
CHAPTER 1 

INTRODUCTION 

Over the past decades, the availability of complete genome sequence has facilitated 

the development of high-throughput technologies, such as microarrays that can probe cells on 

a genome-wide scale. The emergence of these technologies has changed the way in which 

biological research is done. In the past, biologists engaged themselves in years of research and 

conducted different expensive experiments to uncover a few details about the cellular 

processes and how molecular units of living cells interact throughout this process. Today, 

scientists can monitor the activity levels for thousands of genes or proteins in parallel to study 

the effects of certain treatments, diseases and developmental stages at the molecular level. 

Following this abundance of data, what still need to be developed are the computational 

methods that improve the state of the art to better understand the biological systems which 

have generated these data. 

In a living cell, the complex interactions among the various molecular units such as 

DNA, RNA, proteins and small molecules determine its structure and function. Therefore, a 

key goal of post-genomic research is to understand the structure and dynamics of the complex 

cellular interactions.  There are several different kinds of interaction networks that can be 

distinguished at the molecular level within a cell. These are: metabolic networks, signaling 

networks, protein-protein interaction (PPI) networks and gene regulatory networks (GRN). 

Metabolic networks comprise the chemical reactions of metabolism that determines the 

physiological and biochemical properties of a cell. Signaling networks are the communication 
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channels of a cell to the outside world. PPI networks comprise both physical and genetic 

interactions among the proteins and play a central role in the study of the interactions among 

the molecules within a living cell. The GRN consists of interactions between transcription 

factors and target genes and control the expression of genes in a cell. 

The major goal of this thesis is to develop a computational model that utilizes domain 

knowledge and other sources of biological data in estimating GRN from time series gene 

expression data. Gaining insight into such a regulatory network will assist researchers to 

understand a cell’s function (the sequence of interactions in different developmental 

processes) as well as how the cell dysfunctions in the case of diseases, such as cancer. 

However, the most important application of such discovery is in drug design, as pathological 

effects of a drug can only be addressed with precise knowledge of what functions and 

dysfunctions really are.  

The reconstruction of GRN involves identifying regulatory connections; that is, which 

regulators control which gene and how. Thus, computational methods can be utilized to learn 

both the structure and parameters of the network from experimental data. A general 

framework of the reconstruction process is shown in Figure 1.1. The whole process of the 

reconstruction of GRN can be divided into several interactive tasks. The availability of 

complete genome sequence has facilitated the development of high-throughput technologies 

which generates large quantities of genomic data. The generation and accessibility of these 

data have drawn attention on designing appropriate computational models to decipher the 

structure of GRN and understand the underlying cellular process. Though the reconstruction 

task appears simple and straight-forward in the figure, it faces several key issues which are 

elaborated in the subsequent sections. Some of these issues are addressed in this thesis and 

others have been left as future research directions. 
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1.1 Issues in Reconstructing GRN from Experimental Data 

        From a computational perspective, the reconstruction of a GRN from the massive high-

throughput data can be considered as a large optimization problem. Such consideration 

derives from the fact that the computational models either optimize a scoring function over a 

large space or a large set of parameters. For instance, differential equations based GRN 

models seek to optimize a large number of parameters from the data. The other genre of 

models known as graphical models such as Dynamic Bayesian Network (DBN), Bayesian 
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Figure 1.1: Illustration of the process of reconstructing GRN from experimental data. In this 

example network, each node corresponds to a gene and an edge represents the 

direct regulation among the genes. 
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Network optimize a scoring function to learn the structure of the network given the data. 

Therefore, the task of reconstructing GRN face a wide range of challenges, some of which 

originate from the perspective of the computational model being used, some from the 

characteristic of available data, and the others because of the lack of knowledge about the 

biological system are being modeled. Below we list some of the key issues that limit the 

effective reconstruction of GRN with the current computational methods: 

1. High dimensionality: Dimensionality problem is one of the major challenges that 

researchers have come across in reconstructing GRN from experimental data. To illustrate 

the dimensionality problem, we consider budding yeast which is the simplest unicellular 

organism and has been considered as the model for studying cellular processes in 

eukaryotic cells. Even the yeast genome consists of more than 6400 genes, whereas the 

size of the human genome exceeds 40000. This numbers themselves articulate the size and 

intensity of the problem. Most of the computational methods learn the structure and the 

parameters of the network from the available data. Some models such as differential 

equations based models (Di Bernardo et al. 2004, Kimura et al. 2005, Kikuchi et al. 2003, 

Cinquemani et al. 2008) estimate the network parameters from the available data. For 

these models the number of parameters to be estimated grows exponentially with the 

number of genes in the data. Therefore, the problem of GRN construction becomes 

intractable with just tens of genes in the dataset whereas the models are expected to learn 

networks of thousands of genes. Graphical models such as Bayesian Networks (Friedman 

et al. 2000), DBNs (Murphy and Mian 1999, Zou and Conzen 2005) search for the best 

structure by optimizing a scoring function, given the data and the network parameters. An 

exhaustive search for the best structure considers 2
N 

possible set of parents for each target 

gene, where N is the number of genes in the data.  This exponential growth of the number 
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of potential structures makes them intractable for analyzing networks with more than tens 

of genes. 

2. Low number of true positives in the reconstructed network: The Majority of the 

available GRN models identify a very low number of true positives (a connection that 

exists in both the known and reconstructed network) in respect to the total number of 

known and estimated connections. This is especially true in those cases where the models 

have been tested on a relatively large datasets including hundreds of genes. Researchers 

have identified many causes that underlie such inaccurate estimation. Some of them are as 

follows: 1) imprecision in measuring the level of gene expression, 2) model robustness 

and compatibility, 3) type of data used such as discrete or continuous data, 4) inherent 

noise in the data and 5) lack of knowledge (very small number of regulator-gene 

relationships are known till date). To exemplify some of these causes, we focus on the 

effect of data type on the model. Some GRN models such as Boolean Networks (Akutsu 

et al. 1999) are discrete models; that is, they discretize the gene expression data in a 

preprocessing step and apply the model on the discretized data. This discretization of data 

causes information loss and the models are unable to identify even a reasonable number of 

true positive connections. Conversely, the continuous models (Recurrent Neural 

Networks, S-System model) are expected to perform better at the expense of high 

computational time. However, these models often suffer because they are not capable of 

distinguishing the inherent noise in the data from the actual gene expression. 

3. Data scarcity: At present, data generated by the high-throughput experiments contain 

thousands of genes over only a few time points.  For instance, the benchmark data of the 

yeast cell cycle (Spellman et al. 1998) contains the expression levels of thousands of 

genes over 18 time points (alpha synchronization). This insufficient data causes another 
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major challenge for the computational reconstruction of GRNs. Akutsu et al. (1999) 

discussed the amount of data required for learning the structure of a deterministic Boolean 

network from a computational learning theory perspective. They showed that the number 

of time points needed for estimating a Boolean network of N genes is lower bounded by 

Ω(2
k
 + klogN) and upper bounded by O(2

2k
 2k log N), where k is the fan-in of each node. 

Since the constant factor is exponential in k, genes with a high number of regulators 

would demand much more time points than what we have at present. Thus, data scarcity 

has a direct effect on the number of true positive connections that a model can estimate.  

4. Imprecise and incomplete data: One pitfall of analyzing high-throughput data is that 

they come with an enormous amount of experimental noise (Aris et al. 2004). A range of 

factors can contribute to the generation of this experimental noise such as imprecision in 

designing the array, sample preparation, and the hybridization process. As a consequence 

of this inadequacy in the experimental system, the regulatory process becomes partially 

observable in most of the cases leaving missing values in the collected data. Therefore, the 

inherent noise and the incompleteness of data pose another critical challenge on the 

reconstruction of GRN as they provide misinformation to the computational method. 

5. Validation of the reconstructed network: In general, the GRN models characterize 

quantitative knowledge concerning gene regulation which is hidden in the underlying 

data. However, knowledge about the underlying biological structures from which these 

data originate is often incomplete or unavailable. This lack of knowledge poses another 

critical issue which concerns the validation of the network models. Much effort has been 

given to address the problem of network validation. In recent years, the simulated data 

from DREAM (Dialogue for Reverse Engineering Assessments and Methods) project 

(Prill et al. 2010) are gaining interest as benchmark data for validating GRN models. 
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Despite the wide acceptance of simulated data, biologists are still interested in 

constructing GRNs from experimental data and finding a way of validating them. 

We address some of the above mentioned issues in this thesis and propose ways to 

possibly address others in the future work. 

1.2 Thesis Motivation 

Modern biomedical research focuses on the understanding of the structure and 

functions of GRNs with the goal of identifying genetic causes of diseases and developing 

drugs to cure them. As discussed in the previous section, the high dimensionality and data 

scarcity are the two fundamental challenges associated with the computational reconstruction 

of GRN. The first challenge arises from the complex nature of gene regulation and contributes 

towards the high computation time of estimating the structure and parameters of the network. 

The second challenge limits the computational model from learning the network with a higher 

precision. One possible way of dealing with the high computational time of GRN 

reconstruction is to reduce the problem size by using some kind of heuristics. In case of 

structure learning, this reduction implies restricting the number of possible parents for a target 

gene. The utilization of heuristics is expected to reduce the problem dimension, however it 

may adversely affect the precision of the estimated network when the choice of heuristics is 

arbitrary and lacks biological foundation. 

The negative consequence of applying such arbitrary heuristics motivates us to use 

domain knowledge in reducing the problem size. In this thesis, we utilize biological 

knowledge to restrict the number of possible regulators for each target gene. This reduction in 

the problem size also lessens the data requirements of the computational methods. Therefore, 

we put forward the theme that the exploitation of such knowledge would address both the 
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computational time and the data scarcity problem associated with GRN reconstruction. The 

objectives of the work in this thesis are: 

 identify key features used by transcriptional regulators of a gene and employ that 

knowledge to reduce the problem size. 

 improve the precision of the reconstructed network; that is, increase the number of true 

positives and reduce the number of false positive connections. 

 apply a structure learning algorithm that has the ability to model stochasticity and 

provides flexibility to incorporate prior knowledge. In particular, we prefer 

probabilistic models that show robustness to inherent noise and can handle missing 

values.  

 examine the effectiveness of incorporating biological domain knowledge through the 

analysis of both simulated and experimental data.  

 investigate the scalability of the computational methods ; that is the methods maintain 

or even increase the performance of the estimated networks when applied on larger 

data.  

1.3 Thesis Statement 

In section 1.1, we have discussed the key challenges of reconstructing GRNs with 

available computational methods. In particular, our interest lies in dealing with the first two 

challenges which are high dimensionality and low accuracy of the reconstructed network. 

Therefore, this thesis aims to extend and improve the current GRN models by reducing the 

problem space with the incorporation of biological domain knowledge and other sources of 

data. This thesis also compares and quantifies to what extent the reconstruction accuracy as 

well as the computation time can be improved with the following hypothesis: 
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 exploitation of biological domain knowledge reduces the problem size and makes the 

reconstruction task computationally feasible. 

 models that employ the key features that are used by transcriptional regulators of genes, 

estimate networks with a higher precision. 

 integration of multiples sources of biological data to restrict the number of potential 

regulators for a target gene reduces both the problem dimension and the data 

requirements of the model; hence increasing the number of true positives in the 

estimated network. 

 models that utilize biological domain knowledge are expected to be scalable; that is 

they maintain steady precision level when applied on the analysis of large datasets.  

1.4 Contributions 

This thesis focuses on the computational reconstruction of GRNs from microarray 

gene expression data by exploiting biological domain knowledge. Among other available 

methods, we choose DBNs as it provides a good compromise between the network relevancy 

and inherent noise in the data. Below, we summarize the major contributions of this thesis in 

addressing some of the key challenges discussed in section 1.1. 

1. Exploitation of the domain knowledge of the cellular process under study: To 

address the dimensionality problem of high-throughput data, we utilize the biological 

features of the cellular process under study which is the yeast cell cycle in this thesis. One 

such feature is that, a high proportion of cell cycle regulated (CCR) genes are periodically 

expressed; that is genes are maximally expressed to affect and control the regulation of 

other genes and on completing their designated task they are repressed by some other 

regulator genes. Thus the whole cell cycle progresses systematically through the 
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successive activation and repression of CCR genes. To use this feature, we have 

calculated the peak time of individual genes which falls into one/more phases of the cell 

cycle. Therefore, genes that peak in the interval of the same phase of the cell cycle have 

been grouped together. In addition, each group includes known transcription factors of the 

previous phase with the hypothesis that they regulate some genes which facilitate the 

systematic initiation of the current phase. This inclusion creates clusters with overlapping 

genes. Finally, we employ a DBN structure learning algorithm on each individual cluster 

to estimate the desired network. The exploitation of the knowledge in relation to the 

phase-specific regulation of the cell cycle has decomposed the whole task of GRN 

reconstruction into several sub-problems. As a consequence of this decomposition, the 

computational time of the model (DBN in this thesis) has been reduced significantly. 

Although the model shows slight increase in the number of true positives, the precision of 

the estimated network is similar to that of randomly generated networks when applied on 

the large datasets.  

2. Application of a partitioning algorithm to find groups of co-expressed genes and 

their co-regulators: In real biological networks, genes are both co-expressed and co-

regulated. This implies that genes with similar temporal and spatial expression patterns are 

believed to be governed by a common regulatory logic. Therefore, it is equally important 

to find causal relationships between groups of co-expressed genes. In order to find groups 

of co-expressed genes, we apply a data partitioning algorithm, known as Partitioning 

Around the Mediods (PAM), which divides n objects (genes) into k clusters, where k is 

the optimal number of clusters in the dataset. The advantage of PAM is that it estimates 

the value of k by observing the data. Next, the algorithm computes the k representative 

genes, called mediods which is defined as the center point of each cluster and whose 
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average dissimilarity to all the objects in the cluster is minimal. To learn the causal 

relationships, we use a simple DBN algorithm among the mediods of the clusters and 

within each cluster. The partitioning of genes into k groups of co-expressed genes reduces 

the problem dimension by a factor of k and makes the reconstruction task computationally 

feasible in comparison to the existing methods. However, the precision of the estimated 

network solely depends on the identification of co-expressed genes.  

3. Integration of other sources of biological data to restrict the number of regulators 

for each target gene: One way of improving the precision of the reconstructed network is 

to reduce the data requirements of the model. Since the number of time points (T) needed 

for estimating a network is exponential in the number of regulators (k) for each gene, we 

use the two sources of biological data, Protein-Protein Interaction (PPI) and transcription 

factors binding site (TFBS) data to restrict k. Of the two types of known interactions 

between proteins/genes, we assume that the genetic interactions carry some biological 

evidence of one interactor being regulated by the other. Then again, transcription factors 

which have at least one binding site in the promoter region of a target gene are considered 

as potential regulators along with the genetic interactors of the gene. Finally, a DBN 

structure learning algorithm is applied to learn the candidate regulators of a target gene 

from these biologically driven potential regulator sets. The removal of irrelevant genes 

from the potential regulator lists for each target gene not only makes the reconstruction 

task computationally feasible but also reduces the data requirements considerably. As a 

consequence, the model estimates networks with a significantly higher precision. 

4. Investigate the scalability of the DBN-based models through the analysis of networks 

of varying dimensions: Scalability is one of the essential criteria for the successful 

reconstruction of GRNs. In the cell cycle of unicellular yeast, there are approximately 800 
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genes which change their expression patterns and participate in the completion of the cell 

division process. Therefore, to obtain a complete picture of the gene regulation program in 

the yeast cell cycle, the computational models need to handle all the 800 genes 

simultaneously. However, most of the computational methods, especially DBN-based 

models are only applicable to the analysis of small-scale networks because of the high 

computational complexity. Although some models can estimate networks that may include 

up to 100 genes, the precision of the models drops significantly as the network size grows. 

We investigate the scalability of our proposed DBN-based GRN models in comparison to 

some existing models. The experimental results show that incorporation of biological 

knowledge is a key factor in designing a scalable approach for the reconstruction of GRN. 

1.5 Thesis Outline 

This thesis focuses on a research problem that emerges from the multidisciplinary area of 

computer science, statistics and molecular biology. Therefore, we provide both the biological 

and computational foundation of this thesis work. The rest of this thesis is organized as 

follows: 

Chapter 2 gives an overview of the biological background of the thesis; in particular, 

the core principles of transcriptional control in eukaryotic cells. It also describes the basic 

principles behind microarray experiments and gives a sense of what the data actually 

represents.  

Chapter 3 introduces the computational methods that are currently being used for the 

reconstruction of GRN. It also discusses the key challenges that the GRN models face; some 

of these challenges arise from the nature of the data; others are associated with the 

computational models. It also briefly discusses the effectiveness of the models in addressing 
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such challenges. 

Chapter 4 discusses the exploitation of biological domain knowledge of the yeast cell 

cycle in estimating GRNs. It presents a framework of the proposed GRN model based on 

DBN learning and discusses the detailed methodologies used.  The chapter concludes with 

experimental results of analyzing the yeast cell cycle gene expression data with the proposed 

model together with two existing DBN-based models. 

Chapter 5 describes the application of the Partition Around the Mediods algorithm in 

finding groups of co-expressed genes. It also presents a framework of the proposed GRN 

model based on DBN learning and discusses the detailed methodologies used for estimating 

co-regulators of co-expressed genes. The performance of the proposed model is compared 

with the model in chapter 4 in conjunction with two existing DBN-based GRN models.  

Chapter 6 presents the integration of multiple sources of biological data in estimating 

GRN from gene expression data. It discusses the methodologies for extracting potential 

regulators from other sources of data and application of DBN to estimate the network through 

the analysis of gene expression data. The chapter also presents the experimental results of 

analyzing benchmark data from the yeast cell cycle with the proposed model along with the 

models discussed in chapters 4 and chapter 5. 

Chapter 7 presents validation of the proposed models through the analysis of both 

simulated and experimental data. The benchmark criteria, precision and recall are used in 

conjunction with computation time for evaluating the performances of the models. Three 

additional statistical measures, namely F-measure, Negative Predictive Value and Specificity 

are also computed to test the performance of the models. It also compares the performance of 

the estimated networks with randomly generated networks to investigate the significance of 

the proposed models. 



CHAPTER 1. INTRODUCTION 

 

14 

Chapter 8 investigates the scalability of the proposed models in comparison with two 

existing models. The models are applied on two different experimental datasets of the yeast 

cell cycle with a varying number of genes. The scalability of the models is compared in terms 

of computation time together with precision and recall. 

Chapter 9 summarizes the key contributions of this thesis, proposes future research 

directions for further improvement of the GRN models, and draws some concluding remarks. 

We conclude this chapter with the finding that the utilization of biological domain knowledge 

of gene regulation is at the core of successful reconstruction of GRN. 



CHAPTER 2 

EUKARYOTIC GENE TRANSCRIPTION 

In the recent years, significant advances have been made in the study of gene 

regulation, of which the control of transcription appears to be the most important component. 

Gene regulation drives the processes of cellular differentiation and morphogenesis, leading to 

the conception of different cell types in multi-cellular organisms where the different types of 

cells may possess different gene expression profiles though they all have the same genomic 

code. The control of gene regulation in the prokaryotic cells is a simple system where the 

expression of multiple genes is regulated by only one control point. In contrast, the eukaryotic 

cells have much more complex control system as every gene has usually more than one 

regulator and all of these regulators must be turned on for the gene to function. 

With the availability of complete genome sequence, much attention has been paid in 

developing ways to measure the genome-wide transcriptions. One such large-scale experiment 

is microarray which quantifies the expression levels of thousands of genes simultaneously 

under a particular condition, called gene expression analysis. These experiments generate an 

enormous amount of data and provide a rich source for the study of gene regulation. The main 

purpose of this chapter is to give an overview of the biological foundation of the thesis; in 

particular, the core principles of transcriptional control in eukaryotic cells. We also review the 

basic concepts involved in a microarray experiment and what the microarray data actually 

represents. 
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2.1 Introduction 

In all living organisms, biological components interact in a coordinated way to 

promote development and sustainability and, therefore, they play a key role in all the 

processes that happen in these organisms. The components of an organism range from the 

organelles performing processes in a cell, to cells functioning in an organ, to organs 

contributing in a subsystem, to subsystems performing processes in the whole system itself. 

The association in which these components work harmonically together is through sets of 

complex regulatory networks and pathways. 

A transcriptional regulatory network refers to the collection of genes, their regulators 

and their interactions within a cell operating at the transcription level. It dynamically 

orchestrates the level of expression for each gene in the genome by controlling whether and 

how briskly that gene will be transcribed into mRNA. This mRNA carries coded information 

for synthesizing protein, and the functions of the protein are the determinants of the ultimate 

cell types. Therefore, uncovering such a regulatory network will assist researchers to 

understand the cell’s function (the sequence of interactions in different developmental 

processes) as well as how a cell dysfunctions in the case of diseases, such as cancer.  

However, one of the most important applications of such discovery is in drug design, as the 

notion of accurate biological models from discovered regulatory networks or pathways can 

help us to predict the responses of a drug to the specific disease/infection. The derivation of 

such pathways would be also very beneficial for plants as it would open new options to 

combat plant’s diseases. 

Over the last two decades, molecular biology research has evolved through the 

development of microarray technology, such as DNA microarray, Protein microarray and 

Tissue microarray. A DNA microarray is a biological assay to monitor the expression levels 
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for thousands of genes in parallel to study the effects of certain treatments, diseases and 

developmental stages on gene expression within a living cell. The outcome of such 

experiments is massive data, which has provided a rich source allowing the scientific 

community to investigate and understand the fundamental aspects underlining the growth and 

development of life as well as exploring the genetic causes of anomalies occurring in the 

functions of living cells.  

2.2 Biological Aspect of Transcriptional Regulation 

In all living organisms, the heritable biological information, known as genetic code, is 

materialized within the cell nucleus as DNA (Deoxyribonucleic acid) base sequence. The 

information in DNA is made up of four chemical bases: adenine (A), cytosine (C), guanine 

(G) and thymine (T). A gene normally resides on a stretch of DNA that codes for a protein or 

an RNA chain that has a function in the organism. Proteins are a linear chain of monomers 

called amino acids bonded together by peptide bonds. There are 20 naturally occurring amino 

acids and the sequence of amino acids observed in a protein is defined by the sequence of 

nucleotides in a gene, which is encoded in the genetic code 

2.2.1 Gene expression 

Gene expression is the process by which biological information (genetic code) from a 

gene is used in the synthesis of a protein or a functional RNA. The flow of information is 

generally from copying of the gene into an RNA replica, known as the messenger RNA 

(mRNA) to the decoding of the mRNA into a polypeptide chain through two major 

transformation steps: transcription and translation. The biological information can be 

modified at each step, and its flow can be controlled within each transformation step. In 
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addition, there are some biological processes such as replication, RNA splicing, post-

translational modification, which process the information within these transformation steps. 

All these steps and processes together form the core of the so-called Central dogma of 

molecular biology (Watson and Crick, 1958; Crick, 1970). The process of synthesizing 

proteins from DNA within a cell can be summarized in five major stages: 

1. Replication is a process by which the nucleotides sequence in DNA is replicated in 

presence of many enzymes. 

2. The transformation step by which nucleotides sequence information is transferred 

from DNA to RNA is known as transcription.  

3. In eukaryotic cells, the messenger RNA (mRNA) is modified by a process known 

as splicing, in which introns (nonprotein-coding segments of DNA) are removed 

and exons (protein-coding segments of DNA) are joined. 

4. mRNA carries coded information to ribosomes. On receiving this information, the 

ribosomes use it for protein synthesis. This transformation step is known as 

translation. 

5. Post-translational modification is the chemical modification of a protein after 

translation. This involves actions such as changing the chemical nature or structure 

of one or more amino acids, thus allowing a range of new functions for the protein. 

In summary, the biological information stored in the DNA is processed in the cell 

machinery and the resulting products are specific types of proteins. These proteins do not 

code for the production of another protein, RNA or DNA.  They are the chief activators in a 

cell and involved in almost all biological activities, structural or enzymatic. The flow of 

biological information from DNA to protein through two major transformation processes 

(transcription, translation) is illustrated in Figure 2.1. 
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Figure 2.1: The flow of biological information from DNA to RNA to protein. Information 

from DNA to RNA is passed through transcription and from RNA to protein 

through translation. Prior to every transformation step the biological information 

is processed by different processes such as replication, splicing etc. 

2.2.2 Genomic regulation system 

All cells in an organism carry the same DNA, with the same information. The precise 

temporal and spatial expression of specific genes (segments of the DNA that code for 

proteins) governs the identity of the cells. Thus a muscle cell expresses a set of genes different 

(at least in part) from that expressed by a skin cell. These differences occur at the level of 

transcription, most commonly at the initiation of transcription. Within a cell, the transcription 

initiation is regulated through a gene regulation program which gives the cell the control of 

the timing, location, and amount of gene expression and has a profound effect on the 

 

Post-translational 

modification 

Protein 

translation 

 

replication 

DNA 

 

splicing 

RNA 

transcription 



CHAPTER 2. EUKARYOTIC GENE TRANSCRIPTION 

20 

functions of the gene in the cell. 

All living cells can be divided into two basic types: prokaryotic and eukaryotic. 

Animals, plants, fungi, protozoans, and algae are all eukaryotic, whereas only bacteria have 

prokaryotic cell types. The two cell types share some similarities and possess some 

differences in regard of cellular structure, for instance prokaryotic cells have no nuclei, while 

eukaryotic cells do have true nuclei. Likewise, many principles of transcriptional regulation in 

prokaryotic cells resemble that of eukaryotic cells. For instance, in both cell types the 

transcription is regulated by activators and repressors, which are DNA-binding proteins that 

help or hinder transcription initiation at specific genes in response to appropriate signals. 

There are however, additional regulatory machinery in eukaryotic cells and genes that 

complicate the action of these regulatory proteins. The most significant of these additional 

complexities is that there are multiple regulators and more extensive regulatory sequences 

(Watson et al. 2008) in eukaryotic cells. In prokaryotes, individual regulators bind short 

sequences to initiate transcription, but in eukaryotes, these binding sites are often more 

numerous and positioned further from the start site of transcription. In the following 

subsections, we focus on the biological aspect on the complex transcriptional regulation in 

eukaryotic cells. 

2.2.2.1 Transcription Regulation  

Transcription is the process in which one DNA strand is copied by making a 

complementary RNA strand. The transcription of eukaryotic protein-coding genes is generally 

regulated by cis-acting elements within the regulatory regions of the DNA, and trans-acting 

factors that include transcription factors (TFs) and the basal transcription complex. The basal 

transcription complex includes one or more proteins and many of these proteins come as large 
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complexes. The Cis-acting elements are DNA sequences associated with the gene being 

regulated. These sequences influence the expression of the gene through the interaction of 

trans-acting factors. Two most significant cis-acting elements are: core promoter, (binding site 

for basal TFs and Polymerase II), and enhancer (binding site for TFs). In eukaryotic cells, one 

gene may have one or more enhancers and one enhancer can act on multiple genes. The 

transcription regulatory elements of a gene and their corresponding binding sites are 

illustrated in Figure 2.2.  

 

Figure 2.2: Regulatory elements on a protein-encoding DNA module. Polymerase II binds to 

the core promoter through the basal TF complex (one or more protein complexes) 

to start transcription at a very low level and determine the transcription start site. 

The TFs bind to the enhancers to increase expression. 

In the synthesis of RNA, transcription initiation is the most pervasively regulated step 
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and mostly regulated on a gene-by-gene basis. In eukaryotic cells, the basal TFs (one or more 

protein complexes) bind to the core promoter of the gene and the enzyme complex, 

Polymerase II binds to the basal TFs to initiate low level of transcription and determine the 

transcription start site. The enhancers bind TFs (one or more protein complexes) responsible 

for activating the gene at a given time and place. Alternative enhancers bind different groups 

of regulators and control expression of the same gene at different times and places in response 

to different signals.  

