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Abstract

Benefiting from advances in machine vision and natural language processing, current image

captioning systems are able to generate natural-sounding descriptions of source images.

Most systems deal only with factual descriptions, although there are extensions where the

captions are ‘controlled’, in the sense that they are directed to incorporate particular additional

information, such as selected stylistic properties. This thesis seeks the understand and improve

these controlled image captioning models, applying extra visually-grounded and non-grounded

information. First, we target the emotional content of images as extra visually-grounded

information, which is an important facet of human generated captions, to generate more

descriptive image captions. Second, we target stylistic patterns as non-grounded information,

which is an important property of written communication. Finally, as a more general instance

of perturbing the input, we examine how image captions are affected by the injection of

perturbations in the source image, introduced by adversarial attacks that we propose on an

object detector. Specifically, the major contributions of the thesis are described as follows:

• We propose several novel image captioning models to incorporate emotional features

that learned from an external dataset. Before applying the features for image captioning,

we show the transferability and the effectiveness of the features for another task:

automatic engagement recognition. For this, we propose a novel model for engagement

recognition, initialized with the features, using our newly collected dataset. In the

image captioning models, we specifically use one-hot encoding and attention-based

representations of facial expressions present in images as our emotional features. We

find that injecting facial features as a fixed one-hot encoding can lead to improved

ix



x Abstract

captions, with the best results if the injection is at the initial time step of an encoder-

decoder architecture with a specific loss function to remember the encoding. An

attention-based distributed representation at each time step provides the best results.

• We present several novel image captioning models using attention-based encoder-

decoder architectures to generate image captions with style. Following previous work,

our first kind of model is trained in a two-stage fashion: pretraining on a large factual

dataset and then training on a stylistic dataset. For this, we design an adversarial

training mechanism leading to generated captions that better match human references

than previous work on the same dataset, and that are also stylistically diverse. Our

second kind of model is trained in an end-to-end fashion, which incorporates both

high-level and word-level embeddings representing stylistic information, and leads to

the highest-scoring captions according to standard metrics; this end-to-end approach is

an effective strategy for incorporating this kind of information.

• We introduce a novel adversarial attack against Faster R-CNN, as a high performing and

widely used object detector. Our version of Faster R-CNN is used in the state-of-the-art

image captioning system to generate bounding boxes including detected objects present

in the image. In contrast to existing attack that changes all bounding boxes, our attack

aims to change the label of a particular detected object in both targeted and non-targeted

scenarios, while preserving the labels of other detected objects; it achieves this aim

with a high rate of success. In terms of understanding the effect of noise injection into

the input, we find that although the injected perturbations that attack all bounding boxes

or only a specific object type score similarly on standard visual perceptibility metrics,

the impact on generated captions is dramatically different.
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1
Introduction

1.1 Motivation

As a branch of computer science, artificial intelligence (AI) is concerned with simulating

behaviours of intelligent beings. To do so, computers need to perceive, learn and respond to

different world states intelligently. For example, computer vision (CV) is a field of AI that

aims to develop methods to enable machines to see, identify and understand visual content

in a manner motivated by human visual capacities. Natural language processing (NLP) as

another field of AI assists computers to process, understand and generate human languages. It

also aims to enable the interaction between humans and machines using language. Currently,

deep neural networks are the state-of-the-art in machine learning for many applications. Due

to their complex structures including multiple layers, they are able to capture different levels

of information [15–17]. In terms of concrete applications, this has led to the state-of-the-art

1



2 Introduction

Figure 1.1: An example of machine generated image captions [1].

for different types of image-grounded communications for combining image and language

representations. This thesis focuses on one type of image-grounded communication using

deep neural networks: automatic image captioning — producing image descriptions by

understanding the visual content from the field of CV and generating captions from the field

of NLP.

Automatic image captioning aims to describe visual content in a form of natural language

which is grammatically correct and semantically correlated with visual content [1, 7, 8, 18–20].

For example, in Figure 1.1, “a group of young people playing a game of frisbee” describes the

image in terms of attributes, objects and actions in a correct grammatical form. This is useful

when humans need automatically generated interpretations for images [21], e.g. for assisting

visually impaired people who cannot recognize visual content [1], designing complex search

engines using natural language queries [18], interpreting images in newspaper articles [22]

and generating automatic comments for images [23]. As shown in Figure 1.2, current image

captioning systems usually contain an encoder-decoder architecture where a convolutional

neural network (CNN), as a popular deep learning approach in CV, captures visual content

and a long short-term memory (LSTM) network, as a popular deep learning approach in NLP,

generates image captions. The systems are inspired by the encoder-decoder model used in

neural machine translation [24] for translating a source language to a target language.

Most image captioning systems are trained using a few image captioning datasets including

MSCOCO [25], Flickr30k [4, 26] and Flickr8k [18]. Recently, various kinds of additions have

been made to image captioning, usually outside of these datasets, such as describing novel

objects and concepts [27, 28]. These kinds of models use an external corpus or source to

generate keywords or phrases which have rarely appeared or do not exist in the datasets. For
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Image CNN LSTM Caption

Figure 1.2: A usual encoder decoder model for image captioning. CNN is a convolutional neural

network to capture visual content and LSTM is a long short-term memory to generate image captions.

example, they use labeled images from classification or object detection tasks [8]. This aims

to enhance the ability of current image captioning systems to generate a wider set of objects or

concepts recognized from visual data [27–29]. Additionally, style-bearing image captioning

has been investigated using an external stylistic dataset. In describing an image, style could

refer to captions being “positive” and “negative” [2], or “romantic” and “humorous” [30].

Adding style makes captions more interesting, more attractive and more expressive [30, 31].

It also has practical applications such as enhancing the engagement level of users interacting

with chatbot platforms [32] and automatically generated comments of online photos and

videos [23]. These different kinds of additions usually aim to encourage diversity in the

generated captions and have been studied for both single-sentence captioning and paragraph

generation tasks [33, 34]. In terms of approach, these extensions to image captioning often

start with a standard architecture like the one in Figure 1.2, and include components to ‘push’

or direct the caption to incorporate the desired addition. Following the terminology of Hu et

al. [35], who proposed techniques for the more general problem of ‘controlled generation

of text’, where some attributes of the text are required to be included, the thesis refers to

‘controlled image captioning’.

The particular case of controlling or directing image captions to incorporate style is one

focus of this thesis. Image captioning systems have mostly aimed to describe the content

of an image using a neutral sentence [1, 7, 8, 19, 20] such as the caption “a group of young

people playing a game of frisbee” for Figure 1.1. However, Mathews et al. [2] argued that

purely objective captions may not fully engage humans, and consequently pioneered an

approach to incorporating stylistic or non-factual information into image captions, as in

Figure 1.3; later related work, such as by Gan et al. [30] and Chen et al. [31], has expanded

on the idea. A potential problem is that ‘pushing’ captions to incorporate such non-grounded

information could lead to a divergence from accurately describing visual content. Figure 1.4
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Figure 1.3: Human generated captions with positive (left) and negative (right) sentiments, as a kind

of styles [2].

Figure 1.4: “A dead man is playing frisbee on a field”. An example of automatically generated

image captions with style that does not describe visual content correctly. Our proposed models can

change this to “A group of stupid people are playing frisbee on a field” [3].

is an automatically generated image caption having style: the caption wrongly includes “dead”

to describe the image. In considering how to make sure too great a divergence from visual

content does not occur, however, it is necessary not to restrict captions so much that diversity

is lost. This is particularly the case in the usual two-stage architectures that we discuss below

and throughout the thesis: in these, the neutral caption is produced first, and the stylistic

aspect added later, in a manner that can lead to the ‘forgetting’ of the basic neutral content.

A related but different kind of augmentation of standard captions that has not previously

been tackled is the inclusion of emotional aspects of an image. For example, Figure 1.5 has
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Figure 1.5: A human generated image caption extracted from Flickr30k dataset [4] including

emotional content. “Two females one wearing blue the other black smiling and laughing.”

as a core part of the caption content that the women are smiling and laughing. Incorporating

emotional content, as a general characteristic of intelligent systems, plays a critical role in

generating desirable outcomes and making communications more expressive [36–39]. This

differs from the above sentiment-infused captioning in that is incorporating visually grounded

content; the stylistically enhanced captions typically embody descriptions of an image that

represent an observer’s view towards the image (e.g. a cuddly cat for a positive view of an

image, versus a sinister cat for a negative one). Although they differ in terms of the specific

augmentations, both cases — incorporating style and incorporating emotion — raise the

question of how to direct captions to incorporate this extra information in a way that does not

lead to captions that less accurately capture the other aspects of the image.

To investigate this overall topic of how best to direct image captions to incorporate extra

information, this thesis looks at three different aspects. For the first aspect, we target the

emotional content of images as an extra layer of information on top of an image captioning

system. We propose several novel methods for facial expression analyses and image captioning

systems, and examine which best adds facial emotion descriptions to captions. For the second

aspect, we work on the problem of infusing captions with sentiment first defined by Mathews et

al. [2], and again propose several novel models to examine which best adds sentiment while

staying faithful to the visual content but not sacrificing diversity. These first two applications

prompt a third, more general kind of investigation: seeing how captions can be changed in

response to changes in images. We specifically study the impact of this kind of changes

on generated captions by introducing an adversarial attack, having applications in assessing

the robustness of deep learning-based approaches [40–42], against the object detection task

Figure 1.5 has been suppressed due to copyright reasons
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playing an important role in the state-of-the-art image captioning system [8] to perceive visual

content. The following section describes each of these three aspects in more detail.

1.2 Research Questions and Scope

1.2.1 Image Captioning using Emotional Content

Image captioning is the process of generating a natural language description of an image. Most

current image captioning models, however, do not take into account the emotional aspect of the

image, which can be relevant to activities and interpersonal relationships represented therein.

Towards developing image captioning models that can produce captions incorporating this, we

use facial expression features extracted from images that include human faces. Specifically,

we aim to improve the descriptive ability of captioning models using these features. Moreover,

covering the emotional content of images, recognized using facial expression analyses, is an

important aspect of generating human-like descriptions. As shown in the example human

generated caption in Figure 1.5, an effective image captioning system needs to detect the

emotional content of the image to generate the relevant words smiling and laughing.

To propose image captioning models incorporating emotional content, we first need to

train a model to extract facial expression features for use in our image captioning models.

Thus, our first research question, as a precursor to the work on image captioning, is:

RQ 1. How can a facial expression recognition model be trained to generate representative

and transferable features for other tasks?

To address this question, we train a state-of-the-art facial expression recognition (FER)

model for two purposes: as a basis for evaluating transfer learning using FER for another task

and to advance engagement recognition — that is, determining whether a person is interested

and engaged in a task — for education. In fact, we study the transferability of the facial

features extracted by the FER model for engagement recognition which plays a critical role for

building intelligent educational interfaces [11, 43, 44]. Facial information has recently been

investigated as one of the main sources for recognizing engagement [45]. This motivates us to

propose a novel engagement recognition model initialized by the weights of the FER model.
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We also collect a new dataset for training the engagement recognition model for facilitating

research in this domain. Annotating a dataset for engagement recognition is a difficult task

because of the complexities [46] and ambiguities [47] of defining engagement. This has led

to a small amount of work for engagement recognition which can result in a bad performance

due to poor quality annotation. Therefore, we construct an engagement recognition dataset

by expert annotators with backgrounds in psychology to better incorporate the psychological

phenomena of engagement in the annotation task. Moreover, we use a large FER dataset to

provide an initial state for our engagement model to effectively recognize engagement. To

evaluate whether the FER representation is usefully transferable, we compare our engagement

model against baselines that do not use this representation.

Then, we propose image captioning models to employ FER features extracted by the FER

model. Thus, our second research question is:

RQ 2. Given the existing image captioning datasets, can incorporating the recognized

emotions from facial expression analyses produce better image captions?

To address this question, we propose several different novel image captioning models to

generate image captions incorporating FER features. We extract a subset of the Flickr30K

image caption dataset [4] that includes human faces, and use this subset for training our

proposed models. We first incorporate high-level facial expression features as fixed one-hot

encoding representations inspired by previous work for incorporating similar representations

[35, 48]. As a second approach, we incorporate low-level facial expression features such

as convolutional features produced by the FER model. We employ an attention mechanism

to generate more effective image captions using this fine-grained facial information. We

mainly build our models based on two state-of-the-art image captioning systems with attention

[7, 8]. To evaluate the generated captions by the models, we look at the usual metrics for

measuring the overall aggregate quality of captions. But because we are also interested in

the way particular models’ incorporation of this additional emotion information might direct

the captions to be (for example) less diverse or less well-aligned to the original captions, we

propose several other measures to analyse linguistic properties of the generated captions.
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1.2.2 Image Captioning with Stylistic Information

Although most image captioning models generate factual captions, some recent work has

aimed at generating style-bearing image captions [2, 30, 31, 49]. Style is usually referred

to a set of attributes and characteristics which are distinct from the semantic aspects of text

[50]. For example it can be “romantic” or “humorous” [30]; or “positive” or “negative” [2].

As shown in Figure 1.3, a caption with positive sentiment for the left image is “The pot has

a great variety of chopped vegetables” and a caption with negative sentiment for the right

image is “A gloomy room filled with old furniture and an ugly wall”.

In image captioning with style, the generated captions should include word choices

reflecting the targeted style and also describe the visual content correctly. Previous work has

applied two-stage training: learning to describe visual content using a factual caption dataset,

and then learning a chosen style using a (smaller) stylistic dataset. However, this can lead

to image captions with the lack of diversity in terms of stylistic patterns since the second

stage of training usually focuses on adding style-bearing information using a small number

of captions. For example, captions frequently use the negative adjective “dead”, even if not

really suitable (Figure 1.4). This is because of the popularity of “dead” in the small stylistic

dataset. Moreover, collecting a large-scale dataset is difficult since it requires annotating a

large number of images with style-bearing captions. Motivated by these issues, our third

research question is:

RQ 3. What kind of two-stage image captioning model can better generate captions with

diverse stylistic patterns?

To address this question, we propose an image captioning model with style. We train

the model in two stages similar to the SentiCap model [2], as the starting point for image

captioning with style. However, our proposed model is equipped with an adversarial training

mechanism which consists of a caption discriminator and an attention-based caption generator.

The discriminator guides the generator to produce image captions similar to human-generated

captions with style, having highly diversified stylistic patterns. To measure the effectiveness

of our proposed model, we use novel linguistic metrics showing the diversity of generated

stylistic patterns in addition to the usual image captioning metrics.
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We observe from the above that, using these two stages of training, training an image

captioning model which is able to distinguish between stylistic and factual aspects of captions

is a hard task. In the second stage, the previous models usually focus on transferring style by

directly modifying word prediction [2] or word embedding [30, 31], without considering the

visual content. Mathews et al. [49] observes that this addition of style can come at the expense

of accurate visual description. Thus, most work on generating stylistic image captions adds

style in a way that can detract from the visual grounding, leading to less accurately grounded

captions. Motivated by this, our forth research question is:

RQ 4. How can an image captioning model be trained in an end-to-end fashion to generate

diverse stylistic captions which are still faithful to visual content?

To address this question, we propose a model trained in an end-to-end training fashion:

in addition to transferring style, this encourages the preservation of semantic relationships

between captions and images. Our proposed model uses an attention mechanism to make

a strong connection between visual regions and generated words or phrases. Moreover, the

model embeds the targeted style to capture the overall style of the generated caption and the

word-level style of each generated word. These are inspired by Zhou et al. [51] and Ghosh et

al. [52] in controlled text generation. We will use both of these and see whether they are

complementary to generate image captions with style.

1.2.3 Image Captioning of Adversarial Images

The above two tasks look at directing captions to include additional information which can be

visually-grounded or non-grounded. We aim to explore and characterise the effects of this

kind of directed addition of content; one approach is to change different parts of the visual

content and see the impact on the generated captions, through the mechanism of adversarial

attack construction.

The vulnerability of deep learning-based approaches to adversarial attacks has been

extensively investigated in the previous work [40, 41]. For example, adversarial examples

(images with imperceptible perturbations) are used to mislead image classifiers [40, 42, 53–

57]. Some adversarial attacks recently studied attacking object detectors [58, 59] such as
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Figure 1.6: Example of our adversarial attack adding imperceptible perturbations to the first image

(left) resulting in the second image (right). It succeeds in changing a predicted class from “sheep” to

“cat”. It also succeeds in changing the generated caption from “A sheep lying in the grass next to tree”

to “A cat is lying down in the grass”.

Faster R-CNN [60]. Faster R-CNN generates the coordinates of bounding boxes contain

objects and classifies the objects at same time. It is the main part of the state-of-the-art image

captioning system [8] serving to generate visual features. Motivated by this, our fifth research

question is:

RQ 5. How is an adversarial attack against object detection in an image possible, such that

it changes the label of a particular object, and what impact does that have on the captions

generated by a state-of-the-art image captioning model?

To address this question, we propose an adversarial attack for a version of Faster R-CNN,

used in the state-of-the-art image captioning model [8], and study the impact of this attack

on the generated captions by the model. The attack specifically targets changing the label of

a particular object, by adding noise that is imperceptible by standard metrics to the object’s

bounding boxes, while preserving the labels of other detected objects in the image. Figure 1.6

shows an example of our proposed attack, where the label of an object is changed from “sheep”

to “cat”. The generated caption is also changed from “A sheep lying in the grass next to a tree”

to “A cat is lying down in the grass”. We will also study the impact of other more general

attacks with similarly imperceptible noise on the generated captions, such as attacking all

detected objects.
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1.2.4 Thesis Structure and Contributions

By considering the research questions, the thesis’s aims can be divided into three main sections:

First, to propose novel image captioning architectures that incorporate additional visually-

grounded information, recognized using a state-of-the-art facial expression recognition (FER)

model, to further improve the description of visual content. Second, to present novel image

captioning systems using non-grounded information and learning from an image captioning

dataset with style to generate more engaging image captions. Third, to introduce an adversarial

attack against Faster R-CNN generating bottom-up features for the state-of-the-art image

captioning model [8]. In addition to examining the reliability of Faster R-CNN, this is useful

to study how this attack can impact on the generated captions by the model.

In order to achieve these aims, we first address RQ 1 by training a state-of-the-art FER

model and applying this for the engagement recognition task in Chapter 3. Then, the model is

used to extract FER features for automatic image captioning. To address RQ 2, in Chapter

4, we propose several image captioning models using the FER features. We present several

novel image captioning models with style to address RQ 3 and RQ 4 in Chapters 5 and 6,

respectively. Here, more diverse and correlated stylistic image captions are targeted by the

captioning models. Finally, we introduce an adversarial attack for object detection and study

its impacts on image captioning in Chapter 7, where we address RQ 5. The structure and

contributions of the thesis are described as follows:

• Chapter 2: Background gives a general overview on image captioning and necessary

technical background related to the thesis.

• Chapter 3: Automatic Recognition of Student Engagement using Deep Learning

and Facial Expression To our knowledge, the work in this chapter is the first time a rich

face representation model has been used to capture basic facial expressions and initialize

an engagement recognition model, resulting in positive outcomes. This shows the

effectiveness of applying basic facial expression data in order to recognize engagement.

To our knowledge, this is the first study which models engagement using deep learning

techniques. We have collected a new dataset we call Engagement Recognition (ER)

dataset to facilitate research on engagement recognition from images. To handle
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the complexity and ambiguity of the engagement concept, our data is annotated in

two steps by expert people, separating the behavioral and emotional dimensions of

engagement. The final engagement label in the ER dataset is the combination of the

two dimensions. The proposed model outperforms a comprehensive range of baseline

approaches, and shows that facial expression recognition models can produce useful

transferable representations of human faces.

• Chapter 4: Image Captioning using Facial Expression and Attention In this chap-

ter, we propose Face-Cap and Face-Attend models to effectively employ facial expres-

sion features to generate image captions. To our knowledge, this is the first study to

apply facial expression analyses in image captioning tasks. The generated captions

using the models are evaluated by all standard image captioning metrics. The results

show the effectiveness of the models comparing to a comprehensive list of image

captioning models using the FlickrFace11K dataset, a subset of images from the Flickr

30K dataset [4] that includes human faces. We further assess the quality of the gener-

ated captions in terms of the characteristics of the language used, such as variety of

expression. Our analysis suggests that the captions generated by the models improve

over other image captioning models by better describing the actions performed in the

image.

• Chapter 5: Towards Generating Stylized Image Captions via Adversarial Train-

ing To generate human-like stylistic captions in a two-stage architecture, we propose

Attend-GAN using both the designed attention-based caption generator and the ad-

versarial training mechanism in this chapter. Attend-GAN achieves results which are

significantly better than the state-of-the-art and a comprehensive range of baseline mod-

els for generating image captions with styles. We show how Attend-GAN can result

in stylistic captions which are strongly correlated with visual content. Attend-GAN

exhibits significant variety in generating adjectives and adjective-noun pairs.

• Chapter 6: Image Captioning using Sentiment and Attention In this chapter, we

propose an attention-based image captioning model, that we name Senti-Attend, trained
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in an end-to-end fashion, applying two complementary representations of sentiment in-

formation, high-level and word-level, to generate sentiment-bearing descriptions. Senti-

Attend outperforms the state-of-the-art in generating sentiment-bearing descriptions.

We also show via ablation experiments that all components are useful in producing these

results. We show that Senti-Attend can generate sentiment-bearing captions which

include highly diversified adjectives with sentiment and can preserve the semantic

correlation between an image and its generated caption.

• Chapter 7: Type-Specific Adversarial Attack for Object Detection The work in this

chapter is the first study to successfully apply both targeted and non-targeted attacks

against Faster R-CNN on different types of images. This is the first work which studies

an adversarial attack against Faster R-CNN in a constrained setting where only pixels

within a specified object type are changed. Our proposed attack changes the label of

a particular object in an image with high success rates while preserving the labels of

other detected objects. We propose an attack which works for arbitrary images and can

be straightforwardly generalised to change the labels of multiple detected objects. We

show that the proposed attack adds imperceptible perturbations to the image. This is the

first work to study the effect of attacking Faster R-CNN on the state-of-the-art image

captioning system [8] which uses bottom-up, object-based, features. We show that it

leads to many fewer changes in captions than a method based on Xie et al. [58] which

modifies all the objects. In fact, this shows that small changes across all image, like

those generated by Xie et al., can produce major shifts in captions, but some techniques

(like ours, changing only one object) can result in very small changes in captions.

• Chapter 8: Conclusions and Future Work recaps the thesis’s findings and presents

potential directions as future work.
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Figure 1.7 shows the dependencies of different parts and sections related to Chapters 2, 3,

4, 5, 6 and 7 in the thesis.

Chapter 2 Background

2.1

2.2

2.3

Deep Learning

Image Captioning

Attention-Based Image Captioning

2.4 Style-Bearing Image Caption Generation

2.5 Other Required Technical Background

Chapter 3 Engagement Recognition using Facial Expression Analyses

Chapter 4 Image Captioning using Facial Expression and Attention

Chapter 5 Towards Generating Stylized Image Captions via Adversarial Training

Chapter 6

Chapter 7 Pick-Object-Attack: Type-Specific Adversarial Attack for Object Detection

Senti-Attend: Image Captioning using Sentiment and Attention

2.5.1 Facial Expression Recognition

2.5.2 Generative Adversarial Networks

Figure 1.7: Dependencies shown with different colors of parts and sections in the thesis.



2
Background

In this chapter, we briefly overview related work and technical background required for the

thesis. We first review some major developments in deep learning and the main fields relevant

to the thesis including vision and language processing in §2.1. Then, as the main focus of

the thesis, we explain about image captioning combining visual and language processing

techniques in §2.2. We describe attention-based image captioning in §2.3 which is the basis

of our proposed attention-based image captioning models in the following chapters. In §2.4,

we explain style-bearing image caption generation as a common part between Chapters 5 and

6 where we propose novel image captioning systems directing generated captions to use style.

Finally, we discuss other related work in §2.5 including facial expression recognition, as a

common part between Chapters 3 and 4, and generative adversarial networks, as a part of

Chapter 5.

15
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2.1 Deep Learning

Conventional machine learning approaches require domain expertise and human knowledge

to transform the input data to feature vectors when building classification or predication

models. Deep learning, as a subdomain of machine learning (ML) and artificial intelligence

(AI), aims to automatically provide representations from input data to make classification

or predication easier [15–17]. It refers to a deep version of artificial neural networks (NNs)

generating distributed representations for different concepts and notations with inspiration

from biological systems [61]. NNs contain neurons as the elementary processing units

activated from the previous weighted neurons or the input data [62]. Deep learning is a

version of representation learning relating lower and simpler concepts to higher and more

complex concepts in a form of different representation layers [17, 63]. For instance, for

an image, the lower layers typically end up representing simple concepts such as edges in

different regions of the image and the higher layers may represent different parts of an object

existing in the image (Figure 2.1).

Deep learning for both versions of NNs including feedforward neural networks (FNNs)

and recurrent neural networks (RNNs) has recently been successful in a wide range of fields

including visual [64], language [65] and speech processing [66]. RNNs are able to record

and capture sequences of data patterns in addition to processing parallel information as in

FNNs [62]. The success of such networks has been possible because of large scale datasets

including ImageNet [67] and powerful systems including GPUs with high computing abilities.

In this thesis, we use deep learning approaches for both visual and language processing

which are explained in the next sections. After these, we explain image captioning as the

combination of visual and language processing techniques as the main focus of this thesis.

2.1.1 Visual Processing

The thesis focuses on image classification and object detection as specific visual processing

tasks. These aim to identify visual content with different purposes: image classification

assigns a label to the whole image while object detection first detects bounding boxes including
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Figure 2.1: Visualizing the features extracted by different layers in a fully trained convolutional

neural network with their corresponding image regions [5].

objects in an image and then assign labels to the bounding boxes. The recent tremendous

advancements in visual processing have started with recent progress on Convolutional Neural

networks (CNNs) [68] such as AlexNet, the first large scale CNN which achieved the highest

performance in the visual recognition challenge 2012 on the ImageNet dataset [64].
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Figure 2.2: A full CNN architecture including convolutional layers specified with their filter size

and stride length [5]. The small number on the lower right corner of each layer denotes the depth of the

layer. Layers 6 and 7 are fully-connected layers. The output layer has a softmax function generating

the probability distribution for targeted classes.

CNNs include a number of convolutional layers considering an image as a matrix of

pixel values. The layers apply different filters to the image to extract different feature maps

(extracted matrices corresponding to the image) inspired by the visual cortex of biological

systems [62]. The filters are small matrices with specific sizes including trainable weights.

They scan with pre-defined stride lengths over the matrices corresponding to the image. The

feature maps are the element-wise multiplications between the weights and every location

of the matrices, which are then summed to generate a single value. The value is passed to

an activation function such as rectified linear unit (ReLU). Figure 2.2 shows a full CNN

architecture including convolutional layers. As a part of CNN architectures, pooling layers

aim to reduce the spatial size of the feature maps by applying different operations. For

example, the max pooling applies a filter with a particular size to specify the maximum

value across the area covered by the filter (layers 1, 2 and 5 in the figure). Layers 6 and

7 in the figure are fully-connected layers with ReLU. The last layer is a fully connected

layer with a softmax function calculating the probability distribution across different classes.

The weights of different filters of convolutional layers are learned through a process called

backpropagation. After achieving the end of a CNN model, a loss value is calculated which

is showing the difference between the prediction and the ground-truth label. For example,

cross-entropy loss, as a popular loss function, is calculated using Equation 2.1.

crossentropy= −
n∑

i=1

(yi log(y ′i )) (2.1)

where yi and y ′i are the ground truth and the prediction, respectively, and n is the number
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of classes. Then, gradients are calculated using the loss value for each layer to update the

weights.

Different improvements have been made on CNNs [5, 10, 69, 70]. For example, in

addition to generating a better performance, Zeiler et al. [5] showed how CNNs can learn low-

to high-level information by visualizing the feature maps generated by each convolutional

layer (Figure 2.1). They did this by proposing deconvolutional networks mapping the feature

maps to the input image. Simonyan et al. [10] and Szegedy et al. [69] have shown that the

depth of CNNs plays a critical role in the achieved performance. For example, Simonyan et

al. [10] have proposed very deep CNN architectures such as VGG networks including up to

19 layers. In addition to the depth of CNNs, He et al. [70] proposed new architectures called

Residual networks to handle some training issues such as vanishing gradient attached to very

deep neural networks. Residual networks include residual modules skipping the training

phases of selected layers by applying skip-connections.

2.1.2 Language Processing

The language processing domain has seen considerable improvements across different tasks

using deep learning approaches [65, 71–74]. The modern image captioning platform [1, 7],

which is the focus of this thesis, is inspired by deep learning-based machine translation

systems for sequence to sequence learning (seq2seq) [24, 75]. This platform is usually based

on Long Short-Term Memory (LSTM) Networks [76, 77] or their variants such as the Gated

Recurrent Unit (GRU) providing a simpler version of LSTM by combining its different gates

[75]. LSTM networks are a form of gated units showing more effective results in comparison

with the previous versions of RNNs and including particular hidden units to remember input

data for a long period of time (Figure 2.3).

