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Summary 

Actuaries and demographers have shown a keen interest in the longevity improvement in the past 

decades since human longevity significantly affects society, especially influencing the creation of 

government policy for pensioners and life insurance products.  Studies have shown that mortality rates 

have converged across populations, in which academics have been developing multi-population 

models to capture this phenomenon. 

 

Multi-population models can be used to assess longevity basis risk, which is the mismatch of the 

longevity outcome between two different populations. Longevity basis risk arises from hedging the 

sub-population using mortality hedging instruments based on the reference mortality rate. Good 

multi-population models are able to capture and reduce the basis risk along with hedging instrument. 

 

In this thesis, we study a variety of multi-population models from the literature. These models are 

fitted for the UK population data and the deprivation subgroups in England. Goodness-of-fit tests, and 

the examination of forecasting accuracy and hedging effectiveness are used to compare the multi-

population models.  

  



 

 

 

Acknowledgements 

I would like to thank my supervisor, Associate Professor Jackie Li, for his guidance and invaluable 

support. He has provided many insights and feedback for my thesis. I also want to thank Chong It Tan, 

Kenneth Wong and Colin Zhang for improvement of the writings and ideas for the thesis.   

 

I also want to thank Lin Bai, Shauna Ferris and Angela Chow for the faculty- and department-level 

administrative support. Finally, I want to thank my family and friends for supporting me throughout 

the year.  

 

  



 

 

 

Table of Contents 

1. Introduction 1 

2. Literature Review 4 

    2.1. Single population mortality models 4 

    2.2. Convergence of the mortality rates 6 

    2.3. Multi-population mortality models 7 

3. Data and methodology 17 

    3.1. Data description 17 

    3.2. Preliminary analysis for the deprivation subgroup data 18 

    3.3. Model fitting procedure 22 

    3.4. Forecasting method 24 

4. Fitting results and performance 25 

    4.1. Model fitting: Parameter estimation 25 

    4.2. Model fitting performance 37 

           4.2.1. Bayesian Information Criterion 37 

           4.2.2. Mean Absolute Percentage Error 38 

           4.2.3. Residual Plots 41 

5. Model Projection 50 

    5.1. Forecasting future mortality rates 50 

    5.2. Out-of-sample analysis 58 

    5.3. A proxy hedge for the survival probabilities 72 

6. Concluding remarks 79 

References 80 



 

Appendix 84 

 



1 
 

 

 

Chapter 1 

 

Introduction 

 

Rapid increase in life expectancy over the last few decades has drawn much attention from actuaries 

and demographers. The study of human longevity plays an integral part in social science research, as 

it provides information that is useful to various decision makers such as the government and insurance 

companies. Some examples include calculating an optimal retirement age for individuals, designing a 

pension policy for retirees, and pricing insurance and annuity products for prospective customers. 

Improvements in mortality model projections can potentially reduce the risk of miscalculation faced 

by insurance companies and assist the government in future budget planning. In particular, it would 

be informative to investigate the differences in mortality experience between different groups in a 

population, which usually have a variety of socioeconomic status.  Accordingly, the aim of this thesis is 

to examine the performances of several multi-population mortality projection models, and a few 

possible modifications of them, on the deprivation subgroups in the UK population. 

 

Mortality models have been proposed since a few centuries ago. The classical mortality models are 

often deterministic in nature, such as the Gompertz Law proposed by Benjamin Gompertz in 1825 and 

the Makeham Law developed by William Makeham in 1860. One major limitation in using such 

deterministic models is that these models only take a snapshot of the mortality scenario at a particular 

point of time. Stochastic models, on the other hand, cater for temporal developments in mortality and 

can be used to generate a forecast probability distribution of future mortality rates. 

 

Lee and Carter (1992) have pioneered in modelling mortality data and forecasting future mortality 

rates. Their original model has the benefit of being a stochastic model and makes a projection using 

only the usual mortality data but without the need of experts’ opinion on future mortality 

improvement. The model structure itself is straightforward and incorporates the age and time effects 

explicitly. However, there are several limitations underlying this model. For example, it fails to capture 

the cohort effect, which explains the common mortality experience for all those lives born in the same 



2 
 

year. Since then, many extensions and modifications have been proposed to improve the Lee-Carter 

model’s performance. For instance, the age-period-cohort model developed by Renshaw and 

Haberman (2006) and Currie (2006) caters for the cohort effect. A detailed review of single-population 

mortality projection models can be found in Cairns et al. (2009) and Li et al. (2012). 

 

The main disadvantage of single-population mortality projection models is that they only tackle one 

particular population at a time and cannot handle multiple populations simultaneously. As shown by 

Wilson (2001, 2011), mortality rates tend to converge on a global scale due to many countries having 

quite similar socioeconomic conditions and development trends. Mortality projections using a single-

population model independently for each population without allowing for the potential co-movements 

between populations could result in unreasonable divergence in the projected mortality rates between 

those populations. In contrast, a number of multi-population mortality projection models can ensure 

the long-term convergence between populations or countries and can possibility provide better 

mortality projections than otherwise.         

 

Mortality convergence can also be found amongst sub-populations, e.g. Villegas and Haberman (2014) 

showed that the mortality rates of the deprivation subgroups in the UK tend to converge over time. 

The deprivation level is a measure of the socioeconomic status within the country. Accordingly, it is 

crucial to consider multi-population mortality modelling, in order to deal with the underlying 

relationships between different groups of lives. This thesis will extend the study carried out by Villegas 

and Haberman by examining a more extensive list of multi-population mortality projection models for 

the deprivation subgroups in the UK. The data used in the thesis cover a very recent period; more 

details will be provided in Chapter 3.  

 

Multi-population models can be used to assess longevity basis risk – the mismatch of the longevity 

outcomes between two different populations. Standard mortality hedging instruments have been 

developed in practice in recent years to hedge longevity risk, but the mortality rates built into the 

instruments are based on the reference population. Longevity basis risk arises from hedging the sub-

population using mortality hedging instruments. Hedging effectiveness under each model will also be 

examined in the study. Very recently, Villegas et al (2017) performed a comparative study of two-

population models for assessing longevity basis risk. The thesis will perform a more extensive study on 

hedging effectiveness, using a wider range of models, ages, and cohorts. 

 



3 
 

The remainder of the thesis is structured as follows. Chapter 2 provides a literature review on various 

mortality projection models. Chapter 3 describes the deprivation subgroups dataset and the 

methodology for fitting the selected models to the data. Chapter 4 compares the fitting results 

between different models. Chapter 5 projects the future mortality rates based on each model, 

compares the forecasting performances via an out-of-sample analysis, and examines the hedging 

effectiveness under each model assumption. Chapter 6 discusses potential future research and 

concludes the thesis. 
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Chapter 2 

 

Literature review 

 

2.1 Single population mortality models 

Booth and Tickle (2008) classified mortality forecasting methods under three categories: expectation, 

explanation and extrapolation. Expectation methods require experts’ opinion on future mortality 

improvement. Explanation methods use structural or epidemiological methods to link the cause of 

death with the mortality rate. Extrapolative methods assume that future mortality trends continue 

from the past.  

 

There is a main disadvantage of using expectation methods - it is subject to personal bias. Studies have 

also shown that expectation methods tend to underestimate the actual mortality improvement (Lee 

and Carter, 1992; Lee and Miller,2001). Explanation models often use a regression structure with 

explanatory variables and lagged risk factors, which result in difficulties and lower accuracy in long 

term projection (Booth, 2006; Booth and Tickle, 2008). Extrapolative methods only require assuming 

the continuation of the historical trend; this is the key advantage but can also be considered as a 

limitation. Out of the three methods, the extrapolative methods are widely used by the academics and 

practitioners (Booth, 2006). 

 

The remainder of this section will focus on extrapolative models. A natural starting point is the Lee-

Carter model, which pioneered the use of extrapolative models in mortality projection analysis. The 

Lee-Carter model is expressed as: 

ln𝑚𝑥,𝑡 = 𝛼𝑥 + 𝛽𝑥𝜅𝑡 +휀𝑥,𝑡 
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where 𝑚𝑥,𝑡 refers to the central death rate at age 𝑥 in year 𝑡, 𝛼𝑥 represents the base mortality rate at 

age x, 𝜅𝑡  represents the overall mortality changes over time t, and 𝛽𝑥  is an age-specific sensitivity 

measure to 𝜅𝑡. The term  휀𝑥,𝑡 refers to a homoscedastic error term. Singular value decomposition (SVD) 

is used to estimate the parameters of the Lee-Carter model. The time varying factor usually exhibits a 

linear trend; as such, a random walk with drift is used to project the future value of 𝜅𝑡. 

 

The main advantage of the Lee-Carter model is simplicity since it does not require involve a complex 

structure and parameter setting. The mortality projection also does not require any expert or 

subjective judgement as the projection is driven purely by the historical trend. These features made 

the Lee-Carter model very popular for use in mortality projection. However, the Lee-Carter model has 

some limitations that academics have been trying to improve. Booth et al. (2002) included additional 

time varying factors with respective additional sensitivity measures to improve the fit. Different 

parameter estimations other than the SVD method have been used for the Lee-Carter model, such as 

Wilmoth (1993) who used Weighted Least Squares. Brouhns et al (2002) assumed that the number of 

deaths follows a Poisson distribution and applied a Poisson log-bilinear regression model proposed by 

Brillinger (1986) to estimate the parameters in the Lee-Carter model; these assumptions allow the use 

of standard statistical techniques such as maximum likelihood estimation. 

 

Another extension of the Lee-Carter model is to incorporate the cohort effect, where the cohort refers 

to the groups of people who were born in the same year. This class of models is referred to as age-

period-cohort models. Willets (2004) showed that cohorts in the UK undergo similar mortality 

experience. Renshaw and Haberman (2006) included the cohort effect to extend the Lee-Carter model, 

which can be expressed as: 

ln𝑚𝑥,𝑡 = 𝛼𝑥 + 𝛽𝑥
(1)

 
 𝜅𝑡 + 𝛽𝑥

(2)

 
 𝜄𝑡−𝑥 + 휀𝑥,𝑡 

where 𝛽𝑥
(𝑖)

 refers to the sensitivity measure,  𝜄𝑡−𝑥 refers to the cohort year, and 𝑡 − 𝑥 refers to the 

year of birth. Currie (2006) further simplified the model by setting the sensitivity measure 𝛽𝑥
(1)

 
=

𝛽𝑥
(2)
= 1.  

 

Lee-Carter models have a poor performance for fitting old age groups pointed out by Cairns et al. 

(2009). Cairns et al. (2006) proposed the Cairns-Blake-Dowd (CBD) model specifically for older ages 

and assumed the logit death rates of these ages vary linearly across age. The model includes two time 

varying factors and it is expressed as: 

logit(𝑞𝑥,𝑡) = 𝜅𝑡 
(1) + 𝜅𝑡 

(2)(𝑥 − �̅�) + 휀𝑥,𝑡 
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where 𝑞𝑥,𝑡 represents the probability that an individual aged 𝑥 years old at time 𝑡 will die within a year, 

�̅� represents the average age of the data, 𝜅𝑡 
(1) is the first time varying factor representing the base 

mortality level across the population, and 𝜅𝑡 
(2) is the second time varying factor representing the slope 

to separate the mortality for each age. Usually 𝜅𝑡 
(1)

 has a downward trend across time as mortality 

improves.  A downward trend for 𝜅𝑡 
(2)

 represents younger age groups experiencing better mortality 

improvement compared to the older age groups. This model is also known as the M5 model in Cairns 

et al. (2009), where the model is further expanded to the M6 model by including an additional cohort 

effect, which can be expressed as:   

logit(𝑞𝑥,𝑡) = 𝜅𝑡 
(1)
+ 𝜅𝑡 

(2)(𝑥 − �̅�) +𝜄𝑡−𝑥  +  휀𝑥,𝑡 

where 𝜄𝑡−𝑥 represents the cohort effect. Another variation of the M5 model, namely M7, includes a 

quadratic term to improve the fitting, which can be expressed as: 

logit(𝑞𝑥,𝑡) =  𝜅𝑡 
(1) + 𝜅𝑡 

(2)(𝑥 − �̅�) + 𝜅𝑡 
(3)((𝑥 − �̅�)2 − �̂�𝑥

2) + 𝜄𝑡−𝑥 + 휀𝑥,𝑡 

where 𝜅𝑡 
(3) is the third time varying factor and �̂�𝑥

2 is the simple average of (𝑥 − �̅�)2.  

 

2.2 Convergence of the mortality rates 

White (2002) found that mortality rates converge between high income countries and stated the 

dangers of mortality projection from using only one population. Wilson (2001) studied 184 entities 

from the United Nations and showed that mortality rates converge on a global scale with many 

countries exhibiting similar socioeconomic conditions. The global convergence also reduces the 

mortality difference between developing and developed countries (Wilson, 2011).   

 

Moreover, mortality convergence can occur within a single country, such as between both sexes. 

Historically, males and females are known to have different mortality experiences - females have 

always been expected to live longer than males since the life table method was established (Luy, 2003). 

The gap in mortality rates between the two sexes, however, has fallen since the 1980s (Li, 2013). Li 

and Lee (2005) argued that the original Lee-Carter model would perform reasonably well for a single 

sex or aggregated sexes. However, when projecting mortality independently between the two sexes, 

the resulting projected mortality rates could diverge gradually over time, which would be inconsistent 

with the general views in the literature and the patterns shown in historical data. There is a need for 

improvement on the single population models. Thus, in recent years, academics have developed 

several multi-population models to capture the mortality convergence to provide better fitting and 

mortality projection. 
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2.3 Multi-population mortality models 

Many multi-population models are built based on extensions of the single population models. In the 

following, the models are grouped by whether they share the same key features. 11 multi-population 

mortality models have been tested for the studies. The studies have applied the Poisson death count 

assumptions for the 11 models which are similar to the assumptions that Brouhns et al (2002) have 

used for the Lee-Carter model. Further details for the Poisson framework are shown in section 3.3. The 

additional subscripts 𝑖 in this section refers to which population are fitted, where 𝑖 = 1  refers to the 

reference population and 𝑖 = 2 refers to the subpopulation. 

