
Statistical algorithms for

semi-parametric variance

regression with application to

biomarkers

By

Kristy Pamela Robledo

A thesis submitted to Macquarie University

for the degree of

Doctor of Philosophy

Department of Statistics

Faculty of Science and Engineering

December 2017

mailto:kristy.robledo@hdr.mq.edu.au


c© Kristy Pamela Robledo, 2017.

mailto:kristy.robledo@hdr.mq.edu.au


Contents

Abstract v

Statement of candidate vii

Acknowledgements ix

List of figures xi

List of tables xvii

1 Introduction 1

1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Variance regression 5

2.1 Extension of linear regression . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Motivating contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Existing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Multiplicative versus additive models . . . . . . . . . . . . . . . . . . . 11

2.5 Complexities with additive models . . . . . . . . . . . . . . . . . . . . 12

2.6 Other complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Overview of methods and datasets 17

3.1 Computational methods . . . . . . . . . . . . . . . . . . . . . . . . . . 17

i



ii Contents

3.1.1 EM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.2 Combinatorial EM algorithms . . . . . . . . . . . . . . . . . . . 19

3.2 Semi-parametric methods . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 B-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Monotonic splines . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.3 Knot selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 VCF dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.2 CD4 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.3 Viral load dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.4 LIPID dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.5 Classic datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Basic method 31

4.1 Simplified model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 EM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Analysis example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6 Final comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Multiple regression in mean and variance 45

5.1 Fitting details for more general models . . . . . . . . . . . . . . . . . . 46

5.2 Standard error estimation . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.1 Information matrix . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.2 Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Analysis example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.5 Final comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Semi-parametric models 61

6.1 Monotonic step functions . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 Fitting details for semi-parametric models . . . . . . . . . . . . . . . . 64



Contents iii

6.3 Standard error estimation . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.4 Monotonic splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.5.1 Estimating known functions . . . . . . . . . . . . . . . . . . . . 67

6.5.2 Automatic choice of model complexity . . . . . . . . . . . . . . 70

6.6 Application of semi-parametric models . . . . . . . . . . . . . . . . . . 71

6.6.1 Analysis example 1 . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.6.2 Analysis example 2 . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.7 Final comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 Censored data 77

7.1 Fitting details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2 Standard error estimation . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.4 Analysis example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.5 Final comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8 Skewness models 93

8.1 Skew-normal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.2 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . . . . 95

8.3 Extension to LSS regression model . . . . . . . . . . . . . . . . . . . . 100

8.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.5 Application of LSS models . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.5.1 Analysis example 1 . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.5.2 Analysis example 2 . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.6 Final comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

9 Software and biomarker analysis 113

9.1 Overview of VarReg package . . . . . . . . . . . . . . . . . . . . . . . . 114

9.2 The semiVarReg() function . . . . . . . . . . . . . . . . . . . . . . . . 114

9.3 The plotVarReg() function . . . . . . . . . . . . . . . . . . . . . . . . 120

9.4 The searchVarReg() function . . . . . . . . . . . . . . . . . . . . . . . 123

9.5 The lssVarReg() function . . . . . . . . . . . . . . . . . . . . . . . . . 128



iv Contents

9.6 The plotlssVarReg() function . . . . . . . . . . . . . . . . . . . . . . 132

10 Discussion and conclusions 135

10.1 Summary of research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

10.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

10.3 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Appendix 141

Bibliography 165



Abstract

Variance regression allows for heterogeneous variance, or heteroscedasticity, by in-

corporating a regression model into the variance. This thesis uses a variant of the

Expectation-Maximisation (EM) algorithm to develop a new method for fitting ad-

ditive variance regression models that allow for regression in both the mean and the

variance. The algorithm is easily extended to allow for B-spline bases, thus allowing for

the incorporation of a semi-parametric model in both the mean and variance. Although

there are existing methods to fit these types of models, this new algorithm provides a

reliable approach that is not susceptible to numerical instability that can be seen with

other approaches.

We utilise the developed algorithm with a series of simulation studies and analysis of

biomarker datasets. Various simulation studies show that the algorithm is capable of

recovering the true model for a variety of scenarios. We also study automatic selection

of model complexity based on various information criteria, and show that the Akaike

information criterion (AIC) is useful for choosing the optimal number of knots in a

B-spline model. It is also found that the ability to estimate the model complexity

automatically is greatly improved with a larger sample size.

The algorithm is extended to allow for censored outcome data, and to allow for non-

normal data with the incorporation of a skew regression model, using the skew-normal

distribution. The algorithms developed in this thesis are available through an R package

called VarReg, and a demonstration of the package is given using a biomarker dataset.

This algorithm has wide capabilities for analysis of biomarker data, and provides a

useful and stable additional tool for fitting variance regression models.

v
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1
Introduction

This thesis will introduce a new method for fitting semi-parametric variance regression

models. Variance heterogeneity models in regression analysis allow the variance of the

response variable to depend on covariates. This contrasts with standard regression

models, which focus on allowing the mean of the response variable to depend on co-

variates. The traditional variance regression models typically assume a multiplicative

model for the dependence of the error variance on the covariates (Aitkin, 1987; Smyth,

2002; Verbyla, 1993). This is primarily because covariate effects in variance heteroge-

neity models can be negative as well as positive, and a multiplicative model ensures

that the overall error variance remains non-negative. Since this is simply a computa-

tional convenience, it may be that additive variance heterogeneity is more appropriate

in some contexts. Indeed, additive decomposition of the variance is standard in other

contexts, such as variance components models.

Although other methods for fitting additive variance heterogeneity models exist in

1



2 Introduction

principle, in practice they can be numerically unstable due to the implicit parame-

ter constraints that are required in an additive model. One of the motivations for

this thesis is that it is of interest to develop new algorithms for problems that are

computationally complex and numerically unstable, even in contexts where algorithms

currently exist. This thesis will develop a new method for fitting an additive variance

heterogeneity model, and extend this algorithm to incorporate a regression model in

the skewness, as well as other complexities such as censored data. An advantage of our

approach is that the additive variance structure naturally generalises to the inclusion

of semi-parametric regression functions. An R (R Core Team, 2013) package entitled

VarReg is presented which implements algorithms developed in this thesis (Robledo,

2017). The remainder of this chapter will cover the objectives, motivation and an

overview of this thesis.

1.1 Objectives

This thesis will develop new statistical methodology for additive variance regression

for modelling the effects of covariates on variance heterogeneity and study a range

of applications of these techniques, including biomarker analysis. This thesis aims to

develop a new method for fitting models with a regression in both the mean and the

variance. These models can be used in measurement error analysis of biomarkers, and

particularly an extension to allow for censored biomarker data in this setting is of

interest. This thesis also aims to extend this method to allow for non-normal data

with the development of a regression in the skewness of the distribution.

1.2 Motivation

Variance regression models arise in a variety of contexts, including measurement error

and variance heterogeneity in standard linear regression analysis. Such models are

necessary when the variance of the outcome measure changes as a covariate changes.

The use of a variance regression model in these contexts allows the modelling of the

variance in terms of covariates, either because the variance itself is of interest, or to

increase the precision in estimation of the mean.
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One area where the variance itself is of interest is in the analysis of biomarker data,

which will be considered at various points in this thesis. Biomarkers are biological

measurements that provide an indication of a disease state, such as cholesterol level

in heart disease or viral load in HIV disease, and are an area of interest in clinical

trials research. Models of biomarker variability and measurement error are important

in practice because they allow an assessment of whether biomarker changes observed in

response to new treatments are beyond what can be expected by chance, and whether

the changes are related to patient-specific characteristics.

Other methods already exist for the fitting of additive variance heterogeneity models,

such as the gamlss package in R. These other methods are covered in detail in Chapter

2. However, fitting these types of additive models can be complex, and finding a

constrained non-stationary MLE can be difficult with Newton-type algorithms. Two

simple examples are also introduced in this chapter, where the commonly used gamlss

package is unable to converge. One is an example of a non-stationary MLE, while

the other is surprisingly a stationary MLE. Both examples illustrate the need for new

computational methodology for fitting these complex variance regression models.

1.3 Approach

Marschner (2014) recently suggested a possible method for fitting additive regression

models with non-negativity and other parameter constraints, based on a variant of

the Expectation-Maximisation (EM) algorithm. This approach will be adapted and

generalised here for the use in variance heterogeneity models with additive covariate

effects. The basic approach is to use the fact that an additive variance model can be

viewed as having been generated from a latent outcome model in which the outcome

variable is the sum of independent, unobserved, outcome variables. This allows us to

use the EM algorithm which provides a numerically stable and flexible computational

method that ensures the required non-negativity constraints are satisfied.

Once this approach has been developed, various generalisations are easily incorporated,

such as treating censoring as an extra level of missingness in the EM formulation.

Furthermore, the EM approach for the variance can be combined with other approaches

for the mean and shape. This includes cycling between the mean and the variance



4 Introduction

model fit using the Expectation/Conditional Maximisation Either (ECME) algorithm,

or cycling between the shape model fit and the mean-variance model fit using a cyclic

coordinate ascent approach. This allows the modelling of both normal and non-normal

data, using regression models in the location, scale and shape. In the next section, we

will give an overview of how these approaches are developed throughout this thesis.

1.4 Overview of the thesis

This thesis is composed of ten chapters of increasing complexity in the underlying mo-

del and data. This first chapter briefly introduces the problem, approach and structure

of this thesis. Chapter 2 begins with an explanation of variance regression, and some

motivating examples of why new computational algorithms are of interest. Multiplica-

tive and additive models will be discussed, as well as other complexities with variance

regression models. Chapter 3 provides some background on computational methods

to be used in this thesis and an explanation of the example datasets. Chapter 4 will

introduce the core idea of the thesis, which is that an additive variance model can be

viewed as a latent outcome model, where the observed outcome is the sum of two latent

outcomes. This will be explained by using a simplified variance regression algorithm,

including a simulation study and an example dataset. This basic algorithm will then

be extended to multiple regression in the mean and the variance in Chapter 5, where

we will also cover standard error estimation, and again include a simulation study and

an example dataset. Chapter 6 will further extend the algorithm into semi-parametric

models with the use of B-spline basis functions, including monotonicity constraints,

which can be of particular relevance in variance regression models. Chapter 7 intro-

duces an algorithm to allow the outcome data to be censored. This censored data

algorithm is then incorporated into Chapter 8, where we develop an algorithm to allow

for non-normal data with the development of a skew or shape regression, again, with

a simulation study and an example dataset. Chapter 9 demonstrates the use of the

VarReg package to fit the algorithms developed in this thesis, with the use of an exam-

ple biomarker dataset. An appendix to the thesis contains the package documentation.

Lastly, Chapter 10 is a concluding chapter that consolidates the content of this thesis,

and provides future research directions.



2
Variance regression

Constant variance, or homoscedasticity, is one of the standard assumptions of linear

regression. Variance regression allows for heterogenous variance, or heteroscedasticity,

by incorporating a regression model into the variance. This chapter will introduce

variance regression models as an extension of standard linear regression. We will also

explore some existing methods with which these types of models can be fit. Some

problems with existing methodology will be demonstrated, and some additional com-

plexities in this context, will be explored. The discussion in this chapter will motivate

new methods for variance regression to be studied in this thesis.

2.1 Extension of linear regression

Linear regression is a standard analysis procedure for modelling the mean of a continu-

ous outcome in terms of some covariates. The outcome variable, Xi, is associated with

multiple covariates or predictors zi = (zi1, ..., ziP ). The mean of Xi depends linearly

5
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on the covariates zip with the corresponding regression coefficients βp for each of the

covariates (p = 1, 2, ..., P ). We then assume normality and constant variance σ2, giving

Xi ∼ N

(
β0 +

P∑

p=1

βpzip, σ
2

)
for i = 1, 2, ..., n. (2.1)

There are three main assumptions for standard linear regression:

1. the errors are assumed to be independently and identically distributed, including

the assumption that the variance is constant,

2. the errors are assumed to follow a normal distribution, and

3. the regression function for the mean is linear in the predictors.

Violations of the first and second assumptions can sometimes be rectified with the use

of a transformation of the response variable (Box and Cox, 1964), which can provide an

approximation to normality. Violation of the third assumption has traditionally been

met with the addition of polynomial terms, interactions, other non-linear transforma-

tions or semi-parametric models. It is of interest to note that least squares estimators

give unbiased estimators of regression coefficients, even in the presence of heterosce-

dasticity.

Although transformations can sometimes be used to deal with heteroscedasticity, they

are not always adequate. Furthermore, the heterogeneity of the variance could be of

interest in itself. This leads to variance heterogeneity models which are an extension of

the linear regression model. In these models, we fit a model to the mean, and a model

to the variance,

Xi ∼ N

(
f

(
β0 +

P∑

p=1

βpzip

)
, h

(
α0 +

Q∑

q=1

αqxiq

))
, (2.2)

with the use of two known link functions. The covariates in the variance model, xiq,

may be the same as the covariates in the mean model, or they may be different. The

link function for the mean is typically the identity function as in (2.1), but in principle

could be other functions. A commonly used link function for the variance is the log

function which yields multiplicative variance models. The use of different link functions

for the variance will be discussed in more detail in Section 2.4.
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2.2 Motivating contexts

Variance regression models arise in a variety of contexts. In this section, we will focus

on two specific motivating contexts. The first is the study of measurement error. In

these studies, there may be a difference between a measured value and its true value,

or perhaps readings from a new measurement technique versus the current standard

technique. These data are typically graphically summarised with a Bland-Altman plot

(Bland and Altman, 1986). These plots give the mean of the two observations on the

x-axis, and the difference between the two observations on the y-axis, and allow visual

insight into the variance of the difference over the data range. As an example, we

will consider a dataset used by Bland and Altman (1986) on measurements of mean

velocity of circumferential fibre shortening (VCF). This dataset has two measurements

of VCF, the first measurement is taken by the long axis, and the second by the short

axis in M-mode echocardiography (Darbela, Silayan, and Bland, 1986). Although the

measurements were taken at the same point in time, the fact that the measurements

are taken from different axes will introduce measurement error.

If V
(1)
i is the VCF reading from the long axis, and V

(2)
i is from the short, then the

usual measurement error model for the measurements is

V
(j)
i = V ∗i + εj where εj ∼ N(0, σ2) j = 1, 2

and V ∗i is the ‘true’ VCF reading for the ith patient. If we assume independence of

the measurement errors for different measurements, then the difference in the measu-

rements, Xi = V
(1)
i − V (2)

i , follows a normal distribution with zero mean and variance

2σ2. This can be used to estimate the measurement error variance, σ2.

Figure 2.1 shows the difference between the two measurements, versus the average of

the measurements, typically referred to as a Bland-Altman plot. These data appear

to have a zero mean and no change in the mean of the difference over the VCF ob-

servations. However, the scatter of the differences increases as the VCF increases,

demonstrating larger variation in the difference in larger observations. A variance re-

gression model could be used to model this increasing variance, and this is investigated

in Section 4.5.
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The second motivating context is variance heterogeneity in a standard linear regression

analysis. This occurs when the variance of the outcome variable changes as a covariate

in the model changes. An example based on CD4 data is shown in Figure 2.2. CD4 is

a type of white blood cell, and here it has been measured in uninfected children born

from HIV-1 infected women (Wade and Ades, 1994). In this dataset, it is clear that

both the mean and the variance of CD4 counts decrease as age increases. Such data

could be modelled by allowing age to be a covariate in both the mean and the variance

models of CD4 counts.

A variety of different datasets from measurement error and variance heterogeneity con-

texts will be described in Chapter 3.
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Figure 2.1: Bland-Altman plot: Mean VCF by long and short axes measurements, over
the difference in the measurements.
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Figure 2.2: Plot of children’s CD4 counts over age.

2.3 Existing methods

Variance regression models have previously been developed, but they typically assume

a multiplicative model for the dependence of the error variance on the covariates (Ait-

kin, 1987; Smyth, 2002; Verbyla, 1993). These models generally use adaptations of

Newton-type algorithms, which can struggle with additive variance regression models.

In this section we will cover some of the more popular methodologies for fitting variance

regression models; however, the methodology in this area is extensive.

In a simple linear variance scenario, Bland and Altman (1999) propose to model the

variability in the standard deviation using a method based on the absolute residuals

from a fitted regression line. Davidian and Carroll (1987) also speak of using methods

based on residuals, but note that one should weight the residuals based on the variance
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and iterate the process. They showed that unweighted least squares residuals yield

unstable estimates of the variance function when the variance depends on the mean.

They reviewed various methods of weighting the residuals including squared residuals,

logarithms and absolute residuals. They then found that the latter were more robust

to slight deviations from normality, and also observed that how well one models and

estimates the variance will substantially impact the estimation of the mean.

Aitkin (1987) assumed that the mean and the variance depended upon the explanatory

variables through parametric linear models. While parametric models may apply to

some data, non-parametric and semi-parametric models provide a more flexible appro-

ach. Cole and Green (1992) use a maximum penalised likelihood approach, in which

they estimate the Box-Cox power, the median and the coefficient of variation for cen-

tile reference curves. The key assumption for this model is that after a suitable power

transformation, the data are normally distributed. The Mean And Dispersion Additive

Model (MADAM) was introduced in Rigby and Stasinopoulos (1996) as an alternative

method for fitting parametric, semi-parametric or non-parametric models for both the

mean and variance. They utilise a successive relaxation algorithm for fitting the model.

Rigby and Stasinopoulos (2005) later built upon their MADAM model and introdu-

ced the Generalised Additive Models for Location, Scale and Shape (GAMLSS) which

has been built into the extensive R (R Core Team, 2013) package gamlss (Stasino-

poulos and Rigby, 2007). This package provides a very general framework for fitting

regression type models, allowing all the parameters of the distribution of the response

variable to be modelled as linear, non-linear or smooth functions of the explanatory

variables. GAMLSS was introduced to overcome some of the problems with generalised

linear models (GLM) and generalised additive models (GAM) (Hastie and Tibshirani,

1990). The assumption for the response variable to be from the exponential family is

relaxed and replaced by a more general distribution family, including highly skewed

or kurtotic continuous and discrete distributions. The model allows any parameters of

the distribution of the response variable to be modelled very flexibly as functions of

the explanatory variables. A comprehensive review of the methods and software has

recently been published (Stasinopoulos et al., 2017).
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More recently, Bayesian approaches to regression in the variance and other parame-

ters have been developed. They are based upon variational approximations (Menictas

and Wand, 2015; Ormerod and Wand, 2010) and distributional regression (Klein et

al., 2015; Klein et al., 2015), and has prompted discussion on the Bayesian appro-

ach. Much of this is centred upon the relative speed (Wand et al., 2011) and ease

of implementation (Kneib, 2016), as opposed to the interpretation and philosophical

distinctions between Bayesian and Frequentist approaches. Nonetheless, some people

still prefer a Frequentist inference. We will be focusing on a Frequentist framework in

this thesis, particularly to provide a stable and reliable method for variance regression.

Currently, the GAMLSS framework provides the most flexible and popular approach

for variance regression, and it will be utilised as a comparator method for evaluating

the performance of the methods developed in this thesis.

2.4 Multiplicative versus additive models

Generally, the variance regression model (Aitkin, 1987; Verbyla, 1993; Smyth, 2002)

uses a log-link model, h(z) = log(z), and thus the covariates affect the variance multi-

plicatively. This is primarily because covariate effects in variance heterogeneity models

can be negative as well as positive, and the use of a multiplicative model ensures that

the overall error variance remains non-negative. Since this is simply a computational

convenience, it may be that additive variance heterogeneity is more appropriate in

some contexts. Indeed, additive decomposition of the variance is standard in other

contexts, such as variance components models and genome-wide association studies.

Additive variance can be achieved with the use of the identity link, rather than the

log link. While additive models may be preferable in some contexts, they do have

some complexities compared to multiplicative models. The maximum likelihood esti-

mator (MLE) of the additive model will require constrained optimisation due to the

non-negativity constraints on the variance. Also, it is important to remember that

the MLE may be non-stationary, thus Newton-type algorithms that are searching for a

stationary point may be problematic. Complexities with the additive variance model

were discussed in some detail in Crisp and Burridge (1994), including the fact that the

likelihood function may be unbounded.
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An attractive property of additive variance models is that spline models are effectively

additive models, so semi-parametric models are obtained with little additional effort.

2.5 Complexities with additive models

While additive models can in principle be handled within the GAMLSS framework, in

practice there remain a number of problems. Two such models are presented below to

demonstrate these problems using the gamlss package within R.

Example 1 is a simulated dataset with zero mean and linearly increasing variance (Fi-

gure 2.3). Note that from Figure 2.4, the data have a non-stationary MLE (a maximum

with a non-zero derivative), with the shaded regions denoting values outside the para-

meter space. If the gamlss package is used to fit a model with zero mean and variance

depending linearly on the covariate x, the algorithm does not converge and an error

message is displayed, noting that an iteration of the MLE has moved out of the pa-

rameter space. The gamlss package allows the implementation of various algorithm

methods, as well as various step-lengths, in order to achieve convergence within the

data (Stasinopoulos and Rigby, 2007). While the use of step-size reduction did not

achieve convergence with this example dataset, convergence was achieved with the im-

plementation of step-halving. However, at times step-halving can achieve convergence

at a suboptimal point (Lumley, Kronmal, and Ma, 2006).

Example 2 is also a simulated example, with zero mean and increasing variance (Figure

2.5). This dataset has a stationary MLE solution (Figure 2.6), however the same pro-

blem as above was observed with this dataset, with an iteration of the MLE leaving the

parameter space. The implementation of step-halving or step-size reduction did not

achieve convergence, even with various sizes used. Although it is perhaps understanda-

ble that the standard algorithms may struggle with the non-stationary MLE depicted

in Figure 2.4, it is somewhat surprising that the stationary MLE depicted in Figure 2.6

can cause problems. These simple examples illustrate the usefulness of having a range

of computational methods available in variance regression, and provide motivation for

new approaches studied in this thesis.
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Figure 2.3: Example 1 simulated dataset: zero mean and linearly increasing variance.

These datasets will be covered again in Section 4.3 using the methodology developed

in this thesis.
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Figure 2.4: Profiles of the log-likelihood for Example 1 depicting a non-stationary MLE on
the boundary of the parameter space. The shaded region denotes areas outside the parameter
space.

2.6 Other complexities

This chapter has introduced variance regression, why it is important, and existing met-

hods that are available to fit these models. We have also established some complexities

with such models which may cause existing methods to fail.

There are various other complexities that can be explored in the context of variance

regression. For example, biomarker data can often have values above or below a detec-

table level. This is called censored data, and at times large proportions of the samples

may fall into the undetectable range. Another issue similar to this is truncation. Trun-

cation is when the sample taken is restricted to lie between certain values, for example,

in a clinical trial, patients may need to have certain cholesterol levels to be eligible for

entry into the study.
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Figure 2.5: Example 2 simulated dataset: zero mean and linearly increasing variance.

Another common problem is that the variance is not linear over the covariates, so that

non-linear regression functions are needed. Non-normality may also be a problem, par-

ticularly due to the presence of skewness in the data.

Lastly is the issue of monotonicity constraints, where it may be known that the vari-

ance is either increasing or decreasing, and it is not appropriate to assume otherwise.

This thesis will consider each of these complexities in turn, beginning with a basic

approach that will be progressively generalised throughout the thesis. The main mo-

tivation is that new computational and model fitting methodology is of interest for

complex models, where existing methods may encounter the sorts of problems discus-

sed in this chapter.
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Figure 2.6: Profiles of the log-likelihood for Example 2 depicting a stationary MLE.



3
Overview of methods and datasets

In this chapter, we will provide some methodological background for the techniques

developed subsequently in this thesis. We will explore the Expectation-Maximisation

(EM) algorithm, and provide the computational basis for the algorithm that will be

implemented in this thesis. Additionally, semi-parametric methods that will be used in

subsequent chapters will be introduced, various criteria that will be used later to select

the most appropriate model will be described, and the example datasets that feature

in this thesis will be explained.

3.1 Computational methods

The Expectation-Maximisation (EM) algorithm is a method for performing maximum

likelihood estimation when there is incomplete data (Dempster, Laird, and Rubin,

1977). We begin with a set of initial parameter estimates, and the algorithm uses

these to ‘fill in’ the missing observations. It then updates the parameter estimates by

17



18 Overview of methods and datasets

maximising the likelihood based on the hypothetical complete data. This constitutes

one iteration, and each iteration increases the likelihood of the observed data monoto-

nically. The process continues iterating until convergence, which is defined specifically

below. As the EM algorithm is monotonic in the likelihood, it is therefore very stable

and often overcomes problems with non-stationary MLEs, as mentioned previously in

Section 2.5. There are a large number of variations and generalisations of the EM

algorithm (Dempster, Laird, and Rubin, 1977; McLachlan and Krishnan, 2007). Here

we will introduce the basic EM algorithm, and a variation used extensively throughout

this thesis. Other variations will also be discussed later in this thesis.

3.1.1 EM algorithm

Let θ be a vector of the parameters being estimated. For example, in the model

presented in (2.2), θ = (β0, β1, ..., βP , α0, α1, ..., αQ). The concept of ‘incomplete’ data

in the context of an EM algorithm refers to when we have an observed data vector

X, that is associated with a complete data vector X , through a many-to-one mapping

from the sample space associated with X to the sample space associated with X. The

complete data X is only measured indirectly through X.

Based on the log-likelihood `(θ;X) for the observed data, we wish to find the MLE

of θ ∈ Θ . The EM algorithm is particularly useful in situations where the maximum

likelihood estimation would be straightforward if we could maximise the complete data

log-likelihood L(θ;X ), if the complete data X were available. The basic EM algorithm

is made up of alternating expectation and maximisation steps (E- and M- steps), which

iterate until convergence. Given the initial estimates, θ̂(0), the E-step at the (c + 1)th

iteration requires calculation of

Q
(
θ | θ̂(c)

)
= E

(
L (θ;X ) |X, θ̂(c)

)
.

The M-step then involves maximisation of Q with respect to θ, so the updated para-

meter estimate is

θ̂(c+1) = arg max
θ∈Θ

Q
(
θ | θ̂(c)

)
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A basic property of the EM algorithm is that it ensures that the likelihood will never

decrease between iterations (McLachlan and Krishnan, 2007). As the M-step only con-

siders estimates within the parameter space, this algorithm cannot iterate to estimates

outside the parameter space. That is, for example, if the parameter space is positive

then starting with positive estimates will guarantee that the updated parameter esti-

mates remain positive. This makes this algorithm a useful approach in the context of

variance regression, as estimates corresponding to negative variance are not possible.