LSTM networks have four important gates to calculate their memory cell (c x ) and hidden

unit (hx ): the input gate (i t), which controls the input word (w t−1) embedded in M dimensions

(w x ∈ �M ); the forget gate ( f t), which forgets the previous memory (c t−1); the output gate

(o t), which decides on transferring knowledge from the current memory to the current hidden

state; and the input modulation gate (c̃t ), which adjusts the new information for the memory
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Figure 2.3: An LSTM architecture showing different gated units [6]. The input word and the hidden

state at the current time step t are shown with x t and ht , respectively.

(Equation 2.2).

i t = σ(Hiht−1 +Wi wt−1 + bi)

f t = σ(Hf ht−1 +Wf wt−1 + bf )

o t = σ(Hoht−1 +Wo wt−1 + bo)

c̃t = Hg ht−1 +Wg wt−1 + bg

c t = ft ct−1 + it tanh(c̃t )

ht = ot tanh(ct )

(2.2)

where σ is the sigmoid function. Hx , Wx , and bx are the trainable weights and biases.

In seq2seq systems, LSTM networks perform the role of an encoder compressing the

input sequence of words into a dense feature representation and a decoder generates the

output sequence of words using the representation. This encoder-decoder system has been

equipped with an attention mechanism by Bahdanau et al. [78]. The attention mechanism can

make the dense feature representation richer for the decoding phase and provide customized

or weighted connections between the representation and each output element. This also

makes remembering long input sequences more effective. In fact, the attention mechanism

enables the decoder to selectively attend to the required information from the input sequence.

Vaswani et al. [79] has built on the work of Bahdanau et al. [78] by introducing Transformers.

They replace recurrent units in the encoder-decoder framework with multi-head attention

mechanisms to handle the issues attached to recurrent units such as their sequential nature

and the difficulty to learn dependencies over long sequences.
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2.2 Image Captioning

Image captioning is the generation of automatic descriptions for visual content such as entities,

actions and visual scenes. It has a lot of important applications such as helping blind people

to understand and perceive visual content [1], building complex search engines to access the

existing information in images [18] and providing automatically generated comments for

images or videos in different platforms [23].

Earlier image captioning systems can be classified into two main categories including

template-based and retrieval-based systems [21, 22]. Template-based models first detect visual

objects, their attributes and relations and then fill pre-defined templates’ slots [80]. These

approaches even combined more complex structures to incorporate the relations among visual

objects or phrases related to them [81, 82]. However, hand-designed features and pre-defined

templates are the basis of this kind of approaches, with corresponding limitations on the

text generated. Retrieval-based models generate captions using available ones corresponding

to similar images [18]. In this work, the authors framed image captioning as a retrieval

and ranking task where captions are selected from a large set of human-written captions

[18, 83–85], which added some diversity compared to previous methods. These approaches

usually aim to share an embedding space for images and captions. For an image, the nearest

captions are selected in the shared embedding space. However, the approaches do not aim

to generate new image captions. Thus, they are not able to deal with unseen objects or

different compositions of seen objects. Moreover, these earlier image captioning systems do

not incorporate the detection and generation steps using an end-to-end training approach.

In response to these issues, modern image captioning systems, explained in the next

section, are currently the most popular ones. They tackle image captioning as a generation

task using deep learning models.

2.2.1 Modern Image Captioning Systems

Modern image captioning systems usually use an encoder-decoder paradigm [1, 7, 86].

They apply a top-down approach where a Convolutional Neural Network (CNN) learns the

image content (encoding) followed by a Long Short-Term Memory (LSTM) generates the
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Figure 2.4: The Show-Tell image captioning model [1]. Sx is the input word and p x is the probability

distribution of the next generated word. The embedded input word is shown by WeSx .

image caption (decoding). This follows the paradigm employed in machine translation tasks,

using deep neural networks [24], to translate an image into a caption. Figure 2.4 shows the

architecture of Show-Tell [1] as the first image captioning system to use an encoder-decoder

framework. As shown in the figure, the model contains an LSTM network with gated units

similar to Equation 2.2. However, the features of the input image, extracted by a CNN model,

are fed into the initial step of the LSTM network.

This top-down mechanism directly converts the extracted visual features into image

captions [87–91]. However, attending to fine-grained and important fragments of visual

data, required to provide a better image description, is usually difficult using a top-down

paradigm. To solve this problem, a combination of top-down and bottom-up approaches,

inspired by the earlier image captioning models, is proposed by You et al. [19]. The bottom-up

approach overcomes this limitation by generating the relevant words and phrases, which can

be detected from visual data with any image resolution, and combining them to form image

captions [80, 82, 92, 93].

Moreover, to attend to fine-grained fragments, attention-based image captioning models

have been proposed recently [7]. These kinds of approaches usually analyze different regions

of an image in different time steps of a caption generation process, in comparison to the initial

encoder-decoder image captioning system [1] which considers only the whole image as the

initial step for generating image captions. They can also take the spatial information of an
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image into account when generating the relevant words and phrases in the image caption. The

current state-of-the-art models in image captioning are attention-based systems [7, 8, 19, 20],

explained in the next section.

2.3 Attention-Based Image Captioning

Visual attention is an important aspect of the visual processing system of humans. It dy-

namically attends to salient spatial locations in an image with special properties or attributes

which are relevant to particular objects. It is different from dealing with the whole image

as a set of static extracted features, and assists humans to concentrate more on a targeted

object or region at each time step. Although visual attention has been extensively studied in

Psychology and Neuroscience [94–97], it has only more recently been adopted in different

artificial intelligence fields including machine learning, computer vision and natural language

processing. In image captioning, a typical attention mechanism is a Top-Down approach,

while the region-based features obtained using an object detector are referred to as Bottom-Up

features. The combination of these called Top-Down and Bottom-up attention [8].

2.3.1 Top-Down Image Captioning

The first image captioning model with attention was proposed by Xu et al. [7]. It is a variant

of Show-Tell (Figure 2.4), referred to as Show-Attend-Tell. The model uses visual content

extracted from the convolutional layers of CNNs, referred to as spatial features, as the input

of a spatial attention mechanism to selectively attend to different parts of an image at every

time step in generating an image caption (Figure 2.5). This work is inspired by the work of

Bahdanau et al. [78], since extended by Vaswani et al. [79], who employed attention in the

task of machine translation; by Mnih et al. [98]; and by Ba et al. [99] who applied attention in

the task of object recognition. Image captioning with attention differs from previous encoder-

decoder image captioning models by concentrating on the salient parts of an input image to

generate its equivalent words or phrases simultaneously. Xu et al. [7] proposed two types of

attention including a hard (stochastic) mechanism and a soft (deterministic) mechanism. In

the soft attention mechanism, a weighted matrix is calculated to weight different parts of an
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Figure 2.5: The Show-Attend-Tell image captioning model [7].

image as the input to the decoder (interpreted as probability values for considering the parts

of the image). The hard attention mechanism, in contrast, picks a sampled annotation vector

corresponding to a particular part of an image at each time step as the input to the decoder.

This kind of image captioning models usually includes an LSTM with a visual attention-

based mechanism. The model uses the spatial features, a = {a1, ..., aK}, ai ∈ �D, where ai

is a part of the features belonging to a specific region in the image, and generates an image

caption, x = {x1, . . . , xT}, xi ∈ �V . K and D are the dimensions of the spatial features. T

denotes the maximum length of the generated captions and V is the size of the vocabulary.

Here, a is usually extracted from a convolutional layer of a CNN model. The objective

function of an attention-based image captioning model is usually defined as:

L(θ ) = − ∑
1≤t≤T

log(p(x t |ht , ât )) +
∑

1≤k≤K

(1− ∑
1≤t≤T

atk)
2 (2.3)

where θ are the parameters of the model; and p(x t |ht , ât ), the likelihood of the next

generated word, is the output of a multilayer perceptron with softmax:

p(xt |ht , ât ) = softmax(ht W h + ât W a + b) (2.4)

where the learned weights and bias are W x and b, respectively. The last factor in Equation 2.3

is a penalty value to guide the model to include all regions of the input image at the final step

of the caption generation process. ht is the current hidden state calculated using an LSTM
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and ât is the attention-based content estimated using ht . The LSTM calculates ht using:

it = σ(H iht−1 +W i w t−1 + Ai ât + bi)

ft = σ(H f ht−1 +W f w t−1 + A f ât + b f )

ot = σ(H oht−1 +W ow t−1 + Aoât + bo)

c̃t = H ght−1 +W g w t−1 + Ag ât + bg

ct = f t c t−1 + i t tanh(c̃t )

ht = o t tanh(c t)

(2.5)

where Hx , Wx , Ax , and bx denote the trainable weights and biases. ât is calculated using:

ât =
∑

1≤ j≤K

e′j,t aj (2.6)

where e′j,t are our attention weights normalized using a softmax over the output (et) of our

attention module:

e′t = softmax(e t)

ej,t = W T
e tanh(W ′aa j +W ′hht)

(2.7)

W T
e and W ′

x are the trainable weights of the attention module. Rennie et al. [20] extended the

work of Xu et al. [7] by applying the CIDEr metric [100], a standard performance metric for

image captioning, to optimize their caption generator compared to using maximum likelihood

estimation loss (Equation 2.3). Their approach was inspired by a Reinforcement Learning

approach [101, 102] called self-critical sequence training, which involves normalizing the

reward signals calculated using the CIDEr metric.

2.3.2 Top-Down and Bottom-Up Image Captioning

Yu et al. [103] and You et al. [19] applied a notion of semantic attention to detected visual

attributes, learned in an end-to-end fashion, where bottom-up approaches were combined

with top-down approaches to take advantage of both paradigms. For instance, they acquired a

list of semantic concepts or attributes, regarded as a bottom-up mechanism, and used the list

with visual features, as an instance of top-down information, to generate an image caption.

Semantic attention is used to attend to semantic concepts detected from various parts of
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a given image. Here, the visual content was only used in the initial time step similar to

Vinyals et al. [1]. In other time steps, semantic attention was used to select the extracted

semantic concepts. That is, semantic attention differs from spatial attention, which attends

to spatial features in every time step, and does not preserve the spatial information of the

detected concepts.

To preserve spatial information, salient regions can be localized using spatial transformer

networks [104], which get the spatial features as inputs. This is similar to Faster R-CNN’s

generation of bounding boxes [60], but it is trained in an end-to-end fashion using bilinear

interpolation instead of a Region of Interest pooling mechanism [89]. Drawing on this

idea, Anderson et al. [8] applied a pre-trained Faster R-CNN and an attention mechanism to

discriminate among different visual-based regions regarding the spatial features. Specifically,

they combined bottom-up and top-down approaches where a pre-trained Faster R-CNN is

used to extract the salient regions from images, instead of using the detected objects as

high-level semantic concepts in the work of You et al. [19]; and an attention mechanism is

used to generate spatial attention weights over the convolutional feature maps representing

the regions. Faster R-CNN, as an object detection model, is pre-trained on the Visual Genome

dataset [33]; this pre-training on a large dataset is analogous to pre-training a classification

model on the ImageNet dataset [105]. Jin et al. [106] previously used salient regions with

different scales which are extracted by applying selective search [107] instead of applying

Faster R-CNN. Then, they made the inputs of their spatial attention mechanism by resizing

and encoding the regions in the task of image captioning.

The bottom-up and top-down system of Anderson et al. [8] first uses the pre-trained

Faster R-CNN to extract bounding boxes including objects, as a bottom-up approach, from

images and then uses a top-down mechanism to attend to the bounding boxes to generate

their corresponding words and phrases (Figure 2.6). The top-down mechanism includes two

LSTMs. The first LSTM is to calculate attention weights which is defined as (a short form of

Equation 2.5):

ht,a = LSTM(ht,a−1, [ā, ht,l−1, w t−1]) (2.8)
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Figure 2.6: The bottom-up and top-down model including two LSTMs to attend to bottom-up

features {v1, . . . , v k} obtained from Faster R-CNN [8].

where ā = 1
K

∑
1≤i≤K ai is calculated as the mean-pooled visual features and ht,a is the current

hidden state of the LSTM. ht,a is used to calculate attention weights as in Equation 2.7. ht,l−1

is the previous hidden state of the second LSTM which plays the role of the language model:

ht,l = LSTM(ht,l−1, [ât , ht,a]) (2.9)

ht,l is used to calculate the probability distribution of the next generated word as in Equa-

tion 2.4 and the objective function as in Equation 2.3.

In our image captioning systems proposed in the next chapters, we use different spatial

attention mechanisms weighting the convolutional features representing salient regions of

images. This allows our image captioning models to generate captions which are highly cor-

related with visual content. In Chapter 4, we propose novel attention-based image captioning

models to apply the recognized emotions from visual content to enrich image captions. In

Chapters 5 and 6, we propose novel attention-based image captioning models to generate more

correlated and more diverse sentiment-bearing content. These are from the literature of image

captioning with style explained in the next section. In Chapter 7, we propose an adversarial

attack against a version of Faster R-CNN used in the state-of-the-art image captioning model

[8] and show its impact on the generated captions.
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2.4 Style-Bearing Image Caption Generation

2.4.1 Controlled Image Captioning with Style

Most image captioning systems concentrate on describing visual content without adding

any extra information, giving rise to factual linguistic descriptions. However, there are also

stylistic aspects of language which play an essential role in enriching written communication

and engaging users during interactions. Style helps in clearly conveying visual content [49],

and making the content more attractive [30, 31]. It also conveys personality-based [50] and

emotion-based attributes which can impact on decision making [2]. Incorporating style into

the description of an image is effective in boosting the engagement level of humans in dealing

with automatically-generated comments for photos and videos in social media platforms [23]

and helping chatbot platforms to interact like humans [32].

There are a few models that incorporated style or other non-factual characteristics into

the generated captions. In addition to describing the visual content, these models learn to

generate different forms or styles of captions. For instance, StyleNet proposed by Gan et

al. [30] used a novel type of LSTM called Factored-LSTM to transfer factual and style-based

information from the input caption. Factored-LSTM includes three matrices which are all

trained on a factual dataset to transfer the factual content of the caption, but only one of them

is trained on a stylized dataset to transfer the style of the caption. Factored-LSTM is inspired

from the Show-Tell image captioning model [1] (Figure 2.4) which uses visual content as an

initial state of a caption generation process. It is defined as:

i t = σ(H iht−1 + AiaN iaZ iaw t−1 + bi)

f t = σ(H f ht−1 + A f aN f aZ f aw t−1 + b f )

o t = σ(H oht−1 + AoaNoaZoaw t−1 + bo)

c̃t = H ght−1 + AgaN gaZ gaw t−1 + bg

c t = f t c t−1 + i t tanh(c̃t )

ht = o t tanh(c t)

(2.10)

The key components of Factored-LSTM are the three different kinds of trainable matrices

linked to the input word: Axa ∈ �U×S, N xa ∈ �S×S, and Z xa ∈ �S×M , where U is the size of
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the hidden state. N xa is the stylistic matrix with S dimensions for adjusting the targeted style.

Factored-LSTM aims to optimize two different tasks. First, it learns to describe visual content

using a factual dataset. All trainable parameters in Equation 2.10 are updated at this stage.

Second, it learns to transfer style using a stylistic dataset. Here, it only updates the stylistic

parameters (N xa) in Equation 2.10. In both stages, it is given the ground truth captions as well

as the visual features. Style here refers to non-grounded information added to factual captions

which can be romantic or humorous. StyleNet particularly uses a mechanism to transfer

style using different matrices to record the factual and stylistic information, which is inspired

from Anne et al. [27] transferring knowledge belonging to seen objects to describe unseen

objects; and multi-task training [108], using an external dataset belonging to factual image

captioning for stylistic image captioning. However, in the second stage of the training, since

it learns only from the stylistic image captioning dataset, it focuses mainly on the stylistic

aspect for generating image captions. This can lead to ignoring visual content since there is

no mechanism to regulate the application of the stylistic and factual information.

To deal with this issue, Mathews et al. [2] proposed the SentiCap system which is able to

differentiate between the factual and stylistic information by training two different LSTMs.

The system is trained on the SentiCap dataset including two sets of stylistic image captions:

positive and negative sentiment-bearing captions. Here, the notion of sentiment is drawn

from Natural Language Processing [109], with sentiment either negative or positive. The

SentiCap system is a full switching architecture incorporating both factual and sentiment-

bearing caption paths using two LSTMs, which are acting in parallel, to play the role of the

caption generator in this work. One LSTM aims to capture the factual aspect and the other

one aims to capture the sentiment-bearing aspect of the generated caption. During the caption

generation process, SentiCap weights the generated probability distributions of words using

the LSTMs to generate image captions. It does this by predicting the sentiment levels of the

words, learned from the ground-truth labels describing the sentiment levels of different words

in the stylistic dataset. However, this extra word-level ground truth labels for style are not

available for all style-bearing datasets such as the dataset used by Gan et al. [30].

Recently, Chen et al. [31] applied an attention mechanism to weight the stylistic and the

factual information in Factored-LSTM to consider this. The attention mechanism controls



30 Background

between applying semantic and style-based information from the input caption. Using this

work, the new version of Factored-LSTM is defined as:

i t = σ((ghtShi + (1− ght)H i)ht−1 + ((gwtSwi + (1− gwt)W i)w t−1 + bi)

f t = σ((ghtShf + (1− ght)H f )ht−1 + ((gwtSwf + (1− gwt)W f )w t−1 + b f )

o t = σ((ghtSho + (1− ght)H o)ht−1 + ((gwtSwo + (1− gwt)W o)w t−1 + bo)

c̃t = (ghtShg + (1− ght)H g)ht−1 + ((gwtSwg + (1− gwt)W g)w t−1 + bg

c t = f t c t−1 + i t tanh(c̃t )

ht = o t tanh(c t)

(2.11)

where Sx is a matrix aiming to record the stylistic information and H x and W x are matrices

to record the factual information. Similar to the original Factored LSTM (Equation 2.10),

only matrices related to style (Sx) are updating in the second stage of training. ght and

gwt are learned using the attention mechanism to differentiate between the stylistic and the

factual information during the caption generation process. They are the main differences

between this version of Factored-LSTM and the original Factored-LSTM [30]. However, all

these approaches need two-stage training: training on factual image captions and training on

style-bearing image captions. Therefore, they do not support an end-to-end training.

To address this issue, You et al. [48] designed two new schemes, Direct Inject and

Sentiment Flow, to better employ sentiment in generating image captions. For Direct Inject,

an additional dimension was added to the input of an LSTM to express sentiment and this

sentiment unit is injected at every time step of the generation process. The Sentiment Flow

approach of You et al. [48] injects the sentiment unit only at the initial time step of a designated

sentiment cell trained in a similar learning fashion to the memory cell in LSTMs. This work

is inspired by Radford et al. [110] who identified a sentiment unit in RNN-based systems.

Radford et al. [110] showed that the sentiment unit directly impacts on the generation process

so that specifying the sentiment unit with different values leads to outputs with different

sentiments. By comparing with larger encoding vectors for sentiment, they also showed that

most of the information that the generative model needs to provide sentiment-bearing content

is in the sentiment unit.

As mentioned, differentiating between stylistic and factual information is a challenging
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task and current image captioning models with style are usually trained using a small amount

of image caption paired data with style. These lead to stylized image captions but at the cost

of less correlated visually-grounded captions. Both transferring features, such as positive or

negative sentiments [2] and hilarious or romantic styles [30], and preserving the semantic con-

tent at the same time are difficult because they require learning disentangled representations,

which is challenging even with a large amount of paired data. Moreover, collecting a large

number of paired images with stylistic captions is very costly [49]. Recently, Mathews et

al. [49] proposed an image captioning model which is able to learn from a large amount of

unpaired data and keep the relevance between images and their corresponding captions. The

basis of this model is a semantic representation dividing the semantic and stylistic aspects of

image captions. However, evaluating the model is more difficult because there is no image

caption paired data to measure the relevance between images and captions.

In Chapters 5 and 6, we propose image captioning models with style to employ sentiment-

bearing content in generating image captions. To keep the connection between images

and captions and generate stylized image captions, our models consist of attention-based

architectures, attending to visual content not stylistic and factual information like Chen et

al. [31]. Our attention mechanisms learn the correlation between different generated words

and different regions in images to preserve the factual information while adding the stylistic

information. We apply different training mechanisms including an adversarial training

mechanism in Chapter 5, inspired by generative adversarial networks which we explain

in §2.5.2, and an end-to-end training mechanism combined with an embedding approach

to capture high-level and word-level sentiment information in Chapter 6, inspired by the

literature of controlled natural language generation which we explained in the next section.

2.4.2 Controlled Natural Language Generation

While not specific to image captioning, an area of direct relevance to §2.4.1 is natural language

generation (NLG), which aims to generate understandable texts in different languages by

combining computational linguistics and artificial intelligence techniques [111]. A recent

survey is given by Gatt et al. [112]. In this section, we only focus on one particular aspect that
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Hu et al. [35] refer to as controlled generation of text: generating texts that are controllable

for particular attributes.

In recent years, researchers in the NLG domain have tried to make a control over the

generated text in terms of different attributes. In some applications, the purpose is to generate

a target sentence having a specific attribute with similar content compared to its corresponding

source sentence. Hu et al. [35] used Variational Autoencoders (VAEs) to control a generated

sentence in terms of its attributes including sentiment and tense: they conditioned the sentence

encoded space on these attributes. VAEs [113] include an encoder encoding the input sample

into the latent variables and a decoder generating the samples from the variables, differing

from standard autoencoders by using KL divergence loss. The loss matches the prior and

posterior of the variables to make generating an acceptable sentence from the prior variables

possible. Here, the attributes are included into the latent variables produced by the encoder. In

this kind of task, a type of RNNs, usually LSTM networks, plays the role of both the encoder

and the decoder. In the conversation generation task, Zhou et al. [51] used emotion categories

to control the responses in terms of emotional values. As a part of their system, they fed an

embedded emotion category as an input to their decoder. They also designed internal and

external memories to record the emotion dynamics and distinguish emotional words versus

other words, respectively. The targeted emotion is erased in the internal memory in each

time step until the sentence is generated completely. The external memory learns to capture

the emotional values of different words in the vocabulary during the training phase to assist

the generator to assign more probabilities to the words from the targeted emotion. Ghosh et

al. [52] proposed a model conditioning a conversational text generation module on emotions.

The model can control a generated sentence without previous knowledge about the words’

polarities in the existing vocabulary. It is also able to generate emotional sentences with a

customized amount of emotional content. To do so, it learns an embedding space for the

emotional values of different words during the training phase. Then, during the prediction

phase, these embedding values multiplied to an emotion strength parameter deciding the

impact of emotional information on the next generated word.

Our image captioning models aim to have controls on image caption generation using extra

knowledge such as encoded emotional information detected from visual content (Chapter
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4) and encoded sentiment-bearing information incorporated from text (Chapters 5 and 6).

In Chapter 6, we embed sentiment-bearing information: high-level embedding captures the

overall sentiment-bearing value of the generated caption and word-level embedding captures

the sentiment-bearing value linked to each generated word.

2.5 Other Required Technical Background

In this section, we explain other related work outside of image captioning that is required for

the next chapters.

2.5.1 Facial Expression Recognition

As one of our goals, we aim to implement a model for facial expression recognition from

images to incorporate in our proposed image captioning systems. Facial expression is a form

of non-verbal communication conveying attitudes, affects, and intentions of individuals. It

happens as the result of changes over time in facial features and muscles [114]. It is also

one of the most important communication means for showing emotions and transferring

attitudes in human interactions. Indeed, research on facial expressions started more than

a century ago when Darwin published his book titled, “The expression of the emotions in

man and animals” [115]. Since then a large body of work has emerged on recognizing facial

expressions, usually using a purportedly universal framework of a small number of standard

emotions (happiness, sadness, fear, surprise, anger, and disgust) or this set including a neutral

expression [114, 116–120] or more fine-grained facial features such as facial action units,

defined as the deformations of facial muscles [121]. Recently, recognizing facial expressions

has been paid special attention because of its practical applications in different domains

such as education, health-care and virtual reality [114, 122]. It is worth mentioning that the

automatic recognition of facial expressions is a difficult task because different people express

their attitudes in different ways and there are close similarities among various types of facial

expressions [123], as shown in Figure 2.7.

Deep Learning-Based Facial Expression Recognition To find effective representations,

deep learning-based methods have been recently successful in this domain. Due to their
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Figure 2.7: Examples from the Facial Expression Recognition 2013 dataset [9] including seven

standard facial expressions.

complex architectures including multiple layers, they can capture hierarchical structures from

low- to high-level representations of facial expression data. Tang [124], the winner of the

2013 Facial Expression Recognition (FER) challenge [9], trained a CNN with a linear support

vector machine (SVM) to detect facial expressions. He replaced the softmax layer of the

CNN with a linear SVM and showed a consistent improvement compared to the previous

work. Instead of cross-entropy loss, his approach optimizes a margin-based loss to maximize

margins among data points belonging to diverse classes.

CNNs are also used for feature extraction and transfer learning in this domain. Kahou et

al. [125] applied a CNN model to recognize facial expressions and won the 2013 Emotion

Recognition in the Wild (EmotiW) Challenge. Their approach uses a combination of deep

neural networks to learn from diverse data modalities including video frames, audio data and

spatio-temporal information [126]. The CNN model, as the best model in this work, aims to

recognize emotions from static video frames. Then, the recognized emotions are combined

across a video clip by a frame aggregation technique and classified using an SVM with a radial

basis kernel function. Yu et al. [127] used an ensemble of CNNs to detect facial expressions

in a transfer learning framework. On their target samples, they applied a set of face detection

approaches to optimally detect faces and remove irrelevant data. They used a multiple neural

network training framework to learn a set of weights assigned to the responses of the CNNs

in addition to averaging and voting over the responses. Kim et al. [128] combined aligned

and non-aligned faces to enhance the recognition performance of facial expressions where

Figure 2.7 has been suppressed due to copyright reasons
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they automatically detected facial landmarks from faces to rotate and align faces. Then, they

trained a CNN model using this combination of faces. Zhang et al. [129] proposed a CNN-

based method to recognize social relation traits (e.g. friendly, competitive and dominant)

from detected faces in an image. The method includes a CNN model to recognize facial

expressions projected into a shared representation space. The space combines the extracted

features from two detected faces in an image and generates the predictions of social traits.

The models mentioned above usually use conventional CNN architectures to report the

performance on different facial expression recognition datasets including the FER-2013

dataset [9], which is a publicly available dataset with a large number of human faces collected

in the wild condition. Pramerdorfer et al. [130] instead used an ensemble of very deep

architectures of CNNs such as VGGnet, Inception and ResNet by identifying the bottlenecks

of the previous state-of-the-art facial expression recognition models on the FER-2013 dataset

and achieving a new state-of-the-art result on the dataset.

The quality of these recent models is high: it is at least as good as human performance [9].

Moreover, the idea of applying VGGnet in facial expression recognition tasks motivates our

work to make a facial expression recognition model reproducing the state-of-the-art result on

FER-2013 dataset. We aim to check the ability of the model to learn representations that can

be useful in other tasks such as engagement recognition in Chapter 3. We use the model to

extract facial features from human faces to apply in our image captioning models in Chapter 4.

2.5.2 Generative Adversarial Networks

Goodfellow et al. [131] introduced Generative Adversarial Networks (GANs), whose training

mechanism consists of a generator and a discriminator; they have been applied with great

success in different applications [132–135]. The discriminator is trained to recognize real

and synthesized samples generated by the generator. In contrast, the generator wants to

generate realistic data to mislead the discriminator in distinguishing the source of data. GANs

are successfully used to learn from data in computer vision recently [132, 136]. However,

they were originally established for a continuous data space [131, 133] rather than a discrete

data distribution such as a text generation task. A major reason is that the task makes
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the generator’s optimization difficult because of its non-differentiable nature in generating

(discrete) sequences of words.

To handle this, a form of reinforcement learning is usually applied, where the sentence

generation process is formulated as a reinforcement learning problem [137]; the discriminator

provides a reward for the next action (in our context the next generated word), and the

generator uses the reward to calculate gradients and update its parameters, as proposed by Yu et

al. [133]. They also applied Monte Carlo search to complete a partially generated sentence to

generate intermediate rewards where the discriminator can only evaluate a complete generated

sentence. The most popular objective function to train a sequence generator is the maximum

likelihood estimation (MLE) mechanism which suffers from a gap between teacher-forcing

in the training phase and self-feeding in the testing phase. This is called exposure bias. The

generator usually uses MLE to calculate the likelihood of the current generated word with

respect to the ground-truth sequence so far during training; however, it can only use its

previous generated words during testing which leads to this gap. In this domain, using the

rewards received from the discriminator to incorporate an additional term, as a regularization

term, to the MLE optimization can reduce this gap. In addition to GANs, Shen et al. [138]

employed the Professor-Forcing algorithm to handle this gap [139] where the sequence of

a RNN’s hidden states, which includes the information of output words, is matched as an

alternative to the sequence of words and distributed more smoothly.

