
 

Modelling short term equilibrium and long term change 

in a natural way 

 

Doug McLeod 

 

  

 

This thesis is submitted in fulfilment of the requirements  

for the degree M.Research (Economics) 

MACQUARIE UNIVERSITY 

2017 

 

  



2 

 

Table of Contents    

Acknowledgements  3 

Certificate of Originality 4 

Abstract  5 

Chapter 1 Introductory Remarks  7 

Chapter 2 Literature review 13 

Chapter 3 The Markov Chain agent model 18 

Chapter 4 The dynamic model 56 

Chapter 5 Discussion of results 102 

Appendix Description of simulation 111 

References  116



3 

 

  

Acknowledgements 

I thank my supervisor Associate Professor William Bryant, Macquarie University for his 

considerable advice and assistance. 

I also thank my assistant supervisor Associate Professor Roselyne Joyeux, Macquarie 

University.  

For helpful comments I thank, in chronological order, Michael Kirkwood-Smith (TAFE 

NSW), Marianne Bruins (Nuffield College Oxford), James Duffy (Corpus Christi College 

Oxford).  



4 

 

Certificate of originality 

I hereby declare that this submission is my own work and that, to the best of my knowledge 

and belief, it contains no material previously published or written by another person, nor 

material which to a substantial extent has been accepted for the award of any other degree or 

diploma of a university or other institute of higher learning, except where due 

acknowledgement has been made in the text. 

 

 

Signed: Doug McLeod 

9th October 2017  



5 

 

Abstract 

 

Why would an agent produce and supply something if it got nothing in return? In order to 

investigate how complex systems, such as biological and economic systems, organize 

themselves, McLeod (2015) constructs a simple economic model for a biological system. In 

the context of a dimension model, it was shown that if exchange of resources between 

creatures is based on relative scarcity, we get a similar outcome to that produced by a market 

economy, even though such exchanges are not reciprocal. Specifically the ‘biological 

economy’ constructed in McLeod (2015) promotes the development of specialization and 

interdependence, and the number of creatures increases over time. These may be construed 

as large scale, or system, trends.  

The work presented in this thesis extends McLeod (2015). It develops a multi–sector general 

equilibrium model of an economy in which resource-based processes are modelled, in order 

to understand evolution from an economic perspective. The model is based on habitual 

behaviour represented by Markov chains. It applies particularly, but not exclusively, to 

biological systems and to pre–market human economies. Interestingly, the interplay between 

producers of scarce resources and consumers of those resources generates various kinds of 

agent number and system trajectories. These range from expanding to collapsing and 

oscillating to stable, depending on the ‘efficiency’ of the agents. Such dynamics occur even 

though we do not assume any explicit law of motion, objective function, or maximisation 

principle. The model demonstrates that: (𝑖) mutation/learning will cause a progressive 

increase in the specialization, interdependence and size of the economy; and (𝑖𝑖) a path 

dependent outcome is possible. Overall, the work contributes to our economic understanding 

of systems by grounding the dynamics of those systems in the cut and thrust of evolutionary 
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competition, rather than in the more aloof view of agent behaviour suggested by abstract 

optimization economics. 
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Chapter 1 

Introductory Remarks 

1.0 Introduction 

This chapter describes the context of the work presented in this thesis and its motivation. That 

context and motivation can be summarised in the following question: why would an agent 

produce and supply something if it got nothing in return? And there was a cost to 

manufacturing it? And if it didn’t produce it, it could get the good free of charge anyway? 

From an economic point of view, these are puzzling questions. Yet this is precisely how 

biological systems operate, and pre-market human economies as well. Game theory offers 

some answers based on reciprocal expectations and obligations. But what if there is no 

personal relationship? Here we examine non-reciprocal trade. 

1.1 Biological and economic systems 

The parallels between economic and biological systems have long intrigued economists (for 

instance, Marshall 1920). Initially these parallels were regarded as analogies, but the modern 

attitude is that the same principles are being expressed within different substrates (for a 

epistemological discussion of this point see Witt 2008). Biological economics looks at how 

concepts such as production, scarcity, price, competition, investment and systemic 

equilibrium apply to biological organisms. Much of this work is carried out by biologists 

rather than economists (Vermeij 2004 offers a summary). Economists have focused on the 

concept of system equilibrium, something which is emphasized is economics, and produced 

various ‘law of the jungle’ type models which typically emphasise the role of predation and 

demonstrate that equilibrium can be defined and attained in natural setting (see for example 

Piccione and Rubinstein 2007). Conversely biological concepts such as survival, mutation, 
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adaptation, replication and the fitness landscape have entered economics though the field of 

evolutionary economics. As these concepts are not standard in economics, there is a 

patchwork quilt of models with various assumptions and contexts; authors such as Foster 

(2011) and Markey-Towler (2016) have called for a general theory to order these biological 

concepts, in the same way as general equilibrium theory fills that need for received economic 

concepts.  

1.1.1 The meeting point of economic and biological behaviour 

Neoclassical economic theory assumes the following about behaviour, explicitly and 

implicitly (Eatwell et al. 1998): 

• An individual can formulate a criterion function which allows them to make 

consistent choices about any set of alternatives they may be offered. Utility is a 

measure of all the benefits and costs of a choice. 

• Agents choose the alterative which maximizes the value of their criterion function.  

• The agent has correct knowledge of the choices available, and the full consequences 

of the choices are either known completely or to the extent of a probability 

distribution of outcomes. 

• There is no cost to the decision-making process itself. 

These assumptions form an abstracted description of human behaviour which was originally 

adopted for its philosophical simplicity and clarity rather than its ability to describe behaviour 

in more than a stylized way. The abstractness of the assumptions has the advantage that the 

theory can be extended to the decision making of firms and nations. Three questions which 

arise are (i) how sensitive economic theories are to these particular assumptions; (ii) are the 

consequent theories sufficiently accurate to guide real world policy making; (iii) what are the 

alternatives?  
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One alternative is to carry out empirical research into economic behaviour, but this raises 

questions of its own. How different, if at all, is such a study from psychology, and does this 

matter? How specific will the conclusions be to the particular situation under study? How can 

such research be used to construct a general model of economic behaviour which can serve as 

a basis for theoretical elaboration? A more common approach is to relax the neoclassical 

assumptions in ways which seem plausible apriori and analytically tractable. For instance 

modern macroeconomic theories usually assume bounded rationality, which means that 

agents confine their attention to the available information rather than using perfect foresight 

(Simon 1972). Simon also introduced satisficing (1956). Studies in finance often assume 

‘myopic’ investors who look only one period ahead.  

Another alternative is to assume habitual behaviour. Hodgson (2004) presents a review of 

thought on habitual behaviour in economics. A habitual behaviour assumption is a broadly 

descriptive of real-world behaviour in both economic and biological systems, can incorporate 

adaptation and learning, and is mathematically tractable, and so it has been adopted for the 

purposes of the current study.  

1.1.2 The meeting point of economic and biological concepts 

A comparison of paradigms: When we look at economics and ecology we find three 

fundamental concepts in play: the production function/morphologically feasible set, the 

preference function/natural selection, and learning/mutation. It is noteworthy that in 

economics the production function and the preference function are central, but a learning 

concept is something of a bolted on extra confined to specialized treatments. It is unlikely 

that most undergraduate students of economics would encounter the concept. Most 

economists do not use the concept in their work, except maybe to validate the disturbance 

term in a regression or an assumption of structural change. By contrast, in ecology mutation 

and natural selection are fundamental, but morphological and physiological constraints (the 
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limitations to physical form and functioning) are confined to separate discussions. This may 

be because biologists tend to think of morphological development and natural selection as 

processes not states, so these processes are thought of as competing considerations rather than 

the two blades of a pair of scissors.  

Progress: While economists tend to take progress for granted, that is not the case for biology. 

Biologist Stephen Gould stated at the 1987 Spring Systematics Symposium at the Chicago 

Field Museum that "progress is a noxious, culturally embedded, untestable, nonoperational, 

intractable idea that must be replaced if we wish to understand the patterns of history” (Gould 

1988). Gould’s remarks were a reaction to the historical baggage weighing on the term in 

biology, nonetheless he felt that there was no concept of progress in biology at all. Gould 

(1997) took the position that there are no trends which last for the entire history of evolution 

on earth, because things which are advantageous in one context will not be so in another. He 

took the apparent increase in biological complexity to reflect a simple dispersion of this 

characteristic from a starting point of zero, which has no broader significance. Later writers 

in biology have been less willing to abandon the concept of progress entirely although they 

prefer to speak about ‘large scale trends’. McShea (1998) identifies eight trends which might 

be identified in evolution: (i) entropy, (ii) energy intensiveness, (iii) evolutionary versatility, 

(iv) developmental depth, (v) structural depth, (vi) adaptedness, (vii) size of creature, (viii) 

complexity. What is interesting about McShea's list is the omission of two dimensions which 

to an economist would seem most obvious: ‘efficiency’ and ‘total amount’.  

The model developed in this paper incorporates the three core concepts. The feasible set is 

represented by the state transitions on hand. The preference function is represented by 

survival and reproduction, and mutation is modelled by altering the matrix coefficients. The 

model differs from biological models, and resembles economic models, in that it looks 

explicitly at resources and their processing. Over time the system represented by the model 
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becomes more specialized and an ecology/economy will develop. Resource utilization 

becomes progressively more efficient and the population increases. These unidirectional 

changes represent evolutionary development of the system. 

1.2 Methodology 

We specify an agent-based model using Markov chains to represent agent behaviour, and 

then use the Perron-Frobenius theorem to establish the existence and uniqueness of a 

solution. To examine processes within the system we convert the Markov chain formulation 

to an equivalent set of linear equations and use the techniques of linear algebra. The model 

has a heuristic flavour, with more assumptions than would be desirable in a final theory.  

The method of inquiry is purely theoretical, and abstractly theoretical at that. The model does 

not include even as much real-world detail as general equilibrium models do – there is no 

consumption sector, separately identified labour supply, wages or even money. However, it is 

not as abstract as cellular automata models which have only cells in a grid and a period 

transition rule. This approach is motivated by the belief that an abstract model may be able to 

uncover general principles that more specific models take for granted. For instance cellular 

automata models have revealed that certain cells which act as a repository of system state are 

critical to driving system evolution. This is a fundamental insight into emergence – why 

systems seem to be more than the sum of their parts. Detail produces precise conclusions but 

requires more explicit assumptions, more implicit assumptions and more maintained 

hypotheses. By backing away from the immediate circumstances, we hope to see the wood 

not the trees. 

1.2.1 Structure 

Chapter 2 reviews the literature which underpins this thesis. Chapter 3 builds a Markov 

matrix model of the economy, shows that a unique, stable distributional equilibrium exists, 

and shows how the Markov matrix can be converted into a linear production model. Chapter 
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4 uses the linear production model to determine the dynamic properties of the system and 

investigate the effect of random mutations. Chapter 5 concludes. 

1.2.2 Some notational conventions 

Throughout this thesis the vector inequality is defined as follows: 

 a b : 
i ia b  for all i and a b  (i.e. at least one 

i ia b ) (1) 

 a b : 
i ia b  for all i  (i.e. a may equal b) (2) 

 :a b  there exists some j jb a   (i.e. a b does not apply) (3) 

1.3 Conclusion 

While economics and biology appear to be parallel sciences in that they examine how 

systems work, this chapter has described some significant differences in the received 

concepts of each discipline. Things which are taken for granted in one science are 

controversial in the other. Economists do not question progress; biologists do not question 

that agents can viably supply resources for free. Our aim is to develop a modelling 

framework rich enough to embrace insights from both disciplines.   
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Chapter 2 

Literature Review 

 

2.0 Introduction 

The work reported in this thesis started as an attempt to explain the phenomena observed 

within a computer simulation of a biological system whereby agents collect resources to 

survive and reproduce. A brief description of the model is given in the appendix. Although 

based on simple assumptions, the model exhibited many characteristics found in real world 

economic and biological systems such as the development of specialization and 

interdependence, boom-bust cycles, and periods of stasis interrupted by upheaval. In order to 

explain these phenomena we turn to three broad traditions in economics – linear production 

theory, Markov chain modelling, and biological modelling. 

2.1  Linear production theory 

 The seminal Von Neumann paper (1937) introduced the concept of modelling production 

functions with vectors of inputs and outputs rather than more general functional forms. 

Consumption is relegated to a fixed negative component of production which is not even 

separately identified. “Consumption of goods takes place only through the processes of 

production which include the necessities of life consumed by workers and employees” (Von 

Neumann 1937 pg2).  These rigid and apparently restrictive assumptions made possible a 

corresponding increase in the power of the macroeconomic analysis. For the first time the 

macro economy was modelled with different sectors of production rather than in aggregate. 

The Von Neumann model uses output from one period as capital input into the next, and the 

dynamics are driven by an external objective function, which is to maximise the rate of 

economic growth. The solution rate of expansion turns out to be uniform across sectors and 

equal to the interest rate. This model was the inspiration for post-war developments in 
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general equilibrium analysis; Leontief developed the sectoral analysis into a practical tool 

with his input-output analysis (1966). Here we adopt the linear production function but we do 

not use a capital concept or a maximisation principle, but rather a fixed endowment of 

resources in every period. 

2.2  Evolutionary economics.  

As stated in the previous chapter, economists have looked at biological evolutionary theory 

for concepts which might be serviceable in economics, particularly for processes of growth 

and change. For instance, Alchian (1950) argued that neoclassical assumptions cannot 

explain firm behaviour under uncertainty; but profit maximisation might evolve through the 

survival of successful strategies. Alchian’s article is notable for its early use of biological 

concepts such as survival, adaptation, inheritance, and the fitness valley. Reproduction and 

expiry can be used as metaphors for economic viability of all kinds. 

Sandholm (2008) in the context of game theory observes that: 

“In economics, the initial phase of research on deterministic evolutionary dynamics … 

focused on populations of agents who are randomly matched to play normal form games, 

with evolution described by the replicator dynamic or other closely related dynamics. The 

motivation behind the dynamics continued to be essentially biological: individual agents are 

pre-programmed to play specific strategies, and the dynamics themselves are driven by 

differences in birth and death rates. Since that time the purview of the literature has 

broadened considerably, allowing more general sorts of large population interactions, and 

admitting dynamics derived from explicit models of active myopic decision making.”  

These elements are equally applicable here in the context of resource management: 

• agents play preprogrammed strategies 

• agents replicate according to the success of these strategies 

• there are different agent types 
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• the dynamics are driven by the difference in birth and death rates of each agent type. 

2.3  Markov chain modelling 

Models based on Markov chains are widely used in economics for what might be termed 

pragmatic models, models which seek to simulate something without being derived from 

choice theoretic (i.e. set theoretic) foundations. They are particularly common in financial 

modelling to represent fluctuations in market volatility (Prasad 1974 is an early example). 

Markov chains have been used to represent habitual behaviour (for instance Schneider 2013). 

In biology a slightly modified version of a Markov Chain matrix referred to as a Leslie matrix 

(Leslie 1945) is used to model population dynamics by using a lifecycle analysis. The 

properties of Markov chains are well understood and there are analytically powerful 

techniques for working with them. In particular the Perron-Frobenius theorem which can be 

used to show a unique and stable solution for a system. The modification of behaviour in the 

light of experience can be represented by adjustment of the transition probabilities.  

The behaviour described by the Markov chain determines the agent’s chances of survival and 

its influence on the system. Although agents in a Markov chain model do not have goals as 

such, effectively their goal can be taken to be survival not utility. It follows that classical 

consumer theory is not well captured by a Markov chain model, but such an assumption does 

capture the motivations of a broad class of other actors, from firms in an economy and traders 

in a financial market to creatures in an ecosystem.  

2.4  The dimension model 

McLeod (2015) constructs an economic life cycle model using Markov chains with variable 

coefficients to represent resource procurement, manufacturing, trading and consumption. A 

standard general equilibrium model consists of the following elements: (i) a number of 

autonomous agents, (ii) a division of agents into producers and consumers, (iii) consumption 

decisions which are a function of exogenous preferences, (iv) resource endowments, (v) 
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production decisions which are a function of profit maximisation, technologies and resource 

endowments, and (vi) a tatonnement mechanism which creates a set of prices which clear 

both the goods market and the labour market. McLeod (2015) compares as follows: 

• Agents are autonomous, but the number of agents is not fixed 

• There is no division of agents into producers and consumers. All agents produce and 

consume resources. This is a general way of looking at the role of producers and 

consumers, both of whom do in fact produce and consume. For instance standard 

consumers produce labour and producers consume the overhead costs of production. 

This is an accurate description of biological systems, pre-industrial economies where 

production is carried out by individual artisans, and also agent-based computer 

simulations.  

• Consumption consists of a fixed vector of goods. There is no preference function as in 

a general equilibrium model. Each agent receives an endowment of resources, but 

unlike a typical general equilibrium model the endowment is the same for every 

agent. The consumption model is the major respect in which the Markov Chain Model 

is not as rich than a general equilibrium model.  

• Production functions are linear as per the Von Neumann (1937) model. Producers do 

not aim to maximize their profit but the system selects those who maximise the 

number of their descendants or in other words their enterprise size. It can be debated 

which assumption is more behaviourally accurate but behaviour is not very sensitive 

to the difference. 

• There is no explicit price system. A non-reciprocal trading mechanism is defined in 

place of tatonnement. The system equilibrium exhibits an implicit set of prices 

(shadow prices in the context of a linear programming problem) which exactly clear 
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production in all markets. Although price can be identified from the outside, it is not 

observable by the agents in the model and does not motivate their behaviour.  

A model without reciprocal exchange is a realistic description of a biological system and of a 

pre-industrial economy, but at first sight it appears quite different to a modern market 

economy. This difference may be more apparent than real. Game theory research has clarified 

the economic viability of non-commercial, non-reciprocal trading, referred to as cooperation, 

within modern society (for instance Gintis et al 2005, Nowak and Highfield 2011). 

Institutions such as the family, the firm, the school, the local community and the international 

community all impose non-reciprocal trading obligations on their members through a 

network of relationships and expectations.  

McLeod (2015) uses two agent types, two resources, and five scalar equations to show the 

development of specialization and interdependence from an initially undifferentiated state. 

Population increases over time as the economy becomes more adept at using the resources on 

hand, and there is a progressive increase in the order embodied by the system.  

The author’s aim is to redevelop the model for an indefinite number of resources and agent 

types, so as to create a general tool for exploring questions in complexity theory.  

2.5 Conclusion 

While the specific formulation of the model in this thesis is novel, it is grounded in the well-

established general equilibrium, linear production, and Markov chain model types.  
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Chapter 3 

The Markov Chain agent model 

 

3.0 Introduction 

In this chapter we define a Markov chain model of agent behaviour, and specify various 

processes of resource creation and disposition by which the agents sustain themselves. We 

then construct a Markov matrix for the system as a whole using Kronecker multiplication and 

use the Perron-Frobenius theorem to show that the system has a unique distributional 

equilibrium. We convert the system Markov chain to a set of linear equations, which make it 

possible to apply the concepts of linear production theory.  

