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Abstract

This PhD thesis seeks to offer a new framework that accommodates dependency in pricing an
insurance portfolio following the renewal risk model, corporate bonds, as well as credit default
swaps (CDS). This will be achieved by combining the approach and methodology of actuarial
science with stochastic processes and probability theories, as well as employing a hint of the
integral calculus used in the electromagnetic and viscoelasticity fields.

This thesis is a collection of three papers, which are presented in Chapters 2, 3 and 4. While
Chapters 3 and 4 can be read in conjunction with each other, Chapter 2 can be read in isolation
because it presents a completely different perspective of insurance to the financial perspective
taken in the other two articles (Chapter 3 and 4). Nevertheless, the three papers share the same
scope, which is the use of copula to capture the dependency between variables. In total, four
copulas are explored: the Farlie-Gumbel-Morgenstern (FGM) copula, Gumbel copula, Gaussian
copula and Student-t copula. However, only three copulas are compared in each working paper.
The first article in Chapter 2 models a continuous time renewal risk process, and uses copulas
to capture the dependence structure between the claims inter-arrival time and discounted claims
size. The second and third articles work under the framework of a reduced form model and
use various copulas to capture the dependence structure between the jump sizes of the intensity
processes, each of which is represented by a jump diffusion process.

Taking the insurance perspective, the first article - titled Neumann Series on the Recursive
Moments of Copula-Dependent Aggregate Discounted Claims - studies the recursive moments
of aggregate discounted claims, where the dependence between the interclaim time and the
subsequent claim size is considered. Using the general expression for the mth order moment
proposed in [1] which takes the form of the Volterra Integral Equation (VIE), we used the
method of successive approximation to derive the Neumann series of the recursive moments.
We then compute the first two moments of aggregate discounted claims, i.e. its mean and vari-
ance, based on the Neumann series expression where the dependence structure is captured by
the FGM copula, Gaussian copula and Gumbel copula, with exponential marginal distributions.
Insurance premium calculations with their figures are also illustrated.

The second work – titled A multivariate jump diffusion process for counterparty risk in
CDS rates – considers counterparty risk in CDS rates. To do so, it uses a multivariate jump
diffusion process for obligors’ default intensity, where jumps (i.e. magnitude of contribution of
primary events to default intensities) occur simultaneously and their sizes are dependent. For
these simultaneous jumps and their sizes, a homogeneous Poisson process and three copulas,
which are Farlie-Gumbel-Morgenstern (FGM), Gaussian and Student-t copulas are used. This
project applies copula-dependent default intensities of multivariate Cox process to derive the

xi
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joint Laplace transform that provides us with joint survival/default probability and other rele-
vant joint probabilities. For that purpose, the piecewise deterministic Markov process (PDMP)
theory developed in [2] and the martingale methodology in [3] are used. The survival/default
probability is computed using the three copulas and exponential marginal distributions, and the
results are applied to calculate CDS rates, assuming deterministic rate of interest and recov-
ery rate. Sensitivity analysis for the CDS rates were also conducted by changing the relevant
parameters and providing their figures.

The final article – titled Jump diffusion model with copula dependence structure in default-
able bond pricing – studies the pricing of a defaultable bond under various copulas. For that
purpose, it used a bivariate jump diffusion process for a bond issuer’s default intensity and the
short rate of interest. We assume the jumps (i.e. magnitude of contribution of primary events to
default intensities) occur simultaneously and their sizes are dependent. For these simultaneous
jumps and their sizes, a homogeneous Poisson process and three copulas – FGM copula, Gaus-
sian copula and Student-t copula are used, respectively. The joint Laplace transform for the
variables’ integrated processes is derived to provide the expression for defaultable bond price,
using copula-dependent jump sizes. Once again, we apply the piecewise deterministic Markov
process (PDMP) theory developed in [2] and the martingale methodology in [3]. Zero coupon
defaultable bond prices and their yield are computed using the three copulas and exponential
marginal distributions. The model is then used to calibrate zero coupon bonds on one-day basis
as well as for an extended period of one year. Calibration results show that the Student-t copula
provides the best fit relative to the other two copulas.



Contents

Acknowledgements v

List of Publications ix

Abstract xi

List of Figures xvii

List of Tables xxi

1 Introduction 1
1.1 Overview & Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Credit Default Swap . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Risks: Insurance Risk and Default Risk . . . . . . . . . . . . . . . . . 3

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Volterra Integral Equation of the 2nd Kind . . . . . . . . . . . . . . . . 7
1.2.3 Reduced Form Model vs. Structural Model . . . . . . . . . . . . . . . 8
1.2.4 Jump Diffusion Model . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.5 Numerical Computation . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Bibliography 15

2 Neumann Series on the Recursive Moments of Copula-Dependent Aggregate Dis-
counted Claims 21
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Recursive Moments of Aggregate Discounted Claims . . . . . . . . . . 24
2.2.2 Copula Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Linear Integral Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1 Volterra IE of the 2nd Kind . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 Neumann Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Numerical Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 Numerical accuracy of Neumann series expression for moments . . . . 30
2.4.2 Moments of the Aggregate Discounted Claims . . . . . . . . . . . . . 31

xiii



xiv CONTENTS

2.4.3 Premium Calculation under FGM, Gaussian and Gumbel copulas . . . 32
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Bibliography 37

3 A Multivariate Jump Diffusion Process for Counterparty Risk in CDS rates 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Model Setup and Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Survival and Default Probabilities . . . . . . . . . . . . . . . . . . . . 42
3.2.2 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.1 CDS Pricing Under Counterparty Risk . . . . . . . . . . . . . . . . . . 51
3.3.2 CDS rates calculation: Sensitivity analysis . . . . . . . . . . . . . . . . 53

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Bibliography 59

4 Jump Diffusion Model with Copula Dependence Structure in Defaultable Bond
Pricing 63
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 The Joint Laplace Transform of the Distribution of the Integrated Process 68
4.2.2 The Expression for Defaultable Bond Price . . . . . . . . . . . . . . . 72

4.3 Bond Price and Term Structure Analyses . . . . . . . . . . . . . . . . . . . . 73
4.4 Data & Model Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.1 One-day Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4.2 One-year Calibration: Microsoft Inc. Zero Coupon Bond . . . . . . . . 78

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Bibliography 83

5 Conclusion 87

A Derivation of the joint Laplace transform of integrated multivariate processes 91

B Mathematical Programming Code 101
B.1 Simulation of Jump Diffusion processes . . . . . . . . . . . . . . . . . . . . . 101
B.2 Programming Code for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . 106
B.3 Programming Code for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . 108
B.4 Programming Code for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . 109

C A multivariate jump diffusion process for counterparty risk in CDS rates 113
C.1 CDS Rates Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 113

C.1.1 FGM Copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
C.1.2 Gaussian Copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



CONTENTS xv

D Jump diffusion model with copula dependence structure in defaultable bond pric-
ing 119
D.1 Bond Price and yield as a function of tenor and θ with jump size distribution

µ
(1)
t = 100, and µ

(2)
t = 200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

D.2 Bond Price and yield as a function of tenor and θ with jump size distribution
µ
(1)
t = 5, and µ

(2)
t = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

D.3 Daily changes in calibrated parameters of Microsoft Inc ZCB price . . . . . . . 130
D.4 One-Year Microsoft Inc. Zero Coupon Bond Mkt Data and Mod. Price & Yield 137
D.5 Daily values of calibrated parameters, date 22 June 2010 - 30 June 2011 . . . . 143

Acronyms 157

Bibliography 159



xvi CONTENTS



List of Figures

1.1 FGM copula with exponential margins and dependence parameter -0.95, 0, 0.95 . . . . 5
1.2 Gumbel copula with exponential margins and dependence parameters one, three,

100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Gaussian copula with exponential margins and dependence parameter -0.95, 0, 0.95 . . 5
1.4 Student-T copula with exponential margins and dependence parameter -0.95, 0, 0.95 . 6
1.5 Simulated paths of jump diffusion process with dependence structure capture

by student-t copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Farlie–Gumbel–Morgenstern (FGM) copula with exponential margins and de-
pendence parameters -1, zero, one. . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Gaussian copula with exponential margins and dependence parameters -1, zero,
one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Gumbel copula with exponential margins and dependence parameters one, three,
100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Sensitivity of the first moment under the Gaussian copula at θ = 0 and θ =−0.9
with respect to claim size and inter-claim time averages. . . . . . . . . . . . . 33

2.5 The loaded premium under FGM and Gaussian copulas based on the SD pre-
mium principle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 The loaded premium under the Gumbel copula based on the SD premium prin-
ciple. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 FGM copula with exponential margins and dependence parameter -0.95, 0, 0.95 . . . . 43
3.2 Simulated paths of jump diffusion process with dependence structure capture

by FGM copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Gaussian copula with exponential margins and dependence parameter -0.95, 0, 0.95 . . 43
3.4 Simulated paths of jump diffusion process with dependence structure capture

by Gaussian copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5 Student-T copula with exponential margins and dependence parameter -0.95, 0, 0.95 . 44
3.6 Simulated paths of jump diffusion process with dependence structure capture

by student-T copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.7 CDS rates under FGM, Gaussian and Student-t copulas. . . . . . . . . . . . . . 53
3.8 Sensitivity of CDS rates under Student-t copula with respect to seller’s (left)

and RC’s (right) jump size jump size, µ(s) and µ(RC) respectively. . . . . . . . 54
3.9 Sensitivity of CDS rates under Student-t copula with respect to seller’s and RC’s

diffusion rates, i.e. σ (s) and σ (r) respectively. . . . . . . . . . . . . . . . . . . 54

xvii



xviii LIST OF FIGURES

3.10 Sensitivity of CDS rates under Student-t copula with respect to the constant
reversion level of seller, b(s), and RC b(RC), with c(s) = c(RC) = 1 and a(s) =
a(RC) =−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.11 Sensitivity of CDS rates under Student-t copula with respect to seller’s and RC’s
decay rate, c(s) and c(r) respectively, where b(s) = b(RC) = 1 and a(s) = a(RC) =−1. 55

3.12 Sensitivity of CDS rates under Student-t copula with respect to frequency of
yearly jump events, ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 FGM copula with exponential margins and dependence parameter -0.95, 0, 0.95 . . . . 67
4.2 Simulated paths of jump diffusion process with dependence structure capture

by FGM copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3 Gaussian copula with exponential margins and dependence parameter -0.95, 0, 0.95 . . 67
4.4 Simulated paths of jump diffusion process with dependence structure capture

by Gaussian copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5 Student-T copula with exponential margins and dependence parameter -0.95, 0, 0.95 . 68
4.6 Simulated paths of jump diffusion process with dependence structure capture

by student-T copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.7 Bond price as a function of θ and maturity under the jump diffusion model with

Student-t copula dependence structure and jump sizes (µ(1)
t = 100,µ(2)

t = 200)
(left) and (µ

(1)
t = 5,µ(2)

t = 10) (right) . . . . . . . . . . . . . . . . . . . . . . 75
4.8 Bond yield as a function of θ and maturity under the jump diffusion model with

Student-t copula dependence structure and jump sizes (µ(1)
t = 100,µ(2)

t = 200)
(left) and (µ

(1)
t = 5,µ(2)

t = 10) (right) . . . . . . . . . . . . . . . . . . . . . . 76
4.9 Model Price (red) vs. Market Price (blue) . . . . . . . . . . . . . . . . . . . . 81
4.10 Jump Diffusion Model with Student-t copula dependence structure: Relative Error 82

C.1 Sensitivity of CDS rates under FGM copula with respect to seller’s and RC’s
jump size jump size (α and β respectively) . . . . . . . . . . . . . . . . . . . 113

C.2 Sensitivity of CDS rates under FGM copula with respect to seller’s and RC’s
diffusion rates (σ (s) and σ (r) respectively) . . . . . . . . . . . . . . . . . . . . 114

C.3 Sensitivity of CDS rates under FGM copula with respect to seller’s and RC’s
long term mean (b(s) and b(r) respectively) . . . . . . . . . . . . . . . . . . . . 114

C.4 Sensitivity of CDS rates under FGM copula with respect to seller’s and RC’s
decay rate (c(s) and c(r) respectively) . . . . . . . . . . . . . . . . . . . . . . . 114

C.5 Sensitivity of CDS rates under FGM copula with respect to frequency of yearly
jump events, ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

C.6 Sensitivity of CDS rates under Gaussian copula with respect to seller’s and RC’s
jump size jump size (α and β respectively) . . . . . . . . . . . . . . . . . . . 116

C.7 Sensitivity of CDS rates under Gaussian copula with respect to seller’s and RC’s
diffusion rates (σ (s) and σ (r) respectively) . . . . . . . . . . . . . . . . . . . . 116

C.8 Sensitivity of CDS rates under Gaussian copula with respect to seller’s and RC’s
long term mean (b(s) and b(r) respectively) . . . . . . . . . . . . . . . . . . . . 116

C.9 Sensitivity of CDS rates under Gaussian copula with respect to seller’s and RC’s
decay rate (c(s) and c(r) respectively) . . . . . . . . . . . . . . . . . . . . . . . 117



LIST OF FIGURES xix

C.10 Sensitivity of CDS rates under Gaussian copula with respect to frequency of
yearly jump events, (ρ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

D.1 Bond price and yield as a function of θ and tenor under the FGM copula depen-
dence structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

D.2 Bond price and yield as a function of θ and tenor under the Gaussian copula
dependence structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

D.3 Bond price and yield as a function of θ and tenor under the FGM copula depen-
dence structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

D.4 Bond price and yield as a function of θ and tenor under the Gaussian copula
dependence structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

D.5 1-year calibrated error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
D.6 1-year calibrated degrees of freedom . . . . . . . . . . . . . . . . . . . . . . . 130
D.7 1-year calibrated θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
D.8 1-year calibrated ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
D.9 1-year calibrated X (1)

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

D.10 1-year calibrated X (2)
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

D.11 1-year calibrated ca(1) (decay rate) . . . . . . . . . . . . . . . . . . . . . . . . 133
D.12 1-year calibrated ca(2) (decay rate) . . . . . . . . . . . . . . . . . . . . . . . . 133
D.13 1-year calibrated cb(1) (constant reversion level) . . . . . . . . . . . . . . . . . 134
D.14 1-year calibrated cb(2) (constant reversion level) . . . . . . . . . . . . . . . . . 134
D.15 1-year calibrated φ(1) (volatility of elliptical copula) . . . . . . . . . . . . . . . 135
D.16 1-year calibrated φ(2) (volatility of elliptical copula) . . . . . . . . . . . . . . . 135
D.17 1-year calibrated σ (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
D.18 1-year calibrated σ (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136



xx LIST OF FIGURES



List of Tables

2.1 Moment verification: the case of the FGM copula. Abs. Dev., absolute devia-
tion; Rel. Dev., relative deviation. . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Values of µZ(5) for various copula. . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Values of µ
(2)
Z (5) for various copula. . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Values of Var(5) for various copula. . . . . . . . . . . . . . . . . . . . . . . . 32
2.5 Values of µZ(5) under the Gaussian copula at θ =−0.9. . . . . . . . . . . . . 33
2.6 Loaded premium according to the SD principle under various copulas. . . . . . 33

3.1 Parameter values for the intensity process in the hypothetical example . . . . . 49
3.2 Individual survival and default probabilities. . . . . . . . . . . . . . . . . . . . 49
3.3 Joint survival and default probabilities. . . . . . . . . . . . . . . . . . . . . . . 50
3.4 Other relevant joint probabilities. . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5 Parameter values for the intensity process of the CDS counterparties . . . . . . 52
3.6 CDS rates computed under various copulas dependence structure. . . . . . . . 53
3.7 CDS rates under student-t copula with respect to various ρ . Note: * Diff =

sθ−0.95− sθ0.95 . Difference unit in bps. . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.8 CDS rates under Gaussian copula with respect to various ρ . . . . . . . . . . . . 57
3.9 CDS rates under FGM copula with respect to various ρ . . . . . . . . . . . . . 57

4.1 Parameter values of bond issuer’s default intensity and short rate . . . . . . . . 74
4.2 Zero coupon bond price under various copulas for t = 1 . . . . . . . . . . . . . 74
4.3 Zero coupon bond yield under various copulas for t = 1 . . . . . . . . . . . . . 75
4.4 Three zero coupon bonds issued by Microsoft Inc, National Australia Bank

(NAB) and Eskom Ltd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5 Calibrated parameters for zero coupon bond issued by Microsoft Inc. . . . . . 78
4.6 Calibrated parameters for a zero coupon bond issued by NAB . . . . . . . . . . 79
4.7 Calibrated parameters for zero coupon bond issued by Eskom Ltd. . . . . . . . 80
4.8 Summary statistics of calibrated parameters for calibration period 22 June 2010

to 30 June 2011. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

D.1 Prices of zero coupon bond under jump diffusion model with student-t copula
dependence structure for years to maturity 1–10 . . . . . . . . . . . . . . . . . 122

D.2 Prices of zero coupon bond under jump diffusion model with Gaussian copula
dependence structure for years to maturity 1–10 . . . . . . . . . . . . . . . . . 122

xxi



xxii LIST OF TABLES

D.3 Prices of zero coupon bond under jump diffusion model with FGM copula de-
pendence structure for years to maturity 1–10 . . . . . . . . . . . . . . . . . . 122

D.4 Yield (in %) of zero coupon bond under jump diffusion model with student-t
copula dependence structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

D.5 Yield (in %) of zero coupon bond under jump diffusion model with Gaussian
copula dependence structure for years to maturity 1–10 . . . . . . . . . . . . . 123

D.6 Yield (in %) of zero coupon bond under jump diffusion model with FGM copula
dependence structure for years to maturity 1–10 . . . . . . . . . . . . . . . . . 124

D.7 Prices of zero coupon bond under jump diffusion model with student-t copula
dependence structure for years to maturity 1–10 . . . . . . . . . . . . . . . . . 128

D.8 Prices of zero coupon bond under jump diffusion model with Gaussian copula
dependence structure for years to maturity 1–10 . . . . . . . . . . . . . . . . . 128

D.9 Prices of zero coupon bond under jump diffusion model with FGM copula de-
pendence structure for years to maturity 1–10 . . . . . . . . . . . . . . . . . . 129

D.10 Yield (in %) of zero coupon bond under jump diffusion model with student-t
copula dependence structure for years to maturity 1–10 . . . . . . . . . . . . . 129

D.11 Yield (in %) of zero coupon bond under jump diffusion model with Gaussian
copula dependence structure for years to maturity 1–10 . . . . . . . . . . . . . 129

D.12 Yield (in %) of zero coupon bond under jump diffusion model with FGM copula
dependence structure for years to maturity 1–10 . . . . . . . . . . . . . . . . . 129

D.13 Daily values of calibrated parameters: Initial intensities, decay rates, constant
reversion level and degrees of freedom . . . . . . . . . . . . . . . . . . . . . . 144

D.14 Daily values of calibrated parameters: Jump sizes, dependence parameter, av-
erage jump frequency, diffusion rates copula SD . . . . . . . . . . . . . . . . 145



1
Introduction

This thesis examines the dependency of variables using copula with applications in pricing
financial products, such as a zero coupon bond and credit default swap (CDS), as well as in-
surance premium calculation. With copula linking the variables, the contributions of this thesis
concentrate on two areas

• multivariate intensity modelling with jump diffusion process and its explicit form of bond
price, as well as CDS price

• the explicit form of recursive moments of an aggregate discounted claim, assuming the
claim arrival time, following Poisson distribution.

This introduction discusses the motivation and objectives of undertaking the studies in each of
the aforementioned research topics and provides an overview of the thesis.

1.1 Overview & Motivation
The increasingly frequent occurrence of catastrophic events implies that the assumption of inde-
pendence between event occurrence and claim severity is no longer sufficient in insurance risk
modeling. This is especially true given its impact on pricing and reserving, capital allocation,
solvency, as well as regulatory systems. Examples of this effect include the February 2009,
Victorian bushfire in Australia (10,200 insurance claims amounting to approximately AUD 1.2
billion), the February 2011, Christchurch earthquake (USD 13 bn insured economic losses), the
2011 Great Eastern Japanese earthquake (loss amounting to as much as USD 40 billion), as well
as the 2012 Hurricane Sandy (an expected loss of USD 25 billion) (see [2, 57]).

At the same time, corporate bonds’ default rates have declined since 2009 as the world econ-
omy has begun to recover from the global financial crisis in response to government initiatives.

1



2 INTRODUCTION

However, the continuing distress in the United States (US) and Eurozone economies may jeop-
ardize the low default rate environment. Hence, it is necessary to develop pricing models for
corporate bonds that capture the dependence structure between obligors’ default intensity and
macroeconomics variables.

With the increasing globalization of business, a shock which initially affects a couple of
institutions or a particular region of the economy may spread to the rest of the financial in-
dustry and then infect the wider economy. The financial events of late 2008 provide a perfect
illustration of this. The mismanagement of subprime mortgages in the US has had far reaching
consequences. In the US it has resulted in federal takeover of Fannie Mae and Freddie Mac,
the Bank of America takeover of Countrywide Financial Corporation and the bankruptcy of
New Century Financial Corporation (see [46], [55], [66] and [68] for instance). The contagion
spread with further bankruptcies and default of mortgages, and lenders in US making signifi-
cant losses. The subprime mortgage meltdown resulted in new ownership of Bears Stern and
Merrill Lynch and the bankruptcy of Lehman Brothers. These events have, in turn, caused the
worldwide collapse of stock prices and shaken global financial markets further, generating new
waves of default and bankruptcy.

1.1.1 Credit Default Swap

Credit Default Swap (CDS) is a bilateral agreement where the protection buyer transfers the
credit risk of a reference entity to the protection seller for a specific period, T. The buyer of this
protection pays a certain premium, called spread (denoted as s in this thesis), to the seller until
the maturity of the contract, or until default occurs, whichever is earlier. The spread is paid
against the default of the reference entity, reflecting the riskiness of the of the underlying credit.
Readers are referred to texts on derivatives e.g. [62] and [13], for a more thorough definition on
CDS.

Following the Basel II Accord (2004) (see [5]) that requires banks to set aside a certain
amount of capital to cover the risk inherent to their credit portfolios, it is therefore imperative
for financial institutions and insurance companies to use a good model in order to forecast com-
pany ratings accurately. Market surveys conducted by the International Swaps and Derivatives
Association (ISDA) show notional amounts of outstanding interest rate and currency swaps
reaching US$866 billion in 1987, US$17.7 trillion in 1995, and US$99.8 trillion in 2002; an as-
tonishing compounded growth rate of 37.2% per year ([16]). The significance of the market for
credit instruments was mentioned in [22] pointed out that the nominal, outstanding value of the
global over the counter (OTC) derivative at the end of 2008 of US$592,000 billion and the no-
tional amount of outstanding credit derivative swaps (CDS) was US$42,000 billion, compared
to the 2008 total world GDP which was about US$61,000 billion.

In the years following the introduction of the Li model (see [49]) that relies on the normal
copula and multivariate normal joint distribution that provided a new perspective on credit risk
modelling, the credit derivative market grew exponentially to the extent that the market value
reached almost tenfold of total world GDP. However, as we have seen in the year 2008, inad-
equate mathematical modelling caused the American Insurance Group (AIG) not being able to
quantify the risks in their CDS portfolio and reduce their CDS exposure much earlier, leading
to the collapse of the company before being bailed out by the US government. Hence, with the
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huge notional amount of derivatives being traded in the world, the need to develop pricing mod-
els that capture the dependence structure between obligors as well as incorporating the element
of jumps/shocks in the economy becomes inevitable.

1.1.2 Risks: Insurance Risk and Default Risk
The interplay between insurance and finance seen in the structure of financial products such
as the CDS implies that the correlation and dependence between the obligors as well as the
macroeconomic and market variables are imperative in pricing and reserving.

From the insurance perspective, [23] defines risk as ”a non-negative random variable (RV)
which represents the random amount of money paid by an insurance company to indemnify a
policyholder, a beneficiary and/or a third party in execution of an insurance contract”. Despite
the premium amount being traditionally governed by the law of large numbers, the need to
include dependency in the premium and surplus determination is increasingly important with
the complexity of insurance products, and the more frequent occurence of catastrophes. Pricing
insurance products using the traditional approach may cause an insurance firm to charge a lower
premium amount, and hence not to be fully prepared for potential risks caused by dependency
of the variables of interest.

In contrast, default risk describes the potential for a counterparty to fail to meet its obliga-
tions, as defined in a financial contract, hence causing losses to the other party. This includes,
for example, a bond issuer missing a coupon payment, a debtor failing to repay its loan, or
a counterparty of a swap failing to make interest payments. The term default is not confined
only to bankruptcy, but also encompasses reduced credit quality. While the former leads to a
permanent halt of the entire transaction – that is, the future cash flows will not be paid – the
latter leads to an increased probability of the counterparty going bankrupt, and hence is more
difficult to assess.

1.2 Literature Review

1.2.1 Copula
Copulas provides the flexibility to choose a variety of marginal distributions for the variables
being focused on, as opposed to the typical multivariate distributions that permits marginals of
the same type as the joint distribution. This enables examinination of the effect of individual
defaults on joint default behaviour using various types of distributions. Analogously, the cor-
relation structure can be varied by choosing different types of copula to quantify the effects of
default correlation on a portfolio. Many standard statistical texts offer illustrations of copula
scatter plots with various dependence structures, such as in [23], [54] and [58].

Introduced by Abe Sklar in 1959 in [65], the copula is a multivariate distribution function
with univariate marginal distribution functions restricted to the n-cube.

Definition 1.2.1. A copula is a function C of n variables on the unit n-cube [0,1]n with the
following properties:

• C (u) ∈ [0,1]
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• C (0, . . . ,uk, . . . ,un) =C (u1, . . . ,0, . . . ,un) = 0

• C (1, . . . ,1,uk,1, . . . ,1) = uk ∀ k

• n-increasing

Theorem 1.2.2. (Sklar’s theorem) Let H denote a n-dimensional distribution function with
univariate margins F1, . . . ,Fn. Then there exists a copula C such that for all real (x1, . . . ,xn)

H (x1, . . . ,xn) =C (F1 (x1) , . . . ,Fn (xn))

If F1, · · · ,Fn are continuous, then C is unique; otherwise, C is uniquely determined on RanF1×
·· · ×RanFn. Conversely, if C is a copula and F1, · · · ,Fn are distribution functions, then the
function H is a joint distribution function with margins F1, · · · ,Fn.

Sklar’s theorem implies that if all the margins are continuous, the copula is unique, and
determined uniquely on the ranges of the margins. Also, if F−1

1 , . . . ,F−1
n denotes the generalised

inverses of the marginal distribution functions, then for every (u1, . . . ,un) in the unit n-cube,

C (u1, . . . ,un) = F
(
F−1

1 (u1) , . . . ,F−1
n (un)

)
.

The application of copula to represent the dependence structure between variables have also
been widely explored in the field of insurance and equity index modelling. In an attempt to
represent the dependence structure between the interclaim time and the subsequent claim size,
[4] used a Farlie-Gumbel-Mogenstern (FGM) copula to link the exponential interclaim times
with generalized Pareto distributions for heavy tailed claim amounts. The FGM copula was
used again in CDS pricing to link the default intensity of reference credit, CDS seller and buyer
in [51]. Time-varying copulas were used to model international equity market co-movements in
[34]. The authors found that the Student-t copula with Student-t marginals is a good candidate
for modelling the returns arising in an international equity index portfolio where the extreme
losses are known to have a tendency to occur simultaneously. Another study under the reduced
form framework, postulated a Gaussian copula on the exponential triggers of the default times
in an attempt to model default correlation between the reference credit and the counterparty of
a CDS contract [10].

Assuming that there exists dependence structure between the variables being modelled
(which are assumed to occur simultaneously), this thesis captures the said structure by using
copula. In the first article featured in Chapter 2 of this thesis, the variables are claim severity
(or claim size) and inter-claim waiting time. The second and third articles model the default
intensity of the obligor’s of a CDS contract, as well as the short rate and a bond issuer’s default
intensity, respectively. The variables in the second and the third articles are assumed to follow
the jump diffusion process.

Four copulas were explored which are the FGM, Gumbel, Gaussian and the student-t copula.
Their multivariate probability distribution functions and respective scattered plots are given as
follows:

• FGM copula

cFGM (u1, . . . ,ud) = 1+
d

∑
i=1

θ
F
i j

d

∏
j=1

(
1−2u j

)
(1.1)
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FIGURE 1.1: FGM copula with exponential margins and dependence parameter -0.95, 0, 0.95

• Gumbel copula

cM
θ (FX(x),FW (s)) =

(− lnu)θ

−u lnu
(− lnv)θ

−v lnv

θ
√
(− lnu)θ +(− lnv)θ

[(− lnu)θ +(− lnv)θ ]2

×
θ
√
(− lnu)θ +(− lnv)θ +θ −1

e
θ
√

(− lnu)θ+(− lnv)θ
. (1.2)

FIGURE 1.2: Gumbel copula with exponential margins and dependence parameters one, three, 100

• Gaussian copula

cG
Θ (u1, . . . ,ud) = |Θ|−

1
2 exp

{
−1

2
ζ

T
(

Θ
−1−ℑ

d
)

ζ

}
(1.3)

FIGURE 1.3: Gaussian copula with exponential margins and dependence parameter -0.95, 0, 0.95
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• Student-t copula

ct
υ ,Θ (u1, . . . ,ud) = |Θ|−

1
2

Γ
(

υ+d
2

){
Γ
(

υ

2

)}d−1 [1+ 1
υ

ζ T Θ−1ζ
]−(υ+d

2 ){
Γ
(

υ+1
2

)}d
j=1

d
(

1+ 1
υ

ζ 2
j

) (1.4)

FIGURE 1.4: Student-T copula with exponential margins and dependence parameter -0.95, 0, 0.95

where d is the dimension of the variables, υ is the degrees of freedom and Θ is the covariance
matrix containing the dependence measure θ . We also define ζ=[ ζ1 · · · ζn ]T where ζi =

Φ−1 (ui) or ζi= t−1
υ (ui) are the inverse Gaussian or inverse student-t distribution with degrees

of freedom υ respectively taken on the variables ui.
The FGM copula, was used for its simplicity and analytical tractability, for which it was

also used in [37] and [51]. Its simplicity allows for the closed form expressions of final results
to be easily derived. It was also used to compare the current study’s numerical results against
their counterparts in [4] and [51]. The Gumbel copula was also chosen, as it could be adopted
by an insurance company, that assumes that risks with extreme magnitude have the tendency to
occur together (see [21]).

The Gaussian copula, was chosen to examine the effect of elliptical copula on simultaneous
jumps in the intensity process of CDS counterparties as well as on the dependence between
claim size and inter-claim time, since this has not been explored extensively to the best of
the researchers’ knowledge. The student-t copula was chosen to incorporate the possibility of
having more frequency of higher and/or smaller as well as opposing joint jumps size impact on
the obligors’ intensity.

Three copulas are compared in each working paper. Chapter 2 calculates the first, second
and mth moment of aggregate discounted claims under three copulas: the FGM, Gaussian and
Gumbel copula in order to explore the different effect each copula family can cause on the
moments. In chapter 3 and 4, another member of the elliptical copula family was employed,
which is the student-t copula, instead of the Gumbel copula. This was done in an attempt to
investigate how different the bond price and CDS rates are relative to the price and rates under
the Gaussian copula, which was widely used prior to the 2008 Global Financial Crisis.
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1.2.2 Volterra Integral Equation of the 2nd Kind
The most general form of linear integral equation (IE) is given by:

h(T )Ψ(T ) = g(T )+
∫ b(T )

a
K(T,s)Ψ(s)ds, (1.5)

where Ψ(T ) is the solution to the IE that needs to be obtained, g(T ) is a given function
and K(T,s) is the kernel for the IE. Equation (1.5) can be a homogeneous/non-homogenous,
Volterra/Fredholm IE of the 1st/the 2nd kind, for which readers are referred to the conditions
given in Section 2.1 of [44]. Linear IE can be solved either numerically using methods, such as
the Runge–Kutta and collocation methods (see, e.g., [52] and [14]), or solved explicitly, such as
by obtaining its Neumann series via the Picard method of successive approximations or using
the Laplace transform method.

If we have g(T ) 6= 0, h(T ) = 1, and b(T ) = T , (1.5) becomes:

Ψ(T ) = g(T )+
∫ T

a
K(T,s)Ψ(s)ds, (1.6)

which is a non-homogeneous Volterra integral equation (VIE) of the second kind. The Volterra
IE is widely used in the areas of viscoelasticity and electromagnetic to compute the dynamics
of materials that ”contain” memory, other than being useful in renewal theory and demography
(see, e.g., [6] and [43], as well as the references therein for a more rigorous treatment on VIEs).

A unique and continuous solution, Ψ(T ), is obtainable if there is a combination of a contin-
uous kernel, K(T,s), in the region a ≤ s ≤ T ≤ b(T ) with a function, g(T ), that is continuous
in the region a≤ T ≤ b(T ), even though it is not a requirement for the kernel function, K(T,s),
to be continuous (see page 1 of [26] and page 5 of [64]). For the case of a discontinuous kernel
function, we need to check if K(T,s) fulfills the three regularity conditions set on page 3 of
[43], and, hence is an L2-function.

In this thesis, as we assume that the claim size and the inter-claim time are continuous r.v.’s,
and by corollary 2.2.6 of [58] on copula continuity, g(T ) is therefore a continuous function for
s ∈ [0,T ] and x ∈ [0,∞], since it is the sum and product of continuous functions. The kernel
function is also continuous, as it is an exponential function given by:

K(T,s) = e−(β+mδ )(T−s). (1.7)

Additionally, it is a bounded function in the square Π = {(T,s) : a≤ T ≤ b(T ),a≤ s≤ T}.
Now, the recursive moment equation resulting from the technique used in [48] and [4] takes

the form of a VIE of the second kind, which is widely used in the fields of mathematical physics,
such as the electromagnetic and viscoelasticity fields, to represent the dynamics of materials that
contain memory (refer to [6], [15], [44], [59] and [64]). Chapter 2 uses the same technique and
then extends the recursive moments obtained in [4], so that it can be applied to any continuous
bivariate distribution to accommodate the dependency between the two variables. To do so, the
recursive expression of the moments were solved using the Neumann series obtained via the
Picard method of successive approximations, upon which a selection of bivariate distributions
could be applied, including bivariate copula.
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1.2.3 Reduced Form Model vs. Structural Model

When selecting the modelling approach to be used in chapters 3 and 4, two types of model were
considered, which are the structural and the reduced-form model. This study took a similar
approach to [37] and [51] by assuming that the default intensities are driven by Cox process to
price the default risk embedded in corporate bond, inspired by the similarity between the claims
arrival process and default time arrival.

Corporate debt valuation models can be divided into two main approaches which are the
structural approach and reduced form approach. The first class of models under the structural
approach views the firm’s liabilities as contingent claims issued against the firm’s assets, with
all the payoffs to the firms’s liabilities in bankruptcy completely specified (see the seminal work
in [53] and [8]). In other words, bankruptcy is viewed as the event when the firm’s value hits a
pre-specified boundary. The view undertaken in this class of models was then simplified in [50]
and [33], in which the cash flows to risky debt in the event of bankcruptcy were exogenously
specified as a given fraction of each promised dollar in the event of bankcruptcy. This is to avoid
the need to understand the complex priority structure of payoffs to firm’s liabilities in the event
of bankruptcy. In [60], the bond prices follow a structural default model with jumps computed
with Monte Carlo simulation based on Brownian bridge algorithm.

Even though structural models elegantly link an event of default to the value of a firm’s
financial assets, the hypothesis that both the recovery rate and default probability depend on the
value of the firm causes this approach to be relatively inflexible because the necessary company
information may not be available to some investors ([17]). Further, modelling the value of
the asset as a diffusion process in continuous time gives a typical hump-shaped credit spread
curve, with zero intercept, which is an unrealistic suggestion that implies a default event is
predictable by knowing the information available at any time t. This approach may also neglect
other factors that could trigger the default of the firm, which would result in a much smaller
credit spread generated than those actually perceived by the market players. Thus, this study
choose to work under the reduced form framework which is generally mathematically tractable,
thereby making it convenient to calibrate to market data. From the practical perspective, this
approach is also preferred by investors who do not have full access to a firm’s information since
the reduced form approach has flexibility in terms of the default information being embedded
in the observed securities price.

In contrast to the structural approach, under which default correlation is modelled via asset
correlation, the reduced form approach introduces the correlation aspect through a model in
which the default of one obligor triggers the default of another, albeit suffering from a lack of
clear economic rationale that could be used to describe the nature of a particular process ([3]).
Previous studies of the reduced form approach have taken several directions in the attempt to
incorporate default correlation and multiple defaults. For instance, [47] prepared a convenient
framework that allowed for dependencies between default intensities and state variables to an-
alyze financial instruments subject to credit risk through counterparty default and to analyze
derivatives with credit risk variable as the underlying. Under a generalized K-states Marko-
vian model, Cox process was used to model the (stopping) time when the rating changed until
the issuer went default in the last state. One of the earliest papers to use the term reduced
form approach, [25] treated default as an unpredictable event governed by external hazard rate
process. The researchers showed that a contingent claim that is subject to default risk can be
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priced just like the default-free claim simply by replacing the short rate rt with the default-
adjusted short rate process Rt = rt +ht lt under an equivalent martingale measure in an arbitrage
free framework. In [40], the then existing reduced-form model was extended and the concept
of counterparty risk was introduced to capture the economy-wide and inter-firm linkages by
including jumps in the default intensities that follows a Cox process.

The direction in which copula has been incorporated in the reduced form approach was
initiated by [49] whereby the Gaussian copula is used to derive the joint probabilities of the
obligors. Apart from incorporating the copula into the reduced form approach, many authors
such as [31, 36, 51, 63], also include jump elements. This approach was also used by [41] to
achieve a closed form solution of catastrophe bond price. In [1], the reduced form approach
was combined with the Hawkes process to model the asset returns and subsequently derived the
closed-form expressions for observable moments of log returns.