 

Associated mortality indices 

Under this category, a single population model is fitted to each population separately. The estimated 

temporal parameters of both populations are then modelled jointly with a suitable time series process 

to ensure the convergences in the projected mortality rates. The mortality structure of the first three 

models are basically the same, in terms of using the Lee and Carter (1992) model structure. The main 

differences between applying the three models lie in the time series processes being adopted for 

projection.  

Model (1): 

ln𝑚𝑥,𝑡,𝑖 = 𝛼𝑥,𝑖 + 𝛽𝑥,𝑖𝜅𝑡,𝑖;      (Lee-Carter model) 

K𝑡 = 𝛩 + K𝑡−1 + Δ𝑡 , (bivariate random walk with drift) 

 

In model (1) (Lee-Carter model), 𝛼𝑥,𝑖 represents the base mortality rate at age x, 𝜅𝑡,𝑖  represents the 

overall mortality changes over time t, and 𝛽𝑥,𝑖 is an age-specific sensitivity measure to 𝜅𝑡,𝑖. A bivariate 

random walk with drift is fitted to the time varying factors where K𝑡 = (𝜅𝑡,1, 𝜅𝑡,2)
′
, 𝛩 is the vector 

term for the drift, and Δ𝑡 = (휀𝑡,1, 휀𝑡,2)
′
 is the vector error term, in which the error terms 휀𝑡,1 and 휀𝑡,2 

follow a bivariate normal distribution. The identifiability constraints for the Lee-Carter models are 

taken as ∑ 𝛽𝑥,𝑖𝑥 = 1 and ∑ 𝜅𝑡,𝑖𝑡 = 0. One shortfall of applying this time series process is the possibility 

that the projected mortality rates of the two populations may diverge indefinitely over time. 
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Model (2): 

ln𝑚𝑥,𝑡,𝑖 = 𝛼𝑥,𝑖 + 𝛽𝑥,𝑖𝜅𝑡,𝑖;      (Lee-Carter model) 

𝜅𝑡,1 = 𝜃 + 𝜅𝑡−1,1 + 𝛿𝑡;        (random walk with drift) 

𝜅𝑡,2 = 𝑎0 + 𝑎1𝜅𝑡,1 +𝜔𝑡 ,       (co-integrated process) 

 

Li and Hardy (2011) improved the time series modelling by using a co-integrated process for the time 

varying factors (model (2)) and intended to allow for some more connection between the two time 

series. The extent of possible divergence between the simulated mortality rates of the two populations 

may then be reduced. A co-integrated process can be applied if there exists a linear combination of 

𝜅𝑡,1  and 𝜅𝑡,2  which is a stationary process. The terms 𝜃, 𝑎0 , and 𝑎1  are the coefficients of the co-

integrated process. The error terms 𝛿𝑡  and 𝜔𝑡 are independent and normally distributed.  

 

Model (3): 

ln𝑚𝑥,𝑡,𝑖 = 𝛼𝑥,𝑖 + 𝛽𝑥,𝑖𝜅𝑡,𝑖;                                                             (Lee-Carter model)   

K𝑡 − K𝑡−1 =  𝛩 +  ΠK𝑡−1  +  Γ (K𝑡−1 − K𝑡−2) + Δ𝑡,               (vector error correction model)           

    

The vector error correction model adopted in model (3) for the time varying factors, proposed by Yang 

and Wang (2013), has a similar advantage to model (2) in reducing the extent of possible divergence 

in the simulated mortality rates between the two populations. Under certain technical condition, it 

can also ensure the long-run equilibrium in the projected mortality rates between the two populations 

whilst allowing certain deviations in the short term. Note that K𝑡 = (𝜅𝑡,1, 𝜅𝑡,2)
′
, 𝛩 is the vector term, 

Π and Γ are 2 by 2 coefficient matrices, and Δ𝑡 = (휀𝑡,1, 휀𝑡,2)
′
 is the vector error term, where the error 

terms 휀𝑡,1 and 휀𝑡,2  are bivariate normal random variables. 

 

Model (4): 

ln𝑚𝑥,𝑡,𝑖 = 𝛼𝑥,𝑖 + 𝛽𝑥𝜅𝑡,𝑖;                                                                                   (joint Lee-Carter model) 

𝜅𝑡,1 = 𝜃 + 𝜅𝑡−1,1 + 𝛿𝑡; (random walk with drift) 

𝜅𝑡,1 − 𝜅𝑡,2 = 𝑏0 + 𝑏1(𝜅𝑡−1,1 − 𝜅𝑡−2,2) + 𝜔𝑡,       (AR (1) process) 
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Regarding model (4), Zhou, Li, and Tan (2013) used a common sensitivity measure for the age-specific 

factor in the Lee-Carter model structure for both populations such that 𝛽𝑥 = 𝛽𝑥,1 = 𝛽𝑥,2. In addition, 

the difference between the two time varying factors 𝜅𝑡,1  and 𝜅𝑡,2  is modelled with an weakly 

stationary AR(1) process to ensure that the mortality rates of the two populations are projected along 

the same direction over the long term. The terms 𝜃, 𝑏0, and 𝑏1 are the coefficients of the time series 

processes. The error terms 𝛿𝑡  and 𝜔𝑡 follow a bivariate normal distribution. The constraints for this 

model are set as ∑ 𝛽𝑥𝑥 = 1 and ∑ 𝜅𝑡,𝑖𝑡 = 0. 

 

Model (5): 

ln𝑚𝑥,𝑡,𝑖 = 𝛼𝑥,𝑖 + 𝑛𝛼
−1 𝜅𝑡,1 + 𝑛𝛼

−1𝜄𝑡−𝑥,𝑖;                                                                (age-period-cohort model) 

𝜅𝑡,1 = 𝜃 + 𝜅𝑡−1,1 + 𝛿𝑡;                                                                                          (random walk with drift) 

𝜅𝑡,1 − 𝜅𝑡,2 = 𝑏0 + 𝑏1(𝜅𝑡−1,1 − 𝜅𝑡−1,2) + 𝜔𝑡;                                                     (AR (1) process) 

𝜄ℎ̃,1 = 𝑐0,1 + 𝑐1,1𝜄ℎ−1,1 + 𝑐2,1𝜄ℎ̃−2,1 + 휀ℎ,1; (AR (2) process) 

𝜄ℎ,1 − 𝜄ℎ,2 = 𝑐0,2 + 𝑐1,2(𝜄ℎ−1,1 − 𝜄ℎ−1,2) + 𝑐2,2(𝜄ℎ−2,1 − 𝜄ℎ−2,2) + 휀ℎ,2, (AR (2) process) 

 

In models (5) and (6), each population is fitted individually with the age-period-cohort model discussed 

by Renshaw and Haberman (2006) and Currie (2006). Cairns, Blake, Dowd, Coughlan, and Khalaf-Allah 

(2011) (model (5)) modelled the two sets of time series jointly. The parameters 𝛼𝑥,𝑖 represents the age 

effect, 𝜅𝑡,1 represents the period effect, and 𝜄𝑡−𝑥,𝑖 represents the cohort effect, where ℎ = 𝑡 − 𝑥 is the 

year of birth. The term 𝑛𝛼
−1  is the reciprocal of the number of ages. The terms 𝜄ℎ̃,1 =  𝜄ℎ,1 − 𝜌0 −

𝜌1(ℎ − ℎ̅), where ℎ̅ represents the average cohort year plus one, and 𝜌0 and 𝜌1 represent the linear 

trend for 𝜄ℎ,1 . The term𝜄ℎ̃,1 is assumed to follow a stationary process after removing the linear trend. 

The terms 𝜃, 𝑏0, 𝑏1, 𝑐0,1, 𝑐1,1, 𝑐2,1, 𝑐0,2, 𝑐1,2, and 𝑐2,2 are the coefficients of the time series processes. 

The error terms 𝛿𝑡  and 𝜔𝑡  are bivariate normal random variables, while the error terms 휀ℎ,1 and 휀ℎ,2  

also follow a bivariate normal distribution but are independent of 𝛿𝑡  and 𝜔𝑡. The difference between 

the period effects of the two populations is assumed to follow a stationary process to ensure that the 

mortality rates of the two populations are projected in the same direction over the long run. The same 

argument applies for the difference between the cohort effects of the two populations. The constraints 

for the age-period-cohort model used in the study are set as ∑ 𝜅𝑡,𝑖𝑡 = 0 and ∑ 𝜄ℎ,𝑖ℎ = 0. 
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Model (6): 

ln𝑚𝑥,𝑡,𝑖 = 𝛼𝑥,𝑖 + 𝑛𝛼
−1 𝜅𝑡,1 + 𝑛𝛼

−1𝜄𝑡−𝑥,𝑖; (age-period-cohort model) 

𝜅𝑡,1 = 𝜃 + 𝜅𝑡−1,1 + 𝛿𝑡; (random walk with drift) 

𝜅𝑡,2 − 𝜅𝑡−1,2 = 𝑏0 + 𝑏1(𝜅𝑡−1,1 − 𝜅𝑡−1,2) + 𝜔𝑡; (gravity model) 

𝜄ℎ,1 − 𝜄ℎ−1,1 = 𝑐0,1 + 𝑐1,1(𝜄ℎ−1,1 − 𝜄ℎ−2,1) + 휀ℎ,1; (AR (1) process) 

𝜄ℎ,2 − 𝜄ℎ−1,2 = 𝑐0,2 + 𝑐1,2(𝜄ℎ−1,2 − 𝜄ℎ−2,2) + 𝑐2,2(𝜄ℎ−1,1 − 𝜄ℎ−1,2) + 휀ℎ,2, (gravity model) 

 

On the other hand, Dowd, Cairns, Blake, Coughlan, and Khalaf (2011) (model (6)) adopted the gravity 

model such that the subpopulation’s (population 2) death rates move back closer to those of the 

reference population, the pace of which depends on the two gravity parameters. The error term 

structure of model (6) is the same as that of model (5). 

 

Model (7): 

logit(𝑞𝑥,𝑡,𝑖) = 𝜅𝑡,𝑖 
(1) + 𝜅𝑡,𝑖 

(2)(𝑥 − �̅�) + 𝜅𝑡,𝑖 
(3)((𝑥 − �̅�)2 − �̂�𝑥

2); (3-factor CBD model) 

Z𝑡 =  Θ +∑Φ𝑙Z𝑡−𝑙

𝑟

𝑖=1

+∑Λ𝑢

𝑠

𝑢=1

Δ𝑡−𝑢 + Δ𝑡 ,  
(VARMA (p, q) model)  

Tan, Li, Li, and Balasooriya (2014) extended the Cairns, Blake, and Dowd (2006) model (model (7)) for 

individual populations and used a vector autoregressive moving average process (VARMA) for the time 

series of the computed parameters. The terms 𝜅𝑡,𝑖 
(1), 𝜅𝑡,𝑖 

(2), and 𝜅𝑡,𝑖 
(3) are the time varying factors of the 

CBD model, �̅� represents the average age of the data, and �̂�𝑥
2 is the simple average of (𝑥 − �̅�)2. The 

vector Z𝑡 = (Δ
(𝑑)𝜅𝑡,1 

(1), Δ(𝑑)𝜅𝑡,1 
(2), Δ(d)𝜅𝑡,1 

(3), Δ(𝑑)𝜅𝑡,2 
(1), Δ(𝑑)𝜅𝑡,2 

(2), Δ(𝑑)𝜅𝑡,2 
(3)), where Δ(𝑑)𝜅𝑡,𝑖 

(𝑗)
 represents the 

dth difference in 𝜅𝑡,𝑖 
(𝑗)
. The terms Φ𝑙  and Λ𝑢 are the VARMA coefficient matrices. The vector error term 

Δ𝑡 follows a multivariate normal distribution. 

 

Moreover, Li et al. (2015) performed an extensive study of two-population models by extending the 

models1 in Cairns et al. (2009). These extensions are constructed by considering a common time 

                                                           
1 Cairns et al. (2009) covered a variety of models such as the Lee-Carter model, age-period-cohort model, and 
CBD models. 
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varying factor between populations and utilizing multivariate time series to model the time varying 

factors jointly.  

 

Ratio of death rates 

The ratio of death rates models are another set of models which can ensure the convergence of the 

two populations’ projected ratio of mortality rates at each age. This class of models adopts the Jarner 

and Kryger (2011) approach of multi-population mortality modelling, in which the single population 

model is fitted to the reference population, and then the ratio of the two populations’ death rates is 

modelled with another structure. They applied a frailty model to the reference population and 

modelled the log ratio of death rates with a function of period and age factors. One difficulty of 

applying this model is that the choice of the frailty is subjective and is based on the population data.  

 

Model (8): 

logit(𝑞𝑥,𝑡,𝑖) = 𝜅𝑡,𝑖 
(1) + 𝜅𝑡,𝑖 

(2)(𝑥 − �̅�); (CBD model – M5) 

𝑞𝑥,𝑖,2
𝑞𝑥,𝑖,1

= 1 + 𝜓𝑥(1)𝛾𝑡(1) + 𝜓𝑥(2)𝛾𝑡(2) + ⋯+ 𝜓𝑥(𝑛)𝛾𝑡(𝑛); 
(age and period factors) 

(
𝜅𝑡
(1)

𝜅𝑡
(2)
) = (𝜃

(1)

𝜃(2)
) + (

𝜅𝑡−1
(1)

𝜅𝑡−1
(2)
) + (

𝛿𝑡
(1)

𝛿𝑡
(2)
); 

(bivariate random walk 

with drift) 

𝛾𝑡(𝑗) = 𝑐0(𝑗) + 𝑐1(𝑗)𝛾𝑡−1(𝑗) + 휀𝑡(𝑗), (AR (1) process) 

 

Plat (2009) used the CBD (2006) M5 model for the reference population and modelled the ratio of 

death rates between the two populations as a function of age and period (model (8)). The ratio 

between the two populations will converge if the corresponding time series follow stationary AR(1) 

processes. The terms  𝜅𝑡,𝑖 
(1) and 𝜅𝑡,𝑖 

(2)  are the time varying factors of the CBD model, and �̅� represents 

the average age of the data. The terms 𝜓𝑥(𝑗) refers to the age factor and 𝛾𝑡(𝑗) is the period factor. 

