Appendix 3: Ergative Analysis of GLIMPSE in Parasol, Icy, and Heat

Parasol: GLIMPSE

Cl. no	MEDIUM	PROCESS	AGENT	BENEFIC RANGE	CIRCUMSTANCE
1.	enough sunlight and heat	is reflecting	a hazy umbrella of sulfur particles		back into space to offset global warming.
2.	You	might think		good news	
3.	that	s			
4.					

Icy: GLIMPSE

$\begin{aligned} & \mathrm{Cl} . \\ & \text { no } \end{aligned}$	MEDIUM	PROCESS	AGENT	BENEFIC/ RANGE	CIRCUMSTANCE
1.	thicker ice	has brought	a warmer climate		in the past,
2.	if this	happened			in a greenhouse world of the future
3.	sea levels	would fall			
4.	(sea levels)	not rise		,	\%

Heat: GLIMPSE

$\mathrm{Cl} .$ no	MEDIUM	PROCESS	AGENT	BENEFICI RANGE	CIRCUMSTANCE
1.	the earth's climate	threaten	chemical wastes spewed into the air		

BRIDGING: PARASOL 1

$\begin{aligned} & \hline \mathbf{C l} . \\ & \text { no } \\ & \hline \end{aligned}$	MEDIUM	PROCESS	AGENT	BENEFICI/ RANGE	CIRCUMSTANCE
1.	Those colorless combinations of oxygen and sulfur $[\ldots]$	have: Rel (Att)		a chemical affinity for water	
2.	free-floating moisture	pull: Mat	They		out of the air : Loc (spatial)
3.	it moisture) (free-floating	and condense: Mat		into droplets of liquid water and acid:	
4.	sulfates	are: Rel (Att)		the acid in acid rain.	
5.	a bunch of these droplets	Put: Mat			together: Acc (com)
6.	a cloud	get: Mat	and you		
7.	excess aerosols,	are: Rel (Exs)			So wherever: Loc (spatial)
8.	clouds	are: Rel (Att)		more numerous,	
9.	the planet.	further shading: Mat			
10.	the water droplets [making up the clouds,]	$\begin{aligned} & \text { will be: Rel } \\ & \text { (Att) } \end{aligned}$		the smaller	
11.	the available water vapor	will be condensing: Matrial			around a larger number of particles: Loc (spatial)
12.	That	has: Rel (Att)		a cooling effect.	
13.	equal amounts of table salt and rock salt	$\begin{aligned} & \text { "try putting: } \\ & \text { Mat } \end{aligned}$			on a black tablecloth: Loc (spatial)
14.	you	Il see: Men		it,"	
15.	Charison	says: Vb			
16.	"You	can see: Men		the table	through the rock salt : Loc (spatial)
17.	fewer particles [...]	are: Rel (Exs)			
18.	Everything else	held: Rel (Att)		constant	
19.	the cloud with more droplets	$\begin{aligned} & \text { will be: Rel } \\ & \text { (Att) } \end{aligned}$		brighter than one with fewer droplets	
20.		are not yet understood: Men			well enough [for Charlson or any other expert to make a good estimate of the scope of this indirect cooling effect,] (Manner; quality)
21.	but few in the field	doubt: Men			
22.	that it	's: Rel (Att)		large	

BRIDGING: PARASOL 2

$\begin{aligned} & \text { CL } \\ & \text { no } \end{aligned}$	MEDIUM	PROCESS	AGENT	BENEFICI/ RANGE	CIRCUMSTANCE	
1.	Charlson	point out: Vb	\cdots	R		
2.	a number of subtieties to the parasol effect [..\\|.]	are: Rel (Exs)	,			
2.eb		[suggesting: Vb	,			
2.eb	global warming veering	are more likely to send: Mat	aerosols,			
2.eb		preventing: Mat		a greenhouse world $]$		
3.	\square	To understand: Men			why: Cause (reason)	
4.	«he	says \# : Vb		7		
5.	you	have to take a closer look at: Beh		the haze		
6.	A certain amount of aereosol haze	occurs: Mat				
7.	Twenty-two million tons of sulfur	$\begin{aligned} & \text { are emitted: } \\ & \text { Mat } \end{aligned}$	by minuscule, single-celled marine algae,		every year: Ext (temporal)	
8.	its faintly musty smell.	giving Mat	\qquad	the sea,		
9.	its share.	contributes: Mat	The occasional volcano			
10.	But this natural background	isn't: Rel (Id)		the cause of modern haze:		
11.	industry	is to blame: Vb			For that: Cause (reason) squarely. Manner (quality)	
12.	sulfur	has been busy adding: Mat	humanity, mer	cometataty	Over the past 150 years: Ext (temporal) to the natural background: Loc (spatial)	
13.	the element out of the earth in the form of coal, metal ores, and oil.	gouging: Mat				
14.		being cooked: Mat	पुter ${ }^{\text {a }}$	$15 x$		
15.	with oxygen	links up: Rel (Id)	sulfur ${ }^{\text {a }}$,	$\text { Wh } \quad$		
16.		and emerges: Rel (d)	1	as sulfur dioxide gas	from smokestacks : Loc (spatial) , ,	
17.	Charlson	estimates: Vb				
18.	some 90 million tons of sulfur	puts out Mat	that, worldwide, industry		every year: Ext (temporal) -almost 500 million pounds Ext: (spatial) every single day. Ext (temporal)	
19.	${ }^{4}$ It	$\begin{aligned} & \text { 's like: Rel } \\ & \text { (Att) } \end{aligned}$		having lots of volcanoes erupting $\quad 24$ hours a day,.."		
20.	he	says: Vb				
21.	many of the atoms of this gas	recombine to form: Rel (Id)		trillions of tiny sulfate particles		
22.	These particles	stay up: Rel (Att)			for no more than a few days: Ext (temporal)	
23.	before they	fall back: Mat			to Earth: Loc (spatial)	
24.	Only sulfates from the most powerful of volcanic eruptions	ever reach: Mat			the stratosphere, [.-I. I: Loc (spatia)	
25.	Those produced by human beings	stay: Rel (Att)			in the lower atmosphere-below 36,000 feet at the middle latitudes,...: Loc (spatial)	

BRIDGING: PARASOL 2 (cont.)