Another approach is the hybrid of the structural and reduced form approach, developed in
[39] whereby the bankcruptcy process is modelled as a continuous time Markov process with
discrete state space representing the firm’s credit ratings. This model originates from the Jarrow
and Turnbull (1995) model that takes the reduced form approach promoted in [38]. The hybrid
approach further simplifies the view taken in the structural models by specifying the credit event
exogenously and allowing the bankcruptcy assumptions to be imposed only on observables (i.e.
the firm’s credit ratings) as opposed to firm’s asset values.

The work in chapter 3 extends the martingale approach in [36] to a multivariate dimension to
capture the dependence structure between the obligors’ default intensity, each taking a form of a
model under the reduced form approach, and then uses it to price the CDS rate. Then in chapter
4 the same approach was applied to a bivariate dimension in capturing the dependence structure
between the short rate and the counterparties’ default intensity, as opposed to the independent
structure between the bond issuer and interest rate in [37].

1.2.4 Jump Diffusion Model

This study concentrates on a very specific vector of intensity process: the multivariate jump
diffusion process. In this process, the intensities are triggered by primary events that result
in simultaneous positive jumps in intensity processes. These include events such as oil and
commodity prices, governments fiscal and monetary policies, the release of corporate financial
reports, political and social decisions, rumours of mergers and acquisitions among firms, the
collapse and bankruptcy of firms, the September 11 World Trade Centre catastrophe, Hurricane
Katrina and so forth. As time passes, default intensity processes decrease as all firms in the
market do their best to avoid bankruptcy after the arrival of a primary event. This decrease con-
tinues until another event occurs that again results in simultaneous positive jumps in intensity
processes.

By using the jump diffusion process to represent interest rate, asset returns as well as de-
fault intensity (such as the work by [19], [24], [45], [51] and [56]), the effects of shocks on
the variable being modelled could be captured. The surprise elements that caused the effects of
shocks could come from both the demand and supply sides of the economy as well as catastro-
phe events. Readers are referred to [67] and [45] for an elaboration on the various motivation
of using a jump diffusion process.
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Let N1(t), t ≥ 0 be a homogenous Poisson process with a unit intensity. We also let B(t), t ≥
0 be a process independent of N1(t) where B(0) = 0, P(B(t)< ∞) = 1 for any t > 0 with non-
decreasing and right continuous path. A Cox process N(t) is defined as the superposition of
N1(t) and B(t), i.e. N(t) = N1(B(t)). Readers are referred to e.g. [7] for a more thorough
discussion on Cox process.

Numerous papers have examined modelling for the dependence of default intensities via
a Cox process or point process for the purpose of derivative pricing (such as [20], [63], [42],
[71], [32] and [61]). The use of jump diffusion model in pricing the CDS instrument, without
using copula, was also explored in [12]. The analytical expression for CDS price offered in the
literature was obtained using the Jamshidian option decomposition trick as in [35].

In this thesis, we work under the probability space (Ω,J ,P) consisting of the sample space
Ω, the σ -algebra J and the probability measure P. The variables being modelled in chapter
3 and 4 (i.e. the short rate and default intensity of the financial obligors) is assumed follow the
jump diffusion model defined as below:

dX (i)
t = c(i)

(
b(i)+a(i)X (i)

t

)
dt +σ

(i)
√

X (i)
t dW (i)

t +dC(i)
t (1.8)

Under this setting,

• c(i)b(i) represents the long term mean level of the variable being modelled

• c(i)a(i) represents the drift coefficient, which is the speed at which the variable is driven
back to its long term mean with a(i) < 1.

• σ (i) is the diffusion coefficient; and

• W (i)
t is a standard Brownian motion governing variable X (i)

This study also defines

C(i)
t =

Mt

∑
j=1

Y (i)
j

as a pure jump process with Mt being the number of jumps up to time t and Y (i)
j , j = 1,2, · · · ,Mt

being their sizes. It is assumed that Y j’s occur simultaneously and that they are independent
and identically distributed (i.i.d) with distribution function F(y(i)). In order to ensure positivity,
the condition 2c(i)b(i) > σ (i) has to be fulfilled, just like the seminal Cox Ingersoll Ross (1985)
model [18].

Following the definition of the Cox process, we define the default arrival time as

τ
(i) = inf

{
t : N(i)

t = 1
∣∣∣N(i)

0 = 0
}

for i = 1, · · · ,n,r. This is equivalent to the first jump time of the Cox process N(i)
t (i =

1,2, · · · ,n,r) where i = 1,2, · · · ,n indicates the obligor involved in the financial contract and
r indicates the short rate.
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Alternatively, the default event can also be seen as the first time t when the integrated hazard

rate
t∫

0
X (i)

u du breaches a certain threshold level U (i) that remains unknown to the economy prior

to default. Stated simply, a high value of
t∫

0
X (i)

u du implies that default will happen soon (only a

further small value of t is needed to breach the threshold level U (i)).
Some literature has taken a different approach by manipulating the components of the jump

diffusion model. Taking the jump component as zero, one ends up with the Cox-Ingersoll-Ross
model [18]. This model has been used with slight modification in option pricing such as in [9–
11]. In other instances, some literature modelled the concerned variables using the shot noise
process by letting σ (i) = 0 (e.g. [20], [27–30]).

In Chapter 3, the jump diffusion model is used to represent the default intensity of CDS
counterparties while in Chapter 4 it is used to represent the default intensity of a bond issuer
and the short rate. In both chapters, the diffusion term is allowed to be non-zero in an attempt
to add the element of firm specific default risk. This section ends with figure 1.5 illustrating the
simulated jump diffusion process with dependence structure captured by a student-t copula. Il-
lustrations of the jump diffusion processes with other copula dependence structure are available
in Chapters 3 and 4.

FIGURE 1.5: Simulated paths of jump diffusion process with dependence structure capture by student-
t copula
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1.2.5 Numerical Computation

This study computed the values of moments, CDS rates, bond prices and yields only up to
θ = ±0.95 for the case of FGM, Gaussian and student-t copulae. For values of θ nearing the
tail side of the elliptical copulae - that is |θ | > 0.95 - the values of moments, CDS rates, and
bond prices and yields showed a non-stable behaviour. Hence, due to time constraint, this study
was unable to cover the numerical computation side of the study extensively until the point
±0.999 as was initially intended.

Mathematica in-built default integration strategy was used in the computation of numeri-
cal integration, which is the global adaptive strategy, given by the command ’GlobalAdaptive’.
With this strategy, the integral subregion with the largest error estimate was divided recur-
sively into two equal parts, and the integral and error estimates were conducted for each half.
The global error was expected to decrease monotonically as the number of integration steps
increased. The strategy was combined with the additional integration procedure, ’MaxError-
Increases’, which allowed the error estimates to be reduced monotonically by increasing the
number of integration steps. Instead of the default value of MaxErrorIncrease of 2,000 steps for
multidimensional integrals, the value of 16,000 steps was used in an attempt to balance accuracy
with the time available.

For the bond price calibration, the Mathematica in-built function, ’NMinimize’ was used,
which is useful in determining the numerical value of the global minimum of a non-linear
programming problem. This is typically done by allowing both decrease and increase of the
objective function. Depending on the nature of the objective function and constraints, the func-
tion operates using the linear programming, the Nelder-Mead, the differential evolution or the
simulated annealing algorithms. Readers are referred to [69] and [70] for more information.
Without specifying any algorithms, this study used ’NMinimize’ to minimize the squared dif-
ference between the model price and the market price, subject to the model constraints implied
in section 2 of Chapter 4 as well as non-negativity of the volatilities of the elliptical copula.

1.3 Structure of the Thesis

This thesis consists of three research papers that showcase the application of copulas in captur-
ing the dependence structure in the fields of insurance and applied finance.

Chapter 2 showcases the working paper titled ”Neumann Series on the Recursive Moments
of Copula-Dependent Aggregate Discounted Claims”, which has been published in the special
edition of the journal Risks: Application of Stochastic Processes in Insurance. Prior to the
publication, this working paper has been presented at the following conferences:

• 2013 PhD AFAS-Econ Workshop, Macquarie University, 24 September 2013

• Higher Degree Research EXPO 2013, Macquarie University, 5 to 7 November 2013

• Quantitative Methods in Finance Conference, 17 to 20 December 2013 (hosted by Uni-
versity of Technology, Sydney)
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Chapter 3 presents the working paper titled A multivariate jump diffusion process for coun-
terparty risk in CDS rates, which has been submitted to the European Actuarial Journal and is
currently under review. The working paper was presented at the following conferences:

• Higher Degree Research EXPO 2012, Macquarie University, 12 to 13 November 2012

• 48th Actuarial Research Conference 2013, Temple University, USA, 31 July to 3 August
2013

Chapter 4 presents the working paper titled Jump Diffusion Model with Copula Dependence
Structure in Corporate Bond Pricing, which has been submitted to the Annals of Actuarial
Science and is currently under review. The working paper has been presented at the following
conferences:

• Higher Degree Research EXPO 2011, Macquarie University, 10 to 11 November 2011

• Australasian Actuarial Education and Research Symposium, 2011, ANU, 1 to 2 Decem-
ber 2011

• Bachelier Finance Society 7th World Congress (BFS) 2012, 19 to 22 June 2012

• International Conference on Computing, Mathematics Statistics 2013, Malaysia, 28 to
29 August 2013

Additionally, the working paper was accepted for presentation at the AFIR Colloqium 2012,
Mexico City, 1 to 4 October 2012.

Finally, chapter 5 summarizes the thesis with the conclusion from each article as well as the
potential direction of future research.
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2
Neumann Series on the Recursive Moments

of Copula-Dependent Aggregate
Discounted Claims

Siti Norafidah Mohd Ramli (Contribution 60%) and Jiwook Jang (Contribution 40%)

This article has been published in the special issue of Risks: Application of Stochastic
Processes in Insurance. It can be accessed at www.mdpi.com/2227-9091/2/2/195. The
article is presented in its entirety here and hence contains repetitions of certain segments of
the Introduction presented in Chapter 1.

Abstract We study the recursive moments of aggregate discounted claims, where the
dependence between the inter-claim time and the subsequent claim size is considered. Using
the general expression for the m−th order moment proposed in [12], which takes the form
of the Volterra integral equation (VIE), we used the method of successive approximation to
derive the Neumann series of the recursive moments. We then compute the first two moments
of aggregate discounted claims, i.e., its mean and variance, based on the Neumann series
expression, where the dependence structure is captured by a Farlie–Gumbel–Morgenstern
(FGM) copula, a Gaussian copula and a Gumbel copula with exponential marginal distribu-
tions. Insurance premium calculations with their figures are also illustrated.

Keywords: aggregate discounted claims; moments; copulas; Volterra integral equation;
Neumann series; insurance premium
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2.1 Introduction

As the occurrence of catastrophe events becomes more frequent, the assumption of indepen-
dence between event occurrence and claim severity is no longer sufficient in insurance risk
modeling, given its impact on pricing and reserving, capital allocation, solvency, as well as
regulatory systems. The February 2009, Victorian bushfire in Australia (10,200 insurance
claims amounting to approximately AUD 1.2 billion), the February 2011, Christchurch
earthquake (USD 13 billion insured economic losses), the 2011 Great Eastern Japanese
earthquake (loss amounting to as much as USD 40 billion), as well as the 2012 Hurricane
Sandy (an expected loss of USD 25 billion) are the examples of this effect (see [1, 2]).

In dealing with the dependency between the inter-claim arrivals and claim sizes, various
approaches have been proposed in previous studies that can be noticed in [3–11], as well
as the references therein. Regardless of the model used, we notice that previous research
focused on either examining the expression of the moments of the aggregate discounted
claims, Z(t), as can be seen in [6, 11–14], or by finding the related ruin measures and the
ruin probability expressions, just like in [3–5, 10, 15].

Assuming the Poisson claim arrival process with claim sizes following mixed exponential
distributions, [7] obtained the explicit expressions of the actuarial net premiums and the
variances of the discounted aggregate claims from the Laplace transform of the distribution
of the shot noise process, which was derived using the martingale approach. The first two
moments of the aggregate discounted claims were obtained in [9] assuming the dependency
between the claim sizes and the rates of claim occurrence affected by a Markovian envi-
ronment, called the circumstance process. A delayed renewal process was also explored
in [12–15], as well as [11] to accommodate the epochs between claim arrival and the
observation of the risk process.

The asymptotical behaviour of a conditional tail probability dependence structure of claim
sizes given the inter-claim arrival time was studied in [5, 8]. Assuming that the conditional
tail of claim size given the inter-claim time satisfies a certain condition for a bounded
inter-claim time and a really huge claim size, [5] obtained the asymptotic tail probabilities of
the discounted aggregate claims. Three copulas were indicated as fulfilling this assumption,
which are the Farlie–Gumbel–Morgenstern (FGM) and the Frank and Ali–Mikhail–Haq
(AMH) copulas, and the Weibull claim size was paired with exponential inter-claim arrival
time in their numerical example. On the other hand, [8] explored the analytical properties
related to the same dependence structure described by the survival copulas, such as their
local and global uniformity.

Conditioning on the first arrival and using a renewal theory argument, [12] derived a useful
expression for the m−th recursive moment, whereby the inter-claim arrival time and the
claim severity are assumed to be independent. The same conditioning argument was then
applied in [6, 10], assuming the FGM copula and then solved using the Laplace transform
approach. More recently, [11] also adopted the same technique to derive the recursive
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moments of a Sparre Andersen risk process assuming a fairly general dependence structure
between the inter-claim time and subsequent claim size variables, providing a simplified
moments expression for assuming Erlang weights. Four types of copula were showcased in
their examples of joint distribution between the said variables, which are the polynomial
copula, the Bernstein copula, the generalized FGM copula, the extended FGM copula
(references for these copulas are available in Section 3 of [11]).

The recursive moment equation resulting from the technique used in [6, 12] takes the form
of a Volterra integral equation of the second kind, which is widely used in the fields of
mathematical physics, such as the electromagnetic and viscoelasticity fields, to represent the
dynamics of materials that contain memory (refer to [16–20]). We are interested in using
the same technique and then extend the recursive moments obtained in [6], so that it can be
applied to any continuous bivariate distribution to accommodate the dependency between
the two variables. To do so, we solve the recursive expression of the moments using the
Neumann series obtained via the Picard method of successive approximations, upon which
a selection of bivariate distributions can be applied, including bivariate copula.

This article is structured as follows. Section 2.2 will introduce the general frame-
work of the continuous time renewal risk model together with its recursive moments
with exponentially distributed inter-claim time and general claim size distribution. The
dependency between the claim size and inter-claim time are then specified using a
bivariate copula. For that purpose, we consider three copulas, which are the FGM cop-
ula, the Gaussian copula, which is a type of elliptical copula, and the Gumbel copula,
an Archimedean type of copula, which is a natural candidate to represent an extreme value
copula that caters for the one-sided dependence structure (see [21]).

In Section 2.3, we introduce the Volterra integral equation, which will be solved using
the successive approximations method, leading to the Neumann series expression of the
recursive moments, which is the main result of this paper. The Neumann series expression
of the recursive moments allows the flexibility to capture various dependence structures
provided by copula probability density functions (pdf).

Section 2.4 starts with the comparison between the value of moments obtained by our Neu-
mann series expression assuming the FGM copula and the closed form solution by [6]. We
then present the numerical analysis, showing the value of moments across the dependence
parameter for each copula considered, assuming an exponentially distributed claim size. The
illustration and comparison of moments, as well as premium values under the standard devi-
ation principle are also included in this section. Section 2.5 concludes the article.

2.2 Model Setup

We consider a continuous time renewal risk model as in [6], whereby Z = {Z(t)}t≥0 with:
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Z(t) =

{
∑

N(t)
i=1 e−δTiXi if N(t)> 0

0 if N(t) = 0 .

In this model, N = {N(t)}t≥0 is a homogeneous Poisson process and Xi is a non-negative ran-
dom variable (r.v.) representing the claim amount occurring at time Ti for i = 1,2, . . . ,N(t).
The instantaneous rate of net interest, δ , is assumed to be deterministic.

We also define the inter-claim time variable r.v. Wj as:

Wj =

{
Tj for j = 1,
Tj−Tj−1 for j = 2,3, . . . .

The variables, X j and Wj, are assumed to be continuous. In this study, we relax the inde-
pendent assumption between the inter-claim time, Wj, and the claim size, X j, and we let
{(X j,Wj)} j∈N to form a sequence of independent and identically distributed (i.i.d) random
vectors, whose components are dependent.

2.2.1 Recursive Moments of Aggregate Discounted Claims
Conditioning on the arrival of the first claim as in [6], [12] and [10], and knowing that
E(Xm|W = s) =

∫
∞

0 xm fX |W=s(x)dx for m ≥ 1, we have the general form of the m−th mo-
ments of aggregate discounted claim as the following:

µ
(m)
Z (T ) = E[Zm (T )] =

∫ T

0
fW (s)e−mδ sE(Xm|W = s)ds+

∫ T

0
fW (s)e−mδ s

µ
(m)
Z (T − s)ds

+
m−1

∑
j=1

(
m
j

)∫ T

0
fW (s)e−mδ sE(X j|W = s)µ(m− j)

Z (T − s)ds

=
∫ T

0

∫
∞

0
e−mδ sxm fX ,W (x,s)dxds+

∫ T

0
e−mδ s fW (s)µ(m)

Z (T − s)ds

+ ∑
1≤ j<m

(
m
j

)∫ T

0

∫
∞

0
e−mδ sx j fX ,W (x,s)µ

(m− j)
Z (T − s)dxds, (2.1)

where fX ,W (x,s) is the bivariate probability density function (pdf) of the pair, X j and Wj.

In this study, the joint pdf is described via a copula, Cθ (u,v), whose pdf is given by cθ (u,v) =
∂ 2

∂u∂vCθ (u,v) with dependence parameter θ (see, e.g., [22] and [23] for a general review on
copulas). The bivariate pdf of (X ,W ) at (x,s) can be represented as:

fX ,W (x,s) = cθ (FX(x),FW (s)) fX(x) fW (s),

where f (·) and F(·) are the marginal pdf and cdf for r.v.’s X and W .
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Since the jump occurrences are assumed to follow a Poisson distribution, we therefore
have an exponentially distributed inter-claim arrival time, i.e., W ∼ Exp(β ). Upon replacing
fW (s) = βe−β s, we obtain:

µZ(T ) =
∫ T

0

∫
∞

0
βxe−(β+δ )s fX(x)cθ (FX(x),FW (s))dxds+β

∫ T

0
e−(β+δ )s

µZ(T − s)ds

=C(T )+β

∫ T

0
e−(β+δ )s

µZ(T − s)ds

=C(T )+β

∫ T

0
e−(β+δ )(T−s)

µZ(s)ds (2.2)

and

µ
(m)
Z (T ) = β [

∫ T

0

∫
∞

0
xme−(β+mδ )s fX(x)cθ (FX(x),FW (s))dxds

+ ∑
1≤ j<m

(
m
j

)∫ T

0
x−(m− j)e−[β+mδ ]scθ (FX(x),FW (s)) fX(x)µ

(m− j)
Z (T − s)dxds]

+β

∫ T

0
e−(β+mδ )s

µ
(m)
Z (T − s)ds

=C(m)(T )+β

∫ T

0
e−(β+mδ )s

µ
(m)
Z (T − s)ds

=C(m)(T )+β

∫ T

0
e−(β+mδ )(T−s)

µ
(m)
Z (s)ds (2.3)

where

C(m)(T ) = β [
∫ T

0

∫
∞

0
xme−(β+mδ )s fX(x)cθ (FX(x),FW (s))dxds

+ ∑
1≤ j<m

(
m
j

)∫ T

0
x−(m− j)e−[β+mδ ]scθ (FX(x),FW (s)) fX(x)µ

(m− j)
Z (T − s)dxds]

(2.4)

for m = 2,3, · · · .

2.2.2 Copula Used
We are interested to calculate the first, second and m−th moment of aggregate discounted
claims under three copulas: the FGM copula, the Gaussian copula and the Gumbel copula.
Their respective pdfs are given by:

cF
θ (FX(x),FW (s)) = 1+θ(1−2FX(x))(1−2FW (s)), (2.5)

cG
θ (FX(x),FW (s)) =

1√
(1−θ 2)

e
− θ(2Φ−1(FX (x))Φ−1(FW (s))−θ(Φ−1(FX (x))2+Φ−1(FW (s))2))

2(θ2−1) , (2.6)
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cM
θ (FX(x),FW (s)) =

(− lnu)θ

−u lnu
(− lnv)θ

−v lnv

θ
√

(− lnu)θ +(− lnv)θ

[(− lnu)θ +(− lnv)θ ]2

×
θ
√
(− lnu)θ +(− lnv)θ +θ −1

e
θ
√

(− lnu)θ+(− lnv)θ
. (2.7)

The FGM copula is used in this study due to its simplicity and analytical tractability. It is
also used to verify our numerical results in Section 4.1 with [6]. The well-known elliptical
family member, the Gaussian copula, is chosen as, to the best of our knowledge, the effect of
elliptical copula in terms of the dependence between claim size and inter-claim time have not
been explored extensively. The Gumbel copula is also chosen, since it could be adopted by
an insurance company, that assumes that risks with extreme magnitude, having the tendency
to occur together, as pointed out by De Matteis in [21]. Many standard statistical texts offer
illustrations of copula scatter plots with various dependence structure, for which we refer to
[22], [24] and [23].

2.3 Linear Integral Equations
The most general form of linear integral equation (IE) is given by:

h(T )Ψ(T ) = g(T )+
∫ b(T )

a
K(T,s)Ψ(s)ds, (2.8)

where Ψ(T ) is the solution to the IE that we need to obtain, g(T ) and b(T ) are given functions
and K(T,s) is the kernel for the IE. Equation (2.8) can be a homogeneous/non-homogenous,
Volterra/Fredholm IE of the 1st/the 2nd kind, for which readers are referred to the conditions
given in Section 2.1 of [18]. Linear IE can be solved either numerically using methods, such
as the Runge–Kutta and collocation methods (see, e.g., [26] and [25]), or solved explicitly,
such as by obtaining its Neumann series via the Picard method of successive approximations
or using the Laplace transform method.

2.3.1 Volterra IE of the 2nd Kind
If we have g(T ) 6= 0, h(T ) = 1, and b(T ) = T , (2.8) becomes:

Ψ(T ) = g(T )+
∫ T

a
K(T,s)Ψ(s)ds, (2.9)

which is a non-homogeneous Volterra integral equation of the second kind. The Volterra IE
is widely used in the areas of viscoelasticity and electromagnetic to compute the dynamics of
materials that ”contain” memory, other than being useful in renewal theory and demography
(see, e.g., [16] and [27], as well as the references therein for a more rigorous treatment on
Volterra integral equations).
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We easily notice that the moments provided by Equations (2.2) and (2.3) take the form of
(2.9) and attempt to derive the explicit solution of the recursive expressions using Neumann
series in the next subsection.

A unique and continuous solution, Ψ(T ), is obtainable if we have a combination of a
continuous kernel, K(T,s), in the region a ≤ s ≤ T ≤ b(T ) with a function, g(T ), that is
continuous in the region a ≤ T ≤ b(T ), even though it is not a requirement for the kernel
function, K(T,s), to be continuous (see page 1 of [28] and page 5 of [20]). For the case
of a discontinuous kernel function, we need to check if K(T,s) fulfills the three regularity
conditions set on page 3 of [27], and, hence is an L2-function.

In the case of the first and second moments, µZ(T ) and µ
(2)
Z (T ), the function, g(T ), is repre-

sented by the following equations, respectively:

∫ T

0

∫
∞

0
e−(β+δ )sx fX(x)cθ (FX(x),FW (s))dxds, (2.10)

∫ T

0

∫
∞

0
e−(β+2δ )sx2 fX(x)cθ (FX(x),FW (s))dxds

+2
∫ T

0

∫
∞

0
e−(β+2δ )sx fX(x)cθ (FX(x),FW (s))µZ(T − s)dxds, (2.11)

where FW (s) = 1− e−β s is the inter-claim time cdf.
As X and W are continuous r.v.’s, and by corollary 2.2.6 of [23] on copula continuity, g(T )
is the continuous function for s ∈ [0,T ] and x ∈ [0,∞], since it is the sum and product of
continuous functions. The kernel function is also continuous, as it is an exponential function
given by:

K(T,s) = e−(β+mδ )(T−s). (2.12)

Additionally, it is a bounded function in the square Π = {(T,s) : a≤ T ≤ b(T ),a≤ s≤ T}.

2.3.2 Neumann Series

In this section, we will find the Neumann series of the Volterra IE assuming the exponentially
distributed inter-claim arrival time and a general claim size with continuous pdf. To do so, we
start with a proposition from Chapter 3 of [27], which used the Picard method of successive
approximation.

Proposition 2.3.1. Neumann Series for a Volterra IE of the 2nd Kind

For the Volterra IE of the 2nd kind, as in (2.9), where g(T ) and K(T,s) are L2-functions, its
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Neumann series is given by:

Ψ(T ) = g(T )+
∞

∑
n=1

λ
n
∫ T

a
K(T,s)Ψ(s)ds

= g(T )+λ

∫ T

a

∞

∑
n=1

λ
n−1Kn(T,s)g(s)ds

= g(T )+λ

∫ T

a
Γ(T,s;λ )g(s)ds, (2.13)

where Γ(T,s;λ ) = ∑
∞
n=1 λ n−1Kn(T,s) is the unique resolvent kernel and Kn(T,s) is the n-th-

iterated kernel function satisfying the recurrence formula:

Kn(T,s) =
∫ T

s
K(T,u)Kn−1(u,s)du (2.14)

with K1(T,s) = K(T,s).

In order to prove our theorem, it is necessary to find the resolvent kernel, which is obtained
in the following lemma.

Lemma 2.3.2. Consider the kernel function given by (2.12). For m = 1,2, . . ., its resolvent
kernel is therefore given by:

Γ(T,s;λ ) = e−mδ (T−s). (2.15)

Proof: Using (2.14), we obtain K2(T,s),K3(T,s), · · · ,Kn+1(T,s) starting from K(T,s) =
K1(T,s) = e−(β+mδ )(T−s). Letting (T − s) = −(s−T ) and since (s−T )n = [−(s−T )]n for
even n, the resolvent kernel is then obtained by summing up Km(T,s) as follows:

Γ(T,s;λ ) = e−(mδ+β )(T−s)
∞

∑
n=1

[−(s−T )β ]n

n!

= e−(mδ+β )(T−s)e−β (T−s)

= e−mδ (T−s).

Now, we can obtain the expression for the first and second moment, which is the main result
of this article.

Theorem 2.3.3. The explicit solution of the first two moments are given by:

µZ(T ) =
∫ T

0

∫
∞

0
e−δ sxLθ (x,s)dxds+β

∫ T

0

∫ s

0

∫
∞

0
e−δ (T−s+u)xLθ (x,s)dxduds, (2.16)
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µ
(2)
Z (T ) =

∫ T

0

∫
∞

0
e−2δ sx2Lθ (FX(x),FW (s))dxds

+2
∫ T

0

∫
∞

0

∫ T−s

0

∫
∞

0
e−2δ s−δτxhLθ (FX(x),FW (s))Lθ (FX(h),FW (τ))dhdτdxds

+2β

∫ T

0

∫
∞

0

∫ T−s

0

∫
∞

0
e−δ (T+s−τ+u)xhLθ (FX(x),FW (s))Lθ (FX(h),FW (u))dhdudτdxds

+β

∫ T

0

∫ s

0

∫
∞

0
e−2δ (T−s−τ)x2Lθ (FX(x),FW (s))dxds

+2β

∫ T

0

∫ s−τ

0

∫
∞

0

∫ s

0

∫
∞

0
e−2δ (T−s−τ)xhLθ (FX(x),FW (τ))Lθ (FX(h),FW (y))dhdydxdτdxds

+2β
2
∫ T

0

∫ s

0

∫
∞

0

∫ s−τ

0

∫ y

0

∫
∞

0
e−δ (2T+u−y−s+τ)xhLθ (FX(x),FW (τ))

×Lθ (FX(h),FW (u))dhdudydxdτdxds, (2.17)

where Lθ (FX(x),FW (u)) = e−βu fX(x)cθ (FX(x),FW (u)) with FW (u) = 1− e−βu.

Proof: Applying Proposition 2.3.1 and Lemma 2.3.2 to (2.3) with m = 1,2, the results
follow.

Section 2.4.1 will numerically illustrate the computation of the first and second moment
under three copulas, assuming that the claim sizes are exponentially distributed, i.e., X ∼
Exp(α). We do not proceed to obtain the closed form solution of the Neumann series ex-
pression for the higher moments, as it is tedious and time consuming. However, they are
obtainable using the results provided in this section.

2.4 Numerical Illustration
We now present numerical illustration of the Neumann series expression for the first two
moments. We start our discussion by presenting the scatter plots of each copula in Fig-
ures 2.1, 2.2 and 2.3, where the marginals are exponential distribution, which is in line
with the assumptions used in the numerical computations of the moments in this section.
All computations were done using Mathematica.

FIGURE 2.1: Farlie–Gumbel–Morgenstern (FGM) copula with exponential margins and dependence
parameters -1, zero, one.



30
NEUMANN SERIES ON THE RECURSIVE MOMENTS OF COPULA-DEPENDENT AGGREGATE

DISCOUNTED CLAIMS

FIGURE 2.2: Gaussian copula with exponential margins and dependence parameters -1, zero, one.

FIGURE 2.3: Gumbel copula with exponential margins and dependence parameters one, three, 100

2.4.1 Numerical accuracy of Neumann series expression for moments

Recall that (2.16) has at most triple integration involved, while (2.17) has up to sextuple
numerical integration. This implies that the computation of (2.17) is expected to be close
to the solution by [6], due to numerical approximation error, and the values would vary
according to selected software packages. To evaluate the performance of the main results, we
compare the numerical values returned by our Neumann series (under the column Neumann
of Table 2.1), using the FGM copula, with the numerical values given by the closed form
solution in [6] (under the column BCLM of Table 2.1).

The values in Table 2.1 were computed using an example of δ = 0.04, α = 10, β = 1, T = 5
and θ = −0.9,0,0.9. The absolute deviation (Abs. Dev.) figures are obtained by taking
the difference between the two columns, BCLM and Neumann (i.e., the absolute value of
the solution presented in [6] minus the Neumann series expression), whereas the relative
deviation (Rel. Dev.) figures are calculated as Abs.Dev.

BCLM .

Our calculations showed that the Neumann series expression for the first moment gives the
same value as the closed form solution presented in [6]. On the other hand, the second mo-
ment gives a slightly different value at θ = −0.9 and 0.9, when the r.v.’s, X and W , are
highly dependent. After a close scrutiny of the programming messages, we noticed that this
is caused by numerical approximation errors of the quadruple, quintuple and sextuple inte-
grations that are not present in the calculation of the first moment. To improve the accuracy of
the Neumann series expression for higher order moments, the reader can use other software
packages or use Monte Carlo simulation.
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TABLE 2.1: Moment verification: the case of the FGM copula. Abs. Dev., absolute deviation; Rel.
Dev., relative deviation.

Moment θ BCLM Neumann Abs. Dev. Rel. Dev.
µZ(5) -0.9 0.475231 0.475231 0 0

0 0.453173 0.453173 0 0
0.9 0.431115 0.431115 0 0

µ
(2)
Z (5) -0.9 0.332023 0.329774 0.002249 0.006774

0 0.287786 0.287786 0 0
0.9 0.245457 0.247706 0.002249 0.009163

2.4.2 Moments of the Aggregate Discounted Claims

Setting δ = 0.04, α = 0.01 and β = 1 for the case of exponential claim inter-arrival time
and exponential claim sizes, respectively, we show the values of moments of the aggregate
discounted claims for each copula used in this study. We present the values of the first and
second moments of the compound distribution, i.e. µZ(5) and µ

(2)
Z (5), as well as the variance

under each copula in Table 2.2- 2.4. The term ‘spread’, which is defined as the difference
between the values returned by θ at both ends, i.e., θ−0.95− θ0.95 for FGM and Gaussian,
and θ1−θ100 for Gumbel, are also shown in Tables 2.2–2.3.

TABLE 2.2: Values of µZ(5) for various copula.

θ FGM θ Gaussian θ Gumbel
-0.95 455.543 -0.95 513.470 1 453.173
-0.9 455.419 -0.9 511.887 5 360.864
-0.5 454.421 -0.5 488.903 15 267.995

0 453.173 0 453.173 30 148.317
0.5 451.926 0.5 409.481 50 104.457
0.9 450.928 0.9 368.612 75 21.486

0.95 450.803 0.95 363.124 100 10.712
Spread 4.74 150.346 431.687

Our calculations showed that all copula exhibit decreasing values as θ increases, in line with
[11]. Intuitively, a negative dependence structure represented by the pair of short inter-claim
waiting time (or frequent claim occurrence within a given time period) with huge claim
size will only prompt the insurer to charge a higher premium as opposed to the positive
dependence structure.

As we have expected, the values of moments do not vary much across θ when calculated
under the FGM copula, as opposed to the Gaussian and Gumbel copulas. Being an extreme
copula, values of the first moment calculated under the Gumbel copula also showed the
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TABLE 2.3: Values of µ
(2)
Z (5) for various copula.

θ FGM θ Gaussian θ Gumbel
-0.95 336,551.170 -0.95 409,852.140 1 287,784.972
-0.9 332,022.549 -0.9 405,315.216 3 148,590.220
-0.5 312,126.218 -0.5 357,029.617 5 139,437.15

0 287,785.862 0 287,785.862 40 21,804.385
0.5 264,034.461 0.5 212,119.492 75 1,088.013
0.9 245,457.386 0.9 149,988.657 80 229.608

0.95 241,329.490 0.95 136,249.086 100 178.443
Spread 95,221.68 273,603.054 287,606.529

TABLE 2.4: Values of Var(5) for various copula.

θ FGM θ Gaussian θ Gumbel
-0.95 128,940.627 -0.95 146,200.971 1 82,420.094
-0.9 124,616.083 -0.9 143,286.915 3 13,837.353
-0.5 105,627.773 0.5 118,003.474 5 9,214.320

0 82,420.094 0. 82,420.094 40 5,597.566
0.5 59,797.351 0.5 44,444.803 75 626.365
0.9 42,121.325 0.9 14,113.850 80 112.770
0.95 38,106.145 0.95 4,390.216 100 61.436

widest spread of the first moment.

Table 2.5 shows the values of the first moment as a function of α and β , respectively, for
which we use the Gaussian copula at θ = −0.9. It shows that increasing the inter-claim
waiting time parameter, β , results in increasing the mean value of the aggregate discounted
claims, and vice versa in the case of the claim size parameter. Given an average value of
inter-claim arrival time, β , the mean of aggregate discounted claims gets lower as we have a
lower average claim size, given by 1

α
. On the other hand, given an average value of the claim

size, the mean of the aggregate discounted claims gets bigger as the inter-claim arrival time
gets shorter, which implies more frequent claim occurrences. This scenario is illustrated in
Figure 2.4 for θ =−0.9 (left hand side of the diagram), as well as θ = 0 (right hand side of
the diagram).

2.4.3 Premium Calculation under FGM, Gaussian and Gumbel copulas
We now compute the loaded premium related to the risk of an insurance portfolio represented
by Z(T ), where the dependence structure is captured by a copula. For that purpose, the
first two moments will be useful in the premium calculation based on the expected value
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TABLE 2.5: Values of µZ(5) under the Gaussian copula at θ =−0.9.

β =1 µZ(5) α = 1 µZ(5)
α = 0.01 511.887741 β = 0.01 0.165673
α = 0.1 51.188786 β = 0.1 0.884887
α = 1 5.118887 β = 1 5.118887

α = 10 0.511838 β = 10 45.911776
α = 15 0.341257 β = 15 67.571651

FIGURE 2.4: Sensitivity of the first moment under the Gaussian copula at θ = 0 and θ = −0.9 with
respect to claim size and inter-claim time averages.

principle, the variance principle, as well as the standard deviation (SD) premium principle,
as the following:

Π(T ) = E[Z(T )]+κE[Z(T )],

Π(T ) = E[Z(T )]+κVar[Z(T )],

Π(T ) = E[Z(T )]+κ
√

Var[Z(T )].

Table 2.6 exhibits the loaded premium according to the SD principle under the three copulas
considered, with κ = 0.1, while Figure 2.5 and Figure 2.6 illustrate the range of premiums
under the copulas studied according to the SD premium principle.

TABLE 2.6: Loaded premium according to the SD principle under various copulas.

θ FGM θ Gaussian θ Gumbel
-0.95 491.55 -0.95 551.71 1 481.88
-0.9 490.72 -0.9 549.74 3 378.85
-0.5 486.92 -0.5 523.25 5 370.46

0 481.88 0 481.88 40 134.79
0.5 476.38 0.5 430.56 75 23.99
0.9 471.45 0.9 380.49 80 11.87

0.95 470.32 0.95 369.75 100 11.60
Spread 21.23 181.96 470.28
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FIGURE 2.5: The loaded premium under FGM and Gaussian copulas based on the SD premium
principle.

FIGURE 2.6: The loaded premium under the Gumbel copula based on the SD premium principle.

2.5 Conclusion

In this paper, we utilized copulas to capture the dependence structure between the inter-claim
arrival time and claim sizes in classical actuarial risk theory. To do so, we represented
the expression for the m−th order moment proposed in [12] and [6] in the form of the
Volterra integral equation (VIE) of the second kind, which is widely used in renewal theory,
demographics, electromagnetism and viscoelasticity.