Moreover, 𝜃(1) and 𝜃(2) are the drift terms, 𝑐0(𝑗) and 𝑐1(𝑗) are the coefficients of the AR (1) process, 

the error terms 𝛿𝑡
(1)

 and 𝛿𝑡
(2)

 follow a bivariate normal distribution, and the error terms 휀𝑡(𝑗)’s are 

independent and normally distributed. The number of age and period factors are determined by 

comparing the BIC values as described in Section 4.  
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Model (9): 

ln𝑚𝑥,𝑡,1 = 𝛼𝑥, + 𝛽𝑥,𝜅𝑡 + 𝜄𝑡−𝑥; (Lee-Carter model with cohort factor) 

ln
𝑚𝑥,𝑡,2
𝑚𝑥,𝑡,1

= 𝑎𝑥 + 𝑏𝑥𝑘𝑡 ; 
(age and period factors) 

𝜅𝑡 =  𝜃 + 𝜅𝑡−1 + 𝛿𝑡;  (random walk with drift) 

𝑘𝑡 = 𝑐 + 𝑘𝑡−1 + 휀𝑡; (random walk with drift) 

𝜄ℎ − 𝜄ℎ−1 = 𝑐0,1 + 𝑐1,1(𝜄ℎ−1 − 𝜄ℎ−2) + 𝜔ℎ, (AR (1) process) 

 

Villegas and Haberman (2014) applied the Lee-Carter model with a cohort factor proposed by Renshaw 

and Haberman (2006) to the reference population, and then modelled the ratio of death rates with 

the Lee-Carter bilinear age and period structure (model (9)). The main assumption of this model is that 

subpopulations exhibit similar cohort experience as the reference population, so this common cohort 

effect feature limits the possibility of multi-country modelling. The parameters 𝛼𝑥,𝑖  represents the 

base mortality rate at age x, 𝜅𝑡,𝑖 describes the overall mortality changes over time t, 𝛽𝑥,𝑖 is an age-

specific sensitivity measure of 𝜅𝑡,𝑖, and 𝜄𝑡−𝑥 depicts the cohort effect. The terms 𝑎𝑥 and 𝑏𝑥 are the age 

factors and 𝑘𝑡 is the time factor. The terms 𝜃, 𝑐, 𝑐0,1, and 𝑐1,1 are the coefficients of the time series 

processes, the error terms 휀𝑡  and 𝛿𝑡  are independent and normally distributed, and the error term 𝜔ℎ 

is also independent of 𝛿𝑡  and 휀𝑡 and normally distributed.  The constraints for this model are taken as 

∑ 𝛽𝑥𝑥 = 1 , ∑ 𝜅𝑡𝑡 = 0, ∑ 𝜄ℎℎ = 0, ∑ 𝑏𝑥𝑥 = 1 and ∑ 𝑘𝑡𝑡 = 0.  

 

Modelling the difference of the logit death rates between two populations 

Haberman et al. (2014) considered modelling the difference of the logit death rates between a book 

and a reference population in an investigation about longevity basis risk. It follows the Jarner and 

Kryger (2011) multi-population modelling approach. They compared a variety of models under the 

relative modelling framework, where the results indicated that the so-called M7-M5 model and the 

CAE + Cohorts model perform the best in terms of fitting and calculating reasonable hedging 

effectiveness. This class of models provides more flexibility for dealing with different data lengths 

between both populations. The time series processes for the difference between the two populations 

are selected to ensure that the long-term difference in the logit death rates converges if the stationary 

condition is satisfied. 
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Model (10): 

logit(𝑞𝑥,𝑡,1) =  𝜅𝑡,1 
(1) + 𝜅𝑡,1 

(2)(𝑥 − �̅�) + 𝜅𝑡,1 
(3)((𝑥 − �̅�)2 − �̂�𝑥

2) + 𝜄𝑡−𝑥; (CBD model – M7) 

logit(𝑞𝑥,𝑡,1) − logit(𝑞𝑥,𝑡,2) = 𝜅𝑡,2 
(1) + 𝜅𝑡,2 

(2)(𝑥 − �̅�); (CBD model – M5) 

(

 

𝜅𝑡,1 
(1)

𝜅𝑡,1 
(2)

𝜅𝑡,1 
(3)
)

 = (
𝜃1
𝜃2
𝜃3

) +

(

 

𝜅𝑡−1,1 
(1)

𝜅𝑡−1,1 
(2)

𝜅𝑡−1,1 
(3)

)

 +(

휀𝑡
(1)

휀𝑡
(2)

휀𝑡
(3)

); 

(multivariate random walk 

with drift) 

𝜄ℎ − 𝜄ℎ−1 = 𝑏0 + 𝑏1(𝜄ℎ−1 − 𝜄ℎ−2) + 𝜔ℎ; AR(1) process 

(
𝜅𝑡,2 
(1)

𝜅𝑡,2 
(2)
) = (

𝜑1,0
𝜑2,0

) + [
𝜑1,1 𝜑1,2
𝜑2,1 𝜑2,2

] (
𝜅𝑡−1,2 
(1)

𝜅𝑡−1,2 
(2)

) + (
𝛿𝑡
(1)

𝛿𝑡
(2)
), 

bivariate VAR (1) process 

 

The M7-M5 model in the IFoA/LLMA Phase 1 Report written by Haberman et al. (2014) (model (10)) 

extends the Cairns, Blake, and Dowd (2006) model. The reference population is fitted with the M7 

model, and the difference between the two populations is fitted with the M5 model. The time varying 

factors are the same as in models (7) and (8) regarding the CBD counterpart, with the addition of a 

cohort effect for the reference population 𝜄ℎ. These time varying factors of the reference population  

are noted as (𝜅𝑡,1 
(1), 𝜅𝑡,1 

(2), 𝜅𝑡,1 
(3))′  , in which (𝜃1, 𝜃2, 𝜃3)′  is the vector of the drift terms and 

(휀𝑡
(1)
, 휀𝑡
(2)
, 휀𝑡
(3)
)
′

 are the multivariate normal error terms. The time varying factors of the 

subpopulation are (𝜅𝑡,2 
(1), 𝜅𝑡,2 

(2))′ , where 𝜑1,0, 𝜑1,1, 𝜑1,2, 𝜑2,0, 𝜑2,1, and 𝜑2,2 are the coefficients of the 

bivariate VAR(1) process and (𝛿𝑡
(1), 𝛿𝑡

(2)) are the bivariate normal error terms which are independent 

of (휀𝑡
(1), 휀𝑡

(2), 휀𝑡
(3))

′
. The following constraints are needed for the M7-M5 model: ∑ 𝜄ℎℎ = 0, ∑ ℎ 𝜄ℎℎ =

0 and ∑ ℎ2𝜄ℎℎ = 0. 

 

Model (11): 

logit(𝑞𝑥,𝑡,1) = 𝛼𝑥,1 + 𝛽𝑥,1𝜅𝑡,1 + 𝜄𝑡−𝑥; (CAE + cohort) 

logit(𝑞𝑥,𝑡,1) − logit(𝑞𝑥,𝑡,2) = 𝛼𝑥,2 + 𝛽𝑥,1𝜅𝑡,2; (CAE) 

𝜅𝑡,1 =  𝜃 + 𝜅𝑡−1,1 + 휀𝑡; (random walk with drift) 

𝜄ℎ − 𝜄ℎ−1 = 𝑏0 + 𝑏1(𝜄ℎ−1 − 𝜄ℎ−2) + 𝜔ℎ; (ARIMA(1,1,0) process) 

𝜅𝑡,2 = 𝜑0 + 𝜑1𝜅𝑡−1,2 + 𝛿𝑡; (AR(1) process) 
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The common age effect with cohort (CAE+Cohorts) model in the IFoA phase 1 Report (model (11)) 

combines the common age effect model proposed by Kleinow (2015), where the sensitivity measure 

is identical across the two populations, with the Jarner and Kryger (2011) approach, where the 

reference sensitivity measure is used as the common sensitivity measure. The common age effect 

model with cohort effect is used for the reference population, and the difference between the two 

populations is fitted with another common age Effect model. The parameters 𝛼𝑥,𝑖 represents the base 

mortality rate at age x, 𝜅𝑡,𝑖  describes the overall mortality changes over time t, and 𝛽𝑥,1  is the 

sensitivity measure for the reference population, which is also used as the sensitivity measure for the 

difference between the two populations. The terms 𝜄ℎ depicts the cohort effect,  𝜃  is the drift term, 

𝑏0, 𝑏1, 𝜑0, and 𝜑1 are the coefficients of the time series processes, and the error terms 휀𝑡, 𝜔ℎ, and 

𝛿𝑡  are independent and normally distributed. The following constraints are needed for the 

CAE+Cohorts model: ∑ 𝛽𝑥,1𝑥 = 1, ∑ 𝜅𝑡,1𝑡 = 0,  ∑  𝜄ℎℎ = 0 and ∑ 𝜅𝑡,2𝑡 = 0. 

 

Common and specific factors 

For this group of models, the two populations are modelled together by a common factor explaining 

the long-term trend for both populations and an additional factor allowing for short-term deviations 

from the main trend of each population. This model structure addresses the possible divergence issue 

from the Lee-Carter model but the short term forecast uncertainty is widened, since there are multiple 

trends imposed by the model. This class of models requires both populations to have the same data 

period and age range, otherwise the common period effect only reflects on one population when the 

other population data is missing. The data for this study involve different periods for the reference 

population and book population. Direct fitting is not applicable in this study and further details 

concerning to the model fitting for this class of models are detailed in section 3.3.   

 

Model (A1)    

ln𝑚𝑥,𝑡,𝑖 = 𝛼𝑥,𝑖 +𝐵𝑥𝐾𝑡 +𝛽𝑥,𝑖𝜅𝑡,𝑖; (augmented common factor model) 

𝐾𝑡 = 𝛩 + 𝐾𝑡−1 + 𝛿𝑡; (random walk with drift) 

𝜅𝑡,1 = 𝑐0,𝑖 + 𝑐1,𝑖𝜅𝑡−1,1 + 휀𝑡,𝑖, (AR (1) process) 

 

Li and Lee (2005) proposed the augmented common factor model, named as model (A1) here. One of 

the features of the augmented common factor model is that the projected ratio of death rates at each 

age converges to a constant if the fitted AR(1) processes are stationary for both populations’ additional 
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factors. The terms 𝛼𝑥,𝑖 represents the base mortality rate at age x, 𝐵𝑥 refers to the common factor 

regarding the age effect, and 𝐾𝑡 refers to the common factor regarding the period effect. The other 

terms 𝛽𝑥,𝑖 and 𝜅𝑡,𝑖 correspond to the additional factor for age and period respectively for population 

𝑖. The terms 𝛩, 𝑐0,𝑖 , and 𝑐1,𝑖 are the coefficients of the time series processes, and the error terms 𝛿𝑡, 

휀𝑡,1, and 휀𝑡,2 are independent normal random variables. 

   

Model (A2) 

ln𝑚𝑥,𝑡,𝑖 = 𝛼𝑥,𝑖 +𝐵𝑥𝐾𝑡 +∑𝛽𝑥,𝑖,𝑗𝜅𝑡,𝑖,𝑗

𝑛

𝑗=1

; 
(generalised common factor model) 

𝐾𝑡 = 𝛩 + 𝐾𝑡−1 + 𝛿𝑡; (random walk with drift) 

𝜅𝑡,𝑖,𝑗 = 𝑐0,𝑖,𝑗 + 𝑐1,𝑖,𝑗𝜅𝑡−1,𝑖,𝑗 +⋯+ 𝑐𝑟,𝑖,𝑗𝜅𝑡−𝑟,𝑖,𝑗 + 휀𝑡,𝑖,𝑗, (AR(r) process) 

  

Li (2013) proposed the Poisson common factor model (model (A2)), which is an extension of the 

augmented common factor model. It incorporates more than one factor for the short-term deviations 

of each individual population from the common trend. The model provides better fitting and adopts 

standard statistical technique for parameter estimation. One of the limitations is the possibility of 

overfitting, which can be avoided by choosing the optimal number of additional factors. The subscript 

𝑗 represents the 𝑗th additional factor for the short-term deviations. The BIC values determine the 

desired number of additional factors 𝑛 . The order for the autoregressive process 𝑟  is chosen by 

examining the partial autocorrelation functions for 𝜅𝑡,𝑖,𝑗  and whether the projected ratio of death 

rates converges.  

 

Wong (2016) further extended the Poisson common factor model with variable sex-specific factors 

(PCFM-VSF) to improve fitting performance. In this model the number of additional factors for each 

sex can differ to reduce the overfitting issue. Yang et al. (2016) incorporated a cohort parameter into 

the Poisson common factor model to improve the fitting and to allow for the existence of cohort effects 

in a multiple-population setting. 

 

Other models with joint fitting 

Kleinow (2015) proposed the common age effect model to allow the populations to share a common 

sensitive measure in the Lee-Carter structure, where each population has a population-specific time 
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varying factors. Similar to Booth et al. (2002), the model can also be extended to incorporate additional 

bilinear factors if it improves the fitting performance. The model outperforms the augmented common 

factor model in old age groups for developed countries as these populations exhibit similar age effect, 

as shown in Kleinow (2015).  

 

The joint-k model (Lee and Carter,1992; Li and Lee 2011) uses common time varying factor for the 

populations. It has the parsimonious model advantage of just using one time-varying factor for two 

populations, but it also brings about a major limitation where the two populations are perfectly 

correlated, which is difficult to cater for any short-term deviations, leading to an underestimation of 

the demographic basis risk. 

 

To allow for the structure of mortality dependency, Wang et al. (2015) extended the error term 

assumption for the mortality index from the Lee-Carter Model using non-Gaussian innovations such as 

the student’s t distribution. The authors also modelled the multi-population mortality dependency 

using time-varying copula and showed that non-Gaussian copulas provide a better fit since there is tail 

dependency for the multi-population mortality index.  

 

Other multi-population model 

Hyndman et al. (2013) utilized a different approach by proposing a product-ratio model to fit the 

product and ratio of mortality rates of the two populations instead of the original mortality rate, 

motivated by fact that the product and ratio are roughly uncorrelated if the two populations have 

similar variances. This model results in similar accuracy as the single population model while also 

ensures that the long-term forecast ratio will converge. The limitation of this model is that the 

convergence ratio is sensitive to the choice of the fitting period. 