2.2.2.2 Gene Regulatory Network 

A gene regulatory network (GRN) is a collection of genes in a cell which interact with 

each other indirectly through their expression products, generally RNAs and proteins. At the 

transcription level, the GRN governs the rates at which genes in the network are transcribed 

into mRNA.  According to the central dogma of molecular biology, these mRNAs are 

translated into proteins. Some of these proteins are structural proteins, some are enzymes and 

others are regulators of other genes.  The structural proteins are responsible for determining 

the structure of the cell; the enzymes catalyse chemical and biological reactions that occur 

within the cell; the regulatory proteins are called TF and play vital role in the regulatory 

networks.  These TFs bind to the regulatory sequences of the target gene to initiate 

transcription and control the rate of transcription. Some of the TFs act as activators, others are 

inhibitors. Through the interaction to the regulatory sequences, the activators turn the gene on 

and the inhibitors switch it off. The regulatory interactions between genes and their gene 

products form a complex network, which includes both positive and negative feedback loops. 

A simple GRN is represented in Figure 2.3, though the control of gene expression is much 

more complex than it suggests. A typical GRN involves many types of proteins/protein 
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complexes thus allowing additional levels of control especially in multi-cellular organisms. 

The sample GRN in Figure 2.3 has three genes and all of them encodes for regulatory proteins 

(TFs). In the network, Gene1 encodes a regulatory protein which influences the regulation of 

Gene3.  Gene3 synthesizes a regulatory protein that activates the expression of Gene2 and 

finally, the product of Gene2 regulates the expression of Gene1. 

 

 

 

 

In this thesis, our main aim is to study gene regulation at the transcription level and we 

refer to the regulatory network as either “gene regulatory network”, “transcriptional circuitry” 

or “gene regulation program”. 

DNA 

Gene 1 
Gene 3 

Gene 2 

regulatory sequences 

transcription factors 

gene 

Figure 2.3: llustration of a simple GRN. The network encodes the regulatory sequence, 

Gene1→Gene3→Gene2→Gene1. All these interactions together with the 

genes and their products form GRN. Various textrues have been used to fill 

the shapes of the figure for distinguishing different genes and their respective 

products (TFs). 
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2.3 Quantification of Gene Expression 

Measuring gene expression is an important part in the life sciences. The ability to 

quantify the level at which a particular gene is expressed within a cell can provide an 

enormous amount of information, particularly in the study of GRN. There is a wide range of 

experimental techniques available for genome-wide mRNA quantification. These include 

Serial Analysis of Gene Expression (SAGE), Rapid Analysis of Gene Expression (RAGE), 

RT-PCR (real-time polymerase chain reaction), Northern/Southern Blotting, and Microarrays 

or Gene Chips. A detailed literature of some of these techniques can be found in (Roth 2002).  

Among these, some techniques quantify the level of expression of one gene at a time such as 

Northern blots. Others, such as microarrays measure the expression of many genes in a single 

experiment quickly and efficiently, and hence have become popular among the scientific 

community. A brief introduction to microarray technology is presented in the next section. 

2.3.1 cDNA Microarrays 

In post-genomic age, there has been a huge escalation in the availability of molecular 

biological data. Now-a-days, high-throughput technologies such as microarrays are capable of 

simultaneously monitoring the activity levels of genes/proteins within a cell in a single 

experiment. The two well-known microarrays are cDNA microarrays and oligonucleotide 

microarrays. These two technologies differ in the way in which DNA sequences are laid on 

the array and in the length of these sequences. In this thesis, we focus on the data generated 

from cDNA microarray experiments. Figure 2.4 summarizes the principles and steps that are 

involved in a simple microarray experiment. 

A microarray is a glass microscope slide on which large numbers of DNA molecules 

are spotted in a grid like pattern using a robot. Each spot on the microarray contains many  
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amplified copies of a single gene. For the experiments to be carried out, two populations of 

cells are grown under certain conditions or at different time points. One of these is a control 

cell which is used as a reference (control) for the other cell under study (experiment). Next, 

mRNA are harvested from each population of cells and separately converted into 

control cell experimental cell 

RNA 

isolator 

RNA 

isolator 

Fluorescent 

labelling 

(cy3) 

Fluorescent 

labelling 

(cy5) 

mRNA mRNA 

combine equal amount 

Hybridize to microarray 

Figure 2.4: Principles and steps of a simple microarray experiment. 
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complementary DNAs (cDNA). The nucleotides used to make the cDNA include either a 

green dye called Cy3 or a red dye known as Cy5. Red color represents experimental cDNAs 

and green color represents control cDNAs. Both green and red cDNAs are then mixed 

together and washed over the microarray. After hybridization, a laser scanner measures the 

intensity of the two colors at each spot on the microarray which specifies the transcription 

level of that gene under a particular condition. 

Yellow spots on the glass slide indicate genes which are expressed in both 

populations. A black spot indicates no change in that gene’s transcription between the control 

and experimental growth.  Then again, the brightness of the red spot indicates how much a 

gene is induced in the experimental condition. Likewise, the brightness of the green spot 

shows the amount of repression of a gene in the experimental condition. Finally, the 

numerical ratios of red to green signals are calculated from the color spots on the array which 

represent the gene expression profile of the cell under study. 

2.4 Our Model organism and the cellular process 

In this thesis, we model the GRN in the yeast cell cycle, as the core machinery of the 

cell division process is largely conserved throughout eukaryotes, from yeast to humans. 

Beside this, there are other factors which have influenced our preference to yeast and the cell 

cycle. These are: 

1. The high degree of conservation of cell cycle regulation over eukaryotics (ota et al. 2004); 

it is believed that a complete picture of the gene regulation in yeast cell cycle can provide 

useful insight in understanding the function of certain cell cycle regulated human genes. 

2. Most cellular genes are constitutive genes; that is, they are transcribed at a constant level 

at all times. These genes are responsible for maintaining the basic function and structure 
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of the cell. Some genes are expressed in a periodic fashion and control the proper 

progression of different cellular processes such as the cell cycle. Understanding the 

mechanism that underlies such periodicity is important for deciphering the control of the 

cellular process. For cell cycle, such knowledge is even more important as it provides 

insight into how the control dysfunctions during the production of new tumors especially 

in the case of cancer. 

3. Because of the expansion of regulatory sequences; that is, the increase in the number of 

binding sites for regulators of a gene, it requires more extensive signal integration in 

eukaryotes. The unicellular yeast has less extensive regulatory sequences and hence less 

signal integration than other multi-cellular eukaryotes.  

4. The shorter cell cycle of yeast compared to other eukaryotes has made it easier to observe 

cell processes.  

2.4.1 Cell Division in Yeast Cell Cycle 

The cell division cycle is an ordered set of events whereby a cell grows and divides into two 

daughter cells so that each contains the information and machinery necessary to repeat the 

process. The whole cycle can be divided into four distinct phases as shown in Figure 2.5. 

These are G1 phase, S-phase, G2 phase and M-phase. The most important aspect of cell 

division is to replicate the genetic material (DNA sequence) accurately and then separate the 

two copies into two daughter cells. The process of DNA replication and Chromatid separation 

occurs in S–phase and M-phase respectively. In general, S and M phases are separated by two 

gaps, known as G1 phase and G2 phase. During phase G1, the cell ensures that everything is 

set for DNA replication.  At G2 phase, the cell determines if the cell is prepared to proceed to 

chromatid separation. 



CHAPTER 2. EUKARYOTIC GENE TRANSCRIPTION 

28 

 

2.5 Experimental Micorarray Data 

In this section, we present real data from microarray experiments, in which the levels 

of gene expression have been measured as the yeast cell goes through the different stages of 

the cell cycle. At present, an enormous amount of experimental data is freely available for 

studying the underlying biological processes that generate these data. In this thesis, we have 

chosen to work with few widely accepted datasets, of which the dataset generated by Pramila 

et al. (2006) is complete; that is there are no missing values in the dataset. Therefore, we 

nominate this dataset for our primary investigation. The dataset is a time-series which 

represents the dynamics of gene expression over two cell cycles. The levels of gene 

expression have been monitored at a regular interval (5mins) resulting 22 time points in the 

dataset. For an ample presentation of the numbers (levels of gene expression) in microarray 

data, we plot them against time as in Figure 2.6. The figure shows the levels of expression of 

the 13 well known TFs that have been proven as cell-cycle regulated. These include G1-phase 

specific TFs (MBP1, SWI4, and SWI6), S-phase specific TFs (HCM1, WHI5, and YOX1) 

and G2/M phase TFs (FKH1, FKH2, NDD1, YHP1, MCM1, SWI5 and ACE2).  Some of 

these TFs act as an activator (increases the level of gene expression) and others are repressors 

Figure 2.5: Distinct Phases of Cell Division Cycle. 
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Figure 2.6: Dynamics of gene expression of the 13 known cell-cycle regulated TFs over the 

two cell cycles 
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(decrease the level of gene expression). The transcriptional regulation among these TFs has 

been widely studied and an incomplete framework has been published in the study of Pramila 

et al. (2006) as shown in Figure 2.7. 

 

Figure 2.7: GRN among the 13 known TFs. [taken from the study of Pramila et al. (2006)]. 

A simple exploration of this known network accomplishes a series of regulatory 

actions among the TFs. For instance, at the start of a cell cycle the G1-phase specific TF, 

SWI4 is activated by MCM1, which is a G2/M phase specific TF of previous cell cycle. As 

the cell progresses through the next phase, SWI4 activates HCM1 which is responsible for 

regulating chromosome segregation genes and other regulators such as WHI5 during S-phase.  

Consequently, the S-phase TF WHI5 represses the expression of SWI4 as the cell progresses 

through to G2/M phase. A simple regulatory sequence among these three genes within one 

cell cycle has been extracted from the known network and illustrated in Figure 2.8. To explore 

how successfully the available experimental microarray data reflects the known regulation 

program, we investigate this simple network. Our experimental data contains 22 time points 
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over two cell cycles. However, determining the span of a single cell cycle from these time 

points requires detailed information about the microarray experiments that have been carried 

out to generate the data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the purpose of our primary investigation, we have plotted (Figure 2.9) the 

expression profiles of the three TFs (SWI4, HCM1, and WHI5) over time. The plot shows 

that all three genes dynamically change their levels of expression as they progress through the 

different phases of the cycle. At the beginning of each cycle, SWI4 gets activated and 

gradually reaches its peak at some point of the cell cycle. Being maximally expressed, it starts 

to decline and get repressed at the later phases of the cell cycle. We assume that a gene is 

activator 

repressor 

SWI4 WHI5 HCM1 

regulatory sequences 

transcription factors 

gene 

G1-Phase 

DNA

A 

S-Phase 

Figure 2.8: A simple transcriptional regulation network among three transcription factors 

during the first two phases of the cell cycle. The TFs are SWI4, HCM1, and 

WHI5. 
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maximally expressed when its expression level reaches its highest value. A similar pattern of 

expression can be observed during the second cell cycle for SWI4 as shown in Figure 2.9. 

 

Figure 2.9: Fluctuation in the level of gene expression of the three TFs (SWI4, HCM1, and 

WHI5) as measured by microarray experiments. There are 22 time points in the 

data which covers two consecutive cell cycles. 

In a typical GRN, a regulatory gene needs to be maximally expressed prior to 

influencing the expression of other genes. This hypothesis drives an order of expression from 

the known network as in Figure 2.7, which is SWI4->HCM1->WHI5. To investigate how this 

order of expression is revealed in the experimental data, we focus on the segment of the 

expression profiles when these genes are functionally active. The known network suggests 

that SWI4 is active during G1 phase which spans over the first 3 time points in the 

experimental data. The other two regulatory genes, HCM1 and WHI5 are active during the S 

phase which corresponds to the next 4 time points of the dataset. This mapping of time points 

to the phases of cell cycle has been extracted from the study of Pramila et al. (2006).  Figure 

2.10 magnifies the fragment of the plot (Figure 2.9) which shows the dynamics of expression 
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over the G1 and S phases of the first cell cycle. Roughly, this includes the first 8 time points 

of the dataset. 

 

Figure 2.10: Order of expression among the three TFs (SWI4, HCM1, and WHI5) within a 

cell cycle. We assume, a gene is maximally expressed when the expression level 

reaches its highest value. 

As shown in Figure 2.10, SWI4 gets activated by some regulators as the cell enters 

into the cell division process. It keeps activated throughout the G1 phase and starts to repress 

gradually as cell progresses through the S-phase. The S-phase specific TF, HCM1 starts to 

transcribe in the middle of G1 phase and increased its expression level during later of the 

phase. However, HCM1 is maximally expressed at the start of S-phase; WHI5 gets maximally 

activated in the middle of S-phase and declines later of the phase. The sequence and the time 

lag between the peaks (maximum expression) of these TFs conform to the regulatory 

association depicted in Figure 2.8. This conformation also encourages us to explore 

experimental microarray data for the study of gene regulation at the transcription level.  

Despite competence, there are some pitfalls in analyzing microarray data which may 

not give a researcher a true picture of gene regulation. For instance, the S-phase specific 
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regulator WHI5 starts to transcribe at the beginning of G1 phase and becomes functionally 

active during S-phase, then declines expression later in the phase. Our experimental data also 

reveals this expression pattern over the two cell cycles as shown in Figure 2.9. However, in 

the second cycle, the figure shows a sharp increase in the expression level of WHI5 where it 

is expected to decrease gradually. This unpredicted behavior of a gene is considered as noise 

which is one of the major shortcomings associated with experimental microarray data. A 

variety of factors may contribute in making the data imperfect, such as poor sensitivity of 

microarrays, background noise, imprecision in designing the array etc. Nevertheless, the 

experimental microarray data holds great promise for understanding genes and their impact on 

disease, drug discovery and development. 

2.6 Conclusion 

Although control of gene regulation is a complex process, understanding when genes 

are expressed and at what levels has become an essential part of almost any biological inquiry 

at the cellular level. Many technologies have been in existence for measuring the levels of 

gene expression for decades. Microarrays have become popular in recent years because of 

their high-throughput quantification of gene expression. In this thesis, we analyze microarray 

gene expression data of the yeast cell cycle to uncover the underlying regulatory network that 

specifies when and how a gene is expressed during several different phases of the cell division 

process. 



 

 

CHAPTER 3 

CURRENT APPROACHES TO MODELING GENE 

REGULATORY NETWORKS 

The recent advances in high-throughput microarray have led to an unprecedented 

growth in available gene expression data.  This deluge of data demands for methods that can 

facilitate the understanding of organisms at the cellular level. In the literature, many different 

methods have been proposed and studied with a goal of describing the Gene Regulatory 

Network (GRN) in a precise and unambiguous manner. These methods include logical models 

such as Boolean networks, mathematical models such as differential equations, probabilistic 

models such as Dynamic Bayesian Network (DBN), and machine learning models such as 

recurrent neural networks and models that exploit the various sources of biological 

information in association with the gene expression data. Some of these models are applicable 

to only discrete data whereas others can model continuous gene expression data. However, all 

these models have their own advantages and limitations in describing the gene regulation 

program. The most common limitations are: (1) high dimensionality, (2) excessive 

computational complexity, (3) handling noise, and (4) small number of samples in the data 

set. Although DBN suffers from some of these limitations, their probabilistic nature allows 

them to capture the stochastic aspect of gene expression and the noisy measurements. Given 

microarray data are inherently noisy and have missing values in it, we choose DBN as our 

preferred GRN model in this thesis.   
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3.1 Introduction 

Although many approaches have been proposed for the analysis of microarray gene 

expression data, the field is still evolving and there is a need for methods that can handle this 

data in a global fashion. The analysis of gene expression microarray data can be classified 

into three levels of increased complexity (Baldi et al. 2002). The levels are as follows: 

1. The first level involves the analysis of a single gene. At this level, the 

expression profile of each gene is observed in isolation to investigate whether 

it behaves differently in a control versus experimental situation. The outcome 

of such investigation can be used to identify gene targets for drug design.  

2. At the second level, the extent of complexity increases as multiple genes are 

included in the analysis. The most popular technique at this level is clustering. 

Genes are clustered in terms of common functionalities, expression patterns, 

interactions, co-regulations etc. to predict the behaviors of unknown genes.  

For instance, a cluster of co-regulated genes can provide useful insight of the 

regulatory mechanism of many genes for which no regulatory information is 

available at present. 

3. The third level entails the most complex analysis of array data. It attempts to 

understand and reverse engineer the biological networks that are ultimately 

responsible for generating the dynamic patterns observed in the data. 

In this thesis, we focus on the third level of data analysis that infers the interactions 

among the biochemical molecules in a naturally occurring large-scale biological network. 

Several different kinds of biological networks can be identified at the molecular level, such as 

gene regulatory networks (GRN), metabolic networks, signal transduction networks and 

protein-protein interaction (PPI) networks. Here, we focus exclusively on GRN which 
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regulates the amount of gene regulation at the transcription level. The transcriptional 

regulation network principally relies on the interactions of the transcription factors (TF) with 

the DNA target; nevertheless it also includes interactions among TFs and RNA polymerase 

complex. This implies that the transcriptional regulation itself may include PPI network in 

addition to the protein-DNA ones (Kepes 2007). Due to these additional complexities, it is 

uncertain from a biological point of view that the genome-wide mRNA concentrations, 

measured by the microarrays are capable of estimating the transcriptional regulation. And so, 

to make the data analysis task simple, we restrict our focus on estimating GRN that contains 

interactions between TFs and genes only. 

3.2. Challenges of Analyzing Microarray Data 

“The term “data deluge” is often used in association with microarray data“(Gershon 

2002). A typical microarray experiment generates thousands of data items and this number 

increases extensively in cases of temporal experiments. Therefore, there is no doubt that 

analysing such massive data involves definite challenges. In this section, we highlight the 

major challenges associated with microarray data that hinders the application of 

computational models, in particular, in estimating GRN.  

1. Small sample size: the ratio of the number of samples to the number of genes in the array 

data is very low. The technological and other practical limitations restrict the number of 

samples that can be measured. This problem leads to a severe challenge on the application 

of the computational methods in estimating GRN from such data. The consequences of the 

small ratio of genes to samples and its impact have been discussed in a number of studies 

(Jain et al. 1997, Dougherty 2001 and Hwang et al. 2002). In the machine learning 

society, this problem is mostly known as learning in almost empty spaces (Duin et al. 
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2000). In estimating GRN, this problem makes it quite difficult to distinguish noise from 

structure, unless aprior knowledge is known about the underlying interaction network 

generating the data. 

2. Inherent noise: It is widely established fact that microarray data comes with enormous 

experimental noise (Aris et al. 2004). The changes in the measured transcript values 

between different experiments are caused by both biological variations such as a cell 

progressing through the phases of cell cycle and experimental noise. A range of factors 

can contribute to the generation of this experimental noise. As we briefly listed in the 

previous chapter, this may include imprecision in designing the array, sample preparation, 

the hybridization process, the normalization method, incorrect scanning of the array spots, 

improper filtering of data etc. In general, the noise can be injected at each single step of 

the whole microarray experiments. A plethora of studies (Tu et al. 2002, Aris et al. 2004, 

klebanov et al. 2007, Posekany et al. 2011) have been reported in the literature to analyze 

and decipher noise from the microarray data. This deciphering is a vital step in the GRN 

inference process as the presence of noise provides misinformation to the computational 

model.  

3. Missing Values: The inherent noise and inadequacy in the experimental system are the 

two principle factors causing missing values in microarray data. A study by de Brevern et 

al. (2004) estimated that on average a microarray dataset has more than 5% missing 

values, which affects more than 60% of the genes. Most of the available computational 

methods are either applicable to only complete datasets or are subject to significant 

performance degradation when applied on the incomplete data. This supposition has led 

researchers to employ methods for estimating missing values which has become a crucial 

pre-processing step for microarray data analysis. 
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3.3. Current Approaches for Modeling GRN from Gene Expression Data 

In the literature, hundreds of approaches have been proposed for the estimation of 

gene regulatory network from post-genomic data. The core principles of these approaches 

come from the different areas of science and engineering including mathematics, physics, 

biology, statistics and computing. The number of publications proposing new approaches for 

inferring GRN is increasing exponentially every year. Therefore, it is beyond the scope of this 

thesis to discuss them all. Several good reviews of current approaches for the modeling of 

GRN can be found in (D'haeseleer et al. 2000, de Jong 2002, Schlitt et al. 2007, Cho et al. 

2007, Lee and Yang 2008, Sima et al. 2009, and Hecker et al. 2009). 

D'haeseleer et al. (2000) provided an abstract of the complex gene regulation program 

and discussed the spectrum of models that can be used in reverse engineering such a network. 

The spectrum varies from discrete Boolean networks to continuous linear and non-linear 

networks in capturing various levels of details of the regulation program.  In another review, 

de Jong (2002) gave mathematical formulation of gene regulation program and discussed the 

incorporation of this formula in a wide range of available GRN models. These include 

directed graphs, Bayesian networks, Boolean networks, ordinary and partial differential 

equations etc. Schlitt et al. (2007) classified the GRN models according to the increasing level 

of details they can capture. In a comprehensive survey, Cho et al. (2007) reviewed different 

GRN models that utilize the additional sources of biological information such as ChIP-ChIP 

data, protein-protein interaction data in conjunction with the microarray gene expression data.  

They also surveyed a range of machine learning methods (genetic algorithm, genetic 

programming, neural networks and fuzzy logic) in reverse engineering transcriptional 

regulation. Of particular interest on the time-series data, Sima et al. (2009) surveyed the GRN 

models that are capable of capturing a deeper insight of the regulation program than non-
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temporal data do. In particular, approaches are discussed that enable the modeling of the 

dynamics of gene regulatory systems. In the review of Hecker et al. (2009), the authors focus 

on the models that incorporate other sources of biological information in reconstructing the 

GRN from the experimental data. 

This thesis aims to study the GRN models that can infer the topology as well as the 

dynamics of gene regulation through the analysis of time series gene expression data.  In 

particular, we investigate the potency of incorporating biological domain knowledge in the 

models to overcome the limitations associated with the data and the computational methods. 

Therefore, this section briefly introduces the GRN models that have been widely used in the 

literature on the analysis of temporal data and are capable of incorporating prior biological 

information. To further restrict the literature survey, we include only those models that are 

most relevant to our study. Then again, we categorize the models into two major types: (1) 

those that use discrete variables and (2) the others that use continuous variables in the 

inference process. 

3.3.1 Models for discrete variables 

The GRN models for discrete variables assume that genes only exist in a finite set of 

discrete states. This discretization of data makes the GRN model computationally feasible 

which consequently allows them to model large scale networks. Nevertheless, these models 

have the disadvantage that they lose information which hinders the accurate inference of the 

models. Therefore, discrete models are not able to capture certain system behavior that can be 

captured by continuous models (Hernminger et al. 2007). In the following subsections, we 

discuss some of the discrete models that have been widely used for GRN modeling. 
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3.3.1.1 Boolean Networks 

Boolean network has been considered as one the pioneer model (Akutsu et al.1999, 

Ideker et al. 2000) in estimating GRN. This model uses the approximation that gene 

expression is quantized to only two states: ON and OFF. The expression state (on/off) of each 

gene is functionally coupled to the expression states of some other genes in the network. This 

implies, whether a gene will be ON or OFF, is governed by a Boolean logical function, such 

as AND, OR, NOR, XOR etc.  

A Boolean network can be represented with a graph G (V, F), where V denotes a set 

of N nodes (x1,......xN) that take on binary values and F is a set of Boolean functions, F = 

(f1,f2,….,fN) which describe the interaction of those nodes. Each Boolean function fi( 

xi1,.....,xik) has k input nodes and is assigned to node xi. Figure 3.1 shows a simple GRN and 

its equivalent logic circuit diagram is represented in Figure 3.2 

 

 
 

 

. In the regulatory network, there are 6 TFs which have either positive or negative 

influences on the expression of other TFs. Genes g1 and g2 work together to increase the 

expression of g3. Being functionally active, g3 turns on g6 in association with g5. As shown 

g1 

g2 

g3 

g6 

g4 

g5 

Figure 3.1: A simple GRN. The rectangles represent genes, arrowed lines represent 

activation and the lines end with a bar represents inhibition. 
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in Figure 3.1, gene g6 is regulated by two switches: the positive switch is the g3-g5 complex 

which turns it ON and the negative switch (g4) inhibits it. In the circuit diagram, the 

regulation of gene g6 is determined by the states of g3, g4 and g5 which is represented with 

an AND operation. The NOT gate shows the negative influence of gene g4 on the regulation 

of gene g6. 

 

 

 

In Boolean network models, the nodes are initialized to some states through prior 

knowledge or estimation. Then, the nodes update their states dynamically throughout the 

network according to the Boolean rules assigned in the model and based on the current states 

of the system. This updating process continues until the system enters into a steady state or 

some irreducible set of states. There are two classes of approaches which are widely used in 

the literature to construct Boolean networks from experimental time course data. The first 

approach is based on correlation measurement, which estimates the relationship between 

genes using different methods such as mutual information. The degree of correlation is used 

to construct the topological connections between genes (Chen et al. 2008, Laubenbacher and 

Stigler 2004, Liang et al. 1998, Mehra et al. 2004). The second approach utilizes machine 

learning methods, of which the most novel is evolutionary modeling with Genetic Algorithm 

(GA) (Michalewicz 1994). Networks comprising of the Boolean functions assigned to each 

g1 

g2 

g4 

g5 

Figure 3.2: The logic circuit diagram representing the GRN. The gates having multiple gene 

inputs are AND gates. The NOT gate takes a single gene as input. The diagram 

is inspired by Shmulevich et al. (2002). 
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node and the relationships among them are encoded in a string representation and the adaptive 

operations of GA are applied to generate new networks. The network that maximizes the 

fitness function represents the GRN estimated from the given data. 

There are many advantages of modeling GRN with Boolean networks. Most 

importantly, they are computationally feasible and simple to expand to large scale. Another 

advantage is that, they are capable of modeling temporal behavior of a system through 

updating the states of nodes with time.  However, the dynamics of Boolean networks are 

inherently deterministic because of the predefined static Boolean functions. The randomness 

of the network only depends on the initial node states. This feature restricts Boolean networks 

to capture some behaviors and uncertainty, which are common to gene regulation 

3.3.1.2 Probabilistic Boolean Networks (PBN) 

A PBN is an extension of the basic Boolean network which was proposed in 

(Shmulevich et al. 2002, Li et al. 2007). A new level of randomness has been introduced in 

this new model by providing each node with multiple logical functions, each with a 

predefined probability. Similar to the basic Boolean network, the initial states of the network 

nodes are determined randomly. Then at each time step, the function at each node is selected 

arbitrarily from this pool of functions according to their given probability. Thus no single 

predefined circuitry diagram regulates the dynamics of the network and any given set of 

initial nodes can result in multiple subsequent network states.  

For a PBN, G (V, F), V is a set of n nodes (x1,......,xN) and F is a vector of sets 

(F1,….,FN), where each constituent Fi is a set of Boolean functions corresponds to the node xi 

and can be written as in equation 3.1. Each member function fj
(i ) 

is  known as a predictor as it 

may predict the state of gene xi at the next time step and l(j) is the number of predictors in Fi. 
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The most important step of constructing a PBN from experimental data is to determine 

the set of predictors for a given gene. Shmulevich et al. (2002) suggested the employment of 

Coefficient of Determination (COD) for choosing the predictor sets. They considered the 

COD as the measurement of the degree to which the transcriptional levels of an observed gene 

set can be used to improve the prediction of the expression levels of a target gene relative to 

the best possible prediction in the absence of the observed set. A detailed description of the 

inference algorithm can be found in Shmulevich et al. (2002). On estimating the predictor sets 

for each node, a simple scaling function can be employed to compute the probability of a 

given predictor to be chosen for a given node (Styczynski and Stephanopoulos 2005). The 

other parameter l(j) is chosen by the user and determines the amount of uncertainty the model 

can capture. 

Similar to the Boolean network, PBN is a potential model for estimating GRN from 

experimental data as it is able to easily incorporate biological knowledge. In addition, PBN 

allows multiple simple predictor functions instead of one complex function which 

consequently facilitates the process of fitting the model to the observed data. However the 

main disadvantage of PBN is the increased computational complexity. The computation of 

predictor sets for each gene from the observed data requires excessive time which makes the 

model unfeasible for the inference of a large scale network. 

3.3.1.3 Bayesian Networks (BN) 

A Bayesian network model is a graphical representation of a joint probability 

distribution over a set of random variables, X = {X1,X2,……, XN}. In the model, random 

variables include observed attributes, such as the expression levels of genes and hidden 
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variables that are estimated by the model. The graphical representation is given by a Directed 

Acyclic Graph consisting of nodes and directed edges. The nodes represent random variables 

in X and the directed edges represent dependencies between the variables. The joint 

probability distribution (θ) over X is represented as a product of conditional probabilities. 

