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Abstract

The on-demand generation of identical single photons is one of the most keenly sought
capabilities in quantum optics. Such sources are a key resource in optical implementations
of quantum information processing, such as quantum communication or computing.

Many current heralded single-photon sources use the third order nonlinear optical process
of spontaneous four wave mixing, whereby two pump photons are converted into a signal
photon and an idler photon. These sources can be based on integrated or fibre platforms, but
suffer from the spontaneous generation of Raman-shifted photons, particularly in amorphous
materials. This noise limits their utility, as heralding detectors cannot distinguish between
genuine pairs produced by the source and unpaired single photons.

In this thesis, we propose and theoretically analyse a new photon generation method
we term “Stimulated Spontaneous Three Photon Down Conversion”. Pumping a nonlinear
material at the third harmonic, we spontaneously generate three photons at the fundamental
frequency – spectrally isolated from the Raman noise around the pump. A weak seed beam
near the fundamental frequency leads to an increase in the rate of correlated pairs produced
on either side of the seed, resulting in an effective heralded single-photon source of much-
reduced noise. We work in the framework of a fully multi-mode Hamiltonian formalism
of nonlinear quantum optics. Applying this technique in fused silica microfibre could in
principle produce 0.03 pairs per pulse, with realistic pump field requirements.
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Anything worth taking seriously
is worth making fun of.

Tom Lehrer

1
Introduction

Since the taming of fire, humanity has had the ability to produce vast quantities of photons
– discrete packets of light. The humble 40W incandescent light bulb produces hundreds
of quintillions (∼ 1020) of optical photons per second. Producing only single photons on
demand, however, is another matter entirely. This capability is sought after worldwide in
the quantum optics and information community, as it would allow for a deeper probing
of the quantum world, as well as the development of incredible new technologies. This
includes quantum computers [1], which if realised will be able to solve problems that current
“classical” computers find intractable. Another example is quantum communication, which
in principle allows for the 100% secure transmission of a key for the encryption and decryption
of messages through a technique known as Quantum Key Distribution (QKD) [2].

Photons, through the lens of quantum optics, are well-suited to the task of unlocking
the potential of the quantum world. Unlike matter-based quantum objects, they have long
coherence times. They are relatively easy to generate in entangled states (for example, passing
an indistinguishable pair of photons through a beam splitter generates a NOON state with
N = 2, represented as |ψ〉 = 1√

2
(|N, 0〉 + |0, N〉) [3]). They are easy to transport as they

propagate naturally. In particular, photons produced in the 1550 nm band can be transported
long distances over optical fibre with minimal disruption. Although subject to scattering and
absorptions, photons do not decay. However, there is more to a photon than just ~ω.
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1.1 What is a photon?

A photon is the discrete excitation of the electromagnetic field, possessing a distribution of
frequencies, spatial structure, a polarisation and a momentum. It is common in the field of
quantum information to see the single photon represented as |1〉 = â† |0〉where â† is the usual
creation operator associated with the quantum harmonic oscillator, and |n〉 represents a state
containing n photons, with |0〉 being the vacuum state. However, this does not capture any of
the aforementioned degrees of freedom, such as which mode the operator â† corresponds to1.
If we wish to capture several degrees of freedom, we can represent this state more realistically
as

|ψ〉 =
∑
i,σ

∫
dω fi,σ (ω)â†i,σ,ω |0〉 , (1.1)

where f describes the frequency distribution and â† is now indexed by themode i, polarisation
σ and the frequency ω. The quantum nature of this object lies in the non-trivial algebra
satisfied by â and the ability to produce superpositions of states.

This thesis considers a new method of single photon generation, based on nonlinear
optical processes. The need for a new source ismotivated by the pressing issue of spontaneous
Raman scattering in amorphousmaterials, whichmany current spontaneous four wavemixing
(SFWM) sources rely on. We will gain more insight into this problem in section 1.2.

1.2 How do we make photons?

An ideal photon source would be one for which we could control every degree of freedom
simultaneously and generate single photons on demand. We can imagine a device like the
one shown in fig. 1.1, which produces a single photon with the desired characteristics upon
every press of the button, or at least on most presses (we cannot beat the second law of
thermodynamics). Unfortunately the engineering demands on such a contraption are, for
now, too great, but we can try to constrain as many as possible when designing real sources.

Photon sources must address several challenges. For most quantum applications, we
require a high rate of photons sincemany protocols requiremultiple photons and the efficiency
of these protocols grows with higher power. They must produce truly ‘single’ photons
(〈ψ | N̂ |ψ〉 =

∑
i,σ

∫
dω �� fi,σ (ω)��2 = 1, where N̂ is the number operator). The source must

be tailored to have the desired correlations between photons, or lack-thereof (be it frequency,
spatial or temporal correlation), and desired spectral properties. Such sources must produce
photons which are “indistinguishable” from each other (in all but one degree of freedom).

1Here mode refers to the spatial eigenfunctions of the modal wave equation. Examples include the familiar
HE and LP modes of an optical fibre.



1.2 How do we make photons? 3

Figure 1.1: A device for which we control all of our degrees of freedom, press the button,
and produce precisely the photon we want.

Furthermore, many applications, such as quantum computing, require that the source is
scalable, as we must be able to produce them en masse.

There are two main schemes in use today for producing single photons that satisfy most
of these requirements: single quantum or atom-like systems and nonlinear optical schemes.
The former typically involve placing single photon emitters like atoms into cavities, where
they couple with the cavity field. Such emitters include “two level” atoms [4], quantum dots
[5], nitrogen vacancies in diamond crystals [6] and colour centres in other crystal lattices [7].

Many atom-like emitters require complex laser systems, for example to generate optical
lattices for atom trapping [8], and must be placed in ultra-high vacuum chambers to maintain
isolation from their environment. Even then, the lifetime of such systems can be short and as a
result, they are often bulky and unsuitable for many applications. Some of these requirements
have been relaxed by the fabrication of solid-state microcavities, which are highly compact
[9]. However, most systems still must be cooled to cryogenic temperatures (often done with
liquid helium), requiring further equipment. Notable exceptions include nitrogen and silicon
vacancy centres in diamond, which can operate at room temperature [10, 11]. However due
to difficulties in fabrication, reliably producing indistinguishable photons (due to inconsistent
quantum dot fabrication, as an example) can be problematic. Despite these shortcomings
atom-like systems can produce high quality single photons, and are likely to ultimately
become the preferred source.

In contrast with atom-like systems, Nonlinear Optics (NLO) takes advantage of higher
order electric susceptibilities (typically the second and third order susceptibilities, denoted
by χ(2) and χ(3) respectively) in various materials to convert light at one or more frequencies
into other frequencies. Owing to the very weak nature of higher order electric susceptibilities
(e.g. the second order susceptibility of lithium niobate is around 10−12V/m), the field of
NLO only began after the advent of the laser in 1960 [12]. Despite the apparent paradox
of combining high laser intensities with quantum processes at the few photon level, it was
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Figure 1.2: A schematic of a heralded single photon source, with the signal or herald photon
being detected and projecting the idler photon into a single photon state.

realised within the decade that NLO provides a promising tool for exploring quantum optics,
a typically low intensity affair.

NLO faces its own set of challenges as a basis for photon sources. Due to the very weak
nature of higher order electric susceptibilities we must use relatively high intensity light to
produce even a few photons, placing constraints on pump sources. Furthermore, this process
is not deterministic – with any given pulse we do not know if we will produce any of the
desired photons. However, as many nonlinear processes produce photons in pairs, we can
use the detection of one photon as a herald of the other, counteracting their non-deterministic
generation (see fig. 1.2). This introduces another issue – to preferentially generate single pairs
of photons rather than higher order pairs, we must keep our laser intensities low, which limits
the brightness of the source. Finally, we must deal with sources of noise. We cannot control
every process occurring within our nonlinear materials that will produce spurious photons.
Examples of such processes include spontaneous Raman scattering [13], fluorescence from
chemical impurities (such as trace iron in glass [14]), and simple linear attenuation where we
lose only a single photon. These losses tend to drive the photon statistics towards classical
light, obviating their use for quantum experiments.

Most relevant to our discussion in this thesis is spontaneous Raman scattering, which
is a well-understood phenomenon. When light of frequency ω is incident upon a medium,
some photons are inelastically scattered such that their frequency is shifted by an amount
∆ωR, so that photons at frequencies ωS,A = ω±∆ωR are produced. The down-shift is known
as the Stokes component, and the up-shift the anti-Stokes component. The Stokes process
occurs when the photon causes an atom or molecule to transition from its ground state |g〉,
to another state |n〉, via a virtual excited state |n′〉, associated with the emission of a phonon.
The anti-Stokes process is similar, but the transition is from |n〉 to |g〉, and is typically weaker
due to a low population of phonons at room temperature[15]. Both processes are illustrated
in fig. 1.3. In crystals, which have regular structures, the Raman peaks are typically narrow –
on the order of tens of terahertz. However, in amorphous materials such as glass, the Raman
spectrum can be quite broad – on the order of hundreds of terahertz. As we will show later,
this is often problematic.
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Figure 1.3: The energy levels involved with the spontaneous Raman process. a) The Stokes
process. b) The anti-Stokes process.

1.3 Why use NLO sources?

In spite of these complications NLO offers some clear advantages over other systems. The
first of these is the high rate at which these sources can produce photons (e.g.106 photons per
second in a recent lithium niobate waveguide[16]). Furthermore, whilst NLO sources can be
created with bulk optics, with large optical tables covered in mirrors, lenses and large chunks
of crystals, they can also be achieved in fibre or integrated onto photonic chips. In 2005 Li
et al. demonstrated the ability to generate polarisation-entangled photons in standard optical
fibre in the 1550 nm telecom band [17]. They used these photons to demonstrate Hong-
Ou-Mandel interference with greater than 90% visibility and to violate Bell’s inequality.
McMillan et al. (2009) took another approach, generating correlated photon pairs at 1570
nm in photonic crystal fibre [18]. Clark et al. demonstrated another photonic crystal fibre
source in 2011, with the ability to tailor the spectral properties of the photons [19].

As for integrated photonic chips, the generation of correlated photon pairs has been
demonstrated in chalcogenide glass waveguides [20], as well as in semiconductor nanowires
on silicon photonic crystals [21]. Both of these schemes can be operated at room temperature
in air, removing the need for large cooling and vacuum systems. Integration also leads to
the possibility of hundreds, or even thousands of optical elements on a single chip – ide-
ally forming entire devices, including both photon sources and detectors, ideal for quantum
information processing. These photonic chips can be made to be extremely compact, as
demonstrated in fig. 1.4. Other examples of on-chip sources include a SFWM source on a
silica photonic chip by Spring et al. in 2013 [22]. This compactness leads to a scalability
that is a strong motivator behind such research around the world, allowing for more com-
mercial applications. Feeding into this, much of this technology is compatible with existing
semiconductor electronics and fabrication capabilities. On top of this, there are also novel
fabrication techniques available, such as the femtosecond laser direct writing technique used
to fabricate a single photon source beyond 1100 nm in fused silica by Yan et al. in 2015 [23].
This technique can be extended to 3D waveguides, allowing for the design of more complex
circuits.

The ability to integrate optical elements onto photonic chips has further advantages.
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(a)
(b)

Figure 1.4: (a): An example of how small integrated photon sources can be: the newer
packaged silicon chip on the left (which contains features only 100 µm long) compared to an
older, centimetre scale nonlinear glass chip. (b): A schematic of the experiment in which
this particular device was used, including a diagram of the glass chip itself. [24]

The use of waveguides allows for great control over how waves of different frequencies
interact, in particular we can engineer a more desirable dispersion relation. This allows us to
selectively phasematch which processes take place and which do not. We have this ability as
the frequency conversion that takes place must approximately satisfy both the conservation
of energy and momentum, the latter imposing conditions on the allowed combination of
wavevectors. These waveguides can be designed to have tight mode confinement, leading to
a greater nonlinear enhancement than would be possible in bulk materials.

Finally, integrated optical chips are solid-state devices. This gives them inherent stability
as single photon sources, as they are less sensitive to environmental changes and will reliably
reproduce indistinguishable photons. We can also attach such systems to thermal reservoirs,
giving us temperature stability, or even thermal control. For example, in 2015 Carolan et al.
demonstrated a reprogrammable optical circuit with 15 Mach-Zehnder interferometers and
30 thermo-optic phase shifters integrated onto a single photonic chip that could reproduce
various states with a fidelity of 0.999 [25]. However, while the current state-of-the-art for
quantum circuits involves dozens of elements integrated onto a chip, integrated sources are
further behind.

1.3.1 Schemes for producing photons

At present there are two main techniques for producing pairs of photons by nonlinear optics:
spontaneous parametric down conversion (SPDC), a second order process, and spontaneous
four wave mixing, a third order process [26]. When performing SPDC we pump strongly
at some frequency ωp, and “spontaneously” generate signal and idler photons of lower
frequencies, ωs and ωi. This is in contrast to the equivalent classical process, difference-
frequency generation, where we must stimulate the process with a seed beam at ωi. This is
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because, at the single photon level, vacuum fluctuations stimulate the generation of the signal
and idler photons. Formally, this is described by the two-mode squeezing operator

Ŝ(ξ) = eξ â† b̂†−ξ∗ â b̂ (1.2)

acting on the vacuum state |0, 0〉, as shown in fig. 1.5, where â† |0, 0〉 = |1, 0〉 and b̂† |0, 0〉 =
|0, 1〉, and â†, b̂† correspond to modes at the signal frequencyωs, and idler frequencyωi, with
ξ containing the pump strength, nonlinear coefficient and time dependence. As previously
discussed, this produces mostly vacuum, and a contribution to the single-pair state |1, 1〉, but
it also has a non-negligible likelihood of generating higher order pairs (|n, n〉 , n ≥ 2). These
higher order pairs are problematic, as most quantum protocols rely on having only single
photons present, and we do not yet have reliable (and affordable) number resolving photon
detectors to remove them through real-time detection or post-selection.

Figure 1.5: The input and output states when performing SPDC, demonstrating the effect
of the squeezing operator on the vacuum state for small ξ. Here α is the amplitude of the
classical pump.

For sufficiently small values of ξ the probability of generating at least the second order pair
is proportional to |ξ |4. This means that for low pump powers the probability of generating
higher order pairs is low (but non-zero), although the rate of single pairs is correspondingly
lower.