 

Danesi et al. (2015) adapted the mortality improvement definition from Haberman and Renshaw (2012) 

and modelled the mortality improvement rate jointly using the Lee-Carter structure and their variants. 

The results showed that common time varying factors provide the best trade-off between parsimony 

and goodness of fit. Other contributions to the multi-population modelling include Chen et al. (2015) 

who adopted a factor copula approach after fitting the mortality improvement rates with an ARMA-

GARCH model in order to explain the mortality co-movements for multiple populations.  
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Chapter 3 

 

Data and methodology 

 

3.1 Data description  

The mortality data used in this thesis are collected from the Office for National Statistics (ONS) in the 

UK. This dataset is split by sex, age, year, and decile group based on the Index of Multiple Deprivation 

(IMD). The welfare status of a subgroup is determined by the deprivation level, which is a measure for 

the socioeconomic status. It is calculated according to the following aspects: income, employment, 

education, skills, and training, health and disability, crime, barriers to housing and services, and living 

environment. Different weights are assigned to these seven categories to determine the final 

deprivation score. The deprivation level is measured for groups of approximately 1,500 people who 

live in the same area (known as the Lower Layer Super Output Area (LSOA)). These areas are first 

ranked based on their deprivation levels amongst all areas. Then the ranked areas are split into ten 

subgroups of equal sizes, each of which forms a decile. Further information on the classifications can 

be found in the English Indices of Deprivation 2015 Statistical Release. The dataset consists of 

population exposures and death counts in the UK from 2001 to 2013, for individual ages from 0 to 89 

and 90+. Because the mortality models in this thesis require data for each age and each year, those 

data of aged 90+ are not used. The younger age groups are also omitted, as the number of deaths of 

younger people in each sub-population is generally very small, which would cause rather inaccurate 

model fitting and projections, and as the major recent concern is the longevity risk of retirees. 

Accordingly, the focus is on the age range of 60-89. 
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The whole UK population is chosen as the reference population. The dataset is obtained from the 

Human Mortality Database (HMD 2017). The reference population data covers a wider period of 1980-

2013. This longer time period of data could lead to more accurate estimation of the age and cohort 

effects. The age range is also set as 60-89 for the reference population, in line with the treatment of 

the ONS data. 

 

3.2 Preliminary analysis for the deprivation subgroup data 

The average death rates for ages 60-69, 70-79, and 80-89 over time for each decile are plotted below 

with D1 representing the most deprived decile subgroup, D2 referring to the second most deprived 

decile subgroup, and so on, up to D10 which stands for the least deprived decile subgroup. Using age 

groups rather than individual ages for demonstration here makes the mortality trends more distinct 

between different deciles. However, as shown in Figure 3.2.1, some overlapping in mortality rates is 

still observed for the older age groups 70-79 and 80-89. Further grouping the deciles into quintiles 

would help reduce the extent of overlapping, the average death rates of which are then plotted in 

Figure 3.2.2.  
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Figure 3.2.1: Average mortality rates for ages 60-69, 70-79, and 80-89 from 2001 to 2013 for different decile groups in the UK. 
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In Figure 3.2.2, the whole UK population’s average death rates of the three age groups are also 

included for comparison. There is no clear overlapping between the quintiles for the three age groups. 

The UK population’s average death rates lie between those of the second most deprived quintile and 

the third most deprived quintile over all years for the three age groups, with an exception for ages 80-

89 in years 2009-2013, when the UK population’s average death rates lie between the third most 

deprived quintile and the fourth most deprived quintile instead. In order to identify those subgroups 

with distinct mortality patterns and trends for modelling purposes, this research will group the deciles 

into quintiles in the remaining analysis. In addition, using the quintiles would increase the exposures 

of each subgroup and so reduce sampling variability.  
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Figure 3.2.2: Average mortality rates for ages 60-69, 70-79, and 80-89 from 2001 to 2013 for different quintile groups in the UK. 
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3.3 Model fitting procedure 

Multi-population mortality modelling is a relatively new research area. In this thesis, several models 

from the literature have been tested on the UK population and the England and Wales deprivation 

subgroups. A general framework of model fitting is applied for all the models being considered. The 

basic assumptions underlying the general framework are listed as follows: 

1) The force of mortality 𝜇𝑥,𝑡,𝑖 is constant between integer ages and calendar years for population 𝑖. 

Then 𝜇𝑥,𝑡,𝑖 = 𝑚𝑥,𝑡,𝑖, where  𝑚𝑥,𝑡,𝑖 is the central death rate at age x in year t for population 𝑖. 

2) 𝑞𝑥,𝑡,𝑖 = 1 − exp (−𝑚𝑥,𝑡,𝑖) where 𝑞𝑥,𝑡,𝑖 represents the probability that an individual aged x years old 

at time t from population i will die within a year. 

(The two assumptions above are often used when comparing models using the central death rate 𝑚𝑥,𝑡,𝑖 

and the one-year probability death rate 𝑞𝑥,𝑡,𝑖, for example, those in Cairns (2009) and Li et al (2015).) 

3) 𝐷𝑥,𝑡,𝑖~𝑃𝑜𝑖(𝐸𝑥,𝑡,𝑖, 𝑚𝑥,𝑡,𝑖) where 𝐷𝑥,𝑡,𝑖 represents the random number of deaths at age 𝑥 in year 𝑡 for 

population 𝑖 and 𝐸𝑥,𝑡,𝑖 represents the corresponding (known) exposure to risk. 

 

The Poisson distribution for modelling the number of deaths has been a common choice in the 

literature, such as Li (2013) and Li et al (2014). As mentioned by Li (2013), the Poisson assumption 

provides a rigorous statistical framework for mortality data analysis. The parameters in the model can 

then be estimated by maximum likelihood estimation. Model selection criteria such as the Akaike 

information criterion (AIC) or Bayesian information criterion (BIC) can be used to assess the goodness-

of-fit and the parsimony of the fitted model. 

 

The parameters of the models described below are estimated using the maximum likelihood method. 

The log likelihood function under the Poisson death count assumption is expressed as: 

𝑙 =  ∑ [𝑑𝑥,𝑡,𝑖 ln( 𝐸𝑥,𝑡,𝑖 �̂�𝑥,𝑡,𝑖𝑥,𝑡,𝑖 ) − 𝐸𝑥,𝑡,𝑖 �̂�𝑥,𝑡,𝑖 − ln( 𝑑𝑥,𝑡,𝑖)!]  

where  𝑑𝑥,𝑡,𝑖 is the actual number of deaths at age 𝑥 in year 𝑡 for population 𝑖, and �̂�𝑥,𝑡,𝑖 is the fitted 

central death rate based on the model applied. The parameters are updated repetitively using the 

Newton-Raphson method: 𝜃∗ = 𝜃 −
𝜕𝑙/𝜕𝜃

𝜕2𝑙/𝜕𝜃2
, where 𝑙 refers to the log likelihood and 𝜃∗ refers to the 

updated parameter. As it is possible for some models to encounter the identification problem2 , 

additional constraints are required for those models in order to produce a unique solution. 

                                                           
2 Identification problem exist when there is no unique solution for the parameter being estimated. 
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The temporal parameters are then modelled with specific time series processes, the details of which 

are provided in Section 5. When co-modelling these parameter time series between the UK population 

and the deprivation subgroup, there is a data constraint that the fitting periods of the two populations 

are not equal. One possible approximation is to take the year range 2001-2013 for the subgroup 

population and use the same range for the reference population when fitting the time series process.  

This approximate approach is adopted only for those models which involve modelling two distinct 

parameter time series jointly. 

 

Further modification for model (7) required in this study. Since the subpopulation’s data only cover a 

period of 13 years, it is impossible to fit a VARMA process with the exception for 𝑝 + 𝑞 = 1.  For the 

𝑝 + 𝑞 = 2 case, it requires 13 × 6 = 78 parameters to be estimated in the model, but the sample size 

is only 12 × 6 = 72 for the case when 𝑑 = 1. With the only choice being the VARMA(1,0) process and 

𝑑 = 1, the coefficient matrix is unstable due to the small sample size. An approximation method may 

be applied here: an AR(1) process is used for the first difference for each of the 6 time varying factors, 

while the error terms remain to be distributed as multivariate normal.  

 

For model(A1) and model (A2), the period covered by the reference population data is not equal to 

the period of the sub-population data. To fit these models, 13 years of reference population data from 

2001-2013 will be used instead, but then the corresponding results cannot be directly compared with 

those of the previous 11 models due to the different periods of reference data being tested. The fitting 

results for models (A1) & (A2) are shown in the Appendix. 
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3.4 Forecasting method 

In the literature, there are several methods for simulating future death rates. The simplest approach 

is to simulate the random error 휀𝑥,𝑡,𝑖 , which is normally distributed as specified above regarding the 

time series models. There is a main drawback for this method as it only considers the process error 

while omitting the parameter uncertainty from the model fitting. Li (2014) performed a comprehensive 

analysis in comparing several simulation strategies. One simulation method stated in the paper which 

also includes the parameter error is residuals bootstrapping, proposed by Koissi et al. (2006). In this 

bootstrapping process, the first step is to resample the deviance residuals 𝑟𝑥,𝑡,𝑖 with replacement. As 

the number of deaths 𝑑𝑥,𝑡,𝑖 follows a Poisson distribution, the next step is to apply the inverse formula 

to the resampled residuals to obtain the pseudo data sample of the number of deaths. Then the model 

parameters are estimated based on the pseudo data sample, the temporal parameters of which are 

projected over time incorporating the random error. 

 

Liu and Braun (2010) extended the residuals bootstrapping to the block residuals bootstrapping to 

cater for the serial correlations between the residuals within the population. In this block 

bootstrapping process, one first needs to split the residuals into overlapping blocks of equal sizes. Then 

random samples of the blocks, instead of individual residuals, are drawn with replacement. In this 

research, a block size of 5 (see Li and Haberman, 2015) is used to preserve the autocorrelations 

between the residuals in the population. Note that the deprivation subgroup data only span over 13 

years and so the block size cannot be too large. 

 

The block residuals bootstrapping used in this study need to be further modified, since the UK 

population and the deprivation subgroups are related demographically in some way. The relationship 

between the two populations would be left out if the block residuals bootstrapping is performed 

independently for each population. To preserve the association between the populations, the residuals 

blocks of the two populations are matched in pairs for each age-time cell before the resampling. In this 

way, the block residuals bootstrapping can be first carried out for the UK population, then the matching 

blocks of the residuals of the deprivation subgroup are selected accordingly. 
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Chapter 4 

 

Fitting results and performance 

 

4.1. Model Fitting: Parameter Estimation 

The fitting results for the 11 models are shown in this section. All computations are conducted by using 

the R statistical software package (R Core Team, 2017). The parameter estimates of the models are 

plotted in Figures 4.1.1 to 4.1.8.  

 

For the models with associated mortality indices (models (1) - (7)), the patterns of the parameter 

estimates of the deprivation subgroups are similar to those of the UK population, except for the 

sensitivity measure 𝛽𝑥,𝑖 for models (1) – (3) and the cohort effect for models (5) & (6). Only this group 

of models allows for a direct comparison between the UK population and individual deprivation 

subgroups since the single population model is fitted to each population. 

 

In relation to the deprivation subgroups in England under models (1) – (6), the base mortality rate 𝛼𝑥,2 

for the more deprived subgroups is higher compared to the less deprived subgroups. As age increases, 

the gap in the base mortality rates between the quintiles narrows, which is consistent with the 

preliminary analysis in Chapter 3. The steeper slope of the period effect 𝜅𝑡,2 for the less deprived 

subgroups may imply that they have larger mortality improvements compared to the more deprived 

subgroups, though strictly speaking, the mortality indices of different model fits cannot be compared 

directly. Also, the parameter 𝛽𝑥,2  under models (1) - (3) has similar patterns across all deprived 

subgroups. The common sensitivity measure 𝛽𝑥 under model (4) is highly similar across all deprived 

subgroups as the larger data size of the UK population dominates the parameter estimation. The plots 

of 𝜄ℎ,2 under models (5) & (6) show a similar profile of cohort effect across all deprived subgroups with 

a spike around cohort year 1920. 
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Under model (7), 𝜅𝑡,2
(1)

 distinguishes the base mortality level for each deprivation subgroups and 

reflects the overall mortality decline over time. The slope parameter 𝜅𝑡,2
(2)

 experiences a slightly upward 

trend for all quintiles. The quadratic age term used to describe the curvature of the logit rates across 

age, 𝜅𝑡,2
(3)

, also has an upward trend for all quintiles. 

 

For model (8), up to five age and period factors are fitted to the log ratio of the death rate. The BIC 

values show that only one age and period factor are needed since this choice leads to the lowest BIC 

values as shown in Table 4.1.1. The age factor 𝜓𝑥(1) exhibits a downward slope for all deprivation 

subgroups because the mortality gap decreases as age increases. Additionally, it is worth noticing that 

the magnitude for the age factor in the third most deprived quintile is different from other quintiles 

since the corresponding period factor values are closer to zero. The slope for the period factor 𝛾𝑡(1) 

is similar in all but the most deprived quintile. These results show that the UK population experiences 

better mortality improvement compared to the most deprived quintile. 

 

For model (9), the age factor 𝑎𝑥  shows the age effect of the log ratio between the deprivation 

subgroup and the UK population. The gap in this age effect between different quintiles narrows for the 

older lives. For the most deprived quintile, the period factor 𝑘𝑡 moves in the opposite direction to 

those of the other quintiles to offset the higher mortality improvement in the overall UK population. 

Note that the scale of the sensitivity measure 𝑏𝑥 used in the fourth most deprived quintile is different 

to those of the other quintiles because the corresponding value of 𝑘𝑡 is very close to zero. 

 

For model (10), 𝜅𝑡,2
(1)

 represents the base level of difference in logit mortality between the UK 

population and the deprivation subgroups. Unlike other quintiles, the most deprived quintile depicts 

an upward trend of 𝜅𝑡,2
(1)

 because of similar arguments as for models (8) and (9). The slope of  𝜅𝑡,2
(2)

 

fluctuates around its own level for all quintiles. 

