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Abstract

In this thesis, a novel method for fitting the semiparametric generalized linear model (SP-

GLM) is developed and tested. We demonstrate that this provides an effective model fitting

algorithm to the SP-GLM, particularly, when dealing with very large data sets. We also

propose another special SP-GLM and discuss how to fit this special model. This special

SP-GLM assumes the canonical link function, which simplifies the algorithm to fit this

model.

GLMs are widely used for data analysis. However, in some applications, GLMs do not

performwell inmodel fittingwhen the selected distribution for the response data is inaccurate.

The SP-GLM with a nonparametric reference density extends the conventional GLMs. The

SP-GLM offers flexibility in regression modelling by relaxing the requirement of a known

response distribution in GLMs to only require that the response variable has a distribution

from some exponential family. However, a limitation has been observed in the application

of the existing SP-GLM method (Huang, 2014) on large data sets, presumably due to the

significant increase in the number of constraints for the SP-GLM for large sample sizes. The

proposed new SP-GLM methods in this thesis will enable to fit SP-GLM to very large data
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sets.

In this research, the focus is on the regression coefficients estimations and inferences.

An iterative algorithm is developed for estimation of the regression coefficients and the

reference density simultaneously. The asymptotic properties of the estimators subject to

active constraints are also provided.

Performance of the proposed methods are tested through simulation studies and real data

applications. The simulation results have indicated effectiveness for the methods proposed

in this research, with accurate estimation of the regression coefficients, as well as inference.

The conclusion reached in this research is that the proposed model fitting methods enhance

the capacity of the SP-GLM to handle very large data sets with fast convergence.



Contents

Acknowledgements v

Abstract vii

Contents ix

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Background and Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review 7

2.1 The generalized linear model . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 The probability distribution . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 The linear predictor . . . . . . . . . . . . . . . . . . . . . . . . . . 9



x Contents

2.1.3 The link function . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 The mean and variance functions . . . . . . . . . . . . . . . . . . 12

2.2 Exponential tilting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 The semiparametric generalized linear model . . . . . . . . . . . . . . . . 14

2.3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Existing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Constrained optimization method . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.1 Lagrange Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.2 KKT conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.3 Multiplicative Iterative algorithm . . . . . . . . . . . . . . . . . . 26

2.6 The proposed methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 The semiparametric generalized linear model 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Approximation of the reference density f0 . . . . . . . . . . . . . . . . . . 33

3.2.1 Log-likelihood function . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Constrained maximum likelihood estimation . . . . . . . . . . . . . . . . . 35

3.3.1 Estimate the pu’s . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.2 Computation of θ . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.3 Estimating the regression coefficient β . . . . . . . . . . . . . . . . 38

3.4 Asymptotic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.1 Log-linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



Contents xi

3.5.2 Zero-inflated data . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.3 Comparing different number of bins . . . . . . . . . . . . . . . . . 53

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 The semiparametric generalized linear model with canonical link 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Semiparametric generalized linear model with canonical link . . . . . . . . 63

4.2.1 Identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Computation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Asymptotic results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Display the canonical link function . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6.1 Impact of different number of observations in each bin (Normal

distribution with identity link) . . . . . . . . . . . . . . . . . . . . 77

4.6.2 Binomial distribution with logit link . . . . . . . . . . . . . . . . . 82

4.6.3 Poisson distribution with log link . . . . . . . . . . . . . . . . . . 84

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Application to real data sets 89

5.1 Vehicle insurance data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Research productivity of PhD graduates data set . . . . . . . . . . . . . . . 97

5.3 CD4 data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Summary of applications to real data sets . . . . . . . . . . . . . . . . . . 109

6 Conclusions and Future Work 111

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



xii Contents

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A Appendix 117

A.1 MATLAB code for SP-GLM-I . . . . . . . . . . . . . . . . . . . . . . . . 117

A.2 MATLAB code for SP-GLM-CL . . . . . . . . . . . . . . . . . . . . . . . 129

References 137



List of Figures

4.1 True mean (left) and fitted mean (right) curves of binomial response with

logit link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 True mean (left) and fitted mean (right) curves of Poisson response with log

link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 True mean (left) and fitted mean (right) curves of normal response with

identity link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 The fitted mean curve of SP-GLM-CL model for the vehicle insurance data set. 93