The EM algorithm as described above updates θ̂(c) at each iteration, to produce θ̂(c+1)

in the next iteration. A typical way of defining convergence is to use

||θ̂(c+1) − θ̂(c)||
||θ̂(c)||

< ε

where ε is some small constant, such as 10−6. This is the definition of convergence that

will be used in all algorithms described in this thesis.

The EM algorithm lends itself to situations where the outcome variable can be thought

of as a function of a collection of unobserved latent outcome variables. In an EM

algorithm, these underlying outcome variables can be thought of as missing data. This

is how the EM algorithm will be utilised in this thesis.

3.1.2 Combinatorial EM algorithms

The basic concept behind the combinatorial EM (CEM) algorithm is explained in

Marschner (2014). For our observed data X, with log-likelihood `(θ;X), let the para-

meter vector θ lie in the parameter space Θ. For example, in the variance regression

model, a natural complete data model has all coefficients non-negative, whereas Θ has

only the overall variances non-negative. In particular, for some finite set τ , we have

t ∈ τ complete data models with log-likelihoods L(θ(t);X) for θ ∈ Θ(t). The parame-

ter space Θ(t) need not coincide with the parameter space for the observed model Θ,

but it is assumed the collection of parameter spaces T = {Θ(t); t ∈ T } covers Θ ex-

actly. If a finite collection of such complete data models can be defined which together

have parameter spaces that cover Θ then this defines a collection of EM algorithms.

In the EM algorithm detailed in above in Section 3.1.1, our estimate θ̂(c) ∈ Θ(t) is
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updated to estimate θ̂(c+1) ∈ Θ(t), such that `(θ̂(c+1)) ≥ `(θ̂(c)). The E-step is the

calculation of the conditional expectation

Qt

(
θ(t) | θ̂(c)

)
= E

(
L (θ(t);X ) |X, θ̂(c)

)
t ∈ τ. (3.1)

The M-step for this tth EM algorithm is maximising

θ̂(c+1) = arg max
θ∈Θ(t)

Qt

(
θ(t) | θ̂(c)

)
t ∈ τ, (3.2)

which is over the parameter space of the tth complete data model Θ(t), not the observed

data modelΘ. Our family of EM algorithms specified in (3.1) and (3.2) give a collection

of constrained maxima T = {θ(t); t ∈ τ}, where

θ̂(t) = arg max
θ∈Θ(t)

`(θ(t)) t ∈ τ. (3.3)

It then follows that the MLE θ̂ is within T , as θ̂ must coincide with at least one of

the constrained maxima θ̂(t) in (3.3). θ̂ is then determined by finding the element in

T which corresponds to the greatest `(θ̂(t)).

This family of EM algorithms is the key to the CEM algorithm and the manner in

which the parameter space is partitioned for the variance regression model, as we will

see in Chapters 4, 5 and 7.

3.2 Semi-parametric methods

Semi-parametric models allow the inclusion of both parametric and nonparametric

components (Ruppert, Wand, and Carroll, 2003). Semi-parametric regression models

allow the dependence on a covariate x to be non-linear through some regression function

f(x). Spline models are a common way to implement semi-parametric regression.

There are many methods available to produce regression splines (De Boor, 1978), ho-

wever the use of B-splines (or Basis splines) are computationally convenient in the

regression spline approach and are widely used (Hastie and Tibshirani, 1990; Ruppert,

Wand, and Carroll, 2003). A flexible alternative method is to consider fitting a step

function to the data, which is also a useful model checking exercise.
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These semi-parametric models are easily incorporated into our additive variance regres-

sion model, as mentioned in Section 2.4. Semi-parametric models will be explored later

in this thesis in Chapter 6, and here we review some of the methodological background.

3.2.1 B-splines

B-splines are a family of polynomial splines constructed from the B-spline basis functi-

ons (De Boor, 1978). A series of polynomials joined end-to-end at a series of q fixed

turning points ξ1 < .... < ξq make up a polynomial spline, where ξ1 = xmin and

ξq = xmax are the endpoints of range of the continuous covariate x. The spline is a

polynomial of order k (or degree d, where d = k−1) between any two adjacent turning

points.

If a sequence of knots tj are placed equidistantly within the range, with a total of s

internal knots, then for any given set of knots, the B-spline is unique. These B-splines

with equidistant knots are called cardinal B-splines, and this is how knots will be de-

termined in this thesis (see Section 3.2.3 for more information). The specification of

the spline is made with the determination of the knot sequence t1 ≤ ... ≤ tM+k, where

M = k + q − 2 is the number of free parameters that are required to determine the

spline. We begin the knot sequence by placing k knots at the start (and end) of the

sequence, t1 = ... = tk = ξ1 and tM+1 = ... = tM+k = ξq. We then place each of the s

internal knots, starting at tk+1 = ξ2 and ending at tM = ξq−1. Note that we are only

considering the most common case where the component polynomials of order k meet

up at their (k − 1)th derivative, where we only have each internal knot placed once at

each of the turning points (Ramsay, 1988).

Given our set of t knots, ranging from t1, t2, ..., tM+k, the M B-spline basis functions

of order k for covariate x can be defined recursively as

Bm(x|k) =





1, if x ∈ [tm, tm+1)

0, otherwise
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for k = 1 and

Bm(x|k) =
x− tm

tm+k−1 − tm
Bm(x|k − 1) +

tm+k − x
tm+k − tm+1

Bm+1(x|k − 1)

for k > 1, where M = k + q − 2 is the number of basis functions. Note that if

tm+k−1 = tm then Bm(x|k − 1) = 0 for all x. As an example, for a sequence of values

x, bases were computed of order k = 3 with two internal knots (s = 2), using the bs()

function within the splines package (R Core Team, 2013). The knot sequence will be

t1 ≤ ... ≤ t8, and given that x is a sequence ranging over [0, 1], ξ1 = t1 = t2 = t3 = 0

and ξ4 = t6 = t7 = t8 = 1. The two internal knots will be at ξ2 = t4 = 0.33 and

ξ3 = t5 = 0.66, as the knots are equally spaced. The B-spline basis functions (M = 5)

are given in Figure 3.1.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

B
m
(x

)

B1

B2

B3

B4

B5

Figure 3.1: The M B-spline basis functions for a given x, of order k = 3 and with two
evenly spaced internal knots (s = 2, dashed lines).
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B-splines are normalised such that

M∑

m=1

Bm(x) = 1

for all x. The first basis function, B1(x), is typically called the ‘intercept’ and with the

function bs() the default is to not generate the intercept, in order to ensure identifia-

bility of the B-spline coefficients. The regression function based on the B-spline bases

can then be expressed as

f(x) = γ0 +
M∑

m=2

γmBm(x),

with γm the parameters to be estimated in the model, and the Bm(x) values treated

as the covariate values.

3.2.2 Monotonic splines

Sometimes it may be known that the relationship with a covariate is monotonic, and it

is not appropriate to consider otherwise. To create a monotonically increasing spline,

monotonic basis functions can be defined by summing the respective B-spline basis

functions

Im(x) =
M∑

k=m

Bk(x) where m = 2, ...,M.

Note that the first basis function m = 1 is not included to ensure identifiability, as

mentioned previously.

To create a monotonically decreasing spline, it is simply the sum of the respective basis

functions

Im(x) =
m∑

k=2

Bm(x) where m = 2, ...,M.

Ramsay (1988) calls these bases I-splines, as they are obtained by integrating the B-

spline bases.
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These summed basis functions are then incorporated in our additive model as the

covariates in the same manner as above:

f(x) = γ0 +
M∑

m=2

γmIm(x).

3.2.3 Knot selection

While B-splines offer many computational advantages, the difficulty of choosing the

number and the position of the knots is one of their main drawbacks (Ruppert, Wand,

and Carroll, 2003). However, Ramsay (1988) noted that the shape of the spline function

is not very sensitive to the knot placement, and recommended that a useful preliminary

knot placement is to use the median for a single interior knot, or tertiles for two etc.,

as required. This is how the knots will be determined in this thesis.

Information criteria can be used to then compare the models with differing numbers

of knots, in order to find the optimal number of knots. These criteria do not require

nested models, so the placement of the turning points is flexible. There are numerous

criteria that can be used, but generally they measure the quality of the statistical model

being fit to the data, relative to other models. For all of the criteria below, lower scores

indicate models of better fit.

Akaike Information criterion

This is one of the most widely used information criteria to compare models that are not

nested (Akaike, 1974). The Akaike Information criterion (AIC) rewards the goodness

of fit as determined by the log-likelihood, however, it includes a penalty for the number

of parameters being estimated. If k is the number of parameters in the model and l is

the likelihood function, then the AIC is

AIC = −2 log (l) + 2k.

The optimum number of knots is then determined by minimising the AIC.



3.3 Datasets 25

Akaike Information criterion (corrected)

The corrected Akaike Information criterion, or AICc, is the before mentioned AIC with

a correction for small sample sizes (Sugiura, 1978). If n is the sample size, then

AICc = −2 log (l) +
2kn

n− k − 1
.

Note that as n gets larger, the AICc converges to the AIC.

Bayesian Information criterion

The Bayesian Information criterion (BIC) has a larger penalty for the number of pa-

rameters than that used in the AIC (Schwarz, 1978). Assuming n is the sample size, l

is the likelihood function and k is the number of parameters in the model,

BIC = −2 log (l) + k log n.

Hannan-Quinn Information criterion

The Hannan-Quinn Information criterion (HQC) is an alternative to the BIC and

AIC (Hannan and Quinn, 1979). This criterion imposes a smaller penalty to added

parameters compared to the BIC, with

HQC = −2 log(l) + 2k log log n

These criteria detailed above provide a way to rank different models. It is important to

note that using one particular criterion may give a different model as the most preferred

model, compared to a different criterion. In subsequent chapters we will explore the

use of these criteria for variance regression models.

3.3 Datasets

This section will provide a background for the various datasets that will be used to

illustrate methods in this thesis. Several of these datasets contain variables that may

be referred to as biomarkers. As defined by the Biomarkers Definitions Working Group
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(2001), a biomarker is ‘a characteristic that is objectively measured and evaluated as

an indicator of normal biological processes, pathogenic processes, or pharmacologic

responses to a therapeutic intervention’. So, common measures such as pulse or cho-

lesterol, through to an inflammation marker such as C-reactive protein, can be called

a biomarker. Biomarkers are increasingly used by clinicians in a variety of situations,

from measuring disease progress, evaluating the most effective treatment for a disease,

or establishing susceptibility to disease or its recurrence. The following biomarker da-

tasets will be used to illustrate the methods that will be developed throughout this

thesis.

3.3.1 VCF dataset

The VCF dataset has been used as a motivating example of measurement error in

Section 2.2. It is a dataset of 100 measurements comparing two methods of measuring

the mean velocity of circumferential fibre shortening (VCF), which is given in centi-

metres per second. VCF is a measure of the strength of the contraction of the left

ventricle, when only a two-dimensional image is available.

This dataset contains two measurements of VCF, where the first measurement is taken

by the long axis and the second by the short axis, in M-mode echocardiography (Dar-

bela, Silayan, and Bland, 1986). A plot of the difference between the two measurements

(long-short) and the average of the two measurements is shown in Figure 2.1.

3.3.2 CD4 dataset

CD4 is a type of white blood cell, and in this dataset, it has been measured in uninfected

children born from HIV-1 infected women (Wade and Ades, 1994). The dataset has

been used as a motivating example in Section 2.2 and contains 609 measurements of

CD4 cell counts and the child’s age at which the measurements were taken (Figure 2.2).

In these data, it is clear that at younger ages there is more variation in the CD4 counts

than at older ages, demonstrating heteroscedasticity. The dataset is stored within the

gamlss package in R (Rigby and Stasinopoulos, 2005).
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3.3.3 Viral load dataset

This is a dataset of the HIV viral load (blood concentration of HIV RNA on a log10

scale) in 285 participants. Prior to commencing a clinical trial, participants had their

blood assayed twice during a short period of time (Kuritzkes et al., 1999). Although

the underlying viral load is unchanged in this time, the readings will differ due to me-

asurement error. Another important aspect is that measurements cannot be detected

below a particular assay limit, in this case, 2.70 (log10500). In Figure 3.2, values below

the limit have been set to the limit and the effect of censoring can be clearly seen at

the left-hand side.
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Figure 3.2: Bland-Altman plot of the RNA dataset: Plot of average viral load by diffe-
rence in viral load, with the solid line depicting zero difference.
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3.3.4 LIPID dataset

The Long-term Intervention with Pravastatin in Ischemic Disease (LIPID) study was a

multi-centre randomised double-blind placebo-controlled trial that recruited 9014 pa-

tients with a history of myocardial infarction or unstable angina. The study found

strong evidence that pravastatin (a cholesterol lowering medication) reduced the risk

of death from coronary heart disease, cardiovascular disease, and all causes combi-

ned (The Long-Term Intervention with Pravastatin in Ischaemic Disease Study Group,

1998).

The dataset used in this thesis contains the 4502 patients who were allocated to the

placebo treatment. The study measured various biomarkers at randomisation asso-

ciated with coronary heart disease and cardiovascular disease, and a subset of these

biomarkers in the placebo group will be used to demonstrate the VarReg package later

in this thesis. The biomarkers to be investigated are lipoprotein-associated phospho-

lipase A2 activity (LP-PLA2 activity) and Lipoprotein (a) (Lp(a)), and these are to

be associated with LDL cholesterol. LP-PLA2 activity is associated with the presence

of unstable plaque in arteries that are likely to break apart or rupture. Most heart

attacks are caused by ruptured plaque or clots that cause blockages in the arteries

that supply blood to the heart. Lp(a) has been shown to promote the uptake of LDL

into blood vessel walls. It also may promote the development of plaque on the walls

of blood vessels and the accumulation of clots in the arteries. Thus, the relationship

between these biomarkers and LDL cholesterol is of interest.

3.3.5 Classic datasets

In addition to the biomarker datasets described above, a number of classic datasets

from the literature are useful for illustrating methods to be developed in this thesis.

Two such datasets are the so-called motorcycle crash dataset and the LIDAR dataset.

The LIDAR dataset contains 221 observations from a light detection and ranging (LI-

DAR) experiment. The range is the distance travelled before the light is reflected back

to its source, and the log(ratio) is the logarithm of the ratio of the received light from

the two laser sources (Sigrist, 1994). The LIDAR data is used in the textbook by

Ruppert, Wand, and Carroll (2003) to illustrate heteroscedasticity, and Figure 3.3 is



3.3 Datasets 29

in fact on the book’s cover. The dataset is also stored within the SemiPar package in

R (Wand, 2014).

The motorcycle crash dataset is a simulated dataset of a series of 133 measurements of

head acceleration in a motorcycle accident involving crash dummies. The time in mil-

liseconds is recorded, along with the acceleration of the head measured in gravitational

force (g units). These data shown in Figure 3.4 also demonstrate heteroscedasticity.

This dataset is stored within the MASS package in R (Venables and Ripley, 2002).
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Figure 3.3: LIDAR dataset: Plot of log(ratio) of reflected light by range travelled.
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Figure 3.4: Motorcycle dataset: Plot of head acceleration over time in a motorcycle
accident.



4
Basic method

In the previous chapters, we introduced the concept of modelling both the mean and the

variance using a regression model, and the computational method of the EM algorithm.

In this chapter, we present a simple special case to illustrate the basic EM algorithm

that will be used and adapted throughout this thesis.

Suppose that the outcome variable Xi has two covariate vectors associated with it, with

the mean being dependent on zip (p = 1, ..., P ) and the variance being dependent on

xiq (q = 1, ..., Q). Note that these could be the same covariates, or different covariates.

Then this gives the following general model

Xi ∼ N

(
β0 +

P∑

p=1

βpzip, α0 +

Q∑

q=1

αqxiq

)
for i = 1, 2, ..., n.

We will return to this model in Chapter 5 and more general models in subsequent

chapters, but for now we will consider a simplified version of the model that illustrates

the basic method.
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4.1 Simplified model

Assume that the mean µ = 0, and that there is just one continuous covariate xi so that

the variance has a simple linear form

Xi ∼ N(0, α0 + α1xi). (4.1)

Without any loss of generality, we will suppose that xi has been scaled such that

xi ∈ [0, 1]. We will consider the standard likelihood-based estimation tools and then

the EM algorithm that implements maximum likelihood estimation.

The likelihood for the model in (4.1) is

l(α0, α1) =
n∏

i=1

1√
2π(α0 + α1xi)

exp

( −X2
i

2(α0 + α1xi)

)
,

and the log-likelihood is therefore

`(α0, α1) = −n
2

log(2π)− 1

2

n∑

i=1

log(α0 + α1xi)−
1

2

n∑

i=1

X2
i

α0 + α1xi
. (4.2)

In order to create the likelihood equations, (4.2) must be differentiated with respect to

α0 and α1:

∂

∂α0

`(α0, α1) = −1

2

n∑

i=1

1

α0 + α1xi
+

1

2

n∑

i=1

X2
i

(α0 + α1xi)2
(4.3)

and

∂

∂α1

`(α0, α1) = −1

2

n∑

i=1

xi
α0 + α1xi

+
1

2

n∑

i=1

xiX
2
i

(α0 + α1xi)2
. (4.4)

Then, in order to obtain the information matrix, we need to differentiate (4.3) and

(4.4) each with respect to α0 and α1 in order to obtain our 2× 2 matrix. This gives
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I11 = − ∂2

∂α2
0

`(α0, α1) = −
(

1

2

n∑

i=1

1

(α0 + α1xi)2
−

n∑

i=1

X2
i

(α0 + α1xi)3

)

I12 = I21 = − ∂2

∂α0α1

`(α0, α1) = −
(

1

2

n∑

i=1

xi
(α0 + α1xi)2

−
n∑

i=1

xiX
2
i

(α0 + α1xi)3

)

I22 = − ∂2

∂α2
1

`(α0, α1) = −
(

1

2

n∑

i=1

x2i
(α0 + α1xi)2

−
n∑

i=1

x2iX
2
i

(α0 + α1xi)3

)
,

and our expected information matrix is then

I(θ) =
1

2




n∑
i=1

1

(α0 + α1xi)2

n∑
i=1

xi
(α0 + α1xi)2

n∑
i=1

xi
(α0 + α1xi)2

n∑
i=1

x2i
(α0 + α1xi)2



,

where θ = (α0, α1). Note that (4.3) and (4.4) can be further simplified to give our

likelihood equations as

n∑

i=1

wi
[
X2
i − (α0 + α1xi)

]
= 0 (4.5)

and

n∑

i=1

xiwi
[
X2
i − (α0 + α1xi)

]
= 0, (4.6)

where

wi =
1

(α0 + α1xi)2
.

So, we see that the MLE corresponds to a weighted regression of X2
i on xi, as was dis-

cussed in a general context in Davidian and Carroll (1987). As illustrated in Section 2.5,

the additive variance model that solves (4.5) and (4.6) can lead to numerical difficul-

ties, stemming from the non-negatively constrained parameter space, which motivates

the study of the EM algorithm which offers a more stable approach.
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4.2 EM algorithm

Given this simplified model, we now propose a hypothetical complete data model that

can be used to motivate an EM algorithm. In particular, suppose that Xi is composed

of two independent, unobserved, latent variables with complete data model

Xi = Yi + Zi

where Yi ∼ N(0, α0) and Zi ∼ N(0, α1xi).

The log-likelihood corresponding to the complete data model is linear in Y 2
i and Z2

i ,

L(θ) = −n
2

log(2π)− 1

2

n∑

i=1

log(α0)−
1

2

n∑

i=1

Y 2
i

α0

−n
2

log(2π)− 1

2

n∑

i=1

log(α1xi)−
1

2

n∑

i=1

Z2
i

α1xi
,

where θ is a vector of the unknown parameters, θ = (α0, α1).

Notice that under this latent variable model, we retain the observed data model given

in (4.1). However, we can use the latent variable model to motivate an EM algorithm.

In this case, the E-step is the calculation of the conditional expectations

Ŷ 2
i (θ) = E(Y 2

i |Xi;θ) and Ẑ2
i (θ) = E(Z2

i |Xi;θ).

These calculations of the conditional expectations may be obtained from the following

conditional distributions:

Yi|Xi ∼ N

(
α0Xi

α0 + α1xi
,
α0 [α0 + α1xi − α0]

α0 + α1xi

)

and

Zi|Xi ∼ N

(
α1xiXi

α0 + α1xi
,
α1xi [α0 + α1xi − α1xi]

α0 + α1xi

)
.
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This then leads to

Ŷ 2
i (θ) = α0 +

α2
0

α0 + α1xi

(
X2
i

α0 + α1xi
− 1

)

and

Ẑ2
i (θ) = α1xi +

α1x
2
i

α0 + α1xi

(
X2
i

α0 + α1xi
− 1

)
.

Next, the M-step is the calculation of the updated estimates θ̂new = (α̂new0 , α̂new1 ), where

α̂new0 = n−1
n∑

i=1

Ŷ 2
i (θ̂old) and α̂new1 = n−1

n∑

i=1

Ẑ2
i (θold)

xi
.

The EM algorithm detailed above will converge to the constrained maximum of the

observed data log-likelihood, subject to the constraints α0 ≥ 0 and α1 ≥ 0. However,

α1 could be negative and this would demonstrate decreasing variance over xi. In order

to search the entire parameter space, we must accommodate both a positive or negative

slope. To search the negative slope space, we fit another EM algorithm with covariate

1 − xi in place of xi. This leads to two θ̂ estimates, one from each implementation of

the EM algorithm.

The MLE will then be the θ̂ from the EM algorithm that achieved the highest log-

likelihood. This process of using two constrained EM algorithms that together cover

the entire parameter space is an instance of a CEM algorithm as described in Section

3.1.2.

4.3 Numerical example

As demonstrated in two data examples in Section 2.5, the gamlss package did not

converge to the correct MLE, or did not converge at all. When the algorithm described

above is applied to these two example datasets, convergence occurred reliably to the

MLE. Here we discuss the results.

Example 1 was simulated data where the MLE for the intercept and the gradient are

on the boundary of the parameter space, where there is an infinite likelihood. The
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results from the EM-based approach are given in Figure 4.1, where we see the path

that the EM algorithm takes along the log-likelihood contours, beginning with an initial

estimate of θ̂0 = (1, 1). The MLE for data in example 2 occurs at an interior stationary

point, which the gamlss package also had difficulty converging to. The results from the

EM-based approach detailed above are shown in Figure 4.2. These numerical examples

provide a brief illustration of the stability of the method presented in this chapter in

situations where a standard method may fail.

−4

−2

0

2

4

6

−0.0025 −0.0020 −0.0015 −0.0010 −0.0005 0.0000 0.0005 0.0010

0.7

0.8

0.9

1.0

1.1

1.2

●

α0

α 1

Figure 4.1: Log-likelihood of the EM algorithm for each combination of intercept and
gradient for Example 1. The convergence path is the dotted line to the MLE on the boundary.
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Figure 4.2: Log-likelihood of the EM algorithm for each combination of intercept and
gradient for Example 2. The convergence path is the dotted line to the MLE.

4.4 Simulations

The weighted form of the estimating equations given in (4.5) and (4.6) suggest a simpler

approach with wi = 1, which has previously been considered by Bland and Altman

(1999). In order to illustrate the use of the EM-based approach, a series of simulation

studies have been conducted comparing the method detailed above with this crude least

squares approach of regressing X2
i on xi, without weights. In this simulation study, a

zero mean model was used while the following variance models were compared: 0 + xi,

1 + xi, 2 − xi and 1 − xi. Three different sample sizes were used: 100, 250 and 500

observations. The sampling distribution of xi was also varied, and the xi variable
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was sampled uniformly, as well as from a negatively skewed, and a positively skewed

distribution. Each simulation contained 1000 replications.

The efficiency based on the mean squared error (MSE) of the slope parameter over the

various simulation studies is given in Figures 4.3 to 4.6.
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Figure 4.3: The MSE efficiency of the slope parameter from the simulation study with
Var(Xi) = xi. Values > 1 favour α̂ML, and the grey dashed line indicates no difference.
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Figure 4.4: The MSE efficiency of the slope parameter from the simulation study with
Var(Xi) = 1 + xi. Values > 1 favour α̂ML, and the grey dashed line indicates no difference.

The MSE efficiency was calculated as

MSE efficiency =
(mean(α̂LS)− θ)2 + variance(α̂LS)

(mean(α̂ML)− θ)2 + variance(α̂ML)
,

where θ is the vector of the true parameters the data were simulated from, α̂LS is the

vector of the slope parameters from the crude least squares approach and α̂ML is the

vector of the slope parameters from the EM-based approach described in this chapter.

In most instances, the EM-based estimates were just as efficient, and usually more

efficient, than the crude least squares estimates. In particular, the EM-based approach
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was up to 8 times more efficient in the slope parameter for the Var(Xi) = xi and

Var(Xi) = 1 − xi models. For the model with Var(Xi) = 1 (constant variance) the

crude least squares method was slightly more efficient for low sample sizes (results not

shown). However, when the sample size increased to 500 or more, the two methods were

equally efficient. This is to be expected, since the crude LS method is asymptotically

equivalent to the MLE in the case of the constant variance model.

As well as providing a comparison of the efficiency of the weighted and unweighted

approaches for variance regression, these simulations are useful in demonstrating the

stability of the EM-based approach. In total, the method converged stably to the MLE

in 45000 simulated datasets.
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Figure 4.5: The MSE efficiency of the slope parameter from the simulation study with
Var(Xi) = 2− xi. Values > 1 favour α̂ML, and the grey dashed line indicates no difference.
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Figure 4.6: The MSE efficiency of the slope parameter from the simulation study with
Var(Xi) = 1− xi. Values > 1 favour α̂ML, and the grey dashed line indicates no difference.

