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ABSTRACT

Machine-Learning (ML) techniques bring a new paradigm which has generated a

revolutionary momentum and wrought changes in every day of our modern lives,

ranging from autonomous lifestyles to decision-making scenarios. Among the dif-

ferent branches of ML activities, the medical �eld is notable, covering the �eld

of detection and monitoring as well as the present status of diseases. Among the

di�erent medical diseases cancer is a serious threat. In particular, breast can-

cer is always a serious threat to women. Proper identi�cation and then proper

management and monitoring help the patient to recover from the disease, or at

least help them to lead a better life. Proper identi�cation and the current sta-

tus of cancer largely depend on biomedical image analysis, a complex area of

understanding. The analysis of these images requires special knowledge. The

autonomous �nding of Benign and Malignant information based on the images

and making a Computer-Aided Diagnosis (CAD) system provide both the pa-

tient and the doctor with a second layer of con�dence and allow them to make a

more reliable decision. For the autonomous identi�cation and detection of cancer,

digital ML techniques have provided a revolutionary improvement. The recent

development of the Deep Neural Network (DNN) and the logic-based algorithm

make it possible to detect the target form the image more reliably. In this thesis

we have investigated the performance of the DNN-based biomedical image classi-

�er as well as the Extreme Gradient Boosting (XGBoost)-based image classi�er

for the autonomous CAD system.
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Chapter 1

Introduction

Learning through observation or by instruction is a natural phenomenon which is com-

mon in wildlife and human beings. People try to learn from observation, interpret this

observation and then apply this knowledge for better decisions in their day-to-day activi-

ties. Machine-Learning (ML) mimics this concept with the help of an intelligent machine

(computer), providing a decision or suggestion on how to react to a new situation. In

general the term intelligence is more related to human intellectual thinking ability. This

concept about intelligence raises the following question: "can a machine think and pro-

vide intelligent output?". The answer is that a machine can think in an intelligent way

if a proper mathematical and statistical knowledge of human thinking for a particular

understanding is transferred to the machine through proper programming, such that the

machine can mimic human thinking ability. This can allow a machine to learn and provide

a decision. Basically a contribution of the computer sciences, mathematical and statistical

approaches allow ML to assist a human to relate the present with the past, and wields an

in�uence on almost all aspects of modern life.

The pioneer of ML, Arthur Lee Samuel, de�ned it as "����eld of study that gives com-

puters the ability to learn without being explicitly programmed" . The recent best applica-
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tions of ML are autonomous car driving, Google Glass, tagging photos using Facebook,

voice synthesiser, home assistance like Google Home, and many more applications.

As the ML �eld has grown rapidly, with some advanced mathematical structures and

model utilisation, ML algorithms have been adjusted to analyse and classify biomedi-

cal data. Gathering knowledge from biomedical big data, discovering information from

the data, and adjusting that information for decision-making purposes, is of great inter-

est. This includes biomedical images for disease analysis, identi�cation and classi�cation,

which have generated a high level of interest in the research community.

Among various diseases, Breast-Cancer (BC) poses a serious threat to women. Di-

agnosis of BC largely depends on investigating biomedical images such as X-Ray and

Histopathological images. Like a few other images, Histopathological images and biomed-

ical images are of huge importance to experts, as they reveal detailed characteristics of the

disease, and also deliver valuable information about the current status of the BC. How-

ever, Histopathological images are very complex in nature and need subjective knowledge

to �nd meaningful information from them. The lack of specialists working in this �eld

increases patients' waiting time, and sometimes physicians might disagree with others

about the diagnosis. However, state-of-the-art ML has a great potential for biomedical

image analysis, especially feature detection and classi�cation. Considering the devastation

wrought by BC, this thesis investigates and classi�es a set of Histopathological images

into Benign and Malignant classes. As a tool, ML techniques, speci�cally the state-of-the-

art Deep Neural Network (DNN) and Extreme Gradient Boosting Algorithm (XGBoost)

have been utilised for Histopathological BC image classi�cation.
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1.1 Motivation

The cell is considered to be the basic working unit of life. It is a natural phenomenon that

cells of the body will generate and die to maintain the primitive working instrument; this

creation of cells is normally controlled within a very tight constraint. However, sometimes

this constraint is violated and situations occur when cells behave abnormally. According

to the United States Cancer National Institute, "Cancer is a disease in which abnormal

cells divide without control and are able to invade other tissues". In addition to this,

cancer is not considered as a single disease, rather it is a collection of di�erent diseases.

As stated in www.cancer.org, "Cancer (CAN-sur): a word used to describe more than

100 diseases in which cells grow out of control; or a tumor with cancer in it".

Recent statistics show that deaths due to cancer were exceeded only by those of cardio-

vascular diseases throughout the world. Among the di�erent cancer diseases Lung, Liver,

Colorectal, Stomach and Breast cancer are the leading ones; statistics for the year 2015

are presented in Table 1.1, which shows that deaths due to BC were in �fth place among

the prominent cancer diseases. Both men and women are vulnerable to BC. However,

the probability of BC in women is higher than in men due to how women are structured

physically.

Table 1.1: Deaths due to cancer worldwide in 2015 [WHO]

Cancer Type Number of Deaths
Lung 1690000
Liver 788000
Colorectal 774000
Stomach 754000
Breast 571000

Cancer-a�ected women lead a life which may end in an early death. However, early

detection as well as monitoring of the current status of the BC can improve the present

BC scenario. The identi�cation of the cancer largely depends on the analysis of biomed-
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ical photographs. Modern medical photographic techniques such as X-Ray, Ultrasound,

and Magnetic Resonance Imaging (MRI) have been used to take a photograph from the

targeted area. These kinds of photographic techniques provide preliminary information

about the BC, particularly the lymph cells. However, this preliminary information is not

su�cient to provide a meaningful and detailed diagnosis of the BC. To get more reli-

able and accurate information, sample tissues from the a�ected area are collected and

investigated, which is known as biopsy. The microscopic images of the biopsy tissues are

captured for further investigation, and are known as Histopathological images. Though

this kind of imaging technique is invasive, the images do provide a signi�cant amount of

information about the current status of the cancer.

Primarily, BC physicians, surgeons or doctors investigate the Histopathological images

and provide a diagnosis. Gathering accurate knowledge from the biomedical data is

a challenging task because it demands special knowledge and skills which are scarce.

Sometimes the process of getting opinions about the disease based on the information

from biomedical Histopathological images are so complex that specialists might disagree.

Due to the above-mentioned issues, Computer-Aided Diagnosis (CAD) techniques help

the doctor to o�er a reliable opinion about the cancer. Since a decision provided by the

CAD system is directly relevant to human life, the system needs to be designed with the

utmost care. As time goes on, new methodologies and techniques are introduced which

provide more reliable and accurate decisions.
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1.2 Methodology

This thesis will discuss the design of an autonomous CAD system which classi�es a set

of Histopathological images into Benign and Malignant classes with ML techniques. The

research has been carried out employing the following steps:

� Data Collection:

Image classi�cation is performed on a dataset or a set of datasets. All the experi-

ments in this thesis have been conducted on the BreakHis BC image dataset, which

has been contributed by Professor Luiz Eduardo S. Oliveria, Federal University of

Parana, Department of Informatics. This dataset contains 7909 Histopathologi-

cal images which are further subdivided into four clusters {40×, 100×, 200×, 400×}

depending on the magni�cation factor.

� Feature-Extraction:

Features of a particular object allow the machine to learn characteristics about

the data, and later, based on these characteristics, a classi�er model is created

to classify the data. The conventional method of Feature-Extraction is to locally

handcraft the individual properties based on some criteria. This technique requires

feature-speci�c knowledge to extract the appropriate information, and mostly these

features belong to a "shallow" model. Another way of feature learning is learning

about the feature in a hierarchical way, where the model learns the features from a

low level to a complex level, which is known as a global feature. Global features are

mostly utilised for the Convolutional Neural Network (CNN)-based model, where

kernel methods serve to extract the information. In this thesis, we have used both

locally extracted handcrafted features as well as global feature information. For the

handcrafted local Feature-Extraction we have utilised:

1. Local Binary Pattern (LBP, Visual Descriptor): This provides information
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about textural feature distribution.

2. Histogram: A statistical description of the pixels in an image is presented by a

Histogram, which provides signi�cant information about the image properties.

3. Tamura: Low-level statistical properties such as Tamura features have been

extracted and utilised for image classi�cation.

4. Harlick: Harlick features utilise a Gray-Level Co-Occurrence Matrix (GLCM)

for calculating the textural features.

This research also utilises a few transformation-based methods to extract the prop-

erties from the images such as:

1. Contourlet Transform (CT) : Due to its mathematical structure, the conven-

tional Wavelet Transform (WT) ignores the smoothness properties around the

contour. To include information about the smoothness properties we have

utilised CT.

2. Frequency-domain information: Frequency-domain information has been ex-

tracted utilising Discrete Fourier Transform (DFT) and Discrete Cosine Trans-

form (DCT) techniques.

� Classi�er Model: Data classi�cation based on ML depends on the mathematical

structure of the classi�er. For this thesis, we have selected a DNN and logic-based

classi�er for the purposes of classi�cation. For the DNN case we have utilised the

state-of-the-art CNN, Recurrent Neural Network (RNN), a combination of the CNN

and RNN models, and Restricted Boltzmann Machine (RBM) techniques. We have

employed a few logic-based algorithms, and made a detailed performance analysis

of our selected data by the state-of-the-art XGBoost algorithm.
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� Performance Evaluation Methods: The performance of a classi�er model is always

evaluated by some performance-measuring parameters. The performance of the

utilised classi�er models has been evaluated utilising evaluation criteria, namely

Confusion Matrix, Sensitivity (Recall), Speci�city, Precision, F-measure, False Pos-

itive Rate, False Negative Rate, Matthews Correlation Coe�cient (M.C.C) and

Mean-Square Error (MSE) value. Computational complexity and latency are big

issues concerning the current DNN model. The performance of a few models has

been evaluated based on the amount of time and parameters required to evaluate

the model.

� Feature-Selection Methods: The identi�cation of the relative importance of the

features in the model can largely reduce the model complexity and computational

time. The Feature-Selection method has been utilised to �nd the features which are

more important to construct the classi�er model. To reduce the data dimensionality

and improve the computational latency, two Feature-Selection methods, Filter and

Wrapper, have been utilised.

� Utilised Platform: We have performed all the simulation on a desktop computer

with a Graphical Processing Unit (GPU) at the back end. All the simulations

have been performed based on MATLAB, Python, TensorFlow, Keras and Weka

environments.
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1.3 Thesis Outline

This thesis is organised in a non-traditional "Thesis by publication" format. The format

of this thesis has been approved by the Macquarie University Higher Degree Research

(HDR) o�ce. It consists of a general introduction and a conclusion, and the rest of

most chapters is based on major scienti�c publications. Except for the introduction and

conclusion chapters, all the texts and graphics of this thesis are either published or under

review. The section headings have been retained as they are in the original publication.

Figures, equations, tables, and references have been re-numbered and are in line with the

thesis format.

The main objective of this thesis is to classify a set of Histopathological BC images

into Benign and Malignant classes utilising a set of state-of-the-art ML techniques. The

whole thesis is organised into ten chapters. Chapter 1 provides introductory information

and an overall outline of the thesis, Chapter 2 provides a literature review, and Chapter 10

concludes the thesis with future directions. Chapter 3 to Chapter 9 are further classi�ed

based on DNN and logic-based algorithms as well as Global-Feature and Local-Feature

extraction techniques. Figure 1.1 depicts how this thesis is organised chapter-wise.
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1.4 Chapter-wise Contributions

Since this thesis follows the "Thesis by publication" format, except for the Introduction

and Conclusion parts all the work in the other chapters has been published or is un-

der review in a journal or conference publication. In the following we have summarised

chapter-wise contributions and the corresponding publication information.

� Chapter 2 describes the involvement of ML techniques for BC image classi�cation.

Despite the importance of this challenging issue, to the best of the author's knowl-

edge only a few literature review papers have been published; they have some strong

�ndings as well as a few shortcomings. It is evident that most of the literature does

not provide a holistic approach to the detailed procedures of BC image classi�cation.

This chapter provides a comprehensive approach to BC image-classi�cation issues.

This chapter also summarises the following:

1. For the ML techniques, especially in the classi�cation task, a dataset or a set of

datasets has been considered for the investigation. A few benchmark datasets

are available, however, they are in a scattered state. In this chapter a summary

table of most of the available breast-image datasets such as the Mammographic

Image Analysis Society (MIAS) database, the Digital Database for Screening

Mammography (DDSM), etc., are provided, with speci�cations.

2. Statistics have been summarised about recent �ndings based on the particular

datasets.

3. Considering the importance of features for the classi�cation task, this chapter

summarises a few feature sets. Speci�cally this chapter categorises the features

into local and global subsections. Later, local features are subdivided.

4. A detailed �nding about BC image classi�cation has been summarised with the

sub-categories: a) Supervised b) Un-Supervised c) Semi-Supervised learning,
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with the key contributions and shortcomings. Chapter 2 is covered by the

following publication:

I. A. A. Nahid and Y. Kong, �Involvement of Machine Learning for Breast Cancer

Image Classi�cation: A Survey�, Computational and Mathematical Methods in

Medicine, Hindawi, pp. 1�29, vol. 2017.

� Images normally possess statistical and structural information. To take advantage of

this statistical and structural information, clustering methods are utilised to cluster

the image in an unsupervised way, and this image is then guided to the DNN model

for classi�cation purposes. Along with this, Chapter 3 proposes three novel DNN

models for the image classi�cation:

1. First, one based on the CNN model.

2. Second, one based on the LSTM model.

3. Third, a combination of the CNN and LSTM models.

Except for the decision layers, almost all the layers in a DNN model are utilised,

either for the extraction of the features globally or for removing features so that the

complexity is reduced. However, at the end of the network a classi�er layer has been

used for the data classi�cation. Usually a Softmax layer is used in the literature,

however, in this model we have utilised both a Softmax layer and a Support Vector

Machine (SVM) layer for the image classi�cation, and compared their performance.

Chapter 3 is covered by the following publication:

II. A. A. Nahid, M. A. Mehrabi and Y. Kong, �Histopathological Breast-Cancer

Image Classi�cation by Deep Neural Network Techniques Guided by Local

Clustering�, BioMed Research International, Hindawi, pp. 1-20, 2018.
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� In the CNN, a nonlinear function has been used to avoid repetition of the same be-

haviour. The most popular non-linear function is the Recti�ed Linear Unit (ReLU),

which provides almost identical behaviour for all negative values. However, large

and small negative values might not contain the same meaningful information. To

avoid this issue and utilise the negative-value information we have implemented the

Max-Min convolutional model for the image classi�cation. Chapter 4 is covered by

the following publication:

III. A. A. Nahid, F. B. Ali, and Y. Kong, �Histopathological Breast-Image Classi-

�cation With Image Enhancement by Convolutional Neural Network�, in 2017

20th International Conference on Computer and Information Technology (IC-

CIT), IEEE, pp. 1-6, Dec. 2017.

� In Chapter 5, we have extracted handcrafted information such as Histogram and

Local Binary Pattern (LBP) from the images. The CNN model is driven by both the

raw images and the local features, and by utilising this information the CNN models

have extracted the hierarchical global features to classify the images. Chapter 5 is

covered by the following publication:

IV. A. A. Nahid and Y. Kong, �Local and Global Feature Utilization for Breast

Image Classi�cation by Convolutional Neural Network�, in 2017 Interna-

tional Conference on Digital Image Computing: Techniques and Applications

(DICTA), IEEE, pp. 1-6, Nov. 2017

� In the ML techniques, a hypothetical model is created based on the learning from

the available training data. This learning can be done from scratch or from a

reference point. Learning from the training data is very important for the model

to provide decisions. However, learning from scratch is not always as fruitful as
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learning from references. A Recurrent Neural Network (RNN) has the property of

learning from the reference point by feeding back information. The conventional

RNN method su�ers from a vanishing/exploding gradient problem. To avoid this

issue we have utilised two methods, Long Short Term Memory (LSTM) and Gated

Recurrent Units (GRUs). Frequency-domain data carry signi�cant information. In

Chapter 6, instead of utilising raw images directly, we have extracted frequency-

domain information and so designed a novel classi�er based on LSTM and GRU.

Chapter 6 is covered by the following publication:

V. A. A. Nahid, M. A. Mehrabi and Y. Kong, �Frequency-Domain Information

Along with LSTM and GRU Methods for Histopathological Breast-Image Clas-

si�cation�, in 2017 IEEE International Symposium on Signal Processing and

Information Technology (ISSPIT), IEEE, pp. 1-6, Dec. 2017.

� The ResNet model is an advanced addition to CNN techniques. In Chapter 7 we

have proposed two novel CNN models for Histopathological BC image classi�cation.

As an input we have utilised local features as well as frequency-domain features. As

the edges of the images contain a signi�cant amount of information, to extract the

smooth-edge information we have utilised the CT as input for the image classi�er.

Chapter 7 is covered by the following publication:

VI. A. A. Nahid and Y. Kong, �Histopathological Breast-Image Classi�cation Us-

ing Local and Frequency Domains by Convolutional Neural Network�, Infor-

mation, MDPI, vol. 9, no. 1, pp. 1�26, 2018.

� Chapter 8 utilises an unsupervised Restricted Boltzmann Machine (RBM) for the

BC Histopathological image classi�cation, guided by supervised back propagation

techniques. For the back propagation, Scaled Conjugate Gradient techniques have

been adopted and as a feature we have utilised Tamura features.



14 Chapter 1. Introduction

Chapter 8 is covered by the following publication:

VII. A. A. Nahid, A. Mikaelian and Y. Kong, �Histopathological Breast Image

Classi�cation with Restricted Boltzmann Machine along with Back Propaga-

tion�, BioMed Research, Allied Academics. [Accepted on 2nd April, 2018].

� In Chapter 9 we have utilised local features such as Histogram, LBP, Harlick and

Tamura features and utilised a few logic-based algorithms, especially XGBoost,

for Breast-image classi�cation. A classi�er's computational complexity and timing

latency depends on the required number of parameters and features utilised. To

reduce the number of parameters, too many of which increase the training time, and

to enhance generality, a few Feature-Selection methods have been developed. This

feature-reduction method can also be useful for reduction of the data dimensionality.

Chapter 9 is covered by the following publication:

VIII. A. A. Nahid, A. Mikaelian, M. A. Mehrabi and Y. Kong, �Histopatholog-

ical Breast-Cancer Image Classi�cation with Feature Prioritisation�, BioMed

Research International, Hindawi. [in review].

1.5 Author's Contributions

The major investigation, model designing, data processing, writing, drafting and editing

has been done by myself (Abdullah-Al Nahid (AAN)) with invaluable guidance and sug-

gestions provided by my principal supervisor Dr Yinan Kong (YK). In my PhD journey

Mohamad Ali Mehrabia (MAM), Aaron Mikaelian (AM) and Ferdous Bin Ali (FA) also

provided support with the writing up and presentation of papers. Table 1.2 provides

details of the contributions made by various authors to the papers.



1.5. Author's Contributions 15

T
ab
le
1.
2:

In
di
vi
du

al
C
on
tr
ib
ut
io
ns

P
ap
er

ID

Sc
op
e

I
II

II
I

IV
V

V
I

V
II

V
II
I

D
at
a
C
ol
le
ct
io
n

A
A
N
,
Y
K

A
A
N
,
Y
K

A
A
N
,
Y
K

A
A
N
,
Y
K

A
A
N
,
Y
K

A
A
N
,
Y
K

A
A
N
,
Y
K

A
A
N
,
Y
K

P
ap
er

St
ur
uc
tu
re

an
d
D
es
ig
n

A
A
N

A
A
N

A
A
N

A
A
N

A
A
N

A
A
N

A
A
N

A
A
N

C
on
ce
pt

M
od
el
D
es
ig
n

A
A
N

A
A
N

A
A
N

A
A
N

A
A
N

A
A
N

A
A
N

A
A
N

A
na
ly
si
s
an
d

In
te
rp
re
ta
ti
on

A
A
N

A
A
N

A
A
N

A
A
N

A
A
N

A
A
N

A
A
N

A
A
N

A
rt
ic
le
W
ri
ti
ng

A
A
N

A
A
N

A
A
N

A
A
N

A
A
N

A
A
N

A
A
N
,
A
M

A
A
N
,
A
M

A
rt
ic
le
E
di
ti
ng

A
A
N
,
Y
K

A
A
N
,
M
A
M
,
Y
K

A
A
N
,
FA

,
Y
K

A
A
N
,
Y
K

A
A
N
,
Y
K

A
A
N
,
Y
K

A
A
N
,
A
M
,
Y
K

A
A
N
,
A
M
,
Y
K

O
ve
ra
ll

R
es
p
on
si
bi
lit
y

Y
K

Y
K

Y
K

Y
K

Y
K

Y
K

Y
K

Y
K



16 Chapter 1. Introduction



Chapter 2

Involvement of Machine Learning for

Breast-Cancer Image Classi�cation: A

Survey

2.1 Abstract

Breast-Cancer is one of the largest causes of womens' death in the world today. Advance

engineering of natural image classi�cation techniques and Arti�cial Intelligence methods

has largely been used for the breast-image classi�cation task. The involvement of dig-

ital image classi�cation allows the doctor and the physicians a second opinion, and it

saves the doctors' and physicians' time. Despite the various publications on breast image

classi�cation, very few review papers are available which provide a detailed description

of Breast-Cancer image-classi�cation techniques, Feature-Extraction and selection proce-

dures, classi�cation measuring parameterizations as well as image classi�cation �ndings.

Published as: A. A. Nahid, Y. Kong, �Involvement of Machine Learning for Breast Cancer Image

Classi�cation: A Survey�, Computational and Mathematical Methods in Medicine, Hindawi, pp. 1�29,

vol. 2017.

17
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We have put a special emphasis on the Convolutional Neural Network (CNN) method

for breast image classi�cation. Along with the CNN method we have also described the

involvement of the conventional Neural Network (NN), Logic Based classi�ers such as the

Random Forest (RF) algorithm, Support Vector machines (SVM), Bayesian methods, and

a few of the Semi-supervised and Unsupervised methods which have been used for breast

image classi�cation

2.2 Introduction

The Cell of the body maintain a cycle of regeneration processes. The balanced growth

and death rate of the cells normally maintain the natural working mechanism of the body,

but this is not always the case. Sometimes an abnormal situation occurs, where a few

cells may start growing aberrantly. This abnormal growth of cells creates cancer, which

can start from any part of the body and be distributed to any other part. Di�erent types

of cancer can be formed in human body; among them breast cancer creates a serious

health concern. Due to the anatomy of the human body, women are more vulnerable

to breast cancer than men. Among the di�erent reasons for breast cancer, age, family

history, breast density, obesity and alcohol intake are reasons for breast cancer.

Statistics reveal that in the recent past the situation has become worse. As a case

study, Figure 2.1 shows the breast cancer situation in Australia for the last 12 years. This

�gure also shows the numbers of new males and females to start su�ering from breast

cancer. In 2007, the number of new cases for breast cancer was 12775, while the expected

number of new cancer patients in 2018 will be 18235. Statistics show that in the last

decade, the number of new cancer disease patients increased every year at an alarming

rate.

Figure 2.2 shows the number of males and females facing death due to breast cancer.
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Figure 2.1: Numbers of new people facing cancer in Australia from 2007 to 2018 [1].

It is predicted that in 2018 around 3156 people will face death; among them 3128 will be

women which is almost 99.11% of the overall deaths due to breast cancer.
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Figure 2.2: Numbers of people dying due to cancer in Australia from 2007 to 2018 [1].

Womens' breasts are constructed by lobules, ducts, nipples and fatty tissues. Milk

is created in lobules and carried towards nipple by ducts. Normally epithelial tumors

grows inside lobules as well as ducts and later form cancer inside the breast [3]. Once

the cancer has started it also spreads to other parts of the body. Figure 2.3 shows the

internal construction from a breast image.
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Figure 2.3: Anatomy of the female breast images (For the National Cancer Institute ©

2011; Terese Winslow, U.S. Govt, has certain rights)

Breast Cancer tumors can be categorised into two broad scenarios:

� Benign (non-cancerous):

Benign cases are considered as non-cancerous, that is non-life threatening. But on a

few occasions it could turn into a cancer status. An immune system known as "sac",

normally segregates benign tumors from other cells, and can be easily removed from

the body.

� Malignant (cancerous):

Malignant cancer starts from an abnormal cell growth, and might rapidly spread or

invade nearby tissue. Normally the nuclei of the malignant tissue are much bigger

than in normal tissue, which can be life threatening in future stages.

Cancer is always a life threatening disease. Proper treatment of cancer saves peoples

lives. Identi�cation of the normal, benign and malignant tissues are very important

steps for further treatment of cancer. For the identi�cation of benign and malignant

conditions, imaging of the targeted area of the body helps the doctor and the physician

for further diagnosis. With the advanced of modern photography techniques, the image

of the targeted part of the body can be captured more reliably. Based on the penetration
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of the skin and damage of the tissue medical photography techniques can be classi�ed

into two groups:

� Non-invasive:

a. Ultrasound: This photography technique uses similar techniques to SOund Nav-

igation And Ranging (SONAR) which operates in the very-high-frequency domain

and records the echos of that frequency, invented by Karl Theodore Dussik [4]. An

ultrasound image machine contains a Central Processing Unit (CPU), transducer, a

display unit and a few other peripheral devices. This device is capable of capturing

both 2-D and 3-D images. Ultrasound techniques do not have any side-e�ects, with

some exceptions like production of heat bubbles around the targeted tissue.

b. X-Ray : X-rays utilize electromagnetic radiation, invented by Wilhelm Conrad

Roentgen in 1895. The Mammogram is a special kind of X-ray (low-dose) imag-

ing technique which is used to capture a detailed image of the breast [5]. X-rays

sometimes increase the hydrogen peroxide level of the blood, which may cause cell

damage. Sometimes X-Rays may change the base of DNA.

c. Computer Aided Tomography (CAT) : CAT, or in short CT imaging, is advanced

engineering of X-ray imaging techniques, where the X-ray images are taken at dif-

ferent angles. The CT imaging technique was invented in 1970 and has been mostly

used for three dimensional imaging.

d. Magnetic Resonance Imaging (MRI): MRI is a non-invasive imaging techniques

which produces a 3D image of the body, invented by Professor Sir Peter Mars�eld,

and this method utilizes both a magnetic �eld as well as radio waves to capture

the images [6]. MRI techniques take longer to capture images, which may create

discomfort for the user. Extra cautions need to be addressed to patients who may

have implanted extra metal.

� Invasive:
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a. Histopathological Images (Biopsy Imaging): Histopathology is the microscopic

investigation of a tissue. For histopathological investigation, a patient needs to go

through a number of surgical steps. The photographs taken from the histopatho-

logical tissue provide histopathological images.

(a) (b) (c) (d)

Figure 2.4: (a,b) show mammograms of benign and malignant images (Examples of non-

invasive image) and (c,d) show histopathological benign and malignant images (Examples

of invasive image)

2.3 Breast-Image Classi�cation

Various algorithms and investigation methods have been used by researchers to investigate

breast images from di�erent perspectives depending on the demand of the disease, the

status of the disease and the quality of the images. Among the di�erent tasks, for breast

image classi�cation, Machine Learning (ML) and the Arti�cial Intelligence (AI) are heavily

utilized. A general breast image classi�er consists of the following four stages:

� Selection of a Breast Database

� Feature extraction and selection
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� Classi�er Model

� Performance Measuring Parameter

� Classi�er Output.

Figure 2.5 shows a very basic Breast Image Classi�er model.

Breast Image 

Database 

Feature Extraction 

and Selection

Classifier 

Model 

Benign

Malignant

Figure 2.5: A very basic Breast-Image Classi�cation Model

2.3.1 Available Breast-Image Databases

Doctors and physicians are heavily reliant on the Ultrasound, MRI, X-Ray etc. images to

�nd the breast cancer present status. However, to ease the doctors' work, some research

groups are investigating how to use computers more reliably for breast cancer diagnostics.

To make a reliable decision about the cancer outcome, researchers always base their inves-

tigation on some well- established image database. Various organizations have introduced

sets of images databases which are available to researchers for further investigation. Table

2.1 gives a few of the available image databases, with some speci�cations.
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The image formats of the di�erent databases are di�erent. Few of the images contained

images in JPEG format, few databases contained DICOM-format data. Herethe MIAS,

DDSM and Inbreast databases contains mammogram images. According to the Springer

(www.springer.com), Elsevier (www.elsevier.com), IEEE (www.ieeexplore.ieee.org) web

sites, researchers have mostly utilized the MIAS and DDSM databases for the breast im-

age classi�cation research. The number of conference papers published for the DDSM and

MIAS databases 110 and 168 respectively, with 82 journal papers published on DDSM

databases and 136 journal papers have published using the MIAS database. We have ver-

i�ed these statistics on both Scopus (www.scopus.com) and the Web of Science database

(www.webofknowledge.com). Figure 2.6 shows the number of published breast image

classi�cation papers based on the MIAS and DDSM data base from the year 2000 to

2017. Histopathological images provide valuable information and are being intensively

Figure 2.6: Number of papers published based on MIAS and DDSM databases

investigated by doctors for �nding the current situation of the patient. The TCGA-BRCA

and BreakHis databases contain histopathological images. Research has been performed
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in a few experiments on this database too. Among these two database, BreakHis is the

most recent histopathological image database, containing a total of 7909 images which

have been collected from 82 patients [7]. So far around twenty research papers have been

published based on this database.

2.3.2 Feature-Extraction and Selection

An important step of the image classi�cation is extracting the features from the images.

In the conventional image classi�cation task, features are crafted in locally using some

speci�c rules and criteria. However, the-state-of-the-art Convolutional Neural Network

(CNN) techniques generally extract the features globally using kernels and these global

features have been used for image classi�cation.

Feature

GlobalLocal

Texture Structural Descriptor

Haralick Tamura
Global Texture 

Descriptor

Multi Scale 

Detector

Single Scale 

Detector

DetectorBI-RADS Statistical

Figure 2.7: Classi�cation of Features for Breast-Image Classi�cation

Among the local features, Texture, Detector, Statistical are being accepted as im-

portant features for breast image classi�cation. Texture features actually represent the

low- level feature information of an image, which provides more detailed information of
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an image that might be possible from histogram information alone. More speci�cally,

texture features provide the structural and dimensional information of the color as well

as the intensity of the image. Breast Imaging-Reporting and Data System (BI-RADS) is

a mammography image assessment technique, containing 6 categories normally assigned

by the radiologist. Feature detector actually provides information whether the particular

feature is available in the image or not. Structural features provide information about the

features structure and orientation such as the area, Convex Hull, Centroid. This kind of

information give more detailed information about the features. In a cancer image, it can

provide the area of the nucleus or the centroid of the mass. Mean, Median, Standard de-

viation always provide some important information on the dataset and their distribution.

This kind of features has been categorized as statistical features. The total hierarchy of

the image Feature-Extraction is resented in Figure 2.7. Table 2.2 and Table 2.3 further

summarize the local features in detail.
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Features which are extracted for classi�cation do not always carry the same impor-

tance. Some features may even contribute to degrading the classi�er performance. Prior-

itization of the feature set can reduce the classi�er model complexity and so it can reduce

the computational time. Feature set selection and prioritization can be classi�ed into

three broad categories:

� Filter: The �lter method select features without evaluating any classi�er algorithm.

� Wrapper: The wrapper method selects the feature set based on the evaluation

performance of a particular classi�er.

� Embedded: The embedded method takes advantage of the �lter and wrapper meth-

ods for classi�er construction.

Figure 2.8 shows a generalized feature selection method where we have further clas-

si�ed the �lter method into Fisher Score, Mutual Information, Relief and Chi Square

methods. The embedded method has been classi�ed in to Bridge Regularization, Lasso

and Adaptive Lasso methods, while the wrapper method has been classi�ed to Recursive

Feature Selection and Sequential Feature Selection method.

2.3.3 Classi�er Model

Based on the learning point of view, breast image classi�cation techniques can be catego-

rized into the following three classes [42]:

Supervised• Un-supervised• Semi-Supervised•

These three classes can be split into Deep Neural Network (DNN) and Conventional

Classi�er (Without DNN) and to some further classes as in Table 2.4.
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Feature

Selection

Filter Wrapper

Fisher Score

Recursive Feature 

Selection

Mutual 
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Adaptive Lasso

Embedded
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Selection
Lasso

Bridge 

Regularization

Figure 2.8: A summary of Feature-Selection Method

2.3.4 Performance-Measuring Parameters

A Confusion Matrix is a two-dimensional table which is used to a give a visual perception

of classi�cation experiments [43]. The (i, j)th position of the confusion table indicates the

number of times that the ith object is classi�ed as the jth object. The diagonal of this

matrix indicates the number of times the objects are correctly classi�ed. Figure 7.9 shows

a graphical representation of a Confusion Matrix for the binary classi�cation case.

Hypothesized Class

T
ru

e
 C

la
s
s

True Positive (A) False Negative (B)

True Negative (D)False Positive (C)

Figure 2.9: Confusion Matrix
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Among the di�erent classi�cation performance properties, this matrix will provide

following parameters:

� Recall is de�ned as Recall = TP
TP+FN

.

� Precision is de�ned as: Precision = TP
TP+FP

.

� Speci�city is de�ned as: Specificity = TN
TN+FP

.

� Accuracy is de�ned as ACC = TP+TN
TP+TN+FP+FN

.

� F-1 score is de�ned as F1 = 2×Recall
2×Recall+FP+FN

.

� Matthew Correlation Coe�cient (MCC): MCC is a performance parameter of a

binary classi�er, in the range {−1 to + 1}. If the MCC values tend more towards

+1, the classi�er gives a more accurate classi�er, the opposite condition will occur

if the value of the MCC tend towards the -1 . MCC can be de�ned as

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FP)
(2.1)

2.4 Performance of di�erent Classi�er models on Breast-

Image Dataset

Based on Supervised, Semi-Supervised and Un-Supervised methods di�erent research

groups have been performed classi�cation operation on di�erent image data base. In

this section we have summarized few of the works of breast image classi�cation.

2.4.1 Performance Based on Supervised Learning

In supervised learning, a general hypothesis is established based on externally supplied

instances to produce future prediction. For the supervised classi�cation task, features are
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extracted or automatically crafted from the available data set and each sample is mapped

to a dedicated class. With the help of the features and their levels a hypothesis is created.

Based on the hypothesis unknown data are classi�ed [44].

Figure 2.10 represents an overall supervised classi�er architecture. In general, the

whole data-set is split into training and testing parts. To validate the data, some time data

are also split into a validation part as well. After the data splitting the most important

part is to �nd out the appropriate features to classify the data with the utmost accuracy.

Finding the features can be classi�ed into two categories, Locally and Globally crafted.

Locally crafted means that this method requires a hand-held exercise to �nd out the

features, whereas globally crafted means that a kernel method has been introduced for

the Feature-Extraction. Hand-crafted features can be prioritized, whereas global feature

selection does not have this luxury.

Classifier Model

Image

 Database
Train/Test

 data splitting
Locally 

 Crafted

Globally

 Crafted

Hand Crafting

Kernel Based

 Crafting 

 Feature 

prioritization

Classifier ModelCCllassiiffffiiie

Conventional 

Classifier

er Moddell

DNN

Classifier
Evaluation

 Matrix

Classified

 Data

Feature Collection

Ensemble learning 

Figure 2.10: A generalised Supervised Classi�er Model
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Conventional Neural Network

The Neural Network (NN) concept comes from the working principle of the human brain.

A biological neuron consists of the following four parts:

Dendrites• Nuclease• Cell Body• Axon•

Dendrites collect signals, Axons carry the signal to the next dendrite after processing by

the cell body as the Figure 2.11. Using the neuron working principle, the perceptron

Figure 2.11: A model of a Biological neuron

model was proposed by Rosenblatt in 1957 [45]. A single-layer perceptron linearly com-

bines the input signal and gives a decision based on a threshold function. Based on the

working principle and with some advanced mechanism and engineering, NN methods have

established a strong footprint in many problem-solving issues. Figure 2.12 shows the basic

working principle of NN techniques.

In the NN model the input data X = {x0, x1........xN} is �rst multiplied by the weight

data W = {w0,w1........wN} and then the output is calculated using

Y = g
(∑)

where
∑

= W.X (2.2)

Function g is known as the activation function. This function can be any threshold

value or sigmoid or hyperbolic, etc. In the early stages, feed-forward neural network

techniques were introduced [46], lately the backpropagation method has been invented to

utilize the error information to improve the system performance [47], [48].
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The history of breast image classi�cation by NN is a long one. To the best of my

knowledge much the pioneer work was performed by Dawson et al. in 1991 [49]. Since

then, NN has been utilized as one of the strong tools for breast image classi�cation. We

have summarized some of the work related to NN and Breast image classi�cation in Tables

2.5, 2.6 and 2.7.

Σ g
w0

w1

wN

wN-1

yx0

x1

xN-1
xN

Figure 2.12: Working principle of a simple Neural Network technique
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Table 2.4: A simpli�ed Hierarchy of Classi�cation

Learning

Technique
Algorithm

Su
p
er
vi
se
d

Conventional

(a) Logic Based

{ (1) ID3, (2) C4.5, 3 (3) Bagging,

(4) Random Trees, (5) Random Forest,

(6) Boosting, (7) Advanced Boosting,

(8) Extreme Boosting (XGBoosting).

(b) Bayesian

{
(1) Naive Bayes

(2) Bayesian Network

(c) Conventional Neural Network

(d) Support Vector Machine

DNN Based

(a) Convolutional Neural Network (CNN),

(b) Deep Belief Network (DBN),

(c) Generative Adversarial Network (GAN).

U
n-

Su
p
er
vi
se
d

Conventional

(a) k-Means Clustering

(b) Self Organizing Map (SOP)

c) Fuzzy C-Means Clustering (FCM)

DNN Based (a) Deep Belief Network (DBN)

Se
m
i-

Su
p
er
vi
se
d

Conventional

(a) Self Training

(b) Graph Based

(c) S3V3

(d) Multi-View

(e) Generative model
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Deep Neural Network

Deep Neural Network (DNN) is a state-of-the-art concept where conventional NN tech-

niques have been utilized with advanced engineering. It is found that conventional NNs

have di�culties in solving complex problems, where as DNN solve them with utmost

precision. However DNNs su�er from more time and computational complexity than the

conventional NN.

