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The appearance or increase of the fluorescent signal in biological media (whether it is
natural autofluorescence or fluorescence of artificially introduced fluorophores) can
implicate reaction to specific conditions or diseases. In the first part of this thesis, we
explored the possibilities of using smartphone as a point-of-care readout device that
could replace specialised laboratory equipment like a spectrophotometer or
colorimeter at a fraction of the cost. We present two methods that, using the
minimum of additions to the phone itself, are sensitive enough to be used in medical
diagnostics of clinically relevant conditions including arthritis, cystic fibrosis and acute
pancreatitis. In the second part, we developed the highest resolution wide field
Fluorescence Lifetime Imaging (FLIM) system based on a Single Photon Avalanche
Diode sensor array. The device was capable of detection of sub-nanosecond lifetimes
over an area of about 20cm?, and was able to measure lifetimes of fluorescent signals
lower than one photon per pixel per excitation pulse. We proved that the system can
reliably distinguish between biologically relevant concentrations of free and bound
forms of Nicotinamide Adenine Dinucleotide (NADH). An increment of bound NADH in
cells, which is connected to increased cell metabolism, is a proven cancer marker for
most cancer types. We characterised the system performance and provided two
methods of data analysis appropriate for measurements in a biological tissues or
surface tumours. We project that our system is suitable for development into a real-
time fluorescence lifetime camera, able to operate at up to 20 Hz with presented

performance level.
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1.Theoretical introduction

Fluorescence is the result of a three-stage process that occurs in fluorophores:
Excitation, excited-state lifetime and fluorescence emission. Excitation happens when
photon of energy hv,,, from an external source such as laser or light-emitting diode
(LED), hits the fluorophore. The fluorophore absorbs this photon achieving an excited

electronic singlet state S’

So+hv,, = 5], (1)
Immediately after excitation, the fluorophore undergoes conformational changes,
which typically last nanoseconds and has two important consequences. One part of
the energy is dissipated, yielding a relaxed singlet excited state (S;), from which
fluorescence originates. A second part is emitted as non-fluorescent energy, such as
heat (vibration), collisional quenching or fluorescence resonance energy transfer
(FRET). The ratio between emitted and absorbed number of photons by a fluorophore
is called the quantum yield and will be discussed later. The subsequent and final stage
is fluorescence emission. A photon of energy hv,, is emitted, returning the

fluorophore to its ground state S,.

S1 = Sy + hvgy, + heat (2)
These processes are illustrated on a Jablonski diagram (Figure 1). Horizontal lines
represent molecule energy levels; arrowed lines are energy transfers. For more

detailed description of phenomenon of fluorescence, please refer to (1).
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Figure 1. Jablonski diagram (2).

Because of energy dissipation described in equation 2, the energy of emitted photon is
lower, therefore its wavelength is longer than the excitation photon hv,,. This
difference between maxima of wavelengths of excitation and emission spectrum of
the fluorophore is called the Stokes shift (Figure 2). It owes its name to Sir G.G. Stokes
who described it in 1852 (3). The Stokes shift is the fundamental basis of fluorescence
techniques because it separates emission photons from excitation photons, effecting

easier detection.
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Figure 2. Stokes shift, presented using the example of quinine (1).
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Most of the fluorophores used in science have emission spectra in the visible
wavelength range or neighbouring ultraviolet or infrared spectra. Excitation is
synonymous to absorption and therefore it can be measured using absorption
techniques. Excitation and emission spectra typically have a simple peaked
distribution (Figure 2). The emission intensity is proportional to the magnitude of the
fluorescence excitation spectrum at the excitation wavelength; however the emission
spectrum is independent of excitation intensity (Figure 3). This second phenomenon
was explained by Michael Kasha in 1950 and is known as Kasha’s rule (upon excitation
into higher electronic and vibrational levels, the excess energy is quickly dissipated,
leaving the fluorophore in the lowest, common to all molecules, vibrational level of
S1) (4). In 1926, Vavilov reported that that quantum yields are generally independent
of the excitation wavelength (5). For many fluorophores, the emission spectrum looks
like a mirrored copy of the excitation spectrum. This phenomenon can be explained
looking at horizontal lines at Figure 3. In general, the emission intensity is proportional
to excitation intensity, at the excitation wavelength. This is known as mirror image
rule (1). Quinine, whose spectrum is presented in Figure 2, is one of the few

exceptions from this rule.
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Figure 3. Excitation of a fluorophore at three different wavelengths (EX 1, EX 2, EX 3) does not change the emission
profile but does produce variations in fluorescence emission intensity (EM 1, EM 2, EM 3) that correspond to the
amplitude of the excitation spectrum (2).

The quantum yield is a measure of the emission efficiency of the fluorophore. It is the
ratio of emitted and absorbed number of photons. The maximum possible efficiency
of 1, which means the brightest emission, can be decreased by non-radiative decay to
So- The fraction of fluorophores that decay through emission, the quantum yield Q, is

given by:

Q=— (3)

T Itk

in which I' is the radiative decay rate, and k,,, is the decay rate due to ever-present
non-radiative processes, leading to a quantum yield Q always smaller than unity.
Maximum quantum yield is achieved when non-radiative decay is substantially smaller

than radiative decay k,,,, < I'.

Fluorescence lifetime quantifies the time a fluorophore stays in an excited state
before emitting photons. Referring to the Jablonski diagram (Figure 1), it is the
average time before processes undergoing between excited singlet state S;’ and
relaxed state S; finish. Generally, fluorescence lifetime has an order of magnitude of

107%s (nanoseconds). Lifetime is given by:
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1

T= (4)

T Ttkny

Because fluorescence emission is a random process, the lifetime is an average value of
the time spent in the excited state. For a single exponential decay 63% of the
molecules decay faster than t = t and 37% decay att > t (1). Single exponential
decay of fluorescence intensity as a function I(t), of time can be represented as an

exponential function:

I(t) = I,e7 /" (5)
where I(t) is a fluorescence intensity at time ¢, I is initial fluorescence intensity and t

is fluorescence lifetime.

Quenching is a process which results in a decrease in intensity of fluorescence
emission of the fluorophore. There are many reasons and reactions that can result in a

quenching effect. The most common are:

e Chemical quenching - the presence of iodide (I7)(6), molecular oxygen (7), or
other chemicals. These substances that can occur in the solvent, can create
chemical bonds influencing excited state reactions, and altering emission
processes. Temperature and pH might affect these reactions as well.

e Energy transfer — degradation of the excited state due to transfer of some
portion of the energy to the nearby fluorescent molecule, known as Forster
Resonance Energy Transfer — FRET (8)

e Collisional quenching - Some molecules returning to the ground state,
encounter molecules of the quencher and are physically stopped from

fluorescing. This phenomenon is described by the Stern-Volmer dependence:

2 =14+ K[Q] = 1+ kq7o[0Q] (6)

In this expression F, is the original intensity of the fluorophore, F is the
intensity after quenching, K is the Stern-Volmer quenching constant, k, is the
biomolecular quenching constant, t, is the unquenched lifetime, and Q is the
guencher concentration. The Stern-Volmer quenching constant K indicates the

sensitivity of the fluorophore to a quencher.
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e Static quenching — the part of the quenching that occurs before excitation of
the molecules, i.e., in the ground state. Chemical reactions between
fluorophore and quencher, happening before excitation, can change the
excitation wavelength or even change the fluorophore into a non-fluorescent
molecule, stopping the fluorophore from emission in certain conditions.

e Concentration quenching - in order to enhance the luminescence efficiency, it
seems that the fluorophore concentration should be as high as possible.
However, it is found (9) that the luminescence efficiency decreases if a specific
value known as critical concentration is exceeded. With the increase of dopant
concentration, the ion centres are sufficiently close together to transfer the
excitation energy from one to another, causing an imperfection which may act

as an energy sink.

Quenching phenomenon can be used to measure physical and chemical reactions. It is
the basis of Forster resonance energy transfer (FRET) (8) which can be used to

determine if two fluorophores are within a certain distance of each other.

Photostability is one of the most important properties of a sample, describing how
long the fluorophore is able to fluoresce. Photobleaching, an irreversible destruction
of the fluorophore, terminates this ability. AlImost all fluorophores photobleach under
illumination, especially in fluorescence microscopy where the light intensities are high
(Figure 4). Photobleaching originates from the triplet excited state, which is created
from the singlet state via an excited-state process called intersystem crossing (10).
Attempts to recover triplet states as well as charge-separated states through electron-
transfer reactions (11), or chemical extension of the photostability (12) have been
undertaken; however these are often specific to certain fluorophores and hard to

achieve in in-vivo measurements.

The most effective method to minimise effects of photobleaching is to maximise
sensitivity of the detection device, so the power of excitation can be reduced. Finding

more photostable alternatives is a constant goal.
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Figure 4. Comparison of photostability of green-fluorescent antibody conjugates, from the most photostable,
respectively: Alexa Fluor® 488, Oregon Green® 514, BODIPY® FL, Oregon Green® 488, fluorescein (2).

Currently we are aware of thousands of fluorophores. They can be broadly divided
into two main classes—intrinsic and extrinsic. Intrinsic are the ones that occur
naturally in systems we are studying, like aromatic amino acids, NADH or flavins.
Extrinsic fluorophores are those added to the sample to make it fluorescent. This

procedure is called labelling.

Currently, one of the most commonly used extrinsic fluorophores is fluorescein, or its
amine reactive isothiocyanate derivative - fluorescein isothiocyanate (FITC). In its
original form it is often used as a laser dye gain medium. As FITC, it is popular for
labelling of antibodies. A wide selection of fluorescein-labelled antibodies is
commercially available, and used in fluorescence microscopy and in immunoassays. In

water, fluorescein has an absorption maximum at 494 nm and emission maximum of

512 nm.

Another commonly used group of fluorophores are rhodamines, for example
Rhodamine B and Rhodamine 6G. Factors such as the large number of commercially
available kits for staining or tracing, solubility in water, ethanol and methanol, fairly
high quantum yield and wide spectra that are different between derivatives, make

rhodamines extensively used in biotechnology.
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Many other fluorophores are widely commercially available. They differ in excitation
and emission spectra, lifetimes, photostability, solubility in different solvents, signal
strength (quantum vyield), reactivity etc. Some of them, like Alexa Fluor 488, are
designed to be an alternative to another fluorophores (in this case — fluorescein),
providing better performance in some areas like photostability or quantum vyield.
Other popular fluorophores groups include: Alexa fluor, Cy, Oregon, Coumarin,

BODIPY, and Hoechst.

In this part we will discuss techniques and instruments used for different types of
fluorescence measurements. We will also have a closer look at their structure and
will describe their principles of operation. This is an important step since in the

next chapter we will be presenting our own systems to read some of these signals.

The most specific of the fluorophore attributes is its spectrum. The
Excitation/Emission spectrum graph, like the one presented in Figure 3, informs us
how to bring fluorescence to life and observe its consequences. The excitation
spectrum, which typically is on the left side of the graph, with shorter wavelengths
and higher energy, equivalent to absorption, can be measured using a
spectrophotometer. An excitation spectrum is measured by scanning across all the
absorption wavelengths, recording emission at a fixed wavelength. The emission
spectrum, distanced from the excitation spectrum by the Stokes shift to the right, with
longer wavelengths and lower energy, can be measured using a spectrofluorometer.
An emission spectrum is a wavelength distribution measured with a specified, single
excitation wavelength. Nowadays, these two systems are often combined in one

machine that allows us to measure one or the other.

A typical spectrophotometer (Figure 5) is constructed of a light source, excitation and
emission monochromators for wavelength selection, a sample chamber designed to
optimise energy transfers, a readout system, typically preceded with additional filter
and polarizers - for data collection and finally — a digital operating system that will

control all the elements, but also gather and present results in a typical graph
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representation of signal as a function of wavelength (1). We will take some time to

have a closer look at each of these elements.

Light
Source
Adjustable
Monochromator Aperture
Sample
L

Photoresistor

:'_ Amplifier
Spectrum N | ' Display
of light a
_/
Light is Light is
absorbed detected

Measure Is
displayed

Figure 5. Schematic diagram of spectrofluorometer (13).

1.4.1.1. Light source
The most common light source used in steady-state spectrophotometers are
continuous xenon arc lamps. They provide high and relatively even power (Figure 6a)
in the range between 250 nm - 700 nm. Because of this high power of the light, high
pressure (about 10 atmospheres) inside the lamp and high input power to it, they
need to be kept in a housing, separating the lamp from the rest of the system,
absorbing generated heat, and providing additional safety levels. Readouts from
systems using Xe lamps are generally corrected for the imperfect spectral distribution
across wavelengths (1). Pulsed Xe lamps suffer from even greater spectral variation
(Figure 6a), however, they produce less heat, higher power in the UV range and

consume less power (1).

The newest members of the group of sources, and the ones gaining rising popularity
are light emitting diodes (LED) (14). LEDs are small and consume little power. They
emit relatively low power of light, but also produce almost no heat, therefore can be
placed close to the sample. Different LEDs emit different light spectra, but because of

their size, it is easy to produce an array of LEDs that will cover the whole required
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band (Figure 6b). There are ongoing efforts to produce white LEDs with the whole

emission spectrum (15), with first successes currently used mainly in flashlights.

a)'s b)
'E i g
% 75 W Continuous L Lok 380 430
= 10 ‘_‘_-“_»Arc Lcmpb ; :.',‘.'_ 636
g Lot T s R > 30F
5 2 20f \\
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E 0 1 1 \T& 1
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Figure 6. Light sources used for excitation in spectrofluorometers. a) comparison of emission of continuous and
pulsed Xenon lamp; b) spectra of different LEDs, with a white LED in black (1).

1.4.1.2.  Monochromators and filters
The monochromator in the spectrofluorometric system is the part that further selects
a specific wavelength, from the excitation or emission light. This is done by dispersion
of polychromatic or white light. Dispersion can be accomplished using a prism or
diffraction grating, where typically the second one is chosen in spectrofluorometry. A
monochromator for fluorescence spectroscopy should have high dispersion efficiency,
low stray light levels (leaks of light with unwanted wavelength) and high light
transmission to be able to detect low light signals across the whole spectrum.

Resolution of the monochromator is a less important factor.

In addition to dispersion gratings, filters are used for correcting for imperfections of
the grating, or even replacing it completely for some specific uses. Nowadays, among
the huge variety of commercially available filters, almost any desired specification can

be found.

1.4.1.3.  Sample chamber
A typical sample chamber in a spectrofluorometer is constructed to hit the centre of
the cuvette with excitation light and collect the emission light at an angle of 90°. This
setup minimises leaking of the excitation light and decreases the inner filtering effects

due to high optical densities or to sample turbidity.
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Cuvettes are typically cubic in shape and made of a material that that is transparent to
radiation in the spectral region of interest. The commonly used materials for different
wavelength regions are: quartz or fused silica for UV, silicate glass for above 350 nm to
2000 nm, plastic for the visible region, or polished NaCl or AgCl for wavelengths longer

than 2 um.

1.4.1.4. Photomultiplier tubes
Photomultiplier tubes (PMTs) are able to detect the fluorescence signals at a wide
wavelength range (200 nm to 900 nm) with high sensitivity. This reason, amongst
others, is why they have become the most popular detector for modern fluorometers.
The PMT is capable of detecting an individual photon, generating a burst of millions of
electrons that can be detected as a pulse. PMTs can operate in two modes: photon
counting or as a current source. In the first mode each arriving photon results in a
discrete count; in the current source mode, the number of photons is integrated,
generating a proportionate current. PMTs can be distinguished by several properties

such as type of dynode chain, spectral or temporal response, and size.

1.4.1.5. Data acquisition and analysis/corrections
The final and crucial element to the spectrofluorometric device is its operating system.
Typically, a computer application, connected to the firmware inside the device, serves
a couple of important purposes throughout the whole operation process. At the
beginning, it controls all the elements, synchronising their work, and setting them in
correct positions. At the end, it collects data gathered by the readout system and
processes it into a data output of chosen type. Once the data are collected and

processed, one more important step is performed — data correction.

Data correction is a process where raw data from the readout instrument are
multiplied by a function (or series of functions) to cancel all known readout errors,
which might be introduced by any of the elements, or by known phenomena occurring
during the readout process (Figure 7). Errors of the elements can be recognized and
described in two ways: either measuring the difference between ideal expected
output and real output generated by the element, or by temporarily replacing one
element in the system with another with known, close to ideal character, and
comparing outputs of the whole system. An example of such an element error and its
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correction is an excitation lamp with imperfection in power distribution (Figure 6a). An
example of a phenomenon that might occur during spectrophotometric readout is the

Raman scattering.
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Figure 7. Example combined correction function for Fluorolog Tau 3 system (figure from the manual of horiba
Fluorolog Tau 3 manual).

One of the most important characteristics of a fluorophore, along with its spectra, is
its fluorescence lifetime. By detecting different lifetimes, it is possible to distinguish
spectrally-indistinguishable fluorophores. Fluorescence lifetime is independent of dye
concentration, photobleaching, light scattering and excitation light intensity. At the
same time fluorescence lifetime is dependent on things we might like to measure,
such as ion concentration, oxygen concentration, molecular binding and interactions.
Fluorescence lifetime imaging microscopy, as an imaging technique, determines the
average fluorescence exponential decay time for many pixels and produces a map of
fluorescence lifetime data. Therefore, FLIM allows us to perform accurate
measurements of ion concentration, FRET analysis, or molecular changes in some
reagents. FLIM is a very common technique to detect autofluorescence signals, also
from living cells. Typical applications of FLIM in biology range from cells to complex
tissues utilising both exogenous fluorescent labels like green proteins and endogenous

autofluorescent molecules.
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To acquire a fluorescence lifetime image, fluorescence lifetime detection has to be
executed for many spatial locations in the sample. For a single-pixel detector typically
a scanning stage moves the sample or the beam to build up an image, often using a
modified microscope. For detector based on many pixels, one may be able to acquire

lifetimes simultaneously from many points of the sample.

There are two main methods of lifetime detection: frequency-domain and time-
domain. Systems based on frequency-domain measurements have the sample excited
with (typically) sine-wave modulated light intensity. The modulation frequency is
often around 100 MHz, so the period is comparable to the decay time t. The excited
sample emits with a forced response at the frequency of modulation, but fluorophores
lifetime delays the emission in time relative to the excitation, shown as the shift to the

right in Figure 8a. The induced phase shift (Ad), is used to calculate the decay time.
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Figure 8. Principle of operation of FLIM system based on a) Frequency-domain, b) time-domain technique (16)
In the alternative time-resolved method, the sample is excited with a pulsed laser with
pulse duration as short as possible, and preferably much shorter than the lifetime. For
bright fluorescence, the time-dependent fluorescence intensity can be measured
following the excitation pulse, and the decay time t is calculated from the plot of
intensity as a function of time after the pulse (Figure 8b). For weaker fluorescence, the
most commonly used time-domain FLIM technique uses time-correlated single photon

counting (TCSPC). TCSPC is based on repeatedly measuring the time between
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excitation pulse of a laser and the arrival of a fluorophore-emitted photon at the
detector. Both phenomena are precisely timed to calculate the delay, and the

statistics of this delay reveal the lifetime.

The other popular method of time-domain FLIM is a time-gated measurement. In this
approach, a pulsed laser excites the sample whose emitted fluorescence decreases in
an exponential manner. After each excitation, a readout detection gate of a specified
length opens at a specified time after the laser pulse. The measurement is repeated
many times with the gate shifted to different delays (Figure 9). Each gate shift
generates one data point for each sensor, generating a record of the decaying signal
intensity for the whole array. The exponential function fitted to these points allows for

the fluorophore lifetime calculation.
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Figure 9. Scheme of operation of time gated fluorescence measurement. A number of measurements with gates at
different delays generate data to which an exponential function can be fit, to calculate the lifetime Each image
presents sample with decreasing intensity presented on consecutive bars. Dotted line shows the decay curve of the
emission. (17)

There are many other popular measurement methods based on fluorescence like

Fluorescence Resonance Energy Transfer (FRET) (18) microscopy or Fluorescence
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Correlation Spectroscopy (FCS) (19). There are also different approaches to well
established methods, like multiphoton excitation (20), or spectroscopy based on
photobleaching (21). All of them, however, mostly share the same operation principles

and elements discussed here.

Different types of emission measured in following work, will be indirectly represented
as colours. Colours, as we can see them are electromagnetic waves of a length
between about 400 nm and 700 nm. All the colours visible to human eye are within
this spectrum. Even though dividing and naming colours is a cultural and contractual
process, most people agree on common list that identifies six main bands: violet, blue,
green, yellow, orange and red. Sources of light can be monochromatic, a
polychromatic band, or a more complex spectrum. Mixtures of different wavelengths
create different variations of colours. A typical monochromatic light source is a laser.
The best known source of polychromatic light, which consist of all the colours with its

resulting colour is close to white, is the sun.

The colour of an object interpreted by a human is a very complicated function of its
illumination, structure and material properties, the environment, and the human eye
and brain. The reflected/emitted light it is received at the retina by three types of
cone cells with sensitivities as shown on Figure 10, and simplified to three
components. The short-wavelength cone cells read mostly the blue range of colours;
the medium-wavelength cone cells are receiving and interpreting the green-yellow
spectrum; the long-wavelength cone cells, largely overlapping medium ones, also add

the red part of the visible spectrum to the reception range.
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Figure 10. Spectral ranges of human cone cells responsible for interpreting colours, compared to the normalised
spectrum of sunlight, shown across the visible spectrum of electromagnetic radiation.

It is estimated that a normal person can distinguish about 10 million colours (22), but
this is a personal characteristic. Colour-blind people, who have reduced structure of
cones, can not only see significantly fewer colours but also interpret them differently,
while people with some mutations can distinguish even up to 100 million different

colours.

People have long tried to reproduce colours using available knowledge and available
dyes. Originally, the three colours that were chosen to be ‘primary’ colours, from
which all other colours can be mixed, were red, yellow and blue. In art, these colours
are still very often used as primary. Subsequently, in the 19" century, the yellow
colour from the trinity was exchanged with green, later anchored with connection to
human cone cells. At about the same time, chemical companies, trying to develop the
most efficient process of printing colour photographs, established cyan, magenta and
yellow as their primaries. Different colour systems so began to be used to represent

the whole spectrum.

Digitalisation of colours is a whole new area of expertise. Photographers are using
specific compressed and uncompressed file formats, for easier, or more accurate and
editable version of their images. Colour television has had many image standards —
first analogue (PAL, NTSC), then digital like DVBT. Digital displays in computers or

27



smartphones with different production technologies are using different colour
systems. Printers, operated by digital systems, needed a proper way of

communication with them. Colours needed standardisation.

Many different digital colour representations were introduced, representing different
approaches and capabilities, though mostly based on the same principle of using
functions with three values to represent the largest colour gamut. The representation
that has gained the most popularity was presented in 1996 by Microsoft and HP: the
SRGB (standard Red Green Blue) colour space. A standardised version of previously
introduced RGB, sRGB was subsequently acknowledged by the International
Electrotechnical Commission as IEC 61966-2-1:1999 (23). Widely used in most digital
display systems, it started to also be used in capturing systems, including scientific
systems. Capturing colours, because of previously described external factors that
influence targets, is more complicated than displaying them. Furthermore, for many
reasons, not all systems use sRGB as their base colour space. Standardisation in
capturing, presenting and recalculating colours between different colour spaces
became a necessity. To make possible comparison of images or colours captured
under different lighting, standard illuminants (24) were introduced. A standard
illuminant is a theoretical source of visible light with a specific profile (its spectral

power distribution). They will be described in detail in the following chapters.

A colorimeter is a device that in a non-direct way measures a colour of a liquid sample,
naturally or artificially stained. It is based on the Beer-Lambert law that relates the
attenuation of the light of specific wavelength dependant on the medium that it is

going through. The general Beer-Lambert law determines absorbance (A) as:
A=a(l)xbxc, (7)

where a(A) is a wavelength-dependent absorptivity coefficient, b is the path length
and c¢ is the analyte concentration. Some colorimeters use the transmittance
coefficient instead of the absorbance. Both, according to the Beer-Lambert law are
directly related to the sample concentration and its colour. In a colorimeter, a beam of

light with a specific wavelength controlled by filters, is passed through a sample via a
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series of lenses, which navigate the coloured light to the measuring device. This

analyses the colour compared to an existing standard.

Comparing a colorimeter to a spectrofluorometer, it is fair to say that the former is a
limited version of the latter. While spectrofluorometry measures the transmittance
and reflectance as a function of wavelength, the colorimetry measures the absorbance
of specific colours. Colorimeters also operate only in the visible spectrum, while
spectrofluorometers are typically extended to UV and IR as well. An advantage of a

colorimeter is that, since the device is less complex, it is also significantly cheaper.

The first part of this thesis will investigate the utilisation of smartphones as an

alternative method of colorimetric and spectrofluorometric measurement.

Since about 2007, when first mass production smartphones were released and gained
popularity, the general idea of what the phone should be has drastically changed. Not
only have they become small computers in our pockets, they were equipped with
technology that regular computers did not have — microphones and cameras. In time,
the number of sensors and their quality continued to grow. Smartphones gained
accelerometers, gyroscopes, GPS modules for accurate positioning, light and proximity
sensors, additional microphones to perform noise cancellation, and more. The quality
of the photo cameras also got better each year, with the release of almost every new
flagship model. Optics in the camera lenses became closer to the professional ones,
resolution increased drastically, and the quality of the photosensitive matrices and
their capabilities of low light level imaging increased. Over more than 10 years of
development, not only the hardware, but also the software operating all these sensors
became significantly better, more reliable and more user friendly. This opportunity

could not have been missed by science.
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Figure 11. A dual-mode mobile phone microscope using the on-board camera flash and ambient light (25).

Smartphones have found their way into almost all branches of science that could have
any use of what they offer. The ability to localise the phone and instantly upload data
to the cloud, including all the potentially important additional information about it like
location or attributes of measurement, expands possibilities greatly: beginning with
social sciences where analysis of human behaviour and customs can be collected (like
social media analysis or even just questionnaire distribution), through using the
computational power of the device by scientists (e.g., SETI@HOME, BOINC) and citizen
science where regular people help to collect data for scientists, finishing with
intentional use of smartphone sensors as readout device by scientists. This last group
uses almost all available sensors, however, without any doubts, is dominated by
photonics uses of the smartphones camera. With the add-on of proper peripherals
and using the smartphone as a readout sensor, almost all of the previously mentioned
fluorescence and colorimetric techniques can be implemented, and at significantly
lower cost, often miniaturised and made portable. The moment we are at is still just
the beginning of this process, but even now, systems based on smartphones can
provide comparable results to professional solutions. Environmental and biological
sciences are already taking advantage of Point-of-Care Testing (POCT) smartphone
solutions, using smartphones as portable microscopes (Figure 11) or spectroscopes.
Using images to quantify or qualify shapes or colours allows us to measure
microorganisms, proteins, bacteria and molecules, to assess composition of targets or
detect medical conditions. The list of potential applications is almost as long as the

combined list of all previously described systems and is still growing.
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In our work we will present proofs of concept of such devices, presenting setups to

use smartphone-based systems to work as a spectrofluorometer or as a colorimeter.

The second part of this thesis will use an array of single photon avalanche diodes for

time-gated FLIM, which we briefly introduce here.

For single photon detection, PMTs were for a long time the preferred device used in
spectrofluorometers and other light sensitive measurement devices. These, however,

have historically been bulky and very power hungry.

Solid-state diodes, when operating in the avalanche mode are known as avalanche
photodiodes (APDs). When APDs operate in a Geiger mode (i.e., well above the
breakdown voltage), they are called Single Photon Avalanche Diodes (SPADs). As
semiconductor processes improved, in 1960s Cova and others (26) began

experimenting with SPADs.

Until recently, manufacturing of SPAD detectors was a very specialised and fragile
process, which limited their availability and use. SPADs manufactured in the standard
CMOS process is a recent innovation (27) and a breakthrough that enabled their wide
adoption. Figure 12 shows an example of a single pixel of an array of SPAD detectors,

fabricated in CMOS technology.
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Figure 12. Typical layout of a CMOS fabricated, single pixel, SPAD detector.

SPADs can be used in most situations as a replacement for PMTs as single photon
counters. Nowadays SPADs are used in quantum cryptography, spectroscopy, LIDAR
applications, DNA analysis, particle measurements, fluorescence microscopy and
obviously single photon counting. Most of the methods in this non-exhaustive list have
something in common — they are imaging techniques. Imaging using just one sensor
requires scanning to build up an image, which is time and resource consuming.
Recently, CMOS technology has advanced to create relatively cheap SPAD arrays,
constantly growing in size. Beginning with as few as a couple of pixels, nowadays SPAD
arrays can achieve over 65 000 pixels of single photon sensitive detectors. Very high
speed of operation makes them desirable in techniques like Positron Emission
Tomography (PET), or FRET. Measurements of photon arrival time makes depth
scanning possible. Finally, when used in time gated mode and synchronised with

excitation source, SPAD arrays can be used as a FLIM system.
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In our studies we have used one of the largest SPAD arrays available to date, to
construct a fluorescence lifetime imaging system. The technology of the SPAD itself as

well as more specific details about our setup will be described in following chapters.