4.5 Analysis example

The VCF dataset was introduced briefly in Section 3.3. The plot showed increasing

variation over the average VCF, but there did not appear to be a change in the mean,

which was approximately zero. The basic algorithm described in this chapter was

used to fit the VCF data. A zero mean model was assumed, with the outcome as the

difference in the two readings, and the average of the two readings as the covariate in

the variance model.
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The variance model result is shown in Figure 4.7, where there is close to zero variance

at low VCF values, and this increases over the average VCF range. The residuals

from the model are shown in Figure 4.8, which shows that the residuals appear to

depart from a normal distribution, with a heavier tailed model perhaps being more

appropriate.
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Figure 4.7: The linear variance (blue line) for the zero mean, linear variance model fit
to the VCF data.
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Figure 4.8: A histogram and Q-Q plot for the residuals from the zero mean, linear
variance model fit to the VCF data.

4.6 Final comments

The simulation results presented in this chapter illustrate that the MLE approach de-

tailed here has efficiency advantages over the crude unweighted approach. Furthermore,

they illustrate that the EM-based approach for fitting the model can provide a reliable

and stable approach that is not susceptible to the numerical instability that we have

seen with other approaches. The EM-based approach was also shown to be applicable

to the VCF data, although the simple linear model did not provide an adequate fit.

In subsequent chapters, we will investigate its properties more generally using more

realistic models, including analyses that seek to provide a more appropriate fit to the

VCF data.





5
Multiple regression in mean and variance

In the previous chapter, we focused on a simplified model with zero mean,

Xi ∼ N(0, α0 + α1xi) for i = 1, 2, ..., n.

Now let us now extend this model to include a regression model for the mean and

the variance. Let the mean model have multiple covariates zi = (zi1, ..., ziP ), and the

variance model have multiple covariates, xi = (xi1, ..., xiQ). This gives the following

more general model with regression in the mean and variance

Xi ∼ N

(
β0 +

P∑

p=1

βpzip, α0 +

Q∑

q=1

αqxiq

)
for i = 1, 2, ..., n. (5.1)

In this chapter, we will explore the extension of the basic method introduced in Chap-

ter 4 to model (5.1). As we will see in the next chapter, one of the main purposes

of the methods presented here is for semi-parametric modelling using spline models,

which can be expressed as additive multiple regression models in the mean and the

45
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variance. We will also explore methods for obtaining standard error estimates, and

present simulations and data analysis results.

5.1 Fitting details for more general models

In order to extend the method to fit a model in the mean, an additional step is added to

the E-step and to the M-step of the EM algorithm. In this step, the mean is estimated

using a linear regression model, weighted by the inverse of the current estimate of the

variance. The covariates for the mean, zi, are used to fit this linear regression and

the updated estimates for β are obtained, where β = (β0, .., βP ). Adding this step

to the EM algorithm converts it to an ECME (Expectation/Conditional Maximisation

Either) algorithm (Liu and Rubin, 1994; McLachlan and Krishnan, 2007), because

the additional step involves maximising the observed data likelihood over β, given a

current value for α.

The variance model is then extended to multiple covariates by incorporating additional

latent variables for each covariate xi. If there are a total of Q covariates to be fit in

the variance model, there are then Q+ 1 independent, unobserved, latent variables,

Yi ∼ N(β0 +
P∑

p=1

βipzip, α0), Zi1 ∼ N(0, α1xi1), ..., ZiQ ∼ N(0, αQxiQ),

where Xi = Yi + Zi1 + ...+ ZiP .

Similarly to Chapter 4, we have fit a constrained maximisation of the observed data

log-likelihood. We need to search our entire parameter space, that is, non-decreasing

variance (αq ≥ 0) and decreasing (αq < 0) variance, for each αq parameter. To maintain

generalisability, assume that each continuous covariate is scaled such that xi ∈ [0, 1].

Therefore, the constant term in the variance model (α0) will be the variance when all

other variance parameters are zero. In order to search for non-positive slope, an EM

algorithm is fit using the covariate 1 − xi in place of xi, and thus the EM algorithm

is maximising the log-likelihood over the parameter space estimates for α0 ≥ 0 and

αq < 0 for q = 1, 2, ..., Q. By repeating this for all possible covariate combinations, we
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have a total of 2Q EM algorithms to apply to these data in order to search the entire

parameter space. The MLE will then be the θ̂ from the EM algorithm that achieved

the highest log-likelihood. These 2Q models are referred to as the family of complete

data models, and is another instance of a CEM algorithm as described in Section 3.1.2.

While this is one method to search the entire parameter space for the MLE, other

methods that may also be more efficient could be utilised (Donoghoe and Marschner,

2016; Marschner, 2014).

The log-likelihood corresponding to the complete data model is

L (θ) = −n
2

log(2π)− 1

2

n∑

i=1

log (α0)−
1

2

n∑

i=1

(
Yi − β0 −

P∑
p=1

βpzip

)2

α0

−n
2

log(2π)− 1

2

n∑

i=1

log (α1xi1)−
1

2

n∑

i=1

(Zi1)
2

α1xi1
+ ...

−n
2

log(2π)− 1

2

n∑

i=1

log (αQxiQ)− 1

2

n∑

i=1

(ZiQ)2

αQxiQ
, (5.2)

and is linear in Y 2
i and Z2

iq. The E-step is largely similar to that in the previous chapter,

involving the calculation of the conditional expectations

Ŷ 2
i (θ) = E((Yi − β0 −

P∑

p=1

βpzip)
2|Xi;θ),

Ẑ2
i1(θ) = E(Z2

i1|Xi;θ) ,..., Ẑ2
iQ(θ) = E(Z2

iQ|Xi;θ) (5.3)

where θ = (β0, .., βP , α0, .., αQ). This leads to

Ŷ 2
i (θ) = α0 +

α2
0

α0 +
Q∑
q=1

αqxiq




(
Xi −

(
β0 +

P∑
p=1

βpzip

))2

α0 +
Q∑
q=1

αqxiq

− 1


 . (5.4)
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The estimation of the latent variables Ziq is also similar to the basic method with

Ẑ2
iq(θ) = αqxiq +

αqx
2
iq

α0 +
Q∑
q=1

αqxiq




(
Xi −

(
β0 +

P∑
p=1

βpzip

))2

α0 +
Q∑
q=1

αqxiq

− 1


 . (5.5)

In the M-step, we calculate the updated estimates of θ, called θ̂new. Firstly for the

mean, given the current estimate α̂old, we must fit a weighted linear regression for

Xi ∼ N
(
β0 +

∑
βpzip, σ

2
i (α̂

old)
)

where σ2
i (α̂) = α0 +

Q∑
q=1

αqxiq, with weight as wi =
1

σ2
i (α̂

old)
. So the new estimate of β

is obtained by the weighted least squares estimate

β̂new = argmin
β̂new

n∑

i=1

wi

(
Xi −

(
β̂0 +

P∑

p=1

β̂pzip

))2

(5.6)

=
(
ZTWZ

)−1
ZTWX, (5.7)

where

Z =




z11 z12 · · · z1n

z21 z22 · · · z2n
...

...
. . .

...

zP1 zP2 · · · zPn



, W =




w1 0 · · · 0

0 w2 · · · 0
...

...
. . .

...

0 0 · · · wn




and X =




X1

X2

...

Xn



.

The variance estimates are also updated with

α̂new0 = n−1
n∑

i=1

Ŷ 2
i

(
θ̂old
)

and α̂q
new = n−1

n∑

i=1

Ẑ2
iq(θ̂

old)

xiq
. (5.8)

Once the current estimates have been calculated, the algorithm continues until con-

vergence. The algorithm is summarised schematically in Figure 5.1. The likelihood
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function that is being maximised for this more generalised model is

l(θ) =
1√

2π

(
α0 +

Q∑
q=1

αqxiq

) exp




−
(
Xi −

(
β0 +

P∑
p=1

βpzip

))2

2

(
α0 +

Q∑
q=1

αqxiq

)


 .

5.2 Standard error estimation

5.2.1 Information matrix

If θ = (β0, β1, ..., βP , α0, α1, ..., αQ), with a total of W parameters (where W = P +

Q + 2) then the information matrix is the negative second matrix derivative of the

log-likelihood function, which is a W ×W matrix.

The log-likelihood for our general model discussed in the previous section is

`(θ) = −n
2

log(2π)− 1

2

n∑

i=1

log

(
α0 +

Q∑

q=1

αqxiq

)
− 1

2

n∑

i=1

(
Xi − β0 −

P∑
p=1

βpzip

)2

α0 +
Q∑
q=1

αqxiq

.

(5.9)

If we partially differentiate (5.9) with respect to β0, we get the following likelihood

equation

∂

∂β0
`(θ) =

n∑

i=1

Xi − β0 −
P∑
p=1

βpzip

α0 +
Q∑
q=1

αqxiq

.

This then follows on through each of the βp parameters to give

∂

∂βp
`(θ) =

n∑

i=1

zip

(
Xi − β0 −

P∑
p=1

βpzip

)

α0 +
Q∑
q=1

αqxiq

.
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initialize with β̂old, α̂old

calculate Ŷ 2
i , Ẑ

2
i1, ..., Ẑ

2
iQ

given β̂old and α̂old,
using (5.4) and (5.5)

calculate updated esti-
mates α̂new using (5.8)

fit weighted LS
given updated

wi = 1
σ2
i (α̂

new)
, using (5.7)

calculate β̂new from
the weighted LS

check
convergence

set β̂old = β̂new

and α̂old = α̂new

finish

Yes

No

Figure 5.1: The ECME algorithm for the estimation of the mean and variance.
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For the likelihood equation for α0, we get

∂

∂α0

`(θ) = −1

2

n∑

i=1

1

α0 +
Q∑
q=1

αqxiq

+
1

2

n∑

i=1

(
Xi − β0 −

P∑
p=1

βpzip

)2

(
α0 +

Q∑
q=1

αqxiq

)2 ,

and then for each of the αq parameters we have

∂

∂αq
`(θ) = −1

2

n∑

i=1

xiq

α0 +
Q∑
q=1

αqxiq

+
1

2

n∑

i=1

xiq

(
Xi − β0 −

P∑
p=1

βpzip

)2

(
α0 +

Q∑
q=1

αqxiq

)2 .

Now, taking the second derivatives we obtain the following (P + 1) × (P + 1) matrix

for the β parameters. We refer to this matrix as B = [Bij]:

B00 = − ∂2

∂β2
0

`(θ) =
n∑

i=1

1

α0 +
Q∑
q=1

αqxiq

B01 = B10 = − ∂2

∂β0β1
`(θ) =

n∑

i=1

zi1

α0 +
Q∑
q=1

αqxiq

B11 = − ∂2

∂β2
1

`(θ) =
n∑

i=1

z2i1

α0 +
Q∑
q=1

αqxiq

...

BPP = − ∂2

∂β2
P

`(θ) =
n∑

i=1

z2iP

α0 +
Q∑
q=1

αqxiq

.
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Now, the partial derivatives for the αq parameters form a (Q+ 1)× (Q+ 1) matrix A,

where A = [Aij]:

A00 = − ∂2

∂α2
0

`(θ) = −1

2

n∑

i=1

1
(
α0 +

Q∑
q=1

αqxiq

)2 +
n∑

i=1

(
Xi − β0 −

P∑
p=1

βpzip

)2

(
α0 +

Q∑
q=1

αqxiq

)3

A01 = − ∂2

∂α0α1

`(θ) = −1

2

n∑

i=1

xi1(
α0 +

Q∑
q=1

αqxiq

)2 +
n∑

i=1

xi1

(
Xi − β0 −

P∑
p=1

βpzip

)2

(
α0 +

Q∑
q=1

αqxiq

)3

A11 = − ∂2

∂α2
1

`(θ) = −1

2

n∑

i=1

x2i1(
α0 +

Q∑
q=1

αqxiq

)2 +
n∑

i=1

x2i1

(
Xi − β0 −

P∑
p=1

βpzip

)2

(
α0 +

Q∑
q=1

αqxiq

)3

...

AQQ = − ∂2

∂α2
Q

`(θ) = −1

2

n∑

i=1

x2iQ(
α0 +

Q∑
q=1

αqxiq

)2 +
n∑

i=1

x2iQ

(
Xi − β0 −

P∑
p=1

βpzip

)2

(
α0 +

Q∑
q=1

αqxiq

)3 .

The partial derivatives of the combination of βp and αq parameters reduce to zero when

we take the expectation, and thus the expected information matrix is block diagonal:

[
B 0T

0 A

]
,

where 0 is a (Q+ 1)× (P + 1) matrix of zeroes.
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Now, if we focus on the mean component of the expected information matrix, B,




n∑
i=1

1

α0 +
Q∑
q=1

αqxiq

n∑
i=1

zi1

α0 +
Q∑
q=1

αqxiq

· · ·
n∑
i=1

ziP

α0 +
Q∑
q=1

αqxiq

n∑
i=1

zi1

α0 +
Q∑
q=1

αqxiq

n∑
i=1

(zi1)
2

α0 +
Q∑
q=1

αqxiq

· · ·
n∑
i=1

zi1ziP

α0 +
Q∑
q=1

αqxiq

...
...

. . .
...

n∑
i=1

ziP

α0 +
Q∑
q=1

αqxiq

n∑
i=1

zi1ziP

α0 +
Q∑
q=1

αqxiq

· · ·
n∑
i=1

(ziP )2

α0 +
Q∑
q=1

αqxiq




,

and for the variance component of the expected information matrix, A,




1

2

n∑
i=1

1
(
α0 +

Q∑
q=1

αqxiq

)2

1

2

n∑
i=1

xi1(
α0 +

Q∑
q=1

αqxiq

)2 · · ·
1

2

n∑
i=1

xiQ(
α0 +

Q∑
q=1

αqxiq

)2

1

2

n∑
i=1

xi1(
α0 +

Q∑
q=1

αqxiq

)2

1

2

n∑
i=1

(xi1)
2

(
α0 +

Q∑
q=1

αqxiq

)2 · · ·
1

2

n∑
i=1

xi1xiQ(
α0 +

Q∑
q=1

αqxiq

)2

...
...

. . .
...

1

2

n∑
i=1

xiQ(
α0 +

Q∑
q=1

αqxiq

)2

1

2

n∑
i=1

xi1xiQ(
α0 +

Q∑
q=1

αqxiq

)2 · · ·
1

2

n∑
i=1

(xiQ)2

(
α0 +

Q∑
q=1

αqxiq

)2




.

Lastly, these matrices need to be inverted in order to obtain the standard errors of the

respective parameters. It is important to note that if the estimate is on the boundary,

then the standard errors must be obtained by bootstrapping.
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5.2.2 Bootstrapping

The standard error for these parameters can also be obtained by bootstrapping. If

these data are randomly sampled (with replacement) to obtain a sample of size n,

the algorithm described in Section 5.1 can be applied to this sample. This is a single

bootstrap sample, which is repeated then a total of B times, where B is taken as one

thousand. We then obtain B bootstrap samples, and thus B estimates for each of the

parameters. The 2.5% and the 97.5% percentiles are then taken for each parameter in

order to obtain the 95% confidence interval.

In practice, for some datasets with a large number of parameters in the variance model,

this may take some time. This is because the entire parameter space is searched

for each of the B bootstrap samples using the entire family of 2Q EM algorithms.

Nonetheless, due to the stability of the algorithm, reliable convergence will be obtained

in all bootstrap replications.

5.3 Simulations

Similar to simulations performed in Chapter 4, a variety of variance models were com-

pared in this simulation study. The variance models to be explored were 0 +xi, 1 +xi,

2 − xi and 1 − xi, in three different sample sizes: 100, 250 and 500 observations. Ho-

wever, given the introduction of the mean model, there is an additional component

to vary in the simulations. Both a constant mean model (β0 = 1) and a linear mean

model, 1 + xi, were explored. The mean squared error (MSE) of the four parameters

were calculated: the intercept and slope for the mean (β0 and β1), and the intercept

and slope for the variance (α0 and α1). As the MSE results from the constant mean

model were similar to the results of the linear mean model, only the linear mean model

results are shown (Figures 5.2 and 5.3).

The main conclusion from these simulations is that the proposed algorithm works well

for fitting linear regression models in the mean and variance. From Tables 5.1 and

5.2, the simulation means are very close to the true values, even in the case with small

sample sizes.

Comparing the variability results in these tables, it is clear that the slope parameters
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Table 5.1: Results from a simulation study. Data from a constant mean model β0 = 1,
with various variance models, at 100, 250 or 500 observations.

β0 = 1, β1 = 0, α0 = 0, α1 = 1

n=100 n=250 n=500

β0 β1 α0 α1 β0 β1 α0 α1 β0 β1 α0 α1
Mean 1.00 -0.00 -0.00 1.00 1.00 0.00 -0.00 0.99 1.00 0.00 0.00 0.99

SD 0.06 0.19 0.02 0.16 0.03 0.11 0.01 0.10 0.02 0.07 0.00 0.07
MSE 0.00 0.03 0.00 0.03 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00

β0 = 1, β1 = 0, α0 = 1, α1 = 1

n=100 n=250 n=500

β0 β1 α0 α1 β0 β1 α0 α1 β0 β1 α0 α1
Mean 1.01 -0.02 0.98 0.99 1.00 0.00 0.99 1.00 1.00 0.01 0.98 1.01

SD 0.23 0.44 0.36 0.75 0.14 0.26 0.22 0.48 0.10 0.18 0.15 0.31
MSE 0.05 0.20 0.13 0.56 0.02 0.07 0.05 0.23 0.01 0.03 0.02 0.10

β0 = 1, β1 = 0, α0 = 1, α1 = 0

n=100 n=250 n=500

β0 β1 α0 α1 β0 β1 α0 α1 β0 β1 α0 α1
Mean 1.01 -0.01 0.99 -0.01 1.00 0.00 0.99 0.01 1.00 0.01 0.99 0.01

SD 0.21 0.37 0.30 0.52 0.12 0.22 0.18 0.32 0.09 0.15 0.13 0.22
MSE 0.04 0.14 0.09 0.27 0.02 0.05 0.03 0.10 0.01 0.02 0.02 0.05

β0 = 1, β1 = 0, α0 = 1, α1 = −1

n=100 n=250 n=500

β0 β1 α0 α1 β0 β1 α0 α1 β0 β1 α0 α1
Mean 1.00 -0.00 1.00 -1.00 1.00 -0.00 0.99 -1.00 1.00 0.00 0.99 -0.99

SD 0.16 0.19 0.15 0.16 0.09 0.11 0.09 0.10 0.07 0.08 0.06 0.07
MSE 0.02 0.04 0.02 0.02 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.00

β0 = 1, β1 = 0, α0 = 2, α1 = −1

n=100 n=250 n=500

β0 β1 α0 α1 β0 β1 α0 α1 β0 β1 α0 α1
Mean 1.01 -0.01 1.99 -1.02 1.00 0.00 1.98 -0.98 1.00 0.01 1.98 -0.98

SD 0.28 0.45 0.51 0.78 0.16 0.26 0.31 0.46 0.12 0.18 0.22 0.32
MSE 0.08 0.20 0.26 0.60 0.03 0.07 0.09 0.21 0.01 0.03 0.05 0.10

(β1 and α1) have the largest variability. Other trends are as expected, such as decre-

asing variability with increasing sample size. Overall, these results are favourable for

the proposed algorithm.
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Figure 5.2: The MSE for the estimates of the mean. The intercept (A) and the slope
(B), from the simulations performed of the mean model 1 + xi and various variance models,
for three sample sizes.
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Figure 5.3: The MSE for the estimates of the variance. The intercept (A) and the slope
(B), from the simulations performed of the mean model 1 + xi and various variance models,
for three sample sizes.
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Table 5.2: Results from a simulation study. Data from a linear mean model 1 + xi, with
various variance models, at 100, 250 or 500 observations.

β0 = 1, β1 = 1, α0 = 0, α1 = 1

n=100 n=250 n=500

β0 β1 α0 α1 β0 β1 α0 α1 β0 β1 α0 α1
Mean 1.00 1.00 -0.00 1.00 1.00 1.00 -0.00 0.99 1.00 1.00 0.00 0.99

SD 0.06 0.19 0.02 0.16 0.03 0.11 0.01 0.10 0.02 0.07 0.00 0.07
MSE 0.00 0.03 0.00 0.03 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00

β0 = 1, β1 = 1, α0 = 1, α1 = 1

n=100 n=250 n=500

β0 β1 α0 α1 β0 β1 α0 α1 β0 β1 α0 α1
Mean 1.01 0.98 0.98 0.99 1.00 1.00 0.99 1.00 1.00 1.01 0.98 1.01

SD 0.23 0.44 0.36 0.75 0.14 0.26 0.22 0.48 0.10 0.18 0.15 0.31
MSE 0.05 0.20 0.13 0.56 0.02 0.07 0.05 0.23 0.01 0.03 0.02 0.10

β0 = 1, β1 = 1, α0 = 1, α1 = 0

n=100 n=250 n=500

β0 β1 α0 α1 β0 β1 α0 α1 β0 β1 α0 α1
Mean 1.01 0.99 0.99 -0.01 1.00 1.00 0.99 0.01 1.00 1.01 0.99 0.01

SD 0.21 0.37 0.30 0.52 0.12 0.22 0.18 0.32 0.09 0.15 0.13 0.22
MSE 0.04 0.14 0.09 0.27 0.02 0.05 0.03 0.10 0.01 0.02 0.02 0.05

β0 = 1, β1 = 1, α0 = 1, α1 = −1

n=100 n=250 n=500

β0 β1 α0 α1 β0 β1 α0 α1 β0 β1 α0 α1
Mean 1.00 1.00 1.00 -1.00 1.00 1.00 0.99 -1.00 1.00 1.00 0.99 -0.99

SD 0.16 0.19 0.15 0.16 0.09 0.11 0.09 0.10 0.07 0.08 0.06 0.07
MSE 0.02 0.04 0.02 0.02 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.00

β0 = 1, β1 = 1, α0 = 2, α1 = −1

n=100 n=250 n=500

β0 β1 α0 α1 β0 β1 α0 α1 β0 β1 α0 α1
Mean 1.01 0.99 1.99 -1.02 1.00 1.00 1.98 -0.98 1.00 1.01 1.98 -0.98

SD 0.28 0.45 0.51 0.78 0.16 0.26 0.31 0.46 0.12 0.18 0.22 0.32
MSE 0.08 0.20 0.26 0.60 0.03 0.07 0.09 0.21 0.01 0.03 0.05 0.10

5.4 Analysis example

One of the main purposes of the methods presented here is for the introduction of

semi-parametric modelling using spline models, which can be expressed as additive

multiple regression models in the mean and the variance. However, we include here a

linear model analysis based on data given in Chapter 2. A zero mean, linear variance

model was explored in Section 4.5, and we will now build on these models with the

incorporation of a mean model.

The first model given in Table 5.3 is the zero mean model presented in Chapter 4. The

following two models build upon this, with a constant mean parameter, and then a

linear mean model incorporated. Lastly, the final two rows have a constant variance
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Table 5.3: Results from various mean and variance models of the VCF data.
Mean model Variance model Log-likelihood AIC AICc BIC HQC

None Linear 54.8 -105.5 -105.4 -100.3 -103.4
Constant Linear 54.8 -103.6 -103.4 -95.8 -100.4
Linear Linear 59.8 -111.7 -111.3 -101.3 -107.5
Constant Constant 46.2 -86.3 -86.1 -78.5 -83.2
Linear Constant 46.2 -86.4 -84.0 -74.0 -80.2
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Figure 5.4: The mean (A) and the variance (B) for the three different mean models, each
with linear variance models, fit to the VCF data. Note that the variance estimates are very
similar and overlay each other.

parameter estimated, for completeness. From each of the information criteria, these two

constant variance models are inferior to the linear variance models. When comparing

the linear variance models, all of the criteria agree that the linear mean and linear

variance model is the best model for these data. These models with linear variance

and various mean models are further explored graphically in Figure 5.4. The differences

in the mean models are apparent, while the variance estimates are very similar and

overlay each other. Normal scores plots of the residuals from these three models are

given in Figure 5.5, and again appear similar. As in the analysis presented in Chapter

4, there is some evidence of non-normality, suggesting the need for more flexible models

such as semi-parametric or non-normal models.
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Figure 5.5: The residuals from the three different mean models, each with linear variance
models, fit to the VCF data. A is the zero mean model, B is the constant mean model and
C is the linear mean model.

5.5 Final comments

This chapter built on the basic method developed in Chapter 4 and detailed a more

general model of fitting a regression in both the mean and the variance with multiple

covariates in each. Simulations explored the efficiency of the estimates from both the

mean and the variance model, and demonstrated that reliable algorithms are obtained.

The method was applied to the VCF dataset, where it was shown that a linear model in

the mean and variance was a good fit to these data. However, the residuals have heavy

tails and perhaps the inclusion of additional parameters or flexibility may improve the

fit. The next chapter will build upon this mean and variance model, and introduce the

incorporation of semi-parametric models into this algorithm.





6
Semi-parametric models

In the previous chapter we explored a general model for fitting multiple covariates in

the mean and the variance,

Xi ∼ N

(
β0 +

P∑

p=1

βpzip, α0 +

Q∑

q=1

αqxiq

)
for i = 1, 2, ..., n.

This chapter will utilise this general model in order to fit semi-parametric models in

either the mean or the variance, or both. While the concept of semi-parametric models

was introduced briefly in Chapter 3, in this chapter we will incorporate these methods

in our CEM algorithm, show results from a simulation study and demonstrate the

algorithm in example datasets.

61
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6.1 Monotonic step functions

We begin the discussion of semi-parametric models by considering a specific model in

which the variance is assumed to be an unrestricted monotonic function of a covariate.

Later we will extend this to more general and flexible semi-parametric models.

At times, it may be appropriate to restrict the variance to be monotonically increasing

or decreasing. When an ordered categorical or a continuous covariate is used in a re-

gression model, the fitting of a semi-parametric step function model is easily achieved

using the CEM algorithm presented in Chapter 5. This is largely due to the positively

constrained nature of the algorithm.

Firstly, we must order the covariate xi for i = 1, 2, ..., n, as unique observed values

w1 < w2 < ... < wk, where k 6 n. An unspecified, monotonic regression function

f(xi) can then be added, with f(wi) < f(wj) for all i < j. In practice, the unspeci-

fied f is only identifiable at each of the unique covariate values wj, so the monotone

step function jumps at each wj. The size of this jump is estimated by including the

covariate w in the CEM algorithm as a categorical covariate. The only difference is

that it is unnecessary to cycle through parameter space subsets that correspond to

negative increments, as we only need to search for increasing increments at each wj. A

simple amendment would allow for a monotonically decreasing variance, by reordering

the unique observed values wj as wk < wk−1 < ... < w2 < w1.