Convolutional Neural Network (CNN)• Deep Belief Network (DBN)•

Generative Adversarial Network (GAN)• Recurrent Neural Network (RNN)•

Convolutional Neural Network

A CNN model is the combination of a few intermediate mathematical structures. This

intermediate mathematical structure creates or helps to create di�erent layers:

� Convolutional Layer

Among all the other layers, the convolutional layer is considered as the most impor-

tant part for a CNN model and can be considered as the backbone of the model.

A kernel of size m× n is scanned through the input data for the convolutional

operation which ensures the local connectivity and weight sharing property.

� Stride and Padding

In the convolutional operation, a �lter scans through the input matrices. In each

step how much position a kernel �lter moves through the matrix is known as the

stride. By default stride keeps to 1. With inappropriate selection of the stride

the model can lose the border information. To overcome this issue the model utilize

extra rows and columns at the end of the matrices, and this added rows and columns

contain all 0s. This adding of extra rows and columns which contain only zero value

is known as zero padding.
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� Nonlinear Operation

The output of each of the kernel operations is passed through a recti�er function such

as Recti�ed Linear Unit (ReLU), Leaky ReLU, TanH, Sigmoid etc. The Sigmoid

function can be de�ned as

σ(x) =
1

(1 + exp−x)
(2.3)

and the Tanh function can be de�ned as

tanh(x) =
(expx− exp−x)

(expx + exp−x)
. (2.4)

However the most e�ective recti�er is ReLU. The ReLU method converts all the

information into zero if it is less than or equal to zero, and passes all the other data

as is as shown in Figure 5.4.

σ(x) = max(0, x). (2.5)

0 1 2 3-1-2-3

1

2

3

Input

O
u
t
p
u
t

Figure 2.13: ReLU Operation

Another important nonlinear function is Leaky-ReLU

Leaky − ReLU(x) = σ(x) + αmin(0, x) (2.6)

where α is predetermined parameter which can be varied to give a better model.

� Sub-Sampling

Sub-sampling is the procedure of reducing the dimensionality of each of the feature
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maps of a particular layer; this operation is also known as a pooling operation.

Actually it reduces the amount of feature information from the the overall data. By

doing so, it reduces the overall computational complexity of the model. To do this

s× s patch units are utilized. The two most popular pooling methods are

� Max-Pooling

� Average Pooling.

In Max-Pooling, only the maximum values within a particular kernel size are selected

for further calculation. Consider an example of a 16 x16 image as shown in Figure

5.4. A 2 by 2 kernel is applied to the whole image, 4 blocks in total, and produces

a 4x4 output image. For each block of four values, we have selected the maximum.

For instance from blocks one, two, three and four, maximum values 4, 40, 13, 8

are selected respectively as they are the maximum in that block. For the Average

pooling operation, each kernel gives the output as average.

1 2

3 4

10

20 30

40

10 11

1213 5

6

7

8

4 40

13 8

(a)

3 2

3 4

10

20 30
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10 13

1213 4

6

6

8

3 25

12 6

(b)

Figure 2.14: Max-Pooling and Average Pooling

� Drop-Out

Regularization of the weight can reduce the over-�tting problem. Randomly re-

moving some neurons can regularize the over-�tting problem. The technique of

randomly removing neurons from the network is known as dropout.
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� Soft-Max Layer

This layer contains normalized exponential functions to calculate the loss function

for the data classi�cation.

Figure 7.7 shows a generalized CNN model for the image classi�cation. All the neurons

of the most immediate layer of a fully connected layer are completely connected with the

fully connected layer, like a conventional Neural Network. Let f l−1j represent the jth feature

map at the layer l− 1. The jth feature map at the layer l can be represented as

Convolution Convolution Sub-Sampling Sub-Sampling Fully-connected

Be nign

Malignant

 Image
6 Features

6 Features 9 Features

Figure 2.15: Work�ow of a Convolutional Neural Network

f lj = σ(
Nl−l∑
i=1

f l−1i ∗ ki,j + bl
j) (2.7)

where Nl−l represents the number of feature maps at the l− 1th layer, ki,j represents the

kernel function and bl
j represents the bias at l, where σ performs a nonlinear function

operation. The layer before the soft-max layer can be represented as

hend
p = wend ∗ hend−1

p + bend (2.8)

As we are working on a binary classi�cation, the Soft-Max regression normalized output

can be represented as

ȳp =
exp(hend

p )∑2
p=1 exp(hend

p )
(2.9)
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Let p = 1 represent Benign class and p = 2 represents the Malignant class. The cross-

entropy loss of the above function can be calculated as

Lp = − ln(ȳp) (2.10)

Whichever group experiences a large loss value, the model will consider the other group

as predicted class.

A di�cult part of working on DNN is that it requires a specialized software package

for the data analysis. Few research groups have been working on how e�ectively data can

be analyzed by DNN from di�erent perspectives and the demand. Table 2.8 summarizes

some of the software which is available for DNN analysis.

Table 2.8: Available Software for Deep-Learning Analysis

Software Interface and Backend Provider

Ca�e [66], [67]
Python, MATLAB,

C++

Berkeley Vision and Learning Centre,

University of California, Berkeley

Torch [68] C, LuaJIT

MatConvNet [69], [70] MATLAB, C
Visual Geometry Group, Department

of Engineering, University of Oxford

Theano [71], [72] Python
Montreal Institute for Learning Algorithms

University of Montreal

TensorFlows [73] C++, Python Google

CNTK [74] C++ Microsoft

Keras [75] Theano, Tensor Flow MIT

dl4j [76] java Skymind Engineering

DeeBNET [77], [78] MATLAB
Information Technology Department,

Amirkabir University of Technology
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The history of the CNN and its use for biomedical image analysis is a long one.

Fukushima �rst introduced a CNN named "necognitron" which has the ability to recognize

stimulus patterns with a few shifting variances [79]. To the best of our knowledge, Wu et

al. �rst classi�ed a set of mammogram images into malignant and benign classes using

a CNN model [80]. In their proposed model they only utilized one hidden layer. After

that, in 1996 Sahiner et al. utilized CNN model to classify mass and normal breast tissue

and achieved ROC scores of 0.87 [81]. In 2002, Lo et al. utilized a Multiple Circular Path

CNN (MCPCNN) for tumor identi�cation from mammogram images and obtained ROC

scores of around 0.89. After an absence of investigation of the CNN model, this model

regained its momentum after the work of Krizhevsky et al [82]. Their proposed model

is known as AlexNet. After this work a revolutionary change has been achieved in the

image classi�cation and analysis �eld. As an advanced engineering of the AlexNet, the

paper titled "Going Deeper with Convolutions" by Szegedy [83] introduced the GoogleNet

model. This model contains a much deeper network than AlexNet. Sequentially ResNet

[84], Inception [85], Inception-v4, Inception-ResNet [86] and a few other models have

recently been introduced.

Later, directly or with some advanced modi�cation, these DNN models have been

adapted for biomedical image analysis. In 2015, Fonseca et al. [87] classi�ed breast density

using CNN techniques. CNN requires a su�cient amount of data to train the system.

It is always very di�cult to �nd a su�cient amount of medical data for training a CNN

model. A pre-trained CNN model with some �ne tuning can be used rather than create a

model from scratch [88]. The authors of [88] did not perform their experiments on a breast

cancer image data set, however they have performed their experiments on three di�erent

medical data-sets with layer-wise training and claimed that "Retrained CNN along with

adequate training can provide better or at least the same amount of performance".

The Deep Belief Network (DBN) is another branch of the Deep Neural Network, which
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mainly consists of Restricted Bolzmann Machine (RBM) techniques. The DBN method

was �rst utilized for supervised image classi�cation by Liu [89]. After that, Zaher utilized

the DBN method for breast image classi�cation [90]. This �eld is still not fully explored

for breast image classi�cation yet. Zhang utilized both RBM and Point-Wise Gated RBM

(PRBM) for shear-wave electrography image classi�cation where the data set contains 227

images [91]. Their achieved classi�cation Accuracy, Sensitivity, Speci�city are 93.40%,

88.60% and 97.10% respectively. Table 2.9 and 2.11 summarize the most recent work for

breast image classi�cation along with some pioneer work on CNN.
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Logic-Based Algorithm

A Logic-based algorithm is a very popular and e�ective classi�cation method which follows

the tree structure principle and logical argument. This algorithm classi�es instances based

on the feature's values. Along with other criteria, a decision-tree based algorithms contains

the following features:

� Root Node: A root node contains no incoming node, and it may or may not contain

any outgoing edge.

� Splitting: Splitting is the process of subdividing a set of cases into a particular

group. Normally the following criteria are maintained for the splitting:

Information Gain• Gini Index• Chi-squared•

� Decision Node

� Leaf/Terminal Node: This kind of node has exactly one incoming edge and no

outgoing edge. The tree always terminate here with a decision.

� Pruning: Pruning is a process of removing subtrees from the tree. Pruning performs

to reduce the over-�tting problem. Two kinds of pruning techniques are available:

Pre-Pruning• Post-Pruning•

Among all the tree-based algorithms, Iterative Dichotominer 3 (ID3) can be considered

as a pioneer, proposed by Quinlan et al. [105]. The problem of the ID3 algorithm is to

�nd the optimal solution which is very much prone towards over-�tting. To overcome the

limitation of the ID3 algorithm the C4.5 algorithm has been introduced by Quinlan et

al. [106], where a pruning method has been introduced to control the over-�tting problem.

Pritom et al. [107] classi�ed the Wisconsin breast dataset where they utilized 35 features.

They have obtained 76.30% Accuracy, 75.10% False Positive Rate, ROC score 0.745 when
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Figure 2.16: A general structure of a Tree

they ranked the features. Without ranking the features they obtained 73.70% Accuracy,

50.70% False Positive Rate, ROC score value 52.80. Asri et al. [108] utilized the C4.5

algorithm for the Wisconsin database classi�cation where they utilized 11 features and

obtained 91.13% Accuracy.

Logic-based algorithms allow us to produce more than one tree and combine the de-

cisions of those trees for an advanced result; this mechanism is known as an ensemble

method. An ensemble method combines more than one classi�er hypothesis together and

produces more reliable results through a voting concept. Boosting and bagging are two

well-known ensemble methods. Both boosting and bagging aggregate the trees. The dif-

ference is, in bagging successive trees do not depend on the predecessor trees, where in the

boosting method successive trees depend on the information gathered from the predeces-

sor trees. Gradient boosting is a very popular method for data classi�cation [109], [110],

however a state-of-the-art Boosting algorithm such as " Extreme Gradient Boosting "

(XGBoosting) is a very e�ective method for data classi�cation [111]. Interestingly, there
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has not been a single paper published for breast image classi�cation using the XGBoost

algorithm. Along with the boosting method, di�erent bagging method's are available,

among them Random Forest (RF) is very popular where a large number of uncorrelated

trees are aggregated together for a better prediction. Table 2.4.1 and Table 2.4.1 summa-

rizes a set of papers where a Logic-Based Algorithm has been used for image classi�cation.
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Support Vector Machine (SVM)

SVM machines were proposed by VC (Vepnick-Cherovorenkis). This technique does not

require any prior distribution knowledge for the data classi�cation task like Bayesian

classi�cation technique. In many practical situations, the distribution of the features is

not available. In such cases, SVM can be used to classify the available data into the

di�erent classes.

Consider the set of two-dimensional data plotted in Figure 2.17. The symbol ” ◦ ”

represents those data which belong to Class-1 and ”�” represents data which belong to

Class-2. A hyperplane (P) has been drawn which classi�es the data into two classes.

Interestingly, there will be ”n” hyperplanes available which can separate the data.

X

Y

Hyper Plane P

Figure 2.17: SVM �nds the hyperplane which separates two classes

Let X = {Xi} where {Xi ∈ Rn} (i = {1, 2, 3−−−−−−−−− l}) is to be classi�ed

into two classes ω ∈ {ω1, ω2}. Suppose that the classes {ω1} and {ω2} are recognized as

” + 1” and ”− 1”. Classi�cation of this data can be written

C = {(X1, ω1), (X2, ω2), (X3, ω3)......................(Xn, ωn)} (2.11)

During the learning stage, the SVM �nds parameters Wi = [W1
i ,W

2
i , ............W

n
i ]T and b
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to produce a decision function d(Xi,Wi, b):

d(Xi,Wi, b) = WT
i Xi + b = Wi.Xi + b =

n∑
j=1

Wj
iX

j
i + b (2.12)

where Wi,Xi ∈ Rn.

As the training data are linearly separable no training data will satisfy the condition

d(Xi,Wi, b) = 0 (2.13)

To control the separability, we consider the following inequalities:

d(Xi,Wi, b) ≥ 1 for ωi = +1 (2.14)

d(Xi,Wi, b) < 1 for ωi = −1 (2.15)

Sometime it is very di�cult to �nd the perfect hyperplane which can separate the data,

but if we transform the data into a higher dimension the data may be easily separable.

To separate this kind of data, a kernel function can be introduced.

Kernel Methods

Assume a transformation φ such that it transforms the data-set X1 ∈ Rn in-to data-

set X2 ∈ Rm where m > n. Now train the linear SVM on the data set X2 to get a new

classi�er FSVM .

A Kernel φ e�ectively computes a dot product in a higher-dimensional space Rm.

For {xi,xj} ∈ RN, K(xi,xj) =< φ(xi,xj) >m is an inner product of Rm, where φ(x)

transforms x to Rm. Consider {xi,xj} ∈ Rn; then we can de�ne the kernel as follows:

� Radial Basis Function Kernel (rbf): K(xi,xj) = exp(−γ|. < φ(xi − xj) > |2)

� Polynomial Kernel (polynomial): K(xi,xj) = (< φ(xi.xj) > +r)d

� Sigmoid Kernel: K(xi,xj) = tanh(< φ(xi,xj) > +r)



2.4. Performance of di�erent Classi�er models on Breast-Image Dataset 57

� Linear Kernel (linear): K(xi,xj) =< φ(xi,xj) >

The advantage of the kernel method for breast cancer image classi�cation using an

SVM was �rst introduced by El-Naqa et al. [124]. They classify Micro-calci�cation clusters

in mammogram images (76 images were utilized for the experiment where the total number

of MCs were 1120). They utilized the SVM method along with the Gaussian Kernel as

well as the polynomial kernel. In 2003, R.Chang et al. classi�ed a set of sonography

images using SVM techniques where they consider that the image is surrounded by pickle

noise [125], where the data-base contains 250 images. Their achieved accuracy was 93.20%.

A total of thirteen features, including Shape, Law's and gradient features, were utilized

along with SVM and a Gaussian kernel for the mammogram image classi�cation. They

performed their operation on 193 mammogram images and achieved 83.70% sensitivity

and 30.20% false positive rate [126]. SVM has been combined with the NN method

by Sing et al. for ultrasound breast image classi�cation where the database contained

total 178 images. They performed a hybrid feature selection method to select the best

features [127].

A breast ultrasound image is always very complex in nature. The Multiple Instance

Learning (MIL) algorithm has been �rst used along with SVM for the breast image clas-

si�cation by [128], and their obtained accuracy was 91.07 %. The Concentric Circle

BOW Feature-Extraction method was utilized to extract the features and later the SVM

method was used for breast image classi�cation [129]. Their achieved accuracy is 88.33%

when the dimension of the features was 1000. A Bag-of-Features has been extracted from

Histopathological images (using SIFT and DCT), and using SVM for classi�cation by

Maa et al. [130]. The experiment is performed on a database which contains 361 images,

where 119 images are normal, 102 images are ductal carcinoma in situ and the rest of the

images are invasive carcinoma. Their experiment achieved 100.00% classi�cation accuracy

for ductal carcinoma in situ, 98.88% classi�cation accuracy for for invasive carcinoma, and
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100.00% classi�cation accuracy for normal image classi�cation. A mammogram (DDSM)

image database has been classi�ed by Hiba et al. [131] by SVM along with the Bag of

Feature method. Firstly the authors extract LBP and quantize to the binary pattern

information for Feature-Extraction. Their obtained accuracy was 91.25%.

Along with the above-mentioned work di�erent breast image databases have been

analyzed and classi�ed using SVM. We have summarized some of the work related to

SVM in Tables 2.14, 2.15 and 2.16.
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Bayesian

A Bayesian classi�er is a statistical method based on Bayes theorem. This method does

not follow any explicit decision rule, however it depends on estimating probabilities. The

Naive Bayes method can be considered one of the earlier Bayesisn learning algorithms.

The Naive Bayes (NB) method works on the basis of the Bayes formula, where each of

the features is considered statistically independent. Consider a data-set with m samples,

each sample containing a feature vector xk with n features [144] and belonging to a

particular class ck. According to the NB formula, the probability of the particular class

ck with the conditional vector xk is represented as

P(ck|xk) =
P(xk|ck)P(ck)

P(xk)
(2.16)

Applying the chain rule

P(xk
1,x

k
2,x

k
3, ...,x

k
n|ck) =

n∏
i=1

P(xk
i |ck) (2.17)

The NB theorem considers all the features independently which can be represented as

c̄ = arg max
k∈1,...,m

P(ck)
n∏

i=1

P(xk
i |ck) (2.18)

The NB method is very easy to construct and very fast to predict the data. This

method can also be utilize the kernel method. However, for a large data-set and continuous

data, this method has very poor performance. NB can be classi�ed into the following

subclasses:

Gaussian Naive Bayes• Multinomial Naive Bayes• Bernoulli Naive Bayes•

One of the constraints of the NB classi�er is that it considers that all the features are

conditionally independent. A Bayesian Network is another Bayesian classi�er which can

overcome this constraint [145], [146]. The literature shows that, the Bayesian classi�er

method is not utilized much for breast image classi�cation. In 2003 S. Butler et al. used
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NB classi�er for X-ray breast image classi�cation [147]. They extracted features from the

low-level pixels. For all feature combinations they obtained more than 90.00% accuracy.

Bayesian structural learning has been utilized for a breast lesion classi�er by Fishcer et

al. [148]. D. Soria et al. [149] classify a breast cancer data-set utilizing C4.5, multilayered

perceptron and the NB algorithm using WEKA software [150]. They conclude that the

NB method gives better performance than the other two methods in that particular case.

They also compared their results with the Bayes Classi�er output. Some other research

on the Bayes classi�er and breast image classi�cation has been summarized in Table 2.17

and 2.18.
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2.4.2 Performance Based on Un-supervised Learning

This learning algorithm doesn't require any prior knowledge about the target. The main

goal of the un-supervised learning is to �nd the hidden structure and relations between the

di�erent data [164] and distribute the data into di�erent clusters. Basically a clustering

is a statistical process where a set of data points is partitioned into a set of groups,

known as a cluster. The K-means algorithm is a clustering algorithm proposed by [165].

Interestingly, unsupervised learning can be utilized as pre processing step too.

� In the K-means algorithm, �rstly assign K centroid points. Suppose that, we have n

feature points xi where i ∈ {1, ..., n}. The objective of the K-means algorithm is to

�nd positions µi, where i ∈ 1, ...,K that minimize the total variance of the clusters

by solving

arg min
x∈ci

K∑
i=1

∑
x∈ci

d(x, µi) = arg min
x∈ci

K∑
i=1

∑
x∈ci

||x− µi||2 (2.19)

� Self-Organizing Map (SOM)

SOM is another popular unsupervised classi�er, proposed by Kohonen et al. [166],

[167], [168]. The main idea of the SOM method is to reduce the dimension of the

data and represent those dimensionally reduced data by a map architecture, which

provides more visual information.

� Fuzzy C-means clustering (FCM)

The FCM algorithm cluster data based on the value of a membership function, is

proposed by [169] and improved by Bezdek [170].

The history of using unsupervised learning for breast image classi�cation is a long one .

In 2000, Cahoon et al. [171] classi�ed mammogram breast images (DDSM data-base) in an

un-supervised manner, utilizing the K-NN clustering and Fuzzy C-Means (FCM) methods.
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Chen et al. classi�ed a set of breast images into benign and malignant classes [172]. They

utilized a SOM procedure to perform this classi�cation operation. They collected 24

autocorrelation textural features and used a 10 Fold validation method. Markey et al.

utilized the SOM method for BIRADS image classi�cation of 4435 sample [173]. Table

2.19 and 2.20 summarises the breast image classi�cation performance based on K-means

algorithm and SOM method.
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2.4.3 Performance Based on Semi-supervised Learning

The working principle of semi-supervised learning lies in between supervised and unsu-

pervised learning. For the semi-supervised learning a few input data have an associated

target and large amounts of data are not labeled [186]. It is always very di�cult to col-

lect the labeled data. Few data such as speech or information scratched from the web

are di�cult to label. To classify this kind of data semi-supervised learning is very e�-

cient. However lately this method has been utilized for the breast image classi�cation

too. Semi-supervised learning can be classi�ed as

� Graph Based (GB)

� Semi-Supervised Support Vector Machine

� Human Semi-supervised Learning

To the best of our knowledge, Li et al. has been utilized GB semi-supervised learn-

ing for biomedical image classi�cation [187]. The kernel trick is applied along with the

semi-supervised learning method for breast image classi�cation by Li et al. [188]. They

performed their experiments on the Wisconsin Prognostic Breast Cancer (WPBC) data-

set for the breast image classi�cation. Ngadi et al. utilized both the SKDA (Supervised

Kernel-based Deterministic Annealing) and NSVC methods for mammographic image

classi�cation [189]. They performed their experiments on 961 images, where 53.60% of

the images were benign and the rest of the images are malignant. Among the other

utilized features they utilized BI-RADS descriptors as features. When they utilized the

NSVC method they also utilized RBF, Polynomial and linear kernel. They found that the

best accuracy of 99.27% was achieved when they utilized linear kernels. Few studies have

performed the breast image classi�cation by semi-supervised learning, as summarized in

Table 2.21 and 2.22 .
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2.5 Conclusion

Breast-cancer is a serious threat to women throughout the world and is responsible for

increasing the female mortality rate. The improvement of the current situation with

breast cancer is a big concern and can be achieved by proper investigation, diagnosis and

appropriate patient and clinical management. Identi�cation of breast cancer in the earlier

stages and a regular check of the cancer can save many lives. The status of cancer changes

with time, as the appearance, distribution and structural geometry of the cells is changing

on a particular time basis because of the chemical changes which are always going on inside

the cell. The changing structure of cells can be detected by analysing biomedical images

which can be obtained by Mammogram, MRI etc. techniques. However these images are

complex in nature and require expert knowledge to perfectly analyze for malignancy. Due

to the non-trivial nature of the images the physician sometimes makes a decision which

might contradict others. However computer-aided-diagnosis techniques emphasising on

the machine learning can glean a signi�cant amount of information from the images and

provide a decision based on the gained information, such as cancer identi�cation, by

classifying the images.

The contribution of Machine-Learning techniques to image classi�cation is a long

story. Using some advanced engineering techniques with some modi�cations, the existing

Machine-Learning based image classi�cation techniques have been used for biomedical

image classi�cation, specially for breast-image classi�cation and segmentation. A few

branches of the Machine-Learning based image classi�er are available such as Deep Neu-

ral Network, Logic based, SVM etc. Except for deep learning, a machine learning-based

classi�er largely depends on handcrafted feature-extraction techniques such as statistical,

structural information etc., that depend on various mathematical formulations and theo-

ries where they gain object-speci�c information. They are further utilized as an input for

an image classi�er such as SVM, Logic based etc, for the image classi�cation.
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This investigation �nds that, most of the conventional classi�ers depends on prerequi-

site local Feature-Extraction. The nature of cancer is always changing, so the dependen-

cies on a set of local features will not provide good results on a new dataset. However the

state-of-the art Deep Neural Networks, specially CNN, have recently advanced biomedical

image-classi�cation due to the global-feature extraction capabilities. As the core of the

CNN model is the kernel, which gives this model the luxury of working with the global

features. These globally extracted features allow the CNN model to extract more hidden

structure from the images. This allows some exceptional results for Breast-Cancer image-

classi�cation. As the CNN model is based on the global features, this kind of classi�er

model should be easy to adapt to a new dataset.

This paper also �nds that the malignancy information is concentrated in the particular

area de�ned as ROI. Utilizing only the ROI portions, and information gathered from

the segmented part of the data can improve the performance substantially. The recent

development of the Deep Neural Network can also be utilized for �nding the ROI and

segmenting the data, which can be further utilized for the image-classi�cation.

For Breast-Cancer patient care, the Machine-Learning techniques and tools have been

a tremendous success so far, and this success has gained an extra impetus with the involve-

ment of deep learning-techniques. However the main di�culty of handling the current

deep-learning based Machine-Learning classi�er is its computational complexity, which

is much higher than for the traditional method. The current research is focused on the

development of the light DNN model so that both the computational and timing complex-

ities can be reduced. Another di�culty of using the DNN based cancer image-classi�er

is that it requires a large amount of training data. However the reinforcement of learn-

ing techniques and data augmentation has been largely adapted with the current CNN

model, which can provide reliable outcomes. Our research �nds that the current trend of

Machine-Learning is largely towards deep-learning techniques. Among a few other impli-
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cations, the appropriate tools for designing the overall deep-learning model was the initial

obligation for utilizing deep-learning based Machine-Learning techniques. However some

reliable software has been introduced which can be utilized for breast-image classi�ca-

tion. Initially it was di�cult to implement a DNN-based architecture in simpler devices,

however due to cloud-computer based arti�cial-intelligence techniques this issue has been

overcome and DNN has already been integrated with electronic devices such as Mobile

phones. In future combining the DNN network with the other learning techniques can

provide more-positive predictions about breast cancer.

Due to the tremendous concern about breast cancer, many research contributions

have been published so far. It is quite di�cult to summarize all the research work re-

lated to Breast-Cancer image-classi�cation based on Machine-Learning techniques in a

single research article. However this chapter has attempted to provide a holistic ap-

proach to the Breast-Cancer image- classi�cation procedure which summarises the avail-

able breast dataset, generalized image-classi�cation techniques, Feature-Extraction and

reduction techniques, performance measuring criteria and state-of-the-art �ndings.

In a nutshell, the involvement of machine learning for breast-image classi�cation allows

doctors and physicians to take a second opinion, and it provides satisfaction to and raises

the con�dence level of the patient. There is also a scarcity of expert people who can

provide the appropriate opinion about the disease. Sometimes the patient might need to

spend a long time waiting due to the lack of expert people. In this particular scenario

the machine learning based diagnostic system can help the patient to receive the timely

feedback about the disease which can improve the patient-management scenario.
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Chapter 3

Histopathological Breast-Cancer Image

Classi�cation by Deep Neural Network

Techniques Guided by Local Clustering

3.1 Abstract

Breast-Cancer is a serious threat and one of the largest causes of death of women through-

out the world. The identi�cation of cancer largely depends on digital biomedical pho-

tography analysis such as Histopathological images by doctors and physicians.Analysing

Histopathological images is a non-trivial task, and decisions from investigation of these

kinds of images always require specialised knowledge. However, Computer Aided Di-

agnosis (CAD) techniques can help the doctor to make more reliable decisions. The

state-of-the-art Deep Neural Network (DNN) has been recently introduced for biomedical

image analysis. Normally each image contains structural and statistical information. This

Published as: AA. Nahid, M. A. Mehrabi and Y. Kong, �Histopathological Breast-Cancer Image

Classi�cation by Deep Neural Network Techniques Guided by Local Clustering�,BioMed Research Inter-

national, Hindawi, pp. 1-20, 2018.
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chapter classi�es a set of biomedical breast-cancer images (BreakHis dataset) using novel

DNN techniques guided by structural and statistical information derived from the im-

ages. Speci�cally a Convolutional Neural Network (CNN), a Long-Short-Term-Memory

(LSTM) and a combination of CNN and LSTM are proposed for Breast-Cancer image

classi�cation. Softmax and Support Vector Machine (SVM) layers have been used for the

decision-making stage after extracting features utilising the proposed novel DNN models.

In this experiment the best Accuracy value of 91.00% is achieved on the 200× dataset,

the best Precision value 96.00% is achieved on the 40× dataset, and the best F-Measure

value is achieved on both the 40× and 100× datasets.

3.2 Introduction

The unwanted growth of cells causes cancer which is a serious threat to humans. Statistics

show that millions of people all over the world su�er various cancer diseases. As an

example Table 3.1 summarises the statistics concerning the recent cancer situation in

Australia. These statistics reveal the number of newly cancer-a�ected people diagnosed

in Australia and also the number of people who died in 2017 in Australia. These statistics

also divulge that the number of females a�ected and the number of females dying due to

breast cancer are more than for males. This indicates that females are more vulnerable

to Breast-Cancer (BC) than males. Although these statistics are for Australia they might

be representative of what is happening throughout the world.

Table 3.1: Cancer Statistics for Australia 2017 [2]

Female Male Total

Estimated number of new diagnoses (all cancers) 62005 72169 134174

Estimated number of deaths 20677 27076 47753

Estimated new case of diagnosis (Breast Cancer) 17586 144 17730

Deaths due to Breast Cancer 3087 57 3114
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Proper BC diagnosis can save thousands of women's lives, and proper diagnosis largely

depends on identi�cation of the cancer. Finding BC largely depends on capturing a

photograph of the cancer-a�ected area which gives information about the current situation

of the cancer. A few biomedical imaging techniques have been utilised, some of which are

non-invasive such as Ultra-Sound imaging, X-Ray imaging, Computer Aided Tomography

(CAT) imaging. Other imaging techniques are invasive such as Histopathological images.

Investigation of these kinds of images is always very challenging, specially in the case of

Histopathological imaging due to its complex nature. Histopathological image analysis is

non-trivial, and the investigation of this kind of image always produces some contradictory

decisions by doctors. Since doctors and physicians are human, it is natural that errors

will occur.

A Computer Aided Diagnosis (CAD) system provides doctors and physicians with

valuable information, for example classi�cation of the disease. Di�erent research groups

investigate opportunities to improve the CAD systems' performance. Some advanced

engineering techniques have been utilised to take a general image classi�er and adjust it

as a biomedical image classi�er, such as a breast-image classi�er. The state-of-the-art

Deep Neural Network (DNN) techniques have been adapted for a BC image classi�er to

provide reliable solutions to patients and their doctors.

The basic working principle of DNN lies on the basic Neural Network (NN). Rosenblatt

in 1957 [45] for the very �rst time introduced the NN concept, which provides decisions

based on a threshold. Using some advanced engineering, a very light Convolutional Neural

Network (CNN) model has been proposed by K. Fukushima [79], referred to as "Neocog-

nitron". The main interest of this project is to �nd stimulus patterns, where they can

tolerate a limited amount of shifting variance. This "Neocognitron" model served as the

�rst CNN model for biomedical signal analysis [79]. Speci�cally a CNN model has been

for the �rst time introduced for breast-image classi�cation by Y. Wu et al. [80] where
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they performed their experiments on a set of mammogram images. The utilisation of

the CNN model for breast-image classi�cation has been limited due to its computational

complexity, until A. Krizhevesky et al. [82] proposed their model known as AlexNet. This

AlexNet model has brought about a revolutionary change in the image-analysis �eld, spe-

cially image classi�cation. Taking this model as a reference, a few other models have been

adjusted such as ResNet [84], Inception [85], Inception-V4, Inception-ResNet [86], etc.,

for biomedical image classi�cation. M. A. Ja�ar et al. classi�ed the mammogram-image

(MIAS-mini, DDSM) dataset using the CNN model, and obtained 93.35% Accuracy and

93.00% Area Under Curve (AUC) [200]. Y. Qiu et al. [101] utilised a CNN for mammo-

gram image classi�cation and where they utilised 2, 5 and 10 feature maps and obtained

an average Accuracy of 71.40%. M. G. Ertosum et al. [201] employed the CNN method for

automated positioning of the masses as well as breast-image classi�cation and obtained

85.00% Accuracy. Y. Qui et al. [202] classi�ed a set of mammogram images into benign

and malignant classes, where they utilized a total of 560 Regions of Interest (ROI). Z. Jiao

et al. [97] characterised a set of mammogram images into benign and malignant images

and obtained 96.70% Accuracy. A set of mammogram images has been classi�ed by B.

Sahiner et al., and their achieved ROC score is 0.87 [81]. M. M. Jadoon et al. classi�ed

a set of mammogram breast images into normal, benign and malignant classes utilising a

CNN model.

As with mammogram images, Histopathological breast images have been classi�ed by

di�erent research groups. Referring to the most recent, Y. Zheng et al. classify a set

of Histopathological images into benign and malignant classes by locating the nucleus

from the images using the blob detection method [203]. T. Araujo et al. classify a set of

Histopathological images utilising CNN into four classes (normal tissue, benign tissue, in

situ carcinoma and invasive carcinoma) and two classes (carcinoma and non-carcinoma).

For the four-class classi�cation they obtained 77.80% Accuracy, and when they performed
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the two-class classi�cation they obtained 83.3% Accuracy [204]. F. A. Spanhol et al.

utilised a CNN model and classi�ed Histopathological images from the BreakHis dataset

containing four sets of images based on the magni�cation factor. They obtained a best

image classi�cation Accuracy of 85.6±4.88% when they utilised the 40× magni�cation

dataset [205].

Images normally preserved a local as well as a hidden pattern which represent similar

information. Histopathological images represent di�erent observations of biopsy situation.

The biopsy images which belong to the same groups normally preserve similar kinds of

knowledge. Unsupervised learning can detect this kind of hidden pattern. The main

contribution of this chapter is to classify a set of biomedical breast cancer images using

proposed novel DNN models guided by an unsupervised clustering method. Three novel

DNN architectures are proposed based on a Convolutional Neural Network (CNN), a

Long-Short-Term-Memory (LSTM), and a combination of the CNN and LSTM models.

After the DNN model extracts the local and global features from the images the �nal

classi�cation decision is made by the classi�er layer. As the classi�er layer, this chapter

has utilised both the Softmax layer and a Support Vector Machine (SVM). Figure 3.1

demonstrates the overall image classi�er model which has been utilised in this experiment.

Mean-Shift
Clustering

DNN Model

DNN Model

K-Means
Clustering

Image 
Dataset

SVM 
Layer

Softmax 
Layer

SVM 
Layer

Softmax 
Layer

Figure 3.1: Overall image-classi�er model for benign and malignant image classi�cation

The remainder of this chapter is organized as follows. Section 3.3 describes the feature
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partitioning method based on clustering techniques. Section 3.4 describes DNN models

and this is followed by Section 3.5 which describes our proposed novel model based on

the DNN method for the breast image classi�cation. Section 3.6 describes and makes a

detailed analysis of the results. Section 3.7 compares our �ndings with existing state-of-

the-art �ndings; and lastly Section 3.8 concludes the chapter.

3.3 Feature partitioning

Images naturally contain signi�cant amounts of statistical and geometrical information.

Representation of this kind of structural learning is a prior step for many data analysis

procedures such as image classi�cation. One of the techniques of �nding the structural

information is clustering the data in an unsupervised manner. Clustering allows the same

kind of vector to be partitioned into the region. The clustering method partitions data of

a similar nature and information in such a way that the partition between the grouped

data is maximised. A few clustering methods are available. To �nd the hidden structure

of the data, in this chapter we use the K-Means and Mean-Shift clustering algorithm

approaches, which have been explained as follows:

� The K-Means (KM) algorithm is easy to implement, is less computationally complex

and can be calculated as follows:
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Algorithm 1 K-Means Algorithm [206]

1: Consider a set of data points xn ∈ RD where n ∈ {1, 2,−−−−−−−, N}

2: Consider the cluster set C = {C1,C2........Cc}; here |C| represents the number of cluster,

and their corresponding centroid point is E = {E1,E2........Ec}

3: Any data point xi assigned to a particular cluster based on Cc is given by

Cn = arg min
En∈E

dist(En, xi)
2 (3.1)

4: Calculate the new centroid:

En =
1

|Cn|
∑
xi∈Cn

xi (3.2)

5: If no new data point is found stop the search.

� The Mean-Shift (MS) algorithm by nature is nonparametric and does not have any

assumption about the number of clusters. The MS algorithm can be described as

follows:

Algorithm 2 Mean-Shift Algorithm [207]

1: Assume a set of data points xn ∈ RD where n ∈ {1, 2,−−−−−−−, N}. De�ne a

neighbour determining function Nx, which actually represents a window.

2: For n=1:1:n

3: Find neighbouring points, of xi using the function Nx

4: Calculate the MS value

MS =

∑
x∈Nx

K(xi − xn)× xi∑
x∈Nx

K(xi − xn)
(3.3)

5: xi ←MS

6: Run the algorithm until any new MS is found.

Figure 3.2 shows a benign and a malignant image and their clustering images.
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: Figures a, b, c represent an original benign image, the KM cluster-transformed

image, and the MS cluster-transformed image, respectively. Figures d, e, f represent

an original malignant image, the KM cluster-transformed image and the MS cluster-

transformed image, respectively.

3.4 Deep Neural Network

A Deep Neural Network is a state-of-the art technique for data analysis and classi�cation.

A few di�erent DNN models are available, among them the Convolutional Neural Net-

work (CNN) and Recurrent Neural Network (RNN). They have made some revolutionary

improvements in the data analysis �eld. The following subsection will present the working

principle of CNN and RNN (specially on the Long-Short-Term-Memory algorithm), and

the working mechanism of the combination of the CNN and LSTM methods.
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3.4.1 Convolutional Neural Network

A CNN model is an advanced engineering version of a conventional neural network where

the convolution operation has been introduced, which allows the network to extract local

as well as global features from the data, enhancing the decision-making procedure of the

network. To perfectly control the work �ow of a CNN network, along with a convolutional

layer, a few intermediate layers have been introduced. These are explained in more detail

below.

