Analysis of Microbial Diversity in an Extreme Environment: White Island, New Zealand

Raquel Ibáñez-Peral, MSc

A thesis presented to Macquarie University in fulfilment of the requirements for the degree of Doctor of Philosophy

Department of Chemistry and Biomolecular Sciences Division of Environmental and Life Sciences Macquarie University, Australia

June, 2008

Table of contents

Table of contents	1
Abstract	IX
Statement of candidate	XI
Acknowledgements	XIII
Abbreviations and symbols	XV
CHAPTER I. LITERATURE REVIEW	1
1. Microbial diversity	4
1.1. Origin of early life	4
1.2. Extremophiles	6
1.3. Microbial consortia	8
1.4. Microbial metabolism 1.4.1. Sulphur cycling 1.4.2. Iron cycling	8 11 12
2. Volcanic environments	12
2.1. Geothermal and hydrothermal systems	13
2.2. White Island, New Zealand	13
3. The study of microbial diversity	14
3.1. Culture-independent techniques	14
3.2. Culture-dependent techniques	17
4. Quantum dots	19
4.1. Biological applications of the QDs	21
4.1.1. Cell detection and imaging	21
4.1.2. Gene technology	22
4.1.3. Bacterial, pathogen and toxin detection	23
4.2. QDs and flow cylometry	24
5. Aims of this study	25
CHAPTER II. MATERIALS AND METHODS	27
1. MATERIALS	29
1.1. Chemicals and biochemicals	29
1.2. Reaction kits	30
1.3. Enzymes	30

1.4. Consumables	30
1.5. Laboratory equipment	31
2. METHODS	32
2.1. Buffers and solutions	32
2.2. Sterilisation of reagents	33
2.3. Culture media	33
2.4. Microscopy	34
2.4.1. Light microscopy	34
 2.4.2. Fluorescence microscopy 2.4.2.1. Fluorochromes 2.4.2.2. Epi-fluorescence microscopy 2.4.2.3. Confocal laser scanning microscopy 	34 34 34 35
2.5. Flow cytometry	36
2.5.1. BD LSI Flow cytometer	36
2.5.2. BD FACS-Calibur Flow cytometer	36
2.5.3. Data acquisition and analysis	37
2.6. Molecular analyses	37
2.6.1. DNA concentration and quantification 2.6.1.1. Gel electrophoresis 2.6.1.2. Spectrophotometry	37 37 38
2.6.2. Polymerase chain reaction (PCR)	38
2.6.3. Sequencing and sequence data analysis	41
 2.6.4. Fluorescent in situ hybridisation (FISH) 2.6.4.1. Oligonucleotide probes 2.6.4.2. Preparation of microscopy slides 2.6.4.3. Control organisms 2.6.4.4. Preparation of samples 2.6.4.5. Hybridisation conditions 2.6.4.6. FISH reactions in microcentrifuge tubes 	42 42 43 43 43 43 44
CHAPTER III. SAMPLING SITES AND SAMPLING MATERIAL	47
1. INTRODUCTION	48
2. MATERIALS AND METHODS	51
2.1. Sample collection	51
2.2. Sample handling and storage	51
2.3. Physical readings	52
2.4. Chemical analyses	52
3. RESULTS	54

3.1. Description of sampling sites and sample material	54
3.1.1. Site A	55
3.1.2. Site B	56
3.1.3. Site C	56
3.1.4. Site D	57
3.1.5. Site E	57
3.1.6. Site F	58
3.1.7. Site G	59
3.1.8. Site H	60
3.1.9. Site I	60
3.1.10. Site J	61
3.2. Chemical analysis	61
4. DISCUSSION	63
CHAPTER IV. ENRICHMENT CULTURES AND MOLECULAR ANALYSES	67
1. INTRODUCTION	69
2. MATERIALS AND METHODS	72
2.1 Culture media	72
2.1.1. Liquid media 2.1.1.1. Acidianus medium 2.1.1.2. Diluted nutrient broth medium 2.1.1.3. Sulfolobus medium 2.1.1.4 Sulfolobus solfataricus medium 2.1.1.5 Sediment-extract medium	72 72 72 72 72 73 73
2.1.2 Solid extract agarose-based medium	74
2.2. Cultivation conditions	74
2.2.1. Enrichment cultures	74
2.2.2. Pure cultures	75
2.3. Long-term storage of cultures	75
2.4. Buffers and solutions	75
2.5. Chemical analysis of the sediment-extract	76
2.6. Molecular analyses of enrichment cultures	76
2.6.1. DNA extraction	76
2.6.2. PCR amplification	77
2.6.3. Restriction fragment length polymorphism (RFLP) 2.6.3.1 Long-term storage of recombinants 2.6.3.2. Extraction of plasmid DNA	77 78 78
2.6.4. Sequencing analysis	79
2.6.5. Construction of 16S rDNA consensus sequences	79