5.2 PIT histogram of SP-GLM-I for the vehicle insurance data set. . . . . . . . 95

5.3 PIT histogram of SP-GLM-CL for the vehicle insurance data set. . . . . . . 95

5.4 PIT histogram of GLM for the vehicle insurance data set. . . . . . . . . . . 96

5.5 The P-P plots of PITs for SP-GLM-I (dashed-dotted green), SP-GLM-CL

(dashed red) and GLM (solid blue) with the vehicle insurance data set. . . . 96

5.6 Histogram of art. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.7 PIT histogram of SP-GLM-I for the PhD articles data set. . . . . . . . . . . 100

5.8 PIT histogram of SP-GLM-CL for the PhD articles data set. . . . . . . . . . 100



xiv List of Figures

5.9 PIT histogram of GLM for the PhD articles data set. . . . . . . . . . . . . . 101

5.10 The P-P plots of PITs for SP-GLM-I (dashed-dotted green), SP-GLM-CL

(dashed red) and GLM (solid blue) with the PhD articles data set. . . . . . . 101

5.11 Histogram of cd4 and age. . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.12 Scatter plot of CD4 counts and child’s age. . . . . . . . . . . . . . . . . . . 103

5.13 The fitted mean curve of SP-GLM-CL model for the CD4 data set. . . . . . 105

5.14 The scatter plot of cd4 and age and the fitted curves for SP-GLM-CL (dashed

red), Poi-log (dashed-dotted green) and N-id (solid black). . . . . . . . . . 105

5.15 PIT histogram of SP-GLM-CL model for the CD4 data set. . . . . . . . . . 107

5.16 PIT histogram of Poi-log model for the CD4 data set. . . . . . . . . . . . . 107

5.17 PIT histogram of N-id model for the CD4 data set. . . . . . . . . . . . . . . 108

5.18 The P-P plots of PITs for SP-GLM-CL (dashed red), Poi-log (dashed-dotted

green) and N-id (solid blue) with the CD4 data set. . . . . . . . . . . . . . 108



List of Tables

2.1 Commonly used link functions . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Simulation results for Poisson response with n = 30. . . . . . . . . . . . . 47

3.2 ARSS and ATIME (in seconds) for the model fitting of Poisson response with

n = 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Type I errors for β1 for Poisson response with n = 30. . . . . . . . . . . . . 48

3.4 Simulation results for zero-inflated Poisson response with zero proportion

π = 0.3 and n = 300 and 10,000. . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 ARSS and ATIME (in seconds) for the model fitting of zero-inflated Poisson

response with zero proportion π = 0.3 and n = 300 and 10,000. . . . . . . 52

3.6 Type I errors for β1 for zero-inflated Poisson response with zero proportion

π = 0.3 and n = 300 and 10,000. . . . . . . . . . . . . . . . . . . . . . . . 52

3.7 Simulation results of SP-GLM-I with different number of bins (m) and n = 500. 55

3.8 Simulation results with one observation in each bin (n0 = 1) and n = 500. . 56

3.9 ARSS and ATIME (in seconds) for the model fitting of continuous response

with different number of bins (m) and n = 500. . . . . . . . . . . . . . . . 57



xvi List of Tables

3.10 Type I errors for β1 for continuous response with different number of bins

(m) and n = 500. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Simulation results for one observation in each bin (n0 = 1) with n = 500. . . 78

4.2 Simulation results to compare different number of observations in each bin

(n0) with n = 500. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 ARSS for the model fitting of continuous response with different number of

