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Abstract 

White island, the most active volcano in New Zealand, is a poorly studied environment 

that represents an ideal site for the investigation of acidophilic thermophiles. The 

microorganisms present on here are continually exposed to extreme environmental 

conditions as they are surrounded by steamy sulphurous fumaroles and acidic streams. 

The sediment temperature ranges from 38°C to 104°C whilst maintaining pH values 

below 3. A survey of the volcanic hydrothermal system of White Island was undertaken in 

order to gain insights onto the microbial diversity using culture-dependant techniques and 

molecular and phylogenetic analyses. A novel liquid medium based on “soil-extract” was 

designed which supported growth of bacterial and archaeal mixed cultures. Molecular 

analyses revealed that the dominant culturable bacterial species belong to the 

Bacteroidetes, Firmicutes and α-Proteobacteria groups. Several previously uncultured 

archaeal species were also present in the mixed cultures. The knowledge gained from 

these studies was intended to help in the development of a novel microbial detection 

technique suitable for community analysis. 

 

Conventional molecular techniques used to study microbial biodiversity in environmental 

samples are both time-consuming and expensive. A novel bead-based assay employing 

Quantum dots (QDs) was considered to have many advantages over standard molecular 

techniques. These include high detection speeds, sensitivity, specificity, flexibility and the 

capability for multiplexed analysis. QDs are inorganic semiconductor nanoparticles made 

up of crystals about the size of proteins. It has been claimed that the physical and 

chemical properties of the QDs have significant advantages compared to organic dyes, 

including brighter fluorescence and resistance to photo-bleaching. Their optical properties 

facilitate the simultaneous imaging of multiple colours due to their flexible excitation and 

narrow band emission. Functionalised QDs are able to bind to different biological targets 

such as DNA, allowing high-throughput analysis for rapid detection and quantification of 

genes and cells.  

 



 

 

Abstract X 

 

The optical and physical characteristics of the QDs as well their interaction with 

biomolecules are shown to be suitable for the development of a novel bead-based 

technique able to target the key microbial species and identify them by flow cytometric 

measurements (FCM). The broad absorption and narrow emission spectra of the QDs, as 

well as their fluorescence intensity and specify to target biomolecules, was compared to 

other organic fluorophores. The potential advantages and limitations of QDs as a 

fluorophores for biological applications are discussed.  

 

The data acquired during this study provides a broad overview of the microbial diversity 

and ecology of the volcanically-active hydrothermal systems of White Island and 

constitutes the baseline for the development of a novel bead-based technique based on 

QDs. 
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 LITERATURE REVIEW 

Determining the microbial diversity in extreme environments is one of the outstanding 

tasks for microbiology. Traditional microbiological techniques have limitations for the 

identification and characterisation of most microorganisms. Furthermore, physiological 

and biochemical characterisation of many microorganisms is not possible, as 99% of all 

microorganisms in nature have not been successfully isolated in pure culture (Amann et 

al. 1995; Rondon et al. 1999). Therefore, techniques that complement microbial 

cultivation approaches are necessary to improve understanding of microbial diversity and 

its role in ecosystem maintenance.  

 

New revolutionary techniques are replacing conventional methods for the study of 

microbial diversity. One focus of this study was to develop a bead-based technique that 

allowed multiplexed, high-throughput analysis for the rapid detection and quantification 

of genes and cells. Quantum dots (QDs), in combination with detection by flow 

cytometry, were proposed as a novel diagnostic technique to examine the microbial 

diversity and ecology of specific hydrothermal environments. White Island, New 

Zealand’s most active volcano, was selected as a model hydrothermal system. 

 

White Island is a poorly studied environment that represents an ideal site for the 

investigation of extremophiles. A survey of volcanic hydrothermal systems in New 

Zealand was initiated to gain insights into the phylogenetic diversity of endogenous 

microorganisms present using culture-dependent and culture-independent molecularly-

based analyses. Knowledge of the unique microbial population present in White Island 

and their specific environmental characteristics will help to create a biological model that 

may be used to determine the microbial interactions of other similar but unknown 

environments.  
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1. Microbial diversity 

The microbial world is immense and ubiquitous in both natural and many artificial 

environments (DeLong 2002). There are more microorganisms per ton of soil (1016) than 

stars in our galaxy (1011) (Curtis & Sloan 2005). Microorganisms are responsible for 

maintenance of the biosphere by playing crucial roles in many geochemical processes 

(Madsen 2005). The largest concentrations and diversity of prokaryotic cells can be found 

in terrestrial and marine sediments, and soils (Whitman et al. 1998; Curtis & Sloan 2004). 

Despite the importance and ubiquity of microorganisms, the majority of them have not 

been cultivated and their ecology, physiology and biochemistry remain unknown (DeLong 

& Pace 2001).  

 

All unicellular microscopic organisms were first placed into the Kingdom Protista 

(Haeckel 1866). The development of electron microscopy divided these microscopic 

organisms into cells with a membrane-enclosed nucleus and cells that lack a nucleus. 

Differences in macromolecules were then used to differentiate cellular life forms further 

(Zuckerandl & Pauling 1965), and the development of molecular phylogenetics to infer 

evolutionary relationships between Kingdoms was described in 1977 (Woese & Fox 

1977). The study of the small subunit ribosomal RNA contained in all organisms revealed 

the presence of two types of prokaryotes as unrelated to one another as they were to 

eukaryotes. This defined the three cellular domains of life: Eukaryota, Bacteria and 

Archaea (Woese et al. 1990). Since then, molecular phylogenetic studies have further 

defined and amplified these three-domains of life to incorporate new Phyla, Genera and 

Species (Pace 1997; DeLong & Pace 2001). 

1.1. Origin of early life 

There have been many theories about the origin of life since phylogenetic studies defined 

the tree of life. Currently they are two main theories for the origin of life: the “pioneer 

metabolic theory” where life may have originated on hot, volcanic habitats and the 

“prebiotic soup” theory based on a cold and oceanic environment (Bada et al. 2007). 

Various models have been proposed on the origin of life on Earth, from a single common 

ancestor (LUCA) (Fox et al. 1980; Woese 1998) to a community of organisms sharing 

genetic material (Doolittle 2000) or even on another planet (Davies 2001; Cleaves & 
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Chalmers 2004). A commonly accepted theory is that hydrothermal environments could 

have been the habitat for early life on Earth (Shock 1996; Nisbet & Sleep 2001). 

 

One method of studying the origin of life is by seeking out regions of contemporary Earth 

that are similar to what is inferred to have existed when life first began. During the early 

Archaean period (approximately 3.8 to 2.5 billion years ago) land masses would have 

been formed predominantly of igneous rocks. The oldest evidence for life on Earth are 

putative microfossils, biogenic structures and biomarkers preserved in fossilised volcanic 

structures and hydrothermal systems (Walter 1983; Furnes et al. 2004; Allwood et al. 

2006; Schopf 2006). It has been proposed that the basic organisational unit of life started 

within hydrothermal environments (Woese et al. 1990; Doolittle 2000; Woese 2002), and 

sulphate and iron reduction were among the earliest metabolic pathways to evolve (Vargas 

et al. 1998; Wagner et al. 1998). Therefore, investigating the microbial diversity of such 

environments may help in the understanding of the origins of early microbial life on Earth 

(Walter 1983; Walter & Des Marais 1993; Reysenbach & Cady 2001). The geochemical 

characteristics of volcanic environments have been considered to be analogous to some of 

the earliest environments on Earth. Volcanic environments are widely distributed on Earth 

and may be use as model systems to explain the diversity of microbial physiologies and 

their interactions with the environment (Woese 1998; Herrera & Cockell 2007). 

 

The study of the origin of life on Earth in relation to the possibility of life existing 

elsewhere in the universe has been a focus of attention in astrobiology (Des Marais & 

Walter 1999). Astrobiology represents a multidisciplinary combination of all natural 

sciences as well as space exploration technologies to gain a comprehensive understanding 

of biological, planetary and cosmic phenomena in relation to the origin, distribution and 

evolution of life (Des Marais et al. 2003). One of the aims of astrobiology is the study of 

extremophiles, as these microorganisms may have been the precursors of life on Earth and 

they could have evolved somewhere else in the universe such as on moons like Europa 

(Rothschild 1990; Chyba & Phillips 2001; Rothschild 2007). 
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1.2. Extremophiles 

The vast biochemical and physiological diversity of microorganisms allows them to grow 

in a wide range of different habitats. Extremophiles are microorganisms living under 

extreme conditions such as high or low temperature and pH, high concentrations of salt 

and pressure, or high levels of radiation (Stetter 1999a; Stetter 1999b; Johnson & Hallberg 

2003). The first discoveries of microorganisms growing at high temperatures were in 1866 

and 1888 (Brewer 1866; Miquel 1888). These microorganisms, now known as 

thermophiles, have their growth optimum at 60ºC–80ºC (Stetter 1996). 

Hyperthermophiles have been defined to grow fastest at temperatures of 80ºC or above, 

while they are unable to propagate below 60ºC (Stetter 1999b). The domain Archaea 

contains the most hyperthermophilic microbial genera and species described (Blöchl et al. 

1995; Niederberger et al. 2006). To date, the most thermostable specie is Pyrolobus 

fumarii which grows at 113ºC (Blöchl et al. 1997). However Strain 121 is an archaeon 

discovered in a hydrothermal vent that is claimed to be able to survive and reproduce at 

121ºC (Kashefi & Lovley 2003). It has been postulated that Strain 121 is the only known 

form of life that apparently not only can tolerate such high temperatures, but also is 

bacteriostatic at 130ºC, although these findings are still controversial (Kashefi 2004). It 

has been hypothesised that the upper limit of life would probably be in the region of 

140ºC-150ºC. Higher temperatures would compromise the work efficiency and 

maintenance of the biological processes at a molecular level (Cowan 2004).  

 

Acidophiles are microorganisms which are able to live in low pH environments. The first 

obligatory acidophilic bacterium to be described was Thiobacillus ferrooxidans (now 

Acidithiobacillus ferrooxidans) (Temple & Colmer 1951). Since then, acidophiles have 

been found in many acidic environments (Schleper et al. 1995; Edwards et al. 2000; 

Fernández-Remolar et al. 2004). The most acidophilic microorganisms known are within 

the Archaeon genus Picrophilus capable of growth at negative pH values as low as -0.2 

(Schleper et al. 1996). Moreover, microorganisms can be found also in habitats that are 

extreme for more than one condition. Thermo-acidophilic microorganisms have been 

found in extremely hot and acidic environments as well as highly acidic environments and 

those contaminated with heavy metals (Rothschild & Mancinelli 2001; Gonzalez-Toril et 

al. 2003). For example, the genus Crenarchaeota includes microorganisms that tend to 
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predominate in environments characterised by high temperature and low pH such as hot 

sulphur springs, where the temperature may be as high as 80ºC and the pH as low as 2 

(Bosecker 1999; DeLong 2001). 

 

The first report of microorganisms capable of growth at 0ºC was in the early 1900s 

(Schmidt-Nielsen 1902), although physchrophilic bacteria were not defined until 1975 

(Moira 1975). These microorganisms are capable of growth below 15ºC and can survive 

at subzero temperatures. Cold environments such as ice shields (Miteva et al. 2004), cold 

waters and frozen lakes (Henneberger et al. 2006), dry soils in Antarctica (Cowan et al. 

2002; Smith et al. 2006; Niederberger et al. 2008), and sub-glacial sediments or ice 

(Foght et al. 2004) also have been identified as microbial habitats. In cold habitats, such 

as Antarctica, microenvironments play an important role for microbial survival. The air 

temperature may be below zero, but on the surface of the rock facing the sun it can reach 

temperatures up to 20ºC (Aislabie et al. 2006). 

 

Extremophiles can be found also in saturated salt solutions (Kamekura 1998) and highly 

alkaline environments (Jones et al. 1998). Halophilic microorganisms have been found 

within saline soils and lakes. Haloferax mediterranei has been demonstrated to grow in 

the presence of 30% sodium chloride (Rodriguez-Valera et al. 1983). While alkaliphilic 

microorganisms grow at high pH of 8.0, they cannot grow at neutral pH. To date, the most 

alkaliphilic microorganisms found are cyanobacteria that are capable of growth at pH 

values as high as 13 (Horikoshi 1990; Pikuta et al. 2007). Some extremophiles are able to 

tolerate high levels of radiation and the presence of heavy metals (Ferreira et al. 1999; 

Nies 1999), such as Deinococcus radiodurans,  the first radioresistant bacterium found 

(Raj et al. 1960), and Thermococcus gammatolerans which is a sulphur-reducing 

archaeon capable of resisting 30 kGy of γ-irradiation (Edmond et al. 2003). 

 

Extremophiles and their products have potential biotechnological applications in 

industrial, agricultural and medical areas. Studies into cold adaptation have identified a 

broad range of cellular products like cold-active enzymes (Gerday et al. 2000; Cavicchioli 

et al. 2002), metabolic cofactors and ether-linked lipids (Patel & Sprott 1999). Halophilic 

microorganisms growing in highly saline environments have been found to produce 

polymers, enzymes and compatible solutes that may be valuable for biotechnology 
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(Ventosa & Nieto 1995). In addition, enzymes from thermophilic and extremely 

thermophilic microorganisms are of interest in biotechnological applications due to their 

thermo-stability and resistance to heat (Bergquist et al. 1987; Bragger et al. 1989; 

Coolbear et al. 1992; Cowan 1992) such as hyperthermophilic xylanases (Bergquist et al. 

2001; Bergquist et al. 2002) and proteases (Cowan et al. 1987; Coolbear et al. 1988; 

McHale et al. 1991). 

1.3. Microbial consortia 

The association of two or more microorganisms results in their complementary activities 

being more efficient compared to either of those microorganisms alone. In consortia, 

microorganisms gain benefits as illustrated by feedback reactions which occur, for 

example, between chemolithotrophic and heterotrophic acidophiles resulting in cross-

feeding (Spiegelman et al. 2005; Rawlings 2005) 

 

Interactions between thermo-acidophilic microorganisms in their natural environment 

have been studied previously (Johnson 1998). Obligatory acidophilic protozoa have been 

observed to predate mesophilic heterotrophic and chemolithotrophic bacteria (McGinness 

& Johnson 1992; Johnson & Rang 1993). Mutualism between thermo-acidophilic 

microorganisms has also been observed, for example, by feedback reactions during 

cycling of iron, where the interactions of ferrous-oxidising chemolithotrophs (using iron 

as electron donor) and ferric-reducing heterotrophs (using iron as electron acceptor) result 

in both partners gaining benefits (Hallmann et al. 1992; Johnson et al. 1993; Johnson & 

Roberto 1997). The association of two or more acidophilic microorganisms that results in 

their complementary activities being more efficient in terms of product formation 

(synergism) than by either microorganism alone has been described on several occasions, 

mostly in the context of enhanced mineral oxidation by mixed populations (Norris 1990).  

1.4. Microbial metabolism 

Microbial diversity can be classified depending on the source of energy a microorganism 

requires for growth, including the temperature, acidity and atmospheric conditions of the 

habitat. Photoautotrophic microbes can assimilate CO2, producing complex organic 
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compounds by photosynthesis. The majority of them are eukaryotic micro-algae, and 

include filamentous and unicellular forms and diatoms (Gyure et al. 1987; Lopez-Archilla 

et al. 2001). Heterotrophic microorganisms are adept scavengers and require organic 

compounds as a source of carbon which is obtained from dead organic matter derived 

from inputs of the living soil biomass, like the carbon originating as leakage or lysis 

products from autotrophic acidophiles (Kletzin et al. 2004). Photoheterotrophs assimilate 

organic carbons to obtain energy from light. Chemoautotrophic (lithotrophic) 

microorganisms use CO2 as their sole source of carbon while chemoheterophic 

microorganisms require organic compounds. However, both of them obtain their energy 

from the oxidation and reduction of inorganic compounds like elemental sulphur, nitrate, 

H2, H2S, NH3 and various metals such as oxides and sulphides (Pronk et al. 1991; Kelly et 

al. 1997; Kelly 1999).  

 

In relation to temperature, only archaeal hyperthermophilic microorganisms have been 

found growing at temperatures above 100°C (Bosecker 1997; Huber, et al. 2000b). 

Moderately thermal environments (40-60°C) normally are inhabited by Euryarchaeota and 

Gram-positive bacteria (Johnson 1998; Kinnunen & Puhakka 2004) such as Sulfobacillus 

sp. (Hallberg & Johnson 2001; Johnson & Hallberg 2003). Mesophilic conditions (20-

40°C) are generally dominated by Gram-negative bacteria (autotrophs and heterotrophs). 

However, there are some exceptions, such as Sulfobacillus disulfidooxidans, a mesophilic 

spore-forming Gram-positive eubacterium which uses pyrite and elemental sulphur as sole 

energy sources to grow heterotrophically on various organic substrates (Dufresne et al. 

1996). 

 

The oxidation and reduction of different oxidation states of sulphur and iron are some of 

the most important energy-yielding reactions for microorganisms living in volcanic hot 

springs, solfataras and submarine hydrothermal vents, including heterotrophic, 

mixotrophic and chemolitho-autotrophic, carbon-fixing species (Hallberg & Johnson 

2001).  

 

Metabolic pathways based on sulphur and iron are believed to have been the earliest to 

evolve and many of these processes have been extensively studied over the past decade 

(Vargas et al. 1998; Wagner et al. 1998; Johnson 2001). Whilst most acidophiles 
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conventionally have been considered to be obligatory aerobes, there is increasing evidence 

that many isolates are facultative anaerobes and they are able to couple the oxidation of 

organic or inorganic electron donors to the reduction of ferric iron. Common abiotic 

spontaneous reactions between inorganic sulphur and iron compounds feed the 

environment with protons and different oxidation states of both iron and sulphur that can 

be used by the microorganisms as an energy source. Despite the knowledge gained so far, 

many aspects of these cycles and their impact on biochemical processes remain unclear 

(Madsen 2005). 

 

                     
Figure I.1. Schematic representation of the metabolic physiologies of 
thermo-acidophilic microorganisms. Common abiotic spontaneous 
reactions between inorganic sulphur and iron compounds, such as pyrite, 
feed the environment with protons. Different states of oxidation of both 
iron and sulphur can be used by various microorganisms for their 
metabolic processes. 
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1.4.1. Sulphur cycling 

Within sulphur- and sulphide-rich environments, utilisation and cycling of sulphur species 

plays a major role in energy production and the maintenance of the microbial community 

(Habicht & Canfield 1996; Douglas & Douglas 2001). Elemental sulphur and sulphur 

components are highly abundant in volcanic environments where the emitted gases 

contain high amounts of sulphur dioxide (SO2) and hydrogen sulphide (H2S) (Montegrossi 

et al. 2001). The microbial community structure of sulphur-rich habitats is influenced by 

the prevalent environmental conditions of the specific habitat (Elshahed et al. 2003). 

Sulphur acts as a significant electron donor and acceptor in numerous bacterial metabolic 

pathways (Jorgensen 1982; Jorgensen 1994; Prescott et al. 1996). 

 

Sulphur oxidation, where sulphur compounds are present in the environment from 

geological sources or as products of metabolic activities from other microorganism, are 

performed by prokaryotes of the domains Archaea and Bacteria (Lane et al. 1992; 

Friedrich et al. 2005). Aerobic sulphur oxidation of Archaea appears to be restricted to 

members of the order Sulfolobales, a group of thermo-acidophilic microorganisms 

commonly found in terrestrial hydrothermal environments (Stetter 1989; Friedrich et al. 

2001). On the other hand, sulphur is oxidised by a diverse group of aerobic-chemotrophic 

and anaerobic-phototrophic bacteria (Kelly et al. 1997; Friedrich et al. 2001; Friedrich et 

al. 2005). 

 

The reduction of sulphate to sulphide has been demonstrated as occurring in extremely 

acidic environments (Gyure et al. 1990; Langdahl & Ingvorsen 1997) as well as in 

freshwater and marine aquatic systems, hypersaline cold environments and hot springs 

(Jorgensen et al. 1992; Knoblauch et al. 1999; Fishbain et al. 2003; Scholten et al. 2005). 

Sulphur reduction has been observed in many different species of bacteria (Fuseler et al. 

1996), while the reduction of sulphate appears limited to the genus Archaeoglobus within 

the archaeal domain (Kletzin et al. 2004).  
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1.4.2. Iron cycling 

Pyrite (FeS2) is the most abundant of all sulphidic minerals and the largest physical 

reservoir is in the Earth’s crust, where sulphur and iron are found (Silverman 1967). 

Pyrite, in presence of moisture and air, oxidises spontaneously, generating ferrous iron 

and sulphites that can be used as electron donors for iron and sulphur oxidisers (Stumm & 

Morgan 1981; Diaby et al. 2007). The cycling of iron compounds is closely connected to 

the sulphur cycle as many acidophilic iron-oxidising microorganisms use reduced sulphur 

compounds as substrates (Lane et al. 1992; Hallberg & Johnson 2001).  

 

The oxidation of ferrous iron (Fe2+) to ferric iron (Fe3+) normally occurs spontaneously in 

oxic environments. However, this reaction is highly pH dependant and it is not 

spontaneous under acidic conditions. Microorganisms take advantage of the accumulation 

of ferrous iron in acidic environments to obtain energy (Okibe & Johnson 2004). 

Moderately thermophilic iron-oxidising acidophilic microorganisms have highly versatile 

metabolic capabilities as they may grow as autotrophs, heterotrophs, mixotrophs or 

chemolitho-heterotrophs (Bridge & Johnson 1998; Bacelar-Nicolau & Johnson 1999).  

 

The microbial reduction of ferric iron under acidic conditions has received little attention 

in comparison to the oxidation of ferrous iron (Pronk & Johnson 1992; Küsel et al. 2002). 

Many acidophilic heterotrophic bacteria possess the ability to reduce ferric iron since their 

natural environments are invariably iron-rich (Johnson & McGinnes 1991; Küsel et al. 

2002). Reduction of ferric iron by some strains of mesophilic heterotrophic acidophiles 

has been found to be more rapid and extensive when the bacteria are grown under 

(micro)aerobic conditions than when they are grown under anaerobic conditions (Johnson 

& McGinnes 1991). Some acidophilic microorganisms are able to catalyse ferrous iron 

oxidation in a low pH environment, regenerating ferric iron, and also can generate 

sulphuric acid via oxidation of elemental sulphur and reduced inorganic sulphur 

compounds (Baker & Banfield 2003; Johnson & Hallberg 2003).  

2. Volcanic environments 

A volcano is an opening, or rupture, in a planet’s surface or crust, which allows hot, 

molten rock, ash and gases to escape from below the surface (Scarth 1994). Volcanic 
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activity involves the extension of rock, tending to form mountains or features like 

mountains over a period of time (Simkin 1993). However, volcanoes can also form large 

piles of lava on the ocean floor or small cylindrical cones on the land (Simkin & Siebert 

2000). 

2.1. Geothermal and hydrothermal systems 

Minor volcanic features without the emission of lava are called geothermal systems. The 

high temperatures associated with volcanic activity result in both surface and subsurface 

geothermal or hot spring systems (Barns et al. 1994; Herrera & Cockell 2007). 

Geothermal features which contain a natural reservoir of water, groundwater or meteoric 

water are called hydrothermal systems (Nisbet & Sleep 2001). Volcanic regions are 

mostly acidic metal-rich environments associated with geothermal activities and 

hydrothermal systems (Johnson 2001). These habitats are characterised by heterogeneous 

conditions with wide variations of temperatures and acidity gradients and high 

concentrations of metals which support a high biodiversity of extremophiles (Keller & 

Zengler 2004; Curtis & Sloan 2005).  

 

Hydrothermal systems presently occur in terrestrial and marine environments as a direct 

result of plate tectonic movements (Reysenbach & Cady 2001). Microbial diversity has 

been studied from sediments and chimney structures of deep-sea vent systems (Schrenk et 

al. 2003; Takai et al. 2003), terrestrial hot springs (Atkinson et al. 2000; Baker et al. 

2001; Anitori et al. 2002), geothermal spring waters (Norris et al. 2002; Hetzer et al. 

2007) and volcanic environments such as Mount Hood, US (Henneberger 2008). 

2.2. White Island, New Zealand 

White Island is the most active volcano in New Zealand, located in the Bay of Plenty, 50 

km off the coast of the North Island at the north-eastern end of the Taupo Volcanic Zone 

(Scott et al. 1995). It is an andesitic composite volcano that has a sub-aerial extent of 

about 3.5 km2 and hosts an extensive acidic hydrothermal system lined with fumaroles 

and acidic lakes (Giggenbach & Sheppard 1989; Houghton & Naira 1991; Mongillo & 

Wood 1995; Nishi et al. 1996; Wardell et al. 2001).   
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The island has been built up by continuous volcanic activity and steam release over the 

past 150,000 years (Black 1970). Craters and fumaroles on the island continually emit 

gases at rates of several hundred to several thousand tonnes per day (Wardell et al. 2001). 

Acidic gases combine with water in the steam to form acid droplets. Hot springs discharge 

on the floor of the main crater, forming the subaerial expression of a long-lived acidic 

hydrothermal system related to the deeper magmatic system of the volcano (Cole et al. 

2000). The locus of eruptive activity is changeable and over the years there have been 

numerous such vents, with the formation of craters (Clark 1970; Mongillo & Wood 1995). 

Further details on the geological history of White Island are found in Chapter III. 

 

The microbial diversity of White Island is largely unknown. To date, there is only one 

published study reporting the presence of α- and β-Proteobacteria, Firmicutes and 

eukaryotic algae in acid stream water of White Island (Donachie et al. 2002). Despite the 

fact that Archaea are the most hyperthermophilic and acidophilic microorganisms 

normally found in hydrothermal sulphur-rich environments, archaeal species were not 

found in that study. 

3. The study of microbial diversity 

3.1. Culture-independent techniques 

The development of molecular biological methods has revolutionised the field of 

environmental microbiology by allowing the analysis of microbial diversity without the 

need to isolate individual species (Olsen et al. 1986; Hugenholtz et al. 1998a). Techniques 

such as the application of universal primers for direct PCR amplification of diverse 16S 

RNA genes from total community DNA combined with cloning and sequencing 

technologies, have generated a vast quantity of data that has redefined the microbial 

diversity (Woese 1987; Pace 1997; Gans et al. 2005). Such studies have demonstrated for 

example, the high diversity of thermo-acidophiles in many habitats like the Tinto River in 

Spain (González-Toril et al. 2003; Lopez-Archilla et al. 2004; Hallberg et al. 2006). 

 

The study of the ribosomal RNA operon, typically the small subunit (16S gene) and the 

less widely used 5S rRNA, have been the most common molecules used for the 
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determination of prokaryotic diversity and phylogeny (Woese & Fox 1977; Fox et al. 

1980; Woese et al. 1990; Saul et al. 1993) due to its ubiquity and slow rate of evolution 

(Woese 1998; Woese 2002). Environmental sequencing projects targeting 16S rDNA have 

revealed a large number of new phylotypes previously undetectable by culture-dependent 

techniques (Ward et al. 1990a; Barns et al. 1996; DeLong & Pace 2001; Tringe et al. 

2005).  

 

Culture-independent techniques normally are based on PCR amplification of DNA 

extracted from environmental samples. These techniques include the ribosomal intergenic 

spacer analysis (RISA), denaturing gradient gel electrophoresis (DGGE), temperature 

gradient gel electrophoresis (TGGE), single-strand conformation polymorphism (SSCP), 

random amplified polymorphic DNA (RAPD) and amplified ribosomal DNA restriction 

analysis (ARDRA) (Kirk et al. 2004; Zhong & Cai 2004; Fierer & Jackson 2006). 

Although these techniques have allowed the study of microbial diversity from many 

habitats, these procedures have several limitations, becoming inefficient for the detection 

of certain populations of microorganisms. The extraction of community genomic DNA 

from environmental samples represents the initial step for most culture-independent 

techniques. The extraction efficiency can be influenced by various factors and strongly 

depends on the characteristic of the samples (Krsek & Wellington 1999). For example, the 

DNA extraction from acidic sulphur-rich environments such as White Island has many 

difficulties as the high content of heavy metals and minerals that strongly bind to the 

nucleic acids, and the acidity of the sample not only increases the binding of the DNA to 

the clay minerals but also decreases the amount of extracted DNA, as nucleic acids are 

easily degraded by depurination under acidic conditions (Frostegard et al. 1999; Miller et 

al. 1999; Roh et al. 2006; Henneberger 2008). 

 

Sequence-based analyses of microbial communities also can be influenced by several 

factors such as contaminants and artefacts which may occur during PCR amplification 

having significant impact on the resulting data and leading to misinterpretation of the 

results obtained (Tanner et al. 1998; Klappenbach et al. 2001; Rossello-Mora & Amann 

2001; Acinas et al. 2005; Osborne et al. 2005). Different approaches have been developed 

to improve detection and resolution of amplified DNA fragments. These include length 

heterogeneity PCR (LH-PCR) (Ritchie et al. 2000) and terminal restriction fragment 
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length polymorphism (T-RFLP) (Marsh 1999). However, variables that affect the 

efficiency of culture-independent techniques for the study of microbial diversity of 

unknown habitats, such as genome size or the number of the rRNA operons present in the 

different microorganisms, cannot be estimated and the accuracy of the resulting data 

cannot be confirmed (Farrelly et al. 1995) 

 

Fluorescent in situ hybridisation (FISH), as a culture-independent technique, allows 

simultaneous visualisation, identification, enumeration and localisation of individual 

microbial cells in their natural habitat. FISH also provides insights into community 

structure and diversity, spatial distribution, and abundance of specific types of 

microorganisms (DeLong et al. 1989; Amann et al. 1990b; Amann et al. 1995). FISH has 

been used to visualise uncultured microorganisms from a wide range of environments 

(Eilers et al. 2000; Gonzalez-Toril et al. 2003), as well as to study microbial communities 

and biofilms (Bond et al. 2000a; Daims et al. 2001a; Ferrari et al. 2006). For example, a 

microbial community comprising novel archaeal and bacterial species living in the cold 

sulphurous marsh water of Sippemauer Moor (Germany) were discovered to form strings 

of pearls-like morphologies using FISH (Rudolph et al. 2001). 

 

FISH relies on the use of fluorescently-labelled oligonucleotide probes which hybridise 

specifically to complementary target sequences within an intact target cell. The most 

commonly used target molecule for FISH is the 16S rRNA because of its genetic stability, 

its domain structure with conserved and variable regions and its high copy number 

(Woese 1987). Oligonucleotide probes can be designed at a taxonomic level according to 

the region of the rRNA targeted (Amann et al. 1995) and new probes targeting different 

phylogenetic levels are constantly being designed (Amann & Ludwig 2000; Nercessian et 

al. 2004; Rusch & Amend 2004) allowing assignation of the targeted microorganism to a 

phylogenetic group (Amann et al. 1990b). However, FISH also has many limitations. The 

most common problem is autofluorescence of the microorganisms themselves or 

autofluorescence of sample detritus such as soil and minerals particles which interferes 

with target cell detection (Moter & Gobel 2000; Bertaux et al. 2007). Low fluorescent 

signal from the fluorescent probes is another limitation which may be a consequence of 

the insufficient permeabilisation of cell walls using standard fixation protocols, poor 

accessibility of rRNA for the probes or low ribosomal content of the cells due to 
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decreased metabolic activity (Poulsen et al. 1993; Bhatia et al. 1997). Several 

modifications and new technologies have been reported to overcome the limitations of 

FISH, such as the use of polynucleotide probes with multiple fluorescent labels and the 

use of peptide nucleic acids (DeLong & Taylor 1999; Stender et al. 1999; Zimmermann et 

al. 2001). These techniques have allowed the detection, for example, of marine plankton 

previously undetectable with standard oligonucleotide probes (DeLong & Taylor 1999; 

Pernthaler et al. 2003). In addition, catalysed reporter deposition (CARD)-FISH results in 

increased signal intensity compared to traditional FISH (Schönhuber et al. 1997) 

allowing, for example, clear signal detection above the autofluorescent background in 

certain cyanobacteria (Pernthaler et al. 2002). Although these new technologies can 

represent useful tools for the detection and identification of microorganisms in 

environmental communities, these modifications are associated with high costs and are 

time-consuming compared to traditional FISH (Wagner et al. 2003). 

3.2. Culture-dependent techniques 

Nonculturable microorganisms represent one of the most pressing problems currently 

associated with microbial ecology (Zengler et al. 2002; Leadbetter 2003). Most of the 

microorganisms occurring in a nature, in principle, should be culturable, as between 50%-

90% of the bacterial cells in natural samples appear to be metabolically active (Fry 1990; 

Bartscht  et al. 1999). At present, 52 phyla have been delineated, of which only 26 have 

cultivated representatives (Rappe & Giovannoni 2003). The intensive application of 

molecular techniques to describe microbial diversity in natural environments is yielding a 

large amount of data as indicated by the large number of sequences available in the public 

databases (Baker et al. 2003; Baker & Cowan 2004; Ludwig et al. 2004). However, 

comparisons between classical culture-dependent and molecular methods have revealed 

that only a small fraction, about 1% of the prokaryotic diversity, appears to be amenable 

to culture (Amann et al. 1995; Hugenholtz et al. 1998a; Rappe & Giovannoni 2003) and 

less than 0.1% of archaeal species have been cultivated from soil (Bintrim et al. 1997). 

 

Cultivation and subsequent isolation of microorganisms in pure culture is required to gain 

a comprehensive understanding of microbial physiology, their interaction with one 

another in their environment and to provide access to genes encoding metabolic pathways 
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which may be dispersed throughout the genome (Palleroni 1997; Keller & Zengler 2004; 

Schleifer 2004; Green & Keller 2006). Traditional culturing approaches are based on 

complex nutrient-rich media that supply excessive amounts of nutrients to the system as 

the specific requirements of many uncultured microorganisms are unknown. However, 

these approaches allow the enrichment of faster-growing microorganisms that are capable 

of colony or biofilm formation (Amann et al. 1995; Saul et al. 1999; Leadbetter 2003; 

Ferrari et al. 2004). These organisms are not necessarily the most abundant species in the 

environmental samples, but their fast growth allows them to out-compete other 

microorganisms present in the culture (Saul et al. 1999). Microorganisms may be difficult 

to cultivate for diverse reasons such as lack of necessary symbionts or nutrients, excess of 

inhibitory compounds, incorrect combinations of temperature, pressure or atmospheric gas 

composition, accumulation of toxic waste products from their own metabolism leading to 

slow growth rate or rapid dispersion from colonies (Caruge et al. 2004). In addition, the 

microbial compositions of the enrichment cultures are also influenced by the 

concentration of inoculum as the cultures resulting from inoculation at low concentration 

seem to be dominated by species that have superior growth capabilities in that medium, 

while high concentrations of inoculum result in cultures of those species whose growth 

was inhibited when using a lower concentration of inoculum (Jackson et al. 1998).  

 

No single method or medium is suitable for the cultivation of the majority of 

microorganisms from environmental samples (Green & Keller 2006). Laboratory 

techniques for successful cultivation and isolation of environmental microorganisms are 

required to mimic and reproduce the specific nutritional and physical conditions of their 

natural habitat (Kaeberlein et al. 2002). Novel techniques and culture media have been 

developed to address these issues (Frohlich & Konig 2000; Bruns et al. 2003). Cultivation 

and isolation of new microorganisms has been achieved by the use of media with low 

concentrations of nutrients containing polymeric growth substrates and long incubation 

times (Eilers et al. 2000; Connon & Giovannoni 2002; Sait et al. 2002; Stevenson et al. 

2004; Davis et al. 2005). For example, diluted nutrient broth has been used successfully to 

isolate novel soil bacteria microorganisms within the divisions Actinobacteria, 

Acidobacteria, Proteobacteria and Verrucomicrobia (Janssen et al. 1997; Janssen et al. 

2002). 
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Many environments are very complex with respect to their chemical composition and 

physical parameters. These environments are difficult to reproduce under laboratory 

conditions. However, novel techniques have been developed to mimic the natural habitat 

and supply the media with the essential trace elements, such as the use of sterilised sample 

material (Alef 1995; Anitori & Bergquist 2006) and in situ chambers and membrane 

systems which allow the direct uptake of nutrients from the environment and the exchange 

of metabolites (Reysenbach et al. 2000; Kaeberlein et al. 2002; Moissl et al. 2003; 

Svenning et al. 2003; Ferrari et al. 2005). For example, ubiquitous microorganisms, such 

as the SAR11 clade found in nearly every pelagic marine bacterioplankton community 

studied by culture-independent techniques, was not cultured successfully and isolated 

until low-nutrient media based on sterilised natural sea water was used (Rappe et al. 

2002). 

 

Despite these developments, the majority of microorganisms remain to be cultured and 

isolated. Detailed analyses of the environmental parameters of the habitat to be studied 

can provide valuable information required for mimicking the natural conditions and 

develop novel culture-dependant techniques. 

4. Quantum dots 

Quantum dots (QDs) are highly luminescent inorganic colloidal semiconductor 

nanocrystals. They were initially prepared in 1982 for investigation of surface kinetics, 

where it was found that the quantum yield of the nanocrystals was sensitive to the 

concentration of surface-absorbed species that can undergo reduction (Rossetti & Brus 

1982). The first reports describing the use of QDs as fluorescent labels for biomolecules 

were published in 1998 (Bruchez et al. 1998; Chan & Nie 1998). Since then, interest in 

their applications has increased enormously, ranging from cell imaging to analytical 

chemistry (Jaiswal et al. 2004; Bruchez 2005; Dubertret 2005; Medintz et al. 2005; Parak 

& Pellegrino 2005). 

 

QDs are considered to be the most promising nanomaterials emerging in biotechnology 

with potential applications in a broad range of medical and biological techniques (Chen 

2008). The diverse potential applications of QDs are attributed to their unique properties 

as fluorophores (Dabbousi et al. 1997; Mattoussi et al. 2000; Bailey & Nie 2003; Lim 
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2003). The physical and chemical properties of QDs confer significant advantages over 

traditional dyes, such as brighter fluorescence (Wu et al. 2003; Lee et al. 2004; Xiao & 

Barker 2004) and resistance to photo-bleaching (Jaiswal et al. 2003; Ballou et al. 2004; 

Hoshino et al. 2004b). Their unique optical properties include flexible excitation coupled 

with narrow emission spectra that enables simultaneous multiplexed detection and 

imaging using a single light source (Dabbousi et al. 1997; Mattoussi et al. 2000; Lim 

2003). Additionally, the surface of the QDs can be functionalised to target a wide reange 

of molecules, enabling their application in many biological techniques (Zhang et al. 

2007).  

 

In comparison, conventionally-used organic fluorescent dyes for biological applications 

have several limitations such as photo-bleaching, as they cannot fluoresce continuously 

for extended periods of time (Chan et al. 2002), relatively broad emission spectra that can 

easily overlap with the emission of other fluorophores (Sharma et al. 2006) and defined 

excitation wavelengths (Shapiro 1977; DeLong et al. 1989; Amann et al. 1990b; Veal et 

al. 2000). The emission–excitation spectra of organic fluorophores often is susceptible to 

changes in the local chemical environment and the background fluorescence sometimes 

may overcome the low fluorescent signal derived from organic dyes, resulting in an 

inability to distinguish them from the background signal (Sharma et al. 2006).  

 

   Table I.1: Comparison between QDs and organic fluorophores 

 QDs Organic 
fluorophores* References 

Excitation Very broad. UV light can 
excite any size of QDs 

Narrow excitation 
spectra 

(Jaiswal & Simon 
2004; Ozkan 2004) 

Emission 
bandwidth 20-40 nm 50-100 nm (Jaiswal & Simon 

2004; Bruchez 2005) 
Fluorescence 
lifetime 10-40 ns Few ns (Alivisatos et al. 2005) 

Photo-stability† Stable for over 14 h 
Fluorescein 

photobleaches 
completely in 20 min 

(Jaiswal et al. 2003) 

Molar extinction 
coefficient†† ~105–106 M-1 cm-1 10-100 times smaller (Ozkan 2004) 

     * Exemplified by fluorescein. 
† Photo-stability upon constant illumination with a 50 mW, 488 nm laser. 
††Molar extinction coefficient for CdSe QDs. 
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4.1. Biological applications of the QDs 

4.1.1. Cell detection and imaging 

The photo-stability of the QDs has allowed them to be used for a wide range of 

applications in live cell labelling, organelle tracking and selective intracellular delivery 

(Dahan et al. 2003; Jaiswal et al. 2003; Hoshino et al. 2004a; Michalet et al. 2005; 

Delehanty et al. 2006) as well as imaging of entire subcellular structures (Kim et al. 2004; 

Yamamoto et al. 2007), detection and targeting of specific cells (Weng et al. 2006) and 

tracking cells over long periods of time (Hoshino et al. 2004b; Garon et al. 2007). For 

example, QDs conjugated with polyclonal anti-mouse antibodies used in 

immunofluorescent detection of three-dimensional confocal analysis of p-glycoprotein 

was found to be 420-fold more resistant to photo-bleaching than its labelling with 

conventional organic fluorophores such as fluorescein isothiocyanate (FITC), R-

phycoerythrin and Alexa Fluor 488 (Sukhanova et al. 2004). 

 

The resistance to metabolic degradation and bleaching in combination with high quantum 

yields of the QDs confer advantages for in vivo targeting and imaging of cells over 

organic dyes (Akerman et al. 2002; Ballou 2005; So et al. 2006). For example, cancer 

cells and mouse tissues have been detected successfully with QDs (Ballou et al. 2004; 

Gao et al. 2004). Multiple compartments and specific antigens such as the membrane 

protein erbB2 (Her2), microtubules, actin and nuclear antigen have been labelled with 

QDs in both live and fixed cells and in tissue sections, demonstrating their photo-stability 

and superior sensitivity compared with organic dyes (Wu et al. 2003; Zhang et al. 2008).  

 

Active receptors from the cell surface have been tracked for the first time using QDs on 

vesicular trafficking and fusion of living cells by endocytosis (Lidke et al. 2004; 

Giepmans et al. 2005; Howarth et al. 2005). The signal of the QDs in those studies was 

monitored continuously for long periods of time up to 60 min (Lidke & Arndt-Jovin 

2004).  

 

External labelling with QDs has been proven to be relatively simple, but intracellular 

delivery of QDs has many limitations due to the final size of the QD complexes in 
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comparison with organic fluorophores (Dahan et al. 2003). Several methods have been 

used to deliver QDs into the cytoplasm for staining of intracellular structures such as 

microinjection techniques to label embryos for fluorescent labelling of cellular proteins 

(Dubertret et al. 2002; Rieger et al. 2005). Although the uptake of QDs into cells via both 

endocytic and non-endocytic pathways has been demonstrated, it normally results in only 

an endosomal localisation (Hanaki et al. 2003; Jaiswal et al. 2003).   

