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Abstract

The thesis aims at the development of mathematical tools for analysis and construction

of near optimal solutions of optimal control problems with long run average optimality

criteria (LRAOC). It consists of three parts. In Part I, we establish that near optimal

controls of these problems can be constructed on the basis of solutions of semi-infinite

dimensional linear programming (SILP) problems and their duals. The latter are shown

to be approximations of the Hamilton-Jacobi-Bellman inequality corresponding to the

LRAOC problem. In Part II, we extend the consideration of Part I to singularly per-

turbed LRAOC problems. Our approach to these problems is based on amalgamation

of averaging and linear programming based techniques. We show that an asymptoti-

cally near optimal solution of the singularly perturbed problem can be constructed on

the basis of an optimal solution of the averaged LRAOC problem and we show that

the optimal solution of the latter can be found with the help of linear programming

based techniques. Some of the results obtained in Parts I and II are stated in the form

of algorithms, the convergence of which is discussed and which are illustrated with

numerical examples. In Part III, we study families of SILP problems depending on

a small parameter. The family of SILP problems is regularly (singularly) perturbed

if its optimal value is continuous (discontinuous) at the zero value of the parameter.

We introduce a regularity condition such that if it is fulfilled, then the family of SILP

problems is regularly perturbed and if it is not fulfilled, then the family is likely to

be singularly perturbed. We establish relationships between the regularity condition

for SILP problems and regularity conditions used in dealing with perturbed LRAOC

problems.
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Introduction

The thesis aims at the development of mathematical tools for analysis and construction

of near optimal solutions of long run average optimal control (LRAOC) problems.

Such problems have attracted interest of many leading researchers (see, e.g., [2],

[4], [6], [10], [22], [31], [32], [33], [40], [43], [76], [78], [79], [80], [83], [90], [94], [98] and

references therein). The interest to this class of optimal control problems is motivated

not only by important applications (in chemical and electrical engineering, optimization

of manufacturing systems, environmental modelling, etc.) but also by the fact that

finding an optimal control in a general nonlinear case still presents a difficult task.

Our approach to the LRAOC problems is based on the idea of “linearizing” the

nonlinear optimal control problem by reformulating it as optimization problem on the

space of occupational measures generated by the control-state trajectories (see Section

1.1). The main advantage of the occupational measures approach is that it trans-

lates nonlinear optimal control problems into associated infinite dimensional linear

programming (IDLP) problems. It is based on the fact that the occupational measures

generated by admissible controls and the corresponding solutions of a nonlinear system

satisfy certain linear equations representing the system’s dynamics in a relaxed integral

form. Note that fundamental results that justify the use of IDLP formulations in vari-

ous problems of optimal control of stochastic systems have been obtained in [24], [50],

[77], [99]. Important steps in the development of IDLP formulations in deterministic

optimal control problems considered on a finite time interval have been made in [66],

[67], [73], [95], [104]. A linear programming/occupational measures approach to deter-

ministic LRAOC problems was considered in [58], where it has been established that

these problems are asymptotically equivalent to IDLP problems similar to those arising

in stochastic control. Also, in [58], it has been shown that these IDLP problems can

be approximated by standard finite dimensional linear programming problems (finite

dimensional approximations of IDLP problems arising in stochastic control problems

and in deterministic problems on finite intervals of time have been studied in [72], [87],

ix



x Introduction

and in [95], respectively; finite dimensional approximations of IDLP problems arising

in certain problems of calculus of variations have been considered in [43]), the solution

of which can be used for construction of the optimal controls.

The thesis consist of three parts.

In Part I (after reviewing some results about relationships between the LRAOC

problem and the corresponding IDLP problem), we show that necessary and sufficient

optimality conditions for the LRAOC problem can be stated in terms of a solution

of the HJB inequality, the latter is shown to be equivalent to the problem dual with

respect to the IDLP problem. Being a max-min type variational problem on the space of

continuously differentiable functions, this dual problem is approximated by max-min

problems on finite dimensional subspaces of the space of continuously differentiable

functions, which are dual to the semi-infinite dimensional linear programming (SILP)

problems approximating the IDLP problem. We give conditions under which solutions

of these duals exist and can be used for construction of near optimal solutions of the

LRAOC problem. We establish the convergence of an linear programming (LP) based

algorithm for finding optimal solutions of the SILP problems and their duals, and we

demonstrate a construction of a near optimal control based on such solutions with a

numerical example. The obtained results were published in [60].

In Part II, we develop tools for analysis and construction of near optimal solutions

of singularly perturbed LRAOC problems. Our approach to these problems is based

on amalgamation of averaging and linear programming based techniques. We show

that an asymptotically near optimal solution of the singularly perturbed problem can

be constructed on the basis of an optimal solution of the averaged LRAOC problem

and we show that the optimal solution of the latter can be found with the help of

linear programming based techniques. Key concepts introduced and dealt with, in this

part, are those of optimal and near optimal average control generating (ACG) families.

Sufficient and necessary conditions for an ACG family to be optimal are established

and an algorithm for finding near optimal ACG families is described and justified. The

construction of an asymptotically near optimal control is illustrated with a numerical

example.

Note that problems of optimal controls of singularly perturbed systems appear in

a variety of applications and have received a great deal of attention in the literature

(see, e.g., [3], [11], [13], [18], [22], [27], [36], [38], [39], [40], [42], [45], [47], [54], [57],

[68], [73], [74], [77], [81], [87], [89], [92], [93], [101], [102], [104] and references therein).

In a number of works (see, e.g., [7], [8], [13], [51], [52], [53], [55]) it has been noted

that equating of the singular perturbation parameter to zero may not lead to a right

x
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approximation of the optimal solution in the general nonlinear case. Various averaging

type approaches allowing one to deal with such cases were proposed in [2], [3], [7],

[8], [9], [11], [12], [27], [28], [29], [40], [41], [45], [46], [51], [52], [55], [56], [57], [67],

[68], [92], [93], [102] (see also references therein). However, despite of the fact that the

literature devoted to the topic is very reach, until recently, no algorithms for finding

near optimal solutions (in case equating of the singular perturbation parameter to zero

does not lead to the right approximation) have been discussed in the literature. In fact,

to the best of our knowledge, first such results were obtained in two recent papers, in

[64] (for optimal problem with time discounting) and in [61] (for LRAOC problems),

with results of [61] constituting the basis for consideration of Part II.

In Part III, we study families of SILP problems depending on a small parameter.

The family of SILP problems is regularly (singularly) perturbed if its optimal value is

continuous (discontinuous) at the zero value of the parameter. We introduce a regu-

larity condition such that if it is fulfilled, then the family of SILP problems is regularly

perturbed and if it is not fulfilled, then the family is likely to be singularly perturbed.

We establish relationships between the regularity condition for SILP problems and

regularity conditions used in dealing with perturbed LRAOC problems.

xi
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Use of approximations of

Hamilton-Jacobi-Bellman

inequality for solving long run

average problems of optimal control
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1
Infinite-dimensional linear programming

problem related to long run average optimal

control problem

In this chapter, we introduce notations and results that are used further in the text.

The chapter consists of three sections. In Section 1.1, we consider various statements

of long run average optimal control (LRAOC) problems. In Section 1.2, we establish

relationships between the LRAOC problem and a certain infinite-dimensional linear

programming (IDLP) problem. In Section 1.3, we describe duality results for the

IDLP problem.

1.1 LRAOC problem statements. Occupational mea-

sures formulations of the LRAOC problem.

We will be considering the control system written in the form

y′(t) = f(u(t), y(t)), t ≥ 0, (1.1.1)

3



Chapter 1 LRAOC problem statements

where the function f(u, y) : U×IRm → IRm is continuous in (u, y) and satisfies Lipschitz

condition in y; and u(·) : [0, S] → U or u(·) : [0,+∞) → U (depending on whether the

system is considered on the finite time interval [0, S] or on the infinite time interval

[0,+∞)) are controls that are assumed to be Lebesgue measurable functions and taking

values in a given compact metric space U .

Definition 1.1.1 A pair (u(·), y(·)) will be called admissible on the interval [0, S] if

the equation (1.1.1) is satisfied for almost all t ∈ [0, S] and if the following inclusions

are valid:

u(t) ∈ U, y(t) ∈ Y ∀t ≥ 0, (1.1.2)

where Y is a given compact subset of IRm. The pair will be called admissible on [0,∞)

if it is admissible on any interval [0, S], S > 0.

Note that, the first inclusion in (1.1.2) being valid for almost all t and the second for

all t ∈ [0, S] (the second inclusion is interpreted as the state constraint).

In what follows, it will be assumed that the system (1.1.1) is viable in Y (that is, for

any initial condition in Y , there exists a control that keeps the solution of the system

in Y ; see [16]).

The optimal control problem that we will be dealing with is defined as follows

inf
(u(·),y(·))

lim inf
S→∞

1

S

∫ S

0

q(u(t), y(t))dt
def
= V ∗ , (1.1.3)

where q(u, y) : U × IRm → IR1 is a given continuous function and inf is sought over

all admissible pairs of the system (1.1.1). This problem will be referred to as long run

average optimal control (LRAOC) problem. Note that, the initial condition is not fixed

in (1.1.1) and it is, in fact, a part of the optimization problem.

Also, we will be dealing with the optimal control problem considered on the finite

time interval

inf
(u(·),y(·))

1

S

∫ S

0

q(u(t), y(t))dt
def
= V ∗(S), (1.1.4)

where inf is sought over all admissible pairs on the interval [0, S].

Remark 1.1.2 Note that, the assumption that the controls take values in the compact

set U can be replaced by a weaker assumption that the optimal and near optimal controls

belong to this set.

Proposition 1.1.3 The following inequality is satisfied

lim inf
S→∞

V ∗(S) ≤ V ∗. (1.1.5)

4



Chapter 1 LRAOC problem statements

Proof. For any S > 0 and for any admissible pair (u(t), y(t))

1

S

∫ S

0

q(u(t), y(t))dt ≥ V ∗(S). (1.1.6)

Hence,

lim inf
S→∞

1

S

∫ S

0

q(u(t), y(t))dt ≥ lim inf
S→∞

V ∗(S). (1.1.7)

The last inequality implies that

V ∗ ≥ lim inf
S→∞

V ∗(S), (1.1.8)

which proves (1.1.5). �

Along with the problems defined above, we will be referring to the infinite time

horizon optimal control problem

inf
(u(·),y(·))

lim
S→∞

1

S

∫ S

0

q(u(t), y(t))dt
def
= V ∗

∞ , (1.1.9)

where inf is sought over all admissible pairs on the interval [0,∞) such that the limit

in the above expression exists. If this inf is sought over the periodic admissible pairs

only, that is, over the admissible pairs such that

(u(t), y(t)) = (u(t+ T ), y(t+ T )) ∀t ≥ 0 (1.1.10)

for some T > 0, then (1.1.9) is written as

inf
(u(·),y(·))per

lim
S→∞

1

S

∫ S

0

q(u(t), y(t))dt.

Thus, it becomes equivalent to a so-called periodic optimization problem (see, e.g., [33])

inf
T,(u(·),y(·))

1

T

∫ T

0

q(u(t), y(t))dt
def
= V ∗

per, (1.1.11)

where inf is over the length T of the time interval and over the admissible pairs defined

on [0, T ], which satisfies the periodicity condition y(0) = y(T ).

A very special family of admissible pairs on [0,∞) is that consisting of constant

valued controls and corresponding steady state solutions of (1.1.1):

(u(t), y(t)) = (u, y) ∈ M
def
= {(u, y) | (u, y) ∈ U × Y, f(u, y) = 0}. (1.1.12)

5



Chapter 1 Occupational measures formulation

If inf is sought over admissible pairs from this family then the problem (1.1.9) is

reduced to

inf
(u,y)∈M

q(u, y)
def
= V ∗

ss, (1.1.13)

which is called a steady state optimization problem.

It is easy to see that the optimal values of the above introduced problems satisfy

the inequalities

V ∗ ≤ V ∗
∞ ≤ V ∗

per ≤ V ∗
ss. (1.1.14)

Note that, in the general case,

V ∗
per < V ∗

ss (1.1.15)

(see, e.g., [52], [65], [69] and [71]). Allowing this to be the case, we will be assuming

that

V ∗ = V ∗
∞ or V ∗ = V ∗

per. (1.1.16)

For the sake of our consideration let us reformulate the problems in terms of occu-

pational measures.

The occupational measure generated by an admissible control and the corresponding

solution of the system (1.1.1) (that is, it is generated by an admissible pair (u(t), y(t))

of the system (1.1.1)) on interval [0, S] is the probability measure defined by the “pro-

portions” of time spent by this admissible pair in different subsets of the control-state

space. More precisely, let P(U×Y ) stands for the space of probability measures defined

on the Borel subsets of U × Y .

Definition 1.1.4 A probability measure γ(S,(u(·),y(·)) ∈ P(U × Y ) is called the occupa-

tional measure generated by the admissible pair (u(t), y(t)) on the interval [0, S] if, for

any Borel set B ⊂ U × Y ,

γ(S,(u(·),y(·)))(B)
def
=

1

S

∫ S

0

1B(u(t), y(t))dt, (1.1.17)

where 1B(·) is the indicator function of the set B: 1B(u, y) = 1 ∀(u, y) ∈ B and

1B(u, y) = 0 ∀(u, y) 6∈ B.

Definition 1.1.5 The occupational measure generated by the admissible pair on the

interval [0,∞) is the probability measure γ(u(·),y(·)) ∈ P(U × Y ) defined as the limit

(assumed to exist)

γ(u(·),y(·))(B)
def
= lim

S→∞

1

S

∫ S

0

1B(u(t), y(t))dt. (1.1.18)

6



Chapter 1 Occupational measures formulation

Note that the occupational measure generated by a steady state admissible pair

(u(t), y(t)) = (u, y) ∈M (as in (1.1.12)) is just the Dirac measure at (u, y).

Note also, that the Definition 1.1.4 is equivalent to the statement that, for any

continuous function h(·) defined on the control-state space, the time average of the

integral of the function h(·) along an admissible pair is equal to the integral of h(·)

over the occupational measures generated by this admissible pair. Namely, (1.1.17) is

equivalent to that

∫

U×Y

h(u, y)γ(S,(u(·),y(·)))(du, dy) =
1

S

∫ S

0

h(u(t), y(t))dt (1.1.19)

for any continuous h(u, y) : U × IRm → IR1.

Similarly, the Definition 1.1.5 is equivalent to the statement that

∫

U×Y

h(u, y)γ(u(·),y(·))(du, dy) = lim
S→∞

1

S

∫ S

0

h(u(t), y(t))dt (1.1.20)

for any continuous h(·) ∈ C(U × Y ). Note that, from (1.1.20) it follows, in particular,

that there exist the limit

lim
S→∞

γ(S,(u(·),y(·)))
def
= γ(u(·),y(·)).

Let us denote by Γ(S) ⊂ P(U × Y ) the set of all occupational measures generated

by the admissible pairs (u(·), y(·)) on the interval [0, S]. That is,

Γ(S)
def
=

⋃

u(·)

{γ(S,(u(·),y(·)))} ⊂ P(U × Y ), (1.1.21)

where γ(S,(u(·),y(·))) is the occupational measure generated by (u(·), y(·)) on the interval

[0, S] and the union is over all controls.

Using this notation and the definition of the occupational measures as in (1.1.19),

one can rewrite problem (1.1.4) in terms of minimization over measures from the set

Γ(S) as follows

inf
γ∈Γ(S)

∫

U×Y

q(u, y)γ(du, dy) = V ∗(S). (1.1.22)

Note that, in what follows, the convergence properties of V ∗(S) (as S tends to infinity)

are established on the basis of the corresponding convergence properties of Γ(S) which

are defined at the end of this section.

7



Chapter 1 Occupational measures formulation

The periodic optimization problem (1.1.11) also can be rewritten in terms of occu-

pational measures. Namely, based on (1.1.19),

inf
γ∈Γper

∫

U×Y

q(u, y)γ(du, dy) = V ∗
per, (1.1.23)

where Γper defines the set of all occupational measures generated by the periodic ad-

missible pairs (u(·), y(·))per (that is, (1.1.10) is satisfied with some positive T ).

Note that, due to linearity of the objective function in (1.1.22),

min
γ∈c̄oΓ(S)

∫

U×Y

q(u, y)γ(du, dy) = V ∗(S), (1.1.24)

where c̄o stands for the closed convex hull of the set Γ(S). Similarly, due to linearity

of the objective function in (1.1.23),

min
γ∈c̄oΓper

∫

U×Y

q(u, y)γ(du, dy) = V ∗
per. (1.1.25)

Let us conclude this section with some comments and notation. Given a compact

metric space X , B(X) will stand for the σ-algebra of its Borel subsets and P(X) will

denote the set of probability measures defined on B(X). The set P(X) will always be

treated as a compact metric space with a metric ρ, which is consistent with its weak∗

topology (see, e.g., [23] or [91]). That is, a sequence γk ∈ P(X), k = 1, 2, ..., converges

to γ ∈ P(X) in this metric if and only if

lim
k→∞

∫

X

c(x)γk(dx) =

∫

X

c(x)γ(dx), (1.1.26)

for any continuous c(·) : X → IR1. There are many ways of how such a metric ρ can

be defined. We will use the following definition: ∀γ′, γ′′ ∈ P(X),

ρ(γ′, γ′′)
def
=

∞∑

l=1

1

2l
|

∫

X

hl(x)γ
′(dx)−

∫

X

hl(x)γ
′′(dx) | , (1.1.27)

where hl(·), l = 1, 2, ... , is a sequence of Lipschitz continuous functions which is dense

in the unit ball of C(X) (the space of continuous functions on X).

Using this metric ρ, one can define the “distance” ρ(γ,Γ) between γ ∈ P(X) and

Γ ⊂ P(X), and the Hausdorff metric ρH(Γ1,Γ2) between Γ1 ⊂ P(X) and Γ2 ⊂ P(X),

8



Chapter 1 Infinite dimensional linear programming problem

as follows:

ρ(γ,Γ)
def
= inf

γ′∈Γ
ρ(γ, γ′), ρH(Γ1,Γ2)

def
= max{sup

γ∈Γ1

ρ(γ,Γ2), sup
γ∈Γ2

ρ(γ,Γ1)}. (1.1.28)

Note that, although, by some abuse of terminology, we refer to ρH(·, ·) as to a metric on

the set of subsets of P(X), it is, in fact, a semi-metric on this set (since ρH(Γ1,Γ2) = 0

is equivalent to Γ1 = Γ2 if and only if Γ1 and Γ2 are closed).

The following lemma is implied by the definitions above.

Lemma 1.1.6 Let Γ be a subset of P(X) then:

(i) if lim
S→∞

sup
γ∈Γ(S)

ρ(γ,Γ) = 0, then, for any continuous h(x) : X → IR1,

lim inf
S→∞

inf
γ∈Γ(S)

∫

X

h(x)γ(dx) ≥ inf
γ∈Γ

∫

X

h(x)γ(dx);

(ii) if lim
S→∞

ρH(Γ(S),Γ) = 0, then

lim
S→∞

inf
γ∈Γ(S)

∫

X

h(x)γ(dx) = inf
γ∈Γ

∫

X

h(x)γ(dx).

Proof. The proof is obvious. �

It can be verified (see e.g. Lemma Π2.4 in [51], p.205) that, with the definition of

the metric ρ as in (1.1.27),

ρH(c̄oΓ1, c̄oΓ2) ≤ ρH(Γ1,Γ2) , (1.1.29)

where c̄o stands for the closed convex hull of the corresponding set.

1.2 Infinite dimensional linear programming prob-

lem.

Let us define the set W ⊂ P(U × Y ) by the equation

W
def
=
{
γ ∈ P(U × Y ) :

∫

U×Y

(∇φ(y))Tf(u, y)γ(du, dy) = 0 ∀φ ∈ C1
}
, (1.2.1)

9
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where C1 is the space of continuously differentiable functions φ(y) : IRm → IR1, ∇φ(y)

is a vector column of partial derivatives (the gradient) of φ(y) ,

∇φ(y)
def
=




∂φ
∂y1
...
∂φ
∂ym


 . (1.2.2)

Proposition 1.2.1 The set W is convex and compact.

Proof. Note that in order to show that W is compact it is enough to establish

that it is closed, since W ⊂ P(U × Y ) and P(U × Y ) is compact. Consider a sequence

γk ∈ W such that

lim
k→∞

γk = γ̄,

where γ̄ is a boundary point. Note that, since γk ∈ W ,

∫

U×Y

(∇φ(y))Tf(u, y)γk(du, dy) = 0 ∀k = 1, 2, ... . (1.2.3)

Therefore,

lim
k→∞

∫

U×Y

(∇φ(y))Tf(u, y)γk(du, dy) =

∫

U×Y

(∇φ(y))Tf(u, y)γ̄(du, dy) = 0. (1.2.4)

Hence, γ̄ ∈ W and thus the set W is closed.

In order to show that the set W is convex one can observe that for any γ′, γ′′ ∈ W

and any α ∈ [0, 1],

∫

U×Y

(∇φ(y))Tf(u, y)[αγ′ − (1− α)γ′′](du, dy) = α

∫

U×Y

(∇φ(y))Tf(u, y)γ′(du, dy)+

(1− α)

∫

U×Y

(∇φ(y))Tf(u, y)γ′′(du, dy) = 0.

�

Note that the set W can be empty. It is easy to see, for example, that W is empty

if there exists a continuously differentiable function φ(·) ∈ C1 such that

max
(u,y)∈U×Y

(∇φ(y))T f(u, y) < 0. (1.2.5)

The set W is not empty if the set of steady state or periodic admissible pairs is not

empty since the occupational measure generated by each such pair is contained in W .

10
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In fact, let (u(·), y(·)) be a periodic admissible pair (that is, (1.1.10) is satisfied with

some positive T ) and let γ(u(·),y(·)) be the occupational measure generated by this pair

on the interval [0, T ]. Then, by (1.1.19),

∫

U×Y

(∇φ(y))Tf(u, y)γ(u(t),y(t))(du, dy) =
1

T

∫ T

0

(∇φ(y(t)))Tf(u(t), y(t))dt

=
φ(y(T ))− φ(y(0))

T
= 0 ∀φ(·) ∈ C1 ⇒ γ(u(·),y(·)) ∈ W.

Proposition 1.2.2 If the set W is empty, then there exists S0 > 0 such that Γ(S) is

empty for S ≥ S0. If Γ(S) is not empty for all S > 0 large enough, then W is not

empty and

lim
S→∞

sup
γ∈Γ(S)

ρ(γ,W ) = 0. (1.2.6)

Proof. To prove the validity of (1.2.6), let us define k(S) by the equation

k(S)
def
= sup

γ∈Γ(S)

ρ(γ,W ) (1.2.7)

and show that k(S) tends to zero as S tends to infinity. Assume it is not the case.

Then, there exists a positive number δ and the sequence Sk → ∞, γk ∈ Γ(Sk), such

that

ρ(γk,W ) ≥ δ ∀k = 1, 2, ... .

Without loss of generality, one may assume that there exists

lim
k→∞

γk
def
= γ ∈ P(U × Y )

(since P(U × Y ) is compact). From the continuity of the metric it follows that

ρ(γ,W ) ≥ δ. (1.2.8)

By the definition of the convergence in P(U × Y ) (see (1.1.26)),

lim
k→∞

∫

U×Y

(∇φ(y))Tf(u, y)γk(du, dy) =

∫

U×Y

(∇φ(y))Tf(u, y)γ(du, dy) (1.2.9)

11
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for any φ ∈ C1. Also, from the fact that γk ∈ Γ(Sk) it follows that there exists an

admissible pair (uk(t), yk(t)) defined on the interval [0, Sk] such that

∫

U×Y

(∇φ(y))Tf(u, y)γk(du, dy) =
1

Sk

∫ Sk

0

(∇φ(yk(t)))Tf(uk(t), yk(t))dt. (1.2.10)

The second integral is apparently equal to

φ(yk(Sk))− φ(yk(0))

Sk

and tends to zero as Sk tends to infinity (since yk(t) ∈ Y ∀t ∈ [0, Sk] and Y is a

compact set). This and (1.2.9) imply that

∫

U×Y

(∇φ(y))Tf(u, y)γ(du, dy) = 0 ∀φ ∈ C1 ⇒ γ ∈ W.

The latter contradicts (1.2.8) and, hence, k(S) defined in (1.2.7) tends to zero as S

tends to infinity. This proves (1.2.6).

From consideration above it follows that, if there exists a sequence of Sk tending

to infinity such that Γ(Sk) 6= ∅, then the set W is not empty. Hence, if the latter is

empty, then Γ(S) = ∅ for all S large enough. �

In what follows, we will assume that W is not empty.

Let us consider the problem

inf
γ∈W

∫

U×Y

q(u, y)γ(du, dy)
def
=G∗, (1.2.11)

where q(·) is the same as in (1.1.22) (and the same as in (1.1.3)-(1.1.4)).

Note that, since both the objective function in (1.2.11) and the constraints inW are

linear in γ, problem (1.2.11) is that of infinite-dimensional linear programming (IDLP)

(see, e.g., [5]).

Corollary 1.2.3 The lower limit of the optimal values of (1.1.4) satisfies the inequality

limS→∞V
∗(S) = limS→∞ inf

γ∈Γ(S)

∫

U×Y

q(u, y)γ(du, y)≥ G∗. (1.2.12)

Proof. The proof follows from Lemma 1.1.6 (i), Proposition 1.2.2, and the validity

of the representation (1.1.22). �

Corollary 1.2.4 (criteria of optimality)
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(i) If an admissible pair (u(·), y(·)) : [0,∞) → U × Y is such that

lim
S→∞

1

S

∫ S

0

q(u(t), y(t))dt = G∗,

then this pair is a solution of the problem (1.1.9) and V ∗
∞ = G∗;

(ii) If a periodic (with a period T ) admissible pair (u(·), y(·)) is such that

1

T

∫ T

0

q(u(t), y(t))dt = G∗,

then this pair is a solution of the problems (1.1.9) and (1.1.11), and also V ∗
∞ =

V ∗
per = G∗;

(iii) If a steady state admissible pair (u(t), y(t)) = (u, y) ∈M (as defined in (1.1.12))

is such that

q(u, y) = G∗,

then this pair is a solution of the problems (1.1.9), (1.1.11) and (1.1.13), and

also V ∗
∞ = V ∗

per = V ∗
ss = G∗.

Proof. The proof follows from inequalities (1.1.14) and Corollary 1.2.3. �

It has been shown in [62] (see also [48], [57], [58]) that, if W is not empty and some

other mild conditions are satisfied, then the following relationships are valid:

lim
S→∞

ρH(coΓ(S),W ) = 0 (1.2.13)

⇒ lim
S→∞

V ∗(S) = G∗. (1.2.14)

Note that no assumptions, except of non-emptiness of W , for the validity of these

relationships are needed if one allows the use of the relaxed controls (see Theorem

3.1 and 3.3 in [48] or Remark 4.5 in [62]). Note also that the relationships similar to

(1.2.13) and (1.2.14) have been established for various optimal control formulations

(for problems considered on finite and infinite time horizons and in both deterministic

and stochastic settings) in [24], [43], [50], [73], [77], [81], [95], [98] (see also references

therein).

From Proposition 1.2.2 and the equality (1.2.14) it follows that if the solution γ∗ of

the problem (1.2.11) is unique, then, for any γS ∈ Γ(S) such that

13
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lim
S→∞

∫

U×Y

q(u, y)γS(du, dy) = G∗,

lim
S→∞

ρ(γS, γ∗) = 0. (1.2.15)

Note also that the solution γ∗ of problem (1.2.11) can be unique only if it is an extreme

point of W (since (1.2.11) is an LP problem) and that, using (1.2.13), one can show

(although not shown here) that, for any extreme point γ of W , there exists γS ∈ Γ(S)

such that lim
S→∞

ρ(γS, γ) = 0.

Let γ∗ be a solution of problem (1.2.11) which is an extreme point of W and let

γS ∈ Γ(S) satisfy (1.2.15). Assume that there exists an admissible pair (uγ
∗

(·), yγ
∗

(·)) :

[0,∞) → U × Y that generates γS on any interval [0, S] (see Definition 1.1.5). Then,

for any continuous h(u, y) : U × Y → IR1,

lim
S→∞

1

S

∫ S

0

h(uγ
∗

(t), yγ
∗

(t))dt =

∫

U×Y

h(u, y)γ∗(du, dy) (1.2.16)

and, in particular, for h(u, y) = q(u, y),

lim
S→∞

1

S

∫ S

0

q(uγ
∗

(t), yγ
∗

(t))dt =

∫

U×Y

q(u, y)γ∗(du, dy) = G∗. (1.2.17)

Thus, by Corollary 1.2.4(i), this pair will be a solution of problem (1.1.9). Also,

by Corollary 1.2.4(ii), (iii), this pair will be a solution of the periodic optimization

problem (1.1.11) (and the steady state problem (1.1.13)) if it proves to be periodic

(and, respectively, steady state).

Note that, in what follows it will be assumed everywhere that Γ(S) 6= ∅ (this

implying that W 6= ∅ and that V ∗(S) is well defined; see (1.1.22)) and also that

(1.2.13) and (1.2.14) are valid.

1.3 The problem dual to the IDLP problem and

duality relationships.

Define the problem dual to IDLP problem (1.2.11) by the equation

sup
(d,η(·))∈D

d
def
=D∗, (1.3.1)

14



Chapter 1 Duality relationship

with the feasible set D ⊂ IR1 × C1 defined as

D
def
=
{
(d, η(·)) : d = min

(u,y)∈U×Y
{q(u, y) + (∇η(y))Tf(u, y)}, η(·) ∈ C1

}
. (1.3.2)

The way how the problem (1.3.1) can be constructed as a “standard” LP dual is

discussed in Appendix A.

Note that, if W 6= ∅, then, for any γ ∈ W , from the fact that the pair (d, η(·))

satisfies the inequality

d ≤ q(u, y) + (∇η(y))Tf(u, y) ∀(u, y) ∈ U × Y,

it follows that

d ≤

∫

U×Y

q(u, y)γ(du, dy).

Hence, the optimal values of (1.2.11) and its dual (1.3.1) satisfy the inequality

D∗ ≤ G∗. (1.3.3)

The following statements establish more elaborate connections between problems

(1.2.11) and (1.3.1). Namely, from the theorem stated below follows that the inequality

(1.3.3) turns into the equality (that is, there is no duality gap) if and only if W is not

empty.

Theorem 1.3.1 (i) The optimal value of the dual problem (1.3.1) is bounded (that

is, D∗ <∞) if and only if the set W is not empty;

(ii) If the optimal value of the dual problem (1.3.1) is bounded, then

D∗ = G∗; (1.3.4)

(iii) The optimal value D∗ of the dual problem is unbounded (that is, D∗ = ∞) if and

only if there exists a function η̄(·) ∈ C1 such that

max
(u,y)∈U×Y

(∇η̄(y))Tf(u, y) < 0. (1.3.5)

Proof. The proof of the theorem was given in Section 9 of [48] and for completeness

it is recalled in Appendix B. �

Note that duality results similar to Theorem 1.3.1 (ii) have been obtained in [24]

and [50] in a stochastic setting without state constraints (Y = IRm) and in [104] in
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the deterministic setting with state constraints (for IDLP problems related to optimal

control problems considered on a finite time interval).

Remark 1.3.2 From the statements (i) and (ii) of the theorem stated above it follows

that the set W and, hence, the set Γ(S) are not empty (see Proposition 1.2.2) if and

only if a function η(·) ∈ C1 satisfying (1.3.5) does not exist. Note that, if such a

function η(·) exists, then the fact that Γ(S) are empty for S ≥ S0 (for some S0 > 0)

follow from the fact that this η(·) can be used as a Liapunov function decreasing along

the trajectories of the system (1.1.1) and “forcing” them to leave Y in a finite time.

Note that problem (1.3.1) is equivalent to

sup
η(·)∈C1

min
(u,y)∈U×Y

{q(u, y) + (∇η(y))Tf(u, y)} = D∗. (1.3.6)

Defining Hamiltonian H(p, y) by the equation

H(p, y)
def
= min

u∈U
{q(u, y) + pTf(u, y)} (1.3.7)

one can rewrite the equality (1.3.6) (or, equivalently, (1.3.1)) as follows

sup
η(·)∈C1

min
y∈Y

H(∇η(y), y) = D∗. (1.3.8)

Definition 1.3.3 Assume that D∗ <∞. A function η∗(·) ∈ C1 will be called a solution

of the dual problem (1.3.1) if

D∗ = min
(u,y)∈U×Y

{q(u, y) + (∇η∗(y))Tf(u, y)}. (1.3.9)

Note that, by rewriting equation (1.3.9) in the form

D∗ = min
y∈Y

H(∇η∗(y), y) ⇒ D∗ ≤ H(∇η∗(y), y) ∀y ∈ Y, (1.3.10)

one can come to the conclusion that a solution η∗(·) of dual problem (1.3.1) is a smooth

viscosity subsolution of the corresponding Hamilton-Jacobi-Bellman equation (see [20]

and [49] for relevant definitions and developments).
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1.4 Additional comments for Chapter 1

The consideration of Sections 1.1 and 1.2 is based on results obtained in [58] and [57].

The consideration of Section 1.3 is based on results of [48].

17



Chapter 1 Additional comments for Chapter 1

18



2
Necessary and sufficient conditions of

optimality. Maxi-min problem and its

approximation

In this chapter, we show that sufficient and necessary conditions of optimality in long

run average optimal control (LRAOC) problems can be stated in terms of a solu-

tion of the corresponding Hamilton-Jacobi-Bellman (HJB) inequality, the latter being

equivalent to the problem dual to the infinite dimensional linear programming (IDLP)

problem considered in Section 1.2. The latter is a max-min type variational problem

considered on the space of continuously differentiable functions. We approximate it

with the max-min problems on a finite dimensional subspaces of the space of continu-

ously differentiable functions.

The chapter is organised as follows. In Section 2.1, we define the HJB inequality

and show that it can be used to formulate necessary and sufficient conditions of opti-

mality for the LRAOC problem. In Section 2.2, we establish that the HJB inequality

is equivalent to the variational max-min problem and consider approximation of this

problem by max-min problems on finite dimensional subspaces of the space of continu-

ously differentiable functions. We give conditions under which solutions of these exist
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and can be used for construction of near optimal solutions of the LRAOC problem.

Semi-infinite dimensional linear programming (SILP) problems and their relationships

with the approximating max-min problems are discussed in Section 2.3.

2.1 Necessary and sufficient conditions of optimal-

ity based on the HJB inequality.

In this section, we give sufficient and necessary conditions for an admissible pair

(u(·), y(·)) to be optimal and for the equality

V ∗ = G∗ (2.1.1)

to be valid. Note that the equality (2.1.1) implies that

lim
S→∞

V ∗(S) = G∗. (2.1.2)

Under the assumption that (2.1.1) is satisfied, the Hamilton-Jacobi-Bellman (HJB)

equation for the LRAOC problem is written in the form (see, e.g., Section VII.1.1 in

[20])

H(∇η(y), y) = G∗, (2.1.3)

where H(p, y) is the Hamiltonian defined in (1.3.7). The equation (2.1.3) is equivalent

to the following two inequalities

H(∇η(y), y) ≤ G∗, H(∇η(y), y) ≥ G∗. (2.1.4)

As follows from the result below, for a characterization of an optimal control problem

(1.1.3), it is sufficient to consider functions that satisfy only the second inequality in

(2.1.4), and we will say that a function η(·) ∈ C1 is a solution of the HJB inequality

on Y if

H(∇η(y), y) ≥ G∗, ∀y ∈ Y. (2.1.5)

Note that the concept of a solution of the HJB inequality on Y introduced above is

essentially the same as that of a smooth viscosity subsolution of the HJB equation

(2.1.3) considered on the interior of Y (see, e.g., [20]).

The following result gives sufficient condition for an admissible pair (u(·), y(·)) to

be optimal and for the equality (2.1.1) to be valid.
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Proposition 2.1.1 Assume that a solution η(·) ∈ C1 of the HJB inequality (2.1.5)

exists. Then an admissible pair (u(·), y(·)) is optimal in (1.1.3) and the equality (2.1.1)

is valid if

u(t) = argminu∈U{q(u, y(t)) + (∇η(y(t)))Tf(u, y(t))} a.e. t ∈ [0,∞) (2.1.6)

and

H(∇η(y(t)), y(t)) = G∗, ∀t ∈ [0,∞). (2.1.7)

Proof. Note that from (2.1.6) and (2.1.7) it follows that for almost all t ∈ [0,∞)

q(u(t), y(t)) + (∇η(y(t)))Tf(u(t), y(t)) = G∗. (2.1.8)

Since,

lim
S→∞

1

S

∫ S

0

(∇η(y(t)))Tf(u(t), y(t))dt = lim
S→∞

1

S

∫ S

0

dη(y(t))

dt

= lim
S→∞

1

S
(η(y(S))− η(y(0)) = 0.

(2.1.9)

From (2.1.8) it follows that

lim
S→∞

1

S

∫ S

0

q(u(t), y(t))dt = G∗. (2.1.10)

The latter implies that (u(·), y(·)) is optimal and that the equality (2.1.1) is valid. �

Let us introduce the following assumption.