Each variable Xi in the network is associated with a conditional probability P(Xi|pa(Xi)), 

where pa(Xi) is the subset of X and is called the parent of Xi. The values of the parent set 

directly influence the choice of value for Xi. Under the conditional independence assumption, 

that is, each node Xi is independent of its non-descendants given its parents pa(Xi), the joint 

probability distribution of the network can be written as: 

                                ( )   ∏  (  |  (  ))
 

   
                                                                         (   )   

               Figure 3.3 shows the Bayesian network representation of the GRN in Figure 3.1. In 

the network, the nodes correspond to the genes and the directed edges represent the direct 

causal relationships between the genes. For instance, in the example network, the edge (g2,g3) 

implies that g2 has a direct influence on the regulation of g3. The second parameter θ has 

been described in the model as a table which shows the probabilistic dependency as a form of 

conditional probability P(g3|g1,g2) associated with node g3. In the example network, we 

assume that the expression levels of genes are discretized to two states: 0 and 1.  

The general goal of inferring a GRN from the experimental data is to learn a model 

that is as close to the underlying distribution as possible.  This involves two major tasks: 

parameter estimation and model selection. The first task learns the parameters of the 

conditional probabilities for a given model structure and it is often considered as a maximum 

likelihood problem (Friedman 2004). The second task selects among different model 

structures to find the one that best reflects the dependencies in the data. For each possible 

model structure, a Bayesian scoring metric is employed which scores the model given the set 
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of data. Therefore, the model selection task is often referred to as an optimization problem.  

 

 

 

Similar to Boolean networks and Probabilistic Boolean Networks, Bayesian learning 

also allows incorporating prior biological knowledge in the model as prior probabilities. 

Despite the rich statistics and probabilistic semantics in Bayesian models, they are 

computationally expensive and barely expandable to large scale networks. The most 

important disadvantage of Bayesian modeling is their acyclicity constraint; that is, no cycles 

are allowed in the networks. This constraint limits BN to model a GRN, because in nature 

there are feedback loops in biological networks.  The other disadvantage is that the static 

nature of Bayesian models restricts it in capturing the dynamics of the biological networks as 

well as models the temporal data.  

3.3.1.4 Dynamic Bayesian Networks  

A Dynamic Bayesian Network (DBN) extends the notion of a Bayesian Network (BN) 

to model a system that is dynamically changing or evolving. This model allows the user to 

monitor and update the system over time and further predicts the system behavior. Thus the 
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Figure 3.3: A Bayesian network representation of the GRN including 6 genes. Nodes are 

labeled with gene names (g1 to g6); edges correspond to direct dependencies. The 

table shows the conditional probability distribution that specifies P(g3|g1,g2). 
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structure of DBN describes the qualitative nature of dependencies between the random 

variables over time. The inclusion of this time dimension in the classical BN enables DBN to 

model a system with cyclic edges. Figure 3.4 illustrates the process how of DBN can address 

the acyclic constraint of Bayesian networks.  Consider the gene network in Figure 3.4(a) 

where two genes interact with each other and have feedback loops. Clearly, the network 

cannot be represented with a classical Bayesian network; nevertheless time-point 

representation of the BN model can include the feedback loops as shown in Figure 3.4(b). In 

this representation, there are no links between random variables within a time slice. 

Therefore, all interactions are among the genes at consecutive time slices and the identical 

network structures are duplicated over each time slice.   

 

 

 

 

Assume X= {X1,..XN} is a set of random variables that the process changes over T 

time points. In the DBN representation of this temporal process, Xi[t] denotes the random 

variable Xi at time t, where t ∈ {1,…,T}. Therefore, there are T×N interacting nodes in the 

model. To simplify the situation, we have assumed that the process is a first-order Markov 
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Figure 3.4: A Dynamic Bayesian Network representation of the GRN (a) A regulation 

network of two interacting genes, g1 and g2 having feedback loops. (b) a time-

point representation of the network where the identical network structure of the 

genes are duplicated over each time slice (t0, t1, …tn). 
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process. Under such an assumption the joint probability distribution in equation 3.3 can be 

rewritten as: 

  ( [ ]      [ ])  ∏[ (  [ ])∏ (  [ ]|  (  [ ]))

 

   

]

 

   

                                         (   )        

where the first-order Markov assumption means that the variables in the set pa(Xi[t]) are a 

subset of X[t-1]. 

The inference of DBN from experimental data can be performed using the same 

methods of Bayesian network learning. The additional complexity is to consider the random 

variables of time t-1 which makes DBN computationally infeasible. As a result, DBN models 

are mostly applicable to small systems compared to Bayesian network models. To ensure that 

the model can be inferred from data, it requires restricting the number of parameters needs to 

be estimated. One widely used assumption for a such restriction is to consider the dynamic 

process as a homogeneous Markov chain, where the transition probabilities between adjacent 

time slices are time-invariant and edges are not allowed within a time slice. However, in 

practice, especially in the case of GRN, this assumption of DBNs may not hold because some 

genes would interact almost instantaneously while interactions amongst some other genes 

could be time delayed. 

3.3.2 Models for continuous variables 

The Bayesian models that we discussed in section 3.3.1.3 and 3.3.1.4 can easily be 

generalized to the case of continuous variables by adapting a continuous distribution such as 

the Gaussian distribution. The only pitfall of such an adaptation is the significant increase in 

computational complexity. Since the structure learning of Bayesian model from discrete data 
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is already NP-hard (Styczynski and Stephanopoulos 2005), the additional complexity will 

limit the use of continuous variables in both forms of Bayesian modeling. In the following 

subsections, we discuss the most popular GRN models for the analysis of continuous 

expression data.  

3.3.2.1 Ordinary differential equations (ODEs) 

Ordinary Differential Equations (ODEs) is one of the most popular mathematical 

formalisms to model dynamical systems in science and engineering. They have been also 

widely studied in the reconstruction of GRN (Chen and Church 1999, Gardner et al. 2003). 

The ODE formalism describes the gene products, e.g., mRNAs, proteins as time-dependent 

variables with values contained in the set of non-negative real numbers. The functional and 

differential relations between the variables represent the regulatory interactions. 

More specifically, the ODE model formulates the regulation of a gene as a function of 

other genes; that is, the change in the expression level of a gene at any time t is characterized 

by a function of the concentration of other genes at the same time. The formalisms have the 

mathematical form as in equation 3.4. 

                  
   ( )

  
   (  ( )      ( ))                                                                                   (   ) 

where xi(t) is the concentration of mRNA for gene i measured at time t, dxi(t)/dt is the rate of 

change for the mRNA concentration of gene i, and n is the number of genes. Each function Fi 

represents all of the various factors that affect the expression level of a gene such as 

transcription rate, degradation, post-transcriptional modifications and translation rate. As a 

result, the model is sufficiently flexible to capture any of these detailed interactions for an 

accurate representation of the gene regulation. However, this flexibility introduces additional 

parameters to the model which are to be estimated from the small available data. Moreover, 
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the functional form of Fi is unknown which can be linear, piece-wise linear, pseudo linear, or 

continuously nonlinear (Lee and Tzou 2009).  Though linear models have fewer parameters to 

estimate, they are unable to capture the nonlinear relationships precisely that may be present 

in the biological networks. 

3.3.2.2 S-System model 

The most popular and widely used ODE model is the S-system model that is 

characterized by power law functions (Savageau 1991). It has a rich structure capable of 

capturing the different level of dynamics present in the biological network. More specifically, 

the S-System model has been applied successfully in GRN modeling (Di Bernardo et al. 2004, 

Kimura et al. 2005, Kikuchi et al. 2003, Cinquemani et al. 2008, Savageau 1998). The model 

describes a set of differential equations in the following form: 

                           
   
  

     ∏ 
 

       

 

   

∏ 
 

                                                                           (   )

 

   

 

where Xi represents the expression level of gene i and N is the number of genes in a gene 

regulatory network. αi and βi are rate constants of activation and degradation of gene i. A 

positive value of gij indicates that gene j activates gene i. A negative value indicates that gene 

j inhibits the activation of gene i. Likewise, a positive value of hij indicates that gene j 

increases degradation of gene i, and a negative value represents that gene j inhibits the 

degradation of gene i. And the zero values of gij and hij mean gene j and gene i have no 

regulatory relations. The total number of these parameters is 2N(N + 1). Since the number of 

S-System parameters is proportional to the square of the number of genes, a large number of 

parameters need to be simultaneously estimated while inferring GRN from expression data. 

This requirement leads to the excessive computational complexities and restricts the 
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application of the S-System model on small scale networks only. In the literature, the 

parameter estimation task has been considered as a large-scale parameter optimization 

problem. Many methods including linear algebra methods (Hernminger et al. 2007), steady-

state analysis (Curto et al. 1997), and evolutionary algorithms (Ho et al. 2007, Noman and Iba 

2007) have been employed to solve the optimization problem. Of the different methods 

reported in the literature, evolutionary algorithms (EAs) have become popular for estimating 

the model parameters, as they demonstrate better performance in searching a large solution 

space (Baeck et al. 2000).  

3.3.2.3 Neural network models 

Another class of continuous variable models for GRN estimation is the neural network 

based models. Of these models, the recurrent neural network (RNN) has been shown to be 

successful in modeling GRN (Vohradsky 2001, Xu et al. 2007, Blasi et al. 2005, Lee and 

Yang 2008). The main strength of RNNs is that they are biologically conceivable and noise 

resistant. Moreover, the recurrent connections of RNN models provide the flexibility of 

generating oscillatory and periodic activities which allows them to represent dynamic 

behavior of a system over time (Lee and Yang 2008). Most importantly, the model is capable 

of capturing feedback loops that are naturally occurring in biological networks. 

A variety of RNN architectures have been proposed in the literature ranging from 

restricted classes of feedback to full interconnection between nodes. Among these models, the 

fully recurrent neural network is the most-studied model for estimating GRN. In the fully 

connected recurrent network, each node has an edge to every other node, including itself. To 

estimate a GRN with such a neural network model, each network node represents a particular 

gene and the wiring between the nodes defines regulatory interactions. In the GRN, the level 
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of expression of genes at time t can be measured from other gene nodes and the output of a 

node at the next time point (t+1) can be derived from the expression levels and connection 

weights of all the genes connected to it at time t. This implies that in RNN modeling, the 

regulatory effect on a gene can be determined as a weighted sum of all the other genes which 

are potential regulators of this gene. To compute the expression rate of a gene from the neural 

network, the transformation rules in equation 3.6 and 3.7 are generally applied, 

                     
   

  
                                                                                (3.6) 

                         {    
 (∑           )}

  
                                                 (3.7) 

where yi is the actual concentration of the i-th gene product; k1,i and k2,i are the accumulation 

and degradation rate constants of gene product, respectively; Gi is the regulatory effect on 

each gene that is defined by a set of weights estimating the regulatory influence of gene j on 

gene i, and an external input bi representing the reaction delay parameter. 

The construction of the GRN with RNN involves settings of the thresholds and time 

constants for each neuron, and the weights of the connections between the neurons so that the 

network can produce the levels of gene expression as measured in the microarray 

experiments. This task can be considered as a parameter estimation problem that either 

maximizes the network performance or minimizes an equivalent error measure. For the 

purpose of evaluating the network performance or error estimation, a scoring function is 

typically introduced in the learning process. 

Although RNNs are useful models for learning nonlinear relationships in time series 

data with complex temporal dependences, their high computational complexity limits their 

application on small scale network only. This is due to the number of parameters that need to 

be estimated from the experimental data. Moreover, the RNN model goes through hundreds of 
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trials with training data to stabilize the states of network nodes, which in turn makes the 

learning process a complex one for large scale networks. Most importantly, even though the 

estimated GRN generates gene expression data which are close to the experimental data, it 

does not guarantee the accuracy of the inferred network. This is due to the fact that there can 

be multiple GRN models that can generate similar expression data. This intricacy originates 

because the number of samples in the experimental data is insufficient for estimating the large 

number of parameters of the model.  

3.4. Reconstruction of GRN by Incorporating Biological Information 

In the previous section, we have reviewed the most widely used models for inferring 

gene regulation network from time-series gene expression data. All of these models suffer 

from several fundamental disadvantages such as high dimensionality, computational 

complexity, data uncertainties, small number of samples in the data set etc. Some of these 

difficulties can be addressed by incorporating prior knowledge in the inference process. The 

domain knowledge can be used to decompose the whole inference problem into smaller sub-

problems and then apply the available methods to estimate the sub-networks separately. In 

other application of domain knowledge, a set of candidate regulators are derived from 

multiple sources of biological data for each gene and the resulting network represents the 

regulatory network. Nevertheless, the most important aspect of incorporating biological 

knowledge is that it reduces the data requirements of the available methods. 

A variety of biological information such as TF binding DNA sequence (Tavazoie et al. 

1999), gene function annotations (Friedman 2004), ChiP-chip data (Lee et al. 2002), Protein-

Protein Interaction data (Chaturvedi et al. 2007) have been used in reverse engineering GRN. 

Tavazoie et al. (1999) reconstructed GRN from both time-series gene expression data and 
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sequence motif data. They first applied the K-means clustering algorithm to gene expression 

data which groups genes into k partitions. From the databases of MIPS (Munich Information 

Center for Protein Sequence), they identified functions and the sequence motif of the genes 

within the same cluster by using the AlignACE (Aligns Nucleic Acid Conserved Elements) 

(Roth et al. 1998) program. The TFs which recognize the motif sequence of the genes within 

the same cluster are considered as candidate regulators for the gene group. Finally, the 

transcriptional sub-networks are merged together to represent the ultimate GRN. However, it 

is difficult to identify the whole set of regulators for a cluster of genes by recognizing the 

sequence of motifs using only a single source of data. To overcome this problem, additional 

biological information such as the distance between the sequence motif and ATG (starting 

point of genes), the orientation of genes (Beer and Tavazoie 2004) and other sources such as 

genome databases, proteome databases have been incorporated (Segal et al. 2003). 

The GRN reconstruction methods that use clustering algorithms to find groups of co-

regulated or co-expressed genes from expression data generate many false positives. This is 

because of the inherent noise in the data which directly influences the clustering algorithm to 

find similarity in the expression pattern. This also indirectly influences the searching and 

identification of sequence motifs. To address this problem, a genome-wide location analysis 

based on ChIP-chip data (Lee et al. 2002) has been proposed to determine all the target genes 

that can be bound to the promoter region of a given TF (Bar-Joseph et al. 2003, Gao et al. 

2004, Wang et al. 2005, Scott et al. 2005, Banerjee et al. 2003, Qian et al. 2003, Ihmels et al. 

2001, Berman et al. 2002). In a promising study, Bar-Joseph et al. (2003) proposed a GRAM 

(Genetic Regulatory Modules) algorithm which takes protein-DNA binding data and gene 

expression data as sources of biological information. First, the algorithm identifies all possible 

subsets of regulators (T1,i, T2,i,…..Tk,i) for a target gene i using the protein-DNA binding data 
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where k is the number of possible subsets and each Tj,i  represents a subset. Next, for each Tj,i, 

a set of genes Gi is derived to which all the TFs in Tj,i are commonly bound. Then, the 

algorithm finds a gene gi from the set Gi that has a core expression profile and derives a 

collection of genes S from Gi which exhibits highly correlated expression patterns with gi. In 

repeated steps, GRAM adds new genes in the set S which are similarly expressed as gi and to 

which all the TFs of Tj,i commonly bind. Following this step, the algorithm derives a module 

that contains similarly expressed and co-regulated genes. The above process is repeated for all 

possible subsets of TFs for each target gene in the dataset. 

The various sources of biological data have been employed in different levels in the 

process of reconstructing GRN. Mobini et al. (2009) showed the importance of employing 

information extracted from various sources of biological data to narrow down the search 

space after a GRN is constructed from the gene expression data. They suggested that the 

various databases including pathway databases such as  KEGG, PATHWAY studio, DAVID 

etc. (Nikitin et al. 2009, Dennis et al. 2003, Okuda et al. 2008, Yeung  et al. 2008, Bindea et 

al. 2009), TF binding site databases such as Genomatix, oPOSSUM, PAP, Amadue, 

GeneXPress (Sui et al. 2005, Chang et al. 2006, Linhart et al. 2008, Zheng et al. 2003) and 

PPI database such as GRID, PIPS, DIP (Loots et al. 2006, Breitkreutz and Stark 2003, 

Xenarios and Eisenberg 2001) can be used in different orders and levels of the inference 

process to answer a ranges to biological inquiry at the cellular level. 

The transcriptional regulation is a complicated process. Though, the employment of 

diverse biological information is a promising way to address the current challenges associated 

the reconstruction of GRN, the available experimental datasets have intrinsic errors. This 

limitation raises a question on the precision of the biological knowledge that is generally 

derived from the noisy experimental data. 
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3.5 Discussion 

To reconstruct a network structure with current computational approaches, 

experimental iterations and prior knowledge are required until sufficient data is available. For 

the reconstruction of GRN, the experiment involves altering the network structure in some 

way such as adding or removing a regulatory relationship, observing its effect, and using 

mathematics and logic to infer the underlying principles of the network. The prior knowledge 

includes any known biological phenomenon that is frequently observed in the GRN. For 

instance, there is a high degree of homology between yeast and the human genome; a known 

regulatory relationship of among two yeast genes can be used as a prior knowledge in the 

estimation of GRN for a human. Therefore, we can simplify the process of inferring GRN as a 

sequence of two major iterative steps. These are: (1) select a network model and (2) fit 

network parameters and structures into the available data. 

As discussed in the previous section, all the current approaches for GRN modeling 

have advantages and certain limitations. Selecting an ideal model for GRN is a difficult task 

as it has to take into account the current challenges associated with the experimental data as 

well as the nature of gene regulation program.  Below we list some of the key issues that 

govern the effective application of the GRN models on the microarray gene expression data.  

1. Ability to model both discrete and continuous Expression data: The first issue in 

modeling GRN is to decide whether discrete or continuous expression data is used. In 

general, discretization of data causes information loss and the use of continuous data 

makes the model computationally expensive. Though Ott et al. (2004) argued that the 

form of data either discrete or continuous has no effect on the results obtained; they have 

not shown any side-by-side comparison to establish their argument. Among the 

aforementioned GRN models, some are strictly applicable to discrete data such as Boolean 



CHAPTER 3. CURRENT APPROACHES TO MODELING GENE REGULATORY NETWORKS 

 

57 

networks, PBNs; others can model only continuous data such as RNN and S-System 

models. However, all variations of Bayesian models such as BN, DBN can be readily 

applicable on both data types with increased level of computational complexity.   

2. Prior knowledge: A number of studies (Shatkay et al. 2000, Spieth et al. 2005) have 

recommended accumulating as much biological knowledge as possible and incorporating 

them as prior knowledge in the modeling process for the successful reconstruction of 

GRN. This pre-existing knowledge of the network structure reduces the number of 

possible alternatives and hence narrows down the number of free parameters that the 

model needs to estimate. This reduction consequently reduces the data requirements of the 

model. All the GRN models that have been presented in section 3.3 are able to incorporate 

prior knowledge. In general, the prior knowledge of the system is included as the initial 

state of the network structure.  

3. Performance: Performance is a key issue in GRN modeling as it indicates how good a 

model is. Two major criteria of evaluating model performance are: (1) computation time 

and (2) accuracy. Although computational complexity is a theoretical criterion for 

evaluating model performance, the researchers have mainly confined their interest on 

computation time.  This is because the computational complexity remains exponential 

with the size of the network despite the diversity in the modeling techniques. In general, 

discrete models are computationally feasible but less accurate, whereas continuous models 

are computationally expensive and can estimate GRN more accurately. All the continuous 

models discussed in section 3.3 require estimating a large number of parameters from 

small time series data which imposes a severe bottleneck on the performance of these 

models. Amongst the discrete models, Boolean networks are the most computationally 

feasible approach, whereas PBN models require estimating a huge number of parameters 
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which makes the model computationally expensive. As stated in section 3.3, the structure 

learning of Bayesian models is NP-hard. Therefore, computational complexity is a key 

challenge for all types of GRN models. Studies (Segal et al. 2003, Ott et al. 2004) have 

shown that the use of other sources of biological databases contributes significantly in 

improving the performance of GRN model. The biological data sources can be used to 

restrict the search space which subsequently reduces the computational time of the 

learning process. It is expected that the inclusion of biological knowledge also improves 

the accuracy of the estimated GRN. This issue needs to be further investigated through 

experiments. 

4. Robustness: The robustness of a GRN model, as we define it, is its ability to demonstrate 

stable performance against external disturbances such as inherent noise and missing 

values in the data. It is expected that the GRN models show a certain level of robustness 

to noise and incomplete data. Amongst the aforementioned models, RNNs are ideally 

suited to handle random noise. To investigate the influence of noise on the inference of 

network structures from short time-series data, Streib et al. (2005) studied three discrete 

models, namely Boolean Network, PBN and DBN.  The authors concluded that an 

increasing amount of external noise reduces significantly the overall performance of all 

three models; however, DBN performs better than the logical models as the noise level 

increases. Among these models, Boolean networks show least robustness to noise because 

of their deterministic nature. In another study, Noman and Iba (2007) examined the 

performance of the S-System model with different levels of injected noise and found that 

model performance declines significantly with the increased amount of noise.  

In case of incomplete data, the GRN models opt to handle missing values either in 

a pre-processing step in the inference process or within the inference algorithm. In the 
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former case, the missing values are estimated using available imputation methods such as 

Nearest Neighbor Averaging imputation (Hastie et al. 1999). This pre-processing step 

transforms incomplete data into a complete one and can be used with any of the 

aforementioned models. However, some of the GRN models such as BN and DBN can 

directly handle missing values while learning the structure and parameters from 

incomplete data. 

5. Scalability: In general, scalability is defined as a characteristic of a model that maintains 

its level of performance or efficiency when tested by larger operational demands. In case 

of GRN reconstruction, a model is designated as scalable if it can infer networks of 

different sizes (from tens to hundreds genes) by preserving a steady accuracy level. Due to 

the high computation time, none of the abovementioned models is truly scalable. Most of 

them are able to model small scale networks including tens of genes only. 

6. Stability: Stability is the sensitivity of the model to the variations of the gene expression 

data used for reconstructing the network. Despite the application of a wide range of 

techniques in modeling GRN, the stability analysis of the reconstructed network has not 

received much attention. In a recent study, Jagath and Piyushkumar (2011) investigated 

the effect of the number of time points on the stability of the reconstructed network. 

Through analysis, the authors showed that the ratio of the number of time points to the 

size of the network has a significant impact on the stability of the model. 

3.6 Conclusion 

In the post-genomic era, the inference of GRN with computational methods relies on 

the development of high-throughput technologies as well as techniques of information 

science, engineering and biology. Many computational models have been studied in the 



CHAPTER 3. CURRENT APPROACHES TO MODELING GENE REGULATORY NETWORKS 

 

60 

literature ranging from very abstract level to concrete ones.  In general, Abstract models 

capture the qualitative dynamics of system behavior and include less biological details. They 

have the advantage of being computationally feasible and can model large-scale networks 

including hundreds of genes. On the other hand, concrete models describe biological facts in 

detail and capture network dynamics as close to reality as possible. However, these latter 

models are computationally expensive and are able to infer small-scale networks including 

tens of genes only. 

In this thesis, one of our key goals is to propose and study GRN models that are 

scalable. Essentially, a scalable GRN model required the incorporation of biological prior 

knowledge in the inference process. Here, we choose DBN as our preferred GRN model with 

the consideration that they are succinctly capable of capturing the stochastic process of gene 

expression and noisy measurements because of their probabilistic nature. Below we list some 

of the other incentives that have been taken into account for such a choice: 

1. DBNs are able to model temporal behavior of a system such as the periodic activities of 

cell cycle.  In a recent study, Li et al. (2007) compared two probabilistic GRN models, 

PBN and DBN. They applied the models on the same experimental time-series datasets 

and concluded that DBN identified more gene interactions and gave better performance 

compared to PBN. 

2. Friedman (1998) proposed Structural EM algorithm for learning Bayesian models from 

incomplete data. Given the data, the algorithm searches for best the model in a joint space 

(structure × parameter). In each step, the algorithm either finds a better parameter for the 

current structure or finds a new structure that maximizes the expected score instead of the 

actual score. The successful application of this algorithm (Tofigh et al. 2011, Friedman et 
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al. 2002) has established Bayesian models as a competent approach for analyzing 

incomplete data. 

3. Bayesian models are readily available to model both discrete and continuous gene 

expression data. Friedman et al. (2000) claimed that the use of continuous data leads to a 

network including the inherent noise in the data. To avoid this situation, we choose to 

work on discrete data in this thesis. 

4. Scalability and performance are two key issues for GRN modeling. As discussed in 

the earlier sections, all models including DBN suffer from high computational 

complexity. This is due to the fact that the search space grows exponentially with the size 

of the dataset. This limitation restricts them from modeling large scale networks. 

However, biological networks are naturally scale-free (Han 2008); that is they have a few 

highly connected nodes in the network. In the context of GRNs, those nodes represent the 

TFs and regulate the expression of the majority of the genes. This fact suggests that not all 

the genes in the dataset are TFs; in other words, they have no regulatory affect on other 

genes. We can utilize this feature in the DBN learning process to restrict the number of 

possible structures in the search space. It is assumed that such a restriction would improve 

the performance of the estimated GRN and makes the model computationally feasible. In 

the following chapters, we investigate this assumption through a series of models and 

experiments.
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CHAPTER 4 

PHASE-SPECIFIC REGULATION IN THE YEAST 

CELL CYCLE
1
 

This chapter discusses the employment of the biological features of the cellular 

process under study in reconstructing GRNs from microarray data. In this thesis, our model of 

the cellular process is that of the yeast cell cycle. One important feature of cell cycle 

regulation is that, a high proportion of cell cycle regulated genes are periodically expressed; 

that is, genes are maximally expressed to affect and control the regulation of other genes and 

on completing certain tasks; they are repressed by some other regulator genes. Thus the whole 

cell cycle progresses systematically through the successive activation and inactivation of cell 

cycle regulated (CCR) genes. We exploit this feature to decompose the entire problem of 

estimating gene regulation into several smaller sub-problems. As a consequence of the 

biological knowledge driven decomposition, both the accuracy and the computational time of 

our proposed model have been improved in comparison with two existing models. Most 

importantly, we analyze two real experimental datasets of the yeast cell cycle, containing gene 

expression profiles of 150 genes to study the performance of the proposed model. 

                                                 

1
This chapter presents the results of a conference paper (Shermin and Orgun, 2009a) published in the Proc. of the 

24th Annual ACM Symposium on Applied Computing. 
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4.1 Introduction 

Cell division is the process in reproduction and growth by which a parent cell is 

divided into two or more daughter cells. The rate of cell growth and division is controlled by a 

cell cycle regulation program. Disruption to this regulation program can lead to medical 

problems, such as cancer where the cells start to divide uncontrollably. Therefore, cell 

division and its regulation are identified as one of the most fundamental activities in living 

organisms. As the control system for the timing and coordination of cell cycle events in 

eukaryotic cells is undoubtedly complex, one of the most important organisms for the study of 

the basic cell cycle control mechanism is the unicellular yeast. Among the two species of 

yeast, namely budding yeast, Saccharomyces Cerevisiae and fission yeast, 

Schizosaccharomyces Pombe, the former has been widely used by most laboratories. The 

studies on this organism are therefore supported by a stronger foundation of biological and 

methodological knowledge. Although yeast is unicellular, its shorter cell cycle has established 

it as a valuable model organism for the study of cell cycle control mechanism. 

The genome wide microarray analysis of gene expression during the cell division 

cycle has led to the finding that about 15% of budding yeast genes are cell cycle regulated 

(Spellman et al. 1998). That is, these genes are subject to transcriptional regulation during the 

cell cycle. The expression patterns of these CCR genes shift dramatically as cells transit from 

one phase to another. This phase-specific gene expression articulates that a significant amount 

of CCR genes are periodically expressed to control the regulation of other genes and perform 

the phase-specific task. On completion, they are repressed by other regulator genes of either 

the same phase or the subsequent phases. Therefore the whole cell cycle progresses 

systematically through the successive activation and inactivation of the CCR genes.  

