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Abstract

There is a growing interest in alternative sources of data within the economic liter-
ature. These sources are referred to as ‘Big Data’. Internet search queries, are one
such data source, providing an avenue to discern the real-time behaviour of users,
searching for information online. This thesis explores whether weekly Google search
query data contains informationally-relevant signals on the composition of the US
labour market. That is, search queries seemingly employed by Internet users in fear
of losing their jobs, or planning to quit the labour force altogether, for example
‘unemployment insurance’.

A weekly composite search index is constructed from the search query data, in
order to utilise all the data available in the given period. The relationship between
Google search and the unemployment rate is modelled using a recently developed
technique in the mixed-frequency time series literature to model the weekly Google
search data and the corresponding job separations data, specifically, Ghysels et al’s
(2015) model. To assess the informational content of Internet search query data, a
mixed-frequency Granger causality test is conducted.

It is established that there is insufficient evidence to suggest that Internet search
query data is useful in predicting future job separation statistics.
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Chapter 1

Introduction

In recent times, the economic discipline has been introduced to a vast range of novel

data sources termed ‘Big Data’. This is partly due to the growth in information

technology, making data promptly accessible, available in larger scales, and formed

on unique variables. Internet search query data is one such source, which attempts

to discern the real-time behaviour of users, searching for information online. That

is, to yield signals of the intent of economic agents on the internet (see Da et al.

(2015)). Such novel data sources are sampled more frequently, for example weekly,

in comparison to conventional sources. A current venture in the economic literature

is to determine whether such novel data sources are informationally relevant in as-

sessing various phenomena.

Most applications of internet search query data have been modelled by temporally-

aggregating the data. That is, the high-frequency internet search query data are

pre-filtered to align the mixed-frequency time series at one low frequency. It is well

known in the existing literature that many economic relationships arise between vari-

ables sampled at different frequencies (see for example Ghysels (2015)). Moreover,

contemporary econometrics contends that pre-filtering techniques such as temporal

aggregation can potentially lead to a loss of information, as one averages over the

high-frequency data (see Rossana and Seater (1995), Wohlrabe (2009) and Foroni

and Marcellino (2013) among others). As such, directly modelling mixed-frequency

data may be of greater use.
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This thesis examines the informational content of Google search queries in rela-

tion to job separation in the US. We hypothesise that Google search queries are

informationally relevant in predicting future labour job separation. The rationale

to this hypothesis is that economic agents in fear of losing their jobs, or planning to

quit the labour force search for information online on the eligibility of benefits, and

other services. Thus, the link between internet search queries and job separation

is based on flows into unemployment, and flows out of the labour force. This is in

contrast to much of the literature examining the link between internet search query

data and the labour market, asserting that Google’s search engine is a portal for job

search.

A Google search composite measure in line with Smith (2015), is constructed from

the relevant search terms associated with the aforementioned flows in the labour

market. To model the link between weekly Google search query data and monthly

US job separations, a mixed-frequency vector autoregression (henceforth mixed-

frequency VAR) developed by Ghysels (2015) is employed. The hypothesis is sub-

sequently tested using a mixed-frequency Granger causality test set out in Ghysels

et al. (2015b) on the mixed-frequency variables. To compare the mixed-frequency

test to a standard Granger causality test, a low-frequency test is conducted on

temporally-aggregated Google search query data.

The outline of this thesis is as follows. The following chapter reviews relevant

literature in relation to internet search query data and mixed-frequency time se-

ries. Chapter 3 presents the construction of our Google search composite measure,

a set up of the employed mixed-frequency VAR model and the subsequent mixed-

frequency Granger causality test. Chapter 4 presents the results and discussion of

our hypothesis tests. Finally, Chapter 5 concludes.
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Chapter 2

Literature Review

2.1 Introduction

A number of decades ago, data on economic activity were relatively scarce. However,

growth in modern information technology, and in particular, the Internet, has accel-

erated the lattice of new data sources available for economic research. New sources

of data are available more promptly, voluminous, and on novel variables which were

previously unquantifiable. Such sources are commonly referred to as “Big data”

(see for example Varian (2014)). The advent of big data guides various avenues for

economic research. Equally, big data presents a number of challenges to economists,

since the arrangement of such sources are unconventional. In the following chapter,

we explore these avenues and challenges in detail.

2.2 Big Data and Economic Analysis

The Internet has made the advent of new data sources largely possible. The be-

havioural patterns of users are extractable, as every consumption purchase and

every search query is captured and stored. Social media posts and messages are

equally recorded into databases. Thus, digital footprints are left behind on every

instance of mouse click online (see for example Einav and Levin (2013), and Bholat

(2015)). In contrast to conventional data sources in many disciplines, most sources

are not in a structured form. Hence, utilising data analytic techniques may prove

useful, as such data are in need of structure prior to its empirical application (see
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for example Varian (2014)).

At present, a number of sources of big data are of interest in economic research.

First, social media such as Facebook and Twitter, provide a source of data for

which to analyse the behaviour of users online in various market structures. So-

cial media message posts hold information on preferences, and social connections.

For example, computational linguistic techniques such as textual sentiment anal-

ysis can be utilised to extract potentially meaningful signals from message posts,

classified as either positive or negative (see Kearney and Liu (2014) for a survey

of textual sentiment methods). This has been demonstrated through the exami-

nation of investor sentiment in financial markets using Facebook (see for example

Siganos et al. (2014)), and labour market flows using Twitter (see Antenucci et al.

(2014)). In particular, Antenucci et al. (2014) utilised tweets based job offers, lay-

offs and employment to examine labour market inflows and outflows, and whether

they coincided with actual data. In general, such data sources are accompanied by

application programming interfaces (henceforth API), which are a set of protocols

used to extract data from the Internet. This consequently simplifies the process of

extracting data.

Second, computer software techniques such as Web-scraping, enable researchers,

through a few lines of written code, to “scrape” big data off the Internet. This is

principally applicable where certain sources of data do not provide access to their

API services. “Scraped” data can hence be used to construct economic indicators1,

and assess the strategic behaviour of economic agents online.2 For instance, Cavallo

(2012) co-developed the Billion Prices Project (BPP), run from the Massachussets

Institute of Technology (MIT), aiming to provide an alternative measure of retail

price inflation.3 Specifically, online retail prices are scraped off hundreds of retail

store websites and used to construct real-time prices indices to document price pat-

terns across various industries in over 50 countries. In the United States, the BPP

index closely tracks the official Consumer Price Index (CPI). Such techniques are

1Cavallo (2012)
2Bajari and Hortacsu (2003)
3http://bpp.mit.edu/
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readily available at the disposal of economists in order to extract novel sources of

data such as consumer preferences.4

Third, Internet search queries are a source of big data, providing a quantifiable

measure of the volume of search online. Specifically, Internet search query data

derive a measure of search through the keywords entered into search engines such as

Google and Yahoo. These sources of data discern the behaviour of economic agents

through their search process, potentially revealing their intentions online. According

to Ettredge et al. (2005), the applicability of internet search query data hinged on the

following key premise - “people reveal useful information about their needs, wants,

interests, and concerns through their search behaviour”. As such, the utilisation of

Internet search query data bridges across multiple disciplines. For example, Chang

et al. (2015) examined the association between Internet search, and the incidence

of charcoal-burning suicide in Taiwan. They found that keywords associated with

charcoal-burning suicide positively related to incidences of charcoal-burning suicide.

The interest into Internet search is that traditional sources of search may, to some

extent, become obsolete. For instance, there is evidence to suggest that traditional

sources of job-listings are being crowded-out by the Internet (see for example Kroft

and Pope (2014)). Moreover, traditional sources of data measuring behaviour lack

volume and are relatively costly, such as surveys. In contrast, internet search queries

retain key characteristics of interest, including volume, timeliness, and the novelty

of variables it can emanate, such as consumer preferences.

4Edelman (2012) provides a survey of such applications in the existing literature.
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2.3 Internet Search Query Data

Early ventures into internet search query data relied on count data published online

(see for example Ettredge et al. (2005)). That is, data on search query volumes were

gathered by delving through annual reports and archives to assemble such data. In-

deed, Ettredge et al. (2005) utilised WordTracker’s 500 Top keywords reports to

investigate the applicability of internet search queries to macroeconomic statistics.

Fast-forward to 2008, Google introduced Insights for SearchTM, a public web facility

which provided a weekly time series index on the insights into what Internet users

search for on Google’s search engine.5 The facility was initially developed “with

the advertiser in mind”, enabling businesses to examine the extent to which their

products were being searched for online.6

Subsequently, Google Insights for Search was usurped into Google TrendsTM as

a single interface, to cater for various other endeavours, including research. Google

Trends provides a normalised index of the volume of search for a particular search

term, relative to the total volume within a particular week. 7

Figure 2.1: Google Trends interface for search query term

5Prior to it being shutdown, Yahoo launched a similar tool to Google’s called Yahoo Clues.
6http://adwords.blogspot.com.au/2008/08/announcing-google-insights-for-search.html
7http://insidesearch.blogspot.co.il/2012/09/insights-into-what-world-is-searching.html
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Figure 2.1 depicts the search index for the search term ‘unemployment insurance’.

Note that the index exhibits a peak around the time of the recession. Subsequently,

the search query data is conveniently downloadable as a CSV file, filterable through

geographical regions and comparable to other search terms.

A simple example motivates the advantages and applicability of internet search

queries, for which we discuss in the following section. Choi and Varian (2009a) con-

sidered the application of Internet search query data to assess its ability to predict

changes in labour market variables. In particular, Google search query data was

utilised as a predictor of initial claim for unemployment insurance. The impetus to

this investigation is in line with Ettredge et al. (2005). To model the relationship

between the aforementioned variables, a baseline autoregressive model (AR) was

augmented with Google search queries. It was found that the out-of-sample perfor-

mance of the augmented model retained significant improvements in mean absolute

error (MAE).

2.4 Advantages of Internet Search Query Data

Choi and Varian’s (2009a) application, disclose several potential advantages in util-

ising internet search query data, these include: greater volume, timeliness and the

observation of actual behaviour. Below, we consider all three in detail.

2.4.1 Volume

According to Bholat (2015), one of the key characteristics of big data is volume.

Volume refers to the scale of the source of data. For Internet search query data (and

many others), this is fundamentally attributable to its high sampling frequency.

Hence, for a given sample period, such data possess a greater number of observations.

For example, as it is noted above, Google Trends publish Google search query data

on higher frequencies.8 This is in contrast to other sources of data which lack

granularity, but are aggregate measures. In this regard, it is well known in the

8Google Trends publishes mostly weekly data, however various instances result in monthly, and
even daily series.
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existing literature that voluminous data can be constructive (see for example Hansen

and Lunde (2011) and Einav and Levin (2013), among others).

2.4.2 Real-time data source

Complementing the voluminous nature of the data, an additional advantage is that

it is timely. That is, Internet search queries are available in real-time. From a

policy perspective, the utilisation of real-time data is of primary relevance, as policy-

makers need to assess the current state of the economy systematically (see Foroni

and Marcellino (2013)). In comparison to conventional sources of data, Internet

search query data are frequently updated and published. In particular, Google

search query data is updated weekly on the first day of every week (Sunday), and

additionally updated every 24 hours.9 This source of timeliness can prove to be

important in prediction, as discussed in Varian (2014).