Assumption 2.1.2 The following conditions are satisfied:

(i) the optimal solution of the problem (1.1.3) (that is, an admissible pair (u∗(·),

y∗(·)) that delivers minimum in (1.1.3)) exists and generates the occupational

measure γ∗. That is, for any continuous h(u, y),

lim
S→∞

1

S

∫ S

0

h(u∗(t), y∗(t))dt =

∫

U×Y

h(u, y)γ∗(du, dy); (2.1.11)

(ii) for almost all t ∈ [0,∞) and for any r > 0, the γ∗- measure of the set

Br(u
∗(t), y∗(t))

def
= {(u, y) : ||u− u∗(t)||+ ||y − y∗(t)|| < r} (2.1.12)
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is not zero. That is,

γ∗(Br(u
∗(t), y∗(t))) > 0. (2.1.13)

The following proposition gives sufficient conditions for the validity of Assumption

2.1.2.

Proposition 2.1.3 The Assumptions 2.1.2 is satisfied if the pair (u∗(t), y∗(t)) is T -

periodic (T is some positive number) and if u∗(·) is piecewise continuous on [0, T ].

Proof. Let t be a continuity point of u∗(t). Note that, due to the assumed period-

icity of the pair (u∗(·), y∗(·)), Assumption 2.1.2 (i) is satisfied. That is,

1

T

∫ T

0

h(u∗(t), y∗(t))dt =

∫

U×Y

h(u, y)γ∗(du, dy)

and

γ∗(Br(u
∗(t), y∗(t))) =

1

T
meas

{
s ∈ [0, T ] : (u∗(s), y∗(s)) ∈ Br(u

∗(t), y∗(t))
}
. (2.1.14)

Since t is a continuity point of u∗(·) and since y∗(·) is continuous, there exists α > 0

such that (u∗(t′), y∗(t′)) ∈ Br(u
∗(t), y∗(t)) ∀t′ ∈ [t− α, t+ α]. Hence, the right-hand-

side in (2.1.14) is greater that 2α
T
. This proves the required statement as the number

of discontinuity points of u∗(·) is finite (due to the assumed piecewise continuity). �

Proposition 2.1.4 Let (u∗(t), y∗(t)) be an optimal admissible pair such that Assump-

tion 2.1.2 is satisfied and let the equality (2.1.1) be valid then (2.1.6) and (2.1.7) are

satisfied.

Proof. Since (u∗(·), y∗(·)) that delivers minimum in (1.1.3) exists and since this

pair generates the occupational measure γ∗, (see (2.1.11))

lim
S→∞

1

S

∫ S

0

q(u∗(t), y∗(t)) =

∫

U×Y

q(u, y)γ∗(du, dy) = G∗. (2.1.15)

Note also that from (2.1.13) and from the fact that (u∗(t), y∗(t)) ∈ U × Y it follows

that for any r > 0

γ∗
(
Br(u

∗(t), y∗(t))
⋂

(U × Y )
)
> 0. (2.1.16)

Since γ∗ ∈ W , ∫

U×Y

(∇η(y))Tf(u, y)γ∗(du, dy) = 0. (2.1.17)
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Chapter 2 Necessary and sufficient conditions of optimality

Hence, by (2.1.15)

∫

U×Y

[q(u, y) + (∇η(y))Tf(u, y)−G∗]γ∗(du, dy) = 0. (2.1.18)

Define the set,

B
def
=
{
(u, y) ∈ U × Y : q(u, y) + (∇η(y))Tf(u, y)−G∗ > 0

}
. (2.1.19)

Note that from (1.3.7) and (2.1.5) it follows that

q(u, y) + (∇η(y))Tf(u, y) ≥ G∗, ∀(u, y) ∈ U × Y. (2.1.20)

Hence, from (2.1.18) it follows that

γ∗(B) = 0. (2.1.21)

Let us show that

meas{t : (u∗(t), y∗(t)) ∈ B} = 0. (2.1.22)

Assume it is not true. That is, meas{t : (u∗(t), y∗(t)) ∈ B} > 0. Then there exists t̄

such that

(u∗(t̄), y∗(t̄)) ∈ B (2.1.23)

and such that

γ∗
(
Br(u

∗(t̄), y∗(t̄))
⋂

(U × Y )
)
> 0 ∀r > 0. (2.1.24)

From the definition of the set B (see (2.1.19)) it follows that for r > 0 small enough

Br(u
∗(t̄), y∗(t̄))

⋂
(U × Y ) ⊂ B. (2.1.25)

Hence,

γ∗(B) ≥ γ∗
(
Br(u

∗(t̄), y∗(t̄))
⋂

(U × Y )
)
> 0. (2.1.26)

That contradicts (2.1.21) and hence proves (2.1.22). That is, due to (2.1.20)

q(u∗(t), y∗(t)) + (∇η(y∗(t)))Tf(u∗(t), y∗(t)) = G∗, (2.1.27)

for almost all t > 0. This implies (2.1.6) and (2.1.7). �

Remark 2.1.5 Note that the difference of Propositions 2.1.1 and 2.1.4 from similar

results of optimal control theory is that a solution of the HJB inequality (rather than
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that of the HJB equation) is used in the right-hand-side of (2.1.6), with the relationship

(2.1.7) indicating that the HJB inequality takes the form of the equality on the optimal

trajectory. Note also that, due to (2.1.5), the equality (2.1.7) is equivalent to the

inclusion

y(t) ∈ argminy∈Y {H(∇η(y), y)}, ∀t ∈ [0, S]. (2.1.28)

The validity of the following statement is implied by Proposition 2.1.1 and Propo-

sition 2.1.4.

Corollary 2.1.6 Assume that a solution η(·) ∈ C1 of the HJB inequality (2.1.5) exists.

Then a T -periodic admissible pair (u(t), y(t)) = (u(t+T ), y(t+T )) is optimal in (1.1.11)

and the equality

Gper = G∗ (2.1.29)

is valid if and only if the relationships (2.1.6) and (2.1.7) are satisfied.

2.2 Maxi-min problem equivalent to the HJB in-

equality and its approximation.

Consider the following max-min type problem

sup
η(·)∈C1

min
y∈Y

H(∇η(y), y), (2.2.1)

where sup is taken over all continuously differentiable functions. Note that, the problem

(2.2.1) is dual with respect to the IDLP problem (1.2.11) (see (1.3.8)).

Proposition 2.2.1 If the optimal value of the problem (2.2.1) is bounded, then it is

equal to the optimal value of the IDLP problem (1.2.11). That is,

sup
η(·)∈C1

min
y∈Y

H(∇η(y), y) = G∗. (2.2.2)

Proof. The equality (2.2.2) follows from the Theorem 1.3.1. Note that from this

theorem also follows that supmin in (2.2.1) is bounded if and only if W 6= ∅. �

Definition 2.2.2 A function η(·) ∈ C1 is called a solution of the problem (2.2.1) if

min
y∈Y

H(∇η(y), y) = G∗. (2.2.3)
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Proposition 2.2.3 If η(·) ∈ C1 is a solution of the HJB inequality (2.1.5), then this

η(·) is also a solution of the problem (2.2.1). Conversely, if η(·) ∈ C1 is a solution of

the problem (2.2.1), then it also solves the HJB inequality (2.1.5).

Proof. Let η(·) ∈ C1 be a solution of the HJB inequality (2.1.5). By (2.2.1) and

(2.2.2), the inequality min
y∈Y

H(∇η(y), y) > G∗ can not be valid. Hence, η(·) solves

(2.2.1). The converse statement is obvious too. �

Note that a solution of the max-min problem (2.2.1), defined as a C1 function

satisfying (1.3.10), may not exist, and one can consider the possibility of defining the

solution as a nondifferentiable function, which satisfies (1.3.10) in the viscosity sense

(see, e.g., [20] p.399 ). We, however, do not follow this path. Instead, we introduce

(following [48]) a way of constructing C1 functions that solve max-min problem (2.2.1)

approximately.

Let
{
φi(·) ∈ C1, i = 1, 2, ...

}
be a sequence of functions having continuous partial

derivatives of the first and second orders such that any η(·) ∈ C1 and its gradient

∇η(·) can be simultaneously approximated by a linear combination of functions from{
φi(·), i = 1, 2, ...

}
and their corresponding gradients. That is, for any η(·) ∈ C1 and

any δ > 0, there exists real numbers β1, ..., βN such that

max
y∈Y

{
|η(y)−

N∑

i=1

βiφi(y)|+ ||∇η(y)−
N∑

i=1

βi∇φi(y)||
}
≤ δ, (2.2.4)

where || · || is a norm in IRm. An example of such an approximating sequence is

the sequence of monomials yi11 , ..., y
im
m , where yj (j = 1, 2, ..., m) stands for the jth

component of y and i1, ..., im = 0, 1, ... (see e.g.[84]). Note that it will always be

assumed that ∇φi(y), i = 1, 2, ..., N (with N = 1, 2, ...), are linearly independent on

any open set Q. More specifically, it is assumed that, for any N , the equality

N∑

i=1

vi∇φi(y) = 0, ∀y ∈ Q (2.2.5)

is valid if and only if vi = 0, i = 1, ..., N .

Define the finite dimensional space ΩN ⊂ C1 by the equation

ΩN
def
=

{
η(·) ∈ C1 : η(y) =

N∑

i=1

λiφi(y), λ = (λi) ∈ IRN

}
(2.2.6)
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and consider the max-min problem

sup
η(·)∈ΩN

min
y∈Y

H(∇η(y), y)
def
= DN , (2.2.7)

which will be referred to as the N-approximating max-min problem. Note that, due to

the definition of the Hamiltonian (1.3.7), from (2.2.7) it follows that

sup
η(·)∈ΩN

min
(u,y)∈U×Y

{q(u, y) + (∇η(y))Tf(u, y)} = DN . (2.2.8)

Proposition 2.2.4 DN converges to G∗, that is,

lim
N→∞

DN = G∗. (2.2.9)

Proof. It is obvious that, for any N ≥ 1,

D1 ≤ D2 ≤ ... ≤ DN ≤ G∗. (2.2.10)

Hence, lim
N→∞

DN exists, and it is less than or equal to G∗. The fact that it is equal to

G∗ follows from the fact that, for any function η(·) ∈ C1 and for any δ > 0, there exist

N large enough and ηδ(·) ∈ ΩN such that

max
y∈Y

{|η(y)− ηδ(y)|+ ‖ ∇η(y)−∇ηδ(y) ‖} ≤ δ. (2.2.11)

�

Definition 2.2.5 A function η(·) ∈ C1 will be called a solution of the N-approximating

max-min problem (2.2.7) if

min
y∈Y

{H(∇η(y), y)} = DN . (2.2.12)

The existence of a solution of the N-approximating max-min problem (2.2.7) is

guaranteed by the following assumption about controllability properties of the system

(1.1.1).

Assumption 2.2.6 There exists a set Y 0 ⊂ Y such that any two points in Y 0 can be

connected by an admissible trajectory of the system (1.1.1)(that is, for any y′, y′′ ∈ Y 0,

there exists an admissible pair (u(·), y(·)) defined on some interval [0, S] such that

y(0) = y′ and y(S) = y′′) and such that the closure of Y 0 has a nonempty interior.
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Chapter 2 Maxi-min problem and its approximation

That is,

int(clY 0) 6= ∅.

Definition 2.2.7 We shall say that the system (1.1.1) is locally approximately con-

trollable on Y if Assumption 2.2.6 is satisfied.

Proposition 2.2.8 Let the system (1.1.1) be locally approximately controllable on Y.

Then, for every N = 1, 2, ..., there exists λN = (λNi ) such that

ηN(y)
def
=

N∑

i=1

λNi φi(y) (2.2.13)

is a solution of the N-approximating max-min problem (2.2.7).

Proof. The proof follows from the following two lemmas. �

Lemma 2.2.9 Assume that, for

η(y) =

N∑

i=1

υiφi(y), (2.2.14)

the inequality

(∇η(y))Tf(u, y) ≥ 0, ∀(u, y) ∈ U × Y (2.2.15)

is valid only if υi = 0, ∀i = 1, ..., N . Then a solution (2.2.13) of the N-approximating

max-min problem (2.2.7) exists.

Proof. For any k = 1, 2, ..., let υk = (υki ) ∈ IRN be such that the function

ηk(y)
def
=

N∑

i=1

υki φi(y), (2.2.16)

satisfies the inequality

H(∇ηk(y), y) ≥ DN −
1

k
, ∀y ∈ Y. (2.2.17)

Hence,

q(u, y) + (∇ηk(y))Tf(u, y) ≥ DN −
1

k
, ∀(u, y) ∈ U × Y. (2.2.18)

27



Chapter 2 Maxi-min problem and its approximation

Let us show that the sequence υk, k = 1, 2, ..., is bounded. That is, there exists α > 0

such that

‖ υk ‖≤ α, k = 1, 2, ... . (2.2.19)

Assume that the sequence υk, k = 1, 2, ..., is not bounded. Then there exists a

subsequence υkl, l = 1, 2, ... such that

lim
l→∞

‖ υkl ‖= ∞, lim
l→∞

υkl

‖ υkl ‖

def
= υ̃, ‖ υ̃ ‖= 1. (2.2.20)

Dividing (2.2.18) by ‖ υk ‖ and passing to the limit along the subsequence {kl}, one

can show that

(∇η̃(y))Tf(u, y) ≥ 0, ∀(u, y) ∈ U × Y, (2.2.21)

where

η̃(y)
def
=

N∑

i=1

υ̃iφi(y).

Hence, by the assumption of the lemma, υ̃ = (υ̃i) = 0, which is in contradiction with

(2.2.20). Thus, the validity of (2.2.19) is established.

Due to (2.2.19), there exists a subsequence υkl, l = 1, 2..., such that there exists a

limit

lim
l→∞

υkl
def
= υ∗. (2.2.22)

Passing to the limit in (2.2.18) along this subsequence, one obtains

q(u, y) + (∇η∗(y))Tf(u, y) ≥ DN , ∀(u, y) ∈ U × Y, (2.2.23)

where

η∗(y)
def
=

∑N
i=1 υ

∗
i φi(y).

From (2.2.23) it follows that

H(∇η∗(y), y) ≥ DN , ∀y ∈ Y.

That is, η∗(y) is an optimal solution of the N-approximating max-min problem (2.2.7).

�

Lemma 2.2.10 If the system (1.1.1) is locally approximately controllable on Y , then

the inequality (2.2.15) is valid only if υi = 0.
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Proof. Assume that

η(y) =
N∑

i=1

υiφi(y) (2.2.24)

and the inequality (2.2.15) is valid. For arbitrary y′, y′′ ∈ Y 0, there exists an admissible

pair (u(·), y(·)) such that y(0) = y′ and y(S) = y′′. From (2.2.15) it follows that

φ(y′′)− φ(y′) =

∫ S

0

(∇φ(y(t)))Tf(u(t), y(t))dt ≥ 0 ⇒ φ(y′′) ≥ φ(y′).

Since y′, y′′ are arbitrary points in Y0, the above inequality allows one to conclude that

φ(y) = const ∀y ∈ Y 0 ⇒ φ(y) = const ∀y ∈ clY 0,

the latter implying that ∇η(y) = 0 ∀y ∈ int(clY 0) and, consequently leading to the

fact that υi = 0, i = 1, ..., N (due to the linear independence of ∇φi(y), i = 1, 2, ..., N

(see (2.2.5)) ). �

Remark 2.2.11 Note that from Proposition 2.2.4 it follows that solutions of the N-

approximating problems (the existence of which is established by Proposition 2.2.8)

solve the max-min problem (2.2.1) approximately in the sense that, for any δ > 0,

there exists Nδ such that, for any N ≥ Nδ,

H(∇ηN(y), y) ≥ G∗ − δ ∀y ∈ Y, (2.2.25)

where ηN(·) is a solution of the N-approximating max-min problem (2.2.7).

2.3 Semi-infinite dimensional LP problem and du-

ality relationships.

Let {φi(·)}, i = 1, 2, ...} be the sequence of functions introduced in Section 2.2. Observe

that due to approximating property (see (2.2.4)) of this sequence of functions the set

W can be presented in the form of a countable system of equations. That is,

W =
{
γ ∈ P(U × Y ) :

∫

U×Y

(∇φi(y))
Tf(u, y)γ(du, dy) = 0, i = 1, 2, ...

}
. (2.3.1)
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Define the set WN as follows

WN
def
=

{
γ ∈ P(U × Y ) :

∫

U×Y

(∇φi(y))
Tf(u, y))γ(du, dy) = 0. i = 1, ..., N

}
.

(2.3.2)

Note that

W1 ⊃ ... ⊃WN ⊃W. (2.3.3)

Consequently, from the fact that W is assumed to be non-empty, it follows that the

sets WN , N = 1, 2, ... are not empty. Also (as can be easily seen), the sets WN are

compact in the weak∗ topology. Hence, the set of optimal solutions of (2.3.4) is not

empty for any N = 1, 2, ... .

Let us consider the semi-infinite dimensional linear programming (SILP) problem

min
γ∈WN

∫

U×Y

q(u, y)γ(du, dy)
def
= GN . (2.3.4)

Note that (2.3.3) implies

G∗ ≥ GN . (2.3.5)

Proposition 2.3.1 If W is not empty, then the following relationships are valid:

lim
N→∞

ρH(WN ,W ) = 0, (2.3.6)

lim
N→∞

GN = G∗. (2.3.7)

Proof. By Lemma 1.1.6 (ii) the validity of (2.3.7) follows from the validity of

(2.3.6). That is, we have to show the validity of (2.3.6).

Since W ⊂WN , to prove that (2.3.6) is valid, it is enough to show that

lim
N→∞

sup
γ∈WN

ρ(γ,W ) = 0. (2.3.8)

Assume it is not true. Then there exist a positive number δ, a subsequence of posi-

tive integers N ′ → ∞, and a sequence of probability measures γN
′

∈ WN ′ such that

ρ(γN
′

,W ) ≥ δ. Due to the compactness of P(U × Y ), one may assume (without loss

of generality) that there exists γ̄ ∈ P(U × Y ) such that

lim
N ′→∞

ρ(γN
′

, γ̄) = 0 ⇒ ρ(γ̄,W ) ≥ δ. (2.3.9)

From the fact that γN
′

∈ WN ′ it follows that, for any integer i and N ′ ≥ i,
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∫

U×Y

(∇φi(y))
Tf(u, y)γN

′

(du, dy) = 0 ⇒

∫

U×Y

(∇φi(y))
Tf(u, y)γ̄(du, dy) = 0.

Since the latter is valid for any i = 1, 2, ..., one can conclude that γ̄ ∈ W , which

contradicts (2.3.9). This proves (2.3.6). �

Corollary 2.3.2 If γN is a solution of the problem (2.3.4) and lim
N ′→∞

ρ(γN
′

, γ) = 0 for

some subsequence of integers N ′ tending to infinity, then γ is a solution of (1.2.11). If

the optimal solution γ∗ of the problem (1.2.11) is unique, then, for any optimal solution

γN of the problem (2.3.4) there exists the limit

lim
N→∞

γN = γ∗. (2.3.10)

Note that every extreme point of the optimal solutions set of (2.3.4) is an extreme

point of WN and that the latter is presented as a convex combination of (no more than

N + 1) Dirac measures (see, e.g., Theorem A.5 in [95]). That is, if γN is an extreme

point of WN , which is an optimal solution of (2.3.4), then there exist

(uNl , y
N
l ) ∈ U × Y, γNl > 0, l = 1, 2, ..., KN ≤ N + 1;

KN∑

l=1

γNl = 1 (2.3.11)

such that

γN =

KN∑

l=1

γNl δ(uN
l
,yN

l
), (2.3.12)

where δ(uN
l
,yN

l
) is the Dirac measure concentrated at (uNl , y

N
l ).

The SILP problem (2.3.4) is related to the N -approximating max-min problem

(2.2.7) through the following duality type relationships. Note that these results are

similar to the results in Theorem 1.3.1.

Theorem 2.3.3 (i) The optimal value of the N-approximating max-min problem

(2.2.7) is bounded (that is, DN <∞) if and only if the set WN is not empty;

(ii) If the optimal value of the N-approximating max-min problem (2.2.7) is bounded,

then

GN = DN ; (2.3.13)

(iii) The optimal value of the N-approximating max-min problem (2.2.7) is unbounded

(that is, DN = ∞) if and only if there exists v = (v1, v2, ..., vN) such that

max
(u,y)∈U×Y

(∇ηv(y))
Tf(u, y) < 0, ηv(y)

def
=

N∑

i=1

viφi(y). (2.3.14)
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Proof. The proof of the theorem follows the same steps as those used in the proof

of Theorem 1.3.1 (see Appendix B). �

Proposition 2.3.4 If γN is an optimal solution of (2.3.4) that allows a representation

(2.3.12) and if ηN(y) =
∑N

i=1 λ
N
i φi(y) is an optimal solution of (2.2.7), then the con-

centration points (uNl , y
N
l ) of the Dirac measures in the expansion (2.3.12) satisfy the

following relationships:

yNl = argmin
y∈Y

{H(∇ηN(y), y)}, (2.3.15)

uNl = argmin
u∈U

{q(u, yNl ) + (∇ηN(yNl ))
Tf(u, yNl )}, l = 1, ..., KN . (2.3.16)

Proof. Due to (2.3.13) and due to the fact that ηN(y) is an optimal solution of

(2.2.7) (see (2.2.12)),

GN = min
y∈Y

{H(∇ηN(y), y)} = min
(u,y)∈U×Y

{q(u, y) + (∇ηN(y))Tf(u, y)}. (2.3.17)

Also, for any γ ∈ WN ,

∫
U×Y

q(u, y)γ(du, dy) =
∫
U×Y

[q(u, y) + (∇ηN(y))Tf(u, y)]γ(du, dy).

Consequently, for γ = γN ,

GN =
∫
U×Y

q(u, y)γN(du, dy) =
∫
U×Y

[q(u, y) + (∇ηN(y))Tf(u, y)]γN(du, dy).

Hence, by (2.3.12),

GN =

KN∑

l=1

γNl [q(uNl , y
N
l ) + (∇ηN(yNl ))

Tf(uNl , y
N
l )]. (2.3.18)

Since (uNl , y
N
l ) ∈ U × Y , from (2.3.17) and (2.3.18) it follows that, if γNl > 0, then

q(uNl , y
N
l ) + (∇ηN(yNl ))

Tf(uNl , y
N
l ) = min

(u,y)∈U×Y
{q(u, y) + (∇ηN(y))Tf(u, y)}.

That is,

(uNl , y
N
l ) = arg min

(u,y)∈U×Y
{q(u, y) + (∇ηN(y))Tf(u, y)}.

The latter is equivalent to (2.3.15) and (2.3.16). �
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2.4 Additional comments for Chapter 2

The chapter is mostly based on the results obtained in [60]. In contrast to the aforemen-

tioned work, where most of the results were stated for periodic optimization problems,

the results of this chapter are stated in the general LRAOC setting, in which the as-

sumption of the periodicity is replaced by a “recurrence” type assumption (Assumption

2.1.2). Note that this assumption is satisfied for the periodical regimes (see Proposition

2.1.3).
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3
On construction of a near optimal solution

of the long run average optimal control

problem

In Section 3.1, we show that a solution of the max-min problems defined on a finite

dimensional subspace of the space of continuously differentiable functions can be used

for construction of near optimal solution of optimal control problem. In Section 3.2,

we present an algorithm that allows one to solve the semi-infinite dimensional linear

programming (SILP) problems. The convergence of this algorithm is proved in Section

3.3. In Section 3.4, we demonstrate the construction of a near optimal control with a

numerical example.

3.1 Construction of a near optimal control.

In this section, we assume that a solution ηN(·) of the N approximating problem (2.2.7)

exists for all N large enough (see Proposition 2.2.8) and we show that, under certain
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additional assumptions, a control uN(y) defined as a minimizer of the problem

min
u∈U

{q(u, y) + (∇ηN(y))Tf(u, y)} (3.1.1)

(that is, uN(y) = argminu∈U{q(u, y)+(∇ηN(y))Tf(u, y)}) is near optimal in optimiza-

tion problem (1.1.3). The additional assumptions that we are using to establish this

near optimality are introduced below.

Assumption 3.1.1 The following conditions are satisfied:

(i) The equality (2.1.1) is valid and the optimal solution γ∗ of the IDLP problem

(1.2.11) is unique;

(ii) The optimal solution (u∗(·), y∗(·)) of the problem (1.2.11) exists and satisfies As-

sumption 2.1.2.

Remark 3.1.2 Note that, Assumption 3.1.1 implies that γ∗ is the occupational mea-

sures generated by (u∗(·), y∗(·)).

Assumption 3.1.3 For almost all t ∈ [0,∞), there exists an open ball Yt ⊂ IRm

centered at y∗(t) such that, the following conditions are satisfied:

(i) the solution uN(y) of the problem (3.1.1) is uniquely defined (the problem (3.1.1)

has a unique solution) for y ∈ Yt;

(ii) the function uN(y) satisfies Lipschitz conditions on Yt (with a Lipschitz constant

being independent of N and t). That is,

||uN(y′)− uN(y′′)|| ≤ L(||y′ − y′′||) ∀y′, y′′ ∈ Yt, (3.1.2)

where L is a constant;

(iii) the solution yN(·) of the system of differential equations

y′(t) = f(uN(y(t)), y(t)) (3.1.3)

exists. Moreover, this solution is unique and is contained in Y for t ∈ [0,∞).

Also, for any t > 0, the Lebesgue measure of the set At(N)
def
= {t′ ∈ [0, t] :

yN(t′) /∈ Yt′} tends to zero as N → ∞. That is,

lim
N→∞

meas{At(N)} = 0. (3.1.4)
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Assumption 3.1.4 The pair (uN(t), yN(t)), where yN(t) is the solution of (3.1.3) and

uN(t) = uN(yN(t)), generates the occupational measure γ̄N on the interval [0,∞), the

latter being independent of the initial conditions yN(0) = y for y in a neighbourhood of

y∗(·). Moreover, for any continuous h(u, y) : U × Y → IR1,

|
1

S

∫ S

0

h(uN(t), yN(t))dt−

∫

U×Y

h(u, y)γ̄N(du, dy)| ≤ δh(S), lim
S→∞

δh(S) = 0 (3.1.5)

(the estimate is uniform in N).

Theorem 3.1.5 Let U be a compact subset of IRn and let f(u, y) and q(u, y) be Lip-

schitz continuous in a neighborhood of U × Y . Also, let the system (1.1.1) be locally

approximately controllable on Y and let Assumptions 2.1.2, 3.1.1, 3.1.3 and 3.1.4 be

satisfied. Then

lim
N→∞

uN(yN(t)) = u∗(t) (3.1.6)

for almost all t ∈ [0,∞) and

lim
N→∞

max
t′∈[0,t]

‖ yN(t′)− y∗(t′) ‖= 0 ∀t ∈ [0,∞). (3.1.7)

Also,

lim
N→∞

γ̄N = γ∗. (3.1.8)

Proof. The proof is given below and it is based on the following Lemma.

Let d((u, y), Q) stands for the distance between a point (u, y) ∈ U × Y and a set

Q ⊂ U × Y : d((u, y), Q)
def
= inf

(u′,y′)∈Q
{‖ (u, y)− (u′, y′) ‖}.

Lemma 3.1.6 Let Assumption 2.1.2 (ii) be satisfied. Then for almost all t ∈ [0,∞)

lim
N→∞

d((u∗(t), y∗(t)),ΘN) = 0, (3.1.9)

where ΘN def
= {(uNl , y

N
l ), l = 1, ..., KN} and (uNl , y

N
l ) are the points as in (2.3.11).

Proof. Let t be such that Assumption 2.1.2 (ii) is true and assume that (3.1.9)

is not true for this t. Then there exists a number r > 0 and a sequence Ni, i =

1, 2, ... , lim
i→∞

Ni = ∞, such that

d((u(t), y(t)),ΘNi) ≥ r i = 1, 2, ... . (3.1.10)

The inequality in (3.1.10) implies that
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(uNi

l , y
Ni

l ) /∈ Br(u(t), y(t)), l = 1, ..., KNi
, i = 1, 2, ... .

Note that Br(·, ·) is defined as in (2.1.12). By (2.3.12), the latter implies that

γNi(Br(u(t), y(t))) = 0. (3.1.11)

From (2.3.10) it follows that

lim
i→∞

ρ(γNi, γ∗) = 0.

Consequently (see, e.g., Theorem 2.1 in [25]),

0 = lim
i→∞

γNi(Br(u(t), y(t))) ≥ γ∗(Br(u(t), y(t))).

The latter contradicts (2.1.13) and thus proves the lemma. �

Proof of Theorem 3.1.5. Let t ∈ [0,∞) be such that Yt 6= ∅ (see Assumption

3.1.3) and such that Assumption 2.1.2 (ii) is valid. By (3.1.9), there exists (uNlN , y
N
lN
) ∈

ΘN such that

lim
N→∞

||(uNlN , y
N
lN
)− (u∗(t), y∗(t))|| = 0, (3.1.12)

the latter implying, in particular, that yNlN ∈ Yt for N large enough. Due to (2.3.16),

uNlN = uN(yNlN ). (3.1.13)

Hence,

‖ u∗(t)− uN(y∗(t)) ‖≤ ‖ u∗(t)− uNlN ‖ + ‖ uN(yNlN )− uN(y∗(t)) ‖

≤ ‖ u∗(t)− uNlN ‖ +L ‖ yNlN − y∗(t) ‖, (3.1.14)

where L is a Lipschitz constant of uN(·). From (3.1.12) it now follows that

lim
N→∞

uN(y∗(t)) = u∗(t). (3.1.15)

By Assumption 3.1.3, the same argument is applicable for almost all t ∈ [0,∞). This

proves the convergence (3.1.15) for almost all t ∈ [0,∞).

Taking an arbitrary t ∈ [0,∞) and subtracting the equation

y∗(t) = y0 +

∫ t

0

f(u∗(t′), y∗(t′))dt′ (3.1.16)
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from the equation

yN(t) = y0 +

∫ t

0

f(uN(yN(t′)), yN(t′))dt′, (3.1.17)

one obtains

‖ yN(t)− y∗(t) ‖≤

∫ t

0

‖ f(uN(yN(t′)), yN(t′))− f(u∗(t′), y∗(t′)) ‖ dt′

≤

∫ t

0

‖ f(uN(yN(t′)), yN(t′))− f(uN(y∗(t′)), y∗(t′)) ‖ dt′

+

∫ t

0

‖ f(uN(y∗(t′)), y∗(t′))− f(u∗(t′), y∗(t′)) ‖ dt′. (3.1.18)

It is easy to see that

∫ t

0

‖ f(uN(yN(t′)), yN(t′))− f(uN(y∗(t′)), y∗(t′)) ‖ dt′

≤

∫

t′ /∈At(N)

‖ f(uN(yN(t′)), yN(t′))− f(uN(y∗(t′)), y∗(t′)) ‖ dt′

+

∫

t′∈At(N)

[‖ f(uN(yN(t′)), yN(t′)) ‖ + ‖ f(uN(y∗(t′)), y∗(t′)) ‖]dt′

≤ L1

∫ t

0

‖ yN(t′)− y∗(t′) ‖ dt′ + L2 meas{At(N)}, (3.1.19)

where L1 is a constant defined (in an obvious way) by Lipschitz constants of f(·, ·) and

uN(·), and L2
def
= 2 max

(u,y)∈U×Y
{‖ f(u, y) ‖}. Also, due to (3.1.15) and the dominated

convergence theorem (see, e.g., p. 49 in [15]),

lim
N→∞

∫ t

0

‖ f(uN(y∗(t′)), y∗(t′))− f(u∗(t′), y∗(t′)) ‖ dt′ = 0. (3.1.20)

Let us introduce the notation

kt(N)
def
= L2meas{At(N)}+

∫ t

0

‖ f(uN(y∗(t′)), y∗(t′))− f(u∗(t′), y∗(t′)) ‖ dt′

and rewrite the inequality (3.1.18) in the form

‖ yN(t)− y∗(t) ‖≤ L1

∫ t

0

‖ yN(t′)− y∗(t′) ‖ dt′ + kt(N), (3.1.21)
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which, by the Gronwall-Bellman lemma (see, e.g., p.218 in [20]), implies that

max
t′∈[0,t]

‖ yN(t)− y∗(t) ‖≤ kt(N)eL1t. (3.1.22)

Since, by (3.1.4) and (3.1.20),

lim
N→∞

kt(N) = 0, (3.1.23)

(3.1.22) implies (3.1.7).

For any t ∈ [0,∞) such that uN(·) is Lipschitz continuous on Yt, one has

‖ uN(yN(t))− u∗(t) ‖≤‖ uN(yN(t))− uN(y∗(t)) ‖ + ‖ uN(y∗(t))− u∗(t) ‖

≤ L ‖ yN(t)− y∗(t) ‖ + ‖ uN(y∗(t))− u∗(t) ‖ .

The latter implies (3.1.6) (due to (3.1.22), (3.1.23) and due to (3.1.15)).

Let t ∈ [0,∞) be such that Yt 6= ∅ and (2.1.13) is satisfied for an arbitrary r > 0.

By (2.1.11) and (3.1.5), for any continuous h(u, y) and for any arbitrary small α > 0,

there exists S > 0 such that

|
1

S

∫ S

0

h(u∗(t), y∗(t))dt−

∫

U×Y

h(u, y)γ∗(du, dy)| ≤
α

2
(3.1.24)

and

|
1

S

∫ S

0

h(uN(yN(t)), yN(t))dt−

∫

U×Y

h(u, y)γ̄N(du, dy)| ≤
α

2
. (3.1.25)

Using (3.1.24) and (3.1.25), one can obtain

|

∫

U×Y

h(u, y)γ̄N(du, dy)−

∫

U×Y

h(u, y)γ∗(du, dy)| ≤

|
1

S

∫ S

0

h(uN(yN(t)), yN(t))dt−
1

S

∫ S

0

h(u∗(t), y∗(t))dt|+ α. (3.1.26)

Due to (3.1.6) and (3.1.7), the latter implies the following inequality

limN→∞|

∫

U×Y

h(u, y)γ̄N(du, dy)−

∫

U×Y

h(u, y)γ∗(du, dy)| ≤ α,

which in turn, implies

lim
N→∞

|

∫

U×Y

h(u, y)γ̄N(du, dy)−

∫

U×Y

h(u, y)γ∗(du, dy)| = 0 (3.1.27)
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(due to the fact that α can be arbitrary small). Since h(u, y) is an arbitrary continuous

function from (3.1.27) it follows that

lim
N→∞

ρ(γ̄N , γ∗) = 0. (3.1.28)

�

Corollary 3.1.7 Denote by V N a value of the objective function obtained with the

control uN(·). That is

V N def
= lim

S→∞

1

S

∫ S

0

q(uN(t), yN(t))dt =

∫

U×Y

q(u, y)γ̄N(du, dy). (3.1.29)

By (3.1.8)

lim
N→∞

V N = G∗. (3.1.30)

Proposition 3.1.8 Let the optimal solution of the problem (1.1.3) be periodic with a

period T ∗ and let Assumptions 3.1.1, 3.1.3 and 3.1.4 be satisfied. Assume in addition

that, there exists a T ∗-periodic solution ỹN(t) of the system (1.1.1) obtained with the

control uN(t)
def
= uN(yN(t)) such that

max
t∈[0,T ∗]

‖ ỹN(t)− yN(t) ‖≤ ν1(N), lim
N→∞

ν1(N) = 0, (3.1.31)

then the pair (uN(t), ỹN(t)) is a near optimal solution of the periodic optimization

problem (1.1.11) in the sense that

lim
N→∞

1

T ∗

∫ T ∗

0

q(uN(t), ỹN(t))dt = V ∗
per. (3.1.32)

Proof. Note that from (3.1.31) it follows that

∣∣∣∣
1

T ∗

∫ T ∗

0

q(uN(t), ỹN(t))dt− V ∗
per

∣∣∣∣

=

∣∣∣∣
1

T ∗

∫ T ∗

0

q(uN(t), ỹN(t))dt−
1

T ∗

∫ T ∗

0

q(u∗(t), y∗(t))dt

∣∣∣∣

≤
1

T ∗

∫ T ∗

0

||q(uN(t), ỹN(t))− q(uN(t), yN(t))||dt

+
1

T ∗

∫ T ∗

0

||q(uN(t), yN(t))dt− q(u∗(t), y∗(t))||dt
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≤
L

T ∗

∫ T ∗

0

[||ỹN(t)− yN(t)||+ ||yN(t)− y∗(t)||+ ||uN(t)− u∗(t)||]dt,

where L is a Lipschitz constant. The latter implies (3.1.32) (due to (3.1.6), (3.1.7) and

(3.1.31)). �

In conclusion of this section, let us introduce one more assumption, the validity of

which implies the existence of a near optimal periodic admissible pair (see the last part

of Proposition 3.1.8).

Assumption 3.1.9 The solutions of the system (1.1.1) obtained with any initial values

yi, i = 1, 2 and with any control u(·) satisfy the inequality

‖ y(t, u(·), y1)− y(t, u(·), y2) ‖≤ ξ(t) ‖ y1 − y2 ‖, with lim
t→∞

ξ(t) = 0. (3.1.33)

Note that from Lemma 3.1 in [52] it follows that if Assumption 3.1.9 is satisfied

and if ξ(T ∗) < 1, then the system

y′(t) = f(uN(t), y(t))

(the latter is the system (1.1.1), in which the control uN(t) = uN(yN(t)) is used) has a

unique T ∗- periodic solution. Denote this solution as ỹN(T ).