In this chapter, we study the role of the phase-specific regulation of gene expression to 
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better understand the transcriptional circuitry in the yeast cell cycle. Through experiments on 

real gene expression data, we demonstrate the effectiveness of such a study in dealing with 

the key issues that the work in this thesis aims to address.  However, all the experiments are 

conducted on complete data; that is there are no missing values in it.  

4.2 Related Work 

Gene expression profiles generated by the high-throughput DNA microarray 

technology represent the dynamic behavior of genes in the transcriptional circuitry. An 

enormous effort has already been given into designing appropriate Dynamic Bayesian 

Network (DBN) based models for estimating regulation in the budding yeast cell cycle. 

To the best of our knowledge, Friedman et al. (1998) and Murphy and Mian (1999) are 

to be credited with studying the applicability of DBN first in learning casual orderings in 

biological processes. Murphy and Mian (1999) discussed the advantages of employing DBN 

in estimating GRNs from time series data, which include the ability to model stochastic 

processes, incorporation of prior knowledge in the model, and the ability to learn from 

incomplete data with hidden variables. Ong et al. (2002) described a DBN-based approach 

that combines prior biological knowledge with gene expression data to model interactions 

between sets of genes. They analyzed the time series gene expression data measured in 

response to physiological changes that affect tryptophan metabolism in E. coli. An initial 

DBN structure of gene regulation was built from the operon map which shows the operon and 

their associated genes and a final structure is learnt from the observation data. Kim et al. 

(2002) studied a statistical approach based on DBN and non-parametric regression model to 

estimate GRNs. They developed a non-parametric regression model with Gaussian noise to 

estimate a density function which allowed them to analyze continuous gene expression data 
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and capture nonlinear interactions among genes. The study showed that the statistical model is 

effective in reducing the number of false positive in estimated network and can identify a few 

correct regulatory relationships. Perrin et al. (2003) proposed a DBN-based model which is 

capable of handling the biological and measurement noise inherent in the microarray data. 

They analyzed E. coli gene expression data with hidden variables and used a penalized 

maximum likelihood measure to estimate the parameters of the learning algorithm. Husmeirer 

(2003) investigated the accuracy of employing DBN on gene expression data through a 

simulation based analysis. In the study of Yu et al. (2004), the authors examined a range of 

scoring metrics and search heuristics to find an effective DBN algorithm for reconstructing 

GRNs. Dojer et al. (2006) showed that the incorporation of perturbation experiment data in 

Bayesian learning improves the quality of the estimated network. In a more recent study, 

Nguyen et al. (2012) introduced a deterministic global optimization approach for 

reconstructing GRN from time course gene expression data. For DBN models that consist 

only of inter time slice arcs, the authors proposed a polynomial time algorithm that employes 

the information theoretic scoring metric namely mutual information test in learning the 

globally optimal network structure.  

In a promising study, Zou and Conzen (2005) used a pre-determined threshold for 

estimating changes in the expression (up/down regulation) of individual genes.  Genes that 

usually have either simultaneous or antecedent changes in expression when compared to their 

targets were considered as potential regulators. This consideration allowed them to restrict the 

number of possible regulators of each gene which subsequently reduces the search space.  

Their method was successful in reconstructing medium-scale networks from experimental 

microarray data containing 105 genes with improved performance. However, genes are 

expressed in an arbitrary pattern; the assignment of a pre-determined global threshold is likely 
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to reveal many irrelevant regulators and make the learning algorithm computationally 

expensive. Nevertheless, this study demonstrated that the proper exploitation of biological 

insight in restricting the number of potential regulators of a target gene is a promising way of 

addressing the current challenges associated with the DBN-based GRN models. 

4.3 Background 

This section briefly introduces the intricate regulation of different transcription factors 

during the cell division process. It also presents the basic algorithm for learning DBN from 

complete data.  

4.3.1 Regulation of transcription factors in yeast cell cycle 

The GRN in the yeast cell cycle has been revealed as a serial regulation of 

transcription factors (TFs), whereby transcriptional activators of one phase regulate a group of 

periodically expressed genes and the activators of the following phases (Bahler 2005). In 

budding yeast, there are 9 well-known TFs which form transcriptional complexes to regulate 

the proper progression of the phases during cell division cycle. These are G1-phase specific 

TFs (MBP1, SWI4, and SWI6) and G2/M phase TFs (FKH1, FKH2, NDD1, MCM1, SWI5 

and ACE2). A complete transcriptional regulation among these TFs during the cell cycle of 

budding yeast has been demonstrated in Figure 2.7. 

In the budding yeast, cells decide whether to commit cell division in a process called 

Start at the end of the G1 phase. The expression of several genes is activated by the two 

related TF complexes, namely SBF and MBF, during the late G1. The recently expressed 

genes promote the initiation of DNA replication and other events to facilitate the G1/S 

transition. The SBF complex consists of two protein components, Swi4p and Swi6p, and 
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regulates genes which function in budding, as well as membrane and cell-wall biosynthesis, 

while the MBF complex contains Swi6p and Mbp1p and regulates many genes involved in 

DNA replication and repair (Iyer et al. 2001, Simon et al. 2001). In late G1 phase, the MBF 

and SBF complexes activate the expression of the TFs Ndd1 which in turn activates the 

expression of the Fkh2p-Mcm1p complexes in G2 phase. During this phase, the transcription 

of MBF and SBF is switched off through the Clb1/2p-Cdk1p CDK complex (Tanay et al. 

1993, Koch et al. 1996, Spellman et al. 1998), which is itself activated by a combination of 

events following transcriptional activation of SBF and MBF. The forkhead TFs, Fkh1p and 

Fkh2p regulates the transcription of genes that are required for the transition into G2/M phase 

(Carlsson and Mahlapuu 2002). However, the transcription of Fkh1 is activated by the SBF 

and MBF complexes in the late G1 phase. The other TF, Ndd1p also plays a positive 

regulatory role in transcription for the proper transition and progression of G2/M phase. The 

Ndd1p-Fkh2p-Mcm1p complex activates the transcription of SWI5 and ACE2 during G2/M 

phase. To complete one cycle, the swi5p-Ace2p complex activates the transcription of SWI4, 

or induces the transcription of the cyclin gene CLN3 which facilitate the M/G1 transition. 

4.3.2 Learning DBN from data 

Learning a DBN from data can be divided into four levels of increasing complexity. 

The first level is the simplest one where the structure of the network is known and the 

learning algorithm needs to estimate the network parameters from the complete data. The next 

level is relatively complex as the structure is unknown. In this level, the learning algorithm 

learns both the edges between the nodes and the sets of parameters from the complete data. 

The third level of complexity arises from the incomplete data where the learning algorithm 

needs to assign the missing values and then learn the parameters for the pre-specified network 
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structure. The most complex level is the learning of both the structure and the parameters of 

the network from incomplete data. In this thesis, we focus on learning the unknown structure 

of the GRNs from complete gene expression data. 

Given a set of experimental dataset D, the learning algorithm learns two components, 

a Directed Acyclic Graph (G) and a set of conditional probabilities (θ) that better explains the 

data. The first component is the structure of the network which contains genes as network 

nodes and edges as direct relationships among the nodes. We assume that there is no edge 

between nodes within a time slice and the same network structure is unfolded over the 

consecutive time slices.  The Second component is sets of parameters associated with each 

node which quantifies the intensity of a regulatory relationship (edge) between the nodes. 

Assume, M is the space of all possible models, the algorithm first finds a model M
*∈ M, that 

is most supported by the data D:    

                                                                    { ( | )}                                                      (4.1) 

 
Having the best structure M

*
 and the data D, the algorithm estimates the parameters that best 

fits the structure: 

                                                                  { ( | 
   )}                                               (4.2) 

 
If we apply Bayes' rule to Equation (4.1) we get: 

                                                         ( | )   ( )  ( | )                                                   (4.3) 

where the marginal likelihood implies an integration over the whole parameter space: 

                                                         ( | )   ∫  ( |   ) ( | )                                     (4.4) 

The integral in Equation (4.4) is analytically tractable in case of complete data and if 

the prior  ( | ) and the likelihood  ( |   ) satisfy certain regularity conditions as 

discussed in (Heckerman 1994, 1995). The term  ( ) in equation 4.3 is the prior over 

structures.  The simplest type of prior is the one which is uniform over the structures and can 
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be defined as in equation 4.5, given the set of all possible models M in the space: 

                                                            ( )  
 

| |
                                                                        (4.5) 

where |M| denotes the number of possible models. A detailed discussion on different types of 

priors can be found in the comprehensive study of Heckerman (1995). 

The other term  ( | ) in equation (4.3) is the marginal likelihood which can be 

factorized as in equation 4.6, given that all the regularity conditions discussed in Heckerman 

(1994, 1995) are satisfied,  

                                                  ( | )   ∏  (  
 
      (  )|D)                                 (4.6) 

where node Xi and its parents pa(  ) form a structure and P(     (  )|D)  is the score of the 

structure given the data D.  

One popular approach for finding the model that is best supported by the data is to 

compute a scoring function for all possible structures M∈M and choose the one that 

maximizes the score. One widely used scoring function is the Bayesian scoring metric (BSM), 

which is simply the log posterior probability of M given D: 

                                                 (   )       ( | )                                              (4.7) 

By applying the Bayes rule, the scoring function in equation 4.7 can be rewritten as in 4.8, 

                                                          (   )     ( )     ( | )                                 (4.8) 

where the constant c is the same for all structures and log P(M) is the log prior over structures. 

In case of uninformative prior, every structure is equally likely which means that log P(M) is 

the same for all possible structures. Hence both logP(M) and c can be safely ignored. 

Therefore, the problem becomes how to find the best marginal likelihood given the data D. 

The pseudo code in Table 4.1 shows the basic algorithm to search for the network structure G 

and parameters θ that maximize the marginal likelihood given the data D. 
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Table 4.1: Pseudo code of DBN structure learning 

 

 

 

 

 

 

 

 

 

 

 

 

One major problem associated with this algorithm is that the number of possible 

structures increases rapidly with the number of nodes as we can see in Table 4.2 which makes 

the exhaustive search impossible. The second problem is that because of the small number of 

samples in the available data, the algorithm finds many structures with high scoring posterior 

probability leading to a huge uncertainty about the best structure. 

Table 4.2: Number of nodes vs. number of possible network structures (source Murphy 

2001b) 

number of nodes number of possible structures 

2 3 

4 543 

6 3.6 × 10
6
 

8 7.8 × 10 
11

 

10 4.2 × 10
18

 

Input: Data D and a network G (V, E),    

               V = {1,…..,N} and    E = {Φ} if uninformative prior                                                                                                                                                                                                                                                           

Output: Network G, Conditional Probabilities θ 

step1: initialize θ 

step2: for  i = 1, 2……N 

step 2.1:  generate Q = PowerSet(V) except Φ 

               where card(Q) = 2
N
 

step2.2: for each X ∈ Q, Compute a BSM score,  

step2.3: find the subset, X  ∈ Q with max Score  

step2.4: add edges in G from each element of X to i. 

step3: end 
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4.4 Methods 

In this section, we propose a GRN model based on DBN, which utilizes biological 

domain knowledge to decompose the entire GRN into overlapping sub-networks and learn 

each sub-network individually. The framework of our GRN model is illustrated in Figure 4.1 

and the component modules are discussed in the following subsections. 

 

 

 

GE Data 

Peak time 

calculator 

Phase-

specific clustering 

DBN structure  

Learning algorithm 

Data 

discretization 

Gene 

Regulatory Network 

Peak time of 

individual genes 

Discrete data 

3 clusters 

of genes 

Figure 4.1: Framework of the proposed GRN model. The model groups genes into 3 different 

clusters corresponding to the phases of the cell cycle and learn the sub-networks 

from each cluster separately using the DBN structure learning algorithm. 
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4.4.1 Data discretization 

The gene expression profiles store the fluctuation of transcription levels of genes as they go 

through different phases of cell division. In order to analyze such data with discrete models, 

we have discretized the expression profiles with a simple 2-state discretization method, 

illustrated in equation (4.9). The discretization method is chosen at this stage of our study to 

keep the model computationally feasible as the number of computations grows exponentially 

with the number of distinct values for each gene in the dataset. For all genes i = 1, …,N and 

time points t = 1, …, T, 
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(4.9) 

where iX is the average expression level for gene i. 

4.4.2 Peak time calculator of genes  

One finding of the genome wide transcription measurements through the cell cycle is 

that a high proportion of CCR genes are periodically expressed. This implies that gene 

products which are required at a specific point in the cycle are transcribed into mRNA to 

produce protein and perform phase specific tasks. Upon completing their tasks, genes are 

inactivated by their repressors. As a consequence, the transcription patterns shift dramatically 

as cells transit from one phase of the cell cycle to another. Most of the known TFs exhibit this 

behavior and become maximally expressed just before they are required (Pramila et al. 2006).  

de Lichtenberg et al. (2005) proposed a method for determining peak times of periodic 

genes. The peak time of a gene is the time of the cell cycle when the gene becomes 

functionally active. Initially, they have calculated a Fourier score (Fi) using equation (4.10) 



CHAPTER 4. PHASE-SPECIFIC REGULATION IN THE YEAST CELL CYCLE 

74 

which quantifies the periodicity of a given gene i. 
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where xi(t) is the expression level of gene i at time t. Based on the calculated score, de 

Lichtenberg et al. (2005) have ranked genes which are periodically expressed. Then, in order 

to compute the peak time of each periodically expressed gene, each expression profile has 

been approximated by a sine wave and the time of the peak expression for a gene is defined as 

the time where the sine wave attains its maximum.  

4.4.3 Assigning genes in phase specific clusters 

A promising approach to deal with the high dimensionality problem is to use some 

heuristics to restrict the number of regulators of a target gene. In this chapter, we implement 

this restriction with the assumption that genes which are at their peak during a specific phase 

of the cell cycle usually regulate each other. However, the transition of cell cycle phases is 

controlled by proper activation and repression of TFs between consecutive phases. 

Depending on the peak time, each gene in our expression profile has been assigned to 

three groups corresponding to the biological phases of the cell cycle. The mapping of cell 

cycle phases to the timeline of the dataset has been drawn from the study of Pramila et al. 

(2006) and is shown in Figure 4.2. In this mapping, G2 and M phases have not been identified 

separately and the period of the cell cycle is set to 58. Therefore, the three groups are G1, S 

and G2/M. We thus have assigned those genes into a group which are at their peak in the span 

of the same phase. To illustrate the process, assume an expression profile of 5 genes A-E. The 

peak time of these genes are 19, 23, 95, 68 and 48 respectively. According to the mapping in 
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Figure 4.2, three genes A, B and D constitute the G1 group whereas B and C are assigned to 

the S group. The fifth gene E is the member of the G2/M group. However, it should be noted 

that by this mapping gene B has been assigned to both the G1 and the S group. The reason is 

that the phases of the cell cycle are not uniformly separated in the above mapping. 

 

 

 

4.4.4 Inference of GRN with DBN algorithm 

To explain the learning algorithm, we assume that the cardinality of one such group is 

n. Therefore, for a given target gene i, the number of potential regulators to consider is 2
n
, as 

any combination of genes can be the candidate regulators. For a large n, the search space is 

grows super-exponentially as shown in Table 4.2. In order to deal with this problem, we have 

restricted the fan-in (the number of input arcs) of each node in the network to k (≤n) with the 

assumption that there might be genes in the dataset which do not act as regulators. As a result 

of this constraint, the size of the search space drops to 
n
Ck. 

Since a DBN has two components to learn, we have initialized the conditional 

probabilities of a gene in relation to its parents calculated from the observed data. In order to 

learn the parent set, a scoring function (Maximum likelihood or Bayesian) computes the score 

of a subset of regulators in conjunction to its target gene using the prior conditional 

probabilities. The set of regulators with the maximum score is chosen and connections are 

Figure 4.2: Mapping of the cell cycle phases to the timeline of the microarray experiment. 

[taken from Pramila et al. (2006)]  
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constructed between each gene in the chosen subset of regulators and the target gene. If more 

than one subset scores the maximum, then the parent set is the union of those subsets. 

4.5 Experiments and Results 

To see how successfully the proposed GRN model can estimate the network topology 

and address the current challenges, we test the model through the analysis of two recently 

published experimental microarray datasets (Pramila et al. 2006). To verify the estimated 

networks, we follow the standard method which is widely used in the literature (Zou and 

Conzen 2005). We derive a network of known connections from various sources. Some of 

these sources report the result through in-vivo experiments; others publish in-silico results. On 

reconstructing the network from real experimental data, each estimated connection is verified 

against the known network. If a connection exists in both the estimated and the known 

network, it is considered as a correctly identified connection. If an estimated connection is 

identified in the opposite directions then we name the connection as misdirected. Finally, if a 

connection does not exist in the known network but it is estimated by the model, it is 

considered as an incorrectly identified connection. 

4.5.1 Experimental data 

We have analyzed two separate microarray gene expression data sets of the budding 

yeast. Each of these datasets contains expression profiles of 150 cell cycle regulated genes, 

which have been identified as periodically expressed by the recently published works of 

Pramila et al. (2006) and de Lichtenberg et al. (2005). The gene expression data are generated 

and published by Pramila et al. (2006) who have carried out two microarray experiments on 

cells of the budding yeast as they advance through different stages of the cell-cycle. They 
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used an alpha factor to induce cell synchronization and the resulting data sets have been 

named as alpha30 and alpha38 respectively. In order to examine the dynamic behavior of 

gene expression, they have sampled the microarray at an interval of 5 minutes ranging from t 

= 0 to t = 120. This length covers approximately two complete yeast cell cycles. However, 

data points 0, 10 and 105 have been discarded from both datasets for unsatisfactory 

hybridization leaving 22 samples to analyze. Finally, all the data drawn from these two 

experiments were processed using an error model in the Rosetta Resolver Version 3.2 

Expression Data Analysis System.  

In the study of de Lichtenberg et al. (2005), the authors ranked genes in the deceasing 

order of periodicity.  From this published list, we have included 150 top ranked genes in our 

working datasets given that they have complete expression profiles in the experimental data of 

Pramila et al. (2006). 

4.5.2 Experimental setup 

Our experiments are conducted on a computer system with a dual core Intel processor 

(1.83 GHz) and 2 GB RAM, running windows XP (Professional). Among other available 

tools, we have chosen Bayes Net Toolbox (BNT) to construct the DBN, which is written in 

MATLAB and freely provided by (Murphy 2001a).  The experiments are setup and run under 

the MATLAB environment with version 7.6.0.324 (R2008a). 

4.5.3 Experimental results 

 Initially, to test the feasibility of our proposed GRN model, we analyze a small 

segment of the dataset, including 13 transcription factors that are known to be involved in cell 

cycle transcription of budding yeast. The dataset include G1-phase specific TFs (MBP1, 
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SWI4 and SWI6), S-phase specific TFs (HCM1, WHI5 and YOX1) and G2/M phase TFs 

(FKH1, FKH2, NDD1, YHP1, MCM1, SWI5 and ACE2). Among these TFs, some act as 

activators and others as repressors. For instance, MCM1 acts as an activator at the beginning 

of G1 phase and transcriptionally activates SBF (SWI4 & SWI6) complex. At the end of the 

G1 phase, the SBF complex activates the repressor YOX1, which subsequently represses 

MCM1. The known network topology of these TFs is extracted from various studies (Pramila 

et al. 2006, Simon et al. 2001) and is shown in Figure 4.3. Each node in the figure represents a 

gene and an arrow from gene i to gene j means a direct influence of i on j and a line indicates 

bidirectional influence. The figure is automatically generated by MATLAB program which 

receives an adjacency matrix of the estimated network from the model.  Due to the image 

conversion limitations of the program, the figure lacks visual quality; however it is included 

here for the completeness of the results. 

 

 

 

Figure 4.3: Target network of the yeast cell cycle TFs. Each node in the network represents a 

gene and an edge represents direct regulatory relationship.[generated by 

MATLAB]. 
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In this experiment, our DBN based GRN model is able to identify only direct 

regulatory interactions among genes. However, in biological networks, genes are regulated by 

both direct and indirect influence of the regulators. Figure 4.4 shows the reconstructed 

network structure which is estimated by our proposed model.  

 

 

Inspecting the constructed network, it can be found that only 4 direct interactions have 

been correctly identified by our model, whereas there are 22 known connections in the known 

network. However, if we apply the k-skip validation which assumes that k-genes are skipped 

in estimating the GRN between the regulator and the target gene (Chaturvedi et al. 2007), our 

estimated network is able to explain the regulatory interactions more accurately. For instance, 

in the known network, there is a direct influence of HCM1 on WHI5 whereas in the inferred 

network the interaction is identified as HCM1->YHP1->WHI5. With 1-skip validation, this is 

a true positive interaction. Since we are working at the transcription level and regulatory 

interactions take place after translation, it is sensible to apply the k-skip model for GRN 

Figure 4.4: Estimated network structure of the yeast cell cycle TFs. 

                   [generated by MATLAB] 
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validation. Of the known 22 connections in Figure 4.4; our model is able to infer 15 

connections (approx. 70%) using 1-skip validation. In addition, examining all the extracted 

connections with respect to the known roles of TFs, it is found that, in most cases, the 

prediction confirmed the prior knowledge of cell cycle regulation, which establishes the 

validity of our approach. 

Finally, we apply our GRN model along with two existing DBN models (Murphy and 

Mian 1999, Zou and Conzen 2005) on two different experimental datasets including 150 

genes. We compute the accuracy and the computation time of the models to compare their 

performances. The experimental results of these models on two different datasets are 

summarized in Table 4.3 and Table 4.4. In the tables,
 ‘
Total Identified Relationships” shows 

the total number of predicted gene relationships. ‘Correctly Identified Relationships’ specifies 

predicted relationships that have been established in yeast cell cycle regulation as a direct 

influence. ‘Misdirected Relationships’ represents a gene relationship that is predicted to be in 

the reverse order of a known relationship. ‘Accuracy’ is the percentage of correctly predicted 

relationships out of the total number of known regulator-target relationships. ‘Computation 

Time’ is the running time of the DBN model. 

Table 4.3: Dataset alpha38, includes transcription levels of 150 genes with a sampling 

interval of 5 minutes and a total of 22 time points. 

Method 

Total 

Identified 

Relationships 

Correctly 

Identified 

Relationships 

Misdirected 

Relationships 

Accuracy 

(%) 

Computation 

Time 

GRNMurphy 671 12 2 4 
8 hrs 12 mins 

 

GRNZou 

 
222 3 0 0.33 

6 hrs 53 mins 

 

GRNPhase 609 17 3 5.67 
2 hrs 43 mins 

31secs 
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Table 4.4: Dataset alpha30, includes transcription levels of 150 genes with a sampling 

interval of 5 minutes and a total of 22 time points. 

It should be noted that the number of true connections learned by GRNPhase has 

increased for both datasets in comparison to GRNMurphy (Murphy and Mian 1999) and GRNZou 

(Zou and Conzen 2005). One reason for such an improvement is the application of biological 

domain knowledge in deciphering the problem space. However, the number of correctly 

identified relationships by all three models is very low. We can speculate some reasons 

behind such low accuracy. The Primary reason is the lack of known regulator-pair 

connections to verify the inferred interactions. Second, the level of noise present in the 

experimental data may have an adverse effect on the potency of the methods. Finally, since 

we have used a fraction of the genes of the complete GRN, the absence of some important 

genes may cause not only the loss of true connections but also the inference of false positive 

connections.  

In conjunction with accuracy, the computational time of our proposed model, 

GRNPhase has improved remarkably in comparison with GRNMurphy and GRNZou. Of the three 

models compared, GRNMurphy is the most computationally expensive. The reason is that the 

method checks all possible combinations of gene regulators for finding the optimal network 

structure. Though GRNZou cuts down the number of candidate regulators of a target gene 

Method 
Total 

Identified 

Relationships 

Correctly 

Identified 

Relationships 

Misdirected 

Relationship 

Accuracy 

(%) 

Computation 

Time 

GRNMurphy 752 8 4 2.67 8 hrs 3 mins 

GRNZou 228 4 0 1.2987 5 hrs 24 mins 

GRNPhase 786 15 11 5 2 hrs 40 min 
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before learning, their predefined threshold for up/down regulation is ineffective to find most 

of the potential regulators. We speculate that the lack of biological foundation in defining the 

threshold is the main reason for such a failure. In contrast, GRNPhase uses biological domain 

knowledge to restrict the number of candidate regulators of a target gene and is able to learn 

GRN with limited time which is twice as fast as that of GRNZou. 

4.6 Conclusion 

In this chapter, we have exploited some biological features of the cell cycle to achieve 

two goals. These are: 1) to improve the number of correctly predicted regulator-target 

relationships and 2) to reduce the computational time of the DBN structure learning 

algorithm. We have assumed that a gene is maximally expressed to affect and control the 

regulation of other genes and on completing certain tasks; it is in turn repressed by some other 

regulator genes.  Thus the whole cell cycle is progressed systematically through the 

successive activation and inactivation of CCR genes. In order to employ this assumption in 

our study, we have calculated the peak times of individual genes which fall into one/more 

phases of the cell cycle. Therefore, genes that peak in the interval of the same phase of the 

cell cycle have been grouped together. Finally, we have applied the DBN algorithm within 

distinct phases and performed an exhaustive search within a group to find the regulator-target 

pairs. The reason for this exhaustive search is that genes are usually activated by regulators 

with earlier or simultaneous peak times but their repressors may be maximally expressed at 

later time points. 

The phase-specific grouping of genes has discarded irrelevant regulators from the 

candidate parent list of a target gene and enhanced the probability of predicting true positive 

connections between genes. In addition, the reduction in search space has made the learning 



CHAPTER 4. PHASE-SPECIFIC REGULATION IN THE YEAST CELL CYCLE 

83 

algorithm computationally feasible. The run time of our model (GRNPhase) is one-third in 

comparison to Murphy’s DBN approach (GRNMurphy) and half of GRNZou.  In terms of 

accuracy, GRNPhase does not outperform GRNMurphy remarkably; however, the number of true 

positive connections has been increased with GRNPhase for both the datasets and the accuracy 

could have been further improved by applying the k-skip model to validate the inferred 

interactions. 

It is worth mentioning that both our expression profiles are complete, that is, there are 

no missing values or hidden variables. However, they do not represent the exact picture of 

microarray data. Most of the available microarray datasets have thousands of missing values. 

As we are computing the peak times of individual genes from their expression profiles, our 

proposed approach cannot be directly applied to incomplete datasets. Hence, it requires 

predicting the missing values from incomplete data by using algorithms such as nearest 

neighbor averaging.  

In conclusion, our study in this chapter is a small step towards constructing the whole 

GRN of the yeast cell cycle. We extend our work in the following chapters to further improve 

the performance of the proposed GRN model by utilizing biological features of gene 

regulation and other sources of available biological data such as Protein-Protein Interaction 

(PPI) data. 
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CHAPTER 5 

CO-REGULATION OF CO-EXPRESSED GENES
1
 

The main focus of this chapter is to identify groups of co-expressed genes and their 

underlying co-regulation mechanism from the experimental gene expression data. A 

partitioning algorithm is employed to group genes into k optimal number of clusters with the 

intention that genes in the same cluster have similar expression patterns over time. The 

algorithm also finds a representative gene for each of these clusters, known as mediods. The 

purpose of this partitioning is to mitigate the number of target genes as well as their potential 

regulators in estimating the underlying co-regulation network. Nevertheless, in order to infer 

the complete network of gene regulation, we combine the network of co-expressed genes with 

the network estimated in chapter 4. Through the analysis of experimental microarray data, we 

demonstrate that the combined model is computationally more efficient and topologically 

accurate in inferring gene regulation networks compared to other existing models. To study 

the performance of the proposed model we analyze the same microarray datasets of the yeast 

cell cycle as previously used in chapter 4 with 50 more added genes. 

                                                 

1
 This chapter presents the results reported in a published journal paper (Shermin and Orgun, 2010) and a 

conference paper (Shermin and Orgun, 2009b). 
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5.1 Introduction 

Over the past few years, several lines of evidence suggest that similar patterns in gene 

expression profiles signify relationships between genes (Eisen et al. 1998, Marcotte et al. 