2.4.3 The observation of actual behaviour

An important distinction between conventional data sources such as surveys, and

Internet search query data, is that the former inquire into, whilst the latter, reveals

behavioural patterns (see for example Taylor et al. (2014) and Da et al. (2015)). Sur-

vey data presuppose that all respondents, respond truthfully to various questions.

It is well known that such presuppositions are not necessarily the case, notably with

sensitive questions, for example medical/personal (see Singer (2002)). On the other

hand, Internet search queries are an objective measure of behaviour, in which such

presuppositions are not the case. Thus, an advantage of Internet search query data

is that it preserves observations of actual behaviour.

A simple example reiterates this advantage of Internet search query data. Economic

theory suggests that consumers search the market, until the marginal cost of addi-

tional search outweigh the expected gain from that consumption (see Stigler (1961)

and Kogut (1990), among others). From such a perspective, Internet search query

data, may potentially disclose the consumption search process of economic agents, in

9See Seabold and Coppola (2015) page 6.

14



their pursuit to compare price of goods and services. Therefore, the aforementioned

advantages provide an impetus for the examination of Internet search query data.

Subsequently, such advantages cultivate a natural inquisition into the applicability

of Internet search queries - that is, what types of questions have been investigated,

and what types of questions are worth investigating?

2.5 The Applicability of Internet Search Query

Data

The applicability of Internet search query data comprises of a multidisciplinary

pursuit in the existing literature. Interesting questions arise which galvanise the

endeavour to understand what users are searching for, and whether their discernible

search behaviour is meaningful. Examples of such applications include the investi-

gation of early influenza warning systems10, public attentiveness11, the measurement

of investor and market sentiment12, the fore-and nowcasting of sales, and other vari-

ables.13 For an example of this multidisciplinary pursuit, we present the following.

Ripberger (2011) utilise Google search query as an indicator for public attentiveness

to political issues. Specifically, on-going social concerns to the public prompt the

search for information by users. Hence, the behaviour of Internet users in a time of

social and political unrest is extractable through their search patterns.

Accordingly, various research questions emerge in economics for which Internet

search queries may venture into, preserving the aforementioned advantages described

above.14 Below, we provide a number of these research ventures.

First, theories of noise trading propose that ‘naive’ investors, also known as un-

informed traders, are prone to beliefs about future cash flows and risks which are

not rationalised by the facts at hand (see Baker and Wurgler (2007)). Internet search

query data parallels a measurable proxy for such sentiment, as naive investors are

10Ginsberg et al. (2009), Doornik (2009) and Dugas et al. (2012).
11Ripberger (2011)
12Joseph et al. (2011), Alexander Dietzel et al. (2014), and Da et al. (2015).
13Carrière-Swallow and Labbé (2013) and Hand and Judge (2012), among others.
14We cover the main research questions which Internet search query data intends to tackle.
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likely to gather cost-free information through the Internet. On the other hand,

Institutional investors are likely to have access to in-house proprietary sources of

information (see for example Vlastakis and Markellos (2012)). Hence, an interest-

ing endeavour within behavioural finance is to examine whether an Internet search

proxy for investor sentiment, corresponds to the outcomes various theories of noise

trading. This has been investigated by a number of different studies (see for example

Joseph et al. (2011) and Da et al. (2015), among others).

Second, as it is noted above, the consumer search process is a key idea in consumer

theory. If “search” is subsequently defined as the “canvassing of various sellers or

buyers”, Stigler (1961, page 213), an ensuing question is whether Internet search

query data emulate consumer preferences - Specifically, whether changes in con-

sumption are directly measurable through Internet search behaviour? This question

has been undertaken in a number of studies (see for example De los Santos et al.

(2012) and, Vosen and Schmidt (2012)). Vosen and Schmidt (2012) for instance,

investigate the predictability of private consumption using Google search queries.

In comparison to survey-based indicators, it was found that the mean-squared error

(MSE) for models augmented with Internet search query data were generally lower,

although not significantly different.

A more compelling investigation emerges from the labour market. The Internet

has been largely responsible for major structural changes in the labour market (see

Autor (2001) and Stevenson (2008)). In particular, Stevenson (2008) notes that the

advent of search portals has eased the process of job search. Theoretically, search

models of the labour market have exploited various outcomes which emerge from

the relationship between job search effort and unemployment insurance, and the

incidence of unemployment.15 Thus, a resulting question may emerge from this ex-

position - Whether Internet search queries, such as Google search, resonate the job

search process?

15The literature on job search is relatively extensive. See Lippman and McCall (1976) for an
earlier survey into search model of the labour economics, and Rogerson and Shimer (2011) for a
recent exposition.
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Many studies have attempted to demonstrate that Internet search queries resonate

the job search process online (see for example D’Amuri and Marcucci (2010), Fondeur

and Karamé (2013), and Baker and Fradkin (2014)). In particular, Baker and Frad-

kin (2014) examine the validation of Internet search queries from Google as a job

search indicator. The search term “jobs” is utilised as a proxy, as a means to gen-

eralise the term(s) which would be used. It is argued that indirect relationships

between job search portals and Google search are uncovered.

Alternatively, it is arguable that Internet search queries in relation to labour market

characteristics reflect the inflows to unemployment, and/or out of the labour force.

In contrast to the aforementioned exposition above, the rationale to this argument

pertains to the fact that there are job search-specific Internet portals such as Mon-

ster Jobs.16 That is, general Internet search query portals such as Google search

and Yahoo, may not necessarily reflect signals of job search activity. Studies such as

Choi and Varian (2009a) and McLaren and Shanbhogue (2011), seem to suggest a

similar argument. For instance, Choi and Varian (2009a) implicitly ask the following

question: “What would you search for, if you thought you might lose your job?”

Such a question may disclose a direct relationship between Internet search query

data and labour market movement, as increases in search for unemployment bene-

fits may resonate lay-offs or quits. Thus, an interesting inquiry is whether changes

in the composition of the labour force emulate Internet search queries in relation to

labour market outcomes.

2.6 Key Challenges Posed by Internet Search Query

Data

The various questions which Internet search query data may tackle as those which

we discuss above, reiterate the advocacy of utilising sources of big data for research,

as it can provide potentially meaningful signals of behaviour. However, there are two

key on-going challenges posed by big data, and in particular Internet search query

data. These include data snooping/term selection and mixed-frequencies. Below,

16http://www.monster.com/
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we provide a description of each challenge, and ways in which the existing literature

has handled each of them.

2.6.1 Data snooping/Term selection

Term selection refers to the process of selecting terms which best reflect intuition

on a phenomenon of interest. That is, keywords are selected which to some degree,

resonate with what Internet users would enter into a search engine on a particu-

lar subject. For example, an individual who wants to find out when and where

the screening of the “Everest” is taking place, he/she may enter the terms “Everest

movie”, “Everest movie time”, “What time is the Everest movie screening”.17 These

particular search terms might indicate that the individual may (or may not) attend

that screening. Hence, such search terms may provide an indication of a users be-

haviour.

In this regard, several issues arise. Firstly, term selection is not a trivial task,

as there are millions of search terms which are employable by users. Many terms

may, either directly or indirect associate with the phenomenon of interest. Thus, it

is not clear which terms are most appropriate for a particular subject. Some level

of theory may provide a basis for the pursuit of selecting particular search terms.

Secondly, several terms may yield excessively noisy signals. Given the immoderate

use of Internet search, and the possibility of having several meanings for one term,

extracting a meaningful signal may prove difficult (see for example Smith (2015)

and Seabold and Coppola (2015)). For example, the use of the term “Jobs” could

refer to either a search for employment, or information on Steve Jobs. Finally, term

selection induces a level of data-snooping bias. As asserted by Lazer et al. (2014),

this is a caveat of Internet search query data, for which researchers must keep in

mind.

A question consequently arises: “How do you select the appropriate search terms

whilst avoiding the aforementioned issues as much as possible?” There are various

17Note that the capitalisation of letters and the use of stop words are irrelevant, when entering
a term into a search engine.
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methods readily utilised throughout the existing literature. These methods gener-

ally include, economic and financial dictionaries, and texts18, keyword tools such as

Google Correlate19, theory20, and Google Trends’ automated category system21.

Each method comprises of its own particular technique. Google Trends’ automated

category algorithm is a system in which a base term is fed into the web facility,

and the term can be filtered to a particular subject matter. This method is notably

useful when there are multiple meanings for a particular search term. Economic

and financial dictionaries, and texts for example, have been commonly used in the

analysis of financial markets (see for example Da et al. (2011)). Similar to Trends’

category system, a base term is chosen from which it is cross-referenced with other

textual sources based on their count frequency - that is, terms which occur most

often. As a simple example, Perlin et al. (2014) used finance textbooks and the

online dictionary ‘Investopedia’, to select a pool of terms in relation to stock market

returns. Unlike dictionaries/textbooks, word tools such as Google Correlate perform

correlations between different terms to identify additional search words on the basis

of a time series.22

2.6.2 Mixed-frequencies

A key consideration in utilising Internet search query data is mixed-frequencies.

Mixed-frequencies refer to the mismatch in the sampling frequency between vari-

ables. Ordinary time series regressions are often estimated with same-frequency

variables. However, it is well known in the existing literature that most economic

relationships emerge between variables sampled at different frequencies (see Ghysels

et al. (2015b) and Silvestrini and Veredas (2008)). For instance, GDP is sampled

quarterly, whilst associated macroeconomic indicators such as the unemployment

rate, are monthly. The datasets are subsequently unbalanced, due to the misalign-

ment of the sampling frequencies. How does one consequently take into account

18Perlin et al. (2014) and Da et al. (2015).
19Baker and Fradkin (2014).
20Wu and Brynjolfsson (2014) and D’Amuri and Marcucci (2010).
21Vosen and Schmidt (2012).
22See Mohebbi et al. (2011) for a discussion of the methodology behind the algorithm in Google

Correlate.
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the mismatch in sampling frequency between variables? Thus, in embracing new

sources of data such as Internet search queries, such a challenge is deliberated. In

utilising Internet search query data, this challenge is in need of consideration.23

There are a number of methods available to take this challenge into account. One of

the most common solutions is temporal aggregation. Temporal aggregation, as the

name suggests, is a process in which variables are aggregated and averaged across

time. Specifically, temporal aggregation involves the aggregation of high-frequency

variables to a common low-frequency.24 This ensures that the mixed-frequency vari-

ables are aligned at the same frequency. Known as a ‘pre-filtering method’, it is often

considered to be the simplest approach to deal with mixed-frequency sampling.

Notation

In order to avoid confusion further into this thesis, we set out our necessary nota-

tion.25 Let τ denote the basic time unit where τ = 1, ...., T . τL denotes the time

unit of a lower frequency variable. The number of times a higher-frequency observa-

tions appears between two low-frequency periods is denoted m, where j = 1, ...,m.,

which is called the ratio of sampling frequencies. Hence, the time unit attached

to the higher-frequency variable is denoted τH . Subsequently, we will denote xH

and x(τL) as the high-frequency variable, and the low-frequency variable respec-

tively. xH(τL, j) will denote each high-frequency observation for j = 1, ...,m. For a

quarterly-monthly relationship, we would consequently denote xH(τL, 1) as the first

monthly observation of xH in quarter τL, xH(τL, 2) to represent the second, and

xH(τL, 3) to represent the last.

