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Summary

The content of this thesis is intended as a steppingstone towards reconstructing Street’s formal
theory of monads [Str72] in the (∞,2)-context. Although it is not explicitly mentioned in
Street’s original paper, the formal theory makes use of the monoidal closed structure on the
category 2-Cat given by the (lax) Gray tensor product [Gra74]. More specifically, it requires
the 2-category of 2-functors, lax natural transformations and modifications (which is the left
closed part of this structure) since Street characterises the familiar Eilenberg-Moore category
of algebras as the lax limit of the monad in an appropriate sense. This thesis demonstrates
that a homotopical counterpart of this monoidal closed structure exists. A more precise
formulation is given at the end of this summary.

We adopt 2-quasi-categories, which are the fibrant objects in [Θop
2 ,Set] with respect

to a model structure due to Ara [Ara14], for modelling (∞,2)-categories. In that paper,
Ara characterised not only the 2-quasi-categories, but also the fibrations into them. More
precisely, he proved them to be exactly those maps with the right lifting property with respect
to a set JA of monomorphisms. The purpose of Chapter 3 is to provide an alternative to JA
that is better suited for our purposes, i.e. combinatorics. More precisely, we prove that the
set JO consisting of Oury’s inner horn inclusions and equivalence extensions [Our10] can
be used in place of JA.

In Chapter 4, we construct the 2-quasi-categorical Gray tensor product extending the
2-categorical one in an appropriate sense. Although this tensor product is not associative up
to isomorphism, we can define the n-ary tensor product for each n ≥ 0 and organise them into
a lax monoidal structure on [Θop

2 ,Set]. That is, there exist appropriately coherent, but not
necessarily invertible, comparison maps from nested tensor products to the corresponding
total tensor products, e.g. ⊗2(⊗2(X,Y ), Z) → ⊗3(X,Y, Z). We then use the combinatorial
tool developed in Chapter 3 to prove that this lax monoidal structure may be regarded as
a genuine monoidal (closed) structure in a homotopical sense. More precisely, each n-ary
tensor product functor is shown to be left Quillen with respect to Ara’s model structure, and
also the (relative) comparison maps are shown to be trivial cofibrations.
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1
Introduction

Many authors, most notably Joyal [Joy02, Joy] and Lurie [Lur09, Lur], have shown that one
can “do category theory” in quasi-categories. In a similar vein, our ultimate goal is to “do
2-category theory” in 2-quasi-categories. The current thesis develops necessary tools for
achieving this goal.

1.1 (∞,1)-categories
The notion of 2-quasi-category is central to this thesis. In this section, we recall and motivate
its 1-dimensional (and much more famous) cousin, namely the notion of quasi-category, and
more generally the notion of (∞,1)-category.

1.1.1 What is an (∞,1)-category?
When one is dealing with mathematical objects with a geometric flavour, often one has not
only a natural notion of morphism between the objects but also a natural notion of homotopy
between such morphisms. These homotopies typically serve as witnesses for an appropriate
notion of equivalence between morphisms, e.g. homotopies between continuous functions,
chain homotopies between chain maps, and natural isomorphisms between functors. The
term (∞,1)-category refers to the schematic concept (and not a mathematically rigorous
definition) of a category-like structure equipped with such homotopies, homotopies between
homotopies, homotopies between homotopies between homotopies, ad infinitum. More gen-
erally, an (∞,n)-category is an n-category-like structure equipped with an infinite hierarchy
of homotopies. A variety of models realising this abstract idea of (∞,n)-category have been
proposed by different authors, each with its advantages and disadvantages.

1.1.2 (∞,1)-categories as space-enriched categories
Categories enriched in an appropriate category of spaces provide an example of such a model
for (∞,1)-categories. In this setting, morphisms, homotopies, homotopies between homo-
topies and so on in an (∞,1)-category correspond respectively to points, paths, homotopies



2 Introduction

between paths and so on in the hom-space. This is conceptually very simple, but this model
is too “strict” for some purposes in the following sense. For mathematical structures in which
there is a weaker notion of equivalence than equality, the “correct” kind of morphisms tend to
be those that preserve the structure up to that equivalence rather than up to equality. Functors
preserving certain (co)limits, strong monoidal functors and pseudo-functors are examples.
Similarly, we would like for morphisms between (∞,1)-categories to preserve composition
only up to homotopy, but usual enriched functors between space-enriched categories preserve
composition strictly.

1.1.3 (∞,1)-categories as quasi-categories
In contrast, quasi-categories (née weak Kan complexes [CP86]) and similar models such as
complete Segal spaces [Rez01] are “weak” in the sense that, informally speaking, they only
remember homotopies and not equalities so that even the strictest kind of morphisms can
only preserve composition up to homotopy. Formally, a quasi-category X is a simplicial set
in which any inner horn admits a filler:

Λk[n] X

∆[n]

∀

∃

where 0 < k < n and Λk[n] is the boundary of ∆[n] with the k-th face removed. We think of
0- and 1-simplices in X as objects and morphisms respectively, 2-simplices

f g

h

as homotopies g f ∼ h (as opposed to equality g f = h) and similarly for higher dimensional
simplices. Under this interpretation, the horn-filling condition may be thought of as a com-
binatorially convenient encoding of a composition that is well-defined, unital and associative
up to coherent homotopy.

1.2 2-category theory
Generally (∞,1)-category theory is developed by imitating ordinary category theory while
taking care of relevant homotopical information. Thus it is reasonable to expect to gain a
better understanding of certain aspects of (∞,1)-category theory by first developing (∞,2)-
category theory and then imitating formal category theory therein. In particular, the content
of this thesis is intended as a steppingstone towards developing the theory of monads in the
(∞,1)-context. This section reviews Street’s formal theory of monads [Str72], which we
aim to eventually reconstruct in 2-quasi-categories, and how it is related to the (lax) Gray
tensor product [Gra74, Theorem I.4.9], whose 2-quasi-categorical analogue is the subject of
Chapter 4.
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1.2.1 Formal category theory

It is commonly accepted that the totality of (small) categories Cat is better regarded as a 2-
category rather than amere category. We can see that Cat should be at least a 2-category since
formulating such fundamental notions to category theory as those of equivalence, adjunction
and monad all require natural transformations. The necessity of 2-cells is also supported by
the following famous observation of Eilenberg and Mac Lane (quoted from [ML98, §I.4]):

“category” has been defined in order to be able to define “functor” and
“functor” has been defined in order to be able to define “natural transformation”.

On the other hand, how dowe know that the 2-category structure onCat is (formany purposes)
“enough” and we do not need to seek for a more elaborate structure? A practical justification
would be to develop formal category theory, i.e. to exhibit that whatever piece of category
theory we are interested in can be obtained by specialising some general 2-category theory to
the 2-category Cat. In addition to having the obvious bonus of being applicable to a variety
of other contexts including enriched and internal category theory, often such general theory
also provides a more conceptual understanding of the subject.

1.2.2 The formal theory of monads

Street’s formal theory of monads [Str72] is a seminal paper in formal category theory. A
key observation in this paper is that the Eilenberg-Moore category of algebras is the lax limit
of the monad in the following sense. A monad in a 2-category A consists of an object
x ∈ A , a 1-cell t : x → x and 2-cells η : idx → t and µ : tt → t satisfying the usual unit
and associativity axioms. The suspension Mnd of ∆+ (i.e. the one-object 2-category whose
only hom-category is ∆+ and whose horizontal composition is given by the join operation)
is the free 2-category containing a monad in the sense that a 2-functor Mnd → A amounts
precisely to a monad in A . Such 2-functors form a 2-category [Mnd,A ]lax where we take
lax natural transformations (recalled in the next subsection) as 1-cells and modifications
as 2-cells. Sending each x ∈ A to the obvious identity monad at x defines an inclusion
2-functor A ↪→ [Mnd,A ]lax, and when A = Cat this inclusion admits a right 2-adjoint
[Mnd,Cat]lax → Cat sending each monad to the Eilenberg-Moore category of algebras.

The lax limit of a monad in a general 2-category is commonly called the Eilenberg-
Moore object of that monad. Street’s formal theory of monads is the study of the 2-
category [Mnd,A ]lax and the universal property of Eilenberg-Moore objects. In addition
to the Eilenberg-Moore category of algebras, the theory also covers such familiar monad-
related notions as the Kleisli category (which is the Eilenberg-Moore object of an ordinary
monad regarded as amonad in Catop) and distributive laws (which are monads in [Mnd,A ]lax).
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1.2.3 (Op)lax natural transformations and the Gray tensor product
A lax natural transformation σ between 2-functors F,G : A → B consists of a family of
1-cells σx : Fx → Gx in B indexed by x ∈ A and a family of 2-cells

Fx Fy

Gx Gy

F f

G f

σx σy
σ f

indexed by 1-cells f in A , satisfying appropriate coherence conditions. An oplax natural
transformation is similar but the 2-cell σ f points in the other direction. A modification θ
between a parallel pair of lax natural transformations σ,τ is a family of 2-cells

Fx

Gx

τxσx
θx

indexed by x ∈ A satisfying an appropriate condition. As we mentioned in the previous
subsection, 2-functors A → B, lax natural transformations and modifications form a 2-
category [A ,B]lax, and there is also an oplax version [A ,B]oplax. The Gray tensor product
provides the category 2-Cat with a monoidal structure for which [−,−]lax and [−,−]oplax are
part of the associated closed structure, i.e. we have bijections

2-Cat(B, [A ,C ]lax) � 2-Cat(A�B,C ) � 2-Cat(A , [B,C ]oplax)

natural in all three variables. Gray originally defined lax natural transformations explicitly
and then defined the tensor product as the corresponding monoidal structure. In contrast, we
will construct the 2-quasi-categorical Gray tensor product first and then define [−,−]lax and
[−,−]oplax as the corresponding closed structure.

1.3 2-quasi-categories
This section provides a rough definition of a 2-quasi-category and explains the sense in which
this definition is analogous to that of a quasi-category.

1.3.1 Model categories
The notion of model category is due to Quillen [Qui67], and the term is a shorthand for
“a category of models for a homotopy theory”. A model category is an ordinary category
equippedwith distinguished classes ofmorphisms satisfying certain conditions, which induce
a well-behaved notion of homotopy between morphisms. Thus model categories themselves
may be thought of as presenting (∞,1)-categories, but they are also often used as ambient
categories for constructing other models for (∞,1)- and more generally (∞,n)-categories.
The cofibrancy and fibrancy conditions formalise “homotopical well-behavedness” of objects
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in a model category, and often those (∞,n)-categories are defined or characterised as the
fibrant objects in a model category in which every object is cofibrant. In particular, this is
the case for quasi-categories and 2-quasi-categories.

1.3.2 Quasi-categories and 2-quasi-categories as fibrant objects
Quasi-categories are usually defined using the horn-filling condition in Section 1.1.3, but
equivalently they are the fibrant objects with respect a model structure on ∆̂ = [∆op,Set]
due to Joyal. In [Ara14], Ara constructed for each n ≥ 1 a model structure on Θ̂n which
presents (∞,n)-categories. In the case n = 1, (we have Θ1 = ∆ and) Ara’s model structure
coincides with Joyal’s. The n-quasi-categories are the fibrant objects in Θ̂n with respect to
this structure.

In the case n = 1, the indexing category ∆ for simplicial sets is the category of free
categories [n] generated by linear graphs:

0 1 . . . n

Thus we may think of ∆ as “controling” composition of general arity. When spelled out using
Ara’s description of the model structure, the fibrancy condition essentially states that there is
always a unique-up-to-homotopy way to compose any composable sequence of morphisms
(of finite length).

Analogously, Θ2 is the category of free 2-categories [n; q1, . . . ,qn] generated by “linear-
graph-enriched linear graphs”:

0 1 . . . n...

0
1

q1

...

0
1

q2

...

0
1

qn

The fibrancy condition states that there is always a unique-up-to-homotopy way to compose
any horizontally composable sequence of vertically composable sequences of 2-cells.

1.4 Overview of the thesis
The conclusion of this thesis may be paraphrased as:

the 2-quasi-categorical Gray tensor product is
part of an up-to-homotopy monoidal closed structure.

In this section, we make this statement more precise and explain how it is proved.

1.4.1 Inner horns for 2-quasi-categories
In [Ara14], Ara characterised not only the n-quasi-categories, but also the fibrations into
them. More precisely, he proved them to be exactly those objects or maps with the right
lifting property with respect to a set JA of monomorphisms. Thus to prove, for example,
that the 2-quasi-categorical Gray tensor product is left Quillen, it would suffice to check that
it interacts nicely with the maps in JA. However, the definition of JA is complicated and
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not very easy to deal with. The purpose of Chapter 3 is to provide, in the case n = 2, an
alternative set which is combinatorially more tractable.

More specifically, we show the setJO of inner horn inclusions and equivalence extensions,
introduced by Oury in his PhD thesis [Our10], can be used in place of JA. These maps are
constructed from their simplicial counterparts using the box product � : ∆̂ o ∆̂ → Θ̂2,
analogously to how the bisimplicial horns may be constructed from the simplicial ones using
the functor � : ∆̂× ∆̂→ �∆ × ∆. The precise construction and other background material will
be reviewed in Chapter 2.

The most technical (and also the longest) section of Chapter 3 is Section 3.1 where we
compare the sets JA and JO and the class of trivial cofibrations. In Section 3.2 we consider
a different notion of inner horn, namely the sub-Θ2-sets of the representables generated by
all but one codimension-one faces. Section 3.3 is very short and devoted to proving that
the infinite family of horizontal equivalences (contained in both JA and JO) can in fact be
replaced by a single map as long as we keep the inner horn inclusions in the defining set of
monomorphisms. In Section 3.4 we prove that the set JO may be used to characterise Ara’s
model structure (Theorem 3.4.1) and in particular to detect left Quillen functors out of Θ̂2
(Corollary 3.4.4). Section 3.5 discusses special outer horns which will be used in Chapter 4.

1.4.2 The Gray tensor product for 2-quasi-categories
In Chapter 4, we analyse a 2-quasi-categorical version of the Gray tensor product. For each
a ≥ 0, we define the a-ary Gray tensor product of presheaves over Θ2

⊗a : Θ̂2 × · · · × Θ̂2︸           ︷︷           ︸
a times

→ Θ̂2

by extending the composite

Θ2 × · · · × Θ2 2-Cat × · · · × 2-Cat 2-Cat Θ̂2
�a N

cocontinuously in each variable, where the second map �a is the a-ary Gray tensor product
of 2-categories and N is the nerve functor induced by the inclusion Θ2 ↪→ 2-Cat.

It can be seen from this definition that it is crucial to have a good understanding of the
2-categorical Gray tensor products of objects in Θ2. Indeed we analyse these 2-categories
in Section 4.1, and in particular we provide a combinatorial description for them using the
theory of braid monoids with zero reviewed in Appendix A. We then prove in Section 4.2 that
the Leibniz/relative version of ⊗a preserves monomorphisms. The rest of the proof that ⊗a
is left Quillen is divided into several cases, most of which follow a common combinatorial
strategy. This strategy is illustrated in Section 4.3. In Section 4.4, we utilise this strategy and
prove that the binary Gray tensor product ⊗2 is left Quillen. Section 4.5 makes precise the
statement that the Gray tensor product is associative up to homotopy. A few consequences
of this associativity are investigated in Section 4.6, and in parcitular we prove that ⊗a is left
Quillen for arbitrary a ≥ 1.

1.5 Future work: the formal theory of homotopy coherent
monads

As we mentioned in Section 1.2, the results in this thesis are intended as a steppingstone
towards reconstructing Street’s formal theory of monads in the homotopy coherent context.
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In this section, we discuss how this project may be continued in future.

1.5.1 Eilenberg-Moore objects as lax limits
The 2-quasi-categorical Gray tensor product allows us to construct an analogue of the 2-
category [Mnd,A ]lax, namely the object A^NMnd as defined in Definition 4.6.2. It follows
from Theorem 4.6.1 (or Theorem 4.4.1) that A^NMnd is a 2-quasi-category whenever A is
so. Since the totality of 2-quasi-categories forms an ∞-cosmos (i.e. a well-behaved quasi-
categorically enriched category), wemay apply the theory developed in [RV16] to make sense
of what it means for the canonical inclusion A ↪−→ (A^ NMnd) to have a right 2-adjoint.
More generally, even if such a total right 2-adjoint does not exist, their framework allows us to
define the Eilenberg-Moore object of a particular homotopy coherent monad T : NMnd→ A
to be a terminal object in an appropriate comma 2-quasi-category.

This is a conceptually simple, but combinatorially complicated, encoding of the universal
property. (Unwinding the definitions, one can check that the universal property involves maps
of the form NMnd ⊗ (2 × 2 × X) → A.) In order to mimick Street’s construction of e.g. the
free/forgetful adjunction, it is desirable to find amore tractable encoding of the same universal
property. This may be done purely combinatorially, for instance by replacing various objects
by weakly equivalent ones that admit simpler descriptions. A more conceptual approach,
which is still likely to be combinatorially heavy, would be to identify Eilenberg-Moore objects
as weighted limits (a theory of which in 2-quasi-categories is yet to be developed).

1.5.2 Eilenberg-Moore objects as weighted limits
The lax limit of a diagram in a 2-category may be computed as the weighted limit of the same
diagram for an appropriate weight [BKPS89, §2]. In particular, Eilenberg-Moore objects
may be regarded as weighted limits, and this is in fact the view taken in Lack and Street’s
follow-up paper [LS02] to Street’s original formal theory of monads.

The free/forgetful adjunction is induced by an adjunction between weights, and in this
sense the weighted limit approach is well-suited for studying the free/forgetful adjunction. On
the other hand, it does not provide us immediate access tomonad functors/transformations as
defined in [Str72] (i.e. 1-cells and 2-cells in [Mnd,A ]lax) since the natural habitat of monads
from this viewpoint is the “strict” hom-object [Mnd,A ]. This is an issue if one is interested
in e.g. distributive laws (see the next subsection). Thus to reconstruct the full-fledged formal
theory of monads for 2-quasi-categories, it would be convenient to be able to switch between
the two definitions of the Eilenberg-Moore object. In the 2-categorical case the two universal
properties can be checked to be equivalent by hand, but it will require much more work in
the 2-quasi-categorical case.

Riehl and Verity [RV16] adopted the weighted limit approach and proved an analogue
of Beck’s Monadicity Theorem for a different model of (well-behaved) (∞,2)-categories,
namely ∞-cosmoi. More precisely, a homotopy coherent monad in an ∞-cosmos A is
a simplicial functor Mnd → A , and they defined its Eilenberg-Moore object to be the
(enriched) limit weighted by the same weight as that used in the 2-categorical case; here the
Cat-enriched gadgets (i.e. Mnd and the weight) are made into simplicially enriched ones by
taking appropriate nerves.

Although this is not included in the current thesis, it is relatively easy to prove using
Theorem 3.4.1 (or [Cam, Proposition 4.13]) that the appropriate homotopy coherent nerve of
a quasi-categorically enriched category is a 2-quasi-category. Thus the following question
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makes sense: is the Eilenberg-Moore object (in the sense of Riehl and Verity) of a homotopy
coherent monad in an∞-cosmos the same thing as the Eilenberg-Moore object (in our sense)
of the corresponding monad in its nerve?

1.5.3 Distributive laws
Since a distributive law between monads in an ordinary 2-category A amounts precisely to
a monad in [Mnd,A ]lax, it is reasonable to define a distributive law in a 2-quasi-category
A to be an object in (A^ NMnd)^ NMnd. Corollary 4.6.3 implies that this latter 2-quasi-
category is equivalent to A^(NMnd ⊗ NMnd). We conjecture that the canonical comparison
map NMnd ⊗ NMnd → N(Mnd � Mnd) is a weak equivalence. If this is the case, then the
2-quasi-category of distributive laws in A may be constructed as A^N(Mnd � Mnd). The 2-
category Mnd�Mnd is precisely the free 2-category containing a distributive law, and it admits
a combinatorial description [Nik18, §A.1.2]. This description can facilitate computations
involving distributive laws in a 2-quasi-category.

Also, if NMnd ⊗ NMnd → N(Mnd � Mnd) is a weak equivalence then the composition
of two homotopy coherent monads related by a distributive law admits the following simple
description. In the 2-categorical case, the composite monad is obtained by composing the
distributive law regarded as a 2-functor Mnd�Mnd→ A with an appropriate 2-functor Mnd→
Mnd � Mnd. Analogously, homotopy coherent monads may be composed using the nerve of
this latter 2-functor. In fact, this 2-functor is the comultiplication for a �-comonoid structure
on Mnd, which induces a monad structure on the endofunctor [Mnd,−]lax : 2-Cat → 2-Cat.
Street observed that this monad is in fact a (strict) 3-monad. We conjecture that an analogous
result holds for 2-quasi-categories, but describing the homotopy coherent monad structure
on (−)^ NMnd, even when it is regarded as an endomorphism on the (∞,1)-category (as
opposed to the (∞,3)-category) of 2-quasi-categories, seems to be fairly non-trivial.

1.6 Related work
Certain aspects of the combinatorics of Θ2, including notions of boundary and horn, were
studied by Watson [Wat13] and we make use of a result proved in his thesis (see Proposi-
tion 2.1.9). Horns for a larger category Θ was also investigated by Berger [Ber02]. These
horns are the “alternative” ones in our terminology (analysed in Section 3.2) and they differ
from Oury’s horns in the “horizontal” case (see Section 2.2.4).

In their book on derived algebraic geometry [GR17] Gaitsgory and Rozenblyum listed
and exploited various properties the Gray tensor product of (∞,2)-categories should have, but
they did not prove that such a tensor product indeed exists. Our main results from Chapter 4
correspond to some of the unproven statements of in that book, namely Propositions 3.2.6
and 3.2.9.

The theory of monads in the homotopy coherent context admits several existing ap-
proaches. For example, Lurie [Lur] defined and analysed monads on quasi-categories using
his theory of ∞-operads. In particular, he gave an explicit definition of the quasi-category
of algebras for such a monad, and proved an analogue of Beck’s Monadicity Theorem. As
mentioned in Section 1.5.2, Riehl and Verity [RV16] proved the Monadicity Theorem more
generally for arbitrary ∞-cosmoi (including the ∞-cosmos of quasi-categories) where they
define the Eilenberg-Moore object as an appropriate weighted limit of the monad rather than
the lax limit.
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Zaganidis [Zag17] has constructed an analogue of [Mnd,A ]lax for a different model of
(∞,2)-categories. More precisely, he gave a combinatorial description of a stratified set
(simplicial set with extra data) of homotopy coherent monads in a given ∞-cosmos, and
conjectured that it is always a 2-trivial, saturated weak complicial set (another model of
(∞,2)-categories).

Another approach to homotopy coherent monads in the ∞-cosmological framework was
presented by Verity at the Australian Category Seminar in April toMay 2020. For an ordinary
2-category A , a 1-cell in the 2-category [Mnd,A ]lax may be identified with a 2-functor
2 → [Mnd,A ]lax or equivalently a 2-functor Mnd → [2,A ]oplax. If A has comma objects,
the 2-category [2,A ]oplax may be described as the 2-category of representable modules in an
appropriate sense. Verity constructed, for an arbitrary∞-cosmos A , an analogous simplicial
category of representable modules in A , and used it to prove a version of Dubuc’s Adjoint
Triangle Theorem.
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2
Background

In this chapter, we review the necessary background material which will be used in the main
body of the thesis. We claim no originality for the content of this chapter.

2.1 Basic combinatorics of Θ2

2-quasi-categories are certain presheaves over the category Θ2. The current section reviews
this category and analyses its basic combinatorics.

2.1.1 Simplicial sets and shuffles

As usual, we denote by ∆ the category of non-empty finite ordinals [n] def
= {0, . . . ,n} and

order-preserving maps. The morphisms in ∆ will be called simplicial operators. We often
denote a simplicial operator α : [m] → [n] by its “image” {α(0), . . . , α(m)}; for instance, we
write {0,2} = δ1 : [1] → [2] for the 1st elementary face operator.

We will write ∆̂ for the category [∆op,Set] of simplicial sets, and write ∆[n] for the
presheaf represented by [n] ∈ ∆. If X ∈ ∆̂ is a simplicial set, x ∈ Xn and α : [m] → [n] is a
simplicial operator, then we will write x · α for the image of x under X(α).

Definition 2.1.1. An (m,n)-shuffle is a non-degenerate (m+n)-simplex in the product ∆[m]×
∆[n].

Equivalently, an (m,n)-shuffle 〈α,α′〉 consists of two surjections

α : [m + n] → [m],
α′ : [m + n] → [n]

in ∆ such that α(i) + α′(i) = i for all i ∈ [m + n]. We write Shfl(m,n) for the set of
(m,n)-shuffles. Note that an (m,n)-shuffle 〈α,α′〉 is uniquely determined by the surjection
α : [m + n] → [m] since α′ can be recovered as α′(i) = i − α(i). Thus the pointwise order
on ∆([m + n], [m]) induces a partial order ≤ on Shfl(m,n). We have drawn in Fig. 2.1 two
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{0,0,0,1,2}

{0,0,1,1,2}

{0,0,1,2,2} {0,1,1,1,2}

{0,1,1,2,2}

{0,1,2,2,2}

Figure 2.1: Shfl(2,2)

0

1 2 3

4 5

Figure 2.2: 〈{0,0,1,2,2,3}, {0,1,1,1,2,2}〉

copies of Shfl(2,2), where each vertex 〈α,α′〉 is labelled with α (left) or the corresponding
grid-path (right) which we describe now.

We can visualise (m,n)-shuffles as paths on the m × n grid from the lower-left corner to
the upper-right corner. For example, the path in Fig. 2.2 corresponds to the (3,2)-shuffle
〈{0,0,1,2,2,3}, {0,1,1,1,2,2}〉. (If either m = 0 or n = 0 then the “grid” becomes a line
segment. In this case we have a unique path connecting the two endpoints, which corresponds
to having a unique (m,n)-shuffle.) This motivates the following notation.

Definition 2.1.2. Given an (m,n)-shuffle 〈α,α′〉, we will write:

• y〈α,α′〉 for the set of all 1 ≤ i ≤ m + n − 1 such that

α(i + 1) = α(i) = α(i − 1) + 1

(or equivalently α′(i + 1) = α′(i) + 1 = α′(i − 1) + 1) holds; and

• p〈α,α′〉 for the set of all 1 ≤ i ≤ m + n − 1 such that

α(i + 1) = α(i) + 1 = α(i − 1) + 1

(or equivalently α′(i + 1) = α′(i) = α′(i − 1) + 1) holds.

For example, if 〈α,α′〉 is the (3,2)-shuffle depicted in Fig. 2.2, then y〈α,α′〉 = {3} and
p〈α,α′〉 = {1,4}. The following propositions are straightforward to prove.

Proposition 2.1.3. Let 〈α,α′〉, 〈β, β′〉 be (m,n)-shuffles. Suppose α(i) = β(i) (and so α′(i) =
β′(i)) for each i ∈y〈α,α′〉. Then 〈α,α′〉 ≤ 〈β, β′〉.

Proposition 2.1.4. Let 〈α,α′〉 be an (m,n)-shuffle and suppose i ∈y〈α,α′〉. Then 〈α,α′〉
has an immediate predecessor 〈β, β′〉 such that 〈α,α′〉 ◦ δi = 〈β, β′〉 ◦ δi. Moreover, this
condition determines 〈β, β′〉 uniquely and induces a bijection between y〈α,α′〉 and the set of
immediate predecessors of 〈α,α′〉. Similarly, there is a bijection between p〈α,α′〉 and the set
of immediate successors of 〈α,α′〉.
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For 1 ≤ i ≤ m + n − 1, the grid-path corresponding to 〈α,α′〉 ∈ Shfl(m,n) locally looks
like:

i
,

i
, i or i

This observation can be formalised as follows.

Proposition 2.1.5. Let 〈α,α′〉 be an (m,n)-shuffle. Then for any 1 ≤ i ≤ m + n− 1, precisely
one of the following holds:

• i ∈y〈α,α′〉;

• i ∈ p〈α,α′〉;

• α−1(α(i)) = {i}; or

• (α′)−1(α′(i)) = {i}.

2.1.2 The category Θ2

The category ∆ can be seen as the full subcategory of Cat spanned by the free categories [n]
generated by linear graphs:

0 1 . . . n

Similarly, Joyal’s 2-cell category Θ2 is the full subcategory of 2-Cat spanned by the free
2-categories [n; q1, . . . ,qn] generated by “linear-graph-enriched linear graphs”:

0 1 . . . n...

0
1

q1

...

0
1

q2

...

0
1

qn

whose hom-categories are given by

hom(k, `) =
{
[qk+1] × · · · × [q`] if k ≤ `,

� if k > `.

More precisely, Θ2 has objects [n; q] = [n; q1, . . . ,qn] where n,qk ∈ N for each k. A
morphism [α; α] = [α;αα(0)+1, . . . , αα(m)] : [m; p] → [n; q] consists of simplicial operators
α : [m] → [n] and αk : [p`] → [qk] for each k ∈ [n] such that there exists (necessarily
unique) ` ∈ [m] with α(` − 1) < k ≤ α(`). By a cellular operator we mean a morphism in
Θ2. Clearly [0] is a terminal object in Θ2, and we will write ! : [n; q] → [0] for any cellular
operator into [0].

Remark. Here we are describing Θ2 = ∆ o ∆ as an instance of Berger’s wreath product
construction. For any given category C , the wreath product ∆ o C may be thought of as the
category of free C -enriched (or more accurately Ĉ -enriched) categories generated by linear
C -enriched graphs. The precise definition can be found in [Ber07, Definition 3.1].
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Remark. The notation for objects (and maps) in Θ2 varies from author to author. (This is
partly because some authors introduce a notation for objects in a general wreath product
category which can be specialised to Θ2 = ∆ o ∆ while others are interested in the particular
category Θ2 and hence able to adopt a more economical notation.) For example, the object
we denote by [n; q] = [n; q1, . . . ,qn] would be denoted as:

•
(
[q1], . . . , [qn]

)
in [Ber07];

• [n; q] =
(
[n], [−1], [q1], . . . , [qn], [−1]

)
in [Our10];

•
(
[n], [q1], . . . , [qn]

)
in [Rez10]; and

• 〈q1, . . . ,qn〉 in [Wat13].

In [Ara14] an object inΘ2 (or more generally inΘn) is specified using the table of dimensions;
see loc. cit. for details.

The category ∆ has an automorphism (−)op which is the identity on objects and sends
α : [m] → [n] to αop : [m] → [n] given by αop(i) = n − α(m − i). This induces two
automorphisms on Θ2, namely:

• (−)co : Θ2 → Θ2, which sends [α; α] : [m; p] → [n; q] to

[α;αop
α(0)+1, . . . , α

op
α(m)] : [m; p] → [n; q];

and

• (−)op : Θ2 → Θ2, which sends [α; α] : [m; p] → [n; q] to

[αop;αα(m), . . . , αα(0)+1] : [m; pm, . . . , p1] → [n; qn, . . . ,q1].

2.1.3 Face maps in Θ2

There is a Reedy category structure on Θ2 defined as follows; see [BR13, Proposition 2.11]
or [Ber02, Lemma 2.4] for a proof.

Definition 2.1.6. The dimension of [n; q] is dim [n; q] def= n +
∑n

k=1 qk . A cellular operator
[α; α] : [m; p] → [n; q] is a face operator if α is monic and {αk : α(` − 1) < k ≤ α(`)} is
jointly monic for each 1 ≤ ` ≤ m. It is a degeneracy operator if α and all αk are surjective.

Definition 2.1.7. A simplicial operator α : [m] → [n] is inert if it is a subinterval inclusion,
that is, if α(i + 1) = α(i) + 1 for 0 ≤ i ≤ m − 1.

Definition 2.1.8. We say a face map [α; α] : [m; p] → [n; q] is:

• inner if α and all αk preserve the top and bottom elements, and otherwise outer;

• horizontal if each αk is surjective;

• vertical if α = id; and

• inert if α and all αk are inert.

(Examples of each kind can be found in Table 2.1.) A horizontal face map of the form [δk ; α]
will be called a k-th horizontal face.
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By the codimension of a face map [α; α] : [m; p] → [n; q], we mean the difference
dim [n; q] − dim [m; p]. We will in particular be interested in the face maps of codimension
1, which we call hyperfaces. Such a map [α; α] has precisely one of the following forms:

• for n ≥ 1, [n; q] always has a unique 0-th horizontal face

δ0
h
def
= [δ0; id] : [n − 1; q2, . . . ,qn] → [n; q]

which has codimension 1 if and only if q1 = 0;

• similarly, if qn = 0 then the unique n-th horizontal face

δn
h
def
= [δn; id] : [n − 1; q1, . . . ,qn−1] → [n; q]

has codimension 1;

• for each 1 ≤ k ≤ n − 1, there is a family of k-th horizontal hyperfaces

δ
k;〈β,β′〉
h

def
= [δk ; α] : [n − 1; q1, . . . ,qk−1,qk + qk+1,qk+2, . . . ,qn] → [n; q]

indexed by 〈β, β′〉 ∈ Shfl(qk,qk+1) where α` = id for k , ` , k + 1, αk = β and
αk+1 = β

′; and

• for each 1 ≤ k ≤ n satisfying qk ≥ 1 and for each 0 ≤ i ≤ qk , the (k; i)-th vertical
hyperface

δk;i
v

def
= [id; α] : [n; q1, . . . ,qk−1,qk − 1,qk+1, . . . ,qn] → [n; q]

is given by αk = δ
i and α` = id for ` , k.

Convention. Strictly speaking, we are giving the same name to different cellular operators,
and this can lead to confusion. So in the rest of this paper, we will assume the codomain of
any cellular operator denoted by δ (with some decoration) is always whatever is called [n; q]
at that point (or some cellular subset of Θ2[n; q] as described in Section 2.1.4). When this is
not the case, we will indicate the codomain [m; p] either by writing δ[m; p] instead of δ, or
by drawing δ as an arrow [m′; p′] [m; p].δ

In Table 2.1, we have listed various faces of [2; 0,2]. We will briefly describe how to
read the pictures. In the first row is the “standard picture” of [2; 0,2], in which we have
nicely placed its objects ( ), generating 1-cells ( ) and generating 2-cells ( ). In the rest
of the table, a face operator [α; α] : [m; p] → [2; 0,2] is illustrated as the standard picture of
[m; p] appropriately distorted so that the `-th object appears in the α(`)-th position and each
generating 1-cell lies roughly where the factors of its image used to. In the third row (where
α1 is not injective), we have left small gaps between the generating 1-cells so that they do not
intersect with each other.