Although this is a flexible method for extending a continuous covariate beyond a li-

near relationship, the disadvantage is the large number of parameters that need to be

estimated. An alternative to this method is fitting B-spline basis functions that can

be used to fit a smooth, flexible regression line, without requiring many degrees of

freedom. This will be explored later in this chapter.

As an example of the step function approach, we consider the VCF data that was

investigated previously in Chapter 5. The variance as a function of the mean VCF was

increasing in Figure 2.1, therefore fitting a monotonic step function with increasing

variance provides a natural model. The estimated step function for these data have

been given in Figure 6.1, with tick marks on the inside of the x-axis indicating the

wk unique data points. It is interesting to note that there is not a step at each value,
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Figure 6.1: The step function for the variance of the VCF data. Each unique data point
(wk) is represented as a tick mark on the inside of the x-axis.

and the size of the step varies across the x values. This shows that some steps have

been estimated to be zero, while others, particularly for larger VCF values, have been

estimated to be quite large. This suggests that a non-linear VCF variance function

may be the best fit for these data, and will be investigated further in this chapter.
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6.2 Fitting details for semi-parametric models

For our data, let us assume that both the mean and the variance regression models

follow unknown functions. Given our general additive model presented in Chapter

5, the incorporation of the B-spline basis functions from Section 3.2 for a continuous

covariate x is straightforward. A sequence of knots tj are placed equidistantly within

the range [xmin, xmax], with a total of s internal knots, to give

f(x) = α0 +
M∑

m=2

αmBm(x|k)

where k is the order of the B-splines and M = k + s is the number of basis functions,

remembering we start at m = 2 to ensure identifiability. The values of the B-spline

basis functions evaluated at x, Bm(x), are then fit as covariates in the model instead

of the x variable. Monotonic splines can be incorporated in the same manner, using

the summed splines as discussed in Section 3.2.2.

These B-splines can be fit in both the mean and/or the variance model, and may

differ in the number of internal knots in each model in order to give more flexibility

to the respective curves. However, the more knots that are incorporated in the model,

the more parameters that are fit (and hence less degrees of freedom). The use of

information criteria will aid in the choice of the optimal number of knots, and thus the

best model, for these data. This will be explored using the four criteria discussed in

Section 3.2.3.

6.3 Standard error estimation

Since the spline model is just a special case of the multiple regression model, the es-

timation of the standard errors using the information matrix is the same as discussed

previously in Section 5.2.1. Estimation of the standard error by bootstrapping is also

straightforward, although care must be taken in how the spline basis values are de-

termined. Rather than simply taking a sample by replacement of the basis functions

Bm(x), we instead take a sample with replacement of the covariate x. We then com-

pute the B-spline basis functions for this sample, with s equidistant internal knots.
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With this additional step to calculate the function for each bootstrap sample, the basis

functions calculated for each of the bootstrap samples may be different.

Once the entire collection of bootstrap replications have been fit, the basis function for

each of the samples is calculated over the interval [xmin, xmax], producing a collection

of bootstrap regression functions. A 95% CI at any given x value can be obtained by

using the 2.5% and 97.5% percentiles of these regression functions evaluated at each x

value. This will be illustrated in Section 6.6.

6.4 Monotonic splines

The VCF data has been presented as an example in previous chapters. Chapter 5

demonstrated that assuming a linear variance model was the optimal model among the

models given in Table 5.3. However, the step function above in Figure 6.1 implies that

perhaps a non-linear semi-parametric model in the variance may be more appropriate.

While monotonic step functions can be of use, it is important to note the large num-

ber of degrees of freedom that must be used in order to fit these models. The use of

monotonic splines that were discussed previously in Section 3.2.2 can also enable a mo-

notonic fit with a reduced number of degrees of freedom, compared to a step function.

For the VCF data, monotonic splines of increasing knots were fit and compared with

the various information criteria. As per the AIC and the AICc, the optimal model

is with four internal knots in the variance. This model is shown in Figure 6.2 along

with the step function, and the B-spline basis function with no monotonic constraint

(for completeness). It is seen that both spline functions follow the step function, in a

smooth and more realistic way. It is also seen that the non-monotonic spline allows

for decreases in the variance. These are probably spurious for this particular exam-

ple, although in later examples we will see that non-monotonic variance functions are

necessary in some contexts.
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Legend

Zero mean, step function variance
Zero mean, 4 knot variance
Zero mean, 4 knot monotonic variance

Figure 6.2: A comparison of various different variance models for the VCF dataset, each
with zero mean. Each unique data point is represented as a tick mark on the inside of the
x-axis.
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6.5 Simulations

The data for the simulation study were sampled with a zero mean and two different

variance functions: one monotonically increasing, and one increasing and decreasing

periodically. Both functions were created from B-spline basis functions with two in-

ternal knots. Four different dataset sizes were also compared: 100, 250, 500 and 1000.

For each combination, 500 simulations were performed.

The first component of the study was to ensure that the algorithm could reliably es-

timate the two variance functions, when the number of internal knots was known.

The next component was to compare the various information criteria (as described in

Section 3.2.3) with respect to their ability to select the optimal number of knots.

6.5.1 Estimating known functions

Two known functions, both with two internal knots, were sampled from with four diffe-

rent sample sizes, giving a total of eight simulation studies. A total of 500 simulations

were performed, and the median and 2.5% and 97.5% percentiles for the estimates

were obtained (Figure 6.3). From this figure, it is clear that the algorithm is capable

of recovering the true model, even at small sample sizes of 100 observations.

For the monotonically increasing variance function, monotonic spline models were

also fit with two internal knots to compare to the non-monotonic spline models. Fi-

gure 6.4 compares these two methods for the splines, over the four different sample

sizes. At small sample sizes, the monotonic splines have slightly less variation than the

non-monotonic splines, however at larger sample sizes, this difference is minimal. Both

reliably estimate the function over the various sample sizes. This suggests that there

is a small efficiency advantage in assuming a monotonic model, when the true variance

function is monotonic.
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Figure 6.3: A comparison of the monotonically increasing variance function (A, C, E, G)
and the periodic variance function (B, D, F, H) for 100 (A, B), 250 (C, D), 500 (E, F) and
1000 (G, H) observations. All models use two internal knots for each simulation, shown in
blue. Black lines indicate the true function and grey areas indicate the respective 2.5% and
97.5% percentiles of the 500 simulations.
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Figure 6.4: A comparison of the monotonically increasing variance function for normal
splines (red) and monotonic splines (blue), for 100 (A), 250 (B), 500 (C) and 1000 (D)
observations. All models use two internal knots for each simulation. Black lines indicate the
true functions and dotted lines indicate the respective 2.5% and 97.5% percentiles for the 500
simulations.
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6.5.2 Automatic choice of model complexity

The next aspect of these simulation studies was the choice of the optimal number of

knots. Six models were performed for each simulated dataset, from two parameters

(linear), three parameters (zero internal knots), up to seven parameters (four internal

knots). The true model was the five parameter model with two internal knots. Once

the six models were performed, the optimal number of knots was selected for each

information criterion based on the lowest value for each of the four criteria; AIC, AICc,

BIC and HQC. A summary of the optimal models for each of the information criteria

is shown in Table 6.1. At small sample sizes, the BIC and HQC heavily favoured

the simplistic linear model, while the AIC and AICc favoured a zero internal knot

model (three parameters). When the number of observations increases to over 500, the

AIC and AIC average out to choose the true number of parameters (five parameters).

The ability to estimate the model complexity thus depends highly on the sample size.

The HQC also averaged out to choose the true number of parameters for the periodic

variance function, but not for the increasing variance function. For large n, the AIC,

AICc and at times, the HQC, were all able to estimate the correct number of knots.

However, the BIC still tended to oversmooth, particularly for the increasing variance.

For small n, most of the criteria oversmoothed the data.

Table 6.1: Information criteria results from simulation studies. Numbers reported are
the number of parameters in the model, with five parameters (two internal knots) the true
model.

Increasing variance Periodic variance

N Statistic AIC AICc HQC BIC AIC AICc HQC BIC

100 Median 3.0 3.0 2.0 2.0 3.0 3.0 2.0 2.0
Mean 3.5 3.3 2.9 2.5 3.8 3.5 2.8 2.2
Mode 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

250 Median 4.0 4.0 4.0 3.0 5.0 5.0 5.0 2.0
Mean 4.2 4.2 3.5 2.9 4.9 4.9 3.7 2.6
Mode 4.0 4.0 4.0 2.0 5.0 5.0 5.0 2.0

500 Median 5.0 5.0 4.0 4.0 5.0 5.0 5.0 5.0
Mean 4.6 4.6 4.1 3.5 5.2 5.2 4.6 3.6
Mode 4.0 4.0 4.0 4.0 5.0 5.0 5.0 5.0

1000 Median 5.0 5.0 4.0 4.0 5.0 5.0 5.0 5.0
Mean 5.0 5.0 4.5 4.1 5.4 5.4 5.1 4.9
Mode 5.0 5.0 4.0 4.0 5.0 5.0 5.0 5.0
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These results support the use of information criteria for the automatic selection of

model complexity in larger sample sizes. The AIC was preferred, with the AICc not

offering any advantages over AIC, and the BIC was subject to over-smoothing. In

small samples, all criteria over-smoothed to some extent. This suggests that in small

samples we should explore models with complexity greater than the automatically

selected model.

6.6 Application of semi-parametric models

This section will focus on the use of example datasets to demonstrate the semi-

parametric modelling of both the mean and the variance in the CEM algorithm. Various

information criteria can be used to aid in the selection of the most appropriate model,

with the previous simulation study suggesting in small sample sizes that the AIC may

be preferable.

6.6.1 Analysis example 1

The motorcycle crash dataset was explained in Section 3.3. From the plot in Figure

3.4, it is clear that a non-linear model for both the mean and variance is required. To

determine the optimal number of knots, a series of models were fit ranging from a linear

model in each, up to eight knots in the mean and eight knots in the variance. The

number of observations is 133, so therefore the AIC will be used in order to determine

the model complexity. Table 6.2 gives the AIC for these 100 models that were fit, with

the optimal model (lowest AIC) in bold. Note that for this dataset, the AIC, AICc,

BIC and HQC all agreed that the model with six knots in the mean and six knots in

the variance was the model of best fit. This optimal model with 6 knots in the mean

and the variance is shown below in Figure 6.5. The normal scores plot and histogram

of the residuals from this model are also given, and it can be seen that the residuals

follow an approximately normal distribution.
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Table 6.2: The AIC from the 100 different mean and variance models for the motorcycle
crash data. The lowest AIC is in boldface.

Variance Mean

Linear 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots 6 knots 7 knots 8 knots

Linear 1377 1367 1347 1291 1263 1224 1204 1188 1196 1200
0 knots 1332 1355 1326 1289 1233 1203 1190 1175 1183 1186
1 knot 1363 1320 1327 1273 1226 1185 1163 1144 1151 1155
2 knots 1346 1309 1299 1277 1226 1187 1165 1147 1148 1152
3 knots 1341 1252 1299 1266 1220 1184 1160 1144 1146 1150
4 knots 1279 1264 1266 1244 1231 1179 1152 1138 1141 1146
5 knots 1252 1239 1241 1231 1225 1174 1141 1118 1130 1136
6 knots 1241 1234 1235 1235 1230 1145 1107 1075 1101 1112
7 knots 1241 1231 1232 1217 1219 1147 1122 1103 1115 1117
8 knots 1240 1220 1223 1202 1193 1149 1107 1089 1100 1104
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Figure 6.5: The optimal model for the motorcycle crash dataset. A: Mean model fitted in
red with six internal knots (dashed vertical lines). Data represented as points, with 95% CI
in grey. B: Variance model also with 6 internal knots (dashed vertical lines). 95% CI in grey.
C: Q-Q plot of the standardised residuals and D: histogram of the standardised residuals.
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Table 6.3: The AIC from the 100 different mean and variance models for the LIDAR
data. The lowest AIC is in boldface.
Variance Mean
model model

Linear 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots 6 knots 7 knots 8 knots

Linear -270 -472 -482 -580 -558 -608 -595 -610 -605 -605
0 knots -284 -504 -503 -609 -578 -636 -618 -636 -632 -632
1 knot -339 -502 -501 -614 -577 -648 -625 -648 -644 -644
2 knots -313 -506 -504 -620 -581 -649 -632 -651 -645 -645
3 knots -330 -507 -505 -617 -577 -649 -630 -648 -644 -644
4 knots -314 -509 -507 -617 -579 -647 -630 -646 -643 -642
5 knots -317 -508 -507 -614 -577 -645 -630 -645 -641 -641
6 knots -331 -504 -502 -612 -574 -643 -629 -645 -642 -641
7 knots -322 -505 -513 -613 -577 -642 -628 -644 -640 -640
8 knots -318 -510 -508 -611 -577 -639 -628 -644 -640 -640

6.6.2 Analysis example 2

The LIDAR dataset was introduced in Section 3.3. A series of models with increasing

knots in the mean and variance were fit, in order to find the optimal model. Given that

we have 221 observations, the AIC will be used again to determine the optimal model.

The AIC for these 100 models are given in Table 6.3, with the lowest and therefore

optimal model given in bold. The AIC, AICc and HQC all chose this model with six

knots in the mean and two knots in the variance as the optimal model (Figure 6.6).

The residuals are also shown in this plot, which show a small deviation from normality

in the upper tail.

6.7 Final comments

This chapter illustrated the straightforward extension of the CEM algorithm develo-

ped in the previous chapter to semi-parametric modelling. This algorithm has broad

applicability, as models can easily incorporate splines with varying degrees of knots

that may be fit in the mean and variance. Additionally, bases could be created for

more than one covariate and incorporated into the models. The flexibility of this algo-

rithm therefore provides a broad framework for fitting semi-parametric models in the

variance, and this was demonstrated in two example datasets.

From the simulation study, the CEM algorithm developed is capable of recovering the

true model for all sample sizes. However, the ability to estimate the model complexity

depends largely on the sample size. Automatic model selection works well for large
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n, when the AIC should be used. For small n, the AIC should be supplemented with

visual inspection of models with more parameters.

However, the algorithm developed here is restricted to outcome data that follows an

approximately normal distribution. With the LIDAR data, there was a small devia-

tion from normality in the standardised residuals. The next chapter will introduce an

algorithm for use with censored outcome data. This censored data algorithm will then

be built on in subsequent chapters, in order to develop another algorithm to simulta-

neously estimate the location, scale and skewness of the distribution, as a function of

covariates. This will give the algorithm even broader applicability and flexibility for

non-normal data.
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Figure 6.6: The optimal model for the LIDAR dataset. A: Mean model fitted in red with
6 internal knots (dashed vertical lines). Data represented as points, with 95% CI in grey. B:
Variance model also with 2 internal knots (dashed vertical lines). 95% CI in grey. C: A Q-Q
plot of the standardised residuals and D: a histogram of the standardised residuals.





7
Censored data

This chapter introduces censored data, and extends the CEM algorithm for analysis of

the mean and variance when the data are left censored, right censored or a mixture of

both. This chapter also provides the basis for the development of an algorithm in the

next chapter to fit location, shape and scale regression models.

Censoring often occurs in the analysis of biomarker data. When samples are analysed

and measured by an assay, these assays usually have a ‘detectable limit’ which deter-

mines the lowest and highest measurements that can be accurately made by the assay.

For example, when measuring the blood concentration of HIV RNA (called HIV viral

load) some assays cannot reliably measure the amount of viral load below 50 copies

per ml of blood. Newer, more sensitive assays are always emerging that can detect

lower quantities, however, they still have a limit beyond which the amount of viral

load cannot be accurately measured. A similar situation arises with many laboratory

assays.

There has been a steady increase in the number of biomarkers being investigated in

77
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Table 7.1: Different types of censored data based on a difference in two measurements.

Measurement two Measurement one Difference
(Measurement two - Measurement one)

Exact Exact No censoring
Exact Right censored Left censored
Exact Left censored Right censored
Left censored Exact Left censored
Right censored Exact Right censored
Left censored Right censored Left censored
Right censored Left censored Right censored
Right censored Right censored No information
Left censored Left censored No information

clinical trials in many different research fields. We need to be able to accurately model

data with potentially large amounts of data below the detectable limit, or data with

both lower and upper limits reached. Some studies report over one-third of their bio-

marker data as below the detectable limit (White et al., 2014).

When biomarker data can be below the detectable limit (left censored), and/or above

the detectable limit (right censored), differences between two biomarker readings will

also be censored. Biomarker data is commonly given on a log scale, therefore ranges

over (−∞,∞). Examples of the censoring of the difference between two readings of

biomarker data are shown in Table 7.1.

In this chapter, we will consider the viral load dataset that was briefly explored in

Section 3.3. These data are repeated measurements of blood concentration of HIV

RNA on a log10 scale, and were obtained by assaying the blood of an infected indi-

vidual twice in a short interval of time prior to the commencement of a clinical trial

(Kuritzkes et al., 1999). Although the underlying viral load is unchanged in this short

interval of time, the measurements will differ due to measurement error. Additionally,

the assay has a lower detection limit of log10(500), or 2.70. If V
(1)
i is the first viral

load reading, and V
(2)
i is the second, then the usual measurement error model for the

repeated measurements is

V
(j)
i = V ∗i + εj where εj ∼ N(0, σ2) j = 1, 2

where V ∗i is the underlying viral load for the ith patient. If we assume independence of

the measurement errors for different measurements, we can assume that the difference
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in the repeated measurements, Xi = V
(1)
i −V (2)

i , follows a normal distribution with zero

mean and variance 2σ2. This can be used to estimate the measurement error variance

σ2.

Figure 7.1 shows the difference between the repeated measurements, versus the average

of the two measurements, where any data below the detectable limit is set at the de-

tectable limit. While these data appear to have zero mean in the difference of the

observations, the variance appears to have a reverse fanning pattern. This demonstra-

tes larger variance in the difference between the observations in smaller observations.

A variance regression model would need to be undertaken to model this decreasing

variance, in particular to take account of the censored data that is clearly evident in

the plot.
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Figure 7.1: Bland-Altman plot of two HIV viral load measurements.
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7.1 Fitting details

If X∗i is our true outcome data, let Xi be the outcome data observed with censoring,

and let us account for lower and upper limit censoring for completeness. This censored

data gives an additional level of missingness to our CEM algorithm, and thus an extra

level of our complete data. If X(L) is the lower limit of detection and X(U) is the upper

limit of detection,

Xi =





X∗i , if X(L) ≤ X∗i ≤ X(U)

X(L), if X∗i < X(L) for i = 1, 2.., n.

X(U), if X∗i > X(U)

(7.1)

We will also need to specify c, the censoring indicator, where

ci =





0, if X(L) ≤ X∗i ≤ X(U)

−1, if X∗i < X(L)

1, if X∗i > X(U).

Similarly to previous chapters, let the mean model have covariates zi = (zi1, ..., ziP ),

with coefficients β = (β1, ..., βP ); and the variance model have covariates, xi =

(xi1, ..., xiQ) with coefficients α = (α1, ..., αQ). Also, let us assume that the covari-

ates xiq are scaled such that xiq ∈ [0, 1]. For simplicity, let

µ(β) = β0 +
P∑

p=1

βpzip and σ2(α) = α0 +

Q∑

q=1

αqxiq.

If Φ is the standard normal cumulative distribution function and φ is the standard

normal probability density function, then two useful functions are R(z) =
φ(z)

1− Φ(z)

and Q(z) =
−φ(z)

Φ(z)
(Mills, 1926). Additionally, when z tends to negative infinity, the

approximation
φ(z)

Φ(z)
≈ −z can be used.
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The likelihood function for the observed data model with censored data is

l(β,α) =
N∏

i=1

li

where

li =





1

σ(α)
φ

(
Xi − µ(β))

σ(α)

)
, if ci = 0

1− Φ
(
µ(β)−X(L)

i

σ(α)

)
, if ci = −1

Φ

(
µ(β)−X(U)

i

σ(α)

)
, if ci = 1.

The corresponding log-likelihood is then

`(β,α) =
N∑

i=1

`i,

where

`i =





log

(
1

σ(α)
φ

(
Xi − µ(β)

σ(α)

))
, if ci = 0

log

(
1− Φ

(
µ(β)−X(L)

i

σ(α)

))
, if ci = −1

log

(
Φ

(
µ(β)−X(U)

i

σ(α)

))
, if ci = 1.

Now in the CEM algorithm, the uncensored outcome variable X∗i will be assumed to

be composed of Q+ 1 independent, unobserved, latent variables:

X∗i = Yi + Zi1 + ...+ ZiQ where Yi ∼ N(0, α0) and

Zi1 ∼ N(0, α1xi1), ..., ZiQ ∼ N(0, αQxiQ). (7.2)

This means that we will need to find the conditional expectations of Y 2
i and Z2

i1, ..., Z
2
iQ,

given the observed outcome value, Xi, which may be censored.
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From Aitkin (1964), we see that for bivariate normal variables M and N , where

(
M

N

)
∼ N

[(
0

0

)
,

(
1 ρ

ρ 1

)]
,

the conditional distribution for M given censoring in N can be obtained. In particular,

given an upper limit, a, it was shown that:

E(M2 | N > a) =
aρ2

R(a)
+ 1, (7.3)

where ρ is the correlation between M and N and R(a) was defined previously. We

know from (7.2) that the variance for Yi is α0, and the variance for Xi is σ2(α). So,

given (7.2) and the general result (7.3), it follows that,

E(Y 2
i |Xi > X(U)) = α0E

(
Y 2
i

α0

∣∣∣∣
Xi

σ(α)
>
X(U)

σ(α)

)
,

= α0




X(U)

σ(α)
Corr(Yi, Xi)

2

R

(
X(U)

σ(α)

) + 1


 . (7.4)

We can then determine the correlation between Yi and Xi:

Corr(Yi, Xi) =
cov(Yi, Xi)√
α0σ2(α)

=
cov(Yi, Yi + Zi)√

α0σ2(α)

=
cov(Yi, Yi) + cov(Yi, Zi)√

α0σ2(α)

=
α0 + 0√
α0σ2(α)

,

=

√
α0

σ(α)
. (7.5)
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We can also determine the correlation for each of the Ziq and Xi, using a similar

argument:

Corr(Ziq, X) =

√
αqxiq

σ(α)
. (7.6)

Now we apply the correlation found in (7.5) to (7.4), in order to obtain our conditional

expectation of Y 2
i :

E(Y 2
i |Xi > X(U)) = α0 +

α2
0X

(U)

σ3(α)R

(
X(U)

σX

) . (7.7)

The expectation of each of the Z2
iq follows the same argument, using (7.6).

In order to apply these expectations to left censored data, we use the function Q(z)

rather than R(z).

The complete data log-likelihood is the same as given in Chapter 5 in Equation (5.2),

and is linear in Y 2
i and Z2

iq. For censored outcome data, the E-step involves the

calculation of the conditional expectations as defined in Chapter 5 in Equation (5.3):

Ŷ 2
i (θ) =





α0 +
α2
0

σ2(α)




(
Xi − µ(β)

σ(α)

)2

σ(α)
− 1


 , if ci = 0

α0 +
α2
0

σ2(α)




Xi − µ(β)

σ(α)

Q

(
Xi − µ(β)

σ(α)

)


 , if ci = −1

α0 +
α2
0

σ2(α)




Xi − µ(β)

σ(α)

R

(
Xi − µ(β)

σ(α)

)


 , if ci = 1,

(7.8)
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remembering that θ = (β,α), and Xi is defined in (7.1). The conditional expectations

associated with the Ziq follow the same principles,

Ẑ2
iq(θ) =





αqxiq +
(αqxiq)

2

σ2(α)




(
Xi − µ(β)

σ(α)

)2

σ(α)
− 1


 , if ci = 0

αqxiq +
(αqxiq)

2

σ2(α)




Xi − µ(β)

σ(α)

Q

(
Xi − µ(β)

σ(α)

)


 , if ci = −1

αqxiq +
(αqxiq)

2

σ2(α)




Xi − µ(β)

σ(α)

R

(
Xi − µ(β)

σ(α)

)


 , if ci = 1.

(7.9)

The next step of the algorithm involves calculating the updated estimates of θ, θ̂new.

The estimates for α̂ for fixed β are obtained by the following,

α̂new0 = n−1
n∑

i=1

Ŷ 2
i

(
θ̂old
)

and α̂q
new =

n∑
i=1

Ẑ2
iq(θ

old)

n
n∑
i=1

xiq

. (7.10)

Previously in Chapter 5, a weighted linear regression was fit in order to obtain an

updated estimate of the mean parameters (β̂) at each iteration, for fixed α = α̂new.

In order to estimate the mean model with censored outcome data, we need to fit a

heteroscedastic censored linear regression model. This can be achieved by first stan-

dardising the data, and then performing a homoscedastic censored linear regression at

each iteration. In order to standardise the data, we divide by the standard deviation

to obtain

Xi

σ(α)
∼ censored N

(
µ(β)

σ(α)
, 1

)
. (7.11)

A homoscedastic censored linear regression for
Xi

σ(α)
is then performed, against cova-

riates
zip
σ(α)

, for fixed α = α̂new. This can easily be implemented in standard software

for censored normal linear regression, which can be performed with survreg in R.

Once the censored regression is performed, the β̂ estimates are back transformed by
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multiplying by the standard deviation σ(α) for our current fixed α. This process is

continued until convergence of the parameter estimates.

This algorithm is an instance of the ECME algorithm, and is summarised schematically

in Figure 7.2. As detailed in Section 3.1.2 and 5.1, the algorithm maximises the log-

likelihood over a restricted parameter space, and will need to be run multiple times in

order to maximise over the full parameter space. Thus a total of 2Q ECME algorithms

must be run, once for each combination of the qth variance covariate taking the value

xi or 1 − xi, for q = 1, 2, ..., Q. The log-likelihood is then maximised over the entire

parameter space with this family of ECME algorithms.
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initialize with β̂old and α̂old,

calculate Ŷ 2
i , Ẑ

2
i1, ..., Ẑ

2
iQ

given β̂old and α̂old,
using (7.8) and (7.9)

calculate updated
α̂new using (7.10)

fit censored LS given
α̂new and the updated

standardised data (7.11)

use censored LS
fit to obtain β̂new

check
convergence

set β̂old = β̂new

and α̂old = α̂new

finish

Yes

No

Figure 7.2: The ECME algorithm for the estimation of the mean and variance with
censored outcome data.
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7.2 Standard error estimation

The standard errors of the parameter estimates may be obtained by bootstrapping

techniques, as presented in previous chapters. A total of B random samples with

replacement of size n are taken, and the above algorithm is applied to each of the

samples. Typically, B is set to 1000. We then obtain B bootstrap estimates, and take

the 2.5% and 97.5% percentiles of these estimates in order to obtain the 95% confidence

intervals. In practice, this may take some time for datasets with many parameters fit

in the variance model. This is due to the number of parameter spaces, and thus ECME

algorithms, that must be run.