This chapter presented a general background to support the following practical parts.
Fluorescence and light emission is a connecting factor for of all of the research to be
presented. The second chapter will focus on a use of a smartphone to quantify light
emission of various medically relevant assays; the third chapter will present a complex
setup based on the SPAD sensor, used to measure fluorescence lifetime with an aim to

enable cancer detection.
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2.Smartphone projects

The Pew Research Center reported that in 2017 89% of American adults, at least
occasionally, uses the internet or owns a smartphone and 69% of them are users of
social networking sites (28). The popularity of smartphones is a relatively new
phenomenon and has a major influence on many aspects of people’s lives (29-33).
Smartphones popularised citizen science where amateurs help the scientists in their

research collecting and/or processing data as part of a scientific enquiry (34-39)

Finally, smartphones can be used directly as a measurement device by the scientist,
providing data in place of professional readout systems. Of course usage of consumer
electronics (especially of imaging devices) in science was explored before the era of
smartphones. In 2007, a paper on using DSLR cameras as a spectrophotometric device
was published (40). A series of tests including quantum efficiency, dynamic range or
linearity was performed, proving that it worked despite some limitations.
Smartphones were next logical step as a cheaper, more accessible and more flexible

device.

The smartphones were used to measure occupational noise (41), heartbeat pattern

recognition (42) or physiological audio signals such as breathing sounds (43)

By comparing capabilities of modern smartphones to scientific readout systems, it is
easy to realise that they include most of the main elements that the typical imaging
system is constructed of. Most importantly, as well as providing sensors, smartphones
can also serve as many peripherals, like a computational device, a control system and
a data acquisition device. Depending on the use, the purpose or the measured target,

specific add-ons can complete the setup.
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Imaging techniques are playing a major role in biomedical sciences and biotechnology.
These communities are also paying attention to the transition from professional

laboratories to point-of-care testing (POCT).

The smartphone was proposed for use in biophotonics for the first time in 2008 (44).
The smartphone was mentioned there as one of the options for acquiring an image of
a paper-based urine test, as an alternative to a portable scanner, a desktop scanner
and a digital camera. All these devices, connected to a computer and the internet,
were able to send the image to the specialist that would assess it. No local analysis
was done on the computer or the smartphone. Not surprisingly, the smartphone was
the least accurate method tested in this publication, even though the advantages of

availability of the device was realised.

One of the pioneers of developing actual smartphone readout devices in biomedical
imaging is the UCLA based group under the leadership of Professor Aydogan Ozcan. In
2010 they published an article entitled “Lensfree microscopy on a cellphone” (45).
Using an attachment to the phone, they used an additional LED to illuminate the
sample, which scattered the light and created a hologram (a shadow cast on the
sensor) of each object on the detector array of the cell phone. Using digital image
reconstruction, they reported imaging of single particles as small as a couple of
micrometres. It was the very initial proof of concept, enabling just sensing of the

presence of a particle in a low noise environment.

In the same year the same group presented detection of a fluorescent particle using a
very similar setup (46). Instead of measuring scattered light, fluorescent emission was
measured (Figure 13). The sample was excited in the same way as it was illuminated
before, with an LED from the side. An additional filter was used to achieve a dark field
environment and an additional lens was added to the attachment, improving the

collection efficiency of the fluorescent signal.
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Figure 13. (Top) Giardia Lamblia cysts that are imaged using the fluorescent cell-phone microscope. (Bottom)
Microscope objective (10, NA % 0.25) images of the same samples are also provided for comparison purposes. (46)

In 2011 Ozcan’s group published an evolution of the same setup — optofluidic
fluorescent imaging cytometry (47). Instead of the steady sample slide, a microfluidic
channel with a sample in motion was installed. The video analysis of the particles
could estimate with fair precision the density of white blood cells in human blood

samples.

In the same year, another group from the University of California joined the race and
presented similar concepts of mobile microscopy and spectrography (48). The
difference in their approach was use of typical optical elements (i.e., lenses,
transmission grating) to achieve the desired functionality. In the case of microscopy,
they used a 1 mm diameter ball lens to achieve about 350-times magnification (Figure
14). To use the phone as a spectrometer, they first attached a transmission grating
and then another slit with a width of approximately 1 mm at the distal end of the
tube. Using this setup, they reported a 300 nm bandwidth with a limiting spectral

resolution close to 5 nm.
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Figure 14. Top panel shows the cell phone microscope achieved by adding a ball lens to the cell phone camera
system. Lower panel shows the cell phone spectrometer, constructed by adding a grating and collimating tube to
the cell phone camera.(48)

In the following years Ozcan’s group continued presenting new solutions for detecting
different particles and medical conditions like Escherichia coli using quantum dots
(49), a food allergen testing platform that images and automatically analyses
colorimetric assays performed in test tubes (50) or albumin testing in urine using its

auto fluorescence (51).

Over the next few years, the number of applications of smartphone readout systems
multiplied in fields such as clinical chemistry (measuring levels of glucose in whole
blood (52), serum (53), and urine (54) samples) , immunoassays (avian influenza (55),
sexually transmitted diseases (56, 57)), nucleic acid detection (HSV-2 (56), single
molecule of HCV (58)) and biosensing (detection of L-lactate in oral fluid and tears
(59), sensitive measurements of pH (60), detection of cholesterol (61) or steroid

hormone (62)) .
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The imaging sensors in mobile phones have developed significantly in recent years.
However, the general construction and technology behind each upgraded model stays
mostly unchanged. While different camera modules are used in various smartphones
providing different specification and capabilities, their principles of operation are
almost identical. In this part we will present the typical smartphone camera sensor

and its most important characteristics.

A digital photographic camera is constructed of two general parts: the sensor and the
lens system. In the miniaturised smartphone environment these elements come
together on one small chip. In smartphones, CMOS technology (complementary
metal-oxide-semiconductor) won over the competitor CCD (charged-coupled device)
sensor manufacturing technology because of CMOS’s lower power consumption. Each
CMOS pixel is a photodetector that captures photons, amplifies the signal and
converts it to a digital form, so recording light intensity. To capture pictures in colour,
a colour filter array is used. The most widely used CFA pattern in the image acquisition
industry - a Bayer pattern is emulating the human eye (Figure 15). It employs a
repeating 2 x 2 pattern consisting of one blue, one red and two green (RGBG) filters
similar to two cones collecting green spectrum data. Each colour filter physically
covers the area of one photosensitive pixel. The process of merging these 3 interlaced

channels in order to obtain a full-colour image is called demosaicing.

Demosaicing is a process of colour interpolation and can be performed using many
different algorithms like AMaZE (Aliasing Minimization and Zipper Elimination),
LMMSE (linear minimum mean square-error estimation), or EAHD (Adaptive
Homogeneity-Directed) to name just a few. The base of most of these algorithms is a
convolution of the original image with an appropriate kernel. Two kernels are
required: one (Fg) for estimating the missing green values and one (Fc) for estimating

missing red/blue values. These kernels for the linear interpolation are:

. 0 1 0 L 1 2 1
ngzx 1 4 1’FC=ZX2 4 2 (8)
0 1 0 1 2 1

and for the different type, cubic interpolation are:
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Afterwards, many methods use additional post demosaicing algorithms like Local
Colour Ratio Based Post Processing. The main goal of this algorithm is to correct
unnatural changes in hue by smoothing the colour ratio channels. For the moment, let
R(p,q), G(p,q), and B(p,q), be the functions representing the red, green, and blue
colour channels, respectively, where (p, q) is the pixel location. The first part of the
algorithm adjusts the green colour channel based on the red and blue colour channels.
The example is the equation (one of six possible combinations) used to adjust the

G(p, q) value according to surrounding B pixels at locations in C:

( = {(p +1, CI), (p' q+ 1)' (p -1, Q)' (p' q-— 1)} (11)

S BB
G(p.q) = —F+1G(p,q) + fl X mean = (12)

where 3 is a nonnegative constant, as defined by the normalized colour ratio model

(63). Corresponding equations are applied to all combinations of channels.

Despite all the efforts in developing better demosaicing algorithms, some typical
problems can still be seen. False colour artefacts manifest along edges, where the
interpolation algorithm stepping across the edge fails. As a result, we can observe
slight discolorations around the edges, or false colour changes on and around small

objects. The other common problem is a zippering artefact, which is another name for
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edge blurring that occurs in an on/off pattern along an edge. It results in blurring the

edges through adding gradating coloured borders.

Smartphone manufacturers do not reveal which demosaicing algorithms were used in
their products. Due to the fact that most of them suffer from the same issues, it will

be desirable to avoid edges when performing colour assessment.
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Figure 15. Structure of a CMOS manufactured photosensitive imaging sensor with the close-up on the Bayer Mosaic
filter (64).

The most recognised characteristic that describes the camera is its number of
megapixels, which is the number of millions of photodetectors in the array. Early
smartphones were equipped with sensors of a size of about 0.2 Mpx. This number
rose quickly to a typical size between 12 and 16 Mpx, with bigger matrices presented,
but not popular. It is important to understand that the number of megapixels is not
the most important factor determining image quality. Nevertheless, we will be using

native/maximal image resolution settings to maximise the number of pixels to analyse.

Probably the most important physical characteristic of the sensor from a scientific
point of view is the pixel size. The larger the pixel size is, the more photons it will be
able to collect, which translates to better signal collection in low light level situations.
Currently, we can observe a trend of increasing pixel size, with a typical size of about

1.6 microns compared to about 1 micron from couple of years ago.
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The focal length is the exact distance where the lens focuses light rays, hence where
the sensor needs to be. The focal length determines the field of view and the
magnification of the imager. With the technological progress over the years, lens
design has evolved from a simple double Gauss or Cooke triplet to many moulded
plastic aspheric lens elements made with varying dispersion and refractive indices
(Figure 16). Smartphone cameras with the focal length between 24-30 mm (of
35 mm-equivalent focal length) fall into the wide-angle lens bracket. Both field of view
and magnification are very important factors in terms of mobile microscopy. A wider

initial angle typically means a larger field of view in digital zoom conditions.

Lens G5
Lens G4
Lens G2

Lens G6

Figure 16. Modern, complex set of lenses in a smartphone’s camera (64).
Last but not the least physical feature of the phone camera is its aperture or f-number.
The f-number is a ratio between the focal length (f) and the size of the aperture (D),

and tells us how much light can pass through to the sensor.

N = (13)

O |~

An f-number N=2, commonly named f/2, denotes that the focal length is twice as large
as the aperture. A higher f-number has a wider depth of field, typically sharper

images, less chromatic aberration and weaker bokeh (blur effect in planes that are out
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of focus). Smartphone manufacturers tend to keep the f-number about /2, which
allows more light to hit the detector for better low light level imaging, while keeping

previously mentioned parameters at satisfactory levels.

The process between capturing photons by an imaging array to the final image file as
we can see it on the smartphone or the computer is complicated and realised of many
steps. Each step can introduce its own errors or intentional changes, resulting in a
different image. This makes comparing different images a complex procedure. Here
we will try to analyse subsequent steps and their influence on the image.
Unfortunately, manufacturers do not provide detailed information about each step

and do not grant any control over many of them.

First, we need to realise that the smartphone camera is not designed for scientific use.
We can only use options and functions that are provided by the manufacturer and the
software company. We do not have free access to all the variables and theoretical
functionality that could be possible, as for instance DSLR cameras are providing.
Secondly, these cameras are designed to take the most appealing photographs, not
the most accurate images. This means that, even though natural tone of colours is one
of the factors being evaluated by the DXO mark (65) (the largest company comparing
photographic cameras and smartphone cameras), many manufacturers will choose to
saturate their colours, or add softening filters to the images, to make them more

attractive rather than accurate.

The factors that have influence on the image can be divided into four main categories:

hardware, software, user influence and environment influence.

Different smartphones are equipped with different sensors, from different
manufacturers. Currently, the biggest provider is Sony with its IMX series, which can
be found in almost every new flagship model of the largest smartphone
manufacturers (for the list of sensors and smartphones that used them please refer to
Wikipedia (66)). Sensors can be sorted by their price/quality but also date of release,
providing different characteristics. Even phones with exactly the same sensor can at

the end produce significantly different images: for example the IMX362 sensor used in
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the HTC U11 phone scored 90 points in the DXO test, while a Google Pixel 2 phone

with same sensor scored 98 points (65).

A second significant hardware stage is the Image Signal Processor (ISP). Its primary
task is to perform demosaicing, which is interpolating colours based on the readout
from Bayer pattern. This step on its own can be performed with different nuances as
discussed above. In addition, this stage more and more often is responsible for
autofocusing, exposure and white balance, as well as correcting for lens imperfections

like vignetting or colour shading imparted by the imperfect lens system.

Here, the hardware stage fluently mixes with the software stage. After the initial
signal processing corrections, a second round of edits are done on the regular
processor of the phone, which can be influenced by the software or the user.
Parameters like colour saturation, brightness, shutter speed, ISO setting or more
complicated image processing algorithms like High Dynamic Range (HDR) imaging, are
controlled and applied. Using all these variables, the automatic algorithm tries to
capture a picture with the best quality. Subsequently all the aesthetic changes to the
image are applied, like additional denoising or sharpening filters, changes to the
colour saturation, etc. Some of these parameters can be user-controlled in manual

mode, so the automatic software actions are now mixed with influence from the user.

Before the button is pressed and the (digital) shutter ‘opens’, most of the stock
camera applications on the smartphone allow manual setting of some of the
parameters of the image acquisition and processing. Depending on the application,

automatic or manual setting may be desirable. Some of these options are:
ISO

In traditional analogue photography, ISO was a parameter describing film sensitivity.
The same variable was transferred to digital photography, changing to
sensitivity/increasing amplification of the sensor. Digital sensors have their sensitivity
determined by the exposure required to produce a given characteristic of the output
signal. Out of five possible methods presented by ISO, only two are now common:
zero-bias photovoltaic mode resulting in a photoelectron build-up on the output, or

reverse-biased photoconductive mode where absorbed photons release a
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photoelectron that directly contributes to the current flowing through the diode. The
current readout is sent to the analog-to-digital converter, which results in higher
exposure received and a brighter pixel. ISO speed ratings are expressed in terms of the

luminous exposure H:

qLt

H=N2

(14)

where L is the luminance of the scene, t is the exposure time, N is the aperture f-

number and

q =7 Tv(0) cos* (15)

is a factor dependent on transmittance of the lens T, the vignetting factor v(6) and
the angle relative to the axis of the lens 6. ISO is often measured using the exposure
required to saturate the photosites - the depletion region within the photodiodes on
the sensor. According to the standard ISO 12232, the equation to define saturation-

based speed is

78lx's
Ssat =

(16)

Hsat
where Hy; = Lgge X t. The number 78 is chosen to deal with specular reflections that
would appear brighter than a 100% reflecting white surface. The value of Sg,;

(rounded to the closest standard ISO number) is an ISO determinant. (67).

The higher the ISO number, the more sensitive a sensor is, e.g., ISO800 is 8 times more
sensitive than ISO100. One must bear in mind that while a higher ISO value amplifies

low signals, it also amplifies the noise.
Shutter speed

In smartphone cameras there are no physical shutters. The shutter is initiated by
simply turning the sensor on and off. For the ‘faster shutter’, the sensor is active for a
shorter period of time and collects less light. If this setting is user-controllable on the
phone, it is very desirable to select long exposure times for static low light level

imaging so that as much signal as possible is collected.

White balance
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White balance is an extremely important algorithm that helps to achieve natural
colours in photography regardless of external illumination. Human sight has such a
compensation, and even with significantly different illumination we can recognise
colours properly and perceive them normalised to some extent. A linear and
straightforward digital sensor initially sees colours as they are and needs white

balance to imitate human ability to adjust to the illumination ‘colour temperature’.

The colour temperature describes illumination in terms of the spectrum of light which
is radiated from a blackbody with that surface temperature. Figure 17 shows that a
temperature of about 5000K has an approximately even distribution, which results in
colour close to white. Temperature closer to 3000K has significantly more of the red

wavelengths, whereas a higher temperature of about 9000K illuminates more in blue.

relatve intensity

Figure 17. Normalised spectra of intensities of different colour temperatures, in kelvin .(68)

Table 1.Typical names for white balance compensation options

Colour Temperature Light Source

1000-2000 K Candlelight

2500-3500 K Tungsten Bulb (household variety)
3000-4000 K Sunrise/Sunset (clear sky)
4000-5000 K Fluorescent Lamps
5000-5500 K Electronic Flash
5000-6500 K Daylight with Clear Sky (sun overhead)
6500-8000 K Moderately Overcast Sky
9000-10000 K Shade or Heavily Overcast Sky

White balance is a compensation of the temperature of the scene illumination to
minimize unwanted colour cast on the image. Automatic white balance is a procedure

performed by the camera by finding a neutral colour region (grey or ideally white) and
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‘guessing’ scene temperature to be able to normalise all the colour channels properly.
Typically, the user can define one of the preloaded scene illumination schemes
manually. They are represented either by the temperature value or by a typical light

source for common lighting conditions, as presented in Table 1.

White balance is the camera’s most powerful reaction to the last group of factors
influencing the image: environmental factors. The temperature and intensity of the
illumination are the most important of these factors in both photography and
scientific use. To cope with this issue, one more concept - the standard illuminant — is

needed. We will discuss it shortly.

All elements presented so far are crucial for proper imaging and need to be in perfect
balance to take a proper and accurate photograph. The image obtained this way then

needs to be saved.

The standard file format for non-lossless photography is JPEG. JPEG stands for Joint
Photographic Experts Group, the name of the committee that created this lossy
standard of compression. The compression is based on the Discrete Cosine Transform
(DCT), justified using a perceptual model based loosely on the human psychovisual
system, discarding high-frequency information, i.e., sharp transitions in intensity and
colour hue. This standard gained popularity for two reasons: the degree of
compression can be adjusted, allowing a selectable trade-off between storage size and
image quality; and it still achieves very good image quality even with lossy
compression of about 10 times in size. For more technical information about JPEG

compression, please refer to the specification (69).

A colour space is the defined range of colours in a given analogue or digital
representation. A colour model can be arbitrary, for example with specified colours

with names or numbers. Alternatively, a colour model can be structured
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mathematically, describing triplets of numbers with mathematically specified
dependencies to wavelengths or a different colour model, with a gamut positioned on
a CIE 1931 xy chromaticity diagram (like in Figure 19), which is called mapping. The
reference standard for all colour spaces was set in 1931 by the International
Commission on lllumination (CIE for its French name) (70), who were the first to
define quantitative relationship between distributions of wavelengths in the
electromagnetic visible spectrum and colours perceived by the human eye. The CIE
XYZ 1931 colour space is considered a full colour space, while most others can

represent only a defined subset of the full colour space.

The CIE XYZ tristimulus values are based on the cone responses of the human eye.
Each variable does not represent real colour (they cannot be generated in any light
spectrum). Instead, Y represents luminescence and the XZ plane will contain all

possible chromacities at that luminescence. XYZ values are given by functions:

X= [ Lepa(D)x(A) da (17)
Y= [, Leoga(Dy(D)da (18)
Z= [ Leaa(Mz(2)d2 (19)

Where L., is a spectral radiance, X(4), ¥(4) and Z(4) are the colour matching
functions shown in Figure 18, A is the wavelength of the equivalent monochromatic

light (measured in nanometres), and the standard limits of the integral are A €

[280,780].
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Figure 18. The CIE standard observer colour matching functions (43).

Since both the human eye and CIE representation have 3 variables, the visual
representation of this colour space should be three-dimensional. To conveniently
display such a 3D space, it is standard practice to present 2D graphs as chromaticity of
a colour specified by the two derived parameters x and y, two of the three normalized
values being functions of all three tristimulus values X, Y, and Z, for given

luminescence Y.

e
X = Xvez (20)
Y
Y = Xtv+z (21)
z
Z_X+Y+Z_1_x_y (22)

This procedure is widely used to compare colour spaces in practice, and such a graph

is presented in Figure 19.

Another important colour space, also defined by CIE is CIELAB (or CIE L*a*b)
introduced in 1976. CIELAB was designed to be perceptually uniform with respect to
human colour vision. It other words, it means that the function of the change of the
colour is linear in respect to the human perception, not with number of photons.
CIELAB colours are defined relative to the white point, so values do not define

absolute colours unless the white point is also specified. White point can be defined as
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one of the standard illuminants that we will describe shortly. The lightness value, L* is
normalised according to the white point and varies between 0 and 100 (100 being the
brightest). The a* axis presents the change between green and red, ranging from
negative values for green and positive values for red. The b* axis presents the change
between blue and yellow, ranging from negative values for blue and positive values
for yellow. Since CIELAB was derived from the CIEXYZ colour space, which is a basic
colour space, presenting transformation equations between them is the most typical

and the most commonly used. The CIELAB—CIEXYZ conversions goes as follows:

L = 116f (é) ~16 (23)
a* =500 (f (Xin) —f (%)) (24)
b = 200 <f (é) —f (%)) (25)

where
Vt if t > &3 o
t) =
f® L + 2 otherwise (26)
382 29
— 06
5=2 (27)

Here, X,,, Y, and Z,, are the CIE XYZ values of the normalised reference white point.

For standard illuminant D65 and normalisation to Y,, = 100, these values are:

X, = 95.047
Y,, = 100
Z, = 108.883

Smartphones typically save images in sRGB colour space. sRGB is a standard of RGB
proposed by HP and Microsoft cooperatively in 1996, subsequently standardized by
the IEC as IEC 61966-2-1:1999 [44]. The sRGB colour space defines a gamut of colours
that can be represented by 24 bit (8 bit i.e., 256 levels per colour channel)
chromaticities of the red, green, and blue primaries (Figure 19). Even though a
smartphone camera records in RGB, for the JPEG compression algorithm the image is

converted to the Y'CgCr colour space. Y'CgCr is a family of colour spaces developed
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specifically for compression, eliminating RGB system redundancy and allowing for

decreased resolution of single components. Slightly different spaces are used for

different purposes like analogue, digital or high definition television signal, or for the

most accurate retention of luminance information. There is also a separate Y'CgCr

colour space for JPEG format, tailored for the use of full 8 bit variables with its own

conversion equations expressed to six decimal digits of precision from RGB to Y'CgCr:

Y' =0+ (0.299 X R'y) + (0.587 X G'4) + (0.114 X B',)
Cp = 128 — (0.168736 x R'y) — (0.331264 X G'4) + (0.5 X B',

Cr =128+ (0.5 X R'y) — (0.418688 X G',) — (0.081312 x B,

and from Y'CgCr to RGB:
R'y=Y"+1402 x (Cp — 128)
G';=Y —0.344136 x (Cy —128) — 0.714136 x (Cr — 128)
Cr=Y'+1.772 x (Cg — 128)

where apostrophe denotes gamma corrected values.

(28)
(29)

(30)

(31)
(32)
(33)
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Figure 19. Comparison of some RGB and CMYK colour gamuts on a CIE 1931 xy chromaticity diagram. Blue
numbers represent corresponding wavelengths in nm of the colours at the edges of the graph. This diagram
displays the maximally saturated bright colours that can be produced by a computer monitor or television set.
Triangles represent the range of colours that each colour representation is capable of presenting (71).

A gamma correction is a nonlinear scaling used to adjust the linear colour
representations to a nonlinear one that better reflects the response of the human eye

to the digital screen. In case of SRGB, the gamma correction function was designed for

CRT displays.
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Figure 20. Gradients in linear colour grading (top) and sSRGB gamma corrected colour space (bottom).

Gamma correction is a function that enables use of more or fewer bits in extreme
areas. The human eye can distinguish more tones in very dark conditions than in very
bright. Once the gamma correction function gradually increases this tone resolution

with a darker image (Figure 20). The general gamma correction function is
Vour = Vin" . (34)
The curve on a log—log plot is a straight line, with slope equal to y. The sRGB colour

space though, has an untypical gamma correction, becoming linear after a specific

intensity. This is represented by the following formula:

12.92 100 Linear < 0.0031308
Iypop = 1 (35)
TN A+, —a, Linear > 0.0031308

where 1 represents RGB colour channel values and a = 0.055. This formula is
presented in Figure 21. The grey line presents the function for y = 2.2, which is a

common approximation of equation 34. In this study we have used the full formula.
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Figure 21. Plot of the sRGB intensities versus sSRGB numerical values (red), and this function's slope in log-log space
(blue), which is the effective gamma at each point. Below a compressed value of 0.04045 or a linear intensity of
0.00313, the curve is linear so the gamma is 1. Behind the red curve is a dashed black curve showing an exact
gamma = 2.2 power law (23)

JPEG compression requires conversion between RGB and Y'CgCg colour spaces. Since
different colour spaces represent different gamut and intensity resolutions, any
conversion between them needs a common standardised reference point. In fact,
even comparison of different images taken under different illumination conditions
within the same colour space, requires a common reference point. This is why in 1931
the International Commission on lllumination introduced standard illuminants (70).
An illuminant is a mathematical representation of a theoretical light source, used for
calculating tristimulus values from a spectrophotometric measurement. The relative
power distribution of a real light source might also be used for calculation, but is
difficult to standardise. The spectral power distribution varies between light types.
Daylight (illuminant D65), for example emits a relatively small amount of the UV light

and peaks around 460 nm, with slowly decreasing power for longer wavelengths. To
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determine an object's colour using a standardised method, calculations must be based

on one of the illuminants.

CIE has introduced a number of standard illuminants, for example: llluminant A that is
intended to represent typical, domestic, tungsten-filament lighting; llluminant C
represents average daylight with a correlated colour temperature of 6774 K;
Illuminant E is an equal-energy radiator; Illuminant series F models various types of

fluorescent lighting. Some illuminants are presented in Figure 22.

CIE standard illuminant D65 has now replaced illuminant C as a more accurate
representation of an average noon sky daylight. Its colour temperature is 6504K. It is
widely used for a general evaluation of colour, but more importantly it provides a
visual correlation with spectrophotometric readouts (for this colour temperature the
human eye perceives neutral colours), and introduces a standard for global industry. It
is also chosen to define the white point in SRGB colour representation. We will use
D65 illuminant to compare colours in all subsequent experiments, even if taken under

different, definable illumination, in order to keep a constant reference point.
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Figure 22. Relative spectral power distributions (SPDs) of CIE illuminants A, C, and D65 from 300 nm to 780 nm (72)
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Performing a spectrophotometric readout using a smartphone is in principle not very
different from a regular scientific readout. Quantification itself comes down to a
proper processing, analysis and interpretation of the output image. We will use the
phone to investigate assays that require either readout of intensity or readout of

colour.

In the case of fluorometry, the original red, green and blue colour channels for each
pixel of the image, each with a value between 0 and 255, in non-direct way represent
counts of photons of specific wavelengths (or spectra). Proper preparation of the
whole readout setup, then proper understanding of phenomena occurring in the
phone, and finally correct image processing and analysis of calculated signals, should
produce arbitrary values that will allow for quantification of emitted light; from there
an application of Beer-Lambert's law (explained in section 1.4) allows the designation

of the concentration of the target assay.

In the case of colorimetry, instead of measuring transmittance/absorbance of the
target at a given wavelength, the visible colour under given illumination conditions is
the determinant of assay concentration. By performing measurement using standard
illumination, and then additionally characterising that illumination, we can normalise

colours to allow reliable concentration detection

For both of these types of measurements, we can prepare working curves for each
assay type, mapping the properties of a prepared set of assays of known
concentrations, in the same way as would be done for a standard spectrophotometer

or colorimeter.
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Fluorescent assays are widely used across the life sciences. Fluorescent assay readout
can be carried out by a variety of devices. Most commonly, a microplate reader is used
where a number of wells (frequently 96) filled with the assay solution can be
examined at once (73, 74). In most cases, assay readout requires professional research
laboratory equipment. There is a need to develop easy to use, portable and affordable

systems for assay readout suitable for point-of-care applications.

In this work, we decided to develop a cell phone-based portable bioassay platform
with a goal of using a minimal number of additional components, and using commonly
available components where possible. Our final system uses a screen from a
commercial tablet as an excitation light source, linear polarisers that separate the
excitation light from the fluorescence signal being read out, a smartphone as a camera
that takes still pictures of an assay well, and a black box protecting the assay against
ambient light. Specialised software for the smartphone is not required and setting up
the standard commercial tablet and smart phone is straightforward. The assay
readout is simply carried out by taking an image of the assay well. After image
acquisition, the pictures are post processed to quantify the result. In order to assess
the system’s performance and sensitivity, two kinds of assays for the detection of
trypsin and collagenase were performed using this smart phone-based device. Both
used fluorescein isothiocyanate (FITC) dye as a reporter, which has an excitation peak

at 495 nm and emission peak at 519 nm (Figure 25).

The device used to perform the measurements was constructed as shown in Figure 23.
The well slide with assay samples was placed on the surface of the tablet screen with a
polariser on top. The excitation source was a bright single square displayed on the
tablet screen. The tablet screen used emitted linearly polarised light and the polariser

was aligned perpendicularly in relation to the tablet screen polarization. The tablet,
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assay well, and polariser were placed inside of a box with an opening for the camera;
this box shielded the detection system from ambient light. The phone was placed on

the top of the box, aligned to look through a hole to capture images.

phone

box

polarizer 7cm

well plate

tablet

Figure 23. Schematic diagram of the device, with the box shown cut away.

We will now discuss each of the elements separately, presenting them and their role.
Then we present the results of experiments to determine optimal conditions for the

final setup and then proof-of-concept measurements of real assays.