Convolutional layer

A convolutional layer has been considered to be the main strength or key mechanism for

the overall CNN model. In the convolutional layer the value of each position (m1,m2) of

the input data Im1×m2 has been convolved with the kernel Kk1×k2 to produce the feature

map. The convolutional output of layer l and feature t for a particular data point (m1,m2)

of the input data Im1×m2 can be written as

Im1,m2 ? Kk1×k2 =

k1−1
2∑

i=
−k1+1

2

k2−1
2∑

j=
−k2+1

2

Im1−i,m2−j ? Ki×j. (3.4)

After adding the bias term B(l,t) the previous equation will be

F(l,t) =
(
Im1,m2 ? Kk1×k2

)
+ B(l,t). (3.5)

Each of the neurons produces a linear output. When the output of a neuron is fed

to another neuron, it eventually produces another linear output. To overcome this issue

nonlinear activation functions such as

Sigmoid• TanH•

ReLU• Leaky-ReLU•

have been introduced.
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Figure 3.3 (a) represents the Sigmoid function characteristic which follows the equation

σ(x) =
1

(1 + e−x)
(3.6)

Interestingly this method su�ers due to vanishing gradient problems and having large

computational complexity. Another nonlinear activation function is TanH which is basi-

cally a scaled version of the σ(x) operator such as

tanh(x) = 2× σ(x)− 1. (3.7)

which can avoid the vanishing gradient problem and its characteristics are presented in

Figure 3.3 (b). The most popular nonlinear operator is Recti�ed Linear Unit (ReLU),

which �lters out all the negative information (like Figure 3.3 (c)) and is represented by

ReLU(x) = max(0, x). (3.8)

Figure 3.3 (d) shows the Leaky-ReLU recti�ers's characteristics, which is a modi�ca-

tion of ReLU:

Leaky − ReLU(x) = σ(x) + βReLU(x) (3.9)

where β is a predetermined parameter.
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Figure 3.3: Sigmoid, TanH, ReLU and Leaky ReLU

The main ingredient of the convolutional layer is the kernel, which scans through all

the input data and tries to extract the global features. The number of steps a kernel
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moves each time is known as the stride. The border row and column positions might not

be convolved perfectly if we select imperfect stride steps and size. To perfectly conduct

the convolution operation at the border, few extra rows and columns (with all zeros) are

added, which is known as zero padding.

The convolutional model produces a signi�cant amount of feature information. As

the model structure increases, the amount of feature information also increases, which

actually increases the computational complexity and makes the model more sensitive. To

overcome this kind of problem, a sampling process has been introduced:

� Sub-sampling

Sub-sampling or pooling is the procedure known as down-sampling the features to

reduce dimensionality. Eventually it reduces the overall dimensionality and com-

plexity. Four types of pooling operation are available:

Max-Pooling• Average Pooling.•

Mixed max-average pooling• Gated max-average pooling.•

Figure 3.4 illustrates a generalised pooling mechanism for a CNN model.

16 × 16 × 3

8 × 8 × 3

Pooling 

Figure 3.4: Pooling operation performed by 2× 2 kernel

A DNN deals with a large number of neurons, which enables the network to take

a direction where the network takes into consideration a large number of predictions.
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This kind of situation provides very good performance in the training dataset and worse

performance for the test dataset. This kind of problem is known as an over-�tting problem.

To overcome this kind of problem the Drop-out procedure has been introduced. It is

described in more detail below:

� Drop-out

Some of the neurons are randomly removed to overcome the over-�tting problem. In

this procedure a few of the neurons are randomly dropped out (with some prede�ned

probability) so that the network can learn more robust features. Figure 3.5 shows a

simpli�ed example of a drop-out mechanism. The right-hand side image shows that

the network contains four hidden neurons 1 to 4; in the left-side image neurons 2

and 4 have been removed so that these two neurons do not have any e�ect on the

network decision.

1 2 3 4 1 2 3 4×
 

×
 

×
 

×
 

Figure 3.5: Drop-out

At the end of the network, all the neurons are arranged in a �attened way. The neurons

of the �at layer are fully connected to the next layer and behave like a conventional neural

network. Normally more than one fully connected layer is introduced. Consider the last

layer as the "end" layer, then at the layer before the "end" layer; there must be at least

one �at layer or fully connected layer. Then the end layer function can be represented as

Fendk =
end−1∑
j=1

wendk,j F
end−1
g + Bend−1

k (3.10)



3.4. Deep Neural Network 89
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Figure 3.6: Work�ow of a Convolutional Neural Network

Figure 7.7 depicts a generalised CNN model for image classi�cation. The end layer can

be considered as the decision layer.

Decision layer

In the decision layer Softmax-Regression techniques as well as the Support Vector tech-

nique are utilised.

� In the Softmax layer, the cross-entropy losses are calculated such as

Lk = − ln(ȳk) (3.11)

where ȳk can be written as:

ȳk =
exp(Fendk )∑2
k=1 exp(Fendk )

(3.12)

Here k = {1, 2} where 1 is for Benign and 2 is for Malignant case. The value of Lk

provide the �nal decision such as if L1 > L2 the network will produced Malignant

output.

� Support Vector Machine

Instead of a Softmax layer, an SVM [208] layer can be used including the following
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conditions. For a generalised case, let x = x1, x2, ........, xn be the training data

and y = y1, y2, ........, yn be the corresponding label. If we consider that the data

is linearly separable then the optimisation constraint is considered as yW Tx ≥ 0.

However, sometimes data is not linearly separable; in that case soft thresholding

has been introduced and the constraint rede�ned as yW Tx ≥ 1− ξi. where ξi = 0.

Now the optimisation problem is rede�ned as
minw,ξi

1
2
W TW + C

∑
ξi

s.t.ξi ≥ 1− yiW TWxi, ξi ≥ 0∀i
(3.13)

3.4.2 LSTM

While a CNN learns from scratch, an error signal is fed back to the input. In a Recurrent

Neural Network, instead of learning from scratch the network learns from the reference

point. The output of a particular layer is feed back to the input which works as the

reference input. A generalised RNN model is presented in Figure 3.7. Let the sequence

of input vectors be X = {x1, x2, .....xR}, the hidden state H = {h1, h2, .....hH} and the

output state Y = {y1, y2, .....yo} where

ht+1t-1h

t-1x tx t+1x

t-1y t+1y
h

ht

ty

yW
t

W

h

t th x

W

t

tht-1h

Figure 3.7: A generalised RNN model, where the RNN output is computed and the

reference information passes through the hidden unit

yt = σ(Whtytht + bt) (3.14)
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Figure 3.8: A generalised cell structure of an LSTM

Here, Whty represents the weight vector from the hidden unit ht to the output unit yt

for the sequence t; where ht is de�ned as

ht = σ(Wht−1htht−1 +Wxthtxt + bht) (3.15)

Here, ht−1 represents the output of the hidden unit for the sequence t-1;Wht−1ht represents

the weight vector from the hidden unit ht−1 to the hidden unit ht for the sequence t; bht

represents the bias; Wxtht represents the weight vector from the input sequence it to the

hidden unit ht.

A normal RNN su�ers due to a vanishing-gradient probability. To overcome this prob-

lem, the Long-Short-Term-Memory (LSTM) architecture has been introduced by Hochre-

iter et al. [209]. One notable feature of the LSTM method is that it contains the "forget

gate" through which the network controls the �ow of information. Figure 3.8 represents

the cell structure of an LSTM network. The main parameters of the LSTM network can

be represented as:

it = tanh(Wxtitxt +Wht−1itht−1 + bit) (3.16)

jt = σ(Wxtjtxt +Wht−1jtht−1 + bjt) (3.17)

ft = σ(Wxtftxt +Wht−1ftht−1 + bf t) (3.18)
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ot = σ(Wxtotxt +Wht−1otht−1 + bot) (3.19)

ct = ct−1 � ft + it � jt (3.20)

ht = tanh(ct)� ot (3.21)

ft is the forget gate, it is the input gate, ht provides the output information and ct

represents the cell state [210]. Here the weight matrix and bias vectors are W×× and b×.
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Figure 3.9: CNN and LSTM models combined

3.4.3 CNN-LSTM

A CNN has the bene�t of extracting global information. On the other hand, an LSTM

has the ability to take advantage of long-term dependencies of the data sequences. To

utilise both these advantages, the CNN and LSTM models have been hybridised together

for the classi�cation [211], [212], [213].

From the output of the CNN model, it is di�cult to generate an undirected graph to

make the data into the time-series format, so that the network can extract the depen-

dencies of the data. To do this we have converted the convolutional output (which is
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2-dimensional) into 1D data. Figure 3.9 represents the basic structure of the LSTM and

CNN model.

3.5 Proposed Models

We have utilised three di�erent models for our data analysis. Model-1 utilises CNN

techniques, Model-2 utilises the LSTM structure, whereas Model-3 employees both the

CNN and LSTM structures together for the data analysis.

3.5.1 Model-1

In this method, the input image is convolved by a 3 × 3 kernel, and the output of each

kernel is passed through an ReLU activation �lter in layer C-1. Each kernel strides one

step each time, and to keep the border information intact, we have added two extra rows

and columns with a value of "0". This ensures that the newly created feature maps are

also 32×32 in size. After the C-1 layer another convolutional layer named C-2 has been

introduced, with the same kernel size 3×3 and an ReLU recti�er.

After the C-2 layer the pooling operation P-1 is performed with the kernel size 2×2.

As we have utilised a 2×2 kernel size, each of the feature maps decreases in size from

32×32 to 16×16. After the P-1 layer another convolutional layer called C-3 has been

utilised, with an ReLU recti�er. Each of the feature maps of the C-3 layer was 16×16;

due to utilising the P-2 (Pooling layer of 2×2 kernel) layer the feature map is now 8×8.

After the C-4 layer another pooling operation has been performed named P-3 followed

by a convolutional layer C-5. The output of the convolutional layer has been �attened.

The C-5 layer contains 16 feature maps and each of the feature maps is 4×4 in size, so

the Flattened layer contains 256 features. Twenty-�ve percent of the information has

been dropped out in the dropout layer before sending them through the decision layer
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Figure 3.10: Conventional CNN, LSTM-based architecture (a,b), CNN-LSTM-based ar-

chitecture (c)
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(SVM/Softmax) to provide the benign or malignant decision.

3.5.2 Model-2

In the second model we utilised the LSTM method, which is a branch of the RNN model.

Our input image is in two-dimensional format. To make it a suitable format for the LSTM

model we have converted the data to 1-D data format, and the newly created data vector

is 3072×1 in size, as our input data is 32 × 32 × 3. This one-dimensional data has been

converted to Time-Series data. To �t the 3072×1 into Time-Series data, we have created

Time Steps (TS) data x1 to xu and the Input Dimension (ID) of each of the TS is a v such

as c1 to cv, where v × u = 3072. We stacked two LSTM layers consecutively, speci�cally

L-1 and L-2. The output of the LSTM layer L-2 produces 42 neurons. The output of

the LSTM layer is passed through the drop-out layer with a 25% probability. After the

drop-out layer a dense layer has been introduced which contains 22 neurons. Finally a

decision layer has been utilised to make the decisions about Benign and Malignant classes.

3.5.3 Model-3

In this model we have utilised both the CNN model and the LSTM model together. At

�rst the input image is convolved by the convolutional layer C-1 with a 3× 3 kernel along

with a ReLU recti�er. This layer produces feature vectors and the size of each feature

vectors is 32×32. Consecutively there are another two layers, C-2 and C-3 placed one

after another. After the layer C-3 one pooling layer named P-1 has been introduced with

the kernel size 2×2. As the pooling layer uses a 2×2 kernel, the output of P-1 produces

a 16×16 kernel. After the P-1 layer a �at layer has been introduced, followed by a dense

layer which produces 512 neurons. The output of this layer has been used as the input

layer for the LSTM. As this layer contains a one-dimensional vector, we have converted

this data into a time series. We have created TS data x1 to xs and each of the TS data
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has contained an ID of size q such as c1 to cb where s×b= 512. After the LSTM layer

one dense layer of 65 neurons has been placed followed by a drop-out of 25% of the data.

After that a decision layer has been placed which distinguishes the benign and malignant

data.

3.6 Results and Discussion

We have utilised the BreakHis breast-image dataset for our experiment [205]. All the

images of this dataset have been collected from 82 patients and the sample collection

has been performed in the P&D Laboratory, Brazil. This dataset contains four group of

images depending on the magni�cation factor 40×, 100×, 200× and 400×. Each of the

images of this dataset are RGB in nature and 760×460 pixel in size and they are elements

of a particular set {Benign,Malignant}. Figure 3.11 shows the group-wise statistics as

well as the overall statistics of this dataset.

As the Figure 3.11 shows, there are 7909 images where 2480 are Benign and the rest

are Malignant, which indicates that almost 70.00% of the data are Malignant. For an

individual magni�cation case, that is if we consider 40×, 100×, 200× and 400× individ-

ually, in all the cases almost 70.00% of the data are Malignant. This shows that this

dataset is imbalanced, more speci�cally this dataset is more biased towards Malignant in

terms of frequency.

3.6.1 Performance of di�erent Models

Following a subsection analysing the performance of the algorithms based on parameters

such as True Positive (TP/Sensitivity), False Positive (FP), True Negative (TN/Speci-

�city), False Negative (FN), Accuracy, Precision, recall and Matthews Correlation Co-

e�cient (M.C.C.). For the sake of comparison we have also performed all the experiments
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Figure 3.11: Statistical breakdown of the BreakHis dataset.

on the original images and this particular case is represented as (OI). When we utilised the

KM algorithm we have �xed the cluster size (K) to 8, and when we utilized MS algorithm

we have �xed the Bandwidth (BW) at 0.2

TP/FP/TN/FN performance

This subsection describes the True Positive (TP/Sensitivity), False Positive (FP), True

Negative (TN/Speci�city), False Negative (FN) performance from this experiment, and

the data related to this experiment are presented in Table 3.2.
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For the 40× dataset the best True Positive (TP) value (95.00%) is achieved when

Model-3 is utilised along with the MS cluster algorithm and the SVM classi�er together.

Model-2 also provides the same kind of TP value, 94.76%, when the MS and SVM al-

gorithms are utilised together. In this particular case the TN values for Model-3 and

Model-2 are 59.10% and 53.55%, respectively. However, when Model-1 is utilised in this

particular scenario the TN value is 68.39% and the FP value is 31.60%. For the 40×

dataset, the best TN value is achieved when the MS cluster method and Softmax decision

algorithm are utilised, and in this particular case the TP value is 81.00% for Model-1.

When the original image (OI) is utilised, of the three models Model-1 provides the best

TN and TP values, 78.00% and 94.00%, respectively. In this particular case a Softmax

decision layer has been employed.

For the 100× dataset the best TP value achieved 95.96% when we use KM clustering

techniques and the Softmax decision algorithm together. In this particular case the TN

value is 75.00% and the FP value is 25.00%. The best TN value, 80.20%, is achieved when

we utilised the MS clustering algorithm and the Softmax algorithm together, and in this

particular case the FP value is 19.80%. When the original image (OI) is utilised, the best

TP value 93.00% is achieved when Model-3 along with with the SVM decision algorithm

has been applied.

When we use the 200× dataset the best TP value, i.e. 97.00%, is achieved when the

MS clustering algorithm and the Softmax layer are utilised. However in this case the

TN value is 65.00% and the FP value is 35.00%. When we use Model-1, MS, and SVM

classi�er together for the 200× dataset, the TP value is 95.80% and in this case the TN

and FP values are 70.70% and 29.00%, respectively. For the 200× dataset the best TN

value, 81.00 %, is achieved when the MS and Softmax algorithms are utilised with Model-

1, and in that particular case the FP value is 19.00% , the TP is 96.00% and the FN value

is 3.60%, respectively. A 96.00% TP value is achieved when the original image is utilised
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along with Model-1. In this particular case the SVM Decision algorithm has been used.

For the 400× dataset the best TP value achieved is 96.00% when KM and the Softmax

layer along with Model-1 are utilised together. The best TP value achieved is 95.31%

when we utilised Model-1 and the MS and SVM algorithms together. In this particular

case the TN and TP values are 68.30% and 31.69% respectively. When we utilised the

400× dataset the best TN value is 84.00%, achieved when we use the MS and Softmax

algorithms (for Model-1) and the subsequent TP value is 93.00%. A 94.40% TP value is

achieved when the original image is utilised along with Model-1 and the SVM Decision

Algorithm. The best TP value is achieved when the original image is utilised aling with

Model-3 and the Softmax Decision Algorithm.

Accuracy performance

Figure 3.12 illustrates the Accuracy information for di�erent models and di�erent datasets.

For the 40× dataset the best Accuracy achieved is 90.00% when Model-1, the MS clus-

tering method and a Softmax layer are utilised together. For the 40× dataset and

SVM classi�er together, irrespective of the MS and KM clustering method, the Accuracy

performance is almost the same at 86.00%. For the 40× dataset, of all three models,

Model-1 gives the best performance for all cases irrespective of the cluster method as well

as the classi�er method. When we use the 40× dataset the best Accuracy performance is

achieved when Model-1 and a Softmax layer are combined.

For the 100× dataset and the MS cluster method along with the SVM method, Model-

2 provides the best performance, 83.13%, and this same kind of Accuracy performance,

83.00%, is shown by Model-1. When the KM cluster and SVM classi�er are used together,

Model-1 provides 84.87% Accuracy followed by Model-2 (82.97 %) and Model-3 (81.78%).

When the Softmax classi�er is utilised Model-1 elicits the best Accuracy performance

irrespective of the clustering method, whether the MS or KM cluster method is employed.
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Figure 3.12: Comparison of Accuracy between Model-1, Model-2 and Model-3

Model-1 and Model-3 provide the same kind of Accuracy performance of around 81.00%

when we use the Softmax classi�er, and this result remains the same whether we use the

MS or KM cluster algorithm. When we use original images, of the three models, Model-3

provides the best Accuracy performance, 87.00%, where SVM classi�er layers have been

utilised.

When we use the 200× dataset and the MS clustering algorithm, for all the models

the Softmax classi�er performs better than the SVM classi�er. The best Accuracy of

91.00% is achieved when we use Model-1. For the K-M cluster algorithm, the Softmax

classi�er provides better performance than the SVM classi�er. When we use the original

images the best Accuracy is achieved when Model-1 has been utilised along with an SVM

classi�er layer.

For the 400× dataset with the Softmax classi�er, the best Accuracy performance

(90.00%) is achieved when we utilised Model-1 irrespective of the MS or KM algorithm.

When we utilised the SVM algorithm Model-1, provides better Accuracy (around 82.26%),
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than Model-2 and Model-3. For the 400× dataset Model-1 shows the best performance

when we utilized an SVM layer.

Precision performance

Figure 3.13 shows the Precision information for di�erent models and di�erent datasets.

For the 40× dataset the best Precision performance (96.00%) is achieved when the MS

cluster algorithm and a Softmax layer are utilised with Model-1. When the KM clustering

algorithm and Softmax classi�er are utilised together, the best Precision (94.00%) is

achieved when we employed Model-1. Interestingly, when the KM clustering method

and Softmax layer are utilised both Model-2 and Model-3 give a similar Precision of

89.00%. The worst Precision value (80.00%) is achieved when we utilise the KM clustering

algorithm and SVM classi�er with Model-2. Overall, for the 40× dataset, the SVM

classi�er provides the worst performance when the Softmax layer is utilised. When we

utilise original images the best Precision value (92.00%) is achieved for Model-3 along

with a Softmax decision layer.

For the 100× dataset the best Precision (91.00%) is achieved when we used the KM

clustering algorithm along with the Softmax layer with Model-1. In this particular sit-

uation, Model-2 and Model-3 provide 86.00% and 85.00% Precision, respectively. For

KM clustering and SVM classi�er both Model-1 and Model-2 achieve 87.00% Precision.

When the MS clustering method is implemented the best performance is achieved when

Model-3 is used along with the Softmax layer. For the MS clustering method, Model-1

and Model-3 provide similar levels of Precision. When we utilise original images the

best Precision value (89.00%) is achieved for Model-1 along with a Softmax decision layer.

For the 200× dataset the best Precision (93%) is achieved when the KM cluster-

ing method and a Softmax layer and Model-1 algorithm are utilised together. In this
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Figure 3.13: Comparison of Precision between Model-1, Model-2 and Model-3

particular case Model-2 and Model-3 provide a similar Precision of 89.00% and 88.00%,

respectively. For the MS cluttering algorithm, the best Precision, 91.00%, is achieved

when Model-1 is utilised. For the KM clustering algorithm and the SVM method the

Precision achieved is 88.00%. When we utilise original images the best Precision value

(89.00%) is achieved for Model-1, and this result is true for both the SVM as well as the

Softmax decision layer.

For the 400× dataset, the best performance is achieved when the MS clustering method

along with the Softmax layer is utilised; Model-1 provides the best Precision (92.00%).

In this particular case Model-2 and Model-3 provide 84.00% and 83.00% Precision, re-

spectively. With the KM clustering and the Softmax layer together the Precision value

is 90.00%. Overall, the Softmax layer provides the best Precision values. A 91.00%

Precision value is achieved for Model-1 and the SVM Decision-layer algorithm when an

original image has been provided as input.
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F-Measure performance

Figure 3.14 shows the F-Measure information for di�erent models and di�erent datasets.

For the 40× dataset when the KM clustering method with the Softmax layer is used, an

F-Measure 93.00% value is achieved when Model-1 is utilised. In that particular scenario

Model-2 gives a 91.00% F-Measure and Model-3 an 89.00% F-Measure. For the MS

clustering algorithm and SVM classi�er algorithm, Model-1 and Model-2 provide 90.00%

F-Measure values. In this particular clustering algorithm, when the Softmax layer is

employed all the models provide the same performance, around 89.00%. A 93.00% F-

Measure value is achieved when we utilise Model-3 along with the Softmax algorithm and

original image.
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Figure 3.14: Comparison of F-Measure between Model-1, Model-2 and Model-3

For the 100× dataset Model-1 provides the best F-Measure of around 93.00% when the

Softmax layer algorithm is employed; this performance is true for both the MS and KM

clustering methods. When KM clustering and the Softmax layer are combined together

Model-2 and Model-3 provide the same F-Measure of 87.00%. When the KM clustering
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method is utilised with the SVM classi�er, Model-1 gives a 90.00% F-Measure while

Model-2 and Model-3 provide 89.00% and 87.00% F-Measure values, respectively. When

the MS clustering algorithm is combined together with Model-2 and Model-3 provide the

same F-Measure of 88.00%, and with this particular scenario Model-1 provides an 83.00%

F-Measure. A 91.00% F-Measure value is achieved when we utilise Model-1 along with the

SVM algorithm at the decision layer and provide original image. In this particular case

when we utilise the Softmax layer both Model-2 and Model-3 provide similar F-Measure

values.

For the 200× dataset, the best F-Measure of 93.00% is provided by Model-1 when the

MS algorithm and Softmax layer are combined. However, when the KM cluster is utilised

along with the Softmax layer the F-Measure is 92.00%. In this particular scenario, both

Model-2 and Model-3 provide a similar F-Measure value of 88.00%. When KM clustering

and the SVM algorithm are utilised together Model-3 provides an 90.00% F-Measure,

Model-2 provides a 89.00% F-Measure, and in this particular case Model-1 provides an

87.00% F-Measure. When SVM and the Softmax layer are used together Model-1, Model-

2 and Model-3 provide 88.00%, 89.00% and 90.00% F-Measure, respectively. A 92.00%

F-Measure value is achieved when we utilise Model-1 and original image, and this is true

for both the Softmax and SVM algorithms.

For the 400× dataset Model-1 provides the best F-Measure value of 93.00% irrespective

of the clustering method. For the KM clustering algorithm and SVM algorithm, the

F-Measure values are 90.00%, 85.00% and 87.00% for Model-1, Model-2 and Model-3

respectively. When the MS clustering method and SVM algorithm are utilised together

Model-1, Model-2 and Model-3 provide 90.00%, 87.00% and 88.00% F-Measure values,

respectively.
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(a) (b) (c)

Figure 3.15: Accuracy, Loss and M.C.C. values for Model-1 when we utilised the 40×

dataset MS and Softmax together

Accuracy, loss and M.C.C performance at di�erent epochs

The best Accuracy performance is achieved when we utilised Model-1 along with MS

clustering and the Softmax layer on the 40× dataset. Figure 3.15 a, b and c represent,

respectively the Accuracy, Loss and M.C.C. values for this particular situation. Initially

the Test Accuracy shows better performance than the Train Accuracy. Up to around

epoch 180, the Train Accuracy is better than the Test Accuracy. After the epoch 180 the

Train Accuracy exhibits superior performance than the Test Accuracy.

After epoch 300 the Train Accuracy remains constant at about 90.00%. Interestingly,

after around epoch 180 the Train Accuracy outperforms the Test Accuracy, after around

epoch 180 the di�erence in Accuracy performance between the Train and Test increased,

with the Test remaining constant.

Model-2 provides the best Accuracy with the 200× dataset and the MS algorithm

and Softmax layer. Figure 3.16 shows the Accuracy, loss and M.C.C. values for this

particular case for epoch 500. On virtually every occasion the Train Accuracy performance

is better than that of the Test Accuracy. After about epoch 100 the Test Accuracy almost
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remained constant, however the Train Accuracy continuously increased, and after epoch

300 the Train Accuracy touches 100% and remains constant throughout the epochs. Figure

3.16 b shows that the Train loss continuously decreases and the Test Accuracy steadily

increases. As the epoch progresses the gap between the train loss and test loss continuously

increases. The test M.C.C. remains almost constant around 0.73 while the train M.C.C.

value continuously increases and touches 1 and remains constant.

(a) (b) (c)

Figure 3.16: Accuracy, loss and M.C.C. values for Model-2 when we utilised the 200×

dataset, MS and Softmax together

Model-3 is the most accurate with the 200× dataset and the KM and Softmax layer.

Figure 3.17 shows the Accuracy, loss and M.C.C. values for this particular case for epoch

500. Figure 3.17 (a) shows that the Train Accuracy is almost always higher than the test

Accuracy. The di�erence between the Train Accuracy and the Test Accuracy increases

with the epoch up to around epoch 100. After epoch 100 the Test Accuracy remains

constant at around 88.00% and the Train Accuracy remains constant at 100.00%. For

the loss performance, the Test loss reduces as the epoch progresses on and the Train

loss value remains virtually constant. The M.C.C. value for the test (around 78.00%)

remained constant after around epoch 20. The train M.C.C. value touched the highest
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(a) (b) (c)

Figure 3.17: Accuracy, loss and M.C.C. values for Model-3 with the 200× dataset, KM

and Softmax together

value, of 1.00, after around epoch 100.

3.6.2 E�ect of TS and ID

TS and ID have an e�ect on LSTM performance. In this subsection we analyse the e�ect

of the TS and ID values with reference to Accuracy, average time and required parameters

for Model-2.

Table 3.3: Average time and Parameters for various TS and ID

TS ID Average Time (s) Parameters

24 128 191 58280

32 96 240 52904

48 64 346 47528

64 48 438 44840

96 32 636 42152

128 24 822 40808

Table 3.3 summarises the average time and parameters required for Model-2 perfor-
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mance with di�erent combinations of TS and ID . When TS and ID are �xed at 24 and

128, respectively, the required average time is 191 seconds and a total of 5808 parameters

are required. This table also exhibits a very interesting behaviour. As we increase the

value of TS and reduce the value of ID, the number of required parameters to execute the

CNN model has fallen. However, the time required to execute the model increased.

For the 40× dataset, Figure 3.18 (a) shows the Accuracy where the TS and ID values

have been varied. When TS and ID are �xed at 24 and 128 respectively the obtained

Accuracy for the MS, KM and OI methods were 84.47%, 86.4% and 86.00% respectively.

Figure 3.18 (b) displays the Accuracy performance on the 100× dataset with di�erent

TS and ID values. Where TS=24 and ID=128, 85.36% Accuracy is achieved when the

original image is utilised. When the TS value is �xed at 128 and ID are �xed at 24, the

MS method provides Accuracy at 83.90% . For the 200× dataset, 86.94% Accuracy has

been achieved using the MS method with the TS and ID values 64 and 96, respectively.

When TS and ID is �xed at 128 and 24, respectively, the Accuracy was 87.00%. For the

400× dataset 84.24% Accuracy is achieved when the MS method is utilised, where TS is

�xed at 64 and ID is �xed at 48.

3.6.3 The e�ect of Cluster size (K) and Bandwidth (BW)

For the local partitioning we have utilised KM and MS algorithms. The cluster size of the

KM method and the Bandwidth (Neighbour size) of the MS method largely control the

performance of the clustering. In this subsection we investigate how these two parameters

a�ects the overall performance which has been presented in Table 3.4. For this particular

analysis we have only considered the 200× dataset and Model-1. We have utilised the

values of K equal to 8, 16 and 24. As the value of K increases, the TP value also increases.

This indicates that with increasing K, the model performs in a speci�c way. Among the

three values of K the best TN value (85.85%) is achieved when we utilise K=8. Overall
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Figure 3.18: Figures a, b, c and d represent the Accuracy of the 40×, 100×, 200×, 400×

datasets for Model-2 with varying TS and ID
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the best Accuracy is achieved when we utilised K=8 which is slightly better than with

K=24.

Table 3.4: E�ect of the cluster size (K) and the Bandwidth (BW)(%)

TN FP FN TP Precision F-Measure Accuracy

KM

K=8 85.85 14.16 8.00 91.00 91.00 92.00 90.00

K=16 77.00 23.00 06.00 94.00 90.00 92.00 88.90

K=24 77.00 23.00 05.00 95.00 90.00 93.00 89.75

MS

BW=0.2 81.00 19.00 5.00 95.00 93.00 93.00 91.00

BW=0.4 70.00 30.00 04.00 96.00 87.10 91.00 87.00

BW=0.6 76.00 24.00 06.00 94.00 89.00 91.00 87.00

For the MS method the obtained Precision values are 93.00%, 87.10% and 89.00%,

respectively, for BW equal to 0.2, 0.4 and 0.6, also respectively. The best Accuracy

performance (91.00%) is achieved when we utilised BW=0.2. For both BW equal to 0.4

and 0.6 the obtained Accuracy was 87.00% which is less than when BW is equal to 0.2.

3.7 Recent �ndings for Breast-Image Classi�cation based

on DNN

DNN methods have been implemented for breast-image classi�cation with some success.

Table 3.5 shows recent �ndings of breast-cancer image classi�cation based on the DNN

method used for Histopathological images (other than the BreakHis dataset). The best

Accuracy performance of 92.45% is achieved by B. Bejnordi [214].

However, we cannot exactly compare our performance with this existing �nding be-

cause of the di�erent datasets. We have compared our �ndings with the �ndings based on

the BreakHis dataset which are presented in Table 3.6. F. Spanhol classi�es the BreakHis
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Table 3.5: CNN and Histopathological �ndings

Authors
Data

Set
Method

Augmen-

tation

No of

Class

Accuracy

%

Sensitivity

%

Recall

%
ROC

T. Araujo et al. [204] [215] CNN YES 2 80.60 70.00 � �

T. Araujo et al. [204] [215] CNN+SVM YES 2 83.20 80.00 � �

B. Bejnordi BREAST CNN YES � 92.00 � � 92.00

B. Bejnordi [214] [214] CNN YES � 92.45 � � �

dataset into benign and malignant classes using a CNN model and and a few other mod-

els. Their CNN model is similar to the Alexnet CNN architecture and their �nding (best

one) has been listed in Table 3.6. In our experiment for the 40× dataset, we obtained

90.00% Accuracy whereas Spanhol et al. [7] obtained 90.40%. However, for the 100×,

200×, and 400× datasets the best achieved accuracies in our experiment are 90.00, 91.00

and 90.00%, respectively, which is better than the �ndings of Spanhol et al. [7] . Apart

from this, Spanhol et al. [7] have no information about the sensitivity, Precision, recall

and M.C.C. values. In this work we have explained those issues in detail. The original

image of the BreakHis dataset is 760×460×3 pixels, and when Spanhol et al. [7] use this

image they convert it to 350×230×3 pixels. However, we have utilised a 32×32×3 pixel

image which has reduced the computational latency [7]. K. Dimitropoulous et al. [216]

utilised the Grassmannian Vector of Local Aggregated Descriptor (VLAD) method for

the BreakHis dataset classi�cation. Their �nding is comparable to our �nding. However,

in their paper they did not utilise the DNN models. Also, they do not describe the sensi-

tivity, speci�city, F-Measure and M.C.C. values, whereas we have explained those terms

explicitly.
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Table 3.6: Comparing Accuracy (%) in di�erent models

40× 100× 200× 400×

CNN [7] 90.40 87.40 85.00 83.80

VLAD [216] 91.80 92.10 91.40 90.20

PFTAS [216] 83.80 82.10 85.10 82.30

ORB [216] 74.40 69.40 69.60 67.60

LPQ [216] 73.80 72.80 74.30 73.70

LBP [216] 75.60 73.20 72.90 73.10

GLCM [216] 74.70 78.60 83.40 81.70

CLBP [216] 77.40 76.40 70.20 81.80

3.8 Conclusion

The judgement about benign and malignant status from digital Histopathological images

is subjective and might vary from specialist to specialist. CAD systems largely help to

make an automated decision from the biomedical images and allow both the patient and

doctors to have a second opinion. A conventional image classi�er utilises handcrafted local

features from the images for the image classi�cation. However , the recent state-of-the-art

DNN model mostly employs global information using the bene�t of kernel-based working

techniques, which act to extract global features from the images for the classi�cation.

Using this DNN model, this chapter has classi�ed a set of Breast-Cancer images (BreakHis

dataset) into benign and malignant classes.

Images normally preserve some statistical and structural information. In this chapter,

to extract the hidden structural and statistical information, an unsupervised clustering

operation has been done and the DNN models have been guided by this clustered infor-

mation to classify the images into benign and malignant classes. At the classi�er stage
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both Softmax and SVM layers have been utilised and the detailed performance has been

analysed. Experiments found that the proposed CNN-based model provides the best per-

formance other than the LSTM model and the combination of LSTM and CNN models.

We have found that, in most cases, Softmax layers do perform better than the SVM

layer.

Most of the recent �ndings on the BreakHis dataset provide information about the

Accuracy performance but do not provide information about the sensitivity, speci�city,

Recall, F-Measure and M.C.C.; however, we have explained these issues in detail. The

best speci�city, sensitivity, Recall and F-Measure are 96.00%, 93.00%, 96.00% and 93.00%

respectively. Of these issues, this chapter has explained how the Accuracy, M.C.C. and

loss values change with di�erent epochs.

Providing a de�nite conclusion about the biomedical situation needs to be considered

as it is directly related to the patient's life. In a practical scenario, the classi�cation

outcome of the BC images should be 100.00% accurate. Due to the complex nature of the

data we have obtained 91% Accuracy, which is comparable with the most recent �ndings.

There are a few avenues for obtaining more reliable solutions such as the following:

� Each Histopathological image contains cell nuclei, which provide valuable informa-

tion about the malignancy. So the DNN model guided by the cell nuclei orientation

and position can improve the performance, since it provides more objective infor-

mation to the network.

� As our dataset is comparatively too small to be used with a DNN model, in future

the following two cases can be considered:

1. Data Augmentation

2. Transfer Learning

with some �ne local tuning.
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� Locally hand-crafted features also provide valuable information. So parallel feeding

of the local data along with the raw pixels could improve the model's performance

with reference to Accuracy.
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Chapter 4

Histopathological Breast-Image

Classi�cation With Image

Enhancement by Convolutional Neural

Network

4.1 Abstract

Finding malignancy from Histopathological images is always a challenging task. So far

research has been carried out to classify Histopathological images using various techniques

and methods. Recently, the state-of-the art Convolutional Neural Network (CNN) has

largely been utilised for natural image classi�cation. In this chapter, using the advance-

ment of CNN techniques, we have classi�ed a set of Histopathological Breast images into

Published as: A. A. Nahid, F. B. Ali, and Y. Kong, �Histopathological Breast-Image Classi�cation

With Image Enhancement by Convolutional Neural Network�, in 2017 20th International Conference on

Computer and Information Technology (ICCIT), IEEE, pp. 1-6, Dec. 2017.
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Benign and Malignant classes, which can save doctors and physicians time and also allow

patients a second opinion about the disease.

4.2 Introduction

Cancer is a combination of a few diseases. The cells of a body maintain a lifestyle where

a few die and a few cells grow and maintain a check and balance. This is the normal

phenomenon of the cells of the body, however di�erent situations can happen. Sometimes

cells grow with no constraint and this growing can persist. This can lead to some unwanted

situations and create cancer in the body. Almost all cancer-a�ected people lead unbearable

and miserable life conditions.
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Figure 4.1: Number of Female deaths in Australia since 2012 due to breast cancer

The people of the whole world face a serious threat from cancer, as the human body is

a combination of cells, and cancer starts from the cells. So cancer can be created in any

part of the body and later can distribute to any other part of the body. Di�erent kinds

of cancer exist, such as Liver, Skin, Breast etc. Statistics show that, around 8.8 million

died due to cancer in 2015 [217]. Of all the cancers, women are more vulnerable than

men to breast cancer due to their physical anatomy. Figure 5.2 shows the Breast Cancer
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statistics of Women for the last seven years in Australia (population 20-25 million). This

graph shows that almost every year the number of female deaths due to breast cancer

increased. Though this is an example from Australia this might be considered as a picture

for the whole world.

The creation of a cancer depends on various issues, such as family history, DNA

structure, lifestyle, smoking etc. When cancer is once created inside the body the only

way of recovery from the cancer is proper treatment. The identi�cation of the Cancer is

a prerequisite for cancer treatment. Among other methods, investigation of biomedical

images always helps doctors diagnose cancer. The biomedical photography techniques

can be classi�ed into Invasive (Biopsy Images) and non-invasive (such as Mammogram).

Histopathological images are collected from the biopsy images. This Histopathological

image investigation is always very challenging and time-consuming, and requires expert

knowledge to reach a �nal decision. Sometimes experts fail to make a �nal decision.

Di�erent research groups have investigated the analysis of Histopathological images

using di�erent mathematical models and techniques. However the most recent state-of-

the art CNN techniques have been largely utilised for image classi�cation techniques.

Advanced engineering has been utilised with the CNN model for Biomedical image clas-

si�cation.

The CNN model is an advanced utilization of the Neural Network. The history of the

Neural Network is a long one. The working root of the Neural Network relies upon the

perceptron algorithm, which models the working principle of the human brain [45]. The

Convolutional Neural Network is one branch of Neural Networks. Convolution Neural

Network techniques re-gained a focus after the great work of Hilton in his paper [218].