Spontaneous four wave mixing is a more complicated process than SPDC. As the name
suggests there are now four fields interacting (plus a special case, degenerate SFWM where
two of the fields have the same frequency), which leads to some effects not seen in SPDC
through the χ(3) nonlinearity including cross-phase modulation, self-phase modulation, free-
carrier absorption and two photon absorption [27]. Similarly to SPDC, SFWM sources also
generate higher order pairs. There is still interest in SFWMdespite these extra effects, as every
material has a third order nonlinear susceptibility, and it is possible to generate correlated
photon pairs in a single spatial mode directly inside fibres. This means that they couple well
into existing infrastructure [28]. However, due to the non-instantaneous molecular response
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underlying the third order nonlinearity, many amorphous SFWM sources are plagued by
the aforementioned spontaneous Raman scattering [29]. Even with tight filtering around the
signal and idler frequencies, we see unwanted Raman photons being generated from the pump
field in the form of uncorrelated single photons.

It is sometimes possible to reduce this problem by working in low Raman noise frequency
windows, whether this is by using dispersion engineered waveguides or by selecting an
appropriate material to use as a platform. This was demonstrated by Collins et al. in 2012
[30] through the use of careful dispersion engineering in a chalcogenide glass rib waveguide.
They found that when performing SFWM for a TM mode, there was a region of low Raman
noise when detuned from the pump by around 8 THz (see fig. 1.6).

Figure 1.6: Finding a region of low spontaneous Raman noise while performing SFWM [30].
The signal to noise ratio is very good in the 7.5 THz − 8.5 THz band.

This constitutes a dramatic improvement in the standard signal to noise measure, the
coincidence-to-accidental ratio (CAR), where a coincidence constitutes the detection of a
correlated pair of photons. Here the CAR is defined as the ratio of the rate of correlated
counts, Craw, to the rate of noise counts, A, that is CAR = C/A where the true coincidence
rate is related to the measured ratio by C = Craw − A. We can see this improvement in
fig. 1.6, where the total coincidence rate is given in blue, the noise rate in red, and the true
coincidences in green. In fig. 1.7.b, outside the low-noise window, there are more counts
due to Raman scattering than from SFWM. In contrast, fig. 1.6.a shows that in the low-noise
region, the true coincidence rate approaches the total coincidence rate. While promising, this
solution does have stringent spectral and material requirements. Such convenient Raman-free
windows are rare.

1.3.2 Multiplexing

Incidentally, the multiple pair generation problem would appear to limit the feasibility of
both SPDC and SFWM as bright sources of single photons regardless of other noise issues.
However, when we have high heralding efficiency (that is, when we have a single photon in the
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Figure 1.7: (a) In the low-noise region, the true coincidence rate (green) approaches the total
coincidence rate (blue). (b) Outside the low-noise region, the noise rate (red) is comparable
to the true coincidence rate [30].

signal arm, the herald arm’s detector correctly fires a high percentage of the time), we can use
multiplexing with multiple sources to increase the effective brightness of a source without
introducing more undesirable states. This can be done with either spatial multiplexing,
where we use multiple sources, or with temporal multiplexing, where we use delay lines
to combine together multiple single pair events. In 2013 Collins et al. [31] demonstrated
how multiplexing two SFWM integrated waveguide sources could lead to a 63% increase
in the heralded photon rate, which is only slightly less than the expected enhancement with
a lossless switch. In an ideal world, without detector ineffiencies and coupling losses, one
would expect the rate to nearly double, i.e. a 100% increase in the rate [32]. To achieve
the measured enhancement, as shown in fig. 1.8, the photons produced in each waveguide
are separated by an arrayed waveguide grating, where they pass through separate arms. The
idler photon goes into the herald arm with a single photon detector and the signal photon
goes through a delay line (here a fibre loop). If the herald arm detector clicks, the delay
line gives the electronic logic circuit time to control the optical switch which allows only the
heralded photon through. The result is a heralded photon source with a higher rate, but with
a reduction in the fraction of multiple pairs.

1.4 How do we characterise photon sources?

To improve sources, we must be able to measure and classify them. Here we describe a
couple of important metrics.
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Figure 1.8: An example of the kind of device envisaged by Collins et al. in [31].

1.4.1 The second-order correlation function

An importantmeasure for the “single-ness” of a source is the second order correlation function
g(2) (τ)[26]. For a single mode, we write

g(2) (τ) =

〈
â†(t1)â†(t2)â(t2)â(t1)

〉
〈
â†(t1)â(t1)

〉 〈
â†(t2)â(t2)

〉 = 〈: I (t1)I (t2) :〉
〈I (t1)〉 〈I (t2)〉

, (1.3)

where : _ : denotes normal ordering. This is a “normalised” measure of the likelihood
of two photons arriving at their respective detectors with temporal separation τ. A value
g(2) (0) = 1 indicates that we have a coherent source, such as a laser. If we have g(2) (0) = 2,
then we have a thermal source (we see photon bunching as we would with a blackbody
emitter). However, g(2) (0) = 0 tells us that we have a true single photon source – our photons
are anti-bunched, they arrive separately. For their multiplexed source, Collins et al. quote
a value of g(2) (0) = 0.19 ± 0.02 [31], indicating that their source does indeed operate in
the single-photon regime. Another convincing demonstration in a femtosecond laser direct
written waveguide is given by Spring et al., showing g(2) (0) = 0.0092 ± 0.0004 for a pump
power of 25mW [22].

The form in eq. (1.3) is technically appropriate for truly single photon sources. For
characterising heralded pair sources, a number of variations can be defined that distinguish
correlations in the same channel from correlations between signal and idler channels [26, 33].

1.4.2 Correlations

When parametric sources generate photon pairs it is often the case that there are correlations
between the photons produced, such as in polarisation, or frequency. If we limit ourselves to
the discussion of frequency correlations, in analogy to eq. (1.1) we can represent the photon
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Figure 1.9: A sketch of an idealised second order correlation function, g(2) (τ), for a single
photon source.

pair state as

|ψ〉 =

∫ ∞

0
dω1

∫ ∞

0
dω2 φ (ω1, ω2) â†ω1 â†ω2 |vac〉 , (1.4)

where the complex function φ is the joint spectral amplitude (JSA). In essence, this is the
wave function for the joint photon (or “biphoton”) state. It describes the probability of a
pair of photons being generated in the interval dω1 dω2 , thus it plays an important role when
designing photon sources.

The shape of the JSA contains information about the spectral correlations between the two
photons. For example, the function in fig. 1.10a can be written as φ(ω1, ω2) = f (ω1)g(ω2).
This means that the state is separable, or uncorrelated. The same is not true of figs. 1.10b
to 1.10d, meaning that they describe the generation of correlated photon pairs.

We can distinguish between correlated and uncorrelated states by finding the Schmidt
number, which is a measure of the number of independent uncorrelated frequency modes
making up the state. We find the Schmidt number K , by taking the Schmidt decomposition
of the JSA. It is a basic result of linear algebra that any complex function of two variables,
F (x, y), can be represented as a sum over the product of two families of single variable
functions each of which form complete orthonormal sets.

More succinctly, this means F (x, y) =
∑
λ
√

pλ fλ (x)gλ (y) for some constant coefficients
pλ satisfying

∑
λ pλ = 1. As shown in fig. 1.10d, this very loosely could be thought of as

being able to write any two variable function as a direct sum of “circle” states like the one seen
in fig. 1.10a. This is a continuous analogue of the singular value decomposition of a matrix.
The Schmidt number K =

∑
λ 1/p2λ then is a measure of how many non-zero coefficients are

required, and we note that K ≥ 1. A state is said to have no correlations, or be separable, if
K = 1. This would mean φ(ω1, ω2) = Φ(ω1)Φ(ω2), corresponding to fig. 1.10a. If K > 1
then there are spectral correlations between the two photons, as shown in fig. 1.10b. The
Schmidt decomposition is a complete characterisation of entanglement of a biphoton [34].
In general this is not possible for n ≥ 3 photons, as no analogous decomposition is known.
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(a) (b)

(c) (d)

Figure 1.10: Plots of the normalised joint spectral intensity |φ|2. (a): A factorable or
separable biphoton function. (b): A non-factorable biphoton function. (c): An example
of the effects of strong dispersion on the joint spectral amplitude. (d): An illustration of
approximately how many Schmidt functions we need to represent our state, loosely indicated
by the dashed circles.

1.4.3 Factorable or not?

While there are experiments that take advantage of correlated sources, most quantum pro-
tocols devised to date require pure states. As such, we must understand whether or not a
heralded source is producing separable states, as when we measure the herald photon the
remaining idler photon is projected into a single photon state. As our detectors do not have
perfect frequency resolution this will necessarily introduce some classical uncertainty to the
single photon’s frequency. This leads to a density operator ρ̂ for the state which is not pure. If
we consider a correlated biphoton state, when we measure with wide spectral filters we lose
the ability to distinguish the frequency of our pairs, as illustrated in fig. 1.11a. To counter
this we can tightly filter our detectors, as shown in fig. 1.11b, and recover a highly pure state.
However, this will decrease the rate of coincidences. Ideally we would work with a factorable
or uncorrelated biphoton state as seen in fig. 1.11c. Then, it does not matter how broad or
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narrow the filtering is, the result will be a pure state.

(a)
(b)

(c)

Figure 1.11: (a): Taking measurements with wide spectral filters of a correlated biphoton
state results in a mixed state as described by the density operator, ρ̂. (b): Using narrow
filtering when measuring a correlated biphoton state yields a pure state, at the price of a
lower rate. (c): Even when using wide filters when measuring an uncorrelated or factorable
biphoton state, the result is a pure state.

1.5 Other χ(3) processes

There is another process which has generated some interest, which will become relevant to
our discussion in chapter 2, that involves producing photon triplets, known as third order
spontaneous parametric down conversion (TOSPDC). Classically this process is known as
one-third harmonic generation, with its inverse process third harmonic generation (OTHG
and THG respectively) being more commonly known. In the single-photon regime, a pump
photon at the frequencyω spontaneously fissions into three photons atω/3. This process can
be difficult to phase match [35], but in principle high conversion efficiency can be achieved.
As a result, a popular alternative is to use cascaded processes to achieve a similar result [36].
Ultimately however the rate of triple photons is incredibly lowwhen the process is not seeded,
on the order of 0.01 triplets per day, or around 11 events per PhD student [37]. Whilst it
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is possible to seed TOSPDC to generate photon triplets at a more useful rate, it becomes
difficult to distinguish the triplets from the seed fields [37]. However as we will see, the idea
of seeding a three photon down conversion process does present a potential solution to the
problem of spontaneous Raman scattering.

We have seen that there are a number of problems to be addressed if we are to reliably
produce single photons on demand, using nonlinear optical techniques. We need bright
sources, whilst simultaneously limiting the production of higher order pairs. We need to
control the correlations between the pairs produced by our devices. Ideally, these devices
would be easily scalable. Finally, we must limit sources of noise, particularly when working
with the amorphous materials that make up a significant fraction of modern optics. While
tackling all of these problems is far beyond the scope of this thesis, it is our intention to
discuss a potential solution the problem of spontaneous Raman scattering.



I’m smart enough to know that
I’m dumb.

Richard Feynman

2
A New Way

Many of the most commonly used platforms for optics are based on amorphous materials,
such as fused silica glass (for example, in optical fibres). Unlike crystalline materials,
amorphous materials exhibit broadband spontaneous Raman scattering. This is the result
of inhomogeneous broadening – unlike the uniform environment of a regular lattice, in an
amorphous material, each oscillator has a different environment and experiences different
electromagnetic fields, and responds differently. Consequently, the photons emitted by
spontaneous Raman scattering have a broad energy range, and contaminate a large part of the
photon pair spectrum. In contrast, in crystalline materials the Raman emission is narrow, and
one can simply choose to filter out photon pairs in the Raman window. Having established
that this is a key source of noise that must be overcome in single photon sources, the purpose
of this project is to propose a new third order process for generating correlated photon pairs
that is less vulnerable to Raman noise. In this chapter we begin to describe this process,
verify that it can be phasematched, and confirm that it will produce the pairs of photons we
desire for a heralded single photon source.
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2.1 An introduction to Stimulated Spontaneous Three Pho-
ton Down Conversion

Consider the following set up. Similarly to TOSPDC discussed in section 1.5, we pump a
χ(3) material strongly at the third harmonic ωp (α4 in fig. 3.3), and one pump photon is
down-converted to three photons around the fundamental frequency,ωs. However, by adding
a seed beam coinciding with the frequency of one of the triplet of photons (α∗3), we stimulate
the production of pairs around ωs (â†1 and â†2). We call this process Stimulated Spontaneous
Three Photon Down Conversion (SSTPDC).

One advantage of this process is that the Stokes band (with a bandwidth on the order
of ∆νR = 10 THz) sits in between the higher frequency photon of the pair and the pump
(as demonstrated in fig. 3.3), which are separated by ∆νsstpdc ≈ 100 THz. This means
that the overlap with the pair is much smaller than it would be for the equivalent SFWM
process (illustrated in fig. 2.2). As the seed itself is weak, it does not contribute strongly to
spontaneous Raman scattering.

SSTPDC also gives usmore flexibility inwhat lasers we use to produce our single photons.
For example, if one has a high power short pulse frequency doubled Nd:YAG laser at 532
nm, then one can produce photon pairs near the 1550 nm band with only a weak laser diode
seed. If we are working from a single source, all pulse properties are determined by that
one source. However, if we work with two sources, we have an extra degree of freedom (for
example, we could choose different pulse durations).

Figure 2.1: A schematic of the frequencies involved in SSTPDC and the Raman side bands
generated around the pump. Spacings are not to scale.

Adequately describing this process is not straightforward. By design, SSTPDC takes
place across a broad frequency range. We are operating with multiple frequencies in the
multimode regime, with very short pulses, and there are several nonlinear processes taking
place at the same time. These include self-phase modulation and cross-phase modulation, as
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Figure 2.2: A schematic of the frequencies involved in degenerate SFWM, including the
Raman side bands generated around the pump.

well as the Raman effect we are seeking to mitigate. Due to the requirements of tight spatial
confinement, we must also use a description that encompasses waveguides.

