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Abstract

In today’s technology, a sheer number of Internet of things applications use hardware secu-
rity modules for secure communications. The widely used algorithms in security modules, for
example, digital signatures and key agreement, are based upon elliptic curve cryptography
(ECC). In many IoT applications, such as intelligent transportation systems and distributed
control systems, thousands of safety messages need to be signed and verified within a very
short time frame. Considerable research has been conducted in the design of fast elliptic
curve arithmetic on finite fields using residue number systems (RNS). This thesis investigates
fast hardware implementations for RNS elliptic curve cryptography (ECC) co-processors. Our
focus is to speed up the ECC point multiplication operation by exploiting the properties of the
residue number system (RNS). The RNS consists of independent and carry-free small-sized
integer channels that make it suitable for long-integer arithmetic. By harnessing the RNS
properties, hardware parallelism, and utilising different point multiplication algorithms, we de-
signed a low-latency ECC point multiplication co-processor for the standard elliptic curves
SECP256K1, ED25519, and Brainpool256r1 which are widely used in the industry. This the-
sis contributes to the field of hardware cryptography as follows: Two new architectures for
RNS modular reduction are proposed. The first improvement is on the RNS Montgomery re-
duction algorithm in which its FPGA implementation utilises fewer hardware resources and is
also much faster in terms of speed compared to the literature. In addition to the RNS mod-
ular reduction algorithm, a new modular reduction based on the sum of residues (SOR) is
proposed. The SOR algorithm is highly parallelisable. Two variants of the SOR algorithm
with different levels of parallelism are implemented on FPGA. Furthermore, the elliptic curve
group law operations are optimised for parallel computation and are used in the design of an
RNS ECC co-processor. This thesis analyses the security of RNS GLV ECC co-processors
with respect to side-channel, power data analysis by making use of machine and deep learn-
ing algorithms. Finally, suitable countermeasures are proposed to make such co-processors
immune to side-channel attacks.
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When theory and experiment
agree, that is the time to be es-
pecially suspicious.

Niels Bohr

1
Introduction

In the recent decade, we have witnessed rapid developments in applications of public-key
cryptography (PKC). The elliptic curve cryptography (ECC) especially has been at the centre
of attention because it provides the same level of security as its counterparts, such as RSA
and ElGamal, with smaller bit-size keys. Other than data security (confidentiality), PKC offers
authentication, data integrity, and non-repudiation, which makes it suitable for a range of ap-
plications. Blockchain technology and Bitcoin cryptocurrency were introduced in 2009 using
ECC as a core function to implement non-repudiation and authentication. Blockchain was
found very interesting in business applications and became one of the pillars of FINTECH 3.0.
Other than business and finance applications, Blockchain has been used in many different
domains like digital voting and supply chain management. A wide range of cryptocurrencies
is now available in the market, and they are becoming increasingly prevalent. Intelligent trans-
portation systems (ITS) introduced in 2010, use ECC as their standard to sign and verify short
communication and control car-to-car and car-to-infrastructures messages. The self-driving
cars which first allowed on the roads for testing in 2015, use the same methods to authenti-
cate communications. The IoT security and cloud computing security are other examples of
new emerging applications that use elliptic curve cryptography as their underlying cryptosys-
tem.

The security of the elliptic curve cryptosystems is based on the elliptic curve discrete log-
arithm problem (ECDLP). It is assumed that finding a random multiple of a known base point
on the elliptic curve (EC) is computationally infeasible. A multiple of a point on the EC is
calculated by a one-way function that is called "point multiplication" (or scalar multiplication).
The point multiplication is a time-consuming process by nature. It uses the curve’s algebraic
formulas iteratively to calculate the new point. The core arithmetic primitive in the computation
of a point coordinates is the modular reduction over the finite field characteristic, which is a
complex arithmetic operation.

The latency of point multiplication imposes limitations in exploiting ECC in high-level appli-
cations. For instance, consider an ITS scenario. Cars and infrastructures must send digitally
signed control and safety messages to each other and verify the messages they receive. A dig-
ital signature needs one point-multiplication, and verification needs two point-multiplications
using an elliptic curve digital signature (ECDSA) scheme. By growing the number of cars on
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the road, verification of all incoming messages may not be possible; that may result in losing
critical safety messages. A similar scenario applies to the self-driving cars technology, where
decision-making relies on the verified messages received from roads infrastructures and other
cars.

The latency of ECDSA is a determining factor of transactions speed in cryptocurrencies
and verification of blocks in the Blockchain technology. The overall functionality of these ap-
plications can be limited by the latency of the cryptographic functions. Hence, this latency to
be reduced as much as possible. The solution is the use of cryptographic co-processors. A
co-processor is a hardware core that performs supplement functions of the primary processor
(CPU).

Since the early days of computers, co-processors have been used to relieve the main
CPU and accelerate processing times. They may be used for floating-point arithmetic (FPU),
as graphics accelerators GPU), digital signal processing (DSP), or I/O interfacing (such as
PCI and USB chips).

Cryptographic hardware has been an overwhelming research topic in recent years. Sig-
nificant research has been done to reduce the latency of the elliptic curve point multiplication.
There are different approaches to the problem. Many works in the literature, have tried to
improve the elliptic curves group laws and propose algorithms to perform point multiplications
in fewer iterations. Some works focused on improving modular arithmetic as the core function
of the most public-key cryptosystems. Some other works concentrated on the implementation
methods of cryptographic hardware, VLSI algorithms, and timing closure problems on either
ASIC or FPGA devices.

An essential criterion the cryptographic co-processors must meet is physical security. A
cryptographic algorithm may be mathematically secure. However, the hardware that runs this
algorithm can leak the information. In 1996, Kocher found that cryptographic systems can be
broken by monitoring and analysing side-channel information such as timing, power consump-
tion, and electromagnetic radiation. Side-channel analysis attacks are a serious threat to the
security of embedded devices, such as smart-cards, IoT devices, Blockchain, cryptocurren-
cies, etc. Recently, side-channel attacks on applications of ECC cryptosystems have been
extensively studied. Matthews [1] showed that the security of smart cards can be compro-
mised using low cost side-channel attacks. Wunan et al. [2] presented a side-channel attack
case on Blockchain’s ECDSA and acquired the private key. In [3], San Pedro et al. performed
a successful side-channel attack on the hardware cryptocurrency wallets. A most recent re-
search paper from Stanford university [4], showed that privacy focused cryptocurrencies like
Zcach and Monero are vulnerable against side-channel attacks.

In a nutshell, there are numerous examples of how implementations of ECC algorithms
resulted in significant vulnerabilities in the cryptographic software or hardware.

The application of machine-learning and deep-learning in the side-channel data analy-
sis has made side-channel attacks increasingly powerful. It has been shown [5] that such
techniques can efficiently deal with desynchronised traces and even attack masked imple-
mentations.

As side-channel attacks are becoming more powerful, research on finding effective coun-
termeasures to dismiss the revealed vulnerabilities is essential. Otherwise, the security promised
by cryptosystems, in theory, would be unreliable in the real world.

This thesis studies the hardware implementation of the ECC in the context of Residue
Number Systems (RNS). RNS represents integers by their values modulo several pairwise
co-prime integers named the moduli. RNS is an active area of research allowing faster public-
key cryptography operations due to its inherent parallelism. The contribution of the thesis is
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in three areas.
First, I proposed efficient hardware implementations for RNS arithmetic. The proposed

implementations are based on an improvement in the Montgomery modular reduction algo-
rithm used in RNS, as it is a dominant method for RNS modular reduction. Our experiments
show the hardware implementation of the new RNS Montgomery algorithm on FPGA is more
efficient than the existing works in the literature. In addition to the improvement of the Mont-
gomery modular reduction algorithm, a new modular reduction algorithm based on the sum
of residues (SOR) is proposed. The motive of this design is that the SOR algorithm is highly
parallel and it can efficiently reduce the calculation time. The proposed hardware architectures
were implemented with different levels of parallelism and they have shown a good trade-off
between cost and speed.

Second, taking advantage of parallel computing methods, I proposed a new architecture
for hardware implementation of ECC group laws. I used different point multiplication algorithms
to design a low-latency ECC co-processor. The proposed architectures were implemented on
the FPGA and the obtained results confirm a reduction in ECC point multiplication latency.

Third, I analysed the side-channel leakage data of an RNS ECC co-processor using ma-
chine and deep learning algorithms. The experimental results confirm the method is secure
from side-channel attacks.

The structure of this thesis is as follows:
Chapter 2 provides the background required for reading this thesis. The chapter starts with

an introduction to Residue Number Systems (RNS) and arithmetic operations in the context
of RNS. It then continues with a brief discussion on elliptic curves and point multiplication
algorithms. Next, the FPGA hardware design is briefly outlined. Side-channel data analysis
and side-channel attacks and countermeasures are reviewed. Machine-learning and deep
learning algorithms, and their applications in side-channel data analysis are discussed.

Chapter 3 describes the hardware design of the ECC arithmetic primitives. This chapter
details improvements on RNS Montgomery and SOR modular reduction algorithms. It also
presents the implementation results.

Chapter 4 proposes hardware architectures for the ECC co-processor. The RTL design
of the ECC co-processor is described. Implementation is performed for three different elliptic
curves which are widely used in the industry, including

• The curve SECP256k1, which is used for Bitcoin, Ethereum, and Blockchain.

• The curve ED25519, that is widely used in numerous network security protocols, such
as Transport Layer Security (TLS) and Secure Shell (SSH).

• The curve Brainpool256r1, which is the recommended curve in the ITS security stan-
dard.

Chapter 5 elaborates on side-channel power data gathering, pre-processing, and analy-
sis. Various machine and deep learning algorithms are studied for the analysis of side-channel
data. A successful attack to the GLV RNS ECC hardware is performed and efficient counter-
measures are proposed.

Chapter 6 discusses the achievements made in the field and concludes the thesis, future
works and research directions.

Appendix A lists the computer programs used for the simulation of our proposed algo-
rithms, including the RNS Montgomery reduction algorithm, the SOR reduction algorithm, and
tree-based and Lévia - Thériault’s DBC algorithms.
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Appendix B lists VHDL hardware implementations of the proposed modular reduction
algorithms and ECC co-processor implementations.



2
Background

2.1 The residue number systems
The Residue number systems (RNS) were discovered by Svoboda and Valach in 1955 [6] and
independently by Garner in 1959 [7], who were trying to apply this numbering system into the
implementation of fast arithmetic and fault-tolerant computing. Carry-free propagation and
channel-independent properties of RNS make them well suited for long integers arithmetic.
The residue number system uses a base of co-prime moduli B = {m1,m2, · · · ,mN }, called
the RNS base, to split an integer X into small n-bit integers {x1, x2, · · · , xN } where xi is the
residue of X divided by mi denoted as xi = X mod mi or simply xi = 〈X〉mi

. Each modulus
is called an RNS channel. The integer X is then represented using N RNS channels.

RNS(X) = {x1, x2, · · · , xN }. (2.1)

The range of the RNS, also known as dynamic range, is computed as:

M =
N∏

i=1
mi . (2.2)

2.1.1 The Chinese Remainder Theorem
The Chinese scholar Sun Tzu described a riddle in his book “Arithmetical classic” in the third
century.

We have things of which we do not know the number
If we count them by threes, we have two left over
If we count them by fives, we have three left over
If we count them by sevens, we have two left over

How many things are there?

Sun Tzu gave a rule, Great Generalisation, for the solution of his puzzle. In 1247, another
Chinese scientist, Qin Jiushao, generalised the Great Generalisation into what is called the



6 Background

Chinese Remainder Theorem (CRT) today [8].
The CRT has a close relationship with the RNS. Reconstruction of the integer X , 0 ≤ X < M ,
from its RNS form {x1, . . . , xN } is possible using the CRT [9]:

X = 〈
N∑

i=1
〈xi · Mi

−1〉mi
Mi〉M . (2.3)

Where Mi =
M
mi

, and Mi
−1 is the multiplicative inverse of Mi. In other terms, Mi · Mi

−1 mod mi = 1.
Throughout this thesis, we assume that:

2n > mN > · · · > m1 > 2n−1. (2.4)

As a result, the dynamic range falls in the range 2N ·(n−1) < M < 2N ·n.
Based on the Chinese remainder theorem, The RNS representation of an integer with in the
RNS dynamic range is unique.

2.1.2 Arithmetic operations in RNS
RNS is a non-positional numbering system. Arithmetic operations in RNS are categorised into
simple and complex operations. Addition, subtraction, and multiplication are simple opera-
tions that can be performed very efficiently in RNS. These operations are performed on each
channel independently. However, operations like division, sign detection, comparison, and
modular reduction are complex in RNS.
Suppose, X andY are two l-bit integers presented in RNS form that is, RNS(X) = {x1, x2, · · · , xN },
and RNS(Y ) = {y1, y2, · · · , yN }. The integers A, S, Z are the addition, subtraction, and mul-
tiplication results of X and Y , respectively. Then, the RNS are calculated as follows:

RNS(A) = {〈x1 + y1〉m1, 〈x2 + y2〉m2, · · · , 〈xN + yN〉mN }. (2.5)

RNS(S) = {〈x1 − y1〉m1, 〈x2 − y2〉m2, · · · , 〈xN − yN〉mN }. (2.6)

RNS(Z) = {〈x1 · y1〉m1, 〈x2 · y2〉m2, · · · , 〈xN · yN〉mN }. (2.7)

Considering that the multiplication result Z = X · Y is a 2l-bit integer. The CRT enforces the
condition Z < M . Otherwise, the N-tuple RNS set in (2.7) does not represent the correct
integer Z . In other terms, for any operation in RNS, the result must be within the dynamic
range i.e. [0,M − 1].

Additive inverse in RNS

The additive inverse in RNS is defined by:

RNS(X) + RNS(X̄) = 0. (2.8)

This is applied to every individual RNS channel, that is,

∀i ∈ {1 · · · N}, xi + x̄i = 0,
x̄i = mi − xi .

(2.9)

Therefore, the additive inverse or negation of integer X (denoted as −X) in RNS can be written
as

RNS(−X) = {(m1 − x1), (x2 − m2), · · · , (mN − xN )}. (2.10)
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Multiplicative inverse in RNS

The multiplicative inverse of an RNS is defined by

RNS(X) · RNS(X−1) = RNS(1). (2.11)

Similarly, this is applied to every individual RNS channel.

∀i ∈ {1, · · · , N}, xi · xi
−1 = 1,

xi
−1 = 〈xi〉−1

mi
.

(2.12)

The multiplicative inverse of each RNS channel is the multiplicative inverse of that channel
with respect to the corresponding RNS base modulus. In general, the multiplicative inverse of
Xi exists only if xi and mi are relatively prime. In this case, the Fermat’s little theorem can be
used to determine the multiplicative inverse.

〈xi
−1〉mi

= 〈xi
mi−2〉mi

. (2.13)

The extended Euclidean algorithm is an extension to the Euclidean algorithm that computes
the greatest common divisor (gcd) of two integers a and b, and also the coefficients of Bézout’s
identity which are integers x and y such that ax+by = gcd(a, b). When a and b are co-primes,
i.e. gcd(a, b) = 1 then 〈ax + by〉b = 1. Hence, 〈ax〉b = 1, or a−1 ≡ x mod b. Algorithm
1 is a modification of the extended Euclidean algorithm [10] that calculates the multiplicative
inverse of xi

−1 using xi and mi as inputs.

Algorithm 1: Multiplicative inverse of a modulo b using Extended Euclidean algorithm.
Input: a, b such that a ∈ [1, b − 1], gcd(a, b) = 1.
Output: a−1 mod b.

1 u ← a, v ← b ;
2 x1 ← 1, x2 ← 0 ;
3 while u �= 1 do
4 q ← � vu , r ← v − qu, x ← x2 − qx1;
5 v ← u, u ← r , x2 ← x1, x1 ← x;
6 return x1 mod b.

Modular reduction in RNS

The Modular reduction is the core operation in public key cryptosystems where all calculations
are performed in a finite field with characteristic p. Different methods are proposed in context
of integer arithmetic including Barrett [11], Montgomery [12], and Interleaved [13] modular re-
duction. However, the first RNS modular reduction was proposed in 1995 by Karl and Reinhard
Posch [14] based on the Montgomery reduction algorithm. Their proposed algorithm needed
two RNS base extension operations. They used a floating-point computation for correction of
the base extension in their architecture that was not compatible with the RNS representation.
The base extension is a costly operation and limits the speed of the algorithm. In 1998, Bajard
et al. [15] introduced a new Montgomery RNS reduction architecture using a mixed-radix sys-
tem (MRS) [9] representation for base extensions. Due to the recursive nature of MRS, this
method is hard to implement in hardware. Based on Shenoy and Kumaresan’s work in [16],
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Bajard et al. proposed a Montgomery RNS modular reduction algorithm using residue recov-
ery for the base extension [17]. In 2000, the floating-point approach of [14] was improved by
Kawamura et al. [18] by introducing the cox-rower architecture. In 2014, Bajard and Merkiche
[19] proposed an improvement in the cox-rower architecture by introducing a second level of
Montgomery reduction within each RNS unit. The cox-rower architecture is well adapted for
hardware implementation.

Let us start with the CRT. Equation (2.3) can be written as

X =
N∑

i=1
γi Mi − αM, (2.14)

where γi = xi Mi
−1 and α is an integer. By dividing both sides of (2.14) by M , we obtain

X
M

=
N∑

i=1
γi

Mi

M
− α =

N∑
i=1

γi

mi
− α. (2.15)

Since
X
M
< 1 and

γi

mi
< 1, it follows that

α =
⌊ N∑

i=1

γi

mi

⌋
, 0 ≤ α < N . (2.16)

Hardware implementation of α has been discussed in [18]. It is shown that choosing proper
integer constants q and Δ and enforcing boundary condition of (2.17), α can be calculated
using (2.18).

0 ≤ X < (1 − Δ)M . (2.17)

α =
⌊

1
2q

(
N∑

i=1

⌊
γi

2n−q

⌋
+ 2q.Δ

)⌋
. (2.18)

Algorithm 2 is used to calculate the coefficient α.

Algorithm 2: Calculation of α
Input: {γ1, . . . γN } where, γi = 〈xi · Mi

−1〉mi , i ∈ [1, N].
Required: q, Δ.
Output: α.

1 A ← 2q · Δ ;
2 for i = 1 to N do

3 A ← A +
⌊
γi

2n−q

⌋
;

4 end

5 return α←
⌊

A
2q

⌋
;

RNS Base exchange

RNS base exchange is the critical operation in the RNS Montgomery reduction algorithm.
Consider two RNS bases K = {k1, . . . , kN1} and Q = {q1, . . . , qN2}. Given an integer X in
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Algorithm 3: RNS Base Exchange from K to Q
Required: Base K, Base Q.

Pre-compute: K =
N1∏
i=1

ki, Q =
N2∏
i=1

qi, Ki = K
ki

, Qi = Q
qi

, Ui j = 〈Ki〉qj
for i = 1 to N1 and

j = 1 to N2
Input: XK .
Output: XQ .

1 γi = 〈xkiKi
−1〉ki ;

2 Compute α from Algorithm 2;
3 Vi j =

〈
γiUi j

〉
qj

, Li = 〈−αK〉qi ;

4 xqi =
〈

N2∑
j=1

Vji + Li

〉
qi

;

Algorithm 4: Montgomery modular reduction
Required: K, Q, pK , p−1

Q , Q−1
K .

Input: X , p.
Output: Z = XR−1 mod p.

1 s = X(−p)−1 mod R ;
2 t = X + s.p ;
3 Z = tR−1;

base K, that is, XK = {xk1, . . . , xkN1
}, finding the RNS of X in base Q from its value in K is

called “base exchange” from K to Q. The base exchange operation is given in Algorithm 3.
The original Montgomery Modular reduction [12] in the context of integer is shown in Al-

gorithm 4. The coefficient R is co-prime with the modulus p and chosen such that R > 4p.
The RNS Montgomery reduction (Algorithm 5) is derived directly from the original Montgomery

reduction algorithm (Algorithm 4). Here, R is replaced by Q =
N2∏
i=1

qi. In most cases, N1 = N2 =
N
2 , K = {m1, . . . ,m N

2
} and Q = {m N

2 +1, . . . ,mN }. Thus, from (2.4) it follows that Q > K . Line
4 in Algorithm 4 is performed in base Q. Since t is a multiple of Q, it is always zero in base Q
[17]. Therefore, it is calculated in base K only. The computation in line 6 is to multiply Q by
t. That can be carried out in base K but not in base Q, since Q−1 does not exist in base Q.
Figure 2.1 shows the data flow diagram in the RNS Montgomery reduction algorithm.

Algorithm 5: RNS Montgomery modular reduction
Required: K, Q, pK , p−1

Q , Q−1
K .

Input: XK∪Q .
Output: ZK∪Q = X · Q−1 mod p in base K ∪ Q.

1 sQ = XQ · 〈−p−1〉Q ;
2 sK ← BaseE xchange(sQ) ;
3 tK = sK + XK ;
4 zK = tK · Q−1

K ;
5 zQ ← BaseE xchange(zK) ;
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Figure 2.1: Flow diagram of RNS Montgomery reduction algorithm

The main advantage of the RNS Montgomery reduction algorithm is its efficiency in using
computing resources. In this algorithm, half of the RNS channels are involved at a time. Thus,
the hardware implementation is very area-efficient.

2.2 Elliptic Curve Cryptography

In the mid-1980s, Victor Miller from IBM and Neil Koblitz from the University of Washington
independently introduced the concept of elliptic curve cryptography (ECC) [20], [21]. The
ECC scheme provides a higher level of security per bit than other public-key cryptosystems.
However, ECC also has a limitation. It requires more computations than its counterparts RSA
or ElGamal. ECC is a public-key cryptosystem which is basically derived from the algebraic
construction of elliptic curves over the finite fields. ECC has many advantages compared to
other cryptographic schemes such as RSA, and ElGamal. One of the major advantages is
that it can provide same level of protection offered by other cryptography schemes with keys
of smaller size. For example, a 160-bit key ECC system provides same level of security as by
RSA with 1024-bit key. Likewise, ECC with 224-bit and 256-bit keys provides same degree of
protection provided by RSA with 2048-bit, and 3072-bit keys, respectively. ECC operates in
smaller groups with smaller keys than other traditional public-key cryptosystems and although
it requires more operations, overall encryption/decryption and signature need less hardware
or software resources for implementation.
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2.2.1 Elliptic Curves

Generally speaking, elliptic curves are “curves of genus one having a specified base point ”
[22]. The elliptic curve E over field F, denoted by E/F, is defined by Weierstraß equation [10]:

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6. (2.19)

where a1, a2, a3, a4, a6 ∈ F and Δ �= 0, where Δ is the discriminant of E defined as:

Δ = −d2
2d8 − 8d4

3 − 27d6
2 + 9d2d4d6

d2 = a1
2 + 4a2

d4 = 2a4 + a1a3

d6 = a3
2 + 4a6

d8 = a1
2a6 + 4a2a6 − a1a3a4 + a2a3

2 − a4
2.

(2.20)

If K is any extension of Field F then the set of K-rational points on curve E(K) is

E(K) = {(x, y) ∈ K × K :
{y2 + a1xy + a3y − x3 − a2x2 − a4x − a6 = 0} ∪ {O}.

(2.21)

where O is the point at infinity. The curve E is defined overFwhen the coefficients a1, a2, a3, a4,
and a6 of its defining equation are elements of F. If E is defined over a field, then it is also
defined over any extension of that field. The condition Δ �= 0 ensures there are no points on
the elliptic curve at which the curve has two or more distinct tangent lines. Such a curve is
called none-singular. The K-rational points on E are the points (x, y) that satisfy the equation
of the curve and whose coordinates x, y ∈ K . The point at infinity is considered a K-rational
point for all extension fields K of F.

The Weiersraß equation (2.19) can be mapped to a new form. If the characteristics of F is
not 2 or 3 then using the mapping

(x, y) →
(

x − 3a1
2 − 12a2

36
,
y − 3a1x

216
−

a1
3 − 4a1a2 − 12a3

24

)
(2.22)

the elliptic curve E is transformed to the short Weierstraß form

y2 = x3 + ax + b (2.23)

where a, b ∈ F and the discriminant of the curve is Δ = −16(4a3 + 27b2).

2.2.2 The order of an Elliptic Curve

Let E be an elliptic curve defined over finite field Fp. The number of the points on the E(Fp)
denoted by #E(Fp) is called the order of the curve E over the finite field Fp. The Schoof
algorithm [23] is used to find the order of E . Based on Hasse theorem [24], the order of an
elliptic curve over the field Fp is within the range p + 1 − √

p � #E(Fp) � p + 1 + √
p. If

#E(Fp) = p + 1 − t, then t is called the trace of the curve E .
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2.2.3 Isomorphism and twist of an Elliptic Curve
Morphisms express algebraic relationships between elliptic curves. An isomorphism is a mor-
phism of degree one. Essentially, an isomorphism is a change of coordinate system. For
example, consider the curve E : y2 + y = x3 defined over Q. There is an isomorphic map
(x, y) → (2233x, 2233(2y + 1)) from E to the curve E′ : y2 = x3 + 11664 [25]. If two curves
E and E′ are isomorphic over K , then their groups E(K), E′(K) of K-rational points are also
isomorphic. However, the converse is not true [10].

Now, consider the two curves E1 and E2 defined over K such that there is an isomorphism
E1 → E2 defined over K , but not over K . In this case, curve E2 is a twist of E1. A twist of an
elliptic curve E/K is another elliptic curve which is isomorphic to E over a new field K . For
instance, consider the curve E/Fp : y2 = x3 + ax + b, The quadratic twist of E by a quadratic
non-residue D ∈ Fp is ED : Dy2 = x3 + ax + b. A quadratic non-residue means that one
cannot find k such that k2 = D mod p. The curve ED : Dy2 = x3 + ax + b is isomorphic to
ED : y2 = x3 + D2ax + D3b with the map x = x

D and y = y

D
√

D
. Evidently, the new y does not

belong to Fp (because
√

D is not in Fp) but to the quadratic extension of Fp. Thus, a point on
E is mapped to another point on ED but does not have coordinates in Fp; which explains why
E and ED do not have the same number of points in Fp.

2.2.4 Endomorphism of Elliptic Curves
An algebraic closure of a field K is a minimal algebraically closed field extension of K . The
set of all points on the curve E that fall in any finite extension field of K is also denoted by E .
An endomorphism φ is a map φ : E → E such that [10]

φ(P) = (g(P), h(P)) ,
φ(O) = O.

(2.24)

where h, g are rational functions i.e. their coefficients lie in K . The endomorphism ring of the
elliptic curve E is the ring of all endomorphisms of E — including those defined over extensions
of the base field of E .
The monic polynomial of the least degree such that f (φ) = 0 is called characteristic polynomial
of endomorphism φ.
For example, consider the curve E : y2 = x3 +7 is defined over the finite field Fp, where p ≡ 1
mod 3. Let β ∈ Fp is an element of order 3. Then the map φ is defined as

φ : (x, y) → (βx, y) , (2.25)

is an endomorphism of E over Fp. The characteristic polynomial of φ is X2 + X + 1. Suppose
that 〈P〉, P ∈ Fp is the only subgroup of order n in Fp; that is when n divides #E(Fp) and n2

does not divide #E(Fp). Then φ(p) ∈ Fp that results φ(p) ∈ 〈P〉. If φ(P) �= O, then,

φ(P) = λP, ∃λ ∈ [1, n − 1]. (2.26)

The λ is the root of characteristic polynomial of φ modulo n, i.e. λ2 + λ + 1 ≡ 0 mod n.

2.2.5 Group law on elliptic curves
Let P(x1, y1) and Q(x2, y2) are two point on the curve E(K). The sum R of P and Q is geomet-
rically defined as follows. First draw a line from point P to point Q. Then R is the reflection of
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the intersect point on the x-axis as depicted of figure 2.2a. Similarly, if we draw a tangent line
to the elliptic curve at point P, the reflection of the intersect point is the point 2P. as depicted
in figure 2.2b. The algebraic formulae of elliptic curve point addition (ECPA) and elliptic curve
point doubling (ECPD), can be derived from their geometrical definition. Considering the short

(a) Point addition on the elliptic curve (b) Point doubling on the elliptic curve

Figure 2.2: Geometrically illustrated group law on elliptic curves on R.

Weierstraß form elliptic curve (2.23), then for all P(x1, y1),Q(x2, y2), R(x3, y3) ∈ E(K) it can
be concluded that

• For P = (x1, y1), (x1 + y1) + (x1,−y1) = O. Then −P = (x1,−y1).

• P + O = O + P = P.

• If R(x3, y3) = P(x1, y1)+Q(x2, y2), then the point R coordinates can be calculated using

x3 =
(
y2 − y1
x2 − x1

)
− x1 − x2,

y3 =
(
y2 − y1
x2 − x1

)
(x1 − x3) − y1.

(2.27)

• If P �= −P, then 2P = (x3, y3), where

x3 =
3x1

2 + a
2y1

− 2x1,

y3 =
(
3x1

2 + a
2y1

)
(x1 − x3) − y1.

(2.28)

It has to be noted that all operations are within the field F.

2.2.6 Coordinate systems and group law
The point addition and point doubling formulae presentation in affine coordinates (2.27) and
(2.28), require a one field inversion and several field multiplications. A field inversion is signif-
icantly more expensive than a field multiplication. That is why it is advantageous to represent
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points using projective coordinates. Projective coordinates are lines through the origin of a
two-dimensional vector space. This space is called the projective space. A line in a projective
space is given as a triple of (X,Y, Z), where X,Y, Z ∈ F and not all zero. The inverse of Z will
exist for all nonzero Z ∈ F. Two lines (X1,Y1, Z1) and (X2,Y2, Z2) are equivalent if there exists
a nonzero λ ∈ F such that X1 = λc X2, Y1 = λdY2, Z1 = λZ2. (c, d are integers). Particularly,
if Z �= 0, then (X/Zc,Y/Zd, 1) is a representative of the projective point (X,Y, Z) equivalent
to the affine coordinate (x = X/Zc, y = Y/Zd). Thus, we have a one-to-one correspondence
between the set of projective points. The projective point (X,Y, 0) is called the point at infinity.
This point maps to the affine point O. In this way, the point at infinity (O) have clearly been
defined as a point in the projective plane.

Standard Projective coordinates

Let c = d = 1, then the short Weierstraß elliptic curve equation (2.23) is transformed to

E : Y2Z = X3 + aX Z2 + bZ3. (2.29)

The only point on the projective line at infinity that also lies on E is (0, 1, 0). This projective
point corresponds to the point O in standard projective coordinates.

Jacobian coordinate

In the original definition of a projective space, the power d of λ is always 1. Later, a weighted
variant was introduced to have even more efficient coordinate systems.

Let c = 2, d = 3. The point (X,Y, Z) in Jacobian coordinate is corresponding to the affine
point (X/Z2,Y/Z3). The short Weierstraß elliptic curve equation (2.23) is transformed to

E : Y2 = X3 + aX Z4 + bZ6. (2.30)

The point at infinity is (1, 1, 0) in Jacobian coordinates. Suppose P = (X1,Y1, Z1) and 2P =
(X3,Y3, Z3) are points on the curve E in Jacobian coordinates. The point doubling in Jacobian
coordinates can be directly obtained from (2.27) by substitution of x1 = X1

Z1
2 and y1 = Y1

Z1
3 .

X3 = A2 − 2B

Y3 = A(B − X3) − 8Y1
4

Z3 = Y1Z1,

(2.31)

where A =
(
3X1

2 + aZ1
4) , B = 4X1Y1

2.
Similarly, point addition formulae in Jacobian coordinates can be obtained from (2.28). if
R(X3,Y3, Z3) = P(X1,Y1, Z1) + Q(X2,Y2, Z2), then

X3 = A2 − B3 − 2CB2

Y3 = A
(
CB2 − X3

)
− DB3

Z3 = Z1Z2B,

(2.32)

where C = X1Z2
2, and D = Y1Z2

3.
Reorganising computations in the basic point-doubling and point-addition equations can

lead to more efficient relations in terms of resource usage and speed. The Explicit Formulae
Database (EFD) [26] is an online database for efficient point-arithmetic on elliptic curves.
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2.2.7 Elliptic Curve Discrete Logarithm Problem

The Elliptic Curve Discrete Logarithm Problem (ECDLP) is the basis for the security of the
elliptic curve cryptosystems.

Given an elliptic curve E over the prime field Fp denoted by E(Fp), a point P ∈ E(Fp) of or-
der n, and the cyclic subgroup of E(Fp) generated by the point P, that is, 〈P〉 = {O, P, 2P, . . . , (n−
1)P}, an integer k ∈ [1, n − 1] can be chosen randomly such that Q = k · P. Here, the prime
p, the curve E equation, the point P, and its order n are public domain parameters. Given the
domain parameters and Q, the problem of determining k is named the Elliptic Curve Discrete
Logarithm Problem [10]. The ECDLP is based on the intractability of the Discrete Logarithm
Problem (DLP) on an elliptic curve. The point Q is easily computed with a given k using the
one-way function Q = k ·P; that is, the elliptic curve point multiplication or scalar multiplication.
Q is obtained by

Q = k · P = P + P + · · · + P︸�������������︷︷�������������︸
k times

, (2.33)

in which it is computationally difficult to determine k from known points Q and P. The fastest
algorithm for solving ECDLP is Pollard’s rho algorithm [27] which has a running time of O(

√
n),

where n is the order of the elliptic curve E over the finite field Fp.

2.2.8 Elliptic Curves Domain parameters

To implement elliptic curve cryptography, all parties must agree on all the ECDLP elements
that define the elliptic curve; that is, the domain parameters of the scheme. The field is defined
by the parameter p in the case of using prime finite field Fp or by parameters m, f in case of
using binary finite field F2m , where f is the irreducible polynomial modulus for polynomial basis.
The elliptic curve is defined by the constants a and b used in the short Weierstraß equation.
We normally work in a subgroup of order q. The aim is to find a point G of a large prime
order q such that the co-factor h = n

q is small, ideally equal to 1. It is important that q is prime
otherwise, it is possible to reduce the ECDLP to a smaller problem using Silver-Pohlig-Hellman
algorithm [10]. Since q is the size of a subgroup of E(Fp), based on the Lagrange’s theorem
[28], q divides n.

In conclusion, the domain parameters are (p, a, b,G, n, h) over a prime finite field and
(m, f , a, b,G, n, h) over a binary field F2m . The generation of domain parameters is done by
standardisation bodies. Such domain parameters are commonly known as “standard curves”.
There are mainly three standard bodies which introduced their standard curves.

• NIST curves [29]:
The National Institute of Standards and Technology (NIST) —that is a physical sciences
laboratory and a non-regulatory agency of the United States Department of Commerce—
introduced FIPS-186 standard including recommended elliptic curves specifications known
as NIST recommended curves.

• SECG curves [30]:
The Standards for Efficient Cryptography Group (SECG) is an international consortium
founded by Certicom. The SECG develops commercial standards for efficient and inter-
operable cryptography. The SEC2 version 2.0 is the updated recommended domain
parameters for elliptic curves.
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• Brainpool curves [31]:
The Brainpool curves are a new set of elliptic curve groups over finite prime fields for
use in cryptographic applications. The parameters were generated in a pseudo-random
way and have been verified to resist current crypto-analysis approaches.

2.2.9 Edwards curves1
Based on Euler and Gauss’ works, Edwards introduced a normal form of elliptic curves in 2007
[33]. He generalised the curve as

y2 + x2 = a2(1 + x2y2) (2.34)

over the field K , where a ∈ K , such that a5 �= a. As Edwards stated in his paper, every curve
of the form given in (2.34) is birationally equivalent to an elliptic curve in Weierstraß form. Two
curves are considered birationally equivalent if their fields of rational functions are isomorphic.
Bernstein et al. [34] generalised Edwards’ original curves. For a fixed field K of odd charac-
teristic and arbitrary integers c, d ∈ K such that cd(1 − dc4) �= 0, they introduced the curves
as

y2 + x2 = c2(1 + dx2y2). (2.35)

This definition covers “more than 1/4 of all isomorphism classes of elliptic curves over a finite
field”. They showed that every elliptic curve over a non-binary field is birationally equivalent
to a curve in Edwards form over an extension of the field and in many cases over the original
field [34]. It can be easily verified that the neutral point (also called the point at infinity) O is
(0, c), and the inverse of point P(x, y) is (−x, y). In [35], Bernstein et al. introduced a gen-
eralisation of Edwards curves named twisted Edwards curves. These include more curves,
including Edwards curves and every elliptic curve in Montgomery form [36]. As explained
in [35], the curve name comes from the fact that the set of twisted Edwards curves is invariant
under quadratic twists while a quadratic twist of an Edwards curve is not necessarily an Ed-
wards curve. For a field K of odd characteristic, and nonzero elements a, d ∈ K , the twisted
Edwards curve ET,a,d(K) is defined as

ET,a,d(K) : ax2 + y2 = 1 + dx2y2. (2.36)

If a = 1, then ET,a,d is an Edwards curve with c = 1. Moreover, ET,a,d is a quadratic twist of the
Edwards curve EO,1,d/a with the map (x, y) → (x, y) = ( x√

a
, y) over the field extension K(

√
a):

x2 + y2 = 1 + (d/a)x2y2 (2.37)

Twisted Edwards curves and Montgomery curves are closely related. As shown in [35], every
twisted Edwards curve ET,a,d on the Field K with char(K) �= 2, is birationally equivalent to a
Montgomery curve EM,A,B : Bv2 = u3 + Au2 + u using the map

(x, y) → (u, v) =
(
(1 + y)
(1 − y)

,
(1 + y)

(1 − y)x

)
, (2.38)

where A =
2(a + d)
(a − d)

, and B =
4

(a − d)
.

1This section is a part of published work [32]
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If a is a square in K , then these curves are isomorphic over K itself. From the operation
counts of the point arithmetic given in [26], it is easy to see that twisted Edwards curves outper-
form curves in Weierstraß form in terms of speed (despite the binary form of Edwards curve
that is a bit slower than its Weierstraß counterpart [37]). However, twisted Edwards curves are
appealing for another reason. Their group laws are unified and complete; that leads to safer
implementations against certain types of attacks [35]. “Unified” means that the same addition
equation works whether the points are the same or different. In other words, doubling and
addition formulae are the same. “Complete” means that whatever the points are, the equation
returns a correct result.

Point multiplication is fast and efficient on Montgomery curves. It efficiently uses differential
point addition and point doubling [26] and uniform Montgomery ladder algorithm to perform a
point multiplication [38]. The uniform Montgomery ladder algorithm is performed in constant
time that makes its implementations robust to timing attacks. The CURVE25519 has been
used in many software implementations since its introduction by Bernstein in [39]. It has also
become a promising candidate for the Internet of Things (IoT) applications due to its 128-bit
security level and efficient arithmetic.

The Edwards-curve Digital Signature Algorithm (EdDSA) is the most significant application
of twisted Edwards curves. The ED25519 is a twisted Edwards curve used for EdDSA, where
its parameters are defined as [40]

a = −1,

d = −121665
121666 , and

p = 2255 − 19.

The corresponding Montgomery curve of ED25519 is CURVE25519 that is defined as [39]

y2 = x3 + 486662x2 + x. (2.39)

2.2.10 Elliptic curves used in this research

In this research, our focus has been on the elliptic curves defined over 256-bit prime fields that
provide 128-bit security. Specifically, the curves SECP256K1, ED25519, and Brainpool256r1
have been studied. The domain parameters of these curves are shown in Tables 2.1, 2.2, and
2.3.

Table 2.1: Curve SEC2P256K1 domain parameters

p = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F
p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1 (in decimal)
a = 0
b = 7
G(x, y) =
(79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798,
547EF835 C3DAC4FD 97F8461A 14611DC9 C2774513 2DED8E54 5C1D54C7 2F046997)
n = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141
h = 1
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Table 2.2: Curve Brainpool256r1 domain parameters

p = A9FB57DB A1EEA9BC 3E660A90 9D838D72 6E3BF623 D5262028 2013481D 1F6E5377
a = 7D5A0975 FC2C3057 EEF67530 417AFFE7 FB8055C1 26DC5C6C E94A4B44 F330B5D9
b = 26DC5C6C E94A4B44 F330B5D9 BBD77CBF 95841629 5CF7E1CE 6BCCDC18 FF8C07B6
G(x, y) =
(8BD2AEB9 CB7E57CB 2C4B482F FC81B7AF B9DE27E1 E3BD23C2 3A4453BD 9ACE3262,
483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448 A6855419 9C47D08F FB10D4B8)
n = A9FB57DB A1EEA9BC 3E660A90 9D838D71 8C397AA3 B561A6F7 901E0E82 974856A7
h = 1

Table 2.3: Curve ED25519 domain parameters

p = 7FFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFED
p = 2255 − 19 (in decimal)
a = 7FFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFEC
d = 52036CEE 2B6FFE73 8CC74079 7779E898 00700A4D 4141D8AB 75EB4DCA 135978A3
G(x, y) =
(216936D3 CD6E53FE C0A4E231 FDD6DC5C 692CC760 9525A7B2 C9562D60 8F25D51A ,
66666666 66666666 66666666 66666666 66666666 66666666 66666666 66666658)
n = 10000000 00000000 00000000 00000000 14DEF9DE A2F79CD6 5812631A 5CF5D3ED

2.2.11 Elliptic Curve Diffie–Hellman
The elliptic curve Diffie–Hellman (ECDH) is a key exchange protocol that lets two parties have
an elliptic curve public-private key pair to establish a shared key. Suppose, the two parties
Alice and Bob want to share a secret over an insecure channel. They both need to agree on
a domain parameter e.g. (p, a, b,G, n, h). Both Alice and Bob have to choose a private key
randomly. Suppose that kA, kB ∈ [1, n − 1] are Alice’s and Bob’s private keys, respectively.
Alice and Bob calculate their public keys using the base point G and their private keys. That
is, QA(xA, yA) = kA · G(x, y) and QB(xB, yB) = kB · G(x, y), respectively. Now, both Alice
and Bob have their private-public key pair i.e. (kA,QA) and (kB,QB). They exchange their
public keys over the insecure channel. Now, Alice can compute kA ·QB and Bob can compute
kB · QA. Therefore, the shared secret calculated by Alice and Bob is equal i.e. kA · QB =
kB · QA = kAkB · G(x, y).

2.2.12 Elliptic Curve Point Multiplication algorithms
To compute the elliptic curve point multiplication Q = k · P, several algorithms have been pro-
posed some of which are Double-and-Add, window-NAF, and Montgomery ladder algorithms
[41]. Some other variations of point multiplication algorithms are presented and discussed in
[42], [43], [44], and [45]. In the following, we briefly introduce point multiplication algorithms
used in this research.

Binary Double-and-Add algorithm

The classic binary Double-and-Add algorithm shown in Algorithm 6 [10] is a standard way to
calculate equation (2.33). We assume that for an m-bit integer k, where m = 
log2 k�, the
binary representation of k is (km−1km−2 · · · k0)2, where ki ∈ {0, 1}, i ∈ [m − 1, 0]. Using



2.2 Elliptic Curve Cryptography 19

Algorithm 6: Binary Double and Add point multiplication algorithm
Input: k, P.
Output: Q = k · P.

1 Q = O;
2 for i = m − 2 to 0 do
3 Q = 2P;
4 if ( ki = 1) then
5 Q = Q + P;

the Double-and-Add algorithm, m point-doublings and m
2 point-additions are required on av-

erage to perform a point multiplication. The double-and-add algorithm does not require pre-
computation of points and extra registers to store the intermediate results. It is simple and
has a small logic which makes it suitable for a low-cost RNS ECC hardware implementation.
However, the double-and-add algorithm is vulnerable to side-channel attacks [46].

Montgomery ladder algorithm

The Montgomery ladder approach [41] computes the point multiplication in a fixed amount
of time. This is particularly useful when timing or power consumption is exposed to side-
channel attacks. The Algorithm 7 shows the Montgomery ladder method for computing point
multiplication. An initial point-doubling is required to compute the value of 2P. Then, P and
2P are saved as default values of R0 and R1 registers, respectively. One point-doubling and
one point-addition are performed for every m−1 least significant bit (LSB) of the key k. Then,
the value of the R0 and R1 registers are updated. If hardware resources are available, point-
doubling and point-addition can be executed concurrently. The latency of the algorithm can be
reduced to the latency of one point-doubling and m − 1 point-additions. Otherwise, the total
latency is equal to the latency of m point-doublings and m − 1 point-additions.

Algorithm 7: Montgomery ladder algorithm
Input: k, P.
Output: Q = k · P.

1 R0 = P;
2 R1 = 2P;
3 for i = m − 2 to 0 do
4 if ( ki = 1) then
5 R0 = R0 + R1 ;
6 R1 = 2R1;
7 else if (ki = 0) then
8 R1 = R0 + R1;
9 R0 = 2R0;

10 return R0.
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NAF method

The Non-Adjacent-Form (NAF) representation of a positive m-bit integer k is defined as [10]

k =
l−1∑
i=0

ki2i, (2.40)

where ki ∈ {−1, 0, 1} and kl−1 �= 0. The NAF representation of the integer k is denoted as
NAF(k). Let us denote the length of NAF(k) by l which is at most one more than the length
of its binary representation m. Any integer k has a unique NAF representation. The density
is the number of non-zero digits divided by the total length. The average density of NAF
representation is approximately 1

3 . The NAF of the integer k can be efficiently computed by
letting w = 2 in Algorithm 8. The window-NAF method of length w > 2 denoted by NAFw

is a generalisation of NAF. It requires 2w−2 − 1 pre-computations at the cost of some extra
computing resources. The latency of the NAF algorithm can be decreased by using the NAFw

method presented in Algorithm 9, which processes w digits of k at a time. The density of
NAFw is 1

w+1 . The mods(a, b) operation used in Algorithm 8 is defined by

mods(a, b) =
〈
〈a〉b +

⌊
b
2

⌋〉
b
−

⌊
b
2

⌋
. (2.41)

Algorithm 8: Binary to NAFw conversion
Input: k,w.
Output: NAF representation of integer k.

1 i = 0;

2 while k > 0 do
3 if (k mod 2 = 1) then
4 ki = 2w−1 − mods(k, 2w);
5 k = k − ki ;
6 else
7 k = k

2 ;
8 i = i + 1;
9 return { ki−1, ki−2, ..., k0 } .

Point multiplication using GLV method

In 2001, Gallant, Lambert, and Vanstone described a method — known as the GLV method—
that the application of an endomorphism property if possible, can greatly speed-up the scalar
multiplication operation.[47]. The curve E : SECP256K1 has an efficient endomorphism de-
fined over Fp. Here, p mod 3 = 1. Let β ∈ Fp be an element of order 3. Then the map
φ : E → E defined by

φ : (x, y) → (βx, y), φ : O → O (2.42)

is an endomorphism of E defined over Fp.
If φ(P) �= O then φ(P) = λ · P where, λ is a root of the characteristic polynomial of φ sat-
isfying λ2+λ+1 ≡ 0 mod n, (n is the order of curve E) then for any point P(x, y) on the curve:
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Algorithm 9: NAFw point multiplication algorithm
Input: k, P,w.
Output: Q = k · P.

1 Q = O ;
2 Use Algorithm 8 to compute NAFw(k)= ∑l−1

i=0 ki2i;
3 Pre-compute Pi = i · P for i ∈ {1, 3, 5, · · · , 2w−1 − 1} ;
4 for i = l − 1 to 0 do
5 Q = 2Q ;
6 if ( ki > 0) then
7 Q = Q + Pi ;
8 else if (ki < 0) then
9 Q = Q − Pi ;

10 return Q.

Q = φ(P(x, y)),
Q = λ · P(x, y) = (βx, y).

(2.43)

The numerical values of λ and β for curve SECP256K1 in hexadecimal notation are
λ = 5363AD4CC05C30E0A5261C028812645A122E22EA20816678DF02967C1B23BD72, and
β = 7AE96A2B657C07106E64479EAC3434E99CF0497512F58995C1396C28719501EE.
Furthermore, for any k ∈ [0, n − 1] we can find k1 and k2 such that: k = k1 + λk2 mod n.
Therefore,

k · P = k1 · P + k2λ · P.
k · P = k1 · P + k2 · Q.

(2.44)

The value of k1 and k2 can be calculated using Algorithm 10. The length of k1 and k2, l is
approximately half of length of k. The scalar multiplication k ·P = k1 ·P+k2 ·Q will be calculated
using Shamir’s [48]. If k1 and k2 be used in their binary representation, then pre-computation
of P + Q is required and point multiplication can be done by l point doublings and 3l

4 point
additions on average. The computation is even more efficient when k1 and k2 are expressed

in Joint Sparse Form (JSF) [48]. Suppose,
(
k1

l−1 · · · k1
0

k2
l−1 · · · k2

0

)
is the JSF representation of k1

and k2. Considering R = k1 · P + k2 · Q, Algorithm 11 calculates the simultaneous multiple
point multiplication using Shamir’s trick [10] and JSF of k1 and k2. Here, l point doublings and
l
2 point additions are required on average. The points (P + Q), (P −Q), −P, and −Q must be
pre-computed. Since k1 and k2, are of half the bit-length of k, then the average latency of this
method is approximately equal to half of the average latency of the Double-and-Add plus the
latency of pre-computations that is, one modular multiplication (to calculate Q = (〈βx〉p, y)),
one subtraction (to calculate −P = (x, p − y), −Q = (βx, p − y)) and two point additions (to
derive P + Q and P − Q).
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Algorithm 10: Calculation of k1 and k2
Input: Integer k, n, λ.
Output: Integers k1, k2 such that k = (k1 + k2λ) mod n.