The Convolutional Neural Network (CNN) is a very recent concept, and has made revo-

lutionary changes in the data processing task, specially after the work of Alex Krizhevsky

in his model AlexNet [219]. This CNN model has been used for the image classi�cation
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task. After the model AlexNet, the GoogleNet model was introduced [220], where the

authors use deeper and wider networks for image classi�cation. They claim that widening

and deepening the size of the network can improve the performance of the classi�cation

task while keeping constraints on the network parameters.

Conventional Supervised image classi�er techniques such as Support Vector Machine

(SVM), Random Forest (RF) etc. or even the conventional Neural Network (NN), largely

depend on extraction of locally handcrafted feature information which follows some prede-

�ned mathematical or logical tools. However, the Convolutional Neural Network depends

on extraction of global as well as local features utilizing kernel methods. The extraction

and modeling requires more time to classify the data using a CNN architecture, but it

provides some excellent performance. To limit the complexity within the constraints two

layers like Pooling and Drop-out can be used. These two layers allow the network to

reduce the complexity.

Normally image classi�cation requires a few preprocessing steps. The performance of

the image classi�cation depends on the nature of the images. Histopathological images

su�er from color inconsistency due to the following issues:

Chemicals.• Stains.• Lighting•

Of the previous three issues, lighting variation causes an uneven distribution of the

illumination. There are a few methods available for image illumination correction, among

them the Retinex operation which performs a non-linear transform to correct the illu-

mination. In this chapter we enhance the image utilizing the Retinex �lter, and then

classify the images into Benign and Malignant categories. We have organized the chapter

as: Section 4.2 describes recent related work, Section 4.3 describes the overall model for

image classi�cation along with description of the Retinex �lter, Section 4.4 describes the

basic Convolutional Neural Network along with our three models for the image classi�-
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cation task. Section 4.5 describes the results and analyzes the performance of the overall

classi�cation system. Section 4.6 concludes this chapter.

4.3 Overall Architecture for Classi�cation

Conventional Supervised image classi�cation is always a challenging task which follows

some prede�ned steps such as the selection of the image database, preprocessing of the

images, crafting the features, and selection of the classi�er model. However the state-

of-the-art CNN method mostly extracts the features globally and utilises both the local

and the Global features for the image classi�cation. Raw images always su�er from local

statistics, noise and illumination variations due to the variation of the image sources and

environment. Instead of directly using the raw images, we �rstly normalize the image by

applying the Multiscale Retinex algorithm to improve the local contrast and illumination

variation. The overall image-classi�cation architecture is presented in Figure 5.2.

Input Image 
Contrast and Illumination 

Correction
CNN Model

Benign

Malignant

Figure 4.2: Overall image-classi�cation model

The following subsection brie�y describes the Retinex algorithm used for the image

preprocessing steps.
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4.3.1 Retinex Algorithm

The word Retinex is a combination of the words Retina and Cortex for the algorithm

which was �rst proposed by E. Land in 1977 [221]. Good visual perception of a scene

can be achieved based on the Retinex algorithm, where non-linear transforms are used to

improve the color consistency. Single-scale Retinex can be expressed as

Ri = α{log10 Ii(xi, yi)− log10[Ii(xi, yi)×F (xi, yi)]} − β (4.1)

Ri is the Retinex image where Ii is the input image of channel i. F is the normalized

kernel which can be represented as

F (x, y) = k exp[− (x2i +y2i )

σ2
] (4.2)

where α and β are a scaling factor and an o�set parameter respectively. For simplicity of

calculation we will avoid the α and β terms. So equation (1) can be written as

Ri = {log10 Ii(xi, yi)− log10 Ii(xi, yi)×F (xi, yi)} (4.3)

From the basic de�nition of the captured image Ii can be de�ned as

Ii = Li(xi, yi)ρ(xi, yi) (4.4)

Li is the illumination and ρ is the re�ection coe�cient. The previous equation can be

further written as

Ri = log10{
Li(xi, yi)ρ(xi, yi)

Li(xi, yi)ρ(xi, yi)×Ri

} (4.5)

The performance of the single Retinex largely depends on the value of σ. Due to the

problem in selecting the value of σ, dynamic range of color rendition always needs to be

a trade-o�. To overcome this issue, Jobson et al. [222] proposed the multi-scale Retinex

formula

RMSRi
=

N∑
n=1

wnRi (4.6)
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Figure 4.3: Work�ow of a Convolutional Neural Network

which satis�es the condition
∑N

n=1 wn = 1, where n is the scale and wn is the weight

of that particular scale.

Each of the images has been passed through the Retinex algorithm to improve the

local statistical information, and the preprocessed image has been passed through the

CNN model for the image classi�cation described in the following section.

4.4 Utilised Convolutional Neural Network

Let, Im×n represent the images where m and n are the length and width of the image. In

a CNN, each image is convolved with the 2-D kernel WS
p,q where p and q represent the

kernel size and s represents the used kernel. The output of the convolved signal between

Im×n and WS
p,q is

C S
(x,y) = Im×n ∗WS

p,q (4.7)

Each entry of C S
(x,y) can be represented as

C S
(x,y)(i, j) = σ

( p∑
u=i

q∑
v=j

Im×n(u− i, v − j) ∗WS
p,q(u, v) + bs

)
(4.8)
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where σ is a nonlinear function. For our application we have utilised Recti�er Linear

Unit (ReLU) methods which work as follows:

σ(x) = max(0, x). (4.9)

For the reduction of the classi�cation complexity we have utilised a Sub-sampling

operation. At the end of the network a �at layer has been introduced followed by fully

connected and Soft-Max layers which allow the network to behave as conventional Neural

Network. The basic CNN-based classi�cation model is represented in Figure 7.7.

The layer before the softmax layer can be represented as

H end
g = σ(wend ∗H end−1

g + bend). (4.10)

As we are working on a binary classi�cation, the soft-max regression output can be rep-

resented as

ȳg =
exp(H end

g )∑2
g=1 exp(H end

g )
(4.11)

The predicted class p̄ will be

ḡ = arg max
g

ȳp

= arg max
g

h̄end
p

(4.12)

Using the basic properties of the CNN model we have utilised following three model

for the image classi�cation as:
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Model-1 (Conventional Model)

In this model we have utilised four convolutional layers C-1 to C-4 consecutively with 5 by

5 kernels. Each layer includes 16 feature maps and an ReLU recti�er unit. A maximum

pooling layer has been placed between layers C-1 and C-2, C-2 and C-3, C3 and C-4

and named MP-1, MP-2, MP-3 and MP-4. After the C-4 layer we have utilised a Flat

Layer, Drop-out (0.10%) layer and a Soft-Max layer consecutively to classify Benign and

Malignant images.

Normalized Image

Block-2

Flat Layer

Drop-out (0.10)

Soft-Max

Benign/Malignant

MP-1,(2,2) 

C-1     16,(5,5)      ReLU

MP-2,(2,2) 

C-2     16,(5,5)      ReLU

MP-3,(2,2) 

C-3     16,(5,5)      ReLU

C-4     16,(5,5)      ReLU

Figure 4.4: Conventional Model
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Model-2 (Merge Model)

Adding more layers in a CNN will not always improve the system performance. Experi-

ment has found that increasing the number of network layers may cause saturation of the

accuracy and performance. To overcome this issue, Kaiming He [84] proposed residual

learning methods which dramatically improve the system performance. In their original

Normalized Image

Flat Layer

Drop-out (0.10)

Soft-Max

Benign/Malignant

MP-1,(2,2) 

C-1     16,(5,5)      ReLU

R

R

R

R

R

C-n:16, 5×5,ReLU

R-n:16, 5×5,ReLU

Block-n

CCn-2   16,(5,5)   ReLU

CCn-3   16,(5,5)   ReLU

CCn-1 16,(5,5)  ReLU

⊕  

1

2

3

5

4

Figure 4.5: CNN model with Residual Block

model, identity mapping is added to the stacked-layers output. This layer does not in-
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crease the complexity and it also satis�es end-to-end training with back-propagation. It

is believed that, due to the reference identity, optimizing the residual network is easier

than for the original network. The �rst step of the model performs a 2D convolutional

operation (C-1) using a 5 by 5 kernel, and produces 16 feature maps. After the C-1 layer,

the Max-Pooling (MP-1) operation is performed. A second 2-D convolution operation (C-

2) is performed following a Max-Pooling (MP-2) operation. This C-2 layer also utilises a

5 by 5 kernel and produces 16 feature maps. After the C-2 layer, a few Residual (i = n)

blocks are utilised, where the value of n = 1 to 5. The �rst residual operation can be

represented as

X1
C−2 = σ[F1

1(XC−2,W11)] (4.13)

R1 = σ[F2
1(X

1
C−2,W12) + XC−2] (4.14)

where XC−2 represents the output of the convolutional layer C-2. The value of R1 is used

to calculate the value of R2 and the same procedure continues. The output of the residual

layer R5 is passed through a Max-Pooling operator. After that a Flat layer, a Drop-

out layer and Soft-Max layer are placed consecutively to get the Benign and Malignant

classi�ed output.

Model-3 (MaxMin Convolutional Model)

The working principle of the ReLU recti�er shows that it gives identical behavior for all

negative values. Small and large negative values clearly show di�erent behavior. To utilise

strong negative-value information in the CNN network, M. Blot proposed the MaxMin

convolutional Neural Network [223].

Let h be a �lter and h− = −h represent the negative �lter. If we apply the convolu-

tional operation on the signal x then the overall performance can be written as

x ? h− = x ?−h = −x ? h (4.15)
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Instead of using the negative �lter, in MaxMin theory the original signal is duplicated

along with the negative signal, �nally utilizing both the original and duplicate signals for

the further processing steps.

Normalized Image

MP-1,(2,2) 

MC-1     16,(5,5)      ReLU

Block-1Block-2

Block-3

Block-4

Block-5

C-n:16, 5×5,ReLU

R-n:16, 5×5,ReLU

Block-n

X

-
X

×
h

X
×

h R
e
L

U

CCn-2   16,(5,5)   ReLU

CCn-3   16,(5,5)   ReLU

CCn-1 16,(5,5)  ReLU

⊕  

MC-2     16,(5,5)      ReLU

MC-3     16,(5,5)      ReLU

MC-4     16,(5,5)      ReLU

Flat Layer

Drop-out (0.10)

Soft-Max

Benign/Malignant

Figure 4.6: Max-Min Model

We have utilised four consecutive MaxMin convolutions MC-1 to MC-4. Each of the

two MaxMin layers produces sixteen feature maps. After the MC-4 layer a Max-Pooling,

Flat layer, Drop-out layer and a Soft-Max layer have been placed one after another for

the Benign and Malignant classi�cation.
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4.5 Results and Discussion

Table 4.1: Performances of the di�erent Cases on di�erent datasets
Case Accuracy (%) Speci�city (%) FPR (%) FNR (%) Recall (%) Precision (%) F-Measure (%)

40
×

Model-1 85.00 73.36 26.63 10.36 89.63 88.00 89.00

Model-2 80.63 64.73 35.32 12.28 87.71 85.00 86.00

Model-3 80.13 75.00 25.00 17.59 82.40 88.00 85.00

10
0×

Model-1 85.36 70.28 29.14 08.63 91.36 89.00 90.00

Model-2 80.65 66.28 33.71 13.63 86.36 87.00 86.00

Model-3 84.60 61.14 38.85 6.80 93.10 86.00 89.00

20
0×

Model-1 85.28 70.20 29.79 03.71 92.60 86.00 89.00

Model-2 76.19 30.30 69.00 07.40 98.52 74.00 85.00

Model-3 85.45 71.71 28.28 07.86 92.13 87.00 89.00

40
0×

Model-1 85.16 68.88 31.14 06.60 93.38 86.00 89.00

Model-2 83.15 69.39 30.60 9.09 90.08 85.00 88.00

Model-3 80.13 67.75 32.24 9.36 90.63 85.00 88.00

Our classi�cation experiment has been performed on the BreakHis breast-image dataset

[224], which contains four sets of images "m×" here m = {40, 100, 200, 400} and × repre-

sents the magni�cation factor.

Table 4.1 represents the Accuracy, Speci�city, False Positive Rate (FPR), False Nega-

tive Rate (FNR), Recall, Precision and F-Measure values for the experiment, where Benign

has been considered as the Negative class and Malignant has been considered as the Posi-

tive Class. The �rst quarter of the table shows the performance of the three models on the

40× dataset. For the Accuracy, the best performance is achieved when Model-1 is utilised,

at 85.00%. Model-2 and Model-3 give almost the same performance, at around 80.50%.

The Recall values are 89.63%, 87.71% and 82.40% for Model-1, Model-2 and Model-3

respectively. This indicates that almost 10% of the Malignant data is mis-classi�ed as

Benign data when we utilise the Model-1 algorithm on the 40× dataset. The worst Recall

value was given by Model-3; in this particular case almost 18% of Malignant data has

been mis-classi�ed as Benign data. Interestingly, for the speci�city criterion, Model-3



130
Chapter 4. Histopathological Breast-Image Classi�cation With Image Enhancement by

Convolutional Neural Network

shows better performance than Model-1 and Model-2, at exactly 75.00%. For the speci-

�city case, Model-1 provides 73.36%. The precision values for Model-1 and Model-3 are

almost equal at 88.00%. For the F-Measure performance Model-1 provides the best value

at 89.00%.

For the 100× dataset, the Accuracy values for Model-1 and Model-3 di�er marginally,

at exactly 85.36% and 84.60% respectively. In this particular dataset Model-3 provides the

worst performance at exactly 80.65%. The best Recall value is 93.10% which is achieved

by Model-3, whereas Model-1 provides 91.36% recall values. However for the speci�city

Model-3 provides the worst performance at 61.14%; this indicates that almost 40.00%

of Benign data has been mis-classi�ed as Malignant data. In the Speci�city criterion,

Model-1 provides the best performance at 70.28%. The best Precision and Recall values

are achieved when we utilise Model-1, at exactly 89.00% and 90,00% respectively.

For the 200× dataset the best Accuracy is achieved when we utilise Model-3, at 85.45%,

which is slightly better than for Model-1 at 85.28%. In this particular dataset Model-2

provides somewhat worse Accuracy performance at 76.19%. For the criteria Speci�city,

FPR, FNR, Recall, Precision and F-Measure the values are almost the same for Model-1

and Model-2. Interestingly, though the overall Accuracy performance of Model-2 is poor,

it shows the best Recall value, 98.52%. This indicates that it classi�es almost all the

Malignant data as Malignant. However for Model-2, the Speci�city value is very poor at

30.30%, which indicates that it mis-classi�es 70.00% of the Benign data as Malignant, so

that Model-2 is very poorly Speci�c and Highly sensitive on the 200× dataset.

For the 400× dataset the best Accuracy value is achieved when we utilise Model-1, at

85.16%, while the Model-2 provides the second-best Accuracy performance, at 83.15%.

The best Speci�city value is provided by Model-2 at 69.39%, this indicating that almost

30.00% of the Benign data has been mis-classi�ed as Malignant data. For the Recall case

Model-1 provides the best performance at 93.38%. The best Precision and Recall values
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are 86.00 % and 89.00% which is achieved when we utilise Model-1. Overall, Model-1

provides the best Accuracy performance for all the datasets except the 200× dataset.

(a) (b)

(c) (d)

Figure 4.7: (a), (b), (c) and (d) represent the training and test accuracy comparison for

Model-1 on the 40×, 100×, 200×, 400× datasets.

Figure 5.6 shows the accuracy performance of the training and test datasets up-to

epoch 150 for Model-1 for all the datasets. When we use Model-1 the best performance is
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achieved for the 100× dataset as seen in Figure 5.6 (b). This �gure also shows that, up to

around epoch 20, the Train Accuracy shows better performance than the Test Accuracy.

From epoch 20 to around 55 both the Train and Test accuracy are almost the same.

After around the �rst 55 epochs, the Train Accuracy outperforms the Test Accuracy, and

this continues as the epoch increases. Interestingly the performance of the Test Accuracy

remains almost constant after around epoch 55. When we use Model-1 almost all the

datasets provide the same performance, however Figure 5.6 (c) shows that up to around

epoch 20 the Train and Test accuracy remain almost constant and after epoch 100 the

Train Accuracy outperforms the Test Accuracy.

Figure 4.8 (a), (b), (c) and (d) show the loss performance for Model-1. Interestingly,

when we utilise Model-1 and the 40×, 100× and 400× datasets, after some initial epochs

the Train loss and Test loss show a large divergence, and this divergency goes higher as

the epoch goes higher. When we utilise the 100× dataset, up to around epoch 60 the

Train and Test losses remain almost the same. After around epoch 60 the Train loss

decreases, however the test loss remains almost constant. This re�ects the justi�cation

of the accuracy performance of the database 100× as presented in Figure 5.6 (b), which

shows that the Train and Test loss remain almost the same when we utilise the 200×

dataset. After around epoch 100 the Train and Test loss di�erences increase rapidly.

Figure 4.9 (a), (b), (c) and (d) show the Matthews Correlation Coe�cient (MCC)

performance for Model-1. These values lie in the range -1 to +1, where +1 indicates the

best performance. For Model-1, all the values of the Train MCC remain constant around

0.70 whereas as the epoch advances the Test MCC values reach 1.00.
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(a) (b)

(c) (d)

Figure 4.8: (a), (b), (c) and (d) represent the training and test loss comparison for Model-1

on the 40×, 100×, 200×, 400× datasets.

4.5.1 Time and Parameters required

Table 4.2 shows the number of required parameters and the time required to run per epoch

for the three models. Model-1 requires less time and fewer parameters to perform the clas-

si�cation. Model 2 requires the most parameters (105650) to run the whole classi�cation
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(a) (b)

(c) (d)

Figure 4.9: (a), (b), (c) and (d) represent the training and test M.C.C comparison for

Model-1 on the 40×, 100×, 200×, 400× datasets.

performance.
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Table 4.2: Time (per/epoch) and parameters required to run the models

Required

Parameters
Time/Epoch (s)

Model-1 27122 6

Model-2 105650 14

Model-3 41714 19

4.6 Conclusion

In this chapter we have classi�ed histopathological breast images (from the BreakHis

Dataset) into Benign and Malignant classes using a Convolutional Neural Network tech-

nique. For illumination correction and image enhancement we have utilised the Retinex

algorithm. We have utilised Conventional, Residual and MaxMin Convolutional Neural

Networks, with the best results achieved when we utilised the Conventional model. Most

of the recent work on this particular dataset has provided only Accuracy information.

However in this chapter, along with the Accuracy measure, we have provided detailed

information about the Speci�city, FPR, FNR, Recall, Precision and F-Measure values.

Computational complexity and time is a big issue in the CNN-model based system anal-

ysis. In this chapter we have provided the information about the required number of

parameters and time to perform the operation, which provide some demonstration about

the complexity of the model.
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Chapter 5

Local and Global Feature Utilisation

for Breast-Image Classi�cation by

Convolutional Neural Network

5.1 Abstract

Convolutional Neural Networks (CNN) have brought a revolutionary improvement to

image analysis, specially in the image classi�cation �eld. The technique of natural image

classi�cation using the CNN method has been deliberately utilised for medical image

classi�cation with some advanced engineering. However, so far in most of the cases CNN

model classi�es images based on global features extraction from the raw images. In this

chapter we have utilised both raw images and some hand-crafted features, and later we

classify images using a CNN network. For the classi�cation purposes we have utilised the

BreakHis dataset and achieved a 96.00% accuracy, which is a state-of-the-art result on

Published as: A. A. Nahid and Y. Kong, �Local and Global Feature Utilization for Breast Image

Classi�cation by Convolutional Neural Network�, in 2017 International Conference on Digital Image

Computing: Techniques and Applications (DICTA), IEEE, pp. 1-6, Nov. 2017
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this dataset.

5.2 Introduction

All the cells of the body maintain a cyclic order, where new cells grow as replacements of

old cells. However this might not be always the case. Sometimes few of the cells show some

abnormality, and these cells can continuously grow and create a cancer. This disease can

occur in any part of the body and later spread to any other part. Di�erent cancer diseases

such as liver, skin, breast etc. are more dominant. However, of all the available cancer

diseases, women are more vulnerable to breast cancer due to their physical anatomy. As

an example, the following graph shows the last 12 years of statistics about womens' deaths

due to cancer in Australia (population 20-25 million). Though this graph is an example,

it might be considered as representative of the current condition of the whole world.
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Figure 5.1: Male and Female cancer death statistics for the last decade in Australia.

Cancer-su�ering people are always in a vulnerable condition. Proper identi�cation

of the cancer can save or at least reduce the miserable condition of cancer-a�ected peo-

ple. Among other techniques, inspection of biomedical images is an important method

for the analysis of cancer. Di�erent biomedical imaging techniques have been available
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such as MRI, X-Ray, histopathological etc. Among the digital photographic techniques,

histopathological images are very popular with physicians and doctors for cancer inspec-

tions. However inspection of these histopathological images is always time-consuming

and also requires an extra level of expertise. Modern digital image analysis techniques

allow automatic detection as well as classi�cation of the images, which help doctors and

physicians to get a second opinion about the cancer.

Di�erent methods and techniques have been utilised for the image classi�cation. How-

ever the state-of-the-art image classi�cation from Convolutional Neural Networks (CNN)

has brought a revolutionary change in biomedical image classi�cation. The history of

the use of CNN for biomedical image classi�cation is a long one. "Neocognitron" is the

�rst CNN model, proposed by K. Fukushima et al. for the recognition of stimulus pat-

terns [79]. The CNN model was �rst utilised by Y. Wu et al. for mammogram image

classi�cation [80]. After a long break, the CNN method again got momentum after the

work of A. Krizhevsky with his model AlexNet [219]. After the A. Krizhevsky's model,

few other models have been introduced, like Visual Geometry Group (VGG-16, VGG-19),

GoogleNet, which are actually advanced-engineering versions of the AlexNet model.

B. Sahiner et al. [81] and J. Arevalo et al. [93] classi�ed mammogram images utilizing

global features and achieved Receiver Operating Characteristics (ROC) values of 0.87

and 0.826, respectively. F. Spanhol et al. [7] classi�ed histopathology images using aCNN

method, and the best accuracy achieved was 89.00%. J. Xu et al. [225] also classify

histopathology images where a best ROC 0.93 is achieved using DCNN-Ncut-SVM.

Most of the classi�cation using CNN utilised global feature extraction from the raw

images. However H. Rezaeilouyeh et al. [226] classify histopathological images using

CNN, where they utilised local as well as global features. They have utilised a Shearlet

transform for extracting local features. They obtained the best accuracy 86±3.00 % when

they utilised "RGB+ magnitude+phase of Shearlets" together. K. Sharma et al. utilised
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the Gray Level Co-occurrence Matrix (GLCM) and the Gray Level Di�erence Method

(GLDM) together for the Mammogram image classi�cation. The best accuracy achieved

was 75.23% and 72.34%, for the fatty and dense tissue classi�cations respectively.

Inspired by the recent advancement of the CNN model, in this chapter we have clas-

si�ed a histopathological image (BreakHis) database using CNN where we have utilised

both global and local features together. Section 5.2 gives introductory literature and the

current status of breast image classi�cation using CNN, Section 5.3 describes the overall

architecture along with the feature extraction techniques used on the images, Section 5.4

describes the working principle of CNN along with the model which we have utilised for the

classi�cation purposes, Section 5.5 describes the results and explains some performance

measuring parameters, and lastly we conclude our chapter at Section 5.6.

5.3 Overall Architecture for Classi�cation

A conventional CNN extracts global feature information from the raw images and performs

further post-processing operations. However some work has recently been performed on

image classi�cation utilizing hand-crafted local features such as GLCM, GLDM along with

the CNN model for the image classi�cation. To classify the data, we have utilised both

the raw images and hand-crafted information (Histogram information and Local Binary

Pattern (LBP)) together, for the image classi�cation. The overall classi�cation model is

presented in Figure 5.2. We have named our algorithm "C-H" where raw images along

with the histogram information are used, however when we utilised raw images and the

LBP information together we named this algorithm "C-L".
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Input Image and  Hand 
Crafted Feature

CNN Model

Benign

Malignant

Figure 5.2: Overall image-classi�cation model

5.3.1 Handcrafted Features

Among di�erent hand-crafted feature selection methods we have selected the following

two features for classi�cation:

Histogram Information

Combination of the Red, Green, and Blue light information creates an RGB image

I(x, y)RGB. As RGB is additive in nature, we can represent this RGB image as

I(x, y)RGB = I(x, y)R + I(x, y)G + I(x, y)B

A graphical display which represents the frequency of each of the particular intensities in

an image is known as a histogram. Let H(x, y)RGB
L , H(x, y)RL , H(x, y)GL , H(x, y)BL represent

the histogram of I(x, y)RGB, I(x, y)R, I(x, y)G, I(x, y)B, where L is the level number, in this

case L = 0, ........., 255.

Local Binary Pattern

The Local Binary Pattern (LBP) represents an image I(x, y) by a matrix which contains

integer labels, as proposed by Ojala et al. [25], [26]. Lately histograms of this matrix have

been used for further image analysis.

Let the strength gc of any arbitrary pixel position (xc, yc) of the image I(x, y) be
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represented as

gc = I(xc, yc) (5.1)

and consider a circle of radius R with evenly distributed p points (xp, yp) around the

central pixel (xc, yc). The strength of the point (xp, yp) can be represented as

gp = I(xp, yp) (5.2)

where

yp = yc − R sin(
2πp

P
) (5.3)

and

xp = xc + R cos(
2πp

P
). (5.4)

Then the LBP can be de�ned as

LBPP,R(xc, yc) =
P−1∑
p=0

s(gp − gc)2
p (5.5)

where

s(z) =


1, if z ≥ 0

0, otherwise .

5.4 Convolutional Neural Network and our proposed

model

A CNN model is the combination of a few intermediate mathematical structures which

create di�erent layers. Among all the other layers, the convolutional layer is considered

as the most important part for a CNN model and can be considered as the backbone of

the model. A two-dimensional weight matrix, named a kernel, of size m× n is scanned

through the input data for the convolutional operation. This ensures the local connectivity
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and weight-sharing property. The number of steps a kernel will move through the image

is known as the stride. To overcome the edge e�ect of the images, a method known as

zero padding has been utilised. The output of each of the kernel operations is passed

through a recti�er functions such as Recti�ed Linear Unit (ReLU), Leaky ReLU, TanH,

Sigmoid etc. The Sigmoid function can be de�ned as

σ(x) =
1

(1 + exp−x)
. (5.6)

However the most e�ective recti�er is ReLU. The ReLU method converts all the informa-

tion into zero if it is less than or equal to zero, and passes all the other data as is. Figure

5.4 shows the working principle of the ReLU method:

Convolution Convolution Sub-Sampling Sub-Sampling Fully-connected

Be nign

Malignant

 Image 7 Feature Maps

7 Feature Maps 9 Feature Maps

Figure 5.3: Work�ow of a Convolutional Neural Network

σ(x) = max(0, x). (5.7)

Sub-sampling is the procedure of reducing the dimensionality of each of the feature maps

of a particular layer; this kind of operation is also known as pooling. Actually, it reduces

the amount of feature information from the the overall data and hence, reduces the overall

computational complexity of the model as well. To do this s× s patch units are utilised.

The two most popular pooling methods are
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Figure 5.4: ReLU Opearation

� Max-Pooling

� Average Pooling.

All the neurons of the most immediate layer of a fully connected layer are completely

connected with the fully connected layer, like a conventional Neural Network. Let f l−1j

represent the jth feature map at the layer l− 1. The jth feature map at the layer l can be

represented as

f lj = σ(
Nl−l∑
i=1

f l−1i ∗ ki,j + bl
j) (5.8)

where Nl−l represents the number of feature maps at the l− 1th layer, ki,j represents the

kernel function and bl
j represents the bias at l, where σ performs a nonlinear function

operation. For the classi�cation a CNN model utilised a fully connected layer and a

Soft-Max layer. The layer before the soft-max layer can be represented as

hend
p = wend ∗ hend−1

p + bend (5.9)

As we are working on a binary classi�cation, the Soft-Max regression output can be

represented as

ȳp =
exp(hend

p )∑2
p=1 exp(hend

p )
(5.10)

The predicted class P̄ will be

p̄ = arg max
p

ȳp

= arg max
p

h̄end
p

(5.11)
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Figure 5.5: The CNN model utilised for the classi�cation
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For the breast-image classi�cation we have utilised the following model:

5.4.1 Our Model for Classi�cation

In our model we have divided the convolutional operation into four phases. In Phase-

1, convolutional operations are performed on the raw images as well as the local feature

information with the two parallel convolutional layers G-1 and C-1. Both the convolutional

layers G-1 and C-1 produce 16 feature maps and utilise a 5×5 kernel �lter with the

ReLU recti�er. The Max-Pooling operation with kernel size 2×2 is performed in layers

named P-1 and P-2. The outputs of the P-1 and P-2 layers are concatenated together in

the concatenated layer named Concat-1. The same procedure is carried out in Phase-2,

Phase-3 and Phase-4 consecutively. The output of the layer named Concat-4 is passed

through the Max-Pooling layer named P-9 with kernel size 2×2. After the Flat-layers

we have utilised a Drop-out layer where 75.00% of the data has been dropped. After the

Drop-out layer the model uses a Soft-Max layer for the image classi�cation into Benign

and Malignant images.

5.5 Results and Discussion

5.5.1 Performance-Measuring Parameters

A Confusion Matrix is a two-dimensional table which is used to a give a visual perception

of classi�cation experiments [43]. The (i, j)th position of the confusion table indicates

the number of times that the ith object is classi�ed as the jth object. The diagonal of

this matrix indicates the number of times the objects are correctly classi�ed. Figure

7.9 shows a graphical representation of a Confusion Matrix for the binary classi�cation

case. Among the di�erent classi�cation performance properties, this matrix will provide

following parameters:
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Figure 5.6: Confusion Matrix

� Recall is de�ned as Recall = TP
TP+FN

.

� Precision is de�ned as: Precision = TP
TP+FP

.

� Speci�city is de�ned as: Specificity = TN
TN+FP

.

� Accuracy is de�ned as ACC = TP+TN
TP+TN+FP+FN

.

� F-1 score is de�ned as F1 = 2×Recall
2×Recall+FP+FN

.

� Matthew Correlation Coe�cient (MCC): MCC is a performance parameter of a

binary classi�er, in the range {−1 to + 1}. If the MCC values tend more towards

+1, the classi�er gives a more accurate result, the opposite condition will occur if

the value of the MCC tend towards -1. MCC can be de�ned as

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FP)
(5.12)

5.5.2 Results and Discussion

We have utilised the BreakHis dataset which contains four sets of images "m×" where

m = {40, 100, 200, 400} and × represents the magni�cation factor. Table 5.1 shows the

Speci�city, Recall, False Negative Rate (FNR), False Positive Rate (FPR), Precision and
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F-1 score values for both the "C-H" and "C-L" algorithms. We have considered the

validation performance as the test performance because the "BreakHis" dataset contains

only a small number of images. In all the following plots, the Blue plot represent train

information and the Green plot represent validation/accuracy information.

Table 5.1: The performance of the C-H and C-L algorithms on the BreakHis dataset

Speci�city/

TNR (%)
FPR (%) FNR (%)

Recall/

TPR (%)
Precision (%) F-1Score (%)

40×
C-H 94.25 05.74 0.800 92.00 98.00 95.00

C-L 82.75 17.20 18.80 81.20 92.00 82.00

100×
C-H 92.00 08.00 02.00 97.00 97.00 97.00

C-L 64.00 36.00 02.00 97.20 88.00 87.00

200×
C-H 92.00 08.00 01.00 99.00 97.00 97.00

C-L 71.00 29.00 05.00 95.00 86.00 91.00

400×
C-H 97.18 02.10 07.40 92.56 98.82 94.70

C-L 74.00 26.00 04.00 96.00 88.00 81.00

For the 40× dataset, when we utilised the C-H algorithm, the speci�city value was

94.25% which indicates that this algorithm classi�es almost 95.00% of the original benign

images as benign, however it classi�es 08.00% of the malignant images as benign too.

This indicates that this algorithm shows more or less the same amount of speci�c and

sensitive information on this particular dataset. When we use the C-L algorithm on the

40× dataset, both the speci�city and recall values are almost the same at around 82.00%;

this indicates that around 18.00% percentage of the benign data has been mis-classi�ed

as malignant and conversely.

When we utilise the C-H algorithm on the 100× dataset, FPR and FNR are 08.00%

and 02.00% respectively. This indicates that this dataset is 92.00% speci�c when we utilise

the C-H algorithm, and maintains a very high sensitivity. However, when we utilise the
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C-L algorithm on the 100× dataset, we obtained 97.20% recall values; that means that the

malignant images are mostly perfectly classi�ed, however the sensitivity value of this case

is 64.00%, which gives very poor performance for the benign to benign image classi�cation.

(a) (b)

(c) (d)

Figure 5.7: Accuracy information when we utilise the C-H algorithm on the 40×, 100×,

200× and 400× datasets, respectively

When we utilise the C-H algorithm on the 200× dataset, the recall value is 99.00%
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which is the best recall value over all the datasets and algorithms. This indicates that

this case is very highly sensitive. 8.00% of the benign data has been falsely classi�ed as

malignant. When we use the C-L algorithm on this particular dataset, the recall value

is 95.00% which indicates that only 5.00% of the malignant data has been mis-classi�ed

as benign. This result shows that the C-L algorithm maintains high sensitivity values.

However the TNR of this particular case is 29.00% which shows that this case is not very

speci�c.

When we use the C-H algorithm on 400× data set, it shows 97.18% speci�city, which

indicates that this case has very good performance for benign to benign image classi�ca-

tion. However, its recall value is 92.56%, which indicates that around 07.40% of malignant

data has been mis-classi�ed as benign. When we utilise the C-L algorithm, the recall value

is 96.00% which indicates that around 96.00% of the malignant data has been perfectly

classi�ed as malignant, however in this case the FPR value is 26.00% which is quite high.

The above discussion shows that the C-H algorithm gives better performance than the

C-L algorithm for all the available datasets. Algorithm C-H on the dataset 400× shows

higher speci�c performance than any other case, and it shows high sensitivity performance

on both the 100× and 200× data set.

Figure 5.7 shows the accuracy performance when we utilise the C-H algorithm, where

the blue plot represents the train accuracy and the green plot represents the validation

(test) accuracy. Up to epoch 100, all the datasets shows better test accuracy performance

than the train accuracy performance, which raises the under-�tting issue. Both for the

40× and 200× datasets, after around the epoch 100 the train and validation accuracy

remain almost the same. For the 100× dataset from around epoch 100 to 170 the train

and test accuracy performance remain almost the same, but after that the train accuracy

shows slightly better performance than the validation accuracy. For the 400× dataset

from around epoch 100 to 150 the train and test accuracy performance remain almost the
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(a) (b)

(c) (d)

Figure 5.8: M.C.C. information when we utilise the C-H algorithm on the 40×, 100×,

200× and 400× datasets, respectively

same, but after that the model shows over-�tting performance.

Figure 5.8 a, b, c and d shows the MCC values for the C-H algorithms for the 40×,

100×, 200× and 400× datasets respectively. Figure 5.8 a, b, c and d show that, initially,

both the train and validation (test) MCC values are quite low when we utilised the 40×,
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100×, and 400× datasets and as the epoch increases both the train and validation (test)

MCC values increase with the epoch and exceeds 00.90. For the 200× dataset, with the

epoch less than 50, sometimes the MCC values of both the train and validation(test)

shows some negative values however around epoch 200 both the train and the validation

(test) MCC values show 00.90.

5.6 Conclusion

In this chapter we have classi�ed a breast-cancer (BreakHis) dataset using the state-of-

the-art CNN method. Instead of using raw images, we have applied raw images along

with some hand-crafted information. The best speci�city of 97.18% is achieved when we

utilised raw images along with the histogram information on the 400× dataset, on the

other hand the best sensitivity is achieved when we employed raw images along with LBP

information on the 100× data set. However the best overall performance is achieved when

we utilised raw images along with histogram information on the 100× and 200× datasets.
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Frequency-Domain Information along

with LSTM and GRU Methods for

Histopathological Breast-Image

Classi�cation

6.1 Abstract

Biomedical image classi�cation has always been a challenging and critical task which has

the highest level of importance. The Deep Neural Network (DNN) has been recently

introduced for normal image classi�cation and lately introduced for Biomedical image

classi�cation with some advanced engineering. In this chapter we have classi�ed an image

dataset with a DNN utilizing Long Short Term Memory (LSTM) as well as Gated Recur-

Published as: A. A. Nahid, M. A. Mehrabi and Y. Kong �Frequency-Domain Information Along with

LSTM and GRUMethods for Histopathological Breast-Image Classi�cation�, in 2017 IEEE International

Symposium on Signal Processing and Information Technology(ISSPIT), IEEE, pp. 1-6, Dec. 2017.
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rent Unit (GRU) for breast-image classi�cation. Instead of directly using raw images, we

have utilised frequency-domain information for the image classi�cation. Using our model

we have obtained 93.01% Accuracy, 94.00% Recall and 94.00% Precision, which is the

best available result on this dataset.

6.2 Introduction

Abnormal and unwanted growth of cells is known as cancer and is a serious threat to

people throughout the world. At present millions of people are su�ering from cancer. As

the human body is a combination of cells, and cancer is created from the cells, so cancer

can be created in any part of the body and then may migrate to any other part of the

body. Among all the other types of cancer, women are more vulnerable to breast cancer

than men, due to the anatomical structure of women. Women who are su�ering due to

breast cancer have a measurable condition that sometimes leads to death. The death of

women due to cancer has increased day by day at an alarming rate.
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Figure 6.1: Female deaths from breast cancer: statistics for the last decade in Australia.

Figure 6.1 shows the number of women dying from breast cancer in Australia over the

last decade. With some exceptions the number of womens' deaths due to breast cancer has
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increased every year, and the situation has become worse day by day. Though this shows

the women breast-cancer scenario for Australia, this can be considered as representing

the whole world scenario.

Treatment of cancer largely depends on identi�cation of the cancer. Inspection of

biomedical images is an existing technique for the investigation of cancer. A few biomed-

ical photographic techniques such as Magnetic Resonance Imaging (MRI), Mammogram,

Histopathological images are available. Doctors and physicians investigate these images

to identify the present status of cancer. Among these biomedical imaging techniques,

Histopathological images have been gathered from biopsy of the tissues. Histopatholog-

ical image investigation always requires expert knowledge to give any opinion about the

images, and it requires extra time for the image investigation. However modern digital

image-processing techniques have been largely used for biomedical image classi�cation

lately. Biomedical image analysis and classi�cation techniques provide a second opinion

about the current situation to both the doctors and patients.