26.	aerosols	can push: Mat	The gentler winds of this part of the atmosphere		only about 600 miles at most : Ext (spatial)	
27.	before they	$\begin{aligned} & \hline \text { come back: } \\ & \text { Rel (Id) } \end{aligned}$		$\begin{array}{\|l\|} \hline \begin{array}{l} \text { often } \\ \text { rain } \end{array} \\ \hline \end{array}$	to Earth: Loc (spatial)	
28.	So Seattle air, [...]	is: Rel (ld)		far less aerosolladen than the stuff people are breathing in, ...		
$\begin{aligned} & 28 . \\ & \text { eb } \end{aligned}$		$\underset{\text { Mat }}{\text { [blows }}$ in:	which		```after a 6,000-mile journey : Ext (spatial) over the industry-free Pacific l (: Loc (spatial))```	
29.	theconcentration aerosollon	is: Rel (Att)		so great	everywhere east of the Mississippi [that people [who grew up in that part of the country] don't even know \\| what the sky is supposed to look like]. (: Loc (spatial))	
30.	"he	says \% : Vb				
31.	$\begin{aligned} & \text { The sky [they } \\ & \text { know] } \end{aligned}$	is: $\operatorname{Rel}(\mathrm{Att})$		murky-		
32.	visibility	is: $\operatorname{Rel}(\mathrm{Att})$		 perhaps 20 miles, as opposed to the 100 miles or more \ldots		
33.	"When you	have: (Att)	lots of photons [...]			
33.eb		[bouncing: Mat			around in a scatter. Manner (quality)]	
34.	the sky	goes: (Att)		from blue to a whitish color,"		
35.	Charlson	says.: Vb	.			
36.	you	look up: Beh			"From the ground anywhere...: Loc (spatial) on an otherwise sumny day: Loc (temporal)	
37.	and the sky directly overhead	$\begin{aligned} & \text { may be: Rel } \\ & \text { (Att) } \end{aligned}$		blue or bluish,		
38.	it (sky)	$\begin{aligned} & \text { 'll be: Rel } \\ & \text { (Att) } \end{aligned}$		whitish	but off at angles: Loc (spatial)	
39.	That white sky [you see]	is: Rel (Att)		$\begin{aligned} & \hline \text { due to aerosol } \\ & \text { (Act: cir) } \end{aligned}$	in the East: Loc (spatial)	
40.	That	doesn't happen: Mat			very often : Ext (temporal) in Montana : Loc (spatial)	

BRIDGING: PARASOL 3

$\begin{array}{ll} \text { CL } \end{array}$	MEDIUM	PROCESS	AGENT	$\begin{aligned} & \text { BENBFICV/ } \\ & \text { RANGE } \\ & \hline \end{aligned}$	CIRCUMSTANCE	
1.	The prototype	sits: Mat			on a bookshelf in his office.: Loc: spatial	
2.	It	's: Rel (Att)		gunmetal gray, roughly the size and shape of a bazooka.		
3.	aerosol-laden air	sucks: Mat	a tiny pump		Through an inlet on the bottom; Loc: spatial into a chamber. Loc spatial	
4.	a halogen movieprojector lamp.	is: Existential	4		On one side of the cylindrical chamber: about halfway down its length, Loc spatial	
5.	an electric light detector- the technologically more sophisticated great- grandson, «6. "...	is: Existential			At one end of the chamber. Loc: spatial	
6.	Charison	says: Vb				
7.	12	by determining: Men				
8.	how much	makes: Mat	\%	it , + , \%tatar	through an air sample: Extent spatial to the light detector: Loc: spatial	
9.	I how much light is being deflected by aerosols in the sample].	can measure: Mat +,				
9.eb	how much light	is being deflected: Mat	by aerosols			
10.	the + 'scattering efficiency;"	gives: Mat :	It			
11.	Charison	says: Vb		Q,	H दर	
12.	You	might think of. Men	1	it. $\mathrm{C}, \mathrm{a}+\mathrm{m}$, +	as the amount of a light beam [thata particle blocks out per gram of of material 1": Role	
12.eb		blocks out: Mat	a particle			
13.	a complete measure of optical scattering,	To get: Mat		4		
14.	Charlson	explains: Vb	- 4			
15.	"you	make: Mat	?	a measurement	with a nephelometer;: Manner: means ,t\%	
16.	the air,	filter. Mat	you est		simultaneously. Loc: temporal $1, \mathrm{~L}$,	
17.	the particles	get: Mat	C-m.			
18.				a chemical analysis of the material.		
19.	an amount of sulfate per cubic meter of air.	gives: Mat	That	you,	$\text { Turtr, } \mathrm{r}$	
20.	the ratio of the scattering to the concentration of material.	take: Mat \qquad		8%		
21.	[what allows you to say \\| that κ given X amount of sulfate in the air n, there will be Y amount of scattering]."	's: Rel (Identifying)	That			
21.eb	you	allows to say: $\mathbf{V b}$				
21.eb	X amount of sulfate in the air $\%$,	given: Mat			$\text { M, rer, } \sqrt{e r} \pi+$	
21.eb	Y amount of scattering	will be: Existential				

BRIDGING: PARASOL 4

Cl. no	MEDIUM	PROCESS	AGENT	BENEFICU/ RANGE	CIRCUMSTANCE
1.	Some of Charlson's findings about the parasol effect	suggest: Vb			
2.	that it	$\begin{array}{ll} \hline \text { won't help: } \\ \text { Mat } \\ \hline \end{array}$			at all with some seroius aspects of the global warming problem:
3.	some warming effects	may even make: (Att)	Sulfate aerosols	worse,	
4.	Charlson	says: Vb			
5.	The reasons	lie: Rel (Att)		in the fundamental difference between greenhouse gases-- [.... [...]]	
6.	Because sulfates	have: (Att)		such a limited range,	
7.	almost all man-made aerosols	$\begin{aligned} & \text { are floating: } \\ & \text { Mat } \\ & \hline \end{aligned}$			above the Northern Hemisphere: Loc (spatial)
8	90 percent of industrial activity	is still concentrated: Rel (Att)			where: Loc (spatial)
9.	almost no such "protection" from man-made sulfates.	gets: Mat	the Southern Hemisphere		By contrast: Manner (com)
10.	"the amount of light [scattered by haze]	is: $\operatorname{Rel}(\mathbf{A t t})$		probably 10 to 100 times higher [...]	in the relatively clean air of Seattle
11.	Charlson	says: Vb			
12.	while the other	$\begin{aligned} & \text { is protected } \\ & \text { by: Mat } \\ & \hline \end{aligned}$	an umbrella of pollution,		with one hemisphere bearing the full brunt of global warming: Acc (com)
13.	he	says: Vb			
14.	seas	still rise: Mat			uniformly: Manner (quality) all over the globe: Loc (spatial)
15.	as the warmer southern waters	expand: Mat			
16.	the Maldives, ...	$\begin{array}{\|l\|l} \hline \text { can't } \\ \text { Mat } \end{array}$	sulfates		In other words: Manner (com)
17.	But a rise in sea level, «..."	might be: Rel (Att)		the biggest effect to worry about	
18.	«Charlson	saysm: Vb			
19.	Much more important, «...»	could be: Rel (Id)		the increased difference in temperature ...	
20.	"he	points out m: Vb			
21.	That	's likely to affect: Rel (Id)		the large-scale weather systems [on which people depend	
22.	"More frequent	is: $\operatorname{Rel}(\mathrm{Att})$		a possibility"	
23.	Charlson	says.: Vb			
24.	"Or of violent storms				
25.	Or the opposite-less frequent storms				
26.	either chance	'd give: Mat	1		

BRIDGING: PARASOL 4 (cont.)

