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Abstract

We study connections between two seemingly very distant constructions: Gray-product of
higher categories and famous Kontsevich Swiss-Cheese conjecture. Gray-product of 2-
categories is known for almost 50 years and it is an extremely important construction in
2-category theory. It was proved by Crans and later by Bourke and Gurski that a naive ana-
logue of Gray-product in higher dimensions does not exist. Nevertheless, there is a conjecture
that there exists a weaker version of this product in all dimensions such that it descends to a
closed structure on homotopy level.

Swiss-Cheese conjecturewas proposed byFieldsmedalistM.Kontsevich in 1998 to handle
a problem of the existence of higher order Hochschild complexes. It is geometrical in nature
and is very important in deformation quantisation theory.

In the thesis we outline a surprising relationship between these two important conjectures,
whichwas not observed before. Namely, the existence of a homotopically closedGray-product
ofV-enriched categories implies the Swiss-Cheese conjecture inV . We provide a full proof
of this statement forV = Set,Ab and Cat using the idea of categorification.
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1
Introduction

The idea of symmetry is one of the main pillars of classical and modern mathematics. Since
Galois this idea was formalised in the concept of a group action on some other object. It was
understood later that one can obtain a fruitful generalisation of this concept if one replaces
groups by monoids. The concept of an A-module over a k-algebra A revolutionised many
fields of mathematics in the first half of the 20th century. With the emergence of Category
Theory in the second half of 20th century, this concept of action received a full treatment in
the context of an action of a monoid in a monoidal category.

Another extremely useful and important construction of classical algebra closely related
to the action of a monoid is the centre construction. This construction is not functorial and this
creates a problemof how to interpret it withinCategoryTheory. There are different approaches
to this. One approach is to consider a monoid M as a one object category ΣM . Then its centre
is the (commutative) monoid of endomorphisms of the identity functor Id : ΣM → ΣM . It is
obvious already from this definition that a proper understanding of centre requires a process
called categorification. We interpret a monoid as a category, an object which lives in the next
dimensional (in the sense of higher category theory) universe. It was understood by many
people in higher category theory (Joyal, Day, Street, Baez, Dolan, Crans and others) that one
can define centres of higher dimensional k-monoidal categories using a similar approach by
categorification.

One shortcoming of this definition of centre (and higher centres) is that it is still non-
fuctorial and does not provide a definition by universal property, which is highly desirable if
one wish to understand a construction from a categorical perspective.

Inspired by Deligne’s conjecture on Hochschild cochains such a universal property ap-
proach was suggested by Kontsevich in his seminal 1998 paper [19].

For this he uses a beautiful object, called the Swiss-Cheese operad SCd , introduced by
Voronov in [31]. This is an operad which combines together two classical operads: the operad
of little (d − 1)-disks and little d-disks. The operad of little d-disks (invented by Boardman-
Vogt-May in the 1960s) came from algebraic topology. Algebras of this operad (called
Ed-algebras) describe structure which algebraically characterises (up to group completion)
the class of d-fold loop spaces in homotopy theory.
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The algebras of Voronov’s operad SCd consists of a pair of an Ed-algebra B and an Ed−1-
algebra A together with some structure maps which connect these two algebra structures.
Kontsevich proposed to see these maps as an action of B on A. For d = 1 it is obvious, for
example, that such a structure amounts to a monoid up to higher homotopy structure on B
(that is an E1-algebra structure) and an action of B (again up to higher homotopies) on a
topological space A.

One can then fix a Ed−1-algebra A and consider the homotopy category of Ed-algebras
B acting on A in the above sense. Kontsevich conjectured that this category has a terminal
object C(A). This means that up to homotopy, any action of B on A amounts to a uniquely
determined map of Ed-algebras B → C(A). The object C(A) can be considered as a d-centre
of the Ed−1-algebra A. This is the famous Kontsevich Swiss-Cheese conjecture.

This conjecture can be formulated for Ed-algebras in any nice enough symmetricmonoidal
model category (V, ⊗, I). It was recently proved in such a general setting in [30]. The proof
is not conceptually transparent and technically hard.

The purpose of this thesis is to show that there is a possibility to combine Kontsevich’s
understanding of the higher centre problem with the higher categorical approach described
at the beginning of the introduction. The idea of this combination was sketched out in 2009
by Batanin in a talk in Adelaide University. In this approach we connect the Swiss-Cheese
conjecture with another famous problem in higher category theory and homotopy theory, that
of the existence of a Gray-product of higher categories. This potentially can lead to a very
clear and simple proof of the Swiss-Cheese conjecture but also can be useful in the converse
direction.

The Gray-product of 2-categories was defined by Joyal (there is an earlier nonsymmetric
version due to Gray [12]) and used by Gordon-Power-Street to prove their famous coherence
theorem for tricategories [10]. Also Steve Lack proved that the Gray-product, in contrast to
the cartesian product, satisfies the push-out product axiom and so descends to the closed
symmetric monoidal structure on the homotopy category of 2-categories (with Lack’s model
structure). Unfortunately, there is a no-go theorem due to Crans and Bourke-Gurski which
says that it is impossible to define a closed symmetric monoidal structure on Gray-categories
satisfying the natural conditions which we expect from the next level Gray-product construc-
tion. Nevertheless, there is a hope that some weaker version of the Gray-product conjecture
may still be true. More generally, there may exist a symmetric lax-monoidal structure on the
model category of V-categories (provided it exists) for any reasonable monoidal category,
which descends to a closed symmetric monoidal structure on the homotopy level. Some
evidence for such a possibility can be found in the paper of Batanin-Cisinski-Weber [3] and
recent paper of Shoikhet [29].

The main result of our thesis is to show, that in the case where we know that the Gray-
product exists the d = 1 Swiss-Cheese conjecture inV-Cat implies the d = 2 Swiss-Cheese
conjecture in V . The arguments are extremely simple in this case. Since E1-algebras are
homotopy equivalent to monoids we use monoids with respect to the Gray-product as models
of E1-algebras in V-Cat. Then the d = 1 Swiss-Cheese conjecture is simply a statement
that an action of a strict monoidal (with respect to Gray-product) V-category B on a V-
category A amounts to a strict monoidal V-functor B → End(A), where End(A) is the
internal endomorphism object. Suppose now that B and A both are one objectV-categories.
Then B can be identified with a E2-algebra inV (by the Eckman-Hilton argument) and A to
a monoid in V . The action of B on A is then an action of the Swiss-Cheese operad on the
pair (B, A) (this is Batanin’s symmetrization theorem for Swiss-Cheese 2-operads [2]). The
monoidal functor B → End(A) amounts to a E2-algebra map B → Z (A) where Z (A) is the
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Hochschild complex of A. This is the d = 2 Swiss-Cheese conjecture.
In this thesis we did not have an intention to work in full possible generality. Instead, we

wanted to write detailed proofs of this result in some special cases where the Gray-product
is well understood. We will then use this proof for generalisation in our future work. For
example, we would like to formulate precise conditions on the tensor product on V-Cat
under which the above approach works. We are also going to generalise this statement for
higher degree d. We conjecture that there exists a Gray-product of Ed−1-algebras in V-Cat
such that the Swiss-Cheese conjecture in the degree d implies the Swiss-Cheese conjecture
in the degree d + 1 inV after restriction to the one object case.

The thesis is constructed as follows. In Chapter 2, we will provide basic prerequisite
tools with a reminder on elements of monoidal categories, where we will also present a
statement about monoid actions in a symmetric closed monoidal category, which will be used
in situations where the Gray-product is well known, namely for Cat, Ab-Cat and 2Cat. This
will be the d = 1 statement of the Swiss-Cheese conjecture in Cat, Ab-Cat and 2Cat. In
Chapter 3, we present the main result in the special case of V = Set and go on to a brief
digression into enriched category to present the main result for V = Ab. In Chapter 4,
we will begin with cubical functors and introduce the Gray tensor product of 2-categories,
giving 2Cat the structure of a symmetric closed monoidal category, which will then transit
into Chapter 5 in the presentation of the main result for the special case ofV = Cat. Lastly
in Chapter 6, we will provide the precise formulation of the Swiss-Cheese conjecture we
make connections with.
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Background

While many of the mathematics is done in Set with sets and functions, every set is more or
less a category with no arrows between objects except for identity arrows. And every function
between sets can also more or less be regarded as a functor between such categories. And
there is a bigger universe Cat which embrace the world of Set. Mathematics we do in the
language of Set Theory can be reconstructed with Category-theoretic analogues by replacing
sets to categories, functions to functors, equation between functions to natural isomorphisms
between functors. This process is called categorification [1].

In this section, we introduce the necessary background in elements of Monoidal Category
[23] which is the categorification of the usual monoids. The category Set is an example of
a monoidal category and a lot of the constructions in Set can be abstracted as constructions
in an arbitrary monoidal category. We introduce concepts such as monoid objects, monoid
morphisms and monoid actions in an arbitrary monoidal category. Furthermore, we will
discuss Coherence Theorems and Closed Monoidal Categories. The definitions are due to
[23].

2.1 Monoidal Categories
Monoidal Category is a categorification of usual the concept of Monoid where rather than a
set and a function, amonoidal categoryM is a categoryM with a bifunctor ⊗ :M×M →M
satisfying coherent associativity and unitality.

Definition 2.1 (Monoidal Category). A Monoidal Category is a categoryM equipped with
a functor

M ×M M
⊗

and an object I ∈ M with

1. components of natural isomorphism αA,B,C : (A ⊗ B) ⊗ C � A ⊗ (B ⊗ C) in each
arguments A, B,C ∈ M, called associators

2. components of natural isomorphisms rA : A⊗ I � A and lA : I ⊗ A � A in each objects
A ∈ M called right unitors and left unitors respectively
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such that the following diagrams commute:

• Pentagon identity

(A ⊗ B) ⊗ (C ⊗ D)

((A ⊗ B) ⊗ C) ⊗ D A ⊗ (B ⊗ (C ⊗ D))

(A ⊗ (B ⊗ C)) ⊗ D A ⊗ ((B ⊗ C) ⊗ D)

αA,B,C⊗DαA⊗B,C,D

αA,B,C⊗idD

αA,B⊗C,D

idA⊗αB,C,D

• Triangle identity

(A ⊗ I) ⊗ B A ⊗ (I ⊗ B)

A ⊗ B

αA,I,B

rA⊗idB idA⊗lB

Example 2.1. 1. Any category with all finite products with the unit being the terminal
object (Cartesian Monoidal Category): Set, Cat, Grp, Top, CRng, Vectk .

2. Dually, any category with all finite coproducts with the unit object being the initial
object.

3. For a commutative ring R, category R-Mod of modules with tensor product ⊗R and
with R, being the module over itself, as the unit.

Definition 2.2 (Strict Monoidal Category). A monoidal category is called strict if the asso-
ciators and unitors are identity.

Example 2.2. For one example, let C be any category. The functor category End(C) = [C, C]
which we call endofunctor category of C has endofunctors F : C → C as objects and natural
transformations α : F ⇒ G : C → C as morphisms. We can compose objects F : C → C
and G : C → C as G ◦ F : C → C which we have the functor:

◦ : End(C) × End(C) → End(C)

and the unit object idC : C → C. The endofunctor category End(C) together with the above
functor is a strict monoidal category.

As (Set,×, 1) is an example of a monoidal category, the usual constructions like monoids
and monoid morphisms can be reconstructed in an arbitrary monoidal category. Recall that
the usual definition of monoid is a set N equipped with functions

N × N N 1m e

where 1 here is a singleton set, such that the following diagram commutes, expressing the
associativity and unitality:
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1.
(N × N ) × N N × (N × N )

N × N N × N

N

m×N

�

N×m

m m

2.
N × 1 N 1 × N

N × N N × N

N

N×e

�

N

�

e×N

m m

Now, instead of (Set,×, 1), by considering an arbitrary monoidal category (C, ⊗, I) we
introduce the notion of a monoid object M in the monoidal category C.

