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ABSTRACT 

 Nature generates huge diversity in molecular frameworks by using the 

simplest route, starting from abundantly available precursors.  The biogenesis of 

natural products provides valuable information for the design of efficient routes for 

complex natural products based on structural analysis and biosynthetic pathways.  

Chapter 1 investigates the diastereoselective biomimetic synthesis of the natural 

products mikimopine and cucumopine, based on their biogenesis from the Pictet-

Spengler reaction between the naturally abundant precursors !-ketoglutaric acid and 

L-histidine.  Chapter 2 and 3 then focus on the structurally diverse and complex 

family of natural products, known as the oroidin alkaloids.  In Chapter 2, a 

comprehensive review of the oroidin alkaloids isolated thus far, is first provided.  The 

biogenesis of all the currently known oroidin alkaloids has been analysed and this has 

led, for the first time, to a unifying theory for their formation in Nature.  

Haloperoxidase enzymes are thought to play an important role in the biosynthesis of 

these marine natural products.  Taking this into account, our proposed biogenesis 

explains the formation of every oroidin alkaloid from the reactive intermediate 

epoxide or bromonium ion of the precursor oroidin or dihydrooroidin, and forms the 

basis of a biomimetic approach towards the synthesis of these fascinating and 

biologically active alkaloids.  Our efforts towards this, are described in Chapter 3, 

first by exploring the epoxide route and then the bromonium ion route, and have led to 

the synthesis of some natural and unnatural oroidin alkaloids.  Chapter 4 then moves 

away from the topic of biomimetic synthesis and describes the synthesis of 

hemicyanine hybrids of the fluorescent natural product epicocconone.  The 

photophysical properties of these novel near infra-red dyes are reported and their 

potential in the detection of biomolecules demonstrated.  Finally the experimental and 

appendices for the whole thesis are provided in Chapter 5 and 6 respectively. 
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Chapter 4:  Synthesis of epicocconone-hemicyanine hybrids for near infra-red 
fluorescence 

 

 

 

A diastereoselective biomimetic synthesis for the natural products mikimopine 

and cucumopine, have been developed.  Screening of solvents, bases and lewis acids 

showed the bases triethylamine and potassium carbonate to be responsible for the 

80% diastereoselectivity achieved in the synthesis of mikimopine and cuccumopine 

respectively.   

We have proposed a unifying theory for the formation of the structurally 

diverse and complex family of oroidin alkaloids based on the enzymatic catalysis of 

haloperoxidases and have validated this proposal by synthesising 2 natural and 6 

unnatural products from the oroidin family using the oxidant bromodiethylsulfide 

bromopentachloroantimonate (BDSB) as a source of bromonium ion with oroidin and 

dihydrooroidin. 

Seven hemicyanine hybrids of the fluorescent natural product epicocconone 

have been synthesised.  These are novel near infra-red (NIR) dyes with potential as 

molecular probes.   
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CHAPTER 1 

DIASTEREOSELECTIVE BIOMIMETIC SYNTHESIS OF 
 NATURAL PRODUCTS: CUCUMOPINE AND MIKIMOPINE 
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1.1.  Introduction 

Nature generates a huge diversity of simple and complex molecular 

frameworks in natural products by using the simplest route, starting from abundantly 

available precursors.  In so doing, it provides elegant solutions to the synthesis of 

natural products in the laboratory.  The term biomimetic derives from the Greek 

‘‘bios’’ meaning life, and mimetic, the adjective for ‘‘mimesis’’ or mimicry.  

Biomimetic synthesis is thus an attempt to assemble natural products along 

biosynthetic lines without having recourse to the full enzymatic machinery of nature.1   

The concept of biomimetic synthesis was introduced by Sir Robert Robinson 

in 1917 when he prepared the alkaloid tropinone, using the simple starting materials, 

succinaldehyde, methylamine and acetone dicarboxylic acid, in a one-pot procedure 

(Scheme 1.1).2  This landmark synthesis of organic chemistry follows closely the now 

well-established biosynthesis of the tropinone skeleton (Scheme 1.1).   

 
Scheme 1.1  Tropinone biosynthesis involving the enzyme Acetyl CoA synthase (AcSCoA) and the 
landmark biomimetic synthesis by Robinson. 

 

Since then, many specific targets have been the focus of pivotal experiments 

undertaken in the field of biomimetic synthesis and have been the subject of recent 

reviews.3-8  The biomimetic syntheses of oroidin alkaloids and any others of relevance 

are discussed in Chapter 3.  
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1.1.1.  The Pictet-Spengler Reaction 

Since its discovery over a century ago, the Pictet-Spengler (P-S) reaction, first 

reported by Pictet and Spengler in 1911, has been an important reaction for the 

simultaneous C-N and C-C bond formation leading to the formation of ring systems 

such as the tetrahydroisoquinolines and tetrahydro-!-carbolines (Figure 1.1).9  

 

Figure 1.1  The tetrahydroisoquinoline and tetrahydro-!-carboline scaffolds. 

 

A typical P-S reaction is a two-step process that involves the condensation of 

an aliphatic amine (!-arylethylamine or tryptamine) with an aldehyde to form an 

imine, which is most commonly activated by Brønsted acids.  Final intramolecular 

cyclisation between a sufficiently reactive, electron-rich aromatic ring and the 

activated iminium ion results in an N-heterocyclic ring (Scheme 1.2).  

Stereochemically, the reaction produces a racemic mixture since the imine can be 

attacked from the top or bottom face equally. 

 
Scheme 1.2  Typical P-S reaction catalysed by a Brønsted acid 

 

Tetrahydroisoquinolines and tetrahydro-!-carbolines form the structural key 

elements of thousands of naturally occurring alkaloids, several of them being of 

enormous physiological and therapeutic significance.  For examples: berberine is a 

quaternary ammonium salt isoquinoline plant alkaloid that has shown antifungal, anti-
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bacterial and anti-viral activities; reserpine is an indole plant alkaloid that has been 

used as an antipsychotic and antihypertensive drug; manzamine is an indole marine 

alkaloid that exhibits broad biological activity, including cytotoxic, antibacterial, 

antimalarial, insecticidal, anti-inflammatory and anti-HIV (Figure 1.2).10-15  As such, 

the P-S reaction has been extensively studied and continues to be a focus of research 

in areas that include its application to the total synthesis of natural and unnatural 

products, and the preparation of new heterocycles for combinatorial applications.16,17 

 
Figure 1.2  Some examples of isoquinoline and indole alkaloids of enormous physiological and 
therapeutic significance. 

 

The reaction has undergone continuous modification and found broader 

application to a wider variety of aromatic ethylamines, including N-alkylated, N-

acylated or N-sulfonated amines, and also with the use of ketones instead of aldehydes 

which then generate quaternary centres adjacent to the aromatic ring.17  There is also a 

variant of the reaction that uses alcohols rather than amines, termed the oxo-P-S 

reaction.18 

 

1.1.1.1.  The Pictet–Spenglerases 

Biosynthetically, the P-S reaction is carried out by so-called “Pictet-

Spenglerase” enzymes and these have been isolated from several plant alkaloid 
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biosynthetic pathways.19-22   Strictosidine synthase is the first “Pictet-Spenglerase” to 

be crystallised as a complex with its substrates tryptamine (1.1) and secologanin 

(1.2).23   This has led to structural insights on the mechanism of the enantiospecific 

reaction.24 Glu309 has been shown to be instrumental in the P-S reaction by acting as 

a catalyst.  It does so by playing key role in both an acid-catalyzed step involved in 

iminium formation (a) and a base-catalysed step involved in the final deprotonation 

step (b) (Scheme 1.3) to form strictosidine (1.3).25 

 
Scheme 1.3  Suggested mechanism of the strictosidine synthase catalysed P-S reaction between 1.1 and 
1.2 to form strictosidine (1.3).24  A key Glu309 residue acts both as a proton donor and acceptor.  Glc: 
glucose. 
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(Scheme 1.4).26  Spinacine is a natural product first isolated from extracts of green 

spinach leaves.27  It is much later that Klutchko et al. described the synthesis of a 

large number of spinacine derivatives.28  In 1948, Folkers and co-workers isolated 4-

aryl-4,5,6,7-tetrahydroimidazol[4,5-c]pyridine from the reaction of pyridoxal with 

histamine or histidine in the presence of a base while synthesising amino acid 

derivatives of vitamin B6 (Scheme 1.5).29 

 
Scheme 1.4  First reported example of the P-S reaction of the imidazole, L-histidine with acetaldehyde 
in the synthesis of the natural product spinacine. 

 

 
Scheme 1.5  P-S reaction of histamine/histidine with pyridoxal to make amino acid derivatives of 
vitamin B6. 

 

Later Stocker et al. effected such condensations in the absence of a base and in 

organic solvents.30  However, the reaction condition was not general and cyclisation 

failed to occur with aliphatic aldehydes or ketones as well as with alkyl/aryl ketones 

under similar conditions.  Acid-catalysed P-S of histamine also failed to proceed to 

the cyclised product.30  As proposed by Stocker, the presence of a base is crucial to 

promote cyclisation by making the C5 position of the imidazole more nucleophilic 

(Figure 1.3).  However it is possible that base is simply required to avoid the non-

nucleophilic imidazolium ion.  The P-S reaction can lead to the formation of both 

tautomers where either nitrogen N1 or N3 of the imidazole is protonated.  The proton 

is shown on N1 but both tautomers are present. 
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Figure 1.3  Base catalysis in the P-S cyclisation of imidazoles. 

 

 Horne and co-workers first reported the P-S reaction of 4-(3-aminopropyl)-

1H-imidazol-2-amine (1.4), bearing a 2-aminoimidazole nucleus instead of imidazole, 

with various aromatic and aliphatic aldehydes in the presence of a base to form 

unusual seven membered analogues of 2-aminoimidazole (Scheme 1.6).31  However 

there is no mention of the stereochemistry of the products. 

 
Scheme 1.6  P-S reaction of 1.4 by Horne and co-workers.  

 

Most of the work done in the field of diastereoselective P-S reactions, has 

involved starting with an existing stereocentre (such as an amino acid) that will 

remain in the final product.  Other methods include using a stereocentre in a chiral 

auxiliary that is removed afterwards, to direct the ring closure, or alternatively using a 

chiral Lewis acid or chiral catalyst to promote the reaction as well as direct 

stereoselectivity.32,33  Enantioselective/diastereoselective P-S reaction of imidazoles 

has not been studied in detail.  There are only a few reports where the stereochemistry 

of the product is determined when the reaction was carried out with histidine.  

Furthermore, the P-S reactions with ketones are even more sparse in the literature 

compared to the extensive examples with aldehydes. 
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In the synthesis of analogues of azotoxin, a hybrid anticancer molecule, 

Medarde and co-workers condensed L-histidinol with 3,4,5-trimethoxybenzaldehyde 

and observed formation of cyclised products in a cis:trans ratio of 5:1 (Scheme 1.7).34 

 
Scheme 1.7  P-S reaction of L-histinol with 3,4,5-trimethoxybenzaldehyde, reported by Medarde and 
co-workers.  

 

Fujii et al., while synthesising analogues of the natural product spinaceamine, 

condensed L-histidine with trifluoroacetaldehyde in boiling water and observed 

formation of a cyclised product as a diastereomeric mixture (68:32) (Scheme 1.8).35 

 

Scheme 1.8  P-S reaction of L-histidine with trifluoroacetaldehyde, reported by Fujii et al.35 

 

More recently, Smith et al. reported the synthesis of 4-phenylspinacine from 

the P-S reaction between L-histidine and benzaldehyde refluxing in an ethanol-water 

mixture in the presence of excess strong base (Scheme 1.9).36  No diastereoselectivity 

was observed.  Interestingly, when fluorobenzaldehydes were used, the P-S 

cyclization proceeded diastereoselectively, with predominant formation of the cis-

spinacine products (Scheme 1.9).36  The diastereoselectively is likely due to an 

electronic effect of the fluorine atom on the imine in the electrophilic cyclisation step 

of the P-S reaction.  However, no de values were reported.    
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Scheme 1.9  P-S reaction of L-histidine with fluorinated benzaldehyde led to the observed 
diastereoselective for the cis-products as reported by Smith et al.  while with benzaldehyde, no 
diastereoselectivity was observed.36  Reaction conditions: a.  KOH (3 equiv.), refluxing EtOH/H2O 
(2:1, v/v). 

 

Karuso and co-workers have reported the diastereoselective P-S reaction of 4-

(3-aminopropyl)-1H-imidazol-2-amine (1.4) with enantiopure amino acid-derived 

aldehydes where anti stereochemistry is favoured with up to 92% de observed 

(Scheme 1.10).37  The diastereoselectivity was found to be a result of the steric bulk 

of the amino acid side chain R while the bulk of the protecting group R1 had little to 

no effect on de.   

 
Scheme 1.10  Diastereoselective P-S reaction of 1.4 with various enantiopure amino-derived 
aldehydes. 
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follows the biogenesis proposal that ageladine A is likely to be derived from the 

amino acids proline and histidine (Scheme 1.12).39  This pyrrole-imidazole alkaloid 

was first isolated from the marine sponge Agelas nakamurai by Fusetani in 2003 and 

has shown promising anticancer and antiangiogenic activity.39  The first synthesis 

published in 2006 by Weinreb required 13 steps followed shortly by a 3-step 

biomimetic synthesis from our lab.40  Weinreb soon after published a 10-step 

synthesis that avoided an end game that gave a very poor yield.41,42  Concomitantly, 

we published a one pot synthesis of ageladine A from 2-aminohistamine.43  

 
Scheme 1.11  Biomimetic synthesis of ageladine A.  a.  Sc(OTf)3, EtOH, r.t, 5 h, 44%;  b.  chloranil, 
CHCl3, reflux, 8h, 65% 

 

 
Scheme 1.12  Biogenesis of marine natural product, ageladine A. 

 

We have used this method to synthesise various analogues of ageladine A, 

either with different aldehydes or with imidazole variants such as histidine, histamine, 

or tryptophan.43  Consequently, our aim has been to extend this approach to 

investigate a biomimetic approach to the synthesis of related natural products.  
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1.1.3.  Cucumopine and Mikimopine 

Cucumopine (1.5) and mikimopine (1.6) are natural products that have been 

isolated from the hairy roots of tobacco induced by two different strains of 

Agrobacterium rhizogenes (Scheme 1.13).44,45  They are opines, small molecule 

metabolites, believed to act as nitrogen sources for the bacterium.46  It was reported 

that roots were able to take up exogenously supplied opines and that the addition of 

opines to the culture medium of hairy root, replaced carbon or nitrogen sources of the 

media to some degree.47 The addition of mikimopine was observed to enhance 

alkaloid production in hairy root and to have some insecticidal effect, reducing the 

growth of Manduca sexta larvae and exhibiting deterrent properties at higher 

concentrations.47  In addition, mikimopine showed allelopathic properties and 

retarded the germination of Lepidium sativum seeds and growth of seedlings.47  The 

structure suggests these compounds may also function as siderophores. 

Compound 1.5 and 1.6 are diastereomers, bearing the same configuration at 

C2, indicating that they are likely to have been derived by the P-S reaction between 

the naturally occurring precursors !-ketoglutaric acid and L-histidine (Scheme 1.13).  

Indeed, when "-ketoglutaric acid and L-histidine were heated in water in the presence 

of lithium hydroxide as a base, a mixture of mikimopine and cucumopine was 

obtained.45     

 

Scheme 1.13  Biogenesis of the mikimopine and cucumopine is likely to involve the Pictet-Spengler 
cyclisation of abundantly available precursors "-ketoglutaric acid and L-histidine. 
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We have investigated the diastereoselective biomimetic synthesis of 

mikimopine and cucumopine and the potential of these compounds as siderophores, 

using a novel fluorescence based assay. 

 

1.2.  Results and Discussion 

In our investigation into a diastereoselective biomimetic synthesis of the 

opines, enantiopure L-histidine was used as a chiral inductor.  As reported in the 

literature, when L-histidine was stirred with "-ketoglutaric acid in the presence of 

LiOH in water at 50 oC, a 50:50 mixture of the (cis)-S,R- and (trans)-S,S-

diastereoisomers was obtained (Table 1.1, Entry 1).  The absence of 

diastereoselectivity is not surprising since diastereocontrol is generally limited under 

aqueous conditions unless under the action of an enzyme.16  When the reaction was 

conducted in methanol, no product was formed while decomposition was observed in 

DMSO (Entry 2 and 4).  Changing the base from LiOH to KOH in refluxing 

methanol did not have any effect on the outcome of the reaction (Entry 3). 

 

1.2.1.  Screening of Bases 

For histidine to undergo a Pictet–Spengler reaction it is essential that the side 

chain remain deprotonated for the addition of the intermediate imine because 

protonated imidazoles are deactivated towards electrophilic addition.  Therefore we 

started by trialing different organic and inorganic bases. Indeed, in the absence of any 

base, no reaction was observed in water at 50 oC (Entry 5).  As shown in Table 1.1, 

most of the organic bases proved to be ineffective in promoting the P-S reaction, 
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mostly resulting in no reaction or decomposition if allowed to proceed for a longer 

time.  The use of DABCO led to the formation of products but no diastereoselectivity 

was observed (Entry 8).  Triethylamine as base showed the most promising results 

when used in refluxing methanol leading to the preferential formation of cucumopine 

over mikimopine.  No reaction was observed at room temperature in methanol with 

TEA (Entry 13).  
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Table 1.1  Screening a variety of organic bases. 

 

Entry Basea Solvent Temp 

(oC) 

Time  

(h) 

Cucu:Mikib Yield (%) 

1c LiOH H2O 50 24 50:50 quant.e 

2 c LiOH MeOH 50 18 - d NR 

3  KOH MeOH 64 24 - NR 

4 c LiOH DMSO 50 3.5 - dec. 

5 - H2O 50 24 - NR 

6 DIPEA MeOH 64 18 - NR 

7 Pyridine MeOH 64 20 - NR 

8 DABCO MeOH 64 20 47:53 inc.f 

9 DBU MeOH 64 24 - dec.g 

10 2,6-lutidine MeOH 64 48 - dec. 

11 TPA MeOH 64 24 - dec. 

12 TEA MeOH 64 45 88:12 95 

13 TEA MeOH r.t. 45 - NR 

a. 2 equiv. used;  b. diastereomeric ratio determined by 1H NMR of crude reaction mixture;  c. 9 equiv. 
as in literature;  d. - = only starting materials are observed;  e. quant. = quantitative;  f. inc. = 
incomplete;  g. dec. = decomposition observed;  h. NR = no reaction. 

 

1.2.2  Screening of Solvents 

The effect of solvents on diastereoselectivity with TEA as base was next 

investigated (Table 1.2).  When the same base was used in water, a reversal but 
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limited diastereoselectivity was noted (Table 1.2; Entry 2).  The use of DMSO as 

solvent or conducting the reaction in neat TEA only led to decomposition (Entry 2-

3).  In other alcoholic solvents such as ethanol or isopropanol, a decrease in 

diastereoselectivity and yield was observed (Entry 5-6).     

Table 1.2  Solvent effects on the P-S reaction 

 

Entry Solvent Time 

(h) 

Cucu:Mikia Yield 

(%)b 

1 H2Oc 42 42:58 95 

2 DMSO 3.5 - dec.d 

3 TEA 3.5 - dec. 

4 EtOH 45 75:25 85 

5 iPrOH 45 60:40 65 

a.  diastereomeric ratio determined by 1H NMR of crude reaction mixture;  b. 
yield determined by 1H NMR of crude reaction mixture; c.  Temperature used 
is 50 oC; d.  dec. = decomposition observed. 

 

1.2.3.  Equivalent of the Base TEA 

Refluxing the reagents with excess base led to a Boltzmann distribution of 

products (91:9) suggesting a difference of 1.55 kcal/mol between 1.5 and 1.6 (Table 

1.3).48  The use of limited base led to poorer diastereoselecivity (Entry 1). 
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Table 1.3  Effect of number of equivalents of TEA on the P-S reaction 

 

Entry Equiv. Time 

(h) 

Cucu:Mikia Yield 

(%) 

1 2 45 88:12 95 

2 16 17 91:9 95 

3 32 12 91:9 95 

a. diastereomeric ratio determined by 1H NMR of crude reaction mixture 

 

1.2.4  The Carbonates as Base 

A series of trials were conducted with metal carbonates to test whether 

complextation with cations can affect diastereoselectivity (Table 1.4).  In refluxing 

methanol, diastereoselectivity was observed mainly with Li2CO3 and Na2CO3, 

favouring the formation of mikimopine (1.6).  As cucumopine seemed to be the 

thermodynamic product, this suggested that alkali earth metals could complex the 

transition state in a way to affect the diastereoselectivity.  Despite solubility issues at 

room temperature, an improvement of the diastereoselectivity in favour of 1.6 was 

observed with Na2CO3 and K2CO3. The use of a greater equivalent of the base led to a 

further improvement of the de with a much cleaner reaction mixture in the case of 

K2CO3.  
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Table 1.4  The carbonates as base in the P-S cyclisation of "-ketoglutaric acid and L-histidine in 
methanol. 

 

Entry Basea Temp (oC) Time 

(h) 

Cucu:Mikib Yield 

(%) 

1 Li2CO3 64 24 29:71 95 

2 Na2CO3 64 18 31:69 95 

3 K2CO3 64 24 49:51 98 

4 Cs2CO3 64 17 56:44 quant.c 

5 Li2CO3 r.t. 48 - NRd 

6 Na2CO3 r.t. 72 15:85 70 

7 Na2CO3 

(16 equiv.) 

r.t. 72 10:90 60 

8 K2CO3 r.t. 48 25:75 63 

9 K2CO3 

(16 equiv.) 

r.t. 120 10:90 90 

10 Cs2CO3 r.t. 48 - NR 

a. 2 equiv. used unless otherwise specified;  b. diastereomeric ratio determined by 1H NMR of 
crude reaction mixture;  c. quant. = quantitative;  d. NR = no reaction 

 

The cation is playing a role in the diastereoselectivity observed since even at 

high temperature, the formation of 1.6 is favoured with Na+ and K+ but not Cs+ 

(Table 1.4; Entry 1-2).  Therefore the diastereoselectivity cannot be solely due to the 

kinetic condition in use.  This indicates the likely role of the metal cations in 

diastereocontrol.  The metal cations are likely to help stabilise the imine intermediate 
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as shown in Figure 1.4.  The imidazole would then preferentially attack the imine 

from the less hindered lower face which is also constrained by the interaction of the 

histidine carboxylate and imine via a cation.  With caesium carbonate under heating 

(Entry 4), the diastereoselectivity becomes reversed.   The involvement of metal 

complexation (M+) in the transition state would explain this reversal since Cs+ ion is 

bigger in size (167 pm compared to Li+, Na+ and K+ ions being 76, 102 and 138 pm 

respectively)49 and might not be able to complex the imine as the other cations. 

 
Figure 1.4  Transition state needed for the formation of mikimopine (1.6) and stabilisation of the imine 
intermediate in the presence of metal cations, leading preferentially to 1.6. 

 

1.2.5.  Thermodynamic Product versus Kinetic Product 

The diastereomer formed was identified by the ROE between the "-CH2 of the 

"-ketoglutaric acid moiety and the !-hydrogen of the amino acid (Figure 1.5A and 

B).  The presence of a strong ROE indicates these groups are on the same side of the 

ring (i.e mikimopine (1.6)).  Alternatively, a weak ROE correlation would indicate the 

trans-diastereomer (i.e. cucumopine (1.5)).  
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Figure 1.5 A.  3D model of 1.5 and 1.6.  Arrow indicating the proximity of the glutarate CH2 with the 
"-H of hisitidine used to differentiate between the two diastereomers; B.  1D ROE of 1.5 and 1.6 
irradiation at H" of histidine showing ROE integration (red) relative to the irradiation frequency (-
100). 

 

The formation of mikimopine at room temperature (Table 1.4; Entry 9) 

indicates the latter to be the kinetic product while cucumopine is favoured at high 

temperature and longer reaction times, and is therefore the thermodynamic product.   
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When mikimopine was heated in methanol in the presence or absence of TEA, 

conversion to its thermodynamically more stable trans-diastereomer 1.6 was not 

observed, indicating that the new bonds formed are not reversible.  In the case of the 

P-S cyclisation between an aldehyde and tryptophan, the cis to trans epimerisation at 

the newly formed chiral centre is known to occur under acidic conditions.50  However, 

heating mikimopine in the presence of acid leads to lactamisation (1.7) with 

preservation of stereochemistry as determined by 2D NMR spectroscopy.45  Indeed 

the opines were converted to the lactams quantitatively with 0.5 N HCl in one hour at 

room temperature or during chromatography using an acid additive (e.g. acetic acid) 

in the eluent.51  

 

1.2.6.  Lewis Acids 

To avoid lactamisation, Lewis acids were investigated.  In all cases, this led to 

the imine but no P-S cyclisation (Table 1.5). 
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Table 1.5  Lewis acids in the P-S reaction between L-histidine and "-ketoglutaric acid 

 

Entry Lewis acida Temp (oC) Time (h) Outcomeb 

1 Sc(OTf)3 r.t 1.5 NRe 

2 Sc(OTf)3 64 3.5 25% imine 

3 Sc(OTf)3 115c 5 100% imine  

4 Sc(OTf)3 115c 24 60% imine 

5 Sc(OTf)3 64 (µW)d  1 35% imine 

6 Sc(OTf)3 160 (µW)d  1 100% imine 

7 Ln(OTf)3 r.t 5 days 9% imine 

8 Ln(OTf)3 64 15 100% imine 

a. 1.2 equiv. used unless otherwise specified;  b. determined by 1H NMR of crude reaction mixture;  ;  
c.    heated to 115oC in a sealed tube;  d.  set at maximum power of 300 W and sealed tube used; e. NR 
= no reaction. 

 

1.2.7.  Substrates Scope 

With a view of synthesising analogues of the opines, we applied our 

diastereoselective conditions to other ketones.  A vast majority of the literature 

concerning the P-S reactions so far deals with aldehydes while ketones have been 

only sparsely studied.17,52  This is presumably due to their poor reactivity, the imine 
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derived from aldehydes. 

Much to our disappointment, the diastereoselective reaction conditions 

developed for mikimopine did not prove to be general.    Pyruvic acid was the only 

N
H
N

N

O

HO

COOH
HOOC

HN
H
N

N

O

HO

COOH

HOOC

XLewis acid
MeOH

NH2 NH

N
O

HO
O

OH

O

H2O
O

+

imine



 22 

ketone that provided the desired products in comparable de to "-ketoglutaric acid 

under thermodynamic condition (Table 1.6; Entry 1). Compounds 1.8 and 1.9 are not 

known as a natural products but such a structure would be isolated in the future as 

pyruvic acid is at least as common as "-ketoglutaric acid in Nature. 

The stereochemistry of the product was proven by separation of the two 

diastereomers and 1D ROESY analysis.  In the minor diastereomer 1.9, the methyl 

group gave a strong ROE to "-H which was weak in the major diastereomer 1.8 

(Figure 1.6A and B).  

 
Figure 1.6 A.  3D model of 1.8 and 1.9.  Arrow indicating the proximity of the pyruvate CH3 with the 
"-H of hisitidine used to differentiate between the two diastereomers.  
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Figure 1.6 B.  1D ROE of 1.8 and 1.9 irradiation at the CH3. 
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Table 1.6  Substrate scope under the thermodynamic condition developed for cucumopine. 

 

Entry ketone product Yield (%) 

1 

 

(S,R):(S,S) 

91:9 

80 

2 

 

Imine - 

3 

 

Imine - 

4 

 

Imine - 
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9 

 

Imine - 

 

The absence of cyclisation with the dimethyl ester of "-ketoglutaric acid 
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must play a role in promoting the P-S cyclisation of the imidazole onto the imine by 

acting as an internal proton abstractor from the imidazole ring (Scheme 1.14). 

 
Scheme 1.14  Key role of the COOH groups adjacent to the imine in promoting the P-S cyclisation.  

 

Moreover, when the other ketones (Table 1.6; Entry 2-9) were subjected to 

conventional heating or to microwave irradiation in the presence of either TEA, 

K2CO3 or KOH in methanol, in most case, only the corresponding imines were 

formed, even with prolonged reaction time.  Attempted purification on silica gel led to 

the recovery of starting materials only.  

The low reactivity with ketones may be attributed to a slow imine formation or 

to steric hindrance (Table 1.6; Entry 2-3 and 9).  The latter was observed in benzoyl 

formic acid, which only produced the imine despite bearing the "-carboxylic acid, 

likely involved in the intramolecular catalysed P-S cyclisation (Entry 2).  Under the 

kinetic condition developed for the formation of mikimopine (Table 1.3; Entry 2), 

none of the ketones reacted to give the desired P-S products.   

When L-tyrosine and L-tryptophan were used as substrates with "-ketoglutaric 

acid, no cyclisation occurred either under the thermodynamic or kinetic conditions.  

While the P-S reaction of imidazoles, is known to be base-catalysed36,37, the formation 

of tetrahydroisoquinolines and tetrahydro-!-carbolines is known to occur mainly 

under acidic conditions.17  Both L-tyrosine and L-tryptophan formed the 
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corresponding imines with "-ketoglutaric acid under our thermodynamic conditions 

but the P-S cyclisation did not occur even with prolonged reaction times. 

 

1.2.8.  Potential Siderophores 

Siderophores are small, iron chelating compounds, secreted by 

microorganisms, fungi and plants.53  They possess a high affinity and selectivity for 

Fe(III) to sequester and solubilise extracellular Fe(III) and then take up the complex 

via specific receptors on the cell membrane.53  Siderophores have found applications 

in medicine in better targeting antibiotics and for iron overload therapy.54,55  Their 

mode of action in the former application consists of designed siderophore-drug 

conjugates that will be taken in by specific membrane bound iron-siderophore 

receptors in the targeted pathogenic microorganisms or in the latter application by 

scavenging intracellular Fe(III) by complexation and egression of the complex.54,55  

The main ligands that are present in siderophores are catecholates, hydroxamates and 

carboxylates that include "-aminocarboxylate and "-hydroxycarboxylate, and the less 

common ligands such as "-hydroxyimidazole (Figure 1.7).53   

 
Figure 1.7  Structural motifs of ligands present in siderophores. 
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The arrangement of carboxylates and nitrogens in mikimopine and 

cucumopine and the structural relationship to "-hydroxyl imidazoles, suggested their 

potential as siderophores.  More specifically, molecular modeling and DFT 

calculation (DFT//B88-P86/TZVPP) in continuum water (COSMO) model suggested 

the tetradentate diaqua complex was stable (Figure 1.8).  However, siderophores are 

commonly hexadentate ligands in order to completely saturate all the binding sites of 

Fe(III) and bring it to the cell without ligand dissociation occurring.56 

 

Figure 1.8  Result of ab initio calculations (DFT//BP88/TZVP) structure optimisation.  Mikimopine 
chelating an Fe(III) ion, assisted by two H2O molecules. 

 

1.2.8.1.  Fluorescence-based Assay to Assess the Fe(III) Chelating Ability of 
Mikimopine  

In order to assess the Fe(III) chelating ability of the opines, a fluorescence-

based assay using the commercially available fluorescent probe, calcein (1.9) was 

developed.  Calcein (1.9) carries two aminediacetic chelating arms, and the 

combination of carboxylates and phenolate stabilises the Fe(III) adduct (Figure 1.9).57  

The fluorescence of 1.9 is quenched upon binding to iron.57     
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Figure 1.9  Calcein, a fluorescein-based fluorescent probe with the diaminetetraacetic chelating arms 
(in bold). 

 

When another Fe(III) chelator is added to a solution of 1.9-Fe(III) complex, a 

chelator-Fe(III) complex is formed as a result of a ligand exchange reaction between 

1.9 and the chelator which then allows the fluorescence from 1.9 to be recovered 

(Scheme 1.15).  EDTA which was used as a positive control, was found to increase 

fluorescence in a concentration dependant manner (Figure 1.10A) while mikimopine 

did not show any effect on the fluorescence (Figure 1.10B).  Fitting the data to a 

Gaddum/Schild plot gave a dissociation constants, KD of EDTA and mikimopine for 

Fe(III) were determined as 0.72 µM and 12.6 mM respectively, indicating that 

mikimopine is not a siderophore. 

 
Scheme 1.15  When calcein (shown as fluorescent in green and non-fluorescent in black) chelates 
Fe(III), its fluorescence becomes quenched. 
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Figure 1.10  Gaddum/Schild EC50 shift plots showing relative fluorescence (y-axis) at different Fe(III) 
concentrations (x-axis) for different concentrations of A. EDTA and B. mikimopine in the presence of 
5"10-6 M calcein. 

 

1.3.  Summary 

Compared to !-arylethylamine or tryptamine, the P-S reaction of the 

imidazoles has been less extensively investigated.  Moreover, the P-S cyclisation with 

ketones has received very little attention as compared to aldehydes.  The biogenesis of 

the natural products mikimopine and cucumopine led us to investigate a possible 

biomimetic diastereoselective synthesis for these opine diastereomers.  In order to do 

so, we exploited the P-S reaction between L-histidine and "-ketoglutaric acid and 

screened a variety of different conditions (bases, Lewis acids, solvents, temperatures, 

time).  Cucumopine, the trans-(S,S) diastereomer, was synthesised with a de of 82% 

under reflux in methanol in the presence of excess TEA.  Mikimopine, the cis-(S,R) 

diastereomer, on the other hand was synthesised with a de of 80% at room 

temperature in methanol in the presence of excess K2CO3.  While it might appear that 

the diastereoselectivity was achieved using thermodynamic or kinetic control, the 

bases were responsible for the observed diastereoselectivity.  Lewis acids only led to 

the formation of imine and imine hydrolysis was observed over extended reaction 

A B 
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time.  It is now well established that the P-S cyclisation of imidazoles is 

activated/catalysed by base. 

Various ketones were investigated in the P-S reaction with L-histidine under 

the optimised diastereoselective conditions.  However the diastereoselective 

conditions did not prove to be general for all ketones.  Moreover a carboxylic acid 

adjacent to the imine appears to be important in the P-S cyclisation and possibly in the 

diastereoselectivity observed.  L-Tyrosine and L-tryptophan, both known to undergo 

the P-S cyclisation under acidic conditions, failed to form the cyclised product with 

"-ketoglutaric acid under the optimised base-catalysed diastereoselective conditions 

developed with L-histidine.  

The three carboxylic acids and nitrogen rich nature of the opines led us to 

speculate that the opines could be potential siderophores.  Molecular modeling 

showed that mikimopine is able to chelate an Fe(III) with the assistance of two water 

molecules.  In order to investigate the potential Fe(III) chelating ability of the opines, 

a competitive fluorescence-based assay using calcein was developed.  Much to our 

disappointment, mikimopine does not appear to possess any iron chelating ability. 
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2.1.  Introduction 

In the previous chapter the biogenetic hypothesis of the opines: cucumopine 

and mikimopine led to the application of the Pictet-Spengler reaction in a 

diastereoselective biomimetic approach towards the synthesis of these natural 

products which are relatively simple in structure.  We now turned our attention to a 

structurally diverse and more complex family of natural products, known as the 

oroidin alkaloids. 

 

2.1.1.  The Oroidin Alkaloids 

The oroidin alkaloids form part of a continuously growing family of natural 

products that have been isolated from marine sponges, with over 150 members 

reported so far.1  All compounds can be considered to be closely related and seem to 

share a common biogenetic origin.  The oroidin alkaloids demonstrate beautifully how 

nature generates structural complexity and biological activity from the diversification 

of a simple precursor.1  As such this group of marine compounds have not only been 

the subject of numerous synthetic and biological investigations but also of biogenetic 

speculation.2-15  The oroidin alkaloids have become an interesting and highly relevant 

group of targets for biomimetic synthesis. 

 

2.1.1.1.  Oroidin 

 Oroidin (2.1), initially isolated from Agelas oroides in 1971 by Forenza et al.16 

and is the first member of this growing family of natural products (Figure 2.1). It has 

since been isolated from various other sponges.14,17-23  The initial structure 2.1a 

suggested for oroidin by Forenza et al. was revised to 2.1 by Garcia et al. two years 
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later.24  Oroidin exhibits antifouling activity and anti-feedant activity.25-28  Oroidin is 

considered to be the biogenetic precursor of all the oroidin alkaloids, which take the 

form of linear monomers, cyclic monomers and polycyclic dimers and tetramers.2 

 

Figure 2.1  Oroidin isolated from Agelas oroides, photo taken from ref. 29 (public domain).29 

 

 

2.1.2.  Linear Monomers 

The oroidin alkaloids vary with regard to the oxidation, reduction, or 

hydrolysis state of the 2-amino-4(5)-vinylimidazole unit.  Dihydrooroidin (DHO, 2.2) 

is the reduced version of oroidin at the alkene double bond.  The pyrrole-2-

carboxamide moiety can be non-, mono-, or dibrominated in the 2- and  3-positions.  

Hymenidin (2.4) was initially isolated by Kobayashi et al. from the Okinawa marine 

sponge Hymeniacidon sp. and later by Köck and coworkers30 from Agelas sventrus, 

and was found to be a potent antagonist of serotonergic receptors.31  Clathrodin (2.3), 

isolated by Morales et al. from the sponge Agelas clathrodes, exhibits neurotoxic 

activity.32,33  Methylated analogues 2.5-2.7 have been isolated from various marine 

sponge Agelas species.30,34-36  Girolline (2.8), is the chlorohydrin of 3-amino-1-(2-

aminoimidazolyl)-prop-1-ene which is one of the building block of oroidin alkaloids.  
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It has antitumour activity and was isolated from the sponge Peudaxinyssa cantharella 

by Potier and coworkers.37,38   

 

 

 Biosynthetic precursors to the oroidin alkaloids have been isolated from 

various marine sponges.  These include 3-amino-1-(2-aminoimidazolyl)-prop-1-ene 

(2.9), 4,5-dibromopyrrole-2-carbonitrile (2.10), 4,5-dibromopyrrole-2-carboxamide 

(2.11) and the bromopyrrole-2-carboxylic acids (2.12-2.15).14,16,39-42      

 

 

Oroidin (2.1) can be oxidised at the alkene double bond and/or at the 2-

aminoimidazole.  Indeed, the imidazolone is a common motif to many of the oroidin 

alkaloids.  Dispacamides A-D (2.16-2.19) were isolated from four Caribbean Agelas 

sponges by Fattorusso and coworkers.43  Dispacamide A (2.16) has shown potent and 

selective antagonistic activity against histaminergic receptors.17  

Debromodispacamide B and D (2.20-2.21) have been isolated by Al-Mourabit and 

coworkers from the sponge Agelas mauritiana.44  Midpacamide (2.23) and the 
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mukanadins 2.24-2.26 have their imidazolone ring further oxidised.  Schroder and 

coworkers isolated 2.26 from an unidentified marine sponge and compound 2.22 and 

2.26 from the sponge Axinella verrucosa.45,46  Mukanidin B (2.24) and D (2.25) were 

isolated from the sponge Didiscus oxeata by Harmann and coworkers.47 

 
 

Several of the oroidin alkaloids have been formed by the oxidation of the 

imidazole double bond with substitution by taurine.  The linear monomers include the 

tauroacidins (2.27-2.28)48 and the taurodispacamides 2.29-2.3045,49 and in 

mauritamide A 2.3150.  Tauroacidin A and B (2.27-2.28) exhibit kinase inhibitory 

activity and were first isolated from a Hymeniacidon sp. by Kobayashi et al.48  

Taurodispacamide A (2.29), with antihistaminic activity, was first isolated from an 

unidentified Mediterranean sponge by Fattorusso et al.49  Schroder and coworkers 

reported the isolation of 2.30 from the sponge Axinella verrucosa.45  Mauritamide A 

2.31, where taurine has added onto the C4 of the 2-aminoimidazolone, was isolated 

from the Fijian marine sponge Agelas mauritiana by Crews et al.50      
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2.1.3.  Cyclic Monomers 

The cyclic monomers can be monocyclic or bicyclic.  The bromopyrrole (+)-

longamide (2.32) which possesses antibacterial activity, was initially isolated from the 

Caribbean sponge Agelas longissimal51 and more recently from a Homaxinella sp. 

from Japan.52  Also isolated from a Homaxinella sp. is longamide B methyl ester 2.33 

which has cytotoxic activity in vitro against a leukemia cell line.  The corresponding 

acid 2.34, which shows modest antibacterial activity against several Gram-positive 

bacteria, was isolated from the marine sponge Agelas dispar.34  The ethyl ester of 

longamide B 2.35, isolated from the extracts of the highly polymorphic sponge 

Acanthella carteri and shows cytotoxicity towards lung carcinoma.53  All of these 

compounds have been isolated in their racemic forms suggesting that they could have 

been formed through non-enzymatic processes. 

 

Cyclooroidin (2.36), which was isolated from the sponge Agelas oroides by 

Fattorusso et al., is formed from the intramolecular cyclisation between the pyrrole 
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nitrogen (N1) and the alkene double bond at C9 (Figure 2.2).49  Oxocyclostylidol 

(2.37) was isolated from the Carribean sponge Styllissa caribica by Köck and Grube 

and is the first oroidin alkaloid containing an oxidised pyrrole moiety.54  Agesamide 

A (2.38) and B (2.39) are racemates isolated from the marine sponge Agelas sp. by 

Kobayshi et al.55  They differ from cyclooroidin by the presence of a fully oxidised 

imidazole.  The slagenins 2.40-2.42, isolated from the marine sponge Agelas 

nakamurai, bear a urea moiety in place of the guanidine and has an indirect C9-C12 

bond connection via an ether from an intramolecular cyclisation.56 

 
Figure 2.2  Cyclic monomers with N1 to C9 bond connection and the slagenins with C9-O-C12 ether 
bond connection. 