BRIDGING: ICY 1

$\begin{aligned} & \hline \mathrm{Cl} . \\ & \mathrm{no} \\ & \hline \end{aligned}$	MEDIUM	PROCESS	AGENT	BENEFICI/ RANGE	CIRCUMSTANCE
1.	Antarctica's ice	comes: Rel (Att)		from snow and frozen sea (Att: cir)	
2.	Snow [...]	becomes: Rel (Id)		ice	
2. eb		accumulating: Mat			inland : Loc (spatial)
3.		flows: Mat			slowly: Manner (quality) down towards the shores: Loc (spatial)
4.		ending: (Att) (Att)		in the floating ice shelves [...] (Att: cir)	
4. eb	the continent	fringe: Mat			
5.	ice volumes in the Antarctic	are: Rel (Att)		low	
6.	these shelves	retreat: Mat			towards the shoreline: Loc (spatial)
7.	a lot of ice,	is: Exs			
8.	the shelves	spread: Mat			around the continent : Loc (spatial)
9.	more ice	flows: Mat			outward from the land: Loc (spatial)
10.	the sea floor close to the shore	touch: Mat	the shelves		
11.	they	float: Mat			further out: Loc (spatial)
12.	sediments on the sea floor at a position [...]	$\begin{array}{lr} \hline \text { begin } \quad \text { to } \\ \text { scrape } & \text { away: } \\ \text { Mat } \end{array}$	they		
$\begin{aligned} & 12 . \\ & \mathrm{eb} \\ & \hline \end{aligned}$		$\begin{array}{ll} \hline \begin{array}{l} \text { known: } \\ \text { (Id) } \end{array} & \text { Rel } \\ \hline \end{array}$		as the grounding line	
13.	a complete sediment record	$\begin{aligned} & \text { to collect: } \\ & \text { Mat } \end{aligned}$			for a particular period of Earth history: Ext (temporal)
14.	a drill hole	has to be placed: Mat			beyond the grounding lines of the sheets [..]:Loc (spatial)
$\begin{aligned} & 14 . \\ & \text { eb } \end{aligned}$	that	were: (Att) \quad Rel		active	then: Loc (temporal)
15.	three submarine troughs more than 500 metres deep,	chose: Mat	Domack's team		
16.		lying: \quad Rel (Att)		between 30 and 130 kilometres offshore (Att: cir)	
17.	one site	was: $\operatorname{Rel}(\mathrm{Att})$		near the Amery Ice Shelf (Att: cir)	\cdots
18.	which	lies: Rel (Att)		in front of the Lambert Glacier,...(Att: cir)	
19.	Each site	records: Vb		the same $10000-$ year story	
20.	mud and diatomaceous ooze	have accumulated: Mat			For the past 4000 years: Ext (temporal) in the troughs benearth an ocean free of solid ice: Loc (spatial)
21.	The ooze	is named after: $R e l$ (Att)		$\begin{aligned} & \text { diatoms . - the } \\ & \text { creatures [...] } \end{aligned}$	
$\begin{aligned} & 21 . \\ & \mathrm{eb} \\ & \hline \end{aligned}$	[whose skeletons	form: $\operatorname{Rel}(\mathrm{ld})$		the bulk of this sediment]	
22.	They	are: Rel (Att)		microscopic algae with silica shells	,

BRIDGING: ICY 1 (cont.)

23.	countless numbers of them	live: Mat		noshatas	in the top 200 metres of the ocean : Loc (spatial)
24.	no covering of ice	is: Exs		Cram	
25.	silty sands and gravels	were laid down : Mat			In the preceding 3000 years Ext (temporal) from 4000 to 7000 years ago: Loc (temporal)
26.	these sediment types	are accumulating: Mat	$4,-\pi+1$		Today: Loc (temporal) closer to Antarctica, beneath the ice shelves : Loc (spatial)
27.	The sediments	are made up of: Rel (Id)	1	debris [.[.\|.]	
27. eb		ploughed: Mat	by glaciers and ice sheets		from the Antarctic landmass: Loc (spatial)
$\begin{aligned} & 27 . \\ & \text { eb } \end{aligned}$	which	break up: Rel (Id)		into icebergs	eventually Loc (ternporal)
27. eb in eb	that	melt: Mat			into the ocean; Loc (spatia)
28.	fewer diatoms	are: Rel (Exs)			in these sediments: Loc (spatial)
29.	their growth	inhibit Mat	the combination of fresh water from the melted ice		below the shelf: Loc (spatial)
30.	the oceans	$\begin{aligned} & \text { were } \begin{array}{l} \text { Rel } \\ \text { (At) } \\ \text { ntry, } \end{array} \text {, } \end{aligned}$		\qquad	Before about 7500 years ago: Loc (temporal) at these sites: Loc (spatial) \mathcal{V}, , , mat, with conditions probably much like today. Con (condition)

