
RADAR EMITTER RECOGNITION USING

HIERARCHICAL FEATURE EXTRACTION WITHIN

MAGNITUDE AND FREQUENCY DOMAINS

By

Robert A. Newport

BS California State Polytechnic University, Pomona
MSE Carnegie Mellon University

A THESIS SUBMITTED TO MACQUARIE UNIVERSITY

FOR THE DEGREE OF MASTERS OF RESEARCH

DEPARTMENT OF COMPUTING

JULY 2019

EXAMINER’S COPY

mailto:robert.newport@hdr.mq.edu.au
http://www.mq.edu.au/


ii

c� Robert A. Newport, 2019.

Typeset in LATEX 2".

mailto:robert.newport@hdr.mq.edu.au


Statement of Originality

This work has not previously been submitted for a degree or diploma in any university. To the best

of my knowledge and belief, the thesis contains no material previously published or written by

another person except where due reference is made in the thesis itself.

(Signed) Date:

Robert A. Newport

iii

mailto:robert.newport@hdr.mq.edu.au
Rob Newport
July 29, 2019



Acknowledgements

Firstly, I would like to thank my family for their encouragement through my studies, especially my

mother who provided support for me despite her own challenges recovering from breast cancer.

I would like to thank Defence Science and Technology Group, Adelaide, specifically Mr Mark

Cooke for spectrogram data used in experiments and feedback during key phases of research, and

Mr Ross Kyprianou for his advice and feedback through much of the work. Their role as mentor

and advisor helped keep the thesis on track.

I would like to thank John C. Wise with Radars UK 1 for access to a sample of 100 radar emitter

Pulse Descriptor Words. This data was critical during the research of traditional radar emitter

recognition techniques due to the scarcity of public information online.

Finally, I would like to thank my supervisor, Professor Len Hamey, for his encouragement

during my application, and guidance throughout the preparation of this thesis. His unwavering

encouragement and superb knowledge of signal processing was a beacon through the fog of radar

emitter recognition material.

1Website: http://www.radars.org.uk

iv



Abstract

Radar Emitter Recognition (RER) is used in Electronic Warfare (EW) to avoid being detected during

stealth operations, or to detect specific radar installations for targeting in an offensive campaign.

Its role in both offensive and defensive measures make it a critical component within the scope

of a larger Electronic Countermeasure (ECM) strategy. Radar spectrograms are captured from

emissions, measuring frequency and power over time. The emission samples vary in the amount of

time spent in each frequency, making a single approach to feature extraction ineffective. This thesis

attempts to address RER challenges using modified radar signals from spectrograms sampled from

five different classes, each containing 250 unique examples. A hierarchical approach is used where

spectrograms with fewer time intervals have their features extracted from the magnitude spectrum,

while signals with more time intervals have features extracted from the frequency domain. Both of

these feature extraction methods are tested using k-Nearest Neighbor (kNN) and Support Vector

Machine (SVM) algorithms. Experiments show that the hierarchical approach to feature extraction

is a viable new way of thinking about spectrogram based RER.
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“All warfare is based on deception. Hence, when we are able to

attack, we must seem unable; when using our forces, we must

appear inactive; when we are near, we must make the enemy

believe we are far away; when far away, we must make him believe

we are near.”

Sun Tzu, The Art of War

1
Introduction

The basic operation of radar is to send an electromagnetic pulse from an emitter and measure the

time it takes for it to return to a receiver. The time delay can be used in calculations to determine

the distance and trajectory of a distant object. Radar systems can detect weather patterns, vehicle

speeds, aircraft locations, and many other things depending on their function and purpose[3]. In

a military setting, radar emitter detection maintains a critical role in battlefield intelligence[4].

1.1 Radar Emitter Recognition Beginnings

In the field of Electronic Warfare (EW), Radar Emitter Recognition (RER) can prevent a radar

guided surface-to-air missile (SAM) from reaching its target[5]. Not only is recognition critical

for identifying radar emitters for battlefield intelligence, but also for the jamming of these signals

for stealth[4]. These cat-and-mouse style games were primarily developed during, and after,

1



2 INTRODUCTION

America’s Vietnam War following an attack by Soviet-made Surface-to-Air SA-2 missiles that shot

down a US$5.5 million RA-5C reconnaissance aircraft[6]. This event motivated staff1 to head

a Blue Ribbon Air Staff Task Force in charge of developing what was to evolve into Electronic

Countermeasures (ECM) and Electronic Counter-Countermeasures (ECCM), for both the avoidance

of radar detection through trickery, and the avoidance of the trickery itself. The first attempt at

real-time battle-ready RER systems was seen in project Wild Weasel[6] where military jets tracked

the polar trajectory of incoming surface-to-air missiles and drew rocket fire while other jets could

conduct their bombing runs. The few moments of advanced warning these early radar detectors

provided were often enough to allow pilots to deploy reflective metallic chaff in order to create

deceptive radar returns, or to fly evasive maneuvers[3].

1.2 Traditional Features in Early Radar Detection

As radar technology advanced through the 1970s, a more diverse range of emitter signals launched

a new standard for categorizing radar features. Traditionally, automatic RER uses tabulated Pulse

Descriptor Words (PDW) to train a classifier to identify signals using a handful of the emitter’s signal

features, such as its pulse width and amplitude[4]. PDWs are the unique characteristics of different

emitter signals that are extracted manually by a radar intelligence operator or, more contemporarily,

done automatically through an algorithm[4]. This classification process would require a catalog of

PDWs and the ability to use attributes to exclude candidates until a small set of possible emitters

are left[4]. In-flight systems for automatic emitter detection during field operations have also been

developed, followed concurrently with electrical engineering and software development. Accuracy

was susceptible to signal to noise ratios more challenging than 10 dB, as shown by the scarcity of

research tests reported beyond that value[7].

In contemporary research, identification involves training a machine learning algorithm to

classify features extracted from the sampled waveform. This is a challenge due to emission

complexity; therefore, generalization of the data is required to provide features for training that

do not succumb to data sparsity, which is the loss of statistical relevance due to signal data

1Director of Operational Requirements and Development Plans, U.S. Air Force Headquarters Brigadier General K.C.

Dempster
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being spread thin over a large dimensional space[8]; defined by the number of time samples and

frequency bins. Utilizing the entire sample instead of just PDW characteristics of an emitter allows

for a customized and novel approach to feature extraction, with the possibility of greater noise

resilience.

Moving away from PDWs as features, intrapulse characteristics of waveforms are being scruti-

nized using fractals and entropy based calculations to extract energy characteristics of specific

waveforms for increased accuracy in prediction[9, 2]. New research is leaving PDWs behind

in favor of pursuing the opportunity for novel approaches to emitter recognition using various

techniques for generalizing an emitter’s signal[10]. However, since so much of the initial research

was done using established PDW features for developing classifiers in lieu of exploring new features,

there exists a lot of opportunities for novel feature extraction techniques while still using traditional

classifiers. This will leverage established knowledge while providing a fresh approach to prediction

and training that could yield greater accuracy and noise resistance through the development of

new feature extraction methods.

1.3 Extracting Features from Spectrogram Samples

At its most simple, a spectrogram is a measure of how frequencies vary in strength over time[11].

Radar emissions vary greatly in frequency and power over time, with different time intervals

revealing characteristic changes in frequency and time. The aim of this thesis is to develop feature

extraction from radar spectrograms to provide a classifier agnostic process for signal prediction.

The constructed radar samples are generated from a database of 250 in-phase and quadrature-

phase (IQ) data fed through an algorithm, modifying the signal to add attributes such as noise.

The IQ data show the changes in the phase and amplitude of a radar signal, in order to capture

unique signatures in a radar waveform. The phase and amplitude changes parsed from sample

attributes make up the modulation profile, which is assembled into a spectrogram. This thesis

proposes waveform features as a replacement of PDW characteristics for the purpose of prediction

using an arbitrary classifier.

The scope of this study focuses primarily on spectrogram data from five different signal classes:

Continuous Wave (CW), Frequency Modulation (FM) Linear Up, FM Asymmetric Up, FM Symmetric
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Up, and FM Triangle Up. The signals contain varying numbers of time intervals, different degrees

of detail over the frequency excursion, and samples with noise within each cohort. The innovative

concept introduced in this thesis is a hierarchical approach to features extraction for samples

with long and short time intervals. Shorter intervals revealing greater changes over the frequency

spectrum will have features extracted from a graph of the signal power over frequency, whereas

samples with longer time intervals will have features extracted from a graph of frequency over

time. The purpose of this approach is to increase the separability of the features, increasing

overall accuracy using any modern classifier. Testing will implement Euclidean distance K-Nearest

Neighbor (kNN) and linear Support Vector Machine (SVM) classifiers using features created by

the methods described in this thesis. With an understanding of how this hierarchical approach

increases waveform separability, future work can continue improving the methods used to extract

features, making this study an extensible platform for continuing research.

1.4 Overview

The aim of exploring classifier agnostic feature extraction methods will be accomplished through the

following high level steps: exploratory data analysis of the simulated radar samples, examination

of waveform characteristics at both long and short time intervals, and interpolation methods

for optimizing dimensionality of frequency and magnitude subsamples. The thesis starts with

a Chapter 1 Introduction, followed by a Chapter 2 Literature Review, covering contemporary

research using non-traditional feature extraction methods, providing a context for where this

research fits within the field. This should prepare the reader for Chapter 3 Methods, introducing

the spectrogram data, with an exploration of axes, parameters, and plots. The methods used to

extract features from the samples are also described here. Chapter 4 Results explores how the

extracted features can be used with kNN and SVM classifiers with an analysis of classification

accuracy. A confusion matrix provides insight into limitations and strengths for each feature model,

which provides data for discussion within the chapter. Finally, Chapter 5 Conclusion outlines how

well the study has achieved its aim, limitations, and the opportunity for future work.



“Be extremely subtle even to the point of formlessness. Be extremely

mysterious even to the point of soundlessness. Thereby you can be

the director of the opponent’s fate.”

Sun Tzu, The Art of War

2
Literature Review

The increasing penetration of computers and software systems in the late 1960s and early 1970s

provided a capability to quickly compute probabilities for matches from a database of characteristics,

provided those features were organized uniformly for database storage[6]. In 1972 the ALR-45,

based on a CPU and software architecture model implementation, was able to execute probability

statements[6] based on Pulse Repetition Interval, Pulse Coding, Frequency, Pulse Width, and

other emitter-specific attributes. This system worked exceptionally well, and lead to a 1976

patent[12] explicitly outlining the importance of "digital words" to simplify the processing of emitter

recognition by organizing various Radar attributes into comparable waveform characteristics. As

the pursuit of radar emitter recognition advanced, the digital words described in this patent become

known as Pulse Descriptor Words in the Electronic Warfare research field[4].

5



6 LITERATURE REVIEW

2.1 Traditional Features in Early Emitter Recognition

The increased use of descriptors can be seen as a product of the technology used to exploit

them. Increased storage requirements for descriptor sample data of radar emitters made accurate

automatic recognition an increasing possibility if clusters of those features could be compared in

a statistical manner on a computer. The jump into CPU and software based Radar devices such

as the ALR-45 were a bridge that compelled Applied Technology to cross from a circuit design

company to a computer sciences company[6]. The use of a descriptor format illustrates how Radar

Emitter Recognition technology could fit into an emerging software framework by leveraging an

efficient data structure to store and retrieve features.