We derived the Neumann series expression for this recursive equation using the Picard
method of successive approximations, based on which we computed the first two moments
of the aggregate discounted claims. For the dependence structure between the inter-claim
arrival time and claim sizes, we used a Farlie–Gumbel–Morgenstern copula, a Gaussian
copula and a Gumbel copula with exponential marginal distributions. We showed the values
of moments of the aggregate discounted claims, as well as the loaded premium for each
copula used in this study.
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It would be of interest to derive the expression for (2.2) and (2.3) using other joint pdfs
between X and W . Other copulas with different claim size distributions for X may be con-
sidered in the proposed approach, which we leave for further research. We can also consider
the Monte Carlo simulation, as well as other numerical methods to solve the VIE (such as
Runge–Kutta and the collocation methods), as the next objective of further research to deal
with the computation of higher moments.
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3
A Multivariate Jump Diffusion Process for

Counterparty Risk in CDS rates

Siti Norafidah Mohd Ramli (Contribution 60%) and Jiwook Jang (Contribution 40%)

This article has been submitted for publication in the European Actuarial Journal. The
article is presented in its entirety here and hence contains repetitions of certain segments of
the Introduction presented in Chapter 1.

Abstract We consider counterparty risk in CDS rates. To do so, we use a multivariate jump
diffusion process for obligors’ default intensity, where jumps (i.e. magnitude of contribu-
tion of primary events to default intensities) occur simultaneously and their sizes are de-
pendent. For these simultaneous jumps and their sizes, a homogeneous Poisson process. We
apply copula-dependent default intensities of multivariate Cox process to derive the joint
Laplace transform that provides us with joint survival/default probability and other relevant
joint probabilities. For that purpose, the piecewise deterministic Markov process (PDMP)
theory developed in [7] and the martingale methodology in [6] are used. We compute sur-
vival/default probability using three copulas, which are Farlie-Gumbel-Morgenstern (FGM),
Gaussian and Student-t copulas, with exponential marginal distributions. We then apply the
results to calculate CDS rates assuming deterministic rate of interest and recovery rate. We
also conduct sensitivity analysis for the CDS rates by changing the relevant parameters and
provide their figures.
Keywords multivariate jump diffusion process; multivariate Cox process; joint sur-
vival/default probability; copulas; counterparty risk; CDS rate
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3.1 Introduction

In practice, the insolvency of one firm can cause an increase in other firms’ default
intensities due to business links or ties between firms. The mismanagement of subprime
mortgages in the US in the year 2007 which had far reaching consequences provide a perfect
illustration in this effect, and thereby emphasizing the importance for incorporating shocks
and dependence structure in financial modeling.

The jump diffusion process that has been used to represent variables such as the default
intensity, asset returns as well as interest rate (such as the work by [10], [26], [28], [30] and
[5]) allows us to capture the effects of shocks. Shock elements can arrive due to primary
events such as oil and commodity prices, governments fiscal and monetary policies, the
release of corporate financial reports, political and social decisions, rumours of mergers and
acquisitions among firms, the collapse and bankruptcy of firms, the September 11 World
Trade Centre catastrophe and Hurricane Katrina. Each of these events cause jumps in the
variable being modelled. Readers are referred to [36] and [26] for a further discussion of the
various motivations for using a jump diffusion process.

This paper is based on the jump diffusion approach for the case when the firms in the
complementary or substitute industry/sector are affected by a common external event.
Numerous papers have examined the modelling for the dependence of default intensities
via a point process for the purpose of pricing derivative instruments (such as [35], [24], [6],
[37], [17] and [32]). The use of univariate jump diffusion model to represent the reference
credit intensity in pricing the CDS instrument was also explored in [2]. The analytical
expression for CDS and CDS swaptions prices offered in the literature was obtained using
the Jamshidian option decomposition trick as in [20].

Besides the construction of a point process, considerable attention was given to the default
dependence between the obligors. The work by [11] considered joint jumps in the default
intensity for this effect. [25] and [23] developed it further considering the possibility of
default-event triggers that cause joint default. Another approach to incorporate default
dependence between obligors is through the use of copulas ([27]; [35]; [24], [16] and [28]).
The use of FGM copula with multivariate shot noise process has been explored in [22] which
was then extended in [28] by adding diffusion term to the intensity processes. Both papers
adopted martingale methodology and PDMP technique to derive the survival probability.
Using the same methodology and technique, we examine a multivariate default intensity
process where the jump occur simultaneously.

We structure the article in the following order: In section 3.2.2 we define the multivariate
jump diffusion process for obligors’ default intensity and derive the relevant joint Laplace
transform using the PDMP theory and the martingale methodology. These joint Laplace
transforms then lead us to the joint survival/default probability and other relevant joint prob-
abilities. This is followed by a numerical example showing how the joint probabilities can be
generated capturing the dependence structure between the vector of event jumps, using three
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copulas as examples which are the Farlie-Gumbel-Morgenstern (FGM) copula, Gaussian
copula and Student-t copula. In section 3, we then illustrate how this jump diffusion process
can be applied to calculate CDS rates considering counterparty risk. For that purpose, we
assume that the jumps of default intensities of the CDS seller and reference credit (RC) oc-
cur simultaneously and that the dependence structure between their jump sizes are captured
by the three copulas. We also assume deterministic short rate of interest and a deterministic
recovery rate for simplicity. This is then followed by a sensitivity analysis of the CDS rates
with respect to relevant parameters such as the diffusion rate, the constant reversion level,
the decay rate at which the default intensity would retract back to the constant reversion level
as well as the jump size of both obligors. Section 4 contains some concluding remarks.

3.2 Model Setup and Theoretical Results
For i = 1,2, · · · ,n denoting obligor i involved in the financial transaction, the multivariate
default intensity model we consider has the following structure:

dλ
(i)
t = c(i)

(
b(i)+a(i)λ (i)

t

)
dt +σ

(i)
√

λ
(i)
t dW (i)

t +dL(i)
t , L(i)

t =
Mt

∑
j=1

X (i)
j (3.1)

where

•
{

X (1)
j , X (2)

j , · · · , X (n)
j

}
j=1,2,···

is a vector sequence of dependent but not identically

distributed random variables with distribution function F(i) (x) (x > 0),

• Mt is the total number of events up to time t,

• W (i)
t is a standard Brownian motion governing obligor i,

• a < 0, b ≥ 0 and c > 0 with c(i)a(i) being the rate of exponential decay for obligor
i = 1,2, · · · ,n and c(i)b(i) being the constant reversion level for default intensity of
obligor i; and

• σ (i) > 0 is the diffusion coefficient for obligor i.

We also make the additional assumption that the point process Mt is independent of the
vector sequence of jump sizes and that the vector sequence

{
X (1)

k ,X (2)
k , · · · ,X (n)

k

}
k=1,2,···

is

independent of another vector sequence for k 6= j. L(i)
t is a compound process for the default

intensity of obligor i.

In this model, the dependence between the intensities λ
(i)
t comes from the common

event arrival process Mt , together with the dependence between the vector of jumps
(X (1)

j ,X (2)
j , · · · ,X (n)

j ). We assume that event arrival process Mt , (i.e. the simultaneous jump
process) follows a homogeneous Poisson process with frequency ρ and the vector of jumps
is modelled using copulas ([31] and [29]) - that is, the joint distribution of the vector
(X (1)

j ,X (2)
j , · · · ,X (n)

j ) is assumed to be of the form C(F(1),F(2), · · · ,F(n)) with C being a
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given copula.

As specific examples for C in this paper, we use the FGM, the Gaussian and the Student-t
copulas which are given in consecutive manner by

CFGM(u1, . . . ,un) =
n

∏
i=1

(
1+

n

∑
1≤i< j

θi j (1−ui)

)
(3.2)

CG(u1, . . . ,un) =

Φ−1(u1)∫
−∞

n· · ·
Φ−1(un)∫
−∞

1
2π
√
|Θ|

exp
(
−1

2
ω

T
Θ
−1

ω

)
dudv (3.3)

Ct
υ(u1, . . . ,un) =

t−1
υ (u1)∫
−∞

n· · ·
t−1
υ (un)∫
−∞

Γ
(

ν+2
2

)
Γ
(

ν

2

)√
(πυ)2 |Θ|

(
1+

ηTΘ−1η

ν

)
dudv (3.4)

where ui ∈ [0,1] for i = 1, · · · ,n. For the elliptical copulas, the correlation paramater

θ ∈ [−1,1] is contained in the correlation matrix Θ =

 1 · · · θ1 j · · · θ1n
... . . . ...

θn1 · · · θn j · · ·1

. We also

define ω=[ ω1 · · · ωn ]T and η=[ η1 · · · ηn ]T where ωi = Φ−1 (ui) and ηi= t−1
υ (ui)

are the inverse Gaussian and inverse Student-t distribution with degrees of freedom υ

respectively taken on the variables ui. For the marginal distributions of X (i)
j in the vector of

jumps (X (1)
j ,X (2)

j , · · · ,X (n)
j ), any continuous distribution can be considered.

With F(i) (x j
)
= 1− e−µ(i)x j

(
µ(i) > 0, x j > 0

)
, for i = 1,2, · · · ,n to represent the marginal

distribution, the FGM copula, which is illustrated in Figure 3.2, is used in this study
for its simplicity and analytical tractability, where it is also used in [22] and [28]. Its
simplicity allows for the closed-form expressions of final results to be easily derived. It is
also used to compare our numerical results against their counterparts in [28]. The Gaussian
copula, shown in Figure 3.2, is chosen so as to examine the effect of elliptical copula on
simultaneous jumps in the intensity process as it has not been explored previously in the
context of CDS pricing with counterparty risk. We also choose the Student-t copula to
incorporate the possibility of having more frequency of higher and/or smaller as well as
opposing joint jumps size impact in the obligors’ intensity, as shown in Figure 3.2.

The simulated paths of the jump diffusion process under each copula considered in this study
with exponential jump size distributions is also shown in Figures 3.2, 3.4 and 3.6, where
θ =−0.95,0 and 0.95.

3.2.1 Survival and Default Probabilities
Now, let us derive the joint survival probability and relevant joint probabilities. To do so,
we use a multivariate Cox process (N(1)

t , · · · ,N(n)
t ) with the integrated default intensities
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FIGURE 3.1: FGM copula with exponential margins and dependence parameter -0.95, 0, 0.95

FIGURE 3.2: Simulated paths of jump diffusion process with dependence structure capture by FGM
copula

FIGURE 3.3: Gaussian copula with exponential margins and dependence parameter -0.95, 0, 0.95

Λ
(i)
t =

t∫
0

λ
(i)
s ds (i = 1,2, · · · ,n) to model the joint default time. We define

τ
(i) = inf{t : N(i)

t = 1
∣∣∣N(i)

0 = 0}
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FIGURE 3.4: Simulated paths of jump diffusion process with dependence structure capture by Gaus-
sian copula

FIGURE 3.5: Student-T copula with exponential margins and dependence parameter -0.95, 0, 0.95

as the default arrival time for the firm i = 1, · · · ,n, that is equivalent to the first jump time of
the Cox process N(i)

t (i = 1,2, · · · ,n) respectively.

We derive the joint Laplace transform of the vector (Λ(1)
t , · · · ,Λ(n)

t ), i.e.

E
(

e−∑
n
i=1 γ(i)Λ

(i)
t

∣∣∣λ (1)
0 , · · · ,λ (n)

0

)
(3.5)

where γ(i) ≥ 0, as it provides the joint survival/default probabilities by setting γ(i) = 1 in the
equation (3.5) i.e.
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FIGURE 3.6: Simulated paths of jump diffusion process with dependence structure capture by student-
T copula

Pr
(

τ
(1) > t, · · · ,τ(n) > t

∣∣∣λ (1)
0 , · · · ,λ (n)

0

)
= E

[
e−∑

n
i=1 Λ

(i)
t

∣∣∣λ (1)
0 , · · · ,λ (n)

0

]
. (3.6)

Similarly, the expression for joint default probability represented by the following:

Pr
(

τ
(1) ≤ t, · · · ,τ(n) ≤ t

∣∣∣λ (1)
0 , · · · ,λ (n)

0

)
= E

[
(1− e−Λ

(1)
t ) · · ·(1− e−Λ

(n)
t )
∣∣∣λ (1)

0 , · · · ,λ (n)
0

]
. (3.7)

can be obtained using equation (3.5). For that purpose, the PDMP theory developed by [7]
and the martingale methodology by [6] are used.

Analogous to the univariate case in [21], the generator A of the process
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(Λ
(1)
t , · · · ,Λ(n)

t ,λ
(1)
t , · · · ,λ (n)

t , t) acting on a function f (Λ(1), · · · ,Λ(n),λ (1), · · · ,λ (n), t) be-
longing to its domain is given by

A f (Λ(1), · · · ,Λ(n),λ (1), · · · ,λ (n), t)

=
∂ f
∂ t

+
n

∑
i=1

λ
(i) ∂ f

∂Λ(i)
+

n

∑
i=1

c(i)(b(i)+a(i)λ (i))
∂ f

∂λ (i))
+

1
2

n

∑
i=1

(
σ
(i)
√

λ (i)
)2 ∂ 2 f

∂λ (i)2

+ρ

 ∞∫
0

n· · ·
∞∫
0

f (Λ(1), · · · ,Λ(n),λ (1)+ x1, · · · ,λ (n)+ xn, t)
∂ nC(F

X(1)(x1),··· ,FX(n)(xn))

∂x1···∂xn

×dx1 · · ·dxn− f (Λ(1), · · · ,Λ(n),λ (1), · · · ,λ (n), t)


where

∂ nC(F
X(1)(x1),··· ,FX(n)(xn))

∂x1···∂xn
is the joint density of event jump sizes.

For f (Λ(1), · · · ,Λ(n),λ (1), · · · ,λ (n), t) to belong to the domain of the generator A , it is suf-
ficient that the function (Λ(1), · · · ,Λ(n),λ (1), · · · ,λ (n), t) is differentiable w.r.t. Λ(i),λ (i), t for
i = 1, · · · ,n and that

∥∥∥∥∥∥
∞∫
0

n· · ·
∞∫
0

f (·,λ (1)+ x1, · · · ,λ (n)+ xn, ·)
∂ nC(F

X(1)(x1),··· ,FX(n)(xn))

∂x1···∂xn
dx1 · · ·dxn

− f (·,λ (1), · · · ,λ (n), ·)

∥∥∥∥∥∥< ∞.

Now we find a suitable martingale to derive the joint Laplace transform of the vector(
Λ(1), · · · ,Λ(n),λ (1), · · · ,λ (n), t

)
at time t.

Theorem 3.2.1. Considering constant γ(i) ≥ 0 and k(i) ≥ 0,

exp

[
−

n

∑
i=1

(
γ
(i)

Λ
(i)
t +A(i)(t)λ (i)

t + c(i)b(i)
∫ t

0
A(i)(s)ds

)]

×exp

ρ

t∫
0

[1− ĉ
(

A(1)(s), · · · ,A(n)(s)
)

ds


is a martingale where

A(i)(t) =

[
D(i)+ c(i)a(i)

]
+
[
D(i)− c(i)a(i)

]
exp
{

D(i)t− k(i)
}

(
σ (i)
)2 (1− exp

{
D(i)t− k(i)

}) (3.8)

with

ĉ(ζ (1), · · · ,ζ (n))

=

∞∫
0

n· · ·
∞∫

0

e−∑
n
i=1 ζ (i)xi

∂ 2C(FX (1)(x1), · · · ,FX (n)(xn))

∂x1 · · ·∂xn
dx1 · · ·dxn,

and D(i) =
√
(c(i)a(i))2 +2(σ (i))2γ(i).
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Proof. The generator of the process has to satisfy A f = 0 for it to be a martingale. Setting
f = eB(t)−∑

n
i=1[γ

(i)Λ(i)+A(i)(t)λ (i)] obtains the equation

−
n

∑
i=1

[
λ
(i)A′

(i)
(t)− c(i)A(i)(t)

(
b(i)+a(i)λ (i)

)
−λ

(i)
γ
(i)
]

−1
2

n

∑
i=1

(
σ
(i)
√

λ (i)
)2 ∂ 2 f

∂λ (i)2 +B′ (t)+ρ[ĉ
(

A(1)(t), · · · ,A(n)(t)
)
−1] = 0

and solving it results in

A(i)(t) =
(D(i)+ c(i)a(i))+(D(i)− c(i)a(i))exp

(
D(i)t− k(i)

)
(σ (i))2

[
1− exp

(
D(i)t− k(i)

)]
and B(t) =

n

∑
i=1

c(i)b(i)
t∫

0

A(i)(s)ds+ρ

t∫
0

[1− ĉ(A(1)(s), · · · ,A(n)(s))]ds

with D(i) =

√
(c(i)a(i))2 +2(σ (i))2γ(i) for i = 1, · · · ,n.

Hence the result follows.

Using the martingale in Theorem 3.2.1, we can easily obtain the joint Laplace transform of
the vector (Λ(1), · · · ,Λ(n),λ (1), · · · ,λ (n), t) at time t.

Corollary 3.2.2. Considering constants α(i)≥ 0, and γ(i)≥ 0 ∀i = 1, · · · ,n the joint Laplace
transform of the vector (Λ(1), · · · ,Λ(n),λ (1), · · · ,λ (n), t) is given by

E
[

e−∑
n
i=1 γ(i)Λ

(i)
t +α(i)λ

(i)
t

∣∣∣λ (1)
0 , · · · ,λ (n)

0

]
=

n

∏
i=1

[
H(i)(t)

2c(i)b(i)

σ(i)2

]
e
−
(

∑
n
i=1 G(i)(t)λ (i)

0 +ρ

t∫
0
[1−ĉ{G(1)(s),··· ,G(n)(s)}]ds

)
(3.9)

where t > 0, with

G(i)(t)

=
α(i)[(D(i)+ c(i)a(i))+(D(i)− c(i)a(i))exp(−D(i)t)]+2γ(i)(1− exp{−D(i)t})

σ (i)2
α(i)[1− exp(−D(i)t)]+(D(i)− c(i)a(i))+ [D(i)+ c(i)a(i)]exp(−D(i)t)

and

H(i)(t)

=
2D(i) exp[−D(i)+c(i)a(i)

2 t]

σ (i)2
α(i)[1− exp(−D(i)t)]+(D(i)− c(i)a(i))+ [D(i)+ c(i)a(i)]exp(−D(i)t)
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Proof. Set A(i)(T ) = α(i) for i = 1,2, · · · ,n using (3.8) where t < T , then we have

k(i) = D(i)T − ln

[
c(i)a(i)+D(i)−α(i)σ (i)2

c(i)a(i)−D(i)−α(i)σ (i)2

]
. (3.10)

Substitute (3.10) into (3.8) and the martingale in Theorem 3.2.1, the result follows immedi-
ately.

Corollary 3.2.3. The joint Laplace transform of the vector (Λ(1), · · · ,Λ(n), t) is given by

E
[

e−∑
n
i=1 γ(i)Λ

(i)
t

∣∣∣λ (1)
0 , · · · ,λ (n)

0

]
= exp

[
−

n

∑
i=1

G(i)(t)λ (i)
0

]
×

n

∏
i=1

[
H(i)(t)

] 2c(i)b(i)

σ(i)2

×exp

−ρ

t∫
0

[
1− ĉ

{
G(1)(s), · · · ,G(n) (s)

}]
ds

 (3.11)

Proof. Equation (3.11) follows immediately if we set α(i) = 0 ∀i = 1, · · ·n in equation (3.9).

Using Corollary 3.2.3, we can easily derive the joint survival/default probability and other
relevant joint probabilities. While FGM copula admits a simple analytical expression, the
same can not be said for Gaussian and Student-t copulas. Hence, we evaluate the probabilities
numerically by replacing the suitable copula formulae in the third component of (3.11). Due
to the dependence of simultaneous event jumps of X (i)’s with sharing event jump frequency
rate ρ, we have that

E
[

e−∑
n
i=1 Λ

(i)
t

]
6= E

[
e−Λ

(1)
t

]
E
[

e−Λ
(2)
t

]
· · ·E

[
e−Λ

(n)
t

]
.

If the event jump X (i) for i = 1,2, · · · ,n occurs by a Poisson process M(i)
t with its frequency

rate ρ(i) respectively and everything else is independent of each other, we have the joint
survival probability of firm i = 1,2, · · · ,n at time t, which is the product of each marginal
survival probability.

3.2.2 Numerical Examples
In this section, we use the results obtained in the previous section to calculate survival/default
probabilities and relevant joint probabilities. We assume bivariate dependence structure and
a 1-year period (t1 = 0, t2 = 1) for the simplicity of computation. We also assume constant
risk free rate, 0.023 and average annual event occurrence ρ = 4 per year. The degrees of
freedom used for calculation of CDS rates under the student-t copula is ν = 3. The following
table summarizes the parameter values chosen for each obligor:
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TABLE 3.1: Parameter values for the intensity process in the hypothetical example

Firms c(i) a(i) b(i) σ (i) µ(i) ρ(i) λ
(i)
0

Firm 1 0.5 -1 0 0.025 20 4 0.04
Firm 2 0.05 -1 0 0.25 2 4 0.4

In this example, Firm 1 is relatively more robust in terms of shock absorption than its
counterpart, Firm 2. The strength of Firm 1 is characterized by a higher decay rate, a lower
diffusion parameter, lower initial default intensity as well as higher jump size parameter
(hence lower average jump size) as opposed to Firm 2.

From the equations (3.6), (3.7) and relevant probabilities that accounts for the survival of
each Firm 1 and Firm 2, given by

Pr
(

τ
(1) > t,τ(2) < t

∣∣∣λ (1)
0 ,λ

(2)
0

)
= E

[
(1− e−Λ

(2)
t )e−Λ

(1)
t

∣∣∣λ (1)
0 , · · · ,λ (n)

0

]
, (3.12)

and

Pr
(

τ
(1) ≤ t,τ(2) ≥ t

∣∣∣λ (1)
0 ,λ

(2)
0

)
= E

[
(1− e−Λ

(1)
t )e−Λ

(2)
t

∣∣∣λ (1)
0 , · · · ,λ (n)

0

]
, (3.13)

the calculations of the joint survival/default probabilities and relevant joint probabilities are
shown in Table 3.3 and 3.4. The individual survival and default probabilities calculated for
Firm 1 and Firm 2 are shown in Table 3.2.

TABLE 3.2: Individual survival and default probabilities.

FGM Gaussian Student-t

Pr(τ(1) > 1) 0.891870 0.891870 0.849264
Pr(τ(1) ≤ 1) 0.108130 0.108130 0.150736
Pr(τ(2) > 1) 0.322700 0.322700 0.294917
Pr(τ(2) ≤ 1) 0.677300 0.677300 0.705083

While the individual survival and default probability under the Gaussian and FGM copulas
are equal, those probabilities in Table 3.2 under the Student-t copula are different as
dependent parameter value θ = 0 does not imply the case of independence, in line with [33].
We also found that the Student-t copula returns lower survival probability values and higher
default probability values as opposed to its FGM and Gaussian counterparts by 5%. In
comparison with the other 2 copulas, the default probability for Firm 2 (the weaker firm) is
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also greater under Student-t copula, suggesting that dependence structure under a Student-t
copula could be a good candidate to depict a riskier environment.

TABLE 3.3: Joint survival and default probabilities.

Pr(τ(1) > 1,τ(2) > 1) Pr(τ(1) ≤ 1,τ(2) ≤ 1)

θ FGM Gaussian Student-t θ FGM Gaussian Student-t

−0.95 0.292334 0.290216 0.260738 −0.95 0.077763 0.075646 0.116557
−0.9 0.292393 0.290359 0.260791 −0.9 0.077823 0.075788 0.116611
−0.5 0.292872 0.291711 0.261970 −0.5 0.078032 0.077140 0.117790

0 0.293472 0.293472 0.264586 0 0.078901 0.078901 0.120405
0.5 0.294072 0.295459 0.268433 0.5 0.079502 0.080889 0.124252
0.9 0.294554 0.297207 0.272726 0.9 0.079983 0.082636 0.128546
0.95 0.294614 0.297311 0.273423 0.95 0.080044 0.082740 0.129243

TABLE 3.4: Other relevant joint probabilities.

Pr(τ(1) > 1,τ(2) < 1) Pr(τ(1) < 1,τ(2) > 1)

θ FGM Gaussian Student-t θ FGM Gaussian Student-t

−0.95 0.599536 0.601654 0.588526 −0.95 0.030367 0.032484 0.034179
−0.9 0.599477 0.601511 0.588472 −0.9 0.030307 0.032342 0.034125
−0.5 0.598998 0.600159 0.587293 −0.5 0.029828 0.03099 0.032946

0 0.598398 0.598398 0.584678 0 0.029229 0.029229 0.030331
0.5 0.597798 0.596411 0.580831 0.5 0.028628 0.027241 0.026484
0.9 0.597316 0.594663 0.576537 0.9 0.028147 0.025494 0.022190
0.95 0.597256 0.594560 0.575841 0.95 0.028086 0.025390 0.021494

Since Firm 1 is relatively stronger than Firm 2, the individual survival probability of Firm
1 is higher than its counterpart under all copula considered (see Table 3.2) with Student-t
copula giving the lowest value, (approximately 0.85) whereas the FGM and Gaussian copula
return almost 0.90 probability of Firm 1 surviving after 1 year. Hence the joint probabilities
given in the FGM and Gaussian columns of Table 3.3 and 3.4 where the survivorship of
Firm 2 is concerned, approach the individual survival / default probabilities of Firm 2, which
are approximately 0.3 and 0.7 as given in Table 3.2, respectively.

With a low individual default probability within 1 year of Firm 1 under each copula, the
joint defaultability of both firms also approaches Firm 1’s individual default probability.
Combined with the low individual survival probability of Firm 2 within 1 year, the probabil-
ity that Firm 2 would survive after 1 year with Firm 1 defaulting within the same period, is
very low (between 0.02 and 0.03) under each copula.
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The results in Table 3.3 and 3.4 also demonstrate that the FGM, Gaussian and Student-t
copulas show the same pattern, i.e. either increasing or decreasing as the dependence
structure represented by parameter θ progress from negative to positive. We also note that
the spread (i.e. the difference between probabilities corresponding to -0.95 and 0.95) is the
widest under the Student-t copula (126.8511 bps), followed by Gaussian copula (70.9428
bps) and FGM copula (22.8044 bps).

Table 3.3 shows that joint survival and default probability decrease as the value of copula
parameter θ moves from -0.95 to 0.95 as time to default for each firm moves in the same
direction. Thus, when θ = −0.95, we can consider applying the results to calculate joint
survival and default probability for the firms in the substitute industry/sector. For example
when θ =−0.95, consider that Firm 1 produces cars run by petrol and Firm 2 produces cars
run by battery. If the oil price surges due to an external event affecting the car manufacturing
industry, consumers are likely to begin changing their petrol-run cars to battery-run cars.

In contrast, Table 3.4 show that joint probabilities increase as the value of copula parameter
θ becomes −0.95 (or nearly -1) as time to default for each firm moves in the opposite
direction. Hence when θ = 0.95 (or nearly 1) we can consider applying the results to
calculate joint survival and default probability for the firms in the complementary indus-
try/sector - for instance, Firm 1 being an air-liner and Firm 2 being a chain hotel. An
occurrence of a catastrophic event such as the September 11 World Trade Centre attacks or
the disappearance of Malaysia Airlines flight MH370 may cause consumers to travel less
via air and subsequently causing hotel booking rates to fall.

When comparing joint default probability between complementary industries and substitute
industries, it was found that the joint default probability of firms in complementary industries
was higher than its counterpart in substitute industries, which is economically intuitive (see
Pr(τ(1) ≤ 1,τ(2) ≤ 1) in Table 3.3). When comparing the joint survival probability between
complementary industries and substitute industries, we also found that the joint survival
probability of firms in complementary industries was higher than its counterpart in substitute
industries, which is also economically intuitive (see Pr(τ(1) > 1,τ(2) > 1) in Table 3.3). The
relevant joint probabilities of the firms in substitute industries are higher than their counter-
parts in complementary industries because it is more likely that one firm will fail (or survive)
when the other firm survives (or fails) if they are in substitute industries (see Table 3.4).

3.3 Applications

3.3.1 CDS Pricing Under Counterparty Risk

This section applies the results in Section 3.2 to the pricing of a financial product. For this
purpose, the instrument credit default swaps (CDS) is chosen as there are three parties
involved in this contract - a reference credit, a CDS buyer and a CDS seller. Note that the
dependence is assumed only between the seller and the reference credit and that the buyer is



52A MULTIVARIATE JUMP DIFFUSION PROCESS FOR COUNTERPARTY RISK IN CDS RATES

assumed to be default free.

In calculating the CDS rate, we assume that the deterministic instantaneous rate of interest
r = 0.0023 for a zero-coupon default-free bond. Then its price at time 0, paying 1 at time
t is given by B(0, t) = e−rt . Just like the previous section, the degrees of freedom used for
calculation of CDS rates under the student-t copula is also ν = 3.

We denote the default intensity process of the CDS buyer, seller and reference credit by λ
(b)
t ,

λ
(s)
t and λ

(RC)
t respectively. The CDS rate formula, denoted by s, as adopted from [34] is

given by

s = (1−π)
∑

kN
k=1erc,s(0, tk−1, tk)

∑
N
n=1(tkn− tkn−1)B

b
(0, tkn)

(3.14)

where

erc,s(0, tk−1, tk)

= E

 exp
(
−

tk∫
0

rsds
)[

exp
(
−

tk−1∫
0

λ
(RC)
s ds

)
− exp

(
−

tk∫
0

λ
(RC)
s ds

)]
×
[

exp
(
−

tk∫
0

λ
(s)
s ds

)]∣∣∣r0,λ
(RC)
0 ,λ

(s)
0

]


Bb
(0, tkn) = E

exp

−
tkn∫
0

(
rs +λ

(b)
s

)
ds

∣∣∣r0,λ
(b)
0

]
(3.15)

and tk1 < tk2 < · · ·< tkn .

We assume that rt and λ
(i)
t are independent of each other and the recovery rate is determin-

istic. To keep the calculation simple, we use the case of 1-year CDS contract with premium
paid by the buyer every 6 months, i.e. N = 2, t0 = 0, tk1 = 0.5, and tk2 = 1, as well as
recovery rate π . We may also use equation (3.15) to price defaultable bonds as well as credit
spread between default-free bond and defaultable bond.

Assuming recovery rate π = 0.5 with the parameter values used in section 3.2.2, the parame-
ter values for the intensity process of the CDS counterparties are shown in Table 3.5 and the
CDS rate values are shown in Table 3.6.

TABLE 3.5: Parameter values for the intensity process of the CDS counterparties

Counterparty c(i) a(i) b(i) σ (i) µ(i) Jump frequency

CDS Seller 0.5 −1 0 0.025 10 4
Reference Credit 0.05 −1 0 0.25 2 4
CDS Buyer 0.2 −1 0 0.1 7 3
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TABLE 3.6: CDS rates computed under various copulas dependence structure.

θ FGM Gaussian Student-t

−0.95 0.347543 0.348826 0.354295
−0.9 0.347509 0.348744 0.354262
−0.5 0.347231 0.347905 0.353553

0 0.346884 0.346884 0.351978
0.5 0.346535 0.345732 0.349662
0.9 0.346256 0.344721 0.347077

0.95 0.346221 0.344718 0.346658
Spread (bps) 13.2196 41.0831 76.3648

As opposed to the elliptical copulas, the CDS rates under FGM copula do not show much
difference as the dependence parameter varies from negative to positive dependence, parallel
with the finding in [28]. This is shown by the value of spread of only 13.2196 bps (given
by 0.347543− 0.346221) as compared to the Gaussian copula (41.0831 bps) and Student-t
copula (76.3648 bps). We also note that the CDS rates show a decreasing pattern under all
copulas considered as θ varies from negative correlation to positive correlation, which is a
similar pattern to that seen in the survival probabilities (see Figure 3.7).

FIGURE 3.7: CDS rates under FGM, Gaussian and Student-t copulas.

3.3.2 CDS rates calculation: Sensitivity analysis
In this section, we conduct sensitivity analysis of CDS rates with respect to the seller’s and
reference credit’s jump size rate, frequency rate, diffusion rate, decay rate and the reversion
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level. Since the patterns of CDS rates sensitivity analysis are the same under all copulas,
only the findings under Student-t copula are presented here and we refer the readers to
Appendix B for the rest of findings under the Gaussian and FGM copulas.

FIGURE 3.8: Sensitivity of CDS rates under Student-t copula with respect to seller’s (left) and RC’s
(right) jump size jump size, µ(s) and µ(RC) respectively.

FIGURE 3.9: Sensitivity of CDS rates under Student-t copula with respect to seller’s and RC’s diffu-
sion rates, i.e. σ (s) and σ (r) respectively.

FIGURE 3.10: Sensitivity of CDS rates under Student-t copula with respect to the constant reversion
level of seller, b(s), and RC b(RC), with c(s) = c(RC) = 1 and a(s) = a(RC) =−1.

As shown in Figure 3.8 and Figure 3.11, the CDS rate is converging to 0 as the values of
µ(RC) and c(RC) are increased. In contrast, CDS rate also converge to 0 as the value of µ(s)
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FIGURE 3.11: Sensitivity of CDS rates under Student-t copula with respect to seller’s and RC’s decay
rate, c(s) and c(r) respectively, where b(s) = b(RC) = 1 and a(s) = a(RC) =−1.

FIGURE 3.12: Sensitivity of CDS rates under Student-t copula with respect to frequency of yearly
jump events, ρ .

and c(s) are decreased for the CDS seller. These findings are similar to that of [28] in which
increasing the value of the jump size and decay rate parameter, c(i) for i = s,rc will result in
a monotonically increasing value of CDS rates (for changes in µ(s) and c(s)) and decreasing
(for changes in µ(RC) and c(RC)). Intuitively, from the CDS buyers’ point of view, a CDS
contract is more attractive when the CDS seller is less likely to default. As long as the CDS
seller’s credit is strong enough, they can hedge against the default risk of the reference
credit using a CDS contract. Hence the lower the CDS rate, the more likely the CDS seller
defaults. The worst case scenario for the CDS buyer is when both the reference credit and
the CDS seller default.

Figure 3.9 shows a decreasing CDS rates as we increase the value of σ (RC), as well as an
increasing CDS rates as we increase the value of σ (s). Intuitively, an increasing values of
reference credit’s diffusion rate σ (RC) will reduce the CDS rates because the CDS contract
is deemed as less safe since the defaultability of the reference credit becomes more certain,
thereby reducing the survival probability of the reference credit, as can be seen in equa-
tion (3.15). In contrast, while it is slightly difficult to see the intuition behind the increasing
CDS rates as we increase the seller’s diffusion rate σ (s), closely examining the numerator
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of CDS rate (equation (3.15)) easily verifies that the changes in numerator moves in upward
direction as we increase seller’s diffusion rate σ (s), bearing in mind that

E

exp

− tk∫
0

λ
(s)
s ds

∣∣∣r0,λ
(RC)
0 ,λ

(s)
0

]
have the same form as the default free bond price, as presented in Table 4.3 of [21], which
increased as σ increased.

We also found that the CDS rates show a monotonically increasing and decreasing be-
haviours with respect to changes in σ (s) and σ (RC) respectively. These are different from
the findings shown in Section 4 of [28] which presented a graph showing instability in the
values of the CDS rates resulting from the changes in the two parameters.

Comparing to other parameters of each counterparty, the constant reversion level parameters
b(s) and b(RC) give an opposite direction of changes in the CDS rates, as in Figure 3.10.
Even though the default threshold level will be discernible only after default occurs, higher
b(s) and b(RC) implies that the default is more likely to happen. Therefore, assuming that the
seller has strong credibility, higher b(RC) allows the seller to demand the buyer to pay higher
premium for the CDS contract as the default event is likely to happen. This is parallel to
the justification of insurers demanding higher premium from smokers for a life insurance
contract as opposed to a non-smoker. On the other hand, higher b(s) implies that the seller is
likely to default. Hence, the CDS rates decrease since reduced credibility of the seller will
make the CDS contract less attractive and induce the CDS buyer to obtain the protection
from another seller.

By changing the values of the event jump frequency, ρ , we notice that the value of the CDS
rates will increase up to a certain threshold level under all copula, and decrease thereafter.
For the case of student-t copula, this can be seen in Figure 3.12 (refer to Table 3.7), whereas
Table 3.8 and 3.9 show the CDS rates under the other two copulas. This implies that while
initially the seller was able to withstand the default risk of the reference credit, its ability
to absorb that risk declines as the event jumps occur more frequently. This is not examined
extensively in the section 4 of [28] where they presented a table showing an increasing val-
ues of the CDS rates under the FGM copula, only up to ρ = 3.9 (refer to Table 2 of [28])
for θ = 1. When the jump occurrence is too frequent to the extent that it affects both the
CDS seller and reference credit, there is an increasing chance of both counterparties going
bust. As aforementioned, this would be the worst scenario for the CDS buyers and would
subsequently make the CDS rates less valuable from the buyers’ perspective.

3.4 Conclusion
For default intensities modeling, we used the multivariate jump diffusion process in which
jumps (i.e. the magnitude of contribution of primary events to default intensities) occur
simultaneously and their sizes are dependent. We then used a homogeneous Poisson
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TABLE 3.7: CDS rates under student-t copula with respect to various ρ . Note: * Diff = sθ−0.95− sθ0.95 .
Difference unit in bps.