4.1.2. Gene technology 

The fact that several QDs can be excited by the same excitation source is highly valuable 

for multiplexing and high-throughput screening of multiple targets simultaneously (Chan 

et al. 2002). QDs conjugated to oligonucleotide sequences have been used to bind DNA or 

mRNA (Gerion et al. 2002; Crut et al. 2005; Liang et al. 2005; Mahtab et al. 2007). Some 

of the results found in those studies when targeting QDs to small sequences of 

oligonucleotides suggested that QDs could be used to produce more efficient assays, 

requiring smaller quantities of DNA, than traditional techniques, for example, in 

nucleotide polymorphism assays (Xu et al. 2003). In addition, the study of single DNA 

molecules using conventional DNA staining agents has the drawbacks of photo-bleaching 

over time and changes in the electrostatic, structural and mechanical properties of the 

DNA (Kabata et al. 1993). Alternatively, the use of QDs for the study of single DNA 

molecules in the absence of DNA-binding organic fluorophores has overcome these 

issues, resulting in a 60% successful detection frequency (Crut, et al. 2005). 

 

Molecular beacons or hairpins have been designed to conjugate QDs to different 

molecules such as DNA or oligonucleotides for detection by fluorescence resonance 

energy transfer (FRET), resulting in a high sensing responsiveness (Williard et al. 2001; 

Zhou et al. 2005; Medintz et al. 2006; Algar & Krull 2007; Wang et al. 2008). FRET 

involves the transfer of fluorescence energy from a donor particle to an acceptor whenever 

the distance between the donor and the acceptor result in an increase in the acceptor’s 

emission intensity (Riegler & Nann 2004). QDs linked to DNA probes have been reported 

to be able to detect 50 copies or less of target DNA by FRET (Zhang et al. 2005). 
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4.1.3. Bacterial, pathogen and toxin detection 

Traditionally, the detection of pathogenetic bacteria has been done using organic 

fluorophores and luminescent enzymes such as luciferase (Loessner et al. 1996). 

However, these fluorophores have two major limitations: sensitivity and rapidity due to 

low signal-to-noise ratio, and low photo-stability. The use of QDs instead of organic 

fluorophores for bacterial and pathogen detection has been reported to overcome some of 

these issues. For example, QDs conjugated to phages has provided the specific detection 

of as few as 10 bacterial cells per millilitre, with a 100-fold amplification signal over 

background in 1 h (Edgar et al. 2006). 

 

The first use of QDs for bacterial labelling was reported by Kloepfer et al. (Kloepfer et al. 

2003). QDs have been used since for labelling, detection and quantification of 

Mycobacterium bovis (Otsuka et al. 2004), Escherichia coli O157:H7 (Su & Li 2004; Li 

et al. 2006), Salmonella enterica (Yang & Li 2005; Yang & Li 2006), Cryptosporidium 

parvum and Giardia lamblia (Lee et al. 2004), Listeria monocytogenes (Tully et al. 2006) 

and human oral bacteria in biofilms (Chalmers et al. 2007). Simultaneous multiplexed 

labelling of both C. parvum and G. lamblia using QDs as immunofluorescent fluorophores 

was reported to have a high signal-to-noise ratio, with better photo-stability and brightness 

compared with two commonly used staining kits (Zhu et al. 2004). However, mixed 

results have been reported when using QDs for bacterial and pathogen detection. For 

example, immunofluorescence staining of Cryptosporidium with QDs, compared to 

organic fluorophores such as FITC, Alexa Fluor 488 and phycoerythrin, revealed that non-

specific binding to detritital particles by the QDs was significantly higher than organic 

fluorophores and the fluorescent signal was up to 35 times less than organic fluorophores 

(Ferrari & Bergquist 2007).  

 

Recently, it has been reported that there are several pitfalls regarding the use of QDs for 

biological applications, such as blinking and quenching effects which may reduce their 

potential (Jaiswal & Simon 2004). Moreover, despite the large list of potential biological 

applications described, the use of QDs on a large scale in many areas replacing 

conventional tools is still far away. Full characterisation of their physical, optical and 

chemical properties still remains unclear and their commercial development still may need 
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appropriate regulations (Azzazy et al. 2007). Toxicity of the QDs is becoming a big 

concern in recent years, especially for applications involving in vivo imaging and therapy, 

as it is unknown if the core of the QDs made of CdSe would have harmful effects on 

living cells after exposure over extended periods of time (Shiohara et al. 2004; Pinaud et 

al. 2006). Therefore, a comprehensive study of the characteristics of the QDs is still 

needed. 

4.2. QDs and flow cytometry 

Flow cytometry is a technique for counting, examining and sorting cells and particles 

suspended in a stream of fluid (Shapiro 1986). The basis of the flow cytometer is a jet of 

isotonic sheath fluid into which samples are injected at a controlled rate, creating a 

laminar flow of cells or particles that move in single file into the cytometer (Shapiro et al. 

1998). One or more laser beams are directed onto the stream of fluid, illuminating a single 

particle at any given time. If the cells or particles of interest are naturally fluorescent or 

have been fluorescently-labelled, they will emit light. The signals resulting from the 

interaction between the cells or particles with the light are detected using a 

photomultiplier tube and their optical properties are collected and measured on a computer 

(Shapiro 1993; Wood 1998). The amount of light scattered can provide information on the 

internal structure of cells as well as their shape, size, granularity and fluorescence 

(Schwartz et al. 1998; Shapiro 2001). Three parameters are generally measured: forward 

scatter (FCS) which correlates with the cell volume; the side scatter (SSC) which depends 

on the inner complexity of the cell or particle; and fluorescence (FL) (Shapiro 1986; 

Shapiro 2004). The detectors, filters and the light source vary depending of the flow 

cytometer used (van den Engh & Stokdijk 1989; Roederer 2001). Some flow cytometers 

are capable of sorting cells or particles from the main fluid stream while collecting their 

optical characteristics (Fulwyler 1980; Britten & Murphy 1986; Shapiro 2000; Ibrahim & 

van den Engh 2003; Ibrahim & van den Engh 2007). 

 

Flow cytometry has been widely used in many applications and scientific fields from 

clinical techniques to environmental microbiology (Page & Burns 1991; van den Engh 

1993; Porter et al. 1997; Ferrari et al. 2000; Morgan et al. 2004). In addition, flow 

cytometry has been used in combination with FISH for identification and estimation of 
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microorganisms from mixed microbial communities (Amann et al. 1990a; Wallner et al. 

1993; Simon et al. 1995; Wallner et al. 1995). FISH has also been used in combination 

with cell sorting for the isolation of microorganisms, detection of DNA sequences in 

nuclei and quantification of chromosome-specific DNA (Trask et al. 1985; Trask et al. 

1988; Kalyuzhnaya et al. 2006). 

 

Multicolour optical coding using QDs offers important advantages that are not possible 

with conventional dyes in applications for microsphere-based analyses in environmental 

microbiology. Up to now, there have been only isolated reports of QD applications for 

flow cytometric analyses (Abrams & Dubrovsky 2007). For example, QDs have been used 

for bacterial and pathogen detection in combination with flow cytometry (Edgar et al. 

2006; Ferrari & Bergquist 2007). Moreover, the multiplexing capabilities of the QDs have 

been use to analyse the phenotype of multiple antigen-specific T-cell populations as the 

QDs were able to resolve up to 17 different fluorescence emissions (Chattopadhyay et al. 

2006). 

5. Aims of this study 

The first aim of this thesis is to do a survey of the microbial diversity and ecology of 

White Island using culture-dependant and molecular-based techniques in order to obtain a 

general picture of the extremophilic microorganisms present within this sulphur-rich 

hydrothermal system. 

 

The second aim of this thesis is to describe, develop and optimise a novel bead-based 

technique to detect specific DNA sequences from environmental samples using quantum 

dots in combination with flow cytometry. The technique was aimed to provide a rapid and 

highly sensitive method to determine the key microbial species present within a specific 

habitat such as White Island. 
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1. MATERIALS 

1.1. Chemicals and biochemicals 

All chemicals were supplied by Sigma® - Aldrich (St. Louis, USA) except those 

chemicals and biochemicals described in Table II.1 

        Table II.1: Suppliers of chemicals and biochemicals. 
Chemical Supplier 

Agar, bacteriological Oxoid, Basingstoke (UK) 
Agarose I, biotech grade AMRESCO Inc., Solon (USA) 
Ammonium sulfate Riedel-de Haën, Seelze (Germany) 
Boric acid  AMRESCO Inc., Solon (USA) 
Calcium Nitrate-4-hydrate Riedel-de Haën, Seelze (Germany) 

Chloroform Univar, Ajax Finechem, Seven Hills 
(Australia) 

Citifluor A1 Citifluor Ltd, London (UK) 
Citifluor AF-3 Citifluor Ltd (UK) 
EDAC (1-Ethyl-3-(3-dimethyl-
aminopropyl)carbodiimide Hydrochloride) Pierce, Rockford, IL (USA) 

Ethanol Univar, Ajax Finechem, Seven Hills 
(Australia) 

EDTA, anhydrous AMRESCO Inc., Solon (USA) 
Formamide, deionised AMRESCO Inc., Solon (USA) 
Gelatine Oxoid, Basingstoke (UK) 

IPTG (Isopropyl- β-D-thiogalactoside) Progen Biosciences, Archerfield (Australia) 

Isopropanol Biolab Ltd., Auckland (New Zealand) 
Molecular biology grade H2O Eppendorf AG, Hamburg (Germany) 
Nucleotides (dATP,dGTP,dCTP,dTTP) GE Healthcare, Buckinghamshire (UK) 
Paraformaldehyde Riedel-de Haën, Seelze (Germany)  
Phenol, buffer saturated AMRESCO Inc., Solon (USA) 
SDS (Sodium Dodecyl Sulfate) AMRESCO Inc., Solon (USA) 

Sodium Chloride Univar, Ajax Finechem, Seven Hills 
(Australia) 

Tris (hydroxymethyl) aminomethane (Tris 
base) AMRESCO Inc., Solon (USA) 

Tris (hydroxymethyl) aminomethane 
hydrochloride (Tris/HCl) AMRESCO Inc., Solon (USA) 

Yeast Extract Oxoid, Basingstoke (UK) 
X-gal (5’-Bromo-4-Chloro-3-Indolyl-β-D-
Galactoside) Progen Biosciences, Archerfield (Australia) 

1kb DNA ladder, Generuler™ Fermentas Life Sciences, St. Leon-Rot 
(Germany) 
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1.2. Reaction kits 

          Table II.2: General molecular biology reaction kits. 
Reaction kit Supplier 

Original TA Cloning® Kit Invitrogen, Carlsbad (USA) 
QIAprep Spin Miniprep Kit Qiagen GmbH, Hilden (Germany) 
QIAquick PCR Purification Kit Qiagen GMBH, Hilden (Germany) 
Wizard Plus SV Minipreps DNA purification 
system Promega (Madison, USA) 

1.3. Enzymes 

         Table II.3: General molecular biology enzymes. 
Enzyme Supplier 

AmpliTaq Gold® DNA polymerase, 
including reaction buffer and MgCl2 solution Applied Biosystems, Foster City (USA) 

BigDye® Terminator, sequencing RR100, 
v3.01, including reaction buffer Applied Biosystems, Foster City (USA) 

DdeI, including reaction buffer New England Biolabs, Inc. (Ipswich, USA) 
BsuRI Endonuclease, including reaction 
buffer 

Fermentas Life Sciences, St. Leon-Rot 
(Germany) 

HinfI Endonuclease, including reaction 
buffer 

Fermentas Life Sciences, St. Leon-Rot 
(Germany) 

HinP1I, including reaction buffer New England Biolabs, Inc. (Ipswich, USA) 
Lysozyme Boehringer Mannheim (Germany) 
Mutanolysin  Sigma® -Aldrich, St. Louis (USA) 
S. griseus protease Sigma® -Aldrich, St. Louis (USA) 
RNAase A Sigma® -Aldrich, St. Louis (USA) 

1.4. Consumables 

         Table II.4: General consumables used throughout this thesis. 

Consumable Supplier 

Cover slips, 22x22 mm and 24x50 mm Menzel-Gläser, Braunschweig (Germany) 

Diagnostic slides, 6-well epoxy-resin mask Paul Marienfeld GmnH & Co. KG, Lauda-
Königshofen (Germany) 

Glassware (bottles, beakers, measuring 
cylinders) SCHOTT AG, Mainz (Germany) 

Microcon centrifugal filter devices 
regenerated cellulose 3.000 MWCO Millipore, Billerica (USA) 

Microcon centrifugal filter devices 
regenerated cellulose 100.000 MWCO Millipore, Billerica (USA) 

Microscopy slides, JIA 7101 WT Sail Brand (China) 
Petri dishes Sarstedt AG & Co., Nümbrecht (Germany) 
Phase Lock Gel® light, 2 ml and 15 ml Eppendorf AG, Hamburg (Germany) 
Pipette tips, Pagoda™ Labcon, Petaluma (USA) 
Pipette tips, Diamond® D10 Gilson, Middleton (USA) 
pH indicator strips Sigma® -Aldrich, St., Louis (USA) 
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Quartz cells 10 mm (capacity 3 ml) Hellma GmbH & Co., Müllheim (Germany) 
Reaction tubes, 0.5 ml and 1.5 ml Sarstedt AG & Co., Nümbrecht (Germany) 
Reaction tubes, PCR, 0.2 ml Sarstedt AG & Co., Nümbrecht (Germany) 
Reaction tubes, PP 15 ml and 50 ml Greiner Bio-One, Frickenhausen (Germany) 

Toothpicks Alpen Products Pty. Ltd., Brookvale 
(Australia) 

UVette® cuvette Eppendorf AG, Hamburg (Germany) 

1.5. Laboratory equipment 

         Table II.5: General laboratory equipment. 

Equipment Supplier 

Balance, BP310S Sartorious AG, Götingen (Germany) 
Biofuge pio, bench top centrifuge Heraeus, Hanau (Germany) 
BioPhotometer Eppendorf AG, Hamburg (Germany) 
Centrifuge, Eppendorf 5415R, cooling Eppendorf AG, Hamburg (Germany) 
Centrifuge, Eppendorf 5417C Eppendorf AG, Hamburg (Germany) 

Centrifuge, Sigma 3-18K SIGMA Laborzentrifugen GmbH, Osterode 
(Germany) 

Centrifuge, Sigma 6K15 SIGMA Laborzentrifugen GmbH, Osterode 
(Germany) 

Chemilmager™ 4400 digital imaging system Alpha Innotech, San Leandro (USA) 
Gel-electrophoresis system, Mini-Sub Cell 
GT Bio-Rad Laboratories, Hercules (USA) 

GeneAmp PCR System 2400 Perkin Elmer, Walham (USA) 
Hybridisation oven, Hybaid Termo Fisher Scientific, Waltham (USA) 
Hybridisation oven, ProBlot 12S Labnet International Inc., Edison (USA) 
Laboratory incubator Thermoline, Smithfield (Australia) 
Mastercycler gradient Eppendorf AG, Hamburg (Germany) 
Milli-Q® Ultrapure Water Purification 
System Millipore, Billerica (USA) 

Minispin plus, bench top centrifuge Eppendorf AG, Hamburg (Germany) 

Incubator, shaking, Bioline Edwards Instrument Company, Sydney 
(Australia) 

pH meter, SyrScan 500 Activon Inc., Beaver Dam (USA) 

Vortex mixer Ratek, Wadhurst (Australia) 
Water bath Thermoline, Smithfield (Australia) 
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2. METHODS 

2.1. Buffers and solutions 

Reagents were dissolved in ultra-pure H2O; ionic and organic components were removed 

through filtration (0.22 µm pore size) with the Milli-Q® Ultrapure Water Purification 

System. Buffers and solutions not listed in Table II.6 are described in specific chapters. 

 

        Table II.6: Buffers and solutions. 

Sodium phosphate buffer 
0.2 M Na2HPO4/NaH2PO4 . 0.2 M solutions of both 

phosphates were prepared separately. Na2HPO4 was titrated 

against NaH2PO4 until the desired pH value was reached         

1xPBS (Phosphate buffered 

saline) 
130 mM NaCl and 10 mM Phosphate buffer (pH 7.2)              

Tris/HCl 
1 M Tris base. pH adjusted to the desired value with 

concentrated HCl prior to autoclaving                                       

EDTA, pH 8 
250 mM EDTA, disodium salt.  EDTA dissolved in H2O. 

pH adjusted with 5 N NaOH                                          

TE buffer 10 mM Tris/HCl  (pH 8) and 1 mM EDTA (pH 8)                   

TBE buffer (10x) 
0.9 M Tris base, 0.89 M Boric acid and 40 ml of 0.5 M 

EDTA (pH 8) were combined. The 10x solution was diluted 

1:10 in deionised H2O prior to use 

FISH hybridisation buffer 
0.9 M of NaCl, 100 mM Tris-HCl (pH 7.2), 35% 

formamide (v/v) and 0.1% of sodium dodecyl sulfate (SDS) 

FISH washing buffer 
100 mM Tris-HCl (pH 7.2), 0.18 M NaCl and 0.1% of SDS 

(v/v) 

 

 Table II.7: General solutions 

Loading dye, Type III (6x) 
0.25% (v/v) Bromophenol blue, 0.25% (v/v) Xylene cyanol 

and 30% Glycerol 

30% Paraformaldehyde 

stock solution 

1.5 g of Paraformaldehyde, 3.3 ml of H2O MilliQ water, 15 µl 

of 5 M of NaOH, 1.65 ml of 3xPBS, and 10-15 µl of 2 M 

HCl. Paraformaldehyde was mixed with H2O and NaOH and 
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heated to 60ºC until clear. After cooling to RT, 3xPBS was 

added and pH adjusted to 7 with HCl. After filtration through 

a cellulose filter, the solution was stored at 4ºC for up to 7 

days  

Nucleotide mixture 
10 µl of each: dATP, dCTP, dGTP, dTTP into 360 µl of 

molecular biology grade H2O 

SDS buffer 
20 mM Tris/HCl (pH 7.8), 1 M NaCl, 1 mM EDTA and 

0.02% SDS                                                      

6 x SSC 
0.09 M Sodium citrate and 0.9 M NaCl. Final pH adjusted to 

7 using concentrated HCl 

50 x Denhardt’s Mix 
1% (w/v) of Ficoll, 1% (w/v) of Polyvinyl pyrrolidone (PVP) 

and 1% (w/v) of Bovine Serum Albumen (BSA). The solution 

was filtered using 0.22 µm pore filters and stored at -20ºC 

2.2. Sterilisation of reagents 

Liquid solutions: culture media, buffer and stock solutions were steam-sterilised by 

autoclaving for 20 min at 121ºC and 200 kPA pressure.  

 

Solid items: glassware, sampling tools, pipette tips, reaction tubes and plastic bottles were 

autoclaved for 40 min under the same conditions as the liquid solutions.  

 

Organic or heat-sensitive inorganic solutions were sterilised by filtration through 

cellulose-acetate filters (0.2 µm pore size). 

2.3. Culture media 

             Table II.8: General media used for cultivation. 

LB Broth 
Tryptone                                                  1% (w/v) 

Yeast extract                                        0.5% (w/v) 

NaCl                                                         1% (w/v) 

LA Agar 

Tryptone                                                    1% (w/v) 

Yeast Extract                                          0.5% (w/v) 

NaCl                                                          1% (w/v) 

Agar, Bacteriological                              15% (w/v) 



 

 

Chapter II. Materials and Methods  34  

 

2.4. Microscopy 

2.4.1. Light microscopy 

The phase contrast Olympus BH-2 light microscope (Olympus Corporation, Japan) 

equipped with oil objective A100 PL 1.30 160/0.17 was used to monitor microbial 

growth.  

2.4.2. Fluorescence microscopy 

Fluorescence microscopes are used to study the properties of organic or inorganic 

substances using the phenomenon of fluorescence and phosphorescence. The basis of a 

fluorescence microscope is to illuminate a sample at a specific wavelength which is 

absorbed by the fluorophore, causing the emission of light at a longer wavelength than the 

excitation light. Fluorescence microscopes are equipped with emission filters to separate 

the illumination light from the emitted light of the fluorophore, excitation filters and 

dichronic mirrors. The light source is usually a xenon arc lamp or mercury-vapour lamp. 

2.4.2.1. Fluorochromes 

Table II.9: General fluorochromes used throughout this thesis. Fluorochromes were 
supplied by Invitrogen Corporation (Australia). 

Fluorochrome 
Maximum 

excitation 

Maximum 

emission 
Application 

Alexa Fluor 488 488 nm 519 nm FISH 

FITC 488 nm 520 nm FISH 

Cy3 552 nm 565 nm FISH 

DAPI 358 nm 461 nm Staining ds DNA 

Rhodamine Green 502 nm 527 nm FISH 

2.4.2.2. Epi-fluorescence microscopy 

The excitation light of an epi-fluorescent microscope is passed from above through the 

objective and then onto the sample instead of passing first through the sample. In a 

conventional epi-flourescence microscope, a short wavelength light is reflected by a 
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chromatic reflector through the objective and bathes the whole of the specimen in fairly 

uniform illumination. The chromatic reflector has the property of reflecting short 

wavelength light and transmitting longer wavelength light. Emitted fluorescent light from 

the specimen passes straight through the chromatic reflector to the eyepiece. 

 

Epi-fluorescence microscopy was performed with an Olympus BH2-RFC microscope 

(Olympus Corporation, N.Y., USA) with a universal condenser for Nomarski differential 

interference contrast (DIC) and a mercury burner for broad band excitation (Olympus 

BH2-RFL-T3). The microscope was equipped with a 100x oil immersion objective with 

numeric aperture 1.3 (A100 PL 1.30 oil 160/0.17). The microscope features dichronic 

mirrors with different sets of excitation and barrier filters which reflect short radiation 

wavelengths towards the objective to illuminate the specimen, while passing longer 

wavelengths (selection of filters in Table II.10). Images were obtained and processed 

using a Nikon DXM 1200F digital camera (Nikon Corporation, Tokyo, Japan) and Nikon 

ACT-1 software package v.2.62. 

 

     Table II.10: Filter set used in the epi-fluorescence microscope. 
Fluorochrome Dichroic mirror Excitation filter Emission filter 

Alexa Fluor 488, 

Rhodamine Green, 

FITC 

DM500 20 BP 490 17 O 515 

Cy3 DM570 20 BP 545 17 O 590 

DAPI DM400 20 UD 1 17 < 420 

2.4.2.3. Confocal laser scanning microscopy 

Confocal laser scanning microscopy (CLSM) is a technique used to increase micrograph 

contrast and/or to reconstruct three-dimensional images by using a spatial pinhole to 

eliminate out-of-focus light or flare in specimens that are thicker than the focal plane 

(Sugita & Tenjin 1993). 

 

CLSM was performed using an Olympus FluoView 300 (Olympus Corporation, Japan) 

equipped with an inverted microscope with a universal condenser (Olympus IX70) and 

three lasers (Melles Griot, Carlsbad, USA): Argon laser (488 nm excitation wavelength), 
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Helium Neon green laser (543 nm excitation wavelength) and a Helium Neon red laser 

(633 nm excitation laser). Samples were examined using a 100x oil immersion objective 

with numeric aperture 1.35. Images were obtained and processed using Olympus software 

Fluoview v.4.3. 

 

     Table II.11: General characteristics of the confocal laser scanning microscope. 
Fluorochrome Excitation wavelength Filter 

Alexa 488 488 nm – Argon laser BA 510 IF and BA530 RIF 

Cy3 543 nm – HeNe laser BA 510 IF 

 

2.5. Flow cytometry 

All samples were placed in BD Falcon™ Round Bottom tubes (BD Biosciences, Sydney, 

Australia) for analyses by flow cytometry. 

2.5.1. BD LSI Flow cytometer 

BD LSR I (BD Biosciences, Sydney, Australia) is a modified 6 colour, 4 laser flow 

cytometer. The primary laser was an argon-ion 488 nm with 20 mW power output. The 

second laser was a Helium-cadmium 325 nm (UV) laser with 8mW power output, the 

third was a Helium-Neon 633 nm (red) 17 mW power output laser and the fourth laser 

was a 594 nm (yellow) Helium-Neon. This instrument was housed in a facility at the 

Prince of Wales Public Hospital (Sydney, Australia). The detectors used were side scatter 

(SSC), FL3 with 620SP as steering optics and 670LP as a filter and FL4 with 510LP as 

steering optics, and the filter 660/13 nm. 

2.5.2. BD FACS-Calibur Flow cytometer 

Flow cytometric analysis was performed using a BD FACS-Calibur flow cytometer 

equipped with a 488 nm air-cooled argon-ion laser for excitation (BD Biosciences). 

Sheath fluid consisted of diluted Osmosol (Lab Aids Pty Ltd, Narrabeen, NSW, 

Australia). 
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The detectors used were: side scatter (SSC) with the voltage set at 150 V: forwards scatter 

(FSC) E00. Fluorescence detectors, FL1, FL2 and FL3 varied between fluorophores. 

Green fluorescence (FITC, Alexa Fluor 488, QD525 and QD535) was detected using FL1, 

530/30 nm band-pass filter and 474 V. Orange fluorescence (R-PE and QD585) was 

detected using FL2, 585/42 nm band-pass at 520 V filter and red fluorescence (QD680) 

using FL3, 650 nm long-pass filter at 520 V. Regular instrument calibration was carried 

out using two-colour BD Calibrate™ beads as recommended by the manufacturer.  

 

Unlabeled Dynabeads were used for instrument setup using a portion (normally 10 µl) of 

washed unlabelled Dynabeads diluted in 300 µl BW buffer. Unlabeled Dynabeads were 

analysed on a bivariate dot-plot of FSC channel versus SSC channel thresholding on FSC. 

As single colour detection only was being analysed, compensation was set at zero. A data 

file containing 2,000 events was collected for all analyses.  

2.5.3. Data acquisition and analysis 

The data generated by the flow cytometer was plotted as one or two parameter histograms. 

A one-parameter histogram is a graph of cells or particles counted on the y-axis and the 

measurement parameter on the x-axis. A two parameter histogram or bivariate dot-plot is 

a graph representing two measurement parameters, on the x- and y-axes, and cell or 

particle count height on a density gradient (Pinkel & Steen 1982). Data analysis was 

carried out with CellQuest software (BD Biosciences, Sydney, Australia) and processed 

using the program WinMDI v.2.8 available on the World Wide Web 

(http://facs.scripps.edu/software.html). 

2.6. Molecular analyses 

2.6.1. DNA concentration and quantification 

2.6.1.1. Gel electrophoresis 

PCR products and genomic DNA were analysed by gel electrophoresis. In all procedures, 

unless it is stated otherwise, 5 µl of sample was mixed with 2 µl of loading dye (6x) and 
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run on a 1% agarose gel (w/v). Each gel was prepared in 1xTBE buffer containing 5 µg 

EtBr/100 ml. The gel was subjected to electrophoresis for 30 min at 100 V in 1xTBE 

buffer containing 50 µg EtBr/l. After electrophoresis, the gel was visualised under UV 

excitation using a Chemilmager 4400 digital imaging system (Alpha Innotech, San 

Leandro, USA). GeneRuler 1 kb DNA ladder or 1kb DNA ladder plus were used as DNA 

standards to determine fragment sizes and estimate product yields. 

2.6.1.2. Spectrophotometry 

Spectrophotometry is a simple method to quantify ds-DNA, ss-DNA and RNA. An 

absorbance ratio of 260 nm and 280 nm gives an estimate of the purity of the solution. 

Pure DNA and RNA solutions have OD260/OD280 values of 1.8 and 2.0 respectively. 

However, this method is not useful for small quantities of DNA or RNA (<1 μg/ml). A 

ratio less than 1.8 indicates that there may be proteins and/or other UV absorbers in the 

sample, in which case the DNA requires another precipitation and washing step. A ratio 

higher than 2.0 indicates the samples may be contaminated with chloroform or phenol and 

should be precipitated with ethanol. For all readings, the following procedure was 

followed unless stated otherwise: the ds- or ss-DNA sample was diluted 1:20 times in TE 

buffer or sterile Milli-Q H2O with a final volume of 100 µl. The equipment was calibrated 

using 100 µl of TE buffer or sterile Milli-Q H2O as a blank. Clean UVette® cuvettes were 

used for all measurements. 

2.6.2. Polymerase chain reaction (PCR) 

Polymerase chain reaction (PCR) amplification of 16S ribosomal RNA genes was carried 

out using the primers described in Table II.12. 
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Table II.12: 16S rRNA gene specific primers for PCR amplification. All primers were synthesised 
and purified by Sigma-Genosys (Sigma-Aldrich Pty. Ltd., Castle Hill, Australia). The primers 
were dissolved in sterile TE buffer to a final concentration of 100 µM and stored at -20ºC. The 
position of the primers indicates the position relative on the E. coli 16S rRNA gene (Brosius et al. 
1978).  

Primer Position* Sequence 5’ → 3’ Specificity Reference 

PB36 11-30 AGR GTT TGA TCM TGG CTC AG Bacteria (Saul et al. 
1993) 

PB38 1534-1551 GKT ACC TTG TTA CGA CTT Universal (Bell et al. 
2002) 

1406uR 1390 ACG GGC GGT GTG TRC AA Universal (Lane 1991) 

16SR2 1125-1146 GCG CTC GTT GCG GGA CTT AAC C Bacteria 
(Sunna & 
Bergquist 

2003) 

16SF1 539-560 TGC CAG CAG CCG CGG TAA TAC G Bacteria 
(Sunna & 
Bergquist 

2003) 

ASF 334 CGA GGC CCT ACG GGG CGC A Archaea Saul, pers. 
comm. 

ASR 1398 GTG TGC AAG GAG CAG GGA C Archaea Saul, pers. 
comm. 

Arch21F 21 TTC CGG TTG ATC CYG CCG GA Archaea (DeLong et 
al. 1989) 

1044aF 1044 GAG AGG WGG TGC ATG GCC G Archaea (Burggraf et 
al. 1994) 

pCR21F / GCC GCC AGT GTG CTG GA Vector 
pCR®2.1 

Anitori, pers. 
comm. 

pCR21R / GTG ATG GAT ATC TGC AGA Vector 
pCR®2.1 

Anitori, pers. 
comm. 

M13F / GTT TTC CCA GTC ACG A Vector 
pCR®2.1 Invitrogen 

M13R / GGA AAC AGC TAT GAC CAT G Vector 
pCR®2.1 Invitrogen 

 

 

Table II.13: Specific amplification conditions for individual primer combinations. 

Target gene 
Forward 

primer 

Reverse 

primer 

Anneal. 

Temp.* 
Cycles Positive control 

Bacterial 16S rRNA PB36 PB38 50ºC 30/35 E. coli 

Bacterial 16S rRNA PB36 1406uR 50ºC 30/35 E. coli 

Archaeal 16S rRNA ASF ASR 55ºC 30/35 
Archaeoglobus 

fulgidus 

Archaeal 16S rRNA ASF 1406uR 55ºC 30/35 A. fulgidus 

  * Annealing temperature 
 † Polymerisation time 
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All the reactions were prepared using aerosol filter tips and 0.2 µl reaction tubes or 96-

well plates. The total volume of the PCR reactions was 50 µl. The DNA template volume 

for the PCR reaction was calculated depending on its concentration (10-100 ng) and added 

to the mixture after the PCR reaction master-mix was prepared (Table II.14). 

 

  Table II.14: PCR reaction mixtures for bacterial and archaeal 16S rDNA amplification. 

Component Bacterial 16S rRNA Archaeal 16S rRNA 

Sterile Milli-Q water 26.8 – 30.8 µl 28.8 – 32.8 µl 

10x Taq buffer 5 µl 5 µl 

MgCl2 solution (25 mM) 6 µl 4 µl 

dNTP mix (2.5 mM each) 5 µl 5 µl 

Forward primer (10 mM) 1 µl 1 µl 

Reverse primer (10 mM) 1 µl 1 µl 

AmpliTaq Gold polymerase (5 U/µl) 0.2 µl 0.2 µl 

DNA template (10 – 100 ng) 1 – 5 µl 1 – 5 µl 

 

All experiments included a negative control without DNA and a positive control 

containing purified bacterial DNA (E. coli) or archaeal DNA (Archaeoglobus fulgidus). 

Table II.15 describes the general PCR amplification protocol.  

 

 Table II.15: PCR amplification protocol. 

Steps Time 
Temperature for 

bacterial PCR 

Temperature for 

archaeal PCR 

Number of 

cycles 

Initialising 15 min 94ºC 94ºC 1 

Denaturing 30 s 94ºC 94ºC 

Annealing 30 s 50ºC 55ºC 

Polymerisation 2 min 72ºC 72ºC 

30 - 35 

Final elongation 5 min 72ºC 74ºC 1 

Hold ∞ 4ºC 4ºC  

 

The resulting PCR amplicons were purified using the QIAquick PCR Purification Kit. The 

final products were stored at 4ºC until further use.  
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2.6.3. Sequencing and sequence data analysis 

Amplified genomic DNA or recombinant 16 S rRNA genes in plasmids were sequenced 

by the chain-termination method using BigDye Terminator (v3.01, Applied Biosystems, 

Foster City, USA) and the bacterial 16S RNA specific primers or the vector-specific 

primers described above (Table II.12).  

 

         Table II.16: Sequencing reaction. 
Reagents Volume 

Plasmid DNA or PCR product 350 – 500 ng or 100 – 150 ng (respectively) 

5x sequencing buffer 1.5 µl 

BigDye Terminator 1 µl 

Primer (3.2 pmol/µl) 1 µl 

H2O Add to 20 µl 

 

     Table II.17: Standard protocol for sequencing reactions. 

Steps Time Temperature Number of cycles 

Denaturing 10 s 96ºC 

Annealing 5 s 50ºC 

Polymerisation 4 min 60ºC 

25 

Hold ∞ 4ºC  

 

The products obtained after the sequencing reaction (Table II.17) were cleaned and 

precipitated using different protocols depending on the analysis facility used for 

sequencing. Products to be analysed at the Automated DNA Analysis Facility, University 

of New South Wales (Sydney, Australia) were transferred to clean 1.5 ml reaction tubes. 

The products were mixed with 16 µl of sterile Milli-Q H2O and 64 µl of EtOH (99%) and 

vortexed briefly. After incubation at RT for 45 min and centrifugation for 45 min (16,000 

rpm, 4ºC, Sigma 3-18K) the supernatant was removed completely. The pellets were 

washed in 250 µl of 70% (v/v) EtOH and centrifuged for 10 min. The supernatant was 

discarded and the pellets dried for several min at 70ºC. Sequencing reactions were 

analysed using an ABI-Prism 96-capillary 3730DNA Analyser (Applied Biosystems).  
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Products to be analysed at the DNA Analysis Facility, Macquarie University (Sydney, 

Australia) were mixed with 4 µl of 3 M NaOAc (pH 5) and 12 µl of sterile Milli-Q H2O. 

The products were transferred to 0.5 ml Eppendorf tubes and mixed with 64 µl of EtOH 

(95%). After incubation at RT for 10-15 min and centrifugation for 20 min (13,000 rpm, 

Sigma 3-18K), the supernatant was removed completely. The pellets were washed as 

described above and the final sequencing reactions were analysed using an ABI-Prism 377 

Sequencer (Applied Biosystems). 

2.6.4. Fluorescent in situ hybridisation (FISH) 

2.6.4.1. Oligonucleotide probes 

Oligonucleotide probes were synthesised and purified by MWG-Biotech AG (Ebersberg, 

Germany) and Sigma-Proligo (Sigma-Aldrich Pty., Castle Hill, Australia). Lyophilised 

probes were dissolved in 100 µl of sterile TE buffer. Stocks solutions were stored at -

80ºC. Working solutions were diluted in sterilised Milli-Q water to a final concentration 

of 50 ng/µl and stored at -20ºC. Domain-specific probes generally were used as mixtures, 

called EubMix (Eub338I, 50 ng/µl and Eub338II/III, 100 ng/µl) and ArchMix (Arch344, 

arch915 and Arch1060, 50 ng/µl each). EubMix was labelled with Alexa Fluor® 488, 

while ArchMix was labelled with Cy3. Euk502 was modified with a biotin group at the 5’ 

position (Table II.18). 

 

Table II.18: Binding position, sequence and specificity of oligonucleotide probes. 
Oligo-

nucleotide Position* Sequence 5’ → 3’ Specificity Reference 

Eub338I 338 GCT GCC TCC CGT AGG AGT Bacteria (Amann et al. 
1990a) 

Eub388II/III 338 GCW GCC ACC CGT AGG TGT Bacteria (Amann et al. 
1990a) 

Arch344 344 TTC GCG CCT GST GCR CCC CG Archaea (Moissl et al. 
2003) 

Arch915 915 GTG CTC CCC CGC CAA TTC CT Archaea (Stahl & 
Amann 1991) 

Arch1060 1044 GGC CAT GCA CCW CCT CTC Archaea (Moissl et al. 
2003) 

Euk502 502** ACC AGA CTT GCC CTC C Eucarya (Alm et al. 
1996) 

* Position relative to the E. coli 16S rRNA gene 
** Position relative to the E. coli 18S rRNA gene 
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2.6.4.2. Preparation of microscopy slides  

Diagnostic glass slides with a 6-well epoxy-resin mask (Paul Marienfeld GmbH & Co, 

KG, Lauda-Königshofen, Germany) were cleaned by several washes with detergent 

followed by rinsing with deionised water and wiping with acetone. After air-drying, slides 

were briefly dipped into hot gelatine solution (0.1% gelatine, 0.01% KCr (SO4)2 w/v) at 

approximately 70ºC. The slides were dried at RT in a vertical position. Coated slides were 

stored in a dust-free environment for up to one year.  

2.6.4.3. Control organisms 

Microbial strains used as a positive control for FISH were the bacterium E. coli (bacteria) 

and the euryarchaeon SM1 (Moissl et al. 2003). E. coli strain DH5α was purchased from 

Life Technologies (Invitrogen, Carlsbad, USA). E. coli was grown in LB broth medium at 

37ºC with shaking at 250 rpm under aerobic conditions. Microbial growth was monitored 

by light microscopy and cell numbers were estimated and recorded as cells per field of 

view. To subculture actively growing cultures, 250-200 µl was transferred aseptically to 

15-20 ml of fresh media (1:100 dilution). Fixed SM1 euryarchaeon was kindly provided 

by Dr. Ruth Henneberger (Macquarie University, Australia). 

2.6.4.4. Preparation of samples 

Actively growing microbial cultures of control organisms and samples were fixed by 

adding 1/10 volume of 30% (w/v) paraformaldehyde stock solution directly to the culture 

(end concentration 3% (w/v)). After incubation at RT for 1 h or at 4ºC overnight, the cells 

were centrifuged for 10 min and the supernatant was removed completely. The cell pellet 

was resuspended in 1 ml of 1 x PBS, centrifuged for 10 min and the supernatant 

discarded. This step was done twice and the final pellet was resuspended in 25-50 µl of 1 

x PBS (end concentration of cells approx. 108/ml). Finally, one volume of 100% EtOH 

was added to the samples and the fixed cells were stored at -20ºC.  
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2.6.4.5. Hybridisation conditions 

A portion of a fixed culture (10-50 µl) was spotted onto the wells of pre-treated 

microscope slides without scratching the slide’s surface. After air-drying, the cells were 

dehydrated in an increasing ethanol series (50%, 80% and 99% (v/v) in H2O) for 3 min 

each. The slides were dried at RT and then, 8 µl of FISH hybridisation buffer was applied 

to each well. The slides were placed horizontally in 50 ml hybridisation chambers 

(reaction tubes with screw caps containing moist tissues). After pre-hybridisation for 15 

min at 46ºC, the slides were placed on a preheated pad or heating block (37ºC) and the 

probes added to each well. 50 ng of each probe was applied to the control cultures, and 

50-100 ng of each probe was used for the samples. The slides were subsequently 

hybridised for 4 h at 46ºC. Approximately 3 ml of preheated (48ºC) FISH washing buffer 

was used to briefly rinse the slides before they were placed in 50 ml reaction tubes 

containing the same buffer. The slides were washed for 15 min at 48ºC (rotating, 100 

rpm), rinsed with cold, deionised water and air-dried in the dark. For DNA-specific 

counterstaining, 10 µl of DAPI solution (1 ng/ml in 0.01 M Tris/HCl, pH 7.2) was applied 

to each well and incubated in a moist chamber for 5 min. The slides were washed, dried, 

mounted and stored as described earlier. Positive controls for every probe or probe 

mixture were included in each hybridisation reaction.  

2.6.4.6. FISH reactions in microcentrifuge tubes 

FISH reactions using 1.5 ml Eppendorf microcentrifuge tubes instead of microscope slides 

were performed on E. coli (control organism) in experiments carried out using quantum 

dots as fluorophores. The hybridisation conditions were the same as described earlier 

except Eppendorf tubes were used instead of slides. A portion (5 µl) of pre-fixed E. coli 

cells were transferred into clean 1.5 ml Eppendorf tubes. The cells were dehydrated in an 

increasing ethanol series (50%, 80% and 99% (v/v) in H2O). 50 µl of each concentration 

was added to the tubes and incubated for 1 min followed by centrifugation for 3 min at 

5,000 rpm. The supernatant was discarded after each step. After dehydration, the pellet 

was resuspended in 50 µl of  FISH hybridisation buffer (0.25% of SDS, 20% Formamide, 

0.9M of NaCl and 10 mM of Tris-HCl pH 7.2) and incubated at 46ºC for 15 min in the 

water bath. 2 µl of each probe was added followed by another incubation step at 46ºC for 
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3 h. After incubation, the tubes were centrifuged for 5 min at 13,000 rpm. Pellets were 

resuspended in 50 µl of pre-heated FISH washing buffer (0.23 M NaCl, 10 mM Tris-HCl 

pH 7.2 and 0.25% SDS) and incubated at 48ºC for 15 min. Another centrifugation step 

was necessary for 5 min at 13,000 rpm and then, supernatant was discarded. The pellets 

were resuspended in 50 µl of TE buffer pH 8. The final products were spotted onto non-

treated glass microscopy slides prior to analysis. 

 

 





 

 

Chapter III. Sampling sites and sampling material  47 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter III. Sampling sites and sampling 
material 

 

 

 

 

 



 

 

Chapter III. Sampling sites and sampling material  48 

 

 

1. INTRODUCTION 

White Island is the summit of a large (16 by 18 km) submarine volcano which has 

accreted from the sea floor at 300 m to 400 m depths. Its active subaerial caldera has a 

vent located below sea level (Houghton & Naira 1991). The volcano is isolated from the 

sea water by chemically-sealed zones that confine a long-lived acidic hydrothermal 

system, within a sequence of fine-grained volcaniclastic sediment and ash (Figure 

III.1.A). It is an andesitic composite volcano which has a sub-aerial extent of about 3.5 

km2 and hosts an extensive acidic hydrothermal system lined with fumaroles and acid 

lakes (Giggenbach & Sheppard 1989; Houghton & Naira 1991; Mongillo & Wood 1995; 

Nishi et al. 1996; Wardell et al. 2001).  

