranges of susceptibility, remanence intensity and Koenigsberger ratio 

for various magnetic mineral compositions, domain states and type of NRM. With the 

exception of CRM carried by MD hematite (see below), subsequent studies do not require 

revision of these ranges.  

 

Clark et al. (2004) presented a petrophysical model for the magnetic properties and 

densities of iron oxide-rich ores and alteration zones in iron oxide copper-gold (IOCG) 

systems, which contain hydrothermal magnetite and hematite with end-member 

compositions.  This model can be applied more generally to the magnetic properties of 

rocks and ores that contain relatively pure, well crystallised magnetite ± hematite. Both 

minerals are assumed to be in their respective true multidomain size ranges (> 20 µm for 

magnetite; > 100 µm for hematite). As elaborated by Clark (2014), if the volume fractions 

of magnetite and hematite in the rock or ore are fmt and fhm respectively then the estimated 

SI susceptibility k is given by 
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k = 20fmt /[1 + 4.8(1− fmt)] + 0.04fhm .       (24) 

 

The contribution of magnetite in equation (24) is based on a theoretical relationship that 

incorporates self-demagnetisation of magnetite grains, modified by a Lorentz field 

contribution to account for grain interactions (Clark, 1997).  The formula assumes an  

intrinsic susceptibility of 20 SI for the magnetite grains, in accord with Stacey and  

Banerjee's (1974) estimates of intrinsic susceptibility of large MD magnetite grains, and an 

estimated average effective SI demagnetising factor of  N = 0.24 for MD magnetite grains  

(Parry, 1980).  For dilute dispersions of magnetite (fmt < 0.1), equation (20) reduces to  

 

k ≈ 3.45 fmt + 0.04fhm .         (25) 

 

The magnetite contribution in equation (21) agrees well with the empirical relationship 

between susceptibility and magnetite content of rocks found by Puranen (1989). The 

contribution of hematite in equations (24) and (25) is approximate (susceptibilities of pure 

end-member MD hematite typically range from ~0.01 SI to ~0.1 SI, depending on 

crystallinity, stress, stoichiometry etc.), but the hematite contribution to the susceptibility 

of rocks and ores, even massive iron oxide, is subordinate to that of magnetite if more than 

~1-2% magnetite is present. 

 

Monoclinic pyrrhotite, with composition ~Fe7S8 and 4C superstructure (hereafter simply 

called pyrrhotite), is an important contributor to magnetic anomalies in many areas. The 

susceptibility of pyrrhotite is substantially less than that of magnetite, but much greater 

than that of hematite, and is  strongly grain size dependent (Clark, 1984; Worm et al., 

1993).  Figure 5 shows the dependence of susceptibility on magnetic mineral content and 

microstructure for MD magnetite, hematite and pyrrhotite.  

 

Unlike TRM of MD hematite, which has been extensively studied, CRM carried by MD 

hematite is not well understood.  Clark (2014) has reviewed the scanty evidence regarding 

CRM of MD hematite and concluded that the maximum CRM intensity acquired in a 

typical geomagnetic field of  50,000 nT is ~ 5 A/m. This is lower than the range Clark 

(1997) gave for CRM carried by MD hematite, which was calculated using theory 

developed for MD magnetite by Stacey and Banerjee (1974). However, their theory 
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assumes that the coercivity of the MD grains is less than their self-demagnetising fields, 

which does not apply to hematite. 

 

Taking this new predicted upper limit for hematite into account, the intensity of grain-

growth CRM acquired by hydrothermal iron oxides well below the Curie temperatures 

(580°C for magnetite; 680°C for hematite) is predicted to be: 

 

CRM (A/m) ≈ 18fmt + MCRM(hm) fhm,       (26) 

 

where MCRM(hm) ≤ 5 A/m. 

 

While CRM carried by MD hematite has only moderate intensity, MD hematite does 

acquire intense TRM if cooled in the Earth’s field from above its Curie temperature of 

680°C (Kletetschka et al., 2000; Dunlop and Kletetschka, 2001). TRM intensity acquired 

on cooling of magnetite and/or  hematite-bearing rocks and ores in a field of 50,000 nT is 

predicted to be 

 

TRM (A/m) ≈ 80fmt + 1000fhm .        (27) 

 

The corresponding Koenigsberger ratios Q are given by: QCRM (magnetite) ≈ 0.13; QCRM 

(hematite) ≤ 3; QTRM (magnetite) ≈ 0.6 (Dunlop and Özdemir, 1997, p.239);  QTRM 

(hematite) ≈ 600. As an example of the efficiency of TRM acquisition by MD hematite, 

extremely high Koenigsberger ratios have been reported for NRMs of a contact 

metamorphosed coarse-grained massive hematite deposit, which gives rise to a remanence-

dominated magnetic anomaly of more than 30,000 nT, by Schmidt et al. (2007).   

 

The in situ induced magnetisation of MD magnetite-bearing rocks is augmented by viscous 

remanent magnetisation (VRM), subparallel to the induced magnetisation, acquired 

predominantly over the duration of the Brunhes chron. The contribution of this VRM can 

be significant for detailed modelling of anomalies. An upper limit for VRM carried by MD 

magnetite can be obtained by noting that the magnetisation of an isolated magnetite grain, 

subject to self-demagnetisation, that has fully equilibrated with the ambient field H attains 

a maximum intensity of H/N ≈ 40/0.24 = 166 A/m (Shive, 1989). This is about 20% higher 

than the induced magnetisation of the grain, calculated using equation (18), suggesting an  



 

 

 
 
 
 
 
 
 

 

Figure 5.  Susceptibility versus volume percent for true 

monoclinic pyrrhotite (> 10 

crystallinity and residual stresses in grains.  
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Figure 5.  Susceptibility versus volume percent for true multidomain magnetite (>

monoclinic pyrrhotite (> 10 µm) and hematite (> 100 µm), for varying degrees of 

crystallinity and residual stresses in grains.   

 

 

multidomain magnetite (> 20 µm), 

m), for varying degrees of 
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upper limit of ~0.2 for QVRM of MD magnetite. Shive (1989) obtains QVRM ≤ 0.25, using 

slightly different assumptions.  For high concentrations of magnetite, the constraint 

imposed by self-demagnetisation is somewhat relaxed, due to grain interactions, but values 

of QVRM greater than unity would require very high contents (≥ 90%) of very low 

coercivity magnetite. Based on palaeomagnetic cleaning studies, Clark and Tonkin (1987) 

and Clark (1988a, 1994) have found QVRM typically falls in the range  0.1 – 0.3 for semi-

massive and massive magnetite ores of hydrothermal origin, so QVRM ≈ 0.2 is a reasonable 

assumption for modelling MD magnetite-bearing rocks and magnetite-rich orebodies if 

remanence measurements are unavailable. 

 

Ultrafine magnetic mineral grains can also exhibit substantial magnetic viscosity. Viscous 

SPM particles fall into a very narrow size range around the SPM-stable SD threshold, 

which is ~0.03 µm for magnetite and ~0.08 µm for titanomagnetite with x ≈ 0.6  (Dunlop 

and Özdemir, 1997, p.131). Slightly larger grains have relaxation times of billions of years 

and can carry stable, relatively intense remanence with high Q.  Slightly smaller grains 

have relaxation times << 1 s and contribute to the induced magnetisation only, with 

negligible viscous remanence.  SPM magnetite grains slightly smaller than the threshold 

size have susceptibilities that are one to two orders of magnitude higher than typical SD or 

MD magnetite susceptibilities and, if present, tend to reduce the Koenigsberger ratio by 

boosting the induced magnetisation.  

 

The presence of significant quantities of viscous SPM grains in a sample can be 

ascertained quite definitively in several ways: (i) relatively large frequency dependence of 

susceptibility; (ii) a  substantial phase lag response to a weak alternating field,  manifested 

as quadrature susceptibility; (iii) substantial acquisition of VRM in the laboratory  (and 

viscous decay in zero field); (iv) anomalously slow, superexponential decay of dB/dt, 

showing an approximate 1/t dependence, in a transient electromagnetic type measurement; 

(v) a distinct positive slope around room temperature of a low field thermomagnetic (k-T) 

curve, indicating unblocking of  fine magnetic particles with successively larger volumes 

with increasing temperature. In point (ii) above, quadrature  susceptibility is also referred 

to as the imaginary component of the complex susceptibility, which corresponds to the 

component of the total susceptibility that lags an applied sinusoidal field by 90°. These 

seemingly quite different tests are in fact closely related, via the connection between 

relaxation times, temperature, and grain volumes and coercivities (Shcherbakov and 
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Fabian, 2005; Egli, 2009). Wasp-waisted strong field hysteresis loops also suggest the 

presence of a significant quantity of SPM grains, together with high coercivity stable SD 

magnetic grains, but is not a definitive indicator of a grain size distribution that straddles 

the SPM- stable SD threshold as wasp-waisted loops can also result from mixtures of high 

and low coercivity populations, associated with a strongly bimodal grain size distribution 

or produced by a mixture of different magnetic minerals (Dunlop and Özdemir, 1997, 

p.323-324). 

 

Given the factors discussed above, VRM acquired by viscous SPM grains is normally only 

a small fraction of NRM carried by fine magnetic particles (Dunlop and Özdemir, 1997, 

p.275) and, like  VRM carried by MD grains, cannot be the predominant contributor to 

high Q values found in many  rocks.  This conclusion contradicts the speculations of 

Macnae (1994) that VRM may dominate many strong measured NRMs and account for 

their corresponding high Koenigsberger ratios. In practice long term VRM, when present, 

is easily recognisable by its direction and its soft character, in particular its ready removal 

by mild heating. Dunlop and Özdemir (1997, p.274-275) show that thermal 

demagnetisation to 200°C is sufficient to erase VRM acquired by fine magnetite grains 

over 1 Ma. 

 

Determination of palaeomagnetic poles uses the axial geocentric dipole model to calculate 

palaeopole positions from palaeofield directions that have been defined by palaeomagnetic 

cleaning of sample NRMs. Once palaeopole positions for various ages are established for a 

given terrane, this process can be inverted to predict the palaeofield direction for a specific 

locality from the corresponding palaeopole position (Clark, 1983). If the palaeopoles for 

the terrane of interest are not known directly, they can be determined using its 

reconstruction to another terrane for which the palaeopoles are known. Butler (1992, 

p.233-234) gives expressions for the expected palaeofield direction, and its oval of 

confidence, at a specified site, given a palaeopole position and its estimated error. If the 

latitude and longitude of the site and the palaeopole are, respectively, (λs,φs) and  (λp,φp), 

then the declination D and inclination I of the palaeofield are given by: 

 

cosD = (sinλp − sinλs cosp)/(cosλs sinp);  I = tan−1(2cotp),     (28) 

 

where the colatitude p of the palaeopole is found from: 
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cosp = sinλp sinλs + cosλp cosλs cos(φp − φs).      (29) 

 

The corresponding errors in D and I are: 
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where A95 is the radius of the 95% confidence circle around the palaeopole. 

 

If a remanently magnetised rock unit has experienced tectonic rotation since acquisition of 

the remanence, this needs to taken into account in order to predict the in situ remanence 

direction. Clark (1983) gave expressions for calculating the effects on remanence 

directions of folding about horizontal or plunging axes. Clark and Schmidt (1994) noted 

that remanence carried by BIFs in the Hamersley Basin is pre-folding in areas with low 

metamorphic grade and post-folding in areas with higher metamorphic grade. This 

produces substantially different magnetic anomaly patterns. 

  

Figure 6 shows an apparent polar wander path (APWP) for Australia, from the Early 

Devonian to the present, and corresponding palaeofield directions for a site in central 

Queensland. The sense of the palaeofield direction (normal or reversed) can be determined, 

with varying degrees of certainty, from the geomagnetic polarity time scale (see Butler, 

1992, Chapter 9).  Remanence acquired during the Cretaceous normal-polarity superchron 

(~118-83 Ma) is expected to have normal polarity, with almost 100% probability, whereas 

remanence acquired in the interval ~312-262 Ma (the Permo-Carboniferous reversed-

polarity superchron) is almost certainly reversed.  For other time intervals, reversals were 

frequent and prediction of likely polarity requires precise ages (e.g.  better than 0.5 Ma for 

the Cenozoic). In most cases, however, the polarity of a remanence-dominated magnetic 

source is obvious from the form of the anomaly.  

 

For a given assemblage of magnetic mineral grains, the intensity of stable remanence 

depends on the palaeofield intensity. With the exception of TRM carried by MD hematite, 

which almost saturates in fields of the order of the geomagnetic field (Dunlop and  

Kletetschka, 2001), the intensity of weak-field TRM and CRM is proportional to the  



 

 

 

 

 

 

Figure 6.  Devonian-present APWP for Australia, based on Schmidt and Clark (2000),  

(LHS) with corresponding predicted palaeofield directions (RHS) for a site in central 

Queensland (23°S, 150°E). T = Te

Ke = Early Cretaceous (130 Ma), Je

Triassic (240 Ma), Pe = Early Permian (280 Ma) , Cl = Late Carboniferous (305 Ma), Ce = 

Early Carboniferous (340 Ma), D

(380 Ma), De = Early Devonian (400 Ma); N = normal polarity; R = reversed polarity; PF 

= present field direction; PDF = present dipole direction, approximating the field direction 

averaged over the Brunhes 
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present APWP for Australia, based on Schmidt and Clark (2000),  

(LHS) with corresponding predicted palaeofield directions (RHS) for a site in central 

Queensland (23°S, 150°E). T = Tertiary (< 65 Ma), Kl = Late Cretaceous (90 & 100 Ma), 

Ke = Early Cretaceous (130 Ma), Je-m = Early-Middle Jurassic (190 Ma), TRe = Early 

Triassic (240 Ma), Pe = Early Permian (280 Ma) , Cl = Late Carboniferous (305 Ma), Ce = 

Early Carboniferous (340 Ma), Dl = Late Devonian (370 Ma),  Dm = Middle Devonian 

(380 Ma), De = Early Devonian (400 Ma); N = normal polarity; R = reversed polarity; PF 

= present field direction; PDF = present dipole direction, approximating the field direction 

averaged over the Brunhes chron. 

 

present APWP for Australia, based on Schmidt and Clark (2000),  

(LHS) with corresponding predicted palaeofield directions (RHS) for a site in central 

rtiary (< 65 Ma), Kl = Late Cretaceous (90 & 100 Ma), 
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l = Late Devonian (370 Ma),  Dm = Middle Devonian 

(380 Ma), De = Early Devonian (400 Ma); N = normal polarity; R = reversed polarity; PF 

= present field direction; PDF = present dipole direction, approximating the field direction 
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applied field during acquisition. As discussed by Clark et al. (1992), The palaeofield 

intensity depends principally on two factors: the palaeolatitude, which can be determined 

from the APWP, and the magnitude of the ancient dipole moment, which is known to have 

varied through geological time and for which rough estimates are available (McElhinny 

and McFadden, 2000, p.26). 

 

Koenisberger ratio Q reflects composition and microstructure of magnetic carriers. High Q 

and strong specific NRM intensity is associated with: 

• Ultrafine (< 10 µm) (titano)magnetite and deuterically oxidised titanomagnetite with 

ilmenite lamellae, 

• Monoclinic pyrrhotite of all grain sizes (but Q is particularly high for fine grains), 

• PSD-MD (> 15 µm) hematite carrying thermoremanence, particularly martite with 

relict magnetite and/or maghemite. Maximum TRM intensity is acquired by hematite 

grains that are 100 µm in size, or larger. Note that the remanence intensity – size 

relationship is opposite for magnetite and hematite, 

• Hemo-ilmenite (ferrian ilmenite with fine exsolution lamellae of titanohematite) and 

ilmeno-hematite (titanohematite with ilmenite exsolution). 

 

Ferromagnetic intermediate to felsic granitoid rocks contain multidomain magnetite, which 

is associated with Koenigsberger ratios less than unity (usually Q < 0.5, typically Q ~ 0.2).  

Furthermore, the remanence carried by such grains is generally unstable and is dominated 

by viscous remanence acquired in the recent field. However some, but not all, gabbros, 

norites and mafic diorites contain ultrafine pseudosingle domain to single domain 

magnetite hosted within silicate minerals, such as pyroxenes, olivine or plagioclase, as well 

as discrete multidomain grains. The ultrafine (<10 µm) grains are capable of carrying 

intense remanence and these rocks may accordingly exhibit Q values substantially greater 

than unity. Thus magnetisation by induction can be assumed as a first approximation for 

the more felsic granitoids, whereas remanent magnetisation, possibly oblique to the present 

field, may be significant for mafic plutonic rocks.   

 

High Koenigsberger ratios are typical for fresh volcanic rocks that contain primary 

(titano)magnetite. This includes nearly all basalts and andesites, as well as felsic volcanics 

that belong to relatively oxidised magmatic suites. In the oceanic crust, the mid-ocean 

ridge basalts, sheeted dykes, and underlying gabbros all carry significant stable remanence, 
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typically dominating the induced magnetisation (Pariso and Johnson, 1993). All three 

layers contribute to the ridge-parallel magnetic stripes – the  anomalies, approximately 

symmetric about the ridge, that reflect geomagnetic reversals as newly formed oceanic 

crust migrates away from the mid-ocean ridge. 

 

BIF is another important rock type for which remanence makes an important contribution 

to anomalies. The remanence often lies close to the bedding plane. BIFs are highly 

anisotropic, with the susceptibility parallel to bedding typically 2-4 times larger than that 

normal to bedding, and often have Koenigsberger ratios in the range 1-2 (Clark and 

Schmidt, 1994). 

  

Clark (1983), Thompson et al. (1991), Clark and Tonkin (1994), Pucher (1994), Airo and 

Louskola-Ruskeeniemi (2004), and Direen et al. (2008)  have presented case studies of 

remanence-dominated anomalies due to pyrrhotite. Such anomalies are often associated 

with metasediments derived from reduced protoliths, such as carbonaceous shales and 

siltstones; within contact metamorphosed pyritic sediments around large intrusions; in 

reduced skarn deposits (e.g. Sn- and Sn-W skarns; Au-bearing distal skarns associated with 

reduced intrusions); in some volcanogenic massive sulphide deposits; in nickel sulphide 

orebodies; and in some relatively reduced IOCG deposits that have a magnetite + 

pyrrhotite assemblage, rather than magnetite + hematite. 

 

Intense remanence carried by finely exsolved hemo-ilmenite and ilmeno-hematite is 

attributed to the recently recognised mechanism of lamellar magnetism (Robinson et al., 

2004).  Remanence-dominated anomalies due to these mineral phases are associated with 

(i) high metamorphic grade rocks derived from highly oxidised protoliths, (ii) anorthosites, 

(iii) certain layered mafic intrusions,  and (iv) ilmenite ores occurring as cumulates within 

mafic layered intrusions (Brown and McEnroe, 2008; McEnroe et al., 2009a,b). 

 

Most unmetamorphosed volcanic rocks and many unmetamorphosed mafic/intermediate 

intrusive rocks are likely to carry a TRM dating from the time of formation.  High grade 

metamorphic rocks may carry thermo- or thermochemical remanence acquired during post-

metamorphic cooling. Pyrrhotite bearing rocks are expected to carry remanence dating 

from the time of cooling after the last thermal event of ≥ 300°C they have experienced.  
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Some general points about estimating magnetic properties from petrographic data and 

information about geological history include: 

1. Except where ultrafine magnetic grains are abundant, good petrographic 

information on magnetic mineral composition, modal abundance and grain size 

range allows reasonably reliable estimation of susceptibility.   

2. It is very useful to supplement reflected light petrography with microprobe 

analyses, and particularly with rock magnetic characterisation of compositions and 

domain states of magnetic minerals, which can provide definitive information on 

relative contributions of different phases and/or grain size populations and detect 

particles that are too small to identify petrographically. 

3. Estimation of remanence intensities from petrographic information and geological 

history is more complex, and subject to much greater uncertainties, than estimation 

of susceptibilities. 

4. However, in principle the remanence intensity for a simple NRM (e.g. a 

thermoremanence of an igneous intrusion unaffected by subsequent metamorphism 

or metasomatism) can be estimated by multiplying the specific remanence 

intensities for each of the magnetic minerals in the rock by their volume 

proportions, normalising for the palaeofield intensity (if known).  Specific 

remanence intensities for the most common magnetic minerals are discussed above; 

a more comprehensive compilation can be found in Clark (1997).  The palaeofield 

intensity reflects the palaeolatitude of the site, which can be estimated from 

palaeomagnetic data and the geomagnetic dipole moment at the time of remanence 

acquisition.  

5. Remanence is particularly strong when acquired at high latitudes at a time of high 

geomagnetic dipole moment. The inclination dependence of the time-averaged field 

accounts for a factor of two between the poles and the equator. Thus the 

Koenigsberger ratio corresponding to a particular mineral and type of stable 

remanence can vary by a factor of up to four, if the terrane has moved far with 

respect to the pole since acquisition (Q is doubled for movement from the pole to 

the equator and halved for the opposite migration). 

6. For a given remanence intensity, the Koenigsberger ratio depends on the present 

field intensity, as well as the susceptibility. To first order the present field intensity 

reflects latitude. Large areas of interest to explorers for mineral deposits such as 
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porphyry, epithermal and IOCG deposits are in low latitudes with correspondingly 

low geomagnetic inclinations that present problems for magnetic interpretation.  

7. Furthermore some substantial areas in South America and southern Africa have 

anomalously low field intensities, which tends to increase the relative importance 

of remanence acquired when the local field was stronger (either acquired in higher 

latitudes or when the dipole moment was stronger). This effect may explain the 

substantially higher Q values for southern African kimberlites compared to Siberian 

kimberlites (Clark et al., 1992). Mesozoic kimberlites in Africa acquired remanence 

in relatively high latitudes, but now sit in an anomalously low field, whereas 

Devonian kimberlites in Siberia acquired remanence in low latitudes at a time of 

relatively low dipole moment, but now sit in high latitudes with a particularly 

strong field. 

 

CONSTRAINED MODELLING OF MAGNETIC SOURCES   

 

Determination of magnetisation direction from analysis of magnetic anomalies has a long 

history, dating back at least to Hall (1959). Modelling of magnetic anomalies without 

independent geological information can be ambiguous. For example, the magnetisation 

direction of a semi-infinite dipping sheet cannot be uniquely determined from its anomaly, 

unless the dip is known (see Figure 7). If the sheet also produces a well-defined gravity 

anomaly, however, the dip is constrained and the ambiguity is resolved. In this case the 

magnetisation direction within the plane normal to strike can be determined by applying 

Poisson’s theorem (see below).  Of course, any other method that determines the dip, such 

as drill hole intersections or seismic data, also suffices to determine the effective 

magnetisation in the plane perpendicular to strike, M⊥. 

 

In the following a “compact source” is a magnetised body that can be totally enclosed by a 

sphere (or a circle in the 2D case)  for which the closest point of approach of the magnetic 

sensor to its surface is several times the sphere radius. For isolated compact sources, the 

magnetic moment and direction of magnetisation (3D case), or the magnetic moment per 

unit length and magnetisation direction projected onto the plane normal to strike (2D case), 

can be modelled accurately without any knowledge of the size and shape of the source. On 

the other hand, if the geometry of an arbitrary homogeneous source is known (e.g. defined 

by drilling or other geophysical methods) determination of the magnetisation of the source 
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from the observed anomaly is a straightforward linear inversion problem (Bott, 1973; 

Blakely, 1996, p.225-228).    

 

Inversion of potential field data, including magnetic, is fundamentally non-unique.  

Perhaps the most basic form of non-uniqueness results from the fact that magnetic 

anomalies arise from lateral magnetisation contrasts, rather than absolute magnetisations. 

Although this should always borne in mind, in many cases the magnetisation of host rocks 

surrounding a magnetic source can be safely assumed to be negligible (e.g. if the host 

rocks are known to be weakly magnetic sediments), or is known from sampling.  If a 

discrete magnetic anomaly occurs within a featureless magnetic background, the 

background magnetisation is almost certainly small, because naturally occurring 

heterogeneity of magnetic rocks always gives rise to some measurable magnetic variations.  

 

The existence of magnetic annihilators, i.e. idealised magnetisation distributions that 

produce no external anomaly, precludes determination of the complete magnetisation 

distribution in all circumstances. If in addition to a magnetic source that produces an 

anomaly there is, for example, a uniformly magnetised horizontal layer of uniform 

thickness, the magnetisation of that layer contributes nothing to the observed field and 

cannot be deduced from it.  There are many circumstances, however, in which the inherent 

non-uniqueness of magnetic inversion is not as serious a problem as is commonly 

suggested, as some important information can be extracted without any a priori 

information and even minimal additional information can greatly constrain acceptable 

models (Saltus and Blakely, 2011).   

 

Anomalies that clearly arise from topographic features provide especially simple analyses, 

because the surrounding medium (air on land, seawater in the case of seamounts) has zero 

magnetisation and the shape of the source, or at least its upper surface, is clearly defined. 

In an early study of this type, Richards et al. (1967) derived average magnetisations for 21 

seamounts, a laccolith and two volcanoes, assuming uniform magnetisation,  and obtained 

results that could be sensibly interpreted in terms of petrophysical and palaeomagnetic 

information.  Emilia and Massey (1974) modified this approach by relaxing the 

requirement for uniform magnetisation, inverting instead for the distribution of 

magnetisation intensity and for the direction of magnetisation, assuming that this is 

uniform. Parker et al. (1987) presented a method that inverts for the non-uniform  



 

 

 

Fig.7 Strictly equivalent 2D sources: (a) equivalent dipping sheets, (b) equivalent sloping 
step and dipping sheet. The dipping sheets have infinite depth extent, the sloping step 
extends to infinity towards the RHS.  Radhakrishna Murthy (1985) showed that
dipping sheets, with differing magnetisations, that form an anticline are equivalent to a step 
whose sloping face coincides with the axial plane of the anticline. 

 

 

Figure 8. (a) Equivalent 3D confocal ellipsoids with the same moment 
produce identical anomalies at every external point, (b) spherical shell, equivalent to 
concentric sphere or spherical shell of different radius or thickness, but same total moment. 
The equivalence of confocal ellipsoids follows from the expressions of
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Fig.7 Strictly equivalent 2D sources: (a) equivalent dipping sheets, (b) equivalent sloping 
step and dipping sheet. The dipping sheets have infinite depth extent, the sloping step 
extends to infinity towards the RHS.  Radhakrishna Murthy (1985) showed that any two 
dipping sheets, with differing magnetisations, that form an anticline are equivalent to a step 

 

Figure 8. (a) Equivalent 3D confocal ellipsoids with the same moment m = MV, which 
produce identical anomalies at every external point, (b) spherical shell, equivalent to 
concentric sphere or spherical shell of different radius or thickness, but same total moment. 
The equivalence of confocal ellipsoids follows from the expressions of Clark et al. (1986).  
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magnetisation vector distribution that (i) best fits the data, and (ii) is closest to a uniform 

distribution. This method produced an estimate of the mean magnetisation vector of a 

seamount that was much closer to that expected from palaeomagnetic data than an estimate 

obtained assuming uniform magnetisation. 

 

Woodward (1993) described a method that infers variations in near-surface apparent 

magnetisation, using digital terrain models, assigned lithologies based on geological 

information, and magnetic survey data. Like all such methods, the reliability of the results 

depends on how closely the subsurface conforms to the assumptions of the method, 

particularly the assumption that the observed anomalies are due to the magnetised 

topography. The upper surface of the magnetic layer is defined by the topography, the 

lower surface is either a flat layer or parallel to the upper surface, and the magnetisation is 

allowed to vary laterally but is assumed constant with depth within this layer. The apparent 

magnetisations are sensitive to the thickness of the assumed magnetic layer, the form of the 

lower layer, and reflect long wavelength variations due to deeper sources, so the results can 

only be regarded as semiquantitative.  