Liang et al. [140] applied a GAN framework to generate paragraphs describing visual

content, where their discriminators (one for distinguishing between generated sentences and

another one for distinguishing between generated paragraphs) are trained to recognize real

paragraphs from synthesized ones and their generator seeks the generation of realistic and

varied paragraphs to mislead the discriminators. In this work, the discriminators are based on

the Wasserstein GAN (WGAN) [141], an improved version of earlier GANs, and the generator

is inspired from the work of Xu et al. [7] explained in §2.3.1. WGAN provides continuous

outputs to generate meaningful gradients and prevent vanishing gradients in comparison with

the traditional GANs providing non-continuous outputs.
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Here, as a text discriminator, a GAN typically builds a classifier model aiming to distin-

guish between the generated texts by machines and humans:

LD(φ) = [�x∼�H
(log Dφ(x )) +�x∼�G

(log(1− Dφ(x)))] (2.12)

where φ are the parameters of the discriminator Dφ; �H is a collection of the generated text by

humans; and �G is a collection of the generated text by the generator. The human generated

text is given by x and the machine generated text is given by x . WGAN, instead, aims to

optimize a different objective function:

LD(φ) = �x∼�H
[Dφ(x )]−�x∼�G

[Dφ(x)] (2.13)

In addition to the supervised setting, Liang et al. [140] applied a semi-supervised setting

where their paragraph generator only uses a single sentence with annotation and generates

the reset of the paragraph using the discriminators, showing a considerable improvement.

Later, Wang and Wan [135] applied a similar framework to generate sentiment-bearing

text (although not conditioned on any input, such as the images in our captioning task).

They trained several generators to generate sentences with different sentiment values and

a discriminator distinguishing among real sequences with different sentiments, and fake

sequences. The discriminator is trained for a multiclass classification generating a probability

distribution over k real sentiment-bearing labels and one fake label for generated sentences.

The discriminator provides reward signals using WGAN.

In these kinds of work, the discriminator, which usually learns by a combination of

real and generated data, specifies the score of a generated sequence and is different from

the work of Bahdanau et al. [142] and Rennie et al. [20] requiring task-related evaluation

metrics such as BLEU and CIDEr, respectively. In image captioning, Luo et al. [143] used

a combination of CIDEr and a score generated by a pre-trained retrieval model, evaluating

the match between the generated caption and its corresponding image, to calculate the loss

value and optimize their image captioning model. To handle the non-differentiable value of

the combination reward, they employed a reinforcement learning algorithm with baseline

inspired from Rennie et al. [20]. Here, the baseline is used to reduce the variance of the

calculated gradients as in the work of Ranzato et al. [144]. Using a pre-trained retrieval
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model, the trained image captioning model can be optimized by a specific objective function

discriminating images and their corresponding captions rather than depending on only human

generated captions as in other image captioning systems using GANs (e.g. [145]).

Our work in Chapter 5 uses a GAN framework, for the first time applying it to image

captioning with style, where the style is independent from the content of images.

2.6 Summary

In this chapter, we have discussed key technical background required for the thesis. After

giving a high-level introduction to deep learning approaches in §2.1, we provided an overview

over image captioning models in §2.2, as the central application of this thesis, followed by

attention-based image captioning, as a common part among Chapters 4, 5, 6 and 7, and style-

bearing image caption generation, as a common part between Chapters 5 and 6. Lastly, we

described other required technical background in §2.5 such as facial expression recondition,

used in Chapters 3 and 4, and generative adversarial networks, used in Chapter 5.



Part I

Image Captioning using Emotional

Content
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3
Automatic Recognition of Student

Engagement using Deep Learning and

Facial Expression

Engagement is a key indicator of the quality of learning experience, and one that plays a

major role in developing intelligent educational interfaces. Any such interface requires the

ability to recognise the level of engagement in order to respond appropriately; however, there

is very little existing data to learn from, and new data is expensive and difficult to acquire.

What we explore here, which previous work on automatically recognising engagement has

not, is the idea that representations from other facial expression recognition tasks might

usefully generalise. This chapter presents a deep learning model to improve engagement

recognition from images that overcomes the data sparsity challenge by pre-training on readily

41
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available basic facial expression data, before training on specialised engagement data. In

the first of two steps, a facial expression recognition model is trained to provide a rich

face representation using deep learning. In the second step, we use the model’s weights to

initialize a deep learning-based model to recognize engagement; we term this the engagement

model. We train the model on our new engagement recognition dataset with 4627 engaged

and disengaged samples. We find that the engagement model outperforms effective deep

learning architectures that we apply for the first time to engagement recognition, as well

as approaches using histogram of oriented gradients and support vector machines. This

confirms the effectiveness of applying facial expression recognition features for recognizing

engagement.1 In the following chapter, we aim to use facial expression features for image

captioning, where we incorporate the features to improve the generated captions. We will

propose different image captioning models to effectively apply the features to generate more

descriptive image captions.

3.1 Introduction

Engagement is a significant aspect of human-technology interactions and is defined differently

for a variety of applications such as search engines, online gaming platforms, and mobile

health applications [47]. According to Monkaresi et al. [45], most definitions describe

engagement as attentional and emotional involvement in a task.

This chapter deals with engagement during learning via technology. Investigating en-

gagement is vital for designing intelligent educational interfaces in different learning settings

including educational games [11], massively open online courses (MOOCs) [43], and in-

telligent tutoring systems (ITSs) [44]. For instance, if students feel frustrated and become

disengaged (see disengaged samples in Figure 3.1), the system should intervene in order to

1The content of this chapter is based on the following publication:

Omid Mohamad Nezami, Mark Dras, Len Hamey, Deborah Richards, Stephen Wan, Cecile Paris (2019).

Automatic Recognition of Student Engagement using Deep Learning and Facial Expression. Proceedings of

the 2019 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in

Databases (ECML-PKDD 2019), Wuerzburg, Germany.
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Figure 3.1: Engaged (left) and disengaged (right) samples collected in our studies. We blurred the

children’s eyes for ethical issues, even though we have their parents consent at the time.

bring them back to the learning process. However, if students are engaged and enjoying their

tasks (see engaged samples in Figure 3.1), they should not be interrupted even if they are

making some mistakes [146]. In order for the learning system to adapt the learning setting

and provide proper responses to students, we first need to automatically measure engagement.

This can be done by, for example, using context performance [44], facial expression [147]

and heart rate [45] data. Recently, engagement recognition using facial expression data has

attracted special attention because of widespread availability of cameras [45].

This chapter aims at quantifying and characterizing engagement using facial expressions

extracted from images. In this domain, engagement detection models usually use typical

features which are designed for general purposes, such as Gabor features [147], histogram

of oriented gradients [43] and facial action units [148]. To the best of our knowledge, there

is no work in the literature investigating the design of specific and high-level features for

Figure 3.1 has been suppressed due to copyright reasons
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engagement. Therefore, providing a rich engagement representation model to distinguish

engaged and disengaged samples remains an open problem (Challenge 1). Training such a rich

model requires a large amount of data which means extensive effort, time, and expense would

be required for collecting and annotating data due to the complexities [46] and ambiguities

[47] of the engagement concept (Challenge 2).

To address the aforementioned challenges, we design a deep learning model which

includes two essential steps: basic facial expression recognition, and engagement recognition.

In the first step, a convolutional neural network (CNN) is trained on the dataset of the Facial

Expression Recognition Challenge 2013 (FER-2013) to provide a rich facial representation

model, achieving the state-of-the-art performance. In the next step, the model is applied to

initialize our engagement recognition model, designed using a separate CNN, learned on our

newly collected dataset in the engagement recognition domain. As a solution to Challenge 1,

we train a deep learning-based model that provides the representation model specifically

for engagement recognition. As a solution to Challenge 2, we use the FER-2013 dataset,

which is around eight times larger than our collected dataset, as external data to pre-train the

engagement recognition model and compensate for the shortage of engagement data.

3.2 Related Work

Engagement has been detected in three different time scales: the entire video of a learning

session, 10-second video clips, and images. In the first category, Grafsgaard et al. [149]

studied the relation between facial action units (AUs) and engagement in learning contexts.

They collected videos of web-based sessions between students and tutors. After finishing the

sessions, they requested each student to fill out an engagement survey used to annotate the

student’s engagement level. Then, they used linear regression methods to find the relationship

between different levels of engagement and different AUs. However, their approach does

not characterize engagement in fine-grained time intervals which are required for making an

adaptive educational interface.

As an attempt to solve this issue, Whitehill et al. [147] applied linear support vector

machines (SVMs) and Gabor features, as the best approach in this work, to classify four
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engagement levels: not engaged at all, nominally engaged, engaged in task, and very en-

gaged. In this work, the dataset includes 10-second videos annotated into the four levels of

engagement by observers, who analyzed the videos. Monkaresi et al. [45] used heart rate

features in addition to facial features to detect engagement. They used a face tracking engine

to extract facial features and WEKA (a classification toolbox) to classify the features into

engaged or not engaged classes. They annotated their dataset, including 10-second videos,

using self-reported data collected from students during and after their tasks. Bosch et al. [148]

detected engagement using AUs and Bayesian classifiers. The generalizability of the model

was also investigated across different times, days, ethnicities and genders [150]. Furthermore,

in interacting with intelligent tutoring systems (ITSs), engagement was investigated based

on a personalized model including appearance and context features [44]. Engagement was

considered in learning with massively open online courses (MOOCs) as an e-learning envi-

ronment [151]. In such settings, data are usually annotated by observing video clips or filling

self-reports. However, the engagement levels of students can change during 10-second video

clips, so assigning a single label to each clip is difficult and sometimes inaccurate.

In the third category, HOG features and SVMs have been applied to classify images

using three levels of engagement: not engaged, nominally engaged and very engaged [43].

This work is based on the experimental results of Whitehill et al. [147], who showed that

engagement patterns are mostly recorded in images. Bosch et al. [148] also confirmed that

video clips can not provide extra information by reporting similar performances using different

lengths of video clips in detecting engagement. However, competitive performances are not

reported in this category.

We focus on the third category to recognize engagement from images. To do so, we

collected a new dataset annotated by Psychology students, who can potentially better recognize

the psychological phenomena of engagement, because of the complexity of analyzing student

engagement. To assist them with recognition, brief training was provided prior to commencing

the task and delivered in a consistent manner via online examples and descriptions. We did

not use crowdsourced labels, as in the work of Kamath et al. [43], as it resulted in low quality

annotation and poor model performance. Furthermore, we captured more effective labels by

following an annotation process to simplify the engagement concept into the behavioral and
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the emotional dimensions, in line with the domain literature. We requested annotators to label

the dimensions for each image and make the overall annotation label by combining these.

Our aim is for this dataset to be useful to other researchers interested in detecting engagement

from images. Given this dataset, we introduce a novel model to recognize engagement using

deep learning. The model includes two important phases. First, we train a deep model to

recognize basic facial expressions. Second, the model is applied to initialize the weights of

our engagement recognition model trained using our newly collected dataset.

3.3 Facial Expression Recognition from Images

3.3.1 Facial Expression Recognition Dataset

In this section, we use the facial expression recognition 2013 (FER-2013) dataset [9]. The

dataset includes images, labeled happiness, anger, sadness, surprise, fear, disgust, and neutral.

It contains 35,887 samples (28,709 for the training set, 3589 for the public test set and 3589

for the private test set), collected by the Google search API. The samples are in grayscale at

the size of 48-by-48 pixels.

We split the training set into two parts after removing 11 completely black samples: 3589

for validating and 25,109 for training our facial expression recognition model. To compare

with related work [127, 128, 130], we do not use the public test set for training or validation,

but use the private test set for performance evaluation of our facial expression recognition

model.

3.3.2 Facial Expression Recognition using Deep Learning

We train the VGG-B model [10], using the FER-2013 dataset, with one less Convolutional

(Conv.) block as shown in Figure 3.2. This results in eight Conv. and three fully connected

layers. We also have a max pooling layer after each Conv. block with stride 2. We normalize

each FER-2013 image so that the image has a mean 0.0 and a norm 100.0 [124]. Moreover,

for each pixel position, the pixel value is normalized to mean 0.0 and standard-deviation 1.0
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Figure 3.2: The architecture of our facial expression recognition model adapted from VGG-B

framework [10]. Each rectangle is a Conv. block including two Conv. layers. The max pooling layers

are not shown for simplicity.

using our training part. The model has a similar performance to the work of Pramerdorfer et

al. [130] generating the state-of-the-art on the FER-2013 dataset. The model’s output layer

has a softmax function generating the categorical distribution probabilities over seven facial

expression classes in FER-2013. We aim to use this model as a part of our engagement

Image has been suppressed due to copyright reasons
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Figure 3.3 has been suppressed due to copyright reasons

Figure 3.3: The interactions of a student with Omosa [11], captured in our studies. On the left side, 
the Omosa environment is shown where students can fill in a report or interact with virtual agents.

recognition model.

3.4 Engagement Recognition from Images

3.4.1 Engagement Recognition Dataset

Data Collection To recognize engagement from face images, we construct a new dataset 

that we call the Engagement Recognition (ER) dataset. The data samples are extracted from 

videos of students, who are learning scientific knowledge and research skills using a virtual 

world named Omosa [11]. Samples are taken at a fixed rate instead of random selections, 

making the dataset samples representative, spread across both subjects and time. In the 

interaction with Omosa, the goal of students is to determine why a certain animal kind is 

dying out by talking to characters, observing the animals and collecting relevant information, 

Figure 3.3 (top). After collecting notes and evidence, students are required to complete a 

workbook, Figure 3.3 (bottom).
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Figure 3.4: Examples without detectable faces because of high face occlusions.

The videos of students were captured from our studies in two public secondary schools

involving twenty students (11 girls and 9 boys) from Years 9 and 10 (aged 14–16), whose

parents agreed to their participation in our ethics-approved studies. We collected the videos

from twenty individual sessions of students recorded at 20 frames per second (fps), resulting

in twenty videos and totalling around 20 hours. After extracting video samples, we applied a

convolutional neural network (CNN) based face detection algorithm [152] to select samples

including detectable faces. The face detection algorithm cannot detect faces in a small number

of samples (less than 1%) due to their high face occlusion (Figure 3.4). We removed the

occluded samples from the ER dataset.

Data Annotation We designed custom annotation software to request annotators to inde-

pendently label 100 samples each. The samples are randomly selected from our collected

data and are displayed in different orders for different annotators. Each sample is annotated

by at least six annotators.2 Following ethics approval, we recruited Psychology students

to undertake the annotation task, who received course credit for their participation. Before

starting the annotation process, annotators were provided with definitions of behavioral and

emotional dimensions of engagement, which are defined in the following paragraphs, inspired

2The Fleiss’ kappa of the six annotators is 0.59, indicating reasonable inter-coder agreement. (The agreement

of labelling the emotional dimension is lower than the behavioural dimension which can be because of the higher

level of subjectivity in the emotional one.) We also calculated the correction or accuracy of each annotator

versus the rest of annotators. The average value is 74.58% showing an approximate level of human performance

to label our samples. This performance is not very high and it shows that engagement recognition is even a

challenging task for humans.

Figure 3.4 has been suppressed due to copyright reasons
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Table 3.1: The adapted relationship between the behavioral and emotional dimensions from Woolf et
al. [13] and Aslan et al. [14].

Behavioral Emotional Engagement

On-task Satisfied Engaged

On-task Confused Engaged

On-task Bored Disengaged

Off-task Satisfied Disengaged

Off-task Confused Disengaged

Off-task Bored Disengaged

by the work of Aslan et al. [14].

Behavioral dimension:

• On-Task: The student is looking towards the screen or looking down to the keyboard

below the screen.

• Off-Task: The student is looking everywhere else or eyes completely closed, or head

turned away.

• Can’t Decide: If you cannot decide on the behavioral state.

Emotional dimension:

• Satisfied: If the student is not having any emotional problems during the learning task.

This can include all positive states of the student from being neutral to being excited

during the learning task.

• Confused: If the student is getting confused during the learning task. In some cases,

this state might include some other negative states such as frustration.

• Bored: If the student is feeling bored during the learning task.

• Can’t Decide: If you cannot decide on the emotional state.
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Figure 3.5: An example of our annotation software where the annotator is requested to specify the

behavioral and emotional dimensions of the displayed sample.

During the annotation process, we show each data sample followed by two questions

indicating the engagement’s dimensions. The behavioral dimension can be chosen among

on-task, off-task, and can’t decide options and the emotional dimension can be chosen among

satisfied, confused, bored, and can’t decide options. In each annotation phase, annotators

have access to the definitions to label each dimension. A sample of the annotation software is

shown in Figure 3.5. In the next step, each sample is categorized as engaged or disengaged

by combining the dimensions’ labels using Table 3.1. For example, if a particular annotator

labels an image as on-task and satisfied, the category for this image from this annotator is

engaged. Then, for each image we use the majority of the engaged and disengaged labels

to specify the final overall annotation. If a sample receives the label of can’t decide more

than twice (either for the emotional or behavioral dimensions) from different annotators, it

is removed from ER dataset (around 7% of the annotated samples). Labeling this kind of

samples is a difficult task for annotators, notwithstanding the good level of agreement that

was achieved, and finding solutions to reduce the difficulty remains as a future direction of

our work. Using this approach, we have created ER dataset consisting of 4627 annotated

images including 2290 engaged and 2337 disengaged.

Figure 3.5 has been suppressed due to copyright reasons
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Figure 3.6: Randomly selected images of ER dataset including engaged and disengaged.

Table 3.2: The statistics of ER dataset and its partitions.

State Total Train Valid Test

Engaged 2290 1589 392 309

Disengaged 2337 1635 323 379

Total 4627 3224 715 688

Dataset Preparation We apply the CNN based face detection algorithm to detect the face

of each ER sample. If there is more than one face in a sample, we choose the face with the

biggest size. Then, the face is transformed to grayscale and resized into 48-by-48 pixels,

which is an effective resolution for engagement detection [147]. Figure 3.6 shows some

examples of the ER dataset. We split the ER dataset into training (3224), validation (715),

and testing (688) sets, which are subject-independent (the samples in these three sets are from

different subjects). Table 3.2 demonstrates the statistics of these three sets.

3.4.2 Engagement Recognition using Deep Learning

We define two Convolutional Neural Network (CNN) architectures as baselines, one designed

architecture and one that is similar in structure to VGGnet [10]. The key model of interest in

Figure 3.6 has been suppressed due to copyright reasons
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this paper is a version of the latter baseline that incorporates facial expression recognition.

For completeness, we also include another baseline that is not based on deep learning, but

rather uses support vector machines (SVMs) with histogram of oriented gradients (HOG)

features. For all the models, every sample of the ER dataset is normalized so that it has a zero

mean and a norm equal to 100.0. Furthermore, for each pixel location, the pixel values are

normalized to mean zero and standard deviation one using all ER training data.

HOG+SVM We trained a method using the histogram of oriented gradients (HOG) features

extracted from ER samples and a linear support vector machine (SVM), which we call the

HOG+SVM model. The model is similar to that of Kamath et al. [43] for recognizing

engagement from images and is used as a baseline model in this work. HOG [153] applies

gradient directions or edge orientations to express objects in local regions of images. For

example, in facial expression recognition tasks, HOG features can represent the forehead’s

wrinkling by horizontal edges. A linear SVM is usually used to classify HOG features. In

this work, C , determining the misclassification rate of training samples against the objective

function of SVM, is fine-tuned, using the validation set of the ER dataset, to the value of 0.1.

Convolutional Neural Network We use the training and validation sets of the ER dataset

to train a Convolutional Neural Networks (CNNs) for this task from scratch (the CNN model);

this constitutes another of the baseline models in this work. The model’s architecture is shown

in Figure 3.7. The model contains two convolutional (Conv.) layers, followed by two max

pooling (Max.) layers with stride 2, and two fully connected (FC) layers, respectively. A

rectified linear unit (ReLU) activation function [154] is applied after all Conv. and FC layers.

The last step of the CNN model includes a softmax layer, followed by a cross-entropy loss,

which consists of two neurons indicating engaged and disengaged classes. To overcome

model over-fitting, we apply a dropout layer [155] after every Conv. and hidden FC layer.

Local response normalization [64] is used after the first Conv. layer. As the optimizer

algorithm, stochastic gradient descent with mini-batching and a momentum of 0.9 is used.

Using Equation 3.1, the learning rate at step t (at) is decayed by the rate (r) of 0.8 in the

decay step (s) of 500. The total number of iterations from the beginning of the training phase
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Figure 3.7: The architecture of the CNN Model. We denote convolutional, max-pooling, and

fully-connected layers with “Conv”, “Max”, and “FC”, respectively.

is global step (g).

at = at−1 × r
g
s (3.1)

Very Deep Convolutional Neural Network Using the ER dataset, we train a deep model

which has eight Conv. and three FC layers similar to VGG-B architecture [10], but with

two fewer Conv. layers. The model is trained using two different scenarios. Under the first

scenario, the model is trained from scratch initialized with random weights; we call this the

VGGnet model (Figure 3.8), and this constitutes the second of our deep learning baseline

models. Under the second scenario, which uses the same architecture, the model’s layers,

except the softmax layer, are initialized by the trained model of §3.3.2, the goal of which is to

recognize basic facial expressions; we call this the engagement model (Figure 3.9), and this

is the key model of interest in our paper. In this model, all layers’ weights are updated and

fine-tuned to recognize engaged and disengaged classes in the ER dataset. For both VGGnet

and engagement models, after each Conv. block, we have a max pooling layer with stride 2.

In the models, the softmax layer has two output units (engaged and disengaged), followed

by a cross-entropy loss. Similar to the CNN model, we apply a rectified linear unit (ReLU)

activation function [154] and a dropout layer [155] after all Conv. and hidden FC layers.

Furthermore, we apply local response normalization after the first Conv. block. We use the

same approaches to optimization and learning rate decay as in the CNN model.

Image has been 
removed due to 
copyright reasons
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Figure 3.8: The architecture of the VGGnet

model on ER dataset. “Conv” and “FC” are

convolutional and fully connected layers.

Figure 3.9: The facial expression recogni-

tion model on FER-2013 dataset (left). The

engagement model on ER dataset (right).

3.5 Experiments

3.5.1 Evaluation Metrics

In this work, the performance of all models are reported on the both validation and test splits

of the ER dataset. We use three performance metrics including classification accuracy, F1

measure and the area under the ROC (receiver operating characteristics) curve (AUC). In

this work, classification accuracy specifies the number of positive (engaged) and negative

(disengaged) samples which are correctly classified and are divided by all testing samples

(Equation 3.2).

Accurac y =
T P + T N

T P + F P + T N + FN
(3.2)

where T P, T N , F P, and FN are true positive, true negative, false positive, and false negative,

respectively. F1 measure is calculated using Equation 3.3.

F1= 2× p× r
p+ r

(3.3)

where p is precision defined as T P
T P+F P and r is recall defined as T P

T P+FN . AUC is a popular

Images have been suppressed due to copyright reasons
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Table 3.3: The results of the models (%) on

the validation set of ER dataset.

Method Accuracy F1 AUC

HOG+SVM 67.69 75.40 65.50

CNN 72.03 74.94 71.56

VGGnet 68.11 70.69 67.85

Engagement 77.76 81.18 76.77

Table 3.4: The results of the models (%) on

the test set of ER dataset.

Method Accuracy F1 AUC

HOG+SVM 59.88 67.38 62.87

CNN 65.70 71.01 68.27

VGGnet 66.28 70.41 68.41

Engagement 72.38 73.90 73.74

metric in engagement recognition task [45, 147, 148]; it is an unbiased assessment of the

area under the ROC curve. An AUC score of 0.5 corresponds to chance performance by the

classifier, and AUC 1.0 represents the best possible result.

3.5.2 Implementation Details

In the training phase, for data augmentation, input images are randomly flipped along their

width and cropped to 48-by-48 pixels (after applying zero-padding because the samples were

already in this size). Furthermore, they are randomly rotated by a specific max angle. We set

learning rate for the VGGnet model to 0.001 and for other models to 0.002. The batch size is

set to 32 for the engagement model and 28 for other models. The best model on the validation

set is used to estimate the performance on the test partition of the ER dataset for all models in

this work.

3.5.3 Results

Overall Metrics We summarize the experimental results on the validation set and the test

set of the ER dataset in Table 3.3 and Table 3.4, respectively. On the sets, the engagement

model substantially outperforms all baseline models using all evaluation metrics (it also has

a comparable performance against the human performance (74.58%) calculated in §3.4.1),

showing the effectiveness of using a trained model on basic facial expression data to initialize
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Table 3.5: Confusion matrix of the

HOG+SVM model (%).

Predicted

Engaged Disengaged

GT
Engaged 92.23 7.77

Disengaged 66.49 33.51

Table 3.6: Confusion matrix of the CNN

model (%).

Predicted

Engaged Disengaged

GT
Engaged 93.53 6.47

Disengaged 56.99 43.01

Table 3.7: Confusion matrix of the VGGnet

model (%).

Predicted

Engaged Disengaged

GT
Engaged 89.32 10.68

Disengaged 52.51 47.49

Table 3.8: Confusion matrix of the engage-

ment model (%).

Predicted

Engaged Disengaged

GT
Engaged 87.06 12.94

Disengaged 39.58 60.42

an engagement recognition model 3. All deep models including CNN, VGGnet, and engage-

ment models perform better than the HOG+SVM method, showing the benefit of applying

deep learning to recognize engagement. On the test set, the engagement model achieves

72.38% classification accuracy, which outperforms VGGnet by 5%, and the CNN model

by more than 6%; it is also 12.5% better than the HOG+SVM method. The engagement

model achieved 73.90% F1 measure which is around 3% improvement compared to the deep

baseline models and 6% better performance than the HOG+SVM model. Using the AUC

metric, as the most popular metric in engagement recognition tasks, the engagement model

achieves 73.74% which improves the CNN and VGGnet models by more than 5% and is

around 10% better than the HOG+SVM method. There are similar improvements on the

validation set.

3We could as an alternative pre-train the CNN model with FER. However, although the CNN model has

a better performance on the validation set, it cannot generalize on the test set as well as the VGGnet model.

Moreover, we mostly focused on the VGG architecture since it has led to the state of the art result.



58 Engagement Recognition using Facial Expression Analyses

Figure 3.10: Representative engaged (left) and disengaged (right) samples that are correctly classi-

fied using the engagement model with high confidence. For example, the predicted probabilities (the

confidence levels) for engaged samples from top to bottom are 72.10%, 70.76%, 83.16% and 83.82%,

respectively. They for disengaged samples from top to bottom are 99.73%, 71.11%, 81.01% and

70.81%, respectively. The agreement level among annotators is also high. This means that annotators

can label these kinds of samples with less difficulties. Out of six annotators, five or all of them usually

agreed for choosing either engaged or disengaged labels.

Confusion Matrices We show the confusion matrices of the HOG+SVM, CNN, VGGnet,

and engagement models on the ER test set in Table 3.5, Table 3.6, Table 3.7, and Table 3.8,

respectively. The tables show the proportions of predicted classes with respect to the ground-

truth (GT) classes, allowing an examination of precision per class. It is interesting that the

effectiveness of deep models comes through their ability to recognize disengaged samples

compared to the HOG+SVM model. Moreover, the tables demonstrate that all models have

more difficulties to detect disengaged samples compared to engaged ones. Thus, changing the

objective function to assign different error costs to engaged and disengaged samples can be

useful and we want to investigate this topic in the future work.

Disengaged samples have a wider variety of body postures and facial expressions than

Figure 3.10 has been suppressed due to copyright reasons
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Figure 3.11: Engaged (left) and disengaged (right) examples that are correctly detected using the

engagement model with low confidence. For example, the predicted probabilities (the confidence

levels) for engaged samples from top to bottom are 57.02% and 69.43% respectively. They for

disengaged samples from top to bottom are 56.79% and 62.53% respectively. As shown, there is

more visual likeness between engaged and disengaged examples compared to the previous samples.

Labeling these kinds of examples is difficult for annotators. For some of these examples, out of six

annotators, only four ones agreed to label the examples as engaged or disengaged.

Figure 3.12: These samples are wrongly predicted as engaged (left) and disengaged (right) using the

engagement model. For example, the predicted probabilities for wrong classes (the confidence levels)

for left samples from top to bottom are 53.77%, 65.64% and 73.48% respectively. They for right

samples from top to bottom are 55.41%, 51.82% and 70.81% respectively. The ground-truth labels of

the left samples are disengaged and the right samples are engaged. Here, similar to the previous figure,

labeling engaged or disengaged samples is also difficult for annotators which shows some challenging

examples in engagement recognition tasks.