Commercial assays to detect collagenase and trypsin typically use a sandwich
immunoassay approach with two antibodies to analyse the amount of collagenase or
trypsin in samples. Radio-immunoassays have also been used to detect serum trypsin
level (75), however, fluorescent reporters, where a fluorophore selectively binds to a
specific region or functional group on the target molecule, are much safer and more
convenient to use especially in point-of-care situations. In this study we used
commercial assays for trypsin and collagenase with a very common fluorescein
isothiocyanate (FITC) dye as a reporter. This dye has excellent fluorescence quantum

yield, good water solubility, and it reacts with amino groups of most proteins. It is
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commonly applied in a variety of assays, including for FITC-casein (76), fibrinogen (77),
Ca2+-ATPase (78), NO (79), C-reactive protein (80), and many other biomolecules.
Figure 24 presents its excitation/emission spectra compared to the typical screen RGB

colour emission.
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Figure 24. Excitation and emission spectra of fluorescein in comparison to a typical RGB colour emission range for
LCD screens. Spectral data downloaded from Fluorophores.org.

The samples for the analysis were prepared as follows. We used the Pierce fluorescent
protease assay kit (catalogue #23266, Thermo Scientific, Inc. Hudson, NH, USA) and
type 1 collagenase assay kit (B-Bridge International, Inc., Cupertino, CA, USA,
catalogue #AKO7) and collagenase from Clostridium histolyticum (Sigma-Aldrich, St.
Louis, MO, USA, Sigma Prod. No. C0130). For the trypsin assay, trypsin solution with
different concentrations was mixed with FTC-Casein solution, followed by incubation
at room temperature for 60 min. For the collagenase assay, collagenase enzyme crude
from Clostridium histolyticum (Sigma Aldrich) was prepared at different
concentrations (60, 40, 20, 10, 5, 2.5, 1.25) ug/mL in TESCA buffer (50 mM TES,
0.36 mM calcium chloride, pH 7.4 at 37°C). The type 1 collagenase assay kit (B-Bridge
international, Inc. USA) was used to detect collagenase concentration in prepared
solutions. In order to prepare the substrate solution for the enzymatic reaction, 1 mL
of fluorescent-labelled collagen and buffer A (supplied in collagenase kit) were mixed
and kept on ice until needed. One hundred microlitres of substrate solution and
collagenase enzyme solutions with different concentrations were added into a
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microtube and mixed thoroughly. Samples were then incubated at 35°C for 2 h. Six
hundred microlitres of cooled buffer B (supplied with the collagenase kit) was added
to each tube and kept in ice for 15 min. All tubes were centrifuged at 10,000 rpm for
10 min. The fluorescence was measured from the supernatant (the liquid lying above a
solid residue after centrifuging). In order to perform measurements using the
smartphone system, solutions of trypsin and collagenase assays were added into 8
well chamber slides (BD Biosciences). Each well was a cube with a 9 mm size (Figure
25). Two hundred and fifty microlitres of solution was placed in each well and this

yielded 1.4 mm of the sample height.

Figure 25. Well slide used for measurement

The tablet used in our device was an Asus Nexus 7 (2013) with full HD (1200 x 1920)
resolution and an IPS-LCD screen. Its brightness at its maximum white output is
583 cd/m? (81). The tablet was set to display a single square on an otherwise black
background. The square was slightly larger in size than the single well being read out,
with a side 13 mm long (this is 165 px given the tablet specification of 323 PPI). This
square was blue, with an RGB value of (0;0;255). Since LCD displays work based on
emission through three different coloured filters, they emit light in three primary
colours in the RGB system, where each of the colours has its own emission spectrum.
A full range of colours is achieved using mixture of the three emitters with different

intensities. When displaying one of the primary colours, we are expecting only one
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emission peak. We measured the emission of the previously mentioned, blue-only

square with the spectrophotometer. This emission is presented in Figure 26.
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Figure 26. Emission of the blue only square presented on the screen of the tablet. The dip on top of the peak is due
to the sensor saturation.

The emission spectrum of the blue pixel of the tablet matches the excitation spectrum
of FITC very well covering the spectrum between 400 nm and 520 nm. The spectrum is
almost identical in terms of wavelengths, with slightly shifted peak value (Figure 24
and Figure 26). High brightness of the tablet screen (100%) was used in the further

studies, to induce the most FITC emission.

A polariser is an essential part of our device. The polariser used for this work was a
Moxtek PFUO4C wire grid polarizer, with size of 12.5 mm x 12.5 mm. This wire grid
polariser is characterised by high contrast, large acceptance angle, and broadband
performance. Due to this construction it has excellent durability and long lifetime, and

its crossed transmittance is low (0% to 0.5%). The polarizer was placed on the top of
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the well with the sample, to prevent blue excitation light reaching the camera and
interfering with the readout. Since the tablet screen was already polarized, only one
polarizer was used in this instance. In order to verify the effectiveness of this polariser
in blocking the excitation light, the following experiment was conducted: The blue
square on the tablet screen at its full intensity of 255 was covered with the polarizer at
90 degrees relative to the direction of screen polarisation (Figure 27). An image was
taken using the phone and the signals in the green and blue readout channels were
measured. In this case, we registered the mean green and blue pixel values of
respectively 7 and 9, which was about double the background noise value of 4.
Without the polariser the signal was just saturated, at 255. The difference of 3/255
levels bleeding into the green readout channel was smaller than 2% of the full signal.
The difference of 5/255 into the blue channel readout was also slightly smaller than
2%. The polariser was indeed effective to block excitation light. We note that the final
background noise measured with neutral fluid in the well in place was even lower, as

discussed later in the text.

Figure 27. The polarizer, crossed with the screen polarization, covering the blue square displayed on the tablet that
is an excitation source for FTIC. Surrounding colour is a black on 100% screen brightness. A small blue dot is visible
where the polarizer was damaged.

The box, even though obviously the simplest part of the setup, still served a couple of
important purposes. Most importantly, the box was protecting the phone camera
against ambient light. Secondly, the box supported the phone directly above the

sample and set the distance between the phone and the sample (placed on the
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tablet). The height, allowing the phone to properly focus on the sample, was set to

7 cm.

In this work, a HTC EVO 3D (X515) cell phone was used to capture assay images with
its built-in camera. The camera settings need to be controlled by the user to a
sufficient degree, and to ensure repeatable readout pixel intensities the settings for
the ISO value and the white balance were chosen manually. To determine the best
white balance option, an experiment was conducted where a green square (0;255;0 in
the RGB colour model) was displayed on the tablet screen, covered with the box and

images were taken using the phone with different settings.

a) auto - b) fluorescent

¢) incandescent d) cloudy

e) daylight

Figure 28. RGB values for images taken with phone with different white balance options, of green square displayed
on tablet screen.

We looked for the settings to provide the highest green pixel value and lowest red and
blue pixel values: Since we know that pixel readout in the sensor is based on physical

RGB filters, the setting that gives the simplest output is most likely the one that is the

62



least processed by photo enhancing algorithms, and therefore the least distorted to
provide an accurate readout. These conditions were best met by the ‘daylight” option.
Photos for different named white balance settings are shown in Figure 28, with Figure
29 showing a cross section through the ‘daylight’ image in Figure 28e, showing the

three colour channels separately.
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Figure 29. Cross-section through the green square displayed on the tablet screen for the optimal ‘daylight’ white
balance option, showing the three colour channels separately.

Figure 29 shows that indeed the green channel readout is close to maximum 255
counts, while both other channels have values of zero or close to zero. The slight
increase of all the channels close to the border is a result of slight bleeding of
neighbouring pixels and imperfection in focus of the image. Non-zero values of the
black areas displayed around the green square are a consequence of the noise of the
camera and the fact that in contrast to AMOLED displays, LCD screens cannot
completely turn off the black pixels, and thus some light is bleeding through them. It
appears that the bleeding is stopped when the strong green light is emitted through
them on purpose.
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The settings for both ISO and image resolution were chosen to be the maximum
available. An ISO value of 800 provided images with the highest amount of signal,
without introducing significant noise that would interrupt measurements. The image
resolution of 5 Mpx was native to the camera, and choosing other resolution would be
just downscaling of the saved image rather than increasing photon detection

capabilities.
All the options that could be manually set are presented in Table 2.

Table 2. Manual camera settings for image collection of the used HTC Evo3D smartphone.

Phone camera setting option

ISO 800
White balance daylight
Image resolution 5 Mpx
Flash off
Automatic correction off
Automatic sharpening off

Once the parameters were determined, testing of initial ideas and basic characteristics
began. Here we will describe the initial concept verification, as well as some ideas that

finally were replaced with other solutions.

The standard configuration for a smartphone camera is focus at infinity. This design
assures proper focusing on objects at different distances (with the help of active
focusing), above a certain minimum. This ‘minimum focus distance’ in our case is

about 7 cm.

Experiments using smaller distances were conducted while searching for the simplest
setup. With a smaller distance, the sample will be out of focus, but given that we don’t
need to spatially resolve within a sample but rather just tell one sample from its
neighbour, this is not necessarily a problem. First, the smallest possible distance was

tested, using the smartphone directly lying on the tested object (which at the time
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was a green square displayed on the tablet screen), with two images shown in Figure
30. The difference between the two displayed intensities of the square was clearly
recognisable, and most of the internal surface of the shape had uniform texture that
could be used as an area of analysis. However, this idea was abandoned for other
practical reasons; it was too easy to break the polarizer or violate the sample with this

contact method.

The next attempt was taken from the distance of about 2 cm, where the whole square
of the final size was visible on the picture, shown in Figure 28. This idea was replaced
with a proper focus distance, since once the phone needed to be separately supported
away from the sample, there was no particular advantage in simplicity using 2 cm

rather than the in-focus distance of 7 cm.

Figure 30. Images of the green square taken with the phone in contact with the screen displaying the square. Upper
image: 100% brightness, lower: 10% brightness of the screen.

Before starting measurements on actual biological samples, some tests of the system

behaviour and readout algorithm were conducted. The first most important question
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was whether the system will be able to reliably read out a simulated signal intensity

change and if this can be within biomedical standards of signal to noise ratio (SNR).

The following experiment was conducted. A green square of the size of the well was
displayed at the tablet screen, to simulate the fluorescence from an assay. The
intensity of illumination of the screen (brightness) was gradated from 100% to 0%
(there was still a discernible colour displayed at a setting of 0%) in steps of 10, and the
green channel response of the smartphone camera was recorded. The square was
covered with a different polariser (with higher transmittance but more resistant to
damage) to decrease signal intensity to test the system, but also to test the SNR
determinant of the readout. The signal strength here was about twice stronger than
the medical samples presented later, and so in the relevant range. The results are

presented in Figure 31.
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Figure 31. Test setup for green pixel intensity changes with respective SNR calculation.

As shown in Figure 31, the camera was able to detect changes in pixel intensity with
almost linear response. The signal to noise ratio was defined here as the mean
readout signal value divided by the standard deviation of measured pixels, and was
testing low light level readout distortions introduced by the sensor. The SNR
decreased with decreasing pixel intensity with a lowest value of 7. These results were

very satisfactory, and led to further investigation.

In the early versions of the algorithm, the signal level was acquired from the cross
section as presented in Figure 32. This method allowed us to measure the noise level
on the black part of the screen, and average over part of the signal area of the image.
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This method was replaced with analysis of a square area, with the greater number of
pixels in the averaging assuring statistically more accurate measurement. We also
used an independent background measurement, measured using a blank sample (well
filled with solvent) as a better estimation (one including the bottom of the well and

neutral in colour fluid) of the background in the area of analysis.
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Figure 32. Image presenting cross sections going through the sample. Parts marked in red were analysed as the
signal part. Noise from this part was used to calculate SNR. An additional cross section next to the sample was
tested to observe noise behaviour.

The last feature that was considered was automatic sample area detection. If the
excitation square was set to be larger than the polarizer size, it created a blue border
around the well (Figure 33). This border was attempted to be automatically detected
and treated as the cropping square for the Area of Analysis (AOA) determination. The
method however, proved to be imperfect, especially in cases of imperfect sample
distribution and polarizer positioning. This idea was later replaced with a manual AOA

selection for more control.
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Figure 33. Algorithm of automatic sample detection based on the blue border around the sample. On the left,
original sample image, in the middle mask created with detection of the blue elements, on the right: image cropped
with the mask.

In Figure 34 we present the block diagram of the protocol for taking measurements.
We previously described sample preparation steps. The data collection part including

the characteristics of each element was also already presented.

In a single well-slide (Figure 25) all needed concentrations plus an additional neutral
sample for the background signal can be prepared. Each sample was imaged two
times, assembling the whole setup from the scratch to give an estimate of sensitivity
to user - variables such as improper sample position on the screen, imperfect crossing
of polarisers. Subsequently, images were transferred to the Matlab script for data
processing. Each image was sampled three times with a reselected AOA window. The

final result is an average value of three measurements as described.
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Figure 34. The assay workflow.

Accurate quantification of the assay signal, especially at low analyte levels, was found
to require some additional image processing, which was performed in the following
way. The area of analysis (AOA) was determined from the original image. The AOA
used here was a 200 px x 220 px rectangle, cropped from the signal part of the image

(Figure 35a). Subsequently, the resulting image was split into 3 colour channels — red,
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green and blue. Since the signal emission for fluorescein is green, neither the blue nor
red channels contain useful response for our assays. The green channel was selected
for further analysis, and Figure 35b shows the intensity of green channel as a grayscale
image. In the next step, adaptive filtering (82) was used to improve image quality,

reduce noise and smoothing any artefacts appearing for instance because of the dust
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Figure 35. Image processing steps. (a) Initial image with the AOA rectangle highlighted; (b) Green channel image (in
grayscale) and a representative cross-section of screen intensity showing noise amplitude; (c) Image filtered with
adaptive Wiener filter and a representative cross-section of intensity showing noise amplitude; (d) Pixel intensity

map of the AOA after adaptive filtering.

The adaptive filtering used was a Wiener filter, which estimates the local mean and

variance around each pixel, as follows:

1
M= Wan,nzen a(nl; nz) (36)

and

0.2

1
= Wan,nzen a’ (ny,ny) — U-z (37)
where 7 is the NxM local neighbourhood of each pixel in the image a. We used

N = M = 9. The Wiener filter then creates pixelwise estimates:

b(ny,n,) = +2 yn (a(ng,ny) — W (38)

where y,? is the noise variance. The noise variance is the average of all the local
estimated variances. Figure 35d shows a typical AOA pixel intensity after Wiener

filtering. The results were considered reliable when approximately uniform intensity
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distribution across the whole AOA was observed without noticeable outlying peaks.

The filtering decreased STD by almost 20%.

The final algorithm step was added to cap individual pixel values at a level three times
the mean signal value, to prevent effects such from hot pixels. This level was chosen

after studying the occurrence of such hot pixels during the experiment.

The assay signals were produced in the following way from the green pixel values. The
average pixel intensity and standard deviation values were calculated from the assay
AOA after adaptive filtering. We then established the background by imaging the assay
well filled with buffer only without any fluorescent substances, again using an
appropriate AOA and adaptive filtering. The assay signal is the average pixel intensity
of the assay AOA minus the average pixel intensity of the background AOA. The SNR
was calculated for each sample as an average filtered pixel intensity of six
measurements (three of each image) with subtracted background noise and divided
by the standard deviation of mean values of the images for given sample. The low
detection limit was considered to be achieved when the signal to noise ratio had the

value of three.

Several different sets of samples were carefully prepared and examined using the
device described here, and also with a specialised fluorometer to compare our results
to the standard method. The results for trypsin and collagenase are presented in
Figure 36. Figure 36a shows the results of trypsin assay measured on our smartphone
system, while Figure 36b shows the same trypsin assay samples examined by standard
fluorometry. Another sample set with lower concentrations of trypsin were examined
in order to determine the low detection limit; these results are presented in Figure
36¢. (Error bars on data points appearing in both this figure and Figure 36a are the
same, but they appear larger than in Figure 36a due to a different scale on the vertical
axis.) Figure 36d shows the results for the same low trypsin density sample

characterised by standard fluorometry.
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Figure 36. Assay signal as a function of analyte concentration for trypsin and collagenase assays. Except panel c,
error bars are too small to be visible (a) Trypsin assay with smartphone device; (b) Trypsin assay with Cary Eclipse
readout with photomultiplier detector voltage option set to ‘Low’. Uncertainty of each data point is 0.1; (c) Trypsin
assay with smartphone device at low concentrations; (d) Trypsin assay at low concentrations with Cary Eclipse
readout with photomultiplier detector voltage option set to ‘Medium’. Uncertainty of each data point is 2.7; (e)
Collagenase assay with smartphone device; (f) Collagenase assay with Cary Eclipse readout with photomultiplier
detector voltage option set to ‘Low’. Uncertainty of each data point is 1.1.

Figure 36¢c, presents the lowest concentration measured with the smartphone -
1.22 ng/ml. The measured background noise of 4 was subtracted from the signal,
setting the lowest measured concentration to the value of 2.65 a.u. The standard
deviation between measurements, presented as error bars was 0.3 a.u, which sets the
value for noise to 0.6 (doubled STD). The Signal to Noise Ratio for this sample was 4.4,

which is close to the limit of 3. The total quantity of detected trypsin was 500 pg
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within a 250 pL sample. This value is comparable to the low detection limit of 400 pg
suggested in the manufacturer’s manual for the assay, which is based on the use of a
microplate reader. Thus, the presented device has been able to measure low

concentrations of trypsin in combination with fluorescein as a fluorescent reporter.

The concentration resolution for this measurement based on the measurement errors
was 0.14 ng/ml, which makes the sensitivity of the device smaller than the sensitivity
of the Cary Eclipse, which in general is a high-sensitivity spectrophotometer. This

resolution however, is more than sufficient for the medical use.

The examination of trypsin level in blood is a standard procedure for newborns,
because increased trypsin level may indicate cystic fibrosis (83, 84). The typical level of
trypsin for a healthy child below one year of age is below 200 ng/mL (83), while a
trypsin level in a range of 200-1000 ng/mL is an indication to carry out additional
tests. The detection range of interest for cystic fibrosis application is, therefore,
between 200 ng/mL and 1800 ng/mL (83). With our low detection limit of 1.22 ng/mL
the smartphone device is over 100 times more sensitive than what is required for the

detection of cystic fibrosis.

We now turn to the colleganenase results in Figure 36e. By using our device, we were
able to achieve the low detection limit for collagenase of 1.25 pg/mL with a SNR = 3
and standard deviation 0.23 pg/mL. This limit of 1.25 pg/mL corresponds to 0.31 pg in
total in the sample. The clinically relevant concentration range of collagenase in
synovial fluid is between 1.6 - 11.7 ug/mL in patients with rheumatoid arthritis and
patients with different grades of joint inflammation (85, 86). The sensitivity based the
error for this assay is 0.31 ug/mL. We see then that our low-detection limit
concentration of 1.25 pug/mL is just below the range of clinically relevant values. No
signal or our minimum signal suggests lack of the medical condition; anything higher
can be accurately quantified, allowing for instance for the differentiation between

inflammation class (85).

We emphasise that the device presented here is largely technology platform-
independent. Alternative cell phone models with a different camera can also be used

in this device, provided the camera can be prevented from making automatic
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adjustments of the relevant settings. For example, Apple iPhones and Android devices
(e.g., Samsung Galaxy series) are suitable replacements. Other types of mobile devices
can also be used as the light source in our setup, for example Apple iPads, Samsung
Galaxy Tab family, or even various models of cell phones. The key parameters
determining their suitability are screen brightness, colour projection (gamut) and
polarization of the screen. Many commercial devices are compared in relation to these
parameters on specialized Internet websites (81). In alternative devices with different
screen resolution or screen size, the size of the excitation square should be adjusted.
The screens in some mobile devices (such as iPads) produce light polarized at a 45-
degree angle, so the polarizer needs to be set properly for the excitation light to be
fully extinguished. If the screen is not polarized, or insufficiently polarized, then two

polarizers should be used.

We also emphasise that the system described here will tolerate various modifications
(e.g., excitation light wavelength, readout channel) without affecting core
functionality, and it can be can adapted to become a universally applicable
fluorescence detection device. Due to this flexibility, the device will also be able to be

used with alternative fluorescent assays and other fluorophores.

With increasing availability and wide adoption of smartphone technology, including in
the developing world, come new opportunities for their application in biomedical
diagnostics, with multiple authors reporting being able to use smartphone-based
systems for medically relevant assays (57, 87-90). However, in many cases, this
requires fairly complex technologies in addition to a phone. One of the limitations is
the sample preparation procedure required for specific assays, which usually is
managed by a specialised add-on “dongle” (57, 88) whose complexity depends on the
assay reporting scheme. For example, in (57), a silver enhancement step, following
binding of gold-labelled antibodies, required complex fluidics. The complexity of
fluidics grows with multiple requirements, especially if an analyte amplification step is
required (88). The readout itself is typically carried out by a combination of standard
optical components, such as excitation lasers, filters, and lenses (87), or optical filters
and optical gratings (89) with the phone camera only performing the function of a

detection device. In this context, the presented system for fluorescent assays sits at
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the lower end of the scale for complexity and cost. It uses the RGB channel split and a
polariser instead of optical filters and a screen as the light source. Hence, in the
present system, all required system engineering is contained in its software, which is

freely available at no cost.

An important outcome from this project is a standalone graphic-user interface driven
application for our system with all the required functionality to carry out assays. This
can be downloaded from the website http://cnbp.org.au/smartphone_biosensing. A
screen-grab from the application is shown in Figure 37. The application carries out all
the steps mentioned in the text, including calibration and background measurements,
and sample images used in this study are also supplied. With this software, any phone
or tablet can be tried to measure any fluorescein isothiocyanate (FITC) assay, so other

researchers can very easily employ and/or expand upon our work here.
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Figure 37. Main window of the application, presenting the image sampling area, showing the 3D graph to check the
usability of the image, with the final result presented and SNR coloured in green to highlight the readout
correctness.
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In the previous section we demonstrated that even without specialised attachments,
smartphones can be used to measure fluorescent signals such as those from chemical
assays in solution. In this section we take this idea further and apply the smartphone
technology to the area of colorimetric assays for disease diagnostics and monitoring.
Instead of using a specific light source and isolating the assay from ambient light as we
did in the previous research, we decided here to use ambient lighting, and to utilise
smartphone automatic image adjustments and additional colour normalisation to
achieve consistent results. Instead of avoiding external illumination by adding the
complexity of an in-system light source, we actively use external illumination and
measure and compensate for it. Use of specific standards enabled comparison of
assay samples between different photographs, captured under varying illumination

conditions.

Traditionally, colorimetric assays are quantified using direct measurement of
transmittance (or absorbance) at a given wavelength. We instead assessed assay
concentrations based on the normalised colour of the assay sample. We used a white
sheet of paper as a colour reference point and a system of software tests to indicate
to the user whether images have been taken under suitable conditions to assure

reliable results.

Here we focus on assays for the cytokine IL-8 and the protease enzyme neutrophil
elastase (NE), which both serve as reliable markers of inflammation in patients with
Cystic Fybrosis. Experiments were conducted on clinical samples in cooperation with

Telethon Kids Institute in Perth. Two popular smartphones were used as examples.

The idea behind this study was to test how well a phone can perform with real medical
samples of a colorimetric assay, without needing to build a physical setup nor use a
professional, expensive colour calibration device like Macbeth ColorChecker. A white

sheet of paper was used as a background for the photographs, serving as a reference
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point for colour correction. Samples were placed in standard 96-well plates. Then,
images were taken with the phone, ensuring that samples to be measured were close
to the middle of the image and that the white sheet of paper was visible somewhere
and not obscured by the plate. An example of the readout procedure is presented in

Figure 38.

All measurements of the medical samples were taken opportunistically during regular
tests routinely performed as part of the existing AREST CF early surveillance program.
Time sensitive samples were imaged between other measurements. These data
collection conditions did not allow us to take large numbers of images nor for example
vary lighting parameters, and some data points had image issues limiting the validity

of the results. These readout imperfections will be explained in the text.

Figure 38. Taking an image of the IL-8 sample. The sample to be measured is about in the middle of the image,
lighting is approximately regular, and the white sheet of paper is visible around the sides of the well plate.

Children with CF attending Princess Margaret Hospital for Children (Subiaco, Western
Australia) and Royal Children’s Hospital (Parkville, Victoria) were recruited to the

Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST CF) early
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surveillance program after signed informed consent for the use of samples in research
studies was obtained from a parent or legal guardians. The AREST CF early surveillance
program has been approved by the research ethics committees at each of the
participating institutions (Melbourne HREC25054; Perth 1762/EP). In the main
experiment bronchoalveolar lavage fluid (BALF) samples were tested from 32 children
with CF, prepared by instilling and aspirating normal saline into the right middle lobe
under general anaesthesia, during their clinically directed annual surveillance visit (91,
92). The second and third aspirates were pooled and centrifuged at 330 g for 5
minutes at room temperature. The resulting supernatant was aliquoted and

immediately stored at -80 °C.

Commercial assays for both IL-8 and NE were performed, and quantified in the
standard way using a measurement of the absorbance at a given wavelength. The
absorbance readings were performed on assay plates by a Multiskan FC (Thermo

Fisher Scientific, Waltham, MA, USA) microplate spectrophotometer.

IL-8 levels were measured using a commercial assay kit (BD OptEIA #555244, BD
Biosciences, San Diego, CA, USA), performed in accordance with manufacturer’s
protocol, including the addition of 50 uL 2 N H,SO, to stop the reaction before
measuring absorbance at 450 nm. The levels of NE were determined as previously
described (93). Briefly, 50 uL of sample BALF was applied in duplicate to a 96-well
plate. Added to this was 5 pL of a solution containing 1 mM n-methoxysuccinyl-ala-
ala-pro-val p-nitroanilide (Sigma Aldrich Australia, Castle Hill, NSW, Australia) in 0.2 M
Tris pH 8.0. After 40 minutes incubation at 37°C, the absorbance at 405 nm was
measured. Standard curves were prepared using the same approach, by using
solutions with known concentrations. Both IL8 and NE assays were performed in
Costar half-area 96 well plates (Corning Inc., New York, NY, USA). A new standard
curve sample set was prepared for each new batch of biological samples for both

assays.

To compare to this standard approach, we used the smartphone to assess changes in
the colour intensity as an alternate indicator of the biomarker concentration. In both
assays, the colour changes from very faint to more vivid yellow, with greater range for
the IL-8 assay. The IL-8 assay is stated by the manufacturer to be limited to a
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maximum detectible concentration of 0.2 ng/mL, which is insufficient for medically
relevant levels for Cystic Fibrosis evaluation. In our study, we prepared reference
concentrations much higher than this stated maximum, and measured them with our
system and with the standard absorption measurement method. We found that the
smartphone colour method could give reliable results far beyond the manufacturer’s

recommendations using the standard method.

The white sheet of paper served two major purposes in this study. First, since the well
slide with samples is transparent, it provides a uniform background for the
measurement. Secondly, it provides a colour reference point for the image
normalisation to allow comparison of colour intensity between different images. By
using a piece of paper as a white reference, working curves prepared in one set of
lighting condition can still be reliably used to interpret images of real samples taken
under different lighting conditions, by comparing the white reference in each of the

photos.

Ideally grey colours (including white) are characterised by all RGB channel values to be
equal (e.g., R=200, G=200, B=200). Not all the papers have the same colour though.
The colour of the paper can be described with three parameters: whiteness,
brightness and shade. The CIE measure of whiteness is a measurement of the light
reflected across the visible spectrum. For a perfect reflecting non-fluorescent white
material, the CIE L*a*b Lightness (L) variable has a value of 100. Many papers though,
have additions of Optical Brightening Agents (OBA) which are designed to absorb and
refluoresce the light from the non-visible range (mainly ultra-violet) back in the visible
spectrum. These papers might visually appear brighter, ‘more white’ for a human eye,
while in reality they will be reflecting/emitting more in the blue spectrum, deviating
from the reflection balance of white/grey colours. Brightness is a parameter that
describes the ratio between the amount of illumination and emission light of the
paper in the visible spectrum. By TAPPI standard (94), equal amount of light would
have a value of a 100, but because of OBAs, similarly to the whiteness, this indicator
tends to be slightly higher at about 110-120. Paper shade is again a measure of

reflectivity of the paper, but this time is not represented as a number but rather by
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the actual spectrum. The spectrum of a white/grey paper sheet will be about equal at

all wavelengths as presented on Figure 39a.
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Figure 39. Comparison of reflectance of a white sheet of paper (95) and grey series patches of the original macbeth
colour checker.

The ColorChecker chart, manufactured by Gretag Macbeth is commonly used as a
colour reference target for photographic and video production work. We measured
the reflectance of a grey series of this chart. Because of the similarity of the
reflectance of the neutral (in colour) sheet of paper, and Neutral-8 field in the original
Macbeth colour checker (Figure 39b), tristimulus colour value of this field was used as
a reference point. The colour of this field under Standard illuminant D65 in sRGB
colour space is R=200,G=202,B=202 (96). We used this point as potentially the closest
to the actual colour of the paper; however, any reasonable arbitrary reference colour

point could be used.

For our method, the brand of the sheet of paper under the wells should be chosen
that does not indicate ‘extra whiteness’, which in reality implies a blue tint. If stated
by the manufacturer, brightness and whiteness of 100 is desired. Other desirable
phrases that vendors might use include ‘true white’ or ‘neutral white’. If other type of
a white paper must be used, it would be necessary to create new working curves for

assays, for accurate concentration recognition.

In this study, we used two phones from the most popular manufacturers in Australia,

the US and the UK (97): an iPhone 6S (Apple, Cupertino, CA, USA) and a Galaxy Note 4
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(Samsung Group, Seoul, South Korea). Since we are using a single reference point for
the colour normalisation procedure, we are able to compensate for the white balance
only, not the complete colour response of the sensor. During our initial studies, we
discovered that the iPhone 6s saturates colours more intensely than the Galaxy
Note 4, which resulted in a different shape of the working curve prepared using
known concentrations of our assays. To avoid additional readout errors related to an
incorrect working curve function, we decided to use separate working curves for these

two phones.