1999). By definition, genes having similar expression pattern across a set of samples, are 

termed as co-expressed, and genes which are regulated by common transcription factors (TFs) 

are known as co-regulated. In genomic studies, the analysis of microarray gene 

expression data facilitates the exploration of co-expression patterns and locates 

groups of co- transcribed genes. There are several points of interest in the identification 

of co-expressed genes. Firstly, several studies (Eisen et al. 1998, Spellman et al. 1998) 

suggested that many functionally related genes are co-expressed. Hence, grouping genes with 

similar expression patterns could reveal the function of previously uncharacterized genes. 

Secondly, co-expression may reveal insight into gene regulation. For instance, if a TF 

regulates the expression of two genes, then we might expect the genes to be co-expressed. 

Therefore, there is likely to be a relationship between co-expression and co-regulation. This 

chapter focuses on exploring this likely relationship and investigating its contribution towards 

estimating transcriptional circuitry. 

In eukaryotes, the transcriptional regulatory mechanism underlying co-regulation of 

multiple genes is exceedingly complex (Brazhnik et al. 2002). Nevertheless, the coordinated 

regulation of the expression of co-expressed genes can take place at different levels, such as 

transcription (Mootha et al. 2004), or translation (Enriquez et al. 1999, Di Liegro et al. 2000). 

In this chapter, we focus on the coordinated regulation of genes at the transcription level. 

In general, gene expression data obtained by high-throughput microarray experiments 

is organized in coherent groups of genes using different statistical methods such as 

hierarchical clustering, self-organizing maps, K-means clustering, principle component 
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analysis etc. Several good reviews of the popular clustering algorithms for gene expression 

data can be found in Sherlock et al. (2000) and Sharan et al. (2002). Most of these approaches 

identify clusters of co-expressed genes that demonstrate similar expression patterns over time. 

In this chapter, we employ a partitioning algorithm known as Partitioning Around the 

Mediods (PAM) to identify groups of co-expressed genes. Initially, the algorithm computes k 

optimal number of clusters from the dataset and then groups the genes into the k clusters. 

Each of these k clusters has a representative gene, known as mediods, which can be defined as 

the center point of the cluster and whose average dissimilarity to all the genes in the cluster is 

minimal. Finally, a DBN structure learning algorithm is applied among the mediod genes to 

discover the coordinated regulation of the co-expressed genes. For the discovery of the entire 

gene regulation mechanism, the co-regulation network of co-expressed genes is merged with 

the network of individual gene as discussed in chapter 4.  

5.2 Related Work 

Cluster analysis is the most popular exploratory technique for pattern discovery and to 

identify groups of genes with similar expression patterns as well as identifying regulatory 

factors (Tavazoie et al. 1999, Heyer et al. 1999, Geiss et al. 2003, Ohler et al. 2001, 

Wolfsberg et al. 1999, Jelinsky et al. 2000). Different variations of cluster analysis such as 

hierarchical (Pietrokovski et al. 1996, Hughes et al. 2000) and Bayesian (Qin et al. 2003) have 

been also adapted to discover co-regulated genes and their transcription factor binding sites. 

However, the use of cluster analysis to identify co-expressed genes or biological function has 

its own limitations. In particular, clustering of biological data always returns clusters 

independent of biological relevance. Most importantly, microarray data can be quite noisy, 

and cluster analysis of such data may find patterns in noise. 



CHAPTER 5. CO-REGULATION OF CO-EXPRESSED GENES 

88 

Yeung et al. (2004) studied the effectiveness of cluster analysis in finding co-regulated 

genes from co-expressed genes. They identified several factors that affect the likelihood of 

finding co-regulated genes. These are: 1) the number of microarray experiments in the 

datasets, 2) the clustering algorithm used and 3) the diversity of experiments in a microarray 

dataset. They concluded that the ability to identify co-regulated genes from clustering results, 

is strongly dependent on the number of microarray experiments used in the analysis 

Yu et al. (2003) employed several data sources to create an extensive map of the 

transcriptional regulatory network, comprising 180 TFs with their respective target genes. By 

integrating this network with gene expression data, they found that genes regulated by the 

same TF tend to be co-expressed and the degree of co-expression is proportional to the 

number of TFs they share. To investigate how co-regulation corresponds to co-expression, 

Zhang et al. (2004) retrieved regulator-target gene pairs from the Yeast Promoter Database 

and investigated the expression profiles of target genes with the same TF. Their observation 

suggested that a regulator can be functional over a certain span of time during cell 

development and therefore genes may be partially co-regulated, such as during a specific 

phase of the cell cycle. 

Veerla et al. (2006) introduced a new clustering method, known as promoter 

clustering, which groups the promoters with respect to their high scoring motif content. Their 

study showed that promoter clustering greatly improves the identification of shared 

transcription factor binding sites (TFBS) in co-expressed genes. 

Noort et al. (2003) claimed that the knowledge of gene co-expression contributes 

weakly in predicting functional interactions. To be able to predict gene functions, the authors 

combined conserved co-expression with homology data.  In a more recent study, Waveren et 

al. (2008) validated the previously known fact that the energy producing genes in eukaryotic 
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cells are co-expressed at the transcription level. Nevertheless, their finding suggested that 

there might be an intricate mechanism of co-regulation of these co-expressed genes at the 

mRNA level. 

From the literature of these related works we conclude that the identification of co-

expressed genes may contribute to the estimation of gene regulation at the transcription level. 

5.3 Background 

In this section, we explore the relationships among the genes by plotting their 

expression profiles and observing the patterns of their expression. The expression profiles are 

taken from the same dataset as used in chapter 2. 

5.3.1 Co-expression of Co-regulated genes in yeast cell cycle 

Gene expression data generated by the high-throughput technologies such as cDNA 

microarray provides a rich source for the identification of co-expressed genes. The study of 

Yu et al. (2003) suggested four different types of temporal relationships between co-expressed 

genes. These are: correlated, time shifted, inverted and inverted time-shifted. In order to 

investigate co-expression among the genes in our experimental dataset, we have plotted the 

expression profiles of target genes which have the same regulator as shown in Figure 5.1. The 

regulation association among the target genes and corresponding TF(s) is derived from the 

Yeastract database (Teixeira et al. 2006, Monteiro et al. 2008). For instance, REB1 

(YBR049C) is a TF of the yeast cell cycle which regulates the expression of two other CCR 

genes, CDC9 (YDL164C) and PGK1 (YCR012W). As illustrated in Figure 5.1A, the target 

genes show similar expression over time and are assumed to be co-expressed. Time shifted 

relationship is exhibited by G1/S phase TFs, SWI4 (YER111C) and SWI6 (YLR182W), 
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which are regulated by the same regulator STE12 (YHR084W). The temporal relationship of 

these co-expressed genes is illustrated in Figure 5.1B. 

 

 

Figure 5.1: Expression profiles of co-regulated genes. A) Co-expressed B) Time Shifted Co-

expressed  

In a complex regulation network, a target gene can be regulated by multiple TFs as 

well as multiple genes can share a set of regulators. When genes share common regulators, 

they are likely to show similar expression patterns. For example, gene YHP1 (YDR451C), 

HCM1 (YCR065W) and GIN4 (YDR507C) share regulators SWI6 (YLR182W) and MBP1 

(YDL056W) during the cell division process in budding yeast. We have plotted the 

expression profiles of these co-regulated genes in Figure 5.2, which exhibits partial co-

expression over time.  

Regulator: YBR049C 

YDL164C YCR012W

Regulator: YHR084W 

YER111C YLR182W

A) 

B) 
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Figure 5.2:  Expression profiles of co-regulated genes groups. 

5.4 Methods 

In this chapter, we address the high dimensionality problem associated with the gene 

regulatory network (GRN) reconstruction from experimental data with the perception of co-

expressed and co-regulated genes. Although clustering is a widely used technique for the 

identification of co-expressed genes, we have employed a partitioning algorithm to group 

genes as co-expressed. Finally, a simple DBN structure learning algorithm is applied to 

estimate the co-regulation of these co-expressed genes. In order to infer a complete GRN 

model, we integrate the GRN (GRNphase) as discussed in chapter 4 with the network of co-

expressed genes. The framework of the GRN model, that estimates co-regulation of co-

expressed genes, is shown in Figure 5.3. As the figure shows, the proposed model is a discrete 

model and the data is discretized with the same method as discussed in chapter 4. 

5.4.1 Partitioning Around the Mediods (PAM) 

Partitioning Around the Mediods (PAM) is a partitioning algorithm which clusters the 

data around an optimal number of representative objects called centrotypes or mediods. A 

mediod is the object of the cluster for which the average dissimilarity matrix to all other  

Regulators: YLR182W, YDL056W 

YDR451C YCR065W YDR507C



CHAPTER 5. CO-REGULATION OF CO-EXPRESSED GENES 

92 

 

 

objects in it becomes minimal. PAM has a few distinct advantages when compared to other 

well-known k-means clustering algorithms (R core Team 2009). These are: 1) the algorithm 

computes the dissimilarity matrix from the given dataset and clusters genes based on 

thismeasurement; 2) the algorithm shows more robustness because it minimizes a sum of 

dissimilarities instead of a sum of squared Euclidean distances in placing genes into different 

clusters and 3) it computes an optimal number of clusters from the data. In practice, PAM is 

embedded in many statistical analysis systems, such as SAS, R, S+. 

GE Data 

PAM: Optimal 

Cluster 

Estimator 

PAM:  partition 

genes around the 

mediods 

DBN Structure 

Learning 

Data 

Discretization 

Gene Regulation 

Network 

no of optimal 

clusters & mediods 

discrete data 

clusters of co-

expressed genes 

Figure 5.3: Framework of the proposed GRN model. 
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The algorithm’s main phase consists of finding the k optimal number of clusters in the 

dataset. After finding an initial set of mediods for each cluster, each object of the data is 

grouped with the nearest mediod. That is, object i is placed into cluster A when mediod mA is 

nearer than any other mediods mB, that is, d (i, mA) ≤ d (i ,mB) for all B = 1,….,k, where d(i, j) 

is the dissimilarity measure between objects i and j. The k representative objects should 

minimize the objective function in (5.1), which is the sum of the dissimilarities of all objects 

to the mediod  

Objective function =
i

imid ),(                                                                       (5.1) 

The algorithm proceeds in two steps: 

1. BUILD-step: This step sequentially selects k “centrally located” objects, to be used as 

initial mediods. 

2. SWAP-step: If the objective function can be reduced by interchanging a selected 

object with an unselected object, then the swap operation is carried out. This is 

continued till the objective function can no longer be improved. 

5.4.2 Identification of co-expressed genes with PAM 

The Partitioning Around the Mediods (PAM) cluster algorithm is applied on the gene 

expression data to find groups of co-expressed genes which have similar expression patterns. 

The clustering process is achieved in two steps: 1) use the algorithm to predict the k optimal 

number of clusters into which the data will be split and 2) group the dataset into k clusters in a 

way that is similar to the k-means clustering algorithm. 

Since patterns showing by the gene expression are random in nature, it is challenging 

to define an appropriate similarity measure for clustering. In order to deal with the random 

behavior of gene expression we have transformed each gene profile using the function in 
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(5.2). With this transformation, the expression profile of each gene is represented in a uniform 

pattern, where Xi(t) = 2 means over-expression; that is, the expression changes between the 

consecutive time points (t, and t+1)  is over the average expression change for gene i. 

Similarly, Xi(t) = 1 signifies down-expression; that is, the expression changes between time 

point t and t+1 is below the average expression change. 
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)(                                                          (5.2) 

where Xi(t) is the expression level of gene i at time t and iX  =  avg(abs(Xi (t+1) - Xi(t))).  

5.4.3 Inference of regulation among groups of co-expressed genes 

In order to identify the activators and repressors of co-expressed genes, we apply the 

dynamic Bayesian network (DBN) learning algorithm among the mediods of the clusters. 

Assume that there are n genes in the dataset, grouped into k optimal number of non-

overlapping clusters. Each cluster is represented by a mediod gene, mi, where i = 1..k. 

Therefore, regulatory connections have been sought among these k mediod genes using the 

DBN-based GRN model as described in section 4.4.4.  

To demonstrate the learning process, assume that, the model identifies mj and mk as the 

potential regulators of a mediod gene, mi. In the learned GRN, the member genes of the 

clusters represented by .mj and mk are considered as the co-regulators of the co-expressed 

genes which are represented by mi. 

A similar DBN algorithm is applied within the genes of each cluster to find regulation 

among co-expressed genes. 
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5.4.4 Merge networks learned by the models 

Given n genes in the dataset, the identified causal connections among genes are placed 

into an n×n matrix, where each row corresponds to a regulator gene. If a gene j is regulated by 

a gene i , then the cell [i,j] in the matrix contains 1, otherwise 0.  

Assume, A and B are two such matrices learned by two different GRN models. In order to 

merge the networks, we used a Bit-wise OR function given in (5.3) 

                           Merged_Network = BITOR (A, B)                                                          (5.3) 

5.5 Experiments and Results 

To investigate how effectively our proposed DBN-based model can infer co-regulation 

of co-expressed gene and to what extent the current challenges can be addressed, we run 

experiments on two recently published real microarray datasets (Pramila et al. 2006). Initially, 

we apply the PAM algorithm on the experimental microarray data to find groups of co-

expressed genes. The algorithm identifies 52 clusters of the 200 genes and some of these 

clusters contain one gene only; that is, these genes do not share any similarity in their 

expression pattern with others. From the resulting clusters of these genes, we find that the 

partitioning algorithm assigns genes to different clusters which are believed to be co-

expressed.  For instance, the two cell cycles regulated TFs HCM1 and YHP1 are believed to 

be co-expressed and co-regulated by the MBF complex (SWI6 and MPB1). However, our 

PAM algorithm clusters these TFs into two separate clusters. We speculate, the lack of 

biological relevance in the algorithm is a key factor for such partitioning. Moreover, the 

experimental drawbacks such as precision in designing the microarray experiments and the 

inherent noise in the data affect the computation of the dissimilarity function and so the 

partitioning of the genes.  
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5.5.1 Experimental data 

We analyze two separate microarray gene expression data sets of budding yeast as 

previously used in chapter 4 with 50 more added genes. The newly added genes are chosen in 

the same way as discussed in section 4.5.1. This addition of new genes results in a total of 200 

cell cycle regulated genes over 22 time points in each of the datasets. We increase the size of 

the data set in this analysis to investigate the performance of the models in the larger context. 

5.5.2 Experimental setup 

The experiments are conducted on a computer system with dual core Intel processor 

(1.83 GHz) and 2 GB RAM, running windows XP (Professional). The free statistical 

software, R (R Core Team 2009) has been used to implement the PAM clustering algorithm 

which partitions the datasets into some optimal number of groups. Together with R, we have 

used Bayesian Net Toolbox (BNT) which is written in MATLAB and freely provided by 

Murphy (2001a) to construct DBNs. The experiments are setup and run under the MATLAB 

environment with version 7.6.0.324(R2008a). 

5.5.3 Experimental results 

In this section, we evaluate a GRN model (GRN2-stage) that learns two regulation 

networks of overlapping connections in two stages. At the first step, the model finds 

regulation of individual genes and in the following step, it estimates coordinated regulation of 

co-expressed genes. Finally, the two overlapping networks are merged together to infer a final 

GRN that represents the data best. For the verification of the estimated network, we use the 

same method as discussed in section 4.5.  
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As stated earlier, the pitfall of working with real data is that we know a very small 

fraction of the connections in the target network.  Hence, in the initial experiment, we apply 

our 2-stage GRN model to extract a small scale network of 13 known TFs only. These include 

G1-phase specific TFs (MBP1, SWI4, SWI6), S-phase specific TFs (HCM1, WHI5, YOX1) 

and G2/M phase TFs (FKH1, FKH2, NDD1, YHP1, MCM1, SWI5 and ACE2). The known 

target network topology of these TFs is extracted from various sources (Simon et al. 2001, 

Teixeira et al. 2006, and Monteiro et al. 2008) and is shown in Figure 5.4. As discussed in 

section 4.5.3, the figure is automatically generated by the MATLAB program. 

In the known network, SWI4 is activated by MCM1 during the G1 phase. It then 

transcriptionally triggers S-phase specific TF YOX1, which subsequently represses MCM1. 

As a result of this serial regulation, the generation of SWI4 slides down.  With the application 

of our 2-stage GRN approach, we are able to identify this small fragment of regulatory 

program accurately. Then again, the G2/M phase TF, FKH2 activates the co-expressed genes 

ACE2 and SWI5 during M-phase to assist with Chromatid separation. Our proposed model 

can learn these connections correctly as well. The topology of the estimated network is shown 

in Figure 5.5.  

 

  
Figure 5.4: The known network structure of the 13 cell cycle TFs. [generated by MATLAB] 
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Of the known 46 true interactions in the target network in Figure 5.4; our model is 

able to infer 13 connections (28% approx). Moreover, inspecting all the identified connections 

with respect to the known roles of TFs, it is found that, in most cases, the prediction 

confirmed the prior knowledge of cell cycle regulation, which establishes the validity of our 

approach. 

Finally, we validate our proposed 2-stage approach in analyzing two large microarrray 

datasets. Each of these datasets consists of 200 genes over 22 time points. In order to verify 

the potency of the approach with respect to the current challenges, we compute two criteria, 

accuracy and computation time for each datasets. ‘Accuracy’ is the percentage of correctly 

identified relationships out of the total number of known regulator-target relationships and 

‘Computation time’ is the run time of the whole approach. The experimental results of our 

proposed 2-stage approach (GRN2-stage) together with other existing DBN-based GRN models 

(GRNMurphy, GRNZou, and GRNPhase) on the two datasets have been summarized in Table 5.1 

and Table 5.2 respectively. In the tables, ‘Correctly Identified Relationships’ specifies 

predicted relationships that have been established in yeast cell cycle regulation as a direct 

Figure 5.5: The estimated network of the 13 known cell cycle TFs.  

[generated by MATLAB] 
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influence and ‘Total identified relationships‘ shows the total number of predicted gene 

relationships. 

Table 5.1: Dataset alpha30, includes transcription levels of 200 genes with a sampling 

interval of 5 minutes and a total of 22 time points. 

 

 

 

 

 

 

 

 

Table 5.2: Dataset alpha38, includes transcription level of 200 genes with a sampling interval 

of 5 minutes and a total of 22 time points. 

 

 

 

 

 

 

 

By inspecting the reconstructed networks, it is found that the number of true 

relationships predicted by our 2-stage approach has increased in comparison with the existing 

GRN models. The second challenge, the excessive computational cost of inferring GRN has 

Method 

Total 

Identified 

Relationships 

Correctly 

Identified 

Relationships 

Accuracy 

(%) 

Computation 

Time 

GRNMurphy 
1267 13 1.823 38 hrs 10 mins 19 

secs 

GRNZou 

 

288 7 0.982 27 hrs 18 mins 32 

secs 

GRNPhase 
727 

 

21 2.945 14 hrs 15 mins 58 

secs 

GRNCo-expressed 
1139 21 

 

2.945 13 mins 14 secs 

GRN 2-stage 
1782 37 

 

5.189 14 hrs  29 mins 12 

secs 

 

Method 

Total 

Identified 

relationships 

Correctly 

Identified 

Relationships 

Accuracy 

(%) 

Computation 

Time 

GRNMurphy 1063 15 2.104 37 hrs 27 mins 11 secs 

GRNZou 

 
277 9 1.262 26 hrs 43 mins 3 secs 

GRNPhase 
1065 

 
30 4.2076 14 hrs 41 mins 35 secs 

GRNCo-expressed 
552 

 
30 4.2076 13 mins 16sec 

GRN 2-stage 
1618 

 
52 7.293 14 hrs 54 mins 51 secs 
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been addressed remarkably by GRN2-stage in comparison with GRNMurphy and GRNZou.  We 

believe that the use of biological knowledge in finding regulators of individual and co-

expressed genes is the key to the success of our new 2-stage approach. However, due to the 

merging of two regulation networks, the number of total relationships inferred by GRN2-stage is 

higher compared to the other methods. 

5.6 Conclusions 

In this chapter, we have applied a partitioning algorithm, Partition Around the 

Mediods (PAM), on the microarray gene expression data to identify groups of co-expressed 

genes.  The partitioning algorithm groups genes into k optimal number of clusters and then 

each cluster is represented by a mediods gene. In order to infer the underlying co-regulation 

mechanism of these co-expressed genes, we have applied the DBN learning algorithm among 

the mediods genes. 

The two main goals of our study in this chapter are: 1) to improve the number of 

correctly predicted regulator-target relationships and 2) to reduce the computation time of the 

DBN algorithm. The proposed model has been evaluated through the analysis of two separate 

datasets of yeast cell cycle along with some existing DBN-based GRN models.  Each of these 

experimental datasets contains 200 cell cycle regulated genes over 22 time points.  The 

partitioning of the genes around mediods and the notion of finding regulation among the 

mediods has drastically reduced the search space; hence the computation time of the model 

has significantly improved in comparison to the existing models. The low computation cost of 

the model has encouraged us to combine the proposed model with the model discussed in 

chapter 4 to obtain a more complete picture of gene regulation in the yeast cell cycle. The 

ensemble of these models has also increased the number of true regulator-target gene pairs.  
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However, the number of total relationships estimated by the combined model is 

considerably high in compare to the other models. We can speculate some reasons for this 

high number. Firstly, the partitioning algorithm barely can identify groups of co-expressed 

genes correctly due to the inherent noise and imprecision of the microarray experiments. This 

shortcoming has led to the distribution of co-expressed genes into different clusters. Secondly, 

while applying the DBN algorithm to estimate regulation among the mediods, a good number 

of irrelevant connections have been inferred due to the incorrect partitioning of the co-

expressed genes. 

As in chapter 4, we have verified the entire estimated network and investigated how 

the computation time and the accuracy of prediction have been improved. Although sub-

networks analyses might provide insight of individual clusters and the estimated network 

within the cluster, In this chapter, our main focus is to reduce the problem space using some 

heuristics and therefore subnetworks analyses have not been conducted. First, our proposed 

model reduces the problem space by clustering genes into groups and then, finds the 

regulation network among the mediods of the clusters. We have also investigated the effect of 

these two step reductions in the problem space on the computation time and the overall 

prediction accuracy of the model.  

In conclusion, our study in this chapter is a small step towards constructing the whole 

GRN of the yeast cell cycle. However, we can extend our work in different ways. Firstly, in 

our analysis; we have used the mean of the expression change to discretize the time series, 

and to define the similarity matrix in identifying the groups of co-expressed genes. This 

measure may have a diverse effect on the identification of groups of co-expressed genes 

because of the outliers in the data. The incorporation of more biological driven knowledge can 

improve the performance of the partitioning algorithm. Secondly, we can redefine the scoring 
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function, which is the key to finding the regulator-target relationships. Finally, we plan to 

utilize other sources of biological data such as Protein-Protein Interaction (PPI) data to restrict 

the number of potential regulators of a target gene in our future models. 

 

 



 

 

CHAPTER 6 

TRANSCRIPTIONAL REGULATION FROM MULTI-

SOURCE DATA
1
 

This chapter focuses mostly on addressing the data scarcity problem associated with 

the computational reconstruction of gene regulatory networks (GRN). The inadequate amount 

of experimental conditions compared to the number of random variables is considered to be 

one of the major obstacles in discovering transcriptional regulation with high accuracy. In 

addition, the high complexity in the gene regulation mechanism makes the application of 

available statistical and machine learning methods infeasible. In this chapter, we study a 

model based on dynamic Bayesian networks to predict transcriptional regulation by 

integrating transcription factor binding site data (TFBS) and protein-protein interaction (PPI) 

data with gene expression data. The knowledge of genetic interactions between proteins and 

the presence of transcription factors binding site at the promoter region of a gene are utilized 

to restrict the number of potential regulators of each target gene. We demonstrate the 

effectiveness of combining multiple data sources in predicting transcriptional regulation 

through the analysis of yeast cell cycle data.  

                                                 

1
 This chapter presents the results of a conference paper (Shermin et al. 2011) published in the Proc. of the ACM 

Conference on Bioinformatics, Computational Biology and Biomedicine. 
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6.1 Introduction 

In the post-genomic era, a diverse collection of high-throughput biological databases 

are available which provide a rich source for the study of the underlying cellular processes. 

These databases include gene expression profiles, protein-protein interaction (PPI), 

transcription factor binding site (TFBS), pathways, yeast two-hybrid experiments etc. In a 

living cell, PPI occurs when two or more proteins bind together to accomplish a certain 

biological function. For instance, the DNA replication during the S-phase of the cell division 

cycle are carried out by large molecular machines that are built from a large number of 

protein components organized by their PPI. Therefore, PPIs are at the core of the entire 

interaction network of any living cell. The TFBS database stores the transcription factors (TF) 

and their corresponding DNA sequences that they interact with. This data provides evidence 

about potential gene regulation and is a relevant source for the study of gene expression at the 

transcriptional level.  

When estimating a network from gene expression data alone, a common problem is 

that the number of time points in the data, is limited compared to the number of random 

variables in the network which makes the estimation task difficult. In this chapter, we address 

this challenge by incorporating multiple sources of biological data with the microarray gene 

expression data.  

The basic structure learning algorithm of DBN usually explores every combination of 

genes as potential regulators of a target gene. Therefore, the search space grows exponentially 

with the number of genes included in the dataset. In addition, because of the inherent noise 

and imprecision of microarray data, the inference algorithms can hardly find the true regulator 

of a target gene. As discussed in the previous chapters, one way of addressing these 

fundamental problems is to narrow down the number of potential regulators of a target gene 
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by leveraging domain knowledge. In this chapter, we use the two sources of biological data, 

PPI data and TFBS data, to restrict the number of potential regulators of a target gene. Of the 

two types of known interactions between proteins/genes, we assume that the genetic 

interactions could carry some biological evidence of one interactor being regulated by the 

other. Then again, TFs which have at least one binding site in the promoter region of a target 

gene are considered as potential regulators along with the genetic interactors of the gene. In 

summary, we decompose the entire network into several sub-networks; each of these sub-

networks contains a specific gene and its potential regulators. Finally, the DBN structure 

learning algorithm is applied to learn the candidate regulators of the target gene from the 

corresponding biologically driven sub-network. 

The incorporation of these biological data proves to be quite complementary to 

expression data, since it dramatically decreases the amount of expression data needed to 

discover regulatory networks by DBN models. This chapter aims to investigate the 

effectiveness of integrating other sources of biological data in reconstructing GRN from 

expression data. In addition, the proposed model is capable of predicting missing values using 

the nearest neighbor averaging algorithm. Therefore, in contrast to study in the previous 

chapters, we test the model on a popular dataset of the yeast cell cycle which has a reasonable 

amount of missing values in it. 

6.2. Related Work 

Though most of the available reverse engineering approaches rely solely on the 

temporal gene expression data only, an  increasing number of recent works have paid 

attention on incorporating multiple sources of data for reconstructing GRN. 

Hartemink et al. (2002) introduced a new notion in the process of reconstructing 
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GRNs by combining multiple sources of experimental data. In their study, they used the 

location data to influence prior of the model and learnt the structure of the network from the 

gene expression data. They discovered a network of thirty three genes which is involved in 

yeast pheromone response and is consistent with the current understanding regarding this 

regulatory network.  

Tamada et al. (2003) studied a statistical method for estimating gene networks and 

detecting promoter elements simultaneously. The authors made an assumption that genes 

which are regulated by a common TF, may share a consensus motif in their promoter regions 

of the DNA sequences. In an iterative process, their method detects consensus motifs based 

on the structure of the estimated network, and then re-estimates the network using the result 

of the motif detection until the network becomes stable. In another study, Segal et al. (2003) 

incorporated both gene expression and promoter sequence data to estimate the GRN. Their 

method estimated motif profile from the promoter sequence data and identified regulatory 

modules in a set of experiments through a common motif profile.  Then, the authors used the 

EM algorithm to refine the motif profile by adding or deleting motifs so as to best explain the 

expression data as a function of the regulatory modules.  