Figure 3.11 has been suppressed due to copyright reasons

Figure 3.12 has been suppressed due to copyright reasons
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engaged sample (see engaged and disengaged examples in Figure 3.10). Due to complex

structures, deep learning models are more powerful in capturing these wider variations. The

VGGnet model, which has a more complex architecture compared to the CNN model, can also

detect disengaged samples with a higher probability. Since we pre-trained the engagement

model on basic facial expression data including considerable variations of samples, this model

is the most effective approach to recognize disengaged samples achieving 60.42% precision

which is around 27% improvement in comparison with the HOG+SVM model (See Figure

3.11 and 3.12 which are showing some challenging examples to recognize engagement).

3.6 Summary

Reliable models that can recognize engagement during a learning session, particularly in

contexts where there is no instructor present, play a key role in allowing learning systems to

intelligently adapt to facilitate the learner. There is a shortage of data for training systems to do

this; the first contribution of the work is a new dataset, labelled by annotators with expertise in

psychology, that we hope will facilitate research on engagement recognition from visual data.

In this chapter, we have used this dataset to train models for the task of automatic engagement

recognition, including for the first time deep learning models. The next contribution has been

the development of a model, called the engagement model, that can address the shortage of

engagement data to train a reliable deep learning model. The engagement model has two key

steps. First, we pre-train the model using basic facial expression data, of which is relatively

abundant. Second, we train the model to produce a rich deep learning-based representation

for engagement, instead of commonly used features and classification methods in this domain.

We have evaluated this model with respect to a comprehensive range of baseline models to

demonstrate its effectiveness, and have shown that it leads to a considerable improvement

against the baseline models using all standard evaluation metrics.

In terms of representation of facial expressions, we have found that the representation

learned from our facial expression recognition model is transferable to quite a different task

in response to RQ 1 discussed in Chapter 1, suggesting it could be useful for the image

captioning task we set up in the next chapter.



4
Image Captioning using Facial Expression

and Attention

Benefiting from advances in machine vision and natural language processing techniques,

current image captioning systems are able to generate detailed visual descriptions. For the

most part, these descriptions represent an objective characterisation of the image, although

some models do incorporate subjective aspects related to the observer’s view of the image,

such as sentiment (discussed in §2.4 and Chapters 5 and 6); current models, however, usually

do not consider the emotional content of images during the caption generation process. This

chapter addresses this issue by proposing novel image captioning models which use facial

expression features to generate image captions. To do this, we draw on the representation

of facial expression features that we found in Chapter 3 to be transferable from emotion

61
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recognition to other tasks.1.

4.1 Introduction

Image captioning systems aim to describe the content of an image using Computer Vision

and Natural Language Processing approaches which have led to important and practical

applications such as helping visually impaired individuals [1]. This is a challenging task

because we have to capture not only the objects but also their relations and the activities

displayed in the image to generate a meaningful description. The impressive progress in deep

neural networks and large image captioning datasets has recently resulted in a considerable

improvement in generating automatic image captions [1, 7, 8, 19, 20, 89, 156–158].

However, current image captioning methods often overlook the emotional aspects of

the image, which play an important role in generating captions that are more semantically

correlated with the visual content. For example, Figure 4.1 shows three images with their

corresponding human-generated captions including emotional content. The first image at left

has the caption of “a dad smiling and laughing with his child” using “smiling” and “laughing”

to describe the emotional content of the image. In a similar fashion, ‘angry” and “happy”

are applied in the second and the third images, respectively.2 These examples demonstrate

how image captioning systems that recognize emotions and apply them can generate richer,

more expressive and more human-like captions. This desideratum of incorporating emotional

content is one that is general to intelligent systems, which researchers like Lisetti et al. [36]

have identified as necessary to generate more effective and adaptive outcomes. In this

work, we seek to demonstrate this desideratum holds also for image captioning systems.

1The content of this chapter is based on the following publications:

Omid Mohamad Nezami, Mark Dras, Peter Anderson, Len Hamey (2018). Face-Cap: Image Captioning

using Facial Expression Analysis. Proceedings of the 2018 European Conference on Machine Learning and

Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2018), Dublin, Ireland.

Omid Mohamad Nezami, Mark Dras, Stephen Wan, Cecile Paris (2020). Image Captioning using Facial

Expression and Attention. Journal of Artificial Intelligence Research (JAIR), vol. 68, pp. 661-689.
2We note that while the second and third images use adjectives that correspond directly to labels used in

the facial expression recognition models discussed in Chapter 3, the description of the first image represents a

broader notion of emotion. The representation of facial expression thus needs to be transferable, as in Chapter 3.
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A dad smiling and laughing with his child. Two men with angry faces drink out of white cups. Two happy people pose for a photo.

Figure 4.1: The examples of Flickr 30K dataset [4] with emotional content. The green color

indicates words with strong emotional values.

Although detecting emotions from visual data has been an active area of research in the recent

years [114, 120], designing an effective image captioning system to employ emotions in

describing an image is still an open and challenging problem.

As discussed in §2.4, a few models have incorporated sentiment or other non-factual

information into image captions [2, 30, 31]; they typically require the collection of a supple-

mentary dataset, from which a sentiment vocabulary is derived, drawing on work in Natural

Language Processing [109] where sentiment is usually characterized as one of positive, neutral

or negative. Mathews et al. [2], for instance, constructed a sentiment image-caption dataset

via crowdsourcing, where annotators were asked to include either positive sentiment (e.g. a

cuddly cat) or negative sentiment (e.g. a sinister cat) using a fixed vocabulary; their model

was trained on both this and a standard set of factual captions. These kinds of approaches

typically embody descriptions of an image that represent an observer’s view towards the

image (e.g. a cuddly cat for a positive view of an image, versus a sinister cat for a negative

one); they do not aim to capture the emotional content of the image, as in Figure 4.1.

To capture the emotional content of the image, we propose two groups of models: Face-

Cap and Face-Attend. Face-Cap feeds in a fixed one-hot encoding vector similar to Hu et

al. [35] and You et al. [48]. In comparison, we represent the aggregate facial expressions

of the input image at different time steps of our caption generator, which employs a long

short-term memory (LSTM) architecture. To construct the vector, we train a state-of-the-art

facial expression recognition (FER) model which automatically recognizes facial expressions

(e.g. happiness, sadness, fear, and so on), as in Chapter 3. However, the recognized facial ex-

pressions are not always reliable because the FER model is not 100% accurate. This can result

Images have been suppressed due to copyright reasons
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in an image captioning architecture that propagates errors. Moreover, these facial expression

classes do not necessarily align with more fine-grained facial expression representations such

as action units (AUs), one framework for characterising different facial muscle movements

[159]. Hence, we propose an alternative representation that uses more fine-grained facial

expression features (e.g. convolutional features) which could potentially be more useful

than the one-hot encoding representation. We also recognize from design choices that there

might be images that Face-Cap may not perform well on (e.g. images including multiple

faces such as Figure 4.1, because we have a single encoding representation of emotion for

the whole image) and an attention mechanism might better localise emotional features in

a way useful for image captioning. Thus, Face-Attend employs an attention mechanism to

selectively attend to facial features, for different detected faces in an image, extracted from

the last convolutional layer of the FER model. Face-Attend uses two LSTMs to incorporate

facial features along with general visual content in generating image descriptions.

4.2 Approach

In this section, we describe Face-Cap and Face-Attend, our proposed models for generating

image captions using facial expression analyses. The models are inspired by two popular

image captioning models, specifically Show-Attend-Tell [7] and Up-Down-Captioner [8].

Show-Attend-Tell is a well-known and widely used image captioning system that incorpo-

rates an attention mechanism to attend to spatial visual features. It demonstrates a significant

improvement over earlier image captaining models that do not have an attention mechanism;

we discussed it in §2.3. From this starting point, we propose the Face-Cap model which simi-

larly attends to visual features and additionally uses facial expression analyses in generating

image captions. Face-Cap incorporates a one-hot encoding vector as a representation of the

facial expression analysis, similar to the representations used for sentiment by Hu et al. [35]

and You et al. [48].

Up-Down-Captioner is the current state-of-the-art image captioning model, defining a

new architecture to incorporate attended visual features in generating image captions; we also

discussed this in §2.3. In this model, the features directly relate to the objects in the image and
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two LSTMs (one for generating attention weights and another one for a language model) are

used to generate image captions. We propose Face-Attend based on this kind of architecture,

as we can apply more fine-grained facial expression features and use two LSTMs to attend to

the features in addition to the general visual features. Because Up-Down-Captioner already

incorporates attention on objects in the image, our models derived from this allow us to

examine the effectiveness of the facial expression features beyond just recognition of the face

as an object.

In what follows, we describe our datasets and our facial expression recognition model that

are used by Face-Cap and Face-Attend models. We then explain the models in detail.

4.2.1 Datasets

Facial Expression Recognition The setup here is similar to §3.3. To train our facial

expression recognition model, we use the facial expression recognition 2013 (FER-2013)

dataset [9]. It includes images labeled with standard facial expression categories (happiness,

sadness, fear, surprise, anger, disgust and neutral). It consists of 35,887 examples (28,709 for

training, 3589 for public and 3589 for private test), collected by means of the Google search

API. The examples are in grayscale at the size of 48-by-48 pixels. We split the training set of

FER-2013 into two sections after removing 11 completely black examples: 25,109 for training

and 3589 for validating the model. Similar to other work in this domain [127, 128, 130], we

use the private test set of FER-2013 for the performance evaluation of the model after the

training phase. To compare with the related work, we do not apply the public test set either

for training or for validating the model.

Image Captioning To train Face-Cap and Face-Attend, we have extracted a subset of the

Flickr 30K dataset with image captions [4] that we name FlickrFace11K. It contains 11,696

images including human faces detected using a convolutional neural network-based face

detector [152].3 Each image has five ground-truth captions. We observe that the Flickr

30K dataset is a good source for our dataset, because it has a larger portion of images that

include human faces, in comparison with other image caption datasets such as the MSCOCO

3The new version (2018) of Dlib library is applied.
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dataset [160]. We split the FlickrFace11K samples into 8696 for training, 2000 for validation

and 1000 for testing. Since we aim to train a facial expression recognition model on FER-2013

and use it as a facial expression feature extractor on the samples of FlickrFace11K, we need

to adapt and make the samples consistent with the FER-2013 data. This is inspired by the

domain adaptation topic [161, 162] to address differences between the source and target

domains. To this end, the face detector is used to pre-process the faces of FlickrFace11K. The

faces are cropped from each sample. Then, we transform each face to grayscale and resize it

into 48-by-48 pixels, which is the same as in the FER-2013 data.

4.2.2 Facial Expression Recognition Model

Again, the setup here is similar to §3.3. We train a facial expression recognition (FER) model

using the VGG-B architecture [10], but we remove the last convolutional block, including

two convolutional layers, and the last max pooling layer from the architecture. We use 3× 3

kernel sizes for all remained convolutional layers. We use a batch normalization layer [163]

after every remained convolutional block. Our FER model gives a similar performance to the

state-of-the-art under a similar experimental setting, as described in Pramerdorfer [130]; this

is higher than reported human performance [9]. The framework of our FER model is shown

in Figure 4.2.

From the FER model, we extract two classes of facial expression features to use in our

image captioning models. The first class of features is the output of the final softmax layer

of our FER model, ai = (ai,1, . . . , ai,7), representing the probability distribution of the facial

expression classes for the i th face in the image. For the image as a whole, we construct a

vector of facial expression features s = {s1, . . . , s7} used in our image captioning model as in

Equation 4.1.

sk =

⎧⎨
⎩

1 for k = argmax
∑

1≤i≤n ai, j,

0 otherwise

(4.1)

where n is the number of faces in the image. That is, s is a one-hot encoding, which we refer

to as the facial encoding vector, of the aggregate facial expressions of the image.

The second class of features consists of convolutional features extracted from the FER
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Figure 4.2: Our facial expression recognition module. Each convolutional block is shown with a

rectangle including two convolutional layers. FC indicates fully-connected layers. Max pooling layers

after convolutional blocks are not shown for simplicity.

model, giving a more fine-grained representation of the faces in the image. For each face,

we extract the last convolutional layer of the model, giving 6 × 6 × 512 features. We

convert these into a 36× 512 representation. We restrict ourselves to a maximum of three

faces: in our FlickrFace11K dataset, 96.5% of the images have at most three faces. If one

image has more than three faces, we select the three faces with the biggest bounding box

sizes. We then concatenate the features of the three faces leading to 108× 512 dimensions,

f = { f 1, ..., f K�}, f i ∈ �D, where K� is 108 and D is 512; we refer to these as facial features.

If a sample includes fewer than three faces, we fill in dimensions with zero values.

Image has been 
suppressed due 
to copyright 
reasons
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4.2.3 Image Captioning Models

Our image captioning models aim to generate an image caption, x = {x1, . . . , xT}, where xi is

a word and T is the length of the caption, using facial expression analyses. As a representation

of the image, all our models use the last convolutional layer of the VGG-E architecture [10].

In addition to our proposed facial features, the VGG-E network trained on ImageNet [105]

produces a 14 × 14 × 512 feature map. We convert this into a 196 × 512 representation,

c = {c1, ..., cK}, c i ∈ �D, where K is 196 and D is 512; we refer to this as the visual features.

The specifics of the image captioning models are explained below.

Face-Cap These models essentially extend the Show-Attend-Tell architecture of [7]. Like

these models, we use a long short-term memory (LSTM) network as our caption generator.

The LSTM incorporates the emotional content of the image in the form of the facial encoding

vector defined in Equation 4.1. We propose two variants, Face-Cap-Repeat and Face-Cap-

Memory, that differ in terms of how the facial encoding vector is incorporated.

Face-Cap-Repeat In Face-Cap-Repeat, in each time step (t), the LSTM uses the previous

word embedded in M dimensions (w t−1 ∈ �M selected from an embedding matrix learned

without pre-training from random initial values), the previous hidden state (ht−1), the attention-

based features (ĉt ), and the facial encoding vector (s) to calculate input gate (i t), forget gate

( f t), output gate (o t), input modulation gate (g t), memory cell (m t), and hidden state (ht).

i t = σ(W i w t−1 +U iht−1 + C i ĉt + Si s + bi)

f t = σ(W f w t−1 +U f ht−1 + C f ĉt + S f s + b f )

o t = σ(W ow t−1 +U oht−1 + C o ĉt + Sos + bo)

g t = tanh(W g w t−1 +U ght−1 + C g ĉt + Sg s + bg)

m t = f t m t−1 + i t g t

ht = o t tanh(m t)

(4.2)

where W ,U ,C ,S, and b are learned weights and biases andσ is the logistic sigmoid activation

function. From now on, we show this LSTM equation using the shorthand of Equation 4.3.

ht = LSTM(ht−1, [ĉt , w t−1, s]) (4.3)
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To calculate ĉt , for each time step t , Face-Cap-Repeat weights visual features (c) using a

soft attention mechanism as in Equation 4.4 and 4.5.

ei,t = W T
e tanh(W cc i +W hht−1)

e′t = softmax(e t)
(4.4)

where ei,t are unnormalized weights for the visual features (c i) and e′t are the normalized

weights using a softmax layer at time step t. Our trained weights are represented by W x .

Finally, our attention-based features (ĉt ) are calculated using:

ĉt =
∑

1≤i≤K

e′i,t c i (4.5)

To initialize the LSTM’s hidden state (h0), we feed the facial features through a standard

multilayer perceptron, shown in Equation 4.6.

h0 =MLPini t(s) (4.6)

We use the current hidden state (ht) to calculate the negative log-likelihood of s in each time

step (Equation 4.7); we call this the face objective function.

L f = −
∑

1≤i≤7

si log(p e(i|ht)) (4.7)

where a multilayer perceptron generates p e(i|ht), which is the categorical probability distri-

bution of the current hidden state across the facial expression classes. We adapt this from

[48], who use this objective function for injecting ternary-valued sentiment (positive, neutral,

negative) into captions. This loss is estimated and averaged, over all steps, during the training

phase.

The general objective function of Face-Cap-Repeat is defined as:

Lg1 = −
∑

1≤t≤T

log(p x(x t | ĉt , ht )) +
∑

1≤k≤K

(1− ∑
1≤t≤T

ct)
2 (4.8)

A multilayer perceptron and a softmax layer is used to calculate px , the probability of the next

generated word (we apply argmax over this to generate the next word):

p x(x t | ĉt , ht) = softmax(W ′
c ĉt +W ′

hht + b′) (4.9)
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Figure 4.3: The frameworks of Face-Cap-Repeat (top), and Face-Cap-Memory (bottom). Attend is

our attention mechanism attending to the visual features, {c1, . . . , cK}.

where the learned weights and bias are given by W ′ and b′. The last term in Equation 4.8 is

to encourage Face-Cap-Repeat to equally pay attention to different sets of c when a caption

generation process is finished. Here, we sum the values of Lg1 and L f to calculate the final

loss.

Face-Cap-Memory The above Face-Cap-Repeat model feeds in the facial encoding vector

at the initial step (Equation 4.6) and at each time step (Equation 4.3), shown in Figure 4.3

(top). The LSTM uses the vector for generating every word because the vector is fed at each

time step. Since not all words in the ground truth captions will be related to the vector —

for example in Figure 4.1, where the majority of words are not directly related to the facial

expressions — this mechanism could lead to an overemphasis on these features.

Our second variant of the model, Face-Cap-Memory, is as above except that the s term

is removed from Equation 4.3: we do not apply the facial encoding vector at each time step

and we only apply it at the initial time step per Equation 4.6 (Figure 4.3 (bottom)). We

rely on Equation 4.7 to memorize this facial expression information. Using this mechanism,

the LSTM can effectively take the information in generating image captions and ignore

the information when it is irrelevant. To handle an analogous issue for sentiment, [48]

implemented a sentiment cell, working similarly to the memory cell in the LSTM, initialized
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by the ternary sentiment. They then fed the visual features to initialize the memory cell and

hidden state of the LSTM. Similarly, Face-Cap-Memory uses the facial features to initialize

the memory cell and hidden state. Using the attention mechanism, our model applies the

visual features in generating every caption word.

Face-Attend Here, we apply two LSTMs to attend to our more fine-grained facial features

( f ) explained in Section 4.2.2, in addition to our visual features (c). We propose two variant

architectures for combining these features, Dual-Face-Att and Joint-Face-Att, explained

below.

Dual-Face-Att The framework of Dual-Face-Att is shown in Figure 4.4. To generate

image captions, Dual-Face-Att includes two LSTMs: one, called F-LSTM, to attend to facial

features and another one, called C-LSTM, to attend to visual content. Both LSTMs are defined

as in Equation 4.10, but with separate training parameters.

ht,z = LSTM(ht,z−1, [ẑt , w t−1]) (4.10)

In both LSTMs, to calculate ẑt at each time step (t), features z (the facial features ( f )

for F-LSTM and the visual features (c) for C-LSTM) are weighted using a soft attention

mechanism, but with separately learned parameters.

ei,t,z = W T
e,z tanh(W z z i +W h,zht,z−1)

e′t,z = softmax(e t,z)
(4.11)

where ei,t,z and e′t,z are unnormalized weights for features z i , and normalized weights using a

softmax layer, respectively. Our trained weights are W z. Finally, our attention-based features

(ẑt ) are calculated using:

ẑt =
∑

1≤i≤Kz

e′i,t,z z i (4.12)

Kz is K� for F-LSTM and K for C-LSTM. The initial LSTM’s hidden state (h0,z) is computed

using a standard multilayer perceptron:

h0,z =MLPini t,z(
1
Kz

∑
1≤i≤Kz

z i) (4.13)
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Figure 4.4: Dual-Face-Att model enables generating image captions with both facial features

{ f 1, . . . , f K�} and visual content {c1, . . . , cK}.

The objective function of Dual-Face-Att is defined using Equation (4.14).

Lg2 = −λ[
∑

1≤t≤T

log(p x ,c(x t | ĉt , ht,c)) +
∑

1≤k≤K

(1− ∑
1≤t≤T

ct,k)
2]−

(1−λ)[∑
1≤t≤T

log(p x , f (x t | f̂t , ht, f )) + β1

∑
1≤k≤K∗

(1− ∑
1≤t≤T

ft,k)
2] (4.14)

where a multilayer perceptron and a softmax layer, for each LSTM, are used to calculate

p x , f and p x ,c (the probabilities of the next generated word on the basis of facial expression

features and visual features, respectively):

p x , f (x t | f̂t , ht, f ) = softmax(W f f̂t +W h, f ht, f + b f )

p x ,c(x t | ĉt , ht,c) = softmax(W c ĉt +W h,cht,c + bc)
(4.15)

λ and β1 are regularization constants (these are hyperparameters). The ultimate probability of

the next generated word is:

p x(x t | f̂t , ht, f , ĉt , ht,c) = λp x , f (x t | f̂t , ht, f ) + (1−λ)p x ,c(x t | ĉt , ht,c) (4.16)

Joint-Face-Att The above Dual-Face-Att model uses two LSTMs: one for attending to

visual features and another one for attending to facial features. In the model, both LSTMs

also play the role of language models (Equation 4.16) and directly impact on the prediction of
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Figure 4.5: Joint-Face-Att model enables generating image captions with two LSTMs for learning

attention weights and generating captions, separately. (This is a two-layer LSTM and L-LSTM has the

role of generating w t .)

the next generated word. However, the recent state-of-the-art image captioning model of [8]

achieved better performance by using two LSTMs with differentiated roles: one for attending

only to visual features and a second one purely as a language model. Inspired by this, we

define our Joint-Face-Att variant to use one LSTM, which we call A-LSTM, to attend to

image-based features, both facial and visual; and a second one, which we call L-LSTM, to

generate language (Figure 4.5). Here, we calculate the hidden state of A-LSTM using:

ht,a = LSTM(ht,a−1, [c̄, ht,l−1, w t−1]) (4.17)

where c̄ = 1
K

∑
1≤i≤K c i is the mean-pooled visual features and ht,l−1 is the previous hidden

state of L-LSTM. We also calculate the hidden state of L-LSTM using:

ht,l = LSTM(ht,l−1, [ f̂t , ĉt , ht,a]) (4.18)

where f̂t and ĉt are the attended facial features and visual features, respectively. They are

defined analogously to Equation 4.4 and 4.5, but ht,z−1 = ht,a with different sets of trainable

parameters. ha and hl are similarly initialized as follows using two standard multilayer

perceptrons:

h0,l =MLPini t,l(
1
K

∑
1≤i≤K

c i)

h0,a =MLPini t,a(
1
K

∑
1≤i≤K

c i)
(4.19)
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The objective function of Joint-Face-Att is:

Lg3 = −[
∑

1≤t≤T

log(p x(x t | ĉt , f̂t , ht,l)) +
∑

1≤k≤K

(1− ∑
1≤t≤T

ct,k)
2 + β2

∑
1≤k≤K�

(1− ∑
1≤t≤T

ft,k)
2]

(4.20)

where β2 is a regularization constant and p x is the probability of the next generated word

calculated as follows:

p x(x t | ĉt , f̂t , ht ,l) = softmax(W c,l ĉt +W f ,l f̂t +W h,lht,l + bl) (4.21)

where W x ,l and bl are trainable weights and bias, respectively.

4.3 Experimental Setup

In the following sections, we describe the evaluation setup and discuss the experimental

results. At the end, we analyse the failure cases.

4.3.1 Evaluation Metrics

Overall Metrics Following previous work, we evaluate our image captioning model us-

ing standard evaluation metrics including BLEU [164], ROUGE [165], METEOR [166],

CIDEr [100], and SPICE [167]. Larger values are better results for all metrics. BLEU

calculates a weighted average for n-grams with different sizes as a precision metric:

BLEUn(x , y) =

∑
gn∈x

min
�

cx(gn), max
j=1,...,|y| cyj

(gn)
�

∑
wn∈x

cx(gn)
(4.22)

where x is the generated caption, y is a set of reference captions, gn is n-gram and cz is

the count of gn in caption z. ROUGE is a recall-oriented metric that calculates F-measures

using the matched n-grams between the generated captions and their corresponding reference

summaries:

ROUGEn(x , y) =

|y|∑
j=1

∑
gn∈yj

min
	
cx(gn), cyj

(gn)



|y|∑
j=1

∑
gn∈yj

cyj
(gn)

(4.23)
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METEOR uses a weighted F-measure matching synonyms and stems in addition to

standard n-gram matching. CIDEr uses a n-gram matching, calculated using the cosine

similarity, between the generated captions and the consensus of the reference captions:

C I DErn(x , y) =
1
|y|

|y|∑
j=1

T n(x)T n(yj)

||T n(x)|| ||T n(yj)|| (4.24)

where T n(z) is a vector that is formed by Term Frequency Inverse Document Frequency

(TF-IDF) for all n-grams in z and ||T n(z)|| is its magnitude. Finally, SPICE calculates F-score

for semantic tuples derived from scene graphs:

SPIC E(x , y) = F1(x , y) =
2P(x , y)R(x , y)
P(x , y) + R(x , y)

(4.25)

where P(x , y) = |Map(x)⊗Map(y)|
Map(x) , R(x , y) = |Map(x)⊗Map(y)|

Map(y) and Map(z) is the mapping from

z to tuples. Here, ⊗ is defined as a binary operator to return matching tuples between x and y .

Linguistic Metrics To analyze what it is about the captions themselves that differs under

the various models, with respect to our aim of injecting information about emotional states of

the faces in images, we first extracted all generated adjectives, which are tagged using the

Stanford part-of-speech tagger software [168]. Perhaps surprisingly, emotions do not manifest

themselves in the adjectives in our models: the adjectives used by all systems are essentially

the same.

To investigate this further, we took the NRC emotion lexicon4 [169] and examined the

occurrence of words in the captions that also appeared in the lexicon. This widely-used lexicon

is characterised as “a list of English words and their associations with eight basic emotions

(anger, fear, anticipation, trust, surprise, sadness, joy, and disgust)” whose labels have been

manually annotated through crowd-sourcing. The labels are based on word associations —

annotators were asked “which emotions are associated with a target term” — rather than

whether the word embodies an emotion; the lexicon thus contains a much larger set of

words than is useful for our purposes. (For example, the most frequent word overall in the

reference captions that appears in the lexicon is young, which presumably has some positive

4https://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.htm
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emotional associations.) In addition, the set of emotions used in lexicon labels does not exactly

correspond to our set. We therefore do not propose to use this lexicon purely automatically,

but instead to help in understanding the use of emotion-related words.

Among the reference captions, as noted above the most frequent word from the emotion

lexicon was young, followed by white, blue and black; all of these presumably have some

emotional association, but do not generally embody an emotion. The first word embodying

the expression of an emotion is the verb smiling, at rank 8, with other similar verbs following

closely (e.g. laughing, enjoying). The highest ranked emotion-embodying adjective is happy

at rank 26, with a frequency of around 15% of that of smiling; other adjectives were much

further behind. It is clear that verbs form a more significant expression of emotion in this

particular dataset than do adjectives.

To come up with an overall quantification of the different linguistic properties of the gen-

erated captions under the models, we therefore focussed our investigation on the differences

in distributions of the generated verbs. To do this, we calculated three measures. The first is

entropy (in the information-theoretic sense), which can indicate which distributions are closer

to deterministic and which are more spread out (with a higher score indicating more spread

out): in our context, it will indicate the amount of variety in selecting verbs. We calculated

entropy using the standard Equation 4.26.

Entropy= − ∑
1≤i≤V

p(vi)× log2(p(vi)) (4.26)

where V indicates the number of the unique generated verbs and p(vi) is the probability of

each generated verb (vi), estimated as the Maximum Likelihood Estimate from the sample.

As a second measure, we looked at the four most frequent verbs (Top4), which are the

same for all models (is, sitting, are, standing) — these are verbs with relatively little semantic

content, and for the most part act as syntactic props for the content words of the sentence.

The amount of probability mass left beyond those four verbs is another indicator of variety in

verb expression.

The two measures above are concerned only with variety of verb choice and not with

verbs linked specifically to emotions or facial expressions. For a third measure, therefore, we
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look at selected individual verbs linked to actions that relate to facial emotion expression,

either direct or indirect. Our measure is the rank of the selected verb among all those chosen

by a model; higher (i.e. lower-numbered) ranked verbs mean that the model more strongly

prefers this verb. Our selected verbs are among those that ranked highly in the reference

captions and also appeared in the emotion lexicon.

4.3.2 Systems for Comparison

The starting points for our Face-Cap and Face-Attend models are Show-Attend-Tell [7] and

Up-Down-Captioner [8], respectively. We therefore use these models, trained on the Flickr-

Face11K dataset, as baselines to examine the effect of adding facial expression information.

We call these baseline models Show-Att-Tell and Up-Down. (Moreover, Anderson et al. [8]

has the state-of-the-art results for image captioning.)

We further look at two additional models to investigate the impact of the face loss function

in using the facial encoding in different schemes. We train the Face-Cap-Repeat model,

which uses the facial encoding in every time step, without calculating the face loss function

(Equation 4.7); we refer to this (following the terminology of You et al. [48]) as the Step-Inject

model. The Face-Cap-Memory model, which applies the facial encoding in the initial time

step, is also modified in the same way; we refer to this as the Init-Flow model.