2.1.1 Pulse Descriptor Words in Detail

In the same way that buildings, mountains, tanks, and aircraft carriers reflect light, they also reflect

radio waves. Like light, a portion of radio waves emitted from a Radar transmitter are bounced

back[3]. At its most rudimentary, a Radar receiver can calculate the length of time it takes for

a round trip between transmission and reception to determine the distance a target is from the

device. Different factors affect attributes of the Radar signal, including its range, resolution, and

strength. These factors could include transmission power, transmission duration, antenna size,

number of search scans of the area, wavelength, and different types of pulse compression[3].

Traditional methods used in a priori database filtering for identifying Radar signals include

the following five classic parameters[13]: Pulse Width (PW), Direction of Arrival (DOA), Time of

Arrival (TOA), Pulse Amplitude (PA), and Radio Frequency (RF). These parameters operate in

Electronic Warfare systems at 500k to 1M pulses per second[14] making parsing computationally

expensive. A traditional format used to describe an emitter is the Pulse Descriptor Word (PDW),

which may contain some or all of these parameters[4]. Traditionally, these five classic parameters

are packed into a PDW, an Electronic Warfare receiver sends them to a pulse-sort processor for

Pulse Repetition Interval (PRI) identification and modulation isolation. The PRI is a calculation of
1

PRF where the PRF is the number of frequency pulses per time unit, normally measured as one

second[4]. They are then compared to an existing emitter database[15]. Random modulations,

produced by hardware amplifiers and power fluctuations, such as jitter, stagger, and switching
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aberrations, may interfere with the correlation of emitter data, causing final identification to

generate an emitter list with a variable recognition score. To improve these scores for emitter

recognition, researchers in the field use machine learning to increase the efficiency and accuracy

of the Electronic Warfare recognition process.

2.2 Beyond Traditional Features

As described in Section 2.1.1, Pulse Descriptor Words were a traditional format used in a priori

filtering and classification of radar emitters during the inception of recognition research. However,

with the dense battlefield of agile radar emitters able to artificially stagger and jitter pulse repetition

intervals on a pulse by pulse basis, the need for more research is becoming increasingly urgent.

This section introduces the reader to contemporary techniques in feature extraction for machine

learning. Feature extraction can be generalized into the following three categories[7]: 1) the five

classic PDW parameters matched with a priori waveform data, 2) waveforms as inputs for deep

learning, 3) waveform intrapulse signals for feature analysis. The five classic PDW parameters in

1) were explained in Section 2.1.1 as a background to the RER field. A break from the reliance on

the five traditional parameters by many of the contemporary research papers included in this study

implies that research into individual radar features is becoming increasingly popular, especially

since many traditional methods can barely meet the requirements of warfare with signal-to-noise

performance not greater than than 10 dB[7]. Deep learning in 2) will not be covered in this thesis

since the focus is narrowed down to how feature extraction performs using kNN and SVM, with

classification performance being a gauge of feature extraction success rather than an end goal.

However, this study will scrutinize waveform intrapulse signals, the final item 3) of the three

categories, during the data exploration phase of this study.

2.2.1 Intrapulse Information

Modern radar emitters have the ability to artificially jitter and stagger consecutive Pulse Repetition

Intervals (PRI). This ability portends that relying on the classic PDW parameters for features in

emitter recognition will become increasingly inadequate. Researchers looking for other features
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FIGURE 2.1: FM Triangle Up intrapulse frequency detail over the magnitude spectrum.

of emitter waveforms are currently exploring the details within the structure of each pulse,

otherwise known as intrapulse information. Researchers, including Ming-Qiu Ren et al’s kernel

PCA analysis[16] are finding that the time-frequency structure of contemporary radar waveforms

is where many distinctive features are hidden. This information could contain features hidden

in the frequency domain, which may be revealed in the magnitude spectrum. Figure 2.1 shows

intrapulse details over the frequency excursion separated into differently colored time intervals.

Intrapulse features can include waveform attributes such as the rise time and angle, time of

slope and fall, angle of fall, and line of regression[17]. Reducing the feature set to eliminate

uninformative and redundant features is highly specific to the waveform since many different types

of signals will contain different significant intrapulse data. One way to encapsulate intrapulse

features is to use quadratic time-frequency distributions (TFD) as is demonstrated by Ren et al[16].

In this study, a feature set is derived from time-frequency images to maximize extraclass variations

and minimize intraclass ones. Then, using kernel principle component analysis (KPCA), features

were obtained in low dimensional space in order to reduce computational load, and kept highly

discriminative in order to maximize accuracy.

A different method to maximize accuracy while tolerating changes to signal to noise ratio

extracts the Wigner Trispectrum (WT)[18] of a captured waveform, extracted and simplified into

2D features for the extraction of coefficients, for differentiation between emitter signals. Since

the WT is not noise sensitive, signal to noise ratios between 10 dB and 5 dB have shown accuracy
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FIGURE 2.2: Box Dimension used to solve the measurement of the British Coastline[1].

between 99.875% and 92.375% respectively, while signal to noise ratio above 15 dB resulted in

100% accuracy among the 8 simulated radar emitters[18].

Intrapulse modulation analysis plays an interesting role in feature extraction for sparse repre-

sentation based classification because the sparse approximation of the signal becomes its class

label. This means that the number of features replaces the choice of features as being the critical

factor in maintaining accuracy. Xie’s research in Robust intra-pulse modulation recognition via

sparse representation[19] demonstrated accuracy between 90% and 99% at a SNR between 6 dB

and 8 dB using a dictionary learning method for representing each type of modulated pulse.

2.2.2 Fractal Dimensions

The fractal dimension of a signal describes the statistical index of the complexity of a waveform

as the scale in which it is measured changes[20]. It is particularly well suited to quantitatively

describe the distribution information of individual envelope waveforms[9]. By using this method,

spurious modulations could be used as features using the Minkowski-Bouligand dimension, also

known as the Box counting Dimension (BD), to classify individual signal envelopes.

BD has been used as a theoretical measure of the coast of Britain, as illustrated in Figure

2.2, solving the confounding problem of infinite distance as the measurement is scaled closer to

the coastline[21]. Similarly, the scales of irregularity and complexity in the signal envelope are

characterized using the BD as a time series. A unit square method is used to compute the BD in the

study by Xu et al[9]; advanced computational power in the future will facilitate the implementation

of more complex algorithms including the Kompasu method and the Brown model. Recognition
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FIGURE 2.3: Novel features can be found in the front edge of a pulse envelope[2]

accuracy of 68.8% to 70.9% in the study showed higher accuracy rates compared to moments-based

feature extraction[9]. Rates were slightly lower than the much more computationally expensive

Square Integral Bispectra (SIB)[22] with 70.0% to 73.8%. These results demonstrate that fractal

dimensions can be used in RER research.

As an alternative to BD, Correlation Dimension (CD) is much simpler and less computationally

expensive and can be obtained from sampling the signals directly[23]. A Genetic Programming

(GP) algorithm calculates the correlation dimension by first preprocessing radar emitter signals

using the Fourier transform, normalizing signal energy, and then solving the normalization and

center frequency of bandwidth. The process then involves resampling the signal in order to make

all the signals the same length. This prevents signal length from altering correlation calculations.

Finally, the signal is reconstructed in phase space[23].

In addition to the BD, the Information Dimension (ID) of the front edge of a pulse envelope

can be a novel area for feature extraction. The front edge is used primarily because it is insensitive

to multipath effects compared to other parts of the pulse envelope. Though, distortions in the

envelope can also occur with noise and fading in the channel[2]. The definition of the rising edge

is the intrapulse segment of the waveform where the pulse begins to rise from 10% to 90% of the

ascending pulse amplitude, whereas the front edge includes both the rising edge and a portion of

the pulse peak segment as shown in Figure 2.3. The three step process to isolating features using

this method begins with preprocessing. This includes resampling of the short front edge waveform

feature using an interpolation technique. These could include spline, linear, nearest neighbor,
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sinc, polynomial, or Gaussian interpolation. The purpose of the interpolation is to enhance the

convergence of the fractal calculations since the front edge signal lengths are usually short. After

adequate interpolation is applied to normalize the signals, a BD of the front edge’s pulse envelope

is calculated. The BD represents the geometric scale of the fractal waveform. Finally, the BD of

the front edge of the pulse envelope is introduced to illustrate the fractal set’s spatial distribution

information. Using High Order Moments to sort signals, the front edge fractal feature extraction

method was able to achieve 97.74% to 98.84% accuracy on simulated signals and 95.9% to 96.5%

accuracy using hardware generated emitter signals[2].

2.2.3 Extents as features

Scale Invariant Feature Transform (SIFT) can be used to find interesting points in an image[24];

however, if the features are to be used in machine learning, it is important that they are in high

contrast regions of an image, such as edges, so they can be detectable under changes in lighting

and scale. SIFT can be used to extract features from preprocessed waveforms for the purpose of

emitter recognition[25] by first obtaining a time-frequency analysis of the emitter signal. The

preprocessed 3D time-frequency result is then normalized into a 2D grayscale image. Finally, SIFT

position and scale features are extracted from a Gaussian difference pyramid of the grayscale image.

Scale features can be used to suppress noise features. With the features successfully extracted,

a Support Vector Machine, or any other machine learning process, can be used to automatically

identify radiation sources based on SIFT position features. Recognition rates up to 0 dB signal to

noise ratio are above 90% using SVM with SIFT based feature extraction[25], making this method

particularly effective in noisy environments.

As an alternative to SIFT, the distance between the curves of multiple waveforms can be

calculated using Frechet distance and used to measure the distinct features among different

emitter waveforms. The distinctions are hidden in the time-domain structures of the instantaneous

frequency and pulse envelope, both of which are features adopted in the research conducted by

Chen et al[26]. After the Frechet distances for both instantaneous frequency and pulse envelope are

calculated, they are compared to Hausdorff[27] and Dynamic Time Warping (DTW)[28] distance

calculations for similarity. Finally, a minimal distance criterion makes the decision about the

relationship between each class and the test feature vector. Tests using Frechet, Hausdorff, and DTW
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showed superior results for Frechet distance using 1000 fingerprint vectors with computational

complexity being on par with the other distance algorithms.

Unlike the geometry dependent SIFT and Frechet methods, waveform distribution character-

istics can be used to describe features in a waveform using entropy. Entropy is defined slightly

differently in all the fields that use the term which originated from the German physicist Rudolf

Clausius who proposed the idea in 1865. Used in emitter feature extraction, Singular spectrum

index entropy, Shannon entropy, and Singular spectrum Shannon entropy features can be used to

describe radar signal waveform distribution characteristics[29]. In statistical thermodynamics, en-

tropy is defined as the degree of disorder in a system, with less disorder meaning less entropy[30].

Therefore, the entropy function can be “a function of the n-dimensional probability vector” when

there are N probabilities that sum to 1, with each probability being between 0 and 1[29]. Changing

the Fast Fourier Transform (FFT) algorithm allows straight forward switching between entropy

types. Using a neural network classifier on four kinds of signals, 100% accuracy was achieved at 0

dB SNR with 84% at -5 dB and 66.5% at -10 dB.

2.3 Conclusion Summary of Literature

In current research, experiments are focused on a small set of modulation modes in low noise

settings. Focusing on other modes like CW, NLFM, FDK, or PSK[9] and achieving higher accuracy

with signal to noise ratio below 10 dB would be a natural next step, since most Radar Emitter

Recognition methods cannot achieve adequate warfare level accuracy below 10 dB SNR[7]. In

cases where noise is introduced into samples, many tests only include Gaussian white noise[31],

which may imply that the methods contained within the experiment are not suitable for other types

of noise. Current research appears to focus on basic features within the waveform, neglecting

combined or unique features[32] within specific waveform types. Compared to the classical five

parameters for a piori waveform table prediction, analysis has shown that features are not a priori

predictable, and that the more extracted features are available, the better the performance will be

in radar recognition[33, 34, 35]. New research should focus on greater accuracy in high noise

environments (below 5 dB SNR) with varying Pulse Widths of five or greater radar types.