 

The method of Silva and Hohmann (1984) makes a number of simplifying assumptions to 

produce a map of apparent susceptibility, kapp, which approximates true susceptibility in 

favourable circumstances.  The magnetisation is assumed to be induced only, which allows 

accurate reduction to the pole (RTP), provided the geomagnetic inclination is not too low.  

The RTP grid is continued downward to the ground surface (or to the top of magnetic 

basement, if there is nonmagnetic overburden), where it can be interpreted as arising from 

an assemblage of narrow vertical prisms with vertical magnetisation. This is equivalent to a 

distribution of magnetic poles on the upper surface, with surface density σ  = Mz = kappF.  

In practice the pole distribution can be calculated in the wavenumber domain or by spatial 

domain convolution filters.  The estimated apparent susceptibility approximates the actual 

susceptibility if  remanence is negligible and  the magnetic sources have flat tops at a 

constant level, have vertical sides, and are homogeneous to great depths.   

 

Apparent susceptibility mapping can produce useful pseudo-geological maps from 

complex magnetic maps, with reasonable inferred susceptibilities. Apart from the obvious 

problems caused by departures from the underlying assumptions about source geometry, 

the transformation is inherently unstable, due to noise amplification by the downward  



 

 

 

Figure 9. (a) Equivalent plunging pipes of infinite depth extent with axial magnetisation, 

(b) non-equivalent pipes with non

purely from the poles induced on the

identical pole distribution, their anomalies are identical. When there is a non

component of magnetisation, as shown in (b), the poles induced on the flanks of the pipes 

ensure that pipes with di

measurement plane. 
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Figure 9. (a) Equivalent plunging pipes of infinite depth extent with axial magnetisation, 

equivalent pipes with non-axial magnetisations. For case (a) the anomaly arises 

purely from the poles induced on the top surface of the pipes. Since both pipes produce an 

identical pole distribution, their anomalies are identical. When there is a non

component of magnetisation, as shown in (b), the poles induced on the flanks of the pipes 

ensure that pipes with different plunges produce different anomaly patterns over the 

 

 

Figure 9. (a) Equivalent plunging pipes of infinite depth extent with axial magnetisation, 

axial magnetisations. For case (a) the anomaly arises 

top surface of the pipes. Since both pipes produce an 

identical pole distribution, their anomalies are identical. When there is a non-axial 

component of magnetisation, as shown in (b), the poles induced on the flanks of the pipes 

fferent plunges produce different anomaly patterns over the 
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continuation, and must be carefully regularised.  Apparent susceptibility values are subject 

to an offset if the correct base level is not subtracted from the magnetic field.  The correct  

base level should correspond to zero susceptibility wherever the magnetic field is 

essentially featureless.  Provided  the correct zero susceptibility areas are identified, other 

features that exhibit negative apparent susceptibilities represent  sources with dominant 

remanence of overall reverse polarity. 

 

Silva et al. (2010) have further developed the apparent susceptibility mapping method by 

employing entropic regularisation to produce solutions characterised by regions with 

almost constant magnetisations, separated by sharp discontinuities.  As for other apparent 

magnetisation mapping methods the interpretation model is a grid of flat-topped vertical, 

juxtaposed prisms in both horizontal directions, but Silva et al. (2010) assume known 

constant depth to the bottoms of the prisms, as well as to the tops, rather than assuming 

bottomless prisms.  

 

The apparent susceptibility mapping method can be extended to the case of variable depth 

to magnetic basement (Pilkington, 1989). This introduces an extra degree of freedom to the 

solution, because to each solution an arbitrary amount of magnetic annihilator, appropriate 

to the basement topography, can be added without affecting the measured field.  The 

annihilator is determined by inverting the magnetisation distribution for the topography, 

using a starting model of uniform nonzero magnetisation, assuming zero field over the 

area.  For his study area, Pilkington (1989) estimated the amount of annihilator to be added 

to the inversion solution by modelling several discrete anomalies to estimate absolute 

magnetisations at selected points. 

 

There is vast literature on inversion of magnetic survey data (see e.g. Li (2012) and 

references therein), most of which concentrates on solving for source location and 

geometry and is therefore beyond the scope of this review, which is concerned with 

determination of source magnetisation.  A number of points can be made about estimation 

of magnetisation by unconstrained inversion of magnetic anomaly data. 

1. In general non-uniqueness is much more serious for inversion of source geometry 

than for determination of magnetisation. Magnetisation direction is often uniquely 

determined, even though magnetisation intensity may not be.  

 



 

 

 

Figure 10. Equivalent lenses at different depths. If the sour

smooth boundaries, the shallower, broader sources mimic deeper, more compact 

sources with higher magnetisation intensity, but identical moment. Given typical 

naturally occurring heterogeneity (indicated by dots that represent stron

portions of the sources) and irregularity of boundaries for real sources, however, the 

anomalies of the shallowest sources exhibit short wavelength “geological noise”, 

superimposed on the smooth long wavelength anomaly, that is absent from a

due to deep sources. 
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Figure 10. Equivalent lenses at different depths. If the sources are homogeneous with 

smooth boundaries, the shallower, broader sources mimic deeper, more compact 

sources with higher magnetisation intensity, but identical moment. Given typical 

naturally occurring heterogeneity (indicated by dots that represent stron

portions of the sources) and irregularity of boundaries for real sources, however, the 

anomalies of the shallowest sources exhibit short wavelength “geological noise”, 

superimposed on the smooth long wavelength anomaly, that is absent from a

 

 

 

ces are homogeneous with 

smooth boundaries, the shallower, broader sources mimic deeper, more compact 

sources with higher magnetisation intensity, but identical moment. Given typical 

naturally occurring heterogeneity (indicated by dots that represent strongly magnetised 

portions of the sources) and irregularity of boundaries for real sources, however, the 

anomalies of the shallowest sources exhibit short wavelength “geological noise”, 

superimposed on the smooth long wavelength anomaly, that is absent from anomalies 
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2. For 2D sources, the along-strike component of magnetisation does not contribute to 

the observed anomaly, so this component is indeterminate. For approximately 2D 

sources that have segments with differing strikes, this indeterminacy can be 

overcome in principle, provided the source has a consistent magnetisation direction 

throughout.  For example, Tucker (1972) deduced the magnetisation of a magnetic 

metasedimentary unit that had magnetisation dominated by pre-folding remanence, 

by modelling magnetic profiles over portions of anticlinal structures with differing 

strikes. Clark and Schmidt (1994) presented examples of 2D modelling of profiles 

across folded BIF units of known geometry that enables discrimination between 

pre- and post-folding remanence and inference of magnetic properties. 

3. For 2D sources with compact cross-section, the direction, but not the intensity, of 

M⊥ is uniquely determined, as is the product |M⊥|A, where A is the cross-section 

area of the source.  

4. For a non-compact, but depth-limited, homogeneous 2D source with planar 

boundaries and no cavities or re-entrant flanks, such that it can be represented by a 

polygonal cross-section with a few sides, the geometry is in principle uniquely 

determinable from a long noise-free profile (Al-Chalabi, 1971). Therefore the 

effective magnetisation vector M⊥ is also determinable by linear inversion. 

5. Canonical examples of strictly equivalent laterally bounded and depth-limited 

sources, such as 2D concentric cylinders and confocal elliptical cylinders, and 3D 

concentric spheres and confocal ellipsoids, as shown in Figure 8, have smooth 

curved surfaces. Thus they can be regarded as having an infinite number of sides, 

which makes unique inversion of the geometry impossible. However the effective 

magnetic moment per unit strike length |M⊥|A (in the 2D case) and the magnetic 

moment m = MV (in the 3D case, where V is the volume) are uniquely determined 

by the magnetic anomaly. 

6. For 2D sources of infinite extent perpendicular to strike, such as dipping sheets of 

infinite depth extent or sloping steps of semi-infinite horizontal extent, the direction 

of magnetisation is indeterminate unless the dip of the sheet or of the sloping face 

of the step are known independently (Figure 7), as shown by Radhakrishna Murthy 

(1985). However the magnetisation-thickness product is uniquely determined. This 

parameter can be resolved into magnetisation intensity and thickness if the body is 

not too thin (i.e. if thickness > depth). 
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7. For 3D compact sources of arbitrary shape the magnetic moment m = MV is 

uniquely determined, but cannot be resolved into magnetisation intensity and 

volume unless independent information about body dimensions is available.  

8. For non-compact depth-limited 3D sources without cavities, re-entrant flanks or 

pathological shapes (such that all vertical lines pass through at most a single line 

segment of the body) with specified density, the geometry can in principle be 

uniquely determined from its gravity anomaly (Silva et al., 2002).  Poisson’s 

theorem, which is given in the next section, implies a similar conclusion for the 

magnetic field produced by a similar source with specified magnetisation intensity. 

For example, the ambiguity between the equivalent  confocal ellipsoids shown in 

Figure 8(a) is resolved if the magnetisation intensity is specified. Figure 8(b) 

demonstrates the necessity for the source to have no cavities, as a hollow sphere 

can produce the same anomaly as a smaller concentric solid sphere that has 

identical magnetisation intensity, as well as direction. 

9. For non-compact depth-limited 3D sources that can be represented by a 

homogeneous polyhedron (i.e. its boundaries are essentially planar with straight 

edges), without cavities, re-entrant flanks or pathological shapes, the geometry and 

density contrast can in principle be uniquely determined from its gravity anomaly 

(Silva et al., 2002). Applying Poisson’s theorem to this result implies that, given 

some reasonable restrictions on allowable shapes, the geometry and magnetisation 

contrast of a homogeneous polyhedral source can in principle be uniquely 

determined from its magnetic anomaly. Because many sources are fault-bounded, 

intruded along planes of weakness, or otherwise controlled by more-or-less planar 

structures, these restrictions are not as artificial as they might seem. 

10. The theoretical uniqueness of inversion for 3D polyhedral bodies partially breaks 

down for bodies of infinite depth extent, but is not as serious as in the 2D case. For 

example bottomless pipe-like bodies with different plunges, but identical upper 

faces, are indistinguishable if they happen to be axially magnetised (i.e. the 

magnetisation is up- or down-plunge), as shown in Figure 9(a). However the plunge 

and magnetisation can be resolved independently, provided there is a significant 

magnetisation component perpendicular to the plunge (Figure 9(b)). Well-defined 

gravity anomalies can distinguish otherwise equivalent axially magnetised pipes, 

provided they have sufficient density contrast.  
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11. Medeiros and Silva (1995) show that the magnetic moment, magnetisation 

direction, centroid location, and orientation of symmetry axes for an important 

class of 3D sources can be determined from a magnetic survey over a plane above a 

discrete source. The method assumes (i) the magnetisation is uniform in direction, 

but not necessarily in intensity, (ii) the source is finite, (iii) the source is sufficiently 

distant from the measurement plane that octupole and higher order multipole 

moments can be neglected, (iv) the source has orthorhombic or higher symmetry 

(e.g. homogeneous or symmetrically zoned ellipsoids, finite prisms, finite elliptic 

cylinders). The source can also be disjoint. For example two  equidimensional 

pods, close to one another, satisfy (iv). In practice requirement (iii) is not very 

stringent – the method is accurate if the depth to the centre of magnetisation is 

greater than the radius of the smallest sphere that can enclose the source. If original 

observation plane does not comply with this criterion, requirement (iii) can be 

satisfied after upward continuation. Subject to requirement (iv), the method is 

independent of the shape of the source. For deep, compact, or equidimensional 

sources the orientation estimates are imprecise, but the magnetic moment vector is 

robust.   Medeiros and Silva (1995) report that accurate and robust estimates of the 

magnetisation direction and of the horizontal location of the centre of dipole 

moment on the observation plane are still possible when the source is too shallow 

and the assumption of symmetry is no longer true, or when the direction of 

magnetisation is not constant. In the case of variable magnetisation direction, good 

and stable estimates are obtained for the mean magnetisation direction. 

12. The theoretical equivalence of deep compact sources and shallower broader 

sources, as depicted in Figure 10, assumes homogeneity and shapes that are 

contrived to produce identical anomalies. The magnetic moment is defined by the 

anomaly, but sources at different depths have different volumes. This implies that 

the magnetisation direction, but not the intensity, is uniquely determined from the 

anomaly, unless the depth to the top of the source is constrained. Saltus and Blakely 

(2011) demonstrate that slight departures from the idealised shape for the relatively 

shallow “equivalent” bodies produce short wavelength anomalies superimposed on 

the deep body signature, enabling shallow sources to be distinguished from deep 

ones. Similarly, the natural heterogeneity of real sources, shown schematically in 

Figure 10, allows discrimination of ostensibly equivalent shallow sources from 

deep sources, which helps to constrain the intensity of magnetisation.  
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In practice, estimation of magnetisation by inversion of magnetic anomalies requires that 

the assumptions made in the analysis, as discussed above, are at least approximately 

satisfied, the data coverage and quality are adequate, and the inversion algorithm is 

numerically stable. Even when inverted source geometry is subject to large uncertainties, 

inverted magnetisation directions are relatively robust. Many forward modelling and 

inversion studies on synthetic and field data (e.g.  Foss, 2006; Li et al., 2010; Foss and 

McKenzie, 2011; Foss et al., 2012; Pratt et al., 2012) have confirmed the reliability of 

inversion of  discrete magnetic anomalies for magnetisation when, as commonly occurs, 

the criteria discussed above are fulfilled. As an example, Pratt et al. (2012) used inverted 

source magnetisations, the known induced magnetisation direction, and palaeofield 

directions for a range of ages, to infer plausible ages and magnetic properties for some 

igneous plugs.   

 

When remanence or self-demagnetisation effects are important, inversions that assume 

magnetisation parallel to the geomagnetic field, and seek to determine a susceptibility 

distribution from the magnetic survey data, are likely to seriously mislead interpretation.  

Clearly, it is better to seek the subsurface distribution of the magnetisation vector, if 

possible. Recent studies have demonstrated the utility and robustness, if suitably 

constrained, of  inversion of magnetic survey data over substantial areas for the subsurface 

distribution of magnetisation vectors (Ellis et al., 2012; Liu et al., 2013; MacLeod and 

Ellis, 2013).  An alternative to inverting directly for a subsurface distribution of 

magnetisation vectors is a two stage process that first inverts a transformed parameter that 

is weakly dependent on magnetisation direction to define source geometry, then uses this 

geometry to invert the original data for the magnetisation.  Li et al. (2010)  recommend the 

magnitude of the magnetic anomaly vector, |b|, as a suitable parameter for inversion of 

source geometry. Liu et al. (2013) inverted |b| measured downhole to invert for a 2D 

distribution of effective magnetisation vector. 

 

It should be noted , however, that total in situ magnetisation is not an intrinsic rock 

property, and magnetisation inversions are therefore less closely related to geology than a 

susceptibility model. In a highly magnetic environment, where non-uniform magnetisation 

reflects inhomogeneous self-demagnetising and interaction fields but for which remanence 

can be neglected, it is therefore desirable to invert for a susceptibility distribution that 
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explains the overall variations in magnetisation direction and intensity, rather than 

attempting to interpret the inverted magnetisation distribution (Fullagar and Pears, 2013).  

For example, a deposit of semi-massive to massive coarse-grained hydrothermal magnetite 

is best interpreted in terms of a susceptibility distribution, which can then be related 

directly to magnetite content. 

 

Rather than attempt to invert for the subsurface magnetisation distribution, an alternative 

approach to analysing anomalies due to isolated sources is to determine the magnetisation 

distribution of a layer of equivalent sources, without any a priori information about the 

source, under the assumption of a constant direction of magnetisation.  Although this 

equivalent source distribution bears no resemblance to the actual source geometry, the 

magnetisation direction (provided it is uniform throughout the source) is accurately 

estimated. Nicolosi et al. (2006) presented an equivalent source method that is suitable for 

the interpretation of isolated magnetic sources for which magnetisation is expected to be 

uniform in direction, but not necessarily in intensity. Once the magnetisation direction that 

best fits the measured data is determined, this information can be used to constrain forward 

modelling or inversion for the source geometry. 

 

DIRECT INVERSIONS FOR SIMPLE SOURCES 

 

The point dipole model, which has a multitude of applications, is applicable to any 

sufficiently compact magnetised body.   Outside a spherical surface that completely 

encloses an arbitrary magnetised body, the field can be expressed as a sum of multipole 

contributions, with a 1/r3 fall-off for the dipole term, 1/r4 fall-off for the quadrupole, 1/r5 

fall-off for the octupole term, and so on. The quadrupole term is equivalent to the effect of 

adjacent, oppositely directed, dipoles; the octupole term is equivalent to the effect of 

adjacent, oppositely directed, quadrupoles.  As an  example consider a compact source that 

has a consistent magnetisation direction throughout, but comprises a subvolume with 

relatively weak magnetisation, with the rest of the body having a stronger magnetisation. 

To first order, the near-field of this source is a dipole field, with dipole moment parallel to 

the magnetisation and located at the centre of the body, but a better representation of the 

near-field, corresponding to second order terms in the multipole expansion, would be a 

dipole source supplemented by a quadrupole contribution.  
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However, for any compact body with a non-zero dipole moment the far field is always 

dominated by the dipole term.  More specifically, the external fields and gradients due to a 

uniformly magnetised sphere are identical to that of a point dipole, because the quadrupole 

and all higher multipole moments vanish identically.  Expressions for the magnetic field 

component anomalies due to a point dipole with arbitrary orientation of the magnetic 

moment were derived in a geophysical context by Hall (1959). Wynn (1999) gives a 

detailed account of methods for determining the location and magnetic moment of dipole 

sources from magnetic measurements. Clark (2010) developed a novel method for locating 

a dipole source and estimating its moment vector, in the presence of background 

interference, from a single profile of gradient tensor measurements.  

 

There are many methods for determining the location of a dipole source and other simple 

sources such as narrow vertical pipes, 2D thin sheets, 2D contacts, and 2D horizontal 

cylinders from magnetic data. Examples of commonly used methods include Euler 

deconvolution and Werner deconvolution (Blakely, 1996, p.242-250).  Clark (2012a,b; 

2013a) presented some new methods for determining source location from vector or 

gradient tensor data. Once the location of a dipole is known, its magnetic moment can be 

calculated simply from the anomalous field vector or its gradient at any point. In terms of 

the field vector b and displacement vector r  from the dipole source to the sensor, the 

moment m is given by: 
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where V is the volume of the source with average magnetisation M   and C has the 

numerical value of 100 if the field is in nT, r is in metres and the moment is in Am². 

Similarly the moment can be determined from the magnetic gradient tensor B = ∇b = [Bij] 

(i,j = x,y,z) measured at a single point r : 
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In many cases measurements of the anomalous field vector or gradient tensor are not 

available.  However these quantities can be calculated from a sufficiently dense grid of  

total magnetic intensity (TMI) data as described by Clark (2013a).  Equation (31) or (32) 
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can be applied to multiple observation points within an anomaly and the results averaged to 

estimate the mean magnetic moment vector. 

 

Clark (2012) noted that the direction of magnetisation of a narrow vertical pipe can be 

analysed by calculating vertical derivatives of the field or gradient tensor components 

measured over the pipe. Applying equation (31) with ∂b/∂z replacing b, or equation (32) to 

∂B/∂z replacing B, yields mL = MA, where A is the cross-section area of the pipe. 

 

Clark (2012a) also gave expressions for anomalous vector and tensor components 

produced by 2D thin sheets, 2D contacts, and 2D horizontal cylinders. Given the locations 

of the sources,  these expressions can be inverted to calculate source strength vectors that 

are proportional to the magnetisation. The location of the top of a semi-infinite 2D thin 

sheet can be readily determined from a magnetic profile, independent of the magnetisation 

direction. Because of the dip/magnetisation direction ambiguity illustrated in Figure 7(a), 

the magnetisation direction can only be determined if the dip is specified. The magnetic 

field components measured at point x along the profile can be used to define the 

magnetisation-thickness product M ′t of a vertical sheet, located at x = x0, z = −h, that is 

equivalent to the actual dipping sheet:  
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Similarly, the components of M ′t for the equivalent vertical sheet can be calculated from 

the two independent gradient tensor components: 
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If the actual dip of the sheet is known independently, or specified a priori, the true 

magnetisation direction can be obtained from the direction of M ′ by rigid rotation about 

the strike direction until  the vertical sheet aligns with the actual sheet. 

 

The same type of analysis can be applied to a thick dipping sheet. Provided the thickness 

2b is greater than the depth h, the centre of the top of the sheet, the depth and the half-
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width b can be readily determined from the magnetic profile.  If the origin of the x profile 

is placed above the centre of the sheet, the magnetisation components obtained from the 

field components at any point (x, 0) along the profile are: 
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where ϕ1,2 = tan−1[(x±b)/h]; r1,2 = √[(x±b)2 + h2].  

 

Similarly the magnetisation components can be calculated from the tensor components at 

(x, 0): 
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For a 2D vertical contact of infinite depth extent, with the top corner at x = x0, z = −h: 
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For a 2D horizontal cylinder (equivalent to an infinite line of dipoles) of cross-section area 

A, with centre at x = x0, z = −h, the effective magnetisation direction normal to strike and 

the effective dipole moment per unit strike length, M ⊥A, can be determined uniquely from 

the field vector or the gradient tensor: 
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COMPARING MAGNETIC DATA ACQUIRED PRE- AND POST-MINI NG 

 

Occasionally good quality magnetic survey data are available before and after removal of a 

magnetic source. This allows the magnetic signature of the source, clearly separated from 

background magnetisation, regional gradients and interfering anomalies, to be determined 

by subtraction.  This scenario is more commonly applicable to near-surface geophysical 

applications where, for example, some unexploded ordnance or a buried steel drum has 

been excavated after having been located using magnetics.  

 

A particularly interesting scenario involves orebodies that have been extracted since the 

advent of high resolution magnetic surveys in the 1980s. Comparison of post-extraction 

survey data with that acquired before mining can define the signature of the missing 

material. Given the knowledge, acquired during deposit delineation and mining, of the 

orebody geometry, the bulk in situ magnetisation of the orebody can be inferred 

retrospectively. A detailed model of the magnetisation distribution can be developed using 

this constraint, supplemented by information on the distribution of magnetic minerals 

throughout the deposit and on magnetic properties of ore and country rocks, which is often 

acquired throughout the history of the mine.  Hoschke (2013) presented a case history 

where the bulk magnetisation of the source of a remanence-dominated anomaly, the Red 

Dome gold skarn deposit in Queensland (Collins, 1987), could be inferred from pre- and 

post-mining magnetic surveys.   

 

Hashimoto et al. (2011) presented an example of the opposite process, where changes over 

ten years  in the magnetic field recorded over an active volcano record the acquisition of 

thermoremanence during cooling of newly emplaced near-surface magmatic intrusions. 

 

COMBINED ANALYSIS OF MAGNETIC AND GRAVITY ANOMALIES  

 

When gravity and magnetic anomalies are produced by the same source, with 

magnetisation contrast ∆M  and density contrast ∆ρ, information on the magnetisation 

direction can be obtained by exploiting Poisson’s relation between the gravitational 

potential U and the magnetic scalar potential V (Blakely, 1996, p.91-93): 
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where G is the universal gravitational constant and g is the anomalous gravitational field 

vector. Equation (40) states that, at any observation point outside the source, the magnetic 

scalar potential is proportional to the anomalous gravitational component in the direction 

of magnetisation.  It is valid independent of the form and position of the source, provided 

the magnetisation and density contrasts are uniform within the volume of the source. In 

fact this restriction can be relaxed somewhat, as the magnetisation intensity may vary, 

provided the direction of magnetisation is uniform and ∆M /∆ρ is constant throughout. 

 

Differentiating equation (40) yields: 
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where Γ = ∇g is the gravity gradient tensor.  In terms of the vertical component of gravity, 

gz, which is the quantity measured in conventional gravity surveys: 
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The RHS of equation (42) can be regarded as the vertical pseudomagnetic anomaly 

calculated from the observed gravity (Blakely, 1996, p.347).  If a linear regression of bz 

versus the derivatives of gz yields a good fit within a coincident magnetic and gravity 

anomaly, then the assumption of a common source for the anomalies is probably correct.  

Garland (1951) applied an equivalent relation to equation (42) to measured vertical 

magnetic field and gravity data, in order to identify likely common gravity and magnetic 

sources, to test whether the magnetisation direction is close to the geomagnetic field, and 

to estimate k/ρ when the assumption of induced magnetisation only appears to be justified. 

This parameter was then used to discriminate between sources of different lithology and 

identify possible source types. Wilson (1970) showed that equation (42) can be used to 

separate anomalies due to neighbouring sources with differing magnetisation directions 

and/or values of |∆M |/∆ρ, provided the property contrasts are known, and can be used to 

detect pre-folding remanence that has been rotated into different orientations within a 

deformed rock unit. 
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The vertical derivative of the gravity anomaly can be calculated from a grid of gz by 

convolution filters or Fourier domain processing or may be directly measured by modern 

gravity gradiometer surveys; the horizontal derivatives can be obtained by filtering or by 

numerical differentiation of the gz grid, or by direct measurement. Application of equation 

(42) and following equations derived from it require that the magnetic and gravity 

components are either measured on the same observation surface, or have been analytically 

continued to the same plane. Blakely (1996, Chapter 12) gives the necessary theory for 

upward/downward continuation and derivative calculation. The vertical magnetic field 

component can be derived from a TMI grid by Fourier domain processing, as described by 

Blakely (1996, pp. 328-329, 342-343), provided the geomagnetic inclination is not too low. 

Clark (2013a) gives an algorithm for calculating components of b from gridded TMI data, 

including an iterative correction for perturbation of the regional geomagnetic field 

direction by intense local anomalies.   

 

The relationship between the measured TMI anomaly T, corrected to a true potential field 

if necessary, and the associated gravity anomaly can be obtained from equation (41): 
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From equation (42), the reduced to the pole (RTP) anomaly zb′  is directly proportional to 

the vertical gradient of the gravity anomaly: 
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Within a discrete magnetic and gravity anomaly, equation (40) implies that there is a linear 

relationship between the calculated RTP anomaly and the vertical derivative of gravity, 

provided (i) the same source gives rise to the magnetic and gravity anomalies, (ii) the 

magnetisation and density of the source are uniform or, slightly less stringently, the 

magnetisation direction is uniform and the ratio |M |/ρ is constant throughout the source,  

and (iii) the correct direction of magnetisation has been used to calculate the RTP anomaly. 

Kanasewich and Agarwal (1970) applied the frequency domain equivalent of equation 

(44), comparing RTP TMI data with pseudomagnetic data calculated from the observed 

gravity, and obtained a reasonable range of |∆M |/∆ρ values for mafic intrusive rocks that 
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produced the majority of anomalies in an area of northern Saskatchewan. Chandler et al. 

(1981) applied equation (44) within a moving window, with a constant term added to 

represent background shifts due to neighbouring or deeper sources, to identify common 

gravity and magnetic sources and to estimate |M |/ρ variations over extensive areas. 

 

Muniruzzaman and Banks (1989) compared the pseudomagnetic field (calculated from the 

gravity field assuming  vertical magnetisation) and the RTP magnetic field, in the 

frequency domain.  This method searches for the magnetisation direction that, when used 

for calculating the RTP anomaly, maximises its correlation with the pseudomagnetic field. 

Ates and Kearey (1995) and Bilim and Ates (2004) used an alternative approach that cross-

correlates the observed gravity and the pseudogravity, calculated from the measured 

magnetic anomaly using a range of assumed magnetisation directions. Which approach is 

to be preferred depends on the noise characteristics of the data. The pseudomagnetic 

transform amplifies short wavelength noise in the gravity data, whereas the pseudogravity 

transform amplifies long wavelength contamination of the magnetic field.   