4.3.3 Implementation Details

The size of the word embedding layer, initialized via a uniform distribution, is set to 300

except for Up-Down and Joint-Face-Att which is set to 512. We fixed 512 dimensions for

the memory cell and the hidden state in this work. We use the mini-batch size of 100 and

the initial learning rate of 0.001 to train each image captioning model except Up-Down and

Joint-Face-Att where we set the mini-batch size to 64 and the initial learning rate to 0.005.

We used different parameters for Up-Down and Joint-Face-Att in comparison with other

models because using similar parameters led to worse results for all models. The Adam

optimization algorithm [170] is used for optimizing all models. During the training phase,

if the model does not have an improvement in METEOR score on the validation set in two
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successive epochs, we divide the learning rate by two (the minimum learning rate is set to

0.0001) and the previous trained model with the best METEOR is reloaded. This method of

learning rate decay is inspired by Wilson et al. [171], who advocated tuning the learning rate

decay for Adam. In addition to learning rate decay, METEOR is applied to select the best

model on the validation set because of a reasonable correlation between METEOR and human

judgments [167]. Although SPICE can have higher correlations with human judgements,

METEOR is quicker to calculate than SPICE, which requires dependency parsing, and so

more suitable for a training criterion. The epoch limit is set to 30. We use the same vocabulary

size and visual features for all models. λ and β1 in Equation 4.14 are empirically set to

0.8 and 0.2, respectively. β2 in Equation 4.20 is also set to 0.4. Multilayer perceptrons in

Equation 4.6, 4.13 and 4.19 use tanh as an activation function.

4.4 Results

4.4.1 Overall Metrics

The FlickrFace11K splits are used for training and evaluating all image captioning models in

this paper. Table 4.1 summarizes the results on the FlickrFace11K test set. Dual-Face-Att and

Joint-Face-Att outperform other image captioning models using all the evaluation metrics.

For example, Dual-Face-Att achieves 17.6 for BLEU-4 which is 1.9 and 0.4 points better that

Show-Att-Tell (the first baseline model) and Face-Cap-Memory (the best of the Face-Cap

models), respectively. Joint-Face-Att also achieves a BLEU-4 score of 17.7 which is 0.4

better than Up-Down, the baseline model it builds on, and 0.5 better than Face-Cap-Memory.

Dual-Face-Att and Joint-Face-Att show very close results, with Dual-Face-Att demonstrating

a couple of larger gaps in performance, in the BLEU-1 and ROUGE-L metrics. Among the

Face-Cap models, Face-Cap-Memory is clearly the best.

4.4.2 Linguistic Metrics

Table 4.2 shows that Dual-Face-Att can generate the most diverse distribution of the verbs

compared to other models because it has the highest Entropy. It also shows that Dual-Face-Att
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Table 4.1: The results of different image captioning models (%) on FlickrFace11K test split. B-N is

the BLEU-N metric. The best performances are bold.

Model B-1 B-2 B-3 B-4 METEOR ROUGE-L CIDEr SPICE

Show-Att-Tell 56.0 35.4 23.1 15.7 17.0 43.7 21.9 9.3

Up-Down 57.9 37.3 25.0 17.3 17.5 45.1 24.4 10.1

Step-Inject 58.4 37.6 24.8 17.0 17.5 45.0 22.8 9.9

Init-Flow 56.6 36.5 24.3 16.9 17.2 44.8 23.1 9.8

Face-Cap-Repeat 57.1 36.5 24.1 16.5 17.2 44.8 23.0 9.7

Face-Cap-Memory 58.9 37.9 25.1 17.2 17.4 45.5 24.7 10.0

Dual-Face-Att 59.4 38.2 25.4 17.6 17.6 45.8 24.9 10.1

Joint-Face-Att 58.6 38.1 25.6 17.7 17.6 45.5 24.8 10.2

has the lowest (best) proportion of the probability mass taken up by Top4, leaving more for

other verbs. In contrast to the results of the standard image captioning metrics shown in

Table 4.1, Dual-Face-Att and Joint-Face-Att show very different behaviour: Dual-Face-Att is

clearly superior. Among the Face-Cap models, as for the overall metrics, Face-Cap-Memory

is the best, and is in fact better than Joint-Face-Att. (As a comparison, we also show Entropy

and Top4 for all reference captions (5 human-generated captions per image): human-generated

captions are still much more diverse than the best models.)

Table 4.3 shows a sample of verbs, explained as the third measure in §4.3.1, such as

singing, reading and laughing. The baseline Show-Att-Tell model ranks all of those relatively

low, where our other baseline Up-Down and our models incorporating facial expressions do

better. Only Face-Cap-Memory (the best of our Face-Cap models by overall metrics) and our

Face-Attend models manage to use verbs like laughing and reading.

In Figure 4.6, we compare some generated captions by different image captioning models

using four representative images. The first one shows that Dual-Face-Att correctly uses

smiling and laughing to capture the emotional content of the image. Step-Inject, Init-Flow,

Face-Cap-Repeat and Face-Cap-Memory are also successful in generating smiling for the

image. For the second sample, Dual-Face-Att and Joint-Face-Att use the relevant verb singing

to describe the image, while other models cannot generate the verb. Similarly, Dual-Face-Att
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Table 4.2: The Entropies of all generated verbs and the probability mass of the Top4 generated verbs

(is, are, sitting, and standing). Reference means the ground-truth captions.

Model Entropy Top4

Reference 6.9963 32.63%

Show-Att-Tell 2.7864 77.05%

Up-Down 2.7092 79.24%

Step-Inject 2.9059 74.80%

Init-Flow 2.6792 78.78%

Face-Cap-Repeat 2.7592 77.68%

Face-Cap-Memory 2.9306 73.65%

Dual-Face-Att 3.0154 71.14%

Joint-Face-Att 2.8074 77.69%

Table 4.3: Comparison of different image captioning models in ranking example generated verbs.

These verbs are mostly selected from the emotion lexicon and are highly ranked in the reference

captions. Higher ranks mean better results.

Model Smiling Looking Singing Reading Eating Laughing

Reference 11 10 27 35 24 40

Show-Att-Tell 19 n/a 15 n/a 24 n/a

Up-Down 14 13 9 n/a 15 n/a

Step-Inject 11 18 10 n/a 15 n/a

Init-Flow 10 21 12 n/a 14 n/a

Face-Cap-Repeat 12 20 9 n/a 14 n/a

Face-Cap-Memory 9 18 15 22 13 27

Dual-Face-Att 14 16 9 19 19 25

Joint-Face-Att 15 13 8 15 17 23

generates the verb reading for the third image. Moreover, most models can correctly generate

smiling for the forth image except Show-Att-Tell and Up-Down which do not use the facial
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SAT: Two women and a man are posing for a picture.

UD: A group of people are posing for a picture.

SI: Two men and a woman are smiling.

IF: Two men and a woman are smiling at the camera.

FR: Two men and a woman are smiling.

FM: Two men and a woman are smiling at a camera.

DFA: Three women are smiling and laughing.

JFA: A group of people are posing for a picture.

SAT: A woman with a black shirt and black pants is standing in front of a microphone.

UD: A man in a black shirt and a woman in a black shirt and a woman in a black shirt.

SI: A man with a beard and a beard is playing a guitar.

IF: A man in a black shirt and a black hat is playing a guitar.

FR: A woman with a black shirt and a black hat is holding a microphone.

FM: A woman in a black shirt is holding a microphone.

DFA: A woman in a black dress is singing into a microphone.

JFA: A woman in a black shirt is singing into a microphone.

SAT: A man in a white shirt is sitting at a table with a computer.

UD: A man in a yellow shirt is sitting at a table with a book in his lap.

SI: A man in a yellow shirt is working on a computer.

IF: A woman in a yellow shirt is sitting at a table with a computer.

FR: A man in a yellow shirt is sitting at a table with a computer.

FM: A woman in a yellow shirt is working on a computer.

DFA: A woman in a yellow shirt is reading a book.

JFA: A man in a yellow shirt is working on a computer.

SAT: Two young girls are sitting in a chair.

UD: A woman in a striped shirt is holding a small child in a striped shirt.

SI: A woman with a brown shirt and a blond woman in a blue shirt are smiling.

IF: A woman with a white shirt and a young girl in a blue shirt are sitting in a chair.

FR: A woman and a woman are smiling at the camera.

FM: A woman and a young girl are smiling.

DFA: A man and a woman are smiling at the camera.

JFA: A woman in a striped shirt is smiling at the camera.

Figure 4.6: Example generated captions using SAT (Show-Att-Tell), UD (Up-Down) SI (Step-

Inject), IF (Init-Flow), FR (Face-Cap-Repeat), FM (Face-Cap-Memory), DFA (Dual-Face-Att) and

JFA (Joint-Face-Att) models.

information. Init-Flow also cannot generate smiling because it uses the facial information only

at initial step which provides a weak emotional signal for the model. Here, Dual-Face-Att can

generate the most accurate caption (“A man and a woman are smiling at the camera”) for the

image, while other models generate some errors. For example, Face-Cap-Memory generates

Image has been removed
due to copyright reasons

Image has been removed
due to copyright reasons

Image has been removed
due to copyright reasons

Image has been removed
due to copyright reasons
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SAT: A man in a black shirt is sitting at a table with a woman in a black shirt and a.

UD: A man in a black shirt is sitting at a table with a book in his hand.

SI: A woman in a black shirt is sitting at a table with a glass of wine in a kitchen.

IF: A woman in a black shirt is sitting at a table with a computer.

FR: A woman in a black shirt is standing in front of a bar with a man in a black shirt.

FM: A man in a black shirt is sitting at a table with a glass of wine.

DFA: Two women are sitting at a table with a laptop and a laptop.

JFA: A man in a black shirt is sitting at a table with a woman in a blackshirt.

SAT: Two men are sitting on a rock and one is holding a large tree.

UD: A little boy in a white shirt is holding a small child in his arms.

SI: A woman in a black shirt is holding a child in a blue dress.

IF: A young boy and a boy are sitting on a rock.

FR: A young boy in a blue shirt is holding a small child in a field.

FM: A young boy and a boy are sitting on a rock with a dog.

DFA: A young boy and a boy are sitting on a rock and smiling.

JFA: A young man in a black shirt is holding a small child.

Figure 4.7: Example generated captions including some errors. (SAT (Show-Att-Tell), UD (Up-

Down) SI (Step-Inject), IF (Init-Flow), FR (Face-Cap-Repeat), FM (Face-Cap-Memory), DFA (Dual-

Face-Att) and JFA (Joint-Face-Att))

“A woman and a young girl are smiling”, which does not describe the man in the image.

Figure 4.7 shows two examples including some improper words/phrases. For the first

image, Dual-Face-Att generates “Two women are sitting at a table with a laptop and a laptop”.

This caption wrongly includes laptop and two women. Here, other models are more successful

in generating relevant image captions. For the second image, Joint-Face-Att incorrectly

generates “holding a small child” and Face-Cap-Memory wrongly generates “a dog”.

4.5 Summary

In this chapter, we have presented several image captioning models incorporating information

from facial features. The joint image captioning models, Dual-Face-Att and Joint-Face-Att

models, learned to apply both facial features and visual content to generate image captions

that produce the highest results as measured by standard metrics on the FlickrFace11K dataset.

They use attention mechanisms to adaptively take into account the presented facial expressions

Image has been removed
due to copyright reasons

Image has been removed
due to copyright reasons
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in images to generate more descriptive image captions. The example generated captions show

that the models can generate more diverse image captions in addition to having a higher ability

to employ facial expression features to describe images.

Moreover, our proposed approaches applying facial expression features achieved more

effective results in comparison with our baseline models without the features. This shows

the effectiveness of applying the features in image captioning in response to RQ 2 discussed

in Chapter 1. As an exploration of which ways are better to control image captioning

using facial expression features, we injected the features at different time steps of a caption

generation process. Among the models using the one-hot encoding version of the features,

Face-Cap-Memory achieved the best results by injecting the features only at initial time

step and employing a specific loss function to remember the features. Among all models,

Dual-Face-Att and Joint-Face-Att achieved the best results by applying an attention-based

version of the features at every time step. This provides an adaptive set of the features in

contrast to applying a fixed one-hot encoding.



84 Image Captioning using Facial Expression and Attention



Part II

Image Captioning with Stylistic

Information
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5
Towards Generating Stylized Image

Captions via Adversarial Training

While most image captioning aims to generate objective descriptions of images, the last few

years have seen work on generating visually grounded image captions which have a specific

style (e.g., incorporating positive or negative sentiment). However, because the stylistic

component is typically the last part of training, current models usually pay more attention to

the style at the expense of accurate content description. In addition, there is a lack of variability

in terms of the stylistic aspects. To address these issues, we propose an image captioning

model called Attend-GAN which has two core components: first, an attention-based caption

generator to strongly correlate different parts of an image with different parts of a caption;

and second, an adversarial training mechanism to assist the caption generator to add diverse

stylistic components to the generated captions. Because of these components, Attend-GAN

87
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can generate correlated captions as well as more human-like variability of stylistic patterns.1

In this chapter, we study style-bearing image captioning using two steps including training on

a factual image caption dataset and then training on a style-bearing image caption dataset. In

the following chapter, we will propose an style-bearing image captioning model trained in

end-to-end fashion combining both factual and style-bearing datasets.

5.1 Introduction

Deep learning has facilitated the task of supplying images with captions. Current image

captioning models [1, 7, 8] have gained considerable success due to powerful deep learning

architectures and large image-caption datasets including the MSCOCO dataset [160]. These

models mostly aim to describe an image in a factual way. However, when humans produce

descriptions of images, they often go beyond the purely factual, and incorporate some

subjective properties like sentiment or stylistic effects, depending on broader context or goals;

a widely discussed example was the photo of Donald Trump at the 2018 G7 Summit where

he is seated with arms crossed in front of Angela Merkel; various commentators described the

photo in terms intended to be negative (“eyes glaring”) or positive (“alpha male”). Researchers

in image captioning have similarly proposed models that allow the generation of captions with

a particular style [30, 49] or sentiment [2, 31] such as positive and negative sentiment, as in

the captions of Figure 5.1. Users often find such captions more expressive and more attractive

[30]; they have the practical purpose of enhancing the engagement level of users in social

applications (e.g., chatbots) [23], and can assist people to make interesting image captions in

social media content [30]. Moreover, Mathews et al. [2] found that they are more common in

the descriptions of online images, and can have a role in transferring visual content clearly

[49]. We have given an overview of this in §2.4, but recap key points here.

1The content of this chapter is based on the following publication:

Omid Mohamad Nezami, Mark Dras, Stephen Wan, Cecile Paris, Len Hamey (2019). Towards Generating

Stylized Image Captions via Adversarial Training. Proceedings of the 2019 Pacific Rim International Conference

on Artificial Intelligence (PRICAI 2019), Cuvu, Fiji.
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1. the gorgeous sky really makes  
the man on the board stand out!
2. a great man flying through the
air while riding a kite board.

1. a group of horses have a tough
race around the track.
2. small number of horses with
jockeys in a race on a track.
 

Figure 5.1: Examples of positive (green) and negative (red) captions.

In stylistically enhanced descriptions, the content of images should still be reflected

correctly. Moreover, the descriptions should fluently include stylistic words or phrases. To

meet these criteria, previous models have used two-stage training: first, training on a large

factual dataset to describe the content of an image; and then training on a small stylistic

dataset to apply stylistic properties to a caption. The models have different strategies for

integrating the learned information from the datasets. Gan et al. [30] proposed a new type of

LSTM network, factored LSTM, to learn both factual and stylistic information. The factored

LSTM has three matrices instead of one multiplied to the input caption: all matrices are

learned on the factual dataset to preserve the factual aspect of the input caption and one is

learned on the stylistic dataset to transfer the style aspect of the input caption. However, there

is no specific mechanism to regulate and switch between factual and stylistic information. To

solve this issue, SentiCap has two Long Short-Term Memory (LSTM) networks: one learns

from a factual dataset and the other one learns from a stylistic dataset [2]. It also detects the

current word’s sentiment level using the ground-truth sentiment label of each word. Then, it

uses the sentiment level to weight the probability distribution of the predicted word by two

LSTMs to regulate their predictions. However, these ground-truth word-level labels are not

available for all stylistic datasets such as the dataset of Gan et al. [30]. To address this, Chen
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et al. [31] applied an attention-based model which is similar to the factored LSTM, but it has

an attention mechanism to differentiate attending to the factual and stylistic information of

the input caption.

Since the stylistic dataset is usually small, preserving the correlations between images

and captions as well as generating a wide variety of stylistic patterns is difficult even with

approaches proposed by Mathews et al. [2] and Chen et al. [31] to regulate between factual

and stylistic information. An imperfect caption from the system of Mathews et al. [2] — “a

dead man doing a clever trick on a skateboard at a skate park” — illustrates the problem: the

man is not actually dead; this is just a frequently used negative adjective.

Recently, Mathews et al. [49] dealt with this by applying a large stylistic dataset to

separate the semantic and stylistic aspects of the generated captions. However, evaluation

in this work was more difficult because the dataset includes stylistic captions which are not

aligned to images. To address this challenge without any large stylistic dataset, we propose

Attend-GAN, an image captioning model using an attention mechanism and a Generative

Adversarial Network (GAN); our particular goal is to better apply stylistic information in the

sort of two-stage architecture in previous work. Similar to the previous work, we first train a

caption generator on a large factual dataset, although Attend-GAN uses an attention-based

version attending to different image regions in the caption generation process [8]. Because of

this, each word of a generated caption is conditioned upon a relevant fine-grained region of the

corresponding image, ensuring a direct correlation between the caption and the image. Then

we train a caption discriminator to distinguish between captions generated by our caption

generator, and real captions, generated by humans. In the next step, on a small stylistic

dataset, we implement an adversarial training mechanism to guide the generator to generate

sentiment-bearing captions. To do so, the generator is trained to fool the discriminator by

generating correlated and highly diversified captions similar to human-generated ones. The

discriminator also periodically improves itself to further challenge the generator. Because

GANs are originally designed to face continuous data distributions not discrete ones like

texts [131], we use a gradient policy [133] to guide our caption generator using the rewards

received from our caption discriminator for the next generated word.
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Figure 5.2: The architecture of the Attend-GAN model. {a1, ..., aK} are spatial visual features

generated by ResNet-152 network. Attend and MC modules are our attention mechanism and Monte

Carlo search, respectively.

5.2 Attend-GAN Model

The purpose of our image captioning model is to generate sentiment-bearing captions. Our

caption generator employs an attention mechanism, described in §5.2.1, to attend to fine-

grained image regions a = {a1, ..., aK}, ai ∈ �D, where the number of regions is K with D

dimensions, in different time steps so as to generate an image caption x = {x 1, . . . , x T}, x i ∈
�N , where the size of our vocabulary is N and the length of the generated caption is T . We

also propose a caption discriminator, explained in §5.2.2, to distinguish between the generated

captions and human-produced ones. We describe our training in §5.2.3. Our proposed model

is called Attend-GAN (Figure 5.2).

5.2.1 Caption Generator

The goal of our caption generator Gθ (x t |x 1:t−1, ât ) is to generate an image caption to achieve

a maximum reward value from our caption discriminator Dφ(x 1:T ), where θ and φ are the

parameters of the generator and the discriminator, respectively. The objective function of the

generator, which is dependent on the discriminator, is to minimize:

L1(θ ) =
∑

1≤t≤T

Gθ (x t |x 1:t−1, ât ).Z
Gθ
Dφ
(x 1:t) (5.1)

where ZGθ
Dφ
(x 1:t) is the reward value of the partially generated sequence, x 1:t , and is estimated
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using the discriminator 2. This is inspired by the literature of reinforcement learning explained

in Chapter 2. Here, Z is an instantaneous reward at each time step in generating the image

caption. It can be interpreted as a score value that x 1:t is real. Since the discriminator can

only generate a reward value for a complete sequence, Monte Carlo (MC) search is applied,

which uses the generator to roll out the remaining part of the sequence at each time step. We

apply MC search N times, and calculate the average reward (to decrease the variance of the

next generated words):

ZGθ
Dφ
(x 1:t) =

⎧⎪⎨
⎪⎩

1
N

N∑
n=1

Dφ(x n
1:T ), x n

1:T ∈ MCGθ (x 1:t;N ) if t < T

Dφ(x 1:t) if t = T
(5.2)

x n
1:T is the n-th MC completed sequence at current time step t. In addition to Equation 5.1,

we calculate the maximum likelihood estimation (MLE) of the generated word with respect

to the attention-based content (ât ) and the hidden state (ht) at the current time of our LSTM,

which is the core of our caption generator, as the second objective function:

L2(θ ) = −
∑

1≤t≤T

log(pw(x t | ât , ht )) +λ1

∑
1≤k≤K

(1− ∑
1≤t≤T

atk)
2 (5.3)

pw is calculated using a multilayer perceptron with a softmax layer on its output and indicates

the probabilities of the possible generated words:

pw(x t | ât , ht) = softmax(ât W a + ht W h + bw) (5.4)

W x and bw are the learned weights and biases. The last term in Equation 5.3 is to encourage

our caption generator to equally consider diverse regions of the given image at the end of

the caption generation process. λ1 is a regularization parameter. ht is calculated using our

2Equation 5.1 does not have anything particular to capture sentiment-bearing information; however, it is

effective to generate realistic captions. In the second stage of training, apart from our model learning from

sentiment-bearing image captions, the discriminator learns from the captions to generate rewards.
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LSTM:

i t = σ(H iht−1 +W i w t−1 + Ai ât + bi)

f t = σ(H f ht−1 +W f w t−1 + A f ât + b f )

g t = tanh(H ght−1 +W g w t−1 + Ag ât + bg)

o t = σ(H oht−1 +W ow t−1 + Aoât + bo)

c t = f t c t−1 + i t g t

ht = o t tanh(c t)

(5.5)

Here, i t , f t , g t , o t , and c t are the parameters of the LSTM and represent input, forget,

modulation, output, and memory gates, respectively. w t−1 is the embedded previous word in

M dimensions, w x ∈ �M . H x , W x , Ax , and bx are learned weights and biases; and σ is the

Sigmoid function. Using ht , our soft attention module generates unnormalized weights ej,t

for each image region a j. Then, the weights are normalized using a softmax layer, e′t :

ej,t = W T
e tanh(W ′

aa j +W ′
hht),e

′
t = softmax(e t) (5.6)

W T
e and W ′

x are our trained weights. Finally, ât , our attention-based content, is calculated

using Equation 5.7:

ât =
∑

1≤ j≤K

e′j,t a j (5.7)

During the adversarial training, the objective function of the caption generator is a

combination of Equation 5.1 and Equation 5.3:

LG(θ ) = λ2 L1(θ ) + L2(θ ) (5.8)

λ2 is a balance parameter. The discriminator cannot be learned effectively from a random

initialization of the generator; we therefore pretrain the generator with the MLE objective

function3:

LG(θ ) = L2(θ ) (5.9)

3We cannot train the generator with Equation 5.8 from the beginning since the generator generates poor

captions and the discriminator cannot learn from the captions to offer valid rewards in Equation 5.1.
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5.2.2 Caption Discriminator

Our caption discriminator is inspired by the Wasserstein GAN (WGAN) [141] which is an

improved version of the GAN [131]. The WGAN generates continuous values and solves the

problem of the GAN generating non-continuous outputs leading to some training difficulties

(e.g. vanishing gradients). The objective function of our WGAN is:

LD(φ) = �x∼�H
[Dφ(x )]−�x∼�G

[Dφ(x)] (5.10)

where φ are the parameters of the discriminator (Dφ); �H is the set of the generated captions

by humans; and �G is the set of the generated captions by the generator. Dφ is implemented

via a Convolutional Neural Network (CNN) that calculates the score value of the input

caption. To feed a caption to our CNN model, we first embed all words in the caption

into M embedding dimensions, {w ′
1, . . . , w ′

T}, w ′
i ∈ �M , and build a 2-dimensional matrix

for the caption, S ∈ �T×M [133]. Our CNN model includes Convolutional (Conv.) layers

with P different kernel sizes {k1, . . . , k P}, k i ∈ �C×M , where C indicates the number of the

words (C ∈ [1, T]). Applying each Conv. layer to S results a number of feature maps,

v i j = k i ⊗ S j: j+C−1 + b j, where ⊗ is a convolution operation and bj is a bias vector. We

apply a batch normalization layer [163], and a nonlinearity, a rectified linear unit (ReLU),

respectively. Then, we apply a max-pooling layer, v∗i =max v i j. Finally, a fully connected

layer is applied to output the score value of the caption. The weights of our CNN model are

clipped to be in a compact space.

5.2.3 Attend-GAN Training

As shown in Algorithm 1, we first pre-train our caption generator for a specific number of

epochs. Then, we apply the best generator model to generate sample captions. The real

captions are selected from the ground truth. In Step 3, our caption discriminator is pre-trained

using a combination of the generated and real captions for a specific number of epochs. Here,

both the caption generator and discriminator are pre-trained on a factual dataset. In Step

4, we start our adversarial training on a sentiment-bearing dataset with positive or negative

sentiment. We continue the training of the caption generator and discriminator for g-steps

and d-steps, respectively. Using this mechanism, we improve both the caption generator
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Algorithm 1: Attend-GAN Training Mechanism.

1: Pre-train the caption generator (Gθ ) using Equation 5.9.

2: Use Gθ to generate sample captions �G and select ground-truth captions �H .

3: Pre-train the caption discriminator (Dφ) using Equation 5.10 and the combination of

�G and �H .

4: repeat

5: for g steps do

6: Apply Gθ to generate image captions.

7: Calculate ZGθ
Dφ

using Equation 5.2.

8: Update θ , the parameters of Gθ , using Equation 5.8.

9: end for

10: for d steps do

11: Generate sample captions �G by Gθ and select human-generated captions �H .

12: Update φ, the parameters of Dφ , using Equation 5.10.

13: end for

14: until Attend-GAN converges

and discriminator. Here, the caption generator applies the received rewards from the caption

discriminator to update its parameters using Equation 5.8.

5.3 Experimental Setup

5.3.1 Datasets

Microsoft COCO Dataset We use the MSCOCO image-caption dataset [160] to train our

models. Specifically, we use the training set of the dataset including 82K+ images and 413K+

captions.

SentiCap Dataset To add sentiment to the generated captions, our models are trained on

the SentiCap dataset [2] including sentiment-bearing image captions. The dataset has two
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separate sections of sentiments: positive and negative. 2,873 captions paired with 998 images

are for training and 2019 captions paired with 673 images are for testing in the positive section.

2,468 captions paired with 997 images are for training and 1,509 captions paired with 503

images are for testing in the negative section.

5.3.2 Evaluation Metrics

Overall Metrics Attend-GAN is evaluated using standard image captioning metrics: ME-

TEOR [166], BLEU [164], CIDEr [100] and ROUGE-L [165]. SPICE has not previously

been used in the literature; however, it is reported for future comparisons because it has

shown a close correlation with human-based evaluations [167]. Larger values of these metrics

indicated better results.

Linguistic Metrics Most work in image captioning considers only the standard overall

metrics above. However, we are also interested in understanding the linguistic properties

of our captions related to sentiment. To analyze the quality of language generated by our

models, we extract all generated adjectives using the Stanford part-of-speech tagger software

[168], and identify the adjectives with strong sentiment values which are found in the list of

the adjective-noun pairs (ANPs) of the SentiCap dataset (for example, cuddly, sunny, shy

and dirty). Then, we calculate Entropy of the distribution of these adjectives as a measure of

variety in lexical selection (higher scores mean more variety) using Equation 5.11.

Entropy= − ∑
1≤ j≤U

log2[p(Aj)]× p(Aj) (5.11)

where p(Aj) is the probability of the adjective (Aj) and U indicates the number of all unique

adjectives. Moreover, we calculate the total probability mass of the four most frequent

adjectives (Top4) generated by our models. Here, lower values mean that the model allocates

more probability to other generated adjectives, also indicating greater variety.
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5.3.3 Models for Comparison

Our models are compared with a range of baseline models from Mathews et al.[2]: CNN+RNN,

which is only trained using the MSCOCO dataset; ANP-Replace, which adds the most com-

mon adjectives to a randomly chosen noun; ANP-Scoring, which applies multi-class logistic

regression to select an adjective for the chosen noun; RNN-Transfer, which is CNN+RNN fine-

tuned on the SentiCap dataset; and their key system SentiCap, which uses two LSTM modules

to learn from factual and sentiment-bearing caption. We also compare with SF-LSTM+Adapt,

which applies an attention mechanism to weight factual and sentiment-based information [31].

The results of all these models in Table 5.1 are obtained from the corresponding references.

Moreover, we first train our attention-based model only on the factual dataset MSCOCO

(we name this model Attend-GAN−SA). This helps us to isolate the effect of applying the

attention-based model without sentiment information. Second, we train our model additionally

on the SentiCap dataset but without our caption discriminator (Attend-GAN−A). This helps us

to specify the effect of applying sentiment information in the model without the discriminator.