1 w ← 
log2(n)�
2 u ← λ, v ← n
3 t1 ← 0, t2 ← 1
4 s1 ← 1, s2 ← 0
5 while u > w do
6 q ← �v/u, r ← (v − q.u), s ← (s2 − q.s1), t ← (t2 − q.t1).
7 v ← u, u ← r , s2 ← s1, s1 ← s, t2 ← t1, t1 ← t.
8 r1 ← v

9 q ← �v/u, r ← v − q.u, s ← s2 − q.s1, t ← t2 − q.t1
10 v ← u, u ← r , s2 ← s1, s1 ← s, t2 ← t1, t1 ← t
11 a1 ← v

12 b1 ← −s2
13 q ← �v/u, r ← v − q.u, s ← s2 − q.s1, t ← t2 − q.t1
14 v ← u, u ← r , s2 ← s1, s1 ← s, t2 ← t1, t1 ← t
15 r2 ← v

16 if ((r1
2 + s2) ≥ (r2

2 + s2
2)) then

17 a2 ← r1
18 b2 ← −s
19 else
20 a2 ← r2
21 b2 ← −s2
22 c1 ← �b2.k/n
23 c2 ← �−b1.k/n
24 k1 = k − (c1.a1 + c2.a2)
25 k2 = −(c1.b1 + c2.b2)
26 return k1, k2

Algorithm 11: Simultaneous multiple point multiplication

Input: P,Q, JSF representation of k1, k2:
(
k1

l−1 · · · k1
0

k2
l−1 · · · k2

0

)
Output: R = k1 · P + k2 · Q.

1 Pre-compute: −P , −Q, (P + Q) , (P − Q) ;
2 R = O;
3 for i = l − 1 to 0 do
4 R = 2R;
5 R = R + (k1

i · P + k2
i · Q);

6 return R;
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Algorithm 12: Greedy algorithm to find DBNS form of an integer
Input: Integer k.
Output: DBNS representation of k.

1 t = k;
2 i = 0;
3 while t �= 0 do
4 Find z = (−1)ci2ai3bi as the best approximation of t, that is, t ≈ z;
5 i = i + 1;
6 t ← t − z;
7 return (−1)c02a03b0 + (−1)c12a13b1 + · · ·

Point multiplication using Double Base Number System (DBNS)

Double Base Number Systems were introduced by Dimitrov et al [49] and they are represen-
tations of a positive integer k in form of

k =
l−1∑
i=1

di2ai3bi, (2.45)

where di ∈ {−1, 0, 1}. Such representations always exist and are not unique. Some of these
representations, named canonic representations, which require a minimal number of additions
of {2, 3}-integers, are of special interest. Canonic representations are sparse and finding them
in a reasonable amount of time, especially for large integers, is challenging. To find a DNBS
representation of an integer, the authors of [50] proposed a greedy approach as shown in
Algorithm 12. This algorithm is efficient and returns a DBNS in a short amount of time, even
for a large integer. However, computing a scalar multiplication based on the DBNS may not
lead to a realistic implementation [51]. For example, if we attempt to compute Q = 575543P
using a DBNS representation obtained from a Greedy algorithm, that is, 575543 = 2837 +
2933 − 2633 + 2531 + 2331 − 1, which can be re-written as ((((2−134 + 1)22 − 1)2232 + 1)22 +
1)2331 − 1, then, we have to start with four point-tripling and one division by two (or one point-
halving) to obtain [2−134]. Point halving is only practical for curves of characteristic 2. Such
an implementation requires extra hardware for point-halving and is not efficient. Therefore,
when the two sequences of exponents are not decreasing simultaneously, the implementation
of ECC scalar multiplication is not efficient in practice.

The concept of Double-Base Chains (DBC) is introduced by requiring the condition a1 �
a2 � · · · � al−1 and b1 � b2 � · · · � bl−1. The Greedy algorithm can be modified easily to
compute such a DBC ensuring that the exponents ai and bi are decreasing [52].

Finding DBC based on Tree algorithm

The tree-based DBC search algorithm introduced in [52] is a generalisation of the binary/ternary
method presented by Ciet in [53]. Considering that for a positive integer k, mods(k, 2) ∈ {0, 1}
and mods(k, 3) ∈ {−1, 0, 1}, if k is co-prime to 3, then 3 is a divisor of k−1 or k +1. Obviously,
if k is odd, then k − 1 and k + 1 are even. Assuming that k is co-prime to 6, the tree based
DBC search algorithm first builds a tree with k − 1 and k + 1 branches. After removing the
powers of 2 and 3 from k − 1 and k + 1 this process will be reapplied to each branch, adding
and subtracting 1, creating new branches until one of the branches will reach 1, leading to the
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DBC expansion of k. This approach is costly especially for the integers in the range of ECC
(160 to 512 bits). However, we can define a bound B and keep only B branch nodes at each
level and eliminate other branches to speed up calculations.

The Tree algorithm considers only some special greedy chains. When it reaches an even
node, it keeps on dividing by 2, prohibiting nontrivial additions. Similarly, when it reaches a
multiple of 3 node, it keeps on dividing by 3. When it sees a number that is neither a multiple
of 2 nor 3 it forms a branch by adding and subtracting one. This algorithm reduces the number
of nodes but does not guaranty to find the best chain necessarily. Figure 2.3a illustrates the
tree diagram of integer 575543 based on Algorithm 13. The result is the chain

575543 = ((((32 · 22 + 1)33 · 22 + 1)3 · 2) − 1)3 · 23 − 1. (2.46)

For implementation purposes, we represent the DBC in the form of a chain of tuples. The
pair [2, 0] means one point-doubling, [2, 1] means one point-doubling and one point-addition,
[3, 0] means one point-tripling and so on. Thus, the above example can be displayed as

575543 =[3, 0][3, 0][2, 0][2, 1][3, 0][3, 0][3, 0][2, 0][2, 1][3, 0]
[2,−1][3, 0][2, 0][2, 0][2,−1].

(2.47)

This chain consists of seven point-triplings, eight point-doublings and four point-additions (or
subtraction).

Algorithm 13: Tree-based DB-Chain search algorithm
Input: Integer k, Bound B.
Output: A DBC equivalent to k.

1 Set t = f (k), [ f (k) = k
2v2(k)2v3(k) ]

2 Initialise binary tree T with root node t
3 while (a branch node is not equal to 1) do
4 for each branch node m in T insert 2 Children do
5 Left child ← f (m − 1) ;
6 Right child ← f (m + 1) ;
7 Discard any redundant branch node ;
8 Discard all but the B smallest branch node ;

9 return T ;

Finding DBC based on DAG method

Finding a canonic DBC by searching the shortest path in an explicit Directed Acyclic Graph
(DAG) was introduced in [54]. An optimal length DBC algorithm based on the DAG method
was proposed by Lévia and Thériault in [55] (we call it the L-T algorithm from now on). With
the DAG method, every even node n produces two new nodes, one by dividing by 2, and the
other n−1 or n+1 dividing by 3. Every odd node n will produce 3 nodes, n+1 divide by 2, n−1
divide by 2 and n − 1 or n + 1 divide by 3. Each possible intermediate result appears exactly
once in the DAG but can appear at many different tree levels in the Tree-based algorithm that
might not be considered. In the DAG method, the costs of doubling, tripling, and adding are
considered to pick up the optimal low-cost chain. The disadvantage of this method is that a
node can be produced multiple times in different positions. So, the number of nodes and the
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(a) Using Tree algorithm to obtain DBC of
575543 (b) Using DAG to find DBC of 23

Figure 2.3: Finding canonic DBC using Tree and DAG algorithms

required memory for calculations is huge. Figure 2.3b illustrates DAG to find DBC of integer
23. The numbers on the edges of the DAG are the costs of operations to reach the destination
node. In this example, normalised costs for Curve ED25519 are considered. It is assumed
that a doubling cost is 1, a tripling cost is 1.94, and an addition or subtraction cost is 1.5. The
output of the L-T algorithm for 575543 is

575543 = ((((32 · 22 + 1)34 · 2 + 1)22 + 1)3 · 23) − 1. (2.48)

2.3 Hardware design

In this section, the aspects of hardware design and optimisation will be discussed with a fo-
cus on Field Programmable Gate Arrays (FPGA). An FPGA is a type of integrated circuit that
can be programmed for implementation of different algorithms. Modern FPGA devices con-
sist of up to two million logic cells that can be configured to implement a variety of software
algorithms. An FPGA provides significant cost advantages in comparison to an Application
Specific Integration Circuit (ASIC) and offers the same level of performance in most cases.
Another advantage of the FPGA compared to the ASIC is its ability to be dynamically reconfig-
ured. This process, which is the same as loading a program in a processor, can affect a part
or all of the resources available in the FPGA fabric. Hardware description languages (HDL)
are mainly used to configure hardware on the FPGA. The two most common HDLs are VHDL
and Verilog. Like a program written in any other language, an HDL program can be executed.
Since HDL is used to model a Hardware, the term simulation is often used instead of execu-
tion, with the same meaning. An HDL program can be transformed with a synthesis tool into a
netlist, that is, a detailed list of hardware primitives (e.g. gates and flip-flops) and connections
between them. There are two different methodologies when designing an integrated circuit.
The traditional method of hardware design is “Bottom-up” that is performed at the gate-level
using the standard gates. This approach is nearly impossible to maintain with the increasing
complexity of the design. Modern hardware systems usually consist of thousands of gates.
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The traditional bottom-up designs must give way to new structural, hierarchical design meth-
ods. The desired design-style of all designers is the “Top-down” design. A top-down design
method allows early testing, easy change of different technologies, a structured system de-
sign, and offers many other advantages. However, It is very difficult to follow a pure top-down
design and in most cases does not yield an optimised result. Due to this fact, most designs
are a mix of both methods, implementing some key elements of both design styles.

Hardware design abstraction levels

The hardware description may be performed at many different levels of abstraction. When
considering the FPGA/ASIC design, three levels of abstraction are mainly identified.

• Behavioural level

• Register-Transfer Level (RTL)

• Gate level

Behavioural level

Behavioural modelling describes how the circuit should behave. At this level, a system is
described by concurrent algorithms. The HDL behavioural model is widely used in the simu-
lation of the design since the simulation just shows the functionality of the design and does
not care about the hardware realisation. Some high-level synthesis tools can synthesise the
behavioural models. The actual hardware implementation, in this case, will be decided by the
synthesis tool.

RTL level

Designs using the Register-Transfer Level specify the characteristics of a circuit by operations
and the transfer of data between the registers. An RTL description has an explicit clock. All op-
erations are scheduled to occur in specific clock cycles, but there are no detailed delays below
the cycle level. The synthesis tools allow some freedom in this respect. A single global clock
is not required but may be preferred. In addition, re-timing is a feature that allows operations
to be re-scheduled across clock cycles.

Gate level

Within the gate or logic level, the characteristics of a system are described by logical links and
their timing properties. The usable operations are predefined logic primitives (AND, OR, NOT
gates).

2.3.1 FPGA architecture
Every FPGA chip is made up of a finite number of predefined resources with programmable
interconnects to implement a reconfigurable digital circuit. It is important to have a basic
understanding of the available resources in the FPGA fabric and how they interact to implement
an application. FPGAs include a number of configurable logic blocks (CLB), a number of
fixed-function logic blocks such as multipliers, and memory resources like embedded block
RAM. The CLBs are the basic logic units of an FPGA for implementing sequential as well
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as combinatorial circuits [56]. As shown in Figure 2.4, each CLB element is connected to a
switch matrix for the access to the general routing matrix. In Xilinx Virtex-7 FPGA family, a
CLB element contains a pair of slices referred as SLICEM and SLICEL. Each Slice consists
of

• Look-up table

• Flip-Flop

• Multiplexer

• Carry chain

• Wires

Figure 2.4: Configuration of a CLB in Virtex-7 family FPGAs (Courtesy of Xilinx).

Look-up table (LUT)

The LUT is the basic building block of an FPGA and is capable of implementing any combi-
national logic function of N Boolean inputs. This element is basically a truth table in which
different combinations of the inputs implement different functions to produce the output val-
ues. The limit on the size of the truth table is N . For the general N-input LUT, the number
of memory locations accessed by the table is 2N which allows the table to implement 2NN

functions. The Series-7 family of Xilinx FPGAs have LUTs with 6 inputs. Each slice consists
of four 6-input LUTs.

Flip-Flop (FF)

This register element stores the result of the LUT. There are eight storage elements per slice.
Four can be configured as either edge-triggered D-type flip-flops or level-sensitive latches.
The basic structure of a flip-flop includes ‘data input’, ‘clock input’, ‘clock enable’, ‘reset’, and
‘data output’. During normal operation, any value at the ‘data input’ port is latched and passed
to the output on every pulse of the clock. The purpose of the ‘clock enable’ pin is to allow
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the flip-flop to hold a specific value for more than one clock pulse. New data inputs are only
latched and passed to the ‘data output’ port when both ‘clock’ and ‘clock enable’ are set to
one.

Multiplexers

There are two 7-input and one 8-input Multiplexers per slice. These multiplexers allow LUT
combinations of up to four LUTs in a slice. The wide multiplexers can also be used to create
general-purpose functions.

Carry Chain

In addition to function generators, dedicated fast look-ahead carry logic is provided at each
slice to perform fast arithmetic addition and subtraction. A Virtex-7 family CLB has two sepa-
rate carry chains that are cascadable to form a wider add/subtract logic.

Wires

Wires connect the elements within a slice together and to the switch matrix.

The function generators (LUTs) in SLICEMs can be implemented as a synchronous RAM
resource called a distributed RAM element. Multiple LUTs in a SLICEM can be combined in
various ways to store a larger amount of data. Maximum 256×1−bit RAM can be implemented
in one SLICEM. SLICEM LUTs can also be configured as a shift register without using the flip-
flops available in a slice. Used in this way, each LUT can delay serial data from 1 to 32 clock
cycles. Figure 2.5 shows the configuration of a SLICEM in the Virtex-7 family CLB. Advanced
FPGA architectures include additional computational and data storage blocks that increase
the computational density and efficiency of the device. These additional elements, which are
discussed in the following are:

• DSP blocks for arithmetic computations.

• Embedded memories.

• Phase-locked loops (PLL).

• High-speed serial transceivers.

The combination of these elements provides FPGA with the flexibility to implement any soft-
ware algorithm running on a processor and results in the contemporary FPGA architecture
shown in Figure 2.6.

DSP

The DSP slice is the most complex computational block available in the modern FPGAs. A
Block diagram of a DSP slice in Xilinx Series 7 family FPGAs is shown in Figure 2.7. The DSP
block is an arithmetic logic unit (ALU) embedded into the fabric of the FPGA, it is composed
of a chain of three different smaller blocks. The computational chain in the DSP includes an
add/subtract unit connected to a 25 × 18 bits multiplier chained to a final add/subtract/accu-
mulate unit. This chain allows a single DSP unit to implement functions in general form of
P = B × (A + D) + C or P+ = B × (A + D).
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Figure 2.5: Architecture of a SLICEM in Virtex-7 family FPGAs (Courtesy of Xilinx).

Figure 2.6: Contemporary FPGA layout (Courtesy of Xilinx).
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Figure 2.7: Xilinx series-7 family embedded DSP block diagram (Courtesy of Xilinx).

Storage elements

Advanced FPGAs include embedded memory elements such as block RAMs (BRAMs), LUTs,
and shift registers (SRLs). Due to the flexibility of the LUT architecture in Xilinx FPGAs, these
blocks can be used as 256-bit memories and are commonly referred to as distributed mem-
ories. This is the fastest kind of memory available on the FPGA device because it can be
instantiated in any part of the fabric that improves the performance of the implemented circuit.
A shift register consists of a chain of registers connected to each other. This structure is to
provide data reuse along a computational path. Other than the distributed RAMs, the series 7
FPGAs of Xilinx, consist of embedded block memories [57]. The block RAM in Xilinx Virtex-7
family FPGAs stores up to 36Kbits of data and can be configured as either two independent
18Kbit RAMs or one 36Kbit RAM. Each 36Kbit block RAM can be configured as a 64Kbit RAM
by cascading two adjacent block RAM.

Phase-Locked loops (PLL)

Embedded Phase-Locked loops in contemporary FPGAs like the Xilinx series 7 family are
used for driving the FPGA fabric at a fine-tuned clock.

High-speed transceivers

The high-speed transceivers are used to implement high-speed data transfer protocols.

2.3.2 FPGA design principles

The key difference between a processor and an FPGA is that a processor is a fixed hard-
ware architecture. A compiler translates a program into a set of machine-language codes
understandable for the CPU. The CPU executes the machine code sequentially to perform
the desired algorithm. FPGAs, on the contrary, are a blank slate of building blocks. A synthe-
sis tool configures these building blocks to build specific hardware that performs the desired
computations. Since FPGAs are reprogrammable, they are well suited used for rapid proto-
typing.
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Parallelism

Parallel computation is possible at three levels.

• Algorithmic-level

• Hardware duplication

• Pipeline-level

Parallelisation at the algorithmic level is basically a hard problem, as it is nontrivial to parallelise
a sequentially described algorithm. A thorough investigation of the algorithm is necessary to
find if it is feasible or not. As a simple rule of thumb, all functions that do not have data
dependencies on the output of other functions may be easily parallelised.
Another approach to parallelisation is to implement the same hardware multiple times, which
is simple and effective to improve the throughput. However, this approach is often expensive
and a trade-off between the costs and performance must be considered.
The third approach, pipeline parallelism, uses a pipeline, which can process several data
streams in parallel. This is a special case of the pipelining which is described in the following.

Latency

Latency is the number of clock cycles needed to complete an instruction or a set of instructions
to generate a result value. That is, the result of the application is not available until the latency
time is passed from the start time. The latency is a key performance metric in hardware design.
In most cases, the problem of latency can be resolved through the use of pipelining.

Pipelining

The concept of pipelining is based on the observation that a new input can be supplied to the
circuit not only after the circuit evaluation is completed for the previous input, but much earlier,
if the new input does not depend on the output of the computation with the first input. In the
RTL methodology, this concept is transformed to introduce additional registers into the circuit
to shorten the worst-case combinational logic delay between two register stages. Then the
second input may be supplied to the circuit as soon as the now shorter worst-case latency has
elapsed. Figure 2.8 illustrates non-pipelined versus pipelined design. In the pipelined design,
two extra registers have been placed between combinational logic A, B, and C. realising a
two-stage pipeline design. Here, the long path delay from A to C (Source to Sink register) is
shortened (divided by 3). As a result, a higher clock frequency can be applied to the system.
The pipeline technique improves the clock frequency. However, it may have a drawback. Data
dependencies may introduce pipeline stalls, when no new input can be supplied, for example,
when the previous computation is not finished yet. The best case is achieved, when the clock
frequency increases without introducing pipeline stalls, then the performance scales linearly
with the clock frequency.
Throughput is another metric used to determine overall performance of hardware design. It
is the number of clock cycles required for the processing logic to accept the next input data.
For example, figure 2.8 shows two implementations. If the logic delay of blocks A, B, and C
is equal to 5 ns (nanoseconds) each, the none pipelined implementation (upper one) requires
15 ns clock cycle between input data samples, while the pipelined design (the bottom one)
needs only 5 ns between input data samples. It is clear that the second implementation has
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(a) Non-pipelined design.

(b) Pipelined design.

Figure 2.8: Pipelined vs. none pipelined design.

a higher performance, because it can accept a higher input data rate. The clock period and
throughput can be determined as functions of pipeline stages n.

Tclk ∝
1
n

T hroughput ∝ n
(2.49)

A critical path is defined as the path between an input and an output with the maximum delay.

Figure 2.9: Circuit clock period and Throughput versus number of pipeline stages (n).

The pipeline technique must be used when a critical path delay does not meet the design
timing requirements. Parallelism can be used when the critical path is bounded by the circuit
timing constraints.

2.3.3 Algorithm-Specific Optimisations
As discussed, different types of optimisations can be generally applied to most of algorithms
and implementations. However, it is often possible to optimise specific parts of an algorithm.
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Figure 2.10: Sample ECC side-channel power signal.

For example, two mathematically equivalent functions can be implemented by smaller or faster
circuits. Another approach is to instantiate FPGA primitives for a section of an algorithm. Such
algorithm-specific optimisations often lead to notable improvements because only a small sub-
set of an optimisation problem is considered, and the problem is approached with the specific
optimisations. However, an optimal division into sub-problems is itself very difficult and thus,
manual intervention with domain-specific knowledge may improve the results.

2.4 Side-channel attacks

A cryptographic primitive can be imagined as a function parameterised by a key [58]. The
implementation of this function on software using a set of instructions or on the hardware as a
state-machine produces a pattern of changes in the power consumption and electromagnetic
radiation of the embedded device. Monitoring this pattern change, known as side-channel
data, can be used to elicit the secret information used by the primitive. Cryptographic prim-
itives can be considered either as mathematical objects or as concrete devices executing a
program. These two points of view lead to different approaches to break a cryptosystem. The
first point of view is that of classical cryptanalysis. The second one is that of side-channel
cryptanalysis. Even though side-channel cryptanalysis is specific to the implementation of the
primitive to be broken, it is a very serious attack. Side-channel attacks have been used to
break cryptosystems based on the primitives that are considered mathematically secure. The
two cryptanalysis approaches can also be used together to create more powerful attacks.

2.4.1 Simple side-channel analysis

There are basically two types of side-channel analysis or attacks (SCA). Simple Side-Channel
Analysis (SSCA) and Differential Side-Channel Analysis (DSCA). SSCA was first introduced
by Kocher in [59]. SSCA —including Simple Power Analysis (SPA) if the measured leakage is
the power consumption, and Simple Electro-Magnetic Analysis (SEMA) in case of measuring
electromagnetic radiation— acquires traces of side-channel activity of an embedded device
performing a cryptographic operation or any computation involving sensitive data. Figure 2.10
shows power signal trace obtained from an ECC core. The ECPD and ECPA operations are
simply detectable. The attacker can analyse the side-channel data to discover the performed
operations. Such leakage of data can possibly lead to the recovery of the whole key with a
single trace and a single execution. Based on Kerckhoffs’ principle [60], this attack assumes
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that the attacker has full knowledge of the performed algorithms. A side-channel leakage can
even be used to perform reverse engineering and guess how an operation is implemented.

2.4.2 Differential side-channel analysis

A scalar multiplication algorithm that is protected against simple side-channel analysis may
still be vulnerable to differential analysis. In most cases, the base group element is imposed
by the system and the secret key is an ephemeral parameter varying at each execution. In
some cases, however, the secret key is fixed and the base element is the input to the system.
In such scenarios, DSCA becomes a threat.

Kocher et al. introduced Differential Side-Channel Analysis (DSCA) in [61]. Similar to
SSCA, Differential Power Analysis (DPA) is a type of DSCA when power traces are measured,
and differential electromagnetic analysis (DEMA), is a DSCA when the electromagnetic radi-
ation is used for analysis. DSCA exploits the slight consumption leakages of a device to find
data dependencies in the power consumption or electromagnetic radiation traces and recov-
ers secret key by analysing its influence on the known data. DSCA requires a large number
of samples in which the same secret key was used to operate on different data. It usually has
two phases— data collection and data analysis. In the data analysis phase, extensive signal
processing and statistical analysis are applied to the raw samples to extract the secret key.
DSCA can be automated by using little or no information about the target implementation be-
cause it locates correlated regions in a device’s power consumption. Although the knowledge
of plain-text is not required, the DPA can use known plain-text or known cipher-text to find the
secret key. In the following, a step-by-step differential side-channel analysis is described.

1. The attacker observes multiple cryptographic operations with different sets of data and
captures power/electromagnetic traces.

2. The attacker records cipher-texts. Knowledge of plain-texts is not required.

3. The side-channel data is partitioned into subsets according to a property of the state
being processed.

4. Statistical methods are applied to find differences in the subsets and determine whether
a key block guess is correct.

5. Attacking is done one intermediate state after another until the output value state. Let
b is the target bit, C is the corresponding observed cipher-text and kg is the guessed
key. The n collected power traces of s samples is denoted by T[1 : n][1 : s] which
corresponds to ciphers C[1 : n]. We define a selection function f which gets inputs b,
C, kg and can be either f (C, b, kg) = 0 or f (C, b, kg) = 1. if the guess for kg is correct
then the average power trace for f (C, b, kg) = 1 would be slightly higher at the point of
correlation and the average trace for f (C, b, kg) = 0 would be slightly lower. However,
if the key guess kg is not correct, then the selection function f (C, b, kg) would be equal
to the correct value for bit b with the probability of 50% for each cipher-text, yielding the
average traces that are approximately equal. Let Δ f [ j] be the differential trace, which
is computed between the two average traces. For an incorrect key guess kg, Δ f [ j]
should approach zero, and for a correct one, should approach the target bit’s power
contribution at the correlated samples. Then, the correct value of kg can be identified
from the spikes in its differential trace Δ f [ j]. These assumptions and equations are
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presented in the Kocher’s original paper [61]. Figure 2.11 depicts the DPA attack on
AES [62].

Figure 2.11: A sample of differential power analysis on AES hardware

Messeger et al. proposed three differential side-channel attack scenarios on public-key cryp-
tosystems in [63], which are

• Single Exponent Multiple Data Attack (SEMD)

SEMD assumes the attacker can exponentiate many random messages with at least
one known (public) exponent and a secret exponent. The central idea of SEMD is the
observation that by comparing the two obtained power signals (one taken from using
public exponent, and the other one taken from using secret exponent), the attacker
can see where they differ and thus learn the secret exponent [64]. Average signals
are calculated and subtracted as in the mean method. This will make random data
disappear, and only those signals dependant on the parameter will average out to two
different values depending on the operation performed.

• Multiple-Exponents, Single-Data Attack (MESD)

The assumption in MESD is that the attacker can choose the exponents. This approach
improves Signal-to-Noise Ratio (SNR) and relies on the assumption that the attacker
can exponentiate a constant value (which might not be known to him/her) repeatedly
with the parameters chosen by him/herself.

• Zero Exponent, Multiple Data Attack (ZEMD)

ZEMD assumes that the attacker knows the modulus and the algorithms use for expo-
nentiation in the hardware but does not know the exponents.

Template DSCA

In the DSCA approach, the noise is considered as a hindrance that has to be reduced or
eliminated. On the contrary, the template DSCA focuses on modelling the noise. Then, the
noise model is utilised to extract the desired information from the side-channel data. Since
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this method utilises all available information in each sample for classification, it forms the
strongest class of side-channel attacks [65]. The key requirement of the template attack is
that the attacker must have access to the hardware to make desired changes. This process is
called profiling. The attacker then uses profiling to capture precise and detailed noise signals
which are called the template. This is much more powerful than an ordinary DSCA approach,
where the noise is averaged.

2.4.3 Countermeasures against Side-Channel attacks

Most of the time, side-channel attacks are passive, which makes the detection of the attack al-
most impossible. A viable countermeasure for all side-channel attacks could be to prevent the
side-channel data measurements. This requires applying aggressive shielding, which signifi-
cantly increases the costs. Nevertheless, it cannot protect against invasive attacks. To date,
many hardware and software countermeasures against side-channel attacks are introduced
in the literature. The major difference between hardware and software countermeasures is
that software countermeasures do not try to avoid data leakage by producing constant power
consumption. Alternatively, they make side-channel information useless by adding random
dummy operations. Bear in mind that a single countermeasure cannot cover a whole range
of attacks. Commonly, it is required to combine several countermeasures to endure a spe-
cific range of attacks. Using a countermeasure is costly. Therefore, it is necessary to select
countermeasures thoughtfully and compromise between security and performance [66].

Simple Side-channel attacks countermeasures

A good countermeasure is the design of cryptographic hardware with constant power con-
sumption [67]. Such a countermeasure, however, is very hard to design and expensive to
implement. In [68], Shamir proposed putting extra capacitors or batteries on the power sup-
ply path to alter the power consumption trace or make it constant in time. Practically, this
approach is not a perfect solution. It reduces the size of the power bias. Accordingly, the
number of traces required for a successful DPA attack increases yet remains vulnerable to
DPA attacks.

A software countermeasure against DSA is the use of random interrupts. The CPU in-
terleaves dummy instructions randomly with the cryptographic algorithm codes such that cor-
responding operation cycles do not match because of time shifts. This method smears the
peaks across the differential trace due to the de-synchronisation effect, known as “incoherent
averaging” in digital signal processing. Theoretically, using random interrupts do not make
DSCA infeasible but considerably increases the number of samples required for a successful
attack. Random dummy operations can be implemented at the hardware level as well. How-
ever, it is costly to implement true-randomisation in hardware. Countermeasures which are
based on the injection of random noise to the power profile utilise redundant hardware. Benini
et al. [69] used a method called randomised power masking that is the combination of power-
management techniques and randomised clock gating to introduce a significant amount of
non-deterministic noise to the power profile.

Inserting dummy arithmetics in group operations is a common solution to make a homoge-
neous operation flow. This countermeasure can be easily implemented in either software or
hardware. It is generally an expensive countermeasure. A practical example of using dummy
arithmetic is the Always-Double-and-Add ECC scalar multiplication, shown in Algorithm 14.
This algorithm, named always-double-and-add ECC scalar multiplication, performs a dummy
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Algorithm 14: Always Double-and-Add point multiplication algorithm
Input: k, P.
Output: Q = k · P.

1 m = 
log2 k�;
2 Q = P;
3 for i = m − 2 to 0 do
4 S = 2Q;
5 R = S + P;
6 if ( ki = 1) then
7 Q = R;
8 else
9 Q = S;

10 return Q;

ECPA operation after each ECPD when the scalar corresponding bit is ‘0’ to make similar
patterns of ECPD, ECPA for the scalar bit ‘1’. This countermeasure, however, does not pro-
tect against DCSA attacks performed by machine-learning algorithms [46]. Since the average
zero bits for an k bit scalar is k

2 , then this method adds extra latency of k×tPA

2 to computations,
where tPA is the latency of one ECPA operation. In [70], Chevallier et al. practised a differ-
ent approach. They split ECPA and ECPD operations into several elementary basic blocks
and then made them homogeneous. The advantage of this method is that operations are not
unnecessarily made a lot longer. However, the measurement of the total the cryptographic
operation time can still allow the attacker to obtain the total Hamming weight of the scalar.
Moreover, the basic block operations are still distinguishable by the attacker.

Indistinguishable or unified addition and doubling formulae

This strategy applies to elliptic curve cryptography only. It is based on developing point-
addition and point-doubling formulae, which are indistinguishable or unified [71]. This method
may lead to utilising an alternative or equivalent form of an elliptic curve on which the point-
addition and point-doubling formulae are unified. Hence, it can be applied to specific elliptic
curves. The advantage of this countermeasure is that no dummy operations are involved.

Scalar multiplication with a fixed sequence of group operations

To thwart an SSCA on the elliptic curve cryptography hardware, point multiplication algorithms
are used that have a fixed sequence of group operations and do not depend on the scalar
value. Montgomery ladder point multiplication [41], shown in Algorithm 7, is an example of
this approach. In this algorithm, both ECPD and ECPA operations are performed at each
iteration. Unlike the Always-Double-and-Add algorithm, there is no dummy operation in the
Montgomery ladder algorithm.

Scalar randomisation

The insertion of random decisions when the point multiplication algorithm is executing helps to
prevent differential side-channel analysis. To be safe against SSCA, additional countermea-
sures can also be applied [72]. To be safe against SSCA, additional countermeasures can
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also be applied [72]. Three methods are used in the literature to randomise an ECC point
multiplication [73].

• Randomise scalar.
The order of an elliptic curve over the finite field Fp is the number of points on the curve
denoted by #E(Fp). A random integer r can be used to calculate the new scalar k′ such
that, k′ = k + r × #E(Fp). For every point P on the elliptic curve E , since #E(Fp)P = O,
it concludes Q = k · P = k′ · P. The drawback of this method is that depending on the
bit-length of r × #E(K), the effective key length may increase.

• Randomise base point.
A point is blinded by adding a secret random point R for which one knows S = k · R.
Scalar multiplication is done by calculating k · (R+ P) and subtracting S to get Q = k ·P.
The points R and S can be stored in memory locations or registers and updated for each
new execution as follows: R = (−1)b2R and S = (−1)b2S, where b is a random bit. Note
that there must be stored two additional points inside the device, which is also often not
desirable.

• Randomise using Projective coordinates.
Projective coordinates are used to avoid inversions in point multiplications. Point ran-
domisation can be performed using projective coordinates as well because (X,Y, Z)
and (λX, λY, λZ) are representing same point (x = X

Z , y = Y
Z ). A new λ can be chosen

for every new execution.

Address-bit DSCA and countermeasures

Address-bit differential power or electromagnetic emission analysis exploits the variation in
power or electromagnetic emission traces to distinguish the instructions used. It guesses in-
dividual bits of memory or registers’ locations to detect operands reuse. Memory or registers’
locations are a type of operands in CPU instructions. Therefore, access to different locations
will provide different traces of side-channel data that are loosely correlated. On the contrary,
the traces which correspond to the repeated access of the same memory location have higher
correlations. This attack uses one bit of the memory address as a discriminating factor and
splits all the memory addresses into two sets and then continues the same process. In [63],
address-bit DPA and multi-bit DPA schemes are introduced. May et al. [74] suggested random
register renaming on their designed processor dubbed NDISC that defeats address-bit DPA
attack. Itoh et al. [75] designed an address-bit DPA attack on Montgomery elliptic curves. In
[76], Itoh et al. proposed software implementation of a randomised-addressing countermea-
sure.

2.5 Applications of Machine-learning and Deep-learning in
side-channel analysis

Recently, the application of machine learning in analysing side-channel data has been at the
centre of attention [5]. Machine learning (ML) algorithms are powerful tools to detect change
patterns in side-channel data and categorise operations performed in the embedded device.
In a typical classification problem, the algorithm trains itself with a set of training data which
consists of input data vectors (features) and their associated outputs (labels). This technique
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is called supervised learning. During the training process, the supervised learning algorithm
makes assumptions based on the features and corrects itself if those assumptions do not
match the corresponding labels. Eventually, a model is created that can classify the unseen
input data accurately. In other terms, the generated model produces the correct result for the
inputs other than training data. In contrast, in an unsupervised learning technique, no labels
are available. The algorithm endeavours to extract attributes of the input data that are useful
to relate the input data to a class of outputs.

Hospodar et al. [77] applied ML for side-channel analysis for the first time in 2011 targeting
unprotected software implementation of AES. There are a couple of recent publications that
studied advanced Deep Learning (DL) techniques as well. In supervised machine learning,
the training dataset consists of N inputs �X , x ∈ Rn, which is a vector of n features, and N′

labels yi, i ∈ [1, N′], N′ ≤ N . It tries to find a map from the input vector to a correct label
y j . Unsupervised learning algorithms, however, try to derive patterns and attributes of the
input vector that best describe the output. The aim of any machine learning algorithm either
supervised or unsupervised is to find a model f ( �X) that defines a mapping from features to the
correct outputs. It is achieved by adjusting the algorithm parameters to minimise a cost or error
function E , which allows deciding the accuracy of the model applied to the input data. For side-
channel analysis, a training input �X is a vector of the power consumption or electromagnetic
radiation samples over a specific time interval while a cryptographic function is performing by
the target hardware. In the ML process, this raw data may be pre-processed before applying
the ML algorithm. Most of the ML algorithms require normalised (re-scaled to values between
‘0’ and ‘1’) or standardised (having zero mean and unit variance) input data. The data points
with the highest information content are then extracted or generated by combining or creating
additional data. This process is called feature engineering. A proper learning algorithm will
be selected, and its hyper-parameters, which control the algorithm’s behaviour, will be set.
Finally, the performance of the selected model is verified by applying the test data. Test data
is a part of data that is not used for training. Usually, a train/test-split assigns 80% of the
sample data to the training set and 20% to the test set. However, if the test set is not sufficient,
statistical uncertainty around the average test error can make the comparability of different ML
algorithms difficult [78]. To avoid such a problem, the whole data set is split randomly into k
disjunct subsets and one of them is used as the test dataset iteratively, and the rest is used
as the training dataset. This method is called k-fold cross-validation. Cross-validation is also
used for determining suitable hyper-parameters.

An ML model may experience overfitting or underfitting [78]. Over-fitting is when the model
performs very well on the training set, but not on the test set. Underfitting happens when the
model performs poorly on training. It means the model cannot predict the labels correctly.
Modifying the model’s capacity is a way to control the degree of overfitting or underfitting.
Capacity is the ability to fit a wide range of functions by changing the number or value of
parameters

Dimensionality reduction

Dimensionality reduction is a feature engineering technique that reduces the number of fea-
tures in the input dataset without having to lose much information and keep or even improve the
model’s performance. This technique is used in both unsupervised and supervised learning
machine learning algorithms to generate a lower-dimensional dataset as the input. However,
the loss in the original dataset can adversely impact the model performance if the dropped
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information is crucial for the prediction. The most common method of dimensionality reduc-
tion is Principal Component Analysis (PCA). PCA projects data to the direction of increasing
variance. The input data vector �X = [x1, . . . , xn] is mapped to a new vector �Z = [z1, . . . , zm],
where m < n, by calculating the mean vector �μ on all input features of the original dataset.

The eigenvectors corresponding to the m largest eigenvalues of the n × n-dimensional
covariance matrix are called principal components. A new n × n matrix A is formed from the
principal components. The transformed data is derived by calculating �Z = AT ( �X − �μ), and
dropping the points which are corresponding to the n−m smallest eigenvalues. PCA can also
help to decrease the noise level in the side-channel data traces. However, side-channel data
commonly deal with a high number of features that makes PCA computationally expensive
[79]. Alternatively, Points of Interest (PoI) are widely used in the side-channel data analysis.
These are the data points which correspond to the most leakage of information. POIs can be
detected where the data in samples have the largest covariance.

2.5.1 Supervised Machine-learning algorithms

Supervised ML algorithms work either in classification or regression mode. In a classification
model, the labels are in the form of finite classes. The algorithm is expected to specify which
class is the best fit for the set of input features. Regression models, in contrast, carry out the
prediction of quantitative outputs. In side-channel data analysis, ML is used to classify power
signals to the set of operation classes. In the following, we describe some classification ML
algorithms that can be used for SCA applications.

Decision trees

Decision Trees (DT) are supervised learning algorithms that classify the training data by cre-
ating a tree with zero or more internal nodes and at least one leaf node. Decision Trees are
also the fundamental component of the Random Forests [80]. A decision tree is a flowchart-
like composition in which any internal node represents a test on an attribute, each branch
represents the outcome of this test, and each leaf node represents the decision taken af-
ter computing all attributes or the class label. The paths from the root to the leaf represent
classification rules. Figure 2.12 illustrates a simple DT that performs an AND operation on a
three-input example �X = [x1, x2, x3].

Figure 2.12: A Decision Tree performing 3 bit AND operation
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Random forest

Random Forest (RF) consists of a large number of individual decision trees that operate as
an ensemble [81]. Each tree is constructed only with a random subset of available features
(typically the square root of the total number of features or even only one feature [82]). As
shown in figure 2.13, the prediction is based on the majority of votes from each of the decision
trees. The class which gets more votes becomes the winner of the model’s prediction. Hence,
the procedure is relatively robust against outliers and noise and can easily be parallelised.
Random forest is used to identify the most important features of the training dataset. The
larger number of decision trees leads to a more accurate result. The advantage of the Random
forest is that it avoids overfitting.

Figure 2.13: Random Forest ensemble classification

K-Nearest Neighbours

K-nearest neighbours(kNN) is a simple non-parametric algorithm. It stores all available cases
and classifies new cases based on similarity measures such as distance functions. It does
not make any assumptions on the underlying data distribution. The non-parametric property
of kNN can be helpful in classification problems; since most of the times, data does not follow
the theoretical hypotheses. Therefore, kNN could be one of the first choices for a classification
study when there is little or no prior knowledge about the distribution of the data. In the kNN
algorithm, an object is classified by the majority vote of its neighbours with the object being
assigned to the class most common among its k nearest neighbours (k is a positive integer,
typically small). If k = 1, then the object is assigned to the class of its nearest neighbour. Figure
2.14 illustrates how kNN algorithm works [83].
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Figure 2.14: kNN classification with four classes, {C1,C2,C3,C4}

Support Vector Machine

Support Vector Machine (SVM) is one of the most popular supervised learning algorithms. The
support vector machine algorithm aims to find a hyperplane in an N-dimensional space (N is
the number of features) that distinctly classifies the data points. Many possible hyperplanes
could be chosen to separate the two classes of data points. The objective is to find a plane
that has the maximum margin, that is the maximum distance between the data points of both
classes. This is illustrated in Figure 2.15a. Maximising the margin distance provides some
reinforcement so that future data points can be classified with more confidence. In the SVM
classifier, it is easy to have a linear hyperplane between these two classes. However, another
question which arises is whether we should add this feature manually to have a hyperplane.
The answer is negative, SVM algorithms have a technique called the kernel trick. The SVM
kernel is a function that takes low dimensional input space and transforms it into a higher-
dimensional space, i.e. it converts a not separable problem into a separable problem. It is
mostly useful in non-linear separation problems. Figure 2.15b shows a nonlinear hyper-plane
used to separate to class of data.

(a) Linear SVM (b) Non-linear SVM

Figure 2.15: Linear and non-linear Support Vector Machine

2.5.2 Artificial neural networks and deep learning
Artificial neural networks (ANN) are modelled on the parallel architecture of animal brains, not
necessarily human ones [84]. A neuron is a cell that can transmit and process electrochemical
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signals. Each neuron is connected with other neurons to create a network. Within the human
body, there are a large number of neurons interconnected with each other. Figure 2.16a shows
the structure of a neuron which consists of an input (known as the dendrite), a cell body, and an
output (called the axon). The outputs of the neurons are connected to inputs of other neurons
and develop a network. A neuron is activated when an electrochemical signal is received by
a dendrite. The cell body resolves the weight of the signal; if a threshold is passed, the signal
will continue to pass through to the axon. An axon functions as an electric cable, transmitting
the signal to the next stage.

The basis of ANN is the perceptron. A Perceptron operates on numbers. When a number
or a vector of numbers is passed to the input, it feeds a function that calculates the outgo-
ing value. This function named the activation function. A perceptron node can accept any
number of inputs [84]. As illustrated in Figure 2.16b, it receives a vector of input features
�X = [x1, . . . , xn] and performs a linear combination using the weight values w1, . . . ,wn of its
input connections and a bias value w0. These weights are adjusted according to the training
dataset when the perceptron is in learning mode. The result is then passed to a threshold
activation function f (for example, the Hyperbolic tangent f (x) = tanh(x))) to calculate the
output value ỹ. The most common activation functions are Sigmoid, Hyperbolic tangent, and
ReLU (Rectifier Linear Unit) [84].

(a) A human neuron
(b) A perceptron

Figure 2.16: Linear and non-linear Support Vector Machine

Single-layer perceptrons are only able to represent functions whose underlying data set
is linear separable such as Boolean functions [5]. Multiple layers of perceptrons are stacked
together and form a network called multi-layer perceptrons (MLPs). MLPs extend the applica-
tion of neural networks to more complex problems. An MLP consists of three distinct types of
layers, as shown in Figure 2.17. The input layer receives input features (raw data). The num-
ber of perceptrons in an input layer corresponds to the number of input features. All outputs
of the input layer are connected to each perceptron of the following hidden layer. The number
of hidden layers and perceptrons per each depends on the model design. Usually, too many
hidden layers can lead to overfitting and underestimating the number of hidden layers may re-
sult in underfitting. The number of perceptrons in the output layer corresponds to the classes
of the problem to solve.
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Figure 2.17: Multi-layer perceptrons including input, output, and hidden layers.

Deep-learning

Deep learning (DL) is a subset of machine learning methods based on artificial neural net-
works. Deep learning architectures are mainly categorised in three classes.

The fully connected networks are the basic type of neural networks. The major advantage
of fully connected networks is that they are “structure-agnostic”. That is, no special assump-
tions need to be made about the input data. A fully connected network can be described as
a function f : Rn → Rm such that any of m outputs depends on the n inputs. The simplest
form of a fully connected neural network is the perceptron [85].

The features extractor networks are often used in image recognition and classification. The
goal of these networks is to learn higher-levels and deep features of data that are most useful
for classification or target detection. This can be done via computing a convolution between the
data and some filters followed by a down-sampling operation to keep only the most informative
features. A typical example of features extractor networks is the Convolutional Neural Network
(CNN) [86]. In recent studies, one-dimensional CNNs (1D-CNN) have demonstrated superior
performance on the applications which have limited labelled data and high signal variations
acquired from different sources [87]. Some examples of these applications are the interpre-
tation of biological signals like ECG (Electro-Cardio-Gram), civil, mechanical or aerospace
structures monitoring, and high-power circuitry, power engines or motors monitoring and fault
finding). The 1D-CNN is a powerful algorithm for deriving features from a fixed-length seg-
ment of the overall dataset, where the location of the feature is in the segment is not important.
Typically, CNN is composed of alternating layers of

1. locally connected convolutional filters and

2. down-sampling, (known as pooling), followed by

3. a fully connected layer that works as a classifier (usually a SoftMax layer).

The time dependency networks are a set of neural networks that differ from the other ones
in their ability to process information shared over several time-steps. In a traditional neural
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network, it is assumed that all inputs and outputs are mutually independent. However, for
various applications, this assumption is not practical for many applications. The core idea of
time dependency networks is that each neuron will infer its output from both the current input
and the output of previous neurons. This feature is quite interesting in side-channel data anal-
ysis since the leakage is spread over several time samples. The Recurrent Neural Networks
(RNN) [88] and especially the Long-Short-Term-Memory units (LSTM) [89] are samples of time
dependency neural networks.

2.5.3 Related works in the application of deep learning for side-channel
attacks

The recent works on side-channel data analysis using DL techniques are categorised as fol-
lows.

1. Defeating SCA protected and unprotected symmetric cryptographic implementations. In
[90], Maghrebi et al. demonstrated that the Deep-Learning based SCA (DL-SCA) is very
efficient to break both unprotected and masked AES implementations. The authors ex-
perienced several types of DL models (MLP, CNN, LSTM, and stacked Auto-Encoders
[91]). Their results proved the advantage of the Deep-learning technique on the well-
known template attacks. Later, Cagli et al. proposed an end-to-end profiling approach
based on CNN that is efficient in the presence of trace misalignment [92]. This prop-
erty helps to streamline the evaluation process as no pre-processing of the traces is
needed. Prouff et al. [93] revisited different methodologies to select the most suitable
hyper-parameters, which are the parameters that define a DL configuration. For exam-
ple, the number of layers, the number of epochs, etc. More interestingly, the authors
published an open database, named ASCAD, that contains electromagnetic traces of
a masked AES implementation along with the source code of the used neural network
architectures.

2. Defeating secure asymmetric cryptographic implementations.
In [94], the authors presented profiling SCA against a secure implementation of the
RSA algorithm. The target implementation was protected with classical side-channel
countermeasures (blinding of the message, blinding of the exponent and blinding of
the modulus). Through their practical experiments, the authors pointed out the high
potential of deep learning attacks – in particular the CNN models–against secure RSA
implementations.

3. Using the DL-SCA in a non-profiling context. Timon utilised Prouff’s [93] ASCAD database
to devise first non-profiled side-channel analysis using deep-learning algorithms. His
idea was to produce hypothetical intermediate values over all key hypotheses. For each
guessed key using the calculated intermediates as labels, a deep-learning training was
performed. If the key guess is correct, then training metrics (i.e. accuracy and loss)
are significantly better than the trials where the key guess is wrong. Furthermore, he
demonstrated that data augmentation proposed in [92], can be used in combination with
MLPs to improve the performance of the analysis.

4. Using DL as a Point of Interest (PoI) selection method. In several works, researchers
used DL as a leakage assessment method [79, 95, 96]. Masure et. al. [96] suggested
that the gradient of the loss function can be analysed during the training. The application
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of the well-known attribution methods used in [79] and the exploitation of the sensitiv-
ity analysis techniques in [95]. The results have shown that Deep-learning methods
based on PoI selection and state-of-the-art leakage assessment methods have similar
performance.



3
RNS Arithmetic Hardware

3.1 Introduction

In this chapter, we first discuss an optimal RNS moduli selection with an aim to accelerate the
hardware. Then, we introduce improved hardware implementations for RNS addition, subtrac-
tion, and multiplication. In the following, we propose an improvement of the RNS Montgomery
modular reduction algorithm and introduce a new RNS modular reduction algorithm based on
the sum of residues. Finally, we provide hardware implementation variants and performance
parameters.

3.2 Choosing RNS bases for cryptography applications

Modern public-key cryptography algorithms rely on large integer arithmetic. It is essential to
use an RNS with at least double the bit-length dynamic range of the finite field characteristic.
In this research, we work on 256-bit prime fields. Thus, the dynamic range of the RNS base
must be at least 512 bits. In practice, we need a larger dynamic range due to

1. Calculations are in range [−p, p], that is mapped to the range [0, 2p] in RNS.

2. In the Point doubling equations (2.31) the term (8Y1
4) is at most 515 bits before perform-

ing a reduction.

3. As discussed in Subsection 2.1.2, the effective dynamic range is reduced by the bound-
ary condition (2.17).

Later, in this chapter, we will show that the minimum required dynamic range to be on the safe
side is 520 bits. There are two approaches to choose the moduli set suitable for cryptographic
applications. The first solution is to choose more RNS channels with smaller bit size co-primes.
As an example, in [97], forty RNS channels of 14-bit co-primes are used to build a 560-bit
dynamic range. The first impression is that the hardware implementation is smaller and more
efficient in this case. However, it is not easy to find forty optimal same bit-size co-primes, and it
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Table 3.1: 66-bit co-primes of moduli set B.