2.1.1 Program of work

In this thesis, we will first establish that it is possible to phasematch SSTPDC by analogue
with its classical counterpart, in chapter 2, section 2.2. This will allow us to consider the
contributions of self and cross phase modulation, something not considered in the quantum
treatment here due to its small effect versus the added complexity. Then in section 2.3, we
will develop a simple few-mode model to establish that SSTPDC does indeed produce pairs,
and we can incorporate the Raman impact on pair production. In chapter 3, section 3.1
we establish the nonlinear Hamiltonian that fully incorporates the full multi-frequency and
multimode nature of SSTPDC, as well as the effects of dispersion. After moving into
the interaction picture in section 3.3, we examine the first order solution to the Schrödinger
equation in section 3.4. This allows us to both determine a rate of pair production in chapter 4,
and the nature of the joint spectral intensity (JSI), the absolute value squared of the joint
spectral amplitude.

2.2 A classical interlude

With short, energetic pulses, the effects of self and cross phase modulation play an important
role in phasematching considerations. However, in the full Hamiltonian formalism we adopt
in chapter 3, there is additional complexity in incorporating these nonlinear contributions
to the phasematching. As such, we will rely on a classical analogue to establish the full
phasematching conditions.

For the classical four wave mixing process, we pump some χ(3) material at the third
harmonic, ωp, add a seed probe at the fundamental frequencyωs, and produce two new fields
at ω1 and ω2 (as this is a classical process, at least one of these two fields are also weakly
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seeded). Rather than being governed by the Schrödinger equation, now we must satisfy the
nonlinear electromagnetic wave equation:

∇ × ∇ × E(r, t) +
n2

c2
∂2

∂t2
E(r, t) = −µ0

∂2

∂t2
PNL(r, t) (2.1)

where c is the speed of light in a vacuum, µ0 is the vacuum permeability, E(r, t) is the electric
field, and

PNL(r, t) = ε0
(
χ(2)E2(r, t) + χ(3)E3(r, t) + . . .

)
is the nonlinear polarisation. For our purposes, it suffices to consider a single polarisation to
treat E(r, t) as scalar, and only the third order nonlinear polarisation, and we will account for
dispersion later. Then, in the weak guidance regime where ∆n is small, our wave equation is

∇2E(r, t) −
n2

c2
∂2

∂t2
E(r, t) =

1
c2
χ(3) ∂

2

∂t2
E3(r, t). (2.2)

To transform this into an expression involving slowly varying amplitudes, wewrite the electric
field as

E(r, t) =
1
2

4∑
j=1

(
a j (z, t) f j (x, y)ei(β j z−ω j t) + c.c.

)
, (2.3)

where the sum is overmodes, a j (z, t) are the longitudinal amplitudes, f j (x, y) are the solutions
to the modal wave equation, β j and ω j the propagation constants and angular frequencies for
each mode. We will take j = 1, 2 as the signal and idler bands, and j = 3, 4 as the seed and
pump bands, respectively.

Here, we follow the standard procedure for finding the coupled mode equations. Firstly,
we assume that the amplitudes involved vary sufficiently slowly that their second derivatives
are negligible. As the nonlinearity is small, all derivatives of amplitudes associated with
nonlinear terms may also be taken as negligible. Then, examining only one wave at a time,
we remove terms associated with solutions to the linear wave equation, identifying group
velocities and effective coupling areas.

This allows us to extract four coupled equations, one for each field (whereω4 corresponds
to the pump, ω3 the seed, and ω1, ω2 the signal and idler). These equations of motion have
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the form

i∂zb j (z, t) +
i

vg (ω j )
∂t b j (z, t) =

3χ(3)ω2
j

���b j (z, t)���
2

b j (z, t)

8c2 β j A j j j j

+
3χ(3)ω2

j

4c2 β j

m∑
i=k

[
|bk (z, t) |2

A ji ji

]
b j (z, t)

+
3 eq( j)i(β4−β3−β2−β1)z χ(3)ω2

j bm(z, t)b∗l (z, t)b∗k (z, t)

4c2 β j A j klm
,

(2.4)

where bi (z, t) = ai (z, t)
∫
dx

∫
dy | fi (x, y) |2 are rescaled field amplitudes, the sum is per-

formed over the indices k, l,m, the equation for each bi (z, t) is given by a cyclic permutation
of ( j, l,m, k) = (1, 2, 3, 4), and with q( j = 4) = 1, otherwise q( j) = −1. Additionally

Ai jlm =

√∫
dx dy | fi (x,y) |2

∫
dx dy ��� f j (x,y)���

2 ∫
dx dy | f l (x,y) |2

∫
dx dy | fm(x,y) |2∫

dx dy fi (x,y) f j (x,y) f ∗l (x,y) f ∗m(x,y)

are the effectivemode coupling areas, and vg (ω) are the group velocities for a given frequency.
The first term on the right hand side of eq. (2.4) is the self-phase modulation, the next three in
the sum describe cross-phase modulation with each field, and the final term is the four wave
mixing term.

As we are primarily interested in the feasibility of phasematching this process, rather
than resorting to numerics, we shall move into the undepleted pump regime and proceed
analytically. First, we assume that all mode overlaps are approximately equal, so that Ai j kl =

Aeff. Then we introduce the classical nonlinear parameter,

γi =
3χ(3)ω2

i

8c2Aeff βi
,

and move to a quasi-continuous wave regime such that ∂t bi = 0. The equation of motion for
the pump reduces to

i∂zb4(z) − γ4 |b4(z) |2 b4(z) = 0.

In the undepleted pump approximation, |b4(z) |2 is constant, so the solution to this is

b4(z) = b4,0 e−iγ4 |b4,0 |
2z,

where b4,0 = b4(0). The absolute value squared of the amplitude is closely related to the
power, but not equivalent. The correct relation for the power, obtained from the Poynting
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vector, is
P4(z) =

c n4ε0
4Aeff

b4(z)b∗4(z) =
c n4ε0
4Aeff

��b4,0��2 . (2.5)

For the seed, signal and idler equations of motion, due to their small amplitudes, we
disregard any terms that do not contain a pump amplitude. This leaves us with three coupled
nonlinear equations,

i∂zb3(z) − 2b4,0γ3 ei(∆β−4γ4P4Aeff/cn4ε0)zb∗1(z)b∗2(z) −
8γ3P4Aeff

c n4ε0
b3(z) = 0, (2.6)

i∂zb2(z) − 2b4,0γ2 ei(∆β−4γ4P4Aeff/cn4ε0)zb∗1(z)b∗3(z) −
8γ2P4Aeff

c n4ε0
b2(z) = 0, (2.7)

i∂zb1(z) − 2b4,0γ1 ei(∆β−4γ4P4Aeff/cn4ε0)zb∗2(z)b∗3(z) −
8γ1P4Aeff

c n4ε0
b1(z) = 0, (2.8)

where ∆β = β4 − β3 − β2 − β1. To solve eqs. (2.6) to (2.8), we first introduce new fields
ci (z) = bi (z) e8iγiP4Aeff/(c n4ε0)z to remove the cross-phase modulation terms (the last term in
each equation). We also introduce Γ = −4P4Aeff

cn4ε0

(
γ4 − 2γ3 − 2γ2 − 2γ1

)
, giving

i∂zc3(z) − 2γ3c4(0)ei(∆β+Γ)zc∗1(z)c∗2(z) = 0, (2.9)

i∂zc2(z) − 2γ2c4(0)ei(∆β+Γ)zc∗1(z)c∗3(z) = 0, (2.10)

i∂zc1(z) − 2γ1c4(0)ei(∆β+Γ)zc∗2(z)c∗3(z) = 0. (2.11)

Unfortunately, eqs. (2.9) to (2.11) are still coupled in a fashion that makes them difficult
to solve. However, over short interaction lengths, the seed c3(z) is effectively constant with
respect to c1(z) and c2(z). This is essentially an undepleted seed approximation. This allows
us to replace c3(z) with its initial value, c3(0). So finally, we have two coupled equations

i∂zc2(z) − 2γ2c∗3(0)c4(0)ei(∆β+Γ)zc∗1(z) = 0, (2.12)

i∂zc1(z) − 2γ1c∗3(0)c4(0)ei(∆β+Γ)zc∗2(z) = 0. (2.13)

Approximating γ2 ≈ γ1 ≈ γs (a reasonable approximation when the signal and idler frequen-
cies are not far from the fundamental frequency), and identifying P3 and P4 through√√

16A2
effP3P4

c2ε20n3n4
≡ c∗3(0)c4(0),

we find that eqs. (2.12) and (2.13) equations are nearly identical to the standard equations for
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four wave mixing [38]. We thus identify the solutions

c2(z) =
(
A2egz + B2e−gz) eiκz/2, (2.14)

c1(z) =
(
A1egz + B1e−gz) eiκz/2, (2.15)

where Ai and Bi are determined by the boundary conditions, and κ = ∆k +Γ. The parametric
gain is given by

g =

√
64γ2s AeffP3P4

c2ε20n3n4
−

(
κ

2

)2
.

In the case when the idler is not seeded (c2(0) = 0), these solutions become

c2(z) = 2iC0 c1(0) sinh(gz)eiκz/2, (2.16)

c1(z) = c1(0)
[
cosh(gz) +

iκ
2g

sinh(gz)
]
eiκz/2, (2.17)

where C0 = γs

√
16A2

effP3P4/(c2ε20n3n4)/g. Translating these field amplitudes into powers,
we find

P2(z) = P1(0)
[
1 +

κ2

4 |g |2

]
|sinh(gz) |2 , (2.18)

P1(z) = P1(0)
{
1 +

[
1 +

κ2

4 |g |2

]}
|sinh(gz) |2 . (2.19)

In the limit when the parametric gain is small (i.e. |κ | � 4
����γs

√
AeffP3P4/(c2ε20n3n4)

���� or
g ≈ iκ/2), the idler reduces to

P2(L)
P1(0)

≈
8γ2s AeffP3P4

c2ε20n3n4
sinc2

(
κL
2

)
(2.20)

Using the quantities defined in table 2.1, derived from themodel developed in chapter 4, when
the effect of self and cross-phase modulation is small, we demonstrate that the approximation
made above is justified. In fig. 2.3 we plot a normalised P2(L) from eq. (2.18) and in fig. 2.4a
P2(L)/P1(0) from eq. (2.20). Note how they are essentially identical. If we increase the
pump power to 1MW, however, the results from eq. (2.18) look quite different (see fig. 2.4b).
The system enters a regime where the nonlinear contributions to the phasematching from self
and cross phase modulation are apparent. With the goal of producing only pairs of photons,
an experiment is unlikely to enter this regime – but it is an effect worth considering.
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Table 2.1: The parameters for the classical four wave mixing simulation.

Quantity Symbol Value

Refractive index n3 1.46
n4 1.44

Effective area Aeff 11.9 µm2

Third order susceptibility χ(3) 3.8 × 10−34m2/V2

Interaction length L 3mm
Group index ng (ωs) 1.426

ng (ωp) 1.613
Group velocity dispersion β2(ωs) −170 ps2/km

β2(ωp) 850 ps2/km
Power P3 1 kW

P4 0.1MW
Wavelength λ3 1550 nm

λ4 1550/3 nm

Figure 2.3: The idler field P2(L) plotted over a range of frequencies.



2.2 A classical interlude 23

(a) (b)

(c)

Figure 2.4: (a):The classical phasematching function, sinc2(κL/2), where here the nonlinear
contribution to the phasematching is negligible. (b): The classical phasematching function,
sinc2(κL/2), pumped with 1MW to enter a regime where the nonlinear contribution to the
phasematching is significant. (c): The sum of (a) and (b), showing the effect of self and cross
phase modulation on the phasematching.

2.2.1 Observation

This four wave mixing process where we down convert the pump at the third harmonic to
the fundamental frequency, and seed the production of signal and idler fields is similar to
parametric gain. Therefore we can expect a similar analogue between SSTPDC and standard
SFWM in the spontaneous regime.
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2.3 A phenomenological approach to SSTPDC

2.3.1 Producing pair states

Now that we have seen this process can proceed at least classically, we try to develop intuition
for the quantum process with a simple single mode Hamiltonian formulation, ignoring the
short pulses involved. The seed and pump fields, â3 and â4, are strong coherent laser fields,
which we will denote by their mean values α3 and α4. The signal and idler photons are then
associated with operators â1 and â2. The process down-converts the pump field to produce
the triplet, and one of these photons will coincide with the seed field. Ignoring self and cross
phase modulation, the form of this Hamiltonian must be

ĤI = ~γ
(
α∗3α4â†1 â†2 + α3α

∗
4â1â2

)
, (2.21)

where γ is the effective third order nonlinearity, and α∗3α4â†1 â†2 corresponds to the mechanism
described above. We note that α∗3 corresponds to energy being added to the seed field –
because one of the down-converted pump photons contributes to the energy of this field.

To make life easier, we let α j =
���α j

��� e
iφ j , ∆φ ≡ φ4−φ3 which is the relative phase between

the two fields, and let Γ = γ |α3 | |α4 |. Now we have something more palatable:

ĤI = ~Γ
(
ei∆φâ†1 â†2 + e

−i∆φâ1â2
)
. (2.22)

The formal solution to Schrödinger’s equation is given by

|ψ(t)〉 = UI(t) |ψ(0)〉 ,

where UI(t) is the time evolution operator. As our Hamiltonian does not have explicit time
dependence, this is

UI(t) = e−iĤIt/~

= exp
(
−iΓei∆φt â†1 â†2 − iΓe−∆φt â1â2

)
= eξ â†1 â†2−ξ

∗ â1 â2 (2.23)

where ξ = −iΓei∆φt. It is worthwhile to note that this is the same form as the two-mode
squeezing operator (see eq. (1.2)). We could proceed to recover squeezing variances and
parametric gain, but with an interest in pair generation, it is more fruitful to look at the
states being generated with a vacuum input by expanding eq. (2.23) in ξ. This means that if
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|ψ(0)〉 = |vac〉 and ξ is small, we discover

eξ â†1 â†2−ξ
∗ â1 â2 |vac〉 ≈ |vac〉 + ξ â†1 â†2 |vac〉

−
|ξ |2

2
â1â2â†1 â†2 |vac〉 +

ξ2

2
(
â†1 â†2

)2
|vac〉 + . . .

=

(
1 −
|ξ |2

2

)
|vac〉 + ξ |1, 1〉 + ξ2 |2, 2〉 + . . . (2.24)

This is precisely what we saw in fig. 1.5 As expected, we see single pairs being produced,
as well as higher order pairs. We note that in order for this state to remain normalised, the
coefficient of the vacuum term is no longer one [39].