Proposition 3.1.10 Let the assumptions of the Proposition 3.1.8 be satisfied. Also,

let Assumption 3.1.9 be valid with

ξ(T ∗) < 1. (3.1.34)

Then, the T ∗-periodic solution ỹN(t) of the system (1.1.1) obtained with the control

uN(t) satisfies (3.1.31) and the pair (uN(t), ỹN(t)) is a near optimal periodic solution

of the problem (1.1.3) in the sense that (3.1.32) is true (see Proposition 3.1.8).

Proof. For any t ∈ [0, T ∗], one has

‖ ỹN(t)− yN(t) ‖≤‖ ỹN(0)− yN(0) ‖ +

∫ t

0

‖ f(uN(t′), ỹN(t′ ))− f(uN(t′ ), yN(t′ )) ‖

≤‖ ỹN(0)− yN(0) ‖ +L

∫ t

0

‖ ỹN(t′ )− yN(t′ ) ‖ dt′ ,

which, by the Gronwall-Bellman lemma, implies that

max
t∈[0,T ∗]

‖ ỹN(t)− yN(t) ‖≤‖ ỹN(0)− yN(0) ‖ eLT
∗

. (3.1.35)
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Due to Assumption 3.1.9 and the periodicity condition ỹN(0) = ỹN(T ∗), the following

relationships are valid:

‖ ỹN(0)− yN(0) ‖≤‖ ỹN(0)− yN(T ∗) ‖ + ‖ yN(T ∗)− yN(0) ‖

=‖ ỹN(T ∗)− yN(T ∗) ‖ + ‖ yN(T ∗)− yN(0) ‖

≤ ξ(T ∗) ‖ ỹN(0)− yN(0) ‖ + ‖ yN(T ∗)− yN(0) ‖ .

Note that yN(0) = y∗(0) = y∗(T ∗). Hence (see also (3.1.7)),

‖ yN(T ∗)− yN(0) ‖=‖ yN(T ∗)− y∗(T ∗) ‖≤ ν(N)

⇒ ‖ ỹN(0)− yN(0) ‖≤ ξ(T ∗) ‖ ỹN(0)− yN(0) ‖ +ν(N)

⇒ ‖ ỹN(0)− yN(0) ‖≤
ν(N)

1− ξ(T ∗)
.

Substituting the above inequality into (3.1.35) one obtains

max
t∈[0,T ∗]

‖ ỹN(t)− yN(t) ‖≤
ν(N)

1− ξ(T ∗)
eLT

∗

.

This proves (3.1.31). The validity of (3.1.32) is established as above. �

3.2 Algorithm for numerical solution of the SILP

problem.

In this section, we describe an algorithm for solving the SILP problem (2.3.4). It finds

the optimal solution γN of the SILP problem via solving a sequence of finite dimensional

LP problems, each time augmenting the grid of Dirac measures concentration points

with a new point found as an optimal solution of a certain nonlinear optimization

problem.

For simplicity, let us denote X
def
= U×Y , x

def
= (u, y) and hi(x)

def
= (∇φi(y))

Tf(u, y).

Thus, the SILP problem (2.3.4) can be rewritten as follows

min
γ∈WN

∫

X

q(x)γ(dx)
def
= GN , (3.2.1)

where

WN
def
= {γ ∈ P(X) :

∫

X

hi(x)γ(dx) = 0, i = 1, ..., N}. (3.2.2)
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Let points xl ∈ X, l = 1, ..., L (note that L ≥ N + 1) be chosen to define an

initial grid X0 on X . That is

X0 = {xl ∈ X, l = 1, ..., L}.

At every iteration a new point is defined and added to this set. Assume that af-

ter J iterations the points xL+1, ..., xL+J have been defined and the set XJ has been

constructed. Namely,

XJ = {xl ∈ X, l = 1, ..., L+ J}.

The iteration J + 1 (J = 0, 1, ...) is described as follows:

(i) Find a basic optimal solution γJ = (γJl ) of the LP problem

min
γ∈WXJ

{
L+J∑

l=1

q(xl)γl}
def
= gJ , (3.2.3)

where

WXJ

def
= {γ : γ = {γl} ≥ 0,

L+J∑

l=1

γl = 1,
L+J∑

l=1

hi(xl)γl = 0, i = 1, ..., N}. (3.2.4)

Note that, no more than N +1 components of γJ are positive, these being called

basic components. Also, find an optimal solution λJ = (λJ0 , λ
J
i , i = 1, ..., N) of

the problem dual with respect to (3.2.3). The latter is of the form

max{λ0 : q(xl) +
N∑

i=1

hi(xl)λi ≥ λ0, ∀l = 1, ..., L+ J}. (3.2.5)

(ii) Find an optimal solution xL+J+1 of the problem

min
x∈X

{q(x) +
N∑

i=1

hi(x)λ
J
i }

def
= aJ , (3.2.6)

where λJ = (λJ0 , λ
J
i , i = 1, ..., N) is an optimal solution of the problem (3.2.5).

(iii) Define the set XJ+1 by the equation

XJ+1 = XJ

⋃
{xL+J+1}.
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Here and in what follows, J stands for the number of an iteration. Note that, by

construction

gJ+1 ≤ gJ , J = 1, 2, ... . (3.2.7)

In the next section, we establish that, under certain regularity (non-degeneracy) con-

ditions, the optimal value gJ of the problem (3.2.3) converges (as J tends to infinity)

to the optimal value GN of the problem (2.3.4) (see Theorem 3.3.1 below).

3.3 Convergence of the algorithm.

Let X = {x1, x2, ..., xN+1} ∈ XN+1 and let γ(X) = {γj(X), ∀j = 1, ..., N + 1} ≥ 0

satisfy the system of N + 1 equations

N+1∑

j=1

γj(X) = 1,

N+1∑

j=1

hi(xj)γj(X) = 0, ∀i = 1, ..., N. (3.3.1)

Assume that the solution of the system (3.3.1) is unique (that is, the system is non-

singular) and define

V (X)
def
=

N+1∑

j=1

q(xj)γj(X). (3.3.2)

Also, let λ(X) = {λ0(X), λ1(X), ..., λN(X)} be a solution of the system

λ0(X)−
N∑

i=1

hi(xj)λi(X) = q(xj), j = 1, ..., N + 1. (3.3.3)

and let

a(X)
def
= min

x∈X
{q(x) +

N∑

i=1

hi(x)λi(X)}. (3.3.4)

Lemma 3.3.1 For any X ⊂ XN+1,

−λ0(X) + a(X) ≤ 0. (3.3.5)

Proof. By the definition of DN (see (2.2.8)), a(X) ≤ DN . Also, due to the

duality theorem (see (2.3.13))

DN = GN . (3.3.6)

Hence,

a(X) ≤ GN . (3.3.7)
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Note that, by multiplying the jth equation in (3.3.3) by γj(X) and by summing up the

resulted equations over j = 1, ..., N + 1 one can obtain (using (3.3.1) and (3.3.2)) that

λ0(X) =
N+1∑

j=1

q(xj)γj(X) = V (X). (3.3.8)

Since V (X) ≥ GN , from (3.3.8) it follows that λ0(X) ≥ GN . The later and (3.3.7)

proves (3.3.5). �

Corollary 3.3.2 If

−λ0(X) + a(X) = 0, (3.3.9)

then γ(X)
def
=

∑N+1
j=1 γj(X)δxj

(where δxj
is the Dirac measure concentrated at xj) is

an optimal solution of the SILP problem (2.3.4) and η(y)
def
=

∑N
i=1 λi(X)φi(y) is an

optimal solution of the N-approximating problem (2.2.8).

Proof. Due to (3.3.7) and (3.3.8), we have

a(X) ≤ DN = GN ≤ V (X) = λ0(X). (3.3.10)

From (3.3.9) and (3.3.10) it follows that

a(X) = DN (3.3.11)

and

V (X) = GN . (3.3.12)

The equalities (3.3.11) and (3.3.12) prove the statements of the corollary 3.3.2. �

Definition 3.3.3 An (N + 1)-tuple X ⊂ XN+1 is called regular if

(i) the system (3.3.1) has a unique solution (that is, the corresponding (N + 1) ×

(N + 1) matrix is not singular); and

(ii) the solution γ(X) of this system is positive. That is,

γ(X)
def
= {γj(X), ∀j = 1, ..., N + 1} > 0.

Assume that X is regular and examine the case when

−λ0(X) + a(X) < 0. (3.3.13)

Denote by A(X) the (N + 1)× (N + 1) matrix of the system (3.3.1). That is
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A(X) = {H(x1), H(x2), ..., H(xN+1)},

where columns H(xj), j = 1, 2, ..., N + 1 are defined as follows

H(xj) = (1, h1(xj), h2(xj), ..., hN(xj))
T .

Using this notations, the solution γ(X) of the system of equations (3.3.1) can be written

in the form

γ(X) = A−1(X)b, (3.3.14)

where b = (1, 0, 0, ..., 0)T . Similarly, the solution of the system (3.3.3) can be presented

as follows

λ(X)
def
= (λ0(X), λi(X), i = 1, ..., N) = (AT (X))−1c(X), (3.3.15)

where c(X)
def
= ( q(x1), q(x2), ... , q(xN+1) )

T .

Let B(X) stand for the set of the optimal solutions of the problem (3.3.4). That is,

B(X)
def
= Argmin

x∈X
{q(x) +

N∑

i=1

hi(x)λi(X)}. (3.3.16)

Choose an arbitrary x̃ ∈ B(X) and consider the system of equations

N+1∑

j=1

γj(θ) + θ = 1,

N+1∑

j=1

hi(xj)γj(θ) + hi(x̃)θ = 0, ∀i = 1, ..., N, (3.3.17)

where θ ≥ 0 is a parameter and γj(θ), j = 1, 2, ..., N + 1 are defined by the value of

this parameter. Note that this system also can be presented in the form

A(X)γ(θ) +H(x̃)θ = b. (3.3.18)

Let also V (X, θ) be defined by the equation

V (X, θ)
def
=

N+1∑

j=1

q(xj)γj(θ) + q(x̃)θ. (3.3.19)

Observe that, by multiplying the jth equation in (3.3.3) by γj(θ) and summing up the

resulted equations over j = 1, ..., N + 1 one can obtain (using (3.3.17) and (3.3.19))

λ0(X)(1− θ) +

N∑

i=1

hi(x̃)λi(X)θ = V (X, θ)− q(x̃)θ. (3.3.20)
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Due to (3.3.4), (3.3.8) and the fact that x̃ ∈ B(X), from(3.3.20) it follows that

V (X, θ) = V (X) + (−λ0(X) + a(X))θ. (3.3.21)

By (3.3.13), the bigger value of θ is, the better is the resulted value of the objective

function V (X, θ). The value of θ is, however, bounded from above by θ(X, x̃)
def
=

min
j, dj>0

γj(X)

dj(X, x̃)
, where d(X, x̃)

def
= A−1(X)H(x̃) (this constraint is implied by the fact

that γ(θ) defined by (3.3.18) must remain non-negative). Thus, the improvement,

induced by replacing one of the columns of A(X) with the column H(x̃) in accordance

with Simplex Method (see [37]) is determined by the following expression

[−λ0(X) + a(X)] θ(X, x̃). (3.3.22)

Let us denote min
j
γj(X)

def
= ν(X) > 0 and max

j
dj(X, x̃)

def
= β(X, x̃) > 0. Also, let

max
x̃∈B(X)

β(X, x̃)
def
= β(X).

Define

V(X)
def
= (−λ0(X) + a(X))

ν(X)

β(X)
. (3.3.23)

Lemma 3.3.4 If X is regular and a(X) < λ0(X), then ∀x̃ ∈ B(X) the replacement of

the one of the column in A(X) by H(x̃) (according to Simplex Method) leads to the

improvement of the objective value no less then V(X). That is,

(−λ0(X) + a(X))θ(X, x̃) ≥ V(X). (3.3.24)

Proof. The proof follows from the discussion preceding the statement of the lemma.

�

Note that if X is regular, then any X
′ ∈ Br

def
= {X′ : ‖ X

′ −X ‖< r} (where r > 0 is

small enough) will be regular as well, with ν(X′) being continuous function of X′ and

β(X′, x̃) being continuous function of X′ and x̃.

Lemma 3.3.5 Let X be regular. Then the function β(·) is upper semicontinuous at X.

That is,

lim
Xl→X

β(Xl) ≤ β(X). (3.3.25)

Proof. Let us first of all show that

lim
Xl→X

B(Xl) ⊂ B(X). (3.3.26)
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That is, if ∀xl ∈ B(Xl) and lim
l→∞

xl = x ∈ X , then

x ∈ B(X). (3.3.27)

The fact that xl ∈ B(Xl) means that

q(xl) +

N∑

i=1

λi(X
l)hi(x

l) = a(Xl). (3.3.28)

Passing to the limit as l → ∞ in (3.3.28) one can obtain (having in mind that λi(·)

and a(·) are continuous function in a neighbourhood of X), one obtains the equality

q(x) +
N∑

i=1

λi(X)hi(x) = a(X). (3.3.29)

The latter proves (3.3.27) and thus establishes validity of (3.3.26). To prove (3.3.25)

let Xl → X as l → ∞. Recall that

β(Xl) = max
x̃∈B(Xl)

β(Xl, x̃). (3.3.30)

Let x̃l ∈ B(Xl) be such that maximum in (3.3.30) is reached. Without loss of generality,

one may assume that there exists a limit

lim
l→∞

x̃l = x̃ ∈ B(X),

with the inclusion being due to (3.3.26). Thus, passing to the limit as l → ∞ in (3.3.30)

one can get

lim
l→∞

β(Xl) = lim
l→∞

β(Xl, x̃l) = β(X, x̃) ≤ β(X). (3.3.31)

�

Lemma 3.3.6 If X is regular and a(X) < λ0(X) then ∃r0 > 0 such that

V(X
′

) ≥
V(X)

2
, (3.3.32)

for any X
′ such that ||X

′

− X|| ≤ r0, where V(·) is defined by (3.3.23).

Proof. To prove (3.3.32) let us show that V(·) is lower semicontinuous at X.

According to (3.3.23),

V(X
′

)
def
= (−λ0(X

′

) + a(X
′

))
ν(X

′

)

β(X′)
. (3.3.33)
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By taking the lower limit in (3.3.33) one can obtain (using Lemma 3.3.5)

lim
X
′
→X

V(X
′

) = (−λ0(X) + a(X)) ν(X) lim
X
′
→X

1

β(X′)

= (−λ(X) + a(X)) ν(X) 1

lim
X
′→X

β(X
′

)
.

Due to (3.3.25), it follows that

lim
X
′→X

V(X
′

) ≥ (−λ(X) + a(X))
ν(X)

β(X)
= V(X). (3.3.34)

Thus, V(X) is lower semicontinuous at X. Hence, for any ǫ > 0, there exists r > 0 such

that for

V(X
′

) ≥ V(X)− ǫ (3.3.35)

for X
′

such that ||X
′

− X|| ≤ r. By taking ǫ = V(X)
2

in (3.3.35), one establishes the

validity of (3.3.32). �

Let X
J = {xJ1 , ..., x

J
N+1} ∈ XN+1, where xJj , j = 1, ...N+1 are defined by the basic

components {γJ1 , ..., γ
J
N+1} of an optimal solution of the problem (3.2.3). That is,

N+1∑

j=1

γJj q(x
J
j ) = gJ (3.3.36)

and
N+1∑

j=1

γJj = 1,
N+1∑

j=1

hi(x
J
j )γ

J
j = 0, i = 1, ..., N. (3.3.37)

Let Λ ⊂ XN+1 stand for the set of cluster (limit) points of {XJ} obtained with

J → ∞.

Theorem 3.3.1 Let there exist at least one regular X ∈ Λ. Then

lim
J→∞

gJ = GN . (3.3.38)

Also, if X
def
= {xj} ∈ Λ is regular, then

∑N+1
j=1 γj(X)δxj

is an optimal solution

of the SILP problem (2.3.4) and
∑N

i=1 λi(X)φi(y) is an optimal solution of the N-

approximating problem (2.2.8), where γ(X) = {γj(X), ∀j = 1, ..., N+1} is the solution

of the system (3.3.1) and λ(X) = {λ0(X), λ1(X), ... , λN+1(X)} is the solution of the

system (3.3.3).
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Proof. Let X ∈ Λ be regular. By definition, there exists a subsequence {XJl} ∈

{XJ} such that

lim
l→∞

X
Jl = X. (3.3.39)

Note that from the fact that X is regular it follows that X
Jl is regular as well for Jl

large enough. Hence,

lim
l→∞

V (XJl) = V (X). (3.3.40)

Also, due to (3.2.7), there exists a limit

lim
J→∞

gJ
def
= Ṽ . (3.3.41)

Since, by definition, V (XJl) = GJl, it follows that

V (X) = Ṽ . (3.3.42)

By Lemma 3.3.1 there are two possibilities

(i) −λ0(X) + a(X) = 0, and

(ii) −λ0(X) + a(X) < 0.

If a(X) = λ0(X), then by (3.3.12), V (X) = GN and, hence, the validity of (3.3.38)

follows from (3.3.41) and (3.3.42). Let us prove that (ii) leads to a contradiction.

Observe that, due to (3.3.41),

|gJl+1 − gJl| <
V(X)

4
(3.3.43)

for l large enough. On the other hand, due to (3.3.39)

‖XJl − X‖ < r0,

for l large enough, with r0 being as in Lemma 3.3.6. Hence, by this lemma and by

Lemma 3.3.4,

|gJl+1 − gJl| ≥
V(X)

2
. (3.3.44)

The latter contradicts (3.3.43). Thus, the inequality −λ0(X)+a(X) < 0 can not be valid

and (3.3.38) is proved. Also, by Corollary 3.3.2, from the fact that −λ0(X) + a(X) = 0

it follows that
∑N+1

j=1 γj(X)δxj
is an optimal solution of the SILP problem (2.3.4) and

∑N
i=1 λi(X)φi(y) is an optimal solution of the N-approximating problem (2.2.8). �
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Remark 3.3.7 Note that the assumption that there exists at least one regular X ∈

Λ is much weaker than one used in proving the convergence of a similar algorithm

in [63], where it was assumed that the optimal solutions of the LP problems (3.2.3)

are “uniformly non-degenerate” (that is, they remain greater than some given positive

number for J = 1, 2, ...; see Proposition 6.2 in [63]).

3.4 Numerical example (a nonlinear pendulum).

Consider the problem of periodic optimization of the nonlinear pendulum

x′′(t) + 0.3x′(t) + 4 sin(x(t)) = u(t) (3.4.1)

with the controls being restricted by the inequality |u(t)| ≤ 1 and with the objective

function being of the form

inf
u(·),T

1

T

∫ T

0

(u2(t)− x2(t))dt. (3.4.2)

By re-denoting x(t) and x′(t) as y1(t) and y2(t) respectively, the above problem is

reduced to a special case of the periodic optimization problem (1.1.3) with

y = (y1, y2), f(u, y) = (f1(u, y), f2(u, y))
def
= (y2, u− 0.3y2 − 4 sin(y1)),

q(u, y)
def
= u2 − y21

and with

U
def
= [−1, 1] ∈ IR1, Y

def
= {(y1, y2) | y1 ∈ [−1.7, 1.7], y2 ∈ [−4, 4]} ∈ IR2

(note that the set Y is chosen to be large enough to contain all periodic solutions of

the system under consideration).

The SILP problem (2.3.4) was formulated for this problem with the use of the

monomials φi1,i2(y)
def
= yi11 y

i2
2 , i1, i2 = 0, 1, ..., J , as the functions φi(·) defining WN in

(2.3.2). Note that in this case the number N in (2.3.2) is equal to (J + 1)2 − 1. This

problem and its dual were solved with the algorithm proposed above (see Section 3.2 )

for the case J = 10(N = 120). In particular, the coefficients λNi1,i2 defining the optimal
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solution of the corresponding N -approximating max-min problem

ηN(y) =
∑

0<i1+i2≤10

λNi1,i2y
i1
1 y

i2
2 (3.4.3)

were found (note the change of notations with respect to (2.2.13)), and the optimal

value of the SILP was evaluated to be ≈ −1.174.

In this case the problem (3.1.1) takes the form

min
u∈[−1,1]

{
∂ηN(y1, y2)

∂y1
y2 +

∂ηN (y1, y2)

∂y2
(u− 0.3y2 − 4sin(y1)) + (u2 − y21)}.

The solution of the latter leads to the following representation for uN(y):

uN(y) =






−1
2
∂ηN (y1,y2)

∂y2
if |1

2
∂ηN (y1,y2)

∂y2
| ≤ 1,

−1 if −1
2
∂ηN (y1,y2)

∂y2
< −1,

1 if −1
2
∂ηN (y1,y2)

∂y2
> 1.

(3.4.4)

Substituting this control into the system (1.1.1) and integrating it with the ode45

solver of MATLAB allows one to obtain the periodic (T ∗ ≈ 3.89) state trajectory

ȳN(t) = (ȳN1 (t), ȳ
N
2 (t)) (see Figure 1) and the control trajectory uN(t) (see Figure

2). The value of the objective function numerically evaluated on the state control

trajectory thus obtained is ≈ −1.174, the latter being the same as in SILP (within the

given proximity). Note that the marked dots in Fig. 1 correspond to the concentration

points of the measure γN (see (2.3.12)) that solves (2.3.4). The fact that the obtained

state trajectory passes near these points and, most importantly, the fact that the

value of the objective function obtained via integration is the same (within the given

proximity) as the optimal value of the SILP problem indicate that the admissible
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solution found is a good approximation of the optimal one.

3.5 Additional comments for Chapter 3

The chapter is based on results obtained in [60]. Note that the algorithm for solving

SILP problems described in Section 3.2 was originally proposed in [63]. Note also

that the convergence of the algorithm was established in [63] under significantly more

restrictive conditions then those used in Section 3.3 (see Remark 3.3.7).
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Part II

On near optimal solution of

singularly perturbed long run

average optimal control problems
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4
Augmented reduced and averaged IDLP

problems related to singularly perturbed

LRAOC problem

In this chapter, we build a foundation for the developments in the subsequent Chap-

ters 5 and 6. The chapter consists of three sections. In Section 4.1, we introduce the

singularly perturbed LRAOC problem and the corresponding IDLP problem. Also, we

show that the asymptotic behaviour of the latter can be characterised with the help of

a specially constructed “augmented” LP problem. In Section 4.2, we introduce the av-

eraged LRAOC problem and the corresponding “averaged” IDLP problem. In Section

4.3, the augmented and the averaged IDLP problems are shown to be equivalent.
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Chapter 4 Singularly perturbed LRAOC problem

4.1 Singularly perturbed LRAOC problem and re-

lated perturbed IDLP problem. The augmented

reduced IDLP problem.

Consider the singularly perturbed (SP) control system written in the form

ǫy′(t) = f(u(t), y(t), z(t)), (4.1.1)

z′(t) = g(u(t), y(t), z(t)), (4.1.2)

where ǫ > 0 is a small parameter; t ≥ 0; f(u, y, z) : U × IRm × IRn → IRm, g(u, y, z) :

U × IRm × IRn → IRn are continuous vector functions satisfying Lipschitz conditions

in z and y; and where controls u(·) : [0, T ] → U or u(·) : [0,+∞) → U (depending

on whether the system is considered on the finite time interval [0, T ] or on the infinite

time interval [0,+∞)) are measurable functions of time satisfying the inclusion

u(t) ∈ U, (4.1.3)

U being a given compact metric space.

The presence of ǫ in the system (4.1.1)-(4.1.2) implies that the rate with which

the y-components of the state variables change their values is of the order 1
ǫ
and is,

therefore, much higher than the rate of change of the z-components (since ǫ is assumed

to be small). Accordingly, the y-components and z-components of the state variables

are referred to as fast and slow, respectively. The parameter ǫ is called the small

singular perturbation parameter.

Let Y be a given compact subset of IRm and Z be a given compact subset of IRn

such that the system (4.1.1)-(4.1.2) is viable in Y ×Z for any ǫ > 0 small enough (see

the definition of viability in [16]).

Definition 4.1.1 Let u(·) be a control and let (yǫ(·), zǫ(·)) be the corresponding solution

of the system (4.1.1)-(4.1.2). The triplet (u(·), yǫ(·), zǫ(·)) will be called admissible on

the interval [0, T ] if

(yǫ(t), zǫ(t)) ∈ Y × Z ∀t ≥ 0. (4.1.4)

The triplet (u(·), yǫ(·), zǫ(·)) will be called admissible on [0,∞) if it is admissible on

any interval [0, T ], T > 0.
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We will be dealing with the LRAOC problem formulated as follows

inf
(u(·),yǫ(·),zǫ(·))

lim inf
T →∞

1

T

∫ T

0

q(u(t), yǫ(t), zǫ(t))dt
def
= V ∗(ǫ), (4.1.5)

where q(·) is a continuous function and inf is sought over all admissible triplets of the

singularly perturbed system. Note that, like in (1.1.3), the initial conditions are not

fixed in (4.1.1)-(4.1.2) and finding them is a part of the optimization problem.

Similarly to Part I, along with the problem (4.1.5) we will be considering the fol-

lowing optimal control problem considered on the finite time interval

inf
(u(·),yǫ(·),zǫ(·))

1

T

∫ T

0

q(u(t), yǫ(t), zǫ(t))dt
def
= V ∗(ǫ, T ), (4.1.6)

where inf is sought over all admissible triplets on the interval [0, T ].

The SP optimal control problem (4.1.5) is related to infinite dimensional linear

programming problem (see Chapter 1)

min
γ∈W (ǫ)

∫

U×Y×Z

q(u, y, z)γ(du, dy, dz)
def
=G∗(ǫ), (4.1.7)

where the set W (ǫ) ⊂ P(U × Y × Z) is defined by the equation

W (ǫ)
def
=
{
γ ∈ P(U × Y × Z) :

∫

U×Y×Z

[
∇(φ(y)ψ(z))Tχǫ(u, y, z)

]
γ(du, dy, dz)

= 0 ∀φ(·) ∈ C1(IRm), ∀ψ(·) ∈ C1(IRn)
}
,

(4.1.8)

with χǫ(u, y, z)
T def
= (1

ǫ
f(u, y, z)T , g(u, y, z)T ). Namely, the optimal values of this two

problems are related by the inequality

V ∗(ǫ) ≥ G∗(ǫ) ∀ǫ > 0, (4.1.9)

and also, under certain conditions (see [48] and [58]),

V ∗(ǫ) = G∗(ǫ) ∀ǫ > 0. (4.1.10)

Note that the set W (ǫ) would not change if the product test functions φ(y)ψ(z) in

(4.1.8) are replaced with the test functions of the general form θ(y, z). This is due to

the fact that any function θ(y, z) ∈ C1(IRm × IRn) and its gradient ∇θ(y, z) can be

simultaneously approximated on Y ×Z by linear combinations of the product functions
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φ(y)ψ(z) and their gradients∇(φ(y)ψ(z)) (in fact, any function θ(y, z) ∈ C1(IRm×IRn))

and its gradient can be simultaneously approximated on Y ×Z by linear combinations

of monomials yi11 ...y
im
m zj11 ...z

jn
n , where i1, ..., im = 0, 1, ..., j1, ..., jm = 0, 1, ...; (see

[84]).

In what follows, it will be assumed that (4.1.10) is valid and hence one can use the

IDLP problem (4.1.7) to obtain some asymptotic properties of the problem (4.1.5).

Observe that, by multiplying the constraints in (4.1.8) by ǫ and taking into account

the fact that

∇
(
φ(y)ψ(z))

)T

=
(
ψ(z) (∇φ(y))T , φ(y) (∇ψ(z))T

)

one can rewrite the set W (ǫ) as follows

W (ǫ) = {γ ∈ P(U × Y × Z) :

∫

U×Y×Z

[
ψ(z)(∇φ(y))Tf(u, y, z) + ǫ

(
φ(y)(∇ψ(z))T

g(u, y, z)
)]
γ(du, dy, dz) = 0 ∀φ(·) ∈ C1(IRm), ∀ψ(·) ∈ C1(IRn)}. (4.1.11)

Taking ǫ = 0 in the expression above, one arrives at the set

W = {γ ∈ P(U × Y × Z) :

∫

U×Y×Z

[ ψ(z)(∇φ(y))Tf(u, y, z) ]γ(du, dy, dz) = 0

∀φ(·) ∈ C1(IRm), ∀ψ(·) ∈ C1(IRn)}. (4.1.12)

It is easy to see that lim sup
ǫ→0

W (ǫ) ⊂ W . In general case, however, W (ǫ) 9 W when

ǫ → 0, this being due to the fact that the equalities defining the set W (ǫ) contain some

“implicit” constraints that are getting lost with equating ǫ to zero. In fact, by taking

φ(y) = 1, one can see that, if γ satisfies the equalities in (4.1.11), then it also satisfies

the equality

∫

U×Y×Z

[ (∇ψ(z))Tg(u, y, z)] γ(du, dy, dz) = 0 ∀ψ(·) ∈ C1(IRn) (4.1.13)

for any ǫ > 0 (note that equality (4.1.13) have been reduced by ǫ). That is,

W (ǫ) =W (ǫ) ∩ A ∀ǫ > 0, (4.1.14)
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where

A
def
=
{
γ ∈ P(U × Y × Z) :

∫

U×Y×Z

[(∇ψ(z))T g(u, y, z)]γ(du, dy, dz) = 0

∀ψ(·) ∈ C1(IRn)
}
.

(4.1.15)

Define the set WA by the equation

WA def
=W ∩ A (4.1.16)

and consider the IDLP problem

min
γ∈WA

∫

U×Y×Z

q(u, y, z)γ(du, dy, dz)
def
=GA. (4.1.17)

We will be referring to this problem as to augmented reduced IDLP problem (the term

reduced problem is commonly used for the problem obtained from a perturbed family

by equating the small parameter to zero).

Proposition 4.1.2 The following relationships are valid:

lim sup
ǫ→0

W (ǫ) ⊂WA, (4.1.18)

lim inf
ǫ→0

G∗(ǫ) ≥ GA. (4.1.19)

Proof The validity of (4.1.18) is implied by (4.1.14), and the validity of (4.1.19)

follows from (4.1.18). �

In Section 4.3, we will show that the inclusion (4.1.18) and the inequality (4.1.19)

are replaced by equalities under the assumption that the averaged system (see Section

4.2) approximates the SP system on the infinite time horizon.

4.2 Averaged optimal control problem. Averaged

IDLP problem.

Along with the SP system (4.1.1)-(4.1.2), let us consider a so-called associated system

y′(τ) = f(u(τ), y(τ), z) , z = const . (4.2.1)
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Note that the associated system (4.2.1) looks similar to the “fast” subsystem (4.1.1)

but, in contrast to (4.1.1), it is evolving in the “stretched” time scale τ = t
ǫ
, with z

being a vector of fixed parameters. Everywhere in what follows, it is assumed that the

associated system is viable in Y (see the definition of viability in [16]).

Definition 4.2.1 A pair (u(·), y(·)) will be called admissible for the associated system

if (4.2.1) is satisfied for almost all τ (u(·) being measurable and y(·) being absolutely

continuous functions) and if

u(τ) ∈ U, y(τ) ∈ Y ∀τ ≥ 0. (4.2.2)

The occupational measure formulation of the problem (4.1.6) defined by associated

system (4.2.1) implies definition of the set M(z, S, y) (see Section 1.1) that is the

union of occupational measures generated on the interval [0, S] by the admissible pairs

of the associated system that satisfy the initial conditions y(0) = y. Namely,

M(z, S, y)
def
=

⋃

(u(·),y(·))

{µ(u(·), y(·))} ⊂ P(U × Y ),

where µ(u(·),y(·)) is the occupational measure generated on the interval [0, S] by an admis-

sible pair of the associated system (u(·), y(·)) satisfying the initial condition y(0) = y

and the union is over such admissible pairs. Also, denote by M(z, S) the union of

M(z, S, y) over all y ∈ Y . That is,

M(z, S)
def
=

⋃

y∈Y

{M(z, S, y)}.

Let us define the set W (z) ⊂ P(U × Y ) as follows

W (z)
def
= {µ ∈ P(U × Y ) :

∫

U×Y

(∇φ(y))Tf(u, y, z)µ(du, dy) = 0

∀φ(·) ∈ C1(IRm)}.

(4.2.3)

In [57] it has been established that

lim sup
S→∞

c̄oM(z, S) ⊂ W (z) (4.2.4)

and that, under mild conditions (see Theorem 2.1 (i) in [57]),

lim
S→∞

ρH(c̄oM(z, S),W (z)) = 0, (4.2.5)
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where c̄o stands for the closed convex hull of the corresponding set. Also, it has

been established that, under some additional conditions (see Theorem 2.1(ii),(iii) and

Proposition 4.1 in [57]),

lim
S→∞

ρH(M(z, S, y),W (z)) = 0 ∀ y ∈ Y, (4.2.6)

with the convergence being uniform with respect to y ∈ Y .

Define the function g̃(µ, z) : P(U × Y )× Z → IRn by the equation

g̃(µ, z)
def
=

∫

U×Y

g(u, y, z)µ(du, dy) ∀µ ∈ P(U × Y ) (4.2.7)

and consider the system

z′(t) = g̃(µ(t), z(t)), (4.2.8)

in which the role of controls is played by measure valued functions µ(·) that satisfy the

inclusion

µ(t) ∈ W (z(t)). (4.2.9)

The system (4.2.8) will be referred to as the averaged system. In what follows, it is

assumed that the averaged system is viable in Z.

Definition 4.2.2 A pair (µ(·), z(·)) will be referred to as admissible for the averaged

system if (4.2.8) and (4.2.9) are satisfied for almost all t (µ(·) being measurable and

z(·) being absolutely continuous functions) and if

z(t) ∈ Z ∀t ≥ 0. (4.2.10)

From Theorem 2.8 of [56] it follows that, under the assumption that (4.2.6) is satis-

fied (and under other assumptions including the Lipschitz continuity of the multi-valued

map V (z)
def
= ∪µ∈W (z) {g̃(µ, z)}), the averaged system approximates the SP dynamics

on the infinite time horizon in the sense that the following two statements are valid:

(i) Given an admissible triplet (u(·), yǫ(·), zǫ(·)) of the SP system (4.1.1)-(4.1.2) that

satisfies the initial condition

(yǫ(0), zǫ(0)) = (y0, z0), (4.2.11)

there exists an admissible pair of the averaged system (µ(·), z(·)) satisfying the

initial condition

z(0) = z0 (4.2.12)
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such that

sup
t∈[0,∞)

||zǫ(t)− z(t)|| ≤ δ(ǫ), where lim
ǫ→0

δ(ǫ) = 0 (4.2.13)

and, for any Lipschitz continuous functions h(u, y, z),

sup
T >0

|
1

T

∫ T

0

h(u(t), yǫ(t), zǫ(t))dt−
1

T

∫ T

0

h̃(µ(t), z(t))dt| ≤ δh(ǫ), (4.2.14)

where lim
ǫ→0

δh(ǫ) = 0 and where

h̃(µ, z)
def
=

∫

U×Y

h(u, y, z)µ(du, dy) ∀µ ∈ P(U × Y ); (4.2.15)

(ii) Let (µ(·), z(·)) be an admissible pair of the averaged system satisfying the initial

condition (4.2.12). There exists an admissible triplet (u(·), yǫ(·), zǫ(·)) of the SP

system satisfying the initial condition (4.2.11) such that the estimates (4.2.13)

and (4.2.14) are true.

Note that the statements (i) and (ii) can be interpreted as a justifications of a

decomposition of the slow-fast dynamics interaction into two phases. First is the “fast”

phase, during which the slow variables almost do not move, and the dynamics of the

fast components is approximately described by the associated system (4.2.1), with the

set of occupational measures generated by the latter converging to the limit set W (z).

Second is a “slow” phase. During this phase, the slow state variables evolve according

to the averaged system (4.2.8), with the fast dynamics influencing the slow one only

through “limit” occupational distributions which take values in W (z).

Let us introduce the following definition.

Definition 4.2.3 The averaged system will be said to uniformly approximate the SP

system on Y if the statements (i) and (ii) are valid, with the estimates (4.2.13) and

(4.2.14) being uniform with respect to the initial conditions (y0, z0) ∈ Y × Z.

Note that a special case, in which the averaged system uniformly approximates the SP

system, is considered below (see Assumption 6.1.2 in Section 6.1).

Consider the optimal control problem

inf
(µ(·),z(·))

lim inf
T →∞

1

T

∫ T

0

q̃(µ(t), z(t))dt
def
= Ṽ ∗, (4.2.16)
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where

q̃(µ, z)
def
=

∫

U×Y

q(u, y, z)µ(du, dy) (4.2.17)

and where inf is sought over all admissible pairs of the averaged system (4.2.8). This

problem will be referred to as averaged optimal control problem.

Proposition 4.2.4 If the averaged system uniformly approximates the SP system, then

lim
ǫ→0

V ∗(ǫ) = Ṽ ∗. (4.2.18)

Proof. Let us show that

inf
(u(·),y(·))

lim inf
T →∞

1

T

∫ T

0

q(u(t), y(t), z(t))dt ≥ inf
(µ(·),z(·))

lim inf
T →∞

1

T

∫ T

0

q̃(µ(τ), z(τ))dτ − δq(ǫ)

(4.2.19)

where δq(ǫ) is defined as in (4.2.14).