 

Under model (11), 𝛼𝑥,2  represents the base level of difference in logit mortality between the UK 

population and the deprivation subgroup. The gap in the differences between the quintiles narrows at 

the older ages. Moreover, 𝜅𝑡,2 of the most deprived quintile moves in the opposite direction compared 

to those of the other quintiles. 
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Looking at the parameter estimates of the UK population, there is one interesting finding on the cohort 

effect for models (5), (6), and (9) to (11). While the general trends may differ among the models, they 

all exhibit a spike around the cohort year 1920. The cohort effect will be discussed in more detail in 

the next section.   
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Model (1)-(3): 

 

 

 

Figure 4.1.1: Parameter estimates of the Lee-Carter model for UK population (left) and the deprivation subgroups in England (right). 
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Model (4): 

 

 

 

Figure 4.1.2: Parameter estimates of the Lee-Carter model with common sensitivity measure for UK population (left) and the deprivation 

subgroups in England (right). 
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Model (5) & (6): 

 

 

 

Figure 4.1.3: Parameter estimates of the age-period-cohort model for UK population (left) and the deprivation subgroups in England (right). 
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Model (7): 

 

 

 

Figure 4.1.4: Parameter estimates of the CBD M7 model for UK population (left) and the deprivation subgroups in England (right). 
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Model (8): 

 

Table 4.1.1 BIC values for using different numbers of age and period factors for the ratio of mortality 

rates between the deprivation subgroup in England and UK population under model (8). 

Number 
of factors 

Most 
deprived 
quintile 

2nd most 
deprived 
quintile 

3rd most 
deprived 
quintile 

4th most 
deprived 
quintile 

Least 
deprived 
quintile 

1 4517 4354 4252 4283 4193 

2 4611 4467 4395 4401 4325 

3 4729 4614 4537 4543 4477 

4 4875 4769 4731 4702 4654 

5 5042 4948 4914 4891 4846 

 

 

 

Figure 4.1.5: Parameter estimates of the CBD M5 model for UK population (top) and the age and period factor estimates for the ratio of 

mortality rates between the deprivation subgroup in England and UK population (bottom). 
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Model (9): 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.6a: Parameter estimates of the Lee-Carter model with the cohort effect for UK population  
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Figure 4.1.6b: The age and period factor estimates for the log ratio of mortality rates between the deprivation subgroup in England and UK 

population. 
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Model (10): 

 

 

 

Figure 4.1.7: Parameter estimates of the CBD M7 model for UK population (top and middle) and parameter estimates of CBD M5 model for 

the difference between the UK population and deprivation subgroup in England (bottom). 
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Model (11): 

 

 

 

Figure 4.1.8: Parameter estimates of the CAE + cohort model for UK population (top and middle) and parameter estimates of CAE model for 

the difference between the UK population and deprivation subgroup in England (bottom). 
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4.2 Model Fitting performance 

4.2.1 Bayesian Information Criterion 

The fitting performance for the 11 models is discussed in this section. As mentioned previously in 

Chapter 3, the BIC (Bayesian Information Criterion) can be used to access both the goodness-of-fit and 

the parsimony of the fitted model. A parsimonious model is a model that does not use too many 

parameters whilst still explaining an adequate level of the data, since the log-likelihood will always 

increase with more estimated parameters. To overcome the problem of overfitting, a common 

approach is to penalise the use of excessive model parameters. Note that there is a larger penalty for 

including an extra parameter under the BIC than the AIC (Akaike Information Criterion). The BIC is 

calculated as: 

BIC = −2𝑙 + 𝑛𝑝 ln(𝑛𝑑) 

where 𝑙 is the log-likelihood, 𝑛𝑝 is the number of effective parameters to be estimated for the model, 

and 𝑛𝑑 is the number of observations.   

 

Table 4.2.1 BIC values for UK & deprivation subgroups in England 

BIC 
Most deprived 
quintile 

2nd most 
deprived 
quintile 

3rd most 
deprived 
quintile 

4th most 
deprived 
quintile 

Least deprived 
quintile 

(1) (2) (3) 22386 [7] 22249 [7] 22169 [7] 22199 [7] 22021 [7] 

(4) 22322 [6] 22156 [6] 22131 [6] 22156 [6] 22100 [6] 

(5) (6) 18935 [4] 18887 [4] 18829 [4] 18800 [4] 18791 [4] 

(7) 20637 [5] 20475 [5] 20416 [5] 20446 [5] 20267 [5] 

(8) 23389 [8] 23226 [8] 23124 [8] 23155 [8] 23064 [8] 

(9) 18232 [3] 18080 [3] 17974 [3] 17975 [3] 17899 [3] 

(10) 17700 [1] 17505 [1] 17466 [1] 17483 [1] 17466 [1] 

(11) 17921 [2] 17703 [2] 17576 [2] 17607 [2] 17520 [2] 

 

The BIC values of the fitted models are shown in Table 4.2.1. The numbers in the square brackets rank 

the BIC values from the smallest to largest. The M7-M5 model (model (10)) has the lowest BIC value 

across all quintiles. It is worth noticing that the models that incorporate the cohort effect (i.e. models 

(5), (6), (9), (10), and (11)) produce the four smallest BIC values for all quintiles.  
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4.2.2 Mean Absolute Percentage Error 

Another goodness-of-fit measure is the mean absolute percentage error (MAPE), which is used to 

examine the fitting accuracy of death rates. The MAPE is computed as: 

1

𝑛𝑑
∑
ln �̂�𝑥,𝑡,𝑖 − ln(𝑑𝑥,𝑡,𝑖/𝐸𝑥,𝑡,𝑖)

ln(𝑑𝑥,𝑡,𝑖/𝐸𝑥,𝑡,𝑖)𝑥,𝑡,𝑖

 

where  𝑛𝑑 represents the number of observations, 𝑑𝑥,𝑡,𝑖 is the actual number of deaths at age 𝑥 in year 

𝑡 for population 𝑖, 𝐸𝑥,𝑡,𝑖 is the corresponding exposed to risk, and �̂�𝑥,𝑡,𝑖 is the fitted central death rate. 

 

In Tables 4.2.2 to 4.2.6, the MAPE values of the log central death rate is shown for each quintile, where 

the MAPE values of the central death rate is shown in the bracket for comparison. All MAPE values of 

the log central death rates are small, indicating that all models have satisfactory model fitting. The 

same finding also holds true for the MAPE values of the central death rates. Similar to the BIC analysis 

above, the four models which allow for the cohort effect produce smaller MAPE values than the other 

models. The small differences in the MAPE values between the models that incorporate the cohort 

effect make it difficult to conclude which model provides the best fit due to the variations in the model 

rankings for different quintiles. 

 

Table 4.2.2 MAPE values for UK & most deprived quintile 

Model UK 
Most deprived 
quintile Total 

 
Rank 

(1) (2) (3) 0.76% (2.19%) 1.16% (2.97%) 0.87% (2.40%) [6] 

(4) 0.76% (2.18%) 1.31% (3.39%) 0.91% (2.52%) [7] 

(5) (6) 0.58% (1.51%) 0.91% (2.39%) 0.67% (1.75%) [3] 

(7) 0.60% (1.66%) 1.21% (3.12%) 0.77% (2.07%) [5] 

(8) 0.86% (2.46%) 1.15% (2.95%) 0.94% (2.60%) [8] 

(9) 0.52% (1.13%) 1.11% (2.84%) 0.68% (1.60%) [4] 

(10) 0.36% (0.96%) 1.22% (3.17%) 0.60% (1.55%) [1] 

(11) 0.38% (1.04%) 1.25% (3.28%) 0.62% (1.66%) [2] 
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Table 4.2.3 MAPE values for UK & second most deprived quintile 

Model UK 
2nd most deprived 
quintile Total 

 
Rank 

(1) (2) (3) 0.76% (2.19%) 1.06% (2.87%) 0.84% (2.37%) [6] 

(4) 0.76% (2.18%) 1.17% (3.22%) 0.87% (2.47%) [7] 

(5) (6) 0.58% (1.51%) 0.85% (2.43%) 0.65% (1.76%) [4] 

(7) 0.60% (1.66%) 1.09% (2.98%) 0.73% (2.03%) [5] 

(8) 0.86% (2.46%) 1.07% (2.88%) 0.92% (2.57%) [8] 

(9) 0.52% (1.13%) 0.99% (2.72%) 0.65% (1.57%) [3] 

(10) 0.36% (0.96%) 1.06% (2.86%) 0.55% (1.47%) [1] 

(11) 0.38% (1.04%) 1.11% (2.99%) 0.58% (1.58%) [2] 

 

Table 4.2.4 MAPE values for UK & third most deprived quintile 

Model UK 
3rd most deprived 
quintile Total 

 
Rank 

(1) (2) (3) 0.76% (2.19%) 0.91% (2.63%) 0.80% (2.31%) [6] 

(4) 0.76% (2.18%) 1.07% (3.18%) 0.84% (2.46%) [7] 

(5) (6) 0.58% (1.51%) 0.74% (2.21%) 0.62% (1.70%) [4] 

(7) 0.60% (1.66%) 0.98% (2.89%) 0.70% (2.00%) [5] 

(8) 0.86% (2.46%) 0.92% (2.70%) 0.87% (2.52%) [8] 

(9) 0.52% (1.13%) 0.82% (2.45%) 0.60% (1.49%) [3] 

(10) 0.36% (0.96%) 0.99% (2.95%) 0.53% (1.49%) [2] 

(11) 0.38% (1.04%) 0.90% (2.69%) 0.52% (1.49%) [1] 

 

Table 4.2.5 MAPE values for UK & fourth most deprived quintile 

Model UK 

4th most 
deprived 
quintile Total 

 
Rank 

(1) (2) (3) 0.76% (2.19%) 0.99% (3.03%) 0.82% (2.42%) [6] 

(4) 0.76% (2.18%) 1.17% (3.58%) 0.87% (2.57%) [7] 

(5) (6) 0.58% (1.51%) 0.73% (2.34%) 0.62% (1.74%) [3] 

(7) 0.60% (1.66%) 1.04% (3.18%) 0.72% (2.08%) [5] 

(8) 0.86% (2.46%) 0.97% (2.96%) 0.89% (2.60%) [8] 

(9) 0.52% (1.13%) 0.89% (2.64%) 0.62% (1.55%) [4] 

(10) 0.36% (0.96%) 1.01% (3.14%) 0.54% (1.55%) [2] 

(11) 0.38% (1.04%) 0.95% (2.96%) 0.54% (1.57%) [1] 
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Table 4.2.6 MAPE values for UK & least deprived quintile 

Model UK 
Least deprived 
quintile Total 

 
Rank 

(1) (2) (3) 0.76% (2.19%) 0.93% (2.85%) 0.81% (2.37%) [6] 

(4) 0.76% (2.18%) 1.12% (3.54%) 0.86% (2.56%) [7] 

(5) (6) 0.58% (1.51%) 0.80% (2.58%) 0.64% (1.81%) [4] 

(7) 0.60% (1.66%) 0.98% (3.07%) 0.70% (2.05%) [5] 

(8) 0.86% (2.46%) 0.99% (3.09%) 0.90% (2.63%) [8] 

(9) 0.52% (1.13%) 0.92% (2.88%) 0.63% (1.61%) [3] 

(10) 0.36% (0.96%) 1.09% (3.46%) 0.56% (1.64%) [2] 

(11) 0.38% (1.04%) 0.97% (3.10%) 0.54% (1.61%) [1] 
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4.2.3 Residual Plots 

The last goodness-of-fit test used to compare the models in this study is the examination of the 

standardised deviance residuals (the residual calculations are detailed in the Appendix). Figures 4.2.1 

to 4.2.8 demonstrate the standardised deviance residuals for the UK population and deprivation 

subgroups in England. There are no clear systematic patterns in the residual plots against age and 

calendar year. However, there is a clear systematic pattern in the residual plots against the cohort year 

for the UK population under those models without the cohort effect. This finding is consistent with the 

residual cohort effect found in the English and Wales population by Villegas and Haberman (2014), 

suggesting the importance of allowing for a cohort parameter in the model structure. The spike in 1920 

was caused by the influenza pandemic during 1918-1919. Additionally, Willets (2004) has shown that 

the UK cohorts between 1925 and 1945 have experienced a rapid improvement in mortality. There are 

no systematic patterns in the residual plots against the cohort year for the deprivation subgroups as 

the data period is shorter and there are not many cohorts available before year 1945. 
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Figure 4.2.1: Standardised deviance residuals for the Lee-Carter model, UK and the deprivation subgroups. The top two rows are plotted 

against age, middle two rows are plotted against calendar year, and bottom two rows are plotted against cohort year. 
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Figure 4.2.2: Standardised deviance residuals for the Lee-Carter (common sensitivity) model, UK and the deprivation subgroups. The top two 

rows are plotted against age, middle two rows are plotted against calendar year, and bottom two rows are plotted against cohort year. 
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Figure 4.2.3: Standardised deviance residuals for the age-period-cohort model, UK and the deprivation subgroups. The top two rows are 

plotted against age, middle two rows are plotted against calendar year, and bottom two rows are plotted against cohort year. 
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Figure 4.2.4: Standardised deviance residuals for the CBD model, UK and the deprivation subgroups. The top two rows are plotted against 

age, middle two rows are plotted against calendar year, and bottom two rows are plotted against cohort year. 
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Figure 4.2.5: Standardised deviance residuals for the CBD model (reference) and age and period factor model (book). The top two rows are 

plotted against age, middle two rows are plotted against calendar year, and bottom two rows are plotted against cohort year. 
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Figure 4.2.6: Standardised deviance residuals for the Lee-Carter model with cohort (reference) age and period factor model (book). The top 

two rows are plotted against age, middle two rows are plotted against calendar year, and bottom two rows are plotted against cohort year. 
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Figure 4.2.7: Standardised deviance residuals for the CBD M7 model (reference) and CBD M5 model (book). The top two rows are plotted 

against age, middle two rows are plotted against calendar year, and bottom two rows are plotted against cohort year. 
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Figure 4.2.8: Standardised deviance residuals for the CAE + cohort model (reference) and CAE model (book). The top two rows are plotted 

against age, middle two rows are plotted against calendar year, and bottom two rows are plotted against cohort year. 
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Chapter 5 

 

Model Projection 

 

5.1 Forecasting future mortality rates 

It is important to determine the projection period prior to conducting any prediction of future 

mortality rates. There is a usual convention that the maximum length of the projection period should 

be aligned to the fitting period (Booth et al., 2002). The fitting period of the UK population is 34 years 

from 1980 to 2013, and it is 13 years for the deprivation subgroups from 2001 to 2013. According to 

this convention, it would be plausible to use 13 years as the projection period for the deprivation 

subgroups. However, such a short projection period would limit further analysis from the mortality 

projections such as predicting long term survival probabilities for insurance applications and pension 

valuations. Since the UK population dataset has a larger spectrum of data spanning over 34 years, as 

well as having larger exposures compared to the deprivation quintiles, the projection period is chosen 

to be 27 years from 2014 to 2040.  