 

Trialling different directions of magnetisation, until the best fit to equation (44) is 

obtained, affords a way of estimating the direction of magnetisation of the source, as well 

as the value of |∆M |/∆ρ. However in favourable circumstances bz can be calculated 

independently of any assumptions about magnetisation direction, so equation (38) can be 

applied to suitably processed magnetic and gravity grids to obtain least-squares best-fit 

estimates of ∆Mi /∆ρ (i = x, y, z) from which the direction of magnetisation and |∆M |/∆ρ 

can be determined. Lundbak (1956) applied this method to deduce the resultant 

magnetisation directions and anomalous magnetisation/density ratios of deeply buried 

basement sources in Denmark and northern Holland and to infer possible remanence 

directions of the sources.  Application of equation (43) to TMI data is slightly more 

complicated, because all elements of the gravity gradient tensor, either measured or 

calculated, are required to solve for the components of ∆M /∆ρ. 

 

Mendonça (2004) developed a method for determination of the magnetisation-density ratio 

and the inclination of the effective magnetisation for 2D sources.  The magnetisation-

density ratio can be determined independently of the actual magnetisation direction, since 

the magnitude of the anomalous magnetic field vector |b| is independent of M̂  for 2D 

sources, and is given by: 
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From equation (42), if the magnetisation is vertical, the anomalous magnetic vector b′ is 

related to the gravity anomaly by: 
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At any point outside a 2D source, the angle between the anomalous magnetic field vectors 

b and b′  that obtain for the actual magnetisation direction, and for vertical magnetisation, 

is everywhere equal to the angle between the actual magnetisation and the vertical down 

direction. Mendonça  (2004) uses this fact and an equivalent to equation (42) to show that 

the apparent inclination of the effective magnetisation M ⊥ is given by: 
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Mendonça and Meguid (2008) extended this approach to 3D and provided computer 

programs to calculate ∆M/∆ρ and the inclination of magnetisation from the 3D 

generalisations of equations (46)-(47). 

 

Using frequency domain expressions for derivatives (Blakely, 1996, p.324-326)  and 

taking the Fourier transform of equation (42), gives: 
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where kx, ky are the wavenumbers along the x and y directions, |k| = √( kx² + ky²), and 

Fourier transforms are indicated by tildes.  Rearranging equation (48) yields a frequency 

domain expression that can be solved in a least squares sense for the components of M /ρ: 
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A good linear correlation between the Fourier coefficients of bz and those of the derivatives 

of gz over a broad range of wavenumbers validates the assumption of a common source. 

Kanasewich and Agarwal (1970) assess the validity of the assumptions of the Poisson 

analysis, using a coherence function given by: 
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where Pb,g, Pb, Pg are the cross-power spectrum for bz and gz, the auto-power spectrum for 

bz, and the auto-power spectrum for gz respectively. 

 

A smooth systematic change in regression coefficients from small to large wavenumbers 

can in principle give information about variations of M /ρ with decreasing depth.  Cordell 

and Taylor (1971) developed Fourier domain relationships between measured TMI (rather 

than bz) and gravity anomalies that were similar to, but somewhat more complicated than, 

equations (44)-(45). They applied these relationships to surveys over seamounts to derive 

(i) the ratio |∆M |/∆ρ  (ii) the total magnetisation direction ∆M/ |∆M |, and (iii) the minimum 

possible value of the Koenigsberger ratio, using equation (11), without any knowledge of 

the source shape.  These authors also pointed out that the direction of remanent 

magnetisation can be determined using an assigned value or suite of values of Q, using 

equation (12), and were able to derive plausible palaeomagnetic poles from the seamount 

data. 

 

The theory behind using Poisson’s relation to determine the magnetisation direction of a 

common gravity and magnetic source implies that, if coincident gravity and magnetic 

anomalies can be successfully modelled with a geologically plausible common source, then 

the modelled magnetisation is probably accurate.  Schmidt et al. (2007) give an example of 

a strongly remanently magnetised and dense massive iron oxide deposit for which the 

magnetic model, constrained by drill intersections, also explained the gravity anomaly 

using measured ore and host rock densities. The magnetisation required by the model 
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agreed well with measurements on samples, as expected from the concordance of the 

magnetic and gravity models. 

 

USING A CONTROLLED MAGNETIC SOURCE 

 

Active source magnetics is a technique that can potentially be applied to mapping 

subsurface magnetisation distributions using the inhomogeneous time-varying primary 

field of a loop or dipole source (e.g. a superconducting magnet) and a roving receiver 

(Schmidt and Clark, 1997; Clark and Schmidt, 1999). Figure 11 illustrates the principle of 

the method and highlights the differences with other methods. In conventional magnetic 

surveys, the inducing field is essentially static and uniform, whereas for differential vector 

magnetometry (DVM) in base station mode (discussed in a later section) the inducing field 

is uniform but time-varying.  In active source magnetics the inhomogeneity of the primary 

field provides a spatial resolution that overcomes much of the non-uniqueness of 

interpreted sources in conventional surveys and the time-varying field discriminates 

between induced and remanent contributions to the anomaly field.  

 

For a compact active source and a compact target, the combination of 1/r3 fall-offs from 

the active source to the target and from the target back to sensor produces an overall 1/r6 

dependence of the signal. Given this rapid fall-off, this technique is only practicable for 

fairly shallow sources. The depth of investigation can be increased by using a large loop 

source, as in a ground transient electromagnetic (TEM) survey, but there is a 

corresponding loss in spatial  resolution of subsurface magnetisation distribution as the 

applied field is more uniform.  

 

For a 2D geological structure a long current-carrying cable parallel to strike can be used as 

the exciting source.  The fall-off with height above a compact 2D structure is 1/r4.  

Tsirul’skiy (1972) demonstrates the theoretical uniqueness of the magnetic scalar potential 

(and hence of any field component) along a profile over a homogeneous 2D body with a 

star domain cross-section. The restriction on the shape of the domain is not too stringent - 

it requires that there is a point within the cross-section from which a line drawn to any 

other point in the shape lies totally within the domain. This does not require a polygonal 

cross-section; it includes all convex homogeneous shapes, for example, as well as non-

pathological concave shapes; but excludes hollow shapes. Inversion of controlled source 
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data over such a structure can define both the shape and the susceptibility.  Similar results 

apply to the 3D case. 

  

Frequency domain EM systems operating at relatively low frequencies can be regarded as 

giant moving susceptibility meters. Over a homogeneous half-space the low frequency in-

phase secondary field, due to magnetisation induced by the primary field, is negative, 

almost frequency independent, and provides a measure of magnetic susceptibility (Fraser, 

1981). Provided the frequency is sufficiently low that the conductivity signal is negligible, 

the in-phase signal is proportional to k′ given by equation (16). The true susceptibility, 

corrected for self-demagnetisation, is then given by equation (17). Note that the method 

yields an apparent susceptibility, analogous to apparent resistivity, that will differ from the 

true susceptibility when the subsurface is inhomogeneous at the scale sampled by the 

primary field. The approach using half-space models can be extended to simultaneous 

mapping of susceptibility, resistivity and permittivity using in-phase and quadrature 

responses from sufficiently broadband multifrequency EM systems (Huang and Fraser, 

2000; 2001).  

 

Because lower frequencies penetrate to greater depths than higher frequencies, 

multifrequency EM data inherently contain information on the depth distribution of 

susceptibility (Zhang and Oldenburg, 1997; 1999). Those authors developed a method to 

invert frequency domain EM data from a horizontal co-planar system to yield a 1D 

distribution of susceptibility, using specified conductivities of the layers. In most 

circumstances the conductivities must be obtained by other means, such as inversion of 

resistivity surveys or of broadband EM data. Zhang and Oldenburg (1999) demonstrate the 

potential for simultaneously extracting information from an EM data set on susceptibility 

and conductivity structure of a layered earth down to ~150-200 m. Tschirhart et al. (2013) 

have shown that forward modelling of the magnetic field produced by the shallow 

susceptibility distribution obtained from inversion of a helicopter-borne frequency domain 

EM survey provided an estimate of the contribution of shallow sources to the observed 

TMI data. This method of regional/residual separation can also identify areas where 

remanence effects are important. 
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Figure 11. Comparison of (a) conventional magnetic surveys, (b) differential vector 

magnetometry in base station mode, (c) active source for magnetic tomography. 

  



 

229 
 

 

 

 

Pavlov and Zhdanov (2001) showed that the susceptibility of  highly magnetic bodies 

significantly affects time domain EM (TDEM) responses, particularly at late times. The 

effect is most important for bodies that are both conductive and magnetic. The implication 

is that TDEM surveys can provide useful information about the subsurface susceptibility 

distribution and susceptibility should be included in the inversion of TDEM data, as well 

as conductivity. Zhdanov and Pavlov (2001) developed a method for simultaneously 

estimating the conductance and susceptibility-thickness product for a conductive and 

magnetic horizontal thin sheet, using time domain EM data. This method could be a useful 

complement to a conventional magnetic survey, for which a uniformly magnetised 

horizontal sheet is undetectable. 

 

The subaudio magnetic (SAM) method of Cattach et al. (1994) could also possibly be 

adapted to give information about the shallow subsurface susceptibility distribution, using 

magnetic field measurements made when the positive and negative primary field is on, 

provided the data are corrected for eddy current and IP effects that are extracted from the 

data, or wait times are sufficient to allow these EM effects to decay to negligible levels. 

 

The permeability contrast (hence the susceptibility contrast) of a magnetic, conductive 

buried sphere can, in principle, be determined uniquely from sufficiently broadband EM 

measurements, without any knowledge of the true location, size or conductivity of the 

sphere. If the active source applies an effectively uniform alternating primary field at 

angular frequency ω  across the buried sphere, and the horizontal component of the 

secondary field H(ω) is measured at any nearby point over  a wide range of frequencies, 

then Ward (1959) showed that: 
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where H(ω = 0) is the horizontal field component extrapolated to zero frequency, H(ω = ∞) 

is the horizontal field component extrapolated to infinite frequency, µ1 = µ0(1+ k1) is the 

permeability of the sphere, and µ2 = µ0(1+ k2) is the permeability of the host. Validity of 
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the method requires that displacement currents are negligible (i.e. ε1ω << σ1) and that the 

wavelength in the host medium be much greater than the sphere radius R (i.e. |(iσ2µ2ω 

−ε2µ2ω²)½ R| << 1). The alternating field can be regarded as quasi-DC if  [σ1µ1ωR2]½ < 0.5 

and can be regarded as effectively infinite if [σ1µ1ωR2]½ > 1000. Thus a frequency range of 

over six decades would be required to implement Ward’s method in its original form. A 

more sophisticated analysis of measurements made over a smaller frequency range, 

spanning the transition from a regime where eddy current effects are minor to a regime 

where eddy currents are significant, could in principle extract the permeability ratio.  The 

analysis can also be applied to a sufficiently strong dipole source of primary field, 

provided the source is sufficiently distant from the boundary of the sphere.  Inverting 

equation (51) gives: 
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which determines the susceptibility of the sphere if the susceptibility of the host rock is 

known. If the host rock is nonmagnetic, equation (52) reduces to: 
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Important features of controlled source methods include: 

1. These methods map susceptibility distribution only and are unaffected by 

remanence. In terrains where magnetite is the most common magnetic mineral, the 

inverted susceptibility map can be converted to a magnetite concentration map 

using relations like equation (24).  

2. Combining controlled source methods and conventional magnetic surveys can 

allow  separation of induced and remanent contributions to total magnetisation and 

provide information on the shallow subsurface distribution of remanence 

magnitude and direction. 

3. Controlled source methods are independent of the geomagnetic field direction, 

unlike conventional magnetics. 

4. Controlled source methods sample only the relatively shallow subsurface, whereas 

conventional magnetic surveys reflect deep as well as shallow sources. The skin 
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depth δ = √(2/σ2µ2ω) gives an indication of the depth of penetration of the method. 

Some resolution of source depth is in principle obtainable within the depth range 

sampled by the applied field.   

5. Controlled source methods generally provide higher spatial resolution than 

conventional magnetics, because of the localised nature of the exciting field.  

6. Controlled source methods are very sensitive to sensor height above the top of the 

magnetic layer. For closely coupled transmitting and receiving coils with separation 

s at a height h above a half-space, the secondary field response is proportional to 

(s/h)3  provided s << h (Huang and Fraser, 2000).  In-phase and quadrature 

responses must be corrected for height variations, although ratios of these 

components, or of single components at different frequencies, are independent of 

height. 

7. At high frequencies susceptibility mapping using frequency domain EM is affected 

by subsurface conductivity. An upper limit to the desirable measurement frequency 

f can be obtained using the dimensionless induction number α = [2πfσµh2]½, where 

σ is the subsurface conductivity and µ = µ0(1+k) is the magnetic permeability.  The 

apparent susceptibility is independent of frequency and can be determined uniquely 

from the in-phase response provided α < 0.1.  Determination of k is possible 

provided α < 4, which is attainable by normal airborne surveys, even for very 

conductive terrains, provided f ≤ 900 Hz (Huang and Fraser, 2000). 

8. The reliability of the susceptibilities mapped by controlled source methods is 

contingent on the validity of the assumptions about homogeneity. For methods 

based on the half-space model, inverted susceptibilities are only accurate if the 

subsurface is reasonably homogeneous over the effective lateral extent of the 

applied field, down to the effective depth of penetration. Similarly, 1D models 

require lateral homogeneity and, additionally,  vertical homogeneity of layers over 

their resolvable depth extents. 

 

HELBIG-TYPE ANALYSIS OF VECTOR,  TENSOR AND  

TENSOR INVARIANT DATA 

 

In a landmark paper Helbig (1963) investigated the information about a compact 

magnetised source that could be extracted from integrals of anomalous quantities over a 

horizontal plane and showed that it was possible in principle to determine the magnetic 
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moment vector of an arbitrary finite source by calculating various integral moments of 

magnetic vector components over an entire horizontal plane above the source.  It was 

shown that the mean values over a horizontal plane of anomalous field components due to 

an arbitrary compact source vanish, which in principle allows the base level for these 

components to be determined. Furthermore the total dipole moment of the source can be 

estimated from first order integral moments of measured field components and some 

information about the “centre of magnetisation” (analogous to a centre of mass for the 

gravitational case) can be determined from second order integral moments. Andersen and 

Pedersen (1979) gave a corresponding treatment for 2D sources, incorporating an 

important correction for finite range of integration.  

 

Helbig (1963) showed that the integrals over the horizontal plane of the anomalous 

magnetic field components due to a finite source are zero and that some first integral 

moments of the components are related to the components of the total magnetic moment of 

the source: 
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The other first integral moments of magnetic components are zero. 

 

In its original form, Helbig analysis requires gridded values of all three anomalous 

magnetic components. The method was largely neglected over subsequent decades, 

probably because vector data were rarely available. Because measurements of the magnetic 

field vector are very sensitive to orientation errors, vector magnetic surveys tend to be 

noisy. It is generally preferable to calculate anomalous magnetic components from high 

quality TMI data, except near the magnetic equator where the process becomes unstable. 

This is most easily accomplished using Fourier domain filtering (Lourenço and Morrison, 

1973; Blakeley, 1995, p.342-343).  Purucker (1990) described  and evaluated the strengths 

and weaknesses of the available methods (Fourier filtering, convolution filtering, and 

equivalent source techniques) for calculating vector components from TMI. Schmidt and 

Clark (1998) revived the Helbig method, with some modifications, by applying it to vector 
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components calculated by Fourier processing of a conventional TMI survey over a strongly 

remanently magnetised contact aureole and comparing the results with palaeomagnetic 

measurements. Li et al. (2004) used the Helbig method to estimate magnetisation 

directions, which were then used to constrain inversion of source geometry. Phillips (2005) 

developed an algorithm for estimating resultant magnetisation directions from windowed 

vector magnetic data and demonstrated its applicability to determining magnetization 

directions for isolated compact sources or for scanning gridded data sets for sources with a 

specified magnetisation direction. Phillips’ (2005) moving window approach can 

efficiently process datasets over large areas, at the expense of necessarily underestimating 

magnetic moments due to the limited area of integration, but generally produces robust  

inverted magnetisation directions. Foss (2006) demonstrated the necessity for good 

separation of the residual anomaly from the regional trends or interfering anomalies to 

achieve accurate results from Helbig analysis.  Caratori Tontini and Pedersen (2008) gave 

a method for correcting conventional Helbig analysis of vector components for finite 

integration area, to give an improved estimate of the total dipole moment and for defining 

the  horizontal and vertical centres of magnetisation of a 3D source.  Phillips et al. (2007) 

extended the Helbig method to calculation of magnetic moments from gridded elements of 

the magnetic gradient tensor, using the following relations: 
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    (55) 

 

The integrals of equation (55) converge more slowly than those of equation (54), in spite of 

the greater compactness of gradient anomalies about the source, due to the higher power of 

horizontal coordinates in the integrands.  If regional gradients have been correctly 

removed, the other second order integral moments of the tensor elements, as well as all 

first order moments, are zero. Provided the area of integration is well centred around the 

source and extends well beyond the horizontal dimensions of the source, and the source 

can be assumed to be depth limited, with bottom depth comparable to the radius of 
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integration or smaller, integral moment methods are in principle independent of source 

geometry. With the above caveats, estimated parameters are quite robust and do not 

depend on assumptions about source shape and size. The method is sensitive, however, to 

erroneous base levels in the vector and tensor components, to integration areas that are 

offset with respect to the source centroid, and to regional trends, which must be removed 

before applying the method. 

 

Clark (2013b) applied Helbig-type analysis to rotational invariants of the gradient tensor  

[see Chapter 7]. Integral moments of tensor invariants locate the horizontal and vertical 

centres of magnetisation and estimate the magnetisation direction.  Consider an isolated 

source with magnetisation M , which produces an anomalous field vector b and a 

corresponding anomalous gradient tensor B = ∇b.  B is a  symmetric traceless second order 

tensor, which after diagonalisation can be characterised by its eigenvalues and 

eigenvectors.  Rotational invariants of the tensor, such as the canonical invariants I1, I2 of 

Pedersen and Rasmussen  (1990), can always be expressed in terms of the eigenvalues of 

the tensor. The normalised source strength (NSS) µ is a particularly useful invariant, 

because it is completely independent of magnetisation direction for a number of simple, 

but useful source types: spheres, compact sources that can be represented by a dipole, 

axially magnetised thin pipes, and 2D sources of arbitrary shape (Beiki et al. 2012; Clark, 

2012a,b; 2013a,b), and is only weakly dependent on magnetisation direction for 3D 

sources in general (Pilkington and Beiki, 2012). The NSS is defined by 
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where λ1 ≥ λ2 ≥ λ3 are the eigenvalues of the tensor in nonincreasing order, which sum to 

zero due to the tracelessness of the tensor. For a dipole source at (x0, y0, h) the NSS takes 

the simple form 
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where r is the distance from the dipole to the measurement point (x,y,0).  Clearly from 

equation (57), the NSS measured over a plane peaks directly over a dipole source (where r 

is a minimum) and is independent of orientation of m. The depth of the dipole is simply 
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related to the halfwidth of the NSS anomaly. This suggests that measurements of µ over a 

plane can provide robust estimates of dipole location, unaffected by magnetisation 

direction. 

 

The intermediate eigenvalue λ2  for a dipole source is given by Clark (2012a) as 
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where φ is the angle between the magnetic moment vector and the displacement vector r  

from the dipole to the observation  point. Equation 58 shows that λ2 depends on the 

orientation of the moment, and therefore can provide information about the magnetisation 

direction. 

 

The horizontal location (x0, y0) of the centre of magnetisation of a laterally finite source 

can be estimated from first integral moments of µ or µ²: 

 

.

 

 

 

 

,

 

 

 

 

2

2

0
2

2

0

∫ ∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫
∞+

∞−

∞+

∞−

+∞

∞−

+∞

∞−
∞+

∞−

∞+

∞−

+∞

∞−

+∞

∞−
∞+

∞−

∞+

∞−

+∞

∞−

+∞

∞−
∞+

∞−

∞+

∞−

+∞

∞−

+∞

∞− ====
dxdy

dxdyy

dxdy

dxdyy

y

dxdy

dxdyx

dxdy

dxdyx

x

µ

µ

µ

µ

µ

µ

µ

µ
 (59) 

 

In practice the numerical integration is carried out over a finite area to obtain initial 

estimates of (x0, y0).  The area of integration is then centred on this point and the integrals 

recalculated to make any necessary small corrections to the location, which is subsequently 

used as the origin of coordinates for calculation of all other integral moments. The depth of 

the centre of magnetisation, h, of a compact source, or an equidimensional source that can 

be adequately represented by a dipole, can be found from 
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The magnitude of the magnetic moment, m, is given by 
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Equations (59)-(61) are exact for a point dipole source, which is equivalent to a uniformly 

magnetised sphere, and is also very accurate for compact sources of arbitrary shape and for 

fairly equidimensional sources buried at moderate depths, for which the dipole contribution 

dominates the anomaly.  The horizontal location of the centre of magnetisation is also well 

estimated, even for sources of complex geometry, due to the high centricity of the NSS 

over arbitrary 3D sources (Pilkington and Beiki, 2012).  The depth of the centre of 

magnetisation can be expected to be reasonably accurate, provided the depth extent of the 

source is smaller than the radius of integration.  

 

Assuming a source that can be reasonably represented by a dipole the centroid depth 

estimate itself can be corrected for the finite radius of integration. Such sources range from 

very compact bodies, even if irregular in shape or non-equidimensional or 

inhomogeneously magnetised, to  large equidimensional, sufficiently uniformly 

magnetised bodies that can be reasonably represented by a sphere model. This revised 

depth estimate allows more accurate correction of the integral moments of vector and 

tensor components, as used in Helbig (1963) analysis and its offshoots, which can also be 

accurately corrected for the finite radius of integration, allowing numerical integrations to 

be confined to the main part of the anomaly. This reduces contamination of the integral 

moments by neighbouring sources and greatly improves parameter estimation.  

 

The first step is to correct the initial estimated depth of the centroid, h′, obtained from 

equation (60) when the integration is performed over a disc of radius R: 
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In equation (62) ρ and ϑ are polar coordinates centred on (x0, y0). Solving equation (62) for 

the true depth h in terms of the known quantities R and h′ gives 
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Once the true depth of the centroid has been estimated, all other integral moments used in 

the subsequent analysis can be corrected for the finite area of integration using analytic 

integrals based on the theoretical fall-off rate of a point dipole anomaly, as done for 

conventional Helbig analysis by Schmidt and Clark (1998) and Caratori Tontini and 

Pedersen (2008).  

 

While it is often more convenient to carry out 2D integrations over square or rectangular 

areas, rather than discs, it turns out that the corrections for finite discs and for squares of 

equivalent area (with side X = R√π) are almost identical for the integral moments of 

interest, differing by at most ~1% over a wide range of R/h.  Therefore the corrections 

based on discs of integration, which are much easier to calculate, can be used, even though 

the numerical integrations are performed using square windows. 

 

The corrected magnitude of the magnetic moment, based on the initial estimate m′ from 

equation (61) is: 
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The corrected components of the magnetic moment m = (mx, my, mz) are given by 
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Note that the declination of the magnetisation, (which is given by dec = tan−1(my/mx) if mx 

> 0, or dec = tan−1(my/mx)+180° if mx < 0), is independent of the radius of integration 

(provided the integral is centred correctly above the source).  On the other hand, the 

inclination of the magnetisation, given by I = sin−1(mz/m), requires a correction for the 

finite range of integration. 

 

Provided the radius of integration is large enough to ensure that beyond this radius the 

source is well represented by a dipole, the integrals in equation (54), calculated over the 

whole horizontal plane, can be inferred from integrals calculated over a finite disc centred 

on the source. For example: 
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The correction factors for the other integrals in equation (54) are identical.  Since the 

magnitudes of all components of the magnetic moment, calculated using the original 

Helbig method, are reduced by the same factor due to a finite range of integration, the 

ratios of these components are independent of the radius of integration. Thus the correction 

to the total magnetic moment that is required to account for the finite range of integration 

is independent of the magnetisation direction, as noted by Schmidt and Clark (1998). 

Furthermore, calculation of magnetisation directions from well-centred finite integral 

moments of magnetic components is robust, even when the integration range is quite small, 

as demonstrated empirically by Phillips (2005).  
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Given an estimated depth of the centre of magnetisation, the corrected estimate of the true 

moment m is related to the initial estimate m′, obtained from finite integrals, centred on the 

source, of the integrands in equation (54), by: 
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Equation (69) pertains to the original Helbig method, which uses first integral moments of 

field components.  A similar analysis of the integrals of equation (55) yields the following 

expression for the corrected moment, based on second integral moments of gradient tensor 

components: 
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where the components of  m′′ are calculated from finite integrals, centred on the source, of 

the integrands that take the form x²Bij or y²Bij in equation (55).  For integrands of the form 

xyBij, the correction factor is slightly different: 
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Caratori Tontini and Pedersen (2008) showed that the horizontal and vertical centres of 

magnetisation of an arbitrary finite source, not just a compact one, can be determined in 

principle from specific second order integral moments of field components.  The 

relationships needed are: 
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which can be simply solved for (x0, y0, h) given (mx,my, mz) from equation (54), (55) or 

(65)-(67), provided the magnetisation is not vertical. This approach can be extended to 

third order integral moments of the gradient tensor. The corresponding relationships to 

equation (72) are: 
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Equations (73)-(74) are new. Although equations (72) or (73)-(74) are in principle 

applicable to general finite sources, rather than just compact sources, they require accurate 

removal of base levels and gradients. Determination of h requires  that mx ≠ my, but this 

singular case can always be avoided by reorienting the grid. Large areas of integration are 

required, because the integrals in these equations converge slowly.  An iterative scheme, 

whereby finite integrals are re-centred on updated estimates of (x0, y0)  and corrected for 

finite radius of integration, using updated estimates of h, gives better results.  McKenzie et 

al. (2012a) found that the horizontal location of a compact source could be found to within 

5% of its depth for R/h = 2, with a corresponding error in magnetisation direction of ~5°. 

 

Significant aspects of the Helbig method and its offshoots include: 

1. For relatively isolated anomalies, analysis of integral moments of tensor invariants, 

particularly the normalised source strength and the intermediate eigenvalue, 

provides useful information on source location, direction of magnetisation and total 

magnetic moment, even when the numerical integrations are restricted to the main 

portion of the anomaly.  

2. The horizontal location of the centre of magnetisation is very robust, particularly 

when determined from the first integral moment of  µ², and for compact sources the 

depth of the centroid can be reliably estimated when a correction for the finite 

radius of integration is made.  Note that the integral moments, originally proposed 
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by Helbig (1963) for centroid location, do not converge. Table 1 summarises the 

ratios of finite to infinite extent integrals that can be used in Helbig analysis.  The 

integral moments in equations (72)-(75) converge, albeit slowly, wherease those in 

equations (59)-(60) converge relatively rapidly. 

3. The centroid depth is not only important in its own right, but is a crucial parameter 

for applying corrections to Helbig-type analyses of vector and tensor components, 

which are in principle independent of source shape (for finite sources).  

4. Corrections of the calculated integrals for the finite ranges of x and y are necessary 

to account for the tails of the anomaly, which are buried in noise, obscured by 

interfering anomalies, or may lie outside the survey area.   

5. Equation (69) implies that the direction of magnetisation can be derived accurately 

from well-centred integral moments of vector components (the original Helbig 

method), even for relatively small areas of integration.  However the magnitude of 

the magnetic moment can be substantially underestimated unless the corrections for 

finite integration radius are applied. For example, for R = 2h the finite integrals of 

(x−x0)Bi are only 37% of the infinite integrals, whereas the corresponding ratios are 

80%, 99% and 91% for µ, µ² and λ3 respectively. Even for R = 10h the finite 

integrals of (x-x0)bi are only 85% of the corresponding integrals over the entire 

horizontal plane. 