266 − 1 266 − 22 − 1 266 − 23 − 1 266 − 24 − 1

266 − 25 − 1 266 − 26 − 1 266 − 28 − 1 266 − 29 − 1

(a) Modular adder architecture (b) Modified modular adder architecture

Figure 3.1: RNS adder design adder architectures

is inevitable to use non-optimal RNS bases. Further, co-primes with different bit-sizes lead to
inefficient hardware implementations. As the experience in [97], [98] showed, huge hardware
resources are required to implement this configuration. The second approach, that is most
common in the literature, is using fewer RNS channels with larger bit-size co-primes. For 256-
bit prime field arithmetic, eight channels of bit-length greater than 64 is the most common RNS
selection in the literature. Bajard et al. in [99] studied the properties of optimal RNS bases in
general form mi = 2n − 2ti ± 1, ti < n

2 for applications in cryptography. In this research, we
used a moduli set B with eight, 66-bit pseudo-Mersenne co-primes in the form of 266 −2ti −1,
as shown in Table 3.1. This moduli set provides a 528-bit dynamic range that is suitable for
our 256-bit prime field ECC arithmetic. In the following, we introduce efficient RNS hardware
arithmetic units used in this thesis to build the RNS ECC co-processor.

3.3 RNS Addition

This architecture is fast, since the two CPA adders operate in parallel. However, it costs one
carry-save adder (CSA) and two carry-propagate adders (CPA). Figure 3.2 depicts one-bit full
adder and one-bit carry-save adder at the gate level. Assuming that all gates have the same
area, implementation an n bit RNS adder requires 17n gates and one n-bit 2:1 multiplexer.
Using the optimal moduli of Table 3.1, it is possible to reduce the logic efficiently and improve
the speed at the same time. All the bits of an integer in the form mi = 2n − 2ti − 1 is one
except the bit ti. The inverse of mi denoted by mi is 2ti . Instead of calculating or saving 2’s
complement of mi, it is preferred to use its inverse and set the carry-in of the CPA adder to
one. This is shown in Figure 3.1b. Since the XOR of any logic to ‘1’ is the inverse of the logic
and the XOR of a logic to ‘0’ is the logic itself, the CSA adder logic is using Boolean reduction
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(a) Full adder architecture (b) CSA adder architecture

Figure 3.2: Architecture of CPA and CSA adders at gate level.

equations in (3.1)

a ⊕ b ⊕ ‘0’ =a ⊕ b
(a ∧ b) ∨ (a ∧ ‘0’) ∨ (b ∧ ‘0’) =a ∧ b

a ⊕ b ⊕ ‘1’ =a � b
(a ∧ b) ∨ (a ∧ ‘1’) ∨ (b ∧ ‘1’) =a ∨ b,

(3.1)

the output of the CSA adder for channel i is reduced to

Si = (Ai
n−1 ⊕ Bi

n−1)| |(Ai
n−2 ⊕ Bi

n−2) · · · | |(Ai
ti � Bi

ti ) · · · | |(Ai
0 ⊕ Bi

0),
Ci = (Ai

n−1 ∧ Bi
n−1)| |(Ai

n−2 ∧ Bi
n−2) · · · | |(Ai

ti ∨ Bi
ti ) · · · | |(Ai

0 ∧ Bi
0).

(3.2)

This implementation requires only 2n gates per channel for CSA. Thus, the RNS adder imple-
mented using 12n gates per channel. The inputs of the right CPA adder in Figure 3.1b are Si
and Ci. The bit Ci

0 is set to one.

3.4 RNS Subtraction
RNS subtraction 〈Ai − Bi〉mi

is basically addition of Ai to the additive inverse of Bi that is,
(mi − Bi). The 2’complement of Bi, is the increment of its inverse. Thus, −Bi can be replaced
with Bi + 1. The increment one is implemented by setting adder’s carry-in to ‘1’. Our pro-
posed hardware for the implementation of RNS subtraction is shown in Figure 3.3a. Similar
to the RNS addition circuit, the input carry bits of CSA adders are set to 1. The values of
Ai + Bi and Ai + Bi + mi are calculated in parallel and the correct result is chosen by a 2:1 mul-
tiplexer. In our selected moduli set B, all the bits of mi are ones, except the ti-th bit. Therefore,

SRi = (Ai
n−1 ⊕ Bi

n−1)| |(Ai
n−2 ⊕ Bi

n−2) · · · | |(Ai
ti � Bi

ti ) · · · | |(Ai
0 ⊕ Bi

0),
SLi = (Ai

n−1 � Bi
n−1)| |(Ai

n−2 � Bi
n−2) · · · | |(Ai

ti � Bi
ti ) · · · | |(Ai

0 � Bi
0).

(3.3)

Similarly,

CRi = (Ai
n−1 ∨ Bi

n−1)| |(Ai
n−2 ∨ Bi

n−2) · · · | |(Ai
ti ∧ Bi

ti ) · · · | |(Ai
0 ∨ Bi

0),

CLi = (Ai
n−1 ∧ Bi

n−1)| |(Ai
n−2 ∧ Bi

n−2) · · · | |(Ai
ti ∧ Bi

ti ) · · · | |(Ai
0 ∧ Bi

0).
(3.4)

Comparing (3.2) and (3.3), it is observed that SRi is same as Si and is the bitwise inverse of
SLi except for the ti-th bit, that is same in all Si, SRi, SLi. The hardware implementation of
RNS add/subtract is more efficient using this shared logic.
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The RNS is not a positional numbering system. Sign detection is a costly operation in
RNS. Therefore, the sign detection in RNS subtraction should be avoided. In the following, we
further explain our method to avoid sign detection. Consider the subtraction S = A − B. As A
and B are representing numbers not greater than 515 bits in our RNS ECC core design, we
add a factor of p to A to ensure that the result of the subtraction is always a positive integer.
The coefficient κ must be chosen such that the result κ · p is greater than 515 bits. Here, we
chose κ = 24 · p which results in the 516-bit integer κ · p. It is required to perform a modular
reduction after each subtraction to get the correct result. That is,

S = (24 · p2 + A − B) mod p = (A − B) mod p. (3.5)

Figure 3.3b illustrates the implementation of an RNS modular subtraction unit.

(a) RNS subtraction block diagram (b) Modulus-p RNS subtraction block diagram

Figure 3.3: Subtraction in RNS

The implementation results of RNS adder and field p subtractor on different Xilinx FPGAs
are shown in Table 3.2.

Table 3.2: Area and Delay of RNS channel addition/subtraction on different FPGAs

Unit Device Max. Logic delay AREA
(ns) LUTs / DSP / FF

RNS Add ARTIX 7 6.017 196 / 0 / 0

RNS field p subtract ARTIX 7 7.61 331 / 0 / 0

RNS Add VIRTEX 7 4.931 193 / 0 / 0

RNS field p subtract VIRTEX 7 4.225 330 / 0 / 0

RNS Add KINTEX 7 4.202 199 / 0 / 0

RNS field p Subtract KINTEX 7 4.393 331 / 0 / 0

RNS Add VIRTEX UltraScale+ 2.139 199 / 0 / 0

RNS field p Subtract VIRTEX UltraScale+ 3.910 330 / 0 / 0

RNS Add KINTEX UltraScale+ 2.018 204 / 0 / 0

RNS field p Subtract KINTEX UltraScale+ 3.842 330 / 0 / 0
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3.5 RNS Multiplication
When computing modular additions and subtractions in Section 3.3 and 3.4, we assumed that
both operands A and B are n-bit integers within the range [0,m − 1]. The result can be kept
within the range by simply adding or subtracting the modulus m. Modular multiplication of two
n-bit numbers, however, is the remainder of the product X = A · B divided by the modulus m.
This operation is also called the reduction of X modulo m.

3.5.1 Modular reduction
Barrett proposed a modular multiplication algorithm [11] in 1984. A modification on the Barrett
method was suggested by Cao [100] in 2014 which utilised base 2 to make the algorithm more
suitable for the hardware implementation. Suppose X is a 2n-bit integer to calculate r = X
mod m, where m is an n-bit modulus. The quotient q can be written as

q =
⌊

X
m

⌋
=

⌊
X
2n ×

22n

m

2n

⌋
. (3.6)

The estimate of the quotient q, q̂ is defined as

q̂ =

⎢⎢⎢⎢⎢⎢⎣
⌊ X

2n
⌋
×

⌊
22n

m

⌋
2n

⎥⎥⎥⎥⎥⎥⎦
. (3.7)

The term μ =
⌊

22n

m

⌋
is constant and can be pre-computed and saved in a look up table. We

define ε = X
2n −

⌊ X
2n

⌋
and τ = 22n

m −
⌊

22n

m

⌋
, 0 ≤ τ, ε < 1. From (3.7) it can be observed that

q̂ ≤ q =

⎢⎢⎢⎢⎢⎢⎣
( ⌊ X

2n
⌋

+ ε
)
×

( ⌊
22n

m

⌋
+ τ

)
2n

⎥⎥⎥⎥⎥⎥⎦
. (3.8)

From the definition of ε and τ, it is concluded that

q̂ ≤ q ≤

⎢⎢⎢⎢⎢⎢⎣
⌊ X

2n
⌋
×

⌊
22n

m

⌋
2n +

⌊ X
2n

⌋
+

⌊
22n

m

⌋
+ 1

2n

⎥⎥⎥⎥⎥⎥⎦
. (3.9)

The term on the left-hand side of the plus sign in (3.9) is q̂ and the maximum value of the term
on the right-hand side is 3. In conclusion, the value of q falls between q̂ and q̂ + 3. As both q
and q̂ are integers, then

0 ≤ q̂ ≤ q ≤ q̂ + 2. (3.10)

The remainders r and r̂ are

r = X − qm
r̂ = X − q̂m

(3.11)

From (3.10) and (3.11) it is deduced that r = r̂ − λm, λ ∈ {0, 1, 2}.
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Figure 3.4: Implementation of a Barrett reduction X mod m

Consequently, hardware implementation of Barrett modular reduction consists of two n×n
multipliers, a comparator, and n-bit memory to save constant μ. Figure 3.4 shows the block
diagram of the Barrett modular reduction hardware implementation. The long data-path from
the input to the output limits the speed of the hardware. The modular reduction is the most
critical operation in cryptographic hardware design. The performance of the reduction unit
directly impacts the overall performance of the system. Barrett reduction is the only choice for
the modular reduction for a non-optimal modulus.

Implementation of the modular reduction using optimal moduli in general form mi = 2n −
2ti − 1, ti < n

2 is very fast and low-cost on hardware [101]. Suppose X is a 2n-bit integer
(0 ≤ X < 22n). It can be broken up into two n-bit most significant and least significant integers
denoted as XH and XL , respectively. In other terms, X = XH2n + XL .

Since 〈2n〉(2n−2ti−1) = 2ti + 1, then

〈XH2n + XL〉(2n−2ti−1) = 〈〈XH2ti〉(2n−2ti−1) + XH + XL〉(2n−2ti−1). (3.12)

The term XH2ti has (n + ti) bits and can be re-written as XH2ti = XHHi2n + XHLi .
Let (xn−1 . . . x0), xi ∈ {0, 1} be the binary representation of XH . Then we introduce XHHi as
the most significant ti bits of XH , i.e. (xn−1 . . . xn−ti−2) and XHLi as the rest least significant
bits (xn−ti−1 . . . x0) left shifted ti times, i.e. XHLi = (xn−ti−1 . . . x0 0 · · · 0︸︷︷︸

ti zeros

).

Similarly,
〈XHHi2

n〉(2n−2ti−1) = 〈XHHi2
ti + XHHi〉(2n−2ti−1). (3.13)

Since XHHi is ti bits long, the term XHHi2ti + XHHi can be rewritten as the concatenation of
XHHi with itself, i.e. XHHi2ti + XHHi = XHHi | |XHHi . So, the final result is

〈X〉(2n−2ti−1) = 〈XHHi | |XHHi + XHLi + XH + XL〉(2n−2ti−1). (3.14)

The modular reduction of 0 ≤ X ≤ 22n can be calculated at the cost of one 4-input n-bit CSA
(Carry Save Adder). Compared to Barrett reduction method there is a considerable saving in
hardware resources and timing at the same time.

3.5.2 Implementation of RNS Multipliers

RNS multiplication is implemented by a simple unsigned 66-bit multiplier for each modulus
channel. The 132-bit result then will be reduced to 66 bits using efficient hardware reduction.
The Xilinx series 7 FPGAs built-in DSP48E modules that include embedded 18×25-bit signed
multipliers as depicted in Figure 2.7. To implement a 66 × 66-bit unsigned multiplication, it
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Figure 3.5: Implementation of (3.17) using 4 DSP48E

is required to use Karatsuba-Ofman algorithm [102]. In its original form, Karatsuba-Ofman
algorithm splits two 2k-bit integers X and Y into k-bit integers X1, X0, Y1, and Y0 such that

X = 2k X1 + X0,

Y = 2kY1 + Y0.
(3.15)

Then, the multiplication XY is calculated by

XY = 22k Z2 + 2k Z1 + Z0,

Z2 = X1Y1,

Z1 = X1Y0 + X0Y1,

Z0 = X0Y0,

(3.16)

which requires four multiplication. It can be done in parallel using four k × k-bit multiplier
resources in hardware. For example, if X and Y are two 34-bit integers then

X = 217X1 + X0,

Y = 217Y1 + Y0,

XY = 234X1Y1 + 217(X1Y0 + X0Y1) + X0Y0.

(3.17)

This multiplication can be done using four DSP48E units as shown in Figure 3.5. The 25×18-
bit DSP48E multipliers are configured as 17 × 17-bit unsigned multipliers. The built-in adder
and 17-bit shift right are used to implement shift and add the products. It is possible to reduce
the number of multiplications to three by replacing the Z1 to

Z1 = (X0 − X1)(Y1 − Y0) + Z0 + Z2. (3.18)

However, Z1 must be calculated when the results of Z0 and Z2 are ready.
It is possible to decompose larger integers into more splits. For instance, if X and Y are

4k-bit integers, then splitting X and Y into four k-bit chunks are

X = 23k X3 + 22k X2 + 2k X1 + X0,

Y = 23kY3 + 22kY2 + 2kY1 + Y0,
(3.19)
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and multiplication is computed using

XY = 26k X3Y3

+ 25k(X2Y3 + X3Y2)
+ 24k(X3Y1 + X2Y2 + X1Y3)
+ 23k(X3Y0 + X2Y1 + X1Y2 + X0Y3)
+ 22k(X2Y0 + X1Y1 + X0Y2)
+ 2k(X1Y0 + X0Y1)
+ X0Y0.

(3.20)

This multiplication needs 16 k × k-bit multipliers. Our 66-bit RNS channels integers can be
split into three 17-bit and one 15-bit integer and multiplication can be realised by 16 DSP48E
modules. If we compute the products

P33 = X3Y3

P22 = X2Y2

P11 = X1Y1

P00 = X0Y0

P32 = (X3 − X2)(Y3 − Y2)
P31 = (X3 − X1)(Y3 − Y1)
P30 = (X3 − X0)(Y3 − Y0)
P21 = (X2 − X1)(Y2 − Y1)
P20 = (X2 − X0)(Y2 − Y0)
P10 = (X1 − X0)(Y1 − Y0)
S32 = (P33 + P22)
S10 = (P11 + P00),

(3.21)

then, it is possible to do the multiplication using only ten multipliers as

XY = 26k P33

+ 25k(S32 − P32)
+ 24k(S32 + P11 − P31)
+ 23k(S32 + S10P30 − P21)
+ 22k(S10 + P22 − P20)
+ 2k(S10 − P10)
+ P00.

(3.22)

In the case of our 66-bit RNS channels multiplication, either the multiplicand or the multiplier
can be split into 24-bit integers and the other into 17-bit integers.

X = 251X3 + 234X2 + 217X1 + X0,

Y = 248Y2 + 224Y1 + Y0

XY = 299X3Y2 + 282X2Y2 + 265X1Y2 + 248X0Y2

+ 275X3Y1 + 258X2Y1 + 241X1Y1 + 224X0Y1

+ 251X3Y0 + 234X2Y0 + 217X1Y0 + X0Y0.

(3.23)
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The 66 × 66-bit multiplication can be performed using twelve 18 × 25-bit DSP multipliers.
However, extra shifts and additions are required to obtain the final result, which costs extra
FPGA LUTs to implement the multiplier and increases the overall latency. The results of Two
RNS channel multiplier implementations utilising 12 and 16 DSP slices on different FPGAs
are presented in Table 3.3. The 66-bit RNS channel multiplier with 16 DSP48E slices shows
the lowest latency. The modular multiplication is the most critical unit of the design and greatly
impacts the performance of the whole system. Thus, we use the modular multiplication design
with 16 DSP units for all implementations reported in this work.

Table 3.3: Implementation of different architectures of RNS channel multiplication

Device Max. Logic delay Area
(ns) LUTs / DSP / FF

ARTIX 7 16.206 513 / 16 / 0

ARTIX 7 17.420 1658/ 12 / 0

VIRTEX 7 11.525 513 / 16 / 0

VIRTEX 7 12.418 1658 / 12 / 0

KINTEX 7 11.964 513 / 16 / 0

KINTEX 7 12.013 1658 / 12 / 0

VIRTEX UltraScale+ 5.910 513 / 16 / 0

VIRTEX UltraScale+ 6.510 1661 / 12 / 0

KINTEX UltraScale+ 5.789 513 / 16 / 0

KINTEX UltraScale+ 6.489 1661 / 12 / 0

3.6 Improving RNS Montgomery modular reduction
The RNS Montgomery modular reduction (MMR) introduced in Section 2.1.2 is the basic al-
gorithm to perform a modular reduction operation in the context of RNS. Some variants of the
RNS MMR algorithm have been introduced in the literature. Guillermin proposed a method
in [103] to reduce the number of multiplications in the basic MMR algorithm by merging the
constants where possible. For an N-channel residue number system, Guillerman’s algorithm
needs N2+3N

2 multiplications in comparison to the basic RNS MMR that needs N2+5N
2 multi-

plications. Applying a special set of RNS bases called “quadratic residues”, Kawamura et
al. [104] proposed two variants of the RNS Montgomery reduction algorithm, in which the
total number of multiplications is slashed to N2+N

2 . The drawback of their algorithms is the
need for special moduli set and more constants for calculations; that requires a bigger ROM
in hardware implementation. Similar to Guillermin’s work [103], we tried to reduce the number
of multiplications by merging the constants in basic RNS MMR Algorithm 5. Our proposed
algorithm can be used with any RNS bases while the number of multipliers is the same as
Kawamura’s algorithms.

For an N-channel RNS, we proceeded to split the moduli set into half (L = N
2 ). In our

case, the RNS moduli set B is split into two subsets K : {k1, . . . , k4} = {m1, . . . ,m4}, and
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Q : {q1, . . . , q4} = {m5, . . . ,m8}, such that

K =
L∏

i=1
ki, Ki =

K
ki
, Ki

−1 = Ki mod ki,

Q =
L∏

i=1
qi, Qi =

Q
qi
, Qi

−1 = Qi mod qi .

(3.24)

The RNS of integer X in base K is denoted as XK and in base Q as XQ. That is, XK =
{〈X〉k1, . . . , 〈X〉kL } and XQ = {〈X〉q1, . . . , 〈X〉qL }.
The RNS of X in both bases, that is, B = K∪Q, is denoted as XK∪Q. We introduce constants

PQ = {〈−p−1〉q1, . . . , 〈−p−1〉qL },

ΓQ = {〈Q1
−1 · 〈−p−1〉q1〉q1

, . . . ,QL
−1 · 〈〈−p−1〉qL },

θi j = Qi mod k j ∀i, j ∈ {1, . . . , L},

Θi j = Q−1
ki · pki · θi j mod k j ∀i, j ∈ {1, . . . , L},

Ωi j = Ki mod qj ∀i, j ∈ {1, . . . , L},

RK∪Q = Q−1
K ∪ ΓQ .

(3.25)

Then, we define SK∪Q = XK∪Q · RK∪Q. In other terms,

SK∪Q = {sk1, . . . , skL, sq1, . . . , sqL }
= {〈Xk1Q

−1
k1〉k1
, . . . 〈XkLQ−1

kL〉kL
, 〈Xq1Γq1〉q1

, . . . , 〈XqLΓqL〉qL
}.

(3.26)

Our proposed RNS Montgomery reduction algorithm is shown in Algorithm 15. The calcu-
lation of SK∪Q in line 1 of the algorithm is performed in parallel with a full range RNS multiplier.
The set SK∪Q can be obtained from moving up the multiplication by the constant Q−1

K in line
4 of Algorithm 5 and distribute it to lines 1 and 3. The multiplications by −p−1

Q and pK are
merged to the base exchange Q → K coefficients as well. The result in base K, i.e. ZK is
obtained at line 3. A K → Q base exchange is performed at lines 4, 5, and 6 to retrieve ZQ
from ZK . Figure 3.6a illustrates the proposed RNS Montgomery reduction flow diagram. The
“Extended Base Exchange” in Figure 3.6a refers to the modified coefficients of the original
base exchange algorithm. Compare to the basic RNS MMR shown in Figure 2.1, three RNS
multiplication stages are removed in the proposed method. The constant RK∪Q is compara-
ble to K2 in Kawamura’s dQ-RNS and sQ-RNS algorithms [104], except that we do not apply
any conditions on R. That is, unlike Kawamura’s algorithms, our RNS base is not required to
be in any specific form. Analogous to [104], if we take out SK∪Q from Algorithm 15, the total
number of multiplications will be N2+N

2 , which is equal to the multiplication counts in Kawa-
mura’s dQ-RNS and sQ-RNS algorithms. This modification is shown in Algorithm 16. Since
the value of α in lines 2 and 5 of Algorithm 15 is in the range [0, L − 1], instead of performing
two extra multiplications, we have pre-computed all possible values of −αpK and −αKQ and
saved them in the ROM. The required number of memory words to save these constants is
2(L − 1). Table 3.4 compares our proposed MMR algorithm with the algorithms proposed by
Guillermin [103], Gardino [105], and Kawamura [104] in terms of the number of multipliers and
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the memory words for saving constants. The number of memory words required for our pro-
posed algorithm is 4L2 − L. For N ≤ 12, this is less memory compared to other algorithms.
We assumed that the input of the algorithm is (3.26), which corresponds to K2x for sQ-RNS
and dQ-RNS algorithms in [104].

Algorithm 15: Optimised RNS Montgomery algorithm
Input: XK∪Q
Output: ZK∪Q = {X .Q−1 mod p}K∪Q
Constants: ΓQ, Ki

−1, Θi j , Ωi j ∀i, j ∈ {1, . . . , L}, and (−αp)K , (−αK)Q
∀α ∈ {1, . . . , L − 1}.

1

⎡⎢⎢⎢⎢⎢⎣
sq1
...

sqL

⎤⎥⎥⎥⎥⎥⎦
←

⎡⎢⎢⎢⎢⎢⎣
Γq1 ... 0

... Γqi
...

0 ... ΓqL

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
Xq1

...
XqL

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
sk1
...

skL

⎤⎥⎥⎥⎥⎥⎦
←

⎡⎢⎢⎢⎢⎢⎣
Q−1

k1 ... 0
... Q−1

ki
...

0 . . . Q−1
kL

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
Xq1

...
XqL

⎤⎥⎥⎥⎥⎥⎦
.

2 α←
⌊

1
2q

(
L∑

i=1

⌊
sqi

2n−q

⌋
+ 2qΔ

)⌋
.

3

⎡⎢⎢⎢⎢⎢⎣
Zk1
...

ZkL

⎤⎥⎥⎥⎥⎥⎦
←

⎡⎢⎢⎢⎢⎢⎣
Θ11 ... Θ1L

... Θi j
...

ΘL1 ... ΘLL

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
sq1
...

sqL

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣
(−αp)k1

...
(−αp)kL

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣
sk1
...

skL

⎤⎥⎥⎥⎥⎥⎦
.

4

⎡⎢⎢⎢⎢⎢⎣
tk1
...

tkL

⎤⎥⎥⎥⎥⎥⎦
←

⎡⎢⎢⎢⎢⎢⎣
K1

−1 ... 0
... Ki

−1 ...
0 ... KL

−1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
Zk1
...

ZkL

⎤⎥⎥⎥⎥⎥⎦
.

5 α←
⌊

1
2q

(
L∑

i=1

⌊
tki

2n−q

⌋
+ 2qΔ

)⌋
.

6

⎡⎢⎢⎢⎢⎢⎣
Zq1
...

ZqL

⎤⎥⎥⎥⎥⎥⎦
←

⎡⎢⎢⎢⎢⎢⎣
Ω11 ... Ω1L

... Ωi j
...

ΩL1 ... ΩLL

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
tk1
...

tkL

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣
−αKq1

...
−αKqL

⎤⎥⎥⎥⎥⎥⎦
.

3.6.1 Hardware implementation of the Modified Montgomery reduction
algorithm

The proposed RTL architecture of Algorithm 16 is shown in Figure 3.8. It contains a sequencer
state machine that provides control signals for the registers and multiplexers. The RNS mul-
tiplier uses 16 DSP slices per channel. The RNS adder uses the architecture in Figure 3.1b.
The reduction to base K or Q is controlled by bit C0 which also controls the output contents of
ROM B by setting the most significant bit of the address bus. The constants Θi j , Ki

−1, and Ωi j
are saved in ROM A. The state machine controls the ROM A address bus ADR. The values of
(−αp)K and (−αK)Q are saved in ROM B. The two-bit output of the α calculator is connected
to the lower address bus of ROM B. The RNS adder and register Q4 form an accumulator.
The register Q3 is a one stage pipeline for the RNS multiplier output. Registers Q1 and Q2 are
used to hold data. The value of α is calculated by a simple 4-input 4-bit CSA adder depicted
in figure 3.7. For both bases K and Q the Δ = 2−4 and q = 24. Thus, 2qΔ = 1. Addition to 24
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Algorithm 16: Modification of Algorithm 15
Input: SK∪Q = XK∪Q · RK∪Q.
Output: ZK∪Q = {X .Q−1 mod p}K∪Q.
Constants: Ki

−1, Θi j , Ωi j ∀i, j ∈ {1, ..., L}, and (−αp)K , (−αK)Q ∀α ∈ {1, ..., L − 1}.

1 α←
⌊

1
2q

(
L∑

i=1

⌊
sqi

2n−q

⌋
+ 2qΔ

)⌋
.

2

⎡⎢⎢⎢⎢⎢⎣
Zk1
...

ZkL

⎤⎥⎥⎥⎥⎥⎦
←

⎡⎢⎢⎢⎢⎢⎣
Θ11 ... Θ1L

... Θi j
...

ΘL1 ... ΘLL

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
sq1
...

sqL

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣
(−αp)k1

...
(−αp)kL

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣
sk1
...

skL

⎤⎥⎥⎥⎥⎥⎦
.

3

⎡⎢⎢⎢⎢⎢⎣
tk1
...

tkL

⎤⎥⎥⎥⎥⎥⎦
←

⎡⎢⎢⎢⎢⎢⎣
K1

−1 ... 0
... Ki

−1 ...
0 ... KL

−1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
Zk1
...

ZkL

⎤⎥⎥⎥⎥⎥⎦
.

4 α←
⌊

1
2q

(
L∑

i=1

⌊
tki

2n−q

⌋
+ 2qΔ

)⌋
.

5

⎡⎢⎢⎢⎢⎢⎣
Zq1
...

ZqL

⎤⎥⎥⎥⎥⎥⎦
←

⎡⎢⎢⎢⎢⎢⎣
Ω11 ... Ω1L

... Ωi j
...

ΩL1 ... ΩLL

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
tk1
...

tkL

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣
−αKq1

...
−αKqL

⎤⎥⎥⎥⎥⎥⎦
.

Table 3.4: Comparing proposed MMR algorithm performance with other works

Algorithm RNS Multipliers Required Memory RNS Multipliers / Required memory

for N = 8

Proposed 2L2 + L 4L2 − L 33 / 60

[104] sQ 2L2 + L 2L2 + 12L + 1 33 / 81

[104] dQ 2L2 + L 2L2 + 13L + 1 33 / 85

[105] 2L2 + 4L 2L2 + 11L 36 / 76

[103] 2L2 + 5L 2L2 + 11L 37 / 76

Table 3.5: Hardware implementation of the proposed RNS Montgomery reduction

Algorithm K-LUT / DSP / FF Max. frequency Clock cycles

Proposed 3921 / 64/ 1114 188.67 20

[104] sQ 4076 / 84 / 2104 139.5 15

[104] dQ 4247 / 84 / 2329 142.7 18
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(a) Optimised RNS Montgomery reduction al-
gorithm.

(b) Modified RNS Montgomery reduction al-
gorithm.

Figure 3.6: Flow diagram of two Modifications on the RNS Montgomery reduction algorithm.

Figure 3.7: 4-input CSA adder circuit
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can be simply obtained by concatenating ‘01’ at the end of S, as shown in (3.27). Then, α is
the last two most significant bits of L.

P0 = A1 ⊕ A2

P1 = A3 ⊕ A4

G0 = A1 ∧ A2

G1 = A3 ∧ A4

S = (P0 ⊕ P1)
C0 = ((P0 ∧ P1) ∨ (G0 ∧ G1) ∨ (G0 ∧ G1))
C1 = (G0 ∧ G1)
L = (‘01’| |S) + (‘0’| |C0 | |‘0’) + (C1 | |‘00’)

(3.27)

The state machine consists of 20 states that control the flow of data. Figure 3.9 shows the
operations at each clock cycle. When the state machine is in reset mode, all control bits are

Figure 3.8: Proposed hardware for modified RNS Montgomery reduction Algorithm 16.

set to zero. It is expected that valid data is provided at the inputs before exiting from the reset
state. The activities at each state are outlined as follows:
S0: It is assumed that the values of sQ and sK are valid after exit from a reset state. At this
state, sQ and sK are loaded to Q2 and Q4 registers, respectively. The Address of ROM A is
‘0000’.
S1: The value of −αp is fetched from ROM B during the previous state and is added to the
accumulator at the rising edge of C4. The contents of the accumulator (the output of Q4) is
now 〈sK − αp〉K .
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S2: The RNS multiplier’s output is latched to Q3 at the rising edge of C3. The Address of the
ROM A is incremented to ‘0001’.
S3: The accumulator is updated by adding the output of the RNS multiplier.
S4 − S8: The product of sQ and the corresponding row of matrix Θ, i.e. Θi , ∀i ∈ {2, 3, 4}, is
calculated and added to the accumulator.
S9: At the previous state, S8, the address of ROM A has been updated to ‘0100’, which is
pointing to the values of K−1. The RNS multiplier performs step 3 of Algorithm 16.
S10: The result of the RNS multiplier is ready and is latched by Q1 at the rising edge of C1.
ADR is updated to ‘0101’.
S11: At the rising edge of C2, the output of Q1 is loaded to Q2 to calculate the value of −αK .
Signal C0 is set to ’1’; indicating that the modular reductions will be done in base Q to the end
of the states. Signal C0 is the MSB of the ROM B address which points to the second partition
of RAM B where the values of −αK are saved. The accumulator is reset to zero by setting C5
to ’1’ for one clock cycle.
S12: The value of −αK is added to the accumulator. The RNS multiplier output is latched at
the rising edge of C2. ADR is incremented to ‘0110’.
S13: The output of ROM B (−αK) is added to the accumulator at the rising edge of C4.
S14: Accumulator is updated by the output of Q3. ADR is incremented to ‘0111’.
S15 − S18: The RNS multiplier completes the multiplication of matrix Ω rows to the corre-
sponding tk (step 5 of Algorithm 16). The accumulator is updated by the result of the last
multiplication.
S19: At the rising edge of C4, the final result is set to the output of the circuit.

Figure 3.9: Data flow of modified RNS Montgomery reduction (Algorithm 16) per clock cycle.

3.7 The Sum of residues modular reduction1

RNS Modular reduction based on the sum of residues (SOR) algorithm was first presented by
Phillips et al. [107] in 2010. The SOR algorithm hardware implementation was proposed later
in [97]. The disadvantage of the Phillips’ SOR algorithm is that unlike the Montgomery reduc-
tion method, the output is an unknown and variable multiple of the “X mod p” value. Although
this algorithm offers a high level of parallelism in calculations, the proposed implementation in
[97] has a considerably big area.

We propose an improvement to the sum of residues algorithm by introducing the correction
factor κ to obtain a precise result. We also present a new design to improve the area in
comparison to [97].

Suppose, Z < M is an integer and p < M
1
2 is a prime. Based on the CRT, Z can be

1This section is a part of the published work [106]
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presented using equation (2.14) by replacing X to Z . Reducing Z modulo p yields

Z mod p = 〈Z〉p = 〈
N∑

i=1
γi Mi〉p − 〈αM〉p, (3.28)

where γi = 〈zi Mi
−1〉mi

can be easily performed by an unsigned integer n × n multiplier and a
modular reduction detailed in Section 3.5.1. Calculation of α is outlined in Section 2.1.2. Let’s
introduce a new integer V as:

V =
N∑

i=1
γi 〈Mi〉p − 〈αM〉p. (3.29)

Recalling the fact that for any integer Z we can find an integer κ such that 〈Z〉p = Z − κ · p, it
can be investigated that the difference of V and 〈Z〉p is a multiple of modulus p.

V − 〈Z〉p =
N∑

i=1
γi 〈Mi〉p − 〈

N∑
i=1
γi Mi〉p

=
N∑

i=1
γi(Mi − ν · p) −

N∑
i=1
γi Mi − μ · p

= (
N∑

i=1
γi .ν − μ) · p

= κ · p.

(3.30)

ν and μ are constants such that 〈Mi〉p = Mi − ν · p, and 〈
N∑

i=1
γi Mi〉p =

N∑
i=1
γi Mi − μ · p.

The factor (κ) is a function of γi, not a constant. Therefore, the value of V , which is actually
the output of SOR algorithm introduced in [107] and [97], is not presenting the true reduction
of 〈Z〉p. In other words,

V = κ · p + 〈Z〉p =
N∑

i=1
γi 〈Mi〉p + 〈−αM〉p. (3.31)

The values of 〈Mi〉p and 〈αM〉p for α ∈ {0, 1, · · · , N −1} are known and can be implemented
in hardware as pre-computed constants.
The RNS form of V resulted from (3.29) is

⎡⎢⎢⎢⎢⎢⎢⎢⎣
〈V〉m1
〈V〉m2...
〈V〉mN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

(
N∑

i=1
γi

⎡⎢⎢⎢⎢⎢⎢⎢⎣

〈〈Mi〉p〉m1
〈〈Mi〉p〉m2...
〈〈Mi〉p〉mN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
)

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

〈−α〈M〉p〉m1
〈−α〈M〉p〉m2...
〈−α〈M〉p〉mN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (3.32)

If (3.32) deducted by {〈κ · p〉m1, 〈κ · p〉m2, · · · , 〈κ · p〉mN
}, the accurate value of Zp in RNS will

be obtained. ⎡⎢⎢⎢⎢⎢⎢⎢⎣

〈Zp〉m1
〈Zp〉m2...
〈Zp〉mN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

(
N∑

i=1
γi

⎡⎢⎢⎢⎢⎢⎢⎢⎣

〈〈Mi〉p〉m1
〈〈Mi〉p〉m2...
〈〈Mi〉p〉mN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
)

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

〈−α〈M〉p〉m1
〈−α〈M〉p〉m2...
〈−α〈M〉p〉mN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎢⎢⎣
〈κ.p〉m1
〈κ.p〉m2...
〈κ.p〉mN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (3.33)
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3.7.1 Calculation of κ

Dividing each side of (3.28) by the modulus p yields:

κ +
〈Z〉p

p
=

N∑
i=1

γi 〈Mi〉p

p
+
〈−αM〉p

p
. (3.34)

The coefficient κ is an integer. Reminding that 〈Z〉p
p < 1 and 〈−αM〉p

p < 1, κ is calculated as

κ =
⌊ N∑

i=1

〈γi Mi〉p

p

⌋
. (3.35)

The modulus p is considered to be a pseudo Mersenne prime in general form of p = 2W − ε
where 2W � ε . For example: pS = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1 and pE = 2255−19
are the field modulus for the SECG recommended curve SECP256K1 [30] and the Twisted
Edwards Curve ED25519 [40], respectively.

Substitution of fractional equation 1
2W−ε = 1

2W (1 + ε
2W−ε ) in (3.35) results:

κ =
⌊ N∑

i=1

γi 〈Mi〉p

2W

(
1 +

ε(
2W − ε

) )⌋ . (3.36)

Considering that 〈Mi〉p < p and γi < 2n, if we choose

ε <
2W−n

N
, (3.37)

then,
N∑

i=1

γi 〈Mi〉p
2W

ε
(2W−ε) < 1, and the value of κ resulted from (3.36) is

κ =
⌊ N∑

i=1

γi 〈Mi〉p

2W

⌋
. (3.38)

The condition in (3.37) provides a new boundary for choosing the field modulus p. It is a valid
condition for the most known prime moduli p used practically in cryptography. Table 3.6 shows
the validity of κ for some standard curves based on (3.38).
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Table 3.6: Checking validity of κ for some standard curves SEC2, ED25519.

CURVE Modulus p N n 2W−n

N ε

ED25519 2255 − 19 8 66 2186 19

SECP160K1 2160 − 232 − 21389 5 66 294

5 232 + 21389

SECP160R1 2160 − 232 − 1 5 66 294

5 232 + 1

SECP192K1 2192 − 232 − 4553 6 66 2125

3 232 + 4553

SECP192R1 2192 − 264 − 1 6 66 2125

3 264 + 1

SECP224K1 2224 − 232 − 6803 7 66 2158

7 232 + 6803

SECP224R1 2224 − 296 + 1 7 66 2158

7 296 − 1

SECP256K1 2256 − 232 − 977 8 66 2187 232 + 977

SECP2384R1 2384 − 2128 − 296 + 231 − 1 12 66 2316

3 2128 + 296 − 231 + 1

SECP521R1 2521 − 1 16 66 2451 1

The hardware implementation of (3.38) needs a 66 × 256-bit multiplier. For an efficient
hardware implementation, it is essential to avoid such a big multiplier. To compute the value
of κ in hardware, we used

κ =
⌊

1
2T

N∑
i=1
γi

⌊ 〈Mi〉p

2W−T

⌋⌋
. (3.39)

The integer T must be selected such that the equality of (3.38) and (3.39) is guaranteed.
Using a MAPLE program, we realised that T = 72 for SECP256K1 and T = 71 for ED25519

are the best solutions for area-efficient hardware. In this case, as the term
⌊
〈Mi〉p
2W−T

⌋
is 55 bits for

SECP256K1 and 44 bits for ED25519, the 66× 55-bit and 66× 44-bit multipliers are required
to compute κ, respectively.
Therefore, the coefficient of κ for SECP256K1 can be calculated efficiently by the following
equation:

κ =
⌊

1
272

N∑
i=1
γi

⌊ 〈Mi〉pS

2184

⌋⌋
. (3.40)

Similarly, for ED25519, κ can be calculated using the below formula:

κ =
⌊

1
271

N∑
i=1
γi

⌊ 〈Mi〉pE

2184

⌋⌋
. (3.41)

The value of
⌊
〈Mi〉p
2184

⌋
can be pre-computed and saved in the hardware for i = 1 to N . The

integer κ is at most 52-bit long for SECP256K1 and 42-bit long for ED25519. As a result, the
RNS conversion is not required. (κi = κ mod mi = κ) and κ can be directly used in RNS
calculations.
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The calculation of κ can be done in parallel and will not impose an extra delay in the design.
Finally, to find z = X mod p it is required to compute κ · 〈p〉mi

. Note that 〈p〉mi
is a constant

and can be pre-computed as well. Therefore, it follows that

zi = 〈〈V〉mi
− 〈κ · p〉mi

〉
mi
. (3.42)

The number of operations can be reduced by pre-computing 〈−p〉mi
instead of 〈p〉mi

.
(A modular subtraction consists of two operations: ∀a, b < mi, 〈a − b〉mi = 〈a + (mi − b)〉mi ).
Then zi is calculated directly by

zi = 〈〈V〉mi
+ 〈κ · 〈−p〉mi

〉mi
〉

mi
. (3.43)

Algorithm 17 presents the RNS modulo p multiplication {x1, x2, . . . , xN } × {y1, y2, . . . , yN }
mod p over moduli base B using the improved sum of residues method. Calculations in stages
4 and 5 are concurrent. Different levels of parallelism are possible in hardware implementation
by adding one or more RNS multipliers to perform stage 5.3 calculations in parallel.

As discussed, the coefficient κ is a 52-bit(42-bit) integer for the SECP256K1(ED25519)
design. Consequently, the output of the original SOR algorithm [107] represented in (3.29)
is as big as 308(297) bits. In conclusion, the hardware introduced in [97], [108], and [98]
cannot calculate two tandem modular multiplications while the product of the second stage
inputs has a higher bit number than the dynamic range that violates the CRT. In cryptographic
applications, it is generally required to do multiple modular multiplications. Our correction to
the SOR algorithm ensures that the inputs of the next multiplication stage are in range.

3.7.2 The SOR algorithm hardware implementation and performance
The required memory to implement constant parameters of Algorithm 17 is N((2N + 2)n + n′)

bits where n′ is the biggest bit number of
⌊
〈Mi〉p
2W−T

⌋
, i ∈ {1, . . . , N}. In our case n′ = 55 for

SECP256K1 and n′ = 44 for ED25519. Therefore, the required memory is 9944 and 9856
bits for the SECP256K1 and ED25519 respectively.

The RNS multiplier is implemented by using 16 DSP slices followed by a combinational
reduction logic per channel. The total number of 128 DSP resources are used for an RNS mul-
tiplier. The logic delays of RNS adder and multiplier listed in Tables 3.2 and 3.3 determine the
overall design latency and performance. The maximum RNS adder logic and routing latency
are less than half of the RNS multiplier logic and net delays. The system clock cycle is chosen
such that an RNS addition is complete in one clock period and an RNS multiplication result is
ready in two clock periods. Figure 3.10 presents a simplified block diagram of the Algorithm
17 with non-pipelined architecture. We name this architecture as SOR_1M_N. The sequencer
state machine provides select signals of the multiplexers and clocks for internal registers. The
inputs of the circuit are two 256-bit integers X and Y in RNS representation over base B; that
is, {x1, . . . , xN } and {y1, dots, yN }, respectively.
The RNS multiplier inputs are selected by multiplexers MUX1 and MUX2. At the second clock
cycle the output of multiplier, that is, xyi = 〈xi · yi〉mi

, is latched by register Q1. At the fourth
clock cycle, γi = 〈xyi · Mi

−1〉mi
is calculated and latched by register Q1. The calculation of α

starts after the fourth clock cycle, by adding the eight most significant bits of γ1 to γ8 to the
offset 2qΔ = 24. The three most significant bits of the result are used to select the value of
〈−α · 〈M〉p〉mi from the Look up table. Figure 3.11 illustrates the hardware implementation of
〈−α · 〈M〉p〉mi . At the next 3N clock cycles 〈γi 〈Mi〉p〉mj

will be calculated and accumulated in
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Algorithm 17: Improved Sum of residues reduction
Required: p, Δ, q, B = {m1, · · · ,mN }, m1 > m2 > · · · > mN , n = 
log2m1�, W = 
log2p�, T ,

N ≥ 
 2W
n �.

Required: M =
N∏
i=1

mi , M̂ = (1 − Δ)M , Mi = M
mi

for i = 1 to N .

Required: Tables

⎡⎢⎢⎢⎢⎢⎢⎢⎣

〈M1
−1〉m1

〈M2
−1〉m2
...

〈MN
−1〉mN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

〈−p〉m1
〈−p〉m2

...
〈−p〉mN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⌊
〈M1 〉p
2W−T

⌋
...⌊

〈MN 〉p
2W−T

⌋
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈〈Mi〉p〉m1
〈〈Mi〉p〉m2

...
〈〈Mi〉p〉mN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
for i = 1 to N .

Required: Table

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈α · 〈−M〉p〉m1
〈α · 〈−M〉p〉m2

...
〈α · 〈−M〉p〉mN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
for α = 1 to N − 1

Input: Integers X and Y , 0 ≤ X,Y < M̂ in form of RNS: {x1, · · · , xN } and {y1, · · · , yN }.
Output: Presentation of Z = X · Y mod p in RNS:{z1, · · · , zN }.
1. for i = 1 to N do

xyi ← 〈xi · yi〉mi
.

γi ← 〈xyi 〈Mi
−1〉mi

〉
mi

.
end
3. for i = 1 to N do

for j = 1 to N do
Yi j ← γi 〈〈Mi〉p〉m j

.
end

end
4. for i = 1 to N do

4.1 α←
⌊

1
2q

(
N∑
i=1

⌊
γi

2n−q

⌋
+ 2qΔ

)⌋
.

4.2 κ ←
⌊

1
2T

N∑
i=1
γi

⌊
〈Mi 〉p
2W−T

⌋⌋
.

end
5. for i = 1 to N do

5.1 Calculate 〈κ · 〈−p〉mi
〉
mi

.
5.2 Read 〈α〈−M〉p〉mi

from the table.

5.3 sumi ← 〈
N∑
j=1

Yji〉mi .

end
6. for i = 1 to N do

zi ← 〈sumi + α〈−M〉p〉mi
+ 〈κ〈−p〉mi

〉
mi

.

end

register Q2. The RNS multiplier must be idle for one clock cycle, letting the RNS adder of the
accumulator be completed and latched whenever accumulation of the results is required. The
value of κ is calculated in parallel using the hardware shown in Figure 3.12. The 〈−κp〉mi

is
calculated at the (3N + 5) and (3N + 6) cycles and will be added to the accumulator Q2 at the
last clock cycle. The sum of moduli reduction is completed in (3N + 7) clock cycles. Figure
3.13 shows the data flow diagram of SOR_1M_N architecture at every clock cycle.
A pipelined design is depicted in Figure 3.14. Here, an extra register Q3 latches the RNS

multiplier’s output. So, the idle cycles in SOR_1M_N are removed. We call this design
SOR_1M_P. The data flow diagram of SOR_1M_P architecture is illustrated in Figure 3.15
The Algorithm 17 can be performed in 2(N + 4) clock cycles using this architecture.
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Figure 3.10: Sum of residues reduction block diagram non-pipelined (SOR_1M_N) design.

Figure 3.11: Implementation of 〈〈−αM〉p〉mi
.

Parallel designs are possible by adding RNS multipliers to the design. Figure 3.16 shows the
architecture of using two identical RNS multipliers in parallel to implement Algorithm 17. We
tag this architecture as SOR_2M. The calculation of 〈γi 〈Mi〉p〉mj , (i = 1 · · · N) is split between
two RNS multipliers. So, the required time to calculate all N terms is halved. As shown in
Figure 3.12, An extra n × n multiplier is also required to calculate κ in time. The latency of
SOM_2M architecture is 2( N

2 + 5) clock cycles. Theoretically, the latency could be as small as
12 clock cycles using N parallel RNS multipliers. Figure 3.17 shows the data flow diagram of
SOM_2M architecture.
Table 3.7, shows implementation results on VIRTEX 7, KINTEX 7, VIRTEX UltraScale+™,

and KINTEX UltraScale+ FPGA series. VIVADO 2017.4 is used for VHDL codes synthesis.
The fastest design is realised using KINTEX UltraScale+ that clock frequency 187.13 MHz is
reachable. Table 3.7 outlines the implementation results on different platforms.

3.7.3 SOR performance

In Table 3.8, we have outlined the implementation results of recent similar works in the context
of RNS. The design in [97] and [98] are based on the SOR algorithm in [107]. Both of them
use forty 14-bit co-prime moduli as RNS base to provide a 560-bit dynamic range. Barrett
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Figure 3.12: Implementation of 〈κ〈−p〉〉mi in architectures SOR_1M_N and SOR_1M_P (Up)
and in architecture SOR_2M (Down).

Figure 3.13: Data flow of SOR non–pipelined SOR_1M_N architecture.

reduction method [11] is used for moduli multiplication at each channel. Barrett reduction
algorithm costs two multiplications and one subtraction; which is not an optimised method
for high-speed designs. The design in [97] is a combinational logic and performs an RNS
modular reduction in one clock cycle. The area for pipelined and non-pipelined architectures of
this design, as reported in [98], is (34.34 KLUTs+2016 DSPs) and (36.5 KLUTs+2016 DSPs),
respectively (the number of registers is not reported). The MM_SPA design in [98] is more
reasonable in terms of the logic size (11.43 KLUT+512 DSPs). However, in contrast to our
SOR_2M design on VIRTEX-7, it consumes more hardware resources and is considerably
slower.

These designs are based on SOR algorithm in [107] that is not performing a complete
reduction. As discussed in Section 3.7.1, their outputs can exceed the RNS dynamic range
and give out completely incorrect results.
The authors used eight 65-bit moduli base for their RNS hardware which is similar to our
design. The achieved clock frequencies for these two designs are 139.5 MHz and 142.7 MHz,
respectively. The input considered for the algorithms is the RNS presentation of K2x; where
x is equivalent to Z in our notations and K2 is a constant. A modular multiplication with sQ
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Figure 3.14: Sum of residues reduction block diagram with pipelined (SOR_1M_P) design.