 

The fitting performance in Chapter 4 indicates that the mortality improvements of the most deprived 

quintile differ from the rest, while the other quintiles exhibit similar trends among themselves. Chapter 

3 also notes that the mortality rates of the UK population hover around those of the three middle 

deprived quintiles. Accordingly, the remainder of this study will focus on the UK population, as well as 

the most and least deprived quintile in England3. 

 

                                                           
3 The results for the second, third, and fourth most deprived quintiles are available upon request. 



51 
 

The time varying factors of the 11 models are projected from 2014 to 2040 under the forecasting 

method specified in Chapter 3. As the fitting processes differ for each model4, the time varying factors 

and the cohort factors cannot be used directly to compare the forecasting performances of the models. 

The future mortality death rates are then used for the comparison as they can be projected through 

the specifications in Chapter 3. 

 

Figures 5.1.1 to 5.1.11 show the 95% prediction intervals of the simulated 1-year death rate 𝑞65,𝑡 and 

𝑞75,𝑡  over time under each model. The prediction intervals of 𝑞85,𝑡 are only displayed in the Appendix 

since they have similar patterns to 𝑞75. The width of the prediction intervals of those models with the 

cohort effect (i.e models (5), (6), (9), (10), (11)) can be broadly separated into two periods. The period 

during which the future death rates require projected cohort values will have wider prediction intervals 

than otherwise. For example, from year 2019 onwards, the prediction intervals of 𝑞65,𝑡 are much wider 

than in previous years (2014-2018). Thus, the prediction intervals of these models are generally wider 

when compared to those without the cohort effect. 

 

The prediction intervals of the deprivation subgroups under models (8) to (11) are generally wider than 

those under models (1) to (7), since under the former the projection of the death rates for the 

deprivation subgroups follows only after the projection of the death rates for the UK population. The 

prediction intervals under model (11) are much wider compared to the other models. However, it does 

not imply that the model itself is inadequate, as the prediction intervals are heavily dependent on the 

choice of time series model. A further discussion of this issue can be found in Chapter 6. 

 

It is difficult to determine which model is better simply from judging the width of the prediction 

intervals, as they incorporate different levels of uncertainty, which can be considered as a part of 

model risk. It is also difficult to compare the accuracy of the central estimates directly between the 

models since there is no available data. In the next section, an out-of-sample analysis is conducted as 

a quantitative measure to compare the forecasting performances of the models. 

  

                                                           
4 Models (1) to (3) have the same fitting procedure for the death rates but not for the time varying factors. The situation is 
the same for models (5) and (6). 
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Model (1) 

 

Figure 5.1.1: Projected 95% prediction intervals of 𝑞65,𝑡 and 𝑞75,𝑡 (dotted line) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England (right) under model (1). 

Model (2) 

 

Figure 5.1.2: Projected 95% prediction intervals of 𝑞65,𝑡 and 𝑞75,𝑡 (dotted line) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England (right) under model (2). 
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Model (3) 

 

Figure 5.1.3: Projected 95% prediction intervals of 𝑞65,𝑡 and 𝑞75,𝑡 (dotted line) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England (right) under model (3). 

Model (4) 

 

Figure 5.1.4: Projected 95% prediction intervals of 𝑞65,𝑡 and 𝑞75,𝑡 (dotted line) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England (right) under model (4). 
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Model (5) 

 

Figure 5.1.5: Projected 95% prediction intervals of 𝑞65,𝑡 and 𝑞75,𝑡 (dotted line) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England (right) under model (5). 

Model (6) 

 

Figure 5.1.6: Projected 95% prediction intervals of 𝑞65,𝑡 and 𝑞75,𝑡 (dotted line) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England (right) under model (6). 
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Model (7) 

 

Figure 5.1.7: Projected 95% prediction intervals of 𝑞65,𝑡 and 𝑞75,𝑡 (dotted line) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England (right) under model (7). 

Model (8) 

 

Figure 5.1.8: Projected 95% prediction intervals of 𝑞65,𝑡 and 𝑞75,𝑡 (dotted line) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England (right) under model (8). 
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Model (9) 

 

Figure 5.1.9: Projected 95% prediction intervals of 𝑞65,𝑡 and 𝑞75,𝑡 (dotted line) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England (right) under model (9). 

Model (10) 

 

Figure 5.1.10: Projected 95% prediction intervals of 𝑞65,𝑡 and 𝑞75,𝑡 (dotted line) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England (right) under model (10). 
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Model (11) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.11: Projected 95% prediction intervals of 𝑞65,𝑡 and 𝑞75,𝑡 (dotted line) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England (right) under model (11). 



58 
 

5.2 Out-of-sample analysis 

The out-of-sample test, otherwise known as backtesting, is conducted for the 11 models in the study 

for the comparison of forecast performances. The sample period is divided into two parts: in-sample 

and out-of-sample. The models are fitted to the in-sample period and then projected for the out-of-

sample period. Afterwards, the MAPE (mean absolute percentage error) is calculated again similarly 

as in Chapter 4, where the fitted log central death rate is replaced by the projected log central death 

rate. To be consistent with Chapter 4, the comparison of the central death rates is also given in brackets 

in Tables 5.2.1 to 5.2.4.  

 

For the UK population, 1980 to 2008 is taken as the in-sample period, and for the deprivation 

subgroups in England, 2001 to 2008 is set as the in-sample period. Then the out-of-sample period is 

2009 to 2013. Tables 5.2.1 to 5.2.2 provide the MAPE values for the most deprived quintile and the 

least deprived quintile5. The age-period-cohort models (models (5) and (6)) produce the lowest MAPE 

values. The absence of model (7) is explained in the next paragraph.  

 

The prediction intervals are displayed in Figures 5.2.1 to 5.2.10 to examine whether the actual death 

rates of 𝑞75,𝑡 lie within the corresponding prediction intervals under different models. For most of the 

models, the actual death rates are within the 95% prediction intervals, which indicate adequate 

forecasting performances from all models. Note that the results from model (7) are not provided in 

this section as the estimated covariance matrix for the time varying factors is possibly unstable6 due 

to the limited in-sample period for the residuals bootstrapping, so the MAPE value for model (7) is not 

shown.  

 

In addition, an interval forecast accuracy test has been conducted as a quantitative measure to the 

proportion of the actual death rates for all ages that lies within the corresponding prediction intervals 

under different models. The figures are shown in Table 5.2.3 to 5.3.4. The tables show all models 

provide sufficient forecasting performances. 

 

Another out-of-sample analysis is conducted using another split for the sample period, in which the 

UK population has 1980 to 2010 as the in-sample period and the deprivation sub groups in England 

                                                           
5 The other quintiles are shown in the Appendix. 
6  The covariance matrix is unstable when it is not positive definite, therefore it is unable to compute the Cholesky 

decomposition which is needed to simulate the vector error terms. 
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have 2001 to 2010 as the in-sample period. The out-of-sample period is then 2011 to 2013. Tables 

5.2.5 to 5.2.6 provide the MAPE values for the most and least deprived quintiles. Most MAPE values 

drop for the shorter projection period, except for model (11), as a longer in-sample period generally 

increases the accuracy in projection. Interestingly, the M7M5 model in model (10) produces the lowest 

MAPE value, which differs from the previous split. The 95% prediction intervals are plotted in Figures 

5.2.11 to 5.2.21 and the interval forecast accuracy test have been conducted for this split and the 

results are shown in Table 5.2.7 to 5.2.8. Again, it can be seen that most of the prediction intervals 

capture the actual death rates.  

 

There are some inconsistent results in the ranking of the MAPE values and the interval forecast 

accuracy between the two different splits. One might argue that the in-sample period is too short for 

the first split. Only 8 years are used as the in-sample period for the deprivation subgroup population 

to project the death rates for the next 5 years. Another possible reason is that due to the projected log 

death rates being fairly close between different models, actually all 11 models deliver a satisfactory 

forecasting performance based on the MAPE analysis.  

 

Table 5.2.1 MAPE values for the projected death rates (2009-2013) for UK & most deprived quintile. 

Model UK 
Most deprived 
quintile Total Rank 

(1) 1.27% (4.08%) 2.09% (6.22%) 1.68% (5.15%) [6] 

(2) 1.48% (4.48%) 2.07% (6.17%) 1.77% (5.33%) [7] 

(3) 1.23% (4.14%) 2.02% (5.80%) 1.63% (4.97%) [5] 

(4) 1.47% (4.46%) 2.42% (7.04%) 1.94% (5.75%) [10] 

(5) 1.01% (3.22%) 1.62% (4.74%) 1.32% (3.98%) [1] 

(6) 1.00% (3.17%) 1.65% (4.84%) 1.32% (4.01%) [2] 

(7) - - - - 

(8) 1.43% (4.85%) 2.19% (6.41%) 1.81% (5.63%) [8] 

(9) 1.33% (3.90%) 2.38% (7.05%) 1.86% (5.48%) [9] 

(10) 1.12% (3.24%) 2.12% (6.11%) 1.62% (4.67%) [4] 

(11) 1.32% (3.78%) 1.46% (3.95%) 1.39% (3.86%) [3] 
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Table 5.2.2 MAPE values for the projected death rates (2009-2013) for UK & least deprived quintile. 

Model UK 
Least deprived 
quintile Total  

(1) 1.27% (4.08%) 1.63% (4.97%) 1.45% (4.52%) [4] 

(2) 1.48% (4.48%) 1.47% (4.56%) 1.47% (4.52%) [5] 

(3) 1.24% (4.18%) 1.80% (5.46%) 1.52% (4.82%) [6] 

(4) 1.46% (4.43%) 1.60% (5.29%) 1.53% (4.86%) [7] 

(5) 1.01% (3.22%) 1.24% (4.38%) 1.13% (3.80%) [1] 

(6) 1.00% (3.17%) 1.31% (4.70%) 1.15% (3.94%) [2] 

(7) - - - - 

(8) 1.43% (4.85%) 1.89% (6.69%) 1.66% (5.77%) [9] 

(9) 1.33% (3.90%) 2.02% (6.22%) 1.68% (5.06%) [10] 

(10) 1.12% (3.24%) 1.63% (5.58%) 1.37% (4.41%) [3] 

(11) 1.32% (3.78%) 1.61% (5.13%) 1.61% (4.46%) [8] 

 

 

Table 5.2.3 Interval forecast accuracy for the projected death rates (2009-2013) for UK & most 

deprived quintile. 

Model UK 
Least deprived 
quintile Total Rank 

(1) 72% 83% 78% [8] 

(2) 74% 83% 78% [7] 

(3) 88% 93% 90% [2] 

(4) 74% 77% 75% [10] 

(5) 93% 81% 87% [4] 

(6) 93% 81% 87% [4] 

(7) - - - - 

(8) 78% 91% 84% [6] 

(9) 70% 82% 76% [9] 

(10) 95% 95% 95% [1] 

(11) 89% 89% 89% [3] 
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Table 5.2.4 Interval forecast accuracy for the projected death rates (2009-2013) for UK & least 

deprived quintile. 

Model UK 
Least deprived 
quintile Total Rank 

(1) 73% 85% 79% [8] 

(2) 74% 89% 82% [6] 

(3) 82% 89% 86% [5] 

(4) 73% 71% 72% [10] 

(5) 93% 83% 88% [2] 

(6) 93% 83% 88% [2] 

(7) - - - - 

(8) 78% 78% 78% [9] 

(9) 70% 91% 81% [7] 

(10) 95% 85% 90% [1] 

(11) 89% 83% 86% [4] 
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Projection period 2009-2013 

Model (1) 

 

Figure 5.2.1: Simulated prediction intervals and actual 𝑞75,𝑡  (2009-2013) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England under models (1). 

Model (2) 

 

Figure 5.2.2: Simulated prediction intervals and actual 𝑞75,𝑡  (2009-2013) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England under models (2). 

Model (3) 

 

Figure 5.2.3 Simulated prediction intervals and actual 𝑞75,𝑡   (2009-2013) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England under models (3). 
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Model (4) 

 

Figure 5.2.4 Simulated prediction intervals and actual 𝑞75,𝑡   (2009-2013) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England under models (4). 

Model (5) 

 

Figure 5.2.5: Simulated prediction intervals and actual 𝑞75,𝑡  (2009-2013) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England under models (5). 

Model (6) 

 

Figure 5.2.6: Simulated prediction intervals and actual 𝑞75,𝑡  (2009-2013) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England under models (6). 
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Model (8) 

 

Figure 5.2.7: Simulated prediction intervals and actual 𝑞75,𝑡  (2009-2013) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England under models (8). 

Model (9) 

 

 

Figure 5.2.8: Simulated prediction intervals and actual 𝑞75,𝑡  (2009-2013) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England under models (9). 

Model (10) 

 

Figure 5.2.9: Simulated prediction intervals and actual 𝑞75,𝑡  (2009-2013) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England under models (10). 
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Model (11) 

 

Figure 5.2.10: Simulated prediction intervals and actual 𝑞75,𝑡  (2009-2013) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England under models (11). 
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Table 5.2.5 MAPE values for the projected death rates (2011-2013) for UK & most deprived quintile. 