6. Equations (70) and (71) imply that the direction of magnetisation can be derived 

accurately from well-centred integral moments of tensor elements, following the 

method of Phillips et al. (2007), even for relatively small areas of integration.  

However the magnitude of the magnetic moment can be grossly underestimated 

unless the corrections for finite integration radius are applied. For example, for R = 

2h the finite integrals of (x−x0)²Bij and (x−x0) (y−y0)Bxy are only 21% and 27% 

respectively of the infinite integrals. Even for R = 10h the finite integrals of (x-

x0)²Bij and (x−x0) (y−y0)Bxy are only 80% and 81% of the corresponding integrals 

over the entire horizontal plane.  

7. Helbig-type analyses are not applicable to sources of great depth extent relative to 

the resolvable width of the anomaly. Vertical pipe-like bodies and vertical prisms, 

not necessarily narrow or equidimensional, can be analysed, however, by applying 

these methods to vertical derivatives of the field and/or tensor components and 

invariants derived from those derivatives (Clark, 2012a).  
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8. In favourable circumstances Helbig-type methods can yield good estimates of 

source magnetic moment vectors for finite sources, independent of the source shape 

and size. This requires correct determination of base levels of components and 

removal of regional trends. Offsets in components can be estimated by analysis of 

zero order integral moments of field components. In principle, removal of the 

average values of the components over a large area, extending well beyond the 

anomaly of interest, yields the correct base levels. In practice, averages of field 

components over a limited area are biased by omission of the slowly decaying 

flanks of the anomaly. More accurate results can be obtained by (i) implementing a 

correction, dependent on the estimated magnetisation direction and R/h, of the 

estimated base level, or (ii) analysing the gradient tensor and its invariants, which 

suppresses effects of base level offsets in field components. Because gradient 

anomalies are more focussed around the source, they are less contaminated by 

neighbouring sources. Furthermore, regional gradients can be readily recognised 

and removed from gradient tensor data over the relatively isolated sources that are 

the target of Helbig-type methods. 

 

METHODS BASED ON REDUCTION TO THE POLE AND  

RELATED TRANSFORMS  

 

The RTP transformation assumes a direction of magnetisation and calculates the vertical 

field anomaly (equivalent for weak fields to the TMI anomaly at the magnetic pole) that 

would be produced by the same sources if they were vertically magnetised (Blakely, 1996, 

p.330-335). Provided the correct magnetisation direction is used, this process produces 

predominantly positive anomalies, which are more symmetric than TMI anomalies that 

reflect the inclined geomagnetic field, and moves the anomalies more directly over the 

sources. For compact sources, correctly calculated RTP anomalies lie directly above the 

sources, whereas for broad sources with steeply dipping contacts the RTP anomalies 

overlie the source boundaries. For extended sources with shallow dipping contacts, 

however, the symmetry of the RTP anomalies is imperfect and the anomalies are somewhat 

displaced from the contacts. The magnetisation direction/dip ambiguity illustrated in 

Figure 7 shows that any method based purely on the magnetic anomaly, including RTP-

based methods, will struggle to determine the magnetisation direction for tabular shallow 
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dipping bodies of considerable strike extent. The RTP transformation is unstable when the 

geomagnetic inclination is too low, so its use is problematic in low latitudes.  

 

Attempts to estimate direction of magnetisation of isolated sources from analysis of the 

symmetry of their anomalies have a long history.  For example Schnetzler and Taylor 

(1984) used the position  and relative magnitudes of the TMI maximum and minimum to 

infer the declination and inclination of the source magnetisation.  However this and similar 

methods are relatively ineffective near the equator and are very sensitive to errors in 

anomaly base level, regional gradients and interfering anomalies.   

 

Bott et al. (1966) calculated the pseudogravity transformation from the magnetic anomaly 

for many possible directions of the magnetisation and searched for directions that gave 

purely positive anomalies.  The pseudogravity transformation has a phase spectrum 

identical to that of the RTP transformation and an amplitude spectrum weighted by 1/|k| 

with respect to RTP (Blakely, 1996, p.343-346), so it suffers from similar distortion due to 

shallow dips and, as it amplifies long-wavelength noise, requires good separation of the 

residual anomaly from the  regional background.  

 

Fedi et al. (1994) developed a method of distortion analysis of RTP anomalies that has 

come to be known as the Maxi-Min method.  This method is based on the observation that 

induced anomalies at the pole are predominantly positive and relatively symmetric, flanked 

by a relatively inconspicuous magnetic low.  By trialling different magnetisation 

directions, the direction that produces the smallest negative RTP anomaly around the 

source gives the best estimate of the true magnetisation direction.  This method is 

unaffected by base level errors, but like alternative methods is compromised by interfering 

anomalies and background gradients. 

 

Stavrev and Gerovska (2000) proposed transforming gridded TMI data to obtain 

parameters that are relatively insensitive to magnetisation direction, in contrast to RTP 

anomalies, and are well centred over sources, irrespective of magnetisation direction.  

Their favoured parameters Ta =|b|, |∇Ta|, ∇²Ta, (Ta∇²Ta)
½, and (∇²Ta²)

½  are functions of 

anomalous vector components, which may be directly measured or calculated from TMI 

data.  Calculation of these magnitude transforms is unstable at very low (< 5°) 

geomagnetic inclinations, but the instability is less severe than for the RTP transform. For 
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2D sources the independence of magnetisation direction is exact for these quantities, but is 

only approximate for 3D sources.  The parameters of Stavrev and Gerovska (2000) are less 

sensitive to magnetisation direction of 3D sources than the formerly popular analytic signal 

amplitude (ASA), otherwise known as the total gradient of TMI.  Clark (2012a, 2013b) and 

Pilkington and Beiki (2013) suggest the NSS, given by equation (56), as an alternative high 

centricity parameter, as it is completely independent of magnetisation direction for the 

important cases of dipolar sources and axially magnetised narrow pipes, as well as all 2D 

sources.   

 

The high centricity parameters discussed above are useful for defining horizontal locations 

of source centroids and/or boundaries, but provide little or no information about 

magnetisation direction, whereas RTP maps are highly sensitive to orientation of the 

assumed magnetisation. Comparison of a map of a high centricity parameter over an 

isolated source with the corresponding RTP anomaly therefore provides a test of whether 

the correct magnetisation direction has been used for calculation of the RTP.  If  RTP 

anomalies have been calculated with the correct direction of magnetisation, they should 

closely coincide in location with corresponding high centricity parameters such as |b| or the 

NSS  and exhibit similar symmetry. Provided the two transforms that are used in the cross-

correlation have the same fall-off rate with height, asymmetry of the anomalies that arises 

from shallow dips should be similar for the two transformed datasets, so distortion 

produced by shallow dips is much less problematic. 

 

Roest and Pilkington (1993) compared the total gradient of the RTP TMI with the 

horizontal gradient of the pseudogravity anomaly, calculated for a variety of magnetisation 

directions. When the correct direction of magnetisation is chosen, the positions of the 

maxima of the two functions coincide and the correlation between them is maximised.  The 

correlated quantities match best for broad sources with small vertical thickness, and the 

method is affected by thickness of the sources.  Dannemiller and Li (2006) pointed out that 

the different fall-off rates with height for the quantities  used by Roest and Pilkington 

(1993) result in sensitivity to source geometry, particularly dip. 

 

Dannemiller and Li (2006) used the correlation between the vertical gradient and the total 

gradient of RTP, calculated for a wide range of assumed magnetisation directions.  These 

quantities have the same fall-off rate with distance to source and empirically have the 
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highest correlation when the correct magnetisation direction is used to calculate the RTP 

anomaly over a source. This method is more suited to 3D anomalies, in particular, than the 

method of Roest and Pilkington (1993).  Because the asymmetry produced by dipping 

contacts is similar for both calculated quantities when the assumed magnetisation direction 

corresponds to that of the actual magnetisation, this method is not adversely affected by 

shallow dipping source boundaries.   The method assumes that sources included within the 

analysis window have the same magnetisation direction and the method breaks down if this 

assumption is violated. 

 

Gerovska et al. (2009) calculated a total magnetic amplitude (Ta = |b|)  map to aid 

identification and isolation of anomalies due to distinct sources, then compared Ta with the 

RTP map, calculated with many different assumed magnetisation directions, to ascertain 

the direction for which the correlation is maximised over the anomalies of interest. Some 

errors occur for compact sources, because of the slight dependence of Ta on magnetisation 

direction. Employing the NSS instead of Ta would eliminate this error.  

 

McKenzie et al. (2012b) evaluated several alternative transforms for determining 

magnetisation direction of isolated sources, including a symmetry analysis of reduced-to-

the-equator (RTE) anomalies designed for when the geomagnetic inclination is low.  The 

RTP maxi-min method of Fedi et al. (1994) works well for moderate to high geomagnetic 

inclinations and compact anomalies. For elongate anomalies correlation methods between 

RTP and other high-centricity transforms work better than the maxi-min method. 

Estimation of magnetisation direction from RTE symmetry can be more accurate than the 

maxi-min or correlation methods for elongate anomalies with moderate to low inclination 

geomagnetic fields.  

 

Overall RTP-based methods work well on discrete anomalies when sources are simple and 

dips/plunges are steep.  Reasonable results can be obtained when contacts are shallow, if 

the true RTP anomaly (calculated with the correct assumed magnetisation) and 

transformed data with which it is compared have similar asymmetry. This requires that the 

two quantities have the same fall-off rate, e.g. the transforms used by Dannemiller and Li 

(2006), otherwise relative responses to shallow and deeper portions of a dipping contact 

will differ. For 2.5D bodies of considerable strike extent the accuracy of the results suffers 

due to the dip-magnetisation ambiguity.  Methods based on RTP and similar transforms are 
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particularly suited to scanning large areas to detect features with anomalous magnetisation 

direction, which can then be analysed in more detail using other methods described in this 

review. 

 

BASE STATION VECTOR AND GRADIENT MEASUREMENTS 

 

The very slowly varying main geomagnetic field produced by the Earth’s core is perturbed 

by rapidly time-varying electric currents flowing in the ionosphere and magnetosphere. 

Because the induced magnetisation responds to the resultant applied field, including 

geomagnetic fluctuations such as pulsations, magnetic storms and diurnal variations, 

whereas remanent magnetisation is unaffected by these small fluctuations, the core-crust-

magnetosphere system can be regarded as a giant laboratory that can, in principle, be used 

to separate effects due to induced and remanent magnetisations. Figure 12 illustrates the 

principle of the method.  

 

Goldstein and Ward (1966) used sensitive Rb-vapour magnetometers to detect perturbation 

of total field fluctuations in the vicinity of some sources that produce prominent magnetic 

anomalies.  By making some simplifying assumptions about the polarisation of the time-

varying magnetic fields, those authors were able to distinguish predominantly induced 

from predominantly remanent sources.  For predominantly induced sources, 

semiquantitative estimates of source susceptibility could be derived by incorporating 

geological information about source geometry.  In general, however, TMI measurements 

do not provide sufficient information to uniquely separate induced and remanent 

contributions, or to derive detailed information on magnetic properties.   

 

Parkinson and Barnes (1985) detected the local amplification of geomagnetic variations 

over the Savage River, Tasmania, magnetite deposit, using two separated fluxgate 

magnetometers. By assuming that the remanence was parallel to the induced 

magnetisation, Parkinson and Barnes derived an estimate of Q ≈ 0.4, which is reasonable 

for a massive magnetite deposit.  Lesur and Gubbins (2000) developed a method for 

analysing long term geomagnetic secular variation, recorded by geomagnetic 

observatories, to separate induced from remanent contributions to regional magnetic 

anomalies.  
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Clark et al. (1998) showed that the anomalous field vector b, measured at a fixed location 

within an  anomaly, is related to the source magnetisation vector M  by the matrix equation 

 

b = AM ,                     (76) 

 

where A = ∇∇U′ is a symmetric and traceless matrix representing the second order 

gradient tensor of the pseudogravitational potential U′.  The magnetisation of the source is 

assumed to be uniform, at least in direction. A depends on the geometry and location of the 

source, but is independent of the magnetisation intensity, direction or origin. For example, 

Clark et al. (1998) showed that for a spherical source of volume V, at an observation point 

r  = (x1, x2, x3), A = [aij] is given by: 
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where δij is the Kronecker delta, with elements equal to one when i = j, and zero otherwise.  

The eigenvalues of A in equation (77) are 2V/r3, − V/r3, − V/r3. The eigenvector 

corresponding to the positive, and largest, eigenvalue is directed towards (or directly away 

from) the centre of the sphere and measurements at two or more locations therefore suffice 

to estimate the centre location by triangulation. 

 

A geomagnetic variation δF produces a change δM  = kδF in the induced magnetisation, 

which also equals the change in the resultant magnetisation M , because the remanence is 

unaffected. This in turn produces a change in the anomalous field and its gradient.  By 

continuously monitoring geomagnetic variations and gradient perturbations the 

contributions of induced and remanent magnetisations can be separated.  Unique separation 

of these contributions by measurements at a single point within the anomaly requires a 

further assumption that the induced magnetisation is parallel to the inducing field, i.e. that 

anisotropy and self-demagnetisation effects are negligible. In that case, fluctuations in the 

anomalous field vector are given by: 

 

.FAMAb δδδ k==          (78) 
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. Principle of remote determination of in situ magnetic properties. The regional 

undergoes a fluctuation δF, which perturbs the induced magnetisation 

, but does not affect the contribution of remanence MNRM to the resultant 

. The change in source magnetisation from M  to M ′ produces a change in 

the observed field and its gradient within the anomaly. 

 

situ magnetic properties. The regional 

, which perturbs the induced magnetisation 

to the resultant 

produces a change in 
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Figure 11(b) illustrates the Differential Vector Magnetometry (DVM) method developed 

by Clark et al. (1998).  Three component natural geomagnetic fluctuations δF are recorded 

by a vector magnetometer at a base station that lies outside the anomaly of interest and by 

another vector magnetometer within the anomaly.  The differences between the respective  

components represent the components of δb.  From equation (78), time series of the 

components of δb and δF yield least squares estimates of the elements of kA at the within-

anomaly station.  Given kA and the known vector anomaly at the observation point, the 

resultant magnetisation of the source, divided by the unknown susceptibility, can then be 

derived from equation (76): 

 

( ) ./ 1bAM −= kk                      (79) 

 

Equation (79) determines the direction of the resultant magnetisation, which is  crucial 

information for accurate modelling, but not its absolute magnitude. Because the direction 

of the induced magnetisation is known, the magnitude of MNRM/k, the direction of 

remanence, and the Koenisberger ratio Q can also be calculated. From equations (1)-(2), 

(6) and (79): 

 

( ) ,)/()/( 1
NRM FbAFMM −=−= −kkk                  (80) 

 

,)/(|/| NRM FMM −= kk                 (81) 
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Similarly, fluctuations in the vertical gradients of b, for example, are given by 
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Time series of the gradients and δF yield least squares estimates of the elements of k∂A/∂z.  

M /k can then obtained by inverting the relationship, analogous to equation (76), between 

the gradient anomaly and the resultant magnetisation: 

 

./
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kk
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−
bA

M                      (85) 

 

If the complete gradient tensor is measured within the anomaly, along with the vector field, 

similar analysis of the orthogonal gradients provides data redundancy, allowing 

consistency checks and improving error estimates.  

 

The original DVM method trialled by Clark et al. (1998) required two sensitive vector 

magnetometers, separated by as much as several hundred metres, aligned to within seconds 

of arc, which is a very demanding requirement. An alternative method requires only a 

single package containing a rigidly mounted vector magnetometer and gradiometer, plus 

sensitive tiltmeters, which can be placed anywhere within the anomaly and monitored over 

several hours to allow sufficient geomagnetic field variation. The Superconductivity and 

Magnetism Group at CSIRO Materials Science and Engineering is adapting a sensitive 

high-temperature SQUID magnetometer and tensor gradiometer package with gradient 

sensitivity of about 2 pT/m, developed for underwater UXO detection (Young et al., 2010), 

for this purpose.  

 

The overall signal-to-noise ratio for DVM depends on the magnitude of the anomaly, the 

amplitude of the geomagnetic fluctuation, and the Koenigsberger ratio of the source. The 

method is best suited to strong anomalies and sources with moderate Q.  In the limit of 

very high Q, the induced magnetisation has little effect, making it difficult to solve for the 

parameters that are given by equations (80)-(83). In that case the method simply 

establishes a lower limit for Q.  This is useful information in itself, because it limits the 

possible source types and also because the remanence direction is constrained to be close 

to the total magnetisation direction when Q >> 1.  Thus, if the direction of resultant 

magnetisation is determined by one of the other methods discussed in this paper, this also 

represents the approximate remanence direction.  
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For more common situations, Q ~1, the typical diurnal variation of about 0.1% in F gives 

perturbations in the anomalous components of ~0.05%, so a static anomaly of 10,000 

(1000) nT gives a signal of about 5 (0.5) nT.  If the centroid of a compact source is at 100 

m depth, the gradient signal is about 0.15 nT/m (15 pT/m), and if the depth is 200 m these 

signals are 75 pT/m and 7.5 pT/m respectively.  Table 2 summarises the signal strengths 

expected for a range of geomagnetic variations, anomaly magnitudes, Q values, and source 

depths. Note that geomagnetic storms, albeit rare, are especially favourable for the method, 

as they produce fluctuations of several hundred, and occasionally several thousand, nT.  

Diurnal variation can generally be relied on to produce substantial changes of tens of nT in 

all three components over several hours.  Geomagnetic pulsations with periods 1-100 s 

produce smaller fluctuations, ~1-10 nT, but allow considerable signal stacking. 

 

In summary, DVM, or its single station magnetometer/gradiometer variant, uses time series 

of vector and gradient measurements to determine (i) the direction of time-averaged total 

magnetisation, (ii) the direction of remanence, and (iii) the Koenigsberger ratio Q, without 

making any assumptions about source geometry or  location.  In addition, for a compact 

source this method yields the total magnetic moment of the source and provides a direct 

indication of direction to its centroid (which can be used to site initial drill holes). The 

depth and horizontal location of the centroid of a compact source can be obtained from 

measurements at two or more stations, occupied simultaneously or consecutively.  The 

method is not restricted to sources of limited depth extent, allowing it to resolve 

pathological cases of ambiguity associated with 2D dipping sheets and axially magnetised 

plunging pipes of great depth extent. However, for sources of great strike extent that are 

effectively 2D, only the components of magnetisation in the plane normal to strike (which 

are the only contributors to the observed anomaly) can be determined. 

 

CONCLUSIONS 

 

Many methods are available to tackle the problem of estimating remanent and total 

magnetisations of magnetic sources, most of which provide only partial information.  

Because these methods each have strengths and weaknesses, they are complementary. It is 

desirable, therefore, to use more than one method to improve confidence in estimated 

magnetisations.  Foss and McKenzie (2009, 2011), for example, presented examples of 

improved results, validated by comparison with palaeomagnetic studies, obtained by using 



 

252 
 

Helbig methods to provide initial estimates of magnetisation direction, which are then used 

to constrain staged 3D inversions. Table 3 summarises the range of applicability of the 

methods described in this paper and the information that can be provided by each.   

 

Estimation of the total magnetisation direction is invaluable for constraining modelling of 

source geometry and position.  Magnetisation intensity and Koenigsberger ratio constrains 

the magnetic mineralogy and geological nature of a source. Determining the direction of a 

stable ancient remanence gives an indication of the age of magnetisation, which provides 

useful information about the geological history of the source and its environs.  Estimation 

of the magnetic moment vector of a source yields the total magnetisation direction and can 

give an indication of the size of the source, when plausible magnetisation intensities are 

assumed. 
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Table 1. Ratios of finite range to infinite range integral moments for Helbig analysis (point dipole model) 
 

 
R/h 

Finite integral/infinite integral (%) 
(x−x0)bi , (y−y0)bi (x−x0)²Bxj (x−x0) (y−y0)Bxy λ3 µ µ² h′ m′ xµ (x−x0)λ2  xµ² (x−x0)λ2² (x−x0)²µ² 

0.5 1.6 −0.4 0.3 28 20 49 29 1.6 20 1.6 49 18 10 
1 12 0.2 5 65 50 88 53 14 50 12 88 69 50 
2 37 21 27 91 80 99 80 52 80 37 99 97 90 
3 54 40 45 97 90 100 90 73 90 54 100 100 97 
4 66 52 56 99 94 100 94 83 94 64 100 100 99 
5 71 61 64 99 96 100 96 89 96 71 100 100 100 
6 76 67 70 100 97 100 97 92 97 76 100 100 100 
8 81 75 77 100 98 100 98 95 98 81 100 100 100 
10 85 80 81 100 99 100 99 97 99 85 100 100 100 
15 90 86 88 100 100 100 100 99 100 90 100 100 100 
20 93 90 91 100 100 100 100 99 100 93 100 100 100 
h′ and m′ correspond to the quantities in equations (62) and (64) respectively 
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Table 2. Signal strength for DVM and combined magnetometry/gradiometry methods 

Anomaly 
magnitude (nT) 

Geomagnetic 
variation (nT) 

Local field perturbation 
(nT) 

Local gradient 
perturbation* (pT/m) 

Centroid depth 100 m 

Local gradient perturbation* 
(pT/m) 

Centroid depth 200 m 

Q = 0 Q = 1 Q = 9 Q = 0 Q = 1 Q = 9 Q = 0 Q = 1 Q = 9 

10,000 100 20 10 1 600 300 30 300 150 15 

10,000 
 

10 2 1 0.1 60 30 3 30 15 1.5 

10,000 1 0.2 0.1 0.01 6 3 0.3 3 1.5 0.15 

1000 100 2 1 0.1 60 30 3 30 15 1.5 

1000 10 0.2 0.1 0.01 6 3 0.3 3 1.5 0.15 

100 100 0.2 0.1 0.01 6 3 0.3 3 1.5 0.15 

100 10 0.02 0.01 0.001 0.6 0.3 0.03 0.3 0.15 0.015 

* Gradient signals refer to compact sources at the given depths.  For a pipe-like source with top at the given depths, the corresponding gradient 
signals, are reduced by about one third.  The same decrease applies to a source of compact cross-section, with considerable strike length, at the 
given depths.  For a thin sheet source with top at the given depths, the corresponding gradient signals, are reduced by about two thirds. 
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Table 3. Comparison of different methods for determination of source magnetisation 
 

METHOD ASSUMPTIONS/RESTRICTIONS/ 
REQUIREMENTS 

PARAMETERS ESTIMATED LIMITATIONS 

 
 
 
Sample measurements 

  
• Representative sampling 
• Sufficient sampling 
• NRM uncontaminated or cleanable 
•  Adequate statistical analysis and 

appropriate treatment of vectors 

 
 
 

k  or K , M IND, M NRM, M , Q 

• Unavailability of samples 
• Available samples 

unrepresentative 
• Remanence contaminated 
• Weathering 
• Heterogeneity, nugget effect 
• Requires sophisticated equipment 

for complex NRM 
 
 
Borehole measurements 
(vector magnetometer + susceptibility 
logging) 

• Uniform properties within 
intersected source 

• Layered earth with known dips, or 
known shape of intersected source 

• Hole intersects source(s) 

 
 
 

k , M IND, M NRM, M , Q  

• Source geometry may be unknown 
(possibly can be modelled by 
external measurements) 

• Orientation noise on vector 
measurements 

• Noisy vectors due to heterogeneity 
and rugosity 

 
 
 
Petrology + palaeopole database 

 
• Good petrographic descriptions 
• Known geological history 
• Events with well-defined ages or 

plausible age range 

 
 
 

k , M IND, ~|M NRM|, ~M , ~Q 

• Petrological information may be 
insufficient 

• Complex history 
• Age uncertainty 
• APWP poorly known 
• Unknown local tectonic rotations 

 
 
 
 
Constrained modelling/inversion  

• Source assumed to be non-
pathological 

• Magnetic data only: unique 
inversion of geometry requires 
assuming homogeneity, planar 
faces, single intersection with 
every vertical line through body, 
noise-free data 

• Magnetics + geometry from other 
methods: requires assuming 
homogeneity 

Compact 2D source: M⊥A,  M⊥/| M⊥|  
Compact 3D source: m = MV, M /|M | 
2D finite equivalent sources: M ⊥A,  M ⊥/| M⊥| 
3D finite equivalent sources: m = MV, M /|M | 
Unique 2D polygon: M ⊥ 
Unique 3D polyhedron:  M  
Defined 2D geometry: M ⊥ 

Defined 3D geometry: M  

• Geometry can be non-unique if 
unconstrained, implying 
magnetisation intensity is 
indeterminate and direction may 
be inaccurate 

• Uniqueness requires special 
assumptions or extra information 

• Sensitive to noise, unremoved 
regional trends, undersampling etc. 
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Table 3 (continued). Comparison of different methods for determination of source magnetisation 
 
 
 
Simple direct inversions for simple 
sources 

• Source type must be assumed or 
constrained, e.g. dipole model: 
compact 3D source/homogeneous 
sphere/equidimensional source not 
too close to sensor 

• Source location must be inverted 
first 

m = MV, M /|M| (dipole) 
MA,  M /| M | (narrow vertical pipe) 

M⊥A,  M⊥/| M⊥| (2D horizontal cylinder) 

M⊥t,  M⊥/| M⊥| (2D thin sheet) 

M⊥,  M⊥/| M⊥| (2D thick sheet/contact) 
 

• Source may not conform to 
assumed form 

• Requires vector or gradient tensor 
data to be measured or to be 
accurately calculable from 
sufficiently high quality TMI data 

Comparison of magnetic surveys before 
and after removal of source 

• Known geometry of removed 

material (to determineM ) 
• Homogeneous magnetisation (to 

determine M ) 

m = MV; M , M , 
M IND, M NRM, M , Q (if k of removed material 

has been measured 

• Requires high quality magnetic 
surveys both before and after 
removal of source 

• Requires 3D delineation of source 

 
 
Combined magnetics and gravity  
(based on Poisson’s relation) 

• Assumes common source for 
magnetic and gravity anomalies 
(shape does not need to be known) 

• Assumes homogeneous density 
and magnetisation, or at least 
constant |M |/ρ and constant 
direction of M  

 
 

|M |/ρ, M/ |M |, 

• Sources of gravity and magnetic 
anomalies are often not identical 

• Density or magnetisation contrast 
may be insufficient to generate 
anomaly that can be accurately 
separated from background trends 
and noise 

 
 
 
Active source magnetics  

• Roving primary source field is 
accurately known across survey 
area 

• Measurements are made 
sufficiently long after switching 
primary field that eddy currents in 
subsurface have decayed 

• For frequency domain methods: f 
is low enough to provide required 
penetration depth; subsurface is (i) 
homogeneous half-space, or (ii) 
1D, over footprint of system 

 
 

k , M IND 

 
• Rapid fall-off restricts method to 

shallow sources, with tradeoff 
between depth of penetration and 
spatial resolution of subsurface 
magnetisation distribution 

• Complex geology/dipping 
interfaces/high conductivities can 
make apparent susceptibilities 
inaccurate 

• Does not detect remanence 
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Table 3 (continued). Comparison of different methods for determination of source magnetisation 
 
 
 
 
 
Helbig-type analysis 

• Source has limited lateral and 
depth extents (geometry otherwise 
arbitrary) and is well separated 
from neighbouring sources 

• Magnetic data are sufficiently high 
quality to define vector and/or 
tensor components accurately over 
extensive area 

 
 
 

m = MV, M /|M| 

• Source may extend beyond survey 
area, or have large depth extent 

• Interference from neighbouring 
anomalies 

• Unremoved regional trends 
• Requires depth of centroid 

estimate for accurate calculation of 
moment magnitude, corrected for 
finite range of integration 