BRIDGING: ICY 2

$\begin{aligned} & \begin{array}{l} \mathrm{Cl} \\ \mathrm{no} \\ \hline \end{array} \\ & \hline \end{aligned}$	MEDIUM	PROCESS	AGENT	$\begin{aligned} & \hline \text { BENEFICJ } \\ & \text { RANGE } \\ & \hline \end{aligned}$	CIRCUMSTANCE
1.	the growth of ice sheets	to follow: Mat			worldwide: Loc (spatial)
2.	Miller and de Vemal	concentrated: Men		on one of the tiniest forms of life in the oceans-...	
3.	shells of calcium carbonate	grow: Mat	these creatures		
4.	the proportion of two isotopes of oxygen (...) in the carbonate	varies: Mat			
5.	the ice sheets	wax: Mat			
6.		$\begin{aligned} & \text { and wane: } \\ & \text { Mat } \end{aligned}$			
7.	The link	is: $\operatorname{Rel}(\mathrm{Att})$		in the sea water	
8	water	evaporates: Mat			from equatorial regions of the Earth: Loc (spatial)
9.	a higher level of the lighter isotope, oxygen-16,	is: Exs			in the vapour: Loc (spatial)
9. eb		was: Exs			in the original sea water: Loc (spatial)
10.	Some of this water vapour	$\begin{aligned} & \text { is carried: } \\ & \text { Mat } \end{aligned}$			to the poles: Loc (spatial)
11.	it	falls: Mat			where: Loc (spatial)
12.		forms: Rel (Att)		the polar ice	eventually: Loc (temporal)
13.	The ice	has: Rel (Att)		a higher proportion of oxygen-16 than the sea,	
14					
$\begin{aligned} & 14 . \\ & \text { eb } \end{aligned}$		forms: \quad Rel (Att)			at any one time: Loc (temporal)
15.					
16.	shells [...];	grow: Mat	organisms [...]		In glacial periods: Loc (temporal)
$\begin{aligned} & 16 . \\ & \text { eb } \\ & \hline \end{aligned}$		are: Rel (Att)		rich in the heavier isotope	
17.	this tell-tale sign	is fossilised: Mat			in sediment: Loc (spatial)
18.	they	die.: Mat			
19.	a record of the balance of oxygen isotopes through time,	give: Mat	The shells of the forams		
20.	which	is linked: Mat		to the volume of water I..]	
$\begin{aligned} & 20 . \\ & \text { eb } \\ & \hline \end{aligned}$		locked away: Mat			in the ice sheets : Loc (spatial)

BRIDGING: ICY3

MTH

$\begin{aligned} & \mathrm{Cl} . \\ & \text { no } \end{aligned}$	MEDIUM	PROCESS	AGENT	BENEFICI/ RANGE	UMSTANCE
1.	Similar signals	come: Rel (A.t)			from the modem world: Loc (spatial)
2.		has warmed: Mat		$\mathrm{P} 8 \mathrm{y}$	by $0.6^{\circ} \mathrm{C}$: Manner (quality) on average Manner(quality) over the past century: Ext (temporal),
3.	short-term increases in the amount of snow at the poles:	$\begin{aligned} & \text { have been: } \\ & \text { Rel (Exs) } \end{aligned}$			
4.	snow lines in regions such as Arctic Canada, Baffin Island and Alaska	are moving: Mat,			
5.	The Greenland ice sheet	is thickening: Mat , ${ }^{2}+$ 4. 4 What		at a rate equivalent to 2 fall in sea level of about 0.45 millimetres per year.	
6.	ice	have accumulated: Mat	Some coastal and interior sites in Antarctica	1	over the past 80 years: Ext (temporal)
7.				a growth rate equivalent to a fall in sea level of $\quad \infty \quad 0.75$ milimetres per year	
8.	But today's climate	is signalling: Vb		the opposite effect, too -	
9.	that the melting of ice	is accelerating: Mat	rry+4		
10	glacers in most mountain chains	are melting: Mat 1	11		
11		are retreating: Mat			rapidly. Manner (quality) ,
eb	« that	began: Mat			a century ago a Loc (temporal)
12.	some ice shelves on the Antarctic Peninsula	are disintegrating : Mat			
13.	fears [..]	fuelling: Mat			
14.	This confusing. contradictory behaviour also	shows up: Rel (Id) \qquad		record	tht,
15.	Domack	notes: Vb			
16.	glaciers on the Antarctic Peninsula and islands..	receded: Mat \qquad $3 T^{2+m+\infty}$ Susicse			in the Hypsithermal period: LOC (temporal) at the same time [..]: Loc (temporal)
16.eb	ice sheets	were growing: Mat		2	from the snouts of major ice-drainage streams : Loc (spatial)
17.	statel	are to be understood Men		these conflicting signals	How. Manner (means)
18.	The most likely explanation	is: Rel (Id)		that mild global warming brings a net increase in the amount of snow at the poles rather than a net melting.	

BRIDGING: ICY3 (cont.)

19.	more water	evaporates: Mat			In a warmer world: Loc (temporal) from the oceans: Loc (spatial)
20.		to be transported: Mat			to the poles: Loc (spatial)
21.		$\begin{aligned} & \text { to become: } \\ & \text { Rel (dd) } \end{aligned}$		snow.	
22.	this	happens: Mat			
23.	$\begin{aligned} & \text { the feedback } \\ & \text { processes [...] } \end{aligned}$	$\begin{aligned} & \text { cannot be: } \\ & \operatorname{Rel}(A t t) \end{aligned}$		important enough [to override the effect of air circulation]	
$23 . \mathrm{eb}$	ice sheets	strave: Mat			
23.eb	the effect of air circulation	$\begin{aligned} & \text { to override: } \\ & \text { Mat } \end{aligned}$			
24.	The key factor in the growth of ice sheets	$\begin{aligned} & \text { seems to be: } \\ & \text { Rel (Id) } \end{aligned}$		conditions [that do not melt or remove snow, il as exist today in the cold, dry climates of central Antarctica and norhthem Canada].	
24.eb		do not melt: Mat			
24.eb	snow	$\begin{aligned} & \text { or remove: } \\ & \text { Mat } \\ & \hline \end{aligned}$			
24.eb		exist: Mat			today: Loc (temporal) in the cold, dry climates of central Antarctica and northern Canada: Loc (spatial)
25.	Miller and de Vernal	found: Men			
26.	that a change to warmer, wetter winters alternating with cooler, ...	is: $\operatorname{Rel}(\mathrm{Att})$		ideal for	all year round: Ext (spatial)
27.	Domack and his colleagues	suggested: Vb			
28.	other climatic factros [...]	$\begin{aligned} & \text { may be: Rel } \\ & \text { (Exs) } \end{aligned}$			
28.eb	the preservation of snow	affect: Mat			
29.	They	think: Men			
30.	that katabatic winds on ice sheets	$\begin{aligned} & \text { may play: Rel } \\ & \text { (Id) } \end{aligned}$		a part.	
31.	These winds	develop: Mat			
32.	air [...]	$\begin{aligned} & \text { becomes: Rel } \\ & \text { (Att) } \end{aligned}$		$\begin{array}{\|l\|} \hline \text { dense enough } \\ {[\ldots]} \end{array}$	
32.eb		cooled			on high ground: Loc (spatial)
32.eb		to flow: Mat			downhill: Loc (spatial)
33.	they	descend: Mat			
34.	fallen snow	remove: Mat	they		recently: Loc (temporal)
35.	katabatic winds	$\begin{array}{ll} \hline \begin{array}{l} \text { reach: } \\ \text { (Att) } \end{array} & \text { Rel } \\ \hline \end{array}$		tremendous speeds,	In Antarctica: Loc (spatial)
36.		averaging: $\operatorname{Rel}(A t t)$			75 kilometers per hour: Manner (quality) at some places on the Antarctic plateau : Loc (spatial)
37.	the world	was: Rel (Att)		warmer	-
38.	the drop temperature height in with height	reduced: Mat			
39.	the strength of katabatic winds	would diminish: Mat			
40.	more snow	would survive: Mat			