2.3.2 Producing pair states with Raman noise

One of the expected features of SSTPDC is the ability to limit Raman noise by having the
strong pump field spectrally separated from the produced pairs. However, the Raman side
bands can be very broad. It is possible to imagine that despite the large spectral separation,
the Stokes band will have some overlap with the nearest of the produced pairs, as we see
in fig. 3.3. At the level of this Hamiltonian, the Raman effect can be pictured as a linear
coupling to the ω2 field,

ĤI = ~Γ
(
ei∆φâ†1 â†2 + e

−i∆φâ1â2
)
+ ~γ′

(
â†2 + â2

)
, (2.25)

where γ′ is some effective nonlinearity.
As before, thisHamiltonian has no explicit time-dependence, so the solution to Schrödinger’s

equation is given by the time-evolution operator,

UI(t) = e−iĤIt/~

= exp
[
−iΓt

(
ei∆φâ†1 â†2 + e

−i∆φâ1â2
)
− iγ′t

(
â†2 + â2

)]

= eξ â†1 â†2−ξ
∗ â1 â2+κâ†2−κ

∗ â2 (2.26)

where ξ = −iΓei∆φt as before, and κ = −iγ′t. Expanding in small ξ and κ, this gives us the
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following state:

UI(t) |vac〉 ≈ |vac〉 + ξ â†1 â†2 |vac〉

−
|ξ |2

2
â1â2â†1 â†2 |vac〉 +

ξ2

2
(
â†1 â†2

)2
|vac〉

−
|κ |2

2
â2â†2 |vac〉 + κξ â†1 â†2 â†2 |vac〉 −

κ∗ξ

2
â2â†1 â†2 |vac〉

+ κâ†2 |vac〉 +
κ2

2
â†2 â†2 |vac〉 + . . .

=

(
1 −
|ξ |2

2
−
|κ |2

2

)
|vac〉 + ξ |1, 1〉 + ξ2 |2, 2〉

− κ |0, 1〉 +
κ2
√
2
|0, 2〉 +

√
2κξ |1, 2〉 −

κ∗ξ

2
|1, 0〉 + . . . (2.27)

Now, not only do we have the pairs from eq. (2.24), we also have unmatched photons from
the Raman term in our Hamiltonian, such as |0, 1〉 and |1, 0〉. The |0, 1〉 term comes from the
Stokes process (i.e. the addition of a photon, |0, 0〉 → |0, 1〉). The |1, 0〉 term comes from the
anti-Stokes process (i.e. the removal of a photon from that mode, |1, 1〉 → |1, 0〉). If we are
trying to herald the presence of a signal photon, the herald may in fact be a Raman photon –
there will be no corresponding signal photon. For the anti-Stokes process, our signal photon
is present, but it is no longer heralded.



Probably the last sound heard
before the Universe folded up
like a paper hat would be some-
one saying, ‘What happens if I
do this?’

Sir Terry Pratchett, Interesting
Times

3
Formalism

We now proceed to develop the full Hamiltonian for SSTPDC. When generating single
photons using nonlinear optical processes, due to the exceedingly small magnitude of the
χ(3) nonlinearity, we typically must use ultrashort pulses of high intensity light in waveguides
designed for tight mode confinement, in order to produce useful quantities of photons. Such
short pulse durations bringwith them a host of nonlinear effects, including self and cross phase
modulation, but also imply broad frequency spectra and the treatment must be multimode in
nature, as we see in fig. 3.1. As such, the Hamiltonian must be in the fully multimode regime,
accounting for the frequency profiles of the fields and the waveguides in which the fields are
guided.

Figure 3.1

Figure 3.2: A diagram showing pulses entering a χ(3) material and producing pairs of
photons.

In this chapter, we will first find the general Schrödinger Hamiltonian for SSTPDC. As
we wish to calculate rates in chapter 4, we find the Hamiltonian for a specific waveguide
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problem and move to the interaction picture to remove the linear evolution. Finally we use
this interaction Hamiltonian to construct the joint state intensity for SSTPDC by finding the
first order solution to Schrödinger’s equation.

3.1 The nonlinear optical Hamiltonian and Schrödinger’s
Equation

The classical energy density for the electromagnetic field in a dispersionless medium is given
by

Uem =
1
2
ε |E(r, t) |2 +

1
2µ
|B(r, t) |2 ,

where E is the electric field, B is the magnetic field, ε is the electric permittivity and µ is
the magnetic permeability. This is very general, and the physics of a particular process (e.g.
self-phase modulation, cross-phase modulation, etc.) is determined by elaborating the nature
of ε and µ. Motivated by this, it is typical to write down the following quantum Hamiltonian

Ĥ =
∫

V
d3r

[
1
2
ε

���Ê(r, t)���
2
+

1
2µ

���B̂(r, t)���
2

]
.

However, the preference for the electric field E over the displacement field D is arbitrary.
In fact, the following Hamiltonian in terms of D and B is often more useful when working
with optical processes in media.

H =
1
2

∫
V
d3r

[
1
µ0

∫
BidBi +

1
ε0

∫ (
Di − Pi

)
dDi

]
, (3.1)

where now µ ≈ µ0 (as per usual in optics). This is because D and B are automatically
transverse in a medium (and so two of Maxwell’s equations are satisfied), where we are now
using the Einstein summation convention to express components of vectors,

The polarisation is now given by an expansion in D, which we write as

Pi = Γ
(1)
i j D j + Γ

(2)
i jmD j Dm + Γ

(3)
i jmnD j DmDn + . . . .

This is an equivalent expansion to the familiar one (Pi = ε0 χ
(1)
i j E j + ε0 χ

(2)
i jmE j Em + . . .).

This new series of tensors Γ(i) is related to the usual nonlinear susceptibility tensors χ(i) (see
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appendix A.1). So now our full nonlinear Hamiltonian is

H =
1

2µ0

∫
V
d3r Bi Bi +

1
2ε0

∫
V
d3r Di Di

−
1
2ε0

∫
V
d3r Γ(1)

i j Di D j −
1
3ε0

∫
V
d3r Γ(2)

i jmDi D j Dm

−
1
4ε0

∫
V
d3r Γ(3)

i jmnDi D j DmDn + . . . (3.2)

The nonlinear Hamiltonian described by eq. (3.2) is very general and can be used to
describe any χ(n) process we might wish to examine, including SPDC and SFWM. In fact,
this strategy has been employed previously by Yang, Liscidini and Sipe in 2008 for SPDC in
waveguides [40]. Our treatment of SSTPDC will be similar, but the physical process itself is
different. As SSTPDC is a purely third order process, we need only examine the third order
term in eq. (3.2) (the final line), which we will denote ĤNL.

The final goal is to construct the joint spectral intensity of a pair of photons in the
interaction picture. From there we can understanding the necessary phasematching, the rate
at which we can produce pairs, the correlations between pairs, and the impact of noise. We
will seek for a solution to the Schrödinger equation,

i
d
dt
|ψ(t)〉 = ĤI(t) |ψ(t)〉 , (3.3)

where ĤI(t) = eiĤLt/~ĤNLe−iĤLt/~ is the nonlinear term in an interaction picture, so that the
linear dynamics of the waveguide given by the usual linear Hamiltonian ĤL (the first line in
eq. (3.2)) have been removed. The formal solution to eq. (3.3) is

|ψ(t)〉 = exp
(
T

[
−i

∫ ∞

−∞

dt ĤI(t)
])
|ψin〉 , (3.4)

whereT is the time-ordering operator. In general, time-ordering operations are very complex.
Even using sophisticated expansions such as theMagnus series, it is rarely possible to calculate
anything beyond the first few terms [41, 42]. However, for now we simply take the first order
expansion of this solution so that time-ordering drops out (these higher order terms are very
weak due to the small magnitude of χ(3)), and we have

|ψ(t)〉 ≈
[
1 −

i
~

∫ ∞

−∞

dt ĤI(t)
]
|ψin〉 . (3.5)

As we are concerned with pair generation, we take |ψin〉 = |vac〉. However, first we must
extract from eq. (3.2) only the physics relevant to SSTPDC.
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3.2 The SSTPDC Hamiltonian

Maintaining the use of the Einstein summation convention, the quantum third order term of
our Hamiltonian is

Ĥnl = −
1
4ε0

∫
d3r Γi jmn

3 (r)D̂i (r)D̂ j (r)D̂m(r)D̂n(r), (3.6)

where we integrate over all volume, and sum over all vector components of the displacement
field Di. We need to frame this expression in terms of a waveguide with some ε (x, y) and
χ(3) (x, y, z) profile. To that end, it is convenient to express the displacement field operators
as a sum over modes

D̂ =
∑
γ

∫ ∞

0
dk

√
~ωk

2
Dγ,k (r)ĉγ,k + h.c., (3.7)

where ĉk are our usual bosonic annihilation operators indexed by wavenumber k and mode γ,
we consider only forward propagating waves, and h.c. denotes the Hermitian conjugate. Note
that whilst D̂ is an operator, Dγ,k is simply a complex function, representing modal solutions
of the linear wave equation. By integrating over all k, we include all allowed frequencies,
and the sum over γ incorporates all allowed spatial modes. Inserting eq. (3.7) into eq. (3.6),
our Hamiltonian expands considerably

Ĥnl = −
1
4ε0

∫
d3r Γi jmn

3 (r)

×



∑
γ1

∫ ∞

0
dk1

√
~ωk1

2
(
Di
γ1,k1 (r)ĉγ1,k1 +

[
Di
γ1,k1 (r)

]∗
ĉ†
γ1,k1

)

×



∑
γ2

∫ ∞

0
dk2

√
~ωk2

2
(
D j
γ2,k2

(r)ĉγ2,k2 +
[
D j
γ2,k2

(r)
]∗

ĉ†
γ2,k2

)

×



∑
γ3

∫ ∞

0
dk3

√
~ωk3

2
(
Dm
γ3,k3 (r)ĉγ3,k3 +

[
Dm
γ3,k3 (r)

]∗
ĉ†
γ3,k3

)

×



∑
γ4

∫ ∞

0
dk4

√
~ωk4

2
(
Dn
γ4,k4 (r)ĉγ4,k4 +

[
Dn
γ4,k4 (r)

]∗
ĉ†
γ4,k4

)
.

(3.8)

Note we have integrals over k for each mode in the nonlinear product. Phasematching will
help to eliminate some of them, but the main task of this chapter is to reduce this Hamiltonian
to something manageable.
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3.2.1 Phasematching and notation

Due to the large spectral separation between the pump and seed in SSTPDC, it would be
exceptionally difficult to phasematch using only a single mode. Trying to quasi-phasematch
using techniques like periodic poling is possible in χ(3) materials, but it is muchmore difficult
than it is for χ(2) materials [43, 44]. However, we can exploit higher order modal dispersion
by operating in different waveguide modes in the upper and lower frequency bands. Later
we will consider two fibre modes, HE11 and HE21 (see chapter 4), in two distinct respective
frequency ranges, ωk < ωH and ωk > ωH , where ωH = (ωs + ωp)/2, with ωs and ωp being
the seed and pump frequencies, respectively. Even if other modes are supported, they will
almost certainly not be automatically phasematched. To make distinguishing between the
pump and seed fields clearer in expressions like eq. (3.8), we introduce new operators âk and
b̂k such that

âk =




0 if k > ωH/vp,

ĉk,HE11 if k ≤ ωH/vp,
(3.9)

and

b̂k =




ĉk,HE21 if k > ωH/vp,

0 if k ≤ ωH/vp.
(3.10)

Here ωH is a frequency demarcating the high and low frequency regions, and vp is the phase
velocity at ωH . Defined in this manner, âk represents the low frequency HE11 modes and b̂k

represents the high frequency HE21 modes. We similarly identify displacement field mode
functions

Di
k (r) =




0 if k > ωH/vp,

Di
k,HE11

(r) if k ≤ ωH/vp,
(3.11)

and

Fi
k (r) =




Di
k,HE12

(r) if k > ωH/vp,

0 if k ≤ ωH/vp,
(3.12)

so that Di
k corresponds to the non-pump fields and Fi

k corresponds to the pump field.
Making these substitutions helps to make the physical processes more visible amongst
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the algebra. The Hamiltonian now looks like

ĤNL = −
1
4ε0

∫
d3r Γi jmn

3

×



∫ ∞

0
dk1

√
~ωk1

2
(
Di

k1 âk1 + Fi
k1 b̂k1 +

(
Di

k1

)∗
â†k1 +

(
Fi

k1

)∗
b̂†k1

)

×



∫ ∞

0
dk2

√
~ωk2

2
(
D j

k2
âk2 + F j

k2
b̂k2 +

(
D j

k2

)∗
â†k2 +

(
F j

k2

)∗
b̂†k2

)

×



∫ ∞

0
dk3

√
~ωk3

2
(
Dm

k3 âk3 + Fm
k3 b̂k3 +

(
Dm

k3

)∗
â†k3 +

(
Fm

k3

)∗
b̂†k3

)

×



∫ ∞

0
dk4

√
~ωk4

2
(
Dn

k4 âk4 + Fn
k4 b̂k4 +

(
Dn

k4

)∗
â†k4 +

(
Fn

k4

)∗
b̂†k4

)
.

(3.13)

In this form, we can see all possible combinations of fields. Now can we expand this and
keep only the terms relevant to SSTPDC (i.e. only those involving a single pump field, Fi

k).
For now we neglect the cross and self-phase modulation terms [45]. The most general form
of the SSTPDC Hamiltonian is thus

Ĥsstpdc = −
1
4ε0

∫
d3r Γi jmn

3

∫ ∞

0
dk1

∫ ∞

0
dk2

∫ ∞

0
dk3

∫ ∞

0
dk4

√
~4ωk1ωk2ωk3ωk4

24

×

[ {(
Di

k1D j
k2

Dm
k3

)∗
Fn

k4 +
(
Di

k1D j
k2

Dn
k3

)∗
Fm

k4

+
(
Di

k1Dn
k2Dm

k3

)∗
F j

k4
+

(
Dn

k1D j
k2

Dm
k3

)∗
Fi

k4

}
â†k1 â†k2 â†k3 b̂k4 + h.c

]
. (3.14)

Each of these terms looks like the annihilation of one photon (b̂k4) and the creation of three
photons (â†k1, â†k2, â†k3), and vice versa. There are no terms describing the annihilation of two
photons and the creation of two photons, as we would expect from SFWM.