Temporal Aggregation

For temporal aggregation, two aggregation schemes exist in which their applications

depend on the nature of the variable. That is, whether it is a stock or flow variable.

Stock variables are the result of systematic sampling, in which high-frequency vari-

23A notable exception is Choi and Varian (2009a).
24Interpolation is another, yet uncommon technique which is not covered in this thesis. See

Wohlrabe (2009) for an in-depth survey of this approach.
25We adopt notation throughout the thesis from Ghysels et al. (2015a) and Ghysels et al. (2015b).
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ables are sampled at every low-frequency observation. For instance, it is possible

to take the latest available value of a variable to form the aggregated variable. On

the other hand, flow variables are more dedicate in their aggregation procedure,

as it is necessary to consider the whole time period in question. With regards to

weekly data, flow variables require the full month of observations as oppose to the

‘stock-end’ value of the month (see Wohlrabe (2009)).26

Figure 2.2: Temporal aggregation mechanism for m = 4.
(Adapted version of Figure 1 in Silvestrini and Veredas (2008), pg. 462)

Figure 2.2 depicts a visual representation of the temporal aggregation mechanism

for a weekly variable and a corresponding monthly variable, and the formula for

which to calculate the aggregate value. As illustrated, each high-frequency obser-

vation xH(τL, j) is observed m = 4 times within each monthly observation x(τL).

Temporally-aggregating a flow variable entails the summation of the m-weekly ob-

servations over its monthly counterpart. On the other hand, temporally-aggregating

a stock variable entails the sampling at each m observation. Thus, in the example

above, each temporally-aggregated stock observation would appear on every 4th pe-

riod.

With regards to Internet search query data, temporal aggregation has been imple-

mented to unburden the problem of mixed-frequencies. This has been demonstrated

26In addition to simple time averaging, different weighting systems are possible. For example
step-weighting, is considered when the high-frequency values are not equidistant.
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by D’Amuri and Marcucci (2010), Carrière-Swallow and Labbé (2013) and Vicente

et al. (2015). Most notably, Carrière-Swallow and Labbé (2013) aggregated Google

search query data related to automobiles, to fore-and nowcast automotive sales in

Chile. A linear regression is fit from which an aggregated monthly measure of Google

search queries is constructed. This is in line with various others, including Seabold

and Coppola (2015). Therefore, temporal aggregation is a particular solution to the

challenge of mixed-frequencies with Internet search query data.

Mixed-frequency modelling

The simplicity of temporal aggregation has been readily identified as a reason for its

persistent application (see Wohlrabe (2009)). However, such a solution is scarcely

considered satisfactory. Pre-filtering may have serious consequences for the sampling

information variables possess. That is, the structure of the time series could change,

potentially altering any subsequent inferences made about the series in question (see

for example Rajaguru (2004)). The econometric literature on temporal aggregation

has examined the time series properties of temporally aggregated variables, and its

conclusions propose a level of caution.

For example, various econometric methodologies are effected by temporal aggre-

gation. For instance, the dynamic relationship between variables is often negatively

impacted on due to a loss of information (see for example Sims (1971) and William

and Wei (1990), among others). Specifically, by temporally aggregating over a given

number of high-frequency observations, a large number of low-frequency observa-

tions are created. With reference to Figure 2.2, the four observations within the

span of the low-frequency observation are lost. Moreover, the loss of potentially

useful information greater with a higher ratio of sampling frequency. This was

demonstrated by Wei and Mehta (1980) through the examination of parameter es-

timates and subsequent Monte Carlo simulations. The subsequent conclusions were

that efficiency of aggregated parameter estimates decreased with an increase in the

ratio.

In addition, time series properties attached to particular variables may not nec-

22



essarily be invariant to temporal aggregation (see for example Marcellino (1999)).

That is, if time series properties such as causality, hold for a disaggregated variable,

the property may not potentially hold for its aggregated counterpart.27 According

to the existing literature, causal inferences formed on temporally-aggregated vari-

ables could potentially be spurious. This was demonstrated by Wei (1982), in which

it was shown to convert one-sided causal relationships to pseudo two-sided feed-

back systems. Analogous results were illustrated empirically by Marcellino (1999),

in which causality was tested between 10-year government bond yields and 90-day

deposit rates, and more recently illustrated by Rajaguru and Abeysinghe (2012).28

In order to avoid the issues of temporal aggregation, a recent strand of the econo-

metric literature has developed models which avoid pre-filtering methods. It is

argued that a more desired outcome, is to model the mixed-frequency variables di-

rectly, in order to avoid any loss of information (see for example Wohlrabe (2009)).

Bridge equations, were an early attempt to resolve the misalignment of sampling

frequencies (see for example Baffigi et al. (2004)). Bridge equations involved the

estimation of high-frequency variables, from which the estimates were aggregated

and fed through a Bridge equation. The Bridge equation was subsequently used to

estimate the low-frequency variable. Thereafter, mixed-frequency models were de-

veloped, including mixed-frequency vector autoregressions (MF-VAR) (see Mariano

and Murasawa (2010) Ghysels et al. (2015b)), as oppose to same-frequency VARs,

and Mixed Data Sampling models (MIDAS) (see Ghysels et al. (2004) and Ghysels

et al. (2007) and Andreou et al. (2010) among others), which rely on distributed lag

polynomials.29

Therefore, the mixed-frequency modelling literature is ubiquitous, however it is not

the most common of solutions. With regards to Internet search query data, this

is indeed the case. Only a small number of studies have explicitly modelled the

mixed-frequency of Internet search query data directly. In particular, Smith (2015)

for instance, utilised a mixed-frequency time series model to nowcast UK unemploy-

27Note that by causality, we mean in Granger’s sense.
28Marcellino (1999) empirically investigated many other time series properties for invariance.
29For a survey of the different modelling approaches, see Foroni and Marcellino (2013).
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ment data using weekly Google search queries. Moreover, Bangwayo-Skeete and

Skeete (2015) employed a mixed-frequency modelling approach to forecast tourist

arrivals using Google search query data. Both studies employ a MIDAS model in

which the timing of the information is preserved - Distributed lag polynomials are

used to ensure parsimonious specifications (see for example Armesto et al. (2010)).

2.7 Contribution to the Literature

The following thesis aims to contribute to the increasing literature on Big Data in

economic analysis. In particular, Internet search query data, as a key source of un-

derstanding user behaviour. In line with studies such as Choi and Varian (2009a),

McLaren and Shanbhogue (2011) and Smith (2015), we pursue an investigation into

whether Internet search queries contain relevant information on changes in the com-

position of the labour force. Explicitly, our main hypothesis is that Google search

queries related to unemployment insurance benefits, government services and legal

information are useful in predicting future US job separation statistics.

Given the mixed-frequencies among economic variables and Internet search query

data, adopting a mixed-frequency modelling approach, as oppose to temporal ag-

gregation is desirable. Hence, we pursue an auxiliary hypothesis to complement

to use of Internet search query data. This auxiliary hypothesis is to test whether

mixed-frequency modelling yields distinct results to standard low-frequency mod-

elling. This hypothesis is pursued in line with Smith (2015) and Bangwayo-Skeete

and Skeete (2015).

The rationale behind the main hypothesis is that there are explicit search portals

such as Monster.com for job search. Hence, utilising Google search as a job search

proxy may not necessarily yield meaningful signals on the inflows and outflows of

the labour market. On the other hand, Google search queries may therefore be re-

lated to flows into unemployment, and out of the labour force, rather than flows into

employment (see Smith (2015)). The rationale behind the complementary hypoth-

esis is as mentioned, the desirability to avoid temporal aggregation. We test both
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hypotheses through Granger causality. Specifically, we apply a mixed-frequency

Granger causality test recently developed by Ghysels et al. (2015b), and a general

low-frequency Granger causality test for comparisons. In the following chapter, we

set out our methodology.
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Chapter 3

Methodology

3.1 Data

Two data sources were employed for this thesis. Seasonally-adjusted monthly US

Total Separations: Total Non-farm data was retrieved from FRED R©, Federal Re-

serve Bank of St. Louis.1 Total Separations, commonly referred to as turnover,

represents the total number of employee quits, lay-offs and discharges, and other

separations. Other separations includes retirement, deaths and separations due to

disability. For the purposes of this thesis, we subtracted ‘Other separations’ as it

was not directly related to our underlying hypothesis. As such, our separations data

only consisted of quits and, lay-offs and discharges. Separations data is available

from 1st December 2000. However, for the purposes of this research, we specified a

sample period from the 1st January 2005, to 1st May 2015. This was to align the

job separations data to the Google Trends data, which is only available from 2004

onwards.

Internet search data was retrieved from the Google TrendsTM tool provided by

Google Inc.2 Google Trends provides weekly time series data on the relative volume

of searches for a particular search term. Weekly values are accumulated over the

number of searches every day for that particular week. The search volume is not

in absolute terms, hence in a specific period of time, each series returns an index

1https://research.stlouisfed.org/fred2/series/JTSTSL
https://research.stlouisfed.org/fred2/series/JTSOSL

2https://www.google.com.au/trends/
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with values between 0 and 100. A volume of 0 represents the lack of relative search,

whilst a volume of 100 represents the most in relative terms. It was not possible

to find out how many people actually searched a specific keyword. Thus, internet

penetration rates did not necessarily matter. We now discuss the process of linking

Google search terms to our measure of US job separations.

3.1.1 Linking Google search terms with US Job Separations

As it is discussed in detail in Chapter 2, Section 2.6, terms should reflect the be-

haviour of individuals searching for particular information. Thus, the choice of

search terms is an important consideration. In selecting a set of relevant terms, we

assumed each reflected the majority of searches conducted within a labour market

context. This assumption was critical to our methodology, as it required a selection

of terms associated with our main hypothesis, prior to estimation.

Initially, we conceived that an appropriate choice related job separations was job

search, as many users search for employment on the internet (see Baker and Fradkin

(2014)). However, further inspection disclosed four concerns. Firstly, the possibil-

ity that most volumes of search for vacancies were initiated by employed persons,

which could potentially mask the search activity of actual joblessness. Secondly,

job search is generally considered pro-cyclical (see for example Burda and Wyplosz

(1994) and Shimer (2005) among others). Hence, “on-the-job” search is likely to in-

crease with an increase in the business cycle, potentially counteracting other labour

market searches - a similar concern to the first. Thirdly, job search cites such as

Monster.com, and Indeed.com are specific portals for job search, which raised doubt

on the validity of using Google search as a direct job-search tool. Lastly, a large

proportion of separations may be quits, yet there is an increasing trend number

of persons moving out of the labour force.3 It was subsequently conceived that

job-search terms may not be suitable. We consequently resolved such concerns by

selecting search terms ubiquitous to flows into unemployment, and flows out of the

labour force (see for example Smith (2015)).

3Data on the number of people not in labour force is retrievable from the Bureau of Labor
Statistics; code no. LNS15000000.