BRIDGING: HEAT 1

$\begin{aligned} & \mathrm{Cl} . \\ & \text { no } \end{aligned}$	MEDIUM	PROCESS	AGENT	BENEFICI RANGE	
1.	Atmospheric scientists	have long known: Men			Mr+1,
2.	broad historical cycles of global warming and cooling:	are: (Exs)	4	+ +	
3.	most experts	believed: Men		Q+द	Cram,
4.	the earth surface	began warming: Mat	\%		gradually: Manner (quality) , w 1 , wr,
5.	the last ice age	$\begin{aligned} & \text { peaked: Rel } \\ & \text { (Att) } \end{aligned}$		$\begin{aligned} & 18,000 \text { years } \\ & \text { ago (Att: cir) } \end{aligned}$	rotr
6.	it	has dawned: Mat			only recently: Loc (temporal) on scientists : Loc (spatial).
7.	these climatic cycles	can \quad be affected: Mat	by man	4	
8.	Stephen Schneider,..	Says: Vb	\square		Tr, S_{4}^{4}
9.	the earth's surface	are altering: Mat	"Humans		arataratrat
10.	the atmosphere	changing: Mat			at such a rate I that we have become a competitor with natural forces \& that maintain our climate] 1/ (Manner. quality)
10.eb	we	have become: $\operatorname{Rel}(A t t)$		a competitor with natural forces \quad [that maintain_our climate]].	
$\begin{aligned} & \text { 10.eb } \\ & \text { in eb } \end{aligned}$	our climate] , \%	maintain: Mat			
11.	I What is new	is: Rel (Att)	the potential irreversibility of the changes [..]		
11.eb	What	is: Rel (Att)			T, \%k\%
11.eb		I are taking place : Mat	2	+ratar	now. Loc: temporal) 1

\qquad

BRIDGING: HEAT 2

$\begin{aligned} & \mathrm{Cl} . \\ & \mathrm{no} \\ & \hline \end{aligned}$	MEDIUM	PROCESS	AGENT	BENEFICI/ RANGE	CIRCUMSTANCE
1.	Potentially more damaging than ozone depletion, and far harder to control,	is: Rel (Id)	the greenhouse effect,		
2.		caused: Mat	by carbon dioxide $\left(\mathrm{CO}_{2}\right)$		
3.	The effect of CO_{2} in the atmosphere	is: Rel (Att)		comparable to the glass of a greenhouse:	..
4.	the warming rays of the sun	lets in: Mat	it		
5.	excess heat	keeps from reradiating back: Mat		,	into space : Loc (spatial)
6.	a global warming trend [that could raise average temperature between $2^{\circ} \mathrm{F}$ and $8^{\circ} \mathrm{F}$ by the year 2050-or between five and ten times the rate of increase [that marked the end of the ice age 11	may be hastening: Mat	man-made contributions to the greenhouse effect, mainly CO [that is generated by the buming of fossil fuels],	\ldots	(
6.eb		is generated: Mat	by the burning of fossil fuels		
$6 . \mathrm{eb}$	average temperature	could raise: Mat			between $2^{\circ} \mathrm{F}$ and $8^{\circ} \mathrm{F}$ by the year 2050or between five and ten times the rate of increase [...] (Ext: spatial)
$\begin{aligned} & \text { 6.eb } \\ & \text { in eb } \end{aligned}$	[the end of the ice age	marked] Rel (Id)			
7.	the ecological face of North America."	revamped: Mat	that change		"completely: Manner (quality)
8.	Schneider,	notes: Vb			

BRIDGING: HEAT 3

$\begin{aligned} & \hline \mathbf{C l} . \\ & \mathrm{no} \end{aligned}$	MEDIUM	PROCESS	AGENT	BENEFICI/ RANGE	CIRCUMSTANCE
1.	the arena [...]	is: Rel (Id)		the atmosphere, $1 \ldots[.]$	
1.eb	such projected climatic warming	will first be played out Mat			$\begin{gathered} 4+4+4 t r y \\ \hline \end{gathered}$
1.eb	the earth	blankets: Mat			
2.	it (the atmosphere)	is: Rel (Att)	- \%ay	a remarkably thin membrane	$4 \mathrm{a}, \mathrm{a}, \mathrm{a} \operatorname{man}+\tan$
3.	the earth	were, Rel (Att)		the size of an arange	\cdots
4.	the atmosphere	would be: Rel (Att)		only as thick as its peel	Trat master
5.	the bottom layer of the peel, the troposphere	is: Rel (d)		where all global weather takes place.	
6.	it	extends: Rel (Att)		from the earth's surface .. (Att: cir)	
7.	air warmed by the earth's surface	rises: Mat	$\sqrt{6}$	- $\mathrm{S}_{4}+$	
8.	colder air	rushes down: Mat		4	
9.	it (air)	$\begin{array}{\|l\|} \hline \text { to } \text { replace: } \\ \text { Mat } \\ \hline \end{array}$			matratren
10.	the troposphere	$\begin{aligned} & \text { is chuming } \\ & \text { Mat } \\ & \hline \end{aligned}$			constantly Manner (quality) \quad,
11.	a permanent air flow	streams: Mat	40		from the poles to the equator ... Loc (spatial)
12.	prevailing winds [...]	generate: Mat	these swirling air masses «..."	Ttram	Q
12.eb	weather	drive: Mat			across the hemisphere: Extent (spatial)
13.		«distorted: Mat	by the rotation of the earths		
14.	the spread of pollutants	aid: Mat	$4 .$	1	in the troposphere: Loc (spatial)
15.	the stratosphere	$\begin{array}{ll} \hline \text { extends: } & \mathrm{Rel} \\ (\mathrm{Atr}) & \mathrm{me} \end{array}$		upward to about 3 miles: (Att cir)	above this turmoil: Loc (spatial)
16.	rising air [...]	begin to tarn: $\operatorname{Rel}(A t t)$		warmer	in the lower stratosphere: Loc (spatial)
16.eb		$\begin{aligned} & \text { has been } \\ & \text { growing Rel } \\ & \text { (Att) } \\ & \hline \end{aligned}$		colder	at higher and higher altitudes: Loc (spatial)
17.	Ozone (O_{3})	is: Rel (Id)		$\begin{aligned} & \text { a form of } \\ & \text { oxygen [..] } \end{aligned}$	4
17.eb		occurs: Mat			rarely. Extent (temporal) naturally: Manner (quolity) in the cool reaches of the troposphere: Loc (spatial)
18.	It (Ozone (O_{3})	$\begin{array}{\|l} \hline \text { is created: } \\ \text { Mat } \\ \hline \end{array}$	5.	4	
19.	ordinary oxygen molecules	$\begin{aligned} & \text { are } \\ & \text { bombardedt } \\ & \text { Mat } \end{aligned}$	with solar ultraviolet rays		usually: Ext (temporal) in the stratosphere: Loc (spatial)
20.	the oxygen molecule	shatters: Mat	this radiation		
21.	some of the free oxygen atoms	recombine with O_{2} to form		$\left(\mathrm{O}_{3}\right)$	
22.	a property [..]	gives: Mat	the configuration	it	
22.eb	two-atom oxygen	does not have: Rel (Att)			