7.3 Simulations

A series of simulations were performed to demonstrate this algorithm, with true para-

meters θ = (α, β) = (1, 1), that is, Xi ∼ (1 + x, 1 + x). Four scenarios with increasing

left or right censoring were used, with on average 5%, 15%, 25% and 50% censoring, to

demonstrate data either below or above a detectable limit. Additionally, simulations

were performed with censoring on both the left and right sides, with on average 5%,

15% or 25% censoring on each side. Lastly, three sample sizes were explored; 100, 500

and 1000 observations. A total of 1000 simulations were performed for each combina-

tion. The results are summarised in Table 7.2.

Even with 50% censoring and only 100 observations, the mean estimates were unbiased

with the highest relative bias being just 2%. For variance estimates, the relative bias

was generally no more than 5%, and generally much smaller. The only exception was

for cases with censoring at 50% and 100 observations, where we found relative bias in

the range of 2.3% to 8.6%. However, if there are 500 observations or more, the relative

bias did not exceed 3.5%. In each of the simulations, bias and precision improved with

an increasing number of observations, and a lower degree of censoring.

Overall, these results illustrate that the algorithm can reliably estimate the mean and

variance parameters, even in datasets with small sample size and a large amount of

censoring.
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Table 7.2: Results from the censoring simulation study, with 1000 simulations performed
per row.

Censoring Mean Intercept Mean Slope Variance Intercept Variance Slope

Left Right Mean Variance Mean Variance Mean Variance Mean Variance

N=100

5% 0% 1.006 0.056 0.987 0.198 1.004 0.155 0.980 0.635
15% 0% 0.999 0.059 0.994 0.208 1.026 0.192 0.956 0.745
25% 0% 1.001 0.065 0.991 0.222 1.021 0.231 0.970 0.871
50% 0% 0.997 0.116 0.992 0.333 1.059 0.503 0.928 1.605
0% 5% 1.008 0.055 0.988 0.201 0.980 0.132 1.016 0.616
0% 15% 1.010 0.056 0.989 0.208 0.987 0.148 1.019 0.754
0% 25% 1.009 0.058 0.996 0.216 0.989 0.172 1.037 0.917
0% 50% 1.018 0.070 0.981 0.293 1.023 0.321 0.994 1.729
5% 5% 1.005 0.056 0.991 0.203 0.999 0.155 1.007 0.696
15% 15% 1.001 0.061 0.997 0.220 1.033 0.231 1.013 1.123
25% 25% 0.999 0.068 1.006 0.241 1.053 0.392 1.086 2.034

N=500

5% 0% 0.997 0.010 1.007 0.033 0.987 0.025 1.013 0.113
15% 0% 0.990 0.012 1.013 0.039 0.987 0.033 1.013 0.131
25% 0% 0.997 0.011 1.006 0.037 0.988 0.040 1.020 0.159
50% 0% 0.995 0.020 1.006 0.055 0.992 0.077 1.020 0.272
0% 5% 0.997 0.009 1.008 0.033 0.983 0.024 1.023 0.114
0% 15% 0.997 0.010 1.010 0.034 0.983 0.026 1.026 0.136
0% 25% 0.998 0.010 1.007 0.035 0.986 0.030 1.017 0.164
0% 50% 0.999 0.012 1.002 0.050 0.991 0.049 1.003 0.267
5% 5% 0.997 0.010 1.009 0.033 0.985 0.026 1.023 0.122
15% 15% 0.996 0.010 1.010 0.036 0.989 0.038 1.033 0.181
25% 25% 0.996 0.011 1.008 0.039 0.996 0.059 1.035 0.291

N=1000

5% 0% 0.998 0.005 1.005 0.017 0.999 0.013 0.995 0.057
15% 0% 0.996 0.005 1.005 0.017 0.999 0.016 1.002 0.065
25% 0% 0.997 0.005 1.005 0.019 1.001 0.020 0.997 0.077
50% 0% 0.998 0.010 1.002 0.028 1.000 0.037 1.002 0.126
0% 5% 0.997 0.005 1.006 0.017 0.998 0.012 0.997 0.057
0% 15% 0.998 0.005 1.004 0.017 1.000 0.013 0.993 0.065
0% 25% 0.999 0.005 1.004 0.019 1.002 0.015 0.990 0.078
0% 50% 1.000 0.006 1.000 0.026 1.006 0.024 0.981 0.123
5% 5% 0.996 0.005 1.008 0.018 1.005 0.014 0.992 0.066
15% 15% 0.998 0.005 1.004 0.018 1.002 0.018 0.999 0.087
25% 25% 0.997 0.005 1.005 0.020 1.010 0.031 0.994 0.143

7.4 Analysis example

The viral load dataset described earlier in this chapter will be used to demonstrate the

proposed method. This dataset contains a total of 285 observations, however 28 have

both readings as left censored and therefore the difference is uninformative. These ob-

servations are not included in these analyses. A total of 234 observations are measured

exactly, while there are 14 that are left censored and 9 that are right censored (5% and

3% respectively). A monotonic step function will be explored first, then a monotonic

splines model and finally a non-monotonic splines model.
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Following the principles outlined in Section 6.1, a step function is easily incorporated

into the above algorithm. The only addition on top of the algorithm detailed above

in Section 7.1 is restricting these data to have the first x observation uncensored. For

this viral load dataset, the first seven observations are censored (a mixture of left and

right censoring), so therefore these observations were removed for the estimation of the

monotonic step function. Given that the data are differences in repeat measurements,

a zero mean model is assumed, and the variance estimates are restricted to be monoto-

nically decreasing. This is consistent with the natural expectation that measurement

error will increase in variability closer to the limit of detection (Álvarez Estévez et al.,

2013).

Although this is a flexible method for examining the relationship between a covariate

and the censored outcome, the disadvantages are the large number of parameters that

need to be estimated, and the discontinuous step-function estimate. An alternative to

this method is fitting B-spline basis functions that can be used to fit a smooth, flexible

regression line, without requiring a large number of degrees of freedom. A series of

models were fit to these data, with an increasing number of parameters in the mean

and variance model. The AIC results for each of these models are shown in Table 7.3,

with the optimal model that with a zero mean, and two knots fit in the variance.

A series of monotonic B-spline basis functions were also explored, with increasing knots

in the mean and variance. From the AIC results of these models given in Table 7.4, the

model with the lowest AIC was also that with zero mean and two knots in the variance.

A comparison of the monotonic step model, this model with monotonic splines and the

Table 7.3: The AIC from the 36 different non-monotonic mean and variance models for
the viral load data. The lowest AIC is in boldface.
Variance Mean

Zero Constant Linear 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

Linear 343.7 345.0 346.6 339.9 342.0 344.2 345.8 346.5 349.2
0 knots 364.5 366.0 363.4 359.7 362.7 365.3 366.8 367.4 370.4
1 knot 322.9 324.8 326.7 327.4 329.0 330.7 332.9 332.7 334.2
2 knots 299.3 300.7 302.0 303.0 304.2 306.1 308.1 308.1 309.9
3 knots 299.9 301.0 302.4 303.4 304.6 306.5 308.5 308.5 310.1
4 knots 300.4 302.0 302.8 302.5 304.8 306.5 308.7 308.7 310.7
5 knots 301.4 302.9 303.9 304.6 305.7 307.7 309.7 310.3 311.9
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Table 7.4: The AIC from the 49 different monotonic mean and variance models for the
viral load data. The lowest AIC is in boldface.
Variance Mean

Zero Constant Linear 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

Linear 343.7 345.0 346.6 339.9 342.0 344.2 345.8 346.5 349.2
0 knots 308.7 310.3 312.3 313.8 314.6 316.4 318.4 319.0 321.1
1 knot 301.3 303.0 304.9 306.7 307.8 309.2 311.4 311.7 313.5
2 knots 299.9 301.5 303.4 305.0 306.1 307.7 309.9 310.0 311.9
3 knots 300.7 302.3 304.3 305.8 306.9 308.6 310.7 310.7 312.7
4 knots 302.3 304.0 305.9 307.5 308.5 310.0 312.2 312.3 314.2
5 knots 301.4 303.1 305.0 306.4 307.4 309.2 311.3 311.6 313.3

model with non-monotonic splines is shown in Figure 7.3. While the monotonic spli-

nes follow the step function, the non-monotonic splines start at a lower variance than

that in the monotonic models. While this change in variance may be appropriate in

some scenarios, for viral load data it is known that there is higher variability at lower

readings (Álvarez Estévez et al., 2013). Therefore the monotonic spline model is the

most appropriate for these data.

Figure 7.4 compares the residuals from these models. Given that we have right-censored

squared residuals, the distribution can be estimated using standard Kaplan-Meier cur-

ves. We can assess the model fit using the chi-squared distribution with one degree

of freedom. From the figure, we have a relatively good fit with both monotonic and

non-monotonic spline models.

7.5 Final comments

This chapter illustrated the extension of the CEM algorithm for analysis of the mean

and variance when the outcome data may be censored. The data may be left censored,

right censored or a combination of both. Through a simulation study, we demonstrated

that the algorithm can reliably estimate mean and variance parameters with minimal

bias, even with up to 50% censoring. We also illustrated its applicability for assessing

measurement error for biomarker data that is subject to both left and right censoring.

This chapter also provides the basis for the development of an algorithm in the next

chapter to fit location, shape and scale regression models.
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Figure 7.3: The optimal variance models for the viral load dataset. In black is the
monotonic step function, in red is the spline model and in blue is the monotonic spline. Each
unique data point (wk) is represented as a tick mark on the inside of the x-axis.
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Figure 7.4: The censored squared residuals from the optimal variance models for the
viral load dataset. In black is the chi-squared distribution with one degree of freedom. In
red is the spline model residuals, and in blue is the monotonic spline model residuals. Each
unique data point (wk) is represented as a tick mark on the inside of the x-axis.



8
Skewness models

The focus of this chapter will be to introduce the skew-normal distribution and develop

an algorithm to fit a regression model in the location, scale and shape parameters (LSS).

The previous chapter introduced an extension of the CEM algorithm for censored data,

and that algorithm will be utilised in this chapter. After the development of a simple

algorithm to estimate the three parameters in the skew-normal model, the algorithm

will be extended to accommodate regression models in location, scale and shape. A

simulation study, as well as applications to datasets, will also be performed.

8.1 Skew-normal distribution

The skew-normal distribution is a distribution that extends the normal distribution

to allow for non-zero skew (Azzalini, 2013). This distribution has three parameters,

the location parameter ξ (ξ ∈ (−∞,∞)), the scale parameter ω (ω ∈ (0,∞)) and the

shape parameter ν (ν ∈ (−∞,∞)). If ν < 0, the distribution is left skewed, and if

93
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ν > 0 then the distribution is right skewed. The normal distribution is recovered with

ν = 0 (Figure 8.1).

The probability density function of the skew normal is

f(x) =
2

ω
φ

(
x− ξ
ω

)
Φ

(
ν

(
x− ξ
ω

))
−∞ < x <∞

where φ and Φ are the density and distribution functions of the standard normal

distribution, respectively. If a random variable X has a skew-normal distribution with

parameters (ξ, ω, ν), this is written as

X ∼ SN
(
ξ, ω2, ν

)
.
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Figure 8.1: Examples of the skew-normal density function with α = 0 in red, α = 3 in
green and α = −3 in blue.
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The mean µ, variance σ2 and skewness γ can be obtained, in terms of the location,

scale and shape parameters (ξ, ω, ν), as follows

µ = ξ + ωδ

√
2

π
where δ =

ν√
1 + ν2

(8.1)

σ2 = ω2

(
1− 2δ2

π

)
(8.2)

γ =
4− π

2

(
δ
√

2/π
)3

(1− 2δ2/π)3/2
. (8.3)

In general, members of this distribution have a skewed distribution, except for the

special case ν = 0 which corresponds to the normal distribution. While many properties

of the skew-normal distribution are listed in Azzalini (2013), one important property

is the fact that

(
X − ξ
ω

)2

∼ χ2
1

irrespective of ν. This property will be especially useful in residual analysis for the

regression model presented later in this chapter.

8.2 Maximum likelihood estimation

IfX1, ..., Xn are independent and identically distributed observations from SN(ξ, ω2, ν),

the likelihood function for the sample is given as

L(ξ, ω, ν) =
2n

ωn

n∏

i=1

φ

(
Xi − ξ
ω

)
Φ

(
ν

(
Xi − ξ
ω

))
, (8.4)

and the corresponding log-likelihood (omitting the constant term) reduces to

L(ξ, ω, ν) = −n log(ω) +
n∑

i=1

log φ

(
Xi − ξ
ω

)
+

n∑

i=1

logΦ

(
ν

(
Xi − ξ
ω

))
. (8.5)

As will be explained below, the likelihood in (8.4) is a censored Gaussian likelihood

when viewed as a function of ξ and ω, and a probit regression likelihood when viewed

as a function of ν. This is useful as it allows a straightforward cyclic coordinate ascent
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algorithm to be used to obtain the MLE. For optimisation of a multi-variable function,

a cyclic coordinate ascent algorithm involves the optimisation of a function with respect

to one variable holding the other variables constant, and then repeating with respect

to each of the variables (Lange, 2013). In our context, the cyclic coordinate ascent

algorithm will cycle between a censored Gaussian model (keeping ν constant), and a

probit regression (keeping ξ and ω constant).

Although there already exists an algorithm for obtaining the MLE in the skew-normal

model in the SN package (Azzalini, 2016) in R, we introduce this new method as it

more easily generalises to regression modelling.

In order to see that (8.4) is equivalent to a probit regression likelihood when viewed as

a function of ν alone, we note that (8.4) is proportional to the following function of ν,

L2(ν|ξ, ω) =
n∏

i=1

Φ

(
ν

(
Xi − ξ
ω

))
. (8.6)

Now let the residuals be defined as follows, for fixed ξ and ω,

ri =
Xi − ξ
ω

.

Then, (8.6) is

L2(ν|ξ, ω) =
n∏

i=1

Φ (νri) =
∏

ri≥0

Φ(ν|ri|)
∏

ri<0

[1− Φ(ν|ri|)] .

This is exactly a probit regression likelihood with the binary outcome

Vi =





1 if ri ≥ 0

0 if ri < 0

and the linear predictor being ν|ri|. Thus, for fixed ξ and ω, (8.4) can be maximised

as a function of ν by fitting a probit regression on the binary outcome Vi, with no

intercept and a single covariate |ri|.
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Next, let us look at the estimation of the ξ and ω parameters, holding ν constant.

If we examine (8.4), we will now show how this can be considered to be a censored

Gaussian likelihood, where the first component is with regards to the uncensored data,

and the second component is with regards to the censored data (and multiplied by our

constant ν). Note as well, that each observation contributes to both the censored and

uncensored components of the likelihood.

For the purpose of performing a censored regression, we will utilise the algorithm

developed in Section 7.1. In order to make use of this algorithm, the data needs to be

manipulated to ensure that each observation is contributing to both components of the

likelihood. Firstly, we create a censoring indicator, c, of length 2n. The first n elements

are set to 0, and then elements n + 1, ..., 2n are set to −1 to indicate left censoring.

Next, we create a vector of 1s called I of length 2n, and we also create a new outcome

vector called D, where observations 1, ..., n are X, and observations n + 1, ..., 2n are

also X. This corresponds to

D =




X1

...

Xn

X1

...

Xn




, I =




1
...

1

1
...

1




, and c =




0
...

0

1
...

1




.

Now, the likelihood for the observed data model is

l(ξ, ω|ν) =
2n∏

i=1

li,

where

li =





1

ω
φ

(
Di − Ii
ω

)
, if ci = 0

1− Φ
(
ν

(
Ii −Di

ω

))
, if ci = −1,
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which equates to

li =





1

ω
φ

(
Di − Ii
ω

)
, if ci = 0

Φ

(
ν

(
Di − Ii
ω

))
, if ci = −1.

(8.7)

Now we can compare (8.4) and (8.7), and see that they follow a similar form, where

Di = Xi and Ii = ξ.

So, we can fit our censored regression model to update ξ̂ and ω̂ with our new outcome

data Di, using the censoring indicator (ci) to indicate the censored observations. Note

that the censored data observations require Ii and Di to be multiplied by the constant

ν. The location model contains only the vector Ii as a covariate, that is, with no in-

tercept term. Meanwhile, the scale model contains an intercept only. The parameter

from the Ii covariate is the estimate for ξ̂ and the intercept estimate from the scale

model is ω̂.

Once we have calculated our current estimates for ξ̂, ω̂ and ν̂, we then examine con-

vergence as per Section 3.1.1. If convergence has not been met, we iterate our cyclic

coordinate ascent algorithm by re-calculating the residuals, performing another probit

regression and then performing our censored Gaussian regression, until we do reach our

convergence criteria. It is also of importance to note that whether we use the censored

normal algorithm in Section 7.1, or another censored normal algorithm such as that

provided in the SN package, we obtain the same result.

Numerical example

To compare the results from these two location, scale and shape (LSS) algorithms,

that is, the msn.mle function in the SN package with the algorithm developed above,

we consider a simple numerical example. Although this is just a single example, it is

indicative of behaviour observed with other parameter values. Figure 8.2 provides the

results from a random sample generated from Y ∼ SN(5, 9, 2), in which we compare

the MLE results from the two methods. It can be seen that the two methods converge

to the same parameter estimates and log-likelihood. Although the results from the

two methods were the same, the SN package algorithm required 7 iterations while the



8.2 Maximum likelihood estimation 99

proposed algorithm required 40 iterations. Although the proposed algorithm required

more iterations, an advantage of this algorithm is that it easily extends to allow for a

regression model in the location, scale and shape parameters. In the next section, we

will investigate how this can be achieved.
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Figure 8.2: A numerical example to compare the two methods of obtaining the MLE. The
location parameter (ξ) is given in A, the scale parameter (ω) in B, and the shape parameter
(ν) in C over the iterations. The log-likelihood over the iterations is given in D.
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8.3 Extension to LSS regression model

Now that an algorithm has been developed to estimate the ξ, ω and ν parameters in

a skew normal model, let us extend this to incorporate a regression model for each of

the three parameters. In this case the model becomes

Xi ∼ SN

(
ξ0 +

P∑

p=1

ξpsip, ω0 +

Q∑

q=1

ωqliq, ν0 +
K∑

k=1

νkuik

)
for i = 1, 2, ..., n,

where we have covariates sip (p = 1, ..., P ) for the location model, covariates liq (q =

1, ..., Q) for the scale model and covariates uik (k = 1, ..., K) for the shape model.

The likelihood for this model is

L(ξ,ω,ν) =




2(√
ω0 +

Q∑
q=1

ωqliq

)




n

n∏

i=1

φ




Xi − ξ0 −
P∑
p=1

ξpsip

√
ω0 +

Q∑
q=1

ωqliq




Φ




(
ν0 +

K∑

k=1

νkuik

)



(Xi − ξ0 −
P∑
p=1

ξpsip

√
ω0 +

Q∑
q=1

ωqliq






, (8.8)

and the log-likelihood reduces to

L(ξ,ω,ν) = −n log



√√√√ω0 +

Q∑

q=1

ωqliq


+

n∑

i=1

log

(
Xi − ξ0 −

P∑
p=1

ξpsip

)

√
ω0 +

Q∑
q=1

ωqliq

+
n∑

i=1

logΦ




(
ν0 +

K∑

k=1

νkuik

) Xi − ξ0 −
P∑
p=1

ξpsip

√
ω0 +

Q∑
q=1

ωqliq



,

where ξ = (ξ1, ξ2, ..., ξP ), ω = (ω1, ω2, ..., ωQ) and ν = (ν1, ν2, ..., νK).

Similarly to the approach taken in the previous section, the likelihood in (8.8) can be
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seen as a censored Gaussian likelihood when viewed as a function of ξ and ω, and a

probit regression likelihood when viewed as a function of ν. Therefore, we can take the

same approach as before, with an extension of the cyclic coordinate ascent algorithm.

The steps outlined in the section above may be generalised as follows. First, the

residuals can be defined as follows, for fixed ξ and ω,

ri =

Xi − ξ0 −
P∑
p=1

ξpsip

√
ω0 +

Q∑
q=1

ωqliq

.

Now,

l2(ν|ξ,ω) =
n∏

i=1

Φ

((
ν0 +

K∑

k=1

νkuik

)
ri

)

=
∏

ri≥0

Φ

((
ν0 +

K∑

k=1

νkuik

)
|ri|
)∏

ri<0

[
1− Φ

((
ν0 +

K∑

k=1

νkuik

)
|ri|
)]

.

As in Section 8.2, this is exactly a probit regression likelihood with the binary outcome

(Vi). Therefore for fixed ξ and ω, the likelihood (8.8) can be maximised as a function

of ν by fitting a probit regression on the binary outcome Vi with the covariate |ri|, and

each covariate of interest uik multiplied by |ri|, with no intercept term. The estimate

of ν0 is obtained from the estimate from the |ri| parameter in the model, and each of

the estimates of νk are obtained from the parameter for the relevant uik covariate in

the model.

Next, let us consider the estimation of ξ and ω, while maintaining ν constant. Firstly,

similar to Section 8.2, we must create our censoring indicator c and our new outcome

vector D. Also, we must create a new variable for each of the covariates sip which is of

length 2n. For each of these covariates, the values i = 1, ..., n are the values from sip

i = 1, ..., n, and the values i = n+1, ..., 2n are also sip. Let us call these new covariates

of length 2n, zip.

In the same manner, the scale covariates are each manipulated to be of length 2n. Each

covariate, liq, is duplicated so that the first set of values, i = 1, ..n, are the respective

value from liq. Then the next values, i = n+1, .., 2n, are also the respective value from
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liq. Let us call these new covariates xiq.

Chapter 7 describes the extension for the censored regression model for µ and σ2, so

our observed data likelihood for this extended model is

l(ξ,ω|ν) =
2n∏

i=1

li,

where

li =





1√
ω0 +

Q∑
q=1

ωqxiq

φ




Di − ξ0 −
P∑
p=1

ξpzip

√
ω0 +

Q∑
q=1

ωqxiq



, if ci = 0

1− Φ




(
ν0 +

K∑

k=1

νkuik

)



ξ0 −
P∑
p=1

ξpzip −Di

√
ω0 +

Q∑
q=1

ωqxiq






, if ci = −1,

which equates to

li =





1√
ω0 +

Q∑
q=1

ωqxiq

φ




Di − ξ0 −
P∑
p=1

ξpzip

√
ω0 +

Q∑
q=1

ωqxiq



, if ci = 0

Φ




(
ν0 +

K∑

k=1

νkuik

)



Di − ξ0 −
P∑
p=1

ξpzip

√
ω0 +

Q∑
q=1

ωqxiq






, if ci = −1.

(8.9)

Once the current estimates for ξ, ω2 and ν are obtained, the cyclic coordinate ascent

algorithm continues to cycle between a probit regression and a censored normal regres-

sion until convergence. The algorithm is summarised schematically in Figure 8.3. In

this algorithm, estimation of standard errors is obtained by bootstrapping only.
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initialize with ξ̂old, ω̂old, ν̂old

calculate Vi, |ri|
and uik × |ri| using
fixed ξ̂old and ω̂old

fit probit regres-
sion to obtain ν̂new

calculate Di, zip, xiq
using fixed ν̂new

fit censored regression
model to obtain ξ̂new and
ω̂new as per Figure 7.2

check
convergence

set ξ̂old = ξ̂new, ω̂old =
ω̂new, ν̂old = ν̂new

finish

Yes

No

Figure 8.3: The cyclic coordinate ascent algorithm for the estimation of the location,
scale and shape.
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Note that with the development of the regression model in each of the parameters, a

semi-parametric model with B-splines is now easily incorporated in the location, scale

and shape parameters. As detailed in Section 6.2, the B-spline basis functions are fit

as covariates in any or all models; the location, scale or the shape. The flexibility of

each of the functions is determined by the number of knots specified, and can vary over

the three models as required.

8.4 Simulations

A small simulation study was performed to investigate the performance of this algo-

rithm for the estimation of the location, scale and shape parameters. For three sample

sizes of 100, 500 and 1000 observations, data were randomly sampled from the following

distribution Y ∼ SN (1 + 1x, 1 + 1x, 1).

For each simulation, a total of 500 repetitions were performed. The results are shown

in Table 8.1. As expected, when the sample contains only 100 observations, the esti-

mation of the parameters is more variable, with higher standard deviation and MSE.

This improves with a larger sample, and at 1000 observations, the MSE is less than

10% for each of the parameters.

Table 8.1: Results from a simulation study. Data from a SN distribution with (ξ, ω2 ν)
as Y ∼ SN(1 + x, 1 + x, 1) at 100, 500 and 1000 observations.

n = 100

ξ0 ξ1 ω2
0 ω2

1 ν0

Mean 1.114 1.061 0.998 1.038 0.987
SD 0.421 0.417 0.479 0.860 0.994

MSE 0.190 0.177 0.230 0.741 0.987

n = 500

Mean 1.057 1.019 0.982 0.964 0.938
SD 0.223 0.183 0.241 0.375 0.433

MSE 0.053 0.034 0.059 0.142 0.191

n = 1000

Mean 1.025 1.007 0.985 0.998 0.974
SD 0.149 0.134 0.173 0.253 0.286

MSE 0.023 0.018 0.030 0.064 0.083
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More importantly, for all sample sizes and all parameters, the average estimate is

acceptably close to the true value. It also shows that, particularly for larger sample

sizes, there is virtually no estimation bias.