3.1  Definition of the Markov Chain agent model 

We consider a system of atomistic agents which may be either biological or economic in 

nature. In a biological context the agents are creatures, in an economic context they are 

consumers and producers. There are various resources which an agent needs to sustain itself 

and the agent can both produce and consume these resources. The resources are essential for 

survival and if the agent runs out of any resource then it expires. Some of the resources are 

endowed as a ‘gift of nature’: there is a fixed amount of such resources made available in 

each period and it must be shared amongst all extant agents. Agents manufacture other 

resources from the endowed resources. The agent’s resource holdings at any point in time are 

sufficient to define the state of the agent. Resource holdings of agent j at time t are given by: 

 

1

2 : 1

jt

jt jt

R

jt

R

R R

R

 
 

  
 
 

R , resource vector of agent j at time t (4) 

i.e. resources are always shown as superscripts, agents and time periods as subscripts. 

Assumption 3.1: Agent life cycle. Agents start at state B with an initial stock of each 

resource. When an agent has increased resources to a reproduction state L it reproduces, 
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creating 1S   new agents which commence their lives back at the B state. The parent agent 

continues with whatever resources are left after equipping the offspring. If an agent runs out 

of any resource, then it expires. These states with zero amount of some resource are E states. 

There is an upper limit to the amount of each resource which an agent can hold. We refer to 

states with the maximum amount of some resource as U states. The lifecycle of an agent is 

depicted in Figure 3.1: 

    

Figure 3.1: Agent life cycle in a world with two resources. Horizontal axis shows the agent’s 

holding of resource A, vertical axes shows holding of resource B. The agent starts (born or 

instituted) at state B. If holdings fall to zero in either resource then the agent expires (dies or 

wound up). This occurs on the axes and is shown by E. There is a maximum amount of 

resource which the agent can hold and any excess is shed. This occurs at the right hand and 

top and is shown by U. If the agent acquires a threshold amount of both resources then it 

reproduces. This occurs in the top right hand quadrant and is shown by L. The agent gains or 
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loses resources through various processes which are invoked at random in each period, so the 

agent follows a random walk through the above landscape. An example is shown in red. 

 

Processes. There are eight agent processes which can occur in any given period. These occur 

with probabilities which may be constant, or may depend in various ways on the parameters 

of the system. These are (1) production of manufactured resources, (2) production of 

endowed resources, (3) consumption, (4) trade, (5) resource shedding, (6) resting, (7) 

reproduction, (8) expiry. The last two are referred to as vital processes. 

1. Production of manufactured resources.  

Assumption 3.2 Manufactured resources are produced from other resources via a linear 

production function, i.e. a fixed rate of exchange represented by a vector.  

Remark: We do not assume a one-to-one relationship between resources and production 

vectors - a production vector may produce more than one resource and there may more 

than one production vector which produces the resource.  

A resource is scarce if agents expire regularly for want of the resource.  

A resource is abundant if it is not scarce and in general every agent has enough. 

2. Production of endowed resources.  

Assumption 3.3 There is at least one endowed resource r which is made available in 

total amount rL  in each period. Endowed resources can be regarded as harvested from 

the environment rather than manufactured. 

Assumption 3.4 There is a fixed resource cost to harvesting this resource, so not every 

agent may wish to produce it.  

Assumption 3.5 The amount available rL  is divided evenly between the agents which 

choose to harvest that resource. In this model, we take it that all agents so choose. 

 
r r

jN p L   (5) 
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where  :r

jp scalar , the probability of agent j producing resource r in the period 

 :N scalar , the total number of agents of all kinds, i.e. the total population 

 :rL scalar , total number of units of resource r endowed in each period 

Example 3.1 Examples of resources which are endowed in both biological and economic 

systems are energy, water, air and minerals. 

3. Consumption.  

Assumption 3.6 In each period every agent must consume a fixed vector of resources in 

order to survive.  

Remark Since resource count is discrete, this requirement is interpreted 

probabilistically. Every resource is given a probability that it will decrease by one unit in 

a given period, such that the probability generates an expected value equal to 

consumption.   

4. Trade.  

Agents move around their environment and they meet randomly. Where one agent has a 

resource and meets another agent, there is some chance that a unit of resource will be 

transferred to the other agent. If the transfer actually happens, then trade occurs.  

Remark: Trade is symbiotic, every agent has resources which other agents can use. 

Symbiotic relationships can be distinguished from parasitic relationships, where the flow 

of resources can only go one way. Although the resource flow can go either way, there is 

no reciprocity in a given transaction. Nor is there any expectation of reciprocity between 

a particular pair of agents in the future, although it may work out that way.  

Example 3.2 In practice most symbiotic relationships in biology occur at the cellular 

level, where different kinds of bacteria have various chemical roles to play; bacteria are 

the chemical processing plants of the living world. The chains of predation which we 

tend to associate with biology are one kind of parasitic relationship. 
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Assumption 3.7 The probability of resource transfer between agents is proportional to 

the resource differential between the agents.  

Assumption 3.8 The total chance of meeting another agent in a time period is constant 

regardless of the number of agents.  

Remark: This reflects the tendency of agents to cluster together when there are few of 

them. 

Remark: For any particular amount of resource holding rR , the probability 
r

jp  is the 

same for every agent.  

It follows that the probability of one unit of resource r being received by agent j in state s 

from agent k in state S is given by: 

 
 r r r

kS jsr

jk

k R R
p

N


    (6) 

where rk  is a scalar proportionality constant for the resource. We establish the 

operational version of the trading definition above. 

Proposition 3.1. The expected amount of resource r traded by agent j is given by: 

  
TRA r

r r r

j jb k      (7) 

where  

 :
TRA r

jb scalar , the expected amount of resource r received by j per period (8) 

 0,rk scalar , a trading constant determining the probability of transfer (9) 

 :r scalar , the average amount of resource r in the population (10) 

 :r

j scalar , the average stock holdings of agent j (11) 

Proof: Take expected value of (6) and sum over the population, including agent itself. 

 
   

 
r r r r r r

TRA r
i js jr r r r

j j j

i i

k R R k
b E p E k

N N

 
 

  
        

  
    # (12) 
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Remark: For a given stock holding 
r

jR  the result is 

   
TRA r

r r r

j jb k R   (13) 

5. Resource shedding.  

Shedding is the loss of resource by the agent. 

Assumption 3.9 Each agent has an upper bound on the amount of resource which it can 

store (state U). If an agent reaches the upper bound then any additional units of resource 

which the agent receives are disposed of. 

Assumption 3.10 There is no additional resource cost to shedding, i.e. free disposal. 

Assumption 3.11 A shedding event is taken to be coincident with the production event 

and cancels all or part of the production out. If production consists of more than one unit, 

then as many shedding events as are necessary to cancel the excess are deemed to occur.  

Example 3.3 If the agent is one unit below the upper bound in a particular resource, and 

the manufacturing process produces three units, then we have one production event (+3 

units) and two shedding events (-2 units) giving a net production of +1 unit. This raises 

the agent to the upper bound for that resource. 

Remark: Where a resource is abundant, i.e. more is produced than the agents need, then 

these upper bounds will be reached and are an important consideration. 

6. Resting.  

If the agent stays in its current state and nothing changes then it is said to be resting. 

Resting has the residual probability after other processes have been accounted for.  

Assumption 3.12: The probability that any particular process will occur in a period is 

proportional to the length of the period. 

Remark. We set the duration of the periods sufficiently small that there is a positive 

chance of resting for every possible agent state. Trading probability in particular is a 

function of agent state and can vary significantly. 
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7. Reproduction.  

Reproduction is the duplication of the agent type. 

Assumption 3.13 When an agent has the resources L
R required for reproduction then it 

gives rise to S agents, S is an integer greater than one. 1S   new agents are created at the 

birth state B, and the original agent continues with the resources left over.  

Remark: No resources are created or lost by reproduction, so  

  0 11 B

j jS   R R R   (14) 

8. Expiry.  

At expiry an agent becomes inactive. 

Assumption 3.14 If consumption or production causes an agent to run out of any of the 

resources then it expires. In the next period all resources left on hand are forfeited by the 

agent and transferred to other agents, so that no resources are lost from the system.  

Remark. We argue that resource recycling is a realistic description for both biological 

and economic systems, although typically there is a loss of economic value as order is 

degraded. 

Assumption 3.15 The receipt of resources through the resource recycling is independent 

of the other processes of the receiving agents, and can occur in the same time period. 

Resource interaction: 

Assumption 3.16: AGENT INDEPENDENCE. Processes occur in one agent independently of 

other agents, except for the reproduction and resource recycling processes.  

Remark: Several of the processes have the same implications for resource movements. The 

cell entries in the Markov chain do not represent processes but resource movements. The 

probabilities for all processes having the same resource outcome are added together to get the 

probability which is entered in the cell. The question arises as to whether the processes occur 

independently, in which case two or more can occur in a period, or exclusively, i.e. only one 
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process can occur in a particular period. Pursuant to Assumptions 3.11 and 3.15, shedding 

and resource recycling processes can be coincident with other processes. We regard the other 

processes as mutually exclusive, but it is not necessary to make this assumption.  

Agent types: 

Assumption 3.17: AGENT TYPES. We introduce different types of agent, indicated by an agent 

subscript. Agents differ with respect to the resource processing they undertake, its efficiency, 

and their consumption requirements. An agent can implement as many of the resource 

production vectors as it chooses. All have the same resource upper bound U. We take it that 

there are J agent types, and N agents in total. 

The Markov chain transition matrix:  

Assumption 3.18 In any period the agent may transition from one state to another. This 

behaviour is described by a Markov chain matrix : D DM , which gives the probabilities of 

the possible transitions.  

Remark: Each element ijm  of M gives the probabilities of transition from state j in this 

period to state i in the next period. Thus we read down the columns to see what happens to 

state j. The agent may remain in the same state between one period and the next, this is 

represented by a probability at the diagonal element jjm .  

Each possible combination of resource amounts corresponds to a state, so the dimension M of 

the matrix M is found by calculating the number of distinct resource states, i.e. 

      1 21 1 1 :MAX MAX R MAXD R R R scalar      , number of states in M (15) 

The number of states D equals the number of dots in Diagram 3.1 above. Certain of these 

resource states are inaccessible, namely states where the agent has more of all resources than 

are necessary to reproduce, but this is of no particular consequence. We prove below that an 

agent will eventually transition to the two absorbing states E and L. The agent Markov 
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matrices M  do not include any provision for the reproduction or expiry processes as these 

processes affect more than one agent and must be handled at system level.  

 
1 0

0 1

E

M

L

E L

 
  
 
 
 

m
M

0 M 0

m

   (16) 

where :1 2E D m   Probability of transition to the E state in each period 

 :1 2L D m  Probability of transition to the L state in each period 

    : 2 2M D D  M  central part of M for intermediate transitions 

As a Markov chain matrix, M has a eigenvalue of 1 (each column sums to unity so 

1  ι M ι   where : 1Dι  is a vector of unity elements). The eigenvalue corresponds to two 

LHS eigenvectors. One of these eigenvectors can be interpreted as giving the probability of 

reaching expiry state E from the current state, and the other eigenvector gives the probability 

of reaching life state L. We set out this standard result for reference.  

Proposition 3.2. The probability of the Markov process M transitioning to either the E state 

or the L state is unity. 

Proof. We obtain expressions for the two LHS eigenvectors, then use the fact that 1Dι  is a 

LHS eigenvector of a Markov chain matrix to obtain an expression into which the LHS 

eigenvectors can be substituted. 

 

1 0

1 0 1 0

0 1

E

E M E

L

 
 

       
 
 

m

υ 0 M 0 υ

m

  (17) 

 1 0E E M L E    m υ M m υ   Multiplying out middle column (18) 

so  
1

E E M


 υ m I M   Rearranging (19) 

Similarly  
1

L L M


 υ m I M   (20) 
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Now the sum of the columns of a Markov chain matrix M is unity.  

    1* 2 1* 2

1 0

1 1 1 1

0 1

E

M

M M

L

 

 
 

 
 
 

m

ι 0 M 0 ι

m

  (21) 

 E M L   m ι M m ι   Multiplying out middle column (22) 

   
1

E L M E L


    ι m m I M υ υ   Rearrange (22), sub in using  (19),(20) (23) 

i.e. the probabilities of reaching either the E state or the L state sum to 1 in every state. # 

3.2 Existence and stability of equilibrium 

Here we explore the existence, uniqueness and stability of a solution to the system we have 

defined. The starting point of the inquiry is to note that the state of a single agent j at time t is 

defined by the resources which it currently holds. 

  1 2 R

jt jt jt jtS R R R    (24) 

The state of the whole system is the concatenation of the state of each constituent agent. 

       1 2 1 2 1 2

1 1 1 , ,SYS R R R

jt t t t jt jt jt Nt Nt NtS R R R R R R R R R   (25) 

We build a matrix to represent the system as a whole in nine steps carried out in order.  

1. Set agent positions. Firstly, we set an upper limit 
UPPER

jN  for the number of each agent 

type in the system, well above what resource constraints could conceivably support. The 

chances of the system reaching this upper bound are effectively zero. The upper bound 

for the number of agents in the system is given by 

 
UPPER UPPER

jN J N     (26) 

This upper bound 
UPPER

jN  defines the number of agent slots available to be filled by each 

agent type. Each agent is assigned a slot. Slots which are not filled by active agents are 

filled by expired agents which are currently in the inactive (expired) state. 
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2. Build the system matrix. Define: 

 :VOID D D M I , identity matrix the same size as M (27) 

We construct a matrix 1SYSM  through Kronecker multiplication.  

 1

1 2 :SYS VOID VOID VOID SYS SYS

NUPPER D D   M M M M   (28) 

where  
NUPPERSYSD D    (29) 

For every cell in this matrix the state of the system is completely defined and this allows 

us to fill in the probabilities of each event. 

3. Manufactured resources and consumption.  These processes are carried out in every 

agent state except the L and E states. They have set probabilities. When a probability is 

entered into a cell, a corresponding deduction is made to the resting probability for the 

agent. 

 2 1SYS SYS SYS MANU SYS CONS  M M M M   (30) 

4. Production of endowed resources. The production of endowed resources depends upon the 

number of active agents N. In each cell of the system matrix we can now determine the 

number of active agents N and use it to determine the probability 
rL

N
 of each agent 

receiving a unit of endowed resource r. (If 1
rL

N
  then allocate more than one unit of 

resource.) The entry of the probability values for endowed resources corresponds to the 

addition of a modifying matrix: 

 3 2  SYS SYS SYS ENDOWED M M M    (31) 

5. Trading. Trading will not affect the vital processes, because it averages stock towards the 

mean. Reproduction and expiry only take place at extreme positions, so if a vital event 

was not indicated prior to trade, it will not be indicated after trade. Agents already in the 

E and L states do not participate in trade. 
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While trade in principle involves two agents, for simplicity we take it that the trading 

probabilities in each period are valued independently for each agent according to (7) 

using the current resource average r . It is therefore possible that the amount which 

agents gain from trade does not exactly equal the amount which agents supply to trade. 

Because the deviation of agent stock levels 
r

jR  around the mean r sum to zero in every 

period, and the trading coefficient rk  is constant for all agents, the expected value of 

transfers in each period is zero. The discrepancy between the amount of stock received 

and supplied will average out to zero over time and is ignored. Indeed in a real system, 

stock is held in storage and transit, so such a model may be a more realistic model of real 

world trading. The trading process therefore depends on a parameter which is determined 

by the state of the system, namely the mean amount of each resource r . 

 4 3  SYS SYS SYS TRADE M M M    (32) 

6. Shedding. Shedding is determined after the other processes and the balance of resources 

on hand is clear. 

 5 4SYS SYS SYS SHEDDING M M M   (33) 

7. Reproduction and expiry (vital events). When the agent transfers to a life state L or an 

expiry state E in the previous period, it does not qualify for any of the other processes. 

Every cell in the Kronecker matrix contains all the information about both the current 

state of the system and the new state, so the adjustment to be made to account for these 

vital events is well-defined. The current state corresponds to a particular column in the 

1SYSM matrix. Modifying matrix SYS VITALM has the effect of transferring each entry from 

its current location in the column to a new location which reflects the system state after 

vital events are processed. The SYS VITALM matrix does this by subtracting probabilities 
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from some cell and adding probabilities to others; the sum of elements in each column of 

SYS VITALM is zero.  

 The rules which determine the transition from the L and E states are as follows: 

Creation: When an agent is born: 

• It is assigned an agent slot immediately after the highest current slot currently 

occupied. If the upper bound 
UPPER

jN  has been reached then the next slot wraps 

around to the first position. If this immediately higher position is already occupied by 

a living agent then the assignment does not go ahead and the resources are forfeited 

from the system, as a separate system process described below. 

• Its birth resources are allocated to that position. 

Expiry and resource recycling: When an agent expires: 

• All active (living) agents in lower positions are shifted up the position list so that the 

vacant slot is filled, and the active agents are all in one block. 

• The resources held by the expired agent are allocated out to the agents in order of 

position, and each agent’s resource holdings are adjusted accordingly. This can have 

the effect of moving an agent to a life state L as may other processes. An agent is not 

allocated a resource which would lift it above the upper limit for that resource. There 

is the technical possibility that it is not possible to allocate out all the resources 

available, either because all the agents are at their resource limits or all agents have 

gone extinct. This invokes a separate system process described below. 

Reproduction and expiry do not consume resources, so the total resource count of the 

adjusted state is the same as that of the original state. 

 6 5SYS SYS SYS VITAL M M M    (34) 

8. System processes. In addition to the eight agent processes, there are three system 

processes of a technical nature which are necessary to complete the model. These are:  
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System extinction: The LHS column in the system matrix VOIDM  represents the expiry of 

all agents in the system. It has a positive albeit small probability of being reached from 

other states. An extinction state is an absorbing state, and the distribution eigenvector 

becomes 

 

1

0

0

SYS

 
 


 
  

μ    (35) 

i.e. eventual extinction of every agent is certain, notwithstanding the infinitesimally small 

transition probabilities. To avoid this situation, we assume that the system will eventually 

be regenerated. While the probability of regeneration in any particular period is also 

infinitesimally small, the long period of time prior to regeneration can be ignored. We 

place a 1 in the cell which represents one each of the original agent types, at the birth 

position.  

 
1 .

. 1

. .

E E E E

BB BO BB BO

OB OO OB OO

E B O E B O

p p p p

M M M M

M M M M

   
   

   
      

 E=expiry, B=birth, O=other (36) 

Species reproduction limit: If the agent limit 
UPPER

jN  is reached, birth is not possible and 

the resources set aside for that agent are forfeited and disappear from the system. This 

process is purely technical; the probability of it occurring can be made arbitrarily low by 

increasing the agent limit 
UPPER

jN  as required. 

Recycling limit: If all agents go extinct then the last agent will have no successors which 

can inherit its resources. It is also possible that if too many agents go extinct that all the 

resources cannot be distributed without breaching the resource limits of the remaining 

agents. In these cases the excess resources are forfeit from the system.  
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Remark: The effect of these three assignments is that the corresponding probabilities in 

the system matrix 3SYSM  are subtracted from one cell and added onto another cell in the 

same column which represents the adjusted final state. Unlike agent reproduction and 

expiry, these system processes do affect the total resource count of the system, however 

they are considered processes of such low probability that they need not be considered in 

the resource accounting. 

 6SYS SYS SYS PROCESS M M M    (37) 

Assumption 3.19 The system processes use negligible resources, taken to be zero 

resources. 

9. Evaluation of resting probabilities. In each step, resting probability is adjusted by the 

opposite of the probability alterations required by the other processes, so that probabilities 

sum to zero in each column of each adjustment matrix. Because of the values taken by the 

trading parameters rk  and others, it is possible that some of the resting probabilities are 

negative. In this case, reduce the size of each time period, which will reduce the process 

probabilities correspondingly. A sufficient reduction in the length of the time periods will 

render all the resting probabilities positive. 