BRIDGING: HEAT 3 (cont.)

22.eb	ultraviolet light	$\begin{aligned} & \hline \text { can absorb: } \\ & \text { Mat } \end{aligned}$	it (a property)		efficiently: Manner (quality)
23.	oxygen	protects: Mat	ozone		in doing so: Manner (means) at a lower latitude: Loc (spatial)
24.		being broken up: Mat			
25.	most of these harmful rays	keeps: Mat			
26.		penetrating: Mat			to the earth's surface: Loc (spatial)
27.	the ozone	heats up: Mat	the energy of the absorbed radiation	:	
28.	warm layers	creating: Mat			high in the stratosphere [...]: Loc (spatial)
28.eb		act: Mat			as a cap: Role on the turbulent troposphere below: Loc: spatial
29.	ozone molecules	are being made: Mat			constantly: Manner (quality)
30.	they (ozone molecules)	can be destroyed	by any of a number of chemical processes ...		
31.	regular injections of nitrogen bearing compounds,...	receives: Mat		the stratosphere	\cdots - .
32.		produced: Mat	by microbes
33.	the gas	rides: Mat		the rising air currents	to the top of the troposphere: Loc (spatial)
34.		forced: Mat	by the tramendous upward push of tropical storms		higher: Loc (spatial)
35.	it (the gas)	enters: Mat			finally: Ext (temporal)
36.		perlocates: Mat			slowly: Manner (quality) into the stratosphere: Loc (spatial)
37.	nitrous oxide	tends to stay: Rel (Att)		there (Att: cir)	
38.	a recent National Academy of Sciences report	likened: Men		$\begin{aligned} & \text { the upper } \\ & \text { atmosphere ... } \end{aligned}$	
39.	it	leaves: Mat		the ground	as long as five years ...: Ext (temporal)
40.	$\mathrm{N}_{2} \mathrm{O}$	$\begin{aligned} & \text { may reach: } \\ & \text { Rel (Att) } \\ & \hline \end{aligned}$		altitudes of 15 miles..	
40.eb	it	is broken: Mat	by the same ultraviolet radiation		". . ${ }^{\text {a }}$
$40 . \mathrm{eb}$ in eb	ozone	creates: Mat			
41.		attack: Mat	the resulting fragments-called radicals--		
42.	more ozone molecules	destroy: Mat			
43.	another ozone killer	is: Rel (Att)		methane, [...]	
43.eb		produced: Mat	by microbes		in swamps ... : Loc (spatial)
44.	the process of ozone production and destruction	has been: Rel (Att)		more or less in equilibrium	for millenniums: Ext (temporal)
45.	a non-toxic inert gas [...]	invented: Mat	a group of chemists ...		then in 1928: Loc (temporal)
45.eb		was used			as a coolant in refrigeratiors: Role
46.	similar compounds,	were using: Mat	manufacturers		by the 1960s: Loc (temporal)

BRIDGING: HEAT 4

$\begin{array}{\|l\|} \hline \mathbf{C l} \\ \text { no } \end{array}$	MEDIUM	PROCESS	AGENT	BENEFICI RANGE	CIRCUMSTANCE
1.	CFCs	are: $\operatorname{Rel}(\mathrm{Att})$		immune destruction	In the troposphere: Loc (spatial)
2.	they	break apart: Mat	$\square 5$	C4,	in the stratosphere: Loc (spatial) easily: Manner (quality) under the glare of ultraviolet light-Loc (spatial)
3.			the result		
4.	ozone	attack Mat			
5.	$\begin{aligned} & \text { chlorine monoxide } \\ & (\mathrm{CIO}) \text { and } \mathrm{O}_{2} \end{aligned}$	$\begin{aligned} & \text { to form: Rel } \\ & \text { (Id) } \\ & \hline \end{aligned}$	$\stackrel{1}{4}$	4,	
6.	The ClO	combines: Mat		Wrrtre	then: Loc (temporal) with a free oxygen atom. Acc (com)
7.		$\begin{aligned} & \text { to form: } \mathrm{Rel} \\ & \text { (Id) } \end{aligned}$	S	O_{2} and a chlorine atom.	w,
8.	The chain	repeats: Mat	4	itself.	then: Loc (temporal)
9.	" 100,000 molecules of ozone	$\begin{aligned} & \text { are removed: } \\ & \text { Mat war } \end{aligned}$	$4,4$		"For every chlorine atom [-1" (Cause, reason) from the atmosphere: Loc (spatial)
$9 . \mathrm{eb}$		release: Mat	you		4-2-
10.	Rowland,	says: Vb		,	4 max

BRIDGING: HEAT 5

$\begin{gathered} \text { CL } \\ \text { no } \\ \hline \end{gathered}$	MEDIUM	PROCESS	AGENT	BENEFICT/ RANGE	CIRCUMSTANCE
1.		did not mean: Rel (Id)	the existence of an ozone hole		necessarily Mamer (quality)
2.	पtath	were to blame: Vb	¢	CFCs aven	
3.		were proposed: Vb		a number of alternative explanations	
4.	the notion [...] ${ }^{\text {n }}$	was: Rel (Exs)			Among them: Loc (spatial)
5.	Dan Albritton,	says: Vb			
6.	An interruption in the movement of air from the tropics, «... », to the poles	could result Rel (Att) whe , ow Hytut		in less ozone reaching, the Antarctic	easily. Manner (quality)
7.	most ozone	is created: Mat			
8.	-	xnm.	Another theory:		
9.	more ozone-destroying nitrogen radicals than usual,	created Mat	the sunspot activity I that peaked around 19801		perhaps: Manner (quality)
10.	- -amen	would be activated Mat	by sunlight		each spring : Ext (temporal