Take an arbitrary admissible triplet (u(t), y(t), z(t)) and let Ti → ∞ be such that

lim
i→∞

1

Ti

∫ Ti

0

q(u(τ), y(τ), z(τ))dt = lim inf
T →∞

1

T

∫ T

0

q(u(t), y(t), z(t))dt. (4.2.20)

Due to our assumption, there exists an admissible pair (µ(τ), z(τ)) such that

|
1

Ti

∫ Ti

0

q(u(t), y(t), z(t))dt−
1

Ti

∫ Ti

0

q̃(µ(τ), z(τ))dτ | ≤ δq(ǫ). (4.2.21)

From (4.2.20) and (4.2.21) it follows that

lim inf
T →∞

1

T

∫ T

0

q(u(t), y(t), z(t))dt ≥ lim inf
i→∞

1

Ti

∫ Ti

0

q̃(µ(τ)z(τ))dτ − δq(ǫ) ≥

lim inf
T →∞

1

T

∫ T

0

q̃(µ(τ), z(τ))dτ − δq(ǫ) ≥ inf
(µ,z)

lim inf
T →∞

1

T

∫ T

0

q̃(µ(τ), z(τ))dτ − δq(ǫ).

(4.2.22)

Note that, the obtained inequality is true for any admissible triplet (u(t), y(t), z(t)).

Hence, (4.2.19) is proved. In a similar way one can show that

inf
(u(·),y(·))

lim inf
T →∞

1

T

∫ T

0

q(u(t), y(t), z(t))dt ≤ inf
(µ(·),z(·))

lim inf
T →∞

1

T

∫ T

0

q̃(µ(τ), z(τ))dτ−δq(ǫ).

(4.2.23)

�
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The averaged optimal control problem (4.2.16) is related to the IDLP problem

min
ξ∈W̃

∫

F

q̃(µ, z)ξ(dµ, dz)
def
= G̃∗, (4.2.24)

where F is the graph of the map W (·) (see (4.2.3)),

F
def
= {(µ, z) : µ ∈ W (z), z ∈ Z} ⊂ P(U × Y )× Z , (4.2.25)

and the set W̃ ⊂ P(F ) is defined by the equation

W̃
def
= {ξ ∈ P(F ) :

∫

F

(∇ψ(z))T g̃(µ, z)ξ(dµ, dz) = 0 ∀ψ(·) ∈ C1(IRn)}. (4.2.26)

This IDLP problem plays an important role in our consideration and, for convenience,

we will be referring to it as to the averaged IDLP problem.

The relationships between the problems (4.2.16) and (4.2.24) include, in particular,

the inequality between the optimal values

Ṽ ∗ ≥ G̃∗, (4.2.27)

which, under certain conditions (see Theorem 2.2 of [62]), takes the form of the equality

Ṽ ∗ = G̃∗. (4.2.28)

4.3 Equivalence of the augmented reduced and the

averaged IDLP problems.

In this section, we are going to establish that the averaged IDLP problem (4.2.24) is

equivalent to the augmented reduced IDLP problem (4.1.17).

Let us first of all observe that the set WA allows another representation which

makes use of the fact that an arbitrary γ ∈ P(U × Y × Z) can be “disintegrated” as

follows

γ(du, dy, dz) = µ(du, dy|z)ν(dz), (4.3.1)

where ν(dz)
def
= γ(U × Y, dz) and µ(du, dy|z) is a probability measure on U × Y such

that the integral
∫
U×Y

h(u, y, z)µ(du, dy|z) is Borel measurable on Z for any continuous
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h(u, y, z) and

∫

U×Y×Z

h(u, y, z)γ(du, dy, dz) =

∫

Z

(∫

U×Y

h(u, y, z)µ(du, dy|z)

)
ν(dz).

The fact that the disintegration (4.3.1) is valid follows from the existence of “regu-

lar conditional probabilities” for probability measures defined on the Borel subsets of

compact metric spaces (see, e.g., Definition 6.6.3 and Theorems 6.6.5 and 6.6.6 in [14]).

Proposition 4.3.1 The set WA can be represented in the form:

WA = {γ = µ(du, dy|z)ν(dz) : µ(·|z) ∈ W (z) for ν − almost all z ∈ Z,

∫

Z

[ (∇ψ(z))T g̃(µ(·|z), z)]ν(dz) = 0 ∀ ψ(·) ∈ C1(IRn)},
(4.3.2)

where W (z) ⊂ P(U × Y ) is defined as in (4.2.3) and g̃(µ(·|z), z) =
∫
U×Y

g(u, y, z)

µ(du, dy|z).

Proof. Let γ belong to the right hand side of (4.3.2). Then, by (4.3.1),

∫

U×Y×Z

ψ(z)(∇φ(y))Tf(u, y, z)γ(du, dy, dz)

=

∫

Z

[ψ(z)

∫

U×Y

(∇φ(y))Tf(u, y, z)µ(du, dy|z) ]ν(dz) = 0

for any φ(·) ∈ C1(IRm) and for any ψ(·) ∈ C1(IRn) (the equality to zero being due to

the fact that µ(·, ·|z) ∈ W (z) for ν- almost all z ∈ Z). Also,

∫

U×Y×Z

[ (∇ψ(z))Tg(u, y, z) ]γ(du, dy, dz)

=

∫

Z

[ (∇ψ(z))T
∫

U×Y

g(u, y, z)µ(du, dy|z) ]ν(dz) = 0.

These imply that γ ∈ WA. Assume now that γ ∈ WA. That is, γ ∈ W and γ ∈ A (see

(4.1.12), (4.1.15) and (4.1.16)). Using the fact that γ ∈ W (and taking into account

the disintegration (4.3.1)), one can obtain that

∫

z∈Z

[ψ(z)

∫

U×Y

(∇φ(y))Tf(u, y, z)µ(du, dy|z) ]ν(dz) = 0, (4.3.3)

the latter implying that
∫
U×Y

(∇φ(y))Tf(u, y, z)µ(du, dy|z) = 0 for ν-almost all z ∈ Z

(due to the fact that ψ(z) is an arbitrary continuously differentiable function). That
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is, µ(·|z) ∈ W (z) for ν-almost all z ∈ Z. This, along with the inclusion γ ∈ A, imply

that γ belongs to the right hand side of (4.3.2). This proves (4.3.2). �

To establish the relationships between the augmented reduced and the averaged

IDLP problems, let us introduce the map Φ(·) : P(F ) → P(U × Y × Z) defined as

follows. For any ξ ∈ P(F ), let Φ(ξ) ∈ P(U × Y × Z) be such that

∫

U×Y×Z

h(u, y, z)Φ(ξ)(du, dy, dz) =

∫

F

h̃(µ, z)ξ(dµ, dz) ∀h(·) ∈ C(U × Y × Z),

(4.3.4)

where h̃(µ, z) =
∫
U×Y

h(u, y, z)µ(du, dy) (this definition is legitimate since the right-

hand side of the above expression defines a linear continuous functional on C(U×Y ×Z),

the latter being associated with an element of P(U × Y × Z) that makes the equality

(4.3.4) valid). Note that the map Φ(·) : P(F ) → P(U × Y × Z) is linear and it is

continuous in the sense that

lim
ξl→ξ

Φ(ξl) = Φ(ξ), (4.3.5)

with ξl converging to ξ in the weak∗ topology of P(F ) and Φ(ξl) converging to Φ(ξ) in

the weak∗ topology of P(U × Y × Z) (see Lemma 4.3 in [56]).

The following result establishes that the averaged IDLP problem (4.2.24) is equiv-

alent to the augmented reduced IDLP problem (4.1.17).

Proposition 4.3.2 The averaged and the augmented reduced IDLP problems are equiv-

alent in the sense that

WA = Φ(W̃ ), (4.3.6)

GA = G̃∗. (4.3.7)

Also, γ = Φ(ξ) is an optimal solution of the augmented reduced IDLP problem (4.1.17)

if and only if ξ is an optimal solution of the averaged IDLP problem (4.2.24).

Proof. To prove (4.3.6), let us first prove that the inclusion

Φ(W̃ ) ⊂WA (4.3.8)

is valid. Take an arbitrary γ ∈ Φ(W̃ ). That is, γ = Φ(ξ) for some ξ ∈ W̃ . By (4.3.4),

∫

U×Y×Z

[ ψ(z)(∇φ(y))Tf(u, y, z) ]Φ(ξ)(du, dy, dz)

=

∫

F

[ ψ(z)

∫

U×Y

(∇φ(y))Tf(u, y, z)µ(du, dy) ]ξ(dµ, dz).
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By definition of F (see (4.2.25)),

∫

U×Y

(∇φ(y))Tf(u, y, z)µ(du, dy) = 0 ∀(µ, z) ∈ F.

Consequently (see (4.1.12)),

∫

U×Y×Z

[ ψ(z)(∇φ(y))Tf(u, y, z) ]Φ(ξ)(du, dy, dz) = 0 ⇒ Φ(ξ) ∈ W. (4.3.9)

Also, from (4.3.4) and from the fact that ξ ∈ W̃ it follows that

∫

U×Y×Z

[ (∇φ(z))Tg(u, y, z) ]Φ(ξ)(du, dy, dz)

=

∫

F

[ (∇φ(z))T g̃(µ, z) ]ξ(dµ, dz) = 0 ⇒ Φ(ξ) ∈ A.

Thus, γ = Φ(ξ) ⊂ W ∩ A. This proves (4.3.8). Let us now show that the converse

inclusion

Φ(W̃ ) ⊃WA (4.3.10)

is valid. To this end, take γ ∈ WA and show that γ ∈ Φ(W̃ ). Due to (4.3.2), γ can be

presented in the form (4.3.1) with µ(du, dy|z) ∈ W (z) for ν almost all z ∈ Z. Changing

values of µ on a subset of Z having the ν measure 0, one can come to the conclusion

that γ can be presented in the form (4.3.1) with

µ(du, dy|z) ∈ W (z) ∀z ∈ Z. (4.3.11)

Let L be a subspace of C(F ) defined by the equation

L
def
= {h̃(·, ·) : h̃(µ, z) =

∫

U×Y

h(u, y, z)µ(du, dy), h ∈ C(U × Y × Z)}. (4.3.12)

For every h̃ ∈ L, let ξLh̃) : L → IR1 be defined by the equation

ξL(h̃)
def
=

∫

z∈Z

h̃(µ(·|z), z)ν(dz) =

∫

z∈Z

[ ∫

U×Y

h(u, y, z)µ(du, dy|z)
]
ν(dz) (4.3.13)

=

∫

U×Y

h(u, y, z)γ(du, dy, dz).

Note that ξL is a positive linear functional on L. That is, if h̃1(µ, z) ≤ h̃2(µ, z) ∀(µ, z) ∈

F , then ξL(h̃1) ≤ ξL(h̃2). Note also that 1 ∈ L. Hence, by Kantorovich theorem (see,
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e.g., [1], p. 330), ξF can be extended to a positive linear functional ξ on the whole

C(F ), with

ξ(h̃) = ξL(h̃) ∀h̃ ∈ L. (4.3.14)

Due to the fact that ξ is positive, one obtains that

sup
β(·)∈B̄

ξ(β(·)) ≤ sup
β(·)∈B̄

ξ(|β(·)|) ≤ ξ(1) = 1, (4.3.15)

where B̄ is the closed unit ball inC(F ) (that is, B̄
def
= {β(·) ∈ C(F ) : max(µ,z)∈F |β(µ, z)|

≤ 1} ). Thus, ξ ∈ C(F ), and, moreover, ||ξ|| = ξ(1) = 1. This implies that there exists

a unique probability measure ξ(dµ, dz) ∈ P(F ) such that, for any β(µ, z) ∈ C(F ),

ξ(β) =

∫

F

β(µ, z)ξ(dµ, dz) (4.3.16)

(see, e.g., Theorem 5.8 on page 38 in [91]). Using this relationship for β(µ, z) =

h̃(µ, z) ∈ F , one obtains (see (4.3.13) and (4.3.14)) that

∫

F

h̃(µ, z)ξ(dµ, dz) =

∫

U×Y

h(u, y, z)γ(du, dy, dz). (4.3.17)

Since the latter is valid for any h(u, y, z) ∈ C(U × Y × Z), it follows that

γ = Φ(ξ). (4.3.18)

Considering now (4.3.17) with h(u, y, z) = ∇ψ(z)T g(u, y, z), and taking into account

that, in this case, h̃(µ, z) = ∇ψ(z)T g̃(µ, z) one obtains that

∫

F

[
(∇ψ(z))T g̃(µ, z)

]
ξ(dµ, dz)

=

∫

U×Y×Z

[
(∇ψ(z))T g(u, y, z)

]
γ(du, dy, dz) = 0,

where the equality to zero follows from the fact that γ ∈ A (see (4.1.15)). This implies

that ξ ∈ W̃ . Hence, by (4.3.18), γ ∈ Φ(W̃ ). This proves (4.3.6).

The validity of (4.3.7) as well as the fact that γ = Φ(ξ) is optimal in (4.1.17) if and

only if ξ is optimal on (4.2.24) follow from (4.3.6) and the definition of the map Φ(·)

(see (4.3.4)). �

70



Chapter 4 Additional comments for Chapter 4

Proposition 4.3.3 The following relationships are valid

lim inf
ǫ→0

V ∗(ǫ) ≥ lim inf
ǫ→0

G∗(ǫ) ≥ G̃∗. (4.3.19)

If the averaged system uniformly approximates the SP system (see Definition 4.2.3 )

and if (4.2.28) is valid, then

lim
ǫ→0

V ∗(ǫ) = lim
ǫ→0

G∗(ǫ) = G̃∗. (4.3.20)

Proof. Note that the first inequality in (4.3.19) follows from (4.1.9).The validity

of (4.3.20) follows from (4.2.18), (4.2.28) and the second inequality in (4.3.19).

Thus, to prove the proposition, it is sufficient to establish the validity of the sec-

ond inequality in (4.3.19), which can be proved on the basis of Proposition 4.1.2 and

Proposition 4.3.2. More specifically, by (4.1.19)

lim inf
ǫ→0

G∗(ǫ) ≥ min
γ∈WA

∫

U×Y×Z

q(u, y, z)γ(du, dy, dz). (4.3.21)

Also, by (4.3.6),

min
γ∈WA

∫

U×Y×Z

q(u, y, z)γ(du, dy, dz) =

min
ζ∈W̃

∫

U×Y×Z

q(u, y, z)Φ(ξ)(du, dy, dz) = G̃∗.

(4.3.22)

By comparing (4.3.21) and (4.3.22), one obtains the second inequality in (4.3.19). �

4.4 Additional comments for Chapter 4

The consideration of this chapter is based on the results obtained in [61] and [64]. Note

that the paper [64] is devoted to the development of LP approach to singularly per-

turbed optimal control problems with time discounting. Many results obtained in this

paper are formulated in terms of IDLP problems. These results are straightforwardly

extendable to the IDLP problems related to singularly perturbed LRAOC problems.

Examples of such extensions are Proposition 4.1.2, Proposition 4.3.1 and Proposition

4.3.2. These can be proved by equating the discount rate to zero in the corresponding

statements of [64]. We, however, do not follow this path and we give the full proofs of

the aforementioned propositions (for the sake of completeness).

Note that a most common approach to problems of optimal control of singular
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perturbed systems is based on the idea of approximating the slow z-components of

the solutions of the SP system (4.1.1)-(4.1.2) by the solutions of the so-called reduced

system

z′(t) = g(u(t), s(u(t), z(t)), z(t)), (4.4.1)

which is obtained from (4.1.1) via the replacement of y(t) by s(u(t), z(t)) , with s(u, z)

being the root of the equation

f(u, y, z) = 0. (4.4.2)

The equation (4.4.2) can be obtained by formally equating ǫ to zero in (4.1.1). Being

very efficient in dealing with many important classes of optimal control problems (see,

e.g., [22], [39], [74], [76], [78], [88], [90], [102], [105]), this approach may not be applicable

in the general case (see examples in [8], [51], [52], [82]).

The validity of the assertion that the system (4.4.1) can be used for finding a

near optimal control of the SP system (4.1.1)-(4.1.2) is related to the validity of the

hypothesis that the optimal control of the latter is in some sense slow and that (in

the optimal or near optimal regime) the fast state variables converge rapidly to their

quasi steady states defined by the root of (4.4.2) and remain in a neighborhood of

this root, while the slow variables are changing in accordance with (4.4.1). While the

validity of such a hypothesis has been established under natural stability conditions by

famous Tikhonov’s theorem in the case of uncontrolled dynamics (see [89] and [101]),

this hypothesis may not be valid in the control setting if the dynamics is nonlinear

and/or the objective function is non-convex, the reason for this being the fact that the

use of rapidly oscillating controls may lead to significant (not tending to zero with ǫ)

improvements of the performance indexes. The approach that we are developing in the

thesis allows the construction of such near optimal rapidly oscillating controls.
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In this chapter, we introduce the concept of an average control generating (ACG) fam-

ily and we use duality results for the IDLP problems involved and their semi-infinite

approximations to characterize and construct optimal and near optimal ACG families.

The chapter consists of six sections. In Section 5.1, the definitions of an ACG family

and of optimal/near optimal ACG families are given. In Section 5.2, averaged and

associated dual problems are introduced. Also in this section, sufficient and necessary

optimality conditions for an ACG family to be optimal is established. In Section 5.3,

approximating averaged semi-infinite dimensional linear programming (SILP) problem

and the corresponding approximating averaged and associated dual problems are intro-

duced. In Section 5.4, it is proved that solutions of these approximating dual problems

exist under natural controllability conditions. In Sections 5.5 and 5.6, it is established

that solutions of the approximating averaged and associated dual problems can be used

for construction of near optimal ACG families.

5.1 Average control generating families.

The validity of the representation (4.3.2) for the set WA motivates the definition of

the average control generating family given below. For any z ∈ Z, let (uz(·), yz(·))
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be an admissible pair of the associated system (4.2.1) and µ(du, dy|z) be the occu-

pational measure generated by this pair on [0,∞) (see (1.1.20)), with the integral∫
U×Y

h(u, y, z)µ(du, dy|z) being a measurable function of z and

|
1

S

∫ S

0

h(uz(τ), yz(τ), z)dτ −

∫

U×Y

h(u, y, z)µ(du, dy|z)| ≤ δh(S) ∀z ∈ Z,

lim
S→∞

δh(S) = 0, (5.1.1)

for any continuous h(u, y, z) : U ×Y ×Z → IR1. Note that the estimate (5.1.1) is valid

if (uz(·), yz(·)) is Tz-periodic, with Tz being uniformly bounded on Z. Note that due

to (4.2.4),

µ(du, dy|z) ∈ W (z) ∀z ∈ Z. (5.1.2)

Definition 5.1.1 The family (uz(·), yz(·)) will be called average control generating

(ACG) if the system

z′(t) = g̃µ(z(t)), z(0) = z0, (5.1.3)

where

g̃µ(z)
def
= g̃(µ(·|z), z) =

∫

U×Y

g(u, y, z)µ(du, dy|z), (5.1.4)

has a unique solution z(t) ∈ Z ∀t ∈ [0,∞) and, for any continuous function h̃(µ, z) :

F → IR1, there exists a limit

lim
T →∞

1

T

∫ T

0

h̃(µ(t), z(t))dt, (5.1.5)

where µ(t)
def
= µ(du, dy|z(t)).

Note that, according to this definition, if (uz(·), yz(·)) is an ACG family, with µ(du, dy|z)

being the family of occupational measures generated by this family, and if z(·) is the

corresponding solution of (5.1.3), then the pair (µ(·), z(·)), where µ(t)
def
= µ(du, dy|z(t)),

is an admissible pair of the averaged system (for convenience, this admissible pair will

also be referred to as one generated by the ACG family). From the fact that the limit

(5.1.5) exists for any continuous h̃(µ, z) it follows that the pair (µ(·), z(·)) generates

the occupational measure ξ ∈ P(F ) defined by the equation

lim
T →∞

1

T

∫ T

0

h̃(µ(t), z(t))dt =

∫

F

h̃(µ, z)ξ(dµ, dz) ∀h̃(µ, z) ∈ C(F ). (5.1.6)
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Also note that, the state trajectory z(·) generates the occupational measure ν ∈

P(Z) defined by the equation

lim
T →∞

1

T

∫ T

0

h(z(t))dt =

∫

Z

h(z)ν(dz) ∀h(z) ∈ C(Z). (5.1.7)

Proposition 5.1.2 Let (uz(·), yz(·)) be an ACG family and let µ(du, dy|z) and (µ(·), z(·))

be, respectively, the family of occupational measures and the admissible pair of the aver-

aged system generated by this family. Let also, ξ be the occupational measure generated

by (µ(·), z(·)) and ν be the occupational measure generated by z(·) (in accordance with

(5.1.6) and (5.1.7) respectively). Then

ξ ∈ W̃ (5.1.8)

and

Φ(ξ) = µ(du, dy|z)ν(dz), (5.1.9)

where Φ(·) is defined by (4.3.4).

Proof. For an arbitrary ψ(·) ∈ C1(IRn),

lim
T →∞

1

T

∫ T

0

(∇ψ(z(t)))T g̃(µ(t), z(t))dt = lim
T →∞

1

T

(
ψ(z(T ))− ψ(z(0))

)
= 0.

Hence, by (5.1.6),

∫

F

(∇ψ(z))T g̃(µ, z)ξ(dµ, dz) = 0 ψ(·) ∈ C1(IRn).

The latter implies (5.1.8). To prove (5.1.9), note that, for an arbitrary continuous

function h(u, y, z) and h̃(µ, z) defined in accordance with (4.2.15), one can write down

∫

F

h̃(µ, z)ξ(dµ, dz) = lim
T →∞

1

T

∫ T

0

h̃(µ(t), z(t))dt =

lim
T →∞

1

T

∫ T

0

[ ∫

U×Y

h(u, y, z)µ(du, dy|z(t))
]
dt =

∫

Z

(∫

U×Y

h(u, y, z)µ(du, dy|z)

)
ν(dz).

(5.1.10)

By the definition of Φ(·) (see (4.3.4)), the latter implies (5.1.9). �
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Definition 5.1.3 An ACG family (uz(·), yz(·)) will be called optimal if the admissible

pair (µ(·), z(·)) generated by this family is optimal in the averaged problem (4.2.16).

That is,

lim
T →∞

1

T

∫ T

0

q̃(µ(t), z(t))dt = Ṽ ∗. (5.1.11)

An ACG family (uz(·), yz(·)) will be called α-near optimal (α > 0) if

lim
T →∞

1

T

∫ T

0

q̃(µ(t), z(t))dt ≤ Ṽ ∗ + α. (5.1.12)

Corollary 5.1.4 Let the equality (4.2.28) be valid. An ACG family (uz(·), yz(·)) gen-

erating the admissible pair (µ(·), z(·)) will be optimal (near optimal) if and only if the

occupational measure ξ generated by this pair (according to (5.1.6)) is an optimal (near

optimal) solution of the averaged IDLP problem (4.2.24).

Remark 5.1.5 The “near optimal” solutions are defined by the value of the objective

function. To measure the error of the approximation in terms of solutions would require

imposing stronger regularity conditions.These are not considered in the thesis.

5.2 Averaged and associated dual problems. Suffi-

cient and necessary optimality condition.

Let H̃(p, z) be the Hamiltonian of the averaged system

H̃(p, z)
def
= min

µ∈W (z)
{q̃(µ, z) + pT g̃(µ, z)}, (5.2.1)

where g̃(µ, z) and q̃(µ, z) are defined by (4.2.7) and (4.2.17).

Consider the problem

sup
ζ(·)∈C1(IRn)

{d̃ : d̃ ≤ H̃(∇ζ(z), z) ∀z ∈ Z} = G̃∗, (5.2.2)

where sup is sought over all continuously differentiable functions ζ(·) : IRn → IR1.

Note that the optimal value of the problem (5.2.2) is equal to the optimal value of the

averaged IDLP problem (4.2.24). The former is in fact dual with respect to the later,

the equality of the optimal values being one of the duality relationships between the

two (see Theorem 1.3.1). For brevity, (5.2.2) will be referred to as just averaged dual

problem. Note that the averaged dual problem can be equivalently rewritten in the
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form

sup
ζ(·)∈C1(IRn)

{d̃ : d̃ ≤ q̃(µ, z) + (∇ζ(z))T g̃(µ, z) ∀(µ, z) ∈ F} = G̃∗, (5.2.3)

where F is the graph of W (·) (see (4.2.25)). A function ζ∗(·) ∈ C1(IRn) will be called

a solution of the averaged dual problem if

G̃∗ ≤ H̃(∇ζ∗(z), z) ∀z ∈ Z , (5.2.4)

or, equivalently, if

G̃∗ ≤ q̃(µ, z) + (∇ζ∗(z))T g̃(µ, z) ∀(µ, z) ∈ F . (5.2.5)

Note that, if ζ∗(·) ∈ C1(IRn) satisfies (5.2.4), then ζ∗(·)+ const satisfies (5.2.4) as well.

Assume that a solution of the averaged dual problem (that is, a functions ζ∗(·)

satisfying (5.2.4)) exists and consider the problem in the right hand side of (5.2.1) with

p = ∇ζ∗(z) rewriting it in the form

min
µ∈W (z)

{∫

U×Y

[
q(u, y, z) + (∇ζ∗(z))T g(u, y, z)

]
µ(du, dz)

}
= H̃(∇ζ∗(z), z). (5.2.6)

The latter is an IDLP problem, with the dual of it having the form

sup
η(·)∈C1(IRm)

{
d : d ≤ q(u, y, z) + (∇ζ∗(z))T g(u, y, z) + (∇η(y))Tf(u, y, z) (5.2.7)

∀(u, y) ∈ U × Y
}

def
=D∗(z),

where sup is sought over all continuously differentiable functions η(·) : IRm → IR1. The

optimal values of the problems (5.2.6) and (5.2.7) are equal. That is, H̃(∇ζ∗(z), z) =

D∗(z), this being one of the duality relationships between these two problems (see

Theorem 1.3.1). The problem (5.2.7) will be referred to as associated dual problem. A

function η∗z(·) ∈ C1(IRm) will be called a solution of the problem (5.2.7) if ∀(u, y) ∈

U × Y

H̃(∇ζ∗(z), z) ≤ q(u, y, z) + (∇ζ∗(z))T g(u, y, z) + (∇η∗z(y))
Tf(u, y, z). (5.2.8)

Note that from (5.2.4) and from (5.2.8) it follows that ∀(u, y, z) ∈ U × Y × Z

q(u, y, z) + (∇ζ∗(z))T g(u, y, z) + (∇η∗z(y))
Tf(u, y, z) ≥ G̃∗. (5.2.9)
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The following result gives sufficient and also (under additional periodicity assumptions)

necessary condition for an ACG family (uz(·), yz(·)) to be optimal and for the equality

(4.2.28) to be valid.

Proposition 5.2.1 Let a solution ζ∗(z) of the averaged dual problem exists and a

solution η∗z(y) of the associated dual problem exists for any z ∈ Z. Then an ACG

family (uz(·), yz(·)) generating the admissible pair of the averaged system (µ(·), z(·)) is

optimal and the equality (4.2.28) is valid if

q(uz(t)(τ), yz(t)(τ), z(t)) + (∇ζ∗(z(t)))T g(uz(t)(τ), yz(t)(τ), z(t))

+(∇η∗z(t)(yz(t)(τ)))
T f(uz(t)(τ), yz(t)(τ), z(t)) = G̃∗ ∀ τ ∈ Pt, ∀t ∈ A, (5.2.10)

for some Pt ⊂ IR1 and A ⊂ IR1 such that

meas{IR1 \ Pt} = 0 ∀t ∈ A and meas{IR1 \A} = 0. (5.2.11)

Under the additional assumption that an ACG family (uz(·), yz(·)) is periodic, that is,

(uz(τ), yz(τ)) = (uz(τ + Tz), yz(τ + Tz)) ∀τ ≥ 0 (5.2.12)

for some Tz > 0 and that the admissible pair of the averaged system (µ(·), z(·)) gener-

ated by this family is periodic as well, that is,

(µ(t), z(t)) = (µ(t+ T̃ ), z(t + T̃ )) ∀t ≥ 0 (5.2.13)

for some T̃ > 0, the fulfillment of (5.2.10) is also necessary for (uz(·), yz(·)) to be

optimal and for the equality (4.2.28) to be valid.

Proof. Assume (5.2.10) is true. Then

lim
S→∞

1

S

∫ S

0

[q(uz(t)(τ), yz(t)(τ), z(t)) + (∇ζ∗(z(t)))T g(uz(t)(τ), yz(t)(τ), z(t))

+(∇η∗z(t)(yz(t)(τ)))
T f(uz(t)(τ), yz(t)(τ), z(t))]dτ

= q̃(µ(t), z(t)) + (∇ζ∗(z(t)))T g̃(µ(t), z(t)) = G̃∗ ∀t ∈ A, (5.2.14)

where it has been taken into account that

lim
S→∞

1

S

∫ S

0

(∇η∗z(t)(yz(t)(τ)))
T f(uz(t)(τ), yz(t)(τ), z(t))dτ
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= lim
S→∞

1

S
[η∗z(t)(yz(t)(S))− η∗z(t)(yz(t)(0))] = 0.

Since

lim
T →∞

1

T

∫ T

0

(∇ζ∗(z(t)))T g̃(µ(t), z(t))dt = lim
T →∞

1

T
[ζ∗(z(T ))− ζ∗(z(0))] = 0,

from (5.2.14) it follows that

lim
T →∞

1

T

∫ T

0

q̃(µ(t), z(t))dt = G̃∗.

By (4.2.27), the latter implies that (uz(·), yz(·)) is optimal and that the equality (4.2.28)

is valid.

Let us now prove (assuming that (5.2.12) and (5.2.13) are true) that the fulfillment

of (5.2.10) is necessary for an ACG family (uz(·), yz(·)) to be optimal and for the

equality (4.2.28) to be valid. In fact, let an ACG family (uz(·), yz(·)) be optimal and

let (4.2.28) be true. Then

1

T̃

∫ T̃

0

q̃(µ(t), z(t))dt = G̃∗.

Since (by (5.2.13))

∫ T̃

0

(∇ζ∗(z(t)))T g̃(µ(t), z(t))dt = ζ∗(z(T̃ ))− ζ∗(z(0)) = 0,

it follows that

1

T̃

∫ T̃

0

[q̃(µ(t), z(t)) + (∇ζ∗(z(t)))T g̃(µ(t), z(t))− G̃∗]dt = 0

and, hence, by (5.2.5),

q̃(µ(t), z(t)) + (∇ζ∗(z(t)))T g̃(µ(t), z(t)) = G̃∗ (5.2.15)

for almost all t ∈ [0, T̃ ]. Note that (due to periodicity condition (5.2.13)) the equality

above is also valid for almost all t ∈ [0,∞].

Let the set A (meas{IR1 \ A} = 0) be such that the equality (5.2.15) is valid and

let t ∈ A. Due to the periodicity condition (5.2.12), to prove the required statement

it is sufficient to show that the equality (5.2.10) is satisfied for almost all τ ∈ [0, Tz(t)].
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Assume it is not the case and there exists a set Qt ⊂ [0, Tz(t)], with meas{Qt} > 0, on

which (5.2.10) is not satisfied, the latter implying (due to (5.2.9)) that

q(uz(t)(τ), yz(t)(τ), z(t)) + (∇ζ∗(z(t)))T g(uz(t)(τ), yz(t)(τ), z(t))

+(∇η∗z(t)(yz(t)(τ)))
T f(uz(t)(τ), yz(t)(τ), z(t)) > G̃∗ ∀τ ∈ Qt.

From the above inequality and from (5.2.9) it follows that

1

Tz(t)

∫ Tz(t)

0

[
q(uz(t)(τ), yz(t)(τ), z(t)) + (∇ζ∗(z(t)))T g(uz(t)(τ), yz(t)(τ), z(t))

+(∇η∗z(t)(yz(t)(τ)))
T f(uz(t)(τ), yz(t)(τ), z(t))

]
dτ > G̃∗. (5.2.16)

By (5.2.12), ∫ Tz(t)

0

(∇η∗z(t)(yz(t)(τ)))
Tf(uz(t)(τ), yz(t)(τ), z(t))dτ

= η∗z(t)(yz(t)(Tz(t)))− η∗z(t)(yz(t)(0)) = 0. (5.2.17)

Hence, from (5.2.16) it follows that

1

Tz(t)

∫ Tz(t)

0

[
q(uz(t)(τ), yz(t)(τ), z(t)) + (∇ζ∗(z(t)))T g(uz(t)(τ), yz(t)(τ), z(t))

]
dτ > G̃∗,

which is equivalent to

q̃(µ(t), z(t)) + (∇ζ∗(z(t)))T g̃(µ(t), z(t)) > G̃∗.

This contradicts to the fact that t was chosen to belong to the set A on which (5.2.15)

is satisfied. This completes the proof of the proposition. �

Remark 5.2.2 Note that, due to (5.2.9), the validity of (5.2.10) implies the validity

of the inclusion

(uz(t)(τ), yz(t)(τ), z(t)) ∈ Argmin(u,y,z)∈U×Y×Z

{
q(u, y, z) + (∇ζ∗(z))T g(u, y, z)

+(∇η∗z(y))
Tf(u, y, z)

}
∀τ ∈ Pt, ∀t ∈ A (5.2.18)

which, in turn, implies

uz(t)(τ) ∈ Argminu∈U

{
q(u, yz(t)(τ), z(t)) + (∇ζ∗(z(t)))T g(u, yz(t)(τ), z(t))
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+(∇η∗z(t)(yz(t)(τ)))
T f(u, yz(t)(τ), z(t))

}
∀τ ∈ Pt, ∀t ∈ A. (5.2.19)

That is, if the equality (4.2.28) is valid, then for an ACG family (uz(·), yz(·)) satisfying

the periodicity conditions (5.2.12) and (5.2.13) to be optimal, it is necessary that the

inclusion (5.2.19) is satisfied.

5.3 Approximating averaged IDLP problem and ap-

proximating averaged/associated dual prob-

lems.

Let ψi(·) ∈ C1(IRn) , i = 1, 2, ..., be a sequence of functions such that any ζ(·) ∈

C1(IRn) and its gradient are simultaneously approximated by a linear combination of

ψi(·) and their gradients. Also, let φi(·) ∈ C1(IRm) , i = 1, 2, ..., be a sequence of func-

tions such that any η(·) ∈ C1(IRm) and its gradient are simultaneously approximated

by a linear combination of φi(·) and their gradients. Examples of such sequences are

monomials zi11 ...z
in
n , i1, ..., in = 0, 1, ... and, respectively, yi11 ...y

im
m , i1, ..., im = 0, 1, ...,

with zk, and yl standing for the components of z and y (see, e.g., [84]).

Let us introduce the following notations:

WM (z)
def
= {µ ∈ P(U × Y ) :

∫

U×Y

(∇φi(y))
Tf(u, y, z)µ(du, dy) = 0, i = 1, ...,M},

(5.3.1)

FM
def
= {(µ, z) : µ ∈ WM(z), z ∈ Z} ⊂ P(U × Y )× Z , (5.3.2)

and

W̃N,M
def
= {ξ ∈ P(FM ) :

∫

FM

(∇ψi(z))
T g̃(µ, z)ξ(dµ, dz) = 0, i = 1, ..., N}, (5.3.3)

(compare with (4.2.3), (4.2.25) and (4.2.26), respectively) and let us consider the fol-

lowing SILP problem (compare with (4.2.24))

min
ξ∈W̃N,M

∫

FM

q̃(µ, z)ξ(dµ, dz)
def
= G̃N,M . (5.3.4)

This problem will be referred to as (N,M)-approximating averaged problem. It is
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obvious that

W1(z) ⊃W2(z) ⊃ ... ⊃WM (z) ⊃ ... ⊃W (z)

⇒ F1 ⊃ F2 ⊃ ... ⊃ FM ⊃ ... ⊃ F. (5.3.5)

Defining the set W̃N by the equation

W̃N
def
= {ξ ∈ P(F ) :

∫

F

(∇ψi(z))
T g̃(µ, z)ξ(dµ, dz) = 0, i = 1, ..., N}, (5.3.6)

one can also see that

W̃N,M ⊃ W̃N ⊃ W̃ ∀ N,M = 1, 2, ... (5.3.7)

(with W̃N,M , W̃N and W̃ being considered as subsets of P(P(U × Y )× Z)), the latter

implying, in particular, that

G̃N,M ≤ G̃∗ ∀ N,M = 1, 2, ... . (5.3.8)

It can be readily verified that (see the proof of Proposition 2.3.1 above) that

lim
M→∞

WM(z) = W (z), lim
M→∞

FM = F, (5.3.9)

where, in the first case, the convergence is in the Hausdorff metric generated by the

weak∗ convergence in P(U × Y ) and, in the second, it is in the Hausdorff metric

generated by the weak∗ convergence in P(U × Y ) and the convergence in Z.