observations in each bin (n0) for SP-GLM-CL and SP-GLM-I with n = 500. 80

4.4 ATIME for the model fitting of continuous response with different number

of observations in each bin (n0) for SP-GLM-CL and SP-GLM-I with n = 500. 81

4.5 Type I errors for β1 for continuous response with different number of obser-

vations in each bin (n0) for SP-GLM-CL and SP-GLM-I with n = 500. . . . 82

4.6 Simulation results for binary response with n = 10,000. . . . . . . . . . . . 83

4.7 ARSS and ATIME for binary response with n = 10,000. . . . . . . . . . . 84

4.8 Type I errors for β1 for binary response with n = 10,000. . . . . . . . . . . 84

4.9 Simulation results for Poisson response with n = 100. . . . . . . . . . . . . 85

4.10 ARSS and ATIME for Poisson response with n = 100. . . . . . . . . . . . 86

4.11 Type I errors for β1 for Poisson response with n = 100. . . . . . . . . . . . 86

5.1 Variables from vehicle insurance policies. . . . . . . . . . . . . . . . . . . 91

5.2 The frequency table of the number of claims. . . . . . . . . . . . . . . . . 92

5.3 The final model results of the vehicle insurance data set. . . . . . . . . . . 94

5.4 The frequency table of the number of articles. . . . . . . . . . . . . . . . . 98

5.5 The final model results of the PhD articles data set. . . . . . . . . . . . . . 99

5.6 The final model results of the CD4 data set. . . . . . . . . . . . . . . . . . 104



List of Tables xvii

5.7 The mean squared error (MSE) and the MSE using the leave-one-out cross-

validation method (MSE-CV) for the model fitting of the cd4 data set. . . . 106



xviii List of Tables



1
Introduction

1.1 Background and Aims

Generalized linearmodels (GLMs) (McCullagh&Nelder, 1983, 1989;Nelder&Wedderburn,

1972) are useful regression analysis tools. They extend the conventional linear regression

modeling beyond requiring a normal distribution of the response variable to various other

distributions and they also provide flexibility by allowing different link functions. A link



2 Introduction

function is a function that makes the mean of a response variable share a linear relation with

predictors. The well-known logistic regression is an example of a GLM.

GLMs have been employed in many areas such as actuarial science and medical research.

In medical research, for example, GLMs are used to model healthcare costs and resource use

(see e.g. Blough, Madden, and Hornbrook (1999); Manning andMullahy (2001); Mihaylova,

Briggs, O’hagan, and Thompson (2011)). The healthcare costs can be modeled using the

Gamma distribution and the resource use can be modeled using the Poisson or negative

binomial distribution. For actuarial science, the review of the utilization of GLMs in various

problems including claims reserving, premium rating, multiple-state models, mortality and

lapse rates can be found in Haberman and Renshaw (1996). GLMs have been used in actuarial

science since the early 1980s (Haberman & Renshaw, 1996), for example, to support critical

decisions made by insurance companies (De Jong & Heller, 2008) about life insurance, non-

life insurance and pensions. In non-life insurance, GLMs can be applied to investigate the

relationship between the annual claim frequency and the risk factors in vehicle insurance

(e.g. Kafková, Křivánková, et al. (2014)). The number of claims can be modeled using the

Poisson distribution with the log link. For life insurance, Renshaw and Haberman (1986)

modeled the policy lapse rate using the binomial distribution with the logit link. Further

examples of GLMs in actuarial science such as insurance cost pricing can be found in e.g.

Cizek, Härdle, and Weron (2005); De Jong and Heller (2008); Denuit, Maréchal, Pitrebois,

andWalhin (2007); Frees, Derrig, and Meyers (2014); Ohlsson and Johansson (2010). In this

thesis, the applications to a health data set and an insurance data set are used to demonstrate

the performance of our proposed methods.

Despite their broad usefulness in regression analysis in various fields as mentioned above,

GLMs may not provide good solutions in some situations. In practice, one can easily find
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examples where the response data may not be well modeled by the handful of parametric

exponential family of distributions commonly used in GLMs.

GLMs are fully parametric in both the response distribution and the systematic component

(see Section 2.1.2). For a GLM, two important components are the mean as a function of

the linear predictors and the (conditional) distribution of the response variable. Both of

these components must be fully defined. But in practice, sometimes one or both components

cannot be specified satisfactorily. Many proposed extensions of GLMs attempt to relax these

requirements by including a nonparametric component in either the mean function or the

response distribution, or both. Most GLM extensions deal with a nonparametric component

in the mean function. For example, the linear predictor in a generalized additive model

(GAM) (Hastie & Tibshirani, 1990) depends linearly on unknown smooth functions. A

single index nonparametric component in a generalized semiparametric single-index mixed

model (GSSIMM) (Chen, 2010) is incorporated into the mean function. However, this type

of GLM extension is not the focus of this thesis.

Our focus in this thesis is on the other way to extend GLMs. That is to include a

nonparametric component into the response distribution so that the model becomes more

flexible so as to accommodate departures from any conventional distribution chosen from the

exponential family.