27



Analogous to Choi and Varian (2009a), the term selection process began by consid-

ering what an individual would search for, if he/she (a) thought they may lose their

job, or (b) intended to quit the labour force. A “root” term was chosen which best

reflected the flow into unemployment and out of the labour force. According to Koop

and Onorante (2013), a “root” search term refers to a keyword directly related to a

target variable. For example, the root term in an investigation into the relationship

between internet search and stock market volatility, may be based on a particular

stock ticker. Consequently, the root term chosen was ‘unemployment insurance’.4

To ensure the relationship between internet search and US job separations remained

stable, direct and indirect terms related to the root term were downloaded. See the

Appendix A.1 for the full list of search terms. Below, we discuss the challenges faced

in using Google Trends data.

3.1.2 Challenges in Using Google Trends Search data

Utilising Google Trends data presented a number of practical challenges:

1. Google Trends data updates regularly on any particular day (see for example

Carrière-Swallow and Labbé (2013) and Seabold and Coppola (2015)). That

is, for a given week, Google Trends’ weekly values may be different on two

separate days.

2. According to Google, certain search terms which do not accumulate enough

volume during the week, are published in a lower frequency (either monthly,

biweekly or daily). As such, it is not known a priori, what the frequency of

a search term’s series will be. Note that Google does not specify what the

minimum volume for a search term should be.

3. In relation to 2, search terms accumulating insufficient volume may in addition,

return zero values5. Indeed, this was the case for our data, in which certain

4For example, McLaren and Shanbhogue (2011) chose the term “JSA”, which stands for job
seekers allowance, a term reflecting the UK system of unemployment benefits.

5https://support.google.com/trends/answer/4355213?hl= en&ref topic = 4365599&vid = 1-
635774781534888206-420084290
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terms returned a string of zeros for a number of weeks. A caveat to this is

that it is not known at which point the data become censored.

4. A property of the calendar itself is that there are an inconsistent number

of weeks per calendar month. That is, most months in a calendar year do

not contain exactly 4 weeks. To directly map weekly data onto our monthly

job separations data, a consistent number of high-frequency observations is

required per-low frequency observation.

For the first challenge, we initially favoured retrieving search volume for the same

terms across a number of days, and averaging the data (see for example Seabold and

Coppola (2015)). However, data transformations in addition to the construction of

our search composite index, remained an undesirable outcome. The second and

third challenge led to a reluctance in adopting each search term as its own variable,

and therefore its own potential regression. This was undesirable as the processing

of each variable would have been difficult to handle for a larger number of search

terms. A simple and efficient method was to construct a composite index of the

search terms. This method is in line with Carrière-Swallow and Labbé (2013) and

Smith (2015), who overcame challenges two and three in this manner. The fourth

challenge required much more effort to overcome. Specifically, the data required a

transformation into a balanced weekly series with a consistent number of weeks per

month. We now discuss our solution and reasoning in detail.

Weekly Google Trends data

To map the weekly Google Trends series onto our monthly US job separation series,

we required a balanced dataset of weekly observations. The following strategy was

adopted from Smith (2015).6 Specifically, we defined Week 1 as the days spanning

day 1 to 7 for a particular month, Week 2 as days 8 to day 14, Week 3 as days 15

to day 21, and Week 4 which generally ran from day 22 to the end of the month.

Week 4 varied depending on the month and year the observation was cited. In other

words, for months which had 29 (for leap years), 30 or 31 days, the number of days

in week 4 were generally longer.

6According to Smith (2015), this method is an adaptation from Hamilton and Wu (2014).
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We converted our weekly series into a daily series, recovering the missing observa-

tions through simple interpolation. By averaging across the daily data, we attained

a transformed weekly series, structured by our defined weeks above (see Appendix

A.2 for code).7

The purpose of this strategy was two-fold. Firstly, by creating balanced weeks,

we recovered a consistent number of high-frequency observations per low-frequency

observation - In this particular case, a consistent number of weeks per month. Sec-

ondly, Google publishes its Google Trends data every Sunday, defining a week span-

ning from Sunday to Saturday. Every weekly observation subsequently occurred a

Sunday. However, the first day of every calendar month did not, which generated an

overlap of Google weeks across multiple months. To the best of our knowledge, this

strategy has only been documented by Smith (2015), for the purposes of employing

internet search query data. Alternatively, studies in the literature either take the

first weekly value for each month as its representative value, or do not necessarily

comment/document on this account (see for example Choi and Varian (2009b) and

Hand and Judge (2012) among others). Given the first concern we alluded to earlier,

we perceived this process as necessary. In the following subsection, we set out the

process of constructing a Google search composite measure.

3.1.3 Constructing a Google Search Composite measure

With a desire to retain parsimony whilst accounting for excessively low volumes,

a Google search composite measure was constructed. Formerly, studies such as

Carrière-Swallow and Labbé (2013) employed a linear index approach, where a linear

regression was fit to construct the composite index. For the purposes of exposition

we present Carrié-Swallow and Labbé’s method. Let X be the matrix of Google

search terms and yt, the year-on-year percentage change in the variable of interest.

In each sample period, a weight β̂ is estimated using observations up to time t− 1,

7This was accomplished using the statistical package R, R Core Team (2015) and various asso-
ciated packages. Full details in Appendix A.2.
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from which a linear model

yt = α + βXt + εt

was fit. The index It for period t is then computed as the fitted values of the

estimated linear model

It = Êt[β|yt−1, Xt−1] ·Xt

Despite the simplicity of Carriére-Swallow et al.’s method, the index relies on tem-

poral aggregation. In other words, applying this approach is conditional on having

both dependent and independent variables in the same frequency. In this thesis, we

required an approach which did not hinge on temporal aggregation.

Consequently, we employed the composite index approach of Smith (2015). Smith’s

(2015) approach relies on the construction of a dynamic weighting system which

adapts weekly, with the addition of a weekly observation. Therefore, this method

comprised of summing the readings for q Google search terms (GST) for a partic-

ular week t, and constructing weights for each Google search term, based on their

individual contribution for that week (see below)

Wi,t =
GSTi,t∑q
i=0GSTi,t

(3.1)

where i = 1, ...., q represents the number of search terms. Equation 3.1 would

therefore ensure that searches which achieved relatively greater increases in volume

attracted greater weight. The subsequent Google Search Composite Index was ulti-

mately defined as the sum of the weighted search term volumes for each week (see

Appendix A.2 for code).

Before presenting preliminary sample statistics, we supplement our existing notation

from Chapter 2, Section 2.6.2 with additional notation to define the weekly Google

Search Composite Index (GSCI) we constructed above, and the subsequent monthly

aggregated variable. Let GSCIj(τL) denote the j − th week of month τL. Hence,

GSCI1(τL) denotes the first week of month τL, GSCI2(τL) is the second week, and

so on. The aggregated Google search composite index is defined GSCIM , where M
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denotes the monthly frequency of the variable. This notation will assist in under-

standing what is set out in the next subsection, as well as the section which follows

in setting out our model.

3.1.4 Preliminary Sample Statistics

Figure 1 plots the 100× log difference of our measure for US job separations (primary

y-axis) and Google Search Composite Index (secondary y-axis) respectively.

Figure 3.1: Percentage growth rates in US job separations and GSCI

Illustrated in Figure 3.1, the misalignment of sampling frequencies between the per-

centage growth rate in US job separations and the percentage growth rate in Google

search composite measure is exemplified. As is typically the case, the weekly search

composite index observations fluctuate between the monthly job separation obser-

vations. The growth rate in GSCI is highly volatile, as the percentage change

from previous weeks seem to fluctuate heavily. As such, it is not clear from Figure

3.1 whether each series is related to the other. We reserve any testing for Section 3.3.

For each series, we took the log-difference to account for any non-stationarity is-

sues and seasonality. We subsequently multiplied each log-differenced series by 100

for ease of interpretation. Both series were therefore interpretable as approximate
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percentage growth rates. We subsequently denoted GSCI as the percentage growth

rate of our Google search composite measure, and SEP was denoted as the percent-

age growth rate in US job separation. These definitions are kept throughout the

rest of the thesis.

Table 3.1 provides a list of the univariate sample statistics and p-values for the

Kolmogorov-Smirnov test of normality for our weekly Google search composite in-

dex {GSCI1, GSCI2, GSCI3, GSCI4}, monthly aggregated Google search measure

GSCIM , and US job separations SEP in 2005M1 - 2015M5 (500 weeks and 125

months). Specifically, the table reports the minimum, median, maximum, mean,

standard deviation, skewness, kurtosis and subsequent p-values for the aforemen-

tioned test.

Table 3.1: Univariate Statistics

SEP GSCI1 GSCI2 GSCI3 GSCI4 GSCIM

Minimum -5.27 -10.13 -12.77 -11.78 -7.92 -4.18
Median 0.13 -0.49 -0.44 0.06 0.37 0.04

Maximum 4.11 10.34 9.90 7.64 15.71 3.40
Mean -0.03 -0.49 -0.42 -0.12 0.92 -0.03

Std. Dev. 1.58 3.62 3.26 3.30 3.99 1.27
Skewness -0.21 0.15 -0.14 -0.40 0.95 -0.08
Kurtosis 3.36 3.48 4.14 3.49 4.43 3.25

KS-pvalue 0.04** 0.00*** 0.00*** 0.00*** 0.00*** 0.19

For the p-values of the KS, we put *** if the null hypothesis of normality

is rejected at the 1% level (strong rejection), ** if rejected at 5% but not

at 1%, and * if rejected at 10% but not 5%.

All four weekly GSCI variables (GSCI1,2,3,4) have heterogeneous features. Firstly,

the mean of the first three GSCI are negative whilst of the three, only the third

has a positive median, 0.06%. That is, the third variable GSCI3, is skewed to the

left. Indeed, this is equally the case for the aggregated variable, GSCIM . Secondly,

amongst the weekly variables, the skewness of GSCI2 is the lowest. Thus, it in-

dicates the weakest asymmetry amongst the weekly variables. The minimum and

maximum of the weekly variables range from as low as -12.77% for the GSCI2 to as

high as 15.71% for GSCI4. The range of values for GSCI4 is reiterated through its

standard deviation. For our dependent variable SEP (τL), the sample statistics are

as follows. For example, its minimum and maximum values are -5.27 and 4.11 re-
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spectively. Moreover, the mean and the median of the variable have opposing signs.

As it is the case with the first three weekly variables {GSCI1, GSCI2, GSCI3} and

GSCIM . This consequently implies left-skewness.

For the Kolmogorov-Smirnov test of normality, the null hypothesis for normality was

strongly rejected for all the weekly variables {GSCI1, GSCI2, GSCI3, GSCI4}. On

the other hand, the null hypothesis for normality was not rejected at all significance

levels for the aggregated variable GSCIM . Moreover, for our measure of US job sep-

aration, the null hypothesis was rejected at 5%, but not at 1%. It should be noted,

Ghysels et al. (2015b) demonstrate that the asymptotic theory of mixed-frequency

VARs do not require the normality assumption (Section 2 in Ghysels et al. (2015b)).

In addition, correlation coefficients between each pair of variables were computed.

Both contemporaneous and lagged correlation coefficients up to 1 lags are reported

in the Table B.1-B.2 in Appendix B. First, the correlation coefficient between

GSCIM(τL) and its high-frequency counterparts {GSCI1, GSCI2, GSCI3, GSCI4},

range between 0.215 and 0.485, with the the fourth weekly variable GSCI4, the

highest. This is expected as the monthly aggregated variable is a simple average

of the sum of the original disaggregated weekly variables. Similar correlation coef-

ficients range for a number of the weekly variables, including GSCI3 and GSCI4.