The hyperfaces of [n; q] are precisely the maximal faces of [n; q] in the following sense.

Proposition 2.1.9 ([Wat13, Proposition 6.2.4]). Any face map [α; α] : [m; p] → [n; q] of
positive codimension factors through a hyperface of [n; q].

We will also need the following outer version of this proposition.
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picture domain inner/outer horizontal vertical inert

id [2; 0,2] inner X X X

δ0
h = [δ

0; id] [1; 2] outer X × X

δ
1;〈!,id〉
h = [δ1; !, id] [1; 2] inner X × ×

δ2;0
v = [id; id, δ0]

[2; 0,1] outer × X X

δ2;2
v = [id; id, δ2]

δ2;1
v = [id; id, δ1] [2; 0,1] inner × X ×

δ2
h = [δ

2; id] [1; 0] outer X × X

[{0}] [0] outer X × X

Table 2.1: Some faces of [2; 0,2]

Proposition 2.1.10. Any outer face map [α; α] : [m; p] → [n; q] factors through an outer
hyperface of [n; q].

Proof. Recall that [α; α] is inner (= non-outer) if and only if α and all αk preserve the top and
bottom elements. We will consider the cases where either α or some αk does not preserve
the top elements; the other cases can be treated dually.

(i) If α(m) , n and qn = 0 then we can factorise [α; α] as

[m; p] [n − 1; q1, . . . ,qn−1] [n; q][β;α] δn
h

where β : [m] → [n − 1] is given by β(i) = α(i).

(ii) If α(m) , n and qn ≥ 1 then we can factorise [α; α] as

[m; p] [n; q1, . . . ,qn−1,qn − 1] [n; q].[α;α] δn;0
v

(iii) If αk(p`) , qk for some α(` − 1) < k ≤ α(`) then we can factorise [α; α] as

[m; p] [n; q1, . . . ,qk − 1, . . . ,qn] [n; q][α;β] δ
k;qk
v

where βk : [p`] → [qk − 1] is given by βk(i) = αk(i) and βk ′ = αk ′ for k′ , k.

�

We will also introduce the following notations for later use.
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Definition 2.1.11. For any [n; q] ∈ Θ2 and any 1 ≤ k ≤ n, we denote by ηk
h the face map

ηk
h
def
=

[
{k − 1, k}; id

]
: [1; qk] → [n; q].

Definition 2.1.12. For any 0 ≤ i ≤ q, we denote by ηi
v the face map

ηi
v
def
=

[
id; {i}

]
: [1; 0] → [1; q].

2.1.4 Cellular sets
We will write Θ̂2 for the category [Θop

2 ,Set] of cellular sets. If X is a cellular set, x ∈ Xn;q
def
=

X([n; q]) and [α; α] : [m; p] → [n; q] is a cellular operator, then we will write x · [α; α] for
the image of x under X([α; α]). The Reedy structure on Θ2 is (EZ and hence) elegant, which
means the following.

Theorem 2.1.13 ([BR13, Corollary 4.5]). For any cellular set X and for any x ∈ Xm;p, there
is a unique way to express x as x = y · [α; α] where [α; α] : [m; p] → [n; q] is a degeneracy
operator and y ∈ Xn;q is non-degenerate.

Definition 2.1.14. A cellular subset of X ∈ Θ̂2 is a subfunctor of X . If S is a set of cells in
X ∈ Θ̂2 (not necessarily closed under the action of cellular operators), the smallest cellular
subset S of X containing S is given by

Sm;p =
{
s · [α; α] : s ∈ Sn;q, [m; p] [n; q][α;α] }

.

We call S the cellular subset of X generated by S.

(Abuse of) notation. We will write Θθ2 or Θ2[n; q] for the presheaf represented by the object
θ = [n; q] ∈ Θ2. If [α; α] : [m; p] → [n; q] is a cellular operator, then the corresponding
map Θ2[m; p] → Θ2[n; q] will also be denoted by [α; α]. Moreover, if X ⊂ Θ2[n; q] is a
cellular subset and there exists a (necessarily unique) factorisation

X

Θ2[m; p]

Θ2[n; q]

⊂

[α;α]

then we abuse the notation and write [α; α] for the dashed map too. Note that the domain
of [α; α] is still the representable one and so [α; α] always corresponds to a single cell in its
codomain. The convention introduced in Section 2.1.2 extends to this context in the sense
that any map in Θ̂2 denoted by δ (with some decoration) will always have as codomain some
cellular subset of Θ2[n; q] unless indicated otherwise.

There is a functor Θ2 → ∆ given by sending [α; α] : [m; p] → [n; q] to α : [m] → [n].
We will regard ∆̂ as a full subcategory of Θ̂2 via the embedding ∆̂ → Θ̂2 induced by this
functor. Hence the square

Cat 2-Cat

∆̂ Θ̂2

N N

⊂
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commutes up to isomorphism, where the upper horizontal map sends each category to the
obvious locally discrete 2-category, and the vertical maps are the nerve functors induced by
the inclusions ∆ ↪→ Cat and Θ2 ↪→ 2-Cat.

2.2 Oury’s anodyne extensions

Most content of this section is taken from Oury’s PhD thesis [Our10].

2.2.1 The category ∆̂ o ∆̂

In this subsection, we will describe Oury’s generalised wreath product ∆̂ o ∆̂ which should be
thought of as a category of presentations of certain cellular sets in terms of their “horizontal”
and “vertical” components. The box product � : ∆̂ o ∆̂→�∆ o ∆ = Θ̂2 defined in Section 2.2.2
then realises such presentations into actual cellular sets. This functor should be thought of
as analogous to the box product functor � : ∆̂ × ∆̂ → �∆ × ∆ for bisimplicial sets, hence the
name. In Section 2.2.4 we will use these tools to turn simplicial inner horns into cellular
ones.

We start by going back to the representable cellular sets and “decomposing” them into
simplicial sets, to motivate the definition of ∆̂ o ∆̂.

Since the “length” of [n; q] is n, the horizontal component of Θ2[n; q] should be ∆[n].
The description of the hom-categories of [n; q] tells us that the vertical component ofΘ2[n; q]
should assign the product ∆[qk+1]× · · ·×∆[q`] to each 1-simplex {k, `} in ∆[n]. The resulting
functor χ1 : ∆[n]1 → ∆̂ (where ∆[n]m is the set of m-simplices in ∆[n] regarded as a discrete
category) then encodes the Cat-enriched graph structure of [n; q]. The (free) horizontal
composition is witnessed by the canonical isomorphism

χ1(α · {0,1}) × χ1(α · {1,2}) → χ1(α · {0,2})

for each 2-simplex α : [2] → [n]. These isomorphisms can be organised into a single natural
isomorphism

∆[n]2 ∆̂ × ∆̂

∆[n]1 ∆̂

−·{0,2}

χ2

� ×

χ1

where the right vertical map is the binary product functor and χ2 is the unique functor induced
by the universal property as in:

∆[n]1 ∆̂

∆[n]2 ∆̂ × ∆̂

∆[n]1 ∆̂

χ1

−·{0,1}

χ2

−·{1,2}

π1

π2

χ1
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These three squares can be seen as part of a pseudo-natural transformation

∆op CAT

Set

∆[n]

∆̂(−)

χ

into the pseudo-functor ∆̂(−) which we now describe. (Here CAT must be large enough to
contain ∆̂ and its powers as objects.)

The object part of ∆̂(−) assigns to each [m] ∈ ∆ the product ∆̂m = ∆̂× · · · × ∆̂ of m copies
of the category ∆̂. If β : [k] → [m] is a simplicial operator, then its image ∆̂β : ∆̂m → ∆̂k

acts by

{Sj}1≤ j≤m 7→


∏

β(i−1)< j≤β(i)

Sj

1≤i≤k

.

Since ∆̂γ∆̂β is only naturally isomorphic (via suitably coherent isomorphisms) and not equal
to ∆̂βγ, we obtain a pseudo-functor ∆op → CAT instead of a strict (2-)functor.

We define the [m]-component χm : ∆[n]m → ∆̂m of the pseudo-natural transformation χ
by

χm(α) =


∏

α(i−1)< j≤α(i)

∆[q j]

1≤i≤m

for each α : [m] → [n]. To complete the description of χ, we need to specify an appropriately
coherent family of natural isomorphisms

∆[n]m ∆̂m

∆[n]k ∆̂k

−·β

χm

� ∆̂β

χk

indexed by the simplicial operators β : [k] → [m]. But this amounts to giving an isomorphism∏
0< j≤m

χ1(α · { j − 1, j}) � χ1(α · {0,m})

for each α ∈ ∆[n]m compatible with the simplicial structure of ∆[n], and one can check
that the canonical isomorphisms indeed form such a compatible family. As we mentioned
above for the case m = 2, this isomorphism can be thought of as witnessing the m-ary
horizontal composition. The invertibility of this map says that [n; q] is horizontally free,
and the compatibility with the simplicial structure says that the horizontal composition is
coherent in the sense that it is associative, the witnesses to associativity satisfy the pentagon
law, and so on.

This “decomposition” provides a motivation for thinking of the objects in the following
category as presentations of certain cellular sets.
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Definition 2.2.1. For any simplicial setW , let
(
∆̂ o ∆̂

)
W denote the category of pseudo-natural

transformations

∆op CAT

Set

W

∆̂(−)

χ

and modifications between them.

Amorphism χ → χ′ in the category
(
∆̂ o∆̂

)
W essentially amounts to a family of simplicial

maps χ1(α) → χ′1(α) indexed by α ∈ W1 that is compatible with the pseudo-naturality
isomorphisms in an appropriate sense. In particular, we have the following proposition.

Proposition 2.2.2. There is an equivalence of categories(
∆̂ o ∆̂

)
∆[n] ' ∆̂

n

whose object part is given by evaluating each pseudo-natural transformation at the unique
non-degenerate n-simplex in ∆[n].

Proof. This is an instance of the bicategorical Yoneda lemma [Str80, §1.9]. �

If f : W → W′ is a map in ∆̂, then there is a functor f ∗ :
(
∆̂ o ∆̂

)
W ′ →

(
∆̂ o ∆̂

)
W given by

composing with f , i.e. f ∗(χ) is the pseudo-natural transformation:

∆op CAT

Set

W′

W

∆̂(−)

χ

f

Moreover, sending each f to f ∗ defines a (strict) functor
(
∆̂ o ∆̂

)
(−)

: ∆̂op → CAT.

Definition 2.2.3. Thegeneralisedwreath product ∆̂o∆̂ is the total category of theGrothendieck
construction of the functor

(
∆̂ o ∆̂

)
(−)
.

More explicitly, the category ∆̂ o ∆̂ has as objects the pairs (W, χ) as above and as
morphisms pairs ( f ,ω) : (W, χ) → (W′, χ′) where f : W → W′ is a morphism of simplicial
sets and ω : χ → f ∗(χ′) is a modification between the pseudo-natural transformations.
Remark. For any monoidal category V , one can construct a similar category ∆̂ o V by
replacing the pseudo-functor ∆̂(−) with V (−) (whose morphism part is defined using the
monoidal structure). In fact, Oury originally described ∆̂ o ∆̂ as a particular instance of this
general construction.

2.2.2 The functors � and �n

We start by making precise the “decomposition” of representable cellular sets discussed in
the previous subsection.
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Proposition 2.2.4 ([Our10, Observation 3.53 and Lemma 3.60]). Sending each [n; q] to the
image of (

∆[q1], . . . ,∆[qn]
)
∈ ∆̂n

under the equivalence ∆̂n '
(
∆̂ o ∆̂

)
∆[n] of Proposition 2.2.2 defines the object part of a full

embedding Θ2 ↪→ ∆̂ o ∆̂.

Definition 2.2.5. The box product � : ∆̂ o ∆̂ → Θ̂2 is the nerve functor induced by this
embedding.

Note that the embedding being full is equivalent to the composite

Θ2 ∆̂ o ∆̂ Θ̂2
�

being naturally isomorphic to the Yoneda embedding.
Remark. We will briefly describe how Oury’s box product functor is related to Rezk’s
intertwining functor [Rez10, §4.4]

V : ∆ o
[
C op, ∆̂

]
→

[
(∆ o C )op, ∆̂

]
.

(If the reader is not familiar with Rezk’s work on Θn-spaces, they may safely ignore this
remark.) One can check that restricting the intertwining functor to the obvious “discrete”
objects yields

V : ∆ o
[
C op,Set

]
→

[
(∆ o C )op,Set

]
and so in particular we obtain V : ∆ o ∆̂ → Θ̂2 for C = ∆. The domain of this functor is
equivalent to the full subcategory of ∆̂ o ∆̂ spanned by the objects of the form (∆[n], χ), and
∆ o ∆̂ ∆̂ o ∆̂ Θ̂2

� is naturally isomorphic to V .
Given any cartesian fibration P : E → B and B ∈ B, let B/B and EB denote the slice

and the fibre over B respectively. Then there is a functor

H : B/B × EB → E

whose object part is given by sending each pair ( f ,E) to the domain f ∗E of a cartesian lift
f̃ : f ∗E → E of f . For any map g : A1 → A2 over B and any map e : E1 → E2 in EB, we
can factor e ◦ f̃1 uniquely through the cartesian lift f̃2 as in

f ∗2 E2

f ∗1 E1 E1

E2

A2

A1 Bf̃1

e

f̃2

f1

f2g
P

and this defines the morphism part of H.

Definition 2.2.6. Let �n denote the composite functor

�n : ∆̂/∆[n] × ∆̂ × · · · × ∆̂︸        ︷︷        ︸
n times

∆̂/∆[n] ×
(
∆̂ o ∆̂

)
∆[n] ∆̂ o ∆̂ Θ̂2

H �

where the first map is induced by the equivalence of Proposition 2.2.2 and the second map is
an instance of the above construction.
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Note that we have �n
(
id∆[n];∆[q1], . . . ,∆[qn]

)
� Θ2[n; q].

Proposition 2.2.7 ([Our10, Lemmas 3.74 and 3.77]). The functor �n preserves:

• small colimits in the first variable; and

• small connected colimits in each of the other n variables.

Definition 2.2.8. If f : X → Y is a map in ∆̂, then we will write

[id; f ] : Θ2[1; X] → Θ2[1;Y ]

for its image under the functor �1(id∆[1];−) : ∆̂→ Θ̂2.

This notation is motivated by the fact that �1(id∆[1];−) extends the functor ∆→ Θ̂2 given
by sending α : [m] → [n] to [id;α] : Θ2[1; m] → Θ2[1; n]. It takes a simplicial set X to its
“suspension”, i.e. the nerve of the following simplicially enriched category:

0 1∆[0]
X

�

∆[0]

2.2.3 Leibniz construction
We describe the (n-ary) Leibniz construction. Suppose F : C1 × · · · × Cn → D is a functor
and D has finite colimits. Then the (n-ary) Leibniz construction

F̂ : C 2

1 × · · · × C 2

n → D2

of F, where 2 = {0 → 1} is the “walking arrow” category, is defined as follows. Let fi :
X0

i → X1
i be an object in C 2

i for each i. Then the assignment (ε1, . . . , εn) 7→ F(Xε1
1 , . . . ,X

εn
n )

defines a functor G : 2n → D . Denote by I the inclusion of the full subcategory of 2n

spanned by all non-terminal objects. Then G defines a cone under the diagram GI, so
we obtain an induced morphism colim GI → F(X1

1 , . . . ,X
1
n ). Sending ( f1, . . . , fn) to this

morphism defines the object part of F̂, and the morphism part is defined in the obvious way
by the universal property.

Lemma 2.2.9. Let F : C1 × · · · × Cn → D be a functor into a presheaf category D . Fix
fi : X0

i → X1
i in each Ci and suppose G (as above) sends each square of the form

(1, . . . ,1,0,1, . . . ,1,0,1, . . . ,1) (1, . . . ,1,0,1, . . . ,1)

(1, . . . ,1,0,1, . . . ,1) (1, . . . ,1)
j-th

i-thi-th j-th

↑

↓↓ ↓

(2.1)

to a pullback square of monomorphisms. Then F̂( f1, . . . , fn) is a monomorphism.

Proof. This is straightforward to checkwhenD = Set, and the general result follows from this
special instance since limits and colimits in presheaf categories are computed pointwise. �
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Definition 2.2.10. For any set S of morphisms in a category with pushouts and transfinite
compositions, let cell(S) denote the closure of S under transfinite composition and taking
pushouts along arbitrary maps.

Lemma 2.2.11. Suppose that a functor F : C1 × · · · × Cn → D preserves pushouts and
transfinite compositions in each variable. Let S1, . . . ,Sn be collections of morphisms in
C1, . . . ,Cn respectively. Then

F̂
(
cell(S1), . . . ,cell(Sn)

)
⊂ cell

(
F̂(S1, . . . ,Sn)

)
.

Proof. A proof can be found in [Our10, Corollary 3.11]. The case n = 2 is also proved in
[RV14, Proposition 5.12]. �

2.2.4 Oury’s anodyne extensions
Joyal’s model structure for quasi-categories on ∆̂ can be characterised using:

• the boundary inclusions ∂∆[n] ↪→ ∆[n];

• the (inner) horn inclusions Λk[n] ↪→ ∆[n]; and

• the equivalence extension e : ∆[0] ↪→ J which is the nerve of the inclusion {♦} ↪→
{♦ � �} into the chaotic category on two objects.

Oury constructs the Θ2-version of those morphisms using the Leibniz box product �̂n as
follows.

Definition 2.2.12. The boundary inclusion ∂Θ2[n; q] ↪→ Θ2[n; q] is defined by the (n+1)-ary
Leibniz construction

�̂n

©­­­­«
∂∆[n]

∆[n]

;
∂∆[q1]

∆[q1]

, . . . ,

∂∆[qn]

∆[qn]

ª®®®®¬
where the first argument ∂∆[n] ↪→ ∆[n] is regarded as a map over ∆[n] in the obvious way.

As its name suggests, this map is the “usual” boundary inclusion.

Proposition 2.2.13 ([Our10, Observation 3.84]). The map ∂Θ2[n; q] ↪→ Θ2[n; q] is (isomor-
phic to) the inclusion of the cellular subset consisting precisely of those maps into [n; q] that
factor through objects of lower dimension.

Proposition 2.2.14. The cellular subset ∂Θ2[n; q] ⊂ Θ2[n; q] is generated by the hyperfaces
of Θ2[n; q].

Proof. This follows from Propositions 2.1.9 and 2.2.13. �

For example, when [n; q] = [2; 0,2] (see Table 2.1):

• �2
(
∂∆[2];∆[0],∆[2]

)
⊂ Θ2[2; 0,2] is generated by δ0

h, δ
1;〈!,id〉
h and δ2

h;

• �2
(
∆[2]; ∂∆[0],∆[2]

)
is generated by δ0

h and [{0}]; and



24 Background

• �2
(
∆[2];∆[0], ∂∆[2]

)
is generated by δ2;0

v , δ2;1
v and δ2;2

v .

It can be seen from the defining colimit diagram that ∂Θ2[2; 0,2] is the union of these three
cellular subsets. Thus ∂Θ2[2; 0,2] is indeed generated by the hyperfaces of Θ2[2; 0,2].

Definition 2.2.15. We write I for the set of boundary inclusions, i.e.

I
def
=

{
∂Θ2[n; q] ↪→ Θ2[n; q] : [n; q] ∈ Θ2

}
.

The following proposition follows from Theorem 2.1.13.

Proposition 2.2.16. The class cell(I) consists precisely of the monomorphisms in Θ̂2.

Definition 2.2.17. The k-th horizontal horn inclusion Λk
h[n; q] ↪→ Θ2[n; q], where 0 ≤ k ≤

n, is

�̂n

©­­­­­«
Λk[n]

∆[n]

;
∂∆[q1]

∆[q1]

, . . . ,

∂∆[qn]

∆[qn]

ª®®®®®¬
.

It is called inner if 1 ≤ k ≤ n − 1.

Proposition 2.2.18. The map Λk
h[n; q] ↪→ Θ2[n; q] is (isomorphic to) the inclusion of the

cellular subset generated by all hyperfaces except for the k-th horizontal ones.

Proof. It follows from Lemma 2.2.11 and Proposition 2.2.13 that this map is a monomor-
phism. Thus it suffices to check that it has the correct image, which can be done by considering
the defining colimit diagram for Λk

h[n; q]. �

For example, when [n; q] = [2; 0,2] and k = 1:

• �2
(
Λ1[2];∆[0],∆[2]

)
is generated by δ0

h and δ2
h;

• �2
(
∆[2]; ∂∆[0],∆[2]

)
is generated by δ0

h and [{0}]; and

• �2
(
∆[2];∆[0], ∂∆[2]

)
is generated by δ2;0

v , δ2;1
v and δ2;2

v .

Thus their union Λ1
h[2; 0,2] is indeed generated by all hyperfaces except δ1;〈!,id〉

h .
Remark. The faces [α; α] : Θ2[m; p] → Θ2[n; q] not contained in the horizontal horn
Λk

h[n; q] are precisely the k-th horizontal ones. In particular, Λk
h[n; q] may be missing faces

of Θ2[n; q] that have codimension greater than 1. For example, one can check that Λ1
h[2; 1,1]

is generated by the vertical hyperfaces

δ1;0
v =

{ }
, δ1;1

v =
{ }

,

δ2;0
v =

{ }
and δ2;1

v =
{ }

and so it does not contain the face

[δ1; id, id] =
{ }
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of codimension 2. (The last face may equally well be depicted as
{ }

; the position

of the double arrow has no significance.) This differs from the more commonly found
definition of a horn (e.g. [Ber02, Wat13]) as “boundary with one hyperface removed”. In
Section 3.2, we show that for our purposes such alternative horns may be used in place of
Oury’s ones.

Definition 2.2.19. The (k; i)-th vertical horn inclusion Λk;i
v [n; q] ↪→ Θ2[n; q], where 0 ≤

k ≤ n satisfies qk ≥ 1 and 0 ≤ i ≤ qk , is

�̂n

©­­­­­«
∂∆[n]

∆[n]

;
∂∆[q1]

∆[q1]

, . . . ,

∂∆[qk−1]

∆[qk−1]

,

Λi[qk]

∆[qk]

,

∂∆[qk+1]

∆[qk+1]

, . . . ,

∂∆[qn]

∆[qn]

ª®®®®®¬
.

It is called inner if 1 ≤ i ≤ qk − 1.

The following proposition can be proved similarly to Proposition 2.2.18.

Proposition 2.2.20. The map Λk;i
v [n; q] ↪→ Θ2[n; q] is (isomorphic to) the inclusion of the

cellular subset generated by all hyperfaces except for the (k; i)-th vertical ones.

For example, when [n; q] = [2; 0,2], k = 2 and i = 1:

• �2
(
∂∆[2];∆[0],∆[2]

)
is generated by δ0

h, δ
1;〈!,id〉
h and δ2

h;

• �2
(
∆[2]; ∂∆[0],∆[2]

)
is generated by δ0

h and [{0}]; and

• �2
(
∆[2];∆[0],Λ1[2]

)
is generated by δ2;0

v and δ2;2
v .

Thus their union Λ2;1
v [2; 0,2] is indeed generated by all hyperfaces except δ2;1

v .

Definition 2.2.21. A horizontal equivalence extension is a map of the form(
Θ2[0]

e
↪→ J

)
×̂
(
∂Θ2[n; q] ↪→ Θ2[n; q]

)
where ×̂ is the Leibniz construction of the usual binary product functor. Here the simplicial
set J is regarded as a cellular set via the inclusion ∆̂ ↪→ Θ̂2 described in Section 2.1.4.

Definition 2.2.22. If [n; q] ∈ Θ2 has qk = 0 for some 1 ≤ k ≤ n then we denote by
Ψk[n; q] ↪→ Φk[n; q] the vertical equivalence extension

�̂n

©­­­­«
∂∆[n]

∆[n]

;
∂∆[q1]

∆[q1]

, . . . ,

∂∆[qk−1]

∆[qk−1]

,

∆[0]

J

e ,

∂∆[qk+1]

∆[qk+1]

, . . . ,

∂∆[qn]

∆[qn]

ª®®®®¬
.

Definition 2.2.23. LetHh,Hv, Eh, and Ev denote the sets of inner horizontal horn inclusions,
inner vertical horn inclusions, horizontal equivalence extensions, and vertical equivalence
extensions respectively. We write JO for the union

JO
def
= Hh ∪Hv ∪ Eh ∪ Ev .

By an O-anodyne extension we mean an element f of cell(JO), which is elementary if
f ∈ JO.
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One of Oury’s main results is the following.

Theorem 2.2.24 ([Our10, Corollary 3.11 and Theorem 4.22]). The O-anodyne extensions
are stable under taking Leibniz products with arbitrary monomorphisms.

2.3 Ara’s model structure for 2-quasi-categories
By definition, a 2-quasi-category is a fibrant object in Θ̂2 with respect to Ara’s model
structure. We review this model structure in this section.

2.3.1 Model categories
We recall the definition of a model category and related notions in this subsection.

Definition 2.3.1. Let `,r be morphisms in a category C . We say ` has the left lifting property
with respect to r , or equivalently r has the right lifting property with respect to `, if any
commutative square of the form

· ·

· ·

` r

admits a diagonal lift as indicated, making the two triangles commutative.

Definition 2.3.2. A weak factorisation system (L,R) on a category C consists of two classes
of morphisms L,R such that:

• any morphism f in C admits a factorisation of the form

·

· ·

r`

f

with ` ∈ L and r ∈ R;

• L is precisely the class of morphisms that have the left lifting property with respect to
every member of R; and

• R is precisely the class of morphisms that have the right lifting property with respect
to every member of L.

Remark. Note that the second clause in this definition implies cell(L) = L.

Definition 2.3.3. A model category M is a category with finite limits and finite colimits
equipped with a model structure, that is, three classes of morphisms C, F andW such that:

• (2-out-of-3 property) for any composable pair f ,g in M , if any two of f , g and g f are
inW then so is the third; and

• (C ∩W,F ) and (C,F ∩W) are weak factorisation systems on M .

The members of C, C ∩W, F , F ∩W andW are called cofibrations, trivial cofibrations,
fibrations, trivial fibrations and weak equivalences respectively. An object X in M is called
cofibrant if the unique map from the initial object to X is a cofibration. Dually X is fibrant if
the unique map from X to the terminal object is a fibration.
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Definition 2.3.4. Let M1, . . . ,Mn,N be model categories. An n-ary functor

F : M1 × · · · ×Mn → N

is said to be left Quillen if:

(1) for any 1 ≤ k ≤ n and for any choice of objects Xi ∈Mi for i , k, the functor

F(X1, . . . ,Xk−1,−,Xk+1, . . . ,Xn) : Mk → N

admits a right adjoint; and

(2) the Leibniz construction F̂( f1, . . . , fn) is a cofibration for any cofibrations f1, . . . , fn,
and it is moreover trivial if fk is so for some 1 ≤ k ≤ n.

Let F : M1× · · ·×Mn → N be an n-ary functor satisfying (1) above, and fix 1 ≤ k ≤ n.
Then the right adjoint functors for all possible choices of Xi ∈Mi for i , k assemble into a
single functor

Rk : M op
1 × · · · ×M op

k−1 ×M op
k+1 × · · · ×M op

n ×N →Mk .

In this situation, we write Řk for the Leibniz construction applied to

Rop
k : M1 × · · · ×Mk−1 ×Mk+1 × · · · ×Mn ×N op →M op

k

so that the codomain of Řk( f1, . . . , fk−1, fk+1, . . . , fn,g) is the limit of a cube-like-shaped
diagram in Mk .

Proposition 2.3.5. Let F and Rk be as above. Let fi be a morphism in Mi for 1 ≤ i ≤ n, and
let g be a morphism in N . Then F̂( f1, . . . , fn) has the left lifting property with respect to g

if and only if fk has the left lifting property with respect to Řk( f1, . . . , fk−1, fk+1, . . . , fn,g).

Proof. Write fi : X0
i → X1

i and g : Y0 → Y1 for the domains and codomains of these maps.
Let G : 2n+1 → Set be the functor whose object part is given by

G(ε1, . . . , εn, ε) = N
(
F(X1−ε1

1 , . . . ,X1−εn
n ),Y ε )

andwhosemorphism part is the obvious one. Denote by I the inclusion of the full subcategory
of 2n+1 spanned by all non-initial objects. Then G defines a cone over the diagram GI, so we
obtain an induced morphism

N
(
F(X1

1 , . . . ,X
1
n ),Y

0) → lim GI .

One can check that F̂( f1, . . . , fn) has the left lifting property with respect to g if and only if
this induced morphism is a surjection.

By the definition of Rk , the functor G is naturally isomorphic to G′ given by

G′(ε1, . . . , εn, ε) =Mk
(
X1−εk

k ,Rk(X
1−ε1
1 , . . . ,X1−εk−1

k−1 ,X1−εk+1
k+1 , . . . ,X1−εn

n ,Y ε )
)

One can check that fk has the left lifting propertywith respect to Řk( f1, . . . , fk−1, fk+1, . . . , fn,g)
if and only if the map

Mk
(
X1

k ,Rk(X1
1 , . . . ,X

1
k−1,X

1
k+1, . . . ,X

1
n ,Y

0) → lim G′I

induced by G′ (regarded as a cone over G′I) is a surjection. The desired equivalence now
follows. �
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2.3.2 Vertebrae and spines
Here we introduce the notions of vertebra and of spine.

Definition 2.3.6. The only vertebra of Θ2[0] is the identity map id : Θ2[0] → Θ2[0]. For
[n; q] ∈ Θ2 with n ≥ 1:

• if 1 ≤ k ≤ n and qk = 0, then

[{k − 1, k}; id] : Θ2[1; 0] → Θ2[n; q]

is a vertebra; and

• if 1 ≤ k ≤ n and qk ≥ 1, then for each 1 ≤ i ≤ qk ,

[{k − 1, k}; {i − 1, i}] : Θ2[1; 1] → Θ2[n; q]

is a vertebra.

For example, Θ2[2; 0,2] has three vertebrae{ }
,

{ }
, and

{ }
.

Definition 2.3.7. Let Ξ[n; q] ⊂ Θ2[n; q] denote the cellular subset generated by the vertebrae
of Θ2[n; q], and call it the spine of Θ2[n; q].

If [n; q] is [0], [1; 0] or [1; 1], then Θ2[n; q] has a unique vertebra and Ξ[n; q] = Θ2[n; q].
We will call these cells mono-vertebral; otherwise [n; q] is poly-vertebral.

Note that if [α; α] : [m; p] → [n; q] is inert then it restricts to a map between the spines
as in

Ξ[m; p] Θ2[m; p]

Ξ[n; q] Θ2[n; q]

⊂

[α;α]

⊂

and moreover this square is a pullback.
Observe that we left the map Ξ[m; p] → Ξ[n; q] unlabelled in the above square. In

general, we adopt the following convention.

Convention. Whenever we draw a square of the form

· ·

· ·

⊂

f
⊂

the unlabelled map is assumed to be the appropriate restriction of f . Typically the square is a
gluing square (defined in Section 2.4.1) and f is a map of the form δ : Θ2[m; p] → X where
X ⊂ Θ2[n; q], but this convention is not restricted to such situations.
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2.3.3 Ara’s model structure for 2-quasi-categories

In [Ara14], Ara defines a model structure on Θ̂n whose fibrant objects (called n-quasi-
categories) model (∞,n)-categories. Here we review Ara’s characterisation of this model
structure, but specialise to the case n = 2.

Recall that e denotes the nerve of the inclusion {♦} ↪→ {♦ � �} so that its suspension
[id; e] : Θ2[1; 0] → Θ2[1; J] is (isomorphic to) the nerve of the 2-functor{ }

↪→
{

�

}
whose codomain is locally chaotic.

Definition 2.3.8. Let JA denote the union of Eh and the closure of{
Ξ[n; q] ↪→ Θ2[n; q] : [n; q] ∈ Θ2

}
∪

{
[id; e]

}
under taking Leibniz products

(−)×̂
(
Θ2[0] q Θ2[0] ↪→ J

)
with the nerve of {♦} q {�} ↪→ {♦ � �}. We will call elements of JA elementary A-anodyne
extensions.

Theorem 2.3.9 ([Ara14, §2.10 and §5.17]). There is a model structure on Θ̂2 characterised
by the following properties:

• the cofibrations are precisely the monomorphisms; and

• a map f : X → Y into a fibrant cellular setY is a fibration if and only if it has the right
lifting property with respect to all maps in JA.

In particular, the fibrant objects, called 2-quasi-categories, are precisely those objects
with the right lifting property with respect to all elementary A-anodyne extensions.

This is the only model structure on Θ̂2 with which we are concerned in this thesis,
and hence no confusion should arise in the following when we simply refer to “(trivial)
cofibrations” without further qualification.

2.4 Proof strategy
Almost all of the proofs in this thesis use gluing in the following sense.

2.4.1 Gluing
Many of the results in this thesis are of the form

(i) the inclusion J ⊂ cell(J ′) holds for certain sets J and J ′ of maps in Θ̂2; or

(ii) a certain set J of monomorphisms (= cofibrations) in Θ̂2 is contained in the class of
trivial cofibrations.
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We prove the results of the first kind by directly expressing each map in J as a transfinite
composite of pushouts of maps in cell(J ′). For those of the second kind, we make use of
the right cancellation property, i.e. we show that f and g f are trivial cofibrations and then
deduce that the cofibration g must also be trivial. In each case, the proof reduces to checking
the existence of certain gluing squares, as defined below.

Suppose we have a pullback square

W X

Y Z

⊂

y
f

⊂

in Θ̂2 such that Z = f (X) ∪ Y , and f is injective on f −1(Z \ Y ) = X \W . Then the square is
also a pushout, and we will say Z is obtained from Y by gluing X along W . Note that if Y is
generated by a set S of cells in Z , thenW is generated by the pullbacks of Θ2[n; q] Zs

along f for all s ∈ S.



3
Inner horns for 2-quasi-categories

The set JA appearing in Ara’s characterisation of the model structure is complicated and
difficult to deal with. In this chapter, we prove that (a subset of) Oury’s anodyne extensions
JO may be used in place of JA for characterising this model structure. This alternative
characterisation will play a crucial role in Chapter 4.