Figure 3.15: Data flow of SOR pipelined SOR_1M_P architecture

Figure 3.16: Sum of residues block diagram using two parallel pipelined (SOR_2M) design.

and dQ algorithms needs two initial RNS multiplication to provide input for the algorithm. To
have a fair comparison, the latency of these multiplications must be taken into account. As
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Figure 3.17: Data flow of SOR with two RNS multiplier architecture SOR_2M

Table 3.7: Sum of residues reduction algorithm Implementation on Xilinx FPGAs

Architecture Platform Clk frequency Latency Area Throughput
FPGA (MHz) (ns) (KLUTs),(FFs),(DSPs) (Mbps)

SOR_1M_N ARTIX 7 92.5 335 (8.17),(3758),(140) 1576

SOR_1M_N VIRTEX 7 128.8 241 (8.17),(3758),(140) 2190

SOR_1M_N KINTEX 7 117.67 263 (8.29),(3758),(140) 2007

SOR_1M_N VIRTEX US+1 192 157 (8.14),(3758),(140) 3363

SOR_1M_N KINTEX US+ 198 156.5 (8.29),(3758),(140) 3373

SOR_1M_P ARTIX 7 92.5 259.5 (8.73),(4279),(140) 2034

SOR_1M_P VIRTEX 7 138.8 173 (8.73),(4279),(140) 3052

SOR_1M_P KINTEX 7 117.6 204 (8.89),(4279),(140) 2588

SOR_1M_P VIRTEX US+ 185.18 130 (8.71),(4279),(140) 4061

SOR_1M_P KINTEX US+ 187.13 128.3 (8.89),(4279),(140) 4115

SOR_2M ARTIX 7 92.5 194.6 (10.11),(4797),(280) 2713

SOR_2M VIRTEX 7 128.5 140 (10.11),(4797),(280) 3771

SOR_2M KINTEX 7 121.9 147.6 (10.27),(4797),(280) 3577

SOR_2M VIRTEX US+ 185.18 97.3 (10.11),(4797),(280) 5426

SOR_2M KINTEX US+ 187.13 96.3 (10.26),(4797),(280) 5482

1US+: Ultra Scale+ ™

illustrated on Figure13 of [104], it takes three clock cycles to perform one multiplication and
reduction. Therefore, at the maximum working clock frequency, 42 ns will be added to the
latency of the proposed RNS modular reduction circuit. As a result, the equivalent latency for
an RNS reduction for sQ-RNs and dQ-RNS reduction hardware is 150.53 ns and 168.18 ns,
respectively. For the same reason, our proposed MMR algorithm expects two initial modular
multiplications which are performed in four clock cycles. This adds 21.2 ns to the circuit’s
overall latency. On the same FPGA platform used in [104], i.e. KINTEX Ultra Scale+ ™, we
achieved the latency of 128.3 ns and 96.3 ns with our SOR_1M_P and SOR_2M designs,
respectively. The latency of SOR_2M showed 36% improvement compare to sQ-RNS and
41.1% improvement in contrast to MM_SPA on similar FPGA platforms. Similarly, there is
14.9% and 27.6% improvement of SOR_1M_P latency in compare to sQ-RNS and MM_SPA
designs, respectively. The latency of our SOR_M_N, however, is very close to sQ-RNS and
MM_SPA designs.
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Table 3.8: Comparison of our designs with recent similar works

Design Platform Clk frequency Latency Area Throughput
(MHz) (ns) (KLUT),(DSP) (Mbps)

[97] MM_PA_P VIRTEX 6 71.40 14.20 (36.5),(2016) 1 14798

[97] MM_PA_N VIRTEX 6 21.16 47.25 (34.34),(2016) 1 5120

[98] MM_PA_P VIRTEX 7 62.11 48.3 (29.17),(2799) 15900

[98] MM_SPA VIRTEX 7 54.34 239.2 (11.43),(512) 1391

[106] SOR_1M_P(Ours) VIRTEX 7 138.8 173 (8.73),(140) 3052

[106] SOR_2M(Ours) VIRTEX 7 128.5 140 (10.11),(280) 3771

[104] sQ-RNS KINTEX US+ 139.5 107.53(150.53)2 (4.247),(84) 3454 2

[104] dQ-RNS KINTEX US+ 142.7 126.14(168.18)2 (4.076),(84) 3092 2

[106] SOR_1M_P(Ours) KINTEX US+ 187.13 128.3 (8.89),(140) 4115

[106] SOR_2M(Ours) KINTEX US+ 187.13 96.3 (10.26),(280) 5482

MMR(Ours) KINTEX US+ 188.67 116.6 (137.8)3 (3.92),(64) 3831

1Area reported in [98]
2Our estimation for a Modular multiplication.
3Modular multiplication latency.
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Figure 3.18: SOR architectures Latency and Throughput on Xilinx FPGAs

3.7.4 Hardware test and verification

Numerical example for new RNS Montgomery reduction algorithm

Let us first, bring a numerical example for both RNS Montgomery and SOR reduction algo-
rithms. Considering the moduli set in Table 3.1, The constants for Algorithm 16 are
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K =
4∏
i=1

mi = 29642774844752946015578667808152182207810997947085478414286182832343631559394045.

Q =
8∏
i=5

mi = 29642774844752945679728616558023215758163831990337737268353584222855319684590433.

K−1 =
[
73642861106762350591, 4995993186629670229, 57357844854190637049, 11577253442093755048

]
.

Q−1 =
[
37223559108680337996, 108113198197531014, 31185490603629508987, 5269813384330828305

]
.

RK∪Q =
[
274877906944, 19875797281106311556, 24748383423803978097, 4334187607194161013,

42852602630405522001, 61288154116439491971, 29087400448070938219, 44535440695412410451
]
.

Θi j =

⎡⎢⎢⎢⎢⎢⎢⎣
39190323957512273950 32971496243508131580 18915118435135040208 63680898731287248922
19595161978756136975 15386698246970461404 50270465783536849492 45822625008708485123
60239022715817689091 3663499582612014620 32773420875429090469 23921920260709338314
67012999505327947777 655326937912444946 21982713152579251378 59179623542174329150

⎤⎥⎥⎥⎥⎥⎥⎦
.

Ωi j =

⎡⎢⎢⎢⎢⎢⎢⎣
10752 161280 14999040 126991872
12288 172032 15237120 127991808
14336 184320 15482880 129007616
21504 215040 15998976 131088384

⎤⎥⎥⎥⎥⎥⎥⎦
.

KQ =
[
344064, 10321920, 3839754240, 65019838464

]
,

−KQ =
[
73786976294837862367, 73786976294827884479, 73786976290998451967, 73786976229818367487

]
.

Given modulus p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1, then

−pK =
[
73498745922981462992, 37758179280169206732, 11240984674211726262, 59663687867699298941

]
.

Suppose, A = 2260 − 240 − 123 and B = 2256 − 135, are two randomly chosen integers; the
product of A and B, i.e. X = A × B is less than the dynamic range of the RNS base and its
presentation in RNS is[
6071000727470227668, 24157454150930541429, 38208659493400577367, 26534998718574157803,

19324504543166081045, 69405015712188571048, 19620781396156619875, 69493056693697113742
]
.

The value of 〈A · B · Q−1 mod p〉K∪Q is[
25852351324943298246, 8010876674308888376, 53037063643690367473, 61727029647463009885,

3721892900089140419, 37161346074399323532, 28118412695331475359, 26161054131880081435
]
.

From Algorithm 16, Sk∪Q = 〈A · B〉k∪Q · Rk∪Q[
4561896359882736, 5809795480465295377, 31168081374197409439, 54433645799933486952,

25116664587954568860, 44369257924514813605, 10844948071510585784, 5339334472289691727
]
.

The value of α is calculated by choosing Δ = 2−4 and q = 4, that is
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α =
⌊

1
24

(
� 25116664587954568860

262  + � 44369257924514813605
262  + �( 10844948071510585784

262  + � 5339334472289691727
262  + 1

)⌋
=

1.
Then, ZK is calculated as:

ZK =

〈
Θi j ·

⎡⎢⎢⎢⎢⎢⎢⎣
25116664587954568860
44369257924514813605
10844948071510585784
5339334472289691727

⎤⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎣
73498745922981462992
37758179280169206732
11240984674211726262
59663687867699298941

⎤⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎣
4561896359882736

5809795480465295377
31168081374197409439
54433645799933486952

⎤⎥⎥⎥⎥⎥⎥⎦
〉
K

=

⎡⎢⎢⎢⎢⎢⎢⎣
25852351324943298246
8010876674308888376
53037063643690367473
61727029647463009885

⎤⎥⎥⎥⎥⎥⎥⎦
.

Now, we calculate tK matrix.

〈⎡⎢⎢⎢⎢⎢⎢⎣
73642861106762350591 0 0 0

0 4995993186629670229 0 0
0 0 57357844854190637049 0
0 0 0 11577253442093755048

⎤⎥⎥⎥⎥⎥⎥⎦
· ZK

〉
K

=

⎡⎢⎢⎢⎢⎢⎢⎣
45201676182137213928
58456412882758938907
24868866695340756227
19111430090298327454

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣
tk1

tk2

tk3

tk4

⎤⎥⎥⎥⎥⎥⎥⎦
.

For the second α at line 4 of Algorithm 16 we choose Δ = 3
24 and q = 24. Therefore, α is

calculated as

α =
⌊

1
24

(
� 45201676182137213928

262  + � 58456412882758938907
262  + �( 24868866695340756227

262  + � 19111430090298327454
262  + 3

)⌋
=

� 33
24  = 2.

Finally, ZQ is calculated〈
Ωi j ·

⎡⎢⎢⎢⎢⎢⎢⎣
45201676182137213928
58456412882758938907
24868866695340756227
19111430090298327454

⎤⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎣
73786976294837518303
73786976294817562559
73786976287158697727
73786976164798529023

⎤⎥⎥⎥⎥⎥⎥⎦
〉
Q

=

⎡⎢⎢⎢⎢⎢⎢⎣
3721892900089140419
37161346074399323532
28118412695331475359
26161054131880081435

⎤⎥⎥⎥⎥⎥⎥⎦
.

The value of ZK∪Q which is calculated using Algorithm 16 is equal to the value of
〈A · B · Q−1 mod p〉K∪Q that we directly calculated.

Numerical example for the improved Sum of Residues reduction algorithm

For the same A and B of above example, we calculate modular reduction to p using improved
SOM Algorithm 17. The constants used for the sum of residues algorithm are
M =

8∏
i=1

mi = 878694100496718032800010209309117404862460266903228305538465919600

692682605784767615087937045380619473791704403451124457879453157660663905800479213389484171485.

MIB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈M1
−1〉m1

〈M2
−1〉m2

〈M3
−1〉m3

〈M4
−1〉m4

〈M5
−1〉m5

〈M6
−1〉m6

〈M7
−1〉m7

〈M8
−1〉m8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

73786976294301335551
44683151288970511775
61872857499868790663
63269389302024161492
13220103208351106415
19852253190748485956
8334558314047248845
10128616081041185010

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, PNB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈−p〉m1
〈−p〉m2
〈−p〉m3
〈−p〉m4
〈−p〉m5
〈−p〉m6
〈−p〉m7
〈−p〉m8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

73498745922981462992
37758179280169206732
11240984674211726262
59663687867699298941
45828629812417130916
18158513701852738400
73498745922964421837
73498745922710923722

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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MPB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⌊
〈M1 〉p

2184

⌋
⌊
〈M2 〉p

2184

⌋
...⌊

〈M8 〉p
2184

⌋

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

18027419208564735
18026098627493887
18024895592841215
18022820318855167
18019845681758207
18017506445017087
18015259703164927
18014838343385087

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, MNB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈−M〉p〉m1
〈−M〉p〉m2
〈−M〉p〉m3

...
〈−M〉p〉m8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11364192887680349575
26200618777635377564
33154480199598314297
24934496126011739915
4410582008873787630
32146213136712920272
16381009841898477011
47586101954007074714

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

H1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈〈Mi 〉p 〉m1
〈〈Mi 〉p 〉m2

...
〈〈Mi 〉p 〉m8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

50614143206231599723 51631297396430197375 52617348558344399635 54497831867870420923
51631297383856305347 52632829612579377879 53603399600645423851 55453342801552763667
52617348432040390043 53603399491679150383 54558629083164162115 56378313695634768619
54497830402647991499 55453341419316675039 56378312477120623987 58138324355539210779
57904135792531963691 58800255573705247039 59666398330276532179 61310442130145772667
63392687980663313387 64176780692571135999 64932022254726329491 66357641071008049467
70599434186226143339 70900515724409833599 71179501484176167187 71672874599053936059
72137976758905910891 72299446676089093759 72447828010179229459 72707013820175051707

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ∀i ∈

{1, 2, 3, 4}

H2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈〈Mi 〉p 〉m1
〈〈Mi 〉p 〉m2

...
〈〈Mi 〉p 〉m8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

57904152923568551179 63392856732394127275 70612081214764203883 72241846743812805739
58800271729692727651 64176936709068135939 70911968167315184067 72393145718676307651
59666413476311115835 64932165962466763483 71189846997373305499 72532180550455596955
61310454639453388651 66357761122263751179 71681262439500872139 72775040254836920011
64257388400519588299 68881319813637788779 72418499498230600747 73130997117418219819
68881245460061363851 72712513172963830059 73004798685022841067 73412478982076841451
72413049724370082571 73001695670686426539 62915464440731821419 73683476982486055531
73086900245091746059 73387310215928105899 73676957585362062187 56771868068651819628

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ∀i ∈

{5, 6, 7, 8}

The matrix H is obtained by concatenation of matrix H2 to the right side of matrix H1. That is,
H =

[
H1 | |H2

]
.

The RNS form of X = A · B over base B was calculated in the last example. The value of γi
matrix is calculated as

γB =

〈
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6071000727470227668 × 73786976294301335551
24157454150930541429 × 44683151288970511775
38208659493400577367 × 61872857499868790663
26534998718574157803 × 63269389302024161492
19324504543166081045 × 13220103208351106415
69405015712188571048 × 19852253190748485956
19620781396156619875 × 8334558314047248845
69493056693697113742 × 10128616081041185010

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

〉

B

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2305834099259866056
60366484759219081820
43977497233343938196
35776005214296587945
14400836904693571174
15090841826745158153
25687384790642700856
23774058454823196884

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Taking q = 8 and Δ = 2−4 for Algorithm 17, we can calculate the value of α as follows

α =
⌊

1
28

(
� 2305834099259866056

258  + � 60366484759219081820
258  + . . . + � 23774058454823196884

258  + 24
)⌋

= � 780
256  = 3.

Then, the value of AMB = 〈−αM〉B is

AMB =

〈
3 ×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11364192887680349575
26200618777635377564
33154480199598314297
24934496126011739915
4410582008873787630
32146213136712920272
16381009841898477011
47586101954007074714

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

〉

B

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

34092578663041048725
4814880038067926233
25676464303956736436
1016512083197013298
13231746026621362890
22651663115300554417
49143029525695431033
68971329567183018191

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The value of κ is calculated as
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κ =
⌊

1
272

(
2305834099259866056 × 18027419208564735 + 60366484759219081820 × 18026098627493887+

. . . + 23774058454823196884 × 18014838343385087
)⌋

= 844844570355236.

Then the values of 〈κ · −p〉B can be calculated.

KPB =
〈
844844570355236 ×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

73498745922981462992
37758179280169206732
11240984674211726262
59663687867699298941
45828629812417130916
18158513701852738400
73498745922964421837
73498745922710923722

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

〉

B

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

21902720249682677206
63405835106889124156
67997931291841596727
40073833782314619891
54882465924932723288
36779529498223779834
13451258776604324263
50752825020162944228

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The matrix Y is then calculated by Y = 〈H · γB〉B which results

YB = 〈H · γB〉B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

18079106437640900505
41594256848219832059
42657771003336029507
46819117540135156306
33630309509374870350
69983444957969012809
11480117048081896423
28137227058127377494

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Finally, the value of Z = X mod p is obtained by adding YB , AMB , and KPB which is

Z =

〈
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

18079106437640900505
41594256848219832059
42657771003336029507
46819117540135156306
33630309509374870350
69983444957969012809
11480117048081896423
28137227058127377494

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

34092578663041048725
4814880038067926233
25676464303956736436
1016512083197013298
13231746026621362890
22651663115300554417
49143029525695431033
68971329567183018191

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

21902720249682677206
63405835106889124156
67997931291841596727
40073833782314619891
54882465924932723288
36779529498223779834
13451258776604324263
50752825020162944228

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

〉

B

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

287429055526419973
36027995698338675989
62545190304296156215
14122487110808583048
27957545166090750097
55627661276655140661
287429055543445512
287429055796928011

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Integer value of the modular multiplication C = A · B mod p =
115792089237316195423570985008687907853269984665640564035030364628902211960385,
which its representation in RNS base B is identical to the values obtained from the SOM
Algorithm 17.

Hardware verification and testbench

To automate hardware verification, using a Python program that can be found in SectionB.5.1,
we generated random 256-bit integers, their RNS, and the RNS Modulo p. The results are
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saved in a text file which is used by the VHDL testbench ( listed in B.5.2 ). The VHDL program
feeds the inputs with all random RNS numbers and compares the hardware output with the
RNS number modulo p. Figure 3.19 and Figure 3.20 show the hardware test results on the
new MMR and the improved SOR reduction hardware implementation on a KINTEX UltaS-
cale + FPGA. The proposed algorithms 16 and 17 were validated by Maple simulation. The
Maple codes for MMR and SOM algorithms validation are presented in Appendix A.1 and A.2,
respectively.
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Figure 3.19: Hardware simulation of the proposed RNS Montgomery reduction algorithm.
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Figure 3.20: Hardware simulation of the proposed sum of residues reduction algorithm.



4
RNS Elliptic curve point multiplication

Hardware design

4.1 Introduction

In this chapter, we first review the ECC arithmetic in various coordinate systems in the context
of RNS and propose hardware architecture for each coordinate system based on the primitives
introduced in Chapter 3. Then we implement the point multiplication core by applying Double-
and-Add, NAF, and DBC algorithms on SECP256K1, ED25519, and Brainpool256r1 curves.
For the Curve SECP256K1 which has an efficient endomorphism, we propose a new low-
latency low-cost point multiplication hardware using GLV method. Comparing our design with
the latest similar works in the literature, we show the impacts of using our new arithmetic
algorithms as well as applying efficient scalar multiplication algorithms on the latency and
performance of the ECC point multiplication co-processor.

4.2 New RNS ECC Point arithmetic Design1

In the RNS context, unlike integer arithmetic, the bit-length of channels does not increase by
performing addition and multiplication operations. Accordingly, it is permissible to perform as
many operations as we can within the dynamic range before we reduce the result modulo p.
From chapter 3, our designed RNS has a 528-bit dynamic range. Therefore, until the result is
not exceeding 528-bit long, we can perform arithmetic operations without requiring a modular
reduction which is costly in terms of operation latency. For instance, it is possible to perform
a 256 × 256-bit multiplication, add the result to a 512-bit number, multiply the outcome by
a 215-bit number and finally perform a modular reduction. This property of RNS operations
leads to achieving more efficient ECC point arithmetic than the traditional integer arithmetic. In
RNS arithmetic, we can do one multiplication and several additions or subtractions before the
result exceeds the dynamic range. A modular reduction is performed afterwards. In integer

1This section is a part of the published work [109]
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arithmetic, however, a modular reduction is necessary after each multiplication.
In the following, we propose parallel RNS point arithmetic for short Weierstraß curves

SECP256K1, Brainpool256r1, and twisted Edwards curve ED25519. The efficient explicit
formulae for point doubling, point addition, and point tripling are presented in EFD database
[26]. Based on these formulae and combining properties of parallel processing and RNS
arithmetic, we designed new point arithmetic formulae that have a smaller number of modular
reductions and process in parallel, hence, notably improve the speed of calculations. In our
design, two modular reduction units are used which can work in parallel. We classified the
operations that can be performed in parallel or during a modular reduction in a “logic level”.
Then we rearranged operations — when possible — to reduce the number of logic levels. A
Squaring operation is more efficient than a multiplication in terms of speed. Nevertheless,
it needs the implementation of new hardware. To reduce the logic area, we used the same
hardware for RNS multiplication and squaring. In the flow diagrams, however, these operations
are displayed differently.

4.2.1 Point arithmetic on Koblitz Curve SECP256K1

Point doubling

Take P1 a point on the curve SECP256K1, represented in Jacobian coordinates (X1,Y1, Z1),
all in RNS form. The coordinates of point P2 = 2P1, that is, (X2,Y2, Z2) are calculated us-
ing formulas in (4.1). We derived these formulas by applying RNS and parallel processing
properties on efficient point-doubling formulas (6) proposed by Cohen et al. in [110].

(A, B) ← (〈3X1
2〉p, 〈2Y1

2〉p)
C ← 2X1B

(X2, Z2) ← (〈A2 − 2C〉p, 〈2Y1Z1〉p)
D ← 〈C − X2〉p

Y2 ← 〈AD − 2B2〉p.

(4.1)

The operations inside the parenthesis are performed in parallel. The arrow sign is used to
indicate updating the intermediate registers or outputs on the edge of the clock in hardware.
The detailed data flow is depicted in Figure 4.1a. A modular reduction is not required to
calculate C, A2, B2, and AD as their values are less than the dynamic range and the next
operation is a modular subtraction which is always followed by a modular reduction. The total
number of RNS modular reductions is six compared to the seven reductions required in integer
arithmetic [110].

Point addition

Take P1 and P2 two points on the curve SECP256K1, represented in Jacobian coordinates by
(X1,Y1, Z1) and (X2,Y2, Z2), respectively. The point P3(X3,Y3, Z3) is a point on a curve given
by P3 = P1 + P2, which its coordinates can be calculated using formulas in (4.2). The RNS
parallel formulae are directly derived from formulas (5) in [110] by application of RNS and
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parallel processing properties.

(A1, A2) ← (〈Z1
2〉p, 〈Z2

2〉p)
(A3, A4) ← (〈A1Z1〉p, 〈A2Z2〉p)
(B1,H1) ← (〈Y1 A4〉p, 〈Z1Z2〉p)
(B2,C2) ← (Y2 A3, X2 A1)
(C1,D1) ← (〈X1 A2〉p, 〈B2 − B1〉p)
(D2, E1) ← (〈C2 − C1〉p,D1

2)
(Z3, E2) ← (〈H1D2〉p, 〈D2

2〉p)
(F1, F2) ← (C1E2, 〈D2E2〉p)

G1 ← F2 + 2F1

X3 ← 〈E1 − G1〉p

G2 ← 〈F1 − X3〉p

Y3 ← 〈D1G2 − B1F2〉p.

(4.2)

Here, 15 modular reductions are required. That is one less than the modular reduction counts
in integer arithmetic [26]. Using two parallel SOR, the implementation can be done in 12 logic
levels, as presented in Figure 4.1b.

Point tripling

Point tripling (ECPT) is used to implement scalar multiplications based on the DBC algorithms
discussed in chapter 2. Given point P1 on the curve SECP256K1 with Jacobian coordinates
(X1,Y1, Z1), all in RNS form, a point tripling is an operation that returns the point P3 = 3P1 on
the curve whose coordinates (X3,Y3, Z3) are obtained from formulas in (4.3). Efficient point
tripling formulas for short Weirstraß curves were proposed by Dimitrov et al. in [50]. The RNS
point tripling formulas (4.3) are resulted from applying RNS and parallel processing properties
on Dimitrov formulas.

Point tripling calculation in RNS requires ten modular reductions. When compared to the
fifteen modular reductions required for ECPT calculation in integer arithmetic [26], the RNS
improves the ECPT latency efficiently, which makes the application of RNS in the design of
a low-latency ECC co-processor more appealing. As shown in Figure 4.2, by utilising two
modular reduction units, the ECPT hardware implementation can be realised in 17 logic levels
in which six logic levels include modular reductions.

(A, B) ← (〈3X1
2〉p, 〈2Y1

2〉p)
C1 ← (〈12X1B − A2〉p

(Z3,C2) ← (〈Z1C1〉p, 〈C1
2〉p)

(D,C3) ← (4B2,C1C2)
(E1, E2) ← (〈D − AC1〉p, 〈2D − AC1〉p)
(F, X3) ← (〈(4E2E1 + C3)〉p, 〈4BE1 + X1C2〉p)

Y3 ← 〈p − Y1F〉p.

(4.3)
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(a) ECPD on SEC2P256K1 (b) ECPA on SEC2P256K1

Figure 4.1: RNS point doubling and point addition flow diagram on SECP256k1

4.2.2 Point arithmetic on twisted Edwards curve ED25519

Point doubling

Point doubling formulas on twisted Edwards curve were introduced by Bernstein et al. in [111].
A point doubling in integer arithmetic can be performed by eight modular reductions. The paral-
lel RNS point doubling, however, requires seven modular reduction operations. The hardware
implementation is achievable in eight logic levels using two parallel modular reduction units.
Take P1 a point on the curve ED25519 represented in projective coordinates (X1,Y1, Z1), all
in RNS form, the coordinates of the point P2 = 2P1 are calculated using formulas in (4.4).
Figure 4.3a shows the data flow diagram of RNS point doubling on the twisted-Edwards curve
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Figure 4.2: ECPT flow diagram on SECP256K1

ED25519.
(A, B) ← (2Z1

2, (X1 + Y1)2)
(C,D) ← (X1

2,Y1
2)

E ← 〈C + D〉p

(J, F) ← (〈B − E〉p, 〈C − D〉p)
H1 ← F + A

(Y2,H2) ← (〈EF〉p, 〈p − H1〉p)
(X2, Z2) ← (〈H2J〉p, 〈2H2F〉p).

(4.4)
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Point addition

Take P1 and P2 the two points on the curve ED25519 represented in projective coordinates
(X1,Y1, Z1) and P2(X2,Y2, Z2) in RNS form. The coordinates of the third point P3 on the curve
defined as the addition of points P1 and P2 i.e. P3 = P1 + P2, can be obtained from formulas
in (4.5). These formulas are directly derived from Bernstein [111] point addition formulas
in integer arithmetic by applying RNS and parallel processing properties. Point addition on
twisted Edwards curves in integer arithmetic can be performed by thirteen modular reductions.

(A, B) ← (〈X1X2〉p, 〈Y1Y2〉p)
(C1,C2) ← (X1 + Y1, X2 + Y2)
(D1,D2) ← (AB, A + B)
(E1, E2) ← (〈C1C2 − D2〉p, 〈Z1Z2〉p)

E3 ← E2
2

(F,G) ← (〈E3 + D1〉p, 〈E3 − D1〉p)
(I1, I2) ← (〈E2F〉p, 〈E2G〉p)

(X3,Y3) ← (〈E1I1〉p, 〈D2I2〉p)
Z3 ← 〈FG〉p.

(4.5)

In comparison, our proposed RNS point-addition on the twisted Edwards curve requires
eleven modular reduction operations. The hardware implementation can be performed in eight
logic levels when using two modular reduction units in parallel. Figure 4.3b shows the data
flow of the RNS point addition on the curve ED25519.

Point tripling

The RNS projective coordinates of point P3 = 3P1 on the twisted Edwards curve can be
obtained from formulas in (4.6), which are concluded from Bernstein point tripling formulas in
integer arithmetic [111] after applying RNS and parallel processing properties.

(A, B) ← (〈Y1
2〉p, 〈p − X1

2〉p)
C ← A + B

(D1,D2) ← (2〈2Z1
2 − C〉p, 〈A − B〉p)

(E1, E2) ← (D1B,D1 A)
F ← CD2

(G1,G2) ← (〈F − E2〉p, 〈F + E1〉p)
(H1,H2) ← (〈E2 + F〉p, 〈E1 − F〉p)

(I1, I2) ← (〈X1G1〉p, 〈Y1G2〉p)
(I3, X3) ← (〈Z1G1〉p, 〈H1I1〉p)
(Y3, Z3) ← (〈H2I2〉p, 〈G2I3〉p).

(4.6)

RNS point tripling on a twisted Edwards curve needs 14 field reductions and can be imple-
mented with 11 logic levels using two SOR reduction units. Figure 4.4 depicts the data flow
diagram in hardware. Point doubling and point addition on twisted Edwards curves use a
smaller number of modular reductions than the short Weierstraß curves like SECP256K1 and
Brainpool256r1. However, point tripling on twisted Edwards curve requires more modular re-
duction numbers.
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(a) ECPD on ED25519 (b) ECPA on ED25519

Figure 4.3: RNS point doubling and point addition flow diagram on ED25519

4.2.3 Point arithmetic on Brainpool256r1

Brainpool256r1 is a short Weierstraß curve. The point addition on this curve is the same as
on the curve SECP256K1. However, in point doubling and point tripling formulas, the non-
zero domain parameter a must be taken into account. The Brainpool256r1 field characteristic,
p is not in the form of pseudo-Mersenne. Consequently, the condition (3.37) is not valid for
Brainpool256r1, and the SOR reduction algorithm does not apply to this curve. Accordingly,
we used our proposed RNS Montgomery modular reduction implementation detailed in sec-
tion 3.6, to implement point arithmetic units on this curve. Bearing in mind that the output of
Montgomery reduction is a multiple of Q−1, a correction factor has to be taken into account.
We assume that the input of the reduction unit is a multiple of Q, in other words, we use the
mapping (X,Y, Z) → (〈XQ〉p, 〈YQ〉p, 〈ZQ〉p). Then, rearrange the operations such that the
output of the ECPD, ECPA, and ECPT units will be a multiple of Q as well. The point arithmetic
on the Brainpool256r1 curve, using Montgomery reduction are then introduced as follows.

Point doubling

Take the point P1(X1,Y1, Z1) in Jacobian coordinates on the Brainpool256r1 curve, the co-
ordinates of the point P2 = 2P1 on the curve are calculated using formulas in (4.7). If the
coordinates of the point P1 are mapped to (〈X1Q〉p, 〈Y1Q〉p, 〈Z1Q〉p) then P2 coordinates will
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Figure 4.4: ECPT flow diagram on ED25519

have a factor of Q as well. For ease of writing, we did not show the factor Q in the formulas.
Brainpool256r1 point doubling requires 9 modular reductions in 9 logic levels. Figure 4.5a
depicts the point doubling logic levels on this curve.

(Z′, B) ← (〈Z1
2〉p, 2〈Y1

2〉p)

(Z, A1) ← (〈Z′2〉p, 3X1
2)

(A,C) ← (〈A1 + a · Z〉p, 2X1B)
(X2, Z2) ← (〈A2 − 2C〉p, 〈2Y1Z1〉p)

D ← 〈C − X2〉p

Y2 ← 〈A · D − 2B2〉p

(4.7)
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Point addition

Our Brainpool256r1 hardware is using the RNS Montgomery reduction unit, which adds the
factor Q−1 to the output, we need to rearrange arithmetic operations to manage this factor. It is
assumed that the points P1(X1,Y1, Z1) and P2(X2,Y2, Z2) on the curve Brainpool256r1 with Ja-
cobian coordinates, are mapped to (〈X1Q〉p, 〈Y1Q〉p, 〈Z1Q〉p) and (〈X2Q〉p, 〈Y2Q〉p, 〈Z2Q〉p),
respectively. Then, the mapped coordinates of the point P3(X3,Y3, Z3) = P1 + P2 on the curve
– i.e. (〈X3Q〉p, 〈Y3Q〉p, 〈Z3Q〉p) – are obtained using formulas (4.8). For ease of presentation,
the factor Q is not shown.

(A1, A2) ← (〈Z1
2〉p, 〈Z2

2〉p)
(A3, A4) ← (〈A1Z1〉p, 〈A2Z2〉p)
(B1, B2) ← (Y1 A4, X2 A1)
(C1,C2) ← (X1 A2, X2 A1)
(D1,D2) ← (〈B2 − B1〉p, 〈C2 − C1〉p)
(E2, F1) ← (〈D2

2〉p, 〈C1〉pE2)
(C2,H1) ← (〈C2〉p, 〈Z1Z2〉p)

F2 ← D2E2

(X3, F1) ← (〈E1 − (F2 + 2F1)〉p, 〈F1〉p).
(Z3, F2) ← (〈D2H1〉p, 〈F2〉p)

G2 ← 〈F1 − X3〉p

Y3 ← 〈D1G2 − B1F2〉p

Y3 ← 〈Y3Q2〉p.

(4.8)

Figure 4.5b shows the data flow diagram of point addition on the Brainpool256r1 curve. Point
addition is performed using 17 modular reductions in 14 logic levels.

Point tripling

Given the point P1(X1,Y1, Z1) with Jacobian coordinates on Brainpool256r1 curve, point tripling
is an operation that yields the point P3(X3,Y3, Z3) on the curve denoted by P3 = 3P1. The point
P3 coordinates are obtained from formulas in (4.9). RNS Montgomery reduction unit is used
in our point tripling hardware design. Same as ECPD and ECPA, we assume that the input
coordinates (X1,Y1, Z1) are mapped to (〈X1Q〉p, 〈Y1Q〉p, 〈Z1Q〉p). In this case, the output of
(4.9) are multiples of Q, i.e. (〈X3Q〉p, 〈Y3Q〉p, 〈Z3Q〉p). For a better readability, we did not
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(a) ECPD on Brainpool256r1 (b) ECPA on Brainpool256r1

Figure 4.5: RNS point doubling and point addition flow diagram on Brainpool256r1

show the coefficient Q in the formulas (4.9).

(Z′, A1) ← (〈Z1
2〉p, 3X1

2)

(Z, B) ← (〈Z′2〉p, 〈2Y1
2〉p)

A2 ← a · Z
A ← 〈A1 + A2〉p

(C1,C2) ← (〈6X1B − A2〉p, 〈C1
2〉p)

(D,C3) ← (2B2,C1C2)
(E1, E2) ← (〈D − AC1〉p, 〈2D − AC1〉p)
(F, X3) ← (〈p − (4E2E1 + C3)〉p, 〈4BE1 + X1C2〉p)
(Y3, Z3) ← (〈Y1F〉p, 〈Z1C1〉p)

(4.9)
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The RNS Point tripling requires 12 field reductions on the Brainpool256r1 curve. Figure 4.6
illustrates logic levels of this operation using two parallel modular reduction units.

Figure 4.6: RNS point tripling flow diagram on Brainpool256r1
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4.3 RNS ECC arithmetic hardware architecture

The general design of RNS ECC arithmetic hardware is illustrated in Figure 4.7. We used two
modular reduction units and two modular addition/subtraction units to take advantage of paral-
lel computations and reduce the latency of the system. These primitives are shared between
the ECPD and ECPA state machines. The ECPD and ECPA state machines implement and
control data flow per clock cycle as shown in Figures 4.1, 4.3, and Figure 4.5 for SECP256K1,
ED25519, and Brainpool256r1, respectively. The ECPT state machine is used when imple-
menting the DBC point multiplication algorithm. The ECPT state machine hardware is shared
with the ECPD. The data flow diagram of ECPT state machine is shown in Figures 4.2, 4.4,
and 4.6 for SECP256K1, ED25519, and Brainpool256r1, respectively.

The Montgomery ladder ECPM in our design performs ECPD and ECPA at the same
time. Therefore, the arithmetic primitives cannot be shared between ECPA and ECPD state
machines. Figure 4.8 depicts the architecture of the arithmetic hardware to be used in the
Montgomery ladder ECPM. Every ECPA and ECPD unit exploits two dedicated modular re-
ductions and modular addition/subtraction hardware units which makes working in parallel
possible.

The curves SECP256k1 and ED25519 point arithmetic units are implemented using both
SOR_1M and SOR_2M modular reduction architectures. The latency of ECPA, ECPD, and
ECPT on the curves SECP256K1 and ED25519 are reported in Table 4.1 for both imple-
mentations using SOR_1M and SOR_2M modular reduction units. The Brainpool256r1 field
characteristic p is not in the form of pseudo-Mersenne and is not supporting the condition
(3.37). Therefore, we used the RNS Montgomery modular reduction to implement point arith-
metic units of the curve. The latencies of ECPA, ECPD, and ECPT on the Brainpool256r1
curve are reported separately in Table 4.2. The latencies are reported for implementations
on VIRTEX-7 and VIRTEX Ultra Scale+ FPGAs. The clock period used for VIRTEX 7 and
VIRTEX UltraScale+ FPGAs is 8.0 ns and 6.0 ns, respectively.

Table 4.1: SECP256K1 and ED25519 point operations latency in nano seconds

Modular reduction architecture SOM_1M SOM_2M
ECC Curve Device/Operation VIRTEX-7 VIRTEX US+ VIRTEX-7 VIRTEX US+

SECP256K1
ECPD 1072 737 848 583
ECPA 2496 1716 1936 1331
ECPT 1624 1117 1288 886

ED25519
ECPD 1040 715 816 561
ECPA 1552 1067 1216 836
ECPT 2016 1386 568 1078

Table 4.2: Brainpool256r1 point operations latency in nano seconds

Modular reduction architecture RNS Montgomery
ECC Curve Device/Operation VIRTEX-7 VIRTEX US+

Brainpool256r1
ECPD 1280 960
ECPA 2112 1584
ECPT 1784 1338
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Figure 4.7: General Arithmetic hardware architecture of ECPM

4.4 Point multiplication state machines

The point multiplication state-machine implements the point multiplication algorithms discussed
in section 2.2.12. In this research, we implemented Double-and-add, Montgomery ladder,
NAF, NAF3, and DBC point multiplication algorithms. We used DBC Tree and DBC L-T algo-
rithms to decode a scalar to its DBC representations. The point multiplication state machine
receives a scalar k and a point P on the curve as inputs and then exploits the point arithmetic
hardware units to calculate the new point Q = k · P. The format of the scalar k depends on
the algorithm used for point multiplication. Conversion to the proper format, either NAF, NAF3,
DBC, or JSF, is done by software and the result is saved in the FPGA. Figure 4.9 shows the
top-level architecture of the point multiplication hardware. In the general design, arithmetic
units can be any of the architectures in Figure 4.7 or 4.8 designed for SECP256k1, ED25519,
and Brainpool256r1 curves. In the following, we have detailed the state machines architec-
tures used in this research.

4.4.1 Double-and-add scalar multiplication state machine

The Double-and-add algorithm shown in Algorithm 6 is the simplest way to calculate the point
multiplication of scalar k. The binary representation of k is (kl−1 . . . ki . . . k0), where l =

log2 k� = 256. The hardware implementation of this algorithm is shown in the state machine
diagram of Figure 4.10. At state S0, if the RESET signal is not active, the key (scalar k) and
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Figure 4.8: Arithmetic unit hardware architecture for Montgomery ladder algorithm

point P are read from the input. the register i is set to value of l. When the ‘Ready’ signal
is zero, it means that the output of the state machine is not valid. The point P is set as one
input of the ECPA and is copied to register R. At the State S1, the ECPD input is fed by the
register R and the register i is decremented. At the next state, S2, the ECPD starts calculating
2P and updates the contents of register R to the new value 2R. At S3, the ECPD is disabled.
Then, the bit ki is checked. If it is one, a point addition to P must be performed at state S4

Figure 4.9: RNS ECC Core Hardware implementation
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Figure 4.10: Double-and-Add algorithm state machine

and register R is updated to the output of ECPA. Else if the bit Ki is zero, the ECPA step is
bypassed to state S5. At state S5, the ECPA is disabled, and if i > 0, the state machine goes
back to state S1. Otherwise, the point multiplication is completed. The content of register R
is set to the output and ‘Ready’ signal is set to one.

4.4.2 Montgomery ladder scalar multiplication state machine

Montgomery ladder algorithm — shown in Algorithm 7— performs ECPA and ECPD in parallel.
The state machine starts state S0 with loading the key to register k, point P to register R0 and
input of ECPD, and setting the ‘Ready’ signal to zero. At state S1, the ECPD is enabled to
calculate 2P. The value of 2P is saved in register R1. At state S2, the registers R0 and R1
fed the inputs of ECPA. The bit ki is checked. If ki is one, the content of register R1 is used
as the input of ECPD. Otherwise, R0 is fed to the input of ECPD. At state S3, both ECPD and
ECPA are enabled. At S4, the state machine waits for completion of ECPA. Then, the values
of registers R0 and R1 are updated at state S5 depending on the value of bit ki. At S6, The
ECPA and ECPD are disabled. If i > 0, then register i is decremented, and the state machine
rolls over to state S2. Otherwise, the ‘Ready’ signal will be set to one and register R0 content
is introduced to the output.
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4.4.3 NAF method scalar multiplication state machine

In this algorithm, the NAF representation of the scalar k is used with Algorithm 9. Assuming
that ∀i ∈ [l − 1, 0], (k′l−1 . . . k

′
i . . . k

′
0), k′i ∈ {−1, 0, 1}. The length of NAF(k) is l. Then each

k′i is mapped to a two-bit binary number as {−1 → ‘11’}, {1 → ‘00’}, and {1 → ‘01’}
to be recognisable by the hardware. The state machine diagram of the NAF method point
multiplication is shown in Figure 4.12. The state machine starts at state S0 when the signal
RESET is not active. At S0, the decoded NAF of scalar k and point P are read from the input
and saved in resisters k and R, respectively. The register i is set to 2× l (as each ki is mapped
to two bits) and the ‘Ready’ signal is set to zero. At state S1, the additive inverse of P, that
is, −P is calculated and saved in register S. At state S2, the input of ECPD is set by register
R and the register i is decremented by 2. At state S3, the register R is updated by the output
of ECPD. At state S4, the ECPD is disabled, register R is set to one of the inputs of ECPA. If
ki = ‘01’ is then the ECPA gets P, if ki = ‘10’ the ECPA gets S as the second input and the
state machine goes to state S5. Else if ki = ‘00’ then there is no need of performing a point
addition and he state machine jumps to state S6. At state S6, if i > 2 then the state machine
rolls over to S2, otherwise the point multiplication is complete. Register R is set to the output
and ‘Ready’ signal is set to one.

Figure 4.11: Montgomery ladder algorithm state machine
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Figure 4.12: NAF algorithm state machine

4.4.4 NAF3 method scalar multiplication state machine

The NAF3 method also utilises Algorithm 9. However, The representation of scalar k in NAF3
is given by (k′l−1 . . . k

′
i . . . k

′
0), k′i ∈ {−3,−1, 0, 1, 3}∀i ∈ [l − 1, 0]. Where, l is the length of

the expansion. Therefore, the points −P, 3P, and −3P must be pre-computed. Each ki is
mapped to a three-bit binary number to be understandable for the hardware. We consider the
mapping as {−3 → ‘111’}, {−1 → ‘011’}, {0 → ‘000’}, {1 → ‘001’}, and {3 → ‘101’}.
Figure 4.13 shows the NAF3 method point multiplication state machine. At state S0, the NAF3
representation of scalar k and point P are loaded to registers k and R0, respectively. The
signal ‘Ready’ is set to zero. At states S1 to S5, the points −P, 3P, and −3P are calculated
and saved in registers R1, R2, and R3, respectively. At state S5, the register R is loaded by
R0 or R3, depending on the kl−1 value. At state S6, the register R is fed to the input of ECPD.
At state S7, register R is updated by the output of ECPD. At state S8, register R is fed to one
of the inputs of ECPA. The value of ki determines which one of R0 to R3 must be used as the
other input of ECPA. If ki = ‘000’ then there is no need of point addition and the state machine
skips to state S10. At state S9, ECPA is enabled. The register R is updated by the output of
ECPA. At State S10, if i > 3, then, register i is decremented by three and the state machine
rolls over to state S6. Otherwise, the output is set by the value of register R and signal ‘Ready’
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is set to one.

Figure 4.13: NAF3 algorithm state machine
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4.4.5 DBC scalar multiplication state machine

The DBC scalar multiplication exploits the DBC representation of the scalar k. The DBC rep-
resentation consists of six distinct operations: double, double and add, double and subtract,
triple, triple and add, and triple and subtract which are mapped to 3-bit binary numbers ‘011’,
‘101’, ‘111’, ‘010’, ‘100’, ‘110’, respectively. The DBC representation of k is obtained from
either the Tree or L-T algorithms discussed in section 6. Figure 4.14 shows the DBC point
multiplication state machine diagram. The state machine starts at state S0, after an exit from

Figure 4.14: DBC algorithm state machine

the RESET state. The mapped DBC value of the scalar is loaded to register k, point P is saved
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to registers R and R1, register i is updated with the bit-length of k, and signal ‘Ready’ is set to
zero. At state S1, the additive inverse of P is calculated and saved in register S. At state S2, if
bit zero of ki (denoted by ki0) is zero, then the next state will be D1 where register R1 is fed to
the input of ECPD to do a doubling at state D2. Otherwise, if the bit Ki0 is one, then the next
state is T1, where the register R1 is fed to the input of ECPT to do a point tripling at state T2.
At the end of D2 or T2 state, register R1 is refreshed by either ECPD or ECPT, respectively.
At state S3, ECPD and ECPT are disabled. If the two most significant bits of ki denoted by
(ki2, ki1) are (1, 0), then a point addition to P is done at the next state S4. If these bits are
(1, 1) then, a point addition to −P is done at state S4. Otherwise, the state machine skips
performing a point addition at S4 and enters state S5. At state S5, register i is decremented
by three. If the value of register i > 3 then the state machine rolls over to state S2. Else, it
outputs the value of register R and sets the signal ‘Ready’.

4.4.6 GLV method scalar multiplication state machine

The GLV method point multiplication is implemented only for SECP256k1 curve which has
an efficient endomorphism property. Algorithm 11 shows GLV point multiplication using JSF
representation of the scalars k1 and k2. If P is a point on SECP256k1 curve, then the point
Q = λ · P on the curve can be easily calculated using the endomorphism map λ · P(x, y) =
(βx, y). Assuming that R = k1 · P + k2 · Q, using Shamir’s trick, and JSF representation of

k1 and k2 we can calculate point R, i.e. R =
[
P Q

]
·
[
k1

l−1 · · · k1
0

k2
l−1 · · · k2

0

]
. Considering that

k1
i, k2

i ∈ {−1, 0, 1}∀i ∈ [l−1, 0], we will have nine distinct operations that are a point doubling
only, and a point doubling then addition of any of the points P, Q, −P, −Q, P + Q, P − Q,
−P + Q, and −P −Q. We pre-compute these eight points and save them in a ROM. The state
machine then performs the Shamir’s trick by first a point doubling and then a point addition to
one of the pre-computed points read from the ROM. The columns in JSF representation of the
scalar k1 and k2 are decoded to a 4-bit binary number as follows:

k1 → 0 1 1 1 -1 -1 0 -1 0
k2 → 1 0 1 -1 -1 1 -1 0 0

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
’0000’ ‘0001’ ‘0010’ ‘0011’ ‘0100’ ‘0101’ ‘0110’ ‘0111’ ‘1000’

These 4-bits correspond to the memory locations where the pre-computed points are
saved. For example, Q is saved at memory address ‘0000’, P + Q at memory address ‘0010’,
and so on. The GLV point-multiplication state machine diagram is shown in Figure 4.15. At
state S0, the decoded JSF representation of scalars k1 and k2 is read from the input and
saved in register k. The ‘Ready’ signal is set to zero. At state S1, the leftmost 4-bits of the
register k are used as the ROM address to fetch the corresponding point and load to register
R. At state S2, the register R is fed to the input of ECPD. The pointer i is decremented by 4.
It is now pointing to the next 4 bits in register k. At state S3, ECPD is enabled. Register R
is updated with the output of ECPD. At State S4, the next four bits of k are read, If it is equal
to ‘1000’ which corresponds to k1

i = ‘0’ , k2
i = ‘0’, then the state machine rolls over to state

S2. Otherwise, it is used as the address of the ROM. The fetched point from the ROM is fed
to one of the inputs of ECPA. The second input of ECPA is taken from the register R. At state
S5, ECPA is enabled. The state machine stays in this state until ECPA output is ready. The
register R is updated by the ECPA output at the last clock cycle of state S5. At state S6, if all
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bits of register k are not read; the state machine rolls over to S2. Otherwise, the state machine
sets the output by the contents of register R and the ‘Ready’ signal to one.

Figure 4.15: Scalar multiplication state machine using GLV algorithm

4.5 Implementation results
We designed point multiplication hardware cores for curves SECP256k1, Brainpool256r1, and
ED25519. The general architecture shown in Figure 4.9 was implemented for each curve
on Xilinx VIRTEX-7 and VIRTEX UltraScale+™ FPGA platforms that are manufactured with
28 nm and 16 nm process technologies, respectively. The arithmetic hardware for curves
SECP256r1 and ED25519 is designed utilising the sum of residues modular reduction unit.
Both SOM_1M and SOM_2M architectures are applied in our design to study the performance
of the hardware. The Brainpool256r1 point multiplication hardware exploits our proposed RNS
Montgomery reduction unit. The point multiplication state machines for SECP256K1, Brain-
pool256r1, and ED25519 curves are implemented using the double-and-add, Montgomery
ladder, NAF, NAF3, and both DBC Tree and DBC L-T algorithms. The GLV algorithm state
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machine was implemented for SECP256k1 curve only. The top-level architecture depicted
in Figure 4.9 utilises the general arithmetic unit configuration shown in Figure 4.7. Using a
MAPLE program, we generated 1000 random 255 to 256-bit integers and their representa-
tions in NAF, NAF3, DBC, and JSF of k1 and k2 to be readable by the point multiplication
hardware. The performance of each point multiplication algorithm is measured by averaging
the latency. The NAF3 state machine needs to pre-compute and store points. However, it can
effectively reduce the overall latency of point multiplications. ECPT has to be implemented
to use DBC scalar multiplication algorithms. ECPT adds a large logic area to the system.
Nevertheless, DBC scalar multiplication algorithms can effectively reduce the latency. The
performance of NAF3 algorithm is slightly better than DBC algorithms.

We also used the GLV algorithm to implement SECP256K1 RNS ECC core. The GLV point
multiplication requires pre-computations and storage of eight points in the memory. This algo-
rithm offers the fastest and the highest performance compared to all other methods. However,
it is only available for the curves with an efficient endomorphism.

Tables 4.3 and 4.4 compare the average scalar multiplication latency of SECP256k1 and
ED25519 curves designed with SOR_1M and SOR_2M modular reduction units. The hard-
ware was implemented on VIRTEX 7 and VIRTEX UltraScale+ FPGAs. For ease of compar-
ison, Figures 4.16 and 4.17 visualise the latency of each point multiplication hardware. The
main clock frequency used in this experiment was 125 MHz and 166.7 MHz on VIRTEX-7 and
VIRTEX UltraScale+, respectively.

Tables 4.5 and 4.6 report the logic area of RNS point multiplication core implemented us-
ing SOR_1M and SOR_2M modular reduction units for curves SECP256k1 and ED25519,
respectively. Figures. 4.18 and 4.19 compare the Area×Time parameter as the performance
indicator for the implemented designs on SECP256k1 and ED25519 point multiplication hard-
ware.

Our results showed that GLV method improves the performance and speed of SECP256K1
point multiplication by 40% and 47%, respectively compared to Double-and-Add algorithm.
The performance of NAF3 is better than DBC however, DBC can improve the latency by 22%
and 35% compared to NAF3 and Double-and-Add algorithms, respectively.

The performance of Double-and-Add in ED25519 point multiplication, is close to NAF and
NAF3 algorithms. Using DBC method for ED25519 is not promising as its performance and
speed is not improved compare to Double-and-Add and NAF.