Proposition 5.3.1 The following relationships are valid:

lim
M→∞

W̃N,M = W̃N , (5.3.10)

lim
N→∞

W̃N = W̃ , (5.3.11)

where the convergence in both cases is in Hausdorff metric generated by the weak∗

convergence in P(P(U × Y )× Z). Also,

lim
N→∞

lim
M→∞

G̃N,M = G̃∗. (5.3.12)

If the optimal solution ξ∗ of the averaged IDLP problem (4.2.24) is unique, then, for
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an arbitrary optimal solution ξN,M of the (N,M)-approximating problem (5.3.4),

lim
N→∞

lim sup
M→∞

ρ(ξN,M , ξ∗) = 0. (5.3.13)

Proof. In order to prove (5.3.10), due to (5.3.7), it is sufficient to show that, if

ξMl ∈ WN,Ml
and if lim

Ml→∞
ξMl = ξ, then ξ ∈ WN . By (5.3.9), for any δ > 0,

FM ∈ F + δB̄

if M is large enough, where B̄ is the closed unit ball in P(U × Y ) × Z. Hence, from

the fact that supp(ξMl) ∈ FMl
it follows that

ξMl(F + δB̄) = 1

for Ml large enough. Since

limMl→∞ξ
Ml(F + δB̄) ≤ ξ(F + δB̄),

one obtains

ξ(F + δB̄) = 1,

the latter being valid for any δ > 0. This implies the equality

ξ(F ) = 1 ⇒ supp(ξ) ∈ F. (5.3.14)

From the fact that ξMl ∈ WN,Ml
it follows that

0 =

∫

FMl

(∇ψi(z))
T g̃(µ, z)ξMl(dµ, dz) =

∫

F+δB̄

(∇ψi(z))
T g̃(µ, z)ξMl(dµ, dz), i = 1, ..., N. (5.3.15)

Passing to the limit when Ml → ∞, one obtains

∫

F+δB̄

(∇ψi(z))
T g̃(µ, z)ξ(dµ, dz) = 0, i = 1, ..., N.

Due to (5.3.14), the expression above implies that

∫

F

(∇ψi(z))
T g̃(µ, z)ξ(dµ, dz) = 0, i = 1, ..., N,
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which, in turn, implies that ξ ∈ WN .

The proof of (5.3.11) is straightforward (it is analogous to the proof of Proposition

2.3.1). From (5.3.10) it follows that

lim
M→∞

G̃N,M = min
ξ∈W̃N

∫

F

q̃(µ, z)ξ(dµ, dz)
def
= G̃N , (5.3.16)

and from (5.3.11) it follows that

lim
N→∞

G̃N = G̃∗. (5.3.17)

The above two relationships imply (5.3.12). If the optimal solution ξ∗ of the averaged

IDLP problem (4.2.24) is unique, then, by (5.3.17), for any solution ξN of the problem

in the right-hand side of (5.3.16) there exists the limit

lim
N→∞

ξN = ξ∗. (5.3.18)

Also, if for an arbitrary optimal solution ξN,M of the (N,M) approximating problem

(5.3.4) and for some M ′ → ∞, there exists lim
M ′→∞

ξN,M ′

, then this limit is an optimal

solution of the problem in the right-hand side of (5.3.16). This proves (5.3.13). �

Define the finite dimensional space Ω̃N ⊂ C1(IRn) by the equation

Ω̃N
def
= {ζ(·) ∈ C1(IRn) : ζ(z) =

N∑

i=1

λiψi(z), λ = (λi) ∈ IRN} (5.3.19)

and consider the following problem

sup
ζ(·)∈Ω̃N

{d̃ : d̃ ≤ q̃(µ, z) + (∇ζ(z))T g̃(µ, z) ∀(µ, z) ∈ FM}
def
= D̃N,M . (5.3.20)

This problem is dual with respect to the problem (5.3.4), its optimal value is equal to

the optimal value of the later. That is,

D̃N,M = G̃N,M . (5.3.21)

Note that the problem (5.3.20) looks similar to the averaged dual problem (5.2.3).

However, in contrast to the latter, sup in (5.3.20) is sought over the finite dimensional

subspace Ω̃N of C1(IRn) and FM is used instead of F . The problem (5.3.20) will be
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Chapter 5 Approximating averaged IDLP problem

referred to as (N,M)-approximating averaged dual problem. A function ζN,M(·) ∈ Ω̃N ,

ζN,M(z) =

N∑

i=1

λN,M
i ψi(z), (5.3.22)

will be called a solution of the (N,M)-approximating averaged dual problem if

G̃N,M ≤ q̃(µ, z) + (∇ζN,M(z))T g̃(µ, z) ∀(µ, z) ∈ FM . (5.3.23)

Define the finite dimensional space ΩM ⊂ C1(IRm) by the equation

ΩM
def
= {η(·) ∈ C1(IRm) : η(y) =

M∑

i=1

αiφi(y), α = (αi) ∈ IRM} (5.3.24)

and, assuming that a solution ζN,M(z) of the (N,M)-approximating averaged dual

problem exists, consider the following problem

sup
η(·)∈ΩM

{d : d ≤ q(u, y, z) + (∇ζN,M(z))T g(u, y, z) + (∇η(y))Tf(u, y, z)

∀(u, y) ∈ U × Y }
def
=DN,M(z). (5.3.25)

While the problem (5.3.25) looks similar to the associated dual problem (5.2.7), it differs

from the latter, firstly, by that sup is sought over the finite dimensional subspace ΩM

of C1(IRm) and, secondly, by that a solution ζN,M(z) of (5.3.20) is used instead of a

solution ζ∗(z) of (5.2.2) (the later may not exist). The problem (5.3.25) will be referred

to as (N,M)-approximating associated dual problem. It can be shown that it is, indeed,

dual with respect to the SILP problem

min
µ∈WM (z)

{

∫

U×Y

[q(u, y, z) + (∇ζN,M(z))T g(u, y, z)]µ(du, dy)} = DN,M(z), (5.3.26)

the duality relationships including the equality of the optimal values (see Theorem

1.3.1 and also Theorem 5.2(ii) in [48]). A function ηNM
z (·) ∈ ΩM ,

ηN,M
z (y) =

M∑

i=1

αN,M
z,i φi(y), (5.3.27)

will be called a solution of the (N,M)-approximating associated dual problem if
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∀(u, y) ∈ U × Y

DN,M(z) ≤ q(u, y, z) + (∇ζN,M(z))Tg(u, y, z) + (∇ηNM
z (y))Tf(u, y, z). (5.3.28)

In the next section, we show that solutions of the (N,M)-approximating averaged and

associated dual problems exist under natural local controllability conditions.

5.4 Controllability conditions sufficient for the ex-

istence of solutions of approximating averaged

and associated dual problems.

In what follows it is assumed that, for any N = 1, 2, ..., and M = 1, 2, ..., the gradients

∇ψi(z), i = 1, 2, ...N, and ∇φi(y), i = 1, 2, ...M, are linearly independent on any open

subset of IRN and, respectively, IRM . That is, if Z is an open subset of IRN , then the

equality
N∑

i=1

vi∇ψi(z) = 0 ∀z ∈ Z

is valid only if vi = 0, i = 1, ..., N . Similarly, if Y is an open subset of IRM , then the

equality
M∑

i=1

v̄i∇φi(y) = 0 ∀y ∈ Y

is valid only if v̄i = 0, i = 1, ...,M .

The existence of a solution of the approximating averaged dual problem can be

guaranteed under the following controllability type assumption about the averaged

system.

Assumption 5.4.1 Let the averaged system be locally approximately controllable on

Z. That is, there exists a set Z0 ⊂ Z, such that any two points in Z0 can be connected

by an admissible trajectory of the averaged system (that is, for any z′, z′′ ∈ Z0), there

exists an admissible pair (µ(·), z(·)) of the averaged system defined on some interval

[0, T ] such that z(0) = z′ and z(T ) = z′′) and such that the closure of Z0 has a

nonempty interior ( int(clZ0) 6= ∅).

Proposition 5.4.2 If Assumption 5.4.1 is satisfied, then a solution of the (N,M)-

approximating averaged dual problem exists for any N and M .
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Proof. The proof is given at the end of this section (its idea being similar to that

of the proof of Proposition 3.2 in [63]). �

The existence of a solution of the approximating associated dual problem is guar-

anteed by the following assumption about controllability properties of the associated

system.

Assumption 5.4.3 Let the associated system be locally approximately controllable on

Y. That is, there exists a set Y 0(z) ⊂ Y such that any two points in Y 0(z) can

be connected by an admissible trajectory of the associated system (that is, for any

y′, y′′ ∈ Y 0(z) , there exists an admissible pair (u(·), y(·)) of the associated system

defined on some interval [0, S] such that y(0) = y′ and y(S) = y′′) and such that the

closure of Y 0(z) has a nonempty interior ( int(clY 0(z)) 6= ∅).

Proposition 5.4.4 If Assumption 5.4.3 is satisfied for any z ∈ Z, then a solution of

the (N,M)-approximating associated dual problem exists for any N and M , and for

any z ∈ Z.

Proof. The proof is given at the end of this section. �

The proofs of Propositions 5.4.2 and 5.4.4 are based on the following lemma.

Lemma 5.4.5 Let X be a compact metric space and let hi(·) : X → IR1, i = 0, 1, ..., K,

be continuous functional on X. Let

D̄∗ def
= sup

{λi}

{θ : θ ≤ h0(x) +

K∑

i=1

λihi(x) ∀x ∈ X}, (5.4.1)

where sup is sought over λ
def
= {λi} ∈ IRK . A solution of the problem (5.4.1), that is

λ∗
def
= {λ∗i } ∈ IRK such that

D̄∗ ≤ h0(x) +

K∑

i=1

λ∗ihi(x) ∀x ∈ X (5.4.2)

exists if the inequality

0 ≤
K∑

i=1

vihi(x) ∀x ∈ X (5.4.3)

is valid only with vi = 0, i = 1, ..., K.

Proof. Assume that the inequality (5.4.3) implies that vi = 0, i = 1, ..., K. Note

that from this assumption it immediately follows that D̄∗ is bounded (since, otherwise,
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(5.4.1) would imply that there exist {λi} such that
∑K

i=1 λihi(x) > 0 ∀x ∈ X). For

any k = 1, 2, ..., let λk = (λki ) ∈ IRK be such that

D̄∗ −
1

k
≤ h0(x) +

K∑

i=1

λki hi(x) ∀x ∈ X (5.4.4)

Let us show that the sequence λk , k = 1, 2, ..., is bounded. That is, there exists β > 0

such that

||λk|| ≤ β , k = 1, 2, ... . (5.4.5)

Assume that the sequence λk , k = 1, 2, ..., is not bounded. Then there exists a

subsequence λk
′

such that

lim
k′→∞

||λk
′

|| = ∞ , lim
k′→∞

λk
′

||λk′||

def
= v, ||v|| = 1 . (5.4.6)

Dividing (5.4.4) by ||λk|| and passing to the limit along the subsequence {k′}, one can

obtain that

0 ≤
K∑

i=1

vki hi(x) ∀x ∈ X,

which, by our assumption, implies that v = (vi) = 0. The latter contradicts (5.4.6).

Thus, the validity of (5.4.5) is established. Due to (5.4.5), there exists a subsequence

{k′} such that there exists a limit

lim
k′→∞

λk
′ def
= λ∗ . (5.4.7)

Passing to the limit in (5.4.4) along this subsequence, one proves (5.4.2). �

Proof of Proposition 5.4.2. By Lemma 5.4.5, to prove the proposition, it is sufficient

to show that, under Assumption 5.4.1, the inequality

0 ≤
N∑

i=1

vi(∇ψi(z))
T g̃(µ, z) ∀(µ, z) ∈ FM (5.4.8)

can be valid only with vi = 0, i = 1, ..., N . Let us assume that (5.4.8) is valid and let

us rewrite it in the form

0 ≤ (∇ψ(z))T g̃(µ, z) ∀(µ, z) ∈ FM , where ψ(z)
def
=

N∑

i=1

viψi(z). (5.4.9)
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Let z′, z′′ ∈ Z0(z) and let an admissible pair (µ(·), z(·)) of the associated system be

such that z(0) = z′ and z(T ) = z′′ for some T > 0. Then, by (5.4.9),

ψ(z′′)− ψ(z′) =

∫ T

0

(∇ψ(z(t)))T g̃(µ(t), z(t))dt ≥ 0 ⇒ ψ(z′′) ≥ ψ(z′).

Since z′, z′′ can be arbitrary points in Z0, it follows that

ψ(z) = const ∀z ∈ Z0 ⇒ ψ(z) = const ∀z ∈ clZ0.

The latter implies that

∇ψ(z) =
N∑

i=1

vi∇ψi(z) = 0 ∀z ∈ int(clZ0),

which, in turn, implies that vi = 0, i = 1, ..., N (due to linear independence of ∇ψi(·)).

�

Proof of Proposition 5.4.4. By Lemma 5.4.5, to prove the proposition, it is sufficient

to show that, under Assumption 5.4.3, the inequality

0 ≤
M∑

i=1

v̄i[∇φi(y)
Tf(u, y, z)] ∀(u, y) ∈ U × Y (5.4.10)

can be valid only with v̄i = 0, i = 1, ...,M (remind that z = constant). Let us assume

that (5.4.10) is valid and let us rewrite it in the form

0 ≤ ((∇φ(y)))Tf(u, y, z) ∀(u, y) ∈ U × Y, where φ(y)
def
=

M∑

i=1

v̄iφi(y). (5.4.11)

Let y′, y′′ ∈ Y 0(z) and let an admissible pair (u(·), y(·)) of the associated system be

such that y(0) = y′ and y(S) = y′′ for some S > 0. Then, by (5.4.11),

φ(y′′)− φ(y′) =

∫ S

0

(∇φ(y(τ)))Tf(u(τ), y(τ), z)dτ ≥ 0 ⇒ φ(y′′) ≥ φ(y′).

Since y′, y′′ can be arbitrary points in Y 0(z), it follows that

φ(y) = const ∀y ∈ Y 0(z) ⇒ φ(y) = const ∀y ∈ clY 0(z).
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Chapter 5 Construction of near optimal ACG families

The latter implies that

∇φ(y) =
M∑

i=1

v̄i∇φi(y) = 0 ∀y ∈ int(clY 0(z)),

which, in turn, implies that v̄i = 0, i = 1, ...,M (due to linear independence of ∇φi(·)).

�

Remark 5.4.6 Note that the proof of Propositions 5.4.2 and 5.4.4 is similar to the

proof of Proposition 2.2.8.

5.5 Construction of near optimal ACG families.

Let us assume that, for any N andM , a solution ζN,M(z) of the (N,M)-approximating

averaged dual problem exists and a solution ηN,M
z (y) of the (N,M)-approximating

associated dual problem exists for any z ∈ Z (as follows from Propositions 5.4.2 and

5.4.4 these exist if Assumptions 5.4.1 and 5.4.3 are satisfied).

Define a control uN,M(y, z) as an optimal solution of the problem

min
u∈U

{q(u, y, z) + (∇ζN,M(z))Tg(u, y, z) + (∇ηN,M
z (y))Tf(u, y, z)}. (5.5.1)

That is,

uN,M(y, z) = argminu∈U{q(u, y, z) + (∇ζN,M(z))T g(u, y, z)

+(∇ηN,M
z (y))Tf(u, y, z)}. (5.5.2)

Assume that the system

y′z(τ) = f(uN,M(yz(τ), z), yz(τ), z), yz(0) = y ∈ Y, (5.5.3)

has a unique solution yN,M
z (τ) ∈ Y . Below, we introduce assumptions under which it

will be established that (uN,M
z (·), yN,M

z (·)), where uN,M
z (τ)

def
= uN,M

z (yN,M
z (τ), z), is a

near optimal ACG family (see Theorem 5.5.8).

Assumption 5.5.1 The following conditions are satisfied:

(i) the optimal solution ξ∗ of the IDLP problem (4.2.24) is unique, and the equality

(4.2.28) is valid;
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(ii) the optimal solution of the averaged problem (4.2.16) (that is, an admissible pair

(µ∗(·), z∗(·)) that delivers minimum in (4.2.16)) exists and, for any continuous

function h̃(µ, z) : F → IR1, there exists a limit

lim
T →∞

1

T

∫ T

0

h̃(µ∗(t), z∗(t))dt; (5.5.4)

(iii) for almost all t ∈ [0,∞) and any r > 0, the ξ∗ -measure of the set

Br(µ
∗(t), z∗(t))

def
= {(µ, z) : ρ(µ, µ∗(t)) + ||z − z∗(t)|| < r}

is not zero. That is,

ξ∗(Br(µ
∗(t), z∗(t))) > 0. (5.5.5)

Note that from Assumption 5.5.1 (ii) it follows that the pair (µ∗(·), z∗(·)) generates

an occupational measure and from Assumption 5.5.1 (i) it follows that this measure

coincides with ξ∗ (see Corollary 5.1.4). That is,

lim
T →∞

1

T

∫ T

0

h̃(µ∗(t), z∗(t))dt =

∫

F

h̃(µ, z)ξ∗(dµ, dz). (5.5.6)

The following statement gives sufficient conditions for the validity of Assumption 5.5.1

(iii).

Proposition 5.5.2 Let Assumptions 5.5.1 (i) and 5.5.1 (ii) be satisfied. Then As-

sumption 5.5.1 (iii) will be satisfied if the pair (µ∗(·), z∗(·)) is T̃ -periodic (T̃ is some

positive number) and if µ∗(·) is piecewise continuous on [0, T̃ ].

Proof. Let t be a continuous point of µ∗(·). Due to the assumed periodicity of the

pair (µ∗(·), z∗(·)),

1

T̃

∫ T̃

0

h̃(µ∗(t), z∗(t))dt =

∫

F

h̃(µ, z)ξ∗(dµ, dz)

and

ξ∗(Br(µ
∗(t), z∗(t))) =

1

T̃
meas{t : t ∈ [0, T̃ ], (µ∗(t), z∗(t)) ∈ Br(µ

∗(t), z∗(t))}. (5.5.7)

Since t is a continuous point of µ∗(·) and since z∗(·) is continuous, there exists α > 0

such that (µ∗(t′), z∗(t′)) ∈ Br(µ
∗(t), z∗(t)) ∀t′ ∈ [t − α, t + α]. Hence, the right-hand-

side in (5.5.7) is greater than 2α
T̃
. This proves the required statement as the number of
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discontinuity points of µ∗(·) is finite (due to the assumed piecewise continuity). �

Assumption 5.5.3 The following conditions are satisfied:

(i) for almost all t ∈ [0,∞), there exists an admissible pair (u∗t (τ), y
∗
t (τ)) of the

associated system (considered with z = z∗(t)) such that µ∗(t) is the occupational

measure generated by this pair on the interval [0,∞). That is, for any continuous

h(u, y) : U × Y → IR1,

lim
S→∞

1

S

∫ S

0

h(u∗t (τ), y
∗
t (τ))dτ =

∫

U×Y

h(u, y)µ∗(t)(du, dy); (5.5.8)

(ii) for almost all t ∈ [0,∞), for almost τ ∈ [0,∞) and for any r > 0, the µ∗(t)-

measure of the set

Br(u
∗
t (τ), y

∗
t (τ))

def
= {(u, y) : ||u− u∗t (τ)||+ ||y − y∗t (τ)|| < r}

is not zero. That is,

µ∗(t)(Br(u
∗
t (τ), y

∗
t (τ))) > 0. (5.5.9)

The following proposition gives sufficient conditions for the validity of Assumption

5.5.3 (ii).

Proposition 5.5.4 Let Assumption 5.5.3 (i) be valid. Then Assumption 5.5.3 (ii)

will be satisfied if, for almost all t ∈ [0,∞), the pair (u∗t (τ), y
∗
t (τ)) is Tt-periodic (Tt is

some positive number) and if u∗(·) is piecewise continuous on [0, Tt].

Proof. The proof is similar to that of Proposition 5.5.2. �

Assumption 5.5.5 The following conditions are satisfied:

(i) the pair (uN,M
z (τ), yN,M

z (τ)), where yN,M
z (τ) is the solution of (5.5.3) and uN,M

z (τ)

= uN,M
z (yN,M

z (τ), z) is an ACG family that generates the occupational measure

µN,M(du, dy|z) on the interval [0,∞), the latter being independent of the initial

conditions yN,M
z (0) = y for y in a neighbourhood of y∗t (·). Also, for any continuous

h(u, y, z) : U × Y × Z → IR1,

|
1

S

∫ S

0

h(uN,M
z (τ), yN,M

z (τ), z)dτ −

∫

U×Y

h(u, y, z)µN,M(du, dy|z) | ≤ δh(S)

∀z ∈ Z, lim
S→∞

δh(S) = 0; (5.5.10)
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(ii) the admissible pair of the averaged system (µN,M(·), zN,M(·)) generated by (uN,M
z (·),

yN,M
z (·)) generates the occupational measure ξ̄N,M ∈ P(F ), the latter being inde-

pendent of the initial conditions zN,M (0) = z for z in a neighbourhood of z∗(·).

Also, for any continuous function h̃(µ, z) : F → IR1,

| lim
T →∞

1

T

∫ T

0

h̃(µN,M(t), zN,M(t))dt−

∫

F

h̃(µ, z)ξ̄N,M(dµ, dz) | ≤ δh̃(T ),

lim
T →∞

δh̃(T ) = 0. (5.5.11)

To state our next assumption, let us re-denote the occupational measure µN,M(du,

dy|z) (introduced in Assumption 5.5.5 above) as µN,M(z) (that is, µN,M(du, dy|z) =

µN,M(z)).

Assumption 5.5.6 For almost all t ∈ [0,∞), there exists an open ball Zt ⊂ IRn

centered at z∗(t) such that:

(i) the occupational measure µN,M(z) is continuous on Zt. Namely, for any z′, z′′ ∈

Zt,

ρ(µN,M(z′), µN,M(z′′)) ≤ κ(||z′ − z′′||), (5.5.12)

where κ(θ) is a function tending to zero when θ tends to zero (lim
θ→0

κ(θ) = 0).

Also, for any z′, z′′ ∈ Zt,

||

∫

U×Y

g(u, y, z′)µN,M(z′)(du, dy)−

∫

U×Y

g(u, y, z′′)µN,M(z′′)(du, dy)|| ≤ L||z′−z′′||,

(5.5.13)

where L is a constant;

(ii) let zN,M(·) be the solution of the system

z′(t) = g̃(µN,M(z(t)), z(t)) , z(0) = z0. (5.5.14)

We assume that, for any t > 0,

lim
N→∞

lim sup
M→∞

meas{At(N,M)} = 0, (5.5.15)

where

At(N,M)
def
= {t′ ∈ [0, t] : zN,M (t′) /∈ Zt′} (5.5.16)

and meas{·} stands for the Lebesgue measure of the corresponding set.
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In addition to assumptions above, let us also introduce

Assumption 5.5.7 For each t ∈ [0,∞) such that Zt 6= ∅, the following conditions are

satisfied:

(i) for almost all τ ∈ [0,∞), there exists an open ball Yt,τ ⊂ IRm centered at y∗t (τ)

such uN,M(y, z) is uniquely defined (the problem (5.5.1) has a unique solution)

for (y, z) ∈ Yt,τ × Zt;

(ii) the function uN,M(y, z) satisfies Lipschitz conditions on Yt,τ × Zt. That is,

||uN,M(y′, z′)− uN,M(y′′, z′′)|| ≤ L(||y′ − y′′||+ ||z′ − z′′||)

∀(y′, z′), (y′′, z′′) ∈ Yt,τ × Zt, (5.5.17)

where L is a constant;

(iii) let yN,M
t (τ)

def
= yN,M

z∗(t)(τ) be the solution of the system (5.5.3) considered with z =

z∗(t) and with the initial condition yz(0) = y∗t (0). We assume that, for any τ > 0,

lim
N→∞

lim sup
M→∞

meas{Pt,τ (N,M)} = 0, (5.5.18)

where

Pt,τ (N,M)
def
= {τ ′ ∈ [0, τ ] : yN,M

t (τ ′) /∈ Yt,τ ′}. (5.5.19)

Theorem 5.5.8 Let Assumptions 5.5.1, 5.5.3, 5.5.5, 5.5.6 and 5.5.7 be satisfied. Then

the family (uN,M
z (·), yN,M

z (·)) introduced in Assumption 5.5.5 (i) is a β(N,M)- near

optimal ACG family, where

lim
N→∞

lim sup
M→∞

β(N,M) = 0. (5.5.20)

Also,

lim
N→∞

lim sup
M→∞

ρ(ξ̄N,M , ξ∗) = 0, (5.5.21)

where ξ̄N,M is defined by (5.5.11).

Proof. The proof is given in Section 5.6. It is based on Lemma 5.5.9 stated at the

end of this section. Note that in the process of the proof of the theorem it is established

that

lim
N→∞

lim sup
M→∞

max
t′∈[0,t]

||zN,M(t′)− z∗(t′)|| = 0 ∀t ∈ [0,∞), (5.5.22)
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where zN,M(·) is the solution of (5.5.14). Also, it is shown that

lim
N→∞

lim sup
M→∞

ρ(µN,M(zN,M(t)), µ∗(t)) = 0 (5.5.23)

for almost all t ∈ [0,∞), and

lim
N→∞

lim sup
M→∞

|Ṽ N,M − G̃∗| = 0, (5.5.24)

where

Ṽ N,M def
= lim

T →∞

1

T

∫ T

0

q̃(µN,M(zN,M(t)), zN,M(t))dt. (5.5.25)

The relationship (5.5.24) implies the statement of the theorem with

β(N,M)
def
= Ṽ N,M − G̃∗ (5.5.26)

(see Definition 5.1.3).

Lemma 5.5.9 Let the assumptions of Theorem 5.5.8 be satisfied and let t ∈ [0,∞) be

such that Zt 6= ∅. Then,

lim
N→∞

lim sup
M→∞

max
τ ′∈[0,τ ]

|yN,M
t (τ ′)− y∗t (τ

′)|| = 0 ∀τ ∈ [0,∞). (5.5.27)

Also,

lim
N→∞

lim sup
M→∞

||uN,M(yN,M
t (τ), z∗(t))− u∗t (τ)|| = 0 (5.5.28)

for almost all τ ∈ [0,∞).

Proof. The proof is given in Section 5.6.�

Remark 5.5.10 Note that from (5.3.13) and (5.5.21) it follows that

lim
N→∞

lim sup
M→∞

ρ(ξ̄N,M , ξN,M) = 0, (5.5.29)

where ξN,M is an arbitrary optimal solution of the (N,M)-approximating averaged prob-

lem (5.3.4).

5.6 Proof of Theorem 5.5.8
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Note, first of all, that there exists an optimal solution ξN,M of the problem (5.3.4)

which is presented as a convex combination of (no more than N + 1) Dirac measures

(see, e.g., Theorems A.4 and A.5 in [95]). That is,

ξN,M =

KN,M∑

k=1

ξN,M
k δ(µN,M

k
,zN,M

k
), (5.6.1)

where δ(µN,M

k
,zN,M

k
) is the Dirac measure concentrated at (µN,M

k , zN,M
k ) and

(µN,M
k , zN,M

k ) ∈ FM , ξN,M
k > 0, k = 1, ..., KN,M ≤ N+1;

KN,M∑

k=1

ξN,M
k = 1. (5.6.2)

Lemma 5.6.1 For any k = 1, ..., KN,M ,

µN,M
k = argminµ∈WM (zN,M

k
){q̃(µ, z

N,M
k ) + (∇ζN,M(zN,M

k ))T g̃(µ, zN,M
k )}. (5.6.3)

That is, µN,M
k is a minimizer of the problem

min
µ∈WM (zN,M

k
)
{q̃(µ, zN,M

k ) + (∇ζN,M(zN,M
k ))T g̃(µ, zN,M

k ) }. (5.6.4)

Proof. From (5.3.20) and (5.3.23) it follows that

G̃N,M = min
(µ,z)∈FM

{q̃(µ, z) + (∇ζN,M(z))T g̃(µ, z) }. (5.6.5)

Also, for any ξ ∈ W̃N,M , ∫

FM

q̃(µ, z)ξ(dµ, dz)

=

∫

FM

[q̃(µ, z) + (∇ζN,M(z))T g̃(µ, z)]ξ(dµ, dz).

Consequently, for ξ = ξN,M ,

G̃N,M =

∫

FM

q̃(µ, z)ξN,M(dµ, dz)

=

∫

FM

[q̃(µ, z) + (∇ζN,M(z))T g̃(µ, z)]ξN,M(dµ, dz)

=
KN,M∑

k=1

ξN,M
k [q̃(µN,M

k , zN,M
k ) + (∇ζN,M(zN,M

k ))T g̃(µN,M
k , zN,M

k )].
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Since (µN,M
k , zN,M

k ) ∈ FM , from the equalities above and from (5.6.5) it follows that

q̃(µN,M
k , zN,M

k ) + (∇ζN,M(zN,M
k ))T g̃(µN,M

k , zN,M
k )

= min
(µ,z)∈FM

{q̃(µ, z) + (∇ζN,M(z))T g̃(µ, z) }, k = 1, ..., KN,M .

That is, for k = 1, ..., KN,M ,

(µN,M
k , zN,M

k ) = argmin(µ,z)∈FM
{q̃(µ, z) + (∇ζN,M(z))T g̃(µ, z) }.

The latter imply (5.6.3).�

Lemma 5.6.2 In the presentation (5.6.1) of an optimal solution ξN,M of the problem

(5.3.4), µN,M
k can be chosen as follows:

µN,M
k =

JN,M,k∑

j=1

bN,M,k
j δ(uN,M,k

j ,yN,M,k
j ), k = 1, ..., KN,M , (5.6.6)

where

bN,M,k
j > 0, j = 1, ..., JN,M,k,

JN,M,k∑

j=1

bN,M,k
j = 1, (5.6.7)

and

JN,M,k ≤ N +M + 2. (5.6.8)

In (5.6.6), δ(uN,M,k
j ,yN,M,k

j ) ∈ P(U × Y ) are the Dirac measures concentrated at

(uN,M,k
j , yN,M,k

j ) ∈ U × Y, j = 1, ..., JN,M,k, with

uN,M,k
j = argminu∈U{q(u, y

N,M,k
j , zN,M

k ) + (∇ζN,M(zN,M
k ))Tg(u, yN,M,k

j , zN,M
k )

+(∇ηN,M(yN,M,k
j ))Tf(u, yN,M,k

j , zN,M
k )}. (5.6.9)

Proof. Assume that ξN,M
k , k = 1, ..., KN,M , in (5.6.1) are fixed. Then µN,M

k , k =

1, ..., KN,M , form an optimal solution of the following problem

min
{µk}

{
KN,M∑

k=1

ξN,M
k

∫

U×Y

q(u, y, zN,M
k )µk(du, dy) }, (5.6.10)

where minimization is over µk ∈ P(U × Y ), k = 1, ..., KN,M , that satisfy the following
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constraints

KN,M∑

k=1

ξN,M
k

∫

U×Y

(∇ψi(z
N,M
k ))Tg(u, y, zN,M

k )µk(du, dy) = 0, i = 1, ..., N, (5.6.11)

∫

U×Y

(∇φj(y))
T f(u, y, zN,M

k )µk(du, dy) = 0, j = 1, ...,M, k = 1, ..., KN,M .

(5.6.12)

In fact, if µN,M
k , k = 1, ..., KN,M is an optimal solution of the problem (5.6.10)-(5.6.12),

then ξ̂N,M =
∑KN,M

k=1 ξN,M
k δ(µN,M

k
,zN,M

k
) will be an optimal solution of the problem (5.3.4).

Let us show that the former has an optimal solution that can be presented as the sum

in the right-hand side of (5.6.6). To this end, note that the problem (5.6.10)-(5.6.12)

can be rewritten in the following equivalent form

min
{ωk

0 ,ω
k
i ,υ

k
j }
{
KN,M∑

k=1

ξN,M
k ωk

0}, (5.6.13)

where minimization is over ωk
0 , ω

k
i , υ

k
j , i = 1, ..., N, j = 1, ...,M, k = 1, ..., KN,M , such

that
KN,M∑

k=1

ξN,M
k ωk

i = 0, i = 1, ..., N, (5.6.14)

υkj = 0, j = 1, ...,M, k = 1, ..., KN,M (5.6.15)

and such that

{ωk
0 , ω

k
i , υ

k
j , i = 1, ..., N, j = 1, ...,M, } ∈ c̄oVk, k = 1, ..., KN,M (5.6.16)

where

Vk = {ωk
0 , ω

k
i , υ

k
j : ωk

0 = q(u, y, zN,M
k ), ωk

i = (∇ψi(z
N,M
k ))Tg(u, y, zN,M

k ),

υkj = (∇φj(y))
T f(u, y, zN,M

k ), i = 1, ..., N, j = 1, ...,M ; (u, y) ∈ U × Y }.

By Caratheodory’s theorem,

c̄oVk = ∪{bl}{b1Vk + ....+ bN+M+2Vk },

where the union is taken over all bl ≥ 0, l = 1, ..., N+M+2, such that
∑N+M+2

l=1 bl = 1.
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Thus, an optimal solution of the problem (5.6.14)-(5.6.16) can be presented in the form

ω̄k
0 =

N+M+2∑

l=1

b̄kl q(u
k
l , y

k
l , z

N,M
k ), ω̄k

i =

N+M+2∑

l=1

b̄kl (∇ψi(z
N,M
k ))Tg(ukl , y

k
l , z

N,M
k ),

ῡkj =
N+M+2∑

l=1

b̄kl (∇φj(y
k
l ))

T f(ukl , y
k
l , z

N,M
k ), i = 1, ..., N, j = 1, ...,M.

The latter implies that there exists an optimal solution of the problem (5.6.10)-(5.6.12)

that is presentable in the form (5.6.6).

Let us now show that the relationships (5.6.9) are valid. Note, firstly, that from

(5.3.25) and (5.3.28) it follows that

DN,M(z) = min
(u,y)∈U×Y

{q(u, y, z) + (∇ζN,M(z))T g(u, y, z) + (∇ηN,M(y))Tf(u, y, z)}.

(5.6.17)

By Lemma 5.6.1, µN,M
k is an optimal solution of the problem (5.6.4). That is,

∫

U×Y

[q(u, y, zN,M
k ) + (∇ζN,M(zN,M

k ))Tg(u, y, zN,M
k )]µN,M

k (du, dy)

= min
µ∈WM (zN,M

k
)

∫

U×Y

[q(u, y, zN,M
k ) + (∇ζN,M(zN,M

k ))Tg(u, y, zN,M
k )]µ(du, dy)

= DN,M(zN,M
k ),

the latter equality being due to the duality relationships between the problem (5.3.25)

and (5.3.26). Since µN,M
k ∈ WM(zN,M

k ),

∫

U×Y

[
q(u, y, zN,M

k ) + (∇ζN,M(zN,M
k ))Tg(u, y, zN,M

k )
]
µN,M
k (du, dy)

=

∫

U×Y

[
q(u, y, zN,M

k ) + (∇ζN,M(zN,M
k ))Tg(u, y, zN,M

k )

+(∇ηN,M(y))Tf(u, y, zN,M
k )

]
µN,M
k (du, dy).

Consequently,

∫

U×Y

[
q(u, y, zN,M

k ) + (∇ζN,M(zN,M
k ))Tg(u, y, zN,M

k )

+(∇ηN,M(y))Tf(u, y, zN,M
k )

]
µN,M
k (du, dy) = DN,M(zN,M

k ).

After the substitution of (5.6.6) into the equality above and taking into account (5.6.7),
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one can obtain

JN,M,k∑

j=1

bN,M,k
j

[
q(uN,M,k

j , yN,M,k
j , zN,M

k ) + (∇ζN,M(zN,M
k ))Tg(uN,M,k

j , yN,M,k
j , zN,M

k )

+(∇ηN,M(yN,M,k
j ))Tf(N,M,k

j , yN,M,k
j , zN,M

k )−DN,M(zN,M
k )

]
= 0. (5.6.18)

By (5.6.17), from (5.6.18) it follows that

q(uN,M,k
j , yN,M,k

j , zN,M
k ) + (∇ζN,M(zN,M

k ))Tg(uN,M,k
j , yN,M,k

j , zN,M
k )

+(∇ηN,M(yN,M,k
j ))Tf(uN,M,k

j , yN,M,k
j , zN,M

k ) = DN,M(zN,M
k ) ∀j = 1, ..., JM,N,k.

Also by (5.6.17), the latter implies

(uN,M,k
j , yN,M,k

j ) = argmin(u,y)∈U×Y {q(u, y, z
N,M
k ) + (∇ζN,M(zN,M

k ))Tg(u, y, zN,M
k )

+ (∇ηN,M(y))Tf(u, y, zN,M
k )}, (5.6.19)

which, in turn, implies (5.6.9). �

Lemma 5.6.3 For any t ∈ [0,∞) such that (5.5.5) is satisfied, there exists a sequence

(µN,M
kN,M , z

N,M
kN,M ) ∈ {(µN,M

k , zN,M
k ), k = 1, ..., KN,M}, N = 1, 2, ..., M = 1, 2, ...,

(5.6.20)

(with {(µN,M
k , zN,M

k ), k = 1, ..., KN,M} being the set of concentration points of the Dirac

measures in (5.6.1)) such that

lim
N→∞

lim sup
M→∞

(
ρ(µ∗(t), µN,M

kN,M ) + ||z∗(t)− zN,M
kN,M ||

)
= 0. (5.6.21)

Let t be such that (5.6.21) is valid and let (µN,M
kN,M , z

N,M
kN,M ) be as in (5.6.21), then for

any τ ∈ [0,∞) such that (5.5.9) is satisfied, there exists a sequence

(uN,M,kN,M

jN,M , yN,M,kN,M

jN,M ) ∈ {(uN,M,kN,M

j , yN,M,kN,M

j ), j = 1, ..., JN,M,kN,M

},

N = 1, 2, ..., M = 1, 2, ..., (5.6.22)

({(uN,M,kN,M

j , yN,M,kN,M

j ), j = 1, ..., JM,N,kN,M

} being the set of concentration points of
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the Dirac measures in (5.6.6) taken with k = kN,M) such that

lim
N→∞

lim sup
M→∞

(
||u∗t (τ)− uN,M,kN,M

jN,M ||+ ||y∗t (τ))− yN,M,kN,M

jN,M ||
)
= 0. (5.6.23)

Proof. Assume that (5.6.21) is not true. Then there exists a number r > 0 and

sequences Ni, Mi,j with i = 1, 2, ..., j = 1, 2, ... and with lim
i→∞

Ni = ∞, lim
j→∞

Mi,j = ∞

such that

dist((µ∗(t), z∗(t)),ΘNi,Mi,j ) ≥ r, (5.6.24)

where ΘN,M is the set of the concentration points of the Dirac measures in (5.6.1), that

is,

ΘN,M def
= {(µN,M

k , zN,M
k ), k = 1, ..., KN,M},

taken with N = Ni and M =Mi,j, and where

dist((µ, z),ΘN,M)
def
= min

(µ′,z′)∈ΘN,M
{ρ(µ, µ′) + ||z − z′||}.