The camera sensor originally captures light using RGBG (RGB with doubled green
sensor) as described in section 2.3. While undergoing internal image processing (which
is not disclosed by manufacturers in detail but we can suspectit to be based on
standard procedures), the signal is transferred to different colour spaces like Y'CgCr
(section 2.5.4), or probably CIE L*a*b for the white balancing (section 2.3). The final
image file, however, is again saved in sRGB. Using the colour space in which the
camera physically operates suggests the smallest distortions and data losses. sRGB
though, can be recalculated to different colour spaces, whose values can represent
different phenomena, be differently scaled, or differently processed, which might
provide a more accurate indication of the changes in the assays that we are trying to
guantify. We have considered some of the popular colour spaces to assess whether

they would provide a better indicator for assay concentration calculation.

To assess different colour models, we prepared an IL-8 working curve sample set as
instructed by the manufacturer, including additional concentrations higher than the
maximum stated by the manufacturer (Figure 40). We distinguish these samples into
two subsets: in part 1 — wells from 1 to 7, we cover the suggested concentration
range and the colour changes from bright to vivid yellow. In part 2 — wells from 8 to
12, we exceed suggested concentration range and the colour changes from vivid to
dark yellow. When discussing the results for different colour spaces we will refer to

part 1 and part 2 of the working curve sample set. The difference in the characteristics
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of the change of the colour for these two parts is very clearly distinguishable in most

of the colour spaces.

— SUggested working range s c— S atUrate ( se—
part 1 part 2

Figure 40. Working curve sample set for IL-8 assay. Wells from 1 to 7 are representing manufacturers working range
for this assay, wells from 8 to 12 are additional higher concentrations.

We measured this sample set using the manufacturer’s stated absorbance
measurement, using an Enspire 2300 (PerkinElmer, Waltham, MA, USA). Figure 41
presents this golden standard working curve acquired with the Enspire 2300 in
absorbance measurement mode. Despite obvious changes in colour characteristics,
the absorbance measurement does not provide differentiation for samples after

number 6, whose concentration is 0.2 ng/mL.

Subsequently, we measured all the samples using the Galaxy Note 4 (Samsung Group,
Seoul, South Korea) smartphone, following our protocol that will be described in the
next section. Each sample was characterised by 3 numbers, one for each RGB channel,
representing one colour in the sRGB colour space. Then, we performed recalculation
of the sRGB colours of each different sample into different colour spaces, acquiring
new tristimulus numbers appropriate to that colour space. We performed all the
calculations with respect to D65 standard illuminant. We examined each channel of all
resulting colour spaces to assess its usefulness in serving the purpose of a working

curve for this assay.

All the following graphs in this section will have the same X axis presenting
concentration of IL-8 assay in ng/mL. The Y axis will always present the value of the
specific channel of discussed colour space and will be presented in its own units. This
information will not be on the graphs to preserve space. The channel will be specified

in the title. The range of channels will always be specified in the text.
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Figure 41. Working curves acquired using Enspire 2300 absorbance mode at wavelength of 405 nm. Upper panel
presents absorbance of all assay samples (part 1 and part 2). Lower panel is presents only the working range
suggested by the manufacture (part 1 samples only).
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SRGB is the original colour space of the image saved by the smartphone. We already
described it in more detail in sections 2.3 - 2.5 as a native colour space in which
smartphones operate. For the working curve consideration, the colour of the assay
does not directly fit any of the RGB primary colours - yellow colour in RGB format is a
combination of the red and green primaries. RGB is an additive system, which means
that adding all the colours will result in white. This implies that change between faint
yellow and vivid yellow as seen in our assay will be encoded mostly in the third colour
channel — blue, starting with high values and decreasing with ‘whiteness’. All the

channels have integer values between 0 and 255.

sRGB - Red channel SRGB - Green channel
180 180
160 160
140 140
120 - 120
100 100

1 2 3 4 5 G 7 0 1 2 3 4 5 6

sRGB - Blue channel sRGB - Blue channel, close-up

Figure 42. Values for each channel of sSRGB colour space of consecutive samples.

On Figure 42 we can observe expected behaviour of all the colour channels. For
concentrations below of 0.2 we can observe fairly stable values of red and green
channels, with rapidly changing blue channel (close-up on Figure 42 — bottom right
panel). For higher concentrations, values of the blue channel are not usefully linked to
concentration any more. The blue channel has a variability of about 170/255 levels
which is about 65% of the full range. We can observe regions of useful change in green
and red channels. The green channel has a greater (60/255) variability than the red
channel (40/255) but both of them are less sensitive than the blue channel, and the

usefulness of both channels is limited to concentrations of under 3.2 ng/mL.
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HSV (hue, saturation, value) is a transformation of the sRGB colour space, and their
components are derived from sRGB components. In this model based on cylindrical
coordinates as shown in Figure 43, colours of each hue are arranged azimuthally
around a central axis of grey which ranges from black at the bottom to white at the
top, with colour saturation increasing with radial distance. HSV was an attempt to

accommodate more traditional and intuitive colour mixing models (98).

an|e

Figure 43. The HSV cylinder (99)

The computer science applications that favour the HSV colour model include object
detection, object recognition (face recognition), text, content-based image retrieval,
and analysis of medical images. Most of these uses however, are based on the
grayscale thresholding for which it is easier to use the HSV saturation component than
to analyse all three RGB channels. In colour recognition HSV is less efficient because of
the simplicity of its design (for low computational consumption). HSV often causes
confusion between parameters where a systematic change of one value does not
always lead to expected perceptual outcome. Calculation of the HSV values from sRGB

colour model goes as follows:
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( 0, if MAX=MIN oR=G =B
60°x (0 +——_), if MAX = R
MAX—-MIN
H: 60°><(2 +i), if MAX = G (39)
MAX—-MIN
o R—G . _
60°x (4+-——), if MAX = B
If H< 0°then H := H + 360°
0, ifMAX=0oR=G=B=0
SHSV:{% if MAX#0© R=G=B#0 (+0)
V= MAX (41)

The H component has values between 0° and 360°, but are presented here normalised
to between 0 and 1. The S and V values range from 0 to 1. In our case, determining
which component will be the best for the assay calculation is not obvious since white
and black are not at opposite ends of any component. Since the brightest colours are
at Saturation = 0, we are expecting the first part of the assay sequence to be encoded
here. Black colour is Value = 0, which means the second part of the assay sequence
should be decreasing in this component. All HSV channels for IL-8 assay are presented

on Figure 44.

HSV - Hue channel HSV - Value channel

02 08
0.18 07
016
06
0.14 ——
5 05 —e
1

1 2 3 4 5 3 4 5 6

HSV - Saturation channel HSV - Saturation channel, close-up

Figure 44.Values for each channel of HSV colour space of consecutive samples.
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As expected, we can observe that the Hue channel is not descriptive at all, sightly
oscillating around the value for yellow colour. The Saturation channel presents high
variability in the first part of the assay, covering over 80% of the range of this channel.
The Value channel responses to changes in the second part, but both ends of the
graph are very flat (have a small spectral resolution) and the whole graph covers only

18% of its range.

We described the CIE XYZ colour space in detail in section 2.5.2. Calculation of XYZ
values from sRGB channels requires two steps. Initially we need to linearize sRGB

using inverse gamma correction function:

Iff o2’ Ligep < 0.04045 .
Liinear = . 2.4 47
(l}?f%m) , Isrgg > 0.04045

where a = 0.055 and [ represents one of three RGB channels, followed by a matrix

multiplication of the linear values to get XYZ:

X 0.4124 0.3576 0.1805] [Riinear
Y| =10.2126 0.7152 0.0722||Giinear (43)
Z 0.0193 0.1192 0.95051 LBjinear

Since the CIE XYZ colour space is based on the cone responses of the human eye,
which is roughly similar to RGB in principle, we expect similar behaviour of these
channels. X and Y channels combined will produce a yellow colour, while the
remaining Z channel should manage its brightness. The unit of the tristimulus values X,
Y, and Z defined such that Y = 1 is the brightest white that a colour display supports.
The corresponding white point values for X and Z can then be calculated using the
standard illuminants. All the channels have a range between 0 and number close to 1

(depending on the normalisation). Outcomes are shown in Figure 45.
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XYZ - X channel XYZ - Y channel

XYZ - Z channel XYZ - 7 channel, close-up

Figure 45. Values for each channel of XYZ colour space of consecutive samples.

Despite similarities to the sRGB colour space, the XYZ is different in many aspects,
including greater gamut and different positioning of three variables in the general
colour space. Y is typically named Luminescence, Z corresponds to blue stimulation
and X is a mix of cone response curves chosen to be nonnegative. Channels X and Y
present variability across the whole assay, but covering about 30% of the range and
presenting rather low resolution. The Z channel behaves similarly to the blue channel
in SRGB, changing rapidly in the first part, but completely flatten for concentrations
higher than 0.2. The Z channel utilises about 35% of the range of the colour channel

for concentrations between 0 and 0.2.

We initially described the CIE L*a*b colour space in section 2.5.2. In short — it was
developed to match human vision, rather than present accurate linear light intensity.
The advantage in the case of our assay is that one of the channels represent lightness,

which should be an appropriate descriptor of the gradation of the colour in the assay.

Transformation from sRGB is not straightforward and consists of a couple of steps.
First we convert sRGB to linear RGB (equation 42) and derive XYZ values from linear
RGB values as in section 2.15.4. This is followed by the XYZ to LAB transformation

presented by equations 23-27.
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The Lightness channel has a range of 1 to 100, while both *a and *b components are
in a range between -128 to 127. LAB channels for our test assay are presented in

Figure 46.

LAB - Lightness channel LAB - A colour component

LAB - B colour component LAB - B colour component, close-up

Figure 46. Values for each channel of LAB colour space of consecutive samples.

The Lightness channel, as expected presents, differences in subsequent samples
across the whole range of samples, however its resolution is rather small covering
about 30% of the range of the channel, drastically flatting in the second part.
Component *b, which presents transformation between blue and yellow colour
presents a steep slope in the first part, with a range of almost 60/255 covering about
24% of the range of the channel. Component a* presented a negligible and irregular

variability.

YCbCr is another colour space that is derived from RGB colour space, described
previously in section 2.5.2. This space was mainly used for analogue TV signal
transmission and is not widely applied in computer applications. This is another colour
space that has a specific component describing luminance -Y, and so from its
definition, this channel might be expected to have increased resolution compared to

two other channels. Effectively the Y channel has a range between 16-235, while the
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Cb and Cr channels have a range between 16-240 (the remaining bits are used for

metadata information). Results for the YCbCr colour space are presented in Figure 47.

YCbCr - Y, luma component YChCr - Cr, red-difference chroma component

—

YChCr - Cb, blue-difference chroma component YChCr - Cb, blue-difference chroma component, close-up

-

Figure 47. Values for each channel of YCbCr colour space of consecutive samples.

The Luminescence component similarly to other colour spaces presents difference in
the first part where colour changes from bright to vivid yellow. The resolution
decreases drastically for the second part but would still allow detection. The useful
part of the signal covers about 30% of the range of the channel. The Cb channel also
shows good variability of the signal for the first part, with even steeper slope, but the

range of the signal in this channel covers only about 27%.

The ideal colour space for our assay would be one that would have an approximately
linear response in one whole channel, covering all the changes in colour with steep
slope and high dynamic range to assure high readout resolution. In reality, based on
all the readouts, we can realise that the assay can be clearly separated into two parts,
first where yellow colour changes between bright and vivid, and second where vivid

yellow turns to dark yellow.

Colour spaces offering greater gamut (e.g., CIE XYZ ) in reality did not provide it since

colours were calculated from smaller sRGB colour space. Since ultimately all the colour
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spaces offered 8 bits per channel, increased gamut decreased the resolution of useful

colours in it.

Some colour spaces like XYZ or LAB offered channels that were responsive to the
whole spectrum of changes of the sample. The resolution of these changes was small
though, potentially not providing good enough distinction between similar

concentrations.

Most of the representations offered a channel that present changes in colour in the
first part well. Colour spaces offering a channel of light intensity (HSV, LAB) were
expected to do well, although spaces with different channel division typically also

offered a channel that behave in the similar manner such as Blue in SRGB and Z in XYZ.

If the colour change of the assay covers significant range of the channel, it has a direct
influence on the steepness of the slope of the function that describes the change,
therefore on the effective resolution of the readout. The Saturation channel from the
HSV colour representation offered the best coverage of over 80% for the first part of
the assay. The second best colour space in the first part of the assay was the blue

channel from the original sSRGB colour space, offering coverage of over 65%.

The colour space that presented the best resolution for the second part (the last 6
samples) was the green channel from sRGB colour space with a dynamic range of
about 50/255, which is about 20% of the range. The second best was the V channel

from HSV colour space with a range of about 18%

The choice of the colour space was settled between sRGB and HSV. HSV offered
slightly better dynamic range for the first part, but slightly worse for the second. sRGB
had an advantage of being the native colour space of the camera meaning it did not
introduce any additional errors or limitations caused by the conversion to smaller
gamut or smaller bit resolution colour space. Also, sRGB for both assay parts provided
graphs with a more regular shape, which allowed for better function fit, decreasing

concentration interpolation errors.

Eventually, we decided to use the original SRGB colour space for concentration

calculation, using the obvious choice of the blue channel for low concentrations, but
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using a ‘greyscale value’ rather than the green channel for higher concentrations. To
explain this, consider the simulation below showing similar results to our assay
changes. Figure 48 on the X axis presents colour bar similar to the ones that can be
found in graphical programs, generated by the RGB functions presented on the plot.

At the bottom our sample set is there for comparison.

—Red channel

-~ -Green channel
—Blue channel
—Gray representation

w
o
o

channel intensity [a.u]
— M
o o
o o o
T T 31

Figure 48. Behaviour of all three RGB channels, (plus additionally grey representation) for the colour change from
faint to dark yellow, compared to IL-8 assay colour gradation.

As expected the first part of the graph is a change in the blue channel, while the
second part is covered by equal change of both green and red channels. The graph in
addition to the RGB colour channels, presents one more function — greyscale

representation.

Greyscale colour representation is not a separate colour space. It contains only one
channel of chromacity (Y), typically with 255 levels for 8 bit variable and shade
changing from white to black, with no colours. From sRGB it is calculated using a

simple linear equation (100):

Y =0.2126 R + 0.7152G + 0.0722B (44)

We see that the greyscale value is most strongly related to the green channel. Because
the value of the grey representation is also dependant on the blue channel, in the case
of our assay it has slightly smaller values than red and green channels. Because of
averaging between all channels, it is more resistant to small illumination temperature

changes than the green channel alone.
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2.16. Process for measurement and software for
calculating results

2.16.1.Taking an image
We describe the process of taking images, applied to clinical samples as well as the
previously presented working curve images. Separate assay plates with IL-8 and NE
were imaged on a white sheet of paper, using an iPhone 6S (Apple, Cupertino, CA,
USA) and a Galaxy Note 4 (Samsung Group, Seoul, South Korea). Sets of images of
assay plates were taken at a height of 20 cm, at approximately a 90-degree angle, such
that at least 9 wells on the microplate were imaged and the unobstructed parts of the
white sheet of paper were visible. Both smartphones had the cameras set to default
settings, including automatic exposure, automatic white balance, and autofocus. The
images were taken under office fluorescent lights (Figure 49). Our normalisation

procedure accommodates the most common illumination types like sunlight, cloudy

day and standard types of bulbs.

Figure 49. Sample image of the IL-8 assay photographed for the measurement.
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To enable absolute colour comparisons, standard illumination conditions have been
introduced, referred to as the D65 standard illuminant (24). D65 is a reference point
for the sRGB colour space and all further calculations will be processed with respect to

it.

The colours of an image captured with a smartphone can vary significantly not only
depending on the illumination conditions, but also on the device used. To quantify the
colour readout as objectively as possible, we performed several operations to relate

the captured images to a common benchmark.

The real image is modified by a smartphone and its camera application according to
the phone default settings. In particular, the smartphone software applies an
automatic white balance which estimates the illumination temperature and adjusts
the image colours to represent them in the “most natural” way (68). The image

brightness is adjusted by the automatic exposure time chosen by the smartphone.

In order to relate the smartphone-modified image to a common benchmark, we used
normalisation procedures based on the blank sheet of white paper. This blank sheet is
assumed to vyield standard RGB values (R =200,G = 202,B = 202) under
illumination of the D65 standard illuminant (24). We applied three different

normalisation procedures in each specific case as follows.

2.16.2.1. sRGB normalisation
Using these standard values, we recalculate all image sRGB values based on the
information taken from a section of our image showing the blank white paper. To this
aim, the image data in all three sRGB channels are multiplied by suitable correction
factors to enforce the sRGB colour values of the paper to be equal to Iref (R =
200,G = 202,B = 202, G = 202) where last G stands for additional channel for the
greyscale image calculated using equation 44. This operation provides two important
corrections: (a) it compensates for differences in the lighting temperature and/or
colour of light and for the smartphone image processing algorithms; and (b) it adjusts
image brightness of all images to a common level so that further analysis can be

performed.
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Our normalisation algorithm involves the following steps:
- The image is linearized using equation 42

- The user is asked to select a region of the image where the blank sheet of
paper is visible. If the illumination varies across the image the user must make this
selection where paper is similarly illuminated as the sample, typically just above or

below the sample (Figure 50a).

- This selected and cropped region is decomposed into separate RGB colour

channels.

- Additionally, this region is converted into a greyscale image using formula

equation 44, which creates an additional greyscale channel.

- The mean pixel value Ipapery;p; over the selected region is calculated for

each RGB and greyscale channels.

- The correction factor is calculated for each channel separately as follows

_ Ipapergrgpe
CfreBe = refrcne (45)

- These correction factors are then applied to the whole image.

IcorTrgpe = Irgrc X CfreBa (46)

- Corrected image Icorrggpc is delinearized using equation 35.

Figure 50. (a) Selecting an appropriate region of the blank sheet of paper to perform colour normalisation of the
image. (b) Colour corrected image, with lighting uniformity check line visible (procedure described in section
4.4.3.2.)
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2.16.2.2. Bradford normalisation with selected reference point
The second procedure in principle is very similar to procedure 1, but it uses different
calculations for the normalisation. Instead of working in the original sRGB
representation, the values of the sRGB are transformed to the XYZ colour space
including image linearization as presented in section 2.15.4. Then the Bradford
method is applied to scale (normalize) colours. The Bradford method is a chromatic
adaptation algorithm that can be implemented as a linear transformation of a source

colour X, Y, Zs into a destination colour X, Yy, Z,, by a linear transformation [M]

Xd Xs
Yo| = [M]|Y; (47)
Zd Zs

which are dependent on the reference neutral (Iref) and measured neutral

(Ipaper). The Bradford method defines the cone response with following matrices

o9
0.9869929 —0.1470543 0.1599627] |°S o
[M] =] 0.4323053  0.5183603 0.0492912|x [0 7= 0]x (48)
—0.0085287  0.0400428  0.9684867] | = o

Bs

—0.7502000 1.7135000  0.0367000
0.0389000 —0.0685000 1.0296000

0.8951000 0.2664000 —-0.1614000
X (49)

After normalisation, the image is transformed back to the linear RGB colour space

=1-0.9692660 1.8760108 0.0415560
0.0556434 —0.2040259 1.0572252

(50)

Glinear

Rlinear] [3.2404542 —1.5371385 —0.4985314]

Blinear

followed by the gamma correction to delinearize the image (equation 35)

The advantage of this method over the sRGB linearization lies in the cone response
which considers changes in all the related RGB channels for each given (even
monochromatic) illumination. In other words, a pure red colour illuminated on the
sensor based on the cone response (Figure 18) could have influence on the green

channel as well. In reality, we are observing images collected by the sensor, not the
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human eye. We do not know what demosaicing procedure was used in the
smartphone but we do know that red, green, and blue channels were collected
separately. Additionally, the blue channel that was used for most of the concentration
recognition has the smallest common part with other colours. Any increase in
accuracy of image normalisation for our use is expected to be small, with great
increase of computational power. This method was applied to iPhone 6 elastase
measurements since the colour change for this assay had the smallest range and we

tried to minimise all possible errors to maximise readout accuracy.

2.16.2.3. Bradford normalisation with thresholded reference point
This procedure is almost identical to the previous procedure with the difference with
respect to the treatment of the reference grey. Instead of selecting a section of the
white sheet of paper, the algorithm uses the mean values (excluding the 10% of
highest and lowest pixel values), of the whole image to estimate the greyscale level of
the image. This method assumes that most of the image shows the paper with just a
few small samples. This approach decreases the number of steps performed by the
user. It was applied to Samsung galaxy 4 elastase measurements for the same reasons

of accuracy and because of favourable conditions of the taken image.

Both Bradford methods were added to the system at later point, after the IL-8 assay
was tested. We did not repeat IL-8 measurements since the gain would be small and it

was not required by the assay.

Additionally, we perform an image check, to avoid incorrect readouts if the image

taken for analysis has detectable flaws. We reject the images in two check steps.

2.16.3.1. Incorrect automatic white balance
When the user selects area where the blank sheet of paper is visible, the algorithm
acquires RGB values for this part of the image (Ipaper). If any channel value is
different from the other two channels by 25 or more, it implies a significantly problem
with the phone’s internal automatic white balance procedure, which disqualifies the
image from being reliable for the measurement. We chose this number as 10% of the

range of 255 levels. The user is then requested to take another picture, considering
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visual correctness of colours visible on the screen of the smartphone, or changing
illumination conditions to one of the standards that camera compensates for correctly

(Table 1).

2.16.3.2. Significantly variable illumination
We also implemented algorithm checking consistency of the illumination across the
horizontal axis of the image. We check a horizontal cross section through the whole
image passing through the central point of the square that the user selected as the
white sheet of paper. This cross section is shown as a line on Figure 50b. The cross
section is filtered with a gauss filter (101) for smoothing. We used an overlapping
sampling window to acquire a mean pixel value from each 20 subsequent pixels,
moving the window by 10 pixels in each step along the cross section. This procedure
was applied from both ends of the image simultaneously, moving towards the centre.
The values returned by the window for each colour channel separately were analysed.
If the value was greater than 150 (towards white colour), the standard deviation of 20
pixels within the window is smaller than 3 (uniform surface), and the pixel values
differences between channels are not greater than 25 levels (grey colour), the sample
is marked as positive and the window is moved. If 5 consecutive samples meet these
conditions, the area is considered to be a sheet of paper. Based on these checks, the X
coordinate of the beginning and the end of what is detected as the sheet of paper is
recorded. The function returns colour values for all channels at the beginning and the
end of the detected paper and draws the line as shown on Figure 50b for visual
confirmation. If any of the channels has a difference between the beginning and the
end of the sheet of the paper greater than 15, the image is considered faulty because
of inconsistent illumination. The value of 15 was chosen based on the potential impact
on the readout in suggested conditions. If the sheet of paper covers at least 80% of
the image size and change of the illumination is fairly linear, it means that the colour
changes spatially about 1 level per size of the sample well. Assuming an attempt of a
proper normalisation where the section of the paper was selected with the same
illumination conditions (typically above or below the sample), it allows potential error

of about 1/256 level because of the illumination inconsistency.
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After the image is accepted and normalised, we perform sample readout. The
measurement starts with a selection of a rectangular Area Of Analysis (AOA) by the
user (Figure 51a). The AOA is a section with a single sample image cut from the image
captured with a smartphone (Figure 51b). Depending on the size of the image and
distance between sample and camera, different sizes of the cropping rectangle can be
chosen. We refer to the cropped image as CI. Py, ,,) denotes the upper left corner of
the cropping square. The resulting image is separated into 3 sRGB channel images
CIg + Cl; + Clp (Figure 51e), and recalculated to form an additional single channel of
greyscale representation Cl; (equation 44). All presented algorithms were applied to
the greyscale channel as well. Cl, represents one of the mentioned four possible

channels.

This step creates four square matrices of a given size. In the next step, adaptive
filtering is used to improve image quality and to reduce noise in each channel. To this

aim we apply a two dimensional Wiener filter (equations 36).
The Wiener filter then creates pixelwise filter kernels:

b(x,y) = 1+ 25 (Clon(x,y) — ), (51)

where 1 is the local mean, o2 is the local variance, and v? is the noise variance - the

average of all the local estimated variances.
This filter is applied to each channel separately (Figure 51f and Figure 51h)

Cllp = Clep * b(x, ). (52)
Here, CIF is the filtered image, * denotes the convolution operation and b is the filter

kernel.

Subsequently, a round binary mask is calculated (Figure 51c). The radius of the circle r
inscribed in the cropped square is slightly smaller than the half of the square side s so

the unwanted artefacts at the border of the image are eliminated

r < 0.98 x%. (53)

The mask is applied to each channel separately (Figure 51g):
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CIM =CIf, o M (54)

where M is a round binary mask with ones for pixels fulfilling the condition (equation

51) and zeros elsewhere and o is an element-wise multiplication.

(9)

Figure 51. Algorithm steps for probing. a) Selection of the AOA; b) Cropped image; c) Calculating a mask for the
cropped image; d) Simulated effect of a mask applied to each channel; e) Separation of channels; f) Filtering each
channel with the Wiener filter; g) Applying a mask to each channel; h) Cross section through unfiltered and filtered
image, (green channel).

Because the fluid surface in the well typically creates a meniscus, it behaves like a
wide-angle lens, creating visible reflections of any strong source of light around the
well. These reflections are visible as a colour change, introducing readout errors. To
overcome this problem, an additional anti-glare system was designed and applied. The
anti-glare system detects significant colour changes using Otsu’s threshold selection
method (102). Once identified, these areas are added to the mask and excluded from

the calculation area (Figure 52).
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(b) (d)

Figure 52. Resolving the problem of reflections. (a) Selection of the AOA, (b) magnified AOA with visible light
reflections, (c) Round mask with anti-glare system included, (d) Final mask applied to the AOA, excluding unwanted
regions from the readout.

The mean values of these prepared matrices are calculated

1 1
PCI-h = } §=1;2§=1Px,y,Ch = CIR, CIG,CIB, CIGR (55)

where P! denotes the mean pixel intensity, x and y are pixel indices and P, are the
nonzero pixels of the calculated colour channel matrix. The result of a single AOA is a
set of four numbers, one for each sRGB channels and the associated greyscale

representation value.

Here we summarise the procedure from the user perspective. The user carries out the
assay of the tested sample and takes a smartphone image. To this aim, the sample
well is placed on white sheet of paper, under fairly uniform, natural sunlight or
artificial interior illumination. In order to obtain the assay readout, the user uploads
the image to our program. First, the user selects an area of the image with the white
sheet of paper visible. It is always a good idea to select an area with illumination the
most similar to that of the sample to measure; typically, directly above or under it. The
image is normalised and displayed in a recalculated colour version. If the image does
not meet the quality criteria, it is rejected, with an appropriate message displayed.
Then, the user drops the floating window to identify the AOA on the sample image to
select it. The calculations are then performed automatically. The normalisation and
image processing procedures are executed. The values for the blue channel of sSRGB
representation and greyscale representation are acquired. The algorithm checks what
phone was used to take an image and checks which assay type the user chose. Based

on these variables the program proceeds with the correct working curve. In the case
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of the IL-8 assay, both blue and greyscale channels are investigated. When the
greyscale value is lower than 133 (for normalised image, meaning that the analyte
concentration is elevated above the regular range), the greyscale working curve is
chosen. The threshold value is chosen to be identical for both: Samsung and iPhone.
Finally, after the calculations are completed, the analyte concentration, potentially

with initial descriptive interpretation of the result, is displayed to the user.

The first experiment conducted was testing the smartphone readout under different
illumination conditions with and without our image normalisation procedure. The first
scenario presents the situation where images were taken according to our instructions
under fluorescent illumination in the office (D50 standard illuminant) and then under
sunlight illumination outdoors (D65 standard illuminant), but the normalisation
procedure was skipped. Only the smartphone’s white balancing and automatic
adjustments took place. Secondly the same images were normalised using our sRGB
method and measured afterwards. We used consecutively increasing concentrations
of IL-8 for this measurement. The results are presented in Figure 53. Please note that
the IL-8 assay used for these test was prepared following different instructions than in
all other presented experiments with medical samples, and therefore concentrations
had different signal levels. However, the shape and behaviour of the channels for the
working curves are similar, and so the results are relevant to our general

measurements.
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Figure 53. Consecutive IL-8 concentrations measured with two smartphones. Solid lines represent measurement
performed in the office, dotted line outdoors. Empty markers are for the blue working curve, solid markers are for
the grey working curve. Top graph shows raw smartphone data while the bottom shows data after our

normalisation procedure.

Presented in Figure 53, measured points were taken from different images, which

means that phone could perform slightly different adjustments to each one of them,

so allowing the greatest change of us observing an inconsistent readout. The first set

of curves (empty markers) is for the blue channel readout, while the second (solid

markers) is for the grey channel - as used later to prepare working curves. The top
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panel shows that the iPhone kept its automatic adjustments more regular,
consistently lowering (but decreasing the difference with the increasing
concentration) the blue channel readout compared to the measurements taken under
artificial light. The Samsung phone initially lowered the readout values for the first
four samples to match it later for both illuminations. The amount of the yellow colour
(higher sample concentration) appearing in the image appears to have been changing
Samsung’s adjustments. The mean standard deviation between data points for the
iPhone measurements for original images was 4.20 for blue data points and 7.15 for
grey (5.68 average for both), while for the Samsung phone was 5.11 for blue and 5.77

for grey channel data points (5.43 average for both).