Definition 2.3 (Monoid object in a monoidal category). AmonoidM in a monoidal category
(C, ⊗, I, α, l, r) is an object M ∈ C equipped with morphisms

M ⊗ M M Im e

satisfying the following conditions:

1. m satisfies associativity, that is, the following diagram commutes

(M ⊗ M) ⊗ M M ⊗ (M ⊗ M)

M ⊗ M M ⊗ M

M

m⊗M

α
�

M⊗m

m m

2. e satisfies unitality, that is, the following diagram commutes

M ⊗ I M I ⊗ M

M ⊗ M M ⊗ M

M

M⊗e
λ

�

M

η
�

e⊗M

m m

Example 2.3. 1. We have seen that a Monoid in (Set,×, 1) is a usual monoid

2. Monoid in (Cat,×, 1) is a strict monoidal category
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3. Monoid in the monoidal category Mon of monoids with direct product of monoids is
a commutative monoid

4. Monoid in the monoidal category R-Mod of modules over commutative ring R with
tensor product ⊗R is an R-Algebra.

In the similar way, we have the following definition of monoid morphism:

Definition 2.4 (Morphism of monoids). Let (M,m, e) and (M′,m′, e′) be two monoids in
a monoidal category (C, ⊗, I, a, l, r). A monoid morphism f : (M,m, e) → (M′,m′, e′) is a
morphism f : M → M′ of C such that the following diagrams commute:

1.
M ⊗ M M′ ⊗ M′

M M′

f ⊗ f

m m′

f

2.
I M

M′

e

e′
f

Remark. Given a monoidal category (C, ⊗, I), we can form a category MonC of monoids in
C and monoid morphisms.

While the notion ofMonoidal Category is a categorification of usual monoid, we have two
categorified notions of commutative monoid: braided mononoidal category and symmetric
monoidal category.

Definition 2.5 (BraidedMonoidal Category). A Braided monoidal categoryM is a monoidal
category equipped with additional natural isomorphism inM called braiding:

BA,B : A ⊗ B → B ⊗ A

such that we have two commutative diagrams called Hexagon identities:

A ⊗ (B ⊗ C) (B ⊗ C) ⊗ A

(A ⊗ B) ⊗ C B ⊗ (C ⊗ A)

(B ⊗ A) ⊗ C B ⊗ (A ⊗ C)

BA,B⊗C

αα

BA,B⊗C

α

B⊗BA,C

(A ⊗ B) ⊗ C C ⊗ (A ⊗ B)

A ⊗ (B ⊗ C) (C ⊗ A) ⊗ B

A ⊗ (C ⊗ B) (A ⊗ C) ⊗ B

BA⊗B,C

α−1α−1

A⊗BB,C

α−1

BA,C⊗B
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Remark. 1. By inverting all arrows in the first Hexagon identity, it is easy to see that the
first Hexagon identity implies the second one for B−1

B,A : A ⊗ B → B ⊗ A. Likewise,
the second Hexagon identity implies the first one for B−1

B,A. So B−1 is also a braiding,
generally a distinct one from B.

2. The braiding is compatible with unitors [17]:

A ⊗ I I ⊗ A

A
rA

BA,I

lA

I ⊗ A A ⊗ I

A
lA

BI,A

rA

comutes.

3. Braided monoidal category is same thing as a tricategory with one 0-cell and one
1-cell.

Definition 2.6 (Symmertric Monoidal Category). Symmetric monoidal category M is a
monoidal category equipped with additional natural isomorphism inM called braiding:

BA,B : A ⊗ B → B ⊗ A

such that BB,A ◦ BA,B = idA⊗B and the first Hexagon identity (from the definition of Braided
Monoidal Category) holds:

A ⊗ (B ⊗ C) (B ⊗ C) ⊗ A

(A ⊗ B) ⊗ C B ⊗ (C ⊗ A)

(B ⊗ A) ⊗ C B ⊗ (A ⊗ C)

BA,B⊗C

αα

BA,B⊗idC

α

idB⊗BA,C

It is precisely a Braided Monoidal Category with additional condition that the two braid-
ings B and B−1 are equal BA,B = B−1

B,A, where every diagrams made by associators, left
and right unitors, braidings, their inverses and identity morphism commute [24]. Cartesian
monoidal categories are examples of symmetric monoidal categoy.

2.2 Monoidal functor,monoidal natural transformation and
monoidal equivalence

Algebraic structures are studied with maps preserving its structure. We know monoid ho-
momorphisms are the maps between monoids that preserves the monoid multiplication and
identity. We now introduced monoidal functor between monoidal categories which preserves
the monoidal structure.

Definition 2.7 (Monoidal Functor). Let (M, ⊗, I, α, r, l) and (M′, ⊗′, I′, α′, r′, l′) be two
monoidal categories. A (strong) Monoidal Functor (F, φ, ϕ) from M to M′ is a functor
F :M →M′ equipped with



10 Background

1. a natural isomorphism φ between the following functors φ : F (−)⊗′F (−) � F (−⊗−) :
M2 →M′ with components φA,B : F (A) ⊗′ F (B) → F (A ⊗ B) for all A, B ∈ M, and

2. an isomorphism ψ : I′ → F (I).

such that the following diagrams commute:

•

(F (A) ⊗′ F (B)) ⊗′ F (C) F (A) ⊗′ (F (B) ⊗′ F (C))

F (A ⊗ B) ⊗′ F (C) F (A) ⊗′ F (B ⊗ C)

F ((A ⊗ B) ⊗ C) F (A ⊗ (B ⊗ C))

α′

φ⊗′1 1⊗′φ

φ φ

F (α)

•

F (A) ⊗′ I′ F (A) ⊗′ F (I)

F (A) F (A ⊗ I)

1⊗′ψ

r ′ φ

F (r)

I′ ⊗′ F (B) F (I) ⊗′ F (B)

F (B) F (I ⊗ B)

ψ⊗′1

l ′ φ

F (l)

Remark. Amonoidal functor is called strict if φA,B for all A, B ∈ M and ψ are identity maps.
The axioms ensure that for more than 3 objects involved, every extension of the first

diagram commutes for any 2 different arrangements of brackets v and w [23].

v(F (A1), ..., F (An)) w(F (A1), ..., F (An))

F (v(A1, ..., An)) F (w(A1, ...An))

α′s

φ′s φ′s

F (α′s)

Suppose the monoidal categories M and M′ are braided (possibly symmetric) with
braidings c and c′ respectively. A monoidal functor (F, φ, ψ) :M →M′ is called a braided
monoidal functor if in addition the following diagram

F (A) ⊗′ F (B) F (B) ⊗′ F (A)

F (A ⊗ B) F (B ⊗ A)

c′

φ φ

F (c)

commutes, respecting the structure of the braidings. With regards to symmetric monoidal
categories, symmetric monoidal functors are braided monoidal functors with no extra condi-
tions.
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While monoidal functor preserves the monoidal structure, monoidal natural transforma-
tions are natural transformations between monoidal functors that respects the structures of
monoidal functors.

Definition 2.8 (MonoidalNatural Transformation). Let (M, ⊗, I, α, r, l) and (M′, ⊗′, I′, α′, r′, l′)
be two monoidal categories. And suppose that (F, φ, ψ) and (G, γ, η) are monoidal functors
fromM toM′. A monoidal natural transformation is a natural transformation β : F ⇒ G
such that the following diagrams commutes:

F (A) ⊗′ F (B) G(A) ⊗′ G(B)

F (A ⊗ B) G(A ⊗ B)

βA⊗
′ βB

φ γ

βA⊗B

and
I′

F (I) G(I)

ψ
η

βI

Remark. Braided and symmetricmonoidal natural transformations are plainmonoidal natural
transformations requiring no further additional conditions.

Monoidal equivalence and Mac Lane’s Strictness Theorem

With the definitions introduced above, monoidal categories together with monoidal functors
and monoidal natural transformations form a 2-category MonCat. Similarly, we have 2-
categories BrMonCat and SymmMonCat with braided (respectively, symmetric) monoidal
categories, braided (respectively, symmetric) monoidal functors and braided (respectively,
symmetric) monoidal natural transformations.

We all know that equivalence of two categories C andD is given by functors K : C → D
and H : D → C together with natural isomorphisms θ : idC ⇒ HK and ϑ : K H ⇒

idD. Analogously, two monoidal categories M and N are monoidally equivalent if there
are monoidal functors F : M → N and G : N → M together with monoidal natural
isomorphisms η : idM ⇒ GF and ε : FG ⇒ idN (that is, if M and N are internally
equivalent objects in the 2-categoryMonCat). Equivalently, a monoidal equivalence between
two monoidal categoriesM and N is given by a monoidal functor F : M → N which is
an equivalence ofM and N as ordinary categories ([8], Definition 2.4.1, Remark 2.4.10).
Monoidal isomorphism refers to when η and ε are identities.

In the similar way, braided monoidal equivalence and symmetric monoidal equivalence
refers to when two objects in the 2-category BrMonCat and respectively, two objects in
SymmMonCat, are internally equivalent.

It is easier to work with strict monoidal categories than general monoidal categories.
Thanks to Mac Lane’s Strictness Theorem, we can practically regard monoidal categories to
be strict.
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Theorem 2.1 (Mac Lane’s Strictness Theorem). Any monoidal category C is monoidally
equivalent to some strict monoidal category C′.

Proof. We refer to Theorem 2.8.5 [8] for the verification of the proof. Alternatively, from the
fact that every bicategory is biequivalent (Chapter 4) to a 2-category [22], one could verify
this by considering the one-object case this biequivalence where a pseudofunctor between
one-object bicategories can be identified with a monoidal functor.

The Strictness Theorem means that studies of monoidal categories can conveniently be
conducted with equivalent strict ones where findings about them in the strict ones also hold
in equivalent general ones.

The Coherence Theorem of monoidal categories [23] then follows as a corollary of the
Strictness Theorem ([8], Theorem 2.9.2) which states that: suppose we have P1, P2 ∈ M

obtained by sensible arrangement of brackets on A1 ⊗ · · · ⊗ An with random insertions of I’s,
such as

P1 = (A1 ⊗ I) ⊗ ((A2 ⊗ A3) ⊗ ...) ⊗ (An ⊗ I)

and
P2 = (A1 ⊗ A2) ⊗ (A3 ⊗ ...(I ⊗ A4)).

Then any isomorphisms of P1 and P2 obtained by compositions of instances of associators,
right unitors, left unitors and their inverses and (by the bifunctor ⊗) identity morphism are
equal.

2.3 Action of monoid and Closed monoidal categories
In this section, we introduce what it means for a monoidal category to be closed. We will also
define what action of a monoid is and what it is equivalent to in symmetric closed monoidal
categories. This result will be used throughout the various symmetric closed monoidal cate-
gories appearing in the thesis.

Definition 2.9 (Monoid action). Let (C, ⊗, I, a, r, l) be a monoidal category. Let (M,m, e) be
a monoid in (C, ⊗, I). An action of Monoid object M on an object C ∈ obC in a monoidal
category (C, ⊗, I) is given by a morphism µ : M ⊗ C → C in C such that the following
diagrams commutes:

1.

M ⊗ (M ⊗ C) M ⊗ C

(M ⊗ M) ⊗ C

M ⊗ C C

1M⊗µ

µ

a

m⊗1C
µ

2.
I ⊗ C M ⊗ C

C

e⊗1C

l µ

Remark. Every monoid object (M,m, e) of a monoidal category (C, ⊗, I) acts on itself with
the monoid multiplication map m : M ⊗ M → M as the action map. When our monoidal
category is (Set,×, 1), we retrieve the usual set-theoretic definition of monoid action.

Suppose we have a usual set-theoretic monoid M . It is elementary to see that to give
an action of a monoid M on a set X is equivalent to give a monoid homomorphism M →

Set(X, X ). This uses the following property of (Set,×, 1) that there is a bijection of sets

Set(X × Y, Z ) � Set(X, Set(Y, Z )).
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Definition 2.10 (Closed monoidal category). A monoidal category (C, ⊗, I, a, r, l) is (right)
closed if each functor (− ⊗ X ) : C → C has a right adjoint [X,−] : C → C.

This means that there are bijections

θA,B : C(A ⊗ X, B) � C(A, [X, B])

natural in A and B. Given f ∈ C(A ⊗ X, B), we write f ∈ C(A, [X, B]) for the adjunct
θA,B ( f ). We also write, given g ∈ C(A, [X, B]), g ∈ C(A ⊗ X, B) for the adjunct θ−1

A,B (g).

We call the object [X, B] ∈ C the internal hom from X to B and call the counit the
evaluation map evX,B : [X, B] ⊗ X → B. It can be easily seen that they satisfy the property
such that for any morphism f : A ⊗ X → Y , we have evX,Y ◦( f ⊗ 1X ) = f .

(Right) closedmonoidal category can also be alternatively defined as the following, which
has been reviewed in [27].