As system matrix SYSM is now determined and all variables have been evaluated, we can 

solve the system uniquely. To do this we make use of the following standard result. 

Theorem 3.3: PERRON-FROBENIUS THEOREM.  

Let A  be an irreducible non-negative square matrix of period 1. Then the following 

statements hold. 

• There is a unique maximal eigenvalue r of A 

• r is a positive real number 

• The eigenvectors corresponding to eigenvalue r are strictly positive. 

Proof: See for instance Meyer (2001). 
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The following result establishes that the system specified here is capable of solution. 

Theorem 3.4: EXISTENCE OF UNIQUE SOLUTION. System matrix SYSM has a unique, positive 

RHS eigenvector SYSμ corresponding to a maximal eigenvalue of unity. 

 1

SYS

DSYSμ 0    (38) 

Proof: We verify that the conditions for application of Perron-Frobenius theorem are present. 

 0SYS M    by construction (39) 

 SYSM  is irreducible   all states are communicating by construction 

 SYSM  is aperiodic  contains resting states, so  g cd 1, 0 1n

iin p     (40) 

so  !  maximal eigenvalue MAX  by Perron-Frobenius theorem above 

Now  SYS SYS MAX SYS ιMμ ι Mμ ιμ  multiplying by RHS eigenvector (41) 

   1SYS SYS  ιM μ ιμ   multiplying by LHS eigenvector (42) 

So 1MAX    # (43) 

Remark: As the eigenvalue is maximal, any initial RHS vector will converge to the RHS 

eigenvector and the solution is stable. 

Remark: The RHS eigenvector can be interpreted as a probability distribution over the states 

of the system. Since it is positive, every state has a positive chance of occurring, albeit small 

for most of them. 

Remark: Given that the system does not occupy any one state in equilibrium but all of them, 

the concept of an equilibrium solution needs to be examined. An equilibrium solution would 

normally be interpreted as a particular state which satisfies all the constraints, and which the 

system will not leave even if it is an unstable solution. Here we cannot speak of such a 

solution: a state may be stable, but the system will nonetheless leave it. This is a 

distributional equilibrium, not a situational equilibrium. We can interpret the situational 
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equilibrium solution as a stable point: a point to which the system tends to return, and the 

pressure to leave is not biased in any particular direction. 

3.3 Resource accounting 

In order to explore the consequences of the processes and resource constraints, we introduce 

the following variables: 

 

0

0 : 1

1

D

 
 

 
 
  

v   current state of the agent, as distinct from distribution vector μ    (44) 

 : R DX  stock matrix: amount of each of R resources in each of D states of M 

 : 1R R Xμ  expected amount of resource held by an agent (45) 

 1 0 : 1R   R R R    change in resource of the agent in a period (46) 

 
1 2 1 1 1 2 2 1 2 2

1 1 2 1 1 1 2 2 1 2 2 1 1 2 2 2 : 2R D

   

       

        

       

X X x x x x

x x x x x x x x
  (47) 

 where 1 1x  is 1R  first column of 1X  etc. Only two columns shown for simplicity. 

 
1 2 :SYS SYS

J R D   X X X X stock matrix for the system as a whole (48) 

Decomposition of the transition matrix by process. We now decompose Markov matrix M  

into its component processes, and calculate the resource impact of each process according to 

  1 0     ΔR R R XMμ Xμ X M I μ   (49) 

 The eight processes can be divided into three types. In the first case, the process produces 

zero net resources. Reproduction, expiry and resting are this kind of process. In the second 

case, the process is fixed in terms of its probability jp and resource demands e for any active 

state of the agent. These processes are production of manufactured resources, and 

consumption. The probability of these processes is zero in the L state but this can be 

disregarded because the L state is infrequent. For every agent j, each process has a process 
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vector ja , which is the expected value in each period of the process across all states in which 

the agent is active. 

 

s s s

j j

s A
j A

p 





 


e

a   (50) 

 

s

j

s A
j j A

j

p





  


e   noting 
s

j je e ,
s

j j
p p  as process is not a function of state (51) 

 
j jp e   (52) 

where s A , agent j is active (not expired) in state s (53) 

 :
s

scalarμ , the probability of state s in distribution vector μ  in a given period  (54) 

 :
A s

j

s A

scalar 


 , probability across all system states that j is active  (55) 

 1 :
E A

j j scalar   , probability across all system state that j is expired (56) 

 ,
s

j
p scalar , probability of the process per period for agent j in state s (57) 

 ,
j

p scalar , probability of the process per period for agent j in any active state A (58) 

 

1

2 : 1

r

j

r

j j

r

jR

e

e R

e

 
 

  
 
 

e , integral amounts of resource used in the process by agent j (59) 

 : 1j Ra , expected value per period of the process for agent j in active states (60) 

In the third case, the process is not fixed. It may vary either because (i) the production vector 

e varies throughout transition matrix M . Production will then vary according to the state of 

the agent v. This process is resource shedding; (ii) The probability of the process p varies 

according to the state of the system SYSv . This process is manufacture of endowed resources; 
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(iii) the probability of the process depends on both the state of the agent and the state of the 

system. This process is trade. We denote a variable resource vectors by jb . 

 

s s s

j

s A
j A

j

p 





 


e

b  : cannot be simplified (61) 

where : 1j Rb , expected value per period of the process for agent j in active states (62) 

As we can see, the difference between a and b is that in the latter case, the probability 
s

j
p  

and the process 
s

je  are functions of the system state s. 

Interpretation of distribution vector μ : The reproduction state L operates automatically: there 

is only one transition which is certain to be selected. No resources are produced in this state, 

unlike the other states. If we regard the time periods as being short then agents will spend 

little time in this automatic state compared to others. We suppose: 

 0 :
L

j scalar  , probability that agent j is in reproduction state L (63) 

so the reproduction state need not enter into our calculations of resource yield below.  

Thematic representation of the resource processes. We calculate the resource flows for each 

process for one agent. Each result is a vector representing the flow when the agent is active, 

and is multiplied by 
A

j , the percentage of time the agent is active to give the expected value 

of the process across all states active and expired. It is impossible (or at least pointlessly 

tedious) to represent the full generality of the Markov matrix M  and stock matrix X with all 

the possible combinations of resources and functions. The following matrix representations 

are thematic only.  

1.Production of manufactured resources: 

 
PRO PRO

ΔR XM μ    (64) 
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. . . .

. . .

. .

. . .

r

r r

r

E L

p

p p

p

 
  
 
 
 
 

X μ    (65) 

 

1

2
. .

E

S

PRO r PRO r
r r

S
R M

L

p p











 
 
 

         
 
 
  

e e   (66) 

 

PRO r s

PRO r PRO rs A
s A

jA
s A

j



 







   



a

a a       using (52), (55) (67) 

2. Production of endowed resources: Here the probability of the production varies according 

to the number of agents as per (5). Other resources may be required for the production. We 

take it that the other resources are consumed whether production is successful or not, with a 

fixed probability. 

 
END r END r END r

 ΔR X M μ X M μ    (68) 

 

. . . . . . .

. / . . . .

. / / . . . .

. . / . . . . .

r

r r r

r r r

r

E LE L

p

L N p p

L N L N p

L N

  
      
   
  

   

X μ X μ   (69) 

 

1 1

2 2
. . . .

E E

S S
r rEND r END r END r END r

r r

s s S S
R D

R D

L L

L L
p p

N N

 

 

 

 




   
   
   

                        
   
      

e e e e   (70) 

 
END r END r END r END rs s A A

j j j j

s A s A

   
 

        b a b a   using (50), (61) (71) 
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3.Consumption: Consumption reduces resources, possibly to the expiry state E.  

 
CON CON

ΔR X M μ    (72) 

 

. . .

. .

. . .

. . . .

r

r r

r

E L

p

p p

p

 
 

  
 
 
 

X μ    (73) 

 
CON r A

j a    as for manufactured resources (74) 

4. Trade  

 
TRA r TRAr

ΔR X M μ   (75) 

 

. . . .

. .

. .

. . . .

r r

r r

E L

p p

p p

 
  
 
 
 
 

X μ   (76) 

 

1

1 1 2 2

2
. .

E

S

S r S r S r S r
r r

S
r r

L

k R k R




 





 
 
 

                  
 
 
  

    as per (13) (77) 

  
A

r r r

jjk        (78) 

 
TRA r A

j b   (79) 

5. Resource shedding. Similar to consumption except that it occurs only in the upper bound 

state U and possibly those states immediately below it. It is coincident with production. If the 

manufacturing vector produces more than one unit, then more than one shedding event can 

occur in one period so as to cancel out the excess units. 
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SHED r SHED r

ΔR X M μ   (80) 

 

1. . . .

. . .

. . .

. . . .

E

S

r

U
r

L

E U L

p

p









 
 

   
   
   
   
   
    

X   (81) 

 

s s s

j A
s A

jA

j

p 







 

 
e

  using (61) (82) 

 1

SHED r A

j R   b 0   (83) 

6. Resting.  

 1

REST

RΔR 0   (84) 

7. Reproduction: Reproduction is represented on the system level as described above not on 

the agent level. 

8. Expiry. Expiry is represented on the system level not on the agent level. The amount 

gained by active agents is variable. 

We now amalgamate the results across all resources: 

 
FN r FN rFN A FN A

j j

r r

      ΔR XM μ a a   (85) 

 
FN r FN rFN A FN A

j j

r r

      ΔR XM μ b b   (86) 

 : 1
FN rFN

r

R a a , sum over all resources. FN=PRO, END, CON  (87) 

   : 1
FN rFN

r

R b b , sum over all resources. FN=END, TRA, SHED (88) 

To establish the relationship of the model to linear production theory we start with a 

functional decomposition of the Markov matrix. 
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Lemma 3.5. In the defined model the agent transition matrix may be decomposed as: 

 

PRO PRO
ENDOW MANU CON TRA SHED

     M M M M M M I   (89) 

Proof: We evaluate RHS using the expressions derived above for each component. The 

matrices below are representational only. It is only meaningful to add the diagonal elements 

representing the resting state, the other cells do not correspond to each other. The expiry state 

E and life state L are shown explicitly. 

. .

. .

. .

. .

FNPRO PRO
ENDOW MANU CON TRA SHED

FN

FN

FN

E L

p p

p p

p p

p p

 
 
 

      
 
 
 
 
 





M M M M M  FN: five processes at left (90) 

 

. . 1 .

. 1 . . .

. 1 . . .

. . . 1

REST REST

REST REST

E L E L

p p p p

p p p p

p p p p

p p p p

   
   
     
   
   
   
      

I   noting 1
REST FN

FN

p p   (91) 

  M I  recalling M  does not include the vital processes  # (92) 

The following is necessary to allow manipulation of the system Markov matrix SYSM . 

Lemma 3.6. Suppose that 1 2,X X  are R D  matrices and 1 2,M M  are D D  matrices with 

columns adding to unity. Then 

 

   1 2 1 2

1 11 1 11 1 12 1 121 1 1 1 1 1 1 1

1 21 1 21 1 22 1 221 2 1 2 1 2 1 2

2 112 1

2 212 2

r

AA AB BA BB

r r r r

AA AB BA BB

r r r r

AA

r

AA

r

Eval

x m x m x m x m

x m x m x m x m

x m

x m

      

      





  

        
           

        
        
        

 
 



 

X X M M

2 12 2 11 2 122 1 2 1 2 1

2 22 2 21 2 222 2 2 2 2 2

AB BA BB

r r r

AB BA BB

r r r

x m x m x m

x m x m x m

    

    

      
        

       
       

      

 (93) 
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where  1 2Eval M M  refers to a Markov chain matrix Kronecker product 
1 2M M  

evaluated at a system state (in the way described for the system matrix SYSM  above). The 

system state is the concatenation of the state of each constituent matrix. 

 AA is the system state which represents the first state of 
1M  and the first state of 

2M   

 AB is the system state which represents the first state of 
1M  and the second state of 

2M  etc. 

 The column in the constituent matrices represent their current state, so column 1 in 

matrix 1M  corresponds to state A for matrix 1M . The column number must match the 

corresponding state letter, e.g. 2 21

BA

m   indicates column 1 of the second agent, and this 

matches the system state designation of A for the second agent.  

 The   operation is defined above. 

 1 1rx   refers to matrix 1X , row r column 1 etc. 

Proof: We evaluate the premise. We show the result for the r th row of 
1 2X X  and the i th 

column of 1 2M M , it applies the same way to the remainder. For brevity the proof is shown 

for just two elements. The i th column of 1 2M M results from the j th column of 1M  and 

the k th column of 2M .  

 *i j D k    (94)

    

 

  1 2 1 2

1 1 2 1

1 1 2 1 1 1 2 2 1 2 2 1 1 2 2 2

1 2 2 2
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r r r r r r r r
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m m

 

       

 

   

    
                  

X X M M

  (95) 
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2 22 2 2 2

1 to

2 1 2 12 1
1 2 1 21 2

2 2 2 22 2

JKJK

JKJK kk r
jjr

JKJK

kk r

JK JKD D
JK JKk kr

j jr
JK JK

k kr

x mm
mx m

x mm

m x m
x m m

m x m

 


 



 
 

 

     
     
     
        
   
     
    
    
          


1 to D D





  (97) 

where
1x  is applied to the outside factor, 

2x applied to inside factor of 
1 2M M  

and 
1 to D D

  shows that the terms are added together.  

 1 1 1 2 2 1 2 21 1 1 2 2 1 2 2

JK JK JK JK

j j k kr r r rx m x m x m x m      

   
      
   

 given 
1 2,m m  cols sum to 1 (98) 

Similarly for each column of 1 2M M  and row of 
1 2X X .  # 

Remark: The result can be extended to progressive multiplications: 

      1 2 3 1 2 3

r

Eval   X X X M M M  etc (99) 

The following uses the previous result to obtain an expression in terms of the system matrices 

for the agent’s resource holdings.  

Lemma 3.7. Expected resources in period 1 of an agent are given by: 

 1

EVAL

j j j  R X M μ    (100) 

where : 1

A

j B
D





 
  
 
 

μ , system distribution vector SYSμ  aggregated for agent j’s states (101) 

 
A AA AB

States

    , aggregation of all system states where agent j is in state A  (102) 
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B BA BB

States

            i.e. cumulated over all states of other agents (103) 

where superscript AA denotes the first state of agent 1 and the first state of agent 2, AB 

denotes the first state of agent 1 and the second state of agent 2, etc. Superscript A denotes 

the first state of agent 1 cumulated over all states of agent 2, superscript B denotes the 

second state of agent 1 cumulated over all the states of agent 2, etc. Only two agents shown 

for simplicity, but in general one letter is used for each state of each agent, so if there are five 

agents we might have system state JCJKA for instance. 

 
11 12

21 22

A B

EVAL

j
A B

m m

m m

 
 


 
  

M    (104) 

where 11 11 11

AA
ABA AA AB

AA AB AA AB
m m m

 

   

 

 

  weighted average over states of other agents (105) 

and 21 21 21

AA AB
A AA AB

AA AB AA AB
m m m

 

   

 

 

 etc. (106) 

Proof: We evaluate 
1R  using its definition and the previous result. Without loss of generality 

the proof is shown for only two resources, states and agents. 

 1

SYS SYSR X M μ   1R denotes resource holdings in period 1 (107) 

  2SYS SYS SYS VITAL SYS PROCESS  X M M M μ   (108) 

 2SYS SYS X M μ     (109) 

 given 1

SYS SYS VITAL

DSYSX M 0    by construction (110) 

 1

SYS SYS PROCESS

DSYSX M 0   by Assumption 3.19 (111) 

    1 1 2

SYSEval  R X X M M μ   (112) 
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    1 2

AA

AB

BA

BB

Eval









 
 
 
   
 
 
 
  

X X M M    (113) 

1 11 1 21 1 11 1 21 1 12 1 22 1 12 1 221 2 1 2 1 2 1 2

2 11 2 21 2 12 2 22 2 11 2 21 2 12 21 2 1 2 1 2 1 2

AA AA AB AB BA BA BB BB

AA AA AB AB BA BA BB BB

m m m m m m m m

m m m m m m m m

       

       

        
            

        


     
        

     

x x x x x x x x

x x x x x x x x 22

AA

AB

BA

BB









 
   
   
   
                

  

using (93) to break up SYSX  into separate stock matrices X  for each agent and cols x (114) 

We can therefore deal with resources agent by agent, as would be expected: 

1 11 1 21 1 11 1 21 1 12 1 22 1 12 1 221 1 2 1 2 1 2 1 2

AA

AB

AA AA AB AB BA BA BB BB

j BA

BB

m m m m m m m m









       

 
 
 

                        
          

 
  

R x x x x x x x x  

where 
1x refers to column 1 of X etc.   (115) 

(Note that 2x is being applied to state AA at 1 21

AA

m  because this represents a transition from 

State 1 in period 0 to State 2 in period 1. 1R  measures the resources in the next period 1, not 

the current period 0.) 

  
1 11 1 11 1 12 1 12

1 2

1 21 1 21 1 22 1 22

AA AA AB AB BA BA BB BB

AA AA AB AB BA BA BB BB

m m m m

m m m m

   

   

   

   

 
   


 
    

x x   (116) 

  

1 11 1 11 1 12 1 12

1 2

1 21 1 21 1 22 1 22

AA BA BB
ABAA AB BA BB

AA ABAA AB AA AB BA BB BA BB

AA BA BB BA BB
ABAA AB BA BB

AA AB AA AB BA BB BA BB

m m m m

m m m m

   

        

     

       

   

   

 
  

         
  

   
 

    

x x   (117) 
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1 11 1 12

1 2

1 21 1 22

A B A

BA B

m m

m m





 

 

   
   
   
    

x x  noting probabilities of each case sum to unity # (118) 

Remark: Similarly this result extends to progressive multiplications: 

      1 1 2 3 1 2 3

r SYSEval    R X X X M M M μ   (119) 

 We use the three previous results to convert the Markov chain formulation of the system to a 

linear production model of the system. 

Lemma 3.8. Total resource change in the system is given by:  

 
PRO END CON SHED

    ΔR L A m A m A m B m   (120) 

 
PRO END CON END SHED

    A m A m A m B m B m   (121) 

where : 1RL   vector of resource endowments, for each resource which 

is endowed. For manufactured resources, 0rL  . 

 1 2 :
PRO PRO PRO PRO

J R J
 

   
A a a a   matrix of production vectors for each agent type (122) 

 1 2 :
END END END END

J R J
 

   
B b b b    matrix of endowed resource production vectors (123) 

 :
CON

R JA   matrix of consumption vectors for each type 

 :
SHED

R J Β 0   matrix resource shedding vectors, averaged over states 

 : 1J m   expected number of agents of each type or ‘position’ in agent space 

Proof: We use the previous three lemmas and the process definition to evaluate 1R . 

and 
END EVAL PRO EVAL CON EVAL TRA EVAL SHED EVAL

EVAL

j j j j j j     M M M M M M I  applying (89) (124) 

so 1

END EVAL PRO EVAL CON EVAL TRA EVAL SHED EVAL

j j j j j j j

 
      

 
R X M M M M M I μ  apply (124) to (100) (125) 

 0 0 0 0 
PRO END CON END TRA SHED A

jj j j j j j j
 

       
 

a a a b b b R  (67),(71),(74),(79),(82),(127) (126) 
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noting 
0j j j   X I μ Xμ R   recall : 1j Dμ  comprises aggregated states for agent j (127) 

so 01 0 0 0

PRO END CON END TRA SHED A

jj j j j j j

j


 

       
 

 a a a b b b RR   aggregating over all agents (128) 

We now simplify the expressions for trade and endowed production, ,
TRA r END r

j jb b . 