Hence,

(µ
Ni,Mi,j

k , z
Ni,Mi,j

k ) /∈ Br(µ̄, z̄), k = 1, ..., KNi,Mi,j , j = 1, 2, ... .

The latter implies that

ξNi,Mi,j(Br(µ̄, z̄)) = 0, j = 1, 2, ... , (5.6.25)

where ξN,N is defined by (5.6.1). Due to the fact that the optimal solution ξ∗ of the

IDLP problem (4.2.24) is unique (Assumption 5.5.1(i)), the relationship (5.3.13) is

valid. Consequently,

lim
i→∞

lim sup
j→∞

ρ(ξNi,Mi,j , ξ∗) = 0. (5.6.26)

From (5.6.25) and (5.6.26) it follows that

ξ∗(Br(µ̄, z̄)) ≤ lim
i→∞

lim sup
j→∞

ξNi,Mi,j(Br(µ̄, z̄)) = 0.

The latter contradicts to (5.5.5). Thus, (5.6.21) is proved.

Let us now prove the validity of (5.6.23). Assume it is not valid. Then there

exists r > 0 and sequences Ni , Mi,j with i = 1, 2, ... , j = 1, 2, ... , and with

lim
i→∞

Ni = ∞, lim
j→∞

Mi,j = ∞ such that

dist((u∗t (τ), y
∗
t (τ)), θ

Ni,Mi,j) ≥ r, (5.6.27)
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where θN,M is the set of the concentration points of the Dirac measures in (5.6.6),

θN,M def
= {(uN,M,kN,M

j , yN,M,kN,M

j ), j = 1, ..., JN,M,kN,M

},

taken with k = kN,M and with N = Ni, M =Mi,j , and where

dist((u, y), θN,M)
def
= min

(u′,y′)∈θN,M
{||u− u′||+ ||y − y′||}.

From (5.6.27) it follows that

dist((u∗t (τ), y
∗
t (τ)), θ

Ni,Mi,j ) ≥ r, i, j = 1, 2, ... . (5.6.28)

Hence,

(u
Ni,Mi,j ,k

Ni,Mi,j

j , y
Ni,Mi,j ,k

Ni,Mi,j

j ) /∈ Br(ū, ȳ), j = 1, ..., JNi,Mi,j ,k
Ni,Mi,j

, i, j = 1, 2, ... .

The latter implies that

µ
Ni,Mi,j

kNi,Mi,j
(Br(ū, ȳ)) = 0, i, j = 1, 2, ... , (5.6.29)

where µN,M
k is defined by (5.6.6) (taken with k = kNi,Mi,j , N = Ni and M =Mi,j).

From (5.6.21) it follows, in particular, that

lim
N→∞

lim sup
M→∞

ρ(µ∗(t), µN,M
kN,M ) = 0 ⇒ lim

i→∞
lim sup
j→∞

ρ(µ∗(t), µ
Ni,Mi,j

kNi,Mi,j
) = 0. (5.6.30)

The later and (5.6.29) lead to

µ∗(t)(Br(ū, ȳ)) ≤ lim
i→∞

lim sup
j→∞

µ
Ni,Mi,j

kNi,Mi,j
(Br(ū, ȳ)) = 0,

which contradicts to (5.5.9). Thus (5.6.23) is proved. �

Lemma 5.6.4 For any t ∈ [0,∞) such that Zt is not empty and (5.5.5) is valid for

an arbitrary r > 0, and for any τ ∈ [0,∞) such that Yt,τ is not empty and (5.5.9)

is valid for an arbitrary r > 0 ,

lim
N→∞

lim sup
M→∞

||u∗t (τ)− uN,M(y∗t (τ), z
∗(t))|| = 0. (5.6.31)

Proof. By Lemma 5.6.3, there exist (µN,M
kN,M , z

N,M
kN,M ) such that (5.6.21) is satisfied
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and there exist (uN,M,kN,M

jN,M , yN,M,kN,M

jN,M ) such that (5.6.23) is satisfied.

Note that, due to (5.6.9),

uN,M,kN,M

jN,M = u(yN,M,kN,M

jN,M , zN,M
kN,M ), (5.6.32)

where u(y, z) is as in (5.5.2). From (5.6.21) and (5.6.23) it follows that zN,M
kN,M ∈ Zt and

yN,M,kN,M

jN,M ∈ Yt,τ for N and M large enough. Hence, one can use (5.5.17) to obtain

||u∗t (τ)− uN,M(y∗t (τ), z
∗(t))|| ≤ ||u∗t (τ)− uN,M,kN,M

jN,M ||

+||u(yN,M,kN,M

jN,M , zN,M
kN,M )− uN,M(y∗t (τ), z

∗(t))|| ≤ ||u∗t (τ)− uN,M,kN,M

jN,M ||

+L(||y∗t (τ)− yN,M,kN,M

jN,M ||+ ||z∗(t)− zN,M
kN,M ||).

By (5.6.21) and (5.6.23), the latter implies (5.6.31). Since Yt,τ is not empty for almost

all τ ∈ [0,∞) (Assumption 5.5.7 (i)), the convergence (5.6.31) takes place for almost

all τ ∈ [0,∞). �

Proof of Lemma 5.5.9. Let t ∈ [0,∞) be such that Zt is not empty and (5.5.5)

is satisfied for an arbitrary r > 0. Note that, from the assumptions made, it follows

that (5.6.31) is valid for almost all τ ∈ [0,∞).

Take an arbitrary τ ∈ [0,∞) and subtract the equation

y∗t (τ) = y∗t (0) +

∫ τ

0

f(u∗t (τ
′), y∗t (τ

′), z∗(t))dτ ′ (5.6.33)

from the equation

yN,M
t (τ) = y∗t (0) +

∫ τ

0

f(uN,M(yN,M
t (τ ′), z∗(t)), yN,M

t (τ ′), z∗(t))dτ ′. (5.6.34)

We will obtain

||yN,M
t (τ)−y∗t (τ)|| ≤

∫ τ

0

||f(uN,M(yN,M
t (τ ′), z∗(t)), yN,M

t (τ ′), z∗(t))

−f(u∗t (τ
′), y∗t (τ

′), z∗(t))||dτ ′

≤

∫ τ

0

||f(uN,M(yN,M
t (τ ′), z∗(t)), yN,M

t (τ ′), z∗(t))−f(uN,M(y∗t (τ
′), z∗(t)), y∗t (τ

′), z∗(t))||dτ ′

+

∫ τ

0

||f(uN,M(y∗t (τ
′), z∗(t)), y∗t (τ

′), z∗(t))− f(u∗t (τ
′), y∗t (τ

′), z∗(t))||dτ ′. (5.6.35)

103



Chapter 5 Proof of Theorem 5.5.8

Using Assumption 5.5.7 (ii),(iii), one can derive that

∫ τ

0

||f(uN,M(yN,M
t (τ ′), z∗(t)), yN,M

t (τ ′), z∗(t))− f(uN,M(y∗t (τ
′), z∗(t)), y∗t (τ

′), z∗(t))||dτ ′

≤

∫

τ ′ /∈Pt,τ (N,M)

||f(uN,M(yN,M
t (τ ′), z∗(t)), yN,M

t (τ ′), z∗(t))

−f(uN,M(y∗t (τ
′), z∗(t)), y∗t (τ

′), z∗(t))||dτ ′

+

∫

τ ′∈Pt,τ (N,M)

(||f(uN,M(yN,M
t (τ ′), z∗(t)), yN,M

z∗(t)(τ
′), z∗(t))||

+||f(uN,M(y∗t (τ
′), z∗(t)), y∗t (τ

′), z∗(t))||)dτ ′

≤ L1

∫ τ

0

||yN,M
t (τ ′)− y∗t (τ

′)||dτ ′ + L2meas{Pt,τ (N,M)}, (5.6.36)

where L1 is a constant defined (in an obvious way) by Lipschitz constants of f(·) and

uN,M(·), and L2
def
= 2 max(u,y,z)∈U×Y ×Z{||f(u, y, z)||}.

Also, due to (5.6.31) and the dominated convergence theorem (see, e.g., p. 49 in

[15])

lim
N→∞

lim sup
M→∞

∫ τ

0

||f(uN,M(y∗t (τ
′), z∗(t)), y∗t (τ

′), z∗(t))− f(u∗t (τ
′), y∗t (τ

′), z∗(t))||dτ ′ = 0.

(5.6.37)

Let us introduce the notation

κt,τ (N,M)
def
= L2 meas{Pt,τ (N,M)}

+

∫ τ

0

||f(uN,M(y∗t (τ
′), z∗(t)), y∗t (τ

′), z∗(t))− f(u∗t (τ
′), y∗t (τ

′), z∗(t))||dτ ′

and rewrite the inequality (5.6.35) in the form

||yN,M
t (τ)− y∗t (τ)|| ≤ L1

∫ τ

0

||yN,M
t (τ ′)− y∗t (τ

′)||dτ ′ + κt,τ (N,M). (5.6.38)

By Gronwall-Bellman lemma (see, e.g., p.218 in [20]), it follows that

max
τ ′∈[0,τ ]

||yN,M
t (τ ′)− y∗t (τ

′)|| ≤ κt,τ (N,M)eL1τ . (5.6.39)

Since, by (5.5.18) and (5.6.37),

lim
N→∞

lim sup
M→∞

κt,τ (N,M) = 0, (5.6.40)
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the inequality (5.6.39) implies (5.5.27).

By (5.5.27), yN,M
t (τ) ∈ Yt,τ for N and M large enough (for τ ∈ [0,∞) such that

the ball Yt,τ is not empty). Hence,

||uN,M(yN,M
t (τ), z∗(t))− u∗t (τ)|| ≤ ||uN,M(yN,M

t (τ), z∗(t))− uN,M(y∗t (τ), z
∗(t))||

+||uN,M(y∗t (τ), z
∗(t))− u∗t (τ)|| ≤ L||yN,M

z∗(t)(τ)− y∗t (τ)||+ ||uN,M(y∗t (τ), z
∗(t))− u∗t (τ)||.

The latter implies (5.5.28) (by (5.5.27) and (5.6.31)).�

Proof of Theorem 5.5.8. Let t ∈ [0,∞) be such that Zt is not empty and (5.5.5)

is satisfied for an arbitrary r > 0. By (5.5.8) and (5.5.10), for any continuous h(u, y)

and for an arbitrary small α > 0, there exists S > 0 such that

|
1

S

∫ S

0

h(u∗t (τ), y
∗
t (τ))dτ −

∫

U×Y

h(u, y)µ∗(t)(du, dy)| ≤
α

2
(5.6.41)

and

|
1

S

∫ S

0

h(uN,M(yN,M
t (τ), z∗(t)), yN,M

t (τ))dτ −

∫

U×Y

h(u, y)µN,M(z∗(t))(du, dy)| ≤
α

2
.

(5.6.42)

Using (5.6.42) and (5.6.41), one can obtain

|

∫

U×Y

h(u, y)µN,M(z∗(t))(du, dy)−

∫

U×Y

h(u, y)µ∗(t)(du, dy)|

≤ |
1

S

∫ S

0

h(uN,M(yN,M
t (τ), z∗(t)), yN,M

t (τ))dτ −
1

S

∫ S

0

h(u∗t (τ), y
∗
t (τ))dτ |+ α.

Due to Lemma 5.5.9, the latter implies the following inequality

lim
N→∞

lim sup
M→∞

|

∫

U×Y

h(u, y)µN,M(z∗(t))(du, dy)−

∫

U×Y

h(u, y)µ∗(t)(du, dy)| ≤ α,

which, in turn, implies

lim
N→∞

lim sup
M→∞

|

∫

U×Y

h(u, y)µN,M(z∗(t))(du, dy)−

∫

U×Y

h(u, y)µ∗(t)(du, dy)| = 0

(5.6.43)

(due to the fact that α can be arbitrary small). Since h(u, y) is an arbitrary continuous

function, from (5.6.43) it follows that

lim
N→∞

lim sup
M→∞

ρ(µN,M(z∗(t)), µ∗(t)) = 0. (5.6.44)
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Note that from the assumptions made it follows that Zt is not empty and (5.5.5) is

satisfied for an arbitrary r > 0 for almost all t ∈ [0,∞). Hence, (5.6.44) is valid for

almost all t ∈ [0,∞).

Taking an arbitrary t ∈ [0,∞) and subtracting the equation

z∗(t) = z0 +

∫ t

0

g̃(µ∗(t′), z∗(t′))dt′ (5.6.45)

from the equation

zN,M(t) = z0 +

∫ t

0

g̃(µN,M(zN,M(t′)), zN,M(t′))dt′, (5.6.46)

one obtains

||zN,M(t)− z∗(t)|| ≤

∫ t

0

||g̃(µN,M(zN,M (t′)), zN,M(t′))− g̃(µ∗(t′), z∗(t′))||dt′

≤

∫ t

0

||g̃(µN,M(zN,M (t′)), zN,M(t′))− g̃(µN,M(z∗(t′)), z∗(t′))||dt′

+

∫ t

0

||g̃(µN,M(z∗(t′)), z∗(t′))− g̃(µ∗(t′), z∗(t′))||dt′. (5.6.47)

From (5.5.13) and from the definition of the set At(N,M) (see (5.5.16)), it follows that

∫ t

0

||g̃(µN,M(zN,M(t′)), zN,M(t′))− g̃(µN,M(z∗(t′)), z∗(t′))||dt′

≤

∫

t′ /∈At(N,M)

||g̃(µN,M(zN,M (t′)), zN,M(t′))− g̃(µN,M(z∗(t′)), z∗(t′))||dt′

+

∫

t′∈At(N,M)

(||g̃(µN,M(zN,M(t′)), zN,M(t′))||+ ||g̃(µN,M(z∗(t′)), z∗(t′))|| )dt′

≤ L

∫ t

0

||zN,M(t′)− z∗(t′)||dt′ + 2Lgmeas{At(N,M)}, (5.6.48)

where Lg
def
= max(u,y,z)∈U×Y×Z ||g(u, y, z)||. This and (5.6.47) allows one to obtain the

inequality

||zN,M(t)− z∗(t)|| ≤ L

∫ t

0

||zN,M(t′)− z∗(t′)||dt′ + κt(N,M), (5.6.49)

where

κt(N,M)
def
= 2Lgmeas{At(N,M)} +

∫ t

0

||g̃(µN,M(z∗(t′)), z∗(t′))− g̃(µ∗(t′), z∗(t′))||dt′.

106



Chapter 5 Proof of Theorem 5.5.8

Note that, by (5.6.44),

lim
N→∞

lim sup
M→∞

∫ t

0

||g̃(µN,M(z∗(t′)), z∗(t′))− g̃(µ∗(t′), z∗(t′))||dt′ = 0, (5.6.50)

which, along with (5.5.15), imply that

lim
N→∞

lim sup
M→∞

κt(N,M) = 0. (5.6.51)

By Gronwall-Bellman lemma, from (5.6.49) it follows that

maxt′∈[0,t]||z
N,M(t′)− z∗(t′)|| ≤ κt(N,M)eLt.

The latter along with (5.6.51) imply (5.5.22).

Let us now establish the validity of (5.5.23). Let t ∈ [0,∞) be such that the ball

Zt introduced in Assumption 5.5.6 is not empty. By triangle inequality,

ρ(µN,M(zN,M(t)), µ∗(t)) ≤ ρ(µN,M(zN,M (t)), µN,M(z∗(t))) + ρ(µN,M(z∗(t)), µ∗(t)).

(5.6.52)

Due to (5.5.22), zN,M (t) ∈ Zt for M and N large enough. Hence, by (5.5.12),

ρ(µN,M(zN,M(t)), µN,M(z∗(t))) ≤ κ(||zN,M(t′)− z∗(t′)||),

which implies that

lim
N→∞

lim sup
M→∞

ρ(µN,M(zN,M (t)), µN,M(z∗(t))) = 0.

The latter, along with (5.6.44) and (5.6.52), imply (5.5.23).

Finally, let us prove (5.5.24). By (5.5.6) and (5.5.11), for any continuous function

h̃(µ, z) : P(P(U ×Y )×Z) → IR1, and for an arbitrary small α > 0, there exists T̃ > 0

such that

|
1

T̃

∫ T̃

0

h̃(µ∗(t), z∗(t))dt−

∫

F

h̃(µ, z)ξ∗(dµ, dz)| ≤
α

2
(5.6.53)

and

|
1

T̃

∫ T̃

0

h̃(µN,M(t), zN,M(t))dt−

∫

F

h̃(µ, z)ξ̄N,M(dµ, dz)| ≤
α

2
. (5.6.54)
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Using (5.6.54) and (5.6.53), one can obtain

|

∫

F

h̃(µ, z)ξ̄N,M(dµ, dz)−

∫

F

h̃(µ, z)ξ∗(dµ, dz)|

≤ |
1

T̃

∫ T̃

0

h̃(µN,M(t), zN,M (t))dt−
1

T̃

∫ T̃

0

h̃(µ∗(t), z∗(t))dt|+ α.

Due to (5.5.22) and (5.5.23), the latter implies the following inequality

lim
N→∞

lim sup
M→∞

|

∫

F

h̃(µ, z)ξ̄N,M(dµ, dz)−

∫

F

h̃(µ, z)ξ∗(dµ, dz)| ≤ α,

which, in turn, implies

lim
N→∞

lim sup
M→∞

|

∫

F

h̃(µ, z)ξ̄N,M(dµ, dz)−

∫

F

h̃(µ, z)ξ∗(dµ, dz)| = 0 (5.6.55)

(due to the fact that α can be arbitrary small). This proves (5.5.21). Taking now

h̃(µ, z) = q̃(µ, z) in (5.6.55) and having in mind that

∫

F

q̃(µ, z)ξ̄N,M(dµ, dz) = lim
T →∞

1

T

∫ T

0

q̃(µN,M(t), zN,M(t))dt

(see (5.5.11)) and that ∫

F

q̃(µ, z)ξ∗(dµ, dz) = G̃∗,

one proves the validity of (5.5.24). This completes the proof of the theorem. �

5.7 Additional comments for Chapter 5

The concept of an ACG family was introduced for singularly perturbed problems with

time discounting criteria of optimality and it was extended to LRAOC problems in

[61]. The consideration of this chapter is based on results of the paper [61].
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6
Asymptotically near optimal controls of the

singularly perturbed problem

In this chapter, we discuss a construction of an asymptotically optimal (near optimal)

controls of singularly perturbed (SP) problems with long run time average criteria.

Namely, in Section 6.1, we indicate a way how asymptotically near optimal controls

of the SP problems can be constructed on the basis of near optimal ACG families.

In Section 6.2, a linear programming based algorithm allowing one to find solutions

of approximating averaged problem and solutions of the corresponding approximating

(averaged and associated) dual problems numerically is discussed. In Section 6.3, we

consider an example of SP optimal control problem, the near optimal solution of which

is obtained with the proposed technique.

109



Chapter 6 Construction of asymptotically near optimal controls of the SP problem

6.1 Construction of asymptotically optimal/near op-

timal controls of the singularly perturbed prob-

lem.

In this section, we describe a way how an asymptotically optimal (near optimal) control

of the SP optimal control problem (4.1.5) can be constructed given that an asymptoti-

cally optimal (near optimal) ACG family is known (a way of construction of the latter

has been discussed in Section 5.5 ).

Definition 6.1.1 A control uǫ(·) will be called asymptotically α-near optimal (α > 0)

in the SP problem (4.1.5) if the solution (yǫ(·), zǫ(·)) of the system (4.1.1)-(4.1.2)obtained

with this control satisfies (4.1.4) (that is, the triplet (uǫ(·), yǫ(·), zǫ(·)) is admissible) and

if

lim
ǫ→0

lim inf
T →∞

1

T

∫ T

0

q(uǫ(t), yǫ(t), zǫ(t))dt ≤ lim inf
ǫ→0

V ∗(ǫ) + α. (6.1.1)

For simplicity, we will be dealing with a special case when f(u, y, z) = f(u, y). That

is, the right hand side in (4.1.1) is independent of z (the SP systems that have such a

property are called “weakly coupled”). Note that in this case the set W (z) defined in

(4.2.3) does not depend on z too. That is, W (z) =W .

Let us also introduce the following assumptions about the functions f(u, y) and

g̃(µ, z).

Assumption 6.1.2 (i) There exists a positive definite matrix A1 such that its eigen-

values are greater than a positive constant and such that

(f(u, y′)− f(u, y′′))TA1(y
′ − y′′) (6.1.2)

≤ −(y′ − y′′)T (y′ − y′′) ∀y′, y′′ ∈ IRm , ∀u ∈ U.

(ii) There exists a positive definite matrix A2 such that its eigenvalues are greater

than a positive constant and such that

(g̃(µ, z′)− g̃(µ, z′′)TA2(z
′ − z′′) (6.1.3)

≤ −(z′ − z′′)T (z′ − z′′) ∀z′, z′′ ∈ IRn , ∀µ ∈ W.

Note that these are Liapunov type stability conditions and, as has been established

in [56], their fulfillment is sufficient for the validity of the statement that the SP system
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is uniformly approximated by the averaged system (see Definition 4.2.3). Also, as can

be readily verified, Assumption 6.1.2(i) implies that the solutions y(τ, u(·), y1) and

y(τ, u(·), y2) of the associated system (4.2.1) obtained with an arbitrary control u(·)

and with initial values y(0) = y1 and y(0) = y2 (y1 and y2 being arbitrary vectors in

Y ) satisfy the inequality

||y(τ, u(·), y1)− y(τ, u(·), y2)|| ≤ c1e
−c2τ ||y1 − y2||, (6.1.4)

where c1, c2 are some positive constants. Similarly, Assumption 6.1.2(ii) implies that

the solutions z(t, µ(·), z1) and z(t, µ(·), z2) of the averaged system (4.2.8) obtained with

an arbitrary control µ(·) and with initial values z(0) = z1 and z(0) = z2 (z1 and z2

being arbitrary vectors in Z) satisfy the inequality

||z(t, µ(·), z1)− z(t, µ(·), z2)|| ≤ c3e
−c4t||z1 − z2||, (6.1.5)

where c3, c4 are some positive constants.

From the validity of (6.1.4) and (6.1.5) it follows that the associated system (4.2.1)

and the averaged system (4.2.8) have unique forward invariant sets which also are

global attractors for the solutions of these systems (see Theorem 3.1(ii) in [52]). For

simplicity, we will assume that Y and Z are these sets.

Let (uN,M
z (τ), yN,M

z (τ)) be the ACG family introduced in Assumptions 5.5.5(i)

and let µN,M(du, dy|z) = µN,M(z), zN,M (t) and µN,M(zN,M (t)) be generated by

this family as assumed in Section 5.5 (all the assumptions made in that section are

supposed to be satisfied in the consideration below). Let yN,M
z (τ, y) stand for the

solution of the associated system (4.2.1) obtained with the control uN,M
z (τ) and with

the initial condition yN,M
z (0, y) = y ∈ Y . From (6.1.4) it follows that

||yN,M
z (τ, y)− yN,M

z (τ)|| ≤ c1e
−c2τ max

y′,y′′∈Y
||y′ − y′′||.

The latter implies that, for any Lipschitz continuous function h(u, y, z), there exists

δ̄h(S), lim
S→∞

δ̄h(S) = 0, such that

|
1

S

∫ S

0

h(uN,M
z (τ), yN,M

z (τ, y), z)dτ−
1

S

∫ S

0

h(uN,M
z (τ), yN,M

z (τ), z)dτ | ≤ δ̄h(S), (6.1.6)
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which, due to (5.5.10), implies that

|
1

S

∫ S

0

h(uN,M
z (τ), yN,M

z (τ, y), z)dτ −

∫

U×Y

h(u, y, z)µN,M(du, dy|z))| (6.1.7)

≤ δh(S) + δ̄h(S)
def
= ¯̄δh(S),

with lim
S→∞

¯̄δh(S) = 0. Hence,

lim
S→∞

ρ(µN,M(S, y), µN,M(z)) ≤ δ(S), lim
S→∞

δ(S) = 0, (6.1.8)

where µN,M(S, y) is the occupational measure generated by the pair (uN,M
z (τ), yN,M

z (τ, y))

on the interval [0, S]. That is, the family of measures µN,M(z) is uniformly attainable

by the associated system with the use of the control uN,M
z (τ) (see Definition 4.3 in

[64]).

Partition the interval [0,∞) by the points

tl = l∆(ǫ), l = 0, 1, ... , (6.1.9)

where ∆(ǫ) > 0 is such that

lim
ǫ→0

∆(ǫ) = 0, lim
ǫ→0

∆(ǫ)

ǫ
= ∞. (6.1.10)

Define the control uN,M
ǫ (t) by the equation

uN,M
ǫ (t)

def
= uN,M

zN,M(tl)
(
t− tl
ǫ

) ∀t ∈ [tl, t1+1), l = 0, 1, ... . (6.1.11)

Theorem 6.1.3 Let the assumptions of Theorem 5.5.8 be satisfied and let the function

µN,M(t)
def
= µN,M(zN,M(t)) (6.1.12)

has the following piecewise continuity property: for any T > 0, there may exist no

more than a finite number of points Ti ∈ (0, T ), i = 1, ...k, , with

k ≤ cT , c = const, (6.1.13)
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such that, for any t 6= Ti,

max{||g̃(µN,M(t′), z)− g̃(µN,M(t), z)||, |q̃(µN,M(t′), z)− q̃(µN,M(t), z)|} ≤ ν(t− t′)

(6.1.14)

∀t′ ∈ (t− at, t+ at)

where ν(·) is monotone decreasing, with lim
θ→0

ν(θ) = 0, and where at > 0, with rδ,

rδ
def
= inf{at : t /∈ ∪k

i=1(Ti − δ, Ti + δ)},

being a positive continuous function of δ (which may tend to zero when δ tends to

zero). Let also Assumption 6.1.2 be valid and the solution (yN,M
ǫ (·), zN,M

ǫ (·)) of the

system (4.1.1)-(4.1.2) obtained with the control uN,M
ǫ (·) and with the initial condi-

tions (yN,M
ǫ (0), zN,M

ǫ (0)) = (yN,M(0), zN,M(0)) satisfies the inclusion (4.1.4). Then

the control uN,M
ǫ (·) is β(N,M)-asymptotically near optimal in the problem (4.1.5),

where β(N,M) is defined in (5.5.26). Also,

lim
ǫ→0

sup
t∈[0,∞)

||zN,M
ǫ (t)− zN,M (t)|| = 0 (6.1.15)

and, if the triplet (uN,M
ǫ (·), yN,M

ǫ (·), zN,M
ǫ (·)) generates the occupational measure γN,M

ǫ

on the interval [0,∞) (see (1.1.18)), then

ρ(γN,M
ǫ ,Φ(ξ̄N,M)) ≤ κ(ǫ) where lim

ǫ→0
κ(ǫ) = 0, (6.1.16)

with ξ̄N,M being the occupational measure generated by (µN,M(·), zN,M(·)) (see (5.5.11))

and the map Φ(·) being defined by (4.3.4).

Remark 6.1.4 Note that, in case when the function µN,M(t) is periodic (as in the nu-

merical example considered in Section 6.3 below) the inequality (6.1.13) will be satisfied

if µN,M(t) is picewise continuous.

Proof. Denote by z(t) the solution of the differential equation

z′(t) = g̃(µN,M(t), z(t)) (6.1.17)

considered on the interval [T0, T0 + T ] that satisfies the initial condition

z(T0) = z ∈ Z. (6.1.18)
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Also, denote by z̄(t) the solution of the differential equation

z′(t) = g̃(µ̄N,M(t), z(t)) (6.1.19)

considered on the same interval [T0, T0 + T ] and satisfying the same initial condition

(6.1.18), where µ̄N,M(t) is the piecewise constant function defined as follows

µ̄N,M(t)
def
= µN,M(tl) ∀t ∈ [tl, tl+1), l = 0, 1, ... . (6.1.20)

Using the piecewise continuity property (6.1.14), it can be readily established (using a

standard argument, see, e.g., the proof of Theorem 4.5 in [64]) that

max
t∈[T0,T0+T ]

||z̄(t)− z(t)|| ≤ κ1(ǫ, T ), where lim
ǫ→0

κ1(ǫ, T ) = 0. (6.1.21)

The latter implies, in particular,

max
t∈[0,T0]

||zN,M(t)− z̄N,M (t)|| ≤ κ1(ǫ, T0), (6.1.22)

where z̄N,M(t) is the solution of (6.1.19) that satisfies the initial condition z̄N,M (0) =

zN,M (0).

Choose now T0 in such a way that

c3e
−c4T0 def

= a < 1 (6.1.23)

and denote by z̄N,M
1 (t) the solution of the system (6.1.19) considered on the interval

[T0, 2T0] with the initial condition z̄N,M
1 (T0) = zN,M (T0). From (6.1.5) and (6.1.22) it

follows that

||z̄N,M
1 (2T0)− z̄N,M (2T0)|| ≤ a||zN,M (T0)− z̄N,M(T0)|| ≤ aκ1(ǫ, T0). (6.1.24)

Also, taking into account the validity of (6.1.21), one can write down

||zN,M(2T0)− z̄N,M (2T0)|| ≤ ||zN,M(2T0)− z̄N,M
1 (2T0)|| + ||z̄N,M

1 (2T0)− z̄N,M(2T0)||

≤ κ1(ǫ, T0) + aκ1(ǫ, T0) ≤
κ1(ǫ, T0)

1− a
.
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By continuing in a similar way, one can prove that, for any k = 1, 2, ... ,

||zN,M(kT0)− z̄N,M(kT0)|| ≤ (1 + a + ...+ ak−1)κ1(ǫ, T0) ≤
κ1(ǫ, T0)

1− a
.

Hence, by (6.1.5),

max
t∈[kT0,(k+1)T0]

||zN,M(t)− z̄N,M(t)|| ≤ c3
κ1(ǫ, T0)

1− a
∀k = 0, 1, ...

and, consequently,

sup
t∈[0,∞)

||zN,M(t)− z̄N,M(t)|| ≤ c3
κ1(ǫ, T0)

1− a

def
= κ2(ǫ), lim

ǫ→0
κ2(ǫ) = 0. (6.1.25)

Using (6.1.25), one can obtain

|
1

T

∫ T

0

q̃(µN,M(t), zN,M (t))dt−
1

T

∫ T

0

q̃(µ̄N,M(t), z̄N,M (t))dt|

≤
1

T

∫ T

0

|q̃(µN,M(t), zN,M (t))− q̃(µ̄N,M(t), zN,M(t))|dt + Lκ2(ǫ)

≤
1

T

⌊ T

∆(ǫ)
⌋∑

l=0

∫ tl+1

tl

|q̃(µN,M(t), zN,M(t))− q̃(µN,M(tl), z
N,M(t))|dt + Lκ2(ǫ) + 2K∆(ǫ)

(6.1.26)

∀T ≥ 1,

where ⌊·⌋ stands for the floor function (⌊x⌋ is the maximal integer number that is less

or equal than x), L is a Lipschitz constant (for simplicity it is assumed that q(u, y, z)

is Lipschitz continuous in z) and K
def
= max

(u,y,z)∈U×Y×Z
|q(u, y, z)|.

Without loss of generality, one may assume that rδ is decreasing with δ and that

rδ ≤ δ (the later can be achieved by replacing rδ with min{δ, rδ} if necessary). Having

this in mind, define δ(ǫ) as the solution of the problem

min{δ : rδ ≥ ∆
1
2 (ǫ)}. (6.1.27)

That is,

rδ(ǫ) = ∆
1
2 (ǫ). (6.1.28)

Note that, by construction,

lim
ǫ→0

δ(ǫ) = 0, δ(ǫ) ≥ ∆
1
2 (ǫ). (6.1.29)
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By (6.1.14), if tl /∈ ∪k
i=1(Ti − δ(ǫ), Ti + δ(ǫ))

∫ tl+1

tl

|q̃(µN,M(t), zN,M (t))dt− q̃(µN,M(tl), z
N,M(t))|dt ≤ ∆(ǫ)ν(∆(ǫ)). (6.1.30)

Also, if tl ∈ ∪k
i=1(Ti − δ(ǫ), Ti + δ(ǫ))

∫ tl+1

tl

|q̃(µN,M(t), zN,M (t))dt− q̃(µN,M(tl), z
N,M(t))|dt ≤ 2K∆(ǫ). (6.1.31)

Taking (6.1.13), (6.1.30) and (6.1.31) into account, one can use (6.1.26) to obtain the

following estimate

∣∣∣
1

T

∫ T

0

q̃(µN,M(t), zN,M(t))dt−
1

T

∫ T

0

q̃(µ̄N,M(t), z̄N,M(t))dt
∣∣∣

≤
1

T
⌊

T

∆(ǫ)
⌋∆(ǫ)ν(∆(ǫ)) +

1

T
(cT )

[2δ(ǫ)
∆(ǫ)

+ 2
](

2K∆(ǫ)
)

+ Lκ2(ǫ) + 2K∆(ǫ)

def
= κ3(ǫ) ∀T ≥ 1.

Thus,

sup
T ≥1

|
1

T

∫ T

0

q̃(µN,M(t), zN,M(t))dt−
1

T

∫ T

0

q̃(µ̄N,M(t), z̄N,M(t))dt| ≤ κ3(ǫ), (6.1.32)

lim
ǫ→0

κ3(ǫ) = 0.

Denote by ¯̄z(t) the solution of the differential equation (6.1.19) considered on

the interval [T0, T0 + T ] and satisfying the initial condition ¯̄z(T0) = zN,M
ǫ (T0), where

T0
def
= l0∆(ǫ) for some l0 ≥ 0. Subtracting the equation

¯̄z(tl+1) = ¯̄z(tl) +

∫ tl+1

tl

g̃(µN,M(tl), ¯̄z(t))dt, l ≥ l0,

from the equation

zN,M
ǫ (tl+1) = zN,M

ǫ (tl) +

∫ tl+1

tl

g(uzN,M(tl)(
t− tl
ǫ

), yN,M
ǫ (t), zN,M

ǫ (t))dt, l ≥ l0,

one can obtain

||zN,M
ǫ (tl+1)− ¯̄z(tl+1)|| ≤ ||zN,M

ǫ (tl)− ¯̄z(tl)||

+

∫ tl+1

tl

||g(uzN,M(tl)(
t− tl
ǫ

), yN,M
ǫ (t), zN,M

ǫ (t))dt− g(uzN,M(tl)(
t− tl
ǫ

), yN,M
ǫ (t), zN,M

ǫ (tl))||dt
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+ ||

∫ tl+1

tl

g(uN,M
zN,M(tl)

(
t− tl
ǫ

), yN,M
ǫ (t), zN,M

ǫ (tl))dt − ∆(ǫ)g̃(µN,M(tl), z
N,M
ǫ (tl))||

+

∫ tl+1

tl

||g̃(µN,M(tl), z
N,M
ǫ (tl))− g̃(µN,M(tl), ¯̄z(tl))||dt

≤ ||zN,M
ǫ (tl)− ¯̄z(tl)|| + L1∆(ǫ)||zN,M

ǫ (tl) − ¯̄z(tl)||+ L2∆
2(ǫ)+ ∆(ǫ)¯̄δg(

∆(ǫ)

ǫ
), (6.1.33)

where Li, i = 1, 2, are positive constants and ¯̄δg(·) is defined in (6.1.7). Note that, in

order to obtain the estimate above, one needs to take into account the fact that

max{ max
t∈[tl,tl+1]

{||zN,M
ǫ (t)− zN,M

ǫ (tl)||}, max
t∈[tl,tl+1]

{||¯̄z(t)− ¯̄z(tl)||} } ≤ L3∆(ǫ), L3 > 0

(6.1.34)

as well as the fact that (see (6.1.7))

||

∫ tl+1

tl

g(uN,M
zN,M(tl)

(
t− tl
ǫ

), yN,M
ǫ (t), zN,M

ǫ (tl))dt − ∆(ǫ)g̃(µN,M(tl), z
N,M
ǫ (tl))||

= ∆(ǫ)[ (
∆(ǫ)

ǫ
)−1

∫ ∆(ǫ)
ǫ

0

g(uN,M
zN,M(tl)

(τ), yN,M
zN,M (tl)

(τ, yN,M
ǫ (tl)), z

N,M
ǫ (tl))dτ

− g̃(µN,M(tl), z
N,M
ǫ (tl))] ≤ ∆(ǫ)¯̄δg(

∆(ǫ)

ǫ
), (6.1.35)

where τ = t−tl
ǫ

and yN,M
zN,M (tl)

(τ, yN,M
ǫ (tl)) = yN,M

ǫ (tl + ǫτ). From (6.1.33) it follows

(see Proposition 5.1 in [52])

||zN,M
ǫ (tl)− ¯̄z(tl)|| ≤ κ4(ǫ, T ), l = l0, l0 + 1, ..., l0 + ⌊

T

∆(ǫ)
⌋, lim

ǫ→0
κ4(ǫ) = 0.