Definition 2.11. A monoidal category (C, ⊗, I, a, r, l) is (right) closed if it is equipped with

• an object [X, B] ∈ C

• a morphism evX,B : [X, B] ⊗ X → B called evaluation map

for each X, B ∈ C such that for every morphism f : A ⊗ X → B there exists a unique
morphism f : A→ [X, B] such that f = evX,B ◦( f ⊗ 1X )

Amonoidal category is biclosed if, not only it is closed, but in addition it is also equipped
with a left closed structure: if every (X ⊗ −) : C → C has a right adjoint [[X,−]] : C → C.

In case of when a monoidal category is symmetric with braiding γ, it is left closed if and
only if it is right closed, with [[A, B]] = [A, B] and the functors (− ⊗ A) � (A ⊗ −) : C → C
isomorphic and the left evaluation map is ev′X,B = evX,B ◦γX,[X,B] : X ⊗ [X, B]→ B

In the next propositions, we show that the equivalence between a monoid action M ⊗C →
C and a monoid homomorphism M → [C,C], like that in (Set,×, 1), holds true in general
symmetric closed monoidal category. We start by showing that for any symmetric closed
monoidal category (C, ⊗, I), the internal hom [A, A] for any A ∈ obC is a monoid object of
(C, ⊗, I).

Proposition 2.2. When C is a symmetric closed monoidal category, we have that for every
A ∈ C, the object [A, A] ∈ C is a monoid object with the composition morphism M :
[A, A] ⊗ [A, A] → [A, A] and the identity element i : I → [A, A] defined respectively as the
adjuncts under C(A ⊗ X, B) � C(A, [X, B]) of the composite

([A, A] ⊗ [A, A]) ⊗ A [A, A] ⊗ ([A, A] ⊗ A) [A, A] ⊗ A Aa 1⊗ev ev

and the left unitor lA : I ⊗ A→ A.

Proof. This is actually a part of a bigger fact as noted in [18] that when C is symmetric
closed monoidal category, C is equipped with a canonical structure of a C-enriched category
by the following data:

• objects are those of obC;

• for all A, B ∈ obC, [A, B] ∈ C as the hom-object;
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• for all A, B,C ∈ obC, the composition map

M : [B,C] ⊗ [A, B]→ [A,C]

corresponding to the adjunct of the composite

([B,C] ⊗ [A, B]) ⊗ A [B,C] ⊗ ([A, B] ⊗ A) [B,C] ⊗ B Ca 1⊗ev ev

• for all A ∈ obC, the unit i : I → [A, A] corresponding to the adjunct of the left unitor
lA : I ⊗ A→ A.

Proposition 2.3. In a symmetric closedmonoidal categoryC, to give an action µ : M⊗C → C
of a monoid object (M,m, e) ∈ C on an objectC ∈ C is equivalent to give a monoid morphism
µ : M → [C,C]

Proof. Suppose we have an action µ : M ⊗ C → C satisfying 1. and 2. of Definition 2.9.
Let the adjunct of µ be the morphism µ : M → [C,C]. The C((M ⊗ M) ⊗ C,C) �

C(M ⊗ M, [C,C])-adjunct of the left side

(M ⊗ M) ⊗ C M ⊗ C Cm⊗1 µ

of 1. is given by

M ⊗ M M [C,C].m µ

And the right side

(M ⊗ M) ⊗ C M ⊗ (M ⊗ C) M ⊗ C Ca 1⊗µ µ

of 1. is equal to

(M ⊗ M) ⊗ C ([C,C] ⊗ [C,C]) ⊗ C [C,C] ⊗ ([C,C] ⊗ C) C
(µ⊗µ)⊗1 a ev ◦(1⊗ev)

which can be easily seen since

ev ◦(1 ⊗ ev) ◦ a ◦ ((µ ⊗ µ) ⊗ 1) = ev ◦(1 ⊗ ev) ◦ (µ ⊗ (µ ⊗ 1)) ◦ a
(from the naturality of a)

= ev ◦(µ ⊗ µ) ◦ a (by ev ◦(µ ⊗ 1) = µ)
= µ ◦ (1 ⊗ µ) ◦ a (by ev ◦(µ ⊗ 1) = µ).

The adjunct of this is then

M ⊗ M [C,C] ⊗ [C,C] [C,C]
µ⊗µ M

Hence the following diagram commutes

M ⊗ M [C,C] ⊗ [C,C]

M [C,C].

µ⊗µ

m M
µ
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Likewise, consider now the diagram 2. in Definition 2.9. The following diagram:

I M

[C,C]

i

e

µ

is the adjunct of the diagram 2. in the Definition 2.9 under C(I ⊗ C,C) � C(I, [C,C]),
completing the proof that the axioms of monoid actions corresponds to the axioms of monoid
morphisms in symmetric closed monoidal categories.
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3
Result in (Cat,×, I)

3.1 Action of Monoidal Category
Categorification of the set-theoretic notion of amonoid action is the action of amonoidal cate-
gory. Introduced in [4] and presented in [15], an action of amonoidal category (M, ⊗, I, a, r, l)
on a category C is a functor · :M × C → C with components of two natural isomorphisms

αM,N,X : (M ⊗ N ) · X � M · (N · X )
λX : I · X � X

such that the following diagram commutes:

((M ⊗ N ) ⊗ K ) · X (M ⊗ (N ⊗ K )) · X

(M ⊗ N ) · (K · X )

M · (N · (K · X )) M · ((N ⊗ K ) · X ))

aM,N,K ·idX

α(M⊗N ),K,X

αM, (N ⊗K ),X

αM,N, (K ·X)

idM ·αN,K,X

(M ⊗ I) · X

M · (I · X ) M · X

rM ·idXαM,I,X

idM ·λX

(I ⊗ M) · X

I · (M · X ) M · X

lM ·idXαI,M,X

λM ·X

Strictmonoidal action is when the natural isomorphisms α and λ are identities. Under the
closed property of (Cat,×, I), to give an action of a monoidal category is equivalently to give
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a monoidal functor (F, φ, ϕ) :M → Cat(C, C) whereCat(C, C) is the endofunctor category
with the strict monoidal structure as shown in Example 2.2. It is elementary to check that to
give components of natural isomorphisms αM,N,X : (M ⊗ N ) · X � M · (N · X ) natural in
M, N and X is to give components of natural isomorphisms φM,N : FM ◦ FN � FM⊗N natural
in M, N and to give λX : I ◦ X � X natural in X is to give an isomorphism ϕ : idC � FI and
to give the coherence axiom for the action is equivalently to give the coherence axiom for the
monoidal functor.

The strict case of this equivalence is precisely the statement in Proposition 2.3 inmonoidal
category (Cat,×, I): to give a strict action of a strict monoidal categoryM on a category C
is equivalent to give a strict monoidal functorM → Cat(C, C).

In this chapter, we will illustrate what this statement reduces to for one-object cases and
also how enrichment over the monoidal category (Ab, ⊗,Z) of abelian groups gives a familiar
known statement about algebra over a ring.

3.2 One object case
Lemma 3.1. Amonoid object in the monoidal category of monoids is precisely a commutative
monoid.

Proof. Consider the monoidal category (Mon, ×, I) monoids where I is the one object
monoid and × is the direct product of monoids. A monoid object in Mon is a monoid
(M, ◦, 1) equipped with a monoid homomorphism? : M ×M → M (in other words, a binary
function? : M × M → M such that (m ◦ l)? (n ◦ k) = (m? n) ◦ (l ? k) and 1? 1 = 1) such
that for all m, n, l ∈ M and the identity element 1 ∈ M , we have (m?n)? l = m? (n? l) and
m ? 1 = 1?m = m.

Sowe have a set M equippedwith 2 binary functions ◦ : M×M → M and? : M×M → M
such that:

1. ◦ is associative and unital with identity element 1

2. ? is associative and unital with the same identity element 1

3. interchange law (m ◦ l) ? (n ◦ k) = (m ? n) ◦ (l ? k) holds.

It then follows from Eckmann-Hilton argument [7] that the operations ◦, ? are the same
and that M is a commutative monoid:

a ? b = (a ◦ 1) ? (1 ◦ b) = (a ? 1) ◦ (1? b) = a ◦ b

a ◦ b = (1 ◦ a) ◦ (b ◦ 1) = (1 ◦ b) ◦ (a ◦ 1) = b ◦ a.

Conversely, any commutative monoid (M, ◦, 1), we can make M a monoid object in the
category Mon since it is equipped with the monoid homomorphism ◦ : M × M → M (the
binary function ◦ : M ×M → M such that (m ◦ l) ◦ (n ◦ k) = (m ◦ n) ◦ (l ◦ k) and 1 ◦ 1 = 1)
which is associative and unital (and it is the unique way to equip M with associative and
unital monoid homomorphism M × M → M as seen previously).
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Lemma 3.2. A strict monoidal category with one object is precisely a commutative monoid.

Proof. Let (M, ⊗, ∗) be a strict monoidal category with one object ∗. ThenM (∗, ∗) = k is a
monoid under composition ◦. Also it is equipped with a functor ⊗ :M ×M →M with the
identity natural isomorphisms between the below functors

(− ⊗ −) ⊗ − = − ⊗ (− ⊗ −) :M3 →M

(− ⊗ ∗) = idM = (∗ ⊗ −) :M →M

making these naturality squares commute:

∗ ∗

∗ ∗

(m⊗n)⊗ j m⊗(n⊗ j)

∗ ∗

∗ ∗

m⊗1 m

∗ ∗

∗ ∗

1⊗m m

i.e. it is equipped with a function ⊗ : k×k → k such that (m⊗n)◦ (l⊗ j) = (m◦l)⊗ (n◦ j)
(from functoriality of ⊗ : M ×M → M) and such that (m ⊗ n) ⊗ j = m ⊗ (n ⊗ j) and
m ⊗ 1 = m = 1 ⊗ m (from the naturality square above).

It is precisely a monoid object in the monoidal category of monoids and so k is a
commutative monoid.

Lemma 3.3. Let k be a commutative monoid and A be a monoid. To give a structure on A as
a monoid object in the monoidal category of k-sets and k-functions 1 is equivalently to give
a strict action of the strict monoidal category with one objectM (∗, ∗) = k on the category
with one object C(∗, ∗) = A.

Proof. Regard k as a one-object strict monoidal categoryM (∗, ∗) = k. And regard A as a
one-object category C(∗, ∗) = A. A strict action of (M, ◦, ∗) on C is a functorM × C → C
together with two identity natural isomorphisms (∗ ◦ ∗) · ∗ = ∗ · (∗ · ∗) and ∗ · ∗ = ∗ making
the following naturality square commute:

(∗ ◦ ∗) · ∗ ∗ · (∗ · ∗)

(∗ ◦ ∗) · ∗ ∗ · (∗ · ∗)

(m◦n)·x m·(n·x)

∗ · ∗ ∗

∗ · ∗ ∗

1k ·x x

To give such functorM×C → C with such natural isomorphisms is equivalently to give
a function k × A→ A such that

(mn) · x = m · (n · x) (3.1)
1k · x = x (3.2)

1We call a set X equipped with an action · of a monoid M as an M-set. Let X and Y be two M-sets. An
M-function f is a function f : X → Y such that f (m · x) = m · f (x). Let Z also be an M-set. A function
h : X ×Y → Z is M-bilinear if for all x ∈ X and y ∈ Y , h(x,−) : Y → Z and h(−, y) : X → Z are M-functions.
We can form a category M-Set of M-sets and M-functions. And let A and B be two M-sets. Let A ⊗ B

be the quotient set of A × B by (ka, b) ∼ (a, kb) and A ⊗ B can be made into an M-set with monoid action
m[(a, b)] := [(ma, b)] = [(a,mb)].
This then forms a monoidal category (M-Set, ⊗, {∗}).
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(from naturality) and
(m′ · x′) ◦A (m · x) = m′m · (x′ ◦A x) (3.3)

(from functoriality).
(3.1) and (3.2) says that the monoid A is equipped with a structure of k-set and (3.3)

says that its monoid multiplication ◦A : A × A → A is also a bilinear k-function which is
equivalently a (associative and unital) k-function A ⊗ A → A where A ⊗ A is the monoidal
product in the category (k-Set, ⊗, {∗}) 2.

Hence, a strict action of a strict monoidal category with one object M (∗, ∗) = k on a
category with one object C(∗, ∗) = A is equivalently a structure, on A, of a monoid object in
the category (k-Set, ⊗, {∗}).