 

The cyclic monomers also include the azepine analogues, formed by the 

intramolecular cyclisation between the pyrrole carbon C4 and the alkene double bond 

at C10 (Figure 2.3).  Stevensine (2.43) is a representative for a sub-family of cyclic 

alkaloids within the oroidin class possessing a pyrrolo[2,3-c]azepin-8-one fused 

bicycle system unique to these marine natural products.  It was simultaneously 

isolated by Faulkner57 from an unidentified Micronesian sponge and by De Nanteuil 
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et al.58 as “odiline” from the New Calodenian sponge, Pseudaxinyssa cantharella and 

since then from various other sponges.35,45,59-61  Hymenin (2.44) is the reduced version 

of stevensine which was first isolated from the marine sponge Hymeniacidon sp. by 

Kobayashi et al. and possesses potent !-adrenoreceptor blocking activity.31    From 

the same marine sponge, Kobayashi et al. also isolated the spongiacidines A-D.62  The 

spongiacidines A (2.45) and B (2.46) and the aldisines 2.47-2.50 possess the 2-

aminoimidazolone, with (7E)-geometry or (7Z)-geometry.  Spongiacidines C and D 

2.51-2.52 and axinohydantoin E (2.53)63 on the other hand bear the fully oxidised 

imidazole, existing either as the (7E)-geometry or the (7Z)-geometry. While 

spongiacidines A (2.34) and B (2.35) have shown inhibitory activities against C-erbB-

2 and cyclin-dependent kinase 4, spongiacidines C (2.51) and D (2.52) did not have 

any such activities.52  (Z)-Debromohymenialdesine (2.48) was first isolated from the 

marine sponge Phakellia flabellate by Sharma et al.64 while its E-isomer was isolated 

from the common shallow-water sponge Stylotella aurantium.65  3-

Bromohymenialdesine (2.50) was isolated from the sponge Axinella carteri  by 

Proksch et al.66 and hymenialdesine (2.38) was isolated from various marine sponges 

of the genus Hymeniacidon.18,58,63,67  Hymenialdesine (2.38) was found to be a potent 

inhibitor of kinases CDKs, Mek1, GSK3", CK1 and Chk1.68,69  Hymenin and aldesine 

compounds have been isolated from various sponges.60,61,70,71  
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Figure 2.3  Cyclic monomers with seven membered ring formed by a C4-C10 bond connection. 

 

2.1.4.  Bicyclic Monomers 

The bicyclic monomers consist of tetracyclic derivatives of oroidin (Figure 

2.4).  Two modes of intramolecular cyclisation have been observed in bicyclic 

monomers.  These involve the bond formation between the imidazole carbons (C11 

and 12) with the pyrrole nucleophiles (N1 or C4) and the amide nitrogen (N7).  The 

phakellins 2.54-2.55 are of historical importance in marine natural product chemistry 

as being amongst the first complex, halogenated alkaloids to be described.72  Oroidin 

is related to dibromophakellin (2.54) by a complex cyclisation that connects the 

pyrrole nitrogen (N1) to the unalkylated 2-aminoimidazole (C12) and the amide 

nitrogen (N7) to the alkylated 2-aminoimidazole (C11).  Dibromophakellin (2.54) and 

monobromophakellin (2.55) were isolated from the marine sponge Phakellia 

flabellate by Sharma et al. in 1969.72  (–)-7-N-methyldibromophakellin (2.56) and (–)-
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7-N-methylmonobromophakellin (2.57) were isolate from the Agelas sp. by Crews 

and coworkers.73  More recently, Hertiani et al. isolated the hydroxyl derivative of 

dibromophakellin 2.54a from Indonesian marine sponges Agelas linnaei and A. 

nakamurai.74 

As implied by the name, the isophakellins 2.58-2.60 are isomers to the 

phakellins and differ from the latter by the connection of the pyrrole through carbon 

C4 to the unalkylated 2-aminoimidazole (C12).75-77  Dibromoisophakellin (2.58) was 

isolated from the marine sponge Acanthella carteri by Maximov et al.5  N-

methyldibromoisophakellin (2.59) was isolated from the sponge Stylissa caribica by 

Köck and coworkers30 and was found to be active as a feeding deterrent against a 

common omnivorous reef fish.  Monobromoisophakellin (2.60) was also isolated by 

Köck from Agelas sp.78  Dibromocantharellin (2.61) is the racemate of 

dibromoisophakellin and was isolated from the New Caledonian sponge, 

Pseudaxinyssa cantharella by De Nanteuil et al.58  The phakellstatins 2.62-2.63 differ 

from phakellin by the presence of urea instead of guanidine.  Phakellstatin (2.62) and 

dibromophakellstatin (2.63) were isolated from Phakellia mauritiana by Pettit et al.63  

2.63 and 2.54 have recently been found to inhibit the human 20S proteasome.79 

In the dibromoagelaspongin (2.64), isolated from the marine sponge Agelas by 

Fedoreyev et al.5, both the pyrrole nitrogen (N1) and the amide nitrogen (N7) are 

connected to the unalkylated 2-aminoimidazole (C12) while the alkylated 2-

aminoimidazole (C11) is oxidised.  The agelastatins 2.65-2.70 possess a novel 

heterocyclic scaffold with bond connections of C8 to C12 and N1 to C9.  Agelastatin 

A (2.65) together with agelastatin B (2.66) as a minor component, have been isolated 

from the deep water marine sponge Agelas dendromorpha collected from the coral 

sea.4,80  Agelastatin A has shown significant in vitro cytotoxic activity against 
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leukemia and epithelial tumor lines as well as exhibiting potent activity against brine 

shrimp and insecticidal activity against larvae of beet army and corn worm.4,80  

Agelastatins C (2.67) and D (2.68) along with agelastatin A were isolated from the 

Indian ocean sponge Cymbastela sp.81  Agelastatins E (2.69) and F (2.70) are the two 

most recent bicyclic monomers to be isolated from the New Caledonina sponge 

Agelas dendromorpha by Al-Mourabit and coworkers.82 



 46 

 
Figure 2.4  Tetracyclic oroidin alkaloids.   

 

Nagelamide M (2.71) bears a 2-amino-hexahydropyrrolo[2,3-d]imidazole ring 

with a taurine unit and is thought to be the product of the intramolecular cyclisation of 

the taurine nitrogen of taurodispacamide A (2.29) onto C-9 of the propyl chain.83    
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Nagelamide N (2.72) possesses a 2-amino-tetrahydroimidazole-4-one ring with a 

taurine unit and 3-(dibromopyrrole-2-carboxamido)propanoic acid moiety and is also 

thought to be derived from 2.29 through a series of transformations involving 

oxidation, cyclisation and hydrolysis.83  They have both been isolated from an 

Okinawan marine sponge Agelas sp. by Kobayashi and coworkers and has shown 

antimicrobial activity.83  Most recently, also from the same sponge, three new 

bromopyrrole alkaloids, nagelamides U-W (2.73-2.75) were isolated.84  Nagelamides 

U (2.73) and V (2.74) possess a "-pyrrolidone ring with an N-ethanesulfonic acid and 

guanidino moieties, and could arise from the oxidative C-N bond cleavage of 2.71 

(Scheme 2.1).  Nagelamide W (2.75) has two aminoimidazole moieties in the 

molecule and could be generated by addition of a guanidine to oroidin.  Nagelamides 

U (2.73) and W (2.75) possess antimicrobial activity against Candida albicans. 

 
Scheme 2.1  Oroidin alkaloids from cyclic ring formation and oxidation within acyclic monomer 
taurodispacamide A (2.29).   

 

2.1.5.  Dimers 

Dimers can be divided into four sub groups: acyclic, monocyclic, bicyclic and 

tricyclic dimers. 
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2.1.5.1.  Acyclic Dimers 

 Mauritiamine (2.76) is an oroidin dimer that has been isolated as a racemate 

from the marine sponge Agelas mauritiana by Fusetani and coworkers.14  The two 

monomeric units are connected by a C12-C11’ bond (Figure 2.5).  It is similar to 

mauritamide A (2.31) and differs from the latter by the imidazole being connected to 

another oroidin unit instead of taurine.  Nagelamides A-D, I, J, L, H, R and Z (2.77-

2.82, 2.84-2.86, 2.88 and 2.89) were isolated from the Okinawan marine sponge 

Agelas sp. by Kobayashi and coworkers.85-89  Nagelamides S (2.83) and T (2.87) were 

isolated from the Pacific marine sponges Agelas cf. mauritiana by Al-Mourabit and 

coworkers.90  Nagelamide H (2.77) differs from mauritiamine, by having a 5-taurine-

2-aminoimidazole instead of the 2-aminoimidazolone.  Nagelamides A-D, I, J, L, R, 

T, S and Z (2.78-2.89) possess a C12 to C10’ bond connecting the two linear 

monomeric units (Figure 2.5).  Nagelamide Z (2.85) is the first dimeric bromopyrrole 

alkaloid involving the C8 position in dimerisation and has shown showed potent 

inhibitory activity against Candida albicans.89   

Nagelamide R (2.86) is the first oroidin alkaloid containing an oxazoline 

ring.85  Nagelamide T (2.87) is another example of an oroidin alkaloid with an 

oxazoline ring formed by the intramolecular cyclisation of the amide oxygen to the 

unalkylated 2-aminoimidazole C12.90  Nagelamide L (2.88) is a new dimeric 

bromopyrrole alkaloid containing an ester linkage.86  It is likely to be formed by the 

cleavage of the oxazoline ring at the imine bond in nagelamide R (2.86).  Lindel and 

coworkers have reported that treatment of oroidin with DMSO/TFA yielded a 

compound containing an ester linkage.91  However, when nagelamide C (2.81) was 

subjected to the same condition, 2.88 was not observed.86  Nagelamide J (2.89) is the 
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first oroidin alkaloid possessing a cyclopentane ring fused to a 2-aminoimidazole ring 

formed by a C12-C8 intramolecular bond connection.87    

 

Figure 2.5  Acyclic dimers 
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Figure 2.5 cont’d  Acyclic dimers 

 

The stylissazoles A-C (2.90-2.92) provide one of the first examples of 

dimerisation involving exclusively C-N bond formations between the 2-
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Figure 2.6  Acyclic dimers and a bicyclic dimer formed via dimerisation of Z-debromohymenialdisine 
2.48 and hymenidin 2.4.     

 

2.1.5.2.  Monocyclic Dimers 
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the Agelas nemoechinata and Agelas conifer by Kobayashi22 and Rinehart20.  

Nakamuric acid (2.99) and its corresponding methyl ester 2.100, both with 

antibacterial activity, were isolated from the sponge Agelas nakamurai by Eder et al.59 

 
Figure 2.7  Monocyclic dimers with a cyclobutane ring. 
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oroidin (2.1) and taurodispacamide A (2.29) by a C9 to C9’ bond connection and an 

imidazole N15’ to C10 instead of the C12’ to C10 bond connection as observed in 

ageliferin (2.101). 

 
Figure 2.7  Monocyclic dimers with a cyclohexane ring. 
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C9’ and C10’-C11 bond (Figure 2.8), possible intermediates in the formation of some 

of the more complex bi- and tri-cyclic dimers (Sections 2.1.5.3. and 2.1.5.4.). 

 
Figure 2.8  Other monocyclic dimers. 
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units.99  These include two C-C bonds: C9-C9’ and C11-C10’ and one C-N bond: 

C12’-N15 (Figure 2.9).  Axinellamine B-D had shown low antibacterial activity 

against Helicobacter pylori at 1000 µM.99 

The massadines 2.117-2.121 have two monomeric units connected via two C-

C bonds: C10-C11’, C9-C9’ and an ether linkage between the unalkylated C12(s) of 

the 2-aminoimidazoles (Figure 2.9).61,100,101  Massadine (2.117) was first isolated 

from the marine sponge Stylissa cf massa as a geranylgeranyltransferase type I 

inhibitor by Fusetani et al.100  Massadine chloride (2.118), a possible biosynthetic 

precursor for 2.117, was isolated from the sponge Stylissa caribica by Köck and 

coworkers.  Compounds 2.119-2.121 were isolated from a deep-water Great 

Australian Bight sponge Axinella sp. by Capon and coworkers.61  2.120 and 2.121 are 

likely to be artefacts of extraction (MeOH). 

 
Figure 2.9  Bicyclic dimers.   
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Recent isolation of oroidin alkaloids has revealed novel architecture in the 

benzosceptrin family 2.122-2.124 (Figure 2.10).82,90  Benzosceptrins A-C (2.122-

2.124) are sceptrins that have undergone further intramolecular cyclisation and 

dehydrogenation to form a highly strained benzocyclobutane ring through a C12-C12’ 

bond connection.  Benzosceptrin A (2.122) was isolated from the sponge Agelas cf. 

mauritiana from the Solomon Islands while benzosceptrins B (2.123) and C (2.124) 

were both isolated from Phakellia sp. from New Caledonia by Al-Mourabit and 

coworkers.82,90  

 
Figure 2.10  The benzosceptrins.   
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2.126 and dibromo 2.127 palau’amine derivatives were isolated from the marine 

sponge Stylotella aurantium by Scheuer and coworkers.7  These bromo derivatives are 

less active than 2.125.  The structure of palau’amine (2.125) was revised from 2.125a 

(with the opposite stereochemistry at C-12 and C-17) based on detailed NMR analysis 

by the Köck and Quinn groups simultaneously.102,105  There are five different modes 

of inter- as well as intra-molecular cyclisations observed in the tricyclic dimers.  

These include the C9-C9’, C10-C11’, N7-C11 and N1-C12 or N4-C12 bond 

formations which are also accompanied by the incorporation of chlorine and oxygen 

(Figure 2.11).  Konbu’acidin A (2.128) and B (2.129) with an amide dibromopyrrole 

instead of a free amine, were both first isolated by Kobayashi and coworkers from an 

Okinawan marine sponge Hymeniacidon sp.48  Compound 2.128 has shown promising 

inhibitory activity against cyclin dependent kinase 4 (cdk4).106 

 

Figure 2.11  Tricyclic dimers. 
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aurantinium collected from Yap by Endo and coworkers107, later on by Scheuer et al.7   

from the sponge Styllotella aurantium.  More recently Köck and coworkers reported 

the isolation of tetrabromostyloguanidine (1.133) from Stylissa caribica.102  It is the 

regio isomers of konbu’acidin B (2.129). 

 

Figure 2.12  Tricyclic dimers with N1 instead of C4 nucleophilicity for bond formation. 
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2.1.7.  Summary of the Oroidin Alkaloids 

A summary of some of the structural relationship that was found to exist 

within the oroidin alkaloids is given in Figure 2.13. 

 
Figure 2.13  Summary that include some of the bond connections observed in the oroidin alkaloids.   
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In order to investigate the biosynthetic origin of the oroidin alkaloids, a 

number of labelling studies have been conducted. 

 

2.2.  Biosynthetic Studies 

In 1999, Kerr and co-workers reported the first biosynthetic study of the 

oroidin alkaloids. 3   They investigated stevensine (2.43), which was postulated to be a 

cyclised analogue of oroidin, itself thought to arise from the condensation product of 

3-amino-1-(2-aminoimidazolyl)-prop-1-ene (2.9) and 4,5-dibromopyrrole carboxylic 

acid (2.14), both known natural products (Scheme 2.2).  The study involved the 

incorporation of 14C-labelled amino acids into Teichaxinella morchella cell culture 

and the subsequent extraction and isolation of stevensine (2.43) that was then 

analysed for radioactivity.  Both histidine and arginine were found to be incorporated 

into 2.43 and proline, into the pyrrole carboxylic acid part of stevensine.3  

 

Scheme 2.2  First biosynthetic study of stevensine. 
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While proline is well accepted to be the precursor of the pyrrole moiety of 

oroidin, uncertainty still surrounded the 2-aminoimidazole part of the oroidin 

alkaloids.  More than a decade later, Genta-Jouve and co-workers revisited the 

biosynthesis of oroidin by developing an improved feeding experiment on a sponge 

cell culture of Axinella damicornis.6  The experiment involved the use of a more 

sensitive detection technique.  Unlike in the experiment of Kerr and co-workers, 

incorporation of radioactivity from arginine and ornithine were low and no 

incorporation of histidine was detected at all.  However, the incorporation of lysine 

was quite efficient and unexpected.  These new findings bring evidence to a 

biosynthetic pathway, whereby proline can be generated from arginine or ornithine as 

part of the urea cycle, and following similar steps well known in the urea cycle for the 

guanidinylation of ornithine, lysine is converted to homoarginine and eventually to 

the 2-aminoimidazole part of the oroidin (Scheme  2.3).6 

 

Scheme 2.3  Revisited biosynthetic study of oroidin using a more sensitive radiolabelling technique. 
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nagelamide H (2.77) from 7-15N-oroidin (Scheme 2.4) using a cell-free enzyme 

preparations of Agelas sceptrum and Stylissa caribica, thus proving unequivocally 

that oroidin can be converted to 2.124 and 2.77.110  Biosynthetic pathways based on 

single-electron transfer by oxido-reductases were proposed as an explanation for this 

de novo synthesis. 

 
Scheme 2.4  de novo synthesis of 15N-labelled benzosceptrin C (2.122) and nagelamide H (2.77) from 
7-15N-oroidin using cell-free enzyme preparations of Agelas sceptrum and Stylissa caribica.  
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The first biosynthesis proposal for the conversion of a linear precursor into a 

tetracyclic product was offered by Sharma and Magdoff-Fairchild, who in 1977 

suggested that dibromophakellin was formed from DHO (2.2) via initial oxidation of 

the amide (N7) and then subsequent nucleophilic attack by C11 (Scheme 2.5).12  

Subsequently, an electrophilic C12 is trapped by the pyrrole (N1).   

 
Scheme 2.5  Biogenesis of dibromophakellin (2.54) as proposed by Sharma and Magdoff-Fairchild. 

 

Maximov, who first isolated dibromoagelaspongin (2.64), proposed the 

formation of the latter from the initial dehydration of oroidin (2.1) to form 

dihydrodispacamide A (2.136) that upon dehydration with dual C-N bond formation 

gave 2.64 (Scheme 2.6).5 

 
Scheme 2.6  Biogenesis of dibromoagelaspongin (2.64) as proposed by Maximov. 
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Scheme 2.7  Biogenesis of mauritiamine (2.76) as proposed by Fusetani.  
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palau’amine (Scheme 2.8) from 11,12-dihydrophakellin (2.137) and 3-amino-1-(2-

aminoimidazolyl)prop-1-ene (2.9), which can undergo a Diels-Alder reaction, 

followed by a chloroperoxidase-initiated chlorination and subsequent bond migration 

and reaction with water to form palau’amine (2.125a).7  With the revision of the 

stereochemistry, the C-11/C-12 anti stereochemistry in 2.125 cannot easily be 

explained by this proposal since the thermal Diels–Alder reaction will result in 

a syn stereochemistry, and the photo Diels–Alder reaction pathway is not likely.  With 

that in mind, Chen and coworkers has revisited the original Kinnel–Scheuer 

hypothesis and proposed 2.125 to be formed from a [4+2] cycloaddition reaction 

of 2.9 and clathrodin (2.3) that would give rise to 2.138, and set the C-11/C-12 anti 

stereochemistry (Scheme 2.9).9  An oxidative bicyclization would then provide the 

modified Kinnel–Scheuer intermediate 2.138, which following a chlorinative ring 

contraction would afford 2.125. 

 
Scheme 2.8  Biogenesis of palau’amine (2.125a) (before a revision in stereochemistry) proposed by 
Scheuer and Kinnel.7 
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Scheme 2.9  Revised Scheuer and Kinnel biogenesis of palau’amine (2.125) by Chen and coworkers.9    
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(example clathrodin, 2.3) proceeds through a radical mechanism, whereby a single-
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massadines 2.117-2.121 depending on the reaction pathway (Scheme 2.11).15  They 

have successfully applied this strategy in the asymmetric synthesis of ageliferin 

(2.101). 

 
Scheme 2.11  Biogenic dimerisation proceeding through a radical mechanism leading to the skeleton of 
ageliferin or massadine depending on the reaction pathway as proposed by Chen and coworkers.15    

 

It was Potier and Al-Mourabit who, in a review presented in 2001, proposed 

biogenetic pathways for the formation of all the oroidin alkaloids from oroidin.2  The 

pathways rely on the proposed ambivalent reactivity of 2-amino imidazole and its 

extended #-system.  The four tautomeric forms lead to the proposed nucleophilic or 

electrophilic reactivity of the amino imidazole (Scheme 2.12).  Potier and Al-

Mourabit suggest that these tautomers can exist simultaneously, giving rise to 

polycyclic metabolites upon combination with pyrrolic building blocks through 

diverse modes of cyclisation and/or dimerisation (vide infra).  However there is no 

explanation of the insertion of the various functional groups or the generation of 

chiral centres observed. 
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Scheme 2.12  Amphiphilic nature of 2-amino-4(5)-vinylimidazole proposed as leading to the oroidin 
alkaloids by Poitier and Al-Mourabit.2     

 

Baran and Köck have elaborated on Al-Mourabit’s postulated biosynthetic 

intermediates to explain the formation of the more complex oroidin alkaloids.  Their 

biogenetic pathway for axinellamines, styloguanidines, konbu’acidins, palau’amine, 

massadines and styllissadines starts from key intermediate “pre-axinellamine” (1.142) 

which itself could be formed from sceptrin or ageliferin, originating from the 

dimerisation of two oroidin molecules (Scheme 2.13).8  They have proposed the 

biogenesis of nagelamide E (2.104) and ageliferin (2.101) from sceptrin (2.93), and 

have already demonstrated both conversions via a vinylcyclobutane-cyclohexene 

rearrangement under microwave condition at 200 oC.11    
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Scheme 2.13  Summary of Baran and Köck’s elaboration on Al-Mourabit’s postulated biosynthetic 
intermediates to explain the formation of the more complex oroidin alkaloids.      

 

While Köck and Baran have elaborated on Potier’s hypothesis for the tricyclic 

dimers, they do not account for all the intramolecular cyclisations proposed on the 

unactivated imidazole ring and is restricted to the bicyclic and tricyclic dimers.   

We believe that the structural diversity and complexity observed in the oroidin 

alkaloids originate from the action of haloperoxidases.  These enzymes are known to 

play a significant role in the halogenation of natural products.111 
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2.4.  Marine Haloperoxidases 

More than 4500 halogenated natural products have been inventoried and 

further still await discovery.  Amongst those, 2300 are organochlorines, 2100 

organobromines, 210 organoiodines and 30 organofluorines.112  Haloperoxidase  

generate the carbon-halogen bonds in these halogenated organic molecules.111,113  

There are two types of haloperoxidase that have been isolated and identified from 

marine organisms: (1) vanadium haloperoxidase (V-XPO), a non-heme enzyme, and 

(2) FeHeme haloperoxidase (FeHeme-XPO).113  While the active-metal centres differ, 

the two haloperoxidases function in a similar manner by generating high-valent metal-

oxo species with hydrogen peroxide (H2O2) and catalysing the oxidation of a halide 

(i.e, Cl-, Br- or I-) to produce hydrohalous acid (HOCl, HOBr, or HOI) as the 

electrophilic source of halogens (Cl+, Br+, or I+) (Scheme 2.14).113,114  In the presence 

of electron-rich substrates, electrophilic halogens are delivered regiospecifically and 

with varying degrees of stereoselectivity.111 

 

Scheme 2.14  Generation of electrophilic halogens by haloperoxidases. 

While the enzymes, or the corresponding genes by which sponges generates 

the oroidin alkaloids are not known, the haloperoxidase-mediated introduction of 

halogen(s) onto marine alkaloids are easily inferred.  As observed in the family of the 

oroidin alkaloids, the brominated pyrrole-2-carboxylate occurs as a common 

structural motif and can also exists on their own as secondary metabolites in marine 

sponges.   
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Hartung and co-workers have successfully demonstrated the introduction of 

bromine into the heteroaromatic core of O-methyl-pyrrole-2-carboxylate via 

bromoperoxidase-catalysed oxidations.115  Oxidations catalysed by vanadium-bound 

bromoperoxidases from the brown alga Ascophyllym nodosum (VBrPO(AnI)) afforded 

bromopyrrole-2-carboxylic acid methyl ester or the dibrominated ester depending on 

the ratio of the substrate to the bromination reagent used (Scheme 2.15).115 

 
Scheme 2.15  Synthesis of the mono and dibrominated o-methyl pyrrole-2-carboxylate, known 
secondary metabolites from the marine sponge of Axinella tenuidigitata and agelas oroides 
respectively.  The use of 1.1 equiv. of NaBr and H2O2, led to the monobrominated products whilst 2.2 
equiv. of NaBr and H2O2, led to the dibrominated product. 

 

The organic transformation of haloperoxidase enzymes is not limited only to 

the halogenation of organic substrate.  They have also been implicated in epoxidation 

reactions that could be of significance in the generation of the oroidin alkaloids.  In 

the presence of both chloride and H2O2, chloroperoxidase lead to the formation of 

hypochlorous acid which is a chlorinating agent.  Girolline (2.8) is likely to be formed 

by the action of a chloroperoxidase on 3-amino-1-(2-aminoimidazolyl)-prop-1-ene, an 

isolated natural product.7  The formation of the halohydrin can proceed either by the 

initial formation of the chloronium ion and reaction with water or by the ring opening 

of an epoxide by a chloride ion (Scheme 2.16).  In the absence of chloride, a 

chloroperoxidase has been shown to oxidise styrene stereospecifically to styrene 

epoxide.116 
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Scheme 2.16  Biosynthesis of girolline through the action of a chloroperoxidase. 

 

2.5.  Alkene Double Bond Character in the 2-Aminoimidazole Ring 

The carbon double bond of the 2-aminoimidazole ring is not a typical double 

bond in an aromatic system in that it possesses more alkene bond character.  This is 

because the guanidinium forms a delocalised ion (Figure 2.14).12  This can be seen by 

comparing the X-ray crystal structure of oroidin93 to the X-ray structure of histidine117 

(Figure 2.14).  In the former the C=C bond is 0.07 Å shorter than the same bond in 

histidine.  The alkene character of the imidazole carbon double bond suggests the 

possibility of it forming an epoxide under the action of haloperoxidases. 

 
Figure 2.14  Imidazole carbon double bond character due to the resonance of the guanidium moiety of 
the 2-aminoimidazole ring.   

 

Although there are no reports of isolated imidazole epoxides in the literature, 

there are now numerous accounts of imidazole epoxides as putative intermediates in 

chemical reactions.  Wasserman and co-workers first proposed the formation of an 

epoxide intermediate 2.141 in the reaction of triphenylimidazole with dilute ozone 

(Scheme 2.15).118 
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Scheme 2.15  Ozone catalysed epoxidation of imidazole. 

 

Lovely proposed the intermediacy of an epoxide in the oxidation of 

tetrahydrobenzimidazoles with dimethyldioxirane (DMDO) (Scheme 2.16).119  The 5-

imidazolone is formed following ring contraction.  This type of reaction has direct 

analogy to the formation of many oroidin alkaloids such as the axinellamines, 

palau’amines, styloguanidines and others with spiroimidazoles.  Since then, there 

have been several examples where formation of a given product could only be 

explained by the formation of an imidazole epoxide.120    In a biomimetic step in 

Baran’s synthesis of the axinellamines, intramolecular cyclisation was effected by 

oxidation of the imidazole with DMDO to make the C12-N15’ connection required.  

This would involve the intermediacy of an epoxide (Scheme 2.17).120 

 
Figure 2.16  Spirocyclic ring formation from a ring contraction mediated by the oxidation of the 
imidazole ring. 

 
Scheme 2.17  Intramolecular cyclisation via an imidazole epoxide intermediate leading to a C12-N15’ 
bond connection and introduction of a hydroxyl group.  
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2.6.  Bromonium to Epoxide 

   Of significance to the haloperoxidases, is the fact that a halonium ion is 

analogous to an epoxide.  It can be easily converted to an epoxide with water via a 

halohydrin (Scheme 2.18).  For example, Kaup et al. has reported the halohydrin 

formation of monoterpene hydrocarbon carene in the presence of chloroperoxidase 

and its conversion to its epoxide in the presence of sodium hydroxide (Scheme 

2.19).121 

 
Scheme 2.18  Conversion of a bromonium ion to an epoxide. 

 

 
Scheme 2.19  Halohydrin formation by a chloroperoxidase and its conversion to epoxide. 

 

2.7.  Proposed Biogenesis of the Oroidin Alkaloids 

The putative role of haloperoxidases in the biosynthesis of the oroidin 

alkaloids suggests they may also be involved in the generation of the complexity 

observed in the family.  Epoxidation (or halonium ion formation) of the C9-C10 and 

C11-C12 would lead to reactive intermediates that could cyclise and dimerise.  This 

could also explain the observed incorporation of oxygen and halogen atoms (Scheme 
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Scheme 2.20  The Biomimetic generation of the oroidin alkaloids via key epoxide or halonium 
intermediates of the linear precursors can be deduced from the C-C bond formations (red) and residual 
OH/Cl (blue). 
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(2.71).  Oxidative C-N cleavage of the latter would provide nagelamides U and V 

(2.73-2.74).  

 
Scheme 2.21  Examples of biogenesis of linear oroidin alkaloid from key bromonium or epoxide 
intermediate of the linear precursor. 
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taurodispacamide A (2.29) through Baeyer–Villiger oxidation and cyclisation.83  

Nagelamide W (2.75) can be generated by ring opening of an epoxide (or bromonium 

ion) at C9-C10 by a guanidine.  Similarly, Z-debromohymenialdesine (2.48) can be 

added onto hymenidin (2.4) in stylissazole C (2.92).  Ring opening of an epoxide (or 

bromonium ion) at C9 or C12 of hymenidin (2.4) by nucleophilic imidazole N13 of Z-

debromohymenialdesine (2.48) will lead to stylissazole B (2.91) and A (2.90) 

respectively.   
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The intramolecular cyclisations observed in the monocyclic monomers can be 

rationalised as the intramolecular quenching of the putative epoxide/bromonium ion.  
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Scheme 2.22  Presence of internal nucleophiles. 
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intramolecular cyclisation of the alcohol intermediate onto the C11-C12 epoxide or 

bromonium ion will allow the formation of the slagenins (Scheme 2.24). 

 
Scheme 2.23  Some examples of the involved C4 nucleophilicity of the pyrrole ring in the formation of 
the cyclic monomers.    

 

 
Scheme 2.24  Some examples of the involved N1 nucleophilicity of the pyrrole ring in the formation of 
the cyclic monomers.      
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Ring opening of the C9-C10 epoxide by amide O can lead to the formation of 

an oxazoline ring.  This is observed in Nagelamide R (2.86) where a subsequent 

nucleophilic substitution by another oroidin molecule leads to the dimer (Scheme 

2.25).  

 
Scheme 2.25  Example of amide O nucleophilicity in the formation of the oxazoline ring. 
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epoxide (or bromonium ion) will lead to the formation of the agelastatin (2.65) after 

oxidation of the guanidine to a urea (Scheme 2.26). 

 
Scheme 2.26  Biogenesis of the tetracyclic oroidin alkaloids from the key bromonium or epoxide 
intermediate of the linear precursor. 
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bond can lead to the formation of the nagelamides A-D (2.79-2.82) through 

subsequent elimination and reduction reactions (Scheme 2.27). 

 
Scheme 2.27  Biogenesis of the acyclic dimers from the key bromonium or epoxide intermediate of the 
linear precursor. 
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possible that two molecules of oroidin could couple, catalysed by epoxide ring 

opening (Scheme 2.28).  

 
Scheme 2.28  Biogenesis of the oxospectrin (2.98). 
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bromonium ion formation) at the second imidazole double bond to form the 

cyclopentane ring 2.148 after intramolecular cyclisation/epoxide ring opening.  

Compound 2.149 is a tautomer of 2.148.  A further epoxidation (or bromonium ion 

formation) at the first imidazole double bond would give key intermediate 2.146, 

which can form donnazole B (2.112).  The latter is the oxidised “pre-axinellamine” 

(2.142) proposed by Köck and Baran as the key intermediate to bicyclic and tricyclic 

dimers.8   
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Scheme 2.29  Biogenesis of the sceptrin (2.93-2.97), benzosceptrins (2.122-2.124), 
ageliferins/nagelamide E-G 2.101-2.106, donnazole B (2.112)  and key intermediate 2.146.  R can be 
either an unbrominated, monobrominated or dibrominated acetylpyrrole or H. 
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followed by intramolecular cyclisation, leads to the formation of the konbu’acidins 

2.128-2.129. Palau’amine is the amide hydrolysed product of the konbu’acidin A 

(2.128).  Similarly ring opening by C4 nucleophile lead to the intermediate 2.151, 

which upon dehydration followed by intramolecular cyclisation leads to the 

formation stylloguanidines 2.130-2.133 (path c).  Ring opening by a hydroxyl 

nucleophile leads to the formation of massadine chloride (2.118) (path d).  Romo124 

first, and later Baran101, have suggested the intermediacy of massadine aziridine 

(2.152) in the formation of massadine (2.115) on reaction with water, in order to 

explain the retention in the stereochemistry.124  On reaction with massadine (2.117) 

itself, massadine aziridine (2.152) would lead to the formation of tetramers 

stylissadine A and B (2.134-2.135).  Similarly, the intermediacy of aziridine 2.153 

would lead to the conversion of donnazole B (2.112) to donnazole A (2.111).  
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Scheme 2.30  Biogenesis for bicyclic and tricyclic dimers. 
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2.8.  Conclusions 

The biological activities and unique structures of the oroidin alkaloids make 

them attractive targets for the synthetic chemist.  The proposed biogenesis of the 

oroidin alkaloids provide a simple, logical, yet comprehensive explanation for the 

formation of the oroidin alkaloids that points the way to efficient biomimetic 

syntheses of these alkaloids.  In the next chapter we explored the key reactive 

intermediates of our biogenesis.  
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PART A: Investigation of the Epoxide Route 

3.1.  Introduction 

Biomimetic natural product synthesis takes inspiration from Nature in as much 

that it tries to mimic the steps of natural product synthesis.  The biomimetic synthesis 

of oroidin alkaloids generally starts with fully assembled C11N4-building blocks such 

as oroidin 2.1, dihydrooroidin (DHO) 2.2 or clathrodin 2.3.  While the syntheses of 

the complex oroidin alkaloids have been mainly non-biomimetic, some of these 

syntheses have involved a few biomimetic step(s). 

 

 

3.1.1.  Biomimetic Synthesis of the Oroidin Alkaloids 

Büchi and co-workers were the first to report a biomimetic synthesis of an 

oroidin alkaloid, dibromophakellin (2.54).1  The reaction of bromine with 

dihydrooroidin led to the postulated spirocyclic intermediate that provided racemic 

2.54 upon treatment with potassium t-butoxide (Scheme 3.1).1  Horne and co-workers 

reported the second biomimetic synthesis of dibromophakellin using similar 

conditions.2  Treatment of DHO with NBS and TEA afforded the racemic 2.54 in 

excellent yield.  Isomerisation of 2.54 to dibromoisophakellin (2.58) was achieved by 

heating 2.54 in the presence of potassium carbonate in chlorobenzene, via a N to C 

rearrangement (Scheme 3.1).2  Dibromophakellstatin (2.63), an oxo analogue of 

dibromophakellin, was synthesised similarly from oxo-dihydrooroidin (3.1) (Scheme 

3.1).2   
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Scheme 3.1 Reaction conditions: a. Br2 (1 equiv.), acetic acid; b. t-BuOK, quantitative; c. 1. NBS, 
TFA, 5 min, 2. TEA:THF (1:1, v/v), 90%; d. K2CO3, PhCl, 130 oC, 40%; e. Br2 (1 equiv.), DMSO, r.t, 
1h, 60%.  

 

Horne reported the conversion of DHO (2.2) to dispacamide A (2.16) under 

oxidative conditions using bromine in DMSO (Scheme 3.1).3  Horne also conducted 

the biomimetic synthesis of slagenin A-C by treating 3.2 with NCS in methanol to 

afford slagenins B (2.41) and C (2.42), both of which under acidic condition led to the 

formation of slagenin A (2.40) (Scheme 3.2).4     

 

Scheme 3.2 Horne’s biomimetic synthesis of the slagenins.  Reaction conditions:  a. NCS, MeOH; b. 
H2O, H+. 
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Horne also took a biomimetic approach towards the synthesis of (Z)-

hymenialdesine (2.48) and its brominated analogues starting from hymenin (2.44) 

(Scheme 3.3).   

 
Scheme 3.3  Biomimetic synthesis of the aldesines starting from hymenin.  Reaction conditions: a. Br2, 
TFA, 95%; b. AcOH, H2O, reflux, 72%; c. MeSO3H, cat. HBr, sealed tube, 33% and 27% respectively; 
d. Br2, AcOH/NaOAc, 85%. 

 

Lindel and co-workers reported the efficient conversion of oroidin into 

racemic cyclooroidin by heating oroidin in a protic medium (Scheme 3.4).5 

 
Scheme 3.4  Lindel’s conversion of oroidin into racemic cyclooroidin.  a. H2O/EtOH (4:1), 95 oC, 
sealed tube, 45 h, 93%. 
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the two intermediates in a mixture of methanol/xylene also led to the formation of 

racemic girolline (2.8) and 3.5.  Condensation of 3.4 and 3.5 with 4,5-

dibromotrichloroacetylpyrrole provided mauritiamine (2.76) and dispacamide A 

(2.16) respectively (Scheme 3.5). 

 
Scheme 3.5  Biomimetic steps in the synthesis of mauritiamine, girolline and dispacamide A.  Reaction 
conditions: a. NCS, TFA, r.t;  b. MeOH/xylene, 135 oC, 23%;  c. 4,5-dibromotrichloroacetylpyrrole 
(3.6), DMF, r.t, 65%. 

 

Recently, the first example of the dimerisation of the biogenetic precursors 

oroidin and clathrodin without enzymatic catalysis, was reported by Al-Mourabit and 

co-workers using molecular tweezers to yield the nagelamide D skeleton 3.7, however 

in low yields (Scheme 3.6).6  They used hexamethylphosphoramide (HMPA) and 

diphosphonate salts as strong guanidinium and amide chelating agents to interfere 

with the intramolecular preorganisation to favour intermolecular reaction with kinetic 

preference for the dimerisation process. 
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Scheme 3.6  Oroidin and clathrodin homodimerisation.  Reactions were conducted in DMSO at 130 oC 
for 6 h.  Yields are 5% and 10% respectively for the nagelamide D 3.7 and benzene para-symmetrical 
structure 3.8. 

 

Baran has reported the remarkable conversion of sceptrin into ageliferin under 

microwave irradiation (Scheme 3.7).7  The rearrangement could be via a radical or 

ionic mechanism. 

 
Scheme 3.7  Conversion of sceptrin to ageliferin.  Reaction conditions: a. H2O, 195 oC, 1 min, 
microwave, 40%. 

 

Baran has also reported the rapid conversion of massadine chloride into 

massadine in aqueous media at 60 oC (Scheme 3.8).8  The reaction is thought to 
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Scheme 3.8  Conversion of massadine chloride to massadine.  Reaction conditions: a. H2O, 60 oC, 4h, 
quantitative. 

 

In the quest for the synthesis of several complex oroidin alkaloids, Baran has 

made use of biomimetic steps that involved the formation of a putative imidazole 

epoxide in order to effect intramolecular cyclisation.  One such example was provided 

earlier on in the synthesis of the axinellamine.9  Intramolecular cyclisation was 

effected through the oxidation of the imidazole carbon double bond by DMDO to 

make the C12-N15’ connection required in the axinellamines and at the same time 

introduce a hydroxyl group on C11’ (Scheme 2.17).9  In a similar example, the ether 

bond in massadine was formed through the oxidation of the imidazole carbon double 

bond by DMDO followed by addition of TFA (Scheme 3.9).10 

 
Scheme 3.9  Formation of the ether bond in the massadine scaffold.  Reaction conditions: a. 1. DMDO, 
H2O-TFA, 2. TFA, 65% over two steps. 
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Both of these intramolecular cyclisations suggest the intermediacy of an 

imidazole epoxide that induces a nucleophilic attack by an internal nucleophile to 

form the desired ring in the oroidin alkaloid.  While there are few examples of 

imidazole epoxidation, looking at the biogenesis of oroidin alkaloids (see Chapter 2; 

Section 2.7), it is apparent that epoxidation could explain the biogenesis of almost all 

of the group of alkaloids.  We set about to test this hypothesis.  

 

3.2.  Results and Discussion  

To begin our investigation, dihydrooroidin was synthesised using literature 

methods (Scheme 3.10).3  The direct conversion of DHO (2.2) to oroidin (2.1), 

reported by Lindel11 was then undertaken by first forming the 5-chlorodihydrooroidin 

in the presence of NCS in DMF at r.t and then subsequent elimination of HCl to 

provide oroidin (2.1) (Scheme 3.10).  

 
Scheme 3.10  Synthesis of DHO and oroidin.  Reaction conditions: a. thionyl chloride, EtOH, 0 oC to 
reflux, 24 h, quant;  b. 1. NaHg, H2O, 0-7 oC, pH 1-2, 1 h, 2. cyanamide, pH 4.5, reflux, 3 h, 8%;  c. 
K2CO3, DMF, r.t, ON, 80%;  d. conc. HCl, MeOH, reflux, 12 min, quant;  e. 1. NCS, DMF, r.t, 1 h, 2. 
100 oC, 1 h, 20%. 
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3.2.1.  Epoxidation using DMDO 

DMDO is one of the most used dioxiranes and has allowed access to highly 

sensitive epoxides that are otherwise difficult to obtain with more classical oxygen 

atom transfer reagents.12,13  DMDO has proven to be versatile, with various kinds of 

alkenes, either electron-rich or electron-poor, successfully epoxidised.14  Moreover, 

the use of dioxiranes is preferred over peracids in epoxidation reactions due to the 

enhanced rates of reaction and of their performance under neutral and mild 

conditions.14   

DMDO was generated in situ by adding acetone to an aqueous solution of 

potassium peroxymonosulfate (oxone) in the presence of NaHCO3 as base.15  When 

DHO was subjected to in situ formed DMDO, dihydrodispacamide A was isolated in 

21% yield as the main product along with a mixture of unidentified products (Table 

3.1, Entry 1).  Similarly when oroidin was subjected to the same treatment, the 

natural product dispacamide A was isolated in 12% yield from a complex reaction 

mixture (Entry 2).  Both products obtained, point to the formation of an imidazole 

epoxide intermediate (Scheme 3.11). 

 
Scheme 3.11  Formation of dihydrodispacamide A and dispacamide A via the an imidazole epoxide. 
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With the aim of trapping the imidazole epoxide intermediate with an external 

nucleophile, taurine was included in the reaction with DHO as substrate (Table 3.1, 

Entry 3).  If taurine opened the imidazole epoxide, mauritamide A (2.31) would be 

formed (Scheme 2.21).  Unfortunately LCMS analysis did not show any detectable 

presence of the mass corresponding to mauritamide A.  Dihydrodispacamide A (3.10) 

was the main product, isolated in 18% yield.   

With the in situ generation of DMDO, water is always present and will 

compete with other nucleophiles for the ring opening of the epoxide.  In order to 

overcome this problem, DMDO was also prepared as a solution in acetone and the 

distillate dried over anhydrous sodium sulfate.16 

Unfortunately, DHO and oroidin were not soluble in acetone or ACN, only.  

Thus, a solution of DMDO in acetone was added to a solution of the substrate 

dissolved in DMF at 0 oC and led to an improvement in the yields of 

dihydrodispacamide A (56%) and dispacamide A (60%) for DHO and oroidin 

respectively (Table 3.1, Entry 4 and 5).  