Methods based on RTP and other 
transforms 

• Stable algorithm for RTP and other 
transforms, such as pseudogravity 

• Assumes constant direction of 
magnetisation throughout source 

• Works best for compact sources,   
steeply dipping tabular bodies, 
steeply plunging pipes and steep 
contacts 

 
 

M /|M | 

• Instability of RTP at low latitudes 
• Sources may have shallow dipping 

sides 
• Interference from neighbouring 

anomalies with different directions 
of M  

 
Base station DVM/magnetometry-
gradiometry 

• Assumes homogeneous source 
• Assumes induced magnetisation is 

parallel to inducing field 
(deflection due anisotropy or self-
demagnetisation requires multiple 
stations) 

Compact 2D source: M ⊥A,  M ⊥/| M⊥|, M ⊥/k, 
(M ⊥)NRM /k,  (M ⊥)NRM /|(M ⊥)NRM |, Q, 
centroid 
 
Compact 3D source: m = MV, M /|M |, M /k, 
M NRM /k,  M NRM /|M NRM |, Q, centroid  
 
Arbitrary 2D source:  M ⊥/k,  M ⊥/| M⊥|, 
(M ⊥)NRM /k,  (M ⊥)NRM /|(M ⊥)NRM |, Q, 
centroid 
 
Arbitrary 3D source: M /k, M/|M |, M NRM /k,  
M NRM /|M NRM |, Q, centroid 

• Non-compact source may be 
inhomogeneous  

• Induced magnetisation may be 
deflected by strong anisotropy or 
self-demagnetisation 

• Very high Q may make induced 
signal indeterminate and solution 
unobtainable 

• Requires very sensitive 
gradiometers, or very accurately 
aligned vector magnetometers 
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CHAPTER 9 .  MAGNETIC EFFECTS OF  HYDROTHERMAL ALTERATION IN 
PORPHYRY COPPER AND IRON-OXIDE COPPER-GOLD SYSTEMS: A REVIEW 

 
Clark, D.A.,2014.  Magnetic effects of hydrothermal alteration in porphyry copper and 
iron-oxide copper–gold systems: A review, Tectonophysics (2014), 
http://dx.doi.org/10.1016/j.tecto.2013.12.011 
 
Abstract 
Magnetic anomaly patterns can be used as a tool for mapping lithology, metamorphic 

zones and hydrothermal alteration systems, as well as identifying structures that may 

control passage of magmas or hydrothermal fluids associated with mineralisation.  Reliable 

geological interpretation of mineralised systems requires an understanding of the 

magmatic, metamorphic and hydrothermal processes that create, alter and destroy magnetic 

minerals in rocks.  Predictive magnetic exploration models for porphyry copper and iron 

oxide copper-gold (IOCG) deposits can be derived from standard geological models by 

integrating magnetic petrological principles with petrophysical data, deposit descriptions, 

and modelling of observed magnetic  signatures of these  deposits.  Even within a 

particular geological province, the magnetic signatures of similar deposits may differ 

substantially, due to differences in the local geological setting.  Searching for “look-alike” 

signatures of a known deposit is likely to be unrewarding unless pertinent geological 

factors are taken into account. These factors include the tectonic setting and magma type, 

composition and disposition of host rocks, depth of emplacement and post-emplacement 

erosion level, depth of burial beneath younger cover, post-emplacement faulting and 

tilting, remanence effects contingent on ages of intrusion and alteration, and 

metamorphism.  Because the effects of these factors on magnetic signatures are reasonably 

well understood, theoretical magnetic signatures appropriate for the local geological 

environment can qualitatively guide exploration and make semiquantitative predictions of 

anomaly amplitudes and patterns.  The predictive models also allow detectability of 

deposit signatures to be assessed, for example when deposits are buried beneath a 

considerable thickness of nonmagnetic overburden, are covered by highly magnetic 

heterogeneous volcanic rocks, or there is a strong regional magnetic gradient. This paper 

reviews the effects of hydrothermal alteration on magnetic properties and magnetic 

signatures of porphyry copper and iron oxide copper-gold systems and presents examples 

of predictive magnetic exploration models, and their predicted signatures, in various 

geological circumstances. 
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Keywords: hydrothermal alteration,  magnetic anomalies, magnetic petrology, porphyry 

copper, iron oxide copper-gold deposits, predictive magnetic exploration models 

Introduction 

 

Magnetic surveys rapidly provide cost-effective information on the magnetisation 

distribution of the Earth’s crust, at all scales from local to global.  In particular, 

aeromagnetics is the most widely used geophysical method in hard rock mineral 

exploration from prospect to province scales. The anomaly patterns revealed by such 

surveys can be used as a tool for mapping lithology, metamorphic zonation and 

hydrothermal alteration assemblages, as well as identifying structures that may control 

passage of magmas or hydrothermal fluids associated with mineralisation.  Magnetic 

anomalies can also provide a direct indication of certain types of  ore deposit or 

mineralised system. A non-exhaustive list includes Kiruna-type magnetite-apatite deposits, 

iron oxide copper-gold (IOCG) deposits, gold-rich porphyry copper deposits, magnetite 

and/or pyrrhotite-bearing volcanogenic massive sulfide deposits, pyrrhotite-rich massive 

nickel sulfide deposits, and diamondiferous kimberlite pipes.  Magnetic signatures of 

mineralisation are not always associated with strongly magnetic sources, but can be 

indicated by zones of anomalously weak magnetisation.  For example, epithermal precious 

metal deposits hosted by mafic or intermediate volcanic rocks are often associated with 

smooth magnetic lows, produced by magnetite-destructive alteration, surrounded by the 

characteristic short wavelength, large amplitude magnetic anomaly patterns of the 

heterogeneously magnetised unaltered volcanics. 

 

Interpretation of magnetic survey data is inherently ambiguous unless constrained by other 

geological, petrophysical or geophysical information. Reliable geological interpretation 

requires an understanding of magnetic petrology.  Magnetic petrology is a 

multidisciplinary field that combines rock magnetism and conventional petrology in order 

to define the processes that create, alter and destroy magnetic minerals in rocks.  Improved 

geological interpretation results from relating observed magnetic anomalies to magnetic 

mineralogy, bulk magnetic properties and petrology.  

 

There is as yet no textbook on magnetic petrology, although many specific studies have 

been published.  McIntyre (1980), Grant (1985a,b), and Frost (1991a,b) have given useful 

summaries of magnetic petrological principles.  Puranen (1989)  and Henkel (1991, 1994) 
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have analysed large petrophysical databases from Scandinavia and related magnetic 

mineralogy and magnetic properties to geological factors. Clark et al. (1992) presented 

several magnetic petrological case studies, Clark (1997) tabulated magnetic properties of 

rock-forming minerals and reviewed general aspects of magnetic petrophysics and 

magnetic petrology, and Clark (1999) reviewed the magnetic petrology of intrusive 

igneous rocks and discussed exploration implications for intrusion-related mineral 

deposits. 

 

Useful general references on hydrothermal alteration include Meyer and Hemley (1967), 

Rose and Burt (1979), Guilbert and Park (1986), Lentz (1994), Reed (1997) and Burnham 

(1997).  Hydrothermal alteration exerts a major influence on magnetic properties of rocks 

and on associated magnetic anomaly patterns. Magnetic surveys can therefore be very 

useful for mapping mineralised systems and, in some cases, for defining ore deposits 

within those systems.  The magnetic effects depend not only on the physical state 

(temperature, pressure etc.) and chemical composition of the fluids, but also on the 

fluid/rock ratio and on the hydraulic permeability and composition of the protolith. 

 

Studemeister (1983) points out that the redox state of iron in rocks is a useful indicator of 

hydrothermal alteration. Large volumes of fluid or high concentrations of exotic reactants, 

such as hydrogen or oxygen, are required to shift Fe3+/Fe2+. When reactions associated 

with large water/rock ratios occur, the change in redox state of the rocks produces large 

changes in magnetic properties due to creation, destruction, or modification (changes of 

composition or microstructure) of ferromagnetic minerals. Processes other than redox 

reactions can also affect magnetic properties. For example acid-base reactions and Fe 

metasomatism influence iron speciation, hence magnetic mineralogy. For example the 

reaction  

 

Fe2O3 + H2O + Fe2+ ↔  Fe3O4 + 2H+,      (1) 

 

represents transformation of hematite to magnetite by reaction with Fe2+-bearing 

hydrothermal fluid, generating acidity in the process, or the reverse transformation of 

magnetite by acidic solutions to hematite, with excess ferrous iron passing into solution 

(Ohmoto, 2003). This is an acid-base reaction, not a redox reaction, because the ferric and 
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ferrous ion contents are unchanged. The forward reaction represents Fe-metasomatism, 

whereas the reverse reaction describes leaching of ferrous iron from the rock. 

 

Useful case histories of magnetic signatures of hydrothermal alteration effects include 

Criss and Champion (1984), Criss et al. (1985), Lapointe et al. (1985), Allis (1990), Irvine 

and Smith (1990),  Finn (2001, 2002, 2007) and Airo (2002). 

 

Predictive magnetic exploration models 

 

Clark et al. (2004) developed the concept of predictive magnetic exploration models for 

porphyry copper, volcanic-hosted epithermal and IOCG deposits.  Purucker and Clark 

(2011) presented some examples of these models. The predictive models are based on 

magnetic petrological principles, standard geological models, deposit descriptions, 

magnetic petrophysical data from deposits and observed magnetic signatures.  They are 

designed to predict what the magnetic signatures of these deposits should look like in a 

variety of different geological settings, by taking into account the geological factors that 

control the magnetic signatures. These factors include the tectonic setting and magma type, 

composition and disposition of host rocks, depth of emplacement and post-emplacement 

erosion level, depth of burial beneath younger cover, post-emplacement faulting and 

tilting,  remanence effects contingent on ages of intrusion and alteration, and 

metamorphism. Even within a particular geological province, these factors may vary 

greatly and the magnetic signatures of similar deposits may therefore differ substantially.  

Searching for “look-alike” signatures of a known deposit is likely to be unrewarding unless 

the local geological setting is taken into account.  

 

Igneous rocks associated with mineralised systems can be classified into four groups on the 

basis of the oxidation state: strongly reduced, reduced, oxidised, or strongly oxidised 

(Champion and Heinemann, 1994). These categories can be determined on the basis of 

chemistry, if ferrous and ferric iron contents are known, as shown in Figure 1, or 

mineralogy (see Table 1).  Significant differences in magnetic susceptibility, at equivalent 

degrees of differentiation, are found for mantle-derived (M-type) intrusions, found 

typically in island arcs, and I-type granitoids in continental arcs. Intrusions associated with 

gold-rich porphyry copper deposits are more oxidised than those associated with gold-poor 

porphyry copper deposits, and accordingly contain more abundant igneous  



 

 
Figure 1. Classification of oxidation state of igneous rocks on the ba
expressed as weight per cent).  Fields for strongly oxidised, oxidised, reduced and strongly 
reduced rocks are taken from Champion and Heinemann (1994), following Ishihara et al. 
(1979) and Blevin and Chappell (1992). Note that total
weight percentages of ferric and ferrous oxide as FeO
ferric/ferrous iron ratio can be simply calculated from the weight percentages of the oxides 
using the relation: Fe3+/ 
 
 

Table 1. Characteristic mineralogy for oxidation classes of igneous rocks (Champion and 
Heinemann, 1994) 
Oxidation state category
 
Strongly oxidised 
Oxidised 
Reduced 
Strongly reduced 
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Figure 1. Classification of oxidation state of igneous rocks on the basis of Fe
expressed as weight per cent).  Fields for strongly oxidised, oxidised, reduced and strongly 
reduced rocks are taken from Champion and Heinemann (1994), following Ishihara et al. 
(1979) and Blevin and Chappell (1992). Note that total Fe as FeO is calculated from 
weight percentages of ferric and ferrous oxide as FeOT = 0.9 Fe
ferric/ferrous iron ratio can be simply calculated from the weight percentages of the oxides 

 Fe2+ = 0.9[Fe2O3 (wt %)/FeO (wt %)]. 

Table 1. Characteristic mineralogy for oxidation classes of igneous rocks (Champion and 

Oxidation state category                          Mineralogy 

magnetite + primary sphene ± hematite
magnetite ± ilmenite (high Fe3+ or Mn)
ilmenite without magnetite 
ilmenite (low Fe3+ and Mn) + pyrrhotite; magnetite absent

 

sis of Fe2O3/FeO (both 
expressed as weight per cent).  Fields for strongly oxidised, oxidised, reduced and strongly 
reduced rocks are taken from Champion and Heinemann (1994), following Ishihara et al. 

Fe as FeO is calculated from 
Fe2O3 + FeO, and the 

ferric/ferrous iron ratio can be simply calculated from the weight percentages of the oxides 

Table 1. Characteristic mineralogy for oxidation classes of igneous rocks (Champion and 

hematite 
or Mn) 

and Mn) + pyrrhotite; magnetite absent 
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(titano)magnetite and produce greater quantities of  hydrothermal magnetite during early 

potassic alteration. Although primary magmatic hematite can also occur in association with 

magnetite, magmas that are sufficiently oxidised to precipitate abundant hematite, with  

little or no magnetite, are unusual (Table 1).  An empirical association between Au-rich   

(> 0.4 g/t) porphyry copper deposits and abundant magnetite in the potassic core has been 

documented by Sillitoe (1979, 1990, 1996) and confirmed by many other workers. 

 

The corresponding magnetic signatures also differ profoundly, with more prominent 

anomalies associated with gold-rich porphyry copper deposits than with gold-poor 

deposits. For development of a magmatic Cu-Au deposit, the magma must remain sulfur 

undersaturated throughout most or all of its evolution (Wyborn and Sun, 1994). Sulfur 

saturation of the magma is strongly affected by oxidation state, as well as by sulfur 

content. At high oxygen fugacities, sulfur becomes more soluble in the magma, dissolving 

as an anhydrite component. Early precipitation of sulfides is suppressed and ore metals are 

retained in the melt and concentrated during fractional crystallisation, greatly enhancing 

the chances of producing economic mineralisation from late stage, evolved fluids. The 

magnetite content of the unaltered intrusive rocks, and the generation of early 

hydrothermal magnetite, are both boosted by high oxygen fugacity in the magma, 

particularly for relatively K-rich magmas.  

 

Host rock compositions control magnetic signatures of mineralised systems in two 

important ways: 

1. Magnetic anomalies arise from magnetisation contrasts – thus the magnetic 

properties of the unaltered country rocks inherently influence the magnetic 

signature of the mineralised system. For example, a moderately magnetic intrusion 

emplaced into weakly magnetic, unreactive country rocks, such as quartzites or 

silicic volcanics, will have an associated reduced-to-the-pole (RTP) magnetic high. 

On the other hand, a similar intrusion emplaced into strongly magnetic rocks, e.g. 

normally magnetised fresh basalts, will have a RTP magnetic low. 

2. Alteration assemblages, including magnetic minerals, that are associated with a 

particular alteration phase around a mineralising system are strongly controlled by 

the protolith composition, as well as the chemical and physical state of the 

hydrothermal fluid. Protolith rheology also influences the distribution of alteration 

assemblages. For example, quartzite host rocks are more likely to fracture to 
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produce veins and breccias, whereas mica- and clay-rich lithologies develop more 

pervasive alteration. 

 

It is obvious that exhumation of a buried mineralised system by erosion can dramatically 

change its magnetic signature. Burial of the system under younger cover can compromise 

its detectability.  A thick sequence of nonmagnetic sediments broadens anomalies, reduces 

their amplitudes, and blurs zonation patterns, simply because the magnetic sources are 

deeper. Burial under magnetic volcanics with typical strong, short wavelength anomalies 

obscures the signature of an underlying deposit and may render it undetectable. Examples 

of the dependence of signatures on erosion level, post-emplacement tilting and faulting are 

given in following sections. 

 

Hydrothermal magnetite in porphyry systems is generally well-crystallised, of nearly pure  

end-member composition, with grain sizes in the true multidomain range (i.e. > 20 µm). 

Thermoremanent magnetisation (TRM) or chemical remanent magnetisation (CRM) 

carried by such grains is magnetically soft and subordinate to induced magnetisation, with 

Koenigsberger ratio Q < 1 (Clark, 1997).  This is also the case for  CRM carried by 

hydrothermal magnetite and hematite in IOCG systems, although multidomain hematite, 

i.e. larger than 100 µm, could acquire in principle an intense TRM during cooling from 

above its Curie temperature (680°C), following high grade metamorphism of an IOCG 

deposit.  

 

The magmatic-hydrothermal evolution of mineralised porphyry systems typically spans 

more than a million years, during which one or more geomagnetic reversals may occur.  

Therefore any stable remanence carried by intrusive rocks and altered host rocks in a 

mineralised porphyry system is likely to be multicomponent, reflecting partial overprinting 

of normal components by reversed components and vice versa, unless the system develops 

within a geomagnetic superchron.  These opposing components produce partial or 

complete  cancellation of the bulk remanence of large volumes of rock, and remanence 

effects on magnetic anomalies are therefore generally small.  

 

Dual polarity remanence carried by a subordinate population of magnetically stable 

carriers is frequently found in mineralised porphyry systems, e.g. Porgera, Papua New 

Guinea (Schmidt et al., 1997).  Hoschke (2010, 2011) reports dual polarity remanence in 
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the  Batu Hijau (Indonesia), Grasberg (Indonesia) and Bajo de la Alumbrera (Argentina) 

Cu-Au porphyries, and Astudillo et al. (2010) found normal and reversed polarity 

remanence in distinct zones within the El Teniente Cu-Mo porphyry system in Chile. 

These porphyry systems are all of Tertiary age. Similarly, both normal and reverse 

polarities are found in the Cretaceous La Candelaria (Chile) IOCG deposit, implying 

partial overprinting of the remanence acquired during hydrothermal alteration by a 

considerably younger thermal or chemical event (Austin et al., 2012).  On the other hand 

the stable remanence of the Early Permian breccia-hosted, porphyry-related Au system at 

Mount Leyshon (Australia) is consistently reversed, because the magmatic-hydrothermal 

evolution of this system occurred wholly within the Permo-Carboniferous Reverse 

Superchron (Clark and Lackie, 2001). 

 

Because observed magnetic signatures of any given model depend on the local 

geomagnetic inclination, it is necessary to convert the predicted signatures into a standard 

form that is independent of the field inclination and can easily be compared with suitably 

processed observations.  Signatures are predicted for vertical field inclination so that they 

can be directly compared to RTP observed data, which can be calculated by standard 

techniques (Blakely, 1996). In areas of very low geomagnetic inclination, RTP processing 

is unstable. For those areas signatures can be calculated for zero inclination (reduced to the 

equator) to allow comparison with measured total magnetic intensity anomalies. 

 

1. General Features of Porphyry Copper Deposits 

 

Porphyry deposits are intrusion-related, large tonnage, low grade mineral deposits with 

metal assemblages that may include all or some of copper, molybdenum, gold and silver. 

Their genesis is related to the emplacement of intermediate to felsic subvolcanic 

porphyritic intrusions that are commonly generated above subduction zones. Hunt (1991) 

summarises the critical phases in the generation of porphyry copper deposits.   

 

McMillan and Panteleyev (1995) discuss general aspects of the classification of porphyry 

copper deposits of the Canadian Cordillera, including morphological/depth-zoning models 

and a chemical classification based on alkalinity. Corbett and Leach (1998) have 

comprehensively reviewed porphyry and related deposits in the southwest Pacific. The 

U.S. Geological Survey has recently published a comprehensive review of all aspects of 
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porphyry copper systems (John et al., 2010), with detailed discussions of genetic models, 

alteration assemblages and zonation patterns, descriptive geological models, tectonic 

settings, and geophysical and geochemical exploration exploration methods. 

 

The types of hydrothermal alteration that are important in porphyry copper systems and 

their magnetic effects are summarised in Table 2.  Alteration zoning patterns within 

carbonate wall rocks, which are highly reactive and acid-neutralising, differ profoundly 

from those in silicate wall rocks. Porphyry systems emplaced into carbonate host rocks 

develop mineralogically and magnetically zoned skarns. Einaudi (1982) describes the 

general zonation of calcic skarns developed within limestone around oxidised porphyry 

copper intrusions. The overall magnetite content of these calcic skarns ranges from trace 

amounts to 10% by volume, accompanied by 2-15% sulfides. A proximal garnet zone with 

pyrite > chalcopyrite passes outwards into a garnet-pyroxene zone with pyrite ≈ 

chalcopyrite, thence into garnet-wollastonite with bornite and chalcopyrite (±sphalerite), 

and finally into marble with sphalerite,  chalcopyrite and minor pyrite. Magnetite ± 

hematite is concentrated near the intrusive contact, in the garnet-rich zone, and also near 

the marble contact. It is scarce within the wollastonite zone. Pyrrhotite may occur in the 

distal zones. Magnesian (forsterite-talc-serpentine) skarns developed within dolomitic 

rocks, on the other hand, have lower sulfide contents (< 6%) and more abundant magnetite 

(20-35%), which is distributed throughout the zone of skarn alteration. 

 

Oxygen fugacity exerts a strong influence on assemblages developed during skarn 

formation (Kwak, 1994). In calcic (low F and B) ore skarns, early prograde assemblages 

contain andraditic garnet and/or magnetite-bearing skarns with Mg-rich pyroxene in 

oxidised environments, whereas hedenbergitic pyroxene + grossularitic garnet occurs in 

reduced skarns. Pyrrhotite is common, sometimes abundant, in reduced skarns. Oxidised 

skarns, produced by magmatic fluids derived from oxidised intrusions (± oxidised meteoric 

fluids), or by reaction with relatively oxidised host rock sequences (e.g. packages 

containing redbeds or oxidised volcanics) often contain hematite as well as magnetite. 

Reduced skarns, associated with reduced ilmenite-series intrusions or with reduced host 

rock sequences (e.g. containing carbonaceous shales) often contain pyrrhotite. 

 

Einaudi et al. (1981), Einaudi (1982) and Meinert (1992, 1993, 1995) have provided 

detailed discussions of skarn zonation patterns that can be used in predictive magnetic 
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models of porphyry copper systems emplaced into carbonate rocks. Table 3 lists magnetic 

properties of skarns inferred from these descriptions and Table 4 gives estimated zonation 

of magnetic susceptibility inferred from reported modal mineralogy for a typical copper 

skarn. 

 

Supergene alteration has profound effects on the economics of many intrusive-related ore 

deposits, particularly by supergene enrichment of grades and modification of metallurgical 

characteristics.  Primary mineralogy, gangue minerals and ore assemblages are all affected.  

Iron oxides, oxyhydroxides and sulfates derive from decomposition of  Fe-bearing sulfides. 

Acid derived from oxidation of pyrite reacts with K-silicate minerals to produce jarosite at 

low pH, whereas hematite and goethite are produced at higher pH. Acid attack on K-

silicate minerals produces an assemblage that mimics advanced argillic alteration. 

Weathering of rocks with more than  ~5% sulfide generally produces an assemblage with 

alunite, allophane and jarosite. Magnetite and pyrrhotite are never preserved in intensely 

weathered zones of intrusive-related systems, although magnetite is relatively resistant to 

moderate weathering of otherwise unaltered intrusive rocks. 

 

The magnetic mineralogy of the altered rock depends on the abundance and composition of 

primary magnetic minerals, their stability under the prevailing hydrothermal conditions,  

and on the ability of the protolith to create secondary magnetic minerals during reaction of 

the hydrothermal fluid with the pre-existing mineralogy. For example, mafic wall rocks 

have greater capacity to form secondary magnetite during potassic alteration than do 

relatively iron-poor felsic rocks. Arkosic sedimentary rocks develop potassic, phyllic and 

propylitic alteration assemblages that  resemble those developed in granitic wall rocks, 

although they may less perfectly developed, possibly due to the planar fabric (Lowell, 

1974). On the other hand, quartzites are relatively poor indicators of alteration zoning, 

because quartz is essentially non-reactive. Mafic and intermediate igneous rocks contain 

high Mg, Fe and moderate calcium. Where these are the dominant wall rocks, wide zones 

of propylitic alteration are favoured,  potassic alteration is dominated by biotite, and biotite 

and chlorite tend to proxy for sericite in intervening zones, reducing or eliminating the 

phyllic zone. Table 5 summarises the differences between alteration assemblages 

developed around porphyry copper deposits in mafic, felsic and carbonate host rocks.  
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Table 5. Porphyry copper deposits: equivalent alteration stages/differing host rocks  
(Beane, 1994) 
Stage 
 

Quartz Monzonite Diorite Limestone 

 
Early 

 
K-feldspar + biotite + 
pyrite + magnetite or 
hematite 
 

 
Biotite + KF + albite + 
epidote + magnetite 

 
Garnet + pyroxene 

Copper 
mineralisation  
  

KF + chlorite + 
sericite + pyrite ± 
hematite 
   

Chlorite + epidote + 
pyrite + magnetite  
 

Actinolite + epidote + 
pyrite + magnetite 
 

Late Sericite + pyrite Chlorite + anhydrite + 
pyrite + hematite + 
?zeolite 

Quartz + pyrite 

 

 

Iron oxide copper gold deposits 

 

Since the discovery of a hitherto unrecognised style of mineralisation at the giant Olympic 

Dam Cu-U-Au-Ag-REE deposit in South Australia, much has been written on genesis of  

Olympic Dam-type deposits and on relationships to a wide variety of other Fe oxide 

hydrothermal deposit types. A comprehensive set of reviews and deposit descriptions has 

been compiled by Porter (2002). These deposits are characterised by: 

• an abundance of hydrothermal magnetite and/or hematite, with relatively low iron 

sulfide contents 

• a chemically distinctive suite of elements (REE-Cu-Co-Au-Ag-U), often with elevated 

Ba, P, F 

• a mineralogical assemblage of iron oxides with one or more copper sulfides and pyrite, 

with associated K feldspar or sericite or albite or biotite and chlorite within the host 

rocks. Carbonate is also common. 

 

However  IOCG deposits occur in a wide variety of geological settings, have very variable 

distributions and volumes of associated alteration and are associated, directly or indirectly, 

with a wide range of magmas. Deposits that have been assigned to this category range in 

age from Archaean to Tertiary. A range of tectonic settings, including orogenic basin 

collapse, anorogenic continental rifting, and extensional environments within a subduction-
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related continental margin has been inferred for these deposits  (Hitzman, 2000). 

Magmatism related to mantle underplating, high heat flow, and relatively oxidised source 

rocks  (subaerial basalts, oxidised sediments and/or oxidised igneous rocks) are features 

common to these tectonic settings. Hitzman (2000) argues that IOCG deposits generally do 

not appear to have a direct spatial relationship with specific intrusions, but are localised 

along high- to low-angle faults that are usually splays off major, crustal-scale faults. 

Because IOCG deposits are so diverse and their genesis is as yet poorly understood, their 

classification is currently based on descriptive models and is somewhat controversial. 

Recent  discussions of classification into subtypes include Corriveau (2007) and Groves et 

al. (2010). 

 

The origins of the ore-forming fluids are still debated. Barton and Johnson (2000)  suggest 

that two end members occur. The first type, which has relatively high-temperature 

mineralisation and high K/Na and Si/Fe, is related to magmatic fluids. This type overlaps 

with porphyry Cu-Au and related deposits. The second end-member corresponds to more 

oxide-rich, sulfide-poor mineralisation, low Si/Fe ratios and voluminous alkali-rich 

metasomatism, generally with sodic dominating over potassic alteration. This latter type is 

related to non-magmatic fluids, such as basinal brines. Some IOCGs represent hybrids 

between the two end-members.  