The next theorem assembles what the equivalence between a monoid actionM×C → C
and a monoid morphismM → Cat(C, C) in (Cat,×, I) reduces to for one-object cases of
M and C.
Theorem 3.4. Let k be a commutative monoid and A be amonoid. Then a structure, on A, of a
monoid object in the monoidal category (k-Set, ⊗, {∗}) is equivalent to a map of commutative
monoids: k → Z (A) where Z (A) is the centre of the monoid A.
Proof. Regard k as a one object strict monoidal category (M, ◦, ∗) with M (∗, ∗) = k and
regard A as a one object category C with C(∗, ∗) = A. We know from Lemma 3.3 that to give
a structure, on A, of a monoid object in (k-Set, ⊗, {∗}) is equivalently to give a strict action
of the strict monoidal categoryM on C.

By the Proposition 2.3 in (Cat,×, I), this is equivalent to a strict monoidal functor
M → Cat(C, C).

Now considerCat(C, C) is whenC is an one-object category. It is an endofunctor category
with:
• objects: monoid homomorphisms f : A→ A

• morphisms: α : f ⇒ g is an element α ∈ A such that the naturality square

∗ ∗

∗ ∗

α

f (y) g(y)
α

commutes for all y ∈ A.
Let’s see what a strict monoidal functor F : M → Cat(C, C) reduces to. It is a functor

F :M → Cat(C, C) which maps with
1. components of a identity natural isomorphism F (∗) ◦ F (∗) = F (∗)

2. an identity 1C = F (∗)

Such functor is equivalent to give a monoid homomorphism from k to the set of natural
transformations from 1A to 1A.

i.e. a monoid homomorphism k → Cat(C, C)(1C, 1C) which is equivalent to a monoid
homomorphism k → Z(A) = {x ∈ A | xy = yx ∀y ∈ A}.

2 There is a bijection between the set of M-functions A ⊗ B → C and the set of bilinear M-functions
A × B → C. Consider a bilinear M-function h : A × B → A ⊗ B which maps h(ma, nb) = mn[(a, b)]. Then
any bilinear M-function f : A × B → C factors uniquely through h. i.e. for every function f : A × B → C
such that f (ma, nb) = mn f (a, b), we can define an M-function f : A ⊗ B → C by f (m[(a, b)]) = m f (a, b).
Then f = f ◦ h and f is the unique M-function which satisfies f = f ◦ h. Moreover, the M-set A ⊗ B with this
property is unique (can be easily shown).
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3.3 Enriched case
It is well known that the definition of algebra over a ring can be given in two alternate
ways. Let R be a commutative unital ring. An R-Algebra is a ring R′ together with a ring
homomorphism ϕ : R → Z (R′) ⊆ R′. (Z (R′) = {z ∈ R′ : zr = r z ∀R} is the centre of R′).
Alternatively, an R-Algebra is a ring R′which is also an R-module such that the multiplication
map R′ × R′ → R′ is R-bilinear.

If we enrich the previous result over the monoidal category (Ab, ⊗,Z), we get the familiar
result stating the equivalence of these two alternate definitions of R-algebra. We first begin
with a brief digression into the closed monoidal structure of V-Cat, the 2-category of V-
enriched categories as presented in [18], when the right condition is given for the monoidal
category V we’re enriching over. We follow closely with the materials and notations in the
text [18].

The idea of a V-category for a monoidal category (V, ⊗, I, a, r, l) is a generalisation of
the notion of a category, the Set-category. An ordinary categoryA has hom-setsA(X,Y ) and
composition-functions A(Y, Z ) × A(X,Y ) → A(X, Z ). In a V-enriched category C, these
are replaced by hom-objects C(X,Y ) and composition-morphisms C(Y, Z ) ⊗ C(X,Y ) →
C(X, Z ) of the given monoidal category (V, ⊗, I).

Definitions of (small)V-categories,V-functors andV-natural transformations are clas-
sical and it is well known that these form a 2-categoryV-Cat.

When the base monoidal category (V, ⊗, I) is symmetric, the 2-categoryV-Cat admits
a natural 2-functor ⊗ : V-Cat × V-Cat → V-Cat which gives for each pair of small
V-categories C and D, the product V-category C ⊗ D with ob(C ⊗ D) = obC × obD
and C ⊗ D ((C, D), (C′, D′)) = C(C,C′) ⊗ D(D, D′). The definitions of productV-functor
F ⊗G : C ⊗D → C′ ⊗D′ and productV-natural transformation α ⊗ β : F ⊗G → F′ ⊗G′

which constitute the 2-functor are easy to see.
This 2-functor gives V-Cat a structure of symmetric monoidal 2-category in the sense

that we have components of coherent 2-natural isomorphisms: (C ⊗D) ⊗ E � C ⊗ (D ⊗ E),
I ⊗ C � C � C ⊗ I, C ⊗ D � D ⊗ C. The unit I for this monoidal product is the
V-category with one object ∗ and with I(∗, ∗) = I. Since these are isomorphisms in the
2-categoryV-Cat, it is evident that we can considerV-Cat as a mere symmetric monoidal
category by considering it withoutV-natural transformations, the 2-cells.

Ends overV-valuedV-functor for symmetric closed monoidalV
It was mentioned that whenV is a symmetric closed monoidal category,

V (A, [B,C]) � V (A ⊗ B,C) � V (B, [A,C]) (3.4)

then V is equipped with a structure of a V-category with internal homs [B,C] ∈ V as its
hom-objects for each pair B,C ∈ V . Consider a V-valued V-functor H : Cop ⊗ C → V .
Note that this induces a partial functor H (C,−) : C → V which is defined as

C I ⊗ C Cop ⊗ C V .
� C⊗1 H (3.5)

And likewise, the partial functor H (−,C) : Cop → V is defined similarly. The enriched-end
(2.1 [18]) of H is an object of V which we write as

∫
C∈C H (C,C) with universal family of

morphisms αC :
∫

C∈C H (C,C) → H (C,C) making each of the below diagrams expressing
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V-naturality condition commute∫
C∈C H (C,C) H (C,C)

H (C′,C′) [C(C,C′), H (C,C′)]

αC

αC ′ φC,C ′

ϕC,C ′

(3.6)

such that for any other family of morphisms βC : K → H (C,C) making each diagrams (3.6)
commute, there exists a unique f :

∫
C∈C H (C,C) → K such that βC = αC f .

Here, φC,C ′ is the adjunct (3.4) of H (C,−)C,C ′ : C(C,C′) → [H (C,C), H (C,C′)] from
(3.5) and likewise, ϕC,C ′ is the same adjunct of H (−,C)C,C ′.

WhenV is complete, enriched ends exist and can be formulated as an equalizer

∫
C∈C H (C,C)

∏
C∈C H (C,C)

∏
C,C ′∈C [C(C,C′), H (C,C′)]α

φ

ϕ

where φ is induced by φC,C ′ : H (C,C) → [C(C,C′), H (C,C′)] and ϕ is induced by ϕC,C ′ :
H (C′,C′) → [C(C,C′), H (C,C′)].

Enriched functor category and closed structure
We now add the condition that the symmetric monoidal category (V, ⊗, I) is monoidally

closed and complete. In this case, the categoryV-Cat(C,D) ofV-functors C → D andV-
natural transformations is given the structure of a V-category; it is the underlying category
(1.3 [18]) V-Cat(I, [C,D]) of the functor V-category [C,D]. The functor V-category
[C,D] has the V-functors C → D as objects with hom-objects [C,D](F,G) ∈ V defined
(2.2 [18]) as enriched ends

∫
C∈C D (FC,GC)

∫
C∈C D (FC,GC)

∏
C∈C D (FC,GC)

∏
C,C ′∈C [C(C,C′),D (FC,GC′)].α

φ

ϕ

Moreover, there are isomorphisms (2.3 [18])

V-Cat(A ⊗ B, C) � V-Cat(A, [B, C]) (3.7)

of ordinary categories 2-natural in each variable from which we can once again regard
V-Cat as a mere symmetric closed monoidal category by considering it without V-natural
transformations and considering the isomorphisms (3.7) as mere bijections of object-sets.

Thus, when our base categoryV is a complete symmetric closed monoidal category, we
can now talk about monoid actionsM ⊗ C → C in the symmetric closed monoidal category
(V-Cat, ⊗,I) being equivalent (by Proposition 2.3) to the monoid morphismM → [C, C].
We draw our attention to the case when (V, ⊗, I) = (Ab, ⊗, I) and consider the one object
case of this equivalence.
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Lemma 3.5. Monoid object in (Ab, ⊗,Z) is a ring.

Proof. A monoid object in (Ab, ⊗,Z) is an abelian group M together with a group ho-
momorphism of abelian groups (equivalently a module homomorphism of Z-modules)
◦ : M ⊗ M → M such that it is associative and unital with respect to some element of
1 ∈ M . This is equivalent to a Z-bilinear map ◦ : M ×M → M such that it is associative and
unital. To spell it out, it is a map such that

a ◦ (b ◦ c) = (a ◦ b) ◦ c
a ◦ 1 = a = 1 ◦ a

(a + b) ◦ c = a ◦ c + b ◦ c
c ◦ (a + b) = c ◦ a + c ◦ b

which is a ring.

Proposition 3.6. A monoid object M in (Ab-Cat, ⊗,I) (strict monoidal Ab-category M)
with one object is a commutative ring.

Proof. An Ab-categoryM with one object is equivalently a monoid object k =M (∗, ∗) in
(Ab, ⊗,Z) which is again equivalently a ring k with ring multiplication denoted as ◦. Also
k is equipped with a group homomorphism of abelian groups ? : k ⊗ k → k such that it is
associative, unital and (g′? h′) ◦ (g? h) = (g′ ◦ g)? (h′ ◦ h). By Eckmann-Hilton argument,
◦ = ? and the ring multiplication is commutative. Hence a strict monoidal Ab-categoryM
with one object is a commutative ring.

Theorem 3.7 (Categorical proof of the equivalence between two definitions of an R-algebra).
Let k be a commutative ring and A be a ring. Then a structure of a k-algebra on A is
equivalent to a ring homomorphism between commutative rings k → Z(A)

Proof. SupposeM and C are Ab-enriched categories with one object. Then k = M (∗, ∗)
and A = C(∗, ∗) are monoid objects in the monoidal category of (Ab, ⊗) which means they
are rings.

Also k is a commutative ring sinceM is a strict monoidal Ab-category.
The axioms for a strictAb-action ofM on C tells us that we have a group homomorphism

· : k ⊗ A → A such that for all g, h ∈ k, x ∈ A and e the unit for the ring k, we have
(gh) · x = g · (h · x) and e · x = x (i.e. a ring homomorphism k → End(A, A)). This means
that A is a k-module.

Also the functoriality says that the composition map of A, ◦ : A ⊗ A → A (which is an
associative and unital group homomorphism of abelian groups) is a k-module homomorphism
that is associative and right/left unital: (gh) · (x ◦ y) = (g · x) ◦ (h · y). This says that A is a
monoid object in the monoidal category (k-Mod, ⊗, {∗}) which is to say that A is a k-algebra.

A strictAb-action is also equivalent to a strict monoidalAb-functorM → Ab-Cat(C, C)
which, whenM and C are one-object Ab-enriched categories, is equivalent to a ring homo-
morphism k → Z(A).
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4
Symmetric closed monoidal structure on

2Cat with Gray Tensor Product

The term 2-category refers to strict bicategory, having associators and unitors being the
identities. And by 2-functor, we mean a strict pseudofunctor between 2-categories.

Note that any bicategory C is biequivalent to some 2-category C′ where biequivalence
means a pseudofunctor F : C → C′ which is surjective up to equivalence on objects and
which for all objects A, B ∈ C, FA,B : C(A, B) → C′(F A, FB) is an equivalence of categories
C(A, B) and C′(A, B). Alternatively, it means that there exists pseudofunctors F : C → D
and G : D → C such that idD and FG are internally equivalent in the bicategory [D,D] of
pseudofunctors, pseudonatural transformations and modifications and likewise GF ' idC in
[C, C]. Due to size issues, we will not go over elements of bicategories. We will refer to [22]
for brief overview of basic elements of bicategories.

In this chapter, we will introduce a symmetric closed monoidal structure on the category
2Cat of 2-categories and 2-functors with what’s called theGray tensor product. The internal-
hom of this monoidal closed structure is the 2-category Psd(A,B) of 2-functors A → B,
pseudonatural transformations and modifications. In literature, it is introduced in [12] and
[11] and has also been organised in [10] and [13]. The materials presented in this chapter is
in expository nature of these texts.

4.1 Preliminaries on Cubical functors
In this section, we will introduce cubical functors which in [12], it is called quasi-functors.
We will follow closely with [13] and [10].