θ / ρ 0.05 0.5 1 2 4 6 9 12
-0.95 0.1941 0.2207 0.2499 0.2967 0.3543 0.37986 0.3842 0.3681
-0.9 0.1941 0.2207 0.2499 0.2966 0.3543 0.37983 0.3842 0.3681
-0.5 0.194 0.2205 0.2496 0.2961 0.3536 0.379159 0.3837 0.3677
0 0.1939 0.2201 0.2488 0.2948 0.352 0.377666 0.3826 0.367
0.5 0.1938 0.2194 0.2477 0.293 0.3497 0.375456 0.3809 0.3659
0.9 0.1936 0.2187 0.2464 0.291 0.3471 0.372971 0.379 0.3645
0.95 0.1936 0.2186 0.2462 0.2907 0.3467 0.372566 0.3787 0.3643
Diff 4.6032 21.029 37.57 59.961 76.365 72.94624 55.611 37.689

TABLE 3.8: CDS rates under Gaussian copula with respect to various ρ .
θ / ρ 0.05 0.5 1 2 4 6 9 12
-0.95 0.1866 0.2114 0.2392 0.2855 0.3488 0.3844 0.4057 0.4053
-0.9 0.1866 0.2113 0.2391 0.2855 0.3487 0.3843 0.4056 0.4053
-0.5 0.1865 0.2111 0.2388 0.2848 0.3479 0.3835 0.405 0.4048
0 0.1864 0.2109 0.2383 0.2841 0.3469 0.3824 0.4041 0.4042
0.5 0.1864 0.2106 0.2378 0.2832 0.3457 0.3813 0.4032 0.4035
0.9 0.1863 0.2103 0.2373 0.2824 0.3447 0.3803 0.4023 0.4029
0.95 0.1863 0.2103 0.2373 0.2824 0.3447 0.3803 0.4024 0.4029
Diff 2.2554 10.402 18.806 30.736 41.049 41.117 33.656 24.489

TABLE 3.9: CDS rates under FGM copula with respect to various ρ .
θ / ρ 0.05 0.5 1 2 4 6 9 12
-0.95 0.186485 0.211 0.2386 0.2846 0.3475 0.3831 0.4047 0.4046
-0.9 0.186483 0.211 0.2386 0.2845 0.3475 0.3831 0.4046 0.4045
-0.5 0.186468 0.211 0.2384 0.2843 0.3472 0.3828 0.4044 0.4044
0 0.186448 0.2109 0.2383 0.2841 0.3469 0.3824 0.4041 0.4042
0.5 0.186429 0.2108 0.2381 0.2838 0.3465 0.3821 0.4039 0.404
0.9 0.186414 0.2107 0.238 0.2836 0.3463 0.3818 0.4036 0.4038
0.95 0.186412 0.2107 0.238 0.2836 0.3462 0.3818 0.4036 0.4038
Diff 0.72677 3.3517 6.0593 9.9014 13.22 13.237 10.83 7.8761
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process to count simultaneous event jumps in default intensities, and applied the FGM
copula, Gaussian copula and Student-t copula were used, assuming exponential marginal
distributions to model the dependence structure between event jump sizes. We also presented
the simulated paths of the jump diffusion intensity processes under the three copulas with
various dependence parameter values, θ .

By applying copula-dependent default intensity to the multivariate Cox process, we derived
the joint survival/default probability and other relevant joint probabilities via the joint
Laplace transforms for which the PDMP theory and standard martingale methodology were
used. We then showed an example to calculate joint survival/default probability, with an
application to CDS rate considering counterparty risk. We also conduct sensitivity analyses
with respect to the parameter values involved.

In this study, the multivariate jump diffusion process examined was used to model counter-
party risk in CDS rates. This process also has the potential to be applicable to a variety of
problems where multiple transition rates are involved in the realms of economics, finance
and insurance, which could be the object of further research.
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4
Jump Diffusion Model with Copula

Dependence Structure in Defaultable Bond
Pricing

Siti Norafidah Mohd Ramli (Contribution 60%) and Jiwook Jang (Contribution 40%)

This article has been submitted for publication in the Annals of Actuarial Science. The
submitted article is presented in its entirety here and hence contains repetitions of certain
segments of the Introduction presented in Chapter 1.

Abstract We study the pricing of a defaultable bond under various copulas. For that purpose,
we use a bivariate jump diffusion process for a bond issuer’s default intensity and the short
rate of interest. We assume two jumps in this process occur simultaneously and their sizes
are dependent. For these simultaneous jumps and their sizes, a homogeneous Poisson pro-
cess and three copulas, which are a Farlie-Gumbel-Mogenstern (FGM) copula, a Gaussian
copula and a t-copula are used, respectively. We derive the joint Laplace transform for their
integrated processes that provides us with the expression for defaultable bond price, using
copula-dependent jump sizes. To do so, the piecewise deterministic Markov process (PDMP)
theory and the martingale methodology in are used. We compute zero coupon defaultable
bond prices and their yields using the three copulas and exponential marginal distributions.
We then use the model to calibrate zero coupon bonds traded in different markets. We notice
that Student-t copula provides the best fit relative to the other two copulas.
Keywords Bivariate jump diffusion model, Default intensity, Short rate of interest, Copulas,
Corporate bond pricing
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4.1 Introduction

Corporate bonds’ default rates have declined since 2009 when the world economy began
to recover from the global financial crisis in response to governments’ initiatives. However,
continuing distress in the US and Eurozone economies may jeopardize the low default rate
environment. Hence, it is necessary to develop pricing models for corporate bonds that cap-
ture the dependence structure between obligors’ default intensity and macroeconomics vari-
ables.
Corporate debt valuation models can be divided into two main approaches: the structural
approach and the reduced form approach. The first class of models under the structural
approach views a firm’s liabilities as contingent claims issued against the firm’s assets, with
all the payoffs to the firms’s liabilities in bankruptcy completely specified (see seminal work
in [32] and [2]). That is, bankruptcy is viewed as the event when the firm’s value hits a pre-
specified boundary. The view undertaken in this class of models was then simplified in [29]
and [14], whereby the cash flows to risky debt in the event of bankruptcy were exogenously
specified as a given fraction of each promised dollar in the event of bankcruptcy. This was to
avoid the need to understand the complex priority structure of payoffs to a firm’s liabilities
in the event of bankruptcy. In [36], the bond prices following a structural default model with
jumps were computed with Monte Carlo simulation based on Brownian bridge algorithm.

In contrast, we are working under the reduced form approach by introducing the correlation
aspect through a model in which the default of one obligor triggers the default of another.
Previous studies of the reduced form approach have taken several directions in researchers’
attempt to incorporate default correlation and multiple defaults (see e.g. [3], [30],[13] and
[18]). A convenient framework that allows for dependencies between default intensities and
state variables was prepared in [26], whereby the Cox processes were used to model the
(stopping) time when the rating changed until the issuer went default in the last state of a
generalized K-states Markovian model. [10], one of the earliest papers to promote the term
’reduced-form’ approach, treated default as an unpredictable event governed by external
hazard rate process. The article showed that a contingent claim that is subject to default
risk can be priced just like the default-free claim simply by replacing the short rate with the
default-adjusted short rate process under an equivalent martingale measure in an arbitrage
free framework. This model was extended in [22] and the author introduced the concept of
counterparty risk to capture the economy-wide and inter-firm linkages by including jumps
in the default intensities that follows a Cox process.

Another approach is the hybrid of the structural and the reduced form approach, developed
in [21] whereby the bankruptcy process was modelled as a continuous time Markov process
with discrete state space representing the firm’s credit ratings. This model originated from
the Jarrow and Turnbull (1995) model that took the reduced form approach promoted in [20].
The hybrid approach further simplifies the view taken in the structural models by specifying
the credit event exogenously and allow the bankruptcy assumptions to be imposed only
on observables (i.e. firm’s credit ratings) as opposed to firm’s asset values. Another hybrid
example can also be found in [15] where they provided an explicit formula for defaultable
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bond and credit default swap using partial differential equation method assuming expected
and unexpected default in the case of stochastic default intensity.

Besides the construction of a point process, considerable attention is given to the default
dependence. The work by [10] considered joint jumps in the default intensity for this effect,
while [24] and [22] developed it further considering the possibility of default-event triggers
that cause joint default. Another approach to incorporate default dependence between related
parties is through the use of copulas ([28]; [38]; [23], [12] and [30]). The use of FGM copula
with multivariate shot noise process was explored in [19], and extended in [30] by adding
diffusion term to the intensity processes. Both papers adopted martingale methodology and
PDMP technique to derive the survival probability.

The remaining of the article is organized as follows: Section 4.2 defines the bivariate jump
diffusion process for short rate and firm’s default intensity, whereby it is assumed that the
jumps of default intensity and short rate occur simultaneously, and that the dependence struc-
ture between their jump sizes was captured by the three copulas. The relevant joint Laplace
transforms are derived using the PDMP theory and martingale methodology. These joint
Laplace transforms then lead to the expression of the bond price. This is followed by a nu-
merical example in Section 4.3 showing the computation of bond prices and their yields,
while capturing the dependence structure between the vector of jumps, using three copulas
as examples – the FGM, Gaussian and Students t-copula. Section 4.4, conducts one-day cal-
ibrations of zero coupon bonds data dated 30 October 2012, issued by three corporations,
i.e. Microsoft Inc., NAB and Eskom Holdings, under each copula considered. This is fol-
lowed by a one-year calibration of the zero coupon bond issued by Microsoft Inc. under the
student-t copula, from 22 June 2010 - 30 June 2011. Section 4.5 presents some concluding
remarks.

4.2 Model Setup
For i = 1 (bond issuer) and 2 (short rate), the bivariate jump diffusion model considered has
the following structure:

dX (i)
t = c(i)

(
b(i)+a(i)X (i)

t

)
dt +σ

(i)
√

X (i)
t dW (i)

t +dL(i)
t , L(i)

t =
Mt

∑
j=1

Y (i)
j (4.1)

where

•
{

Y (1)
j ,Y (2)

j

}
j=1,2

is a vector sequence of dependent but not identically distributed ran-

dom variables with distribution function F(i) (y) (y > 0),

• Mt is the total number of events up to time t,

• W (i)
t is a standard Brownian motion governing process X (i)

t ,

• a < 0, b ≥ 0 and c > 0 with c(i)a(i) being the rate of exponential decay of X (i)
t and

c(i)b(i) being the constant reversion level of process X (i)
t ,
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• σ (i) > 0 is the diffusion coefficient for X (i)
t .

We also make the additional assumption that the point process Mt is independent of the vec-
tor sequence of jump sizes and that the vector sequence

{
Y (1)

j ,Y (2)
j

}
j=1,2

are independent

of another vector sequence for k 6= j. L(i)
t is a compound process for Y (i)

t .

In this model, the source of dependence between variables X (1)
t and X (2)

t is from the
common event arrival process Mt , together with the dependence between the vector of
jumps

(
Y (1)

j ,Y (2)
j

)
. We assume that the event arrival process Mt , i.e. simultaneous jump

process follows a homogeneous Poisson process with frequency ρ and the vector of jumps
is modelled using copulas (see e.g. [31] and [35]) – that is, the joint distribution of the
vector

(
Y (1)

j ,Y (2)
j

)
is assumed to be of the form C(F(1),F(2)) with C being a given copula.

Other than bond pricing, copulas have also been applied widely in capturing the dependence
structure embedded in insurance portfolio as well as other financial products such as the
CDS and indices (see [19], [30], [1], [16] and [33, 34]).

As specific examples for C in this paper, we use the Farlie-Gumbel-Morgenstern, the Gaus-
sian and the Student-t copulas which are given in consecutive manner by:

CFGM(u1,u2) = [1+θ (1−u1)(1−u2)]u1u2 (4.2)

CG(u1,u2) =

Φ−1(u1)∫
−∞

Φ−1(u2)∫
−∞

1
2π
√
|Θ|

exp
(
−1

2
ω

T
Θ
−1

ω

)
dudv (4.3)

Ct
υ(u1,u2) =

t−1
υ (u1)∫
−∞

t−1
υ (u2)∫
−∞

Γ
(

ν+2
2

)
Γ
(

ν

2

)√
(πυ)2 |Θ|

(
1+

ηTΘ−1η

ν

)
dudv (4.4)

where ui ∈ [0,1] for i = 1,2, and the correlation parameter θ ∈ [−1,1]. For the elliptical cop-

ulas, the correlation parameter is contained in the correlation matrix Θ =

[
1 θ

θ 1

]
.

We also define ω=[ ω1 ω2 ]T and η=[ η1 η2 ]T where ωi = Φ−1 (ui) and ηi= t−1
υ (ui)

are the inverse Gaussian and inverse Student-t distribution with degrees of freedom υ re-
spectively, taken on the variables ui. For the marginal distributions of Y (i)

j in the vector of

jumps (Y (1)
j ,Y (2)

j ), any continuous distribution can be considered.

Using F(i) (y j
)
= 1− e−µ(i)y j

(
µ(i) > 0, y j > 0

)
, for i = 1,2, the FGM copula, which is

illustrated in Figure 4.1, is used in this study for its simplicity and analytical tractability, where it
is also used in [19] and [30] in the context of CDS pricing with counterparty risk. Its simplicity
allows for the closed-form expressions to be easily derived. The Gaussian copula, shown in
Figure 4.3, is chosen so as to examine the effect of elliptical copula on simultaneous jumps
between the default intensity and short rate of interest in the context of defaultable bond pricing.
We also choose the Student-t copula to incorporate the possibility of having more frequency of
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FIGURE 4.1: FGM copula with exponential margins and dependence parameter -0.95, 0, 0.95

FIGURE 4.2: Simulated paths of jump diffusion process with dependence structure capture by FGM
copula

FIGURE 4.3: Gaussian copula with exponential margins and dependence parameter -0.95, 0, 0.95

higher and/or smaller as well as opposing joint jumps size impact between the default intensity
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FIGURE 4.4: Simulated paths of jump diffusion process with dependence structure capture by Gaus-
sian copula

FIGURE 4.5: Student-T copula with exponential margins and dependence parameter -0.95, 0, 0.95

and short rate of interest, as shown in Figure 4.5.
The simulated paths of the jump diffusion process under each copula considered in this

study with exponential jump size distributions is also shown in Figures 4.2, 4.4 and 4.6.

4.2.1 The Joint Laplace Transform of the Distribution of the Integrated
Process

We start with defining Ψ
(i)
t =

t∫
0

X (i)
s ds, for i = 1,2, to represent the integrated process up to time

t.
Let us now derive the joint Laplace transform of the vector (Ψ(1),Ψ(2),X (1),X (2), t). To do
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FIGURE 4.6: Simulated paths of jump diffusion process with dependence structure capture by student-
T copula

so, we use the PDMP theory developed in [9] and the martingale methodology developed in [8].
Analogous to the univariate case in [18], the generator A of the process (Ψ(1)

t ,Ψ
(2)
t ,X (1)

t ,X (2)
t , t)

acting on a function f (Ψ(1),Ψ(2),X (1),X (2), t) belonging to its domain is given by

A f (Ψ(1),Ψ(2),X (1),X (2), t)

=
∂ f
∂ t

+
2

∑
i=1

X (i) ∂ f
∂Ψ(i)

+
2

∑
i=1

c(i)(b(i)+a(i)X (i))
∂ f

∂X (i)
+

1
2

2

∑
i=1

(
σ
(i)
√

X (i)
)2 ∂ 2 f

∂X (i)2

+ρ

 ∞∫
0

∞∫
0

f (Ψ(1),Ψ(2),X (1)+ y1,X (2)+ y2, t)
∂ 2C(F

Y (1)
(y1),FY (2)

(y2))

∂y1∂y2
dy1dy2

− f (Ψ(1),Ψ(2),X (1),X (2), t)


where

∂ 2C(F
Y (1)

(y1),FY (2)
(y2))

∂y1∂y2
is the joint density of event jump sizes.

For f (Ψ(1),Ψ(2),X (1),X (2), t) to belong to the domain of the generator A , it is sufficient
that the function (Ψ(1),Ψ(2),X (1),X (2), t) is differentiable w.r.t. Ψ(i), X (i), and t, for i = 1,2,
and that

∥∥∥∥∥∥
∞∫
0

∞∫
0

f (·,X (1)+ y1,X (2)+ y2, ·)
∂ 2C(F

Y (1)
(y1),,FY (2)

(y2))

∂y1∂y2
dy1dy2

− f (·,X (1),X (2), ·)

∥∥∥∥∥∥< ∞.
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To derive the joint Laplace transform of the vector
(

Ψ(1),Ψ(2),X (1),X (2), t
)

, we begin with
finding a suitable martingale.

Theorem 4.2.1. Considering constant γ(i) ≥ 0 and k(i) ≥ 0,

exp

(
−

2

∑
i=1

γ
(i)

Ψ
(i)
t +A(i)(t)X (i)

t + c(i)b(i)
∫ t

0
A(i)(s)ds

)

×exp

ρ

t∫
0

[1− ĉ
(

A(1)(s),A(2)(s)
)

ds


is a martingale where

A(i)(t) =

[
D(i)+ c(i)a(i)

]
+
[
D(i)− c(i)a(i)

]
exp
{

D(i)t− k(i)
}

(
σ (i)
)2 (1− exp

{
D(i)t− k(i)

}) (4.5)

with

ĉ(ζ (1),ζ (2)) =

∞∫
0

∞∫
0

e−∑
2
i=1 ζ (i)yi

∂ 2C(FY (1)(y1),FY (2)(y2))

∂y1∂y2
dy1dy2, (4.6)

and D(i) =
√

(c(i)a(i))2 +2(σ (i))2γ(i).

Proof. The generator of the process has to satisfy A f = 0 for it to be a martingale. Setting
f = eB(t)−∑

2
i=1[γ(i)Ψ(i)+A(i)(t)X (i)] we obtain the equation

−
2

∑
i=1

[
X (i)A′

(i)
(t)− c(i)A(i)(t)

(
b(i)+a(i)X (i)

)
−X (i)

γ
(i)
]

−1
2

2

∑
i=1

(
σ
(i)
√

X (i)
)2 ∂ 2 f

∂X (i)2 +B′ (t)+ρ[ĉ(A1(t),A2(t))−1] = 0

and solving it we get

A(i)(t) =
(D(i)+ c(i)a(i))+(D(i)− c(i)a(i))exp

(
D(i)t− k(i)

)
(σ (i))2

[
1− exp

(
D(i)t− k(i)

)]
and B(t) =

2

∑
i=1

c(i)b(i)
t∫

0

A(i)(s)ds+ρ

t∫
0

[1− ĉ(A(1)(s),A(2)(s)]ds

with D(i) =

√
(c(i)a(i))2 +2(σ (i))2γ(i) for i = 1,2.

Hence the result follows.

Using the martingale in Theorem 4.2.1, we can easily obtain the joint Laplace transform of
the vector (Ψ(1),Ψ(2),X (1),X (2), t) at time t.
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Corollary 4.2.2. Considering constants α(i) ≥ 0, and γ(i) ≥ 0 for i=1,2 the joint Laplace
transform of the vector (Ψ(1),Ψ(2),X (1),X (2), t) is given by

E
[

e−∑
2
i=1(γ

(i)Ψ
(i)
t +α(i)X (i)

t )
∣∣∣X (1)

0 ,X (2)
0

]
=

2

∏
i=1

[
H(i)(t)

2c(i)b(i)

σ(i)2

]
e
−
(

∑
2
i=1 G(i)(t)X (i)

0 +ρ

t∫
0
[1−ĉ{G(1)(s),G(2)(s)]ds

)
(4.7)

where

G(i)(t)

=
α(i)[(D(i)+ c(i)a(i))+(D(i)− c(i)a(i))exp(−D(i)t)]+2γ(i)(1− exp{−D(i)t})

σ (i)2
α(i)[1− exp(−D(i)t)]+(D(i)− c(i)a(i))+ [D(i)+ c(i)a(i)]exp(−D(i)t)

and

H(i)(t)

=
2D(i) exp[−D(i)+c(i)a(i)

2 t]

σ (i)2
α(i)[1− exp(−D(i)t)]+(D(i)− c(i)a(i))+ [D(i)+ c(i)a(i)]exp(−D(i)t)

Proof. Set A(i)(T ) = α(i) for i = 1,2 using (4.5) where t < T , then we have

k(i) = D(i)T − ln

[
c(i)a(i)+D(i)−α(i)σ (i)2

c(i)a(i)−D(i)−α(i)σ (i)2

]
. (4.8)

Substitute (4.8) into (4.5) and the martingale in Theorem 4.2.1, the result follows immediately.

Corollary 4.2.3. The joint Laplace transform of the vector (Ψ(1),Ψ(2), t) is given by

E
[

e−∑
2
i=1 γ(i)Ψ

(i)
t

∣∣∣X (1)
0 ,X (2)

0

]
= exp

[
−

2

∑
i=1

J(i)(t)X (i)
0

]
×

2

∏
i=1

[
Ξ
(i)(t)

] 2c(i)b(i)

σ(i)2

×exp

−ρ

t∫
0

[
1− ĉ

{
J(1)(s),J(2) (s)

}]
ds

 (4.9)

where

J(i)(t)

=
2γ(i)(1− exp{−D(i)t})

(D(i)− c(i)a(i))+ [D(i)+ c(i)a(i)]exp(−D(i)t)
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and

Ξ
(i)(t)

=
2D(i) exp[−D(i)+c(i)a(i)

2 t]
(D(i)− c(i)a(i))+ [D(i)+ c(i)a(i)]exp(−D(i)t)

Proof. Equation (4.9) follows immediately if we set α(i) = 0 for i = 1,2 in equation (4.7).

The above joint Laplace transform expression will be used for bond price computation in
the next section. While FGM copula admits a simple analytical expression, the same can not
be said for Gaussian and Student-t copulas. Hence, for these elliptical copulas, we evaluate the
bond price numerically.

4.2.2 The Expression for Defaultable Bond Price
The expression for defaultable bond price can be derived easily using Corollary 4.2.3.

Corollary 4.2.4. The defaultable bond price is given by

E
[

e−∑
2
i=1 Ψ

(i)
t

∣∣∣X (1)
0 ,X (2)

0

]
= exp

[
−

2

∑
i=1

Θ
(i)(t)X (i)

0

]
×

2

∏
i=1

[
ϒ
(i)(t)

] 2c(i)b(i)

σ(i)2

×exp

−ρ

t∫
0

[
1− ĉ

{
Θ
(1)(s),Θ(2) (s)

}]
ds

 (4.10)

where

Θ
(i)(t)

=
2(1− exp{−∆(i)t})

∆(i)− c(i)a(i))+ [∆(i)+ c(i)a(i)]exp(−∆(i)t)

and

ϒ
(i)(t)

=
2∆(i) exp[−∆(i)+c(i)a(i)

2 t]
∆(i)− c(i)a(i))+ [∆(i)+ c(i)a(i)]exp(−∆(i)t)

with ∆(i) =
√
(c(i)a(i))2 +2(σ (i))2.

Proof. Equation (4.10) follows immediately if we set γ(i) = 1 for i=1, 2 in equation (4.9).

In an analogous manner, it is also possible to find the expression for default free bond price
and the expression for bond price under the celebrated Cox-Ingersoll-Ross model.
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Corollary 4.2.5. The expression for the default -free bond price is given by

E
[

e−Ψ
(2)
t

∣∣∣X (2)
0

]
= exp

[
−Θ

(2)(t)X (2)
0

]
×
[
ϒ
(2)(t)

] 2c(2)b(2)

σ(2)2

×exp

−ρ

t∫
0

[
1− ĥ

{
Θ
(2)(s)

}]
ds

 (4.11)

where

ĥ(Θ(2)) =

∞∫
0

e−Θ(2)y2dFY (2),

which can be easily obtained from Corollary 2.2 in [18].

Proof. Equation (4.11) follows immediately if we set γ(1) = 0 and γ(2) = 1 in equation (4.9).

The corresponding expression of (4.11) under the Student-t copula can also be obtained, by
setting θ = 0 in (4.6). Note that θ = 0 does not imply the case of independence for Student-t
copula, in line with [37].

If we set ρ = 0 in (4.11), we have the bond price expression under the celebrated Cox-
Ingersoll-Ross (1985) model in [6]. Due to the dependence of simultaneous event jumps of
Y (i)’s with sharing event jump frequency rate ρ, we have that

E
[

e−∑
2
i=1 Ψ

(i)
t

]
6= E

[
e−Ψ

(1)
t

]
E
[

e−Ψ
(2)
t

]
.

If the event jump Y (i) for i= 1,2 occurs by a Poisson process M(i)
t with its frequency rate ρ(i)

respectively and everything else is independent of each other, the expression of the defaultable
bond price, that is simply the product of the bond issuer’s survival probability and the discount
factor.

4.3 Bond Price and Term Structure Analyses
Now we examine the behaviour of the defaultable zero coupon bond prices under three different
copulas mentioned in section 4.2. For simplicity, we assume that the jump sizes of both the
bond issuer’s default intensity (i = 1) and the market short rate (i = 2) are represented by
exponential distributions. The hypothetical defaultable bond pays redemption value $100 at
maturity. Computation was done with Mathematica.

The defaultable bond price values are computed using (4.10), and the simple bond yield dt
is obtained using the following formula:

dt =

(
Future Value

Pt

) 1
T−t

−1.
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We examine two scenarios whereby the exponential jump size parameters, µ(1) and µ(2)

are assigned the values (µ
(1)
t = 100,µ(2)

t = 200) and (µ
(1)
t = 5,µ(2)

t = 10). The first set of
parameters represents a safer environment due to low average jump sizes (i.e. 1

100 and 1
200 ),

while the second set denotes a relatively riskier environment with high average jump sizes (i.e.
1
5 and 1

10 ). Assuming an average jump occurrences of 4 times per year (i.e. ρ = 4), the value of
other parameters are summarized in Table 4.1.

TABLE 4.1: Parameter values of bond issuer’s default intensity and short rate

c(i) a(i) b(i) σ (i) ρ(i) λ
(i)
0

Issuer (1) 0.15 -1 0 0.12 4 0.05
Short rate (2) 0.2 -1 0 0.1 4 0.0023

With the chosen parameters, we now examine the behaviour of bond prices with one-year
maturity across θ . Table 4.2 exhibits the bond price for each scenario under the three copulas
considered:

TABLE 4.2: Zero coupon bond price under various copulas for t = 1

µ
(1)
t = 100 and µ

(2)
t = 200 µ

(1)
t = 5 and µ

(2)
t = 10

θ FGM Gaussian Student-t FGM Gaussian Student-t
−0.95 92.6268 92.5294 89.4241 57.7970 57.3593 51.0189
−0.9 92.6269 92.5295 89.5639 57.8096 57.3873 51.0301
−0.5 92.6274 92.6261 89.5779 57.9103 57.6685 51.2747

0 92.6281 92.6281 90.0017 58.0364 58.0364 51.8668
0.5 92.6288 92.6305 90.0297 58.1628 58.4698 52.7912
0.9 92.6293 92.6328 90.1210 58.2642 58.8652 53.8830

0.95 92.6293 92.6338 90.1511 58.2768 58.8701 54.0655
Range 0.2523 10.4383 72.7039 47.9825 151.0781 304.6528

We also compute the yield for bonds priced under all three copulas. Table 4.3 shows the
yield for bonds maturing in one year under the copulas considered for both sets of jump sizes
(µ

(1)
t = 100,µ(2)

t = 200) and (µ
(1)
t = 5,µ(2)

t = 10).
The term ”Range” in Table 4.2 is defined as the difference between the bond prices given

by θ 0.95 and θ−0.95 in basis point (bps). We see that as the dependence structure θ progressed
from negative to positive, the bond price figures in Table 4.2 demonstrate an increasing pattern
while the bond yield figure in Table 4.3 show a decreasing pattern under all copulas considered.

In comparison with the other two copulas, the bond price values are the lowest under the
Student-t copula, suggesting that a dependence structure under the Student-t copula could be a
good candidate to depict a riskier environment. Analogously, the bond yield is highest under
the Student-t copula and lowest under the FGM copula.

It is also worth noting that the computations under the Student-t copula does not give the
same values of bond prices and yields as the Gaussian and FGM copula when θ = 0. In contrast
to the general theorem of copula, the Student-t copula does not give an independence case when
the dependence parameter θ = 0, and hence would not result in product copula, as noted in [37].
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TABLE 4.3: Zero coupon bond yield under various copulas for t = 1

µ
(1)
t = 100 and µ

(2)
t = 200 µ

(1)
t = 5 and µ

(2)
t = 10

θ FGM Gaussian Student-t FGM Gaussian Student-t
-0.95 7.9601% 8.0738% 11.8267% 73.0193% 74.3395% 96.0056%
-0.9 7.9600% 8.0736% 11.6522% 72.9817% 74.2546% 95.9626%
-0.5 7.9594% 7.9609% 11.6346% 72.6808% 73.4049% 95.0280%

0 7.9586% 7.9586% 11.1090% 72.3056% 72.3056% 92.8017%
0.5 7.9578% 7.9558% 11.0744% 71.9311% 71.0286% 89.4254%
0.9 7.9572% 7.9531% 10.9619% 71.6321% 69.8796% 85.5872%
0.95 7.9571% 7.9520% 10.9248% 71.5947% 69.8655% 84.9609%

When comparing the bond yield across θ for both scenarios, it is noticed that the yield for the
case of µ

(1)
t = 5 and µ

(2)
t = 10 are much higher than the yields given by the case of µ

(1)
t = 100

and µ
(2)
t = 200 for all copula. This is not surprising as lower exponentially distributed jump size

parameters indicate a higher average jump size, thereby indicating a relatively unsafe market
environment.

FIGURE 4.7: Bond price as a function of θ and maturity under the jump diffusion model with Student-
t copula dependence structure and jump sizes (µ(1)

t = 100,µ(2)
t = 200) (left) and (µ

(1)
t = 5,µ(2)

t = 10)
(right)

Figure 4.7 and 4.8 show the bond price and bond yield under the jump diffusion process
with dependence structure captured by the Student-t copula as a function of maturity (T − t)
(on the x-axis) and θ (on the y-axis). Under both scenarios of (µ(1)

t = 100, µ
(2)
t = 200) and

(µ
(1)
t = 5, µ

(2)
t = 10), the bond price decreased and yield increased as maturity increased.

Since the bond price and bond yield under the Gaussian and the FGM copula have a similar
pattern, we show the diagrams in Appendix C.

4.4 Data & Model Calibration
In this section, we use the model in equation (4.1) with the three copulas considered in Sec-
tion 4.2 (i.e. equations (4.2), (4.3) and (4.4)) and we calibrate the model to the market price of
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FIGURE 4.8: Bond yield as a function of θ and maturity under the jump diffusion model with Student-
t copula dependence structure and jump sizes (µ(1)

t = 100,µ(2)
t = 200) (left) and (µ

(1)
t = 5,µ(2)

t = 10)
(right)

zero coupon bonds traded in various markets. These zero coupon bonds were issued by three
corporations with various Moody’s ratings and were obtained from the Bloomberg terminal on
30 October 2012. The information of each bond is given in Table 4.4. Following the one-day
calibration, we move on to calibrate the model in equation (4.1) with the Student-t copula in
equation (4.4) to the daily market price of the zero coupon bond issued by Microsoft Inc. for an
extended time period of one year.

TABLE 4.4: Three zero coupon bonds issued by Microsoft Inc, National Australia Bank (NAB) and
Eskom Ltd.

Issuer Microsoft Inc. NAB Eskom Holdings
Country USA Australia South Africa

Sector/Industry Technology Financial Services Energy
Maturity (years) 3 5 20

Price $102.463 $96.406 $60.853
Yield (%) -3.942 1.9057 8.1377

Rating (Moody’s) Aaa Aa2 Baa3
T − t (years) 0.6210 1.94935 6.165

In total, 15 parameters need to be calibrated under the FGM and Gaussian copulas, and
an extra parameter under the Student-t copula which is the degree of freedom (DoF). Parallel
with the assumption made in [25], it was also assumed that each jump size should not exceed
100%, which is a reasonable assumption for the market short rate and daily default intensity.
Microsoft Inc. was chosen in this study to represent issuers with strong credibility and National
Australia Bank represents issuers from the Australian financial industry. The selection of Eskom
Holdings, a major electricity supplier in South Africa, aims to represent issuers from emerging
markets.

We refer to [7] for issues related to calibration as well as numerical implementation of
the calibration method in the framework of jump diffusion model. Using the in-built function
NMinimize in Mathematica (refer to Numerical Nonlinear Global Optimization at https://reference.
wolfram.com/language/ref/NMinimize.html and http://reference.wolfram.com/language/tutorial/
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ConstrainedOptimizationGlobalNumerical.html for more information), we find, at each sample
point, the set of calibrated parameters τ that give the global minimum point of the following
objective function

τ =
argmin

τ
(P(T ;τ)−PM (T ))2

PM (T )2 , (4.12)

where PM (T ) denotes the market price and P(T ; τ̂) is given by equation (4.10), subject to the
constraints implied by the model as defined in Section 4.2 as well as the volatility parameters
of an elliptical copula, φi being non-negative for i = 1,2. While calibrations are normally done
with financial instruments having various maturities such as in [13] and [7], we only calibrate
the objective function to one zero coupon bond at a time since only one zero coupon instrument
is issued by Microsoft Inc. and NAB. Hence the summation sign is not required in our objective
function.

4.4.1 One-day Calibration

We present the values of calibrated parameters for each zero coupon bond considered in Ta-
bles 4.5, 4.6 and 4.7. As in Section 4.3, the bond issuer’s default intensity is denoted by 1 and
market short rate by 2. We denote the decay rate by parameter c(i)a(i) and the constant reversion
level by c(i)b(i).

The results from the one-day calibrations suggest that calibrating the jump diffusion model
under the Student-t copula dependence structure gives a better fit for all three zero coupon bonds
chosen (Microsoft Inc, NAB and Eskom Holdings). Calibrating under the Student-t copula
consistently shows the least error relative to the other two copulas for all the bonds considered.

As this study examine the use of jump diffusion model with copula dependence structure
in defaultable bond pricing, we will emphasize the analyses of our results from the perspective
of dependence measure. We note that the zero coupon bond issued by Microsoft Inc. showed
the value of θ of nearly 0. It is not surprising to find that the defaultability of a strong firm
such as Microsoft Inc. to be less dependent on the market short rate. It is also interesting
to note the positive and negative θ values between the market short rate and NAB’s default
intensity. Being a financial institution, it is possible for a bank’s default rate to have positive
and negative relationship with the driver of its source of income, i.e. the market short rate.
The relationship between interest rate and defaultability of a bank is rather inexplicit, as banks
could adopt different strategy to survive given an interest rate environment. Finally, the utility
company Eskom Holdings, shows a positive dependency between the market short rate and its
default intensity ranging from approximately 0.2 to 0.6. This is expected because an increase
in interest rate would adversely affect consumers’ spending ability, and hence their ability to
pay utility bills. Nevertheless, a better perspective on the dependency between a firms default
rate and the market short rate would be obtainable if all the bonds issued by the firm itself were
calibrated, for an extended period of time. Hence, in the next section, we calibrate the Microsoft
Inc. zero coupon bond for an extended period of time.
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TABLE 4.5: Calibrated parameters for zero coupon bond issued by Microsoft Inc.
Issuer Microsoft Inc.($102.463, -3.9420%, 0.621 years, Aaa)

Parameters Gaussian FGM t-copula
c(1)a(1) −2.0431 −2.066994 −2.30065
c(1)b(1) 11.38226 2.315928 4.359838

X (1) 0.000494 3.7∗10−05 0.176910
c(2)a(2) −0.859803 −0.007487 −0.442561
c(2)b(2) 2.049926 0.008974 0.760246

X (2) 0.043001 0.025072 0.047887
µ(1) 5.776155 2.109325 2.661011
µ(2) 1.371715 1.460639 2.609246
θ -0.194220 0.046990 0.069294
ρ 2.002222 2.316447 2.045547

σ (1) 0.499999 0.286300 0.478281
σ (2) 0.355271 0.273952 0.360174
φ1 1.453423 NA 0.149088
φ2 1.872341 NA 0.889886

DOF NA NA 3.944993
Error 1.941907 24.262991 0.352635

Implied Price $104.405 $73.484 $102.816
Implied Yield −6.7062% 64.2368% −4.3734%

4.4.2 One-year Calibration: Microsoft Inc. Zero Coupon Bond
In the previous one-day calibrations, Student-t copula consistently returned the least error for
all three bonds. Therefore, we now perform daily calibration on the zero coupon bond issued
by Microsoft Inc. for an extended period of one year, assuming that the dependence structure is
captured by the Student-t copula. The jump diffusion model is calibrated to 268 data points of
Microsoft Inc. bond price dated from 22 June 2010 to 30 June 2011.

The calibrated price is illustrated in Figure 4.9, while Table 4.8 exhibits summary statistics
of the average, standard deviation, minimum and maximum value of each calibrated parameter.
We also compute the relative error of the calibrated data points, given by (P(T ;τ̂)−PM(T ))

PM(T ) , as
displayed in Figure 4.10.

The one-year calibration of the Microsoft Inc. bond shows that, the average one-year abso-
lute error is higher than the one-day calibration counterpart, i.e. 1.2659 as opposed to 0.352635.
This is due to some calibrations showing very high error, where the model price was much
higher than the market price, as presented by a few high spikes in Figure 4.9. However, a closer
look at the relative error of 268 data points show that calibration of 264 data points return a
relative error of less than 5%, 261 calibrations have a relative error of less than 4%, 255 cali-
brations have a relative error of less than 3%, 244 calibrations have a relative error of less than
2% and 213 calibrations have a relative error of less than 1%. We can therefore speak of good
fits of the model.

We also note that, the average θ value is almost 0, indicating very minimal dependence
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TABLE 4.6: Calibrated parameters for a zero coupon bond issued by NAB
Issuer NAB ($96.406, 1.9057%, 1.94935 years, Aa2)

Parameters Gaussian FGM t-copula
c(1)a(1) −5.520332 −6.351866 −0.622036
c(1)b(1) 6.503219 46.01755 14.58675

X (1) 0.336710 0.282795 0.994426
c(2)a(2) −1.769685 −13.34258 −0.372379
c(2)b(2) 4.566944 3.987893 0.584545

X (2) 0.034749 0.025226 1.55∗10−06

µ(1) 1.000001 2.934222 2.743003
µ(2) 2.369157 2.497194 2.203662
θ 0.432409 −0.999999 −0.860249
ρ 2.000008 2.000000 2.243709

σ (1) 0.337009 0.464926 0.499912
σ (2) 0.108473 0.134244 0.364607
φ1 2.95∗10−05 NA 4.470327
φ2 0.706481 NA 1.996665

DOF NA NA 2.000024
Error 0.384317 0.313358 0.262975

Implied Price $96.0217 $96.0926 $96.669
Implied Yield 2.1044% 2.0657% 1.7531%

between the jump sizes of Microsoft Inc.’s default intensity, X (1), and the market short rate,
X (2). This is possibly due to the fact that being a strong firm, Microsoft Inc.’s defaultability is
less dependent on the market short rate. We show the daily changes of each parameter in the
Appendix C.