There are some statistical methods for relaxing the response distribution assumption. One

popular method is the Quasi-likelihood method (Wedderburn, 1974) which does not require

the response distribution at all. The Quasi-likelihood method only requires a relationship

between the mean and the variance. This method is often described as robust in the sense

that it can provide consistent regression coefficient estimates provided that the mean model

is correctly specified (Crowder, 1986). However, as the actual probability distribution is not
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considered, there is no further information about the probability mechanism which generated

the data. Thus, it cannot be easily used to make inferences about the response distribution.

For the semiparametric GLM (SP-GLM) considered in this thesis, the distribution of

the response variable is partly specified. This method is very useful for handling real

world data, especially when there is limited prior knowledge of the response distribution.

In fact, it assumes the distribution of the response variable contains both parametric and

nonparametric components. This model can handle not only the standard distributions

in the GLM framework, it can also handle some nonstandard distributions such as the

distributions of zero-inflated and overdispersed count data. This relaxation on response

distribution specification can avoid inefficient parameter estimates and inference due tomodel

misspecification (e.g. Gardner,Mulvey, and Shaw (1995),White (1982), Drake (1993)). Even

with an unspecified density function (the nonparametric component), this SP-GLM is in a

full probability framework. This means we can gain more information for the probability

mechanism that generates the data. This is useful for model selection and diagnostics as well

as for making predictive inferences.

In this SP-GLM, the response density function is written in the form of an exponential

tilting of a reference density. We assume the reference density f0 is unknown and thus is

an infinite dimensional parameter. It can be estimated simultaneously with the regression

coefficient parameters. However, the fact of infinite dimension of the reference density

makes it difficult to fit the model. A method to overcome this problem is by approximating

the infinite dimensional parameter with a finite dimensional parameter.

The SP-GLM that applies exponential tilting to the response distribution was introduced

by Rathouz and Gao (2009). Some favourable results for some count responses were shown

in that paper. A computational algorithm has been developed for the response data with finite
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and known support C = [c1, . . . , cU]
T with cardinalityU. The reference density then becomes

a discrete distribution f̃0 = [ f0(c1), . . . , f0(cU)]
T . In the estimation of f̃0, (U −2) components

were first arbitrarily selected, denoted as f ∗0 = [ f
∗

0 (c1), . . . , f ∗0 (cU−2)]
T . The remaining two

parameters of f̃0 were expressed as functions of f ∗0 to enforce two constraints on f̃0, discussed

in Section 2.3.3. The problem then becomes estimation of h∗
0 where h∗0(cu) = log{ f ∗0 (cu)} for

u = 1, . . . ,U − 2. However, reparameterization of f ∗0 by logarithm may create local maxima,

which means the starting value of an algorithm may determine the final solution.

Huang (2014) replaced the reference density by the probability masses p = [p1, . . . , pn]
T

supported on the observed response [y1, . . . , yn]
T . This was motivated by the empirical

likelihood approach of Owen (2001). For Huang’s method, the constrained optimization

solver function within the MATLAB optimization toolbox is used for parameter estimation.

This computational method works well with small and medium size data sets (sample sizes

of less than 800 observations). For the SP-GLM, the required number of constraints is at

least as big as the number of observations in the data set. Using a built-in solver limits the

sample sizes allowed for the model.

The concept and theory of SP-GLM is remarkable. However, the SP-GLM is not ex-

tensively used in practice. We aim to develop a novel method to fit the SP-GLM with an

unspecified reference density. We develop our own computational algorithm, avoiding using

any solver in MATLAB or R. The new method has an enhanced computational capability and

is able to handle large data sets. In addition, we propose a SP-GLM with the canonical link

function. In this model, the form of link function is not explicitly specified. This model is

easier to fit than the SP-GLM with a user specified link function.

We just found recently that Aeberhard and Hannay (2018) andWurm and Rathouz (2018)

were independently working on the SP-GLM problem. The algorithms developed in this
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thesis are different from theirs. In particular, we differ in the methods to estimate f0 and

the way to impose constraints on f0. Aeberhard and Hannay (2018) approximates f0 using

the linear splines and then estimates its log transformation. They are currently exploring the

constrained optimizers for estimating f0. Wurm and Rathouz (2018) approximate f0 using

the same approximation as in Rathouz and Gao (2009), then the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970),

which is an iterative method to solve unconstrained optimization problems, is applied to

obtain the estimate of log transformation of f̃0.