3.2.2 Introducing waveguides

As we are interested primarily in waveguide geometries, we can write modes as the product
of a transverse mode function and a longitudinal plane wave, or

Dk (r) =
dk (x, y)eik z
√
2π

,

Fk (r) =
fk (x, y)eik z
√
2π

,

(3.15)

where we have introduced the factor of 1/
√
2π for convenience, and dk, fk are solutions to

the waveguide wave equation, found analytically or numerically.
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As the pump and probe are bright classical laser fields it is appropriate and helpful
to replace their full operators âk by their mean values αk . In our case, these fields are
short pulses with some temporal profile Ap,sφp,s (t), where we will choose the envelopes to
be normalised:

∫ ∞
−∞

dt |φ(t) |2 ≡ 1. In wavevector space, these are represented by Fourier
transformed spectral envelopes φs,i (k). So we make the replacements âk → αφs (k) + âk

and b̂k → βφp(k) + b̂k . We keep only terms that look like φp(k4)φ∗s (k3)â†k2 â†k1 , i.e. the
down-conversion of the pump φp(k), stimulating the seed field φs (k) and the creation of
photon pairs â†k1 â†k2 . Finally, we return to the familiar nonlinear susceptibility χ rather than
Γ (using a result from appendix A.1), where

Γ
(3)
i jmn =

χ(3)
i jmn

ε20n80
.

To include the effect of the material dispersion, we recognise that each field contributes a
factor of n20 to Γ3, which we now associate with a frequency-dependent n2(x, y;ωk ). We will
abbreviate this to n2k . This gives us

Hsstpdc = −
3α∗ β~2

π2 (4ε0)3

∫
d3r χ(3)

i jmn

∫ ∞

0
dk1

∫ ∞

0
dk2

∫ ∞

0
dk3

∫ ∞

0
dk4
√
ωk1ωk2ωk3ωk4

×
[(

di
k1d j

k2
dm

k3

)∗
f n

k4 +
(
di

k1d j
k2

dn
k3

)
f m

k4 +
(
di

k1dn
k2dm

k3

)
f j

k4
+

(
dn

k1d j
k2

dm
k3

)
f i

k4

]

×
φ∗s (k3)φp(k4)ei(k4−k3−k2−k1)z

n2k1n
2
k2

n2k3n
2
k4

â†k1 â†k2 + h.c.. (3.16)

As there are three possible ways to combine the fields into the arrangement above, we acquire
a factor of three.

Following Yang, Liscidini and Sipe (2008), we split the nonlinear susceptibility into two
terms, a transverse profile and a longitudinal amplitude, χ(3) (r) = χ(3) (x, y)s(z), where we
take s(z) = 1 for −L/2 ≤ z ≤ L/2. More general s(z) can be considered later. We also
define the following quantities

s(k) ≡
∫ ∞

−∞

dz s(z)e−ik z, (3.17)

1
A(k1, k2, k3, k4)

≡

∫ ∞

−∞

dx
∫ ∞

−∞

dy
n̄4 χ(3)

i jmn(x, y)

χ(3)ε20n2k1n
2
k2

n2k3n
2
k4

(3.18)

×
[(

di
k1d j

k2
dm

k3

)∗
f n

k4 +
(
di

k1d j
k2

dn
k3

)
f m

k4 +
(
di

k1dn
k2dm

k3

)
f j

k4
+

(
dn

k1d j
k2

dm
k3

)
f i

k4

]
,

(3.19)

where n̄ is a typical value of the local refractive index and χ(3) is the typical size of one
of the nonvanishing components of χ(3) (x, y), introduced solely for convenience. It is also
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convenient to have our fields normalised in such a way that their energy represents a single
discrete excitation of energy ~ω, and to account for material dispersion [46]. Thus, we
normalise our fields according to∫

dx dy
dk (x, y)d∗k (x, y)

ε0n2(x, y;ωk )
≡ 1. (3.20)

By examining eq. (3.20), we determine that dk must have dimensions equal to √ε0/L.
Thismeans thatA has units of area, and similar to the classical case from section 2.1, we think
of it as the effective coupling area between modes. After the manipulations in eqs. (3.17)
to (3.20), we arrive at the final form of our Hamiltonian,

Ĥsstpdc = −
3αβ~2

64π2ε0

∫ ∞

0
dk1

∫ ∞

0
dk2

∫ ∞

0
dk3

∫ ∞

0
dk4
√
ωk1ωk2ωk3ωk4

s∗(k4 − k3 − k2 − k1) χ(3)

n̄4
φ∗s (k3)φp(k4)
A(k1, k2, k3, k4)

â†k1 â†k2 + h.c. (3.21)

All of the SSTPDC physics is contained in this expression, eq. (3.21). The rest of the
work of this chapter is to extract the physics in a meaningful way.

3.2.3 Comparison with SPDC and SFWM

This Hamiltonian is quite similar to both the familiar SPDC and SFWMHamiltonians, which
are respectively [26]

Ĥspdc = −

∫ ∞

0
dk1

∫ ∞

0
dk2

∫ ∞

0
dk Sspdc(k, k1, k2)â†k1 â†k2 + h.c.,

Ĥsfwm = −

∫ ∞

0
dk1

∫ ∞

0
dk2

∫ ∞

0
dk3

∫ ∞

0
dk4 Ssfwm(k1, k2, k3, k4)â†k1 â†k2,

(3.22)

where S(k) accounts for the specific fields and nonlinearities involved [26].
SPDC is a three-wave mixing interaction that annihilates a pump photon to create a pair

of photons, SFWM is a four-wave mixing interaction that annihilates two pump photons to
create a pair of photons, and SSTPDC is a four-wave mixing interaction that annihilates a
pump photon to create a triplet of photons, though seeded by an additional field so as to create
a pair of accessible photons. We also note that from eq. (3.14) we could have kept terms that
involve the creation of two photons at the centre frequency of the seed, leaving just a single
accessible photon, and arrived at

Ĥssdtpdc = −

∫ ∞

0
dk1

∫ ∞

0
dk2

∫ ∞

0
dk3

∫ ∞

0
dk4 Ssdstpdc(k1, k2, k3, k4)â†k1 + h.c., (3.23)



3.3 The Interaction Hamiltonian 35

where

Sssdtpdc(k1, k2, k3, k4) ≡
3 (α∗)2 β~2

64π2ε0
√
ωk1ωk2ωk3ωk4

s∗(k4 − k3 − k2 − k1) χ(3)

n̄4

×
φ∗s (k2)φ∗s (k3)φp(k4)ei(ωk2+ωk3−ωk4 )t

A(k1, k2, k3, k4)
.

However, as a first approximation, we imagine that these terms can be ignored on the grounds
that they are not as well phase matched as the main process is. Also, if the pump is at the
third harmonic and the seed is truly at the fundamental frequency, conservation of energy
does not allow this process to occur.

Figure 3.3: A process similar to SSTPDC that generates a single accessible photon.

3.3 The Interaction Hamiltonian

We now have found the Schrödinger Hamiltonian specific to SSTPDC. Now we move into
the interaction picture, to avoid explicitly dealing with the linear evolution, to find a solution
to eq. (3.4). Using the form of the linear Hamiltonian shown in appendix A.2,

ĤL =

∫ ∞

0
dk ~

[
ω(HE11)

k â†k âk + ω
(HE21)
k b̂†k b̂k

]
,

we transform the Schrödinger Hamiltonian to find

ĤI(t) = exp
(
i
∫ ∞

0
dk

[
ω(HE11)

k â†k âk + ω
(HE21)
k b̂†k b̂k

]
t
)
· Ĥsstpdc

· exp
(
−i

∫ ∞

0
dk

[
ω(HE11)

k â†k âk + ω
(HE21)
k b̂†k b̂k

]
t
)
. (3.24)

Carrying around the mode indices on these ωk terms is cumbersome, so we neglect to
write them from here on and simply recall that ω(HE11)

k is associated with â†k âk and ω(HE21)
k

is associated with b̂†k b̂k . Now the creation operators â†k1 and â†k2 are tangled in between
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exponentials that they do not necessarily commute with. To disentangle them, we use the
results

eχ Î ĉ†k1e
−χ Î = ĉ†k1e

ωk1 χ, (3.25)

eχ Î ĉk1e
−χ Î = ĉk1e

−ωk1 χ, (3.26)

as derived in appendix A.3, where χ = it, Î =
∫ ∞
0 dk ωk ĉ†k ĉk .

Recognising that exp
(
i
∫ ∞
0 dk ωk â†k âkt

)
will commute with exp

(
i
∫ ∞
0 dk ωk b̂†k b̂kt

)
due

to the distinct frequency intervals they cover as defined by eqs. (3.9) and (3.10), eq. (3.24)
becomes an expression that looks very much like eq. (3.25). Inserting exp

(
i
∫ ∞
0 dk â†k âkt

)
·

exp
(
−i

∫ ∞
0 dk â†k âkt

)
= 1 between â†k1 and â†k2 allows us to apply this identity twice, yielding

ĤI(t) = −
3αβ~2

64π2ε0

∫ ∞

0
dk1

∫ ∞

0
dk2

∫ ∞

0
dk3

∫ ∞

0
dk4
√
ωk1ωk2ωk3ωk4

s∗(k4 − k3 − k2 − k1) χ(3)

n̄4

×
φ∗s (k3)φp(k4)e−i(ωk4−ωk3−ωk2−ωk1 )t

A(k1, k2, k3, k4)
â†k1 â†k2 + h.c. (3.27)

The oscillating exponential term, e−i(ωk4−ωk3−ωk2−ωk1 )t , will become exceptionally useful in
section 3.4. We note that the factor of e−i(ωk4−ωk3 )t has been included here also. If the
classical fields had been introduced after using the identities eq. (3.25), this factor would
have appeared naturally.

3.4 The first order solution

Having found the interaction Hamiltonian, we can at last find the first order solution, eq. (3.5).
Upon integrating eq. (3.27) with respect to all time (as the interaction Hamiltonian will be
zero outside of the medium [47]), the oscillating exponential term acts as a representation of
the Dirac delta function, 2πδ

(
ωk4 − ωk3 − ωk2 − ωk1

)
. So the solution takes the form

|ψout〉 ≈ |vac〉 +
3iα∗ β~
32πε0

∫ ∞

0
dk1

∫ ∞

0
dk2

∫ ∞

0
dk3

∫ ∞

0
dk4 δ(ωk4 − ωk3 − ωk2 − ωk1 )

×
√
ωk1ωk2ωk3ωk4

s∗(k4 − k3 − k2 − k1) χ̄3
n̄4

φ∗s (k3)φp(k4)
A(k1, k2, k3, k4)

â†k1 â†k2 |vac〉 .

(3.28)

With a Dirac delta function sitting there waiting to be used, we are motivated to transform
our integrals over ki to ωi. This transformation introduces the group velocity through
dωi

dki
= vg (ωi). It is also important to maintain the appropriate dimensionality and the
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canonical form of the commutator,
[
âk, â

†

k ′
]
= δ (k − k′). To do so, we define new operators

âωi ≡

√
dki (ωi)
dωi

âki, (3.29)

b̂ωi ≡

√
dki (ωi)
dωi

b̂ki . (3.30)

With these definitions, one can show that they satisfy the natural commutators

[
âωi, â

†

ω′i

]
= δ

(
ωi − ω

′
i

)
,

[
b̂ωi, b̂

†

ω′i

]
= δ

(
ωi − ω

′
i

)
.

To ensure that everything is correctly normalised later, in shifting to frequency pulse envelopes
we also include a conversion factor

φ̄s (ωi) =

√
dki (ωi)
dωi

φs (ki (ωi)),

φ̄p(ωi) =

√
dki (ωi)
dωi

φp(ki (ωi)),

so now

|ψout〉 ≈ |vac〉 +
3iαβ~
32πε0

∫ ∞

0
dω1

∫ ∞

0
dω2

∫ ∞

0
dω3

∫ ∞

0
dω4 δ(ω4 − ω3 − ω2 − ω1)

×

√
ω1ω2ω3 (ω1 + ω2 + ω3)

vg (ω1)vg (ω2)vg (ω3)vg (ω1 + ω2 + ω3)

s∗
[
kp(ω4) − ks (ω3) − ks (ω2) − ks (ω1)

]
χ̄3

n̄4

×
φ̄∗s (ω3)φ̄p(ω4)

A [k (ω1), k (ω2), k (ω3), k (ω4)]
â†ω1 â†ω2 |vac〉 . (3.31)

Integrating with respect to dω4 and using the Dirac delta function then yields

|ψout〉 ≈ |vac〉 +
3iαβ~
32πε0

∫ ∞

0
dω1

∫ ∞

0
dω2

∫ ∞

0
dω

√
ω1ω2ω (ω1 + ω2 + ω)

vg (ω1)vg (ω2)vg (ω)vg (ω1 + ω2 + ω)

×
s∗ (∆k) χ̄3

n̄4
φ̄∗s (ω)φ̄p(ω1 + ω2 + ω)

A [k (ω1), k (ω2), k (ω), k (ω1 + ω2 + ω)]
â†ω1 â†ω2 |vac〉 . (3.32)

where we have defined

∆k = kp(ω1 + ω2 + ω) − ks (ω) − ks (ω2) − ks (ω1), (3.33)

with the subscripts denoting whether the wavenumber is associated with the pump field or
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the low frequency seed field.
Similarly to eq. (2.24), we are looking for a single pair state. As we have taken only

the first order approximation, higher order pairs do not appear here. We are looking for
something of the form

|ψout〉 ≈
1√

1 + |η |2

[
|vac〉 +

η
√
2

∫ ∞

0
dω1

∫ ∞

0
dω2Φ(ω1, ω2)â†ω1 â†ω2 |vac〉

]

=
|vac〉 + η |II〉√

1 + |η |2
, (3.34)

where |II〉 is the two photon state (analogous to |1, 1〉), and we define η in a moment. By
comparison with eq. (3.32) we can identify the joint spectral amplitude φ(ω1, ω2) as

Φ(ω1, ω2) =
3
√
2iαβ~

32πε0η

∫ ∞

0
dω

√
ω1ω2ω (ω1 + ω2 + ω)

vg (ω1)vg (ω2)vg (ω)vg (ω1 + ω2 + ω)

×
s∗ (∆k) χ̄3

n̄4
φ̄∗s (ω)φ̄p(ω1 + ω2 + ω)

A [k (ω1), k (ω2), k (ω), k (ω1 + ω2 + ω)]
. (3.35)

This is a full description of the biphoton state, as φ(ω1, ω2) is the JSA containing all infor-
mation about the correlations, as well as the rate at which we can produce pairs.