Finally, we train our full model using the caption discriminator (Attend-GAN).

5.3.4 Implementation Details

Encoder In this work, we apply ResNet-152 [70] as our visual encoder model pre-trained

using the ImageNet dataset [67]. In comparison with other CNN models, ResNet-152 has

shown more effective results on different image-caption datasets [156]. We specifically use its

Res5c layer to extract the spatial features of an image. The layer gives us 7×7×2048 feature

map converted to 49× 2048 representing 49 semantic-based regions with 2048 dimensions.

Vocabulary Our vocabulary has 9703 words, coming form both the MSCOCO and SentiCap

datasets, for all our models. Each word is embedded into a 300 dimensional vector.

Generator and Discriminator The size of the hidden state and the memory cell of our

LSTM is set to 512. For the caption generator, we use the Adam function [170] for optimiza-

tion and set the learning rate to 0.0001. We set the the size of our mini-batches to 64. To

optimize the caption discriminator, we use the RMSprop solver [172] and clip the weights
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to [−0.01,0.01]. The mini-batches are fixed to 80 for the discriminator. We apply Monte

Carlo search 5 times (Equation 5.2). We set λ1 and λ2 to 1.0 and 0.1 in Equation 5.3 and

5.8, respectively. During the adversarial training, we alternate between Equation 5.8 and

5.10 to optimize the generator and the discriminator, respectively. We particularly operate a

single gradient descent phase on the generator (g steps) and 3 gradient phases (d steps) on the

discriminator every time. The models are trained for 20 epochs to converge. The METEOR

metric is used to select the model with the best performance on the validation sets of positive

and negative datasets of SentiCap because it has a close correlation with human judgments

and is less computationally expensive than SPICE which requires dependency parsing [167].

5.4 Results

5.4.1 Overall Metrics

Comparison with the State-of-the-art All models in Table 5.1 used the same training/test

folds of the SentiCap dataset to make them comparable. In comparison with the state-of-the-

art, our full model (Attend-GAN) achieves the best results for all image captioning metrics

in both positive and negative parts of the SentiCap dataset. We report the average results to

show the average improvements of our models over the state-of-the-art model. Attend-GAN

achieved large gains of 6.15, 6.45, 3.00, and 2.95 points with respect to the best previous

model using BLEU-1, ROUGE-L, CIDEr and BLEU-2 metrics, respectively. Other metrics

show smaller but still positive improvements.

Comparison with Our Baseline Models Our models are compared in Table 5.1 in terms

of image captioning metrics. Attend-GAN outperforms Attend-GAN−A over all metrics

across both positive and negative parts of the SentiCap dataset; the discriminator is thus an

important part of the architecture. Attend-GAN outperforms Attend-GAN−SA for all metrics

except, by a small margin, CIDEr and ROUGE-L. Recall that Attend-GAN−SA is trained

only on the large MSCOCO (with many captions), and so is in a sense encouraged to have

diverse captions; second-stage training for Attend-GAN−A and Attend-GAN leads to more

focussed captions relevant to SentiCap. As CIDEr and ROUGE-L are the two recall-oriented
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Table 5.1: The compared performances on different sections of SentiCap and their average. BLEU-N

performance metric is shown by B-N. (The best performances are bold.)

Senti Model B-1 B-2 B-3 B-4 ROUGE-L METEOR CIDEr SPICE

Pos

CNN+RNN 48.7 28.1 17.0 10.7 36.6 15.3 55.6 _

ANP-Replace 48.2 27.8 16.4 10.1 36.6 16.5 55.2 _

ANP-Scoring 48.3 27.9 16.6 10.1 36.5 16.6 55.4 _

RNN-Transfer 49.3 29.5 17.9 10.9 37.2 17.0 54.1 _

SentiCap 49.1 29.1 17.5 10.8 36.5 16.8 54.4 _

SF-LSTM + Adap 50.5 30.8 19.1 12.1 38.0 16.6 60.0 _

Attend-GAN−SA 56.1 32.5 19.4 11.8 44.8 17.1 63.0 15.9

Attend-GAN−A 55.8 33.4 20.1 12.4 44.2 18.6 61.1 15.7

Attend-GAN 56.9 33.6 20.3 12.5 44.3 18.8 61.6 15.9

Neg

CNN+RNN 47.6 27.5 16.3 9.8 36.1 15.0 54.6 _

ANP-Replace 48.1 28.8 17.7 10.9 36.3 16.0 56.5 _

ANP-Scoring 47.9 28.7 17.7 11.1 36.2 16.0 57.1 _

RNN-Transfer 47.8 29.0 18.7 12.1 36.7 16.2 55.9 _

SentiCap 50.0 31.2 20.3 13.1 37.9 16.8 61.8 _

SF-LSTM + Adap 50.3 31.0 20.1 13.3 38.0 16.2 59.7 _

Attend-GAN−SA 55.4 32.4 19.4 11.9 44.4 17.0 63.4 15.6

Attend-GAN−A 54.7 32.6 20.4 12.9 43.2 17.7 60.4 16.1

Attend-GAN 56.2 34.1 21.3 13.6 44.6 17.9 64.1 16.2

Avg

CNN+RNN 48.15 27.80 16.65 10.25 36.35 15.15 55.10 _

ANP-Replace 48.15 28.30 17.05 10.50 36.45 16.25 55.85 _

ANP-Scoring 48.10 28.30 17.15 10.60 36.35 16.30 56.25 _

RNN-Transfer 48.55 29.25 18.30 11.50 36.95 16.60 55.00 _

SentiCap 49.55 30.15 18.90 11.95 37.20 16.80 58.10 _

SF-LSTM + Adap 50.40 30.90 19.60 12.70 38.00 16.40 59.85 _

Attend-GAN−SA 55.75 32.45 19.40 11.85 44.60 17.05 63.20 15.75

Attend-GAN−A 55.25 33.00 20.25 12.65 43.70 18.15 60.75 15.90

Attend-GAN 56.55 33.85 20.80 13.05 44.45 18.35 62.85 16.05
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Table 5.2: Entropy and Top4 of the generated adjectives using different models.

Senti Model Entropy Top4

Pos

Attend-GAN−SA 2.2457 93.33%

Attend-GAN−A 3.0324 72.11%

Attend-GAN 3.5671 62.33%

Neg

Attend-GAN−SA 2.2448 91.67%

Attend-GAN−A 4.1040 48.44%

Attend-GAN 3.9562 50.51%

Avg

Attend-GAN−SA 2.2453 92.50%

Attend-GAN−A 3.5682 60.28%

Attend-GAN 3.7617 56.42%

metrics, they suffer in this two-stage process, illustrating the issue we noted in §5.1. The

discriminator, however, removes almost all of this penalty, as well as boosting the other

metrics beyond Attend-GAN−SA. Furthermore, §5.4.2 will illustrate how Attend-GAN−SA

produces unsatisfactory captions in terms of sentiment.

5.4.2 Linguistic Metrics

Table 5.2 shows that Attend-GAN achieves the best results on average for Entropy (highest

score) and Top4 (lowest) compared to other models, by a large margin with respect to

Attend-GAN−SA. It is not surprising that Attend-GAN−SA has the lowest variability of use of

sentiment-bearing adjectives because it does not use the stylistic dataset. As demonstrated by

the improvement of Attend-GAN over Attend-GAN−A, the discriminator helps in generating a

greater diversity of adjectives.

The top-10 adjectives generated by our models are shown in Table 5.3. white is generated

for both negative and positive sections because they are common in both sections. Attend-

GAN and Attend-GAN−A produce a natural ranking of sentiment-bearing adjectives for both

sections. For example, these models rank nice as the most positive adjective, and lonely as the
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Table 5.3: The top-10 adjectives that are generated by our models and are in the adjective-noun

pairs of the SentiCap dataset.

Senti Model Top 10 Adjectives

Pos

Attend-GAN−SA white, black, small, blue, different, little, busy, _, _, _

Attend-GAN−A nice, beautiful, happy, busy, great, sunny, good, cute, pretty, white

Attend-GAN nice, beautiful, happy, great, good, sunny, busy, white, pretty, delicious

Neg

Attend-GAN−SA black, white, small, blue, different, tall, little, _, _ , _

Attend-GAN−A lonely, dead, broken, stupid, dirty, bad, cold, little, crazy, lazy

Attend-GAN lonely, stupid, broken, dirty, dead, cold, bad, white, crazy, little

most negative. As Attend-GAN−SA does not use the stylistic dataset, it generates a similar and

limited (< 10) range of adjectives for both.

Figure 5.3 shows sample sentiment-bearing captions generated by our models for the

positive and negative sections of the SentiCap dataset. For instance, for the first two images,

Attend-GAN correctly applies positive sentiments to describe the corresponding images (e.g.,

“nice street”, “tasty food”). Here, Attend-GAN−A also succeeds in generating captions with

positive sentiments, but less well. In the third image, Attend-GAN uses “pretty woman” to

describe the image which is better than the “beautiful court” of Attend-GAN−A: for this image,

all ground-truth captions have positive sentiment for the noun “girl” (e.g. “a beautiful girl

is running and swinging a tennis racket”); none of them describes the noun “court” with a

sentiment-bearing adjective as Attend-GAN−A does. For all images, since Attend-GAN−SA

is not trained using the SentiCap dataset, it does not generate any caption with sentiment.

For the fourth image, Attend-GAN generates “a group of stupid people are playing frisbee

on a field”, applying “stupid people” to describe the image negatively. Here, one of the

ground-truth captions exactly includes “stupid people” (“two stupid people in open field

watching yellow tent blown away”). Attend-GAN−A, like our flawed example from §5.1,

refers instead inaccurately to a dead man. For the fifth image (as for the first image), Attend-

GAN has incorporates more (appropriate) sentiment in comparison to Attend-GAN−A. It

generates “rough hill” and “cold day”, while Attend-GAN−A only generates the former. It also

uses “skier” which is more appropriate than “person”. In the last image, Attend-GAN adds
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Figure 5.3: Examples on the positive (first 3) and negative (last 3) datasets (AS for Attend-GAN−SA,

A for Attend-GAN−A, AG for Attend-GAN and Example Ref for an example from the reference

captions). Green and red colors indicate the generated positive and negative adjective-noun pairs in

SentiCap, respectively.

“bad picture” and Attend-GAN−A generates “bad food”. One of the ground-truth captions

exactly includes “bad picture” (in Appendix A, Figures A.1 and A.2 give more examples

showing the effectiveness of the Attend-GAN model compared to other models to generate

sentiment-bearing image captions).
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5.5 Summary

In this chapter, we proposed Attend-GAN, an attention-based image captioning model using

an adversarial training mechanism. Our model is capable of generating stylistic captions

which are strongly correlated with images and contain diverse stylistic components. Attend-

GAN achieves the state-of-the-art performance on the SentiCap dataset. It outperforms our

baseline models and generates stylistic captions with a high level of variety. It does this by

adding stylistic information in the second stage of training using a small stylistic dataset

similar to the previous work [2, 30, 31]; however, it uses the adversarial training mechanism

to effectively regulate between factual and stylistic information by comparing the generated

captions with human-generated ones. The mechanism guides Attend-GAN to apply diverse

stylistic patterns at proper time, in response to RQ 3 discussed in Chapter 1, while maintaining

the relationship between generated captions and visual content.



104 Towards Generating Stylized Image Captions via Adversarial Training



6
Senti-Attend: Image Captioning using

Sentiment and Attention

As noted in the previous chapters, there has been much recent work on image captioning

models that describe the factual aspects of an image. Recently, some models have incorporated

non-factual aspects into the captions, such as sentiment or style. However, such models

typically have difficulty in balancing the semantic aspects of the image and the non-factual

dimensions of the caption, in part because of the usual two-stage architecture of such systems;

in addition, it can be observed that humans may focus on different aspects of an image

depending on the chosen sentiment or style of the caption. While there has been some

recent purely text-based work on generating text with aspect-based sentiment, this visually

grounded sentiment presents different challenges. To address this, we design an attention-

based model, named Senti-Attend, to better add sentiment to image captions. The model

105
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embeds and learns sentiment with respect to image-caption data, and uses both high-level and

word-level sentiment information during the learning process. Senti-Attend outperforms the

state-of-the-art work in image captioning with sentiment using standard evaluation metrics.

An analysis of generated captions also shows that our model does this by a better selection of

the sentiment-bearing adjectives and adjective-noun pairs.1

6.1 Introduction

As discussed in §5.1, researchers in image captioning have proposed models that allow

the generation of captions with a particular style [30, 49] or sentiment [2, 31] for different

applications. In sentiment-bearing image captioning, the focus of the caption could be

different depending on the desired sentiment. Figure 6.1 contains an example image from the

dataset of human-authored sentiment-infused captions from Mathews et al. [2], where all three

negative captions focus on the mugs, and the positive captions focus on the light or the kitchen

generally. Previous work in this domain usually does not use attention mechanisms [7, 8, 20];

however, the state-of-the-art image captioning models do, and the above observation suggests

it would be useful here. And while some purely textual generation systems do in some respects

focus on elements on the source — e.g. generation of reviews with aspect-based sentiment

[173], or using an attention mechanism [174] — these are quite different from the visually

grounded aspects requiring spatial attention. The Senti-Attend model that we propose in

this chapter, therefore, incorporates spatial attention into the generation of sentiment-bearing

captions.

Moreover, we note that previous work similar to our model proposed in Chapter 5, usually

apply a two-stage training mechanism: training on a large factual dataset and then training

on a small stylistic dataset. As we discussed in the previous chapter, this usually leads to a

small and limited set of stylistic patterns because the image captioning model usually learns

1The content of this chapter is based on the following paper:

Omid Mohamad Nezami, Mark Dras, Stephen Wan, Cecile Paris (2018). Senti-Attend: Image Captioning

using Sentiment and Attention. arXiv preprint arXiv:1811.09789.
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Figure 6.1: An image with different foci for positive (“a beautiful well-appointed kitchen”) or

negative (“ugly mugs”) sentiments.

from a small scale stylistic dataset in the second stage of training. The model also has a

difficulty to regulate between factual and stylistic information since it mostly concentrates

on generating stylistic image captions in the second stage. Thus, Senti-Attend uses an end-

to-end training mechanism which needs one stage training for generating image captions

with stylistic information. It learns from the combination of factual and stylistic datasets

by assigning different labels to factual and stylistic captions during training. This helps

Senti-Attend to differentiate between applying semantic and stylistic information in one phase

training from a large combined dataset. To do so, Senti-Attend needs to encode stylistic

information in a way that is distinguishable from factual information and does not ‘damage’

this information. This is mostly inspired by the literature of controlled natural language

generation discussed in §2.4.2. However, the previous work usually encoded and injected

sentiment using one-hot vectors at different time steps [35, 48], which can have the effect

of forcing sentiment into a generated description of an image that is not semantically suited

to the image. Thus, the focus of the encoding part of Senti-Attend model is to embed the

sentiment information in real-valued vectors, allowing the model to learn where sentiment

can be applied without changing semantic relationship between the image and the generated

caption. The model incorporates two kinds of sentiment embedding, which turn out to be

complementary. The high-level embedding captures overall sentiment; it is fed into the long

short-term memory (LSTM) network that handles the caption generation. The word-level
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embedding, in contrast, captures a notion of sentiment linked to the words in the vocabulary.

6.2 Approach

Our image captioning model has an attention-based encoder-decoder mechanism to generate

sentiment-bearing captions; we call our model Senti-Attend. Our model takes as the first input

an image encoded into K image feature sets, a = {a1, ..., aK}. Each set has D dimensions

to represent a region of the image, termed spatial features, ai ∈ �D. a is usually generated

using a convolutional layer of a convolutional neural network (CNN). As the second input,

we have the targeted sentiment category (s) to generate the image description with specific

sentiment. The model takes these inputs and generates a caption x encoded as a sequence of

1-of-N encoded words.

x = {x 1, . . . , x T}, x i ∈ �N (6.1)

where N is the size of the vocabulary and T is the length of the caption.

6.2.1 Spatial Features

ResNet-152 [70] is used as the CNN model. It has been pre-trained on the ImageNet

dataset [10]. For use in our image captioning model, we use 7× 7× 2048 features from the

Res5c layer of the CNN model. Then, we reshape the features into 49× 2048 dimensions.

6.2.2 Targeted Sentiment Category

Our model aims to achieve an image description that is relevant to a targeted sentiment

category similar to our previous model described in Chapter 5. Similarly, sentiment categories

are { Positive, Negative }, as per the SentiCap work [2]. However, we have a further sentiment

category { Neutral }, which is for generating captions without dominant sentiment values. In

our problem statement, we assume that the targeted sentiment category is already specified, as

previous work does. Because our model uses the sentiment category to describe an image, we

can change the sentiment category to generate a different caption with a new sentiment value.
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We embed the sentiment categories to give real value vectors, which are randomly ini-

tialized. Then, our model learns a sentiment category’s vector during training time. Using

this mechanism, we allow our system to learn the sentiment information in an adaptive way

with respect to visual and text data. Specifically, we use one sentiment embedding vector (E1)

as an additional input to a long short-term memory (LSTM) network. In addition, we use

another embedding vector (E2) as a supplementary energy term to predict the next word’s

probability 2. E x , the embedding vector of the sentiment category, has F dimensions, E x ∈ �F .

E1 is to model the high-level representation of the sentiment concept in the generated caption.

E2 represents desired word-level sentiment.

6.2.3 Captioning Model

Senti-Attend uses a sentiment term specifying the targeted sentiment and an attention mecha-

nism attending to the spatial visual features. It aims to minimize the following cross entropy

loss (the first loss):

L1 = −
∑

1≤t≤T

log(p1(x t |ht , ât , E2)) +
∑

1≤k≤K

(1− ∑
1≤t≤T

atk)
2 (6.2)

p1 = softmax(ht W h + ât W a + E2W e + b) (6.3)

where p1, as the categorical probability distribution across all words in the vocabulary, is

from the output of a multilayer perceptron; x t is the next targeted word, from the ground truth

caption; E2 is the second embedded vector of sentiment; ht is the hidden state of the LSTM,

calculated using Equation 6.6; ât is the attention-based content (Equation 6.7); and W x and

b are our trained weights and bias, respectively. The loss function contains a regularization

term (the last part), to encourage the system to take equal notice to different parts of the image

by the end of a caption generation process.

2We found E1 effective as the input of the decoder and E2 as an external factor impacting on the probability

distribution of the next generated word. We have also tried applying E1 to initiate the decoder, but, we didn’t

achieve good results.
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Figure 6.2: The framework of the Senti-Attend model. Spatial image features {a1, ..., ak} are

attended using our attention-based component. They are the outputs of our ResNet-152 network.

Senti-Attend also includes the following sentiment-specific cross entropy loss that we call

the second loss:

L2 = −1
L

∑
1≤t≤L

log(p2(s |ht)) (6.4)

p2(s |ht) = softmax(ht W s + bs) (6.5)

where p2(s |ht) is the categorical probability distribution of the current state (ht) across three

sentiment classes { Positive, Neutral, Negative }, obtained from a multilayer perceptron; s is

the targeted sentiment class (as the ground-truth sentiment label compared to E x as a learned

sentiment embedding vector); and W s and bs are our trained weights and bias. Using this loss

function, Senti-Attend model can learn the targeted sentiment class at the end of each time

step. The model architecture is shown in Figure 6.2.
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Our LSTM decoder is defined by Equations 6.6:

i t = σg(W i w t−1 +H iht−1 + Ai ât + BiE1 + bi)

g t = σh(W g w t−1 +H ght−1 + Ag ât + BgE1 + bg)

o t = σg(W ow t−1 +H oht−1 + Aoât + BoE1 + bo)

f t = σg(W f w t−1 +H f ht−1 + A f ât + B f E1 + b f )

c t = f t c t−1 + i t g t

ht = o tσh(c t)

(6.6)

where i t , g t , o t , f t and c t are input gate, input modulation gate, output gate, forget gate and

memory cell, respectively. Here, w t−1 is a real value vector with M dimensions to represent

the previous word, w x ∈ �M , embedded using our model. E1 is the first embedded vector of

sentiment. It is used to condition the caption generation process using the targeted sentiment,

which we refer as high-level sentiment. W x , H x , Ax , Bx , and bx are trained weights and biases.

σg and σh are the logistic sigmoid function and the hyperbolic tangent function, respectively.

ât is estimated using:

ât =
∑

1≤ j≤K

e′j,t a j (6.7)

where our generated attention weights are specified with e′j,t that we normalize using a softmax

function applied on the generated scores (e t) of our attention-based component:

e′t = softmax(e t) (6.8)

ej,t = W T
e tanh(W ′

aaj +W ′
hht)

We specify the trainable parameters of the component with W T
e and W ′

x .

6.3 Experimental Setup

6.3.1 Datasets

Microsoft COCO dataset This dataset [25], which is the largest image captioning dataset,

is used to train the Senti-Attend model. We use the specified training portion of the dataset
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which includes 413K+ captions for 82K+ images. This dataset can help our model to generate

generic image captions.

SentiCap dataset This dataset [2] is used to train our model to generate captions with

sentiment. It includes manually generated captions with two parts: positive and negative

sentiments. The training portion of the positive part consists of 2873 captions for 998 images

and the testing portion of the positive part consists of 2019 captions for 673 images. The

training portion of the negative part contains 2468 captions for 997 images and the testing

portion of the negative part contains 1509 captions for 503 images.

Similar to Chapter 5, we use both of these datasets to train our model. However, for the

training phase, we combine the training sets of the Microsoft COCO and the SentiCap dataset

so that all captions in the Microsoft COCO dataset are assigned the neutral label in terms

of sentiment values. We separately report our results on the negative and positive test parts

similar to other work in this domain [2, 31, 48].

6.3.2 Evaluation Metrics

Overall Metrics As in §5.3.2, we evaluate Senti-Attend model using SPICE [167], CIDEr

[100], METEOR [166], ROUGE-L [165] and BLEU [164], which are standard evaluation

metrics. Larger values are better results for all metrics.

Linguistic Metrics As in §5.3.2, we calculate entropy for measuring the diversity of the

generated adjectives, which are in the set of the adjective-noun pairs (ANPs) provided in

the SentiCap dataset. Moreover, to consider how well the model’s captions attend to objects

chosen by humans to add a particular sentiment to, we also calculate how often a model’s

chosen nouns correspond to the constituent nouns of the ANPs in the reference captions. To

do this we consider the SPICE metric [167]. In its full form, SPICE maps reference and

generated captions to scene graphs that are derived from dependency trees, and then calculates

their overlap; this proves to give a higher correlation with human judgements than the other

standard metrics. For our evaluation goal here, we are only interested in overlap in objects

chosen for reference and generated captions, so we implement a simplified version of SPICE

that only considers noun matches, SPICEN ; this includes the SPICE functionality of matching

WordNet synonyms [167] (for example, street and road). Relatedly, we calculate precision
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using the generated ANPs by each model. We divide the number of the generated ANPs

found in the (sentiment-appropriate) reference captions by the overall generated ANPs. Larger

values show better results for these metrics.

Human Sentiment Evaluation In addition to the above, we gather human judgements

about the sentiment of the generated captions, as it is possible that neither the overall metrics

nor the linguistic metrics capture the sentiment of the caption as a whole. As this kind of

human evaluations is not commonly done in previous work, there is no standard approach to

draw on. We use an approach similar to that of Mathews et al. [2] in validating the quality of

their SentiCap dataset. In that work, each caption was given to three Amazon Mechanical

Turkers, and asked whether the sentiment was positive, negative or neutral. Here we randomly

select 50 positive and 50 negative captions generated by Senti-Attend, with additional captions

randomly sampled from the MSCOCO and SentiCap ground-truth datasets such that each

Turker had to annotate 20 each of positive, neutral and negative captions. These ground-truth

captions allow benchmarking both for the Senti-Attend captions and with respect to the

validation data of Mathews et al. [2].

6.3.3 Models for Comparison

To evaluate our model’s performance in generating sentiment-bearing captions, we compare it

with high-performing approaches in this domain, as described in Chapter 2. Mathews et al.[2]

introduced the task and the SentiCap dataset, and the SentiCap model for generating captions.

Chen et al.[31] proposed SF-LSTM+Adapt to weight the factual and sentimental dimensions

of the input captions. You et al.[48] proposed two models for incorporating sentiment into

image captioning tasks: Direct Inject, adding a new dimension to the input; and Sentiment

Flow, using a new architecture that injects sentiment in different caption generation steps.

Attend-GAN [3], as the state-of-the-art, incorporates sentiment in a different fashion, using

an adversarial training mechanism (this is our previous approach explained in Chapter 5).

For model-internal comparisons, we use our attention-based image captioning model

without sentiment inputs (the Attend model); this allows us to assess the effect of spatial

attention alone, without sentiment (only images as inputs). We further define three variants of

our general Senti-Attend system (Figure 6.2). First, we use one-hot embedding representations



114 Senti-Attend: Image Captioning using Sentiment and Attention

for the ternary sentiment instead of the two embedding vectors (E1 and E2). We also do not

use the second loss function. We call this model Senti-Attend−E1E2 L2
(showing the impact

of adding sentiment in addition to images as inputs). We speculate that the distributed

representation of sentiment, analogous to those used in Ghosh et al.[52] and Zhou et al.[51],

will allow a model to be more selective about where to apply sentiment, where this one-hot

variant in contrast might force sentiment inappropriately. Second, we only use the first

embedding vector (E1) instead of both embedding vectors, and again do not use the second

loss function: we call this the Senti-Attend−E2 L2
model. Third, we only leave out the second

loss function, giving the Senti-Attend−L2
model. We name our full approach, which uses both

embedding vectors and the second loss function, the Senti-Attend model. All Senti-Attend

models have a similar architecture applying high-level and word-level sentiment information.

6.3.4 Implementation Details

In this work, we set the size of the memory cell and the hidden state of the LSTM to 2048

dimensions for all models except the Attend model. The model has the memory cell and the

hidden state with size of 1024 dimensions (the Attend model can generate a better performance

using this size). The word embedding and the sentiment embedding vectors have 512 and 256

dimensions, respectively. The Adam optimization function with a learning rate of 0.001 is

applied to optimize our network [170]. We set the size of mini-batches to 180 for all models

except the Attend model, which has mini-batches of size 100 (the Attend model can generate

a better performance using this batch size). The size of our vocabulary is fixed to 9703 for all

models. Since METEOR is more closely correlated with human judgments and is calculated

more quickly than SPICE (METEOR does not need dependency parsing) [167], it is used to

select the best model on the validation set.

6.4 Results
6.4.1 Overall Metrics

In Table 6.1, we report the results of Senti-Attend compared to the state-of-the-art (the results

of the state-of-the-art are obtained from the cited references) on the SentiCap dataset. We use
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the same training/test split, so numbers are comparable. The Senti-Attend model achieved

better results compared to the previous state-of-the-art by all standard evaluation metrics

except BLEU-4 for the negative test set, where the model is very marginally (0.1) lower

than the Sentiment Flow model; all the average results outperform the recent state-of-the-art

Table 6.1: Our image captioning results (%) compared to the state-of-the-art models on the SentiCap

test split. Pos, Neg, and Avg show the results on the positive test set, the negative test set and their

average. The best performances are bold. (B-N: BLEU-N, R: ROUGE-L, M: METEOR, C: CIDEr, S:

SPICE).

Senti Model B-1 B-2 B-3 B-4 R M C S

Pos

SentiCap 49.1 29.1 17.5 10.8 36.5 16.8 54.4 _

SF-LSTM+Adapt 50.5 30.8 19.1 12.1 38.0 16.6 60.0 _

Direct Inject 51.2 30.6 18.8 11.6 38.4 17.2 61.1 _

Sentiment Flow 51.1 31.4 19.4 12.3 38.6 16.9 60.8 _

Attend-GAN 56.9 33.6 20.3 12.5 44.3 18.8 61.6 15.9

Ours: Attend 57.1 33.8 20.6 13.1 45.3 17.8 69.2 17.2

Ours: Senti-Attend 57.6 34.2 20.5 12.7 45.1 18.9 68.6 16.7

Neg

SentiCap 50.0 31.2 20.3 13.1 37.9 16.8 61.8 _

SF-LSTM+Adapt 50.3 31.0 20.1 13.3 38.0 16.2 59.7 _

Direct Inject 52.2 33.6 22.2 14.6 39.8 17.1 68.4 _

Sentiment Flow 51.0 33.0 21.9 14.8 39.4 17.0 70.1 _

Attend-GAN 56.2 34.1 21.3 13.6 44.6 17.9 64.1 16.2

Ours: Attend 56.5 33.5 20.2 12.5 45.0 17.7 67.7 16.3

Ours: Senti-Attend 58.6 35.4 22.3 14.7 45.7 19.0 71.9 17.4

Avg

SentiCap 49.55 30.15 18.90 11.95 37.20 16.80 58.10 _

SF-LSTM+Adapt 50.40 30.90 19.60 12.70 38.00 16.40 59.85 _

Direct Inject 51.70 32.10 20.50 13.10 39.10 17.15 64.75 _

Sentiment Flow 51.05 32.20 20.65 13.55 39.00 16.95 65.49 _

Attend-GAN 56.55 33.85 20.80 13.05 44.45 18.35 62.85 16.05

Ours: Attend 56.80 33.65 20.40 12.80 45.15 17.75 68.45 16.75

Ours: Senti-Attend 58.10 34.80 21.40 13.70 45.40 18.95 70.25 17.05
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Table 6.2: The image captioning results (%) of our proposed models on the SentiCap test split. Pos,

Neg, and Avg show the results on the positive test set, the negative test set and their average. The best

performances are bold. (B-N: BLEU-N, R: ROUGE-L, M: METEOR, C: CIDEr, S: SPICE).