Nariai et al. (2004) proposed a statistical method for inferring transcriptional 

regulation from microarray data and used PPI data to refine the estimated GRN. In a recent 

study, Zhang et al. (2007) used dynamic Bayesian network (DBN) with structural Expectation 

Maximization (SEM-DBN), to model GRNs from both gene expression data and 

transcriptional factor binding site data. They used the binding site data to introduce the prior 

knowledge to SEM-DBN model and microarray expression data for structure likelihood. 

Werhli, and Husmeier (2007) studied a Bayesian approach where they systematically 

incorporated multiple sources of biological data to estimate a prior distribution over network 
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structures in the form of a Gibbs distribution. Zhu et al. (2008) demonstrated that the 

integration of diverse ranges of molecular data, including genotypic, gene expression, TFBS 

and PPI data, can enhance the predictive power of the GRNs.  In a most recent study, Zhang 

et al. (2010) studied an integrative framework to infer gene regulatory modules from the cell 

cycle of cancer cells by incorporating multiple sources of biological data, including gene 

expression profiles, gene ontology, and molecular interaction. They identified network motifs 

from the molecular interaction data and applied a recurrent neural network model to examine 

the relationship between TFs and their target gene groups. 

We conclude this literature review of related works with the finding that GRNs can be 

reconstructed from a single source of data such as gene expression data; however, 

incorporation of other sources of experimental data is believed to be effective in improving 

the estimation accuracy of the reconstructed networks.   

6.3 Background 

In this section, we describe the two sources of molecular data that are used in the 

proposed model. This includes PPI data and the TFBS data. This section also discusses the 

feasibility of applying these data in reconstructing GRNs at the transcription level. 

6.3.1 Protein-protein interaction data 

Experimentally identified PPI data have been extracted from the BioGRID database 

(release 3.1.72) (Breitkreutz et al. 2008). BioGRID is an online interaction repository that 

compiles data through intensive curation effort. The database searches publications that report 

raw protein and genetic interactions from a range of organisms such as yeast, human etc. The 

repository is continually updating to new releases by including the newly reported 
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interactions.  In the database, individual interactions are recorded as binary relationships 

between two proteins or genes. The database stores both physical and genetic interactions of 

proteins. The physical interactions include relationships such as the direct physical binding of 

two proteins, co-existence in a stable complex etc. On the other hand, the genetic interaction 

refers to the relationship between two proteins or genes where over-expression or deletion of 

one gene/protein has an impact on the other gene/protein. While searching the BioGRID 

database with the TF, MBP1 which is involved in the regulation of cell cycle progression 

from G1 to S phase, 95 unique interactions have been identified. Of these interactions, there 

are 26 physical interactions and 69 genetic interactions. The transcription co-factor SWI6 has 

physical interaction with MPB1 in the PPI network which establishes the known fact that 

these two TFs form a complex to regulate the transcription at the G1/S transition. The other 

well-known transcriptional activator, SWI4 has genetic interaction with MBP1 in the PPI 

network. In the yeast cell cycle, SWI4 is an established activator which forms a complex with 

SWI6 and regulates the expression of genes at the G1/S transition. Since there is no physical 

interaction between SWI4 and MBP1 in the PPI network, we have assumed that SWI4 can be 

a potential regulator of MBP1. Figure 6.1 shows the genetic interaction network among the 13 

known TFs of yeast cell cycle which is extracted from the BioGRID database. This includes 

G1-phase specific TFs (MBP1, SWI4, and SWI6), S-phase specific TFs (HCM1, WHI5, 

YOX1) and G2/M phase TFs (FKH1, FKH2, NDD1, YHP1, MCM1, SWI5 and ACE2). It is 

worth mentioning that there are a few TFs in the figure which have no genetic interaction with 

the others such as WHI5 in the PPI network. However, this does not imply that WHI5 has no 

regulatory contribution at the transcription level.  As discussed in section 4.5.3, the figure in 

6.1 is generated by the MATLAB program. 
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6.3.2 Transcription factor binding site data 

The potential regulatory associations between TFs and their target genes in yeast have 

been extracted from the YEASTRACT database (Monteiro et al. 2008, Teixeir et al. 2006). 

The database contains regulatory associations between the yeast genes, which are 

denominated as “documented” and “potential” associations. Despite the fact that the existence 

of the TF binding site in the promoter region of a gene does not necessarily make it a target of 

the corresponding TF, we investigate the potential regulatory association and consider a TF as 

a potential regulator of a target gene if the former has at least one binding site in the promoter 

region of the latter. While searching the YEASTRACT database with the TF MBP1 as a 

target gene, the search generates 34 potential regulators and the transcriptional activator, 

SWI4 is one them. Therefore, both sources of biological data suggest that there is possibly a 

regulatory effect of SWI4 on the expression of MBP1. 

 Figure 6.2 shows the potential regulation network among the 13 known TFs of yeast 

Figure 6.1: Genetic interaction network among the 13 known TFs of yeast cell cycle. The 

network is extracted from the online interaction repository, known as BioGRID. 

[generated by MATLAB] 
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cell cycle extracted from the YEASTRACT database. Every gene in the figure has one or 

more regulators, for example WHI5 has three potential regulators which are SWI4, FKH2, 

and FKH1. Therefore, we can assume that while combining the two potential networks 

together, all the genes have at least one regulator.                                            

 

 

6.4 Methods 

In this chapter, our goal is to incorporate other sources of biological data in estimating 

the structure of transcriptional regulation of yeast cell cycle from microarray gene expression 

data. The microarray dataset contains gene expression levels of thousands of genes over 

distinct phases of the cell cycle. Given this massive dataset, the structure learning of gene 

regulation network using the algorithm described in Table 4.1, chapter 4, becomes 

computationally expensive as the size of Q (the number of potential regulators) grows 

exponentially with N, the number of genes in the dataset. The algorithm considers each gene 

in the dataset as a potential regulator of a target gene. However, biological networks are 

mostly scale-free (Han 2008); they have a few highly connected nodes in the network. In the 

Figure 6.2: Potential regulatory association among the 13 known TFs of yeast cell cycle 

extracted from the YEASTRACT database. [generated by MATLAB] 
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context of GRNs, these nodes represent the transcriptions factors and regulate the expression 

of the majority of the genes. This fact suggests that not all the genes in the dataset are TFs; 

hence they have no regulatory affect on other genes. 

In this chapter, we utilize this feature of gene regulation networks by extracting a set 

of potential TFs R(i), where card(R(i)) ≤ N and R(i) ∈ N for each gene i by integrating 

different layers of biological data. This utilization of multi-sources biological data in 

estimating transcriptional regulation confers an integrative framework of the GRN model as 

shown in Figure 6.3. The following subsections discuss the methodologies required for the 

extraction of R(i) and learning the regulation network with DBN. We also discuss the 

methods adapted in the model to impute missing values in the dataset. 

6.4.1 Impute missing values 

An illustrious fact about all available microarray data is that they contain missing 

values. Since the model proposed is only applicable to complete data, we estimate the missing 

values using nearest neighbor averaging algorithm. To find the k nearest neighbors, the 

algorithm computes the euclidean distance of a gene with missing values to its neighbors. The 

search for k nearest neighbors is confined to the columns for which that gene has no missing 

values. Each candidate neighbor may also miss some of the expression values used to 

calculate the distance. In cases where the candidate neighbor gene has missing values, an 

average distance is computed from the non-missing expression values of the neighboring 

genes. Having found the k nearest neighbors of a gene, the missing expression values are 

imputed by averaging those of its neighbors. This algorithm fails for predicting missing 

values of those genes that have all the neighbors missing.  
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6.4.2 Extraction of potential regulators of genes  

As mentioned in section 6.3, two sources of biological data are used to extract the 

potential regulators of a target gene. These are TFBS and PPI data. We assume that the 
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Figure 6.3: Framework of the proposed GRN model. The model incorporates two sources of 

biological data in the learning process. 
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interactors may have a regulatory affect on each other, although, none of these two sources of 

interaction data show any direct evidence of gene regulation. This assumption has 

significantly reduced the number potential regulators of a target gene, without sacrificing 

accuracy, which consequently contributed towards a scalable model for estimating GRN.  

For each gene i in the dataset D, we extract a regulator set RBS(i) from the binding site 

data where each r ∈ RBS(i) has at least one binding site in the promoter region of i. As 

described in Section 6.3, there are two types of interactions between proteins published in the 

BioGRID database (Breitkreutz et al. 2008). In this study, we assume the genetic interaction 

between two proteins as a possible regulatory interaction. For each gene another potential 

regulator set RPPI(i) has been extracted, where each s ∈ RPPI(i) is a genetic interactor of  i and 

s ∈ N. Finally the two potential regulator sets are combined to generate a potential regulator 

set R(i), where R(i) = RBS(i) ∪ RPPI(i). 

6.4.3 Learning the structure of GRN 

Given that there are N genes in the dataset D and for any gene i, the regulator list 

contains m potential regulators, that is Card(R (i)) = m.  As any combination of the potential 

regulators may regulate the expression of the target gene i, the total number of potential 

regulators to consider is 2
m

. However, for a large m, the search space is enormous.  To deal 

with this dimensionality problem, we further restrict the fan-in (the number of input edges) of 

each node in the network to k (<<m). As a consequence, the size of the search space is 

reduced to 
m

Ck. 

These two levels of restrictions on the number of potential regulators of a target gene 

has facilitated the structure learning algorithm described in Table 4.1 to be applicable on a 
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dataset containing hundreds of genes. 

6.5 Experiments and Results 

To demonstrate the effectiveness of integrating multi-sources data at the different level 

of the proposed model, we apply it on a popular experimental dataset. The detailed 

experimental setup including data and the results are presented in the following subsections.  

6.5.1 Experimental data 

In this chapter, we have analyzed the real time-course dataset of yeast cell cycle 

(Spellman et al. 1998). We choose to work with this dataset because of its incompleteness; 

that is there are missing values in it. The dataset contains gene-expression measurements of 

the mRNA levels of 6178 Open reading frames using four different cell synchronization 

methods: cdc15, cdc28, alpha factor and elutriation with 24, 17, 18 and 14 time points 

respectively. Though cdc15 dataset has the maximum number of time points, we have chosen 

the alpha-factor dataset because of the fewer missing values in it. As discussed in section 

6.4.1, the nearest neighbor averaging algorithm is used to impute the missing values in the 

dataset. However, the cost of this imputation can be excessive for a large number of genes in 

the dataset with missing values.  

6.5.2 Experimental setup 

The experiments are conducted on a computer system with dual core Intel processor 

(1.83 GHz) and 2 GB RAM, running windows XP (Professional). To estimate the missing 

values in the dataset, we have used the knn.impute function of the free statistical software, R 

(R Core Team 2009). Together with R, we have also used Bayesian Net Toolbox (BNT) 
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which is written in MATLAB and freely provided by Murphy (2001a) to construct DBNs. 

The experiments are setup and run under the MATLAB environment with version 7.6.0.324 

(R2008a) and R 2.13.1. 

6.5.3 Experimental results 

We run two separate experiments in a similar fashion as described in the previous 

chapters to illustrate the effectiveness of the proposed GRN model. The first experiment 

involves the estimation of a small-scale network including 13 TF only. In experiment 2, we 

compare the performance of the proposed model with the models discussed in chapters 4 and 

5 through the analysis of the benchmark dataset containing 250 cell cycle regulated genes 

over 18 time points. We increase the size of the dataset by 50 more genes in compared to the 

previous chapter to test the GRN models in estimating relatively large-scale networks. The 

known regulation network among these genes is extracted from multiple sources (Simon et al. 

2001, Teixeira et al. 2006, Monteiro et al. 2008, KEGG 2000, Kanehisa et al. 2006, Kanehisa 

et al. 2008). For the verification of the estimated networks, we use the same method as 

discussed in section 4.5. The detailed description of the experiments and results are discussed 

in the following subsections.  

6.5.3.1 Experiment 1 

In experiment1, the model is tested on a small segment of the dataset, including 13 TFs that 

are known to be involved in cell cycle transcription of budding yeast. The target network 

among these TFs is shown in Figure 6.4. In the figure, an arrow from gene i to gene j means a 

direct influence of i on j and a line indicates bidirectional influence.  
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In estimating the transcriptional regulation, the model first extracts the potential 

regulation network among these TFs from multiple data sources as discussed in section 6.3. 

The derived network structure among the TFs is shown in Figure 6.5. At the next step, the 

model applies DBN learning algorithm to refine the potential regulation network by observing 

the available gene expression data. Figure 6.6 illustrates the final network structure estimated 

by our proposed model.  

 

 

Figure 6.4: Known network of the 13 known TFs in the yeast cell cycle.  

                   [generated by MATLAB] 

Figure 6.5:  Derived network among the 13 known TFs in the yeast cell cycle.     

                     [generated by MATLAB] 
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Inspecting the estimated network, it can be found that only 8 direct interactions have 

been correctly identified by our model of the 43 known relationships.  However, the 

incorporation of multiple sources data at the different layer of the model has narrowed down 

the search space briskly and the model has estimated only 20 connections as true positive. The 

G1-phase specific TF, MBP1 is a regulator of the other TF SWI4 in the target network. This 

regulatory relationship has been correctly derived in the potential network structure from 

different data sources. However, our model fails to infer this relationship as true positive by 

observing the gene expression data. We speculate that the inherent noise in the available data 

is the key factor to such a wrong estimation. Nevertheless, the correct derivation of key 

relationships in the potential network inspires us to integrate multiple sources of biological 

data in reconstructing GRN. 

6.5.3.1 Experiment 2 

In experiment 2, we apply our proposed GRN model (GRNMulti-sources) together with 

the other models (GRNPhase and GRNCo-expressed) on a large dataset. We also include two 

Figure 6.6: Estimated network among the 13 known TFs in the yeast cell cycle. 

                    [generated by MATLAB] 
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existing DBN-based GRN models (GRNMurphy, GRNZou)  in this analysis. Two performance 

evaluation criteria, accuracy and the computation time are computed for evaluating the 

performance of the models. The experimental results of applying these models have been 

summarized in Table 6.1. In the table, ‘Total identified relationships’ shows the total number 

of predicted TF-gene relationships. The ‘Correctly Identified Relationships’ specifies 

predicted relationships that are established in the yeast cell cycle regulation.  ‘Accuracy’ is the 

percentage of correctly identified relationships out of the total number of known regulator-

target relationships ‘Computation Time’ is the running time of the analysis. 

Table 6.1: The dataset includes transcription levels of 250 genes with a sampling interval of 7 

minutes and a total of 18 time points. 

 

The first two rows in Table 6.1 represent the networks estimated by two existing 

DBN-based GRN models, GRNMurphy (Murphy and Mian 1999) and GRNZou (Zou and Conzen 

2005). The third and fourth row represent the models (GRNCo-expressed, GRNMulti-sources) 

discussed in chapters 4 and 5 of this thesis. The bottom row represents the network estimated 

by the model (GRNMulti-sources) proposed in this chapter. The result shows that the integration 

of binding site and PPI data has a drastic effect on the computation time, which learns the 

Method 

Total 

Identified 

relationships 

Correctly 

Identified 

Relationships 

Accuracy 

(%) 

Computation 

Time 

GRNMurphy 436 12 1.548 
3 days 17 hrs 37 mins 

9 secs 

GRNZou 

 
250 0 0 

3 days 2 hrs 17 mins 

23 secs 

GRNPhase 1835 18 2.323 22 hrs 29 mins 

GRNCo-xpressed 2309 17 2.193 
17 hrs 59 mins 55 

secs 

GRN Multi-sources 551 106 13.678 1 min 
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network of 250 genes within a minute whereas the existing models take 4 days, 3 days, 1 day 

and 17 hrs respectively. 

In the target network, there are 775 established yeast cell cycle relationships extracted 

from multiple sources (Simon et al. 2001, Teixeira et al. 2006, Monteiro et al. 2008, KEGG 

2000, Kanehisa et al. 2006, Kanehisa et al. 2008). Our proposed model, GRNMulti-sources 

identifies a total of 551 connections in the predicted network and 106 of them are correct 

relationships, which gives approximately 14% accuracy of the model.  In contrast, most of the 

existing models show very low accuracy with much higher computation time. In particular, 

when GRNZou is applied on this benchmark dataset, the method fails to predict any true 

connections.  

6.6 Conclusions 

In this chapter, we have studied a GRN model through the analysis of real microarray 

data of yeast cell cycle. We have shown how the integration of multi-data sources such as 

TFBS and PPI data can contribute to the prediction of transcriptional regulation. The 

experimental results show that the integration of biological domain knowledge has removed 

extraneous genes from the potential regulator sets. As a consequence, the model is able to 

estimate the transcriptional regulation with relatively higher accuracy in a very short time. 

This outcome also establishes the proposed model as a competitive method for the global 

analysis of transcriptional regulation 

Despite the fact that the integration of multi-data sources enriches the estimation of 

transcriptional regulation, it has some pitfalls. The PPI data does not provide any regulatory 

evidence between them. Likewise, genes having binding sites of other genes in their promoter 

region may or may not have any regulatory connections. Therefore, such restriction on the 
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search space may exclude some true regulators from the potential regulator set. Most 

importantly, both PPI and TFBS data are susceptible to noise as they are collected through 

different biological experiments. These limitations pose a critical challenge on incorporating 

available sources of experimental data in the reconstruction of GRNs. 

The GRN model proposed in this chapter predicts the missing values with nearest 

averaging algorithm and then estimates the regulatory network form the complete data. 

Therefore, the model is not directly applicable on incomplete dataset. In the future, we can 

incorporate methods in our model such as structural expectation maximization, which can 

handle the missing values in the data. We also plan to extend our work by using informative 

priors in the DBN structure learning which might further improve the accuracy of the model.  

 

 



CHAPTER 7 

PERFORMANCE ANALYSIS OF THE GRN MODELS 

The study of gene regulatory network (GRN) models is a major area of research in 

systems and computational biology and the construction of network models is among the most 

important challenges in these disciplines. In general, the GRN models characterize 

quantitative knowledge concerning gene regulation which is hidden in the underlying data. 

However, knowledge about the underlying biological structures from which these data 

originate is often incomplete or unavailable. This lack of knowledge poses another critical 

issue which concerns the validation of the network models. The validation of GRN models 

can be approached from different perspectives. In recent years, the simulated datasets from 

DREAM (Dialogue for Reverse Engineering Assessments and Methods) project are gaining 

interest for validating GRN models. Therefore, we validate our proposed GRN models 

through the analysis of both simulated and experimental data in this chapter. We compare the 

performance of the network models in terms of the benchmark criteria of precision and recall 

together with the run-time complexity and three other statistical measures. To investigate the 

significance of the models in reconstructing gene regulation from available data, we also 

compare them against synthetically generated random networks. After thorough experimental 

validation, we confer that the network model as discussed in chapter 6 exhibits significantly 

higher performance over the other models. Although the computation time of the models 

discussed in chapters 4 and 5 has been significantly improved, they identify a low number of 

true positives in the estimated network. 
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7.1 Introduction 

Despite the huge amount of post-genomic data generated from microarray experiments 

and tens of computational methods proposed for reverse engineering GRN from such data, 

knowledge about the underlying biological structures which generate these data is often 

incomplete or unavailable. This limited knowledge makes it challenging to validate the 

interactions reconstructed from experimental data alone. Yet, microarray datasets typically 

have large number of genes with very few samples. As mentioned in the previous chapters, 

this insufficient data poses another challenge to the traditional statistical or machine learning 

methods for inferring GRN accurately. Due to these limitations of real experimental data, the 

use of simulated data for evaluating GRN models is gaining interest. In general, simulated 

gene expression data is derived from a synthetic network which consists of a topology that 

determines the structure of the network and a qualitative model for each of the interactions 

between the genes. The simulated data has the advantage that the true structure is fully known 

which makes the model validation task attainable. The main disadvantage is that this data is 

often dissimilar to the experimental data and the validation of model performance based 

solely on simulated data may be biased. 

Nevertheless, it has become a popular practice in genomics research to use both forms 

of data for the purpose of validating models (Li and Chan 2008, Noman et al. 2007, Li et al. 

2011). Initially, the models are tested on relatively large simulated datasets, containing up to 

100 genes, and then they are applied on small experimental datasets including tens of genes 

only. Some of these studies also injected different levels of noise in the simulated data to 

approximate the true characteristics of the experimental data. Despite all the efforts and the 

high accessibility of simulated data, our main interest lies in discovering GRN from real 

experimental data. 
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In the following sections, we evaluate the performance of the DBN-based GRN 

models that have been discussed in the previous three chapters in conjunction with two 

existing models. The benchmark criteria, precision and recall have been calculated along with 

the computation time for each model. In addition, several other measures such as F-measure, 

Negative Predictive Value (NPV) and specificity are computed for the statistical verification 

of the models. In the initial experiment, the models have been validated through the analysis 

of simulated data that are generated using the GeneNetWeaver from DREAM (Dialogue for 

Reverse Engineering Assessments and Methods) project with some induced noise. Secondly, 

we compare the performance of the estimated networks with synthetically generated random 

networks.  Finally, we evaluate the performance of the models through the analysis of 

experimental data of the yeast cell cycle with missing values in it. Therefore through the 

various experiments, we evaluate both the performance and the robustness of the GRN 

models to noisy and incomplete data.  

7.2 Existing DBN-based Models for Comparison 

As mentioned in chapter 4, a good number of DBN-based GRN models have been 

proposed to develop dynamic models of gene interaction from time course data. Among these 

models, we choose two models for the purpose of performance analysis. The first model 

(GRNMurphy) is the earlier study of Murphy and Mian (1999) that employed the classic DBN 

structure learning algorithm, namely REVEAL, for estimating the GRN. Given an unknown 

structure and complete data, the algorithm finds the parent set for each node independently. 

For a digitized node (2 possible values), there are 2
n 

parents which can be arranged in a lattice 

and the problem is to find the highest score in the lattice. In order to deal with the exponential 

growth of the lattice with n, Zou and Conzen (2005) studied a model (GRNZou) that reduces 
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the number of possible parent sets using biological interpretation of microarray data. In case 

of transcriptional regulation, these parent sets represent any combination of transcription 

factors that regulate the expression of a target gene. They used a pre-determined threshold for 

estimating changes in the expression (up/down regulation) of individual genes.  Genes that 

usually have either simultaneous or antecedent changes in expression when compared to their 

targets were considered as potential Transcription Factors (TF). This consideration allowed 

them to restrict possible regulators of each gene thus reducing the size of the lattice.  

As described in last three chapters, our proposed DBN-based GRN models also utilize 

biological domain knowledge to reduce the size of the lattice and then employ the REVEAL 

algorithm to find the structure of the GRN. Therefore, we compare our proposed models with 

the above mentioned approaches (GRNMurphy and GRNZou) for several reasons: (1) they 

employ a similar principle in learning the structure of the GRN, (2) they have been tested in 

the same domain that is, in the analysis of yeast cell cycle gene expression data, and (3) The 

comparative analysis allows us to quantify the effectiveness of incorporating biological 

domain knowledge in reconstructing GRN with DBN.  

7.3 Model Evaluation Criteria 

We use two benchmark metrics, namely precision (P) and recall (R) to evaluate the 

performance of our GRN models. “Precision” measures the proportion of actual positives 

which are correctly identified by the model. “Recall” measures the proportion of actual 

positives which are known in the true network. In addition to these benchmark metrics, we 

also compute the computation time of each model. Four factors contribute in the calculation 

of precision and recall. These are: True Positive (Tp), a connection that exists both in the true 

network and the estimated network), True Negative (Tn), a connection that does not exist in 
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either network), False Positive (Fp), a connection that exists only in estimated network) and 

False Negative (Fn), a connection that exists only in the true network). These factors are 

computed using the same method as discussed in section 4.5. Given these factors, the 

benchmark criteria can be defined as in equation 7.1 and equation 7.2. 

                            ( )   
  

      
                                                                     (   )                                 

                         ( )   
  

        
                                                                           (   )                                                                                     

In association with the precision and the recall, we compute three measures to 

statistically test the different GRN models. These are F-measure, Negative Predictive Value 

and Specificity. The F-measure is the harmonic mean of the benchmark metrics and can be 

computed as in equation 7.3. 

                                            
                

                
                                      (   )      

The NPV measures the proportion of negative connections which are correctly 

identified as negative by the model and is defined as in equation 7.4. A high NPV for a GRN 

model means that when the model estimates a negative connection, it is most likely correct in 

its estimation.  

                                          (   )   
  

       
                                 (   )      

The Specificity is a statistical measure which quantifies the proportion of negatives 

which are correctly identified by the model and can be computed as in equation 7.5. A 

theoretical optimal system can achieve 100% specificity.  

                                           
  

       
                                                                             (   )                                                                                                        
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7.4 Experimental Setup 

The experiments are conducted on a computer system with Intel® Core ™ i5 CPU 760 

@ 2.8 GHz and 4 GB RAM, running Windows 7 (Professional). The free statistical software, 

R version 2.15.0 (R Core Team 2009) is used to impute missing values in the real 

experimental dataset and find groups of co-expressed genes. Similar to the previous chapters,  

we use Bayesian Net Toolbox (Murphy 2001a) for constructing DBN and run the experiments 

under MATLAB environment with version 7.11.0. (R2010b).  

7.5 Analysis of Simulated Data 

The simulated data and the respective synthetic networks are generated using the Java 

application GeneNetWeaver (GNW) (Marbach et al. 2009). This network generator has been 

used as part of the DREAM (Dialogue for Reverse Engineering Assessments and Methods) 

initiative (Prill et al. 2010). GNW builds synthetic networks by specifying a biologically 

relevant topology and implementing a model to generate simulated data. GNW has the option 

to either grow the initial topology from a seed node or a randomly selected node in the source 

gene network (budding yeast in this thesis). Then the network grows by progressively adding 

a randomly selected neighboring node till the desired size is reached. Finally, each model can 

be used to generate simulated time course gene expression data.  

We test the performance of our proposed GRN models (GRNCo-xpressed and GRNMulti-

sources) along with two existing models (GRNKevin and GRNZou). We leave out the GRN model 

(GRNPhase) discussed in chapter 4 for the analysis of simulated data. This is because GRNPhase 

is applicable particularly on genes that exhibit periodicity in their gene expression. Most 

importantly, GRNPhase clusters genes based on very specific knowledge of the biological 

process (yeast cell cycle in this thesis) that generates the data. As GNW generates networks 
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by choosing genes arbitrarily from all the yeast genes, the proposed model lacks in finding a 

common biological insight for clustering genes into groups.  

 Each of the above mentioned models was applied to five independent networks of 

size 20, 50 and 100 genes. These sub-networks are extracted from the high-dimensional yeast 

GRN with 4441 nodes and 12873 edges. Since we have selected the yeast cell cycle as the 

biological domain in this thesis, the most well known transcription factors such as MBP1, 

SWI6, and SWI4 have been set as seed nodes for extracting the sub-networks. A model 

consisting of ordinary and stochastic differential equations with Gaussian noise has been 

generated for each synthetic network. Then each GNW-generated network-model was used to 

simulate time-series datasets with a total of 21 time points, where t_max = 100.  

A complete comparison of the four GRN models through the analysis of 5 different 

datasets of size 20, 50 and 100 are shown in figures 7.1, 7.2 and 7.3 respectively and the 

corresponding data is listed in tables 7.1, 7.2 and 7.3. It is noteworthy that the last two criteria, 

NPV and Specificity show high values for all models in all the three tables. This implies that 

all the GRN models under study are capable of estimating true negative connections with high 

accuracy (95% approx). Therefore, we have excluded them in the subsequent figures 

considering that these measures are not significantly distinguishing model performance.  For 

the network size of 20 genes, we have set MBP1 as the seed node arbitrarily and used the 

greedy method to choose the neighboring genes. This selection implies that each simulated 

dataset contains the time-series expression data of 20 genes starting from MBP1 and the 

included genes vary across the datasets.  For the network of size 50, we have selected SWI6 

as the seed node, which is again a random selection except the fact that it is a well-known TF 

in the yeast cell cycle gene regulation. In a similar fashion, we have selected SWI4 as the seed 

node for generating the networks of size 100.  
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Table 7.1: Comparison of performance among the four different DBN-based GRN models. 