An organic base (DBU) and an inorganic base (NaHCO3) were added to the 

reaction solution, in order to facilitate intramolecular cyclisation to pyrrole N1/C4 

(Scheme 2.22).  Much to our disappointment, only dihydrodispacamide A and 

dispacamide A were obtained as the main products in their respective reaction along 

with decompositions (Table 3.1; Entry 6, 7 and 8).  The same result was obtained 

when butylamine was added as a base/nucleophile, again with the isolation of 

dihydrodispacamide A only (Entry 9).  All these reactions proceeded in low yield, 

mostly with decomposition.  Similar results were obtained when methanol was used 

as solvent at very low temperatures (Entry 10-12).  The low temperatures (as low as –
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120 oC) and short reaction time used (Table 3.1), indicate that DMDO is very 

reactive, readily forming the imidazole epoxide which is short lived, before 

undergoing a hydride shift to give the imidazolones (Scheme 3.11). 

 

Table 3.1  Epoxidation reaction of DHO 2.2 or oroidin 2.1 with DMDO under different conditions. 

 

Entry Reagenta Conditions Yield (%)b 

1 oxone, acetone, NaHCO3  H2O, 0oC, 1 h 21 

2c oxone, acetone, NaHCO3 H2O, 0oC, 1 h 12d 

3 oxone, acetone, taurine H2O, 0oC, 1 h 18 

4 DMDO DMF, 0oC to r.t, 1h  56 

5c DMDO DMF, 0oC to r.t, 1h 60d 

6 DMDO, DBU DMF, 0oC to r.t, ON 39 

7 DMDO, NaHCO3 DMF, 0oC to r.t, ON 35 

8c DMDO, NaHCO3 DMF, 0oC to r.t, ON 29d 

9 DMDO, butylamine DMF, –78oC to r.t, 1h  41 

10 DMDO MeOH, –78oC, 10 min 54 

11 DMDO, Cs2CO3 MeOH, –120oC, 30 min 38 

12 DMDO, butylamine MeOH, –120oC, 30 min 35 

DMDO was prepared as a solution in acetone.  The concentration was determined using iodometric 
titration before use and ranged between 0.05-0.09 M.  DMDO was used in 1.2 equiv.  a. 1.1 equiv. of 
the base used for entry 6-9 and 11-12;  b. isolated yield;  c. oroidin used as substrate;  d. % yield of 
dispacamide A. 

 

3.2.2.  Other Epoxidation Conditions 

The use of peracids17, perbenzoic acid and mCPBA, led to complex reaction 

mixtures of unidentifiable products, while the use of the hypervalent iodine reagent 

diacetoxyiodobenzene (DIB)18,19 led to the isolation of the dihydrodispacamide A and 
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dispacamide A from DHO and oroidin respectively, along with starting material 

(Table 3.2; Entry 1-3 and Table 3.3; Entry 1-3).   

While DMDO provided the best result thus far, the difficulties faced with 

DMDO are its preparation, variable concentration and the presence of variable levels 

of water.  N-sulfonyloxaziridines have similar characteristics to dioxiranes with the 

added benefit of being stable, crystalline and less reactive.20  These reagents are 

readily accessible by oxidation of the corresponding N-sulfonylimines, which in turn 

can be obtained from aldehydes.20,21  When DHO was used as substrate with two 

different N-sulfonyloxaziridines 3.11 and 3.12, only dihydrodispacamide A (3.10) 

was isolated (Table 3.2, Entry 4 and Entry 6).  The use of 2 equivalents of N-

sulfonyloxaziridine 3.11 on DHO, led to the isolation of dispacamide A (2.16) from 

the double oxidation of the substrate (Entry 5).  

Table 3.2  Other epoxidation reagents tried on DHO as substrate. 

 

Entry Reagenta Conditions Yield of 3.10 (%) 

1 DIB, TFA DMF/ACN, 0oC to r.t  11 

2 peroxybenzoic acid MeOH, 0oC-r.t, 1h dec. 

3 m-CPBA MeOH, 0oC-r.t, ON 3 

4 

 3.11, 

K2CO3 

MeOH, r.t, 4 h 18 

5  3.11 (2 equiv.), K2CO3 MeOH, r.t, 4 h 9b 

6 

 3.12, K2CO3  

MeOH, r.t, ON 8 

ON: overnight; a.  All reagents used in 1 equivalent unless otherwise stated;  b. Isolated yield of 
dispacamide A (2.16) 
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N-sulfonyloxaziridines show preference for activated carbon double bond22 

such that enamines react faster than enols which react faster than alkenes.  As the 

imidazole is formally a double enamine, the N-sulfonyloxaziridines were expected to 

react at the imidazole carbon double bond over the alkene in oroidin (2.1).  However 

this selectivity was not observed and while the N-sulfonyloxaziridine 3.12 gave 

dispacamide A (2.16), 3.11 led to a complex mixture (Table 3.3; Entry 4-5).  

 

Table 3.3  Other epoxidation reagents tried on oroidin as substrate. 

 

Entry Reagent Conditions Yield of 2.16 

(%) 

1 DIB, TFA DMF/ACN, 0oC to r.t  dec. 

2 peroxybenzoic acid MeOH, 0oC-r.t, 1 h dec. 

3 m-CPBA MeOH, 0oC-r.t, ON dec. 

4 

 3.11, 

K2CO3 

MeOH, r.t, 1 h dec. 

5 

 3.12, K2CO3  

MeOH, r.t, ON 11 

a. isolated yield; ON: overnight 

 

There was evidence from DI-MS of the crude reaction mixture containing 

fragments derived from the oxaziridine, which were not isolated.  There has been 

reported precedence of such occurrence.  For example, Dmitrienko isolated 

oxaziridine–alkene cycloadducts formed by the addition of the oxaziridine across 

indole 2,3-bond as the major products when simple benzaldehyde-derived 
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oxaziridines were used (Scheme 3.12).23  Lovely isolated adducts formed through the 

addition of the oxaziridine across the imidazole 4,5-bond (Scheme 3.12).24 

 

 
Scheme 3.12  Evidence of oxaziridine-substrate adducts. 

 

3.2.3.  Biomimetic synthesis of Dispacamide A and Unnatural 

Dihydrodispacamide A 

Dispacamide A, a potent, non-competitive, antihistaminic agent and a fish 

feeding deterrent, was been isolated in 1996 by Fattorusso and co-workers from the 

sponge Agelas dispar.25  In dispacamide A, the oroidin 2-aminoimidazole moiety has 

been oxidised to an alkylidene glycocyamidine.  Two years after its isolation, Horne 

reported the conversion of DHO (2.2) to dispacamide A (2.16) in 60% yield under 

oxidative conditions using bromine in DMSO (Scheme 3.2).3  Since then, several 

total syntheses of dispacamide A have been reported and reviewed.3,26-29 

Al-Mourabit’s synthesis of dispacamide A follows his proposed biogenesis 

hypothesis which involves the one-pot reaction of the pseudodipeptide pyrrole-proline 

methyl ester 3.13 in the presence of diBoc-guanidine and oxygen at reflux in THF.29,30  

This afforded the 5-hydroxy-2-aminoimidazole 3.14 which, following bromination of 

the pyrrole gave 3.15.  Removal of the Boc group and elimination of water led to the 

formation of dispacamide A (2.16) (Scheme 3.13).29 
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Scheme 3.13  Al-Mourabit’s synthesis of dispacamide A.  a. THF, O2, reflux, 3 h, 46%;  b. 1. Br2, 
AcOH, r.t, 2. TFA, CH2Cl2, r.t, 74%;  c. MeSO3H, 80 oC, 65%. 

 

In Ando’s strategy, tetra-n-butylammonium tribromide was employed to 

oxidise the imidazole ring in a 2-aminohomohistamine where the primary amino 

group of the imidazole ring was selectively Boc-protected (Scheme 3.14).28  The 

pyrrole part of the natural product was introduced in the last step of the synthesis.  

 
Scheme 3.14 Ando’s synthesis of dispacamide A.  a. 1. Bu4N+Br3

-, DMSO, 2. Boc2O, MeOH, 40%;  b. 
1. HCl 20%, EtOH, 2. 4,5-dibromotrichloroacetylpyrrole, Na2CO3, DMF, r.t, 85%. 

 

3.3.  Summary- Epoxidation Route 

Our approach has allowed the direct conversion of oroidin (2.1) to 

dispacamide A (2.16) via the formation of a putative epoxide intermediate, in the 

same yield as Horne’s synthesis3.  In a similar way, DHO (2.2) produced 

dihydrodispacamide A (3.10), an unnatural product in 56% yield.  However, we were 

unsuccessful in trapping the putative epoxide either via intramolecular cyclisation or 

by external nucleophiles. 
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PART B: Investigation of the Bromonium Ion Route 

3.4.  Introduction 

A bromonium ion is isosteric with an epoxide and can be easily converted to 

the latter with water via a halohydrin (Scheme 2.18; Section 2.6).  Such 

transformation can occur via haloperoxidases.  Standard electrophilic bromine sources 

include Br2, N-bromosuccinimide (NBS) and 2,4,4,6-tetrabromocyclohexa-2,5-

dienone (TBCO), and are briefly reviewed in the context of terpene chemistry which 

is of particular interest to our investigation of the oroidin alkaloids as it involves the 

initiation of cation-!-cyclisations with electrophilic bromine.31-38 

 

3.4.1.  Biomimetic Cyclisation: Lessons from Terpene Chemistry 

Terpenes are a class of natural products currently spanning well over 55 000 

members.39  A seemingly endless number of enzyme (terpene synthase/cyclase)-

mediated carbocation cyclisations leads to many different carbocyclic skeletons, 

which are often further oxidised and rearranged (e.g. Wagner-Meerwein).39  

Intramolecular cyclisation is initiated in terpenoid biosynthesis by protonation (e.g. in 

lupeol), epoxidation (e.g. in aplysin-20) or halogenation (e.g. in albicanol) (Figure 

3.1).40-43  
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Figure 3.1  Cationic or epoxide induced cyclisation of polyisoprenes. 

 

Of particular interest in our oroidin alkaloids work, is the occurrence of 

brominated terpenes typically produced by marine microorganisms.  Brominated 

terpenes have been isolated as secondary metabolites from numerous marine 

organisms and to date there are more than 135 bromine-containing members of this 

natural product family (Figure 3.2).44  The biosynthesis of these natural products is 

thought to involve the action of vanadium bromoperoxidases whereby the formation 

of a key bromonium ion intermediate of the polyene would initiate the intramolecular 

domino cyclisation needed to form a number of new C-C bonds, rings and quaternary 

stereocentres stereoselectively to give complex molecules from linear substrates.45,46   

 
Figure 3.2  Examples of brominated terpenoids isolated from Laurencia species. 
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 The first bromonium-ion induced cation-! cyclisation in the laboratory was 

reported in 1966 by van Tamelen and Hessler.36  They found that the reaction of NBS 

with methyl farnesate (3.16) in water-ethylene glycol mixture or THF gave rise to 

bicycle 3.17 as a mixture of endo- and exocyclic alkenes in ~5% yield (Scheme 3.15).  

Mono-bromohydrins 3.18-3.19 of the terminus alkene represented the major product.   

 

Scheme 3.15  Brominative cyclisation of methyl farnesate 3.15 using NBS. 

 

A decade later, copper (II) acetate was used as an additive in t-butanol and 

acetic acid to improve on van Tamelen’s conditions.31  Monocyclic adduct 3.20 was 

isolated in 12% yield (Scheme 3.16).   

 
Scheme 3.16  Brominative cyclisation of methyl farnesate 3.15 using NBS and Cu(OAc)2. 

 

Kato and co-workers found 2,4,4,6-tetrabromocyclohexa-2,5-dienone (TBCO) 

to be a useful reagent for the brominative cyclisation of polyene precursors in the 

synthesis of up to three rings.32  They have shown the utility of this reagent in 

presumed biomimetic syntheses of a number of natural products, albeit in low 

yields.33,34,38  For example, when TBCO was used in the brominative cyclisation of 

nerolidol (3.20), " and #-snyderol (3.21) and racemic 3-bromo-8-epicaparrapi oxide 
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(3.22) were formed (Scheme 3.17), which are marine natural products that have been 

isolated from Laurencia spp.32 

 
Scheme 3.17  Biomimetic syntheses of racemic snyderol and racemic 3-bromo-8-epicaparrapi oxide 
using TBCO. 

 

Molecular bromine and silver tetrafluoroborate were also used to effect the 

bromonium-induced cyclisation of polyenes (Scheme 3.18).37  Ketone 3.24 underwent 

bromonium ion induced cyclisation to form bicycle 3.25 in 20% yield.  The purpose 

of AgBF4 was to sequester the nucleophilic bromide ions as they were produced.   

 
Scheme 3.18  Brominative cyclisation of geranyl acetone 3.24 using molecular bromine and silver 
tetrafluoroborate. 

 

All these methods produce electrophilic bromonium in the absence of an 

effective nucleophile to allow the organic bromonium ion time to cyclise.  However, 

most methods of direct brominative cyclisation are low-yielding.   

Bromodiethylsulfide bromopentachloroantimonate (BDSB) (3.26) was 

recently introduced by Snyder and Treitler in 2009.  It is a source of electrophilic 

bromine, supposedly free from any additional nucleophilic species which allows for 

highly efficient bromonium ion induced cation-! cyclisations of a diverse set of 

polyenes derived from geraniol (such as 3.27 and 3.28) and farnesol (such as 3.29), in 
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>55% yield, usually within 5 minutes (Scheme 3.19).35  Larger polyenes derived from 

farnesol (such as 3.29) require the addition of a strong acid (e.g. methanesulfonic 

acid) to effect full cyclisation.35  

 
Scheme 3.19  Bromonium ion induced cyclisations of polyenes using BDSB.  Reaction conditions: a. 
BDSB, MeNO2, –25oC, 5 min, 73-75%; b. BDSB, MeNO2, –25oC, 5 min then MeSO3H, 58%.    

 

Bromonium ion-induced cyclisations using BDSB have been successfully 

applied in the biomimetic syntheses of brominated terpenoids: 4-isocymobarbatol 

(3.30), peyssonoic acid A (3.31) and peyssonal A (3.32) (Scheme 3.20).35,47  

Scheme 3.20  Total synthesis of 4-isocymobarbatol, peyssonic acid A and peyssonol A.  Reaction 
conditions: a. BDSB, MeNO2, –25 oC, 5 min, 74%; b. HCl (conc.), THF, 25!°C, 5 h, 97%; c. BDSB, 
MeNO2, –25 oC, 5 min, 31%; d. BDSB, MeNO2, –25 oC, 5 min then 25 oC, 60 min, 56%. 
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The groups of Snyder and Braddock made use of BDSB in order to access the 

Laurencia C15-acetogenins.  Snyder used a ring-expanding bromoetherification of 

tetrahydrofurans (Scheme 3.21) while Braddock using an intramolecular bromonium 

ion assisted epoxide ring-opening reaction (Scheme 3.22).48,49  Another example is 

the construction of alkenic regioisomers, bromophycolide A and D skeletons (3.33) 

that was achieved via a diastereoselective bromonium ion-induced cyclisation of a 

triene substrate, albeit in low yield with the competitive elimination product being the 

major product (Scheme 3.23).50  

 
Scheme 3.21  Ring-expanding bromoetherification using BDSB to access the Laurencia C15-
acetogenin scaffolds from tetrahydrofurans. 

 

 
Scheme 3.22  Bromonium induced cyclisation with BDSB to access the Laurencia C15-acetogenin 
scaffolds starting from an epoxide. 
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Scheme 3.23  The use of BDSB to access the bromophycolide A and D skeletons. 

 

The advantages (mild, short reaction time and high yields) associated with 

BDSB prompted us to apply this reagent on oroidin and DHO.  But first we wanted to 

investigate the utility of BDSB on pyrrole-terpene hybrids that would be considered 

oroidin analogues (Figure 3.3).  The reactivity of BDSB in the presence of 

heterocyclic nitrogen atom as well as amide, have not been investigated before. 

 

Figure 3.3  Structural similarity between oroidin and the pyrrole-terpene hybrid 

 
3.5.  Results and Discussion 

3.5.1.  Initial Investigation into Bromonium-Induced Cyclisation of Pyrrole-
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trichloroacetylpyrrole (3.36) or dibrominated trichloroacetylpyrrole (3.9) in DMF in 

the presence of K2CO3 as base (Scheme 3.24).  

 
Scheme 3.24  Synthesis of the pyrrole-terpene hybrids.  a. K2CO3 (3 equiv.), DMF, r.t, ON. 

 

When the reaction was conducted at r.t. or at 0 oC with 3.37, a complex 

reaction mixture was obtained.  A 1.1 equivalents of BDSB in a reaction solution 

consisting of the solvent mixture of 1:1 (v/v) ratio MeNO2/dichloromethane at an 

overall concentration of 0.01 M was employed.  Decreasing the temperature to –40 oC 

for the addition of BDSB and subsequent warming to –15 oC over an hour and 

allowing the reaction to stir at –15 oC for a further 30 min, led to the formation of a 

cyclised product along with three addition products (Table 3.4; Entry 1). The same 

reaction condition was applied to substrates 3.38-3.40 (Entry 2-4). 
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Table 3.4  Reaction of the pyrrole-terpene hybrid substrates with BDSB. 

Entry Substrate Products (%) 
1 

 
3.37 

 
3.37a Y=Br 42% 
3.37b Y=Cl, 20% 
3.37c Y=OH, 17% 

 
3.37d, 2% 

2 

 
3.38 

 

 
3.38a  Y=Br, 43% 
3.38b  Y=Cl, 17% 
3.38c  Y=OH, 12% 

 
3.38d, 9% 

3 

 
3.39 

 

 
3.39a Y=Br, 42% 
3.39b Y=Cl, 14% 
3.39c  Y=OH, 10% 

 
3.39d, 5% 

4 
 

3.40 
 

3.40a Y=Br, 55%  
3.40b Y=Cl, trace 
3.40c  Y=OH, not isolated 

 
3.40d not isolated 

 

The products isolated suggest the intermediacy of a bromonium ion at the 

most activated terminal alkene during the reaction (Scheme 3.25), as previously 

reported with geraniol-derived substrates.35  The cyclised product 3.37d formed is a 

result of elimination of water after intramolecular cyclisation.  All the products that 

failed to cyclise, are the results of the exogenous incorporation of nucleophiles such 

as water, which would compete with any internal nucleophile.  This is likely due to 

the low rate of intramolecular cyclisation within the intermediate and/or due to the 

pyrrole amide or ester attached making the olefin electron-deficient.  
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Scheme 3.25  Formation of the bromonium ion of the dibromopyrrole-geranylamide substrate leading 
to the products observed.  

 

The isolation of Cl and Br addition products indicate that Snyder’s reagent is 

not exactly nucleophile free (Scheme 3.26).  Nucleophilic chloride ion can be 

produced either through equilibrium (pathway a) or disproportionation (pathway b).  

To our knowledge this is the first report of the occurrence of chlorination using the 

BDSB reagent.  It is noted that antimony pentachloride can be used for chlorination 

and is converted, in the process, into its trichloride salt.51,52 

 

Scheme 3.26  Nucleophilic chloride ion from BDSB. 

 

The stereochemistry for the pyrrole-nerol hybrid substrates 3.38d and 3.39d, 

where H8, CH3-10 and Br are on the same side of the molecule, were assigned by 

coupling constant analysis and NOESY correlations (Figure 3.4).  Proton H11a (J 

=13.9, 13.9, 4.1 Hz), H12a (J = 14.7, 14.1, 3.7, 3.4 Hz) and H12b (J = 14.9, 6.5, 3.5, 

3.5 Hz) were assigned axial or equatorial, based on coupling constants while H11b 

was assigned by default due to signals overlap.  Proton H13 is equatorial based on its 

coupling constant with adjacent H12s (J13-12a and J13-12b = 4.30 Hz) and on the absence 

of diaxial NOESY correlations to H11a and H8.  Proton H8 has NOESY correlations 

to both CH3-16 and CH3-10, and diaxial NOESY correlation to H11a.  
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Figure 3.4  Key NOESY correlations of 3.38d are indicated by the arrows.  Mixing time of 400 ms 
used. 

 

3.5.1.1.  Effect of an Acid Additive 

Methanesulfonic acid has been reported to promote complete intramolecular 

cyclisation with BDSB by being added at the end of the reaction.53  The addition of 15 

equivalents of methanesulfonic acid after 30 min resulted in a new product 3.41 that is 

the result of carbocation-induced cyclisation (Entry 1; Table 3.5).  Adding 

methanesulfonic acid earlier during the course of the reaction led to a higher yield of 

this product (Entry 2).  The highest yield was obtained when methanesulfonic acid 
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3).  In the absence of BDSB (Entry 4), 3.41 was obtained in comparable yield.  When 

the reaction was stirred at –15 oC for an additional 30 min prior to the addition of 

MeSO3H, 3.41was not isolated (Entry 5).  In the presence of a proton source, a 

carbocation-induced cyclisation reaction out-competes the bromonium-induced 

cyclisation pathway, particularly at lower temperatures.  Again, intramolecular 

cyclisation was not observed. 

Table 3.6  Effect of MeSO3H on the bromonium-induced cyclisation with BDSB. 

 

Entry Time added after start of reaction Yield (%) 
1 30 min 15 

2 5 min 48 

3 0 min 78 

4a 0 min 79 

5d 90 min Not observed 
a. BDSB not added; d.  Stirred at –15oC for an additional 30 min 

 

The stereochemistry of 3.41, where H8 and CH3-10 are on the same side of the 

molecule, was assigned using NOESY.  Proton H12a (J = 15.5, 13.9, 3.4, 3.4 Hz), 

H11b (complex signal with only one large J observed) and H13a (J = 15.5, 13.9, 3.4, 

3.4 Hz) were assigned axial or equatorial based on their coupling constants and H12b, 

H11a and H13b were assigned by default.  Proton 7 shows equal NOESY correlation 

with methyl groups 15 and 16, indicating that it must lie in the equatorial plane 

(Figure 3.5).  Methyl group 10 has correlations to H11b, H11a and H8 and the 

O

O
N
H

O

O

NH

BDSB (1.1 equiv.)
MeSO3H (15 equiv.)

OH

3.39 3.41

NO2Me: DCM 
(1:1 v/v), 0.01 M
-40 °C
-40 to -15 °C, 1 h

H+
O

O
N
H



 120 

absence of diaxial NOESY correlation with H12a indicates that it lies on the 

equatorial plane.  

 

 

 
Figure 3.5  Key NOESY correlations of 3.41 are indicated by the arrows.  Mixing time of 300 ms used. 

 

3.5.1.2.  Addition of bases 

The addition of a base was investigated as a way of increasing the 

nucleophilicity of the amide or pyrrole nitrogens (Scheme 2.22).  Unfortunately, the 

use of both organic (pyridine, DMAP) and inorganic bases (K2CO3) was not tolerated 

since the reactions of 3.39 were observed to remain incomplete with the formation of 

3.39a-d in low yields.  
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3.5.1.3  The Use of DMF as Solvent 

Nitromethane is the solvent of choice for BDSB as it is known to have cation-

solvating effects that help facilitate polyene cyclisations.54,55  Cation solvation can 

lead to longer-lived cations that have a greater chance of undergoing cyclisation and 

are less likely to form undesired side products due to rearrangements or elimination. 

However, the majority of our substrates are insoluble in MeNO2. Therefore the 

use of a cosolvent is required.  Dihydrooroidin is soluble in the most polar solvents 

such as DMSO, DMF, MeOH, EtOH but not in MeNO2 nor ACN.  However BDSB 

has been shown to decompose35 in polar solvents such as the alcohols, acetone and 

THF while DMSO can also act as an oxidant or reductant, thereby restricting the 

solvent choice to DMF.  Therefore the use of DMF as part of the solvent system for 

the bromonium-induced cyclisation using BDSB was investigated using the pyrrole-

nerol hybrid 3.39 as substrate.  DMF is also known to stabilise carbocation (polar 

aprotic solvent).56 

 

3.5.1.3.1. Formylation of a Halohydrin or Bromoformyloxylation 

When DMF was used in combination with MeNO2 as the solvent system with 

1.1 equivalents of BDSB, the reaction proceeded cleanly to one product 3.42 but not 

to completion.  We were surprised to find a proton singlet at around 8 ppm with 

HSQC correlation to a carbon at 160 ppm, which suggested a formyl group (Figure 

3.6A).  The proton showed only a single HMBC correlation to a quaternary carbon 

(C14, " 161.0 ppm) (Figure 3.6B).  EI-MS showed the parent ion M as two peaks 

371/373 in the ratio of 1:1 corresponding to the presence of a single bromine atom 

and HRMS confirmed the molecular formula as C16H22BrNO4 (# 0.0002 ppm). 
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Figure 3.6 A.  Key 1H-13C HSQC correlation for 3.42 and B. Key 1H-13C HMBC correlations for 3.42. 

 

The use of an equimolar amount of BDSB, did not lead to the completion of 

the reaction (Table 3.7; Entry 1) while the use of 1.5 equivalents of the reagent was 

found to be optimum for the reaction (Entry 2 and 3) achieving 90% yield or better.  

The reaction time could be lowered by allowing the reaction to warm up from –40 oC 

to -15 oC over 30 min, after the addition of the reagent (Entry 4).  The use of different 

percentages of DMF (75, 50 and 25% (v/v)) as part of the solvent system with 

MeNO2 led to the same outcome where only bromoformylation was observed.  Lower 

percentages of DMF were not investigated since oroidin and dihydrooroidin are only 

soluble at and above 50% (v/v) of DMF in MeNO2. 
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Table 3.7  Effect of the number of equivalents of BDSB on the yield of the bromoformyloxylation 
product. 

 

Entry Equiv. Time Yield (%)a 

1 1 1h 67 

2 1.5 1h 91 

3 2 1h 90 

4 1.5 30 min 90 

a. isolated yield. 

 

The formation of the product can be explained by ring opening of the 

bromonium ion by water followed by the reaction of the alcohol with DMF with 

elimination of dimethylamine.  The BDSB could be activating the DMF in a similar 

way as the Vilsmeier reagent (DMF-POCl3) (Scheme 3.27).  Vilsmeier reagent has 

been used for the formylation of electron rich aromatic systems but is ineffective as a 

formylating agent for alcohols.57,58 

 

Scheme 3.27  Possible reaction mechanism for the formylation of a halohydrin using BDSB 
in the presence of DMF. 

 

To test this hypothesis, bromohydrin 3.38c was subjected to the same reaction 

condition as used in entry 4 (Table 3.7).  However, only starting material was 

O

O
N
H

BDSB
MeNO2: DMF (1:3 v/v)
-40oC
-40 to -15 oC over 
specified time

O

O
N
H Br

O

O
Only product formed

3.39 3.42

Sb

Br

Cl
Cl Cl
Cl Cl

Br
S

Et EtO
N

O
N

S
Et

Et

Br

O
N

hydrolysis O
O

HN+

O

N

S
Et

Et

Br O
H

O
N

S
Et

Et
Br



 124 

recovered.  An alternative mechanism involves the ring opening of the bromonium 

ion with DMF and subsequent hydrolysis during an aqueous work-up (Scheme 3.28).  

As this bromoformyloxylation is highly regioselective, it can be inferred that the 

mechanism is highly SN1-like.  

 
Scheme 3.28  Possible reaction mechanism for the bromoformyloxylation using BDSB in the presence 
of DMF. 

 

The traditional method for producing bromoformyloxylation product involves 

the acetylation of corresponding vicinal halohydrins, which require the synthesis of 

precursor halohydrins from the corresponding olefins.  Bromoformyloxylation is a 

type of ‘cohalogenation’ reaction which uses a combination of halonium source and 

an appropriate nucleophile.59  Reports of bromoformyloxylation in the literature, 

involve the use as bromine sources of NBS, N-Bromosaccharin or N,N-

dibromobenzene sulfonamide, and as nucleophile source, DMF or formic acid as 

nucleophiles.60-62  The most recently reported bromoformyloxylation procedure 

involves the use of N,N-dibromo-p-toluenesulfonamide in DMF at room 

temperature.63  The use of BDSB in the presence of DMF provide a mild, quick and 

simple alternative to existing bromoformyloxylation procedures.  Nothwithstanding 

the discovery of a new reaction of BDSB, it was concluded that DMF is not a suitable 

solvent for BDSB in biomimetic bromonium ion cyclisations. 
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Despite the limited success of BDSB on our pyrrole-terpene hybrid substrates, 

we nevertheless investigated the application of this reagent to DHO and oroidin. 

 

3.5.2.  Investigation with DHO 

Despite the possibility of bromoformyloxylation, we decided to try the 

reaction with DHO dissolved in a solvent mixture of MeNO2 and DMF.  Trials of 

different percentages of solvent mixture of MeNO2 and DMF led to a 1:1 (v/v) ratio 

as the most suitable to avoid the precipitation of the substrate particularly when the 

reaction is conducted at very low temperatures.   

The initial reaction involved the addition of BDSB (1.2 equivalents in 

MeNO2) at –20 oC to a solution of DHO in a mixture of DMF/MeNO2 (final solvent 

composition 1:1(v/v)).  An instant formation of an intense red colour was observed.  

The reaction was allowed to stir at –20 oC for 1 hour during which time the red colour 

slowly dissipated to orangey before becoming a pale golden yellow.  

Due to the highly polar nature of the substrate and its likely products, the 

reaction was quenched with a solutions 5% aqueous NaHCO3 and 5% aqueous 

Na2SO3 (1:1 v/v) and the reaction mixture was simply freeze-dried.  The crude 

material was dissolved in methanol and any salt removed by filtration.  TLC showed 

the formation of three main products.  The crude material was subjected to LC-MS 

analysis whereby all the peaks with UV spectra with absorption maxima at around 

270 nm (characteristic of 2-pyrrole carboxamide)64, showed only monomeric 

products. Silica column chromatography with ammonia as part of the solvent system 

allowed the isolation of three compounds.  The major product corresponded to 

dihydrodispacamide A (3.10) (34%), along with dispacamide A (2.16) (21%) and a 
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new compound found to be a spirocyclic monomer (3.43) (14%).  No formyloxylation 

was observed. 

 

3.5.2.1.  Temperature Screening 

With the aim of reducing the formation of the 2-aminoimidazolone products 

and promoting intramolecular cyclisation, the reaction was conducted at lower 

temperatures (Table 3.8).  At –70 oC for 30 min, mainly unreacted starting material 

was recovered from the reaction mixture together with dihydrodispacamide A (3.10) 

and dispacamide A (2.16) (Entry 3).  When the reaction was allowed to proceed at a 

higher temperature of –40 oC for 30 min, dispacamide A (2.16), dihydrodispacamide 

A (3.10) and the spirocyclic product (3.43) were isolated  (Entry 2).  These results 

suggest the high propensity of the bromonium ion to form the 2-aminoimidazolone 

products.  The yield of the spirocyclic product 3.43 was improved to 18% by adding 

BDSB at –70 oC and stirring to –40 oC over 30 min before allowing the reaction to 

warm to –20 oC over 1 h (Entry 4).   
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Table 3.8  Outcome of the reaction with BDSB, conducted at different temperatures and times. 

 

Entry Temp.  additive Time 3.10 
(%) 

2.16 
(%) 

3.43 
(%) 

2.2 
(%) 

1 –20 oC - 1 h  34 21 14 0 

2 –40 oC - 30 min 23 14 11 40 

3 –70 oC  - 30 min 17 11 0 64 

4a –70 to –40 oC  

–40 to –20 oC 

- 30 min  

1 h 

29 22 18 0 

5 –40 oC K2CO3 

(1.1 equiv.) 

30 min trace trace 0 95 

6a –70 to –40 oC  

–40 to –20 oC 

K2CO3
b

  

(1.1 equiv.) 

30 min  

1 h 

20 13 trace 35 

7 –40 to –20 oC K2CO3
b 

(1.1 equiv.)  

1h 26 19 trace 0 

8a –70 to –40 oC  

–40 to –20 oC 

butylamineb 

(1.1 equiv.)  

30 min  

1 h 

25 20 trace 0 

9 –70 to –40 oC  

–40 to –20 oC 

MeSO3H  

(15 equiv.) 

30 min 

1h 

26 21 15 0 

a.  –70 to –40 oC over 30 min and –40 to –20 oC over 1 h; b. added 30 min after addition of BDSB; % = 
isolated yields 

 

3.5.2.2.  Acid/Base Screening 

Similarly to the pyrrole-terpene hybrids, the inorganic base, K2CO3 was added 

to the solution of DHO prior to the addition of BDSB in an attempt to promote 

intramolecular cyclisation by internal nucleophiles.  From earlier investigation, we 

know that the use of a base is not compatible with BDSB.  Therefore the addition of 

K2CO3 was done before addition of BDSB (Table 3.8; Entry 5) or after 30 min 
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(Entry 6 and 7) to allow the formation of the bromonium ion to take place before the 

introduction of the base.  If added early during the reaction, starting material was 

mainly recovered.  When the base was introduced later, the reaction produced mainly 

dihydrodispacamide A (3.10) and dispacamide A (2.16).  This indicates that the 

bromonium ion is short-lived and reacts immediately once formed.  This implies that 

the addition of base will only hinder the formation of the key bromonium ion required 

for intramolecular cyclisation.  The use of butylamine (Entry 8) to quench the 

bromonium ion had the same effect as the other organic bases trialed previously, 

inhibiting any reaction.  No butylamine adduct of DHO was observed.  On a different 

note, the presence of an excess of methanesulfonic acid in the reaction did not have 

any effect on the outcome of the reaction mixture (Entry 9). 

 

3.5.2.3.  Spirocyclic Monomer 

ESI-MS of the new compound with max UV absorption of 284 nm showed 

[M+H+] at m/z 404/406/408 with two mass unit differences in the ratio of 1:2:1 

corresponding to two bromines and HRMS confirmed the molecular formula as 

C11H11Br2N5O2 (# 0.0005 ppm).  The structure of the spirocyclic ring was confirmed 

by HMBC correlation between H8 and H9 (strong) and H10 (weak) with quaternary 

carbon C11 (Figure 3.7).  The absence of an imidazole proton and the presence of a 

carbonyl carbon (173.3 ppm) to which H10 has a correlation, indicated the oxidation 

of the imidazole ring to an imidazolone (Figure 3.7).  
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Figure 3.7  Key 1H-13C HMBC correlations for 3.43.  

 

Two intramolecular cyclisation paths (path a and b) are possible (Scheme 

3.29).  Path a which involves the bromonium ion induced intramolecular cyclisation 

of the amide nitrogen at the C4 carbon of the imidazole ring, explains the formation of 

spirocycle 3.43.  It is possible for the ring opening of the bromonium ion to occur at 

the C5 carbon of the imidazole ring (path b) but no such product was observed.   
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Scheme 3.29  Two possible intramolecular cyclisation paths. 

 

The spirocyclic monomer formed is likely an intermediate in the formation of 

2.54a, the hydroxyl derivative of the tetracyclic monomer dibromophakellin (2.54) 

through the nucleophilic attack of the pyrrole nitrogen onto the C5 imidazolone 

carbon (Scheme 3.30).  Dibromohydroxyphakellin (2.54a) has been recently isolated 

from Indonesian marine sponges Agelas linnaei and A. nakamurai, just over 4 decades 

after dibromophakellin (2.54).65  Further cyclisation of the spirocyclic monomer 3.43 

was attempted using neat methansulfonic acid at room temperature.  This resulted in a 

complex crude mixture.  Büchi and co-workers have successfully used potassium t-

butoxide to further cyclise their postulated spirocyclic intermediate (Scheme 3.1) in 

the formation of the tetracyclic ring of racemic dibromophakellin (2.54).1  Under 

basic condition, the pyrrole nitrogen is deprotonated and the resulting highly 

nucleophilic anion can cyclise onto the amide carbon to first provide 

dibromohydroxyphakellin (2.54a) (Scheme 3.30).  However, when 2.1 equivalents of 

potassium t-butoxide in t-butanol was added to 3.43 and stirred at room temperature 

for 1 hour, only starting material was recovered while the use of higher temperatures 

led to complex reaction mixtures. Horne was also unsuccessful in converting 
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spirocycle 3.44 into its tetracycle although there is no mention of the reaction 

conditions tried.   

 
Scheme 3.30  Possible formation of the tetracyclic oroidin alkaloid monomer, dibromophakellin (2.54) 
from 3.43. 

 
Scheme 3.44  Horne reported the spirocycle 3.44 that failed to undergo further cyclisation. 

 

The isolation of dispacamide A (2.16) suggests further oxidation of 

dihydrodispacamide A (3.11) to the latter.  The presence of trace amounts of water 

could be sufficient to convert the bromonium ion formed to an epoxide intermediate 

(Scheme 2.18) to eventually yield the different products that have been isolated and 

identified.  Epoxide formation can be followed by a 1,2-hydride shift (Scheme 3.11) 

to provide the stable 2-aminoimidazolone.  It is worth noting that unlike in the case of 

the pyrrole-terpene hybrids, the use of DMF did not lead to any observable formylated 

products.  However, their intermediacy could explain the oxidation products (Scheme 

3.45). 
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Scheme 3.45  Intermediacy of formylated product formed in the presence of DMF, in the formation of 
the oxidation products observed. 

 

3.5.3.  Application to oroidin 

Under the optimised reaction condition, BDSB was applied to oroidin 

(Scheme 3.46).  An intense green colour was observed.  The reaction was allowed to 

stir to –20 oC over 1 hour during which time the green colour slowly changed to a 

faint yellow.  TLC suggested the formation of two main products, along with 

decomposition (baseline).  Silica column chromatography with ammonia as part of the 

solvent system allowed the isolation of the two compounds.  The major product 

corresponded to dispacamide A 2.16 (49%) while the second one was characterised as 

the unnatural hydroxycyclooroidin 3.45 (12%).  ESI-MS of 3.45 with max UV 

absorption of 277 nm showed the [M+H+] at m/z 404/406/408 with two mass unit 

differences in the ratio of 1:2:1 corresponding to two bromines and HRMS confirmed 

the molecular formula as C11H11Br2N5O2 (# 0.0005 ppm).  The absence of the pyrrole 

proton (12-13 ppm in DMSO-d6) indicated the occurrence of intramolecular 

cyclisation via the pyrrole nitrogen.  The presence of the imidazole proton (6.46 ppm) 

indicated the 2-aminoimidazole ring to be unoxidised.  These results indicate that, 

under these conditions, BDSB preferentially oxidises the alkene over the imidazole 

double bond.  
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Scheme 3.46  Application of BDSB on oroidin as substrate. 

 
 
3.5.4.  Dimerisation of DHO 
 

There have only been two previous reports of biomimetic dimerisation 

(Scheme 3.5 and 3.6).  In order to favour dimerisation we added 0.6 equivalent of 

BDSB at –40 oC before allowing the reaction to stir to –20 oC over an hour.  We were 

delighted when a LCMS analysis of the crude reaction mixture indicated a small peak 

with max UV absorption of 276 nm and ESI-MS of [M+H]+
 ion peaks at m/z 

793/795/797/799/801 (intensity of 1:4:6:4:1) corresponding to a dimer and HRMS 

indicated the molecular formula as C22H24Br4N10O3 (# 0.0005 ppm).   

The reaction condition was optimised by increasing the concentration of the 

reaction solution from 0.01 M to 0.1 M and by adding 0.6 equivalent of BDSB over a 

period of 30 min at –70 oC before allowing the reaction to gradually warm up to –20 

oC within an hour.  This increased the yield of the dimer from <1% to 6%.   

The dimer was isolated by repeated HPLC purification and analysed by 2D 

NMR spectroscopy.  The absence of H12 and H12’ were noted with the presence of 

two characteristic quaternary carbon signals at 67.6 ppm (C11’) and 121.4 ppm (C12). 

Moreover, a carbonyl (C12’) at 187.9 ppm in 3.46 suggests that a C12 to C11’ link.  

The connectivity of the two dihydrooroidin units was established by HMBC 

correlations between H11 and H10’ to C12 (Figure 3.8).  This unnatural 

tetrahydromauritiamine (3.46) differs from mauritiamine (2.76) by the absence of the 
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alkenes.66  

 

 

 

Figure 3.8  Key 1H-13C HMBC correlations (shown by arrows) for the dimer formed. 

 

Tetrahydromauritiamine is likely to arise from the ring opening of a 

bromonium ion or an epoxide by the imidazole ring of another DHO (Scheme 3.47).  

In the case of a bromonium ion, subsequent substitution of the bromine with water 

eventually leads to the imidazolone ring.  In the epoxide case, subsequent 

rearrangement leads to the imidazolone ring.  It is worth noting that although other 

possible dimers are possible, only tetrahydromauritiamine was isolated. 
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Scheme 3.47  Formation of tetrahydromauritiamine (3.46) via a bromonium ion. 

 

Despite the optimised reaction condition used (Scheme 3.47), a relatively 

complex crude product was obtained from the reaction mixture, reminiscent of a 

marine sponge extract.  This is not unexpected since various reaction pathways are 

possible.  In order to gain better insight into the reactivity profile of the BDSB reagent 

on the DHO substrate, we purified all the products that were formed in isolable 

amount.  Unsurprisingly, the ubiquitous formation of dihydrodispacamide (3.10) 

(21%) and dispacamide A (2.16) (18%) were observed.  The third largest component 

of the reaction was the spirocyclic monomer 3.43 (12%) previously isolated. 

Under the dimerisation reaction condition, the tetracycle dibromophakellin 

2.54 was isolated in 2.5% yield and the NMR characteristics of the synthesised 

product as a racemic mixture are in agreement with previously reported data.67  The 

isolation of dibromophakellin (2.54) and the failed attempts to convert spirocycle 3.43 

to 2.54, suggests the likelihood that the formation of the imidazolone competes with 

the formation of the tetracycle 2.54 (Scheme 3.48). 
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Scheme 3.48  Formation of spirocyclic monomer 3.43 via bromonium ion. 

 

Amongst the other detectable products isolated and characterised from the 

reaction mixture, was oroidin (2.1) (2%).  The isolation of oroidin from the reaction 

mixture is possible based on previously reported conversion of DHO to oroidin.11  

The use of a bromination reagent would suggest the formation of 

bromodihydrooroidin that could then undergo dehydrobromination to provide oroidin.  