Senti Model B-1 B-2 B-3 B-4 R M C S

Pos

Attend 57.1 33.8 20.6 13.1 45.3 17.8 69.2 17.2

Senti-Attend−E1E2 L2
56.0 32.3 18.7 11.1 43.6 18.7 60.8 15.9

Senti-Attend−E2 L2
57.1 34.1 21.0 13.2 45.5 18.1 69.9 16.8

Senti-Attend−L2
56.4 33.2 19.7 12.3 44.2 18.0 65.0 16.1

Senti-Attend 57.6 34.2 20.5 12.7 45.1 18.9 68.6 16.7

Neg

Attend 56.5 33.5 20.2 12.5 45.0 17.7 67.7 16.3

Senti-Attend−E1E2 L2
55.8 32.5 19.5 11.9 43.7 18.1 62.3 16.5

Senti-Attend−E2 L2
56.6 34.0 21.1 13.6 45.2 18.1 69.9 16.4

Senti-Attend−L2
56.6 34.2 21.5 14.1 45.4 18.0 71.3 16.8

Senti-Attend 58.6 35.4 22.3 14.7 45.7 19.0 71.9 17.4

Avg

Attend 56.80 33.65 20.40 12.80 45.15 17.75 68.45 16.75

Senti-Attend−E1E2 L2
55.90 32.40 19.10 11.50 43.65 18.40 61.55 16.20

Senti-Attend−E2 L2
56.85 34.05 21.05 13.40 45.35 18.10 69.90 16.60

Senti-Attend−L2
56.50 33.70 20.60 13.20 44.80 18.00 68.15 16.45

Senti-Attend 58.10 34.80 21.40 13.70 45.40 18.95 70.25 17.05

Attend-GAN on the SentiCap dataset on all metrics, which itself showed large improvements

over previous approaches (although not on all metrics in that case).

Table 6.2 shows the comparison between our model variants, to assess the contributions

of elements of the main model. The Senti-Attend model has achieved the best performances

for all evaluation metrics across positive, negative and average test sets. The Senti-Attend−L2

and Senti-Attend−E2 L2
models have comparable performance (although we observe in §6.4.2

below that Senti-Attend−L2
produces better sentiment-bearing captions by our linguistic

criteria). These two models, which are using the sentiment embedding vectors, outperform

Senti-Attend−E1E2 L2
for all evaluation metrics except METEOR, showing the effectiveness
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Table 6.3: The Entropy of the generated adjectives and the SPICE of the generated nouns (SPICEN )

using our models on the SentiCap test split. We also calculated the precision of the generated ANPs

using the models.

Senti Model Entropy SPICEN Precision

Pos

Attend 2.2042 15.8% 40.0%

Senti-Attend−E1E2 L2
3.2840 13.7% 39.1%

Senti-Attend−E2 L2
3.2795 15.3% 32.0%

Senti-Attend−L2
3.2691 14.4% 35.1%

Senti-Attend 3.2040 15.0% 39.3%

Neg

Attend 2.1513 15.5% 40.0%

Senti-Attend−E1E2 L2
3.5681 18.1% 46.2%

Senti-Attend−E2 L2
3.5895 16.7% 37.9%

Senti-Attend−L2
3.5396 17.7% 46.1%

Senti-Attend 3.7954 17.7% 51.4%

Avg

Attend 2.17775 15.65% 40.00%

Senti-Attend−E1E2 L2
3.42605 15.90% 42.65%

Senti-Attend−E2 L2
3.43450 16.00% 34.95%

Senti-Attend−L2
3.40435 16.05% 40.60 %

Senti-Attend 3.49970 16.35% 45.35%

of our embedding approach. Here, we report the results of the Attend model to show the

performance of our attention-based system without sentiment; however, the model is not

effective in terms of sentiment-bearing captions (Table 6.3).

6.4.2 Linguistic Metrics

Table 6.3 shows the Attend model, which does not have sentiment inputs, achieves the lowest

Entropy and SPICEN . The Senti-Attend model gives the highest Entropy and SPICEN , and so

has both the highest variability in adjective choice for describing sentiment, and also attends

best to the objects (represented by nouns) that human annotators choose to apply sentiment to
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Table 6.4: Top-10 generated adjectives using our models.

Senti Model Top 10 Adjective

Pos

Attend white, black, small, blue, little, tall, different, _, _, _

Senti-Attend−E1E2 L2
nice, beautiful, great, happy, good, busy, white, sunny, blue, black

Senti-Attend−E2 L2
white, black, blue, small, nice, little, beautiful, tall, sunny, happy

Senti-Attend−L2
great, nice, beautiful, white, black, blue, busy, right, healthy, happy

Senti-Attend beautiful, nice, sunny, great, busy, white, blue, good, happy, calm

Neg

Attend white, black, small, blue, little, tall, different, busy, _, _

Senti-Attend−E1E2 L2
dirty, stupid, lonely, bad, broken, cold, dead, little, crazy, white

Senti-Attend−E2 L2
white, black, blue, small, little, dead, tall, busy, lonely, dirty

Senti-Attend−L2
dirty, white, black, dead, lonely, stupid, little, blue, broken, cold

Senti-Attend lonely, stupid, dead, dirty, broken, white, cold, black, bad, weird

in captions; in addition, it generates the best precision value for the generated ANPs.

SPICEN further shows that Senti-Attend−E1E2 L2
is less effective than other Senti-Attend

models at choosing appropriate nouns to describe with sentiment. This accords with our

intuition that the one-hot sentiment encoding does indeed force sentiment into captions in

ways that are not optimal. Of the remaining models, Senti-Attend−L2
has the best SPICEN after

Senti-Attend. Senti-Attend−E2 L2
has the best Entropy after Senti-Attend and a good value of

SPICEN ; however, it does not have a good precision, indicating that having separate word-level

sentiment is useful. As noted in the previous section, it achieved comparable performance to

Senti-Attend−E1E2 L2
for all overall evaluation metrics. This shows that producing captions that

combine good performances for evaluation metrics (i.e. producing good captions in general),

a high variety of sentiment terms, and good alignment with objects chosen to apply sentiment

to, is a challenging issue in this domain. Nevertheless, the full Senti-Attend model is able to

do well on all these competing objectives.

By way of examples, Table 6.4 shows the top-10 generated adjectives using our models.

We observe that colours are repeated for both positive and negative generated captions (as

they are in both positive and negative ground-truth captions): these commonly appear in non-

sentiment-based captioning system outputs. Among our sentiment models, Senti-Attend−E2 L2
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A: a large clock tower with a clock 
on it .  
SA-2EL: a clock tower with a lonely  
clock on its face . 
SA-EL: a clock tower is shown in the  
middle of the day . 
SA-L: a clock tower with a sky  
background . 
SA: a clock tower is shown on the side 
of a damaged building .

A: a clock tower with a beautiful sky in the 
background .  
SA-2EL: a clock tower is shown in the 
middle of a beautiful day . 
SA-EL: a clock tower with a beautiful sky 
in the background . 
SA-L: a clock tower is shown on a nice 
day .

A: a black bear is walking in the water .   
SA-2EL: a black bear walking through 
a river with dead grass . 
SA-EL: a black bear is walking  
through the water . 
SA-L: a black bear walking through  
a dirty river . 
SA: a black bear is walking through  
a muddy river .

A: a black bear is walking in the water .  
SA-2EL: a black bear walking through 
a river with a great rock . 
SA-EL: a black bear walking through 
a stream of water . 
SA-L: a black bear walking through a 
stream of water . 
SA: a black bear is walking through a 
beautiful river .

A: a little girl holding a teddy bear 
in her hands .  
SA-2EL: a cute girl is holding 
a large stuffed bear . 
SA-EL: a little girl holding a pink 
teddy bear . 
SA-L: a pretty girl holding a teddy 
bear in front of a crowd . 
SA: a cute baby is holding a pink 
teddy bear .

A: a kitchen with a stove and a stove .  
SA-2EL: a nice kitchen with a great   
wall of appliances . 
SA-EL: a kitchen with a stove and  
a microwave . 
SA-L: a kitchen with a great wall  
and cabinets and a great wall . 
SA: a kitchen with a nice table and 
a stove .

A: a toilet and a sink in a small 
bathroom .  
SA-2EL: a dirty bathroom with a dirty 
toilet and a broken toilet . 
SA-EL: a dirty bathroom with a toilet 
and a sink . 
SA-L: a dirty bathroom with a dirty 
toilet and a dirty sink . 
SA: a dirty toilet in a dirty bathroom 
with a broken window .

A: a group of people playing with 
a frisbee on a beach .  
SA-2EL: a group of stupid people 
standing on top of a beach next to a dirty . 
SA-EL: a group of people are on the 
beach with their surfboards . 
SA-L: a group of people standing on 
a beach next to a dirty body of water . 
SA: a group of stupid people standing 
around a dirty wall .

A: a group of people playing 
soccer on a field .  
SA-2EL: a beautiful woman in 
a green shirt standing next to a 
soccer ball . 
SA-EL: a group of people playing 
a game of frisbee . 
SA-L: a group of people playing a 
game of baseball on a field . 
SA: a group of people playing soccer 
on a sunny field . 

A: a bus is parked on the side 
of the road .  
SA-2EL: a dirty street with a lot 
of stupid people and luggage . 
SA-EL: a bus parked on the side 
of the road with a man standing on the . 
SA-L: a bus is parked in a dirty lot . 
SA: a group of stupid people 
standing around a broken fire truck . 

Figure 6.3: Examples of generated captions using our models. The top row contains positive

generated captions and the bottom row contains negative ones (A for Attend, SA-2EL for Senti-

Attend−E1E2 L2
, SA-EL for Senti-Attend−E2 L2

, SA-L for Senti-Attend−L2
, and SA for Senti-Attend).

The last column includes some captions with some inconsistent parts.

ranks them high, whereas the others have sentiment-appropriate adjectives ranked higher,

indicating that just injecting sentiment into the LSTM (Figure 6.2) is insufficient. Attend has

similar generated adjectives for both sentiments because it does not use any sentiment signal.

Figure 6.3 shows a number of the example generated captions using our models. The first

two columns include positive and negative captions for different images (positive and negative

captions for the same images do not necessarily appear in the test set). For example, in the

first column, Senti-Attend generates the caption “a dirty toilet in a dirty bathroom with a

broken window”. The caption is compatible with the negative sentiment of the corresponding

image. Other Senti-Attend models are also successful in generating negative captions for

the image, but with less variability of expression. For instance, Senti-Attend−E1E2 L2
generates

“a dirty bathroom with a dirty toilet and a broken toilet”. Senti-Attend can generate “a

kitchen with a nice table and a stove” caption, which positively describes its corresponding

image. Senti-Attend−L2
and Senti-Attend−E1E2 L2

can also generate positive captions. Here,

Attend cannot generate sentiment-bearing captions. In the second column, we have similar
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generated captions. Columns three and four include positive and negative captions for similar

images. The captions show that Senti-Attend can manipulate and control the sentiment

value of the captions using the targeted sentiment. For example, in the third column, Senti-

Attend generates “a black bear is walking through a beautiful river” and “a black bear is

walking through a muddy river” for the positive and negative sentiments, respectively. Senti-

Attend−E1E2 L2
can generate both types of sentiments, as well. Senti-Attend−L2

can generate

a negative caption properly. In the forth column, all Senti-Attend models are successful in

generating positive captions. The Attend model also generates a positive caption properly.

Here, generating negative captions for the image is even challenging for humans. However,

Senti-Attend and Senti-Attend−E1E2 L2
models can effectively generate positive (“nice day”

and “beautiful day”) and negative (“damaged building” and “lonely clock”) ANPs for the

image. They choose different nouns for different sentiments which are compatible with the

corresponding image. The last column shows some captions with some errors. For example,

Senti-Attend−E1E2 L2
generates “a beautiful woman in a green shirt standing next to a soccer

ball”, which is not even semantically compatible with the image. Senti-Attend can handle

both topics properly although it has some errors in the generated captions (in Appendix A,

Figures A.3 to A.8 provide many examples showing the effectiveness of Senti-Attend in

comparison with other models).

6.4.3 Human Sentiment Evaluation

Table 6.5 contains the results. The first three rows are our benchmarks, using ground-truth

captions. Clear majorities choose the correct sentiment with these. The results are, however,

lower than those of Mathews et al. [2], where around 95% had all three voters agreeing

on the correct sentiment for neutral and positive captions, and just over 80% for negative

captions. Where we presented captions individually, it seems Mathews et al. [2] may have

presented a positive or negative caption together with a neutral one, and the contrast there

may have prompted stronger agreement. The levels of agreement for Senti-Attend captions

are as expected lower than for ground-truth captions, but the correct sentiment is still a strong

majority for positive captions and a plurality for negative captions, with negative captions also

having shown the lowest agreement for ground-truth. In both these cases, the next highest
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Table 6.5: Human evaluation results (%). These are given as both as proportion of overall votes,

broken down by sentiment; and by the proportion of captions that received a majority vote for a

particular sentiment (or None, where there was no majority). The GT rows are for the ground-truth

captions.

Image Captions Sentiment
Propn Overall Votes Propn Majority Votes

Positive Neutral Negative Positive Neutral Negative None

MSCOCO GTs Neutral 16.50% 76.50% 7.00% 7.35% 85.29% 2.94% 4.42%

SentiCap GTs Positive 88.00% 6.00% 6.00% 100.00% 0.00% 0.00% 0.00%

SentiCap GTs Negative 16.00% 14.00% 70.00% 10.53% 5.26% 73.68% 10.53%

Senti-Attend Positive 68.00% 29.33% 2.67% 68.00% 28.00% 0.00% 4.00%

Senti-Attend Negative 19.33% 37.33% 43.34% 12.00% 36.00% 44.00% 8.00%

sentiment is neutral. From inspection of the captions, it seems that in some cases Senti-Attend

just did not generate any sentiment (e.g. “a man is walking with a horse on the beach” — all

three annotators rightly judged this as neutral) but in others cases the sentiment was weak or

not perceived (e.g. “a great man is flying a kite on the beach” — intended to be positive, this

received one vote for each sentiment). In aggregate, the injected sentiment is the appropriate

one by a large margin, with the model falling back to objective descriptions in most other

cases.

6.5 Summary

In this work, we have proposed the Senti-Attend model, an image captioning architecture

trained end-to-end with novel mechanisms for incorporating embedded sentiment and spatial

attention. The model learns both high-level sentiment embeddings, which conditions our

caption generator in general, and word-level ones, which influence the word prediction process.

Implementing the mechanism with one-hot sentiment representation instead of sentiment

embedding results in less effective captions, showing the usefulness of our embedding

approach. The Senti-Attend model significantly outperforms state-of-the-art work in this

domain using all standard image captioning evaluation metrics. The linguistic analysis

demonstrates that the improved performance is due at least in part to selecting suitable and

varied adjectives and adjective-noun pairs in the generated captions, focusing on the objects
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that humans choose to describe with sentiment-infused terms. In addition, human evaluations

of sentiment broadly agree that the sentiment is appropriate.

In comparison with our proposed approach in Chapter 5, Senti-Attend achieves higher

overall metrics in generating sentiment-bearing captions, reflecting a better preservation of

relationship between image and caption content (RQ 4, discussed in Chapter 1). It does this

by applying an attention mechanism and an embedding approach to effectively learn both

semantic and sentiment-bearing information in an end-to-end fashion. The results show that

injecting stylistic information in terms of embedding vectors is effective at each time step, as

the input of the caption generator, as well as for predicting the next generated word.



Part III

Image Captioning of Adversarial Images
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7
Pick-Object-Attack: Type-Specific

Adversarial Attack for Object Detection

Many recent studies have shown that deep neural models are vulnerable to adversarial

samples: images with imperceptible perturbations, for example, can fool image classifiers. In

this chapter, we generate adversarial examples for object detection, which entails detecting

bounding boxes around multiple objects present in the image and classifying them at the

same time, making it a harder task than against image classification. We specifically aim to

attack the widely used Faster R-CNN by changing the predicted label for a particular object

in an image: where prior work has targeted one specific object (a stop sign), we generalise to

arbitrary objects, with the key challenge being the need to change the labels of all bounding

boxes for all instances of that object type. To do so, we propose a novel method, named

Pick-Object-Attack. Pick-Object-Attack successfully adds perturbations only to bounding
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boxes for the targeted object, preserving the labels of other detected objects in the image. In

terms of perceptibility, the perturbations induced by the method are very small. Furthermore,

for the first time, we examine the effect of adversarial attacks on object detection in terms of a

downstream task, image captioning; we show that where a method that can modify all object

types leads to very obvious changes in captions, the changes from our constrained attack are

much less apparent.1

7.1 Introduction

Deep learning systems have achieved remarkable success for several computer vision tasks.

However, adversarial attacks have brought into question the robustness of such systems.

Goodfellow et al. [40] and Szegedy et al. [41] presented early attacks against image classifiers,

using gradient-based techniques to construct inputs with the ability to fool deep learning

systems. Since then adversarial attacks have been extensively studied for image classification,

including being shown to be transferable across different image classifiers [42]. These attacks

are usually categorised into two types (i) Targeted and (ii) Non-targeted. In a targeted attack,

the goal is to modify the input so as to make the deep learning system predict a specific class,

whereas in a non-targeted attack, the input is modified so as to cause the prediction of any

incorrect class.

A more challenging task is to construct adversarial examples that will fool an object

detection system, with each image containing multiple objects and multiple proposals for

each object; Xie et al. [58] provide an analysis of this complexity. Chen et al. [59] motivate

this task with the example of object detection by an autonomous vehicle to recognise a stop

sign and the risks involved in an adversarial attack in that context.

These two works tackle the issue of adversarial attacks against object detection and are the

most relevant to our work. Xie et al. [58] propose a non-targeted attack where the predictions

1The content of this chapter is based on the following paper:

Omid Mohamad Nezami, Akshay Chaturvedi, Mark Dras, Utpal Garain (2020). Pick-Object-Attack: Type-

Specific Adversarial Attack for Object Detection. arXiv preprint arXiv:2006.03184. (The first two authors

contributed equally to this work.)
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Figure 7.1: Example of our adversarial attack. Pick-Object-Attack adds imperceptible perturbations

to the first image (on the left) resulting in the second image (on the right). It succeeds in changing the

predicted class of the targeted object from “sign” to “flowers” (shown in orange) while other predicted

classes (shown in blue) are unchanged.

of all objects are changed simultaneously. Chen et al. [59] propose an attack against the object

detector to misclassify only stop sign images; the attack method deliberately adds perceptible

noise to the images.

In this chapter, the proposed Pick-Object-Attack aims to change the label of a particular

object while keeping the labels of other detected objects unchanged. In this sense, it is a

generalisation of Chen et al. [59], where there may be a particular object that the attacker

wants to be misclassified. More generally, it is often a goal of adversarial attacks to be

imperceptible to observers; attacking just a single object, with the small number of bounding

boxes involved, minimises the changes to the image relative to modifying all the objects as

in Xie et al. [58]. Moreover, changes to the image — even if imperceptible to humans —

could be perceptible via downstream tasks. For instance, object detection plays a crucial role

in the state-of-the-art visual question answering (VQA) and image captioning systems [8].

Changing the entire image may lead to dramatically different answers or captions, which

are easily perceptible, and hence alert the user indirectly. Figure 7.1 shows an example of

our proposed attack, where only the label of a particular object is changed from “sign” to

“flowers” whereas other objects are detected correctly. This is because the perturbation is only

added to the bounding boxes with the predicted label “sign”.

In this chapter, we propose both targeted and non-targeted versions of Pick-Object-Attack

against Faster R-CNN [60], a widely used and high-performing object detector. Chen et
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al. [59] and Xie et al. [58] used a version of Faster R-CNN trained on the COCO dataset

[160]. In this work, we use Faster R-CNN trained on the Visual Genome dataset [33] which

includes a larger set of classes in comparison with the COCO dataset. Bottom-up features

obtained from this version of Faster R-CNN are employed in state-of-the-art VQA and image

captioning systems [8]. These systems use the bottom-up and top-down attention, explained

in §2.3.2, to attend to the bounding boxes in order to generate a caption (or an answer). In

terms of image captioning, we study the relation between the adversarially perturbed objects

in images and the extent of the changes in the generated captions.

7.2 Related Work

In this section, we give a brief overview on adversarial attack for different vision tasks and

discuss related work on adversarial attack against Faster R-CNN in detail.

7.2.1 Adversarial Attack

The generation of adversarial samples was first investigated in the context of deep learning

by Szegedy et al. [41], who used a gradient-based optimization to arbitrarily manipulate the

input sample of a deep neural network for image classification. This manipulation usually

aims to find similar samples with differences that are imperceptible to human observers, in

order to change the predicted class. Later works [40, 53–57] have led to better methods

for generating adversarial samples, using different proposed attack mechanisms, to mislead

different classification models. In addition to classification, adversarial samples have also been

crafted for other tasks such as image captioning [175]. They studied earlier image captioning

models [1, 7] which use features from image classifiers. Here, two types of adversarial

examples, targeted keyword and targeted caption, are created using an optimization-based

method. The examples can induce image captioning systems to generate pre-defined keywords

or captions.

Moreover, adversarial samples have been developed for physical world scenarios where,

for example, the printed versions of the samples are used to attack deep learning classification

models [176–178]. These approaches mostly target single object images to fool a classifier.
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However, in the physical world, we usually face multiple objects in an image. Under such a

condition, an attack would be required to fool an object detector, which detects the bounding

boxes of objects in addition to classifying them. Eykholt et al. [177] discussed that misleading

an object detector, such as YOLO [179] and Faster R-CNN [60], is more difficult than

misleading an image classifier.

In this chapter, we attack Faster R-CNN, which is a widely used and high-performing

system for object detection. We focus on both targeted and non-targeted attacks to mislead

Faster R-CNN. Although the possibility of a black-box attack, i.e., no access to the parameters

of the model to be attacked, has been investigated in the literature [180], we assume that our

attack method has access to the parameters (white-box attack).

7.2.2 Adversarial Attack against Faster R-CNN

Faster R-CNN consists of two stages, a region proposal network (RPN) for detecting the

bounding boxes of objects, and a classifier for classifying the boxes [60]. Let I or g be an

input image with a number (N ) of detected bounding boxes, {h1, h2, . . . , hN} where hi is

represented by four coordinates. Although the RPN can generate a dynamic number of

bounding boxes from the image, an upper bound is usually set on the number of bounding

boxes ranked by their confidence levels. The confidence level of each bounding box is

calculated using the objectness score and non-maximum suppression (NMS). The RPN

predicts an objectness score indicating the probability of an object being present inside the

box and the NMS threshold reduces the number of detected boxes. The output of Faster

R-CNN will be the classification for the detected boxes, {g 1, g 2, . . . , g N} where g i indicates

the predicted class for hi. g i is a K-length vector consisting of the predicted probability for

the K classes.

Chen et al. [59] proposed both targeted and non-targeted attacks on Faster R-CNN, in

the white-box setting, but only for stop sign images. They selected stop signs due to security-

related issues in the real world, e.g. self-driving cars. They added perceptible perturbations

to make their adversarial samples robust after printing. Very recently, Huang et al. [181]

targeted stop signs, but by adding perceptible perturbations around the border of the signs.
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In contrast, we target a random set of different objects for both targeted and non-targeted

attacks. We add imperceptible perturbations to fool Faster R-CNN.

Xie et al. [58] proposed a non-targeted attack on Faster R-CNN in the white-box setting.

They added imperceptible perturbations to all pixels in the input image to change the classes

for all detected objects. Here, for the adversarial image, the RPN usually generates a different

set of bounding boxes, with different scales. The bounding boxes change because adding the

perturbations can change their confidence levels. In this work, they change the upper bound

of detected boxes from 300 to 3000 to ensure that the transfer of classification error among

nearby boxes. In contrast, in our Pick-Object-Attack, we do not increase the upper bound of

number of boxes and only add imperceptible perturbations to the boxes corresponding to a

targeted object to change its predicted class. We do not change the pixel values of other boxes.

Unlike Xie et al. [58], we study both targeted and non-targeted attacks.

7.3 Method

7.3.1 Faster R-CNN Model

We evaluate our attack method against Faster R-CNN with ResNet-101, pre-trained on

the ImageNet dataset [67], then trained on the object and attribute instances of the Visual

Genome dataset [33]. The model leads to the state-of-the-art on different tasks like image

captioning and visual question answering [8] in addition to generating a high object detection

performance. Previous works [58, 59] studied attacking Faster R-CNN trained on the COCO

dataset [160] having only 80 object classes. In comparison, the Visual Genome dataset has

1600 object classes. It includes 3.8M object instances while the COCO dataset includes 1.5M

object instances. It also contains 2.8M attributes and 2.3M relationships.

7.3.2 Pick-Object-Attack

Let I or g denote the original image. Let N be the number of bounding boxes and K be

the number of classes. An object detector can be mathematically expressed as a function

f : I −→ (g , h) where g ∈ �N×K denotes the probability distribution for N bounding boxes,
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and h ∈ �N×4 denotes the predicted coordinates (xi, yi, xi+1, yi+1) of the bounding boxes. Let

opick denote the selected object to attack and a ⊆ {1,2, .., N} denote the indexes of the boxes

with predicted class opick for the image I or g . Faster R-CNN rescales the input image so that

the shortest size is 600 pixels. Given the original image I or g of shape s, our proposed attack

generates an adversarial image I adv of the same shape. For an image I , we denote the rescaled

image (with the shortest side being 600) by I ′.

Mask Detection As mentioned before, our proposed attack aims to change the label of a

targeted object opick. To do so, we need to update the input image and add perturbations to the

region or the bounding boxes including the targeted object by optimizing the attack. Thus, for

each attack, we first prepare a binary mask denoted by M which has a same shape as I or g . M

is 1 for bounding boxes with predicted label opick and is 0 otherwise. Then, for a loss function

L and an image I ′ (obtained by rescaling image I), we obtain ∇′I ′L during the backward pass

given by

∇′I ′L= r∇I ′L (7.1)

where r is the learning rate and ∇I ′L is the gradient of loss L for image I ′. We resize the

gradient ∇′I ′L and apply the mask M according to the following equation

∇I L= M 
 rescale(∇′I ′L, s) (7.2)

where 
 denotes bitwise multiplication. For the proposed attack, we use the final obtained

gradient ∇I L for updating image I . Here, rescaling means converting the calculated gradient

into the original size of the input image so that we can apply the mask. We explain the loss

functions for both the non-targeted and targeted attacks below.

Non-Targeted Attack Our goal in the non-targeted attack is to generate an image I adv so

that none of the detected boxes have the predicted class opick. To achieve this, we use the

following loss function, L given by

L = −∑
a∈a

log(ga,opick
) (7.3)
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Algorithm 2: Non-Tar-Confident/ Non-Tar-Frequent

Input:I or g , r, maxiter , opick

Output:I adv

Get mask M from I or g and opick

success ← False

I ← I or g

for j ← 1 to maxiter do

Compute a for image I

if a= ∅ then

success ← True

break

Compute loss L using equation 7.3

Compute ∇I L using equation 7.2

I ← I +∇I L

Truncate image I in the range [0, 255]

end for

I adv ← I

return Iadv

where gi, j denotes the predicted probability of the j th class for the i th box. The proposed attack

modifies the image I , via gradient-ascent, using the gradient, ∇I L. We have two variants: one

attacks the most confident object (opick is the most confident object) called Non-Tar-Confident

and another one attacks the most frequent object (opick is the most frequent object) called

Non-Tar-Frequent. These are the most challenging setups: choosing a low-confidence or

less-frequent object would make it easier to induce a misclassification. These attacks run for

maxiter iterations for a fixed r, and the attack is considered unsuccessful if we fail to achieve

the goal. Algorithm 2 summarizes our non-targeted attack.