Second, correlation coefficients between SEP (τL) and the GSCIM(τL − k) seem to

suggest an increase around 2 months. There does not seem to be any persistence

among the variables across time. This consequently suggests that log-differencing

took care of any autocorrelation.
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3.2 Mixed-frequency VAR

Since the work of Sims (1980), VAR models have become a common tool for analysing

the co-movements of economic time series. This generally involved regressing a real

economic variable (for example, unemployment rates) on some other series (for ex-

ample, initial claims for unemployment insurance). As such, economic relationships

would typically emerge between variables sampled at different frequencies. As it was

noted in Chapter 2, researchers readily deal with mixed-frequency time series data

through temporal aggregation and interpolation. However, Wohlrabe (2009) notes,

if the purpose were to analyse time series dynamics between variables, pre-filtering

methods may have adverse effects on parameter estimates, and impulse responses

alike (see Chapter 2, Section 2.6.2).

Common mixed-frequency models have relied on latent processes and shocks, where

the model is cast into a state-space representation (see for example Zadrozny (1988)

and Mariano and Murasawa (2010) among others). The state-space representation

of the model match the latent process with corresponding mixed-frequency data,

where low-frequency variables are treated as high-frequency variables with missing

observations. Zadrozny’s (1988) method, estimates a VARMA model with different

frequencies, whilst Mariano and Murasawa (2010) set a mixed-frequency VAR model

for partially latent time series. Computational devices such as Kalman filters, are

subsequently employed to extract the missing observations, and relate the dynamics

between low, and high-frequency variables. As demonstrated by Bai et al. (2013),

if the model is specified correctly, and the parameters are known, the Kalman filter

would yield an optimal outcome in population. That is, under ideal conditions, the

Kalman filter would attain relatively low forecasting errors.

Latent processes and state-space representations however, entail computational com-

plexities (see for example Wohlrabe (2009), Ghysels et al. (2015b) and Bai et al.

(2013) among others). Firstly, the complexity of estimation increases with the num-

ber of variables involved in the model. Namely, measurement equations, latent low-

frequency and high-frequency variables result in many parameter estimations. In-
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variably, this elicits the estimation of only small-scale models (see Wohlrabe (2009)).

Secondly, as noted above, the success of state-space models hinge on correct specifi-

cation. Correct specifications are increasingly difficult with missing observations in

the dependent variable, which appends to the difficulty of estimating many param-

eters (see for example Foroni and Marcellino (2013)).

To circumvent these issues, we applied the mixed-frequency vector autoregression

model of Ghysels et al. (2015b). A multivariate extension of the MIDAS regres-

sion model, Ghysels’ (2015) model employs a stacking vector system in which the

high-frequency observations within each low-frequency observation are stacked on-

top of each other. For example, in a monthly-weekly relationship, in which there

are approximately four weeks per month, we would observe four weekly observa-

tions per month, hence each weekly observation over the data sample is considered

a variable in itself (see for example Ghysels et al. (2015b) page 4). Any potential

deviation from this ratio requires data transformation, as per subsection 3.1.2 above.

Mixed-frequency VAR models were independently introduced by Mariano and Mura-

sawa (2010), Ghysels et al. (2015b), and McCracken et al. (2013). In comparison

to other mixed-frequency VAR models, Ghysels’ (2015) model does not rely on

latent processes. Rather, the model is observation-driven - the model is formu-

lated exclusively from observable data. This approach directly relates to standard

VAR models, for which common tools used are directly exploitable. Consequently,

Ghysels’ (2015) model is easier to estimate. Moreover, contrary to classical VAR

models, high-frequency observations are allowed to have heterogeneous effects on

a low-frequency variable (see Sadahiro and Motegi (2014)). Sadahiro and Motegi

(2014) note that standard same-frequency VAR models implicitly require homoge-

neous impacts on low-frequency variables. In other words, for the mixed-frequency

VAR, the lagged information of high-frequency observations may take on different

values, and possible seasonal effects (see Equation 3.5 below). To compare a stan-

dard bivariate VAR to our mixed-frequency VAR, we set out both specifications

below.
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The mixed-frequency VAR model, requires a reconsideration of notation from Chap-

ter 2, Section 2.6.2 through the following key assumption (see Ghysels et al. (2015b)

page 3):

1. A K-dimensional process is considered where K = KL + m × KH . The first

KL < K elements are collected in the low-frequency process xL(τL), whilst the

remaining K = K − KL elements (KH) are collected in the high-frequency

process xH(τL, j), where j = 1, ...,m;

xL(τL) and xH(τ, j) subsequently referred to the low-frequency process and high-

frequency process respectively.

3.2.1 Bivariate Monthly VAR

To estimate a standard low-frequency VAR, our Google search composite measure

GSCI was aggregated into a monthly index GSCIM . SEP (τL) denotes our vari-

able of interest, the percentage growth rate in US job separations. We first fit the

following bivariate standard monthly VAR of order 4.

GSCIM(τL)

SEP (τL)

 =
4∑

k=1

a11,k a12,k

a21,k a22,k


GSCIM(τL − k)

SEP (τL − k)

 +

ε1(τL)

ε2(τL)

 (3.2)

where GSCIM(τL) is calculated as the monthly average of the high-frequency weekly

observations. Subsequently, using our notation from above, GSCIM(τL) is defined

as

GSCIM(τL) =
1

4

4∑
j=1

GSCIj(τL) (3.3)

3.2.2 Bivariate Mixed-Frequency VAR

We fit the following bivariate mixed-frequency VAR of order 4, which consisted of

our weekly Google Search Composite Index, {GSCI1, GSCI2, GSCI3, GSCI4} and
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our dependent variable from above, SEP (τL)



GSCI1(τL)

GSCI2(τL)

GSCI3(τL)

GSCI4(τL)

SEP (τL)


︸ ︷︷ ︸

≡X(τL)

=
4∑

k=1



a11,k a12,k a13,k a14,k a15,k

a21,k a22,k a23,k a24,k a25,k

a31,k a32,k a33,k a34,k a35,k

a41,k a42,k a43,k a44,k a45,k

a51,k a52,k a53,k a54,k a55,k


︸ ︷︷ ︸

≡Ak



GSCI1(τL − k)

GSCI2(τL − k)

GSCI3(τL − k)

GSCI4(τL − k)

SEP (τL − k)


︸ ︷︷ ︸

≡X(τL−k)

+ε(τL)

(3.4)

where ε(τL)
mds∼ (0,Σ)8. Note that KL = KH = 1, which reduces the model to an

m + 1-dimensional VAR. Moreover, when m = 1, the model collapses to a single-

frequency VAR. X(τL) is the mixed-frequency vector, Ak is the matrix of coefficients,

and X(τL − k) is the vector of lagged values.

Note in this particular case, m = 4, we specify a 5-dimensional mixed-frequency

VAR model. Ghysels’ (2015) model is primarily designed to handle small sampling

frequency ratio, for example 3 or 4. Models handling a larger ratio of sampling

frequency (for example, weekly-to-quarterly) are an on-going agenda within the lit-

erature (see for example Götz and Hecq (2014)). We did not include a constant

term, since both series were demeaned prior to estimation. GSCI weekly observa-

tions GSCIj(τL) are stacked together in the mixed-frequency vector X(τL), corre-

sponding to each monthly low-frequency observation (see below).

τL = M1 τL = M2 . . . τL = M11 τL = M12

GSCI1 Week 1 Week 1 . . . Week 1 Week 1
GSCI2 Week 2 Week 2 . . . Week 2 Week 2
GSCI3 Week 3 Week 3 . . . Week 3 Week 3
GSCI4 Week 4 Week 4 . . . Week 4 Week 4

Table 3.2: Structure of the stacked vector

Table 3.1 above illustrates the structure of the stacked vectors. The monthly low-

frequency observations are displayed across the top panel. On the left, the four

weekly observations spanning each monthly observation are displayed. Note that

for each monthly low-frequency observation τL, which spans 12 months, there exists

8Note that the mds is a weaker restriction on the error terms.
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4 weekly high-frequency observations GSCI1, GSCI2, GSCI3 and GSCI4. In our

particular case, the weekly data were set via the data transformations we conducted

in subsection 3.1.2.

As maintained by Sadahiro and Motegi (2014), the stacking of the high-frequency

variable allows for the existence of heterogeneous effects on the low-frequency vari-

able. To see this, we extract the last row of the mixed-frequency VAR(4) model in

(3.4)

SEP (τL) =
4∑

k=1

[
4∑
j=1

a5j,kGSCIj(τL − k) + a55,kSEP (τL − k)

]
+ ε5(τL) (3.5)

Note that a51,k, a52,k, a53,k and a54,k ≡ a5j,kGSCIj may take on different values

from each other. This ultimately implies that the lagged values of GSCI, that

is, GSCI1(τL − k), GSCI2(τL − k), GSCI3(τL − k) and GSCI4(τL − k), have het-

erogeneous impacts on SEP (τL) (see Sadahiro and Motegi (2014)). On the other

hand, the standard monthly VAR model implicitly assumes that the lagged values

have a homogeneous impact on SEP (τL). Recalling (3.2)

SEP (τL) =
4∑
j=1

[
a21,kGSCI

M(τL − k) + a22,kSEP (τL − k)
]

+ ε2(τL)

=
4∑
j=1

[
a21,k

{
1

4

4∑
j=1

GSCIj(τL − k)

}
+ a22,kSEP (τL − k)

]
+ ε2(τL),

(3.6)

Note that the last equality is held due to Equation (3.3). The lagged values of each

weekly observation have a homogeneous impact of a21,k/4 on SEP (τL). Hence, the

mixed-frequency VAR model in (3.4) is more general than the standard monthly

VAR in (3.2).

The mixed-frequency VAR(4) is mechanically identical to the single-frequency VAR.

That is, standard conditions on single-frequency VARs carry over to Ghysels’ (2015)

mixed-frequency model. For instance, it is assumed that all the polynomial roots lie

outside the unit circle and that ε(τ) is a strictly stationary martingale difference se-
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quence with finite variance, among others (see Ghysels et al. (2014) for a theoretical

exposition). Consequently, equation (3.4) was estimated using standard Ordinary

Least Squares (OLS) methods. Model estimation was conducted using GNU Octave,

and the code to conduct the estimation was retrieved from a closed-source.9

3.3 Mixed-frequency Granger Causality Test

Granger’s (1969) concept of causality is a key tool utilised to investigate the dy-

namic relationship between economic variables. Causality, is defined in terms of

the predictability of future time periods. Specifically, that “the past and present

may cause the future, but the future cannot cause the past” (Granger 1980, page

330). It is the imposition of a temporal ordering which subsequently constructs

a causal connection between variables (see Kuersteiner (2008)). Thus, a variable x

is said to cause another variable y, if at time t the x helps to predict the variable yt+1.

To test the hypothesis that internet search query data (that is, GSCI), contains rel-

evant information beyond that which is reflected in previous job separation values,

a test for Granger causality is conducted. However, recall from Chapter 2, that a

number of time series properties are not invariant to temporal aggregation, including

Granger causality. Temporal aggregation is said to confound parameter estimates

across variables, from which aggregated variable may yield different causal patterns.