 

An association between sedimentary sequences with evaporitic rocks and the occurrence of 

IOCG deposits has been suggested, but Pollard (2006) points out that many host rock 

sequences lack evaporites and suggests that the coexisting hypersaline and CO2-rich fluid 

inclusions that are typical of these deposits may have resulted from unmixing of an original 

H2O-CO2-salts fluid of magmatic origin. Syn- to post-mineralisation Na-Ca-rich fluids that 

are present in many deposits may represent meteoric and/or connate fluids that mixed with 

hypersaline magmatic fluids.  Pollard (2006) also points out a general association with 

magnetite-series, high-K, mildy alkaline intrusive rocks, ranging from diorite to granite in 

composition. These types of intrusives resemble those associated with porphyry Cu-Au 

mineralisation. 

 

Haynes (2000) states that IOCG deposits universally occur within host successions that 

have little or no elemental carbon, reduced carbon compounds, or reduced sulfur minerals, 

i.e. the successions are relatively oxidised. Within such successions, magnetite is 
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invariably present and variably abundant, producing a magnetically active environment.  

On the other hand, Haynes (2000) recognises an iron sulfide copper-(gold) (ISCG) class of 

deposit that typically occurs near the boundaries between discrete reduced and oxidised 

domains. The Mount Isa Inlier, Australia, is an example of an area that hosts both types of 

deposit. The reduced domains have an abundance of carbonaceous rocks or reduced carbon 

minerals and have relatively subdued magnetic patterns. 

 

Extensive sodic and/or sodic-calcic alteration, often of regional extent, is associated with 

all IOCG deposits and most ISCG deposits (Haynes, 2000). This alteration produces an 

albite-magnetite-chlorite or actinolite assemblage, usually with scapolite, hematite, 

epidote, calcite and sphene. Alteration zones are typically tens to hundreds of km² in area. 

These types of alteration have a different character to sodic and sodic-calcic alteration 

developed around deep levels of some porphyry systems, which are produced by 

convecting meteoric or connate waters and are magnetite-destructive. The sodic and sodic-

calcic alteration types associated with IOCGs involve substantial iron metasomatism, i.e. 

the fluids are Na-Ca-Fe rich. Another fundamental difference in the alteration fluids of 

IOCG and porphyry systems appears to be that IOCG-related fluids are rich in CO2, 

whereas porphyry-related fluids are usually very low in CO2. 

 

The main types of alteration recognised in IOCG systems are listed in Table 6.  The 

sericite-hematite type of alteration has also been termed “argillic” or “hydrolytic”. The 

acronym HSCC (hematite-sericite-chlorite-carbonate) is also used for this alteration type. 

Sodic and sodic-calcic alteration styles tend to be early (pre-mineralisation) and 

particularly extensive. Potassic alteration is more restricted in area,  more closely 

associated with mineralisation, and occurs at higher levels in the system. Sericite-hematite 

alteration is magnetite-destructive and occurs at upper levels of the system. Sodic-potassic, 

potassic, potassic-calcic or sericite-hematite alteration may all be associated with 

mineralisation, depending on the degree of interaction with meteoric or connate fluids 

(Hitzman, 2000). 

 

Haynes (2000) suggests that, in general, copper precipitation in IOCG deposits results from 

reduction of oxidised, copper and sulfate-bearing fluids, precipitating copper sulfides, 

ferric iron-bearing minerals and producing acid. The reducing agent is ferrous iron, either 
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in solution (in the case of mixing of the metal-bearing fluid with a reduced fluid), or in 

iron-rich rocks. A generalised reaction is: 

 

2Cu+ + SO4
2− + 8 H2O + 8Fe2+ →  4Fe2O3 + 16 H+ + Cu2S.    (2) 

 

The hydrogen ions produce a strongly acidic fluid, which is neutralised by hydrolysis of 

feldspars. In the case of fluid mixing or reaction with rocks rich in ferrous iron-bearing 

silicates, this process produces magnetite and/or hematite. Reaction of the oxidised fluid 

with magnetite-rich rocks precipitates copper sulfides by coupling reduction of the sulfate 

with oxidation of magnetite to hematite. Thus magnetite-rich rocks represent favourable 

sites for precipitation of copper sulfides, with some or all of the magnetite being converted 

to hematite during the mineralising process. 

  

Smith (2002) has reviewed geophysical signatures of IOCG deposits, emphasising the role 

of magnetic and gravity surveys.  Austin and Foss (2012) recently presented modelling 

studies of a number of Australian IOCGs and reviewed magnetic and gravity 

characteristics of these deposits. Hayward et al. (2013) have demonstrated the potential for 

identification of probable IOCG systems within a prospective province through integrated 

processing and interpretation of magnetic and gravity surveys, informed by physical 

property measurements. Esdale et al. (2003) provide a detailed geophysical case history of 

the Olympic Dam deposit.  The Olympic Dam deposit is inferred to have formed at very 

shallow depths and is dominated by sericite-hematite ± quartz ± chlorite ± siderite ± 

fluorite ± barite alteration. Magnetite has been totally replaced by hematite in the central 

and upper portions of the deposit, but is present in deeper and peripheral zones. The 

regional tectonic setting of the Olympic Dam deposit is still enigmatic. Recent attempts to 

characterise the deep crustal structures and crustal composition beneath and around the 

Olympic dam province using geophysics include Heinson et al. (2006), Drummond et al. 

(2006) and Direen and Lyons (2007). 

 

As found at Olympic Dam, IOCG systems tend to be zoned vertically from magnetite-

dominant at depth to hematite-dominant at upper levels. Magnetite is also abundant 

peripheral to the ore zones. This pattern may be altered by tectonic tilting of the system or 

by faulting. Therefore the magnetic and gravity signatures of IOCG deposits should 

generally reflect superposed or juxtaposed gravity and magnetic anomalies. Positive 
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gravity anomalies arise from both magnetite-rich and hematite-rich zones, whereas the 

deeper, peripheral, or adjacent magnetic sources correspond to the magnetite-rich zones.  

The simplistic notion of coincident magnetic and gravity anomalies is misleading, as the 

sources of the anomalies are spatially separated. I therefore prefer the term superposed 

magnetic and gravity anomalies. Detailed modelling of the gravity and magnetic sources 

should usually resolve vertical zonation of iron oxides by inferring a deeper source for the 

magnetic anomaly than for the gravity source. An exception to this expectation could occur 

when hematite-rich bodies have been heated above 680°C by contact or regional 

metamorphosism and have thereby acquired sufficient remanence to produce substantial 

magnetic anomalies.  

 

The total mass of iron oxide minerals within typical IOCG systems is very large, which 

raises questions about sources of Fe, transportation of Fe in solution and deposition 

mechanisms of the iron oxides. Iron may be derived from magma or leaching of iron-

bearing rocks by metamorphic fluids or basinal brines. Ferrous iron is much more soluble 

than ferric iron, so it is transported as Fe2+. IOCG deposits and their alteration envelopes 

often exhibit evidence of replacement of magnetite by hematite (martitisation), or vice 

versa, forming mushketovite. Similar replacements of one iron oxide by another are also 

common in skarns. These transformations are often assumed to be redox reactions (i.e. 

oxidation of magnetite to hematite or reduction of hematite to magnetite), although as 

Ohmoto (2003) points out, the acid-base reaction given by equation (1) can also explain 

transformations between magnetite and hematite. 

 

Hanneson (2003) devised a method, based on susceptibility and density trends, for 

discriminating between magnetic and gravity signatures of barren magnetite-bearing mafic 

rocks, such as gabbros, and potentially mineralised magnetite-rich and hematite or sulfide-

rich hydrothermal deposits. Clark et al. (2004) developed a petrophysical model for the 

magnetic properties and densities of iron oxide-rich ores and alteration zones in IOCG 

systems.  Both minerals are assumed to be in their respective true multidomain size ranges 

(> 20 µm for magnetite; > 100 µm for hematite). If the volume fractions of magnetite and 

hematite in the rock or ore are fmt and fhm respectively then the estimated SI susceptibility k 

is given by 

 

k = 20fmt /[1 + 4.8(1− fmt)] + 0.04fhm .       (3) 
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The contribution of magnetite in equation (3) is based on a theoretical relationship that 

incorporates self-demagnetisation of magnetite grains, modified by a Lorentz field 

contribution to account for grain interactions (Clark, 1997).  The formula assumes an  

intrinsic susceptibility of 20 SI for the magnetite grains, in accord with Stacey and  

Banejee's (1974) estimates of intrinsic susceptibility of large MD magnetite grains, and an 

estimated average effective SI demagnetising factor of  N = 0.24 for MD magnetite grains  

(Parry, 1980).  For dilute dispersions of magnetite (fmt < 0.1), equation (3) reduces to  

 

k ≈ 3.45 fmt + 0.04fhm .         (4) 

 

The magnetite contribution in equation (4) agrees well with the empirical relationship 

between susceptibility and magnetite content of rocks found by Puranen (1989). The 

contribution of hematite in equations (3) and (4) is approximate approximate 

(susceptibilities of pure end-member MD hematite typically range from ~0.01 SI to ~0.1 

SI, depending on crystallinity, stress, and stoichiometry), but the hematite contribution to 

the susceptibility of massive iron oxide is subordinate to that of magnetite if more than  

~1-2% magnetite is present. 

 

Unlike TRM of MD hematite, which has been extensively studied (e.g. Kletetschka et al., 

2000; Dunlop and Kletetschka, 2001), CRM carried by MD hematite is not well 

understood.  Theory developed for CRM of MD magnetite (Stacey and Banerjee, 1974) 

cannot be applied to CRM of MD hematite, because this theory makes the assumption that 

the coercive force of the grains is smaller than their self-demagnetising fields; a condition 

that is not satisfied for hematite. No experimental data have ever been published on the 

acquisition of chemical remanence by hydrothermally grown MD hematite. The most 

relevant data set is that of Stokking and Tauxe (1990), who found that grain-growth CRM 

acquired by an assemblage of 0.1-10 µm SD hematite grains in 50 µT had quite low 

intensity (~0.02 A/m), possibly reflecting poor crystallinity. The CRM intensity was about 

0.15 times that of the TRM acquired in the same field (~0.13 A/m), in reasonable 

agreement with SD theory. TRM intensities of other SD (0.12-2 µm)  hematite samples, 

acquired in 50 µT, range from ~6.5 A/m to ~30 A/m (Özdemir and Dunlop, 2002; 2005).  

 

The theory of grain-growth CRM acquisition in SD grains (Dunlop and Özdemir, 1997, 

p.367-373) and Stokking and Tauxe’s TRM versus CRM data suggest that CRM intensities 
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for well-crystallised hydrothermal large SD hematite grains should typically fall in the 

range ~1-5 A/m. Continued grain growth to true MD size can only reduce this intensity, as 

domain walls nucleate to generate oppositely magnetised domains within the crystals. 

Reduction of CRM intensity due to grain growth of cobalt particles from SD to MD size 

clearly illustrates this phenomenon (Dunlop and Özdemir, 1997, p.369-371). 

 

Taking these considerations into account, grain-growth CRM acquired well below the 

Curie temperatures of the iron oxides (580°C for magnetite; 680°C for hematite) within 

undisrupted rocks or acquired post-brecciation within iron oxide-rich breccias is predicted 

to have intensity 

 

CRM (A/m) ≈ 18fmt + JCRM(hm) fhm,       (5) 

 

where JCRM(hm) ≤ 5 A/m. 

 

Brecciation of previously acquired remanence randomises the remanence directions, so in 

most cases breccia zones within IOCG deposits are expected to have negligible CRM, 

when averaged over substantial volumes of rock. 

  

While CRM carried by MD hematite has only moderate intensity, MD hematite does 

acquire intense TRM if cooled in the Earth’s field from above its Curie temperature 

(Kletetschka et al., 2000; Dunlop and Kletetschka, 2001). If an IOCG system undergoes 

high grade contact or regional metamorphism, attaining maximum temperatures above the 

Curie points of the magnetic minerals (i.e. Tmax >  580°C for magnetite; Tmax > 680°C for 

hematite) the TRM intensity acquired on cooling is predicted to be 

 

TRM (A/m) ≈ 80fmt + 1000fhm .        (6) 

 

The corresponding Koenigsberger ratios Q are given by: QCRM (magnetite) ≈ 0.13;  

QCRM (hematite)  ≤ 3; QTRM (magnetite) ≈ 0.6 (Dunlop and Özdemir, 1997, p.239);  QTRM 

(hematite) ≈ 600. Extremely high Koenigsberger ratios have been reported for NRMs of 

contact metamorphosed coarse-grained massive hematite deposits by Schmidt et al. (2007).   
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The in situ induced magnetisation of MD magnetite-bearing rocks is augmented by viscous 

remanent magnetisation (VRM), subparallel to the induced magnetisation, acquired 

predominantly over the duration of the Brunhes chron. The contribution of this VRM can 

be significant for detailed modelling of anomalies. An upper limit for VRM carried by MD 

magnetite can be obtained by noting that the magnetisation of an isolated magnetite grain, 

subject to self-demagnetisation, that has fully equilibrated with the ambient field H attains 

a maximum intensity of H/N ≈ 40/0.24 = 166 A/m (Shive, 1989). This is about 20% higher 

than the induced magnetisation of the grain, suggesting an upper limit of ~0.2 for QVRM of 

MD magnetite. For high concentrations of magnetite, the constraint imposed by self-

demagnetisation is somewhat relaxed, due to grain interactions, but values of QVRM greater 

than unity would require very high contents (≥ 90%) of very low coercivity magnetite with 

exceptionally high intrinsic susceptibility.  Based on palaeomagnetic cleaning studies, 

Clark and Tonkin (1987) and Clark (1988a, 1994) have found QVRM typically falls in the 

range  0.1 – 0.3 for semi-massive and massive magnetite ores in several IOCG systems, so 

QVRM ≈ 0.2 is a reasonable assumption for modelling massive magnetite bodies if 

remanence measurements are unavailable. 

 

Because the susceptibilities of magnetite-rich zones in IOCG systems are so high, accurate 

modelling requires macroscopic self-demagnetisation of the magnetic bodies, and in some 

cases interactions between them, to be taken into account. Examples of IOCG deposits for 

which modelling has incorporated these effects include several Tennant Creek ironstone 

bodies (Clark and Tonkin, 1987; Hoschke, 1991), Osborne (Clark, 1988a, 2000) and La 

Candelaria (Austin et al., 2012). 

 

Oxidised gold-rich porphyry copper models 

 

Sillitoe (1979, 1990, 1996) noted that Au-rich (> 0.4 g/t) porphyry copper systems are 

usually associated with oxidised, magnetic felsic intrusions and have magnetite-rich ± 

hematite potassic zones. The gold-rich porphyry copper models developed by Clark et al. 

(2004) conform to general geological models of this type of deposit (e.g. Sillitoe 1979, 

1993), but are closely based on deposits that may be regarded as archetypes for particular 

settings. In particular, the model adopted for mafic-intermediate host rocks is based upon 

the Bajo de la Alumbrera deposit in Argentina (Guilbert, 1995; Proffett, 2003), and the 

model for carbonate host rocks is based upon the Grasberg/Ertsberg Cu-Au deposits, Papua 



 

 
 
 

 
Figure 2. Alteration zonation model of a gold

development of a biotite

exaggeration. Intense potassic alteration in the core of the deposit is shown in

the surrounding shells of less intense potassic, phyllic, intense propylitic and moderate 

propylitic alteration are shown in purple, yellow, dark green and light green respectively.  

The host rock shown in blue represents magnetic mafic

andesite) belonging to an oxidised magmatic suite. The location of the calculated magnetic 

profile over the uneroded deposit is indicated by the dashed black line. The black 

horizontal lines indicate exposure level of the system aft

1000 m by erosion.  
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Figure 2. Alteration zonation model of a gold-rich porphyry copper system with maximal 

development of a biotite-magnetite assemblage in the potassic zone. There is no vertical 

exaggeration. Intense potassic alteration in the core of the deposit is shown in

the surrounding shells of less intense potassic, phyllic, intense propylitic and moderate 

propylitic alteration are shown in purple, yellow, dark green and light green respectively.  

The host rock shown in blue represents magnetic mafic-intermediate rocks (nominally 

andesite) belonging to an oxidised magmatic suite. The location of the calculated magnetic 

profile over the uneroded deposit is indicated by the dashed black line. The black 

horizontal lines indicate exposure level of the system after removal of 250, 500, 750 and 

 

 

rich porphyry copper system with maximal 

magnetite assemblage in the potassic zone. There is no vertical 

exaggeration. Intense potassic alteration in the core of the deposit is shown in bright red, 

the surrounding shells of less intense potassic, phyllic, intense propylitic and moderate 

propylitic alteration are shown in purple, yellow, dark green and light green respectively.  

ediate rocks (nominally 

andesite) belonging to an oxidised magmatic suite. The location of the calculated magnetic 

profile over the uneroded deposit is indicated by the dashed black line. The black 

er removal of 250, 500, 750 and 
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 New Guinea (MacDonald and Arnold, 1994; Potter, 1996). The assumed zoning is 

concentric and conforms to the quartz-monzonite model, i.e. a magnetite-rich potassic core 

surrounded by a shell of phyllic alteration passing outwards into propylitic alteration (in 

silicate host rocks) or zoned skarn alteration (in a carbonate host). 

 

Figure 2 shows the geometry of an end-member gold-rich porphyry copper model, with 

maximal development of magnetite in the potassic zone, hosted by intermediate-mafic 

oxidised igneous rocks (nominally “andesite”). In this case there has been insufficient 

erosion to expose the deposit. The top of the mineralisation lies 500 m below the surface 

and the only sign of the mineralised system at the surface is a patch of propylitic alteration 

that could easily be overlooked or, if observed, assumed to be of little significance. The 

susceptibilities and dimensions of the zones are listed in Table 7. 

 

The inner potassic zone is strongly mineralised and magnetite-rich. It is surrounded by an 

outer potassic zone that contains less abundant, but still significant, magnetite. The inner 

potassic zone represents relatively intense development of quartz-magnetite-K feldspar 

veins, whereas the outer potassic zone corresponds to biotite-K feldspar-quartz-magnetite 

alteration. A shell of magnetite-destructive phyllic alteration with very low susceptibility 

envelops the potassic zones. At upper levels this alteration may grade into intermediate 

argillic and shallow advanced argillic alteration, but the magnetic properties are equivalent 

for these alteration types and a single shell is sufficient to model the effects. The phyllic 

zone is surrounded by a zone of intense propylitic alteration, which is partially magnetite-

destructive, which passes out into weak propylitic alteration and then into unaltered 

andesite. 

 

Figure 3 shows theoretical RTP magnetic profiles over the gold-rich porphyry copper 

model of Figure 2. The magnetic signature is very sensitive to the current level of 

exposure. For the uneroded deposit the signature is a magnetic low, reflecting 

demagnetisation of the host rocks throughout the large volume of magnetite-destructive 

alteration surrounding and above the magnetic core.  As deeper levels of the system are 

exposed by erosion, a central magnetic high overlying the potassic core becomes 

increasingly prominent.  

  



 

 
 

 
Figure 3. Theoretical RTP magnetic profiles over a gold

a maximum development of a bioti

Such deposits tend to be either relatively mafic systems in island arc environments or are  

associated with alkaline (e.g. high

continental settings. Pro

m, 500 m, 750 m, and 1000 m by erosion, as shown in Figure 2 and in the inset. The 

dimensions and susceptibilities of the alteration zones and host rock are given in Table 7. 

The effect of burying the 1 km eroded deposit beneath 100 m of younger nonmagnetic 

overburden is shown by the grey dash

geomagnetic field intensity of 50,000 nT and a sensor height of 100 m above the terrain. 

Geological models and magnetic signatures for this and subsequent Figures were 

calculated using the Noddy structural history

Valenta,  1996). 
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Figure 3. Theoretical RTP magnetic profiles over a gold-rich porphyry copper model with 

a maximum development of a biotite-magnetite assemblage in the potassic alteration zone.  

Such deposits tend to be either relatively mafic systems in island arc environments or are  

associated with alkaline (e.g. high-K calc-alkaline to shoshonitic) magmatism in 

continental settings. Profiles are shown for an uneroded deposit and after removal of 250 

m, 500 m, 750 m, and 1000 m by erosion, as shown in Figure 2 and in the inset. The 

dimensions and susceptibilities of the alteration zones and host rock are given in Table 7. 

rying the 1 km eroded deposit beneath 100 m of younger nonmagnetic 

overburden is shown by the grey dash-dot profile. Profiles were calculated assuming a 

geomagnetic field intensity of 50,000 nT and a sensor height of 100 m above the terrain. 

els and magnetic signatures for this and subsequent Figures were 

calculated using the Noddy structural history-based modelling software (Jessel and 
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Alternative models include deposits hosted by different country rocks, including unreactive 

sedimentary rocks (e.g. quartzites), and carbonates. Quartzites (unaltered and within the 

propylitic and phyllic zones) and unaltered carbonates have zero susceptibility. Magnetite-

skarn, developed distally within a carbonate host, near the marble contact 700 m from the 

intrusion, is 100 m wide and has k = 0.2 SI. Inner and outer potassic zones are assigned SI 

susceptibilities of 0.18 and 0.08, respectively, corresponding to ~5 vol% (8.5 wt %) and 

2.2 vol % (4 wt %) magnetite, which are typical values for the inner and outer potassic 

zones at Grasberg. 

 

Table 7. Dimensions and susceptibilities of zones comprising the gold-rich porphyry 
copper model with maximal development of a magnetite-rich potassic core 
Zone Diameter* 

(m) 
Width* (m) Depth extent 

(m) 
Susceptibility 
(SI) 

Inner potassic 
 

360 360 2400 0.351 

Outer potassic 
 

600 120 2500 0.173 

Phyllic 
 

1000 200 3000 0.003 

Strong 
propylitic 

1200 100 3000 0.007 

Weak propylitic 1500 150 3000 0.027 
Andesite/Basalt/ 
Diorite/Gabbro 
 

Very large Very large 3000 0.043 

* Diameters and widths of zones are maxima (at a depth 2000 m below the top of the 
phyllic zone for the propylitic and phyllic zones, and 1000 m below the top of the phyllic 
zone for the potassic zones). 
 
 

Figure 4 shows the effect of differing host rocks on predicted magnetic profiles, for an 

uneroded gold-rich porphyry copper model with a maximum development of a biotite-

magnetite assemblage in the potassic alteration zone. For magnetic mafic-intermediate 

igneous host rocks the signature is a magnetic low, as in Figure 3.  For weakly magnetic 

felsic host rocks the effects of magnetite-destructive alteration are less important and the 

signature is a broad high, reflecting the deeply buried magnetic potassic core of the system. 

For a carbonate host the magnetic high is broadened by the contribution of magnetite-

bearing distal skarn alteration. For unreactive host rocks such as quartzites, the magnetic 

high represents the contribution of the central magnetic intrusion, with overprinting  
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Figure 4. Theoretical RTP magnetic profiles, for differing host rocks, over an uneroded 

gold-rich porphyry copper model with a maximum development of a biotite-magnetite 

assemblage in the potassic alteration zone. Profiles were calculated as described in Figure 

3. Figure 2 and Table 7 give SI susceptibilities for the unaltered andesite host and weak 

propylitic, strong propylitic and phyllic zones within it, concentrically zoned around a 

potassically altered intrusion with SI  susceptibilities of 0.173 and 0.351 in its outer and 

inner zones, respectively. The unaltered felsic host has a susceptibility of 0.004 SI, 

decreasing to 0.003, 0.002 and 0.001 in the weak propylitic, strong propylitic and phyllic 

zones respectively, developed around an intrusion with the same properties as for the 

andesite host. Quartzites (unaltered, and within the propylitic and phyllic zones) and 

unaltered carbonates have zero susceptibility. For these sedimentary hosts, the potassically 

altered intrusion has susceptibility 0.18 SI, surrounded by phyllically altered intrusive with 

zero susceptibility. Magnetite-skarn, developed distally within a carbonate host, near the 

marble contact 700 m from the intrusion, is 100 m wide and has k = 0.2 SI.  
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potassic alteration, alone. The magnetisation of the quartzite host rocks is unaffected by 

alteration and  remains essentially zero. 

 

The model described above corresponds to Au-rich porphyry Cu deposits with particularly 

well developed magnetite-rich potassic zones. Such deposits tend to be either relatively 

mafic, strongly oxidised systems in island arc environments or associated with alkaline 

(e.g. high-K calc-alkaline to shoshonitic) magmatism in continental settings. An alternative 

suite of models with lesser secondary magnetite was also produced. The latter models are 

applicable to less strongly oxidised or relatively felsic systems, or low-medium K calc-

alkaline associations, typically in areas with thick continental crust. 

 

Figure 5 compares theoretical RTP magnetic profiles over gold-rich porphyry copper 

models, emplaced into magnetic mafic-intermediate rocks, with either maximum 

development, or a more typical development, of a biotite-magnetite assemblage in the 

potassic alteration zone. As erosion exposes deeper levels of the system, the model with 

lesser development of the potassic zone exhibits an “archery target” signature with a 

central high surrounded by an annular alteration low. The signature resembles that of the 

Bajo de la Alumbrera (Catamarca Province, Argentina)  porphyry copper-gold deposit, 

described by Guilbert (1995) and displayed and discussed by Hoschke (2008, 2010, 2011).   

 

Table 8 summarises measured magnetic properties from the Bajo de la Alumbrera 

mineralised system and its host rocks, which clearly document the zoning of magnetisation 

that gives rise to this classic magnetic anomaly pattern. The measurements, combined with 

those from other similar systems, provide an empirical basis for the generic properties 

listed in Table 7. Note that remanence polarities are mixed within and around Bajo de la 

Alumbrera and substantial cancellation of remanent contributions, averaged over 

substantial volumes, reduces the contribution of remanence to the magnetic signature. 

Normal and reversed polarities can be found at different locations within the same rock 

unit or alteration zone and are also often present within individual specimens as a 

remanence component of one polarity overprinting a more stable component of the 

opposite polarity. Of the well-defined “cleaned” remanence directions obtained from 

individual rock and ore specimens, 39 had normal polarity and 23 were reversed.  As 

mentioned above, this behaviour is  quite common in porphyry systems emplaced during  

  



 

 

 

 

 
Figure 5. Theoretical RTP magnetic profiles over gold

emplaced into magnetic mafic

(“maximum K” in the legend), or a more typical development (“less K”), of a biotite

magnetite assemblage in the potassic alteration zone. “Maximum K” represents relatively 

mafic systems in island arc environments or systems associated with alkaline (e.g. high

calc-alkaline to shoshonitic) magmatism in continental settings. “Less K” represents l

strongly oxidised or relatively felsic systems, or low

typically in areas with thick continental crust. Profiles were calculated as described in 

Figure 3 and are shown for uneroded deposits and after removal of 500 

erosion.  
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Figure 5. Theoretical RTP magnetic profiles over gold-rich porphyry copper models, 

emplaced into magnetic mafic-intermediate rocks, with either maximum development 

(“maximum K” in the legend), or a more typical development (“less K”), of a biotite

e assemblage in the potassic alteration zone. “Maximum K” represents relatively 

mafic systems in island arc environments or systems associated with alkaline (e.g. high

alkaline to shoshonitic) magmatism in continental settings. “Less K” represents l

strongly oxidised or relatively felsic systems, or low-medium K calc

typically in areas with thick continental crust. Profiles were calculated as described in 

Figure 3 and are shown for uneroded deposits and after removal of 500 

 

 

rich porphyry copper models, 

intermediate rocks, with either maximum development 

(“maximum K” in the legend), or a more typical development (“less K”), of a biotite-

e assemblage in the potassic alteration zone. “Maximum K” represents relatively 

mafic systems in island arc environments or systems associated with alkaline (e.g. high-K 

alkaline to shoshonitic) magmatism in continental settings. “Less K” represents less 

medium K calc-alkaline associations, 

typically in areas with thick continental crust. Profiles were calculated as described in 

Figure 3 and are shown for uneroded deposits and after removal of 500 m and 1000 m by 
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periods when geomagnetic reversal were frequent, as their magmatic-hydrothermal 

evolution can record one or more reversal.   