Targeted Attack Our goal in the targeted attack is to generate an image I adv so that none

of the detected boxes have the predicted class opick and some of the boxes have the predicted
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Algorithm 3: Tar-Confident/ Tar-Frequent

Input:I or g , r, maxiter , opick, k

Output:I adv

Get mask M from I or g and opick

success ← False

I ← I or g

for j ← 1 to maxiter do

Compute a for image I

if a=∅ then

a= argmax
u

gu,k where u are set of

predicted boxes with positive IoU with mask M

if k= argmax
c

ga,c for any a ∈ a and opick �= arg max
c

ga,c for all a ∈ a then

success ← True

break

Compute loss L using equation 7.4

Compute ∇I L using equation 7.2

I ← I −∇′I L
Truncate image I in the range [0, 255]

end for

I adv ← I

return I adv

class k. Here, k denotes the targeted class for the selected object opick. To achieve this, we

use the following loss function, L given by

L = −∑
a∈a

log(ga,k) (7.4)

where gi, j denotes the predicted probability of the j th class for the i th box. The proposed

attack modifies the image I , via gradient-descent, using the gradient, ∇I L. Similar to the

non-targeted attack, we have two variants: Tar-Confident and Tar-Frequent. These attacks run

for maxiter iterations for a fixed r, and the attack is considered unsuccessful if our goal is
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not achieved. Algorithm 3 summarizes our targeted attack. During the attack, if there are no

boxes with label opick, we set a to be the box having the maximum probability of k among all

the boxes having a positive Intersection over Union (IoU) with the mask M .

7.4 Evaluation Setup

7.4.1 Intrinsic Evaluation

For intrinsic evaluation, we study the success of the attacks against Faster R-CNN, and the

magnitude of changes to the images caused by the attacks. In this section, we discuss metrics

used to measure the effectiveness of the proposed attacks and the implementation details

where the values of the hyperparameters are specified.

Metrics In the following paragraphs, we describe our evaluation metrics for intrinsic

evaluation such as success rate, perceptibility, ACAC, ACTC, SSIM and mAP.

Success Rate We use success rate defined as the percentage of attacks that successfully

generate adversarial examples. This is a common metric for evaluating adversarial attacks

(higher means better performance).

Perceptibility To quantify the perceptibility of change in image, we follow previous

work [41, 55, 58] in calculating a score δ for an adversarial perturbation given by

δi =

��I i,adv − I i,or g

��
2∑

M i
(7.5)

where I i,adv is the i th adversarial image, I i,or g is the i th original image, and M i is the mask of

the i th image in pixels. We normalize the �2 norm of the image difference by the size of the

mask, as our proposed attack adds noise only inside the mask and the size of the mask varies

across images (lower means better performance).
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ACAC and ACTC We adapt these measures for object detectors from attacks against

classifiers [182]. For the non-targeted attacks, Average Confidence of True Class (ACTC) is

calculated for object class opick for all predicted boxes with positive IoU with the mask. This is

a performance metric measuring the success of the attack methods to escape from opick (lower

means better performance). For the targeted attacks, Average Confidence of Adversarial Class

(ACAC) is calculated for object class k for all predicted boxes with label k. This shows the

confidence of the attack methods to generate k (higher means better performance).

The Structural SIMilarity (SSIM) We calculate the Structural SIMilarity (SSIM) to

measure the similarity between the original image and the adversarial example since it is a met-

ric which correlates well with human perception. The definition of SSIM(I or g , I adv) between

a single original image I or g and an adversarial sample I adv is given in [183]. We calculate

the mean SSIM (MSSIM) (in the next sections, we call this SSIM for the sake of simplicity)

across all pairs of original and adversarial images (higher means better performance):

MSSI M =
1
n

n∑
i=1

SSIM(I or g,n, I adv,n) (7.6)

mAP Mean average precision (mAP) is calculated for objects outside the mask M . The

high value of mAP signifies that other objects outside the mask were detected correctly. mAP

is calculated using original prediction as ground truth (higher means better performance).

Implementation Details We test our proposed attack on a set of 1000 images randomly

selected from the validation set of the MSCOCO dataset [160]. For the targeted attacks, we

run attacks for 10 randomly chosen objects (k) per image resulting in 10k samples. We fix the

learning rate in equation 7.1 (r) to 10k and set the maximum of iterations (maxiter) to 60.

7.4.2 Extrinsic Evaluation

We are also interested in seeing how detectable the adversarial changes are in a downstream

task: perturbations might be difficult for a human to detect in an image but can be very

obvious from distortions in the downstream task. Image captioning is our downstream task:



136 Pick-Object-Attack: Type-Specific Adversarial Attack for Object Detection

captions that are completely unlike the original ones could make manipulation obvious. With

respect to the goals of this thesis, exploring different kinds of manipulations allows us to

investigate the relationship between these kinds of changes and the effects on the captions.

We use the image captioner of Anderson et al. [8], which uses an attention mechanism

to attend to the bounding boxes obtained using Faster R-CNN to generate the caption, and

gives the state-of-the art results. We investigate how much our Pick-Object-Attack changes

captions compared to an object detection attack that modifies the entire image, like that of

Xie et al. [58]. We note here that our goal differs from image captioning attacks like that of

Chen et al. [175]. Their goal is to force the captioner to generate specific terms, whereas we

just use the image captioner to measure downstream perceptibility of object detection attacks.

Metrics The standard image captioning metrics (including BLEU [164], METEOR [166],

CIDEr [100], ROUGE [165] and SPICE [167]): these are used to compare generated captions

with human-produced reference captions, and higher scores indicate greater overlap with

these reference captions. We will use these slightly differently. Here, we are interested in the

overlap of the caption for the adversarial image and the caption for the original image, used

as the reference caption. A higher score means that the two captions are more similar, i.e. the

caption for the adversarial image is less distorted. In addition, we calculate the percentage of

cases for which the proposed attacks can remove the keyword corresponding to opick from the

adversarial caption when the keyword is present in the original caption (KWR).

Implementation Details As a comparison to our Pick-Object-Attack, we design a non-

targeted attack against all objects based on Xie et al. [58]. We choose a fixed label for all the

boxes and do gradient descent until none of the original objects are detected (the detail is

described in Algorithm 4). We name this attack Non-Tar-All. We use the same learning rate

as our previous attacks for a fair comparison and increase maxiter to 120. Since attacking

all objects is a difficult task, we obtained a low success rate for Non-Tar-All (targeted attack

against all objects is not feasible). We generate captions using three non-targeted attacks:

Non-Tar-All, Non-Tar-Frequent, Non-Tar-Confident and two targeted attacks: Tar-Frequent,

Tar-Confident. To do so, we use 100 successful adversarial examples for the non-targeted
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Algorithm 4: Non-Tar-All

Input:I or g , r, maxiter

Output:I adv

cor g ← set of predicted classes for I or g

Randomly select class z /∈ cor g

success ← False

I ← I or g

for j ← 1 to maxiter do

if arg max
c

gb,c /∈ cor g for all boxes b then

success ← True

break

L ←−∑b log(gb,z)

∇I L← rescale(∇′I ′L, s)

I ← I −∇I L

Truncate image I in the range [0, 255]

end for

I adv ← I

return I adv

attacks for a shared set having 100 images. We use 1000 successful adversarial examples for

the targeted attacks for the shared set (10 per image).

7.5 Results

7.5.1 Intrinsic Evaluation

Quantitative Results Table 7.1 shows the success rate, ACAC and ACTC for our variants

of the Pick-Object-Attack. Generally, the non-targeted attacks are more successful compared

to the targeted ones. Since we only need to induce a misclassification for the non-targeted
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attacks, we can achieve a better success rate. Tar-Confident has the lowest success rate.

For Tar-Confident, out of 2303 unsuccessful attacks, 1750 attacks are unsuccessful since

Tar-Confident cannot find any bounding box with a positive IoU with the mask. This never

happens for Tar-Frequent since the mask is larger for the most frequent object in comparison

with the most confident one in the image. Out of the cases where there is a bounding box with

positive IoU with the mask for Tar-Confident, the success rate is 93.30%. Non-Tar-Confident

generates the highest success rate since it does not face this condition. ACAC and ACTC show

that the attack approaches can generate high confidence for adversarial and low confidence for

original classes. Similar to Xie et al. [58], we randomly permute the perturbations generated

by the proposed attacks for the adversarial images. This leads to near zero success rates for

all attacks showing that the spatial structure of the perturbations plays a major role in fooling

Faster R-CNN rather than the magnitude of the perturbations.

Table 7.1 also shows the mAP metric for our proposed attacks. The proposed attacks add

perturbations only inside the mask with the purpose of preserving the labels of the bounding

boxes outside the mask. However, this perturbation may lead to a different set of bounding

boxes by the region proposal network (RPN). These bounding boxes are more likely to have a

positive IoU with the mask. Here, mAP shows the impact of perturbation on the bounding

boxes outside the mask. As shown in Table 7.1, the proposed attacks mostly do not change the

bounding boxes since they generate high mAP values. These results demonstrate that there

are two factors impacting on the mAP: the amount of perturbations and the size of the mask.

Our targeted attacks add more perturbations to images to fool Faster R-CNN to detect targeted

classes and they have lower values for the mAP in comparison with the non-targeted attacks.

Table 7.1: Success Rate (SR), ACAC, ACTC and mAP for different proposed attacks.

APPROACHES SR ACAC ACTC mAP

Tar-Frequent 89.90% 26.55% _ 86.09%

Tar-Confident 76.97% 24.53% _ 91.97%

Non-Tar-Frequent 95.30% _ 1.25% 94.20%

Non-Tar-Confident 98.40% _ 2.59% 95.47%
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Table 7.2: Mean and standard deviation, for the successful cases, of δ and SSIM between original

and adversarial images.

APPROACHES
δ

SSIM
MEAN STD. DEV.

Tar-Frequent 1.53× 10−3 1.41× 10−3 98.53%

Tar-Confident 1.06× 10−2 2.82× 10−2 98.73%

Non-Tar-Frequent 6.62× 10−4 8.97× 10−4 99.22%

Non-Tar-Confident 6.65× 10−3 1.58× 10−2 99.32%

Table 7.3: Success Rate for our proposed attacks after resizing the adversarial images with different

scales: 0.6, 0.8, 1.2 and 1.4.

APPROACHES
Scale

0.6 0.8 1.2 1.4

Tar-Frequent 16.75% 44.70% 72.35% 78.30%

Tar-Confident 11.30% 38.08% 65.72% 74.32%

Non-Tar-Frequent 2.31% 9.76% 26.76% 34.63%

Non-Tar-Confident 14.23% 26.42% 42.78% 52.34%

The attacks against the most frequent objects (Tar-Frequent and Non-Tar-Frequent) also

generate lower mAP than the most confident objects (Tar-Confident and Non-Tar-Confident)

since the size of the mask for the frequent objects is larger than the confident objects.

As shown in Table 7.2, SSIM is high for all attack approaches. This shows that the

approaches are successful in adding imperceptible perturbations to images (the added pertur-

bations are shown in Figure A.9 and Figure A.10 in Appendix A). Table 7.2 also shows the

mean and standard deviation, for successful cases, of δ. Tar-Confident generates the highest δ.

Similarly, Non-Tar-Confident has more δ in comparison with Non-Tar-Frequent. This means

that attacking the most confident object is harder than attacking the most frequent object in

the image, even though there are typically more instances of the most frequent object. In fact,
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Confident Frequent

Targeted

Non-Taregeted

Figure 7.2: The histograms of number of boxes and mean probabilities for the proposed attacks.

from Table 7.2, we can see that Non-Tar-Confident requires more noise than Tar-Frequent.

Table 7.3 shows the robustness of adversarial images generated using the proposed attacks

against resizing with different scales. The targeted attacks are more robust in comparison with

the non-targeted attacks since they add more perturbations to images to generate particular

classes. These results show that the adversarial images are more robust for bigger scales in

comparison with smaller scales.

Figure 7.2 shows the histograms of number of boxes and mean probabilities. The first row

includes the histogram of the number of boxes, having the predicted label as the targeted class

(k), with a positive IoU with the mask. It also includes the histogram of the mean probabilities

of the targeted class for the boxes in the targeted attacks. The second row includes the

histogram of the number of boxes with a positive IoU with the mask. It also includes the

histogram of mean probabilities of the original class (opick) for the boxes in the non-targeted
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Targeted

Non-Taregeted

Figure 7.3: The histogram of number of iterations for the proposed attacks.

attacks. This shows that the number of boxes for the attacks against the frequent object is

more than the attacks against the confident object. The mean probability of the targeted class

for both Tar-Confident and Tar-Frequent are almost similar; however, the mean probability of

the original class for Non-Tar-Confident is more than Non-Tar-Frequent.

Figure 7.3 shows the histogram of number of iterations. The first row shows the histogram

of the number of iterations for the targeted attacks and the second row for the non-targeted

attacks. The maximum number of iterations is 60. If an attack takes 60 iterations, this

indicates an unsuccessful attack (we do not show the unsuccessful attacks for Tar-Confident

when there is no bounding box having a positive IoU with the mask). The histograms show

that attacking the most frequent object requires more iterations in comparison with attacking

the most confident object. This is because attacking the most frequent object requires changing

the label of more boxes in the image. As expected, the targeted attacks take more iterations

than the non-targeted ones.
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Qualitative Results Consider the pair of images in the upper row of Figure 7.4. For

generating the adversarial image on the right, we targeted “cat” for “sheep” in this example.

The outputs of Faster R-CNN (the labels of bounding boxes) show that “sheep” is changed

to “cat”. Similarly, in the lower row, the targeted attack approach successfully changes all

instances of “bird” to “sign” as shown in the labels of bounding boxes.

7.5.2 Extrinsic Evaluation

Quantitative Results Table 7.4 shows the image captioning metrics for different attack

approaches. Since Non-Tar-All changes the whole image, it generates the lowest values for

the metrics. The differences are quite dramatic: BLEU-1 is much smaller for Non-Tar-All

than for any variant of Pick-Object-Attack; BLEU-3 is zero for Non-Tar-All which shows

that there are zero overlaps of trigrams between perturbed and original captions.

Comparing our Pick-Object-Attack variants, Tar-Frequent and Non-Tar-Frequent change

more regions in the image because they attack the most frequent object. Thus, they generate

lower values in comparison with Tar-Confident and Non-Tar-Confident, respectively. The

targeted attacks have lower values in comparison with the non-targeted ones since they add

more perturbations to images to generate particular classes. From these results, it is evident

that fewer changes in the image lead to fewer changes in the corresponding captions.

In terms of keyword removal (KWR), Tar-Confident and Non-Tar-Confident have higher

values in comparison with Tar-Frequent and Non-Tar-Frequent since they add more pertur-

bations to change the label of the most confident object in the image. Tar-Frequent and

Table 7.4: Image captioning metrics and KWR (in %) for different attacks (B-N is BLEU-N).

APPROACHES B-1 B-2 B-3 B-4 CIDEr METEOR ROUGE-L SPICE KWR

Non-Tar-All 23.15 6.91 0.00 0.00 5.59 8.19 22.70 0.86 _

Tar-Frequent 44.77 31.82 24.45 19.58 179.26 20.67 44.03 22.98 72.43

Tar-Confident 57.73 47.57 40.92 35.81 331.74 30.30 57.28 40.19 80.17

Non-Tar-Frequent 63.28 53.23 46.27 40.62 389.55 33.06 62.91 48.16 54.00

Non-Tar-Confident 70.39 62.59 56.98 52.48 495.17 38.03 69.39 57.18 76.00
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Table 7.5: Mean and standard deviation of �2-norm of the difference image normalised by the image

size, and SSIM between original and adversarial images.

APPROACHES
�2-norm

SSIM
MEAN STD. DEV.

Non-Tar-All 1.40× 10−3 3.97× 10−4 98.23%

Tar-Frequent 1.22× 10−3 4.86× 10−4 98.16%

Tar-Confident 1.20× 10−3 4.61× 10−4 98.42%

Non-Tar-Frequent 4.55× 10−4 2.24× 10−4 99.12%

Non-Tar-Confident 4.08× 10−4 2.50× 10−4 99.23%

Tar-Confident have higher values than their non-targeted versions since they aim to generate

a particular class (since opick is not fixed for Non-Tar-All, we do not provide KWR for this

approach).

To study perceptibility of attack, we calculate mean, standard deviation of �2-norm of the

difference image and SSIM between the adversarial images, used for the extrinsic evaluation,

and the original images. Since Non-Tar-All modifies the whole image, to compare across

attacks, we normalize the �2-norm of the difference image by the image size for all attacks

(we include �2-norm normalised by mask size, as per Equation 7.5, for direct comparison

with Table 7.2 in Table 7.6). As shown in Table 7.5, all methods generate perturbations with

low perceptibility. The non-targeted variants of Pick-Object-Attack are less detectable than

the targeted ones; Non-Tar-All is more similar to the targeted variants of Pick-Object-Attack,

although the perturbations are still small. The perceptibility of Non-Tar-All by these standard

Table 7.6: Mean and standard deviation of δ for adversarial images used in the extrinsic evaluation.

APPROACHES
δ

MEAN STD. DEV.

Tar-Frequent 1.49× 10−3 8.40× 10−4

Tar-Confident 8.37× 10−3 1.85× 10−2

Non-Tar-Frequent 5.52× 10−4 3.35× 10−4

Non-Tar-Confident 4.18× 10−3 8.39× 10−3
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A sheep laying in the grass next to a tree. A cat is laying down in the grass.

A man sitting on a bench with two birds. A man sitting on a bench with a skateboard.

Figure 7.4: The first column includes the original images and the second column includes the

adversarial images with their corresponding generated captions. The bounding boxes and the labels on

these images are the outputs of Faster R-CNN.

metrics, however, contrasts strongly with the effects on the downstream image captioning

task that we describe above, suggesting that the evaluation of how detectable adversarial

perturbations are should extend beyond the standard perceptibility metrics.

Qualitative Results Figure 7.4 shows two examples fed into the captioning model (the

attention weights of the model for these examples are visualized in Figure A.11 and Figure

A.12 in Appendix A). The original image in the first row leads to the caption of “a sheep

laying in the grass next to a tree”. As discussed in §7.5.1, a targeted attack changes “sheep”

to “cat”; the caption is correspondingly changed to “a cat is laying down in the grass”. This

means that our attack against Faster R-CNN can indirectly attack the captioning model to

generate a different caption with our targeted class (“cat”). This is also true for the image in
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Figure 7.5: Original images corresponding to the sample generated captions by Non-Tar-All.

the second row for generating a different caption. The original caption for the image is “a

man sitting on a bench with two birds”. As noted in §7.5.1, the attack approach successfully

changes “bird” to “sign”; the caption for the adversarial example here is “a man sitting on a

bench with a skateboard” which is different from the original one. Although the attack model

leads to a new caption, the caption does not include our targeted class (“sign”); “skateboard”

is chosen because it is strongly favoured by the language model.

As indicated by Table 7.4, Non-Tar-All changes captions much more dramatically, e.g.

“A man riding a horse in front of a crowd” becomes “A bunch of food on a grill with meat

being dogs”, “Two stuffed teddy bears sitting on a bed” becomes “A blender that is sitting

in the water” and “A person holding a hot dog on a bun” becomes “A close up view of an

airplane with a knife” for the images in Figure 7.5 from left to right, respectively. Table 7.7

shows more example captions generated for adversarial images using different variants of

Pick-Object-Attack and Non-Tar-All with their original captions.

7.6 Summary

We have proposed Pick-Object-Attack, a type-specific adversarial attack for Faster R-CNN,

the widely used and high-performing object detector that is used in a state-of-the-art image

captioning system. The proposed approach attacks a specific object in an image and aims

to preserve the labels of other detected objects in the image. We study both targeted and

non-targeted attacks. For each one, we have two variants: attacking the most frequent and the
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Table 7.7: Examples generated captions of adversarial images using different attacks with their

original captions.

APPROACHES ORIGINAL CAPTIONS ADVERSARIAL CAPTIONS

Non-Tar-All Two stuffed teddy bears sitting on a bed. A blender that is sitting in the water.

A man riding a horse in front of a crowd. A bunch of food on a grill with meat being dogs.

A person holding a hot dog on a bun. A close up view of an airplane with a knife.

Tar-Frequent A donut and a donut sitting on a table. A plate with a doughnut and a donut on it.

A man jumping a skateboard on a skateboard. A man jumping through the air with a skateboard.

Two birds are flying over a building in a city. Two birds sitting on a boat in the water.

Tar-Confident A man riding a horse in front of a crowd. A person riding a horse in front of a dog.

A black and white photo of a city street with cars. A tower with a clock on top of it.

A living room with a table and a table. A man taking a picture in a bathroom mirror.

Non-Tar-Frequent Two cats sitting in a bath tub sink. A black and white dog is standing in a boat.

A black and white photo of a city street with cars. A black and white photo of a city street with cars.

A living room with a table and a table. A living room with a couch and a table.

Non-Tar-Confident A group of people walking around a parking meter. A man is holding a parking meter on a pole.

A television and a television in a room. A living room with a couch and a chair.

A vase with white flowers on a desk. A vase with white flowers on a desk.

most confident object in the image. Amongst them, the lowest success rate is obtained by the

Tar-Confident because this approach sometimes fails to find bounding boxes within the mask.

The results show that attacking the most confident object requires more noise than the most

frequent object. The proposed attacks achieve high mAP values for bounding boxes outside

the mask which shows that they preserve the labels of other detected objects. In addition to

standard perceptibility metrics, we carried out an extrinsic evaluation to study the impact of

the adversarial images on the state-of-the-art image captioning system. We compared the

captions generated by different variants of Pick-Object-Attack with a baseline attack adapted

from [58] that modifies the entire image. The results show that although all models produce

perturbations with low perceptibility, the baseline attack produces dramatically distorted

captions, in contrast with Pick-Object-Attack, suggesting firstly that extrinsic evaluation on

downstream tasks would be a useful complement to standard perceptibility measures; and

secondly that the size of perturbations (as measured by perceptibility metrics) are not accurate

predictors of effects on generated captions.

Thus, in response to RQ 5 discussed in Chapter 1, different versions of our proposed attack,
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which target changing the label of a particular object in an image, make small changes in the

generated captions produced by the state-of-the-art image captioning system [8]. However,

changing all detected objects in visual content leads to an entirely different image caption.

Overall, it suggests that the relationship between changes to the visual source and the resulting

generated caption is complex, and needs more work to be fully understood.
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8
Conclusions and Future Work

To address the research questions discussed in Chapter 1, we presented several image caption-

ing models controlled using facial expression features, as visually-grounded information, and

style-bearing content, as non-grounded information. In the last part of the thesis, we proposed

an adversarial attack against Faster R-CNN and analysed its impact on the generated captions

by a state-of-the-art captioning system using Faster R-CNN. In this chapter, our key findings

and future work are highlighted and discussed.

8.1 Answers and Key Findings

In Chapter 3, we proposed a rich face representation model for engagement recognition using

deep learning. To train the model, we collected a new dataset including images of students

annotated with engaged and disengaged labels. The model initialized with the weights of our

149
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facial expression recognition (FER) model, which generates the state-of-the-art results, to

address this research question:

RQ 1. How can a facial expression recognition model be trained to generate representative

and transferable features for other tasks?

The engagement recognition model generates more effective results using different evalu-

ation metrics in comparison with a comprehensive set of baseline models including the model

without the initial weights of the FER model.

In Chapter 4, we used the FER model to extract emotional features for image captioning.

We proposed two different kinds of image captioning models called Face-Cap and Face-Attend

incorporating the features to address this research question:

RQ 2. Given the existing image captioning datasets, can incorporating the recognized

emotions from facial expression analyses produce better image captions?

Face-Cap uses the one-hot encoding of facial expression features generated by the FER

model. Face-Attend uses an attention mechanism to attend to the convolutional features

extracted by the FER model. To train our models, we used a subset of the Flickr 30K image

caption dataset [4]. We compared different variants of the models with a comprehensive set

of baseline models using different qualitative and quantitative analyses. The results show

that both Face-Cap and Face-Attend achieved more effective results in comparison with the

baseline models without the FER features. Face-Attend generates more effective results

compared to Face-Cap by applying an attention mechanism to attend to the fine-grained

features of the FER model. We showed that applying the FER features leads to better image

captions.

In Chapter 5, we proposed a novel image captioning model called Attend-GAN to generate

style-bearing image captions. The model is designed to address this research question:

RQ 3. What kind of image captioning model can better generate captions with diverse stylistic

patterns?

Attend-GAN includes two main parts to incorporate style: an attention mechanism to

preserve the correlation between an image and a caption along with an adversarial training



8.1 Answers and Key Findings 151

mechanism to generate more diverse stylistic patterns. Attend-GAN performs better than

previous systems on the SentiCap dataset [2]. The results show that Attend-GAN generates

image captions with stylistic adjectives and adjective noun pairs which are highly diverse.

In Chapter 6, we proposed a novel image captioning model with style, named Senti-Attend,

trained in an end-to-end fashion to address this research question:

RQ 4. How can an image captioning model be trained in an end-to-end fashion to generate

stylistic captions which are still faithful to visual content?

Senti-Attend is trained on the combination of factual and stylistic captions with an extra

input to specify the targeted style. It has an attention mechanism to link visual attention

with image captions. It also embeds the targeted style into two embeddings: a high-level

embedding to capture the overall style of the generated caption and a word-level embedding

to capture the style of each generated word. The results show that Senti-Attend generates

the state-of-the-art performances on the SentiCap dataset and leads to style-bearing image

captions having strong semantic correlations with visual content.

In Chapter 7, we proposed a novel adversarial attack for Faster R-CNN which named

Pick-Object-Attack aiming to change the label of an arbitrary object while preserving the

labels of other detected objects in the image. We examined the impact of the attack on the

state-of-the-art image captioning model [8] to address this research question:

RQ 5. How is an adversarial attack against object detection in an image possible, such that

it changes the label of a particular object, and what impact does that have on the captions

generated by a state-of-the-art image captioning model?

The results showed that Pick-Object-Attack achieves high success rates over 1000 ran-

domly selected images from the validation set of the MSCOCO dataset [160]. We imple-

mented both targeted and non-targeted attacks by adding imperceptible perturbations to

images. Moreover, we compared different variants of Pick-Object-Attack and a baseline

model, changing the entire image, in terms of their impacts on the generated captions. The

results show that Pick-Object-Attack leads to less distorted captions; other attack that changes

the source image to the same extent as measured by standard perceptibility metrics, however,
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leads to dramatically distorted captions. The question of the precise relationship between

changes to the source and impact on the caption is still an open question.

8.2 Future Work

The thesis contains different aspects incorporating extra visually-grounded information such

as facial expression features and non-grounded information such as style-bearing content to

propose novel controlled image captioning models. It also contains our proposed adversarial

attack and shows the attack’s impact on the generated captions by a state-of-the-art image

captioning model. Using these aspects, there are many potential directions as future work.

In this section, we note some of these ideas:

• Extending Emotional Content in Image Captioning Models There is other recent

work that explore other aspects of emotional content in images; we note specifically the

dataset of You et al. [12]. In future work, we are interested in exploring this broader

emotional content of images, which is reflected in the NRC Emotion Lexicon [169]

we used in our linguistic analysis of captions. The labels in the dataset are provided

using the emotional reactions of people in facing a wide variety of images (Figure 8.1).

We are specifically interested in exploring whether and how emotional properties of

such images can be captured in a representation, and how such a representation can be

applied in automatic image captioning.

• Further Research with Style-Bearing Image Captioning Future work consists of

developing an approach to distinguish between stylized and factual parts of the generated

caption like Mathews et al. [49]. They proposed an approach including two components:

one has the role of generating semantic terms using images and another one has the

role of turning these terms into a stylistic sentence using a large dataset of unaligned

stylistic text without images. We are especially interested in developing an effective

semantic term generator using Faster R-CNN, as our object detection model, to find a

correlation between bounding boxes in images and their corresponding semantic terms

in the captions. We aim to explore how this can help preserving the semantic aspect
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Figure 8.1: Images with positive (the top row) and negative (the bottom row) emotion categories

from You et al. [12]

of the generated caption while adding the stylistic components to it using the large

unaligned dataset.

• Developing Our Adversarial Attack for Other Downstream Tasks and Purposes

As future work, we plan to explore the impact of our attack against other downstream

tasks such as visual question answering (VQA). We also aim to study the more chal-

lenging task of attacking attributes as well as objects detected by Faster R-CNN,

simultaneously. This might be a difficult scenario since it is relatively straightforward

for an object detector to learn a set of attributes corresponding to a specific object. As

an example, the object “tree” is most likely to have an attribute “green” hence changing

“green tree” to “blue tree” is challenging for the adversary. This will also deepen our

understanding of the precise relationship between changes to the source image and the

generated caption.

8.3 Summary

The thesis presents novel image captioning models controlling over the caption generation

process by incorporating extra visually-grounded and non-grounded information. It also

presents an adversarial attack against the object detection task and shows the impact of this
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attack on the generated captions by a state-of-the-art image captioning model. However, many

interesting research questions are remained to be addressed. We hope the thesis as a PhD

project serves for reference purposes to control over image captioning systems and examine

the robustness of object detectors generating object-based features for image captioning.
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