1.2 Thesis outline

The rest of thesis is set out as follows. Chapter 2 provides backgrounds forGLMand SP-GLM,

and it also summarizes the optimization methods needed in this thesis. Chapter 3 introduces

the proposed new model fitting algorithm for the SP-GLM. The asymptotic properties of

the parameters subject to the active constraints are derived. Various simulation results are

presented to examine the performance of our proposed method. In Chapter 4, a special case

of the SP-GLM is presented, where the canonical link function is used. Simulation studies

are conducted to investigate the performance of this method. The applications of our model

fitting methods to the real data sets are reported in Chapter 5. Then Chapter 6 provides

conclusions and suggestions for future research. MATLAB codes for both methods are given

in Appendix A.



2
Literature Review

In this chapter, we provide the background for statistical models and methods used to develop

ourmodel fitting algorithm for the SP-GLM.GLMs are fundamentalmodels for understanding

the SP-GLM, therefore we start with the background of GLMs in Section 2.1. Section 2.2

explains briefly the exponential tilting approach that is used to form the response distribution.

Section 2.3 explains the SP-GLM which adopts exponential tilting and presents the model’s

identifiability issue. Existing methods for fitting SP-GLMs are discussed in this section.
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Their computational issues and their ability to handle data problems are also considered. The

maximum likelihood estimation is briefly explained in Section 2.4. Some useful constrained

optimization methods, that are used to develop our model’s algorithm, are illustrated in

Section 2.5. Our proposed methods are briefly introduced in Section 2.6.

2.1 The generalized linear model

GLMs (McCullagh & Nelder, 1989) are an extension of linear models. They allow the

distribution of the response variable to depart from the normal distribution. One benefit of

GLMs is in their interpretation. The relationship between the expected response mean and

the covariates can be interpreted through the link function. Due to these features, GLMs have

become a popular and extensively used tool for data analysis.

We set the framework for the notation used throughout the thesis here. Suppose we have

n independent response random variables, Y1, . . . ,Yn. The corresponding observations are

y1, . . . , yn. Let y = [y1 . . . yn]
T be the n × 1 observed response vector. The design matrix

X =
[
XT

1 . . .X
T
n
]T is the n × q covariates matrix where q is the number of covariates and

Xi = [xi1 . . . xiq] is the row vector of X for the ith observation where i = 1, ...,n. For

simplicity, conditioning on the covariates is implicit throughout.

GLMs are comprised of three components: a probability distribution, a linear predictor,

and a link function (see also, for example, Dobson and Barnett (2008); Fahrmeir and Tutz

(2013); De Jong and Heller (2008)).

2.1.1 The probability distribution

The first component of a GLM is a (conditional) probability distribution for the response

variable. This is sometimes also known as the error model. In linear regression, the error
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model is restricted to be a normal distribution. However, inGLMs, the probability distribution

of Yi can be any distribution that is a member of an exponential family of distributions. Thus

the probability density function of Yi can be expressed in the form

f (yi) = exp {yiθi − b(θi) + c(yi)} , (2.1)

where θi is an unknown canonical parameter, b(θi) is known and relates to the normalizing

constant of the distribution and c(·) is a known function. θi is tied to the mean and thus is

linked to the linear predictor. This is a rich family of distributions but in practice GLMs use

only a few of its members. Well-known exponential family distributions include, for example,

the normal, Poisson, binomial and gamma distributions. Note that the density function of

the exponential family can include a dispersion parameter φ. This is called the exponential

dispersion family. The density function is then in the form:

f (yi) = exp
{
yiθi − b(θi)

ai(φ)
+ c(yi, φ)

}
, (2.2)

where a(·) is a known function. In general ai(φ) =
φ
wi

where wi is the known weight of

observations which is typically set to 1.