This was demonstrated by Tiao and Wei (1976), and Wei (1982), who have shown

that a given one-sided causal pattern between disaggregated variables, could poten-

tially return a feedback causal pattern between temporally-aggregated counterparts.

Furthermore, existing literature has demonstrated that temporally-aggregating vari-

ables may yield a loss of useful information (see Wohlrabe (2009)). Since temporal

aggregation averages over intra-period (high-frequency) observations, the resulting

parameter estimate may lose information, which could otherwise be useful. Thus, it

is generally considered that variables remain un-filtered.

Recent work by Ghysels et al. (2015b) develop a new class of Granger causality tests

9Kaiiji Motegi, the author of the code, provides the code on their website. http :
//www.aoni.waseda.jp/motegi/Matlab Codes.html
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which explicitly account for mixed-frequency time series. Indeed, this is in contrast

to standard Granger causality tests in which the variables are all of the same fre-

quency. To circumvent the aforementioned issues related to temporal aggregation,

the mixed-frequency class of Granger causality tests supplement the mixed-frequency

VAR model we specified in subsection 3.3.2.

To set out Ghysels et al.’s (2015b) mixed-frequency Granger causality test, pre-

liminary notation is initially defined. As the investigation is within a bivariate case,

definition/notation is employed from Ghysels et al. (2014)10. Let the information

set be defined over a Hilbert space X(−∞, τL] spanning {X(τ)|τ ≤ τL}, denoted Ωτ .

ΩH
τ and ΩL

τ are analogously defined as all the information in the universe except xL

and xH respectively. Furthermore, P [x(τL + 1)|I(τ)] is the best linear projection of

x(τL + 1) conditional on I(τ). Consequently, the mixed-frequency information set

is denoted I = {Ωτ |τL ∈ Z}. Ghysels et al. (2014) define Granger non-causality in

the following manner:

Definition 1. The high-frequency variable xH does not Granger cause the low-

frequency variable xL given the mixed-frequency information set I if

P [xL(τL + 1)|ΩL
τ ] = P [xL(τL + 1)|Ωτ ]

Similarly, xL does not Granger cause xH given I if

P [xH(τL + 1)|ΩH
τ ] = P [xH(τL + 1)|Ωτ ]

In other words, xH is said to not Granger-cause xL if past information on the high-

frequency variable, do not help predict future values of the low-frequency variable.

Correspondingly, xL is said to not Granger-cause xH if past information on the low-

frequency variable, do not help predict future values of the low-frequency variable.

From the mixed-frequency VAR specification in Subsection 3.3.2 the causality test

is expressed as a test of zero restrictions in VAR (see Dufour and Renault (1998)).

10In the short version of Ghysels et al. (2015b), only a bivariate case is considered. An arbitrary
number of variables are dealt within the full paper, in which case, testing multi-horizon causal
chains are possible i.e Ghysels et al. (2015b).
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Taking a closer look at the coefficient matrix in Equation (3.4)

Ak =



a11,k . . . a14,k a15,k
...

. . .
...

...

a41,k . . . a44,k a45,k

a51,k . . . a54,k a55,k


(3.7)

we have elements a5j,k from the bottom left of the matrix representing the causal-

ity from GSCI1,2,3,4 to our dependent variable SEP (τL), and elements aj5,k from

the top right representing causality from SEP (τL) to GSCI1,2,3,4. It then follows

that our internet search query data measure, GSCI1,2,3,4 does not Granger-cause

SEP (τL) if and only if elements a5j,k = 0m×1 for all k = 1, ...., p. Similarly, the US

job separations, SEP (τL) does not Granger-cause GSCI1,2,3,4 if and only if elements

aj5,k = 0m×1 for all k = 1, ...., p. Zero restrictions are testable via a linear Wald test,

and the asymptotic distribution of the test statistic WTL under the null hypothesis

of Granger non-causality is χ2
q, where q is the number of restrictions (see Ghysels

et al. (2015b)).

In regards to the testing procedure, we note that an i.i.d assumption is relatively

strict. A weaker restriction is to assume the error terms follow mds, as noted in Sec-

tion 3.3.2. To allow this restriction, and the possibility of conditional heteroskedas-

ticity of the unknown form, the Gonçalves and Kilian (2004) (GK) wild bootstrap

is employed. The GK bootstrap additionally assists in controlling for potential

size distortions due to the small sample period of our Google search query data

τL = 125).11 As per the mixed-frequency VAR estimation, the mixed-frequency

Granger causality test was conducted in GNU Octave. The test’s code was re-

trieved from the same closed-source as the mixed-frequency VAR code. To compare

the mixed-frequency procedure to a single-frequency procedure, a standard low-

frequency Granger-causality was applied to the aggregated Google search composite

measure, GSCIM . That is, we test the null hypothesis that GSCIM 6→ SEP (τL),

and correspondingly, SEP (τL) 6→ GSCIM , where 6→ represents non-Granger causal-

11As we only dealt with a single horizon h = 1, Newey and West’s (1987) HAC estimator was
not used. Ghysels et al. (2015b) note that for h > 1, the estimator of the long-run variance may
not be positive semi-definite. See page 11.
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ity. In the next chapter, we present the Granger causality tests results, and discuss

the results in detail.
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Chapter 4

Results and Discussion

4.1 Model specification

The mixed-frequency VAR model and its low-frequency counterpart are specified

with a lag order of 4, as noted in the previous chapter. However, Akaike’s (1974)

Information Criterion (henceforth AIC) is minimised at a lag order of 1. It is well

known in the econometric literature that existing test for joint whiteness of residuals

do not perform well with large dimensional models, such as ours (see for example

Lütkepohl (2005) and Sadahiro and Motegi (2014)). Specifically, residual Lagrange

Multiplier (LM) tests and multivariate Ljung-Box Q tests among others, do not

perform well in small samples with many parameters. Yet we do not simply as-

sume no serial correlation, rather, we conduct univariate residual LM tests for both

mixed-frequency and low-frequency models respectively.1

The null hypothesis for the residual LM test is that there is no serial correlation

of any order up to lag p. In our case, we test up to a maximum lag length of 10.

Under the null, the test statistic nR2 is ∼ χ2
p. Rejecting the null hypothesis would

imply that the model specified has serially-correlated residuals. Table 4.1 presents

the results of test for the 4th lag order. Each column exhibits the variables for

each model, the maximum number of lags regressed, the LM test statistic, and the

p-value for each respective lag. P-values marked by asterisk/s indicate the rejection

of the null at each lag.

1Note that Sadahiro and Motegi (2014) assume no serial correlation in the errors.
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Table 4.1: Residual LM test (Lag order of 4)

Lags 1 2 3 4 5 6 7 8 9 10

MFVAR(4)
SEP (τL) χ2 0.000 0.001 0.599 1.495 1.348 4.067 11.206 12.352 14.116 14.497

p-value 0.986 0.999 0.897 0.827 0.930 0.668 0.130 0.136 0.118 0.151
GSCI1 χ2 0.066 0.320 0.176 0.600 0.863 1.075 1.712 3.643 4.692 5.750

p-value 0.798 0.852 0.981 0.963 0.973 0.983 0.974 0.888 0.860 0.836
GSCI2 χ2 0.134 0.297 0.503 0.354 1.715 5.595 6.566 7.099 8.046 8.377

p-value 0.714 0.862 0.918 0.986 0.887 0.470 0.475 0.526 0.530 0.592
GSCI3 χ2 0.008 0.336 0.313 0.216 1.062 2.387 3.761 4.393 6.148 6.803

p-value 0.927 0.845 0.958 0.995 0.957 0.881 0.807 0.820 0.725 0.744
GSCI4 χ2 0.010 0.026 0.083 0.228 0.252 2.833 3.112 5.612 6.244 7.051

p-value 0.921 0.987 0.994 0.994 0.998 0.830 0.875 0.691 0.715 0.721
VAR(4)
SEP (τL) χ2 0.004 0.004 0.391 0.977 0.898 3.642 9.616 10.034 12.477 12.822

p-value 0.952 0.998 0.942 0.913 0.970 0.725 0.211 0.263 0.188 0.234
GSCIM χ2 0.0723 0.154 0.732 0.765 2.137 2.561 2.830 3.289 2.865 10.790

p-value 0.787 0.926 0.866 0.943 0.830 0.862 0.900 0.915 0.969 0.374

For the p-values of the test, we put *** if the null hypothesis of no serial correlation
up to p lags is rejected at the 1% level (strong rejection), ** if rejected at 5% but
not at 1%, and * if rejected at 10% but not 5% (weak rejection).

As it can be seen, at the lag order of 4, we do not reject the null hypothesis for no

serial correlation at every p. Hence, there was insufficient evidence to suggest that

at the lag order of 4, there is serially correlated errors in each model. We should

note that tests were sequentially conducted, beginning with the AIC-specified lag

order of 1. The LM tests for orders 1, 2 and 3 all rejected the null hypothesis.

Therefore, in accordance with the VAR specification in the previous chapter, we

pursued a (mixed frequency-) VAR model of lag length 4.

4.2 Granger Causality Test

The mixed-frequency Granger causality test set out by Ghysels et al. (2015b), tests

the null hypothesis that the percentage growth rate of all the high-frequency Google

search composite variables {GSCI1, GSCI2 , GSCI3, GSCI4} do not Granger-cause

the percentage growth rate of the low-frequency US job separation measure SEP (τL).

Correspondingly, the null hypothesis that SEP (τL) does not Granger-cause {GSCI1,

GSCI2, GSCI3, GSCI4} is tested. Such causal patterns correspond to Case I and

II in Ghysels et al. (2015b) (page 8) respectively. Case I and Case II treat bivariate

causal patterns such that causal chains do not exist.2 Accordingly, Case I treats

2Causal chains can emerge from trivariate relationships.
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Granger non-causality from all high-frequency variables to all low-frequency vari-

ables, whilst Case II treats Granger non-causality from all low-frequency variables

to all high-frequency variables (see Ghysels et al. (2015b) for more details).

In the event that the Wald statistic WTL for each causal pattern is significant, a

rejection of the null for Case I would imply that the lagged values of the high-

frequency variables GSCI1,2,3,4 do help predict future values of SEP (τL). Equally,

a rejection of the null for Case II would imply that the lagged values of the low-

frequency variable SEP (τL) do help predict future values of GSCI1,2,3,4. We present

the results below for this test below.

Table 4.2: Mixed-frequency Granger Causality Wald Test

Null Hypothesis χ2 (Test Statistic) GK (2004) p-value Conclusion

GSCI1,2,3,4 6→ SEP (τL) 33.473 0.581 Do not reject
SEP (τL) 6→ GSCI1,2,3,4 51.349 0.390 Do not reject

For the p-values of the test, we put *** if the null hypothesis of non-Granger causality

is rejected at the 1% level (strong rejection), ** if rejected at 5% but not at 1%, and

* if rejected at 10% but not 5% (weak rejection). GK stands for the Gonçalves and

Kilian (2004) bootstrapped p-values.