However, bromodihydrooroidin was not isolated from the crude mixture nor was its 

corresponding mass observed on LCMS.  The isolation of a product that has 1H and 

13C NMR almost similar to dihydrooroidin with only the imidazole proton missing 

came as a mystery.  The absence of both the imidazole proton and a carbonyl carbon 
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corresponding to two bromines and HRMS confirmed the molecular formula of 

C11H13Br2Cl2N5O (# 0.0002 ppm) with 2 bromines atoms and a chlorine atom.  As 

previously observed in the case of the pyrrole-terpene hybrids, the presence of 

nucleophilic chloride ions from the antimony pentachloride could explain the 
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formation of chlorodihydrooroidin 3.47 (8%) which can be converted to oroidin (2.1) 

as reported by Lindel.11   

 

Amongst other minor identifiable products that were isolated was a compound 

(2%) with ESI-MS showing [M+H]+ at m/z 424/426/428 and for which the molecular 

formula was determined as C11H13Br2N5O3 from HRMS (# 0.0004 ppm).  The NMR 

characteristics of the compound are in agreement with previously reported data for the 

"-hydroxy-2-aminoimidazolone 3.15 which has been previously synthesised as an 

intermediate in the synthesis of dispacamide A (2.16) (Scheme 3.13) by Al-

Mourabit.29 

 

4,5-Dibromopyrrole-2-carboxamide 3.48 (2%) and its butanoic acid derivative 

3.49 (2%) were other minor products.  Compounds 3.48 and 3.49 have been 

previously isolated from marine sponges and have been described as key building 

blocks in the biosynthesis of bromopyrrole alkaloids.65   

 

The characterisations of the isolable compounds (Scheme 3.49) provide some 

insights into the reaction profile of BDSB on DHO as a substrate.  The formation of 
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dihydrodispacamide A (3.10) and dispacamide A (2.16) appears to be ubiquitous.  

These together with decomposition reactions account for the low yield of 

dimerisation.  Despite this, the formation of tetrahydromauritiamine directly from its 

monomer dihydrooroidin, brings further evidence to the generation of more complex 

oroidin alkaloids from a particular set of precursors.  This also brings support to our 

biogenesis hypothesis whereby the haloperoxidases play an important role in the 

formation of key reactive intermediate(s) of the precursor(s) to generate the 

complexity observed in the oroidin alkaloids.  Moreover, this is the second example 

of homodimerisation, albeit in low yield.   

 
Scheme 3.49  Isolated compounds from bromonium ion intermediate of DHO 2.2 under the optimised 
dimerisation condition. 

 

3.5.5.  Dimerisation of oroidin 

The use of the optimised dimerisation reaction condition (Scheme 3.47) with 

oroidin on the same scale as with DHO, unfortunately did not lead to any isolable 
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amount of dimers.  The outcome was the same as before where dispacamide A (40%) 

and hydroxycyclooroidin (3.45; 10%) were the only products that were isolated along 

with starting material and unidentified decomposition products.  The presence of the 

alkene carbon double bond in addition to the imidazole carbon double bond provide 

more possible reaction pathways and could account for the formation of many 

different products in detectable but not isolable amounts.  

 

3.6.  Summary-  Bromonium Ion Route 

As has been already demonstrated, BDSB is a powerful reagent for 

electrophilic bromination.35,47,48,68  However, the investigation of the reactivity of 

BDSB on the pyrrole-terpene hybrid substrates provided only modest findings.  

Products formed from these reactions consisted mainly of linear addition products and 

a monocyclised product was formed only as a minor component.  The use of bases, 

both organic and inorganic, is not compatible with the reagent, leading to the 

inhibition of its reactivity.  However when DMF was used as part of the solvent 

system with BDSB, bromoformyloxylation was observed as a clean reaction.  This 

shows the utility of BDSB as a clean and efficient bromoformyloxylation reagent in 

the presence of DMF under mild conditions but that DMF is probably not an ideal 

solvent for bromonium ion formation. 

The application of BDSB to oroidin (2.1), led to the isolation of two main 

products: dispacamide A (2.16) and a hydroxycyclooroidin (3.45).  On the other hand, 

the application of BDSB to DHO (2.2), led to the formation of the ubiquitous 

oxidation products: dispacamide A (2.16) and dihydrodispacamide A (3.10), along 

with a spirocyclic monomer 3.43, dibromophakellin (2.54) and eventually to a dimer 
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3.46.  Attempts to convert spirocycle 3.43 into dibromohydroxyphakellin (2.54a) 

were unsuccessful.  The formation of dimer, tetrahydromauritiamine (3.46) is the 

second example of dimerisation and the first example of dimerisation of the 

monomeric precursor DHO (2.2), without enzymatic catalysis.  With this moderate 

success, we have demonstrated a biomimetic approach towards the generation of 

oroidin alkaloids, based on the recognition of the action of marine haloperoxidases in 

the biosynthesis of the wide diversity of marine natural products.  The family of the 

oroidin alkaloids is continuously growing and it would not be surprising if some of 

the compounds we have synthesised here, are eventually isolated from a sponge.  
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4.1.  Introduction 

The earliest reports of the phenomenon of fluorescence, date back to the 16th 

century when a bluish glow was observed from an infusion known as lignum 

nephriticum (kidneywood) from the tree Eysenardtia polystachya or Pterocarpus 

indicus, in daylight (Figure 4.1).1  Neither the phenomenon nor its source was 

understood at the time but the intense blue fluorescence has been recently identified to 

come from the natural product matlaline found in the kidneywood.2   

!  

Figure 4.1  Absorption and fluorescence colours of infusions of lignum nephriticum (Palo Azul) in 
daylight (left), taken from ref. 3 (public domain).3 Matlaline is the natural product responsible for the 
observed fluorescence (right). 

 

It was not until the middle of the 19th century that the term “fluorescence” was 

introduced by G. G. Stokes to describe the phenomenon whereby substances with 

particular photophysical properties absorb light and emit it at a longer wavelength.4  

In his case, he observed a solution of quinine irradiated with UV light emitted blue 

light.4  
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4.1.2.  Fluorescence 

Fluorescence results from a three-stage process that occurs in certain 

molecules, that are generally polyaromatic hydrocarbons or heterocycles, called 

fluorophores or fluorescent dyes.  The process responsible for the fluorescence is 

illustrated by the simple electronic-state diagram, the Jablonski diagram (Figure 4.2).  

 

Figure 4.2  Simplified Jablonski diagram, showing all three stages involved in fluorescence.5 

 

In the first stage, a photon of energy h!ex is supplied by an external source 

such as an incandescent lamp or a laser and absorbed by the fluorophore.  The 

molecule of the fluorophore moves from ground state to an excited electronic singlet 

state (S1').  Such a transition corresponds to the promotion of an electron to an 

unoccupied orbital of higher energy.  According to Born and Oppenheimer, such 
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electronic transitions are faster than electron movements due to molecular vibrations.6  

The time taken for an electron to move to an antibonding-orbital is in the order of 10-

15 s which is shorter than molecular vibrations which take 10-10 to 10-12 s to occur.6  

This observation follows the Franck-Condon principle which states that an electronic 

transition is most likely to occur without changes in the positions of the nuclei in the 

molecular entity and its environment.7,8  The resulting state is called a Franck-Condon 

state (excited state), and the transition involved is a vertical transition. 

In the second stage, the excited state exists for a finite time (10-10 – 10-13 s).  

During this time, the fluorophore undergoes conformational changes and is also 

subject to a multitude of possible interactions with its environment.5  These processes 

have two important consequences.  Firstly, the energy of S1' is partially dissipated, 

yielding a relaxed singlet excited state (S1) from which fluorescence emission 

originates.  Secondly, not all the molecules initially excited by absorption (Stage 1) 

return to the ground state (S0) by fluorescence emission.  Other processes such as 

collisional quenching, fluorescence resonance energy transfer (FRET) and intersystem 

crossing may also depopulate S1.5  FRET is a strongly distance-dependent excited-

state interaction in which emission of one fluorophore is coupled to the excitation of 

another.9  Intersystem crossing is a non-radiative transition between two vibrational 

levels of two electronic states of different multiplicity (S1 to T1).10  The fluorescence 

quantum yield, which is the ratio of the number of fluorescence photons emitted 

(Stage 3) to the number of photons absorbed (Stage 1), is a measure of the relative 

extent to which these processes occur.5 

In the last stage, a photon of energy h!em is emitted, returning the fluorophore 

to its ground state (S0).  Due to energy dissipation during the excited-state lifetime, 
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the energy of this photon is lower, and therefore of longer wavelength, than the 

excitation photon h!ex.5  The difference in energy or wavelength represented by (h!ex 

– h!em) is called the Stokes’ shift.5  The Stokes’ shift is fundamental to the utility of 

fluorescence techniques as a long Stokes’ shift minimises self-quenching and 

Rayleigh scattering.5   

Accordingly, a large Stokes’ shift is a desirable photophysical property of 

fluorophores.  Others include a large extinction coefficient (ability to absorb light), a 

high quantum yield (ratio of photons absorbed to that emitted), good photostability 

(resistant to photobleaching) and good solubility in the medium it is to be used in.  A 

large extinction coefficient and quantum yield result in fluorescence of high intensity.  

Fluorescence at longer wavelengths is highly desirable for use in biological systems to 

minimise photodamage and avoid interference from intrinsic fluorescence of 

biomolecules.  The window where water and biological materials do not absorb (are 

transparent) is in the range of 750 – 900 nm.11 

Fluorophores form an important class of molecules widely used in many areas 

of modern technology. They are used extensively as labelling agents and sensors in 

both chemical and biological systems, for cellular and molecular imaging as well as 

for detection and/or quantification of analytes.12,13  Their wide applicability is due to 

the higher sensitivity of fluorescence over absorbance.  Absorbance spectroscopy 

relies on the detection of a slight difference in the number of photons passing through 

the sample while fluorescence spectroscopy measures only the emitted photons from 

an ideal dark/zero background.5  It is therefore possible to detect concentrations at 

sub-nM levels.  Furthermore since few molecules have intrinsic fluorescence, the 

source of fluorescence is known and fluorescence measurements tend to be less 
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affected by interferences.  Furthermore, fluorescence is generally more sensitive to 

the environment of the chromophore than is light absorption.  This is due to the 

relatively longer time of 10-9 – 10-8 s that a molecule stays in an excited singlet state 

before relaxation while absorption is a process that is over in 10-15 s.5  The relatively 

longer time is sufficient to allow the molecule to respond to its environment and 

exhibits changes to its fluorescence properties.5  It is these responses that make 

fluorescence a widely used method in detecting changes in the environment of the 

fluorophore.  Therefore, the development of fluorophores with desirable 

photophysical properties mentioned earlier, makes these molecules important targets 

for synthesis.  Indeed, the wide applicability of fluorophores has led to the 

development and availability of a wide choice of fluorophores, each with their 

characteristic excitation and emission spectra. 

 

4.1.3.  Epicocconone 

In 2003, the fortuitous infection of a yeast culture by the fungus Epicoccum 

nigrum led to the growth of orangey-stained yeast which, when viewed under UV 

light, fluoresced red.14  The isolation of the compound responsible for the observed 

fluorescence took place in our laboratory and led to a new member of the azaphilone 

family, which was named epicocconone (4.1).14   
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The azaphilone family, as its name suggests, have an affinity for molecules 

containing an amino group.  Epicocconone will readily form an enamine with an 

amino group via the ring opening of its dihydropyran (Scheme 4.1).  The enamine 

formed is stabilised by an intramolecular hydrogen bond, thus preventing the release 

of the protein and the reversal of the coupling reaction.  However, the reaction is 

readily reversible through pH.  At pH 2.4, the adduct is stable but reverts to the 

starting materials at higher or low pH’s.15  The natural product 4.1 is a pro-

fluorophore as it is intrinsically non-fluorescent, or only weakly fluorescent at low 

wavelength (520 nm), but exhibits red fluorescence through its ability to covalently 

bond to amino groups, particularly to the amino side chain of lysine in proteins.15   

This results in the formation of an internal charge transfer (ICT) complex with a large 

Stokes’ shift (90 nm).16  The complex has fluorescence in the orange-red (610 nm) 

when subjected to UV or visible light (395 or 520 nm).14 

 

Scheme 4.1  Mechanism of protein fixation to epicocconone. 

 

This pro-fluorophore has generated interest and led to its development as a 

sensitive stain for protein detection.17  Its sensitivity is greatly improved by its long 

Stokes’ shift since there is no overlap of excitation and emission wavelengths.  In 

addition, this molecule has other advantageous characteristics, such as a small size 

(410 amu) and good solubility both in water and lipid.  It has successfully entered the 
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market as Deep Purple (GE Healthcare) and FluoroProfile (Sigma-Aldrich) as a total 

protein stain in electrophoresis and for protein quantification respectively.17,18 

However, epicocconone suffers from one main limitation; photobleaching 

with a lifetime of 11 minutes on a transilluminator.19 Despite this, epicocconone has 

proven a very useful natural product and offers a scaffold for the synthesis of 

analogues to address its shortcomings and most importantly to improve on its 

photophysical properties.  An understanding of the relationship between 

photophysical properties and molecular structures is also to be gained from the 

synthesis of analogues.   

 

4.1.3.1.  Epicocconone Analogues 

In their efforts towards the total synthesis of the natural product epicocconone, 

Franck and co-workers have developed a synthetic route to access several 

epicocconone analogues and two different modifications were investigated.20-23 The 

first was at the dihydropyran carbon bearing the methyl alcohol and the second 

involved the side chain of the molecule (Figure 4.3).  This led to a first generation of 

analogues bearing a ketone on the side chain of the molecule and a second generation 

with a !-diketone.  The results obtained have allowed some useful insights into the 

structure-photophysical relationships of epicocconone.     
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Figure 4.3  Modifications that have already been investigated in the synthesis of epicocconone 
analogues.  First and second generation (Gen) epicocconone analogues that have been synthesized. 

 

The first generation analogues with the ketone on the side chain proved to be 

less fluorescent than the natural product itself while the second generation analogues 

with a !-diketone were of comparable fluorescence.  This indicated the crucial role of 

the !-diketone in the formation of the internal charge transfer responsible for the 

fluorescence observed in epicocconone.24,25  Compared to the latter, these second 

generation analogues are fluorescent in their native form as well as, as their enamines.  

The use of a 2-naphthyl group as the R3 group on the second generation analogue 

scaffold, has led to a brighter analogue 4.2 (" = 17 500 M-1cm-1, # = 0.225) than 

epicocconone (" = 13 000 M-1cm-1, # = 0.147) in the formation of the enamine adduct 

with butylamine (Table 4.1). 

The presence of a dimethyl dihydropyran ring (R1 = R2
 = Me) was found to 

induce an increase (1.32 fold) in fluorescence emission intensity in the second 

generation analogues compared to the monomethyl counterpart (R1 = Me and R2
 = H) 

(Figure 4.3).20  Steric hindrance is likely to cause restricted rotation of the enamine 

which could be a source of non-radiative energy loss of the excited state.  It could also 
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be inhibiting the recyclisation of the enamine that leads to the release of the native 

fluorescent molecule, the tertiary alcohol being far less nucleophilic (Figure 4.4).20 

 

Figure 4.4  The presence of the dimethyl groups restricts rotation of the enamine and potentially 
inhibits and slows down recyclisation. 

 

The 2-naphthylepicocconone analogue has a signal-to-noise ratio, three times 

higher than that of epicocconone as a protein marker on gel electrophoresis, a better 

detection limit for five different proteins and a higher resistance to photobleaching 

with a half life of 33 min.20,26  Therefore, an epicocconone analogue with better 

photophysical properties than the natural product was achieved (Table 4.1).  These 

results encouraged us to investigate further analogues.  

Table 4.1  Comparison between the second generation analogue and the natural product, epicocconone. 

Entry Fluorophore UV absorption 
"max / nm 

" / M-1cm-1 

at 2nd max 
Max "em 

/ nm 
# 

1 

   4.2 

a 310, 415 

b 370, 515 

14 600 

17 500 

530 

610 

0.390 

0.225 

 

2 

4.1 

a 435 

b 396, 520 

13 400 

13 000 

535 

615 

0.026 

0.147 

a.  Measurements of the native molecule in ACN; b. Measurements of the enamine formed in the 
presence of butylamine (in excess) in ACN; Measurement of " at respective max $ex.25 
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4.1.4.  Near Infra-Red (NIR) Fluorescence 

Even though visible-light fluorophores still dominate the field of fluorescence, 

dyes that fluoresce in the near infra-red region (NIR) have attracted much attention 

over the past decade.27,28  In general, NIR fluorophores are defined as substances that 

emit fluorescence in the NIR region (700 – 900 nm) (Figure 4.5).29  Compared to 

most other conventional fluorescent probes, those that rely on NIR fluorescence 

possess unique advantages for tracing molecular processes in vivo.11,30  

 

Figure 4.5  The NIR region of the electromagnetic spectrum is indicated by the square. 

 

The main advantage of using NIR fluorescence technology is an almost 

complete elimination of background fluorescence caused by autofluorescence from 

biomolecules in living systems.11,30,31  Another benefit in the NIR region is that the 

scattered light from the excitation source will be greatly reduced since the scattering 

intensity is proportional to the inverse fourth power of the wavelength.  Low 

background fluorescence and low scattering result in a high signal to noise ratios, 

which is essential for high sensitive detection in live animals. The low absorptivity 

and scattering of NIR photons in tissue enable in vivo imaging and subcellular 

detection applications which require the transmission of light through biological 

components.31,32  NIR photons also mean less damage to biological samples. 



!156!

 A further advantage of NIR fluorescence is the availability and low cost of 

long-wavelength diode lasers for excitation and high efficiency silicon avalanche 

photodiodes for detection.  However, commercial diode lasers are only available at a 

limited number of discrete wavelengths.  To achieve optimum excitation, a 

fluorophore’s maximum absorption wavelength should match these laser wavelength. 

 

4.1.4.1.  Near Infra-red Fluorophores 

A variety of NIR-active organic dyes have been synthesised, with fluorescence 

maxima ranging from 700 nm to about 900 nm.29  The principal limitations of most of 

theses dyes in biological systems are the low quantum yields, poor chemical stability 

and/or photostability, and limited solubility in aqueous solutions.27  Moreover, there 

are only a relatively few classes of NIR dyes that are readily available.  These include 

the cyanine dyes, phthalocyanines and squaraine dyes.27  There is thus a great interest 

in developing new NIR fluorescent dyes with improved properties for bioimaging 

applications.  

 

4.1.4.1.1.  Cyanines 

The most widely employed NIR fluorophores are cyanine dyes.!!The cyanines 

are a unique class of charged chromophores with an odd number of carbons in a 

conjugated polymethine framework.33  Cyanine dyes make excellent NIR dyes that 

have high molar absorptivity, strong fluorescence, and good photostability.  However 

their intrinsically small Stokes’ shifts may produce interference from Rayleigh and 

Raman Scattering. 
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The indocyanines are the most important type of cyanine dye, featuring two 

indole or benzoindole rings linked by a polymethine chain (Figure 4.6).  While Cy5 

(4.3) fluoresces in the red, Cy7 (4.4), a more conjugated cyanine, fluoresces in the 

NIR region.  The wavelength can be adjusted by varying the length of the 

polymethine chain and/or changing the heterocycle at the end of the chain.  An 

example of the latter is the carbocyanine (4.5) where quinoline forms the heterocycle 

(Figure 4.6).34  Derivatives of the cyanine dyes are the most commonly used NIR 

fluorescent dyes and popular in bioconjugation application.  Indocyanine green (ICG, 

4.6) is a Cy7 cyanine dye, that has FDA approval for use in medical diagnosis and has 

allowed noninvasive deep tissue imaging.35-37  In long chain (n>3, where n is the 

number of double bonds as indicated in Figure 4.6), the decrease in rigidity of the 

double bond conjugation system leads to a reduction in brightness of the dye as the 

longer the polymethine chain the more likely occurrence of non-radiative 

isomerisations or oxidations.  To circumvent this, a bridged polymethine chain is 

introduced to make the link less flexible.38  Tung and co-workers reported a Cy7 

derivative, NIR820 dye (4.7) with maximum emission at 820 nm which has a 

cyclohexene bridge heptamethine chain and has been functionalised with a N-

hydroxysuccinimide ester on one of the indole ring for conjugation purposes (Figure 

4.6).39  In order to increase the solubility of cyanine dyes, sulfonate groups have been 

introduced on the aromatic rings or the N-alkyl chains.  This has also led to the 

decrease of self-aggregation of cyanine dyes in aqueous solution.  Self-aggregation 

along with a small Stokes’ shift are the major problems of cyanine dyes. 
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Figure 4.6  Example of NIR cyanine dyes. 

 

4.1.4.1.2.  Porphyrins and Phthalocyanines 

Porphyrins and phthalocyanines and their metal complexes are amongst the 

most intensively studied NIR-active dyes.  Phthalocyanines are an important class of 

NIR dyes used in many different fields, including as colourants, cancer therapy 

agents, detergents, and non-linear optical materials.40  In general they demonstrate 

excellent chemical and photostability.  However, most phthalocyanine dyes are 

hydrophobic, tend to aggregate in aqueous solution and also tend to have high 

phototoxicity in cells.  They are also not easily functionalised for bioconjugation 

purposes.  La Jolla Blue (4.8) is a NIR phthalocyanine that has two water-soluble 

axial polyethylene glycol moieties and bears two reactive carboxylic acid groups on 

the macrocycle useful for bioconjugation (Figure 4.7).41  Generally, porphyrins 

absorb only weakly in the red region of the spectrum (600 – 700 nm) and not at all in 

the NIR region, whereas chlorins (dihydroporphyrins) absorb strongly in the red 

region, and bacteriochlorins (tetrahydroporphyrins) absorb even more strongly in the 
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NIR region.42  NIR porphyrins were achieved through large fluorine-containing 

porphrins 4.9-4.11 with emission bands at 746 – 953 nm, reported by Osuka and co-

workers (Figure 4.7).43  Synthetic chlorin and bacteriochlorin macrocyle dyads were 

created (example 4.12) and displayed large Stoke’ shifts (85 – 110 nm) and have 

narrow spectral widths (# 20 nm).44  However these lack the structural motifs required 

for bioconjugation and are not soluble in aqueous media as porphyrins tend to 

aggregate in water to form excimers that have different spectral properties.45 

 

Figure 4.7  Example of NIR macrocycle dyes: a phthalocyanine, large porphyrin macrocyles and a 
chlorin/ bacteriochlorin dyad. 

 

NNN

N

N N N

N
HOOC

HOOC
Si

O Si N
H

O

N
H

NH

O

O O
O

O Si
H
N

O

H
N N

H

O

O O O

n

n

!ex 680 nm
!em 700 nm
" = 0.70
# = 170 000 M-1cm-1

La Jolla Blue 4.8

N

NH N

HN
C6F5

C6F5

C6F5

C6F5

n-3

n = 14, !em 892 nm
n = 16, !em 939 nm 
n = 18, !em 953 nm

4.9-4.11

N

NH N

HN N

NH N

HN
O

!ex 675 nm
!em 760 nm
" = 0.19
# = 80 000 M-1cm-14.12



!160!

4.1.4.1.3.  Squaraines 

The squaraines are a class of organic dyes showing intense fluorescence, 

typically in the red and NIR.46  Absorption maxima are found between 630 – 670 nm 

and their emission maxima are between 650 – 700 nm.  They possess a unique 

aromatic four-membered ring system derived from squaric acid and a resonance 

stabilised zwitterionic structure.  Most squaraines suffer from the nucleophilic attack 

of the highly electron deficient central four membered ring.  This has been decreased 

by the formation of a rotaxane around the dye to protect it from nucleophiles.  They 

are currently used as sensors for ions and have recently, with the advent of protected 

squaraine derivatives, been exploited in biomedical imaging.47  Suzuki and co-worker 

reported a water soluble squaraine (4.13) (Figure 4.8), functionalised with sulfonate 

moities which they have shown to be applicable to protein detection as covalent 

labeling probes, and as contrast agents for in vivo imaging.48 

 

Figure 4.8  Water-soluble NIR fluorescent probe based on a squaraine structure, exhibiting NIR 
fluorescence after protein labeling. 

 

4.1.4.1.4.  BODIPY Dyes 
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good and environment-independent brightness, and excellent photo-stability 

characteristics as compared to the cyanines and other NIR dyes.50  However, they 

suffer from the fact that their absorption maxima lie in the visible region and, thus, 

they are not optimal for noninvasive in vivo imaging.  They are also notable for their 

high extinction coefficients and small Stokes’ shifts.  O’Shea and co-workers has 

synthesised tetraarylazadipyrromethenes (example 4.14) which contain aryl groups 

bonded to the chromophore and has resulted in emission into the NIR region (Figure 

4.9).51-53  Suzuki and co-workers have extended the emission of BODIPY analogues 

into the NIR region by fusing aromatic rings to the BODIPY core and by further 

increasing the conjugation by introducing aryl moieties (example 4.15) (Figure 

4.9).54,55 

 

Figure 4.9  The BODIPY core and examples of NIR BODIPY dyes. 
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because of their excellent photophysical properties.57  However, the absorption and 

emission wavelengths of most xanthene-based fluorophores as well as coumarin lie in 

the visible region.  Nevertheless, fluorescein, rhodamine and coumarin (Figure 4.10) 

offer a platform onto which to develop stable analogues with absorption and emission 

in the red or NIR region.  This has been achieved through chemical modifications of 

their xanthene core.  Seminaphthofluorone xanthene dye 4.16 that exhibits NIR 

fluorescence, both in the neutral and anionic forms, with impressive Stokes’ shifts, 

were synthesised by Strongin and co-workers (Figure 4.10).58  NIR fluorescence was 

achieved by both the group of Lin and Song when they introduced a cyanine onto 

their respective developed xanthene-based scaffold 4.17 (Figure 4.10).59,60  The 

fluorescence is very solvent-dependent and has relatively small Stokes’ shift.  

Rhodamine 800 (Rhod 800, 4.18), also known as MitoFluor Far Red 680, is a cationic 

lipophilic dye, which emits in the NIR region and is used for staining of the 

mitochrondria.61 ! 
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Figure 4.10  Examples of NIR xanthene-based and coumarin-based dyes.  

 

4.1.4.1.6.  Benzo[c]heterocycles 

Push-pull type NIR dyes that contain isobenzofuran or isothianaphthene 

moieties have been reported by Swager and co-workers (Figure 4.11).62 

 

Figure 4.11  Examples of NIR Benzo[c]heterocycle dyes. 
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4.1.4.2.  NIR Epicocconone Analogues 

So far, in the synthesis of epicocconone analogues, structural modifications 

have only been made to the epicocconone sidechain (Figure 4.3).  It was found that 

changing the triene to phenyl to naphthyl did not increase the emission wavelength.  

We reasoned that this may be possible by extending the conjugation of the other end 

of the molecule.  This could be achieved in two ways: firstly by adding more 

conjugation to the reacting amine.  Thus reacting aniline with epicocconone results in 

an adduct with $em = 630 nm which is an increase in emission wavelength of 20 nm 

compared to the butylamine adduct (Coghlan and Karuso, unpublished) but the 

resulting adduct is unstable and only a modest increase in $em was achieved.  

Secondly the conjugation could be added in between the dihydropyran and the amine.  

This can be achieved by taking advantage of the fact that the dihydropyran is a 

masked aldehyde.  Therefore in order to synthesise NIR epicocconone analogues, the 

high affinity of the dihydropyran ring in the epicocconone scaffold for nucleophiles 

has been exploited.  This strategy has involved the introduction of nitrogen 

heterocycle-based ylides onto the epicocconone scaffold via the ring opening of the 

dihydropyran ring (Scheme 4.2).  This would lead to the formation of epicocconone-

hemicyanine hybrid dyes which we expected would extend the emission wavelength 

into the red to NIR region.  

 

Scheme 4.2  Synthesis of epicocconone-hemicyanine hybrid dyes. 
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4.2.  Results and Discussion 

 With the aim of discovering new NIR dyes with improved photophysical 

properties over existing ones, we investigated the design and synthesis of 

epicocconone-hemicyanine hybrids (Scheme 4.2). 

4.2.1.  Hemicyanines 

Hemicyanine is a class of cyanine.  While cyanine is broadly used to refer to 

two nitrogens joined by an odd numbered polymethine chain, hemicyanine contain 

only one nitrogen as part of a heteroaromatic moiety, such as indole, quinoline, 

thiazole to name a few, and connects to a polymethine chain (examples 4.21 and 4.22; 

Figure 4.12).  Hemicyanine have been widely applied in different areas of technology 

due to their diverse properties.63  Because of their spectroscopic properties they are 

commonly used as laser dyes and fluorescence probes.64  They generally possess 

absorption and emission wavelengths below 600 nm but it has been possible to extend 

the latter to the red/NIR region by conjugation to existing fluorescent scaffolds (4.17 

in Figure 4.11).  Their photophysical dependence on viscosity offers several 

applications in polymer science and analytical chemistry.65-67  This is due to cis/trans 

isomerisation of the linking double bond, which is inhibited in viscous solvents.   

 

Figure 4.12  General representation of a hemicyanine and two examples of hemicyanines.   
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The general method used for the synthesis of hemicyanine dyes involves the 

condensation of nitrogen heterocycle-based ylides with a substituted benzaldehyde in 

the presence of a suitable base.68  Scheme 4.3 shows the condensation of an N-alkyl 

substituted 2-methyl-3,3-dimethylindolium iodide salt (4.23) with an aldehyde in the 

presence of a base.  The reaction mechanism proceeds through an aldol-type reaction 

to eventually yield the N-alkyl-2-styryl-3,3-dimethylindolium iodide salt (4.24) as the 

hemicyanine dye.  

 

Scheme 4.3  Condensation of N-alkyl substituted 2-methyl-3,3-dimethylindolium iodide with an 
aldehyde to form a hemicyanine dye. 
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Scheme 4.4  Retrosynthetic study of the epicocconone scaffold.  

 

The most promising epicocconone analogue synthesised so far is 4.2 as it is 

brighter (" = 14 600 M-1cm-1, # = 0.39) than epicocconone (" = 13 400 M-1cm-1, # = 

0.026).  It also showed the best staining characteristics in gel electrophoresis as well 

as being more resistant to photobleaching.26   

This analogue was prepared following the reported procedure with a few 
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yield over the last two steps.  This is a critical step as the presence of both TFA and 

water in the ratio 7:20 not only cleaves the MOM groups but accelerates the oxidation 

of the intermediate oxonium ion to yield the dearomatised product 4.36.  Since the 

completion of this work, a shorter synthetic route of only 5 steps has been devised to 

access the key %-hydroxyketone 4.36 starting from commercially available methyl 

atatrate.26 

 

Scheme 4.5  Synthesis of the key %-hydroxyketone.  Reaction conditions: a. i-PrNCO, AlCl3, DCM, 
r.t, 3 h, 95%;  b. t-BuLi/TMEDA, THF, -78 oC then 2,2-dimethyloxirane, THF, -78 oC-r.t, 68%;  c. 
camphorsulfonic acid, toluene, reflux, 95%;  d. AlCl3, DCM, ref, 24 h, 98%;  e. NaH, (MOM)Cl, THF, 
r.t, 100%;  f. DIBAL-H, toluene, $78 °C, 100%;  g. CH2Cl2, TFA/H2O (7:20, v/v), then IBX, 56%. 
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deprotonated to form the corresponding lithium enolate (Scheme 4.7).  The 

purification of the commercial methyldioxinone on a short pad of silica prior to use, 

increased the yield of the 2-naphthyldioxinone. 

 

Scheme 4.6  Synthesis of the 2-naphthyldioxinone.  Reaction conditions: a. oxalyl chloride, DMF 
(catalytic amount), DCM, r.t, 2.5 h, qqt;  b. n-BuLi/DIPA, THF, –78 oC then 2,2,6-trimethyl-4H-1,3-
dioxin-4-one, THF, –78 to –40 oC, 2.5 h, 75%. 

!

!

Scheme 4.7  Unstability of the 2-naphthyldioxinone due to the presence of acidic protons.!

!

The formation of the acylfuranone ring occurs via the in situ formation of an 
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conditions. The loss of TBDMS during the reaction is apparent, as the epicocconone 

analogue 4.2 formed is non-silylated (Scheme 4.9).    

 

Scheme 4.8  Formation of the acylfuranones from the cyclisation of in-situ formed acyl ketenes from 
dioxin-4-ones, with the key %-hydroxyketones. 

 

Scheme 4.9  Synthesis of the second generation, 2-naphthyl epicocconone analogue.  Reaction 
conditions: a. TBDMSOTF, DIEA, DCM, r.t, 2 h, 45%; b. TEA, 4Å MS, toluene, 100°C, 24%.!

!

Consequently, the use of triisopropylsilyl (TIPS) as a protecting group, was 

investigated as a possible alternative to TBDMS.  Thus TIPS protected dioxinone was 

synthesised and obtained in a comparable yield to TBDMS protected dioxinone after 

purification through a short pad of silica.  The protected dioxinone must be used 

straight away as it is unstable and decomposes over a few hours at room temperature.  

TIPS-protected-2-naphthyldioxinone 4.40 was reacted for 7 h with 4.36 in refluxing 

toluene, in the presence of TEA and 4Å molecular sieves.  After an aqueous work-up, 

crude 1H NMR indicated a mixture of the desired product and an uncyclised 
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intermediate that possess the same Rf on TLC as the desired product (Scheme 4.10). 

Purification led to the isolation of 4.2 in 21% yield.  While TIPS as a protecting group 

for the dioxinone is more robust to the reaction conditions used in the acylfuranone 

ring formation, this however appears to inhibit the desired cyclisation.  Its removal 

with excess aqueous HF in THF did not lead to the desired cyclisation as the latter 

requires basic reaction conditions to proceed.!

 
Scheme 4.10  Synthesis of the second generation, 2-naphthyl epicocconone analogue using TIPS-
protected-2-naphthyldioxinone, led to a mixture of desired product and uncyclised intermediate.  
Reaction conditions: a. TEA, 4Å MS, toluene, 100°C, 7 h, 21% yield.!

 

With the aim of improving on the yield of the acylfuranone reaction, the 

addition of the TBDMS protected dioxinone was effected in two different ways: (1) 

where the dioxinone was added all at once and (2) where the addition was conducted 

in 3 portions at 1 h intervals.   The crude 1H NMR spectra of the two reactions were 

almost identical and the desired epicocconone analogue was isolated in 24% yield in 

the first instance and in 26% yield in the second. 

 
4.2.3.  Synthesis of the hemicyanine moieties 

 With the 2-naphthylepicocconone analogue 4.2 in hand, we turned our 

attention to the synthesis of the hemicyanine moieties.  A range of quaternary salts 

4.41-4.47 were purchased or synthesised from the base with alkyl iodides or sultones 
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(See Experimental).  The presence of sulfonic acid groups has been reported to help 

decrease self-aggregation of cyanine dyes in aqueous solution.33 

 

 

4.2.4.  Synthesis of the Epicocconone-Hemicyanine Hybrid Dyes 

The coupling of 4.2 analogue with seven different N-alkyl-2-methyl or 4-

methyl iodides (4.41-4.47) was effected for the preparation of the epicocconone-

hemicyanine hybrid dyes (Scheme 4.11).   

 

Scheme 4.11  Synthesis of epicocconone-hemicyanine hybrid dyes. 

 

The initial reaction trials were conducted with one equivalent of 

trimethylindolium iodide salt (4.41) in the presence of four equivalents of TEA in 

chloroform at room temperature.  The desired epicocconone-hemicyanine hybrid was 

formed immediately as evident from a change in colour to deep purple.  The product 

was isolated as a dark blue solid after silica chromatography in 30% yield.  The use of 

N
I

N
I

N
I

HO3S

N

S

I

N
IHO3S

O

OH
N

S

SO3

N

SO3

4.41 4.434.42

4.44 4.45 4.46

4.47

N
R

N
R

or base

O

OH

OO N
R

OH
O

4.2 +

4.41-4.47



Chapter 4 

! 173!

an inorganic base (for example potassium carbonate) provided only trace amount of 

the hybrid dye even after prolonged reaction time.  The use of higher temperatures led 

to decomposition.  When the reaction was conducted in methanol in the presence of 

TEA at room temperature, a dark blue colouration was initially observed but this 

turned brown over time.  Crude 1H NMR indicated no evidence of the desired 

product.  The use of a higher equivalent of TEA was observed to speed up the 

reaction considerably from 3 days to 1 day and allowed an improvement in the yield 

from 30% to 52%.  

While chloroform was used as a solvent with the quaternary salts 4.41-4.43, it 

proved inappropriate with quaternary salts 4.44-4.47 due to solubility issues. DMSO 

was found to be the only suitable solvent even so leading to poor to moderate yields 

of the hybrids because of difficulties in the purification of the sulfonic acid containing 

hybrids (Table 4.2).  
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Table 4.2 Synthesis of the epicocconone-hemicyanine hybrid dyes. 

 

Entry R Solvent Time 
(days) 

hybrid Yielda 
(%) 

1 4.41 CHCl3 1 4.48 52 

2 4.42 CHCl3 1 4.49 62 

3 4.43 CHCl3 1 4.50 60 

4 4.44 DMSO 2 4.51 32 

5 4.45 DMSO 2 4.52 29 

6 4.46 DMSO 2 4.53 12 

7 4.47 DMSO 2 4.54 15 

a. Isolated yields. 

 

Hybrids 4.48-4.50 were purified on silica either in a glass column or by 

preparative TLC using EtOAc/cyclohexane as eluent.  A certain amount of the dye 

was irreversibly adsorbed onto the silica as evident by the persistent blue colouration 

of the silica even after stripping with methanol.  The hybrids containing acidic 

group(s) would not travel on silica at all, so were subjected to HPLC purification 

using a kromasil-C18 column with a solvent system of ACN/H2O with 0.01% TFA.  

However, this led to extensive decomposition.  LC-MS analysis of 4.52 (ACN/H2O 

with 0.05% formic acid), showed 2 main peaks with masses that corresponded to the 

hemicyanine moiety 4.45 and epicocconone analogue 4.2 (Figure 4.13). 
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Figure 4.13  LC-ESIMS analysis of 4.52 (ACN/H2O with 0.05% formic acid) showing 2 main peaks 
corresponding to A. M+ as 4.45 and B. [M+H]+ as [4.2+H]+. 

 

The acidic conditions appeared to be the cause of the decomposition observed. 

HPLC in ACN/H2O on a Gemini C18 column resulted in no elution of the dye 

without the presence of an acid additive.  Changing to an Alltech Econosphere C18 

column eluted the dye but with decomposition.  Switching to freshly distilled water 

instead of milliQ water allowed decomposition to be kept at a minimum and allowed 

more reproducible peaks to be obtained.  The sulfonic acid dyes seem to be extremely 

acid sensitive. 
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While the hybrid dyes without any acid group were stable, the presence of an 

acidic group, sulfonic acid or carboxylic acid on the terminal N-alkyl chain led to the 

recyclisation of the hybrid back into its two components.  Hybrid (4.52) with a 

sulfonic acid group on the indole does not appear to suffer from this instability, 

suggesting that the sulfonic acid sidechain catalyses the observed recyclisation.  The 

hybrids 4.51, 4.53 and 4.54 were stable as long as they are in the solid form and only 

start recyclising slowly when in solution. 

A possible mechanism for the observed rapid decomposition of the hybrids 

with carboxylate or sulfonate side chains could involve intramolecular deprotonation-

reprotonation (Scheme 4.12).  

 

Scheme 4.12  Possible reaction mechanism to explain the reversibility of the coupling reaction to 
provide the 2-naphthylepicocconone and hemicyanine back. 

 

The structure of the prepared compounds was confirmed by NMR 

spectroscopy with the exception of the sulfonated quinolium hybrid 4.54 which gave 

only broad signals.  Key 1H-13C HMBC correlations in the spectrum of 4.48 indicated 

the success of the coupling (Figure 4.14).  The 1H NMR spectra display two 

characteristic doublets (3JHH 13–14 Hz) at 7.5 and 8.0 ppm, which are attributed to 

both vinyl protons.  The coupling constant indicates an all trans configuration. 
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Figure 4.14  Key 1H-13C HMBC correlations of 4.48.! 

 

4.2.5.  Photophysical Properties of the Epicocconone-Hemicyanine Hybrid Dyes 

The steady-state photophysical properties of the synthesised hybrid dyes were 

determined (details are in the Experimental) and the results are summarised in Table 

4.3 and the raw data in Appendix 6.2. 
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Table 4.3 Summary of photophysical properties of the synthesized hemicyanine-epicocconone hybrid 
dyes. 

Entry Hybrid UV 
absorption 
"max (nm) 

" (M-1cm-1) 
at longer 
"max  

Max 
"em 

(nm) 

Stokes’ 
shift 
(nm) 

# 

1  

4.48 

 

470, 630 

 

12 000 

 

715 

 

85 

 

0.056a 

2  

4.49 

 

480, 650 

 

72 000 

 

730 

 

80 

 

0.033a 

3  

4.50 

 

480, 650 

 

37 000 

 

725 

 

75 

 

0.033a 

4  

4.51 

 

470, 630 

 

71 000 

 

725 

 

95 

 

0.028a 

5  

4.52 

 

470, 630 

 

41 000 

 

720 

 

90 

 

0.066a 

6  

4.53 

 

470, 630 

 

19 000 

 

720 

 

90 

 

0.058a 

7  

4.54 

 

530, 720 

 

37 000 

 

795 

 

75 

 

0.0027 a 

1,1’-diethyl-4,4’-carbocyanine iodide (# = 0.007 in EtOH) used as a standard; a. Measurements done 
in acetonitrile; b. Measurement done in DMSO. 

 

The fluorescence spectrum of 4.49 (Figure 4.15), representative of the 

epicocconone-hemicyanine hybrids synthesised (Appendix 6.2), is similar to 

epicocconone and its analogue with relatively broad absorption and emission and a 

large Stokes’ shift. 
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Figure 4.15  Fluorescence spectrum of 4.49 in acetonitrile. 

 

The UV absorption is red shifted by ~110 nm indicating an increase of about 4 

double bonds (1 double bond ~ +30 nm) in conjugation of the chromophore.  This sort 

of increase was not seen with the change from phenyl to naphthyl at the other end of 

the molecule.  As expected, the fluorescence emission of 4.48-4.54 became red-

shifted compared to 4.2 or 4.1 after coupling with the hemicyanine moieties 4.41-

4.46.  The difference in wavelengths is about 165 nm as compared to the native 2–

naphthylepicocconone and about 110 nm when compared to the butylamine adduct of 

the latter again indicating a 4 double bond equivalents increase in wavelength.  

Excitation at their respective absorption maxima, leads to maximum emission 

wavelengths between 715 – 730 nm.  Laser diodes manufactured from gallium indium 

phosphide or aluminium gallium indium phosphide or the krypton laser emitting near 

650 nm69, should be excellent excitation sources for these hybrid dyes. 
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Like the Cy5 dyes, the epicocconone-hemicyanine hybrids have "ex around 

650 nm but unlike Cy5, which has a "em of 670 nm, these new dyes emit around 730 

nm.  Thus while Cy5 dyes suffer from a small Stokes’ shift of 20 nm, the hybrids 

synthesised benefit from a relatively large Stokes’ shifts ranging from 75 – 95 nm.  