3.1 O-anodyne extensions and Ara’s model structure
Here we prove that elementary A-anodyne extensions are O-anodyne extensions, and also
(elementary) O-anodyne extensions are trivial cofibrations.

3.1.1 Elementary A-anodyne extensions are O-anodyne extensions
In this subsection, we prove the following lemma.

Lemma 3.1.1. Every map in JA is an O-anodyne extension.

Proof. Since the O-anodyne extensions are closed under taking Leibniz products with arbi-
trary monomorphisms (Theorem 2.2.24), and [id; e] : Θ2[1; 0] → Θ2[1; J] is isomorphic to
the elementary O-anodyne extension Ψ1[1; 0] ↪→ Φ1[1; 0], it suffices to show that the spine
inclusions Ξ[n; q] ↪→ Θ2[n; q] (which are the remaining “generating” elements of JA) are
O-anodyne extensions. This is done in Lemma 3.1.2 below. �

Lemma3.1.2. The spine inclusionΞ[n; q] ↪→ Θ2[n; q] is in cell(Hh∪Hv) for any [n; q] ∈ Θ2.

The corresponding result for quasi-categories has been proved by Joyal [Joy, Proposition
2.13]. Our proof presented below is essentially Joyal’s proof repeated twice, first in the
vertical direction and then in the horizontal direction. In each step, we decompose the spine
inclusion Ξ[n; q] ↪→ Θ2[n; q] into three inclusions which, when [n; q] = [3; 0], look like{ }

↪→

{ }
↪→

{ }
↪→

{ }
.
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In general, the first two maps glue the outer faces along lower dimensional spine(-like)
inclusions. The remaining non-degenerate cells are precisely those containing both of the
“endpoints” (i.e. 0,qk ∈ [qk] in the vertical case and 0,n ∈ [n] in the horizontal case). We can
group such cells into pairs {x, y} so that the only difference between x and y is whether they
contain 1 (meaning 1 ∈ [qk] in the vertical case and 1 ∈ [n] in the horizontal case). Such a
pair necessarily satisfies y = x · δ1 (up to interchanging x and y), e.g.{ }

δ1

7−→

{ }
and

{ }
δ1

7−→

{ }
.

Thus the last inclusion can be obtained by gluing the x’s along Λ1.

Definition 3.1.3. If S is any set of faces of Θ2[n; q], we will write ΞS[n; q] ⊂ Θ2[n; q] for
the cellular subset generated by Ξ[n; q] and S.

Proof of Lemma 3.1.2. Recall that Ξ[n; q] ↪→ Θ2[n; q] for mono-vertebral [n; q] (i.e. for
[n; q] = [0], [1; 0] or [1; 1]) is the identity and hence trivially O-anodyne. These serve as the
base cases for our induction.

We first consider the case where n = 1. For any q ≥ 1, let Ξ†[1; q] = Ξ{δ
1;q
v }[1; q] and let

Ξ‡[1; q] = Ξ{δ
1;0
v ,δ

1;q
v }[1; q]. We prove by induction on q that each of the inclusions

Ξ[1; q] ↪→ Ξ†[1; q] ↪→ Ξ‡[1; q] ↪→ Θ2[1; q]

is in cell(Hv).
Assuming q ≥ 2, the first inclusion fits into the gluing square

Ξ[1; q − 1] Θ2[1; q − 1]

Ξ[1; q] Ξ†[1; q]

⊂

p

y
δ

1;q
v

⊂

where the upper horizontal map is in cell(Hv) by the inductive hypothesis. Similarly, the
second inclusion fits into the following gluing square:

Ξ†[1; q − 1] Θ2[1; q − 1]

Ξ†[1; q] Ξ‡[1; q]

⊂

p

y
δ1;0
v

⊂

Then a face map [id;α] : [1; p] → [1; q] corresponds to a cell in Θ2[1; q] \Ξ‡[1; q] if and
only if 0,q ∈ imα. Thus the last inclusion can be obtained by gluing the faces corresponding
to those α with 0,1,q ∈ imα along Λ1;1

v [1; p] in increasing order of p. This completes the
proof for the special case n = 1.

Now consider the general case. For any [n; q] ∈ Θ2, let Ξ′[n; q] = Ξ{δnh }[n; q] and let
Ξ′′[n; q] = Ξ{δ0

h
,δn
h
}[n; q]. We prove by induction on dim [n; q] that each of the inclusions

Ξ[n; q] ↪→ Ξ′[n; q] ↪→ Ξ′′[n; q] ↪→ Θ2[n; q]

is in cell(Hh ∪Hv).
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If n = 1 then the first two inclusions are the identity and the last inclusion was treated
above. So we may assume n ≥ 2, in which case the first inclusion fits into the gluing square

Ξ[n − 1; q′] Θ2[n − 1; q′]

Ξ[n; q] Ξ′[n; q]

⊂

p

y
δn
h

⊂

where q′ = (q1, . . . ,qn−1). The upper horizontal map is in cell(Hh ∪ Hv) by the inductive
hypothesis, and so the lower map is also in cell(Hh ∪ Hv). Similarly, the second inclusion
fits into the gluing square

Ξ′[n − 1; q′′] Θ2[n − 1; q′′]

Ξ′[n; q] Ξ′′[n; q]

⊂

p

y
δ0
h

⊂

where q′′ = (q2, . . . ,qn).
Then a face map [α; α] : [m; p] → [n; q] corresponds to a cell inΘ2[n; q]\Ξ′′[n; q] if and

only if 0,n ∈ imα. Thus the last inclusion Ξ′′[n; q] ↪→ Θ2[n; q] can be obtained by gluing
the faces corresponding to those [α; α] with 0,1,n ∈ imα along Λ1

h[m; p] in increasing order
of dim [m; p]. This completes the proof for the general case. �

3.1.2 Oury’s inner horn inclusions are trivial cofibrations
The aim of this subsection is to prove the following lemma.

Lemma 3.1.4. Every map inHh ∪Hv is a trivial cofibration.

In fact, wewill prove awider class of “generalised inner horn inclusions” is contained in the
trivial cofibrations. These horns are constructed from the spines by filling lower dimensional
horns. Then the right cancellation property applied to Ξ[n; q] ↪→ Λ[n; q] ↪→ Θ2[n; q]
implies the second factor is a trivial cofibration. This general strategy is the same as that
adopted by Joyal and Tierney to prove the corresponding result for quasi-categories [JT07,
Lemma 3.5] although the combinatorics here is much more involved.

We start by gluing the outer hyperfaces of Θ2[n; q] to Ξ[n; q] according to the following
total order ≺:

δ1;0
v ≺ δ

2;0
v ≺ · · · ≺ δ

n;0
v ≺ δ

0
h ≺ δ

n
h ≺ δ

1;q1
v ≺ δ

2;q2
v ≺ · · · ≺ δ

n;qn
v .

(Note that not all of these hyperfaces may exist. The face δ0
h (respectively δn

h) is a hyperface
only if q0 = 0 (resp. if qn = 0), and the hyperfaces δk;0

v and δk;qk
v exist only if qk ≥ 1.)

Lemma 3.1.5. The inclusion ΞS[n; q] ↪→ Θ2[n; q] is a trivial cofibration for any [n; q] ∈ Θ2
and for any set S of outer hyperfaces of Θ2[n; q] that is downward closed with respect to ≺.

Proof. We proceed by induction on |S |. Fix [n; q] ∈ Θ2 and a downward closed set S of
outer hyperfaces of Θ2[n; q]. If S is empty then ΞS[n; q] = Ξ[n; q] and so the result follows
trivially. So suppose |S | ≥ 1. Let δ : Θ2[m; p] → Θ2[n; q] be the ≺-maximum element in
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S and let S′ = S \ {δ}. Then ΞS′[n; q] ↪→ Θ2[n; q] is a trivial cofibration by the inductive
hypothesis, and hence it suffices to show ΞS′[n; q] ↪→ ΞS[n; q] is also a trivial cofibration.
Since ΞS[n; q] can be obtained by gluing Θ2[m; p] to ΞS′[n; q] along the pullback X in the
gluing square

X Θ2[m; p]

ΞS′[n; q] ΞS[n; q]

⊂

p

y
δ

⊂

this reduces to showing we have X = ΞT [m; p] for some downward closed set T of outer
hyperfaces of [m; p] with |T | < |S |. Since δ is an outer hyperface and hence inert, pulling
back Ξ[n; q] along δ yields Ξ[m; p]. To describe the remaining cells in X , we have to consider
the following cases separately.

(1) δ = δk;0
v : In this case S′ = {δ`;0v : ` < k, q` ≥ 1}. Thus X is generated by Ξ[n; p]

(where p = (q1, . . . ,qk − 1, . . . ,qn)) and the pullbacks of these faces δ`;0v ∈ S′ along
δk;0
v . For any ` < k with q` ≥ 1, the pullback of δ`;0v along δk;0

v is δ`;0v [n; p], i.e. the
square

Θ2[n; q1, . . . ,q` − 1, . . . ,qk − 1, . . . ,qn] Θ2[n; q1, . . . ,qk − 1, . . . ,qn]

Θ2[n; q1, . . . ,q` − 1, . . . ,qn] ΞS[n; q]

δ`;0
v

δk;0
v

y
δk;0
v

δ`;0
v

is a pullback. Hence X = ΞT [n; p] where

T =
{
δ`;0v [n; p] : ` < k, q` ≥ 1

}
=

{
δ`;0v [n; p] : ` < k, p` ≥ 1

}
.

(2) δ = δ0
h: In this case S′ = {δk;0

v : qk ≥ 1}. Note that since δ0
h is a hyperface, we must

have q1 = 0 and hence k , 1 for all δk;0
v ∈ S′. It then follows that the pullback of δk;0

v

along δ0
h is δk−1;0

v [n − 1; p] where p = (q2, . . . ,qn), i.e. the square

Θ2[n − 1; q2, . . . ,qk − 1, . . . ,qn] Θ2[n − 1; q2, . . . ,qn]

Θ2[n; q1, . . . ,qk − 1, . . . ,qn] ΞS[n; q]

δk−1;0
v

δ0
h

y
δ0
h

δk;0
v

is a pullback. Therefore X = ΞT [n − 1; p] and

T =
{
δk−1;0
v [n − 1; p] : qk ≥ 1

}
=

{
δk;0
v [n − 1; p] : pk ≥ 1

}
.

(The second equality holds because pk−1 = qk .)

(3) δ = δn
h: This case can be treated similarly to the previous one except we may have

δ0
h ∈ S′. If this is the case, the pullback of δ0

h along δn
h is δ0

h[n − 1; p] where p =

(q1, . . . ,qn−1), hence X = ΞT [n − 1; p] where

T =
{
δk;0
v [n − 1; p] : pk ≥ 1

}
∪

{
δ0

h[n − 1; p]
}
.
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Since p1 = q1 = 0 (where the second equality follows from our assumption that
δ0

h ∈ S′), δ0
h[n − 1; p] is indeed a hyperface of Θ2[n − 1; p].

(4a) δ = δ
k;qk
v and qk ≥ 2: The pullback of δ`;0v along δ

k;qk
v is δ`;0v [n; p] (where p =

(q1, . . . ,qk − 1, . . . ,qn)) for all `, and similarly for δ`;q`v . If q1 = 0, then we know
k , 1 and the pullback of δ0

h ∈ S′ along δk;qk
v is δ0

h[n; p]. Note in this case δ0
h[n; p]

is a hyperface of Θ2[n; p] since p1 = q1 = 0. Conversely, if p1 = 0 then we must
have q1 = 0 and so δ0

h ∈ S′. Similarly, pn = 0 if and only if qn = 0, in which case
the pullback of δn

h ∈ S′ along δk;qk
v is the hyperface δn

h[n; p]. Therefore X = ΞT [n; p]
where:

– δ`;0v [n; p] ∈ T iff p` ≥ 1;

– δ
`;q`
v [n; p] = δ`;p`v [n; p] ∈ T iff ` < k and p` ≥ 1;

– δ0
h[n; p] ∈ T iff p1 = 0; and

– δn
h[n; p] ∈ T iff pn = 0.

(4b) δ = δ1;q1
v and q1 = 1: The difference between this case and the previous one is that the

pullback of δ1;0
v along δ1;q1

v = δ1;1
v is generated by the horizontal hyperface δ0

h[n; p] of
Θ2[n; p] = Θ2[n; 0,q2, . . . ,qn] and the point [{0}]. (This is essentially the intersection
of two semicircles { }

∩

{ }
=

{ }
horizontally composed with [n − 1; q2, . . . ,qn].) Hence X = ΞT [n; p] where:

– δ`;0v [n; p] ∈ T iff p` ≥ 1;
– δ0

h[n; p] ∈ T ; and
– δn

h[n; p] ∈ T iff pn = 0.

(4c) δ = δ
n;qn
v and qn = 1: This case is similar to the previous one, and we can deduce

X = ΞT [n; p] where p = (q1, . . . ,qn−1,0) and:

– δ`;0v [n; p] ∈ T iff p` ≥ 1;

– δ
`;q`
v [n; p] = δ`;p`v [n; p] ∈ T iff ` < n and p` ≥ 1;

– δ0
h[n; p] ∈ T iff p1 = 0; and

– δn
h[n; p] ∈ T .

(4d) δ = δk;qk
v for some 2 ≤ k ≤ n − 1 and qk = 1: In this case, we have p = (q1, . . . ,qk −

1, . . . ,qn) and the pullback of δk;0
v along δk;qk

v is generated by

[{0, . . . , k − 1}; id] : Θ2[k − 1; p1, . . . , pk−1] → Θ2[n; p]

and
[{k, . . . ,n}; id] : Θ2[n − k; pk+1, . . . , pn] → Θ2[n; p].

Observe that [{0, . . . , k − 1}; id] is contained in the hyperface δn
h[n; p] if pn = 0, and in

the hyperface δn;0
v [n; p] if pn ≥ 1. Similarly, [{k, . . . ,n}; id] is contained in δ0

h[n; p] or
δ1;0
v [n; p]. Therefore X = ΞT [n; p] where:
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– δ`;0v [n; p] ∈ T iff ` , k and p` ≥ 1;
– δ

`;q`
v [n; p] = δ`;p`v [n; p] ∈ T iff ` < k and p` ≥ 1;

– δ0
h[n; p] ∈ T iff p1 = 0; and

– δn
h[n; p] ∈ T iff pn = 0.

In each of these cases, it is straightforward to check that T is a downward closed set of outer
hyperfaces of Θ2[m; p]. Moreover, since the elements of T are obtained by pulling back the
elements in S′, we have |T | ≤ |S′| < |S |. This completes the proof of Lemma 3.1.5. �

We are particularly interested in the instance of Lemma 3.1.5 where S is the set of all
outer hyperfaces of Θ2[n; q]. Note that if [n; q] is poly-vertebral (i.e. [n; q] is not [0], [1; 0]
or [1; 1]) then each vertebra of [n; q] is an outer face. Thus in this case it follows from
Proposition 2.1.10 that ΞS[n; q] is generated by the outer hyperfaces of Θ2[n; q] alone. This
is why the following definition does not mention the spine.

Definition 3.1.6. For any set S of faces ofΘ2[n; q], letΥS[n; q] ⊂ Θ2[n; q] denote the cellular
subset generated by all outer hyperfaces of Θ2[n; q] and the faces in S.

We first consider the case where S is some set of inner vertical hyperfaces.

Definition 3.1.7. A set S of inner vertical hyperfaces of Θ2[n; q] is called admissible if it is
not the set of all inner hyperfaces.

Note that if S is a non-admissible set of inner vertical hyperfaces of Θ2[n; q], then
all inner hyperfaces of Θ2[n; q] must be vertical. Therefore we must have n = 1 and
S = {δ1;k

v : 1 ≤ k ≤ q1 − 1}.

Lemma 3.1.8. The inclusion ΥS[n; q] ↪→ Θ2[n; q] is a trivial cofibration for any poly-
vertebral [n; q] ∈ Θ2 and for any admissible set S of inner vertical hyperfaces of Θ2[n; q].

Proof. Again, we proceed by induction on |S |. If S = � then the lemma follows from
Lemma 3.1.5. So we may assume |S | ≥ 1. Choose an element δk;i

v ∈ S, which then
necessarily satisfies 1 ≤ k ≤ n and 1 ≤ i ≤ qk −1. Let S′ = S \ {δk;i

v }. By a similar argument
to that presented above for Lemma 3.1.5, what we must prove reduces to showing that X in
the gluing square

X Θ2[n; p]

ΥS′[n; q] ΥS[n; q]

⊂

p

y

δk;i
v

⊂

is of the form X = ΥT [n; p] (where p = (q1, . . . ,qk − 1, . . . ,qn)) for some admissible set T of
inner vertical hyperfaces of Θ2[n; p] with |T | < |S |. Note that [n; p] must be poly-vertebral
as the only cell with an inner vertical hyperface of mono-vertebral shape is Θ2[1; 2], and for
[n; q] = [1; 2] the only admissible S is the empty set.

We first show that the square

Υ�[n; p] Θ2[n; p]

Υ�[n; q] ΥS[n; q]

⊂

δk;i
v

⊂
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is a pullback. Since qk ≥ 2 and p` = q` for ` , k, we have p1 = 0 if and only if q1 = 0.
Moreover, if p1 = q1 = 0 then the pullback of δ0

h along δ
k;i
v is δ0

h[n; p]. Similarly, pn = 0 if and
only if qn = 0, in which case the pullback of δn

h along δk;i
v is δn

h[n; p]. For the outer vertical
hyperfaces, if q` ≥ 1 and either j = 0 or j = q` then the pullback of δ`; j

v along δk;i
v is δ`; j

v [n; p]
except when (`, j) = (k,qk), in which case the pullback is δk;qk−1

v [m; p] = δk;pk
v [m; p]. Thus

the above square is indeed a pullback.
It then follows that X = ΥT [n; p] where T consists of the pullbacks of elements of S′

along δk;i
v . Similarly to the outer case considered above, the pullback of δ`; j

v ∈ S′ along δk;i
v

is δ`; j
v [n; p] except when ` = k and j > i, in which case the pullback is δk; j−1

v [n; p]. Hence
T is a set of inner vertical hyperfaces of Θ2[n; p]. Moreover pulling back along δk;i

v gives
a bijection between S′ and T and hence |T | = |S | − 1. Thus it remains to show that T is
admissible. Suppose otherwise, then as we mentioned before the statement of Lemma 3.1.8,
we must have [n; p] = [1; p1] and

|T | =
��{δ1;`

v [1; p1] : 1 ≤ ` ≤ p1 − 1}
�� = p1 − 1.

This implies |S | = |T | + 1 = p1 = q1 − 1. But then S contains all of the inner hyperfaces of
Θ2[n; q] = Θ2[1; q1], which contradicts our assumption that S is admissible. This completes
the proof of Lemma 3.1.8. �

Now we consider the inner horizontal hyperfaces of Θ2[n; q]. Recall that for each
1 ≤ k ≤ n − 1, we have a family of k-th horizontal hyperfaces δk;〈α,α′〉

h indexed by 〈α,α′〉 ∈
Shfl(qk,qk+1).

Definition 3.1.9. If S is a set of faces of Θ2[n; q], we define

ShflS(qk,qk+1)
def
=

{
〈α,α′〉 ∈ Shfl(qk,qk+1) : δk;〈α,α′〉

h ∈ S
}
.

Definition 3.1.10. A set S of inner hyperfaces of Θ2[n; q] is called admissible if:

(i) S is not the set of all inner hyperfaces of Θ2[n; q];

(ii) there is at most one 1 ≤ k ≤ n − 1 such that

� , ShflS(qk,qk+1) , Shfl(qk,qk+1)

(we will write kS for such k if it exists); and

(iii) if kS exists, thenShflS(qkS,qkS+1) is downward closedwith respect to the order described
in Section 2.1.1.

Note that Definition 3.1.10 reduces to Definition 3.1.7 if S contains no horizontal hyper-
faces.
Remark. The role of Definition 3.1.10(iii) is to ensure that the intersections (meaning pull-
backs) of the hyperfaces in S are well-behaved so that we do not have to worry about faces of
Θ2[n; q] of codimension larger than 2. For example, consider the case [n; q] = [2; 2,1]. There
are three inner horizontal hyperfaces in this case, corresponding to the three (2,1)-shuffles
〈α,α′〉 < 〈β, β′〉 < 〈γ, γ′〉; graphically, the shuffles

< <
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correspond to the hyperfaces{ }
,

{ }
,

{ }
respectively. The intersection of δ1;〈α,α′〉

h and δ1;〈γ,γ′〉
h is then the face{ }

of codimension 3, which is “too small”. If S is an admissible set containing δ1;〈α,α′〉
h and

δ
1;〈γ,γ′〉
h , then (iii) implies that S also contains δ1;〈β,β′〉

h . Since this “too small” face is contained
in the intersection of δ1;〈α,α′〉

h (or δ1;〈γ,γ′〉
h ) and δ1;〈β,β′〉

h , we may essentially disregard it.
There are two obviously downward closed subsets of Shfl(qk,qk+1), namely � and

Shfl(qk,qk+1). Definition 3.1.10(ii) asks that we always have one of these two subsets for any
value of k, with a possible exception of k = kS. This simplifies the proof and in particular
the descriptions of the sets T1 and T ′1 defined below, but it is not essential. Indeed, it seems
possible to prove a variant of Lemma 3.1.11 where (ii) is removed from Definition 3.1.10 and
(iii) is replaced by:
(iii’) ShflS(qk,qk+1) is downward closed for all 1 ≤ k ≤ n − 1.
Although this modification makes Lemma 3.1.11 slightly more general, we see no use in this
extra generality.
Lemma 3.1.11. The inclusion ΥS[n; q] ↪→ Θ2[n; q] is a trivial cofibration for any poly-
vertebral [n; q] ∈ Θ2 and for any admissible set S of inner hyperfaces of Θ2[n; q].
Proof. Let Sh ⊂ S denote the set of horizontal hyperfaces in S. We proceed by induction on
dim [n; q] and |Sh |. If Sh = � then the result follows from Lemma 3.1.8, so we may assume
|Sh | ≥ 1. Choose 1 ≤ k ≤ n − 1 so that S contains a k-th horizontal hyperface, where
we take k = kS if the latter exists. Let 〈α,α′〉 ∈ ShflS(qk,qk+1) be a maximal one. Then
S′ = S \

{
δ

k;〈α,α′〉
h

}
is admissible, and so once again it suffices to prove that X in the gluing

square
X Θ2[n − 1; p]

ΥS′[n; q] ΥS[n; q]

⊂

p

y

δ
k;〈α,α′〉
h

⊂

(where p = (q1, . . . ,qk−1,qk + qk+1,qk+2, . . . ,qn)) is of the form X = ΥT [n − 1; p] for some
admissible T . By a similar argument to that presented in the proof of Lemma 3.1.8, [n−1; p]
must be poly-vertebral.

Claim 0. LetY ⊂ Θ2[n−1; p] be the cellular subset defined by the following pullback square:

Y Θ2[n − 1; p]

Υ�[n; q] ΥS[n; q]

y

⊂

δ
k;〈α,α′〉
h

⊂

Then Y is generated by the outer hyperfaces of Θ2[n − 1; p], i.e. Y = Υ�[n − 1; p].
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Proof. We first show the containment Y ⊂ Υ�[n − 1; p]. If q1 = 0, then the pullback of the
hyperface δ0

h along δ
k;〈α,α′〉
h is δ0

h[n−1; p]. Since δ0
h[n−1; p] is an outer face ofΘ2[n−1; p] (of

codimension q2 + 1 if k = 1 and of codimension 1 otherwise), it is contained in Υ�[n − 1; p]
by Proposition 2.1.10. The hyperface δn

h (if it exists) can be treated dually.
Next we consider the vertical hyperfaces of Θ2[n; q]. Fix 1 ≤ ` ≤ n with q` ≥ 1. Then

the pullback of δ`;0v along δk;〈α,α′〉
h is:

• δ`;0v [n − 1; p] if ` < k;

• δ`−1;0
v [n − 1; p] if ` > k + 1; and

• contained in δk;0
v [n − 1; p] if ` = k or ` = k + 1.

The hyperfaces δ`;q`v can be treated dually. This proves Y ⊂ Υ�[n − 1; p].
For the other containment Υ�[n − 1; p] ⊂ Y , we must show that any outer hyperface of

Θ2[n−1; p] can be obtained by pulling back some outer hyperface ofΘ2[n; q] along δk;〈α,α′〉
h .

If p1 = 0, then q1 = 0 (because p1 = q1 if k , 1 and p1 = q1 + q2 if k = 1) and the hyperface
δ0

h[n − 1; p] is precisely the pullback of δ0
h along δk;〈α,α′〉

h . The other horizontal hyperface
δn−1

h [n − 1; p] (if it exists) can be treated dually.
Now we consider the vertical hyperfaces of Θ2[n − 1; p]. Fix 1 ≤ ` ≤ m = n − 1 with

p` ≥ 1. Then the hyperface δ`;0v [n − 1; p] is the pullback (along δk;〈α,α′〉
v ) of:

• δ`;0v if ` < k;

• δ`+1;0
v if ` > k;

• δk;0
v if ` = k and α(1) = 1; and

• δk+1;0
v if ` = k and α′(1) = 1.

Note that if δk;0
v [n − 1; p] exists then pk ≥ 1 so α(1) ∈ [qk] and α′(1) ∈ [qk+1] are well-

defined. Moreover, 〈α,α′〉 ∈ Shfl(qk,qk+1) implies that we must have either α(1) = 1 or
α′(1) = 1. Thus the above list indeed covers all possible cases.

The remaining hyperfaces δ`;p`v [n − 1; p] can be treated dually, and this completes the
proof of Claim 0. �

It now follows from the following claims that X = ΥT [n − 1; p] holds for

T = T1 ∪ T ′1 ∪ T2 ∪ T3 ∪ T ′3 ∪ T4 ∪ T ′4
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where

T1 =
{
δ
`;〈γ,γ′〉
h [n − 1; p] : 1 ≤ ` ≤ k − 1, ShflS(q`,q`+1) = Shfl(q`,q`+1),

〈γ, γ′〉 ∈ Shfl(p`, p`+1)
}
,

T ′1 =
{
δ
`−1;〈γ,γ′〉
h [n − 1; p] : k + 1 ≤ ` ≤ n − 1, ShflS(q`,q`+1) = Shfl(q`,q`+1),

〈γ, γ′〉 ∈ Shfl(p`−1, p`)
}
,

T2 =
{
δ

k; j
v [n − 1; p] : j ∈y〈α,α′〉

}
,

T3 =
{
δ
`; j
v [n − 1; p] : 1 ≤ ` < k, δ`; j

v ∈ S′
}
,

T ′3 =
{
δ
`−1; j
v [n − 1; p] : k + 1 < ` ≤ n, δ`; j

v ∈ S′
}
,

T4 =
{
δ

k; j
v [n − 1; p] : (∃i ∈ [qk])

[
δk;i
v ∈ S′, α−1(i) = { j}

]}
,and

T ′4 =
{
δ

k; j
v [n − 1; p] : (∃i ∈ [qk+1])

[
δk+1;i
v ∈ S′, (α′)−1(i) = { j}

]}
.

(See Definition 2.1.2 for the definition of y〈α,α′〉.) For each 1 ≤ m ≤ 4, Claim m below
relates the elements in Tm (and T ′m) to appropriate inner hyperfaces in S′.

Claim 1. Fix 1 ≤ ` ≤ k − 1. Then:

(i) for any 〈β, β′〉 ∈ Shfl(q`,q`+1), each cell in the pullback of δ`;〈β,β
′〉

h along δk;〈α,α′〉
h is

contained in some δ`;〈γ,γ
′〉

h [n − 1; p] ; and

(ii) for any 〈γ, γ′〉 ∈ Shfl(p`, p`+1), the hyperface δ`;〈γ,γ
′〉

h [n − 1; p] is contained in the
pullback of some δ`;〈β,β

′〉

h along δk;〈α,α′〉
h .

The dual version of this claim relates, for k + 1 ≤ ` ≤ n, the `-th horizontal hyperfaces
of Θ2[n; q] to the (` − 1)-th horizontal hyperfaces of Θ2[n − 1; p].

Proof. If 1 ≤ ` < k − 1 (note the strict inequality) then both (i) and (ii) are straightforward
since

Shfl(p`, p`+1) = Shfl(q`,q`+1)

and the pullback of δ`;〈β,β
′〉

h along δk;〈α,α′〉
h is precisely δ`;〈β,β

′〉

h [n − 1; p] for any 〈β, β′〉 ∈
Shfl(q`,q`+1).

Now we prove (i) for the case ` = k − 1. Let 〈β, β′〉 ∈ Shfl(qk−1,qk) and suppose we are
given a commutative square

[u; r] [n − 1; p]

[n − 1; q1, . . . ,qk−1 + qk, . . . ,qn] [n; q]

[ζ ;ζ ]

[ξ;ξ] δ
k;〈α,α′〉
h

δ
k−1;〈β,β′〉
h

in Θ2. Then the square
[u] [n − 1]

[n − 1] [n]

ζ

ξ δk

δk−1
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in ∆ commutes so k−1 < im(ζ). We will assume there is some 1 ≤ v ≤ u such that ζ(v−1) ≤
k −2 and ζ(v) ≥ k. (Otherwise either ζ(v) ≤ k −2 for all v or ζ(v) ≥ k for all v, and in either
case [ζ ; ζ ] obviously factors through δk−1;〈γ,γ′〉

h [n − 1; p] for any 〈γ, γ′〉 ∈ Shfl(pk−1, pk).)
Since the (pk−1, pk)-shuffles are the maximal non-degenerate simplices in ∆[pk−1] × ∆[pk],
the map 〈ζk−1, ζk〉 admits a factorisation

∆[rv] ∆[pk + pk+1] ∆[pk−1] × ∆[pk]
φ 〈γ,γ′〉

such that 〈γ, γ′〉 is a (pk−1, pk)-shuffle. Then [ζ ; ζ ] clearly factors through the hyperface
δ

k−1;〈γ,γ′〉
h [n − 1; p]. This proves the first part of the claim for ` = k − 1.
For (ii), let 〈γ, γ′〉 ∈ Shfl(pk−1, pk). Since the (qk−1,qk)-shuffles are the maximal non-

degenerate simplices in ∆[qk−1] × ∆[qk], the composite

∆[pk−1 + pk] ∆[pk−1] × ∆[pk] = ∆[qk−1] × ∆[qk + qk+1] ∆[qk−1] × ∆[qk]
〈γ,γ′〉 id×α

admits a factorisation

∆[pk−1 + pk] = ∆[qk−1 + qk + qk+1] ∆[qk−1 + qk] ∆[qk−1] × ∆[qk]
ζ 〈β,β′〉

such that 〈β, β′〉 is a (qk−1,qk)-shuffle. Then δk−1;〈γ,γ′〉
h [n − 1; p] is contained in the pullback

of δk−1;〈β,β′〉
h along δk;〈α,α′〉

h since the square

[n − 2; q1, . . . ,qk−1 + qk + qk+1, . . . ,qn]

[n − 1; q1, . . . ,qk−1 + qk, . . . ,qn]

[n − 1; q1, . . . ,qk + qk+1, . . . ,qn]

[n; q]

δ
k−1;〈γ,γ′〉
h

δ
k−1;〈ζ,α′γ′〉
h

δ
k−1;〈β,β′〉
h

δ
k;〈α,α′〉
h

commutes. This completes the proof of Claim 1. �

Claim 2.

(i) For any 〈β, β′〉 ∈ Shfl(qk,qk+1) with 〈β, β′〉 � 〈α,α′〉, the pullback of δk;〈β,β′〉
h along

δ
k;〈α,α′〉
h is contained in δk; j

v [n − 1; p] for some j ∈y〈α,α′〉.

(ii) For any j ∈y〈α,α′〉, the hyperface δk; j
v [n−1; p] is the pullback of δk;〈β,β′〉

h along δk;〈α,α′〉
h

for some 〈β, β′〉 ∈ Shfl(qk,qk+1) with 〈β, β′〉 < 〈α,α′〉.

Proof. For (i), suppose 〈β, β′〉 is a (qk,qk+1)-shuffle with 〈β, β′〉 � 〈α,α′〉. Then by Proposi-
tion 2.1.3, we can choose j ∈y〈α,α′〉 such that (α( j), α′( j)) , (β( j), β′( j)). The pullback of
δ

k;〈β,β′〉
h along δk;〈α,α′〉

h is contained in δk; j
v [n − 1; p].

To prove (ii), suppose j ∈y〈α,α′〉. Then the hyperface δk; j
v [n − 1; p] is the pullback

of δk;〈β,β′〉
h along δ

k;〈α,α′〉
h where 〈β, β′〉 is the (qk,qk+1)-shuffle corresponding to j under

Proposition 2.1.4. Note that 〈β, β′〉 is an immediate predecessor of 〈α,α′〉 and so in particular
〈β, β′〉 < 〈α,α′〉. �
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Claim 3. For any 1 ≤ ` < k (respectively k + 1 < ` ≤ n) and 1 ≤ i ≤ q` − 1, the pullback of
δ`;iv along δk;〈α,α′〉

h is δ`;iv [n − 1; p] (resp. δ`−1;i
v [n − 1; p]).

Proof. This is straightforward to check. �

Claim 4. Fix 1 ≤ i ≤ qk − 1 (respectively 1 ≤ i ≤ qk+1 − 1). Then the pullback of δk;i
v

(resp. δk+1;i
v ) along δk;〈α,α′〉

h is:

• precisely δk; j
v [n− 1; p] if α−1(i) = { j} (resp. (α′)−1(i) = { j}) for some 1 ≤ j ≤ pk − 1;

and

• contained in δk; j
v [n − 1; p] for some j ∈y〈α,α′〉 otherwise.