Definition 4.1 (Cubical functor). Let C1, ..., Cn,D be 2-categories. A pseudofunctor F :
C1 × · · · × Cn → D is cubical if its component 2-isomorphism

φ : F (g1, ..., gn) ◦ F ( f1, ..., fn) → F (g1 ◦ f1, ..., gn ◦ fn)

is the identity whenever for all j < i, either fi or g j is an identity 1-cell.
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Remark. A cubical functor for n = 1 is a strict 2-functor.

The next two results are important results which we will use later in unpacking the
definition of Gray-monoid and Gray-monoid action.

Proposition 4.1 (4.2 [10]). For n = 2, a cubical functor F : C1 × C2 → D is equivalently to
give:

1. a strict 2-functor FA : C2 → D for each object A ∈ C1 and a strict 2-functor
FB : C1 → D for each object B ∈ C2 such that FB (A) = FA(B) := F (A, B)

2. for all f1 and f2, a component 2-cell of a natural isomorphism

γ f1, f2 : FB′ ( f1) ◦ FA( f2) → FA′ ( f2) ◦ FB ( f1)

natural in f1 and f2 such that γ f1,1B = 1FB ( f1) and γ1A, f2 = 1FA( f2)

such that for all

(A, B) (A′, B′) (A′′, B′′)
⇒

(α1, α2)

( f1, f2)

(g1, g2)

(h1, h2)

the following axiom holds:

=

F (A, B) F (A, B′) F (A, B′′)

F (A′, B) F (A′, B′) F (A′, B′′)

F (A′′, B) F (A′′, B′) F (A′′, B′′)

F (A, B) F (A, B′′)

F (A′′, B) F (A′′, B′′)

⇒

γ f1, f2

⇒

γ f1,h2

⇒

γh1, f2

⇒

γh1,h2

⇒

γh1 f1,h2 f2

FA( f2) FA(h2)

FA′ ( f2) FA′ (h2)

FA′′ ( f2) FA′′ (h2)

FB ( f1) FB′ ( f1) FB′′ ( f1)

FB (h1) FB′ (h1) FB′′ (h1)

FA(h2 f2)

FA′′ (h2 f2)

FB (h1 f1) FB′′ (h1 f1)

Remark. For the full proof, we refer to Proposition 3.2 [13]. It is easy to see that a cubical
functor F : C1×C2 → D determines a 2-functor FA by FA( f2) = F (1, f2), FA(α2) = F (1, α2)
(likewise determines FB in the similar way) and determines γ f1, f2 by the vertical composite
of component 2-cells of natural isomorphisms coming from the constraints in pseudofunctor:

F ( f1, 1B′) ◦ F (1A, f2) F ( f1, f2) F (1A′, f2) ◦ F ( f1, 1B)
φ

�

φ−1

hence natural in f1 and f2.
Conversely, give the above data, we form a cubical functor by

• F (A, B) := FB (A) = FA(B)

• F ( f1, f2) := F (1, f2) ◦ F ( f1, 1)

• F (α1, α2) := F (1, α2) ∗ F (α1, 1)
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Proposition 4.2 (4.3 [10]). A cubical functor for n = 3, F : C1×C2×C3 → D is equivalently
to give:

1. cubical functors of two variables for each objects A ∈ C1, B ∈ C2 and C ∈ C3

(a) FA : C2 × C3 → D

(b) FB : C1 × C3 → D

(c) FC : C1 × C2 → D

2. such that for all pairs A ∈ C1 and B ∈ C2, we have FA(B,−) = FB (A,−) and likewise
for pairs A,C and B,C

3. and such that for all ( f1, f2, f3) : (A, B,C) → (A′, B′,C′) the following holds:

=

F (A, B′,C′)

F (A′, B′,C′)

F (A, B′,C)

F (A′, B′,C)

F (A, B,C′)

F (A, B,C)

F (A′, B,C)

F (A, B,C′)

F (A′, B,C′)

F (A′, B′,C)

F (A, B′,C′)

F (A′, B′,C′)

F (A, B,C)

F (A′, B,C)

⇒

γFA

f2, f3

⇒

γFC

f1, f2

⇒

γ
FB′

f1, f2

⇒

γ
FC′

f1, f2

⇒

γFB

f1, f3

⇒

γ
FA′

f2, f3

FB′ ( f1, 1)

FA( f2, 1)

FB′ (1, f3)

FB′ (1, f3)

FA( f2, 1)

FC (1, f2)

FA(1, f3)

FC ( f1, 1)

FB′ ( f1, 1)

FB ( f1, 1)

FA( f2, 1)

FB ( f1, 1)

FA′ ( f2, 1)

FB (1, f3)

FC ( f1, 1)

FC (1, f2)

FB (1, f3)

FA(1, f3)

Remark (Proposition 5.2.4 [13]). 2-categories and cubical functors form a multicategory
Cub.

4.2 Gray Tensor Product
In the cartesian product C ×D of 2-categories C andD, we have the following commutative
square:

(A, B) (A, B′)

(A′, B) (A′, B′)

(1,g)

( f ,1) ( f ,1)

(1,g)
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which in theGray tensor productC⊗GD the commutativity isweakened up to 2-isomorphism:

(A, B) (A, B′)

(A′, B) (A′, B′)

(1,g)

( f ,1)

(1,g)

( f ,1)
γ f ,g ⇒

This weakening differs from the original version of Gray in [12] and [11] where, instead,
the square above commutes only up to 2-morphism γ f ,g being not necessarily an isomorphism.
Nevertheless, we will follow the outline introduced in [12] but with the only refinement made
on γ f ,g to be the isomorphism. This is the same definition given in Gordon, Power, Street’s
[10] which is also same as Gurski’s [13].

Analogously with the tensor product A ⊗R B of R-modules, the Gray tensor product
C ⊗G D for 2-categories C and D is the 2-category such that there is a cubical functor
c : C × D → C ⊗G D inducing a bijection between cubical functors C × D → E and 2-
functors C ⊗GD → E by factorisation through c. We first introduce the explicit construction
of C ⊗G D and later revisit this universal property.

Definition 4.2 (Theorem I.4.9, [12]). Let C andD be 2-categories. The Gray tensor product
of C and D is a 2-category denoted as C ⊗G D such that

• Objects are pairs (A, B) where A ∈ obC and B ∈ obD

• 1-cells are equivalence classes of composable words generated by two kind of 1-cells:

( f , 1) : (A, B) → (A′, B)
(1, g) : (A, B) → (A, B′)

with 1-cells f : A→ A′ and g : B → B′ of C and D respectively.

i.e. A composable word is a stringw = ( fn, gn)...( f2, g2)( f1, g1) where for each i, either
fi or gi is an identity, such that it is well-formed in the manner that the compositions
fn... f2 f1 and gn...g2g1 exist in C and D respectively. Composition of words w and v

are induced by juxtaposition wv of words.

Two words are equivalent if they are made so by the following equivalence relations
compatible with composition such that

– ( f ′, 1)( f , 1) ∼ ( f ′ f , 1)

– (1, g′)(1, g) ∼ (1, g′g)

– wv ∼ w′v and uw ∼ uw′ whenever w ∼ w′.

• 2-cells are generated by three kind of 2-cells:

(α, 1) : ( f , 1) ⇒ ( f ′1)
(1, β) : (1, g) ⇒ (1, g′)

γ f ,g : ( f , 1)(1, g) ⇒ (1, g)( f , 1)
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where α : f ⇒ f ′ and β : g ⇒ g′ are 2-cells of C and D respectively and γ f ,g’s are
isomorphisms for all non-identity 1-cells f ∈ C and g ∈ D. When either f or g is an
identity 1-cell, then γ f ,g is the identity.
2-cells are then equivalence classes of horizontal and vertical composites of these
generating 2-cells. First, consider a horizontally composable word generated by these
2-cells. i.e. a string µ = λn ∗ · · · ∗ λ2 ∗ λ1 where each λi is either λ f ,g for some f
and g, or (αi, βi) with either αi or βi being the identity 2-cell, such that the string is
well-formed in the manner that whenever

λi+1 ∗ λi =




(αi+1, βi+1) ∗ (αi, βi) then αi+1 ∗ αi and βi+1 ∗ βi

(αi+1, βi+1) ∗ γ f ,g then αi+1 ∗ f and βi+1 ∗ g

γ f ,g ∗ (αi, βi) then f ∗ αi and g ∗ βi

γ f ′,g′ ∗ γ f ,g then f ′ ∗ f and g′ ∗ g

are defined 2-cells in C andD respectively. Horizontal composition of words µ and σ
are induced by ∗ as µ ∗ σ.
Two horizontally composable words are equivalent if they are made so by the following
equivalence relations compatible with ∗ such that

– (α′, 1) ∗ (α, 1) ∼ (α′ ∗ α, 1)

– (1, β′) ∗ (1, β) ∼ (1, β′ ∗ β)

– µ ∗ σ ∼ µ′σ and φ ∗ µ ∼ φ ∗ µ′ whenever µ ∼ µ′.

Let [µ] denote the above equivalence class of a horizontal word µ. 2-cells are then
equivalence classes of vertically composable words, with vertical composition induced
by juxtaposition [µn]...[µ2][µ1] of words. Two words are equivalent if they are made
so by the following equivalence relations:

–
(
γ f ′,g ∗ ( f , 1)

) (
( f ′, 1) ∗ γ f ,g

)
∼ γ f ′ f ,g

–
(
(1, g′) ∗ γ f ,g

) (
γ f ,g′ ∗ (1, g)

)
∼ γ f ,g′g

–
(
(1, g′) ∗ ( f ′, 1) ∗ γ f ,g

) (
γ f ′,g′ ∗ ( f , 1) ∗ (1, g)

)
∼

(
γ f ′,g′ ∗ (1, g) ∗ ( f , 1)

) (
( f ′, 1) ∗

(1, g′) ∗ γ f ,g
)

– If α : f ⇒ f ′ and β : g ⇒ g′ are 2-cells of C and D respectively, then(
(1, β) ∗ (α, 1)

)
γ f ,g ∼ γ f ′,g′

(
(α, 1) ∗ (1, β)

)
– (α′, 1)(α, 1) ∼ (α′α, 1)

– (1, β′)(1, β) ∼ (1, β′β)

– [α][β] ∼ [α′][β′] and [η][α] ∼ [η][α′] whenever [α] ∼ [α′].

Now, given 2-cells, vertical composition is given by concatenation of strings. And for
the horizontal composition, let Γ = [µn] · · · [µ2][µ1] and Λ = [ηm] · · · [η2][η1] such that the
0-cell source of Γ is equal to the 0-cell target of Λ. If m , n, say if m < n, then we form
[µ′n]...[µ′2][µ′1] by inserting n − m identity 2-cells randomly into [µm]...[µ2][µ1] and define
Γ ∗ Λ as the equivalence class of [µ′n ∗ ηn] · · · [µ′2 ∗ η2][µ′1 ∗ η1].

Remark. ThisGray tensor product provides (2Cat, ⊗G,I) a structure of a symmetricmonoidal
category [11] with I being the 2-category with one object, one 1-cell and one 2-cell.
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Consider a cubical functor c : A × B → A ⊗G B determined by 2-functors cA :
B → A ⊗G B and cB : A → A ⊗G B with cA(B) = (A, B), cA( f2) = (1A, f2) and
cA(α2) = (11A, α2) (and cB defined similarly) and by

γc
f1, f2

: cB′ ( f1) ◦ cA( f2) → cA′ ( f2) ◦ cB ( f1)

of Proposition 4.1 being equal to

γ f1, f2 : ( f1, 1B′)(1A, f2) → (1A′, f2)( f1, 1B)

of Definition 4.2.

Lemma 4.3. It is easy to see that c : A × B → A ⊗G B is natural in A and B:

A × B A ⊗G B

A′ × B′ A′ ⊗G B
′

c

F ×G

c′

F ⊗G G

commutes for 2-functors F and G.