However, the hybrid dyes possess relatively small extinction coefficients, the highest 

being 72 000 M-1cm-1 for the benzoindole derivative 4.49, in comparison to the 

cyanines that are often over 200 000 M-1cm-1.63  Nevertheless, the extinction 

coefficients are all above that of the butylamine adduct of epicocconone (13 000 M-

1cm-1 in ACN).25  However, the hybrid dyes were found to possess a quantum yield 

100 times lower than Cy5 (# 0.28.) 

The sulfonated quinolinium derivative 4.54 achieved the longest emission 

wavelength of 795 nm, which is suitable for whole body imaging.70,71  This work 

demonstrates that fluorescence of the epicocconone-hemicyanine hybrid dyes can be 

further red-shifted by attaching the appropriate heterocycle to the dihydropyran end of 

the epicocconone scaffold but stability issues need to be overcome. 

 

4.2.6.  Investigation of the Hybrid Dyes as Fluorescent Probes 

A fluorescent probe is a fluorophore with ‘function’, that is, it interacts 

specifically with its environment to induce a concomitant change of its photophysical 

properties.  The utility of the epicocconone-hemicyanine hybrid dyes as fluorescent 

probes was investigated by measuring their change in fluorescence with pH, 

surfactant, protein and oligonucleotide concentration concentrations.  The full data is 

provided in Appendix 6.3, 6.4, 6.5 and 6.6, and the most interesting results are 

discussed in the following sections. 
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4.2.6.1.   Effect of pH on the Fluorescence of the Hybrid Dyes 

 The UV absorbance and fluorescence of the epicocconone-hemicyanine hybrid 

dyes was measured at different pHs in universal buffer and graphs of absorbance 

against pH and fluorescence against pH were constructed (Appendix 6.3; e.g Figure 

4.16A and B for 4.49). The presence of isobestic points in the absorbance spectrum 

(Figure 4.16A) indicates that this change corresponds to a reversible change such as 

protonation/deprotonation.  In 4.49, this corresponds to the deprotonation/protonation 

(Figure 4.17) of the !-diketone of the hybrid with an apparent pKa2 at ground state of 

10.26, which was determined by fitting a sigmoidal curve (GraphPad Prism (v 4.0)) to 

absorbance at the maximum absorbance wavelength (625 nm for 4.49) at different 

pHs (Figure 4.16C).  Similarly, a sigmoidal curve was fitted to fluorescence intensity 

at the maximum emission wavelength (635 nm for 4.49) at different pHs (Figure 

4.16D).  The apparent pKa2 at the excited state for 4.49 was determined to be 10.02.    

 

Figure 4.16 A.  Presence of isobestic points (shown by arrows) in the absorbance spectrum of 4.49. 

0-1%!

-!

-1%!

-1(!

-1)!

-1'!

-1&!

-1.!

-12!

-! (-! '-! .-! *-! %--!

!"
#$
%"
&'

()
*

+&,)-)'./0*1234*'5*

"#$%&!'(!)*+'#*$,-.!$/!01((.#.,/!%2+! 3$(!
3$)!
3$'!
3$&!
3$.!
3$2!
3$*!
3$+!
3$%-!
3$%%!
3$%(!

"1!

O

OH

O

O

HO
O

N

4.49



!182!

!
Figure 4.16 B.  Fluorescence intensity spectrum of 4.49 at different pHs initially. !

          

Figure 4.16  C. Absorbance vs pH plot and D. Corrected fluorescence vs pH plot for 4.49 fitted to a 
sigmoidal pKa plot; Y=(Bottom*10^(X-pKa)+Top)/(1+10^((X-pKa))) (GraphPad Prism (v 4.0)); point 
of inflection give the pKa. 

 

 

Figure 4.17  Species of the epicocconone-hemicyanine hybrid dye 4.49 at different pHs. 

 

The pKa values for all the hybrid dyes were calculated (Table 4.4).  In general, 

the pKa value for the !-diketone in the excited state is lower ca 0.2 pKa units than in 
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the ground state, unlike with epicocconone 4.1 where an increase in pKa is observed 

in the excited state.21  This indicates that in the hybrid dyes in the excited state, the 

enol proton is less tightly held, leading to the decrease in pKa.  The hybrid dyes 4.48 

and 4.53 display much lower pKa values (in the range of 3.5 – 4.5) (Appendix 6.3.1) 

which likely correspond to the pKa
 of the hemicyanine nitrogen (pKa1; Figure 4.17) in 

the excited state. 

Table 4.4  Calculated ground state and excited state pKa values for hybrid dyes.  GS= ground state; ES 
= excited state; a.  sigmoidal curve could not be fitted; b.  not calculated but in the range of 3.5 – 4.5.   

 4.48 4.49 4.50 4.51 4.52 4.53 4.54 
pKa (GS) -a 10.26 10.14 10.24 10.02 10.18 8.56 
R2 - 0.9885 0.9811 0.9839 0.9943 0.9435 0.9881 
pKa (ES) -b 10.02 10.04 10.09 9.81 -b 8.20 
R2 - 0.9696 0.9337 0.9799 0.8141 - 0.9754 
 

The mechanism of fluorescence for epicocconone and its analogues has been 

explained by the occurrence of an internal charge transfer (ICT) within the 

fluorophore.16,24,72  An ICT occurs in a push-pull system with an electron donating 

and an electron withdrawing group at opposite ends, linked through conjugation that 

will allow delocalisation of electrons but not aromaticity.  In the hybrid dyes, a push-

pull system exists between the heterocyclic nitrogen (electron source) of the 

hemicyanine moiety and the ketoenol (electron sink) at the epicocconone end of the 

hybrid (Figure 4.18).  At pHs < pK1, the lone pair of electrons of the heterocyclic 

nitrogen is not available for delocalisation into the epicocconone moietie thus 

explaining the low fluorescence emission.  At pHs > pK2, the presence of a negative 

charge and the available lone pair of electrons of the heterocyclic nitrogen lead to a 

strong ICT, thus explaining the strong fluorescence emission.  If an ICT is present, the 

fluorescence within a hydrophobic medium should be greater than in polar medium 

where the dipole can be dispersed through H-bonding.5   
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Figure 4.18  Possible mechanism of fluorescence of the epicocconone-hemicyanine hybrid dye based 
on ICT. 

 

After 3 hours in buffer, the fluorescence generally decreased and the 

absorption spectra change such that there was no longer an isobestic point indicative 

of decomposition.  This was a general phenomenon for all the hybrid dyes (Appendix 

6.3). 

 

4.2.6.2.  Influence of SDS on the fluorescence of the hybrid dyes 

Membranes typically do not display intrinsic fluorescence.  For this reason it 

is common to label membranes with probes which partition into the non-polar 

hydrocarbon chain region of the membranes.  In order to investigate the potential of 

the hybrid fluorophores as membrane probes, sodium dodecyl sulfate (SDS), an 

anionic surfactant was used as a model.  A general characteristic of surfactants is the 

formation of micelles in aqueous solution above a certain concentration, known as the 

critical micellar concentration (CMC) which correspond to a concentration of ~0.25% 

(w/v) of SDS.73  As such, micelles can be used as a model for the lipid membrane 

environment.      
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At concentration of SDS greater than 0.2% (w/v), an increase in fluorescence 

intensity was observed for the hybrid dyes (Appendix 6.4).  Such behaviour is 

common for internal charge transfer (ICT) fluorophores where H-bonding to water 

decreases the polarity of the excited state and quenches it.5  However, the 

fluorescence did not show a point of inflection at the CMC but continued to increase 

(Figure 4.19A and Appendix 6.4).  A point of inflection was observed at CMC when 

fluorescence was plotted against viscosity of SDS micelles which was measured in 

water using electron spin resonance spectroscopy of the nitroxide labelled fatty acid 

probes (5,16-doxylstearic acid) and reported by Bahri and co-workers74 (Figure 

4.19B).  Therefore, these hybrid dyes appeared to be responding not only to the 

formation of micelles but also to increasing mivroviscosity of the micelles that result 

from the increasing concentration of SDS.  
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Figure 4.19 A.  Fluorescence response at $em = 723 nm for 4.49 with SDS concentration log (% w/v).  
An increase in fluorescence was observed above CMC; B. Fluorescence response at $em = 723 nm for 
4.49 with mivroviscosity of SDS in water.   

 

Increasing viscosity inhibits free bond rotation suggesting this is a major non-

radiative decay mechanism for these compounds.65  Hemicyanine dyes have been 

applied as molecular rotors to determine viscosity in solutions or biological fluids.65  

 

4.2.6.3.  Fluorescence of the Hybrid Dyes in the Presence of Biomolecules 

Fluorophores are both useful in covalent and non-covalent labelling of 

biomolecules.  These would ideally be weakly or non-fluorescent in water, but 

fluoresce strongly when bound to the analyte of interest.  A marked shift in 

$em is also useful.  Epicocconone is unique in that it has the ability to covalently bond 

to amino groups in a reversible fashion and in so doing, exhibits a red fluorescence.  
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DNA, requires staining with dyes such as acridines, ethidium bromide, and other 

planar cationic species, that can intercalate with DNA and thereby become highly 

fluorescent.  Similarly, minor groove binding dyes, such as Hoechst 33342, are 

specific to double stranded DNA.  Cyanine dyes have been used as oligonucleotide 

probes due to their capacity to bind to DNA through non-covalent interactions either 

by intercalation between base pairs (monomethine (n = 0) cyanine dyes) or minor 

groove binding of double-stranded DNA (trimethine (n = 1) and penta-methine (n = 2) 

cyanine dyes).75-78  There was no detectable response of fluorescence of the hybrid 

dyes to double strand of DNA (Appendix 6.5).   

However, fluorescence response to changes in the concentration of protein 

(bovine serum albumin; BSA) was observed for some of the hybrid dyes.  A blue-shift 

(%$ 5-10 nm) in emission wavelength was noted indicative of a lower polarity in the 

local environment around the protein.5  In addition, an increase in fluorescence 

intensity was observed with increasing concentration of BSA.  Hybrids 4.50, 4.51 and 

4.53 (Appendix 6.6)  were found to respond to BSA with the best response obtained 

with 4.51 (Figure 4.20).  The other hybrids either have negligible response to BSA or 

no response at all.  The detection limit for 4.51 determined to be 1.0 µg/mL, 

suggesting this particular probe could be useful in protein visualisation/quantification. 
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Figure 4.20  Fluorescence response at $ = 710 nm for hybrid 4.51 and 4.49 at different concentrations 
of BSA (µg/mL). 

 

4.2.7.   Total Protein Stain in Gel Electrophoresis 

Gel electrophoresis is a routinely used method for the separation and analysis 

of macromolecules and their fragments, based on their size and charge.  The gel 

electrophoresis apparatus consists of a gel in a buffer-filled box and an electrical field 

that is applied via the power supply to create positive and negative terminals across 

the gel along which the analyte will move due to its inherent or induced charge.  

A commonly used technique to analyse proteins is sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE).79  As is suggested by its name, the 

gel used is made of polyacrylamide.  The proteins are first denatured in the presence 

of SDS before being loaded on the gel at the cathode.  SDS coats the proteins with a 

negative charge.  The amount of SDS bound is relative to the size of the protein so 

that the resulting denatured proteins have an overall negative charge, and all the 

proteins have a similar charge to mass ratio.  Since denatured proteins act like long 
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rods instead of having a complex tertiary shape, the rate at which the resulting SDS 

coated proteins migrate in the gel to the anode is relative only to its size and not its 

charge or shape.80  

In order to visualise proteins on a gel, gel stains are used (Figure 4.21).81  

Traditional colourimetric stains which include Coomassie Blue and silver, suffer from 

sensitivity and/or low and limited dynamic range and/or reproducibility of results.  

These limitations have prompted the development of a number of fluorescent stains 

that are more accurate, sensitive and have larger dynamic ranges.  The most 

commonly used fluorescent dye is SYPRO Ruby which is a formulation of a 

bathophenanthroline complex of ruthenium (II) (4.56) that associates with cationic 

residues on the protein, similar to Coomassie blue.82  More recently introduced dyes 

such as Krypton (4.58), Flamingo (4.59) and SYPRO Orange (4.57) similarly contain 

sulphonic acids that bind to proteins in the same way as SDS.83  Deep Purple is 

unique in that it contains no sulfonic acid, reacts covalently with amino groups in 

proteins and then becomes amphiphilic, one end being very hydrophobic (triene) and 

the other polar (ammonium ion, diol).15,81   
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Figure 4.21  Structural motifs of common fluorescent protein gel stains used in electrophoresis. 

   

The epicocconone hybrid dyes that contain sulfonic acids similarly bound to 

protein in gels.  Hybrid dye 4.53 (Figure 4.22) was the most sensitive of the dyes 

tested with a limit of detection (Appendix 6.7.2) for BSA determined to be 0.22 

ng/band (Table 4.4, Entry 6) which is more sensitive than silver and comparable to 

the limit of detection of epicocconone (4.1) (0.92 ng) or the 2-naphthylepicocconone 

analogue 4.2 (0.56 ng).20  Figure 4.22 (and Appendix 6.7.1) are the result of one 

experiment using the protocol developed for 4.1,84 which would not be optimum for 

the hybrid dyes.  Nonetheless, the epicocconone-hemicyanine hybrid dyes have 

potential as a new class of protein stain on gel because they are at least sensitive as 

Deep Purple (Table 4.4) and with optimisation could be much more sensitive.  They 
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would make excellent sensitive counter stains for DIGE, for example, which uses 

Cy3, Cy5 and Cy7 staining that do not overlap with that of 4.53.! 

 
Figure 4.22  Typhoon scan of the gels for 4.53 and its respective Profile Plot using ImageJ. 
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Table 4.4 Limit of detection of BSA (see Appendix 6.7.2) detected on gel in ng of the synthesised 
hemicyanine-epicocconone hybrid dyes. 

Entry Hybrid dye Limit of detection of BSA on gel 
ng/band 

1 4.48 10.5 

2 4.49 136 

3 4.50 7.1 

4 4.51 24.2 

5 4.52 1.9 

6 4.53 0.22 

 

4.2.8.   The Hybrid Dyes in Fluorescence Microscopy 

Fluorescence microscopy has gained importance in a lot of different fields in 

biomedical research.85  Fluorescence is widely used nowadays in the identification, 

classification and quantitative measurements of biological structures and processes.  

As mentioned in the section 4.1.4, compared with fluorescent imaging in the visible 

region, biological imaging in the NIR region is favourable because it reduces 

photodamage, allows deep tissue penetration, minimies background autofluorescence, 

has lower light scattering and can use low-cost light sources. 

4.2.8.1.  Live Cell Imaging using the NIR Hybrid Dyes 

As proof of concept for cell imaging, we explored live cell imaging using the 

NIR emission of two hybrid dyes, the benzoindole 4.49 and the sulfonated thiazolium 

4.51 hybrids.  Live colon cancer cells (SW430) exposed to 4.49 (200 nM) rapidly 

absorbed the dye within 15 min.  Adequate NIR fluorescence intensity was observed 

after 25 min and was detected in the cytoplasmic rather than nuclear regions.  This 
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was confirmed by co-staining the nucleus with Hoechst 33342 where no co-

localisation was observed.  4.49 appeared to become localised in organelles (Figure 

4.23) distributed evenly throughout each stained cells, not on or near the surface of 

the cell membrane.  Staining was partially retained after fixing the cells with 2% 

formaldehyde.  However, when the dye was used on already fixed colon cancer cells, 

little to no staining was observed even after an extended period of incubation time.  

This suggests the dye is taken up by an active transport mechanism such as 

endocytosis.86 

 

Figure 4.23  Uptake of 4.49 (200 nM) by live colon cancer cells (SW430) within 25 min.  Images: A. 
bright-field image; B. dye become localized in circular vesicles (red); C. nucleus stained with Hoechst 
(blue); D. overlays on a bright-field image.  

"1! #1!

,1! 41!
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Figure 4.24  Co-staining with ER-Tracker Green: A. 4.49 in the cytoplasm and concentrated in circular 
vesicles (red); B. ER-Tracker Green staining the ER (green); C. overlay of A. and B.; D. overlay of C. 
with nucleus stained with Hoechst (blue). 

 

Figure 4.25  Co-staining with LysoTracker Red and MitoTracker Green: A. hybrid dye localised in 
circular vesicles (red); B. LysoTracker Red staining the ER (cyan); C. Mitotracker Green staining the 
mitochondria; D. overlay of B, C and D. 

"1! #1!
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Co-staining 4.49 with ER tracker Green (Figure 4.24), Mitotracker Green and 

Lysotracker Red (Figure 4.25) showed that 4.49 did not stain endoplasmic reticulum, 

mitochondria or lysosomes.  

 From our investigation of the effect of SDS (Figure 4.19) on the fluorescence 

of the hybrid dyes, we know that fluorescence is weak in water but that it increases 

with viscosity.  Therefore it is very likely that for adequate NIR fluorescence to be 

observed, the dye must be in a hydrophobic or viscous environment similar to that 

provided by SDS after micelles formation.  The dye is likely to be entering the cell by 

endocytosis (vide supra) and therefore the circular organelles being stained could well 

be cytoplasmic vesicles (endosomes) in which the dye has become trapped. 

In order to investigate this, co-staining was conducted with CM-DiI, a cell 

tracker that enters cells by endocytosis.  4.49, Hoechst 33342 and CM-DiI were co-

incubated for 25 min, to promote endocytosis and confocal images obtained for each 

dye.  Similarities in the pattern of staining between CM-DiI and the hybrid dye were 

observed (Figure 4.26) but the co-localisation was not general for the whole 

population of cells stained.  Moreover cells stained with both CM-DiI and the hybrid 

dye, were low in number.  Mostly, observed were cells either stained with CM-DiI or 

with the 4.49 but not both.  Different rates of uptake of the dyes by the cells and/or by 

cells at different stages of life, could explain their poor co-localisation despite the 

same pattern of staining for some cells.  These observations together with a closer 

look at the morphology of the stained organelles (Figure 4.27, also Figure 4.23A and 

B), have allowed the latter to be identified as most likely to be caveolae. 

Caveolae are spherical or flask-shaped invaginations of the plasma membrane 

and associated vesicles of uniform size (70 nm average outer diameter), that occur 
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either singly or in clusters, attached to either front of the cell or apparently free in the 

cytoplasm.87  These subcellular structures are rich in proteins as well as lipids such as 

cholesterol and sphingolipids.88  Caveolae have been involved in functions such as 

transcytosis of molecules across the cell, endocytosis, control of cholesterol 

trafficking, the uptake of pathogenic bacteria and certain viruses, and signal 

transduction influencing cell growth, apoptosis and angiogenesis.87,89-91 The 

caveosome is an endosomal compartment with neutral pH which contains molecules 

internalised by caveolar endocytosis.92  It is by this process that the hybrid dye 4.49 is 

being taken into the cell and this explains the partial co-localisation observed with 

CM-DiI.  The presence of the hybrid dye in a lipid-rich and a neutral pH environment 

accounts respectively for the adequate NIR fluorescence observed and the stability of 

the dye over a period of 24 h. 

 

Figure 4.26  Co-staining with CM-DiI, a lipophilic tracer: A. hybrid dye localised in circular vesicles 
(red); B. CM-DiI localized in cytoplasmic vesicles (yellow); C. overlay of A and B; D. overlay C with 
nucleus stained with Hoescht (blue). 
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Figure 4.27  Single cell imaging: A. Bright-field image and B. cell stained with Hoescht (blue) and 
4.49 (red) staining caveola which are spherical structures either single or in clusters as observed in the 
image.  Scale bar is 5 µm. 

 

The dye was also found to have low cytotoxicity.  Incubation of cells 

overnight in the presence of 200 nM 4.49 had no effect on growth or morphology.  It 

was observed that even after 24 h the same small vesicles were stained.  

Epicocconone itself has been found to be a neutral, non-toxic, small molecule that 

appears to diffuse readily into live or fixed cells without the need for 

permeabilisation.93 

When the cells were incubated with the sulfonated thiazole hybrid dye 4.51 

(200 nM) for up to 24 hours, no evidence of NIR fluorescence was observed even 

though the nucleus was stained perfectly well with Hoechst.  This suggests that the 

hydrophilic sulfonate group inhibits its membrane permeability/uptake. 

These results suggest that the epicocconone-hemicyanine hybrid dyes lacking 

any acidic group(s), can readily enter live cells (uptake time within 25 min at 200 nM) 

without the need for permeabilisation, is retained after fixing and is non-cytotoxic.  

Cells stained with hybrid dyes are excitable by the common HeNe laser (633 nm) or 

"1! #1!
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LED lasers.  These features enable the real-time imaging of live cells and the study of 

organelle movements using NIR fluorescence.  One drawback is photobleaching of 

the dye, that was most evident when z-stacking was conducted with a large number of 

slices at small depth increments. This can be minimised by reducing the number of 

slices or perhaps adding an antifade reagent but this is yet to be investigated. 

4.3.  Conclusions 

The epicocconone-hemicyanine hybrid dyes show two UV absorbance bands 

with a small maxima between 470 – 480 nm and a large maxima between 630 – 650 

and have a maximum emission between 715 – 730 nm.  The spectral window covered 

by the epicocconone-hemicyanine hybrid dyes is unlike any other reported fluorescent 

dyes.  Therefore they come to complement existing commercially available 

fluorescent dyes.  Moreover they benefit from unusually large Stokes’ shifts for NIR 

dyes, ranging from 75 – 95 nm.  However, the hybrid dyes possess relatively low 

extinction coefficients (12 000 – 72 000 M-1cm-1).  Even though their measured 

quantum yields are also relatively low (0.0027 – 0.066), the fluorescence of the hybrid 

dye has shown enhancement in the presence of SDS, which pointed to an 

environment-dependence in the brightness of the dyes.  The fluorescence of the 

hybrid dyes can be further red-shifted by attaching hemicyanines which can provide 

extended conjugation to the epicocconone scaffold as shown by the sulfonated 

quinolinium hybrid 4.54 which achieved the longest emission wavelength of 795 nm. 

Some of the epicoconone-hemicyanine hybrid dyes have been found to 

respond to the presence of protein, both in solution and in PAGE.  Since the hybrid 

dyes lack the dihydropyran ring, the response is from a non-covalent interaction with 

proteins in a similar fashion to Coomassie Blue, SYPRO Ruby and other total protein 
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stains.  The carboxylic group-containing hybrid dye 4.53 has shown sensitivity better 

than Deep Purple. 

We have shown proof of concept of the application of the non-cytotoxic, cell-

permeable benzoindole hybrid dye 4.49 in in vivo imaging of selectively-stained 

caveolae of live colon cancer cells.  This would need to be confirmed through 

colocalisation with caveolin-1 antibody.  We wish also to explore the application of 

the novel NIR dyes for non-invasive live-animal imaging. 

A major limitation of the hybrid dyes is their poor stability, particularly at low 

pHs.  The hybrid dyes undergo a recyclisation reaction to provide the initial two 

components of the coupling reaction.  A possible solution involves the protection of 

the alcohol to prevent recyclisation.  The presence of acid group at the end of the N-

alkyl chain leads to the self-catalysis of the recyclisation and thus having the acid 

group as a solubilising group at another position on the molecule instead on the end of 

the N-alkyl chain, would solve this problem.  Photobleaching has been a recurring 

issue with the epicocconone scaffold as a fluorophore and is still being addressed.23  

The results are very encouraging for further development of the epicocconone-

hemicyanine hybrid as useful NIR dyes.  
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5.1.  General 

Reagents were purchased from Sigma Aldrich and Alfa Aesar and used 

without purification unless specified.  Calcein, bovine serum albumin (BSA), sodium 

dodecyl sulfate (SDS), 1,1’-diethyl-4,4’-carbocyanine iodide and spectroscopic grade 

solvents: acetonitrile, DMSO and ethanol were purchased from Sigma Aldrich.  

Hoechst 33342, ER-TrackerTM Green, MitoTracker® Green, LysoTracker® Red 

DND-99 and CellTrackerTM CM-DiI were purchased from Invitrogen.  Molecular 

sieves were freshly activated either in an oven at > 400 oC or in the microwave.  

Ratios provided in “general procedures” and percentage yields are with respect to the 

limiting reagent.  Temperatures specified are those of the heating or cooling bath.  

Methanol was distilled from magnesium/iodide, and stored under nitrogen over oven-

activated 4Å MS.  Nitromethane was fractionally distilled before being freshly 

redistilled over CaH before use.  TLC was performed on aluminium backed silica gel 

60 F254 plates (Merck) and visualised using either a UV lamp (254 or 365 nm) or 

heating with phosphomolybdic acid or ninhydrin stain.  All microwave irradiation 

experiments were carried out in a dedicated CEM-Discover LabMate microwave 

apparatus, operating at a frequency of 2.45 GHz with continuous irradiation power 

from 0 to 300 W.  The reactions were carried out in 10 mL glass vials sealed with a 

Teflon crimp cap, which can be exposed to a maximum of 250 °C and 20 bar internal 

pressure.  Purifications were conducted as specified with flash column 

chromatography using silica gel 60 (Merck, 230-400 mesh) or with preparative TLC 

plates (Analtech, 1 000 µm thickness) or basic aluminium oxide (S grade, 100-290 

mesh, gravity) or activated charcoal Darco G-60, 100 mesh or a 50% (w/w) mixture 

of charcoal Darco G-60, 100 mesh and celite 545 (50% (w/w).  The charcoal and 

celite were pre-washed with MeOH and water before used.  HPLC purification was 

conducted as specified using an Alltech Econosphere C18 column 100 ! 10 mm, 10 

µm or Gemini NX C18 column 150 ! 21.22 mm, 5 µm   As specified 1H NMR 

spectra were recorded on either a Bruker AVIII-300 MHz spectrometer or a Bruker 

DPX400 (400 MHz) spectrometer or a Bruker AVII600K (600 MHz) spectrometer 

and reported in ppm using the specified solvent as internal standard (CDCl3 at 7.24 

ppm, DMSO-d6 at 2.49 ppm, D2O at 4.66 ppm and MeOD-d4 at 3.34 ppm).  As 

specified, 13C NMR spectra were recorded on a Bruker DPX400 (101 MHz) 

spectrometer or a Bruker AVII600K (150 MHz) spectrometer and reported in ppm 
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using the specified solvent as internal standard (CDCl3 at 77.06 ppm, DMSO-d6 at 

39.50 ppm and MeOD-d4 at 49.86 ppm).  HRMS were performed at Illinois 

University Mass Spectrometry Unit, USA, using a Waters Q-Tof Ultima Tandem 

Quadrupole/Time-of-Flight Instrument or at the Australian Proteome analysis Facility 

(APAF), Macquarie University, Australia using a Thermo Orbitrap Elite with ETD.  

LRMS (ESI) data were obtained by direct injection using a Shimadzu GCMS-QP5000.  

Specific optical rotation was measured on a Jasco P-1010 Polarimeter (Jasco, Japan).  

UV-vis absorption and fluorescence measurements were conducted on a Spectramax 

M5 fluorescence spectrophotometer with the use of the plate reader, a CARY 1Bio 

UV-Visible spectrophotometer and a LS50B fluorometer (Perkin Elmer).  A FV1000 

confocal laser-scanning microscope was used for imaging purposes. 

 

5.2.  Experimental for Chapter 1   

5.2.1.  General Procedure for Conducting the Pictet-Spengler Reaction 

Base or Lewis acid (no. of equiv as specified) was added to a solution of  L-

histidine (1 equiv) and ketone (1 equiv) in the solvent as specified (0.06 mLmg-1).  

The mixture was then subjected to the reaction conditions (temperature and time) as 

specified. The solvent was evaporated under reduced pressure and the crude 1H NMR 

was taken.  The diastereomers were separated as specified and yields are as reported 

in Chapter 1 (Table 1.1, 1.2, 1.3, 1.4, 1.5 and 1.6). 

 

 (4S,6S)-4-(2-carboxyethyl)-4,5,6,7-tetrahydro-3H-imidazo[4,5-c]pyridine-4,6-
dicarboxylic acid, cucumopine (1.5) (from Table 1.3; Entry 2) 

  
TEA (7.2 mL, 51.6 mmol) was added to a solution of L-histidine (500 mg, 3.2 

mmol) and "-ketoglutaric acid (471 mg, 3.2 mmol) in MeOH (30 mL).  The mixture 

was refluxed for 17 h after which the solvent was evaporated under reduced pressure.  

The crude reaction mixture was adsorbed onto a column of activated charcoal (15 ! 
1.5 cm) and eluted with H2O.  Cucumopine eluted after 60 mL.  The fractions 

containing the latter were freeze-dried and cucumopine was isolated (788 mg, 86%) 
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as a white powder.  1H NMR (400 MHz, D2O) # 7.82 (s, 1H), 4.00 (dd, J = 6.0 Hz, 

1H), 3.21 (dd, J = 6.0 Hz, 1H), 2.88 (dd, J = 12.0 Hz, 1H), 2.2-2.6 (m, 2H); 13C NMR 

(100 MHz, D2O) # 182.6, 175.3, 175.2, 137.8, 127.8, 127.8, 67.1, 57.1, 33.5, 33.2, 

24.7; mass (ESI) m/z 282 [M-H+]; !!!!!!!!: –43 (H2O; c 1.0), lit2 !!!!
! : –41 (H2O; c 

2.92). 

(4R,6S)-4-(2-carboxyethyl)-4,5,6,7-tetrahydro-3H-imidazo[4,5-c]pyridine-4,6-
dicarboxylic acid, mikimopine (1.6) 

 

After a further 40 mL mikimopine eluted, was freeze dried and isolated (77.9 

mg, 8.6%) as a white powder.  1H NMR (400 MHz, D2O) # 5.15 (dt, J = 7.0, 6.8, 1H), 

5.04 (tt, J = 6.8, 6.6, 1.3 Hz, 1H), 4.41 (br s, 1H), 3.68 (br t, J = 5.9 Hz, 2H), 2.03 (m, 

2H), 1.96 (m, 2H), 1.65 (s, 3H), 1.62 (s, 3H), 1.56 (s, 3H), 1.41 (s 9H); 13C NMR 

(100 MHz, D2O) # 155.8, 139.1, 131.7, 123.9, 120.6, 79.1, 39.4, 38.4, 28.4, 26.4, 25.6, 

17.5, 16.2; mass (ESI) m/z 282 [M-H+]; !!!!!!!!:  –88 (H2O; c 1.0), lit2 !!!!
! : –89 

(H2O; c 1.0). 

All physicochemical and spectral data of 1.5 and 1.6 are as previously 

reported.1,2 

 

(4S,6S)-4-methyl-4,5,6,7-tetrahydro-3H-imidazo[4,5-c]pyridine-4,6-dicarboxylic 
acid (1.8) 

 
TEA (0.7 mL, 5.2 mmol) was added to a solution of L-histidine (50.0 mg, 0.32 

mmol) and ketone (28.4 mg, 0.32 mmol) in MeOH (3 mL).  The mixture was refluxed 

for 17 h after which the solvent was evaporated under reduced pressure.  The crude 

reaction mixture was adsorbed onto a column of activated charcoal and eluted using a 
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gradient of 0-30% MeOH in H2O as eluant.  The trans-(S,S) diastereomer 1.8 was 

eluted first.  After removal of methanol, the residue was freeze-dried to yield 1.8 (52.8 

mg, 72.8%) as a white powder.  1H NMR (600 MHz, D2O) # 8.63 (s, 1H), 4.42 (dd, J 

= 11.9, 5.3 Hz, 1H), 3.33 (dd, J = 17.0, 5.3 Hz, 1H), 3.00 (dd,  J= 17.0, 11.9 Hz, 1H), 

1.83 (s, 1H); 13C NMR (150 MHz, D2O) # 169.95, 169.85, 135.3, 124.5, 123.6, 61.3, 

53.9, 21.32, 21.29; IR (neat) cm-1 3048, 1668, 1631, 1199, 1139; !!!!!"!!: –61 (H2O; c 

0.11); mass (ESI) m/z 224 [M-H+]; HRMS (ESI) m/z [M+H+] calcd for C9H12N3O4 

226.0828, found 226.0822. 

(4S,6S)-4-methyl-4,5,6,7-tetrahydro-3H-imidazo[4,5-c]pyridine-4,6-dicarboxylic 
acid (1.9) 

 
The cis-(S,R) diastereomer 1.9 was eluted with 30% methanol and isolated 

(5.2 mg, 7.2%) as a white powder.   1H NMR (600 MHz, D2O) # 8.59 (s, 1H), 4.42 

(dd, J= 11.7, 5.5 Hz, 1H), 3.35 (dd, J= 17.0, 5.5 Hz, 1H), 3.02 (dd, J= 17.0, 11.7 Hz, 

1H), 1.74 (s, 1H); 13C NMR (150 MHz, D2O) # 170.3, 169.9, 134.9, 124.5, 123.4, 

60.6, 51.5, 22.4, 21.5; IR (neat) cm-1 3041, 1673, 1623, 1201, 1138; !!!!!"!!: -30 

(H2O; c 0.11); mass (ESI) m/z 224 [M-H+]; HRMS (ESI) m/z [M+H+] calcd for 

C9H12N3O4 226.0828, found 226.0824. 

 

5.2.2.  Fluorescence-based Assay to Assess the Fe(III) Chelating Ability of 
Mikimopine 

Apparatus and reagents 

 Fluorescent measurements were conducted on a Spectramax M5 fluorescence 

spectrophotometer with the use of the plate reader.  Calcein and ammonium iron (III) 

citrate were purchased from Sigma Aldrich and used as received.   
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Preparation of solutions 

A 200 µM stock solution of calcein was prepared in a buffer of 40 mM 

HEPES at pH 7.65 and 150 mM NaCl.  A 50 mM stock solution of Fe(III) and a 50 

mM stock solution of EDTA were prepared.  Ten times serial dilutions of each stock 

solution were conducted to make solutions of concentrations 5000-0.5 µM of Fe(III), 

EDTA and mikimopine in a buffer of 40 mM HEPES (pH 7.65), 150 mM NaCl. 

Determination of Fe(III) Chelating Ability  

Serial dilutions of Fe(III) citrate (5000-0.5 µM) were added to the rows of a 

black 96 well plate (20 µL) plus a blank.  To the columns was added serially diluted 

EDTA (5000-0.5 µM) plus a blank (20 µL).  To each well was added calcein stock (5 

µL) and buffer (155 µL) and the plate allowed to equilibrate at room temperature in 

the dark for 5 h.  Each experiment was conduceted in triplicate.  Fluorescence ($ex 490 

nm; $em 520 nm) was recorded and plotted against log[Fe(III)] and fitted to a 

Gaddum-Schild EC50 shift equation3 using GraphPad Prism (v 4.0) (Chapter 1; 

Figure 1.10A and B). 

 
5.3.  Experimental for Chapter 3 

5.3.1.  Synthesis of DHO (2.2) and Oroidin (2.1) 

ethyl (S)-2,5-diaminopentanoate (3.9) 

 
Ornithine hydrochloride (5 g, 0.029 mol) was dissolved in a dry ethanol (50 

mL) and the reaction mixture cooled to 0 °C. After 10 min. Thionyl chloride (2.83 mL, 

0.037 mol) was slowly added to the reaction mixture. After completion of the addition, 

the reaction mixture was warmed to r.t. and then refluxed for 8 h, after which, solvent 

was removed under reduced pressure yielding ornithine ethyl ester dihydrochloride 

(3.9) as a white solid (5.82 g, 89%). 1H NMR (400 MHz, DMSO-d6) ! 8.76 (br s, 3H), 

8.27 (br s, 3H), 4.16 (m, 2H), 3.94 (t, J = 6.6 Hz, 1H), 2.79-2.68 (m, 2H), 1.90-1.80 

(m, 2H), 1.79-1.58 (m, 2H), 1.21 (t, J = 7.4 Hz, 3H). 
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4-(3-aminopropyl)-1H-imidazol-2-amine (1.4) 

 
Compound 1.4 was synthesised using a method of Horne et al.4  Briefly, 3.9 

was dissolved in water (50 mL) and the solution cooled to 0 °C.  Sodium amalgam5 

(109.2 g, 0.22 mol) was slowly added to the solution over a period of 30 min.  During 

the addition the pH of the reaction mixture was maintained at 1-3 using dropwise 

addition of 15% hydrochloric acid.  When the pH remained constant and the evolution 

of the gas had ceased, the solution was decanted from the residual mercury.  The pH 

of the solution was changed to and maintained at 4.5 by addition of 1N sodium 

hydroxide.  The crude aldehyde so formed is further heated to 95 °C with an aqueous 

solution of cyanamide (9.6 mL, 0.114 mol) for 2 h.  The solvent was removed leaving 

behind a thick yellow residue. Methanol was then added and the precipitated salt 

removed by filtration.  The filtrate was concentrate and recrystallised from ethanol to 

give 1.4 (1.92 g, 42%) as a yellow solid.  1H NMR (400 MHz, DMSO-d6) ! 12.33 (s, 

1H), 11.79 (s, 1H), 8.31 (br s, 2H), 7.37 (br s, 3H), 6.61 (s, 1H), 2.77-2.65 (m, 2H), 

2.50 (t, J = 6.7 Hz, 2H), 1.88-1.77 (m, 2H). 

 

 
2,2,2-trichloro-1-(4,5-dibromo-1H-pyrrol-2-yl)ethanone (3.6) 

 

Bromine (1.50 g, 9.42 mol) was added dropwise to a solution of 2-

trichloroacetylpyrrole (1.00 g, 4.71 mol) in chloroform (50 mL) at 0 oC.  The reaction 

mixture was then allowed to warm to r.t. and stirred overnight.  The solvent was 

removed on the rotary evaporator and the crude was purified by flash chromatography 

(SiO2, 5% EtOAc in Pet ether) affording 3.6 (1.95 g; 95%) as a white solid.  1H NMR 

(400 MHz, CDCl3) # 9.10 (br s, 1H), 8.11 (d, J = 1.2 Hz, 1H). 
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N-(3-(2-amino-1H-imidazol-4-yl)propyl)-4,5-dibromo-1H-pyrrole-2-carboxamide 

(2.2) 

 
To a solution of 1.4 (1.4 g, 0.01 mol) in DMF (30 mL) was added 3.6 (4.17, 

0.011 mol) followed by K2CO3 (3.18, 0.03 mol).  The reaction mixture was stirred at 

r.t. for 24 h.  The solvent was removed under high vacuum and the crude product was 

purified by flash chromatography (alumina, 10-40% MeOH in CHCl3 saturated with 

NH3) to give DHO (2.2) as an orange solid (1.0 g, 53%).  1H NMR (400 MHz, 

MeOD-d4) # 6.83 (s, 1H), 6.32 (s, 1H), 3.36 (t, J = 7.5 Hz, 2H), 2.50 (t, J = 7.5 Hz, 

2H), 1.85 (q, J = 7.2 Hz, 2H). 

 

(E)-N-(3-(2-amino-1H-imidazol-4-yl)allyl)-4,5-dibromo-1H-pyrrole-2-
carboxamide (2.1) 

 
DHO (2.2) was converted to oroidin following a method reported by Lindel 

and coworkers.6  Refluxing in MeOH for 15 min in the presence of a few drops of 

conc. HCl gave dihydrooroidin-HCl.  A solution of N-chlorosuccinimide (30.5 mg, 

0.22 mmol) and DHO-HCl (100 mg, 0.22 mmol) in dry DMF (10 mL) was stirred at 

r.t. for 1h and then at 100 oC for 1 h.  The solvent was evaporated under reduced 

pressure, and the residue was purified by flash chromatography (alumina, 2-16% 

MeOH in CHCl3 saturated with NH3) to give 2.1 as yellow solid (41.0 mg, 55%).  1H 

NMR (400 MHz, DMSO-d6) ! 8.45 (t, J = 5.8 Hz, 1H), 8.23 (s, 3H), 7.77 (br s, 2H), 

6.97 (s, 1H), 6.80 (s, 1H), 6.19 (d, J = 16.0 Hz, 1H), 6.08 (dt, J = 16.0, 5.2 Hz, 1H), 

3.95 (d, J = 5.1 Hz, 2H). 

 
NMR spectral data of 3.9, 1.4, 3.6, 2.2 and 2.1 were as previously reported.4,6 
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5.3.2.  Epoxidation Reactions   

Reaction using in situ generation of dimethyldioxirane, DMDO 

To a stirred solution of DHO (2.2) or oroidin (2.1) (1 equiv) in acetone/H2O 

(1:3 v/v) (0.1 mL/mg) at 0 oC was added Oxone (1.2 equiv) and NaHCO3 (2.4 equiv) 

in portions.  The reaction was allowed to warm up to r.t. after which acetone was 

removed under vacuum and the water was removed by freeze-drying.  The crude was 

then subjected to purification by flash chromatography (SiO2, 2-20% MeOH in CHCl3 

saturated with NH3) to yield the product in amounts as reported (Table 3.1; Entry 1 

and 2). 

 

Preparation of DMDO 

DMDO was prepared using the procedure reported by Murray and Singh.7  

The concentration of DMDO was determined by iodometric titration before use and 

found to be in the range of 0.05-0.09 M. 

(E)-N-(3-(2-amino-5-oxo-4,5-dihydro-1H-imidazol-4-yl)allyl)-4,5-dibromo-1H-
pyrrole-2-carboxamide, dispacamide A (2.16) (from Table 3.1; Entry 5) 

 
A solution of DMDO in acetone (660 µL, 0.07 M, 0.046 mmol) was added to 

oroidin (15 mg, 0.039 mmol) dissolved in DMF (1 mL) at 0 oC.  The reaction mixture 

was then allowed to warm up to r.t. over 1 h.  The solvent was removed under reduced 

pressure and the crude purified by flash chromatography (SiO2, 2-16% MeOH in 

CHCl3 saturated with NH3) to give 2.16 as a white solid (9.4 mg, 60 %).  1H NMR 

(MeOD-d4) ! 6.81 (s, 1H), 6.20 (t, J  = 8.2 Hz, 1H), 3.51 (t, J  = 6.6 Hz, 2H), 2.63 (q, 

J = 7.1 Hz, 2H); HRMS (ESI) m/z [M+H+] calcd for C11H12Br79Br81N5O2
+, 405.9332, 

found 405.9333. 