  
1 1

TRA s TRA rTRA A s s s

jj j j R R

j j STATES STATES j STATES
s s s

               b b b 0 0  (129) 

and  
END r END srA s

jj j

j j STATES
s

    b b   breaking probability 
A

j up into single states 
s

    (130) 

 

1 1

2 2

1

2
0 0

0

r r

r r

r

s s s
r

s s
STATES j STATES
s s

L L

L L
L

N L

N N

 

   
   
     
               

 
 

   L   noting 1
s

STATES
s

   (131) 

 where 
s

N is no. of active agents in state s 

to get 01

PRO END CON SHED A

jj j j j

j


 

      
 

L a a bR a R   by (129), (131) (132) 

We can break this up by agent type to express it in terms of position m: 

 
PRO END CON SHED A

jj j j j

k TYPES j TYPE k


 

 
     

 
 ΔR L a a a b   (133) 

 
PRO END CON SHED

j j j j k

k TYPES

m


 
     

 
L a a a b   (134) 

using 
A A

UPPER

j jk k

j TYPE k

N m 


      (135) 

so we can organize (132) by agent type as: 

 

1 1 1

1 2 2 1 2 2 1 2 2

PRO PRO PRO CON CON CON SHED SHED SHED

J J J

J J J

m m m

m m m

m m m

     
          

                  
          

ΔR L a a a a a a b b b  (136) 
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i.e.  
PRO END CON SHED

    ΔR L A m A m A m Β m    (137) 

Similarly
END

B m L  from (131), sub in (137) for (121). # (138) 

We apply the properties of a Markov chain to complete the formulation of the linear 

production model.  

Corollary 3.9. Expected system resource use in equilibrium is zero.  

 ΔR 0    (139) 

 1

PRO END CON SHED

R    L A m A m A m B m 0   (140) 

 1

PRO END CON END SHED

R    A m A m A m B m B m 0   (141) 

Proof: We use the eigenvalue properties of a Markov matrix. 

  1 0 1SYS SYS SYS SYS SYS SYS SYS SYS     ΔR R R X M μ X μ X μ   (142) 

 
1MSYS 0  as SYSM  has unity eigenvalue. Sub in (120), (121). # (143) 

3.4 Properties of system equilibrium 

The nature of system equilibrium is that every state in the system matrix SYSM  is instantiated 

at some time or other but most are unlikely. The question arises as to how situational 

equilibrium can be defined in this context. We take it that the system spends only fleeting 

time in unstable states and is pushed into stable states, and a situational equilibrium solution 

is a system state which does not exert systematic pressure to leave. 

The following is an important property of the unique system equilibrium. 

Theorem 3.10: AGENT THEOREM. At equilibrium the number of each agent type is stable. 

 1j   for all agents j.  (144) 

Proof: Our strategy is to duplicate the method for resources which leads to the same result at 

(139). To this end we introduce matrix X , same as stock matrix X except that X  gives the 

number of agents for each system state rather than resources: 
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1 2

1 2
:

S S

j j SYS

S S

k k

X X
J D

X X

 
  
 
 

X  agent matrix: amount of each of J agent types in each state of SYSM   

 SYSm Xμ   (145) 

  1 0 11SYS SYS SYS SYS SYS

J        m m m X M μ X μ X μ 0   (146) 

 
0 0

0 0

0
1

j j j

j

j j

m m m

m m


  
    # (147) 

 3.5 Resource shedding 

In real life, agents have finite storage space and constraints on the amount which they can 

store. This puts an upper limit on the amount of resource which can be transferred by trading. 

Without this limit, all the scarce resources which are produced can be transferred to agents 

who need it and no resource will be wasted. With the upper limits, some resource will be 

wasted through the resource shedding process. It is important to model resource shedding to 

understand how non-market (biological or pre-industrial) systems differ from market 

systems. 

We point out that abundant resources do not necessarily need to be stored by individual 

agents. The free oxygen on earth has been produced biologically, and it is stored in the 

atmosphere not by any individual agent. In this case the upper bound analysis does not apply.  

Assumption 3.20 The upper limits of the endowed resources are sufficiently high that they 

are not reached.  

Remark: Analysis of endowed resources involves us in non-linearities so it is convenient to 

ignore that here. 

Consider the agent type jMIN which maintains the lowest average stock level r

jMIN . There is 

some minimum level of jMIN’s average stock, 
r

MIN , below which the agent cannot survive 

even if all the other resources are abundant. This amount does not depend on whether the 
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agent is has a positive growth rate or not, it is purely dependent on the stochastic process for 

that resource. The following result establishes that the average stock level in the system, 

r

AVG , has a minimum value r

AVG
MIN

 which is determined by r

MIN  and is independent of the 

number of agents m. We then extend this result to show that there is a minimum level of 

shedding which is determined by the production functions a and trading coefficient rk , and is 

likewise independent of position m. 

Lemma 3.11: At equilibrium, the minimum level of stock r

MIN necessary for the survival of the 

low producer jMIN implies a minimum value for the average amount of stock r

AVG , given by:  

 

PRO r END r CON r

jMIN jMIN jMINr r

AVG MIN r
MIN

a a a

k
 

 
    (148) 

Proof: We evaluate the resource equation using the trade equation and rearrange. 

Now 0
TRA r PRO r END r CON r

jMIN jMIN jMIN jMINb a a a      resource constraint for the agent (149) 

Note that there is no shedding and by Assumption 3.20, no production of endowed resources. 

so  0
PRO r END r CON r

r r r

AVG MIN jMIN jMIN jMIN
MIN

k a a a 
 

     
 

   use (7) and rearrange for result. # (150) 

Lemma 3.12: At equilibrium and for a given minimum producer jMIN, an agent j which 

produces resource r has a minimum level of shedding given by:  

 
 

otherwise0

r r r r rSHED MIN
jUPPER jUPPER

j

k U U
b

   
 


  (151) 

where  

PRO r END r CON r

j j jr r

jUPPER AVG r
MIN

a a a

k
 

 
   (152) 

is the stock holding which would exhaust production in the absence of upper bound rU . 
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Proof: We find the value of 
r

jUPPER  which would exhaust production without shedding. We 

can then substitute this expression for the non-shedding terms in the resource equation. 

Consider an agent which is a net producer of the resource. The resource equation is: 

 0
PRO r END r CON r TRA r END r SHED r

j j j j j ja a a b b b        (153) 

from (141), stated for one agent and one resource. Trade is included. Stock 
r

jUPPER applies in 

the absence of upper bound rU and shedding, so we remove shedding term
SHED r

jb . We also 

exclude endowed resource production 
END r

jb , as shedding does not apply to endowed resources 

by Assumption 3.20. This yields:  

 0
PRO r END r CON r TRA r

j j j ja a a b      (154) 

 0
PRO r END r CON r

r r r

AVG jUPPER j j j
MIN

k a a a 
 

     
 

 sub using (7). Rearrange for (152). (155) 

If 
r r

jUPPER U   then shedding is zero. If 
r r

jUPPER U   then the actual level of trade is: 

 
TRA r

r r r

j AVG
MIN

b k U
 

  
 

  now constrained by the maximum stock rU   (156) 

Consider now resource equation (154) with shedding 
SHED r

jb reintroduced:  

 0
SHED r TRA r PRO r END r CON r

j j j j jb b a a a        (157) 

 0
SHED

r r r r r r

j AVG AVG jUPPER
MIN MIN

b k U k  
   

       
   

 sub (155), (156) in (157). # (158) 

Theorem 3.13 At equilibrium and for a given minimum producer jMIN, an agent j which 

produces resource r has a minimum level of shedding given by: 

  if negative

otherwise
0

PRO r END r CON r PRO r END r CON r
r r rSHED MIN

jMIN jMIN jMIN j j j MIN

j

a a a a a a k U
b


   

         
    



  (159) 
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Proof: Substitute (148) into (152) and (152) into (151). # 

Remark: 
PRO r END r CON r PRO r END r CON r

jMIN jMIN jMIN j j ja a a a a a
   

       
   

 is the difference in net production of the 

producer j and the low producer jMIN.   

 r r r

MINk U   is the amount which can be cleared by trade.  

Remark: Shedding will differ for different agent sets because the agent with the minimum 

production will be different, and this changes the mean according to (148). This means that a 

different resource equation applies to every combination of non-zero agents. 

Remark: The greater the trading coefficient rk , the lower the level of market clearing stock 

r

jUPPER and the less scarce resource is lost through shedding. Looking at changes in the 

system as the trading coefficient increases gives us a market system as a special, efficient 

case of a biological system.    

We note that the expression for shedding (159) is constant with respect to position m, so 

shedding is linear in position. Partition total shedding into the minimal level defined by (159) 

and the excess over this level which occurs if a resource is abundant or the minimum 

producer maintains higher stock levels than r

MIN : 

 
SHED MINSHED EXCESS

 B A B   (160) 

where 
 

: :
otherwise0

r r r r rSHED MIN
jUPPERr jUPPER

j

k U U
a R J

    
  
  

A   (161) 

 :
EXCESS

R J B 0  matrix of the excess, if any, of actual shedding over minimal. 

Theorem 3.14: LINEAR PROGRAMMING EQUIVALENCE. At equilibrium, the resource 

constraints which apply to the system can be expressed as the constraints of a linear 

programming problem: 

 1

NET

R L A m 0   i.e. 
NET

 A m L   (162) 
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When the system is not at equilibrium, 

 
NET EXCESS

  ΔR L A m B m   (163) 

or 
NET END EXCESS

  ΔR A m B m B m   (164) 

where :
SHED MINNET PRO END CON

R J    A A A A A , net production after unavoidable shedding (165) 

 1 2 :
NET NET NET

J R J
 

   
a a a  matrix of vectors for each of J agents (166) 

where : 1
SHED MINNET PRO END CON

j j j j j R    a a a a a , net production for one agent (167) 

Proof: Apply the breakup of shedding established in this section. 

 
SHED MINPRO END CON EXCESS

     L A m A m A m A m B m 0   applying (160) to (140) (168) 

 
NET EXCESS

  L A m B m 0   using (165) (169) 

Now 
EXCESS

B m 0   hence result (162).  (170) 

 Apply (165),(160) to (120) for (163). Apply (138) to (163) for (164). # 

Remark: The minimal amount of shedding is determined by the discrepancy between the 

lowest producer and others, so if the lowest producer goes extinct then the minimal level can 

change. The linear programming problem is therefore a function of a particular set of agent 

types. 

Remark: The minimal level of shedding 
SHED MIN

A  is not affected by the resource growth term 

ΔR , it is purely a function of the Markov process for that resource. 

Remark: (162) is an upper bound on constraints. In fact the minimal producer may need a 

higher stock level than 
r

MIN to survive if other resources are scarce. This implies a higher 

stock average, more shedding and tighter constraints. 
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3.6 Input-output considerations 

Productivity: Within standard input-output theory we assume an input-output matrix USUALA  

such that for all non-negative consumption vectors c, there exists a non-negative input vector 

x such that 

  USUAL I A x c   (171) 

That property is not necessarily true here. For instance every agent may produce a positive 

amount of some good, so it is not possible to produce none of that good except at m 0 , and 

the trivial solution cannot be used if consumption c in (171) contains any positive element. 

Bounded output: It is intuitive that with finite resources the population is bounded, but to 

prove this we need the standard technical assumption No Land of Cockaigne.  

Assumption 3.21 NO LAND OF COCKAIGNE (NLOC). It is impossible for net output to be non-

negative except when there is no input. 

 For all m 0 , Am 0  (i.e. at least one element is negative)  (172) 

Remark: This model allows endowed resources to be manufactured by agents as well as 

received by endowment. If manufacturing were sufficiently productive then one might finish 

with more of every good than one started with. NLOC rules out this possibility.  

Remark: This statement is a combination of three standard axioms of linear production 

theory (see for instance Takayama 1974) which, expressed in the form of this model, are: 

There is no m 0  such that Am 0  (No Land of Cockaigne) (173) 

There is no m 0  such that Am 0  (Irreversibility) (174) 

If m 0  then Am 0  (Possibility of Inaction) (175) 

NLOC is the economic version of the first law of thermodynamics and Irreversibility is the 

economic version of the second law of thermodynamics. The Possibility of Inaction could be 

seen as an analogue of the third law of thermodynamics, except that the third law says that 

energy measuring zero degrees is impossible whereas here we permit zero action. 
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We assumed above that the system matrix had a finite number of slots available for agents. 

We now establish that the system has a finite size.  

Theorem 3.15 UPPER BOUND THEOREM. Population N in equilibrium is upper bounded. 

Proof: We show that every ray drawn from the origin eventually meets the transverse 

constraints, by applying the NLOC property to a ray segment and magnifying it.  

 1

NET

R L A m 0  by (162) (176) 

 
NET

 A m L   (177) 

This defines a convex set with linear bounds, S. If Sm  and 0 1p   then 

  
NET NET

p p
 

    
 

A m A m L   (178) 

so the set radiates out from the origin. We need to show the set is closed. Consider 2 Sm on 

ray r. 

 1 12
NET

R  L A m b 0   (179) 

 2 1

NET

R  L A m b 0   (180) 

 1 2 3

NET

  A m b b b  say. (179) - (180) (181) 

3b  must contain a negative, 3kb  say, or (172) NLOC is violated. 

 3 0
NET

k

k

b
 

  
 

A m   (182) 

Consider 
3

* k

k

L

b




m
m   (183) 

 3

3 3

* 0
NET NET

k k
k k k

k k k k

L L
L L b

b b

    
          

   
L A m A m   (184) 
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So *m  is the maximum value which a multiple of m can take, i.e. ray r is bounded. As this 

applies to all rays r which pass through S, S is a closed convex set and N  ι m  has a 

maximum value. #  

3.7 Conclusion 

We have shown that a Markov Chain model of agent behaviour has a unique and stable 

equilibrium. This equilibrium is distributional rather than situational in nature, so in order to 

more fully characterize the system we looked at the system in terms of linear production 

theory. We were able to show that all the system processes were either linear in nature or 

cancelled each other out, and converted the system to a set of linear constraints. Standard 

concepts from linear production theory demonstrate that the amount which a finite 

endowment system can produce is bounded.  

The final result is a model with two wings to fly by, on one hand agent processes represented 

by Markov chains, and on the other hand system constraints represented by input-output 

equations.   
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Chapter 4 

The dynamic model 

 

4.0 Introduction 

Markov analysis and input-output analysis are both well understood techniques within the 

economic disciplinary framework. Here we bring them together to show how the 

characteristics of the agents determine the system trajectory. In the first three sections we 

examine how the Markov processes and the flow of resources determine agent growth rates 

and establish a dynamic equation. In the fourth section we use the dynamic equation to show 

how the system develops from a non-equilibrium starting point to the eventual equilibrium, 

and establish certain regularities. We represent long-term change in the model by 

perturbations of the coefficients in the Markov matrices. In the fifth section we apply the 

dynamic results to the perturbed coefficients in order to examine evolution within the context 

of the model. 

4.1 The agent Leslie matrix  

In the previous chapter we specified an agent model using Markov matrices. Markov matrices 

have maximal eigenvalues of unity. A theory of dynamics requires that we introduce a variant 

form of the Markov matrix whereby the vital events are handled not on the system level but 

the agent level. The eigenvalue is free to take values other than unity and we can examine 

growth and decline at agent level.  

Consider the agent Markov matrix: 

 

1 0

:

0 1

E

M

L

D D

 
 

 
 
  

m

M 0 M 0

m

  (185) 

Let us replace the unity element 1LLm   by BLm S .  

 0 :S scalar , number of descendants which the agent produces in the L state (186) 
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If we add an additional partition to the M matrix to separate out the birth state B which is 

placed second, then M becomes:  

 

1 0

0

0 0

0 0

EB E

BB BM

MB M

LB L

m

m S

m

 
 
 
 
 
 

m

m

m M

m

 (187) 

Now delete the expiry state E row and column to get: 

 0 : 1 1

0

BB BM

MB M

LB L

m S

D D

m

 
 

   
 
  

m

M m M

m

, Leslie matrix (188) 

This transition matrix M  is not a Markov chain matrix, as the final column sums to S which 

in general is not unity. Nor does it have absorbing states. Rather the matrix represents the 

evolution of the agent and its descendants through time. Within biology such matrices are 

referred to as Leslie matrices (Leslie 1945). In the biological literature the states in Leslie 

matrices typically represent different ages or developmental stages, here they represent 

resource states.  

As it is possible to move from any state in M  to adjacent resource states (i.e. neighbouring 

states on the resource grid) and subsequently to any other state, M  is irreducible and the 

Perron Frobenius theorem applies: there is a real, positive, unique maximal eigenvalue  , 

and corresponding eigenvectors are strictly positive. So 

 Mμ μ   (189) 

where  : 1 1D  μ 0 , steady state distribution of states of the agent   

: scalar , growth factor (not growth rate) per period of the agent type. 

For the LHS eigenvector: 

 υM υ   (190) 
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The LHS eigenvector of a Markov matrix M consists of unity elements. In the case of a 

Leslie matrix, the LHS eigenvector can be interpreted as the expected number of descendants 

of a state measured relative to other states. We scale eigenvector υ  so that  

 1υμ   (191) 

We remind the reader of the standard result, couched in the context of this model, that we can 

differentiate the eigenvalue   without the need to consider changes in the eigenvectors. 

Lemma 4.1. Given matrix M  with eigenvalue   and eigenvectors ,υ μ  where 1υμ : 

 d   υ dM μ   (192) 

Proof: We differentiate  μ Mμ  and simplify the result using identities.  

 d    μ dμ dMμ M dμ   (193) 

 d     υμ υ dμ υdMμ υM dμ   υ  on LHS (194) 

i.e. d      υ dμ υdMμ υ dμ  by (190), (191). Result (192) follows.# (195) 

Remark: 1 0 1 1 0 0d     υ Mμ υ Mμ     (196) 

so 1 1 0 0 0 0 υ Mμ υ Mμ υ dMμ    (197) 

The following result establishes the resource requirements of growth processes. 

Lemma 4.2. Average growth in resource holding of an agent type j is proportional to the net 

eigenvalue 1j  .  

   01j j j ΔR R   (198) 

 j j  R  (199) 

where 1:j j scalar    ,  growth rate (200) 

Proof:    1 0 01 1        ΔR R R XMμ Xμ Xμ R  # (201) 
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4.2 The dynamic model 

In this section we develop the concepts which we need for a dynamic analysis and establish 

the dynamic model. This initial formulation of the model cannot be solved, so in the 

following section 4.3 an operational form of the model is developed. The system lifecycle 

analysis is then carried out in section 4.4. 

The dynamic assumption:  

Assumption 4.1 Adjustments to the proportion of agent types in the population caused by 

resource scarcity take place quickly relative to changes in the proportion of agent types 

brought about by differential agent growth rates  . 

Remark: The rationale for this assumption is that growth takes place over a number of 

reproduction cycles whereas the demands of resource procurement are felt immediately. 

Remark: The effect of this assumption is that when determining the growth rates at a 

position m, we take it that the agent types adjust immediately to the proportions which are 

consistent with that growth. 