2.6.6. Sequence alignments	80
2.6.7. Phylogenetic analyses	80
2.7. Fluorescent in situ hybridisation	81
3. RESULTS	82
3.1. Chemical analysis of the sediment-extract	82
3.2. Enrichment cultures	83
3.3. Molecular analyses of cultured microorganisms	85
3.4. Isolation of pure cultures	91
3.5. FISH	92
4. DISCUSSION	96
4.1. Cultivation of thermo-acidophiles from White Island	96
4.2. Molecular analyses	97
4.3. FISH	100
4.4. Isolation of pure cultures	102
4.5. Chemical analyses	102
4.6. Summary	102
CHAPTER V. OPTICAL AND BINDING CHARACTERISATION OF THE QDs	105
1. INTRODUCTION	107
1.1. Optical properties of the QDs	107
1.1.1. Absorbance characteristics	108
1.1.2. Emission characteristics 1.1.2.1. Emission spectra of the QDs 1.1.2.2. Quantum yield 1.1.2.3. Photo-stability	<i>108</i> 108 109 110
1.2. Physical properties	110
1.3. Surface chemistry of the QDs	112
1.3.1 Types of interactions	112
1.4. Aim	113
2. MATERIALS AND METHODS	115
2.1. Reagents	115
2.1.1 Evitags QDs	115
2.1.2. $Qdots^{TM}$	115
2.1.3 Fluorophores	116

2.1.4. Paramagnetic Dynabeads [®]	116
2.2. Buffers and solutions	117
2.3. Fluorescence spectrometry	117
2.3.1. Excitation-emission spectrum of Qdot TM 655	117
2.3.2. Excitation-emission spectrum of Hops-Yellow Evitags QDs	117
2.3.3. Molar extinction coefficient	118
2.4. Binding procedures	118
2.4.1. Coupling of thiol-modified probes to amine-modified QDs	118
2.4.2. Washing of Dynabeads [®] paramagnetic beads	119
2.4.3. Binding of biotinylated QDs to Dynabeads [®]	119
2.4.4. Binding of biotinylated probes to Dynabeads [®]	120
2.5. Flow cytometry	120
3. RESULTS	121
3.1. Optical characterisation of the QDs	121
3.1.1. Excitation- emission spectra	121
3.1.2. Molar extinction coefficient	123
3.2. Binding characterisation of the QDs	124
3.2.1. Quantitative method	124
3.2.2. Qualitative method	127
3.3. Binding characterisation of the Dynabeads	128
3.3.1. Fluorescence properties of the Dynabeads	128
3.3.2. Optical behaviour of QDs bound to Dynabeads	130
3.3.3. Binding capacity of the Dynabeads	133
3.3.4. Saturation point of the Dynabeads-probe complexes	136
4. DISCUSSION	138
4.1. Optical properties of the QDs	138
4.2. Binding properties of the QDs	141
4.3. Binding properties of the Dynabeads	141
4.4. Summary	142
CHAPTER VI. APPLICATIONS OF THE QDs	145
1. INTRODUCTION	147
1.1. Aim	147
2. MATERIALS AND METHODS	150