2.1.2 The linear predictor

The second component of a GLM is the linear predictor. This is a systematic component. It

is specified as

ηi = Xiβ, (2.3)

where β is a q-column vector of the regression coefficient parameters. This Xiβ is a linear

combination of covariates similar to the linear regression setting.
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2.1.3 The link function

The third component of a GLM is the link function g(·)which is user specified and is required

to be monotonic. It is used to link the response mean and the linear predictor together. That

is

g(µi) = ηi, (2.4)

where µi is the conditional mean ofYi given the covariates. The advantage of the link function

is that the non-linear structure can be transformed to have a linear structure through the link

function. This feature generalizes the traditional linear relationship of the response mean and

the regression coefficient parameters. The mean function is denoted by

E(Yi |Xi) = µi(Xi; β) ≡ µi = g−1(ηi), (2.5)

where g−1(·) is the inverse of the link function. The mean function is a smooth and invertible

function of the linear predictor.

Some typically used link functions are shown in Table 2.1. These functions can also be

used in the SP-GLM.

Table 2.1: Commonly used link functions

Link function g(µi) g−1(ηi)
∂µi
∂ηi

identity µi ηi 1

log ln(µi) exp(ηi) exp(ηi)

logit ln
(

µi
1−µi

)
exp(ηi)

1+exp(ηi)
exp(ηi)

(1+exp(ηi))2

inverse µ−1
i η−1

i −η−2
i
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The canonical link function

If the g(·) function is chosen such that θi = g(µi), then g(·) is called the canonical link

function. Examples of canonical links for well-known exponential family distributions are

the log link for the Poisson distribution, logit link for the binomial distribution, identity

link for the normal distribution and inverse link for the gamma distribution. Although the

canonical link function is a useful link function, sometimes a non-canonical link function

may be preferable, because it may provide better model fitting for some data sets or it may

be easier to interpret the relationship of the variables, such as the log link is more likely

to be used with the gamma and negative binomial distribution than their canonical links.

However, there are some computational difficulties for a non-canonical link in comparison to

a canonical link. For example, using the gamma distribution with the identity link involves

numerical issues since the identity link is not guaranteed to produce positive expectation as

required for the gamma distribution.

Generally, the canonical link is used as a default link function due to its desirable mathe-

matical and statistical properties. It generally guarantees the mean constraint to be within the

range of the response variable (Breheny, 2013). For example, the canonical link for the Pois-

son distribution is the log link. That is log(µi) = ηi = θi, then µi = exp{θi} ∈ [0,∞] which is

within the boundaries of the Poisson distribution. Another example is the logit link which is

the canonical link for the binomial distribution. The response mean is µi =
exp(θi)

1+exp(θi) ∈ [0,1]

which assures that mean lies within its boundaries.

Using the canonical link also simplifies the derivation of the maximum likelihood es-

timator (Breheny, 2013). Many linear regression properties such as sum of the residuals

which are differences between observed and predicted responses, equals zero still hold true

(Breheny, 2013) under the canonical link. The minimal sufficient statistic for β also exists
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(Lindsey, 1997; Rodriguez, 2007). We use the canonical link function later in Chapter 4 for

the special case of the SP-GLM.

2.1.4 The mean and variance functions

For a distribution from the exponential family, the relationship between the mean and the

canonical parameter θi is specified as µi = b′(θi) and the relationship between the variance

and θi is specified as Var(Yi |Xi) = ai(φ)b′′(θi).

The closed forms of θi, b(θi), b′(θi), and b′′(θi) can be defined from the known response

distribution. For example, let Yi follow a Poisson distribution with probability mass function

f (yi) =
µ
yi
i exp{−µi}

yi!
.

This f (yi) can be expressed in the form of the exponential family,

f (yi) = exp {yi log(µi) − µi − log(yi!)} ,

where θi = log(µi), b(θi) = exp{θi}, φ = 1, wi = 1 and c(yi, φ) = − log(yi!). So the mean and

variance for the Poisson distribution are b′(θi) = exp{θi} = µi and Var(Yi |Xi) =
φ
wi

b′′(θi) =

exp{θi} = µi.