N-(3-(2-amino-5-oxo-4,5-dihydro-1H-imidazol-4-yl)propyl)-4,5-dibromo-1H-
pyrrole-2-carboxamide, dihydrodispacamide A (3.10) 
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A solution of DMDO in acetone (660 µL, 0.07 M, 0.046 mmol) was added to 

DHO (15 mg, 0.038 mmol) dissolved in DMF (1 mL) at 0 oC.  The reaction mixture 

was then allowed to warm up to r.t. over 1 h.  The solvent was removed under reduced 

pressure and the crude purified by flash chromatography (SiO2, 2-16% MeOH in 

CHCl3 saturated with NH3) to give 3.10 as a white solid (8.7 mg, 56 %).  1H NMR 

(DMSO-d6) ! 12.67 (br s, 1H), 9.77 (br s, 1H), 8.98 (br s, 2H), 8.17 (t, J  = 5.8 Hz, 

1H), 6.90 (s, 1H), 4.28 (t, J = 6.0 Hz, 1H), 3.20 (q, J  = 6.0 Hz, 2H), 1.77 (m, 1H), 

1.66 (m, 1H), 1.55 (m, 1H), 1.48 (m, 1H); HRMS (ESI) m/z [M+H+] calcd for 

C11H14Br79Br81N5O2 407.9488, found 407.9479. 

NMR spectral data of 2.16 and 3.10 were as previously reported.4,6 

 

Reaction with DIB 

 A solution of DIB (8.2 mg, 0.026 mmol) and TFA (2.5 µL, 0.033 mmol) in 

ACN (0.3 mL) was added to DHO (10 mg, 0.026 mmol) dissolved in DMF (0.5 mL) 

at 0 oC.  The reaction mixture was then allowed to warm up to r.t. over 1 h.  The 

solvent was removed under reduced pressure and the crude purified by flash 

chromatography (SiO2, 2-16% MeOH in CHCl3 saturated with NH3) to give 3.10 as a 

white solid (1.1 mg, 11 %).  1H NMR characteristics as reported before for 3.10. 

 

Reaction with m-CPBA 

 m-CPBA (6.6 mg, 0.038 mmol) was added to DHO (15 mg, 0.038 mmol) 

dissolved in MeOH (1 mL) at 0 oC.  The reaction mixture was then allowed to warm 

up to r.t. over 1 h then stirred overnight.  The solvent was removed under reduced 

pressure and the crude purified by flash chromatography (SiO2, 2-16% MeOH in 

CHCl3 saturated with NH3) to give 3.10 as a white solid (0.5 mg, 3 %).  1H NMR 

characteristics as reported before for 3.10. 

 

Synthesis of 3-phenyl-2-tosyl-1,2-oxaziridine (3.11) 

3.11a 

Aziridine 3.11 was synthesised following the procedure reported by Chang et 

NS
O

O
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al.8  To a solution of benzaldehyde (1.01 mL, 10 mmol) and p-toluenesulfonamide 

(1.71 g, 10 mmol) in 50 mL of CH2Cl2 was added trifluoroacetic anhydride (1.53 

mL,11 mmol).  The reaction was refluxed for 12 h after which the reaction mixture 

was poured into cold water, extracted with CH2Cl2, dried with MgSO4, evaporated to 

dryness and purified by flash chromatography (SiO2, 10% EtOAc in Pet ether) to give 

3.11 as a white solid (2.28 g, 76%).  1H NMR ! 9.03 (s, 1H) 7.94-7.88 (m, 4H), 7.62 

(t, J = 6.2 Hz, 1H) 7.49 (d, J = 7.4 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 2.44 (s, 3H). 

 

 
To a suspension of powdered KOH (392 mg, 7 mmol) and m-

chloroperoxybenzoic acid (380.6 mg, 2.2 mmol) in 1 mL of CH2Cl2 was added a 

solution of 3.11a (518.6 mg, 2.2 mmol) in 3 mL of CH2Cl2. After 5 min, the 

suspension was filtered, evaporated to dryness and dried under vacuum to afford the 

product as a white solid (528 mg, 95%). 1H NMR ! 7.93 (d, J = 8.0 Hz, 2H), 7.46-

7.40 (m, 7H), 5.45(s, 1H), 2.49 (s, 3H). 
NMR spectral data of 3.11a and 3.11 were as previously reported.8 
 

Reaction with the oxaziridines (Table 3.2; Entry 4-6, and Table 3.3; Entry 4-5)  

The oxaziridine (No. of equiv as specified) was added to a solution of DHO or 

oroidin (1 equiv) in MeOH at r.t.  The reaction was allowed to stir for the specified 

amount of time.  The solvent was removed under reduced pressure and the crude 

purified by flash chromatography (SiO2, 2-16% MeOH in CHCl3 saturated with NH3) 

to give the product in the amount specified. 

   

5.3.3.  Reactions with Snyder’s Reagent, BDSB (3.26) 

Synthesis of Pyrrole-terpene Substrates   

(E)-4,5-dibromo-N-(3,7-dimethylocta-2,6-dien-1-yl)-1H-pyrrole-2-carboxamide 
(3.37) 
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To a solution of the gerylamine (188 mg, 1.22 mmol) in DMF (5 mL) was 

added dibromotrichloroacetylpyrrole (455 mg, 1.22 mmol) followed by K2CO3 (510 

mg, 3.69 mmol).  The reaction mixture was stirred at r.t. for 24 h.  Water (5 mL) was 

added to the reaction mixture which was extracted with EtOAc (3 " 8 mL).  The 

combined organic layers was then washed with water, dried with MgSO4 and 

evaporated under vacuum to yield the desired crude product which purified as 

specified by flash chromatography (SiO2, 30% EtOAc in Pet ether) to give 3.36 was 

obtained as a cream solid (508 mg, 98%). 1H NMR (400 MHz, CDCl3) # 11.45 (br s, 

1H), 6.54 (s, 1H), 5.82 (t, J = 5.0 Hz, 1H), 5.24 (t, J = 7.0 Hz, 1H), 5.06 (t, J = 6.6 Hz, 

1H), 4.03 (t, J = 6.1 Hz, 2H), 2.06 (m, 2H), 2.00 (m, 2H), 1.67 (s, 3H), 1.66 (s, 3H), 

1.58 (s, 3H); 13C NMR (100 MHz, CDCl3) # 159.7, 140.8, 131.9, 126.8, 123.7, 119.4, 

112.4, 106.0, 99.4, 39.5, 37.6, 26.4, 25.7, 17.8, 16.4; IR (neat) cm-1 3415, 3146, 1640, 

1561, 1520, 1241, 806.6, 755; HRMS (EI) m/z [M+] calcd for C15H20Br2
79N2O 

401.9943, found 401.9947. 

 

(Z)-3,7-dimethylocta-2,6-dien-1-yl 4,5-dibromo-1H-pyrrole-2-carboxylate (3.38) 

 

To a solution of the nerol (166 mg, 1.08 mmol) in DMF (5 mL) was added 

dibromotrichloroacetylpyrrole (400 mg, 1.08 mmol) followed by K2CO3 (448 mg, 

3.24 mmol).  The reaction mixture was stirred at r.t. for 24 h.  Water (5 mL) was 

added to the reaction mixture which was extracted with EtOAc (3 " 8 mL).  The 

combined organic layers was then washed with water, dried with MgSO4 and 

evaporated under vacuum to yield the desired crude product which purified as 

specified by flash chromatography (SiO2, 25% EtOAc in Pet ether) to give 3.37 as a 

cream solid (410 mg, 95%).  1H NMR (400 MHz, CDCl3) # 10.43 (br s, 1H), 6.87 (d, 

J = 2.9 Hz, 1H), 5.43 (t, J = 7.1 Hz, 1H), 5.07 (tt, J = 6.9, 6.8, 1.4 Hz, 1H), 4.78 (d, J 

= 7.3 Hz, 2H), 2.14 (m, 2H), 2.09 (m, 2H), 1.76 (s, 3H), 1.65 (s, 3H), 1.58 (s, 3H); 
13C NMR (100 MHz, CDCl3) # 160.2, 143.6, 132.3, 123.9, 123.9, 118.8, 118.0, 107.3, 
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100.5, 61.8, 32.3, 26.7, 25.7, 23.6, 17.7; IR (neat) cm-1 3233, 2917, 1603, 1407, 1231, 

1196, 973, 830, 761; HRMS m/z [M+] calcd for C15H19Br2
79N2O 402.9783, found 

402.9783. 

 

(Z)-3,7-dimethylocta-2,6-dien-1-yl 1H-pyrrole-2-carboxylate (3.39) 

 

To a solution of the nerol (215 mg, 1.40 mmol) in DMF (5 mL) was added 

trichloroacetylpyrrole (297 mg, 1.40 mmol) followed by K2CO3 (579 mg, 4.19 mmol).  

The reaction mixture was stirred at r.t. for 24 h.  Water (5 mL) was added to the 

reaction mixture which was extracted with EtOAc (3 " 8 mL).  The combined organic 

layers was then washed with water, dried with MgSO4 and evaporated under vacuum 

to yield the desired crude product which purified as specified by flash 

chromatography (SiO2, 30% EtOAc in Pet ether) to give 3.38 as a yellow oil (310 mg, 

90%).  1H NMR (400 MHz, CDCl3) # 9.62 (br s, 1H), 6.92 (m, 2H), 5.82 (dd, J = 6.2, 

2.6 Hz, 1H), 5.44 (t, J = 7.2 Hz, 1H), 5.11 (tt, J = 7.0, 6.9, 1.4 Hz, 1H), 4.75 (dd, J = 

7.1, 0.73 Hz, 2H), 2.17 (m, 2H), 2.10 (m, 2H), 1.77 (s, 3H), 1.66 (s, 3H), 1.59 (s, 3H); 
13C NMR (100 MHz, CDCl3) # 161.5, 142.5, 132.2, 123.6, 122.9, 119.4, 115.3, 110.3, 

60.9, 32.1, 26.7, 25.7, 23.5, 17.6; IR (neat) cm-1 3309, 2916, 1679, 1412, 1304, 1185, 

1125, 956, 742; HRMS m/z [M+] calcd for C15H21NO2 247.1572, found 247.1574. 

 

(E)-tert-butyl (3,7-dimethylocta-2,6-dien-1-yl)carbamate (3.40) 

 

To the solution of gerylamine (0.50 g, 0.0030 mol) in EtO2/pentane (3 mL) was added 

TEA (0.4 mL, 0.0030mol) followed by boc-anhydride (0.66 g, 0.0030mol). The 

solution was stirred for 24 h at r.t. after which solvent was removed under reduced 

pressure and the crude was purified by flash chromatography (SiO2, 2-10% EtOAc in 
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petroleum ether) affording 3.39 (380 mg; 50%) as a colourless oil. 1H NMR (400 

MHz, CDCl3) # 5.15 (dt, J = 7.0, 6.8 Hz, 1H), 5.04 (tt, J = 6.8, 6.6, 1.3 Hz, 1H), 4.41 

(br s, 1H), 3.68 (br t, J = 5.9 Hz, 2H), 2.03 (m, 2H), 1.96 (m, 2H), 1.65 (s, 3H), 1.62 

(s, 3H), 1.56 (s, 3H), 1.41 (s, 9H); 13C NMR (100 MHz, CDCl3) # 155.9, 139.2, 131.7, 

123.9, 120.7, 79.1, 39.5, 38.5, 28.4, 26.4, 25.7, 17.7, 16.2; IR (neat) cm-1 3359, 2976, 

2921, 1699, 1366, 1150; HRMS (ESI) m/z [M+H+] calcd for C15H28NO2 254.2120, 

found 254.2131. 

 

Bromodiethylsulfoniumbromopentachloroantimonate, BDSB (3.26) was prepared 

according to the procedure reported by Snyder.9 

 

Reaction with pyrrole-terpene substrate 3.37 

A solution of BDSB (22.4 mg, 0.041 mmol) in MeNO2 (1.0 mL) was added 

quickly via syringe to a solution of 3.37 (15 mg, 0.037 mmol) in a mixture of MeNO2 

(0.75 mL) and CH2Cl2 (1.75 mL) at –40 oC.  The reaction was allowed to warm up to 

–15 oC over a period of 1 h and further stirred at –15 oC for 30 min before the reaction 

mixture was quenched by the addition of 5% aqueous NaHCO3: 5% aqueous Na2SO3 

(1:1 v/v, 5 mL), stirred for 15 min, poured into water (3 mL), and extracted with 

CH2Cl2 (3"10 mL). The combined organic layers were then dried with MgSO4, 

concentrated, and purified by flash column chromatography (SiO2, 2.5-22.5% EtOAc 

in Pet ether) give the products in the amounts and yields as indicated.  

 (E)-4,5-dibromo-N-(6,7-dibromo-3,7-dimethyloct-2-en-1-yl)-1H-pyrrole-2-
carboxamide (3.37a) 

 

Compound 3.37a was obtained as a white solid (8.8 mg, 42%).  1H NMR 

(CDCl3, 600 MHz) ! 10.48 (br s, 1H), 6.53 (d, J = 2.9 Hz, 1H), 5.73 (t, J = 5.0 Hz, 

1H), 5.34 (t, J = 6.9 Hz, 1H), 4.11 (dd, J = 11.0, 1.1 Hz, 1H), 4.04 (t, J = 6.2 Hz, 2H), 

2.56 (m, 1H), 2.38 (m, 1H), 2.18 (m, 1H), 1.96 (s, 3H), 1.88 (m, 1H), 1.79 (s, 3H), 
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1.73 (s, 3H); 13C NMR (CDCl3, 150 MHz) ! 159.3, 138.8, 126.9, 121.1, 111.8, 105.5, 

99.7, 68.9, 65.6, 37.7, 37.5, 35.5, 33.6, 28.0, 16.4; IR (neat) cm-1 3242, 2928, 1682, 

1509, 1404, 1196, 1097, 973, 765; HRMS (ESI) m/z [(M+H)+] calcd for 

C15H21
79Br4N2O 560.8387, found 560.8380. 

(E)-4,5-dibromo-N-(6-bromo-7-chloro-3,7-dimethyloct-2-en-1-yl)-1H-pyrrole-2-
carboxamide (3.37b) 

 

Compound 3.37b was obtained as a white solid (3.8 mg, 20%).  1H NMR 

(CDCl3, 600 MHz) ! 10.12 (br s, 1H), 6.52 (d, J = 1.62 Hz, 1H), 5.70 (br s, 1H), 5.32 

(t, J = 6.9 Hz, 1H), 4.02 (t, J = 6.1 Hz, 2H), 3.96 (d, J = 11.0 Hz, 1H), 2.43 (m, 1H), 

2.38 (m, 1H), 2.15 (m, 1H), 1.83 (m, 1H), 1.77 (s, 3H), 1.71 (s, 3H), 1.65 (s, 3H); 13C 

NMR (CDCl3, 150 MHz) ! 159.1, 139.0, 127.0, 121.0, 111.7, 105.3, 100.1, 72.2, 64.8, 

37.7, 37.5, 33.4, 32.3, 26.9, 16.4; IR (neat) cm-1 3243, 2975, 1637, 1559, 1405, 1230, 

1097, 973, 824, 765; HRMS (ESI) m/z [M+H+] calcd C15H21
79Br3ClN2O 516.8892, 

found 516.8888. 

(E)-4,5-dibromo-N-(6-bromo-7-hydroxy-3,7-dimethyloct-2-en-1-yl)-1H-pyrrole-
2-carboxamide (3.37c) 

 

Compound 3.37c was obtained as a white solid (3.2 mg, 17%).  1H NMR 

(CDCl3, 600 MHz) ! 10.30 (br s, 1H), 6.53 (d, J = 2.9 Hz, 1H), 5.74 (t, J = 5.0 Hz, 

1H), 5.30 (t, J = 6.9 Hz, 1H), 4.02 (dd, J = 11.0, 1.1 Hz, 2H), 3.92 (d, J = 6.2 Hz, 1H), 

2.38 (m, 1H), 2.13 (m, 1H), 2.00 (m, 1H), 1.80 (m, 1H), 1.70 (s, 3H), 1.34 (s, 3H), 

1.32 (s, 3H); 13C NMR (CDCl3, 150 MHz) ! 159.2, 138.9, 126.9, 120.9, 111.6, 105.3, 

99.8, 72.6, 70.2, 38.1, 37.5, 36.1, 31.8, 26.6, 26.1, 16.4; IR (neat) cm-1 3210, 2923, 

1648, 1509, 1409, 1221, 1092, 978, 735; HRMS (ESI) m/z [M+H+] calcd for 

C15H22
79Br3N2O2 498.9231, found 498.9225. 
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4,5-dibromo-N-((5-bromo-2,6,6-trimethylcyclohex-1-en-1-yl)methyl)-1H-pyrrole-
2-carboxamide (3.37d) 

 

Compound 3.37c was further purified on the HPLC (Gemini, 50-90% MeOH 

in H2O with 0.05% TFA) and obtained as a white solid (0.4 mg, 2%).  1H NMR (600 

MHz, CDCl3) ! 9.72 (br s, 1H), 6.50 (d, J = 2.82 Hz, 1H), 5.37 (br t, J = 4.11 Hz, 1H), 

4.21 (m, 2H), 4.00 (d, J = 4.98 Hz, 1H), 2.23 (m, 1H), 2.16 (m, 3H), 1.69 (s, 3H), 1.17 

(s, 3H), 1.165 (s, 3H); 13C NMR (150 MHz, CDCl3) ! 158.8, 133.4, 131.8, 126.0, 

111.6, 105.3, 99.9, 65.0, 40.0, 38.0, 31.9, 29.6, 27.4, 25.0, 19.6; IR (neat) cm-1 3129, 

2930, 1647, 1510, 1409, 1221, 1101, 732; HRMS (ESI) m/z [M+H+] calcd for 

C15H20
79Br3N2O 480.9126, found 480.9128. 

 

Reaction with pyrrole-terpene substrate 3.38 

A solution of BDSB (22.4 mg, 0.041 mmol) in MeNO2 (0.75 mL) was added 

quickly via syringe to a solution of 3.38 (15 mg, 0.037 mmol) in a mixture of MeNO2 

(0.75 mL) and CH2Cl2 (1.75 mL) at –40 oC.  The reaction was allowed to warm up to 

–15 oC over a period of 1 h and further stirred at –15 oC for 30 min before the reaction 

mixture was quenched by the addition of 5% aqueous NaHCO3: 5% aqueous Na2SO3 

(1:1 v/v, 5 mL), stirred for 10 min, poured into water (3 mL), and extracted with 

CH2Cl2 (3 " 10 mL). The combined organic layers were then dried with MgSO4, 

concentrated, and purified by flash column chromatography (SiO2, 2.5-30% EtOAc in 

Pet ether) give the products in the amounts and yields as indicated.  
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(Z)-6,7-dibromo-3,7-dimethyloct-2-en-1-yl 4,5-dibromo-1H-pyrrole-2-
carboxylate (3.38a) and (Z)-6-bromo-7-chloro-3,7-dimethyloct-2-en-1-yl 4,5-
dibromo-1H-pyrrole-2-carboxylate (3.38b) 

 

Compound 3.38a (9.0 mg, 43%) and 3.38b (3.3 mg, 17%), isolated as a 

mixture, were obtained as white solids.  1H NMR (600 MHz, CDCl3) ! 9.33 (br s, 

1H), 6.88 (s, 1H), 5.52 (t, J = 6.9 Hz, 1H), 4.81 (ddd, J = 7.6, 12.4, 40.0 Hz, 2H), 

4.11(3.96) (d, J = 11.0 Hz, 1H), 2.59 (1H, m), 2.46 (m, 1H), 2.35 (m, 1H), 1.96(1.76) 

(s, 3H), 1.90 (1H, m), 1.80 (s, 3H), 1.78(1.64) (s, 3H); 13C NMR (150 MHz, CDCl3) ! 

159.4, 141.7, 124.1, 120.8, 118.0, 106.5, 100.8, 68.6(72.0), 65.6(64.7), 61.4, 

35.4(32.5), 34.0(33.3), 30.3, 28.0(26.9), 23.4; IR (neat) cm-1 2975, 2927, 1681, 1404, 

1304, 1229, 1195, 1097, 972, 823, 764; HRMS (EI) m/z [M+] calcd for C15H19Br4NO2 

560.8149, found 560.8144 and calcd for C15H19Br3ClNO2 516.8654, found 516.8658. 

Signals in bracket correspond to the minor chloro compound which was inseparable 

from the bromo compound.  Yields and amounts based on ratios from 1H NMR of the 

combined mixed fractions. 

(Z)-6-bromo-7-hydroxy-3,7-dimethyloct-2-en-1-yl 4,5-dibromo-1H-pyrrole-2-
carboxylate (3.38c) 

 

Compound 3.38c was obtained as a white solid (1.7 mg, 9%). 1H NMR (600 

MHz, CDCl3) ! 9.45 (br s, 1H), 6.88 (d, J = 2.9 Hz, 1H), 5.49 (t, J = 7.5 Hz, 1H), 4.79 

(m, 2H), 3.96 (dd, J = 11.3, 1.8 Hz, 1H), 2.38 (m, 2H), 2.03 (m, 1H), 1.83 (m, 1H), 

1.76 (s, 3H), 1.33 (s, 6H); 13C NMR (150 MHz, CDCl3) ! 159.3, 142.1, 124.0, 120.5, 

118.0, 106.5, 100.7, 72.7, 69.9, 61.2, 32.2, 30.8, 26.3, 23.4; IR (neat) cm-1 3230, 2924, 
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1687, 1310, 1406, 1190, 975, 764; HRMS (ESI) m/z [M+H+] calcd for 

C15H21
79Br3NO3 499.9072, found 499.9069. 

((1S,3R,6R)-3-bromo-6-hydroxy-2,2,6-trimethylcyclohexyl)methyl 4,5-dibromo-
1H-pyrrole-2-carboxylate (3.37d) 

 

Compound 3.38d was obtained as a white solid (2.2 mg, 12%).  1H NMR (600 

MHz, CDCl3) ! 9.32 (br s, 1H), 6.81 (d, J = 2.9 Hz, 1H), 4.61 (dd, J = 5.0, 20.7, 4.0 

Hz, 2H), 4.49 (dd, J = 12.2, 3.2 Hz, 1H), 4.31 (t, J = 3.0 Hz, 1H), 2.46 (dddd, J = 14.7, 

14.1, 3.7, 3.4 Hz, 1H), 2.17 (ddd, J = 13.9, 13.9, 4.1 Hz, 1H), 1.89 (dd, J = 4.4, 3.8 Hz, 

1H), 1.85 (dddd, J = 14.9, 6.5, 3.5, 3.5 Hz, 1H), 1.53 (1H, m), 1.34 (3H, s), 1.25 (3H, 

s), 1.17 (3H, s); 13C NMR (150 MHz, CDCl3) ! 159.5, 124.0, 117.9, 107.2, 100.9, 

71.9, 69.7, 62.9, 47.2, 38.8, 36.2, 32.4, 31.2, 27.7, 23.1; IR (neat) cm-1 3228, 2964, 

2924, 1686, 1410, 1194,  978, 764; HRMS (ESI) m/z [M+Na+] calcd for 

C15H20
79Br3NO3Na 521.8891, found 521.8898. 

 

Reaction with pyrrole-terpene substrate 3.39 

A solution of BDSB (37.1 mg, 0.068 mmol) in MeNO2 (1.5 mL) was added 

quickly via syringe to a solution of 3.39 (15.2 mg, 0.061 mmol) in a mixture of 

MeNO2 (1.5 mL) and CH2Cl2 (3.0 mL) at –40 oC.  The reaction was allowed to warm 

up to –15 oC over a period of 1 h and further stirred at –15 oC for 30 min before the 

reaction mixture was quenched by the addition of 5% aqueous NaHCO3: 5% aqueous 

Na2SO3 (1:1 v/v, 5 mL), stirred for 10 min, poured into water (5 mL), and extracted 

with CH2Cl2 (3 " 8 mL). The combined organic layers were then dried with MgSO4, 

concentrated, and purified by flash column chromatography (SiO2, 2.5-30% EtOAc in 

Pet ether) give the products in the amounts and yields as indicated.  

 

O

O

NH

OH

Br

Br

Br



Chapter 5 

 223 

(Z)-6,7-dibromo-3,7-dimethyloct-2-en-1-yl 1H-pyrrole-2-carboxylate (3.39a) and 
(Z)-6-bromo-7-chloro-3,7-dimethyloct-2-en-1-yl 1H-pyrrole-2-carboxylate 
(3.39b) 

 

Compound 3.39a (10.6 mg, 42%) and 3.39b (3.1 mg, 14%), isolated as a 

mixture, were obtained as white solids. 1H NMR (600 MHz, CDCl3) ! 9.11 (br s, 1H), 

6.92 (m, 2H), 6.24 (m, 1H), 5.54 (t, J = 6.8 Hz, 1H), 4.80 (ddd, J = 38.1, 12.4, 7.3 Hz, 

2H), 4.12(3.98) (dd, J = 11.2, 1.3 Hz, 1H), 2.58 (1H, m), 2.48 (m, 1H), 2.37 (m, 1H), 

1.95(1.76) (s, 3H), 1.90 (m, 1H), 1.80 (s, 3H), 1.78(1.64) (s, 3H); 13C NMR (150 

MHz, CDCl3) ! 161.0, 140.7(140.8), 122.9, 122.6, 121.3(121.28), 115.3, 110.4, 

68.7(71.9), 65.6(64.7), 60.8(60.7), 35.4(33.2), 34.0, 30.2, 28.0(26.9), 23.3(23.26); IR 

(neat) cm-1 3311, 2933, 1683, 1413, 1307, 1168, 1126, 749; HRMS (ESI) m/z 

[M+H+] calcd for C15H22
79Br2NO2 406.0017, found 406.0023, calcd for 

C15H21
79BrClNO2 362.0522, found 362.0521. 

Signals in bracket correspond to the minor chloro compound which was inseparable 

from the bromo compound.  Yields and amounts based on ratios from 1H NMR of the 

combined mixed fractions. 

(Z)-6-bromo-7-hydroxy-3,7-dimethyloct-2-en-1-yl 1H-pyrrole-2-carboxylate 
(3.39c) 

 

Compound 3.38c was obtained as a colourless oil (2.1 mg, 10%).  1H NMR 

(600 MHz, CDCl3) ! 9.12 (br s, 1H), 6.91 (m, 2H), 6.24 (q, J = 2.96 Hz, 1H), 5.52 (t, 

J = 7.50 Hz, 1H), 4.79 (ddd, J = 38.1, 12.4, 7.3 Hz, 2H), 3.96 (dd, J = 11.2, 1.86 Hz, 

1H), 2.39 (m, 2H), 2.02 (m, 1H), 1.84 (m, 1H), 1.76 (s, 3H), 1.33 (s, 3H), 1.32 (s, 

3H); 13C NMR (150 MHz , CDCl3) ! 159.0, 136.6, 122.7, 122.67, 121.2, 115.4, 110.5, 

72.6, 70.2, 60.6, 32.3, 30.9, 26.5, 26.0, 23.4;  IR (neat) cm-1 3310, 2966, 2928, 1689, 
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1685, 1413, 1306, 1163, 1125, 959, 748; HRMS (ESI) m/z [M+Na+] calcd for 

C15H22
79BrNO3Na 366.0681, found 343.0677. 

((1S,3R,6R)-3-bromo-6-hydroxy-2,2,6-trimethylcyclohexyl)methyl 1H-pyrrole-2-
carboxylate (3.39d)  

 

Compound 3.39d was obtained as a colourless oil (1.1 mg, 5%).  1H NMR 

(600 MHz, CDCl3) ! 9.08 (br s, 1H), 6.97 (m, 1H), 6.85 (m, 1H), 6.26 (m, 1H), 4.61 

(dd, J = 12.1, 4.4 Hz, 1H), 4.53 (dd, J = 12.2, 3.33 Hz, 1H), 4.32 (t, J = 2.7 Hz, 1H), 

2.46 (dddd, J = 14.4, 13.9, 3.6, 2.8 Hz, 1H), 2.17 (ddd, J = 14.8, 13.4, 4.1 Hz, 1H), 

1.89 (dd, J = 4.4, 3.6 Hz, 1H), 1.85 (dddd, J = 14.9, 7.9, 4.0, 3.1 Hz, 1H), 1.53 (m, 

1H), 1.36 (s, 3H), 1.29 (s, 3H), 1.18 (s, 3H); 13C NMR (150 MHz, CDCl3) ! 158.0, 

123.4, 122.6, 115.2, 110.6, 72.1, 70.1, 62.3, 47.1, 38.8, 36.1, 32.4, 31.1, 27.8, 23.3; 

IR (neat) cm-1 3230, 2965, 2923, 1684, 1410, 1194, 763; HRMS (ESI) m/z [M+Na+] 

calcd for C15H22
79BrNO3Na 366.0681, found 366.0677. 

 

Reaction with pyrrole-terpene substrate 3.40 

A solution of BDSB (37.2 mg, 0.068 mmol) in MeNO2 (1.5 mL) was added 

quickly via syringe to a solution of 3.39 (15.6 mg, 0.062 mmol) in a mixture of 

MeNO2 (1.5 mL) and CH2Cl2 (3.0 mL) at –40 oC.  The reaction was allowed to warm 

up to –15 oC over a period of 1 h and further stirred at –15 oC for 30 min before the 

reaction mixture was quenched by the addition of 5% aqueous NaHCO3: 5% aqueous 

Na2SO3 (1:1 v/v, 5 mL), stirred for 10 min, poured into water (5 mL), and extracted 

with CH2Cl2 (3 " 8 mL). The combined organic layers were then dried with MgSO4, 

concentrated, and purified by flash column chromatography (SiO2, 2.5-22.5% EtOAc 

in Pet ether) give the products in the amounts and yields as indicated.  
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tert-butyl (E)-(6,7-dibromo-3,7-dimethyloct-2-en-1-yl)carbamate (3.40a) and tert-
butyl (E)-(6-bromo-7-chloro-3,7-dimethyloct-2-en-1-yl)carbamate (3.40b) 

 

Compound 3.40a (14.1 mg, 55%) and 3.40b (trace), isolated as a mixture, 

were obtained as a colourless oil.  1H NMR (600 MHz, CDCl3) ! 5.27 (t, J = 6.7 Hz, 

1H), 4.45 (br s, 1H), 4.11(3.96) (d, J = 11.1 Hz, 1H), 3.73 (br t, 2H), 2.53 (1H, m), 

2.35 (m, 1H), 2.15 (m, 1H), 1.96(1.76) (s, 3H), 1.85 (m, 1H), 1.79 (s, 3H), 1.67(1.65) 

(s, 3H), 1.43 (s, 9H); 13C NMR (150 MHz, CDCl3) ! 160.0, 140.9, 122.5, 79.5, 68.8, 

65.7 (65.5), 38.5, 37.7(33.3), 35.5, 33.7(32.1), 29.8, 28.5, 28.2; IR (neat) cm-1 3359, 

2976, 2921, 1701, 1365, 1151, 860, 765; HRMS (ESI) m/z [M+H+] calcd for 

C15H28
79Br2NO2 412.0487, found 412.0484, calcd for C15H28

79BrClNO2 368.0992, 

found 368.1000. 

 

Reaction with methanesulfonic acid additive 

((1S,2S)-2-hydroxy-2,6,6-trimethylcyclohexyl)methyl 1H-pyrrole-2-carboxylate 
(3.41) 

 

Methanesulfonic acid (60.1 µL, 0.93 mmol) was added to a solution of 3.38 

(15.2 mg, 0.062 mmol) in a mixture of MeNO2 (6.0 mL) and CH2Cl2 (6.0 mL) at –40 
oC.  The reaction was allowed to warm up to –15 oC over a period of 1 h before the 

reaction mixture was quenched by the addition of saturated NaHCO3 (10 mL), stirred 

for 5 min, poured into water (6 mL), and extracted with CH2Cl2 (3 " 15 mL). The 

combined organic layers were then dried with MgSO4, concentrated, and purified by 

flash column chromatography (SiO2, 2.5-30% EtOAc in Pet ether) give 3.41 as a 

colourless oil (12.5 mg, 76%).  1H NMR (600 MHz, CDCl3) ! 9.14 (br s, 1H), 6.95 

(m, 1H), 6.84 (m, 1H), 6.24 (m, 1H), 4.54 (dd, J = 11.9, 8.17 Hz, 2H), 1.81 (dddd, J = 

15.5, 13.9, 3.4, 3.4 Hz, 1H), 1.66 (m, 1H), 1.43 (m, 1H), 1.41 (m, 1H), 1.40 (m, 1H), 
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1.39 (m, 1H), 1.29 (s, 3H), 1.23 (ddd, J = 14.3, 14.3, 4.2 Hz, 1H), 1.02 (s, 3H), 1.05 (s, 

3H); 13C NMR (150 MHz, CDCl3) ! 161.0, 123.0, 123.9, 115.1, 110.6, 72.2, 62.6, 

52.6, 42.3, 41.6, 33.8, 32.4, 31.3, 22.3, 18.3; IR (neat) cm-1 3309, 2930, 1679, 1415, 

1323, 1176, 1128, 746; HRMS (ESI) m/z [M+Na+] calcd for C15H23NO3Na 288.1576, 

found 288.1579. 

 

Reaction using DMF as co-solvent 

(Z)-6-bromo-7-(formyloxy)-3,7-dimethyloct-2-en-1-yl 1H-pyrrole-2-carboxylate 
(3.42) 

 

A solution of BDSB (50.8 mg, 0.093 mmol) in MeNO2 (1.5 mL) was added 

quickly via syringe to a solution of 3.38 (15.2 mg, 0.062 mmol) in a mixture of 

MeNO2 (1.5 mL) and DMF (9.0 mL) at –40 oC.  The reaction was allowed to warm up 

to –15 oC over a period of 30 min before the reaction mixture was quenched by the 

addition of 5% aqueous NaHCO3: 5% aqueous Na2SO3 (1:1 v/v, 10 mL), stirred for 

15 min, poured into water (6 mL), and extracted with CH2Cl2 (3 " 15 mL). The 

combined organic layers were then dried with MgSO4, concentrated, and purified by 

flash column chromatography (SiO2, 2.5-17.5% EtOAc in Pet ether) to give 3.42 as a 

colourless oil (20.8 mg, 90%).  1H NMR (600 MHz, CDCl3) ! 9.26 (br s, 1H), 7.93 (s, 

1H), 6.92 (m, 1 H), 6.91 (m, 1H), 6.22 (m, 1H), 5.52 (t, J = 7.4 Hz, 1H), 4.78 (ddd, J 

= 24.3, 12.4, 7.38 Hz, 2H), 4.42 (dd, J = 11.5, 1.7 Hz, 1H), 2.39 (m, 2H), 2.00 (m, 

1H), 1.80 (m, 1H), 1.75 (s, 3H), 1.60 (s, 6H); 13C NMR (150 MHz, CDCl3) ! 161.0, 

160.0, 140.8, 122.9, 122.7, 121.3, 110.5, 84.5, 61.2, 60.6, 31.5, 30.4, 29.7, 24.6, 23.3, 

23.1; IR (neat) cm-1 3309, 2926, 1720, 1682, 1412, 1304, 1162, 1123, 747; mass (EI) 

m/z 371, 373 [M+]; HRMS (EI) m/z [M+] calcd for C16H22
79BrNO4, 371.0732, found 

371.0730.   
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5.3.4.  Application of BDSB to DHO (2.2) and oroidin (2.1) 

Reaction with oroidin (2.1) 

A solution of BDSB (23.3 mg, 0.042 mmol) in MeNO2 (1.0 mL) was added 

quickly via syringe to a solution of 2.1 (15 mg, 0.039 mmol) in a mixture of MeNO2 

(0.5 mL) and DMF (1.5 mL) at –70 oC.  The reaction was allowed to warm up to –40 
oC over a period of 30 min and further warm up to –20 oC over 1 h before the reaction 

mixture was quenched by the addition of 5% aqueous NaHCO3: 5% aqueous Na2SO3 

(1:1 v/v, 3 mL), stirred for 15 min, and the reaction solution lyophilised. The crude 

was triturated with MeOH and the salt filtered off.  The filtrate was evaporated to give 

a yellow solid which was purified by flash column chromatography (Alumina, 2.5-

25% MeOH in CHCl3, saturated with NH3) to give dispacamide A (2.16) (8.3 mg, 

49%) as a white solid and 3.45 (2.0 mg, 12%) as a yellow solid.  

4-((2-amino-1H-imidazol-4-yl)(hydroxy)methyl)-6,7-dibromo-3,4-
dihydropyrrolo[1,2-a]pyrazin-1(2H)-one (3.45) 

 

1H NMR (600 MHz, DMSO-d6) ! 8.03 (t, J = 5.8 Hz, 1H), 6.89 (s, 1 H), 6.46 (s, 1H), 

5.26 (br s, 2H), 4.04 (d, J = 4.6 Hz, 1H), 3.53 (dt, J = 8.6, 3.7 Hz, 1H), 3.46 (ddd, J = 

13.8, 5.3, 4.2 Hz, 1H), 3.28 (dd, J = 14.0, 6.7 Hz, 1H); 13C NMR (150 MHz, DMSO-

d6) ! 159.3, 149.7, 128.7, 127.2, 113.7, 112.6, 104.9, 97.3, 81.3, 76.9, 39.2; IR (neat) 

cm-1 3311, 2929, 1682, 1635, 1561, 1541, 1416, 1113; HRMS (ESI) m/z [M+H+] 

calcd for C11H12
79Br2N5O2 403.9352, found 403.9357. 

 

Reaction with DHO (2.2) with the isolation of a dimer 

A solution of BDSB (42.1 mg, 0.077 mmol) in MeNO2 (1.0 mL) was added 

via syringe to a solution of 2.1 (50.0 mg, 0.13 mmol) in a mixture of MeNO2 (0.25 

mL) and DMF (1.25 mL) at –70 oC over 30 min.  The reaction was allowed to warm 
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up to –20 oC over a period of 1 h before the reaction mixture was quenched by the 

addition of 5% aqueous NaHCO3: 5% aqueous Na2SO3 (1:1 v/v, 3 mL), stirred for 15 

min, and the reaction solution lyophilised.  The crude was triturated with MeOH and 

the salt filtered off.  The filtrate was evaporated to give a crude residue which was 

subjected to repeated HPLC purifications (Gemini, 10-40% ACN in H2O with 0.05% 

TFA) to give dihydrodispacamide (3.10) (13.5 mg, 21%), dispacamide A (2.16) (11.6 

mg, 18%) as white solids, oroidin (2.1) (1.0 mg, 3%) as a yellowish solid and other 

products in the amounts and yields as indicated below.  

2-amino-6-(4,5-dibromo-1H-pyrrole-2-carbonyl)-1,3,6-triazaspiro[4.4]non-2-en-
4-one (3.43) 

 

Compound 3.43 was obtained as a white solid (7.7 mg, 12%).  1H NMR (600 

MHz, DMSO-d6) ! 12.88 (s, 1H), 10.28 (br s, 1H), 6.82 (s, 1 H), 9.30 (br s, 1H), 9.24 

(br s, 1H), 6.96 (d, J = 2.52 Hz, 1H), 3.88 (q, J = 6.5 Hz, 1H), 3.80 (q, J = 7.7 Hz, 1H), 

2.18 (m, 2H), 2.12 (m, 2H); 13C NMR (150 MHz, DMSO-d6) ! 173.3, 158.2, 157.5, 

125.7, 116.3, 107.5, 98.9, 79.6, 48.7, 35.5, 23.5; mass (ESI) m/z 404, 406, 408 

[M+H+]; IR (neat) cm-1 3377, 1710, 1679, 1436, 1417, 1203, 1139, 724.7; HRMS 

(ESI) m/z [M+H+] calcd for C11H12
79Br81BrN5O2 405.9332, found 405.9327. 

N,N'-((2,2'-diamino-5'-oxo-1',5'-dihydro-3H,4'H-[4,4'-biimidazole]-4',5-
diyl)bis(propane-3,1-diyl))bis(4,5-dibromo-1H-pyrrole-2-carboxamide) (3.46) 
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Compound 3.46 was obtained as a white powder (6.1 mg, 6%).  1H NMR (600 

MHz, MeOD-d4) ! 6.85 (s, 1H), 6.82 (s, 1 H), 3.37 (m, 2H), 3.34 (m, 2H), 2.63 (m, 

2H), 2.15 (br m, 2H), 1.82 (q, J = 7.08 Hz, 2H), 1.56 (br m, 2H); 13C NMR (150 MHz, 

MeOD-d4) ! 187.9, 162.9, 162.8, 148.9 (x2), 129.6, 129.4, 125.7, 121.4, 115.2, 115.1, 

67.6, 40.5, 40.3, 35.4, 31.5, 25.7, 23.4; IR (neat) cm-1 3338, 1684, 1638, 1203, 1139, 

725; mass (ESI) m/z 793, 795, 797, 799, 801 [M+H+]; HRMS (ESI) m/z [M+H+] 

calcd for C22H25
79Br2

81Br2N10O3 796.8798, found 796.8803. 

2-amino-10,11-dibromo-1,5,6,12a-tetrahydro-4H,8H-imidazo[4,5-
b]dipyrrolo[1,2-a:1',2'-d]pyrazin-8-one (2.54) 

 
Compound 2.54 was obtained as a white solid (1.6 mg, 2.5%).  1H NMR (600 

MHz, MeOD-d4) ! 6.94 (s, 1H), 5.92 (s, 1 H), 3.82 (m, 1H), 3.67 (m, 1H), 2.21 (m, 

4H); mass (ESI) m/z 388, 390, 392 [M+H+]; HRMS (ESI) m/z [M+H+] calcd for 

C11H12
79Br81BrN5O 389.9383, found 389.9387. 

N-(3-(2-amino-5-chloro-1H-imidazol-4-yl)propyl)-4,5-dibromo-1H-pyrrole-2-
carboxamide (3.49) 

 

Compound 3.49 was obtained as a yellowish solid (5.3 mg, 8%).1H NMR 

(600 MHz, MeOD-d4) ! 6.84 (s, 1H), 3.37 (t, J = 6.8 Hz, 2H), 2.58 (t, J = 7.4 Hz, 2H), 

1.88 (quint, J = 7.1 Hz, 2H); mass (ESI) m/z 424, 426, 428 [M+H]+; HRMS (ESI) m/z 

[M+H+] calcd for C11H13
79Br81BrClN5O 425.9149, found 423.9151. 
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N-(3-(2-amino-5-hydroxy-4-oxo-4,5-dihydro-1H-imidazol-5-yl)propyl)-4,5-
dibromo-1H-pyrrole-2-carboxamide (3.15) 

 

Compound 3.15 was obtained as a colourless solid (1.3 mg, 2%).1H NMR 

(600 MHz, MeOD-d4) ! 6.83 (s, 1H), 3.36 (m, 2H), 1.96 (t, J = 8.3 Hz, 2H), 1.71 (m, 

1H), 1.58 (m, 1H); mass (ESI) m/z 424, 426, 428 [M+H+]; HRMS (ESI) m/z [M+H+] 

calcd for C11H14
79Br81BrN5O3 423.9437, found 423.9441. 