Proof. Wewill only consider the hyperfaces δk;i
v as δk+1;i

v can be treated dually. The first case
is straightforward to check. In the second case, let j = min(α−1(i)). Then clearly the pullback
of δk;i

v along δk;〈α,α′〉
h is contained in δk; j

v [n− 1; p], and so it remains to show that j ∈y〈α,α′〉.
Note that 1 ≤ i ≤ qk − 1 and α( j) = i imply 1 ≤ j ≤ pk − 1. Moreover, α( j − 1) = α( j) − 1
by our choice of j, and α( j + 1) = i = α( j) since |α−1(i)| ≥ 2. Therefore j ∈y〈α,α′〉. �

Now we go back to the proof of Lemma 3.1.11. We can deduce from Claims 1 to 4 that
X = ΥT [n − 1; p]. It thus remains to prove that T is an admissible set of inner hyperfaces of
Θ2[n − 1; p]. It is clear from our definitions of T1 and T ′1 that, for any 1 ≤ ` ≤ n − 2, either
ShflT (p`, p`+1) = � or ShflT (p`, p`+1) = Shfl(p`, p`+1). Thus T satisfies Definition 3.1.10(ii)
and (iii). To proveT also satisfies (i), we will assume otherwise (i.e.T contains all of the inner
hyperfaces of Θ2[n − 1; p]) and deduce then S does not satisfy (i), which is a contradiction.

For any 1 ≤ ` ≤ k − 1, we have ShflT (p`, p`+1) = Shfl(p`, p`+1) and so our definition of
T1 implies ShflS(q`,q`+1) = Shfl(q`,q`+1). Dually, we have ShflS(q`,q`+1) = Shfl(q`,q`+1)
for all k + 1 ≤ ` ≤ n. Thus S contains all of the `-th horizontal hyperfaces of Θ2[n; q] for all
1 ≤ ` ≤ n − 1 with ` , k.

Next we consider the k-th horizontal hyperfaces of Θ2[n; q]. Note that since S is admis-
sible, S contains all of the k-th horizontal hyperfaces if and only if 〈α,α′〉 is the maximum
(qk,qk+1)-shuffle. We will prove this latter statement. For any 1 ≤ j ≤ pk − 1, T contains
δ

k; j
v [n − 1; p] and so our definitions of T2, T4 and T ′4 imply that one of the following must
hold:

• j ∈y〈α,α′〉;

• α( j′) , α( j) for all j′ ∈ [pk] with j′ , j; or

• α′( j′) , α′( j) for all j′ ∈ [pk] with j′ , j.

Therefore p〈α,α′〉 = �, or equivalently, 〈α,α′〉 is the maximum (qk,qk+1)-shuffle (by Propo-
sition 2.1.4).

Lastly, we consider the inner vertical hyperfaces of Θ2[n; q]. For any 1 ≤ ` < k and
for any 1 ≤ i ≤ q` − 1, T contains δ`; j

v [n − 1; p] and so our definition of T3 implies that
δ
`; j
v ∈ S. Dually, δ`; j

v ∈ S for all k + 1 < ` ≤ n and for all 1 ≤ j ≤ q` − 1. Note that
〈α,α′〉 ∈ Shfl(qk,qk+1) is the maximum one and so we have

α = {0,1, . . . ,qk,qk, . . . ,qk︸     ︷︷     ︸
qk+1 times

},

α′ = {0, . . . ,0︸  ︷︷  ︸
qk times

,0,1, . . . ,qk+1}.
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Thus for each 1 ≤ i ≤ qk − 1, δk;i
v [n − 1; p] ∈ T and our definition of T4 imply that δk;i

v ∈ S.
Similarly, for each 1 ≤ i ≤ qk+1−1, δk;qk+i

v ∈ T and our definition of T ′4 imply that δk+1;i
v ∈ S.

This completes the proof of Lemma 3.1.11. �

Proof of Lemma 3.1.4. The desired result follows from Lemma 3.1.11 since setting

S =
{
all inner hyperfaces of Θ2[n; q] except for δk;i

v

}
yields ΥS[n; q] = Λk;i

v [n; q] by Proposition 2.2.20 and setting

S = {all inner hyperfaces of Θ2[n; q] except for the k-th horizontal ones}

yields ΥS[n; q] = Λk
h[n; q] by Proposition 2.2.18 for the appropriate ranges of k and i. �

3.1.3 Vertical equivalence extensions are trivial cofibrations
We will prove the following lemma in this subsection.

Lemma 3.1.12. Every map in Ev is a trivial cofibration.

Recall that for any [n; q] ∈ Θ2 and 1 ≤ k ≤ n with qk = 0, the map Ψk[n; q] ↪→ Φk[n; q]
is by definition the Leibniz box product

�̂n

©­­­­«
∂∆[n]

∆[n]

;
∂∆[q1]

∆[q1]

, . . . ,

∂∆[qk−1]

∆[qk−1]

,

∆[0]

J

e ,

∂∆[qk+1]

∆[qk+1]

, . . . ,

∂∆[qn]

∆[qn]

ª®®®®¬
where e is the nerve of the inclusion {♦} ↪→ {♦ � �}. Hence one of the legs in the defining
colimit cone for Ψk[n; q] is the (monic) map

Θ2[n; q] � �n(∆[n];∆[q1], . . . ,∆[qk−1],∆[0],∆[qk+1], . . . ,∆[qn]) → Ψ
k[n; q].

In this subsection, we regard Θ2[n; q] as a cellular subset of Ψk[n; q] via this map.

Proof. We will prove Lemma 3.1.12 by induction on dim [n; q]. Note that the base case
is trivial since Ψ1[1; 0] ↪→ Φ1[1; 0] is isomorphic to the elementary A-anodyne extension
[id; e] : Θ2[1; 0] ↪→ Θ2[1; J]; indeed, both of these maps are isomorphic to the nerve of the
2-functor that looks like: { }

↪→
{

�

}
.

For the inductive step, it suffices to show that both Θ2[n; q] ↪→ Ψk[n; q] and Θ2[n; q] ↪→
Φk[n; q] are trivial cofibrations. These facts follow from Lemmas 3.1.13 to 3.1.17 which
concern intermediate cellular subsets

Θ2[n; q] ⊂ X0 ⊂ X1 ⊂ X2 ⊂ X3 ⊂ Ψ
k[n; q].

�
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We will illustrate our argument below by providing pictures for the special case where
[n; q] = [3; 1,0,0] and k = 2. In this case Φk[n; q] and Θ2[n; q] look like:

Φ
2[3; 1,0,0] =

 �

♦

�

 , Θ2[3; 1,0,0] =
{

�

}
.

Fix [n; q] ∈ Θ2 and 1 ≤ k ≤ n such that n ≥ 2 and qk = 0. Note that an (m; p)-cell in
Φk[n; q] consists of α : [m] → [n] in ∆ and αk ′ : ∆[p`] → Vk ′ for α(`−1) < k′ ≤ α(`)where

(V1, . . . ,Vn) =
(
∆[q1], . . . ,∆[qk−1], J,∆[qk+1], . . . ,∆[qn]

)
.

Such [α; α] factors through:

(∗) Θ2[n; q] unless there exists 1 ≤ ` ≤ m such that α(` − 1) < k ≤ α(`) and � ∈ imαk ;
and

(∗∗) Ψk[n; q] unless α and all α` are surjective for ` , k and � ∈ imαk .

We may assume k ≤ n− 1 since the dual argument covers the case k ≥ 2 and our assumption
n ≥ 2 implies that at least one of k ≤ n − 1 and k ≥ 2 must hold.

First, glue Θ2[1; J] to Θ2[n; q] as in the square

Θ2[1; 0] Θ2[1; J]

Θ2[n; q] X0

Ψk[n; q]

[{k−1,k};id]

[id;e]

p

y

[{k−1,k};id]

⊂

to obtain X0 ⊂ Ψ
k[n; q]. In our example, the image of [{1,2}; id] looks like: �

♦

�


The following lemma records our construction of X0.

Lemma 3.1.13. The inclusion Θ2[n; q] ↪→ X0 is a pushout of [id; e] : Θ2[1; 0] ↪→ Θ2[1; J].

Let X1 ⊂ Φ
k[n; q] be the cellular subset generated by X0 and those (m; p)-cells [α; α]

satisfying α(m) = k. Since we are assuming k ≤ n − 1, this condition α(m) = k implies
X1 ⊂ Ψ

k[n; q]. Note that a non-degenerate (m; p)-cell [α; α] in Φk[n; q] is contained in
X1 \ X0 if and only if it satisfies:

(1a) α(0) < k − 1;

(1b) α(m) = k; and

(1c) � ∈ imαk .
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Observe that for any such [α; α], either it additionally satisfies

(1d) α(m − 1) = k − 1

or there is a unique (m′; p′)-cell [β; β] in X1 \ X0 satisfying (1a-d) such that [α; α] is an
(m′ − 1)-th horizontal face of [β; β] (not necessarily of codimension 1). e.g.{

�

}
,

{ }
and

{ }
are 1st horizontal faces of{

�

}
,

{ }
and

{ }
respectively.

Lemma 3.1.14. The inclusion X0 ↪→ X1 is in cell(Hh).

Proof. The discussion above shows that the set of non-degenerate cells in X1 \ X0 can be
partitioned into subsets of the form{

[α; α] and all of its (m − 1)-th horizontal faces
}

where [α; α] is an (m; p)-cell satisfying (1a-d). We prove that X1 may be obtained from X0
by gluing such [α; α] along the horizontal horn Λm−1

h [m; p] in increasing order of dim [m; p].
Note that this horn is inner by (1a) and (1d).

Fix a non-degenerate (m; p)-cell [α; α] satisfying (1a-d). We must show that any cell in
the image of the composite

Λm−1
h [m; p] Θ2[m; p] Φk[n; q][α;α]

is contained either in X0 or in some cell that satisfies (1a-d) and has dimension strictly smaller
than dim [m; p]. It suffices to check this for the generating faces of Λm−1

h [m; p] described in
Proposition 2.2.18:

• [α; α] · δ0
h:

– is contained in X0 if α(1) = k − 1; and
– satisfies (1a-d) otherwise;

• [α; α] · δm
h is contained in Θ2[n; q];

• [α; α] · δ`;〈γ,γ
′〉

h satisfies (1a-d) for any ` ≤ m − 2 and for any 〈γ, γ′〉;

• [α; α] · δ`; j
v satisfies (1a-d) for any ` , m and for any j ∈ [p`]; and

• [α; α] · δm; j
v is:

– contained in Θ2[n; q] if α−1
k (�) = { j}; and

– a (possibly trivial) degeneracy of some cell that satisfies (1a-d) otherwise.
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(By the trivial degeneracy of a cell, we mean the cell itself. Also, the codomain of any δ
appearing in the form [α; α] · δ in this proof is assumed to be [m; p] so that [α; α] · δ is
well-defined.) This completes the proof. �

Next, let X2 ⊂ Φ
k[n; q] be the cellular subset generated by X1 and those cells [α; α] such

that δk : [n − 1] → [n] does not factor through α. Then clearly X2 ⊂ Ψ
k[n; q]. Note that a

non-degenerate (m; p)-cell [α; α] in Φk[n; q] is contained in X2 \ X1 if and only if it satisfies:

(2a) α(0) ≤ k − 1;

(2b) α(m) > k;

(2c) δk , α , id; and

(2d) � ∈ imαk .

Observe that for any such [α; α], either it additionally satisfies

(2e) there exists 1 ≤ `α ≤ m − 1 such that α(`α) = k

or there is a unique (m′; p′)-cell [β; β] in X2 \ X1 satisfying (2a-e) such that [α; α] is an `β-th
horizontal face of [β; β]. e.g.{ }

,
{

�

}
, and

{ }
are 1st horizontal faces of{ }

,
{

�

}
, and

{ }
respectively.

Lemma 3.1.15. The inclusion X1 ↪→ X2 is in cell(Hh).

Proof. The discussion above shows that the set of non-degenerate cells in X2 \ X1 can be
partitioned into subsets of the form{

[α; α] and all of its `α-th horizontal faces
}

where [α; α] is an (m; p)-cell satisfying (2a-e). We prove that X2 may be obtained from X1
by gluing such [α; α] along the horizontal horn Λ`αh [m; p] in increasing order of dim [m; p].
Note that this horn is inner by (2e).

Fix a non-degenerate (m; p)-cell [α; α] satisfying (2a-e). Similarly to the proof of
Lemma 3.1.14, we must check that the following faces of [α; α] are contained either in
X1 or in some cell that satisfies (2a-e) and has dimension strictly smaller than dim [m; p]:

• [α; α] · δ0
h:

– is contained in Θ2[n; q] if α(1) = k; and
– satisfies (2a-e) otherwise;

• [α; α] · δm
h :

– is contained in X1 if α(m − 1) = k; and
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– satisfies (2a-e) otherwise;

• [α; α] · δ`;〈γ,γ
′〉

h satisfies (2a-e) for any ` , `α and for any 〈γ, γ′〉;

• [α; α] · δ`; j
v satisfies (2a-e) for any ` , `α and for any j ∈ [p`]; and

• [α; α] · δ`α; j
v , for any j ∈ [p`], is:

– contained in Θ2[n; q] if α−1
k (�) = { j}; and

– a (possibly trivial) degeneracy of some cell that satisfies (2a-e) otherwise.

This completes the proof. �

Now let X3 ⊂ Φ
k[n; q] be the cellular subset generated by X2 and those cells [α; α]

such that α` is not surjective for some ` , k. Then clearly X3 ⊂ Ψ
k[n; q]. Note that a

non-degenerate (m; p)-cell [α; α] in Φk[n; q] is contained in X3 \ X2 if and only if it satisfies:

(3a) α = δk or α = id;

(3b) � ∈ imαk ; and

(3c) there exists 1 ≤ ` ≤ n such that ` , k and α` is not surjective.

Observe that if [δk ; α] satisfies (3b) and (3c), then there is a unique cell [id; β] satisfying (3b)
and (3c) such that [δk ; α] is a k-th horizontal face of [id; β]. e.g.{

�

}
and

{ }
are 2nd horizontal faces of{

�

}
and

{ }
respectively.

Lemma 3.1.16. The inclusion X2 ↪→ X3 is in cell(Hh).

Proof. The discussion above shows that the set of non-degenerate cells in X3 \ X2 can be
partitioned into subsets of the form{

[id; α] and all of its k-th horizontal faces
}

where [id; α] is an (n; p)-cell satisfying (3b) and (3c). We prove that X3 may be obtained
from X2 by gluing such [id; α] along the horizontal horn Λk

h[n; p] in increasing order of
dim [n; p]. Note that this horn is inner since we are assuming 1 ≤ k ≤ n − 1.

Fix a non-degenerate (n; p)-cell [id; α] satisfying (3b) and (3c). We must check that the
following faces of [id; α] are contained either in X2 or some [id; β] that satisfies (3b) and (3c)
and has dimension strictly smaller than dim [n; p]:

• [id; α] · δ0
h is contained in X2;

• [id; α] · δn
h is contained in X2;

• [id; α] · δ`;〈γ,γ
′〉

h is contained in X2 for any ` , k and for any 〈γ, γ′〉;
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• [id; α] · δ`; j
v satisfies (3a-c) for any ` , k and for any j ∈ [p`]; and

• [id; α] · δk; j
v is:

– contained in Θ2[n; q] if α−1
k (�) = { j}; and

– a (possibly trivial) degeneracy of some cell that satisfies (3a-c) otherwise.

This completes the proof. �

Observe that the non-degenerate cells in Ψk[n; q] \ X3 are precisely those

[δk ; α] : Θ2[n − 1; p] → Φk[n; q]

such that:

(4a) α` = id for k , ` , k + 1;

(4b) αk+1 is surjective;

(4c) � ∈ imαk ; and

(4d) 〈αk, αk+1〉 : ∆[pk] → J × ∆[qk+1] is non-degenerate.

For our example Ψ2[3; 1,0,0], these faces include{
�

}
and

{ }
.

In fact, there is a map
Φ

2[2; 1,0] → Φ3[2; 1,0,0]

which looks like {

�

}
and Ψ2[3; 1,0,0] \ X3 is precisely the image of Φ2[2; 1,0] \ Ψ2[2; 1,0] under this map.

The above observation can be generalised to include all cases where qk+1 = 0. However
it does not hold if qk+1 ≥ 1, e.g. [n; q] = [2; 0,2] (with k = 1) in which case Φk[n; q] looks
like

Φ
1[2; 0,2] =

 �

♦

�

 .
In this case, given a non-degenerate cell [δk ; α] satisfying (4a-d), let iα = αk+1

(
min

(
α−1

k (�)
) )

and

jα =


min
(
α−1

k+1(iα)
)

if iα ≥ 1,

max
(
α−1

k+1(0)
)

if iα = 0.

Then the cell [δk ; α] either satisfies

(4e) αk( jα) = ♦
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or there is a unique (n − 1; p′)-cell [δk ; β] in Ψk[n; q] \ X3 satisfying (4a-e) such that [δk ; α]
is the (k; jβ)-th vertical hyperface of [δk ; β]. e.g.{

�

}
,

{ }
, and

{ }
have iα = 0,1, and 2 respectively, and they are moreover the appropriate vertical hyperfaces
of { }

,

{ }
, and

{ }
respectively.

The motivation behind the definitions of iα and jα is as follows. Ideally, we would like
to simply say “the first 1-cell involving � is preceded by an otherwise identical 1-cell that
involves ♦” in (4e) and use this extra ♦ to identify the interior/face pairs for the inner horns
to be filled. However, this horn is outer if (and only if) iα = 0. Thus we define jα differently

in this case so that (4e) says “the last 1-cell of the form

{

�

}
is followed by one of

the form

{

�

}
” instead.

Lemma 3.1.17. The inclusion X3 ↪→ Φ
k[n; q] is in cell(Hh). The inclusion X3 ↪→ Ψ

k[n; q]
is:

• a pushout ofΨ`[n−1; p] ↪→ Φ`[n−1; p] for some [n−1; p] ∈ Θ2 with dim[n−1; p] <
dim [n; q] if qk+1 = 0; and

• in cell(Hv) if qk+1 ≥ 1.

Proof. For the inclusion X3 ↪→ Φ
k[n; q], we can simply continue gluing the remaining cells

[id; α] : Θ2[n; p] → Φk[n; q] satisfying (3b) (but not (3c)) alongΛk
h[n; p] in increasing order

of dim [n; p].
Consider the inclusion X3 ↪→ Ψ

k[n; q]. For the case qk+1 = 0, recall that the functor
∆̂ o ∆̂ → ∆̂ is a (split) cartesian fibration. Thus there is a cartesian lift of the map δk :
∆[n − 1] → ∆[n] at the object(

∆[q1], . . . ,∆[qk−1], J,∆[qk+1], . . . ,∆[qn]
)
∈ ∆̂n '

(
∆̂ o ∆̂

)
∆[n].

Applying the box product functor � to this lift yields a map

[δk ; id, . . . , !, . . . , id] : Φk[n − 1; p] → Φk[n; q]

where p = (q1, . . . ,qk−1,0,qk+2, . . . ,qn). This map factors through Ψk[n; q] because its
image is generated by the cells of the form [δk ; α]. Moreover, one can check by comparing
(4a-d) and (∗∗) (the latter of which appeared in the second paragraph after the proof of
Lemma 3.1.12) that this map fits into the following gluing square:

Ψk[n − 1; p] Φk[n − 1; p]

X3 Ψk[n; q]

⊂

p

y
[δk ;id,...,!,...,id]

⊂



50 Inner horns for 2-quasi-categories

This completes the proof for the first case.
Next consider the case qk+1 ≥ 2. The discussion before Lemma 3.1.17 shows that the set

of non-degenerate cells in Ψk[n; q] \ X3 can be partitioned into subsets of the form{
[δk ; α], [δk ; α] · δk; jα

v

}
where [δk ; α] is an (n − 1; p)-cell satisfying (4a-e). We prove that Ψk[n; q] may be obtained
from X3 by gluing such [δkα] along the vertical horn Λk; jα

v [n − 1; p] in lexicographically
increasing order of dim[n − 1; p] and |α−1

k (�)|. Note that this horn is inner by the definition
of jα.

Fix a non-degenerate (n − 1; p)-cell [δk ; α] satisfying (4a-e). We must check that the
appropriate faces of [δk ; α] are contained either in X3 or in some (n − 1; p′)-cell [δk ; β]
satisfying (4a-e) such that:

• dim[n − 1; p′] < dim[n − 1; p]; or

• dim[n − 1; p′] ≤ dim[n − 1; p] and |β−1
k (�)| < |α

−1
k (�)|.

If iα ≥ 1:

• any horizontal hyperface of [δk ; α] is contained in X2;

• [δk ; α] · δ`; j
v is contained in X3 for any ` , k and for any j ∈ [p`];

• [δk ; α] · δk; j
v , where jα , j , jα + 1, is:

– contained in X3 if αk+1 · δ
j is not surjective; and

– a (possibly trivial) degeneracy of some cell that satisfies (4a-e) otherwise; and

• [δk ; α] · δk; jα+1
v is:

– contained in Θ2[n; q] if αk( j) = ♦ for all j , jα + 1; and

– a (possibly trivial) degeneracy of some (n− 1; p′)-cell [δk ; β] that satisfies (4a-d)
otherwise.

Note in the last clause, the cell [δk ; β] may not satisfy (4e). However, at least we know
dim[n− 1; p′] < dim[n− 1; p] and |β−1

k (�)| < |α
−1
k (�)|. Hence if [δ

k ;γ] is an (n− 1; p′′)-cell
satisfying (4a-e) such that [δk ; β] = [δk ;γ] · δk; jγ

v then

dim[n − 1; p′′] = dim[n − 1; p′] + 1 ≤ dim[n − 1; p]

and
|γ−1

k (�)| = |β
−1
k (�)| < |α

−1
k (�)|.

A similar analysis can be done for the case iα = 0 too, and this completes the proof. �



3.2 Alternative horizontal horns 51

3.2 Alternative horizontal horns
We now consider a slightly different set of horn inclusions.

Definition 3.2.1. Given [n; q] ∈ Θ2, 1 ≤ k ≤ n − 1 and a (qk,qk+1)-shuffle 〈α,α′〉, we write
Λ

k;〈α,α′〉
h [n; q] ⊂ Θ2[n; q] for the cellular subset generated by all hyperfaces ofΘ2[n; q] except

for δk;〈α,α′〉
h . We denote byH ′h the set of all such alternative inner horizontal horn inclusions

Λ
k;〈α,α′〉
h [n; q] ↪→ Θ2[n; q].

We prove that Hh ⊂ cell(H ′h ∪ Hv) holds and that H ′h is contained in the class of trivial
cofibrations.

3.2.1 Oury’s horn inclusions can be obtained from the alternative ones
The purpose of this subsection is to prove the following lemma.

Lemma 3.2.2. Every map inHh is contained in cell(H ′h ∪Hv).

Similarly to the proof of Lemma 3.1.4, we must consider a wider class of horn inclusions.

Definition 3.2.3. Given a set S of hyperfaces of Θ2[n; q], let ΛS[n; q] ⊂ Θ2[n; q] denote the
cellular subset generated by all hyperfaces except for those in S.

Proposition 3.2.4. For any set S of inner hyperfaces ofΘ2[n; q], the cellular subsetΛS[n; q] ⊂
Θ2[n; q] is equal to ΥT [n; q] where T is the set of all inner hyperfaces of Θ2[n; q] that are
not in S.

Proof. Compare Definitions 3.1.6 and 3.2.3. �

Recall that if S is a set of faces of Θ2[n; q] and 1 ≤ k ≤ n − 1 then we write

ShflS(qk,qk+1) =
{
〈α,α′〉 ∈ (qk,qk+1) : δk;〈α,α′〉

h ∈ S
}
.

Lemma 3.2.5. The inclusion ΛS[n; q] ↪→ Θ2[n; q] is contained in:

(i) cell(Hv) if S is a non-empty set of k-th vertical hyperfaces for some 1 ≤ k ≤ n; and

(ii) cell(H ′h∪Hv) if S is a non-empty set of k-th horizontal hyperfaces for some 1 ≤ k ≤ n−1
and ShflS(qk,qk+1) is upward closed.

Note that Lemma 3.2.2 follows from Lemma 3.2.5(ii) by setting S to be the set of all k-th
horizontal hyperfaces of Θ2[n; q].

Proof. We will prove (i) by induction on |S |. By assumption, we can write S as

S =
{
δk;i
v : i ∈ IS

}
for some 1 ≤ k ≤ n and � , IS ⊂ {1, . . . ,qk − 1}. If IS = {i} is a singleton, then
ΛS[n; q] = Λk;i

v [n; q] and hence the result follows trivially. So assume |S | ≥ 2. Choose i ∈ IS
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and let S′ =
{
δ

k; j
v : j ∈ IS \ {i}

}
. Then ΛS′[n; q] ↪→ Θ2[n; q] is in cell(Hv) by the inductive

hypothesis. Therefore it suffices to prove that the upper horizontal map in the gluing square

X Θ2[n; p]

ΛS[n; q] ΛS′[n; q]

⊂

p

y

δk;i
v

⊂

belongs to cell(Hv), where p = (q1, . . . ,qk − 1, . . . ,qn). Indeed, one can check that X =
ΛT [n; p] where

T =
{
δ

k; j
v : j ∈ IS, j < i

}
∪

{
δ

k; j−1
v : j ∈ IS, j > i

}
.

Since |T | = |S | − 1, the desired inclusion is in cell(Hv) by the inductive hypothesis.
Now we prove (ii) by induction on |S |. If S =

{
δ

k;〈α,α′〉
h

}
is a singleton then ΛS[n; q] =

Λ
k;〈α,α′〉
h [n; q] and hence the result follows trivially. So assume |S | ≥ 2. Choose a minimal

element 〈α,α′〉 ∈ ShflS(qk,qk+1) and let S′ = S\
{
δ

k;〈α,α′〉
h

}
. Then by the inductive hypothesis,

ΛS′[n; q] ↪→ Θ2[n; q] is in cell(H ′h∪Hv). Thus it suffices to prove thatΛS[n; q] ↪→ ΛS′[n; q]
too is in cell(H ′h ∪Hv). Indeed, it follows from Claims 0 to 4 in the proof of Lemma 3.1.11
that we have a gluing square

ΛT [n − 1; p] Θ2[n − 1; p]

ΛS[n; q] ΛS′[n; q]

⊂

p

y
δ
k;〈α,α′〉
h

⊂

where p = (q1, . . . ,qk + qk+1, . . . ,qn), and T = {δk;i
v : i ∈ p〈α,α′〉}. (In fact, this square is

essentially the first square that appears in the proof of Lemma 3.1.11.) Note that p〈α,α′〉 = �
if and only if 〈α,α′〉 is the maximum (qk,qk+1)-shuffle, but the latter is impossible since
|S | ≥ 2 and 〈α,α′〉 is minimal in S. Hence ΛT [n − 1; p] ↪→ Θ2[n − 1; p] is in cell(Hv) by
(i). �

3.2.2 Alternative horn inclusions are trivial cofibrations
The purpose of this subsection is to prove the following lemma.

Lemma 3.2.6. Every map inH ′h is a trivial cofibration.

Once again, we consider a wider class of horn inclusions. Suppose we have fixed
[n; q] ∈ Θ2, 1 ≤ k ≤ n− 1 and a (qk,qk+1)-shuffle 〈ζ, ζ ′〉. (Note that the inequality 1 ≤ n− 1
in particular implies that [n; q] is poly-vertebral.) Let

I =
{
〈α,α′〉 ∈ Shfl(qk,qk+1) : 〈α,α′〉 ≤ 〈ζ, ζ ′〉

}
.

Lemma 3.2.7. If U is a set of the form

U =
{
δ

k;〈α,α′〉
h : 〈α,α′〉 ∈ IU

}
for some non-empty, upward closed subset IU ⊂ I, then the inclusion ΛU[n; q] ↪→ Θ2[n; q]
is a trivial cofibration.
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Here IU is upward closed in I but not necessarily in Shfl(qk,qk+1). Thus in general
Shfl(qk,qk+1) \ IU is not downward closed, and this is why Lemma 3.2.7 does not follow
directly from Proposition 3.2.4 and Lemma 3.1.11.

Note that since 〈ζ, ζ ′〉 is the maximum element in I, any non-empty, upward closed IU ⊂ I
will always have 〈ζ, ζ ′〉 ∈ IU . Also observe that Lemma 3.2.6 follows from Lemma 3.2.7 by
setting U =

{
δ

k;〈ζ,ζ ′〉
h

}
.

Proof. We prove Lemma 3.2.7 by induction on |I \ IU | (so we start with the case IU = I and
progressively make IU smaller). For the base case, observe that

{〈α,α′〉 ∈ Shfl(qk,qk+1) : 〈α,α′〉 � 〈ζ, ζ ′〉}

is an upward closed, proper subset of Shfl(qk,qk+1). Thus, when IU = I the inclu-
sion ΛU[n; q] ↪→ Θ2[n; q] is a trivial cofibration by Proposition 3.2.4 and the dual of
Lemma 3.1.11.

For the inductive step, assume IU , I. Choose a maximal element 〈α,α′〉 ∈ I \ IU and
let IU ′ = IU ∪ {〈α,α

′〉}. Then ΛU ′[n; q] ↪→ Θ2[n; q] is a trivial cofibration by the inductive
hypothesis, and hence it suffices to show the upper horizontal map in

X Θ2[n − 1; p]

ΛU ′[n; q] ΛU[n; q]

⊂

p

y

δ
k;〈α,α′〉
h

⊂

(where p = (q1, . . . ,qk + qk+1, . . . ,qn)) is a trivial cofibration. We again use Lemma 3.1.11.
More precisely, we claim that X has the form X = ΥT [n − 1; p] for

T = T1 ∪ T2 ∪ T3 ∪ T4 ∪ T ′4 ∪ T5

where

T1 =
{
δ
`;〈γ,γ′〉
h [n − 1; p] : 1 ≤ ` ≤ n − 1, 〈γ, γ′〉 ∈ Shfl(p`, p`+1)

}
,

T2 =
{
δ

k; j
v [n − 1; p] : j ∈y〈α,α′〉

}
,

T3 =
{
δ
`; j
v [n − 1; p] : ` , k, 1 ≤ j ≤ q` − 1

}
,

T4 =
{
δ

k; j
v [n − 1; p] : (∃i ∈ [qk])

[
1 ≤ i ≤ qk − 1, α−1(i) = { j}

]}
,

T ′4 =
{
δ

k; j
v [n − 1; p] : (∃i ∈ [qk+1])

[
1 ≤ i ≤ qk+1 − 1, (α′)−1(i) = { j}

]}
,

T5 =
{
δ

k; j
v [n − 1; p] : j ∈ p〈α,α′〉, α( j) = ζ( j)

}
.

Aside from T5, these sets are essentially special cases of the sets with the same names in
the proof of Lemma 3.1.11. More precisely, we have set S′ to be the set of inner hyperfaces
of Θ2[n; q] that are not in U′, then merged T1 and T ′1 into a single set and similarly for T3,
and unwound the conditions involving S′. Thus for much of the proof that X = ΥT [n − 1; p]
holds, we can reuse Claims 0 to 4 from the proof of Lemma 3.1.11.

The following claim relates the hyperfaces δk;〈β,β′〉
h of Θ2[n; q] with 〈β, β′〉 < I to the

elements of T5. Note that if 1 ≤ j ≤ pk − 1 and j < p〈α,α′〉 then Proposition 2.1.5 implies
that δk; j

v [n − 1; p] is contained in T2, T4 or T ′4.
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Claim 5.

(i) For any 〈β, β′〉 ∈ Shfl(qk,qk+1) with 〈β, β′〉 � 〈ζ, ζ ′〉, the pullback of δk;〈β,β′〉
h along

δ
k;〈α,α′〉
h is contained in δk; j

v [n−1; p] for some 1 ≤ j ≤ pk−1 such that either j < p〈α,α′〉
or α( j) = ζ( j).

(ii) For any j ∈ p〈α,α′〉 with α( j) = ζ( j), the hyperface δk; j
v [n − 1; p] is the pullback of

δ
k;〈β,β′〉
h along δk;〈α,α′〉

h for some 〈β, β′〉 ∈ Shfl(qk,qk+1) with 〈β, β′〉 � 〈ζ, ζ ′〉.

Proof. For (i), fix 〈β, β′〉 ∈ Shfl(qk,qk+1) with 〈β, β′〉 � 〈ζ, ζ ′〉. Note that if β( j) , α( j) for
some j ∈ [qk +qk+1], then the pullback of δk;〈β,β′〉

h along δk;〈α,α′〉
h is contained in δk; j

v [n−1; p].
Thus it suffices to prove that there exists some j ∈ [qk + qk+1] such that β( j) , α( j) and
either j < p〈α,α′〉 or α( j) = ζ( j).

Suppose otherwise. Then in particular β( j) = α( j) for all j ∈ [qk + qk+1] \ p〈α,α
′〉.

Since p〈α,α′〉 contains no two consecutive integers, it follows that β( j) , α( j) implies
β( j) = α( j) + 1 for any j ∈ [qk + qk+1]. Now for each j ∈ [qk + qk+1]:

• if β( j) = α( j) then β( j) ≤ ζ( j) because 〈α,α′〉 < 〈ζ, ζ ′〉; and

• if β( j) , α( j), then α( j) < ζ( j) by assumption and hence β( j) = α( j) + 1 ≤ ζ( j).

Therefore we have 〈β, β′〉 ≤ 〈ζ, ζ ′〉, which is the desired contradiction.
To prove (ii), let j ∈ p〈α,α′〉 and suppose α( j) = ζ( j). Then 〈β, β′〉 � 〈ζ, ζ ′〉 for the

immediate successor 〈β, β′〉 of 〈α,α′〉 corresponding to j, and δk; j
v [n − 1; p] is the pullback

of δk;〈β,β′〉
h along δk;〈α,α′〉

h . �

We can deduce X = ΥT [n − 1; p] from Claims 0 to 5, and it remains to check that T is
admissible, i.e. T satisfies Definition 3.1.10(i-iii). Since it contains all of the inner horizontal
hyperfaces ofΘ2[n−1; p],T clearly satisfies (ii) and (iii). For (i), observe that 〈α,α′〉 < 〈ζ, ζ ′〉
implies there exists an immediate successor 〈β, β′〉 of 〈α,α′〉 such that 〈β, β′〉 ≤ 〈ζ, ζ ′〉. If
j ∈ p〈α,α′〉 is the element corresponding to 〈β, β′〉, then α( j) = β( j)−1 < ζ( j) and soT does
not contain δk; j

v [n−1; p]. ThereforeT is not the set of all inner hyperfaces ofΘ2[n−1; p]. �

3.3 Most horizontal equivalence extensions are redundant
The aim of this very short section is to prove the following lemma.