The latency and area of Brainpool256r1 point multiplication hardware— which is designed
with the RNS Montgomery reduction unit— is reported in Table 4.8 on both VIRTEX and VIR-
TEX UltraScale+ FPGAs. Figures 4.20 and 4.21 show the latency and Area×Timing perfor-
mance index of Brainpool256r1 point multiplication hardware, respectively on VIRTEX and
VIRTEX UltraScale+ FPGAs.

The results showed that the DBC L-T algorithm improves the latency of Brainpool256r1
point multiplication by more than 30% compared to Double-and-Add algorithm. Interestingly,
the performance of Double-and-Add is very close to NAF, NAF3, and DBC methods.

The point multiplication hardware which implements the L-T DBC algorithm showed 4.7%,
9.6%, and 3.2% improvement in the core average speed compared to the DBC Tree algorithm
implementation on SECP256K1, Brainpool256r1, and ED25519 curves, respectively.

We compared our double-and-add implementation on VIRTEX-7 FPGA series with recent
similar works in Table 4.7. Our design notably reduces the timing of a scalar multiplication
down to fractions of a millisecond, while the latency of other designs falls within the range of
a few milliseconds.
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Table 4.3: point multiplication latency on VIRTEX-7

Curve SECP256K1 ED25519

Modular reduction SOR_1M SOR_2M SOR_1M SOR_2M

Scalar Multiplication latency(ns) latency(ns) latency(ns) latency(ns)

Double-and-add 595397 467547 465576 366193
Montgomery ladder 639600 496576 397288 311720
NAF 495183 388140 400791 314889

NAF3 441191 347087 369661 291124

DBC Tree 409933 323300 379607 297697
DBC L-T 390846 308469 367048 287865

GLV 324025 256069 – –

Table 4.4: point multiplication latency on VIRTEX UltraScale+

Curve SECP256K1 ED25519

Modular reduction SOR_1M SOR_2M SOR_1M SOR_2M

Scalar Multiplication latency(ns) latency(ns) latency(ns) latency(ns)

Double-and-add 410076 322714 320337 251733
Montgomery ladder 440365 342036 273263 214435
NAF 340696 270957 275374 216631

NAF3 303694 238870 254816 200227

DBC Tree 282133 222573 261247 204934
DBC L-T 269003 212369 252607 198168

GLV 225052 175855 – –

4.6 Conclusion

We designed a high-speed RNS ECC point multiplication core for the standard SECP256K1
and ED25519 elliptic curves used in hardware security modules. Using an efficient moduli set,
we proposed new architectures for RNS addition and subtraction. Our design relies on two
high-speed SOR reduction units shared between ECPA and ECPD (and ECPT when using
DBC representation) to allow parallel computing. Two different architectures of SOR modular
reductions were used in our RNS ECC design to compare how the performance of modular
reduction impacts the overall latency of the system. Different scalar multiplication algorithms
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Table 4.5: RNS ECC Point multiplication core area for SECP256K1 on XILINX FPGA

Modular reduction SOR_1M SOR_2M

Scalar Multiplication Slices(× 1000) / KLUT / FF / DSP Slices(× 1000) / KLUT / FF / DSP

Double-and-add 11.99 / 42.77 / 24782 / 280 12.71 / 45.54 / 25518 / 560

Montgomery ladder 17.90 / 63.98 / 36398 / 560 19.32 / 69.50 / 37134 / 840
NAF 12.31 / 43.83 / 25838 / 280 13.04 / 46.60 / 26574 / 560

NAF3 12.88 / 45.89 / 26894 / 280 13.36 / 47.65 / 27630 / 560

DBC 14.87 / 52.28 / 34286 / 280 15.65 / 55.24 / 35026 / 560

GLV 13.26 / 46.96 / 29006 / 280 14.01 / 49.78 / 29742 / 560

Table 4.6: RNS ECC Point multiplication core area for ED25519 on XILINX FPGA

Modular reduction SOR_1M SOR_2M

Scalar Multiplication Slices(× 1000) / KLUT / FF / DSP Slices(× 1000) / KLUT / FF / DSP

Double-and-add 10.37 / 37.18 / 20474 / 280 11.06 / 39.45 / 22760 / 560

Montgomery ladder 15.26 / 54.39 / 31622 / 560 16.48 / 59.11 / 32454 / 840

NAF 11.90 / 42.77 / 23084 / 280 12.77 / 46.10 / 23816 / 560

NAF3 12.35 / 44.35 / 24140 / 280 13.10 / 47.18 / 24872 / 560

DBC 13.99 / 49.69 / 29948 / 280 14.66 / 52.21 / 30680 / 560

were implemented for the ECC state machine. We showed that combining these algorithms
with RNS arithmetic greatly improves the point multiplication latency for both SECP256K1
and ED25519 curves. Our design showed a notable improvement in the speed of elliptic
curve point multiplication compared to the most recent similar works at the cost of using more
logic resources on the FPGA; however, the performance of our design (Area×Latency) is an
outstanding achievement compared to the related works in the literature. We implemented our
design on the VIRTEX-7 and VIRTEX Ultra Scale+™ family to show the impact of the layout
process technology on the speed.
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Figure 4.16: SECP25k1 point multiplication latency on Xilinx FPGAs

D/A MNG NAF NAF3 DBC1 DBC2
0

0.1

0.2

0.3

0.4

0.5

4.
7
·1

0−
1

4
·1

0−
1

4
·1

0−
1

3.
7
·1

0−
1

3.
8
·1

0−
1

3.
7
·1

0−
1

3.
7
·1

0−
1

3.
1
·1

0−
1

3.
1
·1

0−
1

2.
9
·1

0−
1

3
·1

0−
1

2.
9
·1

0−
1

3.
2
·1

0−
1

2.
7
·1

0−
1

2.
8
·1

0−
1

2.
5
·1

0−
1

2.
6
·1

0−
1

2.
5
·1

0−
1

2.
5
·1

0−
1

2.
1
·1

0−
1

2.
2
·1

0−
1

2
·1

0−
1

2
·1

0−
1

2
·1

0−
1

La
te

nc
y

(m
s)

SOM_1M on VIRTEX 7 SOM_2M on VIRTEX 7 SOM_1M on VIRTEX US+ SOM_2M on VIRTEX US+

Figure 4.17: ED25519 point multiplication latency on Xilinx FPGAs
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Figure 4.18: SECP25k1 point multiplication performance Area × Timing
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Figure 4.19: ED25519 point multiplication performance Area × Timing
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Figure 4.20: Brainpool256r1 point multiplication latency on Xilinx FPGAs
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Figure 4.21: Brainpool256r1 point multiplication performance Area × Timing
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Table 4.7: Similar RNS ECC implementations over Fp, p: 256-bit prime

Design Platform Area Latency@Clk Freq performance

SLICE / KLUT / FF / DSP / BRAM ms@MHz Slice×sec

Ours, D/A SECP256K1[109] VIRTEX-7 12.71K / 45.5 / 25518 / 560 / 0 0.46@125 6.1

Ours, D/A Brianpool256r1 VIRTEX-7 8.8K / 31.2 / 18964 / 28 / 0 0.45@125 5.3

Ours, GLV SECP256K1 [109] VIRTEX-7 14.01K / 46.9 / 29742 / 560 / 0 0.25@125 3.5

Asif, 2018 [108] VIRTEX-7 N.R.1/ 18.8 /N.R. / N.R. / N.R. 0.73@86.6 14.0 2

Asif, 2017 [112] VIRTEX-7 N.R. / 96.9 /N.R. / N.R. / N.R. 2.96@72.9 71.72

Matutino, 2017 [113] SPARTAN-6 789 / 1.988 / 786 / 6 / 26 25.4@147 20.12

Alrimeih, 2014 [114] VIRTEX-6 11.2K / 32.9 /N.R. / 289 / 128 20.5@100 229.6

Esmaeildoust, 2013 [115] VIRTEX-2 N.R. / 28.7 / N.R. / N.R. /N.R. 12.39@50.2 88.82

Guillermin, 2010 [103] Stratix II 9.17K ALM /N.R. / N.R. / 96 / N.R. 0.68@157.2 6.2

Schinianakis, 2009 [116] VIRTEX-E N.R. / 32.716 / N.R. / N.R. / N.R. 82.9@39.7 677.72

Yuan, 2007 [117] VIRTEX-2 PRO 41.59K / N.R. / N.R. / N.R. / N.R. 2.66@94.7 110.6

1N.R.: Not Reported.
2Slices are estimated as KLUT/4.

Table 4.8: RNS ECC point multiplication Latency and Area for Brainpool256r1 on Xilinx FPGA

Platform VIRTEX 7 VIRTEX UltraScale+

Scalar Multiplication Latency Area Latency Area
ns Slices(×1000) / KLUT / FF/ DSP ns Slices(×1000) / KLUT / FF/ DSP

Double-and-Add 595306 8.8 / 31.2/ 18964 / 128 450010 8.8 / 31.0 / 18958 / 128

Montgomery ladder 546264 13.6 / 48.4 / 28592 / 256 409470 13.6 / 48.1 / 28344 / 256

NAF 514772 9.5 / 33.8 / 20648 / 128 385655 9.5 / 33.7 / 20542 / 128

NAF3 474103 10.9 / 39.5 / 21176 / 128 355360 10.9 / 39.1 / 21074 / 128

DBC Tree 429783 12.5 / 45.1 / 24294 / 128 322337 12.5 / 44.8 / 24253 / 128

DBC L-T 413891 12.5 / 45.1 / 24294 / 128 310418 12.5/ 44.8 / 24253 / 128



5
Side-channel power analysis of the GLV

RNS ECC

5.1 Introduction

In this chapter, we first introduce a new RNS GLV ECC co-processor design in section 5.2,
which is not using parallel computation, with an aim to reduce the area of the core logic.
This co-processor is then used for side-channel data analysis. Our first motivation to choose
RNS GLV ECC co-processor for side-channel analysis is that the RNS has been used as a
countermeasure to side-channel attacks in some literature such as [118] and [119]. Next, as
illustrated in Figure 4.15, the GLV state machine reads different pre-calculated points from a
ROM. A reading from ROM is a low-power operation in comparison to the arithmetic operations
performed in an ECC co-processor. It is presumed that its side-channel data become lost in
the presence of the white-noise generated by other hardware resources. Consequently, all
the read from ROM operations may look very similar and may not be distinguished from their
side-channel power spectrum. Therefore, the combination of the RNS and the GLV method
is expected to be a powerful countermeasure to side-channel attacks. Section 5.3 describes
our experimental setup, the configuration of the RNS GLV co-processor to operate with a
set of private keys, and side-channel power data collection. In section 5.4, we present our
observations of applying machine-learning and deep-learning techniques on the side-channel
power data.

5.2 Design of a low-cost RNS GLV ECC

The low-cost design of the RNS GLV point multiplication core consists of an arithmetic unit with
an ECPD and an ECPA state machine that share one SOR_2M modular reduction unit, one
Modular multiplication unit, one addition, and one subtraction unit. The hardware architecture
is illustrated in Figure 5.1. The data flow in ECPD and ECPA state machines is shown in Figure
5.2, which implements curve SECP256K1 group operations. However, unlike the architecture
in Figure 4.1, no parallel computation is performed in this design. The ECPD and ECPA state
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Figure 5.1: RNS GLV core arithmetic unit architecture.

machines are done in eight and sixteen logic levels, respectively using one modular reduction
unit. The block diagram of the low-cost RNS GLV ECC point multiplication core is shown in
Figure5.3. A set of 16 scalars (private key pairs k1 and k2) in JSF format are pre-computed
and saved in a separate distributed ROM. The same method described in section 4.4.6 is used
to map JSF presentation of the key pairs to a code understandable for hardware. Each key pair
is then saved as a 512-bit binary digit in the ROM. These 16 key pairs are chosen such that
when the RNS GLV core runs the point multiplication algorithm, our desired training and test
side channel power data is generated. More details are presented in Section 5.3.2. The point
P, — the generator of the curve SECP256k1 — the pre-computed points Q = λ · P, −P, −Q,
(P +Q), (P−Q), (−P +Q), and (−P−Q) in their RNS presentation are saved in a ROM that is
addressed by the ECC state machine. Recalling that the RNS is a non-positional numbering
system, statistically, the hamming weight of the pre-computed points is approximately equal
to M

2 . Where M is the dynamic range of the RNS used in this research; that is M = 528.
The value of Z1 is set to 233 − 1 for all the eight RNS channels to preserve the hamming
weight equal to M

2 for the Z coordinate. The red dots on Figure 5.4 show the locations where
the distributed ROM cells —containing the pre-calculated points — are implemented in the
FPGA. It can be observed that the ROM cells are aligned at the centre of FPGA. Therefore,
we anticipate having a homogeneous power consumption when readings different points from
the ROM. The ECPD and ECPA units use shared arithmetic hardware resources, as illustrated
in Figure 5.1. The SOR unit utilises SOR_2M architecture detailed in section 3.7. The flow
diagram of the ECPD and ECPA is shown in Figure 5.2. The logic levels present operations
that are performed during a modular reduction. The latency of ECPD and ECPA operations
are 155 and 370 clock cycles, respectively. After exit from a reset state, the state machine
reads one of the sixteen 512-bit keys from the ROM1. (Recalling from 4.4.6, every key-pair
bit (k1

i, k2
i) is decoded to a 4-bit binary. Therefore the 128-bit keys k1, and k2 are decoded

to 512-bit binary). At the next state, S1, the state machine sets the address of ROM2 from
the leftmost four bits of the key and selects SELD = ‘0’. At state S2, ECPD is enabled and
performs a point doubling. At state S3, based on the value of next four bits of the key, the
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Figure 5.2: ECPD (left) and ECPA (right) flow diagram in the RNS GLV core.

state machine decides either to read a new point from ROM2 and perform a point addition or
to perform another point doubling by setting SELA =‘0’ and SELD=‘1’. The state machine then
continues this loop until all bits of the key are read. At the final cycle, the result is set to output
and the ‘Ready’ signal is set to one.
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Figure 5.3: RNS GLV ECC point multiplication design.

Figure 5.4: Distributed ROM locations on KINTEX-7 FPGA.

5.3 Side-channel data analysis of the GLV ECC core

As discussed in Chapter 2, side-channel attacks are closely related to the existence of phys-
ically observable phenomena caused by the execution of computing tasks in the hardware.
This type of attack is passive and impalpable. In this research, we focused on power con-
sumption data leakage that is considered side-channel power data in practical attacks. Us-
ing machine-learning and deep-learning methods, we studied the side-channel power data
acquired by monitoring the current sunk by the FPGA when performing point multiplication
operations.

Based on Kerckhoff’s principle, it is assumed that the adversary has complete knowledge
of the algorithm used for encryption, all related parameters, except the private key, and the
required tools to gather side-channel data.

Several sophisticated leakage models are determined by the adversaries to simulate or
to improve the attack efficiency. For example, Hamming distance model, studied in our other
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work in [46] assumes that when a value ’0’ or ’1’ switches into a value ’1’ or ’0’, the actual side-
channel leakages are correlated with the Hamming distance of these values. In the following,
we introduce our experimental setup and design of our side-channel attack model based on
the PoI (Points of Interest) method.

5.3.1 Experimental setup

For the side-channel leakage experiments, we have collected data for the RNS-ECC imple-
mentation on KINTEX-7 FPGA, mounted on Sakura-X [120], using Tektronix MDO series os-
cilloscope with 1GHz bandwidth and 5GS/s sampling frequency. We reduced the FPGA’s
clock frequency to 3.0 Mhz, to capture adequate side-channel power signal samples within a
clock cycle. The oscilloscope’s sampling rate is set to 25 MS/s such that 8.33 samples can
be taken at every clock cycle, which is sufficient to monitor power signal changes in one clock
cycle. Sakura-X is a specialised board designed for side-channel leakage data acquisition. It
provides a connection to capture the power consumed by the FPGA core through a resistor
connected in series. We collected 1600 (100 × 16) power traces in total. Out of which, 100
traces — each of one million (1M) samples long — are collected for each address value (0-15)
of ROM B — that contains the keys k1 and k2. Further processing is done to extract the sam-
ples of interest from the 1M samples. Traces which relate to the ROM address 0 to 8 are used
for training and traces related to address 9 to 15 which are random scalars are used for testing
the model accuracy. The data collection process is automated by developing a stand-alone
interface application, which requires just initial input parameter settings from the user. The
data collection process is classified into the following steps.

• Step 1 - Take input parameters (number of samples, key length) from the user;

• Step 2 - Configure the oscilloscope using MATLAB libraries;

• Step 3 - Send the ROM address of the key from PC to FPGA through the control unit
interface;

• Step 4 - Send the trigger signal to start encryption on FPGA;

• Step 5 - Initiate the process of leakage data collection and store in the data file;

• Step 6 - After FPGA completes ECC processing, receive the encryption output and store
in a file.

For machine learning analysis, Python along with Keras libraries has been used.

5.3.2 Methodology

As discussed, The GLV ECC core performs an “ECPD only” that corresponds to the scalar
JSF pair bits (0, 0), and an ECPD followed by an ECPA in other cases. The point addition
uses the output of point-doubling as one input and one of the pre-computed points stored
in the ROM2 as the second input. Therefore, the core activity can be categorised into nine
distinct operations. That is double, and double then add to any of the points P, Q, −P, −Q,
P + Q, P − Q, −P + Q, or −P − Q. The X , Y , and Z coordinates of these points are stored
in the form of a 528-bit RNS value. Every 66-bit represents one RNS channel. The hamming
weight of all stored values is M

2 on average. As a result, the power consumption of a ROM
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read operation for all the eight saved points are very similar and hard to differentiate. The
maximum power is used by the Modular reduction unit. Figure 5.5 shows three randomly
chosen power traces related to a modular reduction operation. The peaks are related to RNS
multiplication and addition operations. With different inputs, the modular reduction unit power
traces have very similar patterns. Figure 5.6 shows power consumption trace of an ECPD
followed by ECPD, and ECPD followed by an ECPA adding points P and P + Q. An ECPD

Figure 5.5: Three side-channel power traces of a modular reduction operation on FPGA

Figure 5.6: side-channel power trace top: two doubling, middle: doubling then addition with
P, down: doubling then addition with P+Q

followed by a ROM reading and ECPA operations will take 527 clock cycles. Then, its power
trace has 4392 samples in our dataset. The points of interest (PoIs) are samples related
to the end of the ECPD, ROM reading and the start of the ECPA. Thus, for the selection
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of features, we practised two approaches. First, we took a window of 2600 samples that
covers two consecutive ECPD operations or one ECPD and a part of ECPA operation. Figure
5.7 shows the power data window used as the machine learning dataset. The rest of the
power data is not considered in the dataset preparation since we need to distinguish whether
an ECPD operation is followed by an ECPD or an ECPA operation. Moreover, we have to
distinguish which point is read from the ROM before performing an ECPA. When an ECPD
operation is followed by an ECPD, no data is read from the ROM. In the second approach, we
narrowed down the window size and use 192 sample points before a ROM reading 16 sample
points of ROM reading and 192 sample points after the ROM reading; in total, the window
contains 400 samples. The PoI data is located between ECPD and ECPA power trace. If

Figure 5.7: Dataset window, top: ECPD-ECPA, down: ECPD-ECPD sequence.

we can distinguish the power patterns of the RAM readings, then it is possible to find the pair
of bits of k1 and k2. For this reason, we need to train our machine learning algorithms with
some distinct key-pairs. We classify nine 128-bit key-pair L1 to L9 as shown in (5.1) and
let the hardware core run by all of these key-pairs. The observed power signals are used to
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construct our training dataset.

L1 =
[ 128bits︷��������������︸︸��������������︷
1 0 0 · · · 0
1 1 1 · · · 1

]
L2 =

[
1 1 1 · · · 1
1 0 0 · · · 0

]
L3 =

[
1 1 1 · · · 1
1 1 1 · · · 1

]
L4 =

[
1 1 1 · · · 1
1 −1 −1 · · · −1

]
L5 =

[
1 −1 −1 · · · −1
1 −1 −1 · · · −1

]
L6 =

[
1 −1 −1 · · · −1
1 1 1 · · · 1

]
L7 =

[
1 0 0 · · · 0
1 −1 −1 · · · −1

]
L8 =

[
1 −1 −1 · · · −1
1 0 0 · · · 0

]
L9 =

[
1 0 0 · · · 0
1 0 0 · · · 0

]

(5.1)

The side-channel power consumption data of each training key (L1 − L9) is sampled 100
times. As a result, by dropping out the first operation for each label (training key-pair L1−L9),
we have 12700 sample frames. Each frame includes 2600 features, as depicted in Figure
5.7. We build our dataset by randomly choosing five hundred frames from each class of data
(L1− L9). Consequently, we have 4500 data frames that are classified into nine classes. The
raw samples are scaled to the range [−1, 1]. The absolute of scaled power trace ranged in
[0, 1] is used as the input of machine learning algorithms. Figure 5.8 illustrates changes in a
sample power signal.

5.4 Applying Machine learning algorithms on side- channel
power data

5.4.1 Simple Machine-learning algorithms

In this experiment, we applied SVM, kNN, and Radom Forest algorithms for classification of
the power signals. Neither of the algorithms were able to classify the features accurately. The
maximum accuracy obtained from the SVM is limited to 22%. Figure 5.9 shows changes in
accuracy over changing the SVM algorithm hyper-parameters γ and C. As depicted in Fig
5.10, The application of Random Forest algorithm on our dataset did not provide a reasonable
accuracy over a range of hyper-parameters. Our experiment with kNN algorithm resulted in an
accuracy of less than 22%. It means that the power signal dataset cannot be classified with
these algorithms properly.
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Figure 5.8: Raw power signal (top left), Scaled power signal (top right), absolute power signal
(bottom left), and absolute scaled signal (bottom right).
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Figure 5.9: Linear SVM accuracy vs algorithm parameters

5.4.2 Design of a Fully-Connected DNN

Using Keras on Tensorflow backend, we designed a fully connected MLP DNN model that
holds 2600 inputs and 9 outputs. There are five hidden layers which include 650, 182, 81, 40,
and 20 input nodes, respectively. Dropouts are usually used in MLP design to avoid overfitting
[84]. A Dropout of 40% is used between layers 3 and 4. The input features are scaled in the
range [0, 1]. Therefore, we applied the “ReLu” activation function to all layers except for the
latest layer that uses the “softmax” activation function. The “softmax” function calculates the
probabilities of each target class over all possible target classes. The calculated probabilities
will help determine the target class for the given inputs. Therefore, it is the best choice for the
output layer. The loss function used to measure the accuracy and validation is the “categorical
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Figure 5.10: Random Forest accuracy on power signal dataset vs parameters

crossentropy”. This loss function trains the DNN to output the probability over all the classes
of data. Figure 5.11 illustrates our designed fully connected DNN configuration. This model,
however, cannot be trained. As Figure 5.12 shows, the validation accuracy does not follow
the accuracy per epochs. It stays close to zero while the accuracy converges to one. The
validation loss rapidly diverges as well. If we remove the dropout layer between layers 3 and
4, the model will be over-fitted. Consequently, the fully connected MLP method is not suitable
for classifying our dataset.

5.4.3 Design of a 1D-CNN

Typically, a 1D-CNN model involves two kinds of layers, one or more Convolution layers; and
Multi-layer perceptron layer (MLP). The convolution layer is typically situated just after the input
layer. Convolution involves sliding the kernel over the input signal. Convolution is performed
in two ways, non-causal (used in typical CNNs) or causal. Non-causal convolution is cross-
correlation. That means the output is dependent on future input. Let the input size of length n to
convolution layer is represented by x and the kernel of length k is represented by h. Suppose
that the kernel window is shifted by s (number of strides) after each convolution operation.
Then non-causal convolution y of x and h by stride s is defined as{

y(n) = ∑k
i=1 x(n + i) · h(i), n = 0

y(n) = ∑k
i=1 x(n + i + (s − 1)) · h(i), otherwise.

(5.2)

If padding of length p is used then the number of outputs o = � n+2p−k
s  + 1. In causal convo-

lution, the output is not dependent on future inputs. the output y is calculated as{
y(n) = ∑k−1

i=0 x(n − i) · h(i), n = k − 1
y(n) = ∑k−1

i=0 x(n − i + (s − 1)) · h(i), otherwise.
(5.3)

Pooling is used after the convolution layer to reduce the dimension of the convolution output.
It also helps to reduce overfitting. Max-pooling and Average-pooling are two commonly used
methods. Max-pooling picks up maximum value in a kernel window and Average- pooling
outputs the mean of the kernel window values. The output of convolution layers may have a
depth greater than one.

Flatten layer reshapes the output of the convolutional layer to flat that can be fed to the
MLP network.
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Figure 5.11: Fully connected deep neural network configuration

To set up our 1D-CNN model, we aim to observe power signal changes in two consecutive
clock cycles, i.e. changes in every 16 samples in our dataset. We examined two 1D-CNN
models. In our first model named Model_1, we designed the first convolutional layer with the
kernel of size k1 = 16, and the stride s1 = 8. The inputs to the first convolutional layer are
the n1 = 2600 features; we used f1 = 2600/8 = 325 filters for the convolutional layer. Each
filter produces an individual convolutional output. The output of the first convolutional layer is
o1 = � 2600−16

8  + 1 = 324. The next convolutional layer uses kernel size k2 = 8, stride s2 = 4,
and f2 = 110 filters. The number of outputs is o2 = � 324−8

4  + 1 = 80. The next layer is the
average pooling followed by the Flatten layer that flattens the convolutional layers data to 4400
features. The flattened data are used as inputs of the next MLP (dense) layer. The output of
the MLP is equal to the number of data classes which are nine labels. The “ReLu” activation
function is used for all convolutional layers. The “softmax” activation is used for the Dense
layer (output layer). Similar to the fully connected DNN model, the “categorical crossentropy”
loss function is implemented for the Dense layer. In our second model, called Model_2, we
used Dataset 2, which consists of n = 400 features. Regarding to Figure 5.2, these features
include the power samples taken from the multiplication, subtraction, and modular reduction
at levels 7 and 8 of ECPD, reading from ROM 1, and multiplication and modular reduction at
level 1 of ECPA. Model_2 comprises one convolutional layer with a kernel size of k = 16, the
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Figure 5.12: Accuracy and accuracy validation for fully connected DNN model.

stride s = 8, and f = 250 filters. The next layer is a Max-pooling layer, followed by the Flatten
layer that converts the convolutional layers data to 7750 features used by the final MLP layer.

Computational complexity of 1D-CNN

To analyse the computational complexity of 1D-CNN, we must compute the total number of
operations at each layer (ignoring the sub-sampling that has a negligible computational cost)
and then cumulate them to find the overall computational complexity. If the convolutional layer
l uses fl number of filters or feature detectors, kernel size kl with stride sl , and ol = � nl−kl

sl
+1

outputs, then the layer l consists of ol × kl × fl multiplications and ol × (kl − 1) additions from
a single connection. At the first 1D-CNN layer the number of inputs is the number of features,
n0 and at the layer l the number of inputs is nl = ol−1 × fl−1. Ignoring the bias addition, the
total number of multiplications and additions in the layer l would be

mull = flol kl,

addl = ol(kl − 1)
(5.4)

Therefore, the total number of multiplications and additions ( T(mul), and T(add)) on a 1D-
CNN layer is

T(mul) =
L∑

l=1
ol kl fl,

T(add) =
L∑

l=1
ol(kl − 1).

(5.5)

where L is the number of the 1D-CNN layers. The term T(add) is negligible compared to
T(mul). Thus the complexity of 1D-CNN model can be considered as

O(
L∑

l=1
ol kl fl). (5.6)
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The 1D-CNN Model_1 and Model_2 are shown in Figure 5.13 and 5.14, respectively. Both
models are fully trainable and can efficiently cluster the power signals into nine categories.
Figure 5.16 and Figure 5.17 illustrate training/validation loss and training/validation accuracy
per epochs, respectively for both models. The validation accuracy follows training accuracy,
revealing that the model is very well trained. The accuracy of Model_1 reaches 99.993% after
80 epochs. Model_2 provides the same accuracy after 250 epochs. However, from (5.6), it
can be concluded that Model_2 has much less complexity using one convolutional layer and
reduced number of features.

Figure 5.13: 1D-CCN Model_1 configuration

5.5 Applying Countermeasures

The signal power of ROM readings (that is, the PoI) is the only differentiator of the eight ECPD-
ECPA operations performed in the core. The readings from the ROM are detectable using a
1D-convolutional neural network. A simple countermeasure could be to hide the patterns of
side-channel power data which is correlated with the ROM readings; that is, adding some un-
predictable noise to the PoI window that covers the core activity. Practically, this is possible
by adding some dummy operators that consume random patterns of power. Since implemen-
tation of a true random number generator is costly in hardware, we implemented an extra
modular multiplier as a dummy operation which is activated at the end on ECPD. As shown
in Figure 5.2, the modular multiplier inputs are taken from RNS channel m8 to m1 of registers
Z2 and X2, respectively. The DSP module of Xilinx series-7 FPGAs has 25×18-bit multipliers
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Figure 5.14: 1D-CCN Model_2 configuration
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(a) Proposed 1D-CCN Model_1 diagram
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(b) Proposed 1D-CCN Model_2 diagram

Figure 5.15: 1D-CNN models

[56]. Our noise generator is built using two 4-bit shift registers and one 25 × 18-bit multiplier.
The inputs of the noise generator are 66-bit X2 and Z2 RNS channels. The noise generator
is activated for eight clock cycles. At each clock cycle, shift registers shift right the inputs for
4-bits. The least significant 25 bits of X2 and 18-bits of Z2 RNS channels are used as inputs
of the multiplier. Figure 5.18a shows the block diagram of the noise generator. We used eight
blocks of noise generators to produce a sufficient level of non-deterministic power consump-
tion signal. Each noise generator block uses one of eight RNS channels of X2 and Z2. Figure
5.18b shows the RNS GLV ECC core architecture with added the noise generator units. At
the end of each ECPD operations, the GLV ECC state machine enables noise generators by
activating the CLK_EN signal and increases the core power consumption. The output of the
noise generators are not used for calculations. Thus, the final result is ‘don’t care’. However,
they produce a dummy side-channel power signal which covers the ROM reading side-channel
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Figure 5.16: Loss and loss validation for 1DCNN Model_1 and Model_2.
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Figure 5.17: Accuracy and accuracy validation for 1DCNN Model_1 and Model_2.

power signal. The side-channel power data of an ECPD-ECPA sequence with the insertion of
a dummy multiplier is shown in Figure 5.19. We applied our Model_1 1D-CNN on the new, ob-
tained side-channel data. The model accuracy and validation accuracy graphs are illustrated
in Figure 5.20. The accuracy stays around 10%, which means the power signal cannot be
categorised by 1D-CNN and our countermeasure is successful.
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(a) Noise generator.

(b) RNS GLV ECC point multiplication with noise generator.

Figure 5.18: RNS GLV ECC design immune to side-channel attack.

Figure 5.19: ECPD-ECPA power signal with applying a dummy operation

5.6 Conclusion
RNS is considered as a countermeasure against side-channel attacks. We designed an RNS
GLV ECC co-processor based on the SOR RNS reduction algorithm. We analysed the side-
channel power data of the core performing ECC point multiplication operation. Based on the
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Figure 5.20: 1DCNN Model accuracy/val_accuracy after applying countermeasures

core’s internal activity, we categorised the power signals into nine classes. Eight out of nine
classes are very similar in terms of the core activity and perform an ECPD–ECPA sequence.
Their difference is in readings from the ROM locations, where the pre-computed points are
saved. We created a dataset of 4500 samples to train our machine learning algorithms. We
used a window of PoI on the side-channel power data that was included the core’s power signal
when it gains access to its built-in ROM. We tried several machine learning and deep learning
methods and found out that a 1D-CNN model can effectively classify the power samples with
an accuracy of 99.993%. We narrowed down the PoI window size and used a model with only
one 1D-CNN layer. The new model works well and can reach the same accuracy in higher
epochs. We concluded that the classifier of side-channel power data is the ROM reading activ-
ity of the core. By adding a dummy multiplier to the hardware that activates within the PoI time
frame and updating its inputs at every clock cycle, we generated random side-channel power
signal that covers the core activities within the PoI window. Applying our 1D-CNN Model_1 to
the new side channel power data showed that the accuracy of the model dropped to 10% which
means the 1D-CNN cannot classify the operations of the ECC core. Our experimental analy-
sis shows that our proposed cryptographic co-processor is immune to power analysis type of
side-channel attacks and it is suitable for hardware implementations. Our work is supporting
the idea presented in [118, 119]. The RNS can be used as a countermeasure, however, it is
not thoroughly protecting against side-channel attacks. The hardware activity may leak infor-
mation of the secret key. In our experiment the points of interest which are related to the power
consumed by the state machine accessing the ROM can reveal information of the secret key.
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6
Conclusion

In this thesis, we introduced a full RNS ECC co-processor. Our target was to reduce the
latency of point multiplication operation which is the core security function in ECC.

In Chapter 3, we introduced an improved RNS Montgomery reduction algorithm. Using
this algorithm, we achieved to cut the latency in modular reductions by 7% in comparison to
the latest works in the literature, while our proposed algorithm implementation on a similar
platform utilises fewer hardware resources. We introduced a new RNS modular reduction al-
gorithm based on the sum of residues, which unlike Montgomery modular reduction algorithm
returns the precise value of the reduction, not a multiple. Our algorithm — dubbed as SOR—
is inherently parallel. Using η RNS multipliers in parallel, this algorithm can calculate the mod-
ular reduction in ( N

η + 3) clock cycles (where N is the number of RNS moduli channels). We
introduced two hardware architectures of SOR algorithm. The SOR_1 uses one RNS mul-
tiplier and SOR_2 uses two parallel RNS multiplier. The SOR_2 architecture improves the
modular reduction speed by more than 20% in comparison to the RNS Montgomery modular
reduction implementation. Nevertheless, the area of the SOR algorithm hardware is roughly
two times bigger than the area of RNS Montgomery modular reduction implementations, since
the algorithm uses the whole range of moduli channels in the computations.

In chapter 4, we proposed RNS ECC point doubling, point addition, and point tripling for
three elliptic curves SECP256k1, ED25519, and Brainpool256r1. Using RNS properties and
parallel computation with two modular reduction units, we reduced the latency of ECC group
operations. Next, we tried Double-and-Add, NAF, NAF3, and DBC point multiplication algo-
rithms to improve the latency of our ECC co-processor. Using the endomorphism property of
the curve SECP256k1, we implemented the GLV point algorithm for this curve. The hardware
was implemented on VIRTEX 7 and VIRTEX UltraScale + FPGAs to indicate the impact of the
chip process technology impacts on our hardware performance as well as the algorithm used.

In Chapter 5, we designed a new RNS GLV ECC co-processor architecture to suit our lab
side-channel analysis evaluation board. We used machine-learning and deep-learning algo-
rithms to analyse the side-channel power data we gathered from our designed co-processor.
All the studied machine-learning algorithm models and fully connected MLP deep-learning
model failed in side-channel power analysis. However, the one-dimensional convolutional
neural network model (1D-CNN) was successful in finding a map between the power data
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and the secret key used by the co-processor. We noticed that the state machine activity in
accessing the ROM to read the pre-calculated points could leak information about the secret
key. We proposed a countermeasure to mask the side-channel power data associated with
the state machine activity when reading from ROM. Our 1D-CNN model was not able to distin-
guish and categorise the power signals correctly when the proposed countermeasure applied
to the RNS GLV co-processor hardware. Our results supported works [118] and [119] that
suggested RNS as a countermeasure to side-channel attacks. Nevertheless, RNS is not a
thoroughly shield against side-channel attacks, since the core activity may leak information of
the secret key.

6.1 Future works and research direction
High performance RNS based elliptic curve cryptographic cores presented in this thesis could
be utilised to enhance computing power in a diverse range of applications. The research may
be conducted around SECP256k1 core performance within an ECDSA protocol to sign and
validate Blockchain transactions and evaluate the overall performance. The Brainpool256r1
is now the recommendation of both IEEE 1609.2b-2019 and European Telecommunications
Standards Institute (ETSI) standards for Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure
(V2I) message signing and verification. There is a high demand for high-speed ECC hardware
to sign and verify thousands of control and safety messages within a tight time frame. R&D re-
searchers in the automotive industry may be interested in implementing our high-performance
RNS based Brainpool256r1 point multiplication hardware within the ITS safety protocols.

IoT has become one of the focused research topics in recent years. The security of data
exchange between IoT devices is a significant concern that may breach privacy and theft of
sensitive data. Meanwhile, the demand for low-power, light-weight cryptographic hardware
suitable to fit in IoT devices is increasing. Generally, RNS computation is costly in terms of
power consumption. However, our research outcome could be directive for researchers who
are interested in performing trade-offs between different hardware performance parameters
such as latency, power consumption, and security.

The study of hardware vulnerabilities against side-channel attacks could be another re-
search direction. A cryptographic algorithm may be considered safe in terms of the underlying
maths. However, its implementation can leak data in the form of changes in power consump-
tion, electromagnetic radiation or timing. The side-channel data leakage is a critical security
thread for any cryptographic hardware implementation. Some researchers may focus on new
methods of side-channel data analysis to reveal the sources of data leakage when others may
research on countermeasures. Design of countermeasures in the context of RNS arithmetic,
for instance by randomising RNS bases, can be studied in future works. Our research showed
that 1D-CNN effectively reveals the correlation of power signal changes and internal opera-
tion per clock cycles. Research on time-based deep learning algorithms such as Recurrent
Neural Networks (RNN) and Generative Adversarial Networks (GAN) to analyse side-channel
data and design of the effective and low-cost countermeasures will remain as future works.
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A.1 Maple program for testing proposed RNS Montgomery
reduction algorithm

m(1) := 2^66-1; m(2) := 2^66-2^2-1; m(3) := 2^66-2^3-1; m(4) := 2^66-2^4-1;
m(5) := 2^66-2^5-1; m(6) := 2^66-2^6-1; m(7) := 2^66-2^8-1; m(8) := 2^66-2^9-1;
k(1) := 2^66-1; k(2) := 2^66-2^2-1; k(3) := 2^66-2^3-1; k(4) := 2^66-2^4-1;
q(1) := 2^66-2^5-1; q(2) := 2^66-2^6-1; q(3) := 2^66-2^8-1; q(4) := 2^66-2^9-1;
p := 2^256-2^32-2^9-2^8-2^7-2^6-2^4-1;
A := 2^260-2^40-123; B := 2^256-135;
K := 1;
for i to 4 do K := K*k(i) end do; for i to 4 do KI(i) := K/k(i) end do;
for i to 4 do Kinv(i) := modp(1/KI(i), k(i)) end do;
Q := 1;
for i to 4 do Q := Q*q(i) end do; for i to 4 do QI(i) := Q/q(i) end do;
for i to 4 do Qinv(i) := modp(1/QI(i), q(i)) end do;
for i to 4 do
for j to 4 do (KIJ(i))(j) := modp(KI(i), q(j)) end do:
end do;
for i to 4 do
for j to 4 do (QIJ(i))(j) := modp(QI(i), k(j)) end do:
end do;
for i to 4 do PNQ(i) := modp((-p)^(-1), q(i)) end do;
for i to 4 do PK(i) := modp(p, k(i)) end do;
for i to 4 do QNK(i) := modp(1/Q, k(i)) end do;
for i to 4 do IQNK(i) := modp(Qinv(i)*Kinv(i), k(i)) end do;
for i to 4 do IPNQ(i) := modp(Qinv(i)*PNQ(i), q(i)) end do;
for i to 4 do PNK(i) := modp(1/p, k(i)) end do;
for i to 4 do
ABK(i) := modp(A*B, k(i)); ABQ(i) := modp(A*B, q(i))
end do;
for i to 4 do GammaQ(i) := modp(ABQ(i)*IPNQ(i), q(i)) end do;
for i to 4 do ABK(i) := modp(ABK(i)/Q, k(i)) end do;
for i to 4 do
for j to 4 do
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(QK(i))(j):= modp(GammaQ(i)*QNK(j)*PK(j)*(QIJ(i))(j), k(j)):
end do:
end do;
for i to 4 do Y(i) := 0 end do;
for i to 4 do
for j to 4 do Y(i) := modp(Y(i)+(QK(j))(i), k(i)) end do:
end do;
Al2 := 0; for i to 4 do Al2 := Al2+GammaQ(i)/q(i) end do; alpha := floor(Al2);
for i to 4 do alphaQ(i) := modp(-alpha*p, k(i)) end do;
for i to 4 do BEQK(i) := modp(Y(i)+alphaQ(i)+ABK(i), k(i)) end do;
for i to 4 do GammaK(i) := modp(BEQK(i)*Kinv(i), k(i)) end do;
for i to 4 do
for j to 4 do (KQ(i))(j) := modp(GammaK(i)*(KIJ(i))(j), q(j)): end do:
end do;
for i to 4 do Z(i) := 0 end do;
for i to 4 do for j to 4 do Z(i) := modp(Z(i)+(KQ(j))(i), q(i)) end do end do;
Al3 := 0; for i to 4 do Al3 := Al3+GammaK(i)/k(i) end do; alpha := floor(Al3);
for i to 4 do alphaK(i) := modp(-alpha*K, q(i)) end do;
for i to 4 do BEKQ(i) := modp(Z(i)+alphaK(i), q(i)) end do;
for i to 4 do printf("�%X�,��", BEQK(i)) end do;
166C6008EF3D82EC6 , 6F2C59E44FA4D738 , 2E0098061ABF2F9F1 , 358A2766BA909CE5D ,
for i to 4 do printf("�%X�,��", BEKQ(i)) end do;
33A6D1DF89DC94C3 , 203B79F5D8BEDB58C , 18638AB5E61110F9F , 16B0EBC20307A381B ,

X := modp(A*B/Q, p);
X := 25885064547426835970113115578390014457565065405408988046730615365211366033878
for i to 8 do printf("%X��,�", modp(X, m(i))) end do;
166C6008EF3D82EC6 , 6F2C59E44FA4D738 , 2E0098061ABF2F9F1 , 358A2766BA909CE5D
,
33A6D1DF89DC94C3 , 203B79F5D8BEDB58C , 18638AB5E61110F9F , 16B0EBC20307A381B
,

A.2 Maple program for testing sum of residues reduction
algorithm

with(NumberTheory):
A := 2^260-2^40-123: B := 2^256-135: X := A*B:
p := 2^256-2^32-2^9-2^8-2^7-2^6-2^4-1:
m(1) := 2^66-1: m(2) := 2^66-2^2-1: m(3) := 2^66-2^3-1: m(4) := 2^66-2^4-1:
m(5) := 2^66-2^5-1: m(6) := 2^66-2^6-1: m(7) := 2^66-2^8-1: m(8) := 2^66-2^9-1:
M := 1: for i to 8 do M := M*m(i) end do:
for i to 8 do MI(i) := M/m(i) end do:
for i to 8 do MIinv(i) := modp(1/MI(i), m(i)) end do:
for i to 8 do Gamma(i) := modp((modp(X, m(i)))*MIinv(i), m(i)) end do:
Al2 := 0: for i to 8 do Al2 := Al2+Gamma(i)/m(i) end do:
alpha := floor(Al2): alpha:
a := 0: for i to 8 do a := a+floor(Gamma(i)/2^58) end do:
a2 := floor((a+2^4)/2^8):
KZS := 0: for i to 8 do KZS := KZS+Gamma(i)*(modp(MI(i), p))/p end do:
KZS := trunc(KZS):
KZ := 0: for i to 8 do KZ := KZ+Gamma(i)*floor((modp(MI(i), p))/2^184) end do:
Kappa := floor(KZ/2^72):
for i to 8 do Ki(i) := modp(Kappa, m(i)) end do:
for i to 8 do pi(i) := modp(-p, m(i)) end do;
for i to 8 do Kp(i) := modp(Ki(i)*pi(i), m(i)) end do:
for i to 8 do
for j to 8 do (MI_M_mj(i))(j) := modp(modp(MI(i), p), m(j)) end do:
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end do:
for i to 8 do
for j to 8 do (Y(i))(j) := modp(Gamma(i)*(MI_M_mj(i))(j), m(j)) end do:
end do:
for i to 8 do sigma(i) := 0 end do;
for i to 8 do
for j to 8 do sigma(i) := modp(sigma(i)+(Y(j))(i), m(i)) end do:
end do:
for i to 8 do alphaM(i) := modp(modp(-alpha*M, p), m(i)) end do:
for i to 8 do Z(i) := modp(sigma(i)+alphaM(i), m(i)) end do:
for i to 8 do z(i) := modp(Z(i)+Kp(i), m(i)) end do: printf("\n");
for i to 8 do printf("�%X�,��", z(i)) end do:

A.3 Maple program for DBC Tree algorithm

with(StringTools):
f := fopen( "D:\\C�PROJECTS\\RND-256-BIT.txt", READ ):
fw := fopen( "D:\\C�PROJECTS\\Mapleout.txt", WRITE):
samples := 200:
AVL:=0:
for h from 1 to samples do
b:= readline(f):
a:=convert(Chop(b),decimal,hex):
k:=0:
i:=0:
j:=0:
ri:=0:
rj:=0:
li:=0:
lj:=0:
if (modp(a,2)=0 or modp(a,3)=0) then

while (modp(a,2)=0) do
a:= a/2:
i:= i+1:

end do:

while (modp(a,3)=0) do
a:= a/3:
j:=j+1:

end do:
u(k) := i:
v(k) := j:
w(k) := 0:
k:=k+1:
end if:

while (a>1) do

ri:=0:
rj:=0:
li:=0:
lj:=0:

la:= a-1:
ra:= a+1:
while (modp(la,2)=0) do
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la:= la/2:
li:=li+1:

end do:

while (modp(la,3)=0) do
la:= la/3:
lj:=lj+1:

end do:

while (modp(ra,2)=0) do
ra:= ra/2:
ri:= ri+1:

end do:
while (modp(ra,3)=0) do

ra:= ra/3:
rj:=rj+1:

end do:

if ra >= la then
a:= la:
u(k):= li:
v(k):= lj:
w(k):= +1:

else
a:= ra:
u(k):= ri:

v(k):= rj:
w(k):= -1:

end if:
k:= k+1:
end do:

for l from 0 to k-2 do
printf("3^%d*2^%d(", v(l), u(l));
end do:
printf("3^%d*2^%d", v(k-1),u(k-1));
for l from k-1 to 1 by -1 do
printf("%-+d)", w(l));
end do:
if (w(0) <> 0) then
printf("%-+d", w(0));
end if:
printf("\n,�Length:=%d�\n", k);

printf( "B(%2d):=Matrix([",h);
fprintf(fw,"B(%2d):=Matrix([", h);
for l from k-1 to 0 by -1 do

for xx from 1 to u(l) do
printf("%d,",2);
fprintf(fw,"%d,",2);

end do:
for xx from 1 to v(l) do
printf("%d,",3);
fprintf(fw,"%d,",3);

end do:
if w(l) = 1 then
printf("%d,",1);
fprintf(fw,"%-d,",1);
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elif w(l) = -1 then
printf("%-d,",-1);
fprintf(fw,"%-d,",-1);

end if:
end do:
printf("]):\n"):
fprintf(fw,"]):\n"):
AVL:= AVL+k:
printf("\n\n");
end do:
AVL:= evalf(AVL/samples);
fclose(f):
fclose(fw):

A.4 L-T DBC algorithm in C++

/* functions written by: Cristobal Leiva and Nicolas Theriault
main body written by Mohamadali Mehrabi.
*/
#include <stdint.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <bitset>
#include <iostream >
#ifndef BITS

#define BITS 256
#endif
#include <iostream >
#include <conio.h>
#include <fstream>
#include <algorithm >
using namespace std;
static const int64_t max_size = BITS+4;
/*
* Weights of positive (P_weight) and negative (N_weight) chains.
* We just need two rows of information for previous and current chains.
int64_t P_weight[2][max_size], N_weight[2][max_size];
/*
* ’Movements array’ for storing information for every chain.
* Every term needs 4 bits of information:
* - 1 bit to know whether we did a doubling (0) or tripling (1) to get here
* (horizontal or vertical step).
* - 1 bit to know whether the previous chain was positive (0) or negative (1).
* - 2 bits to know if we got here by doing nothing (00), adding a term (01)
* or substracting a term (11).
* For example, if we got to some chain by making a vertical step
(tripling) from a negative chain and we added a negative term,
that means $n_{i,j} = \overline{\mathscr{C}}_{i,j-1} - 2^{i}3^{j-1}$.
In this code, this will be denoted as (V, -, -1).