Surplus production: We define surplus production as total net production plus the endowed 

resources L. 

 : 1
NET NET END

R    U L A m A m B m , surplus production vector (202) 

 : 1R
N

 
U

u , per capita amount of surplus. (203) 

so 
SHED EXCESS

 ΔR U B m  substituting into (163) (204) 

Thus the surplus is divided between the increase in stock, and excess shedding. If the system 

is contracting then stock change ΔRwill be negative by (198), and it is possible that the 

surplus U is negative. 

Value matrix: We introduce a formula which relates the growth factor of an agent j  to the 

probability rp  of procuring resources r which the agent does not produce for itself. This ratio 
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is regarded as the value of the resource to the agent. We need an operational variable to 

represent the probability rp . If a resource is not produced then it is derived from trading or 

resource recycling with trading presumed to be the major source. Trading is proportional to 

average stock level r , but this variable is a stock not a flow and not convenient to use 

because it does not form part of the resource flow model. Consideration of the underlying 

Markov chain stochastic process suggests that we can relate stock levels to the period surplus 

u to get an operational relationship between growth rate and probability. 

Assumption 4.2 The marginal probability of procuring a resource is proportion to the 

marginal amount of surplus production per capita rdu  of the resource. 

 
r r r

j jdp K du    (205) 

where 0 :r

jK scalar , rate at which agent j procures resource r  (206) 

 :r

jdp scalar , change in the marginal probability of procuring the resource  (207) 

by trade and recycling 

 :rdu scalar , change in excess production per capita of resource r (208) 

The following result relates the growth rate to resource availability. 

Theorem 4.3: VALUE THEOREM. 

 j jd  V dp   (209) 

 j jd  V du   (210) 

where :jd scalar , change in the average growth factor of agent resource groups 

 :1
j

j R


 


m

V
p

, vector of marginal value coefficients wrt probability p (211) 

 :1
j

j R


 


m

V
u

, vector of marginal value coefficients wrt surplus u (212) 

where components are given by: 
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0 0

1 . .

1 1 . 0

. 1 .

r

jr

j j jr

j

j

v
p


 

  
     

 
  

υ μ      derivative of j wrt probability
r

jp    (213) 

 
0 0

1 . .

1 1 . 0

. 1 .

r

jr r

j j j jr

j

v K
u


 

  
      

 
  

υ μ      derivative of j wrt surplus ru   (214) 

: 1Rdp , change in the probability of acquiring additional resource in the period  

: 1Rdu , change in the amount of surplus production per capita of resources  

Proof: We apply the matrix calculus result (192) to the Leslie matrix. 

First 0 0

j

j jr r

j j

d

dp dp


  

dM
υ μ   by (192) (215) 

 
0 0

. .

.

. .

r

j

r r

j j j jr

j r

j

p
d

p p
dp

p

  
  

   
  

  

υ μ   schematic depiction only (216) 

 0 0

1 . .

1 1 .

. 1 .

j j

 
 

   
 
  

υ μ   differentiating. This establishes Result (209) (217) 

  1 2 0D j      μ   multiplying out 0

1 . .

1 1 .

. 1 .

j

 
 
 
 
  

υ  (218) 

 0    given it can be shown 0  when resource gained (see Remark below) (219) 

Second 
r

r

jr

dp
K

du
   from (205) (220) 

so 

r

j jr

j r r

j

d dp
v

dp du


    chain rule (221) 

 0 0

1 . .

1 1 .

. 1 .

r

r

j j j

j

K

 
 

    
 
  

υ μ   by (217), (220). Establishes Result (210) (222) 
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 0  by (206), (219)   This establishes Results (213), (214) # (223) 

Remark: It can be shown that the LHS eigenvalue υ  is strictly increasing. The proof looks at 

the outcome of every possible path through resource space to the E and L states, to establish 

the dominance of a starting point having one more unit of resource. It is straightforward but 

rather long and has not been included here. Available from the author on request. 

Definition 4.1 VALUE MATRICES. We compile these row vectors jV  into matrix SYS
V which 

contains a row for every agent in the system.  

 :SYS J R


 
 m

λ
V

s
, system value matrix of marginal value coefficients  (224) 

so : 1SYS SYS J  dλ V du , from (210), change in growth factor for each agent (225) 

Value matrix  SYSV u is a function of per capita surplus. It is positive as shown, non-linear 

and decreasing in u, because resource shortages become increasingly critical for an agent as 

supply diminishes. Where an agent produces a resource, the corresponding growth coefficient 

is approximately zero because the agent has an abundance of that resource. Such entries can 

be taken as zero for the purposes of the dynamic analysis. Further, the R S  columns for 

abundant resources are approximately zero for all agents, and are taken as zero.  

Input-output matrix: Fluctuations in the amount of net production per capita u are in turn 

caused by fluctuations in the relative proportions of the agents. We account for endowed 

resources as part of this by adding endowed resource production to 
NET

A . 

Define   :
NET END

SYS N R J  A A B , input-output matrix including endowed resources (226) 

where   SYS NA  denotes that SYSA is a function of population N, and write (202) as: 

 SYSU A m    (227) 

so  SYSu A ω    dividing (227) by N (228) 
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where  : 1J
N

 
m

ω  proportion of agents of each type (229) 

and  SYS SYS du A dω  differentiating (228) (230) 

where : 1Rdu  surplus fluctuations (231) 

 : 1SYS J dω  vector of fluctuations in agent proportions (232) 

Note 
1 0SYS

J
  ι dω  sum of fluctuations is zero (233) 

The input-output matrix  SYS NA is linear in the fluctuations in proportion SYSdω . 

Growth matrix: Combining the results above allows us to relate growth rates to agent 

proportions: 

  SYS SYS SYS SYS SYS SYS   dλ V A dω K dω  by (225), (230) (234) 

where :SYS SYS SYS J J


  


λ
K V A

ω
, growth matrix  (235) 

Growth matrix  ,SYS NK u  inherits the non-linearity of the value matrix  SYSV u , with its 

value varying according to which resources are scarce at point m.  

Dynamic model: 

The model at (234) implies the following underlying model: 

   : 1J λ W u , growth function. W is concave downwards in u (236) 

   : 1 1SYS SYSN R R J J      u A ω , resource surplus (237) 

where 
 

: 1/ 1SYS J R J R    
dW u

V
du

  (238) 

We derive the dynamic model in terms of agent types. 

Lemma 4.4.  

 
2

SYS SYS SYS SYS SYS dN

N
  dλ V A dω V L   (239) 

Proof: We evaluate the derivative of model (236), (237). 
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SYS SYS

 
dλ dλ du

dm du dm
  chain rule (240) 

 
SYS

SYS

SYS

dN

dN

 
    

 

du dω du
V

dω dm dm
  by (238), (237), product rule (241) 

Now 1
NET END NET

SYS J

N


   

L ι
A A B A    resource allocated equally to agents (242) 

so  1
NET

SYS SYS SYSJd d

dN dN dN N


   

      
  

L ιdu
A ω A ω   by (230), (242) (243) 

 
d

dN N

 
  

 

L
 by (233), 

NET

A constant with respect to N (244) 

 
2N

 
L

   (245) 

so 
2

SYS SYS
SYS SYS dN

N

 
   

 

dλ dω L
V A

dm dm dm
     (246) 

substituting into (241) using (230) for 
SYS

du

dω
and using (245) for 

dN

du
. # 

4.3 Resource group form 

The result (239) is not useful as it stands because the product SYS SYSV A  has dimensions 

 J R R J J J       (247) 

and in the first instance we suppose that there are more agent types than resource types, 

J R , so the product is singular and cannot be inverted for solution purposes. We combine 

the agents into resource groups according to the scarce resource which they produce (if any), 

and carry out three steps. Define 

 :S R scalar , number of resource groups which are scarce at position m  (248) 

 agent j is a producer of resource r if 0SYS r

ja   (249) 

and introduce the following designations to refer to the resource groups. 

B: (bound) denotes resource groups which are scarce at position m.  
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N: (newly bound) denotes producers of the most recently constrained (scarce) 

resource in the trajectory. This group is included in B. (N will not be used until the 

following section 4.4.) 

F: (free), producers of resources which are not scarce at position m, or do not produce 

a resource at all. 

We carry out three steps to convert agent based equation (239) to a version based on resource 

groups at (277) below. 

First step: We assume that proportion fluctuations SYSdω are generated according to resource 

groups. In doing this we take into account that agents can produce more than one resource.  

Assumption 4.3. Proportion fluctuations vector SYSdω is generated from fluctuations in the 

resource groups FULLdω , which applies the same fluctuation to all members of a resource 

group. Where an agent type produces more than one scarce resource, its population jm  is 

apportioned between all its resource groups, so that it receives an average fluctuation. Agents 

which produce no scarce group are allocated to the free agent group F. 

SYS FULL FULLdω S dω   e.g. 

11
1

11 2
2 2 2 2 2

1 2

2

3 3

2

4 4

5 5

. .

.

. .

. .

. .

r

rr r

r r

r

r

F

F

F

mdm

mN
dmdm p m p m

NN m m

dmdm m

NN m

dm m dm

N m N

dm m

N m

  
  
  

    
   
   
        
   
   
     

  
  

   

 (250) 

where :r

jp scalar , proportion of the number jm of agent type j allocated to resource r (251) 

 If agent is allocated to only one resource group, 1r

jp    (252) 

 1r

j

r

p  , sum of the portions of jm  allocated to resource groups is unity (253) 
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 :r r

j j

j r

m p m scalar


 , notional population of agents which produce resource r (254) 

 :Fm scalar , size of free agent group F for agents producing no scarce resources (255) 

 : 1 1FULL S  dω , resource-grouped vector of fluctuations in agent proportions (256) 

 : 1FULL J S S , weighting matrix for S scarce resource categories plus one (257) 

Note 
1 1 0FULL

S 
  ι dω  : sum of fluctuations is zero: multiply (250) on LHS by 

1 J
ι .  (258) 

Similarly SYS FULL FULLω S ω  as (250) only not differentiated. (259) 

Remark: In the above example, agent 2 produces both scarce resources and is apportioned to 

both resource groups according to some rule, relative importance to the group say. 

Second step: A scarce resource version of the input-output matrix SYSA is created by grouping 

the vectors into resource production groups using the same matrix FULLS .  

so 

1

1

1 2

2 2 2 2

1 2

3

2

4

5

. .

.

. .

. .

. .

r

r r

r r

FULL SYS FULL SYS

r

F

F

m

m

p m p m

m m

m

m

m

m

m

m

 
 
 

  
 
 
    
 
 
 
 
 
 
 

A A S A  : using same example (260) 

where : 1FULL R S A , resource group version of matrix SYSA .  (261) 

Application of (260) produces summed resource production vectors: 

 : 1

SYS r

j j j

j rSYS r

r

j j

j r

p m

R
p m





 





a

a  average production of agents allocated to resource r (262) 

We see that where an agent type produces more than one scarce good, the net production 

vector for that agent type is apportioned between the different resource vectors. 
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Unique producer of more than one output: If an agent type produces more than one good, and 

it is the only agent type producing those goods, then we apportion the net production vector 

between the different resources as usual. Typically, one good would be scarce and the other 

good would be produced in excess throughout agent space m. However, if this is not the case 

and agents place a similar marginal value on the different resources, it is possible that the 

final growth matrix K has two columns which are similar or the same. This implies that 

matrix K is singular or poorly conditioned and the system cannot be solved. Such a situation 

can arise if the goods are used together and one is necessary for the other. In this case we can 

treat the combination as one resource, and remove one of the resources from the system.  

Remark: The definition here differs from the normal definition of an input-output matrix 

USUAL

R RA  in that:  

• A standard input-output matrix USUALA  shows the inputs for one unit of output as 

positives. Here the net production of each resource is shown. Inputs are negative, net 

output is positive and is not in general equal to one. 

 FULL USUAL A I A   (263) 

• FULLA  is not in general a square matrix, and each column represents different 

producers grouped together.  

• An agent can produce more than one scarce resource, or none. There is a separate 

column for agents which do not produce a scarce resource.  

• Unlike the net production matrix 
NET

A , input-output matrix FULLA  incorporates the 

endowed resource input of 
N

L
 per agent valued at position m: N  ι m . 
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Third step: We define a grouping matrix SCARCES  for the agent growth differentials jd  and 

the value matrix SYSV . Before we do this, we establish how group growth rates relate to the 

growth rates of the constituents. 

Assumption 4.4 The agents producing resource r have different growth rates and processes, 

but these attributes are such that average production does not vary appreciably from one 

period to the next and can be taken as constant. 

Define 

0

0

:

r

j j

j rr

j

j r

a m

a scalar
m










 : average production in period 0 (264) 

then 

1 0

1 0

r r
j j j j j

j rr r

j j j

j r r

a m a m

a
m m











 

 

 
: average production in period 1 (265) 

Remark: This assumption will not be literally true but the necessary adjustments in each 

period are assumed to be second order. 

We use this assumption to demonstrate that the average growth rate of a resource group can 

be taken as a proxy for the growth in resource production of that group, notwithstanding the 

averaging involved:  

Lemma 4.5. The growth rate of resource production is proportional to the average growth 

rate of the agents in its resource group. 

 r r r r

j j j

r

a m a m       (266) 

where :
j j

r r

j

r

m

scalar
m



 



, average rate of growth of producers of resource r  (267) 

 :r

j

j for r

m m scalar  , total number of agents producing resource r (268) 
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Proof: We rearrange the assumption above. 

 

r

j j
r r
j j j j j

r r j

r

a m

a m m
m

  


 


  by (264),(265) (269) 

 

r

j j j j

r r
j

rj j

r r

m a m

m
m m



  
 


 

  result follows by (267),(264),(268) # (270) 

We construct weighting matrix SCARCES  with this result in mind. SCARCES differs to FULL
S in that 

position jm  of an agent which produces more than one scarce resource is not proportioned 

between the different resources, but is allocated in full to all of them. It is also transposed. 

 

1 2

1 1

32

2 2

54

. . .

. . . : 1

. . .

r r

SCARCE

r r

F F

m m

m m

mm
S J

m m

mm

m m

 
 
 
   
 
 
 
  

S  , using same example (271) 

Application of SCARCES  to agent growth differentials SYSdλ produces resource growth 

differentials FULLdλ : 

 

j j

j rr

j

j r

d m

d
m















  differentiating (267) (272) 

so : 1 1FULL SCARCE SYS S  dλ S dλ   resource-grouped growth rate vector (273) 

 SCARCE SYS  S V du   substituting (225)  (274) 

 FULL V du   using (276) below (275) 

where : 1FULL SCARCE SYS S R  V S V  resource-grouped value matrix (276) 

Having carried out the three steps, we now express the dynamic equation (239) in terms of 

resource groups to get an operational version of the model. 



70 

 

Theorem 4.6: DYNAMIC MODEL THEOREM. 

 
2

FULL FULL FULL FULL FULL dN

N
  dλ V A dω V L   (277) 

Proof: We transform the previous result (239) by breaking FULL
S out of SYSdω , and then 

combining it with SYSA  to get FULLA .  Further we multiply by SCARCES on the LHS.  

   2

SCARCE SYS SCARCE SYS SYS FULL FULL SCARCE SYS dN

N
  S dλ S V A S dω S V L  (278) 

 by (239), (250). Apply (273), (276), (260) for result. # 

Having derived resource grouped matrices ,FULL FULLV A , we now consider their properties. 

Value matrix: Partition FULLV : 

 
1

: : 1
1 1

B S R SFULL

F R S

S S S R S
S R

S R S

 

 

     
     

    

V 0
V

v 0
, bound B, free F agents (279) 

 e.g. 

1 2 3 4 5

0 0 0

0 0 0

0 0 0

0 0

FULL

S S S R R

B

B

B

F

   
 
   
  
 
    

V  typically. (280) 

The partition BV  applies to the scarce resources. If a price system were in operation then the 

values would equal the prices, since any incremental resource could be bought or sold at the 

price. In this case we would have: 

 

2

1

1 2

0

0

0

S

B S

P P

P P

P P

 
 

  
 
 

V   (281) 

and 

     

     

     

1 1 1

1

2 2 2

2 1 1

1 1 1

1 2 1

1 1 1

1 1 2

1 1 1

B

S S S

S

P S P S P S

S

P S P S P S

S

P S P S P S



 
 

   
 

  
   

 
 

    

V   (282) 
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so 

 

 

 

1

1

1 1

2

1

1

1

1

1

1

B S S

S

P S

P S

P S



 

 
 

 
 

  
 

 
 

  

V ι 0  i.e. the sum of each row is positive. (283) 

On this basis we assume that the value matrix has the same general properties as a price 

matrix: 

Assumption 4.5 PRICELIKE MATRICES. The scarce resources are of sufficiently similar value 

to the agents that the value matrix  BV u  satisfies the properties 

 (i)  
BV  is invertible 

(ii) 1

1 0B S



 V ι   (284) 

Input-output matrix: We partition FULL
A  horizontally between S scarce resources and R S  

abundant resources, and vertically between the S bound agent groups producing the scarce 

resources and the remaining free agent group which does not produce a constrained resource. 

1
: : 1

1

FULL FULL

FULL BB BF

FULL FULL

FB FF

S S S
R S

R S S R S

    
     

     

A A
A

A A
, input-output matrix (285) 

 e.g. 

1

2

3

4

5

FULL

B B B F

S

S

S

R

R

    
 
    

     
 
    
 
    

A typically.  (286) 

Growth matrix: We form the growth matrix FULLK as the product of the value and input-

output matrices as per (235). 

 : 1 1
FULL

FULL FULL FULL

FULL
S S


    


λ
K V A

ω
, resource grouped growth matrix (287) 

We partition FULL
K : 
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1

: : 1 1
1 1 1

FULL FULL

FULL BB BF

FULL FULL

FB FF

S S S
S S

S

    
      

   

K K
K

k k
 (288) 

 
1

FULL FULL FULL FULL
B S R S BB BF B BB B BF

FULL FULL FULL FULL
F R S FB FF F FB F FF

 

 

    
     
     

V 0 A A V A V A

v 0 A A v A v A
  (289) 

 e.g. FULL

B B B F

B

B

B

F

    
 
     

    
 
     

K  typically. (290) 

The fluctuations vector FULLdω is linearly dependent since it sums to zero by (258). To solve 

the system we isolate an independent component FULL

Bdω   

 
1

: : 1 1
1 1

FULL

FULL B

FULL

F

S
S

d

   
     

  

dω
dω  (291) 

where  
1 :FULL FULL

F S Bd scalar 
 ι dω  by (258) (292) 

and re-express FULL FULLK dω  in terms of independent fluctuation FULL

Bdω only.  

Lemma 4.7.  

B B BFULL FULL

F F F

   
     
   

V A K
K dω dω dω K dω

v a k
  (293) 

where 1

1

: :
FULL FULL

B BB BF S

FULL FULL
F FB FF S

S S
R S

R S S





      
              

A A A ι
A

a A A ι
  (294) 

 modified input-output matrix, partitioned into bound and free agents 

 1

1

: : 1
1

FULL FULL
B BB BF S

FULL FULL
F BF FF S

S S
S S

S





      
              

K K K ι
K

k k k ι
 (295) 

 modified grouped growth matrix, partitioned into bound and free agents 

 : 1FULL

B S dω dω , re-notating fluctuation vector for the bound agents (296) 
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Proof: We transform FULL FULLK dω by partitioning it, substituting for the fluctuation FULL

Fd  

using (292), and simplifying. 