“Attack him where he is unprepared, appear where you are not

expected.”

Sun Tzu, The Art of War

3
Methods

As seen in the Literature Review, most new research either focuses on new classifiers using the

old Pulse Descriptor Word (PDW) standard, or examines radar waveform features with specific

classifiers in mind. Therefore, research opportunities exist where captured radar signals can be

examined for features which can be used for recognition using any machine learning algorithm.

This chapter postulates that accurate prediction can be achieved through a hierarchical approach

to feature extraction, and that this could lay the foundation for improved interpolation and gener-

alization in future research. The methods described in this chapter exploit different dimensions

of a sampled spectrogram depending on the number of time intervals it contains. The resulting

features are shown to provide accurate prediction when used with traditional machine learning

classifiers.

The spectrogram matrix samples in each class contain multiple rows each representing a

time interval, with Nf f t number of columns each representing a frequency. Each cell contains

13
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a magnitude value representing the power at its frequency position. This paper claims that by

changing the way features are extracted based on the number of rows, a greater degree of accuracy

can be achieved when using traditional machine learning classifiers. In samples where there are

few rows, a conversion into the frequency domain will yield few data points, therefore a different

approach is taken where the max power per column is used as a feature. Alternatively, when a

large number of time intervals are contained in a sample, the frequency domain provides a better

degree of feature separability than the magnitude spectrum. The mid point between few and many

time interval rows was determined empirically through experimentation to be 12.

3.1 Method Overview

In order to evaluate the feature extraction methods described in this chapter, two classifiers

representing different interpretability and complexity are examined. Support Vector Machine

(SVM) produces decision surfaces in high dimensional space, while K-Nearest Neighbor (kNN)

develops representative values as the mean of features. When trying to choose between models,

the best is both the simplest and most representative[36]. However, the aim of this thesis is to

find how the feature extraction methods perform best under both these classifiers. Optimizing

classification through manipulation of the model is outside the scope of this thesis. If SVM cannot

substantially outperform kNN, and if kNN prediction accuracy remains high, the preferred classifier

for the extracted features would be kNN, indicating a high reliance on the mean of representative

values. However, this may also indicate that the data set may be overly homogeneous, making the

extraction method susceptible to unknown edge cases in future data samples[37]. Best results using

SVM will indicate that feature extraction is dependent on high dimensional space. A confusion

matrix, and Monte Carlo Cross validation, both described in later sections, will be used to mitigate

the risks associated overfitting, where training is too tightly connected with a specific set of data,

making it less accurate when making predictions outside its training set cohort[38].

3.2 Simulated Radar Spectrogram Data

A spectrogram is a representation of a signal and has been used to graphically communicate

data ranging from auditory samples to stock market fluctuations. In radar processing, time and
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frequency are the most important variables[39] used to describe a signal. As shown in Figure 3.1,

spectrograms are often expressed as a color coded graphical plot with frequency and time as the X

and Y axes, and a color spectrum representing power, a radar spectrogram typically illustrates

the signal power and frequency distribution over time. The spectrograms included in the data set

are the result of an analysis of electromagnetic radar frequencies representing “a time-frequency-

intensity display of the short-time spectrum"[40]. Using a fast Fourier transform, radar pulse

measurements in the time and frequency domains create a cohesive visual representation of the

signal. Noise and other signal disturbances like jitter and stagger are easily visible in spectrograms

making them a useful diagnostic tool to facilitate an improved understanding of these unwanted

transient perturbations[41].

Simulated radar spectrogram creation details are outside the scope of this research. However,

at a high level, the construction consists of an algorithm that uses sinusoids that are amplitude-

modulated as in-phase and quadrature (IQ) components in a complex matrix, with radar specific

pulse descriptor variables like pulse repetition interval and duration, along with arbitrary variables

such as Signal to Noise ratio (SNR) and the N� length1 of the signal used in the Fast Fourier

Transform (NF F T )[4]. NF F T determines the number of signal samples and the number of frequency

bins in each row of the spectrogram, which means that it also determines the sampling interval of

the spectrogram; therefore the NF F T ensures that all compared samples, regardless of their time

interval, are the same size[11].

Parameters inside each simulated radar sample include raw signal in-phase and quadrature

(IQ) components composed of complex numbers, modulation characteristics, noise parameters,

and signal length[4]. Table 3.10 lists the simulated waveform classes used in the test data set.

Additionally, in order to test the impact of noise, random Gaussian noise with a signal to noise

ratio of 0 dB is introduced to study the impact it has on prediction accuracy.

Generated spectrogram data NF F T in this thesis are all 1024 ⇤ 2 in length, with the negative

half of the spectrum culled from the dual-sided FFT during sample processing. Spectrograms are

time-stacked and set with parameters, including NF F T as a parameter, to an input sample rate,

with each sample taking Ts seconds. Each row is therefore Trow = Ts ⇤ Nf f t seconds.

1NF F T is not to be confused with the Inverse of the FFT, bearing the same name in some software packages.
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FIGURE 3.1: FM Linear Up -6dB, 0dB, and 6dB SNR.

3.2.1 Spectrogram Signal to Noise Ratio

The signal to noise ratio (SNR), at its most basic, is a dimensionless ratio of wanted to unwanted

signal as shown by Equation 3.1.

SNR= Ps/PN (3.1)

White Gaussian noise is used to create a SNR at 0 dB by randomly creating a signal with varying

frequencies and equal intensities. The equation of power and frequency with the random signal

as shown in Equation 3.2 ensures that a constant power spectral density is maintained. Figure

3.1 below shows FM Linear Up sample number 101 at SNR -6dB, 0dB, and 6dB with a floor of

-84 dB. A spectrogram with 0 dB has equal amounts of noise and signal power over the whole

spectrogram matrix.

SNR=

R
s2(t)d t

N0/2
(3.2)

A risk when using artificially categorized data is the creation of artifacts, which are unintended

artificial patterns. The digital signals provided were sampled at a fixed rate and converted to

spectrograms with NF F T = 2048 sample bins per time interval. Figure 3.2 (left) shows a sequential

plot of the number of time intervals per sample. It illustrates how the time intervals start small

and get higher, peaking at the highest time interval every 50th sample. If training only sampled

high time interval spectrograms, either by design or by accident, these artifacts would be prone to

poor classifier performance, causing poor accuracy even with highly separable features. These
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FIGURE 3.2: Repeating number of data rows per sample (left), histogram of row count per sample (right).

patterns could be formed from gradually increasing magnitudes in sequences of IQ data, groupings

of data with time periods of similar duration, or any other artificially organized sequence of data

by attribute. This artificial grouping could create problems during extraction and training by

amplifying homogeneous traits in the data, distorting accuracy when using test data within its

grouped cohort. This can be seen as both a false negative prediction, described in the next section,

when a cluster of samples, which happen to share artificially similar attributes that are atypical to

their class, are trained in a model used to detect a sample outside of that cluster. Alternatively,

artifacts could reduce the prediction accuracy if a homogeneous cohort within the sample class is

trained and tested within itself. Random selection and cross validation will be used to mitigate

artifact issues during testing in order to break these potential patterns. This will be accomplished

by shuffling the order of the 250 samples and then splitting data samples into an exclusive testing

and training cohort set from the shuffled data for use in a Monte Carlo Cross Validation testing

procedure explained earlier in the Section 3.5.2.

3.2.2 Exploratory Data Analysis

Exploratory Data Analysis (EDA) is best defined in polarization with Initial Data Analysis (IDA).

EDA looks at general characteristics of the data, including its structure and spread. IDA takes

a more focused and narrow approach, looking at missing values and sparsity. An example of

IDA used to examine data sparsity would be an inventory of missing values in a Pulse Descriptor

Word database. A large number of missing values would decrease the statistical relevance of the
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value as a parameter, thus making the values sparse. An option here is to remove the value as a

feature to increase statistical relevance with the remaining less sparse values. Unlike IDA, EDA

methods focus more on overarching data structures[42]. This examination focused on both a plot

of histogram view versus time periods, and standard deviation versus time period. The goal was

to find where the frequency excursions cluster, with the goal of exploiting the structures in each

cluster as features.

3.2.3 Waveform Class Descriptions and Shape Geometry

Figure 3.3 illustrates five classes with different Signal to Noise ratios, representing the test samples

representing different types of basic waveforms used in radar. The first class is Continuous Wave

(CW), which is characterized by a constant frequency and amplitude. CW is one of the earliest types

of electromagnetic waveforms used in early wireless Morse code transmission, where signals were

switched on and off through a sinusoidal transmitter. The rest of the classes encode information in

the carrier waveform through Frequency Modulation (FM). The shape of the waveform modulation

is how the class is named. For example, FM Symmetric Up contains mirrored frequency changes

from its peak frequency whereas FM Linear Up displays linear changes in a singular direction.

Shape geometry for each class can be seen in Figure 3.3, representing spectrograms with no noise.

3.2.4 Spectrograms Coherence

Due to the increasing dimensionality of the spectrogram as NF F T increases, it suffers from the

"Curse of Dimensionality" where the increasing volume of space causes the data to become sparse,

reducing its statistical significance[43]. Too few features will result in less accuracy. Learning

methods are confounded by too much variance[44], especially if the majority is comprised of pulse

modulation as is often seen in radar samples. Figure 3.4 illustrates this "Curse of Dimensionality"

with the figure top right showing a high number of superfluous signals accumulating in the center

of the magnitude spectrum.

In radar samples included in this study, spectrogram rows represent time bins that range from

2 to 966 rows per time-frequency matrix. Figure 3.2 shows a histogram view of row counts per
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FIGURE 3.3: Spectrogram Samples for each class, CW (top left) displaying a faint red vertical straight
line, FM Asymmetric Up (top right), FM Symmetric Up (middle left), FM Linear Up (middle right), and FM
Triangle Up (bottom). Signals in these figures have no noise and are NF F T = 2048 as a parameter of the
frequency conversion process described in more detail in Section 3.2.
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FIGURE 3.4: Samples 202 (left) and 81 (right), magnitude spectrum (top) and frequency domain (bottom).

sample, showing a large number of samples contain fewer than 100 time intervals. As rows

increase, details begin to emerge, revealing feature shapes within the changing frequency over

time, as seen in Figure 3.5. With very few time bins, samples with few spectrogram matrix rows

become harder to differentiate when viewing them as Frequency versus Time. We can see this

exhibited in Figure 3.5 where the spectrogram for both FM Symmetric Up (left) and FM Triangle

up (right) in the top row look very similar but in the bottom row are easily visually distinguished.

This is due to the top row containing samples with only 4 time intervals whereas the bottom row

samples contain 36.

The frequency domain is a frequency versus time plot, whereas the magnitude spectrum is

a plot of frequency against its power[3]. In cases where there are few time bins, the frequency

domain may not reveal enough details about the signal shape to make an accurate prediction of
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FIGURE 3.5: Samples with 0dB SNR, FM Symmetric Up (left), FM Triangle Up (right), low time interval
(top), high (bottom).

signal type. For example, in Figure 3.4, the magnitude spectrum conversion of Sample 202 on

the top left contains more salient data points compared to the relatively sparse frequency domain

version on the bottom left. Alternatively, in Figure 3.4, the frequency spectrum conversion of

Sample 81 on the bottom right shows a greater number of separable data points than its magnitude

spectrum seen top right. The significant difference between these two samples is that Sample 202

contains 5 time intervals and Sample 81 contains 58 time intervals. Exploration of the data set has

shown that with fewer rows the magnitude spectrum plot exhibits greater salient data separability,

whereas the frequency domain works best for spectrograms with more rows. Empirically, the point

at which the frequency domain out performs the magnitude spectrum was found to be 12 time

intervals. However, with increased testing in future work, and with improvements to interpolation

methods during extraction, this empirically designated demarcation may change.
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3.2.5 Confounding Data

Spurious associations between variables can lead to data confounds as seen in the artificial pattern

of spectrogram periods in Figure 3.2. The current sample set contains spectrogram samples

constructed from IQ data that contains varying amounts of detail and differences in time intervals,

as seen in the histogram in Figure 3.2. This is exploited by the hierarchical feature extraction

methods in this thesis where features are extracted in the frequency domain where the number of

rows is long and from the power spectrum when number of rows is short. However, if a sample

contains little detail in the frequency domain and a short number of rows, the methods outlined in

this study may fail to extract viable features. No samples in the simulated radar data contain low

detail and a short number of rows. However, the possibility for this type of signal may exist.