This (due to (6.1.34)) leads to

max
t∈[T0,T0+T ]

||zN,M
ǫ (t)− ¯̄z(t)|| ≤ κ5(ǫ, T ), where lim

ǫ→0
κ5(ǫ, T ) = 0, (6.1.36)

and, in particular, to

max
t∈[0,T0]

||zN,M
ǫ (t)− z̄N,M(t)|| ≤ κ5(ǫ, T0) (6.1.37)

(since, by definition, zN,M
ǫ (0) = zN,M(0) and z̄N,M (0) = zN,M (0)). Assume that

T0 is chosen in such a way that (6.1.23) is satisfied and denote by ¯̄z1(t) the solution

of the system (6.1.19) considered on the interval [T0, 2T0] with the initial condition
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¯̄z1(T0) = zN,M
ǫ (T0). By (6.1.5) and (6.1.37),

||¯̄z1(2T0)− z̄N,M (2T0)|| ≤ a||zN,M
ǫ (T0)− z̄N,M (T0)|| ≤ aκ5(ǫ, T0). (6.1.38)

Also, by (6.1.36),

||zN,M
ǫ (2T0)− z̄N,M (2T0)|| ≤ ||zN,M

ǫ (2T0)− ¯̄z1(2T0)|| + ||¯̄z1(2T0)− z̄N,M (2T0)||

≤ κ5(ǫ, T0) + aκ5(ǫ, T0) ≤
κ5(ǫ, T0)

1− a
.

Continuing in a similar way, one can prove that, for any k = 1, 2, ... ,

||zN,M
ǫ (kT0)− z̄N,M (kT0)|| ≤ (1 + a + ...+ ak−1)κ5(ǫ, T0) ≤

κ5(ǫ, T0)

1− a
. (6.1.39)

Denote by ¯̄zk(t) the solution of the system (6.1.19) considered on the interval [kT0, (k+

1)T0] with the initial condition ¯̄zk(kT0) = zN,M
ǫ (kT0). By (6.1.5) and (6.1.37),

max
t∈[kT0,(k+1)T0]

||zN,M
ǫ (t)− z̄N,M (t)|| ≤ max

t∈[kT0,(k+1)T0]
||zN,M

ǫ (t)− ¯̄zk(t)||

+ max
t∈[kT0,(k+1)T0]

||¯̄zk(t)− z̄N,M (t)|| ≤ κ5(ǫ, T0) + c3||z
N,M
ǫ (kT0)− z̄N,M (kT0)||.

Thus, by (6.1.39),

sup
t∈[0,∞)

||zN,M
ǫ (t)− z̄N,M (t)|| ≤ κ5(ǫ, T0) + c3

κ5(ǫ, T0)

1− a

def
= κ6(ǫ), lim

ǫ→0
κ6(ǫ) = 0.

(6.1.40)

From (6.1.25) and (6.1.40) it also follows that ∀T ≥ 1

|
1

T

∫ T

0

q(uN,M
ǫ (t), yN,M

ǫ (t), zN,M
ǫ (t))dt−

1

T

∫ T

0

q̃(µ̄N,M(t), z̄N,M (t))dt|

≤ |
1

T

∫ T

0

q(uN,M
ǫ (t), yN,M

ǫ (t), zN,M(t))dt−
1

T

∫ T

0

q̃(µ̄N,M(t), zN,M(t))dt|

+ L(κ2(ǫ) + κ6(ǫ)) ≤
1

T

⌊ T

∆(ǫ)
⌋∑

l=0

|

∫ tl+1

tl

q(uN,M
zN,M(tl)

(
t− tl
ǫ

), yN,M
ǫ (t), zN,M(tl))dt

−

∫ tl+1

tl

q̃(µN,M(tl), z
N,M(tl))dt| + L(κ2(ǫ)+κ6(ǫ)) + 2K∆(ǫ) + 2LL3∆(ǫ), (6.1.41)

where L and K are as in (6.1.26) and it has been taking into account that

max
t∈[tl,tl+1]

||zN,M(t)−zN,M (tl)|| ≤ L3∆(ǫ), with L3 being the same constant as in (6.1.34).
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Similarly to (6.1.35), one can obtain (using (6.1.7))

∣∣∣
∣∣∣
∫ tl+1

tl

q
(
uN,M
zN,M(tl)

(t− tl
ǫ

)
, yN,M

ǫ (t), zN,M(tl)
)
dt − ∆(ǫ) q̃

(
µN,M(tl), z

N,M(tl)
)∣∣∣
∣∣∣

= ∆(ǫ)
[ (∆(ǫ)

ǫ

)−1
∫ ∆(ǫ)

ǫ

0

q
(
uN,M
zN,M (tl)

(τ), yN,M
zN,M (tl)

(τ, yN,M
ǫ (tl)), z

N,M (tl)
)
dt

− q̃
(
µN,M(tl), z

N,M(tl)
)]

≤ ∆(ǫ)¯̄δq

(∆(ǫ)

ǫ

)
, .

The latter along with (6.1.41) imply that ∀T ≥ 1

|
1

T

∫ T

0

q(uN,M
ǫ (t), yN,M

ǫ (t), zN,M
ǫ (t))dt−

1

T

∫ T

0

q̃(µ̄N,M(t), z̄N,M(t))dt| ≤ κ7(ǫ),

(6.1.42)

where

κ7(ǫ)
def
= L(κ2(ǫ) + κ6(ǫ)) + 2K∆(ǫ) + 2LL3∆(ǫ) + ¯̄δq(

∆(ǫ)

ǫ
), lim

ǫ→0
κ7(ǫ) = 0.

Hence, by (6.1.32), ∀T ≥ 1

|
1

T

∫ T

0

q(uN,M
ǫ (t), yN,M

ǫ (t), zN,M
ǫ (t))dt−

1

T

∫ T

0

q̃(µN,M(t), zN,M (t))dt| ≤ κ3(ǫ) + κ7(ǫ),

(6.1.43)

and, consequently,

| lim inf
T →∞

1

T

∫ T

0

q(uN,M
ǫ (t), yN,M

ǫ (t), zN,M
ǫ (t))dt− Ṽ N,M | ≤ κ3(ǫ) + κ7(ǫ),

⇒ lim
ǫ→0

lim inf
T →∞

1

T

∫ T

0

q(uN,M
ǫ (t), yN,M

ǫ (t), zN,M
ǫ (t))dt = Ṽ N,M = G̃∗ + β(N,M)

(see (5.5.25) and (5.5.26)). Due to (4.3.19), the latter proves the β(N,M)-asymptotic

near optimality of the control uN,M
ǫ (·). Also, the estimate (6.1.15) follows from (6.1.25)

and (6.1.40).

Using an arbitrary Lipschitz continuous function h(u, y, z) instead of q(u, y, z), one

can obtain (similarly to (6.1.43)), ∀T ≥ 1

|
1

T

∫ T

0

h(uN,M
ǫ (t), yN,M

ǫ (t), zN,M
ǫ (t))dt−

1

T

∫ T

0

h̃(µN,M(t), zN,M(t))dt| ≤ κ8(ǫ),

(6.1.44)
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where lim
ǫ→∞

κ8(ǫ) = 0. If the triplets (uN,M
ǫ (·), yN,M

ǫ (·), zN,M
ǫ (·)) generates the occupa-

tional measure γN,M
ǫ , then (see (1.1.20))

lim
T →∞

1

T

∫ T

0

h(uN,M
ǫ (t), yN,M

ǫ (t), zN,M
ǫ (t))dt =

∫

U×Y×Z

h(u, y, z)γN,M
ǫ (du, dy, dz).

Hence, passing to the limit in (6.1.44) with T → ∞ and taking into account (5.5.11),

one obtains

|

∫

U×Y×Z

h(u, y, z)γN,M
ǫ (du, dy, dz) −

∫

F

h̃(µ, z)ξ̄N,M(dµ, dz)| ≤ κ8(ǫ).

By the definition of the map Φ(·) (see (4.3.4)), the latter implies that

|

∫

U×Y×Z

h(u, y, z)γN,M
ǫ (du, dy, dz) −

∫

U×Y×Z

h(u, y, z)Φ(ξ̄N,M)(du, dy, dz)| ≤ κ8(ǫ),

which, in turn, implies (6.1.16). This completes the proof. �

Note that from (5.5.29) and (6.1.16) it follows (due to continuity of Φ(·)) that

ρ(γN,M
ǫ ,Φ(ξN,M)) ≤ κ(ǫ) + θ(N,M), where lim

N→∞
lim sup
M→∞

θ(N,M) = 0 (6.1.45)

and where ξN,M is an arbitrary optimal solution of the (N,M)-approximating averaged

problem (5.3.4). This problem always has an optimal solution that can be presented

in the form (see Section 5.6 )

ξN,M def
=

K∑

k=1

ξkδ(µk ,zk),
K∑

k=1

ξk = 1, ξk > 0, k = 1, ..., K, (6.1.46)

where

µk =

Jk∑

j=1

bkj δ(uk
j ,y

k
j )
,

Jk∑

j=1

bkj = 1, bkj > 0, j = 1, ..., Jk, (6.1.47)

δ(uk
j ,y

k
j )

being the Dirac measure concentrated at (ukj , y
k
j ) ∈ U × Y (j = 1, ..., Jk) and

δ(µk ,zk) being the Dirac measure concentrated at (µk, zk) ∈ P(U×Y )×Z (k = 1, ...K).

As can be readily verified,

Φ(

K∑

k=1

ξkδ(µk ,zk)) =

K∑

k=1

Jk∑

j=1

ξkb
k
j δ(uk

j ,y
k
j ,zk)

, (6.1.48)
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where δ(uk
j ,y

k
j ,zk)

is the Dirac measure concentrated at (ukj , y
k
j , zk). Thus, by (6.1.45),

ρ(γN,M
ǫ ,

K∑

k=1

Jk∑

j=1

ξkb
k
j δ(uk

j ,y
k
j ,zk)

) ≤ κ(ǫ) + θ(N,M). (6.1.49)

That is, for N,M large enough and ǫ small enough, the occupational measure γN,M
ǫ

is approximated by a convex combination of the Dirac measures, which implies, in

particular, that the state trajectory (yN,M
ǫ (·), zN,M

ǫ (·)) spends a non-zero proportion

of time in a vicinity of each of the points (ukj , y
k
j , zk).

6.2 LP based algorithm for solving (N,M) - approx-

imating problems.

For convenience, let us outline the algorithm for solving SILP problems discussed above

(see Section 3.2) using slightly different notations. To this end, consider the problem

min
p∈Ω

{

∫

X

h0(x)p(dx)}
def
= σ∗, (6.2.1)

where Ω
def
= {p ∈ P(X) :

∫

X

hi(x)p(dx) = 0, i = 1, ..., K}, (6.2.2)

with X being a non-empty compact metric space and with hi(·) : X → IR1, i =

0, 1, ..., K, being continuous functional on X . Note that the problem dual with respect

to (6.2.1) is the problem (5.4.1), and we assume that the inequality (5.4.3) is valid only

with vi = 0, i = 1, ..., K (which, by Lemma 5.4.5, ensures the existence of a solution

of the problem (5.4.1)).

It is known (see, e.g., Theorems A.4 and A.5 in [95]) that among the optimal

solutions of the problem (6.2.1) there exists one that is presented in the form

p∗ =
K+1∑

l=1

p∗l δx∗
l
, where p∗l ≥ 0,

K+1∑

l=1

p∗l = 1,

where δx∗
l
are Dirac measures concentrated at x∗l ∈ X , l = 1, ..., K + 1. Having

in mind this presentation, let us consider the following algorithm for finding optimal

concentration points {x∗l } and optimal weights {p∗l } . Let points {xl ∈ X , l = 1, ..., L}

(L ≥ K + 1) be chosen to define an initial grid X0 on X

X0 = {xl ∈ X , l = 1, ..., L}.
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At every iteration a new point is defined and added to this set. Assume that af-

ter J iterations the points xL+1, ..., xL+J have been defined and the set XJ has been

constructed. Namely,

XJ = {xl ∈ X , l = 1, ..., L+ J}.

The iteration J + 1 (J = 0, 1, ...) is described as follows:

(i) Find a basic optimal solution pJ = {pJl } of the LP problem

min
p∈ΩJ

{
L+J∑

l=1

plh0(xl)}
def
= σJ , (6.2.3)

where

ΩJ
def
= {p : p = {pl} ≥ 0 ,

L+J∑

l=1

pl = 1,
L+J∑

l=1

plhi(xl) = 0 , i = 1, ..., K}. (6.2.4)

Note that no more than K + 1 components of pJ are positive, these being called

basic components. Also, find an optimal solution λJ = {λJ0 , λ
J
i , i = 1, ..., K} of

the problem dual with respect to (6.2.3). The latter being of the form

max{λ0 : λ0 ≤ h0(xl) +

K∑

i=1

λihi(xl) ∀ l = 1, ..., K + J}; (6.2.5)

(ii) Find an optimal solution xL+J+1 of the problem

min
x∈X

{h0(x) +
K∑

i=1

λJi hi(x)}
def
= aJ ; (6.2.6)

(iii) Define the set XJ+1 by the equation

XJ+1 = XJ ∪ {xL+J+1}.

As has been established in Section 3.3, if aJ ≥ λJ0 , then σJ = σ∗ and the measure∑

l∈IJ

pJl δxl
(where IJ stands for the index set of basic components of pJ) is an opti-

mal solution of the problem (6.2.1), with λJ
def
= {λJi , i = 1, ..., K} being an optimal

solution of the problem (5.4.1). If aJ < λJ0 , for J = 1, 2, ..., then, under some non-

degeneracy assumptions, lim
J→∞

σJ = σ∗, and any cluster (limit) point of the set of
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measures {
∑

l∈IJ

pJl δxl
, J = 1, 2, ...} is an optimal solution of the problem (6.2.1), while

any cluster (limit) point of the set {λJ , J = 1, 2, ...} is an optimal solution of the

problem (5.4.1) (see Theorem 3.3.1).

The (N,M) approximating problem (5.3.4) is a special case of the problem (6.2.1)

with an obvious correspondence between the notations:

x = (µ, z), X = FM , p = ξ, Ω = W̃N,M , K = N,

h0(x) = q̃(µ, z), hi(x) = (∇ψi(z))
T g̃(µ, z), i = 1, ..., N.

Assume that the set

XJ = {(µl, zl) ∈ FM , l = 1, ..., L+ J} (6.2.7)

has been constructed. The LP problem (6.2.3) takes in this case the form

min
ξ∈W̃N,M

J

{
L+J∑

l=1

ξlq̃(µl, zl)}
def
= G̃N,M,J , (6.2.8)

where

W̃N,M
J

def
= {ξ : ξ = {ξl} ≥ 0 ,

L+J∑

l=1

ξl = 1,
L+J∑

l=1

ξl[(∇ψi(z))
T g̃(µl, zl)] = 0 ,

i = 1, ..., N},

with the corresponding dual being of the form

max{λ0 : λ0 ≤ q̃(µl, zl) +

N∑

i=1

λi[(∇ψi(z))
T g̃(µl, zl)] ∀ l = 1, ..., K + J}. (6.2.9)

Denote by ξN,M,J = {ξN,M,J
l } an optimal basic solution of the problem (6.2.8) and by

{λN,M,J
0 , λN,M,J

i , i = 1, ..., N} an optimal solution of the dual problem (6.2.9). The

problem (6.2.6) identifying the point to be added to the set XJ takes the following

form

min
(µ,z)∈FM

{q̃(µ, z) +
N∑

i=1

λN,M,J
i (∇ψi(z))

T g̃(µ, z)]} = min
z∈Z

{G̃N,M,J(z)}, (6.2.10)
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where

G̃N,M,J(z)
def
= min

µ∈WM (z)
{

∫

U×Y

[q(u, y, z) +

N∑

i=1

λN,M,J
i (∇ψi(z))

T g(u, y, z)]µ(du, dy)}.

(6.2.11)

Note that the problem (6.2.11) is also a special case of the problem (6.2.1) with

x = (u, y), X = U × Y, p = µ, Ω = WM(z), K =M,

h0(x) = q(u, y, z) +

N∑

i=1

λN,M,J
i (∇ψi(z))

Tg(u, y, z),

hi(x) = (∇φi(y))
Tf(u, y, z), i = 1, ...,M.

Its optimal solution as well as an optimal solution of the corresponding dual problem

can be found with the help of the same approach. Denote the latter as µN,M,J
z and

{αN,M,J
z,0 , αN,M,J

z,i , i = 1, ...,M}, respectively. By adding the point (µN,M,J
z∗ , z∗) to the

set XJ (z∗ being an optimal solution of the problem in the right-hand side of (6.2.10)),

one can define the set XJ+1 and then proceed to the next iteration.

Under the controllability conditions introduced in Section 5.4 (see Assumptions

5.4.1 and 5.4.3) and under additional (simplex method related) non-degeneracy condi-

tions similar to those used in Section 3.3, it can be proved that the optimal value of the

problem (6.2.8) converges to the optimal value of the (N,M)-approximating averaged

problem

lim
J→∞

G̃N,M,J = G̃N,M (6.2.12)

and that, if λN,M = {λN,M
i , i = 1, ..., N} is a cluster (limit) point of the set of optimal

solutions λN,M,J = {λN,M,J
i , i = 1, ..., N} of the problem (6.2.9) considered with

J = 1, 2, ..., then

ζN,M(z)
def
=

N∑

i=1

λN,M
i ψi(z)

is an optimal solution of the (N,M)-approximating averaged dual problem (5.3.20).

In addition to this, it can be shown that, if αN,M
z = {αN,M

z,i , i = 1, ...,M} is a cluster

(limit) point of the set of optimal solutions αN,M,J
z = {αN,M,J

z,i , i = 1, ...,M} of the

problem dual to (6.2.11) considered with J = 1, 2, ..., then

ηN,M
z (y)

def
=

M∑

i=1

αN,M
z,i φi(y)

is an optimal solution of the (N,M)-approximating associated dual problem (5.3.25).
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S. Rossomakhine developed a software that implements this algorithm on the basis

of the IBM ILOG CPLEX LP solver and global nonlinear optimization routines de-

signed by A. Bagirov and M. Mammadov has been developed (with the CPLEX solver

being used for finding optimal solutions of the LP problems involved and Bagirov’s

and Mammadov’s routines being used for finding optimizers in (6.2.10) and in prob-

lems similar to (6.2.6) that arise when solving (6.2.11)). A numerical solution of the

SP optimal control problem introduced in Section 6.3 was obtained with the help of

this software.

Remark 6.2.1 The decomposition of the problem (6.2.6), an optimal solution of which

identifies the point to be added to the set XJ , into problems (6.2.10) and (6.2.11)

resembles the column generating technique of generalized linear programming (see [37]).

6.3 Numerical example.

To illustrate the construction of asymptotically near optimal controls, let us consider

the optimal control problem

inf
(u(·),yǫ(·),zǫ(·))

lim inf
T →∞

1

T

∫ T

0

(0.1u21(t) + 0.1u22(t)− z21(t))dt = V ∗(ǫ), (6.3.1)

where minimization is over the controls u(·) = (u1(·), u2(·)),

(u1(t), u2(t)) ∈ U
def
= {(u1, u2) : |ui| ≤ 1, i = 1, 2}, (6.3.2)

and the corresponding solutions yǫ(·) = (y1,ǫ(·), y2,ǫ(·)) and zǫ(·) = (z1,ǫ(·), z2,ǫ(·)) ) of

the SP system

ǫy′i(t) = −yi(t) + ui(t), i = 1, 2, (6.3.3)

z′1(t) = z2(t), z′2(t) = −4z1(t)− 0.3z2(t)− y1(t)u2(t) + y2(t)u1(t), (6.3.4)

with

(y1(t), y2(t)) ∈ Y
def
= {(y1, y2) : |yi| ≤ 1, i = 1, 2}

and with

(z1(t), z2(t)) ∈ Z
def
= {(z1, z2) : |z1| ≤ 2.5, |z2| ≤ 4.5}.

The averaged system (4.2.8) takes in this case the form

z′1(t) = z2(t), z′2(t) = −4z1(t) +

∫

U×Y

(−y1u2 + y2u1)µ(t)(du, dy), (6.3.5)
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where

µ(t) ∈ W
def
= {µ ∈ P(U×Y ) :

∫

U×Y

[∂φ(y)
∂y1

(−y1+u1) +
∂φ(y)

∂y2
(−y2+u2)

]
µ(du, dy) = 0

∀φ(·) ∈ C1(IR2)}, (6.3.6)

Note that, as can be readily verified, the function f(u, y) = (−y1 + u1, −y2 + u2)

satisfies Assumption 6.1.2(i) and the function g̃(µ, z) = (z2, −4z1 +
∫
U×Y

(−y1u2 +

y2u1)µ(du, dy) ) satisfies Assumption 6.1.2(ii), with A1 and A2 being equal to the

identity matrix.

The (N,M)-approximating averaged problem (5.3.4) was constructed in this exam-

ple with the use of the monomials zj11 z
j2
2 (1 ≤ j1 + j2 ≤ 5) as the test functions in

(5.3.3) and the monomials yi11 y
i2
2 (1 ≤ i1 + i2 ≤ 5) as the test functions in (5.3.1).

Note that N,M = 35 in this case (recall that N stands for the number of constraints

in (5.3.3) and M stands for the number of constraints in (5.3.1)). This problem was

solved numerically with the help of the linear programming based algorithm described

in the previous section, its output including the optimal value of the problem, an opti-

mal solution of the problem and solutions of the corresponding averaged and associated

dual problems.

The optimal value of the problem was obtained to be approximately equal to−1.186:

G̃35,35 ≈ −1.186. (6.3.7)

Along with the optimal value, the points

zk = (z1,k, z2,k) ∈ Z, k = 1, ..., K, (6.3.8)

and weights {ξk} that enter the expansion (6.1.46) as well as the points

ukj = (uk1,j, u
k
2,j) ∈ U, ykj = (yk1,j, y

k
2,j) ∈ Y, j = 1, ..., Jk, k = 1, ..., K, (6.3.9)

and the corresponding weights {qkj } that enter the expansions (6.1.47) were numerically

found. Below in Figure 1, the points {zk} that enter the expansion (6.1.46) are marked

with dotes on the “z-plane”. Corresponding to each such a point zk, there are points

{ykj } that enter the expansion (6.1.47). These points are marked with dots on the

“y-plane” in Figure 2 for zk ≈ (1.07,−0.87) (which is one of the points marked in

Fig.1; for other points marked in Fig. 1, the configurations of the corresponding {ykj }

points look similar).
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Graphs of z35,35ǫ (t) and y35,35z (τ)
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Fig. 1: z35,35ǫ (t) = (z35,351ǫ (t), z35,352,ǫ (t)) Fig.2: y35,35z (τ) = (y35,351,z (τ), y35,352,z (τ))

The expansions (5.3.22) and (5.3.27) that define solutions of the (N,M) - approxi-

mating averaged and (N,M) - approximating associated dual problems take the form

ζ35,35(z) =
∑

1≤j1+j2≤5

λ35,35j1,j2
zj11 z

j2
2 , η35,35z (y) =

∑

1≤i1+i2≤5

α35,35
z,i1,i2

yi11 y
i2
2 , (6.3.10)

where the coefficients {λ35,35j1,j2
} and {α35,35

z,i1,i2
} are obtained as a part of the solution with

the above mentioned algorithm. Using ζ35,35(z) and η35,35z (y), one can compose the

problem (5.5.1):

min
ui∈[−1,1]

{0.1u21 + 0.1u22 − z21 +
∂ζ35,35(z)

∂z1
z2 +

∂ζ35,35(z)

∂z2
(−4z1 − 0.3z2 − y1u2 + y2u1)+

∂η35,35z (y)

∂y1
(−y1 + u1) +

∂η35,35z (y)

∂y2
(−y2 + u2)}, (6.3.11)

the solution of which is written in the form

u35,35i (y, z) =





−5b35,35i (y, z) if |5b35,35i (y, z)| ≤ 1,

−1 if −5b35,35i (y, z) < −1,

1 if −5b35,35i (y, z) > 1,




, i = 1, 2,

(6.3.12)

where b35,351 (y, z)
def
= ∂ζ35,35(z)

∂z2
y2 +

∂η35,35z (y)
∂y1

and b35,352 (y, z)
def
= − ∂ζ35,35(z)

∂z2
y1 +

∂η35,35z (y)
∂y2

.

Using the feedback controls u35,35i (y, z), i = 1, 2, with fixed z = zk ≈ (1.07,−0.87)

and integrating the associated system with MATLAB from the initial conditions defined

by one of the points marked in Figure 2, one obtains a periodic solution y35,35z (τ) =
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(y35,351,z (τ), y35,352,z (τ)). The corresponding square like state trajectory of the associated

system is also depicted in Figure 2. Note that this trajectory is located in a close

vicinity of the marked points, this being consistent with the comments made after the

statement of Theorem 6.1.3.

Using the same controls u35,35i (y, z), i = 1, 2, in the SP system (6.3.3)-(6.3.4) and

integrating the latter (taken with ǫ = 0.01 and ǫ = 0.001) with MATLAB from the

initial conditions defined by one of the points marked in Figure 1 and one of the points

marked in Figure 2, one obtains visibly periodic solutions, the images of which are

depicted in Figures 3 and 4, with the state trajectory of the slow dynamics z35,35ǫ (t) =

(z35,351ǫ (t), z35,352,ǫ (t)) being also depicted in Figure 1. The slow z-components appear to

be moving periodically along an ellipse like figure on the plane (z1, z2), with the period

being approximately equal to 3.16. Note that this figure and the period appear to be

the same for ǫ = 0.01 and for ǫ = 0.001, with the marked points being located on

or very close to the ellipse like figure in Fig. 1 (which again is consistent with the

comments made after Theorem 6.1.3). In Figures 3 and 4, the fast y-components are

moving along square like figures (similar to that in Fig. 2) centered around the points

on the “ellipse”, with about 50 rounds for the case ǫ = 0.01 (Fig. 3) and about 500

rounds for the case ǫ = 0.001 (Fig. 4). The values of the objective functions obtained

for these two cases are approximately the same and ≈ −1.177, the latter being close

to the value of G̃35,35 (see (6.3.7)). Due to (4.3.19) and due to (5.3.8), this indicates

that the found solution is close to the optimal one.

Images of the state trajectories of the SP system for ǫ = 0.01 and ǫ = 0.001
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Fig. 3: (y35,35ǫ (t), z35,35ǫ (t)) for ǫ = 0.01 Fig.4: (y35,35ǫ (t), z35,35ǫ (t)) for ǫ = 0.001
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Note, in conclusion, that by taking ǫ = 0 in (6.3.3), one obtains yi(t) = ui(t), i =

1, 2, and, thus, arrives at the equality

−y1(t)u2(t) + y2(t)u1(t) = 0 ∀t,

which makes the slow dynamics uncontrolled and leads to the optimality of the “trivial”

steady state regime: u1(t) = u2(t) = y1(t) = y2(t) = z1(t) = z2(t) = 0 ∀t implying

that V ∗(0) = 0. Thus, in the present example

lim
ǫ→0

V ∗(ǫ) ≈ −1.177 < 0 = V ∗(0).

6.4 Additional comments for Chapter 6

Consideration of Sections 6.1 and 6.3 is based on [61]. The LP based algorithm of

Section 6.2 was originally described in [64] for SP optimal control problems with time

discounting. Note that problems of optimal control of singularly perturbed systems

can be very difficult to tackle with the help of traditional optimization techniques

(due to the fact that they may be very ill-conditioned for small values of the singu-

lar perturbation parameter ǫ). The proposed numerical technique deals with “limit”

problems that are independent of ǫ. This allows one to overcome difficulties caused by

the ill-conditioning.
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Part III

Perturbations of semi-infinite

dimensional linear programming

problems
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7
Regularly and singularly perturbed

semi-infinite dimensional linear

programming problems

In Part III and, in particular, in this chapter we consider a family of semi-infinite

dimensional linear programming (SILP) problems depending on a small parameter

ǫ. Recall that the perturbed problems (that is, the problems that depends on small

parameter ǫ) can be of two types: regularly perturbed and singularly perturbed. The

family of SILP problems is called regularly perturbed if its optimal value is continuous

at ǫ = 0. The family is called singularly perturbed if its optimal value is discontinuous

at ǫ = 0. The chapter consists of two sections, Sections 7.1 and 7.2, devoted to regularly

and singularly perturbed SILP problems respectively. In Section 7.1, we state some

regularity condition under which it is establishes that the family is regularly perturbed.
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7.1 Regularly perturbed SILP problems.

Consider a family of semi-infinite dimensional linear programming (SILP) problems

depending on a small parameter ǫ. Namely

min
γ∈WN (ǫ)

∫

X

q(x)γ(dx)
def
= GN(ǫ), (7.1.1)

where

WN(ǫ)
def
=

{
γ : γ ∈ P(X),

∫

X

[h0i (x) + ǫh1i (x)]γ(dx) = 0, i = 1, ..., N
}
, (7.1.2)

where X is a compact metric spaces and q(x), h0i (x), h
1
i (x) are continuous functions on

X .

Consider also, a SILP problem obtained from the above with ǫ = 0. That is,

min
γ∈WN (0)

∫

X

q(x)γ(dx)
def
= GN(0), (7.1.3)

where

WN (0)
def
=

{
γ : γ ∈ P(X),

∫

X

h0i (x)γ(dx) = 0, i = 1, 2, ..., N
}
. (7.1.4)

The family of problems (7.1.1) is called perturbed problem. The problem obtained

from the perturbed problem by equating ǫ to zero (problem (7.1.3)) is called reduced

problem.

Definition 7.1.1 The family of problems (7.1.1) will be referred to as regularly per-

turbed, if

lim
ǫ→0

GN(ǫ) = GN(0),

and, it will be called singularly perturbed, if

lim
ǫ→0

GN(ǫ) 6= GN(0).

Let us define the problem dual to the perturbed problem (7.1.1) by the equation

DN(ǫ)
def
= max

(v,d)

{
d ≤ q(x)+

N∑

i=1

vi

(
h0i (x)+ ǫh

1
i (x)

)
, v = (vi) ∈ IRN , ∀x ∈ X

}
. (7.1.5)
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Similarly, we define the dual to the reduced problem (7.1.3). Namely,

DN(0)
def
= max

(v,d)

{
d ≤ q(x) +

N∑

i=1

vih
0
i (x), v = (vi) ∈ IRN , ∀x ∈ X

}
. (7.1.6)

The problems (7.1.5) and (7.1.6) will be referred to as perturbed and reduced dual

problems respectively.

Note that the relationships between the SILP problem (7.1.3) and its dual (7.1.6) are

similar to those established in Theorem 2.3.3 (see Section 2.3). Namely, the following

results are valid.

Theorem 7.1.2 (i) The optimal value of the dual reduced problem is bounded (that

is DN(0) <∞) if and only if the set WN(0) is not empty;

(ii) If the optimal value of the dual reduced problem is bounded, then

DN(0) = GN (0). (7.1.7)

Theorem 7.1.3 (i) The optimal value of the dual perturbed problem is bounded (that

is DN(ǫ) <∞) if and only if the set WN (ǫ) is not empty;

(ii) If the optimal value of the dual perturbed problemis bounded, then

DN(ǫ) = GN (ǫ). (7.1.8)

Proof. The proofs of these theorems are similar to the proof of the corresponding

parts of Theorem 2.3.3. �

A vector v∗ = (v∗i ) i = 1, 2, ..., N , will be called an optimal solution of the problem

(7.1.6) if

GN(0) = min
x∈X

{
q(x) +

N∑

i=1

v∗i h
0
i (x)

}
(7.1.9)

and, a vector v∗(ǫ) = (v∗i (ǫ)) i = 1, 2, ..., N , will be called an optimal solution of the

problem (7.1.5) if

GN(ǫ) = min
x∈X

{
q(x) +

N∑

i=1

v∗i (ǫ)
(
h0i (x) + ǫh1i (x)

)}
. (7.1.10)

Definition 7.1.4 The perturbed problem will be said to satisfy the regularity condition
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if the inequality
N∑

i=1

vi

(
h0i (x) + ǫh1i (x)

)
≥ 0, ∀x ∈ X, (7.1.11)

can be valid only with vi = 0, i = 1, ..., N .

Definition 7.1.5 The reduced problem will be said to satisfy the regularity condition

if the inequality
N∑

i=1

vih
0
i (x) ≥ 0, ∀x ∈ X, (7.1.12)

can be valid only with vi = 0, i = 1, ..., N .

Proposition 7.1.6 If the reduced problem satisfies the regularity condition, then the

perturbed problem also satisfies the regularity condition for any ǫ > 0 small enough.

Proof. Assume that the perturbed problem does not satisfy the regularity condi-

tion. Then, there exists a sequence ǫl, lim
l→∞

ǫl = 0, such that v(ǫl) = (vi(ǫl)), i = 1, ..., N

satisfies the inequality

N∑

i=1

vi(ǫl)
(
h0i (x) + ǫlh

1
i (x)

)
≥ 0 and ||v(ǫl)|| > 0. (7.1.13)

Note that, without loss of generality, one may assume that

lim
ǫl→0

v(ǫl)

||v(ǫl)||

def
= ṽ, ||ṽ|| = 1. (7.1.14)

Dividing (7.1.13) by ||v(ǫl)|| and passing to the limit along the sequence ǫl, one can

obtain
N∑

i=1

ṽih
0
i (x) ≥ 0 ∀x ∈ X. (7.1.15)

Hence, by the assumption of the proposition ṽ = (ṽi) = 0, which is in contradiction

with (7.1.14). Thus, the perturbed problem satisfies the regularity condition for ǫ > 0

small enough. �

Proposition 7.1.7 If the reduced problem satisfies the regularity condition, then both

optimal solutions of the perturbed dual and the reduced dual problems exist.

Proof. The proof below is the same for both perturbed and reduced dual problems

and therefore we will use the following notations hi(x)
def
= h0i (x)+ ǫh1i (x) (valid for both

ǫ > 0 and for ǫ = 0).
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Let us define the set VN as follows

VN
def
= {v = (vi) : D

N ≤ q(x) +

N∑

i=1

vi hi(x), ∀x ∈ X}. (7.1.16)

We have to show that VN 6= ∅.

Let vk = (vki ) ∈ IRN be such that

DN −
1

k
≤ q(x) +

N∑

i=1

vki hi(x), ∀x ∈ X, k = 1, 2, ... . (7.1.17)

Show that the sequence vk is bounded. That is,

‖ vk ‖≤ c = const, k = 1, 2, ... . (7.1.18)

In fact, if vk, k = 1, 2, ... , were not bounded, then there would exist a sequence vk
′

such that

lim
k′→∞

‖ vk
′

‖= ∞. (7.1.19)

Also note,

lim
k′→∞

vk
′

‖ vk′ ‖

def
= ṽ and ‖ ṽ ‖= 1. (7.1.20)

Dividing (7.1.17) by ‖ vk
′

‖ and passing to the limit over the subsequence {k′}, one

would obtain the following inequality:

0 ≤
N∑

i=1

ṽhi(x), ∀x ∈ X. (7.1.21)

Due to regularity condition, the fact that (7.1.21) is valid implies that ṽ = (ṽi) = 0,

which is in contradiction to (7.1.20). Thus (7.1.18) is true.

Due to (7.1.18), there exists a subsequence {k′} such that there exists a limit

lim
k′→∞

vk
′ def
= v. (7.1.22)

Passing over this subsequence to the limit in (7.1.17), one can obtain

DN ≤ q(x) +

N∑

i=1

vihi(x), ∀x ∈ X ⇒ v = (vi) ∈ VN . (7.1.23)

The latter proves that VN is not empty. �
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Proposition 7.1.8 If the reduced problem satisfies the regularity condition then the

set VN (ǫ) = {v = (vi) : D
N(ǫ) ≤ q(x) +

∑N
i=1 vi(h

0
i (x) + ǫh1i (x))} of optimal solutions

of the perturbed dual problem (7.1.5) is bounded. That is,

sup{‖ v ‖ | v ∈ VN(ǫ)} ≤ k, k = const (7.1.24)

for ǫ small enough.

Proof. Assume that the statement of the proposition is not true, then there exist

a sequence ǫl → 0, such that vi(ǫl) satisfies the inequality

DN(ǫl) ≤ q(x) +
N∑

i=1

vi(ǫl)(h
0
i (x) + h1i (x)), ∀x ∈ X. (7.1.25)

and

lim
ǫl→0

‖ v(ǫl) ‖= ∞. (7.1.26)

Also, note that, without loss of generality, one may assume that

lim
ǫl→0

v(ǫl)

‖ v(ǫl) ‖

def
= ṽ and ‖ ṽ ‖= 1. (7.1.27)

Dividing (7.1.25) by ‖ v(ǫl) ‖ and passing to the limit as ǫl → 0 one can obtain

0 ≤
N∑

i=1

ṽih
0
i (x), ∀x ∈ X. (7.1.28)

Due to fulfilment of the regularity condition of the reduced problem, the fact that

(7.1.28) is valid implies that ṽ = (ṽi) = 0, which is in contradiction to (7.1.27). Thus,

the validity of (7.1.24) is established. �

Proposition 7.1.9 If the reduced problem satisfies regularity condition, then

lim
ǫ→0

GN (ǫ) = GN(0) (7.1.29)

and

lim
ǫ→0

ρH(WN (ǫ),WN(0)) = 0. (7.1.30)

Proof. Let us divide the proof of (7.1.29) in two parts. First of all, we will prove

that
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(i) limǫ→0G
N(ǫ) ≤ GN (0)

and then,

(ii) limǫ→0G
N(ǫ) ≥ GN (0).