 

Figure 6 shows the RTP anomaly pattern developed over the Bajo de la Alumbrera Cu-Au 

system. This “type” magnetic signature occurs because the mineralising intrusion was 

emplaced into relatively homogeneous host rocks and the deposit has not been 

subsequently tilted or disrupted by faulting, but the system has been exposed by uplift and 

erosion. Similar signatures are seen at the Batu Hijau porphyry Cu-Au deposit 

(Ferneyhough and Qarana, 1996; Hoschke, 2008, 2010, 2011) and the Elang porphyry Cu-

Au deposits (Hoschke, 2008, 2010, 2011, 2012) in Indonesia.  The predictive model based 

on the Alumbrera deposit has been incorporated into an automated grid analysis tool that 

has been successfully applied to identification of porphyry systems in Pakistan, Indonesia 

and Papua New Guinea (Holden et al., 2010, 2011; Hope et al., 2010). 

 

Figure 7 shows magnetic profiles over an uneroded gold-rich porphyry copper model with 

a typical development of a biotite-magnetite assemblage in the potassic alteration zone, for 

differing host rocks and erosion levels. For magnetic mafic-intermediate igneous host 

rocks (represented by andesite in Figure 7) the signature of the uneroded deposit is a 

magnetic low, reflecting the negative magnetisation contrast between the large volume of 

the magnetite-destructive phyllic and propylitic zones and the surrounding magnetic 

unaltered rocks. As deeper levels of the system are exposed the signature gains a central 

high within an annular low.  For weakly magnetic felsic host rocks the effects of 

magnetite-destructive alteration are less important and the signature for an eroded system 

is a broad high, reflecting the deeply buried magnetic potassic core of the system. For an 

uneroded system hosted by felsic rocks the signature is very weak (amplitude 31 nT), as 

the most significant magnetisation contrast corresponds to the deeply buried potassic core, 

which has lower magnetisation than the corresponding zone in Figure 4.   

 

Figure 8 illustrates the dramatic effect post-emplacement tilting can have on magnetic 

signatures.  A deep uneroded Cu-Au porphyry system emplaced into magnetic mafic host 

rocks exhibits a symmetric magnetic low, but after tilting has an asymmetric signature with 

a magnetic high appearing adjacent to the alteration low, above the potassic core which has 

been laterally displaced and brought to shallower levels by the tectonic rotation and 

accompanying removal of overburden by erosion. 
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Figure 6.  RTP magnetic anomaly pattern over the Bajo de la Alumbrera Cu-Au porphyry 
deposit, Catamarca Province, Argentina, hosted by magnetic andesitic volcanics of the 
Farallon Negro Formation. The central magnetic high is due to the potassic (biotite-
magnetite) core zone and the annular magnetic low is due to magnetite destruction within 
the surrounding phyllic zone. In the outer propylitic zone the magnetic response gradually 
returns to the background level and to the busy texture associated with the andesitic host 
rocks.   
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Table 8. Magnetic properties of rocks and ores from the ~7 Ma Bajo de la Alumbrera Cu-
Au deposit, Catamarca Province, Argentina (605 Mt at 0.54%  Cu,  0.64 g/tonne Au) 
Protolith Alteration N k (10−3  SI)  

 
J (mA/m) 
 

Q 
 

Dacitic porphyry 
stocks & dykes  

POT+min 
 

8 680 
(3-3185) 

690 
(40-5260) 

0.17 
(0.02-
0.95) 

Dacitic porphyry 
stocks & dykes 

(PHY)/POT+min 3 12 
(4-26) 

58 
(19-106) 

0.46 
(0.1-1.2) 

Dacitic porphyry 
stocks & dykes 

PHY/POT+min 3 2.2 
(0.09-6.0) 

54 
(3-204) 

0.93 
(0.07-1.8) 

P2 Monzonite 
Porphyry 

POT+min 2 460 ± 210 
 

10,080 
(2680-
17600) 

0.86 
(0.61-1.5)                                                                                                                         

P2 Monzonite 
Porphyry 

(PHY)/POT+min 2 126±29 870 
(575-1560) 

0.40 
(0.34-
0.57) 

P3 Monzonite 
Porphyry 

POT+min 2 135±43 960 
(310-1850) 

0.40 
(0.19-
0.59) 

High grade 
mineralisation 

POT+min 3 350±120 3570 
(1430-7080) 

0.58 
(0.47-
0.69) 

Combined 
potassic core, no 
phyllic overprint  

POT+min 4 410±110 4250 
(870-1080) 

0.60 
(0.17-
0.86) 

Combined 
potassic core, ± 
phyllic overprint 

POT+min; 
(PHY)/POT+min; 
PHY/POT+min 

7 250±100 3330 
(50-1080) 

0.75 
(0.17-
0.93)  
 

El Durazno 
feldspar 
porphyry*  

Unaltered 2 44±4 220 
(220-373) 

0.29 
(0.21-
0.44)  

Farallon Negro 
Andesite (host) 

POT 5 31±8 200 
(120-930) 

0.43 
(0.76-1.3) 

Farallon Negro 
Andesite (host) 

PHY 3 0.016±0.002 1.8 
(0.9-3.3) 

6.5 
(2.7-13.5) 

Farallon Negro 
Andesite (host) 

PROP 3 7.0±1.8 67 
(40-168) 

0.54 
(0.26-1.1) 

Farallon Negro 
Andesite (host) 

(PROP) 3 27±2 190 
(150-270) 

0.39 
(0.29-
0.67) 

Farallon Negro 
Andesite (host) 

Unaltered (fresh 
hornblende) 

2 43±9 580 
(560-680) 

0.77 
(0.62-1.1) 

*Analogue of unaltered nearby Alumbrera porphyries.  POT = potassic (Kfsp-bio-qtz-mt); 
POT+min = potassic alteration + mineralisation; (PHY)/POT = partial phyllic overprinting 
of potassic alteration; PHY/POT = strong phyllic overprinting of potassic alteration;  
PROP = strong propylitic alteration; (PROP) = weak propylitic alteration.  k given as mean 
± 1 SE. J = NRM intensity, calculated as vector mean using only oriented samples; 
Koenigsberger ratio Q = J/kH,  where H = 17.5 A/m (F = 22 µT).  Data from Clark et al. 
(2004) and Hoschke (2011). 



 

 
 

 
 
 
 
 
 

 
 
Figure 7. Theoretical RTP magnetic profiles over a gold

a typical development of a biotite

differing host rocks and erosion levels. Profiles were calculated as described in Figure 3. 

The inset shows the low amplitude (30 nT) si

rocks, which is not clearly visible at the scale of the main plot.
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Figure 7. Theoretical RTP magnetic profiles over a gold-rich porphyry copper model with 

a typical development of a biotite-magnetite assemblage in the potassic alteration zone, for 

differing host rocks and erosion levels. Profiles were calculated as described in Figure 3. 

The inset shows the low amplitude (30 nT) signature of the uneroded system in felsic host 

rocks, which is not clearly visible at the scale of the main plot. 

 

 

porphyry copper model with 

magnetite assemblage in the potassic alteration zone, for 

differing host rocks and erosion levels. Profiles were calculated as described in Figure 3. 

gnature of the uneroded system in felsic host 
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Such post-emplacement disruption of porphyry systems is common. Wilkins and Heidrick 

(1995) report that ~45% of the deposits of the southwestern North American porphyry 

copper province of Laramide age have been significantly faulted, extended and rotated 

during Oligocene and Miocene time. Tilting through more than 50° is common. Geissman 

et al. (1982) have quantified rotations in the Yerington district using palaeomagnetism. A 

palaeomagnetic study of the Porgera Intrusive Complex by Schmidt et al. (1997) showed 

that the upper levels of this complex have been disrupted by thin-skinned tectonics. The 

exposed intrusions have undergone substantial, but varying, degrees of tilting and rotation 

about vertical axes. Lum et al. (1991) point out the prevalence of local block rotations that 

distort outcrop patterns of high level intrusions and porphyry and epithermal alteration  

systems in the tectonically very active southwest Pacific. Rotation rates of 20°-30° in 

100,000 years are unexceptional.  

 

High sulfur quartz monzonite models 

 

The classic porphyry copper model of Lowell and Guilbert (1970), based predominantly on 

Laramide porphyry deposits of southwest North America, neatly summarised the 

characteristics of an important class of porphyry copper deposits. In these systems the 

mineralising porphyry intrusions typically were quartz monzonites. Quartz-monzonite type 

porphyry copper deposits that have substantial magnetite within their potassic zones are 

similar to the gold-rich porphyry copper models discussed above. These deposits tend to 

associated with intrusions that have lower sulfur contents than quartz monzonite deposits 

that are characterised by extensive magnetite-destructive alteration, as noted by Williams 

and Forrester (1995) who pointed out that alteration patterns around porphyry intrusions 

differ greatly between high-S and low-S porphyries.  Sulfur contents of porphyry copper 

intrusions range up to 8 wt%. High sulfur content encourages development of broad 

magnetite-destructive alteration envelopes. Sulfur contents in the range 7-8 wt% produce 

very large quartz-sericite aureoles, with extensive retrograde alteration relative to the size 

of the intrusion. Substantially lower sulfur contents result in the inner potassic and outer 

propylitic zones adjoining, with minimal development of  intervening sericitic or argillic 

zones. 

 



 

 

 

Figure 8. Models and theoretical RTP magnetic signatures of a gold

model, with  maximum development of a biotite

alteration zone. Top: uner

susceptibilities given in Figure 2; Bottom: same deposit after tilting through 60° so that 

originally vertical porphyry stock now plunges 30° to left of figure.  Colour bar indicates 

RTP anomaly in nT. Contour interval for both RTP images is 100 nT. Dimensions of the 

block model are 6.4 km 
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Figure 8. Models and theoretical RTP magnetic signatures of a gold

model, with  maximum development of a biotite-magnetite assemblage in the potassic 

alteration zone. Top: uneroded deposit hosted by magnetic mafic rocks, with geometry and 

susceptibilities given in Figure 2; Bottom: same deposit after tilting through 60° so that 

originally vertical porphyry stock now plunges 30° to left of figure.  Colour bar indicates 

y in nT. Contour interval for both RTP images is 100 nT. Dimensions of the 

block model are 6.4 km × 6.4 km × 3 km and the images are 6.4 km ×

 

 

Figure 8. Models and theoretical RTP magnetic signatures of a gold-rich porphyry copper 

magnetite assemblage in the potassic 

oded deposit hosted by magnetic mafic rocks, with geometry and 

susceptibilities given in Figure 2; Bottom: same deposit after tilting through 60° so that 

originally vertical porphyry stock now plunges 30° to left of figure.  Colour bar indicates 

y in nT. Contour interval for both RTP images is 100 nT. Dimensions of the 

× 6.4 km. 
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Areas that have thick continental crust that was underlain by a shallow subduction zone 

(e.g. the Laramide porphyry province of SW North America) tend to produce magmas with 

substantial crustal contamination, including high sulfur magmas. Magnetite is relatively 

scarce in the potassic zones of such deposits, as it is mostly replaced by pyrite. For 

example, the Bingham Canyon porphyry Cu-Au-Mo deposit is notable among gold-rich 

porphyry coppers for having little magnetite within its potassic zone, which contains 

instead abundant pyrite. For this type of deposit, the phyllic zones are well-developed in 

the intrusion and within suitable host rocks, and are surrounded by broad propylitic zones 

with extensive pyritisation of magnetite in country rocks. Thus the general signature of 

such deposits, if they are hosted by moderately or strongly magnetic rocks, is an alteration 

low. The situation is different if the intrusion is hosted by carbonate rocks. In this case 

extensive skarn formation occurs, often with associated zoned mineralisation, as seen close 

to Bingham Canyon at Carr Fork, Utah (see Table 4). Some zones within the skarns tend to 

be strongly magnetic, producing a pronounced magnetisation contrast with both the weakly 

magnetic altered intrusion and unaltered sedimentary rocks. 

 

Table 9 lists the dimensions and susceptibilities for a model of a porphyry copper system 

associated with a high sulfur magma, based on the quartz monzonite model of Lowell and 

Guilbert (1970).  Figure 9 shows theoretical RTP magnetic profiles over this model, which 

has a potassic core that contains pyrite at the expense of magnetite, surrounded by 

magnetite-destructive phyllic and propylitic zones. Magnetic anomaly amplitudes are 

substantially smaller than for typical gold-rich porphyry copper models. The magnetic 

signature is very sensitive to the current level of exposure. Profiles are shown for an 

uneroded deposit and after removal of 1 km and 2 km by erosion. For the uneroded deposit 

the signature is a magnetic low, reflecting decrease in susceptibility of the host rocks 

throughout the large volume of magnetite-destructive alteration surrounding and above the 

magnetic core.  As deeper levels of the system are exposed by erosion, a weak central 

magnetic high overlying the weakly altered lower levels of the moderately magnetic 

central intrusion develops. After removal of 2 km of overburden the central magnetic high 

becomes prominent. 

 
 
 
 
  



 

Figure 9. Theoretical RTP magnetic profiles over a Laramide
monzonite porphyry copper model, with a potassic core that contains pyrite at the expense 
of magnetite, surrounded by magnetite
are shown for an uneroded deposit and after removal of 1 km and 2 km by erosion. 
 

 

Figure 10. Theoretical RTP magnetic profiles over a Laramide
monzonite porphyry copper model with a potassic core that contains pyrite at the expense 
of magnetite, surrounded by magnetite
are shown for the deposit emplaced into different host rocks, after removal of 2 km by 
erosion.  
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Figure 9. Theoretical RTP magnetic profiles over a Laramide-type high sulfur quartz
monzonite porphyry copper model, with a potassic core that contains pyrite at the expense 
of magnetite, surrounded by magnetite-destructive phyllic and propylitic zones. Pr
are shown for an uneroded deposit and after removal of 1 km and 2 km by erosion. 

Figure 10. Theoretical RTP magnetic profiles over a Laramide-type high sulfur quartz
monzonite porphyry copper model with a potassic core that contains pyrite at the expense 
of magnetite, surrounded by magnetite-destructive phyllic and propylitic zones. Pr
are shown for the deposit emplaced into different host rocks, after removal of 2 km by 

 

 

type high sulfur quartz-
monzonite porphyry copper model, with a potassic core that contains pyrite at the expense 

destructive phyllic and propylitic zones. Profiles 
are shown for an uneroded deposit and after removal of 1 km and 2 km by erosion.  
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Table 9. Dimensions and susceptibilities of zones comprising the quartz monzonite model 
associated with a high sulfur magma intruded into mafic host rock   
Zone Diameter* (m) Width* (m) Depth extent 

(m) 
Susceptibility 
(SI) 

Inner/deep 
potassic 
 

600 600 2600 0.05 

Outer/upper 
potassic 
 

900 150 3100 0.0035 

Ore shell 
 

1500 300 3600 0.0025 

Phyllic 
 

2200 350 3600 0.003 

Strong 
propylitic 

3000 400 4000 0.003 

Weak propylitic 4000 500 4000 0.015 
Andesite 
 

Very large Very large 4000 0.03 

* Diameters and widths of zones are maxima (at a depth 4000 m below the surface). The 
tops of the phyllic zone and ore shell are 400 m below the surface, the top of the 
outer/upper potassic zone is at 900m depth and the inner/deep potassic zone is buried 2400 
m.  
 

Table 10. Dimensions and susceptibilities of zones in the Chilean giant porphyry copper 
model with mafic host rock  

Zone Diameter (m) Width (m) Depth extent 
(m) 

Susceptibility 
(SI) 

Mt-destructive 
Zone (phyllic, 
AA, ser-chl) 

2600 2600 3500* 0.0001 

Potassic 
 

 600 × 2000 3500* 0.018 

Propylitic 
 

6600 2000 4000 0.003 

Supergene 
blanket 

6000 6000 500* 0.0001 

Andesite Very large Very large 4000 
 

0.0055 
 

* at thickest part of blanket 
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Figure 10 shows theoretical RTP magnetic profiles over a Laramide-type high sulfur 

quartz-monzonite porphyry copper model with a potassic core that contains pyrite at the 

expense of magnetite, surrounded by magnetite-destructive phyllic and propylitic zones. 

Profiles are shown for the deposit hosted by different lithologies, after removal of 2 km by 

erosion. In all cases a central high is associated with the weakly altered deeper levels of the 

central intrusion. For unreactive quartzite host rocks, this is the only signature. For 

andesitic or similar host rocks this high is surrounded by an annular alteration low. For less 

magnetic felsic host rocks this low is less prominent.  For carbonate host rocks prominent 

magnetic highs occur over distal skarns and flank the subordinate central high. 

 

The expected signatures of these systems are greatly modified by post-emplacement 

tectonic movements, analogous to the scenario shown in Figure 8. Laramide porphyry 

systems have often been disrupted by faulting and tectonic rotations.  In fact, the Lowell 

and Guilbert (1970) porphyry copper model is largely based on a reconstruction of the San 

Manuel and Kalamazoo porphyry deposits in Arizona, which originally formed a single 

intrusion-centred ore body with concentric zoning, before being tilted and disrupted by 

faulting (Lowell, 1968; Force et al., 1995; Guilbert and Lowell, 1995). The present 

disposition of intrusive rocks and alteration zones in and around these ore  bodies differs 

greatly from the idealised model, but when the displacement along the San  

Manuel fault is removed and the intact porphyry system restored to the vertical, it is 

apparent that the original system conforms closely to the model. 

 

Chilean giant porphyry copper models with supergene blankets 

 

Giant porphyry copper deposits of the Chilean Andes are characterised by extensive 

magnetite-destructive alteration within their mineralised zones,  which are surrounded by 

broad pyrite-rich propylitic halos. As a consequence of Late Tertiary-Recent physiography 

and climatic conditions of the Atacama desert they are generally overlain by thick 

supergene blankets that contribute much of their economic value. Supergene blankets are 

most developed over deposits that have abundant hypogene pyrite, which are also those 

that have the highest intensity and extent of magnetite-destructive alteration, such as 

phyllic, advanced argillic and sericite-chlorite alteration.  Secondary magnetite is locally 

associated with early potassic alteration of relatively mafic rocks, but is much  less 
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developed than in gold-rich porphyry copper systems. The magnetic signatures are much 

weaker than those of gold-rich porphyry copper deposits and are distinctly different in 

character. The geometry of the basic Chilean porphyry copper model for an andesitic host 

is shown in Figure 11. The Escondida deposit (Padilla Garza et al., 2001) was used as a 

basis for this model. Chilean-type porphyry copper models can also be used to represent 

large, high sulfur quartz monzonite type deposits that have developed thick supergene 

blankets. 

 

The calc-alkaline andesitic rocks of this region generally have lower susceptibility than the 

high-K calc-alkaline to shoshonitic andesites of the Farallon Negro Volcanics that host the 

Alumbrera deposit, reducing the magnetisation contrast between the unaltered country 

rocks and the predominantly magnetite-destructive alteration within the deposit. The 

dimensions and susceptibilities of the zones are given in Table 10. 

 

Alternative models include deposits hosted by different country rocks. Felsic country rocks 

are assigned SI susceptibilities of 0.004 SI (unaltered), 0.002 (propylitic zone), 0.006 

(potassic zone). Susceptibilities within the magnetite-destructive core and supergene 

blanket are as above (0.0001). Carbonate host rocks and marble are assumed to have zero 

susceptibility.  A 200 m wide skarn zone is assigned a susceptibility of 0.022. The 2600 m 

diameter magnetite-destructive zone has k = 0.0005. The supergene zone is more restricted 

in area, occurring only over mineralised igneous rocks rather than mineralised carbonates.  

Quartzite host rocks have zero susceptibility, including within  the weakly developed 

propylitic zone. The local potassic zone is assigned a susceptibility of 0.001 and the 

magnetite-destructive core has k = 0.0005.  

 

Figure 12 shows predicted RTP profiles over Chilean porphyry copper models for different 

host rock lithologies. For moderately magnetic igneous host rocks the signature is a broad 

alteration low, within which local magnetic highs may occur over relict potassic alteration 

zones that have not been strongly overprinted by magnetite-destructive alteration.  The 

amplitudes of the broad lows and local highs are somewhat stronger for more mafic host 

rocks. For quartzite or other unreactive host rocks the signature is a weak magnetic high 

associated with less altered, deeper portions of the porphyry intrusion.  Relatively 

prominent magnetic highs are developed over magnetite-bearing skarns developed within 

carbonate wall rocks. 



 

Figure 11. Model for a Chilean type (Atacama Desert) giant
with a well developed supergene enrichment blanket (pale green) overlying a broad 
core of magnetite-destructive phyllic, advanced argillic and sericite
(yellow), and  a relict body of early biotite
phyllic overprinting (brown). The propylitic zone is shown in olive green and mafic 
moderately oxidised host rock in blue. The depth extent of the model is 4000 m and 
there is no vertical exaggeration.

 

Figure 12. Theoretical RTP magnetic profiles over a Chilean type (Atacama Desert) 
giant porphyry copper deposit with a well developed supergene enrichment blanket, as 
shown in Figure 10, for different host rock types.
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Figure 11. Model for a Chilean type (Atacama Desert) giant porphyry copper deposit 
with a well developed supergene enrichment blanket (pale green) overlying a broad 

destructive phyllic, advanced argillic and sericite
(yellow), and  a relict body of early biotite-magnetite alteration that has escaped strong 
phyllic overprinting (brown). The propylitic zone is shown in olive green and mafic 
moderately oxidised host rock in blue. The depth extent of the model is 4000 m and 
there is no vertical exaggeration. 

ical RTP magnetic profiles over a Chilean type (Atacama Desert) 
giant porphyry copper deposit with a well developed supergene enrichment blanket, as 
shown in Figure 10, for different host rock types. 

 

porphyry copper deposit 
with a well developed supergene enrichment blanket (pale green) overlying a broad 

destructive phyllic, advanced argillic and sericite-chlorite  alteration 
teration that has escaped strong 

phyllic overprinting (brown). The propylitic zone is shown in olive green and mafic 
moderately oxidised host rock in blue. The depth extent of the model is 4000 m and 
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Figure 13 shows images and contour maps of predicted RTP signatures for deposits hosted 

by moderately magnetic mafic rocks, somewhat less magnetic felsic rocks, and for systems 

emplaced along a contact between mafic and felsic rocks or mafic rocks and carbonates.  

Mineralising  porphyry intrusions often exploit pre-existing zones of weakness such as 

faulted contacts, so it is quite common for deposits to be found along contacts between 

contrasting lithologies.  This produces asymmetric zoning patterns, with consequent 

modification of predicted magnetic signatures. 

 

1. IOCG models 

 

In a typical vertically zoned IOCG system, magnetite-destructive, hematite-rich HSCC 

alteration dominates upper levels, whereas magnetite-rich alteration dominates at depth. 

Thus the current erosion level determines whether the exposed or near-surface portions of 

the system are hematite-rich or magnetite-rich. Magnetite is also abundant peripheral to the 

upper hematite-rich zones.  

 

The general zoning pattern inferred for IOCG deposits is shown in Figure 14 and the 

magnetic properties of the zones are listed in Table 11.  This pattern may be altered by 

tectonic tilting of the system or by faulting. Therefore the magnetic and gravity signatures 

of IOCG deposits should generally reflect superposed or juxtaposed gravity and magnetic 

anomalies. Positive gravity anomalies arise from both magnetite-rich and hematite-rich 

zones, whereas the deeper, peripheral, or adjacent magnetic sources correspond to the 

magnetite-rich zones. 

Figure 15 shows images and contour maps of predicted RTP signatures of IOCG systems. 

Uneroded systems produce substantial magnetic anomalies whether developed within 

mafic or felsic host rocks, due to high concentrations of iron oxides, associated with strong 

Fe metasomatism, over large volumes. Magnetic signatures are predicted to be stronger for 

more mafic systems and amplitudes also increase substantially if deeper levels of the 

system are exposed by erosion.  Up faulting of the magnetite-rich deeper portion of the 

system (Figure 14, bottom left) results in strong signatures over this segment of the system, 

juxtaposed with more subdued anomalies over the hematite-rich segment. This scenario is 

analogous to the Prominent Hill, South Australia IOCG deposit, where the Cu-Au 

mineralisation occurs within a weakly magnetic massive hematite zone that is outlined by a 

gravity high, separated by a fault from the strongly magnetic and dense magnetite-rich  



 

 

Figure 13. Theoretical RTP signatures of a Chilean type (Atacama Desert) giant 
porphyry copper deposit with a well developed 
mafic host rocks (contour interval 5 nT); top right: felsic host rocks (contour interval 5 
nT). The model geometry for these two cases is given in Figure 11.  Centre left: 
emplaced at a contact between mafic and carb
bottom left: corresponding model geometry, with andesite in blue,carbonate in grey; 
centre right: emplaced at a contact between mafic and felsic rocks (contour interval 10 
nT); bottom right: corresponding model geometry, with andesite in blue, felsic host in 
pink. Colours of alteration zones are as in Figure 11. Dimensions of the block models 

are 19.2  km × 19.2  km 
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Figure 13. Theoretical RTP signatures of a Chilean type (Atacama Desert) giant 
porphyry copper deposit with a well developed supergene enrichment blanket. Top left: 
mafic host rocks (contour interval 5 nT); top right: felsic host rocks (contour interval 5 
nT). The model geometry for these two cases is given in Figure 11.  Centre left: 
emplaced at a contact between mafic and carbonate rocks (contour interval 10 nT);
bottom left: corresponding model geometry, with andesite in blue,carbonate in grey; 

emplaced at a contact between mafic and felsic rocks (contour interval 10 
nT); bottom right: corresponding model geometry, with andesite in blue, felsic host in 
pink. Colours of alteration zones are as in Figure 11. Dimensions of the block models 

19.2  km × 4 km and the magnetic images are 19.2 km 

 

Figure 13. Theoretical RTP signatures of a Chilean type (Atacama Desert) giant 
supergene enrichment blanket. Top left: 

mafic host rocks (contour interval 5 nT); top right: felsic host rocks (contour interval 5 
nT). The model geometry for these two cases is given in Figure 11.  Centre left: 

onate rocks (contour interval 10 nT); 
bottom left: corresponding model geometry, with andesite in blue,carbonate in grey; 

emplaced at a contact between mafic and felsic rocks (contour interval 10 
nT); bottom right: corresponding model geometry, with andesite in blue, felsic host in 
pink. Colours of alteration zones are as in Figure 11. Dimensions of the block models 

4 km and the magnetic images are 19.2 km × 19.2 km. 
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zone that represents an originally deeper portion  of the system, prior to faulting (Belperio 

et al., 2007).  Juxtaposed hematite-rich and magnetite-rich segments of an IOCG system 

can also result from tectonic tilting (figure 14, bottom right) with a predicted signature 

shown in Figure 15 (bottom right). 

 

Discussion and conclusions 

 

The predictive models developed for the AMIRA P700 Atlas of Geophysical Signatures 

(Clark et al., 2004) were designed to bridge the gap between purely geological models 

(both idealised models and detailed deposit descriptions) and empirical magnetic 

signatures. This process has suggested the following conclusions for deposits that have not 

been significantly modified by post-emplacement tectonism or metamorphism: 

1. The majority of gold-rich porphyry copper deposits (classic morphology, quartz-

monzonite zoning) hosted by magnetic mafic-intermediate volcanics are predicted 

to have large (> 1000 nT) positive bullseye RTP anomalies over the potassic core, 

with incipient to prominent development of the archery target signature, depending 

on the extent of the phyllic zone, providing erosion has exposed or nearly exposed 

the potassic zone. This signature should be easily detectable beneath 100 m of 

sedimentary cover, and even beneath a similar thickness of magnetic volcanics.  