Di�erent methods and techniques such as Supervised, Semi-supervised and Un-supervised

techniques have been utilised for the image classi�cation. Among the di�erent image-

classi�cation techniques, the state-of-the-art Deep Neural Network (DNN) has been in-

troduced for normal image analysis as well as Biomedical image analysis and classi�cation.

However the CNN model "neocognitron" which has been introduced by K.Fukushima for

biomedical image analysis [79] is considered to be the pioneer work for biomedical image

analysis. After the work of K. Fukushima, Y Wu et al. [80] and B. Sahiner et al. [81]

have utilised a CNN model for biomedical image analysis from 1990 to 2000. After a long

rested, the DNN model again gained interest after the work of A. Krizhevsky et al. [82] in

2012 which introduced the AlexNet model. Basically Alexnet introduced a CNN model

for image classi�cation, and lately advanced engineering of the Alexnet model has been

introduced for biomedical image classi�cation.
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Another branch of the DNN is the Recurrent Neural Network (RNN). The RNN model

has been largely utilised for time-series data prediction and classi�cation. The RNN

model su�ered from the long memory problem and to overcome this issue the Long Short

Term Memory (LSTM) [209] and Gated Recurrent Unit (GRU) [227] models have been

introduced. This model has mainly classi�ed time-series data. In the conventional CNN

model the input data have been considered as high-dimensional vectors. However each

data point or a combination of data points of a data matrix can be considered as a data

sequence [213]. We have considered that the extracted frequency information maintains a

time-series relationship, as adjacent pixels of the images contain similar information [213],

and based on this we have utilied LSTM as well as GRU models for Biomedical breast-

image classi�cation.

The rest of the chapter is organized as: Section 6.3 will give a brief description of

the overall model and frequency-domain feature-extraction techniques as well as the data

preparation techniques for the classi�er, Section 6.4 will describe the LSTM and GRU

models' working principles in brief and also describe our model for breast-cancer image

classi�cation, Section 6.5 describes detailed results from our experiment and Section 6.6

concludes our work.

6.3 Overall Architecture

Most often in DNN-based image classi�cation, raw images have been directly fed to the

model, and the model extracts the global features and classi�es the images based on

the global features. However, instead of directly utilizing the raw images as input, the

extracted frequency-domain information can be used as the input of the DNN model for

image classi�cation. To do so we have created our overall classi�er model as described in

Figure 6.2.
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Figure 6.2: Overall Architecture for Breast-image classi�cation

For the frequency-domain information extraction, we have selected one of

� Discrete Fourier Transform (DFT)

� Discrete Cosine Transform (DCT)

DFT for feature selection

The Fourier transform represents the signal in the frequency domain and calculates the

most important information from the signal. Let f(x, y) be the two-dimensional discrete

signal, in this case the image. The Fourier transform of this signal can be represented as

F (u, v) =
M−1∑
x=0

N−1∑
y=0

f(x, y) exp
−(j2πux)

M
exp

(−j2πvy)

N
(6.1)

where u = 0, .......,M − 1 and v = 0, ......., N − 1, The original images can be recovered

from the previous equation by applying the inverse Fourier transform:

f(x, y) =
1

MN

M−1∑
u=0

N−1∑
v=0

F (u, v) exp
(j2πpx)

M
exp

(j2πpy)

N
(6.2)

where x = 0, ...........,M−1 and y = 0, ..........., N−1. Finding the DFT is computationally

complex and time-consuming. The fast Fourier Transform (FFT) is an algorithm which

solves the DFT with less computational complexity; we have utilised the FFT algorithm

to extract the Fourier-transform coe�cients.

The FFT values have been calculated from each image channel, then we selected the

top ”h” FFT coe�cients and concatenated the features together. Now the total feature set
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Figure 6.3: Feature preparation for LSTM/GRU model when FFT is utilised

will be size FDFT = 3× h and is a single-row vector. This single-row vector has been con-

verted to a two-dimensional feature matrix FTI
FFT = Time Series (T)×Input Dimension (I).

DCT for feature selection

The DCT method was �rst introduced in 1974 [228], and works for both 1D and 2D

signals. DCT-II is a commonly used method for image processing and is also known as

even-symmetric DCT. For our analysis, we have used DCT-II methods. For an image

f(x, y) the DCT can be represented as

D(u, v) =
2l(u)l(v)√

(MN)

M−1∑
x=0

N−1∑
y=0

f(x, y) cos
[(2x+ 1)uπ

2M

]
cos
[(2y + 1)vπ

2N

] (6.3)

where u = 0, ...........,M − 1 and v = 0, ..........., N − 1, and

l(k) =
{ 1

2
if k = 0

1 otherwise

Now the original signal can be regained by the inverse DCT transform using

f(x, y) =
2√

(MN)

M−1∑
u=0

N−1∑
v=0

l(u)l(v)D(u, v)

cos[
(2x+ 1)uπ

2M
] cos[

(2y + 1)vπ

2N
]

(6.4)
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Figure 6.4: Feature preparation for LSTM when DCT is utilised

DCT values have been calculated from each image channel and the top ”h” DCT

coe�cients selected and then the features concatenated together. Now the total feature set

will be FDCT = 3×h and is a single-row vector. This single-row vector has been converted

to a two-dimensional feature matrix FTI
DCT = Time Series (T)× Input Dimension (I).

6.4 LSTM and GRU Methods

Learning from scratch might not be as fruitful as learning from a reference. This per-

ception is realistic for human thinking, as the human brain always recalls references from

previous learning. In the traditional NN the model always learns from scratch. However,

a Recurrent Neural Network (RNN) feeds back the output information to the input. Fig-

ure 6.5 shows two diagrams which illustrate the di�erences between the conventional NN

and an RNN. Let X = {xi}, H = {hj} and Y = {yk} represent the input, hidden and

output layers where i ∈ {1, 2, 3.........Q}, j ∈ {1, 2, 3.........R} and k ∈ {1, 2, 3.........P}.

The output layer of an RNN model can be expressed as

yt = Whoht

where ht is de�ned as

ht = σ(Whhht−1 +Wihxt + bh) (6.5)
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Figure 6.5: Conventional NN and RNN models

Here

Wi,h represents the weight matrix from the input to the hidden layer;

Wh,h represents the weight matrix from the hidden to the hidden layer;

Wh,o represents the weight matrix from the hidden to the output layer;

Conventional RNN su�ers due to long term-memory dependencies. To overcome this

problem, Hochreiter et al. proposed the Long Short-Term Memory (LSTM) architecture

which is an advanced version of the RNN model [209]. The LSTM layer contains a forget

gate which controls the �ow of information. Figure 6.6 represents a cell structure of a

LSTM network. The main parameters of the LSTM network can be represented as:

it = tanh(Wxixt +Whiht−1 + bi) (6.6)

jt = σ(Wxjxt +Whjht−1 + bj) (6.7)

ft = σ(Wxfxt +Whfht−1 + bf ) (6.8)

ot = σ(Wxoxt +Whoht−1 + bo) (6.9)

ct = ct−1 � ft + it � jt (6.10)

ht = tanh(ct)� ot (6.11)
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Figure 6.6: A generalised cell structure of an LSTM

where ft is the forget gate, it is the input gate, ht provides the output information and ct

represents the cell state [210]. Here all W×× and b× represent the corresponding layer's

weight matrix and bias vectors. Another advancement of the LSTM network is the Gated

Recurrent Unit (GRU). In the GRU model the forget gate and the input gate are merged,

and the Hidden Gate and the Cell state also merge, with some other modi�cations.

6.4.1 Our Model

We have utilised the LSTM model as well as the GRU model separately for the data

classi�cation task. Figure 6.7 shows the model which has been used for the classi�cation.

The hidden vector and the cell state go to the next adjacent layer. However, like a normal

NN we also stacked a number of hidden cell (LSTM/GRU) layers one after another, so

that each cell (LSTM/GRU) of the �rst layer produces a hidden vector with cardinality

82, and layer-2, layer-3 and layer-4 produce hidden vectors with cardinality 42. The

output of the last cell of layer-4 (upper top-right corner) passes through a dropout layer,

which drops out 20 percent of the neuron information. Then two consecutive dense layers
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are stacked one after another.
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Figure 6.7: The proposed model where the cells (LSTM/GRU) are stacked

Both LSTM and GRU take the input which contains the Time Series (T) and Input

Dimension (I). Based on the values of T, I and the method LSTM and GRU, we have

divided our experiment into eight di�erent cases, summarized in Table 6.1.

6.5 Results and Discussion

We have utilised the BreakHis breast-image dataset which contains four sets of images

"m×" where m = {40, 100, 200, 400} and × represents the magni�cation factor. For Case-

1, Case-2, Case-3 and Case-4, the value of Time Series (T) and Input dimension (I) is

�xed at 31 and 93; for the rest of the cases the values of T and I are �xed at 93 and 31

respectively.

The �rst quarter of Table 6.2 shows the performance for the di�erent Cases, where the
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Table 6.1: Description of the Cases

Case Method Features T×I

Case-1 LSTM FFT 31×93

Case-2 LSTM DCT 31×93

Case-3 GRU FFT 31×93

Case-4 GRU DCT 31×93

Case-5 LSTM FFT 93×31

Case-6 LSTM DCT 93×31

Case-7 GRU FFT 93×31

Case-8 GRU DCT 93× 31

40× dataset has been utilised. For Case-3, where the GRU model has been used along

with FFT features, 84.97% Accuracy has been achieved. In this particular case the Recall

value is 92.82%; this indicates that 9.17% of the Malignant images have been mis-classi�ed

to Benign images. On the other hand the Speci�city value is 70.68% and the False Positive

Rate (FPR) is 29.31%. This indicates that this particular case is moderately sensitive

and less speci�c.

Information of the second quarter of Table 6.2 shows the performance of the classi�er

models on the 100× dataset. In this scenario, when we use Case-8 the achieved accuracy is

87.80%. In this particular case the Recall value is 92.27%; this indicates that 7.70% of the

Malignant data has been mis-classi�ed as Benign data. On the other hand the Speci�city

value is 76.51% and the False Positive Rate (FPR) is 23.42%. This indicates that this

particular situation is less speci�c. The best Speci�city 80.00% has been achieved on the

100× dataset utilizing Case-7. In this particular situation the accuracy is 86.17%.

Information in the third quarter of Table 6.2 shows the performance when we utilised
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Table 6.2: Performances of the di�erent Cases on di�erent datasets
Case Accuracy (%) Speci�city (%) FPR (%) FNR (%) Recall (%) Precision (%) F-Measure (%)

40
×

Case-1 84.47 76.00 24.00 12.00 88.00 90.00 89.00

Case-2 81.47 74.13 25.86 15.52 84.47 89.00 81.00

Case-3 84.97 70.68 29.31 09.17 90.82 88.00 90.00

Case-4 74.26 82.18 17.80 28.47 71.52 91.00 80.00

Case-5 70.95 00.00 100.00 00.00 100.00 71.00 83.00

Case-6 84.47 66.01 33.90 08.00 99.20 87.00 89.00

Case-7 84.47 74.13 25.86 11.26 88.70 89.00 89.00

Case-8 83.80 73.56 26.43 12.00 88.00 89.00 89.00

10
0×

Case-1 85.69 74.85 25.14 10.00 90.00 90.00 90.00

Case-2 87.32 78.85 21.14 09.31 90.68 92.00 91.00

Case-3 85.36 78.28 21.71 11.81 88.18 90.00 91.00

Case-4 83.25 67.42 32.57 10.45 89.44 87.00 88.00

Case-5 71.50 0.00 100.00 0.00 100.00 72.00 83.00

Case-6 71.54 0.00 100.00 0.00 100.00 72.00 83.00

Case-7 86.17 80.00 20.00 11.36 88.63 92.00 90.00

Case-8 87.80 76.51 23.42 7.70 92.27 91.00 92.00

20
0×

Case-1 85.69 84.34 15.65 04.60 95.33 93.00 94.00

Case-2 91.74 91.91 08.08 08.35 91.64 96.00 94.00

Case-3 92.90 84.34 15.65 04.42 95.57 93.00 94.00

Case-4 89.09 84.34 15.65 06.14 93.85 90.00 92.00

Case-5 67.27 0.00 100.00 00.00 100.00 67.00 80.00

Case-6 67.27 0.00 100.00 00.00 100.00 67.00 80.00

Case-7 90.74 81.31 18.68 4.66 95.33 91.00 93.00

Case-8 93.05 87.87 12.12 4.42 95.57 94.00 95.00

40
0×

Case-1 83.88 85.24 14.75 16.80 83.19 92.00 87.00

Case-2 88.46 83.60 16.93 08.81 91.18 91.00 91.00

Case-3 85.71 74.86 25.13 08.81 91.18 88.00 89.00

Case-4 83.25 84.15 15.84 07.71 92.18 92.00 92.00

Case-5 66.48 00.00 100.00 00.00 100.00 66.00 80.00

Case-6 66.48 00.00 100.00 00.00 100.00 66.00 80.00

Case-7 88.46 81.42 18.57 07.98 98.02 91.00 91.00

Case-8 89.19 88.52 11.47 10.46 89.53 94.00 92.00
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the 200× dataset. On the dataset 200× when we used Case-8, the achieved accuracy is

95.57% and the False Negative Rate (FNR) is 4.42%; this indicates that this particular

scenario is highly sensitive. In this case 87.87% of the Benign images have been classi�ed as

Benign and 12.12% of Benign images misclassi�ed as Malignant. In terms of F-measure

this algorithm provides 95.00%. Overall this particular case shows moderate Speci�c

performance and quite impressive Sensitive performance. Information in the last quarter

of Table 6.2 shows the performance of the di�erent cases on the 400× dataset. For Case-8,

the achieved accuracy is 89.19%. The recall and the speci�city almost maintain the same

values, at around 89.00%. This indicates that around 11.00% ofthe Malignant data has

been misclassi�ed as Benign data and the reverse is also true. Case-5 utilises the LSTM

method and FFT features, and the T and I values are �xed at 93 and 31. For all the

datasets, Case-5 shows the FPR and Recall both are 100.00%; this indicates that all the

data has been classi�ed as Malignant data irrespective of their original class. For case-6,

where LSTM and DCT features have been used and the I and T values are �xed at 91

and 31, when we apply this case on the 100×, 200×, and 400× datasets all the data

has been classi�ed as Malignant irrespective of their original classes. However when we

apply Case-6 on the 40× data set the Accuracy, Speci�city and Recall are 84.47%, 66.01%

and 99.20% respectively. Overall Case-5 shows the worst performance irrespective of the

dataset, and the performance of Case-6 is very poor with some exceptions. Figure 6.5

shows the number of parameters needed for the overall classi�cation operation and the

required time to run per epoch; Case-1 and Case-2 required the same time and parameters.

Two things are common in these two cases: both utilised the LSTM method and the values

of T and I are �xed at 31 and 93 respectively. However Case-1 utilises the FFT as feature

and Case-2 utilises the DCT as feature. If we consider Case-5 and Case-6, they require

the same parameters as well as the same time to perform in each epoch. Two things are

common in these two cases: both utilised the LSTM method and the values of T and I are
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Figure 6.8: Number of parameters and required time for individual cases

�xed at 93 and 31 respectively. However Case-5 utilises the FFT as feature and Case-6

utilises DCT as feature. The number of parameters required for Case-5 and Case-6 is

less than the number of parameters required to perform Case-1 and Case-2, however both

Cases 4 and 5 require more time to perform per epoch than Case 1 and Case 2. One thing

common to Cases 1 , 2, 5 and 6 is that all utilised the LSTM method, however when

they utilise T equal to 31 they require more parameters but less time, and when they

utilise T equal to 93 they require more time but fewer parameters. Case-3 and Case-4

require the same parameters to perform the operation and the same time for each epoch.

Two things are common in these two cases: both utilised the GRU method and T and I

are �xed at 31 and 93 respectively. However Case-1 utilises FFT as feature and Case-2

utilises DCT as feature. If we consider Case-7 and Case-8, they require same parameters

as well as the same time to perform at each epoch. Two things are common in these two

cases: both utilised the GRU method and T and I are �xed at 93 and 31 respectively.

However Case-7 utilises FFT as feature and Case-8 utilises the DCT as feature. The

GRU method has been utilised by Cases 3, 4, 7 and 8. however when they utilise T equal

to 31 they require more parameters but less time and but when they utilise T equal to

93 they require more time fewer parameters. For Case-5, irrespective of the dataset it
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provides the worst performances among all the other cases. Specially Case-5 classi�es all

the data as Malignant irrespective of their original class. Figure 9 shows the Accuracy,

Loss, Kullback�Leibler Divergence (KLD) and Matthews Correlation Coe�cient (MCC)

performance for Case-5, which was performed on the 200× dataset.

(a) (b)

(c) (d)

Figure 6.9: (a), (b), (c) and (d) show the Accuracy, Loss, Kulback Divergence and

Matthews correlation coe�cient values for Case-5 on the 200× dataset
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Among all the available cases, Case-7 and Case-8 require fewer parameters, however

Case-1 and Case-2 require less time. This indicates that if we use the LSTM method

along with the lower value of T this requires less time, however if we utilise the GRU

value along with the higher value of T it requires fewer parameters but more time.

(a) (b)

(c) (d)

Figure 6.10: (a), (b), (c) and (d) show the Accuracy, Loss, Kulback Divergence and

Matthews correlation coe�cient values for Case-8 on the 200× dataset
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In general, among all the cases, Case-8 gives better performance on all the datasets. In

particular, the best performance is achieved when we utilised Case-8 and the 200× dataset.

Figure 10 represents the Accuracy, loss, KLD and MCC performance over epochs 0 to 500.

Up to around epoch 50 both the train and test accuracy remain almost the same. After 50

epochs the train accuracy outperforms the test accuracy. After around epoch 250 the test

accuracy remains a constant, but as the epoch goes higher, the train accuracy still shows

better performance. After some initial epochs, the di�erence between the train and test

loss increases and as the epoch goes on this loss di�erence continuously increases. Figure

c shows the KLD and �gure d represents the MCC. As we know, the MCC varies from -1

to +1. For the training case the MCC values are almost the highest values, however the

test MCC values were around 0.8.

6.6 Conclusion

In this chapter, we have classi�ed the BreakHis breast image dataset based on a DNN

model, created using a stack of the LSTM and GRU models. The best result has been

achieved when we have utilised the GRU model. the best performance is achieved when

we use Time Series T, Input Dimension Value I equal to 93 and 31 respectively. In this

particular case the achieved Accuracy, Recall, Precision values are 93.05%, 95.57% and

94.00% respectively. This is the best available performance on this dataset.
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Chapter 7

Histopathological Breast-Image

Classi�cation using Local and

Frequency domains by Convolutional

Neural Network

7.1 Abstract

Identi�cation of the malignancy of tissues from Histopathological images has always been

an issue of concern to doctors and radiologists. This task is time-consuming, tedious and

moreover very challenging. Success in �nding malignancy from Histopathological images

primarily depends on long experience, though sometimes experts disagree on their deci-

sions. However, Computer Aided Diagnosis (CAD) techniques help the radiologist to take

Published as: A. A. Nahid, Y. Kong, �Histopathological Breast-Image Classi�cation Using Local

and Frequency Domains by Convolutional Neural Network�, Information, MDPI, vol. 9, no. 1, pp. 1�26,
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a second opinion which can increase the reliability of the radiologist,s decision. Among the

di�erent image analysis techniques, classi�cation of the images has always been a challeng-

ing task. Due to the intense complexity of biomedical images, it is always very challenging

to provide a reliable decision about an image. The state-of-the-art Convolutional Neural

Network (CNN) technique has had great success in natural image classi�cation. Utilizing

advanced engineering techniques along with the CNN, in this chapter we have classi�ed

a set of Histopathological Breast-Cancer (BC) images utilizing a state-of-the-art CNN

model containing a residual block. Conventional CNN operation takes raw images as in-

put and extracts the global features, however the object oriented local features also contain

signi�cant information, for example the Local Binary Pattern (LBP) represents the e�ec-

tive textural information, Histogram represent the pixel strength distribution, Contourlet

Transform (CT) gives much detailed information about the smoothness about the edges,

Discrete Fourier Transform (DFT) derives frequency-domain information from the image.

Utilizing these advantages, along with our proposed novel CNN model, we have examined

the performance of the novel CNN model as Histopathological image classi�er. To do so

we have introduced �ve cases: a) Convolutional Neural Network Raw Image (CNN-I), b)

Convolutional Neural Network CT Histogram (CNN-CH), c) Convolutional Neural Net-

work CT LBP (CNN-CL), d) Convolutional Neural Network Discrete Fourier Transform

(CNN-DF), e) Convolutional Neural Network Discrete Cosine Transform (CNN-DC). We

have performed our experiments on the BreakHis image dataset. The best performance

is achieved when we utilize the CNN-CH model on a 200× dataset which provides Ac-

curacy, Sensitivity, False Positive Rate, False Negative Rate, Recall Value, Precision and

F-measure of 92.19%, 94.94%, 5.07%, 1.70%, 98.20%, 98.00 and 98.00 % respectively.
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7.2 Introduction

Cancer, being a serious threat to human life, is actually a combination of diseases, and

more speci�cally unwanted and abnormal growth of the cells of the human body is known

as cancer. Cancer can attack any part of the body and can then be distributed to any other

part. Di�erent types of cancer exist, but among all the cancers women are more vulnerable

to Breast Cancer (BC) than men, because of the anatomical structure of women. Statistics

show that each year more people are newly a�ected by BC, at an alarming rate. Figure

7.1 shows the number of females newly facing BC as well as the number of females dying

since the year 2007 in Australia. This �gure shows that more and more females are newly

facing BC, and the number of females dying of it has also increased in each year. This is

the situation of Australia (population 20 - 25 million), but it can be used as a symbol of

the BC situation of the whole world.
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Figure 7.1: New cases of breast cancer for women and number of women dying in the last

twelve years

Proper investigation is the �rst step in proper treatment of any disease. Investigation

of BC largely depends on investigation of biomedical images such as Mammogram, MRI,

Histopathological etc. Manual investigation of this kind of images largely depends on the
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expertise of the doctors and physicians. As humans are error prone, so even an expert

can give wrong information about the diagnostic images. Beside this, biomedical image

investigation always requires a large amount of time. However CAD techniques are largely

utilized for biomedical image analysis such as cancer identi�cation and classi�cation. The

use of CAD allows the patient and doctor to take a second opinion.

Di�erent biomedical image-analysis techniques are available and di�erent research

groups have investigated the identi�cation and classi�cation of BC. The conventional

image-classi�cation techniques such as Support Vector Machines (SVM), Random Forest

(RF), Bayesian classi�er etc. algorithms have been largely utilized for the image classi-

�cation. Utilizing an SVM, a set of cancer images was �rst classi�ed by A. Bazzani et

al. and their �ndings have been compared with the Multi Layer Perception (MLP) tech-

nique [229]. I. Naqa et al. [124] utilized the kernel method along with SVM techniques for

better performance for the classi�cation, where they obtained around 93.20% accuracy. A

set of Histopathological images has been classi�ed using Scale Invariant Feature Transform

(SIFT) and Discrete Cosine Transform (DCT) features with an SVM for classi�cation by

N. Mhala et al. [130]. Law's Texture features have been utilized for Mammogram (322

images) image classi�cation and 86.10% accuracy obtained by J. Dheeba. et al. [140].

M. Taheri et al. [141] utilized intensity information, Auto Correlation Matrix and Energy

values for breast-image classi�cation and obtained 96.80% precision and 92.50% recall

with 600 Mammogram images. A set of ultrasound images have been classi�ed by F.

Shirazi et al. [138], where Regions of Interest (ROI) have been extracted for reduction

of the computational complexity. J. Levman et al. [135] classify a set of MRI images

(76 images) into benign and malignant classes, utilizing Relative Signal Intensities and

Derivative of Signal Strength as features.

The RF method has also been used for image classi�cation. A set of Mammogram im-

ages has been classi�ed by S. Angayarkanni et al. [118] and they achieved 99.50% accuracy
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using the Gray-Level-Cooccurence Matrix (GLCM) as feature. G. Gatuha et al. [230] uti-

lized Mammogram images for image classi�cation using a total of 11 features and achieved

97.30% accuracy. Breast Histopathological images have been classi�ed by Y. Zhang et

al. [117] and they achieved 95.22% accuracy, where they utilized the Curvelet Transform,

GLCM, and Completed Local Binary Pattern (CLBP) methods for feature extraction.

GLCM and Gray-Level-Run-Length-Matrix (GLRLM) have been utilized along with the

RF algorithm by J. Diz et al. [113] for Mammogram image classi�cation with 76.60%

accuracy. The Bayes method has also been used for image classi�cation. E. Kendall et

al. [151] utilized the Bayes method for Mammogram image classi�cation with the DCT

method for feature selection. Their obtained sensitivity was 100.00% and speci�city was

64%. Statistical and Local Binary Pattern (LBP) features along with the Bayesian method

have been utilized by F. Claridge et al. [153] on two Mammogram image sets. When they

used the MIAS dataset their best achieved accuracy was 62.86%.

Other than RF, SVM, Bayes method, the Neural Network (NN) method have largely

been utilized for image classi�cation. K. T. Rajakeerthana et al. [50] classi�ed a set of

Mammogram images and obtained 99.20% accuracy. Thermographic images have been

classi�ed by V. Lessa et al. [51] and they utilized NN method along with a few statistical

values such as mean, median, skewness, kurtosis, median as features and obtained 85.00%

accuracy with a speci�city value of 83.00%. Haralick and Tamura features have been

utilized by W. Peng et al. [57] along with an NN network. They used Rough-Set theory for

the feature reduction. S. Silva et al. [63] utilized 22 di�erent morphological features such

as convexity, lobulation index, elliptic normalized skeleton along with NN for ultrasound

image classi�cation and obtained 96.98% accuracy. E. Melendez et al. [65] utilized Area,

Perimeter, Circularity, Solidity etc. along with NN and achieved sensitivity and speci�city

of 96.29% and 99.00%.

As the literature shows, di�erent methods and techniques have been utilized for image
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classi�cation on di�erent breast-image datasets using di�erent image-classi�cation tech-

niques. However the state-of-the-art image classi�cation technique of the Convolutional

Neural Network (CNN) has put its strong footprint in the image-analysis �eld, specially

the image-classi�cation �eld. Though the model "AlexNet" proposed by A. Krizhevsky

has gained a new momentum in the CNN research �eld, a CNN model was �rst utilized

by K. Fukushima et al. [79]. who proposed the "Neocognitron" model which recognises

stimulus patterns. For the mammogram image classi�cation Y. Wu et al. �rst utilized the

CNN model [80]. Though little work on the CNN model had been done to the end of the

20th century, this model has only gained momentum from the AlexNet model. Advanced

engineering techniques have been used by research groups such as the Visual Geometry

Group and Google, which have modeled the VGG-16, VGG-19 and GoogleNet models.

J. Arevalo et al. [93] classi�ed benign and malignant lesions using the CNN model, and

this experiment was performed on 766 mammogram images, where 426 images contain

benign and 310 malignant lesions. Before classifying the data they utilized preprocess-

ing techniques to increase the image enhancement and obtained a 0.82±0.03 ROC value.

GoogleNet and AlexNet methods have been utilized by M. Zejmo et al. [98] for the clas-

si�cation of cytological specimens into benign and malignant classes. The best accuracy

obtained when they utilized the GoogleNet model was 83.00%. Y. Qiu et al. [101] used the

CNN method to extract global features for Mammogram image classi�cation and obtained

an average achieved accuracy of 71.40%. S. Fotin et al. also utilized the CNN method

for tomosynthesis image classi�cation and obtained an AUC curve value of 0.93. Transfer

learning is another important concept of the CNN method which allows the model to not

extract features from scratch, rather applying a weight-sharing concept to train a model.

This method is helpful when the database contains fewer images. F. Jiang et al. [99]

utilized a transfer learning method for Mammogram image classi�cation and obtained an

AUC of 0.88. Before utilizing it in a CNN model they performed a preprocessing opera-
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tion to enhance the images. S. Suzuki et al. [100] also used the bene�t of transfer learning

techniques to train their model to classify mammogram images and obtained sensitivity

89.9%. They performed their experiment with only 198 images.

Most image classi�cation based on the CNN method has been performed based on

global feature-extraction techniques. Recently researchers have also shown an interest in

how local features can be utilized with the CNN model for data classi�cation. Both global

and local features have been utilized by H. Rezaeilouyeh et al. [226] for Histopathological

image classi�cation. For local feature extraction the authors utilized the Shearlet trans-

form and obtained an accuracy of 86±3.00%. For local feature extraction K. Sharma et

al. [95] used the GLCM, GLDM methods and then fed the local features to a CNN model

for the Mammogram image classi�cation, obtaining 75.33% accuracy for the fatty and

dense tissue classi�cation. Both global and local features have been used by Z. Jiao et

al. [97] for mammogram image classi�cation and they obtained 96.70% accuracy. T. Kooi

et al. [103] utilized both global features and hand-crafted features for Mammogram image

classi�cation. In their experiment they also utilized the transfer learning method.

The Contourlet Transform (CT) has been used for image analysis. Using CT, the

distribution of Mammograms (MIAS dataset) has been calculated by S. Anand et al.

[231]. Along with GLCM and morphological features, CT features have been utilized

for the Mammogram image classi�cation with the SVM method, and obtained a mean

Accuracy around 100.00% by F. Moayedi et al. [232]. The non-subsampled CT transform

has been utilized for Breast mass classi�cation by J. S. Leena Jasmine along with the

SVMs techniques [233]. Fatemeh Pak et al. also utilized Non-subsampled CT for breast-

image (MIAS dataset) classi�cation and obtained 91.43% mean Accuracy and 6.42% mean

FPR [234].

Inspired by the usefulness of local-features utilization techniques with the CNN, this

chapter has also classi�ed a set of Histopathological images (BreakHis dataset) using lo-
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cal features along with the CNN model. For the local-feature selection we have utilized

the CT transform, LBP and Histogram information. We have also extracted frequency-

domain information and tried to �nd how the CNN model behaves when we provide

frequency-domain information. To do so we have organized our chapter as follows, Sec-

tion 7.2 describes related research, Section 7.3 describes the overall architecture for the

image classi�cation, Section 7.4 describes the feature-extraction and data-preparation

techniques, Section 7.5 describes the novel Convolutional-Neural-Network (CNN) model,

Section 7.6 describes the performance measuring parameters, Section 7.7 describes the

performance of our model on the BreakHis dataset as well as compare with the present

�ndings, and we conclude our chapter in Section 7.8.

7.3 Overall Architecture

Benign and Malignant image classi�cation has always been a challenging task. The level

of complication of the data classi�cation increases when we consider Histopathological

images, as an example the left side Figure 7.2 represents the Benign and the right side

�gure represent the Malignant images. Every supervised classi�cation technique follows

a prede�ned working mechanism, such as selection of dataset, features and model to

perform the classi�cation, then a set of performance measuring parameters is tested based

on model performance parameters. The selected dataset is normally split into train and

test datasets. A hypothetical model is established based on the training dataset, and later

this hypothetical model's performance is evaluated by the test dataset.

Conventionally, handcrafted features or local features are extracted and utilized for

the input of a classi�er model. However, in most of the work using CNN-based image

classi�cation, raw images are fed directly to the CNN model. From the raw images, the

CNN model tries to extract features globally. In this work we have utilized raw images as
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Figure 7.2: Left side represents Benign and right side Malignant histopathological images

(This data has been collected from the BreakHis dataset)

well as descriptive handcrafted local features and frequency-domain information for the

image classi�cation along with the CNN model. Figure 7.3 shows the overall classi�er

model which has been used for the data classi�cation.

 Image
  Dataset CNN Model

Malignant

Benign Raw-Image

Hand-crafted features 

Frequency-Domain Information 

|| 

|| 

Figure 7.3: Overall image-classi�cation model.

Based on how we prepare the features to feed them in to the CNN model, we have

divided our work into the following three cases:

� Case1: In this case, the image has been directly fed to the CNN model which is

named CNN-I. To reduce the complexity we have reshaped each of the original

images of the dataset to a new image matrix of size HI = h1 × h2 × C, where C

represents the number of channels. As we have utilized RGB images, the value of
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C = 3.

� Case2: Case2 utilizes local descriptive features which have been collected through

the Contourlet Transform (CT), Histogram information and Local Binary Pattern

(LBP). Case2 is further divided into two sub cases:

1. Case2a: Selected statistical information has been collected from the CT coef-

�cient data and this statistical data has been further concatenated with the

Histogram information. This case has been named CNN-CH. The feature ma-

trix for each of the images is represented as HCH = h1 × h2.

2. Case2b: Selected statistical information has been collected from the CT coef-

�cient data and this statistical data has been further concatenated with the

LBP. This case has been named CNN-CL. The feature matrix for each of the

images is represented as HCL = h1 × h2.

� Case3: Case3 utilizes frequency-domain information for the image classi�cation, col-

lected using the Discrete Fourier Transform (DFT) and the Discrete Cosine Trans-

form (DCT). This case has been further subdivided into two sub-cases:

1. Case3a: DFT coe�cients have been utilized as an input for the classi�er model,

named CNN-DF. The feature matrix for each of the images is represented as

HDF = h1 × h2.

2. Case3b: DCT coe�cients have been utilized as an input for the classi�er model,

named CNN-DC. The feature matrix for each of the images is represented as

HDC = h1 × h2.



7.4. Feature Extraction and Data Preparation 181

7.4 Feature Extraction and Data Preparation

We have utilized three cases to analyse our data. Case1 or CNN-I directly feeds the raw

data to the CNN model for further analysis. However Case2 and Case3 utilize handcrafted

features with CT, Histogram, LBP, Discrete Fourier Transform (DFT) and Discrete Cosine

Transform (DCT).

7.4.1 Data Preparation for Case2

For Case2, we have extracted a set of statistical information utilizing the value of CT

coe�cients which has been collected after applying CT to each of the images. A CT is an

extension of the Wavelet Transform (WT). WT ignores the smoothness along the contour

and it provides less directional information about the images, whereas CT overcomes this

problem of WT and gives better information about the contour and direction edges of an

image [235]. CT method utilizes multi-scale Laplacian Pyramid (LP) and a Directional

Filter Bank (DFB).

� Laplacian Pyramid (LP): The image pyramid is an image-representation technique

where the represented image contains only relatively important information. This

technique also produces a series of replications of the original images, but those

replicated images have less resolution. A few pyramid methods are available such as

Gaussian, Laplacian and WT. Burt and Adelson introduced the Laplacian Pyramid

(LP) method. In the case of CT, the LP �lter decomposes the input signal into a

coarse image and a detailed image (bandpass image) [236]. Each bandpass is further

processed and the bandpass directional sub-band signals calculated.

� Directional Filter Bank: A DFB sub-divides the input image into 2n+1 sub-bands.

Each of the sub-bands has a wedge-shaped frequency response. Figure 7.4 a shows

the wedge-shaped frequency response for a 4-band response.
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Let the input image I(x, y) feed to the LP �lter (LPn), where n = 1, 2, ........N, which de-

composes I(x, y) images into the low-pass signal Ln(x, y) and the detailed signal Tn(x, y).

The detailed image Tn(x, y) is passed through a DFB to get the directional images. In

general the detailed image at level j, Tj(x, y) is further decomposed by DFB into 2lj-level

directional images Cj,k(l, j). Figure 7.4 b shows an overall CT procedure.

3
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Input
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Figure 7.4: (a) Wedge-shaped frequency response for 4-band decomposition and (b) Con-

tourlet Transform working mechanism

As CT is an iterative operation, it continuously produces low-pass signals and direc-

tional signals into some prede�ned level. Among the available lowpass signals and the

directional signals we have deliberately selected a set (cardinality of the set is sixteen) of

statistical features:

Maximum Value (MA)• Minimum Value (MI)•

Kurtosis (KU)• Standard Deviation (ST).•

The CT operation has been performed on each of the image channels individually.

For a single channel of each of the input images, we calculated sixteen MA, sixteen MI,

sixteen KU, sixteen ST values which have used as features. Features extracted from

the single channel utilizing the CT and statistical method can be written as FCS =
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{16×MA + 16×MI + 16×KU + 16×ST}, so a single channel image produces sixty-four

feature values using CT and statistical information. As our images are RGB, we have

utilized Red, Green and Blue channels, so the total number of features due to the CT

utilization will be FCT = 3× FCS.

Histogram Information

A graphical display which represents the frequency of each of the particular intensities

in an image is known as a histogram. Let the feature set collected for the histogram

information from a single channel be represented as FHIS. A single RGB image provides

a total FHIT = 3× FHIS features, where the cardinality of FHIT will be 768. As Case2a

that is CNN-CH utilizes statistical information collected from CT as well as histogram

information, the total concatenated features will be FC2a = {FCT ,FHIT}, and cardinality

of FC2a will be 960. We have added zero padding at the end of the feature set FC2a to

reshape the FC2a vector to a 31× 31 matrix, to produce the matrix HCH .

Local Binary Pattern

The Local Binary Pattern (LBP) is proposed by Ojala et al. [25] which represents an

image I(x, y) by a two-dimensional matrix, where each entry of this newly created two-

dimensional matrix is labeled by an integer. Basically this matrix represents a local

pattern and structural distribution of the image information. A single channel provides

256 LBP features. Let the feature set collected for the LBP information from a single

channel be represented as FLBS. A single RGB image provides a total FLBT = 3× FLBS

features, so the cardinality of FLBT will be 768. As Case2b that is CNN-CL utilizes

statistical features from CT and LBP, so the total concatenated features will be FC2b =

{FCT ,FLBT}, with a cardinality of 960. We have added zero padding at the end of the

feature set FC2b to reshape the FC2b vector to a 31 × 31 matrix, to produce the matrix
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HCL.

7.4.2 Data Preparation for Case3

For Case3, we have utilized frequency-domain information as the features. To �nd the

frequency-domain information we have utilized the DFT and DCT transforms.