 

The volcano has a history of frequent small phreatic and phreatomagmatic eruptions, 

interrupting long intervals of continuous intense fumarolic and hydrothermal activity 

(Cole & Nairn 1975; Cole et al. 2000; Shane et al. 2006). Trace-metal distribution in 

marine sediments around the island indicates that hydrothermal activity has been 

sustained for at least 10,000 years, presumably driven by a deep magmatic body beneath 

the volcano (Black 1970; Cole 1981; Giggenbach & Sheppard 1989). The main crater was 

formed by the collapse of three overlapping subcraters in prehistoric times. In September 

1914, the southwest corner of the high crater wall collapsed to produce a hot avalanche at 

the eastern end of the crater, burying 11 mine workers and the sulphur mine infrastructure.  

 

Noisy Nellie crater was formed in 1947 during an explosive ash eruption (Clark 1970). 

During 1976 and 1982 there was high volcanic activity in White Island (Houghton et al. 

1989; Houghton & Nairn 1989a; Houghton & Nairn 1989b; Houghton & Nairn 1989c). 

Eruptions were caused by the rise of magma beneath the volcano (Christoffel 1989) and 

the main crater collapsed in 1978 (Clark & Otway 1989; Nairn & Houghton 1989). 

During 1979-1980, eruptions occurred less frequently as the magma withdrew to deeper 

levels (Houghton et al. 1983). During the volcanic activity from 1976-1982 about 10 

million cubic metres of volcanic ash were deposited on the island and offshore 
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(Giggenbach & Sheppard 1989). Small eruptions during 1983 and 1984 were the only 

activity prior to a large eruption sequence which occurred from a new vent in the wall of 

the main crater in 1986.  Ash eruptions in 1986 were followed in 1987 by an explosion 

which threw blocks over the main crater floor. Ash emission was almost continuous into 

1988 with occasional larger explosions ejecting blocks of lava. Donald Duck crater was 

formed in 1988 and the main crater was enlarged by a collapse during a period of heavy 

rainfall in 1990 (Scott et al. 1995). 

 

White Island has had significant eruptions every few years. These are continuing, with 

several months of ash emission occurring in mid-2000 (Hurst et al. 2004). The craters and 

fumaroles on the island continually emit gases at rates of several hundred to several 

thousand tonnes per day. The gases are mostly steam, carbon dioxide and sulphur dioxide, 

with small quantities of chlorine and fluorine. Acid gases combine with water in the steam 

to form acid droplets and precipitates.   

 

At present, the central subcrater contains the Donald Mount fumaroles, the Noisy Nellie 

and Donald Duck craters and fumaroles (Figure III.1, C). The western sub-crater is host to 

most of the surface expression of present-day volcanic hydrothermal activity. Most of the 

present main crater floor lies less than 30 m above sea level. The currently active vent is a 

deep pit, at present covered by an enlarging acid lake (Figure III.1, D) filling at 

approximately 1.5 m per month since spring 2003 as a result of condensation of volcanic 

gases rising from the submerged vent (Moon et al. 2005).  

 

      

 A B 
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Figure III.1: A: White Island. B: Crater Bay. C: Hydrothermal systems of White Island. D: 
Main crater. 

 

 

The geology of the island is of andesite-dacite composition, and includes a complex 

arrangement of lava flows, breccias, agglomerates, and unconsolidated beds of ash and 

tuff containing lava blocks (Black 1970). Further details on the geology and geochemical 

characteristics of White Island can be found in Chapter I. 

 

The aim of this chapter is to describe the sediment and water samples collected from 

White Island. Ten different sampling sites from the western sub-crater of White Island 

were selected for microbiological and molecular biological analyses. A detailed 

description of individual sampling sites, as well as chemical and physical data, was made 

to obtain a general picture of the environmental characteristics of White Island. 

D  C 
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2. MATERIALS AND METHODS 

2.1. Sample collection 

White Island has a very dynamic hydrosystem environment with regular crater eruptions 

which change the topography, land surfaces and acid stream courses.  For this study, ten 

different locations from the hydrothermal systems present on White Island were selected 

in 2004. Sample material was collected aseptically using sterile spatulas and spoons. 

Sampling equipment was sterilized by soaking with 4% (w/v) sodium hypochlorite for 

15–30 min followed by rinsing with sterile MilliQ water prior to autoclaving (II.2.2). All 

samples were collected using a new sterile tool and fresh latex gloves to avoid cross-

contamination between sampling sites.  

 

Water samples were collected in 100 ml or 250 ml sterile tubes using sterile spoons. 

Multiple sediment samples from representative areas were taken from the surface in bulk 

by excavating a small hole up to 4 cm deep without separating the surface material and the 

deeper material to ensure homogeneity of sampling and to recover representative material 

from the site. Samples were collected in 250 ml or 50 ml sterile tubes. Each location site 

was sampled at different physical locations with respect to local heterogeneity and 

portions were collected for physical and chemical analyses and for culturing 

microorganisms. Additionally, 1 kg of sediment was collected from each sample site for 

the preparation of the sediment-extract to be used for microbial cultivation purposes. 

2.2. Sample handling and storage 

Water and sediment samples were placed on ice after collection and kept at 4ºC in the 

dark during transportation to Australia for further processing. For long-term storage, a 

portion of each sample was mixed with 8% of sterile glycerol (v/v) and immediately 

frozen by inserting the tubes into 100% ethanol plus dry ice. Revco medium was used also 

for long-term storage of samples. Revco medium contained: 3.73 g KCl, 0.81 g MgCl2 x 6 

H2O and 50% glycerol (v/v) with the final pH adjusted to 3.3. A portion of sample 

material of 1 ml was mixed with 1 ml of sterile Revco medium and frozen immediately as 
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described earlier. Frozen samples were stored at -80ºC. Sample material for chemical 

analyses was frozen at -20ºC within 24 h of collection.  

2.3. Physical readings 

Physical readings of individual sample sites were taken along with photographs of the 

general areas and the sampling sites prior- and post-collection. The location of sample 

sites were determined via Global Positioning System (GPS 12XL, Garmin™, Olathe, 

USA). 

 

Temperature measurements from the surface of the sample sites and the sample material 

were performed using a digital thermometer with stainless steel probe (Checktemp-1, 

HANNA® Instruments, Woonsocket, USA). For surface temperature readings, the probe 

was held directly onto the surface until a stable reading was obtained. The probe was 

pushed a few centimetres under the ground to measure temperatures below the surface. 

Several readings were taken at all sample sites to obtain an average value. Temperatures 

from the gas steam emitted by the fumaroles were taken with the same thermometer.  

 

Surface pH values were taken with a digital handheld pH probe (ExStick™ PH110, 

EXTECH® Instruments, Waltham, USA). The pH probe was calibrated following the 

manufacturer’s manual before taking new measurements at the different locational sites 

with compensation for temperature. The probe was placed directly onto the sediment 

sample material until a stable value was displayed. After each reading, the probe was 

cleaned with deionised water and re-calibrated. A second reading was taken using pH 

indicator strips for moist sediment samples and water samples. 

2.4. Chemical analyses 

Multi-element analyses of sample material collected from sample site J was done by X-

ray spectrometry at the Institute of Geological & Nuclear Sciences Limited (Wairakei 

Analytical Laboratory, Taupo, New Zealand). Ammonia was determined with 2 M KCl 

extraction by flow injection analysis (FIA). Chloride was determined by a potentiometric 

method (APHA 4500-CI D 20th Edition 1998). Conductivity was measured with a 

conductivity meter (APHA 2510 B 20th Edition 1998). Nitrate nitrogen, phosphorus, 

sulphite (SO3) and sulphate were measured by ion chromatography (APHA 4110-B 20th 
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Edition 1998). Sulphide (total as H2S) was determined by the methylene blue method 

(APHA 4500-S2 D 20th Edition 1998). Total organic carbon was determined by catalytic 

oxidation and IR detection (APHA 5310 B 20th Edition 1998). 
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3. RESULTS 

3.1. Description of sampling sites and sample material 

A total of ten different sites from White Island were sampled. Samples were taken from 

the active hydrothermal system situated between the main crater (1978) and the Crater 

Bay. Sampling sites are marked in red in Figure III.2 (sites A, B, C, D, E, F, G, H and I). 

Exact positions, temperatures and pH readings from each sampling site are summarised in 

Table III.1. Multiple samples were recovered from each location site at more than one 

representative area. 

 

Main
crater

Crater bay
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Shark bay

Noisy Nellie

Donald  mound
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Figure III.2: Simplified topographic map of White Island showing the main crater, Noisy 
Nellie crater and Donald Mound. Sampling sites are indicated in red. 
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Table III.1: Position, temperature and pH readings of each sampling site selected on 
White Island. 

Site Position Surface temperature pH 

A E 2880274 / N 6400130 97.6ºC 2.01 

B E 2880332 / N6400339 38.7ºC 3.5 

C E 2880426 / N 6400290 72ºC 3.05 

D E 2880417 / N 6400102 74.5ºC 3.6 

E1 E 2880518 / N 6399916 62ºC 3.8 

E2 E 2880518 / N 6399916 93ºC 3.32 

F E 288024 / N 6400056 50ºC 2.8 

G E 2880408 / N 6400315 63ºC 2.02 

H E 2880438 / N 6400078 44.7ºC 3.2 

I E 2880504 / N 6399977 42ºC 2.5 

3.1.1. Site A 

Site A was located near Crater Bay off an acidic water stream surrounded by white and 

yellow deposits around the borders (Figure III.3). Below a thin crust, the ground was 

white-grey dense clay formed by small particle size. The temperature of the running water 

was 68ºC while the surface was at 97.6ºC. Samples were collected from 4 different sites at 

this location. Sediment samples were collected from this site using sterile spoons and 

spatulas and transferred to 2 sterile tubes of 250 ml each and 2 sterile tubes of 50 ml each. 

The average pH of the sediment was 2.01. 

 

    Figure III.3: Sample site A. 
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3.1.2. Site B 

Site B consisted of a mud surface surrounded by several small fumaroles of approximately 

1 cm in diameter (Figure III.4). The surface had grey and white deposits with some orange 

spots. Under the hard and dry surface there was wet grey mud formed by small particles. 

The temperature of the surface was 38.7°C. Samples were collected from 4 different sites 

at this location site. Two samples were taken from the surface and the other two samples 

from underneath the surface. Samples were taken using sterile spatulas and transferred 

into one sterile tube of 250 ml and three sterile tubes of 50 ml. The average pH of the 

sediment surface was 3.5. 

 

    

3.1.3. Site C 

Site C was a bubbling pool of water found in the acid stream with clear running water 

(Figure III.5). Samples were collected from 5 different sites at this location. Sediment and 

water samples were collected from this site location and transferred into one sterile tube of 

250 ml and four sterile tubes of 50 ml each. The sediment consisted of black, white, 

brown and orange sediments. The temperature of the water was 72ºC and the average pH 

was 3.05.  

Figure III.4: Sampling site B. 
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3.1.4. Site D 

Site D was a water pool with high iron precipitation and red and yellow deposits around 

the borders (Figure III.6). Yellow sediments were found underneath the thin surface crust. 

Samples were collected from 7 different sites at this location site. Sediment and water 

samples were collected from this location and transferred into two sterile tubes of 250 ml 

each and 5 sterile tubes of 50 ml each. The average temperature was 74.5°C and the pH 

was 3.6. 

 

   
 Figure III.6: Sampling site D. 

3.1.5. Site E 

Site E1 was a small water pool, about 5 cm deep, with leaks of gas forming bubbles 

(Figure III.7.A). The water within the pool was clear. The borders of the holes from which 

Figure III.5: Sampling site C. 
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steam was issuing contained black precipitate. There were orange-red deposits around the 

edges of the pool. Samples were collected from 7 different sites at this location. Water and 

sediment samples were collected from this site location and transferred into 50 ml sterile 

tubes. The temperature of the surface near the water was 62ºC while the water was at 

58ºC. The average pH was 3.8.  

 

Site E2 was located in front of location E1 (Figure III.7.B). This site consisted of a black 

pool of water with strong gas leaks forming big bubbles. The pool was approximately 50 

cm deep. Five water samples from the pool were collected into 50 ml sterile tubes. The 

temperature was at 93ºC and the average pH was 3.32.   

 

   
 Figure III.7: A: Sampling site E1. B: Sampling site E2. 

3.1.6. Site F 

Site F consisted of a small fumarole of approximately 10 cm high. Sulphurous steam was 

being released from the fumarole as well as a small stream of black water (Figure III.8). 

Samples were collected from 6 different sites at this location. Samples were collected 

from the sediment and the stream water surrounding the fumarole and transferred into 50 

ml sterile tubes. The temperature at surface was at 50ºC while the temperature of the 

steam was at 97ºC. The average pH of both the sediment and the water was 2.8. 

 

B A 
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3.1.7. Site G 

Site G consisted of sediment surrounded by small fumaroles at approximately 5 metres 

apart (Figure III.9). The surface was a hard crust containing white, yellow and orange 

deposits. Below the surface there was moist pale grey sediment made up of small 

particles. The average temperature was at 63ºC and the pH was 2.02. Samples were 

collected from 5 different locations at this site. Sediment samples were collected and 

transferred into 50 ml sterile tubes. 

 

    
 Figure III.9: Sampling site G. 

Figure III.8: Sampling site F. 
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3.1.8. Site H 

Site H consisted of a small stream of acidic water containing dark red deposits (Figure 

III.10). Green and white slimes were also present within the water. The stream was 

surrounded by dark red, yellow and white precipitates. Samples were taken from the green 

slime, and from yellow and red precipitates within the stream. Samples were collected 

from 5 different sites at this location. Sediment samples were taken from the borders of 

the stream and transferred into 50 ml sterile tubes. Below a thin crust of deposits, dark 

grey clay made up of small particles was found. The average temperature of the sediment 

was at 44.7ºC and the pH was 3.2.   

 

    

3.1.9. Site I  

Site I consisted of a stream of clear acidic water (Figure III.11). Samples were collected 

from 5 different sites at this location. Water samples were collected from this location as 

well as from sediment samples at the borders and transferred into 50 ml sterile tubes. The 

average temperature of the water and sediments was at 42ºC. The pH of the sediments was 

2.5 while the pH of the water was 1.5. 

 

Figure III.10: Sampling site H. 
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3.1.10. Site J 

Site J was the same acidic water stream as described for sampling site I but located 

approximately 7 metres south of site I (Figure III.12). Samples were collected from 5 

different sites at this location. Water and sediment samples were taken from this location 

and transferred into 50 ml sterile tubes. The average temperature for sediment and water 

samples was at 47.7ºC. The pH of the water was 1.62, while the pH of the sediments was 

2.6. 

    

3.2. Chemical analysis 

Site J was chosen as a control sampling site for undertaking the chemical analysis.  Multi-

element analysis of sediment collected from site J revealed high amounts of magnesium, 

Figure III.11: Sample site I. 

Figure III.12: Sample site J. 
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aluminium, silicon, sulphur and iron. A detailed list of the multi-element analysis and 

analytical report from White Island sediment is shown in Table III.2 and Table III.3. 

 

Table III.2: Multi-element analysis of sediment from White Island.  

Element 
Value 

(weight %) 
Element 

Value 

(weight %) 

Sodium 1.42 Iron 5.50 

Magnesium 4.43 Nickel 0.011 

Aluminium 5.20 Copper 0.007 

Silicon 25.5 Zinc 0.006 

Phosphorus 0.071 Rubidium 0.004 

Sulphur 2.84 Strontium 0.013 

Chlorine 0.917 Yttrium 0.002 

Potassium 0.980 Zirconium 0.008 

Calcium 5.94 Titanium 0.378 

Titanium 0.378 Chromium 0.028 

Manganese 0.093   

 

Table III.3: Analytical report of sediment from 
White Island. 

Element mg/g (dry wet) 

Ammonia  0.015 

Chloride 6.4 

Nitrate (as N) < 0.002 

Phosphate (as P) < 0.004 

Sulphate 3.8 

Sulphide < 0.0001 

Total organic carbon < 0.5 

 

The total organic carbon and nitrogen were very low, while iron and sulphur contents 

were very high in the samples analysed from White Island. Elements such as chloride, 

silicon, sulphate, magnesium, aluminium and calcium contents were also very high while 

nitrate and phosphate were very low. 
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4. DISCUSSION 

The aim of this chapter was to provide a general picture of the geothermal and 

environmental characteristics of White Island as an active hydrothermal system for the 

habitat of thermo-acidophiles. Knowledge of the specific characteristics of the 

environment will help to understand the composition of the microbial populations and 

their interactions with the habitat in future studies. 

 

Volcanic activity at White Island is caused by a large body of hot magma deep beneath 

the island (Cole et al. 2000). Water from hydrothermal systems such as White Island is 

heated around the magma reservoirs located underneath the volcanic area. As the water 

rises through the crust, chemical reactions take place with the surrounding rocks, 

enriching the water with elements such as chloride, sulphate, carbonate and soluble metals 

(Scarth 1994). Vapour is formed when the water reaches a level where the pressure is low 

enough for boiling, allowing it to ascend through rock fissures and fractures until it 

reaches the surface, forming hot springs and fumaroles emitting steam and gases (Clark 

1970). The volcanic gases react with the surface rocks if cooled to around 100ºC, 

generating sulphur deposits by the condensation of sulphur dioxide and hydrogen sulphide 

(Montegrossi et al. 2001). These deposits were observed to form yellow crystals around 

the margins of fumaroles of White Island. Minerals, metals and salt crystals also dissolved 

in the hydrothermal fluids can be redeposited at the surface. These coloured deposits, such 

as red iron precipitates, formed the visible precipitates observed at White Island within the 

springs and around the fumaroles. The gases rising towards the ground surface also heat 

the groundwater at shallow depths beneath the crater floor, consequently increasing the 

temperature at the surface of the volcano. The surface temperatures measured from the 

sampling sites were extremely variable between 38ºC to 97ºC. 

 

Redox reactions between atmospheric oxygen or surface water and the volcanic gases and 

fluids results in the formation of acids (Scarth 1994; Goff & Janik 2000). The sediment 

analysed from White Island consisted of high deposits of heavy metals. Iron, sulphur, 
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chloride, silicon, magnesium, aluminum and calcium were the principal elements found in 

the sediment. It is not surprising to find these minerals in high concentration as they are 

generally found in the vapour released by volcanic fumaroles. For example, chloride 

normally is found in the steam of fumaroles of volcanoes such as White Island in the form 

of hydrogen chloride (HCl) which is very soluble in condensing water droplets and it 

promotes the acidity of the habitat (Symonds et al. 1994). Sulphate is a salt of sulphuric 

acid (SO4
2-) which occurs as microscopic particles such as aerosols also resulting from 

volcanic activity, increasing the acidity of the atmosphere and forming acid water. Silicon 

is also normally found in volcanic environments, forming crystalline structures such as 

sand, quartz and clay minerals resulting from breakdown of the rocks due to hydrothermal 

heat and acidity (Goff & Janik 2000). 

 

Although the outlet temperatures of the fumaroles in White Island range from 100ºC to 

700ºC (Giggenbach & Sheppard 1989), the temperature readings from the sampling sites 

reached up to 98ºC. However, the temperature from volcanic gases released by large 

fumaroles was not measured due to the danger and health risk associated with these 

regions. The gas discharge in White Island has been described to be made up of two 

source components: a primary “magmatic” component high in SO2, rising rapidly and 

directly from the underlying magma, and a secondary “hydrothermal” component rising 

slowly from a two-phase, saline brine-vapour envelope surrounding the magmatic system 

(Giggenbach 1987). It has been suggested that the entire volcanic system of White Island 

is fed by a common magmatic source unaffected by secondary processes causing the 

addition or removal of a significant amount of CO2, N2 or Ar at shallow levels 

(Giggenbach 1986; Cole et al. 2000). The gases are mostly steam, carbon dioxide and 

sulphur dioxide, with small quantities of chloride and fluoride. Reduced gases (H2 and 

H2S) are chemically oxidised when approaching the surface (White et al. 1971). 

 

The organic carbon and nitrogen levels measured were very low, indicating a low content 

of biomaterial. Sample site J was chosen as a representative location at White Island for 

undertaking chemical analyses due to its acidic water stream and yellow, orange, white 

and green sediments deposited on the borders of the stream. Chemical analyses from all 

the sites examined at White Island would have allowed future statistical correlation 

between the presence of specific phylotypes and the chemical properties of the sites. 
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However, the cost of analyses prevented a more expansive account of the sediment 

composition. 

 

The environmental conditions in which microorganisms grow have a direct influence on 

their metabolic pathways and physiologies. For example, the high amounts of S0 and 

sulphur compounds generated on White Island are sources of both electron acceptors and 

electron donors for a wide range of autotrophic and heterotrophic microorganisms living 

in this environment and helping to maintain the redox equilibrium (Johnson 1998; Kletzin 

et al. 2004). The oxidation of sulphur by acidophilic organisms normally uses elemental 

sulphur, sulphide (S2-) and thiosulphate (S2O3
2-) as substrates, leading to the formation of 

sulphuric acid and consequently increasing the acidity of the environment (Parker & Prisk 

1953; Lettl et al. 1981; Kelly 1982; Hedderich et al. 1999). On the other hand, the SO2-
4 

reduction leads to the formation of sulphides in the environment and, under anaerobic 

conditions, Fe3+ and SO2-
4 are reduced to Fe2+ and HS- (Devereux et al. 1989; Devereux & 

Boddy 1993). These reactions form a black precipitate of ferrous sulphide which can react 

further to form a number of sulphide minerals. In consequence, the reduction process 

increases the pH of the system (Küsel et al. 2001). The average pH from the sampling 

sites measured of White Island ranged from 2.01 to 3.8. 
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1. INTRODUCTION 

Thermally- and chemically-extreme habitats in volcanically active areas have been 

revealed to host a vast microbial diversity (Segerer et al. 1993). Such habitats include 

submarine hydrothermal vents (Sievert et al. 2000), hot springs and hydrothermal systems 

(Atkinson et al. 2000; Meyer-Dombard et al. 2005; Kvist et al. 2007) and active 

volcanoes (Gomez-Alvarez et al. 2007; Losekann et al. 2007; Henneberger 2008). 

Culture-independent techniques have revealed a wide range of diverse thermo-acidophilic 

microorganisms in these environments where the conditions are so extreme that it was 

considered that life could not exist (Ward et al. 1990b; Rothschild & Mancinelli 2001). A 

molecular phylogenetic survey carried out in hot springs from Yellowstone National Park 

found 54 distinct bacterial sequences types of which 30% of them were unaffiliated with 

any previously recognised bacterial division (Hugenholtz et al. 1998b). Similar surveys 

carried out in deep-sea hydrothermal vent environments showed a great microbial 

diversity where the majority of them appeared to be uncultivated and unidentified archaeal 

species (Takai & Horikoshi 1999).  

 

However, culture-independent techniques alone are inadequate for the study of 

environmental microbial diversity as the sequences obtained from 16S rRNA gene 

libraries of natural bacterial communities frequently contain many novel sequences, which 

often do not match with the sequences of cultivated strains from the same samples (Suzuki 

et al. 1997; Felske et al. 1999). Moreover, cultivation of microorganisms is required to 

gain a comprehensive understanding of the microbial physiologies, the interaction of 

microbes with one another in their environment and to provide access to genes encoding 

metabolic pathways which may be dispersed throughout the genome (Keller & Zengler 

2004). Most microorganisms in the environment are recalcitrant to growth using 

traditional cultivation methods, which employ complex media as the specific growth 

requirements of many uncultured microorganisms are unknown (Leadbetter 2003; Ferrari 

et al. 2004). No single method or medium is suitable for the cultivation of the majority of 

microorganisms from environmental samples as they prefer stable, nutrient-poor 



 

 

Chapter IV. Enrichment cultures and molecular analyses 70 

 

environments (Green & Keller 2006). It is essential to understand the physical and 

chemical characteristics of each particular environment being studied in order to develop a 

cultivation method which can simulate the natural habitat (Ferrari et al. 2005). Thermo-

acidophilic microorganisms inhabiting acidic geothermal environments have been difficult 

to cultivate due to their fastidious requirements (Johnson 1995). Therefore, there is a need 

to improve traditional techniques with new and novel approaches. Several cultivation 

techniques have been developed in recent years to mimic the natural habitat which have 

resulted in the successful cultivation of microorganisms from diverse phyla (Frohlich & 

Konig 2000; Reysenbach et al. 2000; Kaeberlein et al. 2002; Svenning et al. 2003). 

 

Although White Island represents an ideal location for the study of thermophilic 

acidophilic microorganisms, this habitat has been poorly studied. The first description of 

the microbial communities in a stream of acidic hydrothermal waters on White Island was 

reported in 2002 (Donachie et al. 2002). Culture-independent techniques based on 16S 

rRNA gene libraries from community DNA revealed the presence of α- and β-

Proteobacteria, green-sulphur bacteria, and uncultured Firmicutes. The same bacterial 

groups were represented in enrichment cultures based on previously defined media to 

support the growth of heterotrophic bacteria such as marine broth, and TA medium 

designed for acidophilic Archaea. Cyanidium caldarium, two Firmicutes and an 

acidophilic α-Proteobacteria, Acidiphilum cryptum, were obtained in pure cultures through 

repeated transfers on nutrient media. However, archaeal species were not found in that 

study despite the fact that Archaea are the most hyperthermophilic and acidophilic 

microorganisms normally found in hydrothermal sulphur-rich environments (Stetter 

1999a). 

 

This chapter focuses on the cultivation and isolation of thermo-acidophiles from the 

volcanically-active sediments of White Island. Several different conventional liquid media 

were used for cultivation purposes. The lack of success using standard methods led to the 

development of a new liquid medium based on a sediment-extract which mimicked the 

natural habitat and supplied the essential metabolic trace elements required for microbial 

growth. Molecular analyses revealed that the dominant culturable bacterial species present 

in the mixed cultures belonged to the Bacteroidetes, Firmicutes and α-Proteobacteria 

groups. Several previously uncultured archaeal species from the Euryarchaeota and 
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Crenarchaeota phyla were also present. Pure isolates were recovered using a novel low pH 

agarose-based solid medium based upon sediment-extract. 

 

Microorganisms live in complex communities and networks that interact with each other 

and their natural habitats (Watnick & Kolter 2000). Fluorescent in situ hybridisation 

(FISH) supplied evidence to support the hypothesis that the existence of microbial 

consortia and their inherent interactions with sediment particles provide the interface for 

microbial metabolic interactions. An introduction to the FISH technique can be found in 

Chapter I.  
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2. MATERIALS AND METHODS 

2.1 Culture media 

2.1.1. Liquid media 

Four different liquid media traditionally used for the cultivation of thermo-acidophilic 

microorganisms were tested. Liquid media recipes were obtained from the German 

Resource Centre for Biological Material, DMSZ (www.dsmz.de).  

2.1.1.1. Acidianus medium 

This medium was based on one previously developed for the cultivation of Acidianus 

brierleyi (DSMZ, medium 150).  It contained: (NH4)2SO4 (3 g), K2HPO4 x 3 H2O (0.5 g), 

MgSO4 x 7 H2O (0.5 g), KCL (0.1 g), Ca (NO3)2 x 4 H2O (0.01 g), yeast extract (0.4 g), 

and elemental sulphur (10 g) in 980 ml of dH2O. The pH was adjusted to 3 using 5M 

H2SO4. The medium and yeast extract solution were autoclaved (120°C for 20 min) 

separately, and mixed after the sterilisation procedure. The final medium was stored at 

4°C. 

2.1.1.2. Diluted nutrient broth medium 

This medium consisted of Difco Nutrient Broth (Sigma-Aldrich, Australia) at a 

concentration of 0.4%. The pH was adjusted to 3 at RT with 5M H2SO4 prior to 

autoclaving (120°C for 20 min). The final medium was stored at 4°C. 

2.1.1.3. Sulfolobus medium 

This medium was developed previously for the cultivation of Sulfolobus spp. (DSMZ, 

medium 88). It contained: KH2PO4  (0.28 g), (NH4)2SO4 (1.30 g), MgSO4 x 7 H2O (0.25 

g), CaCl2 x 2 H2O (0.07 g), FeCl3 x 6 H2O (0.02 g), MnCl2 x 4 H2O (1.80 mg), Na2B4O7 x 
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10 H2O (4.50 mg), ZnSO4 x 7 H2O (0.22 mg), CuCl2 x 2 H2O (0.05 mg), Na2MoO4 x 2 

H2O (0.03 mg), VoSO4 x 2 H2O (0.03 mg), CoSO4 (0.01 mg), and yeast extract (1 g) in 1 

L of dH2O. The pH was adjusted to 3.5 at RT with 5M H2SO4 prior to autoclaving (120°C 

for 20 min) and stored at 4°C. 

2.1.1.4 Sulfolobus solfataricus medium 

This medium was developed previously for the cultivation of Sulfolobus solfataricus 

(DMSZ, medium 182). It contained: yeast extract (2.00 g), KH2PO4 (3.10 g), (NH4)2SO4 

(2.50 g), MgSO4 x 7 H2O (0.20 g), and CaCl2 x 2 H2O (0.25 g) in 1 L of dH2O. The pH 

was adjusted to 3.5 at RT with 5M H2SO4 prior to autoclaving (120° C for 20 min) and 

stored at 4°C. 

2.1.1.5 Sediment-extract medium 

Sediment-extract was prepared by mixing 250 g of sediment collected from White Island 

from each of the different sampling sites with 2 L of MilliQ water. The mixture was 

boiled for two hours with occasional stirring. The boiled extract was cooled for 30 min to 

allow settlement of large rock particles. Smaller particles in the solution were then 

removed by filtration using Miracloth paper filters (EMB Biosciences Inc., La Jolla.). The 

final sediment-extract was autoclaved at 121°C for 50 min and stored at 4°C.  

 

Liquid sediment-extract medium contained KH2PO4 (0.28 g), (NH4)2SO4 (1.30 g), MgSO4 

x 7 H2O (0.25 g), CaCl2 x 2 H2O (0.1 g), AlCl3 (0.1 g) and yeast extract (1 g) in 798ml of 

dH2O. The solution was sterilised (120°C for 20 min), cooled, and then supplemented 

with 1 ml (500 mM) of FeCl3 x 6 H2O (previously sterilised by filtration through a 0.22 

µm filter) and 1 ml of trace elements: MnCl2 x 4 H2O (900 mg), Na2B4O7 x 10 H2O (2.25 

mg), ZnSO4 x 7H2O (110 mg), CuCl2 x 2 H2O (25 mg), Na2MoO4 x 2 H2O (15 mg), 

VoSO4 x 2 H2O (15 mg), elemental sulphur (1 g) and CoSO4 (5 mg) in 500 ml of dH2O.  

Finally, 200 ml of sediment-extract and 5 g of elemental sulphur were added to the 

solution. The final pH was adjusted to 3 and stored at 4° C. 
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2.1.2 Solid extract agarose-based medium 

The solid medium was modified from a washed agarose/yeast extract (WAYE) medium  

developed previously to facilitate growth of oligotrophic and heterotrophic acidophiles 

from environmental samples (Johnson 1995). It was prepared as follows (per L of 

medium): solution A contained KH2PO4 (0.28 g), (NH4) 2 SO4 (1.30 g), MgSO4 x 7 H2O 

(0.25 g), CaCl2 x 2 H2O (0.1 g), AlCl3 (0.1 g) and yeast extract (0.5 g) in 650 ml of MilliQ 

water with the final pH adjusted to 3. The solution was sterilised (120°C for 15 min). 

Solution B was a non-acidified solution of distilled water-washed agarose. 9 grams of 

agarose (Sigma type 1) was soaked for 30 min in 1 L dH2O with continuous stirring. The 

suspension was allowed to settle for 15 min. Most of the water was removed by decanting 

and the remaining bulky agarose suspension centrifuged. The supernatant was discarded 

and the agarose particles were re-suspended in 250 ml of dH2O and the solution sterilised. 

Solution C consisted of 100 ml of sediment-extract from White Island (IV.2.1.1.5).  

Solutions A and B were sterilised (120°C for 15 min) and combined with solution C when 

cool. The final medium was supplemented with 500 mM of FeCl3 x 6 H2O and 1 ml of 

trace elements (as explained above) sterilised by filtration through a 0.22 µm filter. 

Finally, after sterile addition of the supplements, the medium was dispensed onto Petri 

plates. 

2.2. Cultivation conditions 

2.2.1. Enrichment cultures 

For enrichment of microorganisms directly from the environment, approximately 0.5 g of 

sample material was transferred aseptically to test tubes containing 10 ml of liquid media. 

Cultures were incubated aerobically at 37ºC and/or 60ºC, with shaking (100 rpm). 

Microbial growth was monitored by light microscopy. To subculture actively growing 

cultures, 500 µl was transferred aseptically to fresh media.  
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2.2.2. Pure cultures 

Solid low pH agarose-based plates supplemented with sediment-extract were inoculated 

with 500 µl of each liquid medium culture and incubated aerobically at 37°C and 60°C for 

up to 7 days. Single colonies were picked and streaked onto fresh plates to obtain pure 

cultures. This step was repeated up to 4 times in order to obtain pure cultures which were 

confirmed by light microscopy. 

2.3. Long-term storage of cultures 

Actively growing cultures and subcultures were mixed with 10% DMSO (v/v) or 6% 

betaine (v/v) or 10 % glycerol (v/v) and immediately frozen at -80ºC. Frozen stocks were 

slowly thawed on ice for recovery of cultures, transferred to fresh, liquid medium and 

incubated under suitable conditions. The concentrations of DMSO, betaine and glycerol 

were determined empirically by observing recovery and successful subculturing after 

storage at -80ºC for several weeks.  

2.4. Buffers and solutions 

General buffer and solutions are described in Chapter II. 

 

  Table IV.1: General buffers and solutions. 

XS buffer 

1% potassium ethyl xanthogenate (w/v), 800mM of ammonium 

acetate, 100 mM of Tris-HCl pH 7.4, 20 mM of EDTA pH 8 and 1% of 

SDS (w/v). Buffer was kept at -20ºC in the dark after autoclaving and 

discarded after 2 weeks 

Potassium acetate 4 M potassium acetate                                                         

Phenol/Chloroform/Isoa

mylalcohol (25:21:1) 

Chloroform/isoamylalcohol (CIAA) at 24:1. Saturated phenol buffer 

was mixed with CIAA (24:1) in a ratio of 1:1 at least 1 h prior to use 

and stored protected from light                                                  

TER buffer 
10 mM Tris-HCl pH 7.4, 1 mM EDTA pH 8 and 100 mg/ml of 

RNAase A                                  

Ampicillin solution 
100 mg/ml of Ampicillin. Ampicillin was dissolved in H2O, sterilised 

by filtration and stored at -20ºC 

X-Gal solution 
20 mg/ml of X-Gal. X-Gal was dissolved in dimethylformamide and 

stored at -20ºC after filter sterilisation 
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IPTG solution  
5 mg/ml of IPTG. IPTG was dissolved in H2O and stored at -20ºC after 

filter sterilisation 

 

2.5. Chemical analysis of the sediment-extract 

Multi-element analysis to detect trace elements and heavy metals from the sediment-

extract used to supplement the liquid and solid medium was carried out by mass 

spectrophotometry at the National Measurement Institute (Australian Government, 

Australia). 

2.6. Molecular analyses of enrichment cultures 

2.6.1. DNA extraction  

After 3 months of cultivation, genomic DNA was extracted from 4 ml of each enriched 

liquid culture using a modified XS buffer DNA extraction method (Tillett & Neilan 2000). 

Between 5 to 20 ml of actively growing culture was centrifuged for 30 min (5,000 rpm). 

Cell pellets were resuspended in 50 µl of TER buffer and mixed with 70 µl of fresh XS 

buffer. The mixture was vortexed at full speed for up to 5 min followed by incubation at 

65ºC for 2 h with occasional mixing by hand every 30 min. After incubation, tubes were 

vortexed for 10 s and placed on ice for 10–15 min. After centrifugation (10 min at 10,000 

rpm in a bench-top centrifuge or 30 min at 5,000 rpm in a Sigma 6K15 swing-out rotor 

11150/13420), the supernatant was transferred to a PhaseLock Gel light tube and mixed 

with 1 volume of phenol/CIAA (25:24:1) by 5 min of vigorous shaking. The tube was 

centrifuged for 5 min (3,000 rpm, 15ºC) and the aqueous layer transferred to a fresh 1.5 

ml Eppendorf tube. 1 volume of 100% cold Isopropanol (-20ºC) and 1/10 volume of 4 M 

potassium acetate were added and mixed gently. DNA was precipitated for 30 min at -

80ºC or at -20ºC overnight followed by a centrifugation step at 16,000 rpm (45 min, 4ºC, 

Sigma 3-18K rotor 12154-H). The supernatant was discarded and the pellet washed once 

in 1 ml of 70% EtOH. The dried pellet was resuspended in 50 – 250 µl of TE buffer 

depending on the concentration of DNA obtained. 
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2.6.2. PCR amplification 

Polymerase chain reaction amplification of 16S ribosomal RNA genes was carried out as 

described in Chapter II.2.6.2, using universal bacterial primers (PB36 and PB38) and the 

universal archaeal primers (ASF and ASR). DNA extracted from both enriched and pure 

cultures was used as the template (diluted up to 1:100). PCR products were analysed by 

1% gel electrophoresis and visualised and documented under UV excitation using a 

Chemilmager 4400 digital imaging system (II.2.6.1).   

2.6.3. Restriction fragment length polymorphism (RFLP) 

Restriction fragment length polymorphism (RFLP) analyses were carried out on amplified 

DNA. Amplified PCR products were ligated with the pCR2.1 vector using the TA 

Cloning Kit (Invitrogen, Australia), following the manufacturer’s instructions. Ligation 

was performed overnight at 14°C. Competent E. coli strain DH5α cells were transformed 

with the ligated vector according to the manufacturer’s protocol. Transformant cells were 

plated on LB agar plates: 600 ml of LA agar supplemented with 600 µl of X-Gal (40 mg 

ml-1), 480 µl of IPTG (100 mM) and 600 µl of ampicillin (100 mg l-1). X-Gal, IPTG and 

ampicillin were added to molten LA agar at approximately 50ºC and then 20 ml was 

poured onto individual Petri dishes. After solidification, the plates were stored at 4ºC. 

Inoculated plates were incubated overnight at 37°C. Blue-white screening on the plates 

was used as a selective marker for successful ligation and transformation. White colonies 

(transformant cells) were picked with sterile toothpicks and transferred into a standard 

PCR reaction with the vector-specific primers pCR21F and pCR21R (II.2.6.2). After 

transferring the colonies into the PCR reaction mix, the toothpicks were subsequently 

streaked onto numbered segments of fresh supplemented LB plates, as described earlier, 

for incubation overnight at 37ºC. Plates were then stored at 4ºC. PCR reactions were 

prepared on ice according to the following protocol, using aerosol filter tips and 0.2 µl 

reaction tubes. Each PCR reaction contained 0.1 µl of AmpliTaq Gold DNA polymerase 

(5 U/µl), 2.5 µl of 10x Taq Buffer, 2.5 µl MgCl2 (25 mM), 2.5 µl of dNTPs mixture (2.5 

mM of each dNTP), 0.5 µl of pCR 21F (10 mM) as forward primer, 0.5 µl of pCR 21R 

(10 mM) as reverse primer and 10.9-15.7 µl of sterile MilliQ water to make a final 

volume of 25 µl. The DNA template was added at 0.2-5.0 µl  Each cycle was composed of 
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10 min at 94°C, 30 s at 94°C, 30 s at 50°C, 2 min at 72°C and 5 min at 72°C. After 30 

cycles, the reactions were stored at 4°C. 5 µl of each PCR reaction was analysed on a 1% 

agarose gel. Only products showing the correct insertion size were used for further 

analyses.  

 

Restriction enzyme digestions of the PCR products were carried out according to the 

manufacturer’s protocols using 0.25 µl HinfI and 0.25 µl BsuRI restriction endonucleases 

added to each PCR product (20 µl), followed by incubation at 37ºC for approximately 4 h. 

Digested DNA was mixed with DNA loading buffer and run on 3% (w/v) agarose gel at 

90 V for up to 90 min. DNA was visualised using ethidium bromide staining and 

documented as described previously (II.2.6.1). The patterns were compared to each other, 

and recombinants with identical patterns were grouped into ribotypes (preliminary 

operational taxonomic units, OTUs). A representative recombinant of each ribotype was 

selected for sequencing and phylogenetic analysis.  

2.6.3.1 Long-term storage of recombinants 

Selected recombinants for sequencing were transferred to 10 ml of LB broth containing 

0.1 mg/ml of ampicillin (II.2.3). After incubation at 37ºC for 12-14 h with shaking at 250 

rpm, 2 ml of each culture was transferred to a sterile reaction tube and centrifuged at 

13,000 rpm for 10 min. The supernatant was discarded and the cell pellets were 

resuspended thoroughly in 1 ml of 50% (v/v) glycerol in LB broth and immediately stored 

at -80ºC.  

2.6.3.2. Extraction of plasmid DNA 

Plasmid DNA from liquid recombinants cultures (IV.2.6.3.) was extracted with the 

QIAprep Spin Miniprep Kit or the Wizard Plus SV Miniprep DNA purification system 

following the manufacturer’s instructions. The concentration of extracted plasmid DNA 

was determined via absorbance at 260 nm with a Biophotometer.  
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2.6.4. Sequencing analysis 

Recombinant 16S rRNA genes in plasmids were sequenced by the chain-termination 

method using BigDye Terminator v3.01 (Applied Biosystems, Foster City, USA) and the 

vector-specific primers M13F or M13R (Table II.12). Sequencing reactions were prepared 

as follows: 350-500 ng of plasmid DNA or 100-150 ng of PCR product, 1.5 µl of 5x 

sequencing buffer, 1 µl of BigDye Terminator v3.01, 1 µl of primer (3.2 pmol/µl) and 

sterile MilliQ water up to 20 µl. The sequencing program is described in Table IV.2. 

 

  Table IV.2: Standard protocol for sequencing reaction. 
 Time Temperature Number of cycles 

Denaturing 10 s 96ºC 

Annealing 5 s 50ºC 

Polymerisation 4 min 60ºC 

25 

Hold ∞ 4ºC  

  

The products obtained were transferred into clean 1.5 ml Eppendorf tubes and mixed with 

16 µl of sterile MilliQ H2O and 64 µl of 99% EtOH and vortexed briefly. The reactions 

were incubated at RT for 45 min followed by centrifugation at 4ºC for 45 min at 16,000 

rpm (Sigma 3-18K, rotor 12154-H). The supernatant was removed completely and the 

pellets were washed with 250 µl of 70% EtOH (v/v) and centrifuged for 10 min. The 

supernatant was discarded and the pellets were dried for several minutes at 70ºC. 

Sequencing reactions were analysed at the Automated DNA Analysis Facility for 

Sequencing (School of Biotechnology and Biomolecular Sciences, University of New 

South Wales, Australia) using an ABI Prism 96-capillary 3730 DNA Analyser (Applied 

Biosystems) (II.2.6.3).  

2.6.5. Construction of 16S rDNA consensus sequences 

Sequence fragments were assembled and edited using the Vector NTI Advance software 

package (Invitrogen, Carlslab, USA).  