3.3 Frequency Over Time Feature Extraction

Each spectrogram contains values for power and frequency per time interval row. To increase the

statistical significance of features, extraction will focus on only two axes. This study hypothesizes

that in spectrograms that contain a high number of rows, features extracted from the frequency

spectrum will yield greater statistical significance than in the magnitude spectrum due to increased

separability of matrix values as shown in Figure 3.4 and described in Section 3.2.4.

Figure 3.6 shows a magnitude spectrum plot of all time intervals stacked (left) where signal

peaks can be seen to exhibit a pattern. Close inspection using a scaled version of the data shows

where signal peak maxima fall directly on their respective frequencies. The plot shown in Figure

3.7 illustrates (left) where a signal’s peak power maximum falls directly on a frequency marking its

time interval frequency explicitly. In this plot, the data point maximum of the matrix first row lies

directly on frequency 511, with data points on either side of the max value showing equal power

distribution. This means that the data point represents the true magnitude peak maximum of the

frequency. This will require first understanding how signal position influences peak representation

in the frequency spectrum and also how best to interpolate these positions for accurate signal

shape representation.
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FIGURE 3.6: The frequency domain, where each row is a time interval consisting of NF F T = 2048 frequency
bias. Stacked (left), closeup of peaks (middle), maxima (right).

3.3.1 Defining Class Geometry using Subsample Peak Interpolation

In the frequency domain, each class has a unique signal geometry which can be exploited through

feature extraction for training and prediction. In order to properly define this geometry, interpola-

tion of values falling in between frequency bins will need to be calculated to precisely determine

the correct shape during transformation. In cases where maximum magnitude falls directly on

a frequency bin, transformations into the frequency domain are a simple conversion to a matrix

where each frequency along the Y axis represents a time interval t sequentially on the X axis.

However, the middle plot in Figure 3.6 illustrates how some of the time intervals, as indicated by

differently colored signal lines, do not fall directly on a frequency bin. Thus, it can be concluded

that the true peak magnitude maxima for the intra-frequency period is not being shown in the plot.

Instead, the maxima exists at an interpolated point somewhere between the frequencies. In order

to describe the true shape of the sample in the frequency domain, these frequency sub-bins must
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FIGURE 3.7: Frequency (left), subsampled frequency (middle) stacked interpolation methods (right).

be properly interpolated using a method that will accurately model the shape of the peak maxima.

Simple linear interpolation is a calculated position on a straight line between two points. This

may work when describing a time interval signal peak that falls directly on a frequency bin as

shown in the left plot in Figure 3.7. However, if the time interval signal peak is intra-frequency, as it

is in the middle and right plots in Figure 3.7, linear interpolation will not reveal correct magnitudes

at peak maxima. In addition to linear, three other interpolation methods were explored in this

thesis: Spline, Parabolic, and Gaussian.

Cubic Spline Interpolation

Cubic spline interpolation is a piecewise polynomial method for determining a calculated position

between two points on a curve, instead of a straight line as shown in linear interpolation. A third

order polynomial calculates the position based on surrounding points[45]. Spline interpolation
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provides the greatest estimation for magnitude, given the intra-frequency data points (xi�1, yi�1)

and (xi, yi) on either end of the uninterpolated max peak, as seen in the closeup plot (right) in

Figure 3.7. The n+ 1 data points required for spline calculation {(xi, yi) : i = 0, 1, . . . , n} with

polynomials y = qi(x), i = 1,2, . . . , n produced a curvature for the max peak y = f (x) using

Equation 3.3.

=
yn

(1+ y2)3/2
(3.3)

Parabolic Interpolation

Parabolic peak interpolation can be used to find peak maxima by fitting three points a < b < c

corresponding to function values f (a)  f (b) > f (c) to create a linear solution through direct

substitution, as seen in Equation 3.4. The substitution is equivalent to the matrix product of the x

values multiplied by the matrix of A, B, and C values.

A · x2
1 + B · x1 + C = y1

A · x2
2 + B · x2 + C = y2

A · x2
3 + B · x3 + C = y3

⌘

2
664

x2
1 x1 1

x2
2 x2 1

x2
3 x3 1

3
775 ·

2
664

A

B

C

3
775 =

2
664

y1

y2

y3

3
775 (3.4)

Inverting the matrix and multiplying it by the y vector provides a direct solution for Equation

3.5. Finally, the peak maximum can be found from the quadratic as seen in lines 5 and 6 of

Equation 3.5.

(x1 � x2)(x1 � x3)(x2 � x3) = d

x3 · (y2 � y1) + x2 · (y1 � y3) + x1 · (y3 � y2)
d

= A

x2
3 · (y1 � y2) + x2

2 · (y3 � y1) + x2
1 · (y2 � y3)

d
= B

x2 · x3 · (x2 � x3) · y1 + x3 · x1 · (x3 � x1) · y2 + x1 · x2 · (x1 � x2) · y3

d
= C

�B
2 · A = xmax

C � B2

4 · A = ymax

(3.5)

The results of curvature  can be seen as a blue dotted line in Figure 3.8 middle and closeup

right plots. It lies in between spline, resulting in the largest magnitude, and Gaussian as lowest.
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Gaussian Interpolation

Gaussian peak interpolation follows a similar process to find A, B, and C values using a mutual

denominator d. However, a log function of the y matrix is used, as seen in Equation 3.6.

log(y) = lny

x3 · (lny2 � lny1) + x2 · (lny1 � lny3) + x1 · (lny3 � lny2) = A

x2
3 · (lny1 � lny2) + x2

2 · (lny3 � lny1) + x2
1 · (lny2 � lny3) = B

x2 · x3 · (x2 � x3) · lny1 + x3 · x1 · (x3 � x1) · lny2 + x1 · x2 · (x1 � x2) · lny3 = C

(x1 � x2) · (x1 � x3) · (x2 � x3) = d
�B
2 · A = xmax

ex p(
C
d � B2

4 · A · d ) = ymax

(3.6)

After natural log lny is derived from values in vector y = [y1, y2, y3], the inverse of the matrix,

similar to Equation 3.4, is calculated for A, B, and C values. These values are then plugged into

line 6 and 7 in Equation 3.6 to find the maximum xmax , ymax intra-frequency peak magnitude.

Figure 3.8 illustrates Gaussian curvature  as a pink dotted line.

Curvature  Interpolation Conclusions

Figure 3.7 (middle, right) indicates where the subsampled peak is estimated to be located using

the various methods illustrated in the plot’s legend. It juxtaposes Spline, Parabolic, and Gaussian

curvature  estimations with Spline as the highest, Gaussian as the lowest, and Parabolic as the

middle. All calculations require at least three points, which consist of a non-interpolated max

value and two adjacent non-interpolated data points. Empirical testing using known points found

that Parabolic interpolation is the most accurate estimator of points typically found in a power

versus frequency matrix.

After the subsample peaks are calculated, a new matrix is created containing the peaks and

amplitudes of each bin in sequence. As we can see in Figure 3.8 (left), this creates a shape similar to

the max value of the tip of the signal as seen in Figure 3.6 (middle). However, the class geometry of
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FIGURE 3.8: Data points, subsample peak interpolated (left), conversion to Frequency Domain (right).

the frequency isn’t seen until the sample is converted into the frequency domain, as seen in Figure

3.4 (bottom right). Evidence of poor interpolation performance can be seen as undulations in the

signal, evident in Figure 3.8 (right), with greater undulations in spectrogram samples containing

fewer rows. Prediction accuracy was good despite these interpolation issues being uncorrected;

however, future work may discover minor increases in performance with better subsample peak

interpolation techniques using more than two adjacent samples to perform interpolation.

Conversion from Spectrogram Matrix to Frequency Domain

Each row in the spectrogram contains Nf f t bins, representing the length of the signal, with each

bin containing a magnitude, representing the signal power as decibels. After the intra-frequency

magnitude is interpolated between frequency bins, as described in the Curvature  step in Section

3.3.1, a matrix is created where each time interval row is sequentially ordered into a matrix of

frequency values, producing a plot where frequency is plotted as the y axis and time as the x axis.

2
664

p1 < amax�1, amax , amax+1 >

· · ·
pn < amax�1, amax , amax+1 >

3
775 =

2
664

fmax1

· · ·
fmaxn

3
775 =
h

fmax1, · · · , fmaxn

i
(3.7)

Equation 3.7 shows a high level representation of spectrogram matrix time interval rows t

where each row t is subsample peak interpolated parabolically using adjacent maxima values

amax�1, amax , and amax+1 to create a 1xN matrix of sequential frequency rows. The 1xN matrix is

then transposed to create a matrix of frequency maxima interpreted as the Frequency domain.
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FIGURE 3.9: All FM Linear Up samples stacked (left), Frequency domain (middle, right) normalized.

Normalization and Generalization

After the spectrogram matrix is processed into the frequency domain using parabolic subsample

peak interpolation, the frequency range is finally normalized from a range of 1 to N F F T to floating

point values from 0 to 1.

(x1, · · · , xn) = x

xi �min(x)
max(x)�min(x)

= zi

(3.8)

Equation 3.8 illustrates the process where x represents the set of all frequencies in a sequence.

The second line in Equation 3.8 solves for zi as the ith value in the series. The new normalized

matrix will contain frequency fmin and fmax values between 0 and 1.
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A plot (left) in Figure 3.9 of all FM Linear Up samples illustrates the variability and inseparability

of the signal bin traversal seen in the frequency domain. After normalization, the plots (middle,

right) in Figure 3.9 show approximate class geometric representation, with the exception of the

middle plot where undulations from the signal side lobes influence the magnitude interpolation

during subsampling. Another influencing factor is the signal movement from one frequency bin to

the next. If more than one bin is traversed per row, the interpolation changes due to blurring inside

multiple bins. The plot on the right in Figure 3.9 is straighter than the middle plot both because

these undulations are scaled out due to its high number of time interval length and also because the

interpolation methods do not best represent the subsample ranges. The middle plot spectrogram

has 19 time intervals, the right plot has 48 time intervals. This means that the undulations in the

plot on the right with the greater number of rows are less noticeable, in part, due to a higher time

interval, making time interval an influencing factor of signal geometry.

Finally, feature values are extracted through interpolation into 9 points. The number of points

were picked empirically after some tests found that fewer points lead to lost features around the

beginning and ending of FM Symmetric Up, making it less separable to FM Linear; and more

points introduced redundancy in the center of the signal, reducing its statistical significance during

training. An odd number of points was chosen to capture the center point of mirrored features

found in FM Symmetric Up and FM Triangle Up. Figure 3.13 illustrates an example (left) of a class

with 9 designated feature locations represented as red circles on a plot.