The bottom panel presents the same data points after image normalisation using our
SsRGB method. In the case of iPhone outdoors measurements, readouts were
increased by a mean value of 9.9 (blue), 7.3 (grey), 8.6 (both), while the indoors
measurements on average were increased by 2.0 (blue), 2.5 (grey) and 2.28 (both).
This suggests that automatic adjustments of the iPhone were better under the
artificial lighting — probably because it was more standardized than unknown

conditions of the sunlight.

For Samsung measurements, the mean difference between raw and normalised data
for measurements taken outside was 5.1 (blue), 2.3 (grey) and 3.7 (both), while inside
the numbers were 3.3 (blue), 5.1 (grey) and 4.2 on average. The internal adjustment of
the phone for images taken indoors were more accurate for the blue channel;
however, the grey channel difference was higher (one of the other channels was more
skewed). The mean difference for external measurements was smaller than the

iPhones for the blue channel, but higher for the grey, hence for both.

The mean standard deviation between data points between additionally normalised
images taken outdoors and indoors decreased to 0.70 (blue), 1.05 (grey) and 0.88
(averaged) in the case of the iPhone and to 1.57 (blue), 1.39 (grey) and 1.48

(averaged) in the case of Samsung phone.

The experiment was conducted in clearly different but fairly standard illumination

types. Neither artificial light nor sunlight can be assumed fully known, because of the
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many differences in bulbs and reflections, or altitude and weather conditions, but they
should be close to estimated expected conditions. Both phones applied their
automatic white balances and other adjustments and as shown in Figure 53 top panel,
they both did a reasonable job. However, a standard deviation of 5.68 with maximum
difference between same samples of 24 levels (for grey point) for iPhone, and 5.43
standard deviation with maximum difference between same samples of 22 (for blue
channel) would introduce a significant error in the concentration readout. After our
additional normalisation procedure, mean standard deviation decreased over 6 times
in the case of iPhone to the value of 0.88 and over 3 times for Samsung measurements
to the value of 1.48. The maximum difference between the same samples were
respectively 3.38 (grey) and 4.32 (grey), decreasing respectively over 7 times for the
iPhone and almost 4 times for the Samsung phone. The mean difference between
same sample points for the original data and treated with our normalisation algorithm

is 1.7 for the iPhone and 2.4 for the Samsung phone.

The blue channel normalisation went better than the grey channel. Since the grey
channel is a combination of all the available channels, one of the remaining green or
red channels must have had greater variation. In conclusion, the normalisation
procedure in tested conditions did not provide ideal results, but decreased potential

errors 4-7 times, bringing colour readouts very close to each other.

We now move on to present more detailed testing and benchmarking using clinical
samples and procedures described in section 2.14.1 and steps presented in the section
2.16. Separate working curves, as described were generated for each smartphone and
the assays tested. We found that the blue channel of the sRGB colour space provided
the best resolution and detection range for most the IL-8 standard curve (Figure 54
and Figure 54c) and for the entire NE standard curve (Figure 54e, Figure 54f).
Therefore, the blue channel was used in all algorithms across most of the examined
concentration ranges. However, we found that at concentrations of IL-8 higher than
0.1 ng/mL, the results of the smartphone assay were represented more accurately by
the greyscale channel (Figure 54b, Figure 54d). Therefore, the algorithm for IL-8

incorporates the results obtained from the blue channel at lower concentrations (up
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to 0.1 ng/mL) and from the greyscale channel elsewhere (up to 3.2 ng/mL). The
working curves have swapped axes due to better function fits for data arranged this

way.
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Figure 54. Standard curves generated by the algorithm for (A) Galaxy Note 4, 1I-8 assay, blue channel for low
concentrations; (B) Galaxy Note 4, II-8 assay, greyscale channel for high concentrations; (C) iPhone 6S, II-8 assay,
blue channel for low concentrations; (D) iPhone 6S, II-8 assay, greyscale channel for high concentrations; (E) Galaxy
Note 4, NE assay, blue channel; (F) iPhone 6S, NE assay, blue channel
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We then used the described smartphone algorithms to calculate the concentration of
standard solutions based upon the image analysis of those wells in the 96 well plate.
The corresponding standard working curves were also produced for the IL-8 and NE
assays using the standard approach of microplate spectrophotometry. These are
compared in Figure 55. Close agreement between the standard curves of the
smartphone algorithms and the spectrophotometer (Figure 55) was found within the
working ranges of the spectrophotometric assays (0 — 0.2 ng/mL for IL-8 and O -
6.25 ug/mL for NE). We emphasise that the working range of the IL-8 assay read by
the spectrophotometer is lower than typical values in clinical BALF samples (mean
0.23 — 1.11 ng/mL dependent upon infection, (103)). However, our smartphone assay
does not have this limitation and it is able to reliably measure IL-8 up to 3.2 ng/mL.
(Figure 54b and Figure 54d) For the NE assay, the spectrophotometric readout gave a
working range of 0 — 6.2 ug/mL and both smartphone types had a similar working
range (0.4 — 6.2 ug/mL).

The smartphone working curves were taken in best-case uniform illumination
conditions. The comparison of the working curves (Figure 55) should be treated as the
accuracy capability of the smartphone sensor in close to ideal circumstances. The
following examination of medical samples was executed in the opposite worst-case
situation of non-uniform illumination and with images containing many samples. Non-
uniform illumination decreases the accuracy of white paper correction (samples under
a slightly different illumination because of a significant distance from the reference
point). Many samples on the same image decreases the accuracy of smartphone

automatic correction (images contain larger regions of colour influence).
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Figure 55. Concentrations of the (A) IL-8 and (B) neutrophil elastase (NE) standards were calculated (y-axis) from the
working curves of each device using raw image analysis date (iPhone 6S; Galaxy Note 4) or absorbance values
(Multiskan FC) and plotted against the actual concentration of the solution (x-axis). Error bars for the IL-8 plot are
small enough to be covered with data points. The last data point for the IL-8 concentration of 0.4 falls out of the
Multiscan range. The iPhone working curve for IL-8 changes at the 0.1 ng/mL concentration to grey channel, where
the fit has decreased accuracy, hence calculation imperfection.

We finally studied the 32 BALf samples from clinical trials using the IL-8 and NE assays,
measured with both the smartphone and standard spectrophotometry. The
concentrations of IL-8 and NE calculated by the smartphone algorithms were

compared to the gold standard spectrophotometry analysis using Bland-Altman plots
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(Figure 56). The Bland-Altman plot is a graphical method of comparing two
measurement methods, plotting differences between corresponding points against
their average value. This figure shows good agreement between both readout
methods in the working range of the spectrophotometric assay for IL-8 (0-0.2 ng/mL).
The corner figure presents the same graph with an addition of higher concentration
samples measured by the phone, but saturated at the constant value by the

spectrophotometer (hence increasing the difference).

2

0 0.2-1
E

(=)}

c  0.11
®

-

= 0.0 -OW.
1)

2

o -0.17
£

a -0.2-

0.00 0.05 0.10 0.15 0.20 0.25
Average (IL-8 ng/mL)

’_ET 5_ .................................................
k=) ® o %
=1 ® [ ]
% a
;— 0_. ..... . ............ O ..............................
: o ©
3 ° 4
© | O
=
O _5-
T T 1
0 2 4 6

Average (NE ng/mL)

Figure 56. Calculated concentrations of IL-8 and neutrophil elastase (NE) using smartphone image analysis were
compared to Multiskan FC spectrophotometer measurements by Bland-Altman. A) IL-8 concentrations as measured
by Samsung Galaxy Note 4 (closed circles) an and iPhone 6S (open circles); B) NE concentrations as measured by
Samsung Galaxy Note 4 (closed circles) and iPhone 6S (open circles). The thick line represents the mean difference,
and dashed lines represent limits of agreement.
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Small and regular differences can be observed in a range between 0-0.14 ng/mL for
the 1I-8 assay. For higher concentrations, readout imperfection, especially for the
Samsung phone can be observed to overestimate sample concentration. This results
from the change of the working curve at this signal intensity to grey, for which
dynamic range is significantly smaller than the blue ones (deviation from the pixel
value causes larger change in the concentration readout), and the function
approximation slightly deviates from the designated points (Figure 54b). The working
curves could be adjusted for the higher accuracy in this region (probably
compromising other regions) if this would be preferred. The average difference
between the spectrophotometer and the phone readout was 16%. The additional
corner figure presents a number of samples that were measured with the phone but
could not be measured with the spectrophotometer. The highest measured

concentration of IL-8 in clinical sample was 1.77 ng/mL.

Concentration determination resolution can be derived using the working curve and
the difference between readouts. The maximum difference from the first experiment
of 4.32 counts translates into a difference of 0.0032 ng/mL. The mean error value
from the Bland-Altman is 0.018 ng/mL, which can be translated into a difference of 26
counts. This difference will be explained in the discussion. Both are more than

sufficient for the clinical use.

For the NE assay, once samples were in the detection range of the device, the samples
were correctly recognized as positive (indicating the medical condition), but with low
accuracy. This lower accuracy for the NE assay is due to several factors. The overall
colour intensity of the NE assay and its variation with analyte concentration is smaller
than in IL-8 case, and more difficult to read. The whole range of tested concentrations
have a blue channel variation of 30 levels, which is 4 times less than IL-8 for low
concentrations and about 6 times in total (including grey working curve). Since our
normalisation procedures are basically the same, it is safe to assume similar errors.
Average difference between the spectrophotometer and the phone readout was 60%,
which is presented on Figure 56b and as large error bars on Figure 55b. This could be
addressed by changing the assay chemistry. Secondly, the microplate

spectrophotometer used in the laboratory to read assays carries out the absorbance
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measurements. The change in diffuse reflectance which is measured by the
smartphone reflects varying absorbance, but not in a proportional way and in the high
absorbance range the reflectance changes tend to be small. Finally, the most accurate
smartphone readout requires that the sample well is located in the middle of the
image. In this study, nine sample wells were analysed from a single image which
caused additional readout errors for the off-centred sample wells. Due to working
curve and interpolation imperfection in the case of the iPhone measurement, these

introduced larger errors than the Samsung phone.

Here we demonstrate that it is possible to measure clinically relevant levels of CF
biomarkers using commercially available assay kits and a smartphone with custom-
made software. We tested two common smartphone brands, whose differences in
sensor response were managed by using separate working curves for each brand.
Higher accuracy of the smartphone readout, especially for the NE assay, is anticipated
under standardised illumination that excludes external sources of light. Overall, the
accuracy of the smartphone readout is sufficient to distinguish concentrations of IL-8
typically seen in BALF from CF patients (103). For example, elevated IL-8
concentrations above 550 pg/mL may indicate ongoing infection and/or inflammation
(103). In the case of neutrophil elastase, free activity is not present in the normal lung
and is predominantly undetectable in the first years of life with CF (104). Studies
identifying NE activity as a predictor of structural and functional lung disease (105)
have utilised spectrophotometric measurements with a lower limit of sensitivity than
the smartphone approach (~0.1 pg/mL versus 0.4 ug/mL respectively). Therefore, a
measurement within the range of the smartphone standard curve (ie > 0.4 ug/mL)
would still serve as a useful indicator of inflammation and potential structural disease

progression.

This initial study to assess the potential of smartphones to read laboratory assays does
have several limitations. We did not assess a large set of samples, but instead
opportunistically imaged assays that were being routinely performed as part of the

existing AREST CF early surveillance program. This means we cannot interpret the
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ability of the smartphone measurement to replicate prior established associations

between these biomarkers and disease.

We performed this assessment under conditions that were on the edge of the
rejection algorithms. Because of the large number of samples on each image, the
automatic adjustment of the phone was often normalising to the yellow cast of
samples, which was not indicative of illumination colour and was causing automatic
white balance to fail. Images were taken in changing illumination conditions, which
can be observed on Figure 50a (yellow tint from the sun on the left and blue tint from
the bulb on the right). Finally, because of the large slide of wells, not every image had
the required white sheet of paper with the same illumination condition as the
measured sample. If samples were measured in stable illumination condition and in
small batches, this would increase accuracy greatly. Initial experiments where samples
were measured under different illumination conditions, proved that the normalisation
method works well even for significant illumination changes if images allow for a
proper execution of the procedure. Results presented on Figure 56a should be
considered as close to the worst case scenario. This figure presents only correlation
between working range for both devices. We again state that spectrophotometer is
not able to read concentrations high enough for clinical BALF range detection (mean
0.23 - 1.11 ng/mL dependent upon infection, (103)), while the smartphone can (Figure
54).

The simplicity of the proposed method causes many potential errors (like previously
mentioned irregular illumination, improper photograph, reflections in the sample etc.)
to occur and sum up, even if they are recognised and taken care of. These errors, even
combined — if significantly smaller than the signal range, will ensure proper readout
with sufficient confidence, like in the case of IL-8 assay. If the signal range is small, like
in the NE assay, the same errors will make accurate concentration determination

impossible.

There remain additional obstacles to the application of CF biomarkers in routine home
monitoring. Firstly, lung sampling is limited in the first years of life to invasive methods
like bronchoalveolar lavage and regular non-invasive monitoring of lung disease only
becomes possible once induced or expectorated sputum becomes tolerable. Exhaled
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breath condensate is an alternative modality for non-invasive sampling, although
biomarker concentrations can be orders of magnitude lower than BAL or the source
airway fluid (106). This poses the additional issue of biomarkers being below the limits
of current assay detection, even using expensive laboratory equipment such as
spectrophotometers or plate readers to obtain the assay readout. Secondly, assays to
detect biomarkers are often technically challenging or require specialist materials to
achieve accurate results. However, many of these factors can be overcome with a
dedicated approach. For example, the development of mobile testing kits such as the
pin prick blood glucose test for diabetes (107), has demonstrated that it is possible to

adapt clinical tests to make them available for at-home diagnostics.

Beyond the specific setting explored in this study, our findings further add to the
burgeoning field of innovating point-of-care testing for use in low resource areas
(108). It has been recognised for several years that improving diagnostics in these
areas offers significant potential in improving global health outcomes (109). Many
other respiratory diseases also feature NE activity as a key pathological mechanism
and of these, chronic obstructive pulmonary disease (COPD) poses an enormous
burden (110, 111). Therefore, the refinement of our methodology into a non-invasive
biomarker assay of neutrophil inflammation severity that can be performed anywhere
but is accurate and prognostically relevant, may be of significant value in

complementing COPD care in low resource areas.
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In this chapter we presented two different readout systems based on smartphones as
the main (imaging) sensor. Each system was designed to measure a different type of
assay, and compared with measurements from the 'gold standard' device. In both
cases the aim was to minimise the number of physical additions to the system,
keeping the measurement as simple as possible for the user. Both systems were
tested on medical assays, and the colorimetric system was also tested on actual
clinical samples. They both achieved very good results compared to gold standard
devices, with the colorimetric system additionally extending useful range of the assay
by 18 times. Both systems acheived these results at very low cost, assuming the user
already has a smartphone. A flow-chart for the fluorescent system was presented in

Figure 34, and a flow-chart for the colorimetric system is presented in
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Figure 57 below.
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Figure 57. Flow-chart for the colorimetric system.
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3.Fluorescence lifetime imaging using a single
photon avalanche diode array — Cancer

detection based on NADH state

Fluorescence lifetime imaging (FLIM) is a technique that provides a spatial map of
measured lifetimes, typically presented in the form of a colour coded image. FLIM can
be applied to measure any process that influences the excited state fluorescence
lifetime. It is often used for in vitro, live cell or live animal (in vivo) measurements. In
contrast to other fluorescence-based microscopy approaches, measurements of
fluorescence decay times depend on relative intensity values, therefore are largely
unaffected by many factors that limit steady-state intensity measurements (112): the
lifetime of the fluorophore does not depend on excitation power, angle, scattering,

obscuring fluids or (within limits) the concentration of the fluorophore.

The most popular use of FLIM technology in biology is FRET-FLIM measurements. In
FRET, some part of the energy is transferred in a nonradiative way from a donor
fluorophore to an acceptor chromophore. This process causes a reduction of the
donor’s fluorescence lifetime, that can be measured in comparison to a control group.
FRET is only observed at distances from 0-9 nm between two reagents. This distance is
about equal to the range of protein size, hence occurs only upon physical interactions
between donor and acceptor molecules. By binding proteins, DNA or lipids to acceptor

and donor chromophores one can study molecular interactions in single cells.

Since FRET bases its signal on pairs of interacting fluorophores, anything that can be
bound with suitable pairs can be imaged using FRET-FLIM, and the wide selection of
such pairs broadens the possible applications. Some of the most common pairs are

Fluorescein-Rhodamine (113) calcein-sulforhnodamine B (114) , and Cy3-Cy5 (115)

One of the phenomenon that can be studied using FRET-FLIM approach is the Protein-

Protein interactions scheme. Epidermal-growth factor receptor (EGFR or ErB1) is a
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protein for which abnormal expression can signal Alzheimers disease or a variety of
tumours. A series of phenomena in living cells were observed using FRET-FLIM, like
oligomerization (116) and phosphorylation (117) of EGFR, or propagation (118) and
signalling (119). FRET-FLIM has been also proven to be useful in monitoring

interactions between key proteins involved in Rab-prenylation disease (120).

Another branch of biological application of FRET-FLIM is DNA analysis. Properly
stained, individual nuclei reveal non-homogeneous FRET patterns, allowing them to be
visualised (121). Another study showed that SYTOX-dyes (a high-affinity nucleic acid
stain) and fluorescently-tagged proteins can be monitored to observe DNA-protein

interactions in single cells (122).

It is possible to perform quantitative FRET-FLIM analysis. FLIM can provide a
quantitative estimation of the FRET signal arising upon the formation of a protein
complex, and can also be utilised to measure intermolecular distances. Assuming two
lifetime states: a non-interacting unquenched donor and an interacting quenched
donor, deconvolving FLIM data allowed observation of the phosphorylation state of

ErbB1 receptors tagged with green fluorescent protein in breast cancer cells (123) and

phosphorylation of EGFR (124).

3ns

Figure 58. FLIM-FRET analysis of Cowpea protoplasts co-expression for various fluorescent proteins, expressing
different lifetimes. (125)
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Using fluorescent dyes that react with specific ions allows measurement of local
concentrations of such ions with FLIM (Figure 58). For instance, calcium can be
guantified by measuring increased fluorescence lifetimes of calcium-green or Quin-2
(126) or Calcium-Crimson upon calcium-binding (127). Dyes with a pH-dependent
lifetime like BCECF enable identification of microdomains of two distinct pH values
within the uppermost layer of the epidermis (128), or carboxyfluorescein to image
deep microbial biofilms (129). The usefulness of the fluorescent probe RTDP for the
guantitative imaging of oxygen in single cells was investigated utilizing FLIM. The
results indicate that the fluorescence quenching by oxygen is a dynamic quenching
process but simple calibration techniques allow for the oxygen concentration

quantification (130).

The ethidium blue fluorophore is an example of a dye which when bound to DNA
expresses a different lifetime than when bound to the membrane. This difference was
observed using FLIM to discriminate between these two (131). The same phenomenon
was used to study the chromatin-conformation in living cells using green fluorescent

nucleic acid stains like SYTO13 (132) or YOYO-1 (121).

As a final example area, FLIM techniques were implemented in various skin and tissue
cancer detections, targeting different autofluorescent molecules. In 1993 scientists
found that tumours (ovarian carcinoma) marked with photosensitisers reveal strongly
extended fluorescence lifetimes (133). In 1997 a different group used a CW laser with
a wavelength of 514 nm to excite flavins in the human bladder, using frequency-
domain FLIM (section 1.8) to record areas with differences in lifetimes, indicating
tumorous tissues (134). Scientists from London in 2013 showed that malignant and
benign breast cancer tissues can be recognized by the difference in autofluorescence
lifetime (135). In February of the next year, a different group from University College
London published a paper where they distinguished lifetimes between two spectrally-
identical molecules: NAD (which is a key determinant of cellular energy metabolism)
and its phosphorylated form NADP (which plays a central role in biosynthetic
pathways and antioxidant defence). The results suggest that enzyme-bound NADPH
has a significantly longer fluorescence lifetime than enzyme-bound NADH within the

cellular environment. The proportion of enzyme-bound NADPH and NADH present in
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live tissue (on cellular level) determined the lifetime of their combined fluorescence
decay (136). One more British group from Imperial College London presented a non-
microscopic system (with a field of view larger than a centimetre) to detect cancer
regions in tissues, fitting a single-exponential curve to the externally gated (using gate

signal intensifier) signal, recorded with a CCD camera (137).

In our work, we will measure fluorescence lifetimes using a Single Photon Avalanche
Diode (SPAD) sensor array. SPAD sensors (section 1.8) have gained attention because
they are small, easy to integrate in a large array, and are insensitive to magnetic fields,
making them suitable for medicine and space applications (138). From the early 2000s,
it was possible to fabricate SPADs in standard CMOS technology. Researchers started
to develop compact and cost-effective SPAD image sensors in different CMOS
technology nodes, typically optimising one parameter sacrificing efficiency of others.
Dozens of chips in different CMOS production processes like 800 nm (139), 350 nm
(140), 180 nm (141), 130 nm (142), and 90 nm (143) were presented. A fair
comparison between them is not a simple task because of lack of unified tests and
rules. There are, however, some important standard properties that typically are

measured and presented.

e Photon detection efficiency (PDE) is defined as the ratio of the number of
detected photons to the number of photons incident on the photoactive area.
This ratio depends on absorption probability and on triggering efficiency (144).

e Noise is a complex matter and consists of the signal’s own Poisson statistics as
well as false counts. False counts that are uncorrelated to real counts are
called the Dark Count Rate (DCR), while correlated false counts come from
optical and electrical crosstalk and afterpulsing (an improperly induced count
caused by the previous readout) (144).

e Dead-time is a delay enforced after each measurement in order to reduce

afterpulsing, at the cost of lowered count rate.
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e Timing jitter (photon-timing precision) is the statistical spread of the output
pulse compared to the true photon arrival time, and is quoted by the Full-
Width at Half Maximum (FWHM) of the distribution histogram (145).

e Fill factor is a ratio of active, photon sensitive area of the sensor compared to

the whole area.

SPADs optimised for best performance in any subset of these standard properties

might be desired for different applications.

Another important factor when comparing different SPADs is the number of single
pixels in the array. The great advantage of the CMOS process over regular custom
made SPADs is its scalability, enabling manufacturing of chips with a greater number
of pixels. Different sizes and shapes of arrays have been published, starting with the
small ones consisting of 8 pixels (146) or 32 pixels (4x8 array) (27), the most commonly
seen 32x32 pixels (147, 148), through to more irregular shapes like 4x112 (149) or
1024x8 (150), finishing with the largest arrays like 128x128 pixels, which sums up to
over 16,000 individual pixels (151).

SPAD sensors are commonly used in variety of applications where photon counting or
photon arrival time is required. In 2010 small SPAD array was used to present an
approach to high-throughput Fluorescence Correlation Spectroscopy (FCS) which
enabled a one order of magnitude improvement in acquisition time compared to
multispot confocal microscopy (146). SPADs have been proven to work in Positron
Emission Tomography (PET), providing required low-noise performance, precise timing
and very fine control over threshold levels (152, 153). The previously mentioned
sensor (150) was demonstrated to read Raman signals as well as serving as a Laser-
Induced Breakdown Spectroscopy (LIBS) system. SPADs were also reported to serve as
three-dimensional imaging laser radars featuring single-photon sensitivity (154)
(Figure 59), or phase-resolved imagers for extracting either three-dimensional depth-
resolved images or lifetime maps, by measuring the phase shift between a modulated
excitation light and the reflected photons (155). Finally, SPADs can be used to detect

fluorescence lifetime, as we discuss in the next section.
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Figure 59. Image of the Chevy van computed from range-coincidence processing acquired using the SPAD
sensor.(154). An example of using SPAD as a 3d imaging system.

Fluorescence lifetime imaging performed on SPAD sensors has been presented before,
though mostly as a proof of concept. Because of differences between sensors, there is
a significant variety of the designed scheme of operation, suitable applications, and
level of performance. In 2009 a group from Italy presented a 64 pixel SPAD, with
strictly limited number of 4 non-uniform gates in predefined positions, presenting a
measurement of Alexa 488 fluorophore with lifetime of 4.1 ns (156). In 2010 a group

from the UK presented more extensive lifetime determination research, measuring a

123



number of popular fluorophores in a range of 1.6 to 16 ns of decay time. The effective
pixel resolution of 32x16 did not allow for wide field imaging (157). The same group
proposed a different lifetime calculation method called the ‘center-of-mass method”
which was a hardware implemented method suitable for a single-exponential decay
time (158). Finally, in 2014 a group from Switzerland presented the largest SPAD array
to date, with resolution of 512x128 pixels, reporting measurement of four popular
fluorophores with single-exponential decay lifetimes (159). We used this sensor to

build our FLIM SPAD system

A typical FLIM system using a single detector employs a laser scanning microscope and
time-correlated single photon counter (TCSPC). While this is a powerful technique for
cell biology, its small field of view (typically less than 1 mm) and rather long scanning
time makes it impractical for imaging the larger areas of tissues. This issue, combined
with the relatively high cost, makes this approach impractical for many (especially

biological) applications.

We decided to build a FLIM system capable of detecting lifetimes in the
(sub)nanosecond regime, using the largest image sensor based on single-photon
avalanche diodes (SPADs) published to date (with a resolution of 512 x 128 pixels)
(159). By taking a series of gated measurements and changing the gate delay with
respect to the excitation pulse, fluorescence lifetimes can be retrieved for each
individual pixel. Over 65 thousand independent SPAD pixels creates a detailed spatial
map of fluorescence lifetimes in the field of view of the sensor. Our final system has a
large field of view of over 20 cm? which allows for imaging of significant areas from a
distance of about 20 cm. Detection of single exponential lifetimes allowed for lifetime-
based fluorophore determination, while a bi-exponential fit made determination of
mixed fluorophores possible. In the case of bi-exponential measurement it was
possible to estimate a quantitative ratio of two fluorophores. We used our system to
measure autofluorescent signals of reduced nicotinamide adenine dinucleotide
(NADH) in two forms — free and bound to L-Malate Dehydrogenase (L-MDH), where

the second form has prolonged lifetime. These two forms naturally exist in the human
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body and are related to the cell metabolism. Increased metabolism, leading to
increased level of bound form of NADH is a cancer determinant (160), and so our
guantitative measurement could be used as a real-time, in-vivo measurement

technique to visualise cancer tissues.

In the next sections, we present the basic design of our system, the detailed principles
of the SPAD array operation and its full characterisation, and our investigations and

validation of the best ways to retrieve single- and bi-exponential fluorophore lifetimes.

All our measurements were based on a similar illumination and timing system, but
using different samples for different experiments. A simplified scheme of the first
version of the setup is presented in Figure 60. A modelocked 10 ps pulsed 532 nm or
355 nm laser illuminated the sample as well as a photodiode that provides a timing
signal to synchronize the SPAD readout with the laser pulses. The sample emission
signal is filtered to block the excitation wavelength and collected by simple optics
attached to the FPGA motherboard board that houses and controls the SPAD array.

Now we will discuss all the elements in more details.

Sensor

Figure 60. Simplified image of the initial setup for measurements of a fluorescent plate with the SPAD-FLIM system.
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3.5.1. The SPAD sensor
In our studies we used SwissSPAD sensor (159). It is fabricated in a standard high-
voltage 0.35 um CMOS process. Each pixel has a side of 24 um with a round sensitive
area with a diameter equal to 6um. The nominal fill-factor of 5% was increased by
microlenses to up to 50 % (depending on the light distribution) of the pixel area for
the collimated light. The Photon Detection Probability with microlenses reaches 46 %.
it’s target wavelengths are between 400 — 850 nm. It has 1-bit memory and is driven

by a global shutter. The circuit of a single pixel is presented in Figure 61 (top)

VOP vDD TOPGATE R
SPAD Sel Out
Tl] |_Off 5 T6 —I T11
T Gate to output
registers

Memory

.
Pzl h{‘ AP L

512 x 128
SPAD pixel array

=
S
2
=
(7}
=
(1}
o
o
[}
bt
o
L
[}
o
o
o
7}
©
=
§o
o

Figure 61. Top: Transistor level schematic of the pixel circuit. The SPAD is shown together with its junction
capacitance. T12 can be used for passive quenching and separates the SPAD from ground. Transistors T1 and T2
control the SPAD bias and are used to switch the SPAD on and off. T4 controls the access to the NMOS-latch formed
by T7 and T8, loaded by T5 and T6. T9 is used to reset the storage latch, previously set by T3. Finally, T10 is used to
transfer the memory value to the output line through the row select transistor T11. Bottom: SwissSPAD die
micrograph with the SPAD-array in the centre and logic on three sides.

Transistors T1, T2 and T4 forms a gating circuit. Each cycle contains three phases — off,
recharge and gating phase. A cycle starts with gating turned off, followed by recharge
phase that restores SPAD to Geiger operating conditions and finally gating phase,
where the pixel can be triggered by an incoming photon (gating will be described in

more details in following sections). T4 prevents registration of false events from
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turning the SPAD on and off. Transistors T5-T8 form a 1-bit memory block that store
whether or not the pixel was triggered during the gating phase, and transistors T9-T11

are responsible for data readout.