4.5 Conclusion

This paper examined a bivariate jump diffusion model whose jump sizes are dependent. The
variables were the default intensity of a bond issuer X (1)

t and the short rate of interest X (2)
t ,

whose jump sizes were exponentially distributed and that their dependence structure was cap-
tured by copulas. The copulas considered in this studies were the FGM copula, Gaussian copula
and Student-t copula.

Using the martingale method and the PDMP technique, we derived the joint Laplace trans-
form of the distribution of the vector

(
Ψ

(1)
t ,Ψ

(2)
t ,X (1)

t ,X (2)
t , t

)
. The expression was then used to

arrive at the defaultable and default-free bond price formulae under the jump diffusion model.
We then examined the bond terms structure assuming dependence structure of the jump sizes

were captured by the three copulas. The results indicated that among the 3 copulas, modelling
the bond price under the Student-t copula showed the widest range between both ends of the
dependence parameters, i.e. θ = −0.95 and θ = 0.95, suggesting that it could be used to
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TABLE 4.7: Calibrated parameters for zero coupon bond issued by Eskom Ltd.
Issuer Eskom ($60.853,8.138%,6.165years, Baa3)

Parameters Gaussian FGM t-copula
c(1)a(1) −0.056914 −1.745277 −3.318189
c(1)b(1) 0.35557 6.015507 11.09728

X (1) 0.717708 0.000875 0.345322
c(2)a(2) −2.011638 −0.05307 −4.730152
c(2)b(2) 0.600572 0.402295 2.22758

X (2) 0.037134 0.026512 0.031688
µ(1) 2.957392 1.0000001 2.18082
µ(2) 2.160714 5.264062 2.86555
θ 0.613244 0.436324 0.203793
ρ 2.003514 2.460673 2.00001

σ (1) 0.055179 0.223754 0.206944
σ (2) 0.054716 0.5 0.219721
φ1 1.053439 NA 4.25∗10−05

φ2 0.010771 NA 1.95177
DOF NA NA 3.50542
Error 1.420084 0.037692 0.0250109

Implied Price $59.4329 $60.8153 $60.8780
Implied Yield 8.8063% 8.4013% 8.3832%

represent riskier environment.
This was then followed by calibrations of the model to the market price of the zero coupon

bond issued by three corporations: Microsoft Inc., NAB as well as Eskom Holdings. The one-
day calibrations to a zero coupon bond showed that the Student-t copula provided a good fit
with the lowest error for all the three bonds considered, as opposed to the other two copulas.
Thence, we calibrated the model to the Microsoft Inc. zero coupon bond for an extended period
of one year and found that the model showed a good fit for the date chosen, with 97% of the
calibrations returning an error of less than 5%.

It would be of interest to calibrate the model to the bonds with various maturities issued by
a corporation to examine the dependency between its defaultability and short rate of interest,
which we leave for further research. We can also consider calibration of the model to sovereign
bonds as the next objective of further research to have a better insight on the defaultability of a
government.
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FIGURE 4.9: Model Price (red) vs. Market Price (blue)

TABLE 4.8: Summary statistics of calibrated parameters for calibration period 22 June 2010 to 30
June 2011.

Issuer Microsoft Inc.(Aaa)
Parameters Mean Std Deviation Min Max

c(1)a(1) -2.091164 2.472539 -20.249450 0.101236
c(1)b(1) 14.428056 122.651762 0.011320 17.155334

X (1) 0.215246 0.251552 0 1
c(2)a(2) -7.013011 9.655850 -95.881207 -0.019032
c(2)b(2) 4.100117 42.740459 0.027584 4.333827

X (2) 0.022493 0.017136 0 0.05
µ(1) 1.504224 1.152661 1.32*10−09 5.63567
µ(2) 1.230995 1.108728 6.76*10−09 4.52966
θ 0.003020 0.693922 -1 1
ρ 2.121745 0.225438 2 3.50457

σ (1) 0.336919 0.114377 0.0964791 0.5
σ (2) 0.338958 0.134567 0.047618 0.5
φ1 1.813828 1.598807 1.14*10−08 7.58983
φ2 1.337496 1.442467 5.43*10−09 10.0689

DOF 2.798754 0.863816 2 6.3169
Error 1.280941 1.538154 2.515*10−12 13.6572

Rel Error 1.2357% 1.483% 0.000% 12.946%
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FIGURE 4.10: Jump Diffusion Model with Student-t copula dependence structure: Relative Error
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[38] Schönbucher, P. J. and Schubert, D. (2001): Copula-dependent default risk in intensity
models, Working Paper, Department of Statistics, Bonn University.

[39] Shaw, W.T. and Lee, K.T.A. (2007): “Copula methods vs canonical multivariate distri-
butions: the multivariate Student-t distribution with general degrees of freedom”, Working
Paper, Department of Mathematics, Kings College, University of London

[40] Wolfram Language and System Documentation Centre. ”Numerical Nonlin-
ear Global Optimization ” Wolfram Language Tutorial. (Retrieved 16 July, 2013).
http://reference.wolfram.com/language/tutorial/ConstrainedOptimizationGlobalNumerical.html.



86 BIBLIOGRAPHY



5
Conclusion

This thesis addressed the topic of copula modelling in insurance and credit risk. To do so, it
devoted Chapter 2 to discuss the use of copulas in the actuarial field of study, while Chapters
3 and 4 examined the use of copula in mathematical finance. This concluding section aims to
summarise and highlight the contributions of each research paper.

Four copulas were considered in the framework provided: the FGM, Gaussian, Student-t
and Gumbel copulas. While there has been extensive research in the insurance and finance
area using the FGM, Gumbel and Gaussian copulas, to the best of the researchers’ knowledge,
the study of the Student-t copula in CDS pricing and bond pricing under the jump diffusion
approach as well as the study of Gaussian copula in the classical actuarial risk theory have not
previously been undertaken extensively.

The article in chapter 2 titled Neumann Series on the Recursive Moments of Copula-Dependent
Aggregate Discounted Claims employed copulas to capture the dependence structure between
the inter-claim arrival time and claim sizes in classical actuarial risk theory. To do so, the
expression for the mth order moment proposed in [1] and [4] was represented in the form of
the Volterra integral equation (VIE) of the second kind, which is widely used in renewal the-
ory, demographics, electromagnetism and viscoelasticity. The main contribution of this article,
which was the Neumann series expression for this recursive equation was derived using the
Picard method of successive approximations. Based on the expression, the first two moments
of the aggregate discounted claims was computed. For the dependence structure between the
inter-claim arrival time and claim sizes, an FGM, Gaussian and Gumbel copula were employed
together with exponential marginal distributions. The values of moments of the aggregate dis-
counted claims were shown, as well as the loaded premium for each copula used in this study.
It would have been interesting to derive the expression for the mth-moment using other joint
pdfs between the claim sizes and the inter-claim arrival time, such as the Weibull distribution,
as in [5]. Other copulas with different claim size distributions for X may be considered in the
proposed approach, which could be explored in future research. The Monte Carlo simulation
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and other numerical methods can also be considered to solve the VIE (such as Runge–Kutta and
the collocation methods), as the next objective of further research to deal with the computation
of higher moments. This article has been published in the special issue of the journal Risks:
Application of Stochastic Processes in Insurance.

In the second article titled A multivariate jump diffusion process for counterparty risk in
CDS rates, the multivariate jump diffusion process examined has been used in modeling coun-
terparty risk in CDS rates. Under this process, the jumps (i.e. magnitude of contribution of
primary events to default intensities) were assumed to occur simultaneously and their sizes are
dependent. A homogeneous Poisson process was used as a counting process to account for si-
multaneous event jumps in default intensities. An FGM copula, Gaussian copula and Student-t
copula, together with exponential margins were used to model the dependence structure be-
tween event jump sizes. The simulated paths of the jump diffusion intensity processes under
the three copulas, were also illustrated with various dependence parameter values, θ . By ap-
plying copula-dependent default intensity to the multivariate Cox process, joint survival/default
probability and other relevant joint probabilities were derived via the joint Laplace transforms,
for which the PDMP theory and standard martingale methodology were used. The calculation
of joint survival/default probability were shown, together with an application to CDS rate con-
sidering counterparty risk, whereby each counterparty’s default intensity was assumed to follow
the jump diffusion process. This was then followed by the sensitivity analyses of the CDS rate
with respect to the parameters used in the jump diffusion model. The multivariate framework of
the jump diffusion model with copula dependence structure has the potential to be applicable to
a variety of problems, where multiple transition rates are involved in the realms of economics,
finance and insurance that could be the object of further research.

The final paper, titled Jump Diffusion Model with Copula Dependence Structure in De-
faultable Bond Pricing, examined the bivariate jump diffusion model whose jump sizes were
dependent. Instead of financial counterparties’ default intensity as in chapter 3, the variables
considered were the default intensity of a bond issuer X (1)

t and the short rate X (2)
t . Similar to the

second article, the jump sizes were assumed to be exponentially distributed and that their de-
pendence structure was captured by the FGM, Gaussian and Student-t copula. Using the martin-
gale method and the PDMP technique, the joint Laplace Transform of the bivariate distribution(

Ψ
(1)
t ,Ψ

(2)
t ,X (1)

t ,X (2)
t , t

)
was derived and used to obtain the defaultable and default-free bond

price formulae under the jump diffusion model. The terms structure of the defaultable bond
was then examined and the results indicated that among the 3 copulas, modelling the bond price
under the FGM copula showed the lowest range between both ends of the dependence parame-
ters, i.e. θ = ±0.95. In line with [6], we also found that the bond price value under Student-t
copula when θ = 0 does not equal to its FGM and Gaussian counterparts, which corresponded
to product copula. This was then followed by calibrations of zero coupon bond issued by three
corporations, which were Microsoft Inc., NAB and Eskom Holdings. Our one-day calibration
to each of the zero coupon bond data showed that the Student-t copula provided a good fit with
the lowest error for all the three bonds considered, as opposed to the other two copulas. Thence,
we calibrate the model to Microsoft Inc. zero coupon bond for an extended period of one year
and found that the model showed a good fit for the period chosen, with 97% of the calibrations
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returning error of less than 5%. In short, this chapter contributed to the bivariate copula depen-
dence structure from the perspective of bond price calibration.

Due to time constraints, this research did not extensively examine the computational aspects
of the formula. By simply performing raw computation of the sophisticated explicit form of
solution presented in all three studies, the accuracy of the numerical results may have been
jeopardised. This is especially true as θ approached the tail side of the elliptical and Gumbel
copulas. This can result from issues such as the slow convergence of the numerical integration,
highly oscillatory integrand or working precision being too small. Hence, in the computation
using Mathematica, the Global Adaptive numerical integration strategy was employed, in order
to balance between the accuracy and the amount of time available. It is also noted that the
results from Mathematica could have been different if this study had been computed using
different software, such as MATLAB or R. This issue presents another of the many directions
that may be taken in further research.
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A
Derivation of the joint Laplace transform of

integrated multivariate processes

1. We assume that each obligor/macroeconomic variable has default intensity process with
the following dynamic:

dX (i)
t = c(i)

(
b(i)+a(i)X (i)

t

)
dt +σ

(i)
√

X (i)
t dW (i)

t +dC(i)
t

where i = 1,2, . . . ,n,r is the unique obligor of a particular financial contract and r is the
short rate process governing the financial environment. C(i)

t is a compound Poisson process
given by

C(i)
t =

M(i)
t

∑
j=1

Y (i)
j ,

where M(i)
t ∼ Po

(
ρ(i)t

)
is a Poisson process for each obligor and Y (i) is a random variable

representing the jump size for each obligor i. In this study, we assume M(i)
t = Mt ∼ Po(ρt)

for all i.

2. We also set Ψ
(i)
t =

t∫
0

X (i)
s ds and we try to find the generator of the process(

Ψ
(1)
t , . . . ,Ψ

(n)
t ,X (1)

t , . . . ,X (n)
t , t

)
acting on a function

f
(

Ψ
(1)
t , . . . ,Ψ

(n)
t ,X (1)

t , . . . ,X (n)
t , t

)
= exp

{
B(t)−

n

∑
i=1

γ
(i)

Ψ
(i)−

n

∑
i=1

A(i)
t x(i)

}
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The generator of the process is given by

A f
(

Ψ
(1)
t , . . . ,Ψ

(n)
t ,X (1)

t , . . . ,X (n)
t , t

)
=

∂ f
∂ t

+
n

∑
i=1

∂ f
∂Ψ(i)

x(i)+
n

∑
i=1

c(i)
(

b(i)+a(i)X (i)
t

)
∂ f

∂x(i)
+

1
2

n

∑
i=1

(
σ
(i)
√

x(i)
)2 ∂ 2 f

∂x(i)
2

+ρ

 ∫
∞

0
n· · ·
∫

∞

0 f
(

Ψ
(1)
t , . . . ,Ψ

(n)
t ,x(1)t + y(1)t , . . . ,x(n)t + y(1)t , t

)
×dC

(
F1

(
y(1)
)
, · · · ,Fn

(
y(n)
))
− f

(
Ψ

(1)
t , . . . ,Ψ

(n)
t ,X (1)

t , . . . ,X (n)
t , t

) 
3. We first find the partial derivatives of the function f , that is:

∂ f
∂ t

=

[
B′ (t)−

n

∑
i=1

A(i)
′

t x(i)
]

f
(

Ψ
(1)
t , . . . ,Ψ

(n)
t ,X (1)

t , . . . ,X (n)
t , t

)
∂ f

∂x(i)
=−A(i)

t f
(

Ψ
(1)
t , . . . ,Ψ

(n)
t ,X (1)

t , . . . ,X (n)
t , t

)
∂ f

∂Ψ(i)
=−γ

(i) f
(

Ψ
(1)
t , . . . ,Ψ

(n)
t ,X (1)

t , . . . ,X (n)
t , t

)
∂ 2 f

∂x(i)
2 =

(
A(i)

t

)2
f
(

Ψ
(1)
t , . . . ,Ψ

(n)
t ,X (1)

t , . . . ,X (n)
t , t

)
where

f
(

Ψ
(1)
t , . . . ,Ψ

(n)
t ,x(1)t + y(1)t , . . . ,x(n)t + y(1)t , t

)
= exp

{
B(t)−

n

∑
i=1

γ
(i)

Ψ
(i)−

n

∑
i=1

A(i)
t

(
x(i)+ y(i)

)}
4. We substitute the partial derivative of the function f into the above equation and find

A f
(

Ψ
(1)
t , . . . ,Ψ

(n)
t ,X (1)

t , . . . ,X (n)
t , t

)
= f

(
Ψ

(1)
t , . . . ,Ψ

(n)
t ,X (1)

t , . . . ,X (n)
t , t

)
×(

B′ (t)−
n

∑
i=1

A(i)
′

t x(i)−
n

∑
i=1

γ
(i)x(i)−

n

∑
i=1

A(i)
t c(i)

(
b(i)+a(i)X (i)

t

)
+

1
2

n

∑
i=1

(
A(i)

t σ
(i)
√

x(i)
)2
)

+ρ


∫

∞

0
n· · ·
∫

∞

0 exp
{

B(s)−
n
∑

i=1
γ(i)Ψ(i)−

n
∑

i=1
A(i)

s

(
x(i)+ y(i)

)}
×dC

(
F1

(
y(1)
)
, · · · ,Fn

(
y(n)
))
− exp

{
B(t)−

n
∑

i=1
γ(i)Ψ(i)−

n
∑

i=1
A(i)

t x(i)
}


In order for the equation f to be a martingale, we equate the generator to 0 and obtain

B′ (t)−
n
∑

i=1
A(i)

′

t x(i)−
n
∑

i=1
γ(i)x(i)−

n
∑

i=1
A(i)

t c(i)
(

b(i)+a(i)x(i)t

)
+ 1

2

n
∑

i=1

(
A(i)σ(i)

t

√
x(i)
)2

+ρ

 ∫ ∞

0
n· · ·
∫

∞

0 exp
{
−

n
∑

i=1
A(i)

s y(i)
}

dC
(

F1

(
y(1)
)
, · · · ,Fn

(
y(n)
))

−1

 = 0.
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5. We now gather the constant term and the x(i)’s to find the explicit form of each variable in
the generator equation, starting with

−A(i)
′

t − γ
(i)−A(i)

t c(i)a(i)+
1
2

(
A(i)

t σ
(i)
)2

= 0

A(i)
′

t =
1
2

(
A(i)

t σ
(i)
)2
− γ

(i)−A(i)
t c(i)a(i)

2A(i)
′

t =
(

A(i)
t σ

(i)
)2
−2γ

(i)−2A(i)
t c(i)a(i)

2A(i)
′

t(
A(i)

t σ (i)
)2
−2γ(i)−2A(i)

t c(i)a(i)
= 1

A(i)
′

t(
σ (i)A(i)

t

)2
−2c(i)a(i)A(i)

t −2γ(i)
=

1
2

6. By adding and subtracting the same constant
(

c(i)a(i)

σ (i)

)2
, we obtain

A(i)
′

t(
σ (i)A(i)

t

)2
−2c(i)a(i)A(i)

t +
(

c(i)a(i)
σ (i)

)2
−
(

c(i)a(i)
σ (i)

)2
−2γ(i)

=
1
2

and we can modify the above equation by completing the square to obtain the following

A(i)
′

t[(
σ (i)A(i)

t

)
−
(

c(i)a(i)
σ (i)

)]2
−
[(

c(i)a(i)
σ (i)

)2
+2γ(i)

] =
1
2

⇒ A(i)
′

t[(
σ (i)A(i)

t

)
−
(

c(i)a(i)
σ (i)

)
−
√(

c(i)a(i)
σ (i)

)2
+2γ(i)

]
× 1[(

σ (i)A(i)
t

)
−
(

c(i)a(i)
σ (i)

)
+

√(
c(i)a(i)

σ (i)

)2
+2γ(i)

]
=

1
2
.

7. By partial fraction, we have

y
(a−b)(a+b)

=
y

2b
(a−b)

−
y

2b
(a+b)
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Hence, the equation can be written as

1
2

=
A(i)

′

t

2

√(
c(i)a(i)

σ (i)

)2
+2γ(i)

×


1(

σ (i)A(i)
t

)
−
(

c(i)a(i)

σ(i)

)
− 2

√(
c(i)a(i)

σ(i)

)2
+2γ(i)

− 1(
σ (i)A(i)

t

)
−
(

c(i)a(i)

σ(i)

)
+

2

√(
c(i)a(i)

σ(i)

)2
+2γ(i)




A(i)
′

t(
σ (i)A(i)

t

)
−
(

c(i)a(i)

σ(i)

)
−

√(
c(i)a(i)

σ(i)

)2
+2γ(i)

− A(i)
′

t(
σ (i)A(i)

t

)
−
(

c(i)a(i)

σ(i)

)
+

√(
c(i)a(i)

σ(i)

)2
+2γ(i)

=

√(
c(i)a(i)

σ (i)

)2

+2γ(i).

8. We perform integration on both sides with respect to s

t∫
0

√(
c(i)a(i)

σ (i)

)2

+2γ(i)ds

=

t∫
0

A(i)
′
(s)ds(

σ (i)A(i) (s)
)
−
(

c(i)a(i)
σ (i)

)
−
√(

c(i)a(i)
σ (i)

)2
+2γ(i)

−
t∫

0

A(i)
′
(s)ds(

σ (i)A(i) (s)
)
−
(

c(i)a(i)
σ (i)

)
+

√(
c(i)a(i)

σ (i)

)2
+2γ(i)

and obtain √(
c(i)a(i)

σ (i)

)2

+2γ(i)t−K(i)

=
1

σ (i)


ln

[(
σ (i)A(i) (t)

)
−
(

c(i)a(i)

σ (i)

)
−
√(

c(i)a(i)
σ (i)

)2
+2γ(i)

]

− ln

[(
σ (i)A(i) (t)

)
−
(

c(i)a(i)

σ (i)

)
+

√(
c(i)a(i)

σ (i)

)2
+2γ(i)

]

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σ
(i)

√(
c(i)a(i)

σ (i)

)2

+2γ(i)t−K(i)

= ln


(

σ (i)A(i) (t)
)
−
(

c(i)a(i)

σ (i)

)
−
√(

c(i)a(i)
σ (i)

)2
+2γ(i)

(
σ (i)A(i) (t)

)
−
(

c(i)a(i)
σ (i)

)
+

√(
c(i)a(i)

σ (i)

)2
+2γ(i)



giving us

exp

σ
(i)

√(
c(i)a(i)

σ (i)

)2

+2γ(i)t−K(i)

=

(
σ (i)A(i) (t)

)
−
(

c(i)a(i)

σ (i)

)
−
√(

c(i)a(i)
σ (i)

)2
+2γ(i)

(
σ (i)A(i) (t)

)
−
(

c(i)a(i)
σ (i)

)
+

√(
c(i)a(i)

σ (i)

)2
+2γ(i)

(
σ
(i)A(i) (t)

)
−

(
c(i)a(i)

σ (i)

)
−

√(
c(i)a(i)

σ (i)

)2

+2γ(i)

=
(

σ
(i)A(i) (t)

)
exp

σ
(i)

√(
c(i)a(i)

σ (i)

)2

+2γ(i)t−K(i)


−

(c(i)a(i)

σ (i)

)
−

√(
c(i)a(i)

σ (i)

)2

+2γ(i)

exp

σ
(i) 2

√(
c(i)a(i)

σ (i)

)2

+2γ(i)t−K(i)



(
σ
(i)A(i) (t)

)1− exp

σ
(i)

√(
c(i)a(i)

σ (i)

)2

+2γ(i)t−K(i)




=

(c(i)a(i)

σ (i)

)
+

√(
c(i)a(i)

σ (i)

)2

+2γ(i)


−

(c(i)a(i)

σ (i)

)
−

√(
c(i)a(i)

σ (i)

)2

+2γ(i)

exp

σ
(i)

√(
c(i)a(i)

σ (i)

)2

+2γ(i)t−K(i)

 .
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9. Rearranging the above equation, we obtain, for each obligor i, the expression

A(i) (t) =

[√(
c(i)a(i)

)2
+2
(
σ (i)
)2

γ(i)+ c(i)a(i)
]

(
σ (i)
)2

(
1− exp

{
σ (i)

√(
c(i)a(i)

σ (i)

)2
+2γ(i)t−K(i)

})

+

[√(
c(i)a(i)

)2
+2
(
σ (i)
)2

γ(i)− c(i)a(i)
]

exp

{
σ (i)

√(
c(i)a(i)

σ (i)

)2
+2γ(i)t−K(i)

}
(
σ (i)
)2

(
1− exp

{
σ (i)

√(
c(i)a(i)

σ (i)

)2
+2γ(i)t−K(i)

}) .

10. Let A(i) (T ) = α(i). The above expression, evaluated at time T , therefore becomes
[√(

c(i)a(i)
)2

+2
(
σ (i)
)2

γ(i)+ c(i)a(i)
]

+

[√(
c(i)a(i)

)2
+2
(
σ (i)
)2

γ(i)− c(i)a(i)
]

exp

{
σ (i)

√(
c(i)a(i)

σ (i)

)2
+2γ(i)T −K(i)

}


(
σ (i)
)2

(
1− exp

{
σ (i)

√(
c(i)a(i)

σ (i)

)2
+2γ(i)T −K(i)

}) =α
(i)

⇒


[(

c(i)a(i)

σ (i)

)
+

√(
c(i)a(i)

σ (i)

)2
+2γ(i)

]
−

[(
c(i)a(i)

σ (i)

)
−
√(

c(i)a(i)
σ (i)

)2
+2γ(i)

]

exp

{
σ (i)

√(
c(i)a(i)

σ (i)

)2
+2γ(i)T −K(i)

}


= α
(i)

σ
(i)

1− exp

σ
(i)

√(
c(i)a(i)

σ (i)

)2

+2γ(i)T −K(i)




⇒

α
(i)

σ
(i)−

(c(i)a(i)

σ (i)

)
−

√(
c(i)a(i)

σ (i)

)2

+2γ(i)


×exp

σ
(i)

√(
c(i)a(i)

σ (i)

)2

+2γ(i)T −K(i)


= α

(i)
σ
(i)−

(c(i)a(i)

σ (i)

)
+

√(
c(i)a(i)

σ (i)

)2

+2γ(i)


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We therefore get

exp
{

K(i)
}
=

exp

{
σ (i)

[√(
c(i)a(i)

σ (i)

)2
+2γ(i)T

]}{
α(i)σ (i)−

[(
c(i)a(i)

σ (i)

)
−
√(

c(i)a(i)
σ (i)

)2
+2γ(i)

]}

α(i)σ (i)−

[(
c(i)a(i)

σ (i)

)
+

√(
c(i)a(i)

σ (i)

)2
+2γ(i)

]
and obtain

K(i) = σ
(i)

√(
c(i)a(i)

σ (i)

)2

+2γ(i)T + ln

α(i)σ (i)−

[(
c(i)a(i)

σ (i)

)
−
√(

c(i)a(i)
σ (i)

)2
+2γ(i)

]

α(i)σ (i)−

[(
c(i)a(i)

σ (i)

)
+

2

√(
c(i)a(i)

σ (i)

)2
+2γ(i)

]

= D(i)T + ln

[
α(i)σ (i)2

−
[
c(i)a(i)−D(i)

]]
[
α(i)σ (i)2−

[
c(i)a(i)+D(i)

]]
where

D(i) =

√(
c(i)a(i)

)2
+2
(
σ (i)
)2

γ(i). (A.1)

11. With (A.1), eventually, we arrive at the full expression of A(i) (t), as a function of the time
to maturity T − t, given by[D(i)+ c(i)a(i)

]
+
[
D(i)−

(
c(i)a(i)

)]
e−D(i)(T−t)

α(i)σ (i)−
√(

c(i)a(i)
σ (i)

)2
+2γ(i)−

(
c(i)a(i)

σ (i)

)
α(i)σ (i)+

√(
c(i)a(i)

σ (i)

)2
+2γ(i)−

(
c(i)a(i)

σ (i)

)


÷
(

σ
(i)
)2

1−
α(i)σ (i)−

√(
c(i)a(i)

σ (i)

)2
+2γ(i)−

(
c(i)a(i)

σ (i)

)
α(i)σ (i)+

√(
c(i)a(i)

σ (i)

)2
+2γ(i)−

(
c(i)a(i)

σ (i)

)e−D(i)(T−t)



⇒ A(i) (t) =

[[
D(i)+ c(i)a(i)

]
+
[
D(i)−

(
c(i)a(i)

)]
e−D(i)(T−t) α(i)σ (i)2−D(i)−c(i)a(i)

α(i)σ (i)2+D(i)−c(i)a(i)

]
(
σ (i)
)2
(

1− α(i)σ (i)2−D(i)−c(i)a(i)

α(i)σ (i)2+D(i)−c(i)a(i)
e−D(i)(T−t)

)
12. We now try to find the expression for B(t) by gathering the constant terms and equate the

expression to 0.

0=B′ (t)+ρ

[∫
∞

0

n· · ·
∫

∞

0
exp

{
−

n

∑
i=1

A(i) (s)y(i)
}

dC
(

F1

(
y(1)
)
, · · · ,Fn

(
y(n)
))
−1

]
−

n

∑
i=1

A(i)
t c(i)b(i)
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giving us

B′ (t)=
n

∑
i=1

A(i)
t c(i)b(i)+ρ

[
1−

∫
∞

0

n· · ·
∫

∞

0
exp

{
−

n

∑
i=1

A(i) (t)y(i)
}

dC
(

F1

(
y(1)
)
, · · · ,Fn

(
y(n)
))]

.

We integrate both sides to obtain the expression for B(t) .

B(t) =
n

∑
i=1

c(i)b(i)
∫ t

0
A(i)

s ds+
∫ t

0
ρ

[
1− ĉ

(
A(1) (s) , · · · ,A(n) (s) ,s

)]
ds

where

ĉ
(

A(1) (s) , · · · ,A(n) (s) ,s
)
=
∫

∞

0

n· · ·
∫

∞

0
exp

{
−

n

∑
i=1

A(i) (s)y(i)
}

dC
(

F1

(
y(1)
)
, · · · ,Fn

(
y(n)
))

.

13. For the second part, we use Lemma 2.1 in Ma and Kim (2010) and use our previous
notation for A(i) (T ) = α(i) for all i whereby α(i) is a constant. Note that since the process
f is a martingale,

E

[
exp

{
B(T )−

n

∑
i=1

γ
(i)

Ψ
(i)
T −

n

∑
i=1

α
(i)x(i)T

}
| X (1)

0 , . . . ,X (n)
0

]

= exp

{
B(0)−

n

∑
i=1

γ
(i)

Ψ
(i)
0 −

n

∑
i=1

A(i) (0)x(i)0

}
.

And since Ψ
(i)
0 = 0 and B(0) = 0, the above equation becomes

E

[
exp

{
−

n

∑
i=1

γ
(i)

Ψ
(i)
T −

n

∑
i=1

α
(i)x(i)T

}
| X (1)

0 , . . . ,X (n)
0

]
= exp

{
−B(T )−

n

∑
i=1

A(i) (0)x(i)0

}
.(A.2)

14. Now, the equation (A.2) is an important equation as the study will be based on this equa-
tion and its variables modifications. We will now consider the cases when each variable
α(i) and γ(i) equals to 0. When α(i) = 0 for all i, then we obtain

A(i) (t) =
2γ(i)

[
1− exp

(
−(T − t)D(i)

)]
D(i)−

(
c(i)a(i)

)
+
(
D(i)+

(
c(i)a(i)

))
exp
(
−(T − t)D(i)

)
and

B(t) =
n

∑
i=1

c(i)b(i)
∫ t

0
A(i) (s)ds+

∫ t

0
ρ

[
1− ĉ

(
A(1) (s) , · · · ,A(n) (s) ,s

)]
ds.

15. And when γ(i) = 0 for all i, then the expressions in item 14 become

A(i) (t) =
2α(i)c(i)a(i)

α(i)
(
σ (i)
)2 [1− exp

(
−(T − t)c(i)a(i)

)]
+
(
2
(
c(i)a(i)

))
exp
(
−(T − t)c(i)a(i)

)
with

B(t) =
n

∑
i=1

c(i)b(i)
∫ t

0
A(i) (s)ds+

∫ t

0
ρ

[
1− ĉ

(
A(1) (s) , · · · ,A(n) (s) ,s

)]
ds.
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16. We can use the above equations to find the Laplace transform of the distribution of the
vectors

(
X (i)

T

)
and vectors

(
Ψ(i)

)
and for all i at time T . The Laplace transforms of the

distribution of the vectors
(

x(i)T

)
is given by

E

[
exp

{
−

n

∑
i=1

α
(i)X (i)

T

}
| X (1)

0 , . . . ,X (n)
0

]
= exp

{
−B(T )−

n

∑
i=1

A(i) (T )x(i)0

}

with A(i) (T ) and B(T ) now become

A(i) (T ) =
2a(i)c(i)α(i)

α(i)
(
σ (i)
)2
(

1− e−a(i)c(i)(σ (i))
2
T
)
+2a(i)c(i)e−a(i)c(i)(σ (i))

2

B(T ) =
n

∑
i=1

c(i)b(i)
∫ T

0
A(i) (s)ds+

∫ T

0
ρ

[
1− ĉ

(
A(1) (s) , · · · ,A(n) (s) ,s

)]
ds.

17. The Laplace transform of the distribution of the vectors
(

Ψ(i)
)

for all i at time T is ob-

tained by setting A(i) (T ) = α(i) = 0.

E

[
exp

{
−

n

∑
i=1

γ
(i)

Ψ
(i)
T

}
| X (1)

0 , . . . ,X (n)
0

]
= exp

{
−B(T )−

n

∑
i=1

A(i) (T )x(i)0

}
,

where B(T ) and A(i) (T ) are now given as the following:

A(i) (T ) =

[
D(i)+ c(i)a(i)

]
+
[
D(i)−

(
c(i)a(i)

)]
[−D(i)−(c(i)a(i))]

D(i)−(c(i)a(i))
exp
{
−T D(i)

}
(
σ (i)
)2
(

1− −D(i)−(c(i)a(i))
D(i)−(c(i)a(i))

exp
{
−T D(i)

})

B(T ) =
n

∑
i=1

c(i)b(i)
∫ T

0
A(i) (s)ds+

∫ T

0
ρ

[
1− ĉ

(
A(1) (s) , · · · ,A(n) (s) ,s

)]
ds
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B
Programming Code

This appendix section contains the Mathematica & MATLAB code developed to calculate the
expressions in this thesis.

B.1 Simulation of Jump Diffusion processes
% dr(t)=a[c-b*r(t)]dt+sigma1*sqrt[r(t)]dW(t)+dZ(t)
% simulates a CIR + compound poisson process with an exponential jump size
% distribution.
% r1(t) and r2(t) are dependent variables, captured by 3 types of copula

% Siti N Mohd Ramli 28.3.14
%% Define variables
T=5; % time horizon
timesteps=T*260;
lambda=4; % mean of poisson distribution
mu1=200; mu2=100; % mean of jump size distribution
var1=1/mu1∧2; % standard deviation of jump size distribution
var2 = 1/mu2∧2;
sigma1 = 0.25;sigma2 = 0.5;% diffusion rate for counterparty1&2

b1 = 0.5;b2 = 0.3; % drift for counterparty 1&2
a1 = 1;c1 = 0.1;
a2 = 1;c2 = 0.5;

rG1(1)= 1.5; rG2(1)= 2; rt1(1)= 1.5; rt2(1)= 2; rF1(1)= 1.5; rF2(1)= 2;% Initial intensitylevel
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rGmin1(1)= 1.5; rGmin2(1)= 2; rtmin1(1)= 1.5; rtmin2(1)= 2; rFmin1(1)= 1.5; rFmin2(1)=
2;
rG01(1) = 1.5; rG02(1) = 2; rt01(1) = 1.5; rt02(1) = 2; rF01(1) = 1.5; rF02(1) = 2;

%%Define copula components &generate student− t +Gaussian copula variables
rho1 = 0.95; rhomin1 =−0.95; rho0 = 0;nu = 3;
N = poissrnd(lambda∗T ); % number of jumps
u= rand(N,1)∗T ; % vector of jump times.We only need 1 vector as they jump simultaneously

copuniformt1 = copularnd(′t ′, [1rho1; rho11],nu,N);
copuniformG1 = copularnd(′gaussian′, rho1,N);
copuniformtmin1 = copularnd(′t ′, [1rhomin1; rhomin11],nu,N);
copuniformGmin1 = copularnd(′gaussian′, rhomin1,N);
copuniformt0 = copularnd(′t ′, [1rho0; rho01],nu,N);
copuniformG0 = copularnd(′gaussian′, rho0,N);

%%Generate FGM variables
U1 = rand(N,2);U10 = rand(N,2);
A = 1+ rho1.∗ (1−U1(:,1));B = sqrt(A.∧2−4.∗ (A+1).∗U10(:,2));
U2 = 2.∗U10(:,2)./(B+A);

C = 1+ rhomin1.∗ (1−U1(:,1));D = sqrt(C.∧2−4.∗ (C−1).∗U10(:,2));
U3 = 2.∗U10(:,2)./(C+D);

E = 1+ rho0.∗ (1−U1(:,1));F = sqrt(E.∧2−4.∗ (E−1).∗U10(:,2));
U4 = 2.∗U10(:,2)./(F +E);

%%Generate exponentially distributed RVs from the said copula
YG1 = expinv(copuniformG1(:,1),1/mu1);
YG2 = expinv(copuniformG1(:,2),1/mu2);
Yt1 = expinv(copuniformt1(:,1),1/mu1);
Yt2 = expinv(copuniformt1(:,2),1/mu2);
YF1 = expinv(U1(:,1),1/mu1);
YF2 = expinv(U2,1/mu2);

YGmin1 = expinv(copuniformGmin1(:,1),1/mu1);
YGmin2 = expinv(copuniformGmin1(:,2),1/mu2);
Ytmin1 = expinv(copuniformtmin1(:,1),1/mu1);
Ytmin2 = expinv(copuniformtmin1(:,2),1/mu2);
YFmin1 = expinv(U1(:,1),1/mu1);
YFmin2 = expinv(U3,1/mu2);

YG01 = expinv(copuniformG0(:,1),1/mu1);
YG02 = expinv(copuniformG0(:,2),1/mu2);
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Yt01 = expinv(copuniformt0(:,1),1/mu1);
Yt02 = expinv(copuniformt0(:,2),1/mu2);
YF01 = expinv(U1(:,1),1/mu1);
YF02 = expinv(U4,1/mu2);

W1 = randn(timesteps,1);W2 = randn(timesteps,1);
dt = T/timesteps;

%%Define the Euler approximation of the SDE with jumps
for j = 1 : timesteps
t = j/timesteps∗T ;
pathG1( j) = 0;pathG2( j) = 0;patht1( j) = 0;

patht2( j) = 0;pathF1( j) = 0;pathF2( j) = 0;
pathGmin1( j) = 0;pathGmin2( j) = 0;pathtmin1( j) = 0;

pathtmin2( j) = 0;pathFmin1( j) = 0;pathFmin2( j) = 0;
pathG01( j) = 0;pathG02( j) = 0;patht01( j) = 0;

patht02( j) = 0;pathF01( j) = 0;pathF02( j) = 0;
fork = 1 : N
ifu(k)< t
%for rho = 1
pathG1( j) = pathG1( j)+YG1(k);
pathG2( j) = pathG2( j)+YG2(k);
patht1( j) = patht1( j)+Yt1(k);
patht2( j) = patht2( j)+Yt2(k);
pathF1( j) = pathF1( j)+YF1(k);
pathF2( j) = pathF2( j)+YF2(k);

%for rho =−1
pathGmin1( j) = pathGmin1( j)+YGmin1(k);
pathGmin2( j) = pathGmin2( j)+YGmin2(k);
pathtmin1( j) = pathtmin1( j)+Ytmin1(k);
pathtmin2( j) = pathtmin2( j)+Ytmin2(k);
pathFmin1( j) = pathFmin1( j)+YFmin1(k);
pathFmin2( j) = pathFmin2( j)+YFmin2(k);