Table 4.2 presents the results of the mixed-frequency Granger causality test. The

null hypothesis for each causal pattern, the chi-squared distributed Wald statis-

tic, the Gonçalves and Kilian (2004) bootstrapped p-values and the subsequent

conclusion for each test are summarised respectively. As it can be seen, the null

hypothesis that GSCI1,2,3,4 does not Granger-cause SEP (τL) is not rejected at all

significant levels. Equally, the null hypothesis that SEP (τL) does not Granger-cause

GSCI1,2,3,4 is not rejected at all significant levels. The result in the first row im-

plies that there is insufficient evidence to suggest that the percentage growth in the

weekly Google composite measures (GSCI1,2,3,4) are useful in predicting future per-

centage growth in job separation (SEP (τL)). The result in the second row implies

that there is insufficient evidence to suggest that the percentage growth in SEP (τL)

is useful in predicting future percentage growth in GSCI1,2,3,4.

To compare the mixed-frequency Granger causality results to the low-frequency

counterpart, the test results for the standard low-frequency VAR(4) are presented.
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Table 4.3: Low-frequency Granger Causality Wald Test

Null Hypothesis χ2 (Test Statistic) GK (2004) p-value Conclusion

GSCIM 6→ SEP (τL) 6.554 0.240 Do not reject
SEP (τL) 6→ GSCIM 1.965 0.833 Do not reject

For the p-values of the test, we put *** if the null hypothesis of non-Granger

causality is rejected at the 1% level (strong rejection), ** if rejected at 5% but not

at 1%, and * if rejected at 10% but not 5% (weak rejection). GK stands for the

Gonçalves and Kilian (2004) bootstrapped p-values.

Summarised in Table 4.3, the null hypothesis that GSCIM does not Granger-cause

SEP (τL) is not rejected at all significant levels. Equally, the null hypothesis that

SEP (τL) does not Granger-cause GSCIM is not rejected at all significant levels.

The result in the first row implies that there is insufficient evidence to suggest

that percentage growth in the monthly aggregated Google Search Composite In-

dex (GSCIM) is useful to predict future percentage growth in US job separations

(SEP (τL)). Equally, the result in the second row implies that there is insufficient

evidence to suggest that SEP (τL) is useful to predict future percentage growth in

GSCIM .

The results reflected in Table 4.2 are not directly interpretable through the em-

pirical literature since no other study, to the best of our knowledge, has applied

Ghysels et al’s (2015b) mixed-frequency Granger causality test.3 However, we may

discuss the results in relation to a number of possible explanations drawn from the

existing literature. Accordingly, we provide such a comparison in the next section.

The results presented in Table 4.3 are generally in contrast to the existing literature

which has examined whether Google search queries contain relevant information in

predicting economic variables (see for example Askitas and Zimmermann (2009) and

Alexander Dietzel et al. (2014) among others). For instance, Askitas and Zimmer-

mann (2009) find a Granger-causal relationship between aggregated Google search

data related to various labour market characteristics and the German unemployment

rate. Their conclusion is drawn from a pool of search terms which seek to reflect

3Note that although Ghysels et al. (2015b) provide a simple empirical application, it is not
based on Internet search query data.
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flows into unemployment and flows into employment, similar to the terms we adopt.

As we discuss in the succeeding section, the distinction between the aforementioned

results and the existing literature may emerge from the selection of search terms.
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4.3 Discussion of Results

In Section 2.4, we set out two hypotheses - a main hypothesis, and an auxiliary hy-

pothesis. The main hypothesis was that Google search query data related to unem-

ployment insurance, government benefits and services are useful in predicting future

US job separation statistics. The auxiliary hypothesis was that we yield distinct re-

sults to temporal aggregation by modelling the relationship between Google search

query data and US job separation. As it was presented above, the results reflect

the insufficiency of evidence to reject the null hypothesis of Granger non-causality

for both mixed-frequency modelling and low-frequency modelling. In particular, ev-

idence in favour of our main and auxiliary hypotheses was not found. Consequently,

an important question emanates in this regard - what are the possible explanations

for the aforementioned results?

Main hypothesis

In relation to the main hypothesis, two possible accounts provide a basis for the

results. Firstly, one of the challenges in utilising Google Trends search query data

is that Google updates its weekly Trends data on a daily basis. That is, for a given

calendar week, Google Trends can yield different weekly values on two separate

days. However, queries sent to Google on the same day, yield identical values (for

a given search term). This sampling procedure induces a source of measurement

error, which is likely to weaken the informational content of the signal in internet

search query data (see for example Carrière-Swallow and Labbé (2013) and Seabold

and Coppola (2015)). Therefore, the daily variation in the weekly data could mask

the true relation between the two variables we employed. Despite the construction

of the composite index, the results in Table 4.2 and 4.3 may consequently reflect the

outcome of excessive noise induced by the Google search composite measure GSCI.

Secondly, term selection is an additional explanation. The selection of terms should

reflect what an internet user may enter into a search engine.4 In part of the re-

searcher utilising internet search query data, an element of subjective judgement is

4Section 2.6.
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involved. Despite adapting a similar process of term selection to the existing litera-

ture (see for example Askitas and Zimmermann (2009), Koop and Onorante (2013)

and Smith (2015)), the results do not necessarily reflect this process. This is due

primarily to the complexity in perceiving which keywords users enter into online

search portals.5 As noted in Chapter 2, this complexity can induce a data-snooping

bias, which is an on-going challenge in utilising internet search query data.

Auxiliary hypothesis

In relation to our auxiliary hypothesis, a number of explanations may clarify the

results which we obtain. Firstly, in implementing the mixed-frequency Granger

causality test above, the mixed-frequency VAR model employed comprised on K = 5

dimensions, where K = KH + m ×KL. That is, for the given sampling frequency

ratio between weekly Google search query data and the monthly job separation

data, m = 4, K = m + 1 = 5. For the conclusive lag length we set in testing for

serial independence in the residuals (k = 4), there are as many as {pK ×K} = 100

parameters in the model. This can have an adverse impact on the power of the

mixed-frequency Granger causality test, as demonstrated by Ghysels et al. (2015b)

(Section 6.2), although it is less of an issue for the low-frequency test.6 The results

presented above could potentially reflect the significant loss of power in the test due

to the large dimensionality present in a observation-driven mixed-frequency VAR

model.

Secondly, the stacked mixed-frequency vector X(τL), of the mixed-frequency VAR

is assumed to follow a specific ordering. The ordering of the observations in the

mixed-frequency vector characterise the timing of intra-τL period releases (see for

example Ghysels (2015)). As such, the order of the information releases in the vector

determine the impact and timing of subsequent shocks. In our particular case, the

timing, and subsequent ordering of the observations in the stacked mixed-frequency

5The examination of user search strategies in the context of search engine portals and databases
is explored in the information sciences. See for example Teevan et al. (2004).

6See Section 7 of Ghysels et al. (2015b).
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vector are set in Equation 4.1.

X(τL) = [GSCI(τL, 1)′, GSCI(τL, 2)′, GSCI(τL, 3)′, GSCI(τL, 4)′, SEP (τL)′]′

(4.1)

Observe that the low-frequency variable SEP (τL) is the last block in the mixed-

frequency vector. The rationale behind this ordering is due to the observation of

the monthly SEP (τL) series at the end of a respective month. The first observa-

tion of the high-frequency variable is subsequently made public from the 1st of the

month, followed by the additional weekly observations. This is in line with Ghysels

et al. (2015b) who note that it is the conventional ordering (which we adopt) is

applicable to most cases. Alternative orderings may correspondingly yield different

outcomes, yet it is distinctive from application to application.

Finally, an alternative explanation is related to the sampling frequency ratio be-

tween the mixed-frequency series. It is well known in the existing literature that

temporal aggregation can potentially lead of a loss of information (see for example

Wei and Mehta (1980), Marcellino (1999) and Foroni and Marcellino (2013) among

others). This may likely occur since temporal aggregation involves aggregating over

the high intra-τL observations. However, Wei and Mehta (1980) demonstrate that

the loss of information is generally more pronounced for larger m values. Recall

Equation 3.3 in Chapter 3

GSCIM(τL) =
1

4

4∑
j=1

GSCIj(τL)

The sampling frequency ratio is 4 such that the aggregated variable is defined as

an equally-weighted average of the weekly observations. The aforementioned ratio

is relatively small, in comparison to alternatives (weekly-quarterly and monthly-

yearly), where the ratio is much larger. Therefore, in lieu of information loss, the

parallel results between the mixed-frequency and low-frequency models may poten-

tially arise from a similar account to our main hypothesis - namely, measurement

error due to noise. The following chapter concludes this thesis and provides further

considerations for future research.
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Chapter 5

Conclusion

The main purpose of this thesis was to contribute to the expanding literature on

the applicability of big data to economic phenomena - specifically, Internet search

query data. In this regard, we sought to assess whether weekly Google search queries

were informationally relevant in predicting future monthly US job separations. The

rationale behind this assessment was that Internet users who intend to quit the

labour force, or in fear of losing their jobs, search the Internet for information on

unemployment eligibility, social services and welfare benefits. Search terms were

pooled together to construct a dynamically-weighted Google search composite mea-

sure which seemingly reflected the information search behaviour of users online.

With respect to this assessment, we found no evidence in support of this affirmation.

To directly model our measure of Internet search queries and monthly labour turnover,

whilst avoiding temporal aggregation, Ghysels et al’s (2015) mixed-frequency vector

autoregression model was employed. According to the existing literature, tempo-

ral aggregation is known to potentially yield spurious outcomes on various time

series properties, including causality. In this regard, the informational content of

the weekly Google search query data was assessed via a mixed-frequency Granger

causality test, as set out by Ghysels et al. (2015b). To compare the mixed-frequency

outcome to a temporally-aggregated outcome, a standard low-frequency vector au-

toregression, and subsequent Granger causality test were applied. We found that

both models yielded the same conclusion.
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With regards to the results we attained, there are several avenues for future re-

search. Firstly, as we noted in the previous chapter, the mixed-frequency VAR

model we employed, held as many as 100 parameters in the model. Ghysels (2015)

proposes various non-linear parsimonious specifications from the MIDAS literature,

which could be applied to account for the dimensionality in the model. Secondly, as

is contended within the existing literature, term selection is an important element

in applying Internet search query data. However, the difficulty lies in nominating

appropriate search terms which best reflect the search behaviour of Internet users.

Thus, future consideration may adopt an algorithmic method, such as Bayesian

variable selection, to select search terms. This could prove to be a more robust and

objective process for term selection.
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Appendix A

Google Search Composite Index

material

A.1 List of search terms

Search Keywords

unemployment insurance
unemployment benefits

eligibility for unemployment
requirements for unemployment

wrongful termination
wrongful termination lawyers
state unemployment insurance

unemployment insurance benefits
state minimum wage

laid off

Table A.1: List of Google search terms used to construct the Google Search Com-
posite Index.
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A.2 Code

Below, we present the code of the function written in R to download Google Trends

data, and subsequently construct the Google Search Composite Index (GSCI) from

the pool of terms presented in Appendix A.1. Each line of code corresponds to a

number, and comments on the code are coloured in red.

1 get terms <− function ( x ) {

2 # Create cha rac t e r vec to r ” terms . s t r ” o f search terms from f i l e .

3 terms . s t r <− as . character ( read . csv ( f i l e . choose ( ) ,

4 header=FALSE) [ , 1 ] , s t r ing sAsFactor=FALSE)

5 # Detach each search term from the vec to r as s i n g l e e lements .