 

Consensus 16S rDNA sequences (1024 – 1033 bp for archaeal and 1482 – 1497 bp for 

bacterial) were compared to datasets from GenBank (National Centre for Biotechnology 
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Information, NCBI) (Altschul et al. 1997) using the BlastN algorithms megablast and 

discontinuous megablast. These programs identify regions of local similarity between 

sequences (http://www.ncbi.gov/BLAST/) for preliminary phylogenetic placement. 

 

All consensus sequences were analysed for the presence of possible chimeric artefacts, 

using the programs Bellerophon (http://foo.maths.uq.edu.au/~huber/bellerophon.pl) 

(Huber et al. 2004) and Chimera-Check RDP (Cole et al. 2003) 

(http://rdp8.cme.msu.edu/cgis/chimera.cgi?su=SSU). Putative chimeric sequences were 

confirmed by alignments with possible parent sequences and excluded from further 

analyses. 

2.6.6. Sequence alignments 

Multiple sequence alignments of non-chimeric consensus sequences were performed with 

ClustalX (Thompson et al. 1997), ClustalW (Thompson et al. 1994) and Vector NTI 

Advanced software package. The aligned sequences were compared with each other and 

sequence similarities were calculated over the full length of the recombinant genes. The 

recombinants were assigned to phylotypes (operational taxonomic units, OTUs) based on 

sequence similarities of ≥ 99% (McCaig et al. 1999; Singleton et al. 2001).  

2.6.7. Phylogenetic analyses 

The recombinant 16S rDNA gene sequences obtained were analysed using the ARB 

software package (Ludwig et al. 2004). They were added to the latest SSURef dataset of 

the SILVA database project (www.arb-silva.de; release 1.4 from February 2007) 

containing 137,788 quality-checked and aligned nearly full-length small subunit rRNA 

sequences. The sequences were aligned automatically according to the SILVA reference 

alignment using the Fast Aligner of the ARB_EDIT tool, followed by manual correction 

taking into account the secondary structure of the rRNA molecule and positional 

variability of the alignment positions. To identify the tentative phylogenetic position of 

the sequences obtained, they were initially added to the main navigation tree provided 

with the SILVA database according to parsimony criteria without changing the overall 

tree topology as allowed by the “quick add” function of ARB. Based on this classification, 
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subsets of sequences of appropriate quality and representing the groups harbouring the 

sequences plus reference groups were chosen from the SILVA SSU database for de novo 

tree reconstruction.  

 

The phylogenetic trees presented were reconstructed based on distance-matrix (ARB 

neighbour joining) and maximum-likelihood analysis for bacteria and archaea, 

respectively, using filters excluding highly variable positions of the alignment. Tree 

topologies were evaluated by various tree reconstruction algorithms including maximum-

parsimony analyses and by exclusion of filters to test overall stability of the branching 

patterns. For distance-matrix analysis, which was less computationally intense compared 

to the other methods, extended sub-datasets were used (up to several hundred sequences) 

to evaluate tree topology. The sequences from this study were added subsequently to the 

trees as described above. For a better overview, only 16S rDNA sequences from this study 

plus selected reference sequences were displayed on the trees. 

2.7. Fluorescent in situ hybridisation 

For fixation, 1ml of liquid culture was fixed with 110 μl of 30% paraformaldehyde and 

prepared following the procedures described in Chapter II.2.6.4.4. Fixed samples were 

then spotted onto pre-cleaned microscope slides (II.2.6.4.2) and hybridised to the probes 

(II.2.6.4.5). Finally, the slides were rinsed with cold dH2O, dried and mounted in Citifluor 

AF-1 (Citifluor Ltd, London, United Kingdom).  

 

The rRNA-targeted oligonucleotides used for FISH were a combination of universal 

bacterial and archeal probes. The bacterial probes were Eub338, Eub388-II and Eub388-

III 5’ labelled with Alexa488. The archeal probes were ARCH344, ARCH1060 and 

ARCH915 5’ labelled with Cy3 (II.2.6.4.1). All probes were supplied by Sigma-Aldrich 

(Sydney, Australia). Samples were observed by fluorescence microscopy using 

appropriate filters for Alexa 488 and Cy3 visualisation (II.2.4.2). 
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3. RESULTS 

3.1. Chemical analysis of the sediment-extract 

Multi-element analysis from the sediment-extract used to supplement the culture medium 

was performed to gain a better understanding of its composition in relation to the 

environmental sediment samples collected from White Island. The analysis revealed that 

the sediment-extract had similar analytical composition to the sediment collected from 

White Island (III.3.2), including the presence of numerous trace elements in small 

quantities and high amount of magnesium, aluminium, silicon, sulphur and iron (Table 

IV.3). 

  Table IV.3: Multi-element analysis of sediment-extract. 

<1 ug/L 1-10 
ug/L 

10–50 
ug/L 

50–100 
ug/L 

100-500 
ug/L 

500ug-1 
mg/L 

1-5 
mg/L >5 mg/L 

Antimony Beryllium Arsenic Barium Caesium Strontium Lithium Aluminium 

Germanium Bismuth Cerium Yttrium Chromium  Rubidium Boron 

Gold Cadmium Cobalt  Copper  Sulphite Calcium 

Holmium Dysprosium Neodymium  Nickel   Iron 

Iridium Erbium Phosphorus  Zinc   Magnesium 

Lead Europium Scandium     Manganese 

Lutetium Gadolinium Titanium     Potassium 

Mercury Gallium Vanadium     Silicon 

Molybdenum Hafnium      Sodium 

Niobium Samarium      Sulphur 

Palladium Thallium      Chloride 

Platinum Thorium      Ammonia 

Rhodium Ytterbium      Sulphate 

Ruthenium Zirconium      Nitrate 

Selenium        

Silver        

Tantalum        

Tellurium        

Terbium        

Thulium        

Tin        

Tungsten        

Uranium        
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3.2. Enrichment cultures 

Standard liquid media were used to obtain enrichment cultures from representative 

sediment samples from all the location sites examined at White Island, including 

Acidianus medium, Sulfolobus medium, Sulfolobus solfataricus medium, and diluted 

nutrient broth medium at low pH. These liquid media were designed for the cultivation of 

acidophiles and thermophiles. Growth was observed by light microscopy after 5 days 

cultivation at 37ºC and 60ºC. These cultivation temperatures were chosen in order to 

discriminate between mesophilic and thermophile microorganisms. 37ºC was chosen to 

simulate the cooling experienced as the result of distance from the geothermal source. 

Higher incubation temperatures were not possible due to the lack of suitable equipment 

and glassware. 

 

All cultures were observed every 3-4 days by phase contrast microscopy and details of the 

morphologies of the microorganisms were recorded. Consecutive subcultures were carried 

out after approximately 10 days of incubation. A general reduction of cell yield in 

subultured samples was observed for all standard liquid media used for cultivation after 

approximately 4 weeks from the first inoculation, as observed by phase contrast 

microscopy. The lack of sustainable cultures may be caused by the limited amounts of the 

essential minerals and trace elements require for microbial growth. As a control, the 

standard liquid media without inocula were used as a negative control, confirming that 

there were no contamination issues. Actively growing cultures were stored for the long-

term using DMSO, betaine and glycerol before subculturing into fresh media. 

 

A sediment-extract medium was formulated as a result of the lack of suitable growth in 

standard media. Sediment from all sample sites of White Island was used to prepare the 

sediment-extract supplement. The medium was inoculated with sediment collected from 

all the sampling sites and incubated in aerobic conditions at 37ºC and 60ºC. Growth was 

observed by light microscopy after 2 days of incubation. All positive cultures at 37ºC and 

their subcultures contained diverse morphotypes of cells, dominated by rod-shaped cells 

with different shapes and lengths (Table IV.4). In some cases, the rods appeared as short 

chains or as small clusters. Irregular small cocci were also detected at both culture 

temperatures. Repeated subculturing in the sediment-extract medium resulted in sustained 

growth for the length of the study (3 months). Microbial growth from locations C and E2 
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were not obtained. These sites consisted of small pools of water with strong gas leakage 

that resulted in a bubbling black solution. Cultures from locations E1, F and G seemed to 

have a higher cell number and a more diverse population of microorganisms than cultures 

from other locations. 

 

Table IV.4: Morphologies of microorganisms cultured in sediment-extract medium after the 
first inoculation and after subculturing for the ninth time. 

 Enrichment at 37ºC Enrichment at 60ºC 

Sample 1st Inoculation 9th Subculture 1st Inoculation 9th subculture 

A 
Rods (diff. shapes / 

lengths) 

Rods (diff. shapes / 

lengths) 
Small cocci Small cocci 

B 
Rods (diff. shapes / 

lengths) 

Rods (diff. shapes / 

lengths) 
- - 

C - - - - 

D 
Rods (diff. shapes / 

lengths) 

Rods (diff. shapes / 

lengths) 

Rods (diff. shapes / 

lengths) 

Rods (diff. shapes / 

lengths) 

E1 
Rods (diff. shapes / 

lengths); irregular cocci 

Rods (diff. shapes / 

lengths); irregular 

cocci 

Rods (diff. shapes / 

lengths); irregular 

cocci 

Rods (diff. shapes / 

lengths); irregular cocci 

E2 - - - - 

F 
Small rods (diff. 

shapes); cocci 

Small rods (diff. 

shapes); cocci 
Small cocci Small cocci 

G 
Rods (diff. shapes / 

lengths); irregular cocci 

Rods (diff. shapes / 

lengths); irregular 

cocci 

Rods (diff. shapes / 

lengths); irregular 

cocci 

Rods (diff. shapes / 

lengths); irregular cocci 

H 
Rods (diff. shapes / 

lengths) 

Rods (diff. shapes / 

lengths) 

Rods (diff. shapes / 

lengths) 

Rods (diff. shapes / 

lengths) 

I 
Rods (diff. shapes / 

lengths); flagellated 

rods; diatoms 

Rods (diff. shapes / 

lengths); flagellated 

rods; diatoms 

Rods (diff. shapes / 

lengths); diatoms 

Rods (diff. shapes / 

lengths); diatoms 

Blank - - - - 

-: No cells observed. 
 

The sediment-extract used to supplement the medium contained small particles with 

similar sizes to the microorganisms cultured (Figure IV.1). Therefore, unequivocal cell 

counts of the enriched cultures could not be made. Although the cells could not be 

distinguished from the minerals, sometimes they were found to be detached and were 

isolated, allowing clear resolution of their morphology. In these cases, the reflection of 
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light under phase contrast microscopy aided in the identification of the cells. As a control, 

the medium without inoculum was used as a negative control and it was confirmed that 

there were no microorganisms growing naturally from the sediment-extract.  

 

     

3.3. Molecular analyses of cultured microorganisms 

Molecular techniques were used to characterise the microbial diversity present in the 

cultured microorganisms obtained using the liquid sediment-extract medium. Due to time 

limitations, only three locations were selected for molecular analyses. Locations E1, F and 

G were selected as being the most representative features of White Island and provided 

diverse microbial populations as identified by light and confocal microscopy. 

 

DNA was extracted from enrichment cultures from the three locations at 37ºC and 60ºC 

using the modified XS buffer method. Molecular analyses were carried out with all the 

sequences obtained to investigate the evolutionary relatedness among the microorganisms 

cultured (Table IV.5).  

 

 

 

 

 

 

 

 

Figure IV.1: Sediment-extract from White 
Island used to supplement the medium. 
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Table IV.5: 16S rDNA sequence analyses of microorganisms cultivated from White Island 
samples. Several previously uncultured bacterial and archaeal species from diverse lineages were 
identified growing in liquid sediment-extract media from the three sites studied.  
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a Representative 16S gene fragment sequenced for phylogenetic analysis.  
NA: Not applicable 
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Bacterial and archaeal phylogenetic trees were generated from the sequences obtained 

from the recombinant libraries. The bacterial phylogenetic tree revealed a diverse range of 

microorganisms belonging to the phyla Bacteroidetes, α-Proteobacteria and Firmicutes 

(Figure IV.2). Microorganisms from the α-Proteobacteria phylum were only found in 

cultures at 37°C from locations E and G (Table IV.5). They were relatively close to 

Acidocaldus organivorans with 96% sequence identity, Acidiphilium organovorum with 

98% similarity and 95% sequence identity to Acidiphilium angustum (Table IV.5). 

Sulfobacillus acidophilus was found in both F and G locations in cultures at 60°C only. 

The most closely related microorganism to E606 was Thermaerobacter subterraneus with 

93% sequence identity, while the remaining matches belonged to previously uncultured 

microorganisms from hydrothermal systems (Table IV.5). Both sequences F608 and G602 

were most closely related to previously uncultured microorganisms from thermal sediment 

environments and they had 97% similarity to Thermoanaerobacter siderophilus. 

Alicyclobacillus tolerans and Alicyclobacillus acidocaldarius were both present in 

cultures at 37°C and 60ºC from locations E and F (Table IV.5).  The only cultured sample 

found that belonged to the Bacteroidetes phylum was G605 present in location G.   
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Figure IV.2: Maximum likelihood phylogenetic tree of 16S rRNA gene sequences from 
bacterial sequences of volcanically-active sediments of White Island microorganisms 
cultured using sediment- extract media. For each recombinant sequence the next relative is 
shown (in the case of uncultivated organisms accession numbers are indicated in 
brackets). The bar indicates 10% estimated sequence divergence. 

 

Evidence for the presence of previously uncultured archaeal isolates from the 

Euryarchaeota and Crenarchaeota Phyla were found in cultures from the three locations 

analysed (Figure IV.3). The Euryarchaeota sequences were related to the genus 

Thermoplasma. Sequences F605 and F604 both showed 97% similarity to Thermoplasma 

volcanium but the sequences were still significantly different to Thermoplasma 

acidophilum. F371 had 99% sequence similarity to an uncultured microorganism 

previously found in acid mine-drainage environments, while EF607 had 99% sequence 

identity to a previously uncultured microorganism from a bioleaching reactor. Although 

EF602 and F371 were allocated to separate sites in the tree, both sequences showed 93% 

identity to Thermoplasma acidophilum. Crenarchaeota were more diverse; G603 belonged 

to a large group of uncultured Crenarchaeota previously identified from hot springs with 

96% sequence similarity to Ignicoccus pacificus. Sequences F607 and G604 belonged to 

the family Sulfolobales. Sequence F607 had high similarity to an uncultured archeon 

related to Sulfolobus tokadaii, while G604 had 93% similarity to Sulfolobus 
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acidocaldarious. Sequences F606 and E374 belonged to another large group of uncultured 

Crenarchaeota identified from hot springs which have very low similarity to any 

previously described microorganisms from these habitats.  

 

 
Figure IV.3: Evolutionary distance of 16S rDNA archeal sequences of representative 
isolates microorganisms cultured using sediment-extract media from volcanically-active 
sediments of White Island. For each sequence the nearest relative is shown (in the case of 
uncultivated organisms accession numbers are indicated in brackets). The bar indicates 10% 
estimated sequence divergence. 
 

3.4. Isolation of pure cultures 

Isolation of microorganisms from mixed cultures present in the liquid sediment-extract 

medium was achieved through the formulation of a new solid agarose plate medium 

(Figure IV.4). This medium was supplemented with sulphur and sediment-extract from 

White Island. The medium designed was able to solidify at low pH and retain its water 

content for up to 7 days, enabling the formation of small white colonies at both 37°C and 
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60°C. Sub-culturing was then carried out to obtain the isolates in pure cultures at both 

temperatures.   

 

Molecular analyses were carried out on 2 purified isolates obtained using solid agarose-

based plates incubated at 60°C from location F. The sequence information revealed that 

the isolates had above 99% sequence identity to Alicyclobacillus acidocaldarious and 

Sulfobacillus acidophilus (Isolates F602 and F601). Both microorganisms were rod-

shaped and spore-forming as determined by light contrast microscopy. 

 

    
 

3.5. FISH 

Fluorescent in situ hybridisation was used to study the microbial interaction between the 

microorganisms cultured in the sediment-extract medium. FISH was performed with 

domain-specific probes to assign the microorganisms to either Archaea or Bacteria. The 

controls for FISH were E. coli and archaeon SM1 stained with Alexa Fluor 488 and Cy3 

respectively (Figure IV.5).  

 

 

Figure IV.4: Solid agarose plate 
supplemented with sulphur and 
sediment-extract from White Island. 
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Initial experiments with FISH using epi-fluorescence microscopy revealed high levels of 

background autofluorescence resulting from the minerals present in the sediment-extract 

(Figure IV.6). The minerals also showed non-specific binding to the FISH probes. The 

strong background from the sample material interfered with the ability to distinguish 

microorganisms from minerals. To avoid the background autofluorescence, the samples 

were visualised using a confocal microscope instead of the commonly used epi-

fluorescence microscope.  

 

High concentrations of formamide were required during the hybridisation step for FISH, 

to decrease non-specific binding of fluorescent probes to the minerals present in the 

medium and to optimise the probe specificity. Although 35% formamide was found to be 

the optimum concentration to balance the problem of auto-fluorescence background and 

the integrity of the microorganism’s cell wall, the minerals still showed high levels of 

fluorescence difficulting the differentiation of microbial cells under the epi-fluorescence 

microscope (Figure IV.6). Higher concentrations of formamide promoted the loss of the 

integrity of the cell walls.  

A B 

C 

Figure IV.5: E. coli and archaeon SM1 
stained with domain-specific probes used 
as a control for FISH. E. coli stained 
with Alexa Fluor 488 and Archaea SM1 
stained with Cy3. Images taken with epi-
fluorescence microscope. A: UV light 
showing DAPI fluorescence. B: Blue 
light showing E. coli stained with Alexa 
Fluor 488. C: Green light showing 
Archaea SM1 stained with Cy3. 
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Figure IV.6: FISH images by epi-fluorescence microscopy of enrichment cultures from 
location site G growing at 60ºC. A: DIC. B: UV light. C: Blue light. D. Green light. 

 

 

Confocal microscopy was used to avoid the autofluorescence background by applying 

point illumination and a pinhole in an optically conjugate plane to result in the detection 

of fluorescence only in the focal plane (Figure IV.7). 

 

 

 

 

 

A 

C 

B 

D 
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Figure IV.7: FISH images by confocal microscopy of enrichment cultures from location F 
and G at 60ºC. All two-colour images reveal mixed populations of both Archaea –Cy3 (red) 
and Bacteria –Alexa Fluor 488 (green). Figures A and B belong to sample site F. Figures 
C and D belong to sample site G. Figures B and D show differential interference 
microscopy images combined with their respective fluorescence staining to demonstrate 
particulate and microbial interactions in liquid sediment-extract medium.  

 

Bacterial microorganisms were stained with Alexa Fluor 488 (green) while archaeal 

microorganisms were stained with Cy3 (red). Both Bacteria and Archaea were observed 

as small communities attached to the minerals present in the medium in all cultures 

(Figure IV.7). 

 

The enrichment cultures of the three locations analysed by confical microscopy consisted 

of approximately 70% Bacteria and 30% Archaea when the cultures were cultivated at 

60°C. Archaeal species were not uniformly present in cultures incubated at 37°C, except 

for sample site E where Archaea were observed to account for 9% of the population. 

These results reflected the culturable representatives of the microbial communities of 

White Island at the three locations studied.  
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4. DISCUSSION 

4.1. Cultivation of thermo-acidophiles from White Island  

Initially, various traditional media used for the cultivation of thermo-acidophilic 

microorganisms were tested (Johnson 1995). Cultivation using these conventional media 

was unsuccessful as the cultures were not sustainable over time, despite light microscopy 

revealing that growth was present initially. Volcanic sediment, when used as an inoculum, 

contains not only microbial life but also limited amounts of the essential minerals and 

chemical compounds require for microbial growth. These trace elements, initially present 

in the culture media when sediment was as an inoculum, were progressively diluted after 

serial sub-culturing. As a consequence, microbial growth initially observed in every 

traditional medium tested was not sustainable over time as the natural resources were not 

longer available.  

 

Here, a new liquid medium based upon the utilisation of sediment-extract was formulated 

to ensure the availability of essential trace elements required for microbial growth over 

longer periods of time. Soil-extract has been known, since the late 1940s, as a valuable 

constituent of media for the growth of many bacteria where studies revealed that cultures 

isolated from soil-extract agar were unable to grow in liquid media without the presence 

of soil-extract (Lochhead & Chase 1943; Taylor 1951; Johnson 1995). However, the use 

of soil-extract in liquid or solid media has not been widely applied to the cultivation of 

microorganisms.  

 

The lack of successful cultivation in standard media could be also explained by the lack of 

sediment particles which support the indispensable microbial metabolic pathways or by 

the nature of the microbial consortia (Spiegelman et al. 2005). Traditionally, 

microbiologists use complex transparent media to assist in the optical observation of 

microbial growth. The sediment-extract developed for cultivation purposes in this study 

was turbid due to the presence of high concentrations of minerals and small particles. This 

turbidity presumably enabled the necessary interactions between microorganisms and 
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sediment particles. This factor may be crucial for maintaining growth. The attachment of 

cells to specific minerals, such as ferrous iron sulphate crystals, is hypothesised to be 

significant for cycling of iron and sulphur (Druschel et al. 2004). Microbial communities 

of the order Thermoplasmales have been found previously to be in direct contact with 

pyrite or ferrous-iron solutions (Druschel et al. 2004). Additionally, microorganisms 

typically form an exopolysaccharide (EPS) layer when they adhere to the surfaces of  

minerals (Sand et al. 1995) but not when they are growing as planktonic cells (Devasia et 

al. 1993).  It is within this EPS layer that biooxidation reactions take place more rapidly 

and efficiently than when microorganisms are growing as planktonic cells (Gehrke et al. 

1998; Rohwerder et al. 2003; Rawlings 2005).  

4.2. Molecular analyses 

The first step for molecular analyses is the extraction of genomic DNA from the samples. 

This step may be influenced by a variety of different factors. It has been reported that low 

yields of DNA are due to the adsorption of DNA to clay and quartz particles, especially 

under acidic conditions (Khanna & Stotzky 1992; Franchi et al. 1999). An enzymatic lysis 

protocol (described in Chapter VI.2.3.2) was used initially to extract the genomic DNA 

from the enrichment cultures resulting in very low yields of DNA. This result could be 

explained by the loss of activity of the enzymes (Lysozyme, Mutanolysin, RNAaseA and 

a protease from S. griseus) due to the low pH values present in the liquid media. For this 

reason, extraction of DNA was carried out using a chemical lysis method, resulting in 

adequate DNA yields for further analyses. 

 

In addition, PCR amplification can be influenced by various factors such as primer 

mismatches, annealing temperature, or number of amplification cycles and differential 

amplification of different rRNA genes from mixed template DNAs producing artefacts 

(Reysenbach et al. 1992; Osborne et al. 2005). Variations in genome size or numbers of 

copies of the rRNA operon in the different microorganisms can also introduce bias 

(Farrelly et al. 1995). Those variables and their influences on PCR amplification cannot 

be estimated in analyses of unknown environmental samples and cultures. The choice of 

primers and the number of amplification cycles is crucial when amplifying unknown DNA 

(Suzuki & Giovannoni 1996). For this reason universal primers were used in this study to 

allow a match for a wide variety of microorganisms. However, universal primers may also 
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underestimate or overlook the total microorganisms present in the sample (Farris & Olson 

2007). In order to obtain the best coverage of the microbial diversity of unknown samples, 

several extraction methods and primers for PCR amplification would be necessary. 

However, such analyses are time-consuming and expensive and became a limiting factor 

for their use in this study. 

 

Various acidophilic, mesophilic and moderately thermophilic sulphur- and iron-

metabolising species were identified from the enrichment cultures. Several of the 

amplified bacterial and archaeal sequences represented novel phylotypes or showed 

closest matches to previously uncultured or unidentified organisms (Table IV.5).  

 

The diversity of the bacteria cultured was similar at all three locations studied from White 

Island. Phylogenetic analyses revealed that all α-Proteobacteria cultured were most 

closely related to previously uncultured microorganisms (Figure IV.2). As expected, α-

Proteobacteria, which are traditionally mesophilic (optimal temperature range from 20 to 

40°C), were only found in cultures growing at 37°C. The rest of the bacteria cultured were 

moderate thermophiles (Johnson et al. 1998). Phylotypes from α-Proteobacteria found in 

the enrichment cultures were closely related to Acidiphilum angustum and Acidiphilum 

organovorum. These microorganisms are acidophilic iron-reducers found in acidic metal-

rich environments (Johnson & McGinness 1991; Dopson et al. 2003; Roling et al. 2006; 

Rowe et al. 2007). The third phylotype from α-Proteobacteria found in cultures from 

location site E was closely related to Acidicaldus organivorans (Johnson et al. 2006). 

 

Three major groups were found from the Firmicutes division. Members from the genus 

Sulfobacillus include endospore-forming, rod-shaped aerobic Gram-negative, moderately 

thermophilic, acidophilic bacteria that obtain energy by oxidising ferrous iron, elemental 

sulphur and sulphide minerals (Golovacheva & Karavaiko 1978; Norris et al. 1996b; 

Johnson et al. 2003; Bogdanova et al. 2006). Isolates of Sulfobacillus spp. have been 

obtained previously from a range of thermal acidic environments and the uncultured and 

unclassified members of this group have also been found in acidic habitats, such as 

geothermal areas, self-heating mine-waste spoils and commercial mineral-processing 

operations (Golovacheva & Karavaiko 1978; Bond et al. 2000a; Kinnunen et al. 2003; 

Kinnunen & Puhakka 2004; Diaby et al. 2007). Sulfobacillus acidophilus was identified 
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from enrichment cultures growing at 60ºC of two locations. Two members from the genus 

Alicyclobacillus were identified from enrichment cultures from the three locations 

examined. A. tolerans, previously classified as Sulfobacillus thermosulfidooxidans 

(Karavaiko et al. 2005), and A. acidocaldarious are both moderately thermophilic 

acidophiles and Gram-positive spore-forming bacteria (Darland & Brock 1971; Wisotzkey 

et al. 1992; Yokota et al. 2007) previously found from acidic soils and mines (Kinnunen 

et al. 2003; Groenewald et al. 2008). The rest of the phylotypes found from the division 

Firmicutes belonged to previously unidentified microorganism closely related to 

Thermoaerobacter and Thermoanaerobacter species.  

 

Although Bacteroidetes are widely distributed in many environments including sediments, 

they are not normally found in acidic geothermal habitats (Fierer et al. 2007). In this 

study, one bacterial isolate belonging to the Bacteroidetes phylum was cultivated which 

was closely related to an uncultured bacterium from forest soils (Tsai et al. 2007). 

 

Volcanic regions and hydrothermal systems featuring high temperatures and acidity levels 

are preferred habitats for archeal species (Stetter 1999b). Archaea were detected in almost 

all the samples analysed (Table IV.5). Unlike Bacteria, most archaeal phylotypes were 

novel and/or showed closest matches to uncultured microorganisms. The phylotypes were 

clustered within three orders of acidophiles commonly found in acidic volcanic 

environments, the Crenarchaeal Sulfolobales and Desulphurococcales, and the 

Euryarchaeal Thermoplasmatales (Figure IV.3). The Sulfolobales represent a group of 

thermophilic acidophilic organisms that show facultative or obligate 

chemolithoautotrophic growth on sulphur and sulphur compounds and they have been 

found in a wide range of volcanic environments (Segerer et al. 1993; Atkinson et al. 

2000). Sulfolobales phylotypes from previously uncultured microorganisms were detected 

in enrichment cultures from location F and G growing at 60ºC. They were closely related 

to S. acidocaldarious and S. tokodaii isolated from similar environments (Chen et al. 

2005; Kvist et al. 2005; Hetzer et al. 2007; Kvist et al. 2007).  One phylotype from 

location site G growing at 60ºC was closely related to Ignicoccus pacificus from the 

Desulphurococcales order. I. pacificus was firstly found living in marine hydrothermal 

vents (Huber et al. 2000a). This microorganism is able to live at temperatures from 70ºC 

up to 98ºC while reducing elemental sulphur to hydrogen sulphide to gain energy. 
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Ignicoccus ssp. have also been found living in symbiosis with nanoarchaea (Huber et al. 

2002). 

 

The third group of archaeal phylotypes identified clustered within the order 

Thermoplasmatales, genus Thermoplasma. These phylotypes were found in locations F 

and E. Thermoplasma species are thermo-acidophiles that grow at high temperatures and 

low pH values. They have been found also to require organic material for their growth 

(Cowan 2000; Huber & Stetter 2000). The phylotypes were closely related to T. 

acidophilum and T. volcanium. Both microorganisms are thermophilic heterotrophic 

prokaryotes. T. acidophilum has been found to grow at 55ºC-60ºC and at pH values from 

0.5 to 4 in self-heating coal-refuse piles and solfatara fields (Brock 1978; Cowan 2000) 

while T. volcanium can grow at 33ºC-67ºC and pH values from 1-4 (Kawashima et al. 

2000; Simmons & Norris 2002). 

 

Despite the fact that many of the phylotypes found in the enrichment cultures were closely 

related to previously uncultured microorganisms, their specific physiology and metabolic 

properties could only be determined accurately unless they were isolated and 

characterised individually. Further molecular analyses undertaken directly from the 

sediment collected in White Island would help to increase the knowledge of the microbial 

diversity present in volcanically-active sediments compared to the cultured microbial 

diversity obtain from this study. 

4.3. FISH 

Microbial cell staining with specific fluorescent oligonucleotide probes used in FISH 

allowed the detection and enumeration of microorganisms in their natural habitat (DeLong 

et al. 1989; Amann et al. 1992; Amann et al. 1995; Brand et al. 2000). Epi-fluorescence 

microscopy is a common technique for bio-imaging and fluorescence analysis of 

numerous samples (Klepner & Pratt 1994). Epi-fluorescence microscopy was used to 

analyse the cultured microbial comminities of White Island by FISH. However, 

background fluorescence of the sediment and non-specific binding of fluorescence probes 

to minerals did not allow clear detection of hybridised microbial cells. Small inorganic 

particles and clay minerals with high affinity to nucleic acid probes interfered with the 

analysis of microorganisms by epi-fluorescent microscopy, despite the latest 
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improvements in FISH and fluorescent molecular probes (Moter & Gobel 2000; 

Caracciolo et al. 2005). 

 

Confocal microscopy can reduce interference from non-specific background fluorescence, 

allowing FISH studies in environmental samples (Caldwell et al. 1992; Bloem et al. 

1995). Three-dimensional reconstructions of the specimen allows the analysis of spatial 

distribution and microbe-surface interactions while reducing background autofluorescence 

of the minerals (DeLeo et al. 1997). Images obtained using confocal microscopy revealed 

that the majority of the microorganisms detected were associated with the sample particles 

(Figure IV.7). The confocal microscope constructs an image by pointing the light along 

one focal plane. Therefore, microbial cells situated above or below the plane scanned 

cannot be detected, resulting in a potential underestimation of cell numbers (Li et al. 

2004). Semiautomatic and automated methods based on confocal and epi-fluorescence 

microscopy have been developed to count cells in environmental samples (Pernthaler et 

al. 2003; Zhou et al. 2007). However, for reliable statistical analyses and accurate cell 

counts, several hundreds of cells need to be present in the analysed area and the cells need 

to be relatively evenly distributed throughout the sample (Daims et al. 2001b). These 

automated methods were not compatible with the cultured samples from this study as the 

microorganisms were not evenly distributed and in many cases they were present in very 

low numbers. In addition, cells often cannot be eluted from soil and sediment samples due 

to strong adsorption to mineral surfaces or trapping within micropores (Li et al. 2004). 

Nycodenz density gradient centrifugation was briefly tested with cultured microorganisms 

for extraction of the cells (Ford & Rickwood 1982). However, no cells were recovered 

from the samples, probably due to the strong interaction with the minerals. Flow 

cytometry represents another commonly applied method to enumerate microbial cells 

within environmental samples (Wallner et al. 1993; Vives-Rego et al. 2000). However, 

difficulties in distinguishing microorganisms from the abundant fluorescent mineral 

particles present in the media made it impossible to obtain accurate cell counts of the 

samples in this study. 

 

FISH results were inconclusive and further work will be required to overcome these 

problems. For example, the use of CARD-FISH could increase the signal intensities 

enabling a better detection of cells associated with fluorescent minerals (Schönhuber et al. 
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1997). In addition, the fluorescent background produce from non-specific binding of FISH 

probes to the minerals could be reduced by the use of molecular beacons (Lenaerts et al. 

2007).  

4.4. Isolation of pure cultures 

Low pH agarose plates are usually difficult to handle, as acidic salts destroy the capacity 

of agarose to solidify and form a gel (Manning 1975). An agarose-based medium was 

developed which required the removal of any soluble constituents and organic material 

which may inhibit the growth of thermo-acidophilic microorganisms. The resulting solid 

medium was then supplemented with the same sediment-extract as supplied to the liquid 

medium, which provided not only the essential nutrients for microbial growth but also the 

acidic environment required for thermo-acidophiles. During the solidification of the 

agarose, precipitation of sulphites and iron was observed which may have helped the 

plates retain more water at higher temperatures compared to conventional agar plates.  

 

The microorganisms isolated in pure culture using sediment-extract agarose were 

identified as being Alicyclobacillus acidocaldarious and Sulfobacillus acidophilus (Table 

IV.5). S. acidophilus has been described previously as an acidothermphilic ferrous- iron- 

and mineral-sulphide oxidising bacterium able to grow autotrophically, mixotrophically 

and heterotrophically (Norris et al. 1996b). Alicyclobacillus ssp. can be found in similar 

habitats to Sulfobacillus ssp. which are often rich in metals and metal sulphide minerals 

(Simbahan et al. 2004).  

4.5. Chemical analyses 

Multi-element analyses of the sediment-extract were carried out to gain a better 

understanding of its composition and superiority over standard media.  The results showed 

that the sediment-extract contained high concentrations of magnesium, sulphur, sulphate, 

sulphite, iron and nitrate (Table IV.3).  These elements and radicals are known to be used 

as sources of energy for many thermo-acidophilic microorganisms (Huber et al. 2000b). 

4.6. Summary 

This study represents the first description of the microbial communities of acidic 

volcanically-active sediments of White Island. It is not surprising to find that the 
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microbial communities cultured from White Island are related to the Sulfobacillus, 

Alicyclobacillus and Acidiphilum groups. Sulfobacillus spp. species as they oxidise 

reduced sulphur compounds such as sulphite, hydrogen sulphide and elemental sulphur to 

obtain energy, generating sulphates and sulphuric acid (Norris et al. 1996b; Johnson et al. 

2005; Bogdanova et al. 2006). The sulphates are then used by sulphur-reducing bacteria, 

such as Acyclobacillus spp., to obtain energy, generating hydrogen sulphide and sulphites 

that can then be re-used by the sulphur-oxidising bacteria (Bridge & Johnson 1998; 

Simbahan et al. 2004). This results in mutually beneficial cross-feeding interactions. In 

the same way, iron-oxidising bacteria such as Acidiphilum spp. utilise ferrous iron to 

obtain energy, while generating ferric iron, which can then be used by iron-reducing 

bacteria, a process which regenerates the ferrous iron (Johnson et al. 1979; Wichlacz et al. 

1986).  

 

This study also reports the presence of Archaea species in the hydrothermal systems of 

White Island for the first time. Most of the archaeal phylotypes detected were novel or 

showed closest matches to previously uncultured microorganisms.  

 

The microbial communities found from the sediments of White Island appeared to be 

different from the communities described previously from the acidic waters (Donachie et 

al. 2002). Although the analyses undertaken on acidic waters also revealed the presence of 

α-Proteobacteria and Firmicutes species, only Acidiphilum species was found to be in 

common with the microbial population found from the sediments in this thesis. The rest of 

the microorganisms described were placed into different phyla. In adittion, enrichment 

cultures from acidic waters were not obtained at cultivation temperatures up to 60ºC 

(Donachie et al. 2002). In contrast, a wide range of microbial diversity was found from 

the enrichment cultures of sediment samples cultivated at that temperature (Table IV.5). 

Moreover, neither molecular analyses nor the microbiological methods undertaken on 

acidic stream waters revealed the presence of Archaea species.  

 

The presence of sediment particles in the sediment-extract liquid media may have 

conferred a substantial advantage over conventional media for the cultivation of 

environmental microorganisms as it provided the essential nutrients for their growth and 

the physical support for their associated microbial interactions. The limited success 
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achieved when attempting to obtain diverse acidophilic microorganisms in pure culture, 

compared to the diversity found in the liquid media, may be due to a number of factors 

such as the presence of inhibitory materials like organic compounds or soluble oligo- and 

mono-saccharides within the gel formed by the hydrolysis of the agarose under acidic 

conditions (Johnson 1995), or the need for the microorganisms to grow in consortia 

(Kaeberlein et al. 2002).  

 

Further investigation into the physiology of thermo-acidophilic microorganisms found in 

White Island may provide a better understanding of the microbial interactions and the 

essential roles that the very different species play in the environment (Lazaroff et al. 

1982; Bridge & Johnson 1998). 
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1. INTRODUCTION 

This chapter records an examination of the chemical, optical and physical properties of 

Quantum dots (QDs) for their use in environmental samples. It provides characterisation 

of the fluorescent properties of QDs in comparison to traditional organic fluorophores and 

discusses their future applications in flow cytometry through evaluation of their 

excitation-emission spectra and their binding to paramagnetic beads using standard 

instrumentation. 

1.1. Optical properties of the QDs 

QDs have unique optical properties over traditional fluorophores as they can be excited by 

broad excitation wavelengths while emitting narrow fluorescent emission maxima, 

combined with photo-stability and longer decay lifetimes. 

 

       Table V.1: Glossary of terms. 
Terms Definition 

Bandgap 
An intrinsic property of semiconductors and refers to the energy 

difference between the valence band and the conduction band. 

Blinking 
The property of a fluorophore where it switches between fluorescent 

and non-fluorescent states.  

Exciton Bohr radius 

An exciton refers to the electron-hole pair created in a 

semiconductor when an electron is promoted from the valence band 

to the conduction band and leaves a hole behind. Exciton Bohr 

radius is the physical distance between the separated electron and 

hole.  

Fluorescence excited 

state lifetime 

Lifetime of a fluorescent molecule is measured as the time lapse in 

which the fluorescence intensity decays to 1/e of the initial value 

Fluorescence lifetime 
The time the molecules remain in the excited state before emitting a 

photon 

Molar extinction 

coefficient 

A measure of how strongly a compound absorbs light at a certain 

wavelength. 

Passivation 
A chemical process by which the core of the QD is surrounded by 

another material with a larger optical bandgap (the shell) 
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Quantum yield 
The ratio of the number of photons emitted by the fluorophore to the 

number absorbed 

Stokes Shift 
The Stokes Shift is measured by the distance or energy (wavelength) 

between the excitation peak and emission peak maxima 

 

1.1.1. Absorbance characteristics 

The broad excitation properties of the QDs result from their ability to absorb light at all 

wavelengths shorter than their emission maxima (Evanko 2006). This unique 

characteristic allows different colours of QDs to be excited by a single common light 

source allowing multiplex analyses of more than one target from a singe sample (Figure 

V.2). In contrast, the absorbance band of organic fluorophores is narrow and usually 

spectrally close to the light emitted, resulting in the need for various excitation light 

sources (Figure V.1). The high Stokes Shift of the QDs (hundreds of nanometres) 

compared to organic dyes (~ 15-30 nm) and the larger molar extinction coefficients (Table 

V.1) allow QDs to absorb light more efficiently than organic fluorophores.  

1.1.2. Emission characteristics 

1.1.2.1. Emission spectra of the QDs 

The size of QDs is related directly to their fluorescent emission characteristics (Jaiswal & 

Simon 2004; Bruchez 2005). The narrow, symmetrical emission spectra of the QDs make 

the detection of multiple colours possible without spectral overlap or cross-talk (Azzazy et 

al. 2007). In contrast, the emission spectra of organic fluorophores are narrow, making 

efficient collection of the emitted light difficult due to scatter, auto-fluorescence and the 

need for precise optical filters (Figure V.1). 
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Figure V.1: Absorption and emission spectra of conventional organic dyes showing their 
narrow absorption coupled with broad emission spectra. 

 

   

Figure V.2: Absorption and emission spectra of commercial QDs showing their broad 
absorption coupled with narrow emission spectra. Information extracted from the user 
manual supplied by Quantum Dots Corporation. 

1.1.2.2. Quantum yield 

Quantum yield (Table V.1) is defined as the ratio of light emitted to light absorbed by the 

fluorescent material (Wang et al. 2008). The quantum yield of QDs is generally over 50% 

(Sharma et al. 2006), making them efficient with regards to conversion of the excitation 

light into emission. It has been reported that cadmium selenide (CdSe) QDs exhibit 

quantum yields ranging from 40% to 90% (Azzazy et al. 2007). The quantum yield of a 

fluorophore usually decreases after conjugation to other molecules. However, QDs have 

been claimed to retain their high quantum yields even after conjugation to biological 

affinity molecules (Wu et al. 2007b). 

 Absorption Spectra  Emission Spectra 
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1.1.2.3. Photo-stability 

The photo-stability of QDs leads to longer fluorescence lifetimes, increased brightness 

and resistance to photo-bleaching over traditional organic fluorophores (Wu et al. 2003; 

Zhelev et al. 2004; Medintz et al. 2005; Michalet et al. 2005). Photo-bleaching is a 

process in which the molecular structure of a fluorophore is altered irreversibly as a result 

of the absorption of light, thus rendering it non-fluorescent (Weng & Ren 2006). Organic 

fluorophores are bleached progressively by the light sources used to excite them. 

Although a wide range of photo-stability has been observed in various fluorescent dye 

molecules, their stability does not approach that observed for QDs (Weng & Ren 2006). 

Studies on the photo-stability of QDs have reported that even, under conditions of intense 

illumination, little if any degradation of fluorescence is observed (Dahan et al. 2003; 

Jaiswal et al. 2003; Ballou et al. 2004; Lidke et al. 2004). This increased photo-stability 

also results in QDs exhibiting longer fluorescence lifetimes (in the order of 10-50 ns), 

allowing them to be distinguished from auto-fluorescent background with increased 

sensitivity (Bruchez et al. 1998; Smith & Nie 2004; Alivisatos et al. 2005). 

1.2. Physical properties 

QDs are semiconductor nanocrystals composed of atoms from II-IV or III-V groups 

elements such as cadmium selenide (CdSe), cadmium telluride (CdTe), indium phosphide 

(InP) and indium arsenide (InAs) (Alivastos 1996; Michalet et al. 2001). These 

nanocrystals are capped with a protective shell of an insulating semiconductor material or 

wide-bandgap to protect surface atoms from oxidation and other chemical reactions which 

may reduce the overall quantum yield (Michalet et al. 2005). After capping, it is necessary 

to make the nanocrystals water-soluble to facilitate their conjugation or binding to 

biomolecules. Several methods have been described, including: derivatising their surface 

with mercaptoacetic acid or silica overcoat (Chan & Nie 1998; Yang et al. 2004): 

encapsulating them in phospolipid micelles (Dubertret et al. 2002): or by coating them 

with an amine-modified poly(acrylic acid) (Wu et al. 2003).  