An array of 512 x 128 pixels is formed on a chip as shown in Figure 61 (bottom). The
chip size is 13.5x3.5 mm? and it is placed on a FPGA board that runs it. To achieve high
timing precision such that all pixels are simultaneously active, matched signal trees are
used. The SwissSPAD can generate a maximum data rate of 10.2Gbps over the 128
output lines. Because of the USB2 limitation of 480 Mbps, grayscale images are first
stored in large SO-DIMM buffer DRAMs and subsequently transferred to the
computer. The most important parameters of the chip are presented in Table 3. For

more detailed information regarding the sensor, please refer to (159).

Table 3. Basic parameters and performance figures of the SwissSPAD sensor

Chip size: 13.5x3.5 mm?2
Technology: AMS HV 0.35 um 4M
Resolution: 512x128

Pixel pitch: 24 um

Fill Factor: ~40% (with microlenses)
PDE: ~15% (with microlenses)
Dead time: 100 ns

DCR (mean for pixel): 206 Hz

Target wavelength: 400-850 nm

The SwissSPAD chip is based on a FPGA board that provides computing power with
fast clocks to run the chip and additional peripherals like internal memory or I/O ports.
However, this integrated part is not the full system, but just a receiver. For proper
operation, external elements like power supplies, a laser, a photodiode or filters are
still required. The sensor is not a commercial product, but rather a prototype provided
to us by the AQUA research group from Ecole polytechnique fédérale de Lausanne. It
is not fully characterised nor repeatable, and hence before attempting reliable
readouts, optimal operating conditions needed to be established. Figure 62 presents
an early version of the setup connected to adjustable power supplies to control the
behaviour of the SPAD, computer power supply to power the FPGA board, and a fast

photodiode to synchronise the readout with laser pulses.
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Figure 62. The SwissSPAD sensor based on the FPGA motherboard, with cables connected to adjustable power
supplies and a computer power supply. Early version of the optical lens is attached. Fast photodiode synchronising
the readout pattern with laser pulses visible in the background.

The laser used in our setup was a pulsed, 10 picosecond laser with 80 MHz repetition
rate and maximum power of 2 W (Spectra-Physics VNGD200-80-HM532). The laser
excites the fluorophores, with the short pulse duration providing a sharp start-point
for their exponential decay. A beam splitter was used to deliver some of the laser
beam to a photodiode, which was terminated with 50 Q and was adjusted to produce
a response with the maximum value of 3.3 V. This signal was used to trigger the SPAD

cycles, synchronising them to the excitation time.

Details of the setup were changing depending on the experiment and will be described
in the appropriate following sections. In general, the laser synchronised the system
readout pattern and illuminated samples; emitted fluorescence was filtered for the
excitation wavelength and collected by optical elements that gathered it on the

sensor.

128



For final experiments, we generated a wavelength of 355 nm from the same laser, and

used this to excite NADH samples. To generate 355 nm, we used the fact that the laser

generates accessible output beams at both 532 nm and 1064 nm. The two pulses were

spatially and temporally overlapped using translation stages and a combining mirror

that was highly-reflecting (HR) at 1064 nm and highly transmissive (HT) at 532 nm. The

pulses were then focused into a Beta Barium Borate (BBO) crystal, cut for phase

matching of the sum-frequency generation process for the 355 nm wavelength. After

the BBO the beams are collimated and spatially separated using a Pellin Broca prism

(Figure 63).

355 nm generation H] BBO
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Mirror HR @ 1064 nm J/L

Pellin Broca prism

Beam block

- Collimating lens

<l  Focusinglens

1064 nm output

Mirror HR @ 1064 nm
HT @ 532 nm

532 nm output

Figure 63. Scheme of the laser setup for generating the 355 nm wavelength.

Mirror HR @ 532 nm
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The SwissSPAD sensor can operate in two basic modes: real time filming and time-
gated measurement. We used the time gated mode to develop our FLIM system only.

Time-gated mode of operation is strictly synchronised with laser pulses.
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Figure 64. Timing diagram for pulsed illumination imaging. The gating statuses (Off, ReChg, GATE) are derived from
the reference clock supplied by the illumination system (here a picosecond laser with 40 MHz repetition rate).
Output enable (OE) and reset (RS) signals are used to control the chip readout.

Figure 64 presents the timing of basic internal timing components in respect to the
laser pulses. Each gating cycle is constructed of three stages: off state, recharge state
and gating time. The timing of the gate with respect to the laser trigger could be
adjusted to allow sampling of the fluorescence as a function of time after the laser
excitation. The laser we used in our setup generated pulses at a rate of 80 MHz which
corresponds to 12.5 ns between pulses. This time was shorter than the minimum time
for the SPAD’s full readout cycle, and so we decided to trigger the SPAD at half this
frequency. By triggering off every second laser pulse, we treated the laser as 40 MHz,
with 25 ns between consecutive SPAD cycles. This procedure resulted in there being
two laser pulses within each cycle, and so depending on where the gate was
positioned with respect to the trigger, either one could be detected. For generating
the pulses for the gating sequence, the FPGA internal fast clock with a frequency of
200 MHz was used. It allowed us to adjust the timing of the gating signals at multiples

of 2.5 ns, with an additional fine shift (a single gating sequence step) with a resolution
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of a 256th clock period or around 20 ps. For a full period of the cycle (25 ns) we can
thus set 1280 different temporal positions (frames) of the gating sequence with a

20 ps resolution.

There are a number of settings that influence the sensitivity and readout capabilities
of the system, and we will now present the most important ones. All the data will be
presented for a single pixel; remember that all these procedures are performed

simultaneously on all pixels in the array.

During one laser cycle of 25 ns one single readout is performed. The sensor detects
photons only for during ‘gate’ state of each cycle which lasts for about 30% of the time
of the cycle (depending on the setting). Each pixel of the system has a 1-bit memory,
which means that during one cycle it can only record the detection or lack of detection
of a photon. If two photons hit the sensor during one cycle, this still counts only as a
single detection and our signal count becomes inaccurate: we want to keep the
probability of photon detection low enough to avoid this situation. Because the active
area of each pixel is about 40% (increased by microlenses), the time of the ‘gate’ state
is also a fraction of the whole cycle and biological signal levels are relatively low -

photon detection probability for each pixel is low, of order 1%.

Because the probability of a photon detection during one cycle is significantly smaller
than 1%, we performed a number of detection repetitions to determine a single 1-bit
detection. The repetition parameter states how many cycles of the same
measurement will be performed to try to detect a single photon. One single detection
during all the repetitions will set the detector to positive state (detection). Again, if
more than one repetition sees a photon this will result in a lost count. The repetition
variable has the biggest influence on the acquired signal amplitude as well as the
signal to noise ratio. We used this value to keep the readout signal level in the proper

range (proper range will be described later).
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To achieve higher dynamic range than just 1-bit, the procedure described in previous
sections is repeated a number of times, specified by the Max Counts Per Frame
(MCPF) parameter. The final pixel count is the sum of detections, and so the MCPF
value defines how many potential levels can each pixel achieve - the dynamic range of
the readout. If all the parameters are kept at correct levels, the outcome will give a
statistical measure of the single-cycle detection probability, representing the strength

of the measured signal.

On graphs in Figure 65, MCPF was set to 1000. Traces achieved maximum intensities
of about 70% the range. For later measurements (unless stated otherwise) we used
the value of 256 levels (8-bit) as a compromise between sufficient accuracy and the
speed of operation. Increasing MCPF has a linear effect on increasing the collection
time. For the MCPF value of 256 (256 repeated 1-bit measurements) and repetition
value of 200 (200 attempts to see a photon per 1-bit measurement), a total number
51200 measurements over 51200 detection cycles are performed to achieve a single
value for one gate timing position. This procedure, performed for all the pixels in the

array, produces an 8-bit greyscale image of the size of the array.

The measurement procedure is performed for a specific single gating cycle position.
The recorded signal depends on how the light on the sensor changes with time, where
the gate is positioned and how long the gate is ‘open for’. To determine how the signal

depends on the time after the laser pulse, we perform gate shifts.

For the full time-gated readout, the gating is moved in turn to all positions across the
cycle by steps of 20 ps each, repeating the measurement procedure and recording the
values for each position. The previously calculated number of single measurements,
for one gate position equal to 51200, is performed 1280 times to map the whole 25 ns
period. The total number of single measurements for this example equals 65,536,000.
This produces 1280 greyscale images of signal intensity for different time delays after

the laser pulse. For a single pixel plotted against shift, the plot as we can see in Figure
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65 can be obtained. To understand the shape of this plot we must consider the

process of convolution.

Mathematically speaking, convolution is an integral of the overlap of two functions as
one of them, time-reversed, is shifted across the other one. The resulting third
function expresses how the shape of one function influences the shape of the second

one. This can be written as:

[f *g1(®) = [, f(@g(t — D)z, (56)

where f and g are functions and 7 is a time difference.

For engineers, convolution is typically used to describe the output of a linear, time-
invariant (LTI) system, such as ours. Shifting the gate across the cycle as described in
previous section is the execution of convolution theory. For us, the convolution tells us
how the signal on our SPAD as a function of gate delay depends on the temporal
shape of the light signal and temporal shape of the gate. If a system’s gate were much
shorter than the measured signal, the operation would be basically a sampling of
temporal shape of the light signal, taking a continuous time signal into discrete values
representing an approximation of the signal in the digital environment. Unfortunately,
in the case of our system the gate (10 ns) is longer than the fluorescence decay

signals, which requires use of convolution to interpret the result.

This dependency, however, works both ways. If the second function is much shorter
than the first one — the resulting third function will be basically sampled first function.
This means if we observe a signal lasting three orders of magnitude less than the time
of the gate, like a laser pulse of our picosecond laser, the resulting function will
present a very good approximation of the temporal shape of the gate of the system.
This shape can be called the Impulse Response Function (IRF) of the system, or just the
shape of the gate. Examples of such gate shapes acquired in this manner are
presented in Figure 65. Knowing the gate shape allowed us to understand the

measured fluorescence signals as the convolution with the now-known gate function.
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The electronic gating sequence is a combination of the states presented in Figure 64
for one cycle. A FPGA’s fast internal 200 MHz clock allows to place the edges of the
gating signals at multiples of 2.5 ns. With the 25 ns cycle time this gives us 10 possible
state changes locations for each (recall that fine timing adjustments are also available
to shift the whole timing pattern with a resolution of 1/256 of this clock - 20 ps).
Certain off and recharge times are necessary for a correct electrical charge handling to
ensure a proper readout. We can choose the length of the gate. The gating time is a
trade-off between photon collection time and sampling resolution; the shorter the
gate, the better resolution. The gate length, however, also influences the internal
readout behaviour and reliability, limiting how short the gate can usefully be set. We
tested over 20 electronic gating sequences, observing the IRF of the system, and chose
the one with the most reliable outcome such that the gate shape was repeatable, high
amplitude, and with steep edges. Figure 65a presents a few gate shapes resulting from
different sequences for comparison. Figure 65b shows the shape of the selected
optimum gate on a separate graph, and Figure 65c shows the associated optimal
gating sequence. It is worth realising that while the gate should be 10 ns according to
the state signals, in reality it is shorter by about 20 %, lasting for about 8 ns in our
case. Recall that due to laser frequency being halved for the purpose of sensor
synchronisation, the gate is mapped out twice for the full range of gate shifts because

of two laser pulses falling into each cycle.
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Figure 65. a) Gate shapes acquired using gating sequences. b) Gate shape for the chosen sequence. c)
Representation of the chosen gating sequence.

With an increasing number of photons hitting the sensor, the probability of sensor
saturation also increases. The situation where signal strength changes in time might
lead to the improper shape of the function, if part of it were saturated (keeping
constant saturated value, where it should be changing). The phenomenon is even
more deceiving in the case of a 1-bit sensor where the total number of summed
counts might not hit the maximum value (not all 1-bit measurements are 1), but at
least some single 1-bit measurements that are constructing it are ‘locally saturated’,
meaning two photons arrived but only could be counted. This can lead to a change of
the shape of the trace, without a warning signal of clearly saturated readout. We
observed that gates were changing in shape with increased signal intensity, explained
by this local saturation. The gating sequence chosen in the previous section is optimal,
however the shape of the chosen gate presented in Figure 65 is incorrect due to

sensor saturation.
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Dainty and Shaw presented a model (161) proving the proportion of cells in a large

array that receive n photons is governed by

-r

) (57)

re

P(n) =

n!

where n is a number of received photons, r is the average number of photons per

pixel.
In our case of single photon detector, we record a 1 if it receives one or more photons,
which can be presented as:

count
MCPF

P(=1) = =1—P(0). (58)

where count represents number of real counts out of MCPF possible levels. Since

P(0) is given by:

P(0)=e™, (59)
we then find:

count —1— e_r, (60)

MCPF

For r <« 1, count/MCPF is equal to r, and our measured intensity is linear with
intensity. For higher r, our count becomes saturated. Inverting the equation above,

we can find the relation between r and our count:

r=—1In (1 - “’””t). (61)

For Max Counts Per Frame equal to MCPF = 256, we can derive the equation for the

correction of saturation problem, for our sensor in the typical scenario:

count) (62)

correctedcount = —256 X In (1 ~ e
This formula will be applied to all the measurements performed by our system.
Because it changes the readout value in a nonlinear manner, it slightly changes the
function shape. Figure 66 shows this behaviour on the example of the gate shape. The
shape of the gate and the acquired trace is crucial for system accuracy. We will discuss

this issue in the following sections.
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Figure 66. Normalised gate shapes, with original trace in red and corrected trace in blue.

Another important factor shown by this equation is the range of the signal values for
which the response of the sensor is fairly linear to the amount of collected photons.
Plotting equation 62 (Figure 67) shows where the collection accuracy is about linear
and where saturation becomes a problem. While we can in principle correct for
saturation, we report later that our SPAD detector does not in reality saturate quite in
this way (so revealing some underlying issues with the detector operation). For this
reason, we actually attempt to keep signals within the linear range. Signals with a
value of 30 (out of 256 levels) suffer from the detection error of about 6%
(equation 62). This value increases to about 11% for intensity of 50 and over 27% for
the signal value of 100. We find about 10% error to be the highest acceptable error
for the readout deviation. To keep optimal shapes of the trace without the correction,
the range between 0 and 50 counts for the MCPF = 256 should be kept. Analogously,
for the MCPF = 1000 as in the example from Figure 65, the maximum reliable readout
value (giving about 10% error) would be 200. Signals with an amplitude of over 600
counts (like presented in Figure 65) are saturated, and therefore of a different,

incorrect shape.
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Figure 67. Dainty and Shaw’s model in a form presented in Equation 62, plotted to present the photon collection
response of the system. Red dotted line presents ideal linear 1:1 response.

We have now presented the basics of operation of our system including the
mechanism of using a gate moved with respect to the synchronised laser induced to
record a temporal record related to the fluorescence decay. Once the gate is properly
designed, retrieved and characterised, we can proceed to use it to retrieve the
nanosecond lifetime of the fluorophore. In this section we will present the four main
steps required to carry this out, all of which were performed using MATLAB. Some
additional procedures used in later sections will be omitted here and then described in

those relevant sections.

The swissSPAD sensor we used has over 65 thousand individual pixels. Because the
manufacturing process is still relatively new and imperfect, some of the pixels are
slightly more or less sensitive than the others. Hot pixels are the ones that always
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show some value, even when most other pixels are close to zero. We implemented a

denoising procedure to compensate for these pixels.

First, we carried out a measurement in conditions where over 90% of the pixels are
not reading any signal. Analysing a single frame (an image with specified MCPF) of the
readout, we spatially identified pixels which returned a value of 4 or more. These
pixels were recognised as hot pixels. The top panel of Figure 68 presents these hot

pixels for our array.

Subsequently, the image was filtered with a 2-dimensional median filter with a kernel
of 3x3 (82). To avoid blur and other artefacts of filtering, we replaced only the noisy
pixels with equivalent pixels from the filtered image. The result is presented in the

bottom panel of Figure 68.

Figure 68. Image taken in dark conditions to localise hot pixels of the system. Both images are presented in inverted
colours. Top panel presents image with visible noisy pixels, bottom panel is the same image after denoising
procedure.

The number of pixels that will meet the criteria for a hot pixel will increase with
increased number of repetitions of 1-bit readouts because of false counts. For the
typical repetition number of 200 we found that 309 pixels met the criteria to be
identified as hot pixels. This is less than 0.5% of all pixels, and so has negligible impact

on the imaging capability of the sensor.
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The denoised image is passed to the function that prepares it for the fitting procedure
that retrieves the fluorescence lifetime. Depending on the goal of the measurement,

this can be executed in several ways.

The basic method is passing the time series for each pixel value to process the whole
Field Of View, retrieving the fluorescence lifetime for each pixel separately. Because
we operate in the single photon regime, these traces will be characterised with the
strongest noise, but also with the best spatial resolution. Effectively, each pixel

represents about 0.2 mm for our imaging conditions.

The second method allows the user to choose the area over which the signal will be
averaged and the fitting procedure will be executed on a time series of average values.
This method is designed for the trace observation, testing the fitting procedure and
acquiring the gate trace. The gate function of the system used for the fitting
procedure should be noise free and as accurate as possible. One of the ways of
optimising this trace is to acquire this gate from a large amount of averaged pixels.
Gates presented in Figure 65 are acquired from a square of 5x5 pixels, while less noisy
gates from Figure 66 are acquired from the average signal value over a square of

25x25 pixels.

The third method is a combination of the previous two and computes lifetimes for the
whole image but averaged in blocks of 5x5 pixels. This procedure significantly
increases the SNR of the readout allowing us to retrieve accurate lifetimes from
significantly smaller signals, and still keeping the spatial resolution below 1 mm for our

imaging conditions.

At this stage, the correction factor presented in equation 62 is applied to each pixel
value of all the images. The influence of the correction factor on the shape of the trace

will be discussed in more detail in section 3.10.2.

The fitting procedure is the core of the algorithm, and also the most complex part.
Recall that the measured time signal is a convolution of the gate function and the
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decay function describing the fluorescence: we must model the fluorescence and then
use its convolution with the measured gate function to fit the measured trace. In
section 3.6.6 we showed how we acquired the gate function, which is stored in the
algorithm (Figure 69a). As presented in section 1.2.3, single exponential decay of
fluorescence intensity as a function of time can be represented as an exponential

function:

fa®=A-e7, (63)
where A is an amplitude, t is time and 7 is the decay time of the fluorophore —
fluorescence lifetime. Figure 69b shows an example of equation 63, with 7 = 6.8 ns We
use an x-axis of the frame number, with frames spaced in time by 19.53 ps: this is
25 ns (time per frame) divided by 1280 (frames per cycle) . Because of the nature of
the exponential function, the signal decreases quickly at the beginning and then
remains with low, but until some point — significant values. To properly model the
behaviour of the fluorophore measured by our system, we summed values of 20
copies of the decay curve each shifted in time by 12.5 ns (representing a train of laser
pulses at 80 MHz) to mimic overlapping of consecutive fluorescent decay signals. This
is presented in Figure 69c and as can be seen, the trace stabilises its amplitude from
the 4™ peak onwards. Subsequently, we perform a convolution of this fluorescence
signal and the gate trace to imitate time-gated measurement of the system. The
resulting function is presented in Figure 69d. The early and late peaks are not valid
because of the boundary conditions for the convolution. We chose one full cycle of
1280 consecutive values from the middle section of this plot, where the shape is

stabilised. This is presented in Figure 69e.

We fit this model curve to the measured data using least-squares curve-fitting. The
model has 3 variables to optimise — amplitude, y offset and the most importantly 7 —

the lifetime. Equation 63 updated with the y offset parameter (oy) is as follows:

t
fa®) =A- (e T+ oy). (64)
If we replace all the variables to be optimised with the vector x, we can write the

minimisation function down as:
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mmx| |F (x, model) — signal| |2 = min, Y,;(F (x, model;) — signal;)?

Figure 69f shows an example trace acquired with the system and the function from

(65)

the panel g, fitted to it in red. Optimised parameter 7 of the fitted function is the

designated lifetime of the measured fluorophore in units of numbers of frames (the
value of the x axis).
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Figure 69. a) Gate function measured by the device, b) modelled 6.8 ns decay curve with amplitude similar to the
gate, c) model repeated 20 times, summing all the signals, d) convolution of the gate and repeated model, e) proper
cut of one modelled measure period, f) model fitted to the real trace
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To present the result in nanosecond we need to convert it as follows:

T[samples]

t[ns] = 25[ns]. (66)

1280[samples]
The optimisation function requires initial values of parameters to be provided, like we
did in the step presented on panel b of Figure 69. Choosing values close to those
expected increases fitting efficiency but does not change the outcome (for unlimited

fitting iterations).

With the lifetime calculation procedure prepared, we were able to perform a
simulation of the trace behaviour for different modelled exponential lifetimes.
Doubled laser frequency causing collection of two pulses during one readout cycle
effectively decreases maximum lifetime possible to determine. The second pulse
(shape on the graph) results in the gate function collecting an additional decay
function which affects the shape of the resulting convolution trace. Averaging over
additional (disturbing) signal results in more flat trace, hence harder to distinguish.
The time between two pulses is 12.5 ns and the gate length is about 8 ns. This means
that the decay time of 4.5 ns will be scanned by the gate function completely, before
entering the second pulse. Collection of the second pulse while still averaging over the
previous one (for lifetimes longer than 4.5 ns) does not yet indicate uselessness of the
trace, but the determination capability will start dropping. We prepared two sets of
simulated outcome traces (convoluted with a collected gate): for very short lifetimes
between 0.1 -1 ns with a step of 0.1 ns to observe low detection limit capabilities,
and for lifetimes between 1 — 8 ns to observe the lifetime where we expect to observe
changes. These traces are presented in Figure 70a and Figure 70c. Figure 70b and

Figure 70c presents the same trace with simulated noise.

We can observe that the retrieval resolution is the highest for the shortest lifetimes,
theoretically going as low as 0.1 ns. For lifetimes longer than 5 ns, traces get flatter
and closer to longer lifetime traces. We estimate that 7 ns is the high lifetime limit of

accurate detection.
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Figure 70. Simulated lifetimes convoluted with the IRF to estimate lifetime retrieval limits. a) traces between 0-1 ns,

b) same traces with simulated noise, c) lifetimes between 1-8 ns, d) same traces with simulated noise
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At a very early stage we performed a first fluorescence lifetime measurement of a
Perspex plate doped with a fluorescent dye (chosen as a convenient solid target). The
measurement was in fact that already presented in Figure 69e. We quantified the
fluorescence lifetime independently using a fast photodiode and a LECROY WM8620A

(Teledyne LeCroy, New York) oscilloscope, retrieving a reference lifetime of 6.79 ns.

Our setup and lifetime retrieving algorithm was not finalised back then. The setup was
constructed exactly as shown in Figure 60. A collimated 532 nm beam excited the
fluorescent perspex. The perspex had an angle of 45° in respect to the excitation beam
and the sensor, to reflect most of the excitation light away from the sensor. The
fluorescence emission of the plate was gathered by the standard 5 times objective
from a distance of about 2 cm from the sample. We used a high pass filter with cut-off
wavelength of 550 nm to eliminate the remaining excitation beam from the readout.

The signal captured by our system is presented in Figure 71.

L.

Figure 71. Fluorescence signal captured by the SPAD system. Vertical line visible on the right is caused by the pin
connection problem, these pixels are not used in the measurement. Image presented in inverted colours.

The analysis did not include the denoising function at this early time — an area without
any hot pixels was selected for the measurement. The correction factor was also not
implemented yet. We used the somewhat saturated gate function presented on
Figure 69a. Because the fluorescence signal of the perspex was strong, the readout
was also somewhat saturated (y offset of almost 40 — Figure 69f). The long lifetime of
the fluorophore helped to smooth the resulting trace (throughout the convolution).

Figure 69f presents a good fit with the signal averaged over the 5x5 pixel square.
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Lifetimes retrieved from individual pixels with deviations from the mean value are

presented in Table 4.

Table 4. Lifetimes retrieved from a 5 by 5 array of individual pixels on left. On the right, % deviation from the mean
value of corresponding pixels.

[ [ns] | %
6.29 | 6.88 | 6.72 | 6.42 | 7.43 -7.39 1.37 | -1.01 | -5.52 9.35
6.57 | 6.28 | 7.49 | 7.82 | 5.79 -3.17 | -7.55 | 10.27 | 15.20 | -14.67
6.21 | 6.43 | 6.56 | 7.39 | 6.45 -8.51 | -5.28 | -3.36 8.87 | -4.95
6.79 | 657 | 6.81| 6.64 | 7.64 -0.03 | -3.28 0.26 | -2.19 12.50
6.51| 702 | 7.04 | 6.76 | 6.48 -4.17 | 3.35 367 | -050| -4.51

The lifetime measured from the averaged pixels and the fit presented in Figure
69Figure 58f was 6.73 ns. The mean value of lifetimes presented in Table 4 is 6.76 ns.
The mean error for single pixel measurement is smaller than 6% with maximum error

of 15%.

As an initial proof of principle, this was a pleasing result, with retrieved lifetimes
consistent with our reference measurement and with relatively low noise despite

somewhat saturated traces, and yet-to-be optimised analysis.

Ideally the shape of the gate of the system should be an even top hat shape. Perfectly
steep edges would provide a good replica of the decay curve of the fluorophore during
the process of convolution, and the even top of the function would ensure simple
scaling of the shape for different amplitudes of the measured signal, therefore simple
fitting. In our analysis method, we also are assuming that the gate shape does not
change as the gate delay is changed; in our setup with two laser pulses within the
range of gate delay this means we should see two identical gates on the IRF function.
Figure 72 shows two ideal functions: the gate with the exponential decay on top
panel, and the product of the convolution of these functions. For decay functions with

‘longer lifetime’, the shape will start to look more like that shown in Figure 69f.
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Graph of f(t) and go(t)

— . .

decay model
ideal gate function

Convolutional Product c(t)

Figure 72. Top: Exponential decay curve model in blue and ideal top hat gate shape in red. Bottom: Product of
convolution of two functions presented on the top.

Unfortunately, the system does not provide an ideal gate shape, and worse, there are
signs that the gate is not unchanged with gate delay. We carried out a simple
experiment where for constant readout conditions we changed the laser signal
intensity hitting the sensor through a cube polarizer and half-wave plate. We took 10
measurements with increasing signal to observe the gate shape behaviour. Figure 73

presents these gate traces on one graph. A couple of conclusions can be drawn:

e Both edges are steep but not ideal. The leading edge (which for the process of
convolution is reversed into a trailing edge) is steeper which is desired. The
edges are similar for all the intensities.

e The shape of the top of the function changes with the intensity. Initially lower
at the beginning and higher at the end, and then the reverse for higher
intensities.

e The lowest achievable value rises with the overall function intensity.
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e The two gate shape measurements for the same intensity (due to the first and
second laser pulses within the delay range) are different, both in shape and

amplitude.

b
| Jo YU

Wi | |

oAl
"\Mj‘c i r\"w}‘ﬂw“
“L“‘\ ly m’u I N

i ‘w WA\

/ '\ wlh ,‘( )
| W&.‘ bty
I \

i i 'i “ﬂ“'y‘ [ \
J‘A‘W i iy "v% AU
I i |

1
™y, i iy
I M'“JM ‘ it }%J;lw"wv“{v I
| g, | [ A

i
[ o, VA
| e bt}
Q‘»‘

. i \‘
N T i\
praat” Mg |

Figure 73. Gate shape traces with different intensities collected for identical readout conditions.

We tested and implemented some additional procedures and restrictions to try to

eliminate or compensate for these differences to ensure the most reliable fitting.

The irregular shape of two gate shapes for a single measurement suggested one of
two potential problems: a different system response for different gate shifts, or
problems with electrical stability of pixels during the cycle (improper shapes for
different readout sequences if insufficient time spent in particular states - Figure 65).
First, we performed a test where we introduced a ‘hold off’ to the readout. The hold
off is a variable setting of a number of initial unused cycles for each group of
repetitions. It addresses the same electrical phenomenon as the dead time
characteristics, allowing for an additional time between measurements. For example,
if we set 100 repetitions (100 attempts to see a photon into the 1-bit sensor), hold off

= 1 means that the first cycle will not set the gating status, leaving 99 active cycles and
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giving a little extra time to the sensor to stabilise after recording the previous readout.
We performed a measurement of 4 different signal intensities for hold off equal to
1,2, and 5. Each panel of Figure 74 presents different intensity with traces for all the
hold off values on it for comparison. The first and the most important result of this
experiment is that the shape of two gate measurements for a single readout is
significantly closer to each other comparing to gates from Figure 73. This gives us
confidence that the gate shape is now much more stable as a function of gate delay.
The second finding is that the shape for different hold off values (different colours on
each panel) is almost identical for all gates, decreasing slightly in overall amplitude
because of the smaller amount of repetitions. The conclusion from this finding is that
the first cycle for each group of repetitions must be significantly different for different
gate delays, and this somehow is related to the error seen in Figure 73. From now on,

all the measurements were performed with the hold off set to 1.

The hold off procedure improved trace stability substantially, however, did not
eliminate the problem completely. The shape of two gate measurements is very
similar between each other, yet the amplitude of the first local maximum (the
‘shoulder’) still seems to be slightly higher for the second measurements. Also, the
difference between the first local maximum and the top of each gate is changing with

the overall amplitude of the signal (between panels).