3.4 Power Over Frequency Feature Extraction

Figure 3.4, bottom row, show frequency domain plots with the left illustrating a low feature space

with only 5 time intervals with the right plot containing 81 time intervals and a much greater

feature space, as illustrated by well defined starting and ending curves. The plot on the right will

perform better for both prediction and training due to its increased feature space, particularly in

the capture of curves during the start and end, characteristic to asymmetric signals. However, in

the magnitude spectrum, Figure 3.4, top left, illustrates a feature rich plot containing only 5 time

intervals.
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FIGURE 3.10: Magnitude spectra showing unique class geometry for CW (top left), FM Symmetric Up
(top right), FM Asymmetric Up (left middle), FM Linear Up (middle right), and FM Triangle Up (bottom).
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FIGURE 3.11: Magnitude spectrum (left) max
r2rows

src processed magnitude spectrum (right).

3.4.1 Defining Class Geometry using Max Smoothing

In order to plot changes in the signal, as it traverses the frequency range per time period, the spec-

trogram must be transposed, so that the row and column index for each element are interchanged.

Equation 3.9 shows spectrum S being transposed before being processed to find the max signal

power where the signals cross over each other per time interval.

Spectrogram=

2
4a1 a2 · · · an

b1 b2 · · · bn

3
5
⌧

=

2
666664

a1 b1

a2 b2

· · · · · ·
an bn

3
777775

Spect rogram= S, Rows = r, Columns = c

max
r2rows

src(i = 1, 2, · · · , n)

(3.9)

Figure 3.10 illustrates the unique geometry for each class. The CW signal, being extremely

separable from the other signals due to the consistent frequency travel over all samples, can be

safely classified first using its distinctive continuous geometric identifier at peak magnitude. In the

remaining 4 classes, two distinct geometric characteristics appear: firstly, the straight or curved

travel over the frequency range, and secondly, the interference at the end of the signal. The unique

geometry seen as interference at the end of magnitude spectrum samples for FM Triangle Up and

FM Symmetric Up in Figure 3.10 is presented regardless of the number of time intervals, making
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FIGURE 3.12: FM Linear Up scaled (left) FM Linear Up scaled relative to FM Asymmetric Up (right).

this a critical feature. Therefore, during feature extraction, normalization and interpolation should

be sensitive to these attributes.

Conversion from Spectrogram Matrix to Magnitude Domain

After transposing the matrix as shown in Equation 3.9, the max of each time interval must be found.

Transposing the signal is done in order to capture power on the Y axis while measuring frequency

on the X axis. Time intervals are plotted as distinct and separate excursions across the frequency

X axis with the intention that the peak and position will be generalized as a feature for training

and prediction. If the interval peak is not located directly on a frequency bin, subsample peak

interpolation will need to be utilized, as described in the previous Section 3.3.1 for spectrogram

conversion into the frequency domain.

Figure 4.1 shows the unique and distinct excursion patterns differentiating the symmetrical

signals from the others. The blue line in each plot represents the feature geometry and the red

dots along the blue line represents 9 generalized features. FM Triangle Up (left, top) contains very

little frequency detail and very few (7 rows) time intervals compared to the same class with high

detail and low time intervals (7 rows). Typical signal excursion for FM Triangle Up on a magnitude

spectrum is a straight line, with some interference at the end of the frequency range, and with

terminal time intervals appearing in mid frequency as seen in the plot (right, top). However, due

to the extremely fast excursion and low time interval, exhibiting very low detail, the plot (left, top)

does not contain interference detail. However, excursion is seen in those plots (left and right, top)
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with feature points indicating that ending time intervals are seen mid frequency, hypothesizing

that the indication of terminal feature values found in mid frequency is an indicator for signal

symmetry, as seen in FM Symmetric Up and FM Triangle Up. This is opposed to plots (left and

right, bottom) where ending feature values are positioned at the end of the frequency range,

typically seen in asymmetrical signals like FM Asymmetric Up and FM Linear Up. These features

will be critical for symmetrical geometry pattern detection and should yield good results with any

classifier.

Normalization and Generalization

Plots (left, top and bottom) in figure 4.1 appear to contain a slight curve in the peak magnitudes.

However, this is an artifact of the scale in the plot due to the low detail, low time interval, and

intrapeak frequencies of the signal. When compared to other signals, these two plot features (left,

top and bottom) appear relatively flat, as shown in Figure 3.12. These exaggerated features were

even more pronounced after normalization, therefore it is concluded that in cases where time

interval and detail is low, normalization is detrimental to feature enhancement, and was avoided.

3.5 Classification Methods

The two common Machine Learning classifiers used in this study are k-Nearest Neighbor (kNN)

and Support Vector Machine (SVM). These two classifiers were chosen due to their ubiquity and

evaluation simplicity. In this case, kNN has been shown to approach best possible performance

within a factor of 2 as population size N 7!1 [46] while the binary nature of SVM can highlight

strengths and weaknesses within the feature extraction separability methods[47].

3.5.1 Confusion Matrix

Insight will be gathered from a confusion matrix of prediction results tabulating false and true

negative and positive predictions with a column for two standard deviations of accuracy per class,

a 95% confidence interval for the prediction, as seen in raw data tabulations in the Appendix.
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FIGURE 3.13: Features as red points are defined for each class sample.

Additionally, exploratory data analysis was done to identify gaps in the statistical relevance of

features for spectrogram samples provided in the sample data with some edge cases discovered,

which may lead to potentially confounding results in future work done with new samples. After

potential confounds and false positives and negatives are illustrated, the resulting true positives and

true negatives with standard deviations to two places will reveal method accuracy with confidence.

Finally, Accuracy, Specificity, Sensitivity, and Precision metric will be defined and reported in the

Results Chapter 5 of this thesis.

3.5.2 Monte Carlo Cross Validation

In order to evaluate the model, and thus evaluate the feature extraction methods, a less-optimistic

testing process should be employed to mitigate the risks of over-fitting and bias during testing.

A relatively simple procedure is to use Monte Carlo Cross Validation[48], where random sub-

sampling is split and done N times. Here, the data set is randomly shuffled and split during each
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iteration, after which the model is trained using one sample set and validation is assessed using

the other. Final results are averages over all N cross validation splits. Due to the random shuffling

and splitting of test sample data, there is no dependency on a fixed number of iterations, as may be

seen in other Cross Validation methods. However, a major limitation of the Monte Carlo method,

due to inherent randomness, is that some observations have a probability 1
2n of never being seen

either as training or test cases. The probability of this occurring can be mitigated through many

splitting and shuffling iterations, which lower the probability of observations not being using in a

training or prediction iteration. Tests done in this thesis, using Monte Carlo, will first separate

spectrogram data into two cohorts, one with less than 12 time intervals and one with 12 or more,

to ensure that shuffled splits will only provide spectrograms appropriately sized to the correct time

interval size prediction model.

3.5.3 k-Nearest Neighbor

kNN is a non-parametric algorithm where the input consists of adjacent samples in the feature

space[49] and the output is inclusion to a class based on a majority vote among neighbors for the

most common and closest class[38]. This classification method is particularly prone to degradation

from features that lack relevance, for example excessive noise or redundancy, or if features scale

inconsistently with their importance[38]. This makes feature extraction a critical step in kNN

classifier viability. Computation is approximated locally and deferred until classification making

this a relatively inexpensive process compared to SVM. As a side benefit, it is a relatively simple

machine learning algorithm which can be used to reduce complexity in a recognition task by

removing clustered samples that can be classified immediately.

Points to be classified are evaluated based on their distance to points inside a data set, in the

simplest implementation of kNN, with k defined as the number of neighbors used to define the

label. This paper uses Matlab’s implementation of kNN, using Euclidean distance as the method of

measurement between points, shown in Equation 3.10.

d(p, q) =
∆
(p1 � q1)2 + (p2 � q2)2 + ...+ (pn � qn)2 (3.10)
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A total of 9 feature points are extracted from each of the 1000 samples using the methods

outlined in this paper, making the multidimensional distance measurement seen in Equation 3.11.

d(p, q) =

vut1000X

i=9

(pi � qi)2 (3.11)

This rudimentary implementation of kNN is used to focus attention on the paper’s feature

extraction techniques by remaining as agnostic to the data set as possible.

3.5.4 Support Vector Machine

Support Vector Machine (SVM) is used in many recent research papers on automatic radar emitter

recognition[50, 51, 52, 53]. With its ability to perform nonlinear classifications using a “kernel trick”

to move data to a higher dimensional space[38], SVM can make non-linear binary classifications on

sparse data. Sparsity occurs as features increase without an increase in available data, diminishing

the statistical significance of that data[54]. This limits the accuracy of SVM without large amounts

of data to provide support vectors on the boundary of non-linearly separable samples. In order

to mitigate data sparsity, spectrogram samples with lower time intervals will be analyzed using

features extracted in the magnitude spectrum rather than in the frequency domain. Furthermore,

to avoid the "Curse of Dimensionality" mentioned earlier in the chapter, spectrograms with a high

number of time intervals will be analyzed using features extracted in the frequency domain; this

will mitigate the diluted statistical significance of key features when using entire spectrogram

data samples as input. Figure 3.4 illustrates how the magnitude spectrum on the top right can

cause unwanted high dimensionality, and how the frequency domain can present sparse data in

the bottom left, all within the same data set. Classifications in this thesis will use hard margin

linear SVM where 9 features points per sample will make a feature vector used in training such

that in group. The 9 feature points were chosen as the minimum number of equidistant points

capable of capturing both starting and ending undulations in the signal geometry, as seen in FM

Symmetric Up and FM Asymmetric Up, and also for the middle point significance in capturing

signal symmetry, as seen in CW, FM Triangle Up, and FM Symmetric Up.

(�!x1, y1), . . . , (�!xn, yn) (3.12)
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Shown in Equation 3.12, yi represents a binary 1 or �1 depending on �!xi class. This binary

classification is the result of a "maximum-margin hyperplane" where the distance between the

hyperplane and �!xi is maximized satisfying Equation 3.13 where �!w is the hyperplane normal

vector.

�!w ·�!x � b = 0 (3.13)

If the SVM model contains data that is linearly separable, binary predictions made with

Equation 3.13 will equal 1 or �1. The width of the margin, or distance between the two 1 and

�1 boundaries, is 2
k�!wk where b is the offset determined by b

k�!wk along the normal vector �!w . If

we want to maximize our margin to obtain the best classification result, we must minimize
���!w
��

subject to yi

��!wi ·�!xi ·�b
�
� 1 where i = 1, . . . , nn (with nn representing the multidimensional

hyperplane) to solve for �!w and b as shown in Duda[38] et al.

�!x 7! sgn
��!w ·�!x � b
�

(3.14)

Therefore, classification of feature vector �!x can be summarized as the signum function of the

distance from the feature vector to the boundary, as shown in Equation 3.14.

sgn(x) :=

8
>><
>>:

�1 if x < 0,

0 if x = 0,

1 if x > 0.

9
>>=
>>;

(3.15)

The signum function is defined in Equation 3.15 and is used to extract the sign of the real

number result of �!w ·�!x � b.

3.5.5 One-versus-Rest SVM

One approach to multiple class binary prediction using SVM is through One-versus-Rest, where

the predicted class is trained against negative examples of all other classes[55]. This requires each

class prediction test to have a separate model where features outside the SVM margin represent

all classes that are not the positive class. A large problem with this type of test is that with five

classes, training will be highly unbalanced against the positive test class, with four representatives
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for a negative class for every one positive. However, high time interval samples with no noise

displayed near perfect Accuracy with 0dB SNR showing weaknesses in FM Symmetric Up with an

Accuracy score 0.96 and Precision of 0.92, as shown in Table 4.2. The sharp drop in precision is

due to the comparatively small number of features used to describe the flaring geometry at the

ends of the FM Symmetrical Up signal shape when compared to noise effects influencing shape

geometry in other signals.