(i) Let a sequence {ǫl} be such that

lim
ǫl→0

GN(ǫl) = lim
ǫ→0

GN(ǫ). (7.1.31)

Due to Proposition 7.1.8 passing to the limit as ǫl → 0 in (7.1.25) and taking in

consideration (7.1.8) one can obtain

lim
ǫl→0

GN(ǫl) = lim
ǫl→0

DN(ǫl) ≤ q(x) +
N∑

i=1

v̄ih
0
i (x), ∀x ∈ X. (7.1.32)

Hence,

lim
ǫ→0

GN(ǫ) ≤ q(x) +
N∑

i=1

v̄ih
0
i (x), ∀x ∈ X. (7.1.33)

Consequently (see 7.1.6),

lim
ǫ→0

GN(ǫ) ≤ sup
v

min
x∈X

{q(x) +
N∑

i=1

vih
0
i (x)} = DN(0). (7.1.34)

Thus, the first part of the proof is established and

lim
ǫ→0

GN(ǫ) ≤ GN (0). (7.1.35)

ii) Let a sequence {ǫl} be such that

limǫ→0G
N(ǫ) = lim

l→∞
GN (ǫl), (7.1.36)

and let γ∗ǫl be an optimal solution of the perturbed problem (7.1.1) (it exists due to

compactness of WN(ǫ)). That is,

GN (ǫl)
def
=

∫

X

q(x)γ∗ǫl(dx), (7.1.37)

where γ∗ǫl ∈ WN(ǫl), that is it satisfies the equations

∫

X

(
h0i (x) + ǫlh

1
i (x)

)
γ∗ǫl(dx) = 0. (7.1.38)
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Due to compactness of P(X), without loss of generality, one may assume that

lim
l→∞

γ∗ǫl
def
= γ̃. (7.1.39)

Hence, by (7.1.37) and (7.1.38)

lim
l→∞

GN(ǫl) =

∫

X

q(x)γ̃(dx) (7.1.40)

and

lim
l→∞

∫

X

(
h0i (x) + ǫlh

1
i (x)

)
γ∗ǫl(dx) =

∫

X

h0i (x)γ̃(dx) = 0 (7.1.41)

and thus γ̃ ∈ WN(0). Consequently,

∫

X

q(x)γ̃(dx) ≥ GN (0). (7.1.42)

Due to (7.1.36), (7.1.40) and (7.1.42)

limǫ→0G
N(ǫ) ≥ GN (0). (7.1.43)

From (7.1.35) and (7.1.43) follows that

limǫ→0G
N(ǫ) = limǫ→0G

N(ǫ) = GN(0). (7.1.44)

Hence,

lim
ǫ→0

GN(ǫ) = GN(0). (7.1.45)

Since (7.1.45) is valid for any continuous functions q(x) (used as integrand in (7.1.1))

the validity of (7.1.30) follows from (7.1.45)(see, e.g., [59]). �

7.2 Singularly perturbed SILP problems.

Let us assume that the reduced problem does not satisfy the regularity condition. That

is, there exist v1, v2, ..., vN such that

N∑

i=1

vih
0
i (x) ≥ 0, ∀x ∈ X (7.2.1)

and

‖v‖ 6= 0. (7.2.2)
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Assumption 7.2.1 Assume that the following Slater Type condition is satisfied: ∃γ ∈

WN(0) such that for any open ball Q ⊂ IRm, Q
⋂
X 6= ∅

γ(Q ∩X) > 0. (7.2.3)

Lemma 7.2.2 Let Assumption 7.2.1 is satisfied. If v1, v2, ..., vN are such that (7.2.1)

is true, then
N∑

i=1

vih
0
i (x) = 0 ∀x ∈ X. (7.2.4)

Proof. Assume it is not true, then there exists x̄ ∈ X such that

N∑

i=1

vih
0
i (x̄) > 0. (7.2.5)

Hence,
N∑

i=1

vih
0
i (x) > 0, ∀x ∈ Br(x̄), (7.2.6)

where Br(x̄) is an open ball of radius r centered at x̄ and r > 0 is small enough. Thus,

N∑

i=1

vih
0
i (x) > 0, ∀x ∈ Br(x̄) ∩X. (7.2.7)

One can observe that the constraints in (7.1.4) can be rewritten as follows

∫

Br(x̄)∩X

N∑

i=1

vih
0
i (x)γ(dx) +

∫

X\

(
Br(x̄)∩X

)
N∑

i=1

vih
0
i (x)γ(dx) = 0. (7.2.8)

Note that, the integrant in the second term is greater than or equal to zero (due

to (7.2.1)), whereas the integrant in the first term is strictly positive. The sum can

be equal to zero only if the measure of the set Br(x̄) ∩X is zero, which contradicts to

Assumption 7.2.1. Thus, the statement of the Lemma 7.2.2 is proved. �

Assume that the reduced problem does not satisfy the regularity condition, but

Assumption 7.2.1 is valid. Then, by Lemma 7.2.2, there exists a vector v1 = (v1i ), i =

1, 2, ...N, ‖v1‖ 6= 0 such that

N∑

i=1

v1i h
0
i (x) = 0, ∀(x) ∈ X. (7.2.9)
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Observe that, by multiplying the constraints (7.1.2) by v1i and summing up the resulted

equations over i = 1, 2, ..., N one can obtain

∫

X

[

N∑

i=1

v1i h
0
i (x) + ǫ

N∑

i=1

v1i h
1
i (x)]γ(dx) = 0. (7.2.10)

Due to (7.2.9), the first term in (7.2.10) is zero. Hence, for any γ ∈ WN(ǫ)

ǫ

∫

X

N∑

i=1

v1i h
1
i (x)γ(dx) = 0. (7.2.11)

Since ǫ is positive it can be reduced in (7.2.11). That is,

∫

X

N∑

i=1

v1i h
1
i (x)γ(dx) = 0. (7.2.12)

The above equality defines the new constraint that can be added to the set of constraints

WN (ǫ) without changing the set. That is,

WN (ǫ) =WA
N (ǫ)

def
=
{
γ : γ ∈ P(X),

∫

X

(
h0i (x) + ǫh1i (x)

)
γ(dx) = 0, i = 1, 2, ..., N,

∫

X

N∑

i=1

v1i h
1
i (x)γ(dx) = 0

}
.

(7.2.13)

Let us assume that there exist k linearly independent vectors vj, j = 1, ..., k, such that

N∑

i=1

v1i h
0
i (x) = 0,

N∑

i=1

v2i h
0
i (x) = 0, ... ,

N∑

i=1

vki h
0
i (x) = 0, ∀x ∈ X. (7.2.14)

By following the procedure described above, one can augment the set of constraints

defining the set WN (ǫ) (without changing the latter) as follows

WN (ǫ) = WA
N (ǫ)

def
=
{
γ : γ ∈ P(X),

∫

X

(
h0i (x) + ǫh1i (x)

)
γ(dx) = 0,

∫

X

N∑

i=1

vjih
1
i (x)γ(dx) = 0, i = 1, 2, ..., N, j = 1, 2, ..., k

}
.

(7.2.15)
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By taking ǫ = 0 in (7.2.15), one obtains the set WA
N (0) defined as follows

WA
N (0)

def
=
{
γ : γ ∈ P(X),

∫

X

h0i (x)γ(dx) = 0,

∫

X

N∑

i=1

vjih
1
i (x)γ(dx) = 0, i = 1, 2, ..., N, j = 1, 2, ..., k

}
.

(7.2.16)

Note that, in the general case

WA
N (0) 6= WN(0).

Also note that, due to (7.2.14), k constraints in the definition (7.2.16) of WA
N (0) are

redundant, and we assume that these are removed.

Consider the problem

min
γ∈WA

N
(0)

∫

X

q(x)γ(dx)
def
=GA

N(0). (7.2.17)

Proposition 7.2.3 If the regularity condition is satisfied for WA
N (0) (with the redun-

dant constraints being removed), then

1. lim
ǫ→0

WN(ǫ) = WA
N (0); and

2. lim
ǫ→0

GN(ǫ) = GA
N (0).

Proof. The proof follows from Proposition 7.1.9. �

7.3 Additional comments for Chapter 7

A possibility of the presence of implicit constraints in families of finite-dimensional

LP problems depending on a small parameter was noted in [92], where such families

were called singularly perturbed. In [92] it has been also shown that, under certain

conditions, the “true limits” of the optimal value and of the optimal solutions set of

such SP families of LP problems can be obtained by adding these implicit constraints

to the set of constrains defining the feasible set with the zero value of the parameter

(see Theorem 2.3, p. 149 in [92] and also more recent results in [17]). This chapter

extends the aforementioned earlier results to the SILP setting.
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8
Perturbations of semi-infinite dimensional

linear programming problems related to

long run average optimal control problems

The purpose of this chapter is to establish some interconnections between regularly

and singularly perturbed SILP problems and the corresponding perturbed LRAOC

problems. The chapter consists of two sections. In Section 8.1, we deal with regularly

perturbed semi-infinite dimensional linear programming (SILP) and related perturbed

LRAOC problems. In Section 8.2, we consider singularly perturbed SILP related to

singularly perturbed LRAOC problems.

8.1 Regularly perturbed SILP problems related to

long run average optimal control problems.

Let us consider the perturbed control system

y′(t) = f0(u(t), y(t)) + ǫf1(u(t), y(t)), (8.1.1)
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Chapter 8 Regularly perturbed SILP problems related to LRAOC problems

where f0(u, y) : U × IRm → IRm, f1(u, y) : U × IRm → IRm are continuous in (u, y)

and satisfy Lipschitz conditions in y. The controls u(·) are assumed to be Lebesgue

measurable and take values in a given compact metric space U .

Also, consider the long run average optimal control problem defined on the trajec-

tory of the system (8.1.1). Namely,

inf
(u(·),y(·))

lim inf
T →∞

1

T

∫ T

0

q(u(t), y(t))dt, (8.1.2)

where q(u, y) : U × IRm → IR1 is a given continuous function and inf is sought

over all admissible pairs of the system (8.1.1) (that is ones that satisfy the inclusions

u(t) ∈ U, y(t) ∈ Y ).

The problem (8.1.2) can be reformulated as the IDLP problem of the form (see

Section 1.2)

min
γ∈W (ǫ)

∫

U×Y

q(u, y)γ(du, dy), (8.1.3)

where

W (ǫ) =
{
γ|γ ∈ P(U × Y ),

∫

U×Y

(∇φ(y))T
[
f0(u, y) + ǫf1(u, y)

]
γ(du, dy) = 0,

∀φ ∈ C1
}
. (8.1.4)

The above problem can be approximated by the following SILP problem (see Section

2.3 and also Section 7.1)

min
γ∈WN (ǫ)

∫

U×Y

q(u, y)γ(du, dy) = GN(ǫ), (8.1.5)

where

WN (ǫ) =
{
γ|γ ∈ P(U × Y ),

∫

U×Y

(∇φi(y))
T
[
f0(u, y) + ǫf1(u, y)

]
γ(du, dy) = 0,

i = 1, 2, ..., N
}

(8.1.6)

and ∇φi(y) being assumed to be linear independent (see 2.2.5). By taking ǫ = 0 in the

problem defined above, one can obtain the reduced problem

min
γ∈WN (0)

∫

U×Y

q(u, y)γ(du, dy) = GN(0), (8.1.7)
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where

WN (0) =
{
γ|γ ∈ P(U × Y ),

∫

U×Y

(∇φi(y))
Tf0(u, y)γ(du, dy) = 0, i = 1, 2, ..., N

}
.

(8.1.8)

The dual problems of the perturbed and reduced SILP problems (8.1.5) and (8.1.7) are

as defined in Section 7.1. Namely,

DN(ǫ)
def
= max

(v,d)

{
d ≤ q(u, y)+

N∑

i=1

vi

(
(∇φi(y))

Tf 0
i (u, y)+ ǫ(∇φi(y))

Tf 1
i (u, y)

)
, (8.1.9)

v = (vi) ∈ IRN
}
.

and

DN(0)
def
= max

(v,d)

{
d ≤ q(u, y) +

N∑

i=1

vi(∇φi(y))
Tf 0

i (u, y), v = (vi) ∈ IRN
}
. (8.1.10)

The duality relationships between the perturbed and reduced SILP problems and the

corresponding duals have been established in Section 7.1.

Note that with the change of the notations

(u, y) = x, U × Y = X, γ(du, dy) = γ(dx),

∇φi(y)f0(u, y) = h0i (x), ∇φi(y)f1(u, y) = h1i (x),

the problems (8.1.5) and (8.1.7) take the form (7.1.1) and (7.1.3).

Theorem 8.1.1 If the system (8.1.1), taken with ǫ = 0, is locally approximately con-

trollable on Y (see Definition 2.2.7), then the reduced problem (8.1.7) satisfies the

regularity condition of Definition 7.1.5 and, hence (by Proposition 7.1.9),

lim
ǫ→0

GN(ǫ) = GN(0). (8.1.11)

Proof. The proof is similar to that of Lemma 2.2.9. �
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8.2 Singularly perturbed SILP problems related to

long run average optimal control problems.

Consider the LRAOC problem (4.1.5). The IDLP problem related to the problem

(4.1.5) is of the form (4.1.7), where W (ǫ) is defined by (4.1.8). The IDLP problem

(4.1.7) is approximated by the following SILP problem

min
γ∈WN,M (ǫ)

∫

U×Y×Z

q(u, y, z)γ(du, dy, dz)
def
=GN,M(ǫ), (8.2.1)

WN,M(ǫ) =
{
γ|γ ∈ P(U × Y × Z),

∫

U×Y×Z

[
ψj(z)(∇φi(y))

Tf(u, y, z) + ǫφi(y)(∇ψj(z))
T g(u, y, z)

]
γ(du, dy, dz) = 0,

i = 0, 1, 2, ..., N, j = 0, 1, 2, ...,M
}
, (8.2.2)

where ∇ψj(z), j = 1, ...,M and ∇φi(y), i = 1, ..., N, are assumed to be linearly

independent (as in Section 5.4), and where ψ0(z)
def
= 1 and φ0(y)

def
= 1.

The reduced problem is obtained from (8.2.1) and (8.2.2) by taking ǫ = 0:

min
γ∈WN,M (0)

∫

U×Y×Z

q(u, y, z)γ(du, dy, dz)
def
=GN,M(0), (8.2.3)

WN,M(0) =
{
γ|γ ∈ P(U × Y × Z),

∫

U×Y×Z

ψj(z)(∇φi(y))
Tf(u, y, z)γ(du, dy, dz) = 0,

i = 0, 1, 2, ..., N, j = 0, 1, 2, ...,M
}
. (8.2.4)

Consider the group of constraints in (8.2.2) corresponding to i = 0. Recalling that

φ0(y) = 1, one can obtain

ǫ

∫

U×Y×Z

(∇ψj(z))
T g(u, y, z)γ(du, dy, dz) = 0. (8.2.5)

Since ǫ is positive, the equalities (8.2.5) are equivalent to

∫

U×Y×Z

(∇ψj(z))
T g(u, y, z)γ(du, dy, dz) = 0, j = 1, 2, ...,M. (8.2.6)

By adding these constraints to the set of constraints in WN,M(ǫ), one can define the
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set

WA
N,M(ǫ)

def
=
{
γ|γ ∈ P(U × Y × Z),

∫

U×Y×Z

[
ψj(z)(∇φi(y))

Tf(u, y, z) + ǫφi(y)(∇ψj(z))
T g(u, y, z)

]
γ(du, dy, dz) = 0,

∫

U×Y×Z

(∇ψj(z))
T g(u, y, z)γ(du, dy, dz) = 0, i = 1, 2, ..., N, j = 0, 1, 2, ...,M

}
.

(8.2.7)

By taking ǫ = 0 in (8.2.7), one obtains the set (compare with the derivation of Section

4.1)

WA
N,M(0) =

{
γ|γ ∈ P(U × Y × Z),

∫

U×Y×Z

ψj(z)(∇φi(y))
T f(u, y, z)γ(du, dy, dz) = 0,

∫

U×Y×Z

(∇ψj(z))
Tg(u, y, z)γ(du, dy, dz) = 0, i = 1, 2, ..., N, j = 0, 1, 2, ...,M

}
.

(8.2.8)

Note that, from the augmentation process described above, it follows that WA
N,M(ǫ) =

WN,M(ǫ). However, in the general case, WA
N,M(0) 6=WN,M(0).

Consider the problem

min
γ∈WA

N,M
(0)

∫

X

q(x)γ(dx)
def
=GA

N,M(0). (8.2.9)

Recall some definitions and notations from Section 4.1. The associated and the

averaged systems are defined by the equation

y′(τ) = f(u(τ), y(τ), z), z = const, (8.2.10)

and, respectively, by the equations

z′(τ) = ǫg̃(µ(τ), z(τ)), (8.2.11)

where

g̃(µ, z)
def
=

∫

U×Y×Z

g(u, y, z)µ(du, dy) (8.2.12)

and

µ(τ) ∈ W (z), (8.2.13)

W (z)
def
=

{
µ : µ ∈ P(U × Y × Z),

∫

U×Y×Z

(∇φ(y))Tf(u, y, z)µ(du, dy, dz) = 0
}
.

(8.2.14)
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Let us assume that the associated system (8.2.10) and the averaged system (8.2.11)

satisfy the local controllability condition on Y and Z, respectively (see Assumptions

5.4.3 and 5.4.1).

Theorem 8.2.1 If the associated system (8.2.10) and the averaged system (8.2.11)

satisfy the local controllability condition in Y and Z (that is, the Assumptions 5.4.3 and

5.4.1 are satisfied), then the optimal value of the perturbed problem (8.2.1) converges

to the optimal value of the augmented reduced problem GA
N,M(0). That is,

lim
ǫ→0

GN,M(ǫ) = GA
N,M(0). (8.2.15)

Proof. By Proposition 7.2.3, the converges (8.2.15) will follow if one shows that

the constraints defining WA
N,M(0) satisfy the regularity condition. That is, it is enough

to show that ∀(u, y, z) ∈ U × Y × Z the inequality

N∑

i=1

M∑

j=0

vi,jψj(z)(∇φi(y))
Tf(u, y, z) +

M∑

j=1

ṽj(∇ψj(z))
Tg(u, y, z) ≥ 0 (8.2.16)

is valid only if vi,j = 0 i = 1, 2, ..., N, j = 0, 1, 2, ...,M and ṽj = 0 j = 1, 2, ...,M .

Take µ ∈ W (z). By integrating (8.2.16) over µ(du, dy), one can obtain

∫

U×Y

N∑

i=1

M∑

j=0

vi,jψj(z)(∇φi(y))
Tf(u, y, z)µ(du, dy)+

∫

U×Y

M∑

j=1

ṽj(∇ψj(z))
T g(u, y, z)µ(du, dy)≥ 0, ∀(u, y, z) ∈ U × Y × Z.

(8.2.17)

Note that the first integral is zero due to (8.2.13). Hence,

∫

U×Y

M∑

j=1

ṽj(∇ψj(z))
T g(u, y, z)µ(du, dy)≥ 0. (8.2.18)

By (8.2.12), from (8.2.18) it follows that

M∑

j=1

ṽj(∇ψj(z))
T g̃(µ, z) ≥ 0. (8.2.19)
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Let (µ(τ), z(τ)) be a solution of the averaged system (8.2.11). From (8.2.19),

M∑

j=1

ṽj(∇ψj(z(τ)))
T g̃(µ(τ), z(τ)) ≥ 0. (8.2.20)

Denote,

Ψ(z)
def
=

M∑

j=1

ṽjψj(z). (8.2.21)

From (8.2.19) it follows that

Ψ(z2)−Ψ(z1) =

∫ T

0

(
∇Ψ(z(τ))

)T

g̃(µ(τ), z(τ))dτ ≥ 0 ⇒ Ψ(z2) ≥ Ψ(z1). (8.2.22)

Since z1, z2 are arbitrary points in Z0, the above inequality allows one to conclude that

Ψ(z) = const ∀z ∈ Z0 ⇒ Ψ(z) = const ∀z ∈ cl(Z0).

The latter implies that ∇Ψ(z) = 0, ∀z ∈ int(clZ0). Hence, due to the linear

independence of ∇ψj(z)

ṽj = 0. j = 1, 2, ...,M. (8.2.23)

Let us show that vi,j = 0. By (8.2.23), from (8.2.16) it follows that

N∑

i=1

M∑

j=0

vi,jψj(z)(∇φi(y))
Tf(u, y, z) ≥ 0. (8.2.24)

Denote,

vi(z)
def
=

M∑

j=0

vi,jψj(z). (8.2.25)

Then, the inequality (8.2.24) will take the form

N∑

i=1

vi(z)(∇φi(y))
Tf(u, y, z) ≥ 0. (8.2.26)

By following the same procedure as above, it can be shown that the inequality (8.2.26)

is valid only if vi(z) = 0, ∀z ∈ Z. Thus, due to (8.2.25)

M∑

j=0

vi,jψj(z) = 0 ∀z ∈ Z ⇒
M∑

j=1

vi,j∇ψj(z) = 0 ∀z ∈ int(Z). (8.2.27)
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The latter implies that vi,j = 0 j = 1, 2, ...,M, i = 1, 2, ..., N, (due to the linear

independence of ∇ψj(z)).

Thus, to finalise the proof, we need to show that vi,0 = 0, ∀i = 1, 2, ..., N .

From (8.2.16), we obtain

N∑

i=1

vi,0(∇φi(y))
Tf(u, y, z) ≥ 0. (8.2.28)

This implies that vi,0 = 0 (due to the local controllability condition of the associated

system on Y ; see the proof of Proposition 5.4.4). �

8.3 Additional comments for Chapter 8

The results of this chapter are related to the results of the Sections 5.3 and 5.4. The

difference is that in Sections 5.3 and 5.4 we dealt with SILP approximation of the aver-

aged IDLP problem and the corresponding associated dual problems. In this chapter,

however, we consider SILP problems approximating the IDLP problem related to the

singularly perturbed LRAOC problem.
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Conclusions and suggestions for further

research

We have developed techniques for analysis and construction of near optimal solutions

of optimal control problems with long run average optimality criteria (LRAOC). Our

main results can be summarised as follows.

In Part I, we have shown (based on results about relationships between the LRAOC

problem and the corresponding IDLP problem), that necessary and sufficient optimal-

ity conditions for the LRAOC problem can be stated in terms of a solution of the

HJB inequality (see Proposition 2.1.1 and Proposition 2.1.4), which is equivalent to

the problem dual with respect to the IDLP problem. Note that the difference of Propo-

sitions 2.1.1 and 2.1.4 from “classic” sufficient and necessary conditions of optimality

is that a solution of the HJB inequality (rather than that of the HJB equation) is used.

The dual to the IDLP problem is a max-min type variational problem on the space of

continuously differentiable functions. This dual problem is approximated by max-min

problems on finite dimensional subspaces of the space of continuously differentiable

functions, which are dual to the semi-infinite dimensional linear programming (SILP)

problems approximating the IDLP problem. We have given conditions under which

solutions of these “semi-infinite” duals exist and can be used for construction of near

optimal solutions of the LRAOC problem (see Proposition 2.2.8 and Theorem 3.1.5).

One of the results obtained in Part I is stated in the form of an algorithm, the conver-

gence of which is proved (see Theorem 3.3.1) and which is illustrated with numerical

example (see Section 3.4).

In Part II, we extend the consideration of Part I to singularly perturbed LRAOC

problems. The key concepts introduced and dealt with, in this part, are those of

optimal and near optimal average control generating (ACG) families (see Definitions

5.1.1 and 5.1.3). Sufficient and necessary optimality conditions for an ACG family to

be optimal (based on the assumption that solutions of the averaged and associated
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dual problems exist) are established (see Proposition 5.2.1). Sufficient conditions for

existence of solutions of approximating averaged and associated dual problem have been

given (see Propositions 5.4.2 and 5.4.4), the latter being used for construction of near

optimal ACG families (see Theorem 5.5.8). Also, a linear programming based algorithm

allowing one to find solutions of approximating averaged problem and solutions of the

corresponding approximating (averaged and associated) dual problems numerically is

outlined. A way how an asymptotically near optimal control of a singularly perturbed

LRAOC problem can be constructed on the basis of a near optimal ACG family is

indicated (see Theorem 6.1.3), the construction being illustrated with a numerical

example (see Section 6.3).

In Part III, we have studied families of SILP problems depending on a small pa-

rameter. We introduced a regularity condition and we showed that if it is fulfilled,

then the family of SILP problems is regularly perturbed and if it is not fulfilled, then

the family is likely to be singularly perturbed (see Proposition 7.1.9 and Section 7.2).

We have shown that the phenomenon of discontinuity of the optimal value in the SILP

setting can be explained by the presence of some implicit constraints that disappear

with equating of the small parameter to zero. By adding these constraints, we con-

structed the problem the optimal value of which defines the “true limit” of the optimal

value of the singularly perturbed family (see Proposition 7.2.3). Also, we showed, how

the obtained results can be used in dealing with a family of SILP problems related to

perturbed LRAOC problems (see Sections 8.1 and 8.2).

Many of the results obtained are readily extendable to other classes of optimal

control problems and some of the ideas that we exploited can be used in the dynamic

games setting. This, however, will be the subject of future research.
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A Construction of the dual problem

Let {φi(·) ∈ C1, i = 1, 2, ...} be the sequence of functions introduced in Section 2.2.

Observe that due to approximating property (see (2.2.4)) of this sequence of functions,

the setW (see (1.2.1)) can be presented in the form of a countable system of equations.

That is,

W =
{
γ ∈ P(U × Y ) :

∫

U×Y

(∇φi(y))
Tf(u, y)γ(du, dy) = 0, i = 1, 2, ...

}
, (A.1)

where, without loss of generality, one may assume that the functions φi(·) satisfy the

following normalization conditions:

max
y∈B̂

{|φi(y)|, ||∇φi(y)||, ||∇
2φi(y)} ≤

1

2i
, i = 1, 2, ... . (A.2)

In the above expression, ||∇φi(y)|| is a norm of ∇φi(y) in IR
m, ||∇2φi(y)|| is a norm

of the Hessian (the matrix of second derivatives of φi(y)) in IR
m× IRm, and B̂ is closed

ball in IRm that contains Y in its interior.

Let l1 and l∞ stand for the Banach spaces of infinite sequences such that, for any

x = (x1, x2, ...) ∈ l1,

||x||l1
def
=

∑

i

|xi| <∞

and, for any λ = (λ1, λ2, ...) ∈ l∞,

||λ||l∞
def
= sup

i
|λi| <∞.

It easy to see that, given an element λ ∈ l∞ one can define a linear continuous functional
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λ(·) : l1 → R1 by the equation

aλ(x) =
∑

i

λixi ∀x ∈ l1, ||λ(·)|| = ||λ||l∞. (A.3)

It is also known (see, e.g., [96], p.86) that any continuous linear functional λ(·) : l1 →

IR1 can be presented in the form (A.3) with some λ ∈ l∞.

Note that from (A.2) it follows that (φ1(y), φ2(y), ...) ∈ l∞ and (∂φ1

∂yj
, ∂φ2

∂yj
, ...) ∈ l1

for any y ∈ Y . Hence, the function ηλ(y),

ηλ(y)
def
=

∑

i

λiφi(y), λ = (λ1, λ2, ...) ∈ l∞, (A.4)

is continuous differentiable, with ∇ηλ(y) =
∑

i λi∇φi(y).

Let us now rewrite problem (1.2.11) in a “standard” LP form by using the rep-

resentation (A.1). Let M(U × Y ) (respectively, M+(U × Y )) stand for the space of

all (respectively, all nonnegative) measures with bounded variations defined on Borel

subsets of U × Y , and let A(·) : M(U × Y ) 7→ IR1 × l1 stand for the linear operator

defined for any γ ∈ M(U × Y ) by the equation

A(γ)
def
=
( ∫

U×Y

1U×Y (u, y)γ(du, dy),

∫

U×Y

(∇φi(y))
Tf(u, y)γ(du, dy), i = 1, 2, ...

)
.

In this notation problem (1.2.11) takes the form

min
γ

{〈q, γ〉| A(γ) = (1, 0), γ ∈ M+}, (A.5)

where 0 is the zero element of l1, and 〈·, γ〉, here and in what follows, stands for the

integral of the corresponding function over γ.

Define now the linear operator A∗(·) : IR1 × l∞ 7→ C(U × Y ) ⊂ M∗(U × Y ) by the

equation

A∗(d, γ)
def
= d+ (∇ηλ(·))

Tf(·, ·) ∀d ∈ IR1, ∀λ = (λi) ∈ l∞, (A.6)

where ηλ(·) is as defined in (A.4). Note that from (A.6) it follows that, for any γ ∈

M(U × Y ),

〈A∗(d, λ), γ〉 =

∫

U×Y

(d 1U×Y (u, y)+(∇ηλ(y))
Tf(u, y)γ(du, dy)

def
= 〈(d, λ),A(λ)〉. (A.7)

That is, the operator A∗(·) is the adjoint of A(·), and, hence, the problem dual to (A.5)
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can be written in the form (see [5], p.39)

sup
(d,λ)∈IR1×l∞

{d| − A∗(d, λ) + q(·) ≥ 0} (A.8)

and, by (A.6), is equivalent to

sup
(d,λ)∈IR1×l∞

{d| − d− (∇ηλ(y))
Tf(u, y) + q(u, y) ≥ 0 ∀(u, y) ∈ U × Y }. (A.9)

Due to the approximation property (2.2.4), the optimal value in (A.9) will be the same

as in the problem

sup
(d,η(·))∈IR1×C1

{d| − d− (∇η(y))Tf(u, y) + q(u, y) ≥ 0 ∀(u, y) ∈ U × Y }

⇒ sup
(d,η(·))∈IR1×C1

{d| d ≤ (∇η(y))Tf(u, y) + q(u, y) ∀(u, y) ∈ U × Y } = D∗,

the latter being equivalent to (1.3.1).

B Proof of Theorem 1.3.1

Proof of Theorem 1.3.1 (iii). If the function η(·) satisfying (1.3.5) exists, then

min
(u,y)∈U×Y

(−∇η(y))Tf(u, y) > 0

and, hence,

lim
α→∞

min
(u,y)∈U×Y

{q(u, y) + α(−∇η(y))Tf(u, y)} = ∞. (B.10)

This implies that the optimal value of the dual problem is unbounded (D∗ = ∞).

Assume now that the optimal value of the dual problem is unbounded. That is,

there exists a sequence (dk, ηk(·)) such that

dk ≤ q(u, y) + (∇ηk(y))
Tf(u, y) ∀(u, y) ∈ U × Y, lim

k→∞
dk = ∞ (B.11)

⇒ 1 ≤
1

dk
q(u, y) +

1

dk
(∇ηk(y))

Tf(u, y) ∀(u, y) ∈ U × Y. (B.12)

For k large enough,
1

dk
|q(u, y)| ≤

1

2
∀(u, y) ∈ U × Y.
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Hence,
1

2
≤

1

dk
(∇ηk(y))

Tf(u, y) ∀(u, y) ∈ U × Y. (B.13)

That is, the function η(y)
def
= − 1

dk
ηk(y) satisfies (1.3.5). �

Proof of Theorem 1.3.1 (i). From (1.3.3) it follows that, if W is not empty, then

the optimal value of the dual problem is bounded.

Conversely, let us assume that the optimal value D∗ of the dual problem is bounded

and let us establish thatW is not empty. Assume that this is not true andW is empty.

Define the set Q by the equation

Q
def
=
{
x = (x1, x2, ...) : xi =

∫

U×Y

(∇φi(y))
Tf(u, y)γ(du, dy), γ ∈ P(U×Y )

}
. (B.14)

It is easy to see that the set Q is a convex and compact subset of l1 (the fact that Q is

relatively compact in l1 is implied by (A.2); the fact that it is closed follows from that

P(U × Y ) is compact in weak convergence topology).

By (A.1), the assumption that W is empty is equivalent to the assumption that the

set Q does not contain the “zero element” (0 /∈ Q). Hence, by a separation theorem

(see, e.g., [96], p.59), there exists λ̄ = (λ̄1, λ̄2, ...) ∈ l∞ such that

0 = λ̄(0) > max
x∈Q

∑

i

λ̄ixi = max
γ∈P(U×Y )

∫

U×Y

(∇ηλ̄(y))
Tf(u, y)γ(du, dy)

= max
(u,y)∈U×Y

(∇ηλ̄(y))
Tf(u, y),

where ηλ̄(y) =
∑

i λ̄iφi(y) (see A.4). This implies that the function η(y)
def
= ηλ̄(y) satisfies

(1.3.5), and, by Theorem 1.3.1 (iii), D∗ is unbounded. Thus, we have obtained a

contradiction that proves that W is not empty. �

Proof of Theorem 1.3.1 (ii). By Theorem 1.3.1 (i), if the optimal value of the dual

problem (1.3.1) is bounded, then W is not empty and, hence, a solution of the problem

(1.2.11) exists.

Define the set Q̂ ⊂ IR1 × l1 by the equation

Q̂
def
=
{
(θ, x) : θ ≥

∫

U×Y

q(u, y)γ(du, dy), (B.15)

x = (x1, x2, ...), xi =

∫

U×Y

(∇φi(y))
Tf(u, y)γ(du, dy), γ ∈ P(U × Y )

}
. (B.16)

The set Q̂ is convex an closed. Also, for any j = 1, 2, ..., the point (θj , 0) /∈ Q̂, where
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θj
def
=G∗ − 1

j
and 0 is the zero element of l1. On the basis of a separation theorem (see

[96] p.59), one may conclude that there exists a sequence (kj , λj) ∈ IR1×l∞, j = 1, 2, ...

(with λj
def
= (λj1, λ

j
2, ...)) such that

kj(G∗ −
1

j
) + δj ≤ inf

(θ,x)∈Q̂

{
kjθ +

∑

i

λjixi

}
=

inf
γ∈P(U×Y )

{
kjθ +

∫

U×Y

(∇ηλj (y))Tf(u, y)γ(du, dy) s.t. θ ≥

∫

U×Y

q(u, y)γ(du, dy)
}
,

(B.17)

where δj > 0 for all j and ηλj =
∑

i λ
j
iφi(y). From (B.17) it immediately follows that

kj ≥ 0. Let us show that kj > 0. In fact, if this were not the case, one would obtain

that

0 < δj ≤ min
γ∈P(U×Y )

∫

U×Y

(∇ηλj (y))Tf(u, y)γ(du, dy) = min
(u,y)∈U×Y

{(∇ηλj (y))Tf(u, y)}

⇒ max
(u,y)∈U×Y

{(−∇ηλj (y))Tf(u, y)} ≤ − δj < 0.

The latter would lead to the validity of the inequality (1.3.5) with η(y) = −ηλj (y),

which, by Theorem 1.3.1 (iii), would imply that the optimal value of the dual problem

is unbounded. Thus, kj > 0.

Dividing (B.17) by kj one can obtain that

G∗ −
1

j
< (G∗ −

1

j
) +

δj

kj
≤

min
γ∈P(U×Y )

{∫

U×Y

(
q(u, y) +

1

δj
(∇ηλj (y))Tf(u, y)

)
γ(du, dy)

}
=

min
(u,y)∈U×Y

{
q(u, y) +

1

δj
(∇ηλj (y))Tf(u, y)

}
≤ D∗

⇒ G∗ ≤ D∗.

The latter and (1.3.3) prove (1.3.4). �

Note that the proof of the Theorem 2.3.3, that defines the duality type relationships

of the SILP problem (2.3.4) and the N -approximating max-min problem (2.2.7), follows

the same steps as those in the proof of Theorem 1.3.1.

Namely, the proofs of statements (i) and (ii) of the theorem are based on separation

theorem in finite-dimensional spaces and follow the argument used in the proofs of

Theorem 1.3.1 (i) and Theorem 1.3.1 (ii), with the replacement of the set Q defined in
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(B.14) by the set Q′ ⊂ IRN ,

Q′ def
=
{
h = (h1, ..., hN) : hi =

∫

U×Y

(∇ηi(y))
Tf(u, y)γ(du, dy), γ ∈ P(U×Y )

}
, (B.18)

and with the replacement of the set Q̂ defined in (B.15) by the set Q̂′ ⊂ IR1 × IRN ,

Q̂′ def
=
{
(θ, h) : θ ≥

∫

U×Y

q(u, y)γ(du, dy), h = (h1, ..., hN) :

hi =
∫
U×Y

(∇ηi(y))
Tf(u, y)γ(du, dy). γ ∈ P(U × Y )

}
.

(B.19)

The proof of the statement (iii) of the theorem follows the argument used in the

proof of Theorem 7.1.3 (iii), with the replacement of η(y) in (B.10) by

ηv(y) =

N∑

i=1

viφi(y), v = (vi) ∈ IRN ,

and with the replacement of ηk(y) in (B.11), (B.12) by

ηvk(y) =
N∑

i=1

vki φi(y), v
k = (vki ) ∈ IRN .
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