2.1. Reagents	150
2.2. Buffers and solutions	150
2.3. Molecular procedures	151
2.3.1. Deinococcus radiodurans	151
2.3.2. DNA extraction	151
2.3.3. Amplification and analysis of 16S rDNA of D. radiodurans	152
2.3.4. Design of D. radiodurans specific oligonucleotide probes	152
2.3.5. Polymerase Chain Reaction (PCR)	154
2.3.6. Gel electrophoresis analysis	155
2.4. QD-bead complex binding procedures	156
2.4.1. Washing of paramagnetic beads	156
2.4.2. Binding of QD-oligonucleotide amine probe complexes to Dynabeads	156
2.4.3. Binding of complementary oligonucleotide probes to Dynabeads	156
2.4.4. Binding of biotinylated PCR amplicons to Dynabeads	157
2.5. Capture and detection of genomic DNA bound to Dynabeads	157
2.5.1. Direct capture and reporting of gDNA	157
2.5.2. Indirect capture and reporting of gDNA	158
2.5.3. Restriction enzyme digestion of gDNA	159
2.5.3.1. Direct method for capturing digested gDNA 2.5.3.2. Indirect method for capturing digested gDNA	159 160
2.6. Capture and detection of PCR amplicons bound to Dynabeads	160
2.6.1. Alkali treatment for denaturation of PCR amplicons	160
2.6.2. Preparation of target probes modified with QDs	161
2.7. Capture and detection of PCR amplicons bound to QuantumPlex [™] M beads	161
2.7.1. Calculations of the saturation point of the QuantumPlex TM M beads	161
2.7.2. Preparation of QuantumPlex TM M beads bound to the capture probe	162
2.7.3. Capturing the non-biotinylated strand of PCR amplicons	162
2.7.4. Evaluation of the bead-based method for the detection of extremophiles	163
2.8. Flow cytometry	164
3. RESULTS	165
3.1. Optimisation of the binding procedures	165
3.1.1. Binding of complementary probes to Dynabeads	165
3.1.2. Binding of biotinylated PCR amplicons to Dynabeads	168
3.1.3. Buffers and incubation times	172
3.2. Bead-based QDs technique for DNA detection	173
3.2.1. Detection of gDNA bound to Dynabeads	173
3.2.2. Detection of digested gDNA bound to Dynabeads	174

3.2.3. Detection of biotinylated PCR amplicons bound to Dynabeads	176
3.2.4. Fluorescent intensity of QDs versus organic dyes	179
3.2.5. Detection of PCR amplicons with QuantumPlex TM M beads	181
3.2.6. Detection of bacterial and archaeal DNA with QuantumPlex TM M beads	184
4. DISCUSSION	188
4.1. Optimisation of the bead-based technique for DNA detection	188
4.2. The bead-based QD technique for DNA detection	189
4.3. Fluorescence detection of QDs versus organic dyes	192
4.4. QDs and FISH	193
4.5. Summary	195
CHAPTER VII. CONCLUDING REMARKS	197
APPENDICES	207
APPENDIX I: QDs as a fluorophore probe for FISH	209
1. Conventional FISH technique	209
2. Non-conventional FISH technique	210
APPENDIX II: BioMag beads	213
APPENDIX III: Hops-Yellow QDs	215
APPENDIX IV: Methods for detection of PCR amplicons bound to the Dynabeads	217
1. Methods	217
1.1. Direct method for labelling PCR amplicons	217
1.2. Indirect method for labelling PCR amplicons	217
1.3. Detection of PCR amplicons with QD525	218
1.4. Blocking the active sites of the QDs with biocytin	218
2. Results	219
2.1. Direct method for labelling PCR amplicons	219
2.2. Indirect method for labelling PCR amplicons	219
2.3. Blocking the active sites of the QDs with biocytin	221
2.4. Modifications in the procedures	222
3. Discussion	223
APPENDIX V: Publications and conference proceedings	225
1. Publications	225
2. Conference proceedings	225