Another example we wish to discuss here is the normal distribution (or Gaussian distri-

bution) with mean µi and variance σ2. The probability density function is

f (yi) =
1

√
2πσ2

exp
{
−
(yi − µi)

2

2σ2

}
= exp


yiµi −

µ2
i

2
σ2 −

1
2

(
y2

i

σ2 + log(2πσ2)

) ,
where θi = µi, b(θi) =

θ2
i

2 , φ = σ
2, wi = 1 and c(yi, φ) = −

1
2

(
y2
i

σ2 + log(2πσ2)
)
. Then the

mean is b′(θi) = θi = µi and the variance is Var(Yi |Xi) =
φ
wi

b′′(θi) = σ
2.
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More examples of exponential family distributions, such as the binomial, gamma, and

inverse Gaussian distributions, can be found in many GLMs books (for example, De Jong

and Heller (2008)).

Inmany cases in applied analysis, the assumption of a known response distributionmay be

an impossible requirement. We can relax that requirement by assuming a particular structure

for the response distribution that includes a nonparametric component.

2.2 Exponential tilting

We will first give some background on exponential tilting because it is a technique that can

be used to build the response distribution in the SP-GLM as explained in Section 2.3.

Exponential tilting is a distribution shifting technique commonly used in simulation. It

was proposed by Esscher (1932), then developed by Daniels (1954), and Barndorff-Nielsen

and Cox (1979). Exponential tilting is also known as the Esscher transform in mathematical

finance (Asmussen &Glynn, 2007, p. 330) and insurance (Cruz, Peters, & Shevchenko, 2015,

p. 784).

For simplicity, consider a scalar random variable Y that has a probability distribution

F0 with density function f0 with respect to some measure and moment generating function

M(θ) = E[exp{yθ}] < ∞. Define I{Y ∈ dy} to be an indicator function: I{Y ∈ dy} = 1 for

Y ∈ dy and 0 otherwise, where dy is some infinitesimally small measurable set. The tilted

distribution F can be generated from the original distribution F0. The exponentially tilted

distribution is in the form,

F(Y ∈ dy) =
E [exp{yθ}I{Y ∈ dy}]

M(θ)
= exp {yθ − κ(θ)} F0(Y ∈ dy),

where κ(θ) = log (E [exp{yθ}]) is the cumulant generating function.
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The exponentially tilted distribution function F has a density function that can be ex-

pressed as

f (y) =
exp{yθ} f0(y)

M(θ)
= exp {yθ − κ(θ)} f0(y). (2.6)

This density function seems to be very similar in form to an exponential family distribution

(2.1). But they are slightly different in that f0(y) in (2.6) is a density, while exp{c(y)} in (2.1)

may not be a density. In other words, exponential tilting can construct distributions of the

exponential family where the probability distribution F0 is tilted by θ.

2.3 The semiparametric generalized linear model

There are many types of SP-GLMs. Most SP-GLMs deal with a nonparametric mean

function and a parametric response distribution such as the generalized additivemodel (Hastie

& Tibshirani, 1990) and the generalized semiparametric single-index mixed model (Chen,

2010). However, throughout this thesis, we consider only the SP-GLM that was introduced

by Rathouz and Gao (2009). In this scenario, the mean function is a parametric function,

while the response distribution contains a nonparametric component.

2.3.1 Model

The SP-GLM consists of the same three components as for GLMs: a probability distribution,

a linear predictor, and a link function. Suppose each response variableYi has an exponentially

tilted distribution Fi with supportY ⊆ R. Thus for a givenXi, observation yi is independently

sampled from Fi with probability density function

fi(y |Xi) = f0(y) exp{yθi − b(θi; f0)}, (2.7)
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where the cumulant generating function is

b(θi; f0) = log
∫
Y

exp{yθi} f0(y)dy.

This specification has the advantage that the response distribution is not required to be

completely known a priori.

The exponential tilting provides a special group in the exponential family where a(φ) = 1

and exp{c(y, φ)} is a density f0(y). In GLMs, f0(y) is fully known from the pre-specified

response distribution. In contrast, in this SP-GLM, f0(y) is unknown and can be estimated

from the data. Therefore f0 is nonparametric and thus is infinite dimensional and this makes

the task of model fitting more difficult than for the standard GLMs.

The SP-GLM can cover a rich family of distributions by having different f0. Flexibility

of f0 will enable better fits of density to data. For example, f0 may have inflated probability

mass at zero for zero-inflated data; f0 may have thicker tails than the Poisson distribution for

overdispersed count data.

As f0 is seen as a density function, the required constraints on f0 are: (i) f0(y) ≥ 0

(ii)
∫
Y

f0(y)dy = 1, which are the properties of a density function.