Model UK 
Most deprived 
quintile Total RANK 

(1) 1.13% (3.92%) 1.51% (4.09%) 1.32% (4.01%) [8] 

(2) 1.02% (3.46%) 1.38% (3.95%) 1.20% (3.70%) [5] 

(3) 1.15% (4.00%) 1.48% (4.12%) 1.32% (4.06%) [9] 

(4) 1.01% (3.43%) 1.38% (3.88%) 1.19% (3.65%) [4] 

(5) 1.14% (3.21%) 1.39% (3.73%) 1.27% (3.47%) [7] 

(6) 1.14% (3.20%) 1.38% (3.68%) 1.26% (3.44%) [6] 

(7) 1.03% (3.09%) 1.32% (3.50%) 1.17% (3.30%) [3] 

(8) 1.41% (4.42%) 1.94% (4.87%) 1.68% (4.64%) [10] 

(9) 0.73% (2.22%) 1.40% (4.05%) 1.07% (3.13%) [2] 

(10) 0.63% (1.96%) 1.33% (3.57%) 0.98% (2.77%) [1] 

(11) 1.65% (4.61%) 2.33% (6.07%) 1.99% (5.34%) [11] 

 

Table 5.2.6 MAPE values for the projected death rates (2011-2013) for UK & most deprived quintile. 

Model UK 
Least deprived 
quintile Total RANK 

(1) 1.13% (3.92%) 1.24% (4.33%) 1.18% (4.13%) [8] 

(2) 1.02% (3.46%) 1.14% (4.00%) 1.08% (3.73%) [3] 

(3) 1.09% (3.62%) 1.18% (4.13%) 1.13% (3.88%) [7] 

(4) 1.01% (3.41%) 1.45% (4.91%) 1.23% (4.16%) [9] 

(5) 1.14% (3.21%) 1.11% (4.15%) 1.13% (3.68%) [6] 

(6) 1.14% (3.20%) 1.09% (4.02%) 1.11% (3.61%) [5] 

(7) 1.03% (3.09%) 1.14% (3.90%) 1.09% (3.50%) [4] 

(8) 1.41% (4.42%) 1.56% (5.57%) 1.49% (4.99%) [10] 

(9) 0.73% (2.22%) 1.42% (4.69%) 1.07% (3.46%) [2] 

(10) 0.63% (1.96%) 1.29% (4.57%) 0.96% (3.27%) [1] 

(11) 1.65% (4.61%) 1.65% (5.46%) 1.65% (5.04%) [11] 
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Table 5.2.7 Interval forecast accuracy for the projected death rates (2011-2013) for UK & most 

deprived quintile. 

Model UK 
Least deprived 
quintile Total Rank 

(1) 69% 89% 79% [10] 

(2) 82% 81% 82% [8] 

(3) 71% 88% 79% [9] 

(4) 82% 83% 83% [7] 

(5) 83% 88% 86% [2] 

(6) 83% 88% 86% [2] 

(7) 78% 91% 84% [4] 

(8) 79% 90% 84% [4] 

(9) 88% 79% 83% [6] 

(10) 98% 93% 96% [1] 

(11) 69% 64% 67% [11] 

 

Table 5.2.8 Interval forecast accuracy for the projected death rates (2011-2013) for UK & least 

deprived quintile. 

Model UK 
Least deprived 
quintile Total Rank 

(1) 69% 78% 73% [10] 

(2) 82% 84% 83% [3] 

(3) 74% 79% 77% [8] 

(4) 82% 70% 76% [9] 

(5) 83% 82% 83% [4] 

(6) 83% 81% 82% [5] 

(7) 79% 80% 79% [7] 

(8) 78% 83% 81% [6] 

(9) 88% 83% 86% [2] 

(10) 98% 79% 88% [1] 

(11) 71% 70% 71% [11] 
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Projection period 2011-2013 

Model (1) 

 

Figure 5.2.11: Simulated prediction intervals and actual 𝑞75,𝑡  (2011-2013) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England under models (1). 

Model (2) 

 

Figure 5.2.12: Simulated prediction intervals and actual 𝑞75,𝑡  (2011-2013) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England under models (2). 

Model (3) 

 

Figure 5.2.13: Simulated prediction intervals and actual 𝑞75,𝑡  (2011-2013) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England under models (3). 
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Model (4) 

 

Figure 5.2.14: Simulated prediction intervals and actual 𝑞75,𝑡  (2011-2013) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England under models (4). 

Model (5) 

 

Figure 5.2.15: Simulated prediction intervals and actual 𝑞75,𝑡  (2011-2013) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England under models (5). 

Model (6) 

 

Figure 5.2.16: Simulated prediction intervals and actual 𝑞75,𝑡  (2011-2013) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England under models (6). 
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Model (7) 

 

Figure 5.2.17: Simulated prediction intervals and actual 𝑞75,𝑡  (2011-2013) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England under models (7). 

Model (8) 

 

Figure 5.2.18: Simulated prediction intervals and actual 𝑞75,𝑡  (2011-2013) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England under models (8). 

Model (9) 

 

Figure 5.2.19: Simulated prediction intervals and actual 𝑞75,𝑡  (2011-2013) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England under models (9). 
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Model (10) 

 

Figure 5.2.20: Simulated prediction intervals and actual 𝑞75,𝑡  (2011-2013) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England under models (10). 

Model (11) 

 

 

Figure 5.2.21: Simulated prediction intervals and actual 𝑞75,𝑡  (2011-2013) for the UK population (left), most deprived quintile in England 

(middle), and least deprived quintile in England under models (21). 
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5.3 A proxy hedge for the survival probabilities 

In this section, a simple survival index hedge is used as a proxy to examine the hedging effectives under 

the multi-population models. As the annuity values are dependent mainly on the survival probabilities, 

further assumptions such as the interest rate dynamics are not considered here. The hedging 

effectiveness can be calculated in terms of variance reduction7 and it is defined as: 

1 −
Var ( 𝑝𝑥,2014

(𝐵)
− 𝑝𝑥,2014

(𝑅)
𝑠
 

𝑠
 )

Var ( 𝑝𝑥,2014
(𝐵)

𝑠
 )

 

where  𝑝𝑥,2014
(𝑖)

𝑠
  refers to the probability that a person aged exactly 𝑥 in year 2014 will survive to age 

(𝑥 + 𝑠), (𝐵) in the superscript refers to the book population (the deprivation subgroups), and (𝑅) in 

the superscript refers to the reference population (UK population). Year 2014 is chosen to be the 

starting year as it is the first year in the projection period. The survival probability 𝑝𝑥,2014
(𝑖)

𝑠
  is calculated 

on a cohort basis: 

𝑝𝑥,2014
 

𝑠
 = (1 − 𝑞𝑥,2014)(1 − 𝑞𝑥+1,2015)… (1 − 𝑞𝑥+𝑠−1,2014+𝑠−1) 

where 𝑞𝑥,𝑡 represents the probability that an individual aged x years old at time t will die within a year. 

For convenience in notation,  𝑝𝑥
(𝑖)

𝑠
 = 𝑝𝑥,2014

(𝑖)
𝑠
  will be used from now on.  

 

Seven different survival probabilities are examined in the study to cover a range of ages and duration, 

namely 𝑝60
 

10
 , 𝑝70

 
10
 , 𝑝80

 
10
 , 𝑝60

 
15
 , 𝑝70

 
15
 , 𝑝60

 
20
  and 𝑝60

 
20
 .  Models (1) and (10) are chosen for a visual 

comparison regarding the variance reduction. Figures 5.3.1 to 5.3.4 show the density plots of the 

simulated survival probabilities, where the y-axis refers to the density and x-axis refers to the simulated 

survival probabilities standardised by its mean. The black line refers to the unhedged book which is the 

simulated distribution of 𝑝𝑥
(𝐵)

𝑠
 , while the red line refers to the hedge book which is the simulated 

distribution of 𝑝𝑥
(𝐵)
− 𝑝𝑥

(𝑅)
𝑠
 

𝑠
 . As shown in the density plots, the distributions of the hedged book are 

usually narrower than the distributions of the unhedged book. The narrower the hedged distribution 

compared to the unhedged distribution, the more effective the hedge. The variance reduction 

calculated is given in Tables 5.3.1 to 5.3.28 for all models.  

Tables 5.3.1 and 5.3.2 show some interesting patterns regarding the hedging effectiveness on the 

survival probabilities for a longer duration and an older starting age. A longer duration usually results 

in better hedging since the majority of the models ensure that the projected mortality rates of the two 

                                                           
7 The detail of the proxy hedge can be found in the IFoA/LLMA Phase 1 Report (section 8.4) 
8 Tables 5.3.1 to 5.3.2 include the most and least deprived quintile. The other quintiles are shown in the Appendix. 
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populations converge at each age in the long term. Starting at an older age also results in better 

hedging performance, probably because the gap between the two populations reduces at older ages, 

as discussed in the previous sections.   

 

Figure 5.3.1 and Table 5.3.1 indicate that the hedging performance are similar across all ages and 

durations under the Lee Carter model with bivariate random walk with drift in model (1) for the most 

deprived quintile. Surprisingly, as shown in Figure 5.3.2 and in Table 5.3.2, only 6% is hedged for 𝑝60
 

10
 . 

The hedging effectiveness is not high because the time series process allows the two populations’ 

mortality levels to go into different directions, which would result in a low hedging performance. 

 

This argument is further supported by examining the hedging values under the Lee-Carter model with 

different time series structures in models (2) and (3). From the tables, the hedging effectiveness is 

similar between these two models since there is a connection between the time varying factors of the 

two populations, and so their mortality rates are more likely to move in the same direction, resulting 

in the smaller variance of the hedged book.  

 

Under model (4), the hedging values are even higher across all ages and durations compared to the 

previous three models, because the two populations have the common sensitivity measure alongside 

with the connection in the time varying factors.    

 

The age-period-cohort models (5) and (6) have a considerably low hedging performance for starting 

age 60, as the projected cohort values are required for the future mortality rates, while most or all the 

cohort values are known for the older ages. In Table 5.3.2, negative values indicate that the variance 

of the hedged book is even larger than the unhedged book. 

 

Model (7) has a poor performance in hedging due to the use of the approximation method stated in 

Chapter 3, in which the two populations are not linked.  

Models (10) and (11) have the similar issues with models (5) and (6). Survival probabilities of younger 

ages require the future projected cohort values but the drop-in performance is not as severe. Alongside 

with model (8), they follow the usual trend in hedging effectiveness according to age and duration. 
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Finally, model (9) shows a trend opposite to the general trend, since the log ratios of the death rates 

at older ages are closer to zero and the time varying factor for the ratio is chosen to follow a random 

walk with drift, so the mortality levels are less likely to move in the same direction.  

 

From the results, models (4), (8), (10), (11) provide a good hedging performance for the survival 

probabilities. Note that the choice of the time series model has a great impact on the hedge 

effectiveness. The results in this section will be combined with the results from the other sections for 

the conclusion about the model comparison in the last chapter. 

 

Table 5.3.1 Variance reduction of the survival probabilities for the most deprived quintile in England. 

Model 10p60 10p70 10p80 15p60 15p70 20p60 20p70 

(1) 46% 47% 43% 47% 49% 48% 45% 

(2) 87% 93% 69% 93% 92% 96% 74% 

(3) 79% 89% 58% 45% 75% 93% 70% 

(4) 84% 91% 94% 89% 96% 94% 95% 

(5) 39% 87% 94% 49% 93% 57% 96% 

(6) 45% 88% 94% 54% 94% 62% 96% 

(7) 28% 36% 57% 29% 39% 9% 55% 

(8) 55% 79% 93% 68% 90% 81% 94% 

(9) 56% 71% 69% 64% 63% 71% 70% 

(10) 71% 78% 90% 78% 88% 86% 92% 

(11) 85% 82% 86% 87% 88% 90% 92% 

 

Table 5.3.2 Variance reduction of the survival probabilities for the least deprived quintile in England 

Model 10p60 10p70 10p80 15p60 15p70 20p60 20p70 

(1) 6% 45% 48% 26% 49% 39% 49% 

(2) 64% 96% 88% 84% 97% 95% 91% 

(3) 66% 96% 86% 84% 96% 94% 90% 

(4) 66% 87% 94% 80% 95% 90% 98% 

(5) -14% 61% 72% 12% 74% 34% 81% 

(6) -12% 63% 73% 16% 75% 37% 81% 

(7) -19% 41% 28% 3% 47% 9% 28% 

(8) 63% 88% 99% 79% 98% 91% 99% 

(9) 64% 48% 14% 70% 41% 62% 21% 

(10) 70% 90% 97% 84% 97% 93% 98% 

(11) 76% 91% 96% 85% 97% 92% 99% 
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Figure 5.3.1 Simulated densities of 𝑝𝑥
 

𝑡
  for the most deprived quintile in model (1) where the red line represents the hedged book and the 

black line represents the unhedged book. 
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Figure 5.3.2 Simulated densities of 𝑝𝑥
 

𝑡
  for the least deprived quintile in model (1) where the red line represents the hedged book and the 

black line represents the unhedged book. 
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Figure 5.3.3 Simulated densities of 𝑝𝑥
 

𝑡
  for the most deprived quintile in model (10) where the red line represents the hedged book and the 

black line represents the unhedged book. 
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Figure 5.3.4 Simulated densities of 𝑝𝑥
 

𝑡
  for the least deprived quintile in model (10) where the red line represents the hedged book and the 

black line represents the unhedged book. 
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Chapter 6  

 

Concluding remarks 

This study has studied 11 multi-population models in the literature and compared their fitting, 

forecasting performances, and the implied hedging effectiveness. It can be seen from the fitting results 

that the models with a cohort effect are more desirable for the UK population with a lower BIC, lower 

MAPE values for the fitted death rates, and no systematic patterns in the residuals plotted against the 

cohort. The forecasting results show that all models are adequate based on the MAPE for the central 

estimates. For the hedging effectiveness, models (4), (8), (10), and (11) provide a consistent hedging 

effectiveness across the age and duration. Looking at these results, as a whole, the M7-M5 Model and 

CAE + Cohort model outperform the others. This conclusion is also consistent with the recent study 

done by Villegas et al (2017). 