If we choose the biphoton state to be normalised (i.e. 〈II|II〉 = 1), then we can associate
|η |2 with the average probability of producing the state |II〉. That is to say, |η |2 is the average
probability of producing a single pair of photons per pump pulse. Explicitly we write

〈II|II〉 =
1
2

∫ ∞

0
dω′1

∫ ∞

0
dω′2

∫ ∞

0
dω1

∫ ∞

0
dω2Φ

∗(ω′1, ω
′
2)Φ(ω1, ω2) 〈vac| âω′1 âω′2 â†ω1 â†ω2 |vac〉 ,

(3.36)

and, noting that by a sequence of normal orderings

âω′1 âω′2 â†ω1 â†ω2 = â†ω1 â†ω2 âω′1 âω′2 + â†ω1 âω′2δ(ω′1 − ω2) + â†ω1 âω′1δ(ω′2 − ω2) + â†ω2 âω′2δ(ω′1 − ω1)

+ â†ω2 âω′1δ(ω′1 − ω1) + δ(ω′2 − ω2)δ(ω′1 − ω1) + δ(ω′1 − ω2)δ(ω′2 − ω1)

we can reduce this to

〈II|II〉 =
1
2

∫ ∞

0
dω1

∫ ∞

0
dω2

(
|Φ(ω1, ω2) |2 + Φ∗(ω2, ω1)Φ(ω1, ω2)

)
. (3.37)

For a single polarisation, the joint state intensity is symmetric under a permutation of indices
(i.e. Φ(ω2, ω1) = Φ(ω1, ω2)), and so the insistence on the state being normalised also implies
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a condition on the normalisation of the joint state intensity, namely

〈II|II〉 =
∫ ∞

0
dω1

∫ ∞

0
dω2 |Φ(ω1, ω2) |2 = 1. (3.38)

Thus applying this to eq. (3.35), the average probability of producing the pair state is

|η |2 =
9 |α |2 | β |2 ~2

128π2ε20

∫ ∞

0
dω1

∫ ∞

0
dω2

×

������

∫ ∞

0
dω

√
ω1ω2ω(ω1 + ω2 + ω)

vg (ω1)vg (ω2)vg (ω)vg (ω1 + ω2 + ω)
s∗ (∆k) χ(3)

n̄4

×
φ̄∗s (ω)φ̄p(ω1 + ω2 + ω)

A [k (ω1), k (ω2), k (ω), k (ω1 + ω2 + ω)]

�����

2

. (3.39)

This equation, eq. (3.39), describes the rate of production of photon pairs. We will evaluate
this rate in chapter 4.

3.5 Optical powers

We can proceed no further analytically without making some simplifying assumptions. How-
ever, to get eq. (3.39) to a form to which we can attribute physical meaning, we first need to
associate the amplitudes φ̄i with optical powers. It is simple enough to see that the energy
contained in a single pulse will be given by EI = N~ωc

∫
dω ���φ̄i (ω)���

2
, whereωc is the central

frequency of the pulse, and N is the number of photons contained in the pulse (|α |2 for the
pump field, and | β |2 for the seed field). Then, the instantaneous power is PI =

���φ̃i (t)
���
2

EI ,
where

���φ̃i (t)
���
2
=

�����

∫
dω
√
2π
φ̄(ω)eiωt

�����

2
. (3.40)

As we do not have superfast detectors, a quantity we are more likely to measure is the average
power, Pav = EI R = RPpulse/τ, where Ppulse is often referred to as the “peak power”, where
R is the repetition rate of the laser and τ the pulse duration. Note that as we will primarily be
dealing with Gaussian pulses, we are defining the pulse duration to be the full width at half
maximum, τ = 2

√
2 ln 2σ, where the standard deviation is given by σ =

√〈
t2
〉
− 〈t〉2. Our

first simplifying assumption is that our fields are Gaussian with a known pulse duration

φ̃i (t) =
1

π1/4
√
τi
e
−

(
t2

2τ2
i

+iωi t
)
.
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Then, according to eq. (3.40), the Fourier transform must be

φ̄i (ω) =
√
τi

π1/4
e−

1
2 τ

2
i (ω−ωi )2 . (3.41)

3.6 Finding the rate of pair production

Now that we have established the model for our laser fields, we can continue to calculate
the rate of pair production. Recognising that if s(z) = 1 for − L/2 ≤ z ≤ L/2, then
s∗(∆k) = L sinc

(
∆k (ω1,ω2,ω3,ω4)L

2

)
. This gives us

|η |2 =
9
(
χ(3)

)2
|α |2 | β |2 τsτp~

2L2

128π3ε20n̄8

∫ ∞

0
dω1

∫ ∞

0
dω2

×

�������

∫ ∞

0
dω

√
ω1ω2ω(ω1 + ω2 + ω)

vg (ω1)vg (ω2)vg (ω)vg (ω1 + ω2 + ω)

e− 1
2 τ

2
s (ω−ωs )2e−

1
2 τ

2
p (ω1+ω2+ω−ωp)2 sinc

(
∆kL
2

)
A [k (ω1), k (ω2), k (ω), k (ω1 + ω2 + ω)]

�������

2

.

(3.42)

This is still intractable. With the expectation that our seed laser will be quasi-continuous
wave, or at least have considerably longer pulses than the pump (i.e. τs � τp), we can
approximate this as

|η |2 ≈
9
(
χ(3)

)2
|α |2 | β |2 τsτp~

2L2

128π3ε20n̄8

∫ ∞

0
dω1

∫ ∞

0
dω2

ω1ω2ωs (ω1 + ω2 + ωs)
vg (ω1)vg (ω2)vg (ωs)vg (ω1 + ω2 + ωs)

×
sinc2

(
∆kL
2

)
A2 [k (ω1), k (ω2), k (ωs), k (ω1 + ω2 + ωs)]

�����

∫ ∞

0
dω e−

1
2 τ

2
s (ω−ωs )2e−

1
2 τ

2
p (ω1+ω2+ω−ωp)2

�����

2
,

as the Gaussians will vary much faster than the other quantities in thedω integrand.
Performing the innermost integration and expanding, we find

|η |2 ≈
9
(
χ(3)

)2
|α |2 | β |2 τsτp~

2L2

128π3ε20n̄8

∫ ∞

0
dω1

∫ ∞

0
dω2

ω1ω2ωs (ω1 + ω2 + ωs)
vg (ω1)vg (ω2)vg (ωs)vg (ω1 + ω2 + ωs)

×
sinc2

(
∆kL
2

)
A2 [k (ω1), k (ω2), k (ωs), k (ω1 + ω2 + ωs)]

2π
τ2p + τ

2
s
e
−
τ2pτ2s
τ2p+τ2s

(ω1+ω2+ωs−ωp)2
. (3.43)
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Recalling eq. (3.33), we now expand the wavenumber around the respective central frequency
ωc = ωs,p;

k (ω) ≈ k (ωc) +
dk
dω

�����ω=ωc

(ω − ωc) +
1
2

d2k
dω2

�����ω=ωc

(ω − ωc)2

= k (ωc) +
1

vg (ωc)
(ω − ωc) +

1
2
β2(ωc) (ω − ωc)2 . (3.44)

We can use this result to express ∆k in the following manner;

∆k =k (ωp) − 3k (ωs) +
ω1 + ω2 + ωs − ωp

vg (ωp)
−
ω1 + ω2 − 2ωs

vg (ωs)

+
1
2
β2(ωp)

[
ω2
1 + ω

2
2 + ω

2
s + ω

2
p + 2ω1ω2 + 2ω1ωs − 2ω1ωp + 2ω2ωs − 2ω2ωp − 2ωsωp

]

−
1
2
β2(ωs)

[
ω2
1 + ω

2
2 + 2ω

2
s − 2ω1ωs − 2ω2ωs

]
.

Assuming that this process is phase matched to first order, k (ωp)−3k (ωs) = 0, and operating
with centre frequencies such that ωp = 3ωs, we are left with

∆k = (ω1 + ω2 − 2ωs)
(

1
vg (ωp)

−
1

vg (ωs)

)
+ (ω1 + ω2 − 2ωs)2

(
1
2
β2(ωp) −

1
2
β2(ωs)

)
− β2(ωs)

[
ω1ωs + ω2ωs − ω1ω2 − ω

2
s

]
. (3.45)

Furthermore, we approximate group velocities, the frequency terms sitting outside of the
Gaussian and sinc functions, and effective areas as constant over the frequency ranges of
interest and introduce the nonlinear parameter

γ =
3χ(3)ωp

8ε0vg (ωs)3/2vg (ωp)1/2n̄4A
,

to find

|η |2 =
|α |2 | β |2 τsτpγ

2~2ω2
s L2

π2
(
τ2p + τ

2
s

) ∫ ∞

0
dω1

∫ ∞

0
dω2 e

−
τ2pτ2s
τ2p+τ2s

(ω1+ω2−2ωs )2

sinc2
(
∆kL
2

)
. (3.46)

It is more natural to work with powers, so we introduce

Ps =
~ω |α |2

τs
, (3.47)
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and
Pp =

~ω | β |2

τp
, (3.48)

where these powers are nominal average pulse powers (related to the average power by
P̄ = Pjσ, where σ is the duty cycle). Now we can express the rate of pair production as

|η |2 =
γ2τ2p τ

2
sωsPpPsL2

π2ωp
(
τ2p + τ

2
s

) ∫ ∞

0
dω1

∫ ∞

0
dω2 e

−
τ2pτ2s
τ2p+τ2s

(ω1+ω2−2ωs )2

sinc2
(
∆kL
2

)
, (3.49)

making it clear that the rate is proportional to the square of the total power. However, as we
desire Ps � Pp, the rate will only scale linearly with pump power.

Here the integrand is of order unity, so the integral is simply an area in
(
s−1

)2
, Aω ≈

∆ω1∆ω2. We note that the sinc that appears here has precisely the same form as the sinc that
appeared in eq. (2.20), although we have no contribution from self or cross-phase modulation
here. In the next chapter, we produce a set of parameters in order to find rates from eq. (3.49).



As with most of life’s problems,
this one can be solved by a box
of pure radiation.

Andy Weir, The Martian

4
Results

The goal of this chapter is to explore this model with some realistic parameters. Then, we use
the model to construct a joint spectral amplitude and to predict the rate at which such a source
would produce pairs of photons. We will also discuss the spontaneous Raman scattering
impact on this source.

4.1 A coarse grained approach

To get a rough idea of a pair rate before resorting to numerics, in eq. (3.46) we allow the pump
Gaussian to also be quite long (which is not likely to optimise the rate of pair production
during an experiment), approximating τp ≈ τs ≡ τ so that we can take τe− τ

2
2 ω

2
≈
√
2πδ (ω).

Now, performing the ω2 integral, we find (recall eq. (3.45))

|η |2 ≈
|α |2 | β |2 γ2~2ω2

s L2

π2

∫ ∞

0
dω1

∫ ∞

0
dω2 e−

τ2
2 (ω1+ω2−2ωs )2 sinc2

(
∆kL
2

)
≈
|α |2 | β |2 γ2~2ω2

s L2

π2

√
2π
τ

∫ ∞

0
dω1

∫ ∞

0
dω2 δ (ω1 + ω2 − 2ωs) sinc2

(
∆kL
2

)
We note here that the integration over the Dirac delta function has simplified the form of ∆k,
as it sets ω2 = 2ωs − ω1. This means that in eq. (3.45) the factors of (ω1 + ω2 − 2ωs) = 0,
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leaving only the final term which simplifies to −β2(ωs) (ω1 − ωs)2. This gives us

|η |2 =
|α |2 | β |2 γ2~2ω2

s L2√2π
π2τ

∫ ∞

0
dω1 sinc2

(
β2(ωs) (ω1 − ωs)2 L

2

)
=
2 |α |2 | β |2 γ2~2ω2

s L2√2π
3π2τ

√
2π

| β2 (ωs) | L

=
4 |α |2 | β |2 γ2~2ω2

s L2

3πτ
√
| β2 (ωs) | L

, (4.1)

Finally, we transform this into an expression in terms of powers using eqs. (3.47) and (3.48).
We find

|η |2 =
4γ2L2τ

3π
√
| β2(ωs) | L

PpPs .

and using the results from our model (as found in table 4.2), we find that in fused silica
microfibres, we can produce |η |2 = 0.01 pairs per pulse. This is a high enough rate for an
effective heralded single photon source. The rate is low enough to keep the multi-pairs at
a small fraction of the produced photons (∼ 3% recalling eq. (2.24)), and with a moderate
repetition rate a high rate of pairs. Indeed, it is common to work in the regime where |η |2 is
in the range 10−3 − 10−1.

4.1.1 Comparison with Literature

In order to verify that this method gives similar results to other work, we compare with
Gravier and Boulanger (2008) [48]. Whilst their aim is to produce photon triplets, the
process is similar. They use a four wave mixing process that involves the annihilation of a
pump photon at ω0 in bulk potassium titanyl phosphate (KTP) to produce photons at ω1, ω2

and ω3, where ω2 = ω3. The corresponding wavelengths are λ0 = 532 nm, λ1 = 1474 nm
and λ2 = λ3 = 1665 nm. However, because this process is intrinsically slow, they also seed
this generation with a field ω2. This is described by the Hamiltonian we ignored earlier on
the basis of phasematching (eq. (3.23)). Gravier and Boulanger quote a rate of 3.3 × 1013

triplets per pulse, from 2.0 × 1015 photons in their seed field, and 8.4 × 1014 photons in their
pump field.

Following the same method from chapter 3, we find that this state is described by

|ψout〉 ≈ |vac〉 + ηS |I〉 ,
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where the state of the single photon is

|I〉 =
3i (α∗)2 β~
32πε0ηS

∫ ∞

0
dω

∫ ∞

0
dω1

∫ ∞

0
dω2

√
ωω1ω2 (ω + ω1 + ω2)

vg (ω)vg (ω1)vg (ω2)vg (ω + ω1 + ω2)

×
s∗ (∆k) χ̄3

n̄4
φ̄∗s (ω1)φ̄∗s (ω2)φ̄p(ω + ω1 + ω2)

A [k (ω), k (ω1), k (ω2), k (ω + ω1 + ω2)]
â†ω |vac〉 ,

and
∆k = k (ω + ω1 + ω2) − k (ω2) − k (ω1) − k (ω).

