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Abstract

The elucidation of the complex aetiology of human disease has been accelerated by

recent advances in systems biology. Generation of high-dimensional datasets through

gene expression profiling is an inevitable component of this research. Bioinformaticians

are presented with this unabridged data by scientists seeking biological insights. Their

role is that of a software engineer as well as a scientist; they are needed to facilitate the

analysis by building software that performs dimension reduction. The desired outcome

of dimension reduction is to find a handful of genes whose expression values reliably

diagnose unlabelled samples. This thesis discusses the issues faced in bioinformatic

classification and feature selection, and culminates in the development of a protocol to

generate groups of genes that illuminate the nature of human disease.

The literature review describes how microarray technology facilitates the analysis

of gene expression profiling, and charts the journey from hybridization to a normalised

dataset. It then follows the development of dimension reduction techniques over the

last 20 to 30 years. Moving from early techniques, it covers the three main strains

of data mining algorithms: Discriminant Analysis, Decision Trees and the shrinkage

family.

This thesis contains three articles (two of which have been published), each de-

scribing a statistical concept in need of consideration each time a dimension reduction

is performed. By way of example, supervised learning of the transcriptomes of lym-

phoma patients is carried out in each study. The first shows that the common practice

of scoring features individually and ranking them by these scores is too superficial a
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viii Abstract

method of assessing their degrees of biological relevance. We show the need to as-

sess the gestalt discriminatory power of feature sets, the implications of this power in

algorithm design and optimisation, and the intuitive relationship of this concept to

biological phenomena.

The second article describes the need for regularisation of the linear model. We

discuss how the searches for a workable compromise between model bias and variance

within each of the three main data-mining strains are performed in quite different ways,

yet possess a common theoretical background and yield similar predictive results on

validation procedures. We show that a simple forward selection technique that adds

features to a model based on the maximisation of the penalised margin width of its

regularised Support Vector Machine formation performs competitively against, and in

some cases outperforms Random Forest and Least Angle Regression with respect to

classifying unlabelled data points.

No feature selection technique has proven to be superior to all others. Since there

currently seems to be no ‘silver bullet’ method for extracting the most telling biomark-

ers from a transcriptome, we develop and test a novel ensemble feature selection

method in the third and most ambitious article. We rigorously build an inventory,

through sound selection of both regularisation and penalty parameters, of all three

major machine learning families, and construct a validation architecture that involves

bootstrapping for stability purposes. Testing this selection suite across a range of high-

dimensional datasets, including some publicly available ones, lends further weight to

a broad range of previous statistical and biological findings. We find significant over-

lap between the features found using our method and the ones identified as putative

biomarkers in the original studies accompanying the publicly available datasets, some

whose implication in disease has more recently been further explicated. We also apply

our method to an in-house lymphoma gene expression dataset, independently identi-

fying features that are already identified in other studies as biomarkers for the disease

subtype in question, as well as discovering some novel putative ones.

Supplementary material and appendices detail studies ancillary to the core of the

thesis and may provide starting points for further research.
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