Lemma 3.3.1. For any [0] , [n; q] ∈ Θ2, the horizontal equivalence extension

(Θ2[0]
e
↪→ J)×̂(∂Θ2[n; q] ↪→ Θ2[n; q])

is contained in cell(Hh).

Proof. Fix [0] , [n; q] ∈ Θ2 and consider e×̂(∂Θ2[n; q] ↪→ Θ2[n; q]), whose domain we
denote by X . Let Y ⊂ J ×Θ2[n; q] be the cellular subset generated by X and all cells that do
not contain the vertex (�,n). Then for any non-degenerate φ : Θ2[m; p] → Y that does not
factor through X , there is unique 1 ≤ kφ ≤ m such that π1 ◦ φ(kφ − 1) = � and π1 ◦ φ(k) = ♦
for all kφ ≤ k ≤ m, where π1 : J × Θ2[n; q] → J is the projection. Observe that for any
non-degenerate φ in Y \ X , either φ satisfies

(†) π2 ◦ φ(kφ) = π2 ◦ φ(kφ − 1)
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or there is a unique non-degenerate cell ψ inY \X satisfying (†) such that φ is a (unique) kψ-th
horizontal hyperface of ψ. Therefore the non-degenerate cells in Y \ X can be partitioned
into pairs of the form {

φ, φ · δ
kα;〈!,id〉
h

}
where φ is an (m; p)-cell satisfying (†) (which necessarily has pkφ = 0). We prove thatY may
be obtained from X by gluing such φ along the hornΛkφ

h [m; p] in lexicographically increasing
order of dim [m; p] and

��(π1 ◦ φ)
−1(�)

��. (Here | − | counts the number of objects.)
Fix an (m; p)-cell φ in Y \ X satisfying (†). We must check that all hyperfaces of φ except

for the (unique) kα-th horizontal one are contained either in X or in some (m′; p′)-cell ψ
satisfying (†) such that either:

• dim[m′; p′] < dim [m; p]; or

• dim[m′; p′] = dim [m; p] and
��(π1 ◦ ψ)

−1(�)
�� < ��(π1 ◦ φ)

−1(�)
��.

Indeed:

• φ · δ
kφ−1;〈id,!〉
h may or may not satisfy (†), but we know�� (π1 ◦ (φ · δ

kφ−1)
)−1
(�)

�� = ��(π1 ◦ φ)
−1(�)

�� − 1;

• for any 0 ≤ k < kφ − 1 with ��(π2 ◦ φ)
−1(π2 ◦ φ(k))

�� ≥ 2,

any k-th horizontal hyperface of φ is a (possibly trivial) degeneracy of some cell
satisfying (†) with dimension strictly lower than dim [m; p]; and

• any other hyperface of φ (excluding the kα-th horizontal one) is contained in X .

Moreover φ(kφ − 1) = (�, π2 ◦ φ(kφ)) and hence π2 ◦ φ(kφ) , n. This implies kφ , m and it
follows that the horn Λkφ

h [m; p] is inner. Thus the inclusion X ↪→ Y is in cell(Hh).
Now consider the remaining non-degenerate cells φ : Θ2[m; p] → J × Θ2[n; q] that are

not in Y . Let kφ ∈ [m] be the smallest such that π2 ◦ φ(kφ) = n. Note that [n; q] , [0] implies
kφ , 0. Observe that for any non-degenerate cell φ in (J × Θ2[n; q]) \ Y , either φ satisfies

(‡) π1 ◦ φ(kφ) = ♦

or there is a unique non-degenerate cell ψ in (J × Θ2[n; q]) \ Y satisfying (‡) such that
φ is a (unique) kψ-th horizontal hyperface of ψ. Therefore the non-degenerate cells in
(J × Θ2[n; q]) \ Y can be partitioned into pairs of the form{

φ, φ · δ
kφ;〈id,!〉
h

}
where φ is an (m; p)-cell satisfying (‡) (which necessarily has pkφ+1 = 0). We prove that
J ×Θ2[n; q]may be obtained fromY by gluing such φ along the hornΛkφ

h [m; p] in increasing
order of dim [m; p].

Fix an (m; p)-cell φ in (J ×Θ2[n; q]) \Y satisfying (‡). We must check that all hyperfaces
of φ except for the (unique) kα-th one are contained either in Y or in some cell that satisfies
(‡) and has dimension strictly smaller than dim [m; p]. Indeed:
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• the unique (kφ+1)-th horizontal hyperface of φ (whichmay be inner or outer depending
on whether kφ + 1 = m) is:

– a degeneracy of some non-degenerate cell in (J × Θ2[n; q]) \ Y satisfying (‡)
of dimension dim [m; p] − 2 if kφ + 3 ≤ m (in which case we necessarily have
φ(kφ + 3) = (�,n)); and

– contained in Y otherwise;

• for any kφ +1 < k ≤ m, the unique k-th horizontal hyperface of φ is a (possibly trivial)
degeneracy of some cell satisfying (‡) of dimension strictly lower than dim [m; p];

• for any 0 ≤ k < kφ with ��(π2 ◦ φ)
−1(π2 ◦ φ(k))

�� ≥ 2,

any k-th horizontal hyperface of φ is a (possibly trivial) degeneracy of some cell
satisfying (‡) of dimension strictly lower than dim [m; p]; and

• any other hyperface of φ (excluding the kα-th horizontal one) is contained in Y .

Moreover, the hornΛkα
h [m; p] is inner since (‡) implies kφ , m. This completes the proof. �

3.4 Characterisation of fibrations into 2-quasi-categories
Recall the sets JA, Hh, Hv, Ev and H ′h as defined in Definitions 2.2.23, 2.3.8 and 3.2.1.
By combining Theorem 2.3.9 and all of the results we have proved, we obtain the following
theorem.

Theorem 3.4.1. Let f : X → Y be a map in Θ̂2 and suppose that Y is a 2-quasi-category.
Then the following are equivalent:

(i) f is a fibration with respect to Ara’s model structure;

(ii) f has the right lifting property with respect to all maps in JA;

(iii) f has the right lifting property with respect to all maps inHh ∪Hv ∪ Ev ∪ {e}; and

(iv) f has the right lifting property with respect to all maps inH ′h ∪Hv ∪ Ev ∪ {e}.

Proof. (i)⇔ (ii): This equivalence is part of Theorem 2.3.9.
(i) ⇒ (iv): The elements of H ′h are trivial cofibrations by Lemma 3.2.6. Similarly for

Hv and Ev by Lemma 3.1.4 and Lemma 3.1.12 respectively. The horizontal equivalence
extension e is also a trivial cofibration since e ∈ Eh ⊂ JA.

(iv)⇒ (iii): This follows from the containmentHh ⊂ cell(H ′h ∪Hv), which is precisely
the statement of Lemma 3.2.2.

(iii) ⇒ (ii): We have the containment JA ⊂ cell(JO) = cell(Hh ∪ Hv ∪ Eh ∪ Ev)

by Lemma 3.1.1. But Eh ⊂ {e} ∪ cell(Hh) holds by Lemma 3.3.1, which implies that
cell(JO) = cell(Hh ∪Hv ∪ Ev ∪ {e}). �

Since e admits a retraction, we obtain the following corollary by setting Y to be the
terminal cellular set Θ2[0].

Corollary 3.4.2. Let X ∈ Θ̂2 be a cellular set. Then the following are equivalent:
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(i) X is a 2-quasi-category;

(ii) X has the right lifting property with respect to all maps in JA;

(iii) X has the right lifting property with respect to all maps inHh ∪Hv ∪ Ev; and

(iv) X has the right lifting property with respect to all maps inH ′h ∪Hv ∪ Ev.

The following corollary says that, when detecting left Quillen functors out of Θ̂2, we may
replace the infinite family Ev by a single map [id; e] : Θ2[1; 0] → Θ2[1; J]. Recall that I
denotes the set of boundary inclusions.

Definition 3.4.3. Let J def
= Hh ∪Hv ∪ {e, [id; e]} and J ′ def= H ′h ∪Hv ∪ {e, [id; e]}.

Corollary 3.4.4. Let
F : Θ̂2 × · · · × Θ̂2 →M

be an n-ary functor into a model category M . Suppose that F satisfies Definition 2.3.4(1).
Then the following are equivalent:

(i) F is left Quillen;

(ii) each map in F̂(I, . . . ,I) is a cofibration and each map in F̂(I, . . . ,I,J ,I, . . . ,I) is
a trivial cofibration regardless of the position of J ; and

(iii) each map in F̂(I, . . . ,I) is a cofibration and each map in F̂(I, . . . ,I,J ′,I, . . . ,I) is
a trivial cofibration regardless of the position of J ′.

Proof. (i) ⇒ (iii) follows from Lemmas 3.1.4 and 3.2.6, and (iii) ⇒ (ii) follows from
Lemmas 2.2.11 and 3.2.2.

For (ii)⇒ (i), suppose that F satisfies (ii). It follows from Lemma 2.2.11 and Proposi-
tion 2.2.16 that F̂( f1, . . . , fn) is a cofibration for any monomorphisms f1, . . . , fn. This proves
that F satisfies the first part of Definition 2.3.4(2).

Recall that for any [1; 0] , [n; q] ∈ Θ2 and any 1 ≤ k ≤ n satisfying qk = 0, both of
Θ2[n; q] ↪→ Ψk[n; q] and Θ2[n; q] ↪→ Φk[n; q] are in

cell
(
Hh ∪Hv ∪

{
Ψ
`[m; p] ↪→ Φ`[m; p] : dim [m; p] < dim [n; q]

})
by Lemmas 3.1.13 to 3.1.17. Since the n-ary version of [RV14, Observation 5.1] shows
that a map of the form F̂( f1, . . . , fk−1, hg, fk+1, . . . , fn) may be obtained as a composite of
F̂( f1, . . . , fk−1, h, fk+1, . . . , fn) and a pushout of F̂( f1, . . . , fk−1,g, fk+1, . . . , fn), it now follows
by the 2-out-of-3 property and induction on dim [n; q] that F̂(I, . . . ,I,Ev,I, . . . ,I) is con-
tained in the class of trivial cofibrations. Thus we have deduced from (ii) that:

(F) each map in F̂(I, . . . ,I,Hh ∪Hv ∪ Ev ∪ {e},I, . . . ,I) is a trivial cofibration.

Now let f1, . . . , fn be monomorphisms in Θ̂2 and suppose that fk is a trivial cofibration
for some k. We wish to show that F̂( f1, . . . , fn) is a trivial cofibration. We already know
that it is at least a cofibration. Hence by [JT07, Lemma 7.14], F̂( f1, . . . , fn) is trivial if and
only if it has the left lifting property with respect to all fibrations between fibrant objects. By
Proposition 2.3.5, the latter is equivalent to the statement that fk has the left lifting property
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with respect to Řk( f1, . . . , fk−1, fk+1, . . . , fn,g) for any fibration g between fibrant objects,
where

Rk : Θ̂2
op
× · · · × Θ̂2

op
×M → Θ̂2

is defined as in Section 2.3.1. Thus it suffices to show that Řk( f1, . . . , fk−1, fk+1, . . . , fn,g) is a
fibration between fibrant objects whenever g is so. By Proposition 2.3.5, Theorem 3.4.1 and
(F), this reduces to showing that the codomain of Řk( f1, . . . , fk−1, fk+1, . . . , fn,g) is fibrant
whenever g is a fibration between fibrant objects.

Write X0
i and X1

i for the domain and the codomain of fi respectively, and fix a fibration
g : Y0 → Y1 between fibrant objects in M . We proceed by induction on the cardinality of

{i : i , k, X0
i , 0} ∪ {∗ : Y1 , 1}

where 0 and 1 denote the initial and terminal objects in appropriate categories. (The second
set simply contributes 1 to the cardinality if Y1 , 1 and contributes 0 if Y1 = 1.) The base
case is trivial since X0

i = 0 for all i , k and Y1 = 1 would imply that the codomain of
Řk( f1, . . . , fk−1, fk+1, . . . , fn,g) is the terminal cellular set.

For the inductive step, let G : 2n → Θ̂2 be the functor given by

G(ε1, . . . , εk−1, εk+1, . . . , εn, ε) = Rk(X
1−ε1
1 , . . . ,X1−εk−1

k−1 ,X1−εk+1
k+1 , . . . ,X1−εn

n ,Y ε )

and let I : C ↪→ 2
n denote the inclusion of the full subcategory spanned by all non-initial

objects. Then the codomain of Řk( f1, . . . , fk−1, fk+1, . . . , fn,g) is the limit of GI. Observe that
C admits a Reedy structure with deg(ε ) = n −

∑
ε such that all maps are degree-lowering.

Since there is no degree-raising map in C , the diagonal functor Θ̂2 →
[
C , Θ̂2

]
is left Quillen.

Thus it remains to show that GI is Reedy fibrant.
Fix an object ε ∈ C . We wish to show that the ε -th matching map for GI is a fibration.

Observe that this matching map is precisely Řk( f ′1, . . . , f ′k−1, f ′k+1, . . . , f ′n,g
′) where

f ′i =
{

fi if εi = 0,
0 ↪→ X0

i if εi = 1

for each i , k and

g′ =

{
g if ε = 0,

Y1 → 1 if ε = 1.

Since ε ∈ C (and hence ε , (0, . . . ,0)), it follows by the inductive hypothesis that the
codomain of Řk( f ′1, . . . , f ′k−1, f ′k+1, . . . , f ′n,g

′) is fibrant. Moreover, this map has the right
lifting property with respect to all maps in Hh ∪ Hv ∪ Ev ∪ {e} by Proposition 2.3.5 and
(F). Therefore Theorem 3.4.1 implies that Řk( f ′1, . . . , f ′k−1, f ′k+1, . . . , f ′n,g

′) is a fibration.
This completes the proof. �

3.5 Special outer horns

The aim of this section is to prove that certain special outer horn inclusions are trivial
cofibrations. We will use the vertical case of this result in Chapter 4.

We first consider the horizontal case. Let [n; q] ∈ Θ2 with n ≥ 2 and q1 = 0.
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Definition 3.5.1. We will denote by Λ̃0
h[n; q] and Θ̃0

2[n; q] the cellular sets defined by the
following pushout squares

Θ2[1; 0] Λ0
h[n; q] Θ2[n; q]

J Λ̃0
h[n; q] Θ̃0

2[n; q]
p p

where the composite of the upper row is (isomorphic to)
[
{0,1}; id

]
: [1; 0] → [n; q] and the

left vertical maps pick out the (1; 0)-cell {♦→ �}.

Lemma 3.5.2. The map Λ̃0
h[n; q] ↪→ Θ̃0

2[n; q] is a trivial cofibration.

Proof. Let Jh = {♦ � �} be the chaotic category on two objects so that NJh � J. Let H
denote the 2-category defined by the pushout

[1; 0] [n; q]

Jh H
p

where the upper horizontal map is
[
{0,1}; id

]
and the left vertical map picks out the 1-cell

♦→ �. Define a preorder � on the set [n] = {0, . . . ,n} so that i � j if and only if:

• i ≤ j (with respect to the usual order); or

• i = 1 and j = 0.

Then an (m; p)-cell [α; α] in the nerve NH consists of an order preserving map

α :
(
[m],≤

)
→

(
[n],�

)
together with a simplicial operator αk : [p`] → [qk] for each ` ∈ [m] and α(`−1) < k ≤ α(`).

Wewill regard Λ̃0
h[n; q] and Θ̃0

2[n; q] as cellular subsets of NH via the obviousmonomor-
phisms Λ̃0

h[n; q] ↪→ Θ̃0
2[n; q] ↪→ NH . The desired result follows once we prove that both of

the inclusions Θ̃0
2[n; q] ↪→ NH and Λ̃0

h[n; q] ↪→ NH are trivial cofibrations. These facts
are proved in Lemmas 3.5.3 and 3.5.4 below. �

Observe that an (m; p)-cell [α; α] in NH is contained in NH \ Θ̃0
2[n; q] if and only if:

(a) there is 0 ≤ ` < m such that α(`) = 1 and α(` + 1) = 0; and

(b) α(m) ≥ 2.

The only non-degenerate cells in Θ̃0
2[n; q] \ Λ̃0

h[n; q] are [id; id] and δ0
h.

Lemma 3.5.3. The inclusion Θ̃0
2[n; q] ↪→ NH is in cell(Hh).
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Proof. We say an order-preserving map α :
(
[m],≤

)
→

(
[n],�

)
is dull if α(0) ≥ 2. An

(m; p)-cell [α; α] in NH is called dull if α is dull. For any non-dull α :
(
[m],≤

)
→

(
[n],�

)
,

we define
`α

def
= max

(
α−1 ({0,1}) ) .

We say a non-degenerate, non-dull cell [α; α] in NH is of:

• type 0 if α(`α) = 0; and

• type 1 if α(`α) = 1.

Then it is easy to check (using the conditions (a) and (b) above) that the set of non-degenerate
cells in NH \ Θ̃0

2[n; q] can be partitioned into pairs of the form{
[α; α], [α; α] · δ`α;〈!,id〉

h

}
where [α; α] is of type 1. Moreover, for any [α; α] of type 1 in NH \ Θ̃0

2[n; q], any of its
hyperfaces other than the (unique) `α-th horizontal one is:

• degenerate;

• contained in Θ̃0
2[n; q]; or

• of type 1.

It follows that NH may be obtained from Θ̃0
2[n; q] by gluing those (m; p)-cells [α; α] of type

1 in NH \ Θ̃0
2[n; q] along the horn Λ`αh [m; p] in increasing order of dim [m; p]. This horn is

inner since (a) implies `α , 0 and (b) implies `α , m. This completes the proof. �

Lemma 3.5.4. The inclusion and Λ̃0
h[n; q] ↪→ NH is in cell(Hh).

Proof. Let X ⊂ NH denote the cellular subset consisting of those cells that do not contain
[δ0; id]. Then this inclusion can be factorised as

Λ̃
0
h[n; q] ↪→ X ↪→ NH .

Moreover:

• the non-degenerate cells in X \ Λ̃0
h[n; q] can be partitioned into pairs of the form{
[α; α], [α; α] · δ`α;〈!,id〉

h

}
where [α; α] is of type 1; and

• the non-degenerate cells in NH \ X can be partitioned into pairs of the form{
[α; α], [α; α] · δ`α;〈!,id〉

h

}
where [α; α] is of type 0.

The rest of the proof is similar to that of Lemma 3.5.3 and is left to the reader. �

Taking the “suspension” of the above argument yields the following vertical case. Fix
[1; q] ∈ Θ2 with q ≥ 2.
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Definition 3.5.5. We denote by Λ̃1;0
v [1; q] and Θ̃1;0

2 [1; q] the cellular sets defined by the
following pushout squares

Θ2[1; 1] Λ
1;0
v [1; q] Θ2[1; q]

Θ2[1; J] Λ̃
1;0
v [1; q] Θ̃

1;0
2 [1; q]

p p

where the left vertical map picks out the (1; 1)-cell ♦ ⇒ � and the composite of the upper
row is (isomorphic to)

[
id; {0,1}

]
: [1; 1] → [1; q].

Lemma 3.5.6. The map Λ̃1;0
v [1; q] ↪→ Θ̃1;0

2 [1; q] is a trivial cofibration.
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4
The Gray tensor product for

2-quasi-categories

In this chapter, we make precise and prove the following statement:

the 2-quasi-categorical Gray tensor product is
part of an up-to-homotopy monoidal closed structure.

4.1 The Gray tensor product

4.1.1 Classical version
The (lax) Gray tensor product [Gra74, Theorem I.4.9] of two (small) 2-categories A and B
is the 2-category A �B given by the following generators-and-relations presentation. Its
object set is ob(A �B) = ob A × ob B. Its underlying 1-category is generated by the maps
of the form

(x, y) (x′, y)
( f , y)

,

(x, y′)

(x, y)

(x,g) (4.1)

where f : x → x′ in A and g : y → y′ in B, subject to the relations ( f ′, y)( f , y) = ( f ′ f , y)
and (x,g′)(x,g) = (x,g′g) whenever these composites make sense, and id(x,y) = (idx, y) =
(x, idy). Similarly, we have generating 2-cells

(x, y) (x′, y)

( f ′, y)

( f , y)

(α, y) ,

(x, y′)

(x, y)

(x,g) (x,g′)
(x, β)

(4.2)
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for any 2-cells α : f ⇒ f ′ : x → x′ in A and β : g ⇒ g′ : y → y′ in B, subject to the
obvious relations involving the horizontal and vertical compositions in A and B. There are
additional generating 2-cells of the form

(x, y′)

(x, y)

(x′, y′)

(x′, y)

(x,g) (x′,g)

( f , y′)

( f , y)

γ f ,g (4.3)

for 1-cells f in A and g in B. The relations we impose on these 2-cells are:

(x, y′)

(x, y)

(x′, y′)

(x′, y)

(x,g) (x′,g)

( f ′, y)

( f , y)

( f , y′)

(α, y)

γ f ,g =

(x, y′)

(x, y)

(x′, y′)

(x′, y)

(x,g) (x′,g)

(α, y′)

γ f ′,g

( f , y′)

( f ′, y′)

( f ′, y)

(4.4)

(x, y′)

(x, y)

(x, y′)

(x, y)

(x,g) (x,g)

(idx, y
′)

(idx, y)

γidx,g =

(x, y′)

(x, y)

(x, y′)

(x, y)

(x,g) (x,g)

id(x,y′)

id(x,y)

id (4.5)

(x, y′)

(x, y)

(x′, y′)

(x′, y)

(x′′, y′)

(x′′, y)

(x,g) (x′,g) (x′′,g)

( f , y′)

( f , y)

( f ′, y′)

( f ′, y)

γ f ,g γ f ′,g =

(x, y′)

(x, y)

(x′′, y′)

(x′′, y)

(x,g) (x′′,g)

( f ′ f , y′)

( f ′ f , y)

γ f ′ f ,g (4.6)

and their “vertical” counterparts, involving the 2-category structure of B. A description of
the 2-cells in A �B as equivalence classes of (vertically composable) strings of equivalence
classes of (horizontally composable) strings of generating 2-cells, making this presentation
more explicit, can be found in [Gra74, Theorem I.4.9].

This tensor product extends to a functor 2-Cat × 2-Cat → 2-Cat, and forms part of a
biclosed monoidal structure on 2-Cat. In particular, there are natural bijections

2-Cat(B, [A ,C ]lax) � 2-Cat(A �B,C ) � 2-Cat(A , [B,C ]oplax)

where [A ,C ]lax is the 2-category of 2-functors A → C , lax natural transformations and
modifications, and [B,C ]oplax is similar but has oplax natural transformations as 1-cells. This
monoidal structure is not braided, but we have natural isomorphisms (A �B)op � Bop�A op

and (A �B)co � Bco �A co.
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Remark. The functor � : 2-Cat×2-Cat→ 2-Cat does not extend to a 2-functor. For instance,
regard the unique non-identity 1-cell in [1; 0] as a 2-natural transformation between two 2-
functors [0] → [1; 0], and consider the “tensor” of this 2-natural transformation with another
copy of [1; 0].

4.1.2 Θ2-version
Definition 4.1.1. For each a ≥ 2, the a-ary Gray tensor product functor

⊗a : Θ̂2 × · · · × Θ̂2︸           ︷︷           ︸
a times

→ Θ̂2

is obtained by extending the composite

Θ2 × · · · × Θ2 2-Cat × · · · × 2-Cat 2-Cat Θ̂2
�a N

cocontinuously in each variable, where the second map �a is the a-ary Gray tensor product
of 2-categories. We define ⊗0

def
= Θ2[0] and ⊗1(X)

def
= X .

Therefore the tensor product ⊗a(X1, . . . ,Xa) admits a coend description

⊗a(X1, . . . ,Xa) �

∫ θ1,...,θa∈Θ2 (
X1
θ1
× · · · × Xa

θa

)
∗ N

(
�a(θ1, . . . , θa)

)
where ∗ denotes the copower. More explicitly, a ζ-cell in ⊗a(X1, . . . ,Xa) is represented by
(θ1, . . . , θa, φ, x1, . . . , xa) where φ : ζ → �a(θ1, . . . , θa) is a 2-functor and xi ∈ X i

θi
for each

i. Two such (2a + 1)-tuples represent the same ζ-cell if and only if they are related by the
equivalence relation generated by ∼ defined as follows: for any cellular operators α : θi → θ′i ,
any 2-functor φ : ζ → �a(θ1, . . . , θa), and any xi ∈ X i

θ ′i
,

(θ, φ, x · α) ∼
(
θ′,�a(α) ◦ φ, x

)
.

(See the remark after Lemma 4.2.2.)
Note that the obvious 2-functors πi : �a(A1, . . . ,Aa) → Ai induce cellular maps πi :

⊗a(X1, . . . ,Xa) → X i for 1 ≤ i ≤ a.
Remark. One might (rightly) object that, although Definition 4.1.1 involves the ordinary
Gray tensor product �a, this does not fully justify calling the functor ⊗a the Gray tensor
product. Ideally we would respond to such an objection by exhibiting that “everything” we
ever do with �a admits an analogue for ⊗a. Our main results (showing that ⊗a is part of
an up-to-homotopy monoidal closed structure) may be seen as a partial justification along
this line, and we hope to strengthen this justification by reconstructing the formal theory of
monads in future.

The following argument provides another justification for calling ⊗a the Gray tensor
product. For mono-vertebral objects θ, θ′ ∈

{
[0], [1; 0], [1; 1]

}
in Θ2, it is easy to compute

and even draw the binary tensor Θθ2 ⊗ Θ
θ ′

2 = ⊗2
(
Θθ2,Θ

θ ′

2
)
. If one is convinced that these

low-dimensional examples “look correct” (in the sense that they match what one expects the
Gray tensor products of these simple (∞,2)-categories to be), then:

1. Θθ2 ⊗ Θ
θ ′

2 must be “correct” for any θ, θ′ ∈ Θ2 since ⊗ is left Quillen (Theorem 4.4.1)
and any Θθ2 is a homotopy colimit of Θ2[0], Θ2[1; 0] and Θ2[1; 1] (via the spine);
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2. thus ⊗ = ⊗2 must be “correct” on arbitrary inputs since it is left Quillen; and

3. it follows that⊗a must be “correct” for arbitrary a since⊗ is associative up to homotopy
(Corollary 4.5.11).

4.1.3 Tensoring cells
Since the objects ofΘ2 are very simple 2-categories, we can describe�a(θ) = �a(θ1, . . . , θa)

explicitly for any θi ∈ Θ2. First, consider the case where θi = [ni; 0] for each i. We will
describe a 2-category T , and prove that T � �a(θ). The underlying 1-category of T is the
free one on the directed graph determined by the following conditions:

• the vertex set is {0, . . . ,n1} × · · · × {0, . . . ,na}; and

• there is a unique edge

(x1, . . . , xi − 1, . . . , xa) → (x1, . . . , xi, . . . , xa) (4.7)

whenever 0 < xi ≤ ni and 0 ≤ x j ≤ n j for j , i.

Before describing the 2-cells in T , let us analyse the 1-cells.

Definition 4.1.2. Given 0 ≤ si ≤ ti ≤ ni for each i, let

S(s, t) def=
{
(i |k) : 1 ≤ i ≤ n, si < k ≤ ti

}
.

We have adopted the notation (i |k) in order to distinguish the elements of S(s, t) from
other kinds of pairs, e.g. objects in θ1 � θ.

Observe that for any 1-cell f in T from s = (s1, . . . , sn) to t = (t1, . . . , tn), assigning the
pair (i |xi) to the atomic factor of the form (4.7) yields a bijection between S(s, t) and the set
of atomic factors of f . Moreover, the obvious total order on the latter set induces a total order
� on S(s, t) satisfying

(※) (i |k) � (i |`) for any 1 ≤ i ≤ a and si < k ≤ ` ≤ ti.

Informally speaking, � orders the set S(s, t) of “instructions” where (i |k) is to be interpreted
as “move in the i-th direction by one step so that the new i-th coordinate is k”. Conversely,
any total order � satisfying (※) uniquely determines a 1-cell from s to t. Hence we may
identify the objects in the hom-category T (s, t) with the set of such total orders on S(s, t).

Definition 4.1.3. A shuffle on S(s, t) is a total order � on S(s, t) satisfying (※).

Remark. This definition is consistent with Definition 2.1.1 in the sense that there is an obvious
bijection between Shfl(m,n) and the set of shuffles on S

(
(0,0), (m,n)

)
.

Finally we define the hom-category T (s, t) to be the poset given by the partial order �
defined below. It is straightforward to check that T is a poset-enriched category and hence
a 2-category.

Definition 4.1.4. Let � and �′ be shuffles on S(s, t). Then � � �′ if and only if (i |k) � ( j |`)
and i < j imply (i |k) �′ ( j |`) for any (i |k), ( j |`) ∈ S(s, t).
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For instance, when a = 2 and n1 = n2 = 1, the 2-category T looks like

(0,1)

(0,0)

(1,1)

(1,0)

(2|1) (2|1)

(1|1)

(1|1)

�

where the 2-cell corresponds to the relation(
(2|1) � (1|1)

)
�

(
(1|1) �′ (2|1)

)
.

Lemma 4.1.5. �a(θ1, . . . , θa) � T .

Proof of Lemma 4.1.5. It is easy to see from the generators-and-relations presentation of the
Gray tensor product that �a(θ) and T have isomorphic underlying 1-categories. Moreover,
the 2-cells in the former 2-category are generated (under vertical and horizontal compositions)
by those of the form

(x1, . . . , xi − 1, . . . , x j − 1, . . . , xn)

(x1, . . . , xi − 1, . . . , x j, . . . , xn)

(x1, . . . , xi, . . . , x j − 1, . . . , xn)

(x1, . . . , xi, . . . , x j, . . . , xn)

(see (4.3)) and this 2-cell has the same domain and codomain as the 2-cell

(x1, . . . , xi − 1, . . . , x j − 1, . . . , xn) (x1, . . . , xi, . . . , x j, . . . , xn)

( j |x j) � (i |xi)

(i |xi) � ( j |x j)

in T . It follows that we have a 2-functor F : �a(θ) → T that is bijective on objects and
1-cells.

We next prove that this 2-functor F is locally full. Consider a morphism in the hom-
category T (s, t), or equivalently, a pair of shuffles �0 and �1 on S(s, t) such that �0 � �1.
By the variance of this morphism, we mean the cardinality of the set{(

(i |k), ( j |`)
)
∈ S(s, t)2 : (i |k) �0 ( j |`), (i |k) �1 ( j |`)

}
.

We prove by induction on the variance that this morphism is in the image of F. The base case
is easy since the variance of a morphism is 0 if and only if it is the identity. For the inductive
step, assume that the variance is positive. Then there is a pair (i† |k†), ( j† |`†) ∈ S(s, t) such
that:
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• (i† |k†) is the immediate �0-successor of ( j† |`†); and

• (i† |k†) �1 ( j† |`′†)

(if such a pair does not exist then �0 and �1 coincide). Now define a total order � on S(s, t)
so that it agrees with �0 on all pairs of elements in S(s, t) except that (i† |k†) � ( j† |`†). Then
clearly � is a shuffle and moreover we have �0 � � � �1, giving a factorisation of the
original morphism. The first factor is in the image of F by the first paragraph of this proof,
and the second factor is in the image too by the inductive hypothesis. This proves that F is
locally full.

The proof that F is locally faithful is deferred to Appendix A.1. �

Definition 4.1.6. Given any θ = [n; q] ∈ Θ2, we will write θ̄ for [n; 0] ∈ Θ2.

In the rest of this paper, any unlabelled cellular operator of the form θ → θ̄ is assumed to
be the unique one [n; q] → [n; 0] whose horizontal component is the identity.

Lemma 4.1.7. For any θ1, . . . , θa ∈ Θ2, the square

�a(θ1, . . . , θa) �a(θ̄1, . . . , θ̄a)

θ1 × · · · × θa θ̄1 × · · · × θ̄a

〈π1,...,πa〉 〈π1,...,πa〉

is a pullback in 2-Cat.

Proof. We will sketch the proof and leave the details to the reader. Clearly the above square
is at least commutative, and thus there is an induced 2-functor from�a(θ) to the pullback of
the cospan. It is straightforward to see that this 2-functor is bijective on objects and 1-cells.
Moreover one can check that it is locally full, similarly to the proof of the previous lemma. It
then suffices to prove that �a(θ) is poset-enriched. It follows from Eqs. (4.4) and (4.6) that
any 2-cell in �a(θ) can be (vertically) factorised as a composite of γ’s (4.3) followed by a
composite of 2-cells “coming from θi’s” (4.2); e.g. for a = 2 such a factorisation typically
looks like

where the second factor is the horizontal composite of the two globe-shaped 2-cells. Observe
that for any parallel pair of 2-cells, this factorisation yields the same middle 1-cell. Therefore
the desired result follows from Lemma 4.1.5 and the observation that each θi is poset-
enriched. �

The lemmas below are straightforward to prove using the explicit description of �a(θ)
provided by Lemmas 4.1.5 and 4.1.7. Note that the underlying 1-category of �a(θ) is free
on the obvious graph and hence each 1-cell in�a(θ) admits a unique atomic decomposition.

Definition 4.1.8. By the endpoints of an (n; q)-cell φ : [n; q] → �a(θ), we mean the objects
φ(0) and φ(n).
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Definition 4.1.9. Let φ : [1; q] → �a(θ1, . . . , θa) be a (1; q)-cell with endpoints s, t. By the
underlying shuffles of φ, we mean the q+1 shuffles on S(s, t) corresponding to the composite

[1; q] �a(θ1, . . . , θa) �a(θ̄1, . . . , θ̄a).
φ

Definition 4.1.10. Given a 1-cell f : s → t and an object x in �a(θ), we say f visits x to
mean that the atomic decomposition of f involves x. Equivalently, f visits x if and only if
either x = s or there is (necessarily unique) ( j |`) ∈ S(s, t) such that

xi = min
({

k : (i |k) � ( j |`)
}
∪ {si}

)
for each i where � is the underlying shuffle of f .