Figure 74. Four examples of gate traces with different hold off values. Blue colour is hold off = 1, red - 2 and yellow
is hold off = 5.
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To further investigate the change in gate shape with gate delay, we took number of
identical measurements of the gate signal but starting the gating sequence at different
shifts from the laser pulse timing signal. We took a total number of 10 measurements,
shifting each starting position by 128 samples (this would ‘swap’ the position of the
gate measurements after 5 shifts - a total shift of 640 so half of the whole cycle - and
return to original position after 10 shifts). Figure 75 shows consecutively shifted gating
traces, which were numerically aligned back to overlay each other for shape
comparison in panel c. As seen on this panel, all 10 gates are basically identical with a
small variance of noise. We conclude then that the number of shifts (delay) from the
beginning of the readout does not seem to have any strong influence on the gate

shape with our optimised settings.
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Figure 75. (a) A single, regular gate measurement; (b) Three gate traces measured in identical conditions, each
starting the measurement 128 samples further than the previous measurement; (c) 10 consecutively shifted traces,
numerically aligned to overlap each other.

Finally, we compared two gates from the same measurement in detail. Now using the
hold off procedure, their shapes became very similar, yet not identical. To compare
them, we cut the trace in half and plotted both gate shapes from a single

measurement on top of each other for comparison. We found that there is a very
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specific point where the first gate measurement suddenly drops and in the same
(respective) point, the second gate measurement goes up in the signal intensity. This
phenomenon was observed in every measurement (Figure 76 a,b,c,d) and is probably
the reason why actual fluorescence measurements have different intensities for two
gates (Figure 76e). This appears to be a bug in the SPAD design — at these delay points
the sensitivity of the pixel abruptly changes. We were unable to find a cure in

software, and so it may be a hardware problem that we cannot address.
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Figure 76. Two gate shapes from the same measurement on top of each other. Panels a,c,d show gates for different
laser powers. Panel b is a close-up at the exact point of the phenomenon occurrence. Panel e presents measurement
of the fluorescence signal influenced by the phenomenon.

We described the correction factor in section 3.6.7. The influence of the correction on
the signal is not linear; therefore the shape of the trace is influenced. As we presented
in Figure 66, the correction increased the amplitude difference between two local
maxima of a single gate shape. It was expected that correcting for saturation would
entirely explain differences in the gate shape for different signal intensities. To
examine this, we carried out another experiment, recording gate traces for different
laser intensities, this time with the hold off set to one. Figure 77 presents these gates
(a), and leads us through consecutive analysis steps: the traces are smoothed for

clarity of view (b), normalised to compare to their different shapes (d), corrected for
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saturation (c) and again normalised (e). Comparing panel d and e, we can observe that
differences between local maxima of the first peak of each gate are decreased by the
saturation correction, yet still not eliminated. It appears that there is a real change in
the sensitivity on the sensor in different lighting conditions, with the shoulder
recording an excess number of additional counts as intensity is increased. It seems
that the shoulder part of the trace reports more counts than we expect with
increasing signal. Most likely it is an electrical issue of the chip (each pixel circuit),
potentially an increased vulnerability to afterpulsing due to rising number of photons

hitting the sensor.
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Figure 77. Differences in the gate function shapes for different intensities a) raw data, b) denoised, c) denoised and
with correction applied, d) denoised and normalised, e) denoised, normalised after correction, applied.

The shape of the gate of the SwissSPAD is far from the ideal shape presented in Figure
72. The real gate shape suffers from a number of issues, only some of which we
managed to eliminate. The significant difference in the shape of two visible gates from
the same measurement was resolved by using the hold off procedure (Figure 73 and
Figure 74). Applying the saturation correction to all measured traces decreased, but

didn’t eliminate, the problem of the changing amplitude ratio between two local
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maxima of the gate shape (Figure 77d,e). The difference between the first and the
second visible gate shape of a single measurement also still exists, showing that the

gate shape does change somewhat as the gate delay is changed.

The biggest complication arising from presented issues is the difficulty of a proper
function fit for different signal intensities. Because the shape of the gate changes with
the amplitude in a way that cannot be linearly scaled, accurate fit of a fluorescence
signal significantly different in amplitude than the gate used to prepare the model
becomes inaccurate. To overcome this problem, we measured the gate shapes 5
different times with amplitudes increasing by 10 counts within the range of 0—-50
counts. The fitting algorithm analyses the amplitude of the lifetime signal to be fitted
and chooses a proper gate file to prepare the model to perform the fitting procedure.

These gate shapes are presented in Figure 78.
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Figure 78. The set of the gate traces with different amplitudes to prepare models for the lifetime fitting procedure.

The second issue that we were not able to eliminate completely was the difference
between gate shapes at different delays within one measurement. We proved that the

issue occurs after a number of shifts performed rather than corresponding to the
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relative position from the laser pulse (Figure 75). To provide a good fit to the signal
collected as presented so far, it is important to always use the corresponding part of
the model. Using the second visible gate shape to fit the first peak of fluorescence
trace would not provide a proper measurement. The timing of the acquisition of the
gate should always match the timing of the acquisition of the fluorescence trace, and

the first gate used to model the first fluorescence peak.

Addressing all these phenomena, the real shape of the gate for the proper range of
intensity and the resulting model of the signal of the fluorescence lifetime of the

fluorophore is presented in Figure 79.
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Figure 79. The real shape of the gate acquired from the system and resulting model calculated by convoluting the
gate with an exemplary lifetime (presented for a half of the typical whole trace showing two peaks).

After proving the principle of operation on the doped perspex on just a few pixels on
the array, and understanding capabilities and limitations of the gating procedure of

the SPAD, we moved forward towards imaging. The focusing lens in front of the SPAD
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array was replaced with a proper, specifically assembled camera objective that
allowed us to take sharp images from the distance of about 18cm. We expanded the
collimated laser beam to a circle with a diameter of 9cm, covering the whole field of
view of the camera. The power of the expanded beam was below 5 mW/cm?. We used

a high pass filter with a cut-off wavelength of 560nm as an emission filter (Figure 80b).

We used two fluorophores in separate solutions, and imaged them side by side. The
fluorophores that we used in the experiments were Fluorescein and Rhodamine B.
1 mL of each was placed in the rectangular plastic, 8 wells cuvette (Figure 80a).
Rhodamine B had a concentration of 0.3 mM and the Fluorescein solution was 1 mM.
Excitation-emission spectra for both dyes are presented in Figure 80 panel c and d
respectively. While Rhodamine B has a high absorption at 532 nm, the Fluorescein is
at the very edge of the spectrum with hardly any absorption (about 3%). In addition to
very low excitation, a significant part of the Fluorescein emission is blocked by the
emission filter. We expect the fluorescein signal to be very low. The Fluorescein has a

fluorescence lifetime of 4 ns (162) and the Rhodamine B has a fluorescence lifetime of

1.68 ns (162).
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Figure 80. a) Solution of Rhodamine B and two solutions of Fluorescein in 8 well plastic cuvette. The image was
taken with a regular camera from about the perspective of the sensor b) Absorption spectrum for the filter, with
cut-off wavelength at 560nm. c) Excitation emission spectrum for Fluorescein. d) Excitation emission spectrum for
Rhodamine B
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All the measurements were taken using MCPF = 256 and repetition of 200. Because of
the low signal levels, we used averaging of 5 by 5 pixels for lifetime calculation, which
increased the SNR. The fitting procedure was performed only for one trace peak
(slightly extended half of the full length of the measurement) to test the accuracy of
this solution, allowing for faster measurement (acquiring about half of the original
data). Images were masked to present lifetimes only for relevant parts of the image
where fluorophores were visible. The image presented in panel a of Figure 80 was
taken with a regular camera from the location of the sensor and presents a similar
image to the one that the sensor recorded. The actual frame of the same fluorophores
collected by the SPAD is presented in Figure 81a. The emission from the middle
fluorescein sample (with concentration of 0.1 mM) was too weak for the current
measurement conditions (very weak excitation) and was excluded during the masking
procedure. Colour coded results showing lifetimes retrieved as a function of position

for the measurement are presented in Figure 81b.
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Figure 81. Lifetime measurement of fluid Rhodamine B and Fluorescein solutions.a) one frame as seen by the sensor,
presented as 8-bit grayscale image with between readout values 0-10 counts (inverted colours) b) Spatial image of
two wells with fluorophores, colour coded based on calculated lifetimes. c) Example trace with fit function for
Rhodamine B. d) Example trace with fit function for Fluorescein

The Rhodamine B part of the image shows a stable result with a mean lifetime across
the image of 1.69 ns with standard deviation of each measurement of 0.26 ns and a
Standard Error of Mean of 0.016 ns. SEM is calculated as a standard deviation divided
by the square root of number of samples, and assumes that our measurements have a
random error around the true value. The amplitude of the signal is about 5 counts
(Figure 81c) which is low. Because of the pixel averaging procedure, the noise is
averaged, therefore decreased, which helps the accuracy of the readout. Using the
averaged pixels (visible in Figure 81b) makes this signal level completely sufficient to
accurately designate the lifetime for the area. An example fit for the trace for one

averaged 5x5 area is presented in Figure 81c.
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On the right-hand side of Figure 81b, the measurement of Fluorescein can be seen.
The mean lifetime across the area of 3.8 ns is less accurate than for Rhodamine B. The
standard deviation of 1.0 ns and standard error of means of 0.0625 ns are significantly
larger as well. The explanation of these differences is the signal amplitude. Figure 81d
shows that the amplitude of the signal is about 0.5 counts, with the noise level almost
equal to the signal level. The signal amplitude below 1 reflects the pixel averaging,
meaning that only some of the averaged pixels received a single photon during this
measurement. Even for such an extremely low signal, we are able to retrieve lifetime
with a satisfying accuracy. Differentiation between two fluorophores is clear and
indisputable. All the results are gathered in Table 5. Both measurements agree with

published values for those fluorophores.

Table 5. Lifetime results with statistical information of fluid Rhodamine B and Fluorescein solutions.

Fluorophore Rhodamine B | Fluorescein
Literature lifetime [ns] 1.68 4

Mean Measured lifetime [ns] 1.69 3.8
Signal amplitude [counts] 5 0.5
Standard Deviation [ns] 0.26 1
Standard Error of Means [ns] 0.016 0.0625

Figure 82 presents the distribution of lifetime readouts for the Rhodamine B and
Fluorescein samples. The image was analysed using averaging of 5x5 pixels, which
decreased the noise and made very low signal useful. The effective pixel size remained
below 1 mm. More or less averaging can be used, setting the trade-off between
readout accuracy and spatial resolution. Both histograms have a distribution close to
normal with Rhodamine distribution narrower (more accurate) because of the higher
signal level. Based on the histograms, we conclude that the system is capable of
fluorescence lifetime imaging and can distinguish between lifetimes of presented

fluorophores, even for low and very low signal levels.
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Figure 82. Histogram presenting distribution of measured lifetimes from the area of the Rhodamine B (top panel)
and Fluorescein (bottom panel) samples presented in Figure 81b

3.12. Imaging of free and protein-bound NADH

3.12.1. Reduced nicotinamide adenine dinucleotide
Reduced nicotinamide adenine dinucleotide (NADH) is a coenzyme naturally existing in
human cells. It is involved in, and used to study redox status of tissues. Disruption in
the redox equilibrium may cause many pathological conditions including cancer. When
redox homeostasis breaks, metabolism increases which leads to increase of anoxic
reactions in the system. One of the reactions is binding of the NADH to proteins,
changing its form, making the NADH a cancer marker. Significantly increased amount
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of the bound NADH compared to the free form, suggests tumorous changes (163,
164). NADH is auto fluorescent, highly excitable at 355 nm, and emits light in a range
of about 400 nm to 600 nm (Figure 83). The issue is that both forms, free and bound
NADH have basically identical spectral responses, thus cannot be distinguished from
each other on this basis (165). The difference between forms is in the fluorescence
lifetime. Free NADH has a lifetime of about 0.4 ns (166). The lifetime of the bound
NADH, depending on the binding element might vary, but is always longer. In our case,

bound to malate dehydrogenase, the lifetime is equal to 1.0 ns.
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Figure 83 Excitation and emission spectra of NADH (adapted from (165) )

We prepared our samples according to Lakowicz’s instructions from (166). Free NADH
was simply NADH (Sigma-Aldrich, St. Louis, MO, USA, Sigma, SKU: 10107735001)
diluted in water in a ratio to obtain the desired concentration. Bound NADH, was
bound to L-MDH (Sigma-Aldrich, St. Louis, MO, USA, Sigma, SKU: 10127914001) in a
molar ratio 2:1 to NADH in a 100 mM MOPS (Sigma-Aldrich, St. Louis, MO, USA, Sigma,
SKU: M1254) buffer (pH 7.0). In a test tube L-MDH was mixed with the MOPS powder.
Then, a proper solution of NADH in water was added to complete the volume. The

product was then mixed in a shaker to dissolve all chemicals.

160



We measured the noise level choosing a part of the trace between two gates, where
its (mean) value is the most stable (Figure 84). The noise was measured from the
section of 100 samples, from 6 different areas/pixels of the image (600 samples
altogether). Each signal was measured at the same areas/pixels, from the same trace

section. The noise was calculated as doubled standard deviation of described samples.
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Figure 84. Part of the trace from which the noise measurement was taken. Red line presents the mean value.

The Signal to Noise Ratio was calculated as follows:

SNR = 101log;, 324 S‘g"“l dB (67)

TLOlSe

where o2 is the signal power and ¢2,;, is the noise power calculated as

signal

described. The SNR is presented in decibels dB.

The dynamic range of each measurement for a single pixel equal to MCPF = 256. Pixel
averaging (over 25 pixels) allows the signal to obtain an additional range of values
between natural numbers, and averages out the noise to some degree. The noise

averaging makes lifetime determination from signal amplitudes lower than 1 possible.
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We used the same laser as an excitation and synchronisation source as in previous
measurements, but used the wavelength of 355 nm as described in section 3.5.2. The
beam was expanded using two lenses to the shape similar to the FOV of the camera.
The generated 355 nm beam at the sample was 5 mW/cm?. Samples were examined
in 3 mL quartz cuvettes, typically containing about 1 mL of solution. The filter to block

excitation light was a long-pass filter with a cut-off wavelength of 360 nm.

3.12.4.1. Preparations and settings
Because NADH fluorescence is weaker than the previously tested fluorophores, we
increased the sensitivity of the system. While keeping the same number of possible
counts of MCPF=256, we increased the repetitions value to 2000 — so allowing 2000
attempts to measure a photon into the 1-bit buffer, then repeating this 256 times.
This repetition value was chosen to keep all the measurements in the range of useful

amplitudes.

We measured 4 different concentrations of free NADH: 40 uM, 20 uM, 10 uM and
5 uM. Subsequently we measured bound NADH of a concentration of 10 uM for a
lifetime comparison. Free NADH samples were measured about 24 hours after
preparation, giving lower signal intensities due to photobleaching over time, especially
for lower concentrations that photobleach faster. Bound NADH was measured directly
after preparation. The previously-measured ratio of signal intensity between bound
and free NADH is 2:1 (166). In our case, the difference was up to 4:1, suggesting about

50% photo bleaching of the signal.

A difference comparied to the measurements in the previous section is the fitting
model. We decreased the part of the trace that is used for the fitting procedure
further, to attempt to limit the effect of gate shape anomalies. Now, instead of using
the whole peak which lasted over 700 samples, we chose only 200 samples of the
decaying slope of the time trace. Using this part, which is a relatively regular and
visually representative part of the trace, made the fitting slightly less vulnerable to

small changes of the gate shape.
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3.12.5. The results
An example of a frame taken by the sensor is presented in Figure 85. This is 1 out of
1280 images taken for the whole measurement. For the fitting procedure we are using
only 200 images. This one is taken at the peak signal value for visibility. Because of the
increased number of repetitions, the noise is also bigger. Some additional, more
sensitive pixels are visible, whose value was still too small to be compensated by the

algorithm.

Figure 85. One frame of the cuvette with 40 uM solution of free NADH. Image presented in inverted colours.

Examples of the fit functions for a single 5x5 averaged pixel signal for all measured

free NADH solutions are presented in Figure 86.
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Figure 86 Example of the fit functions for a) 40 uM free NADH, b) 20 uM free NADH, c) 10 uM free NADH, d) 5 uM
free NADH. Graphs also present trace and noise levels.

The results of the measurement of 40 uM free NADH are presented in Figure 87. A
high signal intensity of about 35 counts and relatively low noise of 0.82 counts makes
the measurement reliable and with relatively small spread. The mean lifetime value

retrieved in the measured AOA is 0.37 ns with standard deviation of 0.026 ns.
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Figure 87. Results for 40 uM free NADH. Top panel presents masked, colour coded image of lifetimes (inverted
colours); Bottom panel present distributing of measured lifetimes.

The signal level dropped drastically for 20 uM solution of free NADH, due to additional
photobleaching of the weaker concentration. An amplitude of about 2 counts (Figure
86b) is still sufficient to determine lifetime with noise of 0.24 count. The colour coded
image and the distribution of measurements are presented in Figure 88. The mean
measured lifetime equals 0.39 ns and the standard deviation of the measured pixels is

0.092 ns.
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Figure 88.Results for 20 uM free NADH. Top panel presents masked, colour coded image of lifetimes (inverted
colours); Bottom panel present distributing of measured lifetimes.

The 10 uM free NADH solution has an even lower signal intensity, reaching an
amplitude of about 1 count on average and noise of 0.2 count. The trace with its fit is
presented in Figure 86c¢c. For a signal this low, the mean measured lifetime moves
away from the reference value to 0.32 ns, with a standard deviation of 0.209 ns. Both
colour coded image and the histogram though, show mostly good distribution of the
measurements, which are disturbed by results close to zero where the signal was

insufficient (smaller than presented in Figure 86).
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Figure 89. Results for 10 uM free NADH. Top panel presents masked, colour coded image of lifetimes (inverted
colours); Bottom panel present distributing of measured lifetimes.

Finally, the lowest measured free NADH concentration was 5 puM. The signal
decreased again to less than 1 count with a noise level of 0.19 count (Figure 86d).
Spatial results for the measurement of this concentration are presented in Figure 90.
The mean lifetime obtained from the whole are is 0.27 ns, with a standard deviation of

0.151 ns.
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Figure 90. Results for 5 uM free NADH. Top panel presents masked, colour coded image of lifetimes (inverted
colours); Bottom panel present distributing of measured lifetimes.

Subsequently, we measured a 10 uM concentration of bound NADH. The signal
amplitude of about 8 counts was high enough to provide high readout accuracy with a
noise value of 0.32 counts. The mean lifetime value of all measured pixels was 0.88 ns

with a standard deviation of 0.061 ns.
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Example of the fit functions and results for 10 uM bound NADH. Top panel presents masked, colour coded

image of lifetimes (inverted colours); Bottom panel present distributing of measured lifetimes
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We also took measurements of selected samples with a single pixel trace fit (without

averaging) for comparison. Examples of the traces, amplitude and fits are shown in

Figure
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Figure 92. Example of the fit functions for single pixel measurements for a) 40 uM free NADH, b) 20 uM free NADH,
¢) 10 uM bound NADH, d) 10 uM bound NADH, for a pixel with smaller signal amplitude. Graphs also present signal
and noise levels.

Figure 93 presents the same readout as Figure 87, but calculated for single pixels

instead of groups of 5x5 pixels. The mean lifetime value of all presented pixels was

0.37 ns with standard deviation of 0.099 ns. The signal noise was 4.17 counts.
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Figure 93. Results for 40 uM free NADH, single pixel measurements. Top panel presents masked, colour coded image
of lifetimes (inverted colours); Bottom panel present distributing of measured lifetimes.

Figure 94, similar to the previous figure, present results of the single pixel
measurements of the same readout as presented in Figure 88. The mean lifetime
value equals 0.45 ns and the STD increased to a very large 0.384 ns. The noise of the

signal was 1.65 counts.
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Figure 94. Results for 20 uM free NADH, single pixel measurements. Top panel presents masked, colour coded image
of lifetimes (inverted colours); Bottom panel present distributing of measured lifetimes.
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The final single pixel measurement was performed for the 10 uM bound NADH sample
(Figure 95). The mean obtained lifetime is 0.89 ns with a standard deviation of

0.209 ns and a noise of 1.65 counts.

-

o

0
)
$ 300 T T T T T T T T —T T T
a L
2 L 4
£ 200
0]
L
S 100 .
@
Q
E O | ee— — | - 1 1
= }
c 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Lifetime [ns]

Figure 95. Results for 10 uM bound NADH, single pixel measurements. Top panel presents masked, colour coded
image of lifetimes (inverted colours); Bottom panel present distributing of measured lifetimes.

3.12.5.1. Signal, noise, and accuracy analysis
All the measurements present are expected to have Gaussian distribution of acquired
lifetimes, with the weakest data having additional values close to zero indicating a
failure of the fitting. For the signal amplitude of the highest measure concertation
(about 35 counts) we were able to measure the lifetime with the mean accuracy error
of about 7%. The SNR was high, equal to 27.7 dB. A large signal level drop was
observed for the twice-weaker solution of 20 uM. The amplitude of the signal of about
2 counts, and the noise of 0.31, still allowed for the reliable readout with SNR =
16.3 dB. The STD of 0.092 ns for the mean signal value of 0.39 provides a mean
accuracy error of about 20%. It increased 3 times, compared to the signal level
decreasing over 17 times and the SNR decreasing almost 2 times. Subsequent
measurements of 10 uM and 5 uM free NADH solutions, have similar signal and noise
levels, therefore the SNR. The mean calculated lifetime decreased in both cases,

analysing histograms, because of the pixels with insufficient signal returning lifetimes
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of 0 or close to 0. The general distribution remained similar with the addition of a peak
around mentioned 0. The spread of given results increased, but more towards 0 than
higher than expected lifetime. In both cases maximal retrieved lifetimes were about

0.6 ns.

The 10 uM bound NADH with signal amplitude of over 7 clearly showed higher lifetime
than the free form. The mean value of 0.88 ns had a standard deviation of 0.061ns.
The STD increased about 2 times for the amplitude changing 5 times, compared to the
results of 40 uM free NADH. The SNR though was closer to the value for the 20 uM

solution with the value of 16.8 dB.

The measured lifetime of the bound NADH is most likely lowered compared to the
literature value of 1.0 ns for two reasons. An imperfect gate model was used for the
fitting procedure (small changes in the system gate shape for different
measurements), which consequently lowered all the measurements (of free NADH as
well) and possible imperfection of the sample. If not all the NADH molecules were
properly bound, the free ones in the mixture still emitted with the lifetime of 0.4 ns,
which shortens the overall lifetime of the mixture, measured with the single
exponential fit. We later investigate bi-exponential fitting to retrieve concentrations of

each of bound and free NADH in a mixture.

Observing histogram spreads of measurements for free (Figure 89) and bound (Figure
91) 10 uM NADH’s, the two distributions are almost entirely distinguishable, allowing

for very reliable discrimination between these two forms.

The comparison of analysis of 25-pixel averages to single pixels shows, as expected,
the benefit of averaging to increase the SNR. The obvious advantage of single pixel
measurements is its higher spatial resolution, utilizing the maximum spatial
capabilities of the sensor. In our setup, a single pixel has a scale length 0.2 mm in the
image plane, whereas the 25-pixel averages have a scale length of 1 mm. Averaging
will always present a trade-off between resolution and lifetime-retrieval accuracy, and
best settings will depend on the signal strength and the resolution required by the
application. Figure 92 presents traces acquired from single pixels, with the fit, allowing

us to see the signal amplitudes and visualise the noise. The noise is the most obvious
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change compared to averaged pixels and it increased almost 4 times in the case of
40 uM solution and almost 6 times for 20 uM. The histograms, because of the
increased number of analysed traces, present a smoother distribution but with a
wider spread. The STD increased almost 5 times for 40 uM and almost 4 times for
20 uM. The measurement for 40 uM solution was still accurate and compared all the
measured factors, similar to the measurement of averaged 20 uM free NADH solution.
This suggests that signal about 17 times smaller can be measured when averaging is

used.

The measurement of 20 uM free NADH with single pixel fitting (Figure 94) did not
work. On the histogram a similar trend of retrieving lifetimes close to zero was
observed as for low concentration averaged measurements. The SNR below 1 dB
(signal slightly higher than noise) is definitely insufficient for determination between
free and bound NADH. Determination of lifetimes exceeding that difference of about

0.4 ns would still be possible though.

Figure 92c and Figure 92d present traces from two different pixels for the same
measurement. The difference in amplitude is almost triple. This highlights another
important role of pixel averaging: single pixels can have slightly different sensitivity
and can collect different amount of light, which might lead to significantly different

lifetime retrieval conditions. The averaging compensates for this issue.

All the results are gathered and presented in the Table 6. All the readouts were

gathered from areas of about 5000 pixels.

Table 6. Results of measurements of free and bound NADH with single exponential fit. * denotes measurements for
a single pixel.

Standard  Signal

NADH Mean t Error of amplitude

Solution [ns] STD [ns] Means [counts] noise [counts] SNR [dB]
free 40 uM 0.37 0.026 0 35 1.45 27.7
free 20 uM 0.39 0.092 0.001 2 0.31 16.3
free 10 uM 0.32 0.209 0.002 1 0.26 11.7
free 5 UM 0.27 0.151 0.002 0.7 0.25 9.1
bound 10 uM 0.88 0.061 0.001 7.3 1.06 16.8
free 40 uMA 0.37 0.099 0.001 35 5.77 15.7
free 20 uM ~ 0.45 0.384 0.004 2 1.82 0.8
bound 10 um~» 0.89 0.209 0.002 7.3 2.32 10.0
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The difference between reference lifetimes of free and bound NADH is 0.6 ns. From
our measurements this difference is decreased to 0.5 ns because of the lower lifetime
retrieved for bound NADH. This means the middle point between 0.4 and 0.9 is
0.65 ns. This can be chosen as a threshold for classification of the state of the NADH.
Ideally, neither of the lifetime distributions would reach it and the separation would
be full. Because of the high number of measurements (pixels) we can assume that
small overlap of the very ends of the spreads (less than 5 per cent of the

measurements) can happen.

In Figure 96a we plotted a standard deviation of the measured lifetime distributions as
the estimation of the spread of readouts (Interquartile range was not representative
because of the changing characteristics of the deviation for lower concentrations)
against Signal to Noise Ratio of the same signal for averaged pixels (blue) and single
pixel (orange) measurements. Visually, from histograms we can tell that the spread
reaches the threshold highest lifetime value of about 0.65 ns for the STD = 0.2 ns
(Figure 89) (and exceeds it by far for the STD = 0.38 ns (Figure 94)). From Figure 96a
we can read that this point for the averaged pixels measurement will be met for the
SNR of about 0 dB which means the signal is equal to the noise. From Figure 96b we

can read that this might occur for the signal as low as about 0.1 counts.

The same point for the single pixel measurement will be reached for the SNR of about
10 dB, which is about the case of the measurements Figure 95 (for which the spread
was slightly larger). From Figure 96b we can read that this SNR should be reached for
the signal with the amplitude of about 10, which will be the smallest acceptable signal
intensity for this case. (The measurement presented in Figure 95 achieved this SNR for

a smaller amplitude, but the spread is higher than expected).

From Figure 96a we can also learn that the spread of single pixel readouts increases

over three times faster with a decreasing SNR than for averaged values.

Comparing the noise from measurements that were performed for both single and
averaged pixels, we can see that averaging decreased it about 5 times. The averaging
allowed for measurements of signals at least 10 times smaller (based on measured

samples), up to 65 times smaller (based on the estimations).
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Figure 96. (a) standard deviation of measurements plotted against its Signal to Noise Ratio, (b) Signal to Noise Ratio
plotted against the signals amplitude. Blue lines are for averaged pixels and orange lines are for single pixel
measurements.

3.12.5.2. NADH lifetime differentiation from a single image
To confirm our findings, we carried out additional measurements with two cuvettes
next to each other, with free and bound NADH imaged at once. The following figures
present images as seen by the sensor on top, colour coded lifetime images in the
middle and combined histograms of both lifetimes at the bottom. Figure 97 and Figure
98 present the same 30 uM bound and free NADH samples, measured with repetition
of 2000 (standard) and 1000 (lowered for accuracy test) respectively. Figure 99 shows

10 uM bound and free NADH measured with standard parameters.

176

[¥%]

[}
[=]

100



number of results [pixels]

3000

2000

1000

0.4 0.6 0.8 1 1.2 1.4
Lifetime [ns]

-
(2

-

nd
o

Lifetime [ns]

Figure 97. Bound and free NADH, both with concentrations of 30 uM. Top panel shows the frame from the system
(inverted colours). Middle panel presents colour coded lifetime map. Bottom panel shows common histogram of all
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Figure 98 Bound and free NADH, both with concentrations of 30 uM measured with lowered repetition number of
1000. Top panel shows the frame from the system (inverted colours). Middle panel presents colour coded lifetime

map. Bottom panel shows common histogram of all the presented lifetimes.
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Figure 99. Bound and free NADH, both with concentrations of 10 uM. Top panel shows the frame from the system
(inverted colours). Middle panel presents colour coded lifetime map. Bottom panel shows common histogram of all
the presented lifetimes.

All the selected areas are of the same size: 65x75 pixels which equals to 4875 pixels.

Designated results from these measurements are presented in Table 7.

Table 7. Results for a single exponential fit of free and bound NADH measured at the same time.