DFT for feature selection

Frequency-domain information reveals valuable information from the signal which can

be extracted using the Fourier Transform. This frequency-domain information can be

extracted both from the continuous and discrete-time signal. For the discrete time signal,

DFT methods have been utilized for the frequency-domain information extraction.

To avoid the computational complexity and timing issues of the DFT we have utilized

the Fast Fourier Transform (FFT) to extract the frequency-domain information.

As the Histopathological image contains three channels, the FFT coe�cients have

been extracted from each of the three channels:{ hr
f = FFT coefficient from red channel

hg
f = FFT coefficient from green channel

hb
f = FFT coefficient from blue channel.

The �rst top ”t” FFT coe�cients have been selected from each of the channel where

t = h1 × h2:

HDF =

{ hrt
f = Top t FFT coefficient from red channel

hgt
f = Top t FFT coefficient from green channel

hbt
f = Top t FFT coefficient from blue channel.

Here HDF represent the feature matrix for the Case3a that is for CNN-DF.
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Figure 7.5: Feature-Selection Procedure from images when we use DFT DCT

DCT for feature selection

G. Strang �rst introduced the DCT method in 1974 [237]. A few DCT methods are

available, and among them DCT-II methods have been largely utilized for image analysis.

As a Histopathological image contains three channels, the DCT coe�cients have been

extracted from each of the three channels:{ hr
d = DCT coefficient from red channel

hg
d = DCT coefficient from green channel

hb
d = DCT coefficient from blue channel.

The �rst top ”t” FFT coe�cients have been selected from each of the channels where

t = h1 × h2:

HDC =

{ hrt
d = Top t DCT coefficinet from red channel

hgt
d = Top t DCT coefficinet from green channel

hbt
d = Top t DCT coefficinet from blue channel.

Here HDC represents the feature matrix for the Case3b that is CNN-DC.

Table 7.1 summarises extracted local features for di�erent cases:

7.5 Convolutional Neural Network

A CNN model is a state-of-the-art method which has been largely utilized for image

processing. A CNN model has the ability to extract global features in a hierarchical
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Table 7.1: Number of Handcrafted Features

Case Name CNN-CH CNN-CL CNN-DF CNN-DC

Total Number of Features

(Hand Crafted)
962 961 2883 2883

manner which ensures local connectivity as well as the weight-sharing property.

� Convolutional Layer The Convolutional layer is considered as the main working

ingredient in a CNN model and plays a vital determining part of this model. A

kernel (�lter), which is basically a n × n matrix successively goes through all the

pixels and extracts the information from them.

� Stride and Padding

The number of pixels a kernel will move in a step is determined by the stride size;

conventionally the size of the stride keeps to 1. Figure 7.6 a shows an input data

matrix of size 5 × 5, which is scanned with a 3 × 3 kernel. The light-green image

shows the output with stride size 1, and the green image represents the output with

stride size 2. When we use a 3 × 3 kernel, and stride size 1, then the convolved

output is a 3× 3 matrix, however when we use stride size 2 the convolved output is

2× 2. Interestingly, if we use a 5× 5 kernel on the above input matrix with stride

1 the output will be a 1 × 1 matrix. So the size of the output image has changed

with both the size of the stride and the size of the kernel. To overcome this issue

we can utilize extra rows and columns at the end of the matrices which contain 0s.

This adding of rows and columns which contain only zero value is known as zero

padding.

For example Figure 7.6 b shows how two extra rows have been added at the top as
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Figure 7.6: This �gure represents the e�ects of kernel size, the size of stride and zero

padding in a convolutional operation

well as the bottom of the original 5× 5 matrix. Similarly, two extra columns have

been added at the beginning as well as the end of the original 5×5 matrix. Now the

olive-green image of Figure 7.6 b shows a convolved image where we have utilized

a kernel of size 3 × 3, stride size 1 and padding size zero. The convolved image is

also a 5 × 5 matrix, which is the same as the original data size. So by adding the

proper amount of zero padding we can reduce the loss of information which lies at

the border.

� Non-Linear performance

Each layer of the NN produces linear output, and by de�nition adding two linear

functions will also produce another linear output. Due to the linear nature of the

output, adding more NN layers will shows the same behavior as a single NN layer.

To overcome this issue, a recti�er function such as Recti�ed Linear Unit (ReLU),

Leaky ReLU, TanH, Sigmoid etc. has been introduced to make the output nonlinear.

� Pooling Operation

A CNN model produces a large amount of feature information. To reduce the

feature dimensionality a down-sampling method named a pooling operation has

been performed. A few pooling operation methods are well known such as
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Max Pooling• Average Pooling.•

For our analysis, we have utilized the Max Pooling operation which selects the

maximum values within a particular patch.

� Drop-Out

Due to the over training of the model it shows very poor performance on the test

dataset, which is known as over-�tting. This over-�tting issue has been controlled

by removing some of the neurons from the network, which is known as Drop-Out.

� Decision Layer

For the classi�cation decision, at the end of a CNN model a decision layer is intro-

duced. Normally a Softmax layer or a SVM layer is introduced for this purpose. This

layer contains a normalized exponential function and calculates the loss function for

the data classi�cation.

Figure 7.7 shows the work �ow of a generalized CNN model which can be used for image

classi�cation. Before the decision layer, there must be at least one immediate dense layer

available in a CNN model. Utilizing the softmax layer, the output of the last layer can

be represented as

Benign

Malignant

Convolution Convolution

Sub-Sampling

Convolution Convolution

Dense Layer

Softmax Layer

x

Y

ReLU

Figure 7.7: Work�ow of a Convolutional Neural Network
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Ȳd =
exp(H end

d )∑class
d=1 exp(H end

d )
(7.1)

where

Y end
d = σ(W end ∗H end−1

k + Bend) (7.2)

Here H end−1
k represents the kth neuron at the (end− 1)th layer, and σ represents the

nonlinear function. For binary classi�cation the number of class = 2. Let d = 1 represent

the Benign class and else it represents the Malignant class. The cross-entropy loss of Ȳd

can be calculated as

Ld = − ln(Ȳd). (7.3)

As we are working on a two-class classi�cation problem then only the L1 and L2 values

are possible and the output will be be Benign when L1 ≤ L2 else the output will be

Malignant.

7.5.1 CNN Model for Image Classi�cation

For breast-image classi�cation we have utilized the CNN model with the following archi-

tectures:

� Model-1: Model-1 utilizes a residual block, represented as Block-n. Each Block-n

contains two convolutional blocks named C-n and R-n. The C-n layer convolves the

input data with a 5× 5 kernel along with a ReLU recti�er and produces 16 feature

maps. The output X C n of the C-n layer passes through the R-n convolutional

layer, which also utilizes a 5× 5 kernel along with a ReLU recti�er. The R-n layer

also produces 16 feature maps. The output X Rn of the R-n layer is merged with

the output X C n of the layer and produces a residual output. The output X Rn of

Block-n can be represented as

X Re1n = σ[σ(X Rn,Wn + Bn) + X Rn] (7.4)
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where Wn represents the weight matrix and Bn represents the bias vector.

The input matrix passes through Block-1 and Block-2 as shown in Figure 7.8 (left

image). The output of Block-1 is fed to Block-3, the output of Block-3 is fed as an

input to Block-5, the output of Block-5 is fed as an input to Block-7, the output

of Block-7 is fed as an input to Block-9. Similarly the output of Block-2 is fed to

Block-4, the output of Block-4 is fed as an input to Block-6, the output of Block-6

is fed as an input to Block-8, the output of Block-8 is feed as an input of the Block-

10. Now the output of Block-9 and Block-10 are concatenated in the Concat layer.

After the Concat layer a Flat Layer, a Drop-Out Layer and a Softmax layer have

been placed one after another. The output of the Softmax layer has been used to

classify the images into Benign and Malignant classes.

� Model-2: Model-2 utilizes almost the same architecture as Model-1. The only dif-

ference is that in each Block-n the output X C n of layer C-n is multiplied (rather

than added) with the output X Rn of layer R-n. The output of Block-n can be

represented as

X R2
n = σ[σ(X Rn,Wn + Bn)×X Rn] (7.5)
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Figure 7.8: Architecture of Model-1 at the left and architecture of Model-2 at the right

7.6 Performance-Measuring Parameters and utilised Plat-

form

The performance of a classi�er is measured by some base mark criteria, which can be

obtained by a two-dimensional matrix known as the Confusion Matrix [43]. The content

of the matrix position i = j represents how many times the target is correctly classi�ed.
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Table 7.2: A summary of classi�cation-performance measurement parameters

Metric Name Mathematical Expression Highest Value Lowest Value

Recall TP
TP+FN

+1 0

Precision TP
TP+FP

+1 0

Speci�city TN
TN+FP

+1 0

F-measure TP+TN
TP+TN+FP+FN

+1 0

MCC TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FP)

+1 -1

So it is expected that the non-diagonal positions of the Confusion Matrix should be as

small as possible. Figure 7.9 shows a graphical representation of a Confusion Matrix and

Table 7.2 summarizes a few of the well-known classi�cation performance measurement

parameters.
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Figure 7.9: Confusion Matrix
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Platforms Used

Image pre-processing related tasks are performed in MATLAB@16. Out of the available

platforms for CNN model development, we have selected Keras. Lastly, most of the matrix

operations are performed on a GeForce GTX 1080 GPU, as the classi�cation of images

involves billions of matrix operations, which is not possible with a low-grade CPU.

7.7 Results and Discussion

For the classi�cation, we utilized the BreakHis data set [205]. The images of this dataset

are RGB in nature, having 8-bit depth and a PNG extension. The images are 700× 460

pixels in size. All the images are divided into four groups, depending on the visual magni-

�cation factor, namely 40×, 100×, 200× and 400×, where × represents the magni�cation

factor. We performed our experiments on the individual groups of the dataset.

7.7.1 Performance of 40× Dataset

Table 7.3 shows the performance of Model-1 and Model-2 on the 40× data-set. The

overall best performance is achieved when CNN-CH along with Model-1 is utilized. In

this situation the achieved Accuracy is 94.40%, where the Recall and Precision values are

96.00% and 86.00% respectively. For the Model-1, CNN-CL provides a similar perfor-

mance. When we use Model-1 the worst Accuracy of 86.47% is achieved when we utilize

CNN-DC.

For Model-2 the best Accuracy of 88.31% is achieved when we utilize the CNN-I

algorithm. However the achieved Recall value is 96.00% and the Speci�city value is

69.45%, which indicates that almost 31.00% of the Benign images have been mis-classi�ed

as Malignant images. When we utilize the CNN-CH algorithm along with Model-2, the

Recall value is 100.00% and FPR is 100.00%. This indicates that all the data, irrespective
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Table 7.3: Performance of various cases on 40× dataset

Accuracy

%

TNR/

Speci�city %
FPR (%)

FNR

(%)

TPR/

Recall (%)

Precision

(%)

F-Measure

(%)

Model-1

CNN-CH 94.40 86.00 14.00 04.00 96.00 94.00 95.00

CNN-CL 93.32 85.05 15.95 03.20 96.70 94.00 95.00

CNN-I 87.47 79.31 20.68 10.00 91.00 91.00 91.00

CNN-DF 88.31 78.16 21.80 07.52 92.47 91.00 92.00

CNN-DC 86.47 74.37 25.86 08.47 91.52 90.00 91.00

Model-2

CNN-CH 70.00 0.00 100.00 0.00 100.00 66.00 80.00

CNN-CL 80.30 45.77 54.07 5.6 94.35 81.00 79.00

CNN-I 88.31 69.45 30.45 4.00 96.00 88.50 84.78

CNN-DF 85.47 73.56 26.43 9.40 90.35 89.30 83.45

CNN-DC 86.50 52.87 47.12 3.2 96.72 83.00 90.00

of Benign or Malignant, are classi�ed as Malignant. In terms of Accuracy, CNN-DF and

CNN-DC provide a similar performance, however CNN-DF provides better speci�city

performance than CNN-DC. More speci�cally, CNN-DC mis-classi�es almost 50.00% of

the Benign data as Malignant data.

Figure 7.10 a, b and c represents the Train and Test Accuracy, loss, M.C.C. values

when we utilized Model-1 and CNN-CH on the 40× dataset. Up to around epoch 25, the

Train Accuracy and Test Accuracy remained almost the same; after around the 25th, the

Train Accuracy rapidly increased but the Test Accuracy increased very slowly. As the

epoch proceeds the Train Accuracy remains almost constant. For the loss performance,

after around epoch 25, the Train loss continues to decrease, however the Test loss increases.

The loss di�erence between the Train and Test Loss continuously increases as the epoch

proceeds. For this case the M.C.C. value is never negative. Up-to around epoch 25,

Train and Test M.C.C. values remain almost constant. After 25 epoch the train M.C.C.

values continuously improve but the test M.C.C. values remained constant around 00.86.
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(a) (b) (c)

Figure 7.10: (a), (b), and (c) represent the Train and Test Accuracy, Loss and M.C.C.

values when we utilise Model-1, CNN-CH on the 40× dataset.

Figure 7.11 shows the Accuracy, loss and M.C.C values for Model-2 on the 40× dataset.

(a) (b) (c)

Figure 7.11: (a), (b), and (c) represent the Train and Test Accuracy, Loss and M.C.C.

values when we utilise Model-2, CNN-CH on the 40× dataset.

Among all the available Models and Cases CNN-CH provides the worst performance on

the 40× dataset when we utilize Model-2. In this particular situation, the Train Accuracy

(71.00%) and the Test Accuracy (64.00%) are constant throughout the epochs. For the

loss performance the loss values for Train and Test are also constant throughout the

epochs. When we utilised Model-1 and the CNN-CH algorithm on the 40× dataset we
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ran our experiment only until about epoch 90 and got quite constant performance.

7.7.2 Performance of 100× Dataset

For the 100× dataset when we utilized Model-1 and the CNN-CH algorithm it provides

almost 95.93% Accuracy, along with 94.85% Speci�city and 96.36% Recall values. This

indicates that only 5.15% of the Benign data has been mis-classi�ed as Malignant data,

and 3.64% of Malignant images have been mis-classi�ed as Benign images. When we use

CNN-I, that is when we utilized

Table 7.4: Performance of various cases on 100× dataset

Accuracy

%

TNR/

Speci�city %
FPR (%)

FNR

(%)

TPR/

Recall (%)

Precision

(%)

F-Measure

(%)

Model-1

CNN-CH 95.93 94.85 05.15 03.64 96.36 98.00 97.00

CNN-CL 92.00 89.10 10.90 06.70 93.30 96.00 94.00

CNN-I 87.15 67.42 32.50 05.00 95.00 88.00 95.00

CNN-DF 89.26 81.14 18.85 07.50 92.5 93.00 93.00

CNN-DC 87.15 78.28 21.71 09.31 90.68 91.00 91.00

Model-2

CNN-CH 67.96 43.00 57.00 22.00 78.00 78.00 78.00

CNN-CL 78.53 31.42 68.52 2.73 97.27 78.00 75.00

CNN-I 86.12 81.87 18.18 11.26 88.78 93.00 87.00

CNN-DF 85.47 85.71 14.20 17.95 82.05 94.00 87.00

CNN-DC 86.11 65.71 34.28 6.13 93.86 87.00 90.00

raw images as input with Model-1, the Accuracy is 87.15%. In this particular situation,

the Recall value is 93.30% but the Speci�city value is 67.42%, This indicates that almost

one third of the Benign images have been mis-classi�ed as Malignant images, and this low

Speci�city value reduces the overall performance. CNN-DC and CNN-DF show similar

performance when we utilized Model-1 and the 100×. For Model-2, when we utilized

CNN-I, that is when we utilized raw images as input, it produces the best accuracy
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among all the cases. In this particular case the Speci�city value is 81.87% and the Recall

value is 88.78%. CNN-DC also provides similar Accuracy to CNN-I , however it shows

very poor speci�city performance of 65.71% . For Model-2 CNN-CH provides the worst

performance among all the available cases with 67..96% accuracy, 43.00% Speci�city and

78.00% Recall values.

Figure 7.12 shows the Accuracy, Loss and MCC values for the CNN-CH case on the

100× dataset when Model-1 has been utilized. Initially upto around epoch 25, the Test

Accuracy values show better performance than the Train Accuracy. After that Train

Accuracy shows better performance than Test Accuracy. After around epoch 50 Test

Accuracy is about 96.00%, and Test Accuracy is about 95.00%. For the loss performance,

up to around epoch 21, the Test loss shows better values than the Train loss. However

after epoch 21, the Train loss continuously decreases whereas the Test loss shows poor

performance. For the M.C.C values, after around epoch 80 the Train M.C.C value is 0.98

and the Test M.C.C value is around 0.95.

(a) (b) (c)

Figure 7.12: (a), (b), and (c) represent the Train and Test Accuracy, Loss and M.C.C.

values when we utilise Model-1, CNN-CH on the 100× dataset.
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(a) (b) (c)

Figure 7.13: (a), (b), and (c) represent the Train and Test Accuracy, Loss and M.C.C.

values when we utilise Model-2, CNN-CH on the 100× dataset.

7.7.3 Performance of 200× Dataset

For the 200× dataset, when Model-1 and CNN-CH are used together 97.90% Accuracy

is achieved, along with 94.94% Speci�city and 98.20% Recall values. This indicates that

almost all the Malignant data has been classi�ed into Malignant; whereas 5.06% of Benign

data has been mis-classi�ed as Malignant.

When we use Model-2 along with CNN-CH, CNN-CL or CNN-DC, on the 200×

dataset, we get very poor performance. In all these three cases, all the data is classi-

�ed as Malignant data irrespective of reality. In this scenario, the best performance is

achieved when we utilized the raw image as input, that means the CNN-I case. In this

case, we achieved 86.00% Accuracy, along with 81.87% Speci�city and 88.78% Recall

values.

Figure 7.14 shows the Accuracy values for the CNN-CH case on the 200× dataset. Up

to around epoch 15 Train Accuracy show almost the same performance with some excep-

tions. After that Train accuracy shows slightly better performance than Test accuracy.

Train data shows 100% Accuracy around epoch 90, whereas Test Accuracy shows 97.00%.
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Table 7.5: Performance of various cases on 200× dataset

Accuracy

%

TNR/

Speci�city %
FPR (%)

FNR

(%)

TPR/

Recall (%)

Precision

(%)

F-Measure

(%)

Model-1

CNN-CH 97.19 94.94 5.06 1.70 98.20 98.00 98.00

CNN-CL 94.00 92.42 07.57 05.65 09.41 96.00 95.00

CNN-I 86.44 79.31 24.74 08.10 91.89 88.00 86.00

CNN-DF 87.10 88.38 11.60 13.51 86.48 94.00 90.00

CNN-DC 85.61 71.71 28.28 08.00 92.00 87.00 90.00

CNN-CH 67.60 1.00 98.98 0.00 100.00 67.00 81.00

Model-2

CNN-CL 67.27 0.00 100.00 0.00 100.00 67.00 80.00

CNN-I 86.00 81.87 18.18 11.26 88.78 93.00 87.00

CNN-DF 85.28 72.22 27.77 8.30 96.60 87.00 89.00

CNN-DC 67.00 0 100.00 0 100.00 67.00 80.00

(a) (b) (c)

Figure 7.14: (a), (b), and (c) represent the Train and Test Accuracy, Loss and M.C.C.

values when we utilise Model-1, CNN-CH on the 200× dataset.

For the loss performance, as shown in Figure 7.14 (b), the Train loss is almost 0, whereas

Test loss also shows quite small values but not 0. After around epoch 20, the Train and

Test loss values remained constant. After that the di�erence between the Train loss value

and the Test Loss value is constant. As the epoch proceeds the Train and Test M.C.C
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values increased. Around epoch 85 the Train M.C.C value touches the highest M.C.C

value where as the Test M.C.C value is around 0.91.

We saw earlier using CNN-CH, CNN-CL and CNN-DC with Model-2 on the 200×

dataset gave very poor performance. Figure 7.15 shows the Accuracy, Loss and MCC

values when we utilized the CNN-CH algorithm on the 200× dataset. For the Accuracy

case, Train shows around 69.00% accuracy for all epochs up to 450. On the other hand

Test accuracy remains constant at around 67.5% through out the epochs. For the loss

performance the di�erence between the Train and Test losses remains the same throughout

all the epochs.

(a) (b) (c)

Figure 7.15: (a), (b), and (c) represent the Train and Test Accuracy, Loss and M.C.C.

values when we utilise Model-2, CNN-CH on the 200× dataset.

7.7.4 Performance of 400× Dataset

When we use Model-1 and the CNN-CH algorithm on the 400× dataset, the best per-

formance is achieved. In this case the Accuracy is 96.00%, with 90.16% Speci�city and

97.79% Recall values. CNN-DF and CNN-DC provide similar performance. When we uti-

lized raw images as an input, the Accuracy achieved is 84.43%. When we use Model-2 and



7.7. Results and Discussion 201

the CNN-CH algorithm on the 400× dataset, the system gives the worst performance,

of 67.80% Accuracy with 0.005% Speci�city and 100.00% Recall values. Interestingly,

CNN-I, CNN-DF, and CNN-DC provide similar performance.

Table 7.6: Performance of various cases on 400× dataset

Accuracy

%

TNR/

Speci�city %
FPR (%)

FNR

(%)

TPR/

Recall (%)

Precision

(%)

F-Measure

(%)

Model-1

CNN-CH 96.00 90.16 9.84 2.2 97.79 95.00 96.00

CNN-CL 80.00 80.87 19.10 6.60 9.39 91.00 92.00

CNN-I 84.43 70.49 29.50 8.50 91.46 86.00 89.00

CNN-DF 93.00 87.43 12.56 7.70 92.30 94.00 93.00

CNN-DC 92.00 85.70 14.20 7.10 92.20 93.00 93.00

Model-2

CNN-CH 67.80 0.005 99.95 0.00 1.00 0.67 0.80

CNN-CL 66.48 00.00 100.00 0.00 100/00 44.00 53.00

CNN-I 86.34 75.40 24.59 10.46 89.50 88.00 89.00

CNN-DF 87.17 74.86 25.13 6.61 93.30 88.00 91.00

CNN-DC 86.26 73.22 26.77 7.11 92.83 87.00 90.00

Figure 7.16 shows the Accuracy, Loss and M.C.C values for di�erent epochs when

we utilized Model-1, CNN-CH and 400× dataset. Figure 7.16 shows that, up to around

epoch 15, the Trian and Test Accuracy, Loss and MCC values remain almost the same with

some exceptions. After around epoch 15, Train accuracy shows better performance than

Test accuracy. After epoch 50 the Train accuracy become constant at around 96.00%

whereas the Test accuracy shows continually better performance. For the loss, as the

epoch proceeds the di�erence between the Train loss and the Test loss increased. For

M.C.C, the Train M.C.C value touches around 0.92.

Figure 7.17 shows Accuracy, Loss and M.C.C values for di�erent epochs when we

utilized Model-2, CNN-CH and the 400× dataset. In this particular scenario, the Train

Accuracy keeps around 68.25% whereas the Test Accuracy is around 66.50%. For the loss
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(a) (b) (c)

Figure 7.16: (a), (b), and (c) represent the Train and Test Accuracy, Loss and M.C.C.

values when we utilise Model-1, CNN-CH on the 400× dataset.

case, the Train loss remained around 0.625 and the Test loss remained around 0.63; with

some exceptions those values remain constant for all epochs.

(a) (b) (c)

Figure 7.17: (a), (b), and (c) represent the Train and Test Accuracy, Loss and M.C.C.

values when we utilise Model-2, CNN-CH case on the 400× dataset.
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7.7.5 Required Time and Parameters

Table 7.7 shows the number of parameters required and the time required to run per epoch

for Model-1 and Model-2. Model-1 requires 119666 parameters for the total operation

whereas Model-2 requires 120466 parameters.

Table 7.7: Required Time and Number of Parameters

Model Case Parameters Time (s) Model Case Parameters Time (s)

Model-1

CNN-CH 120466 45

Model-2

CNN-CH 119666 45

CNN-CL 119666 45 CNN-CL 120466 45

CNN-I 119666 38 CNN-I 120466 38

CNN-DF 119666 40 CNN-DF 120466 40

CNN-DC 119666 40 CNN-DC 120466 40

7.7.6 Comparison with Findings

Table 7.8 summarizes a few recent �ndings of Histopathological breast-image classi�cation.

Brook et al. [238] utilize a total of 361 images for their experiment. From each of the

images they have collected 1060 features and as a classi�er tool they have utilized the SVM

method and obtained 96.40% accuracy. Zhang et al. [239] also perform the classi�cation

operation on the same dataset utilizing ensemble methods and have obtained 97.00%

Accuracy. Ciresan et al. [240] and Wang et al. [241] both perform their experiments

on the ICPR12 dataset where they have utilized global features. The �nding of our

chapter cannot be compared directly with the above-mentioned �ndings because they have

performed their experiment on a di�erent dataset as well as using di�erent classi�cation

techniques.

Spanhol et al. [7], Han et al. [242] and Dimitropoulos et al. [216] perform their experi-

ment on the BreakHis dataset. Spanhol et al. [7] obtained best performance when they uti-
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lized the 40× datset and obtained 90.40% accuracy. Han et al. [242] achieve 95.80±3.10%

Accuracy on the 40× dataset. Dimitropoulos et al. [216] obtained best Accuracy perfor-

mance when they utilized the 100× dataset and the VLAD method. Our experiment has

been performed on the BreakkHis dataset, and obtained best Accuracy 97.19%, which is

almost comparable with the the state-of-the-art �ndings of Han et al. [242]. Both the work

by Spanhol et al. [7], Han et al. [242] and Dimitropoulos et al. [216] �nds the Accuracy

values only, however in this chapter we have also �ndings for the Speci�city, Precision,

Recall values along with �nding the required number of parameters and the time required

to perform the experiment. Beside this we have also compared our result with Linear

Discriminant Analysis (LDA) and Support Vector Machine (SVM) methods and found

that our algorithms provide better performance than those two methods
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7.8 Conclusion

This chapter has classi�ed a set of Histopathological breast-images into Benign and Ma-

lignant classes. For the classi�cation, the state-of-the-art CNN model has been utilized

along with residual blocks. The CNN method generally extracts global features while

maintaining the hierarchical structure. However local features and frequency domain in-

formation also carry signi�cant information from images which help signi�cantly for the

image classi�cation. Utilizing the bene�t of local and frequency domain information as

well as hierarchical property of the CNN model this chapter has proposed two di�erent sets

of algorithms. The �rst set of algorithms extracts local feature information whereas the

second set of algorithms extracts frequency-domain information. Feature-extraction based

cases suggested two distinct algorithms, where the �rst algorithm utilized the Contourlet

Transform as well as Histogram-based information, whereas the second algorithm is based

on the Contourlet Transform and Local Binary Pattern information. Frequency-feature

based cases also provide two algorithms, one of the algorithms based on DFT-based in-

formation whereas the second is based on the DCT algorithm. This chapter has utilized

the BreakHis dataset for the experiment, which contains four datasets. Most of the recent

�ndings on this dataset analyze the Accuracy information. In this chapter, along with

�nding the Accuracy information, we have also found the Precision, Recall, Speci�city,

MCC and F-1 Score values. Experiment shows that, the CNN-CH case provides the best

performance on all the available datasets. Speci�cally, the 200× dataset provides the

best performance of the available datasets with 97.19% Accuracy, 94.94% Speci�city and

98.20% Recall value. The computational complexity and required time for the classi�ca-

tion are two important parameters for the CNN-based image-classi�cation task. In this

chapter we have investigated how many parameters are required and the time required

for the experiment, which provides information about the complexity of this technique.
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Histopathological Breast-Image

Classi�cation with Restricted

Boltzmann Machine along with Back

Propagation

8.1 Abstract

Deaths due to cancer have increased rapidly in recent years. Among all the cancer diseases,

breast cancer causes many deaths in women. A digital medical photography technique

has been used for the detection of breast cancer by physicians and doctors, however, they

need to give more attention and spend more time to reliably detect the cancer infor-

mation from the images. Doctors are heavily reliant upon Computer Aided Diagnosis

Accepted as: A. A. Nahid, A. Mikaelian and Y. Kong, �Histopathological Breast Image Classi�cation

with Restricted Boltzmann Machine along with Back Propagation�,BioMed Research, Allied Academics.
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(CAD) for cancer detection and monitoring of cancer. Because of the dependence on

CAD for cancer diagnosis, researchers always pay extra attention to designing an auto-

matic CAD system for the identi�cation and monitoring of cancer. Various methods have

been used for the Breast-Cancer image-classi�cation task, however, state-of-the-art Deep

Learning techniques have been utilised for cancer image classi�cation with success due to

its self-learning and hierarchical Feature-Extraction ability. In this chapter we have de-

veloped a Deep Neural Network (DNN) model utilising a Restricted Boltzmann Machine

with "Scaled Conjugate Gradient" back propagation to classify a set of Histopathological

Breast-Cancer images. Our experiments have been conducted on the Histopathological

images collected from the BreakHis dataset.

8.2 Introduction

Many patients in the world su�er from cancer. There are di�erent kinds of cancer, among

them Breast Cancer (BC) is a prominent one, and is speci�cally a serious health threat

to women. As a case study, Figure 8.1 shows the death statistics due to BC in Australia

for the last 5 years. This �gure shows that the death trend due to BC increased every

year at an alarming rate in Australia. This might be considered as an example of the

BC situation throughout the world. Obviously this causes a serious human and social

impact. Proper and timely detection of BC can save or at least improve the condition

of susceptible people. Along with other conditions, the detection of BC largely depends

on investigation of biomedical images captured by di�erent imaging techniques such as

X-Rays, Mammogram, Magnetic Resonance, histopathological images, etc. For perfect

diagnosis of BC, a biopsy can produce reliable results with con�dence. Histopathological

images are used as a standard image for cancer diagnosis. However, their analysis is

very time-consuming and needs extra attention for the perfect diagnosis along with the
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expertise of the physicians and doctors.
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Figure 8.1: Death statistics due to BC for the last 5 years in Australia

The history of using Machine-Learning techniques for general image classi�cation is a

long one. Using the advancement and the deliverable engineering of image classi�cation,

scientists have used such techniques for medical image classi�cation. An important part

of the image classi�cation is appropriate selection of features such as the Gray-Level Co-

occurrence Matrix (GLCM), Tamura, etc. as well as classi�er models such as Support

Vector Machine (SVM), Random Tree (RT), Random Forest (RF), etc [244]. In a few

cancer image-classi�cation cases, scientists also extract information on nuclei. J. Diz et

al. utilised both GLCM and Gray-Level Run Length Matrix (GLRLM) for mammogram

image (400 images) classi�cation and achieved 76.00% accuracy [113] where they employed

the RF algorithm. The RF algorithm has also been used for histopathological image

classi�cation. Y. Zhang et al. [117], D. Bruno et al. [120], and A. Paul et al. [115] utilised

histopathological images with di�erent features. A. Paul et al. [115] utilised the Haralick

features, D. Bruno et al. [120] used the Curvelet transform and Local Binary Pattern

(LBP), Y. Zhang et al. [117] implemented the Curvelet transform, GLCM and CLBP

together for classi�cation.

The SVM is another popular and useful classi�er for image classi�cation. For the very

�rst time A. Bazzani et al. utilised SVM techniques for breast image classi�cation. L.O.
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Martins et al. [136] utilised Ripley's K Function along with an SVM for Mammogram

image classi�cation and obtained accuracy, sensitivity and speci�city of 94.94%, 92.86%

and 93.33%, respectively. R.F. Chang et al. [133] utilised an auto-correlation coe�cient for

ultrasound breast-image classi�cation and obtained 85.6% accuracy. S. Kavitha et al. [143]

implemented histogram, textural (using the Gabor Filter) features and a few clinical

features which were extracted from the images. They also resorted to SVM techniques for

the image classi�cation and obtained 90% Accuracy. R. Chang et al. classi�ed a set of

tomography images (250 images) using SVM techniques where the images are surrounded

by speckle noise [125]. Fractional Fourier Transform (FFT) information has been used

as features by Y.D. Zhang et al. [137] for Mammogram image classi�cation using SVM

along with Principal Component Analysis (PCA) techniques. J. Dheba et al. [140] utilised

Laws texture features to classify images into Benign and Malignant (MIAS database) and

achieved 86.10% accuracy. They performed their experiment on 200 images and obtained

92.16 ± 3.60% accuracy. It is found that the kernel method along with the SVM technique

can improve the classi�er performance. I Naga et al. [124] classi�ed the Micro-calci�cation

clusters in Mammogram images using Gaussian and polynomial kernels.

Along with other classi�er techniques NN techniques have always been a strong tool

for image classi�cation. In 1991 A. Dawson et al. utilised an NN for a BC image classi�er

[49].Literature shows that, the Neural Network technique has been very successful for

the analysis and classi�cation of images. Recently, the Deep Neural Network (DNN)

technique has emerged as a popular method for the analysis of images for the classi�cation

task, following the famous model AlexNet proposed by Alex Krizhevsky et al. [219]. They

proposed their techniques for the image-classi�cation issues [219] based on a Convolutional

Neural Network (CNN), a branch of DNN. After the work of Alex Krizhevsky, advanced

engineering of this technique has been used for various image-classi�cation tasks. Hai

Su et al. proposed a fast-scanning Deep Neural Network (fCNN) method for the image-
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classi�cation task [245], where they utilised seven convolutional layers for analysis of the

images. Y. Wu et al. [80] used CNN for Global Feature-Extraction for Mammogram (40

images) image classi�cation and achieved a Sensitivity of 75.00% and Speci�city 75.00%.

Mammographic breast-density classi�cation was done using HT-L3 convolution by P.

Fonseca et al. [87]. H. Rezaeilouyeh et al. [7] implemented both local and global features

and utilised CNN for histopathological image classi�cation. They utilised the Shearlet

Transform for extracting local features and achieved a best Accuracy of 86±3.00%. J.

Xu et al. [225] utilised the DCNN-Ncut-SVM methods together for Histopathological

breast-image classi�cation and obtained an ROC of 93.16%. For Nuclease detection,

the Spatially Constrained CNN was employed by K. Sirinkunwattana et al. [246]. B.

Huynh et al. combined transfer learning and ensemble techniques for Mammographic

image classi�cation. T. Kooi et al. [103] resorted to global crafted features along with the

Transfer learning method (VGG model) for Mammographic image classi�cation.

The Deep Belief Network (DBN) is another branch of DNN which is a recent concept,

proposed by Hinton et al. in 2006 [247]. For the �rst time they used Restricted Boltzmann

Machine (RBM) techniques for Modi�ed National Institute of Standards and Technology

(MNIST) character recognition. Discriminative Deep Belief Networks (DDBN) were pro-

posed by Yan Liu et al. for visual data classi�cation and they utilised backpropagation

techniques [89]. Ahmed et al. preferred the DBN method for the breast-cancer classi�-

cation task [248]. For their analysis, they used the Wisconsin Breast Cancer Data set,

which gives nine features for each image. So, instead of directly working on the images,

the authors used the available features and DBN techniques with backpropagation.

The literature shows that a few studies have been performed on Histopathological

breast-image classi�cation using Tamura features. Most of the work has been conducted

on well-known datasets like MIAS and DDSM along with some Histopathological images.

Fabio A. Shanol et al. provide a new set of Histopathological breast images in the BreakHis
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dataset and they did BC image classi�cation using a few di�erent classi�ers

Doing image classi�cation largely relies on how we select the features for the clas-

si�cation task. In this chapter we have classi�ed Histopathological (BreakHis) breast

images using Tamura features and RBM along with contrast corrections. The overall

architecture of this chapter is organised as follows: Section 8.2 gives a brief description

concerning the Breast-Image classi�cation issues; Section 8.3 image-classi�cation model;

Section 8.4 describes the proposed RBM model for the classi�cation; Section 8.5 describes

the contrast correction algorithms in a brief; Section 8.6 describes the Feature-Extraction

methodology; Section 8.7 describes and analyses the results; and Section 8.8 concludes

the chapter.

8.3 Image-Classi�cation Model

Successful image classi�cation depends on a number of steps such as image pre-processing,

Feature-Extraction and using image-classi�er tools. Depending on the image pre-processing

steps we have proposed two algorithms:

� Algorithm-1: This algorithm does not apply any pre-processing steps before Feature-

Extraction. Algorithm-1 directly extracts Tamura features from each image, and the

features are fed to the proposed model of the Restricted Boltzmann Machine (RBM)

for image classi�cation. Figure 8.2 shows the overall work�ow of Algorithm-1.
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Extraction
RBM
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Contrast
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Figure 8.2: Work�ow of Algorithm-1
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� Algorithm-2: In the pre-processing steps, this algorithm enhances the contrast of

each image in the dataset using the proposed contrast-enhancement algorithm, and

then extracts the features. After that all the features are fed to the proposed model

of the Restricted Boltzmann Machine (RBM) for image classi�cation. Figure 8.3

shows the overall work�ow of Algorithm-2.
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Figure 8.3: Work�ow of Algorithm-2

8.4 Proposed RBM Model for Image Classi�cation

In 1985, G. Hinton et al. proposed a Boltzmann machine (BM), which contains two layers

named visible and hidden. The Restricted Boltzmann Machine (RBM) uses the concept

of the BM. The di�erence between the RBM and the BM is that the connections of the

hidden and visible layers are disjointed in an RBM. That is, in an RBM there are no

intra-connections between the hidden layers and the visible layers. Figure 8.4 illustrates

the BM and RBM machines. Let v and h represent the set of visible and hidden units.

The energy of the joint con�guration {v, h} for BM can be de�ned as [249], [247]

E(v, h) = −1

2
vTLv − 1

2
hTJh− vTWh + Bias (8.1)

where

� W is the weight between the visible and the hidden layers.

� L is the weight from visible to visible layer.
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Figure 8.4: Graphical representation of BM and RBM models

� J is the weight from hidden layer to hidden layer.

Since we are working on an RBM, therefore L = J = 0. So we have

E(v, h) = −vTWh + Bias (8.2)

E(v, h) = −vTWh− aTv − bTh (8.3)

E(v, h) = −
i∗∑
i=1

j∗∑
j=1

Wi,jvh−
i∗∑
i=1

av −
i∗∑
i=1

hb (8.4)

where

� Bias = −(aTv + bTh)

� a is the bias for the visible units

� b is the bias for the hidden units

� i∗ is the number of visible units

� j∗ is the number of hidden units.