* int8_t provides 8 bits, so we use the first half of bits for
storing information of positive chains and last 4 bits for storing
information of negative chains.
* Example: We zero first half of bits and then store a movement of the type
which translates to setting bits 0011:
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* T[j][i+1] &= ~(15 << 0);
* T[j][i+1] |= (3 << 0);
* Example: We zero second half of bits and then store a movement of the type
(V, -, -1) which translates to settings bits 1111:

* T[j+1][i] &= ~(15 << 4);
* T[j+1][i] |= (15 << 4);
* */

int8_t T[max_size][max_size];
typedef struct {

int64_t weight;
int64_t i;
int64_t j;

} chain_t;
typedef chain_t* chainptr_t;

typedef struct {
std::bitset<max_size> num;
int64_t msb;
bool zero;

} bigint_t;

typedef bigint_t* bigintptr_t;

/* Convert big integers from string hexadecimal representation
a bitset */
void str_to_bits(char *orig, bigintptr_t dest)
{

uint8_t digit;
uint64_t bitcount = 0;
std::bitset<max_size> mask;
for(int64_t i = strlen(orig)-1; i >= 0; i--)
{

digit = (orig[i] > ’9’) ? (orig[i] &~ 0x20)-’A’+10: (orig[i]-’0’);
mask = std::bitset<max_size >(digit);
dest->num |= (mask << bitcount);
bitcount += 4;

}
dest->zero = (bitcount > 0) ? false: true;
dest->msb = bitcount;

}

/* Manually divide by 3 by looking at bits and keeping track of carries */
void divide_by_3(bigintptr_t orig, bigintptr_t dest)
{

uint8_t carry = 0;
orig->zero = true;
dest->zero = true;
dest->msb = 0;
dest->num.reset();
for(int64_t i = orig->msb; i >= 0; i--)
{

if(orig->num.test(i))
{

if(carry == 1)
{

dest->num.set(i);
carry--;
dest->zero = false;
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if(i > dest->msb) dest->msb = i+1;
}
else if(carry == 2)
{

dest->num.set(i);
dest->zero = false;
if(i > dest->msb) dest->msb = i+1;

}
else

carry++;
orig->zero = false;

}
else
{

if(carry == 1)
carry++;

else if(carry == 2)
{

dest->num.set(i);
carry--;
dest->zero = false;
if(i > dest->msb) dest->msb = i+1;

}
}

}
}

void optimal_chain(bigint_t a, chainptr_t shortest)
{

bigint_t b ;
int64_t i, j, size, cont;
int8_t curr, next, aux;
/* Initialization */
for(i = 0; i < max_size; i++)

P_weight[0][i] = N_weight[0][i] = max_size;
shortest ->weight = max_size;
P_weight[0][0] = 0; /* base case */
j = 0;
curr = 0;
next = 1;
while(!a.zero)
{

divide_by_3(&a, &b);
cont = 0;
size = a.msb;
P_weight[next][size+1] = N_weight[next][size+1] = max_size;
P_weight[next][size+2] = N_weight[next][size+2] = max_size;
for(i = 0; i <= size; i++)
{

/* We don’t need to check all the cases if weights of both
positive and negative chains are equal or greater than
shortest chain found so far */

if(P_weight[curr][i] >= shortest->weight &&
N_weight[curr][i] >= shortest->weight)
{

P_weight[next][i] = N_weight[next][i] = max_size;
cont++;

}
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else
{

/* Horizontal steps */
if(a.num.test(i))
{

if(N_weight[curr][i] < N_weight[curr][i+1])
/* (H, -, 0) */
{

N_weight[curr][i+1] = N_weight[curr][i];
T[j][i+1] &= 15;
T[j][i+1] |= 64; /* 0100 */

}
if(P_weight[curr][i]+1 < P_weight[curr][i+1])
/* (H, +, +1) */
{

P_weight[curr][i+1] = P_weight[curr][i]+1;
T[j][i+1] &= 240;
T[j][i+1] |= 1; /* 0001 */

}
if(P_weight[curr][i]+1 < N_weight[curr][i+1])
/* (H, +, -1) */
{

N_weight[curr][i+1] = P_weight[curr][i]+1;
T[j][i+1] &= 15;
T[j][i+1] |= 48; /* 0011 */

}
}
else /* bit == 0 */
{

if(P_weight[curr][i] < P_weight[curr][i+1]) /* (H, +, 0) */
{

P_weight[curr][i+1] = P_weight[curr][i];
T[j][i+1] &= 240;

}
if(N_weight[curr][i]+1 < N_weight[curr][i+1]) /* (H, -, -1) */
{

N_weight[curr][i+1] = N_weight[curr][i]+1;
T[j][i+1] &= 15;
T[j][i+1] |= 112; /* 0111 */

}
if(N_weight[curr][i]+1 < P_weight[curr][i+1]) /* (H, -, +1) */
{

P_weight[curr][i+1] = N_weight[curr][i]+1;
T[j][i+1] &= 240;
T[j][i+1] |= 5; /* 0101 */

}
}
/* Vertical steps */
if(!a.zero)
{

if(a.num.test(i) ^ b.num.test(i))
{

P_weight[next][i] = P_weight[curr][i]+1;
N_weight[next][i] = N_weight[curr][i]+1;
T[j+1][i] = 249; /* 1111 and 1001 */

}
else
{
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if(a.num.test(i) ^ a.num.test(i+1) ^ b.num.test(i+1))
{

P_weight[next][i] = max_size;
N_weight[next][i] = P_weight[curr][i]+1;
T[j+1][i] = 176; /* 1011 and 0000 */
if(N_weight[curr][i] < N_weight[next][i])
/* (V, -, 0) */
{

N_weight[next][i] = N_weight[curr][i];
T[j+1][i] &= 15;
T[j+1][i] |= 192; /* 1100 */

}
}
else
{
N_weight[next][i] = max_size;
P_weight[next][i] = P_weight[curr][i];
T[j+1][i] = 8; /* 0000 and 1000 */
if(N_weight[curr][i]+1 < P_weight[next][i])
/* (V, -, +1) */
{

P_weight[next][i] = N_weight[curr][i]+1;
T[j+1][i] &= 240;
T[j+1][i] |= 13; /* 1101 */
}

}
}

}
}

}
/* Check if this iteration produced a chain shorter
than the shortest so far */
if(P_weight[curr][size+1] < shortest->weight)
{

shortest ->weight = P_weight[curr][size+1];
shortest ->i = size+1;
shortest ->j = j;

}
if(P_weight[curr][size+2] < shortest->weight)
{

shortest ->weight = P_weight[curr][size+2];
shortest ->i = size+2;
shortest ->j = j;

}
if(a.zero) break;
size = b.msb;
if(P_weight[next][size+1] < shortest->weight)
{

shortest ->weight = P_weight[next][size+1];
shortest ->i = size+1;
shortest ->j = j+1;

}
if(P_weight[next][size+2] < shortest->weight)
{

shortest ->weight = P_weight[next][size+2];
shortest ->i = size+2;
shortest ->j = j+1;

}
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if(cont >= a.msb) break;
a = b;
j++;
aux = curr;
curr = next;
next = aux;

}
}
/* Backtrack from the information of the shortest chain
and the information array T */

void print_chain(chainptr_t chain)
{

int64_t i = chain->i;
int64_t j = chain->j;
int8_t base = 0;
bool type = T[j][i] & 8;
bool sign = T[j][i] & 4;
bool change_sign = T[j][i] & 2;
bool change_value = T[j][i] & 1;
while(chain->weight > 0)
{

(type) ? (j--): (i--);
if(change_value)
{

(change_sign) ? (printf("�-�")): (printf("�+�"));
cout << "2^" << i << "*3^" << j;
chain->weight --;

}
(sign) ? (base = 4): (base = 0);
type = T[j][i] & (1 << (base+3));
sign = T[j][i] & (1 << (base+2));
change_sign = T[j][i] & (1 << (base+1));
change_value = T[j][i] & (1 << base);

}
printf("\n");

}
void dbc(chainptr_t chain)
{

int64_t i = chain->i;
int64_t j = chain->j;
int64_t w = chain->weight;
int8_t base = 0;
int n;
char s[w];
int64_t k,l;
int64_t a[w],b[w];
bool type = T[j][i] & 8;
bool sign = T[j][i] & 4;
bool change_sign = T[j][i] & 2;
bool change_value = T[j][i] & 1;
a[0]=0;
b[0]=0;

l= chain->weight;
printf("%d�",l); printf("\n\n");

while(chain->weight > 0)
{
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(type) ? (j--): (i--);
if(change_value)
{

(change_sign) ? (s[chain->weight]=’-’): (s[chain->weight]=’+’);
a[chain->weight]= i;

b[chain->weight]= j;
chain->weight --;

}
(sign) ? (base = 4): (base = 0);
type = T[j][i] & (1 << (base+3));
sign = T[j][i] & (1 << (base+2));
change_sign = T[j][i] & (1 << (base+1));
change_value = T[j][i] & (1 << base);

}
for(k= l; k>= 0; k--)

printf("(%d,%d)�", a[k],b[k]);

for(k= l-1; k> 0; k--)
printf("(%c)�", s[k]);

printf("\n\n");

for (k = 0 ; k < l-1; k++)
{
cout << "2^" << a[k+1]-a[k] << "*" << "3^" << b[k+1]-b[k] << "(" ;

}
cout << "2^" << a[l]-a[l-1] << "*" << "3^" << b[l]-b[l-1];
for (k = l-1 ; k >0 ; k--)
{
cout << s[k] << "1" << ")";
}
printf("\n\n");

/*for (k = l-1 ; k >0 ; k--)
{
cout << "(" << a[k+1]-a[k] << ")" << "(" << b[k+1]-b[k] << ")" << s[k] ;
}
cout << "(" << a[l]-a[l-1] << ")" << "(" << b[l]-b[l-1]<< ")"; */

for (k = l-1 ; k >0 ; k--)
{
cout << "(" << a[k+1]-a[k] <<"," << b[k+1]-b[k] << "," << s[k]<<")" << ",�";
}
cout << "(" << a[1] <<","<< b[1]<< ")";
printf("\n\n");

/*for (k = l-1 ; k >0 ; k--)
{
for(n=1; n<=a[k+1]-a[k] ; n++ ) printf("[2,0] ");
for(n=1; n<=b[k+1]-b[k] ; n++ ) printf("[3,0] ");
if (s[k]= ’-’) printf("[0,1] ");
else printf("[0,-1] ");
}
for(n=1; n<=a[l]-a[l-1] ; n++ ) printf("[2,0] ");
for(n=1; n<=b[l]-b[l-1] ; n++ ) printf("[3,0] "); */
printf("\n\n");
printf("[�");
for (k = l-1 ; k >0 ; k--)
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{
for(n=1; n<=(a[k+1]-a[k]); n++ ) printf("2,�");
for(n=1; n<=b[k+1]-b[k] ; n++ ) printf("3,�");
if (s[k]==’+’) printf("1,�");
if (s[k]==’-’) printf("-1,�");
}
for(n=1; n<=a[1] ; n++ ) printf("2,�");
for(n=1; n<=b[1] ; n++ ) printf("3,�");
printf("�]");
printf("\n\n");
}
void dbchain(chainptr_t chain)
{

ofstream fout;
fout.open("DBCOUT255.dat", ios::app);

int64_t i = chain->i;
int64_t j = chain->j;
int64_t w = chain->weight;
int8_t base = 0;
int n;
char s[w];
int64_t k,l;
int64_t a[w],b[w];
bool type = T[j][i] & 8;
bool sign = T[j][i] & 4;
bool change_sign = T[j][i] & 2;
bool change_value = T[j][i] & 1;
a[0]=0;
b[0]=0;
l= chain->weight;
printf("%d�",l); printf("\n\n");

while(chain->weight > 0)
{

(type) ? (j--): (i--);
if(change_value)
{

(change_sign) ? (s[chain->weight]=’-’): (s[chain->weight]=’+’);
a[chain->weight]= i;

b[chain->weight]= j;
chain->weight --;

}
(sign) ? (base = 4): (base = 0);
type = T[j][i] & (1 << (base+3));
sign = T[j][i] & (1 << (base+2));
change_sign = T[j][i] & (1 << (base+1));
change_value = T[j][i] & (1 << base);

}
fout << "[�" ;
for (k = l-1 ; k >0 ; k--)

{
for(n=1; n<=(a[k+1]-a[k]); n++ ) fout << "2,�";
for(n=1; n<=b[k+1]-b[k] ; n++ ) fout << "3,�";
if (s[k]==’+’) fout << "1,�";
if (s[k]==’-’) fout << "-1,�";

}
for(n=1; n<=a[1] ; n++ ) fout << "2,�";
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for(n=1; n<=b[1] ; n++ ) fout << "3,�";
fout << "�]" << "\n";
fout.close();

}
int main()
{
char *scalar;
int i,num_characters;
string line;
float average, iav,jav;
average = 0;
iav=0;
jav=0;
ifstream inFile;
inFile.open("D:\\C�PROJECTS\\RND-256-BIT.txt");
// ofstream outFile;
// outFile.open("DBC.dat", ios::out);

if (inFile.is_open())
{
// while ( !inFile.eof())
for (i=1;i<=3 ;i++)
{
getline(inFile, line);
line.erase(64);

scalar= &line[0];
num_characters ++;
cout<< scalar << endl;
bigint_t n;
str_to_bits(scalar , &n);
chain_t shortest;
optimal_chain(n, &shortest);
average += shortest.weight;
iav += shortest.i;
jav += shortest.j;
cout << "Minimal�Hamming�Weight:�" << shortest.weight <<

std::endl << "Example�of�an�actual�chain:" ;
print_chain(&shortest); cout << average<< endl;
}

}
else

cout << "File�cannot�be�opened" << endl ;
inFile.close();
cout << endl;
average = average/1000;
iav= iav/1000;
jav= jav/1000;
cout << "The�average�length�of�DBC�is�:�" << average << endl;
cout << "The�average�2’s�power�of�DBC�is�:�" << iav << endl;
cout << "The�average�3’s�power�of�DBC�is�:�" << jav << endl;
getch();
return 0;
}
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A.5 Python code for creating training dataset from the raw
side-channel power data

"""
Created on Tue Dec 10 13:45:58 2019
@author: Ali Mehrabi
Creating training dataset from raw side-channel power data
"""
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import time as t
#####################################################################
start_time = t.time()
FILE = "C:\\Users\\Ali\\Downloads\\PA"
EXT = ".csv"
FILE_DS = "D:\\Dataset2.csv"
RLBLFILE = "D:\\Y2.csv"
U = 199104 # 24888*int(SP)
FRAME = 4384
DFRAME = 1310 #
n_samples = 500
n_slice = 10
n_rows = int(n_samples/ n_slice)
######################################################################
############## Read 40 rows , each row takes 10 D/A data #############
for k in range(0,8):

D = np.loadtxt(FILE+
str(k)+EXT, delimiter=’,’,skiprows=1, max_rows=n_rows)

D = D[:, U:U+13*FRAME]
for j in range(0,n_rows):

DF = D[j,FRAME: 2*FRAME].reshape(1,FRAME)
for i in range (2,n_slice+1):

DS = D[j,i*FRAME:(i+1)*FRAME].reshape(1,FRAME)
DF = np.concatenate((DF,DS), axis=0)

DF = pd.DataFrame(DF)
DF.to_csv(FILE_DS, mode=’a’, header= False, index= False)

#########################################################################
Z = np.zeros(FRAME-DFRAME).reshape(1,FRAME-DFRAME)
D = np.loadtxt(FILE+ str(8)+EXT, delimiter=’,’,skiprows=1, max_rows=n_rows)
D = D[:, U:U+13*DFRAME]
for j in range(0,n_rows):

DF = D[j,DFRAME: 2*DFRAME].reshape(1,DFRAME)
DF = np.concatenate((DF, Z), axis=1)
for i in range (2,n_slice+1):

DS = D[j,i*DFRAME:(i+1)*DFRAME].reshape(1,DFRAME)
DS = np.concatenate((DS, Z), axis=1)
DF = np.concatenate((DF,DS), axis=0)

DF = pd.DataFrame(DF)
DF.to_csv(FILE_DS, mode=’a’, header= False, index= False)
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####################### Y_test generation ###############################
y=np.array([])
yr = np.ones(n_samples)
for j in range(1,9):

y=np.append(y,j*yr,axis=0)
y= np.append(y,np.zeros(n_samples),axis=0)
y = pd.DataFrame(y)
y.to_csv(RLBLFILE, index=False, header = False)
##########################################################################
end_time = t.time()
run_time = end_time -start_time
print("�Total�time:�%.2f�sec" %run_time)

A.6 Python code for fully connected deep-learning model

"""
Created on Sun Dec 8 22:26:09 2019
@author: Ali Mehrabi
Fully connected model
in rev 4 the dataset increased to 500 rows for each D/A probablity
"""

import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn import preprocessing as pp
from keras.utils import np_utils , plot_model
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.losses import categorical_crossentropy ,
mean_squared_error , categorical_hinge ,sparse_categorical_crossentropy
from keras.optimizers import adam
from keras import callbacks as cb
DATASET = "D:\\Dataset2.csv"
TARGETFILE = "D:\\Y2.csv"
WINDOW = 2600
seed = 4500
X = np.loadtxt(DATASET, delimiter=",")
X = X[:, 0:WINDOW]
scaler = pp.MaxAbsScaler()
X_scaled = scaler.fit_transform(X)
X_abs = np.absolute(X)
y_array = np.loadtxt(TARGETFILE , delimiter=",")
y = np_utils.to_categorical(y_array)
LS = 834
RS = 4500
X2 = np.absolute(X_scaled)
Length = X.shape[1]
########################Fully connected model####################
My_model = Sequential()
My_model.add(Dense(int(Length/4),activation=’relu’,
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input_shape=(Length ,)))
My_model.add(Dense(int(Length/16), activation=’relu’))
My_model.add(Dense(int(Length/32), activation=’relu’))
My_model.add(Dropout(rate=0.4))
My_model.add(Dense(int(Length/64), activation=’relu’))
My_model.add(Dense(int(Length/128), activation=’relu’))
My_model.add(Dense(9, activation=’softmax’))
My_model.summary()
My_model.compile(optimizer=adam(),

loss=categorical_crossentropy , metrics=[’accuracy’] )
################################################################
plot_model(My_model, to_file=’D:\\FC_model.png’ ,

show_shapes=True, show_layer_names=True)
logger = cb.CSVLogger("D:\\logger.log")
model_checkpoint = cb.ModelCheckpoint("D:\\Model.h5")
tensorboard = cb.TensorBoard(log_dir="D:\\LOGS")
call_backs = [ logger,model_checkpoint , tensorboard ]
##################### training Model #########################
Network_history= My_model.fit(X2,y, epochs=200,

validation_split=0.15,batch_size=45,callbacks=call_backs)
history = Network_history.history
losses = history[’loss’]
accuracy = history[’accuracy’]
################Plot loss and accuracy #######################
plt.figure()
plt.xlabel(’Epochs’)
plt.ylabel(’losses,�accuracy,�val_losses ,�val_accuracy’)
plt.plot(losses, linewidth=1, marker=’o’, markersize=4, color = ’b’)
plt.plot(history[’val_loss’], linewidth=1, markersize=4,

marker=’s’, color = ’orange’)
plt.plot(accuracy, linewidth=2, marker = ’^’, markersize=4,color = ’g’)
plt.plot(history[’val_accuracy’], linewidth=2, marker=’d’,

markersize=4, color=’r’)
plt.legend([’loss’,’val_loss’, ’accuracy’, ’val_acc’])
My_model.save("D:\\FCModel.h5")
My_model.save_weights("D:\\FCModel_weights.h5")

A.7 Python code for 1D-CNN Model 1 with two convolutional
layer

"""
Created on Fri Dec 6 11:43:20 2019

@author: Ali Mehrabi
Model 1, 1D CNN

"""
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
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from keras.utils import np_utils , plot_model
from keras.models import Sequential , Model
from keras.layers import Dense,Dropout,Conv1D,Flatten,

AveragePooling1D ,Input
from keras.losses import categorical_crossentropy
from keras.optimizers import SGD, adam
from keras import callbacks as cb
from sklearn import preprocessing as pp

DATASET = "D:\\Dataset2.csv"
TARGETFILE = "D:\\Y2.csv"
WINDOW = 2600
seed = 9
X = np.loadtxt(DATASET, delimiter=",")
X = X[:, 0:WINDOW]
Length = X.shape[1]
scaler = pp.MaxAbsScaler()
X_scaled = scaler.fit_transform(X)
X_abs = np.absolute(X)
y_array = np.loadtxt(TARGETFILE , delimiter=",")
y = np_utils.to_categorical(y_array)
LS = 834
RS = 2500
X2 = np.absolute(X_scaled)
XX = np.expand_dims(X2, axis=2)
#################### Creating Model########################
X_train, X_test, y_train,y_test =
train_test_split(XX,y, test_size=0.2, random_state=seed)
############################################################
######################### Parameters #######################
epochs = 80
batch_size = 20 #X_train.shape[0]
channels = 1
verbose = 0
n_samples , n_features = X.shape[0], X.shape[1]
###########################################################
My_Input = Input(shape=(n_features ,1))
Conv1 = Conv1D(filters=325, kernel_size=16,

strides= 8, activation=’relu’)(My_Input)
Conv2 = Conv1D(filters=110, kernel_size=8,

strides= 1, activation=’relu’)(Conv1)
AVG1 = AveragePooling1D()(Conv2)
Flat1 = Flatten()(AVG1)
Out_layer = Dense(9, activation=’softmax’)(Flat1)
My_model = Model(My_Input , Out_layer)
My_model.summary()
My_model.compile(optimizer=adam(),

loss=categorical_crossentropy , metrics=[’accuracy’] )
##########################################################
logger = cb.CSVLogger("D:\\CONV1D_logger.log")
model_checkpoint = cb.ModelCheckpoint("D:\\CONV1D_model_checkpoint.h5")
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tensorboard = cb.TensorBoard(log_dir="D:\\LOGS")
call_backs = [ logger,model_checkpoint , tensorboard ]
###########################################################
## training Model
Network_history = My_model.fit(XX,y, epochs=epochs,

validation_data=(X_test,y_test), callbacks=call_backs)
history = Network_history.history
############plot loss and accuracy #######################
losses = history[’loss’]
accuracy = history[’accuracy’]
plt.figure()
plt.xlabel(’Epochs’)
plt.ylabel(’losses,�accuracy’)
plt.plot(losses)
plt.plot(accuracy)
plt.legend([’loss’,’accuracy’])#
plt.figure()
plt.xlabel(’Epochs’)
plt.ylabel(’val_losses ,�val_accuracy’)
plt.plot(history[’val_loss’])
plt.plot(history[’val_accuracy’])
plt.legend([’val_loss’, ’val_acc’])
##########################################################################
plt.figure()
plt.xlabel(’Epochs’)
plt.ylabel(’losses,�val_losses’)
plt.plot(history[’loss’])
plt.plot(history[’val_loss’])
plt.legend([’loss’, ’val_loss’])
##########################################################################
plt.figure()
plt.xlabel(’Epochs’)
plt.ylabel(’accuracy,�val_accuracy’)
plt.plot(history[’accuracy’])
plt.plot(history[’val_accuracy’])
plt.legend([’accuracy’, ’val_accuracy’])
### evaluate model
test_loss , test_accuracy = My_model.evaluate(XX,y)
print(My_model.metrics_names[1], test_accuracy*100)
print(My_model.metrics_names[0], test_loss)
plt.figure()
plt.xlabel(’Epochs’)
plt.ylabel(’losses,�accuracy,�val_losses ,�val_accuracy’)
#plt.plot(losses, marker=’o’, color = ’b’)
#plt.plot(history[’val_loss’], marker=’s’, color = ’orange’)
plt.plot(accuracy, marker = ’^’, color = ’g’)
plt.plot(history[’val_accuracy’], marker=’d’, color=’r’)
plt.legend([’loss’,’val_loss’, ’accuracy’, ’val_acc’])#
############################## PLOT MODEL ################################
plot_model(My_model, to_file=’D:\\CONV1D_model.png’ ,

show_shapes=True, show_layer_names=True)
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############################ SAVE MODEL ##################################
My_model.save("D:\\CONV1D_Model.h5")
My_model.save_weights("D:\\CONV1D_Model_weights.h5")

A.8 Python code for 1D-CNN Model 2 with one convolu-
tional layer

"""
Created on Fri Dec 6 11:43:20 2019
@author: Ali Mehrabi
Model 2, 1D CNN
"""
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from keras.utils import np_utils , plot_model
from keras.models import Sequential , Model
from keras.layers import Dense, Dropout,Conv1D,MaxPool1D ,Flatten,Input
from keras.losses import categorical_crossentropy
from keras.optimizers import SGD, adam
from keras import callbacks as cb
from sklearn import preprocessing as pp

DATASET = "D:\\Dataset2.csv"
TARGETFILE = "D:\\Y2.csv"
WINDOW = 2600
seed = 9
X = np.loadtxt(DATASET, delimiter=",")
X = X[:, 0:WINDOW]
Length = X.shape[1]
scaler = pp.MaxAbsScaler()
X_scaled = scaler.fit_transform(X)
X_abs = np.absolute(X)
y_array = np.loadtxt(TARGETFILE , delimiter=",")
y = np_utils.to_categorical(y_array)
LS = 834
RS = 2500
X2 = np.absolute(X_scaled[:,1000:1400])
XX = np.expand_dims(X2, axis=2)
############################## Creating Model ##############
X_train, X_test, y_train,y_test =
train_test_split(XX,y, test_size=0.2, random_state=seed)
############################################################
######################### Parameters #######################
epochs = 250
batch_size = 20 #X_train.shape[0]
channels = 1
verbose = 0
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n_samples , n_features = X2.shape[0], X2.shape[1]
###########################################################
My_Input = Input(shape=(n_features ,1))
Conv1 = Conv1D(filters=250, kernel_size=16,

strides= 8, activation=’relu’)(My_Input)
AVG1 = MaxPool1D()(Conv1)
Flat1 = Flatten()(AVG1)
Out_layer = Dense(9, activation=’softmax’)(Flat1)
My_model = Model(My_Input , Out_layer)
My_model.summary()
My_model.compile(optimizer=adam(),

loss=categorical_crossentropy , metrics=[’accuracy’])
################################################################
logger = cb.CSVLogger("D:\\CONV1D_logger.csv")
model_checkpoint = cb.ModelCheckpoint("D:\\CONV1D_model_checkpoint.h5")
tensorboard = cb.TensorBoard(log_dir="D:\\LOGS")
call_backs = [ logger,model_checkpoint , tensorboard ]
################################################################
## training Model
Network_history = My_model.fit(XX,y, epochs=epochs,

validation_data=(X_test,y_test), callbacks=call_backs)
history = Network_history.history
##############################plot loss and accuracy#######################
losses = history[’loss’]
accuracy = history[’accuracy’]
plt.figure()
plt.xlabel(’Epochs’)
plt.ylabel(’losses,�accuracy’)
plt.plot(losses)
plt.plot(accuracy)
plt.legend([’loss’,’accuracy’])#
plt.figure()
plt.xlabel(’Epochs’)
plt.ylabel(’val_losses ,�val_accuracy’)
plt.plot(history[’val_loss’])
plt.plot(history[’val_accuracy’])
plt.legend([’val_loss’, ’val_acc’])
################################### PLOT MODEL ###########################
plot_model(My_model, to_file=’D:\\CONV1D_model.png’,

show_shapes=True, show_layer_names=True)
################################### SAVE MODEL ###########################
My_model.save("D:\\CONV1D_Model.h5")
My_model.save_weights("D:\\CONV1D_Model_weights.h5")
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B.1 VHDL package for RNS Montgomery reduction

---------------------------------------------------------------
--
-- Written by: Ali Mehrabi
-- Create Date: 13.02.2019 11:34:32
-- Design Name:
-- Module Name: MNG_PACK - Behavioral
-- Project Name: RNS ECC
-- Target Devices: VIRTX 7
-- Tool Versions:
-- Description: The VHDL package defines types,
-- constants and functions used in
-- implementation of RNS Montgomery reduction unit.
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
-----------------------------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

package MNG_PACKAGE is

constant w : INTEGER := 66;
constant channel_width : INTEGER := w;
constant total_channels : INTEGER := 8;
constant c : INTEGER := 4;

constant KEY : std_logic_vector(255 downto 0) :=
X"8000_0000_0000_0000_0000_0000_0000_0000
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_0000_0000_0000_0000_0000_0000_0000_0009";
--------------------------------------- TYPE declaration
type type_RNS is array (1 to total_channels/2)
of std_logic_vector(w-1 downto 0); -- 66 bits
type type_DRNS is array (1 to total_channels/2)
of std_logic_vector(2*w-1 downto 0); -- 2* 66 bits
type type_CRNS is array (1 to total_channels )
of std_logic_vector(w-1 downto 0); -- 66 bits
type type_RNS_Table is array (1 to total_channels/2)
of type_RNS;
type type_RSUM is array (1 to total_channels/2)
of std_logic_vector(w downto 0);
type type_YACU is array (1 to total_channels/2)
of std_logic_vector(w+2 downto 0);
----------------------------------------------------------------------
--moduli set:
--2^66-1 ; 2^66-2^2-1 ;
--2^66-2^3-1 ; 2^66-2^4-1 ;
--2^66-2^5-1 ; 2^66-2^6-1 ;
--2^66-2^8-1; 2^66-2^9-1 ;
--
constant Moduli : type_CRNS := (
"11"&X"FFFFFFFFFFFFFFFF","11"&X"FFFFFFFFFFFFFFFB",
"11"&X"FFFFFFFFFFFFFFF7","11"&X"FFFFFFFFFFFFFFEF",
"11"&X"FFFFFFFFFFFFFFDF","11"&X"FFFFFFFFFFFFFFBF",
"11"&X"FFFFFFFFFFFFFEFF","11"&X"FFFFFFFFFFFFFDFF"
);
constant CModuli : type_CRNS := (
"00"&X"0000000000000001", "00"&X"0000000000000005",
"00"&X"0000000000000009", "00"&X"0000000000000011",
"00"&X"0000000000000021", "00"&X"0000000000000041",
"00"&X"0000000000000101", "00"&X"0000000000000201");

constant K : type_RNS := (
"11"&X"FFFFFFFFFFFFFFFF","11"&X"FFFFFFFFFFFFFFFB",
"11"&X"FFFFFFFFFFFFFFF7","11"&X"FFFFFFFFFFFFFFEF"
);

constant Q : type_RNS := (
"11"&X"FFFFFFFFFFFFFFDF","11"&X"FFFFFFFFFFFFFFBF",
"11"&X"FFFFFFFFFFFFFEFF","11"&X"FFFFFFFFFFFFFDFF"
);
------------------------------------------------------------------------------
constant KINV : type_RNS := (
"11"&X"FDFFFFFFFFFFFFFF", "00"&X"4555555555555555", "11"&X"1BFFFFFFFFFFFFF9",
"00"&X"A0AAAAAAAAAAAAA8");
constant QINV : type_RNS := (
"10"&X"0494A5CA5CA5CA4C", "00"&X"0180186186186186", "00"&X"B0C91E79E79E797B",
"00"&X"4922235A35A35A11");
-------------------------------------------------------------------------------
constant IPNQ : type_RNS := (
"10"&X"52B3070CAE4A8251", "11"&X"528B437349C54583", "01"&X"93AB34988ACE6E6B",
"10"&X"6A0DAB5A85884853");
constant PNQ : type_RNS := (
"01"&X"0DE641B8427554D2", "01"&X"10EA1A5D70599036", "01"&X"7BE4E887474BAEE9",
"10"&X"4106273148516B36");
constant PK : type_RNS := (
"00"&X"03FFFFFEFFFFFC2F", "01"&X"F3FFFFFEFFFFFC2F", "11"&X"63FFFFFEFFFFFC41",
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"00"&X"C3FFFFFEFFFFFD72");
constant PNK : type_RNS := (
"00"&X"1BB20C7BD99A0D63", "01"&X"AB4C56608CDFB866", "11"&X"E802AF45DAEDE46C",
"01"&X"C0657C4B03C6B1C5");
constant HNK : type_RNS := (
"00"&X"0000004000000000", "01"&X"13D5045218043984", "01"&X"5773EB99F5007171",

"00"&X"3C2620AA4CB54F75");
constant IHNK : type_RNS := (
"11"&X"FFFFFFFFDFFFFFFF", "10"&X"6C1A715B1820059F", "11"&X"5AA88C14660AFF87",
"11"&X"6E0A065AC70CC8D4");
constant KIJ : type_Rns_Table:=(
("00"&X"0000000000002A00", "00"&X"0000000000027600", "00"&X"0000000000E4DE00",
"00"&X"000000000791BE00"),
("00"&X"0000000000003000", "00"&X"000000000002A000", "00"&X"0000000000E88000",
"00"&X"0000000007A10000"),
("00"&X"0000000000003800", "00"&X"000000000002D000", "00"&X"0000000000EC4000",
"00"&X"0000000007B08000"),
("00"&X"0000000000005400", "00"&X"0000000000034800", "00"&X"0000000000F42000",
"00"&X"0000000007D04000")
);
constant QIJ : type_Rns_Table:=(
("11"&X"FFFFFFFFFF7FFFFF", "11"&X"FFFFFFFFFF8ACC3B", "11"&X"FFFFFFFFFF9531F7",

"11"&X"FFFFFFFFFFA8CFEF"),
("11"&X"FFFFFFFFFFBFFFFF", "11"&X"FFFFFFFFFFC94E3B", "11"&X"FFFFFFFFFFD239F7",

"11"&X"FFFFFFFFFFE2EFEF"),
("11"&X"FFFFFFFFFFEFFFFF", "11"&X"FFFFFFFFFFF2FA3B", "11"&X"FFFFFFFFFFF5A9F7",

"11"&X"FFFFFFFFFFFA2FEF"),
("11"&X"FFFFFFFFFFF7FFFF", "11"&X"FFFFFFFFFFF98A3B", "11"&X"FFFFFFFFFFFAE9F7",

"11"&X"FFFFFFFFFFFD2FEF")
);
constant THETA: type_Rns_Table:=(
("10"&X"1FE000000800001E","01"&X"C99249249B6DB6FC","01"&X"068000000AAAAAD0",
"11"&X"73C000001000001A"),
("01"&X"0FF000000400000F","00"&X"D58888888CCCCCDC","10"&X"B9A4924929249254",
"10"&X"7BEAAAAAB0000003"),
("11"&X"43FC000001000003","00"&X"32D75D75D861861C","01"&X"C6D294A52A5294A5",
"01"&X"4BFBBBBBBCCCCCCA"),
("11"&X"A1FE000000800001","00"&X"09183060C2040812","01"&X"3112492492CB2CB2",
"11"&X"3548421084A5293E")
);
constant PQNIJ: type_Rns_Table:=(
("10"&X"1FE000000800001E", "01"&X"0FF000000400000F", "11"&X"43FC000001000003",
"11"&X"A1FE000000800001"),
("01"&X"C99249249B6DB6FC", "00"&X"D58888888CCCCCDC", "00"&X"32D75D75D861861C",
"00"&X"09183060C2040812"),
("01"&X"068000000AAAAAD0", "10"&X"B9A4924929249254", "01"&X"C6D294A52A5294A5",
"01"&X"3112492492CB2CB2"),
("11"&X"73C000001000001A", "10"&X"7BEAAAAAB0000003", "01"&X"4BFBBBBBBCCCCCCA",
"11"&X"3548421084A5293E")
);

constant alphaP : type_Rns_Table:=(
("00"&X"0000000000000000", "00"&X"0000000000000000", "00"&X"0000000000000000",



150 Appendix B

"00"&X"0000000000000000"),
("11"&X"FC000001000003D0", "10"&X"0C000001000003CC", "00"&X"9C000001000003B6",
"11"&X"3C0000010000027D"),
("11"&X"F8000002000007A1", "00"&X"180000020000079D", "01"&X"380000020000076C",
"10"&X"780000020000050B"),
("11"&X"F400000300000B72", "10"&X"2400000300000B69", "01"&X"D400000300000B22",
"01"&X"B400000300000799")
);
constant alphaQ : type_Rns_Table:=(
("00"&X"0000000000000000", "00"&X"0000000000000000", "00"&X"0000000000000000",
"00"&X"0000000000000000"),
("11"&X"FFFFFFFFEFFFFFFF", "11"&X"FFFFFFFFF32E56FB", "11"&X"FFFFFFFFF5FCAFF7",
"11"&X"FFFFFFFFFA8CFFEF"),
("11"&X"FFFFFFFFDFFFFFFF", "11"&X"FFFFFFFFE65CADFB", "11"&X"FFFFFFFFEBF95FF7",
"11"&X"FFFFFFFFF519FFEF"),
("11"&X"FFFFFFFFCFFFFFFF", "11"&X"FFFFFFFFD98B04FB", "11"&X"FFFFFFFFE1F60FF7",
"11"&X"FFFFFFFFEFA6FFEF")
);
constant alphaK : type_Rns_Table:=(
("00"&X"0000000000000000", "00"&X"0000000000000000", "00"&X"0000000000000000",
"00"&X"0000000000000000"),
("11"&X"FFFFFFFFFFFABFDF", "11"&X"FFFFFFFFFF627FBF", "11"&X"FFFFFFFF1B21FEFF",
"11"&X"FFFFFFF0DC83FDFF"),
("11"&X"FFFFFFFFFFF57FDF", "11"&X"FFFFFFFFFEC4FFBF", "11"&X"FFFFFFFE3643FEFF",
"11"&X"FFFFFFE1B907FDFF"),
("11"&X"FFFFFFFFFFF03FDF", "11"&X"FFFFFFFFFE277FBF", "11"&X"FFFFFFFD5165FEFF",
"11"&X"FFFFFFD2958BFDFF")
);
constant QNK : type_RNS := (
"00"&X"0000004000000000", "01"&X"13D5045218043984",
"01"&X"5773EB99F5007171", "00"&X"3C2620AA4CB54F75"
);
-----------------------------------------------------------------------------
procedure MMR_M1(

signal A: in std_logic_vector(2*w-1 downto 0);
signal R: out std_logic_vector(w-1 downto 0));

procedure MMR_M2(
signal A: in std_logic_vector(2*w-1 downto 0);
signal R: out std_logic_vector(w-1 downto 0));

procedure MMR_M3(
signal A: in std_logic_vector(2*w-1 downto 0);
signal R: out std_logic_vector(w-1 downto 0));

procedure MMR_M4(
signal A: in std_logic_vector(2*w-1 downto 0);
signal R: out std_logic_vector(w-1 downto 0));

procedure MMR_M5(
signal A: in std_logic_vector(2*w-1 downto 0);
signal R: out std_logic_vector(w-1 downto 0));

procedure MMR_M6(
signal A: in std_logic_vector(2*w-1 downto 0);
signal R: out std_logic_vector(w-1 downto 0));

procedure MMR_M7(
signal A: in std_logic_vector(2*w-1 downto 0);
signal R: out std_logic_vector(w-1 downto 0));

procedure MMR_M8(
signal A: in std_logic_vector(2*w-1 downto 0);
signal R: out std_logic_vector(w-1 downto 0));

-------------------------------------------------------------------------
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function BLOCK_SUM(ARNS,BRNS: in type_RNS ; F : std_logic)
return type_RNS;
function BLOCK_SUMK(ARNS,BRNS: in type_RNS)
return type_RNS;
function BLOCK_SUMQ(ARNS,BRNS: in type_RNS)
return type_RNS;
function Read_AlphaK(i: std_logic_vector)
return type_RNS;
function Read_AlphaP(i: std_logic_vector)
return type_RNS;
function Read_AlphaQ(i: std_logic_vector)
return type_RNS;
function REDSUM( Ai: type_YACU; F: std_logic)
return type_RNS;
end package;
package body MNG_PACKAGE is
-------------------------------------------------------------------------
procedure MMR_M1(
signal A: in std_logic_vector(2*w-1 downto 0);
signal R: out std_logic_vector(w-1 downto 0)) is
variable AL,AH : std_logic_vector(w-1 downto 0);
variable N : std_logic_vector(w downto 0);
variable M : std_logic_vector(w-1 downto 0);
constant Z0: std_logic_vector(47 downto 0):=(others=>’0’);
begin
M:= Moduli(1);
AH:= A(2*w-1 downto w);
AL:= A(w-1 downto 0);
N:= ’0’&AH+AL;
if (N>= M) then

N(w downto 0):= N(w downto 0)-M(w-1 downto 0);
end if;

R(w-1 downto 0) <= N(w-1 downto 0);
end procedure MMR_M1;
-------------------------------------------------------------------------
procedure MMR_M2(
signal A: in std_logic_vector(2*w-1 downto 0);
signal R: out std_logic_vector(w-1 downto 0)) is
variable AL,AH,AAL,AAH : std_logic_vector(w-1 downto 0);
variable AM : std_logic_vector(w downto 0);
variable N,Z : std_logic_vector(w+1 downto 0);
variable M : std_logic_vector(w-1 downto 0);
constant Z0: std_logic_vector(61 downto 0):=(others=>’0’);
begin
M:= Moduli(2);
AH(w-1 downto 0) := A(2*w-1 downto w);
AL(w-1 downto 0) := A(w-1 downto 0);
AAL(w-1 downto 0):= A(2*w-3 downto w)&"00";
AAH(w-1 downto 0):= Z0&(A(2*w-1 downto 2*w-2)&A(2*w-1 downto 2*w-2));
AM:= ’0’&AH+AL;
if AM >= M then

AM:= AM - M;
end if;
N:= ’0’&AM+AAL+AAH;
if (N>=Moduli(2)) then

N(w+1 downto 0):= N(w+1 downto 0)-moduli(2);
else

N(w+1 downto 0):= N(w+1 downto 0);
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end if;
R(w-1 downto 0) <= N(w-1 downto 0);
end procedure MMR_M2;
-------------------------------------------------------------------------
procedure MMR_M3(
signal A: in std_logic_vector(2*w-1 downto 0);
signal R: out std_logic_vector(w-1 downto 0)) is
variable AL,AH,AAL,AAH : std_logic_vector(w-1 downto 0);
variable AM : std_logic_vector(w downto 0);
variable N : std_logic_vector(w+1 downto 0);
variable M : std_logic_vector(w-1 downto 0);
constant Z0: std_logic_vector(59 downto 0):=(others=>’0’);
begin
AH:= A(2*w-1 downto w);
AL:= A(w-1 downto 0);
AM:= ’0’&AH+AL;
M:= Moduli(3);
if AM >= M then

AM:= AM - M;
end if;
AAL:= AH(w-4 downto 0)&"000";
AAH:= Z0&AH(w-1 downto w-3)&AH(w-1 downto w-3);
N:= ’0’&AM+ AAH+AAL;
if (N>= M) then

N(w+1 downto 0):= N(w+1 downto 0)-Moduli(3);
end if;

R(w-1 downto 0) <= N(w-1 downto 0);
end procedure MMR_M3;
-----------------------------------------------------------------------
procedure MMR_M4(
signal A : in std_logic_vector(2*w-1 downto 0);
signal R : out std_logic_vector(w-1 downto 0)) is
variable AL,AH,AAL,AAH : std_logic_vector(w-1 downto 0);
variable AM : std_logic_vector(w downto 0);
variable N : std_logic_vector(w+1 downto 0);
variable M : std_logic_vector(w-1 downto 0);
constant Z0 : std_logic_vector(w-9 downto 0):=(others=>’0’);
begin
M:= Moduli(4);
AH:= A(2*w-1 downto w);
AL:= A(w-1 downto 0);
AM:= ’0’&AH+AL;
if AM >= M then

AM:= AM - M;
end if;
AAL:= A(2*w-5 downto w)&"0000";
AAH:= Z0&A(2*w-1 downto 2*w-4)&A(2*w-1 downto 2*w-4);
N(w+1 downto 0) := ’0’&AM+AAL+AAH;
if (N>= M) then

N(w+1 downto 0):= N(w+1 downto 0)-M(w-1 downto 0);
end if;

R(w-1 downto 0) <= N(w-1 downto 0);
end procedure MMR_M4;
-----------------------------------------------------------
procedure MMR_M5(
signal A: in std_logic_vector(2*w-1 downto 0);
signal R: out std_logic_vector(w-1 downto 0)) is
variable AL,AH,AAL,AAH : std_logic_vector(w-1 downto 0);
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variable AM: std_logic_vector(w downto 0);
variable N : std_logic_vector(w+1 downto 0);
variable M : std_logic_vector(w-1 downto 0);
constant Z0: std_logic_vector(w-11 downto 0):=(others=>’0’);
begin
M:= Moduli(5);
AH:= A(2*w-1 downto w);
AL:= A(w-1 downto 0);
AM:= ’0’&AH+AL;
if AM >= M then

AM:= AM - M;
end if;
AAL:= A(2*w-6 downto w)&"00000";
AAH:= Z0&A(2*w-1 downto 2*w-5)&A(2*w-1 downto 2*w-5);
N:= ’0’&AM+AAL+AAH;
if (N>= M) then

N(w+1 downto 0):= N(w+1 downto 0)-M(w-1 downto 0);
else

N(w+1 downto 0):= N(w+1 downto 0);
end if;

R(w-1 downto 0) <= N(w-1 downto 0);
end procedure MMR_M5;
----------------------------------------------------------------------
procedure MMR_M6(
signal A: in std_logic_vector(2*w-1 downto 0);
signal R: out std_logic_vector(w-1 downto 0)) is
variable AL,AH,AAL,AAH : std_logic_vector(w-1 downto 0);
variable AM : std_logic_vector(w downto 0);
variable N : std_logic_vector(w+1 downto 0);
variable M : std_logic_vector(w-1 downto 0);
constant Z0: std_logic_vector(w-13 downto 0):=(others=>’0’);
begin
M:= Moduli(6);
AH:= A(2*w-1 downto w);
AL:= A(w-1 downto 0);
AM:= ’0’&AH+AL;
if AM >= M then

AM:= AM-M;
end if;
AAL:= A(2*w-7 downto w)&"000000";
AAH:= Z0&A(2*w-1 downto 2*w-6)&A(2*w-1 downto 2*w-6);
N:= ’0’&AM+AAL+AAH;
if (N>= M) then

N(w+1 downto 0):= N(w+1 downto 0)-M(w-1 downto 0);
end if;
R(w-1 downto 0) <= N(w-1 downto 0);
end procedure MMR_M6;
-----------------------------------------------------------------------
procedure MMR_M7(
signal A: in std_logic_vector(2*w-1 downto 0);
signal R: out std_logic_vector(w-1 downto 0)) is
variable AL,AH,AAL,AAH : std_logic_vector(w-1 downto 0);
variable AM : std_logic_vector(w downto 0);
variable N : std_logic_vector(w+1 downto 0);
variable M : std_logic_vector(w-1 downto 0);
constant Z0: std_logic_vector(w-17 downto 0):=(others=>’0’);
begin
M := Moduli(7);
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AH:= A(2*w-1 downto w);
AL:= A(w-1 downto 0);
AM:= ’0’&AH+AL;
if AM >= M then

AM := AM-M;
end if;
AAL:= A(2*w-9 downto w)&"00000000";
AAH:= Z0&A(2*w-1 downto 2*w-8)&A(2*w-1 downto 2*w-8);
N:= ’0’&AM+AAL+AAH;
if (N>= M) then

N(w+1 downto 0):= N(w+1 downto 0)-M(w-1 downto 0);
end if;
R(w-1 downto 0) <= N(w-1 downto 0);
end procedure MMR_M7;
------------------------------------------------------------------
procedure MMR_M8(
signal A: in std_logic_vector(2*w-1 downto 0);
signal R: out std_logic_vector(w-1 downto 0)) is
variable AL,AH,AAL,AAH : std_logic_vector(w-1 downto 0);
variable AM : std_logic_vector(w downto 0);
variable N : std_logic_vector(w+1 downto 0);
variable M : std_logic_vector(w-1 downto 0);
constant Z0 : std_logic_vector(w-19 downto 0):=(others=>’0’);
begin
M:= Moduli(8);
AH:= A(2*w-1 downto w);
AL:= A(w-1 downto 0);
AM:= ’0’&AH+AL;
if AM >= M then

AM := AM-M;
end if;
AAL:= A(2*w-10 downto w)&"000000000";
AAH:= Z0&A(2*w-1 downto 2*w-9)&A(2*w-1 downto 2*w-9);
N:= ’0’&AM+AAL+AAH;
if (N>= M) then

N(w+1 downto 0):= N(w+1 downto 0)-M(w-1 downto 0);
end if;
R(w-1 downto 0) <= N(w-1 downto 0);
end procedure MMR_M8;

function BLOCK_SUM(ARNS,BRNS: in type_RNS ; F : std_logic)
return type_RNS is
variable j: integer;
variable C: type_RNS;
variable A,B: std_logic_vector(w-1 downto 0):=(others=>’0’);
variable Sum,S: std_logic_vector(w downto 0):=(others=>’0’);
begin
for j in 1 to total_channels/2 loop
A:=(ARNS(j));
B:=(BRNS(j));
Sum:= ’0’&A+B;
case F is
when ’0’ =>
if Sum >= Moduli(j) then

S:= Sum - Moduli(j);
else

S:= Sum;
end if;
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when others =>
if Sum >= Moduli(j+4) then

S:= Sum - Moduli(j+4);
else

S:= Sum;
end if;
end case;
C(j):= S(w-1 downto 0);
end loop;
return C;
end function;

function BLOCK_SUMK(ARNS,BRNS: in type_RNS)
return type_RNS is
variable j: integer;
variable C: type_RNS;
variable Sum,S,A,B: std_logic_vector(w downto 0):=(others=>’0’);
begin
for j in 1 to total_channels/2 loop
A:=(’0’& ARNS(j));
B:=(’0’& BRNS(j));
Sum:= A+B;
if Sum >= K(j) then

S:= Sum - K(j);
else

S:= Sum;
end if;
C(j):= S(w-1 downto 0);
end loop;
return C;
end function;

function BLOCK_SUMQ(ARNS,BRNS: in type_RNS)
return type_RNS is
variable j: integer;
variable C: type_RNS;
variable Sum,S,A,B: std_logic_vector(w downto 0):=(others=>’0’);
begin
for j in 1 to total_channels/2 loop
A:=(’0’& ARNS(j));
B:=(’0’& BRNS(j));
Sum:= A+B;
if Sum >= Q(j) then