3.5.6 Hierarchical SVM

Similarly to One-versus-Rest SVM, Hierarchical SVM requires no more than two classes to be

trained and tested against each other. However, the major weakness of One-versus-Rest training,

where the positive class is outnumbered four to one, is mitigated through a cascading hierarchy

of tests done in succession, as described in Section 3.5.4. This hierarchical sequence is based on

strongest separability, with cohorts made from a sample’s unique and distinct geometric features, as

shown in Table 3.3. This sequence is started with the most separable sample, CW versus everything

else. Both empirically and as shown through consistently high Accuracy and Precision metrics, CW

prediction remains accurate through low and high time intervals between no noise and 0dB SNR,

as shown in Table 4.3. Removing CW from the training set after prediction enables subsequent

training to focus on either geometrically symmetrical or asymmetrical samples, following which

training can focus on separability between either FM Symmetric Up versus FM Triangle Up, and

FM Linear Up versus FM Asymmetric Up.



“Always mystify, mislead, and surprise the enemy, if possible;”

Sun Tzu, The Art of War

4
Results

At the highest level, a spectrogram is a measure of power and frequency information over time,

derived from a Discrete Fourier Transformation (DFT) outputting frequency, phase, and amplitude

encoding of the component sinusoids in a radar signal[11]. Spectrograms, including those in the

sample data set, transmit various frequencies at full power, over N time intervals, in order to

estimate the location of objects at a distance by measuring their return characteristics[4]. Therefore,

training those unique characteristics using a classification algorithm will allow predicting what

unknown sources populate a potential battlefield[5]. The radar spectrograms used as data sets in

this thesis are simulations based on an algorithm developed by Australia’s Defence Science and

Technology Group (DST). Details of the algorithm are outside the scope of this thesis; however, an

exploration of parameter details will yield a better understanding of the samples. Because this

thesis is focused more on feature extraction than on classifier performance, shortcomings found in

classifier metrics will be used to deduce where features do not provide sufficient information for

classification instead of how classification can be improved.

39
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FIGURE 4.1: Low Time Interval FM Triangle Up with low detail (left) and high detail (right).

4.1 Testing Methods

Prediction is first attempted using k-Nearest Neighbor, using Monte Carlo Cross Validation de-

scribed in Methods Chapter 3. Support Vector Machine testing will use a both One-versus-Rest

and Hierarchical binary predictions. One-versus-Rest multiclass SVM testing uses the binary

classification ability of SVM by learning positive predictions for each class one at a time with

all other classes grouped as a single negative class – "the rest"[55]. Hierarchical SVM separates

positive and negative predictions into more evenly populated cohorts. As shown in Figure 4.2,

Step 1 shown by a blue circle starting with CW prediction. If One-versus-Rest SVM prediction

for CW produces poor accuracy results, starting the hierarchy with this test would be a major

liability for all other predictions, due to their dependence on CW exclusion in all subsequent

tests. However, CW was shown to be highly separable in One-versus-Rest SVM prediction results,

as shown in the raw metrics in Table A.5. Step 2 excludes CW from the SVM training model

and combines FM Symmetric Up with FM Triangle Up for a positive geometrically Symmetrical

cohort, and FM Asymmetric Up with FM Linear Up for a negative geometrically Asymmetrical

cohort. Finally, having been classified as either symmetrical or not, in Step 3 training samples are

separated into FM Asymmetric Up and FM Linear Up for geometrically asymmetrical prediction

and FM Symmetric Up and FM Triangle Up for geometrically symmetrical prediction.
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FIGURE 4.2: Hierarchical SVM decision tree showing steps to final prediction.

4.2 Confusion Matrix

In order to gain further insight into feature extraction performance, a confusion matrix is derived

from a combination of classifier prediction results that are analyzed using ground truth versus

observed results[56]. These results are further distilled into Accuracy, Sensitivity, Specificity,

and Precision, to determine where weaknesses and strengths are found in the ways the feature

extraction methods are exploited by the classifiers. Table 4.1, 4.2, and 4.3 separates these results

into no noise, 0 dB SNR, low, and high time interval metrics. An explanation of these measures

are outlined in Section 4.2.1 and raw data results can be found in the Appendix at the end of this

thesis.

4.2.1 Definition of Metrics Used

Ground Truth and Observation

The two axes of every table in this thesis containing results from the classifier contains predictions

vertically along the X axis and observations, as ground truth, horizontally along the Y axis. The

ground truth in these tables represents the objective data set whereas the predictions represent

output from the classifier. Generally, in machine learning, ground truth represents information

provided through objective data or direct observation, as opposed to being inferred[37].
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TABLE 4.1: kNN Performance Metric
Ground Truth Accuracy Sensitivity Specificity Precision

kNN CW HI No Noise 1.00 1.00 1.00 1.00

HI 0dB SNR 0.99 0.97 1.00 1.00

LI No Noise 0.98 1.00 0.97 0.91

LI 0dB SNR 0.98 1.00 0.97 0.90

Linear HI No Noise 1.00 1.00 1.00 1.00

HI 0dB SNR 1.00 1.00 1.00 0.99

LI No Noise 0.81 0.61 0.86 0.53

LI 0dB SNR 0.81 0.57 0.87 0.52

Symmetric HI No Noise 0.99 0.99 0.99 0.98

HI 0dB SNR 0.99 0.97 0.99 0.96

LI No Noise 0.87 0.59 0.94 0.72

LI 0dB SNR 0.86 0.63 0.92 0.67

Asymmetric HI No Noise 1.00 1.00 1.00 1.00

HI 0dB SNR 1.00 1.00 1.00 0.99

LI No Noise 0.88 0.70 0.93 0.71

LI 0dB SNR 0.87 0.68 0.92 0.69

Triangular HI No Noise 0.99 0.98 1.00 0.99

HI 0dB SNR 0.99 0.98 0.99 0.96

LI No Noise 0.86 0.63 0.92 0.67

LI 0dB SNR 0.87 0.61 0.93 0.68

Positives and Negatives

The combination of ground truth versus observation can yield a true positive (TP), true negative

(TN, false positive (FP), and false negative (FN). A true positive is where a prediction matches a

positive observation whereas a true negative correctly identifies a negative observation. A false

positive incorrectly predicts a match where there is none, whereas a false negative fails to predict

a match[37]. In an example where radar detection is used in a stealth campaign, a false negative

would be less desirable than a false positive, due to a false negative possibly leading to stealth

failure whereas a false positive would lead to unnecessary evasive maneuvers.

Accuracy

Accurac y[37] = T P+T N
T P+T N+F P+FN

Sensitivity

Sensi t ivi t y[37] = T P
T P+FN

Specificity

Speci f ici t y[37] = T N
T N+F P
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TABLE 4.2: SVM One-versus-Rest Performance Metrics.
Ground Truth Accuracy Sensitivity Specificity Precision

One-versus-Rest CW HI No Noise 1.00 1.00 1.00 1.00

SVM HI 0dB SNR 0.99 0.94 1.00 1.00

LI No Noise 0.97 1.00 0.97 0.88

LI 0dB SNR 0.96 1.00 0.95 0.83

Linear HI No Noise 1.00 1.00 1.00 1.00

HI 0dB SNR 1.00 1.00 1.00 0.99

LI No Noise 0.82 0.59 0.88 0.55

LI 0dB SNR 0.78 0.53 0.85 0.46

Symmetric HI No Noise 1.00 0.99 1.00 1.00

HI 0dB SNR 0.96 0.88 0.98 0.92

LI No Noise 0.81 0.55 0.87 0.52

LI 0dB SNR 0.78 0.51 0.85 0.46

Asymmetric HI No Noise 1.00 1.00 1.00 1.00

HI 0dB SNR 0.98 0.99 0.98 0.91

LI No Noise 0.82 0.59 0.88 0.56

LI 0dB SNR 0.80 0.49 0.87 0.49

Triangular HI No Noise 1.00 1.00 1.00 0.99

HI 0dB SNR 0.99 1.00 0.99 0.96

LI No Noise 0.79 0.49 0.87 0.46

LI 0dB SNR 0.79 0.49 0.87 0.49

Precision

Precision[37] = TP
TP + FP

4.3 Euclidean kNN Test Results

Testing feature extraction performance using techniques from Methods Chapter 3 with kNN begins

with preprocessing of spectrograms into two cohorts with one less than 12 and the other more

than 11 time intervals. Each test is repeated 30 times to reduce variability due to differences

between testing cohorts[57]. Evidence of representative sample variability can be seen as low

confidence interval numbers in the raw data found in Tables A.1, A.2, A.3, and A.4 as indicated by

a 95% Confidence Interval value up to ±0.28 for High Time Interval kNN prediction with no noise.

This reveals that the excellent results, all higher than 97.6%, are based on representative samples.

Alternatively, a 95% Confidence Interval value as high as ±6.65 indicates that Low Time Interval

0dB SNR kNN samples displayed a much greater degree of variability and performance, even while

implementing Monte Carlo Cross Validation described in Section 3.5.2. This is due to two factors;

one is due to high detail variability seen in the frequency excursion of low time interval samples



44 RESULTS

TABLE 4.3: Hierarchical SVM Performance Metrics.
Ground Truth Accuracy Sensitivity Specificity Precision

Hierarchical CW HI No Noise 1.00 1.00 1.00 1.00

SVM HI 0dB SNR 0.98 0.92 1.00 1.00

LI No Noise 0.96 1.00 0.95 0.83

LI 0dB SNR 0.93 1.00 0.92 0.75

Linear HI No Noise 1.00 1.00 1.00 1.00

HI 0dB SNR 1.00 1.00 1.00 0.99

LI No Noise 0.87 0.67 0.92 0.68

LI 0dB SNR 0.84 0.60 0.90 0.60

Symmetric HI No Noise 1.00 0.99 1.00 0.99

HI 0dB SNR 0.98 0.97 0.99 0.95

LI No Noise 0.82 0.57 0.88 0.54

LI 0dB SNR 0.80 0.44 0.89 0.51

Asymmetric HI No Noise 1.00 1.00 1.00 1.00

HI 0dB SNR 0.99 1.00 0.99 0.97

LI No Noise 0.87 0.70 0.91 0.66

LI 0dB SNR 0.85 0.66 0.90 0.63

Triangular HI No Noise 1.00 0.99 1.00 0.99

HI 0dB SNR 0.99 0.98 0.99 0.97

LI No Noise 0.83 0.41 0.93 0.60

LI 0dB SNR 0.82 0.44 0.92 0.58

and the other is due to the low number of frequency peak shifts that can be exploited between

time intervals, both illustrated in Table 4.1.

The least separability, in optimal conditions where there is both no noise and also high time

intervals, was seen between FM Symmetric Up and FM Triangular Up. A lack of precision in FM

Symmetric Up, as shown in Table 4.1, points to the feature extraction process failing to capture

unique geometries separating it from FM Triangle Up. With the introduction of 0 dB SNR noise,

precision remains consistent whereas FM Symmetric Up sensitivity falls, compared to FM Triangle

Up, as shown in Table 4.1. This is due to noise influencing the geometry of other samples in

the training set, making FM Symmetric samples less distinguishable. Sensitivity and Precision

problems are compounded in samples with low time intervals; however, FM Linear Up displays

a high degree of failure. Table 4.1 shows FM Linear Up Accuracy as being at least 80 percent,

much like four out of five of the other samples. Where the sample fails the most is in Precision,

where it scored 0.52 as shown in Table 4.1. This means features used to separate low time interval

samples could not predict better than a little over half of relevant samples from all FM Linear Up

samples in the testing cohort. Successes using this classifier include CW and FM Asymmetric Up,

scoring 0.98 and 0.87 in Accuracy with 0dB SNR in low time interval sample cohort prediction, as

shown in Table 4.1. Comparatively, CW Precision is 0.90 compared to FM Asymmetric Up at 0.69,
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indicating the robust separability for CW among the top two most separable samples in the low

time interval cohort.