The joint probability for visible and hidden units can be de�ned as

P(v, h) =
1

Z
e−E(v,h) (8.5)
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where Z is the partition function de�ned as

Z =
∑
v,h

e−E(v,h) (8.6)

Through marginalising the hidden vector h we can �nd the probability of the vector

v as

P(v) =
∑
h

P(v, h) =
1

Z

∑
n

exp[−(E(v, h))] (8.7)

As there is no connection in the hidden unit, the binary state hj of hidden unit j is set to

1 with the probability

p(hj = 1|v) = σ(bj +
∑
i

viwi,j) (8.8)

Given a hidden vector v, we can easily calculate the step of visible units:

p(vj = 1|h) = σ(bj +
∑
i

hiwi,j) (8.9)

where σ(x) is the sigmoid function. Using equations (8.8), (8.9) and Gibbs sampling

techniques, we can easily update the visible unit vectors and hidden unit vectors. The

weight function can also be improved by using the following equation:

δwi,j = ε(< vi, hj >data − < vi, hj >model) (8.10)

Computing < vi, hj >data is comparatively easy, whereas the computation of the value

< vi, hj >model is very di�cult. The value of < vi, hj >model can be calculated by sam-

pling methods like Gibbs, Contrastive Divergence (CD), Persistent Contrastive Divergence

(PCD) and Free Energy in Persistent Contrastive Divergence (FEPCD).

We know that a Deep Belief Network (DBN) is constructed by stacking RBM models,

acting as a skeleton for the construction of the DBN. In our model, we use 4 RBM layers,

RBM-1, RBM-2, RBM-3 and RBM-4. RBM-1 has 18 inputs, because we have selected 18

features. Furthermore this RBM has 50 output units. Both RBM-2 and RBM-3 have 50

input units and 50 output units. Lastly RBM-4 has 50 input units and 2 output units, as

we classify our data into two classes. The whole procedure is presented in Figure 8.5.
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Figure 8.5: DBN model for analysis of the data

The input is �rst fed to the visible layer, which passes its input to the �rst RBM

named RBM-1. The data moves back and forth between the RBM-1 layer and the visible

layer until RBM-1 reaches some �nal decision. For updating the weight values and the

neuron values, the network utilises equations (8.8), (8.9) and (8.10) for calculating the

�nal values. As RBM-1 �nally calculates its values, it passes these to the next hidden

layer known as RBM-2. In this case, RBM-1 works as a visible layer for RBM-2.

Table 8.1: Detailed description of each block of the machine

Parameters RBM-1 RBM-2 RBM-3 RBM-4 Output Layer

Input by Output 18 by 50 50 by 50 50 by 50 50 by 50

50 by 2No. of epochs 50 50 50 30

Sampling Method CD CD CD CD

This same procedure is carried on throughout the network. As the network analysis

proceeds, the weight value W1 is developed between the visible layer and layer RBM-1.

The weight value W2 is developed between the RBM-1 layer and layer RBM-2. The weight
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value W3 is developed between the RBM-2 layer and RBM-3 layer, and the weight value

W4 is developed between the RBM-3 layer and the DBN layer. In our model we have

used back propagation for �ne tuning all the parameters along with the weight values,

these being W1 + ε1, W2 + ε2, W3 + ε3 and W4 + ε4. All the particulars of our model and

its sampling method are summarised in Table 8.1.

8.5 Contrast-Enhancement

The background image information of the histopathological images coexists with the fore-

ground image information, and also the images su�er from poor contrast. To overcome

these issues we have implemented the contrast-enhancement technique of [250] with mod-

i�cations such as:

� Step-1: Background Subtraction

At �rst the original image information is subtracted from the non-uniform back-

ground information, separated using a low-pass Gaussian �lter with standard devi-

ation σ1. Depending on the value of σ1, Step-1 (shown in Figure 8.6) successfully

removes the background variations globally.
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Figure 8.6: Block Diagram of Step-1.

� Step-2: Local adjustment

To improve the contrast information locally, the output image from Step-1 is divided

pixel-wise by the variance of its spatial neighbour to minimise the contrast. Dividing
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the whole image by the standard deviation σ2 may amplify the noise inside the

images, which degrades valuable image information. Step-2 shown in Figure 8.7.
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Figure 8.7: Block Diagram of Step-2.

� Step-3: Noise Control

To reduce the noise ampli�cation Khan et al. [251] proposed a correction factor M:

M = 1− exp(− σf
p

pCp
) (8.11)

where p = 2. Factor M multiplies the output of Phase-2. Here, σf is the local

standard deviation and C is a user-de�ned parameter which controls the background

noise. Step-3 has illustrated in Figure 8.8.
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Figure 8.8: Block Diagram of Step-3.

The overall algorithm for the normalisation task (Algorithm-1) is shown below.
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Algorithm 3 Proposed Contrast Enhancement Method
1. Input the image I.

2. Step-1:

� Calculate Iσ1 using Gaussian �lter Iσ1(.): Iσ1 ←Iσ1(I).

� Calculate I1 where I1 = I− Iσ1.

3. Step-2:

� First �nd Iroot1 from Iroot1 ← I
1
2
1 .

� Filter the image Iroot1 n times with n di�erent values of σ2 with the Gaussian �lter

I (n)
σ2 (). The values of all the available �ltered images can be represented by the

set I
σ2(all)
1 ={ I

σ2(1)
1 ,Iσ2(2)1 ,Iσ2(3)1 ............Iσ2(n)1 }. Here I

σ2(n)
1 represents the �ltered image

Iroot1 with the Gaussian �lter I (n)
σ2 ().

� σ2(all) = {(σ1
k

) to (σ1
l

) with increment ∆}; Here ∆ ∈ R+ and k > l and n = |σall
2 |.

� Select {Iσ2(max)
1 } : {Iσ2(max)

1 } = max{Iσ2(all)1 }

� Select Rmax : Rmax ← maxpixel strength{Iσ2(max)
1 }

� Divide the image pixel-wise : I2 = I1

{Iσ2(max)
1 }

4. Step-3:

� Calculate C : C=Rmax × t, where t is a user-de�ned value.

� Calculate value of M : M = 1− exp(−{I
σ2(max)p
1 }
p×Cp ).

5. Calculate Inorm Image as: Inorm = I2 ×M.

6. Perform histogram equalisation on the image Inorm and �nd out the Iout.
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8.6 Feature-Extraction

One of the important steps of image classi�cation is extracting the features from the

images. Consider fRGB(u, v) = {fR(u, v), fG(u, v), fB(u, v)} be an RGB image, here R, G,

B represents the Red, Green, and Blue channel information. From the image fRGB(u, v),

Tamura features vector TR, TG and TB has been extracted from each of the respective

channels shown as Figure 8.9.
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G[            ]RGB
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Figure 8.9: Tamura features extraction from the three di�erent channels

1. Coarseness

Fineness of texture is measured by Coarseness. The measure of Coarseness is in�u-

enced by the scale as well as the duplication percentage of the components within

that area. The largest size of the texture is also identi�ed by Coarseness [252]. To

calculate the coarseness within the image, average values are calculated at all the

available points by varying the window size. Centred at the point (u, v) and for a

window of size 2k × 2k, the average value can be formulated as

Ak(u, v) =
u+2k−1−1∑
i=u−2k−1

v+2k−1−1∑
j=v−2k−1

f(i, j)

22k
. (8.12)

2k × 2k non-overlapping neighbouring-window average variations have been calcu-

lated in both the horizontal and vertical directions:

Ek,h(u, v) = |Ak(u + 2k−1, v)−Ak(u− 2k−1, v)| (8.13)
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Ek,t(u, v) = |Ak(u, v + 2k−1)−Ak(u, v − 2k−1)| (8.14)

Irrespective of the direction, the value of k which maximises the output values is

considered an optimal value. Sbest is then calculated as

Sbest = 2k (8.15)

Finally the Coarseness C1 is calculated using

C1 =
1

m× n

m∑
u

n∑
v

Sbest(u, v) (8.16)

2. Contrast

The intensity within a texture contains a signi�cant amount of information. Con-

trast represents the di�erence of the level of intensity within a texture. The following

four factors are considered when Contrast is measured [9]:

(a) The range of Gray level within an image

(b) The Polarisation of the Gray-level distribution

(c) Sharpness of edges

(d) Period of repeating patterns.

Considering the above four factors Contrast can be de�ned as

C2 =
σ

(α4)n
(8.17)

where

α4 =
µ4

σ4
: is known as kurtosis

µ4 : Fourth moment about the mean

σ4 : Variance2
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3. Directionality

Directionality is a global property that refers to the shape of texture primitives and

where they are placed within a speci�c region [9], [253], [254].

D1 = 1− r.no.

no∑
o

m∑
φ∈wo

(φ− φo)
2.Hd(φ) (8.18)

Hd : is the local direction histogram

no : is the number of peaks of Hd

wo : o is the range of the oth peak between valleys

φo : o is the oth peak position of Hd

4. Line-likeness

Let PDd (i,j) represent a directional co-occurrence matrix, where each element

of this matrix is de�ned as �the relative frequency with which two neighbouring

cells separated by a distance d along the edge direction occurs� [9], [253]. Co-

occurrences in the same direction are weighted by +1, and co-occurrences with

directions perpendicular to each other are weighted -1. Using PDd (i,j) the Line-

likeness can be measured as [253]:

L =

∑n
i

∑n
j PDd(i, j) cos(i− j)(2×π

n
)∑n

i

∑n
j PDd(i, j)

(8.19)

5. Regularity

Regularity can be de�ned as

R1 = 1− r(σcrs + σcon + σdir + σlin) (8.20)

where r is the normalising parameter [9].

6. Roughness

According to the results of Tamura et al.'s experiments, a combination of coarseness
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and contrast best aligns with the psychological results [9]:

R2 = C1 + C2 (8.21)

8.7 Results and Discussion

We have utilised the BreakHis dataset for our experiments, where the dataset is grouped

into m={ 40×, 100×, 200×, 400×} groups where × represents the magni�cation factor.

Each of the images in this dataset is RGB in nature and 700 × 460 pixels in size. We

have used Tamura features as attributes and extracted the features from all the channels,

which produces a total of 18 features.

The experiments have been performed on each of the individual groups of the dataset

separately; 70 percent, 15 percent, and 15 percent of the data have been used for the

training, validation and testing purposes, respectively. Let each group in the dataset be

represented by the set Xm.

Xm =



x1

x2

x3

...

xTm





y1

y2

y3

...

yTm


=



x1
1 x2

1 x3
1 ..... ..... xS

1

x1
2 x2

2 x3
2 ..... ..... xS

2

x1
3 x2

3 x3
3 ..... ..... xS

3

... ... ... ..... ..... ...

x1
Tm

x2
Tm

x3
Tm

..... ..... xS
Tm





y1

y2

y3

...

yTm


Here the value of S is equal to 18. Tm represents the total data of the group

Tm = trm + tsm + tvm (8.22)

trm = training data of group m;

tsm = test data of group m;
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tvm = validation data of group m.

yi ∈ {Benign,Malignant}.

The results of all the experiments of this chapter have been evaluated through the

Confusion Matrix (CM) and a few other performance-measuring parameters. A two-

dimensional table which illustrates the performance of a classi�er is known as a CM [43].

If a classi�er provides 100% accuracy performance then all the non-diagonal elements of

the CM will be zero [255]. Table 8.2 shows a graphical representation of a CM for a binary

classi�er along with a few performance-measuring parameters.

� TPR = TP/(TP+FN)

� TNR = TN/(TN+FP)

� Accuracy = TP+TN/(TP+FN+TN+FP)

Hypothesized Class

T
ru

e
 C

lass

True Negative
 (TN)

False Positive
 (FP)

True Positive
 (TP)

False Negative 
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Benign

B
e

n
ig

n
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M
al

ig
n

an
t

Table 8.2: Few Performance measuring parameters along with CM

8.7.1 Results and Comparison

In Figures 8.10 and 8.11, the a, b, c and d images show the Train, Validation, Test and

Overall performance when we use the 40×, 100×, 200× and 400× datasets for Algorithm-

1 and Algorithm-2, respectively. When we use the 40× database and Algorithm-2, the

Train, Test, Validation and overall accuracies remain almost the same, at around 88.7%.

When we use the 100× dataset, the Test shows less accuracy than the Train and Validation

performance. When we use the 200× dataset, the Train, Validation, Test and Overall

accuracies are 89.4%, 86.3%, 87.7% and 86.8%, respectively. When we use the 400×

database, the overall accuracy achieved is around 88.4%.

These Confusion Matrices also show that, when we utilised Algorithm-1 for the 40×,
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Figure 8.10: (a), (b), (c) and (d) represent the Confusion Matrices for Algorithm-1 when

we utilise the 40×, 100×, 200× and 400× datasets, respectively.
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Figure 8.11: (a), (b), (c) and (d) represent the Confusion Matrices for Algorithm-2 when

we utilise the 40×, 100×, 200× and 400× datasets, respectively.
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100×, 200× and 400× magni�cation-factor database, 15.5%, 22.60%, 29.90% and 14.6%

of the Malignant images have been misclassi�ed as Benign images. However, 24.30%,

36.10%, 50.50% and 26.9% of the Benign images have been wrongly classi�ed as Malignant

images. The overall accuracy achieved for the 40×, 100×, 200× and 400× cases was

82.20%, 74.70%, 69.00% and 81.70%, respectively; for all magni�cation factors a greater

percentage of the database has been misclassi�ed as Benign. When we utilised Algorithm-

2, 10.60%, 13.10%, 10.02% and 11.20% of the Malignant data were misclassi�ed as Benign

images for the 40×, 100×, 200× and 400× cases, respectively. On the other hand, 13.40%,

19.40%, 14.50% and 12.40% of the data has been classi�ed as Malignant though they are

originally Benign images for the 40×, 100×, 200× and 400× cases, respectively.

Performance

The Mean-Square Error (MSE) assesses the quality of a model and a good classi�er is

expected to have a small MSE. Let θ be the predicted value, θ′ be the observed value for

n observations, then the MSE error can be de�ned as

MSE =
1

n

[ n∑
i=1

(θi − θ′i)
]
. (8.23)

Figure 8.12, a, b, c, and d illustrate the performance of the 40×, 100×, 200× and 400×

datasets when we use Algorithm-1. Figure 8.13, a, b, c, and d depict the performance of

the 40×, 100×, 200× and 400× datasets when we use Algorithm-2. Table 8.3 summarises

the MSE values and the required number of epochs to achieve that value.

Table 8.3 and Figures 8.12 and 8.13 show that, for Algorithm-1, the best MSE values

are achieved when we use the 400×magni�cation factor, and it takes 209 epochs. However,

when we have recourse to Algorithm-1 and the 200× magni�cation factor dataset the

model requires 26 epochs to achieve an MSE of 0.18074. Though it requires fewer epochs,

it performs worse than all the other datasets when we exploit Algorithm-1. When we
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Table 8.3: MSE values and the corresponding epoch values

Algorithm Magni�cation Factor MSE Epoch

Algorithm-1

40× 0.14481 209

100× 0.16528 134

200× 0.18074 26

400× 0.13813 238

Algorithm-2

40× 0.09941 373

100× 0.09384 236

200× 0.09384 254

400× 0.09948 483

utilise Algorithm-2 almost all the datasets show the same kind of MSE, which lies in

between 0.09384 and 0.09948. However, when we implement the 400× database it requires

483 epochs, which is larger than for the other three datasets.
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Figure 8.12: (a), (b), (c) and (d) represent the performance analysis for Algorithm-1 when

we utilise the 40×, 100×, 200× and 400× datasets, respectively.
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Figure 8.13: (a), (b), (c) and (d) represent the performance analysis for Algorithm-2 when

we utilise the 40×, 100×, 200× and 400× datasets, respectively.
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ROC curves

ROC curves show the False Positive Rate and True Positive Rate performance. The best

performance is achieved at the top-most left position. That position indicates that the

False Positive Rate is 0 and the True Positive Rate is 1, which also indicates that the True

Negative rate is 100.00%. Figures 8.14 and 8.15 show ROC curves for the Algorithm-1

and the Algorithm-2, respectively.

So far, very little work has been done on classifying the BreakHis dataset. Fabio A.

Shanol et al. used the Local Binary Pattern (LBP), Local Plane Quantization (LPQ),

Gray-Level-Co-occurrence Matrix (GLCM), Parameter Free Threshold Adjacency Statis-

tics (PFTAS) methods for Feature-Extraction. These authors applied four di�erent clas-

si�ers: 1-Nearest Neighbor (1-NN), Quadratic Linear Analysis (QDA), Support Vector

Machine (SVM) and Random Forest (RF). Overall they achieved the best performance

when they used the PFTAS descriptor and SVM classi�er, and their achieved perfor-

mance Accuracy was 85.1±3.1%. As a descriptor, we use Tamura features. Our proposed

Algorithm-1 and Algorithm-2 both use the RBM method for image classi�cation. When

we use Algorithm-1, the overall accuracy achieved is 82.20%, 74.70%, 69.00% and 81.70%

for the 40×, 100×, 200× and 400× datasets, respectively, while Algorithm-2 gave 88.70%,

85.30%, 88.60% and 88.40% accuracy for the 40×, 100×, 200× and 400× databases, re-

spectively.

In [205] the performance has been evaluated through the accuracy measure. However,

in this chapter we have found the ROC information and the error performances with the

epoch.
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Figure 8.14: (a), (b), (c) and (d) represent the ROC curves for Algorithm-1 when we

utilise the 40×, 100×, 200× and 400× datasets, respectively.
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Figure 8.15: (a), (b), (c) and (d) represent the ROC curves for Algorithm-2 when we

utilise the 40×, 100×, 200× and 400× datasets, respectively.
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Table 8.4: Comparison of results using our proposed algorithm and other algorithms

Descriptor Classi�er Magni�cation Factor and Accuracy %

40× 100× 200× 400×

CLBP [205] SVM 77.4±3.8 76.4±4.5 70.2±3.6 72.8±4.9

GLCM [205] RF 73.6±1.5 76.0±1.9 82.4±2.3 79.8±2.5

LBP [205] SVM 74.2±5.0 73.2±3.5 71.3±4.0 73.1±5.7

LPQ [205] 1-NN 72.8±4.9 71.1±6.4 74.3±6.3 71.4±5.2

ORB [205] QDA 74.4±1.7 66.5±3.2 63.5±2.7 63.5±2.2

PFTAS [205] SVM 81.6±3.0 79.9±5.4 85.1±3.1 82.3±3.8

Algorithm-1 RBM 82.2 74.7 69.0 81.7

Algorithm-2 RBM 88.7 85.3 88.6 88.4

8.8 Conclusion

In this chapter we have proposed an automatic BC image classi�er framework which has

been constructed using state-of-the art Deep Neural Network techniques. Instead of using

raw images we have utilised Tamura features, as they provide textural information. As a

deep-learning tool we have implemented an unsupervised Restricted Boltzmann Machine

which contains four layers and is guided by a supervised backpropagation technique. For

the back-propagation, Scaled Conjugate Gradient techniques have been utilised. We have

performed our experiments on the BreakHis dataset and obtained 88.7%, 85.3%, 88.6%

and 88.4% Accuracy for the dataset of 40×, 100×, 200× and 400× magni�cation factors,

respectively. Most of the experiments on the BreakHis dataset judged the performance

on the basis of Accuracy, however, in this chapter we have also considered TPR, FPR

values along with a detailed description of the ROC curves. The error performance as

a function of the epoch is also explained in detail. This chapter shows that the RBN

method is very e�ective for automatic breast-cancer image diagnosis. However, in the

future the combination of CNN and RBM will enhance the classi�cation performance.



Chapter 9

Histopathological Breast-Cancer Image

Classi�cation with Feature

Prioritisation

9.1 Abstract

Breast-Cancer image classi�cation has always been a challenging task. Among all the

BC images, Histopathological images always provide valuable information about the can-

cer. This kind of image analysis requires a specialist opinion, but sometimes specialists

disagree about the �nal outcome. Apart from this, this kind of image analysis is very time-

consuming and needs great patience. However, the modern Computer Aided Diagnosis

(CAD) system can help the doctors and the physician to justify their decisions, which

gives the patient more satisfaction. To date various image-classi�cation algorithms are

available for BC image classi�cation, but in this chapter we have mainly utilised the "Ex-

In review as: A. A. Nahid, A. Mikaelian, M. A. Mehrabi and Y. Kong, �Histopathological Breast-

Cancer Image Classi�cation with Feature Prioritisation�,BioMed Research International, Hindawi, pp.

�-, �-.
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treme Gradient Boosting" algorithm (XGBoost). It is the most-recent advanced version

of Gradient Boosting, for the classi�cation of a set of Histopathological breast images into

Benign and Malignant images. As a feature we have utilised Tamura, Histogram, Local

Binary Pattern (LBP) and Haralick features for the BC image classi�cation. The math-

ematical structure of the XGBoost algorithm contains a few parameters which require

�ne-tuning for better performance of the classi�er model. In this chapter, after adjusting

the parameters such as the depth of tree, number of trees, and the learning rate, this

chapter achieved 98.22%, 97.90%, 98.14%, 98.06% and 98.64% Accuracy, Recall, Preci-

sion, F-measure, and Speci�city, respectively when Tamura features are utilised.

9.2 Introduction

Unwanted growth of cells in a body damages the natural working mechanism, which leads

to cancer. BC is of particular concern to women as, due to the anatomical structure of the

female body, they are more vulnerable to BC than men. As an example, Figure 9.1 shows

the statistics concerning BC deaths in Australia for the last decade. These statistics show

that the female death rate is far greater than the male death rate due to BC. It is an

example that we may consider as representing the current situation throughout the world.

Lobules, ducts, nipples and fatty tissue are the main structural components of the

female breast. Normally BC starts from the lobules and ducts, then the created cancer

infects the whole body. Cancer can be divided into a number of classes, however, in a

broad sense cancer can be classi�ed into two types:

� Benign: which is not life-threatening

� Malignant: which can be life-threatening in the future.
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Figure 9.1: Death statistics for Breast Cancer over the last decade in Australia

Detection of cancer is the prerequisite state for cancer treatment. Both early and accu-

rate detection of cancer can save many people's lives, or at least alleviate their miserable

condition. Along with other techniques, the investigation of cancer largely depends on

biomedical photographic techniques such as Histopathological images. Proper investiga-

tion of these types of images to distinguish between the Benign and the Malignant images

depends on some prerequisite pre-processing steps, as well as the quality of the images

and the expertise of investigators. With cancer, investigation of the images is always a

time-consuming and challenging task. However, with the advances made in modern dig-

ital photographic techniques the medical community has become largely reliant on these

images for cancer investigation and classi�cation. Di�erent methods, techniques and steps

have been used for BC image classi�cation, which follows some prede�ned procedure such

as Feature-Selection along with the appropriate model utilisation.

The Gray-Level Co-occurrence Matrix (GLCM) along with the Random Forest (RF)

method has been employed for BC image classi�cation by di�erent investigators. An-

gayarkanni et al. [118] and Beura et al. [256] have implemented the GLCM method for

mammographic breast-image classi�cation and obtained 99.50% and 98.0% Accuracy, re-

spectively. Bruno et al. [120] utilised the Curvelet Transform (CT) and LBP together

for Histopathological image classi�cation using the RF algorithm. They also accessed
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the Analysis of Variance (ANOVA) method for the Feature-Selection and achieved an

Accuracy in the range of 91.00% to 100.00%. Paul et al. [115] utilised Haralick Texture

features along with the RF algorithm for Histopathological image classi�cation and they

obtained Recall and Precision values of 81.13% and 83.50%, respectively.

Rajakeerthana et al. [50] utilised GLCM, GLD, SRDM NGLCM, and GLRM Feature-

Extraction techniques along with the Neural Network (NN) method for mammographic

breast-image classi�cation and obtained a 99.20% classi�cation Accuracy. Atlas et al. [55]

employed morphological features along with the NN method for mammographic breast-

image classi�cation and obtained around 97.50% Accuracy. Peng et al. [57] used Harlick

and Tamura features with NN for mammographic image classi�cation, and they also ac-

cessed feature reduction as suggested by Rough-Set theory. Variance contrast as well as

auto-correlation of wavelet coe�cients and the NN method for ultrasound breast-image

classi�cation were used by Chen et al. [62]; they obtained a Receiver Operating Charac-

teristic (ROC) curve value of 0.9396. Jalalian et al. [58] utilised the GLCM method for

mammogram image classi�cation using the NN method and obtained classi�er Accuracy,

Sensitivity and Speci�city of 95.20%, 92.40% and 98.00%, respectively.

Chang et al. [133] relied on textural features such as auto-correlation coe�cients along

with a Support Vector Machine (SVM) for breast-image classi�cation. Their obtained

Accuracy, Sensitivity and Speci�city were 85.60%, 95.45%, and 77.86%, respectively.

Kavitha et al. [143] utilised histogram information for mammogram image classi�cation

along with the SVM method; when using SVM with the linear kernel the obtained Ac-

curacy, Sensitivity and Speci�city were 98.00%, 100.00% and 96.00%, respectively, and

when using weighted-feature SVM the obtained Accuracy, Sensitivity and Speci�city were

90.00%, 100.00% and 75.00%, respectively. Kancham et al. implemented Tamura fea-

tures, shape-based features and moment-invariant features to detect the abnormality of

breast-images on the Mini-MIAS database. When they utilised Tamura features and the
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SVM method together their obtained Accuracy was 78.46% [257]. Zhang et al. utilised

fractional-fourier-transform information as features with an SVM along with Principal

Component Analysis (PCA) for breast-image classi�cation and the achieved Accuracy,

Sensitivity and Speci�city were 92.16±3.60%, 92.10±2.75% and 92.22±4.16%, respec-

tively [137]. Shirazi et al. [138] used GLCM features with ultrasound images. The Re-

gions of Interest (ROI) were extracted to reduce the redundant complexity, while SVM

and the mixed gravitational search algorithm (MGSA) served as classi�ers for the image

classi�cation. Dheba et al. [140] utilised the Laws texture features for mammogram image

classi�cation and obtained 86.10% Accuracy. Zhou utilised GLCM and the Tamura tech-

nique to classify the DDSM data set and achieved a 69.00% Accuracy [258]. LBP features

were utilised by Karl et al. for breast-image classi�cation using an SVM classi�er. They

did their experiments on both the MIAS and DDSM databases [259].

The literature shows that a few studies have been performed on breast-image classi�-

cation using features like LBP, GLCM, Histogram along with some conventional image-

classi�er models like SVM, NN. Most of the work has been performed on very well-known

datasets like MIAS and DDSM along with some Histopathological image-based datasets.

BreakHis is a very recent Histopathological breast-image dataset [7] and only a few image-

classi�cation studies have been performed based on this dataset. For the very �rst time,

Spanhol et al. [7] undertook breast-image classi�cation on this dataset where they utilised

the LBP, Local Plane Quantization (LPQ), GLCM, Parameter-Free Threshold Adjacency

Statistics (PFTAS) methods for the Feature-Extraction. They utilised four di�erent clas-

si�ers: 1-Nearest Neighbor (1-NN), Quadratic Linear Analysis (QDA), SVM and RF.

Overall they achieved the best performance when they used the PFTAS descriptor and

SVM classi�er, and their achieved accuracy was 85.1±3.1%.

Extreme Gradient Boosting (XGBoost) is a very recent advanced model for classi�-

cation. To the best of our knowledge only a very small amount of work has been done
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using it for BC image classi�cation. In the case of the Histopathological-image (BreakHis)

dataset, so far no work has been done on classi�cation using the XGBoost algorithm. In

this chapter we have classi�ed the BreakHis dataset using the XGBoost algorithm, while

we utilised Tamura, Harlick, Histogram and LBP features for the classi�cation. We have

also adapted a few Feature-Selection algorithms to �nd the best features for the image

classi�cation. We have organised our chapter as follows: Section 9.2 gives a brief introduc-

tion to BC image classi�cation issues, Section 9.3 describes the classi�cation methodology

along with a detailed description of the XGBoost algorithm and some Feature-Selection

techniques. Section 9.4 compares the classi�cation results with the XGBoost algorithm

and other algorithms, Section 9.5 explains and utilises the Feature-Selection methodology

with the XGBoost algorithm to �nd the suitable feature sets. We conclude the chapter

in Section 9.6.

9.3 Classi�cation Methodology

Histopathological Benign and Malignant breast-image classi�cation is always a challenging

task due to the complexity of the image. Figures 9.2 a and b show Benign and Malignant

images selected from the BreakHis breast-image dataset. In this chapter we have utilised

supervised image-classi�cation techniques for the BreakHis image dataset classi�cation.

A conventional supervised BC image-classi�cation procedure follows a set of prede�ned

steps such as

Selection of the BC image dataset.• Feature-Extraction and Selection.•

Classi�er Model.• Classi�er Output.•

which is illustrated in Figure 9.3. Consider the dataset

D = {Xi,j,Yi} (9.1)
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(a) (b)

Figure 9.2: (a), (b) show Benign and Malignant images selected from the BreakHis

dataset.

Breast Cancer 
Image Dataset 

Feature Extraction 
and Selection

Classifier 
Model 

Benign

Malignant

Image Data Base 

Figure 9.3: A very basic image-classi�cation model

where |D | = n represents the total number of instances of the set. Xi,j represents the

feature vector of an instance with the corresponding labels Yi ∈ {Benign,Malignant};

here i = {1, ................., n}, j = {1, ................., p} and p represents the number of features.

The total dataset has been splitted into a train and a test dataset. The model has been

trained using the train dataset along with the corresponding labels:

F ′
x = Fx(Xi,j,Yi). (9.2)

The test dataset been evaluated on the model F ′
x. Along with other classi�er models we

have utilised the most recent state-of-the-art XGBoost algorithm for image classi�cation.

9.3.1 Extreme Gradient Boosting

The XGBoost algorithm follows the principle of the Gradient Boosting algorithm. Boost-

ing means that a collection of weak learners can combine to produce a strong learner. Let
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F t
x be the overall tree model after round t− 1 which can be de�ned as

F t
x =


0, if t = 0

F t−1
x + hx, if t > 0

(9.3)

Here hx is the new tree which is added to F t−1
x to predict F t

x at time t with the consid-

eration of minimising the objective function:

O(F t
x) = L(F t

x,F
t−1
x ) + C(F t

x). (9.4)

Here C(F t
x) = γT + 1

2
λ||w||2 where T represents the number of leaves, w represents the

weight vector, γ is the tree-size penalty parameter and λ is the leaf-weight penalty pa-

rameter.

9.3.2 Feature-Extraction

An important stage of image-classi�cation is extracting the features from the images. In

the conventional image classi�cation task, features are crafted locally using some speci�c

rules and criteria. Four di�erent Feature-Extraction techniques we have utilised are:

Tamura• Histogram• Harlick Features• Local Binary Pattern•

Let fRGB(u, v) represent an RGB image, which contains 3 channels fR(u, v), fG(u, v),

fB(u, v); here R, G and B represent Red, Green and Blue, respectively. For the Feature-

Extraction we have employed all three channels, as shown in Figure 9.4. MR, MG and MB

represent the extracted feature vectors from the R, G and B channels, respectively.

Tamura

Inspired by psychological studies of human visual perception, Tamura features extract six

di�erent textural features, proposed by Tamura et al. [9]:
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Figure 9.4: Overall Feature-Extraction from the three di�erent channels

� Coarseness: Coarseness measure the �neness of a texture and also identi�es the

largest size of the texture [252]. Varying the kernel size, average values are calculated

at each point of the image. Considering the target point as (g, l), then the average

value of that target point is calculated by varying the kernel size:

Xk(g, l) =

g+2k−1−1∑
i=g−2k−1

l+2k−1−1∑
j=l−2k−1

f(i, j)

22k
(9.5)

The average variation due to using a 2k × 2k non-overlapping kernel window is

calculated in both horizontal and vertical directions. Then, the value of k which

maximises the output values is considered the optimal value Sopt, and �nally using

this optimal value Sopt the Coarseness C1 is calculated as

C1 =
1

m× n

m∑
g

n∑
l

Sopt(g, l) (9.6)

� Contrast: The level of di�erence of intensity within a texture is de�ned as Contrast,

can be de�ned as:

C2 =
σ

(β4)n
(9.7)

where

β4 =
µ4

σ4
: is known as kurtosis

µ4 : Fourth moment about the mean can be de�ned as E[f 4(i, j)]

σ4 : Gray-Level distribution's standard deviation is represented as σ
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� Directionality: Directionality refers to the shape of the texture primitives and their

placing regulation within a speci�c region [9], [253], [254].

D1 = 1− r.no.
no∑
o

m∑
φ∈wo

(φ− φo)2.Td(φ) (9.8)

Td : Histogram's local direction

no : is the number of peaks of Td

wo : is the range of the oth peak between valleys

φo : is the oth peak position of Td

� Line-likeness: The element of a texture that is composed of lines can be described as

Line-likeness. To calculate Line-likeness, a direction co-occurrence matrix consisting

of elements QDd(i,j), is generated [9], [253]. The following equation computes a

measure of Line-likeness [253]:

L =

∑n
i

∑n
j QDd(i, j) sin(i− j)(2×π

n
− π

2
)∑n

i

∑n
j QDd(i, j)

(9.9)

� Regularity: Regularity can be de�ned as

R1 = 1− r(σcrs + σcon + σdir + σlin) (9.10)

where r is a normalising parameter [9].

� Roughness: A combination of Coarseness and Contrast is represented as Roughness

[9]:

R2 = C1 + C2 (9.11)

Histogram

Let f(u, v)RGB represent an RGB image where R, G, and B stand for the Red, Green and

Blue channel light information, respectively. Let H(u, v)RL , H(u, v)GL , H(u, v)BL represent
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the histograms of fR(u, v), fG(u, v), fB(u, v); here L represents the level of colour informa-

tion where L = {20 to 28 − 1} represents the intensity level. We have concatenated the

histogram values of the R, G, B channels as [H(u, v)RL , H(u, v)GL , H(u, v)BL ], and de�ned

them as RGB-C where C stands for concatenation. After concatenation, there are 768

levels available (each channel has 256 levels). For the classi�cation tools, 768 values of

input features have been used.

Harlick Features

A GLCM is a two-dimensional matrix where every entry (i,j) represents the number of

times a pixel of value i is adjacent to a pixel of value j, at a particular angle θ and distance

d. Later this entire matrix is divided by the total number of comparisons.

G′ = (a(i,j,θ,d)) ∈ RNg,Ng , (9.12)

where R ∈ 0,−−−−−,Ng − 1. Let

G =
G′

Total Number of comparisons
(9.13)
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µi =

Ng∑
i=1

i

Ng∑
j=1

pi,j; µj =

Ng∑
j=1

j

Ng∑
i=1

pi,j; (9.14)

σi =

Ng∑
i=1

(i− µi)2
Ng∑
j=1

pi,j; σj =

Ng∑
j=1

(j− µj)
2

Ng∑
i=1

pi,j (9.15)

The elements of G can be represented as Pi,j =
(a(i,j,θ,d))

Total Number of Comparisons
where 0 ≤

Pi,j ≤ 1. Based on the GLCM, statistical and structural features have been proposed

by R. Harlick [8], who describes 14 di�erent items of statistical information from the

co-occurrence matrix, summarised in Table 9.1 [2].

Local Binary Pattern

The LBP was proposed by Ojala et al. [25], and is actually a rotation-invariant texture

operator. Let fc(ic, jc) be a reference pixel position with strength measures as fc. Each pixel

within a radius r is assigned a value 0 or 1 depending on the value of the reference pixel

fc(ic, jc). Suppose that there are w neighbouring pixels, then the LBP for the reference

pixel is calculated based on the following formula:

fLBP
c =

w−1∑
h=0

S(fh − fc)2
h (9.16)

where

S(fh − fc) =


1, if (fh − fc) ≥ 0

0, otherwise.

9.4 Comparison and Explanation of XGBoost

We have compared the XGBoost algorithm performance in respect to the Precision, Re-

call, F-measure and Sensitivity values with a few of the other available classi�er models,

in Tables 9.3, 9.4, 9.5 and 9.6 with Tamura, Histogram, LBP and Harlick features, re-

spectively. XGBoost is a tree-based algorithm containing a few parameters. Along with
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the other parameters we have �xed the parameters for the initial simulation as presented

in Table 9.2.

Table 9.2: Initial Parameters for the XGBoost Algorithm

Parameter Parameter Value

Learning Rate 0.1

Maximum depth of the tree 3

Number of Trees 100

Tables 9.3-9.7 summarise which classi�er has the best performance in respect to the

Precision, Recall, F-measure and Sensitivity values.

� The �rst column of Table 9.7 shows that the RIDOR algorithm provides the best Pre-

cision, and Random Forest provides the best F-measure, when we utilised Tamura

features.

� The second column of Table 9.7 shows that Random Forest provides the best Preci-

sion and F-measure, whereas the IB1 and IB-K algorithms o�er the best Speci�city

values, when we utilised Histogram information as a feature.

� The third column of Table 9.7 shows that the J-48 algorithm provides the best

Precision, while the Random Forest algorithm provides the best F-measure, when

we apply LBP features.

� The fourth column of Table 9.7 shows that the Random Forest algorithm has the

best Precision, and both the IB1 and IB-K algorithms provide the best F-measure,

when we employ Harlick features.
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The above analysis shows that the XGBoost algorithm does not perform better than

a few other existing classi�ers. However, as a new classi�er technique we have selected

this classi�er method for further analysis. Figures 9.5 a, b, c and d show the ROC curves

for the LBP, Tamura, Histogram and Harlick features, respectively, when we utilised the

XGBoost algorithm.

(a) (b)

(c) (d)

Figure 9.5: (a), (b), (c) and (d) show the ROC curves for the LBP, Tamura, Histogram

and Harlick features, respectively, when we utilise the XGBoost algorithm.

Table 9.8 documents the accuracy performance when we utilise Tamura, Histogram,
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LBP and Harlick features, respectively, along with the time required to construct the XG-

Boost model for the classi�cation. LBP features give the worst Accuracy performance of

76.60% while Tamura and Histogram features give almost the same (91.67% and 91.14%)

performance. However, in the case of the model construction time, when we utilise Tamura

features it required 03.17s which was almost 20 times as small as the time required when

we use Histogram features.