BRIDGING: HEAT 6

$\begin{aligned} & \mathrm{Cl} . \\ & \text { no } \end{aligned}$	MEDIUM	PROCESS	AGENT	$\begin{aligned} & \text { BENEFICI/ } \\ & \text { RANGE } \end{aligned}$	CIRCUMSTANCE
1.	Scientists	are: Rel (Att)		sure	completely: Manner (quality)
2.	the hole	$\begin{aligned} & \text { remains: Rel } \\ & \text { (Att) } \end{aligned}$		centered on the Antarctic	why: Cause (reason)
3.	the depletion	is: Rel (Att)		so severe	why: Cause (reason)
4.	the peculiar nature of Antarctic weather.	may have to do with: Mat	It		
5.	the stratosphere over the region	is actually sealed off: Mat	by the strong winds [...]		In winter: Loc (temporal) from the rest of the world: Loc (spatial)
$5 . \mathrm{eb}$		[swirl: Mat	that		around it] Loc (spatial)
6.		forming: Rel (Id)		an all but impenetrable vortex.	
7.	Cicerone:	Says: Vb			
8.	[Looking down at the South Pole]	is: Rel (Att)		like [watching II fluid draining in a sink].	
$8 . \mathrm{eb}$		Looking: Men		at the South Pole	
8.eb		watching: Men			
$8 . \mathrm{eb}$	fluid	draining: Mat			in a sink: Loc: spatial
9.	It	's: Rel (Att)		like an isolated reactor tank.	
10.	All kinds of mischief	$\begin{array}{ll} \hline \text { can occur: } \\ \text { Mat } & \\ \hline \end{array}$.	
11.					
12.	Rowland	Explains: Vb			
13.	you	$\begin{aligned} & \text { don't get: Rel } \\ & \text { (Att) } \end{aligned}$		in the stratosphere	"Mostly: Manner (quality)
14.	most of the water	 has been frozen out: Mat	*		
15.	the temperature	gets: Rel (Att)		low enough	
16.	the rest."	start freezing out: Mat	you		
17.		may prove to be: Rel (Id)	ice	a central cause of the ozone hole,	
18.	surfaces	provides: Mat	it		
18.eb		[associated: Vb		with reactions in the atmosphere	only recently, I : Loc (temporal)
19.	molecules	bounce: Mat			In a gaseous state: Role around: Loc (spatial)
20.	one another.	hit: Mat	some		eventually: Loc (temporal)
21.	the reactions considerably.	$\begin{aligned} & \text { speeds up: } \\ & \text { Mat } \end{aligned}$	I adding a surface [for the molecules to collect on 11		
$21 . \mathrm{eb}$	a surface [...]	adding: Mat			
$\begin{aligned} & \text { 21.eb } \\ & \text { in eb } \end{aligned}$	[for the molecules]	$\begin{aligned} & \text { to collect: } \\ & \text { Mat } \end{aligned}$			

BRIDGING: HEAT 7

$\begin{aligned} & \mathrm{Cl} . \\ & \mathrm{no} \\ & \hline \end{aligned}$	MEDIUM	PROCESS	AGENT	BENTEFICI/ RANGE	CIRCUMSTANCE $4 \times+14$
1.		can be said		The same	for the greenhouse effect: Matter
2.	it (to tell whether unusual global warming has indeed begun)	is: Rel (Att)		too soon	
3.	the greenhouse effect	is: Rel (Att)		a natural phenomenon with positive consequences	Unlike ozone depletion: Manner (com) \qquad
4.	"the earth	would be: Rel (Att)		uninhabitable	without it Acc (com)
5.	"Climate Modeler Jeff Kiehl,	$\begin{aligned} & \text { points out»: } \\ & \mathbf{V b} \end{aligned}$		3,	
6.	It	is: Rel (Id)		Iwhat keeps us from being an ice frozen planet like Mars. ${ }^{7}$	
6.eb		keeps: Rel (Att)		544 17.4	
7.	the sun's energy	did not trap: Mat	gases like CO_{2}	36	
8.	the earth's mean temperature	would be: Rel (Att)	2stat	$0^{\circ} \mathrm{F}$	rather than the current 59°. Manner (com)

伎

BRIDGING: HEAT 8

$\begin{aligned} & \mathrm{Cl} . \\ & \mathrm{no} \end{aligned}$	MEDIUM	PROCESS	AGENT	$\begin{aligned} & \hline \text { BENEFICI/ } \\ & \text { RANGE } \\ & \hline \end{aligned}$	CIRCUMSTANCE
1.	Such changes	may already be: Rel (Att)		under way	
2.	Climatologists	have noted: Men		an increase in mean global temperature of about $1^{\circ} F$...	
3.					
4.	the greenhouse effect	is: Rel (Att)		on the rise	
5.	"climate	is: Rel (Att)		a complicated thing,	
6.	«Roger Revelle,	warns» l : Vb			
7.	the changes seen so far	may be: Rel (Att)		due to some other cause [...] (Att: cir)	
7.eb	[we	don't yet understand 1 : Men			
8.	the theory	does not disprove: Mat	The absence of a clear-cut signal,		
9.	Scientists	expect: Men		any excess greenhouse warming to be masked for quite some time	by the enormous heat absorbing capacity of the world's oceans: Manner (means)
10.	which	have: Rel (Att)		more than 40 times the absorptive capacity of the entire atmosphere	
11.	ourselves to a climatic warming ...	ve committed: Mat	"we'		"Right now," : Loc (temporal)
12.	"V.Ramanathan,	declares" Vb			
13.	we	$\begin{aligned} & \text { haven't seen: } \\ & \text { Men } \end{aligned}$		the effect	
14.	This extra heat, " ", " "	should be released: Mat			over the next 30 to 50 years-:- Ext (temporal)
15.		trapped: Mat			now : Loc (temporal) in the ocean : Loc (spatial)
16.	"he	says, \#: Vb			
17.	it	counteracts: Mat	an event like a big volcanic eruption		
18.	Ramanathan:	Notes: Vb			
19.	it (to stop the heating that had already occured)	will be: Rel (Att)		too late	by the time: Loc (temporal)
19.eb	we	know: Men			
19.eb	our theory	is: Rel (Att)		correct,	
20.	Schneider	sees: Men			
$20 . \mathrm{eb}$		to wait: Mat			
21.	he:	Says: Vb		no need	
22.	$\begin{aligned} & \text { "The greenhouse } \\ & \text { effect } \end{aligned}$	is: Rel (Att)		the leastcontroversialtheory inatmosphericscience." \quadin	*
23.	"It	's like: Rel (Att)		$\left.\begin{array}{ll}\text { a } & \text { Rube } \\ \text { Goldberg } \\ \text { machine... } & {[. .]}\end{array}\right]$	

BRIDGING: HEAT 8 (cont.)