REFERENCES

Abstract

White island, the most active volcano in New Zealand, is a poorly studied environment that represents an ideal site for the investigation of acidophilic thermophiles. The microorganisms present on here are continually exposed to extreme environmental conditions as they are surrounded by steamy sulphurous fumaroles and acidic streams. The sediment temperature ranges from 38°C to 104°C whilst maintaining pH values below 3. A survey of the volcanic hydrothermal system of White Island was undertaken in order to gain insights onto the microbial diversity using culture-dependant techniques and molecular and phylogenetic analyses. A novel liquid medium based on "soil-extract" was designed which supported growth of bacterial and archaeal mixed cultures. Molecular analyses revealed that the dominant culturable bacterial species belong to the Bacteroidetes, Firmicutes and α -Proteobacteria groups. Several previously uncultured archaeal species were also present in the mixed cultures. The knowledge gained from these studies was intended to help in the development of a novel microbial detection technique suitable for community analysis.

Conventional molecular techniques used to study microbial biodiversity in environmental samples are both time-consuming and expensive. A novel bead-based assay employing Quantum dots (QDs) was considered to have many advantages over standard molecular techniques. These include high detection speeds, sensitivity, specificity, flexibility and the capability for multiplexed analysis. QDs are inorganic semiconductor nanoparticles made up of crystals about the size of proteins. It has been claimed that the physical and chemical properties of the QDs have significant advantages compared to organic dyes, including brighter fluorescence and resistance to photo-bleaching. Their optical properties facilitate the simultaneous imaging of multiple colours due to their flexible excitation and narrow band emission. Functionalised QDs are able to bind to different biological targets such as DNA, allowing high-throughput analysis for rapid detection and quantification of genes and cells.

The optical and physical characteristics of the QDs as well their interaction with biomolecules are shown to be suitable for the development of a novel bead-based technique able to target the key microbial species and identify them by flow cytometric measurements (FCM). The broad absorption and narrow emission spectra of the QDs, as well as their fluorescence intensity and specify to target biomolecules, was compared to other organic fluorophores. The potential advantages and limitations of QDs as a fluorophores for biological applications are discussed.

The data acquired during this study provides a broad overview of the microbial diversity and ecology of the volcanically-active hydrothermal systems of White Island and constitutes the baseline for the development of a novel bead-based technique based on QDs.

Statement of candidate

I certify that this thesis contains original work conducted by the author between August 2003 and June 2008. To the best of my knowledge it contains neither material previously published or written by another person for any other institution. Any contribution made to the research by others, with whom I have worked at Macquarie University or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own work, except to the extent of the acknowledged assistance from others on the project's design, data interpretation or in style, presentation and linguistic expression.

Raquel Ibáñez-Peral

Sydney, June 2008

Acknowledgements

The completion of this thesis would have never been possible without contributions from the following people who helped me to overcome the challenges of this project along with the extraordinary circumstances surrounding it. I would like to thank:

My supervisors **Prof. Peter Bergquist**, **Dr. Belinda Ferrari** and **Prof Malcolm Walter** for the opportunity to work on this project, for their guidance, encouragement, scientific input, linguistic style, professional and personal support throughout my candidature. A special acknowledgement to the **Biotechnology Institute** (Macquarie University) and **Australian Centre for Astrobiology** (Macquarie University) for financial support.

Dr. Moreland Gibbs and **Prof. Ewa Goldys** for their help in designing the quantum dots technique and helping me to understand the physics and molecular concepts behind it.

Dr. Roberto Anitori and **Philip Butterworth** for their assistance in the fieldtrip to White Island, and tireless help and advice in the lab over the duration of my thesis. The **Buttle Family Trust**, owners of White Island, for allowing sampling and the **INGS** team for their assistance during the fieldtrip.

Dr. Ruth Henneberger for her priceless support, advice and help inside and outside university. A special thanks for teaching me the mysteries of fluorescent *in situ* hybridisation and the 1001 reasons why the extraction of DNA, PCR amplification and sequencing would not work.

Debra Birch for her assistance and valued advice on fluorescence microscopy at Macquarie University.

Dr. Jörg Peplies (Ribocon GmbH, Bremen, Germany) for his contribution to the phylogenetics analyses. The Institute of Geological & Nuclear Sciences Limited

(Wairakei Analytical Laboratory, New Zealand) and the National Measurement Institute (Australian Government, Australia) for the multi-element analyses. Prince of Wales Hospital (Australia) for letting me use their BD LSR I flow cytometer in collaboration with BD Biosciences.