4-(4,5-dibromo-1H-pyrrole-2-carboxamido)butanoic acid (3.49) 

 
Compound 3.49 was obtained as a colourless solid (0.9 mg, 2%).1H NMR 

(600 MHz, MeOD-d4) ! 6.83 (s, 1H), 3.37 (t, J = 7.2 Hz, 2H), 2.38 (t, J = 7.4 Hz, 2H), 

1.89 (quint, J = 7.1 Hz, 2H); HRMS (ESI) m/z [M+H+] calcd for C9H11
79Br81BrN2O3 

354.9110, found 354.9114. 

4,5-dibromo-1H-pyrrole-2-carboxamide (3.48) 

 
Compound 3.48 was obtained as a colourless oil (0.9 mg, 2%).  1H NMR (600 

MHz, MeOD-d4) ! 6.83 (s, 1H); mass (ESI) m/z 269 [M+H+].  

NMR spectral data of 2.54, 3.49, 3.48 and 3.15 were as previously reported.6,10,11 
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5.4.  Experimental for Chapter 4   

5.4.1.  Synthesis of the Second Generation Epicocconone Analogue (4.2) 

N-isopropyl-2,4-dimethoxy-3-methylbenzamide (4.30) 

 

To a solution of dimethoxytoluene (22.8 g, 150 mmol) in CH2Cl2 (200 mL) 

was slowly added aluminium trichloride (21.0 g, 158 mmol) at r.t.  The mixture was 

allowed to stir for 10 min before the dropwise addition of isopropylisocyanate (17.7 

mL, 188 mmol) at r.t.  After 3h, the reaction was quenched at 0 °C with a 1 N solution 

of HCl (150 mL) and extracted with CH2Cl2 (2 " 150 mL).  The combined organic 

layer was washed with a 1 N solution of HCl followed by a saturated solution of 

NaHCO3.  The organic layer was dried over MgSO4 and concentrated under vacuum. 

The crude was purified by flash chromatography (SiO2, 20 % EtOAc in cyclohexane) 

affording 4.30 (33.8 g; 95%) as a white solid.  1H NMR (400 MHz, CDCl3) # 7.94 (d, 

J = 8.8 Hz, 1H), 7.68 (d, J = 5.6 Hz, 1H), 6.72 (d, J = 8.7 Hz, 1H), 4.26-4.37 (m, 1H), 

3.86 (s, 3H), 3.73 (s, 3H), 2.15 (s, 3H), 1.25 (d, J = 6.5 Hz, 6H), 1.25 (d, J = 6.5 Hz, 

6H). 

6-(2-hydroxypropyl)-N-isopropyl-2,4-dimethoxy-3-methylbenzamide (4.31) 

 

Tetramethylethylenediamine (15.0 mL, 100 mmol) was added to a solution of 

compound 4.30 (11.85 g, 50 mmol) in THF (200 mL) at r.t.  The reaction mixture was 

cooled to –78 °C before the dropwise addition of t-BuLi (65 mL, 1.7 M in hexane).  

The solution was allowed to warm up to –15 °C and stirred for 30 min before being 

recooled to –78 °C after the formation of the characteristic red orthometallated 

intermediate. The 2,2-dimethyloxirane was then added dropwise at –78°C and the 

reaction mixture was warmed to –10 °C and then allowed to warm slowly to rt over 
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1.5 h. The reaction mixture was then quenched with H2O (250 mL) and extracted with 

EtOAc (3 " 200 mL). The combined organic layers were then washed with saturated 

NH4Cl followed by saturated NaHCO3. The organic layer was dried over MgSO4 and 

concentrated under vacuum. The crude product was purified by flash chromatography 

(SiO2, 30% EtOAc in Cyclohexane) to give the desired compound 4.31 (10.0 g, 68%) 

as a cream solid.  1H NMR (400 MHz, CDCl3) # 6.48 (s, 1H), 6.26 (d, J = 7.4 Hz, 

1H), 5.68 (s, 1H), 4.24-4.31 (m, 1H), 3.83 (s, 3H), 3.70 (s, 3H), 2.79 (s, 2H), 2.10 (s, 

3H), 1.30 (s, 6H), 1.25 (d, J = 6.6 Hz, 6H). 

 

6,8-dimethoxy-3,3,7-trimethylisochroman-1-one (4.32) 

 

Camphorsulfonic acid (11.7 g, 49.4 mmol) was added to a 400 mL toluene 

solution of 4.31 (12.1 g, 41.0 mmol) at r.t. The reaction mixture was refluxed for 2 h 

before being quenched at r.t. with saturated NaHCO3 (200 mL) and extracted with 

EtOAc (3 " 150 mL). The organic layer was then washed with saturated NaHCO3 and 

then with saturated NH4Cl.  The organic layer was dried over MgSO4 and 

concentrated under vacuum. The crude product was finally precipitated in 

cyclohexane to give the lactone 4.32 (9.75 g, 95%) as a cream powder.  1H NMR 

(400 MHz, CDCl3) # 6.40 (s, 1H) 3.82 (s, 3H), 3.76 (s, 3H), 2.86 (s, 2H), 2.07 (s, 3H), 

1.34 (s, 6H). 

6,8-dihydroxy-3,3,7-trimethylisochroman-1-one (4.33) 

 

Aluminium trichloride (30.9 g, 220 mmol) was added at r.t. to a solution of 

4.32 in CH2Cl2, which was then refluxed for 20 h.  The reaction mixture was 

quenched at r.t. with 1 N HCl and extracted with EtOAc.  The combined organic layer 

was then dried over MgSO4 and concentrated under vacuum. The crude product was 
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finally precipitated in 5 mL of CH2Cl2 to give 4.80 g (98%) of compound 4.33.  1H 

NMR (400 MHz, CDCl3) # 11.60 (s, 1H), 7.76 (s, 1H), 6.26 (s, 1H), 2.91 (s, 2H), 

2.01 (s, 3H), 1.40 (s, 6H). 

6,8-bis(methoxymethoxy)-3,3,7-trimethylisochroman-1-one (4.34) 

 

Under an inert atmosphere of argon, sodium hydride (2.78 g, 110 mmol; 95% 

grade) and MOM-Cl (65 mL, 137.3 mmol; 2.1 M in toluene) were added at r.t. to a 

250 mL THF solution of compound 4.33 (6.11 g, 27.5 mmol).  After 2 h, the reaction 

was quenched with saturated NH4Cl (350 mL) and extracted with EtOAc (3 " 250 

mL).  The combined organic layers were then dried over MgSO4 and concentrated 

under vacuum. Compound 4.34 (8.53 g, 100 %) was obtained and used without 

further purification. 

6,8-bis(methoxymethoxy)-3,3,7-trimethylisochroman-1-ol (4.35) 

 

DIBAL-H (21.3 mL, 25.6 mmol, 1.2 M in toluene) was added to a solution of 

4.34 (6.11 g, 19.7 mmol) in toluene (200 mL) at –78 °C. After 20 min, the reaction 

was quenched at 0°C with H2O and extracted with EtOAc. The organic layer was then 

washed with HCl 1 N and then with a saturated solution of sodium chloride (NaCl 

sat.). The organic layer was dried over MgSO4 and concentrated under vacuum.  

Compound 4.35 (8.59 g, 100 %) was obtained and used without further purification. 
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7-hydroxy-3,3,7-trimethyl-3H-isochromene-6,8(4H,7H)-dione (4.36) 

 

To a solution of compound 4.35 (1.25 g, 4 mmol) in CH2Cl2 (40 mL) at r.t., 

was added TFA (6.0 mL, 28 mmol), H2O (1.44 mL, 80 mmol) and IBX (2.24 g, 8 

mmol). After 3 h at r.t, the reaction mixture was filtered to remove the IBX residue 

and the filtrate was evaporated under vacuum to give the crude which was purified by 

flash chromatography (SiO2, 20-60% EtOAc in pentane) affording 4.36 (498 mg; 

56%) as a pale cream solid.  1H NMR (400 MHz, CDCl3) # 7.75 (s, 1H), 5.78 (s, 1H), 

4.05 (br s, 1H), 2.66 (s, 2H), 1.49 (s, 3H), 1.36 (s, 6H). 

NMR spectral data of 4.30-4.36 were as previously reported.12 

 

2,2-dimethyl-6-(2-(naphthalen-2-yl)-2-oxoethyl)-4H-1,3-dioxin-4-one (4.37)  

 

Prior to being used, the commercially available 2,2,6-trimethyl-4H-1,3-dioxin-

4-one was purified by flash chromatography (SiO2, 5-50% EtOAc in cyclohexane) to 

give a golden yellow oil.   

Oxalyl chloride (5.23 mL, 58.9 mmol) was added dropwise to a suspension of 

2-naphthoic acid (5.07 g, 29.4 mmol) in CH2Cl2 (100 mL), followed by the addition of 

10 drops of DMF (catalytic amount).  The reaction mixture was stirred at r.t. for 3 h 

until a further addition of a drop of DMF show no bubble of gas formed.  The solution 

was evaporated under vacuum and the crude 2-naphthoyl chloride 4.38 was used in 

the next step without purification.  
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A solution of n-BuLi (24.7 mL, 61.7 mmol, 2.5 M in hexane) was added 

dropwise to a solution of DIPA (8.26 mL, 58.8 mmol) in THF (300 mL) at –78 °C.  

The mixture was allowed to warm up to 0 °C and stirred at this temperature for 30 

min before being cooled back to –78 °C and 2,2,6-trimethyl-4H-1,3-dioxin-4-one 

(7.81 mL, 58.8 mmol) added.  After another 30 min at –78 °C, the crude 2-naphthoyl 

chloride (5.61 g, 29.4 mmol) dissolved in THF (40 mL) was finally added.  The 

reaction mixture was allowed to warm up to –40 °C and stirred at this temperature for 

2 h.  It was then quenched at 0 °C with 1 N HCl and extracted twice with EtOAc. The 

combined organic layers were dried over MgSO4 and concentrated under vacuum to 

give the crude product was a reddish gum. The desired product was finally 

precipitated using a 1:10 mixture of Et2O/pentane (first Et2O and then pentane) to 

give the desired dioxinone 4.37 (6.53 g, 75%) as an orange solid.  1H NMR (400 

MHz, CDCl3) # 8.45 (s, 1H), 7.89-8.01 (m, 4H), 7.57-7.68 (m, 2H), 5.48 (s, 1H), 4.04 

(s, 2H), 1.72 (s, 6H). 

 

(Z)-6-(2-((tert-butyldimethylsilyl)oxy)-2-(naphthalen-2-yl)vinyl)-2,2-dimethyl-4H-

1,3-dioxin-4-one (4.39) 

 

To a solution of the dioxinone 4.37 (2.00 g, 6.7 mmol) in CH2Cl2 (60 mL) at 

r.t., was added DIEA (3.5 mL, 20.1 mmol) followed by t-butyldimethylsilyl triflate 

(TBSOTf) (2.3 mL, 10.1 mmol).  After 2 h, the reaction was quenched at r.t. with 

saturated NaHCO3 and extracted with of EtOAc (3 " 50 mL). The combined organic 

layers were washed with saturated NH4Cl, dried over MgSO4 and then concentrated 

under vacuum. The crude product was purified through a short pad of silica (20-50% 

EtOAc in cyclohexane) to give the silylated dioxinone  (1.03 g, 45%).  1H NMR (400 

MHz, CDCl3) # 7.99 (s, 1H), 7.82-7.87 (m, 3H), 7.52-7.60 (m, 3H), 5.92 (s, 1H), 5.60 

(s, 1H), 1.74 (s, 6H), 1.03 (s, 9H), 0.02 (s, 6H). 
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(Z)-3-(1-hydroxy-3-(naphthalen-2-yl)-3-oxoprop-1-en-1-yl)-6,6,9a-trimethyl-5,6-
dihydro-2H-furo[3,2-g]isochromene-2,9(9aH)-dione (4.2) 

  

TEA (0.34 mL, 2.43 mmol), dioxinone 4.39 (980 mg, 2.19 mmol) and 4Å 

molecular sieves (250 mg per mmol) were added to a solution of the alcohol 4.36 (270 

mg, 1.21 mmol) in toluene (40 mL) at r.t.  The reaction mixture was heated at 100°C. 

After 3 h, the reaction was quenched at r.t. with 1N HCl and extracted with EtOAc (2 

" 40 mL).  The combined organic layers were then dried over MgSO4 and 

concentrated under vacuum. The crude was purified by flash chromatography (SiO2, 

30-80% EtOAc in cyclohexane) to give a yellow gum which was dissolved in a 

minimum amount of CH2Cl2 then precipitated with cyclohexane to give the desired 

product as a yellow powder (128.5 mg, 24%). 1H NMR (400 MHz, CDCl3) # 8.00 (d, 

J = 7.4 Hz, 2H), 7.76 (s, 1H), 7.55 (t, J = 7.2 Hz, 1H), 7.50 (s, 1H), 7.46 (t, J = 7.2 Hz, 

2H), 7.11 (s, 1H), 2.78 (d, J = 16.6 Hz, 1H), 2.71 (d, J = 16.6 Hz, 1H), 1.73 (s, 3H), 

1.46 (s, 3H), 1.40 (s, 3H). 

NMR spectral data of 4.37, 4.39 and 4.2 were as previously reported.12 

 

5.4.2.  Synthesis of the Hemicyanine Moieties 

1-ethyl-2,3,3-trimethyl-3H-indol-1-ium iodide (4.41) 
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2,3,3-trimethyl-3H-indolenine (1 mL, 6.24 mmol) and iodoethane (1.2 g, 7.68 

mmol) were refluxed in 2 mL dry toluene for 12 h.  Upon cooling, a precipitate was 

formed and was filtered and the residue washed with diethyl ether and dried in vacuo 

to afford 4.41 as a pink solid (1.57 g, 80%).  1H NMR (300 MHz, CDCl3) ! 1.60 (t, J 

= 7.5 Hz, 3H), 1.70 (s, 6H) 3.09 (s, 3H) 4.70, 4.74 (q, J = 7.5 Hz, 2H), 7.55-7.70 (m, 

3H), 7.71 (d, J = 7.8 Hz, 1H). 

 

2,3,3-trimethyl-1-propyl-3H-benzo[f]indol-1-ium iodide (4.42) 

 

2,3,3-trimethyl-3H-benzo[f]indole (300 mg, 1.44 mmol) was refluxed in 

iodoethane (10 mL) for 24 h.  Upon cooling, a precipitate was formed.  It was filtered 

off, washed with diethyl ether and dried in vacuo to afford 4.43 as a dark green solid 

(235.1 mg, 65%).  1H NMR (400 MHz, CDCl3) # 8.04 (d, J = 8.8 Hz, 1H), 8.03 (d, J 

= 8.4 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 8.8 Hz, 1H), 4.70 (t, J = 7.6 Hz, 

1H), 3.14 (s, 3H), 2.02 (q, J = 7.6 Hz, 1H), 1.81 (s, 6H), 1.04 (t, J = 7.4 Hz, 1H). 

 

2-methyl-3-propylbenzo[d]thiazol-3-ium iodide (4.43) 

 

2-methylbenzothiazole (300 mg, 2.01 mmol) was refluxed with iodoethane (10 

mL) for 24 h.  Upon cooling, a precipitate was formed.  It was filtered off, washed 

with diethyl ether and dried in vacuo to afford 4.43 as a pale grey solid (299.6 mg, 

55%).  1H NMR (400 MHz, CDCl3) # 8.22 (d, J = 6.9 Hz, 1H), 7.99 (d, J = 8.4 Hz, 
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1H), 7.83 (t, J = 7.9 Hz, 1H), 7.73 (t, J = 7.5 Hz, 1H), 4.86 (t, J = 7.7 Hz, 1H), 2.04 (q, 

J = 7.5 Hz, 1H), 1.13 (t, J = 7.4 Hz, 1H). 

 

3-(2-methylbenzo[d]thiazol-3-ium-3-yl)propane-1-sulfonate (4.44)  

 

2-methylbenzothiazole (300 mg, 2.01 mmol) and propane sultone (491 mg, 

4.02 mmol) were refluxed in 1,2-dichlorobenzene (15 mL) for 12 h.  Upon cooling, a 

precipitate was formed and was filtered, and the residue washed with diethyl ether and 

dried in vacuo to afford 4.44 as a pale yellow solid (332 mg, 61%).  1H NMR (400 

MHz, CDCl3) # 8.42 (d, J = 8.5 Hz, 1H), 8.31 (d, J = 8.3 Hz, 1H), 7.95 (dt, J = 7.9, 

1.3 Hz, 1H), 7.84 (t, J = 7.6 Hz, 1H), 5.04 (m, 2H), 3.28 (s, 3H), 3.07 (t, J = 6.4 Hz, 

2H), 2.14 (m, 2H). 

 

1-ethyl-2,3,3-trimethyl-5-sulfo-3H-indol-1-ium iodide (4.45) 

 

Compound 4.45 was available in the laboratory from previous synthesis and 

used as obtained.   
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1-(5-carboxypentyl)-2,3,3-trimethyl-5-sulfo-3H-indol-1-ium iodide (4.46) 

 

Compound 4.46 was available in the laboratory from previous synthesis and 

used as obtained.   

 

3-(4-methylquinolin-1-ium-1-yl)propane-1-sulfonate (4.47)  

 

Lepidine (0.77 g, 5.35 mmol) was heated with propanesultone (0.625 g, 5.1 

mmol) at 110 °C for 1.5 h.  Upon cooling, the reaction mixture solidified.  The solid 

was crushed and washed several times with diethyl ether, dried under vacuum to 

afford 4.47 as an off white solid (1.42 g, 90%).  1H NMR (300 MHz, DMSO-d6) ! 

9.39 (d, J = 6.0 Hz, 1H), 8.71 (d, J = 9.0 Hz, 1H), 8.55 (dd, J = 8.4, 1.2 Hz, 1H), 8.27 

(ddd, J = 9.1, 7.0, 1.5 Hz, 1H), 8.06(m, 2H), 5.18 (t, J = 7.2 Hz, 2H), 3.01 (3H, s), 

2.55 (t, J = 7.2 Hz, 2H), 2.28 (q, J = 7.2 Hz, 2H). 

The NMR spectra of synthesised hemicyanines moities were as previously reported.13-

16 
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5.4.3.  Synthesis of the Epicocconone-Hemicyanine Hybrids 

 (Z)-6-((E)-2-(1-ethyl-3,3-dimethylindolin-2-ylidene)ethylidene)-5-(2-hydroxy-2-
methylpropyl)-3-((Z)-1-hydroxy-3-(naphthalen-2-yl)-3-oxoprop-1-en-1-yl)-7a-
methylbenzofuran-2,7(6H,7aH)-dione (4.48) 

 

To 4.2 (6.8 mg, 0.015 mmol) in CHCl3 (0.8 mL), was added 4.41 (7.2 mg, 

0.23 mmol) followed by TEA (68 µL, 0.49 mmol).  The reaction mixture was 

observed to turn reddish then purple or blue immediately upon or within minutes of 

the addition of TEA.  The reaction mixture was allowed to stir at r.t. in the dark for 1 

day.  The solvent was removed on the rotary evaporator and the crude was purified by 

flash chromatography (SiO2, 30-90% EtOAc in hexane) to give the hybrid (5 mg, 

52%) as a dark blue solid.  1H NMR (600 MHz, CDCl3) # 8.56 (s, 1H), 8.11 (d, J = 

13.5 Hz, 1H), 8.06 (dd, J = 8.6, 1.8 Hz, 1H), 7.98 (d, J = 7.8 Hz, 1H), 7.89 (d, J = 8.6 

Hz, 1H), 7.86 (d, J = 7.9 Hz, 1H), 7.66 (s, 1H), 7.57 (m, 1H), 7.55 (m, 1H), 7.54 (d, J 

= 13.5 Hz, 1H), 7.32 (t, J = 7.6 Hz, 1H), 7.30 (d, J = 7.5 Hz, 1H), 7.13 (t, J = 7.4 Hz, 

1H), 7.03 (s, 1H), 6.95 (d, J = 7.8 Hz, 1H), 3.95 (q, J = 7.3 Hz, 2H), 2.93 (d, J = 13.5 

Hz, 1H), 2.76 (d, J = 13.5 Hz, 1H), 1.83 (s, 3H), 1.71 (s, 3H), 1.70 (s, 3H), 1.46 (s, 

3H), 1.45 (s, 3H), 1.39 (t, J = 7.3 Hz, 3H); 13C NMR (150 MHz, CDCl3) # 195.4, 

188.3, 176.9, 172.5, 171.1, 169.6, 154.1, 146.1, 142.3, 140.8, 135.5, 135.5, 133.4, 

132.8, 129.6, 128.8, 128.4, 128.1, 127.8, 126.7, 123.7, 123.66, 122.1, 116.6, 114.9, 

110.2, 109.1, 98.0, 96.7, 87.3, 72.1, 48.1, 47.3, 38.7, 31.2, 30.5, 29.6, 28.5, 28.3, 11.8; 

IR (neat) cm-1 2969, 2925, 1746, 1485, 1459, 1327, 1261, 1206, 1127; mass (ESI) 

m/z 630 [M+H+]; HRMS (ESI) m/z [M+H+]  calcd for C40H40NO6 630.2856, found 

630.2857.  
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(Z)-6-((E)-2-(3,3-dimethyl-1-propyl-1H-benzo[f]indol-2(3H)-ylidene)ethylidene)-
5-(2-hydroxy-2-methylpropyl)-3-((Z)-1-hydroxy-3-(naphthalen-2-yl)-3-oxoprop-
1-en-1-yl)-7a-methylbenzofuran-2,7(6H,7aH)-dione (4.49) 

 

To 4.2 (15.4 mg, 0.035 mmol) in CHCl3 (1.7 mL), was added 4.42 (19.8 mg, 

0.052 mmol) followed by TEA (156 µL, 1.12 mmol).  The reaction mixture was 

observed to turn reddish then purple or blue immediately upon or within minutes of 

the addition of TEA.  The reaction mixture was allowed to stir at r.t. in the dark for 1 

day.  The solvent was removed on the rotary evaporator and the crude was purified by 

flash chromatography (SiO2, 30-80% EtOAc in hexane) to give the hybrid (15 mg, 

62%) as a dark blue solid.  1H NMR (600 MHz, CDCl3) # 8.54 (s, 1H), 8.10 (d, J = 

8.44 Hz, 1H), 8.05 (dd, J = 8.53, 1.74 Hz, 1H), 8.25 (d, J = 13.9 Hz, 1H), 7.96 (d, J = 

7.74 Hz, 1H), 7.88 (m, 1H), 7.87 (m, 1H), 7.84 (m, 1H), 7.66 (s, 1H), 7.62 (d, J = 13.7 

Hz, 1H), 7.56 (m, 1H), 7.55 (m, 1H), 7.52 (m, 1H), 7.85 (m, 1H), 7.40 (d, J = 7.38 Hz, 

1H), 7.24 (d, J = 8.49 Hz, 1H), 7.03 (s, 1H), 3.98 (m, 2H), 2.98 (d, J = 13.5 Hz, 1H), 

2.80 (d, J = 13.4 Hz, 1H), 2.03 (s, 3H), 2.01 (s, 3H), 1.90 (q, J = 7.3 Hz, 2H), 1.84 (s, 

3H), 1.50 (s, 3H), 1.49 (s, 3H), 1.07 (t, J = 7.4 Hz, 3H); 13C NMR (150 MHz, CDCl3) 

# 195.7, 187.9, 177.2, 175.1, 171.3, 169.6, 154.6, 145.7, 140.0, 135.4, 133.4, 133.3, 

132.69, 132.64, 131.3, 130.2, 130.0, 129.6, 128.7, 128.3, 128.0, 127.7, 127.5, 126.6, 

124.3, 123.7, 121.9, 116.1, 114.6, 110.2, 109.6, 97.9, 96.5, 87.3, 72.1, 50.1, 47.4, 45.4, 

31.2, 30.5, 29.8, 28.0, 27.9, 20.6, 11.5; IR (neat) cm-1 2968, 2927, 1739, 1450, 1255, 

1193, 1126, 940; mass (ESI) m/z 694 [M+H+]; HRMS (ESI) m/z [M+H+] calcd for 

C45H44NO6 694.3169, found 694.3165. 
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(Z)-5-(2-hydroxy-2-methylpropyl)-3-((Z)-1-hydroxy-3-(naphthalen-2-yl)-3-
oxoprop-1-en-1-yl)-7a-methyl-6-((Z)-2-(3-propylbenzo[d]thiazol-2(3H)-
ylidene)ethylidene)benzofuran-2,7(6H,7aH)-dione (4.50) 

 

To 4.2 (18.6 mg, 0.042 mmol) in CHCl3 (2.1 mL), was added 4.43 (20.2 mg, 

0.063 mmol) followed by TEA (188 µL, 1.35 mmol).  The reaction mixture was 

observed to turn reddish then purple or blue immediately upon or within minutes of 

the addition of TEA.  The reaction mixture was allowed to stir at r.t. in the dark for 1 

day.  The solvent was removed on the rotary evaporator and the crude was purified by 

preparative TLC (SiO2, 80% EtOAc in cyclohexane) to give the hybrid (16 mg, 60%) 

as a dark blue solid.  1H NMR (600 MHz, CDCl3) # 8.52 (s, 1H), 8.03 (d, J = 8.65 Hz, 

1H), 7.95 (d, J = 7.98 Hz, 1H), 7.86 (d, J = 8.65 Hz, 1H), 7.84 (d, J = 7.91 Hz, 1H), 

7.75 (d, J = 13.0 Hz, 1H), 7.63 (d, J = 13.0 Hz, 1H), 7.60 (s, 1H), 7.54 (m, 1H), 7.51 

(m, 1H), 7.40 (m, 1H), 7.36 (m, 1H), 7.22 (d, J = 7.54 Hz, 1H), 7.09 (d, J = 7.69 Hz, 

1H), 6.96 (s, 1H), 4.07 (br s, 2H), 2.95 (d, J = 13.5 Hz, 1H), 2.77 (d, J = 13.4 Hz, 1H), 

1.77 (s, 3H), 1.43 (s, 3H), 1.42 (s, 3H), 1.07 (t, J = 15.6 Hz, 3H); 13C NMR (150 

MHz, CDCl3) # 195.2, 187.5, 177.5, 171.8, 169.7, 166.4, 155.0, 145.4, 141.6, 135.4, 

133.3, 132.7, 129.6, 128.3, 128.0, 127.7, 127.6, 126.6, 125.2, 124.5, 123.7, 122.2, 

114.5, 113.7, 111.8, 109.1, 96.9, 96.4, 71.9, 48.1, 47.5, 31.0, 30.6, 30.2, 20.8, 11.5; 

IR (neat) cm-1 2968, 2927, 1735, 1526, 1452, 1201, 1129, 825, 696; mass (ESI) m/z 

634 [M+H+]; HRMS (ESI) m/z [M+H+] calcd for C38H36NO6S 634.2263, found 

634.2268. 
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3-((Z)-2-((Z)-2-(5-(2-hydroxy-2-methylpropyl)-3-((Z)-1-hydroxy-3-(naphthalen-2-
yl)-3-oxoprop-1-en-1-yl)-7a-methyl-2,7-dioxo-7,7a-dihydrobenzofuran-6(2H)-
ylidene)ethylidene)benzo[d]thiazol-3(2H)-yl)propane-1-sulfonic acid (4.51) 

 

To 4.2 (15.5 mg, 0.035 mmol) in DMSO (1.8 mL), was added 4.44 (14.3 mg, 

0.053 mmol) followed by TEA (156 µL, 1.12 mmol).  The reaction mixture was 

observed to turn reddish then purple or blue immediately upon or within minutes of 

the addition of TEA.  The reaction mixture was allowed to stir at r.t. in the dark for 2 

day.  The solvent was removed by freeze-drying and the crude was purified by 

preparative HPLC (Econosphere, 10-40% ACN in distilled H2O) to give the hybrid (8 

mg, 32%) as a dark blue solid.  1H NMR (600 MHz, DMSO-d6) # 8.53 (s, 1H), 8.15 

(d, J = 7.86 Hz, 1H), 8.06 (d, J = 8.70 Hz, 1H), 8.01 (m, 1H), 8.00 (m, 1H), 7.94 (d, J 

= 13.0 Hz, 1H), 7.92 (m, 1H), 7.91 (d, J = 8.94 Hz, 1H), 7.65 (m, 1H), 7.60 (d, J = 

13.0 Hz), 7.49 (s, 1H), 7.59 (d, J = 8.65 Hz, 1H), 7.55 (t, J = 7.62 Hz, 1H), 7.49 (s, 

1H), 7.40 (t, J = 7.50 Hz, 1H), 6.81 (s, 1H), 6.53 (s, 1H), 4.76 (s, 1H), 4.46 (m, 2H), 

2.94 (d, J = 12.8 Hz, 1H), 2.66 (d, J = 12.8 Hz, 1H), 2.59 (m, 2H), 2.08 (q, J = 7.2 Hz, 

2H), 1.70 (s, 3H), 1.29 (s, 3H), 1.27 (s, 3H); 13C NMR (150 MHz, DMSO-d6) # 195.0, 

184.0, 179.7, 172.9, 169.5, 168.0, 159.6, 146.3, 141.7, 134.8, 132.5, 132.4, 129.5, 

128.4, 128.4, 128.0, 127.7, 127.6, 127.0, 125.16, 125.14, 123.0, 122.9, 113.9, 113.8, 

111.8, 105.1, 97.9, 95.0, 86.7, 70.3, 47.9, 47.7, 45.7, 31.1, 30.8, 30.1, 23.8; IR (neat) 

cm-1 3389, 1524, 1440, 1197, 1161, 1133, 1023, 818, 696; mass (ESI) m/z 714 

[M+H+]; HRMS (ESI) m/z [M+H+] calcd for C38H36NO9S2 714.1832, found 714.1829. 
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(E)-1-ethyl-2-((Z)-2-(5-(2-hydroxy-2-methylpropyl)-3-((Z)-1-hydroxy-3-
(naphthalen-2-yl)-3-oxoprop-1-en-1-yl)-7a-methyl-2,7-dioxo-7,7a-
dihydrobenzofuran-6(2H)-ylidene)ethylidene)-3,3-dimethylindoline-5-sulfonic 
acid (4.52) 

 

To 4.2 (19.3 mg, 0.044 mmol) in DMSO (2.2 mL), was added 4.45 (25.9 mg, 

0.066 mmol) followed by TEA (195 µL, 1.40 mmol).  The reaction mixture was 

observed to turn reddish then purple or blue immediately upon or within minutes of 

the addition of TEA.  The reaction mixture was allowed to stir at r.t. in the dark for 2 

day.  The solvent was removed by freeze-drying and the crude was purified by 

preparative HPLC (Econosphere, 10-40% ACN in distilled H2O) to give the hybrid (9 

mg, 29%) as a dark blue solid.  1H NMR (600 MHz, DMSO-d6) # 8.55 (s, 1H), 8.20 

(d, J = 14.0 Hz, 1H), 8.16 (d, J = 8.06 Hz, 1H), 8.07 (d, J = 9.04 Hz, 1H), 8.00 (d, J = 

7.97 Hz, 1H), 7.93 (d, J = 8.55 Hz, 1H), 7.69 (s, 1H), 7.66 (m, 1H), 7.62 (t, J = 7.15 

Hz, 1H), 7.61 (m, 1H), 7.26 (d, J = 8.22 Hz, 1H), 7.50 (s, 1H), 7.40 (d, J = 14.0 Hz, 

1H), 6.90 (s, 1H), 4.01 (br m, 2H), 2.88 (d, J = 13.2 Hz, 1H), 2.66 (d, J = 13.2 Hz, 

1H), 1.74 (s, 3H), 1.67 (s, 6H), 1.34 (s, 3H), 1.30 (s, 3H), 1.16 (t, J = 7.3 Hz, 3H); 13C 

NMR (150 MHz, DMSO-d6) # 195.2, 185.1, 178.7, 173.6, 172.1, 169.4, 158.5, 147.5, 

144.5, 141.9, 140.2, 134.9, 132.5, 132.4, 129.5, 128.8, 128.5, 127.8, 127.1, 126.1, 

123.1, 119.7, 116.8, 113.4, 113.1, 109.3, 98.2, 95.4, 87.0, 70.6, 48.2, 47.5, 38.6, 31.5, 

29.9, 29.85, 27.8, 27.5, 11.6; IR (neat) cm-1 3385, 2971, 1740, 1473, 1196, 1114, 

1024; mass (ESI) m/z 710  [M+H+]; HRMS (ESI) m/z [M+H+] calcd for C40H40NO9S 

710.2424, found 710.2427. 
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6-((E)-2-((Z)-2-(5-(2-hydroxy-2-methylpropyl)-3-((Z)-1-hydroxy-3-(naphthalen-2-
yl)-3-oxoprop-1-en-1-yl)-7a-methyl-2,7-dioxo-7,7a-dihydrobenzofuran-6(2H)-
ylidene)ethylidene)-3,3-dimethyl-5-sulfoindolin-1-ium-1-yl)hexanoate (4.53) 

 

To 4.2 (27.8 mg, 0.063 mmol) in DMSO (3.1 mL), was added 4.46 (45.4 mg, 

0.094 mmol) followed by TEA (280 µL, 2.01 mmol).  The reaction mixture was 

observed to turn reddish then purple or blue immediately upon or within minutes of 

the addition of TEA.  The reaction mixture was allowed to stir at r.t. in the dark for 2 

day.  The solvent was removed by freeze-drying and the crude was purified by 

preparative HPLC (Econosphere, 10-40% ACN in distilled H2O) to give the hybrid (6 

mg, 12%) as a dark blue solid.  1H NMR (400 MHz, DMSO-d6) # 8.55 (s, 1H), 8.20 

(d, J = 14.0 Hz, 1H), 8.16 (d, J = 7.67 Hz, 1H), 8.07 (m, 1H), 8.00 (m, 1H), 7.94 (m, 

1H), 7.67 (m, 1H), 7.66 (m, 1H), 7.62 (m, 1H), 7.60 (m, 1H), 7.49 (s, 1H), 7.40 (d, J = 

14.0 Hz, 1H), 7.25 (d, J = 8.33 Hz, 1H), 6.90 (s, 1H), 6.53 (s, 1H), 4.82 (s, 1H), 3.94 

(m, 2H), 2.87 (d, J = 13.2 Hz, 1H), 2.65 (d, J = 13.2 Hz, 1H), 2.20 (t, J = 7.13 Hz, 

2H), 1.74 (s, 3H), 1.73 (m, 2H), 1.67 (s, 6H), 1.56 (m, 2H), 1.39 (m, 2H), 1.34 (s, 3H), 

1.30 (s, 3H); 13C NMR (100 MHz, DMSO-d6) # 197.1, 195.1, 185.2, 178.9, 174.4, 

174.0, 172.3, 159.0, 147.4, 144.6, 142.3, 140.1, 134.9, 132.5, 132.4, 129.5, 128.8, 

128.5, 127.7, 127.1, 126.0, 122.9, 119.5, 116.8, 113.3, 109.5, 106.6, 99.6, 95.4, 87.1, 

70.6, 48.1, 47.5, 43.5, 33.6, 31.5, 29.9, 29.8, 27.9, 27.6, 26.2, 25.9, 24.2; IR (neat) 

cm-1 3382, 2973, 1719, 1473, 1458, 1258, 1115, 1024; HRMS (ESI) m/z [M-H+] 

calcd for C44H44NO11S 794.332, found 794.332. 
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3-((E)-4-((Z)-2-(5-(2-hydroxy-2-methylpropyl)-3-((Z)-1-hydroxy-3-(naphthalen-2-
yl)-3-oxoprop-1-en-1-yl)-7a-methyl-2,7-dioxo-7,7a-dihydrobenzofuran-6(2H)-
ylidene)ethylidene)-1,4-dihydroquinolin-1-ium-1-yl)propane-1-sulfonate (4.54) 

 

To 4.2 (33.3 mg, 0.075 mmol) in DMSO (3.8 mL), was added 4.47 (30.0 mg, 

0.11 mmol) followed by TEA (336 µL, 2.41 mmol).  The reaction mixture was 

observed to turn reddish then purple or blue immediately upon or within minutes of 

the addition of TEA.  The reaction mixture was allowed to stir at r.t. in the dark for 2 

day.  The solvent was removed by freeze-drying and the crude was purified by 

preparative HPLC (Econosphere, 10-40% ACN in distilled H2O) to give the hybrid (8 

mg, 15%) as a dark blue solid.  Interpretable NMR data could not be unobtained.  IR 

(neat) cm-1 3426, 2974, 1648, 1529, 1471, 1395, 1196, 1046; Mass (ESI) m/z 708 

[M+H+]; HRMS (ESI) m/z [M+H+] calcd for C40H38NO9S+ 708.2265, found 708.2267. 

 

5.4.4.  Determination of the Extinction Coefficient and Fluorescence Quantum 

Yield 

  Measurement of absorbance was conducted from 200 to 900 nm at 25 oC in a 

solution of acetonitrile using a CARY 1Bio UV-Visible spectrophotometer. The Beer-

Lambert equation (A = %cl) was used to calculate the extinction coefficient, % at a 

concentration where the absorbance, A is less than 1, c is concentration of fluorophore 

(M) and l path length (cm) of light through the sample.   

Each of the hybrid dyes was scanned for its maximum excitation wavelength, 

max #ex and maximum emission wavelength, max #em to obtain its fluorescence 

spectrum using a LS50B fluorometer (Perkin Elmer). 

For the recording of quantum yields, the comparative method of Williams17 

was chosen over that of Demas18 mainly because the former takes into consideration 
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the presence of concentration effects such as self-quenching by working within a 

carefully chosen concentration range and acquiring data at a number of different 

absorbances (i.e. concentrations), thus ensuring linearity across the concentration 

range.  

The relative quantum yields were measured at 25 oC in acetonitrile, using 1,1’-

diethyl-4,4’-carbocyanine iodide (&F = 0.007 in ethanol) as standard according to 

equation 1.  

Equation 1:  Fx = Fstd(GradX/Gradstd)( hx/hstd)2 

Where subscripts x and std denote sample and standard respectively, Grad refer to the 

gradient from a plot of integrated fluorescence intensity vs absorbance of a range of 

concentrations of the fluorophores that shows linearity, ' = refractive index of 

solvents used (' = 1.3441 for acetonitrile, ' = 1.3614 for ethanol and ' = 1.4783 for 

DMSO).  Spectroscopic grade solvents were used. 

 

5.4.5.  Investigation of the Hybrid Dyes as Fluorescent Probes 

For fluorescent probes evaluation, the following solutions were prepared: 

(i) a solution of BSA of concentration 1000, 500, 250, 125, 62.5, 31, 15.6, 8, 

4, 2, 1, 0.5 $g/mL 

(ii) a solution of dsDNA (Na+ salt from salmon testes) of concentration 10, 5, 

2.5, 1.25, 0.625, 0.3125, 0.156, 0.0781, 0.0391, 0.0195, 0.0098, 0.0049, 

0.0012, 0.0003, 0.0001 mg/mL, 

(iii) a solution of SDS of concentration 8, 4, 2, 1, 0.5, 0.25, 0.125, 0.0625, 

0.0313, 0.0156 % (w/v) 

(iv) universal pH buffer solutions of pH 2-12, prepared using a solution of 0.04 

M H3BO3, 0.04 M H3PO4 and 0.04 M CH3COOH that has been titrated to 

the desired pH with 0.2 M NaOH.19 
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Fluorescence readings were taken in 96-well plates using the fluorescence plate reader 

(Spectramax M5).  The total volume of each well was 200 $L.  The concentrations of 

each dye used, is indicated in Table 5.1. 

 

Table 5.1 Concentration of hybrid dyes used in each test. 

Hybrid 

dye 

Conc. of dye tested against 

dsDNA, BSA and SDS/$M  

Conc. of dye tested 

in buffer/$M  

4.48 7.8 23 

4.49 4.9 15 

4.50 8.0 24 

4.51 7.7 23 

4.52 7.3 22 

4.53 3.6 11 

4.54 5.4 16 

 

5.4.6. Staining of 1D PAGE Gels 

The epicocconone-hemicyanine hybrids (4.48-4.53) were dissolved in DMSO 

(1 mg/mL).  A stock solution of BSA was made by dissolving 5.3 mg of BSA in 10 

mL distilled water.  The stock solution was serially diluted (2!) from 0.53 mg/mL to 

5.2 µg/mL.  Seven 4-12% Bis-Tris Novex NuPAGE (Invitrogen NP0321BOX), 1 mm 

thick gels were loaded with the dilution series of BSA (5 µL of each dilution) to 

obtain the amounts of 2650, 1325, 662.5, 331.3, 165.6, 82.8, 41.4, 20.7, 10.4, 5.2 ng 

per lane.  The gels were run in Xcell SureLock minigel systems (Invitrogen, EI0001) 

at 240 V for approximately 45 min (buffer front just off gel) using MES buffer (50 

mM MES, 50 mM Tris, 1 mM EDTA, 0.1% SDS, pH 7.3).   

The gels were removed and fixed in 15% ethanol (v/v), 1% citric acid (100 

mL) on a rocker for 1 h before the addition of fresh fixative overnight.  The next day, 

the gels were placed into fresh fixative (100 mL) for 1 h, drained, then stained in 100 

mM sodium borate buffer (50 mL; pH 10.9) containing one of the hybrids each (50 
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µL of a 1 mg/mL solution in DMSO).  These concentrations resulted in approximately 

1 µg/mL active dye in each staining solution.  After 1 h staining the gels were de-

stained in 15% ethanol (100 mL) for 30 min and transferred to fixative (100 mL; 15% 

ethanol (v/v), 1% citric acid (w/v)) for 30 min.  All gels were imaged using a 

Typhoon Trio (GE, 63-0055-87) using the 633 nm red laser, 600 PMT, 100 µm 

resolution and normal sensitivity.   

The Typhoon scans were analysed using ImageJ and a Plot Profile was 

obtained across the main protein band stain (Appendix 6.7.1).   

 

5.4.7.  Live Cell Imaging Using the NIR Hybrids 

The human colon cancer cell line SW480 (Australian Proteomic Analysis 

Facility, Sydney, Australia) was cultured in Dulbecco’s Modified Eagle Medium 

(DMEM, Gibco, NY, USA) containing 10% FBS and 1% Geneticin.  Cultures were 

maintained at 37 °C under a humidified atmosphere containing 5% CO2.   