The results are also shown graphically in Figure 8.4, now in terms of the mean, variance

and skew. This clearly shows the increased precision with increasing sample size.
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Figure 8.4: A summary of the simulation study. (A) The mean (left), variance (centre)
and skew (right) over x for the 100 observation study. (B) For the 500 observation study and
(C) the 1000 observation study. The area between the 2.5% and 97.5% percentiles is given
in grey for each plot. The distribution from which these data were sampled is given in black.
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8.5 Application of LSS models

8.5.1 Analysis example 1

The LIDAR dataset was explored in Section 6.6.2, where some small skew was apparent

in the residuals (Figure 6.6). To explore this further, the EM-type algorithm for the

location, scale and shape (LSS) developed above can be applied. The mean and vari-

ance model that was the best fit from the previous chapter had 4 internal knots in the

mean and 2 internal knots in the variance. Assuming these models in the location and

scale, a summary of the fit of two LSS models, compared to the model with no shape

parameter from Section 6.6.2, is shown in Table 8.2. The AIC, BIC and HQC all agree

that the model with a constant shape parameter (intercept only) is a better fit to these

data than the model without a shape parameter. They also all agree that a regression

model for the shape parameter is unnecessary. Although this model provides the best

fit, from Figure 8.5 the model for the mean is clearly very similar for the three models.

The variance regression is seen to be similar at lower values of the range variable, but

deviates at high values. The residual plots appear to indicate an adequate fit (Figure

8.6).

Table 8.2: Results from various models fit to the LIDAR dataset.
Shape model AIC BIC HQC

No shape model -651.2 -603.6 -655.6
Constant shape model -663.7 -612.8 -668.5

Linear shape model -657.0 -602.6 -662.0

8.5.2 Analysis example 2

The next dataset to be analysed is the CD4 dataset from Section 3.3. Starting with the

mean and variance, we can use the information criteria to find the optimal number of

internal knots to fit in the models (see Table 8.3 for the AIC). The AIC, AICc and HQC

agreed that the optimal model was 5 knots in the mean and 5 knots in the variance.

As expected, the BIC favoured a model with less parameters, namely, 4 knots in the

mean and 2 knots in the variance. Once the optimal model was determined, a shape
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parameter was incorporated, both as a constant and a linear model over age. The

comparison of these three models is shown in Table 8.4.

These results show that the linear shape model is the favoured model by all of the

information criteria. A graphical summary of these models is shown in Figure 8.7,

where there is only a small change in the mean models between the three models, but

a change in the variance seen at one year of age. Note that while the shape model

fit was a linear model, the transformation into the skew does not translate to a linear

model in the skew. It can be seen from Figure 8.8 that the normal model is clearly

inadequate with residuals that deviate substantially from normality. While the linear

shape model is preferred by all criteria, the residuals for the constant model and the

linear model appear very similar. This may indicate that the additional complexity

of a linear shape model is not needed, and the inclusion of a constant term may be

adequate.

Lastly, a comparison is given in Figure 8.9 of the different distributions of CD4 count

over four ages, for the constant shape model. Clearly at the younger ages, the count

has a moderately higher mean, and much larger variation.

Table 8.3: The AIC from different mean and variance models for the CD4 data. The
lowest AIC is in boldface.
Variance Mean
model model

Zero Constant Linear 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots 6 knots

Constant 9750.8 9205.7 9044.1 8995.6 8997.3 8977.0 8972.1 8967.6 8966.3 8964.8
Linear 9662.4 9156.5 8999.1 8919.5 8916.2 8893.4 8889.8 8886.3 8885.6 8884.5
0 knots 9552.6 9031.4 8882.9 8828.7 8827.5 8815.9 8815.1 8814.3 8814.7 8814.6
1 knot 9565.1 9062.4 8897.4 8838.8 8838.4 8823.6 8821.8 8820.3 8820.2 8822.0
2 knots 9528.2 8997.7 8890.3 8835.0 8836.0 8807.0 8801.0 8795.6 8794.3 8794.0
3 knots 9518.6 8987.6 8884.8 8834.5 8835.8 8805.6 8799.2 8794.0 8792.6 8792.6
4 knots 9521.1 8984.9 8883.5 8835.6 8837.1 8805.2 8799.0 8793.7 8792.7 8793.0
5 knots 9517.9 8983.8 8885.6 8838.5 8840.3 8804.8 8799.2 8790.4 8789.1 8795.7
6 knots 9523.9 8985.5 8888.2 8842.1 8844.0 8806.8 8801.1 8795.4 8794.4 8793.9

Table 8.4: Results from various models fit to the CD4 dataset.
Shape model AIC AICc BIC HQC

No shape model 8789.1 8790.0 8859.7 8816.6
Constant shape model 8681.4 8682.5 8756.4 8710.6

Linear shape model 8676.2 8677.4 8755.6 8707.1
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8.6 Final comments

This chapter developed an algorithm with a regression model in the location, scale and

shape parameters, utilising the censored data CEM algorithm developed in Chapter 7.

Through a simulation study, we demonstrated that this algorithm can reliably estimate

the three parameters with virtually no bias in large samples. We also illustrated its

applicability for assessing variance heterogeneity in datasets, using the CD4 data as

an example. The next chapter in this thesis will detail the R package that has been

developed that incorporates this algorithm, along with other algorithms developed in

this thesis.
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Figure 8.5: A summary of the various shape models fit to the LIDAR data. (A) A
comparison of the mean models, with the data points shown in black. (B) A comparison of
the variance models and (C) the skew models.
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Figure 8.6: A summary of the residuals from the various shape models fit to the LI-
DAR data. (A) Model with no shape (normal model). (B) LSS model with constant shape
parameter and (C) LSS model with linear shape parameters.
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Figure 8.7: A summary of the various shape models fit to the CD4 data. (A) A com-
parison of the mean models, with the data points shown in black. (B) A comparison of the
variance models and (C) the skew models.
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Figure 8.8: A summary of the residuals from the various shape models fit to the CD4
data. (A) Model with no shape parameter (normal model). (B) LSS model with constant
shape parameter and (C) LSS model with a linear shape parameter.
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Figure 8.9: A summary of the CD4 count distributions over different ages for the constant
skew model. (A) is at 1 year of age, (B) at 2 years, (C) at 3 years and (D) at 4 years of age.





9
Software and biomarker analysis

The algorithms presented in the previous chapters have been developed into an R

package entitled VarReg. This chapter will demonstrate the main features of this

package, using an example dataset from the Long-term Intervention with Pravastatin

in Ischemic Disease (LIPID) study. The LIPID study was a multi-centre randomi-

sed double-blind placebo-controlled trial that recruited 9014 patients with a history

of myocardial infarction or unstable angina. The study found strong evidence that

pravastatin (a cholesterol lowering medication) reduced the risk of death from CHD,

cardiovascular disease, and all causes combined (The Long-Term Intervention with Pra-

vastatin in Ischaemic Disease Study Group, 1998). Various biomarkers were measured

at randomisation and at one year, and a subset of these biomarkers in the placebo

treated group will be used to demonstrate the VarReg package in this chapter. See

Section 3.3 for more information about this dataset.

The biomarkers to be investigated are lipoprotein-associated phospholipase A2 activity

(LP-PLA2 activity) and Lipoprotein (a) (Lp(a)), and these are to be associated with

113
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LDL cholesterol. LDL cholesterol is low-density lipoprotein cholesterol and usually cal-

led the ‘bad’ cholesterol. In this study, treatment with pravastatin caused a reduction

in LDL levels, and this was the main mechanism of the effect of treatment. As such,

studying the relationship between the biomarkers and LDL may give insight into the

extent to which the biomarkers are a mechanism of treatment action.

9.1 Overview of VarReg package

This package contains various functions to perform the algorithms developed in this

thesis. Perhaps the main function in this package is semiVarReg(), which can be used

to perform various linear or semi-parametric mean and variance regression models,

for either uncensored or censored outcome data. The searchVarReg() function can

also be used for uncensored or censored data, to search for the optimal model in the

mean and variance, as determined by the information criterion of choice. Lastly, the

plotVarReg() function plots the mean and variance models for censored or uncensored

outcome data, as well as the residuals.

The location, scale and shape regression models that were developed in Chapter 8 are

also a function in this package, called lssVarReg(). A plot function to partner this is

the plotlssVarReg() function, which can be used to plot these three models and the

residuals. Each of these functions will be explored in further detail with the use of the

LIPID dataset.

9.2 The semiVarReg() function

The semiVarReg() function encapsulates a variety of models that can be fit in the

mean and variance. At this time, only one covariate of interest can be included in

these models. The input arguments and their default values are as follows:

• y: Vector containing the outcome data. There must be no missing data and

censored values must be set to the limits of detection.

• x: Vector containing the covariate data. There must be no missing data and this

vector should be the same length as y.
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• cens.ind: Vector containing the censoring indicator for the outcome data (if

applicable). The default is NULL which indicates there is no censored data. If

applicable, this vector should be the same length as y and there must be no

missing data. A value of 0 indicates uncensored data, 1 indicates right (or upper)

censoring and -1 indicates left (or lower) censoring.

• meanmodel: Text to specify the mean model to be fit to these data. The pos-

sible inputs are zero, constant, linear or semi. The option semi indicates a

semi-parametric B-spline model, with the number of internal knots specified in

knots.m.

• mean.intercept: Logical argument (default=TRUE) to indicate if the mean model

is to include an intercept term. This option is only available for censored outcome

data in the mean model.

• varmodel: Text to specify the variance model to be fit to these data. The

possible inputs are constant, linear or semi. The option semi indicates a

semi-parametric B-spline model, with the number of internal knots specified in

knots.v.

• knots.m: Integer indicating the number of internal knots to be fit in the semi-

parametric mean model. Knots are placed equidistantly over the covariate. The

default value is 2.

• knots.v: Integer indicating the number of internal knots to be fit in the semi-

parametric variance model. Knots are placed equidistantly over the covariate.

The default value is 2.

• degree: Integer indicating the degree of the splines fit in the mean and the

variance models. The default value is 2.

• mono.var: Text to indicate whether the variance model is monotonic. Note

that this is not available for the constant variance model. Options are none,

inc or dec, with the default being none. The option inc indicates increasing

monotonic and dec indicates decreasing monotonic. For semi-parametric variance

models (varmodel=semi), the appropriate monotonic B-splines are fit in the
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semi-parametric variance model. If the variance model is linear, the parameter

space is constrained (positive for increasing and negative for decreasing).

• control: List of control parameters for the algorithm. This includes maxit

(the maximum number of iterations to be performed), epsilon (the positive

convergence tolerance) and bound.tol (the positive tolerance for specifying the

interior of the parameter space. This allows the algorithm to terminate early if

an interior maximum is found).

An object of class VarReg is returned by the function and includes the following com-

ponents:

• modeltype: Text indicating the model that was fit, noting if a censored approach

was performed.

• knots.m, knots.v, degree, meanmodel, varmodel: Returning the input variables

as described above

• converged: Logical argument indicating if convergence occurred.

• iterations: Total iterations performed.

• reldiff: Numeric value of the positive convergence tolerance that occurred at

the final iteration.

• loglik: Numeric value of the maximised log-likelihood.

• boundary: Logical argument indicating if the MLE is on the boundary of the

parameter space.

• aic.c: Numeric value of the Akaike information criterion corrected for small

samples

• aic: Numeric value of the Akaike information criterion

• bic: Numeric value of the Bayesian information criterion

• hqc: Numeric value of the Hannan-Quinn information criterion
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• mean.ind: Vector of integer(s) indicating the column number(s) in the dataframe

data that were fit in the mean model.

• mean: Vector of the maximum likelihood estimates of the mean parameter(s).

• var.ind: Vector of integer(s) indicating the column(s) in the dataframe data

that were fit in the variance model.

• variance: Vector of the maximum likelihood estimates of the variance parame-

ter(s).

• cens.ind: Integer indicating the column in the dataframe data that corresponds

to the censoring indicator.

• data: Dataframe containing the variables included in the model.

As an example, let us fit a model to LDL levels (ldl0q) at baseline and the LP-PLA2

activity (PLA ACTIVITY 0) biomarker. To fit a model with a semi-parametric mean

model (with three internal knots) and a linear variance model in the VarReg package,

we use the command:

pla_model<-semiVarReg(y=lipid$ldl0q, x=lipid$PLA_ACTIVITY_0,

meanmodel="semi", varmodel="linear", knots.m = 3 )

As we do not have any censored data, we do not need to input the cens.ind vector.

This function gives the following output below. Note that a summary of the dataframe

is given below, rather than the entire dataframe. The model converged after a total of

2006 iterations to give a maximised log-likelihood of -4288.1. The AIC for the model

is 8592.1, and the MLE for the B-spline basis functions fit to the mean are given, as is

the LP-PLA2 activity coefficient for the variance.

> pla_model[-21]

$modeltype

[1] "Mean and Variance regression"

$knots.m

[1] 3

$knots.v

NULL

$degree

[1] 2
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$meanmodel

[1] "semi"

$varmodel

[1] "linear"

$converged

[1] TRUE

$iterations

[1] 2006

$reldiff

[1] 9.996968e-07

$loglik

[1] -4288.073

$boundary

[1] FALSE

$aic.c

[1] 8592.183

$aic

[1] 8592.146

$bic

[1] 8642.402

$hqc

[1] 8609.972

$mean.ind

[1] 3 4 5 6 7

$mean

Intercept M_Knt3_Base1 M_Knt3_Base2 M_Knt3_Base3 M_Knt3_Base4

3.6620290 -0.5021208 0.2401041 0.3163190 0.7519135

M_Knt3_Base5

0.7257329

$var.ind

[1] 2

$variance

Intercept lipid.PLA_ACTIVITY_0

0.5908853898 -0.0002965638

$cens.ind

NULL

> summary(pla_model[[21]])

lipid.ldl0q lipid.PLA_ACTIVITY_0 M_Knt3_Base1 M_Knt3_Base2

Min. :1.46 Min. : 76.11 Min. :0.0000 Min. :0.0000

1st Qu.:3.40 1st Qu.:229.24 1st Qu.:0.0000 1st Qu.:0.0000

Median :3.88 Median :261.78 Median :0.0000 Median :0.3530

Mean :3.90 Mean :262.31 Mean :0.1083 Mean :0.3752

3rd Qu.:4.41 3rd Qu.:294.14 3rd Qu.:0.1752 3rd Qu.:0.7087

Max. :6.57 Max. :500.74 Max. :0.5480 Max. :0.8701

M_Knt3_Base3 M_Knt3_Base4 M_Knt3_Base5

Min. :0.0000 Min. :0.00000 Min. :0.00000

1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.00000

Median :0.3905 Median :0.00000 Median :0.00000
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Mean :0.3961 Mean :0.09153 Mean :0.01173

3rd Qu.:0.7440 3rd Qu.:0.13364 3rd Qu.:0.00000

Max. :0.8935 Max. :0.53632 Max. :1.00000

This function can also be used for censored outcome data. Using another example

from the LIPID dataset, we can fit the same model for Lp(a) levels at baseline, which

contains censored outcome data:

lp_model<-semiVarReg(y=lipid$ldl0q, x=lipid$LP_a_0,cens.ind = censor,

meanmodel="semi", varmodel="linear", knots.m = 3, maxit=10000)

This gives the following output from our censored model:

> lp_model[-21]

$modeltype

[1] "Censored Mean and Variance regression with mean.intercept="

[2] "TRUE"

$knots.m

[1] 3

$knots.v

NULL

$degree

[1] 2

$meanmodel

[1] "semi"

$varmodel

[1] "linear"

$converged

[1] TRUE

$iterations

[1] 1159

$reldiff

[1] 9.987434e-07

$loglik

[1] -4243.79

$boundary

[1] FALSE

$aic.c

[1] 8503.617

$aic

[1] 8503.58

$bic

[1] 8553.83

$hqc

[1] 8521.404

$mean.ind

[1] 3 4 5 6 7
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$mean

Intercept M_Knt3_Base1 M_Knt3_Base2 M_Knt3_Base3 M_Knt3_Base4

3.2696067 0.6739793 0.5605446 0.8641551 0.2239174

M_Knt3_Base5

1.7980594

$var.ind

[1] 2

$variance

Intercept lipid.LP_a_0

0.5467657994 0.0007181958

$cens.ind

[1] 8

> summary(lp_model[[21]])

lipid.ldl0q lipid.LP_a_0 M_Knt3_Base1 M_Knt3_Base2

Min. :1.460 Min. : 1.30 Min. :0.0000 Min. :0.0000

1st Qu.:3.400 1st Qu.: 6.50 1st Qu.:0.0000 1st Qu.:0.0000

Median :3.880 Median :13.40 Median :0.0000 Median :0.1741

Mean :3.901 Mean :26.67 Mean :0.1678 Mean :0.3163

3rd Qu.:4.410 3rd Qu.:43.20 3rd Qu.:0.3317 3rd Qu.:0.6534

Max. :6.570 Max. :90.00 Max. :0.6993 Max. :0.8586

M_Knt3_Base3 M_Knt3_Base4 M_Knt3_Base5 cens.ind

Min. :0.00000 Min. :0.0000 Min. :0.0000 Min. :-1.00000

1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.: 0.00000

Median :0.06318 Median :0.0000 Median :0.0000 Median : 0.00000

Mean :0.18880 Mean :0.1195 Mean :0.1049 Mean : 0.02608

3rd Qu.:0.33588 3rd Qu.:0.1516 3rd Qu.:0.0000 3rd Qu.: 0.00000

Max. :0.73698 Max. :0.6207 Max. :1.0000 Max. : 1.00000

9.3 The plotVarReg() function

This function produces plots of the mean and variance models, as well as the residu-

als to assess the assumptions of the model. The plotVarReg() function utilises the

seVarReg() function internally in order to calculate the Fisher information matrix

standard errors, as well as the semiVarReg() function if the bootstrapped 95% con-

fidence intervals are requested. The input arguments and their default values are as

follows:

• x: Object of class VarReg (output from semiVarReg()).

• knot.lines: Logical parameter indicating if lines showing where the internal

knots are located should be placed on the graphics. Only relevant for semi-

parametric models.
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• ci: Logical argument indicating whether the 95% confidence intervals should be

shown on the graphics. Default is FALSE.

• ci.type: Text to indicate the type of confidence interval that should be shown

if ci=TRUE. Choices are im or boot for the Fisher information matrix or the

bootstrapped confidence intervals, respectively. Default is im, however im is not

an option for semi-parametric models.

• bootreps: Integer giving the number of bootstrap replications that should be

performed for the bootstrapped confidence intervals (if ci.type=boot). Default

is 1000.

• xlab: Label for plots for the x variable

• ylab: Label for plots for the y variable

• control: List of control parameters, as documented above in Section 9.2.

The output from this function is a 2x2 panel of plots. If the outcome data is not

censored, the four plots are:

• the mean function over the x variable, with or without 95% CI and with or

without the knot lines indicated

• the variance function over the x variable, with or without 95% CI and with or

without the knot lines indicated

• a Q-Q plot of the residuals from the model

• a histogram of the residuals from the model

Using the model produced above for LP-PLA2 activity, an example to produce these

plots would be:

plotVarReg(pla_model, knot.lines = FALSE, ci=TRUE, ci.type = "im",

ylab="Baseline LDL", xlab = "Baseline PLA2 Activity")

[1] "CI=true, type=information matrix"

[1] "Meanmodel=’semi’ so 95% CI cannot be given by information matrix"

The function output the plots given in Figure 9.1. The function also gave a note that

as a semi-parametric model with B-spline basis functions was fit, the 95% CI cannot
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Figure 9.1: Plot produced from plotVarReg() function for PLA2 activity. Top left:
predicted mean function. Top right: predicted variance with 95% CI in grey. Bottom left:
Normal QQ plot of residuals (black) with the line of unity (red). Bottom right: histogram of
residuals.

be given from the Fisher information matrix. Instead, the bootstrapping option would

need to be used to produce the 95% CI for the mean function.

If an analysis of censored data were input, the plots created are slightly different. Using

the results from the Lp(a) model from Section 9.2, we use the following command to

plot the model:

> plotVarReg(lp_model, knot.lines = FALSE, ci=TRUE, ci.type = "im",

ylab="Baseline LDL", xlab = "Baseline LP(a)")

[1] "CI=true, type=information matrix"

[1] "Meanmodel=’semi’ so 95% CI cannot be given by information matrix"

The mean and variance plots are given as previously, however, the other two residual

plots are no longer appropriate for censored data. Given the censored residuals from

these models, we can compare the squared standardised residuals (given in black), with

their censoring indicator, to the chi-squared distribution with one degree of freedom

(given in red). This is one of the plots given for censored data, and the other is a plot

of the data, coloured by the censoring status. The plotted results are shown in Figure

9.2. The censored residuals can be seen to follow the chi-squared distribution well, and
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the plot on the bottom left shows the data. The censored values are in red, and left

censored data is given as a triangle, with right censored data given as an upside-down

triangle.

Figure 9.2: Plot produced from plotVarReg() function for censored data LP(a). Top
left: predicted mean function. Top right: predicted variance with 95% CI in grey. Bottom
left: The censored residuals are in black, with the chi-squared distribution (df=1) given in
red. Bottom right: red triangles indicate left censored data and upside-down red triangles
indicate right censored data.

9.4 The searchVarReg() function

This function is to aid the user to select a model with an appropriate number of internal

knots in both the mean and the variance models. A series of models are fitted with

increasing complexity, from zero mean up to a given total number of internal knots

and constant variance up to a given total number of knots. The information criteria

are calculated for each of these models, and the chosen criterion is then used to select

the optimal model. Given the simulation results in Chapter 6, the AIC is the default

information criterion for the model choice. The input arguments and their default

values are as follows:
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• y: Vector containing the outcome data. There must be no missing data and

censored values must be set to the limits of detection.

• x: Vector containing the covariate data. There must be no missing data and this

vector should be the same length as y.

• cens.ind: Vector containing the censoring indicator for the outcome data (if

applicable). The default is NULL which indicates there is no censored data. If

applicable, this vector should be the same length as y and there must be no

missing data. A value of 0 indicates uncensored data, 1 indicates right (or upper)

censoring and -1 indicates left (or lower) censoring.

• maxknots.m: Integer indicating the maximum number of internal knots to be fit

in the semi-parametric mean models. Knots are placed equidistantly over the

covariate. The default value is 3.

• maxknots.v: Integer indicating the maximum number of internal knots to be fit

in the semi-parametric variance model. Knots are placed equidistantly over the

covariate. The default value is 3.

• degree: Integer indicating the degree of the splines fit in the mean and the

variance models. The default value is 2.

• mono.var: Text to indicate whether the variance model is monotonic, (note this

is not applied for the constant variance model). Options are none, inc or dec

with the default as none. Note that inc indicates increasing monotonic and dec

indicates decreasing monotonic. If the variance model is linear, the parameter

space is constrained (positive for increasing and negative for decreasing). For

semi-parametric variance models, the appropriate monotonic B splines are fit in

the semi-parametric variance model.

• selection Text to indicate the information criterion that is to be used for the

selection of the optimal model. Options are AIC, AICc, HQC and BIC. The AIC is

the default.

• print.it Logical parameter to indicate if the results of the models should be

printed as they occur. Default value is FALSE.
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• control: List of control parameters for the algorithm. This includes maxit

(the maximum number of iterations to be performed), epsilon (the positive

convergence tolerance) and bound.tol (the positive tolerance for specifying the

interior of the parameter space. This allows the algorithm to terminate early if

an interior maximum is found).

The output from this function is a list containing the following items:

• ll: a dataframe of the log-likelihoods from each of the models that have been fit.

• AIC: a dataframe of the AIC from each of the models that have been fit. The

parameters fit in the mean model are given in the columns, and the parameters

in the variance are given in the rows.

• AICc: a dataframe of the AIC-c from each of the models that have been fit.

• BIC: a dataframe of the BIC from each of the models that have been fit.

• HQC: a dataframe of the HQC from each of the models that have been fit.

• best.model: an object of class VarReg containing the output from the optimal

model (that model within the specified models in the mean and variance with

the lowest information criterion according to the criterion selected).

We will now illustrate the use of this function with an example from the LIPID dataset.

The LDL levels (ldl0q) at baseline and the LP-PLA2 activity (PLA ACTIVITY 0) were

looked at above for the semiVarReg function. The following code will look for the

optimal model according to the AIC, allowing up to 5 knots in the mean and the

variance:

best_pla <- searchVarReg(y=lipid$ldl0q, x=lipid$PLA_ACTIVITY_0,

maxknots.m = 5, maxknots.v = 5, maxit=10000,selection = "AIC")

The search begins with a zero mean and constant variance model, and fits up to 5

knots each in the mean and variance. This means that a total of 72 models are to be

fit by this function, and for this example, took a total of 33 hours to complete. If a

Windows computer is being used, a notification window appears to let the user know

how the algorithm is progressing (Figure 9.3). The output is shown below, with the
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Figure 9.3: Example of the progress window for the searchVarReg() function.

last component best.model not shown. This is an object of class VarReg, the same as

shown in Section 9.2 above.