Theorem 4.4 (Theorem 3.7 [13], Theorem I.4.9 [12]). The gray tensor product A ⊗G B of
2-categories A and B is the target 2-category of the cubical functor c : A × B → A ⊗G B

such that for all cubical functor F ∈ Cub(A × B, C) the 2-functor F ∈ 2Cat(A ⊗G B, C)
mapping the objects and the generators of A ⊗G B by

• F (A, B) = F (A, B)

• F ( f1, 1) = FB ( f1)

• F (1, f2) = FA( f2)

• F (α1, 1) = FB (α1)

• F (1, α2) = FA(α2)

• F (γ f1, f2 ) = γF
f1, f2

is the unique 2-functor making the diagram

A × B C

A ⊗G B

F

c
F

commute hence giving a bijection Cub(A × B, C) � 2Cat(A ⊗G B, C) naturally in all
argument A,B and C.
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Proof. We refer to Theorem 3.7 of [13] for the well-definedness of F and the bijection part
of the proof. The bijection − ◦ c : 2Cat(A ⊗G B, C) � Cub(A × B, C) is the component of
natural isomorphism between functors

2Catop × 2Catop × 2Cat 2Catop × 2Cat Set
⊗

op
G
×2Cat hom

and
2Catop × 2Catop × 2Cat 2Catop × 2Cat Set×op×2Cat Cub

where the naturality condition

2Cat(A ⊗G B, C) Cub(A × B, C)

2Cat(A ⊗G B, C) Cub(A × B, C)

− ◦ c

K ◦ − ◦ (G ⊗G H )

− ◦ c′

K ◦ − ◦ (G × H )

follows easily from Lemma 4.3.

4.3 Monoidal closed structure
In this section, we illustrate themonoidal closed structure of the symmetricmonoidal category
(2Cat, ⊗G,I). Given 2-categories A and B, 2-functors A → B, pseudonatural transforma-
tions and modifications form a 2-category which we will denote as Psd(A,B). From now on,
notations involving pseudonatural transformations and modifications will be adopted from
[22]. Peudonatural transformation is called strong transformation in [22].

Consider the evaluation map

e : Psd(A,B) × A → B

which

e(F, A) = F (A) for a 2-functor F : A → B and an object A ∈ A

e(σ, f ) = F′( f ) ◦ σA for a pseudonatural transformation σ : F → F′ and a 1-cell
f ∈ A

e(Γ, α) = F′(α) ∗ ΓA for a modification Γ : σ → σ′ and a 2-cell α : f → f ′.

It can be easily seen that this is a cubical functor since, for 1-cells (pseudonatural transfor-
mations) σ : F → F′ and γ : F′ → F′′ of Psd(A,B) and for 1-cells f : A → A′ and
g : A′ → A′′ of A, the constraint 2-isomorphism

φ : e(γ, g) ◦ e(σ, f ) → e(γσ, g f )

of e : Psd(A,B) × A → B is given by

1F ′′(g) ∗ γ
−1
f ∗ 1σA = φ : F′′(g)γA′F′( f )σA → F′′(g)F′′( f )γAσA
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which is precisely the identity whenever either γ or f is the identity hence satisfying the
cubicality.

This evaluation map above induces a bijection (Theorem I.4.2 [12] and Proposition 5.3.3
[13])

2Cat(A,Psd(B, C)) � Cub(A × B, C)

by sending F ∈ 2Cat(A,Psd(B, C)) to the composite

A × B Psd(A,B) × A B
F×1B e

which is indeed a cubical functor by the fact that Cub is a multicategory. The bijection
e ◦ (− × 1) : 2Cat(A,Psd(B, C)) � Cub(A ×B, C) is the component bijection of a natural
isomorphism making the following diagram commute:

2Cat(A,Psd(B, C)) Cub(A × B, C)

2Cat(A′,Psd(B, C′)) Cub(A′ × B, C′)

e ◦ (− × 1)

Psd(B, K ) ◦ − ◦G

e ◦ (− × 1)

K ◦ − ◦ (G × 1)

This, together with Theorem 4.4, gives us the following result:

Theorem4.5. Themonoidal category (2Cat, ⊗G,I) is closedwith the internal-homPsd(B, C)

2Cat(A ⊗G B, C) � 2Cat(A,Psd(B, C))

As the category 2Cat is a symmetrical closed monoidal category also with respect to
the cartesian product, from now on, we will denote separately as Gray for the symmetrical
closed monoidal category with respect to the Gray tensor product ⊗G.
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5.1 Gray-monoid and monoidal 2-functor
Next we have an extension of the notion ofmonoidal structure to bicategories, calledmonoidal
bicategories. A concise definition of a monoidal bicategory is that it is a tricategory with one
object which, to briefly spell out, is a bicategory equippedwith the composition pseudofunctor
giving the bicategory amonoidal structure up to pseudonatural equivalence. For a full detailed
definition, we refer to Appendix C of [28]. It is a weak notion of monoidal structure on
bicategory and thus it is difficult to work with; but it can be delt with semi-strict form of a
monoidal structure on 2-categories called Gray-monoids.

Just as the coherence of bicategories gave the fact, as a corollary, that any monoidal
category is monoidally equivalent to a strict monoidal category, the coherence of tricategories
shown in [10] gives the fact that any monoidal bicategory is monoidally biequivalent to a
Gray-monoid.

Tricategory is a weak 3-category which is a one step higher generalisation from bi-
categories. Likewise, trihomomorphism, tritransformation and trimodification extends the
notions of pseudofunctor, pseudonatural transformation and modification for bicategories.
For two tricategories T and R, there is a tricategory Tricat(T ,R) consisting of trihomomor-
phisms from T to R as objects, tritransformations as 1-cells, trimodifications as 2-cells and
perturbations as 3-cells. We refer to [10] for full definitions of these terms. Within a tricate-
gory T , two objects A and B of T are internally biequivalent if there exist 1-cells f : A→ B
and g : B → A such that f g and f g are internally equivalent to 1B and 1A respectively in
each of their hom-bicategories. This generalises the definition of internal equivalence within
a bicategory.

Triequivalence is a notion of equivalence between tricategories which extends the notion
of biequivalence between bicategories. Two tricategories T and R are triequivalent if there
exists a trihomomorphisms K : T → R and H : R → T such that 1T and HK are internally
biequivalent in the tricategory Tricat(T ,T ) and 1R and K H are internally biequivalent
in the tricategory Tricat(R,R). Equivalently, two tricategories T and R are triequivalent
if and only if there is a trihomomorphism K : T → R which is surjective up to internal
biequivalence on objects (triessentially surjective) and each KA,B : T (A, B) → R (K A, K B)
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are biequivalence of hom-bicategories (locally a biequivalence).
Tricategories aren’t triequivalent to a fully strict 3-category, but it has been shown in

[10] Coherence for tricategories by Gordon, Power and Street that every tricategory is
triequivalent to a Gray-category, a type of semi-strict 3-category. A concise definition of a
monoidal bicategory is that it is a tricategory with one object. And a Gray-monoid which we
will define soon is also precisely a one-objectGray-category. And the one-object case of this
Coherence theorem for tricategories is precisely the statement that anymonoidal bicategory is
monoidally biequivalent (one-object case of triequivalence) to a Gray-monoid. This section,
we introduce Gray-monoids which simplifies the computational complications with monoidal
bicategories.

Definition 5.1 (Gray monoid). Gray monoid (M, ⊗, i) is a monoid object in the monoidal
category (Gray, ⊗G,I, α, λ, η). It is a 2-categoryM equipped with 2-functors

M ⊗GM M I
⊗ i

such that the following diagrams commute:

1. Associativity axiom:

(M ⊗GM) ⊗GM M ⊗G (M ⊗GM)

M ⊗GM M ⊗GM

M

⊗⊗GM

α
�

M⊗G⊗

⊗ ⊗

2. Unit axiom
M ⊗G I M I ⊗GM

M ⊗GM M ⊗GM

M

M⊗Gi

λ

�

M

η
�

i⊗GM

⊗ ⊗

Remark. This is a one-object Gray-category.
Definition 5.2 (Strict monoidal 2-functor). Strict monoidal 2-functor F : M → M′ is
a monoid morphism between Gray-monoids (M, ⊗, i) and (M′, ⊗′, i′). It is a 2-functor
F : M → M′ of C making the following diagrams commute:

1.
M ⊗GM M′ ⊗GM

′

M M′

F⊗GF

⊗ ⊗′

F

2.
I M

M′

i

i′
F
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5.2 Centre of monoidal categories

Definition 5.3 ([16]). Let (C, ⊗, I, a, r, l) be a monoidal category. The centre Z(C) of C is
the category with

1. Objects as pairs (Z, µ) where Z ∈ C and µ : (Z ⊗ −) ⇒ (− ⊗ Z ) is a natural
isomorphism such that the following diagrams commute:

Z ⊗ I I ⊗ Z

Z

µI

rZ lZ

Z ⊗ (X ⊗ Y ) (X ⊗ Y ) ⊗ Z

(Z ⊗ X ) ⊗ Y X ⊗ (Y ⊗ Z )

(X ⊗ Z ) ⊗ Y X ⊗ (Z ⊗ Y )

µX⊗Y

aX,Y,ZaZ,X,Y

µX⊗1Y

aX,Z,Y

1X⊗µY

(5.1)

2. A morphism f : (Z, µ) → (Z′, µ′) is an arrow f : Z → Z′ in C such that the following
diagram commutes for all X ∈ C:

X ⊗ Z

Z ⊗ X X ⊗ Z′

Z′ ⊗ X

1⊗ f

f ⊗1

µX

µ′X

Remark. The centreZ(C) is a monoidal category with functor

Z(C) ×Z(C) Z(C)⊗

*.......
,

((Z, µ), (W, η))

((Z′, µ′), (W, η′))

( f ,g)

+///////
-

7−→

*.......
,

(Z ⊗W, µ ⊗ η)

(Z′ ⊗W ′, µ′ ⊗ η′)

f ⊗g

+///////
-

where (µ ⊗ η)X : (Z ⊗W ) ⊗ X −→ X ⊗ (Z ⊗W ) is defined by the below commutative
diagram:
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(Z ⊗W ) ⊗ X X ⊗ (Z ⊗W )

Z ⊗ (W ⊗ X ) (X ⊗ Z ) ⊗W

Z ⊗ (X ⊗W ) (Z ⊗ X ) ⊗W

aZ,W,X

(µ⊗η)X

1Z⊗ηX

aX,Z,W

a−1
Z,X,W

µX⊗1W

(5.2)

and the unit object (I, r−1l) ∈ Z(C).
The associators and unitors of (C, ⊗, I, a, r, l) are morphisms in Z(C) and so that(

Z(C), ⊗, (I, r−1l), a, r, l
)
is a monoidal category.

Proposition 5.1. The centreZ(C) is a braided monoidal category with braiding given by:

B(Z,µ),(W,η) := µW : (Z ⊗W, µ ⊗ η) −→ (W ⊗ Z, η ⊗ µ)

Proof. To show that µW : (Z ⊗W, µ ⊗ η) −→ (W ⊗ Z, η ⊗ µ) is an arrow inZ(C) we have
to show that (1 ⊗ µW ) ◦ (µ ⊗ η)X = (η ⊗ µ)X ◦ (µW ⊗ 1).

(1 ⊗ µW ) ◦ (µ ⊗ η)X = (1 ⊗ µW )(µX ⊗ 1)(1 ⊗ ηX ) (by equation (5.2))
= µX⊗W (1 ⊗ ηX ) (by equation (5.1))
= (ηX ⊗ 1)µW⊗X (from naturality of µ)
= (ηX ⊗ 1)(1 ⊗ µX )(µW ⊗ 1) (by equation (5.1))
= (η ⊗ µ)X ◦ (µW ⊗ 1) (by equation (5.2))

To show that this gives braiding for the monoidal category Z(C), we have to show
that B(Z,µ),(W⊗V,η⊗θ) = (1(W,η) ⊗ B(Z,µ),(V,θ)) ◦ (B(Z,µ),(W,η) ⊗ 1(V,θ)) and B(Z⊗W,µ⊗η),(V,θ) =

(B(Z,µ),(V,θ) ⊗ 1(W,η)) ◦ (1(Z,µ) ⊗ B(W,η),(V,θ)). These can be easily seen as:

B(Z,µ),(W⊗V,η⊗θ) = µW⊗V

= (1W ⊗ µV )(µW ⊗ 1V ) (by equation(5.1))
= (1(W,η) ⊗ B(Z,µ),(V,θ)) ◦ (B(Z,µ),(W,η) ⊗ 1(V,θ))

B(Z⊗W,µ⊗η),(V,θ) = (µ ⊗ η)V

= (µV ⊗ 1W )(1Z ⊗ ηV ) (by equation(5.2))
= (B(Z,µ),(V,θ) ⊗ 1(W,η)) ◦ (1(Z,µ) ⊗ B(W,η),(V,θ)).
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5.3 One-object case of the action of a Gray monoid on a
2-category

Consider the monoidal category (Gray, ⊗G,I). Following the Definition 2.9 of monoid
action, consider giving an action of a Gray-monoidM on a 2-category C. The Proposition
2.3 in the symmetric closed monoidal category (Gray, ⊗G,I) says that: to give an action
M ⊗G C → C is equivalently to give a strict monoidal 2-functorM → Psd(C, C) where the
internal-hom Psd(C, C) is a Gray-monoid as we’ve seen in Proposition 2.2.