4.4 SVM Test Results

As defined in Methods Chapter 3, SVM is a binary classifier requiring training and testing between

no more than two classes. Therefore, preprocessing before each trial requires first separating

spectrograms into a low time interval cohort with less than 12 and a high cohort with more than

11 time intervals, and then consolidating samples in a way where the resulting prediction uses

two classes.

4.4.1 One-versus-Rest SVM Test Results

FM Asymmetric Up performed the most poorly in the high time interval cohort with 0.91 Precision

when under 0dB SNR, almost tied with second-to-last FM Symmetric Up Precision at 0.92, as shown

in Table 4.2. Both of these samples have important separability features close to the beginning

and end of their signal geometry which may be missed by the nine equally spaced feature markers

interpolated in the feature extraction algorithm. The worst performing sample was FM Linear Up,

with an Accuracy of 0.78 and Precision of 0.46, indicating an indiscriminate feature representation

at low time interval and 0dB SNR, as shown in Table 4.2. This is not very surprising because the

FM Linear Up geometry, being a straight diagonal line, is prone to distortion by the influence of

noise and energy changes between frequency bins, as described in Section 3.3.1. CW is largely

unperturbed by any of the previously described factors, with many results remaining in the 0.90s

and dipping down to 0.83 under 0dB SNR at low time intervals; however, all other samples with

low time intervals with 0dB SNR fail Precision metrics profoundly, with none achieving a score

over 0.49, as shown in Table 4.2, pointing to a general lack of distinct separability of low time

interval features in noisy conditions.

4.4.2 Hierarchical SVM Test Results

Under optimal conditions where time intervals are high, performance is high and consistent, with

CW performing the lowest at 0.98 Accuracy, as shown in Table 4.3. Consistent high Accuracy
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under this classification method shows that feature separability is good when it is not confounded

by superfluous features in the unbalanced negative training cohort, as shown in One-versus-Rest

SVM. All metrics for high time interval samples are in the high 0.90s with the exception of CW

Sensitivity at 0.92, as shown in Table 4.3, which is lowered due to CW being the first step in the

hierarchical prediction tree. Unsurprisingly, high time interval samples with no noise for CW, FM

Linear Up, and FM Asymmetric Up perform flawlessly across all performance metrics due to the

classifier being able to scrutinize subtle distinguishing features once other classes are removed

from both training and prediction sets. Surprisingly low performance is seen in low time interval

0dB SNR FM Triangle Up Sensitivity, at 0.41, as shown in Table 4.3. This is due to FM Triangle Up

being misidentified during the sample symmetry prediction phase of the hierarchy. Some samples

may have weak features exhibiting symmetry, preventing low time interval samples from passing

into the detection phase in the hierarchy. FM Symmetric Up also suffers from this failure with a

Sensitivity of 0.44 for 0dB and a slightly better score of 0.57 with no noise, as shown in Table

4.3. However, overall Accuracy for both of these classes remains somewhat good in the low 0.80s

despite poor Sensitivity.

4.5 Analyses

Comparatively, kNN, One-versus-Rest SVM, and Hierarchical SVM all contained highest and lowest

performing metrics in at least one category, as shown in Tables 4.1, 4.2, and 4.3. However, kNN

yielded the greatest number of high performing metrics while One-versus-Rest SVM had the most

poor performing ones. The poor performance of One-versus-Rest SVM among multiclass SVM

classifiers is known[55] due to its unbalanced ratio of positive to negative samples. To illustrate

this unbalance, in the tests for this thesis, 100 samples were used in a positive cohort while 400

samples are used to test "the rest" of the samples. This means that a much more detailed margin

exists defining negative samples, making Precision work very well with high time interval samples

with no noise due to the well defined negative margin, but very poor in all other cases where

low time intervals and 0 dB make the well defined margin difficult to pass due to noise artifacts

and interpolation of frequency peaks over low time interval samples. This led to a great deal of

difficulty over all metrics in low time interval tests yet best results among high interval samples
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with no noise for FM Symmetric Up and FM Triangle Up. Improving feature extraction methods

in this thesis to better suit One-versus-Rest SVM would require increasing geometric separability

of FM Symmetric Up and FM Asymmetric Up from all other samples, perhaps by scrutinizing

undulating features at the start and end of the signal.

kNN performed consistently well in all tests compared to the other two SVM methods, in part

due to the importance of geometric proximity of the extracted features. Most noticeably, kNN

performed best at predicting low time interval 0 dB signals with its poorest performance being

FM Linear Up Precision 0.53, Accuracy 0.81, and Specificity 0.86, compared to Hierarchical SVM

Precision 0.68, Accuracy 0.87, and Specificity 0.92. The metric that best hints why kNN performed

so poorly with FM Linear Up and so well elsewhere is in the failure in Precision. In kNN testing

the FM Linear Up sample, both in high and low time interval feature extraction, contains poor

geometric feature separability compared to other samples, making it prone to being misidentified

more frequently. This challenge became even greater with low time interval samples where some

features describing peaks are heavily interpolated. With Hierarchical SVM, FM Linear Up only

needed to be separated from FM Asymmetric Up, making their sparse features easier to separate.

Hierarchical SVM leverages CW separability to classify and remove it from further tests as it

divides and classifies samples into equal cohorts to facilitate separability. This is most evident in its

superior ability to classify FM Linear Up, beating all metrics in low time interval classification versus

the two other classifiers. This indicates that when features are compared between two equally

populated cohorts, features extracted using the methods described in this paper will produce good

results. Alternatively, poor results seen in low time interval FM Symmetric Up and FM Asymmetric

Up in both Hierarchical SVM and One-versus-Rest SVM in Sensitivity point to the Euclidean bias

of the equidistantly interpolated feature extraction methods. Improving SVM performance may

require introducing a normalization method and additional feature points that favor entering and

exiting undulations seen in the frequency excursion of FM Asymmetric Up and FM Symmetric Up.



“Rouse him, and learn the principle of his activity or inactivity. Force

him to reveal himself, so as to find out his vulnerable spots.”

Sun Tzu, The Art of War

5
Conclusion

The aim of the thesis to develop classifier agnostic feature extraction is achieved, as evidenced

by high accuracy and good precision using three classification approaches and two classifiers

under noisy conditions. Contrasting and comparing performance between classifiers has provided

additional insight into potential improvements that could be made to the feature extraction

methods, as well as strategies to best implement these features using approaches designed to

exploit them. The strong prediction accuracy made from the calculated mean values derived

through kNN training coupled with a 95% Confidence Interval no greater than ±0.37 in high

and ±6.86 in low time intervals reveals the robust geometrically separable characteristics of the

feature extraction methods developed in this thesis.

5.1 Limitations

Low separability of the signal geometry made some samples prone to prediction problems using

kNN as compared to SVM, as seen with FM Linear Up. In kNN, the mean values of its features

48
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TABLE 5.1: High Interval, SVM, Symmetrical vs Asymmetrical, 95% CI.

Ground Truth 84dB SNR Not 0dB SNR Not

Linear 0.00 100.00 0.00 100.00

Symmetric 100.00 0.00 100.00 0.00

Asymmetric 0.00 100.00 0.00 100.00

Triangular 100.00 0.00 100.00 0.00

were compared to all other class features, whereas in Hierarchical SVM, they were compared only

to FM Asymmetric Up. Performance will also improve with better interpolation methods used to

mitigate the undulations seen in subsample interpolation, as mentioned in Section 3.3.1. Future

work incorporating neural network learning methods can be used to interpolate the subsample

peaks with greater accuracy than the parabolic interpolation used in this thesis.

5.2 Future Work

Theoretically, a hierarchical mixed-classifier approach could pair each classification task with the

most appropriate classifier specifically trained to optimize prediction accuracy. This would improve

performance without changing the feature extraction methods outlined in this thesis, with the

exception of one step. First, kNN would be used to separate CW from non-CW samples, due to the

high level of accuracy observed for separating both low and high interval CW samples from all

others. Second, SVM would be used to separate geometrically Symmetric and Asymmetric samples

by grouping FM Symmetric Up with FM Triangle Up and FM Linear Up with FM Asymmetric

Up. Test results in Table 5.1 show that symmetrical geometry has a high degree of separability.

Finally, SVM would be used to do high interval detection and a Convolutional Neural Network for

differentiating one low interval sample from another, within previously predicted symmetrical and

asymmetrical cohorts.

5.3 Conclusion

Hierarchical SVM metrics performed better than most One-versus-Rest SVM results; but even

though it did not out-perform kNN, the approach shows promise. With results in both kNN and
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One-versus-Rest SVM showing CW to be the most separable sample compared against all others,

any classifier that exploits this advantage will see an improvement in separability of remaining

classes after CW is excluded from successive training models. In the frequency domain, CW

accuracy is improved with the selection of an odd number of feature points, allowing the central

peak to be fully exploited by feature number 5, features 1-4 and 6-9 capturing the relatively flat

geometry found in CW.

The new way of thinking about RER feature extraction, introduced by methods contained in

this thesis, using classifier agnostic hierarchical methods for specialized feature extraction of high

and low time interval spectrogram samples, proves that the methods are robust against SNR up to

0 dB, and introduces many options for future researchers to further explore this approach using

hybrid classification.



A
Appendix

A.1 Raw Data Results

TABLE A.1: High Interval, kNN, no noise, 95% CI.

Ground Truth CW Linear Symmetric Asymmetric Triangular

CW 100.00 0.00 0.00 0.00 0.00

Linear 0.00 100.00 0.00 0.00 0.00

Symmetric 0.00 0.00 98.61± 0.25 0.00 1.39± 0.25

Asymmetric 0.00 0.00 0.00 100.00 0.00

Triangular 0.00 0.00 2.15± 0.28 0.00 97.85± 0.28
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TABLE A.2: High Interval, kNN, 0dB SNR, 95% CI.

Ground Truth CW Linear Symmetric Asymmetric Triangular

CW 96.95± 0.35 0.33± 0.11 1.56± 0.22 0.66± 0.17 0.50± 0.14

Linear 0.00 99.72± 0.088 0.00 0.28± 0.088 0.00

Symmetric 0.00 0.00 96.63± 0.37 0.00 3.37± 0.37

Asymmetric 0.00 0.49± 0.09 0.00 99.51± 0.10 0.00

Triangular 0.00 0.00 2.37± 0.35 0.00 97.63± 0.35

TABLE A.3: Low Interval, kNN, no noise, 95% CI.

Truth CW Linear Symmetric Asymmetric Triangular

CW 100± 0 0± 0 0± 0 0± 0 0± 0

Linear 8.67± 2.78 61± 6.86 7.33± 3.25 13.67± 4.15 9.33± 3.63

Symmetric 0± 0 16± 5.03 58.67± 6.76 9± 4.34 16.33± 5.27

Asymmetric 1.67± 1.36 20.67± 4.97 1.67± 1.36 70.33± 5.36 5.67± 2.6

Triangular 0± 0 17.67± 3.95 13.33± 4.13 6.33± 2.74 62.67± 5.63

TABLE A.4: Low Interval kNN, 0dB SNR, 95% CI.