The hybrid dyes were diluted in phenol red-free Dulbecco’s Modified Eagle 

Medium (DMEM, Gibco, NY, USA) containing 10% FBS and 1% Geneticin for cell 

staining. For washing cells, Dulbecco’s phosphate buffered saline (pH 7.4±0.2; 

Gibco, NY, USA) was used.  For fixing cells, 2% formaldehyde (Sigma-Aldrich, 

Sydney, Australia) in Dulbecco’s PBS was used. 

Fluorescent images were acquired on a FV1000 confocal laser-scanning 

microscope (Carl Zeiss Co., Ltd.) with an objective lens (up to "40).  Prior to 

imaging, the medium was removed. Cell imaging was carried out after washing cells 

with PBS for three times before being view in fresh PBS.   

For the epicocconone-hemicyanine dye, the excitation wavelength used was 

633 nm (Alexa Fluor-633 laser) and emission wavelength scanned from 690-790 nm.  

In the co-staining studies, up to 3 channels were used at any one time, the excitation 

wavelengths used to view the co-stains were based on the recommended excitation 

and emission wavelengths as follows (Ex/Em nm): 350/461 Hoechst, 504/511 ER-

Tracker Green, 470/516 MitoTracker Green, 577/590 LysoTracker Red, 553/570 CM-
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DiI.  The final concentrations of the co-stains used were as follows: Hoechst 2 µg/mL, 

ER-Tracker 200 nM, LysoTracker 70 nM, MitoTracker 70 nM and CM-DiI 2 µM. 
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6.1.  NMR Spectra of Newly Synthesised Compounds 

((1S,3R,6R)-3-bromo-6-hydroxy-2,2,6-trimethylcyclohexyl)methyl 1H-pyrrole-2-
carboxylate (1.8)  
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HSQC (1.8) 
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HMBC (1.8) 
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COSY (1.8) 
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(4R,6S)-4-methyl-4,5,6,7-tetrahydro-3H-imidazo[4,5-c]pyridine-4,6-dicarboxylic acid (1.9) 
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(E)-4,5-dibromo-N-(3,7-dimethylocta-2,6-dien-1-yl)-1H-pyrrole-2-carboxamide (3.37) 
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(Z)-3,7-dimethylocta-2,6-dien-1-yl 4,5-dibromo-1H-pyrrole-2-carboxylate (3.38) 
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(Z)-3,7-dimethylocta-2,6-dien-1-yl 1H-pyrrole-2-carboxylate (3.39) 
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(E)-tert-butyl (3,7-dimethylocta-2,6-dien-1-yl)carbamate (3.40) 
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(E)-4,5-dibromo-N-(6,7-dibromo-3,7-dimethyloct-2-en-1-yl)-1H-pyrrole-2-carboxamide 
(3.37a) 
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(E)-4,5-dibromo-N-(6-bromo-7-chloro-3,7-dimethyloct-2-en-1-yl)-1H-pyrrole-2-carboxamide 
(3.37b) 
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(E)-4,5-dibromo-N-(6-bromo-7-hydroxy-3,7-dimethyloct-2-en-1-yl)-1H-pyrrole-2-
carboxamide (3.37c)  
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4,5-dibromo-N-((5-bromo-2,6,6-trimethylcyclohex-1-en-1-yl)methyl)-1H-pyrrole-2-
carboxamide (3.37d)  
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HSQC (3.37d)  
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HMBC (3.37d) 
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COSY (3.37d) 
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(Z)-6,7-dibromo-3,7-dimethyloct-2-en-1-yl 4,5-dibromo-1H-pyrrole-2-carboxylate and (Z)-6-
bromo-7-chloro-3,7-dimethyloct-2-en-1-yl 4,5-dibromo-1H-pyrrole-2-carboxylate (3.38a and 
b) 
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(Z)-6-bromo-7-hydroxy-3,7-dimethyloct-2-en-1-yl 4,5-dibromo-1H-pyrrole-2-carboxylate 
(3.38c) 
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((1R,3R,6R)-3-bromo-6-hydroxy-2,2,6-trimethylcyclohexyl)methyl 4,5-dibromo-1H-pyrrole-
2-carboxylate (3.38d) 

 

 

 

 

 

 

 

 

 

 

 

 

z 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

9.
0

9.
5

p
p

m1.25
1.34
1.53
1.83
1.84
1.84
1.85
1.85
1.86
1.87
1.87
1.88
1.89
1.89
2.15
2.16
2.17
2.18
2.20
2.20
2.41
2.41
2.42
2.43
2.45
2.46
2.46

4.31
4.47
4.48
4.49
4.50
4.60
4.60
4.62
4.62

6.81
6.81

9.32

2.95
3.27
3.00
1.22

0.94
1.00

0.98

0.96

1.00
0.97
1.01

0.99

0.95

30
40

50
60

70
80

90
10

0
11

0
12

0
13

0
14

0
15

0
16

0
p

p
m

23.12

27.69

31.21
32.35

36.22

38.77

47.20

62.94

69.71
71.90

101.03

107.22

117.86

124.05

159.46



 

Chapter 6 

273 
 

HSQC (3.38d) 
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HMBC (3.38d) 
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COSY (3.38d) 
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 (Z)-6,7-dibromo-3,7-dimethyloct-2-en-1-yl 1H-pyrrole-2-carboxylate and (Z)-6-bromo-7-
chloro-3,7-dimethyloct-2-en-1-yl 1H-pyrrole-2-carboxylate (3.39a and b) 
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HSQC (3.39a and b) 
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HMBC (3.39a and b) 
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COSY (3.39a and b) 
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(Z)-6-bromo-7-hydroxy-3,7-dimethyloct-2-en-1-yl 1H-pyrrole-2-carboxylate (3.39c) 
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HSQC (3.39c) 
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HMBC (3.39c) 
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COSY (3.39c)  
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((1R,3R,6R)-3-bromo-6-hydroxy-2,2,6-trimethylcyclohexyl)methyl 1H-pyrrole-2-carboxylate 
(3.39d)  
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HSQC (3.39d)  
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HMBC (3.39d)  
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COSY (3.39d)  
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tert-butyl (E)-(6,7-dibromo-3,7-dimethyloct-2-en-1-yl)carbamate (3.40a) and tert-butyl (E)-(6-
bromo-7-chloro-3,7-dimethyloct-2-en-1-yl)carbamate (3.40b) (trace amount) 
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((1R,3R,6R)-3-bromo-6-hydroxy-2,2,6-trimethylcyclohexyl)methyl 1H-pyrrole-2-carboxylate 
(3.41)  
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HSQC (3.41) 
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HMBC (3.41) 
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COSY (3.41) 
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(Z)-6-bromo-7-(formyloxy)-3,7-dimethyloct-2-en-1-yl 1H-pyrrole-2-carboxylate (3.42) 
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HSQC (3.42) 
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HMBC (3.42) 
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COSY (3.42) 
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4((2amino1Himidazol4yl)(hydroxy)methyl)6,7dibromo3,4dihydropyrrolo[1,2
a]pyrazin1(2H)one (3.45) 
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HSQC (3.45) 
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HMBC (3.45) 
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COSY (3.45) 
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2-amino-6-(4,5-dibromo-1H-pyrrole-2-carbonyl)-1,3,6-triazaspiro[4.4]non-1-en-4-one (3.43) 
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HSQC (3.43) 
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HMBC (3.43) 
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COSY (3.43) 
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N,N'-((2,2'-diamino-5'-oxo-1',5'-dihydro-3H,4'H-[4,4'-biimidazole]-4',5-diyl)bis(propane-3,1-
diyl))bis(4,5-dibromo-1H-pyrrole-2-carboxamide) (3.46) 
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HSQC (3.46) 
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HMBC (3.46) 
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COSY (3.46) 
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(Z)-6-((E)-2-(1-ethyl-3,3-dimethylindolin-2-ylidene)ethylidene)-5-(2-hydroxy-2-
methylpropyl)-3-((Z)-1-hydroxy-3-(naphthalen-2-yl)-3-oxoprop-1-en-1-yl)-7a-
methylbenzofuran-2,7(6H,7aH)-dione (4.48)  
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HSQC (4.48) 
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HMBC (4.48) 
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COSY (4.48) 
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(Z)-6-((E)-2-(3,3-dimethyl-1-propyl-1H-benzo[f]indol-2(3H)-ylidene)ethylidene)-5-(2-
hydroxy-2-methylpropyl)-3-((Z)-1-hydroxy-3-(naphthalen-2-yl)-3-oxoprop-1-en-1-yl)-7a-
methylbenzofuran-2,7(6H,7aH)-dione (4.49)  
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(Z)-5-(2-hydroxy-2-methylpropyl)-3-((Z)-1-hydroxy-3-(naphthalen-2-yl)-3-oxoprop-1-en-1-
yl)-7a-methyl-6-((Z)-2-(3-propylbenzo[d]thiazol-2(3H)-ylidene)ethylidene)benzofuran-
2,7(6H,7aH)-dione (4.50)  
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3-((Z)-2-((Z)-2-(5-(2-hydroxy-2-methylpropyl)-3-((Z)-1-hydroxy-3-(naphthalen-2-yl)-3-
oxoprop-1-en-1-yl)-7a-methyl-2,7-dioxo-7,7a-dihydrobenzofuran-6(2H)-
ylidene)ethylidene)benzo[d]thiazol-3(2H)-yl)propane-1-sulfonic acid (4.51) 
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(E)-1-ethyl-2-((Z)-2-(5-(2-hydroxy-2-methylpropyl)-3-((Z)-1-hydroxy-3-(naphthalen-2-yl)-3-
oxoprop-1-en-1-yl)-7a-methyl-2,7-dioxo-7,7a-dihydrobenzofuran-6(2H)-ylidene)ethylidene)-
3,3-dimethylindoline-5-sulfonic acid (4.52)  
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6-((E)-2-((Z)-2-(5-(2-hydroxy-2-methylpropyl)-3-((Z)-1-hydroxy-3-(naphthalen-2-yl)-
3-oxoprop-1-en-1-yl)-7a-methyl-2,7-dioxo-7,7a-dihydrobenzofuran-6(2H)-
ylidene)ethylidene)-3,3-dimethyl-5-sulfoindolin-1-ium-1-yl)hexanoate (4.53)  
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6.1.1.  NMR Spectroscopic Data- 2D Correlation for Selected Compounds 

(4S,6S)-4-methyl-4,5,6,7-tetrahydro-3H-imidazo[4,5-c]pyridine-4,6-dicarboxylic acid 
(1.8) 

 
NMR Spectroscopic Data-2D correlation (600 MHz, MeOD-d4, 598K) 
Position  c, Type  H, Multiplicity   COSY  HMBC 

1‐NH  ‐  ‐  ‐  ‐ 

2  135.3, CH  8.63, s  ‐  4, 5 

3‐N  ‐  ‐  ‐  ‐ 

4  124.5, C  ‐  ‐  ‐ 

5  123.6, C  ‐  ‐  ‐ 

6  158.8, C  ‐  ‐  ‐ 

7  21.29, CH3  1.83, s  ‐  5, 6, 8 

8  169.85, C  ‐  ‐  ‐ 

9  21.32, CH2  3.33/3.00, dd  9, 10  5, 10 

10  53.9, CH  4.42, dd  9  4 

11‐NH  ‐  ‐  ‐  ‐ 

12  169.95, C  ‐  ‐  ‐ 
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4,5-dibromo-N-((5-bromo-2,6,6-trimethylcyclohex-1-en-1-yl)methyl)-1H-pyrrole-2-
carboxamide (3.37d) 

 

NMR Spectroscopic Data-2D correlation (600 MHz, CDCl3, 598K) 
Position  c, Type  H, Multiplicity  COSY  HMBC 

1‐NH  ‐  9.72, br s  ‐  ‐ 

2  105.3, C  ‐  ‐  ‐ 

3  99.9, C  ‐  ‐  ‐ 

4  111.6, CH  6.50, d  ‐  2, 5 

5  126.0, C  ‐  ‐  ‐ 

6  158.8, C  ‐  ‐  ‐ 

7‐NH  ‐  5.37, br t  8  ‐ 

8  38.0, CH2  4.00, d  7  6, 9, 10, 15 

9  131.8, C  ‐  ‐  ‐ 

10  133.4, C  ‐  ‐  ‐ 

11  19.6, CH3  1.69, s  ‐  10, 9 

12  29.6, CH2  2.23/2.16, m  13  9, 14 

13  31.9, CH2  2.16, m  12, 14  10, 15 

14  65.0, CH  4.21, m  13  9, 12, 16, 17 

15  40.0, C  ‐  ‐  ‐ 

16  27.4, CH3  1.165, s  ‐  9, 15 

17  25.0, CH3  1.17, s  ‐  9, 15 
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((1S,3R,6R)-3-bromo-6-hydroxy-2,2,6-trimethylcyclohexyl)methyl 4,5-dibromo-1H-
pyrrole-2-carboxylate (3.38d)  

 

NMR Spectroscopic Data-2D correlation (600 MHz, CDCl3, 598K) 
Position  c, Type  H, Multiplicity   COSY  HMBC  NOESY 

 

1‐NH  ‐  9.14, br s  ‐  ‐  ‐ 

2  100.9, C  ‐  ‐  ‐  ‐ 

3  107.2, C  ‐  ‐  ‐  ‐ 

4  117.7, CH  6.81, d  ‐  2, 5  ‐ 

5  124.0, C  ‐  ‐  ‐  ‐ 

6  159.3, C  ‐  ‐  ‐  ‐ 

7  62.9, CH2  4.61/4.49, dd  8  6, 8, 9, 14  8, 10, 15, 16 

8  47.2, CH  1.85, t  7  7, 10, 14  7, 10, 11, 16 

9  71.9, C  ‐  ‐  ‐  ‐ 

10  31.2, CH3  1.34, s  ‐  8, 9, 11  7, 8, 11  

11a/11b  36.1, CH2  2.17/1.53, m  ‐  8, 9, 13  10, 11, 12 

12a/12b  27.6, CH2  2.43/1.89, m  11, 13  9, 13, 14  11, 12, 13 

13  69.6, CH  4.31, t  12  8, 11  12, 15, 16 

14  38.7, C  ‐  13  ‐  ‐ 

15  23.1, CH3  1.25, s  ‐  8, 13, 14, 16  7, 13, 12a 

16  32.3, CH3  1.17, s  ‐  8, 13, 14, 15  7, 13, 8 
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(Z)-6,7-dibromo-3,7-dimethyloct-2-en-1-yl 1H-pyrrole-2-carboxylate (3.39a) and (Z)-
6-bromo-7-chloro-3,7-dimethyloct-2-en-1-yl 1H-pyrrole-2-carboxylate (3.39b) 

 

NMR Spectroscopic Data-2D correlation (600 MHz, CDCl3, 598K) 
Position  c, Type  H, Multiplicity  COSY  HMBC 

1‐NH  ‐  9.11, br s  ‐ ‐ 

2  122.6, CH  6.92, m  3 3 

3  110.4, CH  6.24, m  2, 4 2, 4 

4  115.3, CH  6.92, m  3 3 

5  122.9, C  ‐  ‐ ‐ 

6  161.0, C  ‐  ‐ ‐ 

7  60.8 (60.7), CH2  4.80, m  8 6, 8, 9 

8  121.3(121.3), CH  5.55, t  7, 10 10, 11 

9  140.7(140.8), C  ‐  ‐ ‐ 

10  23.3 (23.3), CH3  1.80, s  8, 9, 11 

11a, 11b  30.2, CH2  2.48/2.37, m  12 8, 10, 13 

12a, 12b  34.0, CH2  2.58/1.90, m  11, 13 9, 14 

13  65.6 (64.7), CH  4.12(3.98), dd  12, 15, 16 11, 14, 15, 16 

14  68.7, C  ‐  ‐ ‐ 

15  35.4 (32.5), CH3  1.95(1.76), s  16 13, 14, 16 

16  28.0 (26.9), CH3  1.78(1.64), s  15 13, 14, 15 
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(Z)-6-bromo-7-hydroxy-3,7-dimethyloct-2-en-1-yl 1H-pyrrole-2-carboxylate (3.39c) 

 

NMR Spectroscopic Data2D correlation (600 MHz, CDCl3, 598K) 
Position  c, Type  H, Multiplicity   COSY  HMBC 

1‐NH  ‐  9.12, br s  ‐ ‐

2  122.6, CH  6.92, m  3 3

3  110.5, CH  6.24, q  2, 4 2, 4

4  115.4, CH  6.92, m  3 3

5  122.7, C  ‐  ‐ ‐

6  160.6, C  ‐  ‐ ‐

7  60.8, CH2  4.79, m  8 6, 8, 9

8  121.1, CH 5.52, t  7, 10 10, 11

9  141.3, C  ‐  ‐ ‐

10  23.4, CH3  1.76, s    8, 9, 11

11a, 11b  30.9, CH2  2.38, m  12 8, 10, 13

12a, 12b  32.3, CH2  2.03/1.84, m  11, 13 9, 14

13  70.4, CH  3.96, dd  12, 15, 16 11, 14, 15, 
16

14  72.6, C  ‐  ‐ ‐

15  26.0, CH3  1.32, s  16 13, 14, 16

16  26.5, CH3  1.33, s  15 13, 14, 15
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((1S,3R,6R)-3-bromo-6-hydroxy-2,2,6-trimethylcyclohexyl)methyl 1H-pyrrole-2-
carboxylate (3.39d)  

12

3

4
5

6 7
8 9

10

11

12
13

1416

15

O

OH

NH

Br

O

 

NMR Spectroscopic Data-2D correlation (600 MHz, CDCl3, 598K) 
Position  c, Type  H, Multiplicity  COSY  HMBC 

1‐NH  ‐  9.14, br s  ‐  ‐ 

2  123.3, CH  6.95, m  3  4, 5 

3  110.7, CH  6.25, m  2, 4  5 

4  115.2, CH  6.85, m  3  2 

5  118.7, C  ‐  ‐  ‐ 

6  160.9, C  ‐  ‐  ‐ 

7  62.2, CH2  4.54, dd  8  6, 8, 9, 14 

8  47.0, CH  1.91, t  7  7, 10, 14 

9  72.0, C  ‐  ‐  ‐ 

10  31.1, CH3  1.36, s  ‐  8, 9, 11 

11a/11b  36.1, CH2  2.16/1.56, m  ‐  8, 9, 13 

12a/12b  27.8, CH2  2.46/1.85, m  11, 13  9, 13, 14 

13  70.0, CH  4.32, t  12  8, 11 

14  38.8, C  ‐  13  ‐ 

15  23.3, CH3  1.29, s  ‐  8, 13, 14, 16 

16  32.3, CH3  1.18, s  ‐  8, 13, 14, 15 
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((1S,2R)-2-hydroxy-2,6,6-trimethylcyclohexyl)methyl 1H-pyrrole-2-carboxylate (3.41) 

 

NMR Spectroscopic Data2D correlation (600 MHz, CDCl3, 598K) 
Position  c, Type  H, Multiplicity  COSY  HMBC  NOESY 

1‐NH  ‐  9.14, br s  ‐  ‐  2 

2  123.0, CH  6.95, m  3  4, 5  1, 3 

3  110.5, CH  6.24, m  2, 4  5  2, 4 

4  115.0, CH  6.84, m  3  2  3, 16 

5  122.9, C  ‐  ‐  ‐  ‐ 

6  161.0, C  ‐  ‐  ‐  ‐ 

7  62.6, CH2  4.54, dd  8  6, 8, 9, 14  8, 10, 15, 16 

8  52.5, CH  1.39, m  7  10, 11, 16  10 

9  72.1, C  ‐  ‐  ‐  ‐ 

10  31.3, CH3  1.29, s  ‐  8, 9, 11  8, 11 

11b/11a  42.2, CH2  1.43/1.23, m  13  8, 9, 13  10, 11 

12a/12b  18.2, CH2  1.81/1.41,m  12, 14  9, 13, 14  11, 12 

13b/13a  41.5, CH2  1.66/1.40, m  13  8, 11  11, 12, 13 

14  33.8, C  ‐  ‐  ‐  ‐ 

15  32.4, CH3  1.02, s  ‐  8, 13, 14, 15  7, 8, 13 

16  22.3, CH3  1.05, s  ‐  8, 13, 14, 16  7, 12, 13 
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(Z)-6-bromo-7-(formyloxy)-3,7-dimethyloct-2-en-1-yl 1H-pyrrole-2-carboxylate (3.42) 

 

NMR Spectroscopic Data-2D correlation (600 MHz, CDCl3, 598K) 
Position  c, Type  H, Multiplicity  COSY  HMBC 

1‐NH  ‐  9.26  ‐  ‐ 

2  122.7, CH  6.92, m  3  3, 4 

3  110.5, CH  6.22, m  2, 4  5 

4  115.3, CH  6.91, m  3  2, 3 

5  122.9, C  ‐  ‐  ‐ 

6  161.0, C  ‐  ‐  ‐ 

7  60.6, CH2  4.79, dd  8  6, 8, 9 

8  121.2, CH  5.53, m  7  7, 10, 11 

9  140.8 C  ‐  ‐  ‐ 

10  23.4, CH3  1.75, s  ‐  8, 9, 11 

11  30.4, CH2  2.39, m  12  8, 9, 10, 12, 13 

12  31.5, CH2  2.00, 1.80, m  11, 13  9, 11, 14 

13  61.1, CH  4.41, d  12  11, 12, 14, 15, 16 

14  84.4, C  ‐  ‐  ‐ 

15  24.6, CH3  1.60 s  ‐  13, 14, 16 

16  23.1, CH3  1.60, s  ‐  13, 14, 15 

17  160.0, CH  7.93, s  ‐  14 
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4-((2-amino-1H-imidazol-4-yl)(hydroxy)methyl)-6,7-dibromo-3,4-dihydropyrrolo[1,2-
a]pyrazin-1(2H)-one (3.45) 

 

NMR Spectroscopic Data-2D correlation (600 MHz, CDCl3, 598K) 
Position  c, Type  H, Multiplicity  COSY  HMBC 

1‐N  ‐  ‐  ‐  ‐ 

2  104.9, C  ‐  ‐  ‐ 

3  97.3, C  ‐  ‐  ‐ 

4  112.6, CH  6.89, s  ‐  2, 5, 6 

5  127.2, C  ‐  ‐  ‐ 

6  159.3, C  ‐  ‐  ‐ 

7‐NH  ‐  8.03, t  ‐  6, 8 

8  39.2, CH2  3.46/3.28, ddd  8, 9  6, 9, 10 

9  81.3, CH  3.53, dt   8, 10  8, 10 

10  76.9, CH  4.04, d  9  8, 9 

11  128.7, C  ‐  ‐  ‐ 

12‐N  ‐  ‐  ‐  ‐ 

13  149.7, C  ‐  ‐  ‐ 

14‐N  ‐  ‐  ‐  ‐ 

15  113.7, CH  6.46, s  ‐  9, 10, 11, 13 

16‐NH2  ‐  5.26, br s  ‐  ‐ 
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2-amino-6-(4,5-dibromo-1H-pyrrole-2-carbonyl)-1,3,6-triazaspiro[4.4]non-2-en-4-one 
(3.43) 

 
 

NMR Spectroscopic Data-2D correlation (600 MHz, MeOD-d4, 598K) 
Position  c, Type  H, Multiplicity  COSY  HMBC 

1‐NH  ‐  12.88, br s  4  2, 3, 4, 5 

2  107.2, C  ‐  ‐  ‐ 

3  98.9, C  ‐  ‐  ‐ 

4  116.3, CH  6.96, s  1  2, 5, 6 

5  125.7, C  ‐  ‐  ‐ 

6  158.2, C  ‐  ‐  ‐ 

7‐N  ‐  ‐  ‐  ‐ 

8  48.7, CH2  3.88/3.80, q  9, 10  9, 10, 11 

9  23.5, CH2  2.12, m   8, 10  10, 11 

10  35.5, CH2  2.18, m  8, 9  8, 15 

11  79.6, C  ‐  ‐  ‐ 

12‐NH  ‐  10.28, br s  ‐  13, 15 

13  157.5, C  ‐  ‐  ‐ 

14‐N  ‐  ‐  ‐  ‐ 

15  173.3, C  ‐  ‐  10’ 

16‐NH2  ‐  9.27, br s  ‐  ‐ 
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N,N'-((2,2'-diamino-5'-oxo-1',5'-dihydro-3H,4'H-[4,4'-biimidazole]-4',5-
diyl)bis(propane-3,1-diyl))bis(4,5-dibromo-1H-pyrrole-2-carboxamide) (3.46

 

NMR Spectroscopic Data-2D correlation (600 MHz, MeOD-d4, 598K) 
Position  c, Type  H, Multiplicity  COSY  HMBC 

1‐NH  ‐  ‐  ‐  ‐ 

1’‐NH  209.8  ‐  ‐  ‐ 

2  107.2, C  ‐  ‐  ‐ 

2’  107.0, C  ‐  ‐  ‐ 

3  100.9, C  ‐  ‐  ‐ 

3’  100.8, C  ‐  ‐  ‐ 

4  115.2, CH  6.85, s  ‐  2, 5, 6 

4’  115.1, CH  6.82, s  ‐  2’, 5’, 6’ 

5  129.4, C  ‐  ‐  ‐ 

5’  129.6, C  ‐  ‐  ‐ 

6  162.9, C  ‐  ‐  ‐ 

6’  162.8, C  ‐  ‐  ‐ 

7‐NH  156.2  ‐  ‐  ‐ 

7’‐NH  ‐  ‐  ‐  ‐ 

8  40.3, CH2  3.34, m  9  6, 9, 10 

8’  40.5, CH2  3.37, m  9’  6’, 9’, 10’ 

9  31.5, CH2  1.82, q   8, 10  8, 10, 11 

9’  25.7, CH2  1.56, br m  8’, 10’  8’, 10’, 11’ 

10  23.4, CH2  2.63, m  9  8, 9, 11, 12 

10’  35.4, CH2  2.15, br m  9’  8’, 9’, 11’, 15, 12’ 

11  125.7, C  ‐  ‐  ‐ 

11’  67.6, C  ‐  ‐  ‐ 
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12  121.4, C  ‐  ‐  ‐ 

12’  187.9, C  ‐  ‐  ‐ 

13‐N  ‐  ‐  ‐  ‐ 

13’‐NH  ‐  ‐  ‐  ‐ 

14  148.9, C  ‐  ‐  ‐ 

14’  148.9, C  ‐  ‐  ‐ 

15‐NH  185.8  ‐  ‐  ‐ 

15’‐N  ‐  ‐  ‐  ‐ 

16‐NH2  ‐  ‐  ‐  ‐ 

16’‐NH2  ‐  ‐  ‐  ‐ 

 

(Z)-6-((E)-2-(1-ethyl-3,3-dimethylindolin-2-ylidene)ethylidene)-5-(2-hydroxy-2-
methylpropyl)-3-((Z)-1-hydroxy-3-(naphthalen-2-yl)-3-oxoprop-1-en-1-yl)-7a-
methylbenzofuran-2,7(6H,7aH)-dione (4.48) 

 

NMR Spectroscopic Data-2D correlation (600 MHz, CDCl3, 598K) 
Position  c, Type  H, Multiplicity  COSY  HMBC 

1  11.8, CH3  1.39, t  2  2 

2  38.6, CH2  3.95, q  1  1, 4, 13 

3  ‐  ‐  ‐  ‐ 

4  142.3, C  ‐  ‐  ‐ 

5  109.1, CH  6.95, d  6, 7, 8  7, 9 

6  128.4, CH  7.32, t  5, 7, 8  4, 8 

7  123.7, CH  7.13, t  5, 6, 8  5, 9 

8  122.0, CH  7.30, d  5, 6, 7  4, 6 

9  140.8, C  ‐  ‐  ‐ 

10  48.1, C  ‐  ‐  ‐ 

11  28.3, CH3  ‐  ‐  9, 10, 12, 13 

12  28.5, CH3  ‐  ‐  9, 10, 11, 13 

13  172.6, C  ‐  ‐  ‐ 
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14  97.8, CH  7.54, d  15  10, 16 

15  146.0, CH  8.11, d  14, 23  13, 17, 28 

16  116.5, C  ‐  ‐  ‐ 

17  154.0, C  ‐   ‐  ‐ 

18  47.3, CH2  2.93/2.76, dd  20, 21, 23  16, 21, 22, 23 

19  72.1, C  ‐  ‐  ‐ 

20  30.5, CH3  1.45, s  ‐  19, 18 

21  31.2, CH3  1.46, s  ‐  19, 18 

22  ‐  ‐  ‐  ‐ 

23  114.8, CH  7.03, s  15  16, 18, 27 

24  171.1, C  ‐  ‐  ‐ 

25  110.0, C  ‐  ‐  ‐ 

26  169.6, C  ‐  ‐  ‐ 

27  87.3, C  ‐  ‐  ‐ 

28  195.4, C  ‐  ‐  ‐ 

29  29.5, CH3  1.83, s  ‐  24, 27, 28 

30  176.9, C  ‐  ‐  ‐ 

31  ‐  ‐  ‐  ‐ 

32  96.6, CH  7.66, s  ‐  25, 34 

33  188.2, C  ‐  ‐  ‐ 

34  133.4, C  ‐  ‐  ‐ 

35  123.7, CH  8.06, dd  36  37, 43 

36  128.3, CH  7.89, d  35, 41  34, 42 

37  135.4, C  ‐  ‐  ‐ 

38  127.7, CH  7.86, d  39, 40  40, 42 

39  128.1, CH  7.57, m  38, 41  37, 41 

40  126.7, CH  7.55, m  38, 41  38, 42 

41  129.6, CH  7.98, d  36, 38, 39, 40  37, 39 

42  132.8, C  ‐  ‐  ‐ 

43  128.8, CH  8.56, s  35, 36, 38, 41  ‐ 
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6.2. UV-Vis Absorbance and Fluorescence Spectra of the Epicocconone-hemicyanine 
Hybrid Dyes. 

4.48 

 

Figure 6.2.1.  UV-Vis absorbance spectrum of 4.48 

 

Figure 6.2.2.  Fluorescence spectrum of 4.48 in ACN. 

 

Extinction coefficient,  = 12 000 M-1cm-1;  Max λex = 630 nm, Max λem = 715 nm;  
Stokes’ shift = 85 nm;   Quantum yield = 0.056 
 
 

0

20

40

60

80

100

120

400 500 600 700 800 900

Fl
u
o
re
sc
en

ce
 In
te
n
si
ty

wavelength/nm

Excitation

Emission



332 
 

4.49 

 

Figure 6.2.3.  UV-Vis absorbance spectrum of 4.49 

 

 

Figure 6.2.4.  Fluorescence spectrum of 4.49 in ACN. (also as Figure 4.15 in Chapter 4) 

 

Extinction coefficient,  = 72 000 M-1cm-1;  Max λex = 650 nm, Max λem = 730 nm;  
Stokes’ shift = 80 nm;   Quantum yield = 0.033 
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4.50 

 

Figure 6.2.5.  UV-Vis absorbance spectrum of 4.50 

 

 

Figure 6.2.6.  Fluorescence spectrum of 4.50 in ACN. 

 

Extinction coefficient,  = 37 000 M-1cm-1;  Max λex = 650 nm, Max λem = 725 nm;  
Stokes’ shift = 75 nm;   Quantum yield = 0.033 
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4.51 

 

Figure 6.2.7.  UV-Vis absorbance spectrum of 4.51 

 

 

Figure 6.2.8.  Fluorescence spectrum of 4.51 in ACN. 

Extinction coefficient,  = 71 000 M-1cm-1;  Max λex = 635 nm, Max λem = 725 nm;  
Stokes’ shift = 90 nm;   Quantum yield = 0.028 
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4.52 

 

Figure 6.2.9.  UV-Vis absorbance spectrum of 4.52 

 

 

Figure 6.2.10.  Fluorescence spectrum of 4.52 in ACN. 

 

Extinction coefficient,  = 41 000 M-1cm-1;  Max λex = 630 nm, Max λem = 720 nm;  
Stokes’ shift = 90 nm;   Quantum yield = 0.066 
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4.53 

 

Figure 6.2.11.  UV-Vis absorbance spectrum of 4.53. 

 

 

Figure 6.2.12.  Fluorescence spectrum of 4.53 in ACN. 

Extinction coefficient,  = 19 000 M-1cm-1;  Max λex = 630 nm, Max λem = 720 nm;  
Stokes’ shift = 90 nm;   Quantum yield = 0.058 
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4.54 

 

Figure 6.2.11.  UV-Vis absorbance spectrum of 4.54. 

 

 

Figure 6.2.14.  Fluorescence spectrum of 4.54 in DMSO. 

 

Extinction coefficient,  = 37 000 M-1cm-1;  Max λex = 720 nm, Max λem = 795 nm;  
Stokes’ shift = 75 nm;   Quantum yield = 0.0027 
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6.3.  Effect of pH on the UV-Vis Absorbance and Fluorescence of the Epicocconone-
Hemicyanine Hybrid Dyes  

 

 

Figure 6.3.1.  Absorbance spectrum of 4.48 measured at different pH A. initially and B.  after 3 h. 
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Figure 6.3.1.  Emission fluorescence spectrum of 4.48 measured at different pH C. initially and D.  after 3 h. 
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Figure 6.3.2.  Absorbance spectrum of 4.49 measured at different pH A. initially and B.  after 3 h. 
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Figure 6.3.2.  Emission fluorescence spectrum of 4.49 measured at different pH C. initially and D.  after 3 h. 
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Figure 6.3.3.  Absorbance spectrum of 4.50 measured at different pH A. initially and B.  after 3 h. 
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Figure 6.3.3.  Emission fluorescence spectrum of 4.50 measured at different pH C. initially and D.  after 3 h. 

0

20

40

60

80

100

120

680 700 720 740 760 780 800

F.
I

wavelength/ nm

2

3

4

5

6

7

8

9

10

11

12

pH

0

10

20

30

40

50

60

680 700 720 740 760 780 800

F.
I

wavelength/ nm

2

3

4

5

6

7

8

9

10

11

12

pHD 

C 



344 
 

 

 

Figure 6.3.4.  Absorbance spectrum of 4.51 measured at different pH A. initially and B.  after 3 h. 
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Figure 6.3.4.  Emission fluorescence spectrum of 4.51 measured at different pH C. initially and D.  after 3 h. 
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Figure 6.3.5.  Absorbance spectrum of 4.52 measured at different pH A. initially and B.  after 3 h. 
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Figure 6.3.5.  Emission fluorescence spectrum of 4.52 measured at different pH C. initially and D.  after 3 h. 
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Figure 6.3.6.  Absorbance spectrum of 4.53 measured at different pH A. initially and B.  after 3 h. 
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Figure 6.3.6.  Emission fluorescence spectrum of 4.53 measured at different pH C. initially and D.  after 3 h. 
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Figure 6.3.7.  Absorbance spectrum of 4.54 measured at different pH A. initially and B.  after 3 h. 
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Figure 6.3.7.  Emission fluorescence spectrum of 4.54 measured at different pH C. initially and D.  after 3 h. 
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Figure 6.3.8.  Absorbance vs pH plots for hybrid dyes fitted to sigmoidal pKa plot; Y=(Bottom*10^(X-
pKa)+Top)/(1+10^((X-pKa))) 4.48-4.54 (A-G). 
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Figure 6.3.9.  Corrected fluorescence vs pH plots for hybrid dyes fitted to sigmoidal pKa plot; 
Y=(Bottom*10^(X-pKa)+Top)/(1+10^((X-pKa))) 4.48-4.54 (A-G). 
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6.4.  Response of fluorescence of the Epicocconone-Hemicyanine Hybrid Dyes to SDS 

Graph A is the fluorescence spectra of the hybrid dye at different concentrations of SDS, 
graph B is a plot of log of fluorescence intensity against log of SDS concentration and 
graph C is a plot of fluorescence intensity against log of viscosity of SDS micelles formed 
in water. 

 

Figure 6.4.1A.  Fluorescence spectrum of 4.48 measured at different [SDS] (% w/v). 

 

Figure 6.4.1B.  log fluorescence intensity at max em of 717 nm against log[SDS] of 4.48. 
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Figure 6.4.1C.  Fluorescence intensity at max em of 717 nm against viscosity/cP of 4.48. 

 

 

Figure 6.4.2A.  Fluorescence spectrum of 4.49 measured at different [SDS] (% w/v). 
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Figure 6.4.2B.  log fluorescence intensity at max em of 723 nm against log[SDS] of 4.49. 

 

 
 

Figure 6.4.2C.  Fluorescence intensity at max em of 756 nm against viscosity/cP of 4.49. 
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Figure 6.4.3A.  Fluorescence spectrum of 4.50 measured at different [SDS] (% w/v). 

 

 

Figure 6.4.3B.  log fluorescence intensity at max em of 723 nm against log[SDS] of 4.50. 
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Figure 6.4.3C.  Fluorescence intensity at max em of 723 nm against viscosity/cP of 4.50. 

 

 

Figure 6.4.4A.  Fluorescence spectrum of 4.51 measured at different [SDS] (% w/v). 
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Figure 6.4.4B.  log fluorescence intensity at max em of 720 nm against log[SDS] of 4.51. 

 

 
 

Figure 6.4.4C.  Fluorescence intensity at max em of 720 nm against viscosity/cP of 4.51. 
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Figure 6.4.5A.  Fluorescence spectrum of 4.52 measured at different [SDS] (% w/v). 

 

 

Figure 6.4.5B.  log fluorescence intensity at max em of 717 nm against log[SDS] of 4.52. 

 

0

50

100

150

200

250

300

350

400

450

500

675 695 715 735 755 775 795

Fl
u
or
es
ce
n
ce
 In
te
n
si
ty

Wavelength/ nm

12

6

3

1.5

0.75

0.375

0.1875

0.0938

0.0469

0.0234

0.0117

0

% w/v SDS

0

0.5

1

1.5

2

2.5

3

‐3 ‐2 ‐1 0 1 2

lo
g 
Fl
u
or
es
ce
n
ce
 In
te
n
si
ty
 a
t 
7
1
7
 n
m

log [SDS]

A 

B 



Chapter 6 

361 
 

 
 

Figure 6.4.5C.  Fluorescence intensity at max em of 717 nm against viscosity/cP of 4.52. 

 

 

Figure 6.4.6A.  Fluorescence spectrum of 4.53 measured at different [SDS]. 
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Figure 6.4.6B.  log fluorescence intensity at max em of 717 nm against log[SDS] of 4.53. 

 

 
 

Figure 6.4.6C.  Fluorescence intensity at max em of 717 nm against viscosity/cP of 4.53. 
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Figure 6.4.7A.  Fluorescence spectrum of 4.54 measured at different [SDS]. 

 

 

Figure 6.4.7B.  log fluorescence intensity at max em of 756 nm against log[SDS] of 4.54. 
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Figure 6.4.7C.  Fluorescence intensity at max em of 756 nm against viscosity/cP of 4.54. 

 

6.5.  Response of the Epicocconone-Hemicyanine Hybrid Dyes to dsDNA 

Fluorescence is quenched at all concentration of dsDNA and therefore no response to 
dsDNA was found. 
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6.6.  Response of the Epicocconone-Hemicyanine Hybrid Dyes to BSA 

Graph A is the absorbance spectra of the hybrid dye at different concentrations of BSA 
(g/mL), graph B is the fluorescence emission spectra of the hybrid dye at different 
concentrations of BSA (g/mL) and graph C is a plot of log fluorescence intensity at max 
em against log [BSA]. 

 

Figure 6.6.1A.  Absorbance spectrum of 4.50 measured at different [BSA] (g/mL). 

 

 

Figure 6.6.1B.  Emission fluorescence spectrum of 4.50 measured at different [BSA] (g/mL). 
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Figure 6.6.1C.  log fluorescence intensity at max em of 680 nm against log [BSA] of 4.50. 

 

 

Figure 6.6.2A.  Absorbance spectrum of 4.52 measured at different [BSA] (g/mL). 
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Figure 6.6.2B Emission fluorescence spectrum of 4.52 measured at different [BSA] (g/mL). 

 

 

Figure 6.6.2C.  log fluorescence intensity at max em of 680 nm against log [BSA] of 4.52. 
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Figure 6.6.3A.  Absorbance spectrum of 4.53 measured at different [BSA] (g/mL). 

 

 

Figure 6.6.3B Emission fluorescence spectrum of 4.53 measured at different [BSA] (g/mL). 
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Figure 6.6.3C.  log fluorescence intensity at max em of 695 nm against log [BSA] of 4.53. 

 

6.7.   Protein Detection on Gel Electrophoresis 

6.7.1.  Typhoon Scans of Gels Stained with the Hybrid Dyes 4.48-4.53 
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Figure 6.7.1.  Serial dilution of BSA from 2.65 g to 5.2 ng/band and stained with 1 g/mL (50 mL) of 
hybrid dyes A.-F. 4.48-4.53.  Typhoon scans of the gel stained with the epicocconone-hemicyanine hybrid 
dyes A-F (4.48-4.53), along with a Plot Profile of the main protein band generated using ImageJ. 
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6.7.1.   Determination of Limit of Detection of BSA Detected on Gel in ng of the 
Hybrid Dyes 4.48-4.53 
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Figure 6.7.2. A-F.  Determination of the limit of detection, LOD of the hybrid dyes 4.48-4.53 for BSA, was 
made by linear regression of background versus signal for BSA. 

 

Figure 6.7.2. A-F. show the plots of log of amount of BSA/band vs. log of signal and log 
background.  An average of the total grey values of the main protein band from the plot 
profile was taken as signal.  Similarly, an average of the total grey value of an area in 
between bands was taken as background.  The plot profiles were generated using ImageJ.  
The point of intersection of the two lines is where signal can no longer be differentiated 
from background and used here to define the LOD.  The difference in slope of the signal 
(blue) and background (red) is an indication of contrast and the goodness of fit (R2), an 
indication of linearity of response. 
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6.8.  Additional Live Cell Images with Hybrid dye 4.49 

 

Figure 6.8.1.  SW480 colon cancer cell stained with Hoechst (nucleus- blue) and the benzoindole hybrid dye 
4.49 (red). 

 

Figure 6.8.2.  SW480 colon cancer cell stained with hybrid dye 4.49 (red), ER-tracker (ER- green) and 
Hoechst (nucleus- blue). 
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Figure 6.8.3.  SW480 colon cancer cell stained with MitoTracker Red (mitochondria- green), LysoTracker 
Red  (lysozymes- cyan) and hybrid dye 4.49 (red). 

 

Figure 6.8.4.  SW480 colon cancer cell stained with hybrid dye 4.49 (red), DiI  (cytoplasmic vesicles- 
yellow) and Hoechst (nucleus- blue).  Cells stained with both DiI and the hybrid dye, are low in numbers. 
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Figure 6.8.5.  SW480 colon cancer cell stained with hybrid dye 4.49 (red), DiI (cytoplasmic vesicles- 
yellow) and Hoechst (nucleus- blue).  Minimum to no co-localisation observed. 
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