> best_pla[-6]

$ll

Mean_zero Mean_constant Mean_linear Mean_Knot0 Mean_Knot1

Var_constant -11057.51 -4447.035 -4297.194 -4294.288 -4292.935

Var_linear -11047.72 -4445.369 -4296.535 -4293.372 -4292.143

Var_Knot0 -11047.69 -4433.626 -4295.276 -4292.313 -4291.175

Var_Knot1 -11047.53 -4433.313 -4295.239 -4292.120 -4291.040

Var_Knot2 -11047.33 -4433.139 -4295.139 -4292.147 -4291.014

Var_Knot3 -11047.29 -4432.838 -4295.074 -4292.134 -4291.008

Var_Knot4 -11047.27 -4432.660 -4294.952 -4292.023 -4290.883

Var_Knot5 -11047.19 -4432.309 -4294.514 -4291.615 -4290.465

Mean_Knot2 Mean_Knot3 Mean_Knot4 Mean_Knot5

Var_constant -4289.777 -4288.887 -4288.797 -4287.707

Var_linear -4289.017 -4288.073 -4288.026 -4286.961

Var_Knot0 -4288.062 -4286.971 -4286.966 -4285.987

Var_Knot1 -4287.844 -4286.702 -4286.727 -4285.764

Var_Knot2 -4287.848 -4286.700 -4286.720 -4285.770

Var_Knot3 -4287.865 -4286.763 -4286.767 -4285.783

Var_Knot4 -4287.787 -4286.721 -4286.700 -4285.709

Var_Knot5 -4287.468 -4286.452 -4286.409 -4285.435

$AIC

Mean_zero Mean_constant Mean_linear Mean_Knot0 Mean_Knot1

Var_constant 22117.02 8898.070 8600.387 8596.576 8595.871

Var_linear 22099.43 8896.738 8601.071 8596.744 8596.286

Var_Knot0 22101.38 8875.253 8600.551 8596.627 8596.350

Var_Knot1 22103.06 8876.627 8602.479 8598.240 8598.080

Var_Knot2 22104.67 8878.277 8604.278 8600.295 8600.028

Var_Knot3 22106.59 8879.676 8606.147 8602.268 8602.015

Var_Knot4 22108.54 8881.319 8607.903 8604.046 8603.767

Var_Knot5 22110.39 8882.618 8609.028 8605.231 8604.930

Mean_Knot2 Mean_Knot3 Mean_Knot4 Mean_Knot5

Var_constant 8591.553 8591.774 8593.594 8593.414

Var_linear 8592.034 8592.146 8594.052 8593.922

Var_Knot0 8592.125 8591.943 8593.933 8593.974

Var_Knot1 8593.688 8593.405 8595.455 8595.528
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Var_Knot2 8595.695 8595.401 8597.440 8597.539

Var_Knot3 8597.729 8597.526 8599.535 8599.566

Var_Knot4 8599.575 8599.441 8601.401 8601.417

Var_Knot5 8600.935 8600.903 8602.819 8602.870

$AICc

Mean_zero Mean_constant Mean_linear Mean_Knot0 Mean_Knot1

Var_constant 22117.02 8898.073 8600.394 8596.586 8595.886

Var_linear 22099.43 8896.744 8601.081 8596.759 8596.308

Var_Knot0 22101.39 8875.263 8600.567 8596.648 8596.378

Var_Knot1 22103.07 8876.642 8602.500 8598.269 8598.117

Var_Knot2 22104.68 8878.298 8604.306 8600.331 8600.074

Var_Knot3 22106.61 8879.704 8606.184 8602.313 8602.071

Var_Knot4 22108.57 8881.356 8607.949 8604.102 8603.834

Var_Knot5 22110.42 8882.663 8609.084 8605.298 8605.009

Mean_Knot2 Mean_Knot3 Mean_Knot4 Mean_Knot5

Var_constant 8591.575 8591.802 8593.630 8593.460

Var_linear 8592.062 8592.183 8594.098 8593.978

Var_Knot0 8592.161 8591.989 8593.989 8594.041

Var_Knot1 8593.733 8593.461 8595.522 8595.608

Var_Knot2 8595.751 8595.468 8597.520 8597.632

Var_Knot3 8597.796 8597.605 8599.627 8599.673

Var_Knot4 8599.654 8599.534 8601.507 8601.539

Var_Knot5 8601.028 8601.010 8602.941 8603.008

$BIC

Mean_zero Mean_constant Mean_linear Mean_Knot0 Mean_Knot1

Var_constant 22123.30 8910.634 8619.233 8621.704 8627.281

Var_linear 22111.99 8915.584 8626.199 8628.154 8633.978

Var_Knot0 22120.23 8900.381 8631.961 8634.319 8640.324

Var_Knot1 22128.18 8908.036 8640.171 8642.214 8648.336

Var_Knot2 22136.08 8915.969 8648.251 8650.550 8656.566

Var_Knot3 22144.28 8923.650 8656.403 8658.806 8664.835

Var_Knot4 22152.52 8931.575 8664.441 8666.866 8672.869

Var_Knot5 22160.64 8939.156 8671.848 8674.333 8680.314

Mean_Knot2 Mean_Knot3 Mean_Knot4 Mean_Knot5

Var_constant 8629.245 8635.747 8643.850 8649.952

Var_linear 8636.007 8642.402 8650.590 8656.742

Var_Knot0 8642.381 8648.481 8656.753 8663.076

Var_Knot1 8650.225 8656.225 8664.556 8670.912

Var_Knot2 8658.515 8664.503 8672.824 8679.205

Var_Knot3 8666.831 8672.909 8681.200 8687.514

Var_Knot4 8674.959 8681.107 8689.348 8695.647

Var_Knot5 8682.601 8688.851 8697.049 8703.382

$HQC

Mean_zero Mean_constant Mean_linear Mean_Knot0 Mean_Knot1

Var_constant 22119.25 8902.527 8607.072 8605.489 8607.012
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Var_linear 22103.89 8903.423 8609.983 8607.885 8609.655

Var_Knot0 22108.07 8884.166 8611.692 8609.996 8611.947

Var_Knot1 22111.97 8887.767 8615.848 8613.838 8615.905

Var_Knot2 22115.81 8891.646 8619.875 8618.120 8620.082

Var_Knot3 22119.95 8895.273 8623.973 8622.321 8624.297

Var_Knot4 22124.14 8899.144 8627.957 8626.328 8628.277

Var_Knot5 22128.21 8902.671 8631.310 8629.741 8631.668

Mean_Knot2 Mean_Knot3 Mean_Knot4 Mean_Knot5

Var_constant 8604.922 8607.371 8611.419 8613.468

Var_linear 8607.631 8609.972 8614.106 8616.204

Var_Knot0 8609.950 8611.996 8616.215 8618.484

Var_Knot1 8613.741 8615.687 8619.964 8622.266

Var_Knot2 8617.977 8619.911 8624.178 8626.505

Var_Knot3 8622.239 8624.264 8628.501 8630.760

Var_Knot4 8626.313 8628.408 8632.595 8634.840

Var_Knot5 8629.902 8632.097 8636.241 8638.521

According to the AIC and the HQC, the optimal model for LP-PLA2 activity is that

with two internal knots in the mean and constant variance. Alternatively, the BIC has

the lowest value for the linear mean and constant variance model. The model can also

be plotted from this with the following code (output suppressed).

plotVarReg(best_pla$best.model)

9.5 The lssVarReg() function

The lssVarReg() function fits the regression in the location, scale and shape for a

skew-normal response distribution, as detailed in Chapter 8. At this time, only one

covariate of interest can be included in these models. The input arguments and their

default values are as follows:

• y: Vector containing the outcome data. There must be no missing data.

• x: Vector containing the covariate data. There must be no missing data and this

vector should be the same length as y.

• locationmodel: Text to specify the location model to be fit to these data. The

possible inputs are constant, linear or semi. The option semi indicates a

semi-parametric B-spline model, with the number of internal knots specified in

knots.l.
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• scale2model: Text to specify the scale (squared) model to be fit to these data.

The possible inputs are constant, linear or semi. The option semi indicates a

semi-parametric B-spline model, with the number of internal knots specified in

knots.sc.

• shapemodel: Text to specify the shape model to be fit to these data. The

possible inputs are constant, linear or semi. The option semi indicates a

semi-parametric B-spline model, with the number of internal knots specified in

knots.sh.

• knots.l: Integer indicating the number of internal knots to be fit in the semi-

parametric location model. Knots are placed equidistantly over the covariate.

The default value is 2.

• knots.sc: Integer indicating the number of internal knots to be fit in the semi-

parametric scale (squared) model. Knots are placed equidistantly over the cova-

riate. The default value is 2.

• knots.sh: Integer indicating the number of internal knots to be fit in the semi-

parametric shape model. Knots are placed equidistantly over the covariate. The

default value is 2.

• degree: Integer indicating the degree of the splines fit in the semi-parametric

models. The default value is 2.

• mono.scale: Text to indicate whether the scale (squared) model is monotonic.

Options are none, inc or dec, with the default as none. The option inc indicates

increasing monotonically and dec indicates decreasing monotonically. If the mo-

del is linear, the parameter space is constrained (using appropriate para.space).

For semi-parametric variance models, the appropriate monotonic B-splines are

fit in the semi-parametric scale (squared) model.

• para.space: Text to specify the parameter space to be searched for the scale

(squared) model parameters. positive means to only search positive parameter

space, negative means to search only negative parameter space and all means

search both. Default is all.
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• location.init: Vector of initial parameter estimates for the location model.

Defaults to a vector containing ones.

• scale2.init: Vector of initial parameter estimates for the scale (squared) model.

Defaults to a vector containing ones.

• shape.init: Vector of initial parameter estimates for the shape model. Defaults

to a vector of ones.

• int.maxit: Number of maximum iterations for the internal location and scale

algorithm. Default is 1000 iterations.

• print.it: Prints progress of estimates through each iteration.

• control: List of control parameters for the algorithm. This includes maxit

(the maximum number of iterations to be performed), epsilon (the positive

convergence tolerance) and bound.tol (the positive tolerance for specifying the

interior of the parameter space. This allows the algorithm to terminate early if

an interior maximum is found).

An object of class lssVarReg is returned by the function and includes the following

components:

• modeltype: Text indicating the model that was fit, always LSS model at this

time.

• locationmodel, scale2model, shapemodel, knots.l, knots.sc, knots.sh,

degree, mono.scale: Returning the input variables as described above

• converged: Logical argument indicating if convergence occurred.

• iterations: Numeric value of the total iterations performed of the main algo-

rithm (not including the internal EM algorithm).

• reldiff: Numeric value of the positive convergence tolerance that occurred at

the final iteration.

• loglik: Numeric value of the maximised log-likelihood.
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• aic.c: Numeric value of the Akaike information criterion corrected for small

samples

• aic: Numeric value of the Akaike information criterion

• bic: Numeric value of the Bayesian information criterion

• hqc: Numeric value of the Hannan-Quinn information criterion

• location: Vector of the maximum likelihood estimates of the location parame-

ter(s).

• scale2: Vector of the maximum likelihood estimates of the scale (squared) pa-

rameter(s).

• shape: Vector of the maximum likelihood estimates of the shape parameter(s).

• data: Dataframe containing the variables included in the model.

As an example, let us extend our previous model fit to LDL levels (ldl0q) at baseline

and the LP-PLA2 activity (PLA ACTIVITY 0) biomarker. Given our previous optimal

model, we fit a semi-parametric model with 2 internal knots in the location and a

constant model for the scale squared. We now extend the model to incorporate a

constant shape model by using the following command:

pla_lss_model<-lssVarReg(y=lipid$ldl0q, x=lipid$PLA_ACTIVITY_0,

locationmodel="semi", scale2model="constant", knots.l = 2,

shapemodel = "constant")

This gives the following output below. Note that the dataframe data is suppressed.

> pla_lss_model[-21]

$modeltype

[1] "LSS model"

$locationmodel

[1] "semi"

$knots.l

[1] 2

$scale2model

[1] "constant"

$knots.sc

NULL

$shapemodel

[1] "constant"
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$knots.sh

NULL

$degree

[1] 2

$converged

[1] TRUE

$iterations

[1] 238

$reldiff

[1] 9.89781e-07

$loglik

[1] -4286.973

$aic.c

[1] 8587.975

$aic

[1] 8587.946

$bic

[1] 8631.92

$mono.scale

[1] "none"

$hqc

[1] 8603.543

$location

mean.int L_Knt2_Base1 L_Knt2_Base2 L_Knt2_Base3 L_Knt2_Base4

3.0241878 -0.1842498 0.5148115 0.8553864 1.0767670

$scale2

Intercept

0.6976118

$shape

[1] 0.8423662

The AIC from this model with a constant shape has a lower AIC than that of the

model with no shape term, and therefore is the optimal model. A function to plot

these three models will be introduced in the next section.

9.6 The plotlssVarReg() function

This function produces plots of the mean, variance and shape models, as well as the

residuals to assess the assumptions of the model. However, at this time there are no

bootstrapped confidence intervals produced for these types of models due to computa-

tional time. The input arguments and their default values are as follows:

• x: Object of class lssVarReg, as output from lssVarReg().
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• knot.lines: Logical parameter indicating if lines showing where the internal

knots are located should be placed on the graphics. Only relevant for semi-

parametric models.

• xlab: Label for plots for the x variable

• ylab: Label for plots for the y variable

The output from this function is a 2 by 2 panel of plots which are

• the mean function over the x variable, with or without the knot lines indicated;

• the variance function over the x variable, with or without the knot lines indicated;

• the skew function over the x variable, with or without the knot lines indicated;

and

• a Q-Q plot of the squared residuals from the model, plotted against the Chi-

squared (df=1) distribution. For data from a skew-normal distribution, these

residuals should follow a Chi-squared (df=1) distribution, regardless of skew.

Using the model produced above for the location, scale and shape model for LP-PLA2

activity, the following code produces these plots:

pla.out<-plotlssVarReg(pla_lss_model, knot.lines = TRUE, ylab="Baseline

LDL", xlab = "Baseline PLA2 Activity")

The function output includes a dataframe as well as the plot given in Figure 9.4. The

dataframe includes:

• x and y variables

• eta (η), the location parameter

• omega (ω), the scale parameter

• shape (ν), the shape parameter

• predicted mean (µ), as given in Equation (8.1)

• predicted variance (σ2), as given in Equation (8.2)
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• predicted skewness (γ), as given in Equation (8.3)

• stand.res2, the standardised residuals squared.

This chapter has demonstrated the development and use of the R package VarReg in

which the algorithms presented in this thesis can be implemented. The various input

and outputs for the main functions of the package have been shown, with the use of an

example dataset. The R package documentation is given in the Appendix to this thesis.

This package is freely available on the Comprehensive R Archive Network (CRAN),

and enables the algorithms developed in this thesis to be used widely in various areas

of application, such as measurement error and biomarker analyses.

Figure 9.4: Plot produced from plotlssVarReg() function for PLA2 activity model.
Top left: predicted mean function. Top right: predicted variance function. Bottom left:
Predicted skew function. Bottom right: residual plot with residuals in black and line of unity
in red.
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Discussion and conclusions

In this thesis, we have developed new methodology for the fitting of semi-parametric

variance regression models, and extended this to semi-parametric regression models for

location, scale and shape. These methods aid in the analysis of heteroscedastic data,

and are of particular use in the analysis of measurement error and biomarker data. This

final chapter will review the algorithms produced in this thesis, their implementation

and future work.

10.1 Summary of research

The first three chapters of this thesis provided an introduction and background for the

new methodology presented in this thesis. In Chapter 2 we introduced the concept of

variance regression and discussed some existing methods that are available to fit these

models. We also considered some simple examples where existing methods experien-

ced numerical instability and failed to converge. Chapter 3 then detailed some of the

135
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computational methodology that was used in this thesis and an explanation of each of

the example datasets.

With this background in place, we then considered a variety of complexities in turn,

beginning with a basic approach that was progressively generalised throughout the the-

sis. The main motivation was that new computational and model fitting methodology

are of interest for complex models, where existing methods may encounter the sorts of

problems discussed in Chapter 2.

In Chapter 4 we introduced the basic approach, which was based on the idea that an

additive variance regression model can be considered as a latent outcome model in

which the observed outcome is the sum of two independent latent outcomes. Using

a zero mean model and linear variance, the simulation results presented in this chap-

ter illustrated that our approach is valid and has efficiency advantages over a crude

unweighted approach. Furthermore, we illustrated that our EM-based approach for

fitting the model provides a reliable and stable approach that is not susceptible to the

numerical instability that we have seen with other approaches.

This basic method was then generalised in Chapter 5 to fit a regression in both the

mean and the variance, with multiple covariates in each. Simulations explored the effi-

ciency of the estimates from both the mean and the variance model, and demonstrated

that reliable estimators are obtained. The method was applied to the VCF dataset,

where it was shown that a linear model in the mean and the variance was a good fit to

the data. However, the residuals had heavy tails, suggesting that the inclusion of addi-

tional parameters may improve the fit. This led to the investigation of semi-parametric

models in Chapter 6. We showed that the proposed algorithm has broad applicability,

as it allows models to be easily generalised to incorporate B-spline basis functions that

may be fit in the mean and the variance. It also allowed monotonicity constraints

which can be of particular relevance in variance models. Additionally, basis functions

could be created for more than one covariate and incorporated into the appropriate

model. The flexibility of this algorithm provides a broad framework for fitting semi-

parametric models in the variance, and this was demonstrated in two example datasets.

From the simulation study in this chapter, the CEM algorithm developed is capable

of recovering the true model for all sample sizes. However, the ability to estimate the
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model complexity depended largely on the sample size. Automatic model selection

worked well for large n, when the AIC should be used. For small n, the AIC should be

supplemented with visual inspection of models with more parameters.

Chapter 7 introduced an extra level of complexity, which was to allow the outcome data

to be censored. Through a simulation study, we demonstrated that the algorithm can

reliably estimate the mean and variance parameters with minimal bias, even with up

to 50% censoring. We also illustrated its applicability for assessing measurement error

for biomarker data that is subject to both left and right censoring. Although extension

of the algorithm to account for censored data is of interest in its own right, we used

this extension for an additional purpose, namely, to develop another algorithm that

simultaneously allows estimation of location, scale and skewness of the distribution,

as a function of covariates. This gave the algorithm even broader applicability and

flexibility for non-normal data.

This extension was developed in Chapter 8, using a regression model in the location,

scale and shape parameters. We utilised the skew-normal distribution, in conjunction

with a coordinate ascent algorithm applied to our EM-type algorithm. Through a

simulation study, we demonstrated that this algorithm can reliably estimate the para-

meters with virtually no bias in large samples. We also illustrated its applicability for

assessing variance heterogeneity in real datasets, using the CD4 data example.

Lastly, Chapter 9 demonstrated the development and use of the R package VarReg

in which the algorithms presented in this thesis are implemented. The various inputs

and outputs for the main functions of the package were illustrated, with the use of an

example biomarker dataset. In the Appendix to this thesis, the R package documen-

tation is shown. This package is available on the Comprehensive R Archive Network

(CRAN), and will enable the algorithms developed in this thesis to be used widely in

various areas of application, such as measurement error and biomarker analyses.
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10.2 Future work

There are at least three broad areas of future work for the algorithms developed in this

thesis. The first is to extend the algorithm to more complex data and models. The se-

cond is to enhance the software implementation presented here. Additional theoretical

improvements, particularly convergence acceleration, is a third area of potential future

work.

In regards to the first area, since the basis of the methods is the EM algorithm, the

same approach may be possible in other contexts where the model can be formulated

as a missing data or latent variable model. Truncated data is another such example

where the model can be thought of as a missing data problem. In contrast to censo-

ring, where we know how many values have been found to be below or above a given

detectable limit, for truncated data we have no count of how many values are outside

of the bounds, since they are excluded from the sample. Thus, truncated samples can

be thought of as being equivalent to a sample being taken with all values outside of the

bounds entirely omitted. This type of sampling is common in a clinical trials context,

where patients with say a cholesterol level between 155 and 171 mg per decilitre are

eligible to be enrolled in a clinical trial. Data on patients that are not eligible to be

enrolled would not typically be recorded, and therefore considered to be missing in an

EM formulation. An extension of the algorithms in this thesis to truncated data may

be useful, especially given the wide use of biomarkers in clinical trials.

In regards to the second area, at this stage the software only allows the incorporation

of a single covariate in the mean and variance models. This could be extended with

formula syntax to allow the incorporation of multiple covariates or factors. Lastly,

there have been many recent theoretical developments to improve the speed of the

EM algorithm (Donoghoe and Marschner, 2016; Varadhan and Roland, 2008; Zhou,

Alexander, and Lange, 2011). The incorporation of semi-parametric models for the

location, scale and shape means the CEM algorithm is computationally expensive, and

would become more viable with the use of some of these methods to increase the speed.
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10.3 Final remarks

This thesis has introduced new methods for semi-parametric variance regression in the

frequentist framework, with extensions to censored data and regression models for the

skew of the distribution. These algorithms are widely applicable to measurement error

and biomarker analyses. An R package has been created to ensure that these methods

can be implemented. Our methods are not presented as the only approach that could

be taken for variance regression. Rather, our approach is a useful complement to

existing methods for semi-parametric variance regression, particularly where numerical

instability is encountered. We have shown how they can be easily extended and that

they are reliable with good performance.
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censlinVarReg Censored Linear mean and variance regression

Description

censlinVarReg performs censored multivariate mean and multivariate variance regression. This
function is designed to be used by the semiVarReg function.

Usage

censlinVarReg(dat, mean.ind = c(2), var.ind = c(2), cens.ind = c(3),
mean.intercept = TRUE, para.space = c("all", "positive", "negative"),
mean.init = NULL, var.init = NULL, control = list(...), ...)

Arguments

dat Dataframe containing outcome and covariate data. Outcome data must be in the
first column, with censored values set to the limits. Covariates for mean and
variance model in next columns.

mean.ind Vector containing the column numbers of the data in ’dat’ to be fit as covariates
in the mean model. 0 indicates constant mean option. NULL indicates zero
mean option.

var.ind Vector containing the column numbers of the data in ’dat’ to be fit as covariates
in the variance model. FALSE indicates constant variance option.

cens.ind Vector containing the column number of the data in ’dat’ to indicate the censored
data. 0 indicates no censoring, -1 indicates left (lower) censoring and 1 indicates
right (upper) censoring.

mean.intercept Logical to indicate if an intercept is to be included in the mean model. Default
is TRUE.

para.space Parameter space to search for variance parameter estimates. "positive" means
only search positive parameter space, "negative" means search only negative
parameter space and "all" means search all. Default is all.

mean.init Vector of initial estimates to be used for the mean model.

var.init Vector of initial estimates to be used for the variance model.

control List of control parameters. See VarReg.control.

... arguments to be used to form the default control argument if it is not supplied
directly
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Value

censlinVarReg returns a list of output including:

• converged: Logical argument indicating if convergence occurred.

• iterations: Total iterations performed of the EM algorithm.

• reldiff: the positive convergence tolerance that occured at the final iteration.

• loglik: Numeric variable of the maximised log-likelihood.

• boundary: Logical argument indicating if estimates are on the boundary.

• aic.c: Akaike information criterion corrected for small samples

• aic: Akaike information criterion

• bic: Bayesian information criterion

• hqc: Hannan-Quinn information criterion

• mean.ind: Vector of integer(s) indicating the column number(s) in the dataframe data that
were fit in the mean model.

• mean: Vector of the maximum likelihood estimates of the mean parameters.

• var.ind: Vector of integer(s) indicating the column(s) in the dataframe data that were fit in
the variance model.

• variance: Vector of the maximum likelihood estimates of the variance parameters.

• cens.ind: Integer indicating the column in the dataframe data that corresponds to the cen-
soring indicator.

• data: Dataframe containing the variables included in the model.

censloop_em The Censored data EM loop

Description

censloop_em is an EM loop function for censored data to be utilised by various other higher level
functions.

Usage

censloop_em(meanmodel, theta.old, beta.old, p.old, x.0, X, censor.ind,
mean.intercept, maxit, eps)

Arguments

meanmodel Dataframe containing only the covariates to be fit in the mean model. NULL for
zero mean model and FALSE for constant mean model.

theta.old Vector containing the initial variance parameter estimates to be fit in the variance
model.
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beta.old Vector containing the initial mean parameter estimates to be fit in the mean
model.

p.old Vector of length n containing the initial variance estimate.

x.0 Matrix of covariates (length n) to be fit in the variance model. All have been
rescaled so zero is the minimum. If NULL, then its a constant variance model.

X Vector of length n of the outcome variable.

censor.ind Vector of length n of the censoring indicator. 0=uncensored, -1=left censored
and 1 is right censored.

mean.intercept Logical to indicate if mean intercept is to be included in the model.

maxit Number of maximum iterations for the EM algorithm.

eps Very small number for the convergence criteria.

Value

A list of the results from the EM algorithm, including:

• conv: Logical argument indicating if convergence occurred

• it: Total iterations performed of the EM algorithm

• reldiff: the positive convergence tolerance that occured at the final iteration.

• theta.new: Vector of variance parameter estimates. Note that these are not yet transformed
back to the appropriate scale

• mean: Vector of mean parameter estimates

• fittedmean: Vector of fitted mean estimates

• p.old: Vector of fitted variance estimates

criterion Calculation of information criterion

Description

criterion calculates various information criterion for the algorithms in this package

Usage

criterion(n, loglik, param)

Arguments

n Number of observations

loglik Loglikelihood from model

param Number of parameters fit in model
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Value

A list of the four IC

• aic.c: Akaike information criterion corrected for small samples

• aic: Akaike information criterion

• bic: Bayesian information criterion

• hqc: Hannan-Quinn information criterion

linVarReg Linear mean and variance regression function

Description

linVarReg performs multivariate mean and multivariate variance regression. This function is de-
signed to be used by the semiVarReg function.

Usage

linVarReg(dat, var.ind = c(2), mean.ind = c(2), para.space = c("all",
"positive", "negative"), control = list(...), ...)

Arguments

dat Dataframe containing outcome and covariate data. Outcome data must be in the
first column. Covariates for mean and variance model in next columns.

var.ind Vector containing the column numbers of the data in ’dat’ to be fit as covariates
in the variance model. FALSE indicates constant variance option.

mean.ind Vector containing the column numbers of the data in ’dat’ to be fit as covariates
in the mean model. 0 indicates constant mean option. NULL indicates zero
mean option.

para.space Parameter space to search for variance parameter estimates. "positive" means
only search positive parameter space, "negative" means search only negative
parameter space and "all" means search all.

control List of control parameters. See VarReg.control.

... arguments to be used to form the default control argument if it is not supplied
directly

Value

linVarReg returns a list of output including:

• converged: Logical argument indicating if convergence occurred.

• iterations: Total iterations performed of the EM algorithm.

• reldiff: the positive convergence tolerance that occured at the final iteration.
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• loglik: Numeric variable of the maximised log-likelihood.

• boundary: Logical argument indicating if estimates are on the boundary.

• aic.c: Akaike information criterion corrected for small samples

• aic: Akaike information criterion

• bic: Bayesian information criterion

• hqc: Hannan-Quinn information criterion

• mean.ind: Vector of integer(s) indicating the column number(s) in the dataframe data that
were fit in the mean model.

• mean: Vector of the maximum likelihood estimates of the mean parameters.

• var.ind: Vector of integer(s) indicating the column(s) in the dataframe data that were fit in
the variance model.

• variance: Vector of the maximum likelihood estimates of the variance parameters.

• cens.ind: Integer indicating the column in the dataframe data that corresponds to the cen-
soring indicator. Always NULL.

• data: Dataframe containing the variables included in the model.

loop_em The EM loop for the main mean and variance function

Description

loop_em is a basic EM loop function to be utilised by various other higher level functions.