The first two GRN models are existing works and the latter two have been 

proposed in this thesis. The models have been applied on 5 different simulated 

datasets of 20 genes over 21 time points. For each dataset, the best performing 

model in respect to the benchmark criteria, precision and recall has been 

highlighted in bold. 
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1 

GRNMurphy 39 1 2 2.70 5.88 3.70 0.95 95.09 

GRNZou 36 2 1 5.71 11.76 7.69 0.95 95.43 

GRNCo-expressed 80 7 2 10.45 41.18 16.67 0.97 96.62 

GRNMulti-sources 21 16 0 76.19 94.12 84.21 1.00 99.71 

2 

GRNMurphy 40 5 2 13.16 26.32 17.54 0.96 95.67 

GRNZou 38 0 2 0.00 0.00 0.00 0.94 94.15 

GRNCo-expressed 83 5 3 7.25 26.32 11.36 0.95 95.21 

GRNMulti-sources 21 19 0 90.48 100.0

0 
95.00 1.00 100.00 

 

3 

 

GRNMurphy 39 3 2 8.57 15.79 11.11 0.95 95.09 

GRNZou 36 3 2 8.82 15.79 11.32 0.95 95.11 

GRNCo-expressed 98 2 4 2.50 10.53 4.04 0.94 93.95 

GRNMulti-sources 24 16 0 66.67 84.21 74.42 0.99 99.11 

 

 

4 

GRNMurphy 39 5 1 13.89 26.32 18.18 0.96 95.69 

GRNZou 39 4 2 10.81 21.05 14.29 0.95 95.37 

GRNCo-expressed 96 1 1 1.30 5.26 2.08 0.94 93.66 

GRNMulti-sources 23 15 0 65.22 78.95 71.43 0.99 98.82 

       

 

       

5 

GRNMurphy 38 3 2 9.38 15.79 11.76 0.95 95.14 

GRNZou 31 0 1 0.00 0.00 0.00 0.94 94.26 

GRNCo-expressed 89 2 4 3.03 10.53 4.71 0.94 94.24 

GRNMulti-sources 20 17 0 85.00 89.47 87.18 0.99 99.41 
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Figure 7.1: Comparison of performance in terms of precision (P), recall (R) and F-measure 

among the four DBN-based GRN models through the analysis of 5 different 

simulated datasets including 20 genes. 
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Table 7.2: Comparison of performance among the four different DBN-based GRN models. 

The first two GRN models are existing works and the latter two have been 

proposed in this thesis. The models have been applied on 5 different simulated 

datasets of 50 genes over 21 time points. For each dataset, the best performing 

model in respect to the benchmark criteria, precision and recall has been 

highlighted in bold. 

D
a
ta

se
t 

M
et

h
o
d

s 

T
o
ta

l 

id
en

ti
fi

ed
 

re
la

ti
o
n

sh
ip

s 

C
o
rr

e
ct

ly
 

id
en

ti
fi

ed
 

re
la

ti
o
n

sh
ip

s 

M
is

d
ir

ec
te

d
 

re
la

ti
o
n

sh
ip

s 

P
re

ci
si

o
n

 

(%
) 

R
ec

a
ll

 

(%
) 

F
-m

ea
su

re
 

N
eg

a
ti

v
e 

P
re

d
ic

ti
v
e 

V
a
lu

e 

S
p

ec
if

ic
it

y
 (

%
) 

1 

GRNMurphy 100 5 3 5.26 4.76 5.00 0.96 95.56 

GRNZou 102 3 6 3.13 2.86 2.99 0.95 95.46 

GRNCo-expressed 248 2 5 0.96 1.90 1.28 0.95 95.18 

GRNMulti-sources 80 28 7 38.36 26.67 31.46 0.97 96.61 

2 

GRNMurphy 96 2 2 2.13 1.87 1.99 0.95 95.33 

GRNZou 93 8 2 8.79 7.48 8.08 0.96 95.60 

GRNCo-expressed 206 7 7 4.43 6.54 5.28 0.95 95.42 

GRNMulti-sources 74 26 3 36.62 24.30 29.21 0.96 96.43 

 

3 

 

GRNMurphy 96 9 5 10.23 8.26 9.14 0.96 95.56 

GRNZou 98 3 5 3.23 2.75 2.97 0.95 95.28 

GRNCo-expressed 214 13 6 7.39 11.93 9.12 0.96 95.57 

GRNMulti-sources 78 28 4 38.36 25.69 30.77 0.96 96.43 

 

 

4 

GRNMurphy 100 0 4 0.00 0.00 0.00 0.95 94.78 

GRNZou 100 2 4 2.08 1.71 1.88 0.95 94.86 

GRNCo-expressed 236 28 11 14.97 23.93 18.42 0.96 95.85 

GRNMulti-sources 89 32 3 37.65 27.35 31.68 0.96 96.22 

       

 

       

5 

GRNMurphy 100 5 3 5.43 4.63 5.00 0.95 95.42 

GRNZou 100 2 3 2.06 1.85 1.95 0.95 95.28 

GRNCo-expressed 239 5 9 2.62 4.63 3.34 0.95 95.21 

GRNMulti-sources 77 26 6 36.62 24.07 29.05 0.96 96.39 



CHAPTER 7.  PERFORMANCE ANALYSIS OF THE GRN MODELS 

11 

 

 

 
 

Figure 7.2: Comparison of performance in terms of precision (P), recall (R) and F-measure 

among the four DBN-based GRN models through the analysis of 5 different 

simulated datasets including 50 genes. 
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Table 7.3: Comparison of performance among the four different DBN-based GRN models. 

The first two GRN models are existing works and the latter two have been 

proposed in this thesis. The models have been applied on 5 different simulated 

datasets of 100 genes over 21 time points. For each dataset, the best performing 

model in respect to the benchmark criteria, precision and recall has been 

highlighted in bold. 
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1 

GRNMurphy 168 2 7 1.25 0.59 0.80 0.96 96.43 

GRNZou 166 0 5 0.00 0.00 0.00 0.96 96.49 

GRNCo-expressed 566 41 15 4.26 5.62 4.85 0.97 96.50 

GRNMulti-sources 222 53 6 24.88 15.68 19.24 0.97 96.95 

2 

GRNMurphy 191 9 6 4.95 2.69 3.49 0.97 96.54 

GRNZou 196 6 7 3.06 1.78 2.25 0.97 96.54 

GRNCo-expressed 592 29 13 5.84 8.68 6.98 0.97 96.64 

GRNMulti-sources 294 73 7 25.70 21.86 23.62 0.97 97.19 

 

3 

 

GRNMurphy 194 7 5 3.74 2.06 2.66 0.96 96.46 

GRNZou 193 10 6 5.35 2.95 3.80 0.96 96.49 

GRNCo-expressed 451 9 11 2.39 2.65 2.52 0.96 96.41 

GRNMulti-sources 272 86 5 32.82 25.37 28.62 0.97 97.28 

 

 

4 

GRNMurphy 196 5 9 2.70 1.46 1.90 0.96 96.41 

GRNZou 195 7 6 3.59 2.05 2.61 0.97 96.51 

GRNCo-expressed 496 16 14 3.91 4.68 4.26 0.96 96.44 

GRNMulti-sources 258 69 8 27.82 20.18 23.39 0.97 97.07 

       

 

       

5 

GRNMurphy 192 4 8 2.21 1.16 1.52 0.96 96.36 

GRNZou 200 5 7 2.59 1.45 1.86 0.96 96.37 

GRNCo-expressed 479 9 13 2.24 2.61 2.41 0.96 96.33 

GRNMulti-sources 233 65 7 29.02 18.84 22.85 0.97 97.00 
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Figure 7.3: Comparison of performance in terms of precision (P), recall (R) and F-measure 

among the four DBN-based GRN models through the analysis of 5 different 

simulated datasets including 100 genes. 
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In the above tables, we record three additional factors together with model evaluation 

criteria. These factors are: “Total identified relationships” which is the total number of 

regulator-gene relationships estimated by the model, “Correctly identified relationships” is the 

true positive relationships and “Misdirected relationships” represents false positives that have 

reverse relationships in the true network. In this analysis, we exclude run-time complexity of 

the models as performance evaluation criteria because of the small size of the networks.  

As shown in the figures (Figure 7.1, 7.2 and 7.3), the GRN model (GRNMulti-sources) 

proposed in chapter 6 of this thesis exhibits significantly improved performance in terms of 

precision, recall and F-measure for all the datasets. We speculate that the incorporation of 

biological knowledge of gene regulation contributes towards such improvements. The other 

model, GRNCo-expressed shows inconsistent performance across the datasets. This is because the 

model solely depends on the data to find clusters of co-expressed genes without including any 

biological relevance. As a result it is sometimes unable to determine the groups of co-

expressed genes successfully which consequently makes the model unpredictable. In addition, 

the model estimates a high number of regulatory relationships compared to the other models 

as it finds co-regulation of co-expressed genes. The two existing models (GRNMurphy and 

GRNZou) show consistently poor performance for all data sizes. Though the model GRNZou 

utilizes biological interpretation to generate a preprocessed network, their static and 

predefined cut-offs for determining up and down-regulation of individual genes has a varied 

effect on its performance. 

7.6 Analysis of Experimental Data 

To evaluate the performance of our proposed GRN models in analyzing real 

experimental data, we have applied them on the benchmark dataset of the yeast cell cycle 
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(Spellman et al. 1998). We test the models in three different steps. At the first step, we assess 

the models through the analysis of small scale networks including 19 genes only. In the next 

step, the proposed models are compared with synthetically generated random networks to 

study their feasibility. Finally, we evaluate the performance of the models through the 

analysis of large-datasets including 300 genes. 

7.6.1 Inference of small-scale networks 

In this section, we analyze a small dataset containing 19 cell cycle regulated yeast 

genes. These are MPS1, BUB1, BUB3, MAD1, MAD2, MAD3, CDH1, CDC27, CDC20, 

CDC14, NET1, MOB1, DBF2, PDS1, ESP1, SMC1, MCD1, SMC3 and IRR1. We choose to 

work on this particular dataset so that it allows us to compare our models with other GRN 

models which were also tested on this dataset. In this analysis, we include two models based 

on PMDL (predictive minimum description length). The first model, GRNChaitankar  has been 

recently studied in the paper of Chaitankar et al. (2010) and the other model GRNWentao has 

been proposed by Wentao et al. (2006). The target network among these 19 genes has been 

extracted from the KEGG pathway database (KEGG 2000, Kanehisa et al. 2006, Kanehisa et 

al. 2008) as shown in Figure 7.4.  

Chaitankar et al. (2010) proposed a new algorithm which incorporates mutual 

information, conditional mutual information and predictive minimum description length 

(PMDL) to estimate the regulatory interactions between genes.  They inferred a total of 30 

edges, of which nine are correctly identified as shown in Figure 7.5. Another PMDL based 

model proposed by Wentao et al. (2006) identified a total of nine edges, of which only one is 

correctly inferred.  As explained in section 4.5.3, the figures, 7.4 and 7.5 are generated by the 

Matlab program and lack visual quality. 
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Figure 7.4: Target network among the 19 CCR genes extracted from the KEGG pathway 

database. In the network, each node represents a gene and an edge shows direct 

relationships among two genes. [generated by Matlab] 

 

Figure 7.5: Network estimated by the PMDL-based GRN model proposed in Chaitankar et al. 

(2010). The model estimates a total of 30 edges, of which 9 are true positives. 

[generated by Matlab]. 

To investigate how successfully DBN-based GRN models can estimate gene 

regulation in compare to other models, we analyze the same dataset including the same 19 
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genes with our proposed models (GRNPhase, GRNCo-expressed, and GRNMulti-sources) together with 

the existing models (GRNMurphy and GRNZou).  The models estimated a total of 31, 48, 40, 26 

and 25 regulatory relationships respectively. The first two models infer only 2 true positive 

connections, whereas the last two models estimate 3 connections correctly. The other model, 

GRNMulti-sources identifies a maximum of 17 true positive connections in the estimated network 

as shown in Figure 7.6. 

 

Figure 7.6: Network estimated by GRNMulti-sources as discussed in chapter 6. There are 40 

connections in the network, of which 17 are identified as true positives. 

[generated by Matlab]. 

Next, we compare the two PMDL based models together with the 5 DBN-based GRN 

models in terms of the benchmark criteria, precision and recall as well as the statistical 

measure of model accuracy, F-measure, as shown in Figure 7.7. Similar to the previous 

section, we do not include the measures of true negative rate, NPV and Specificity, in this 

performance analysis as all the models demonstrate very high accuracy in estimating true 

negative connections. Figure 7.7 shows that the DBN-based model, GRNMulti-sources exhibits 
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Figure 7.7: Comparison of the performance of 7 GRN models in terms of precision (P), 

recall(R) and F-measure. The first two models are based on PMDL and the latter 

models are DBN-based.  
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significantly better performance (42.5% precision 35% recall and an F-measure of 36.96) over 

the other models. The second best performing model is the PMDL-based model with 

precision of 30%, recall of 19% and an F-measure of 21.95. The other models exhibit 

inconsistent performance in terms of all three criteria. For instance, GRNWentao shows a 

precision of 10%, whereas the recall and F-measure of the network is the lowest of all the  

models. Overall, GRNCo-expressed exhibits poor performance in terms of both recall and 

precision as well as F-measure. 

We conclude this analysis of small scale networks with the finding that the DBN-

based model (GRNMulti-sources ) proposed in chapter 6 of this thesis outperforms all other 

models in estimating gene regulation from experimental data, which also confirms our 

previous findings of analyzing simulated data.  

7.6.2 Comparison with synthetically generated random networks 

To further validate the GRN models (GRNPhase, GRNCo-expressed and GRNMulti-sources), we 

evaluate the performance of the models by comparing the estimated GRNs with synthetically 

generated random networks. The models have been applied on the cell cycle datasets 

(Spellman et al. 1998) of varying sizes including 20, 40, 60, 80 and 100 genes and the 

respective target networks are extracted from multiple sources (Simon et al. 2001, Teixeira et 

al. 2006, Monteiro et al. 2008, KEGG 2000, Kanehisa et al. 2006, Kanehisa et al.2008). The 

random networks are generated using the algorithm described in the paper of Wentao et al. 

(2006) and the parameters (nodes and edges) are set according to the estimated GRN. The 

algorithm for random networks has been run 1000 times each for a specific size of the 

network and an average precision and recall are computed.  

At first, we estimate networks of varying dimensions with the GRN model, GRNPhase 
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from the experimental data. The precision, recall and F-measure of the estimated network 

against the random network with a varying network size are plotted in Figures 7.8a 7.8b and 

7.8c respectively. In Figure 7.8, it is observed that GRNPhase estimates networks with slightly 

higher precision and recall for small scale networks in comparison to the synthetically 

generated random networks. The F-measure of the model, GRNPhase also demonstrates a 

similar performance over the random networks. Nevertheless, the performance of the 

estimated network declines in terms of all three criteria as the dimension of the network grows 

and is not significantly distinguishable over the randomly generated network. 

In the next experiment, we analyze the same sets of data with the GRN model 

(GRNCo-expressed) that finds co-regulation of co-expressed genes as discussed in chapter 5. We 

compare and plot the precision, recall and F-measure of the estimated networks of varying 

dimensions with corresponding random networks as shown in Figure 7.9a, 7.9b and 7.9c 

respectively. In the Figure 7.9, the GRN model, GRNCo-expressed exhibits inconsistent 

performance in comparison to the randomly generated networks. Although the model 

estimates small scale networks with a higher precision, recall and F-measure, it shows 

irregular performance as the network size grows.  In some cases, it performs even poorer than 

the random networks. For instance, for the network dimension of 60, the precision of the 

model has declined in comparison to the random network and as the network size grows the 

performance of the model reaches the level of the random networks.  

To evaluate the performance of our last GRN model GRNMulti-sources (discussed in 

chapter 6), we analyze the same sets of data including same number of genes. The precision 

of the estimated networks against the random networks with varying network dimension is 

plotted in Figure 7.10a, the recall is shown in Figure 7.10b and the F-measure is in 7.10c. 

According to Figure 7.10, GRNMulti-sources estimates networks with significantly improved 
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Figure 7.8: Performance evaluation of GRNPhase (discussed in chapter 4) against synthetically 

generated random networks.  The model estimates networks of different 

dimensions, including 20, 40, 60, 80 and 100 genes. For each network dimension, 

1000 random networks are generated and the average precision and recall are 

calculated: a) precision, b) recall and c) F-measure.       
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Figure 7.9: Performance evaluation of GRNCo-expressed (discussed in chapter 5) against 

synthetically generated random networks.  The model estimates networks of 

different dimensions, including 20, 40, 60, 80 and 100 genes. For each network 

dimension, 1000 random networks are generated and the average precision and 

recall are calculated: a) precision, b) recall and c) F-measure. 
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Figure 7.10: Performance evaluation of GRNMulti-sources (discussed in chapter 6) against 

synthetically generated random networks.  The model estimates networks of 

different dimensions, including 20, 40, 60, 80 and 100 genes. For each network 

dimension, 1000 random networks are generated and the average precision and 

recall are calculated: a) precision b) recall and c) F-measure. 
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performance in comparison with the synthetically generated random networks. The precision 

and recall of the randomly generated networks plunge sharply with the increasing number of 

nodes in the network whereas the performance of GRNMulti-sources declines steadily. For 

instance, the precision of the estimated network for size 20 is 44%, whereas the random 

networks have an average value of 30%. With the addition of 20 new genes in the dataset, the 

precision of the random networks falls to 13% which is as high as 60% decline in value. The 

precision of GRNMulti-sources also drops to 35% which is 10% decline and shows similar fall as 

the network size grows. The performance of the random network declines even drastically 

with further increments of the network dimension. While comparing the performance of the 

estimated networks over the synthetically generated random networks in terms of F-measure, 

we observe a similar pattern. The F-measure of the estimated network demonstrates a steady 

fall whereas it shows a rapid decline for the random networks as the size grows. 

To summarize the performance of the GRN models against the synthetically generated 

random networks, we confer that the two models, GRNPhase  and GRNCo-expressed exhibit 

improved performance for the analysis of small-scale networks, however the models suffer as 

the dimension of the network grows. The other model, GRNMulti-sources outperforms the other 

two models and shows steady performance with the increasing number of genes in the dataset. 

7.6.3 Inference of large-scale networks 

Finally, we validate the performance of the DBN-based models (GRNMurphy, GRNZou, 

GRNPhase, GRNCo-expressed, and GRNMulti-sources) through the analysis of large-scale experimental 

data containing 300 genes. The working data is extracted from the yeast cell cycle datasets of 

Spellman et al. (1998) and the known networks are extracted from multiple sources (Simon et 

al., 2001; Teixeira et al., 2006; Monteiro et al., 2008, KEGG 2000, Kanehisa et al. 2006, 
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Kanehisa et al. 2008). The complete performance comparison of the models in analyzing large 

scale experimental data is depicted in Figure 7.11 and the corresponding data is given in 

Table 7.4. Similar to the previous analyses in sections 7.5 and 7.6, we exclude the measures of 

true negative rate, NPV and Specificity in Figure 7.11 because all the models demonstrate 

very high accuracy in estimating true negative connections.   

Table 7.4: Comparison of performance among the five different DBN-based GRN models. 

The first two GRN models are existing works and the latter three have been 

proposed in this thesis. The models have been applied on an experimental dataset 

of 300 genes over 18 time points. The best performing model in respect to the 

benchmark criteria, precision and recall has been highlighted in bold. 

As shown in the table, we include the run-time complexity of each model as 

performance evaluation criteria for this large dataset. The existing two models, GRNMurphy and 

GRNZou is unable to reconstruct the network in a week. We set 7 days as a cut-off time and  
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Figure 7.11: Comparison of the performance of 5 GRN models in terms of precision (P) and 

recall (R). The first two models are existing works and the latter models are 

proposed in this thesis. 

0

2

4

6

8

10

12

14

16

18

G
R

N
-M

u
rp

h
y

G
R

N
-Z

o
u

G
R

N
-P

h
as

e

G
R

N
-C

o
-

ex
p

re
ss

ed

G
R

N
-M

u
lt

i-
so

u
rc

es

P
re

ci
si

o
n

(%
) 

Models 

0

2

4

6

8

10

12

14

G
R

N
-M

u
rp

h
y

G
R

N
-Z

o
u

G
R

N
-P

h
as

e

G
R

N
-C

o
-

ex
p

re
ss

ed

G
R

N
-M

u
lt

i-
so

u
rc

es

R
ec

al
l(

%
) 

Models 

0

2

4

6

8

10

12

14

16

G
R

N
-M

u
rp

h
y

G
R

N
-Z

o
u

G
R

N
-P

h
as

e

G
R

N
-C

o
-

ex
p

re
ss

ed

G
R

N
-M

u
lt

i-
so

u
rc

es

F-
m

ea
su

re
 

Models 



CHAPTER 7.  PERFORMANCE ANALYSIS OF THE GRN MODELS 

27 

stopped running the experiments after that. The other two models, GRNPhase and GRNCo-

expressed take more than 3 days to estimate the respective networks, whereas GRNMulti-sources 

infers the network in only two minutes. This is a significant achievement in terms of 

computation time for the reconstruction of large scale networks. 

Nevertheless, each of these models suffers from the so-called curse of dimensionality 

problem as the search space grows exponentially with the number of potential regulators. Our 

proposed models deal with this high dimensionality problem by incorporating biological 

domain knowledge. They generate a preprocessed network by reducing the number of 

potential regulators for each gene which consequently restricts the growth of the search space; 

hence the models are capable of analyzing relatively large datasets.  

In Figure 7.11, the precision and recall of GRNMurphy and GRNZou are set to 0 as the 

models fail to estimate the networks within the cut-off time of 7 days. As a result, the F-

measure of the respective models is also 0. Of the 880 known relationships in the known 

network, the models (GRNPhase , GRNCo-expressed, GRNMulti-souces) identify 12 , 14 and 104 true 

positive connections respectively. Though, GRNMulti-sources estimates the maximum number of 

true positives and outperforms the other models, the recall of the model is just 11%. The 

models (GRNPhase, GRNCo-expressed, and GRNMulti-sources) infer a total of 2378, 2791 and 678 

relationships in their respective estimated networks. Since the number of false positive edges 

is inversely proportional to the precision of the model, the first two models have a precision 

which is as low as 0.5%, whereas GRNMulti-sources  soars to 15%.  Given that, F-measure is the 

harmonic mean of recall and precision, a similar performance is expected. The F-measure of 

GRNPhase and GRNCo-expressed is computed as low as less than 1 whereas GRNMulti-sources records 

above 13. 

To summarize the findings of analyzing the large experimental dataset with the GRN 
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models, we conclude that GRNMulti-sources outperforms all the model both in terms of 

benchmark criteria and the computation time of the models. This result is highly aligned with 

our previous findings as stated in the earlier sections. 

7.7 Conclusion 

In this chapter, we have validated the GRN models proposed in chapters 4, 5 and 6 of 

this thesis together with two existing models. The DBN-based GRN models are also 

compared against two PMDL-based models to investigate their relative performance for the 

analysis of small-scale networks. We have chosen PMDL-based models for two reasons: 1) 

the model is relatively recent study and 2) it has been applied in the domain of yeast cell 

cycle. For the purpose of model validation, we used both simulated and experimental datasets. 

The simulated data is from DREAM4 initiative which is considered as the benchmark data for 

assessing GRN models by the scientific community. To complete our validation process, we 

also compare the performance of the models with synthetically generated random networks.  

Over the course of different form of validations, we found that GRNMulti-sources as 

discussed in chapter 6, exhibits significantly higher performance over the other models. The 

model reduces the problem space by incorporating other sources of biological data prior to 

estimating the network. This early reduction has significantly slowed down the exponential 

growth of the search space which has extraordinarily improved the run time of the model. 

Likewise, the removal of extraneous genes from the potential regulator list for each target 

gene has reduced the data requirements for the DBN learning algorithm. As a consequence, 

the model is capable of identifying a high number of true positive connections even from the 

noisy experimental data. The other two models, GRNPhase and GRNCo-expressed show poor 

performances, particularly in terms of precision and recall.  As described in chapter 4, 
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GRNPhase clusters genes into groups based on their peak time and finds regulation within each 

group. Since the peak time of each gene is solely calculated from the expression profile, the 

model often fails to group them correctly. Similarly, we conjecture two major reasons for the 

poor performance of GRNCo-expressed. These are: 1) the use of single source data and 2) 

clustering of genes without any biological relevance. Nevertheless, both models have been 

tested on relatively large datasets and they are capable of estimating networks within a 

reasonable amount of time. 

In summarizing the obtained results through the analyses of different types and sizes 

of datasets, we find that both the precision and recall of the GRNMulti-sources demonstrate 

significant improvement. In analyzing the synthetic data of size 20, 50 and 100, the model 

shows 300-500% improvement over the existing models. The other two models, GRNPhase and 

GRNCo-expressed show a similar or slightly better precision and recall. In the analysis of real 

microarray data, the model exhibits even better performance. The existing models fail to 

estimate the network in a week whereas GRNMulti-sources learns the network in couple of 

minutes with higher precision (13%) and recall (15%). This is a remarkable achievement of 

the model in constructing a large-scale network from noisy microarray data. The other two 

models discussed in this thesis, GRNPhase and GRNCo-expressed  estimate networks in a 

reasonable amount of time with a very low number of true positives. While comparing the 

precision and recall of the GRN models proposed in this thesis, we find GRNMulti-sources 

demonstrate over 1000% improvement over GRNPhase and GRNCo-expressed. 

Since this chapter focuses on evaluating the performance of the proposed GRN models 

through the analysis of different data, an obvious question may arise; that is whether the 

model performance is data-dependent or not. None of the GRN models proposed in this thesis 

are data-dependent; that is the performance of the models is not directly dependent on the 
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gene expression data used for reconstructing the network. However, the performance of the 

models can vary due to the noise, incompleteness and other factors in the dataset. Though our 

models show steady performance on the analysis of both noisy and incomplete data, we have 

not performed any thorough analysis to quantify the robustness of the models. It is also worth 

mentioning that the performance of the models may vary in cases where we choose to include 

different set of genes in the data as shown in Table 7.1, 7.2 and 7.3. In these tables, for a 

given network size, we have generated 5 different datasets including different genes and the 

performance of the models slightly varies from dataset to dataset. Finally, all the experiments 

in this chapter confirm that the performance of the GRN models varies with the network 

dimension. Then again, the number of samples in the dataset may also contribute to the 

variation in model performance which is commonly known as stability analysis of the model. 

We leave this analysis as future work. 

 We conclude this chapter with the observation that the utilization of various 

biological knowledge extracted from available data sources, plays an important role in the 

construction of successful GRN model. 

 



CHAPTER 8 

SCALABILITY ANALYSIS 

This chapter focuses on the scalability analysis of the DBN-based GRN models 

discussed in this thesis. In constructing gene regulatory networks (GRN), most of the 

computational models suffer from the curse of dimensionality; that is, their performance 

deteriorates with the increase in the network dimension. We consider a model as scalable if it 

maintains its level of performance when tested on larger datasets. The scalability of the 

models is investigated through the analysis of two experimental datasets of the yeast cell 

cycle. We start the analysis with a medium-scale network of 50 genes and increase the size of 

the network in steps of 50 new genes. Five such successive growths in network size result in 

six different datasets including 50, 100, 150, 200, 250 and 300 genes respectively. To evaluate 

the performance of the GRN models, we compute the two benchmark criteria, precision and 

recall in conjunction with the computation time. 

Through comprehensive analysis, we demonstrate that GRNMulti-sources maintains its 

performance level in terms of both precision and recall when tested on larger datasets. Most 

importantly, the model estimates large-scale networks within minutes whereas other models 

fail to estimate them within a week. The models, GRNPhase and GRNCo-expressed are capable of 

estimating networks including 300 genes within acceptable time; however the precision and 

recall suffers drastically as the network size grows. The two existing models GRNMurphy and 

GRNZou show high sensitivity to the dimension of the network.  



CHAPTER 8. SCALABILITY ANALYSIS 

152 

8.1 Introduction 

In the post-genomic era, much attention has been given to the quest of developing 

computational methods for reconstructing GRNs. The performance of a computational model 

depends on the interrelationship between the sample size, data dimensionality, and model 

complexity (Wang 2008). The benchmark criteria, namely, precision and recall have been 

widely accepted by the scientific community for evaluating the performance of the model. 