 

FULL FULL FULL

FULL FULL B BB B BF B

FULL FULL FULL

F FB F FF Fd

   
    
   

V A V A dω
K dω

v A v A
  by (289), (291) (297) 

 

FULL FULL FULL

B BB B BF B

FULL FULL FULL

F FB F FF B

   
    

   

V A V A dω

v A v A ι dω
 by (292) (298) 

 
 

 

FULL FULL

B BB BF

FULL FULL

F FB FF

 
 
 
 

V A A ι
dω

v A A ι
 making use of (296). Similarly for K. # (299) 

Applying result (293) to dynamic equation (277) gives: 

 
2

FULL FULL dN

N
  dλ Kdω V L   (300) 

4.4 Lifecycle analysis 

4.4.0 Introduction: why produce a surplus? 

We use the tools developed in the preceding section to examine the lifecycle of the system 

from commencement to maturity. The analysis is heuristic in that it is looking at the forces 

acting on the system in each situation rather than deriving a system trajectory from first 

principles. 

Suppose that a system of differentiated agents commences from near the origin. The nature of 

agent surplus in a non-market economy with non-reciprocal trading is that agents will not 

produce a massive surplus if they are not obliged to. Pursuant to the prisoner’s dilemma, it 

pays each individual to produce the minimum surplus consistent with its own propagation, 

and this surplus may be zero. Reasons why non-zero surpluses occur include: 

Group selection: If agents subsist in isolated groups and resources are not produced for 

all, then the group will go extinct. Groups which do produce sufficient will thrive, 

forming new groups.  



74 

 

Physical impossibility of regulation: Some chemical processes may be incapable of 

regulation, or the agent has not evolved a way of doing it, or the resource is co-

produced with another. The best example is the creation of oxygen as a by-product 

during photosynthesis. The plant wants the sugar but does not have an immediate need 

for the oxygen.  

Coping with lean times: Although it is not modelled here, variation in natural 

conditions can require that agents create a buffer of resources to use in poor times such 

as winter or droughts. 

Parasitism: Parasitism is not explicitly modelled here, but the free group could be 

regarded in that light. If agents are subject to parasitism, which may or may not be 

present in a given situation, then they need to produce an excess against that 

eventuality. 

Cooperation: A group of agents can make allowances for each other’s needs – in effect, 

reciprocal trading – for the production of resources. They may even be symbiotic and 

live in immediate proximity to swap resources. This explanation has been developed 

extensively within cooperative game theory; it requires an ongoing relationship 

between particular agents, which we do not assume here. 

Inter-dependent utility: Agents may take pleasure in the welfare of other agents. This 

applies to pre-market human systems, family and friend groups in market societies, and 

possibly also to animal family units. 

Whatever the reasons, it is an observable fact that natural and anthropological systems exhibit 

producers who create more resources than they require for their own immediate needs. 

Nonetheless, we expect that the feasible set would be relatively narrow because of the 

tendency for agents to minimise their surplus. Given this and differential growth rates, we 

expect the trajectory in agent space to hit the manufactured good constraints (which are rays 
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from the origin) as the population expands, rather than move straight to the endowed resource 

constraints (which are transverse). 

4.4.1 Starting point 

Assumption 4.6 STARTING POINT. It is assumed that: 

• The system starts from some interior point near the origin in agent space 

• Not all agents have the same growth rate. 

• For the reasons given above, ray constraints (for manufactured goods) are 

encountered before transverse constraints (for endowed resources). 

• The agent’s distribution eigenvector μ  applies, but not the system eigenvector SYSμ . 

Assumption 4.7 When a manufactured resource first becomes constrained then the agent 

types producing that resource (N group) have on average a lower growth rate than the average 

growth rate for the population. 

 0 0N     (301) 

Remark: This assumption does not apply to endowed goods. 

Remark: If the agents producing the manufactured good had the same rate of expansion as 

the other agents then they would maintain their initial proportion of the population, and the 

situation whereby the good is abundant would be unlikely to alter. Only random variation 

early in system history would cause this assumption to be violated. 

4.4.2 Growth along a ray 

Consider a point on a ray forming the boundary to the feasible set. Here at least one 

manufactured resource is scarce; endowed resources are scarce along the transverse frontier 

and abundant here. Unlike the situation at the interior points, the expansion of the agents is 

now constrained by resource supply.  

Recall 
NET END EXCESS

  ΔR A m B m B m     by (164) above (302) 
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Now 
j j j

j j

   ΔR ΔR R   by (199) (303) 

and 
NET END EXCESS NET END EXCESS

j j j j

j

m
 

     
 

A m B m B m a b b  breaking it by agent (304) 

so 
NET END EXCESS

j j j j j j

j j

m
 

      
 

 R a b b 0   from (302), (303), (304) (305) 

i.e.  0 0

NET END EXCESS

j j j j j j

j

m
 

     
 

 a b b R 0   (306) 

We focus on the S scarce resource groups. The production of endowed resource, 
END

jb , can be 

ignored because endowed goods are not scarce on a ray. Define production vector jα : 

 0 : 1
NET EXCESS

j j j j j R    α a b R , use of the resource by agent j (307) 

The next assumption and lemma follow the equivalent results for net production above. 

Assumption 4.8 Average production in a resource group does not vary appreciably from one 

period to the next and can be taken as constant. 

Define : 1

j j

j rr

j

j r

m

R
m





 





α

α  : vector of average production of resources (308) 

then 

j j j

j rr

j j

j r

m

m

















α

α   (309) 

Lemma 4.8. The growth rate of resource production in a resource group is proportional to 

the average growth rate of the agents. 

 r r r

j j j

j r

m m 


  α α   (310) 

Proof: As for (266). 

The following result underpins the dynamic analysis. 
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Theorem 4.9: RAY GROWTH THEOREM. All resource groups, i.e. the scarce resource groups 

and the free agent group, have the same growth factor. 

  λ ι   (311) 

where : 1 1S  λ , vector of growth factors for each resource group 

 : scalar , common growth rate 

 : 1 1S  ι , vector of unity elements 

Proof: We reorganise the system of production equations into form Ax 0  and solve. 

Consider resource equation (306) divided up by resource producers: 

 0 0 0 0 0 0

NET EXCESS NET EXCESS

j j j j j j j j j j

r j r j F

m m 
 

   
          

   
 a b R a b R 0   (312) 

i.e. 
j j j j

r j r j F

m m
 

  α α 0  by (307) (313) 

or r r F F

r

m m   α α 0   by (308) (314) 

In the next period the equation becomes: 

 
j j j j j j

r j r j F

m m 
 

  α α 0   applying agent growth rates (315) 

 r r r F F F

r

m m       α α 0   by (310)  (316) 

Define  : 1r r rm R  β α , net use of resources by group r. Similarly F
β   (317) 

to get r F

r

 β β 0   by (314)  (318) 

 r r F F

r

     β β 0   by (316)  (319) 

so  r F r

r

    β 0  substituting for F
β  from (318) into (319) (320) 
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A steady state growth path implies that stock absorption j j R  and shedding rates 
SHED

jb  

for the scarce resources stay constant. Under these conditions rβ  values are constant. We 

replace r
β  vectors by rs

β vectors: 

 : 1rs S β  vector containing the only those rows of r
β  which pertain to the S scarce 

resources. Similarly Fsβ . 

so  rs Fs  λ λ 0  rearranging (320) in matrix form for scarce resources (321) 

where  1 2 :r s r s Ss S S    β β β  matrix of use vector coefficients (322) 

 

1

2 : 1

r

r r

S

S







 
 

  
 
 

λ  , : 1

F

F F

F

S







 
 

  
 
 

λ  (323) 

we see that trivial solution solves (321), i.e. r Fλ λ   # (324) 

Remark: There will be other solutions if B is singular, but the columns represent resource 

groups with, typically, large positive diagonal elements so this is unlikely. The case of one 

agent being the sole producer of two resources is discussed above. 

Remark: An investigation of possibly oscillating dynamic effects due to variations in the rate 

of stock accumulation j jR   is beyond the scope of this study.  

Remark: Although the average growth rates of each resource group are equal, in each 

resource group there can be more than one agent type. These agent types have different 

growth rates which average out to the resource growth rate. In each period there will be some 

change in the proportion of agent types because of the different growth rates. The agent types 

with higher growth rates will become more dominant in the group over time, and this will lift 

the group growth rate. 

Remark: It is possible that the number of resource categories is only S, because there are no 

free agents. In this case the dimensions of matrix B become 1S S  . In this case the system 
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is overdetermined, but nonetheless the trivial solution will apply and the conclusion is 

unchanged. 

4.4.3 Encountering a new ray constraint. 

Suppose we have a certain number of scarce resources and a free group, all sharing the 

common growth rate 
0 .  It is only the average growth rate of each resource group which is 

equal, not the growth rates of individual agent types. We expect that some agent types within 

the free group grow more slowly, and this means that the resource which those agent types 

produce will eventually become scarce. As shown within section 3.5 Resource Shedding, the 

stocks of an abundant resource will press up against the upper storage bound U, but the 

stocks of a scarce resource are at minimum levels. As a stock becomes scarce, existing excess 

stocks will be drawn upon. When this buffer has been consumed, scarcity will hit the system 

in a fairly abrupt fashion.   

When a new manufactured good (i.e. ray) constraint is encountered by the system, the 

number of scarce goods S increases by one to include the newly constrained resource N. The 

initial situation is that  

 0 0B  λ  the previously bound agents have the common growth rate (325) 

 0N     the newly bound agents have a lower growth rate (326) 

 0 0F    the remaining free agents have a higher growth rate (proved below). (327) 

We now examine how growth rates change to restore a common growth rate as required by 

the Ray Growth Theorem. The growth equation for resource groups, in the situation where 

there is no endowed resource constraint, is: 

 1 0 λ λ K dω   by (300), 1 1

FULL

S V L 0  as there are no endowed constraints (328) 

where 0 : 1 1S  λ  vector of growth coefficients immediately prior to the system trajectory 

reaching the ray. This vector included the growth factor N  of the newly constrained 
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resource group N, which initially has a lower growth rate as the other bound resource groups 

in B. 

  
1 : 1 1S  λ  vector of growth coefficients after the system trajectory reaches the ray 

and adjusts as per Assumption 4.1 to equal growth rates (311). 

The following result establishes the dynamics of resource constraints. Its implications at first 

glance are obscure, but we tease out those implications below. 

Theorem 4.10:  Equilibrium rate of growth   along a ray is given by: 

 
1

0 0
1 1

1 1

F B B F

F B S








 



k K λ

k K ι
   (329) 

 
 1

0 0 1

1

1 1

B B F S

F B S














K λ ι
dω

k K ι
  (330) 

where 
1, scalar  is a common growth rate of all the B, F resource groups. 

Proof: Solve the system (328) as simultaneous equations. 

 1 0

B

F

 
   

 

K
λ λ dω

k
  by (328), (293) (331) 

 
0

01

B B

F F

    
       
    

λ Kι
dω

k
  where 

1 1

1

1 1

B S

F

   
    

  

λ ι
by (311) (332) 

  1

1 0B B

  dω K ι λ   rearranging top partition  (333) 

  1

1 0 1 0F F B B      k K ι λ   rearrange lower partition and sub using (333) # (334) 

Remark: Compare growth rate expression (329) with the solution to the simple linear system 

1 2,y m x a y m x b    : 

 
1

2 1 2 1

1

2 1 2 1 1 1

m a m b m m a b
y

m m m m





 
 

  
  is the one-dimensional case of (329) (335)  

 
 1

1

1

2 1 2 1 1 1

m a ba b
x

m m m m






 

  
  is the one-dimensional case of (330) (336) 
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We see that the denominator expression 1 1F B

 k K ι  represents the difference in gradients 

between the free and bound agents, i.e. between Fd

dω
 and Bd

dω
 .  

Remark: When the first ray constraint is encountered the above result applies unaltered. The 

matrices ,F Bk K  collapse to scalars and the B group consists entirely of the newly bound N 

group. 

Remark: The newly scarce resource will enter for the first time into the value matrix of the 

bound agents BK . In the case where some agent type produces more than one scarce 

resource, some of the production of that resource will be reflected in the coefficients of the 

resource groups which are already scarce. This does not affect the conclusion. 

Parameter analysis: To understand the result we look at the parameters. 

Assumption 4.9 BOUND AGENT COEFFICIENTS. Consider full growth matrix FULLK . For the 

bound agent columns, the average coefficient for the bound agents is less than that of the free 

agents. 

 FULL FULL

FB BB
R


 
ι

k K   (337) 

Remark: Each bound agent produces one of the constrained resources, so its entry in value 

matrix V for that resource is zero. The consequent element in FULLK is less positive than it 

would be otherwise. This consideration does not apply to the free agents. 

Assumption 4.10 FREE AGENT COEFFICIENTS. Consider the columns for free agents within 

FULLK . The average coefficient for the bound agents is greater than that of the free agents. 

 FULL FULL

FF BF
R


 
ι

k K   (338) 

Remark: The impact of a free agent on the growth coefficients of another free agent is more 

negative than on the bound agents, because the free agent competes with the other free agents 
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for every resource, whereas each bound agent has a resource which it produces itself and for 

which it does not face competition. 

We are now able to relate the growth matrix coefficients of the free agents to those of the 

bound agents, and this will allow us to interpret the ray growth theorem. 

Lemma 4.11. 

 
F B

R


 
ι

k K   (339) 

Proof: Rearrange the definition at (295) using assumptions above and inequality rules. 

 
1

FULL FULL

F FB FF S
  k k k ι   by (295) (340) 

 
1

FULL FULL

BB BF S
R R



 
    

ι ι
K K ι   by (337), (338) (341) 

 noting 1 S
ι  is non-negative so inequality is preserved (342) 

  FULL FULL

BB BF
R


  

ι
K K ι   Result follows by (295) # (343) 

Assumption 4.11 INVERTIBLE GROWTH MATRIX. The growth matrix partition BK  is 

invertible. 

Remark:  1

FULL FULL

B B B B BB BF F S
  K V A V A A ω ι  by (293) (344) 

Value matrix :B S SV  is of full rank by Assumption 4.5 Pricelike Matrices (284) above. 

:B S SA  has large diagonal elements so we expect rank S. :B S SK  is negative on the 

diagonal and roughly zero elsewhere. For these reasons we expect BK  to be of full rank. 

Non-negative sum: Consider now reduced input-output matrix BA . We do not assume that 

1

B

A  is non-negative (as would normally be the case for input-output matrices) but make the 

following weaker assumption. 

Assumption 4.12 NON-NEGATIVE SUM.  

 1 1

1B B S

 

 A V ι 0   (345) 
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Remark: Given that the off-diagonal elements in ,FULL FULL

BB BFA A  are expected to be roughly 

similar, the off-diagonal elements in 
BA  are approximately zero. Nonetheless these off-

diagonal elements may be positive and this may cause 1  B

A  to contain negative elements. The 

diagonal elements in FULL

BBA  are strongly positive and are assumed to dominate the sum of the 

elements in the row. (We do not assume diagonal dominance however.) 

The following result establishes that the denominator of (329), (330) is positive, which allows 

us to discern the properties of the ray growth expressions. 

Lemma 4.12. The difference in gradients between the free and bound agents is positive. 

 1 1 0F B

  k K ι   (346) 

Proof: Use the previous result, and assumption above to demonstrate inequality is preserved. 

 
F B

R



ι

k K   by (339) (347) 

Now  
11 1 1

B B B B B

    K ι V A ι A V ι 0   by (345) (348) 

so 1 1 1F B B B
R

 
  
ι

k K ι K K ι  multiply by 1

B

K ιwhich preserves inequality by (348) # (349) 

Remark: Assumption (345) seems restrictive, but the above result has a statistical character. 

Even if some elements of vector 1 1

B

 A V ι  are negative, multiplying (347) by that vector will 

tend to preserve the inequality. 

Analysis of result. If more than one ray constraint has been encountered, we can compare the 

final common growth rate 1  with the initial growth rate 0 . We employ a methodology of 

breaking the derivation into stages in order to understand its properties. There is no 

suggestion that these stages correspond to temporal stages of the transition. We view all these 

analytical stages of the transition as taking place simultaneously. For the sake of the analysis, 

we now denote the final common growth rate by 2 , and break down the derivation of the 
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ray growth theorem into sections. We then assign properties to the intermediate results and 

hence to the whole. The strategy is set out in the following diagram: 

 

Diagram 4.1: Impact of a new constraint on agent growth rates. The vertical axis shows 

growth rate and the horizontal axis shows changes in the agent resource group proportions 

d .  Initially the bound agents grow at rate 0Bλ . The newly bound agents must be growing 

at a lower rate 0N  or the resource would not have become scarce, and the remaining free 

agents must be growing at a greater rate 0F . For the first stage of the derivation we consider 

the decrease in proportion of the newly bound resource group. As the proportion N of newly 
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bound agents N decreases, the growth rate of that group increases because of the reduced 

competition for the particular resources which the group uses. The growth rate of the 

previously bound resource groups falls as resource N becomes harder to get, but there is a 

compensating effect through the offsetting increase in the proportion of the other bound 

resource groups 
Bω  so the fall is slight. The N group and B group trajectories meet at 

1B , 

where their growth rates are equalized. The decrease in 
N also causes the growth rate of the 

free group F to decline slightly from 
0F  to 

1F . 

In the second phase, the proportion of all the bound resources 
Bω  decreases, and the 

proportion of the free resource group 
F increases. This causes a decline in the growth rate of 

the bound resource groups, but a greater decline in the growth rate of the free resource group, 

because that group does not produce any of the scarce resources so is more reliant on 

importing scarce resources. The greater gradient of the free resource group is captured by  

Lemma 4.12 above, 1 1 0F B

  k K ι . Equality of growth rates is restored at common growth 

rate 2 , which is necessarily lower than the common growth rate which obtained initially, 

0Bλ . 

The dynamic mechanism of the adjustment (which is distinct from this comparative analysis) 

is that agents with higher growth rates expand more rapidly, reducing the proportion of the 

others. 

 

Lemma 4.13. If more than one ray constraint has been encountered, expression 

4.5.1 Incremental mutation for the common growth rate can be derived in three stages: 

• Find the common growth rate 1B  for newly bound N and old bound B agents. 

• Find free agent growth rate 1F by applying the consequent adjustment in proportions 

dω  to the free agents. 
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• Derive the common growth rate for all agents 
2  from the adjusted growth rates 

produced by the first two steps. 

Proof: We split up the derivation at (329) into three parts. Firstly we allow the proportion of 

the originally bound agents 
Bω  and the newly bound agent 

Nd to vary, and we apply that 

fluctuation to the bound agents to obtain an intermediate value of 
0Bλ  called 

1Bλ . Secondly 

we apply the same fluctuation dω  to the free agents to obtain an intermediate value of F  

called 
1F . Finally we apply the original result (329) to 1 1,B Fλ  instead of 

0 0,B Fλ .  