In this section we will show what this statement reduces to whenM and C are one-object
2-categories.

Proposition 5.2. Gray-monoid (M, ⊗, i) with one object is a braided strict monoidal cate-
gory.

Proof. We begin with unpacking the Definition 5.1 of a Gray-monoid. As we have seen in
Theorem 4.4 thatCub(A×B, C) � 2Cat(A⊗GB, C), to give the 2-functor ⊗ :M⊗GM →

M is equivalently to give a cubical functor ⊗ :M×M →M, which by the Proposition 4.1,
it is equivalently to give the following data:

1. For each object A ∈ M, a 2-functor

A ⊗ − :M →M

giving A ⊗ B ∈ obM, A ⊗ f : A ⊗ B → A ⊗ B′ and A ⊗ α : 1A ⊗ f → 1A ⊗ f ′ for
each object B, 1-cell f : B → B′ and 2-cell α : f → f ′ ofM

2. For each object A ∈ M, a 2-functor

− ⊗ A :M →M

in the likewise manner

3. for all f and g, a component 2-cell of a natural isomorphism

A ⊗ B A ⊗ B′

A′ ⊗ B A′ ⊗ B′

1⊗g

f ⊗1

1⊗g

f ⊗1γ f ,g ⇒

natural in f and g such that γ f ,g is the identity when either f or g is the identity

such that for all

(A, B) (A′, B′) (A′′, B′′)

⇒

(α1, α2)

( f1, f2)

(g1, g2)

(h1, h2)
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the following axiom holds:

=

A ⊗ B A ⊗ B′ A ⊗ B′′

A′ ⊗ B A′ ⊗ B′ A′ ⊗ B′′

A′′ ⊗ B A′′ ⊗ B′ A′′ ⊗ B′′

A ⊗ B A ⊗ B′′

A′′ ⊗ B A′′ ⊗ B′′

⇒

γ f1, f2

⇒

γ f1,h2

⇒

γh1, f2

⇒

γh1,h2

⇒
γh1 f1,h2 f2

A ⊗ f2 A ⊗ h2

A′ ⊗ f2 A′ ⊗ h2

A′′ ⊗ f2 A′′ ⊗ h2

B ⊗ f1 B′ ⊗ f1 B′′ ⊗ f1

B ⊗ h1 B′ ⊗ h1 B′′ ⊗ h1

A ⊗ h2 f2

A′′ ⊗ h2 f2

B ⊗ h1 f1 B′′ ⊗ h1 f1

(5.3)

The given cubical functor ⊗ :M ×M →M satisfies the associativity axiom

(M ×M) ×M M × (M ×M)

M ×M M ×M

M

⊗×M

α
�

M×⊗

⊗ ⊗

The left and the right hand side of the diagram ⊗ ◦ (⊗ ×M) and ⊗ ◦ (M×⊗) are cubical
functors of 3 variables (as Cub is a multicategory) which determines three cubical functors
of 2 variables by the Proposition 4.2. The above associativity axiom means that these are
equal, which again by the Proposition 4.1 and Proposition 4.2 reduces to the following:

4. For each object A, B ∈ obM, the 2-functors A⊗ (B ⊗−) :M →M and (A⊗ B) ⊗− :
M →M are equal.
And likewise, A ⊗ (− ⊗ B) = (A ⊗ −) ⊗ B and − ⊗ (A ⊗ B) = (− ⊗ A) ⊗ B.

5. γA⊗g,h = A ⊗ γg,h and γ f ⊗B,h = γ f ,B⊗h and γ f ,g⊗C = γ f ,g ⊗ C.

And lastly, the cubical functor ⊗ : M ×M → M satisfies the unit axiom which gives
the following data:

6. a unit object I ∈ M

7. the 2-functors − ⊗ I :M →M and I ⊗ − :M →M and idM :M →M are equal.

The datas from 1. to 7. gives the alternate unpacked definition of a Gray-monoid which,
in several references like [21], has been called as semi-strict monoidal 2-category.

One-object Gray-monoidM reduces to a braided strict monoidal category K =M (I, I)
with monoidal product ◦ : K × K → K being the composition functor for the 2-category

◦ :M (I, I) ×M (I, I) →M(I, I)

and with the component of natural isomorphism γ f ,g : f ◦ g → g ◦ f being the braiding as
the equation in axiom (5.3) is precisely the axioms of braided monoidal category outlined in
Definition 2.5. The rest of the datas vanish since the only object ofM is the unit object I.
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Consider a braided strict monoidal category (K , ⊗, IK ) and a strict monoidal category
(A, ⊗′, IA ). By a structure of aK -algebra onA, we mean a monoidal functor � : K ×A →
A such that

1. (M ⊗ M′) � X = M � (M′ � X ) and IK � X = X

and by a a strict structure of a K -algebra on A, we require an additional condition that

2. for M, M′ ∈ obK and X, X ′ ∈ obA, the constraint natural isomorphism

φ : (M′ � X ′) ⊗′ (M � X ) → (M′ ⊗ M) � (X ′ ⊗′ X )

for the monoidal functor � is the identity if either M′ = IK or X = IA .

Theorem 5.3. Let K be a braided strict monoidal category and A be a strict monoidal
category. Then a strict structure of a K -algebra on A is equivalent to a braided strict
monoidal functor K → Z(A).

Proof. Regard (K , ⊗, IK ) as a one-object Gray-monoid (M, ⊗, i) with K = M (I, I) and
IK = idI . And regard (A, ⊗′, IA ) as a one-object 2-category C with A = C(∗, ∗) with
IA = id∗. Then a strict structure of a K -algebra on A is equivalent to a monoid action
� :M ⊗G C → C of the Gray-monoidM on the 2-category C which by Proposition 2.3 in
(2Cat, ⊗G,I) is equivalent to a strict monoidal 2-functorM → Psd(C, C).

Let’s see what this strict monoidal 2-functor reduces to whenM and C have one object.
We first begin with unpacking the Definition 5.2 of a general strict monoidal 2-functor F :
M →M′. Consider the first diagram of the Definition 5.2. Under the bijection 2Cat(M ⊗G
M,M′) � Cub(M ×M,M′), the 2-functor F ◦ ⊗ :M ⊗GM →M

′ uniquely determines
a cubical functorM ×M →M′ which, by Proposition 4.1, is uniquely determined by

a. the 2-functor F (A ⊗ −) :M →M′ for each object A ∈ obM

b. the 2-functor F (− ⊗ A) :M →M′ for each object A ∈ obM

c. the component 2-cell of the natural isomorphism F (γ f ,g) : F ( f ⊗ B) ◦ F (A ⊗ g) →
F (A′ ⊗ g) ◦ F ( f ⊗ B).

Likewise, the 2-functor ⊗ ◦ (F ⊗G F) :M ⊗GM →M
′ is uniquely determined by

d. the 2-functor F (A) ⊗ F (−) :M →M′ for each object A ∈ obM

e. the 2-functor F (−) ⊗ F (A) :M →M′ for each object A ∈ obM

f. the component 2-cell of the natural isomorphism γF ( f ),F (g) : (F ( f ) ⊗ F (B)) ◦ (F (A) ⊗
F (g)) → (F (A′) ⊗ F (g)) ◦ (F ( f ) ⊗ F (B)).

We require that these datas are the same:

1. F (A ⊗ −) = F (A) ⊗ F (−)

2. F (− ⊗ A) = F (−) ⊗ F (A)

3. F (γ f ,g) = γF ( f ),F (g).

The second diagram in the Definition 5.2 gives the condition that
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4. F (IM ) = IM ′

These datas from 1. to 4. gives the alternate unpacked definition of a strict monoidal
2-category as used in [20].

It now becomes clear that a strict monoidal 2-functor between one-object Gray-monoids
is precisely a braided and strict monoidal functor since the additional axiom for the braided
monoidal functor is precisely the condition F (γ f ,g) = γF ( f ),F (g).

It is routine to check that Psd(C, C)(idC, idC) is precisely the centre Z(A) and we
conclude that a strict monoidal 2-functor M → Psd(C, C) is precisely a braided strict
monoidal functor K → Z(A). (Omission of 2. corresponds to the equivalence to a braided
monoidal functor K → Z(A) not necessarily strict.)



6
Kontsevich’s Swiss-Cheese Conjecture

6.1 Operads and Algebras
In this section, we outline elements of Operad and Algebras. Operad is an algebraic structure
parametrising n-ary operations with a notion of composition governing the associative and
unital conditions.

Definition 6.1. Let (V, ⊗, I) be a braided monoidal category. A nonsymmetric 1-coloured
operad A consists of:

1. for each n ∈ N, an object A(n) ∈ obV

2. a unit morphism i : I → A(1)

3. a composition morphism

m : A(n) ⊗ A(k1) ⊗ · · · ⊗ A(kn) → A(k1 + · · · + kn)

such that the composition map is associative and unital in the sense that

A(n) ⊗ (A(k1) ⊗ · · · ⊗ A(kn)) ⊗
⊗n

j=1
⊗k j

h=1 A(ik j,h) A(
∑n

u=1 ku) ⊗
⊗n

j=1
⊗k j

h=1 A(ik j,h)

A(n) ⊗
⊗n

j=1 A(k j ) ⊗
⊗k j

h=1 A(ik j,h)

A(n) ⊗
⊗n

j=1 A(
∑k j

h=1 ik j,h) A(
∑n

j=1
∑k j

h=1 ik j,h)

m⊗id

�

m

id ⊗
⊗n

j=1 m

m
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A(n) ⊗ I⊗n A(n)

A(n) ⊗ A(1)⊗n

�

id ⊗i⊗n m

I ⊗ A(n) A(n)

A(1) ⊗ A(n)

�

i⊗id m

Definition 6.2. An operad A is called reduced if A(0) is the unit I ofV

Definition 6.3 (Symmetric Operad). If (V, ⊗, I) is symmetric, we can also define symmetric
operad in V . A symmetric operad A in V is an operad A in V together with a symmetric
group action given by a monoid morphism Sn → V (A(n), A(n)) for each n ∈ N, giving for
each σ ∈ Sn, a morphism σ : A(n) → A(n) such that the composition map m equivariant
with σ’s in the sense that the following diagrams commute

A(n) ⊗ (A(k1) ⊗ · · · ⊗ A(kn)) A(n) ⊗ (A(kσ(1)) ⊗ · · · ⊗ A(kσ(n)))

A(k1 + · · · + kn) A(kσ(1) + · · · + kσ(n))

σ⊗σ∗

m m

σ(k1,...,kn)

A(n) ⊗ A(k1) ⊗ · · · A(kn) A(n) ⊗ A(k1) ⊗ · · · ⊗ A(kn)

A(k1 + · · · + kn) A(k1 + · · · + kn)

id ⊗τ1⊗···⊗τn

m m

τ1⊕···⊕τn

where σ∗ : A(k1) ⊗ · · · ⊗ A(kn) → A(kσ(1)) ⊗ · · · ⊗ A(kσ(n)) is the isomorphism induced
by the braidings of V and σ(k1, ..., kn) ∈ Sk1+···+kn is to be thought of as the permutation
of n blocks of letters by σ ∈ Sn and where τ1 ⊕ · · · ⊕ τn ∈ S∑n

j=1 k j
is the natural inclusion∏n

j=1 Sk j ↪→ S∑n
j=1 k j

of (τ1, ..., τn) ∈
∏n

j=1 Sk j .

We now introduce coloured operads which we would be a generalisation of the above
notion of operads. It captures the nature of n-ary operations frommultiple types of arguments.