Everyone in the Australian Centre of Astrobiology, specially **Sarah Chamberlain**, **Jessica Coffey**, **Dr. Stefan Leuko** and **Andrew Simpson** for their friendship in the goodla cucaracha-times and their support in the bad times. I hope one day they would finally be able to say where I am from (Valladolid, not Madrid!).

Everyone in the **EDGE lab** (Macquarie University). Thank you for helping me with all my silly questions and making the lab a great place to work.

Tina Purba-Pajnoo, my Scottish/Indian big sister, for all her support and friendship during the last years. A special thanks for checking my PowerPoint presentations full of strange terms such as "nanometre" and teaching me how to pronounce wavelength.

All my close friends Mirai Kobayashi, Cristina Cobreros, Shingo Miyauchi, Dr. Ana Rubio, Dr. Alex Gupta, Ian De Horta and my favourite "Norwegian" girls Dr. Miren Castells and Eider Zubizarreta. Your friendship means a lot to me.

This thesis would have not existed without the inspiration, motivation and wholehearted support of my entire family. Muchísimas gracias a mis padres **Carlos Ibáñez-Viloria** y **Maria Peral-Martín** por apoyarme desde el principio en todo, enseñarme a luchar y a pensar por mi misma. Gracias a mi hermanito **Raúl Ibáñez-Peral** por seguir siendo "un incordio" y estar siempre ahí por mi. Gracias al resto de mi familia, sobretodo a mis tios y tias, por todo el cariño incondicional durante estos últimos años. Y gracias a las "chicas de Viana", amigas de mi madre, por convertirse en un gran apoyo para mi familia. Sin vuestra ayuda, cariño y apoyo la terminación de ésta tesis no habría sido nunca posible. Muchas gracias a todos.

Abbreviations and symbols

Abbreviation	Meaning	Abbreviation	Meaning
abs	Absolute	MFI	Median fluorescence intensity
approx.	Approximately	Μ	Molar
CLMS	Confocal laser scanning microscopy	m	Meter
DAPI	4',6-diamidino-2-phenylindol	min	Minutes
DI water	Deionised water	mRNA	Messenger ribonucleic acid
DIC	Differential interface contrast microscopy	nM	Nanomolar
DNA	Deoxyribonucleic acid	μM	Micromolar
ds	Double stranded	nm	Nanometre
EDTA	Ethylenediamine tetra acetate	nov.	Novel
EtBr	Ethidium bromide	OD	Optical density
EtOH	Ethanol	PE	Phycoerythrin
FCM	Flow cytometric measurements	PBS	Phosphate buffer, saline
FITC	Fluorescein isothiocyanate	PCR	Polymerase chain reaction
FISH	Fluorescence <i>in situ</i> hybridisation	pers. comm.	Personal communication
FL	fluorescence	QDs	Quantum dots
FL1	Fluorescence detector 1	R-PE	Derivatised phycoerythrin
FL2	Fluorescence detector 2	rRNA	Ribosomal ribonucleic acid
FL3	Fluorescence detector 3	RT	Room temperature
g	Gram	S	Seconds
GPS	Global positioning system	SS	Single stranded
h	Hour	SSC	Single angle light scatter
kb	Kilobase air	SP	Shortpass filter
kg	Kilogram	sp.	species
1	Litre	UV	Ultra-violet light
LP	Longpass filters	vol	Volume
log	Logarithm	v/v	Volume per volume
		w/v	Weight per volume

Abbreviations

Symbols

Symbol	Meaning
Å	Angstrom
°C	Degrees Celsius
3	Molar extinction coefficient
~	Approximately
₿ / TM	Registered trademark

This thesis is dedicated to my family, especially to the memory of my mother.

(Dedico ésta tesis a mi familia, en especial a la memoría de mi madre)

"No se está en ningún sitio mejor que en casa"

María Peral-Martín

Chapter I. Literature review