%for rho = 0
pathG01( j) = pathG01( j)+YG01(k);
pathG02( j) = pathG02( j)+YG02(k);
patht01( j) = patht01( j)+Yt01(k);
patht02( j) = patht02( j)+Yt02(k);
pathF01( j) = pathF01( j)+YF01(k);
pathF02( j) = pathF02( j)+YF02(k);
end
end
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if j > 1
%for rho = 1
rG1( j) = rG1( j−1)+ a1∗ (c1−b1∗ rG1( j−1))∗dt+ sigma1∗ sqrt(rG1( j−1))

*W1( j)/sqrt(timesteps)+(pathG1( j)−pathG1( j−1)+b1∗dt);
rG2( j) = rG2( j−1)+ a2∗ (c2−b2∗ rG2( j−1))∗dt+ sigma2∗ sqrt(rG2( j−1))

*W2( j)/sqrt(timesteps)+(pathG2( j)−pathG2( j−1)+b2∗dt);
rt1( j) = rt1( j−1)+ a1∗ (c1−b1∗ rt1( j−1))∗dt+ sigma1∗ sqrt(rt1( j−1))

*W1( j)/sqrt(timesteps)+(patht1( j)−patht1( j−1)+b1∗dt);
rt2( j) = rt2( j−1)+ a2∗ (c2−b2∗ rt2( j−1))∗dt+ sigma2∗ sqrt(rt2( j−1))

*W2( j)/sqrt(timesteps)+(patht2( j)−patht2( j−1)+b2∗dt);
rF1( j) = rF1( j−1)+ a1∗ (c1−b1∗ rF1( j−1))∗dt+ sigma1∗ sqrt(rF1( j−1))

*W1( j)/sqrt(timesteps)+(pathF1( j)−pathF1( j−1)+b1∗dt);
rF2( j) = rF2( j−1)+ a2∗ (c2−b2∗ rF2( j−1))∗dt+ sigma2∗ sqrt(rF2( j−1))

*W2( j)/sqrt(timesteps)+(pathF2( j)−pathF2( j−1)+b2∗dt);

%for rho =−1
rGmin1( j) = rGmin1( j−1)+ a1∗ (c1−b1∗ rGmin1( j−1))∗dt+ sigma1∗ sqrt(rGmin1( j−

1))∗W1( j)/sqrt(timesteps)+(pathGmin1( j)−pathGmin1( j−1)+b1∗dt);
rGmin2( j) = rGmin2( j−1)+ a2∗ (c2−b2∗ rGmin2( j−1))∗dt+ sigma2∗ sqrt(rGmin2( j−

1))∗W2( j)/sqrt(timesteps)+(pathGmin2( j)−pathGmin2( j−1)+b2∗dt);
rtmin1( j) = rtmin1( j−1)+a1∗ (c1−b1∗ rtmin1( j−1))∗dt+ sigma1∗ sqrt(rtmin1( j−1))∗

W1( j)/sqrt(timesteps)+(pathtmin1( j)−pathtmin1( j−1)+b1∗dt);
rtmin2( j) = rtmin2( j−1)+a2∗ (c2−b2∗ rtmin2( j−1))∗dt+ sigma2∗ sqrt(rtmin2( j−1))∗

W2( j)/sqrt(timesteps)+(pathtmin2( j)−pathtmin2( j−1)+b2∗dt);
rFmin1( j) = rFmin1( j− 1)+ a1 ∗ (c1− b1 ∗ rFmin1( j− 1)) ∗ dt+ sigma1 ∗ sqrt(rFmin1( j−

1))∗W1( j)/sqrt(timesteps)+(pathFmin1( j)−pathFmin1( j−1)+b1∗dt);
rFmin2( j) = rFmin2( j− 1)+ a2 ∗ (c2− b2 ∗ rFmin2( j− 1)) ∗ dt+ sigma2 ∗ sqrt(rFmin2( j−

1))∗W2( j)/sqrt(timesteps)+(pathFmin2( j)−pathFmin2( j−1)+b2∗dt);

%for rho = 0
rG01( j) = rG01( j−1)+ a1∗ (c1−b1∗ rG01( j−1))∗dt+ sigma1∗ sqrt(rG01( j−1))

*W1( j)/sqrt(timesteps)+(pathG01( j)−pathG01( j−1)+b1∗dt);
rG02( j) = rG02( j−1)+ a2∗ (c2−b2∗ rG02( j−1))∗dt+ sigma2∗ sqrt(rG02( j−1))

*W2( j)/sqrt(timesteps)+(pathG02( j)−pathG02( j−1)+b2∗dt);
rt01( j) = rt01( j−1)+ a1∗ (c1−b1∗ rt01( j−1))∗dt+ sigma1∗ sqrt(rt01( j−1))

*W1( j)/sqrt(timesteps)+(patht01( j)−patht01( j−1)+b1∗dt);
rt02( j) = rt02( j−1)+ a2∗ (c2−b2∗ rt02( j−1))∗dt+ sigma2∗ sqrt(rt02( j−1))

*W2( j)/sqrt(timesteps)+(patht02( j)−patht02( j−1)+b2∗dt);
rF01( j) = rF01( j−1)+ a1∗ (c1−b1∗ rF01( j−1))∗dt+ sigma1∗ sqrt(rF01( j−1))
*W1( j)/sqrt(timesteps)+(pathF01( j)−pathF01( j−1)+b1∗dt);
rF02( j) = rF02( j−1)+ a2∗ (c2−b2∗ rF02( j−1))∗dt+ sigma2∗ sqrt(rF02( j−1))

*W2( j)/sqrt(timesteps)+(pathF02( j)−pathF02( j−1)+b2∗dt);
end

end
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%%Plot
figure;
plot(rG1,′−b′,′MarkerSize′,2)
holdon
plot(rG2,′−r′,′MarkerSize′,2)
holdon
plot(rG01,′−m′,′MarkerSize′,2)
holdon
plot(rG02,′−g′,′MarkerSize′,2)
holdon
plot(rGmin1,′−c′,′MarkerSize′,2)
holdon
plot(rGmin2,′−k′,′MarkerSize′,2)
hleg= legend(′GaussianP10.95′,′P20.95′,′GaussianP10′,′P20′,′GaussianP1−0.95′,′P2−0.95′);
xlabel(′day′);ylabel(′Intensity Level′);

xlim([0timesteps]);

figure;
plot(rt1,′−b′,′MarkerSize′,2)
holdon
plot(rt2,′−r′,′MarkerSize′,2)
holdon
plot(rt01,′−m′,′MarkerSize′,2)
holdon
plot(rt02,′−g′,′MarkerSize′,2)
holdon
plot(rtmin1,′−c′,′MarkerSize′,2)
holdon
plot(rtmin2,′−k′,′MarkerSize′,2)
hleg= legend(′Student−tP10.95′,′P20.95′,′Student−tP10′,′P20′,′Student−tP1−0.95′,′P2−
0.95′);
xlabel(′day′);ylabel(′Intensity Level′);
xlim([0timesteps]);

figure
plot(rF1,′−b′,′MarkerSize′,2)
holdon
plot(rF2,′−r′,′MarkerSize′,2)
holdon
plot(rF01,′−m′,′MarkerSize′,2)
holdon
plot(rF02,′−g′,′MarkerSize′,2)
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holdon
plot(rFmin1,′−c′,′MarkerSize′,2)
holdon
plot(rFmin2,′−k′,′MarkerSize′,2)
hleg = legend(′FGMP10.95′,′P20.95′,′FGMP10′,′P20′,′FGMP1−0.95′,′P2−0.95′);
xlabel(′day′);ylabel(′Intensity Level′);
xlim([0 1300]);

B.2 Programming Code for Chapter 2
Define FGM copula with Weibull and Exponential margins
ClearAll[θ , p, l,β ,α,δ ];
F [θ ,p , l ,β ] = CopulaDistribution[{“FGM”,θ},
{WeibullDistribution[p, l],ExponentialDistribution[β ]}];
FE[θ ,α ,β ] = CopulaDistribution[{“Binormal”,θ},
{ExponentialDistribution[α],ExponentialDistribution[β ]}];

Drawing copula plot
Table[ListPlot[RandomVariate[F [θ , p, l,β ],100],
PlotLabel→ Row[{“θ = ”,θ},{“Shape = ”, p},{“Scale = ”, l},{“Time = ”,β}]],
{θ ,{−0.999,−0.5,0.0000000000000001,0.5,0.999}},{p,{2}},{l,{1}},{β ,{100}}];

Table[ListPlot[RandomVariate[FE[θ ,α,β ],500],
PlotLabel→ Row[{“θ = ”,θ},{“Size = ”,α},{“Time = ”,β}]],
{θ ,{−0.999,−0.5,0.0000000000000001,0.5,0.999}},{α,{0.0001}},{β ,{10}}]

Illustration of the PDF and CDF of the above FGM copula with θ = 0,ρ = 2, l = 1,α = 1,β = 100
Plot3D[Evaluate@PDF[F [0,2,1,100],{x, t}],{x,0,10},{t,0,0.5}]
Plot3D[Evaluate@CDF[F [0,2,1,100],{x, t}],{x,0.5,2000},{t,0,1}]

Solving the Volterra equation with Neumann series
ClearAll[θ , p, l,β ,α,δ ,T ];
α = 1;β = 1;δ = 0.04;T = 5;
FGMWeiExp[x ,s ,θ ]:=PDF[FE[θ ,α,β ],{x,s}];
FGMWeiExpN[x ,s ,θ ]:=Flatten[Apply[List,FGMWeiExp[x,s,θ ]][[1]]][[1]]
meanFGMrec[θ ]:=
N[NIntegrate[Exp[−δ ∗ s]∗ xFGMWeiExp[x,s,θ ],{x,0,∞},{s,0,T}]+
βNIntegrate[Exp[−δ ∗ (T − s+u)]∗ x∗FGMWeiExp[x,u,θ ],{s,0,T},
{u,0,s},{x,0,∞}],16]
Table[meanFGMrec[−0.9],{β ,{1}},{α,{0.01,0.1,1,10,15}}]

ListPlot3D[Table[meanFGMrec[−0.9],{α,0.01,100.01,10},{β ,0.001,100.01,10}],
AxesLabel→{“β”,“α”,“1st Moment”}]
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Checking section - Barges (2011) 1st moment
ClearAll[θ , p, l,β ,α,δ , t];
α = 1;β = 100;δ = 0.04;
FX = 1−Exp[−αx];
EX = NIntegrate[Exp[−2αx],{x,0,∞}];
µB[θ , t ]:=β

1
α

(
1−Exp[−δ t]

δ

)
+θβ

(
EX− 1

α

)(1−Exp[−(2β+δ )t]
2β+δ

)
;

µB[−0.9,5]

Calculate 2nd moment
ClearAll[θ ,α,β ,δ ,T ];
D [θ ,α ,β ]:=CopulaDistribution[{“GumbelHougaard”,θ},
{ExponentialDistribution[α],ExponentialDistribution[β ]}];
α = 10;δ = 0.04;β = 1;θ = 0.9;T = 5;
GumWeibExpg[θ ,x ,s ]:=PDF[D [θ ,α,β ],{x,s}];
Assuming[u≥ 0&&x≥ 0&&s≥ 0&&h≥ 0&&y≥ 0&&τ ≥ 0,
NIntegrate

[
Exp[−2δ s]x2GumWeibExpg[θ ,x,s],{

x, −Log[0.999999999999]
α

, −Log[0.000000000001]
α

}
,{s,0,T},

Method→{GlobalAdaptive,MaxErrorIncreases→ 15000}]+
βNIntegrate

[
Exp[−2δ (T − s)−2δτ]∗ x2 ∗GumWeibExpg[θ ,x,τ],{s,0,T},

{τ,0,s},
{

x, −Log[0.999999999999]
α

, −Log[0.000000000001]
α

}
,

Method→{GlobalAdaptive,MaxErrorIncreases→ 15000}]+
2NIntegrate[Exp[−2δ s−δτ]xhGumWeibExpg[θ ,x,s]GumWeibExpg[θ ,h,τ],
{s,0,T},{τ,0,T − s},

{
x, −Log[0.999999999999]

α
, −Log[0.000000000001]

α

}
,{

h, −Log[0.999999999999]
α

, −Log[0.000000000001]
α

}
,

Method→{GlobalAdaptive,MaxErrorIncreases→ 15000}]+
2βNIntegrate[Exp[−δ (T − s− τ +u)−2δ s]xhGumWeibExpg[θ ,x,s]GumWeibExpg[θ ,h,u],
{s,0,T},

{
x, −Log[0.999999999999]

α
, −Log[0.000000000001]

α

}
,{τ,0,T − s},

{u,0,τ},
{

h, −Log[0.999999999999]
α

, −Log[0.000000000001]
α

}
,

Method→{GlobalAdaptive,MaxErrorIncreases→ 15000}]+
2βNIntegrate[Exp[−2δ (T − s)−2δτ−δy]xhGumWeibExpg[θ ,x,τ]GumWeibExpg[θ ,h,y],
{s,0,T},{τ,0,s},{y,0,s− τ},{

h, −Log[0.999999999999]
α

, −Log[0.000000000001]
α

}
,{

x, −Log[0.999999999999]
α

, −Log[0.000000000001]
α

}
,

Method→{GlobalAdaptive,MaxErrorIncreases→ 15000}]+
2β 2NIntegrate[Exp[−2δ (T − s)−2δτ−δ (s− τ− y+u)]xhGumWeibExpg[θ ,x,τ]
GumWeibExpg[θ ,h,u],{s,0,T},{τ,0,s},{y,0,s− τ},{u,0,y},{

h, −Log[0.999999999999]
α

, −Log[0.000000000001]
α

}
,{

x, −Log[0.999999999999]
α

, −Log[0.000000000001]
α

}
,
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Method→{GlobalAdaptive,MaxErrorIncreases→ 15000}]]

2nd moment checking tool - Barges FGM
θ =−0.9;α = 0.01;δ = 0.04;β = 1;T = 5;
X2 =

∫
∞

0 2xExp[−αx]2dx;X1 =
∫

∞

0 Exp[−αx]2 dx;

β
2

α2 ∗
1−Exp[−2δT ]

2δ
+θβ

(
X2− 2

α2

)(
1−Exp[−2T (δ+β )]

2β+δ

)
+2β 2 ∗ 1

α2

(
1−Exp[−δT ]√

2δ

)2
+

2θ 2β 2 (X1− 1
α

)2
(

1
2(δ+β )(δ+2β ) −

Exp[−(δ+2β )T ]
δ (δ+2β ) + Exp[−2(δ+β )T ]

2δ (δ+β )

)
+

2θ
β 2

α

(
X1− 1

α

)(
1

2δ (δ+2β ) −
Exp[−(δ+2β )T ]
(δ+2β )(δ−2β ) +

Exp[−2δT ]
2δ (δ−2β ) +

1
δ (δ+2β ) −

Exp[−δT ]
δ (δ+2β ) +

Exp[−2(δ+β )T ]
2(δ+β )(δ+2β )

)

B.3 Programming Code for Chapter 3
Define Ab and Ar
T = 1;ρ = 4; =3; sr=0.0023; πs = 0.5;
cr = 0.3;ar =−1;br = 0;σr = 0.12;γr = 1;r0 = 0.4;β = 5;
cb = 0.2;ab =−1;bb = 0;σb = 0.09;γb = 1;b0 = 0.05;λ = 7;
cl = 0.5;al =−1;bl = 0;σl = 0.1;γl = 1; l0 = 0.0361;α = 10;

compr=
√
(crar)2 +2(σrγr)2;

compb =
√

(cbab)2 +2(σbγb)2;
compl =

√
(clal)2 +2(σlγl)2;

Ar[s ]:=(2r0(1−Exp[−scompr]))/((compr− crar)+(compr+ crar)Exp[−scompr]) ;
Ab[s ]:=(2b0(1−Exp[−scompb]))/((compb− cbab)+(compb+ cbab)Exp[−scompb]) ;
Al[s ]:=(2l0(1−Exp[−scompl]))/((compl− clal)+(compl+ clal)Exp[−scompl]) ;
Cb[s ]:=((

2compbExp
[
− scompb+cbab

2

])
/((compb− cbab)+(compb+ cbab)Exp[−scompb])

) 2cbbb
σb

2 ;
Cr[s ]:=((

2comprExp
[
− scompr+crar

2

])
/((compr− crar)+(compr+ crar)Exp[−scompr])

) 2crbr
σr2 ;

Cl[s ]:=((
2complExp

[
− scompl+clal

2

])
/((compl− clal)+(compl+ clal)Exp[−scompl])

) 2clbl
σl

2 ;

GnEE[θ ]:=CopulaDistribution[{“FGM”,θ},
{ExponentialDistribution[α],ExponentialDistribution[β ]}];
GnEEB = CopulaDistribution[{“FGM”,0},
{ExponentialDistribution[λ ],ExponentialDistribution[β ]}];

chatB = NIntegrate [Exp [−Ab[s]x−0∗Ar[s]y]PDF[GnEEB,{x,y}],{x,0,∞},
{y,0,∞},{s,0,T}]//FullSimplify;
chatB5 = NIntegrate [Exp [−Ab[s]x−0∗Ar[s]y]PDF[GnEEB,{x,y}],{x,0,∞},
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{y,0,∞},
{

s,0, T
2

}]
//FullSimplify;

chat = NIntegrate [Exp [−Al[s]x−Ar[s]y]PDF[GnEE[2],{x,y}],{x,0,∞},
{y,0,∞},{s,0,T}]//FullSimplify;
chatS = NIntegrate [Exp [−Al[s]x−0∗Ar[s]y]PDF[GnEE[1],{x,y}],{x,0,∞},
{y,0,∞},{s,0,T}]//FullSimplify;
chatR = NIntegrate [Exp [−0∗Al[s]x−Ar[s]y]PDF[GnEE[1],{x,y}],{x,0,∞},
{y,0,∞},{s,0,T}]//FullSimplify;

BB =Cl[T ]Cr[T ]Exp [−Al[T ]l0−Ar[T ]r0−ρT +ρ*chat] ;
Bs =Cl[T ]Cr[T ]Exp [−Al[T ]l0−Ar[T ]r0−ρT +ρ*chatS] ;
Bb =Cb[T ]Cr[T ]Exp [−Ab[T ]b0−Ar[T ]r0−ρBT +ρB*chatB] ;
Bb5 =Cb

[T
2

]
Cr
[T

2

]
Exp

[
−Ab

[T
2

]
b0−Ar

[T
2

]
r0−ρBT

2 +ρB*chatB5
]

;

Export
[

“Gumbel.xlsx”,Table
[

2(1−πs)(Seller[1]−Both[1])
Exp[ rf

2 ]Buyer05[ 1
2 ]+Buyer[1]

,

{θ ,{−0.995,−0.99,−0.95,−0.9,−0.5,0,0.5,0.9,0.95,0.99,0.995}},
{br,{0.01,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,2}}]];
Export[“BothSurv.xlsx”,
Table[BB,{θ ,{−0.995,−0.99,−0.95,−0.9,−0.5,0,0.5,0.9,0.95,0.99,0.995}},
{br,{0}}]];
Export[“SellerSurv.xlsx”,
Table[Seller[1]+Both[1],
{θ ,{−0.995,−0.99,−0.95,−0.9,−0.5,0,0.5,0.9,0.95,0.99,0.995}},
{br,{0}}]];
Export[“RCSurv.xlsx”,
Table[RC[1]+Both[1],
{θ ,{−0.995,−0.99,−0.95,−0.9,−0.5,0,0.5,0.9,0.95,0.99,0.995}},{br,{0}}]];

B.4 Programming Code for Chapter 4
Bond Price Calibration
ClearAll[cr,cb,ab,ar,br,bb,σ1,σ2,σ r,σb, r0,b0,θF,θG,θT,θST,
θGm,ρ,α,β ,DoF,P, t,BondPriceF,BondPriceG,BondPriceT,BondPriceStdT,
BondPriceGm]

αr = 0;αb = 0;d = 31; t = 6.165;P = 60.853;

BondPriceF[cr ?NumericQ,cb ?NumericQ,ab ?NumericQ,ar ?NumericQ,
br ?NumericQ,bb ?NumericQ,σ r ?NumericQ,σb ?NumericQ, r0 ?NumericQ,
b0 ?NumericQ,θF ?NumericQ,ρ ?NumericQ,α ?NumericQ,β ?NumericQ]:=
Assuming[x > 0&&y > 0,
Abs[
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(
2

2bbcb
σb2((
e

t
2∗
(
−abcb−

√
ab2cb2+2σb2

)√
ab2cb2 +2σb2

)/
(
−abcb+

√
ab2cb2 +2σb2 + e−t∗

√
ab2cb2+2σb2

(
abcb+

√
ab2cb2 +2σb2

))) 2bbcb
σb2

)
(

2
2brcr
σ r2((
e

t
2∗(−arcr−

√
ar2cr2+2σ r2)

√
ar2cr2 +2σ r2

)/
(
−arcr+

√
ar2cr2 +2σ r2 + e−t∗

√
ar2cr2+2σ r2

(
arcr+

√
ar2cr2 +2σ r2

))) 2brcr
σ r2
)

Exp[

−
((

2
(

1− e−t∗
√

ab2cb2+2σb2
))/

(
−abcb+

√
ab2cb2 +2σb2 + e−t∗

√
ab2cb2+2σb2

(
abcb+

√
ab2cb2 +2σb2

)))
b0− 2

(
1−e−t∗

√
ar2cr2+2σ r2

)
−arcr+

√
ar2cr2+2σ r2+e−t∗

√
ar2cr2+2σ r2(arcr+

√
ar2cr2+2σ r2)

 r0−

ρt+
ρNIntegrate[

Exp
[
−
((

2
(

1− e−t∗
√

ab2cb2+2σb2
))

/
(
−abcb+

√
ab2cb2 +2σb2+

e−t∗
√

ab2cb2+2σb2
(

abcb+
√

ab2cb2 +2σb2
)))

x−((
2
(

1− e−t∗
√

ar2cr2+2σ r2
))

/
(
−arcr+

√
ar2cr2 +2σ r2+

e−t∗
√

ar2cr2+2σ r2
(

arcr+
√

ar2cr2 +2σ r2
)))

y
]
∗

PDF[CopulaDistribution[{“FGM”,θF},
{ExponentialDistribution[α],ExponentialDistribution[β ]}],{x,y}],
{x,0,∞},{y,0,∞},{τ,0, t},AccuracyGoal→ 10]]−P]];

FGMCal =
NMinimize[{BondPriceF[cr,cb,ab,ar,br,bb,σ r,σb, r0,b0,θF,ρ,α,β ],
α > 1&&β > 1&&0 < σb≤ 0.5&&0 < σ r≤ 0.5&&cr∗br≥ 0&&cb∗bb≥ 0&&
ar∗ cr < 0&&ab∗ cb < 0&&b0≥ 0&&−1≤ θF≤ 1&&2cbbb≥ σb2&&2∗ cr∗br≥ σ r2&&
0 < r0≤ 0.05&&0 < b0≤ 1&&ρ ≥ 2},
{cr,cb,ab,ar,br,bb,σ r,σb, r0,b0,θF,ρ,α,β}]//AbsoluteTiming

Testing the error and obtain model price
ClearAll[cr,cb,ab,ar,br,bb,σ1,σ2,σ r,σb,r0,b0,θT,ρ,α,β , t]
ModelPrice[cr ?NumericQ,cb ?NumericQ,ab ?NumericQ,ar ?NumericQ,
br ?NumericQ,bb ?NumericQ,σ r ?NumericQ,σb ?NumericQ, r0 ?NumericQ,
b0 ?NumericQ,θT ?NumericQ,ρ ?NumericQ,α ?NumericQ,β ?NumericQ,
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σ1 ?NumericQ,σ2 ?NumericQ,DoF ?NumericQ]:=(
2

2bbcb
σb2((
e

t
2∗
(
−abcb−

√
ab2cb2+2σb2

)√
ab2cb2 +2σb2

)/
(
−abcb+

√
ab2cb2 +2σb2 + e−t∗

√
ab2cb2+2σb2

(
abcb+

√
ab2cb2 +2σb2

))) 2bbcb
σb2

)
(

2
2brcr
σ r2((
e

t
2∗(−arcr−

√
ar2cr2+2σ r2)

√
ar2cr2 +2σ r2

)/
(
−arcr+

√
ar2cr2 +2σ r2 + e−t∗

√
ar2cr2+2σ r2

(
arcr+

√
ar2cr2 +2σ r2

))) 2brcr
σ r2
)

Exp[

−
((

2
(

1− e−t∗
√

ab2cb2+2σb2
))/

(
−abcb+

√
ab2cb2 +2σb2 + e−t∗

√
ab2cb2+2σb2

(
abcb+

√
ab2cb2 +2σb2

)))
b0−((

2
(

1− e−t∗
√

ar2cr2+2σ r2
))/

(
−arcr+

√
ar2cr2 +2σ r2 + e−t∗

√
ar2cr2+2σ r2

(
arcr+

√
ar2cr2 +2σ r2

)))
r0−

ρt+
ρ∗
NIntegrate[
Exp[

−
((

2
(

1− e−t∗
√

ab2cb2+2σb2
))

/
(
−abcb+

√
ab2cb2 +2σb2 + e−t∗

√
ab2cb2+2σb2(

abcb+
√

ab2cb2 +2σb2
)))

x−((
2
(

1− e−t∗
√

ar2cr2+2σ r2
))/

(
−arcr+

√
ar2cr2 +2σ r2 + e−t∗

√
ar2cr2+2σ r2

(
arcr+

√
ar2cr2 +2σ r2

)))
y
]
∗

Flatten[
Apply[List,PDF[CopulaDistribution[{

“MultivariateT”,
{{

σ12,θTσ1σ2
}
,
{

θTσ1σ2,σ22}} ,DoF
}
,

{ExponentialDistribution[α],ExponentialDistribution[β ]}],
{x,y}]][[1]]][[1]],{x,0,∞},{y,0,∞},{τ,0, t},
AccuracyGoal→ 10]]

ModelPrice[cr,cb,ab,ar,br,bb,σ r,σb, r0,b0,θT,ρ,α,β ,σ1,σ2,DoF]
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C
A multivariate jump diffusion process for

counterparty risk in CDS rates

C.1 CDS Rates Sensitivity Analysis

C.1.1 FGM Copula

FIGURE C.1: Sensitivity of CDS rates under FGM copula with respect to seller’s and RC’s jump size
jump size (α and β respectively)

113
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FIGURE C.2: Sensitivity of CDS rates under FGM copula with respect to seller’s and RC’s diffusion
rates (σ (s) and σ (r) respectively)

FIGURE C.3: Sensitivity of CDS rates under FGM copula with respect to seller’s and RC’s long term
mean (b(s) and b(r) respectively)

FIGURE C.4: Sensitivity of CDS rates under FGM copula with respect to seller’s and RC’s decay rate
(c(s) and c(r) respectively)
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FIGURE C.5: Sensitivity of CDS rates under FGM copula with respect to frequency of yearly jump
events, ρ
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C.1.2 Gaussian Copula

FIGURE C.6: Sensitivity of CDS rates under Gaussian copula with respect to seller’s and RC’s jump
size jump size (α and β respectively)

FIGURE C.7: Sensitivity of CDS rates under Gaussian copula with respect to seller’s and RC’s diffu-
sion rates (σ (s) and σ (r) respectively)

FIGURE C.8: Sensitivity of CDS rates under Gaussian copula with respect to seller’s and RC’s long
term mean (b(s) and b(r) respectively)
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FIGURE C.9: Sensitivity of CDS rates under Gaussian copula with respect to seller’s and RC’s decay
rate (c(s) and c(r) respectively)

FIGURE C.10: Sensitivity of CDS rates under Gaussian copula with respect to frequency of yearly
jump events, (ρ)
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D
Jump diffusion model with copula

dependence structure in defaultable bond
pricing

D.1 Bond Price and yield as a function of tenor and θ with
jump size distribution µ

(1)
t = 100, and µ

(2)
t = 200

119
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BOND PRICING

FIGURE D.1: Bond price and yield as a function of θ and tenor under the FGM copula dependence
structure
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FIGURE D.2: Bond price and yield as a function of θ and tenor under the Gaussian copula dependence
structure
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TABLE D.1: Prices of zero coupon bond under jump diffusion model with student-t copula depen-
dence structure for years to maturity 1–10

θ 1 2 3 4 5 6 7 8 9 10
-0.95 89.424 75.583 61.109 47.708 36.232 26.924 19.668 14.172 10.103 7.134
-0.9 89.564 75.799 61.338 47.906 36.38 27.023 19.724 14.197 10.108 7.142
-0.5 89.578 75.880 61.524 48.201 36.758 27.443 20.149 14.599 10.446 7.391
0 90.002 76.521 62.185 48.758 37.161 27.693 20.273 14.6340 10.469 7.445
0.5 90.030 76.678 62.410 48.983 37.366 27.870 20.420 14.751 10.538 7.461
0.9 90.121 76.713 62.55 49.336 37.900 28.520 21.114 15.433 11.167 8.016
0.95 90.151 76.885 62.805 49.609 38.168 28.767 21.333 15.620 11.322 8.1418

TABLE D.2: Prices of zero coupon bond under jump diffusion model with Gaussian copula depen-
dence structure for years to maturity 1–10
θ 1 2 3 4 5 6 7 8 9 10
-0.95 92.529 82.015 70.281 58.598 47.798 38.312 30.283 23.673 18.343 14.114
-0.9 92.530 82.016 70.284 58.602 47.803 38.318 30.290 23.680 18.350 14.121
-0.5 92.626 82.157 70.518 58.933 48.148 38.657 30.609 23.971 18.609 14.346
0 92.628 82.243 70.577 58.934 48.216 38.745 30.708 24.073 18.710 14.441
0.5 92.631 82.255 70.608 58.986 48.221 38.787 30.788 24.180 18.831 14.558
0.9 92.633 82.270 70.645 59.050 48.310 38.854 30.828 24.199 18.833 14.568
0.95 92.634 82.284 70.680 59.110 48.394 38.956 30.942 24.316 18.949 14.668

TABLE D.3: Prices of zero coupon bond under jump diffusion model with FGM copula dependence
structure for years to maturity 1–10
θ 1 2 3 4 5 6 7 8 9 10
-0.95 92.627 82.332 70.805 59.332 48.714 39.358 31.400 24.804 19.442 15.146
-0.9 92.627 82.332 70.806 59.334 48.716 39.361 31.404 24.808 19.445 15.149
-0.5 92.627 82.336 70.814 59.349 48.736 39.386 31.431 24.837 19.474 15.177
0 92.628 82.340 70.824 59.366 48.762 39.417 31.466 24.873 19.510 15.211
0.5 92.629 82.344 70.835 59.384 48.787 39.448 31.501 24.909 19.546 15.246
0.9 92.629 82.347 70.843 59.400 48.807 39.473 31.528 24.938 19.575 15.273
0.95 92.629 82.347 70.844 59.401 48.810 39.476 31.532 24.942 19.579 15.279
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TABLE D.4: Yield (in %) of zero coupon bond under jump diffusion model with student-t copula
dependence structure

θ 1 2 3 4 5 6 7 8 9 10
-0.95 11.827 15.024 17.842 20.324 22.513 24.445 26.152 27.665 29.008 30.217
-0.9 11.652 14.860 17.695 20.200 22.413 24.369 26.101 27.637 29.002 30.202
-0.5 11.635 14.799 17.576 20.015 22.160 24.050 25.717 27.192 28.530 29.756
0 11.109 14.317 17.158 19.671 21.894 23.863 25.607 27.154 28.499 29.662
0.5 11.074 14.199 17.017 19.533 21.760 23.731 25.477 27.027 28.406 29.634
0.9 10.962 14.173 16.930 19.319 21.415 23.256 24.879 26.312 27.580 28.707
0.95 10.925 14.046 16.771 19.155 21.244 23.079 24.695 26.122 27.386 28.507

TABLE D.5: Yield (in %) of zero coupon bond under jump diffusion model with Gaussian copula
dependence structure for years to maturity 1–10
θ 1 2 3 4 5 6 7 8 9 10
-0.95 8.074 10.421 12.474 14.295 15.909 17.340 18.608 19.735 20.736 21.629
-0.9 8.074 10.421 12.473 14.294 15.907 17.337 18.604 19.730 20.731 21.623
-0.5 7.961 10.326 12.348 14.133 15.740 17.164 18.427 19.547 20.543 21.430
0 7.959 10.268 12.317 14.132 15.708 17.120 18.372 19.484 20.471 21.350
0.5 7.956 10.260 12.301 14.107 15.705 17.099 18.328 19.418 20.384 21.252
0.9 7.953 10.250 12.281 14.076 15.663 17.065 18.306 19.406 20.383 21.244
0.95 7.952 10.241 12.263 14.047 15.622 17.014 18.244 19.334 20.301 21.161
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TABLE D.6: Yield (in %) of zero coupon bond under jump diffusion model with FGM copula depen-
dence structure for years to maturity 1–10
θ 1 2 3 4 5 6 7 8 9 10
-0.95 7.960 10.209 12.197 13.940 15.470 16.814 17.996 19.038 19.958 20.773
-0.9 7.960 10.209 12.196 13.939 15.469 16.812 17.994 19.036 19.956 20.771
-0.5 7.960 10.206 12.192 13.933 15.459 16.800 17.979 19.018 19.936 20.749
0 7.959 10.204 12.186 13.924 15.448 16.785 17.961 18.996 19.911 20.721
0.5 7.958 10.201 12.181 13.915 15.436 16.770 17.942 18.975 19.887 20.694
0.9 7.957 10.197 12.176 13.908 15.426 16.757 17.927 18.957 19.867 20.672
0.95 7.957 10.198 12.176 13.908 15.425 16.756 17.922 18.955 19.865 20.670
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D.2 Bond Price and yield as a function of tenor and θ with
jump size distribution µ

(1)
t = 5, and µ

(2)
t = 10
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FIGURE D.3: Bond price and yield as a function of θ and tenor under the FGM copula dependence
structure
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FIGURE D.4: Bond price and yield as a function of θ and tenor under the Gaussian copula dependence
structure



128
JUMP DIFFUSION MODEL WITH COPULA DEPENDENCE STRUCTURE IN DEFAULTABLE

BOND PRICING

TABLE D.7: Prices of zero coupon bond under jump diffusion model with student-t copula depen-
dence structure for years to maturity 1–10

θ 1 2 3 4 5 6 7 8 9 10
-0.95 51.019 11.845 1.732 0.188 0.017 0.001 8.80E-05 5.6E-06 3.4E-07 2.0E-08
-0.9 51.030 11.893 1.751 0.192 0.017 0.001 9.4E-05 6.1E-06 3.7E-07 2.2E-08
-0.5 51.275 12.348 1.928 0.228 0.0224 0.002 0.0002 1.1E-05 7.6E-07 5.1E-08
0 51.867 13.089 2.204 0.287 0.0314 0.003 0.0003 2.3E-05 1.8E-06 1.4E-07
0.5 52.791 14.085 2.578 0.372 0.046 0.005 0.0005 4.9E-05 4.4E-06 3.9E-07
0.9 53.883 15.191 3.010 0.478 0.065 0.008 0.0009 9.9E-05 1.0E-05 1.0E-06
0.95 54.065 15.368 3.080 0.496 0.069 0.009 0.001 0.0001 1.1E-05 1.2E-06

TABLE D.8: Prices of zero coupon bond under jump diffusion model with Gaussian copula depen-
dence structure for years to maturity 1–10
θ 1 2 3 4 5 6 7 8 9 10
-0.95 57.359 15.816 2.736 0.347 0.036 0.003 0.00024 1.7E-05 1.2E-06 7.6E-08
-0.9 57.387 15.862 2.757 0.352 0.036 0.003 0.0003 1.8E-05 1.3E-06 8.2E-08
-0.5 57.669 16.283 2.944 0.396 0.044 0.004 0.0004 2.8E-05 2.1E-06 1.5E-07
0 58.036 16.873 3.215 0.465 0.056 0.006 0.0006 4.9E-05 4.1E-06 3.3E-07
0.5 58.470 17.562 3.541 0.552 0.072 0.008 0.0009 8.7E-05 8.1E-06 7.4E-07
0.9 58.866 18.195 3.852 0.639 0.09 0.011 0.00130 0.00014 1.4E-05 1.4E-06
0.95 58.87 18.251 3.885 0.650 0.092 0.012 0.00136 0.00015 1.5E-05 1.6E-06
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TABLE D.9: Prices of zero coupon bond under jump diffusion model with FGM copula dependence
structure for years to maturity 1–10
θ 1 2 3 4 5 6 7 8 9 10
-0.95 57.797 16.488 3.036 0.419 0.048 0.005 0.0004 3.4E-05 2.7E-06 2.0E-07
-0.9 57.810 16.508 3.045 0.422 0.048 0.005 0.0004 3.5E-05 2.7E-06 2.1E-07
-0.5 57.910 16.669 3.120 0.440 0.051 0.005 0.0005 4.1E-05 3.3E-06 2.5E-07
0 58.036 16.873 3.215 0.465 0.056 0.006 0.001 4.9E-05 4.1E-06 3.3E-07
0.5 58.163 17.079 3.313 0.491 0.060 0.007 0.001 5.9E-05 5.1E-06 4.3E-07
0.9 58.264 17.246 3.394 0.512 0.065 0.007 0.001 6.9E-05 6.2E-06 5.3E-07
0.95 58.277 17.267 3.404 0.515 0.065 0.007 0.001 7.0E-05 6.3E-06 5.5E-07

TABLE D.10: Yield (in %) of zero coupon bond under jump diffusion model with student-t copula
dependence structure for years to maturity 1–10

θ 1 2 3 4 5 6 7 8 9 10
-0.95 96.006 190.56 286.50 380.36 470.04 554.41 633.00 705.74 772.80 834.48
-0.9 95.963 189.97 285.05 377.81 466.23 549.27 626.50 697.90 763.65 824.08
-0.5 95.028 184.58 272.96 357.58 437.05 510.80 578.75 641.07 698.11 750.24
0 92.802 176.40 256.69 332.05 401.77 465.72 524.12 577.28 625.64 669.63
0.5 89.425 166.46 238.52 304.91 365.51 420.53 470.36 515.45 556.23 593.17
0.9 85.587 156.57 221.48 280.36 333.49 381.32 424.34 463.06 499.34 530.85
0.95 84.961 155.09 219.01 276.86 328.98 375.85 417.93 456.18 490.39 521.65