 

Commercially-available QDs used for biological applications are complex multi-layered 

structures, typically composed of three different layers with a final size similar to large 

proteins (10-20 nm) (Figure V.3). 
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• 1. Core: The core is normally composed of CdSe. It determines the optical 

properties of the final QD.  

• 2. Core-shell: The core is commonly passivated (Table V.1) with a 

semiconducting inorganic outer-shell of zinc sulphide (ZnS). This prevents the 

contamination of the core material and improves the optical properties of the 

nanocrystal by reducing photochemical bleaching while increasing the quantum 

yield (Hines & Guyot-Sionnest 1996; Michalet et al. 2005). The core-shell ranges 

between 3 to 10 nm and defines the fluorescent emission of the QDs. 

• 3. Polymer layer: The surface of the core-shell is covalently attached to a layer of 

an organic ligand. This layer makes the QDs water-miscible (Wu et al. 2007b). 

The outer part of the polymer layer is hydrophilic and functionalised with 

carboxylic acid derivatives. This enables functional groups, such as proteins or 

chemical compounds, to be integrated into the QDs which allow specific binding 

to the desired target (Michalet et al. 2005). 

 

 
 

The optical, electronic and chemical properties of the QDs are ruled by the small size of 

the nanocrystal. The diameters of semiconductor nanocrystals are smaller than their 

exciton Bohr radius (Table V.1), resulting in the phenomenon known as the “quantum 

confinement effect” (West & Halas 2003; Arya et al. 2005). QDs absorb photons when 

the excitation energy exceeds the bandgap, leaving the holes behind and resulting in the 

creation of an electron-hole pair (exciton). During this process, electrons are promoted 

from the valence band to the conduction band. The absorption has an increased probability 

at higher energies (shorter wavelengths) and results in a broadband absorption spectrum. 

Figure V.3: Schematic 
representation of a single QD 
(http://www.invitrogen.com). 
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When the exciton returns to a lower energy level, a narrow, symmetric energy-band 

emission occurs (True & Gao 2007). 

1.3. Surface chemistry of the QDs 

QDs are considered to be negatively charged owing to molecules absorbed on their 

surface (Mattoussi et al. 2000). The surface chemistries of QDs are designed to include 

functional groups such as amine (-NH2), carboxyl (-COOH) or mercapto (-SH) molecules 

that enable direct conjugation of the QDs to biomolecules.  

 

QDs have been successfully coupled to biomolecules, such as transferrin, immunoglobulin 

G, biotin, streptavidin, avidin and nucleic acids (Bruchez et al. 1998; Chan & Nie 1998; 

Dubertret et al. 2002; Goldman et al. 2002; Kloepfer et al. 2003; Mansson et al. 2004). 

These conjugates are luminescent probes that bind with specificity and sensitivity to a 

variety of targets.  

1.3.1 Types of interactions 

In this study, two different types of chemical interactions were used to bind QDs to the 

molecular probes: a covalent interaction, and a non-covalent biological interaction. For 

the covalent interaction, amine-modified QDs were conjugated to the thiol-modified 

molecular probes using the cross-linker reagent EDC (1-ethyl-3-(3-dimethyl-

aminopropyl)carbodiimide) (Figure V.4). EDC reacts with the thiol group of the 

molecular probe to form an active intermediate. This intermediate then is attracted to the 

primary amine (-NH2) group of the QDs, forming a stable covalent bond between them. 

To increase the yield, a second reagent N-hydroxysulfosuccinimide (Sulfo-NHS) was 

added to form a more stable active ester intermediate (Taylor et al. 2000). 
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Figure V.4: Schematic chemical reaction of QDs functionalised with amine groups to 
the thiol groups of molecular probes using EDC and Sulfo-NSH as cross-linkers. 

 

The non-covalent biological interaction was used to bind streptavidin-modified QDs to 

biotin-modified molecular probes. The avidin-biotin binding is the strongest known non-

covalent biological interaction between protein and ligand (Goldman et al. 2002). Avidin 

is a glycoprotein found in egg white and contains four identical subunits each of which is 

capable of binding with one molecule of biotin. Biotin (Vitamin H) is a relatively small 

molecule found in tissue and blood and can be easily bound with protein molecules 

without significantly altering their biological activity (Bayer & Wilcheck 1980; Bagwe et 

al. 2003; Kampani et al. 2007). 

1.4. Aim 

The aim of this chapter was to characterise the optical properties of the QDs and their 

binding characteristics to molecular probes and paramagnetic beads. For this purpose, the 

excitation–emission profiles of two different species of QDs were characterised using 

fluorescence spectrophotometry and the binding capacity of the QDs to molecular probes 

was investigated by quantitative and qualitative methods. The quantitative method was 

based upon the absorbance spectra of QDs in solution compared to the absorption of QDs 

bound to the molecular probes as measured by spectrophotometry. The qualitative method 

was based on the difference between QDs in solution and QDs bound to the molecular 

probe as determined by electrophoretic analysis.  

 

Dynabeads are paramagnetic beads selected as a platform for the binding of QDs due to 

their smooth spherical shape and their suitable size for flow cytometric analysis. The 

properties of the Dynabeads and optical behaviour of the QDs after binding to the 

Dynabeads were investigated. The binding characteristics of Dynabeads, including their 

detection limits, was analysed and the procedures to bind QDs and molecular probes 
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modified with fluorescein isothiocyanate (FITC) were established and confirmed by epi-

fluorescence microscopy and flow cytometry. 
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2. MATERIALS AND METHODS 

2.1. Reagents 

2.1.1 Evitags QDs 

Hops-Yellow CdSe/ZnS Evitags QDs (Evident Technologies Inc., Australia) were 

functionalised with amine groups. Table V.2 describes their general characteristics.  

 

Table V.2: General characteristics of Hops-Yellow amine Evitags. 

Characteristics Hops-Yellow amine Evitags QDs 

Emission Peak 560 ± 10 nm 

Typical FMHM < 30 nm 

Suggested excitation wavelength < 450 nm 

First excitation peak ~ 555 nm 

Concentration 
~  4nmol/ml (4x106 mol/L) solvent in DI 

water (0.25 mg/ml) 

Nanoparticle size 30 – 50 nanometres 

pH stability 6 – 10 

Temperature stability 4 – 25ºC 

Photo-stability under imaging 

conditions 
75 mi 

 

2.1.2. Qdots™ 

CdSe/ZnS Qdots™ (Quantum Dot Corp., CA, USA) were functionalised either with biotin 

or streptavidin groups. Quantum Dot Corp. is now part of Invitrogen (Carlsbad, CA, 

USA). Qdots™ were supplied in suspension with 50 mM borate (pH 8.3). Table V.3 

describes the general characteristics of the QDs used in this study. 
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  Table V.3: General characteristics of Qdots™. 
Characteristics Qdot™ 525 Qdot™ 535 Qdot™ 585 Qdot™655 Qdot™ 680 

Colour Yellow Yellow Orange Red Red 

Emission max 525 nm 535 nm 585 nm 655 nm 680 nm 

Conjugate Streptavidin Streptavidin Streptavidin Biotin Streptavidin 

Concentration 1 µM 2 µM 2 µM 2 µM 1 µM 

Supplier Invitrogen Invitrogen Invitrogen 
Quantum Dot 

Corp. 

Quantum Dot 

Corp. 

2.1.3 Fluorophores 

Fluorescent-dye conjugates to streptavidin were purchased from Invitrogen (Sydney, 

Australia). 

 

Table V.4: Characteristics of fluorescent dye conjugates to streptavidin. 

Fluorophore 
Maximum 

excitation 

Maximum 

Emission 
Concentration 

Fluorescein (FITC) 494 nm 518 nm 
2 mg/mL solution in PBS, pH 

7.2, 5mM sodium azide 

Alexa Fluor® 488 495 nm 519 nm NA 

R-PE* 
496, 546, 565† 

nm 
578 nm 

1 mg/mL solution in 0.1 M 

sodium phosphate, 0.1 M NaCl, 

2 mM sodium azide, pH 7.5 

* Streptavidin R-Phycoerythrin 
† Multiple excitation peaks 

2.1.4. Paramagnetic Dynabeads® 

Dynabeads M-280 streptavidin are super-paramagnetic polystyrene beads of 2.8 µm in 

diameter (Dynal® Biotech Pty Ltd, Australia). They were supplied as a suspension 

containing 6.7 x 108 Dynabeads per ml (10 mg/ml), dissolved in phosphate-buffered saline 

(PBS), pH 7.4. The binding capacity of the beads as indicated by the manufacturer was: 1 

mg of Dynabeads binds to 200 pmol of biotinylated oligonucleotide (single stranded). 
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2.2. Buffers and solutions 

All buffers and solutions were autoclaved for 20 min at 121ºC and 200 kPA pressure. For 

general buffers and solutions refer to Chapter II.  

 

        Table V.5: Description of buffers and solutions. 
Binding Wash buffer 

(BW buffer) 10 mM Tris/HCl (pH 7.5), 2.0 M NaCl and 1 mM EDTA 

BioMag buffer 20 mM Tris (pH 7.8), 1 M NaCl, 1mM EDTA and 0.02% Triton 
x-100                                                                   

QD incubation buffer 2% BSA in 50 nM borate with 0.05% sodium azide. Final pH 8.3     

Piranha solution 

3:1 mixture of sulphuric acid and 30% hydrogen peroxide. Used 
to clean lab instruments from free DNA or RNA. A fresh solution 
was made and mixed before application. First, H2S04 was applied 
followed by H2O2 in a Pyrex container inside a hood. After 1-2 
min, the solution was aspirated and the material was washed with 
autoclaved Milli-Q water several times                                     

2.3. Fluorescence spectrometry 

2.3.1. Excitation-emission spectrum of Qdot™ 655 

Fluorescence measurements of QdotTM 655 (QD655) were performed on a Perkin Elmer 

Luminescence Spectrometer LS 50B (Rowville, Victoria, Australia) equipped with a 

xenon discharge lamp. QD655 were diluted (1:1500) into dH2O in 10 mm Quartz cells 

(Hellma, NY, USA). The excitation spectrum was scanned between 310 nm and 490 nm. 

The emission spectrum was scanned between 500 nm and 700 nm at 1500 mm-1/sec scan 

speed. 

2.3.2. Excitation-emission spectrum of Hops-Yellow Evitags 

QDs 

Fluorescence measurements of Hops-Yellow Evitags QDs were performed on a Beckman 

DU® 650 UV/VIS spectrophotometer (Beckman Coulter, Inc. Fullerton, USA) which 

operates in the wavelength range of 190 to 1100 nm and has a bandwidth of <1.8 nm. A 

portion (10 µl) of Hops-Yellow QDs (0.25 mg/ml) was diluted in 500 µl 1 x PBS buffer 

and sterilised by filtration through 0.22 µm Millipore filters. The sample was placed in 1 
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ml Quartz cuvettes and analysed. The emission spectra of Hops-Yellow QDs were 

obtained between the 200-600 nm at 600 nm/min scan-speed wavelength at RT using the 

scan program and the standard pre-installed software (Beckman Coulter, USA).  

2.3.3. Molar extinction coefficient 

Absorption and reflection spectra measurements of both Hops-Yellow Evitags QDs and 

molecular probes were collected using a Varian Cary 5 double-beam spectrophotometer 

(Varian, Inc., Palo Alto, USA). The samples were scanned between 400 to 700 nm 

wavelength range at 0.5 nm intervals, with a 60 nm·min-1 scanning rate at RT. The results 

were processed using the standard software v.02 incorporated in the spectrophotometer. 

The molecular probe used was DeinoFam (further details of the molecular probes are 

found in VI.2.3.4), an oligonucleotide modified with thiol at the 5’ end. Prior to analyses, 

3 ml Quartz cuvettes (Hellma, NY, USA) were cleaned with Piranha solution to remove 

any organic residues. One cuvette was used as a blank for all measurements and contained 

2 ml of autoclaved MilliQ water sterilised by filtration. Hops-Yellow QDs and DeinoFam 

probes were diluted separately in autoclaved MilliQ water sterilised by filtration. Then, 

100 µl of Hops-Yellow QDs (0.25 mg/ml) were conjugated to 25 µl of DeinoFam probe 

(5µM) following the protocol described below (V.2.4.1). 

2.4. Binding procedures 

All procedures involving the use of QDs or organic fluorophores were carried out in 

darkness to avoid exposure to light. The final products were kept at 4ºC in the dark for 

less than 24 h until further analysis. 

2.4.1. Coupling of thiol-modified probes to amine-modified QDs 

Two thiol-modified probes were used for binding to Hops-Yellow QDs. DeinoFam was a 

thiol-modified probe designed to hybridise to specific regions of the 16S rRNA sequence 

of D. radiodurans. QDLinker was a poly-A probe with a biotin modification at the 5’ end 

and thiol modification at the 3’ end (further details and descriptions of the probes are 

found in VI.2.3.4). 
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For activation, 450 μl of 1xPBS, 25 μl of DeinoFam or QDLinker probe (0.1 mM) and 25 

μl BMPA (N-β-Maleimidopropionic acid, 200 mM) were combined, followed by 

incubation for 2 h at RT. Microcon centrifugal filter devices (3000 MWCO) were used as 

indicated in the user’s manual to remove the excess of BMPA from the solution. Then, a 

portion (70 µl) was transferred to a fresh 1.5 ml Eppendorf tube including 270 µl of dH2O, 

50 µl of 10xPBS, 100 µl of amine modified Hops-Yellow QDs and 10 µl of EDC at a 

final concentration of 100 mg/ml (the interaction between amine and thiol groups was 

explained in V.1.3.1). The solution was incubated at RT for up to 2 h, and then 500 µl of 1 

M Tris pH 7.4 were added to quench the conjugation reaction. Excess unbound probes 

were removed using Microcon centrifugal devices (100,000 MWCO). These filters 

discriminate between free probes and QDs. The final product was resuspended in 120 µl 

of 1 x PBS and stored at 4°C. 

2.4.2. Washing of Dynabeads® paramagnetic beads 

Dynabeads® M-280 Streptavidin paramagnetic beads were used for all the binding 

procedures at a stock concentration of 10 mg/ml. A portion of bead solution (depending of 

its application) was placed into fresh 1.5 ml Eppendorf tubes and placed in 1.5 ml Dynal 

MPC™ Magnet (Invitrogen, Mount Waverley, Australia) for 1-2 min to separate the 

beads from the original solvents and preservatives. The supernatant was removed 

carefully by aspiration with a pipette without removing the tube from the magnet. The 

tube was then removed from the magnet and BW buffer was added along the inside of the 

tube where the beads had been collected. The beads were resuspended in the same volume 

of BW buffer as the initial volume taken from the vial stock solution to keep the 

concentration of the beads constant. The washing step was repeated up to 3 times.  

2.4.3. Binding of biotinylated QDs to Dynabeads® 

Generally, for all experiments unless stated otherwise, a portion (100 µl) of washed 

Dynabeads was transferred to a fresh 1.5 ml Eppendorf tube. Then, portions of 5 µl of the 

washed Dynabeads were distributed to 1.5 ml test-tubes and resuspended in 200 µl of 

BioMag Buffer. QdotTM 655 QDs was diluted 1:1000 in Qdot incubation buffer. Binding 

of QDs to the Dynabeads was carried out by incubating the reaction at RT for 2 h with 
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gentle rotation or occasional mixing by gently tapping the tubes. Following the incubation 

period, unbound QDs were removed from the solution by washing the beads twice with 

100 µl of BW buffer using the magnet. Finally, the QD-bead complexes were resuspended 

in 300 µl of BW buffer and stored in the dark at 4°C for no more than 24 h until further 

analysis. 

2.4.4. Binding of biotinylated probes to Dynabeads® 

Biotinylated probes used in this thesis are described in Chapter VI.2.3.4. Generally, for all 

experiments unless stated otherwise, a portion (5 µl) of washed Dynabeads was 

transferred into 1.5 ml Eppendorf tubes and resuspended in 200 µl of BW buffer. 

Biotinylated probes (100 µM) were diluted (1:1000) in sterile MilliQ water. Binding of 

biotinylated probes to Dynabeads was carried out as above (V.2.4.3). After conjugation, 

the samples were washed twice with 100 µl of BW buffer and resuspended in 300 µl of 

BW buffer. Dynabeads bound to the probes were stored at 4ºC in the dark up to 24 h until 

further analysis. 

2.5. Flow cytometry 

FCM was carried out as described in Chapter II.2.5. Data analysis was carried out using 

CellQuest software (BD Biosciences, Sydney, Australia). For data analysis, FL1 and FL3 

histograms were created by gating the events falling within the defined region (R1). The 

peak generated by each of the samples of probe-bead complexes were analysed in the FL1 

histogram and the median value recorded. Samples of QDs-bead complexes were analysed 

on the FL3 histogram and the median value recorded. The analysis program WinMDI 

version 2.8 was use for all data presentation of CellQuest data files and was obtained by 

downloading it from the World Wide Web (http://facs.scripps.edu/softaware.html). 
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3. RESULTS 

3.1. Optical characterisation of the QDs 

3.1.1. Excitation- emission spectra 

The excitation-emission spectra of two different types of QDs, Hops-Yellow Evitags and 

QD655, were analysed by fluorescence spectroscopy. 

 

The excitation-emission spectrum of QD655 was analysed between 310 nm to 490 nm by 

using a luminescence spectrometer (V.2.3.1). The emission spectrum was detected 

between 500 nm to 700 nm. The maximum fluorescence emission exhibited was at 655 

nm for all excitation wavelengths examined (Figure V.5). The results indicated that 

QD655 remained fluorescent under all the excitation wavelengths examined. However, 

the intensity of the peak varied depending on the excitation wavelength used with a 

significant decrease observed at longer wavelengths. A 4-fold increase in fluorescence 

intensity was observed at short excitation wavelengths (UV = 320 nm) compared with 

longer excitation wavelengths (488 nm). 

 

    

Intensity 

Emission Excitation 

Figure V.5: Excitation-emission 
spectrum of QD655. Y-axis; 
fluorescent intensity in arbitrary 
units (a.u). X-axis: excitation 
wavelengths from 320 nm to 500 
nm. H-axis: emission 
wavelengths detected from 550 
nm to 700 nm.  
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The excitation-emission spectrum of Hops-Yellow QDs was then analysed by 

luminescence spectrophotometry (V.2.3.2). The excitation-emission spectrum was 

obtained between 200-600 nm wavelengths (Figure V.6) and the fluorescence emission 

peak was observed at 560 nm for all the excitation wavelengths examined. The intensity 

of the peak varied depending on the excitation wavelength used, with a significant 

decrease observed at longer wavelengths. Hops-Yellow QDs remained fluorescent at all 

the excitation wavelengths examined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure V.6: Excitation-emission spectrum of Hops-Yellow QDs. Y-axis: fluorescent 
emission in arbitrary units (a.u). X-axis: excitation wavelengths from 310 nm to 500 
nm. H-axis: emission wavelengths detected from 500 nm to 600 nm.  

 

Both QDs studied have absorbance spectra that increase dramatically in the blue portion 

of their emission. Despite the broad absorbance, the emission wavelength is independent 

of the excitation wavelength, so whether exciton was at 600 nm or at 310 nm, the shape of 

their emission spectra remains the same, while the intensity is approximately 4-fold higher 

with short excitation wavelengths. The absorption spectra of the QDs appear as a series of 

overlapping peaks that get larger at shorter wavelengths, each peak corresponding to an 

energy transition between discrete electron-hole (exciton) energy levels. QDs did not 

absorb light that has a wavelength longer than that of the first exciton peak, also terned the 
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absorption onset. The wavelength of the first peak, and all of the subsequent peaks, was a 

function of the composition and size of the QDs.  

 

The peak emission wavelength was a Gaussian bell-shaped for both QDs studied and it 

occurred at a slightly wavelength than the lowest energy exciton peak.  

3.1.2. Molar extinction coefficient 

The molar extinction coefficient (molar absorptivity) is a measure of how strongly a 

chemical absorbs light at a given wavelength. It is an intrinsic property of the chemical. 

The absorbance (A) of a sample is dependent on the pathlength (l) and the concentration 

(c) of the species via the Beer-Lambert law (A = εcl). Molar absorptivity represents the 

corrected absorption value for comparing the spectra of different compounds and 

determining the relative strength of light-absorbing factors. 

 

The molar extinction coefficient of QDs was not provided by the manufacturer at this 

stage of the project. The absorbance of Hops-Yellow QDs (Table V.6) from 400 nm to 

700 nm excitation wavelengths was measured by spectrophotometry (V.2.3.3). 

Absorbance usually ranges from 0 (no light at that particular wavelength is absorbed) and 

1 (90% of the light at that wavelength is absorbed). The energy exciton peak or absorption 

onset of Hops-Yellow QDs was at 560 nm. 

 

Table V.6: Series of Hops-Yellow QDs concentrations and 
their absorbance in arbitrary units (a.u.) as measured by 
spectrophotometry. 

Sample 
number 

Concentration 
(nmol/ml) 

Absorbance at 560 
nm (a.u.) 

1 0.53 0.53 
2 0.4 0.43 
3 0.32 0.37 
4 0.26 0.32 
5 0.22 0.3 
6 0.2 0.27 
7 0.17 0.25 
8 0.16 0.24 
9 0.14 0.23 

10 0.13 0.22 
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Figure V.7: Absorption spectra of the different concentrations of Hops-Yellow QDs (Table 
V.6) using excitation wavelengths from 400 to 700 nm. The absorption was measured in 
arbitrary units (a.u.).The absorption onset was at 560 nm. 

 

The absorption onset for all samples was at 545 nm (Figure V.7). Following the Beer-

Lambert law (A = εcl), the molar extinction coefficient (ε) could be calculated as A (0.43) 

/ c (400mol/L) * l (1 cm).  Therefore, ε = 0.001 mol-1cm-1. 

3.2. Binding characterisation of the QDs 

Quantitative and qualitative methods were designed to investigate the number of 

molecular probes that could be attached to a single QD. 

3.2.1. Quantitative method 

A quantitative method to study the number of molecular probes that could be bound to a 

single QD was designed based on the absorption spectra of both the QDs and the probes. 

The absorbance of a sample is proportional to the number of absorbing molecules (molar 

concentration) that interact with the light beam. QDs have a specific absorption onset 

depending on the size of their core. The QDs and the molecular probes used exhibit 

different spectral signatures. Hypothetically, when studying the absorbance spectra of 

QDs bound to the probes, two distinct peaks should be observed; one peak corresponding 

to the absorption onset or energy exciton peak of QDs and a second peak, corresponding 
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to the absorption of the probes. From the spectral signatures it should be possible to 

quantify the number of probes bound per QD.  

 

The absorption spectra of Hops-Yellow QDs as shown in Figure V.7 indicated that the 

absorbance of Hops-Yellow QDs increased at shorter excitation wavelengths and the 

energy exciton peak was at 545 nm.  

 

The absorption spectrum of a molecular probe (DeinoFam) was investigated by 

spectrophotometry (V.2.3.3). The absorption peak of the probe was at approximately 269 

nm (Figure V.8).  

Table V.7: Absorption measurements of two concentrations 
of DeinoFam obtained by spectrophotometry. 

Sample 
number 

DeinoFam 
concentration (µM) 

Absorbance at 
260 nm (a.u.) 

1 3.96 0.5228 
2 1.96 0.2502 
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Figure V.8: Absorption spectra of two different concentrations of DeinoFam 
probe (Table V.7). Sample 1: Blue line. Sample 2: Orange line. X-axis: 
excitation wavelengths from 200 nm to 320 nm. Y-axis: absorption values 
obtained at every excitation wavelength in arbitrary units (a.u.). 

 

Hops-Yellow QDs were bound to DeinoFam probes by the covalent interaction using 

EDC as the cross-linker (Figure V.4) (V.2.4.1). The subsequent absorption spectrum of 

the complexes was observed by spectrophotometry (V.2.3.3).  
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Figure V.9: Absorption spectrum of Hops-Yellow QDs bound to DeinoFam 
probe. X-axis: excitation wavelengths from 200 nm to 320 nm. Y-axis: 
absorption values obtained at every excitation wavelength in arbitrary units 
(a.u.) 

 

Under optimal conditions, the absorption spectra of both free and bound QDs should be 

zero on the y-axis between the wavelengths of 600 nm to 700 nm indicating no absorption 

of the light (Figures V.7 and V.9). However, the absorption spectra obtained from free 

QDs revealed background noise at that region (Figure V.7). Even at low concentrations of 

QDs, the background noise did not decrease, indicating that the noise was not affected by 

the buffers used during the procedure, but by another unknown factor.  

 

The absorption spectrum of Hops-Yellow QDs with bound molecular probe resulted in a 

unique spectral signature (Figure V.9). In theory, two distinct peaks, one from the QDs 

energy exciton peak and a second one from the probe should be distinguishable in the 

spectrum observed. The energy exciton peak of Hops-Yellow QDs was observed to be at 

540 nm while the absorption peak of the probe was observed at 269 nm. The absorption 

spectrum of the QDs increased at shorter wavelengths. Although the absorption of QDs 

alone were not studied in the 200-300 nm range, it could be predicted that their absorption 

would continue increasing in that range resulting from the background noise observed in 

Figure V.9. This background noise made it impossible to distinguish any distinct peak in 

this range. 

Energy exciton 
peak of the QDs 
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3.2.2. Qualitative method 

Gel electrophoresis was used as a qualitative method to determine the successful binding 

of QDs to molecular probes.  

 

The size and the negative charge of the surface of the QDs made them suitable for gel 

electrophoretic analysis. Unbound QDs run faster through the gel as compared to QDs 

bound to molecular probes. The binding of several probes to the surface of a single QD 

made them larger, and consequently they migrated more slowly than single QDs in 

agarose gel. Typical results from the gel electrophoretic analysis of QDs bound to 

oligonucleotide probes are shown below (Figure V.10). 

 

   
 

The size of unbound QDs allowed them to run successfully on an agarose gel (Figure 

V.10, band 3). QDs bound to the probes were considerably larger and consequently ran 

more slowly on the gel (Figure V.10, bands 6 and 7). The waste fractions were also 

analysed to ensure that both QDs and probes had not been separated during the binding 

procedures. The first waste fraction (Figure V.10, band 4) showed the presence of a small 

concentration of unbound probes. The second waste fraction did not show any unbound 

probes or QDs (Figure V.10, band 5).   

 

1     2    3    4    5     6    7 

Bands:   
1 – Blank (no sample) 

2 – Probes 

3 – QDs 

4 – First waste fraction after binding QDs to the probes 

5 – Second waste fraction after binding QDs to the probes 

6 – QDs bound to the probes 

7 – QDs bound to the probes (loaded in the gel at higher 

concentration) 

Figure V.10: Unbound QDs, oligonucleotide 
probes and QDs bound to the probes running on 
a 1% agarose gel. 



 

 

Chapter V. Optical and binding characterisation of the QDs 128 

 

3.3. Binding characterisation of the Dynabeads 

3.3.1. Fluorescence properties of the Dynabeads 

Fluorescent microscopy analysis of unlabelled Dynabeads revealed a low level of 

autofluorescence under all excitation wavelengths examined (Figure V.11).  

  

        

        
Figure V.11: Background autofluorescence of unlabelled Dynabeads under epi-
flourescence microscopy. A: DIC. B: UV light. C: Blue light. D: Green light. 

 

QD655 (0.6 pmol) were bound directly to Dynabeads (5 µl, 10 mg/ml) by the biotin-

streptavidin interaction (V.2.4.3). The influence of background noise from the Dynabeads 

after binding to QDs was investigated by epi-fluorescence microscopy. Despite the 

background autofluorescence of unlabelled Dynabeads, a significant increase in red 

fluorescence was observed at all wavelengths examined by epi-flourescence microscopy 

after binding to QD655 (Figure V.12). This demonstrated both the success of the binding 

procedures used and the broad excitation spectra of QDs. No clustering of fluorescence on 

D C 

B A  
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the surface of the beads was observed, indicating that the QDs had not agglomerated as 

had been observed using other binding methods (Appendix II: BioMag beads). 

 

    

    
Figure V.12: Unlabelled Dynabeads and Dynabeads bound to QD655 observed by epi-
fluorescence microscopy. A: Unlabelled Dynabeads under UV light. B: Unlabelled 
Dynabeads under blue light. C: Dynabeads labelled with QD655 under UV light. D: 
Dynabeads labelled with QD655 under blue light. 

 

 

Dynabeads prior to and after binding to QD655 were also analysed by the BD-FACS 

Calibur flow cytometer and the median fluorescence intensity (MFI) measured. 

Dynabeads bound to QD655 exhibited a substantial increase in the intensity of the 

fluorescent signal in FL3 (MFI: 199) compared to unlabelled Dynabeads (MFI: 10). This 

increase in fluorescence indicated positive binding between the QDs and the Dynabeads 

(Figure V.13). The background fluorescence of the Dynabeads did not seem to affect the 

fluorescence emission of the QD655-Dynabeads complexes. 
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Figure V.13: Flow cytometric analysis of Dynabeads bound to QD655. Bivariate 
dot-plots defining log FL3 channel (y-axis) versus log SSC channel (x-axis) A; 
Unlabelled Dynabeads. A circular region (R2) was defined around the unlabelled 
Dynabeads. B; Dynabeads bound to QD655. Observed is a significant increase in 
fluorescence emission by Dynabeads which confirmed binding to QD655. 

3.3.2. Optical behaviour of QDs bound to Dynabeads 

The optical behaviour of QD655 after binding to Dynabeads was investigated using a BD 

LRS I flow cytometer (II.2.5.1) incorporating blue- and UV-light excitation wavelengths.  

 

Different concentrations of QD655 (Table V.8) were bound to Dynabeads by the biotin-

streptavidin interaction (V.2.4.3). Figure V.14 represents the binding of several QDs to a 

single Dynabead. 

 

 

            
Figure V.14: Schematic representation of Dynabeads labelled with QD655 by 
the biotin-streptavidin interaction. 
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Table V.8: Dilutions of Q655 bound to Dynabeads by the biotin-streptavidin interaction. 
Sample 
number 

Line colour in the 
Figures V.15 and V.16 

Concentration of 
QD655 

Volume of Dynabeads 
(10 mg/ml) 

1 Green 0.001 pmol 5 µl 
2 Pink 0.01 pmol 5 µl 
3 Blue 0.2 pmol 5 µl 
4 Orange 0.3 pmol 5 µl 
5 Dark blue 0.4 pmol 5 µl 
6 Yellow 0.5 pmol 5 µl 
7 Light blue 0.6 pmol 5 µl 
8 Red 0.8 pmol 5 µl 

 

Unlabelled Dynabeads were used as a negative control to set up the parameters on the 

flow cytometer. The fluorescent signal of a sample was considered positive when it was 

detected above 101 on the axis of the channel detector, indicating the successful binding of 

QD655 to the Dynabeads. 

 

 

Figure V.15: Flow cytometric analysis. Histogram of different concentrations of 
QD655 bound to Dynabeads. X-axis represents the fluorescent signal in arbitrary 
units detected by the FL3 channel. Y-axis represents the number of particles counted 
per reaction. The excitation wavelength was 488 nm (blue light).  
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The results indicated a substantial increase in the fluorescent signal of all samples when 

UV light (325 nm) was used as an excitation source instead of blue light (488 nm) 

(Figures V.15 and V.16). The results showed that 0.01 pmol of QD655 bound to the 

Dynabeads (Figure V.15, pink line) were needed to obtain a positive result when they 

were excited with blue light (488 nm). However, only 0.001 pmol of QD655 bound to the 

Dynabeads (Figure V.16, green line) were needed to obtain a positive result under UV 

excitation. This result confirms the increase in the fluorescent signal of QDs observed 

under UV excitation, previously described when analysing unbound QDs by 

spectrophotometry (Figure V.5). 

   Legend Figure V.15 and V.16: 
Purple curve: Blank (unlabelled Dynabeads) 

Green line: 0.001 pmol of QD655 

Pink line: 0.01 pmol of QD655 

Blue line: 0.2 pmol of QD655 

Orange line: 0.3 pmol of QD655 

Dark blue line: 0.4 pmol of QD655 

Yellow line: 0.5 pmol of QD655 

Light blue line: 0.6 pmol of QD655 

Red line: 0.8 pmol of QD655 

Figure V.16: Flow cytometric 
analysis. Histogram of different 
concentrations of QD655 bound to 
Dynabeads. X-axis represents the 
fluorescent signal in arbitrary units 
detected by FL3 channel. Y-axis 
represents the number of particles 
counted per reaction. The excitation 
wavelength was 325 nm (UV light). 
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3.3.3. Binding capacity of the Dynabeads 

The binding capacity of the Dynabeads to molecular probes was calculated 

mathematically and experimentally by comparing the fluorescent signal from known 

concentrations of FITC molecules bound to the Dynabeads (Figure V.17). FITC is a 

conventional organic fluorophore normally used for flow cytometric analysis. A modified 

poly-A probe (LinkerFITC) with a biotin group at the 3’ end and FITC at the 5’ end was 

used to label Dynabeads (V.5.4.4).  

 

          
Figure V.17: Schematic representation of LinkerFITC (biotinylated probe 
modified with FITC) bound to Dynabeads by the biotin-streptavidin interaction. 

 

Calculations were performed to estimate the concentration of biotinylated probes that 

could be bound to the Dynabeads, which were provided in a suspension at a concentration 

of 10 mg (6.7 x 108 beads) per ml. As indicated by the manufacturers, 1 mg (100 µl) of 

Dynabeads is expected to bind to 700 pmol of free biotin or 200 pmol of biotinylated 

oligonucleotide probe (single stranded). Therefore, 5 µl of Dynabeads in suspension 

should bind to 10 pmol of biotinylated probes. 

 

If 10 mg of the Dynabeads in suspension contains 6.7 x 108 beads, then 100 µl (1 mg) 

contains 6.7 x 107 beads. Therefore, 6.7 x 107 beads should bind to 200-700 pmol of biotin 

or to 1.204 x 1014-4.216 x 1014 molecules of biotin. Therefore, 1 bead binds 1.044 x 10-5-

Dynabead  

F B LinkerFITC (5’biotin-AAAAAAAAAAAA-FITC 3’) 

Binding 
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2.98 x 10-6 pmol (1,794,705-6,287,490 molecules) of biotin depending of whether the 

biotin is free or covalently-linked to the oligonucleotide. 

 

Avogadro’s number: 6.0227 x 1023mol-1 = 1 mol contains 6.02257 x 1023 molecules 

         = 1 pmol contains 6.02257 x 1011 molecules 

 

The binding capacity of the Dynabeads was confirmed experimentally by binding known 

concentrations of a biotinylated probe modified with FITC to Dynabeads. Several 

concentrations of LinkerFITC (100 µM) were bound to a constant concentration of 

Dynabeads (V.2.4.3) as described in Table V.9. The data was analysed on bivariate dot-

plots of SSC versus FL1. 

  

Table V.9: Concentrations of LinkerFITC bound to Dynabeads.  

Sample 

number 

Volume of 

LinkerFITC 

Concentration 

of LinkerFITC 

Molecules per 

sample 

Volume of Dynabeads 

(10 mg/ml) 

1  1 µl 1 pmol 6.0225*1011 5 µl 
2  2 µl 2 pmol 1.2045*1012 5 µl 
3  3 µl 3 pmol 1.806*1012 5 µl 
4  4 µl 4pmol 2.409*1012 5 µl 
5  5 µl 5 pmol 3.011*1012 5 µl 
6  6 µl 6 pmol 3.6135*1012 5 µl 
7  7 µl 7 pmol 4.215*1012 5 µl 
8  8 µl 8 pmol 4.818*1012 5 µl 
9  9 µl 9 pmol 5.420*1012 5 µl 
10  10 µl 10pmol 6.0225*1012 5 µl 
11  11 µl 11 pmol 6.624*1012 5 µl 
12  12 µl 12 pmol 7.227*1012 5 µl 
13  13 µl 13 pmol 7.829*1012 5 µl 
14  14 µl 14p mol 8.4313*1012 5 µl 
15  15 µl 15 pmol 9.033*1012 5 µl 

 

 

 



 

 

Chapter V. Optical and binding characterisation of the QDs 135 

 

              

               
Figure V.18: Flow cytometric analysis of LinkerFITC bound to Dynabeads. 
Bivariate dot-plots defining log FL1 channel (y-axis) versus log SSC channel (x-
axis) A: Unlabelled Dynabeads. B: Dynabeads bound to 1 pmol of LinkerFITC. C: 
Dynabeads bound to 10 pmol of LinkerFITC. D: Dynabeads bound to 15 pmol of 
LinkerFITC. 

 

 

The fluorescent signal of the Dynabeads was observed to increase with increasing 

concentrations of LinkerFITC bound to them (Figure V.18). The MFI values did not 

increase from samples 10 to 15, indicating that the saturation point of the Dynabeads was 

reached when 10 pmol of LinkerFITC were added to the binding reaction. This result 

confirmed the mathematical calculations previously made: 5 µl (10 mg/ml) of Dynabeads 

in suspension bound to a maximum of 10 pmol of biotinylated probes. 
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3.3.4. Saturation point of the Dynabeads-probe complexes 

The saturation point of the Dynabeads varies depending of the size of the target molecule. 

The binding capacity of the Dynabeads labelled with QD655 and FITC molecular probes 

was compared using the BD FACS-Calibur flow cytometer. 

 

Dynabeads were labelled with QD655 by the biotin-streptavidin interaction (V.2.4.3). The 

fluorescent signal of the Dynabeads labelled with both fluorophores, FITC and QD655, 

was analysed by flow cytometry and the MFI values collected (Figure V.19).  
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Figure V.19: Fluorescent intensity of Dynabeads labelled with QD655 and FITC measured 
as MFI values by flow cytometry. X-axis: Concentration of QD655 and LinkerFITC in 
pmoles bound to Dynabeads (5 µl, 10 mg/ml, per reaction). Y-axis: Median value of each 
sample. QD655 was analysed using the FL3 channel while FITC was analysed using the 
FL1 channel of the BD FACS-Calibur flow cytometer. 

 

The MFI value of each sample was obtained by defining a rectangular region around the 

centre of the main fluorescing population of Dynabeads. Once the region was defined, the 

MFI value was obtained from that region using the CellQuest software. The maximum 

binding capacity of beads for oligonucleotides probes, as indicated by the product data 

sheet, was 200 pmol of biotinylated oligonucleotides per one milligram of beads (Dynal 

Biotech) or 10 pmol of biotinylated probe per 5 µl of Dynabeads stock solution. 
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Moreover, the binding capacity of Dynabeads appeared to be different for the two 

fluorophores examined. 

 

Dynabeads labelled with QD655 were observed to reach the maximum binding capacity at 

significantly lower concentrations than that observed for FITC (Figure V.19). The 

fluorescent signal of the Dynabeads bound to QD655 increased exponentially until they 

reached their saturation point (0.2 pmols). However, LinkerFITC bound to the beads 

confirmed the stated bead commercial binding capacity as the maximum fluorescent 

intensity was observed at 10 pmoles of LinkerFITC per 5 µl of beads (Figure V.18). 

 

The MFI value of each reaction showed that Dynabeads bound to QD655 could be clearly 

discriminated above the negative control at amounts QDs as low as 0.01 pmol (Figure 

V.19). By comparison, the minimum amount required to clearly detect Dynabeads bound 

to LinkerFITC above the negative control was at a much higher concentration of 0.3 pmol.  
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4. DISCUSSION 

4.1. Optical properties of the QDs 

Commercially-available QDs have been described as highly fluorescent particles with 

very broad excitation, and narrow and symmetric emission spectra which enable a variety 

of colours to be excited by a single excitation. Although they have been used in a large 

number of biological applications, their behaviour has yet to be fully characterised. 

Moreover, commercial QDs are not spectroscopically standardised and their 

characterisation has not been completed (Jamieson et al. 2007). Their properties can be 

influenced by details of their synthetic history (Tonti et al. 2004; Wu et al. 2007b). 

Therefore, in this study the physical and optical properties of two types of commercial 

QDs were investigated by measuring their fluorescence emission over a wide range of 

excitation wavelengths.  

 

The excitation and emission spectra properties of QD655 and Hops-Yellow QDs in 

solution were studied. The fluorescent intensity of the QDs decreased 4-fold when 

examined at short excitation wavelengths of 320 nm (UV light) compared to longer 

wavelengths of 490 nm (blue light) (Figures V.5 and V.6). Additionally, the fluorescent 

intensity of QD655 bound to the Dynabeads by the biotin-streptavidin interaction was 

found to be 2-fold brighter when excited with UV light over blue excitation (Figures V.15 

and V.16) instead of the 4-fold difference found for unbound QDs. Therefore, it was 

concluded that approximately 50% of the fluorescent emission was lost when the QDs 

were bound to the Dynabeads.  

 

The broad absorption spectra observed for the QDs were in accordance with the broad 

absorption spectra reported previously (Dabbousi et al. 1997). However, there is an 

anomalous dependence of quantum yields on the excitation wavelengths, especially at less 

than 420 nm. This phenomenon has also been reported recently (Wu et al. 2007a). This 

effect is probably due to the size heterogeneity and the semiconductor properties of the 

QDs (Wu et al. 2007b). The fluorescent emission of semiconductor nanocrystals is due to 
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radiative recombination of excited electron-hole pairs. QDs absorb photons when the 

excitation energy slightly exceeds the band gap of the core material. During this process, 

the electrons are promoted from lower to higher energy levels, leaving holes behind. 

Shorter excitation wavelengths (UV light) possess higher energy than long excitation 

wavelengths (blue light). Thus the electrons are promoted to comparatively higher energy 

levels when they are excited with shorter excitation wavelengths. At such higher energies 

the density of the final electron states is high and so is the probability of electron 

excitation, whereas for lower excitation energy this probability is lower. In both cases, the 

electron-hole pair re-emits at the same lowest possible energy (the longest wavelength, in 

this case 655 nm) but with different probabilities, reflecting the different probabilities of 

excitation. These varying probabilities explain why QDs are comparatively brighter at 

short excitation wavelengths (Wu et al. 2007a). 

 

The photo-stability of the QDs has been reported to be influenced by several parameters 

such as pH, temperature and ionic buffers. A range of buffers were tested during the 

binding procedures of QDs to molecular probes and paramagnetic beads in the following 

chanpter VI (VI.3.1.3). Buffers with a high pH helped to maintain the fluorescence of the 

QDs better than buffers close to neutral values (Figure VI.11). This phenomenon has been 

reported in the literature recently, indicating that the fluorescent intensity of QDs 

decreased linearly by 90% with pH decreasing from 8.0 to 5.0 and could not be restored 

by adding OH- (Yu et al. 2007). The sensitivity of the QDs’ photoluminescence to pH 

might be explained as a function of their surface modification and effects on exciton trap 

sites (Gao et al. 1998; Zhang et al. 2003). Possibly the shell does not completely cover the 

core of the QDs, and the added H+ can pass through the shell layer, partially destroying 

the core. Ionic buffers have been also found to degrade the fluorescent signal of the QDs 

(Boldt et al. 2006). The signal loss when QDs are subjected to high concentrations of 

cations in solution could be due to the slow degradation of surface ligands and coatings, 

leading to surface defects and fluorescence quenching (Hess et al. 2001; Manna et al. 