6 terms <− s tr sp l i t (terms . s t r , sp l i t=0, f i x e d=FALSE, p e r l=FALSE, useBytes=FALSE)

7 # load goog l e t r end package ( Chris Okugami ) .

8 message ( ” r e t r i e v i n g mul t ip l e search volume data from Google Trends . . . ” )

9 require ( goog l e t r end )

10 # Ret r i ev ing Google Trends data v ia API which ,

11 # i s f ed with e lements o f the . csv f i l e in l i n e 3 .

12 terms . l i s t <− get t rend ( keyword=(terms ) , geo=’US ’ , s imple = TRUE)

13 # load xts package .

14 require ( xts )

15 # Create ob j e c t ’ xt s . l i s t ’ to hold two xts o b j e c t s −

16 # One f o r weekly data and the other f o r monthly data .

17 xts . l i s t <− vector ( ” l i s t ” , 2)

18 weekly = NULL # c r e a t e weekly xts ob j e c t

19 monthly = NULL # c r e a t e monhtly xts ob j e c t

20 # From terms . l i s t ( l i n e 10) , run a loop to i d e n t i f y which search term ,

21 # i s returned as weekly and monthly :

22 for ( i in 1 : length (terms . l i s t ) ) {

23 # c r e a t e s l i s t ob j e c t o f column names from the downloaded search terms .

24 dimNames <− l i s t (NULL, names(terms . l i s t ) [ i ] )

25 # Calcu la te the d i f f e r e n c e in days between

26 # the f i r s t and second elements o f each xts ob j e c t in l i s t .

27 d i f f . days <− d i f f t i m e ( as . Date (terms . l i s t [ [ i ] ] [ 2 , 1 ] ) ,

28 as . Date (terms . l i s t [ [ i ] ] [ 1 , 1 ] ) )

29 i f ( d i f f . days < 10) {

30 f r e q <− 52 # i f d i f f e r e n c e i s < 10 , i t s f requency i s weekly .

31 # column bind each weekly− i d e n t i f i e d terms in to an ob j e c t c a l l e d ’ weekly ’
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32 weekly = cbind ( weekly , xt s (terms . l i s t [ [ i ] ] [ , 2 ] , order .by=terms . l i s t [ [ i ] ] [ [ 1 ] ] ,

33 frequency=freq , dimnames = dimNames ) )

34 } else {

35 f r e q <− 12 # i f d i f f e r e n c e i s o therw i se greate r , i d e n t i f y as monthly .

36 # column bind each monthly− i d e n t i f i e d terms in to an ob j e c t c a l l e d ’ monthly ’

37 monthly = cbind ( monthly , xt s (terms . l i s t [ [ i ] ] [ , 2 ] , order .by=terms . l i s t [ [ i ] ] [ [ 1 ] ] ,

38 frequency=freq , dimnames = dimNames ) )

39 }

40 # subset Google Trends data to r equ i r ed time per iod

41 weekly <− weekly [ ”2004−01−01/2015−05−31” ]

42 monthly <− monthly [ ”2004−01−01/2015−05−31” ]

43 # combined weekly & monthly o b j e c t s i n to a l i s t .

44 xts . l i s t <− l i s t ( weekly , monthly )

45 # name each element o f l i s t r e s p e c t i v e l y .

46 names( xts . l i s t ) <− c ( ” weekly ” , ”monthly” )

47 }

48 # Create balanced weeks in l i n e with Smith ( 2 0 1 5 ) :

49 message ( ” d i s a g g r e g a t i n g data in to d a i l y s e r i e s ” )

50 # Def ine new d a i l y sequence o f dates .

51 new1 <− seq ( from=as . Date ( ”2004−01−01” ) , to=as . Date ( ”2015−05−31” ) , by = ”day” )

52 # weekly obs e rva t i on s f o r each search term are merged in to a d a i l y s e r i e s :

53 d a i l y s e r i e s = NULL

54 d a i l y s e r i e s <− merge( xts . l i s t $weekly , xt s ( , new1 ) )

55 # We assume that the weekly va lue s are unchanged ,

56 # from weekly ob j e c t throughout a p a r t i c u l a r week .

57 # Then , the weekly va lue s are i n t e r p o l a t e d in to d a i l y ob s e rva t i on s .

58 #

59 d a i l y s e r i e s <− na . l o c f ( d a i l y s e r i e s , fromLast = TRUE)

60 message ( ” c r e a t i n g a weekly average from the d a i l y s e r i e s ” )

61 # Dai ly obs e rva t i on s are s p l i t i n to months accord ing to ca l endar .

62 sp l i t l i s t <− sp l i t ( d a i l y s e r i e s , f = ”months” , drop = FALSE, k = 1)

63 # Create l a r g e l i s t o f e lements which are l i s t s o f

64 # 4 weekly e lements cor re spond ing to weeks de f ined ( page 34 o f t h e s i s ) .

65 s p l i t l i s t = NULL

66 for ( i in 1 : length ( sp l i t l i s t ) ) {

67 i n t e r v a l s <− cut ( . indexmday ( sp l i t l i s t [ [ 1 ] ] ) ,

68 c (0 , 7 , 14 , 21 , 31) , paste0 ( ”W” , 1 : 4 ) )

69 s p l i t l i s t [ [ i ] ] <− sp l i t ( sp l i t l i s t [ [ i ] ] , i n t e r v a l s )
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70 s p l i t l i s t

71 }

72 # Loop through each monthly element i and weekly element j ,

73 # and combined rows in to weekly obs e rva t i on s .

74 dat1 = NULL

75 for ( i in 1 : length ( s p l i t l i s t ) ){

76 for ( j in 1 : 4 ){

77 dat1 = rbind ( dat1 , sapply ( s p l i t l i s t [ [ i ] ] [ [ paste0 ( ”W” , j ) ] ] , FUN = mean) )

78 dat1

79 }

80 }

81 # c r e a t e sequence o f s t ruc tu r ed dates as de f ined on page 34 o f t h i s t h e s i s :

82 require ( l u b r i d a t e )

83 v1 <− seq ( as . Date ( ”2004−01−01” ) , as . Date ( ”2015−05−31” ) , by = ”week” )

84 # s p l i t vec to r in to months and years

85 l s t <− sp l i t ( v1 , l i s t (month( v1 ) , year ( v1 ) ) , drop=TRUE)

86 # s u bs t r i ng e x t r a c t s f i r s t 4 obs e rva t i on s from the month .

87 days <− substr ( v1 [ 1 : 4 ] , 9 , 1 0 )

88 v2 <− unlist ( lapply ( l s t , function ( y ) {

89 s p r i n t f ( ’%s%s ’ , substr ( y [ 1 : 4 ] , 1 , 8 ) , days )} ) , use .names=FALSE)

90

91 # convert s t ruc tu r ed weekly ob j e c t to dataframe ,

92 # then to xts ob j e c t with sequence above :

93 weekly df <− data . frame ( week=as . Date ( v2 ) , dat1 )

94 weekly s e r i e s <− xts ( weekly df [−1] , order .by = as . Date ( v2 ) )

95

96 # Ca l cu la t ing weekly Composite Index as per Smith (2015)

97 # ( subse c t i on 3 . 2 . 3 page 35−36 o f t h e s i s ) :

98 W = NULL # weights de f ined by equat ion 3 .1 page 36 o f t h e s i s .

99 for ( t in 1 :nrow( weekly s e r i e s ) ) {

100 W = rbind (W, weekly s e r i e s [ t ] [ , ] /sum( weekly s e r i e s [ t ] [ , ] ) )

101 W

102 }

103 # Def ine Google Search Composite Index (GSCI) ob j e c t :

104 # Smith (2015) page 8 . D e f i n i t i o n o f GSCI i s ,

105 # the sum of weighted i n d i v i d u a l s ea r che s f o r each search term :

106 GSCI = NULL

107 dat <−W∗weekly s e r i e s
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108 GSCI = xts ( rowSums( dat ) , order .by = index ( dat ) )

109 GSCI <− GSCI [ ”2004−01−01/2015−05−01” ]

110 GSCI # return the Google composite measure

Description of code

Two key parts of the code are explained in greater detail for clarity. Firstly, the code

explicitly takes into account the fact that, in downloading Google search query data,

the sampling frequency of the data may either be monthly, weekly or daily (rarely).

This occurs if a particular search term, does not accumulate enough volume. We

noted this issue in Chapter 3 Subsection 3.3.2. This issue is taken into account

through an identification process in lines 21-38. Specifically, the frequency of each

search term’s time series is identified by calculating the difference in the number of

days between the second element and first element. That is, the difference between

the second data point, and the first data point. If the difference < 10, the data are

identified as weekly, otherwise it is identified as monthly.

Secondly, as per Smith (2015), lines 50-94 construct the balanced calendar weeks

due to monthly overlapping values from the Google Trends data, and subsequently

creates a structured weekly dataset (See Chapter 3 page 34 for an explanation).

The process involved placing the weekly and monthly identified data into a list,

from which we split each element by months. Hence, each split element contained

daily data depending on which month it fell in. Each monthly split elements was

subsequently split again into 4 weeks based on the definition we set on page 34 of

this thesis. Finally, each weekly series of daily data were aggregated and averaged

into a weekly value, corresponding to the sequence of dates created (lines 81-89).

A number of packages were utilised within the function. For example, in line 12

we call the ‘gettrend’ function from the ‘Google Trend’ package to import Google

Trends data from its API. 1 Throughout the function, the ‘xts’ package2 was em-

ployed for the time series objects that were created. Finally, we utilise the ‘lubridate’

1Okugami (2015).
2Ryan and Ulrich (2014).
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package to deal with different time intervals.3

3Grolemund and Wickham (2011).
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Appendix B

Statistics

B.1 Correlation coefficients

Table B.1: Contemporaneous Correlation Coeffcients

GSCI1(τL) GSCI2(τL) GSCI3(τL) GSCI4(τL) GSCIM (τL) TURN(τL)

GSCI1(τL) 1
GSCI2(τL) -0.323 1
GSCI3(τL) -0.044 -0.178 1
GSCI4(τL) -0.060 -0.026 -0.369 1
GSCIM (τL) 0.429 0.275 0.215 0.485 1
TURN(τL) 0.033 0.086 -0.028 0.035 0.087 1

Table B.1 reports contemporaneous correlation coefficients between each vari-
able. For example, the correlation between TURN(τL) and GSCI1(τL) is
0.033.

Table B.2: Correlation Coefficients (Lag 1)

GSCI1(τL − 1)GSCI2(τL − 1)GSCI3(τL − 1)GSCI4(τL − 1)GSCIM (τL − 1)TURN(τL − 1)

GSCI1(τL) 0.097 0.162 -0.113 -0.021 0.083 0.024
GSCI2(τL) -0.085 -0.054 0.052 -0.052 -0.102 -0.082
GSCI3(τL) -0.125 0.036 0.047 -0.208 -0.198 -0.104
GSCI4(τL) 0.011 -0.306 -0.079 0.105 -0.157 0.164
GSCIM (τL) -0.058 -0.136 -0.079 -0.101 -0.258 0.027
TURN(τL) 0.038 -0.055 0.084 -0.078 -0.014 -0.427

Table B.2 reports correlation coefficients with 1 time lag.
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