Usage

loop_em(meanmodel, theta.old, p.old, x.0, X, maxit, eps)

Arguments

meanmodel Dataframe containing only the covariates to be fit in the mean model. NULL for
zero mean model and FALSE for constant mean model.

theta.old Vector containing the initial variance parameter estimates to be fit in the variance
model.

p.old Vector of length n containing the containing the initial variance estimate.

x.0 Matrix of covariates (length n) to be fit in the variance model. All have been
rescaled so zero is the minimum. If NULL, then its a constant variance model.

X Vector of length n of the outcome variable.

maxit Number of maximum iterations for the EM algorithm.

eps Very small number for the convergence criteria.
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Value

A list of the results from the EM algorithm, including

• conv: Logical argument indicating if convergence occurred
• it: Total iterations performed of the EM algorithm
• reldiff: the positive convergence tolerance that occured at the final iteration.
• theta.new: Vector of variance parameter estimates. Note that these are not yet transformed

back to the appropriate scale
• mean: Vector of mean parameter estimates
• fittedmean: Vector of fitted mean estimates
• p.old: Vector of fitted variance estimates

loop_lss The EM loop for the LSS model

Description

loop_lss is the EM loop function for the LSS model to be utilised by various other higher level
functions

Usage

loop_lss(alldat, xiold, omega2old, nuold, mean.ind, var.ind, nu.ind, para.space,
maxit, eps, int.maxit, print.it)

Arguments

alldat Dataframe containing all the data for the models. Outcome in the first column.
xiold Vector of initial location parameter estimates to be fit in the location model.
omega2old Vector of initial scale2 parameter estimates to be fit in the scale2 model.
nuold Vector of initial nu parameter estimates to be fit in the nu model.
mean.ind Vector containing the column numbers of the data in ’alldat’ to be fit as covari-

ates in the location model.
var.ind Vector containing the column numbers of the data in ’alldat’ to be fit as covari-

ates in the scale2 model. FALSE indicates a constant variance model.
nu.ind Vector containing the column numbers of the data in ’alldat’ to be fit as covari-

ates in the nu model. NULL indicates constant model.
para.space Parameter space to search for variance parameter estimates. "positive" means

only search positive parameter space, "negative" means search only negative
parameter space and "all" means search all.

maxit Number of maximum iterations for the main EM algorithm.
eps Very small number for the convergence criteria.
int.maxit Number of maximum iterations for the internal EM algorithm for the location

and scale.
print.it Logical to indicate if the estimates for each iteration should be printed.
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Value

A list of the results from the algorithm, including conv, reldiff, it, mean, xi.new, omega2.new,
nu.new, fitted.xi

• conv: Logical argument indicating if convergence occurred

• it: Total iterations performed of the EM algorithm

• reldiff: the positive convergence tolerance that occured at the final iteration

• xinew: Vector of location parameter estimates

• omega2new: Vector of scale squared parameter estimates

• nunew: Vector of shape parameter estimates

• fitted.xi: Vector of fitted location estimates

lssVarReg Semi parametric location, shape and scale regression

Description

lssVarReg performs a semiparametric location (ξ or xi), shape (ν or nu) and scale (ω or omega)
regression model. Currently, this is only designed for a single covariate that is fit in the location,
scale and shape models.

Usage

lssVarReg(y, x, locationmodel = c("constant", "linear", "semi"),
scale2model = c("constant", "linear", "semi"), shapemodel = c("constant",
"linear"), knots.l = 2, knots.sc = 2, knots.sh = 2, degree = 2,
mono.scale = c("none", "inc", "dec"), para.space = c("all", "positive",
"negative"), location.init = NULL, scale2.init = NULL,
shape.init = NULL, int.maxit = 1000, print.it = FALSE,
control = list(...), ...)

Arguments

y Vector containing outcome data. Must be no missing data.

x Vector containing the covariate data, same length as y. Must be no missing data.

locationmodel Text to specify the location model to be fit. Options: "constant" = constant
model (intercept only), "linear" = linear term with x covariate, "semi" = semi-
parametric spline (specify with knots.l).

scale2model Text to specify the scale^2 model to be fit. Options: "constant" = constant
term only, "linear" = linear term with x covariate, "semi" = semiparametric
spline (specify with knots.sc)

shapemodel Text to specify the shape model to be fit. Options: "constant" = constant
shape model, "linear" = linear term with x covariate, "semi" = semiparametric
spline (specify with knots.sh).
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knots.l Integer indicating the number of internal knots to be fit in the location model.
Default is ’2’. (Note that the knots are placed equidistantly over x.)

knots.sc Integer indicating the number of internal knots to be fit in the scale^2 model.
Default is ’2’. (Note that the knots are placed equidistantly over x.)

knots.sh Integer indicating the number of internal knots to be fit in the shape model.
Default is ’2’. (Note that the knots are placed equidistantly over x.)

degree Integer to indicate the degree of the splines fit in the location and scale. Default
is ’2’.

mono.scale Text to indicate whether the scale2 model is monotonic. Default is "none"
(no monotonic constraints). Options are "inc" for increasing or "dec" for de-
creasing. If this is chosen, the appropriate para.space is set autopmatically
("positive" for inc, "negative" for dec).

para.space Text to indicate the parameter space to search for scale2 parameter estimates.
"positive" means only search positive parameter space, "negative" means
search only negative parameter space and "all" means search all parameter
spaces. Default is all.

location.init Vector of initial parameter estimates for the location model. Defaults to vector
of 1’s of appropriate length.

scale2.init Vector of initial parameter estimates for the scale^2 model. Defaults to vector
of 1’s of appropriate length.

shape.init Vector of initial parameter estimates for the shape model. Defaults to vector of
1’s of appropriate length.

int.maxit Integer of maximum iterations for the internal location and scale EM algorithm.
Default is 1000 iterations.

print.it Logical for printing progress of estimates through each iteration. Default is
FALSE.

control List of control parameters for the algorithm. See VarReg.control.

... arguments to be used to form the default control argument if it is not supplied
directly

Value

lssVarReg returns an object of class "lssVarReg", which inherits most from class "VarReg". This
object of class lssVarReg is a list of the following components:

• modeltype: Text indicating the model that was fit, always "LSS model".

• locationmodel, scale2model, shapemodel, knots.l, knots.sc, knots.sh, degree,mono.scale
: Returning the input variables as described above

• converged: Logical argument indicating if convergence occurred.

• iterations: Total iterations performed of the main algorithm (not including the internal EM
algorithm).

• reldiff: the positive convergence tolerance that occured at the final iteration.

• loglik: Numeric variable of the maximised log-likelihood.

• aic.c: Akaike information criterion corrected for small samples
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• aic: Akaike information criterion
• bic: Bayesian information criterion
• hqc: Hannan-Quinn information criterion
• location: Vector of the maximum likelihood estimates of the location parameters.
• scale2: Vector of the maximum likelihood estimates of the scale (squared) parameters.
• shape: Vector of the maximum likelihood estimates of the shape parameters.
• data: Dataframe containing the variables included in the model.

See Also

VarReg.control plotlssVarReg

Examples

## run a model with linear mean, linear variance and constant shape (not run):
## lssmodel<-lssVarReg(mcycle$accel, mcycle$times, locationmodel="linear", scale2model="linear",
## shapemodel="constant", maxit=10000)

lss_calc Calculations for SN

Description

lss_calc performs calculations for transforming SN data (location, scale and shape) to mean,
variance and skew. This function is utilised by other, higher level functions.

Usage

lss_calc(x)

Arguments

x Object of class lssVarReg (output from lssVarReg).

Value

dataframe containing:

• y: y variable
• x: x variable
• eta: η or fitted location estimates
• omega: ω or fitted scale estimates
• shape: α or fitted shape estimates
• predicted mean: fitted mean estimates
• predicted variance: fitted variance estimates
• Predicted skewness: fitted skewness estimates
• stand.res2: Squared standardised residuals
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mcycle mcycle dataset.

Description

A dataset containing 133 observations from a simulated motorcycle accident, used to test crash
helmets.

Usage

mcycle

Format

A data frame with 133 rows and 2 variables:

times in milliseconds from time of impact

accel in g, acceleration of the head ...

Source

Silverman, B. W. (1985) Some aspects of the spline smoothing approach to non-parametric curve
fitting. Journal of the Royal Statistical Society series B 47, 1-52.

References

Venables, W. N. and Ripley, B. D. (1999) Modern Applied Statistics with S-PLUS. Third Edition.
Springer.

Examples

library(VarReg)
data(mcycle)
attach(mcycle)
plot(times,accel)

plotlssVarReg Plots graphics for a location, scale and shape regression model

Description

plotlssVarReg is used to produce graphics for models fit in the VarReg package with the lssVarReg
function. As the skew-normal distribution is used to fit this type of model, the data needs to be trans-
formed from the SN parameters (location, scale and shape) to the typical mean, variance and skew
parameters.
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Usage

plotlssVarReg(x, knot.lines = FALSE, xlab = "x", ylab = "y")

Arguments

x Object of class lssVarReg (output from lssVarReg).

knot.lines Logical to show the knot lines on the graphics (if model is type "semi"). Default
is TRUE

xlab Label to be placed on the x axis of graphics (covariate)

ylab Label to be placed on the y axis of graphics (outcome)

Value

A graphic is returned, as well as a dataframe. The graphic returned is a 2 by 2 plot of:

• the mean function over the x-variable, with or without the knot lines indicated

• the variance function over the x-variable, with or without the knot lines indicated

• the skew function over the x-variable, with or without the knot lines indicated

• a Q-Q plot of the squared residuals from the model, plotted against the Chi-squared (df=1)
distribution. For data from a skew-normal distribution, these residuals should follow a Chi-
squared (df=1) distribution, regardless of skew.

The dataframe returned contains the following columns:

• x: x variable

• y: y variable

• eta: (η), the location parameter

• omega: (ω), the scale parameter

• shape: (ν), the shape parameter

• predicted~mean: (µ), the mean

• predicted~variance: (σ2), the variance

• predicted~skewness: (γ), the skew

• stand.res2: the standardised residuals squared.

See Also

lssVarReg

Examples

data(mcycle)
## not run. LSS model followed by the basic plot command
##lssmodel<-lssVarReg(mcycle$accel, mcycle$times, locationmodel="linear", scale2model="linear",
##shapemodel="constant", maxit=10000)
##lssplot_out<-plotlssVarReg(lssmodel, xlab="Time in seconds", ylab="Acceleration")
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plotVarReg Plots graphics for a mean and variance regression model

Description

plotVarReg to produce graphics for models fit in this package.

Usage

plotVarReg(x, knot.lines = FALSE, ci = FALSE, ci.type = c("im", "boot"),
bootreps = 1000, xlab = "x", ylab = "y", control = list(...), ...)

Arguments

x Object of class VarReg (see semiVarReg).
knot.lines Logical to indicate if knot lines should be shown on graphics (if model is type

"semi"). Default is FALSE
ci Logical indicate if 95% CI should be shown on the plots. Default is FALSE and

ci.type="im".
ci.type Text to indicate the type of CI to plot. Either "im" (information matrix) or

"boot" (bootstrapped). Default is "im".
bootreps Integer to indicate the number of bootstrap replications to be performed if ci.type="boot".

Default is 1000.
xlab Text for the label to be placed on the x axis of graphics (covariate)
ylab Text for the label to be placed on the y axis of graphics (outcome)
control list of control parameters to be used in bootstrapping. See VarReg.control.
... arguments to be used to form the default control argument if it is not supplied

directly

Value

This function returns a 2x2 plot, with slightly different plots given, depending on the outcome data.
For uncensored data, the plots are:

• the mean function over the x-variable, with or without 95% CI, and with or without the knot
lines indicated

• the variance function over the x-variable, with or without 95% CI and with or without the knot
lines indicated

• a Q-Q plot of the residuals from the model
• a histogram of the residuals from the model

If the outcome data is censored, the last two plots are no longer appropriate. Given the censored
residuals from the model, we can compare the squared standardised residuals (given in black) with
their censoring indicator to the chi-squared distribution with one degree of freedom (given in red).
This is one of the plots given for censored data, and the other is a plot of the data, coloured by the
censoring status. The triangles with the point at the top are bottom censored and the triangles with
the point at the bottom are top censored.



14 searchVarReg

See Also

semiVarReg, VarReg.control

Examples

data(mcycle)
linmodel<-semiVarReg(mcycle$accel, mcycle$times, meanmodel="linear", varmodel="linear",
maxit=10000)
plotVarReg(linmodel)
plotVarReg(linmodel, ci=TRUE, ci.type="im", ylab="Range", xlab="Time in seconds")
##not run
##plotVarReg(linmodel, ci=TRUE, ci.type="boot", bootreps=10,ylab="Acceleration",
##xlab="Time in seconds")

##not run
##semimodel<-semiVarReg(mcycle$accel, mcycle$times, meanmodel="semi", varmodel="semi",
##knots.m=4, knots.v=2, maxit=10000)
##plotVarReg(semimodel, ci=TRUE, ci.type="boot",bootreps=10,ylab="Acceleration",
##xlab="Time in seconds", maxit=10000)

searchVarReg Searches for best semi parametric mean and variance regression
model

Description

searchVarReg performs multiple semi-parametric mean and variance regression models for a co-
variate of interest, in order to search for the optimal number of knots. The best model is chosen
based on the information criterion of preference ("selection"). At the moment, this is only de-
signed for a single covariate that is fit in both the mean and variance models.

Usage

searchVarReg(y, x, cens.ind = NULL, maxknots.m = 3, maxknots.v = 3,
degree = 2, mono.var = c("none", "inc", "dec"), selection = c("AIC",
"AICc", "HQC", "BIC"), print.it = FALSE, control = list(...), ...)

Arguments

y Vector containing outcome data. Must be no missing data and any censored
values must be set to the limits of detection.

x Vector containing the covariate data. Must be no missing data and same length
as y.

cens.ind Vector containing the censoring indicator, if applicable. There must be no miss-
ing data contained in the vector and this vector should be the same length as
y. "0" values indicate uncensored data, "1" indicates right, or upper, censoring
and "-1" indicates left, or lower, censoring. The default is NULL which indicates
there is no censored data.
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maxknots.m Integer indicating the maximum number of internal knots to be fit in the mean
model. Default is 3. (Note that the knots are placed equidistantly over x.)

maxknots.v Integer indicating the maximum number of internal knots to be fit in the variance
model. Default is 3. (Note that the knots are placed equidistantly over x.)

degree The degree of the splines fit in the mean and variance. Default is 2.

mono.var Text to indicate whether the variance model is monotonic (only applied to ’lin-
ear’ or semi-parametric variance models). Default is "none" (no monotonic con-
straints). Options are "inc" for increasing or "dec" for decreasing. If the vari-
ance model is linear, the parameter space is constrained (positive for increasing
and negative for decreasing). For semi-parametric variance models, the appro-
priate monotonic B splines are fit in the semi-parametric variance model.

selection Text to indicate which information criteria is to be used for the selection of the
best model. Choices are "AIC", "AICc", "BIC" and "HQC". Default is "AIC".

print.it Logical to indicate whether to print progress from each model as the models are
performed. Default is FALSE.

control list of control parameters. See VarReg.control.

... arguments to be used to form the default control argument if it is not supplied
directly

Details

A matrix of models are performed, of increasing complexity. Mean models start at a zero mean
model, then constant mean, linear, 0 internal knots, etc, up to a maximum internal knots as specified
in maxknots.m. Variance models start at constant variance, linear variance, 0 internal knots, etc, up
to max internal knots as specified in maxknots.v.

Note that this function can take some time to run, due to the number of models to be fit. A window
will appear on windows based systems to show a progress bar for the function.

Value

searchVarReg returns an list, with the following components:

• ll: a dataframe of the log-likelihoods from each of the models that have been fit.

• AIC: a dataframe of the AIC from each of the models that have been fit. The parameters fit in
the mean model are given in the columns, and the parameters in the variance are given in the
rows.

• AICc: a dataframe of the AIC-c from each of the models that have been fit.

• BIC: a dataframe of the BIC from each of the models that have been fit.

• HQC: a dataframe of the HQC from each of the models that have been fit.

• best.model: an object of class VarReg (see semiVarReg) containing the output from the
optimal model (that model within the specified models in the mean and variance with the
lowest information criterion according to the criterion selected).

See Also

semiVarReg, VarReg.control
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Examples

data(mcycle)
### not run
### find<-searchVarReg(mcycle$accel, mcycle$times, maxknots.v=3, maxknots.m=3,
### selection="HQC", maxit=10000)

semiVarReg Semi parametric mean and variance regression

Description

semiVarReg performs semi-parametric mean and variance regression models. Currently, this is
only designed for a single covariate that is fit in the mean and variance models.

Usage

semiVarReg(y, x, cens.ind = NULL, meanmodel = c("zero", "constant",
"linear", "semi"), mean.intercept = TRUE, varmodel = c("constant",
"linear", "semi"), knots.m = 2, knots.v = 2, degree = 2,
mono.var = c("none", "inc", "dec"), para.space = c("all", "positive",
"negative"), control = list(...), ...)

Arguments

y Vector containing outcome data. Must be no missing data and any censored
values must be set to the limits of detection.

x Vector containing the covariate data. Must be no missing data and same length
as y.

cens.ind Vector containing the censoring indicator, if applicable. There must be no miss-
ing data contained in the vector and this vector should be the same length as
y. "0" values indicate uncensored data, "1" indicates right, or upper, censoring
and "-1" indicates left, or lower, censoring. The default is NULL which indicates
there is no censored data.

meanmodel Text to specify the mean model to be fit to the data. The possible inputs are
"zero", "constant", "linear" or "semi". "semi" indicates a semi-parametric
spline model, with the number of internal knots specified in knots.m.

mean.intercept Logical argument to indicate if the mean model is to include an intercept term.
This option is only available in the censored mean model, and the default=TRUE.

varmodel Text to specify the variance model to be fit to the data. The possible inputs
are "constant", "linear" or "semi". "semi" indicates a semi-parametric B-
spline model, with the number of internal knots specified in knots.v.

knots.m Integer indicating the number of internal knots to be fit in the semi-parametric
mean model. Knots are placed equidistantly over the covariate. The default
value is 2.
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knots.v Integer indicating the number of internal knots to be fit in the semi-parametric
variance model. Knots are placed equidistantly over the covariate. The default
value is 2.

degree Integer indicating the degree of the splines fit in the mean and the variance mod-
els. The default value is 2.

mono.var Text to indicate whether the variance model is monotonic. Note that this is
not available for the "constant" variance model. Options are "none", "inc"
or "dec", with the default="none". "Inc" indicates increasing monotonic and
"dec" indicates decreasing monotonic. If the variance model is linear, the pa-
rameter space is constrained (positive for increasing and negative for decreas-
ing). For semi-parametric variance models, the appropriate monotonic B-splines
are fit in the semi-parametric variance model.

para.space Text to indicate the parameter space to search for scale2 parameter estimates.
"positive" means only search positive parameter space, "negative" means
search only negative parameter space and "all" means search all parameter
spaces. Default is all.

control list of control parameters. See VarReg.control.

... arguments to be used to form the default control argument if it is not supplied
directly

Value

semiVarReg returns an object of class "VarReg" which inherits some components from the class
"glm". This object of class "VarReg" is a list containing the following components:

• modeltype: Text indicating the model that was fit, indicating if a censored approach or an
uncensored approach was performed.

• knots.m, knots.v, degree, meanmodel, varmodel: Returning the input variables as de-
scribed above

• converged: Logical argument indicating if convergence occurred.

• iterations: Total iterations performed.

• reldiff: the positive convergence tolerance that occurred at the final iteration.

• loglik: Numeric variable of the maximised log-likelihood.

• boundary: Logical argument indicating if the MLE is on the boundary of the parameter space.

• aic.c: Akaike information criterion corrected for small samples

• aic: Akaike information criterion

• bic: Bayesian information criterion

• hqc: Hannan-Quinn information criterion

• mean.ind: Vector of integer(s) indicating the column number(s) in the dataframe data that
were fit in the mean model.

• mean: Vector of the maximum likelihood estimates of the mean parameters.

• var.ind: Vector of integer(s) indicating the column(s) in the dataframe data that were fit in
the variance model.
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• variance: Vector of the maximum likelihood estimates of the variance parameters.
• cens.ind: Integer indicating the column in the dataframe data that corresponds to the cen-

soring indicator.
• data: Dataframe containing the variables included in the model.

Examples

data(mcycle)
## run a model with linear mean and linear variance:
linmodel<-semiVarReg(mcycle$accel, mcycle$times, meanmodel="linear", varmodel="linear",
maxit=10000)

## run a model with semi-parametric mean (4 internal knots) and semi-parametric variance (2 knots):
##not run
##semimodel<-semiVarReg(mcycle$accel, mcycle$times, meanmodel="semi", varmodel="semi",
##knots.m=4, knots.v=2, maxit=10000)
## run a model with semi-parametric mean (4 internal knots) and semi-parametric monotonic
## variance (2 knots):
## not run
##semimodel_inc<-semiVarReg(mcycle$accel, mcycle$times, meanmodel="semi", varmodel="semi",
##knots.m=4, knots.v=2, mono.var="inc")

seVarReg SE calculations for mean and variance regression models

Description

seVarReg calculates SE for an object of class VarReg. If the result is not on a boundary, the Fishers
Information matrix SE are given. The bootstrapped 95% CI can also be calculated. Designed to be
called by the plot function plotVarReg, rather than run by a user.

Usage

seVarReg(x, boot = FALSE, bootreps = 1000, vector.mean = x$data[, 2],
vector.variance = x$data[, 2], control = list(...), ...)

Arguments

x Object of class VarReg to determin the SE (eg. result from semiVarReg).
boot Logical to indicate if bootstrapped CI should be calculated. Default is FALSE.
bootreps Number of bootstraps to be performed if boot=TRUE. Default is 1000.
vector.mean Vector of x values for which the SE of the mean is to be calculated. Default is

the x covariate from the model.
vector.variance

Vector of x values for which the SE of the variance is to be calculated. Default
is the actual x covariate from the model.

control List of control parameters for the bootstrapped models. See VarReg.control.
... arguments to be used to form the default control argument if it is not supplied

directly
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Value

The result is a list of results. This includes:

• mean.est: dataframe of overall results from the mean model, including parameter estimates
from the model, SEs from information matrix (if boundary=FALSE) and if specified, the SE
from bootstrapping with the bootstrapped 95% CI.

• variance.est: dataframe of overall results from the variance model, including parameter
estimates from the model, SEs from information matrix (if boundary=FALSE) and if specified,
the SE from bootstrapping with the bootstrapped 95% CI.

• mean.im: dataframe of the expected information matrices for the mean (as appropriate)

• variance.im: dataframe of the expected information matrices for the variance (as appropri-
ate)

• mean.outputs: dataframe with complete output for mean graphics. Includes the vector.mean
as input, and the mean vector (mean.mean) and the SE vector mean.se.im, and bootstrapping
outputs as appropriate.

• variance.outputs: dataframe with complete output for variance graphics. Includes the
vector.variance as input, and the mean vector (var.mean) and the SE vector var.se.im,
and bootstrapping outputs as appropriate.

See Also

semiVarReg, VarReg.control

Examples

data(mcycle)
##Fit model with range as a covariate in the mean and the variance model
semimodel<-semiVarReg(mcycle$accel, mcycle$times, meanmodel="semi", varmodel="linear",
knots.m=4, maxit=10000)
##Calculate SE
se1<-seVarReg(semimodel, boot=FALSE)
##not run: with bootstrapping
##se2<-seVarReg(semimodel, boot=TRUE, bootreps=10)
##not run: calculate mean and SE for a given sequence
##test.seq<-seq(min(mcycle$times), max(mcycle$times),
##by=((max(mcycle$times)-min(mcycle$times))/999))
##se2<-seVarReg(semimodel, boot=TRUE, bootreps=10, vector.mean=test.seq)

VarReg VarReg: Semi-parametric mean and variance regression

Description

Methods for fitting semi-parametric mean and variance models, with normal or censored data. Also
extended to allow a regression in the location, scale and shape parameters.
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Details

This package provides functions to fit semi-parametric mean and variance regression models. These
models are based upon EM-type algorithms, which can have more stable convergence properties
than other algorithms for additive variance regression models.

The primary function to use for linear and semi-parametric mean and variance models is semiVarReg.
This function also is able to fit models to censored outcome data. There is also a plot function for
these models called plotVarReg. A search function has also been produced in order to assist users
to find the optimal number of knots in the model (searchVarReg).

The other functions that are of particular use are lssVarReg and its plot function plotlssVarReg.
This uses the skew-normal distribution and combines the EM algorithm with a coordinate-ascent
type algorithm in order to fit a regression model in the location, scale and shape, therefore extending
the semi-parametric models to non-normal data.

Author(s)

Kristy Robledo <robledo.kristy@gmail.com>

VarReg.control Auxillary for controlling VarReg fitting

Description

Use VarReg.control to determine parameters for the fitting of semiVarReg. Typically only used
internally within functions.

Usage

VarReg.control(bound.tol = 1e-05, epsilon = 1e-06, maxit = 1000)

Arguments

bound.tol Positive tolerance for specifying the interior of the parameter space. This al-
lows the algorithm to terminate early if an interior maximum is found. If set to
bound.tol=Inf, no early termination is attempted.

epsilon Positive convergence tolerance. If θ is a vector of estimates, convergence is
declared when

√
(
∑

(θold − θnew)2)/
√∑

(θold)2. This should be smaller than
bound.tol.

maxit integer giving the maximum number of EM algorithm iterations for a given pa-
rameterisation.

Details

This is used similarly to glm.control. If required, it may be internally passed to another function.

Value

A list of the three components: bound.tol, epsilon and maxit .
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vcf vcf dataset.

Description

A dataset containing 100 observations of mean velocity of circumferential fibre shortening (vcf),
made by long axis and short axis echocardiography.

Usage

vcf

Format

A data frame with 133 rows and 3 variables:

pid patient identifier

vcflong vcf measurement from long axis

vcfshort vcf measurement from short axis ...

Source

Data from Bland JM, Altman DG. (1986) Statistical methods for assessing agreement between two
methods of clinical measurement. Lancet i, 307-310. (Supplied by Paul D’Arbela)

Examples

library(VarReg)
data(vcf)
attach(vcf)
plot(rowMeans(vcf[-1]),vcf$vcflong-vcf$vcfshort)
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