2002). 

 

Temperature also influenced the fluorescence intensity of the QDs. Photo-stability of the 

QDs remained stable at room temperature but it decreased when the temperature was 

increased over 50ºC (data not shown). An effect of temperature on the QDs has been 
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reported recently where approximately 25% of fluorescent intensity was found to decrease 

when the temperature increased from 20ºC to 50ºC (Liu et al. 2006; Yu et al. 2007). This 

effect may have been attributed to variation in the particle size of QDs. It is known that 

the wavelength of fluorescence depends on the bandgap and thus on the size of the QD 

(Murray et al. 2000; Qu & Peng 2002).  

 

Size heterogeneity of the QDs may be another significant contributor to the observed 

variation in the quantum yield of the QDs (Wu et al. 2007b). Recent studies showed that 

photo-excitation of QD585 in the wavelength window between 420 and 500 nm yielded a 

uniform quantum efficiency, while QD525 within the same spectral window showed more 

pronounced anomalies, even leading to blinking (Ozkan 2004; Wu et al. 2007a). Blinking 

is caused by charge trapping and untrapping at surface defects during excitation, and 

results in an alternation of bright and dark states during which no photons are emitted 

(Michalet et al. 2001). QDs with smaller core sizes, such as QD525, have been observed 

to be more unstable and unreliable than QDs with higher core sizes.  

 

The molar extinction coefficient is a measure of how strongly a compound absorbs light at 

a certain wavelength. The molar extinction coefficient of Hops-Yellow QDs used for the 

preliminary experiments was unknown. Therefore, it was calculated via the Beer-Lambert 

law. The molar extinction coefficient was found to be 0.001 M-1 cm-1 at 560 nm. In 

comparison, the molar extinction coefficient of organic fluorophores such as FITC has 

been reporter elsewhere to be 7.69 x 104 to 8.80 x 104 M-1 cm-1 at 520 nm (DeRose & 

Kramer 2005). The results obtained in this study were in contradiction to recently 

published reports claiming the molar extinction coefficient of QDs to be 10–100 times 

greater than conventional fluorophores (Leatherdale et al. 2002; Ozkan 2004; Azzazy et 

al. 2007). 

 

 Several factors may have influenced the determination of the molar extinction coefficient 

such as purity of the solutions and the spectrophotometer calibration (DeRose & Kramer 

2005). Hops-Yellow QDs were functionalised with amine groups which are organic 

compounds with at least one amine (-NH2) group attached. It has been reported that 

solvent polarity and pH can effect the absorption spectra of organic compounds such as 

amine (van Dalen et al. 1970). In addition, the molecular probes were modified with thiol 
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groups in order to allow covalent attachment to the QDs. Thiol groups may be 

photocatalytically-oxidised making the QDs photochemically unstable and, consequently, 

losing their absorption efficiency (Aldana et al. 2001). Photooxidation of the thiol groups 

also may form a micelle-like structure around the QDs, causing agglomeration which also 

may influence the kinetics and the photo-stability of the QDs (Ozkan 2004). Therefore, an 

accurate measurement of the molar extinction coefficient of QDs depends of their purity 

and composition. Further development of QDs synthesis is needed in order to obtain high-

quality photostable QDs.  

4.2. Binding properties of the QDs 

A single QD has approximately 7 active groups on its surface (as indicated by the 

manufacturer). Quantitative and qualitative methods were designed to confirm this 

information by calculating the number of molecular probes that could be attached to a 

single QD. Spectrophotometric analyses were used to study the absorption spectrum of 

QDs bound to molecular probes (Figure V.9). However, the broad absorption spectra of 

the QDs resulted in high background noise at low wavelengths, making it impossible to 

detect any distinctive peak and allow estimation of the number of probes bound per QD 

by spectrophotometry. Although gel electrophoresis could not provide an accurate number 

of probes bound to the QDs, these analyses were useful in verifying the binding 

procedures (Figure V.10). 

4.3. Binding properties of the Dynabeads 

The binding capacity of the Dynabeads was found to be different for QDs over organic 

dyes. LinkerFITC bound to Dynabeads confirmed the commercial binding capacity 

indicated by the manufacturer (Figure V.18). As the maximum binding capacity was 

reached in accordance with the maximum fluorescence observed by flow cytometry, it 

was inferred that the FITC molecules were not in sufficiently close proximity on the 

bead’s surface to transfer energy to each other. Therefore, bead saturation by LinkerFITC 

did not contribute to fluorescence-quenching due to FRET (fluorescence resonance energy 

transfer).  

 

In contrast, the maximum fluorescence intensity of QDs-bead complexes was observed to 

be at significantly lower concentrations than observed for FITC (Figure V.19). This 
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reduction may be explained in terms of steric hindrance of fluorophore binding. The final 

size of commercial QDs is approximately 20 nm, while FITC is approximately 12 Å. This 

15-fold increase in size could severely affect probe binding. In addition, this phenomenon 

may potentially have significant consequences for many biological and biomedical 

applications where the samples studied have low binding capacities for active targets, 

consequently making them undetectable by flow cytometry.  

 

The capability of the QDs for specific target detection, coupled with lower detection limits 

and greater multiplexed capability using single light sources, has been suggested to offer 

significant advantages over conventional organic dyes (Horejsh et al. 2005). However, the 

results found in this study revealed that the binding capacity of the QDs is considerably 

lower than organic dyes and thus may substantially reduce their capacity for target 

detection.  

 

Although the fluorescent signal of QD655 appeared to be higher than FITC, a comparison 

between the fluorescent intensity of QD655 versus FITC could not be quantified. QD655 

was detected in the FL3 channel of the flow cytometer while FITC was detected in the 

FL1 channel. For comparative purposes both fluorophores should have been analysed 

under the same channel and experimental settings. The apparent brightness of QD655 

over FITC could be due to the core size of the QDs since the quantum yield of the QDs is 

dependant on the core size. Red QDs have bigger core sizes than yellow QDs, and 

consequently their quantum yield would be expected to be higher. 

4.4. Summary 

Anomalies in the physical and optical characteristics of QDs observed in this study 

potentially could lead to difficulties when using them in biological applications. Many 

fundamental characteristics of their surface chemistry and physicochemical properties in 

varying situations still need to be investigated. Some important technical problems 

remain, particularly in defining and characterising the surface-coating chemistry. This 

aspect could be controlled to develop a coating which provides minimal non-specific 

binding, whilst maintaining stability, avoiding oxidation and tolerating the salt 

concentrations found in cells and biological solutions. QDs should also maintain strong 
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fluorescence without bleaching, quenching, or blinking. Further analyses to study the 

binding characteristics of the QDs are still required.  
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1. INTRODUCTION 

Several bead-based QDs techniques have been described for flow cytometric assays. The 

majority of these methods have focused on embedding beads with different amounts of 

QDs for the detection of biomolecules. For example, polystyrene beads have been 

embedded previously with different amounts of QDs, and each bead surface was modified 

with various biomolecules to target specific DNA sequences from the sample (Han et al. 

2001; Wang et al. 2006) or for multiplex assays (Gao & Nie 2003; Xu et al. 2003; Gao & 

Nie 2004; Cao et al. 2006). Although, these reports have demonstrated the utility of QDs 

as an indicator in bead-based flow cytometry assays, the potential applications and 

advantages of QDs as fluorophores to label specific targets for flow cytometric analyses 

still remains to be investigated. 

1.1. Aim 

The overall aim of this part of the project was to design a bead-based technique which 

targeted specific sequences of DNA using QDs for detection by flow cytometry.   

 

The small size of QDs prevented the analysis of the quantum yield of a single QD by flow 

cytometry. Therefore, commercial paramagnetic beads were used as a surface platform to 

bind high numbers of targeted sequences. Paramagnetic beads were covalently coupled 

with a monolayer of functional groups such as streptavidin or carboxylic groups, allowing 

the interaction with suitably modified molecular probes. The paramagnetic material of the 

beads allows them to be attracted to a magnetic field, facilitating the separation of the 

bead-molecule complex from the rest of the molecules in solution with a magnet. 

Therefore, unbound molecules were simply washed away preventing non-specific binding 

and agglomeration issues. 

 

The desired sequences of DNA were captured on beads and labelled with QDs using 

specific molecular probes as linkers. A capture probe modified with biotin or carboxylic 

groups was used to hybridise to the DNA while binding the paramagnetic beads by the 

streptavidin-biotin interaction. A target probe was used to hybridise to the DNA while 
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labelling the DNA with the QDs or other fluorophores for comparative purposes (Figure 

VI.1). 

 

                                            

 

 

 

 

 

 

 

  

       

Figure VI.1: Diagram of the bead-based QDs technique for DNA detection. It 
represents the hybridisation of the capture and target probes to the DNA and binding 
to the paramagnetic beads. 

 

Commercially-available functionalised QDs were used to develop the bead-based 

technique. QDs were functionalised with streptavidin or amine groups  (Chan et al. 2002; 

Parak & Pellegrino 2005). Details and characteristics of commercial QDs were discussed 

in Chapter V. 

 

Prior to developing the bead-based technique, preliminary experiments were undertaken 

to detect modified PCR amplicons of D. radiodurans labelled with different fluorophores, 

such as FITC, bound to the paramagnetic beads. These experiments set the basis and 

background knowledge necessary for the full development of the technique. 

 

The bead-based QD technique was designed initially to label and detect genomic DNA 

(gDNA) from D. radiodurans. However, the difficulties found when working with gDNA 

led to the amplification of small segments of DNA by PCR. Specific capture and target 

probes were designed to label the PCR fragments. Two types of paramagnetic beads were 

selected as a platform for capturing the labelled PCR amplicons: Dynabeads and 

QuantumPlex™M beads. 
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The bead-based QD technique was aimed to be applied to study the microbial diversity of 

environmental samples, such as the sulphur-rich acidic volcanic hydrosystems of White 

Island. Two main applications of the technique were anticipated for this project: first, 

screening of the environmental DNA to detect the key microbial species by flow 

cytometric analyses; and secondly, targeting and isolation of specific microorganisms 

from the environment for further analyses. 
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2. MATERIALS AND METHODS 

2.1. Reagents 

The QuantumPlex™M Carboxyl kit (Bangs Laboratories Inc., Fishers, IN, USA) 

consisted of five populations of uniform super-paramagnetic microspheres (~6 µm in 

diameter) incorporating different intensities of Starfire Red™ fluorescent dye. The beads 

were at a concentration of 1 x 108 microspheres/ml. Starfire Red™ dye exhibits a broad 

excitation band and can be excited with Argon or He-Ne lasers, while emitting light in the 

FL3 channel (685 nm) of a standard flow cytometer (488 nm). 

2.2. Buffers and solutions 

All buffers and solutions were autoclaved for 20 min at 121ºC and 200 kPA pressure. For 

general buffers and solutions refer to Chapter II 2.1 and Chapter V 2.2. 

 

Table VI.1: Description of buffers and solutions. 
Binding Wash buffer (BW 

buffer) 
10 mM Tris/HCl (pH 7.5), 2.0 M NaCl and 1 mM EDTA 

BioMag buffer 
20 mM Tris (pH 7.8), 1 M NaCl, 1mM EDTA and 0.02% Triton x-

100                                                                   

QD incubation buffer 2% BSA in 50 nM borate with 0.05% sodium azide. Final pH 8.3      

50 x Denhardt’s mix 

1% (w/v) of Ficoll, 1% (w/v) of Polyvinyl pyrrolidone (PVP) and 

1% (w/v) of Bovine Serum Albumine (BSA). The solution was 

filtered using 0.22 µm pore filters and stored at -20ºC 

Hybridisation buffer 6 x SSC, 0.1% SDS and 1 x Denhardt’s mix 

Hybridisation wash 0.1 x SSC and 0.1% SDS 

Imidazole buffer, 100 mM 
0.68 gr of Imidazole dissolved in 100 ml of distilled MilliQ water. 

pH adjusted to 7 using 1 M NaOH 

MES buffer, 100 mM 
1.95 gr of 2-(N-morpholino)ethanesulfonic acid dissolved in 100 

ml of distilled MilliQ water. pH adjusted to 7 using 1 M HCl 
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2.3. Molecular procedures  

2.3.1. Deinococcus radiodurans 

D. radiodurans (strain number MQ480) was obtained from the Extremophile Group 

Microbial Collection (Macquarie University, Australia). D. radiodurans was cultured on 

LA agar plates at 30ºC for 48 h (II.2.3) and formed pink colonies on the surface of the 

plate. Single colonies were picked using sterile toothpicks and transferred to 50 ml of LB 

broth (II.2.3) followed by incubation overnight at 30ºC with shaking. Liquid cultures were 

analysed by light microscopy prior to DNA extraction. 

2.3.2. DNA extraction 

Genomic DNA of D. radiodurans was obtained using a modified phenol extraction 

method (D.D. Morris, Ph.D. thesis, University of Auckland, 1998). Enzymes and 

solutions are listed in Chapter II (Table II.3). One inoculating loop of cells was 

resuspended in 1 ml of 50 mM Tris/HCl (pH 8) and 150 µl of 0.25 M EDTA (pH 8). With 

liquid samples, 1 ml of culture was spun at 13,000 rpm for 15 min at 15ºC. The pellet was 

resuspended as before. The mixture was vortexed briefly and incubated at 37ºC for 20 

min. A portion (120 µl) of Lysozyme (20 mg/ml) and 1.4 µl of Mutanolysin (100 µg/µl) 

were added and the tubes were mixed by hand and incubated at 50ºC for 20 min. After the 

addition of 70 µl of RNAaseA (10 mg/ml), the mixture was incubated for another 20 min 

at 37ºC. Then 57 µl of protease from S. griseus (40 mg/ml) and 70 µl of 10% SDS were 

added to the mixture, followed by incubation at 50ºC for 20 min. The final volume was 

then adjusted to 5 ml using TE buffer and transferred to 15 ml Phase Lock Gel (PLG) 

light tubes, followed by the addition of 5 ml of phenol/CIAA (25:24:1). The sample was 

mixed gently for up to 5 min. The tubes were centrifuged for 5 min at 13,000 rpm, 17ºC. 

The gel separates the DNA content of the cells from the organic and protein contaminants 

after centrifugation. Subsequently, the aqueous layer was transferred to a fresh PLG tube 

with the addition of 5 ml phenol/CIAA (25:24:1) followed by another centrifugation step. 

The aqueous layer subsequently was transferred to a clean PLG light tube with the 

addition of 1 volume of CIAA (24:1) and centrifuged as above. The final aqueous layer 

was transferred to a clean 1.5 ml Eppendorf tube and the DNA was precipitated with 1/10 
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volume of 3 M sodium acetate (pH 5) and 2 volumes of cold absolute EtOH (-20ºC). The 

solution was mixed gently and, after incubation at RT for 30 min, was centrifuged for 1 hr 

at 5,000 rpm at 4ºC. The supernatant was discarded and the pellet washed in 3 ml of 70% 

EtOH. After a final centrifugation step, the supernatant was discarded, the DNA pellet 

was air dried, resuspended in 100-250 µl of TE buffer and stored at 4ºC. In the event that 

the DNA had not dissolved after overnight incubation, 200-300 µl TE buffer was added 

and incubated at 55ºC for a further 20 min. This procedure could be repeated up to 3 

times. The final DNA obtained from D. radiodurans was quantified by gel electrophoresis 

and spectrophotometry (II.2.6.1). 

2.3.3. Amplification and analysis of 16S rDNA of D. radiodurans 

Primers PB36 and PB38 were used to amplify 16S ribosomal RNA genes of D. 

radiodurans following the standard bacterial PCR protocol (II.2.6.2). They were 

sequenced by the chain-termination method using BigDye Terminator and the bacterial 

16S rDNA-specific primers: 16SR2, PB36, 16SF1 (II.2.6.3). The sequencing reactions 

were analysed using an ABI-Prism 377 Sequencer (DNA Analysis Facility, Macquarie 

University, Australia) and the sequenced fragments obtained were assembled and edited 

using the BioManager workspace of the Australian National Genomic Information Service 

(ANGIS).  

2.3.4. Design of D. radiodurans specific oligonucleotide probes 

BlastN algorithms megablast and discontinuous megablast searches 

(http://www.ncbi.nlm.nih.gov/BLAST/) were performed on the 16S rDNA sequences 

obtained from D. radiodurans to determine the most closely related species based on the 

16S rDNA. This information was used to identify unique regions within D. radiodurans 

for the design of capture and target oligonucleotide probes. Up to 17 different sequences 

were found to be closely related to D. radiodurans. All sequences were aligned and 

compared using ClustalW (Thompson et al. 1994) and ClustalX (Thompson et al. 1997).  
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Oligonucleotides probes were designed for specific experiments based on the 16S rDNA 

gene sequence of D. radiodurans compared to the most closely relative species (Table 

V.2). All designed probes were purchased from Sigma-Aldrich (Australia). 

 

 
Figure VI.2: Schematic representation of the 16S rDNA gene sequence of D. radiodurans. The 
Universal region belongs to the part of the sequence common to the majority of bacterial 
species. The Deinococcus region belongs to the part of the sequence unique for D. radiodurans. 
Reverse and forward probes were designed based on the Universal and Deinococcus regions. B 
= biotin modification. F = FITC modification. 
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Table V.2:  List of probes designed from the 16S rDNA gene sequence of D. 
radiodurans. Specifications: 7 (Biotin), F (Fluorescein), 6THS (Thiol), 1 
(Alexa 521nm), 5AmMC12 (Amine followed by 12 carbons). 

Name Sequence 

DeinoFamBiotin 7-TGGACAGAAGGTGACGCTGA 

QDLinker 7-AAAAAAAAAA4-6THS 

Bactouniversal 5'-Fluoroscein-AGCAGCCGCGGTAATACG 

DeinoFam 5'-Sulfhydryl-TGGACAGAAGGTGACGCTGA 

Plainuniversal AGCAGCCGCGGTAATACG 

DeinoFamFITC F-TCAGCGTCACCTTCTGTCCA 

LinkerFITC 7-AAAAAAAA-F 

EukQD 7-ACCAGACTTGCCCTCC 

CRY2Cy3 GATATGTCACATTAATTGT 

Eub388-QD 7-GCTGCCTCCCGTAGGAGT 

Eub388-FITC F-GCTGCCTCCCGTAGGAGT 

QDUniBiotinF 7-AGCAGCCGCGGTAATACG 

DeinoFamBR 7-TCAGCGTCACCTTCTGTCCA 

QDuniBiotinR 7-CGTATTACCGCGGCTGCT 

Bactuni2 F-AGCAGCCGCGGTAATACG 

BactouniAlexa 1-AGCAGCCGCGGTAATACG 

Deino-Capture680 5AmMC12- TCAGCGTCACCTTCTGTCC 

 

2.3.5. Polymerase chain reaction (PCR) 

Polymerase chain reaction (PCR) amplification of 16S ribosomal DNA genes was carried 

out following the procedures described previously (II.2.6.2). PCR products were checked 

by gel electrophoresis and spectrophotometry (II.2.6.1).  

 

Specific primers were designed to amplify small sequences within the 16S ribosomal 

DNA genes of bacterial and archaeal microorganisms selected for detection by the bead-

based QD technique. 
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Table V.3: Bacterial PCR set-up. 

Sulfobacillus thermosulfidooxidans 

Forward primer Sulfo288 GGG AGC TCG CGG CCC ATT A 

Reverse primer EUBR GCT GCC TCC CGT AGG AGT 

PCR size product 127 bp 

PCR product 

concentration 
1 pmol = 76.2 ng 

 

Acidithiobacillus ferrooxidans 

Forward primer Thio2 TAA TGC GTA GGA ATC T 

Reverse primer EUBR GCT GCC TCC CGT AGG AGT 

PCR size product 238 bp 

PCR product 

concentration 
1 pmol = 143 ng 

 

Table VI.4: Archaeal PCR settings. 

Ferroplasma acidiphilum 

Forward primer ASF CCA GGY CCT ACG GGG CGC A 

Reverse primer FER565R ACG TTT AAC CTC ACC CGA TC 

PCR size product 296 bp 

PCR product 

concentration 
1 pmol = 177 ng 

 

Sulfolobus metallicus 

Forward primer ASF CCA GGY CCT ACG GGG CGC A 

Reverse primer Smet GAG CTC GGG TCT TTA AGC AG 

PCR size product 242 bp 

PCR product 

concentration 
1 pmol = 145 ng 

2.3.6. Gel electrophoresis analysis 

Binding of QDs to oligonucleotide target probes was confirmed by gel electrophoresis. In 

all cases (unless stated otherwise) the gel was prepared as described previously (II.2.6.1). 

Agarose gels were subjected to electrophoresis for 45 min at 100 V. Samples were mixed 
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with 2 µl of loading dye (6 x) and loaded into a 1% agarose gel (w/v) in 1xTBE buffer 

containing 5 µg Etbr/100 ml. 

2.4. QD-bead complex binding procedures 

All binding procedures involving the use of QDs or organic fluorophores were carried out 

in darkness to avoid exposure to the light. The final products were kept at 4ºC in the dark 

until further analysis, but for not longer than 24 h. Some of the binding procedures were 

described in Chapter V.2.4. 

2.4.1. Washing of paramagnetic beads 

Paramagnetic beads were washed before use as described previously (V.2.4.2).  

2.4.2. Binding of QD-oligonucleotide amine probe complexes to 

Dynabeads 

Generally, 10 µl of pre-washed Dynabead stock solution was used for every reaction. 

Dynabeads were resuspended in the same volume of BioMag buffer as the original portion 

taken to maintain the concentration of the beads after washing. Generally, 20 µl of 

previously prepared QDs-oligonucleotide amine probe complexes (V.2.4.1) were used per 

reaction and added to the pre-washed Dynabeads. The final volume of the reaction was 

made up to 100 µl with BioMag buffer. The solutions were incubated at RT in darkness 

for 30 min to 1 h with occasional gentle shaking. Dynabeads coated with the QDs-probe 

complexes were washed up to 3 times with 100 µl of BioMag buffer. Finally, the beads 

were resuspended in the desired volume using 10 x PBS, DEPC water or BioMag buffer.  

2.4.3. Binding of complementary oligonucleotide probes to 

Dynabeads 

A portion (5 µl) of pre-washed Dynabeads (10 mg/ml) was transferred into a 1.5 ml 

Eppendorf tube and resuspended in 200 µl of BW Buffer. Biotinylated oligonucleotide 

capture probe, DeinoFamBiotin (100 µM), was diluted 1:1000 in sterile MilliQ water and 

used for serial dilutions. A portion (20 µl) of complementary target probe, 
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DeinoFamFITC (100 µM), also diluted 1:1000 in sterile MilliQ water was added to the 

solution. The hybridisation between the capture and target complementary probes and the 

binding to the Dynabeads were performed simultaneously (Figure VI.3). The reactions 

were incubated at 55ºC for 1 h with frequent rotation in the dark. After incubation, the 

reactions were washed 3 times with 100 µl of BW buffer and resuspended in a final 

volume of 300 µl BW buffer. Dynabeads bound to the probes were stored at 4ºC in the 

dark for no more than 24 h. 

2.4.4. Binding of biotinylated PCR amplicons to Dynabeads 

Generally, a portion (1 µl) of pre-washed Dynabeads was transferred to 1.5 ml Eppendorf 

tubes and resuspended in 100 µl of BW Buffer. Then the appropriate amount of purified 

biotinylated PCR amplicon from D. radiodurans was added to the solution for binding to 

the Dynabeads. The reactions were incubated at RT for 2 h with rotation or occasional 

mixing by hand. After incubation, the reactions were washed 3 times with 100 µl of BW 

Buffer and resuspended in 200 µl BW buffer. PCR amplicons bound to Dynabeads were 

stored in the dark at 4ºC for no more than 24 h. 

2.5. Capture and detection of genomic DNA bound to 
Dynabeads 

Genomic DNA from D. radiodurans was obtained as described previously (VI.2.3). The 

concentration of gDNA was determined by spectrophotometry (II.2.6.1.2).  

2.5.1. Direct capture and reporting of gDNA 

Generally, a portion (5 µl) of washed Dynabeads was transferred into a 1.5 ml Eppendorf 

tube and resuspended in 100 µl of BW buffer for each reaction. A portion of the capture 

probe, DeinoFamBiotin (100 µM), was added to the reaction. After incubation at RT with 

rotation or gently mixing during 1 h, Dynabeads bound to the capture probe were washed 

3 times using 100 µl of BW buffer. The first waste fraction was kept for further analysis.  

 

Genomic DNA from D. radiodurans was denatured as follows: 5 µl of gDNA (0.15 

µg/µl) was transferred to PCR tubes (0.2 ml). The final volume was made up to 100 µl 
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with 95 µl of TE buffer. Genomic DNA then was heated to 99ºC for 10 min using a PCR 

thermo-cycler. Samples were transferred to ice for 1 min to prevent renaturation. Once the 

gDNA was denatured, it was added to the Dynabeads-capture probe complexes. 

Hybridisation between the single stranded gDNA and the capture probe was carried out by 

incubation at 50ºC with rotation for 2-6 h. Following hybridisation, samples were washed 

3 times with 200 µl of BioMag buffer. The first waste fraction containing unbound gDNA 

was kept for further analysis. Dynabead-gDNA complexes were then resuspended in 200 

µl of BioMag buffer. The gDNA captured on the Dynabeads was labelled using a target 

oligonucleotide probe (Bactouniversal). A portion (5 µl) of the Bactouniversal probe was 

added to the samples. Hybridisation between the gDNA captured onto the Dynabeads to 

the target probe was carried out by incubation at 50ºC for 2-6 h with rotation in the dark.  

Samples were then washed 3 times with 200 µl of BioMag buffer. Finally, hybridised 

Dynabead complexes were resuspended in 200 µl of BioMag buffer or TE buffer and kept 

at 4ºC in the dark until further analysis. 

2.5.2. Indirect capture and reporting of gDNA 

This method was modified from Mangiapan et. al. (Mangiapan et al. 1996). Generally, 5 

µl of gDNA from D. radiodurans was denatured by heating to 99.9ºC for 10 min. The 

denatured gDNA was transferred quickly to ice for 1 to 5 min. Then, a portion of the 

capture probe (DeinoFamBiotin) was added to the denatured gDNA for hybridisation, and 

incubated at 60ºC for 5 h with rotation. The final volume of the reaction was made up to 

100 µl using pre-warmed hybridisation buffer. A portion (5 µl per reaction) of pre-washed 

Dynabeads was then added to gDNA-capture probe complexes and incubated at 20ºC 

overnight to allow binding between the capture probe and the Dynabeads by the biotin-

streptavidin interaction. After binding, the samples were washed 3 times using 100 µl of 

hybridisation wash buffer. The first waste fraction was kept for further analysis. 

Dynabeads-gDNA complexes were then resuspended in 150 µl of hybridisation buffer and 

a portion of target probe (Bactouniversal) was added to each reaction for hybridising the 

gDNA attached to the Dynabeads. After hybridisation at 50ºC for 5 h in the dark with 

rotation, the final Dynabeads complexes were washed 3 times using 150 µl of WB buffer. 

The first wash fraction containing the unbound target probe was kept for further analysis. 
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The final products were resuspended in 100 µl of BioMag buffer and stored at 4ºC until 

further analyses.  

2.5.3. Restriction enzyme digestion of gDNA 

The restriction enzyme used to digest the gDNA of D. radiodurans was HinP1I (10 

units/µl) stored at -20ºC in glycerol. To set up the reaction, the enzyme was place on ice. 

A portion (10-50 µl) of gDNA was transferred to a fresh 1.5 ml Eppendorf tube. 

Generally, 40 µl of gDNA (425 ng/µl) was used per reaction. After adding 0.3 µl of 

NEbuffer2 (incubation buffer for HinP1I as indicated by the manufacturer) and 0.3 µl of 

enzyme, the solution was tapped and quickly spun to remove bubbles. The reaction was 

incubated at 37ºC for 16 h. After incubation, the reaction was stopped by heat inactivation 

at 65ºC for 20 min. The digestion was confirmed by 1% gel electrophoresis, and the 

restriction digests were stored at 4ºC until further analysis. Digested gDNA was then 

hybridised to Dynabeads either by the direct or indirect method described below. 

2.5.3.1. Direct method for capturing digested gDNA 

For all reactions, 1 µl of pre-washed Dynabeads was resuspended in 50 µl of BioMag 

buffer. Generally, 3 µl of the QDUniBiotinF capture probe (1 µM) was added to the 

Dynabeads and incubated at RT for 30 min. The Dynabeads-capture probe complexes 

were then washed 3 times using 100 µl of BW buffer and resuspended in 50 µl of BW 

buffer. A portion (40 µl) of digested gDNA (425 ng/µl) was used for hybridisation to 1 µl 

of Dynabeads-capture probe complexes. Digested gDNA was denatured at 99ºC for 20 

min using a thermo-cycler followed by cold shock on ice for 1 min. Denatured fragments 

of digested gDNA were then added to Dynabeads-capture probe complexes and 

hybridised at 55ºC for 30 min followed by cold shock on ice for 1 min. The samples were 

washed and resuspended in 50 µl of BW buffer. Then, 3 µl of DeinoFamFITC target 

probe (1 µM) was added followed by hybridisation at 55ºC for 30 min to target the 

digested gDNA attached to the Dynabeads. The reaction was stopped by placing the 

samples on ice for 1 min. The final Dynabeads complexes were washed and resuspended 

in 200 µl of TE buffer pH 8 at 4ºC, until further analysis.  
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2.5.3.2. Indirect method for capturing digested gDNA 

Digested gDNA from D. radiodurans was mixed with 3 µl of the QDUniBiotinF capture 

probe (1 µM) in 50 µl of BioMag buffer and 1 µl of PCR buffer. Generally, 40 µl of 

digested gDNA (425 ng/µl) was used per reaction. The digested gDNA was denatured and 

hybridised to the capture probe by bringing the solution up to 94ºC for 30 s followed by 

55ºC for 30 s. This step was repeated 15 times using the thermo-cycler. Then, the 

solutions were placed on ice for 1 min. A portion (1 µl) of pre-washed Dynabeads was 

added to the gDNA-capture probe complexes and incubated at RT for 30 min followed by 

a wash step using 100 µl of BioMag buffer and resuspended in 50 µl of BioMag buffer. 

Then, 3 µl of DeinoFamFITC target probe (1 µM) was added to the solution and 

incubated at 55ºC for 30 min in the dark. After placing the samples on ice for 1 min, the 

final Dynabeads complexes were washed using 100 µl of BioMag buffer and resuspended 

in 200 µl of TE buffer pH 8 and kept at 4ºC until further analysis. 

2.6. Capture and detection of PCR amplicons bound to 
Dynabeads 

PCR amplicons from D. radiodurans were obtained as described earlier (VI.2.3.5) using 

the primers DeinoFamBR (with a biotin modification) and Plainuniversial. PCR 

amplicons were analysed by 1% gel electrophoresis. The band of the desired size of PCR 

product (243 bp) was cut out of the gel using a sterile scalpel under a UV lamp, and 

extracted using a gel extraction kit (Qiagen). The final concentration of the PCR amplicon 

was measured by spectrophotometry (II.2.6.1.2). 

2.6.1. Alkali treatment for denaturation of PCR amplicons 

1 µl of pre-washed Dynabeads were transferred to fresh 1.5 ml Eppendorf tubes to a final 

volume of 50 µl using BioMag buffer. After adding the appropriate amount of 

biotinylated PCR amplicon, the reactions were incubated at RT for 30 min with rotation. 

Biotinylated PCR amplicons bound to Dynabeads were washed twice with BW buffer to 

remove unbound products. The final complexes were resuspended in 50 µl of TE buffer 

pH 8. The reactions were washed twice using the Dynal MPC™ magnet and resuspended 

in 50 µl of 0.1 M NaOH for 10 min. After the second wash, the samples were resuspended 
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in 50 µl of BW buffer. A portion of target probe was added as quickly as possible to the 

reactions after the last wash. Generally 2-3 µl of 1:100 diluted target probes from stock 

(100 µM) in sterile MilliQ water was used for hybridisation with the single strands of the 

PCR amplicon bound to the Dynabeads. The target probes used were: Bactouniversal2, 

BactouniAlexa and QDUniBiotinF. After incubation at 55ºC for 1 h with rotation in the 

dark, the reactions were put on ice for 30 s. The final Dynabeads complexes were washed 

as usual and resuspended in 200 µl of BW buffer. The final products were kept at 4ºC in 

the dark until further analysis. 

2.6.2. Preparation of target probes modified with QDs 

Generally, 2 µl of QD525 (1 µM) were mixed with different concentrations of 

QDUniBiotinF target probe (1 µM). The volume of the reactions was made up to 50 µl 

using QDs incubation buffer. The solutions were incubated at 30ºC for 30 min in the dark 

with gentle rotation. It was calculated that all QDUniBiotinF probes would be bound to 

the QD525 due to the low concentrations used. Therefore, a washing step was not 

considered to be necessary. The QDs-target probe complexes were kept at 4ºC in the dark 

up to 24 h until further analyses. 

2.7. Capture and detection of PCR amplicons bound to 
QuantumPlex™M beads 

2.7.1. Calculations of the saturation point of the 

QuantumPlex™M beads 

A QuantumPlex™M bead contains 7.4 x 107 active carboxylic sites (Bangs Laboratories, 

pers. comm.). In addition, a single bead binds to 4.6 x 105 oligonucleotides as indicated by 

the user’s manual. From Avogadro’s number; 1 mol contains 6.023 x 1023 molecules, 

hence 1 pmol contains 6.023 x 1011 molecules.  

 

1 µl of QuantumPlex™M beads stock contains 106 beads. Therefore, if 1 bead binds 4.6 x 

105 oligonucleotides, then 106 beads would bind a maximum of 4.6 x 1012 

oligonucleotides. The stock solution of the modified oligonucleotide probe was 100 µM. 
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Therefore, 1 µl of probe stock contained 6.023 x 1013 molecules, which is the number of 

molecules required to saturate 1 µl of QuantumPlex™M beads. Therefore, probe stocks 

were diluted 100 times using autoclaved MilliQ water prior to binding to the beads, which 

resulted in 1 µl of probe (1 µM) containing 6.023 x 1011 molecules. 

2.7.2. Preparation of QuantumPlex™M beads bound to the 

capture probe 

The following protocol was modified from Kolarova and Hengerer (Kolarova & Hengerer 

1996). Stock solutions of QuantumPlex™M beads were vortexed prior to use to ensure a 

uniform suspension of beads. Immediately after washing, 1 µl (106 beads) of solution was 

taken from the stock for each conjugation. The beads were washed once with 30µl 

imidazole buffer (100 mM) pH 7.0 using the Dynal MPC™ magnet and resuspended in 25 

µl of freshly prepared EDC (100 mM). A portion of Deino-Capture680 capture probe (1 

µM) was added in the reaction and incubated at 35ºC for 2 h with rotation. The reactions 

were kept away from the light as much as possible. Beads complexes were then washed 

twice with 100 µl of 3 x SSC buffer containing 0.1% SDS. Finally, the beads were 

resuspended in 50 µl of PBS (0.01 M) pH 7.4 and stored at 4ºC in the dark.  

2.7.3. Capturing the non-biotinylated strand of PCR amplicons 

PCR reactions were prepared using the forward and reverse primers DeinoFamBR and 

Plainuniversal, respectively. PCR amplicons were denatured at 99ºC for 5 min followed 

by 95ºC for 10 min using the thermo-cycler. Pre-washed QuantumPlex™M beads were 

resuspended in 25 µl of BioMag buffer and 25 µl of TE buffer pH 8. The denatured PCR 

amplicons were added to the beads as quickly as possible. The reporter probe, 

QDuniBiotinR, was added to the solution. After a hybridisation step at 50ºC for 1 h with 

rotation, the beads were washed once and resuspended in 50 µl of BioMag buffer. 0.5 µl 

of streptavidin R-PE (1 mg/ml) was added to the solution and incubated at 30ºC for 30 

min with rotation to allow binding between R-PE and the reporter probe, QDuniBiotinR. 

The beads-PCR amplicon complexes were washed with 30 µl of BW buffer and 

resuspended in 200 µl of BW buffer. The final product was kept at 4ºC in the dark until 

further analysis.  
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2.7.4. Evaluation of the bead-based method for the detection of 

extremophiles 

Several DNA signatures from acidophilic thermophilic microorganisms identified from 

sulphur-rich environments and hydrothermal systems were developed for evaluation of the 

bead-based QD technique. The microorganisms were bacterial and archaeal sulphur- and 

iron- oxidisers: Sulfobacillus thermosulfidooxidans, Acidithiobacillus ferrooxidans, 

Sulfolobus metallicus and Ferroplasma acidiphilum.  

 

Microbial strains were purchased from the Deutsche Sammlung von Mikroorganismen 

und Zellkulturen GmbH (DMSZ, Braunchweig, Germany), except Sulfolobus metallicus 

strain Kra23 that was kindly provided by Dr Ruth Henneberger (Macquarie University, 

Australia). Acidithiobacillus ferrooxidans was cultivated in DMSZ 882 medium at 28ºC / 

250 rpm. Ferroplasma acidiphilum was cultivated in DSMZ 874 medium at 37ºC / 250 

rpm. Sulfobacillus thermosulfidooxidans was cultivated in DSMZ 665 medium at 37ºC / 

50 rpm and Sulfolobus metallicus was cultivated in MAL medium containing 0.05% 

elemental sulphur and 0.02% yeast extract (Brock et al. 1972) at 65ºC / 50 rpm. All 

microbial cultures were grown under aerobic conditions and growth was monitored by 

light microscopy.  

 

DNA extraction was undertaken as described previously (VI.2.3.2) and PCR amplification 

was carried out using specific primers for each microorganism as described previously 

(VI.2.3.5). 

 

Specific capture probes were used to hybridise the PCR amplicon from the different 

microorganisms and bind it to the QuantumPlex™M beads. The target probe was 

designed to hybridise the captured PCR amplicon while labelling with the different 

fluorophores (Table VI. 5). 
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Table VI.5: PCR product concentration, capture probe and target probe used per each 
microorganism.  

Microorganism 
Concentration 

of PCR product  

Volume of PCR 

amplicon 

Capture probe 

(10 µl, 1 µM) 

Target probe  

(10 µM, 1 µM) 

Deinococcus 
radiodurans 55 ng/µl 20 µl Deino-

Capture680 QDuniBiotinR 

Sulfobacillus 
thermosulfidooxidans 363 ng/µl 10 µl Sulf288A EUBB 

Acidithiobacillus 
ferrooxidans 10 ng/µl 28 µl Thio2A EUBB 

Sulfolobus metallicus 39 ng/µl 9 µl SmetA ASFRB 
Ferroplasma 
acidiphilum 330 ng/µl 14 µl FER565A ASFRB 

 

PCR amplicons were bound to the QuantumPlex™M beads and labelled with the different 

fluorophores following the protocols described earlier (VI.2.7.3). Negative controls were 

set up to confirm the binding specificity of the probes and the fluorophores. The controls 

excluded PCR amplicons in the reaction.  

2.8. Flow cytometry 

Flow cytometric analyses were undertaken using a BD FACS-Calibur Flow cytometer 

with the settings and data acquisition described previously (II.2.5.2). 

 

Unlabelled paramagnetic beads were used to set up the system every time before analysis. 

A fluorescent signal from the samples analysed above the signal observed from unlabelled 

paramagnetic beads was considered positive.  

 



 

 

Chapter VI. Applications of the QDs  165 

 

 

3. RESULTS 

3.1. Optimisation of the binding procedures  

3.1.1. Binding of complementary probes to Dynabeads 

Complementary oligonucleotide probes were bound to the Dynabeads and analysed by 

flow cytometry to validate the binding procedures. The maximum and minimum detection 

limits of complementary probes were determined.  

 

Two complementary oligonucleotide probes were chosen for binding to the Dynabeads: a 

biotinylated probe (DeinoFamBiotin) was first bound to Dynabeads by the biotin-

streptavidin interaction, followed by the hybridisation to the complementary probe 

modified with FITC (DeinoFamFITC) (VI.2.4.3). Figure VI.3 describes the hybridisation 

of the complementary probes followed by their binding to the Dynabeads. 

 

 

 

                                                                                                     

 

 

 

 

 

 
Figure VI.3: Schematic representation of complementary probes bound to the Dynabeads. 

 

Different concentrations of DeinoFamBiotin probe were bound to the Dynabeads (Table 

VI.6), followed by its hybridisation to the complementary target probe, DeinoFamFITC 

(VI.2.4.3). The samples were analysed by flow cytometer and the MFI values recorded 

(Figure VI.4). 

B
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Probe: DeinofamFITC (modified with FITC) 

Probe: Deinofambiotin (modified with biotin) 
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Table VI.6: Concentrations of DeinoFamBiotin probe used for binding 5 µl (10 
mg/ml) of Dynabeads.  

Sample 

number 

Volume of 

DeinoFamBiotin 

Concentration of 

DeinoFamBiotin 
Molecules per sample 

1 0.5 µl 0.5 pmol 3.01125 x 1011 
2  1 µl 1 pmol 6.0225 x 1011 
3 2 µl 2 pmol 1.2045 x 1012 
4 3 µl 3 pmol 1.806 x 1012 
5 4 µl 4 pmol 2.409 x 1012 
6 5 µl 5 pmol 3.011 x 1012 
7 6 µl 6 pmol 3.6135 x 1012 
8 7 µl 7 pmol 4.215 x 1012 
9 8 µl 8 pmol 4.818 x 1012 
10 9 µl 9 pmol 5.420 x 1012 
11 10 µl 10 pmol 6.0225 x 1012 
12 11 µl 11 pmol 6.624 x 1012 
13 12 µl 12 pmol 7.227 x 1012 
14 13 µl 13 pmol 7.829 x 1012 
15 14 µl 14 pmol 8.4313 x 1012 
16 15 µl 15 pmol 9.033 x 1012 
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Figure VI.4: Fluorescent intensity measured as MFI values of several 
concentrations of complementary probes (Table VI.6) bound to Dynabeads as 
measured by FACS-Calibur flow cytometry. 
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The complementary target probe DeinoFamFITC was modified with FITC for flow 

cytometric detection. The increase of the fluorescent signal observed by flow cytometry 

(Figure VI.4) indicated that both complementary probes have successfully hybridised and 

bound to the Dynabeads. Only 0.5 pmol of DeinoFamBiotin probe was required to obtain 

a positive signal by flow cytometry. The saturation point of the Dynabeads was reached 

when 10 pmol of DeinoFamBiotin probe were added to the binding reactions. The 

saturation point of Dynabeads was in concordance with the previous results obtained 

(V.3.3.4). Therefore, it could be inferred that the binding and hybridisation of the two 

complementary probes on the surface of the Dynabeads did not alter the overall binding 

capacity of the beads. 