However, the precision of most of the available models tends to deteriorate as the size of the 

network grows. This phenomenon is commonly known as the ‘curse of dimensionality’ (Duda 

et al. 2001) and leads to another decisive factor for the successful reconstruction of GRN 

which is the scalability of the model. In general, scalability is defined as a characteristic of a 

model that maintains its level of performance or efficiency when tested by larger operational 

demands. For the GRNs, a model is designated as scalable if it can estimates networks of 

different sizes (from tens to thousands genes) by preserving a steady performance level. 

The biological data generated from the high-throughput technologies are 

characteristically high dimensional. To illustrate their high dimensionality, consider the 

simplest eukaryotic cell of budding yeast. There are more than 6000 protein-coding genes in 

the yeast cell and 800 of them have been identified as cell cycle regulated (Spellman et al. 

1998). This implies that the GRN in the yeast cell cycle includes at least 800 genes. For a 

successful reconstruction of gene regulation in the yeast cell cycle, the computational models 

must have the capability to estimate networks containing hundreds of genes. At present, the 

performance of most of the models has been tested on small to medium scale networks 

including tens of genes only.  Though a high value of precision/recall signifies the 

effectiveness of the model, the performance may deteriorate as the size of the network grows. 

Therefore, scalability analysis has become an integral part for investigating the effectiveness 
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of the GRN models. In this chapter, we perform the scalability analysis of the proposed GRN 

models through a series of experiments on two separate sets of experimental data (as used in 

chapters 4 and 5) with varying network dimension. 

8.2 Some Existing Scalable Approaches 

There is a growing body of literature that focuses on the development of scalable 

approaches for reconstructing GRN from high-dimensional microarray data. Some of these 

approaches incorporate other sources of biological data such as gene knockout data to address 

the dimensionality problem; others integrate modified algorithms to deal with the high 

computation time of the original models. In this section, we briefly review some scalable 

methods with a particular interest on the network size on which they have been tested on.  

Rogers and Girolami (2005) studied a Sparse Bayesian regression algorithm for 

estimating interactions between genes. By using data from gene knockout experiments they 

decomposed the entire network into smaller sub-networks, each of which corresponds to one 

specific gene and its potential regulators. Finally, they applied the marginal likelihood 

maximization algorithm on individual sub-networks. The model has been tested on simulated 

data containing 30 genes only. The authors claimed that the model can be applied on large-

scale networks as the independent sub-networks can easily be computed in parallel over 

several machines. 

Huang et al. (2007) introduced two algorithms, a modified information-theory based 

Bayesian network algorithm and a modified association rule algorithm for estimating large-

scale networks from microarray data. They assessed the scalability of their algorithms through 

the analysis of simulated datasets of varying sizes including 10, 50 and 200 genes.  The 

experimental results showed that both algorithms estimated networks of 200 genes with 25% 
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accuracy. However, they have not discussed the computation time of their proposed 

algorithms which leaves a question on the further scalability of the techniques.  In a 

comparative study, Sirbu et al. (2010) investigated the performance and scalability of 

different evolutionary algorithms (EA) in reconstructing GRN from microarray data. They 

performed scalability analysis of three methods on four different simulated datasets including 

10, 20, 30 and 50 genes respectively. The authors concluded that two of the EA-based 

methods showed reasonable performance for networks including up to 30 genes and failed to 

estimate the larger network including 50 genes only.  Tan et al. (2010) studied a scalable 

approach that uses a control policy to discard genes which are less important in the control of 

GRN in a preprocessing step. They computed a scoring function for each gene which 

indicates the relevance of the gene in the regulatory control. The genes which have a score 

less than a predefined threshold are ignored and removed from the dataset prior to modeling. 

To investigate the scalability of the method, the authors have analyzed both simulated and 

experimental data. Two different synthetic networks have been modeled, each containing 8 

genes. The analysis of simulated data concluded that the selection of the predefined threshold 

has a huge impact on the performance of the approach. 

8.3 Experimental Setup 

The experiments are conducted on a computer system with Intel® Core ™ i5 CPU 760 

@ 2.8 GHz and 4 GB RAM, running Windows 7 (Professional). The free statistical software, 

R version 2.15.0 (R Core Team 2009), is used to impute missing values in the real 

experimental dataset and find groups of co-expressed genes. Together with R, we have also 

used Bayesian Net Toolbox (BNT) which is written in MATLAB and freely provided by 

Murphy (2001a) to construct Dynamic Bayesian Networks (DBN). The experiments are setup 
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and run under the MATLAB environment with version 7.11.0. (R2010b)  

8.4 Scalability Analysis of the Proposed GRN Models 

Through the scalability analysis, we examine the effect of the curse of dimensionality 

on the performance of the GRN models as the network size grows. In this section, we perform 

the scalability analysis of the GRN models, GRNPhase, GRNCo-expressed and GRNMulti-sources as 

discussed in chapter 4, chapter 5 and chapter 6 of this thesis. The two existing DBN-based 

methods, GRNMurphy and GRNZou are also included in the analysis. As discussed earlier, the 

DBN structure learning algorithm shows exponential growth in computation time with the 

number of genes in the dataset. We speculate experiments with a large number of genes 

would become infeasible on our desktop PC. Hence, we set 7 days as a cut-off time for 

running an individual experiment.  

Since the key focus of this thesis is to discover GRN using biological domain 

knowledge, we apply the aforementioned methods on two experimental datasets of the yeast 

cell cycle (Pramila et al. 2006). The same datasets have been previously used in chapters 4 

and 5 which are named as alpha30 and alpha38.  Each of them contains the expression levels 

of 4775 yeast genes over 22 time points. We start the analysis with a medium size network of 

50 genes and add 50 more genes to the dataset as we progress. Unlike the models discussed in 

section 8.2, we choose to start with a medium-scale network as the effect of the curse of 

dimensionality is negligible for small-scale networks. We continue adding genes until any of 

the models reaches the cut-off time of 7 days; that is, the model fails to estimate the network 

within the cut-off time. Following this process, we come up with six datasets including 50, 

100, 150, 200, 250 and 300 genes respectively. 

To compare the performance of the models with the increasing number of genes in the 
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dataset, we compute the benchmark criteria of precision and recall together with computation 

time. Since F-measure is the harmonic mean of the recall and precision and show similar 

performance level with precision, we exclude it from this analysis. In the following 

subsections, we demonstrate the scalability of the GRN models from the perspective of these 

three criteria. 

8.4.1 Computation time 

To investigate the effect of the curse of dimensionality on the computation time of the 

models with increasing network size, we plot them as shown in Figure 8.1. For both the 

datasets, the computation time of the first four models shows steady growth for medium-scale 

networks including up to 200 genes. For larger networks, GRNMurpy and GRNZou exhibit sharp 

increase in computation time and they fail to learn networks of size 300 within the cuff-off 

time of 7 days. In contrast, GRNPhase shows a gradual increase in the computation time for 

large-scale networks and can handle networks of 300 genes within 3 days. We speculate that 

the computation time of GRNPhase would rise sharply for further increase of the network 

dimension. This is due to the fact that the model divides genes in three overlapping clusters 

corresponding to the phases of the cell cycle. As we add more genes in the dataset, the size of 

individual clusters grows which consequently increases the computation time of the model by 

factors that are exponential to the size of the individual clusters. GRNCo-expressed shows a slow 

increase in computation time for dataset alpha30 as the network size grows. However, for 

dataset alpha38, it exhibits interesting pattern. The computation time increases sharply for the 

network size of 250 and it falls as we add 50 more genes. This is because the model divides 

genes into k optimal number of clusters by observing the data and the computation time of the 

model is exponential in k.   
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Figure 8.1: Comparison of the computation time of five DBN-based GRN models. The 

models are applied on six different datasets including 50, 100, 150, 200, 250 and 

300 genes respectively. The dotted line shows the cut-off time for running an 

experiment. A) Dataset alpha38 and B) Dataset alpha30. 
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As shown in Figure 8.1, GRNMulti-sources estimates networks of 300 genes within 2 

mins. This is a significantly improved performance compared to the other models. We 

speculate that the model is scalable to networks with even thousands of genes. This is because 

the size of the potential regulator set for a target gene increases at a much slower rate than the 

dimension of the network. Then again, the model decomposes the entire network into smaller 

sub-networks by incorporating PPI and TFBS data, where each sub-network consists of a 

specific gene and its potential regulators. Therefore, the DBN structure learning algorithm can 

easily be applied on individual sub-networks in parallel across several machines and the entire 

network can be estimated in an acceptable time.  

8.4.2 Precision 

Although computational feasibility is an important criterion for a successful reconstruction of 

GRN, biologists are more interested on the precision of the estimated network. To see how the 

precision of the GRN models is affected with the varying network dimension, we plot them as 

shown in Figure 8.2. Among the five models, GRNMulti-sources shows significantly higher 

precision for both the datasets. Although the precision of the models decreases gradually as 

the network size grows, GRNMulti-sources preserves a reasonable level which is approximately 

20% for larger networks including 300 genes. In contrast, the other models show consistently 

poor precision for both the datasets. For larger networks of size 300, the precision of the 

models reaches as low as 1% (approx) which can be easily achieved with randomly generated 

networks as we discussed in chapter 7. Therefore, we conclude this analysis with the findings 

that the two existing models (GRNMurphy and GRNZou) along with GRNPhase and GRNCo-expressed 

severely suffer from the curse of dimensionality, although the latter two models preserve a 

slightly better precision level. 
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Figure 8.2: Comparison of the precision of five DBN-based GRN models. The models are 

applied on six different datasets including 50, 100, 150, 200, 250 and 300 genes 

respectively. Precision of the estimated networks is set to zero in cases where the 

models fail to estimate the networks within the cut-off time of 7 days. A) Dataset 

alpha38 and B) Dataset alpha30. 
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8.4.3 Recall 

The recall of an estimated network represents the ratio of correctly identified 

connections out of the total known connections in the true network. From a biological 

perspective, a high recall value of the estimated network is a critical criterion for the 

successful reconstruction of GRN. To examine the effect of the curse of dimensionality on the 

recall of the DBN-based GRN models, we plot them in Figure 8.3. The existing two models, 

GRNMurphy and GRNZou shows consistently low recall value for both datasets. In particular, 

GRNZou estimates a very low number of true positive connections as the network size grows, 

whereas GRNMurphy maintains a steady performance. The other two models, GRNPhase and 

GRNCo-expressed maintain better performance in comparison to the existing models, although the 

recall gradually falls with the increasing network size. For dataset alpha38, GRNCo-expressed 

exhibits a sharp increase in the recall value for a network of size 250 and plunges again with 

the addition of 50 more genes. This is because the performance of GRNCo-expressed partially 

depends on the identification of the k optimal number of clusters. In contrast, GRNMulti-sources 

shows an interesting pattern in the recall value for both the datasets. The recall of the model 

gradually falls for medium-scale networks and it increases slowly for large-scale networks. 

Nevertheless, GRNMulti-sources exhibits a higher recall in comparison to the other models and 

maintains a steady level with the growing network size. The complete experimental results of 

the analysis of the six different datasets including a varying number of genes are summarized 

in the tables given below. Table 8.1 presents the results of the analysis of dataset alpha30 and 

Table 8.2 shows the analysis of dataset alpha38. In the tables, we list the precision, recall and 

computation time of each of the DBN-based GRN models for individual network sizes. We 

also present the number of true positives estimated by each of these models. The results in 

both tables confirm that GRNMulti-sources is the best performing model and preserves steady 
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performance level when tested on larger datasets. This finding motivates us to perform further 

analysis of the model. 

 

 

Figure 8.3: Comparison of the recall of five DBN-based GRN models. The models are 

applied on six different datasets including 50, 100, 150, 200, 250 and 300 genes 

respectively. Recall of the estimated networks is set to zero in cases where the 

models fail to estimate the networks within the cut-off time of 7 days. A) Dataset 

alpha38 and B) Dataset alpha30. 
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Table 8.1: Dataset alpha30. Comparison of performance among the five different DBN-based 

GRN models. The first two GRN models are existing works and the latter three 

have been proposed in this thesis. The models are applied on 6 different datasets 

of varying size including 50, 100, 150, 200, 250 and 300 genes over 22 time 

points. For each dataset, the best performing model has been highlighted in bold. 

Network 

size 
Methods 

Number of 

true positives 

Precision 

(%) 

Recall 

(%) 

Computation 

time 

50 

GRNMurphy 7 9.33 2.93 5m 15s 

GRNZou 3 3.95 1.26 3m 22s 

GRNPhase 12 10.91 5.02 1m 39s 

GRNCo-expressed 19 9.8 7.95 2m 30s 

GRNMulti-sources 28 30.43 11.72 5s 

100 

GRNMurphy 9 6.34 2.05 1h 9m 25s 

GRNZou 3 2.08 0.68 59m 5s 

GRNPhase 14 4.12 3.12 29m 33s 

GRNCo-expressed 26 4.29 5.92 19m 36s 

GRNMulti-sources 47 24.61 10.71 16s 

150 

GRNMurphy 10 4.33 1.58 5h 34m 27s 

GRNZou 5 2.25 0.79 6h 17m 29s 

GRNPhase 12 1.79 1.89 2h 2m 

GRNCo-expressed 32 3.83 5.06 18m 

GRNMulti-sources 65 22.26 10.27 21s 

200 

GRNMurphy 10 3.26 1.29 18h 49m 29s 

GRNZou 4 1.39 0.51 1d 5h 34m 

GRNPhase 13 1.33 1.68 5h 22m 29s 

GRNCo-expressed 39 2.08 5.02 7h 50m 44s 

GRNMulti-sources 89 21.04 11.47 28s 

250 

GRNMurphy 13 3.49 1.45 1d 18h 34m 

GRNZou 9 2.62 1.00 3d 10h 1m  

GRNPhase 17 1.4 1.8 13h 44m 52s 

GRNCo-expressed 34 1.3 3.79 4h 12m 18s 

GRNMulti-sources 103 19.92 11.49 35s 

300 

GRNMurphy - - - - 

GRNZou - - - - 

GRNPhase 25 1.46 2.47 2d 21h 20m 

GRNCo-expressed 17 0.69 1.68 17h 29m 40s 

GRNMulti-sources 120 18.78 11.83 2m 7s 
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Table 8.2: Dataset alpha38. Comparison of performance among the five different DBN-based 

GRN models. The first two GRN models are existing works and the latter three 

have been proposed in this thesis. The models are applied on 6 different datasets 

of varying size including 50, 100, 150, 200, 250 and 300 genes over 22 time 

points. For each dataset, the best performing model has been highlighted in bold. 

Network 

size 
Methods 

Number of 

true positives 

Precision 

(%) 

Recall 

(%) 

Computation 

time 

50 

GRNMurphy 7 9.33 2.93 6m 52s 

GRNZou 5 6.94 2.09 10m 14s 

GRNPhase 11 10.89 4.60 57s 

GRNCo-expressed 20 11.43 8.37 14s 

GRNMulti-sources 31 30.7 12.97 4s 

100 

GRNMurphy 9 6.34 2.05 1h 16m 43s 

GRNZou 9 6.47 2.05 1h 16m 39s 

GRNPhase 13 3.88 2.96 24m 22s 

GRNCo-expressed 26 5.64 5.92 59s 

GRNMulti-sources 48 22.86 10.93 10s 

150 

GRNMurphy 10 4.33 1.58 6h 10m 6s 

GRNZou 8 3.62 1.26 8h 23m 41s 

GRNPhase 16 2.9 2.53 2h 2m 45s 

GRNCo-expressed 28 3.26 4.42 26m 54s 

GRNMulti-sources 80 24.17 12.64 22s 

200 

GRNMurphy 9 2.90 1.16 21h 39m 24s 

GRNZou 10 3.69 1.29   18h 41m 16s 

GRNPhase 15 1.7 1.93 4h 55m 57s 

GRNCo-expressed 18 1.69 2.32 29m 56s 

GRNMulti-sources 105 23.33 13.53 29s 

250 

GRNMurphy 8 2.1 0.89 1d 18h 55m 

GRNZou 11 3.24 1.28 3d 8h 43m  

GRNPhase 15 1.22 1.67 13h 11m 22s 

GRNCo-expressed 53 2.19 5.92 2d 19h 42m  

GRNMulti-sources 123 21.96 13.73 32s 

300 

GRNMurphy - - - - 

GRNZou - - - - 

GRNPhase 33 1.76 3.25 1d 22h 52m 

GRNCo-expressed 18 0.82 1.76 12h 7m 24s 

GRNMulti-sources 132 20.47 13.02 1m 49s 
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8.5. Extended Scalability Analysis of GRNMulti-sources 

As we demonstrate in the previous section, GRNMulti-sources shows minimal sensitivity 

to the curse of dimensionality in comparison to the other DBN-based GRN models. In 

particular, the computational time of the model has dropped to a surprisingly low level. This 

result encourages us to apply the model on a dataset including up to 1000 genes. We exclude 

the other DBN-based GRN models from this analysis because they have shown poor 

performance in estimating large-scale networks. Since validation is a major challenge for 

analyzing experimental data, we choose simulated data from the DREAM4 project. A 

thorough description of the simulator and data generation process can be found in section 7.5 

of chapter 7. From the yeast network, we extract 3 sub-networks of varying dimensions 

including 100, 500 and 1000 genes over 21 time points, where t_max = 100. The main focus 

of this analysis is to see how GRNMulti-sources scales to large-scale networks including up to 

1000 genes. Therefore, we extract only one sub-network for each dimension.  The 

experimental results of analyzing these medium to large scale networks are summarized in 

Table 8.3. Similar to section 8.4, we compute precision, recall and computation time of the 

estimated networks for each network size.  

Table 8.3: Comparison of the performance of GRNMulti-sources in analyzing medium to large-

scale networks including 100, 500 and 1000 genes respectively. The synthetic 

data are extracted from the DREAM4 project; each contains 21 time points. 

 

 

 

 

Much to our surprise, the model estimates a network of 1000 genes in less than 

Network size 
Number of true 

positives 

Precision 

(%) 

Recall 

(%) 
Computation time 

100 86 25.37 32.20 6s 

500 243 12.03 16.23 2m 34s 

1000 307 10.67 10.67 6m 18s 
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7 mins which is a significant achievement in addressing the dimensionality problem of 

GRN. The increase in computation time as the network size grows in graphically 

presented in Figure 8.4. To compare the precision and recall of the estimated networks 

with the growing number of genes in the dataset, we plot them in Figure 8.5. The 

model estimates a network of 100 genes with a reasonably higher precision and recall 

value. However, as we increase the network size to 500, both of them show about 50% 

drop in values. With the further growth of the network size, the recall of the model 

drops slightly (10%), whereas the precision shows almost 60% fall in value. We 

observe these sharp drops because of the huge increase in the network dimension 

which is from 500 to 1000. We speculate that the small sample size (21 time points) in 

comparison to the number of genes (1000 genes) in the dataset is the main reason for 

such performance of the model. The effect of insufficient data is especially observable 

on the precision of the model as it dramatically increases the number of false positives 

with the increase in the network size. 

 

Figure 8.4: Computation time of GRNMulti-sources with varying network sizes including 100, 

500 and 1000 genes. 
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Figure 8.5: Comparison of the precision and recall of GRNMulti-sources with varying network 

dimensions including 100, 500 and 1000 genes.  

8.6 Conclusion 

In this chapter, we have discussed the scalability analysis of the DBN-based GRN 

models and studied the effect of curse of dimensionality on the performance of the models. 

Our analysis has demonstrated that GRNMulti-sources outperforms the other DBN-based GRN 

models and maintains scalability even for large-scale networks including up to 1000 genes. 

As discussed in chapter 7, we speculate that the incorporation of other sources of biological 

data in reducing the problem space is the key to such an achievement. Nevertheless, the model 

shows a dramatic fall in precision and recall as we increase the network dimension by 

hundreds of genes. We hypothesize that the small number of samples in the dataset is at the 

core of such deterioration in performance. In the future, we plan to perform stability analysis 

to study the effect of the sample size on the performance of the model. 
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CHAPTER 9 

CONCLUSIONS AND FUTURE WORK 

Since the completion of sequencing the genomes of various organisms, especially the 

human genome, a new field of research, namely functional genomics has emerged. This field 

primarily concerns with patterns of gene expression during various conditions. The 

emergence of this new field has accompanied a number of technological advancements such 

as microarrays for measuring the patterns of gene expression on a genome-wide scale. The 

outcome of such a development is the generation of a large amount of genomic data which are 

expected to be utilized to answer a wide range of biological questions. For instance, the data 

can provide insight in disease diagnosis; that is, which genes cause a particular disease. 

Therefore, the key goals of functional genomics research are to explain what the genes do and 

study when, where and how they are expressed as an orchestrated system. In this thesis, we 

have focused on the discovery of this orchestrated system, commonly known as gene 

regulatory networks (GRN), with the application of dynamic Bayesian networks (DBN).  

The computational reconstruction of GRN from data faces a range of challenges. 

Some of these challenges have been highlighted in chapter 1 of this thesis, whereas chapter 3 

includes a thorough discussion of the existing computational methods and their associated 

challenges. In this thesis, we mainly focus on three major challenges: 1) the high 

computational time of GRN reconstruction 2) the low number of true positives in the 

estimated network and 3) low scalability; that is, the performance of the model deteriorates as 

the network size grows. The first challenge arises from the high dimensionality of the 
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biological data and the data scarcity contributes significantly towards the second challenge. 

As discussed in chapters 4, 5 and 6 of this thesis, we have addressed these challenges by 

exploiting biological domain knowledge in the GRN reconstruction process. In chapters 7 and 

8, we have quantified to what extent the chosen challenges have been addressed by such 

exploitation in comparison with the classic DBN-based GRN model. In the following 

sections, we summarize our contributions in addressing those challenges and propose several 

promising future research directions. 

9.1 Summary of Contributions 

This thesis has made several contributions in addressing the current challenges of 

computational reconstruction of GRN from microarray gene expression data. Most 

remarkably, the computational time of the computational methods (DBN in this thesis) has 

reduced to a surprisingly low level, whereas the number of true positives in the estimated 

network has improved significantly. This improvement would potentially help biologists to 

explain the observed gene expression phenomenon on a larger scale such as interactions of all 

the cell-cycle regulated genes during the cell division process. The particular contributions are 

listed as follows. 

1. The DBN-based GRN model (GRNPhase) as explained in chapter 4 addresses the high 

computation time of the reconstruction process. We have illustrated a novel way of 

incorporating biological domain knowledge of the cellular process under study in 

decomposing the entire problem into several sub-problems. As a consequence of this 

decomposition, the computation time of the model has been reduced significantly. At the 

same time, the utilization of biologically relevant knowledge marginally increases the 

number of true positives in the estimated network. 
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2. Most of the available GRN models identify the regulators for individual genes in the 

process of building up the entire network. However, it is equally important to find co-

regulation of co-expressed genes. We have discussed a GRN model (GRNCo-expressed) based 

on DBN in chapter 5 which finds groups of co-expressed genes and their corresponding 

co-regulators. The partitioning of the entire network into k modules (groups of co-

expressed genes) and finding regulation among these modules have reduced the 

computation time of the model significantly. The model has also shown a slight increase 

in the number of true positives in the estimated network compared to the two other exiting 

models. Gaining precise knowledge of co-expressed and co-regulated genes is vital as it 

can assist biologists to predict the characteristics of unknown genes.  

3. We have illustrated another DBN-based GRN model (GRNMulti-sources) in chapter 6 that 

incorporates two sources of biological data. These are protein-protein interaction (PPI) 

data and transcription factor binding site (TFBS) data. A good number of models have 

already incorporated such data in reconstructing GRN from gene expression analysis. The 

novelty of our model is that we have considered the genetic interactions as possible 

regulatory relationships among two given genes, whereas most of the existing models 

incorporate the physical interactions which specify the physical associations between 

proteins. With the utilization of these two data sources, we have removed extraneous 

genes from the potential regulators list for each target gene. As a consequence, the 

computation time of the model has been reduced to a remarkably low level with a 

significant increase in the number of true positives in the estimated network.  

4. To validate a GRN model, most of the studies analyze mainly simulated data including up 

to 100 genes and then apply the model on experimental data containing tens of genes only. 

In contrast, in this thesis, we have validated the performance of our proposed GRN 
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models through the analysis of three different experimental datasets including up to 300 

genes. Two of these datasets are complete, whereas the other has missing values in it. The 

analysis of both noisy and incomplete data has also demonstrated the robustness of our 

proposed model to some extent. Through different experiments, we have shown that our 

proposed GRN models exhibit consistent performance for all the three datasets. It is worth 

to mention that the model proposed in chapter 6 demonstrates 300-500% improvement 

over the existing models in analyzing simulated data from the DREAM4 project whereas 

the models in chapters 4 and 5 shows similar or slightly better precision and recall. This 

improvement in performance is even more remarkable in analyzing real microarray data 

including hundreds of genes. 

5. One of the noteworthy contributions of this thesis is the scalability analysis of the 

proposed GRN models. In the literature, a number of scalable approaches have been 

reported. However, most of them have performed scalability analysis including up to 50 

genes only where there are at least 800 genes in the GRN of the unicellular yeast cell 

cycle. In this thesis, we have performed scalability analysis by applying the models on 

both simulated and experimental data. The model proposed in chapter 6 of this thesis 

showed high scalability on a series of simulated datasets including up to 1000 genes. The 

other two models as proposed in chapter 4 and chapter 5 have shown poor performance 

with the growth of the network size. 

9.2 Future Work 

Despite significant improvement in the computation time of the GRN models, the 

number of true positives in the estimated network is still low. We think, there are several open 

research issues that need further investigation.  
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1. The use of prior knowledge about the network structure or the cellular process under study 

has been shown to be effective in the scope of this thesis. However, in the proposed GRN 

models, we have utilized prior knowledge to narrow down the search space for finding the 

structure that fits the data best. In other words, the prior knowledge has been used in a pre-

processing step. To learn the topology of the network, the DBN structure learning 

algorithm uses a prior probability which is uninformative-that is, it is a uniform prior, 

where every network structure is equally likely. A possible future work may consider the 

use of prior knowledge as an informative prior, which is not uniformly distributed over 

each possible network structure. We expect that the integration of informative prior in 

structure learning would improve the precision of the estimated network. 

2. The GRN models proposed in this thesis, especially GRNMulti-sources, have shown 

significant improvement in addressing the high dimensionality problem of GRN 

reconstruction. The model (GRNMulti-sources) has also estimated large-scale networks 

including 300 genes with a reasonable precision level of 20% (approx.). However, this 

precision level is still low from a biological point of view. We speculate that the 

imprecision and the lack of accuracy in the collecting the PPI and TFBS data are the key 

factors to such a low level of precision. Future work may look for incorporating other 

sources of biological data such as Chip-Chip data to enrich the set of potential regulators 

for each target gene.  

3. Throughout the thesis, we have claimed that the low number of samples in the 

experimental data is one of the major challenges in reconstructing GRN with a high level 

of precision. Future work may investigate this claim through the analysis of simulated 

data of varying sample sizes as the size of the network grows. Such a study may also 

provide some level of quantification for model stability. 
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4. In this thesis, we have chosen DBN as our preferred model to demonstrate the 

effectiveness of incorporating biological domain knowledge in reconstructing GRN. 

However, the reconstruction accuracy of the DBN-based GRN models is still low. We 

observe that the inherent challenges that have been discussed in chapter 3 contribute 

significantly for such low accuracy. We hypothesize that the principles of our GRN 

models can be used in conjunction with any other computational methods such as S-

System. Therefore, in a further study, it would be interesting to investigate this hypothesis 

as well as the potency of other available models in reconstructing GRN from experimental 

data. 

5. The GRN models that have been discussed in this thesis are discrete models.  We have 

used the mean of the gene expression to discretize the time series, which is exceptionally 

susceptible to the presence of outliers in the noisy microarray data. Thus, it would be more 

effective to apply discretization methods which take into account gene-gene relationships 

such as correlation.  

9.3 Final Remarks 

This thesis has utilized biological domain knowledge in reconstructing GRNs from the 

gene expression data. The problem of GRN reconstruction presents significant challenges to 

existing computational methods. The models proposed in this thesis have shown substantial 

progress on addressing some of these challenges, in particular on developing a scalable 

model. Therefore, we expect that the work in this thesis will serve as a foundation for further 

advances.  
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