2. For a completely buried, uneroded or slightly eroded, gold-rich porphyry copper 

system hosted by mafic rocks the signature is basically an alteration low due to the 

large volume of magnetite-destructive alteration surrounding the deeply buried 

magnetic core. At intermediate levels of exposure a more complex pattern of a 

central high surrounded by an alteration low occurs, with the relative amplitude of 

the high and low dependent on the erosion level.  

3. Similar deposits emplaced into weakly magnetic felsic rocks or unreactive rocks, 

such as quartzites or shales, are characterised by a strong bullseye high, without a 

surrounding low. If emplaced into limestone the bullseye high associated with the 

potassically altered intrusion is likely to be supplemented by skarn anomalies 

(possibly remanently magnetised) associated with proximal magnetite-garnet skarn 

in favourable horizons, with discrete anomalies associated with distal skarn bodies, 

developed near the marble interface in structurally controlled zones. The skarn 

signature should be more strongly developed if the host rocks are dolomitic.  



 

 

 

Figure 14. IOCG models hosted by an oxidised mafic lithology (blue). Dimensions of 

the block models are 12.8  km 

halo (yellow), inner hematite halo (orange)

core (light brown), p

deep sodic alteration (

left: uneroded system; top right:after 400 m removed by erosion; bottom left: after 

vertical dip-slip fault has juxtaposed magnetite

bottom right: after tilting of system through 45°. 
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Figure 14. IOCG models hosted by an oxidised mafic lithology (blue). Dimensions of 

the block models are 12.8  km × 12.8  km × 4 km. The  other zones are: 

nner hematite halo (orange),  hematite breccia (red)

, potassic alteration (mid brown), massive hematite (dark brown)

odic alteration (lemon yellow),  discrete massive magnetite bodies (black). 

left: uneroded system; top right:after 400 m removed by erosion; bottom left: after 

slip fault has juxtaposed magnetite- and hematite-rich portions of system; 

bottom right: after tilting of system through 45°.  

 

Figure 14. IOCG models hosted by an oxidised mafic lithology (blue). Dimensions of 

4 km. The  other zones are: outer hematite 

ematite breccia (red),   quartz-hematite 

assive hematite (dark brown),    

discrete massive magnetite bodies (black). Top 

left: uneroded system; top right:after 400 m removed by erosion; bottom left: after 

rich portions of system; 
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4. Alkalic porphyry Cu-Au deposits typically exhibit diorite model zonation, with 

poorly developed phyllic zones, and produce strong bullseye highs over the 

potassic core.  

5. In areas of greater crustal influence on magmas (e.g. the Laramide province), 

magmas with relatively high sulfur content generate large volumes of magnetite-

destructive alteration. Porphyry Cu and Cu-Au deposits of this type are associated 

with alteration lows, if emplaced into magnetic host rocks, or very weak signatures 

if emplaced into non-magnetic host rocks.  

6. Giant porphyry copper deposits of the Atacama desert are characterised by large 

volumes of magnetite-destructive alteration, with locally developed magnetite-

bearing potassic alteration, and thick overlying supergene blankets. The signature 

of such deposits, when hosted by moderately magnetic rocks, is an areally 

extensive alteration low, with a typical amplitude of –100 nT. Such deposits will be 

visible to magnetics if they are covered by non-magnetic overburden, but cover by 

magnetic volcanics renders them difficult to see. When hosted by non-magnetic 

rocks the magnetic signature is inconspicuous, apart from local highs associated 

with remnant zones of potassic alteration within the broad zones of phyllic 

overprinting. These deposits are ringed by chargeable zones due to pyrite-bearing 

propylitic halos.  

7. Phyllic alteration produced by magmatic, rather than meteoric, fluids tends to be 

“inside-out” with respect to the potassic zone, producing a doughnut magnetic 

signature (central magnetic alteration lows flanked by annular highs). Another 

source of this reverse zoning pattern may be structurally controlled access of 

meteoric fluids to deeper portions of a deposit. This type of signature is to be 

expected in two main settings: Volcanic morphological models, with small 

intrusive spines within comagmatic volcanics, tapped off a large mother magma 

chamber, and plutonic/batholithic porphyry deposits.  Examples of  

the latter type include the cluster of Cu-Au porphyry deposits within the 

Goonumbla Volcanic Complex, central New South Wales, which exhibit subtle 

doughnut signatures. This inside-out zoning reflects phyllic overprinting by late 

magmatic-derived fluids, centred on narrow intrusive spines, tapped off an 

underlying magma chamber, which locally overprints a halo of early biotite-

magnetite alteration developed around the intrusions  (Clark and Schmidt, 2001).  



 

 

 

Figure 15. Predicted magnetic signatures of IOCG systems depicted in Figure 14. Top left: 

uneroded system hosted by moderately magnetic oxidised felsic rocks (contour interval 

200 nT); top right: uneroded system hosted by oxidised  magnetic mafic rocks (co

interval 200 nT); bottom left: faulted system hosted within mafic rocks (contour interval 

600 nT); system hosted by mafic rocks, tilted 45° (contour interval 500 nT). Dimensions of 

the magnetic images are 12.8  km 
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Figure 15. Predicted magnetic signatures of IOCG systems depicted in Figure 14. Top left: 

uneroded system hosted by moderately magnetic oxidised felsic rocks (contour interval 

200 nT); top right: uneroded system hosted by oxidised  magnetic mafic rocks (co

interval 200 nT); bottom left: faulted system hosted within mafic rocks (contour interval 

600 nT); system hosted by mafic rocks, tilted 45° (contour interval 500 nT). Dimensions of 

the magnetic images are 12.8  km × 12.8  km. 
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8. The magnetic signatures of IOCG deposits, and their relationships to the gravity 

anomalies, depend on the geological history and are quite variable. Overall the 

magnetic sources of anomalies associated with IOCG deposits tend be deeper and 

more laterally extensive than the gravity sources.   

9. Magnetite, formed under relatively reducing conditions, has very high 

susceptibility compared to hematite. Hematite has low susceptibility and fairly 

weak remanence, unless it has formed at, or been taken to, very high temperatures. 

High grade regional or contact metamorphism of hematite-rich zones can impart an 

intense thermoremanence to the hematite, which can cause large magnetic 

anomalies. This appears to explain the strong  magnetic anomalies exhibited by 

massive hematite bodies of the Mount Woods Inlier that have been contact 

metamorphosed (Schmidt et al., 2007), whereas similar unmetamorphosed  massive 

hematite at the nearby Prominent Hill IOCG deposit  produces no discernible 

magnetic anomaly (Belperio et al., 2007). 

10. Monoclinic pyrrhotite, formed under reducing conditions with moderate sulfur 

fugacity, has moderate susceptibility, but tends to carry intense remanence. The 

oxidation state of the host sequence appears to influence the oxidation state of 

IOCG deposits, as well as the redox state of the source (e.g. magmatic fluids) and 

the palaeodepth (more oxidised at shallow depths).  

11. The predictive models illustrate a crucial point: namely that signatures of porphyhry 

copper and IOCG deposits are very sensitive to local geological setting.  In particular, 

within a given metallogenic province local anomaly patterns that may indicate a 

mineralised system must be interpreted appropriately, by taking into account geological 

factors such as country rock composition, geomorphological history that controls 

present level of exposure of the systems of interest, local tectonic rotations and 

displacements along faults, and asymmetric zoning patterns for systems occurring 

along contacts between contrasting lithologies.  For example, tilting of a vertically 

zoned IOCG system, or upfaulting of the deeper magnetite-rich portion, may juxtapose 

the magnetite and hematite zones, producing juxtaposed, rather than “coincident” 

gravity and magnetic anomalies. Identification of prospective systems therefore 

requires a sophisticated use of all available geological and geophysical data, rather than 

simply searching for “look-alike” signatures of a known deposit. When these factors 

are considered appropriately, however, signatures are much more predictable and 

exploration is more likely to be successful.  
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Clark et al. (2004) developed some general guidelines for exploration, applicable at 

regional to prospect scales, based on the predictive exploration models and magnetic 

petrological principles.   That work provides criteria for recognition of favourable tectonic 

settings; structures that represent pathways for magmas and mineralising fluids, signatures 

of magmatic suites that have undergone substantial fractional crystallisation (which is a 

prerequisite for high-temperature for concentration of ore metals to economic grades), and 

signatures of melt-rich magmas that are capable of undergoing substantial fractional 

crystallisation and generating large hydrothermal systems. Details of these criteria are 

beyond the scope of this paper, but can be found in Clark et al. (2004). 

 

Acknowledgements 

 

This review incorporates findings of AMIRA International project P700, “Predictive  

magnetic exploration models for porphyry, epithermal and iron oxide Cu-Au deposits” 

(Clark et al., 2004), which was sponsored by Anglo American Prospecting Services Pty 

Ltd, AngloGold Ashanti Limited, BHP Billiton Exploration Australia Pty Ltd, Companhia 

Vale do Rio Doce, Phelps Dodge Australasia Inc, Rio Tinto Exploration Pty Limited and 

WMC Exploration.  Terry Hoschke provided the RTP magnetic image for the Bajo de la 

Alumbrera deposit.  I thank James Austin for helpful comments that improved the 

manuscript. This paper represents a contribution towards a Ph.D. in the Department of 

Earth and Planetary Sciences at Macquarie University, under the supervision of Drs Mark 

Lackie and Richard Flood. 

  



 

322 
 

 

Table 11. Typical magnetic properties and densities of IOCG-style alteration systems (low 
metamorphic grade) 
 
ZONE Vol. % 

magnetite 
Vol. % 

hematite 
Calculated 

susceptibility* 
(10-3 SI) 

Calculated 
Density 
(kg/m3) 

Felsic Host 0.15 0 5.2 2650 
Outer hematite halo - upper 
(HSCC) zone 

0.2 2 7.7 2710 

Inner hematite halo - upper 
(HSCC) zone 

2 4 72 2800 

Hematite breccia - upper 
(HSCC) zone 

1 36 49 3590 

Hematite-quartz breccia - 
upper (HSCC) zone 

0 37 15 3590 

Massive hematite lens 0 60 24 4180 
Potassic/Potassic-
calcic/sodic/sodic-calcic deep 
zones 

3.5 0 124 2740 

Massive magnetite lens 60 0 4110 
 

4180 

Mt-rich Mafic Host 5.2 0 187 3000 
Outer hematite halo - upper 
(HSCC) zone 

2 5 72 3040 

Inner hematite halo - upper 
(HSCC) zone 

2 9 74 3140 

Hematite breccia - upper 
(HSCC) zone 

1 41 51 3810  
(ρG = 2800) 

Hematite-quartz breccia - 
upper (HSCC) zone 

0 42 17 3810  
(ρG = 2800) 

Massive hematite lens 0 60 24 4240 
(ρG = 2800) 

Potassic/Potassic-
calcic/sodic/sodic-calcic deep 
zones 

8.5 0 315 3080 
 

Massive magnetite lens 60 0 4110 4270 
 

* Susceptibility calculated from magnetite and hematite contents, using equation (3). 
ρG = assumed gangue density (2650 kg/m3 for felsic host; 2880 kg/m3 for mafic host, 
except where sericitic alteration is dominant).  Density is calculated as  
ρ = ρGANGUE + (ρOXIDES − ρGANGUE)(fMT + fHM), where ρOXIDES = 5200 kg/m3. 
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Table 2.  Characteristic Mineral Assemblages of the Main Alteration Types in Porphyry Systems 
ALTERATION TYPE 
(synonym) 

CHARACTERISTIC ASSEMBLAGE [magnetic effects] 

Early magnetite ± amphibole ± 
plagioclase veins (M veins)   

Quartz-magnetite ± amphibole ± plagioclase, sulfide-poor veins; Fe-metasomatism (Clark and Arancibia, 1995) 
[abundant multidomain magnetite created: high k, Q < 1] 

Potassic (K-silicate) 
 

K-feldspar and/or biotite, plus one or more of: sericite, chlorite and quartz (e.g. in the interior zone of porphyry copper 
deposits) [Usually magnetite-producing (increased k, Q < 1): up to 5 vol % in mafic/intermediate rocks (e.g. gold-rich 
porphyry copper deposits); minor magnetite addition in felsic rocks; often associated with early quartz-magnetite-
(amphibole) veins. Sometimes magnetite-destructive in high sulphidation systems.] 

Phyllic (Sericitic) Quartz-sericite-pyrite-chlorite (e.g. in large halos around porphyry copper deposits) [Magnetite-destructive (pyrite + 
hematite produced); decreased k] 
 

Intermediate Argillic Smectite and kaolinite, commonly replacing plagioclase (e.g. variably developed zone outside sericitic zone in some 
porphyry coppers) [magnetite-destructive; decreased k] 

Propylitic Albite (or K-feldspar in potassic rocks), chlorite and epidote group minerals; with only minor change in bulk 
composition (e.g. outermost alteration zone of porphyry copper deposits) [strong: Partially to totally magnetite-
destructive (Fe in pyrite, hematite, epidote, chlorite, actinolite), decreased k] [weak: magnetite stable, k unchanged] 

Albitic  Na-rich plagioclase + epidote and other propylitic minerals; with substantial addition of Na [magnetite-destructive,  
decreased k] 

Sodic-calcic Sodic feldspar and epidote ± actinolite ± chlorite (e.g. adjacent to intrusion at depth, beneath certain porphyry copper 
deposits) [magnetite-destructive,  decreased k] 

Advanced Argillic Quartz plus one or more of: kaolinite, dickite, pyrophyllite, diaspore, pyrite, alunite, zunyite, topaz (e.g. in epithermal 
systems that may overlie porphyry systems) [magnetite-destructive,  decreased k] 

Carbonate Calcite, dolomite, ankerite, siderite plus sericite, pyrite and/or albite [partially magnetite-destructive,  decreased k] 
Skarn Ca and Mg silicates (limestone protolith: andradite and grossular, wollastonite, epidote, idocrase, chlorite, actinolite; 

dolostone protolith: forsterite, serpentine, talc, brucite, tremolite, chlorite) [see Tables 3 and 4] 
Supergene oxidation Alunite, allophane, jarosite, Fe oxides, sulfates [magnetite- and pyrrhotite-destructive; hematite and goethite produced; 

decreased k] 
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Table 3. Typical  magnetic properties of skarns 

 
LITHOLOGY  Av. k ± SE (10-3 SI) 

[Range] 
∆Bz (nT)* Average NRM ± SE [Range] 

(A/m) 
Average Q ± SE [Range] 

Oxidised Magnetite Skarn† 650 ± 160 
[120 - 2000] 
 

16,250 ± 4000 
[3000 - 50,000] 

J = 50 ± 20 [0.3 – 210] 
Q = 1.4 ± 0.4 [0.05 – 4.5] 

Reduced Pyrrhotite Skarn† 5 ± 2 
[1 - 8] 

125 ± 50 
[25 – 200] 

J = 14 ± 8 [1 – 34] 
Q = 16 ± 4 [8 – 25] 

Reduced pyroxene ± garnet† skarn (mt 
rare or absent) 

1.1 ± 0.2 
[0.1 - 2] 

28 ± 5 
[2.5 – 50] 

J < 0.02 
Q << 1 

Calcic Fe (Cu, Co, Au) skarn‡ 
( mafic intrusion; island arc or rifted 
continental margin) 

2000 
[1200 - 3500] 

50,000 
[30,000 – 175,000] 

J : [5 – 300] 
Q ~ 1 [0.1 – 5]  

Magnesian Fe (Cu, Zn) skarn‡ 
(felsic intrusion; continental margin) 

2000 
[1200 – 2700]  

100,000 
[60,000 – 87,500] 

J : [5 – 220] 
Q ~ 1 [0.1 – 5] 

Calcic Cu (Mo, W, Zn) skarn - proximal‡ 
(Grd-Qmz; continental margin) 

[30 - 400] [750 – 10,000] J: [ 1 – 50] 
Q ~ 1.5 [0.1 – 5]  

Magnesian Cu (Mo, W, Zn) skarn‡ 
(Grd-Qmz; continental margin) 

[800 -1700] [20,000 – 42,500] J: [ 5 – 100] 
Q ~ 1.5 [0.1 – 5] 

 
*∆Bz is the maximum associated magnetic anomaly (steep field, non-magnetic country rocks, diameter >> depth below sensor,  
great depth extent), calculated from total magnetisation for case where remanence is parallel to induced magnetisation. The  
effective susceptibility is therefore taken to be k(1+Q). †Averages from P700 Database and from CSIRO Catalogue of Magnetic 
Properties (Clark, 1988b). ‡Inferred values from data in Einaudi et al. (1981). 
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Table 4. Zonation of mineralogy and magnetic properties of a typical copper skarn (deep skarn, Carr Fork mine, Bingham Mining 
District, Utah)  
 

ZONE 

Distance from 
intrusive contact 
(m) 
 

GANGUE SULFIDES Cu (wt %) Magnetite  
(vol %) 

k* (10-3 SI) 
 

Bingham stock 
(potassic zone) 

> 100 qtz, Kfsp, bio cp, bn, py 0.65 (shallow) 
< 0.1 (deep) 
 

0.1 –1 3.5 – 35 

Endoskarn 
(Bingham stock) 

< 100 act, ep (0.5 vol %)  
mb > cp 

< 0.1 ~ 0.1 ~ 3.5 

Proximal 
exoskarn 

0-50 and > di, cal, qtz, (1-2 vol %)  
cp, (bn) 

~0.2 1-2 35 - 70 

Exoskarn 50 – 100 and (2-5 vol %) 
cp > py 

~ 0.6 2 - 5 70 - 180 

Exoskarn 100 – 300 and >> di (15 vol %) 
cp ≥ py 

~ 8 5 – 10 180 - 380 

Exoskarn 300 - 350 and ≥ di (5 vol %) 
cp:py = 0.2 

~ 0.5 2 70 

Exoskarn 350 – 400 wo (gar, di) (1 vol %) 
bn, cp, sph, (py) 

~ 0.5 < 0.1 < 3.5 

Distal exoskarn 400 - 600 wo-di-qtz; wo-cal; 
marble 

(0.5 vol %) 
bn, cp, sph, gal 

< 0.5 < 0.1 < 3.5 

Marble, limestone > 600 cal, marble (< 0.1 vol %) 
(sph, gal, py) 

0 0 0 

 
Ore zone (~120-600 m from contact) average grades: ~2.3 % Cu, 0.6 g/t Au, 12 g/t Ag, 0.03 % Mo.  
Mineralogical and chemical data from Einaudi (1982).   
*Susceptibilities calculated using equation (3) from petrographically estimated modal magnetite contents. 
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Table 6.  Characteristic Mineral Assemblages of the Main Alteration Types in IOCG Systems 
ALTERATION TYPE 
(synonym) 

CHARACTERISTIC ASSEMBLAGE [magnetic effects] 

Sodic  
 

extensive albitisation of host rocks, accompanied by magnetite ± scapolite ± chlorite ± actinolite ± hematite 
[abundant multidomain magnetite created: high k, Q < 1] 

Sodic-calcic plagioclase-magnetite-epidote-calcite-sphene ± scapolite ±chlorite ± actinolite ± garnet ± hematite  
[abundant multidomain magnetite created: high k, Q < 1] 

Sodic-potassic albite-K feldspar-magnetite-quartz ± sericite ± biotite ± hematite ± chlorite ± actinolite 
[abundant multidomain magnetite created: high k, Q < 1] 

Potassic-calcic K feldspar-biotite-magnetite-epidote-calcite-sphene ± chlorite ± actinolite ± garnet ± hematite 
[abundant multidomain magnetite created: high k, Q < 1] 

Potassic K feldspar-sericite-magnetite-quartz ± biotite ± hematite ± chlorite ± actinolite 
[abundant multidomain magnetite created: high k, Q < 1] 

Sericite-hematite (HSCC, 
argillic, hydrolitic) 

sericite-hematite-chlorite-carbonate ± quartz 
[abundant multidomain hematite created: low k; Q < 1, unless high-grade metamorphosed] 
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CHAPTER 10:  CONCLUSIONS 

Acquisition of magnetic gradient tensor data is anticipated to become routine in the near 

future. There is therefore a need to develop new methods that efficiently process gradient 

tensor data, exploit the extra information, and improve interpretability. In the meantime, 

modern ultrahigh resolution conventional magnetic data can be used, with certain 

important caveats, to calculate magnetic vector components and gradient tensor elements 

TMI or TMI gradient surveys.  

 

New methods for inverting gradient tensor surveys to obtain source parameters have been 

developed for a number of elementary, but useful, models. These include point dipole 

(sphere), vertical line of dipoles (narrow vertical pipe), line of dipoles (horizontal 

cylinder), thin dipping sheet, and contact models.  A key simplification is the use of 

eigenvalues and associated eigenvectors of the tensor.  The normalised source strength 

(NSS), calculated from the eigenvalues, is a particularly useful rotational invariant that 

peaks directly over 3D compact sources, 2D compact sources, thin sheets and contacts, and 

is independent of magnetization direction.  In combination the NSS and its vector gradient 

determine source locations uniquely.  NSS analysis can be extended to other useful 

models, such as vertical pipes, by calculating eigenvalues of the vertical derivative of the 

gradient tensor.   

 

Inversion based on the vector gradient of the NSS over the Tallawang magnetite deposit 

obtained good agreement between the inferred geometry of the tabular magnetite skarn 

body and drill hole intersections.  Besides the geological applications, the algorithms for 

the dipole model are readily applicable to the detection, location and characterization 

(DLC) of magnetic objects, such as naval mines, unexploded ordnance, shipwrecks,  

archaeological artefacts and buried drums. 

 

Some of these new methods have been applied to analysis of the magnetic signature of the 

Early Permian Mount Leyshon gold-mineralised system, Queensland.  The Mount Leyshon 

magnetic  anomaly is a prominent TMI low that is produced by rock units with strong 

reversed remanence acquired during the Late Palaeozoic Reverse Superchron.  The 

inferred magnetic moment and direction of magnetisation for the source zone of the Mount 

Leyshon magnetic anomaly are consistent with petrophysical measurements and allow an 

estimate of the source volume and the depth extent of the magnetic zone.  
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The presence of a highly conductive medium around a measurement capsule influences 

electromagnetic measurements made in the ocean and fundamentally alters the structure of 

the magnetic gradient tensor, which is symmetric within the capsule, but asymmetric 

within the surrounding medium.  Additional effects arise if seawater is flowing past the 

sensor package.  For a spherical measurement capsule, the internal electric field is 

augmented by 50%, the external perturbation of the electric field around the cavity has the 

configuration of a dipole field and the external magnetic field due to the cavity is that of an 

elementary current dipole.  An ellipsoidal cavity has an anisotropic response, except in the 

degenerate case where all axes are equal and the cavity is spherical.  For a disk-like cavity 

the amplification of the applied electric field normal to the disk can be very large within 

the cavity.  The anomalous magnetic field within an ellipsoidal cavity due to electric 

current flow around the cavity is nonuniform, but has a uniform gradient.  At the center of 

the ellipsoidal cavity the magnetic field is equal to the field that existed at that point before 

insertion of the cavity.  The resultant internal magnetic gradient tensor is symmetric and 

traceless, as required.  Seawater motion past a sensor package produces easily detectable 

effects that can represent an important source of electromagnetic  noise.  These results 

have implications for marine controlled source electromagnetic surveys, magnetic gradient 

tensor measurements in the ocean, and marine magnetotellurics, as well as potential 

application to satellite measurements within the magnetosphere. 

 

Assuming without evidence that magnetic sources are magnetised parallel to the 

geomagnetic field can seriously mislead interpretation and can result in drill holes missing 

their targets.  Knowledge of total magnetisation is often critical for accurate determination 

of source geometry and position. Knowledge of magnetic properties such as magnetisation 

intensity and Koenigsberger ratio constrains the likely magnetic mineralogy (composition 

and grain size) of a source, which gives an indication of its geological nature.  Determining 

the direction of a stable ancient remanence gives an indication of the age of magnetisation, 

which provides useful information about the geological history of the source and its 

environs. Several methods exist for estimating the magnetic moment vector of a source, 

without any knowledge of its shape. This yields directions of the resultant magnetisation 

(remanent plus induced), which is crucial for accurate modelling, and gives an indication 

of the size of the source, when plausible magnetisation intensities are assumed. 

 



 

343 
 

A new method that estimates the magnetic moment and location of a discrete source from 

integral moments of rotational invariants of the gradient tensor was developed and  

successfully applied to several remanence-dominated anomalies in northern New South 

Wales, yielding results that agreed well with detailed inversions of the magnetic survey 

data. Another new method for remote determination of in situ magnetic properties   

exploits local perturbation of natural geomagnetic variations by a magnetic source. This 

method yields estimates of the resultant magnetisation direction, the direction of 

remanence, and the Koenigsberger ratio of the source, without making any assumptions 

about its geometry.  Furthermore, if the source is compact, this method gives a direct 

indication of direction to source, which can be exploited for drill targetting.  

  

Magnetic anomaly patterns can be used as a tool for mapping lithology, metamorphic 

zones and hydrothermal alteration systems, as well as identifying structures that may 

control passage of magmas or hydrothermal fluids associated with mineralisation.  Reliable 

geological interpretation of mineralised systems requires an understanding of the 

magmatic, metamorphic and hydrothermal processes that create, alter and destroy magnetic 

minerals in rocks.  Predictive magnetic exploration models for porphyry copper and iron 

oxide copper-gold (IOCG) deposits can be derived from standard geological models by 

integrating magnetic petrological principles with petrophysical data, deposit descriptions, 

and modelling of observed magnetic signatures of these  deposits.   

 

Even within a particular geological province, the magnetic signatures of similar deposits 

may differ substantially, due to differences in the local geological setting.  Searching for 

“look-alike” signatures of a known deposit is likely to be unrewarding unless pertinent 

geological factors are taken into account. These factors include the tectonic setting and 

magma type, composition and disposition of host rocks, depth of emplacement and post-

emplacement erosion level, depth of burial beneath younger cover, post-emplacement 

faulting and tilting, remanence effects contingent on ages of intrusion and alteration, and 

metamorphism.  Because the effects of these factors on magnetic signatures are reasonably 

well understood, theoretical magnetic signatures appropriate for the local geological 

environment can qualitatively guide exploration and make semiquantitative predictions of 

anomaly amplitudes and patterns.  The predictive models also allow detectability of 

deposit signatures to be assessed, for example when deposits are buried beneath a 
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considerable thickness of nonmagnetic overburden, are covered by highly magnetic 

heterogeneous volcanic rocks, or there is a strong regional magnetic gradient.  

 

Magnetic gradient tensor data potentially afford better source localisation, finer resolution 

of structural detail, and better determination of source magnetisations. Improved methods 

for exploiting the extra information contained in gradient tensor surveys can also add value 

to existing high quality conventional magnetic surveys, suitably reprocessed to produce 

gradient tensor grids.  Geological interpretation of the improved solutions for source 

locations, geometries and magnetisations, obtainable from gradient tensor data, should be 

guided by magnetic petrological principles and constrained, wherever possible by  

petrophysical and palaeomagnetic data. 

 

The theme of this thesis is that maximum benefit can be obtained from future 

developments in magnetics by adopting an integrated approach, whereby new technologies 

that generate information-rich, but complex multicomponent data, are efficiently processed 

to produce more interpretable parameters, which are used to generate source locations and 

inferred magnetisations that can then be interpreted geologically. Information on total 

magnetisation and remanence that is derived from analyses of these information-rich data 

sets can be used to constrain geometry, probable lithology, and geological history of 

sources.   A final geological interpretation that is used to define exploration targets should 

incorporate insights from magnetic petrological principles and predictive exploration 

models. 

 