Truth CW Linear Symmetric Asymmetric Triangular

CW 100± 0 0± 0 0± 0 0± 0 0± 0

Linear 9.33± 2.65 57± 6.65 8.33± 3.77 17± 4.71 8.33± 2.98

Symmetric 0± 0 17± 4.22 59± 5.82 9± 3.02 15± 4.07

Asymmetric 2.33± 2.03 17.33± 5.23 7± 3.89 68.33± 6.91 5± 2.78

Triangular 0± 0 19± 3.68 14.33± 4.48 5.33± 1.82 61.33± 5.04
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TABLE A.5: High Interval, SVM, CW vs Rest, 95% CI.

Truth 84dB SNR Not 0dB SNR Not

CW 100.00 0.00 93.80± 1.33 6.20± 1.33

Linear 0.00 100.00 0.00 100.00

Symmetric 0.00 100.00 0.30± 0.30 99.70± 0.30

Asymmetric 0.00 100.00 0.00 100.00

Triangular 0.00 100.00 0.00 100.00

TABLE A.6: High Interval, SVM, Symmetric vs Rest, 95% CI.

Ground Truth 84dB SNR Not 0dB SNR Not

CW 0.00 100.00 7.77± 0.94 92.23± 0.95

Linear 0.00 100.00 0.00 100.00

Symmetric 98.90± 0.21 1.10± 0.22 87.70± 1.41 12.30± 1.41

Asymmetric 0.00 100.00 0.00 100.00

Triangular 0.47± 0.31 99.53± 0.31 0.13± 0.12 99.87± 0.12

TABLE A.7: High Interval, SVM, Triangle vs Rest, 95% CI.

Ground Truth 84dB SNR Not 0dB SNR Not

CW 0.00 100.00 1.13± 0.34 98.87± 0.34

Linear 0.00 100.00 0.00 100.00

Symmetric 1.33± 0.36 98.67± 0.36 3.10± 0.61 96.90± 0.61

Asymmetric 0.00 100.00 0.00 100.00

Triangular 99.53± 0.20 0.47± 0.20 99.70± 0.17 0.30± 0.17
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TABLE A.8: High Interval, SVM, Linear vs Rest, 95% CI.

Ground Truth 84dB SNR Not 0dB SNR Not

CW 0.00 100.00 1.03± 0.46 98.97± 0.46

Linear 100.00 0.00 100.00 0.00

Symmetric 0.00 100.00 0.00 100.00

Asymmetric 0.00 100.00 0.37± 0.18 99.63± 0.18

Triangular 0.00 100.00 0.00 100.00

TABLE A.9: High Interval, SVM, Asymmetric vs Rest, 95% CI.

Ground Truth 84dB SNR Not 0dB SNR Not

CW 0.00 100.00 9.50± 0.98 90.50± 0.98

Linear 0.47± 0.18 99.53± 0.18 0.03± 0.07 99.97± 0.07

Symmetric 0.00 100.00 0.00 100.00

Asymmetric 100.00 0.00 98.67± 0.32 1.33± 0.32

Triangular 0.00 100.00 0.00 100.00

TABLE A.10: High Interval, SVM, CW vs Rest, 95% CI.

Truth 84dB SNR Not 0dB SNR Not

CW 100.00 0.00 93.80± 1.33 6.20± 1.33

Linear 0.00 100.00 0.00 100.00

Symmetric 0.00 100.00 0.30± 0.30 99.70± 0.30

Asymmetric 0.00 100.00 0.00 100.00

Triangular 0.00 100.00 0.00 100.00
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TABLE A.11: High Interval, SVM, Symmetrical vs Asymmetrical, 95% CI.

Ground Truth 84dB SNR Not 0dB SNR Not

Linear 0.00 100.00 0.00 100.00

Symmetric 100.00 0.00 100.00 0.00

Asymmetric 0.00 100.00 0.00 100.00

Triangular 100.00 0.00 100.00 0.00

TABLE A.12: High Interval, SVM, Symmetric vs Triangle, 95% CI.

Ground Truth 84dB SNR Not 0dB SNR Not

Symmetric 99.10± 0.24 0.90± 0.24 96.90± 0.69 3.10± 0.69

Triangular 1.13± 0.41 98.87± 0.41 1.83± 0.53 98.16± 0.53

TABLE A.13: High Interval, SVM, Linear vs Asymmetric, 95% CI.

Ground Truth 84dB SNR Not 0dB SNR Not

Linear 99.57± 0.18 0.43± 0.18 99.80± 0.15 0.20± 0.15

Asymmetric 0.00 100.00 0.50± 0.18 99.50± 0.18

TABLE A.14: High Interval, Hierarchical SVM, no noise, 95% CI.

Ground Truth CW Linear Symmetric Asymmetric Triangular

CW 100± 0 0± 0 0± 0 0± 0 0± 0

Linear 0± 0 99.77± 0.15 0± 0 0.23± 0.15 0± 0

Symmetric 0± 0 0± 0 99± 0.25 0± 0 1± 0.25

Asymmetric 0± 0 0± 0 0± 0 100± 0 0± 0

Triangular 0± 0 0± 0 1.23± 0.5 0± 0 98.77± 0.5
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TABLE A.15: High Interval, Hierarchical SVM, 0dB SNR, 95% CI.

Ground Truth CW Linear Symmetric Asymmetric Triangular

CW 92.47± 0.78 0.77± 0.31 3.33± 0.64 2.23± 0.45 1.2± 0.42

Linear 0± 0 99.6± 0.18 0± 0 0.4± 0.18 0± 0

Symmetric 0.3± 0.17 0± 0 97.43± 0.62 0± 0 2.27± 0.58

Asymmetric 0± 0 0.33± 0.2 0± 0 99.67± 0.2 0± 0

Triangular 0± 0 0± 0 1.83± 0.47 0± 0 98.17± 0.47

TABLE A.16: Low Interval, SVM, CW vs Rest, 95% CI.

Truth 84dB SNR Not 0dB SNR Not

CW 100± 0 0± 0 100± 0 0± 0

Linear 1± 1.96 99± 1.96 3± 2.13 97± 2.13

Symmetric 2± 2.61 98± 2.61 4.33± 2.43 95.67± 2.43

Asymmetric 3± 4.18 97± 4.18 5± 2.93 95± 2.93

Triangular 8± 6.4 92± 6.4 8.33± 3.65 91.67± 3.65

TABLE A.17: Low Interval, SVM, Linear vs Rest, 95% CI.

Truth 84dB SNR Not 0dB SNR Not

CW 0± 0 100± 0 0± 0 100± 0

Linear 59± 7.42 41± 7.42 52.67± 8.24 47.33± 8.24

Symmetric 18± 10.85 82± 10.85 11.67± 4.42 88.33± 4.42

Asymmetric 16± 8.86 84± 8.86 35.33± 7.96 64.67± 7.96

Triangular 14± 10.21 86± 10.21 15± 4.68 85± 4.68
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TABLE A.18: Low Interval, SVM, Symmetric vs Rest, 95% CI.

Truth 84dB SNR Not 0dB SNR Not

CW 0± 0 100± 0 0± 0 100± 0

Linear 10.33± 4.36 89.67± 4.36 7± 2.84 93± 2.84

Symmetric 55± 6.07 45± 6.07 51.33± 6.56 48.67± 6.56

Asymmetric 2.67± 1.86 97.33± 1.86 4.67± 2.61 95.33± 2.61

Triangular 38± 5.18 62± 5.18 48.33± 7.46 51.67± 7.46

TABLE A.19: Low Interval, SVM, Asymmetric vs Rest, 95% CI.

Truth 84dB SNR Not 0dB SNR Not

CW 0± 0 100± 0 0.33± 0.65 99.67± 0.65

Linear 23± 5.65 77± 5.65 36.33± 5.9 63.67± 5.9

Symmetric 10.33± 4.36 89.67± 4.36 5± 3.08 95± 3.08

Asymmetric 58.67± 6.76 41.33± 6.76 49.33± 7.34 50.67± 7.34

Triangular 13.33± 4.34 86.67± 4.34 9.33± 4.3 90.67± 4.3

TABLE A.20: Low Interval, SVM, Triangle vs Rest, 95% CI.

Truth 84dB SNR Not 0dB SNR Not

CW 0± 0 100± 0 0± 0 100± 0

Linear 7± 3.14 93± 3.14 9± 3.17 91± 3.17

Symmetric 33.67± 6.27 66.33± 6.27 33.67± 5.52 66.33± 5.52

Asymmetric 11.67± 4.89 88.33± 4.89 8.67± 3.73 91.33± 3.73

Triangular 45.33± 4.86 54.67± 4.86 48.67± 5.21 51.33± 5.21
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TABLE A.21: Low Interval, Groupwise, SVM, CW vs Rest, 95% CI.

Truth 84dB SNR Not 0dB SNR Not

CW 100± 0 0± 0 100± 0 0± 0

Linear 1± 1.96 99± 1.96 3± 2.13 97± 2.13

Symmetric 2± 2.61 98± 2.61 4.33± 2.43 95.67± 2.43

Asymmetric 3± 4.18 97± 4.18 5± 2.93 95± 2.93

Triangular 8± 6.4 92± 6.4 8.33± 3.65 91.67± 3.65

TABLE A.22: Low Interval, Groupwise, SVM, Symmetrical vs Asymmetrical, 95% CI.

Truth 84dB SNR Not 0dB SNR Not

Linear 22.67± 5.71 77.33± 5.71 9.67± 4.46 90.33± 4.46

Symmetric 89± 4.24 11± 4.24 90± 2.97 10± 2.97

Asymmetric 8.67± 3.84 91.33± 3.84 8.67± 4.38 91.33± 4.38

Triangular 85.33± 3.84 14.67± 3.84 86.67± 3.8 13.33± 3.8

TABLE A.23: Low Interval, Groupwise, SVM, Symmetric vs Triangle, 95% CI.

Truth 84dB SNR Not 0dB SNR Not

Symmetric 63.33± 5.74 36.67± 5.74 53.33± 7.3 46.67± 7.3

Triangular 50.33± 6.13 49.67± 6.13 56± 6.13 44± 6.13

TABLE A.24: Low Interval, Groupwise, SVM, Linear vs Asymmetric, 95% CI.

Truth 84dB SNR Not 0dB SNR Not

Symmetric 72.33± 6.62 27.67± 6.62 61± 5.9 39± 5.9

Triangular 30± 5.72 70± 5.72 42.33± 5.92 57.67± 5.92
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TABLE A.25: Low Interval, Hierarchical, SVM, no noise, 95% CI.

Truth CW Linear Symmetric Asymmetric Triangular

CW 100± 0 0± 0 0± 0 0± 0 0± 0

Linear 1.67± 1.36 67± 6.45 13.33± 4.44 15.33± 5.29 2.67± 2.47

Symmetric 2.33± 1.8 11.67± 4.61 57.33± 7.51 8.33± 3.27 20.33± 8.33

Asymmetric 13± 3.78 7± 3.28 5.33± 2.78 70± 5.64 4.67± 3.22

Triangular 4± 2.22 13± 3.41 30.67± 5.14 11.67± 3.53 40.67± 5.63

TABLE A.26: Low Interval, Hierarchical, SVM, 0dB SNR, 95% CI.

Truth CW Linear Symmetric Asymmetric Triangular

CW 100± 0 0± 0 0± 0 0± 0 0± 0

Linear 7.33± 3.38 60.33± 6.27 7.33± 3.63 20.67± 5.47 4.33± 2.03

Symmetric 9.67± 2.89 10.67± 4.3 44.33± 7.44 10± 3.26 25.33± 4.95

Asymmetric 10.33± 3.32 19.67± 4.65 1.67± 1.36 66± 5.45 2.33± 2.03

Triangular 5.33± 2.25 9.33± 2.81 33.33± 6.11 8± 3.17 44± 5.84
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