 

Low concentrations of DeinoFamBiotin probe (Table VI.7) were hybridised to the 

complementary probe followed by their binding to the Dynabeads to determine the 

minimum detection limit. 

 

Table VI.7: Several concentrations of DeinoFamBiotin probe used for binding to the 
Dynabeads followed by the hybridisation to the complementary probe, DeinoFamFITC. 

Sample 

number 

Volume of 

DeinoFamBiotin 

Concentrations of 

DeinoFamBiotin 

Number of molecular probes 

per sample 

1 0.5 µl 0.1 pmol 6.02 x 1010 

2  1 µl 0.2 pmol 1.20 x 1011 

3  2 µl 0.4 pmol 2.41 x 1011 

4  3 µl 0.6 pmol 3.61 x 1011 

5  4 µl 0.8 pmol 4.82 x 1011 

6  5 µl 1 pmol 6.02 x 1011 

7  6 µl 1.2 pmol 7.22 x 1011 

8  7 µl 1.4 pmol 8.43 x 1011 

9  8 µl 1.6 pmol 9.63 x 1011 

10  9 µl 1.8 pmol 1.08 x 1012 

11 10 µl 2 pmol 1.20 x 1012 
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Figure VI.5: Fluorescent intensity measured as MFI values of different 
concentrations of complementary probes bound to the Dynabeads (Table VI.6). 

 

As expected, increasing concentrations of complementary probe bound to the Dynabeads 

resulted in an increased fluorescent signal (Figure VI.5). The minimum concentration of 

the complementary probe bound to Dynabeads necessary to obtain a positive signal by 

flow cytometry was 1 pmol (Figure VI.5). The minimum and maximum detection limit of 

the complementary probe bound to the Dynabeads was valuable in verifying their binding 

capacity. 

3.1.2. Binding of biotinylated PCR amplicons to Dynabeads 

Two different types of biotinylated PCR amplicons were bound to Dynabeads. The PCR 

amplicons were hybridised to different target probes labelled either FITC or QD680 for 

detection by flow cytometry. 

 

The first type of biotinylated PCR amplicons were obtained from the amplification of the 

gDNA of D. radiodurans using the specific primers Bactouniversal and DeinoFamBR, 

modified with FITC and biotin respectively. Consequently, the resulting PCR amplicon 

was modified with biotin at one end and FITC at the other end. The biotin modification 

was used for binding to the Dynabeads while FITC provided the fluorescence signal 

required for detection by flow cytometry (Figure VI.6). 
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Bactouniversal  5’ FITC-AGCAGCCGCGGTAATACG 3’ F  
 
B DeinoFamBR   5’  Biotin -TCAGCGTCACCTTCTGTC 

  
F

B 
               

                                                                       
Figure VI.6: Schematic representation of PCR amplicon modified with biotin and FITC 
bound to Dynabeads. 
 

The second type of PCR amplicons was obtained using the primers QDUniBiotinF and 

DeinoFamBR, both modified with biotin. The amplicon produced was consequently 

modified with biotin at both ends to allow binding to Dynabeads at one end and, binding 

to QD680 to the other of the PCR amplicon, by the biotin-streptavidin interaction (Figure 

VI.7). 

 

  

      

       

 

               

                                                                                                                                                      

 

 

 

 

 

   

Figure VI.7: Schematic representation of the biotinylated PCR amplicons labelled with 
QD680 bound to Dynabeads. 
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As discussed earlier, the binding capacity of Dynabeads was 2 pmol of biotinylated probe 

per 1 µl (10mg/ml) of Dynabeads. The appropriate concentration of PCR amplicons 

required to bind the Dynabeads was calculated based on their size. Both types of PCR 

amplicons were 243 bp. 1 pmol of 243 bp dsDNA corresponds to 0.160 μg (nucleic acid 

data from www.neb.com). Therefore, the amount of PCR that would saturate the beads 

would be 0.32 μg (2 pmol). 

 

The concentration of the PCR amplicon modified with FITC was 24 ng/µl. Therefore, 

13.3 µl of PCR amplicon was estimated to reach the saturation point of 1 µl Dynabeads (2 

pmol). Three different concentrations of PCR amplicons modified with FITC were bound 

to the Dynabeads: Sample 1 (1 pmol, 6.65 µl), Sample 2 (2 pmol, 13.3 µl) and Sample 3 

(4 pmol, 26.6 µl). The data was analysed on a histogram displaying FL1 (green) 

fluorescence (Figure VI.8). 

 

 
Figure VI.8: Biotinylated PCR amplicons modified with FITC bound to Dynabeads. X-axis: 
fluorescent signal detected in the FL1 channel. Y-axis: number of counts per sample. 
MFI value: Geomean 
C.V.: Coefficient of variation 

 

All the samples analysed showed a significant fluorescent signal above the blank (Figure 

VI.8), indicating the success of the binding procedures and detection. The highest 

fluorescent signal was obtained when 4 pmol of PCR amplicon were used to bind the 

Dynabeads (Figure VI.8, blue line). 

 

Sample 

number 

MFI 

value 
C.V. 

1 37.7 3.09 

2  44.2 2.73 

3  49.9 2.79 

Legend, Figure VI.8: 
Red curve: Blank 

Black line: Sample 1 

Green line: Sample 2 

Blue line: Sample 3 
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In contrast, PCR amplicons modified with biotin were obtained at a concentration of 26 

ng/µl. Three concentrations of biotinylated PCR amplicons were bound to the Dynabeads: 

Sample 1 (1 pmol, 6.15 µl), Sample 2 (2 pmol, 12.3 µl) and Sample 3 (4 pmol, 24.6 µl) 

bound to 1 µl (10 mg/ml) of Dynabeads per sample. The bound PCR amplicons were 

labelled with QD680 (1 µl, 1 µM) and analysed on a histogram displaying FL3 (red) 

fluorescence (Figure VI.9). The maximum emission of QD680 was at 680 nm which was 

detected in the FL3 channel of the flow cytometer. 

 

  
Figure VI.9: Flow cytometric analysis. Histogram of biotinylated PCR amplicons labelled 
with QD680 bound to the Dynabeads. X-axis: fluorescent signal detected in the FL3 channel. 
Y-axis: number of counts per sample. 
MFI value: Geomean 
C.V.: Coefficient of variation 

 

As expected, all samples showed a significant increase of fluorescence above the blank 

(Figure VI.9). The results confirmed the successful binding of the PCR amplicons labelled 

with QD680 to the Dynabeads. However, the population of fluorescent Dynabeads 

appeared to be spread along the histogram (Figure VI.9) instead of forming a narrow 

fluorescent peak as found when labelling the PCR amplicons with FITC (Figure VI.8). 

This result indicated that agglomeration of the Dynabeads had occurred which may have 

been due to the QDs. The highest fluorescent signal was obtained when 4 pmol of PCR 

amplicon was bound to the Dynabeads (Figure VI.9, blue line), as occurred when labelling 

with FITC. 

Sample 

number 

MFI 

value 
C.V. 

1 16.85 14.57 

2  24.28 9.53 

3  28.36 9.51 

Legend, Figure VI.9: 
Red curve: Blank 

Black line: Sample 1 

Green lien: Sample 2 

Blue line: Sample 3 
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3.1.3. Buffers and incubation times 

Several buffers and incubation times were tested in an attempt to reduce agglomeration of 

the Dynabeads when working with QDs.  

 

The buffers tested were: BioMag buffer, Dynabeads buffer, TE buffer pH 8 and HYB 

buffer (6 x SSC, 0.1 % SDS and 1 x Denhardt’s mix). Incubation times varied from 1 h to 

overnight. For these experiments, 1 µl of Dynabeads was bound to 1 pmol (6.15 µl) of 

biotinylated PCR amplicons (Figure VI.8) followed by labelling with QD680 (1µl, 2µM) 

and analysed on a bivariate dot-plot of SSC versus FL3 (Figure VI.10). 

 

 
Figure VI.10: Histogram of biotinylated PCR amplicons labelled with QD680 bound to 
Dynabeads using different hybridisation buffers. X-axis: fluorescent signal detected in the 
FL3 channel. Y-axis: number of counts per sample. Observed was a significant increase in 
MFI when TE buffer was used for hybridisation. 
  MFI value: Geomean 
  C.V.: Coefficient of variation 

 

Flow cytometric analysis revealed that agglomeration of the Dynabeads occurred under all 

hybridisation conditions tested (Figure VI.10). TE buffer showed the best result with 

higher fluorescent intensity measured as MFI values (MFI: 32.61, CV: 3.59) and less 

agglomeration than the other buffers tested: BioMag buffer (MFI: 10.46, CV: 11.05), 

Dynabeads buffer (MFI: 6.61, CV: 11.22) and HYB buffer (MFI: 2.79, CV: 19.05). It was 

Buffers 
MFI 

value 
C.V. 

Biomag 12.15 17.14 

BW 5.13 24.71 

TE 33.98 5.92 

HYB 2.96 26.03 

Legend, Figure VI.10: 
Red curve: Blank 

Black line: Biomag buffer 

Green lien: BW buffer 

Blue line: TE buffer 

Purple line: HYB buffer 
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observed also that long periods of incubation increased the degree of agglomeration of the 

Dynabeads. One to two hours of incubation was found to provide the best results. 

3.2. Bead-based QDs technique for DNA detection 

3.2.1. Detection of gDNA bound to Dynabeads 

The gDNA of D. radiodurans was used to optimise and validate the bead-based QDs 

technique. Two oligonucleotide probes were used to capture and target the gDNA on the 

Dynabeads’ surface. The capture probe (DeinoFamBiotin) had a biotin modification while 

the target probe (Bactouniversal) had a FITC modification. Both probes were able to 

hybridise the gDNA of D. radiodurans. After hybridisation, the capture probe was able to 

bind the gDNA to the Dynabeads while the target probe provided the fluorescence for 

detection by flow cytometry (Figure VI.11). 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure VI.11: A: Speculative schematic representation of the hybridisation of the 
capture and target probe to gDNA from D. radiodurans bound to Dynabeads. B: 
Enlarged detail of a single strand of gDNA bound to Dynabeads. The gDNA may have 
been forced to fold in order to allow hybridisation to the probes. 

 

Deinofambiotin 5’ B-TGGACAGAAGGTGACGCTGA 3’

Bactouniversal  5’ FITC-AGCAGCCGCGGTAATACG 3’ F

B

5’3’
BF

B

F

5’
3’ A 

B 
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Two different methods for hybridising to the probes to the gDNA were tested: a direct 

method where the capture probe was bound to the Dynabeads prior to hybridisation to the 

pre-denatured gDNA (VI.2.5.1), and an indirect method where the denatured gDNA was 

hybridised to the capture probe before binding to the Dynabeads (VI.2.5.2). After the 

binding of the gDNA to the Dynabeads, both methods used the target probe to label the 

gDNA. The data was analysed on histogram exhibiting FL1 (green) fluorescence (Figure 

VI.12). 

 

 
 

Dynabeads bound to gDNA of D. radiodurans labelled with FITC by both methods did 

not show fluorescence above the negative control, indicating failure of the binding 

procedures (Figure VI.12). Different buffers and incubation times were tested in an 

attempt to avoid improve the binding capacity (data not shown). However, none of the 

modifications tested improved the fluorescent signal of the beads.  

3.2.2. Detection of digested gDNA bound to Dynabeads 

The gDNA of D. radiodurans was digested enzymatically to obtain smaller fragments of 

DNA for binding to the Dynabeads in an attempt to facilitate hybridisation to the capture 

and target probes and avoid agglomeration issues. 

 

Molecular analyses of two different restriction enzymes were carried out to find their 

recognition sites on the gDNA of D. radiodurans (Figure VI.13). HinP1I was selected as 

Legend, Figure VI.12: 
Red curve: Blank 

Black line: gDNA of D. 

radiodurans bound to the 

Dynabeads labelled with FITC 

Figure VI.12: Flow cytometric 
analysis. Histogram of the 
Dynabeads bound to gDNA of D. 
radiodurans labelled with FITC by 
the direct method. X-axis: 
fluorescent signal detected in the 
FL1 channel. Y-axis: number of 
counts per sample 

FL1-H 
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the restriction enzyme as it resulted in digestion at eight different sites along the 16S 

rDNA gene sequence, leaving the hybridisation sites of the probes available for 

subsequent capture and target probe hybridisation. 

 

 

    

 

 

 

 

 

 

 

Figure VI.13: Schematic representation of the 16S rRNA sequence of D. radiodurans and 
the recognition sites of two restriction enzymes: HinP1I and DdeI. The red rectangle 
indicates the hybridisation sites of the capture and target probe and it represents the 
hypothetical segment of the sequence that would be amplified by PCR if the probes were 
used as primers. 

 

The size of the DNA segment containing the hybridisation sites of the capture and target 

probes were 370 bp. The capture probe (QDUniBiotinF) had a biotin modification for 

binding to Dynabeads, while the target probe (DeinoFamFITC) had a FITC modification 

for labelling of digested DNA, enabling detection by flow cytometry. The hybridisation 

sites of both probes were aligned one after the other along the 16S rDNA gene sequence 

of D. radiodurans (Figure VI.14), preventing DNA hairpin formation or other artefacts.  

 

                     

 

  

 

 

 

 

 

Deinococcus radiodurans 
1502 bp 

Figure VI.14: Schematic 
representation of the hybridisation 
sites of the capture probe 
(QDunibiotinF) and the target 
probe (DeinofamFITC) on the 
digested DNA of D. radiodurans.  
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Two different methods to denature the digested DNA and hybridise it to the probes were 

tested. The direct binding procedure was based on binding the capture probe to the 

Dynabeads prior to hybridisation to the digested DNA, while the indirect method was 

based on the hybridisation of the capture probe to the digested DNA, prior to binding to 

the Dynabeads. After binding to the Dynabeads, both methods used a target probe to 

hybridise the digested DNA and labelled it with FITC. 

 

Flow cytometric analysis revealed negative results for both hybridisation methods tested. 

Spectrophotometric analysis performed on the waste fractions obtained during the binding 

procedures revealed a highly florescent signal (data not shown). These results indicated 

that the target probe (DeinoFamFITC) did not hybridise to the digested DNA remaining in 

the waste fraction, or the digested DNA was not captured by the Dynabeads. 

3.2.3. Detection of biotinylated PCR amplicons bound to 

Dynabeads 

PCR amplicons obtained from the amplification of the 16S rDNA gene sequence of D. 

radiodurans using specific primers were used to develop and optimise the bead-based QD 

technique for DNA detection. 

 

The PCR amplicons were biotinylated at one end to allow direct binding to the Dynabeads 

and avoid the need for a capture probe (Figure VI.15). After denaturation of the PCR 

amplicons, the biotinylated PCR strand was bound to the Dynabeads and hybridised to a 

target probe modified either with FITC, Alexa Fluor 488, QD525 or QD585 (Table VI.8). 

 

 

 

 

 

 

 

 

 

B

B

B

Figure VI.15: Schematic 
representation of the bead-
based QD technique to 
detect biotinylated PCR 
products labelled with a 
target probe modified with 
a fluorophore.  
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Table VI.8: Target probes used to label the biotinylated single strand of the PCR amplicon 
bound to Dynabeads. 

Capture Target probe Fluorophore modification 

BactoUni2 FITC 

Bactouniversal2 FITC 

BactouniAlexa Fluor Alexa 488 

Biotinylated PCR 

product 

QDUniBiotinF QD525 or QD585 

 

PCR amplification of D. radiodurans gDNA was carried out using DeinoFamBR as a 

forward primer and Plainuniversal as the reverse primer. The concentration of PCR 

product obtained was 34 ng/µl. Several methods for hybridising the biotinylated PCR 

amplicons to the target probes and binding to the Dynabeads were tested (Appendix IV). 

However, none of those methods were successful.  

 

Biotinylated PCR amplicons labelled with QD525, FITC and Alexa Fluor 488 (Table 

VI.9) following alkaline treatment and bound to the Dynabeads were analysed on a 

histogram displaying FL1 (green) fluorescence (Figure VI.16). The maximum emission of 

QD525 was at 525 nm which was detected in the FL1 channel of the flow cytometer.  

 

Table VI.9: Biotinylated PCR amplicons labelled with the specific target probe 
(modified FITC, Alexa and QD525) by the alkaline treatment followed by 
binding to Dynabeads. 

Sample 

number 

Biotinylated PCR 

amplicon (210 µM) 

Dynabeads  

(10 mg/ml) 

Target probe  

(1 µM) 

1 5 µl 1 µl 3 µl QDUniBiotinF 
(QD525, 1µM) 

2 5 µl 1 µl 6 µl QDUniBiotinF 
(QD525, 1µM) 

3 5 µl 1 µl 10 µl QDUniBiotinF 
(QD525, 1µM) 

4 5 µl 1 µl 15 µl QDUniBiotinF 
(QD525, 1µM) 

5 5 µl 1 µl 2 µl Bactouniversal 
(FITC) 

6 5 µl 1 µl 2 µl BactouniAlexa 
(Alexa Fluor 488) 
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Figure VI.16: Flow cytometric analysis. Histogram of biotinylated PCR amplicons labelled 
with FITC, Alexa Fluor 488 and new QD525 by the alkaline treatment bound to Dynabeads. X-
axis: fluorescent signal detected in the FL1 channel. Y-axis: number of counts per sample. 

 

Table VI.10: MFI values (Geomean) and C.V. (coefficient of 
variation) of the different samples of labelled biotinylated 
PCR amplicons bound to the Dynabeads (Table VI.9). 

Sample number MFI value C.V. 

Blank 3.66 16.84 

1 29.10 8.87 

2 18.28 8.82 

3 20.95 9.53 

4 10.70 12.86 

5 68.83 3.81 

6 55.55 4.05 

 

All the samples analysed were positive, exhibiting a fluorescent signal above background 

(Figure VI.16). The positive fluorescence indicated successful hybridisation of the 

biotinylated PCR amplicons to the target probes and their subsequent binding to the 

Dynabeads. The yellow line indicates the fluorescent signal of the biotinylated PCR 

amplicons labelled with Alexa Fluor 488, while the light blue line indicated the 

biotinylated PCR amplicons labelled with FITC. The MFI values from FITC (MFI: 68.83) 

were higher than Fluor Alexa 488 (MFI: 55.55). Despite the successful binding and 

detection of the PCR amplicons with QD525, the fluorescent signal obtained from all the 

samples was lower than FITC and Alexa Fluor 488 (Table VI.9). QD525 bound to the 

lowest concentration of target probe (sample 1) gave the highest MFI values (29.10) 

compared to the other QD samples. 

Legend, Figure VI.16: 
  Red curve: Blank 

  Black line: Sample 1 

  Green line: Sample 2 

  Dark blue line: Sample 3 

  Purple line: Sample 4 

  Light blue line: Sample 5  

  Yellow line: Sample 6 
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3.2.4. Fluorescent intensity of QDs versus organic dyes 

Flow cytometry can accurately measure the fluorescent intensity of a given sample as it is 

directly proportional to the amount of fluorochrome present. The fluorescent intensity of 

FITC and QD525 labelling the single strand of biotinylated PCR amplicons bound to the 

Dynabeads was quantified and compared based on their MFI values.  

 

Several concentrations of both target probes, Bactouniversal2 (modified with FITC) and 

QDUniBiotinF (bound to QD525) (Table VI.11), were used to compare the fluorescent 

intensities of the two fluorochromes, following analysis by the bead-based method. Two 

sets of samples were set up. First biotinylated PCR amplicon were labelled with different 

concentrations of Bactouniversal target probe modified with FITC and their MFI values 

were analysed and recorded. Secondly, the same amounts of biotinylated PCR amplicon 

as used before were labelled with different concentrations of QDUniBiotinF target probe 

bound to QD525 and their MFI values were recorded. The MFI values of both sets of 

samples were then plotted against the concentration of fluorophore to labelled the 

biotynilated PCR amplicon used in each hybridisation, either FITC or QD525 (Figure 

VI.19).  

 

Table VI.11: Biotinylated PCR amplicons labelled with different concentrations of 
Bactouniversal target probe and QDUniBiotinF target probe (bound to QD525) bound to 
Dynabeads  

Sample 

number 

Biotinylated PCR 

amplicon (320 µM) 

Dynabeads  

(10 mg/ml) 

Bactouniversal2 

(0.1 µM) 

QDUniBiotinF 

( 1 µM, QD525) 

1 5 µl 1 µl 10 µl 3 µl (1 µM) 
2 5 µl 1 µl 9 µl 2 µl (1 µM) 
3 5 µl 1 µl 8 µl 1 µl (1 µM) 
4 5 µl 1 µl 7 µl 10 µl  (0.1µM) 
5 5 µl 1 µl 6 µl 9 µl  (0.1 µM) 
6 5 µl 1 µl 5 µl 8 µl (0.1 µM) 
7 5 µl 1 µl 4 µl 7 µl (0.1 µM) 
8 5 µl 1 µl 3 µl 6 µl (0.1 µM) 
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Figure VI.17: Flow cytometric analysis. Histogram of biotinylated PCR amplicons labelled 
with different concentrations of Bactouniversal2 target probe (modified with FITC) (Table 
VI.11). X-axis: fluorescent signal detected in the FL1 channel. Y-axis: number of counts per 
sample. 

 
 

    
Figure VI.18: Flow cytometric analysis. Histogram of biotinylated PCR amplicons labelled 
with different concentrations of QDUniBiotinF (bound to QD525) (Table VI.11) bound to 
Dynabeads. X-axis: fluorescent signal detected in the FL1 channel. Y-axis: number of counts 
per sample. 

 

Following analysis by FCM, both FITC and QD525 resulted in positive fluorescent 

signals above background (Figures VI.17 and VI.18). The MFI values from each sample 

were recorded for comparative purposes and plotted against the concentration of 

fluorophore used to label the biotinylated PCR amplicons as shown in Table VI.11 (Figure 

VI.19). 

 

Legend, Figure VI.17: 
  Red curve: Blank 

  Black line:  Sample 1 

  Green line: Sample 2 

  Dark blue line: Sample 3 

  Purple line: Sample 4 

  Light blue line: Sample 5 

  Yellow line: Sample 6 

  Brown line: Sample 7 

  Dark green line: Sample 8 

Legend, Figure VI.18: 
  Red curve: Blank 

  Black line:  Sample 1 

  Green line: Sample 2 

  Dark blue line: Sample 3 

  Purple line: Sample 4 

  Light blue line: Sample 5 

  Yellow line: Sample 6 

  Brown line: Sample 7 

  Dark green line: Sample 8 
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Figure VI.19: Fluorescent intensity measured as the MFI value of biotinylated PCR 
amplicons labelled with different concentrations of Bactouniversal2 (FITC) and 
QDUniBiotinF (QD525) bound to Dynabeads. 

 

The MFI values obtained from the bead-based technique when using FITC as a 

fluorophore were 2-fold higher than when using QDs under the same concentration and 

experimental conditions (Figure VI.19). The fluorescent signal increased with increasing 

concentration of FITC until it reached its saturation point at 1 pmol (Figure VI.17 black 

line and Figure VI.19). However, it was observed that the fluorescent signal of the 

samples labelled with QD525 decreased after the saturation point was reached at 0.5 

pmol.  

3.2.5. Detection of PCR amplicons with QuantumPlex™M beads 

QuantumPlex™M beads are super-paramagnetic microspheres encoded with different 

intensities of Starfire Red (emission at 578 nm). The beads were functionalised with 

carboxyl (COOH) groups on their surface, permitting conjugation to amine compounds. 

QuantumPlex™M beads were selected to avoid any possible non-specific binding of the 

biotinylated probes and PCR amplicons with the beads, as they were not able to interact 

with the carboxyl groups of the beads.  
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QuantumPlex™M beads were used in a similar fashion as Dynabeads. They were used as 

a platform to capture PCR amplicons from D. radiodurans for their labelling and 

detection with different fluorophores. PCR amplicons were obtained using the primers 

DeinoFamBR and Plainuniversal. The capture probe used to hybridise the PCR amplicons 

while binding the beads was Deino-Capture probe. The target probe (QDuniBiotinR) was 

bound to R-PE (R-Phycoerythin) which is a dye molecule with a maximum emission at 

578 nm.  

 

PCR amplicons were bound to the beads followed by labelling with R-PE (Table VI.12). 

Two negative controls were set up to confirm the binding specificity of the probes and 

dyes: one control did not include PCR amplicons in the reaction and the second control 

used PCR amplicons from E. coli instead of D. radiodurans. All data was analysed on 

bivariate dotplots of SSC versus FL2 (PE fluorescence) and SSC versus FL3 (red bead 

fluorescence) (Figure VI.20). 

 

Table VI.12. PCR amplicons labelled with R-PE bound to QuantumPlex™M beads. 

Sample 

numbers 

PCR 

amplicon 

(55 ng/µl) 

QuantumPlex™M 

beads 

(1x108 beads/ml) 

Deino-Capture 

(1 µM) 

QDuniBiotinR 

(1 µM) 

R-PE 

(1mg/ml) 

1  5 µl 1 µl 1 µl 10 µl 0.5 µl 
2  12 µl 1 µl 3 µl 10 µl 0.5 µl 
3  20 µl 1 µl 5 µl 10 µl 0.5 µl 
4  28 µl 1 µl 7 µl 10 µl 0.5 µl 

 

 

               
    

B A 
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Figure VI.20: Flow cytometric analysis of PCR amplicons labelled with R-PE 
bound to QuantumPlex™M beads. Bivariate dot-plots defining log FL2 or FL3 
channel (y-axis) versus log SSC channel (x-axis). A: Unlabelled 
QuantumPlex™M beads on the FL2 channel. B: Unlabelled QuantumPlex™M 
beads on the FL3 channel. C: Sample 2 (Table VI.12) on the FL2 channel. D: 
Sample 3 (Table VI.12) on the FL3 channel. 

 

Table VI.13: MFI values (Geomean) and C.V. (coefficient of 
variation) of the different samples of PCR amplicons labelled with 
R-PE bound to the QuantumPlex™M beads (Table VI.12). 

Sample number MFI value C.V. 

Blank 1.04 47.82 
1 292.05 3.64 
2 676.49 2.50 
3 911.32 2.26 
4 1329.36 2.01 

 

Unlabelled QuantumPlex™M beads had an inherent red dye which could be observed in 

the FL3 channel of the flow cytometer (Figure VI.20, B). Cross-talk from the 

QuantumPlex™M beads to the FL2 channel was not observed (Figure VI.20, A).  The 

fluorescent signal of the PCR amplicons bound to QuantumPlex™M beads labelled with 

R-PE was above background for all samples tested (Figure VI.20, C), indicating the 

successful binding procedure and hybridisation. The fluorescent intensity measured as the 

MFI values revealed an increment of the fluorescence while increasing the concentration 

of PCR amplicons bound to the beads (Table VI.13). Cross-talk of R-PE to the FL3 

channel was not observed (Figure VI.20, D). The potential use of QuantumPlex™M beads 

as a platform for the bead-based technique to detect DNA was confirmed as a result of 

successful binding without agglomeration issues.  

C 
D 
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3.2.6. Detection of bacterial and archaeal DNA with 

QuantumPlex™M beads 

PCR amplicons from different bacterial and archaeal microorganisms were bound to 

QuantumPlex™M beads and labelled with different fluorophores. Capture and target 

probes varied between microorganisms (Table VI.5). The fluorophores used to label the 

PCR amplicons were FITC (1 mg/ml), Alexa Fluor 488 (1 mg/ml), R-PE (1 mg/ml), 

QD525 (1 µM)  and QD585 (1 µM). All fluorophores were modified with streptavidin to 

allow binding to the biotinylated target probe. 

 

PCR amplicons were obtained from Deinococcus radiodurans, Sulfobacillus 

thermosulfidooxidans, Acidithiobacillus ferrooxidans, Sulfolobus metallicus and 

Ferroplasma acidiphilum. PCR amplicons were bound to the QuantumPlex™M beads 

and labelled with the different fluorophores following the protocols described earlier 

(VI.2.6.3). Negative controls were set up to confirm the binding specificity of the probes 

and the fluorophores. The controls excluded PCR amplicons in the reaction. Data was 

analysed on histograms displaying FL1 (green) or FL2 (orange) fluorescence (Figures 

VI.21 and VI.22). 

 

    

A B 
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The fluorescent signal of the negative control of Alexa Fluor 488 appeared above the 

blank for all the microorganisms tested, indicating non-specific binding of the 

fluorophores to the beads (Figure VI.21). Only D. radiodurans labelled with FITC, Alexa 

Fluor 488 and QD525 gave positive signals above background (Figure VI.21, A). The 

detection of PCR amplicons from the rest of the microorganisms remained negative when 

labelling with FITC and QD525. Alexa Fluor 488 gave positive signals above the negative 

control for all microorganisms tested except for S. thermosulfidooxidans. 

 

     

Legend, Figure VI.21: 
  Red curve: Blank  

  Black line: FITC 

  Green line: Negative control of FITC 

  Blue line: Alexa Fluor 488 

  Purple line: Negative control of Alexa Fluor 488  

  Light blue line: QD525 

  Yellow line: Negative control of QD525 

Figure VI.21: Flow cytometric analysis. 
Histograms of PCR amplicons from 
different microorganisms labelled with 1 µl 
of FITC, Fluor Alexa 488 and 
QD525bound to QuantumPlex™M. X-axis: 
fluorescent signal detected in the FL1 
channel. Y-axis: number of counts per 
sample. A: D. radiodurans. B: F. 
acidiphilum. C: S. thermosulfidooxidans. 
D: S. metallicus. 

C  D 

A B 

FL1-H 
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Figure VI.22: Flow cytometric analysis. Histograms of PCR amplicons from different 
microorganisms labelled with R-PE and QD585 bound to QuantumPlex™M beads. X-axis: 
fluorescent signal detected in the FL2 channel. Y-axis: Number of counts per sample. A: D. 
radiodurans. B: S. thermosulfidooxidans. C: A. ferrooxidans. D: F. acidiphilum. E: S. 
metallicus. 

 

Fluorescent signal above the blank and the negative control was observed from the PCR 

amplicons of all microorganisms labelled with both R-PE and QD585 except for S. 

thermosulfidooxidans, where R-PE did not exhibit signal above the negative control 

(Figure VI.22). Deinococcus radiodurans, Acidithiobacillus ferrooxidans and Sulfolobus 

metallicus histograms had similar patterns. The reason for the lack of fluorescent signal 

from the PCR amplicon of Sulfobacillus thermosulfidooxidans could not be identified. 

PCR amplification of S. thermosulfidooxidans and hybridisation procedures were 

undertaken under the same experimental conditions as the other PCR amplicons.  

 

 

 

 

 

 

Legend, Figure VI.22: 
  Red curve: Blank 

  Black line: R-PE 

  Green line: Negative control R-PE 

  Blue line: QD585 

  Purple line: Negative control QD585  

C D 

E 
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Table VI.14: Fluorescent intensity measurements based on MFI values of each fluorophore 
labelling the PCR amplicons of the different microorganisms. 
CV: coefficient of variation. 

Microorganisms FITC 
Alexa Fluor 

488 
QD525 R-PE QD585 

D. radiodurans 
16.47 

(CV: 10.58) 

545.59  

(CV: 5.79) 

27.20  

(CV: 8.84) 

1203.13  

(CV: 3.73) 

245.74  

(CV: 6.40) 

Control of  

D. radiodurans 

6.74  

(CV: 14.37) 

56.69  

(CV: 11.19) 

6.73  

(CV: 17.67) 

22.60  

(CV: 11.47) 

8.08  

(CV: 20.83) 

S. 

thermosulfidooxidans 

5.12  

(CV: 21.31) 

54.93 

(CV: 15.39) 

9.24 

(CV: 17.82) 

19.57 

(CV: 20) 

78.02 

(CV: 7.16) 

Control of  S. 

thermosulfidooxidans 

4.66 

(CV: 25.52) 

48.82 

(CV: 13.33) 

5.78 

(CV: 11.96) 

19.12 

(CV: 19.66) 

5.88 

(CV: 20.88) 

A. ferrooxidans 
5.72 

(CV: 19.27) 

158.84 

(CV: 9.20) 

6.52 

(CV: 18.57) 

47.11 

(CV: 8.51) 

11.26 

(CV: 14.39) 

Control of   

A. ferrooxidans 

4.49 

(CV: 21.14) 

53.72 

(CV: 10.39) 

4.15 

(18.49) 

22.07 

(CV: 14.30) 

7.51 

(CV: 19.63) 

S. metallicus 
5.99 

(CV: 17.95) 

126.20 

(CV: 10.92) 

4.89 

(CV: 16.89) 

63.95 

(CV: 7.18) 

13.33 

(CV: 11.65) 

Control of 

S. metallicus 

4.66 

(CV: 18.94) 

56.76 

(CV: 9.57) 

4.35 

(CV: 15.43) 

30.12 

(CV: 10.22) 

8.52 

(CV: 12.57) 

F. acidiphilum 
5.95 

(CV: 19.93) 

502.32 

(CV: 7.99) 

6.63 

(CV: 17.43) 

46.61 

(CV: 8.43) 

712.78 

(CV: 7.75) 

Control of  

F. acidophilum 

5.15 

(CV: 19.41) 

78.96 

(CV: 8.46) 

4.48 

(CV: 16.31) 

31.56 

(CV: 9.59) 

13.43 

(CV: 10.99) 

 
 

The MFI values of every fluorophore labelling the PCR amplicon of D. radiodurans were 

significantly higher than their respective controls (Table VI.14). R-PE (MFI: 1203) 

exhibited significantly higher levels of fluorescence than QD585 (MFI: 245.74) under the 

same experimental conditions. In addition, Alexa Fluor 488 (MFI: 545.59) was found to 

have superior fluorescence than FITC and QD525 when labelling the PCR amplicon of D. 

radiodurans. Only QD585 (MFI: 712.78) exhibited higher fluorescence levels than R-PE 

(MFI: 46.61) when labelling the PCR amplicon of F. acidiphilum. All the microorganisms 

were able to be detected when using R-PE and QD585 as fluorophores, both being 

detectable in the FL2 channel of the flow cytometer, while only Fluor Alexa 488 

detectable in the FL1 channel gave significant detection above the control.  
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4. DISCUSSION 

4.1. Optimisation of the bead-based technique for DNA 
detection 

A constant problem encountered during the experimental work of this part of this thesis 

was the agglomeration of the beads. Agglomeration occurred when QDs bound to the 

probes were attached to the Dynabeads (Figure VI.9). By comparison very little 

aggregation was observed when using organic fluorophores (Figure VI.8). As discussed in 

Chapter V, salt concentration, pH and cations influence the fluorescence and 

agglomeration of the QDs. In addition, under ideal conditions, the relation between the 

biotinylated molecules and the QDs functionalised with streptavidin groups should be 1:1. 

However, a single QD contains approximately 7 active streptavidin groups on its surface. 

Therefore, up to 7 biotinylated molecules could be attached to a single QD, which may 

result in agglomeration when forming the complexes between QDs and biotinylated 

molecules.  

 

Several strategies were tested to avoid multiple binding of QDs to biotinylated molecules. 

Biocytin was used to reduce the number of active sites on the QDs (Appendix IV). 

Biocytin is a biotin complex from yeast that interacts with the streptavidin functional 

group of the QDs, inactivating them. In addition, it was calculated the appropriate 

concentration of biotinylated probes necessary to be bound to the QDs in order that only 

one biotinylated molecule would be bound to one QD (Appendix IV). However, 

agglomeration issues did not decrease with any method tested. It has been suggested that 

oligonucleotide-derivatised QDs form free carboxylic acid groups on the QD surface, 

allowing non-specific binding to target cells, making them far less useful than 

conventional organic fluorophore probes and contributing to agglomeration issues 

(Jamieson et al. 2007). There is no technique which consistently allows preparation of 

QDs with control over the ratio of biomolecules per QD and their orientation on the 
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surface, representing difficulties of reproducibility and aggregation of the QDs (Mattoussi 

et al. 2000). 

 

The fluorescent emission of QDs was found to decrease when their concentration bound 

to beads increases (Figures VI.16 and VI.17). Agglomeration of the QDs and their close 

proximity potentially may lead to quenching and blinking effects (Speckman et al. 2002). 

The strength of quenching is affected by the interparticle distance, and with short 

interparticle distances additional non-radiative interactions affect the quenching of the 

QDs (Jamieson et al. 2007). The magnetic properties of the beads may also cause 

quenching of the QDs due to internal atomic forces caused by the magnetic field (Fortina 

et al. 2005). 

 

It was established that functional groups of the QDs can dissociate from the surface of the 

surface after 6 months of storage, losing their binding capacity (Appendix IV). Several 

reports have described other problems associated with aged QDs such as quenching and 

blinking (Chung et al. 2007). The issues associated with aged QDs may reduce their 

potential for biological and commercial applications.  

4.2. The bead-based QD technique for DNA detection 

The aim of the bead-based technique was to target and detect specific sequences of DNA 

from environmental samples using QDs as a reporter fluorophore. D. radiodurans was 

used as a control microorganism to validate the procedures for the bead-based QD 

technique. Two different methods to detect genomic DNA of D. radiodurans were 

developed. However, in both cases the binding of gDNA to the Dynabeads resulted in 

significant agglomeration of the beads (Figure VI.12). The size of the gDNA may have 

played an important role in the binding procedure. Long segments of DNA may self-

hybridise, lowering efficiency and preventing the hybridisation to the capture and target 

probes, resulting in agglomeration (Figure VI.11). 

 

The hybridisation sites of the capture and target probes also may have influenced the 

binding of the gDNA to the Dynabeads. These sites were relatively close to each other. As 

a result, the single strand of gDNA bound to the Dynabeads may have been forced to 

make a loop around the bead in order to allow hybridisation with both probes (Figure 
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VI.11). This may have formed hairpins or artefacts on the gDNA, preventing the 

successful hybridisation to the molecular probes and increasing the agglomeration issues 

(Figure VI.12). Although the gDNA was enzymatically digested and cut it into smaller 

fragments in an attempt to avoid non-specific hybridisation of the DNA and 

agglomeration of the beads, the digested gDNA also was not detectable by the bead-based 

technique (VI.3.2.2). Several reasons may explain this lack of detection. First, single 

strands of gDNA could easily re-hybridise to each other during the procedure, preventing 

access by the probes. A second explanation could be the low concentration of target DNA 

fragments. The lack of these copies of gDNA could have been a potential limiting factor 

for their detection. As determined earlier, the detection limit of Dynabeads was 1 pmol of 

biotinylated probe modified with the fluorophores. Therefore, if the gDNA capture on the 

Dynabeads did not reach the minimum detection limit, a positive result would not have 

been detected by flow cytometry. 

 

The bead-based assay was modified to detect amplified DNA. PCR amplicons of D. 

radiodurans using specific primers resulted in small sequences of 243 bp. The PCR 

amplicons were biotinylated at one end in order to facilitate the binding to the beads 

without the need of a capture probe. The target probe (modified with FITC, Alexa Fluor 

488 or biotin) was used to label the single strand of the PCR bound to the Dynabeads 

(Figure VI.15). The three fluorophores successfully targeted the PCR amplicons 

detectable by flow cytometry (Figure VI.16). Therefore, the bead-based technique was 

able to detect amplified sequences of DNA.  

 

QuantumPlex™ beads were used in an attempt to avoid potential artefacts and non-

specific binding of the capture and target probes to the beads, as they were functionalised 

with carboxyl groups which can not interact with the biotin or streptavidin groups from 

the molecular probes and fluorophores. 

 

After obtaining positive binding of PCR amplicons of D. radiodurans using 

QuantumPlex™ beads (Figure VI.20), the technique was used to detect several PCR 

amplicons from different extremophiles. These microorganisms were acidophilic sulphur- 

and iron-oxidisers bacterial and archaeal species normally found in sulphur-rich 

environments such as volcanically-active hydrothermal systems. These species were 
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selected for detection by the bead-based technique as they were closely related 

representatives from those found in the sediments of White Island (Chapter IV). 

Amplified DNA from several extremophiles was detected by the bead-based QDs 

technique using QuantumPlex™ beads. The PCR amplicons were labelled with FITC, 

Alexa Fluor 488, QD525, R-PE and QD585 using specific target probes for each 

microorganism. Negative controls showed a fluorescent signal above background, 

indicating non-specific binding of the fluorophores to the beads (Figures VI.21 and 

VI.22).  

 

It has been reported that the surface of magnetic polystyrene particles are generally 

hydrophobic (Grüttner et al. 2001). Hydrophobic surfaces bind strongly to any molecule 

that has a hydrophobic character, including proteins and nucleic acids. The fluorophores 

were functionalised with streptavidin. Therefore, the fluorophores may have bound non-

specifically to the QuantumPlex™M beads due to the hydrophobic character of the 

streptavidin groups. Despite the non-specific binding of the fluorophores to the surface of 

the beads, in most cases it was possible to distinguish the fluorescent emission of the 

samples from the negative control except for Sulfobacillus thermosulfidooxidans that did 

not show a positive signal with any of the fluorophores tested except Alexa Fluor 488 

(Table VI.14). It may be speculated that the lack of fluorescent signal detection of S. 

thermosulfidooxidans was caused by the integrity of the PCR amplicon rather than the 

unsuccessful binding of the probes. As discussed in Chapter IV, PCR amplicons may be 

affected by different factors introducing artefacts or bias in the PCR amplicon during the 

amplification step due to primer mismatches, annealing temperature or number of 

amplification cycles (Reysenbach et al. 1992). Possible artefacts may have altered the 

recognition sites of the probes inhibiting the hybridisation.  

 

QuantumPlex™ beads were a suitable platform for the bead-based technique, allowing the 

detection of amplified sequences of DNA from different microorganisms, while reducing 

the agglomeration issues. QDs were a suitable fluorophore for labelling the DNA 

sequences. However, the fluorescent signal of the QDs appeared to be inferior to the 

signal of organic dyes for this technique (Table VI.14). Several factors may have 

influenced the fluorescent signal of the QDs when using them as fluorophores for 

biological applications, as observed in preliminary experiments. In addition, differences in 
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fluorescence detection of the same fluorophores for the different microorganisms may be 

caused by the difference in the size of the PCR amplicons. 

 

The bead-based technique was aimed to detect the key microbial species of White Island 

using QDs as fluorophores. Although the technique was able to detect amplified DNA 

sequences of several acidophiles, the technique was not tested with environmental DNA 

from White Island or DNA extracted from the enrichment cultures. The difficulties 

encountered during the development of the technique limited the full application and 

characterisation in this study. If time permitted, the bead-based technique would have 

been fully evaluated further in environmental samples. 

4.3. Fluorescence detection of QDs versus organic dyes  

The fluorescent intensity of the QDs has been described to be higher than conventional 

organic fluorophores (Zhang et al. 2007). However, the results obtained in this thesis 

indicated the opposite. MFI values of PCR amplicons labelled with FITC and QD525 at 

the same concentration and analysed under the same experimental conditions revealed that 

FITC was 2-fold brighter than QD525 (Figure VI.19). 