 

There is one potential issue regarding the MAPE values for the central estimates. The measure does 

not clearly distinguish the prediction accuracy between the models because of the limited data period 

available for the deprivation subgroups. One possible way to address this is to combine the recent 

deprivation subgroups data with an older dataset and conduct the analysis again. Another issue is that 

the choice of time series model has an important impact on the prediction intervals and hedging 

effectiveness. Using different time series models for the same fitting model produces a variety of 

results as shown in Chapter 5 regarding the Lee-Carter model. The same procedure can be extended 

to all fitting models by testing different time series models. For further research, a more extensive 

analysis on the hedging performance can be carried out by considering different mortality instruments 

and interest rate dynamics in addition to the models discussed in this study.   
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Appendix 

 

Standardized deviance residuals 

The standardized deviance residuals are defined similarly as Li (2013) and Villegas and Haberman 

(2014) 

𝑟𝑥,𝑡,𝑖 = 𝑠𝑖𝑔𝑛(𝑑𝑥,𝑡,𝑖 − �̂�𝑥,𝑡,𝑖)√
2(𝑑𝑥,𝑡,𝑖 /�̂�𝑥,𝑡,𝑖) − 𝑑𝑥,𝑡,𝑖 + �̂�𝑥,𝑡,𝑖 

∅̂
 

where 𝑛𝑝 is the number of parameters being estimated and 𝑛𝑑 is the number of observations and 

the over dispersion parameter ∅̂ =
deviance

𝑛𝑑−𝑛𝑝
, the deviance for the Poisson death count is expressed as 

deviance = 2 [𝑑𝑥,𝑡,𝑖 ln (
𝑑𝑥,𝑡,𝑖 

�̂�𝑥,𝑡,𝑖
) − 𝑑𝑥,𝑡,𝑖 + �̂�𝑥,𝑡,𝑖]  
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Fitting result for (model (A1) and model (A2)) 

Table A1 BIC values for using different numbers of additional factors for model (A1) and model (A2). 

Additional 
factors 

Most 
deprived 
quintile 

2nd most 
deprived 
quintile 

3rd most 
deprived 
quintile 

4th most 
deprived 
quintile 

Least 
deprived 
quintile 

0 10663 10174 10052 10068 10001 

1 10578 10331 10195 10226 10165 

2 10759 10535 10427 10463 10388 

3 10990 10826 10743 10773 10685 

4 11301 11162 11103 11124 11041 

5 11660 11536 11502 11500 11429 

6 12048 11944 11920 11907 11847 

 

 

Table A1 shows that 1 additional factor (model (A1)) generates the lowest BIC value for the most 

deprived quintile and 0 additional factors needed for the lowest BIC values for the other four quintiles. 

This indicates that the base mortality level 𝛼𝑥,𝑖 is enough to distinguish the mortality experience for 

the four quintiles. 𝛽𝑥,𝑖  and 𝜅𝑡,𝑖  . Model (A1) is needed for most deprived quintile as the additional 

factor with the lower BIC values. Model (A2) is not needed for the deprivation subgroups when the 

data only span for 13 years for both populations. The fitting result and residual for model (A1) is 

provided for all quintiles for comparison. Note that the large fluctuation of 𝛽𝑥,1 and 𝛽𝑥,2 is due to the 

small corresponding 𝜅𝑡,1 and 𝜅𝑡,2 values. The residual plot is also provided and the systematic pattern 

for residual plot against cohort is much weaker with less data available for the UK population. 

Forecasting is not performed since most quintiles do not require any additional factors and the period 

of data is not consistent with the majority of models used in the main study. 
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Figure A1: Parameter estimates of the augmented common factor model for UK population and the deprivation subgroups in England. 
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Figure A2: Standardised deviance residuals for the augmented common factor model, UK and the deprivation subgroups. The top two rows 

are plotted against age, middle two rows are plotted against calendar year, and bottom two rows are plotted against cohort year. 
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The prediction interval for 𝒒𝟖𝟓 in (model (1) – (11)) 

 

Model (1) 

 

Model (2) 

 

Model (3) 

 

Model (4) 
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Model (5) 

 

Model (6) 

 

Model (7) 

 

Model (8) 
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Model (9) 

 

Model (10) 

 

Model (11) 

 

 

 

 

 

 

 

 

 

 

 

Figure A3-A13: Projected 95% prediction intervals for 𝑞85 (dotted line) for the UK population (left), most deprived quintile in England (mid) 

and least deprived quintile in England (right) for models (1) – (11) 
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Extra table for Chapter 5.2 (second, third and fourth most deprived quintile) 

 

Table A2 MAPE values for the projected death rates (2009-2013) for UK & second most deprived 

quintile. 

Model UK 
2nd most deprived 
quintile Total RANK 

(1) 1.27% (4.08%) 2.02% (5.47%) 1.65% (4.78%) [7] 

(2) 1.48% (4.48%) 1.94% (5.45%) 1.71% (4.97%) [9] 

(3) 1.26% (4.09%) 2.11% (5.71%) 1.69% (4.90%) [8] 

(4) 1.46% (4.45%) 1.29% (3.87%) 1.38% (4.16%) [5] 

(5) 1.01% (3.22%) 1.30% (3.93%) 1.16% (3.58%) [2] 

(6) 1.00% (3.17%) 1.37% (4.19%) 1.18% (3.68%) [3] 

(7) - - - - 

(8) 1.43% (4.85%) 1.56% (4.70%) 1.50% (4.77%) [6] 

(9) 1.33% (3.90%) 1.33% (3.97%) 1.33% (3.94%) [4] 

(10) 1.12% (3.24%) 1.06% (3.19%) 1.09% (3.21%) [1] 

(11) 1.32% (3.78%) 2.17% (5.72%) 1.74% (4.75%) [10] 

 

Table A3 MAPE values for the projected death rates (2009-2013) for UK & third most deprived 

quintile. 

Model UK 
3rd most deprived 
quintile Total RANK 

(1) 1.27% (4.08%) 1.94% (5.56%) 1.60% (4.82%) [7] 

(2) 1.48% (4.48%) 1.78% (5.35%) 1.63% (4.91%) [9] 

(3) 1.24% (4.10%) 2.00% (5.69%) 1.62% (4.89%) [8] 

(4) 1.46% (4.44%) 1.46% (4.69%) 1.46% (4.56%) [4] 

(5) 1.01% (3.22%) 1.21% (3.85%) 1.11% (3.54%) [1] 

(6) 1.00% (3.17%) 1.26% (4.08%) 1.13% (3.63%) [2] 

(7) - - - - 

(8) 1.43% (4.85%) 1.86% (5.97%) 1.65% (5.41%) [10] 

(9) 1.33% (3.90%) 1.78% (5.41%) 1.56% (4.66%) [6] 

(10) 1.12% (3.24%) 1.15% (3.86%) 1.13% (3.55%) [3] 

(11) 1.32% (3.78%) 1.74% (4.96%) 1.53% (4.37%) [5] 
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Table A4 MAPE values for the projected death rates (2009-2013) for UK & fourth most deprived 

quintile. 

Model UK 
4th most deprived 
quintile Total RANK 

(1) 1.27% (4.08%) 1.83% (5.57%) 1.55% (4.83%) [5] 

(2) 1.48% (4.48%) 1.94% (6.07%) 1.71% (5.28%) [10] 

(3) 1.28% (4.11%) 1.84% (5.61%)  1.56% (4.86%) [6] 

(4) 1.46% (4.44%) 1.84% (5.82%) 1.65% (5.13%) [7] 

(5) 1.01% (3.22%) 1.19% (3.98%) 1.10% (3.60%) [1] 

(6) 1.00% (3.17%) 1.22% (4.14%) 1.11% (3.66%) [2] 

(7) - - - - 

(8) 1.43% (4.85%) 1.92% (6.49%) 1.68% (5.67%) [8] 

(9) 1.33% (3.90%) 2.06% (6.53%) 1.70% (5.22%) [9] 

(10) 1.12% (3.24%) 1.59% (5.17%) 1.35% (4.21%) [3] 

(11) 1.32% (3.78%) 1.47% (4.71%) 1.40% (4.24%) [4] 

 

Table A5 MAPE values for the projected death rates (2011-2013) for UK & second most deprived 

quintile. 

Model UK 
2nd most deprived 
quintile Total RANK 

(1) 1.13% (3.92%) 1.36% (4.12%) 1.24% (4.02%) [8] 

(2) 1.02% (3.46%) 1.29% (3.97%)  1.15% (3.71%) [5] 

(3) 1.20% (4.19%) 1.56% (4.60%)  1.38% (4.39%) [9] 

(4) 1.01% (3.42%) 1.26% (3.81%)  1.13% (3.62%) [4] 

(5) 1.14% (3.21%) 1.27% (3.80%)  1.21% (3.51%) [6] 

(6) 1.14% (3.20%) 1.29% (3.87%)  1.21% (3.53%) [7] 

(7) 1.03% (3.09%) 1.15% (3.40%)  1.09% (3.24%) [3] 

(8) 1.41% (4.42%) 1.70% (4.87%)  1.56% (4.65%) [10] 

(9) 0.73% (2.22%) 1.28% (3.64%)  1.00% (2.93%) [2] 

(10) 0.63% (1.96%) 1.02% (2.98%)  0.83% (2.47%) [1] 

(11) 1.65% (4.61%) 2.21% (5.79%)  1.93% (5.20%) [11] 
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Table A6 MAPE values for the projected death rates (2011-2013) for UK & third most deprived 

quintile. 

Model UK 
3rd most deprived 
quintile Total RANK 

(1) 1.13% (3.92%) 1.32% (4.27%) 1.22% (4.09%) [8] 

(2) 1.02% (3.46%) 1.17% (3.84%) 1.10% (3.65%) [3] 

(3) 1.19% (3.52%) 1.44% (4.62%) 1.31% (4.35%) [9] 

(4) 1.01% (3.41%) 1.28% (4.38%) 1.14% (3.90%) [5] 

(5) 1.14% (3.21%) 1.13% (3.57%) 1.14% (3.39%) [4] 

(6) 1.14% (3.20%) 1.15% (3.67%) 1.15% (3.43%) [6] 

(7) 1.03% (3.09%) 1.31% (4.20%) 1.17% (3.65%) [7] 

(8) 1.41% (4.42%) 1.82% (5.81%) 1.62% (5.12%) [10] 

(9) 0.73% (2.22%) 1.03% (3.49%) 0.88% (2.85%) [2] 

(10) 0.63% (1.96%) 1.12% (3.75%) 0.87% (2.86%) [1] 

(11) 1.65% (4.61%) 2.05% (5.83%) 1.85% (5.22%) [11] 

 

Table A7 MAPE values for the projected death rates (2011-2013) for UK & third most deprived 

quintile. 

Model UK 
4th most deprived 
quintile Total RANK 

(1) 1.13% (3.92%) 1.25% (4.20%) 1.19% (4.06%) [7] 

(2) 1.02% (3.46%) 1.19% (4.09%) 1.11% (3.78%) [3] 

(3) 1.19% (4.18%) 1.33% (4.42%) 1.26% (4.30%) [9] 

(4) 1.00% (3.41%) 1.38% (4.52%) 1.19% (3.96%) [8] 

(5) 1.14% (3.21%) 1.18% (3.90%) 1.16% (3.56%) [6] 

(6) 1.14% (3.20%) 1.16% (3.78%) 1.15% (3.49%) [5] 

(7) 1.03% (3.09%) 1.19% (3.85%) 1.11% (3.47%) [4] 

(8) 1.41% (4.42%) 1.48% (4.94%) 1.45% (4.68%) [10] 

(9) 0.73% (2.22%) 1.31% (4.23%) 1.02% (3.23%) [2] 

(10) 0.63% (1.96%) 1.04% (3.59%) 0.83% (2.78%) [1] 

(11) 1.65% (4.61%) 1.68% (5.36%) 1.67% (4.99%) [11] 
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Extra table for Chapter 5.3 (second, third and fourth most deprived quintile) 

 

Table A8 Variance reduction of the survival probabilities for the second most deprived quintile in 

England. 

Model 10p60 10p70 10p80 15p60 15p70 20p60 20p70 

(1) 44% 46% 44% 46% 46% 47% 45% 

(2) 91% 95% 89% 95% 95% 97% 94% 

(3) 91% 93% 87% 96% 95% 85% 89% 

(4) 93% 94% 94% 96% 96% 97% 97% 

(5) 35% 83% 86% 47% 89% 56% 92% 

(6) 37% 82% 86% 49% 88% 57% 92% 

(7) 17% 51% 9% 38% 48% 44% 12% 

(8) 75% 91% 92% 87% 95% 94% 96% 

(9) 76% 78% 27% 76% 76% 81% 39% 

(10) 93% 93% 95% 95% 96% 97% 98% 

(11) 97% 94% 95% 97% 97% 98% 98% 

 

Table A9 Variance reduction of the survival probabilities for the second most deprived quintile in 

England. 

Model 10p60 10p70 10p80 15p60 15p70 20p60 20p70 

(1) 45% 55% 50% 51% 55% 55% 53% 

(2) 86% 95% 90% 94% 96% 97% 94% 

(3) 90% 95% 91% 98% 97% 99% 95% 

(4) 99% 99% 99% 99% 99.7% 99.8% 99.8% 

(5) 38% 82% 86% 52% 88% 62% 91% 

(6) 40% 81% 85% 53% 87% 63% 91% 

(7) 34% 42% 35% -141% 49% -15% 38% 

(8) 93% 97% 98% 96% 99% 99% 99% 

(9) 72% 89% 21% 80% 88% 90% 37% 

(10) 95% 99% 99% 98% 99% 99% 99.5% 

(11) 99% 99% 99% 99% 99.6% 99.7% 99.7% 
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Table A10 Variance reduction of the survival probabilities for the second most deprived quintile in 

England. 

Model 10p60 10p70 10p80 15p60 15p70 20p60 20p70 

(1) 54% 63% 59% 58% 63% 62% 61% 

(2) 82% 97% 90% 91% 97% 97% 93% 

(3) 79% 96% 90% 89% 96% 52% 88% 

(4) 92% 96% 96% 94% 97% 97% 98% 

(5) 14% 65% 68% 29% 62% 37% 55% 

(6) 15% 64% 68% 28% 61% 36% 53% 

(7) 9% 53% 41% 30% 63% 48% 48% 

(8) 87% 96% 99% 93% 99% 97% 99.5% 

(9) 68% 82% 37% 79% 86% 87% 57% 

(10) 90% 97% 98% 95% 99% 98% 99% 

(11) 93% 97% 98% 95% 99% 98% 99% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


