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Abstract 

White island, the most active volcano in New Zealand, is a poorly studied environment 

that represents an ideal site for the investigation of acidophilic thermophiles. The 

microorganisms present on here are continually exposed to extreme environmental 

conditions as they are surrounded by steamy sulphurous fumaroles and acidic streams. 

The sediment temperature ranges from 38°C to 104°C whilst maintaining pH values 

below 3. A survey of the volcanic hydrothermal system of White Island was undertaken in 

order to gain insights onto the microbial diversity using culture-dependant techniques and 

molecular and phylogenetic analyses. A novel liquid medium based on “soil-extract” was 

designed which supported growth of bacterial and archaeal mixed cultures. Molecular 

analyses revealed that the dominant culturable bacterial species belong to the 

Bacteroidetes, Firmicutes and α-Proteobacteria groups. Several previously uncultured 

archaeal species were also present in the mixed cultures. The knowledge gained from 

these studies was intended to help in the development of a novel microbial detection 

technique suitable for community analysis. 

 

Conventional molecular techniques used to study microbial biodiversity in environmental 

samples are both time-consuming and expensive. A novel bead-based assay employing 

Quantum dots (QDs) was considered to have many advantages over standard molecular 

techniques. These include high detection speeds, sensitivity, specificity, flexibility and the 

capability for multiplexed analysis. QDs are inorganic semiconductor nanoparticles made 

up of crystals about the size of proteins. It has been claimed that the physical and 

chemical properties of the QDs have significant advantages compared to organic dyes, 

including brighter fluorescence and resistance to photo-bleaching. Their optical properties 

facilitate the simultaneous imaging of multiple colours due to their flexible excitation and 

narrow band emission. Functionalised QDs are able to bind to different biological targets 

such as DNA, allowing high-throughput analysis for rapid detection and quantification of 

genes and cells.  

 



 

 

Abstract X 

 

The optical and physical characteristics of the QDs as well their interaction with 

biomolecules are shown to be suitable for the development of a novel bead-based 

technique able to target the key microbial species and identify them by flow cytometric 

measurements (FCM). The broad absorption and narrow emission spectra of the QDs, as 

well as their fluorescence intensity and specify to target biomolecules, was compared to 

other organic fluorophores. The potential advantages and limitations of QDs as a 

fluorophores for biological applications are discussed.  

 

The data acquired during this study provides a broad overview of the microbial diversity 

and ecology of the volcanically-active hydrothermal systems of White Island and 

constitutes the baseline for the development of a novel bead-based technique based on 

QDs. 
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