24.	One of the most fundamental elements of the Rube Goldberg machine	is: Rel (Id)		the \quad three astronomical cycles [..]	
25.	The swings, "... » its tilt and the shape of its orbit around the sun,	$\begin{array}{ll} \hline \text { occur: } & \mathrm{Rel} \\ \text { (Att) } \end{array}$			
26.	long-term variation in the wobbling of the earth's axis, "	involve: Mat	«which		
27.		determine: Men	they	4	Together: Acc (com)
28.	how much solar energy the earth	receives: Mat	2. ${ }^{2}$	L-	
29.	the earth's periodic major ice ages every 100,000 years or so, as well as shorterterm cold spells	cause: Mat		$\begin{gathered} \mathrm{ge} \\ \mathrm{~g}+\mathrm{at} \end{gathered}$	
30.	Milankovitch cycles only	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { scratch: } \\ \text { (Att) } \end{array} \\ \hline \end{array}$		the surface of climate change	
31.	veils of dust [...\| $1 . .$.	send up: Mat	Volcanoes, for example,		
$31 . \mathrm{eb}$		reflect: Mat	-	sumlight	
31.eb		act. Mat			
31.eb	the planet	to cool: Mat			
32.	sunlight,		Deserts, with their near white sands, also	\cdots	
33.		as do: Mat	the polar ice caps.		
34.	Tropical rain forests, however,	$\begin{aligned} & \text { have: } \mathrm{Rel} \\ & \text { (Att) } \end{aligned}$		$\begin{aligned} & \text { the opposite } \\ & \text { effect } \end{aligned}$	4
35.	solar radiation;		their dark green foliage like the dark blue of the ocean,	\square	
36.	the planet	tend to warm: Mat	both		
37.	Clouds, «....	are Rel (Id)		another important climate factor	
38.	about half the earth's surface at any given time"	shade: Mat	« which	123	
39.	James Coakley	Says: Vb	$\%$	4	of the National Center for Atmospheric Research: Loc (spatial)
40.	the atmosphere	heat up: Mat	if you		
41.	more water	$\begin{aligned} & \text { and pump: } \\ & \text { Mat } \end{aligned}$			
42.	clouds	$\begin{array}{\|l\|} \hline \text { will change: } \\ \text { Mat } \\ \hline \end{array}$	4		
43.	But how clouds	$\begin{array}{\|l\|} \hline \text { (will change: } \\ \text { Mat) } \\ \hline \end{array}$			3
44.	We	don't know.: Men			
45.	- Water vapor, for examper,	is: Rel (Id)		yet another greenhouse gas,	$5, \square, \square, \square \frac{\square}{\square}$
46.	solar energy.	reflect: Mat	the white-grey surfaces of clouds		
47.	Which effect	predominates: Mat			
48.	Answer	-			
49.	it	depends on: Men		the cloud	

BRIDGING: HEAT 8 (cont.)

50.	60% of incoming solar rays.	reflect: Mat	The bright, lowlevel stratocumulus clouds		
51.	solar heat	let: Mat	long, thin monsoon clouds		
52.	infrared radiation	$\begin{aligned} & \text { preventing; } \\ & \text { Mat } \\ & \hline \end{aligned}$			
$52 . \mathrm{eb}$		escaping: Mat			
53.	Another contributor to climatic change	is: Rel (Id)		the biosphere $[\ldots .1$	
54.	it	is: \quad Rel (Identifying)		the biosphere I that thretens \| to tip the balancel]	
54.eb	[the balance	$\begin{aligned} & \hline \begin{array}{l} \text { threatens } \\ \text { tip: Mat } \end{array} \\ & \hline \end{aligned}$	that 1		
55.	many of its effects	are: Rel (Att)		natural	
56.	and as such	have long been: (Att) \quad Rel		part of the climatic equilibrium	
57.	enormous amounts of gas	produce: Mat	Termites, for example,		
58.	woody vegetation:	digest: Mat	as they		
59.	five liters of methane	can emit: Mat	a single termite mound		a minute: Ext (temporal)
60.	The methane	escapes: Mat			into the atmosphere: Loc (spatial)
61.	ozone	$\begin{aligned} & \text { can destroy: } \\ & \text { Mat } \end{aligned}$	it (methane)		
62.		$\begin{array}{\|l\|} \hline \text { act as: Rel } \\ \text { (Id) } \end{array}$		a greenhouse ...	
63.	"Termites," «..."	$\begin{aligned} & \text { "could be: } \\ & \operatorname{Rel}(A t t) \end{aligned}$		responsible for as much as 50% of the total atmospheric methane budget."	
64.	«Environmental Chemist Patrick Zimmerman,	says \% : Vb			of the National Center for Atmospheric Research: Loc (spatial)
65.	the biosphere	$\begin{aligned} & \text { becomes: Rel } \\ & \text { (Att) } \\ & \hline \end{aligned}$		a problem only	
66.	when humans	$\begin{array}{\|l\|} \hline \text { get involved: } \\ \text { Rel (Att) } \\ \hline \end{array}$			
67.	the Amazon rain forest, «... "	$\begin{aligned} & \text { has been } \\ & \text { slashed: } \end{aligned}$			In Brazil : Loc (spatial) by an estimated 10% to 15% : Manner (com)
68.	«which	covered: Mat		$\begin{array}{\|l\|l\|} \hline 3 \\ \text { sq.mi.," million } \\ \hline \end{array}$	once: Loc (temporal)
69.	as the region	has been developed: Mat		for mining and agriculture;	
70.	an additional 20\%	has been seriously disturbed. Mat			
71.	When the downed trees	$\begin{array}{\|l\|} \hline \text { are } \text { burned: } \\ \text { Mat } \\ \hline \end{array}$			
72.		or rot: Mat			
73.	CO_{2} and other greenhouse gases	$\begin{aligned} & \text { are released: } \\ & \text { Mat } \end{aligned}$			
74.	the world	may already be helping to make: Mat	$\begin{array}{\|l\|} \hline \text { The same kind } \\ \text { of deforestation } \\ \text { in Africa,... } \\ \text { «...» } \\ \hline \end{array}$	warmer	\cdots
75.	experts \%,	« say: Vb			