Lemma 4.1.11. Let δi : ζi → θi be a face operator in Θ2 for 1 ≤ i ≤ a. Then

�a(δ1, . . . , δn) : �a(ζ1, . . . , ζa) → �a(θ1, . . . , θa)

is a monomorphism in 2-Cat. Consequently, its nerve

⊗a(δ1, . . . , δn) : ⊗a
(
Θ
ζ1
2 , . . . ,Θ

ζa
2

)
→ ⊗a

(
Θ
θ1
2 , . . . ,Θ

θa
2

)
is a monomorphism in Θ̂2. Moreover, a κ-cell φ : κ → �a(θ) in ⊗a

(
Θ
θ1
2 , . . . ,Θ

θa
2

)
is in the

image of this map if and only if:

(i) κ �a(θ) θi
φ πi factors through δi for each i; and

(ii) if some 1-cell f in the image of φ visits two distinct objects x and y such that xi = yi,
then the object xi = yi ∈ θi is in the image of δi.

For example, consider the map

δ1
h ⊗ id : Θ2[1; 0] ⊗ Θ2[1; 0] → Θ2[2; 0] ⊗ Θ2[1; 0]

where ⊗ = ⊗2. This map is the nerve of the inclusion 2-functor{ }
↪→

{ }
.

A cell in the codomain violates (i) if and only if it contains an object in the middle column,
e.g. { }

,

and it violates (ii) if and only if it involves moving down in the middle column, e.g.{ }
.
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4.2 ⊗̂a preserves monomorphisms
Let a ≥ 2 and let θ1, . . . , θa ∈ Θ2. The aim of this section is to prove the following lemma.

Lemma 4.2.1. The Leibniz Gray tensor product

⊗̂a
(
∂Θθ1

2 ↪→ Θθ1
2 , . . . , ∂Θ

θa
2 ↪→ Θθn2

)
(4.8)

is a monomorphism.

Proof. By Lemma 2.2.9, it suffices to prove that the functor

G : 2a → Θ̂2

(defined as in Section 2.2.3 with F = ⊗a) sends each square of the form (2.1) to a pullback
square of monomorphisms. Wewill prove in Lemma 4.2.2 below that G sends each map in 2a

to a monomorphism. Assuming this fact, it is straightforward to deduce using Lemma 4.1.11
that the desired square is indeed a pullback. �

Observe that Θθi2 and ∂Θθi2 satisfy the hypothesis in the following lemma.

Lemma 4.2.2. Fix 1 ≤ b ≤ a and let X i ∈ Θ̂2 for 1 ≤ i ≤ a with i , b. Suppose that in each
X i, any face of a non-degenerate cell is itself non-degenerate. Then

⊗a(X1, . . . ,Xb−1, ∂Θθ2 ↪→ Θ
θ
2,X

b+1, . . . ,Xa) (4.9)

is a monomorphism for any θ ∈ Θ2.

Remark. Given a small category X , a functor G : X → Set and a weight W : X op → Set,
the colimit of G weighted by W is isomorphic to the (conical) colimit of the composite

H :
∫

W X SetG

where
∫

W is the Grothendieck construction of W and the first factor is the canonical projec-
tion. But the colimit of any Set-valued functor H may be computed as the set of connected
components of

∫
H, thus we can describe the original weighted colimit as the set of connected

components of this iterated Grothendieck construction
∫

H.
Since the coend formula expresses the cellular set ⊗a(X1, . . . ,Xa) as the weighted colimit

of the composite

Θ2 × · · · × Θ2 2-Cat × · · · × 2-Cat 2-Cat Θ̂2
�a N

with weight given by
(θ1, . . . , θa) 7→ X1

θ1
× · · · × Xa

θa
,

it follows that the value of ⊗a(X1, . . . ,Xa) at any ζ ∈ Θ2 may be described as the set of
connected components of an appropriate iterated Grothendieck construction. This is how we
obtain the categories B and C in the proof below.
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Proof. Fix ζ ∈ Θ2. We will give a more explicit description of the ζ-component of the
natural transformation (4.9).

Let A be the category whose objects are (2a + 1)-tuples

(κ, φ, x) = (κ1, . . . , κa, φ, x1, . . . , xa)

where:

• κi ∈ Θ2 for each 1 ≤ i ≤ a;

• φ : ζ → �a(κ1, . . . , κa) is a 2-functor;

• xi ∈ X i
κi for i , b; and

• xb : κb → θ is a 2-functor

and whose morphisms α : (κ, φ, x) → (λ, χ, y) consist of cellular operators αi : κi → λi for
1 ≤ i ≤ a such that:

• χ = �a(α1, . . . , αa) ◦ φ; and

• xi = yi · αi for 1 ≤ i ≤ a.

Notation. If ω = (ω1, . . . ,ωa) is an a-tuple of “things” and ψ is another “thing” then we will
denote by ω{ψ} the a-tuple

ω{ψ}
def
= (ω1, . . . ,ωb−1,ψ,ωb+1, . . . ,ωa).

Let B be the full subcategory of A spanned by those (κ, φ, x) with xb ∈ ∂Θ
θ
2, and let C

be the full subcategory of A spanned by those (κ, φ, x) with κb = θ and xb = idθ . Then there
is a functor F : B → C given by

F(κ, φ, x) =
(
κ{θ},�a(id{xb}) ◦ φ, x{idθ}

)
and

F(α) = α{idθ}.

Then the ζ-component of the natural transformation (4.9) can be identified with the function
π0(F) : π0(B) → π0(C ) where π0 : Cat→ Set is the connected components functor.

Thus, to prove that (4.9) is a monomorphism, it suffices to show that if (κ, φ, x) and
(κ′, φ′, x′) are objects in B and there is a zigzag of (possibly identity) arrows

F(κ, φ, x) (λ1, χ1, y1) . . .

. . . (λm, χm, ym) F(κ′, φ′, x′)

α1 α2

αm αm+1

(4.10)

in C then (κ, φ, x) and (κ′, φ′, x′) lie in the same connected component of B. (Here we are
assuming m to be odd so that αm+1 does really point away from the endpoint; we do not lose
generality by doing so since αm+1 is allowed to be the identity.)

First, we prove that we may assume each object (λk, χk, yk) to be in the image of F.

Temporary definition. We call a zigzag of the form (4.10) k-admissible if (λ`, χ`, y`) is in
the image of F for all 1 ≤ ` ≤ k.
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Claim. For any (k − 1)-admissible zigzag of the form (4.10), there exists a k-admissible
zigzag that has the same length and the same endpoints.

Proof of the claim. The easier case is when k is odd. In this case, by the inductive hypothesis
we have a map

αk : F(λ, χ, y) → (λk, χk, yk)

for some (λ, χ, y) ∈ B. Then it is easy to check that

(λk, χk, yk) = F
(
λk{λb},�a(α

k{idλb }) ◦ χ, y
k{yb}

)
.

Next suppose that k is even so that we have

F(λ, χ, y) (λk, χk, yk)
αk

for some (λ, χ, y) ∈ B. We first treat the special case where each αk
i is a face operator. By

the definition of B, we have yb ∈ ∂Θ
θ
2. Thus in the Reedy factorisation

yb : λb λ′b θ
σ y′

b

the second factor y′b is a non-identity face map. But then we have

F(λ, χ, y) = F
(
λ{λ′b},�a(id{σ}) ◦ χ, y{y′b}

)
.

Thus we may assume that yb is itself a non-identity face map. Then the inner square in

ζ

�a(λ
k{λb}) �a(λ

k{θ})

�a(λ) �a(λ{θ})

χk

χ

ψ

�a(id{yb})

�a(α
k {idλb }) �a(α

k )

�a(id{yb})

is a pullback square (which can be checked using Lemma 4.1.11), and the outer square
commutes since αk is a morphism in C . Hence we obtain the induced map ψ which then
satisfies

(λk, χk, yk) = F(λk{λb},ψ, y
k{yb}).

This completes the proof of the special case where each αk
i is a face operator.

Now consider the general case. Note that (λk+1, χk+1, yk+1) is well-defined since k is
even and m is odd. If yk+1

i = zi · ιi for some zi ∈ X i
µi and ιi : λi → µi, then we can replace

αk+1 and αk+2 by their respective composites with ι:

(µ,�a(ι) ◦ χ
k+1, z)

(λk, χk, yk) (λk+1, χk+1, yk+1) ?αk+1

ι

αk+2
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(in which “?” is either (λk+2, χk+2, yk+2) or F(κ′, φ′, x′)) to obtain a new zigzag. Thus we
may assume that each yk+1

i is non-degenerate. Similarly we may assume that each yi is
non-degenerate.

Let αk
i = δ

k
i ◦ σ

k
i and αk+1

i = δk+1
i ◦ σk+1

i be the Reedy factorisations of αk
i and αk+1

i
respectively. Then we have the solid part of the following commutative diagram in C :(

�a(σ
k) ◦ χk, y · δk

) (
�a(σ

k+1) ◦ χk, yk+1 · δk+1)
F(χ, y) (χk, yk) (χk+1, yk+1)

αk αk+1

δk σk σk+1 δk+1

where we are omitting the first a coordinates of each object. For each i , b, the cells yi ·δ
k
i and

yk+1
i · δk+1

i are non-degenerate since yi and yk+1
i are non-degenerate and the non-degenerate

cells in X i are assumed to be closed under taking faces. Thus both

yk
i = yk+1

i · αk+1
i = (yk+1

i · δk+1
i ) · σk+1

i

and
yk

i = yi · α
k
i = (yi · δ

k
i ) · σ

k
i

express yk
i as a degeneracy of a non-degenerate cell. By the uniqueness of such a presentation,

we must have yk+1
i · δk+1

i = yi · δ
k
i and σk+1

i = σk
i , and so we have an equality as indicated

above. Therefore we can replace the segment

F(χ, y) (χk, yk) (χk+1,αk+1)
αk αk+1

of the zigzag by

F(χ, y)
(
�a(σ

k) ◦ χk, y · δk
)

(χk+1,αk+1)
δk δk+1

which reduces the problem to the special case treated above. This completes the proof of the
claim. �

Thus by induction, we can turn any zigzag of the form (4.10) into a k-admissible one
for any k. In particular, we may assume that the zigzag is m-admissible so that each object
(λk, χk, yk) is in the image of F. Therefore it suffices to prove that, if (κ, φ, x), (κ′, φ′, x′) ∈ B
and there is a morphism

α : F(κ, φ, x) → F(κ′, φ′, x′)

in C then (κ, φ, x) and (κ′, φ′, x′) lie in the same connected component of B. Note that if
xb : κb λ θ

σ δ is the Reedy factorisation of xb then

id{σ} : (κ, φ, x) → (κ{λ},�a(id{σ}) ◦ φ, x{δ})

is a map in B and F sends it to the identity at F(κ, φ, x). Thus we may assume that xb is
a non-identity face map into θ, and similarly for x′b. We construct the dashed part of the
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following diagram as follows:

ζ �a(κ)

λ κb

�a(κ
′) κ′b θ

φ

φ′

πb

ι

ι′ xb

πb x′
b

(Note that the solid part commutes since α is a morphism in C .) Let s ∈ θ and t ∈ θ be the
images of the first and last objects under the (unique) composite ζ → θ respectively. Let
m0,m1, . . . ,mn ∈ θ be the increasingly ordered list of objects m such that s ≤ m ≤ t and m
is in the images of both xb and x′b. For each 1 ≤ k ≤ n, let f k

0 , f k
1 , . . . , f k

qk ∈ θ(mk−1,mk) be
those 1-cells through which some 1-cell in the image of ζ → θ factors (again increasingly
ordered). Then we set λ = [n; q] ∈ Θ2, and the obvious maps

ζ → λ, ι : λ→ κb, ι′ : λ→ x′b

fit into the above commutative diagram. Now consider the following diagram:

ζ �a(κ) �a(κ{θ})

�a(κ
′{λ}) �a(κ

′{κb})

�a(κ
′) �a(κ

′{θ})

φ

χ

φ′

�a(id{xb})

�a(α{idκb })

�a(α)
�a(id{ι})

�a(id{ι′}) �a(id{xb})

�a(id{x′b})

The perimeter commutes because α is a morphism in C , whereas the bottom quadrangle
commutes because it is the image of the inner square in the previous diagramunder�a(κ

′{−}).
That the right quadrangle commutes is just functoriality of �a. It can be seen from our
construction of κ′b λ κb

ι′ ι and Lemma 4.1.11 that there is a map χ that renders
the whole diagram commutative. Thus the following zigzag in B connects (κ, φ, x) and
(κ′, φ′, x′):

(κ, φ, x)
(
κ′{κb},�a(α{idκb }) ◦ φ, x′{xb}

)
(
κ′{λ}, χ, x′{xb · ι}

) (
κ′{κb},�a(id{ι}) ◦ χ, x′{xb}

)
(
κ′{λ}, χ, x′{x′b · ι

′}
)

(κ′, φ′, x′)

α{idκb }

id{ι}

id{ι′}

This completes the proof. �
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4.3 Some visual concepts
In the next section, we prove that the functor ⊗ = ⊗2 is left Quillen. Note thatI⊗̂I ⊆ cell(I)
is an instance of Lemma 4.2.1. Thus by Corollary 3.4.4, it suffices to show that I⊗̂J ⊆
cell(J) and J⊗̂I ⊆ cell(J).

4.3.1 A low dimensional example
The aim of this subsection is to illustrate our general strategy by considering the special
instance ©­­­­­«

Λ1
h[2; 0,0]

Θ2[2; 0,0]

ª®®®®®¬
⊗̂

©­­­­«
∂Θ2[1; 0]

Θ2[1; 0]

ª®®®®¬
.

By definition, the codomain Θ2[2; 0,0] ⊗ Θ2[1; 0] of this map is the nerve of the 2-category
[2; 0,0] � [1; 0] which looks like

and its domain is the cellular subset

X =
(
Λ

1
h[2; 0,0] ⊗ Θ2[1; 0]

)
∪

(
Θ2[2; 0,0] ⊗ ∂Θ2[1; 0]

)
of Θ2[2; 0,0] ⊗Θ2[1; 0]. The first part Λ1

h[2; 0,0] ⊗Θ2[1; 0] is generated by the nerves of the
sub-2-categories

and

and Θ2[2; 0,0] ⊗ ∂Θ2[1; 0] is generated by the nerves of

and .

We wish to show that X ↪→ Θ2[2; 0,0] ⊗ Θ2[1; 0] is a trivial cofibration. We categorise
the non-degenerate cells in (Θ2[2; 0,0] ⊗ Θ2[1; 0]) \ X into six kinds according to their
“silhouette”. The cells

, , and

have the same silhouette “ ”. Similarly there are four cells of silhouette “ ” and four of
silhouette “ ”. There are two cells

and

of silhouette “ ”, and similarly for “ ”. Finally, the cells

and
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have silhouette “ ”. We can associate a cut-point (= a point that disconnects the shape if
removed) to each silhouette except for the last one as follows:

, , , and

Observe that the set of non-degenerate cells of these “cuttable” silhouettes can then be
partitioned into pairs of the form

{
φ, φ · δ

kφ
h

}
where the kφ-th vertex of φ is the cut-point

associated to the silhouette of φ. We can glue such φ to X along Λkφ
h in increasing order of

dim φ, and then glue the above (1; 2)-cell of silhouette “ ” along Λ1;1
v [1; 2]. This exhibits

the inclusion X ↪→ Θ2[2; 0,0] ⊗ Θ2[1; 0] as a member of cell(Hh ∪Hv).

4.3.2 Silhouettes and cut-points
We will formalise the notions of silhouette and cut-point which were vaguely defined in the
previous subsection. Fix θ1, . . . , θa ∈ Θ2.

Definition 4.3.1. A silhouette σ in ⊗a
(
Θ
θ1
2 , . . . ,Θ

θa
2

)
is a (1; 1)-cell regarded as a pair of

(1; 0)-cells σ = (σ0, σ1) where σ0 = σ · δ
1;1
v is the source and σ1 = σ · δ

1;0
v is the target.1 We

write �σ0 and �σ1 for the underlying shuffles of σ0 and σ1 respectively.

For example, the following picture depicts a silhouette in Θ4;0
2 ⊗ Θ

2;0
2 :

0 1 2 3 4

0

1

2

(4.11)

For each s, t ∈ �a(θ), we put a partial order on the set of silhouettes with endpoints s, t
so that σ ≤ τ if and only if

τ0 ≤ σ0 ≤ σ1 ≤ τ1

holds in the poset�a(θ)(s, t). This should be thought of as the containment relation between
the silhouettes.

Definition 4.3.2. Let σ be a silhouette with endpoints s, t . Then a cut-point in σ is an object
x with s , x , t such that both σ0 and σ1 visit x. We call a silhouette cuttable if it admits a
cut-point.

For example, the silhouette (4.11) has cut-points (1,1), (2,1) and (3,1). The following
proposition follows from Definition 4.1.10.

Proposition 4.3.3. Let σ be a silhouette in �a(θ) with endpoints s, t and let x ∈ �a(θ).
Then x is a cut-point in σ if and only if:

• si ≤ xi ≤ ti for each i (which implies S(s, t) = S(s, x) ∪ S(x, t));

• s , x , t; and

1We are making this distinction between a silhouette and a (1; 1)-cell mainly so that Definitions 4.3.2, 4.3.7
and 4.3.10 do not cause ambiguity.
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• both (i |k) �σ0 ( j |`) and (i |k) �
σ
1 ( j |`) hold for any (i |k) ∈ S(s, x) and ( j |`) ∈ S(x, t).

Definition 4.3.4. A cut-point x in a silhouette σ is right-angled if for any i with si < xi < ti,
either:

• (i |xi + 1) is not the immediate �σ0 -successor of (i |xi); or

• (i |xi + 1) is not the immediate �σ1 -successor of (i |xi).

To continue our example (4.11), the cut-point (2,1) is not right-angled since (1|3) is the
immediate successor of (1|2) with respect to both �σ0 and �σ1 . The other two cut-points (1,1)
and (3,1) are right-angled.

Definition 4.3.5. A silhouette in ⊗a
(
Θ
θ1
2 , . . . ,Θ

θa
2

)
is said to be non-linear if it has endpoints

s and t such that si < ti for at least two i’s.

Lemma 4.3.6. Let σ be a non-linear, cuttable silhouette. Then σ admits a right-angled
cut-point.

Proof. Let s and t denote the endpoints of σ. We will first treat the case where σ0 and
σ1 visit exactly the same set of objects. Note that in this case any object that σ0 visits is a
cut-point in σ. By non-linearity, we must have ( j |`), ( j′|`′) ∈ S(s, t) with j , j′ such that
( j′|`′) is the immediate �σ0 -successor of ( j |`). Then the object x defined by

xi = min
({
(i |k) ∈ S(s, t) : (i |k) �σ0 ( j |`)

}
∪ {si}

)
is a right-angled cut-point.

In the other case, there must be a cut-point x such that σ0 visits a non-cut-point object
y with s , y , t immediately before or immediately after x. Such x then is necessarily
right-angled. �

Note that for any silhouette σ, the set of cut-points in σ admits a total order given by
x ≤ y if and only if xi ≤ yi for each i.

Definition 4.3.7. If σ is a non-linear, cuttable silhouette, then we write cut(σ) for the first
right-angled cut-point in σ (whose existence is guaranteed by Lemma 4.3.6).

4.3.3 Silhouettes of cells
Definition 4.3.8. For any (n; q)-cell φ in ⊗a

(
Θ
θ1
2 , . . . ,Θ

θa
2

)
, the silhouette of φ is

sil(φ) def=
(
φ ·

[
{0,n}; {0}, . . . , {0}

]
, φ ·

[
{0,n}; {q1}, . . . , {qn}

] )
.

For example, if φ is the (3; 1,0,1)-cell

0 1 2 3 4

0

1

2

(4.12)

in Θ4;0
2 ⊗ Θ

2;0
2 then sil(φ) is the silhouette (4.11).



78 The Gray tensor product for 2-quasi-categories

Proposition 4.3.9. Let φ be a non-degenerate cell in ⊗a
(
Θ
θ1
2 , . . . ,Θ

θa
2

)
. Then a face of φ has

the same silhouette as that of φ if and only if it is an inner face.

Definition 4.3.10. A non-degenerate, non-linear cell φ : [n; q] → �a(θ) is said to be:

• potentially cuttable if sil(φ) is cuttable;

• cuttable if it is potentially cuttable and moreover there is k ∈ [n; q] such that φ(k) =
cut

(
sil(φ)

)
; and

• absolutely uncuttable if sil(φ) is not cuttable.

If φ is a cuttable cell, we write cut(φ) for the necessarily unique 0 < k < n satisfying
φ(k) = cut

(
sil(φ)

)
.

Proposition 4.3.11. Let χ be a potentially cuttable cell in ⊗a
(
Θ
θ1
2 , . . . ,Θ

θa
2

)
that is not

cuttable. Then there exists a unique cuttable cell φ such that χ is a cut(φ)-th horizontal face
of φ.

Conversely, if φ is a cuttable (n; q)-cell and δ : [n−1; p] → [n; q] is a cut(φ)-th horizontal
face operator, then φ · δ is potentially cuttable but not cuttable.

Proof. The second part follows from Proposition 4.3.9. We will prove the first part in the
special case where θi = [ni; 0] for each i and χ is a (1; q)-cell. The general case can be treated
similarly and is left to the reader.

In this special case, χ is solely determined by its underlying shuffles �p on S(s, t)
where s, t ∈ �a(θ) are the endpoints of χ. Let x = cut(sil(χ)) and suppose we are given
(i |k) ∈ S(s, x) and ( j |`) ∈ S(x, t). Then �0 = �

sil(χ)
0 and �q = �

sil(χ)
1 by the definition of

sil(χ), hence we have (i |k) �0 ( j |`) and (i |k) �q ( j |`) by Proposition 4.3.3. Thus for any
0 ≤ p ≤ q:

• if i < j then we must have (i |k) �p ( j |`) since �0 � �p;

• if i > j then we must have (i |k) �p ( j |`) for otherwise it contradicts our assumption
that �p � �q; and

• if i = j then (i |k) �0 ( j |`) implies k < ` since �0 is a shuffle, which in turn implies
(i |k) �p (i |`) since �p is a shuffle.

This shows that (i |k) �p ( j |`) holds for any (i |k) ∈ S(s, x), ( j |`) ∈ S(x, t) and 0 ≤ p ≤ q.
Define two equivalence relations ∼1, ∼2 on the set [q] so that:

• p ∼1 p′ if and only if �p and �p′ restrict to the same shuffle on S(s, x); and

• p ∼2 p′ if and only if �p and �p′ restrict to the same shuffle on S(x, t).

Then the desired cuttable cell φ is the obvious (2; q1,q2)-cell where [q1] � [q]/∼1 and
[q2] � [q]/∼2. �

Definition 4.3.12. In the situation of Proposition 4.3.11, we say φ is the cuttable parent of
χ.
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Lemma 4.3.13. Let fi : X i → Θ
θi
2 be a monomorphism in Θ̂2 for each i, and let χ be a

potentially cuttable cell in ⊗a
(
Θ
θ1
2 , . . . ,Θ

θa
2

)
that is not cuttable. Then χ is in the image of

the monomorphism

⊗a( f1, . . . , fa) : ⊗a(X1, . . . ,Xa) → ⊗a
(
Θ
θ1
2 , . . . ,Θ

θa
2

)
if and only if the cuttable parent of χ is in the image.

Proof. This follows from Lemma 4.1.11. �

Remark. Lemma 4.3.13 relies crucially on the fact that cut(σ) is right-angled. For example,
if we had defined cut(sil(φ)) = (2,1) for the (3; 1,0,1)-cell φ from (4.12) then φ is in the
image of

δ2
h ⊗ id : Θ3;0

2 ⊗ Θ
2;0
2 → Θ

4;0
2 ⊗ Θ

2;0
2

whereas its parent

is not. On the other hand, the fact that cut(σ) is the first one among all right-angled cut-points
is not really necessary. Any right-angled cut-point would suffice for our purposes, and we
are choosing the first one purely for the sake of definiteness.

4.4 ⊗2 is left Quillen
This section is devoted to proving the following theorem.

Theorem 4.4.1. The binary Gray tensor product functor ⊗ = ⊗2 is left Quillen.

Proof. By Corollary 3.4.4, it suffices to prove that the map f ⊗̂g is a cofibration if f ,g ∈ I
and it is a trivial cofibration if one of f and g is in I and the other is in J . The first part is an
instance of Lemma 4.2.1, and the second part follows from Lemmas 4.4.2 to 4.4.4 and 4.4.7
proved below (and their duals). �

4.4.1 Inner horizontal horn inclusion ⊗̂ boundary inclusion
Let [m; p], [n; q] ∈ Θ2 and let 1 ≤ k ≤ m − 1. The aim of this subsection is to prove the
following lemma.

Lemma 4.4.2. The map(
Λ

k
h[m; p] ↪→ Θ2[m; p]

)
⊗̂
(
∂Θ2[n; q] ↪→ Θ2[n; q]

)
is in cell(Hh ∪Hv).

Proof. We will denote this map by A ↪→ B. It is a monomorphism by Lemmas 2.2.11
and 4.2.1 so we may regard A as a cellular subset of B = N

(
[m; p] � [n; q]

)
. Since the case

[n; q] = [0] is trivial, we will assume n ≥ 1.
Let A′ ⊂ B be the cellular subset generated by A and the (potentially) cuttable cells.

Note that any cell in B \ A is non-linear. Moreover, it follows from Proposition 4.3.11
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k

k′

f0 fsφ

fr

(w, k′)

(k, k′)

(k, z)

; g

�sφ -initial segment

�sφ -terminal segment

Figure 4.1: Example: [m; p] = [n; q] = [3; 0] and k = 2.

and Lemma 4.3.13 that the set of non-degenerate cells in A′ \ A can be partitioned into
subsets of the form {

φ and all of its cut(φ)-th horizontal faces
}

where φ is a cuttable cell. We prove that A′ may be obtained from A by gluing cuttable φ
along the inner horn Λcut(φ)

h in lexicographically increasing order of sil(φ) and dim(φ). That
is, given two cuttable cells χ and φ, we glue χ before φ if:

• sil(χ) < sil(φ); or

• sil(χ) = sil(φ) and dim(χ) < dim(φ).

Fix a cuttable cell φ in A′ \ A. We must check that all hyperfaces of φ except for the cut(φ)-th
horizontal ones are contained either in A or in some cuttable χ satisfying one of the two
conditions described above. Indeed, all outer hyperfaces of φ have smaller silhouettes than
φ, and all inner hyperfaces χ of φ except for the cut(φ)-th horizontal ones are cuttable and
satisfy sil(χ) = sil(φ) and dim(χ) < dim(φ). Thus the inclusion A ↪→ A′ is in cell(Hh).

Now we consider an absolutely uncuttable cell φ in B with endpoints (0,0) and (m,n)
(which may or may not be contained in A). Such φ is necessarily a (1; r)-cell for some r ≥ 1.
Thus φ can be identified with a chain f0 < · · · < fr in the poset

(
[m; p]� [n; q]

) (
(0,0), (m,n)

)
.

For each 0 ≤ s ≤ r , we write �s for the underlying shuffle of fs.
Let k′ ∈ [n] be the largest element such that fr visits (k, k′). Note that we must have

k′ < n for otherwise (k, k′) = (k,n) would be a cut-point in sil(φ). Define sφ to be the largest
element s ∈ [r] such that

(2|k′ + 1) �s (1|k)

holds; equivalently, sφ is the largest s such that fs does not visit (k, k′) (see Fig. 4.1). Such sφ
indeed exists for otherwise (k, k′) is a cut-point in sil(φ).

We will construct the “best approximation” g to fsφ that visits (k, k′). Let w ∈ [m] be
the maximum such that fsφ visits (w, k′) and let z ∈ [n] be the minimum such that fsφ visits
(k, z). Then we must have 0 ≤ w < k and k′ < z ≤ n. Now let g : (0,0) → (m,n) be the
1-cell determined by the following conditions:

• both of the projections [m; p] ← [m; p] � [n; q] → [n; q] send g and fsφ to the same
1-cell; and

• the underlying shuffle � of g is obtained by patching together the following (see
Fig. 4.1):

– the �sφ -initial segment up to just before (2|k′ + 1);
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– the �sφ -terminal segment starting just after (1|k); and
– the interval

(1|w + 1) � (1|w + 2) � . . . � (1|k) � (2|k′ + 1) � (2|k′ + 2) � . . . � (2|z).

These data indeed specify a unique 1-cell by Lemma 4.1.7, and moreover it is easy to see that
fsφ < g ≤ fsφ+1 holds in the hom-poset. Consider the following condition on φ:

(hh) fsφ+1 = g.

(Here “hh” stands for “horizontal horn”.)
It is obvious that the set of absolutely uncuttable cells in B with endpoints (0,0) and (m,n)

can be partitioned into pairs of the form
{
φ, φ · δ

1;sφ+1
v

}
where φ satisfies (hh). Note that if

φ satisfies (hh) then sφ + 1 , r since fsφ+1 visits (k, k′ + 1) while fr does not. Also we have
sφ + 1 , 0 since sφ ≥ 0.

Claim. A cell φ satisfying (hh) is contained in A′ (or equivalently in A) if and only if φ ·δ1;sφ+1
v

is contained in A′ (or equivalently in A).

Proof of the claim. The “only if” part is obvious. For the “if” part, we first treat the case
where φ · δ1;sφ+1

v is contained in the cellular subset Θ2[m; p] ⊗ ∂Θ2[n; q]. For most hyperface
maps δ into [n; q], if φ · δ1;sφ+1

v is contained in the image of some id ⊗ δ then we can apply
Lemma 4.1.11 twice to deduce that φ is in the image of same map, using the fact that the
1-cell g constructed above is “almost” fsφ . The only non-trivial sub-case is when φ · δ1;sφ+1

v

is in the image of

id ⊗ δk ′;〈α,α′〉
h : Θ2[m; p] ⊗ Θ2[n − 1; q′] → Θ2[m; p] ⊗ Θ2[n; q]

for some (qk,qk+1)-shuffle 〈α,α′〉. Here the same argument does not apply since it may be
possible that (2|k′ + 1) is the immediate successor of (2|k′) with respect to �sφ but not with
respect to �. However, we have

(2|k′) �r (1|k + 1) �r (2|k′ + 1)

by our definition of k′ which implies that φ · δ1;sφ+1
v is never contained in the image of

id ⊗ δk ′;〈α,α′〉
h .

Next, suppose that φ · δ1;sφ+1
v is contained in the cellular subset Λk

h[m; p] ⊗ Θ2[n; q].
Note that, by construction of g, if g visits two distinct objects (`, `′) and (`, `′′) for some
` but fsφ does not then we must have ` = k. Since all of the generating hyperfaces in
Λk

h[m; p] ⊗ Θ2[n; q] contain the object k, it follows from Lemma 4.1.11 that φ is contained
in Λk

h[m; p] ⊗ Θ2[n; q]. �

We prove that B may be obtained from A′ by gluing those (1; r)-cells φ in B\ A′ satisfying
(hh) along the inner horn Λ1;sφ+1

v [1; r] in lexicographically increasing order of sil(φ), dim(φ)
and sφ. We must check that, for any such φ, all of its hyperfaces except for the (1; sφ + 1)-th
vertical one are contained either in A′ or in some cell χ satisfying (hh) such that:

• sil(χ) < sil(φ);

• sil(χ) = sil(φ) and dim(χ) < dim(φ); or
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• sil(χ) = sil(φ), dim(χ) = dim(φ) and sχ < sφ.

Indeed:

• φ · δ1;0
v and φ · δ1;r

v have smaller silhouettes than sil(φ);

• if sφ , 0 then φ · δ1;sφ
v :

– is contained in A′;
– satisfies (hh); or
– is of the form φ·δ

1;sφ
v = χ ·δ

1;sχ+1
v for some cell χ satisfying (hh)which necessarily

has dim χ = dim φ and sχ = sφ − 1; and

• for any other value of s, the hyperface φ · δ1;s
v :

– is contained in A′; or
– satisfies (hh) and has dimension strictly smaller than dim(φ).

This completes the proof. �

4.4.2 Inner vertical horn inclusion ⊗̂ boundary inclusion
Let [m; p], [n; q] ∈ Θ2, 1 ≤ k ≤ m and 1 ≤ i ≤ pk − 1. In this subsection, we will prove the
following lemma.

Lemma 4.4.3. The map(
Λ

k;i
v [m; p] ↪→ Θ2[m; p]

)
⊗̂
(
∂Θ2[n; q] ↪→ Θ2[n; q]

)
is in cell(Hh ∪Hv).

Proof. We will regard this map as a cellular subset inclusion and denote it as A ↪→ B. Since
the case [n; q] = [0] is trivial, we will assume n ≥ 1.

Similarly to the proof of Lemma 4.4.2, we can show that gluing the cuttable cells φ to A
along the inner horn Λcut(φ) in lexicographically increasing order of sil(φ) and dim(φ) yields
the cellular subset A′ ⊂ Θ2[m; p] ⊗ Θ2[n; q] generated by A and the (potentially) cuttable
cells.

Temporary definition. For any 1-cell f : (0,0) → (m,n) in [m; p] � [n; q] and for any
1 ≤ ` ≤ m, the composite

[1; 0] [m; p] � [n; q] [m; p]f π1

corresponds to a cellular operator [{0,m}; α] : [1; 0] → [m; p]. We will write f � ` for
α`(0) ∈ [p`].

Let φ be a non-degenerate (1; r)-cell in B \ A′ (which necessarily has endpoints (0,0) and
(m,n)) corresponding to 1-cells f0, . . . , fr : (0,0) → (m,n)with underlying shuffles �0, . . . ,�r
respectively. Let

sφ
def
= max

{
s : fs� k = i − 1

}
.

To see that this is well-defined, observe that if fs � k , i − 1 for all 0 ≤ s ≤ r then φ is
contained in the image of δk;i−1

v ⊗ id which contradicts our assumption that φ is not in A′.
We construct the “best approximation” g to fsφ with g� k = i. Let g : (0,0) → (m,n) be

the 1-cell determined by the following conditions:
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• the second projection [m; p] � [n; q] → [n; q] sends fsφ and g to the same 1-cell;

• fsφ and g have the same underlying shuffle; and

• g�` =

{
i if ` = k,

fsφ�` otherwise.

Then clearly we have fsφ < g ≤ fsφ+1. Consider the following condition on φ:

(vh) fsφ+1 = g.

Note that if φ satisfies (vh) then sφ + 1 , r since fsφ+1� k = i while fr� k = pk . Also we have
sφ + 1 , 0 since sφ ≥ 0.