 

Similar contradictory results have appeared in the literature recently. In 2005, it was 

reported that QD525 streptavidin conjugates were 100-times more sensitive than FITC-

streptavidin for the detection of E. coli when analysed by flow cytometry (Hahn et al. 

2005), while other reports indicated that the fluorescence intensity of QDs was up to 35-

times less than that of organic fluorophores (Ferrari & Bergquist 2007). The lack of 

consistent results found in the literature could be attributed to the different methodologies 

used and the quality and integrity of the QDs. As discussed previously, parameters such as 

pH, temperature, salt and cations concentration, and some buffers have a crucial role in 

the quantum yield and photo-stability of the QDs. The quality of the QDs is also crucial to 

obtain a constant fluorescent emission and photo-stability. Although many improvements 

have been made in the synthesis of the QDs in the last few years, the optical behaviour is 

susceptible to batch-to-batch variations. Small defects in the core of the QDs may have 

major effects on the quantum yield and photo-stability. 
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Fluorescence quantification between different fluorophores is not an easy task (Wang et 

al. 2002). Most methods used to quantify the fluorescence from unknown samples are 

based on converting the MFI values obtained by flow cytometry into Molecules of 

Equivalent Soluble Fluorochrome (MESF) units (Schwartz et al. 2002). The MESF unit 

corresponds to the fluorescent intensity of a given number of pure fluorochrome 

molecules in solution. However, a quantitative method to compare the fluorescence 

intensity of FITC to QD525 could not be determined by (MESF) units. Despite the fact 

that both fluorophores were detectable in the same channel of the flow cytometer and have 

the same emission wavelength, they do not excite at the same wavelength and do not have 

the same quantum efficiency, resulting in significantly different fluorescence emissions. 

 
The fluorescence signal (FS) associated with a sample that passes through a cytometer is 

given by:  FS = 0I Ω ε φ Nf , where ‘ 0I ’ is the laser intensity, ‘Ω ’ is the detection 

efficiency, ‘ε ’ is the molecular extinction coefficient, ‘φ ’ is the quantum yield, ‘N’ is the 

number of fluorophores on the cell, and ‘f’ is the fraction of the total fluorescence 

emission spectrum passed by the optics which defines the fluorescence channel (Gaigalas 

et al. 2005). Therefore, a comparison of fluorescence intensity of samples labelled with 

FITC and QDs under the same laser intensity and detection efficiency in the same 

fluorescence channel could be determined by QD QD QD QD FITC FITC FITC FITCN f N fε φ ε φ= . 

However, this equation could not be calculated for comparative purposes as many of the 

factors were unknown. 

 

An alternative method to calculate the fluorescence intensity of the QDs from unknown 

samples would be by measuring the fluorescence of QDs in solution by fluorometry and 

generation of a standard curve. Then, the fluorescence of unknown samples could be 

plotted on the standard curve to obtain the number of molecules in solution or MESF units 

(Schwartz et al. 2004). However, a comparison of the MESF values obtained from the 

QDs and FITC would not be accurate due to their differences in optical properties. 

4.4. QDs and FISH 

The possibility of targeting microbial cells using QDs and FISH was investigated for its 

potential for identification by flow cytometry (Appendix I). The combination of FISH 

with flow cytometry represents a useful tool for identification and estimation of 
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abundance of different members of a mixed microbial community (Wallner et al. 1993). 

In addition, isolation of microorganisms from complex communities has been successfully 

carried out with FISH in combination with cell sorting (Kalyuzhnaya et al. 2006).  

 

FISH is a known technique for culture-independent studies for the detection and 

identification of microorganisms either directly from their natural environment or from 

enrichment cultures (DeLong et al. 1989; Amann et al. 1990a; Amann et al. 1990b). As 

discussed in Chapter IV, the success and effectiveness of traditional FISH is influenced by 

several different factors (Zwirglmaier 2005). Cell detection can be limited due to a strong 

background from debris or autofluorescence, specifically in environmental samples where 

minerals have a strong non-specific binding to the fluorescent probes (Bertaux et al. 

2007). Signal intensities also vary depending on the accessibility of rRNA for the probes, 

the low ribosomal content of the cells or insufficient permeabilisation of cell walls using 

standard fixation protocols (Amann et al. 1995). 

 

Modified QDs with molecular probes were tested as a fluorescent label for FISH, to 

overcome some of the limitations of the technique when using conventional fluorophores 

(Appendix I). It was postulated that the QDs would increase the fluorescent signal 

allowing detection above the debris and auto-fluorescent background. However, several 

problems were encountered when using QDs as fluorophore probes for FISH. First, the 

QDs showed non-specific binding to the surface of the microscope slide. The slides were 

prepared with 0.1% PEI (Polyethylemine). It has been reported that PEI forms chelation 

complexes with heavy metal compounds and has an affinity to a wide range of substrates 

including polymers (Wang & Gao 1999). Commercially-available QDs are coated with an 

organic polymer. Therefore, the non-specific binding could be due to the interaction of 

PEI with the QDs. A non-conventional technique using Eppendorf tubes instead of 

microscope slides was developed in an attempt to avoid non-specific binding. In this case, 

QDs were observed to be attached to the membranes of the microorganisms instead of 

hybridising to the RNA from the organisms. 

 

It has been reported that QDs can be used useful for labelling and imaging cytoplasmatic 

proteins. These techniques deliver QDs into the cells by invasive approaches such as 

microinjection (Dubertret et al. 2002), cationic lipid-based reagents (Jaiswal & Simon 
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2004), or conjugation to membrane-permeable peptides (Mattheakis et al. 2004). 

However, the size and chemical nature of the QDs inhibit the diffusion through the 

membrane of microorganisms as compared to conventional dyes such as FITC. The final 

size of the functionalised QD modified with molecular probes can reach up to 100 nm, 

making it too big to reach targets within cellular compartments or multi-component 

molecular complexes (Alivisatos et al. 2005; Fortina et al. 2005). QDs can be conjugated 

to several biomolecules which hinder both the mobility of the QDs and the functionality 

of the conjugated target unless the active sites of the QDs are reduced. Non-invasive 

approaches for the efficient intracellular delivery and dispersal of QDs remain to be 

investigated. 

 

In addition, several concerns about the toxicity of QDs for biological applications have 

been reported recently (Dubertret et al. 2002; Medintz et al. 2005). Cytotoxicity of QDs 

has been observed in a large number of in vitro studies, affecting cell growth and viability 

(Chen & Gerion 2004; Kirchner et al. 2005; Lovric et al. 2005). Although the reasons are 

still unknown for their possible toxicity, it has been postulated that the core of the QDs 

can be degraded, including desorption of free Cd ions (Derfus et al. 2004) and the 

generation of free radicals (Clarke et al. 2006). 

4.5. Summary 

PCR amplicons were successfully detected by the bead-based QD technique when using 

paramagnetic beads as a platform and a blue light excitation source. However, the 

semiconductor properties of QDs potentially lead to difficulties in their application as 

fluorophores due to agglomeration and quenching issues described here. 

 

Despite the low fluorescent signal of QDs compared to organic dyes used for the bead-

based technique in this study, it is anticipated that the use of a UV laser instead of a blue 

laser would magnify this signal significantly, making QDs a powerful and superior 

fluorophore. As determined earlier, the fluorescent intensity of the QDs could be up to 

four times higher when using UV light than blue light. Therefore, it is suggested that the 

bead-based QD technique could be useful for the study of environmental samples where 

the microorganism or DNA of interest may be fluorescing too low to be detected by blue 

lasers.  
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The biological applications of the QDs may be reduced due to their large size relative to 

current fluorophores that prevents the access and labelling at a molecular level in 

microbial cells. However, the results found in this thesis have shown that QDs have the 

potential to be used in flow cytometric techniques leading to future new applications. 
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CONCLUDING REMARKS 

The general aim of this thesis was to study the microbial diversity from the hydrothermal 

systems of White Island using conventional techniques such as molecular-based analyses 

and culture-dependent techniques, as well as novel techniques based on QDs.  

 

The results presented in this thesis provide the first description of the microbial 

communities from sediments of White Island. A survey of the microbial diversity was 

conducted using culture-dependent techniques based on a sediment-extract medium 

followed by molecular-based and phylogenetic analyses to describe the enriched 

microorganisms grown, revealing that the environments analysed harbour a variety of 

acidophilic bacterial and archaeal species (Chapter IV.3). 

 

The development of a medium based upon the use of sediment-extract provided the 

essential nutrients and trace elements required for successful microbial growth. This 

extract mimicked the natural conditions of White Island sediments, and resulted in the 

enrichments of Archaea previously undetected in the hydrothermal systems of White 

Island, as well as a variety of acidophilic and thermophilic bacterial species. Considering 

the low pH, high temperatures and high contents of sulphur and iron present in White 

Island, it was not surprising to identify sulphur-oxidising and sulphur-reducing organisms 

such as Sulfobacillus, Acyclobacillus and Acidiphilum species from the sediments. 

Moreover, Alicyclobacillus sp. and Sulfobacillus sp. have been previously found growing 

in consortia. This  result was not unexpected as these species are known to interact 

together in acidic geothermal habitats and artificial acidic environments (Okibe & 

Johnson 2004). A. acidocaldarious and S. acidophilus were isolated into pure cultures 

using a new agarose-based solid medium supplemented with sediment-extract (Chapter 

IV.3.4).  

 

High concentrations of minerals and particles present in the sediment-extract combined 

with the low pH represented significant difficulties for the various analyses, such as DNA 

extraction and especially for the fluorescence detection of enriched microorganisms. High 
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levels of non-specific background fluorescence, caused by mineral structures and detrital 

particles present in the sediment-extract observed during microscopic visualisation of 

cells, caused inconclusive cell counts (Chapter IV.3.5). However, while the presence of 

detritus hampered detection, the presence of sediment particles may have conferred a 

substantial advantage for the cultivation of environmental microorganisms over 

conventional media as it provided not only the essential nutrients for their growth, but also 

the physical support for their associated microbial interactions.  

 

Thermophilic acidophiles are associated with geothermal activities in volcanic regions and 

mining activities (Johnson 1998; Norris et al. 2000). Currently, there are over 200 species 

of thermophiles and acidophiles recognised from many habitats (Stetter 1999a; Stetter 

1999b; Gonzalez-Toril et al. 2003; Chaban et al. 2006; Hallberg et al. 2006). However, 

the microbial diversity of hydrothermal systems and bioleaching environments with 

conditions comparable to White Island have been reported to be low (Burton & Norris 

2000; Dopson & Lindstrom 2004; Henneberger 2008). The high temperatures, low levels 

of organic carbon and the high acidity decreases the number of species capable of growth 

in such extreme habitats (Bond et al. 2000b). The research undertaken during this thesis 

has increased the number of known acidophiles by enriching and culturing novel 

acidophilic and thermophilic strains (Chapter IV. 3.3).  

 

In future studies, additional novel strains and species may be isolated from the samples or 

enrichment cultures already obtained. Techniques such as dilution to extinction, or novel 

approaches like the use of membranes or chambers to isolate microorganisms from their 

community (Janssen et al. 2002; Kaeberlein et al. 2002), would improve the number of 

isolates from White Island.  

 

Phylogenetic placement by 16S rDNA gene sequences obtained from the enriched 

cultures suggested that the resident microorganisms of White Island are involved in the 

cycling of sulphur and iron, as they were closely related to previously described sulphur-

oxidising microorganisms such as Acidiphilum and Sulfobacillus species (Chapter IV.4.2). 

However, closely related species can vary in their substrate usage and most metabolic 

pathways are not restricted to single branches of the 16S rRNA phylogenetic trees 

(Wagner et al. 1998). Consequently, further studies are required to prove the existence of 
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such cycles, such as the analyses of metabolic genes involved in sulphur- and iron-

metabolism from the enriched microorganisms (Friedrich et al. 2001). 

 

The microbial diversity of White Island was also aimed to be analysed using a novel 

technique based on QDs. The bead-based QD technique for DNA detection was 

developed as a tool able to detect the key microbial species from specific habitats. The 

technique involved flow cytometry detection of analyte DNAs hybridised to capture 

probes on the surface of paramagnetic beads. QDs were used as a reporter fluorophore 

that hybridised the captured DNAs.  

 

Organic molecules and fluorophores traditionally have been used as fluorescent labels for 

in vitro and in vivo biological applications, despite their non-optimal optical properties 

and photochemical instability (Ballou 2005). However, the use of QDs for bioanalytical 

applications has great potential for spectral multiplexing assays and bead-based 

techniques in flow cytometry.  

 

Spectral multiplexing or multicolour detection typically is performed at a single excitation 

wavelength and discriminates between different fluorescent labels based on their emission 

wavelength (Chan et al. 2002). Organic fluorophores have broad emission bands that limit 

their applications for multicolour signalling at single excitation wavelengths (Spiro et al. 

2002; Morgan et al. 2004). New methods for multiplexing assays make use of FRET to 

increase the spectral separation of absorption and emission from the donor to the acceptor 

dye (Sapford et al. 2006). FRET-based multiplexing strategies enable automated DNA 

sequencing and robust multiplex diagnostic methods for detection of PCR products 

(Sapford et al. 2006). Organic dyes have many limitations for FRET applications due to 

their optical properties. However, QDs would be ideal candidates for spectral 

multiplexing at a single excitation wavelength because of their unique flexibility in 

excitation and their narrow and symmetric emission bands which allow colour 

discrimination and simultaneous detection and quantification of several different analytes 

(Jaiswal et al. 2003; Menditz et al. 2005). 

 

There is a need to develop more rapid, sensitive and accurate methods for detecting 

specific DNA sequences in environmental samples (Spiro et al. 2000). A variety of 
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molecular methods have been used for microbial profiling such as oligonucleotide 

microarrays (Liu & Zhu 2005). However, bead-based methods for multiplex identification 

and quantification of DNA sequences using flow cytometry have resulted in superior 

performance compared to oligonucleotide microarrays (Spiro & Lowe 2002). Bead 

methods normally are based on microscopic polystyrene spheres coded with varying 

amounts of fluorophores to create different barcodes. The beads then are modified with a 

capture probe that allows hybridisation of fluorescent DNA sequences from the sample 

and then analysed by flow cytometry (Cai et al. 2000; Spiro et al. 2000; Taylor et al. 

2001). Although these techniques have opened the door to new applications in multiplex 

technology and the improvement of rapid detection and quantification of specific DNAs, 

their detection threshold is a critical issue. The DNA extracted from microbial 

communities in environmental samples can be too low to be detected with these 

techniques. It has been suggested that the detection limit in bead-based techniques can be 

improved by increasing the efficiency of probe-target hybridisation (Chandler et al. 2000) 

and/or by increasing the signal-to-noise ratio for fluorescence detection (Lowe et al. 

2004). Several studies have focussed on improving the sensitivity of fluorescence 

measurements by increasing the signal-to-noise ratio for the labelling of captured DNA on 

the surface of fluorescent beads, for example by labelling the DNA molecule with high 

amounts of fluorophores (Wang et al. 1998; Lowe et al. 2004). Although the use of these 

techniques is promising, they are complicated to execute and still require a PCR step to 

allow detection of low concentration of DNA in the unknown samples (Lowe et al. 2004).  

 

It has been postulated that the use of QDs instead of dendrimers or other fluorophores to 

label the DNA molecules from environmental samples would overcome the signal-to-

noise issue and improve the detection. Microsphere embedded with QDs have been used 

in previous studies as a platform for multiplexed assays such as those for single nucleotide 

polymorphisms (SNP) genotyping (Xu et al. 2003; Cao et al. 2006; Wang et al. 2006). 

Encoded microspheres with different ratios of QDs were hybridised to fluorescently-

labelled PCR amplicons for flow cytometric detection. Despite the successful detection of 

SNP genotypes using encoded microspheres with QDs, several issues still remained such 

as spectral overlapping, fluorescence intensity variations, and control ratio of QDs 

incorporated into the beads (Xu et al. 2003).  
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The general technique developed in this thesis was designed to target specific sequences 

of environmental DNA for detection by flow cytometry. Following the extraction of 

gDNA from the environmental microbial communities, pre-designed oligonucleotide 

probes that matched the desired segments of DNA were applied to capture the DNA on 

paramagnetic beads. To avoid overlapping issues in encoded microspheres and increase 

the signal-to-noise detection of the captured DNA, QDs were used as a target fluorophore. 

 

The results obtained in this thesis reported many optical anomalies occurring with the 

QDs such as quenching and possible blinking that lowered the fluorescent signal 

compared to organic dyes such as FITC (Figure VI.19). The spectroscopic and optical 

properties of QDs are dependent on their size distribution, shape, and surface defects, and 

subtle differences in their preparation can lead to basic spectroscopic and property 

variations (Danek et al. 1996; Norris & Bawendi 1996a; Dabbousi et al. 1997; Kuno et al. 

1997). Commercial QDs are not spectroscopically standardised and their characterisation 

has not yet been completed and their properties can be influenced by details of their 

synthetic history (Tonti et al. 2004; Wu et al. 2007b). Moreover, the results obtained in 

this thesis revealed that quantum yield of the QDs is highly dependant on the excitation 

source, with a 4-fold decrease in fluorescent intensity at short excitation wavelengths such 

as blue light (Figures V.5 and V.6). Other parameters such as pH, temperature and ionic 

buffers were also found to compromise the photo-stability of the QDs (Chapter V.4.1). 

The dependence of the quantum yield of the QDs to these factors was found to reduce the 

fluorescence emission by 2-fold compared to organic dyes (Figure VI.19). 

 

Numerous biological applications of the QDs have been reported in the literature due to 

multiplexed imaging, photo-stability and superior optical properties of the QDs compared 

with currently-used imaging molecules (Jamieson et al. 2007). However, many of those 

applications have not yet been solved as the QD behaviour has yet to be fully 

standardised. As discussed, many significant problems remain in their production that still 

need to be addressed in order to make a considered judgment on the applications into 

which they can be incorporated, such as cell imaging, drug delivery and microbial 

detection (Chen 2008). 
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The bead-based technique was initially developed to detect gDNA of D. radiodurans. 

Despite every attempt, high agglomeration of the beads, probably due to the long length of 

the DNA, led to the lack of detection of the gDNA by flow cytometry (Chapter VI.3.2.1). 

Therefore, amplification of small DNA segments was also necessary in this technique to 

avoid such issues. PCR amplicons of D. radiodurans were successfully detected by the 

bead-based technique (Chapter VI.3.2.3). However, detection of multiple PCR amplicons 

from different extremophiles was found to be a more difficult task (Chapter VI. 3.2.6). 

Selection of specific target and capture probes was crucial to target the desired amplified 

sequence from the different microorganisms. In addition, size and number of copies of the 

PCR amplicons may also have influenced the detection rate. 

 

Despite the difficulties encountered when working with QDs, this thesis describes a bead-

based flow cytometric method for QDs that it is highly sensitive despite being excited by 

lasers that do not allow QDs to perform to their highest capacity. It is anticipated that the 

use of this technique when using UV light excitation sources, instead of blue excitation, 

would increase the signal of the QDs up to four times. This increase in emission would 

improve the detection limit of the QDs, becoming more powerful fluorophores than 

conventional organic dyes. The development of this technique would have then important 

implications for the study of environmental samples where microorganisms of interest 

need to be detected from the background debris.  

 

QDs were also examined as a fluorophore probe for fluorescent in situ hybridisation 

assays (Appendix I). Many reports have shown an important role for QDs for cell imaging 

and detection such as imagining of cytoplasmatic proteins (Chan et al. 2005). However, 

the use of QDs as a fluorophore for FISH to detect microbial cells was not successful in 

this thesis (Appendix I). Despite permeabilisation, the pore size of the microbial cell wall 

did not allow the diffusion of the QDs as they do in mammalian tissues (Alivisatos et al. 

2005; Michalet et al. 2005). The large size of QDs relative to current fluorophores reduces 

their ability to access and label cellular molecules (Pinaud et al. 2006). Therefore, non-

invasive approaches for the efficient intracellular delivery of QDs into microbial cells 

remain to be investigated. Alternatively, QDs modified with antibodies could be used to 

target specific receptors on the cell wall of the microorganism to label them, instead of 

labelling intracellular structures or molecules, avoiding the use of invasive approaches.  
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In summary, this work represents the first description of the microbial diversity of the 

hydrothermal sediments of White Island, improving the knowledge base of microbial life 

in acidic environments. The development of a novel technique based on QDs to 

investigate the microbial diversity in extreme environments such as White Island was 

initiated. Although the technique could successfully detect specific sequences of DNA, its 

application in environmental samples still remains. Several optical and physical 

characteristics of the QDs still require to be standardised for further developments of the 

technique. However, the outcomes of this thesis set the basis for a bead-based technique 

for DNA detection using QDs that potentially has significant advantages over other 

traditional techniques such as high detection speed, sensitivity and specificity to screen 

environmental microbial diversity. 
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APPENDIX I: QDs as a fluorophore probe for FISH 

Fluorescence in situ hybridisation was used to target fixed E. coli cells using probes 

modified with QDs. Biotinylated probes, EUB388 and EUK502 (II.2.6.4.1), were 

modified with QD680 and used as hybridisation probes. 

 

Conventional FISH analyses were performed using microscope slides, while a non-

conventional technique was used to replace the microscopy slides with Eppendorf tubes. 

1. Conventional FISH technique 

Microscope slides were prepared as described previously (II.2.6.4.2) and coated with 

0.1% PEI (Polyethylemine) to allow fixation of the sample onto the slide. The 

hybridisation probes utilised were EUB388 labelled with FITC as a control and EUB388 

labelled with red quantum dots (QD680). Hybridisation procedures and conditions were 

described in II.2.6.4. 

 

     
Figure 1.1: Fluorescent in situ hybridisation on E. coli cells examined under UV light 
excitation by epi-fluorescence microscopy. A: E. coli labelled with EUB388-FITC. B: E. 
coli labelled with EUB388-QD680. 

 

EUB388-FITC was used as a positive control to verify the efficiency of the hybridisation. 

In each case, the positive control resulted in bright green fluorescent signal from the cells 

(Figure 1.1, A). However, EUB388 labelled with QD680 did not hybridise to E. coli cells 

(Figure 1.1., B). Non-specific binding of QDs was observed to occur on the microscopy 

B A 
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slide surface and around the outside of the cells as indicated by the red fluorescence 

observed on the slide. 

2. Non-conventional FISH technique   

To avoid the non-specific binding by the QDs onto the surface of the microscope slides, 

FISH procedures were modified. Microfuge tubes were used instead of microscopy slides 

during the hybridisation and washing steps (II.2.6.4.6). Three oligonucleotide probes were 

used: EUB338 modified with FITC, EUB338 modified with QD680 and EUK502 

modified with QD680. 

 

     

    
 

EUB338-FITC was used as a positive control. The control verified positive hybridisation 

by the EUB388-FITC as observed by the green stain of the bacteria (Figure 1.2, A). 

Although QDs did not bind to the microscopy slide as observed previously (Figure 1.1, 

B), non-specific binding to the cell wall of the bacteria was observed. QD680 have red 

fluorescence emission which was observed forming clusters on the cell wall of the 

microorganisms (Figure 1.2, B and C). The bacterial cells appeared in blue due to natural 

Figure 1.2: Epi-fluorescence 
microscopy imagesunder UV light 
excitation of E. coli hybridised to three 
different probes. A: EUB388-FITC. B: 
EUK502-QD680. C: EUB338-QD680. 

C 
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autofluorescence of the microorganisms under UV light excitation. It was concluded that 

the QDs-modified FISH probes did not penetrate the permeabilised membrane of the 

bacteria.  

 

A discussion of QDs as a fluorophore for FISH can be found in Chapter VI. 4.4. 
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APPENDIX II: BioMag beads 

BioMag streptavidin super-paramagnetic particles of 1.6 microns in size functionalised 

with streptavidin (Polysciences Inc., Australia) were tested as a platform for binding QD-

probe complexes.  

 

BioMag beads were provided in a stock solution of 50 mg/ml. They were resuspended by 

gently shaking the vial to obtain a homogeneous suspension. A portion (5 µl) of BioMag 

beads was transferred to a fresh 1.5 ml Eppendorf tube. The beads were washed as 

described previously (V.2.4.2). 100 µl of Hops-Yellow QDs (4 nmol/ml) were bound to  

25 µl (0.1 mM) of QDLinker probe (a poly A oligonucleotide probe modified with biotin 

at the 3’ end and a thiol group at the 5’ end) as described previously (V.2.4.1). A portion 

(10 µl) of QD-oligo complexes was mixed with BioMag beads. The sample was then 

incubated at RT for 10 min with occasional gentle mixing. The solution was washed to 

remove unbound QDs-oligo complexes using the Dynal MPC™ magnet and 1 x WB 

buffer (V 2.2). Washed BioMag beads labelled with QDs-oligo complexes finally were 

resuspended in 10xPBS and stored at 4°C in darkness. 

 

The success of the binding was confirmed by epi-fluorescence microscopy (II.2.4.2.2) and 

by flow cytometer (II.2.5.2). 
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The shape, size and auto-fluorescence of unlabelled BioMag beads were confirmed by 

epi-fluorescence microscopy (Figure 2.1, A). Unlabelled BioMag beads naturally 

agglomerated, forming small clusters even after vigorous shaking (Figure 2.1., B). 

BioMag beads were characterised for not showing autofluorescence background under 

UV excitation. BioMag beads after binding to the QDs-oligo complexes appeared to form 

larger clusters (Figures 2.1, B and C).  

 

The incubation time during the binding step could have influenced the binding and the 

observed agglomeration of the QD-bead complexes. Several modifications to the protocol 

were performed on the binding of QD-oligo complexes to BioMag beads in an attempt to 

avoid agglomeration issues. BW buffer (V.2.2) was substituted with BioMag buffer 

(V.2.2) and the final binding product was resuspended in DEPC-treated water instead of 

10xPBS. The incubation time was varied between 15 min to 30 min. The samples were 

then analysed by epi-fluorescence microscopy and flow cytometry. Agglomeration of the 

beads was observed under all the binding conditions tested, indicating that the 

agglomeration was not caused by either the buffers or incubation time (data not shown). 

The most probable explanation appeared to be the physical shape and size of the beads. 

BioMag beads have an irregular shape which may have facilitated agglomeration which 

increased after binding to the QDs.  

 

 

Figure 2.1: Epi-fluorescence microscopy 
images of unlabeled BioMag beads and 
QDs-oligo complexes bound to beads A: 
DIC image of unlabelled BioMag beads. 
B: DIC image of BioMag beads bound to 
QDs-oligo complexes. C: BioMag beads 
bound to QDs-oligo complexes under UV 
excitation.
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APPENDIX III: Hops-Yellow QDs 

Hops-Yellow QDs were bound to Dynabeads using an intermediate linker (QDLinker) 

following the procedures previously described (V.2.4.1 and V.2.4.3). QDLinker was 

conjugated to the Hops-Yellow by the amine group while binding the Dynabeads by the 

biotin-streptavidin interaction. The final binding product was checked by epi-fluorescence 

microscopy (II.2.4.2.2) and flow cytometry (II.2.5.2) 

 

       

       
Figure 3.1: Background autofluorescence of unlabeled Dynabeads under epi-fluorescence 
microscopy. A: DIC. B: UV excitation. C: Blue excitation. D: Green excitation. 
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Figure 3.2: Dynabeads bound to Hops-Yellow QDs visualised by epi-fluorescence microscopy. 
A: UV excitation. B: Blue excitation.  

 

Unlabelled Dynabeads showed autofluorescence background under all the excitation 

sources examined (Figure 3.1). Hops-Yellow QDs exhibited green emission. The 

autofluorescence of the Dynabeads (Figure 3.1) did not appear to influence the fluorescent 

signal of the Hops-Yellow QDs after binding (Figure 3.2). A shift in colour of the 

Dynabeads from blue to green after binding to Hops-Yellow QDs could be observed 

under the UV excitation (Figure 3.2). However, Hops-Yellow QDs were found to form 

clusters on the surface of the Dynabeads. 

 

The following buffers were tested during the incubation step for binding of Dynabeads to 

Hops-Yellow QDs-oligo complexes: BW buffer, BioMag buffer, SDS buffer and a new 

buffer containing 10 mM Tris/HCl and 1 mM EDTA (V.2.2). Several incubation times 

were tested from 30 min to 12 h. Despite every attempt to avoid agglomeration of the QDs 

on the surface of the Dynabeads, the agglomeration did not decrease (data not shown). 
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APPENDIX IV: Methods for detection of PCR 
amplicons bound to the Dynabeads 

Different methods were tested for the detection of biotinylated PCR amplicons (VI.2.3) of 

D. radiodurans bound to Dynabeads.  

1. Methods 

1.1. Direct method for labelling PCR amplicons 

For all reactions, 5 µl of pre-washed Dynabeads were resuspended in 5 µl of BioMag 

buffer. Then, 8 different amounts of the biotinylated PCR product from 0.21 to 14.7 pmol 

were added to the reactions and incubated at RT for 30 min with rotation. After binding, 

Dynabeads were washed 3 times using 100 µl of BW buffer (V.2.2.) and resuspended in 

200 µl of BW buffer. PCR amplicons bound to the Dynabeads were denatured by heat at 

95ºC for 10 min in the water bath. 1 µl of the BactoUni2 target probe (100 µM) was added 

to the samples, followed by further incubation at 50ºC for 10 min in the dark. After 

hybridisation, the beads were washed 3 times using 100 µl of BW buffer and were finally 

resuspended in 200 µl of BioMag buffer until further analysis.  

1.2. Indirect method for labelling PCR amplicons 

A portion (30 µl) of PCR amplicon (120 ng/µl) was mixed with 2 µl (100 µM) of target 

probes. Three different target probes were used per binding reaction: Bactounoversal2, 

BactouniAlexa and QDUniBiotinF. The solutions were heated to 95ºC for 10 min using 

the thermo-cycler to denature the PCR product, followed by 50ºC for 5 min for 

hybridisation of the capture DNA strand to the target probe. After hybridisation, the 

reactions were placed on ice to stop further hybridisation. Pre-washed Dynabeads (5 µl 

per reaction) were added to the PCR reactions and incubated at 30 min at RT with rotation 

to allow binding of biotinylated strands of the PCR amplicon. After the binding step, 
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Dynabeads were washed 3 times using 100 µl of BW buffer and resuspended in 200 µl of 

BW buffer and kept at 4ºC until further analysis.  

1.3. Detection of PCR amplicons with QD525 

A portion (5 µl) of Qdots™ 525 (2 µM) was mixed with 1 µl of QDUniBiotinF probe 

(100 µM). The final volume of the reaction was made up to 200 µl using TE buffer pH 8. 

After incubation at RT for 1 h in the dark with gentle rotation, excess probe was washed 

away using Microcon filter devices YM-100 following the user’s manual. The waste 

fraction was kept for further analysis. QD535 labelled probes were resuspended in a final 

volume of 100 µl TE buffer pH 8. 30 µl of PCR amplicon (120 ng/µl) was denatured by 

heat at 95ºC for 10 min. The denatured PCR product was then placed at 50ºC for 2 min. 

QDs-oligo complexes were added to the reaction for hybridisation to the PCR amplicon at 

50ºC for 10 min. Then, the PCR amplicons were bound to Dynabeads as described in the 

direct method (Appendix IV 1.1) 

1.4. Blocking the active sites of the QDs with biocytin 

Biocytin is a water-soluble biotin that can be used to reduce the number of functional sites 

of the QDs by binding to streptavidin. A single QD contained approximately 7 

streptavidin groups on its surface.  The number of active sites of a solution of QDs was 

calculated using Avogadro’s number. The concentration of the QDs was 2 µM, which is 

equal to 2 pmol/µl. 2 pmol of the solution of the QDs contained 1.2045 x 1012 QDs. Each 

QD had 7 active sites. Therefore, 2 pmol of QDs in solution had 8.43 x 1012 active sites. 

The concentration of the biocytin was 4 µM (4 pmol/µl). Therefore, in theory, 14 pmol 

(3.5 µl) of biocytin would block all the active sites of 1 µM (1 µl) of QD525 streptavidin 

conjugates. Different concentrations of biocytin were used to block QD525 prior to 

binding to the oligonucleotides. They were: 2 pmol (0.5 µl), 6 pmol (1.5 µl), 10 pmol (2.5 

µl) and 14 pmol (3.5 µl). 1 µl of QD525 (2 µM) was mixed with the different biocytin 

concentrations in 50 mM of QD incubation buffer. After incubation at 30ºC for 20 min in 

the dark, the reactions were washed using Microcon filter devices YM-100. The final 

volume was made up to 400 µl using BW buffer. 2 µl of QDUniBiotinF probe (1 µM) was 
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then added to the samples. After incubation at 30ºC for 10 min in the dark, the QDs-oligo 

complexes were stored in the dark at 4ºC until hybridisation to the PCR amplicons. 

2. Results 

2.1. Direct method for labelling PCR amplicons 

The direct method for labelling PCR amplicons was based on binding biotinylated PCR 

amplicons directly to the Dynabeads followed by heat denaturation to separate the two 

strands of PCR. The target probe (BactoUni2) was added for hybridisation to the 

biotinylated PCR strands bound to Dynabeads.  

 

The reactions were analysed by flow cytometry (data not shown). None of the samples 

tested showed fluorescent signal above the blank, indicating that the hybridisation 

procedures were not successful using the direct method.  

2.2. Indirect method for labelling PCR amplicons 

The indirect method for labelling PCR amplicons was based on denaturing the PCR 

amplicons followed by hybridisation to the target probe prior to capture by binding to the 

Dynabeads. Three different target probes were used for labelling the biotinylated strand: 

Bactouniversal2 (modified with FITC), BactouniAlexa (modified with Alexa Fluor 488) 

and QDUniBiotinF (modified with biotin). The target probe QDUniBiotinF was used as a 

linker to label the PCR amplicons with QD525. The reactions were analysed on a dot-plot 

of FL1 (green fluorescence) versus SSC (Figure 4.1). 
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Figure 4.1: Flow cytometric analysis of biotinylated single strands of PCR amplicons 
labelled with FITC, Alexa Fluor 488 and QD535 bound to Dynabeads. Bivariate dot-
plots defining log FL1 channel (y-axis) versus log SSC channel (x-axis). A: Unlabelled 
Dynabeads. B: Bactouniversal2. C: BactouniAlexa. D: QDUniBiotinF (target probe 
bound to QD525). 

 

 

Legend, Figure 4.2: 
Red curve: Blank 

Green line: Alexa Fluor 488 

Figure 4.2: Flow cytometric 
analysis. Histogram of 
biotinylated single stands of 
PCR amplicons labelled to 
FITC and Alexa Fluor 488 
bound to Dynabeads. X-axis: 
fluorescent signal detected in 
the FL1 channel. Y-axis: 
number of counts per sample. 
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The biotinylated single strand of the PCR amplicons labelled with FITC and Alexa Fluor 

488 bound to Dynabeads gave positive fluorescent signals above the blank, indicating 

successful capture and detection (Figures 4.1 and 4.2). However, Dynabeads labelled with 

QD525 did not show fluorescence above the blank value (Figure 4.1, D). Dynabeads 

labelled with FITC showed the higher fluorescence levels than Fluor Alexa 488 (Figure 

4.2). 

2.3. Blocking the active sites of the QDs with biocytin 

QD525 have approximately 7 functional groups (streptavidin) on their surface. It may be 

possible that the target probe saturates the QD525 functional groups, preventing the 

hybridisation to the single strand of biotinylated PCR amplicons. For that reason, the 

number of functional groups of QD525 was reduced by blocking of free biotin groups 

with biocytin. After the blocking step, QD525 were bound to the target probe 

(QDUniBiotinF) for hybridisation and reporting of successfully captured single strands of 

PCR product (Table 4.1). Samples were analysed on a histogram displaying FL1 (green) 

fluorescence (Figure 4.3). 

 

Table 4.1: Biotinylated PCR amplicons labelled with FITC, Alexa Fluor 488 and QD535 blocked 
with biocytin bound to Dynabeads. 

Sample 

number 

Biotinylated PCR 

amplicon (210 µM) 

Dynabeads 

(10 mg/ml) 

Target probe 

(1 µM) 

Biocytin 

(4 µM) 

1 5 µl 1 µl 2 µl BactouniAlexa 
(Alexa Fluor 488) - 

2 5 µl 1 µl 2 µl Bactouniversal 
(FITC) - 

3 5 µl 1 µl 2 µl QDUniBiotinF 
(QD535, 1µM) 0.5 µl (2 pmol) 

4 5 µl 1 µl 2 µl QDUniBiotinF 
(QD535, 1µM) 1.5 µl (6 pmol) 

5 5 µl 1 µl 2 µl QDUniBiotinF 
(QD535, 1µM) 2.5 µl (10 pmol) 

6 5 µl 1 µl 2 µl QDUniBiotinF 
(QD535, 1µM) 3.5 µl (14 pmol) 
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Figure 4.3: Histogram data analysis of biotinylated PCR amplicons labelled with FITC, 
Alexa Fluor 488 and QD525 blocked with biocytin bound to Dynabeads (Table 4.1). X-axis: 
fluorescent signal detected in the FL1 channel. Y-axis: number of counts per sample. 

 

As occurred with the indirect method tested, biotinylated PCR amplicons labelled with 

FITC and Alexa Fluor 488 gave positive signals above the black, while none of the 

samples labelled with QD525 were positive remaining with similar fluorescent signal as 

the blank (Figure 4.3). 

2.4. Modifications in the binding procedures 

Several modifications were tested in order to obtain successful hybridisation of the target 

probe modified with QD525 to the biotinylated strand of PCR amplicon. The PCR 

amplicon was denaturing by the alkali treatment (VI.2.6.1). 

 

• The hybridisation time was increased from 10 min to 1 h to allow the binding of 

the QD525 to the target probe following hybridisation to the biotinylated strand of 

PCR bound to the Dynabeads (Appendix IV.1.1) 

• The hybridisation temperature for the target probe was increased from 50ºC to 

60ºC. 

• PCR amplicons were denatured by an alkaline treatment instead of using heat 

(VI.2.6.4). The alkaline treatment allowed the denaturation of the PCR amplicons 

after their binding to Dynabeads without loosing the efficiency of the biotin-

streptavidin interaction. The alkaline treatment also facilitated the washing step of 

the non-biotinylated strand of PCR by using a magnet.  

Legend Figure 4.3: 
  Red curve:  Blank  

  Green line: Sample 1 

  Black line: Sample 2 

  Dark blue line: Sample 3 

  Purple line: Sample 4 
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• Low concentrations of target probe (QDUniBiotinF) were bound with QD525 in a 

ratio 1:1 (one target probe per one QD).  

3. Discussion 

Analysis of reactions by flow cytometry indicated positive binding of the biotinylated 

PCR amplicons to the streptavidin-Dynabeads and successful hybridisation by the target 

probes modified with FITC and Alexa Fluor 488, for all the methods tested except by the 

direct method (Appendix IV.2.1). The direct method employed heat to denature the PCR 

amplicon after it was bound to the Dynabeads. The binding of the biotinylated PCR 

amplicon to the Dynabeads was made by the interaction of the biotin group of the PCR 

amplicon to the streptavidin group of the Dynabeads. Streptavidin is a protein that can be 

denatured at temperatures above 70ºC. Dynabeads were subjected to temperatures up to 

95ºC in the methods tested. Therefore, it could be inferred that the streptavidin was also 

denatured during this step, losing its ability to bind the biotinylated PCR amplicon in the 

direct method. 

 

The biotinylated single strand of the PCR amplicons bound to Dynabeads labelled with 

QD525 did not show fluorescence above background under any of the procedures 

employed, while PCR amplicons labelled with FITC and Alexa Fluor 488 resulted in 

fluorescent signals above the background, indicating a positive hybridisation (Figures 4.2 

and 4.3). This result indicated successful binding of the target probes to the PCR 

amplicons and demonstrated the successful compatibilities of the technique and the 

procedures when using conventional fluorophores. However, all the modifications of the 

binding procedures tested (Appendix IV 2.4) resulted in no positive hybridisation of the 

QD525 to PCR amplicons.  

 

The lack of fluorescent signal from the PCR amplicons labelled with QD525 compared to 

the positive results obtained when using FITC and Alexa Fluor 488 led to the hypothesis 

that the functional groups of the QDs (streptavidin) might dissociate from their surface 

after long periods of storage. QD525 used for these experiments were over 6 months old. 

Therefore, fresh QDs were purchased and the experiments repeated obtaining positive 

fluorescent signals from the QDs (Figure VI.16). It was established that the binding 
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procedures initially designed for the detection of biotinylated PCR amplicons were 

appropriate and all the modifications were not required. 
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APPENDIX V: Publications and conference 
proceedings 

1. Publications 

Ibáñez-Peral R., Bergquist P.L., Walter M.R., Gibbs M., Goldys E.M. and Ferrari B. 

(2008). Potential use of quantum dots in flow cytometry. Submitted in the International 

Journal of Molecular Sciencies.  

 

Ibáñez-Peral R., Ferrari B., Walter M.R. and Bergquist P.L. (2008). Cultivation of 

thermo-acidophilic microorganisms from volcanically-active sediments of White Island, 

New Zealand. Submitted in Extremophiles. 

 

Leuko., F. Goh., Ibáñez-Peral R., Burns B.P., Walter M.R. and Neilan B.A. (2007). Lysis 

efficiency of standard DNA extraction methods for Halococcus spp. in an organic rich 

environment (2007). Extremophiles 12: 301-308 

2. Conference proceedings 

Ibáñez-Peral R., Ferrari B., Walter M.R. and Bergquist P.L. (2006). Culturing the 

“unculturable”: Microbial communities from New Zealand’s most active volcano. FEMS 

2006, Madrid, Spain. 

 

Ibáñez-Peral R., Ferrari B., Gibbs M., Walter M.R. and Bergquist P.L. (2005). Quantum 

dots, Smart Nanocrystals in the Study of Thermophilic Microbial Diversity. Thermophiles 

05, Gold Coast, Australia. 

 

Ibáñez-Peral R., Ferrari B., and Bergquist P.L. (2005). Applying quantum dots to 

environmental microbiology. Analysis of microbial cell at the single cell level conference, 

Simmering, Austria. 
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Butterworth P., Ibáñez-Peral R., Walter M.R., Bergquist P.L., Morgan H. and Anitori R. 

(2005). Sulfur-metabolizing Thermophiles in the White Island Hydrothermal Systems. 

Thermophiles 05, Gold Coast, Australia. 

 

Ferrari B., Stoner K., Ibáñez-Peral R. and Bergquist, P.L. (2005). Applying fluorescence 

technologies to environmental waste water samples. ASM 2005, Canberra, Australia. 

 

Ferrari B., Ibáñez-Peral R., Gengos M. and Bergquist P.L. (2005). Novel pathogen 

detection strategies for the environment. Analysis of microbial cell at the single cell level 

conference, Simmering, Austria 

 

Ibáñez-Peral R., Bergquist P.L., Walter M.R. and Ferrari B. (2004) Real time analysis of 

biodiversity in extreme environments. Australian society for microbiology, annual 

scientific conference, Sydney, Australia. Oral presentation 
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