Table 9.8: Accuracy and Model Construction Time

Feature Name Average Accuracy % Elapsed Time (s)

LBP 76.60 48.16

Tamura 91.67 03.17

Histogram 91.14 61.39

Harlick 85.98 06.07

Tables 9.3, 9.4, 9.5, 9.6 and 9.8 and Figure 9.5 show that when we only consider

the XGBoost algorithm, Tamura features function better than the LBP, Histogram and

Harlick features for the Precision, Recall, F-measure and Sensitivity measuring criteria.

As the Tamura features provide the best performance when we utilised the XGBoost

algorithm, the following subsection tries to examine the XGBoost algorithm performance

based on Tamura features while varying a few of the parameters of the XGBoost algorithm.

9.4.1 Performance based on XGBoost algorithm along with Tamura

Features

Along with the other parameters, the Number of Trees, depth of trees and learning rate

play vital roles in the XGBoost classi�er performance. Figure 9.6a illustrates the per-
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formance of the classi�er (for Tamura) in respect to the Log Loss, Number of Trees and

depth of tree. We have varied the Number of trees from 0 to 2000 keeping the depth of

tree at 1, 3, 5, 7 and 9. The best performance in respect to the Log Loss is achieved when

the Number of Trees is 1050 and the depth of trees is 5.

(a) (b)

Figure 9.6: (a) shows the Log Loss performance against the Number of Trees along with

the depth of tree. (b) shows the Log Loss value for di�erent learning rates when the depth

of tree is 5 and the Number of Trees is 1050.

Keeping the Number of Trees at 1050 and the depth of tree at 5, we changed the

learning rate to �nd the best Log Loss value. Figure 9.6b shows that the Log Loss value

is almost constant after the learning rate reaches 0.1. Based on Figure 9.6 a and b we

have selected the values of the Number of Trees, depth of tree and the learning rate equal

to 5, 1050 and 0.10, respectively, and recorded an Accuracy of 98.20% with a required

time for the model construction of 44.07 s.

Figure 9.7a depicts the corresponding ROC curve. After selecting the values of the

depth of tree, Number of Trees and learning rate, the model achieved 98.22% Accuracy,

however, the computational time increased. Proper Feature-Selection can improve the

computational time.



9.5. Feature-Selection Methodology 257

(a) (b)

Figure 9.7: (a) shows the ROC curve and (b) represents the Confusion Matrix when the

depth of tree is 5, Number of Trees is 1050, and learning rate is 0.10

Table 9.9: Average Recall/Accuracy/Precision/Speci�city when depth of tree is 5 and

Number of Trees is 1050

Recall% Accuracy% Precision% F-measure% Speci�city% Elapsed Time

97.90 98.22 98.14 98.06 98.64 s 44.07 s

9.5 Feature-Selection Methodology

Feature-Selection for the supervisor learning is always an important issue for a real-life

classi�cation problem. In a few cases the dataset may contain irrelevant information, and

Feature-Selection can identify that irrelevant information. Overall a Feature-Selection

method has the following important quantities to keep low

dataset dimensionality• computational complexity• computational time.•

Since all the features do not have the same importance for classi�cation purposes we have

utilised two Feature-Selection methods: a) Filter and b) Wrapper to �nd the best feature

set for the classi�er.
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9.5.1 Filter

The �lter method is applied before the classi�er, and works as a pre-processing step to

determine suitable features for the classi�er. The �lter method provides score values, and

based on this score value a particular feature set is selected. A few Feature-Selection

methods are available, however, we have utilised the following �lter methods for our

analysis:

� Chi-Square (CS) Method: The Chi-Square method establishes the likelihood of

correlation using the frequency distribution

χ2 =
n∑

i=1

(Oi − Ei)
2

Ei

(9.17)

where Oi represents the observed distribution and Ei represents the expected dis-

tribution. Features which produce greater χ2 values have more importance for the

data classi�cation. Table 9.10 shows that R2R was the most important feature when

we applied the CS method for Feature-Selection.

� Relief (RE) Method: Lira and Randell proposed the Relief algorithm, where each

feature is weighted between the values of -1 and +1. A weight towards +1 is more

signi�cant for the classi�cation.

� Fisher Score (FS) Method: Fisher's Discriminant Ratio for the binary-class classi�-

cation can be written as

F =
(µB − µM

2)

σ2
B − σ2

M

(9.18)

where µB, µM, σB and σM represent the average and the standard deviation of the

Benign and Malignant classes for any feature.

� Mutual Information (MI): Mutual Information (MI) calculates the common infor-
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mation between two random variables, and can be de�ned as

MI(A ,B) = H(A ) + H(B)−H(A ,B)

= −
∑

a∈A ,b∈B

p(a, b)× log2

p(a, b)

p(a)p(b)

(9.19)

From the information-theoretical perspective, H(A ) is the Entropy, de�ned as

H(A ) = −
∑
a∈A

P(A = a)× log2 P(A = a) (9.20)

All the above-mentioned �lter methods produce a score value for each of the feature

vectors. Based on this score value each �lter algorithm prioritises the feature vectors.

Let C1S, C2S, D1S, LS, R1S, R2S represent the Coarseness, Contrast, Directionality, Line-

likeness, Regularity and Roughness of the respective channel's S where S ∈ {R, G, B}.

As we have extracted features from all the available three channels, the total number

of features will be eighteen. Table 9.10 arranges the feature vectors in a descending

order based on the score value gained from di�erent Feature-Selection algorithms. As an

example, the 3rd row of Table 9.10 arranges the feature vectors in a descending order for

the CS method, where the R2R feature vector contains the highest score, 14.50, and the

R1B feature vector contains the lowest priority score, 0.001. Similarly, rows 5, 6 and 7

of Table 9.10 arrange the feature vectors in a descending order for the FS, RE and MI

methods, respectively.
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We investigated how the priority vectors obtained from di�erent Feature-Selection

algorithms behave in our model. To do so, we produced eighteen feature sets for each

�lter method. For instance, concerning the CS method, we produced eighteen feature sets

where the �rst feature set SCS
1 = {R2R} contains only the �rst priority vectors obtained by

the Chi-square method, SCS
2 = {R2R,C1R} contains the �rst two priority vectors obtained

by the CS method, and similarly SCS
18 contains all the feature vectors. Similarly, SFS

t , SRE
t

and SMI
t represent the feature set for the FS, RE and MI methods, respectively, where

t = {1, 2, 3, ...18}. When we utilise the CS method, {R2R} stands out. That is, the feature

set SCS
1 of Table 9.11 contains this feature only. The second most prominent feature with

the CS method is C1R; this second feature set of Table 9.11 contains both the features

C1R and R2R. We have summarised all these vector sets for these four methods in Tables

9.11, 9.12, 9.13 and 9.14.
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Table 9.11: All the feature sets based on the Chi-Square (CS) Feature-Selection method

Name Feature Set

SCS
1 {R2R}

SCS
2 {R2R,C1R}

SCS
3 {R2R,C1R,R2G}

SCS
4 {R2R,C1R,R2G,C1G}

SCS
5 {R2R,C1R,R2G,C1G,R2B}

SCS
6 {R2R,C1R,R2G,C1G,R2B,C1B}

SCS
7 {R2R,C1R,R2G,C1G,R2B,C1B,D1R}

SCS
8 {R2R,C1R,R2G,C1G,R2B,C1B,D1R,D1B}

SCS
9 {R2R,C1R,R2G,C1G,R2B,C1B,D1R,D1B,LR}

SCS
10 {R2R,C1R,R2G,C1G,R2B,C1B,D1R,D1B,LR,LG}

SCS
11 {R2R,C1R,R2G,C1G,R2B,C1B,D1R,D1B,LR,LG,D1G}

SCS
12 {R2R,C1R,R2G,C1G,R2B,C1B,D1R,D1B,LR,LG,D1G,LB}

SCS
13 {R2R,C1R,R2G,C1G,R2B,C1B,D1R,D1B,LR,LG,D1G,LB,C2R}

SCS
14 {R2R,C1R,R2G,C1G,R2B,C1B,D1R,D1B,LR,LG,D1G,LB,C2R,R1G}

SCS
15 {R2R,C1R,R2G,C1G,R2B,C1B,D1R,D1B,LR,LG,D1G,LB,C2R,R1G,C2G}

SCS
16 {R2R,C1R,R2G,C1G,R2B,C1B,D1R,D1B,LR,LG,D1G,LB,C2R,R1G,C2G,R1R}

SCS
17 {R2R,C1R,R2G,C1G,R2B,C1B,D1R,D1B,LR,LG,D1G,LB,C2R,R1G,C2G,R1R,C2B}

SCS
18 {R2R,C1R,R2G,C1G,R2B,C1B,D1R,D1B,LR,LG,D1G,LB,C2R,R1G,C2G,R1R,C2B,R1B, }
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Table 9.12: All the feature sets based on the Fisher Score (FS) Feature-Selection method

Name Feature Set

SFS
1 {LR}

SFS
2 {LR,C2R}

SFS
3 {LR,C2R,R2R}

SFS
4 {LR,C2R,R2R,C1R}

SFS
5 {LR,C2R,R2R,C1R,LB}

SFS
6 {LR,C2R,R2R,C1R,LB,LG}

SFS
7 {LR,C2R,R2R,C1R,LB,LG,D1R}

SFS
8 {LR,C2R,R2R,C1R,LB,LG,D1R,C2G}

SFS
9 {LR,C2R,R2R,C1R,LB,LG,D1R,C2G,R2G}

SFS
10 {LR,C2R,R2R,C1R,LB,LG,D1R,C2G,R2G,C1G}

SFS
11 {LR,C2R,R2R,C1R,LB,LG,D1R,C2G,R2G,C1G,R1G}

SFS
12 {LR,C2R,R2R,C1R,LB,LG,D1R,C2G,R2G,C1G,R1G,R2B}

SFS
13 {LR,C2R,R2R,C1R,LB,LG,D1R,C2G,R2G,C1G,R1G,R2B,C1B}

SFS
14 {LR,C2R,R2R,C1R,LB,LG,D1R,C2G,R2G,C1G,R1G,R2B,C1B,C2B}

SFS
15 {LR,C2R,R2R,C1R,LB,LG,D1R,C2G,R2G,C1G,R1G,R2B,C1B,C2B,R1R}

SFS
16 {LR,C2R,R2R,C1R,LB,LG,D1R,C2G,R2G,C1G,R1G,R2B,C1B,C2B,R1R,D1B}

SFS
17 {LR,C2R,R2R,C1R,LB,LG,D1R,C2G,R2G,C1G,R1G,R2B,C1B,C2B,R1R,D1B,R1B}

SFS
18 {LR,C2R,R2R,C1R,LB,LG,D1R,C2G,R2G,C1G,R1G,R2B,C1B,C2B,R1R,D1B,R1B,D1G}
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Table 9.13: All the feature sets based on the Relief (RE) Feature-Selection method

Name Feature Set

SRE
1 {R2R}

SRE
2 {R2R,C1R}

SRE
3 {R2R,C1R,C2B}

SRE
4 {R2R,C1R,C2B,R2B}

SRE
5 {R2R,C1R,C2B,R2B,C1B}

SRE
6 {R2R,C1R,C2B,R2B,C1B,LR}

SRE
7 {R2R,C1R,C2B,R2B,C1B,LR,C2R}

SRE
8 {R2R,C1R,C2B,R2B,C1B,LR,C2R,C1G}

SRE
9 {R2R,C1R,C2B,R2B,C1B,LR,C2R,C1G,R2G}

SRE
10 {R2R,C1R,C2B,R2B,C1B,LR,C2R,C1G,R2G,C2G}

SRE
11 {R2R,C1R,C2B,R2B,C1B,LR,C2R,C1G,R2G,C2G,LG}

SRE
12 {R2R,C1R,C2B,R2B,C1B,LR,C2R,C1G,R2G,C2G,LG,LB}

SRE
13 {R2R,C1R,C2B,R2B,C1B,LR,C2R,C1G,R2G,C2G,LG,LB,R1G}

SRE
14 {R2R,C1R,C2B,R2B,C1B,LR,C2R,C1G,R2G,C2G,LG,LB,R1G,R1R}

SRE
15 {R2R,C1R,C2B,R2B,C1B,LR,C2R,C1G,R2G,C2G,LG,LB,R1G,R1R,R1B}

SRE
16 {R2R,C1R,C2B,R2B,C1B,LR,C2R,C1G,R2G,C2G,LG,LB,R1G,R1R,R1B,D1R}

SRE
17 {R2R,C1R,C2B,R2B,C1B,LR,C2R,C1G,R2G,C2G,LG,LB,R1G,R1R,R1B,D1R,D1G, }

SRE
18 {R2R,C1R,C2B,R2B,C1B,LR,C2R,C1G,R2G,C2G,LG,LB,R1G,R1R,R1B,D1R,D1G,D1B}
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Table 9.14: All the feature sets based on the Mutual Information (MI) Feature-Selection

method

Name Feature Set

SMI
1 {LR}

SMI
2 {LR,R2R}

SMI
3 {LR,R2R,C2R}

SMI
4 {LR,R2R,C2R,LG}

SMI
5 {LR,R2R,C2R,LG,C1R}

SMI
6 {LR,R2R,C2R,LG,C1R,C1G}

SMI
7 {LR,R2R,C2R,LG,C1R,C1G,R2G}

SMI
8 {LR,R2R,C2R,LG,C1R,C1G,R2G,LB}

SMI
9 {LR,R2R,C2R,LG,C1R,C1G,R2G,LB,C2B}

SMI
10 {LR,R2R,C2R,LG,C1R,C1G,R2G,LB,C2B,R1G}

SMI
11 {LR,R2R,C2R,LG,C1R,C1G,R2G,LB,C2B,R1G,C2G}

SMI
12 {LR,R2R,C2R,LG,C1R,C1G,R2G,LB,C2B,R1G,C2G,R2B}

SMI
13 {LR,R2R,C2R,LG,C1R,C1G,R2G,LB,C2B,R1G,C2G,R2B,D1R}

SMI
14 {LR,R2R,C2R,LG,C1R,C1G,R2G,LB,C2B,R1G,C2G,R2B,D1R,R1B}

SMI
15 {LR,R2R,C2R,LG,C1R,C1G,R2G,LB,C2B,R1G,C2G,R2B,D1R,R1B,D1G}

SMI
16 {LR,R2R,C2R,LG,C1R,C1G,R2G,LB,C2B,R1G,C2G,R2B,D1R,R1B,D1G,R1R}

SMI
17 {LR,R2R,C2R,LG,C1R,C1G,R2G,LB,C2B,R1G,C2G,R2B,D1R,R1B,D1G,R1R,C1B}

SMI
18 {LR,R2R,C2R,LG,C1R,C1G,R2G,LB,C2B,R1G,C2G,R2B,D1R,R1B,D1G,R1R,C1B,D1B}
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9.5.2 Wrapper

The wrapper method depends on the classi�er model. A general wrapper method can be

described as follows:

Dataset

Training  
Data

Testing  
 Data

Feature 
Search

Feature 
Evaluation

Selected 
Feature

Classifier

Final 
Evaluation

Figure 9.8: A wrapper method for Feature-Selection

� First Step: A set of features is selected from the training dataset.

� Second Step: Then the selected classi�er performance is evaluated using that par-

ticular training feature set.

� The �rst and second steps continue until a desired performance criterion has been

achieved.

� Those feature sets are selected which achieve the desired performance criterion.

Di�erent wrapper Feature-Selection methods are available; from these we have exe-

cuted the following two Feature-Selection operations:
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Algorithm 4 Sequential Forward Selection Algorithm (SFS) [260]
1: Let the feature set be x = {xj} where j = {1, ................., p}.

2: Objective function Jj(.)

3: Let the empty feature set be S0 = {φ}

4: for (j=0 to p-1) do

5: Select the next-best feature as x+
j = arg maxx/∈Sj Jj{(Sj + x)}

6: Update Sj+1 = Sj + x+
j

7: end for

Algorithm 5 Sequential Backward Selection Algorithm (SBS) [260]
1: Let the feature set be x = {xi} where i = {1, ................., p}.

2: Objective function Ji(.)

3: Let the full feature set be Sp = {X}

4: for (i=p to 2) do

5: Remove the next-worse feature as x−i = arg maxx∈Si Ji{(Si − x)}

6: Update Si−1 = Si − x−i

7: end for

We have determined the feature sets using the SFS and SBS algorithms and present

those feature sets in Tables 9.15 and 9.16. Figure 9.9 (a) shows the Speci�city performance

for the di�erent feature sets ST
t , where T = {CS,FS,RE,MI, SFS, SBS} and the value of

t = {1, 2, 3...18}. At t = 1, for all the feature set ST
1 the Speci�city values are low, which

means that for SCS
1 , SFS

1 , SRE
1 , SMI

1 , SSFS
1 , SSBS

1 all the Speci�city values are very low. When

t = 2 or t = 3, the CS,FS,RE,MI algorithms provide less than 50 percent Speci�city.

However, both the feature sets SSFS
2 , SSBS

2 provide very impressive Speci�city values which

touch around 92.00% and 93.00%, respectively. When t ≥ 2, the values of the Speci�city

for the algorithms SBS and SFS never go below about 92.00%. At t = 3, 4, the Speci�city

values for the CFS algorithm demonstrate a slightly downward trend, however, after
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Table 9.15: All the feature sets based on the Forward Feature-Selection method

Name Feature Set

SSFS
1 {LR}

SSFS
2 {LR,LB}

SSFS
3 {LR,LG,LB}

SSFS
4 {LR,LG,C2B,LB}

SSFS
5 {C2R,LR,LG,C2B,LB}

SSFS
6 {C2R,LR,C2G,LG,C2B,LB}

SSFS
7 {C2R,LR,C2G,LG,C2B,LB,R2B}

SSFS
8 {C1R,C2R,LR,C2G,LG,C2B,LB,R2B}

SSFS
9 {C1R,C2R,LR,C2G,LG,R2G,C2B,LB,R2B}

SSFS
10 {C1R,C2R,LR,C2G,LG,R1G,R2G,C2B,LB,R2B}

SSFS
11 {C1R,C2R,LR,R2R,C2G,LG,R1G,R2G,C2B,LB,R2B}

SSFS
12 {C1R,C2R,LR,R2R,C2G,LG,R1G,R2G,C1B,C2B,LB,R2B}

SSFS
13 {C1R,C2R,LR,R2R,C1G,C2G,LG,R1G,R2G,C1B,C2B,LB,R2B}

SSFS
14 {C1R,C2R,LR,R2R,C1G,C2G,LG,R1G,R2G,C1B,C2B,LB,R1B,R2B}

SSFS
15 {C1R,C2R,LR,R1R,R2R,C1G,C2G,LG,R1G,R2G,C1B,C2B,LB,R1B,R2B}

SSFS
16 {C1R,C2R,LR,R1R,R2R,C1G,C2G,D1G,LG,R1G,R2G,C1B,C2B,LB,R1B,R2B}

SSFS
17 {C1R,C2R,LR,R1R,R2R,C1G,C2G,D1G,LG,R1G,R2G,C1B,C2B,D1B,LB,R1B,R2B}

SSFS
18 {C1R,C2R,D1R,LR,R1R,R2R,C1G,C2G,D1G,LG,R1G,R2G,C1B,C2B,D1B,LB,R1B,R2B}
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Table 9.16: All the feature sets based on the Backward Feature-Selection method

Name Feature Set

SSBS
1 {C2R}

SSBS
2 {C2R,C2B}

SSBS
3 {C2R,LR,C2B}

SSBS
4 {C2R,LR,C2B,LB}

SSBS
5 {C2R,LR,R2R,C2B,LB}

SSBS
6 {C2R,LR,R2R,C2B,LB,R2B}

SSBS
7 {C2R,LR,R1R,R2R,C2B,LB,R2B}

SSBS
8 {C2R,LR,R1R,R2R,C2B,LB,R1B,R2B}

SSBS
9 {C2R,LR,R1R,R2R,R2G,C2B,LB,R1B,R2B}

SSBS
10 {C2R,D1R,LR,R1R,R2R,R2G,C2B,LB,R1B,R2B}

SSBS
11 {C2R,D1R,LR,R1R,R2R,R2G,C2B,D1B,LB,R1B,R2B}

SSBS
12 {C2R,D1R,LR,R1R,R2R,R1G,R2G,C2B,D1B,LB,R1B,R2B}

SSBS
13 {C2R,D1R,LR,R1R,R2R,R1G,R2G,C1B,C2B,D1B,LB,R1B,R2B}

SSBS
14 {C2R,D1R,LR,R1R,R2R,C1G,R1G,R2G,C1B,C2B,D1B,LB,R1B,R2B}

SSBS
15 {C2R,D1R,LR,R1R,R2R,C1G,C2G,R1G,R2G,C1B,C2B,D1B,LB,R1B,R2B}

SSBS
16 {C2R,D1R,LR,R1R,R2R,C1G,C2G,LG,R1G,R2G,C1B,C2B,D1B,LB,R1B,R2B}

SSBS
17 {C1R,C2R,D1R,LR,R1R,R2R,C1G,C2G,LG,R1G,R2G,C1B,C2B,D1B,LB,R1B,R2B}

SSBS
18 {C1R,C2R,D1R,LR,R1R,R2R,C1G,C2G,D1G,LG,R1G,R2G,C1B,C2B,D1B,LB,R1B,R2B}
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t ≥ 4, the Speci�city for the SFS algorithm never falls and always has an upward trend.

Speci�cally, after t ≥ 8 the Speci�city values remain almost constant at around 88.50%.

For the SBS algorithm, where t = 3 − 5 the Speci�city algorithm shows a slightly up

and down performance, however, in this period the Speci�city never goes below around

91.00%. After t ≥ 8, the Speci�city value remains almost constant at 98.50%. For the

cases CS, FS and MI, the Speci�city values reveal a mediocre performance. Interestingly,

when t ≥ 12 the Speci�city remains almost the same irrespective of the algorithm; this

indicates that when t ≥ 12, irrespective of the algorithm, almost 99.00% of Benign images

are classi�ed as Benign and only 1.00% have been misclassi�ed as Malignant.

Figure 9.9 (b) shows the Recall values for all the available feature sets for all the

algorithms. For all the Feature-Selection sets and all the algorithms the Recall values

never go below 81.00%. At t = 1, the Recall values for all the Feature-Selection algorithms

are clustered around 88.00% to 90.00%. From t = 2 − 6, the CS, FS, and RE Feature-

Selection algorithms show slightly lower Recall values than the initial ones. At t = 2, the

RE, SFS, and SBS algorithms show a quite impressive Recall value of around 98.50%,

which is maintained virtually throughout the whole period. The Recall data shows that

never more than around 21% of the Malignant data have been misclassi�ed as Benign

for all the algorithms and all the feature sets. This �gure also shows that, when t ≥ 12,

irrespective of the algorithm, around 98.00% of the Malignant images have been perfectly

classi�ed as Malignant images using any Feature-Selection algorithm.

Figure 9.9 (c) depicts the Precision values for all the available feature sets for all the

algorithms. For all the available Feature-Selection algorithms and their corresponding

feature sets, the Precision values never go below around 67.50%, Initially, up to t = 5,

the CS, FS and MI algorithms show quite poor Precision values. At t = 5, both the

SFS and SBS algorithms provide very good Precision values which almost reach 98.75%.

For t = 2 and 3, the Precision values for the SFS and SBS algorithms show a slightly
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worse performance than for t = 2. For t ≥ 5, the Precision values remain almost constant

for both the SFS and SBS Feature-Selection algorithms, at around 99.55%. Initially,

the Precision values from the RE Feature-Selection algorithm have poor performance,

however, as the value of t rises, Precision values for the RE algorithm also perform in a

similar way as for the SFS and SBS algorithms. For the Precision values, when t ≥ 12 all

the algorithms give almost the same performance, at around 99.50%.

Figure 9.9 (d) depicts the F-measure values for all the feature sets comprising all the

available Feature-Selection algorithms. For all the feature sets the SBS algorithm gives

better F-measure values than the other algorithms. At t = 2, both the SFS and SBS

algorithms o�er very impressive F-measure values of around 98.00%. For t = 1 and t = 3

the CS, FS, RE and MI Feature-Selection algorithms show almost the same F-measure

values of around 78.00%. When t ≥ 12, the F-measure values remain constant for all the

available sets and Feature-Selection algorithms.

Figure 9.9 (e) shows the Accuracy values for all the available feature sets for every

available Feature-Selection algorithm. When t = 1 almost all the feature sets provide very

poor Accuracy performance of around 66.00%. For t = 2, the SBS and SFS algorithms

provide very good Accuracy performance, in fact the SBS algorithm shows slightly better

performance than the SFS algorithm. For t = 3 − 4 the Accuracy for the SFS Feature-

Selection algorithm remains the same as that for t = 2. For t = 5 − 18, both the SFS

and SBS algorithms provide almost the same constant performance of almost 99.00%.

For t = 2 − 3 the poor Accuracy value remains for the CS, FS, RE and MI algorithms.

After t = 2, the accuracy values suddenly increase for the RE algorithm and the trend of

increasing Accuracy continues.

Figure 9.9 (e) illustrates the model construction time for the di�erent feature sets.

From t = 1−4, the model construction time is the same. As the value of t also represents

the cardinality of the feature set, so when the cardinality of the feature set increases
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Figure 9.9: (a), (b), (c), (d), (e) and (f) show the Speci�city, Recall, Precision, F-measure,

Accuracy and model construction time for di�erent feature sets based on di�erent Feature-

Selection algorithms.
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from 1 to 4, the model takes almost the same time for construction, i.e. around 12 to

13 seconds. For t = 5 − 8, that is when the cardinality of the feature set varies from 5

to 8, the model construction time also remains constant, at around 20 seconds. For the

feature-set cardinality 9 to 12 the model construction time remains almost 29 s. When

the feature set contains 14, 15 and 16 features the model construction time is around

36.00 s. When the feature set contains 17 and 18 features the model construction time is

approximately 42.00 s.

From the above discussion it is clear that if we take two features the best performance

is given by the SBS algorithm and the feature set will be SSBS
2 = {C2R,C2B}. Here C2R

and C2B represent the contrast of the red and blue channels, respectively. While t = 2,

the SFS algorithm gives a slightly less accurate performance than the SBS algorithm, and

the corresponding feature set is SSFS
2 = {LR,LB}. Here LR represents the Line-likeness

for the red channel, and LB represents the Line-likeness for the blue channel. So feature

sets SSBS
2 and SSFS

2 select di�erent feature sets. For t = 4, the SBS algorithm gives almost

98.00% Accuracy and the elements of its feature set are SSBS
4 = {C2R,LR,C2B,LB}. Here

{C2R,LR,C2B,LB} represent the contrast of the RED channel, Line-likeliness of the RED

channel, contrast of the BLUE channel, Line-likeness of the BLUE Channel, respectively.

For feature sets less than 12 (t ≤ 12), in almost all situations the MI Feature-Selection

algorithm performs worse than all the other available Feature-Selection algorithms.

9.6 Conclusion

In this chapter a set of Histopathological images has been classi�ed into Benign and

Malignant images utilising the state-of-the-art XG-Boost algorithm, along with Tamura,

Harlick, LBP and Histogram features individually; of these the Tamura features provide

the best performance. After �ne-tuning the parameters such as the Number of Trees



274
Chapter 9. Histopathological Breast-Cancer Image Classi�cation with Feature

Prioritisation

(1050), depth of trees (5) and learning rate (0.10), we achieved 98.22% Accuracy with

almost 98.00% Recall, Precision, F-measure and Speci�city values when we use Tamura

features, which requires around 44.07 s. It is found that proper selection of the feature

set, such as the Contrast and Line-likeness features of the red channel and the contrast

and Line-likeness of the blue channel provide the best Accuracy. This is almost 98.00%,

when we utilised the Sequential Backward Feature-Selection algorithm, which requires

almost 16 seconds.



Chapter 10

Conclusion and Future Work

10.1 Conclusion

Women are su�ering from serious invasive Breast-Cancer (BC). In statistical terms BC

is the second most common cause of death to women after lung cancer. Early identi-

�cation of BC and proper diagnosis can increase a person's life expectancy. Doctors,

physicians and radiologists investigate BC through physical examination of the patient,

and also their decision about the diagnosis largely depends on investigation of biomedi-

cal images. Among the di�erent biomedical images, histopathological images provide the

most meaningful information on the disease. For this reason, doctors are heavily reliant on

histopathological images to perfectly identify the current status of the disease. However,

these images are complex in nature and their interpretation is very much subjective, re-

quiring extensive expertise to identify malignancy. In particular cases, a Computer-Aided

Diagnosis (CAD) system based on Machine-Learning (ML) provides a suitable solution to

doctors. With the help of the CAD system, they can also compare their own decisions. As

doctors are human and fallible, this provides more reliable decisions, and this conjugates

two layers of decisions to provide extra satisfaction to patients.

275
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A few ML algorithms are available based on di�erent mathematical structures, a con-

cept which has been utilised for BC image analysis, especially image classi�cation. As

BC is the cause of death of thousands of women, the involvement of ML in breast-image

classi�er design always has a huge importance. Thousands of new histopathological im-

ages are regularly produced which need to be diagnosed by utilising existing algorithms

and new ones. As time goes on, new mathematical concepts and techniques are intro-

duced which are adapted and implemented for BC image classi�cation. With advances

being made in computational architecture and applied mathematics, the state-of-the-art

ML algorithms such as Deep Neural Network (DNN) and the Extreme Gradient Boosting

Algorithm (XGBoost) algorithm have recently provided a signi�cant improvement in data

analysis. Using their advantages and some enhanced modi�cations, this thesis describes

work which has classi�ed a set of histopathological BC images into Benign and Malignant

classes.

A DNN has the ability to extract global features as well as maintain hierarchical infor-

mation. However, object-oriented local textural and statistical features provide a signi�-

cant amount of extra information. Along with utilising global features, this dissertation

investigates how local features combined with global features perform histopathological

BC image classi�cation.

� In Chapter 3, the statistical and structural information of each image has been

clustered in an unsupervised way, and this clustered image is fed to the DNN model

for the image classi�cation. As a classi�er model we have utilised: a) Convolutional

Neural Network (CNN) model, b) Long Short Term Memory (LSTM) model, and c)

CNN-LSTM model for the image classi�cation. In the classi�er layer both a Softmax

layer and an Support Vector Machine (SVM) layer have been utilised individually,

with their performances compared.

� In Chapter 4, as a pre-processing step, we have utilised a Retinex �lter and applied
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a CNN model for image classi�cation. As the model we have utilised a) CNN model

b) Resnet Model and c) Min-Max model for this purpose.

� Chapter 5 provides a novel architecture where the two local features:

Histogram• Local Binary Pattern (LBP)•

have been extracted and then, along with the raw images, these features have been

provided as input to the CNN model for classi�cation. In the model, two parallel

branches of the CNN model have been created, where in each branch the input data

have been scanned through by a 5×5 random kernel to produce 16 feature maps.

Then those two branches are concatenated together, until at the �nal decision layers

a few similar subsequent branches have been created. This architecture shows that,

as a local feature, Histogram information provides better performance than LBP

features.

� As we know, frequency-domain information is also signi�cant. Utilising frequency-

domain information such as a) Discrete Fourier Transform (DFT) b) Discrete Cosine

Transform (DCT) we have classi�ed a set of histopathological BC images in Chap-

ter 6. Learning from scratch is always better than learning from a reference point.

A Recurrent Neural Network (RNN) utilises the mathematical concept where the

model always learns from a reference point. The LSTM and GRU (advanced engi-

neering of RNN) method has served in BC histopathological image classi�cation.

� Local features such as Histogram LBP, frequency-domain features, DCT and DFT

contain a signi�cant amount of information. In Chapter 7 we have extracted the

above-mentioned features along with the CT, and fed those features to the novel

CNN model for the histopathological image classi�cation. In the CNN model we

have utilised the Resnet model.
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� In Chapter 8 we have classi�ed a set of histopathological BC images employing an

unsupervised Deep Belief Network (DBN), which is created by stacking four layers

of RBM one after another, and lastly it is guided by unsupervised backpropagation.

For this we have utilised the Scale Conjugate Gradient method and as input we

have utilised a set of Tamura features.

� In Chapter 9 this dissertation gives an extensive analysis of how the XGBoost al-

gorithm performs for histopathological BC image classi�cation where Histogram,

LBP, Harlick and Tamura features have been utilised. The �nding of the XG-

Boost algorithm has also been compared with those of a few other available existing

classi�er algorithms. Among these four features Tamura features provide the best

performance with reference to Accuracy, Precision, Sensitivity, Receiver Operating

Characteristic (ROC), and F-Measure values.

In this chapter, we have performed a few Feature-Selection algorithms, such as a)

Filter and b)Wrapper, for �nding the most prominent features. It is found that

the concatenated feature vectors created by Contrast and Line-likeliness of the Red

and Blue channels provide 98.00% Accuracy. This feature-vector set has been found

when we utilised the Sequential Backward Selection (SBS) algorithm.

This thesis found that integration of both global and local features may enhance

the performance of the Deep Learning method for histopathological breast-cancer image

classi�cation (for the BreakHis dataset). However with proper preprocessing of the data

with a �ne tuning of the model, our methods can be utilised for the classi�cation of other

biomedical images such as X-ray images or other histopathological images.

10.2 Future Research Directions

In the future, research can be conducted on the following topics:
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� Utilising DNN models for automatic biomedical image classi�cation always su�ers

due to the non-availability of labelled training data, which can be solved by:

1. Data augmentation: In general and according to common knowledge, the more

training data is fed to the DNN model the better the performance that can be

achieved. New data can be synthetically generated, which is known as data-

augmentation. A few of the data-augmentation methods such as Cropping,

Rotating, Flipping, etc., can be performed to produce new synthetic data.

However, care should be taken to provide protection against the over-�tting

problem.

2. Transfer Learning: In a DNN transfer learning is the process where the knowl-

edge of one network is transferred to perform another task, where normally

the weights are shared. The models which are mostly utilised as inputs for a

transfer learning model so far are:

a) VGG Model by Oxford, b) Inception Model by Google, and c) ResNet Model

by Microsoft.

However, it is not wise to directly utilise the weight of the existing model for

solving new problems. The accuracy performance might be degraded due to

a negative weight transferring where the source knowledge is di�erent for the

target task. To avoid this and to obtain a reliable output the newly created

network requires �ne tuning for adjustment of the weight.

� Ensemble techniques: Ensemble is a well-known method where the classi�er pro-

vides a decision based on comparing a few of the available classi�ers' model outputs.

Ensemble methods for the CNN model are not explored in detail. Instead of creat-

ing only one CNN network a set of CNN models can be created and their results

combined in an ensemble to get the output. A CNN model can also be ensembled
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with other classi�er models such as RF to provide output decisions.

� Commercialisation: All the models based on CNN and LSTM in this thesis have

been developed utilising the TensorFlow or Keras platform in a desktop computer.

As both the CNN and LSTM methods are computationally expensive, we have

utilised a Graphical Processing Unit (GPU) at the back end. These models can be

accessible through a mobile or a light device, and can be used as a mobile diagnostic

system if we can adapt our system for a low-computational device. For this there is

scope to extend this work to make it applicable to light mobile devices by providing

a light CNN and LSTM model. Instead of performing the computational operation

in a central computational system, the computation can be done in a cloud-based

system.

� Extreme Learning (EL): EL is another variety of the NN model which can be consid-

ered as shallow deep learning. In future, EL and the CNN model can be combined

to create a light CNN model.

� Data Reduction Techniques: In this dissertation we have investigated Feature-

Selection techniques to determine the important features. A few data-reduction

techniques are available such as: a) Principal Component Analysis (PCA), b) Lin-

ear Discriminant Analysis (LDA), c) Auto-encoder. They can all be used for further

data reduction.
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List of Abbreviations

AI Arti�cial Intelligence

ALBP Average Local Binary Pattern

ANOVA Analysis of Variance

ASM Angular Second Moment

BC Breast-Cancer

BI-RADS Breast Imaging Reporting and Data System

BRIEF Binary Robust Independent Elementary Features

BBLBP Block Based Local Binary Pattern

BW Bandwidth

CAD Computer-Aided Diagnosis

CAT Computer-Aided Tomography

CLBP Completed Modeling of Local Binary Pattern

CNN Convolutional Neural Network

CPU Central Processing Unit

CS Chi-Square

CT Curvelet Transform
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DBN Deep Belief Network

DCT Discrete Cosine Transform

DDSM Digital Database for Screening Mammography

DNN Deep Neural Network

DFT Discrete Fourier Transform

DoE Di�erence of Entropy

DoG Di�erence of Gaussian

DoV Di�erence of Variance

FNR False Negative Rate

FCM Fuzzy C-Means Clustering

FPR False Positive Rate

FAST Feature From Accelerated Test

FS Fisher Score

GAN Generative Adversial Network

GLCM Gray-Level Co-Occurrence Matrix

GLRM Grey-Level Run-Length Matrix

GRU Gated Recurrent Unit

HBD Hessian Blob Detector

HD Harris Detector

ID Input Dimension

KM K-Means

LBP Local Binary Pattern

LSTM Long Short Term Memory

LPQ Local Plane Quantisation

LoG Laplacian of Gaussian

M.C.C Matthews Correlation Coe�cient
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MSE Mean-Square Error

MI Mutual Information

MIAS Mammographic Image Analysis Society

ML Machine Learning

MRI Magnetic Resonance Imaging

MS Mean Shift

NB Naive Bayes

NN Neural Network

ORB Oriented FAST and rotated BRIEF

PCA Principal Component Analysis

QDA Quadratic Discriminant Analysis

ReLU Recti�ed Linear Unit

RF Random Forest

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

ROI Region of Interest

SBS Sequential Backward Selecion

SFS Sequential Forward Selecion

SIFT Scale Invariant Feature Transform

SOM Self Organising Map

SONAR Sound Navigation and Ranging

SURF Speeded-Up Robust Features Descriptor

SoA Sum of Averages

SoE Sum of Entropy

SoV Sum of Variance

SSoV Sum of Squares of Variance
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TS Time Steps

TNR True Negative Rate

TPR True Positive Rate

SUSAN Smallest Univalue Segment Assimilating Nucleus

SVM Support Vector Machine

VLAD Grassmannian Vector of Local Aggregated Descriptor

XGBoost Extreme Gradient Boosting
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