S:= Sum - Q(j);
else

S:= Sum;
end if;
C(j):= S(w-1 downto 0);
end loop;
return C;
end function;

function Read_AlphaK(i: std_logic_vector)
return type_RNS is
variable j: integer range 0 to total_channels/2-1;
begin
if I >=0 and I<= (total_channels/2-1) then

j:=conv_integer(I+1);
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else
j:=1;

end if;
return AlphaK(j);
end function Read_AlphaK;

function Read_AlphaQ(i: std_logic_vector)
return type_RNS is
variable j: integer range 0 to total_channels/2-1;
begin
if I >=0 and I<= (total_channels/2-1) then

j:=conv_integer(I+1);
else

j:=1;
end if;
return AlphaQ(j);
end function Read_AlphaQ;

function Read_AlphaP(i: std_logic_vector)
return type_RNS is
variable j: integer range 0 to total_channels/2-1;
begin
if I >=0 and I<= (total_channels/2-1) then

j:=conv_integer(I+1);
else

j:=1;
end if;
return AlphaP(j);
end function Read_AlphaP;

function REDSUM( Ai: type_YACU; F: std_logic)
return type_RNS is
variable E : std_logic_vector(w+2 downto 0);
variable R : type_RNS;
variable KK,QQ : type_RSUM;
begin
for i in 1 to 4 loop
KK(i) := K(i)&’0’;
QQ(i) := Q(i)&’0’;
if F=’0’ then

if (Ai(i) >= KK(i)) then
E := Ai(i) - KK(i);

elsif (Ai(i) >= K(i)) then
E := Ai(i) - K(i);

else
E:= Ai(i);

end if;
elsif F=’1’ then

if (Ai(i) >= QQ(i)) then
E := Ai(i) - QQ(i);

elsif (Ai(i) >= Q(i)) then
E := Ai(i) - Q(i);

else
E:= Ai(i);

end if;
end if;
R(i)(w-1 downto 0) := E(w-1 downto 0);
end loop;
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return R;
end function REDSUM;
end package body MNG_PACKAGE;

B.2 Hardware description for RNS Motgomery reduction

--------------------------------------------------------------------
-- Written by: Ali Mehrabi
-- Create Date: 14.02.2019 11:01:13
-- Design Name:
-- Module Name: MNG_RED - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
----------------------------------------------------------------
library IEEE;
library WORK;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all; -- for multiply operation
use IEEE.std_logic_arith.all; -- for std_logic to integer conversion
use WORK.MNG_PACKAGE.all;

entity MNG_RED is
Port ( CLK : IN std_logic;

RST : IN std_logic;
A : IN type_CRNS;
B : IN type_CRNS;
D : OUT type_CRNS

);
end MNG_RED;

architecture Behavioral of MNG_RED is
type STATE is (S0,S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11,S12,S13,S14,
S15,S16,S17,S18,S19,S20);
signal ST : STATE;
signal AK : type_RNS ;
signal AQ : type_RNS ;
signal BK : type_RNS ;
signal BQ : type_RNS ;
signal A1,B1,D1 : type_RNS;
signal A2,B2,D2 : type_RNS;
signal G ,L1,L2 : type_RNS;
signal A3,B3,S : type_RNS;
signal YI1,YI2 : type_RNS;
signal C1,C2,F : std_logic;
signal Alpha : std_logic_vector(1 downto 0);
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component RNSMULT is
Port ( A: IN type_RNS;

B: IN type_RNS;
C: IN std_logic;
D: OUT type_RNS);

end component RNSMULT;

component RNSSUM is
Port ( A: IN type_RNS;

B: IN type_RNS;
F: IN std_logic;
S: OUT type_RNS);

end component RNSSUM;

component G_adder is
Port (A1,A2,A3,A4 : in std_logic_vector(3 downto 0);

S : out std_logic_vector(1 downto 0)
);

end component G_adder;

begin
AK <= (A(1),A(2),A(3),A(4));
AQ <= (A(5),A(6),A(7),A(8));
BK <= (B(1),B(2),B(3),B(4));
BQ <= (B(5),B(6),B(7),B(8));

U1: RNSMULT port map ( A=> A1, B=>B1, C=>C1, D=> D1);
U2: RNSMULT port map ( A=> A2, B=>B2, C=>C2, D=> D2);
U3: RNSSUM port map ( A=> A3, B=>B3, F=>F , S=> S );
U4: G_ADDER port map ( A1 =>G(1)(w-1 downto w-4), A2=> G(2)(w-1 downto w-4),

A3 =>G(3)(w-1 downto w-4), A4=> G(4)(w-1 downto w-4),S=> Alpha);
process(CLK, RST)
begin
if RST = ’0’ then

ST <= S0;
C1 <= ’0’; -- multiplier 1 reduction in K
C2 <= ’1’; -- multiplier 2 reduction in Q
F <= ’1’;
D <= (others=>(others=>’0’));

elsif CLK=’1’ and CLK’event then
case ST is

when S0 =>
A1 <= AK;
B1 <= BK;
A2 <= AQ;
B2 <= BQ;
ST <= S1;

when S1 =>
ST <= S2;

when S2 =>
A1 <= D1; -- AK.BK in D1
B1 <= QNK; -- Q^-1
A2 <= D2; -- AQ.BQ in D2
B2 <= IPNQ; -- AQ.BQ*IPNQ
ST <= S3;

when S3 =>
C1 <= ’0’; -- reduction in K from here
C2 <= ’0’;
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ST <= S4;
when S4 =>

G <= D2; -- Gammaq = AQ.BQ.IPNQ in register G
L1 <= D1; -- AK.BK.PNK in register L1
A1 <= (D2(1),D2(1),D2(1),D2(1));
B1 <= THETA(1); --------------- Gamma1 * QIJ(1)(j)
A2 <= (D2(2),D2(2),D2(2),D2(2));
B2 <= THETA(2); --------------- Gamma2 * QIJ(2)(j)
ST <= S5;

when S5 =>
F <= ’0’;
ST <= S6;

when S6 =>
A3 <= D1; --
B3 <= D2; -- ADD D1 +D2
L2 <= Read_AlphaP(alpha); -- -alphaQ in L2
A1 <= (G(3),G(3),G(3),G(3)); --------------- Gamma3 * QIJ(3)(j)
B1 <= THETA(3);
A2 <= (G(4),G(4),G(4),G(4)); -------------- Gamma4 * QIJ(4)(j)
B2 <= THETA(4);
ST <= S7;

when S7 =>
L1 <= BLOCK_SUMK(L1,L2);
YI1 <= S; -- D1+D2
ST <= S8;

when S8 =>
C1<= ’0’;
C2<= ’0’;
A3 <= D1;
B3 <= D2;
ST <= S9;

when S9 =>
A3 <= S;
B3 <= YI1;
ST <= S10;

when S10 =>
A3 <= S;
B3 <= L1;
ST <= S11;

when S11 =>
D(1) <= S(1);
D(2) <= S(2);
D(3) <= S(3);
D(4) <= S(4);
A2 <= S;
B2 <= KINV;
ST <= S12;

when S12 =>
C1 <= ’1’;
C2 <= ’1’;
F <= ’1’;
ST <= S13;

when S13 =>
G <= D2;
A1 <= (D2(1),D2(1),D2(1),D2(1));
B1 <= KIJ(1);
A2 <= (D2(2),D2(2),D2(2),D2(2));
B2 <= KIJ(2);
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ST <= S14;
when S14 =>

ST <= S15 ;
when S15 =>

A3 <= D1;
B3 <= D2;
L2 <= Read_AlphaK(alpha);
A1 <= (G(3),G(3),G(3),G(3));
B1 <= KIJ(3);
A2 <= (G(4),G(4),G(4),G(4));
B2 <= KIJ(4);
ST <= S16;

when S16 =>
YI1 <= S;
ST <= S17;

when S17 =>
A3 <= D1;
B3 <= D2;
ST <= S18;

when S18 =>
A3 <= S;
B3 <= L2;
ST <= S19;

when S19 =>
A3 <= S;
B3 <= YI1;
ST <= S20;

when S20 =>
D(5) <= S(1);
D(6) <= S(2);
D(7) <= S(3);
D(8) <= S(4);
ST <= S20;

end case;
end if;
end process;
end Behavioral;

----------------------------------------------------------------------------------
-- Written by: Ali Mehrabi
-- Create Date: 13.02.2019 13:57:22
-- Design Name: RNS Multiplier
-- Module Name: RNS_MULT - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
----------------------------------------------------------------------------------

library IEEE;
library WORK;
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use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all; -- for multiply operation
use IEEE.std_logic_arith.all; -- for std_logic to integer conversion
use WORK.MNG_PACKAGE.all;

entity RNSMULT is
Port ( A: IN type_RNS;

B: IN type_RNS;
C: IN std_logic;
D: OUT type_RNS);

end RNSMULT;

architecture Behavioral of RNSMULT is
signal M: type_DRNS;
signal R,S: type_RNS;
begin

RNSMUL: for i in 1 to total_channels/2 generate
M(i) <= A(i)*B(i);
end generate;

process(M)
begin
case C is
when ’0’ =>
MMR_M1(M(1),D(1));
MMR_M2(M(2),D(2));
MMR_M3(M(3),D(3));
MMR_M4(M(4),D(4));
when others =>
MMR_M5(M(1),D(1));
MMR_M6(M(2),D(2));
MMR_M7(M(3),D(3));
MMR_M8(M(4),D(4));
end case;
end process;
end Behavioral;
--------------------------------------------------------------
-- Written by: Ali Mehrabi
-- Create Date: 15.02.2019 10:06:58
-- Design Name:
-- Module Name: RNS_SUM - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
---------------------------------------------------------------
library IEEE;
library WORK;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all; -- for multiply operation



162 Appendix B

use IEEE.std_logic_arith.all; -- for std_logic to integer conversion
use WORK.MNG_PACKAGE.all;

entity RNSSUM is
Port ( A: IN type_RNS;

B: IN type_RNS;
F: IN std_logic;
S: OUT type_RNS);

end RNSSUM;

architecture rtl of RNSSUM is
signal Si ,Ci : type_RSUM;
signal X,Y : type_RSUM;

signal m : type_RNS;
begin
m(1) <= not moduli(1) when F=’0’ else not moduli(5);
m(2) <= not moduli(2) when F=’0’ else not moduli(6);
m(3) <= not moduli(3) when F=’0’ else not moduli(7);
m(4) <= not moduli(4) when F=’0’ else not moduli(8);
U:for i in 1 to total_channels/2 generate
Si(i) <= ’0’&(A(i) xor B(i) xor m(i));
Ci(i) <= ((A(i) and B(i)) or (A(i) and m(i)) or (B(i) and m(i)))&’1’;
X(i) <= Si(i)+ Ci(i);
Y(i) <= ’0’&A(i) + B(i);
S(i) <= X(i)(w-1 downto 0) when Y(i)(w)=’1’ else Y(i)(w-1 downto 0);
end generate;
end architecture;
----------------------------------------------------------------------------------
-- Written by: Ali Mehrabi
-- Create Date: 14.02.2019 14:10:33
-- Design Name:
-- Module Name: G_ADDER - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
----------------------------------------------------------------------------------
library IEEE;
library WORK;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.numeric_std.all;
use WORK.MNG_package.all;

entity G_adder is
Port (A1,A2,A3,A4 : in std_logic_vector(3 downto 0);

S : out std_logic_vector(1 downto 0));
end G_adder;
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architecture Behavioral of G_adder is

signal P10,P11,G10,G11 :std_logic_vector(3 downto 0);
signal S1 :std_logic_vector(5 downto 0);
signal S2 :std_logic_vector(6 downto 0);
signal C10 :std_logic_vector(5 downto 0);
signal C11 :std_logic_vector(5 downto 0);

begin
P10 <= (A1 xor A2);
P11 <= (A3 xor A4);
G10 <= (A1 and A2);
G11 <= (A3 and A4);
S1 <= "00"&(P10 xor P11); -- Delta = 2^4 added to S1
C10 <= ’0’&((P10 and P11) or ((not G10) and G11) or (G10 and (not G11)))&’0’;
C11 <= (G10 and G11) &"11";
S2 <= ’0’&S1 + C10 + C11;
S(1 downto 0) <= S2(5 downto 4);
end Behavioral;

B.3 RNS Package for SOR Mudular reduction algorithm

-------------------------------------------------------------
-- Written by: Ali Mehrabi
-- Create Date: 22.06.2018 10:37:29
-- Design Name:
-- Module Name: RNS_PACKAGE - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
--------------------------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

package RNS_PACKAGE is

constant w : INTEGER := 66;
constant channel_width : INTEGER := w;
constant total_channels : INTEGER := 8;
constant c : INTEGER := 4;

constant KEY : std_logic_vector(255 downto 0) :=
X"8000_0000_0000_0000_0000_0000_0000_0000
_0000_0000_0000_0000_0000_0000_0000_0001";
----------------------- TYPE declaration -----------------------------
type type_RNS is array (1 to total_channels) of
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std_logic_vector(w-1 downto 0);
type type_UDIM is array (1 to total_channels) of
std_logic_vector(w-15 downto 0);
type type_RNS_Table is array (1 to total_channels) of type_RNS;
type type_YSUM is array (1 to total_channels) of
std_logic_vector(w downto 0);
type type_YACU is array (1 to total_channels) of
std_logic_vector(w+2 downto 0);
type type_DRNS is array (1 to total_channels) of
std_logic_vector(2*w-1 downto 0);
-------------------------------------------------------------------
--moduli set:
--2^66-1 ; 2^66-2^2-1 ;
--2^66-2^3-1 ; 2^66-2^4-1 ;
--2^66-2^5-1 ; 2^66-2^6-1 ;
--2^66-2^8-1; 2^66-2^9-1 ;
--
constant Moduli : type_RNS := (
"11"&X"FFFFFFFFFFFFFFFF","11"&X"FFFFFFFFFFFFFFFB",
"11"&X"FFFFFFFFFFFFFFF7","11"&X"FFFFFFFFFFFFFFEF",
"11"&X"FFFFFFFFFFFFFFDF","11"&X"FFFFFFFFFFFFFFBF",
"11"&X"FFFFFFFFFFFFFEFF","11"&X"FFFFFFFFFFFFFDFF"
);

constant DModuli : type_YSUM := (
"111"&X"FFFFFFFFFFFFFFFE","111"&X"FFFFFFFFFFFFFFF6",
"111"&X"FFFFFFFFFFFFFFEE","111"&X"FFFFFFFFFFFFFFDE",
"111"&X"FFFFFFFFFFFFFFBE","111"&X"FFFFFFFFFFFFFF7E",
"111"&X"FFFFFFFFFFFFFDFE","111"&X"FFFFFFFFFFFFFBFE"
);
--------------------------------------------------------
constant CModuli : type_RNS := (
"00"&X"0000000000000001","00"&X"0000000000000005",
"00"&X"0000000000000009","00"&X"0000000000000011",
"00"&X"0000000000000021","00"&X"0000000000000041",
"00"&X"0000000000000101","00"&X"0000000000000201"
);
--------------------------------------------------------
constant DINV : type_RNS := (
"11"&X"FFFFFFFFDFFFFFFF","10"&X"6C1A715B1820059F",
"11"&X"5AA88C14660AFF87","11"&X"6E0A065AC70CC8D4",
"00"&X"B7773DD32BC5056F","01"&X"13815F1861ADB944",
"00"&X"73AA4CA0D49099CD","00"&X"8C9012A978C4D8F2"
);

constant DiMmj : type_Rns_Table:=(
("10"&X"BE698F14B22F6A6B","10"&X"CC87376D7EC5D27F","10"&X"DA365FBC3307AB13",
"10"&X"F44F315789611FBB","11"&X"2394E04B6D33350B","11"&X"6FC0AB540F94FFAB",
"11"&X"D3F081BEF90DBF6B","11"&X"EA8E98DC1B2C146B"),
("10"&X"CC87376A914F74C3","10"&X"DA6D5FAC057452D7","10"&X"E7E587EF0DC942EB",
"11"&X"0191D9793E846B13","11"&X"30048799D8C75963","11"&X"7AA247E9B4BB9E03",
"11"&X"D819EB5728A119C3","11"&X"ECA81E79CECABEC3"),
("10"&X"DA365F9ECAB96D9B","10"&X"E7E587D5AEE3E12F","10"&X"F52730164E4BB843",
"11"&X"0E680199DFD9C2EB","11"&X"3C09AEEE351AA83B","11"&X"851D64EAE18AA2DB",
"11"&X"DBF524AA04D8429B","11"&X"EE9611EB2E67179B"),
("10"&X"F44F3002635124CB","11"&X"0191D8376AD381DF","11"&X"0E68007E2ABF7573",
"11"&X"26D4D1F8A85B121B","11"&X"52DA7DA86A51BF6B","11"&X"98E6202986C1DA0B",
"11"&X"E2C70067B5FFF9CB","11"&X"F1F4E188784ECECB"),
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("11"&X"2394D0B6CBD97F2B","11"&X"300478E83CE2493F","11"&X"3C09A127BF17CFD3",
"11"&X"52DA7247DD7B847B","11"&X"7BC01A4CCF46A9CB","11"&X"BBEB9B6BEFF4D46B",
"11"&X"ED02319A9ED6D42B","11"&X"F6E57E69E5D4292B"),
("11"&X"6FC011D97C9C93EB","11"&X"7AA1BA0448D99FFF","11"&X"851CE23750B8B493",
"11"&X"98E5B2F9EA4E693B","11"&X"BBEB57CC25721E8B","11"&X"F116BD7BC06BA92B",
"11"&X"F525259BA7B0E8EB","11"&X"FACD84AD9F853DEB"),
("11"&X"D3C393572D94106B","11"&X"D7F13B678172087F","11"&X"DBD0637985B5D113",
"11"&X"E2A933B56BBA45BB","11"&X"ECEED51043C6DB0B","11"&X"F51A1F6ED46FA5AB",
"11"&X"6920A191848A656B","11"&X"FE904BEC7CC0BA6B"),
("11"&X"E91D93A8A9F8B66B","11"&X"EB5B3BB169963E7F","11"&X"ED6A63BAEF53F713",
"11"&X"F10333D9E6F36BBB","11"&X"F648D48ABB1A810B","11"&X"FA7419D199CA4BAB",
"11"&X"FE7922910F070B6B","11"&X"13DE3137DB55626C")
);
------------------- BM:= 2^14*M^2 ----------------------------------
constant BM : type_RNS:=(
"11"&X"FFFFBFFFFF0BC03F","11"&X"FFFFBFFFFF0C5C3B",
"11"&X"FFFFBFFFFF122837","11"&X"FFFFBFFFFF5D502F",
"11"&X"FFFFC0000391E01F","11"&X"FFFFC0004323FFFF",
"11"&X"FFFFC041008CBF3F","11"&X"FFFFC408050DBE3F"
);
--------------------------------------------------------------------
constant UDIM :type_UDIM :=(
X"8017AF3C497FF",X"8015484AC17FF",
X"80131815D97FF",X"800F51B5E97FF",
X"8009E889897FF",X"8005A73EC97FF",
X"80019106497FF",X"8000CCD0497FF"
);
----------------- M mod mi ---------------------------------------
constant MI : type_RNS := (
"00"&X"03FFFFFEFFFFFC2F","01"&X"F3FFFFFEFFFFFC2F",
"11"&X"63FFFFFEFFFFFC41","00"&X"C3FFFFFEFFFFFD72",
"01"&X"83FFFFFF00000E3B","11"&X"03FFFFFF00010C5F",
"00"&X"03FFFFFF01040232","00"&X"03FFFFFF10201435"
);
-------------------------- -M mod mi --------------------------
constant NI : type_RNS := (
"11"&X"FC000001000003D0","10"&X"0C000001000003CC",
"00"&X"9C000001000003B6","11"&X"3C0000010000027D",
"10"&X"7C000000FFFFF1A4","00"&X"FC000000FFFEF360",
"11"&X"FC000000FEFBFCCD","11"&X"FC000000EFDFE9CA"
);
-------------------------------------------------------------------
function Read_Moduli(i: std_logic_vector) return std_logic_vector;
function Read_Moduli(i: integer ) return std_logic_vector;
function Read_CModuli(i: std_logic_vector) return std_logic_vector;
function Read_CModuli(i: integer ) return std_logic_vector;
function Read_Dinv(I :std_logic_vector) return std_logic_vector;
function Read_UDIM(I: std_logic_vector) return std_logic_vector;
function Read_DiMmj(I:std_logic_vector) return type_RNS;
function BLOCK_SUM(ARNS,BRNS: in type_RNS) return type_RNS;
function BLOCK_SUB(ARNS,BRNS: in type_RNS) return type_RNS;
function BLOCK_MULTIPLICATION(ARNS,BRNS: in type_RNS)
return type_RNS;
function Read_MDMmi(I : std_logic_vector) return type_RNS;
function MSBB(A: std_logic_vector ) return integer;
function CSA_ADDER(X,Y,Z: std_logic_vector ) return std_logic_vector;
function BSI(X: std_logic_vector; I:integer) return std_logic_vector;
function ModuliMult(A: type_RNS; B: std_logic_vector)
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return type_DRNS;
function KMULT(K : std_logic_vector) return type_RNS;
function BLOCK_3SUM(ARNS,BRNS,CRNS: in type_RNS) return type_RNS;

procedure MODULI_ADD(
signal A : IN std_logic_vector(w-1 downto 0);
signal B : IN std_logic_vector(w-1 downto 0);
signal I : IN std_logic_vector(c-1 downto 0);
signal ARNS : OUT std_logic_vector(w-1 downto 0)

);
------------------------------------------------------------------
procedure MODULI_SUB(
signal A : IN std_logic_vector(w-1 downto 0);
signal B : IN std_logic_vector(w-1 downto 0);
signal I : IN std_logic_vector(c-1 downto 0);
signal ARNS : OUT std_logic_vector(w-1 downto 0)

);

------------------------------------------------------------------
procedure KOM(
signal A : IN std_logic_vector(w-1 downto 0);
signal B : IN std_logic_vector(w-1 downto 0);
signal C : OUT std_logic_vector(2*w-1 downto 0)

);
------------------------------------------------------------------
procedure BRTR(

signal A: in std_logic_vector(2*w-1 downto 0);
signal I: in integer;
signal R: out std_logic_vector(w-1 downto 0)
);

procedure BRTR(
signal A: in std_logic_vector(2*w-1 downto 0);
signal I: in std_logic_vector(3 downto 0);
signal R: out std_logic_vector(w-1 downto 0)
);

procedure MMR(
signal A: in std_logic_vector(2*w-1 downto 0);
signal I: in std_logic_vector(3 downto 0);
signal R: out std_logic_vector(w-1 downto 0)
);

procedure MMR(
signal A: in std_logic_vector(2*w-1 downto 0);

I: in integer;
signal R: out std_logic_vector(w-1 downto 0)
);

-----------------------------------------------------------------------------
procedure MMR_M1(

signal A: in std_logic_vector(2*w-1 downto 0);
signal R: out std_logic_vector(w-1 downto 0));

procedure MMR_M2(
signal A: in std_logic_vector(2*w-1 downto 0);
signal R: out std_logic_vector(w-1 downto 0));

procedure MMR_M3(
signal A: in std_logic_vector(2*w-1 downto 0);
signal R: out std_logic_vector(w-1 downto 0));

procedure MMR_M4(
signal A: in std_logic_vector(2*w-1 downto 0);
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signal R: out std_logic_vector(w-1 downto 0));
procedure MMR_M5(

signal A: in std_logic_vector(2*w-1 downto 0);
signal R: out std_logic_vector(w-1 downto 0));

procedure MMR_M6(
signal A: in std_logic_vector(2*w-1 downto 0);
signal R: out std_logic_vector(w-1 downto 0));

procedure MMR_M7(
signal A: in std_logic_vector(2*w-1 downto 0);
signal R: out std_logic_vector(w-1 downto 0));

procedure MMR_M8(
signal A: in std_logic_vector(2*w-1 downto 0);
signal R: out std_logic_vector(w-1 downto 0));

-------------------------------------------------------------------------
procedure YRNS(

signal K : IN type_YACU;
signal XI: OUT type_RNS);

-------------------------------------------------------------------------
end package;
package body RNS_PACKAGE is

--------------------------------------------------------
function Read_Moduli(i: std_logic_vector)
return std_logic_vector is
variable j: integer range 1 to total_channels;
begin
if I >=1 and I<= total_channels then

j:=conv_integer(I);
else

j:=1;
end if;
return Moduli(j);
end function Read_Moduli;
-------------------------------------------------------
function Read_CModuli(i: std_logic_vector)
return std_logic_vector is
variable j: integer range 1 to total_channels;
begin
if I >=1 and I<= total_channels then

j:=conv_integer(I);
else

j:=1;
end if;
return CModuli(j);
end function Read_CModuli;
---------------------------------------------------------
function Read_Moduli(i: integer)
return std_logic_vector is
variable j: integer range 1 to total_channels;
begin
if I >=1 and I<= total_channels then

j:=I;
else

j:=1;
end if;
return Moduli(j);
end function Read_Moduli;
-----------------------------------------------------------
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function Read_CModuli(i: integer)
return std_logic_vector is
variable j: integer range 1 to total_channels;
begin
if I >=1 and I<= total_channels then

j:=I;
else

j:=1;
end if;
return CModuli(j);
end function Read_CModuli;
-------------------------------------------------------------------------
function Read_Dinv(I :std_logic_vector)
return std_logic_vector is
variable j: integer range 1 to total_channels;
begin
if I >=1 and I<=total_channels then

j:=conv_integer(I);
else

j:=1;
end if;
return DINV(j);
end function Read_Dinv;
-------------------------------------------------------------------------
function Read_DiMmj(I:std_logic_vector)
return type_RNS is
--variable Rom_DiMmj: type_RNS_Table;
variable j: integer range 1 to total_channels;
begin
if I >=1 and I<=total_channels then

j:=conv_integer(I);
else

j:=1;
end if;
return DiMmj(j);
end function Read_DiMmj;
-------------------------------------------------------------------------
function Read_MDMmi(I : std_logic_vector) return type_RNS is
variable Rom_AlphaDMm : type_RNS_Table;
variable j: integer range 1 to total_channels -1;
begin
Rom_AlphaDMm(1) :=("00"&X"9DB5B938A5353587","01"&X"6B9B4BF62062D19C",
"01"&X"CC1C6014E1C79339","01"&X"5A09201E34488F0B","00"&X"3D3588F803A6A0EE",
"01"&X"BE1E4A87A7C4ECD0","00"&X"E35509A9308955D3","10"&X"9463CB9AEE1D079A");
Rom_AlphaDMm(2) :=("01"&X"3B6B72714A6A6B0E","10"&X"D73697EC40C5A338",
"11"&X"9838C029C38F2672","10"&X"B412403C68911E16","00"&X"7A6B11F0074D41DC",
"11"&X"7C3C950F4F89D9A0","01"&X"C6AA13526112ABA6","01"&X"28C79735DC3A1135");
Rom_AlphaDMm(3) :=("01"&X"D9212BA9EF9FA095","00"&X"42D1E3E2612874D9",
"01"&X"6455203EA556B9B4","00"&X"0E1B605A9CD9AD32","00"&X"B7A09AE80AF3E2CA",
"01"&X"3A5ADF96F74EC6B1","10"&X"A9FF1CFB919C0179","11"&X"BD2B62D0CA5718CF");

Rom_AlphaDMm(4) :=("10"&X"76D6E4E294D4D61C","01"&X"AE6D2FD8818B4675",
"11"&X"30718053871E4CED","01"&X"68248078D1223C3D","00"&X"F4D623E00E9A83B8",
"10"&X"F8792A1E9F13B381","11"&X"8D5426A4C225574C","10"&X"518F2E6BB874226A");
Rom_AlphaDMm(5) :=("11"&X"148C9E1B3A0A0BA3","11"&X"1A087BCEA1EE1811",
"00"&X"FC8DE06868E5E02F","10"&X"C22DA097056ACB48","01"&X"320BACD8124124A6",
"00"&X"B69774A646D8A092","00"&X"70A9304DF2AEAE20","00"&X"E5F2FA06A6912C05");
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Rom_AlphaDMm(6) :=("11"&X"B2425753DF3F412A","00"&X"85A3C7C4C250E9B2",
"10"&X"C8AA407D4AAD7368","00"&X"1C36C0B539B35A64","01"&X"6F4135D015E7C594",
"10"&X"74B5BF2DEE9D8D62","01"&X"53FE39F7233803F3","11"&X"7A56C5A194AE339F");
Rom_AlphaDMm(7) :=("00"&X"4FF8108C847476B2","01"&X"F13F13BAE2B3BB4E",
"00"&X"94C6A0922C7506AA","01"&X"763FE0D36DFBE96F","01"&X"AC76BEC8198E6682",
"00"&X"32D409B596627A73","10"&X"375343A053C159C6","10"&X"0EBA913C82CB3D3A");

if I >= 1 and I<= total_channels -1 then
j:=conv_integer(I);

else
j:=1;

end if;
return Rom_AlphaDMm(j);
end function Read_MDMmi;
-------------------------------------------------------------------------
function Read_UDIM(I: std_logic_vector)
return std_logic_vector is
variable j: integer range 1 to total_channels;
begin
if I >=1 and I<=total_channels then

j:=conv_integer(I);
else

j:=1;
end if;
return UDIM(j);
end function Read_UDIM;
-------------------------------------------------------------------------
function BLOCK_SUM(ARNS,BRNS: in type_RNS)
return type_RNS is
variable j: integer;
variable C: type_RNS;
variable Sum,S,A,B: std_logic_vector(w downto 0):=(others=>’0’);
begin
for j in 1 to total_channels loop
A:=(’0’& ARNS(j));
B:=(’0’& BRNS(j));
Sum:= A+B;
if Sum >= Moduli(j) then

S:= Sum - Moduli(j);
else

S:= Sum;
end if;
C(j):= S(w-1 downto 0);
end loop;
return C;
end function;
-------------------------------------------------------------------------
function BLOCK_3SUM(ARNS,BRNS,CRNS: in type_RNS)
return type_RNS is
variable j: integer;
variable DRNS : type_RNS;
variable A,B,N,S1 : std_logic_vector(w downto 0);
variable C : std_logic_vector(w downto 0);
variable X,Y : std_logic_vector(w+1 downto 0);
variable S,SUM : std_logic_vector(w+1 downto 0);
begin

for j in 1 to total_channels loop
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N:= (Moduli(j))&’0’;
A:=(’0’& ARNS(j));
B:=(’0’& BRNS(j));
C:=(’0’& CRNS(j));
S1(w downto 0):= A(w downto 0)+B(w downto 0);
SUM(w+1 downto 0) := ’0’&S1(w downto 0)+ C;

if (Sum >= N) then
S:= Sum - N;

elsif (SUM > Moduli(j)) then
S:= Sum - Moduli(j);

else
S:= Sum;

end if;
DRNS(j):= S(w-1 downto 0);
end loop;
return DRNS;
end function;
-------------------------------------------------------------------------
function BLOCK_SUB(ARNS,BRNS: in type_RNS)
return type_RNS is
variable j: integer;
variable C: type_RNS;
variable Sub,S,A,B: std_logic_vector(w downto 0);
variable E: std_logic_vector(w-1 downto 0);
begin
for j in 1 to total_channels loop
A:=(’0’& ARNS(j));
B:=(’0’& BRNS(j));
S:= A + BM(j);
Sub := S - B;
if Sub > Moduli(j) then

Sub(w downto 0):= Sub(w downto 0)+ CModuli(j);
end if;
C(j):= Sub(w-1 downto 0);
end loop;
return C;
end function;
------------------------------------------------------------------------
function BLOCK_MULTIPLICATION(ARNS,BRNS: in type_RNS)
return type_RNS is
variable i: integer;
variable Ci: type_RNS;
variable A: std_logic_vector(2*w-1 downto 0);
variable AL,AH,AAL,AAH : std_logic_vector(w-1 downto 0);
variable AM,N,Z : std_logic_vector(w downto 0);
variable M : std_logic_vector(w-1 downto 0);
constant Z0: std_logic_vector(47 downto 0):=(others=>’0’);
begin
for i in 1 to total_channels loop
A:= ARNS(i)*BRNS(i);
AH:= A(2*w-1 downto w);
AL:= A(w-1 downto 0);
AM:= ’0’&AH+AL;
M:= Moduli(i);
case i is
when 2 =>

AAL:= AH(w-3 downto 0)&"00";
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AAH:= "00000000000000"&Z0&AH(w-1 downto w-2)&AH(w-1 downto w-2);
when 3 =>

AAL:= AH(w-4 downto 0)&"000";
AAH:= "000000000000"&Z0&AH(w-1 downto w-3)&AH(w-1 downto w-3);

when 4 =>
AAL:= AH(w-5 downto 0)&"0000";
AAH:= "0000000000"&Z0&AH(w-1 downto w-4)&AH(w-1 downto w-4);

when 5 =>
AAL:= AH(w-6 downto 0)&"00000";
AAH:= "00000000"&Z0&AH(w-1 downto w-5)&AH(w-1 downto w-5);

when 6 =>
AAL:= AH(w-7 downto 0)&"000000";
AAH:= "000000"&Z0&AH(w-1 downto w-6)&AH(w-1 downto w-6);

when 7 =>
AAL:= AH(w-9 downto 0)&"00000000";
AAH:= "00"&Z0&AH(w-1 downto w-8)&AH(w-1 downto w-8);

when 8 =>
AAL:= AH(w-10 downto 0)&"000000000";
AAH:= Z0&AH(w-1 downto w-9)&AH(w-1 downto w-9);

when others =>
AAL:= (others=>’0’);
AAH:= (others=>’0’);

end case;
N:= AAL+AAH+AM;

if (N>= M) then
Z(w downto 0):= N(w downto 0)-M(w-1 downto 0);

else
Z(w downto 0):= N(w downto 0);

end if;
Ci(i) := Z(w-1 downto 0);
end loop;
return Ci;
end function BLOCK_MULTIPLICATION;
-------------------------------------------------------------------------
function ModuliMult(A: type_RNS; B: std_logic_vector)
return type_DRNS is
variable V : type_DRNS;
begin
for i in 1 to total_channels loop
V(i):= A(i)*B;
end loop;
return V;
end function ModuliMult;

function KMULT(K : std_logic_vector)
return type_RNS is
variable Ki: type_RNS;
variable A: std_logic_vector(2*w-15 downto 0);
variable AL,AH,AAL,AAH : std_logic_vector(w-1 downto 0);
variable AM,N,Z : std_logic_vector(w downto 0);
variable M : std_logic_vector(w-1 downto 0);
constant Z0: std_logic_vector(47 downto 0):=(others=>’0’);
begin
for i in 1 to total_channels loop
A:= K(w-15 downto 0)*NI(i);
AH:= "00000000000000"&A(2*w-15 downto w);
AL:= A(w-1 downto 0);
AM:= ’0’&AH+AL;
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M:= Moduli(i);
case i is
when 2 =>

AAL:= AH(w-3 downto 0)&"00";
AAH:= "00000000000000"&Z0&AH(w-1 downto w-2)&AH(w-1 downto w-2);

when 3 =>
AAL:= AH(w-4 downto 0)&"000";
AAH:= "000000000000"&Z0&AH(w-1 downto w-3)&AH(w-1 downto w-3);

when 4 =>
AAL:= AH(w-5 downto 0)&"0000";
AAH:= "0000000000"&Z0&AH(w-1 downto w-4)&AH(w-1 downto w-4);

when 5 =>
AAL:= AH(w-6 downto 0)&"00000";
AAH:= "00000000"&Z0&AH(w-1 downto w-5)&AH(w-1 downto w-5);

when 6 =>
AAL:= AH(w-7 downto 0)&"000000";
AAH:= "000000"&Z0&AH(w-1 downto w-6)&AH(w-1 downto w-6);

when 7 =>
AAL:= AH(w-9 downto 0)&"00000000";
AAH:= "00"&Z0&AH(w-1 downto w-8)&AH(w-1 downto w-8);

when 8 =>
AAL:= AH(w-10 downto 0)&"000000000";
AAH:= Z0&AH(w-1 downto w-9)&AH(w-1 downto w-9);

when others =>
AAL:= (others=>’0’);
AAH:= (others=>’0’);

end case;
N:= AAL+AAH+AM;

if (N>= M) then
Z(w downto 0):= N(w downto 0)-M(w-1 downto 0);

else
Z(w downto 0):= N(w downto 0);

end if;
Ki(i) := Z(w-1 downto 0);

end loop;
return Ki;
end function KMULT;
-------------------------------------------------------------------------
function MSBB(A: std_logic_vector ) return integer is
variable n : integer;
begin
for i in A’range loop
if A(i)=’1’ then
n:= i;
exit;
end if;

end loop;
return n;

end function MSBB;
-------------------------------------------------------------------------
function CSA_ADDER(X,Y,Z: std_logic_vector)
return std_logic_vector is
variable S,C,D: std_logic_vector(2*w downto 0);
begin
S := ’0’ & ((X(2*w-1 downto 0) XOR Y(2*w-1 downto 0)) XOR Z(2*w-1 downto 0));
C := (((X(2*w-1 downto 0) AND Y(2*w-1 downto 0)) OR (X(2*w-1 downto 0) AND
Z(2*w-1 downto 0))) OR (Y(2*w-1 downto 0) AND Z(2*w-1 downto 0)))& ’0’;
D := S+C;
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return D;
end function CSA_ADDER;
--------------------------------------------------------------------
function BSI(X:std_logic_vector; I: integer) return std_logic_vector is
variable Z0: std_logic_vector(w-10 downto 0):= (others=>’0’);
variable Z1: std_logic_vector(w+8 downto 0);
variable Z : std_logic_vector(2*w-1 downto 0);
begin
Z(2*w-1 downto w+9) := (others =>’0’);
if i = 2 then
Z(w+1 downto 2) := X(w-1 downto 0);
Z(1 downto 0) := (others=>’0’);
Z(w+8 downto w+2) := (others=>’0’);
elsif i = 3 then
Z(w+2 downto 3) := X(w-1 downto 0);
Z(2 downto 0) := (others=>’0’);
Z(w+8 downto w+3) := (others=>’0’);
elsif i = 4 then
Z(w+3 downto 4) := X(w-1 downto 0);
Z(3 downto 0) := (others=>’0’);
Z(w+8 downto w+4) := (others=>’0’);
elsif i = 5 then
Z(w+4 downto 5) := X(w-1 downto 0);
Z(4 downto 0) := (others=>’0’);
Z(w+8 downto w+5) := (others=>’0’);
elsif i = 6 then
Z(w+5 downto 6) := X(w-1 downto 0);
Z(5 downto 0) := (others=>’0’);
Z(w+8 downto w+6) := (others=>’0’);
elsif i = 7 then
Z(w+6 downto 7) := X(w-1 downto 0);
Z(7 downto 0) := (others=>’0’);
Z(w+8 downto w+7) := (others=>’0’);
elsif i = 8 then
Z(w+8 downto 9) := X(w-1 downto 0);
Z(8 downto 0) := (others=>’0’);
else
Z(w+8 downto 0):=(others=>’0’);
end if;
return Z;
end function BSI;
-------------------------------------------------------------------
procedure MODULI_ADD(
signal A : IN std_logic_vector(w-1 downto 0);
signal B : IN std_logic_vector(w-1 downto 0);
signal I : IN std_logic_vector(c-1 downto 0);
signal ARNS : OUT std_logic_vector(w-1 downto 0)) is
Variable SUM1: std_logic_vector(w downto 0);
Variable SUM2: std_logic_vector(w downto 0);
Variable Mi : std_logic_vector(w-1 downto 0);
begin
Mi(w-1 downto 0) := Read_CModuli(I);
SUM2(w downto 0) := ’0’&A + B;
SUM1(w downto 0) := ’0’&A + B + Mi;
if SUM1(w)=’1’ then

ARNS(w-1 downto 0) <= SUM1(w-1 downto 0);
else

ARNS(w-1 downto 0) <= SUM2(w-1 downto 0);
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end if;
end procedure MODULI_ADD;
-------------------------------------------------------------------------

procedure MODULI_SUB(
signal A : IN std_logic_vector(w-1 downto 0);
signal B : IN std_logic_vector(w-1 downto 0);
signal I : IN std_logic_vector(c-1 downto 0);
signal ARNS : OUT std_logic_vector(w-1 downto 0)) is
Variable Mi : std_logic_vector(w-1 downto 0);
begin
Mi(w-1 downto 0) := Read_Moduli(I);

if A >= B then
ARNS(w-1 downto 0) <= A-B;

else
ARNS(w-1 downto 0) <= A+Mi-B;

end if;
end procedure MODULI_SUB;
-------------------------------------------------------------------------
procedure KOM(
signal A : IN std_logic_vector(w-1 downto 0);
signal B : IN std_logic_vector(w-1 downto 0);
signal C : OUT std_logic_vector(2*w-1 downto 0)

) is
variable X0,Y0,X1,Y1: std_logic_vector(w/2-1 downto 0);
variable XX,YY: std_logic_vector(w/2-1 downto 0);
variable XY0,XY1: std_logic_vector(w-1 downto 0);
variable XY2: std_logic_vector(w downto 0);
variable XY: std_logic_vector(w-1 downto 0);
variable XY3: std_logic_vector(w+1 downto 0);

variable LXY0,LXY1,LXY2: std_logic_vector(2*w-1 downto 0);
variable Z1 : std_logic_vector(w-1 downto 0) := (others=>’0’);
variable Z2 : std_logic_vector(w/2-1 downto 0) := (others=>’0’);
variable Z3 : std_logic_vector(w/2-3 downto 0) := (others=>’0’);
variable CC : std_logic_vector(2*w downto 0);
begin
X0(w/2-1 downto 0) := A(w/2-1 downto 0);
Y0(w/2-1 downto 0) := B(w/2-1 downto 0);
X1(w/2-1 downto 0) := A(w-1 downto w/2);
Y1(w/2-1 downto 0) := B(w-1 downto w/2);

XX(w/2-1 downto 0) := (X1(w/2-1 downto 0) - X0(w/2-1 downto 0));
YY(w/2-1 downto 0) := (Y0(w/2-1 downto 0) - Y1(w/2-1 downto 0));
XY0(w-1 downto 0) := X0(w/2-1 downto 0)* Y0(w/2-1 downto 0); -- 66 bits
XY1(w-1 downto 0) := X1(w/2-1 downto 0)* Y1(w/2-1 downto 0); -- 66 bits
XY(w-1 downto 0) := XX(w/2-1 downto 0)* YY(w/2-1 downto 0);
XY2(w downto 0) := ’0’&XY0(w-1 downto 0)+XY1(w-1 downto 0); -- 67 bits
XY3(w+1 downto 0) := ’0’&XY2(w downto 0) + XY(w-1 downto 0);
LXY0 := (Z1&XY0);
LXY1 := ((Z3&XY3)&Z2);
LXY2 := (XY1&Z1);
CC := CSA_ADDER(LXY0,LXY1,LXY2);
C <=CC(2*w-1 downto 0);
end procedure KOM;

procedure BRTR(
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signal A: in std_logic_vector(2*w-1 downto 0);
signal I: in integer;
signal R: out std_logic_vector(w-1 downto 0)) is

variable S,S2: std_logic_vector(2*w downto 0);
variable TL,TH,SL,SH,TM,SM,RZ : std_logic_vector(2*w-1 downto 0);
variable A2,A3,A4,A5,A6,A7,A8 : std_logic_vector(2*w-1 downto 0);
variable B2,B3,B4,B5,B6,B7,B8 : std_logic_vector(2*w-1 downto 0);
constant Z : std_logic_vector(w-1 downto 0):=(others=>’0’);
constant Z0: std_logic_vector(w-10 downto 0):=(others=>’0’);

begin
A2:= "0000000"&Z0&A(2*w-1 downto w)&"00";
A3:= "000000"&Z0&A(2*w-1 downto w)&"000";
A4:= "00000"&Z0&A(2*w-1 downto w)&"0000";
A5:= "0000"&Z0&A(2*w-1 downto w)&"00000";
A6:= "000"&Z0&A(2*w-1 downto w)&"000000";
A7:= ’0’&Z0&A(2*w-1 downto w)&"00000000";
A8:= Z0&A(2*w-1 downto w)&"000000000";
TH:= Z& A(2*w-1 downto w);
TM := A(2*w-1 downto w)& Z;
if i=2 then

TL:=A2;
elsif i=3 then

TL:=A3;
elsif i=4 then

TL:=A4;
elsif i=5 then

TL:=A5;
elsif i=6 then

TL:=A6;
elsif i=7 then

TL:=A7;
elsif i=8 then

TL:=A8;
else

TL:=(others=>’0’);
end if;
S := CSA_ADDER(TH,TM,TL);
SM:= S(2*w-1 downto w) &Z;
SH:= Z &S(2*w-1 downto w);

B2:= "0000000"&Z0&S(2*w-1 downto w)&"00";
B3:= "000000"&Z0&S(2*w-1 downto w)&"000";
B4:= "00000"&Z0&S(2*w-1 downto w)&"0000";
B5:= "0000"&Z0&S(2*w-1 downto w)&"00000";
B6:= "000"&Z0&S(2*w-1 downto w)&"000000";
B7:= ’0’&Z0&S(2*w-1 downto w)&"00000000";
B8:= Z0&S(2*w-1 downto w)&"000000000";

if i=2 then
SL:=B2;

elsif i=3 then
SL:=B3;

elsif i=4 then
SL:=B4;

elsif i=5 then
SL:=B5;
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elsif i=6 then
SL:=B6;

elsif i=7 then
SL:=B7;

elsif i=8 then
SL:=B8;

else
SL:=(others=>’0’);

end if;
S2 := CSA_ADDER(A,SL,SH);
RZ(2*w-1 downto 0) := S2(2*w-1 downto 0)-SM(2*w-1 downto 0);
R <= RZ(w-1 downto 0);
end procedure BRTR;

procedure BRTR(
signal A: in std_logic_vector(2*w-1 downto 0);
signal I: in std_logic_vector(3 downto 0);
signal R: out std_logic_vector(w-1 downto 0)) is

variable S,S2: std_logic_vector(2*w downto 0);
variable TL,TH,SL,SH,TM,SM,RZ : std_logic_vector(2*w-1 downto 0);
variable A2,A3,A4,A5,A6,A7,A8 : std_logic_vector(2*w-1 downto 0);
variable B2,B3,B4,B5,B6,B7,B8 : std_logic_vector(2*w-1 downto 0);
constant Z : std_logic_vector(w-1 downto 0):=(others=>’0’);
constant Z0: std_logic_vector(w-10 downto 0):=(others=>’0’);

begin
A2:= "0000000"&Z0&A(2*w-1 downto w)&"00";
A3:= "000000"&Z0&A(2*w-1 downto w)&"000";
A4:= "00000"&Z0&A(2*w-1 downto w)&"0000";
A5:= "0000"&Z0&A(2*w-1 downto w)&"00000";
A6:= "000"&Z0&A(2*w-1 downto w)&"000000";
A7:= ’0’&Z0&A(2*w-1 downto w)&"00000000";
A8:= Z0&A(2*w-1 downto w)&"000000000";
TH:= Z& A(2*w-1 downto w);
TM := A(2*w-1 downto w)& Z;
if i="0010" then

TL:=A2;
elsif i="0011" then

TL:=A3;
elsif i="0100" then

TL:=A4;
elsif i="0101" then

TL:=A5;
elsif i="0110" then

TL:=A6;
elsif i="0111" then

TL:=A7;
elsif i="1000" then

TL:=A8;
else

TL:=(others=>’0’);
end if;
S := CSA_ADDER(TH,TM,TL);
SM:= S(2*w-1 downto w) &Z;
SH:= Z &S(2*w-1 downto w);

B2:= "0000000"&Z0&S(2*w-1 downto w)&"00";
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B3:= "000000"&Z0&S(2*w-1 downto w)&"000";
B4:= "00000"&Z0&S(2*w-1 downto w)&"0000";
B5:= "0000"&Z0&S(2*w-1 downto w)&"00000";
B6:= "000"&Z0&S(2*w-1 downto w)&"000000";
B7:= ’0’&Z0&S(2*w-1 downto w)&"00000000";
B8:= Z0&S(2*w-1 downto w)&"000000000";

if i="0010" then
SL:=B2;

elsif i="0011" then
SL:=B3;

elsif i="0100" then
SL:=B4;

elsif i="0101" then
SL:=B5;

elsif i="0110" then
SL:=B6;

elsif i="0111" then
SL:=B7;

elsif i="1000" then
SL:=B8;

else
SL:=(others=>’0’);

end if;
S2 := CSA_ADDER(A,SL,SH);
RZ(2*w-1 downto 0) := S2(2*w-1 downto 0)-SM(2*w-1 downto 0);
if( RZ < Read_Moduli(I)) then
R <= RZ(w-1 downto 0);
else
R <= RZ(w-1 downto 0)- READ_MODULI(I);
end if;

end procedure BRTR;

procedure MMR(
signal A: in std_logic_vector(2*w-1 downto 0);
signal I: in std_logic_vector(3 downto 0);
signal R: out std_logic_vector(w-1 downto 0)) is
variable AL,AH,AAL,AAH : std_logic_vector(w-1 downto 0);
variable AM : std_logic_vector(w downto 0);
variable N : std_logic_vector(w+1 downto 0);
variable M : std_logic_vector(w-1 downto 0);
constant Z0: std_logic_vector(47 downto 0):=(others=>’0’);
begin
M:= Read_Moduli(I);
AH:= A(2*w-1 downto w);
AL:= A(w-1 downto 0);
AM:= ’0’&AH+AL;
if AM >= M then

AM:= AM-M;
end if;
case I is
when "0010" =>

AAL:= AH(w-3 downto 0)&"00";
AAH:= "00000000000000"&Z0&AH(w-1 downto w-2)&AH(w-1 downto w-2);

when "0011" =>
AAL:= AH(w-4 downto 0)&"000";
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AAH:= "000000000000"&Z0&AH(w-1 downto w-3)&AH(w-1 downto w-3);
when "0100" =>