It can be easily checked using Lemma 4.1.11 that the set of non-degenerate cells in B \ A′

can be partitioned into pairs of the form{
φ, φ · δ

1;sφ+1
v

}
where φ is a (1; r)-cell satisfying (vh). We claim that B may be obtained from A′ by gluing
such φ along the inner horn Λ1;sφ+1

v [1; r] in lexicographically increasing order of sil(φ),
dim(φ) and sφ. Indeed, for any such φ:

• φ · δ1;0
v and φ · δ1;r

v have smaller silhouettes than sil(φ);

• if sφ , 0 then φ · δ1;sφ
v is:

– contained in A′; or

– of the form φ · δ
1;sφ
v = χ · δ

1;sχ+1
v for some cell χ satisfying (vh) which necessarily

has sil(χ) = sil(φ), dim(χ) = dim(φ) and sχ = sφ − 1; and

• for any other value of s, the hyperface φ · δ1;s
v :

– is contained in A′; or
– satisfies (vh) and has dimension strictly smaller than dim(φ).

This completes the proof. �

4.4.3 Vertical equivalence extension ⊗̂ boundary inclusion
Any unlabelled map of the form Θ2[1; 0] ↪→ Θ2[1; J] in this subsection is assumed to be
[id; e], which looks like:  �

♦

�

 ↪→
 �

♦

�


Fix [n; q] ∈ Θ2. We will prove the following lemma in this subsection.

Lemma 4.4.4. The map(
Θ2[1; 0] ↪→ Θ2[1; J]

)
⊗̂
(
∂Θ2[n; q] ↪→ Θ2[n; q]

)
is a trivial cofibration.
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Wewill first analyse theGray tensor productΘ2[1; J]⊗Θ2[n; q]. LetJv be the 2-category
whose object set is {0,1} and whose hom-categories are

Jv(0,0) = [0],
Jv(1,1) = [0],
Jv(0,1) = {♦ � �},
Jv(1,0) = �

so that we have NJv � Θ2[1; J]. The following lemma can be proved in essentially the
same way as Lemma 4.1.7.

Lemma 4.4.5. The square

Jv � [n; q] [1; 0] � [n; q]

Jv × [n; q] [1; 0] × [n; q]

〈π1,π2〉 〈π1,π2〉

is a pullback in 2-Cat, where the horizontalmaps are induced by the unique identity-on-objects
2-functor Jv → [1; 0].

For any 2-categories A and B, a ζ-cell in the Gray tensor product NA ⊗ NB is
represented (non-uniquely) by θ1, θ2 ∈ Θ2 together with three 2-functors

φ : ζ → θ1 � θ2,

χ1 : θ1 → A ,

χ2 : θ2 → B.

Such 2-functors may be combined into a single 2-functor

ζ θ1 � θ2 A �B
φ χ1�χ2

which corresponds to a ζ-cell in N(A �B). This defines a comparison map

NA ⊗ NB → N(A �B).

Lemma 4.4.6. The comparison map

Θ2[1; J] ⊗ Θ2[n; q] → N
(
Jv � [n; q]

)
is invertible.

Proof. Observe that Θ2[1; J] may be obtained from Θ2[0] q Θ2[0] by gluing two copies of
Θ2[1; r] along the boundary for each r ≥ 0 in increasing order of r . Since the functor ⊗
preserves colimits in each variable, it follows that Θ2[1; J] ⊗ Θ2[n; q] may be obtained from
Θ2[n; q] q Θ2[n; q] by gluing two copies of Θ2[1; r] ⊗ Θ2[n; q] along ∂Θ2[1; r] ⊗ Θ2[n; q]
for each r ≥ 0. This presentation of Θ2[1; J] ⊗ Θ2[n; q] can be made more explicit using
Lemma 4.1.11, and comparing it to Lemma 4.4.5 yields the desired result. �
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Proof of Lemma 4.4.4. We will regard the map(
Θ2[1; 0] ↪→ Θ2[1; J]

)
⊗̂
(
∂Θ2[n; q] ↪→ Θ2[n; q]

)
as a cellular subset inclusion and denote it by A ↪→ B. Let

P : Θ2[1; J] ⊗ Θ2[n; q] → Θ2[1; 0] ⊗ Θ2[n; q]

be the map induced by the unique mapΘ2[1; J] → Θ2[1; 0] that is bijective on 0-cells. Given
any cell φ in B, we will write sil(φ) for sil(P(φ)) and say φ is non-linear, (potentially) cuttable
or absolutely uncuttable if P(φ) is so. If φ is a non-linear cuttable cell, we write cut(φ) for
cut(P(φ)). Let A′ ⊂ B be the cellular subset generated by A and the (potentially) cuttable cells.
Then one can prove, using the obvious analogues of Lemma 4.3.6 and Proposition 4.3.11,
that the inclusion A ↪→ A′ is in cell(Hh).

Now we consider the absolutely uncuttable cells φ in B \ A′. By Lemmas 4.4.5 and 4.4.6,
any (1; r)-cell φ with endpoints (0,0) and (1,n) is uniquely determined by:

• a chain �0 � · · ·� �r in the poset S
(
(0,0), (1,n)

)
;

• a chain f0 ≤ · · · ≤ fr in the poset [q1] × · · · × [qn]; and

• a sequence (ε0, . . . , εr) in {♦,�}.

Since φ is not contained in A′, we must have εs = � for at least one s. Thus

sφ
def
= max{s : εs = �}

is well-defined. Consider the following condition on φ:

(ve) sφ < r , �sφ+1 = �sφ and fsφ+1 = fsφ .

Note that, since we are assuming φ to be (absolutely uncuttable and hence) non-degenerate,
(ve) implies εsφ+1 = ♦. It also implies r ≥ 2 for otherwise �sφ+1 = �sφ is the only underlying
shuffle of φ which contradicts our assumption that φ is absolutely uncuttable.

Clearly the set of non-degenerate cells in B \ A′ can be partitioned into pairs of the form{
φ, φ · δ

1;sφ+1
v

}
where φ is a (1; r)-cell satisfying (ve). We claim that B may be obtained from A′ by gluing
such φ along the horn Λ1;sφ+1

v [1; r] in lexicographically increasing order of dim(φ) and sφ.
Indeed, for any (1; r)-cell φ satisfying (ve):

• φ · δ
1;sφ
v :

– is contained in A′;
– is degenerate;
– satisfies (ve); or

– is of the form φ·δ
1;sφ
v = χ ·δ

1;sχ+1
v for some cell χ satisfying (ve) which necessarily

has dim(χ) = dim(φ) and sχ < sφ; and

• φ · δ1;s
v where sφ , s , sφ + 1 is:
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– contained in A′; or
– a (possibly trivial) degeneracy of some cell χ satisfying (ve) which necessarily
has dim(χ) < dim(φ).

The horn Λ1;sφ+1
v [1; r] is not necessarily inner since sφ + 1 may be equal to r . Nevertheless,

in that case the outer horn is a special one in the sense that the composite map

Λ
1;sφ+1
v [1; r] = Λ1;r

v [1; r] Θ2[1; r] Θ2[1; J] ⊗ Θ2[n; q]φ

can be extended to one from Λ̃1;r
v [1; r] as defined in Section 3.5. Moreover, the images of the

cells in Λ̃1;r
v [1; r] \ Λ1;r

v [1; r] are cuttable and hence contained in A′. Since the special outer
horn inclusions Λ̃1;r

v [1; r] ↪→ Θ̃1;r
2 [1; r] are trivial cofibrations by the dual of Lemma 3.5.6, we

can deduce that the inclusion A′ ↪→ B is a trivial cofibration. This completes the proof. �

4.4.4 Horizontal equivalence extension ⊗̂ boundary inclusion
Recall that the monomorphism e : Θ2[0] ↪→ J is (isomorphic to) the nerve of the inclusion

{♦} ↪→ {♦ � �} =Jh.

We will prove the following lemma in this subsection.

Lemma 4.4.7. The map (
Θ2[0]

e
↪→ J

)
⊗̂
(
∂Θ2[n; q] ↪→ Θ2[n; q]

)
is a trivial cofibration for any [n; q] ∈ Θ2.

First we analyse the Gray tensor product J ⊗ Θ2[1; q] for q ≥ 0. Consider the (2-
categorical) Gray tensor product Jh � [1; q]. Its object set is obviously {♦,�} × {0,1}.

Lemma4.4.8. For any?,?′ ∈ {♦,�} and for any k, ` ∈ {0,1}, the hom-category ofJh�[1; q]
is given by

(
Jh � [1; q]

) (
(?, k), (?′, `)

)
�


[0] if k = `,

{· � ·} × [q] if k = 0 and ` = 1,
� if k = 1 and ` = 0.

Proof. The proof is similar to that of Lemma 4.1.7. The inverse to a generating 2-cell of the
form

(♦,0)

(♦,1)

(�,0)

(�,1)

(♦, p) (�, p)
γ

is obtained by whiskering the 2-cell

(♦,0)

(♦,1)

(�,0)

(�,1)

(♦, p) (�, p)
γ

with the obvious 1-cells. �



4.4 ⊗2 is left Quillen 87

Lemma 4.4.9. The comparison map

J ⊗ Θ2[1; q] → N(Jh � [1; q])

is invertible for any q ≥ 0.

Proof. For the sake of simplicity, we will only prove that the comparison map acts bijectively
on the (1; r)-cells with endpoints (♦,0) and (�,1); the general case can be treated similarly.
By Lemma 4.4.8, such (1; r)-cells correspond to those sequences in {L,R} × [q] of length
r + 1 that are increasing in the second coordinate; here L and R correspond to 1-cells of the
form

(♦,0)

(♦,1) (�,1)

and

(♦,0) (�,0)

(�,1)

respectively.
Observe that J has precisely two non-degenerate (d; 0)-cells ed

♦, e
d
� for each d ≥ 0 where

ed
? · [{0}] = ? for? ∈ {♦,�}. Thus J ⊗Θ2[1; q]may be obtained from � by gluing two copies
ofΘ2[d; 0] ⊗Θ2[1; q] along ∂Θ2[d; 0] ⊗Θ2[1; q] in increasing order of d. By Lemma 4.1.11,
a sequence of 2-cells

f0 ⇒ · · · ⇒ fr

in [d; 0]� [1; q] corresponds to a (1; r)-cell in
(
Θ2[d; 0] ⊗Θ2[1; q]

)
\
(
∂Θ2[d; 0] ⊗Θ2[1; q]

)
if and only if:

• fs : (0,0) → (d,1) for each s; and

• for each 1 ≤ c ≤ d − 1, there exists 0 ≤ s ≤ r such that �s visits both (c,0) and (c,1).

There are four kinds of such cells, depending on whether f0 visits (0,1) and whether fr visits
(d,0) (see Fig. 4.2). The images of these cells under

ed
? ⊗ id : Θ2[d; 0] ⊗ Θ2[1; q] → J ⊗ Θ2[1; q]

have endpoints (♦,0) and (�,1) if and only if ? = ♦ and d = 2d′ + 1 is odd. Moreover, in
such case e2d ′+1

♦ ⊗ id sends these cells bijectively to those sequences in {L,R} × [q] for which
“RL” appears exactly d′ times in their first projections (which are sequences in {L,R}). This
completes the proof. �

Remark. Lemma 4.4.8 can be generalised in the obvious way to general [n; q] ∈ Θ2 (in place
of [1; q]), but Lemma 4.4.9 is no longer true if we replace [1; q] by [n; q] with n ≥ 2. For
example, consider the (1; 2)-cell

in Θ2[2; 0] ⊗Θ2[2; 0]. For each? ∈ {♦,�}, the image of this cell under e2
? ⊗ id is an example

of a non-degenerate cell in J ⊗ Θ2[2; 0] that is sent to a degenerate one by the comparison
map

J ⊗ Θ2[2; 0] → N
(
Jh � [2; 0]

)
.
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Figure 4.2: Cells in Θ2[d; 0] ⊗ Θ2[1; q]

In general, the cellular set J ⊗ Θ2[n; q] does not seem to admit a simple description.
Therefore the rest of our proof of Lemma 4.4.7 will be less combinatorial compared to those
of Lemmas 4.4.2 to 4.4.4.

We will make use of the following result of Campbell.

Theorem 4.4.10 ([Cam, Theorem 10.11]). A 2-functor B → C is a biequivalence if and
only if its nerve NB → NC is a weak equivalence of cellular sets.

Proof of Lemma 4.4.7. Fix [n; q] ∈ Θ2, and let D be the full subcategory of the category
of elements of Ξ[n; q] spanned by the non-degenerate cells. Then D has an obvious Reedy
category structure in which every map is degree-raising. Since D has no degree-lowering
maps, the diagonal functor Θ̂2 →

[
D, Θ̂2

]
is trivially right Quillen. Now both composites

D Θ2 Θ̂2 Θ̂2

D Θ2 Θ̂2 Θ̂2

Yoneda J⊗(−)

Yoneda J×(−)

(where D → Θ2 is the canonical projection) can be easily checked to be Reedy cofibrant
by direct calculation. Moreover, there is a natural transformation between them whose
components are given by

J ⊗ Θ2[0] � J � J × Θ2[0]
for objects of degree 0, and

J ⊗ Θ2[1; q] � N
(
Jh � [1; q]

)
→ N

(
Jh × [1; q]

)
� J × Θ2[1; q]

for objects of degree q + 1 (with q ∈ {0,1}), where the middle map is the nerve of the
obvious 2-functor. It is easy to check that Jh � [1; q] → Jh × [1; q] is a biequivalence,
and hence its nerve is a weak equivalence by Theorem 4.4.10. Thus by taking the colimit,
we can conclude that J ⊗ Ξ[n; q] → J ×Ξ[n; q] is a weak equivalence. This map fits into the
following commutative square:

J ⊗ Ξ[n; q] J × Ξ[n; q]

J ⊗ Θ2[n; q] J × Θ2[n; q]

〈π1,π2〉

〈π1,π2〉
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Moreover, the right vertical map is a trivial cofibration because Ara’s model structure is
cartesian [Ara14, Corollary 8.5], and the left vertical map is so by Lemmas 3.1.2, 4.4.2
and 4.4.3. Therefore 〈π1, π2〉 : J ⊗ Θ2[n; q] → J × Θ2[n; q] is a weak equivalence.

Finally, we prove the statement of the lemma by induction on dim [n; q]. The base case is
trivial. For the inductive step, consider the following commutative diagram:

Θ2[0] ⊗ Θ2[n; q] Θ2[0] × Θ2[n; q]

(
Θ2[0] ⊗ Θ2[n; q]

)
∪

(
J ⊗ ∂Θ2[n; q]

)
J ⊗ Θ2[n; q] J × Θ2[n; q]

〈π1,π2〉

e×id

〈π1,π2〉

Here the upper horizontal map is an isomorphism, the lower horizontal map is a weak
equivalence as we have just proved, and the right vertical map is a trivial cofibration since
Ara’s model structure is cartesian. Moreover, the upper left vertical map can be obtained by
composing pushouts of maps of the form(

Θ2[0]
e
↪→ J

)
⊗̂
(
∂Θ2[m; p] ↪→ Θ2[m; p]

)
with dim [m; p] < dim [n; q], hence it is a trivial cofibration by the inductive hypothesis.
Thus the desired result follows by the 2-out-of-3 property. �

4.5 Monoidal structure up to homotopy
In this section, we will prove that the Gray tensor product forms an up-to-homotopy monoidal
structure on Θ̂2 in an appropriate sense. Let us first illustrate why it is not a genuine monoidal
structure, or more specifically, how it fails to be associative up to isomorphism. One would
expect the Gray tensor product of three copies of Θ2[1; 0] to “be” the commutative cube:

=

Indeed, the “total” tensor product B = ⊗3
(
Θ2[1; 0],Θ2[1; 0],Θ2[1; 0]

)
is by definition the

nerve of this 2-category. Now consider the nested tensor product

A = ⊗2

(
⊗2

(
Θ2[1; 0],Θ2[1; 0]

)
,Θ2[1; 0]

)
.

The binary tensor product ⊗2
(
Θ2[1; 0],Θ2[1; 0]

)
is the nerve of the 2-category
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and hence it has the following maximal non-degenerate cells:

Thus A is obtained by pasting together the nerves of two copies of [2; 0]� [1; 0] and one copy
of [1; 1] � [1; 0] appropriately. In fact, A turns out to be (isomorphic to) the cellular subset
of B generated by the nerves of the following sub-2-categories:

=

Informally speaking, a cell in B is contained in B \ A if and only if it remembers both of:

• the decomposability of a 1-cell of shape or ; and

• the existence of the top or bottom face of the cube.

For example, the following (1; 1)-cell is not contained in A:

(4.13)

Here we can “see” the top face of the cube, and moreover the vertical segment in the lower
path “remembers” that is decomposable. This geometric intuition is formalised in
Theorem 4.5.4. There is a similar description of the other nested tensor product

A′ = ⊗2

(
Θ2[1; 0],⊗2

(
Θ2[1; 0],Θ2[1; 0]

) )
as a cellular subset of B, and it is easy to see that A � A′.

Now, although A and A′ are not isomorphic to each other, they both admit an inclusion
into B. In general, we always have a comparison map from a nested tensor product to the
corresponding total tensor product. The functors ⊗a together with these comparison maps
form a normal lax monoidal structure on the category Θ̂2 (Proposition 4.5.2). Moreover
the (relative version of the) comparison maps are trivial cofibrations, hence the Gray tensor
product is associative up to homotopy. As a bonus, this associativity can be used to upgrade
Theorem 4.4.1 (which states that the binary Gray tensor product is left Quillen) to the general
a-ary version.

4.5.1 Lax monoidal structure
Definition 4.5.1. A lax monoidal structure on a category C consists of:

• a functor �a : C a → C for each a ∈ N;

• a natural transformation ι : idC → �1; and
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• a natural transformation

µb1,...,ba : �a
(
�b1, . . . ,�ba

)
→ �b1+···+ba

for each a, b1, . . . , ba ∈ N

such that the following diagrams commute:

�a �1(�a) �a(�1, . . . ,�1) �a

�a �a

ι�a

id
µa µ1,...,1

�a(ι,...,ι)

id

�c11+···+caba

�a
(
�b1(�c11, . . . ,�c1b1

), . . . ,�ba(�ca1, . . . ,�caba )
)

�b1+···+ba(�c11, . . . ,�caba )

�a(�c11+···+c1b1
, . . . ,�ca1+···+caba )

µc11,...,caba

µc11+···+c1b1,...,ca1+···+caba

µb1,...,ba

�a(µc11,...,c1b1
, . . . , µca1,...,caba )

Such a lax monoidal structure is called normal if ι is invertible.

Remark. A lax monoidal structure on C is equivalently a lax algebra structure on C for the
2-monad on Cat whose strict algebras are the strict monoidal categories.

Proposition 4.5.2. The Gray tensor product functors ⊗a are part of a normal lax monoidal
structure on Θ̂2.

Proof. Since we chose ⊗1 to be id
Θ̂2
, we may take ι = idid

Θ̂2
. The transformation µ is defined

on the representables as follows. Recall that each κ-cell in

⊗a

(
⊗b1

(
Θ
θ11
2 , . . . ,Θ

θ1b1
2

)
, . . . ,⊗ba

(
Θ
θa1
2 , . . . ,Θ

θaba
2

))
is (non-uniquely) represented by ζ1, . . . , ζa ∈ Θ2 together with 2-functors

φ : κ → �a(ζ1, . . . , ζa)

φi : ζi → �bi (θi1, . . . , θibi )

for 1 ≤ i ≤ a. Then µb1,...,ba sends this cell to the κ-cell in

⊗b1+···+ba

(
Θ
θ11
2 , . . . ,Θ

θaba
2

)
represented by the 2-functor

κ �a(ζ1, . . . , ζa) �b1+···+ba(θ11, . . . , θaba).
φ �a(φ1,...,φa)

That µ is well-defined, natural, and satisfies the coherence conditions is all straightforward
to check. �
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4.5.2 The comparison map µ
Fix a, b1, . . . , ba ∈ N, and let b =

∑a
u=1 bu. Let θi ∈ Θ2 for 1 ≤ i ≤ b. We will show that

µ = (µb1,...,ba)Θθ1
2 ,...,Θ

θb
2

: A→ B

is a monomorphism and moreover characterise its image, where

A = ⊗a

(
⊗b1

(
Θ
θ1
2 , . . . ,Θ

θb1
2

)
, . . . ,⊗ba

(
Θ
θb−ba+1
2 , . . . ,Θθb2

))
,

B = ⊗b

(
Θ
θ1
2 , . . . ,Θ

θb
2

)
= N

(
�b(θ1, . . . , θb))

Let ρ : {1, . . . , b} → {1, . . . ,a} denote the unique function such that∑
u<ρ(i)

bu < i ≤
∑

u≤ρ(i)

bu

for each 1 ≤ i ≤ b. Informally speaking, for each 1 ≤ i ≤ b, the i-th factor is contained in
the ρ(i)-th “subtensor”.

Definition 4.5.3. Let φ be a (1; q)-cell in B with endpoints s, t and underlying shuffles �p.
We say φ is pure if, for each pair (i |k), ( j |`) ∈ S(s, t) with ρ(i) = ρ( j), at least one of the
following holds:

(i) (i |k) �p ( j |`) for all 0 ≤ p ≤ q;

(ii) (i |k) �p ( j |`) for all 0 ≤ p ≤ q; or

(iii) for any (m|n) ∈ S and for any 0 ≤ p ≤ q, if

(i |k) �p (m|n) �p ( j |`) or (i |k) �p (m|n) �p ( j |`)

then ρ(m) = ρ(i).

More generally, call an (n; q)-cell φ in B pure if, for each 1 ≤ k ≤ n, the (1; qk)-cell φ · ηk
h is

pure in the above sense. (See Definition 2.1.11 for the definition of ηk
h .)

If we take a = 2, b1 = 2, b2 = 1 and θ1 = θ2 = θ3 = [1; 0] then we recover the example
considered at the beginning of this section. In this case, the (1; 1)-cell (4.13) which has

(2|1) �0 (3|1) �0 (1|1),
(1|1) �1 (2|1) �1 (3|1)

is not pure; consider (i |k) = (1|1) and ( j |`) = (2|1).
The rest of this subsection is devoted to proving the following theorem.

Theorem 4.5.4. The map µ : A → B is a monomorphism, and its image consists precisely
of the pure cells.

Proof. Every cell in the image µ(A) is pure by Lemma 4.5.5. That every pure cell is in the
image of µ(A) follows from Lemmas 4.5.6 and 4.5.7. Finally, the map µ is a monomorphism
by Lemma 4.5.8. �

Lemma 4.5.5. Every cell in the image µ(A) is pure.
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Proof. It suffices to check the (1; q)-cells. So consider a (1; q)-cell φ in the image of µ; that
is, φ is a (1; q)-cell in B and admits a factorisation

φ : [1; q] �a(ζ1, . . . , ζa) �b(θ1, . . . , θb).
χ �a(ψ1,...,ψa) (4.14)

Given (i |k), ( j |`) ∈ S with ρ(i) = ρ( j) = u, let x, y ∈ ζu be the unique objects such that
πi ◦ ψu(x − 1) < k ≤ πi ◦ ψu(x),
π j ◦ ψu(y − 1) < ` ≤ π j ◦ ψu(y).

Then we must have precisely one of the following:
• x < y, in which case the pair (i |k), ( j |`) satisfies Definition 4.5.3(i);

• x > y, in which case the pair satisfies (ii); or

• x = y, in which case the pair satisfies (iii).
This completes the proof. �

Lemma 4.5.6. An (n; q)-cell φ in B is contained in µ(A) if and only if φ · ηk
h is contained in

µ(A) for each 1 ≤ k ≤ n.
Proof. In this proof, we say a factorisation of the form (4.14) is nice if the composite

[1; q] �a(ζ1, . . . , ζa) ζu
χ πu

preserves the first and last objects for each 1 ≤ u ≤ a. Note that any factorisation of the form
(4.14) can be made into a nice one by replacing each ζu by the appropriate horizontal face.

Now let φ be an (n; q)-cell such that each φ · ηk
h admits a factorisation

[1; qk] �a(ζ
k
1 , . . . , ζ

k
a ) �b(θ1, . . . , θb)

χk �a(ψ
k
1 ,...,ψ

k
a)

which we may assume to be nice. Then we can factorise φ as

φ : [n; q] �a(ζ1, . . . , ζa) �b(θ1, . . . , θb)
χ �a(ψ1,...,ψa)

where ζu is obtained by concatenating ζ k
u ’s, or more precisely by taking the colimit of

[0]

ζ1
u ζ2

u ζn
u

in 2-Cat, ψu is the induced map from this colimit, and χ is obtained by taking the colimit of
the top zigzag in the following diagram:

�a(ζ
1
1 , . . . , ζ

1
a )

[1; q1]

[0]

�a(ζ1, . . . , ζa)

�a(ζ
2
1 , . . . , ζ

2
a )

[1; q2] [1; qn]

�a(ζ
n
1 , . . . , ζ

n
a )

χ1 χ2 χn
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Thus φ is in µ(A). �

Lemma 4.5.7. Every pure (1; q)-cell in B is contained in µ(A).

We will prove this lemma by constructing a factorisation of the form (4.14) for each pure
(1; q)-cell φ. The intuition behind the construction below is as follows. First, we observe that
the condition (iii) in Definition 4.5.3 tells us which elements of

Su
def
= {(i |k) ∈ S(s, t) : ρ(i) = u}

(where s, t are the endpoints of φ) can be “bundled together”, and moreover the purity of φ
implies that the collection of these bundles (for fixed u) admits a canonical ordering. The
horizontal component of each ζu is then taken as the indexing total order for this collection,
whereas the vertical components of ζu are all [q]. The first factor χ is then essentially
determined by how the bundles coming from different u’s are ordered with respect to each
other (by the underlying shuffles of φ), and each ψu is essentially determined by how the
elements are ordered within each bundle in Su.

Proof. Let φ be a pure (1; q)-cell in B with endpoints s, t. Let �0, . . . ,�q be the underlying
shuffles of φ on the set S = S(s, t). Define a binary relation ∼ on S so that (i |k) ∼ ( j |`) if and
only if

• ρ(i) = ρ( j); and

• for any (m|n) ∈ S and for any 0 ≤ p ≤ q, if

(i |k) �p (m|n) �p ( j |`) or (i |k) �p (m|n) �p ( j |`)

then ρ(m) = ρ(i).

(The second clause is precisely Definition 4.5.3(iii).) It is straightforward to check that ∼ is
an equivalence relation. We will write [i |k] for the ∼-class containing (i |k) ∈ S.

For each 1 ≤ u ≤ a, let Su
def
= {(i |k) ∈ S : ρ(i) = u} and define a binary relation ≤u on

the quotient Tu
def
= Su/∼ so that [i |k] ≤u [ j |`] if and only if

• (i |k) ∼ ( j |`); or

• (i |k) �p ( j |`) for all 0 ≤ p ≤ q.

Before checking that ≤u is well-defined, notice that if (i |k) � ( j |`) then the purity of φ
implies that we have either (i |k) �p ( j |`) for all p, or (i |k) �p ( j |`) for all p. Thus ≤u can be
equivalently defined as: [i |k] ≤u [ j |`] if and only if

• (i |k) ∼ ( j |`); or

• (i |k) �p ( j |`) for some 0 ≤ p ≤ q,

or alternatively, for any fixed 0 ≤ p ≤ q, we can define: [i |k] ≤u [ j |`] if and only if

• (i |k) ∼ ( j |`); or

• (i |k) �p ( j |`).
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It is easy to see from the third definition that, assuming it is well-defined, ≤u is a total order

Su,1 ≤u Su,2 ≤u · · · ≤u Su,zu

on Tu where zu
def
= |Tu | and each Su,v ⊂ Su is a ∼-class.

To see that ≤u is indeed well-defined, consider two ∼-related pairs (i |k) ∼ (i′|k′) and
( j |`) ∼ ( j′|`′) in Su. If (i |k) ∼ ( j |`) then (i′|k′) ∼ ( j′|`′) by the transitivity of ∼. So consider
the case where (i |k) � ( j |`). Making use of the first and second definitions of ≤u, it suffices
to prove that

∀p
[
(i |k) �p ( j |`)

]
=⇒ ∃p

[
(i′|k′) �p ( j′|`′)

]
.

So assume that (i |k) �p ( j |`) for all p. Then (i |k) � ( j |`) implies that there exist 0 ≤ p ≤ q
and (m|n) ∈ S such that ρ(m) , u and (i |k) �p (m|n) �p ( j |`). Since (i |k) ∼ (i′|k′) and
( j |`) ∼ ( j′|`′), we can then infer (i′|k′) �p (m|n) �p ( j′|`′) as desired.

For each 1 ≤ u ≤ a, let ζu
def
=

[
zu; q, . . . ,q

]
∈ Θ2. Then we can specify a (1; q)-cell

χ̄ : [1; q] → �a(ζ̄1, . . . , ζ̄a)

with endpoints 0, z by specifying shuffles�0� · · ·��q on T def
= S/∼ =

∐
u Tu. Here a shuffle

� on T is a total order on T such that [i |k]�p [ j |`] for any (i |k), ( j |`) ∈ Su with [i |k] ≤u [ j |`],
and ���′ if [i |k]� [ j |`] implies [i |k]�′ [ j |`] for any (i |k) ∈ Su, ( j |`) ∈ Sv with u < v.

For each 0 ≤ p ≤ q, define a binary relation �p on T so that [i |k]�p [ j |`] if and only if
(i |k) ∼ ( j |`) or (i |k) �p ( j |`). Note that this agrees with the third definition of ≤u on each Tu
(and hence, assuming it is a well-defined total order, �p is a shuffle). Thus to check that �p
is well-defined, we only need to consider two ∼-related pairs (i |k) ∼ (i′|k′) and ( j |`) ∼ ( j′|`′)
such that ρ(i) , ρ( j). In this case, it follows from our definition of ∼ that (i |k) �p ( j |`)
implies (i′|k′) �p ( j′|`′). Hence �p is indeed well-defined, and moreover it is a total order
since �p is so. Furthermore, it is easy to check that �p � �p′ implies �p � �p′ for any
0 ≤ p ≤ p′ ≤ q. Thus we obtain the desired map χ̄. There is a map

χu =
[
{0, zu}; id, . . . , id

]
: [1; q] → ζu

in Θ2 for each 1 ≤ u ≤ a, and these combine together to induce χ as

[1; q]

�a(ζ1, . . . , ζa) �a(ζ̄1, . . . , ζ̄a)

ζ1 × · · · × ζa ζ̄1 × · · · × ζ̄a

χ̄

〈χ1,...,χa〉

χ

y

where the inner square is the pullback square in Lemma 4.1.7.
Now we construct the remaining part of the factorisation (4.14), namely

ψu : ζu → �bu (θu,1, . . . , θu,bu )

for each 1 ≤ u ≤ a, where θu,i
def
= θb1+···+bu−1+i denotes the i-th factor of the u-th “subtensor”.

First, define the object part of

ψ̄u : ζu → �bu (θ̄u,1, . . . , θ̄u,bu )
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by sending each 0 ≤ v ≤ zu to the object whose i-th coordinate is given by

max
({

k : ∃v′ ≤ v[(i |k) ∈ Su,v′]
}
∪ {si}

)
.

Its action on homζu (v − 1, v) = [q] is given by restricting the �p’s to Su,v.
Fix 1 ≤ i ≤ bu. Define the horizontal component of

ψu,i : ζu → θu,i

by the same formula as above, i.e. it sends each 0 ≤ v ≤ |Tu | to

max
({

k : ∃v′ ≤ v[(i |k) ∈ Su,v′]
}
∪ {si}

)
.

If si < k ≤ ti then the k-th vertical component of ψu,i is that of

[1; q] B θi .
φ πi

Finally, we can combine these maps to obtain ψu as in

ζu

�bu (θu,1, . . . , θu,bu ) �a(θ̄u,1, . . . , θ̄u,bu )

θu,1 × · · · × θu,bu θ̄u,1 × · · · × θ̄u,bu

ψ̄u

〈ψu,1,...,ψu,bu 〉

ψu

y

and one can check that

[1; q] �a(ζ1, . . . , ζa) �b(θ1, . . . , θb).
χ �a(ψ1,...,ψa)

is indeed a factorisation of φ. �

Lemma 4.5.8. The map µ : A→ B is a monomorphism.

Proof. Consider an (n; q)-cell φ in the image of µ. The proof of Lemma 4.5.7 constructs
a factorisation of each φ · ηk

h , and then the proof of Lemma 4.5.6 combines them into a
factorisation

φ : [n; q] �a(ζ1, . . . , ζa) �b(θ1, . . . , θb)
χ �a(ψ1,...,ψa)

of φ. We wish to prove that (χ,ψ1, . . . ,ψa) represents a unique cell in

A = ⊗a

(
⊗b1

(
Θ
θ1
2 , . . . ,Θ

θb1
2

)
, . . . ,⊗ba

(
Θ
θb−ba+1
2 , . . . ,Θ

θba
2

))
that is sent to φ by µ. So suppose that (χ′,ψ′1, . . . ,ψ

′
a) also represents such a cell in A, i.e.

φ : [n; q] �a(ζ
′
1, . . . , ζ

′
a) �b(θ1, . . . , θb).