TABLE D.11: Yield (in %) of zero coupon bond under jump diffusion model with Gaussian copula
dependence structure for years to maturity 1–10
θ 1 2 3 4 5 6 7 8 9 10
-0.95 74.340 151.45 231.86 312.16 390.11 464.40 534.33 599.63 660.27 716.40
-0.9 74.255 151.09 231.02 310.69 387.91 461.40 530.51 594.97 654.80 710.13
-0.5 73.405 147.82 223.88 298.54 370.03 437.40 500.23 558.45 612.17 661.62
0 72.306 143.45 214.50 282.99 347.64 407.88 463.55 514.75 561.72 604.73
0.5 71.029 138.62 204.52 266.92 325.00 378.54 427.61 472.44 513.32 550.59
0.9 69.880 134.44 196.11 253.64 306.59 354.99 399.04 439.07 475.41 508.42
0.95 69.866 134.08 195.26 252.22 304.58 352.36 395.83 435.29 471.11 503.63

TABLE D.12: Yield (in %) of zero coupon bond under jump diffusion model with FGM copula
dependence structure for years to maturity 1–10
θ 1 2 3 4 5 6 7 8 9 10
-0.95 73.019 146.27 220.54 292.99 362.01 426.79 487.01 542.67 593.91 641.00
-0.9 72.982 146.12 220.22 292.46 361.24 425.78 485.75 541.17 592.18 639.05
-0.5 72.681 144.93 217.67 288.22 355.15 417.74 475.78 529.29 578.47 623.59
0 72.306 143.45 214.50 282.99 347.64 407.88 463.55 514.75 561.72 604.73
0.5 71.931 141.97 211.36 277.83 340.26 398.20 451.58 500.55 545.37 586.35
0.9 71.632 140.80 208.88 273.75 334.44 390.59 442.19 489.43 532.59 572.00
0.95 71.595 140.65 208.57 273.25 333.72 389.64 441.02 488.05 531.01 570.23
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D.3 Daily changes in calibrated parameters of Microsoft Inc
ZCB price

FIGURE D.5: 1-year calibrated error

FIGURE D.6: 1-year calibrated degrees of freedom
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FIGURE D.7: 1-year calibrated θ

FIGURE D.8: 1-year calibrated ρ
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FIGURE D.9: 1-year calibrated X (1)
0

FIGURE D.10: 1-year calibrated X (2)
0
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FIGURE D.11: 1-year calibrated ca(1) (decay rate)

FIGURE D.12: 1-year calibrated ca(2) (decay rate)
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FIGURE D.13: 1-year calibrated cb(1) (constant reversion level)

FIGURE D.14: 1-year calibrated cb(2) (constant reversion level)
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FIGURE D.15: 1-year calibrated φ(1) (volatility of elliptical copula)

FIGURE D.16: 1-year calibrated φ(2) (volatility of elliptical copula)



136
JUMP DIFFUSION MODEL WITH COPULA DEPENDENCE STRUCTURE IN DEFAULTABLE

BOND PRICING

FIGURE D.17: 1-year calibrated σ (1)

FIGURE D.18: 1-year calibrated σ (2)
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D.4 One-Year Microsoft Inc. Zero Coupon Bond Mkt Data
and Mod. Price & Yield

Date Mkt Price $ Mod. Price Mkt Yield % Mod. Yield Rel. Error
22/6/10 100.72 100.906 2.307 -0.302 0.0018508
23/6/10 100.09 100.097 2.432 -0.033 6.89E-05
24/6/10 99.92 101.192 2.536 -0.397 0.012735
25/6/10 99.53 100.062 2.645 -0.021 0.0053492
28/6/10 99.14 100.094 2.775 -0.032 0.0096036
29/6/10 99 99.057 3.068 0.320 0.0005598
30/6/10 98.87 98.0314 3.179 0.674 0.0084975
1/7/10 98.79 98.2835 3 0.587 0.0051268
2/7/10 99.06 99.1539 2.936 0.288 0.0009253
6/7/10 99.66 99.66 2.674 0.116 1.172E-10
7/7/10 100.13 100.678 2.5 -0.230 1.203E-12
8/7/10 100.37 96.8662 2.384 1.090 0.0067928
9/7/10 99.71 95.7598 2.503 1.488 0.0396173
12/7/10 99.72 102.71 2.132 -0.910 0.0299878
13/7/10 101.55 101.55 2.01 -0.525 6.04E-13
14/7/10 101.72 101.72 1.894 -0.582 4.302E-12
15/7/10 101.9 102.209 1.887 -0.746 0.0030356
16/7/10 96.83 96.83 2.086 1.111 1.264E-09
19/7/10 101.83 94.305 1.944 2.038 0.0738976
20/7/10 102.02 102.02 1.821 -0.686 3.475E-09
21/7/10 101.41 101.41 1.976 -0.481 1.182E-07
22/7/10 102.37 92.8977 1.714 2.574 0.0925297
23/7/10 101.63 99.6171 1.729 0.133 0.0198064
26/7/10 102.77 104.718 1.615 -1.584 0.0189501
27/7/10 102.87 103.036 1.596 -1.031 0.0016183
28/7/10 102.73 99.4985 1.668 0.175 0.0314566
29/7/10 101.25 98.9932 1.643 0.352 0.0222894
30/7/10 102.31 101.974 1.725 -0.677 0.0032845
2/8/10 103.02 99.2503 1.534 0.263 0.0365918
3/8/10 102.86 103.614 1.613 -1.231 0.007306
4/8/10 102.66 103.305 1.707 -1.129 0.0062849
5/8/10 102.27 101.829 1.787 -0.632 0.0043149
6/8/10 102.37 101.041 1.762 -0.362 0.0129823
9/8/10 102.68 107.85 1.741 -2.617 0.050346
10/8/10 102 107.206 1.959 -2.415 0.051044
11/8/10 101.98 106.567 1.984 -2.212 0.0449822
12/8/10 102.02 105.932 1.96 -2.008 0.0383443
13/8/10 102.17 105.3 1.974 -1.803 0.030638
16/8/10 102.13 102.13 1.909 -0.742 1.678E-08

*Mkt. = Market; Mod. = Model; Rel. = Relative
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Date Mkt Price $ Mod. Price Mkt Yield % Mod. Yield Rel. Error
17/8/10 102.38 100.434 1.776 -0.153 0.0190035
18/8/10 102.59 104.426 1.759 -1.522 0.017894
19/8/10 102.32 103.133 1.883 -1.087 0.0079468
20/8/10 102.31 100.629 1.95 -0.222 0.0164347
23/8/10 101.84 103.944 1.964 -1.367 0.0206578
24/8/10 101.36 103.207 2.055 -1.118 0.0182195
25/8/10 102.05 100.209 2.025 -0.074 0.0180376
26/8/10 101.66 101.375 2.098 -0.486 0.0028024
27/8/10 101.8 102.798 2.06 -0.981 0.0098031
30/8/10 101.59 100.819 2.172 -0.292 0.0075937
31/8/10 101.7 102.356 2.223 -0.831 0.0064533
1/9/10 102.18 101.604 2.081 -0.569 0.0056387
2/9/10 102.11 102.524 2.094 -0.892 0.0040519
3/9/10 102.412 100.045 1.954 -0.016 0.0231145
7/9/10 102.266 104.061 2.069 -1.427 0.0175495
8/9/10 102.152 103.493 2.107 -1.233 0.0131242
9/9/10 102.233 103.958 2.067 -1.394 0.0168714
10/9/10 101.972 96.2656 2.084 1.388 0.0559602
13/9/10 103.184 106.221 1.604 -2.168 0.0294679
14/9/10 103.542 103.813 1.626 -1.351 0.0026126
15/9/10 103.412 104.545 1.606 -1.604 0.0097038
16/9/10 103.708 103.91 1.529 -1.387 0.0019465
17/9/10 103.778 104.509 1.463 -1.595 0.0070417
20/9/10 103.824 101.905 1.396 -0.688 0.0184869
21/9/10 103.626 103.513 1.518 -1.256 0.0010912
22/9/10 102.716 103.64 1.736 -1.302 0.008998
23/9/10 102.714 102.1 1.784 -0.759 0.0059778
24/9/10 102.978 102.299 1.689 -0.831 0.0065955
27/9/10 102.796 101.831 1.729 -0.666 0.009385
28/9/10 102.748 102.748 1.774 -0.995 2.448E-14
29/9/10 102.586 103.638 1.844 -1.310 0.0102525
30/9/10 102.4 103.046 1.839 -1.102 0.0063084
1/10/10 102.554 102.458 1.879 -0.894 0.0009403
4/10/10 102.13 101.436 1.997 -0.527 0.0067967
5/10/10 102.322 99.9484 1.93 0.019 0.0231975
6/10/10 102.316 98.4844 1.863 0.569 0.0231988
7/10/10 102.774 103.725 1.818 -1.352 0.0092527
8/10/10 102.632 102.475 1.812 -0.906 0.0017091
12/10/10 102.536 104.1 1.724 -1.491 0.01521
13/10/10 103.132 103.132 1.542 -1.148 1.493E-08
14/10/10 103.022 103.022 1.575 -1.109 2.83E-08
15/10/10 103.042 103.042 1.468 -1.118 1.174E-08
18/10/10 103.536 101.147 1.374 -0.428 0.0230785
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Date Mkt Price $ Mod. Price Mkt Yield % Mod. Yield Rel. Error
19/10/10 103.121 101.023 1.647 -0.383 0.0203455
20/10/10 103.278 104.939 1.58 -1.801 0.0160803
21/10/10 103.22 103.907 1.52 -1.436 0.0066547
22/10/10 103.438 104.364 1.528 -1.601 0.0089483
25/10/10 103.438 102.55 1.625 -0.950 0.0085851
26/10/10 103.818 105.314 1.359 -1.945 0.0144101
27/10/10 104.022 103.293 1.299 -1.223 0.0070046
28/10/10 104.358 102.531 1.218 -0.946 0.0175096
29/10/10 104.834 105.076 1.088 -1.867 0.0023064
1/11/10 104.998 100.564 0.974 -0.214 0.0422288
2/11/10 105.496 119.153 0.822 -6.478 0.129457
3/11/10 105.348 104.846 0.961 -1.794 0.004764
4/11/10 105.45 104.256 0.923 -1.584 0.0113215
5/11/10 105.53 107.982 1.028 -2.901 0.0232396
8/11/10 105.252 103.951 0.977 -1.479 0.004555
9/11/10 105.575 104.432 0.85 -1.656 0.0108303
10/11/10 105.719 106.878 0.819 -2.531 0.0109611
12/11/10 105.008 106.154 1.08 -2.280 0.0033631
15/11/10 104.974 104.991 1.057 -1.869 0.0001577
16/11/10 104.564 104.026 1.236 -1.519 0.0051499
17/11/10 104.442 105.894 1.346 -2.199 0.0043668
18/11/10 104.574 104.482 1.209 -1.690 0.0008765
19/11/10 104.537 104.214 1.301 -1.593 0.0030871
22/11/10 104.5 104.001 1.283 -1.520 0.0047772
23/11/10 104.142 103.448 1.485 -1.316 0.0066615
24/11/10 104.2 102.01 1.427 -0.776 0.0210166
26/11/10 104.261 103.996 1.427 -1.524 0.0025448
29/11/10 104.195 105.158 1.387 -1.959 0.0092396
30/11/10 104.212 103.46 1.428 -1.330 0.0072167
1/12/10 105.142 104.73 1.103 -1.805 0.003922
2/12/10 105.67 105.83 0.78 -2.211 0.0015185
3/12/10 105.955 106.35 0.725 -2.403 0.0037318
6/12/10 105.986 105.969 0.857 -2.271 0.0001638
7/12/10 105.841 107.347 0.806 -2.774 0.0142269
8/12/10 106.018 107.149 0.684 -2.705 0.0106693
9/12/10 106.248 108.364 0.755 -3.143 0.022027
10/12/10 106.296 107.202 0.667 -2.730 0.0084242
13/12/10 106.324 106.137 0.754 -2.350 0.0017629
14/12/10 106.238 106.846 0.619 -2.613 0.0057222
15/12/10 106.601 106.908 0.532 -2.638 0.0028813
16/12/10 106.676 106.661 0.475 -2.551 0.0001384
17/12/10 106.844 105.666 0.508 -2.186 0.0110289
20/12/10 106.66 106.928 0.473 -2.660 0.0025122
21/12/10 106.918 110.465 0.371 -3.930 0.0331716
22/12/10 107.649 109.319 0.276 -3.530 0.015509
23/12/10 107.66 107.31 0.242 -2.808 0.0032545
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Date Mkt Price $ Mod. Price Mkt Yield % Mod. Yield Rel. Error
27/12/10 107.814 108.088 0.313 -3.105 0.0025394
28/12/10 107.644 107.54 0.33 -2.908 0.0009636
29/12/10 107.596 108.315 0.36 -3.194 0.0066794
30/12/10 107.201 107.797 0.326 -3.009 0.0055625
31/12/10 107.299 104.509 0.372 -1.781 0.0260058
3/1/11 107.474 107.071 -0.069 -2.754 0.0037538
4/1/11 107.629 108.55 -0.092 -3.301 0.0085534
5/1/11 107.705 113.451 -0.053 -5.038 0.0533501
6/1/11 108.88 108.661 -0.427 -3.349 0.00201
7/1/11 108.53 108.896 -0.314 -3.439 0.0033721
10/1/11 107.86 108.814 -0.184 -3.420 0.0088458
11/1/11 107.86 107.483 -0.137 -2.932 0.0034913
12/1/11 108.39 106.825 -0.356 -2.689 0.0144429
13/1/11 107.65 107.65 -0.157 -3.001 6.265E-09
14/1/11 108.12 106.969 -0.209 -2.749 0.0106462
18/1/11 108.8 105.84 -0.371 -2.332 0.0272017
19/1/11 108.4 105.97 -0.268 -2.384 0.0304703
20/1/11 108.2 108.2 -0.203 -3.230 3.694E-08
21/1/11 107.74 107.74 -0.024 -3.062 5.383E-09
24/1/11 108.3 108.141 -0.201 -3.223 0.0014647
25/1/11 108.17 107.907 -0.189 -3.139 0.0024293
26/1/11 108.45 108.334 -0.3 -3.303 0.00107
27/1/11 109.36 109.36 -0.337 -3.688 1.597E-09
28/1/11 107.325 104.544 0.004 -1.851 0.0259077
31/1/11 107.187 107.762 0.362 -3.105 0.005366
1/2/11 107.637 107.765 -0.02 -3.110 0.0011889
2/2/11 107.525 107.503 0.005 -3.014 0.0002078
3/2/11 107.262 106.692 0.155 -2.706 0.0053105
4/2/11 107.287 107.093 0.357 -2.863 0.0018113
7/2/11 107.887 105.65 -0.103 -2.311 0.0207329
8/2/11 107.987 108.205 -0.15 -3.303 0.002015
9/2/11 107.537 107.22 -0.04 -2.929 0.0029516
10/2/11 106.918 106.132 0.148 -2.509 0.0073539
11/2/11 106.95 105.055 0.267 -2.086 0.0177168
14/2/11 106.875 107.63 0.552 -3.105 0.0070676
15/2/11 106.793 106.085 0.409 -2.505 0.0066259
16/2/11 106.793 106.989 0.253 -2.863 0.0018349
17/2/11 107.231 106.834 0.153 -2.805 0.0037039
18/2/11 107.062 105.919 0.215 -2.448 0.0106768
22/2/11 106.662 107.468 0.441 -3.070 0.0075531
23/2/11 106.75 105.568 0.415 -2.322 0.0110751
24/2/11 106.998 106.029 0.331 -2.509 0.0090546
25/2/11 106.725 106.725 0.442 -2.788 2.774E-09
28/2/11 106.7 106.474 0.351 -2.698 0.0021168
1/3/11 106.193 106.193 0.593 -2.589 1.034E-08
2/3/11 106.075 105.564 0.643 -2.339 0.0048197
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Date Mkt Price $ Mod. Price Mkt Yield % Mod. Yield Rel. Error
3/3/11 106.275 106.714 0.614 -2.804 0.0041304
4/3/11 105.9 106.13 0.749 -2.573 0.0021705
7/3/11 105.631 104.798 1.125 -2.040 0.0078835
8/3/11 105.912 104.042 1.102 -1.729 0.0176566
9/3/11 105.437 106.13 1.059 -2.589 0.0065726
10/3/11 104.946 104.986 1.301 -2.125 0.0003788
11/3/11 105.306 104.941 1.169 -2.109 0.0034633
14/3/11 105.225 105.594 1.2 -2.385 0.0035108
15/3/11 104.618 103.015 1.495 -1.310 0.0153262
16/3/11 103.943 105.37 1.749 -2.299 0.013725
17/3/11 103.95 104.813 1.768 -2.071 0.0083001
21/3/11 104.15 103.528 1.303 -1.539 0.0059756
22/3/11 104.112 108.864 1.379 -3.732 0.0264338
23/3/11 104.456 105.448 1.277 -2.351 0.0094925
24/3/11 104.775 104.77 1.196 -2.070 4.661E-05
25/3/11 104.515 103.486 1.275 -1.528 0.0098412
28/3/11 104.287 104.109 1.427 -1.800 0.0017086
29/3/11 104.35 103.315 1.383 -1.462 0.0099204
30/3/11 104.506 104.174 1.392 -1.833 0.0031813
31/3/11 104.348 103.628 1.429 -1.601 0.0069037
1/4/11 104.275 104.745 1.377 -2.080 0.0045083
4/4/11 104.402 105.449 1.372 -2.386 0.0100328
5/4/11 104.506 103.266 1.347 -1.454 0.0118682
6/4/11 104.743 105.174 1.229 -2.275 0.0041177
7/4/11 104.737 106.614 1.231 -2.883 0.0179217
8/4/11 104.637 104.972 1.316 -2.195 0.003197
11/4/11 104.443 104.877 1.351 -2.163 0.0041599
12/4/11 104.031 103.906 1.497 -1.746 0.0012028
13/4/11 104.162 102.225 1.565 -1.008 0.0185984
14/4/11 103.75 104.743 1.673 -2.113 0.0095679
15/4/11 103.687 102.863 1.679 -1.294 0.0079435
18/4/11 103.5 103.632 1.893 -1.639 0.0012745
19/4/11 103.581 102.137 1.881 -0.976 0.0139432
20/4/11 104.031 100.665 1.612 -0.307 0.0323604
21/4/11 103.687 100.953 1.689 -0.440 0.0263678
25/4/11 103.781 102.565 1.698 -1.177 0.0117214
26/4/11 104.193 100.801 1.458 -0.373 0.0325519
27/4/11 104.451 108.443 1.387 -3.727 0.0382164
28/4/11 104.693 103.032 1.251 -1.392 0.0158645
29/4/11 103.937 105.613 1.594 -2.533 0.0161293
2/5/11 103.745 100.094 1.711 -0.044 0.0351944
3/5/11 103.92 107.094 1.645 -3.184 0.0305447
4/5/11 104.112 106.235 1.656 -2.819 0.0203927
5/5/11 103.895 105.383 1.735 -2.452 0.0143215
6/5/11 103.808 104.538 1.709 -2.082 0.0070282
9/5/11 103.766 105.842 1.764 -2.666 0.020003
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Date Mkt Price $ Mod. Price Mkt Yield % Mod. Yield Rel. Error
10/5/11 103.595 102.472 1.837 -1.157 0.0108395
11/5/11 102.966 100.596 2.022 -0.283 0.0230179
12/5/11 102.95 103.969 2.068 -1.842 0.0098966
13/5/11 102.72 103.926 2.183 -1.825 0.0117374
16/5/11 102.329 100.694 2.351 -0.332 0.0159828
17/5/11 102.454 102.206 2.364 -1.044 0.0024158
18/5/11 102.545 103.342 2.348 -1.571 0.0077712
19/5/11 102.583 100.59 2.399 -0.283 0.0194282
20/5/11 102.391 98.9461 2.435 0.513 0.0336449
23/5/11 102.129 106.835 2.548 -3.154 0.0460764
24/5/11 102.158 101.088 2.566 -0.524 0.0104711
25/5/11 102.187 102.447 2.614 -1.168 0.0025464
26/5/11 102.37 103.179 2.534 -1.511 0.0079066
27/5/11 102.422 104.763 2.511 -2.242 0.0228557
31/5/11 102.6 101.905 2.49 -0.920 0.0067697
1/6/11 102.185 101.002 2.65 -0.488 0.0115752
2/6/11 102.005 103.647 2.781 -1.744 0.0160967
3/6/11 101.77 102.381 2.724 -1.151 0.0060082
6/6/11 101.896 102.719 2.679 -1.316 0.008076
7/6/11 101.851 100.819 2.646 -0.403 0.0101356
8/6/11 101.844 103.649 2.744 -1.759 0.017722
9/6/11 101.837 103.958 2.756 -1.907 0.0208265
10/6/11 101.666 101.668 2.845 -0.818 1.85E-05
13/6/11 101.896 101.042 2.746 -0.516 0.0083773
14/6/11 101.825 99.8752 2.693 0.062 0.0191486
15/6/11 101.5 103.931 2.881 -1.909 0.0239525
16/6/11 101.45 102.867 2.801 -1.405 0.0139667
17/6/11 101.638 102.231 2.751 -1.100 0.0058354
20/6/11 101.831 101.903 2.708 -0.945 0.0007076
21/6/11 101.994 100.762 2.684 -0.382 0.0120774
22/6/11 101.942 99.6344 2.739 0.185 0.0226362
23/6/11 101.912 105.851 2.787 -2.834 0.0386545
24/6/11 101.687 103.699 2.952 -1.822 0.0197902
27/6/11 102.014 102.028 2.699 -1.015 0.0001356
28/6/11 102.174 100.888 2.618 -0.449 0.0125858
29/6/11 102.062 104.061 2.763 -2.009 0.0195846
30/6/11 102.333 102.481 2.623 -1.243 0.0014482
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D.5 Daily values of calibrated parameters, date 22 June
2010 - 30 June 2011
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TABLE D.13: Daily values of calibrated parameters: Initial intensities, decay rates, constant reversion
level and degrees of freedom

Date X(1)
0 X(2)

0 ca(1) ca(2) cb(1) cb(2) DoF
22/06/10 9.735E-05 -1.1240 -2.3476 3.3496 1.9320 2.4902 0.0404
23/06/10 9.735E-05 -1.1240 -2.3476 3.3496 1.9320 2.4902 0.0404
24/06/10 0.266 -0.2536 -0.6847 4.0145 1.4306 2.0538 0.0232
25/06/10 0.266 -0.2536 -0.6847 4.0145 1.4306 2.0538 0.0232
28/06/10 0.682 -0.8651 -5.3831 22.1318 1.3521 2.7285 0.0467
29/06/10 0.682 -0.8651 -5.3831 22.1318 1.3521 2.7285 0.0467
30/06/10 0.682 -0.8651 -5.3831 22.1318 1.3521 2.7285 0.0467
1/07/10 0.487 -0.7433 -1.8438 3.4600 1.6702 2.9376 0.0282
2/07/10 0.555 -1.1240 -1.67210 3.3496 2.0220 4.5329 0.0365
6/07/10 0.273 -0.4128 -2.8044 6.6484 1.0898 2.8042 9.94E-12
7/07/10 7.738E-05 -3.0489 -0.0204 1.2424 0.0276 2.6596 0.0100
8/07/10 0.131 -1.5929 -3.6294 6.0653 2.3416 2.0002 0.0499
9/07/10 0.321 -0.0680 -5.2639 3.1271 2.5499 2.0188 0.0030
12/07/10 0.409 -1.0033 -0.5139 1.7040 0.9057 2.3998 0.0344
13/07/10 0.0001 -0.1305 -0.9595 3.2483 4.4748 3.5899 0.0191
14/07/10 6.972E-05 -0.1299 -0.9595 3.2490 4.4745 3.58986 0.0191
15/07/10 7.179E-05 -4.933 -6.6359 4.5301 11.1670 2.8040 0.0276
16/07/10 0.0001 -0.1307 -0.9594 3.248 4.4749 3.5899 0.0191
19/07/10 0.414 -5.7151 -6.4419 6.7748 5.8332 2 0.0217
20/07/10 0.009 -0.8813 -9.3107 2.2962 4.3327 2 0.0348
21/07/10 0.009 -0.8809 -9.3107 2.2962 4.3328 2 0.0348
22/07/10 0.041 -0.6354 -3.7668 0.9419 2.0342 2.00003 0.0091
23/07/10 7.398E-08 -0.9063 -30.2251 0.8245 11.5942 2.9822 0.05
26/07/10 0.175 -0.0000001 -3.4873 3.6904 2.6076 2.9377 0.0373
27/07/10 0.175 -0.0000001 -3.4873 3.6904 2.6076 2.9377 0.0373
28/07/10 9.556E-07 -4.3714 -3.4713 9.6704 7.4741 3.7253 0.0024
29/07/10 9.556E-07 -4.3714 -3.4713 9.6704 7.4741 3.7253 0.0024
30/07/10 0.488 -0.3929 -3.2875 5.7110 2.7355 2.0005 0.0292
2/08/10 2.839E-08 -6.3303 -0.7643 14.5636 1.5550 2.1539 2.96E-09
3/08/10 6.745E-08 -3.2055 -11.0106 14.8234 2.6820 2.0020 0.0186
4/08/10 6.737E-08 -0.1611 -1.6731 0.2474 1.9969 2.6312 2.74E-06
5/08/10 6.737E-08 -0.1611 -1.6731 0.2474 1.9969 2.6312 2.74E-06
6/08/10 0.090 -1.2240 -4.3282 11.0257 2.7768 2.0020 1.93E-08
9/08/10 0.397 -3.0005 -4.6113 38.7958 0.6207 2.0651 0.0263
10/08/10 0.397 -3.0005 -4.6113 38.7958 0.6207 2.0651 0.0263
11/08/10 0.397 -3.0005 -4.6113 38.7958 0.6207 2.0651 0.0263
12/08/10 0.397 -3.0005 -4.6113 38.7958 0.6207 2.0651 0.0263
13/08/10 0.397 -3.0005 -4.6113 38.7958 0.6207 2.0651 0.0263
16/08/10 0.0139 -0.1999 -0.1550 2.2779 0.2802 2.1494 0.0476
17/08/10 9.546E-09 -1.0324 -0.2564 3.5198 0.5447 2.7754 0.0093
18/08/10 0.157 -0.4635 -5.0010 2.3771 7.3369 2.0111 0.00047
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TABLE D.14: Daily values of calibrated parameters: Jump sizes, dependence parameter, average
jump frequency, diffusion rates copula SD

µ(1) µ(2) θ ρ φ1 φ2 σ (1) σ (2)

2.5461 1.0000 -0.9911 2.0000 2.3013 0.4726 0.1199 0.2077
2.6122 2.1120 -0.9911 2.0000 2.3013 0.4726 0.1199 0.2077
1.0303 1.4049 0.225214 2.0234 1.9869 10.0689 0.4946 0.3228
1.0303 1.4049 0.225214 2.0234 1.9869 10.0689 0.4946 0.3228
2.9092 2.1783 -0.4045 2.8037 1.1866 0.3883 0.2409 0.2679
2.9092 2.1783 -0.4045 2.8037 1.1866 0.3883 0.2409 0.2679
2.9092 2.1783 -0.4045 2.8037 1.1866 0.3883 0.2409 0.2679
6.6357 2.9766 -0.0408 2.0000 0.5217 6.5279 0.1405 0.2087
2.5337 1.2732 0.955655 2.0000 1.0834 4.7760 0.1196 0.2724
2.8019 2.3383 0.017395 2.0154 0.0003 5.9327 0.1053 0.4120
1.1235 3.1486 -0.92403 2.1144 2.6137 1.4002 0.3880 0.1534
1.0000 2.3502 -0.34669 2.0001 1.8703 2.9851 0.4311 0.4997
3.0536 1.1610 0.84513 2.1641 0.9743 1.2955 0.1876 0.4131
4.1816 1.0618 -0.7078 2 2.2930 1.4902 0.1991 0.4578
3.2596 1.1281 -0.4378 2.0004 6.1086 3.041E-05 0.4724 0.4265
3.2596 1.1281 -0.4378 2.0004 6.1086 3.041E-05 0.4722 0.4265
1.7737 1.9490 0.2228 2.0006 5.7058 2.656E-08 0.2626 0.3264
3.2596 1.1281 -0.4378 2.0005 6.1086 3.041E-05 0.4725 0.4264
4.3072 1.0000 -0.2497 2.1080 7.0996 3.7597 0.3213 0.2453
2.2676 1.0000 0.4904 2.2520 0.5645 3.9394 0.2403 0.3492
2.2676 1.0000 0.4904 2.2520 0.5645 3.9394 0.2403 0.3492
1.0000 1.9548 -0.77163 2 0.5659 0.6204 0.1670 0.4009
1.6539 1.0000 1 2.0009 3.2907 2.24E-06 0.1945 0.1491
1.0885 1.0000 0.0950 2.00002 2.1916 3.6374 0.2926 0.2434
1.0885 1.0000 0.0950 2.00002 2.1916 3.6374 0.2926 0.2434
1.0000 1.0000 -0.9758 2 3.0555 2.2945 0.3109 0.3373
1.0000 1.0000 -0.9758 2 3.0555 2.2945 0.3109 0.3373
2.6154 1.0000 0.58710 2.00001 0.4704 1.4316 0.3298 0.2258
5.8232 1.3842 -0.5313 2 0.6209 4.4984 0.2703 0.5000
3.8487 1.4889 -0.1774 2.0397 1.8363 3.084E-05 0.1625 0.1232
2.4114 1.0000 -0.3873 2.00007 3.2849 4.307 0.0965 0.1363
2.4114 1.0000 -0.3873 2.00007 3.2849 4.307 0.0965 0.1363
1.9267 1.7797 1 2 2.4562 3.9494 0.5000 0.4124
1.7496 2.1635 -0.1731 2 2.8367 3.5544 0.2316 0.5
1.7496 2.1635 -0.1731 2 2.8367 3.5544 0.2316 0.5
1.7496 2.1635 -0.1731 2 2.8367 3.5544 0.2316 0.5
1.7496 2.1635 -0.1731 2 2.8367 3.5544 0.2316 0.5
1.7496 2.1635 -0.1731 2 2.8367 3.5544 0.2316 0.5
1.8414 1.4312 -0.4317 2.1401 1.8357 2.3904 0.4218 0.0476
2.7716 1.2457 1 2.0018 0.2298 4.4771 0.2927 0.2202
2.8560 2.8835 0.5240 2.0549 1.15855 3.1033 0.3982 0.5
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Date X(1)
0 X(2)

0 ca(1) ca(2) cb(1) cb(2) DoF
19/08/10 0.1574 -0.4635 -5.0010 2.3771 7.3369 2.0111 0.0005
20/08/10 0.8241 -5.0020 -5.1719 48.0240 3.0622 4.5753 0.0252
23/08/10 1.51E-06 -1.9411 -22.9683 4.1558 11.7333 4.3069 0.05
24/08/10 0.2493 -5.0699 -7.5002 28.3618 6.4460 3.4705 0.05
25/08/10 4.91E-05 -1.5159 -17.6032 10.8233 5.5072 2.6808 0.0482
26/08/10 9.17E-08 -0.1172 -8.4297 3.8587 1.9142 3.5091 0.0091
27/08/10 9.38E-07 -2.6928 -8.9855 8.9770 7.6954 3.7819 0.0467
30/08/10 0.2649 -0.6305 -1.4335 2.2413 0.9793 3.2179 0.05
31/08/10 0.0871 -1.5008 -0.7795 7.5866 0.3497 2 0.0244
1/09/10 0.0871 -1.5008 -0.7795 7.5866 0.3497 2 0.0244
2/09/10 3.27E-05 -5.5627 -14.9375 7.1119 12.7490 3.4086 4.75E-06
3/09/10 0.1705 -0.7094 -0.0996 1.0800 0.1915 2.00001 2.05E-09
7/09/10 8.52E-08 -3.1824 -1.5918 13.9519 2.7638 2.3424 0.0047
8/09/10 8.52E-08 -3.1824 -1.5918 13.9519 2.7638 2.3424 0.0047
9/09/10 0.0014 -1.4251 -19.1068 5.0097 5.6229 2.0245 0.0294
10/09/10 0.1717 -1.2824 -6.9647 19.1493 7.5643 2.2433 0.0052
13/09/10 0.8461 -3.5291 -2.2093 3.8858 2.9513 2.1490 0.0285
14/09/10 0.0626 -0.9036 -0.1061 7.5451 0.2080 4.7795 2.07E-07
15/09/10 0.0271 -3.3203 -7.8479 37.1217 8.5617 2.00001 0.0500
16/09/10 0.0271 -3.3203 -7.8479 37.1217 8.5617 2.00001 0.0500
17/09/10 0.1100 -2.4061 -0.1093 24.8176 0.5579 3.0047 0.0500
20/09/10 3.28E-08 -3.6411 -5.8544 0.1265 3.0591 2.8933 0.0152
21/09/10 0.0453 -1.8505 -14.0345 8.8942 5.9173 2.0010 0.0152
22/09/10 0.3077 -5.9716 -9.0447 11.3245 7.7898 3.8295 0.0308
23/09/10 0.5073 -1.0316 -7.5379 6.1799 7.4291 3.8295 0.0288
24/09/10 0.4363 -8.1569 -0.4053 32.0351 1.1427 2.4981 0.0497
27/09/10 0.0597 -7.2548 -2.3011 49.8531 1.5050 3.9885 0.0146
28/09/10 0.0475 -0.6194 -12.5921 9.7207 8.7117 4.3844 0.05
29/09/10 0.2905 -5.3765 -14.5871 16.6569 14.2082 3.8817 0.0360
30/09/10 0.2905 -5.3765 -14.5871 16.6569 14.2082 3.8817 0.0360
1/10/10 0.2905 -5.3765 -14.5871 16.6569 14.2082 3.8817 0.0360
4/10/10 2.85E-07 -0.0281 -3.3848 9.6622 1.8138 4.709 0.0428
5/10/10 2.85E-07 -0.0281 -3.3848 9.6622 1.8138 4.709 0.0428
6/10/10 2.85E-07 -0.0281 -3.3848 9.6622 1.8138 4.709 0.0428
7/10/10 0.2275 -4.4362 -0.2576 60.6703 0.2843 2 0.05
8/10/10 0.2051 -0.0340 -39.3459 3.8163 4.4769 2.3289 0.0393
12/10/10 0.4137 -1.1178 -8.9411 8.9344 2.5828 3.3273 0.0310
13/10/10 5.79E-05 -0.0865 -0.0863 1.8163 0.1045 3.3820 0.0385
14/10/10 5.79E-05 -0.0865 -0.0863 1.8163 0.1045 3.3820 0.0385
15/10/10 1.79E-08 -0.0853 -0.0843 1.8176 0.1022 3.3820 0.0383
18/10/10 0.3521 -1.2232 -0.2896 17.8707 0.4167 4.2149 0.0418
19/10/10 0.5699 -3.6568 -0.2167 117.8035 0.1760 2 0.0317
20/10/10 0.2163 -0.3896 -4.3377 5.4074 2.9531 2.9720 0.0227
21/10/10 0.2845 -2.4622 -0.2848 13.1863 0.8211 4.5782 0.0158
22/10/10 0.0014 -0.1229 -1.3214 1.6691 1.6554 2.0245 0.0075
25/10/10 0.9088 -0.8568 -0.0567 44.6152 0.0390 2.7237 2.43E-05
26/10/10 0.4614 -3.1510 -2.9427 122.6518 4.2144 2.8686 0.0273
27/10/10 0.0001 -1.4767 -0.5713 0.4454 1.6298 2 0.0278
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µ(1) µ(2) θ ρ φ1 φ2 σ (1) σ (1)