AAL:= AH(w-5 downto 0)&"0000";
AAH:= "0000000000"&Z0&AH(w-1 downto w-4)&AH(w-1 downto w-4);

when "0101" =>
AAL:= AH(w-6 downto 0)&"00000";
AAH:= "00000000"&Z0&AH(w-1 downto w-5)&AH(w-1 downto w-5);

when "0110" =>
AAL:= AH(w-7 downto 0)&"000000";
AAH:= "000000"&Z0&AH(w-1 downto w-6)&AH(w-1 downto w-6);

when "0111" =>
AAL:= AH(w-9 downto 0)&"00000000";
AAH:= "00"&Z0&AH(w-1 downto w-8)&AH(w-1 downto w-8);

when "1000" =>
AAL:= AH(w-10 downto 0)&"000000000";
AAH:= Z0&AH(w-1 downto w-9)&AH(w-1 downto w-9);

when others =>
AAL:= (others=>’0’);
AAH:= (others=>’0’);

end case;
N:= ’0’&AM+AAL+AAH;

if (N>= M) then
N(w+1 downto 0):= N(w+1 downto 0)-M(w-1 downto 0);

end if;
R(w-1 downto 0) <= N(w-1 downto 0);

end procedure MMR;

procedure MMR(
signal A: in std_logic_vector(2*w-1 downto 0);

i: in integer;
signal R: out std_logic_vector(w-1 downto 0)) is
variable AL,AH,AAL,AAH : std_logic_vector(w-1 downto 0);
variable AM : std_logic_vector(w downto 0);
variable N : std_logic_vector(w+1 downto 0);
variable M : std_logic_vector(w-1 downto 0);
constant Z0: std_logic_vector(47 downto 0):=(others=>’0’);
begin
M:= Moduli(i);
AH:= A(2*w-1 downto w);
AL:= A(w-1 downto 0);
AM:= ’0’&AH+AL;
if AM >= M then

AM:= AM-M;
end if;
case i is
when 2 =>

AAL:= AH(w-3 downto 0)&"00";
AAH:= "00000000000000"&Z0&AH(w-1 downto w-2)&AH(w-1 downto w-2);

when 3 =>
AAL:= AH(w-4 downto 0)&"000";
AAH:= "000000000000"&Z0&AH(w-1 downto w-3)&AH(w-1 downto w-3);

when 4 =>
AAL:= AH(w-5 downto 0)&"0000";
AAH:= "0000000000"&Z0&AH(w-1 downto w-4)&AH(w-1 downto w-4);

when 5 =>
AAL:= AH(w-6 downto 0)&"00000";
AAH:= "00000000"&Z0&AH(w-1 downto w-5)&AH(w-1 downto w-5);

when 6 =>
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AAL:= AH(w-7 downto 0)&"000000";
AAH:= "000000"&Z0&AH(w-1 downto w-6)&AH(w-1 downto w-6);

when 7 =>
AAL:= AH(w-9 downto 0)&"00000000";
AAH:= "00"&Z0&AH(w-1 downto w-8)&AH(w-1 downto w-8);

when 8 =>
AAL:= AH(w-10 downto 0)&"000000000";
AAH:= Z0&AH(w-1 downto w-9)&AH(w-1 downto w-9);

when others =>
AAL:= (others=>’0’);
AAH:= (others=>’0’);

end case;
N:= ’0’&AM+AAL+AAH;
if (N>= M) then

N(w+1 downto 0):= N(w+1 downto 0)-M(w-1 downto 0);
end if;
R(w-1 downto 0) <= N(w-1 downto 0);

end procedure MMR;
-------------------------------------------------------------------------
procedure MMR_M1(
signal A: in std_logic_vector(2*w-1 downto 0);
signal R: out std_logic_vector(w-1 downto 0)) is
variable AL,AH : std_logic_vector(w-1 downto 0);
variable N : std_logic_vector(w downto 0);
variable M : std_logic_vector(w-1 downto 0);
constant Z0: std_logic_vector(47 downto 0):=(others=>’0’);
begin
M:= Moduli(1);
AH:= A(2*w-1 downto w);
AL:= A(w-1 downto 0);
N:= ’0’&AH+AL;
if (N>= M) then

N(w downto 0):= N(w downto 0)-M(w-1 downto 0);
end if;

R(w-1 downto 0) <= N(w-1 downto 0);
end procedure MMR_M1;
-------------------------------------------------------------------------
procedure MMR_M2(
signal A: in std_logic_vector(2*w-1 downto 0);
signal R: out std_logic_vector(w-1 downto 0)) is
variable AL,AH,AAL,AAH : std_logic_vector(w-1 downto 0);
variable AM : std_logic_vector(w downto 0);
variable N,Z : std_logic_vector(w+1 downto 0);
variable M : std_logic_vector(w-1 downto 0);
constant Z0: std_logic_vector(61 downto 0):=(others=>’0’);
begin
M:= Moduli(2);
AH(w-1 downto 0) := A(2*w-1 downto w);
AL(w-1 downto 0) := A(w-1 downto 0);
AAL(w-1 downto 0):= A(2*w-3 downto w)&"00";
AAH(w-1 downto 0):= Z0&(A(2*w-1 downto 2*w-2)&A(2*w-1 downto 2*w-2));
AM:= ’0’&AH+AL;
if AM >= M then

AM:= AM - M;
end if;
N:= ’0’&AM+AAL+AAH;
if (N>=Moduli(2)) then

N(w+1 downto 0):= N(w+1 downto 0)-moduli(2);
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else
N(w+1 downto 0):= N(w+1 downto 0);

end if;
R(w-1 downto 0) <= N(w-1 downto 0);
end procedure MMR_M2;

-------------------------------------------------------------------------
procedure MMR_M3(
signal A: in std_logic_vector(2*w-1 downto 0);
signal R: out std_logic_vector(w-1 downto 0)) is
variable AL,AH,AAL,AAH : std_logic_vector(w-1 downto 0);
variable AM : std_logic_vector(w downto 0);
variable N : std_logic_vector(w+1 downto 0);
variable M : std_logic_vector(w-1 downto 0);
constant Z0: std_logic_vector(59 downto 0):=(others=>’0’);
begin
AH:= A(2*w-1 downto w);
AL:= A(w-1 downto 0);
AM:= ’0’&AH+AL;
M:= Moduli(3);
if AM >= M then

AM:= AM - M;
end if;
AAL:= AH(w-4 downto 0)&"000";
AAH:= Z0&AH(w-1 downto w-3)&AH(w-1 downto w-3);
N:= ’0’&AM+ AAH+AAL;
if (N>= M) then

N(w+1 downto 0):= N(w+1 downto 0)-Moduli(3);
end if;

R(w-1 downto 0) <= N(w-1 downto 0);
end procedure MMR_M3;
------------------------------------------------------------------
procedure MMR_M4(
signal A : in std_logic_vector(2*w-1 downto 0);
signal R : out std_logic_vector(w-1 downto 0)) is
variable AL,AH,AAL,AAH : std_logic_vector(w-1 downto 0);
variable AM : std_logic_vector(w downto 0);
variable N : std_logic_vector(w+1 downto 0);
variable M : std_logic_vector(w-1 downto 0);
constant Z0 : std_logic_vector(w-9 downto 0):=(others=>’0’);
begin
M:= Moduli(4);
AH:= A(2*w-1 downto w);
AL:= A(w-1 downto 0);
AM:= ’0’&AH+AL;
if AM >= M then

AM:= AM - M;
end if;
AAL:= A(2*w-5 downto w)&"0000";
AAH:= Z0&A(2*w-1 downto 2*w-4)&A(2*w-1 downto 2*w-4);
N(w+1 downto 0) := ’0’&AM+AAL+AAH;
if (N>= M) then

N(w+1 downto 0):= N(w+1 downto 0)-M(w-1 downto 0);
end if;

R(w-1 downto 0) <= N(w-1 downto 0);
end procedure MMR_M4;
------------------------------------------------------------------
procedure MMR_M5(
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signal A: in std_logic_vector(2*w-1 downto 0);
signal R: out std_logic_vector(w-1 downto 0)) is
variable AL,AH,AAL,AAH : std_logic_vector(w-1 downto 0);
variable AM: std_logic_vector(w downto 0);
variable N : std_logic_vector(w+1 downto 0);
variable M : std_logic_vector(w-1 downto 0);
constant Z0: std_logic_vector(w-11 downto 0):=(others=>’0’);
begin
M:= Moduli(5);
AH:= A(2*w-1 downto w);
AL:= A(w-1 downto 0);
AM:= ’0’&AH+AL;
if AM >= M then

AM:= AM - M;
end if;
AAL:= A(2*w-6 downto w)&"00000";
AAH:= Z0&A(2*w-1 downto 2*w-5)&A(2*w-1 downto 2*w-5);
N:= ’0’&AM+AAL+AAH;
if (N>= M) then

N(w+1 downto 0):= N(w+1 downto 0)-M(w-1 downto 0);
else

N(w+1 downto 0):= N(w+1 downto 0);
end if;

R(w-1 downto 0) <= N(w-1 downto 0);
end procedure MMR_M5;
-------------------------------------------------------------------
procedure MMR_M6(
signal A: in std_logic_vector(2*w-1 downto 0);
signal R: out std_logic_vector(w-1 downto 0)) is
variable AL,AH,AAL,AAH : std_logic_vector(w-1 downto 0);
variable AM : std_logic_vector(w downto 0);
variable N : std_logic_vector(w+1 downto 0);
variable M : std_logic_vector(w-1 downto 0);
constant Z0: std_logic_vector(w-13 downto 0):=(others=>’0’);
begin
M:= Moduli(6);
AH:= A(2*w-1 downto w);
AL:= A(w-1 downto 0);
AM:= ’0’&AH+AL;
if AM >= M then

AM:= AM-M;
end if;
AAL:= A(2*w-7 downto w)&"000000";
AAH:= Z0&A(2*w-1 downto 2*w-6)&A(2*w-1 downto 2*w-6);
N:= ’0’&AM+AAL+AAH;
if (N>= M) then

N(w+1 downto 0):= N(w+1 downto 0)-M(w-1 downto 0);
end if;
R(w-1 downto 0) <= N(w-1 downto 0);
end procedure MMR_M6;
----------------------------------------------------------------------
procedure MMR_M7(
signal A: in std_logic_vector(2*w-1 downto 0);
signal R: out std_logic_vector(w-1 downto 0)) is
variable AL,AH,AAL,AAH : std_logic_vector(w-1 downto 0);
variable AM : std_logic_vector(w downto 0);
variable N : std_logic_vector(w+1 downto 0);
variable M : std_logic_vector(w-1 downto 0);
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constant Z0: std_logic_vector(w-17 downto 0):=(others=>’0’);
begin
M := Moduli(7);
AH:= A(2*w-1 downto w);
AL:= A(w-1 downto 0);
AM:= ’0’&AH+AL;
if AM >= M then

AM := AM-M;
end if;
AAL:= A(2*w-9 downto w)&"00000000";
AAH:= Z0&A(2*w-1 downto 2*w-8)&A(2*w-1 downto 2*w-8);
N:= ’0’&AM+AAL+AAH;
if (N>= M) then

N(w+1 downto 0):= N(w+1 downto 0)-M(w-1 downto 0);
end if;
R(w-1 downto 0) <= N(w-1 downto 0);
end procedure MMR_M7;
---------------------------------------------------------------------
procedure MMR_M8(
signal A: in std_logic_vector(2*w-1 downto 0);
signal R: out std_logic_vector(w-1 downto 0)) is
variable AL,AH,AAL,AAH : std_logic_vector(w-1 downto 0);
variable AM : std_logic_vector(w downto 0);
variable N : std_logic_vector(w+1 downto 0);
variable M : std_logic_vector(w-1 downto 0);
constant Z0: std_logic_vector(w-19 downto 0):=(others=>’0’);
begin
M:= Moduli(8);
AH:= A(2*w-1 downto w);
AL:= A(w-1 downto 0);
AM:= ’0’&AH+AL;
if AM >= M then

AM := AM-M;
end if;
AAL:= A(2*w-10 downto w)&"000000000";
AAH:= Z0&A(2*w-1 downto 2*w-9)&A(2*w-1 downto 2*w-9);
N:= ’0’&AM+AAL+AAH;
if (N>= M) then

N(w+1 downto 0):= N(w+1 downto 0)-M(w-1 downto 0);
end if;
R(w-1 downto 0) <= N(w-1 downto 0);
end procedure MMR_M8;

procedure YRNS (
signal K : IN type_YACU;
signal XI: OUT type_RNS) is
variable Ki : std_logic_vector(w+2 downto 0);
variable AL : std_logic_vector(w-1 downto 0);
variable AH : std_logic_vector(2 downto 0);
variable AAL : std_logic_vector(11 downto 0);
variable N,Z : std_logic_vector(w downto 0);
variable AM : std_logic_vector(w downto 0);
variable M : std_logic_vector(w-1 downto 0);
begin
for i in 1 to total_channels loop

M:= read_moduli(I);
Ki := K(i);
AH:= Ki(w+2 downto w);
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AL:= Ki(w-1 downto 0);
AM:= ’0’&AL + AH;
case I is
when 2 =>

AAL:= "0000000"& Ki(w+2 downto w)&"00";
when 3 =>

AAL:= "000000"& Ki(w+2 downto w)&"000";
when 4 =>

AAL:= "00000"& Ki(w+2 downto w)&"0000";
when 5 =>

AAL:= "0000"& Ki(w+2 downto w)&"00000";
when 6 =>

AAL:= "000"& Ki(w+2 downto w)&"000000";
when 7 =>

AAL:= "0"& Ki(w+2 downto w)&"00000000";
when 8 =>

AAL:= Ki(w+2 downto w)&"000000000";
when others =>

AAL:= (others=>’0’);
end case;
N:= AM + AAL;

if (N>= M) then
Z(w downto 0):= N(w downto 0)-M(w-1 downto 0);

else
Z(w downto 0):= N(w downto 0);

end if;
XI(i) <= Z(w-1 downto 0);

end loop;
end procedure;

end package body RNS_PACKAGE;

B.4 Hardware description for SOR_2 algorithm

--------------------------------------------------
-- Written by: Ali Mehrabi
-- Create Date: 27.06.2018 12:46:57
-- Design Name:
-- Module Name: SOMR - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
-------------------------------------------------
library IEEE;
library WORK;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.numeric_std.all;
use WORK.RNS_package.all;



184 Appendix B

entity SMR is
Port (

CLK : IN std_logic;
RESETN: IN std_logic;
Ai : IN type_RNS;
Zi : OUT type_RNS
);

end SMR;
architecture Behavioral of SMR is
type type_STATE is (T01,T02,T03,T04,T05,T06,T07,T08,T09,T10,T11,T12,
T13,T14,T15,T16,T17,T18,T19,T20,T21,T22);
type type_ST is (S01,S02,S03,S04,S05,S06,S07,S08,S09,S10,S11,S12,
S13,S14,S15,S16,S17);
constant DELTA : std_logic_vector(4 downto 0) :="10000";
signal STATE : type_STATE;
signal ST : type_ST;
signal G1,G2 : std_logic_vector(w-1 downto 0);
signal Alpha : std_logic_vector(c-2 downto 0);
signal ENY,CLKY : std_logic;
signal AL,ALP : std_logic_vector(10 downto 0);
signal K1_REG,K2_REG,K1,K2 : std_logic_vector(2*w-15 downto 0); -- 118 bits
signal K_SUM : std_logic_vector(2*w-14 downto 0); -- 132 bits
signal K_ACCU : std_logic_vector(2*w-11 downto 0); -- 121 bits
--signal K : std_logic_vector(w-15 downto 0); --just for test
signal UD1,UD2 : std_logic_vector(w-15 downto 0);
signal AlphaD,KM : type_RNS;
signal SU : type_RNS;
signal A1,A2,B1,B2,M1,M2 : type_RNS;
signal Gamma : type_RNS;
signal YI1,YI2 : type_RNS;
signal ARNS,BRNS,SRNS : type_RNS;
signal Y_ACCU : type_YACU;
signal YI_REG : type_YSUM;
-------------------------------------------------------------
component RNSMULT is
Port ( A,B: IN type_RNS;

M : OUT type_RNS
);

end component RNSMULT;
-------------------------------------------------------------
component ACCU is
Port ( CLK : in std_logic;

RST : in std_logic;
A : in type_YSUM;
ACC : out type_YACU

);
end component ACCU;
-------------------------------------------------------------
component CSA is
generic( N : integer := 66);
Port (A1,A2,A3,A4,A5,A6,A7,A8 : in std_logic_vector(N-1 downto 0);

S : out std_logic_vector(N+2 downto 0)
);

end component CSA;
-------------------------------------------------------------
component BSUM is
Port (A1,A2 : in type_RNS;
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S : out type_YSUM );
end component BSUM;
------------------------------------------------------------
component SCMULT is
Port ( A : in std_logic_vector(w-1 downto 0);

B : in std_logic_vector(w-15 downto 0);
E : out std_logic_vector(2*w-15 downto 0)
);

end component SCMULT;
-------------------------------------------------------------
component KSUM is
Port ( A1,A2: in std_logic_vector(2*w-15 downto 0);

S : out std_logic_vector(2*w-14 downto 0)
);

end component KSUM;
-------------------------------------------------------------
component RNSSUM is
Port ( A,B: IN type_RNS;

S : OUT type_RNS
);

end component RNSSUM;
------------------------------------------------------------
begin
----------------------------------------------
-- CUNCURRENT ASSIGNMENTS
----------------------------------------------
U01: RNSMULT port map(A=> A1, B=>B1, M=>M1);
U02: RNSMULT port map(A=> A2, B=>B2, M=>M2);
U03: CSA generic map(8) port map(

A1=> Gamma(1)(w-1 downto w-8), A2=> Gamma(2)(w-1 downto w-8),
A3=> Gamma(3)(w-1 downto w-8), A4=> Gamma(4)(w-1 downto w-8),
A5=> Gamma(5)(w-1 downto w-8), A6=> Gamma(6)(w-1 downto w-8),
A7=> Gamma(7)(w-1 downto w-8), A8=> Gamma(8)(w-1 downto w-8), S=> AL);

U05: BSUM port map (A1=> YI1, A2=> YI2, S => YI_REG);
U06: ACCU port map (CLK => CLKY, RST =>RESETN, A => YI_REG, ACC=> Y_ACCU);
U07: SCMULT port map (A => G1, B => UD1, E=> K1);
U08: SCMULT port map (A => G2, B => UD2, E=> K2);
U09: KSUM port map (A1=> K1_REG, A2=> K2_REG, S=> K_SUM);
U10: RNSSUM port map (A => ARNS, B=> BRNS, S => SRNS);
Alpha <= ALP(10 downto 8);
-------------------------------------------------------
STATE_MACHINE:
process(CLK,RESETN)
begin
if RESETN=’0’ then

STATE <= T01;
A1 <= (others=>(others=>’0’));
A2 <= (others=>(others=>’0’));
B1 <= (others=>(others=>’0’));
B2 <= (others=>(others=>’0’));
AlphaD <= (others=>(others=>’0’));
SU <= (others=>(others=>’0’));
ARNS <= (others=>(others=>’0’));
BRNS <= (others=>(others=>’0’));
Zi <= (others=>(others=>’0’));
ALP <= (others=>’0’);
G1 <= (others=>’0’);
G2 <= (others=>’0’);
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UD1 <= (others=>’0’);
UD2 <= (others=>’0’);
ENY <= ’0’;

-- CLKY <= ’0’;
elsif CLK=’1’ and CLK’event then
case STATE is

when T01 =>
A1 <= Ai;
B1 <= DINV;
ENY<=’1’;
STATE <= T02;

when T02 =>
STATE <= T03;

when T03 =>
-- Gamma<= M1;
STATE <= T04;

when T04 =>
A1 <= (others => Gamma(1));
B1 <= DiMmj(1);
A2 <= (others => Gamma(2));
B2 <= DiMmj(2);
G1 <= Gamma(1);
G2 <= Gamma(2);
UD1 <= UDIM(1);
UD2 <= UDIM(2);
STATE <= T05;

when T05 => -------------------------------------------
STATE <= T06;

when T06 =>
-- CLKY <= ’1’;

ALP <= AL + DELTA;
STATE <= T07;

when T07 =>
A1 <= (others => Gamma(3));
B1 <= DiMmj(3);
A2 <= (others => Gamma(4));
B2 <= DiMmj(4);
G1 <= Gamma(3);
G2 <= Gamma(4);
UD1 <= UDIM(3);
UD2 <= UDIM(4);

-- CLKY <= ’0’;
STATE <= T08;

when T08 =>
STATE <= T09;

when T09 =>
if (Alpha = "000" or Alpha > "111" ) then

alphaD <= (others=>(others=>’0’));
else

alphaD <= Read_MDMmi(Alpha);
end if;

-- CLKY <= ’1’;
STATE <= T10;

when T10 =>
A1 <= (others => Gamma(5));
B1 <= DiMmj(5);
A2 <= (others => Gamma(6));
B2 <= DiMmj(6);
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G1 <= Gamma(5);
G2 <= Gamma(6);
UD1 <= UDIM(5);
UD2 <= UDIM(6);

-- CLKY <= ’0’;
STATE <= T11;

when T11 =>
STATE <= T12;

when T12 =>
-- CLKY <= ’1’;

STATE <= T13;
when T13 => -------------------------------------------

A1 <= (others => Gamma(7));
B1 <= DiMmj(7);
A2 <= (others => Gamma(8));
B2 <= DiMmj(8);
G1 <= Gamma(7);
G2 <= Gamma(8);
UD1 <= UDIM(7);
UD2 <= UDIM(8);

-- CLKY <= ’0’;
STATE <= T14;

when T14 =>
STATE <= T15;

when T15 =>
-- CLKY <= ’1’;

STATE <= T16;
when T16 =>
-- CLKY <= ’0’;

STATE <= T17;
when T17 => --------------------------------------------

A2 <= (others =>("00000000000000"&K_ACCU(2*w-12 downto w+3)));
B2 <= NI; --------- calculate -KM
STATE <= T18;

when T18 =>
YRNS(Y_ACCU,SU);
STATE <= T19;

when T19 =>
ARNS <= AlphaD;
BRNS <= SU;
STATE <= T20;

when T20 =>
ARNS <= SRNS;
BRNS <= M2;
STATE <= T21;

when T21 => --------------------------------------------
Zi <= SRNS;
STATE <= T22;

when T22 =>
STATE <= T22;

end case;
end if;
end process;
-------------------------------------------------
STATE_MACHINE2:
process(CLK,RESETN)
begin
if RESETN=’0’ or ENY = ’0’ then
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ST <= S01;
Gamma <= (others=>(others=>’0’));
-- Zi <= (others=>(others=>’0’));
YI1 <= (others=>(others=>’0’));
YI2 <= (others=>(others=>’0’));
KM <= (others=>(others=>’0’));
K1_REG <= (others=>’0’);
K2_REG <= (others=>’0’);
K_ACCU <= (others=>’0’);
CLKY <=’0’;
-- K <= (others=>’0’);

elsif CLK = ’0’ and CLK’event then
case ST is

when S01 =>
ST <= S02;

when S02 =>
ST <= S03;

when S03 =>
Gamma <= M1;
ST <= S04;

when S04 =>
ST <= S05;

when S05 =>
ST <= S06;

when S06 =>
YI1 <= M1;
YI2 <= M2;
K1_REG <= K1;
K2_REG <= K2;
CLKY <=’1’;
ST <= S07;

when S07 =>
K_ACCU <= K_ACCU+ K_SUM;
CLKY <=’0’;
ST <= S08;

when S08 =>
ST <= S09;

when S09 =>
YI1 <= M1;
YI2 <= M2;
K1_REG <= K1;
K2_REG <= K2;
CLKY <=’1’;
ST <= S10;

when S10 =>
K_ACCU <= K_ACCU+ K_SUM;
CLKY <=’0’;
ST <= S11;

when S11 =>
ST <= S12;

when S12 =>
YI1 <= M1;
YI2 <= M2;
K1_REG <= K1;
K2_REG <= K2;
CLKY <=’1’;
ST <= S13;

when S13 =>
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K_ACCU <= K_ACCU+ K_SUM;
CLKY <=’0’;
ST <= S14;

when S14 =>
ST <= S15;

when S15 =>
YI1 <= M1;
YI2 <= M2;
K1_REG <= K1;
K2_REG <= K2;
CLKY <=’1’;
ST <= S16;

when S16 =>
K_ACCU <= K_ACCU+ K_SUM;
CLKY <=’0’;
ST <= S17;

when S17 =>
ST <= S17;

end case;
end if;
end process;
end Behavioral;
---------------------------------------------------------
-- Written by: Ali Mehrabi
-- Create Date: 02.07.2018 17:14:11
-- Design Name:
-- Module Name: ACCU - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
---------------------------------------------------------
library IEEE;
library WORK;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.numeric_std.all;
use WORK.RNS_package.all;

entity ACCU is
Port ( CLK : in std_logic;

RST : in std_logic;
A : in type_YSUM;
ACC : inout type_YACU

);
end ACCU;

architecture Behavioral of ACCU is
begin
process(CLK,RST)
begin
if RST = ’0’ then

ACC <= (others=>(others=>’0’));
elsif CLK=’1’and CLK’event then
for i in 1 to total_channels loop

ACC(i) <= ACC(i) + A(i);
end loop;

end if;
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end process;

end Behavioral;

library IEEE;
library WORK;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.numeric_std.all;
use WORK.RNS_package.all;

entity BSUM is
Port (A1,A2 : in type_RNS;

S : out type_YSUM );
end BSUM;

architecture Behavioral of BSUM is
begin
MULT: for i in 1 to total_channels generate

S(i) <= ’0’&A1(i) + A2(i);
end generate;

end Behavioral;

library IEEE;
library WORK;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.numeric_std.all;
use WORK.RNS_package.all;

entity SCMULT is
Port ( A : in std_logic_vector(w-1 downto 0);

B : in std_logic_vector(w-15 downto 0);
E : out std_logic_vector(2*w-15 downto 0)
);

end SCMULT;

architecture Behavioral of SCMULT is

begin
E(2*w-15 downto 0) <= A*B;
end Behavioral;

library IEEE;
library WORK;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.numeric_std.all;
use WORK.RNS_package.all;

entity KSUM is
Port ( A1,A2: in std_logic_vector(2*w-15 downto 0);

S : out std_logic_vector(2*w-14 downto 0)
);

end KSUM;
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architecture Behavioral of KSUM is

begin
S<= ’0’&A1+A2;
end Behavioral;

library IEEE;
library WORK;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.numeric_std.all;
use WORK.RNS_package.all;

entity CSA is
generic( N : integer := 66);
Port (A1,A2,A3,A4,A5,A6,A7,A8 : in std_logic_vector(N-1 downto 0);

S : out std_logic_vector(N+2 downto 0)
);

end CSA;

architecture Behavioral of CSA is

signal P10,P11,P20,P21,G10,G11,G20,G21 :std_logic_vector(N-1 downto 0);
signal S1,S2 :std_logic_vector(N+1 downto 0);
signal C10,C20 :std_logic_vector(N+1 downto 0);
signal C11,C21 :std_logic_vector(N+1 downto 0);
signal S3,S4 :std_logic_vector(N+2 downto 0);

begin
P10 <= (A1 xor A2);
P11 <= (A3 xor A4);
G10 <= (A1 and A2);
G11 <= (A3 and A4);
S1 <= "00"&(P10 xor P11);
C10 <= ’0’&((P10 and P11) or ((not G10) and G11) or (G10 and (not G11)))&’0’ ;
C11 <= (G10 and G11) &"00";

P20 <= (A5 xor A6);
P21 <= (A7 xor A8);
G20 <= (A5 and A6);
G21 <= (A7 and A8);
S2 <= "00"&(P20 xor P21);
C20 <= ’0’&((P20 and P21) or ((not G20) and G21) or (G20 and (not G21)))&’0’ ;
C21 <= (G20 and G21) &"00";

S3 <= ’0’&S1 + C10 + C11;
S4 <= ’0’&S2 + C20 + C21;
S <= S3+S4;

end Behavioral;

B.5 Test and verification of SOR_2

B.5.1 Python program for generating random test vectors
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"""
Created on JUN 23 09:56:48 2018
@author: Ali
"""
import numpy as np
import random

p = 2**256-2**32-2**9-2**8-2**7-2**6-2**4-1
m=[]
m.append(2**66-1)
m.append(2**66-2**2-1)
m.append(2**66-2**3-1)
m.append(2**66-2**4-1)
m.append(2**66-2**5-1)
m.append(2**66-2**6-1)
m.append(2**66-2**8-1)
m.append(2**66-2**9-1)

f=open("D:\\test_vectors.txt", ’w’)
for j in range (0,10):

A= random.randint(2**255+1, 2**256-1)
B =random.randint(2**255+1, 2**256-1)
C = A*B
for i in range(7,0,-1):

d= str(’{:066b}’.format((C%m[i])))
f.write(d)
f.write(’\n’)

for i in range(7,0,-1):
d =str(’{:066b}’.format(((C%p)%m[i])))
f.write(d)
f.write(’\n’)

f.close()

B.5.2 Testbench for SOR_2

-----------------------------------------
-- Create Date: 23.06.2018 22:48:13
-- Design Name:
-- Module Name: MRTEST_tb - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
-- Revision:
-- Revision 0.01 - File Created

library IEEE;
library WORK;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.numeric_std.all;
use WORK.RNS_package.all;
use STD.textio.all;
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entity MRTEST_tb is
end MRTEST_tb;

architecture Behavioral of MRTEST_tb is
component MRTEST is
Port (
CLK: in std_logic;
RESETN: in std_logic;
Ai: in type_RNS;
Zi: out type_RNS

);
end component MRTEST;
signal Ai,Zi: type_rns;
signal CLK: std_logic:=’0’;
signal RESETN: std_logic;
signal aib: std_logic_vector(w-1 downto 0);
file file_VECTORS : text;
begin
ut: MRTEST port map(CLK=>CLK,RESETN=>RESETN,Ai=>Ai,ZI=>ZI);
CLK <= not CLK after 2.67 ns;
process
variable v_ILINE: line;
variable Zi_a, Zi_b: type_rns;
variable Ai_b: std_logic_vector(w-1 downto 0):=(others =>’0’);
file file_VECTORS: text open read_mode is "test_vectors.txt";
begin
while not endfile(file_VECTORS) loop

RESETN <=’0’;
wait for 1 ns;
readline(file_VECTORS , v_ILINE);
read(v_iline, Ai_b);
Ai(8) <=Ai_b;
readline(file_VECTORS , v_ILINE);
read(v_iline, Ai_b);
Ai(7) <=Ai_b;
readline(file_VECTORS , v_ILINE);
read(v_iline, Ai_b);
Ai(6) <=Ai_b;
readline(file_VECTORS , v_ILINE);
read(v_iline, Ai_b);
Ai(5) <=Ai_b;
readline(file_VECTORS , v_ILINE);
read(v_iline, Ai_b);
Ai(4) <=Ai_b;
readline(file_VECTORS , v_ILINE);
read(v_iline, Ai_b);
Ai(3) <=Ai_b;
readline(file_VECTORS , v_ILINE);
read(v_iline, Ai_b);
Ai(2) <=Ai_b;
readline(file_VECTORS , v_ILINE);
read(v_iline, Ai_b);
Ai(1) <=Ai_b;
RESETN <=’1’;
wait for 150 ns;
readline(file_VECTORS , v_ILINE);
read(v_iline, Ai_b);
Zi_b(8) :=Ai_b;



194 Appendix B

readline(file_VECTORS , v_ILINE);
read(v_iline, Ai_b);
Zi_b(7) :=Ai_b;
readline(file_VECTORS , v_ILINE);
read(v_iline, Ai_b);
Zi_b(6) :=Ai_b;
readline(file_VECTORS , v_ILINE);
read(v_iline, Ai_b);
Zi_b(5) :=Ai_b;
readline(file_VECTORS , v_ILINE);
read(v_iline, Ai_b);
Zi_b(4) :=Ai_b;
readline(file_VECTORS , v_ILINE);
read(v_iline, Ai_b);
Zi_b(3) :=Ai_b;
readline(file_VECTORS , v_ILINE);
read(v_iline, Ai_b);
Zi_b(2) :=Ai_b;
readline(file_VECTORS , v_ILINE);
read(v_iline, Ai_b);
Zi_b(1) :=Ai_b;
Zi_b := Zi;
if (Zi_a /=Zi_b) then
report "MISMATCH�FOUND";

end if;
end loop;
file_close(file_VECTORS);
wait;
end process;
end Behavioral;

B.6 Hardware Description of RNS ECC point multiplication

----------------------------------------------------------------------------------
-- Written by: Ali Mehrabi
-- Create Date: 19.07.2018 16:22:27
-- Design Name:
-- Module Name: ECCCORE_ML - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
----------------------------------------------------------------------------------
library IEEE;
library WORK;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.numeric_std.all;
use WORK.RNS_PACKAGE.all;
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entity ECC_CORE is
Port ( Xg : IN STD_LOGIC_VECTOR (w-1 downto 0);

Yg : IN STD_LOGIC_VECTOR (w-1 downto 0);
CLK : IN STD_LOGIC;
CLKIN : IN STD_LOGIC;
CLKOUT : IN STD_LOGIC;
RESETN : IN STD_LOGIC;
RSTIN : IN STD_LOGIC;
READY : OUT STD_LOGIC;
DONE : OUT STD_LOGIC;
INDONE : OUT STD_LOGIC;
Xe : OUT STD_LOGIC_VECTOR (w-1 downto 0);
Ye : OUT STD_LOGIC_VECTOR (w-1 downto 0);
Ze : OUT STD_LOGIC_VECTOR (w-1 downto 0)
);

end ECC_CORE;

architecture Behavioral of ECC_CORE is

TYPE STATE_TYPE is (S0,S1,S2,S3,S4,S5,S6,S7,S8);

component ECPA is
Port (CLK : in std_logic;

RESETN: in std_logic;
X1i,Y1i,Z1i: in type_RNS;
X2i,Y2i,Z2i: in type_RNS;
XOi,YOi,ZOi: out type_RNS

);
end component ECPA;

component ECPD is
Port (CLK: in std_logic;

RESETN: in std_logic;
X1i,Y1i,Z1i: in type_RNS;
X2i,Y2i,Z2i: out type_RNS

);
end component ECPD;

component SERIAL_OUT is
Port (CLKOUT: IN std_logic;

RST : IN std_logic;
YI : IN type_RNS;
DONE : OUT std_logic;
YIS : OUT std_logic_vector(w-1 downto 0)
);

end component SERIAL_OUT;

component SERIAL_IN is
Port (CLKIN : IN std_logic;

RST : IN std_logic;
DIN : IN std_logic_vector(w-1 downto 0);
DONE : OUT std_logic;
YI : OUT type_RNS
);

end component SERIAL_IN;
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signal START,CONVERT,DATA_READY ,ARESETN,DRESETN :STD_LOGIC;
signal DONE1,DONE2,DONE3 : STD_LOGIC;
signal INDONEX,INDONEY : STD_LOGIC;
signal SEL : STD_LOGIC_VECTOR(1 downto 0);
signal K : STD_LOGIC_VECTOR(16*w-1 downto 0);

signal X1,X2,X3,X4,Y1,Y2,Y3,Y4,Z1,Z2,Z3,Z4 : TYPE_RNS;
signal X5,Y5,Z5 : TYPE_RNS;
signal X1R,Y1R : TYPE_RNS;
signal R0X,R0Y,R0Z,R1X,R1Y,R1Z : TYPE_RNS;
signal STATE: STATE_TYPE;

begin
-------CUNCURRENT ASSIGNMENTS
U1 : ECPA port map(

CLK =>CLK,
RESETN=>ARESETN,
X1i=>X1,Y1i=>Y1,Z1i=>Z1,
X2i=>X2,Y2i=>Y2,Z2i=>Z2,
XOi=> X3,YOi=>Y3,ZOi=>Z3
);

U2 : ECPD port map(
CLK => CLK,
RESETN=>DRESETN,
X1i=>X4,Y1i=>Y4,Z1i=>Z4,
X2i=>X5,Y2i=>Y5,Z2i=>Z5
);

U3: SERIAL_IN port map(
CLKIN => CLKIN,
RST => RSTIN,
DIN => Xg,
DONE => INDONEX,
YI => X1R
);

U4: SERIAL_IN port map(
CLKIN => CLKIN,
RST => RSTIN,
DIN => Yg,
DONE => INDONEY,
YI => Y1R
);

U5 : SERIAL_OUT port map(
CLKOUT=> CLKOUT,
RST => RESETN,
YI => R0X,
DONE => DONE1,
YIS => Xe
);

U6 : SERIAL_OUT port map(
CLKOUT=> CLKOUT,
RST => RESETN,
YI => R0Y,
DONE=> DONE2,
YIS => Ye
);

U7 : SERIAL_OUT port map(
CLKOUT => CLKOUT,
RST => RESETN,
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YI => R0Z,
DONE => DONE3,
YIS => Ze
);

DONE <= DONE1 and DONE2 and DONE3;

READ_INPUT_COORDINATES:
process(CLK,RESETN,RSTIN)
begin
if RESETN =’0’ or RSTIN=’0’ then

INDONE <=’0’;
DATA_READY <= ’0’;

elsif CLK=’1’ and CLK’event then
if INDONEX=’1’ and INDONEY=’1’ then

DATA_READY <= ’1’;
INDONE <= ’1’;

end if;
end if;
end process READ_INPUT_COORDINATES;

CONTROLLER:
process(CLK,RESETN)
variable COUNT :integer;
variable j: integer;
begin
if RESETN = ’0’ then

X1 <=(others=>(others=>’0’));
Y1 <=(others=>(others=>’0’));
Z1 <=(others=>(others=>’0’));
X2 <=(others=>(others=>’0’));
Y2 <=(others=>(others=>’0’));
Z2 <=(others=>(others=>’0’));
X4 <=(others=>(others=>’0’));
Y4 <=(others=>(others=>’0’));
Z4 <=(others=>(others=>’0’));
R0X <=(others=>(others=>’0’));
R0Y <=(others=>(others=>’0’));
R0Z <=(others=>(others=>’0’));
R1X <=(others=>(others=>’0’));
R1Z <=(others=>(others=>’0’));
ARESETN <= ’0’;
DRESETN <= ’0’;
READY <= ’0’;
STATE <= S0 ;
j:=0;
count:=0;

elsif CLK=’0’ and CLK’event then
if DATA_READY = ’1’ then
case STATE is

when S0=>
j:=MSBB(KEY)-1;---- Private Key(1) is read
STATE <= S1;
R0X <= X1R; ------P registered in R0
R0Y <= Y1R;
R0Z <= (others=>"00"&X"0000000000000001");
X4 <= X1R; ------ double P
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Y4 <= Y1R;
Z4 <= (others=>"00"&X"0000000000000001");

when S1 =>
DRESETN <=’1’; --Do Point Doubling
STATE <= S2;

when S2 =>
if count <151 then -- Wait until Point doubling is done

count:=count+1;
STATE <=S2;

else
count:=0;
R1X <= X5; --2P registered in R1
R1Y <= Y5;
R1Z <= Z5;
STATE <= S3;

end if;
when S3 =>

DRESETN <=’0’;
if KEY(j)=’1’ then --if Ki=1 then R1=2R1, R0=R1+R0 else

X4 <= R1X; -- R0=2R0, R1=R1+R0
Y4 <= R1Y;
Z4 <= R1Z;

else
X4 <= R0X;
Y4 <= R0Y;
Z4 <= R0Z;

end if;
X1 <= R0X;
Y1 <= R0Y;
Z1 <= R0Z;
X2 <= R1X;
Y2 <= R1Y;
Z2 <= R1Z;
STATE <= S4;

when S4 =>
DRESETN <=’1’;
ARESETN <=’1’;
STATE <= S5;

when S5 =>
if count <240 then

count := count +1;
STATE <=S5;

else
count :=0;
STATE<=S6;

end if;
when S6 =>

if KEY(j)=’1’ then --if Ki=1 then R1=2R1, R0=R1+R0 else
R0X <= X3; -- R0=2R0, R1=R1+R0
R0Y <= Y3;
R0Z <= Z3;
R1X <= X5;
R1Y <= Y5;
R1Z <= Z5;

else
R1X <= X3;
R1Y <= Y3;
R1Z <= Z3;
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R0X <= X5;
R0Y <= Y5;
R0Z <= Z5;

end if;
STATE<= S7;

when S7 =>
ARESETN <=’0’; -- Deactivate Point Addition
DRESETN <=’0’; -- Activate point Doubling
if j>0 then

j:= j-1;
STATE <= S3;

else
STATE <= S8;

end if;
when S8 =>

READY <=’1’;
STATE <=S8;

end case;
end if;

end if;
end process CONTROLLER;
end Behavioral;

B.7 Hardware Description of Low-cost RNS GLV ECC point
multiplication

--------------------------------------------------------
-- Written by : Ali Mehrabi
-- Create Date: 12.10.2019 23:10:56
-- Design Name:
-- Module Name: ECGLV - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 1.01 - File Created
-- Additional Comments:
-- 28/05/2018
--------------------------------------------------------
library IEEE;
library WORK;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.numeric_std.all;
use WORK.RNS_PACKAGE.all;
entity ECCGLV is
Port (CLK: in std_logic;

RESETN: in std_logic;
A: in std_logic_vector(3 downto 0);
XO: out std_logic_vector(65 downto 0);
SEL_O: in std_logic_vector(4 downto 0);
DO: out std_logic;
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AD: out std_logic;
DONE: out std_logic

);
end ECCGLV;

architecture Behavioral of ECCGLV is
type TYPE_STATE is (S0,S1,S2,S3,S4,S5,S6);
constant DPERIOD: integer:= 155;
constant APERIOD: integer:= 370;

signal STATE: TYPE_STATE;
signal X0,Y0,Z0 : type_RNS;
signal X1,Y1,Z1 : type_RNS;
signal X2,Y2,Z2 : type_RNS;
signal X3,Y3,Z3 : type_RNS;
signal XR,YR,ZR : type_RNS;
signal XS,YS,ZS : type_RNS;
signal DRESET,ARESET,SEL : std_logic;
signal ADDR, KADDR : std_logic_vector(3 downto 0);
signal X,Y,Z : std_logic_vector(527 downto 0);
signal K : std_logic_vector(515 downto 0);
signal SELD,SELA : std_logic;
--signal V : integer; --test point

component SMR is
Port (

CLK : IN std_logic;
RESETN: IN std_logic;
Ai : IN type_RNS;
Zi : OUT type_RNS
);

end component SMR ;

component ARITH is
Port (CLK : in std_logic;

ARESETN: in std_logic;
DRESETN: in std_logic;
XP,YP,ZP: in type_RNS;
X1A,Y1A,Z1A: in type_RNS;
X2A,Y2A,Z2A: in type_RNS;
XOP,YOP,ZOP: out type_RNS;
XOA,YOA,ZOA: out type_RNS
);

end component ARITH;

component ECPD is
Port (CLK: in std_logic;

RESETN: in std_logic;
X1i,Y1i,Z1i: in type_RNS;
X2i,Y2i,Z2i: out type_RNS

);
end component ECPD;

component ECPA is
Port (CLK : in std_logic;

RESETN: in std_logic;
X1i,Y1i,Z1i: in type_RNS;
X2i,Y2i,Z2i: in type_RNS;
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XOi,YOi,ZOi: out type_RNS
);

end component ECPA;

component MUX is
Port (
SEL: in std_logic;
X1i,Y1i,Z1i: in type_RNS;
X2i,Y2i,Z2i: in type_RNS;
XOi,YOi,ZOi: out type_RNS
);
end component MUX;

component RAMX IS
port (

a : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
spo : OUT STD_LOGIC_VECTOR(527 DOWNTO 0)

);
end component RAMX;

component RAMY IS
port (

a : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
spo : OUT STD_LOGIC_VECTOR(527 DOWNTO 0)

);
end component RAMY;
component RAMZ IS
port (

a : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
spo : OUT STD_LOGIC_VECTOR(527 DOWNTO 0)

);
end component RAMZ;

component RAMK IS
port (

a : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
spo : OUT STD_LOGIC_VECTOR(515 DOWNTO 0)

);
end component RAMK;
--- RAM MAPPED AS
-- P 000
-- Q 001
-- -P 010
-- -Q 011
-- P+Q 100
-- -P+Q 101
-- P-Q 110
-- -P-Q 111
begin
XO <= XR(1) when SEL_O = "00000" else

XR(2) when SEL_O = "00001" else
XR(3) when SEL_O = "00010" else
XR(4) when SEL_O = "00011" else
XR(5) when SEL_O = "00100" else
XR(6) when SEL_O = "00101" else
XR(7) when SEL_O = "00110" else
XR(8) when SEL_O = "00111" else
YR(1) when SEL_O = "01000" else



202 Appendix B

YR(2) when SEL_O = "01001" else
YR(3) when SEL_O = "01010" else
YR(4) when SEL_O = "01011" else
YR(5) when SEL_O = "01100" else
YR(6) when SEL_O = "01101" else
YR(7) when SEL_O = "01110" else
YR(8) when SEL_O = "01111" else
ZR(1) when SEL_O = "10000" else
ZR(2) when SEL_O = "10001" else
ZR(3) when SEL_O = "10010" else
ZR(4) when SEL_O = "10011" else
ZR(5) when SEL_O = "10100" else
ZR(6) when SEL_O = "10101" else
ZR(7) when SEL_O = "10110" else
ZR(8) when SEL_O = "10111" else
(others=>’0’);

URAMX: RAMX port map ( a => ADDR, spo => X);
URAMY: RAMY port map ( a => ADDR, spo => Y);
URAMZ: RAMZ port map ( a => ADDR, spo => Z);
URAMK: RAMK port map ( a => KADDR, spo => K);
UMUX1: MUX port map ( SEL=> SELD, X1i => XS,Y1i=> YS, Z1i=> ZS,
X2i=> XR, Y2i=>YR, Z2i=>ZR, Xoi=> X1, Yoi=>Y1, Zoi=>Z1);
UMUX2: MUX port map ( SEL=> SELA, X1i => X2,Y1i=> Y2, Z1i=> Z2,
X2i=> X3, Y2i=>Y3, Z2i=>Z3, Xoi=> XR, Yoi=>YR, Zoi=>ZR);
UAR : ARITH port map ( CLK=>CLK ,ARESETN=> ARESET,DRESETN=> DRESET,
XP => X1, YP => Y1, ZP => Z1, X1A => XS, Y1A => YS, Z1A => ZS, X2A => X2,
Y2A => Y2, Z2A =>Z2,
XOP=> X2, YOP => Y2, ZOP => Z2,XOA=> X3, YOA => Y3, ZOA => Z3);
KADDR <= A;
DO <= DRESET;
AD <= ARESET;
XS(1) <= X( w-1 downto 0);
XS(2) <= X(2*w-1 downto w);
XS(3) <= X(3*w-1 downto 2*w);
XS(4) <= X(4*w-1 downto 3*w);
XS(5) <= X(5*w-1 downto 4*w);
XS(6) <= X(6*w-1 downto 5*w);
XS(7) <= X(7*w-1 downto 6*w);
XS(8) <= X(8*w-1 downto 7*w);
YS(1) <= Y( w-1 downto 0);
YS(2) <= Y(2*w-1 downto w);
YS(3) <= Y(3*w-1 downto 2*w);
YS(4) <= Y(4*w-1 downto 3*w);
YS(5) <= Y(5*w-1 downto 4*w);
YS(6) <= Y(6*w-1 downto 5*w);
YS(7) <= Y(7*w-1 downto 6*w);
YS(8) <= Y(8*w-1 downto 7*w);
ZS(1) <= Z( w-1 downto 0);
ZS(2) <= Z(2*w-1 downto w);
ZS(3) <= Z(3*w-1 downto 2*w);
ZS(4) <= Z(4*w-1 downto 3*w);
ZS(5) <= Z(5*w-1 downto 4*w);
ZS(6) <= Z(6*w-1 downto 5*w);
ZS(7) <= Z(7*w-1 downto 6*w);
ZS(8) <= Z(8*w-1 downto 7*w);

process(CLK,RESETN)
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variable i : integer range 3 to 515;
variable count : integer;
begin
if RESETN = ’0’ then

count := 0;
STATE <= S0;
ARESET <= ’0’;
DRESET <= ’0’;
SELA <= ’0’;
SELD <= ’0’;
ADDR <= "0000";
DONE <= ’0’;

elsif CLK=’1’ and CLK’event then
case STATE is

when S0 =>
i:= 515;
STATE <= S1;

when S1 =>
-- U <= K(i downto i-3);
case (K(i downto i-3)) is
when "0100" => --- select P at ADDR = 000

ADDR <= "0000";
STATE <= S2;

when "0001" => -- select Q at ADDR 001
ADDR <= "0001";
STATE <= S2;

when "0101" => -- select P+Q at ADDR 100
ADDR <= "0100";
STATE <= S2;

when others =>
STATE <= S1;

end case;
if i >=4 then

i:= i -4;
else

STATE <= S6;
end if;

when S2 => ----- first doubling
SELD <=’0’; ----- ROM OUTPUT to ECPD
STATE <= S3;

when S3 =>
DRESET <= ’1’; ------ START DOUBLING
if count = DPERIOD then

count := 0;
STATE <= S4;

else
count := count+1;

end if;
when S4 =>

SELD <= ’1’;
DRESET <=’0’;
case K(i downto i-3) is

when "0000" =>
SELA <= ’0’;
if i>= 4 then

i:=i-4;
STATE <= S3;

else
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STATE <= S6;
end if;

when "0100"=>
SELA <= ’1’;
ADDR <= "0000";
STATE <= S5;

when "0001" =>
SELA <= ’1’;
ADDR <= "0001";
STATE <= S5;

when "1000" =>
SELA <= ’1’;
ADDR <= "0010";
STATE <= S5;

when "0010"=>
SELA <= ’1’;
ADDR <= "0011";
STATE <= S5;

when "0101" =>
SELA <= ’1’;
ADDR <= "0100";
STATE <= S5;

when "0110" =>
SELA <= ’1’;
ADDR <= "0101";
STATE <= S5;

when "1001" =>
SELA <= ’1’;
ADDR <= "0110";
STATE <= S5;

when "1010" =>
SELA <= ’1’;
ADDR <= "0111";
STATE <= S5;

when others=>
ADDR <= "1111";

end case;

when S5 =>
ARESET <= ’1’;
if count = APERIOD then

count := 0;
if i >= 4 then

i:=i-4;
SELA <= ’1’;
SELD <= ’1’;
STATE <= S3;
ARESET <= ’0’;

else
STATE <= S6;

end if;
else

count := count+1;
end if;

when S6 =>
ARESET <=’0’;
DRESET <=’0’;
DONE <= ’1’;
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end case;
end if;
end process;
end Behavioral;
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