Signal amplitude  Standard Error

NADH Solution Meant[ns] STD[ns] [counts] of the Means

bound 30 uM 1.03 0.105 8 0.001
free 30 uM 0.41 0.034 32 0
bound 30uM low 1.09 0.113 4 0.002
free 30 uM low 0.45 0.038 18 0.001
bound 10 uM 1.2 0.348 1.5 0.005
free 10 uM 0.37 0.047 30 0.001

Because of the problem with chemicals, signals of the bound NADHs were strongly
supressed. Instead of being up to twice larger, they were significantly smaller in all
cases. However, according to the expectations this did not prevent SPAD from correct

readouts. All the designated parameters drop in accuracy with decreasing amplitude
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of the signal, but all of them are sufficient for full separation of measured lifetimes. All

designated lifetimes are within the error range of proper literature values.

3.12.5.3. Single exponential lifetime for mixed NADHs
The final experiment using a single exponential fit was performed for different
mixtures of free and bound NADH in one cuvette. Initially in a cuvette was 480 pL of
pure 30 uM bound NADH. After the measurement, 160 pL of the same concentration of
free NADH was added and the measurement was repeated. The same procedure was
repeated one more time before the sample photo bleached. Lifetime measurements of these

three consecutive measurements are shown in Figure 100.
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Figure 100. Bound NADH consecutively diluted with free NADH, measured with single exponential fit.

The mean measured lifetimes of these samples were respectively 1.02 ns, 0.92 ns, and

0.84 ns. All the standard deviations were very close to 0.1 ns. We can observe that the
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measured lifetime slowly moves in the direction of smaller lifetimes with addition of
the NADH with smaller lifetime. The last sample was a mixture of 3:2 of bound to free
NADH. Additionally, bound NADH is normally prepared with double the amount of
binding protein to assure 100% of bounds in the mixture; when free NADH added,
additional binding is happening, decreasing the amount of free and increasing amount
of bound NADH in the mixture. As expected, single exponential approximation of the
mixture of two lifetimes, results with a value in between them, indicating in a
guantitative sense the ratio of fluorophores. We can observe a decreasing mean

lifetime with increasing amount of free NADH (with shorter lifetime) in the solution.

The final step of this study was an implementation of a biexponential decay function
to fit measured NADH with a new model. Free and bound NADH both have single
exponential decays with lifetimes as previously stated. Using a biexponential model
that looks for two signal component with different lifetimes should, for a mixture of
free and bound NADH, return both lifetimes and indicate the relative strengths of
their signals. Practically, bound NADH solutions almost always had some unbound
NADH as well which could be detected through signal unmixing with the biexponential
fit. Fitting the biexponential model to pure free or pure bound NADH samples should
return two equal (or similar) mean lifetimes equal to the lifetime of a single

exponential fit, with standard deviations similar to each other.

3.12.6.1. The biexponential model

The model is an updated formula from equation 63, which now presents as follows:

t t

fa®) =Aje 1+ Ae 2+C (68)
The new, second exponential functions adds two new parameters to the fitting
function: amplitude and decay time of the second exponential signal component, A4,
and 1, respectively (parameters A and © from the single exponential model was
replaced with A; and 7;). The Y offset C is common for both parts and does not add
any new parameters. While 7; and t, should provide two lifetimes of fluorophores in

the mixture, their amplitudes A; and A, should provide the relative intensity of each
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signal, which can be used to calculate the relative amount of each fluorophore in the

mixture. The rest of the fitting procedure remained unchanged

3.12.6.2. Results
We took a measurement with a free NADH and the mixture of 2:1 free and bound
NADH in cuvettes next to each other and analysed them with a biexponential fitting
function. We introduce an additional element to the histogram — weighted counts.
Since every biexponential result returns two pairs of lifetimes and their relative
amplitudes, the counts can be weighted with their amplitudes — this means that if one
of the two lifetimes has a much smaller amplitude, its weighting on the histogram is
correspondingly reduced. Ideally, we expect two identical lifetimes returned for the
single exponential free NADH sample, and two lifetime components of the mixture

with amplitudes designating relative amount of one to the second one.
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Figure 101. Lifetimes retrieved with biexponetial fit from: a) free NADH, regular histogram. b) the same free NADH,
weighted histogram. c) NADH mixture, regular histogram. d) the same NADH mixture, weighted histogram.
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Figure 101 presents results of biexponential fit with all the designated lifetimes on a
single histogram. Figure 101a and Figure 101b show a measurement of the free NADH.
Designated lifetimes were 0.34 ns with STD = 0.020 ns, and 0.36 ns with STD =
0.322 ns. Both lifetimes are very close to each other, but standard deviations are very
different. The STD of the second one is probably massively increased by one mistaken
lifetime visible at 1.5 ns. All the lifetimes are presented in one histogram and are very
close to each other (falling mainly into two bins). Weighted histogram presented in
panel b, decreases values of all the small bins, stating that these values had smaller

amplitude —in this case these were probably mistaken.

Figure 101c, presents two lifetimes designated from the mixture. Clear separation
between their lifetimes can be observed. Mean designated lifetime of free NADH was
0.26 ns with STD = 0.076 ns, and mean designated lifetime of bound NADH was 1.07 ns
with STD = 0.315ns. The weighted histogram presented on panel d, shows decreased
amplitude of the lifetimes of the bound NADH almost three times, meaning their
designated amplitude in the pairs of lifetimes were relatively smaller to free NADH.
This behaviour was not exactly as expected since this mixture should result in about
1:1 of free to bound molecules due to additional binding in an excessive amount of
proteins from the bound NADH. The bound NADH STD (designated by the algorithm)
also seems to be confirming that it had smaller relative amplitude. Lifetimes deviating
more from the mean became smaller (meaning their amplitudes were smaller than

others) as expected.

Measurement of the biexponential signal is significantly harder than single
exponential decay. Higher signal amplitude (dynamic range) and SNR are required for
the correct lifetime determination. We estimate this amplitude to about 30 counts
with corresponding SNR for our algorithm to distinguish two lifetimes from the decay
curve. Below this number, the algorithm was typically returning two similar lifetimes
between expected ones. Biexponential fit is also less robust to small gate shape
changes which happen to our system, introducing more errors. This is the most
probable reason of lowered free NADH mean lifetimes. The algorithm worked mostly
as expected, except significant decrease of the bound NADH readouts. With this

experiment we confirm that the system is capable of the biexponential signal
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unmixing, although some more analysis of optimal parameters and system behaviour

is desired.

During this study we focussed on trying to optimize readout performance for best
results, often using a large number of measurements, which resulted in long collection
and calculation times. These times though, can be significantly shortened. In this
section, we consider the time that might be needed to acquire an accurate FLIM

image.
There are three parameters directly influencing the SPAD readout time:

e Repetitions — number of attempts to try to catch a photon for a single 1-bit
readout

e Max Counts Per Frame — number of times that Repetitions will be executed
to achieve MCPF possible readout levels

e Shifts — number of different gate delay shifts to be acquired (data points on

X axis on graphs with signals — 1280 for most of presented).

All three parameters are multiplied by each other to achieve the total number of
single pixel detection attempts. The minimum possible time would be the length of
the cycle (25 ns) multiplied by this total number of attempt; however, the real time

taken is in fact far longer.
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Figure 102. Collection times of the sensor in functions of different parameters.

Figure 102a shows how the actual collection time depends on repetitions for these
same other settings of MCPF = 256 (our typical number) and 1280 shifts (full scan).
Knowing that one laser cycle lasts 25 ns, for the number of repetitions = 200 the total
number of required cycles lasts 1.6384 s; Figure 102a shows that it actually takes
about 30 seconds. When the number of repetitions is increased to 2000, so the
number of performed cycles is multiplied by 10, the required number of cycles lasts
16.384 s, so is about 15 seconds longer; Figure 102a shows it actually takes about 47
seconds for the system to finish, so is actually 17 seconds longer. Clearly additional
repetitions take close to the minimum possible time, so do take place efficiently on
consecutive cycles. The y-intercept of the Figure 102a shows that there is a 27 s
constant operation time for the system for these settings, on top of which the actual

collection time is added.

When analysing Figure 102b, we can see similar dependency as a function of Max
Frames Per Second, suggesting a constant operational time about 22 seconds (for

repetitions = 150 and shifts = 1280).
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Figure 102c which presents collection time as a function of number of shifts (for
repetitions = 150 and MCPF = 500) shows that the additional operation time is
close to linearly proportional to shifts, and so must represent the time taken to
read and save each image in sequence. The theoretical minimum collection time
for each shift is 0.38 ms, but the gradient shows that each shift actually takes
23 ms. The great majority of the time then is required for the system to perform all
the starting and finishing procedures, but predominantly for sending the file to the

computer.

All the measurements carried out with the system, independently of the MCPF or
repetition number, are saved as 16 bit values in a file with an additional header.
This file has a size of 167,772,272 bytes for 1280 shifts, and is proportionately
smaller for fewer shifts. Because of the USB 2.0 transfer speed limitation, this file
is saved in the internal RAM memory of the system first, then transferred to the

computer via USB 2.0 protocol.

When 8-bit images as we use (MCPF=256) are collected, the amount of data
generated by the sensor is half of the file size actually used, and is just under the
USB 2.0 transfer capability. This data could be sent directly to the computer for
analysis (or analysed on chip) if the SPAD software had the option of an 8-bit file.
Further speed up can be achieved by reducing the number of shifts. In the NADH
experiments (section 3.12), we used only 200 shifts. Currently, collecting this trace

takes 5.1 s, and with 8-bit files could be 2.6 s.

The collection time could in principle be shortened even further. Having a
continuous finely spaced set of data for different gate delays is favourable but not
essential for the fitting procedure. For a single exponential fit and ideal data, three
points are required, because of three degrees of freedom (amplitude, lifetime, and
offset). Sampling the signal with three groups of 10 consecutive data points (to
average the noise) as shown in Figure 103, would again drastically decrease the
collection time. This would allow for 2-3 Hz collection frequency for 2000
repetitions (low level signals) and over 20 Hz for 200 repetitions (higher intensity
signals) for a single exponential fit. This means video-rate acquisition of image
data.

185



60 r

50 ')

-l__,"\._-.l-'-lI ,
- Vlllﬁl“ﬁx.' [
":."'.l-'\]r_qu_ fi .
SLY o, .
Wi

A
/ [y
M L I"'u.l“-'w_.'

107F

0 50 100 150 200 250

Figure 103. Representation of three clumps of data from the time trace that could be collected only for a fitting
procedure.

The second part of the time needed to present results is lifetime calculation time.
Again, we have not attempted to make this fast, and we used a time consuming
method of least square optimisation. Typically, about 300 steps are needed to find the
best fit in Matlab performed on the CPU (or GPU, the difference was very small) takes
about 0.8 s for each point in the image. To calculate the whole image of averaged
pixels, about 30 minutes is required. However, this number, can be decreased

drastically as well.

From the computational point of view, if proper GPU computing were used (utilising
all available GPUs which Matlab cannot do), these calculations could be completely
parallelised, increasing slightly calculation time for a single pixel, but executing it for
all of them at once (or divided into smaller groups, depending on the number of

available GPUs).
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The least square fitting procedure could also be significantly optimised, by setting a
minimum step size (e.g., limiting lifetime step to 0.01 ns), or using neighbouring pixel
results as an entry point for the next fit. Normalising all the traces and gates to 1
would allow to decrease number of variables to optimise to just t (lifetime) for a single
exponential fit and four degrees of freedom (two amplitudes and two lifetimes) for

the biexponential procedure.

Finally, an optimised lookup table could be used to fit the trace with only a limited set
of predefined decay lifetimes to find which of those are present and in what ratios.
For example, using just two functions for theoretical free and bound NADH decay
times would be extremely fast for analysing the biexponential data from section

3.12.6.

This approach has been studied, written to be performed on a FPGA system and a
single SPAD pixel (167), and was subsequently expanded by the same group to a 32x32
array (168) and proven to achieve speed of over 30 Hz for a single exponential fit and

over 100 Hz for lifetimes shorter than 1 ns (as in our case).

So, we are confident that possible improvements in both acquisition and analysis
times can achieve sub-second images, which promises possibility of real-time readout

with the system.

Using our SwissSPAD, a 512x128 pixel sensor we have built a wide-field imaging
system, collecting weak fluorescent signals from a distance of about 20 cm with a FOV
of 20 cm?. We estimated the detectable lifetime range based on the trace modelling
with the systems IRF to be in a range of 0.2 — 7 ns. This covers over 85% of fluorescent
dyes, probes and labels that are frequently used for biological applications and in
biomedical research, listed by the Fluorescence Foundation (169). We report that the
detection accuracy decreases for longer lifetimes, because of the interference of

subsequent laser pulses.

Initially, we reproduced the experiment of our colleagues (159) using only a few pixels

to detect fluorescence lifetime of a very high intensity signal, without imaging. We
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confirmed the proof of principle even for the lifetime region of relatively lower

resolution.

Before we moved to the second stage of the lifetime determination, we carefully
analysed the system’s impulse response function. We carried out a number of
experiments characterising the Impulse Response Function behaviour for various
conditions. As a result, we decreased inconsistencies in the readout sensitivity
depending on a gate position, through applying extra time for the sensor to recharge
after recording each 1-bit information. We applied a count correction factor, which
corrected for nonlinear saturation of the sensor. Some sensor’s disadvantages, like a
changing gate shape with the signal amplitude and with the gate position, were deeply
analysed and solutions to these problems were applied in the updated fitting

procedure.

For the second part we built a proper imaging system utilising the whole array of the
SPAD and measured lifetimes of fluorophores with signals lower by 7 or more times.
Lifetime retrieval of Rhodamine B over the area of about 2cm? returned was very
accurate with the mean t=1.69 ns (1.68 ns literature value), with a STD of values of
individual locations of 0.26 ns, and a Standard Error of Means of 0.016 calculated from
the whole area. The signal had an amplitude of only 2% of the full range, or 10% of the
designated useful range. Measured from the same image and equivalent area, the
lifetime of Fluorescein was t=3.8 ns (literature value 4 ns) with a STD of values of
individual locations of 1 ns, and a Standard Error of Means of 0.0625 ns calculated
from the whole area. Lower accuracy was caused by an extremely low signal level
equivalent to 0.5 counts in amplitude, which is 1% of the useful range. This provided
evidence of capability of lifetime retrieval from extremely low recorded signals with

acceptable accuracy.

Lifetime retrieval from extremely low signals was possible due to applied signal
averaging over 5x5 pixels. Decreased spatial resolution (effectively 102x25 px) was still
larger than most available SPADs for single pixel measurements and still provided an

effective pixel size smaller than 1 mm, allowing for imaging of small objects.
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Measurements of two forms of NADH, free and bound with lifetimes respectively
0.4 ns and 1.0 ns with different concentrations of free NADH were carried out next.
Excellent precision of the measurement was achieved for 40 uM free NADH with
standard deviation of only 0.026 ns. This deviation was achieved for a SNR = 28 dB. For
comparison, the same measurement analysed in a single pixel manner achieved SNR =
15.7 dB and STD = 0.099 ns. Our analysis shows that the SNR rises logarithmically with
increasing signal amplitude, very quickly reaching a high ratio. Growth tempo is almost
identical for both averaged and single pixels with a difference of 12 dB between
respective amplitudes. Standard deviation grows almost three times faster with

decreasing SNR for single pixel measurements.

The lowest measured free NADH concentration was 5 uM with a signal amplitude of
0.7 and STD = 0.151 ns. The mean lifetime was determined as 0.27 ns. We emphasise
that this value was lowered by pixels with insufficient signal (lower than 0.7 counts)
returning lifetimes close to 0. The histogram shows that the majority of pixels were
measured accurately. We also emphasise that measured concentration yielded a
lowered signal due to photo bleaching over the time of 24 hours. The signal strength
of different NADH concentrations should decrease linearly (166), and thus a signal of
5 uM should be about 5 times higher, suggesting given results to be appropriate to
about 1 uM free NADH concentration. Achieved results allow for the full separation of
free and bound NADH readouts for the lowest measured concentrations for single
exponential fit and averaged pixels. For the single pixel measurement, an amplitude of
about 10 times higher is required to maintain the same accuracy, which translates to

about 10 times higher NADH concentrations.

The following experiment with imaging free and bound NADH at the same time
confirmed the complete lifetime separation is possible across the range of presented
concentrations and signal amplitudes. It also pointed out a problem with bound NADH
samples, which caused lower signals, and hence larger lifetime deviations. For the
literature behaviour, bound NADH with twice the signal of free form would
characterise with even smaller spread than free NADH, presenting even greater

separation.
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The final single exponential experiment presented the capability of this fit to average
lifetimes of mixed fluorophores. We prepared three mixtures, adding small amounts
of free NADH to the bound one. Because of the process of NADH binding, we expect
the added free NADH to bind some more, so increasing the amount of free NADH in
the mixture slowly. Figure 100 presents the expected shift of the mean lifetime value

towards lower lifetimes with increasing free NADH amount in the mixture.

Subsequent experiments with biexponential fitting presented mostly expected
behaviour. Single exponential free NADH sample was designated with two similar and
close to literature lifetimes. The NADH mixture was unmixed with two almost separate
lifetime groups. A slightly shifted (compared to the literature) short lifetime is most
likely a result of the imperfect fitting trace. Relative amplitude based weighting lifted
strong readouts closest to the mean values and supressed weak ones further from it.
An unexpected finding was that the weighted histogram decreased readout of bound
NADH while increasing free NADH. From the ratio of weighted counts close to 1:1, it
changed to over 5:1 in favour of free NADH. This behaviour would be in agreement
with the quenched bound NADH proposal, assuming that NADH in the mixture was
bound but emitting a very faint signal. This would cancel the free NADH signal but
would introduce only a small amount of the bound NADH, until some point. Once the
critical mass of free NADH in the solution is exceeded, new molecules of free NADH
would not be binding to free molecules of proteins and would rapidly elevate free the
NADH signal in comparison to the bound form. We estimate that a proper
biexponential trace unmixing requires a signal of about 30 counts to work properly.
Adding appropriate limitations to the fitting function might increase accuracy and

decrease required amplitude.

Analysing the speed of our system, we suggest that the current rather long time of
data collection and lifetime calculation in our studies can be shortened multiple times
by limiting of a number of gate positons and using published fast methods of lifetime
calculation. A speed between 1-20Hz seems possible keeping the presented

sensitivity of the system.

We emphasise that the SwissSPAD is a prototype system, and had remaining
imperfections and unintended performance characteristics. The system’s IRF was far

190



from perfect and the shape of the gate changed sometimes for unspecified reasons.
Small changes of electric current, imperfections on electrical and signal connectors,
change of ambient temperature and even pixel to pixel variation could affect the
shape of the gate, making the fitting procedure far more complex than ideal. Dealing
with these issues, either electrically or in any part of the firmware/software/analysing

script would be very beneficial for the systems reliability and repeatability.

Direct comparison between performance of different SPAD-FLIM systems is not easy,
as everyone carries out different experiments. Even for the same measured
fluorophores, factors like concentration, volume, excitation laser power, optics or
distance will introduce variation. Typical reported STDs are between 0.2 — 0.4 ns (156,
157, 170) for fluorophores with nanosecond lifetimes, which is at the upper range for
our measurements. These results were always acquired using many times smaller
SPAD arrays, collecting signals attached to the microscope. The largest field of view of
analysed papers was reported as 400 x 200 um (157) which is about 2500 times
smaller than presented by us. In the same paper the scientist reported that the STD of
0.2 ns was achieved for SNR = 26 dB, where the same STD in our case was achieved for

single pixel measurement and SNR of 10-12 dB.

We now consider the application of our system to analysing biological samples. While
we presented that our system is capable of determination of lifetimes of two mixed
fluorophores with the biexponential fitting procedure, a biological environment
typically is far more complex, presenting more than two lifetimes at once. As proven
many times (137, 171), single exponential estimations of complex autofluorescent
biological signals can be a good estimator cancerous regions for skin, breast, brain and

other cancers.

In 2009 it was reported that the NADH concentration in a breast cancer tissue equals
168 uM, while for the healthy tissue it is 99 uM (172). Our robust discrimination of
free and bound NADH for just 10 uM solutions suggest that our system in the current
condition has the sensitivity for surface cancer detection. More limited FLIM systems
that ours have been used previously to investigate this idea. In 2014 scientists
published a paper with extensive analysis of NADH and NADPH using FLIM system
(136). Imaging of single cells under the microscope allowed them to perform detailed
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structural analysis of lifetimes, including biexponential measurements for some
specific parts of cells. Their commercial TCSPC scanning FLIM system provided
measurements with accuracy varying between 0.1 —1 ns. In 2010 in a paper about
brain tumours, scientist presented analysis of lifetimes for cancer and non-cancer
regions of the brain tissue (including NADH analysis) for a field of view of 4 mm? (171).
The system that is the closest to our approach was presented in 2010 (137). A complex
system built around a CCD camera, presented a time-gated FLIM, providing a cm sized
field of view for observing autofluorescent signals of cancer tissues under the
excitation of 355 nm laser. The system provided an acquisition time of about 20 s.
Lifetimes, however, were determined with significantly lower precision (standard
deviation between 0.4 -1.1ns). Also, the degree of complexity of the system was

significantly higher, compared to our integrated SPAD sensor.

The 355 nm laser illumination at the NADH sample is below 5 mW/cm?2. 355 nm is
classified as a UVA radiation, which is a part of the emission spectrum of the Sun. In
the peak hour of the day the sun emits 4.7 mW/cm? of the UVA radiation (173) which

is comparable with our illumination power.

The flow-chart of the system is presented in Figure 104 below.
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We have presented research in two areas, connected by the use of fluorophores in
biomedical studies, but different in almost everything else. The smartphone part
focused on the use of everyday electronics to provide medically relevant readout
devices for home use, while the SPAD part utilised a cutting edge prototype SPAD
array to construct an advanced imaging system for a professional use. Both
approaches came with unique sets of advantages and disadvantages, making both

projects so distinctively engaging.

Employing smartphones as light detection devices came to the world of science
naturally since sensors not so different from the ones in phones are often used in
professional readout devices. Indisputable advantages of smartphones are popularity
and high quality of embedded cameras. We decided to take our own approach to the
problem, which did not follow the main trend of 3d-printed attachments with
incorporated optical elements inside. Instead, we put emphasis on simplicity and

utilising commonly available elements.

In the first smartphone experiment, based on the fluorescence detection, we proved
that all the parts of the typical spectrophotometric readout system, can be substituted
with simple elements, most of which the typical modern household is equipped with.
We used a tablet screen as an excitation source (replacing specifically designed lasers,
diodes or lamps), tablets screen polarisation along with an additional polariser instead
of set of filters, a simple cardboard box as an element providing a structure and
shielding the detection system from ambient light, and finally a smartphone replacing

a specialised sensor.

We showed that our system can compete with a spectrophotometer, being many
times more expensive, for reading out the presented commercial assays. While less
accurate, the smartphone still distinguished between very low concentrations of
trypsin and collagenase assays. The low detection limit for the trypsin was 100 times
smaller than required for the assessment of cystic fibrosis, and exceeded the required

range by over 20 times with resolution allowing for over 2600 readout levels within
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the range, which was more than sufficient to provide clinical information. The
collagenase assay, which is an indicator of (inter alia) rheumatoid arthritis and joint
inflammation, had significantly lower signal intensity but also covered relevant ranges
for these medical conditions. The working curves produced by the smartphone and
the spectrophotometer were almost identical in shape and the response of our system

was very similar to that gold standard.

The second smartphone project pushed the concept of setup simplicity to its extreme,
necessarily increasing the complexity of analysis. The method of acquiring data was
simply to take a photo with the smartphone in reasonably uniform and typical
illumination conditions (checked if within acceptable limits), with the sample placed
on the white sheet of paper which served as a background and a colour reference
point for the system. We studied an assay for IL-8; elevated IL-8 concentrations above
550 pg/mL may (103) indicate ongoing infection and/or inflammation which is a
common ailment for cystic fibrosis infant patients. The only available commercial
assay for IL-8 detection is designed to be read out with an absorbance measurement,
and has a suggested upper detection limit of just 200 pg/mL. Our decision to perform
a colour analysis instead of an absorbance analysis increased the assay working range
18 times. Our system was capable of distinguishing concentrations up to 3600 pg/mL,
so enabling the use of this assay to detect the condition. Clinical samples measured

with the system saw IL-8 concentrations of up 1770 pg/mL.

We believe that emphasising simplicity is the most appropriate approach for
smartphone based systems, because of the possibilities that it brings. We envision
that the next step after Point-Of-Care Testing (in presence of the medically trained
person) scheme, will be patients’ self-testing for first indications of common diseases,
or for regular monitoring of very specific conditions (like cystic fibrosis). This step calls

for the most available, easy to use yet still accurate solutions, accessible for everyone.

Simple quantitative chemical and medical testing using smartphones could bring
analysis to places it is currently not available. POCT is only the beginning of the ‘on the
spot’ testing applications. Simple extensions of the idea include for example
veterinarians being able to test animals in rural areas, or small facilities (e.g., food
production, breweries or distilleries) testing their product’s quality in the place where
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it is produced. The very low cost of the solution could encourage testing in places
where it is not currently considered. Ultimately, reliable rapid colour analysis using a
smartphone in any situation could bring a new era of consumer tests (e.g., colour
based freshness of meat or ripeness of fruits). Our work is a step toward accounting
for the many variables in such an uncontrolled test environment to ensure reliable

results.

Constant rapid development of smartphones brings many opportunities but also has
drawbacks. The multiplicity of smartphones on the market, with new ones arriving
each month, brings a range of variations in their sensors’ performance. Methods that
are applicable to most phones may not work (or will drastically decrease in
performance) for others. The impossibility of testing all the models will always limit
the market to the certain extent. On a positive note, cameras in smartphones are still
improving at a very rapid pace, allowing for more accurate scientific use each year.
Relatively new to high class smartphones is raw (uncompressed linear data) image

acquisition, which will be a great help in scientific image analysis.

The next reasonable step towards more accurate smartphone colour determination
will be in-depth analysis of the variables hidden in metadata of each file saved by the
smartphone. Precise information about the image resolution or used colour space, but
also an exposure time, F-number or focal length can be found. Others of these
variables are records of the image processing done by the phone, potentially helping
to understand and undo any changes, to assist absolute colour comparison. The help
of the sensor and smartphone manufacturers in understanding how the image is
processed would be invaluable, though it Is very unlikely that they will share their

secrets to the public or even scientists.

The SPAD-FLIM project was divided into 3 main parts. In the first part, we built a first
version of the system, applied a simple version of the lifetime retrieval algorithm and
performed a proof of concept measurement using a fluorophore whose lifetime was
confirmed by a reference measurement. The second part resulted from the fact that
the sensor was a cutting-edge, new prototype device which was not fully tested and
characterised. We spent a significant amount of time for IRF analysis, detection and
characterisation of unwanted behaviour, and developing and applying corrections. For
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the third and final part, we constructed a fully operational wide-field FLIM system,
with the field of view of about 20 cm?, imaged from the distance of about 20 cm. Our
target fluorophores were NADH in a free and bound forms, which can indicate cancer
cells of breast, brain or skin tumours in the human body. We tested the accuracy of
the lifetime determination for a range of medically-relevant concentrations of
fluorophores. Signal noise and lifetime standard deviation were characterised for two
modes of data analysis — single pixel and averaged pixels analysis. Both of these
modes were similar to, or outperformed, other published SPAD-FLIM systems. In
terms of a field of view, our system improved by three orders of magnitude (158). The
resolution, even when effectively decreased by pixel averaging was still at least two

times higher than other largest SPAD (170) (10 times without averaging).

Comparing our performance with literature data, we suggest that our system is
capable of a surface cancer detection based on NADH lifetime analysis in a real time
regime (1-20 Hz). Comparing performance of our system with a published CMOS
FLIM system with similar field of view (137), ours presents an integrated ‘on-chip’
solution against complex system built of many separate parts. The reported accuracy

was 2 — 4 times better in favour of our system.

The next step towards cancer screening with our system will be determining
capabilities and limits while imaging live and fixed, artificially grown cancer cells, and
imaging of matching healthy cells. Subsequently, tissues samples with both healthy
and cancer regions, can be studied to accurately represent the complex target
environment of human body. Finally, optimisation of the collection time and time of
the lifetime determination algorithm (as proposed) will open new doors for the

system application in biomedical sciences.

Potential of real time lifetime analysis allows us to consider applying such a system in
an actual surface cancer detection. Scanning the whole body for melanoma changes
would be possible with presented field of view, providing digital images with colour
coded cancerous tissues. The system could be used during brain or breast cancers
operations, where fixed at the position of the surgical extraction, it could highlight
cancer tissues to be removed on the screen. Ultimately, Augmented Reality should be
considered. The field of view of the camera could be specifically marked for the AR to
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recognise this part. Subsequently, lifetime information retrieved by the SPAD could be
sent to the AR headset and applied as a digital layer in the previously marked area,
where the lifetime determination is executed. This way, using the simplest AR
technique, the medical doctor could see a highlight of cancer tissues on top of the
regular vison. This solution would save the need of looking at the digital screen instead

of the patient. A view of this future is given in Figure 105.

Figure 105. A visualisation of the medical doctor during an operation, wearing augmented reality goggles
connected to the outcome of the SPAD sensor to highlight cancer tissues on top of the regular vision. Photograph:
Medical Realities/PA
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In the first smartphone project Ayad G. Anwer contributed to collagenase assays.

In the same project Wei Deng contributed to trypsin assays.

In the second smartphone project Luke W. Garratt prepared IL-8 and NE clinical
samples and acquired images with smartphones for analysis.

In the SPAD-FLIM project Ayad G. Anwer and Saabah B Mahbub contributed to NADH
preparation.
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