 0 ι dω   where :1 1S ι , vector of ones (350) 

Now 1 0B B B  λ λ K dω   by (331) top partition  (351) 

 1 1

1 0B B B B

 ι K λ ι K λ   1

B

 ι K , note 1 0B B

    ι K K dω ι dω  by (350) (352) 

Now 
1 1B B λ ι   common growth rate of bound agents (353) 

So 
1

0
1 1

B B
B

B




 

ι K λ

ι K ι
  applying (353) to (352) (354) 

  1 1 1

1 0 1 0B B B B B B

      dω K λ λ K ι K λ  from (351) and apply (353) (355) 

(ii) 1 0F F F   k dω  by (331) lower partition (356) 

  1 1 1 1

0 1 0 0 1 0F B B B F F B F B B          K ι K λ k K ι k K λ  by (355)  (357) 

(iii) 
1 1

1 1 1 1
2 1 11 1

F B B F B F B F

F B F B

  

 

  
  

 

k K λ k K ι

k K ι k K ι
 apply (329) to 1 1,B Fλ , use 1 1B B λ ι   (358) 

 
 1 1 1

1 0 1 0

1 1

B F B F B F B F B B

F B

  



   




k K ι k K ι k K λ

k K ι
  (359) 

 
1

0 0

1 1

F B B F

F B










k K λ

k K ι
 as per original result (329) # (360) 



87 

 

We can now analyse each stage in turn. Recall that an increase in the proportion of a bound 

agent 
1B  causes its own growth to decline, i.e. 1

1

0B

B









, and the growth rate of other bound 

agents to increase, i.e 0B

N









. To equate the growth rate of the newly bound agent N to the 

higher growth rates of the original bound agents therefore requires a considerable decrease in 

the proportion of newly bound agents, 0Nd  , and small compensating increases in the 

proportions of the other bound agents. The effect of this on each of the originally bound 

agents will be a strongly negative effect due to the decrease in 
N , a weakly negative effect 

due to the small increase in their own proportion, and a weak positive effect for each of the 

small increases in the proportion of the other bound agents. On this basis we assume the 

result after the first stage (i) is given by: 

Assumption 4.13 FIRST STAGE GROWTH RATE FOR BOUND AGENTS. 

 
1 0B     (361) 

Remark: This is the general tendency but it may be possible to construct examples where 

this is not the case. 

The following allows us to understand the first component of the ray growth rate. 

Lemma 4.14. When a manufactured good first becomes constrained, the free agent types 

which do not produce it (denoted F 0) have a higher growth rate than the common growth 

rate. 

 0 0F     (362) 

Proof: The mean of the free agents growth rate must equal the common growth rate, so we 

decompose the mean into its parts and apply the assumption above. Initially the growth rate 

of resource group N satisfies: 

 0 0N    by (301) (363) 
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Initially, the average of the growth rate of the free agents is equal to 
0  by (311) 

 
0

0 0 0

j j j

j F j FN
N F

j j j

j F j F j F

m m
m

m m m



 
 

  

     

 

  
  # (364) 

Turning now to the free agent category F, we expect that the fall in the growth rate 
0F  of the 

free agents brought about by the reduction in 
Nd is roughly in line with the fall in the 

growth rate of the previously bound agents, so the relativity of growth rates is preserved. 

Again it is possible in anomalous circumstances that this relationship does not hold, for 

instance the free agents are particularly reliant on the resource produced by the newly bound 

agent. To upgrade this assumption to a theorem would require other structural assumptions. 

Assumption 4.14 FIRST STAGE GROWTH RATE FOR FREE AGENTS. 

 
1 1F B     (365) 

We are now able to establish the dynamic characteristic of a new ray constraint. 

Theorem 4.15: The system growth factor 2  after the new manufactured resource constraint 

is encountered is lower than the growth factor 0  prior. 

 2 0     (366) 

Proof: By adding and subtracting we show using the assumptions and results above that one 

component of (358) is negative which establishes the inequality. 

 
 1

1 1 1 1

2 1 1

B F B B B F

F B





    
 



k K ι

k K ι
  adding and subtracting 1B to (358) (367) 

 1 1
1 1 1

B F
B

F B




 
  

k K ι
  simplifying (368) 

 1B    by (365),(346) (369) 

 0    by (361)  # (370) 
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We observe from (329) that the final growth factor 
2  varies inversely with the initial growth 

rate of the free agents 0F . This is because a larger reduction in the bound agents is necessary 

to choke back the growth of the free agents. If the initial growth rate of the free agents 
0F  is 

sufficiently high, it is possible that the final growth factor 
2  is less than unity and the 

system begins to collapse. In this case we define the free agent group as being 

“superefficient”. The following result gives the condition for superefficiency. 

Corollary 4.16: SUPEREFFICIENT AGENT THEOREM. If 

  1

0 0 11F F B B S 

  k K λ ι   (371) 

then the final growth factor 2  will be contractionary. 

Proof. Follows immediately by rearrangement of (329). Set 
2 1   to get: 

 
1

0 0

1

1

1
1

F B B F

F B S












k K λ

k K ι
  by (329). Solve for result.  # (372) 

Remark:  For example, if the current growth rates of the bound agents 0 1B Sλ ι  then (371) 

collapses to 0 1F  . Given that the free agents have a higher growth rate by (362), criterion 

(371) will be satisfied and the free agents will force the common growth rate 
1  below unity.  

Remark: In practical terms, an agent which is too efficient will collapse the system because 

the proportion of resource providers which is consistent with an equal growth rate in all 

sectors is so low that not enough resource is produced.  

Remark: It is also possible to have a ‘hyper-efficient’ free agent with growth gradient less 

than the bound agents with respect to the bound resources, contrary to assumptions (337), 

(338). In this case the decrease in the bound agents causes a widening of the gap between the 

free and bound agents, and the free agents expand even more aggressively relative to the 

others. In this case the system will collapse rapidly. Is such a scenario possible? It has been 

suggested that man’s efficiency in the use of resources puts humankind in this position. 
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Conclusion: The expected value of the common growth factor falls with every new ray 

encountered. The free agents F have a higher growth rate, so the proportion of bound agents, 

including the newly bound agents, declines. The fall in the proportion of the bound agents 

continues until the resources which they produce are so scarce that the growth rates of free 

agents are choked back to match their own. Thereafter, the newly bound agents are not 

subject to further falls in their numbers relative to the rest, and their place in the system is 

protected.  

4.4.4 Rebalancing of the growth rate within a resource group 

In general resource categories are composed of more than one type of agent, with different 

growth rates. Over time the agents with the higher growth rates become relatively more 

common and the growth rate of the group as a whole is increased. This process runs counter 

to the declining trend caused by the build-up in the number of bound resource groups. 

4.4.5 Oscillations 

It is possible that the introduction of a new constraint causes the growth factor to fall below 

unity and subsequent rebalancing causes the growth factor to rise above unity again. This will 

cause the population to oscillate. At some stage in the process, the growth factor will be 

exactly unity 1  . Such a situation is structurally unstable because of the ongoing 

rebalancing. Nonetheless during the period in which this situation obtains we have: 

   1 0E        (373) 

In this case the system is non-stationary and population oscillates randomly from period to 

period – these short-term oscillations are a separate process from the medium-term 

oscillations due to rebalancing. Such short-term oscillations do not arise when the growth 

factor is forced to unity at the transverse frontier, because the action of the endowed 

constraint is a converging process. 

4.4.6 Releasing a ray constraint 
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The question arises whether a given constraint can be released when a subsequent ray is met. 

The solution (360) implies that all previously encountered constraints are still binding. 

Effectively this conclusion is an artefact of assumptions (337), (338) which compare the 

growth coefficients of the bound agents with those of the free agents. It is possible, 

particularly early in the process before many constraints have been encountered, that these 

assumptions are violated. It can be that a newly encountered constraint is produced by an 

agent with a low growth factor, and that a previously bound agent is efficient in its use of that 

resource. Under such conditions the previously bound agent may be able to sustain a growth 

rate above the common growth rate and rejoin the free agent group. As the trajectory 

encounters more constraints this scenario becomes less plausible as the escaping agent would 

have to be efficient in its use of all the bound resources. 

4.4.7 Encountering an endowed constraint 

If the system does not collapse or oscillate then population will continue to expand to the 

point where one of the endowed constraints becomes binding. The behaviour of the system 

when it reaches an endowed constraint requires a separate treatment. When the supplies of 

the endowed good first become scarce, the population term  
2

FULL dN

N
 V L   in the dynamic 

equation (300) becomes non-zero. It impacts on the producers of the manufactured goods, 

and they must rebalance in the usual way to offset its impacts and restore a balanced growth 

path as per the Ray Growth Theorem. However, the common growth rate   is not forced to 

equal the growth rate of the exporters of the endowed good, as is the case for manufactured 

goods. The Ray Growth Theorem does not apply to these producers because the matrix of 

endowed production 
END

B  is excluded from that analysis. The growth rate of the endowed 

good exporters has no particular relationship to the common growth rate – it is not below it as 

we assumed for ray constraints - and the exporters continue to be included in the free agent 
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category. The scarce good categories are unchanged and the number of scarce goods S (in 

fact, the number of scarce manufactured goods) remains at its previous value. 

When the endowed good constraint becoming binding, the initial growth rate changes to 

reflect the population term: 

 
0 0 1 1 2

FULL

S

dN

N
    λ ι V L   (374) 

Further expansion requires that the production of manufactured goods continues to be 

rebalanced so growth is equal in all scarce manufactured resource sectors: 

 1 1 1 1S  λ ι   (375) 

Expansion implies that 0dN   in each period, requiring further rounds of rebalancing. We 

show below that the system converges to a zero growth rate. 

The process of adjustment which occurs when a ray constraint is encountered does not apply 

here. The growth rate of free agents is not necessarily greater than average, and their 

proportion does not necessarily increase and reduce the growth rate of the others. It is 

therefore possible that some agents are less adversely affected by the change than others, and 

that some previously constrained resource is no longer scarce. In this case the system can 

move off the ray for that resource onto a less restrictive surface (either a ray with less 

restrictions or, if there are no manufactured resource constraints at all, the transverse surface) 

and increase its population further. We discern therefore that a system tends to ‘stick to the 

sides’ of its feasible set. At the eventual equilibrium, a particular constraint may not be 

binding, but it may have been binding as the system made its way to the final point. 

Theorem 4.17: TRANSVERSE GROWTH THEOREM. For an endowed good constraint the 

equilibrium growth rate and proportion change are given by:  

 
 1

2

1 0 1

1 1

F F B B

F B S

dN

N









   


v L k K V L

k K ι
  (376) 
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 1

1 2

1

1 1

B S F B

F B S

dN

N














K ι v L V L

dω
k K ι

  (377) 

Proof: We demonstrate this result by putting the premise into form (329). 

 1 1 1 0 1 1 2

BB

S S

FF

dN

N
   

   
       

  

VK
ι ι dω L

vk
  by (300) (378) 
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  rearranging into form (332) (379) 
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Remark: This result captures the effect on the system of the reduction in per capita resource 

allocations, but it does not capture the change in proportions caused by the reduction in 

trading stocks. However unlike the case for manufactured resources, the population of 

endowed good exporters does not reduce, so this is not as significant. 

We know by the Bounded Population Theorem (176) that population N cannot increase 

indefinitely. The outworking of this conclusion here is as follows. As population increases 

the need for the endowed resource becomes acute and is felt by every agent. We assume: 

Assumption 4.15 EQUAL VALUE. Eventually population increases to the point where the 

scarce endowed resource has approximately the same value to all agents. In this case: 

 1B S FV L ι v L   (381) 

Remark: If this assumption is satisfied then the change in proportions expression (377) 

becomes zero: 
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Assumption 4.16 SEDATE PACE. The rate of growth is not so vigorous that the system can 

overshoot a limiting value. 

 0 1F

N
 

v L
  (383) 

We show below that the population will converge to an upper limit over time. 

Theorem 4.18: CONVERGENCE THEOREM. If  

• the growth factor exceeds unity 

• population has increased to a point where Assumption 4.15 Equal Value (381) applies  

then the final growth factor is 1    (384) 

Proof: We take the previous result (376) and substitute in the assumptions above, then 

rearrange into a form which makes convergence clear. 

 If 
1 1   then 0dN    (385) 
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so lim 1 0t
t

     given (383) and lim 0Ft

t
tN


v L
 # (390) 

Remark: If in fact Assumption 4.15 Equal Value does not apply and 1B S FV L ι v L  then 

1Sdω 0  and the proportion of the free agent will decrease, possibly to zero. The growth 

rate may increase which reflects the removal of the debilitating effect of the free agents. 

Eventually all the free agents will be eliminated and this effect will come to an end. If 
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1B S FV L ι v L  then the decline in the growth rate will be faster than in the proof above with 

the same result. 

4.4.8 Developments on the transverse frontier 

When the system has reached stability on the transverse frontier, the average growth rate in 

each resource group is unity. This implies that some of the agent types in each resource group 

necessarily have growth rates below unity and will be eliminated. As this elimination occurs 

the system will rebalance itself to restore a unity growth rate in that resource group, and 

further agent types are pushed below the unity average and elimination. Eventually only one 

agent type will be left producing each type of resource. The maximum number of agent types 

at the long run equilibrium is no more than the total number of constrained resources. It may 

be less than this if one agent type is the most efficient in more than one category. In this 

model at least, it appears that monopoly, far from being an anomalous deviation from perfect 

competition, is the normal case.  

The bound agents are held to a certain proportion by the need for their resources as shown. 

By contrast, if a free agent has a lesser growth than the others, and it does not produce a 

resource which eventually becomes constrained, then its relative proportion of the population 

will fall until it becomes extinct. Free agents are in a structurally unstable situation. 

4.4.9 Path dependence 

The question arises as to whether the final resting point of the trajectory is unique, or whether 

a different path would lead to a different final result. The existence of a unique distributional 

equilibrium does not rule out the possibility of more than one equilibrium modal point 

although it does suggest that transition from one modal point to another is ultimately 

possible. In practice this may not be meaningful because if an agent type becomes extinct 

then the only way it can be regenerated is for the whole system to become extinct and 

regenerated as per the System Extinction process. 
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Consider that the first agent type to become bound (i.e. the manufactured resource which it 

produces becomes constrained) may depend purely on how close the initial point is to the ray 

boundaries. Then those agent types which depend heavily on that resource will themselves 

suffer lower growth rates, and face a higher risk of expiry than agents producing the same 

resources but of a different type. It seems clear that which agents survive the system 

trajectory to the convex frontier can depend on the initial starting point.  

The deeper question is whether the binding constraints at the point where the trajectory 

comes to rest are themselves functions of the starting point. The model suggests the following 

mechanism: a change in the starting point will change the trajectory to the frontier of the 

feasible set. This may (or may not) change the resource constraint encountered, change the 

growth factors of the agents in each resource group, change the ordering of growth factors in 

each resource group, alter the agent type selected from each resource group, and ultimately 

result in a different equilibrium. We suggest that the growth matrix SYSK  implies sets of 

mutually reliant agents which will be selected in groups according to the starting point. 

4.5 Modelling system evolution 

By representing creatures and their processes with a Markov chain we have a natural entry 

point for imposing mutation on the production function, namely changing the elements in the 

transition matrix. We identify four distinct types of mutation in a biological system: 

• Incremental shifts, where a transition matrix parameter is perturbed incrementally.  

• Deletions, where the creature loses the ability to do something. Deletions are not 

incremental but involve setting parameters to zero. It is relatively easy for a creature 

to lose the ability to do something, since doing it requires everything to be functioning 

correctly. Different groups of Mexican cavefish have repeatedly and independently 

lost their sight over the past ten thousand to one hundred thousand years (Jeffery 

Strickler Yamamoto 2003). 
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• Additions, where two creatures are brought together and merge their productive 

capabilities. For instance, the mitochondria and the nucleus of the cell possibly 

evolved independently before combining in the eukaryotic cell around 1.6 billion 

years ago (Dawkins 2004). In biology this is referred to as horizontal (or lateral) gene 

transfer, with some suggesting that the process is more important than Darwinian 

species based evolution (Gogarten 2000). Rutgers University (2017) provides a 

survey article. 

• Saltation, or leaps in phenotype. Within biology this is often referred to as the hopeful 

monster hypothesis after Goldschmidt (1940). While always controversial, the 

hypothesis has garnered some empirical support in recent years, for instance Chouard 

(2010). 

Within economic systems analogous situations are easily identified. The mechanism of 

random chance is augmented both by trial and error learning processes and the calculated 

application of reason, but the source of the innovation is not important for understanding its 

impact on the system. 

• Incremental shifts are represented by continual improvement in the light of 

experience. Experience consists of slightly varying practices, and the practices with 

the most effective outcomes are selected. This is trial and error, or least-squares 

learning. 

• Addition and deletion mutations are represented by organisations bringing functions 

in-house which were previously outsourced (for instance graphics and printing with 

computers) or outsourcing things previously done inhouse (staff recruitment, building 

maintenance). Similarly consumers now do typing for themselves and often out-

source cooking. Department stores brought together many different types of retailing, 

but the shopping mall and credit card removed the convenience advantages of the 
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department store so recently department stores have evolved back in the direction of 

separate brand outlets under one roof. 

• Saltation is more distinctly recognisable in economic systems than biological as new 

technology, but it can be argued that the new technology can be broken into small 

steps in scientific discovery, research and development. The application of reason can 

provide larger jumps in the development process than trial and error. 

4.5.1 Incremental mutation 

Mutations may be either positive or negative. We interpret a mutation as the creation of a 

new agent type with a changed coefficient for one of its activities. This change can affect 

either the input or the output coefficients (negative or positive) and it can be an improvement 

(the new coefficient is greater) or a deterioration (the new coefficient is less). Deteriorations 

imply a lower growth rate and the eventual removal from the population of the new agent 

type and we do not consider this case further here. 

Consider the case of improvements to a bound agent where the transverse frontier has been 

reached and the system has moved to maturity with only one producer in each bound resource 

class. Improvements imply, through the dynamic equation (234), an increase in the rate of 

growth of that agent.  

We establish that incremental mutations necessarily increase population over time. 

Theorem 4.19: INCREMENTAL MUTATION THEOREM. Suppose that  

•  a mutation in agent j is such that 0Nd    (391) 

• the system is currently at equilibrium with 0 1    (392) 

then there will be an increase in population: 

 1 0N N   (393) 

where  0N  is the equilibrium population prior to the mutation and  
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1N  is the new equilibrium population. 

Proof: We treat the variant form as a different agent type and apply the results already 

established for dynamics. The resource group can be treated as a newly constrained resource 

with a higher growth rate: 

 
0 0N     given (391). (394) 

This is the opposite of Assumption (301) and consequently Assumption (361) is reversed: 

 
1 0B     opposite (361): first stage growth rate is higher (395) 

 0 0F     cf. result (362), free agents have same growth rate (396) 

 
1 1F B     cf. assumption (365), first stage here is the same (397) 

So 
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 adding and subtracting 1B to (358) (398) 
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k K ι
  simplifying (399) 

 
1B    by (397), (346) (400) 

 0 1     by (395), (392). Hence increase in population. # (401) 

We show that the new variant will displace the old. 

Corollary 4.20: DISPLACEMENT THEOREM. Suppose that  

• agent type j is the sole producer within a bound resource group r 

•  a mutation in agent j, denoted agent type ja, is such that 0jad    (402) 

then agent type j will be forced to expiry. 

Proof: We know the growth rate for the group as a whole so we express it as a weighted 

average of its constituent agent growth rates.  