2.8560 2.8835 0.5240 2.0549 1.1586 3.1033 0.3982 0.5
3.8109 1.6994 1.0000 2.2107 3.5028 2.2112 0.5 0.3454
1.1335 2.7716 1 2 4.9175 0.6935 0.3248 0.5
3.3372 2.4643 1 2.0203 2.2526 1.173 0.5 0.2605
2.7128 2.1906 1 2 4.6221 0.9539 0.5 0.1125
2.3000 3.2896 0.4871 2.0630 5.25E-08 0.4804 0.2911 0.4380
2.0176 1.5704 -1 2.0189 1.7391 1.3336 0.2549 0.5000
2.4905 1.2537 0.4329 2.0641 0.8129 7.53E-08 0.5 0.2597
2.7150 2.7391 -1 2.0058 7.98E-08 0.0241 0.1880 0.3738
2.7150 2.7391 -1 2.0058 7.98E-08 0.0241 0.1880 0.3738
1.4219 1.4069 1 2.3427 0.2616 0.5043 0.3386 0.2546
2.3456 2.4047 -0.0551 2 3.0258 2.5372 0.3028 0.5000
5.8077 4.9066 -0.0180 2.2636 0.0072 0.3601 0.4426 0.4403
5.8077 4.9066 -0.0180 2.2636 0.0072 0.3601 0.4426 0.4403
1.0050 3.7302 -1 2.6791 2.2859 2.8078 0.1607 0.1184
2.3911 3.352 1 2 0.5759 2.3983 0.3038 0.1539
2.5250 1.00001 0.7205 2.0001 1.2092 0.8110 0.2947 0.1360
1.0000 1.6567 -0.0540 2.0511 2.7685 0.3320 0.3180 0.4647
4.1904 1.7404 -0.4632 2 0.3769 1.0760 0.2760 0.4168
4.1904 1.7404 -0.4632 2 0.3769 1.0760 0.2760 0.4168
2.7047 1.00001 -0.6769 2.4180 1.1506 0.1391 0.4614 0.0890
1.4260 2.2892 0.2808 2.8617 0.1850 1.1817 0.2879 0.2969
2.8744 2.8742 0.0105 2.0608 3.8863 9.67E-08 0.3679 0.5
1.0442 2.6333 0.1871 2 2.0563 4.37E-07 0.3381 0.2215
2.2006 1.0070 -0.2825 2.0003 2.2401 0.4720 0.4734 0.3853
4.5883 2.8819 0.3873 2.0005 5.62E-07 0.4569 0.3513 0.1121
3.8861 3.0144 0.5589 2 0.9883 1.6271 0.4122 0.3853
2.0034 3.0437 0.4847 2.0001 1.8844 7.96E-07 0.3006 0.5
2.8246 2.3429 -0.8213 2.5000 0.4851 0.4415 0.2711 0.5000
2.8246 2.3429 -0.8213 2.5000 0.4851 0.4415 0.2711 0.5000
2.8246 2.3429 -0.8213 2.5000 0.4851 0.4415 0.2711 0.5000
1.1894 1.0339 0.5633 2.0634 0.9989 6.77E-07 0.3091 0.3111
1.1894 1.0339 0.5633 2.0634 0.9989 6.77E-07 0.3091 0.3111
1.1894 1.0339 0.5633 2.0634 0.9989 6.77E-07 0.3091 0.3111
1.4453 3.6266 1.0000 2.0117 1.6305 1.1080 0.5 0.4448
1.0000 1.6951 0.4149 2.0010 0.8364 0.9356 0.3695 0.3111
1.5940 1.8117 -0.2484 2.0470 0.1202 1.2034 0.4714 0.4062
1.5430 3.1813 -0.8889 2.1007 0.9290 0.6800 0.1042 0.0892
1.5430 3.1813 -0.8889 2.1007 0.9290 0.6800 0.1042 0.0892
1.5430 3.1813 -0.8889 2.1007 0.9290 0.6800 0.1042 0.0892
1.0000 3.1294 0.7087 2.1202 4.37E-06 1.2441 0.3430 0.0612
1.1199 1.3231 -1 2.0038 6.58E-08 2.2752 0.4080 0.0505
2.7032 1.3626 -1 2 0.0005 2.1855 0.5 0.4066
1.5158 1.9360 -0.2018 2.1672 1.5529 0.5582 0.2498 0.2021
3.3575 1.9058 -0.0036 2.0003 4.7844 9.12E-08 0.4019 0.1658
1.8423 1.1829 -0.9996 2.0059 4.7472 1.47E-07 0.1882 0.2034
2.9664 1.0000 0.2867 2.0998 7.5898 3.5642 0.2498 0.5
4.3448 1.8784 0.5872 2.5165 2.5902 0.2592 0.4350 0.4429
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Date X(1)
0 X(2)

0 ca(1) ca(2) cb(1) cb(2) DoF
28/10/10 0.0001 -1.4767 -0.5713 0.4454 1.6298 2 0.0278
29/10/10 0.0014 -0.2046 -0.8769 1.6691 1.7222 2.5196 4.64E-06
1/11/10 0.0008 -1.0945 -2.3031 1.5092 1.5848 3.1558 0.0236
2/11/10 0.0061 -0.0269 -2.4077 3.5171 3.0414 2.14254 0.0288
3/11/10 5.41E-06 -20.2494 -95.8812 119.0661 42.7405 2 0.0041
4/11/10 0.1691 -0.5348 -2.4729 4.3079 6.1854 2.2153 0.0500
5/11/10 0.0400 -0.5442 -4.5541 0.6669 0.9835 2.0001 0.0256
8/11/10 0.1605 -1.8327 -44.1404 19.3013 20.3448 2 0.0500
9/11/10 0.1136 -4.2166 -8.4187 12.5165 6.0417 3.0086 0.0178
10/11/10 0.1724 -0.2764 -3.5448 9.0007 0.9255 2.2351 0.0454
12/11/10 8.54E-06 -2.0148 -3.56282 59.9189 0.6388 2.8382 4.80E-07
15/11/10 0.0914 -1.4200 -5.3686 15.8379 6.2238 2.7206 0.0500
16/11/10 0.0914 -1.4200 -5.3686 15.8379 6.2238 2.7206 0.0500
17/11/10 0.0914 -1.4200 -5.3686 15.8379 6.2238 2.7206 0.0500
18/11/10 0.1705 -0.4134 -1.6320 5.6121 2.8003 3.2140 0.0324
19/11/10 0.0266 -5.7731 -0.13701 36.1224 0.3640 2 0.0144
22/11/10 2.37E-07 -6.0095 -2.1391 30.9573 1.1159 4.3023 0.0221
23/11/10 6.42E-07 -6.6002 -14.9443 24.0659 10.8939 4.2420 0.0425
24/11/10 0.0914 -1.4200 -1.3990 6.0577 1.6219 2.7206 0.0500
26/11/10 0.1622 -2.5585 -0.1114 7.4426 1.1014 3.4522 0.0392
29/11/10 0.0475 -4.9602 -13.113 36.4385 7.6573 2.0981 3.60E-08
30/11/10 0.1789 -11.8809 -11.6242 13.4626 5.5607 2 0.0391
1/12/10 0.1277 -0.7248 -3.6604 13.6385 3.1872 2.7429 3.94E-06
2/12/10 0.0586 -0.3275 -6.0130 8.8351 4.8794 2.3053 0.0214
3/12/10 0.1947 -0.4129 -9.2830 6.0916 2.2565 3.4940 0.0112
6/12/10 0.0098 -4.3107 -13.6164 24.7967 8.2083 2.0000 0.0118
7/12/10 0.2828 -2.8925 -13.0599 21.7289 7.5485 3.3729 0.0439
8/12/10 0.0366 -1.8686 -17.1479 2.0907 6.0152 3.2317 0.0217
9/12/10 0.2007 -0.3640 -14.3323 4.9200 8.4189 2.5189 3.52E-06
10/12/10 0.2007 -0.3640 -14.3323 4.9200 8.4189 2.5189 3.52E-06
13/12/10 0.1458 -1.3535 -10.426 10.1191 7.3807 2.3381 0.0083
14/12/10 0.5885 -3.6082 -3.8449 31.7312 3.3255 2 0.0145
15/12/10 0.3144 -0.4307 -23.5281 16.8458 9.7489 3.4450 0.0025
16/12/10 0.1824 -0.6932 -5.5442 8.7435 2.2681 2 0.0329
17/12/10 0.4519 -1.4200 -7.3064 14.0041 6.2238 2 0.0247
20/12/10 0.3707 -10.4143 -15.0458 16.8044 3.5166 2.6397 2.18E-08
21/12/10 0.2259 -1.9689 -14.3477 8.5814 9.0330 2.8589 0.0223
22/12/10 6.33E-08 -2.2894 -18.5814 37.7187 7.9422 4.7839 0.0168
23/12/10 0.4190 -3.0453 -3.1856 20.6277 4.0509 6.3169 0.0129
27/12/10 0.0008 -1.5835 -3.8217 4.5184 4.9727 2.3254 0.0456
28/12/10 3.08E-07 -0.6272 -14.4119 11.29654 2.5792 4.6460 0.0347
29/12/10 0.7899 -8.7888 -11.9934 23.7208 10.6287 3.1784 0.0028
30/12/10 0.0631 -0.2485 -1.3527 17.4834 0.6130 2.0111 0.0465
31/12/10 0.3524 -0.7538 -0.2734 6.6120 0.7241 3.7367 3.15E-09
3/01/11 0.0922 -2.3359 -21.3341 3.9512 5.5483 4.3907 0.0057
4/01/11 1 -7.1184 -4.6586 22.8797 8.0838 4.5661 0.0011
5/01/11 3.11E-06 -0.8629 -6.7245 0.8284 4.4823 2.3131 0.0268
6/01/11 2.90E-07 -5.4062 -6.4001 14.1772 6.8107 4.2542 0.0057



D.5 DAILY VALUES OF CALIBRATED PARAMETERS, DATE 22 JUNE 2010 - 30 JUNE 2011149

µ(1) µ(2) θ ρ φ1 φ2 σ (1) σ (1)

4.3448 1.8784 0.5872 2.5165 2.5902 0.2592 0.4350 0.4429
3.8306 2.1517 1.0000 2.0003 1.1008 0.8047 0.4029 0.2208
4.2176 1.3932 1.0000 2.0124 3.3108 3.1798 0.1673 0.2832
4.1063 1.6136 0.9785 2 5.2543 3.7896 0.3377 0.1309
1.0000 1.5416 0.3775 2.0328 2.1866 2.4454 0.4501 0.3652
2.3688 4.6442 -1 2.00001 6.86E-06 1.2362 0.2183 0.3309
2.0493 1.9263 -0.3271 2.2225 3.0483 2.2867 0.4154 0.3926
3.4414 4.5622 0.0087 2 4.0118 2.9952 0.2960 0.5
1.2467 1.9588 0.2416 2.01252 4.8847 1.5098 0.5 0.4074
1.0000 3.1667 -1 2.1307 2.1087 5.55E-07 0.3272 0.5
1.5197 1.0000 -0.6387 2.2959 1.6179 2.53E-06 0.3110 0.4072
2.5266 2.2776 0.1017 2.2436 0.9598 0.6250 0.3439 0.2003
2.5266 2.2776 0.1017 2.2436 0.9598 0.6250 0.3439 0.2003
2.5266 2.2776 0.1017 2.2436 0.9598 0.6250 0.3439 0.4998
2.4927 2.9794 0.5116 2.00001 0.1639 0.7413 0.3325 0.5
2.7107 1.8105 0.9906 2.00001 2.8205 2.3064 0.5000 0.1685
1.8268 1.1781 -0.3971 2.0412 1.1786 4.83E-05 0.4766 0.5
1.0000 3.1999 -0.3412 2.1031 3.0256 2.8389 0.3529 0.3339
2.5266 2.6431 0.1017 2.4446 0.9598 1.6488 0.3439 0.1386
2.4644 1.0000 0.5604 2.3713 0.7807 0.4141 0.4055 0.2680
1.4250 1.0000 0.1199 2.00003 2.4179 0.4155 0.3844 0.2920
1.4557 1.6855 -1 2.2355 2.0160 5.43E-09 0.3945 0.2555
3.1069 1.2963 0.9298 2.2370 0.3423 3.1455 0.4281 0.1100
2.7146 4.0149 -0.7561 2.0107 1.8946 9.19E-05 0.3131 0.2927
1.9282 5.5297 -0.9040 2.5900 2.7732 0.3199 0.3195 0.5
3.2793 1.8709 -0.5684 2 0.4947 0.0001 0.2695 0.2295
1.6993 3.7273 -1 2.0304 2.4946 0.2757 0.2126 0.3021
2.3027 2.0973 -0.1628 2.0975 1.2319 0.7714 0.3923 0.1914
3.0630 1.4804 1 2.1538 1.6777 1.5497 0.5 0.1259
3.0630 1.4804 1 2.1538 1.6777 1.5497 0.5 0.1259
3.2115 1.0001 -0.9168 2.0366 1.2078 2.1219 0.2788 0.3538
2.6457 2.2212 0.3841 2.00001 1.37459 2.70E-06 0.2909 0.3147
5.2064 4.9461 0.4841 2 3.0409 0.8590 0.4162 0.5
3.1993 1.2096 -1 2.1491 0.8172 1.7795 0.1232 0.3415
1.7593 1.0000 0.5256 2.2436 7.46E-07 2.8855 0.4583 0.4317
6.0481 3.9146 1.0000 2 1.3934 5.41E-07 0.4774 0.2690
2.2224 2.8027 -1 2.0136 0.7266 2.8177 0.2136 0.5
1.0000 4.4157 -0.9260 2.1192 1.78E-08 1.6255 0.2744 0.4209
2.0152 3.7690 0.9286 2.1709 9.95E-07 3.3665 0.3219 0.4725
2.9809 3.0838 -0.4182 2.085 0.8149 0.8840 0.3785 0.2832
1.0000 2.1281 -0.9008 2.0102 3.8188 0.7165 0.1194 0.2864
1.0496 1.0000 0.2984 2.0285 1.4523 5.19E-06 0.2937 0.5000
2.9504 2.5960 -0.3283 2.0064 3.8917 2.2866 0.4322 0.1401
2.1374 1.7184 0.5277 2.2656 0.2136 1.6817 0.1268 0.3169
3.0001 1.3028 -0.3974 2 1.6079 0.1643 0.4027 0.5000
1.6046 1.2741 0.0553 2.0132 0.4589 2.8170 0.5 0.4864
1.3753 1.4737 0.5277 2.00001 7.5728 5.65E-08 0.3943 0.1761
2.2834 2.6024 0.0553 2.0793 1.6931 0.0094 0.3019 0.2968



150
JUMP DIFFUSION MODEL WITH COPULA DEPENDENCE STRUCTURE IN DEFAULTABLE

BOND PRICING

Date X(1)
0 X(2)

0 ca(1) ca(2) cb(1) cb(2) DoF
7/01/11 0.2709 -3.8056 -0.1647 10.9187 0.4225 2.9387 0.0138
10/01/11 0.2389 -0.6538 -3.8405 9.4805 1.4239 2.4578 5.82E-08
11/01/11 0.2389 -0.6538 -3.8405 9.4805 1.4239 2.4578 5.82E-08
12/01/11 0.4240 -3.6036 -9.8295 22.9918 7.6700 2 3.03E-08
13/01/11 0.2088 -0.7309 -2.7731 11.1088 2.9617 2 0.0052
14/01/11 0.2088 -0.7301 -2.7731 11.1089 2.9618 2 0.0052
18/01/11 0.6359 -3.1177 -2.5413 20.2886 1.8264 2 0.0097
19/01/11 0.1130 -0.0218 -2.6487 0.3197 1.6777 2.5911 0.0360
20/01/11 0.4214 -6.5712 -33.5094 16.8780 12.3153 3.1226 0.0152
21/01/11 0.4214 -6.5712 -33.5094 16.8780 12.3153 3.1226 0.0152
24/01/11 2.94E-08 -0.0292 -44.7616 15.7704 3.3092 2.2895 0.0118
25/01/11 0.0466 -0.8609 -5.4039 16.9678 1.4995 5.9544 0.0104
26/01/11 0.2272 -0.2147 -10.1406 1.9226 7.9210 2.6650 1.63E-08
27/01/11 0.2801 -1.4423 -2.5151 10.0920 2.8440 2.2866 0.0001
28/01/11 3.20E-05 -0.2617 -3.7202 3.8096 2.7107 2.1776 0.015
31/01/11 0.2799 -1.4386 -2.5143 10.0946 2.8432 2.2866 3.08E-08
1/02/11 0.0168 -2.9040 -13.9721 12.4729 11.3540 4.0192 0.0024
2/02/11 0.2526 -0.6826 -1.8444 14.1926 1.9809 2.7986 0.0274
3/02/11 0.1497 -0.2953 -2.5933 5.8613 2.2608 4.5639 0.0226
4/02/11 2.51E-06 -1.1298 -0.5475 13.1175 0.3281 2.1732 1.89E-07
7/02/11 0.1324 -0.2617 -1.3004 3.8096 0.9092 2.1776 0.0148
8/02/11 0.1324 -0.2617 -1.3004 3.8096 0.9092 2.1776 0.0148
9/02/11 0.0002 -1.4000 -5.7703 3.5979 6.6512 2.6707 0.0342
10/02/11 0.0002 -1.4000 -5.7703 3.5979 6.6512 2.6707 0.0342
11/02/11 0.0002 -1.4000 -5.7703 3.5979 6.6512 2.6707 0.0342
14/02/11 1.07E-05 -0.2737 -0.7387 4.3974 0.6734 3.7894 0.0138
15/02/11 1.07E-05 -0.2737 -0.7387 4.3974 0.6734 3.7894 0.0138
16/02/11 6.57E-05 -0.2730 -0.0294 5.9064 0.1179 3.1805 0.0147
17/02/11 0.0898 -0.9885 -0.0813 20.2457 0.0907 4.2462 1.48E-07
18/02/11 0.2228 -7.8810 -0.2417 32.9345 0.3013 2.1322 0.0136
22/02/11 0.1497 -0.2953 -2.5933 7.9309 2.2608 2 1.56E-06
23/02/11 0.0484 -0.2485 -0.2267 5.0459 0.1906 2 0.0145
24/02/11 0.0718 -1.8622 -8.6119 4.1583 7.9378 2 0.0028
25/02/11 0.5057 -0.7314 -8.2872 11.1088 2.7370 3.7240 0.05
28/02/11 1.07E-05 -0.2737 -3.4338 4.3974 1.6609 2.0001 0.0311
1/03/11 0.0852 -2.8775 -31.3635 17.5079 15.0268 3.5533 0.0256
2/03/11 4.59E-08 -3.4320 -11.1587 12.9219 12.9943 2.5675 0.0296
3/03/11 1.07E-05 -0.2737 -1.1895 4.3974 0.6734 2.0001 0.0016
4/03/11 5.65E-07 -3.8679 -3.1779 9.5993 1.8284 2.2061 0.0153
7/03/11 0.7696 -0.8976 -4.3412 4.5719 1.5206 3.6653 0.0280
8/03/11 0.4749 -1.6375 -1.1703 11.7998 0.7827 2.8974 0.0046
9/03/11 0.8766 -1.4465 -2.8506 2.9231 2.7810 2.4138 0.0034
10/03/11 0.8766 -1.4465 -2.8506 2.9231 2.7810 2.4138 0.0034
11/03/11 0.0016 -0.2485 -0.7911 5.0459 0.1906 3.7926 3.05E-09
14/03/11 0.2480 -1.1E-07 -1.3161 4.2300 0.4659 2.9504 0.0154
15/03/11 0.3045 -5.9937 -4.6538 21.0515 3.7578 3.0516 0.0316
16/03/11 0.4666 -0.4505 -0.0190 9.6171 0.2005 2.7242 3.01E-07
17/03/11 4.24E-07 -0.6779 -3.6831 9.2274 1.9453 2.2756 0.0009



D.5 DAILY VALUES OF CALIBRATED PARAMETERS, DATE 22 JUNE 2010 - 30 JUNE 2011151

µ(1) µ(2) θ ρ φ1 φ2 σ (1) σ (1)

2.3922 2.1593 -0.6212 2.0004 3.2932 2.2099 0.1958 0.4411
1.0000 1.4187 0.4539 2 1.5504 0.0008 0.2345 0.3582
1.0000 1.4187 0.4539 2 1.5504 0.0008 0.2345 0.3582
1.9137 1.5046 1.0000 2.0000 1.4026 3.3622 0.3352 0.3821
3.3043 1.0000 0.9994 2.0000 4.9015 0.7086 0.4795 0.3191
3.3043 1.0000 0.9994 2.0000 4.9015 0.7086 0.4795 0.3191
1.4379 1.0000 0.5094 2 1.1992 1.1445 0.3347 0.3409
1.8645 2.23676 -0.1365 2 1.88E-07 0.2974 0.2857 0.3127
2.8602 1.0000 -1 2.0144 3.0214 0.8390 0.4999 0.3619
2.8602 1.0000 -1 2.0144 3.0214 0.8390 0.4999 0.3619
3.1905 2.5687 -0.9430 2.3259 2.2468 0.8439 0.5 0.1992
3.5448 3.9261 0.4897 2.9357 2.4377 8.99E-08 0.2935 0.3347
1.0000 2.4754 1 2.00004 1.6289 1.2964 0.4513 0.3962
1.8531 3.0512 -0.9999 2.1685 2.0619 1.7113 0.3361 0.5000
2.5913 3.6848 -0.8428 2.0138 1.9112 1.9621 0.2937 0.3492
1.8531 3.0512 -0.9999 2.1681 2.0619 1.7113 0.3359 0.5
2.1496 3.5276 0.3675 2.0048 1.5025 2.374 0.2436 0.3087
3.9432 1.0000 -0.8104 2.0006 0.4079 3.92E-07 0.2737 0.1465
2.9160 1.0000 -0.2509 2.1672 7.21E-08 2.4309 0.2064 0.1886
1.0495 3.5617 0.9384 2.0043 3.8232 3.36E-06 0.1988 0.2874
2.5913 3.6848 -0.8428 2.0138 1.9112 0.4269 0.2937 0.1595
2.5913 3.6848 -0.8428 2.0138 1.9112 0.4269 0.2937 0.1595
2.8056 3.5746 1.0000 2 2.2200 8.09E-06 0.1886 0.5
2.8056 3.5746 1.0000 2 2.2200 8.09E-06 0.1886 0.5
2.8056 3.5746 1.0000 2 2.2200 8.09E-06 0.1886 0.5
1.6624 4.2488 -0.7231 2.0308 0.9150 0.0005 0.23079 0.4449
1.6624 4.2488 -0.7231 2.0308 0.9150 0.0005 0.23079 0.4449
2.4356 1.0042 -0.0584 2.0004 0.3182 0.6117 0.2909 0.2801
2.8347 1.0041 -0.8089 2.00001 3.6448 1.5837 0.2484 0.4569
1.1909 2.4754 0.0268 2.6027 0.0197 0.5876 0.4996 0.3337
2.12592 1.171345 -1 2.0033 0.5173 3.4234 0.2618 0.2380
2.9160 3.4518 -0.3092 2.0095 1.8418 0.0073 0.2064 0.4340
2.4584 2.8745 1.0000 2.1542 4.9805 6.94E-07 0.1701 0.3752
2.03743 2.1483 -1 2.00004 8.98E-07 0.4781 0.2607 0.2670
2.95727 3.9913 -0.7231 2 1.0308 0.7709 0.2032 0.2846
1.0000 2.2316 -0.1700 2.0092 2.7613 3.1235 0.4840 0.4290
1.6679 1.2753 0.4018 2 4.2934 1.7000 0.2449 0.2721
1.6624 3.1785 -0.7231 2.0292 0.9150 0.5700 0.2283 0.5
2.5919 1.8438 -0.1354 2 2.9679 8.37E-07 0.4958 0.0748
1.00001 2.1483 0.9994 2 1.14E-08 0.7086 0.26071 0.5
3.4672 2.6199 -0.3951 2.2657 1.0997 1.4218 0.1680 0.1179
1.00001 3.0373 -1.0000 2.0031 1.3718 2.5253 0.2621 0.3484
1.00001 3.0373 -1.0000 2.0031 1.3718 2.5253 0.2621 0.3484
2.9160 3.4518 0.0171 2.0033 1.0753 4.4019 0.2064 0.4340
1.00001 1.0000 0.9728 2.0179 1.7786 0.8910 0.3752 0.4355
2.9455 2.0019 0.2273 2.0048 1.7319 0.6744 0.3673 0.3616
2.6847 1.9890 -0.7365 2.0193 7.26E-06 0.5116 0.5000 0.5000
1.6490 3.8112 0.5362 2.3118 2.3886 0.7769 0.5000 0.0834



152
JUMP DIFFUSION MODEL WITH COPULA DEPENDENCE STRUCTURE IN DEFAULTABLE

BOND PRICING

Date X(1)
0 X(2)

0 ca(1) ca(2) cb(1) cb(2) DoF
21/03/11 0.1344 -4.1549 -0.0831 25.0322 1.2047 2.8016 0.0220
22/03/11 2.90E-06 -0.9384 -2.7200 6.0266 2.3348 2.5466 0.0045
23/03/11 0.9768 -0.5915 -1.0868 11.4437 0.5324 2.1714 4.21E-09
24/03/11 4.24E-07 -0.6779 -1.7151 19.7531 1.6774 2 0.0010
25/03/11 4.24E-07 -0.6779 -1.7151 19.7531 1.6774 2 0.0010
28/03/11 0.3145 -3.5643 -8.5471 48.1993 6.4393 2.0001 0.0049
29/03/11 0.3145 -3.5643 -8.5471 48.1993 6.4393 2.0001 0.0049
30/03/11 8.59E-08 -0.3457 -0.0790 2.2747 0.1074 2 4.02E-09
31/03/11 0.0319 -0.0000001 -0.3650 4.0371 0.1969 2.9234 2.16E-08
1/04/11 0.2376 -0.5579 -25.4347 11.1547 8.7994 2 4.86E-08
4/04/11 9.63E-08 -0.0208 -7.6878 6.5916 12.1383 2.4018 0.0324
5/04/11 9.63E-08 -0.0208 -7.6878 6.5916 12.1383 2.4018 0.0324
6/04/11 0.1746 -1.1884 -6.4154 12.9980 6.6474 2.2853 0.0319
7/04/11 1 -1.3165 -8.9688 22.7131 16.9850 2.0008 0.0350
8/04/11 0.2123 -1.0947 -6.6013 11.1103 2.2852 3.26 3.53E-09
11/04/11 0.3696 -1.267 -4.8555 0.0113 2.1075 3.0145 1.37E-09
12/04/11 0.0415 -0.0208 -2.5905 2.3247 3.8423 2.4658 0.0227
13/04/11 0.1293 -0.1704 -18.121 38.6082 2.5137 3.7075 0.0081
14/04/11 0.3435 -2.6324 -1.2746 9.7180 1.3621 2.4906 0.0064
15/04/11 0.2377 -2.9643 -0.0272 8.3591 0.1249 2.8618 0.0242
18/04/11 0.2903 -0.4460 -2.3723 15.2947 1.3689 2.3670 0.0333
19/04/11 0.2903 -0.4460 -2.3723 15.2947 1.3689 2.3670 0.0333
20/04/11 0.2903 -0.4460 -2.3723 15.2947 1.3689 2.3670 0.0333
21/04/11 0.4225 -0.5826 -4.4100 20.1075 3.7206 2.3037 0.0339
25/04/11 0.5690 -0.2335 -9.1072 2.3890 7.5356 2 0.0466
26/04/11 2.06E-08 -1.9905 -8.6903 11.2931 5.5287 2.3853 0.0131
27/04/11 0.0415 -0.0208 -4.1754 2.3247 6.1931 2.4658 4.88E-09
28/04/11 0.5644 -2.2001 -4.9223 4.6988 10.2542 2.0081 0.0268
29/04/11 0.2684 -0.5383 -2.6794 5.9361 3.0333 2.7278 0.0279
2/05/11 0.5449 -3.2234 -12.007 33.1080 4.7490 2.4635 0.0497
3/05/11 0.2761 -3.6129 -11.6206 1.7098 7.8303 3.8882 0.0253
4/05/11 0.2761 -3.6129 -11.6206 1.7098 7.8303 3.8882 0.0253
5/05/11 0.2761 -3.6129 -11.6206 1.7098 7.8303 3.8882 0.0253
6/05/11 0.2761 -3.6129 -11.6206 1.7098 7.8303 3.8882 0.0253
9/05/11 0.1621 -5.0099 -8.6967 57.9674 7.8243 2.9072 0.0350
10/05/11 0.2710 -0.7298 -21.4999 47.8204 1.5202 2 0.0214
11/05/11 0.2957 -0.4041 -31.8352 10.4071 4.2639 3.2764 0.0500
12/05/11 0.1982 -0.5552 -2.7042 28.3903 0.9086 2.3450 0.0200
13/05/11 0.3568 -1.5508 -22.0567 32.4401 8.4067 2.1915 4.90E-09
16/05/11 0.1973 -0.6951 -12.9618 27.8488 6.3225 2.5585 0.05
17/05/11 0.4866 -2.6636 -4.2351 67.1381 2.5186 2 0.0405
18/05/11 1.69E-05 -1.8482 -7.5681 4.6880 2.6279 2 0.0256
19/05/11 3.53E-07 -0.6146 -0.3718 4.8596 0.0371 2.0668 0.0405
20/05/11 0.0865 -9.4916 -11.6127 25.4041 4.9425 2.4981 0.0342
23/05/11 1.50E-05 -0.4346 -3.6171 1.7965 7.6732 2 0.0414
24/05/11 1.00E-06 -1.9042 -4.1478 0.0760 3.8197 2.3591 0.0313
25/05/11 0.1727 -0.6886 -0.8611 3.7025 0.6728 3.4434 0.0220
26/05/11 0.0776 -2.3757 -6.9307 4.2653 4.2834 2.3556 0.0239
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µ(1) µ(2) θ ρ φ1 φ2 σ (1) σ (1)

4.5321 2.5100 0.4958 2.0040 2.6164 1.6448 0.5 0.5
3.3056 1.6544 -1.0000 2.0001 2.5234 1.5386 0.3728 0.2441
3.3878 2.5950 0.1908 2.0922 2.9733 1.1006 0.5 0.4818
4.4542 3.8112 -0.8700 2.0214 1.0648 2.2037 0.5 0.4551
4.4542 3.8112 -0.8700 2.0214 1.0648 2.2037 0.5 0.4551
3.6247 1.2363 -0.0588 2.0107 2.91E-08 0.4485 0.2787 0.3881
3.6247 1.2363 -0.0588 2.0107 2.91E-08 0.4485 0.2787 0.3881
4.4232 1.0000 -0.7551 2.0681 0.9908 9.53E-08 0.2685 0.2993
1.5525 3.2116 0.2206 2 3.08E-08 1.8752 0.4628 0.5
3.8931 3.0723 -0.3688 2.1956 1.7238 1.2574 0.2202 0.1958
1.0000 1.8338 -0.3166 2.41 3.0314 8.75E-08 0.2648 0.1560
1.0000 1.8338 -0.3166 2.41 3.0314 8.75E-08 0.2648 0.1560
2.7707 1.0382 -0.3047 2.0000 2.1676 0.5003 0.5000 0.1801
2.4142 2.7013 -0.4902 2 0.3580 3.57E-08 0.2201 0.5
2.7281 1.7395 0.9837 2.0000 0.4672 0.9103 0.3073 0.3368
1.9180 1.6718 0.5220 2 8.27E-08 1.4580 0.2189 0.5
1.8288 1.3950 1.0000 2.1752 3.0314 9.16E-07 0.291071 0.2063
1.7599 1.8168 0.9729 2.0000 6.04E-06 0.0177 0.3121 0.4472
2.6908 4.4402 0.5305 2.0003 1.9060 0.2844 0.4556 0.5
1.5576 1.0439 0.8998 3.0871 1.6158 3.8357 0.5 0.0566
3.3972 5.2958 0.9932 2.0000 5.46E-08 0.9094 0.4275 0.4940
3.3972 5.2958 0.9932 2.0000 5.46E-08 0.9094 0.4275 0.4940
3.3972 5.2958 0.9932 2.0000 5.46E-08 0.9094 0.4275 0.4940
3.8429 4.3060 0.7391 2 1.89E-07 1.0688 0.5000 0.5
3.9529 1.2322 -0.7105 2.2135 2.3655 0.5162 0.3133 0.5
2.5105 2.5381 0.1718 2.0000 2.5434 0.7140 0.5 0.2705
1.8288 4.2433 1.0000 2.0292 3.0314 1.2339 0.1733 0.2063
3.3694 3.3497 -0.0221 2.3285 0.0549 0.5761 0.2195 0.2514
3.4594 2.7583 0.6932 2.1281 0.5904 0.5922 0.3080 0.2206
2.9005 2.7104 0.9611 2 1.775 1.6237 0.4128 0.5
2.5052 1.0001 -0.8524 2 6.1477 4.26E-08 0.4306 0.4030
2.5052 1.0001 -0.8524 2 6.1477 4.26E-08 0.4306 0.4030
2.5052 1.0001 -0.8524 2 6.1477 4.26E-08 0.4306 0.4030
2.5052 1.0001 -0.8524 2 6.1477 4.26E-08 0.4306 0.4030
5.249 2.4516 0.7016 2 0.6051 6.20E-07 0.3167 0.5000
2.8698 4.7004 -0.0901 2.0367 0.6079 1.4203 0.3106 0.1496
2.4222 3.4115 -1 2.2842 5.2475 0.4998 0.2161 0.5
4.7195 3.7592 0.1461 2.0909 2.6589 0.8223 0.1232 0.2161
2.0013 2.3757 -0.1048 2.1109 1.6994 0.8438 0.2054 0.5
3.1992 1.9878 0.9491 2.2135 2.6815 1.3973 0.2064 0.2993
2.3363 3.4639 -0.5022 2.2291 3.1332 1.7704 0.3665 0.4329
1.9696 2.6326 -0.7440 2.0001 0.5569 2.2187 0.2996 0.3931
1.1016 2.0458 -0.8027 2 0.0661 0.5391 0.3958 0.1487
2.2395 1.5954 -0.5609 2.1446 2.92E-07 0.9264 0.4786 0.4819
1.0000 1.0000 -0.9792 3.5046 1.7388 0.7049 0.3277 0.5
4.1872 2.4343 0.6254 2 4.4613 2.3991 0.2518 0.3077
1.0000 3.7393 -0.6818 2.0948 0.7508 0.8155 0.201 0.5
5.1028 1.6195 1 2.2055 2.6768 2.3658 0.2734 0.3651
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Date X(1)
0 X(2)

0 ca(1) ca(2) cb(1) cb(2) DoF
27/05/11 0.1940 -13.6601 -3.2117 15.3348 5.1681 2 0.05
31/05/11 0.4287 -2.6847 -2.0927 0.6311 1.2508 2.3713 0.0118
1/06/11 0.4287 -2.6847 -2.0927 0.6311 1.2508 2.3713 0.0118
2/06/11 1 -0.7420 -0.0965 0.1192 2.9303 2.6371 0.0249
3/06/11 1 -0.7420 -0.0965 0.1192 2.9303 2.6371 0.0249
6/06/11 1.0000 -0.1991 -1.0412 4.1226 0.4675 3.3619 0.0079
7/06/11 1.0000 -0.1991 -1.0412 4.1226 0.4675 3.3619 0.0079
8/06/11 7.94E-07 -3.4912 -3.4610 13.8931 2.3007 4.0460 0.0010
9/06/11 0.1209 -5.1323 -7.7045 14.5030 4.0763 4.7742 2.46E-07
10/06/11 0.0084 -1.7765 -0.3199 8.5620 0.9658 5.2475 0.0442
13/06/11 0.0572 -1.2879 -2.885 3.7382 1.0675 2 0.0500
14/06/11 0.0572 -1.2879 -2.885 3.7382 1.0675 2 0.0500
15/06/11 0.1756 -3.7876 -16.4364 44.8178 2.2790 2 0.0268
16/06/11 7.54E-08 -0.7903 -15.7724 13.3633 1.9608 3.7116 0.0468
17/06/11 0.1756 -3.7876 -16.4364 44.8178 2.2790 2 0.0268
20/06/11 0.0572 -1.5130 -7.1288 17.7215 2.6378 2 0.0500
21/06/11 0.0572 -1.5130 -7.1288 17.7215 2.6378 2 0.0500
22/06/11 0.0572 -1.5130 -7.1288 17.7215 2.6378 2 0.0500
23/06/11 0.1468 -0.0800 -0.6976 3.3665 4.6058 2.0008 0.0409
24/06/11 0.1468 -0.0800 -0.6976 3.3665 4.6058 2.0008 0.0409
27/06/11 6.97E-06 -1.5130 -7.1288 17.7215 2.6378 2 0.050
28/06/11 6.97E-06 -1.5130 -7.1288 17.7215 2.6378 2 0.050
29/06/11 0.5614 -0.6205 -0.3723 14.5869 0.5845 4.0330 1.16E-07
30/06/11 0.5614 -0.6205 -0.3723 14.5869 0.5845 4.0330 1.16E-07



D.5 DAILY VALUES OF CALIBRATED PARAMETERS, DATE 22 JUNE 2010 - 30 JUNE 2011155

µ(1) µ(2) θ ρ φ1 φ2 σ (1) σ (1)

2.0709 1.0000 1.0000 2 5.5748 1.9513 0.5 0.3398
3.7412 2.2955 -0.5180 2 1.2978 7.99E-08 0.2807 0.2707
3.7412 2.2955 -0.5180 2 1.2978 7.99E-08 0.2807 0.2707
1.0000 2.3138 1 2 3.21E-08 0.0398 0.3426 0.2203
1.0000 2.3138 1 2 3.21E-08 0.0398 0.3426 0.2203
1.0000 1.0455 1.0000 2.4540 0.9557 1.9273 0.5000 0.1118
1.0000 1.0455 1.0000 2.4540 0.9557 1.9273 0.5000 0.1118
3.55853 1.694291 1.0000 2.3508 1.5291 2.3016 0.2021 0.4998
1.6139 3.1725 -0.4863 2.0121 3.79E-05 2.9037 0.2601 0.1638
2.3055 1.3879 1.0000 2.0832 1.1311 1.4773 0.2400 0.2926
3.9892 1.0000 0.2725 2.1072 1.9889 0.0117 0.4501 0.2584
3.9892 1.0000 0.2725 2.1072 1.9889 0.0117 0.4501 0.2584
3.8506 1.0000 -0.2885 2 1.76086 1.74765 0.5 0.1055
4.5508 1.0000 -0.7991 3.0832 1.4605 0.2147 0.4356 0.1632
3.8506 1.0000 -0.28851 2 1.7609 1.7477 0.5 0.1055
2.4568 1.0000 0.2725 2.1072 0.0008 1.8087 0.4501 0.5
2.4568 1.0000 0.2725 2.1072 0.0008 1.8087 0.4501 0.5
2.4568 1.0000 0.2725 2.1072 0.0008 1.8087 0.4501 0.5
1.8600 1.3285 -0.5978 2.9407 1.1919 1.5596 0.5000 0.2756
1.8600 1.3285 -0.5978 2.9407 1.1919 1.5596 0.5000 0.2756
1.2205 1.3050 0.2725 2.0639 0.0008 1.8087 0.5000 0.5000
1.2205 1.3050 0.2725 2.0639 0.0008 1.8087 0.5000 0.5000
4.2444 2.2070 0.3949 2.0000 3.1513 0.8155 0.1886 0.3391
4.2444 2.2070 0.3949 2.0000 3.1513 0.8155 0.1886 0.3391
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Acronyms

The following list is neither exhaustive nor exclusive, but may be helpful.

cdf cumulative distribution function

CDS credit default swap

DoF degrees of freedom

FGM Farlie-Gumbel-Mogenstern

GDP gross domestic product

IE integral equation

NAB National Australia Bank

pdf probability distribution function

PDMP piecewise-deterministic Markov process

RC reference credit

RV random variable

SD standard deviation

US United States

VIE Volterra Integral Equation

w.r.t. with respect to
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