Definition 6.4 (Coloured Operad). Let (V, ⊗, I) be a symmetric monoidal category. A
coloured operad A inV consists of:

1. a set C of colours

2. for each c1, ..., cn, c ∈ C, an object A(c1, ..., cn; c) ∈ obV

3. for each c ∈ C, a unit morphism ic : I → A(c; c)

4. a composition morphism

m : A(c1, ...cn; c) ⊗ A(d1,1, ...d1,k1; c1) ⊗ · · · A(dn,1, ...dn,kn ; cn) → A(d1,1, ...dn,kn ; c)

5. for all n ∈ N and σ ∈ Sn (where Sn is the symmetric group on n-variables), we have a
morphism σ : A(c1, ..., cn; c) → A(cσ(1), ..., cσ(n); c)

such that the composition morphism is associative, unital and equivariance with Sn-action in
the obvious sense.
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Remark. From now on, we will simply use the term operad to mean symmetric 1-coloured
operad. Nonsymmetric and/or coloured operads will explicitly be called as such unless it
has a specific name attached to it from which we would know that it’s nonsymmetric and/or
coloured. The same goes to operad morphisms and algebras where the nonsymmetric variant
is the omition of the symmetric group action from the definition.

Remark. Nonsymmetric coloured operad is the same notion to the notion of a multicategory
enriched in (V, ⊗, I).

Definition 6.5 (Operad morphism). An operad morphism F : A → B for operads A and
B consists of a morphism Fn : A(n) → B(n) in V for each n ∈ N, such that they are
compatible with the composition and unit morphism and with the Sn-action expressed by
following commutative diagrams

A(n) ⊗ A(k1) ⊗ · · · ⊗ A(kn) A(k1 + · · · + kn)

B(n) ⊗ B(k1) ⊗ · · · ⊗ B(kn) B(k1 + · · · + kn)

m

Fn⊗Fk1⊗···⊗Fkn Fk1+· · ·+kn

m

I A(1)

B(1)

i

i F1

A(n) A(n)

B(n) B(n)

Fn

σ

Fn

σ

Definition 6.6. An operad morphism F : A→ B between reduced operads A and B is called
reduced if F0 : A(0) → B(0) is the identity.

Definition 6.7 (Algebra over an operad). Consider a operad A over a symmetric monoidal
category (V, ⊗, I). An algebra X over the operad A consists of a morphism µn : A(n) ⊗
X⊗n → X for each n ∈ N such that they are associative, unital and equivariant with the
symmetric group action σ ∈ Sn in the following sense:

A(n) ⊗ A(k1) ⊗ · · · ⊗ A(kn) ⊗ X⊗(k1+···+kn) A(k1 + · · · + kn) ⊗ X⊗(k1+···+kn)

A(n) ⊗ A(k1) ⊗ X⊗k1 ⊗ · · · ⊗ A(kn) ⊗ X⊗kn

A(n) ⊗ X⊗n X

m⊗id

�

µk1+· · ·+kn

id ⊗m⊗n

µn

I ⊗ X X

A(1) ⊗ X

�

i⊗id µ1

A(n) ⊗ X⊗n A(n) ⊗ X⊗n

A(n) ⊗ X⊗n X

id ⊗σ

σ⊗id

µn

µn
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Definition 6.8 (Algebra over coloured operad). Consider a coloured operad A with colours
C. An algebra X over the coloured operad A consists of:

1. C-indexed collection Xc ∈ obV for all c ∈ C

2. a collection of morphisms A(c1, ..., cn; c) ⊗ (Xc1 ⊗ · · · ⊗ Xcn ) → Xc

such that they are associative, unital and Sn-equivariant in the obvious sense.

Example 6.1. Commutative operad Com is a 1-coloured operad with Com(n) = I. Category
of algebras of Com in (V, ⊗, I) is same as the category of commutative monoid objects in
(V, ⊗, I).

Example 6.2. Associative operadAss in a cocomplete symmetricmonoidal category (V, ⊗, I)
is a 1-coloured operad with Ass(n) =

⊔
Sn I with symmetric group action given by group

multiplication. Category of algebras of Ass in (V, ⊗, I) is same as the category of monoid
objects in (V, ⊗, I).

Example 6.3. For each object X of a symmetricmonoidal category (V, ⊗, I), we can associate
a Set-operad called the endomorphism operad End(X ) with End(X )(n) = V (X⊗

n
, X ). When

(V, ⊗, I) is monoidally closed, we can define aV-enriched version of endomorphism operad
End(X ) with End(X )(n) = [X⊗n, X] being the internal-hom from X⊗n to X . An algebra X
over the operad A is then an operad morphism A→ End(X ).

Example 6.4 (Little d-disk operad Dd [26], [6]). Little d-disk operad Dd is a reduced
topological operad given by configuration spaces of non-overlapping ordered little d-disks
inside the unit d-disk with the multiplication map m : Dd (n) × (Dd (k1) × · · · × Dd (kn)) →
Dd (k1 + · · · + kn) being the iterated embeddings into the little disks in the first unit disk as
in the following way (for d = 2)

m

and the symmetric group action σ : Dd (n) → Dd (n) for acts by permuting the ordering of
little disks as in the following way (for n = 2)

σ

The little d-disk operad Dd was defined in order to recognize when a given connected
and pointed topological space (X, x) is weak homotopy equivalent to a d-fold loop space
Maps((Sd, ∗), (Y, y)), namely the recognition theorem (Theorem 2.7 [25]) stating that if a
connected space is an algebra over Dd , it is weak homotopy equivalent to a d-fold loop space.
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Little n-disks operad exists in any symmetric monoidal model category (V, ⊗, I). For
example, from a topological operad, we can form an operad over Set through path component
functor π0 : Top → Set and an operad over Cat through fundamental groupoids functor
π1 : Top→ Cat where for a topological space X , the category π1(X ) with objects being the
elements of X , and morphisms between x ∈ X and y ∈ X is the homotopy class of paths
p : [0, 1]→ X with p(0) = x and p(1) = y.

Definition 6.9 (Weak equivalence of operads). Let (V, ⊗, I) be a symmetric monoidal model
category. For operads A, B inV , a weak equivalence F : A→ B is an operad morphism such
that Fn : A(n) → B(n) is a weak equivalence inV for all n ∈ N.

Remark (Theorem 3.1 [5]). If (V, ⊗, I) is a “good” enough monoidal model category in the
sense of [5], then the category of reduced operads and reduced operad morphism is equipped
with a cofibrantly generated model structure with weak equivalences are defined as above
with classes of fibrations and cofibrations defined similarly.

Definition 6.10. In a symmetric monoidal model category (V, ⊗, I), an operad A is called
an Ed-operad if it is weakly equivalent to the little d-disk operad Dd , meaning that they can
be connected by zig-zag of weak equivalences of operads

Dd A1 A2 A3 A4 · · · An A∼ ∼ ∼ ∼ ∼ ∼∼

Example 6.5. As π0(D1(n)) � Sn, E1-algebras in Set are monoids. As πo(D2(n)) � I, the
E2-algebras in Set are commutative monoids.

Example 6.6. E1-algebras in Ab are rings. E2-algebras in Ab are commutative rings.

Example 6.7. There exist E1-operads inCat such that their category of algebras are equivalent
to the category of monoidal categories and strict monoidal categories correspondingly. There
exist E2-operads in Cat such that their category of algebras are equivalent to the category of
braided strict monoidal categories (5.2.18 [9]).

6.2 Swiss-Cheese conjecture
In this section, we formulate the Swiss-Cheese conjecture made by Kontsevich. Swiss-Cheese
operad was defined by Voronov in [31] and used by Kontsevich to formulate his conjecture
in [19].

Definition 6.11 (Swiss-Cheese type operad [2]). A Swiss-Cheese type operad A is a 2-
coloured operad with colours {O,C}, standing for open and closed colours, such that for
C1 = · · · = Cn = C and O1 = · · · = Om = O we have A(C1, ...,Cn,O1, ...,Om; C) = ∅ if m ≥ 1
and appropriate action of symmetric group Sn × Sm.

It consists of two colours and objects A(n,m) ∈ obV with action of symmetric group
Sn × Sm and B(n) ∈ obV with action of symmetric group Sn together with appropriate
composition morphisms

c : A(n,m) ⊗ *
,

m⊗
i=1

A(ki, ji)+
-
⊗ *
,

n⊗
u=1

B(lu)+
-
→ A *

,

m∑
i=1

ki +

n∑
u=1

lu,

m∑
i=1

jm+
-

cB : B(n) ⊗ (B(h1) ⊗ · · · B(hn) → B(h1 + · · · hn))

giving rise to an operad B (of closed coloured part) and an operad S (of open coloured part)
with S(m) = A(0,m).
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Definition 6.12 (Swiss-Cheese operad [31]). Swiss-Cheese operad SCd is a topological
Swiss-Cheese type operad with SCd (n,m) being the configuration space of n non-overlapping
ordered little d-disks and m separately ordered little upper semi-d-disks inside the unit upper
semi-d-disk such that the little upper semi-d-disks are sitting on the diameter of the unit unit
upper semi-d-disk

Figure 6.1: An example of SC2(2, 3)

and with objects B(n) = Dd (n) and the composition morphism c is given by the ordered
embeddings of SCd (ki, ji)’s into the little upper semi-d-disks and Dd (lu)’s into the little
d-disks and cB is the same one given by that of the operad Dd .

Remark. The closed coloured part of SC operad is Ed-operad and the open coloured part of
SC operad is Ed−1-operad.

Definition 6.13 (Action µ of Ed-algebra on Ed−1-algebra). Let XC ∈ obV be an Ed-algebra
and XO ∈ obV be an Ed−1-algebra. We say that XC acts on XO if there is a structure of
SCd-algebra on {XC, XO} such that the collection of morphisms

µn,m : SC(C1, ...,Cn,O1, ...,Om; z) ⊗ X⊗n
C ⊗ X⊗m

O → Xz

restricts to the given structure of Ed-algebra on XC when m = 0 and z = C and to the given
structure of Ed−1-algebra on XO when n = 0 and z = O.

Swiss-Cheese Conjecture
For an Ed−1-algebra A, consider a categoryActd (A) of pairs (B, µB) where B is an Ed-algebra
acting µB on A and morphisms from (B, µB) to (B′, µB′) are the morphisms f : B → B′ inV

such that (B, A) (B′, A)
( f ,1)

is a map of SCd-algebras. Let ourV be a monoidal model
category. f ∈ Actd (A) is a weak equivalence if f is a weak equivalence inV , from which we
can talk about the homotopy category Ho(Actd (A)) obtained by localisation Actd (A)[W−1]
with respect to the classW of weak equivalences. The conjecture is that Ho(Actd (A)) has a
terminal object which for d = 2, is the classical Hoschild complex (derived centre) of A.

In the case V = Set, let A be an E1-algebra which is a monoid. The Hochschild of A is
the centre Z (A) of A. For a commutative monoid k which is an E2-algebra, the structure of
SC2-action of k on A is precisely an associative and unital monoid homomorphism k×A→ A
(the structure on A as a monoid object in k-Set). The Swiss-Cheese conjecture amounts to the
claim that to give a such structure on A with k is equivalently to give a map of commutative
monoids k → Z (A) which has been shown in Theorem 3.4 as the one-object case of the
equivalence between a monoid actionM×C → C and a monoid morphismM → Cat(C, C)
in the world of (Cat,×, I). Notice also that the equivalence between strict action of a monoid
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actionM × C → C and a monoid morphismM → Cat(C, C) in (Cat,×, I) is the Swiss-
Cheese conjecture for d = 1 in Cat which is, again, a direct result of having the symmetric
monoidally closed structure on Cat (Proposition 2.3).

Similarly in V = Cat, given an E1-algebra A, up to equivalence, a strict monoidal
category and let K be an E2-algebra, a braided strict monoidal category up to equivalence.
Remark. To see it we can use a description of fundamental grouppoid π1(SC2) of Swiss-
Cheese operad SC2 in terms of coloured braids [14] which extends a description of fun-
damental grouppoid of operad D2 given by Fresse [9]. The homotopy category of action
Ho(Actd (A)) of this operad π1(SC2) is equivalent to the homotopy category of action of
braided monoidal categories on a monoidal category A. We can then strictify everything up
to homotopy.

The d = 2 Swiss-Cheese conjecture says that to give a structure of an action of K on A
is to give a braided monoidal functorK → Z(A). Generic model theoretic argument allows
us to replace any structure of an action of K on A to a strict cofibrant algbera. With the
homotopy category of action Ho(Actd (A′)) by cofibrant replacementA′ being equivalent to
Ho(Actd (A)), the strict algebra case of this has been shown in Theorem 5.3 as a one-object
case of the Swiss-Cheese conjecture for d = 1 in 2Cat. This statement for d = 1 in 2Cat is
that the choice of a monoid actionM ⊗G C → C is a monoid morphismM → Psd(C, C) in
2Cat. And again this is a direct corollary of existence of Gray tensor product giving 2Cat a
symmetric monoidal closed structure by the Proposition 2.3.
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