Now we only have a single creation operator acting on the vacuum state. Again following the
same steps as above, we calcuate the average number of triple photons produced per pulse as

|ηS |
2 ≈
|α |4 | β |2 γ2~2ω2

s L2

π2

∫ ∞

0
dω

×
�����

∫ ∞

0
dω1

∫ ∞

0
dω2 sinc

(
∆kL
2

)
φ̄∗s (ω1)φ̄∗s (ω2)φ̄p(ω + ω1 + ω2)

�����

2
.

Although the pulse durations in the actual experiment are τp = 106 ps and τs = 230 ps,
because we are only looking for rough agreement with our theory, we approximate their
durations as identical and long enough to fix the arguments of the sinc function, such that

|ηS |
2 ≈
|α |4 | β |2 γ2~2ω2

s L2

π2
τ3

π3/2

×

∫ ∞

0
dω

�����

∫ ∞

0
dω1

∫ ∞

0
dω2 e−

1
2 τ

2(ω1−ωs )2e−
1
2 τ

2(ω2−ωs )2e−
1
2 τ

2(ω+ω1+ω2−ωp)2
�����

2

=
|α |4 | β |2 γ2~2ω2

s L2

π2
sinc2 *.

,

[
k (ωp) − 2k (ωs) − k (ωp − 2ωs)

]
L

2
+/
-

τ3

π3/2

×
4π2

3τ4

∫ ∞

0
dω e−

1
3 τ

2(ω+2ωs−ωp)2

=
4 |α |4 | β |2 γ2~2ω2

s L2
√
3πτ2

sinc2 *.
,

[
k (ωp) − 2k (ωs) − k (ωp − 2ωs)

]
L

2
+/
-
. (4.2)

In terms of powers, we predict an “idler” power of

Pi =
4
√
3π
γ2P2

s PpL2sinc2 *.
,

[
k (ωp) − 2k (ωs) − k (ωp − 2ωs)

]
L

2
+/
-
,
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and comparing eq. (4.1) with eq. (4.2) we find

|ηS |
2

|η |2
=
|α |2

τ

√
3β2 (ωs) Lsinc2 *.

,

[
k (ωp) − 2k (ωs) − k (ωp − 2ωs)

]
L

2
+/
-
.

As we might expect, the generation rate is greater by a factor including the extra seed
field due to the degenerate nature of ω2 and ω3.

Table 4.1: Approximate values to match the experiment in Gravier et al. [48]. Some of
these quantities, such as the effective area, are very rough estimates based on the limited
information available. We use geometric averages to find effective the pulse duration and
mean group index.

Quantity Symbol Value

Pulse duration τ
√

(106 ps)(230 ps)

Interaction length L 21mm

Photons per seed pulse |α |2 7 × 1014

Photons per pump pulse | β |2 1016

Seed frequency ωs
2πc

1665 nm

Pump frequency ωp
2πc

532 nm

Third order susceptibility χ(3) 10−21m2/V2

Effective area A π(125 µm)2

Mean refractive index n̄ 4
√

(1.7263)2(1.7294)(1.7779)

Mean group index n̄g
4
√

(1.7534)2(1.7546)(1.8909)

Group velocity dispersion β2 4.3 ps2/km

Finally using the approximated values in table 4.1 and assuming perfect phase matching
(such that sinc2 (∆kL/2) = 1), we approximate the number of triplets generated per pulse,
based on eq. (4.2), to be |ηS |

2 ≈ 1.5 × 1012. For all of the approximations involved, being off
by only an order of magnitude seems reasonable. Furthermore, for our purposes it suffices to
approximate the group index ng and group velocity dispersion β2 by taking derivatives of the
Sellmeier equation for KTP (source: refractiveindex.info n(α)), yielding β2 = 4.3 ps2/km.
We would also approximate |η |2 ≈ 21 pairs per pulse.
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4.2 A model photon source

As we cannot solve eq. (3.46) analytically, we develop a model to generate realistic param-
eters. There are several schemes we could consider, such as an integrated waveguide in a
chalcogenide glass [20], or a silicon nitride nanowire [49]. Attempting this process over such
a broad range of frequencies would be difficult in silicon, which has a small bandgap, so that
the pump would be subject to both linear and nonlinear losses. For now we shall consider
SSTPDC in fused silica microfibre (an air-clad, sub-micron diameter optical fibre), due to its
comparatively high nonlinearity of χ(3) = 2.5 × 10−22m2V−2, and the high refractive index
contrast (∆n̄ = 0.45) provides high mode confinement, further enhancing the nonlinearity.

Our primary consideration is how to phasematch this process to first order, to maximise
the rate of photon pair generation. We follow the process developed by Grubsky et al. [50],
and further refined by Zhang et al. [35], to phasematch classical third harmonic generation.
As we expect nHE11 > nHE21 , we pump in HE21 and seed in HE11, to generate pairs in
HE11. Note that these modes in microfibre do not correspond directly to the familiar linearly
polarised (LP) modes, while we no longer satisfy the condition of working with a single
polarisation, we expect the error to be no greater than a factor of ∼ 50%. We outline a more
precise approach in chapter 5.

The field amplitude profiles, generated using commercial beam propagation software
(RSoft), are found in Figure 4.2. These modes have appreciable overlaps, leading to an
effective coupling area of Aeff = 11.9 µm2. Note that we use a scalar approximation, so
eq. (3.19) collapses down to a single term and we gain a factor of four. We approximate the
profiles of HE11(ωs), HE11(ω1) and HE11(ω2) as being identical. We cannot use HE11 and
HE12 as HE12 is odd, and so the nonlinear overlap would be zero.

As the modal dispersion has a dependency on the width of the fibre, we can use the
same beam propagation software to scan across fibre diameters until we find a value for
which n(HE11)

eff (ωs) = n(HE21)
eff (ωp), thereby phasematching SSTPDC to first order. As shown

in Figure 4.1, this occurs for a fibre width of 765 nm. All of the remaining parameters are
shown in table 4.2.

4.3 Results of the model

Using this set of parameters, we endeavour to produce photons around the 1550 nm band. We
envisage pumping with τp = 1 ps pulses at 517 nm and seeding with τs = 10 ps pulses at 1550
nm. From eq. (3.49) we find that |η |2 = 0.01 pairs per pulse. This is more than sufficient
for producing an effective heralded photon source. Examining the joint spectral intensity as
given by eq. (3.49), seen in Figure 4.3, we find that our pairs are highly correlated.
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Figure 4.1: The effective refractive indices for HE11 and HE21. Phasematching occurs when
the fibre width is 765 nm.

Figure 4.2: The field amplitude profiles for HE11(1550 nm) (right) and HE21(517 nm) (left)
in a fused silica microfibre.

Recalling the discussion of separability from section 1.4.2, the shape of this joint state
intensity (JSI) is described primarily by the “width” roughly along the ω2 = ω1 axis, the
generation bandwidth (i.e. the “length” along the ω2 = 2ωs − ω1 axis), and the “bend”
away from the ω2 = 2ωs −ω1 axis. Correspondingly these three things are controlled by the
interaction length, L, the pump duration, τp, and the strength of the dispersion as described
by β2(ωp) − β2(ωs).

Another metric discussed in section 1.4.2 that measures the level of correlation is the
Schmidt number K . We recall that K ≥ 1, with equality only when the JSA shows no
correlations (that is, for states that can be factorised as Φ(ω1, ω2) = f (ω1)g(ω2)). For the
numerical calculation, we can recover the Schmidt coefficients pλ by finding the singular
value decomposition (SVD) of the array representing the JSA, with the eigenvalues being
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Table 4.2: The parameters for the quantum SSTPDC simulation. The group velocity and
group velocity dispersion were acquired from the beam propagation method used to simulate
the mode profiles.

Quantity Symbol Value

Refractive index n3 1.46
n4 1.44

Effective area Aeff 11.9 µm2

Third order susceptibility χ(3) 2.5 × 10−22m2/V2

Interaction length L 3mm
Group index ng (ωs) 1.426

ng (ωp) 1.613
Group velocity dispersion β2(ωs) −170 ps2/km

β2(ωp) 850 ps2/km
Pulse Power P3 50W

P4 10 kW
Wavelength λ3 1550 nm

λ4 1550/3 nm
Pulse duration τs 10 ps

τp 1 ps

√
pλ , where the normalisation of the JSA implies

∑
λ pλ = 1. The Schmidt number is given

by K = 1/
∑
λ p2λ . Alternatively, we can approximate the JSA as Gaussian

Φ(ω1, ω2) =

√
2
π

√
cos θ1 sin θ2 − sin θ1 cos θ2

σ1σ2

× exp *
,
−

(ω1 sin θ1 + ω2 cos θ1)2

σ2
1

+
-
exp *

,
−

(ω1 sin θ2 + ω2 cos θ2)2

σ2
2

+
-
, (4.3)

where θ1, θ2 are angles determining the orientation of the JSA, and σ1, σ2 the widths along
the respective directions determined by the orientation. This allows one to find the following
analytical expression for the Schmidt number in this approximation [51]

K =

√√√(
σ2
1 sin2 θ2 + σ

2
2 sin2 θ1

) (
σ2
1 cos2 θ2 + σ

2
2 cos2 θ1

)
σ2
1σ

2
2 (cos θ1 sin θ2 − sin θ1 cos θ2)2

. (4.4)

Clearly, some of the joint state intensities shown in fig. 4.4 are not well approximated by
a Gaussian. Thus we use the Gaussian approximation only to verify the numerical result in
the case of fig. 4.3, where θ1 = −π/4, θ2 = π/4, and σ1/σ2 = 50. We find KGauss = 25.01,
compared with the numerical result KSVD = 26.6 – suggesting that the SVD is producing a
trustworthy Schmidt number.

To illustrate how the correlations are affected by the parameter space, we consider several
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Figure 4.3: The normalised joint spectral intensity for SSTPDC in fused silica microfibre,
with a Schmidt number of K = 26.6, and a rate |η |2 = 0.01 pairs per pulse.

cases. First we decrease the pump duration to τp = 0.1 ps, resulting in Figure 4.4b. As we
can see, this has extended the generation bandwidth (note the broader frequency range), and
made the effect of dispersion more pronounced. This makes sense, as we have broadened the
Gaussian term in the ω2 = ω1 direction, so it overlaps with more of the sinc. We see that the
Schmidt number has increased to K = 34.4, meaning this source shows greater correlations
than fig. 4.3, and the rate has decreased to |η |2 = 7 × 10−4 pairs per pulse. If we increase the
pulse width by even a factor of two, to 2 ps, the result is barely resolvable. With the constraint
that τs � τp, this behaviour is always dominated by the pump pulse duration. Next, we
exaggerate the second order dispersion by increasing β2(ωp) and β2(ωs) by a factor of four
(this might be accomplished by using a smaller waveguide). This has caused the sinc(∆kL/2)

to “bend” further from the ω2 = −ω1 + 2ωs axis and overlap less with the Gaussian, as seen
in Figure 4.4c. This effectively shortens the generation bandwidth. However, it has also
decreased the Schmidt number to K = 13.5, and the rate has only decreased slightly to
|η |2 = 0.007 pairs per pulse. Finally, we double the interaction length to 6mm, giving us
Figure 4.4d. Primarily this has narrowed the “width” of the JSI, but we also see a slightly
increase in the Schmidt number to K = 30.4, and an increase in the rate to |η |2 = 0.04 pairs
per pulse.

Another quantity related to the correlations in the source is the second-order correlation
function, g(2). Unlike the form in section 1.4.1, here we consider a g(2) pertaining to
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multimode squeezed states

g(2) = 1 +
∑
λ sinh4 (rλ )

[∑
λ sinh2 (rλ )

]2 , (4.5)

where rλ = |η |2
√

pλ , with
√

pλ being the eigenvalues given by the SVD. In the limit where
|η |2 � 1, this reduces to

g(2) = 1 +
1
K
. (4.6)

This tells us then that for an uncorrelated heralded single photon source, we should expect
g(2) = 2. If there are very strong frequency correlations overall, then the Schmidt number
is large, and we are likely to get two successive photons from different modes. As they are
in different modes, they are uncorrelated, and these events happen independently. Thus the
arrival of successive photons should be described by Poisson statistics, i.e. g(2) → 1.

The temporal form of the JSI (i.e. |φ(t1, t2) |2 = ���
1
2π

∫
dω1dω2φ(ω1, ω2)ei(ω1t1+ω2t2) ���

2
) is

shown in Figure 4.5. This clearly shows that we have temporal correlations, as well as the
spectral correlations we see in Figure 4.3. We can see here that the temporal bandwidth is
narrow, with pair generation occurring over a range on the order of 6 ps. This suggests that in
order to generate pure states, we would need a detector with a response time on the order of
1 ps. This is infeasible, filtering would be required. Alternatively, performing the calculation
in a ring resonator may result in a state that is closer to separable [52].

In this treatment we have not explicitly accounted for the effect of spontaneous Raman
scattering, but we can comment on the impact on this source regardless. The number of
Raman photons produced per second is linearly proportional to the pulse power, |ηR |2 ∝ γP0L

[29] (assuming our filtering is narrower than the Stokes bandwidth which is approximately
20 THz), with the specifics depending on the material and configuration. Here, the seed laser
near the produced pairs is extremely weak in comparison to the pump field (by a very large
factor of ∼ 108). It is clear then that the vast majority of Raman photons will be produced
around the pump field, with enough spectral separation between it and the pump for cascaded
processes to irrelevant in the spontaneous regime. We compare this with the pump power
used by Clark et al. [19] in their birefringent photonic crystal fibre SFWM source, which
uses a pulse power of approximately 5 kW to produce pairs only 30 nm away from their pump,
more than 105 times the pulse power in the seed pulse used for SSTPDC. This suggests that
there should be a significant decrease in Raman noise when producing pairs via SSTPDC.

Not all of these results are ideal – for example, we do not demonstrate the ability to
produce an uncorrelated source. However, the parameter space is large enough that there is
significant room for further optimisation. Furthermore, this is a simple proof of principle.
One could consider other platforms and geometries that produce different results.
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(a) (b)

(c) (d)

Figure 4.4: The normalised joint spectral intensity for (a): the JSI from fig. 4.3 for compari-
son. (b): a pump duration of 0.1 ps. Note that the generation bandwidth has increased such
that it no longer fits in the same interval. For the entire JSA, K = 34.4, g(2) = 1.03. The
rate has decreased to |η |2 = 7 × 10−4 pairs per pulse. (c): a four fold increase in the group
velocity dispersion. Now K = 13.5, g(2) = 1.07, and the rate is |η |2 = 0.007 pairs per pulse.
(d): an interaction length of 6mm. Here K = 30.4, g(2) = 1.03, and |η |2 = 0.04 pairs per
pulse.
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Figure 4.5: The temporal form of the biphoton function.
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The Universe is making music all
of the time.