 1 1   and 1r   at equilibrium by (384), (311) (403) 



100 

 

 1
j j ja j

j j ja ja

j ja j ja

m m
w w

m m m m

 
    

 
 where 1j jaw w   by (266) (404) 

 1j   given 1ja    # (405) 

Remark: It does not follow from this that the mutation causes the resource r to be produced 

more efficiently. In fact since agent j has this resource in surplus, agent j does not benefit 

much from producing the resource more efficiently and the increase in growth rate according 

to premise (391), 
ja j  , is small. It is more likely that the agent reduces its use of some 

other resource. This raises the population of agent type j, which improves the supply of the 

resource as a side effect. This is the disadvantage of a system without reciprocal trade – 

because benefits to other agents are not passed onto the producer, the producer has somewhat 

less incentive to produce efficiently. 

Remark: Conversely if a free agent becomes more efficient it will have the effect of pushing 

down the population. The Displacement Theorem above will still apply and the efficient 

mutation will tend to push out other free agents. 

4.5.2 Deletion mutations 

Consider the case where the agent deletes a manufacturing process which produces an 

abundant good and thereby uses less of a scarce good. 

Theorem 4.21: DELETION MUTATION THEOREM. Consider a process which produces 

abundant good ‘a’ using scarce resource ‘s’. If that process is deleted, then the agent will 

increase its rate of growth: 

 0jd    (406) 

Proof: We apply Value Matrix result (209) to this situation. Observe that the probability of 

the agent gaining a unit of resource in a period increases as consumption is reduced. 

 0s

jdp      (407) 
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Further, 0s

jV    for a scarce resource (408) 

Now 
a a s s

j j j j j jd V dp V dp     V dp   by (209) (409) 

 
s s

j jV dp    given 0a

jV   by (279) (410) 

 0  by (407), (408) # (411) 

Remark: In this case the mutated agent will again increase at the expense of the original 

agent type, but there is a critical difference to the incremental mutation case. If the abundant 

resource becomes constrained as the original agent declines, the binding constraint 

mechanism will be triggered and any further decline in the original agent population will be 

arrested. 

Remark: Pursuant to Result (393) there will be an increase in population. 

4.6 Conclusion 

We have developed a dynamic theory by relating growth rates to fluctuations in agent 

proportions via a ‘growth matrix’ K. This matrix is itself the product of a ‘value matrix’ V, 

which is derived from the Markov processes of the agents, and an input-output matrix A, 

which is derived from the linear resource constraints which apply to the system as a whole. 

We have an apriori expectation that producer surpluses will be as small as the producers can 

make them (but non-zero), and that as a result the system trajectory will encounter 

manufactured good or ‘ray’ constraints as it expands. Using the dynamic theory we have 

shown that with every additional ray constraint encountered, the growth rate falls. It is 

possible that the growth rate falls below zero and the system contracts. If the system does 

expand to reach the constraints imposed by the finite amount of endowed resources, then the 

growth rate will fall to zero as expected. 

We develop a simple evolutionary model and find that evolutionary results fall out 

immediately as special cases of dynamic phenomena.   
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Chapter 5 

Discussion of results 

 

5.0 Introduction and overview 

We construct a model of a biological ecology or a pre-market human economy using two of 

the most useful tools in the economics toolkit, Markov matrices and linear production theory. 

Within this economy there is a variety of agent types which produce different kinds of 

resource necessary for survival. There is no reciprocal trade, rather agents supply resources to 

others according to the disparity in resource holdings. The behaviour of the agents is habitual 

rather than optimising, and representable by a Markov chain matrix. Resource production and 

consumption are represented by vectors which specify the possible Markov matrix 

transitions. We show that the feasible set is bounded by linear resource constraints in the 

positive orthant of agent space – coordinate space with an axis showing the number of each 

agent type – as for a linear programming problem. If a resource constraint is binding at a 

given point in that space then the resource is scarce there, and otherwise it is abundant. 

Quantity-adjusting forces move the economy to a mixture of agent types which can produce 

all the resources necessary for survival.  

Because the model is constructed using economic principles based on resource abundance 

and scarcity, it offers heightened perspectives on some aspects of survival and natural 

selection. 

• Single growth rate: There is a single system growth rate common to every resource 

group (group of agent types which produce the same scarce resource), and the group 

of remaining ‘free’ agents as well.  

• Falling growth rate. With every resource constraint which is encountered by the 

system trajectory, the system growth rate will fall. There is a maximum population 
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which the economy can support based on the amount of resources which are endowed 

to the system in each period, and at that point growth is zero. It is possible that the 

maximum is not reached. 

• Survival of the weak. Resource constraints mean that producers of scarce resource can 

survive even though their growth rates are initially lower than other agents, because 

all other sectors of the economy are choked back to the same growth rate. This 

guarantee of survival does not extend to producers of abundant resources or free-

riders. 

• The paradox of efficiency. It is possible for one agent to be overly efficient, so that the 

rate of growth which equilibrates the growth of the resource classes is negative. It is 

even possible for an agent to be hyper-efficient, in that its relative superiority over the 

other agents increases as the overall growth rate declines. In this case the system is 

forced into a catastrophic and immediate collapse. 

• Dynamic effects. The rate of growth increases as more efficient agents become 

predominant in the mix, and declines when new resource constraints are encountered. 

The interplay of these effects generates expanding, declining, oscillating and static 

system trajectories. There is a tendency for the system to ‘stick to the sides’ of the 

feasible set. These dynamic effects arise without any explicit assumptions which 

would force this result. We have assumed no law of motion, maximisation process or 

objective function.  
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5.1 The economics of non-reciprocal trade 

We have assumed that agents supply the resources they produce to other agents without 

receiving compensation, and are supplied with resources they require without incurring 

obligation. What are the economics of this system?  

Firstly we consider why an agent might produce more than it needs for its own requirements, 

contrary to the iron dictates of the Prisoners’ Dilemma. We presented a variety of 

explanations, namely group selection, non-controllable production, lean times buffer, 

parasitism, agent cooperation, and inter-dependent utility. All of these explanations lie 

outside the current model, but we take it as given that agents do produce a surplus in natural 

and pre-market economic systems. 

Secondly, we consider how such a system operates. In a market system, producers are 

rewarded for what they supply with something of equal value. Here there is no market price 

and no market supply and demand curves. We develop an alternative mechanism. Growth 

rate equation (300) relates changes in quantity to changes in agent proportion. The matrix 

which mediates between the two, ‘growth’ matrix K, is the product of a ‘value’ matrix V and 

an input-output matrix A. The value matrix derives from the stochastic properties of the 

Markov matrix and is analogous to changes in marginal utility per unit of resource.  The input 

output matrix derives from the linear production form of the model and gives changes in 

resource. Multiplied together, the two matrices produce a version of a demand curve. We 

then relate those changes in quantity to the requirement that at equilibrium all sectors grow at 

the same pace, the Ray Growth Theorem (311). The Ray Growth condition is more like an 

equilibrium condition which intersects with the demand curve than a supply curve as such.  

The practical effect is that if agents cannot get what they require, their growth rate falls, their 

proportion in the population falls, and the proportion of producers of that scarce resource 
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increase by default until balance between producers and consumers is restored. Alterations in 

quantity, brought about by differential birth and death rates, are the alternative device which 

produce equilibrium. Although producers receive no direct reward for producing, and have no 

direct incentive to expand production, the fact of survival is an alternative form of reward.  

Let us now consider trading efficiency. The system generates resource shedding according to 

(159). The amount shed represents production lost to the system and is a source of 

inefficiency. We observe from (159) that the higher the value of the trading constant rk , the 

less resource will be shed. Now there is an implicit concept of price, r , in the LHS 

eigenvalue of the agent Leslie matrix, which measures the incremental number of 

descendants which one extra unit of resource r will produce. We can relate price r  to 

stock levels 
r

j , stock levels to the trading coefficient rk and the trading coefficient to the 

wastage. 

At limit 0rk  , there is no trading and any non-autarkical system is unsustainable. 

The resource has no value to producers as it is in excess, and infinite value to other 

agents who perish for want of it.  

As rk  increases, resource wastage reduces and efficiency increases.  The resource is 

has a certain marginal value, as measured by price  , to producers, but it is worth 

more to importers.  

As rk approaches infinity, all agents have equal access to the resource and equal 

resource stocks 
r

j .  The implicit price   is the roughly the same to all. This is the 

situation in an ideal market economy – the resource has the same opportunity cost to 
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every agent. There is no stock-shedding unless every agent is at the upper limit, which 

implies the resource is abundant, so there is no wastage of a scarce resource.  

Increasing rk can be interpreted as transitioning from a biological economy to a market 

economy. However, if every agent shares similar stock levels then the differential survival 

mechanism which underpins equilibrium can no longer operate. We conclude that a system 

can operate using quantity rather than price adjustments but not as efficiently. 

5.2 Specialization and interdependence 

We represent the processes of biological evolution by altering the resource processing 

coefficients of the agents. We find that an incremental mutation which increases the 

efficiency of an agents’ resource processing will lead to an increase in the overall population 

if an agent produces a scarce good. Conversely, a free agent (one which does not produce a 

scarce good) which becomes more efficient will cause a reduction in population.  

It is the deletion mutations of an agent – ceasing some resource transforming process – which 

results in specialization and interdependence in real world economies. The explanation 

presented here follows the same logic as for incremental mutations. If a creature stops 

producing a resource which it can easily obtain because the resource is abundant, then that 

agent effectively becomes more efficient, with the same consequences as an incremental 

mutation. In each case the variant agent type will expand at the expense of the original type 

because it has a higher rate of growth. However, if the process which was deleted is for a 

necessary resource which no other agent type is producing, then eventually the resource will 

become scarce and further decline in the original agent type will be arrested. 

We conclude that an economy originally consisting of one type of autarkical agent will move 

to a system of differentiated and inter-dependent agent roles, solely through resource 

pressure. This is as distinct from the view that the genesis of differentiated roles is the greater 
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production efficiency which flows from specialization – a view which goes right back to 

Adam Smith’s pin factory. In terms of this model, specialization starts after the fact of 

differentiation so cause and effect are reversed. Once creatures have developed specialized 

roles they are free to optimize those roles without the compromises necessary to perform 

other functions as well. The Red Queen Hypothesis (Van Valen 1973) in biology represents 

coevolution as a competitive and costly thing, a 'genetic arms race', but from the perspective 

of this model it is a positive thing. We can interpret the ecosystem, or economy, as a global 

genotype of one original creature, and specialization as a device which allows it to expand the 

boundaries of its feasible set. Effectively, the agent has broken free from the trade-offs of 

morphological space and can optimize everything at once. But it is wrong to imagine that 

central coordination motivates individual actors in either a biological or economic setting. 

The most enduring theme in economics is that it is the system itself which coordinates 

individual self-interest so that everyone’s needs are met, and the model demonstrates that 

reciprocal trade is not necessary for that coordination. Natural selection operating within a 

system of scarcity is sufficient. 

However, we have also seen that an agent which is too efficient relative to others risks 

collapsing the system. This is by no means a hypothetical scenario. Examples include cancer 

in the body, a corrupt regime in an economy, predation in an ecology, some suggest 

humankind. A full explication of the role of predation awaits further development of the 

theory. 

In the context of the debate in biology regarding the nature of progress, the movement to 

more efficient resource utilization and greater population are unidirectional trends which can 

be expected to persist over the life of the system. 
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 5.3 Inhouse processing versus outsourcing 

Assumption 3.8 for trading requires agents to meet each other at a constant rate; they cannot 

become too dispersed to trade effectively. If this assumption does not apply and the rate at 

which agents meet decreases, then the trading coefficient rk  also decreases. As discussed 

above, this reduces the economic efficiency of the system. A sufficient decline in rk  will 

produce an evolutionary incentive for entities to join together - the opposite of the deletion 

mutation. When entities reunite, they may be able to fix their relative proportions at a level 

whereby the new entity has production in the right proportion of every resource. We see this 

incentive to regroup in such diverse phenomena as the reunion of the mitochondria and the 

nucleus within a cell, the organs in the body, and departments within a firm. When the 

situation or technology changes, the firm may find it more efficient to outsource and the 

creature to lose some of its functions. There is a continuing tension between these competing 

tendencies and this is another direction of future research.  

 5.4 Nature of system equilibrium 

We constructed a system Markov chain matrix by Kronecker multiplication, and showed 

using the Perron-Frobenius theorem an equilibrium distribution to such a system must exist. 

The Perron-Frobenius theorem provides not only existence but uniqueness, positivity and 

stability which means that the solution is tightly characterized for a minimum of analytical 

effort. However the nature of the solution is different from general equilibrium analysis. It is 

distributional - a distribution of states - rather than situational - a point in production-

consumption space. The positivity of the solution eigenvector implies that every state in the 

system, no matter how improbable, will be instantiated at some point. This interpretation 

parallels results from quantum mechanics which are possibly derived in a similar way. It does 

not seem like a disadvantage that the solution comes in this form. Real systems whether 

economic or biological are subject to fluctuations, some of them very large, and a solution 
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which embraces such fluctuations may be more interesting than the traditional one-point 

solution.  

5.5 Path dependence 

This model implies a theory of path dependence based on historical price structures, which is 

perhaps a more general version of the modal lock-in theory of path dependence established 

by Arthur (1989). The competition which agents face is with other producers in the same 

sector. Agent growth factors are a function of which resources are scarce. Different starting 

points can result in different scarcities, different resource price structures (as measured by 

each agent’s incremental survival rate 
r

j  ), and consequently different growth and survival 

rates. The final equilibrium will depend to some degree, maybe a large degree, on which 

agent types survive. This conclusion differs from a standard economic model because the 

standard model takes the agent types as fixed and does not consider survival. 

We note that one outstanding issue in biology is the question of what characteristics 

determine whether a species can enter an existing ecosystem. A general theory has proved 

elusive (for instance, Alexander et al. 2014). In terms of this model, the answer lies in the 

adaptation of that species to the implicit price system of the ecosystem, which derives from 

the resource processing abilities of the existing agents. Alexander et al. present a biological 

theory which is also based on relative resource processing efficiency. Explication of path 

dependent phenomena in the model is an area of future research. 

5.6 The system as a complex adaptive system 

Our results demonstrate that a system based on habitual behaviour and survival rather than 

explicit optimization can nonetheless exhibit optimizing behaviour. The same principles of 

scarcity underlie the operation and development of both economic and biological systems, 

and natural selection and quantity adjustment can take the place of price adjustment. There is 

evolutionary pressure produce more efficiently, and there is evolutionary pressure to 
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differentiate production. Once an agent has stopped producing resources available in excess, 

it need no longer maintain a form which can do everything, with all the compromises which 

that implies, but can adapt that form to the specific requirements of what it does produce. The 

system specialises, differentiates its forms, and increases its size over time; on a more 

abstract level, it is processing information and decreasing entropy. The oldest and most 

profound theme in economics, Adam Smith’s invisible hand, is that the system as a whole has 

organising abilities which cannot be found in any of its parts. 

5.7 Conclusion 

We have built a model using two of the most powerful tools in the economic toolkit - Markov 

matrices, and linear production theory – by multiplying a Markov matrix defined over 

resource states M by a stock matrix X to get production vectors a. To the best of the author’s 

knowledge and research, this device has not been used previously. In this way we have 

shown how specialized and interdependent species – whether economic or biological– 

become concentrated in a substrate over time. Future research has reasonable prospects of 

extending this conclusion to certain chemical species as well. 
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Appendix – Description of an artificial life simulation developed by the author 

The following is a description of an artificial life simulation developed by the author which 

stimulated his interest in the topic. The simulation is not unlike others, for instance the Echo 

simulation built by the Santa Fe institute (Hraber et al. 1997), but there are important 

differences between the Echo simulation and this. The Echo simulation implements 

reciprocal trade rather than non-reciprocal trade, and uses different learning algorithms. The 

Echo simulation does not employ a graphical user interface, this simulation can be watched 

on the screen as it develops. A brief description of the system follows: 

• There is a grid, typically measuring 500 500  cells, and defined terrain with uphill 

and downhill. Water flows in streams and rivers downhill into lakes. 

• There are autonomous agents and six resources (energy, water, carbon, phosphorus, 

nitrogen and sulphur – these being the resources essential for life). If agents run out of 

energy they die. When they have one unit of each resource then they reproduce.  

• Endowed resources: there is a standard allocation of energy in each period to each 

agent, a certain amount of rainfall which is fixed, and a fixed amount of phosphorus 

available in the environment.  

• Each agent consists of cells of different kinds spread over a 5 5  grid (not necessarily 

touching). Each cell has an energy cost, and there are different kinds of cells which 

confer different abilities on the agent. There are particular cells which manufacture 

the three resources which are not endowed. Because there is an energy overhead for 

each cell, these cells embody a production function whereby energy is exchanged for 

the resource. The conversion rate is different for each resource. 

• Agents move around the grid collecting water and phosphorus. Agents can be 

superimposed on the same space and when one agent meets another, it must give the 
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second agent any resource which the second agent lacks. In this way resources are 

shuffled throughout the system. 

• Agents mutate randomly when they reproduce with a fixed low probability, gaining or 

losing cells with different abilities.  

• Agents are given information about the cells immediately surrounding them, and they 

can learn different behaviours to respond to that information. Initially the learning 

method was Holland’s (1975) genetic algorithm, but the author found that this method 

did not work effectively in this context. It was replaced with a variant of least squares 

learning whereby regression coefficients mutate randomly over time and generations 

to useful values. It was found that least squares learning could support much more 

detailed behaviour than the genetic algorithms. 

The agents started off as undifferentiated autarkical agents with basic capability. Over 

time (100,000 periods) a differentiated ecology evolved with a full range of 

environmental niches being filled. Typically 75% to 80% of the agents are single cell 

producers, as in real life biologies and economies. One notable tendency was for 

population to increase over time notwithstanding periodic booms and busts. After 

100,000 periods, population settles down to around 7,000 agents. After 1,500,000 

iterations, sophisticated behaviour has evolved and the population rises to around 70,000 

agents. 

The simulation has features not implemented within the mathematical model presented in 

this thesis, such as differentiated terrain and environmental niches, learning, and 

predation. It was notable that just as in real world biology, predators lose all cells and 

functions except the attack cell and a ‘stomach’ cell, which is required for realism. They 

do not even maintain the energy cell for the free energy allocation.  
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These types of artificial life simulation have been criticised (for instance, Horgan 1995) 

as games, and so they are. But games capture aspects of reality thought worthy of study. 

In the opinion of the author, this kind of game has scientific value insofar as it inspires 

and assists mathematical modelling. The mathematical model developed in this thesis 

studies the development of a specialised ecology from autarkical producers making non-

reciprocal trades, and the reasons for the increased population. Future work will study 

predation and behavioural learning. 

Diagram A.1: Screenshot of the simulation. The light khaki colour represents lowlands, 

the dark khaki colour represents highlands, and the grey-blue represents rivers which flow 

down to the lowest point to form lakes. In this shot, which is early in the simulation 

before the herbivorous agents have evolved effective defences, the predators have driven 

the herbivores out of the well-watered areas where they were once dense. They have 

taken refuge on a poorly watered highland plateau which the predators have not found 

(agents cannot move up cliffs). Different coloured cells represent different resource 

producing functions, all of which have an energy overhead. Where agents touch, they 

exchange resources according to scarcity. 

Diagram A.2: Screenshot of the species listing. A computer simulation reports the 

values of variables which can only be inferred in real-life situations. This table shows the 

consanguinity (degree of interrelatedness) of the ten most populous agent types. It reveals 

that in the simulation as in real life, the most populous agents are the single cell vegetable 

types which collect the energy and process the resources – in this case 29,007 out of 

37,746 creatures or 76.8%. Carnivores and large herbivores are relatively uncommon. 
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Diag. A.1  
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Diag. A.2  
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