χ′ �a(ψ
′
1,...,ψ

′
a)
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is another factorisation of φ. If ψ′u can be factored as ψ′u = δu ◦ σu then(
�a(σ1, . . . ,σa) ◦ χ

′; δ1, . . . , δa
)

represents the same cell, and so we may assume without loss of generality that each ψ′u is a
non-degenerate cell in (the nerve of)�bu (θu,1, . . . , θu,bu ). This implies that�a(ψ

′
1, . . . ,ψ

′
a) is

a monomorphism. Now for each 1 ≤ u ≤ a and 1 ≤ i ≤ n, consider the diagram:

ζ k
u ζu

�bu (θu,1, . . . , θu,bu )

ζ ′u

ωk
u

ψu

ωu

ψ ′u

By construction of ψk
u , the image of ψ′u contains all of the objects in the image of ψk

u . So, at
least on the object level, there isωk

u as indicated above that renders the perimeter commutative.
We can upgrade it to a morphism in Θ2 by setting its v-th vertical component to be that of

[n; q] �a(ζ
′
1, . . . , ζ

′
a) ζ ′u

χ′ πu

for πu ◦ χ
′(k − 1) < v ≤ πu ◦ χ

′(k). Since ζu is the colimit of ζ k
u ’s, these induce a unique

map ωu as indicated. Now in the diagram

�a(ζ1, . . . , ζa)

[n; q] �b(θ1, . . . , θb)

�a(ζ
′
1, . . . , ζ

′
a)

�a(ψ1,...,ψa)

�a(ω1,...,ωa)

χ

χ′ �a(ψ
′
1,...,ψ

′
a)

the perimeter commutes since both of the two paths compose to φ, and the right triangle
commutes by construction of ωu. Moreover we know that the lower right map is a monomor-
phism, so the left triangle also commutes. This shows that (χ′,ψ′1, . . . ,ψ

′
a) and (χ,ψ1, . . . ,ψa)

represent the same cell in A, as desired. �

4.5.3 The Leibniz comparison map µ̂
Fix a, b1, . . . , ba ∈ N and let b =

∑a
u=1 bu. Note that the natural transformation

µ : ⊗a
(
⊗b1, . . . ,⊗ba

)
→ ⊗b

may be regarded as a (b + 1)-ary functor

F : Θ̂2 × · · · × Θ̂2︸           ︷︷           ︸
b times

× 2→ Θ̂2.
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Definition 4.5.9. We define the Leibniz comparison map µ̂ to be the b-ary functor

µ̂
def
= F̂

(
−, . . . ,−,0→ 1

)
: Θ̂2

2

× · · · × Θ̂2
2

→ Θ̂2
2

.

The aim of this subsection is to prove the following theorem.

Theorem 4.5.10. For any monomorphisms f1, . . . , fb in Θ̂2, the Leibniz comparison map
µ̂( f1, . . . , fb) is in cell(Hh ∪Hv).

Proof. By Lemma 2.2.11 and Proposition 2.2.16, it suffices to prove the special case where
each fi is the boundary inclusion into a representable cellular set. This follows from Lem-
mas 4.5.12, 4.5.13, 4.5.15 and 4.5.16 proved below. �

The following corollary of Theorem 4.5.10 states that the Gray tensor product is associa-
tive up to homotopy.

Corollary 4.5.11. For any X1, . . . ,Xb ∈ Θ̂2, the component

⊗a
(
⊗b1(X

1, . . . ,Xb1), . . . ,⊗ba(X
b−ba+1, . . . ,Xb)

)
→ ⊗b(X1, . . . ,Xb)

of µ is in cell(Hh ∪Hv).

Proof. Apply Theorem 4.5.10 to the empty inclusions fi : � → X i. �

Now we complete the proof of Theorem 4.5.10. Fix θ1, . . . , θb ∈ Θ2, and let ν : A0 → B
denote the Leibniz comparison map

ν
def
= µ̂

©­­­­­­«
∂Θθ1

2

Θ
θ1
2

, . . . ,

∂Θθb2

Θ
θb
2

ª®®®®®®¬
.

Lemma 4.5.12. The map ν is a monomorphism.

Proof. By Lemma 2.2.9, it suffices to prove that the functor

G : 2b+1 → Θ̂2

(defined as in Section 2.2.3) sends each square of the form (2.1) to a pullback square of
monomorphisms. The case i, j ≤ b was treated in Lemma 4.2.1, so we may assume j = b+1.
Fix 1 ≤ i ≤ b, and let

A′ A

B′ B

be the image of the square (2.1) under G. The horizontal maps are monic by Lemma 4.2.1,
and the right vertical one is monic by Corollary 4.5.11. Moreover the commutativity of this
square then implies that the left vertical map is also monic.

It remains to prove that this square is a pullback. So consider a pure (n; q)-cell φ contained
in the image of the map

�b(θ1, . . . , θi−1, κ, θi+1, . . . , θb) → �b(θ1, . . . , θb)
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. . . �p (i |k) �p . . . �p (m|n) �p . . . �p ( j |`) �p . . .

. . . �0 ( j |`) �0 . . . �0 (i |k) �0 . . .�0

�p

Figure 4.3: A typical upper impurity

induced by some hyperface δ : κ → θi. It is straightforward to check that, for the factorisation
of φ constructed in the proof of Lemma 4.5.8, the map ψρ(i) factors through the obvious sub-
2-category of the codomain determined by δ. Hence this factorisation specifies a cell in A′

as desired. �

Thus we may regard ν : A0 → B as a cellular subset inclusion. By Theorem 4.5.4, A0 is
generated by A and the pure cells. Let A1 ⊂ B be the cellular subset generated by A0 and the
(potentially) cuttable cells.

Lemma 4.5.13. The inclusion A0 ↪→ A1 is in cell(Hh).

Proof. Observe that for any potentially cuttable cell χ in B that is not cuttable, χ is pure if
and only if its cuttable parent is pure. The rest of the proof is similar to the first part of the
proof of Lemma 4.4.2. �

Now consider a non-degenerate cell φ in B \ A1. Note that φ is necessarily a (1; q)-cell
for some q ≥ 1 with endpoints 0, t where ti is the horizontal length of θi (i.e. θ̄i = [ti; 0]).
Let S = S(0, t) and let �0, . . . ,�q be the underlying shuffles of φ. Since φ is not pure, φ must
contain an impurity in the following sense.

Definition 4.5.14. An upper impurity in φ is a quadrupleB = 〈(i |k), ( j |`), (m|n), p〉 consisting
of (i |k), ( j |`), (m|n) ∈ S and p ∈ [q] such that:

• i < j;

• ρ(i) = ρ( j) , ρ(m);

• (i |k) �0 ( j |`); and

• (i |k) �p (m|n) �p ( j |`).

(See Fig. 4.3.) A lower impurity in φ is a quadruple B = 〈(i |k), ( j |`), (m|n), p〉 consisting of
(i |k), ( j |`), (m|n) ∈ S and p ∈ [q] such that:

• i < j;

• ρ(i) = ρ( j) , ρ(m);

• (i |k) �q ( j |`); and

• (i |k) �p (m|n) �p ( j |`).

We say φ is an upper cell if it contains no lower impurities.
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Let A2 ⊂ B be the cellular subset generated by A1 and the upper cells. Since any face of
an upper cell is itself upper, any non-degenerate face in A2 \ A1 must be upper.

Lemma 4.5.15. The inclusion A1 ↪→ A2 is in cell(Hv).

Proof. Fix a non-degenerate (1; q)-cell φ in A2 \ A1 (which is necessarily upper). Define a
total order ≤ on the set of upper impurities in φ so that

〈(i |k), ( j |`), (m|n), p〉 ≤ 〈(i′|k′), ( j′|`′), (m′|n′), p′〉

if and only if:

• p < p′;

• p = p′ and (i |k) >lex (i′|k′);

• p = p′, (i |k) = (i′|k′) and ( j |`) <lex ( j′|`′); or

• p = p′, (i |k) = (i′|k′), ( j |`) = ( j′|`′) and (m|n) ≤lex (m′|n′).

Here ≤lex denotes the lexicographical order so that (i |k) ≤lex ( j |`) if and only if either:

• i < j; or

• i = j and k ≤ `.

This indeed defines a total order on the set of upper impurities in φ, hence in particular we
have a minimum impurity

Bφ =
〈
(iφ |kφ), ( jφ |`φ), (mφ |nφ), pφ

〉
.

Let sφ ∈ [q] be the largest s satisfying (iφ |kφ) �s ( jφ |`φ). Note that we must have sφ < pφ
since (iφ |kφ) �pφ ( jφ |`φ) and iφ < jφ imply (iφ |kφ) �p ( jφ |`φ) for all p ≥ pφ. Wewill construct
the “best approximation” � to �sφ such that (iφ |kφ) � ( jφ |`φ) (in the sense of Claim 6 below).

Consider the partition S = I1 ∪ I2 ∪ I3 ∪ I4 where

I1 =
{
(x |y) ∈ S : (x |y) ≺sφ ( jφ |`φ)

}
I2 =

{
(x |y) ∈ S : ( jφ |`φ) �sφ (x |y) �sφ (iφ |kφ), (x |y) �pφ (iφ |kφ)

}
I3 =

{
(x |y) ∈ S : ( jφ |`φ) �sφ (x |y) �sφ (iφ |kφ), ( jφ |`φ) �pφ (x |y)

}
I4 =

{
(x |y) ∈ S : (iφ |kφ) ≺sφ (x |y)

}
.

To see that this is indeed a partition of S, observe that if (x |y) satisfies both

( jφ |`φ) �sφ (x |y) �sφ (iφ |kφ) and (iφ |kφ) ≺pφ (x |y) ≺pφ ( jφ |`φ)

then we must have iφ ≤ x ≤ jφ since �sφ � �pφ. It follows that ρ(x) = ρ(iφ). But then
either

〈
(iφ |kφ), (x |y), (mφ |nφ), pφ

〉
or

〈
(x |y), ( jφ |`φ), (mφ |nφ), pφ

〉
is an upper impurity strictly

smaller than Bφ, which contradicts our choice of Bφ.
Now define a total order � on S so that (x |y) � (z |w) if and only if either

• (x |y) ∈ Iu and (z |w) ∈ Iv for some u < v; or

• (x |y), (z |w) ∈ Iu for some u and (x |y) �sφ (z |w).
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�sφ

I1

I2

I3

I4

( jφ |`φ)

(iφ |kφ)

�

( jφ |`φ)

(iφ |kφ)

Figure 4.4: �sφ and �

It is easy to check that � is a shuffle using the fact that �sφ and �pφ are so.
Observe that (iφ |kφ) is the �sφ-maximum element of I2 and ( jφ |`φ) is the �sφ-minimum

element of I3. Therefore ( jφ |`φ) is the immediate �-successor of (iφ |kφ), which in particular
implies �sφ , � , �pφ.

Claim 6. The shuffle � is �-minimum among those shuffles �′ satisfying �sφ � �
′ � �pφ

and (iφ |kφ) �′ ( jφ |`φ).

Proof of the claim. Suppose that (x |y), (z |w) ∈ S satisfy (x |y) �sφ (z |w) and x < z. Then we
must have (x |y) �pφ (z |w) since �sφ � �pφ. Now it follows from our construction of � that
(x |y) � (z |w) holds too. This prove �sφ� �.

Now let �′ be a shuffle on S(0, t) satisfying �sφ � �
′ � �pφ and (iφ |kφ) �′ ( jφ |`φ). Let

(x |y), (z |w) ∈ S(0, t) and suppose that both (x |y) � (z |w) and x < z hold. We wish to show
that (x |y) �′ (z |w).

• If (x |y), (z |w) ∈ Iu for some u, then (x |y) �sφ (z |w) by the definition of �. Thus
�sφ� �

′ implies (x |y) �′ (z |w).

• If (x |y) ∈ I1 and (z |w) ∈ Iu for some u ≥ 2, then (x |y) �sφ ( jφ |`φ) �sφ (z |w). Thus
�sφ� �

′ implies (x |y) �′ (z |w).

• Using (iφ |kφ) in place of ( jφ |`φ) in the previous item, we can prove that if (z |w) ∈ I4
then (x |y) �′ (z |w).

• The remaining case is when (x |y) ∈ I2 and (z |w) ∈ I3.

– If x < iφ then (x |y) �sφ (iφ |kφ) and �sφ� �
′ imply (x |y) �′ (iφ |kφ).

– If x > iφ then (x |y) �pφ (iφ |kφ) and �′ � �pφ imply (x |y) �′ (iφ |kφ).

– If x = iφ then (x |y) �sφ (iφ |kφ) implies y ≤ kφ and thus (x |y) �′ (iφ |kφ).

We can similarly deduce ( jφ |`φ) �′ (z |w) and hence

(x |y) �′ (iφ |kφ) �′ ( jφ |`φ) �′ (z |w).

Therefore we indeed have (x |y) �′ (z |w), and this shows � � �′. In particular, by taking
�′ = �pφwe can deduce that � � �pφ. �
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Since � is a shuffle, it determines a 1-cell ḡφ in �b(θ̄1, . . . , θ̄b). We can upgrade it to a
1-cell in B as in:

[1; 0]

�b(θ1, . . . , θb) �b(θ1, . . . , θb) �b(θ̄1, . . . , θ̄b)

θ1 × · · · × θb θ̄1 × · · · × θ̄b

ḡφ

gφ
φ·[id;{sφ}]

〈π1,...,πb〉

y

Consider the following condition on φ:

(∗) φ · ηsφ+1
v = gφ

where ηi
v is the cellular operator defined in Definition 2.1.12.

Claim 7. Suppose that φ is a non-degenerate (1; q)-cell in A2 \ A1 not satisfying (∗). Then
there exists a unique non-degenerate (1; q + 1)-cell ψ in A2 \ A1 such that ψ satisfies (∗) and
φ = ψ · δ

1;sψ+1
v .

Proof. The cell ψ is the unique one determined by the conditions ψ · δ1;sφ+1
v = φ and

ψ · η
sφ+1
v = gφ. (Note that we are using sφ and not sψ .) These conditions indeed specify a

(1; q + 1)-cell ψ in B by Claim 6. This cell ψ is not in A1 since it contains φ as a face and φ
is not in A1.

We show that ψ is an upper cell (and hence contained in A2). Suppose for contradiction
that ψ contains a lower impurityB. Since φ contains no lower impurities and ψ ·ηq+1

v = φ ·η
q
v ,

this lower impurity B must be of the form

B = 〈(i |k), ( j |`), (m|n), sφ + 1〉.

In other words, we have:

• i < j;

• ρ(i) = ρ( j) , ρ(m);

• (i |k) �q ( j |`); and

• (i |k) � (m|n) � ( j |`)

where �p are the underlying shuffles of φ (and not of ψ) and � is the shuffle constructed
above. Note that i < j, ( j |`) � (i |k) and �s � � imply that ( j |`) �sφ (i |k).

Since φ is upper, 〈(i |k), ( j |`), (m|n), sφ〉 is not a lower impurity. Hence wemust have either
(i |k) �sφ (m|n) or (m|n) �sφ ( j |`). In the former case, the assumption (m|n) � (i |k) implies
(m|n) ∈ I2 and (i |k) ∈ I3. For neither 〈(iφ |kφ), ( jφ |`φ), (i |k), sφ〉 nor 〈(iφ |kφ), ( jφ |`φ), (m|n), sφ〉
to be a lower impurity in φ, we must have both ρ(iφ) = ρ(i) and ρ(iφ) = ρ(m). This contradicts
our assumption ρ(i) , ρ(m). We can derive a similar contradiction in the case (m|n) �sφ ( j |`)
too, and this proves that ψ is upper.
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Finally we prove that the minimum impurity Bψ in ψ is 〈(iφ |kφ), ( jφ, `φ), (mφ |nφ), pφ + 1〉.
Note that, assuming this fact, it easily follows that ψ satisfies (∗) and φ = ψ · δ1;sψ+1

v . Since
ψ · δ

1:sφ+1
v = φ, if ψ has an impurity B that is smaller than 〈(iφ |kφ), ( jφ, `φ), (mφ |nφ), pφ + 1〉

then it must be of the form

B = 〈(i |k), ( j |`), (m|n), sφ + 1〉.

In other words, we have:

• i < j;

• ρ(i) = ρ( j) , ρ(m);

• (i |k) �0 ( j |`); and

• (i |k) � (m|n) � ( j |`).

Since Bφ is the minimum upper impurity in φ, 〈(i |k), ( j |`), (m|n), sφ〉 is not an upper impurity.
Hence we must have either (m|n) �sφ (i |k) or ( j |`) �sφ (m|n). In the former case, the assump-
tion (i |k) � (m|n) implies (i |k) ∈ I2 and (m|n) ∈ I3. For neither 〈(iφ |kφ), ( jφ |`φ), (i |k), sφ〉
nor 〈(iφ |kφ), ( jφ |`φ), (m|n), sφ〉 to be a lower impurity in φ, we must have both ρ(iφ) = ρ(i)
and ρ(iφ) = ρ(m). This contradicts our assumption ρ(i) , ρ(m). We can derive a similar
contradiction in the case ( j |`) �sφ (m|n) too, and this completes the proof of Claim 7. �

We wish to prove that A2 may be obtained from A1 by gluing those φ satisfying (∗) along
the inner hornΛ1;sφ+1

v in lexicographically increasing order of sil(φ), dim(φ), pφ and sφ where
pφ is regarded as an element of [q]op. This conclusion can be deduced from the following
analysis of the hyperfaces of φ.

Temporary definition. In this proof, if φ,ψ are as described in Claim 7 then we say ψ is the
∗-parent of φ.

Let φ be a non-degenerate (1; q)-cell in A2 \ A1 satisfying (∗). Clearly φ · δ1;0
v and φ · δ1;q

v

have smaller silhouettes than sil(φ). The hyperface φ · δ1;sφ+1
v is treated in Claim 8 below.

The hyperface φ · δ1;sφ
v is:

• contained in A; or

• contained in A2 \ A1 and:

– it satisfies (∗); or
– it does not satisfy (∗), in which case its ∗-parent ψ necessarily has sil(ψ) = sil(φ),

dim(ψ) = dim(φ), ψ · ηpψ
v = φ · η

pφ
v and sψ = sφ − 1.

The hyperface φ · δ1;pφ
v is:

• contained in A; or

• contained in A2 \ A1 and:

– it satisfies (∗); or
– it does not satisfy (∗), in which case its ∗-parent ψ necessarily has sil(ψ) = sil(φ),

dim(ψ) = dim(φ) and pψ > pφ.
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For any other value of j, the hyperface φ · δ1; j
v is:

• contained in A; or

• contained in A2 \ A1 and it satisfies (∗).

Claim 8. The hyperface χ = φ · δ1;sφ+1
v is a non-degenerate cell in A2 \ A1 and the minimum

upper impurity Bχ in χ is 〈
(iφ |kφ), ( jφ |`φ), (mφ |nφ), pφ − 1

〉
.

Consequently χ does not satisfy (∗).

Proof of the claim. The cell χ is not contained in A since it admits an impurity〈
(iφ |kφ), ( jφ |`φ), (mφ |nφ), pφ − 1

〉
.

Now to prove that χ is not in A0, it suffices to show that χ is not in Bx(δ) for any 1 ≤ x ≤ b
and for any hyperface δ : κ → θx , where Bx(δ) ⊂ B is the image of the map

�b(θ1, . . . , θx−1, κ, θx+1, . . . , θb) → �b(θ1, . . . , θb)

induced by δ.
If δ is either a vertical hyperface or an outer horizontal hyperface, then χ is in Bx(δ) if

and only if the projection πx(χ) is in (the image of) δ, and similarly for φ. Since φ is not in
Bx(δ) and πx(φ) is a degeneracy of πx(χ), it follows that χ is not in Bx(δ).

Now consider the case where δ is a y-th horizontal hyperface with 1 ≤ y ≤ tx − 1.
Suppose for contradiction that χ is in Bx(δ). Then Lemma 4.1.11 implies that (x |y+ 1) is the
immediate �p-successor of (x |y) for all 0 ≤ p ≤ q with p , sφ + 1. We show that (x |y + 1)
must then be the immediate successor of (x |y) with respect to � = �sφ+1 too. Note that this
is automatic if (x |y), (x |y + 1) ∈ Iu for some u by our construction of �.

• If (x |y + 1) ≺sφ ( jφ |`φ) then (x |y), (x |y + 1) ∈ I1.

• If (x |y+ 1) = ( jφ |`φ) then 〈(iφ |kφ), (x |y), (mφ |nφ), pφ〉 is a strictly smaller impurity than
Bφ, which contradicts our choice of Bφ.

• Suppose ( jφ |`φ) �sφ (x |y) �sφ (x |y + 1) �sφ (iφ |kφ). Since (x |y + 1) is the immediate
�pφ-successor of (x |y), it follows that either (x |y), (x |y+1) ∈ I2 or (x |y), (x |y+1) ∈ I3.

• The case (iφ |kφ) �sφ (x |y) can be treated similarly to the first two cases.

Therefore (x |y + 1) is the immediate �p-successor of (x |y) for all 0 ≤ p ≤ q, including
p = sφ + 1. By Lemma 4.1.11, this implies that φ is in Bx(δ) (for the same δ) which
contradicts our assumption that φ is not in A0.

Finally, to see that χ is not contained in A1, recall that we have �sφ , � , �pφ (observed
immediately before Claim 6). Since φ · ηsφ+1

v = gφ has � as the underlying shuffle, it follows
from � � �pφ that sφ + 1 < pφ. Thus χ an inner face of φ, which implies that χ is absolutely
uncuttable (as sil(χ) = sil(φ) by Proposition 4.3.9).

It is now straightforward to check that

Bχ =
〈
(iφ |kφ), ( jφ |`φ), (mφ |nφ), pφ − 1

〉
.
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This implies that sχ = sφ and gχ = gφ. Since φ is non-degenerate, it follows that

χ · η
sχ+1
v =

(
φ · δ

1;sφ+1
v

)
· η

sφ+1
v = φ · η

sφ+2
v

is not equal to gχ = gφ = φ · η
sφ+1
v . This shows that χ does not satisfy (∗). �

This completes the proof of Lemma 4.5.15. �

Lemma 4.5.16. The inclusion A2 ↪→ B is in cell(Hv).

Proof. The proof is essentially dual to that of Lemma 4.5.15. �

4.6 Consequences of associativity
We will discuss two consequences of Theorem 4.5.10 in this section.

4.6.1 ⊗a is left Quillen
First, we generalise Theorem 4.4.1.

Theorem 4.6.1. The Gray tensor product functor ⊗a is left Quillen for any a ≥ 1. That is,
the Leibniz Gray tensor product

⊗̂a( f1, . . . , fa)

is a monomorphism if each fi is, and it is a trivial cofibration if moreover some fi is so.

Proof. We proceed by induction on a. The case a = 1 is trivial, and the case a = 2 is
Theorem 4.4.1.

Let a ≥ 3 and suppose that ⊗̂a−1 is left Quillen. We already know that ⊗̂a preserves
monomorphisms (Lemma 4.2.1). So let f1, . . . , fa be monomorphisms in Θ̂2, and suppose
that fi is a trivial cofibration for some i. We wish to show that ⊗̂a( f1, . . . , fa) : A→ B is a
trivial cofibration. Note that applying the Leibniz construction of ⊗2

(
⊗a−1,⊗1

)
to f1, . . . , fa

yields
⊗̂2

(
⊗̂a−1( f1, . . . , fa−1), fa

)
by [Our10, Observation 3.22], which we denote by g : X → Y . This map is a trivial
cofibration by the inductive hypothesis and Theorem 4.4.1. We can factorise ⊗̂a( f1, . . . , fa)
as:

X Y

A ·

B

µ

g

p
µ

⊗̂a( f1,..., fa)

h

A straightforward analysis of the universal property of the unlabelled object reveals that

h = µ̂( f1, . . . , fa).

Thus ⊗̂a( f1, . . . , fa) is a trivial cofibration by Theorem 4.5.10. �
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4.6.2 The closed structure
The previous subsection completes the “monoidal” part of the story, and now we consider
the “closed” part. By construction of the Gray tensor product, the functor

⊗a+1+b(X1, . . . ,Xa,−,Y1, . . . ,Y b) : Θ̂2 → Θ̂2

admits a right adjoint (which preserves fibrations and trivial fibrations by Theorem 4.6.1) for
any a, b ≥ 0 and for any X1, . . . ,Xa,Y1, . . . ,Y b ∈ Θ̂2.

Definition 4.6.2. We will write

(Y1, . . . ,Y b)_(−)^(X1, . . . ,Xa)

or more succinctly
Y_(−)^X

for this right adjoint.

Corollary 4.6.3. Let X1, . . . ,Xa,Y1, . . . ,Y b, Z1, . . . , Zc,W1, . . . ,Wd ∈ Θ̂2. Then there is a
natural transformation

ω :
(
(Z,W )_(−)^(X,Y )

)
−→

(
Z_(W_(−)^X)^Y

)
.

Moreover, the A-component of ω at any 2-quasi-category A is a trivial fibration.

Proof. The natural transformation ω is the mate of µ, i.e. the pasting

id id

id id

(Z,W )_(−)^(X,Y ) Z_(W_(−)^X)^Y

⊗(X,Y,−,Z,W )

⊗(X,⊗(Y,−,Z),W )

ε

η
µ

where each vertex is Θ̂2 and the 2-cells η, ε are the unit and the counit of the appropriate
adjunctions. Fix a monomorphism B ↪→ C in Θ̂2 and a 2-quasi-category A. We wish to show
that any commutative square of the form

B (Z,W )_A^(X,Y )

C Z_(W_A^X)^Y

ω

admits a diagonal lift as indicated. By construction of ω, such a commutative square
corresponds to one of the form

⊗(X,Y,B,Z,W )
∐
⊗(X,⊗(Y,B,Z),W ) ⊗

(
X,⊗(Y,C,Z),W

)
A

⊗(X,Y,C,Z,W ) 1
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and moreover either square admits a diagonal lift if and only if the other does. The latter
square indeed admits a lift by Theorem 4.5.10 since the left vertical map is an instance of µ̂
evaluated at the monomorphisms

� ↪→ X i, � ↪→ Y j, B ↪→ C, � ↪→ Z k, and � ↪→ W` .

This completes the proof. �
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A
Appendix

A.1 Braid monoids with zero
In this appendix, we complete the proof of Lemma 4.1.5 using the braid monoids with zero.
A special case of Lemma 4.1.5 where θi = [1; 0] for each i was first proved by Gray [Gra76,
Theorem 2.2] using the braid groups. Our argument here is a minor modification of Street’s
proof of that same special case [Str88, Theorem 1].

Definition A.1.1. A monoid with zero is a monoid M with a distinguished element 0 ∈ M
such that

x0 = 0 = 0x (A.1)
for all x ∈ M .

Definition A.1.2. For any n ≥ 1, let Bn be the monoid with zero presented by generators
β1, β2, . . . , βn−1 subject to the relations

βqβp = βpβq for p + 1 < q, (A.2)
βp+1βpβp+1 = βpβp+1βp, and (A.3)

βpβp = 0. (A.4)

It is called the braid monoid with zero since Eqs. (A.2) and (A.3) are precisely the relations
in the standard presentation of the braid group. The elements of Bn can be thus visualised
as certain braids on n strands where each generator βp crosses the p-th and the (p + 1)-th
strands:

1 p − 1 p p + 1 p + 2 n

and the composition is given by vertically stacking the braids. Then omitting the irrelevant
strands, Eqs. (A.2) to (A.4) look like

= ,
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= and = 0

respectively. For p + 1 ≥ q, let

βp,q
def
= βpβp−1 . . . βq

so that it looks like:
q q + 1 p p + 1

(We interpret βp,p+1 to be the identity.)
The following theorem describes a normal form for non-zero elements of Bn.

Theorem A.1.3. Any non-zero element x ∈ Bn can be written uniquely as a product of the
form

x = β1,q1β2,q2 . . . βn−1,pn−1

where p + 1 ≥ qp for each p. Conversely, β1,q1β2,q2 . . . βn−1,pn−1 , 0 for any p + 1 ≥ qp.

Remark. This normal form is reminiscent of the sorting algorithm called insertion sort in
computer science. At the p-th stage, βp,qp takes the (p + 1)-th strand at the top and inserts it
to the correct position relative to the previously sorted strands.

Proof. We will summarise the proof in [ES, §6] and fill in the gaps therein. We consider the
rewrite system on the alphabet {β1, . . . , βn−1,0} given by the following rewrite rules:

tp,q : βqβp  βpβq for p + 1 < q

rp,q : βp,qβp  βp−1βp,q for p > q

sp : βpβp  0
yp : βp0  0
zp : 0βp  0
0 : 00  0

That is, we consider the process of rewriting a given string in {β1, . . . , βn−1,0} by applying
these rules to its substrings. Note that none of the rules affects the element of Bn that the
string represents. (That the two sides of rp,q are equal in Bn is a consequence of Eqs. (A.2)
and (A.3)). If a string u can be rewritten to another string v, we say v is a rewriting of u.

First we wish to show that this rewrite system is bounded, i.e. for any given (fixed) string,
there is an upper bound on how many times the rewrite rules may be applied. This is done
by assigning a natural number to each string in such a way that applying any of these rules
decreases that number. Given a string βp1 . . . βpm , where we interpret β0 to mean 0, we assign
the following natural number:

ρ(βp1 . . . βpm)
def
= m +

∑
1≤i≤m

p2
i +

���{(i, j) | i < j and 0 < p j < pi
}���
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The original formula in [ES] does not have the exponent 2 in the second term, but this
exponent is necessary for the rewrite rule rp,q to decrease the value of ρ. (The rule rp,q
decreases the second term of ρ by p2 − (p − 1)2 = 2p − 1 and increases the third term by
p − q − 1. Without the exponent 2, it only decreases the second term by 1.)

Next we need to show that this rewrite system is locally confluent, i.e. if a given string
admits two (possibly overlapping) substrings to each of which some rewrite rule can be
applied, then the two resulting strings have a common rewriting. It suffices to check certain
special cases (see [ES, Proposition 5.2]), and most of these cases are checked in [ES,
Proposition 6.2]. There are a few cases missing in their proof (more precisely, their analysis
of the pair (r, t) assumes j = p), but these missing cases can be checked easily.

These properties of the rewrite system imply that each string admits a unique normal
form, i.e. a rewriting that admits no further rewritings. It remains to check that a string is in
normal form if and only if it is either 0 or of the form described in the theorem. This is done
in [ES, Theorem 6.3]. �

Recall that the symmetric group Sn on n letters 1, . . . ,n may be presented by generators
β1, β2, . . . , βn−1 subject to Eqs. (A.2) and (A.3) and βpβp = 1. Hence we can define a function

σ(−) : Bn \ {0} → Sn

by assigning the transposition of p and p + 1 to βp and then extending this assignation
according to σxy = σx ◦ σy. Graphically, σx(p) = q if the braid x takes the strand in the p-th
position at the bottom to the q-th position at the top.

Corollary A.1.4. The function σ(−) is injective.

Proof. Observe that if
x = β1,q1β2,q2 . . . βn−1,pn−1

then qp is precisely the number of 1 ≤ r ≤ p + 1 such that σ−1
x (r) ≤ σ

−1
x (p + 1). This shows

that we can recover (the normal form of) x from σx . �

Proof of Lemma 4.1.5 continued. It remains to prove that the 2-functor

F : �a(θ1, . . . , θa) → T

is locally faithful. SinceT is poset-enriched, this is equivalent to showing that�a(θ1, . . . , θa)

is also poset-enriched.
Fix two objects s, t and let n = |S(s, t)|. In this proof, we identify each object � in the

hom-category �a(θ1, . . . , θa)(s, t) with the unique order-preserving bijection

f :
(
{1, . . . ,n},≤

)
→

(
S(s, t),�

)
.

We define an action of the monoid (with zero) Bn on the set

ob
(
�a(θ1, . . . , θa)(s, t)

)
∪ {∗}

as follows. The zero element 0 ∈ Bn sends everything to ∗, and ∗ is fixed by every element
in Bn. Given a bijection f as above and 1 ≤ p < n, we define:

f · βp
def
=

{
f ◦ σβp if π1 ◦ f (p) > π1 ◦ f (p + 1),
∗ otherwise

where the projection π1 : S(s, t) → {1, . . . ,a} sends each (i |k) to i.
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Claim. This specification indeed extends to an action of Bn. Moreover, for any non-zero
element x ∈ Bn and any bijection f as above, either f · x = f ◦ σx or f · x = ∗.

Proof of the claim. Assuming the first part, the second part follows from the equation σxy =

σx ◦ σy. It suffices to check that, for each of Eqs. (A.2) to (A.4), (the action determined by)
either side sends a given bijection f as above to ∗ if and only if the other side does.

For any bijection f as above and any p + 1 < q, the following are equivalent:

• f · βq , ∗ and ( f ◦ σβq ) · βp , ∗;

• π1 ◦ f (p) > π1 ◦ f (p + 1) and π1 ◦ f (q) > π1 ◦ f (q + 1); and

• f · βp , ∗ and ( f ◦ σβp ) · βq , ∗.

Thus the two sides of Eq. (A.2) determine the same action. A similar analysis can be done
for Eq. (A.3), and the action of any βp applied twice sends any f to ∗. This completes the
proof. �

If f (p) = ( j |`), f (p + 1) = (i |k) and j > i then there is a morphism f → f ◦ σβp in the
hom-category �a(θ1, . . . , θa)(s, t) which looks like

(k − 1, ` − 1)

(k, ` − 1)

(k − 1, `)

(k, `)s t (A.5)

where we are suppressing all but the i-th and the j-th coordinates of the middle four objects.
We abuse the notation and call this morphism βp. Since the hom-category�a(θ1, . . . , θa)(s, t)
is generated by the morphisms of the form (A.5), it follows that any morphism f → g admits
a factorisation of the form

f f ◦ σβp1
. . . f ◦ σβ1...βpr .

βp1 βp2 βpr (A.6)

We wish to show that the word βp1 . . . βpr determines a non-zero element in Bn. It follows
from the proof of Theorem A.1.3 that this word can be reduced either to 0 or to a normal form
specified in the theorem by successively applying Eqs. (A.1) to (A.4). We claim that this
reduction process may be reproduced in�a(θ1, . . . , θa)(s, t)with βp’s regarded as morphisms
(and concatenation regarded as composition in reverse order). Indeed, Eq. (A.2) corresponds
to the interchange law for a 2-category and Eq. (A.3) corresponds to the commutativity of
the cube

(m − 1, k − 1, ` − 1)

(m, k − 1, ` − 1)

(m, k, ` − 1)

(m, k, `)

(m − 1, k, `)

(m − 1, k − 1, `)

(m − 1, k, ` − 1) =

(m − 1, k − 1, ` − 1)

(m, k − 1, ` − 1)

(m, k, ` − 1)

(m, k, `)

(m − 1, k, `)

(m − 1, k − 1, `)

(m, k − 1, `)
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for (h|m), (i |k), ( j |`) ∈ S(s, t) with h < i < j, which follows from Eqs. (4.4) and (4.6).
Moreover, Eq. (A.4) (and hence Eq. (A.1)) cannot appear in this process since there is no

composable pair of the form · · ·
βp βp in �a(θ1, . . . , θa)(s, t).

Now fix f ,g ∈ �a(θ)(s, t). We have shown that any map f → g admits a factorisation
of the form (A.6) such that

x = βp1 . . . βpr

is a normal form for some 0 , x ∈ Bn. Since we must have σx = f −1 ◦ g, it follows that there
is at most one morphism f → g. This completes the proof. �
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