Tom Waits

5
Outlook

In this thesis, we have established that one of the key difficulties facing nonlinear optical
heralded single photon sources is noise due to spontaneous Raman scattering in amorphous
materials. Because these materials lend themselves well to integrated optics, and we would
like to take advantage of the inherent stability and scalability of this integration, Raman noise
is a problem that must be addressed.

Our proposed solution is the third-order nonlinear process Stimulated Spontaneous Three
Photon Down Conversion. The issue of Raman noise is side-stepped by simply having
a large spectral separation between the strong noise source (the pump) and the generated
pairs. By comparison with the semi-classical analogue in section 2.2, we have shown that
even with nonlinear contributions from self and cross phase modulation, this process can be
phasematched. Furthermore, section 2.3 establishes that this process does in fact generate
pairs by lightly squeezing the vacuum, in much the same way as spontaneous parametric
down conversion or degenerate four wave mixing.

The bulk of our work here is dedicated to describing SSTPDC in its entirety, for which
we have relied upon the robust backwards Heisenberg formalism pioneered by Yang et al.
(2008) [40]. In principle this approach can describe a process of any order, but here we
have only extracted the physics relevant to our third order down conversion process. The full
theory behind SSTPDC is fleshed out in chapter 3, and we arrive at very general equations
describing both the biphoton state (eq. (3.35)) and the pair generation rate (eq. (3.39)).
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It is important to realise that the joint spectral amplitude described by eq. (3.35) is a
complete characterisation of the biphoton state, provided we work in the low power regime
where time-ordering effects are negligible. Any information that we might wish to find
can be calculated from the JSA. This includes, as we have seen, the Schmidt number and
second-order correlation function.

In the previous chapter (chapter 4), we developed a model in fused silica microfibre. We
demonstrated the ability to produce pairs of photons at 0.01 pairs per pulse, a sufficiently
high rate for an SSTPDC based heralded single photon source to be effective. This source is
highly correlated, with a Schmidt number of K = 26.6. For applications such as multichannel
QKD [53–55], this is a promising result. As of yet we have not demonstrated the ability to
generate pure states without tight filtering, but SSTPDC has a large parameter space and we
have explored only a single platform. The impact of spontaneous Raman scattering on this
source was considered briefly, which suggested that there was a reduction in the number of
Raman photons produced proportional to the pump power. As SSTPDC only needs a weak
seed near the pair generation band, we expect a significant reduction in noise.

There are further effects to consider that have not been accounted for in this treatment.
The three primary ones are cross-phase modulation, self-phase modulation, and the single
polarisation approximation. These all add further complexity to this treatment of SSTPDC.

Self and cross phasemodulation are particularly relevant here, as our pump pulse durations
are on the order of picoseconds. These effects are going to modulate the spectral profiles of
the pulses, and contribute to the phasematching, as we saw in section 2.2. It would be ideal
to confirm that in this Hamiltonian treatment of the spontaneous problem, these effects are
negligible. One strategy for attempting this is to work in the time domain, where calculations
of these type can be simplified [56].

Another concern is the use of the scalar approximation to calculate the effective area
in chapter 4. This approximation is not a particularly good one in microfibre, where every
polarisation component has a significant field contribution. However, we expect the im-
provement in accuracy in using the full tensorial form described by eq. (3.19) to be of order
∼ 50%. The χ(3) tensor in amorphous materials has few independent elements, however we
must determine the appropriate symmetries for SSTPDC, as well as the relevant frequency
dependence.

Despite the theoretical nature of this thesis, we have in effect designed a source which one
could construct in the laboratory. The one major practical consideration left uncommented
on here is the necessary filtering one would require to undertake such an experiment – this
will necessarily lower the rate.

Ultimately we have demonstrated that by this third order process we call Stimulated
Spontaneous Three Photon Down Conversion, where we down convert a pump photon at the
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third harmonic to a triplet around the fundamental frequency, and stimulate this process with a
seed at the frequency of one of the triplet photons, one can in principle generate 0.01 pairs per
pulse using modest laser powers. Taking into account more realistic laser fields we still find
a rate of 0.01 pairs per pulse, for the pulse powers of Ps = 50W and Pp = 10 kW for the seed
and pump, respectively. This rate is sufficient to produce an effective heralded single photon
source for many applications. Importantly, as the desired pairs have been spectrally separated
from the strongest pump field, we expect a significant decrease in the rate of uncorrelated
photons generated by spontaneous Raman scattering. Stimulated spontaneous three photon
down conversion then is a good candidate for a correlated heralded single photon source.
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A
Appendix

A.1 From χ to Γ

It is, on occasion, useful to know the relationship between χ and Γ [57]. This is because χ
is the quantity that is tabulated and printed in reference books. For the linear susceptibility,
this is easy. If

Pi = ε0 χ
(1)
i j E j = χ(1)

i j

(
D j − Γ

(1)
jl Dl

)
and

Pi = Γ
(1)
i j D j

then we can solve for Γ(1) in terms of χ(1). Assuming that we are working in an isotropic
medium, meaning χ(1)

i j = χ(1)δi j and Γ(1)
i j = Γ

(1)δi j , we find

Γ
(1) =

χ(1)

1 + χ(1) =
n20 − 1

n20
, (A.1)

where n0 is the material refractive index.
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The process for the second order is more involved. Now we use

Pi = ε0 χ
(1)
i j E j + ε0 χ

(2)
i jmE j Em

= χ(1)
i j

(
D j − Γ

(1)
jl Dl − Γ

(2)
jlmDl Dm

)
+
χ(2)

i jm

ε0

(
D j − Γ

(1)
jl Dl

) (
Dm − Γ

(1)
mn Dn

)
and

Pi = Γ
(1)
i j D j + Γ

(2)
i jmD j Dm

to find that

Γ
(2)
i jm =

χ(2)
i jm

ε0n60
. (A.2)

The third order relationship is worse again. However, carefully managing indices, we can
use

Pi =ε0 χ
(1)
i j E j + ε0 χ

(2)
i jmE j Em + ε0 χ

(3)
i jmnE j EmEn

=χ(1)
i j

(
D j − Γ

(1)
jl Dl − Γ

(2)
jlmDl Dm − Γ

(3)
jlmnDl DmDn

)
+
χ(2)

i jm

ε0

(
D j − Γ

(1)
jl Dl − Γ

(2)
jlmDl Dm

) (
Dm − Γ

(1)
mn Dn − Γ

(2)
mnpDnDp

)
+
χ(3)

i jmn

ε20

(
D j − Γ

(1)
jl Dl

) (
Dm − Γ

(1)
mn Dn

) (
Dn − Γ

(1)
np Dp

)
and

Pi =Γ
(1)
i j D j + Γ

(2)
i jmD j Dm + Γ

(3)
i jmnD j DmDn

in order to find

Γ
(3)
i jlm =

χ(3)
i jlm

ε20n80
. (A.3)

A.2 The Linear Hamiltonian

The electric inhomogeneous linear part of our Hamiltonian takes the following form,

ĤL =
1
2ε0

∫
dr

D̂i D̂i

n2
. (A.4)

We now follow much the same process as in Section 3.1 using eqs. (3.7), (3.9) and (3.10).
We must be careful to keep track of the frequency and spatial dependence of the refractive
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indices of each field. This gives us

ĤL =
1
2ε0

∫
dr

∫ ∞

0
dk1

∫ ∞

0
dk2

1
nk1nk2

√
~ωk1

2

√
~ωk2

2
[
Dk1 âk1 + Fk1 b̂k1 + D∗k1 â†k1 + F∗k1 b̂†k1

]
×

[
Dk2 âk2 + Fk2 b̂k2 + D∗k2 â†k2 + F∗k2 b̂†k2

]
(A.5)

Now we simply expand;

ĤL =
~

4ε0

∫
dr

∫ ∞

0
dk1

∫ ∞

0
dk2

√
ωk1ωk2

nk1nk2[
Fk1Fk2 b̂k1 b̂k2 + Dk1Dk2 âk1 âk2 + F∗k1F∗k2 b̂†k1 b̂†k2 + D∗k1D∗k2 â†k1 â†k2
+Fk1Dk2 b̂k1 âk2 + F∗k1D∗k2 b̂†k1 â†k2 + D∗k1F∗k2 â†k1 b̂†k2 + D∗k1F∗k2 â†k1 b̂†k2
+F∗k1Fk2 b̂†k1 b̂k2 + D∗k1Fk2 â†k1 b̂k2 + F∗k1Dk2 b̂†k1 âk2 + D∗k1Dk2 â†k1 âk2

+Fk1F∗k2 b̂k1 b̂†k2 + Dk1F∗k2 âk1 b̂†k2 + Fk1D∗k2 b̂k1 â†k2 + Dk1D∗k2 âk1 â†k2
]
.

(A.6)

A similar contribution from the magnetic component cancels many of these terms to leave
us with

ĤL =
~

4πε0

∫
dr

∫ ∞

0
dk1

∫ ∞

0
dk2

√
ωk1ωk2

nk1nk2[
F∗k1Fk2 b̂†k1 b̂k2 + D∗k1Fk2 â†k1 b̂k2 + F∗k1Dk2 b̂†k1 âk2 + D∗k1Dk2 â†k1 âk2

+Fk1F∗k2 b̂k1 b̂†k2 + Dk1F∗k2 âk1 b̂†k2 + Fk1D∗k2 b̂k1 â†k2 + Dk1D∗k2 âk1 â†k2
]
.

(A.7)

Again, as we are ultimately going to be working in a waveguide, we use eq. (3.15) plus
the equivalent term for our high frequency components. This will give us the following;

ĤL =
~

8πε0

∫ ∞

−∞

dr
∫ ∞

0
dk1

∫ ∞

0
dk2

√
ωk1ωk2

nk1nk2

[
ei(k1−k2)z f ∗k1 f k2 b̂†k1 b̂k2 + ei(k1−k2)z f k2 â†k1 b̂k2

+ei(k1−k2)z f ∗k1dk2 b̂†k1 âk2 + ei(k1−k2)zdk1
∗dk2 â†k1 âk2 + e−i(k1−k2)z f k1 f ∗k2 b̂k1 b̂†k2

+e−i(k1−k2)zdk1 f ∗k2 âk1 b̂†k2 + e−i(k1−k2)z f k1dk2
∗b̂k1 â†k2 + e−i(k1−k2)zdk1dk2

∗âk1 â†k2
]
.

(A.8)

If we now integrate with respect to the longitudinal axis, z, we find our exponentials
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become Dirac delta functions;

ĤL =
~

4ε0

∫ ∞

−∞

∫ ∞

−∞

dx dy
∫ ∞

0
dk1

∫ ∞

0
dk2

√
ωk1ωk2

nk1nk2

[
δ(k1 − k2) f ∗k1 f k2 b̂†k1 b̂k2 + δ(k1 − k2)dk1

∗ f k2 â†k1 b̂k2

+δ(k1 − k2) f ∗k1dk2 b̂†k1 âk2 + δ(k1 − k2)dk1
∗dk2 â†k1 âk2 + δ(k1 − k2) f k1 f ∗k2 b̂k1 b̂†k2

+δ(k1 − k2)dk1 f ∗k2 âk1 b̂†k2 + δ(k1 − k2) f k1dk2
∗b̂k1 â†k2 + δ(k1 − k2)dk1dk2

∗âk1 â†k2
]

(A.9)

This allows us to eliminate one of our integrals, and it is now pointless to maintain the
subscript on the k;

ĤL =
~

4ε0

∫ ∞

−∞

dx
∫ ∞

−∞

dy
∫ ∞

0
dk

ωk

n2k

[
f ∗k f k b̂†k b̂k + d∗k f k â†k b̂k

+ f ∗k dk b̂†k âk + d∗k dk â†k âk + f k f ∗k b̂k b̂†k
+dk f ∗k âk b̂†k + f k d∗k b̂k â†k + dk d∗k âk â†k

]
(A.10)

It now becomes clear that, given the frequency discrimination between b̂k and âk , any
mixed terms are going to operate on any state to give us zero. Furthermore, we use our
normalisation condition to get to the following:

ĤL =

∫ ∞

0
dk
~ωk

4
[
b̂†k b̂k + â†k âk + b̂k b̂†k + âk â†k

]
. (A.11)

This is an expression that we can use, although we still need to find a missing factor of
two. In the process we shall verify that this is indeed the correct expression. First, we recall
eqs. (3.9) and (3.10) to return to

ĤL =

∫ ∞

0
dk
~ωk

4
[
a†k ak + ak a†k

]
. (A.12)

Using our commutation relation [ak, ak ′] = δ(k − k′), we arrive at our familiar linear
result, sans a factor of two:

ĤL =

∫ ∞

0
dk
~ωk

2

[
a†k ak +

1
2

]
.

If we now include the magnetic term, we find a similar term and we have our linear
Hamiltonian:

ĤL =

∫ ∞

0
dk ~ωk

[
a†k ak +

1
2

]
. (A.13)

At this stage we account for the different modes in use, so the full linear Hamiltonian then
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is
ĤL =

∫ ∞

0
dk ~

[
ω(HE11)

k â†k âk + ω
(HE21)
k b̂†k b̂k

]
.

A.3 General results

In this section, we generalise a result from Louisell [58].
Firstly we define the function

g( χ) = e χ Î âk1e
−χ Î, (A.14)

where χ = it, Î =
∫ ∞
0 dk′ωk ′ â

†

k ′ âk ′, and we note that g(0) = âk1 .
If we differentiate this function, we discover

dg
dχ
= e χ Î

[
Î, âk1

]
e−χ Î . (A.15)

Simplifying this further, we find a more useful form;

[
Î, âk1

]
=

∫ ∞

0
dk′ωk ′

[
â†k ′ âk ′, âk1

]

=

∫ ∞

0
dk′ωk ′

[
â†k ′, âk1

]
âk ′

=

∫ ∞

0
dk′ωk ′

(
−δ(k′ − k1)

)
âk ′

= −ωk1 âk1 .

(A.16)

Substituting eq. (A.16) back into eq. (A.15), we find a differential equation for g( χ);

dg
dχ
= −ωk1g( χ).

Combined with our initial condition, this has the solution

g( χ) = âk1e
−ωk1 χ . (A.17)

Following the same process, we can show that

e χ Î â†k1e
−χ Î = â†k1e

ωk1 χ . (A.18)
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