The linear predictor, the link function and the mean function are specified in the same

way as in the classical GLMs in (2.3), (2.4) and (2.5) respectively. The SP-GLM also has the

same mean and variance formulae as GLM:

µi = b′(θi; f0) =
∫
Y

y exp {yθi − b(θi; f0)} f0(y)dy,

Var(Yi |Xi) = b′′(θi; f0) =
∫
Y

(y − µi)
2 exp {yθi − b(θi; f0)} f0(y)dy.

However, unlike in GLMs where the canonical parameter θi is known from the distribu-

tion specification, in the SP-GLM θi is unknown. It can be computed from the following
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relationship:

g−1(Xiβ) =

∫
Y

y exp {yθi − b(θi; f0)} f0(y)dy.

Thus θi can be seen as a function of β and f0.

2.3.2 Identifiability

Note that f0 in the probability density function (2.7) is not identifiable. This is because

we can get the same density fi(y |Xi) by replacing f0 with an exponentially tilted f0. More

specifically, if letting the exponential tilting of f0 be

f ∗0 (y) = f0(y) exp{yθ∗0 − b(θ∗0; f0)}, (2.8)

where θ∗0 can be any finite constant value and

b(θ∗0; f0) = log
∫
Y

exp
{
yθ∗0

}
f0(y)dy. (2.9)

Then we can demonstrate that fi(y |Xi) can be expressed as

fi(y |Xi) = f ∗0 (y) exp{yθ∗i − b∗(θ∗i ; f ∗0 )}, (2.10)

where

b∗(θ∗i ; f ∗0 ) = log
∫
Y

exp
{
yθ∗i

}
f ∗0 (y)dy. (2.11)

Substituting f ∗0 (y) from (2.8) in (2.10), we get

fi(y |Xi) = f0(y) exp
{
y(θ∗0 + θ

∗
i ) −

(
b(θ∗0; f0) + b∗(θ∗i ; f ∗0 )

)}
. (2.12)

If we let θ∗i = θi − θ
∗
0 , we get b∗(θ∗i ; f ∗0 ) = b(θi; f0) − b(θ∗0; f0) after substituting f ∗0 (y) from

(2.8) into (2.11). Then (2.12) is the same as the conditional density in (2.7).

Note that f ∗0 (y) becomes unique if its mean value µ∗0, i.e.
∫
Y

y f ∗0 (y)dy = µ∗0, is fixed

(Rathouz & Gao, 2009). The density function fi(y |Xi) is invariant to the value of µ∗0 as



2.3 The semiparametric generalized linear model 17

long as it is chosen from the interior of Y (Rathouz & Gao, 2009). One way to impose this

identifiability constraint is by pre-specifying µ∗0 and solving for the corresponding θ∗0, then

for a given f0(y), f ∗0 (y) can be obtained (Wurm & Rathouz, 2018).

In Chapter 3, to make the model identifiable, we choose µ∗0 in the way such that θ∗0 = 0.

This is because if we force θ∗0 to be zero, then θ
∗
i will be identical to θi and b(θ∗0; f0) = 0, then

f ∗0 (y) = f0(y). Note that this special µ∗0 needs not to be specified explicitly.

2.3.3 Existing methods

Rathouz and Gao’s method

Rathouz and Gao (2009) introduced the SP-GLM and provided parameter estimation algo-

rithm for the response data with known finite support C = [c1, . . . , cU]
T with cardinality

U. In their algorithm, the vector of probabilities is defined as f̃0 = [ f0(c1), . . . , f0(cU)]
T .

The parameters β and f̃0 were estimated by using a maximum likelihood approach. The

three constraints on f̃0 are: (i) 0 ≤ f0(cu) ≤ 1 for u = 1, . . . ,U; (ii)
U∑

u=1
f0(cu) = 1 and

(iii)
U∑

u=1
cu f0(cu) = µ∗0, where µ

∗
0 is a pre-selected quantity. The last constraint is the iden-

tifiability constraint which can be enforced differently (see Section 2.3.2). The maximum

likelihood estimation of f̃0 that satisfies these constraints is achieved by arbitrarily choos-

ing (U − 2) elements from f̃0 to form a new vector which is denoted as f ∗0 = [ f
∗

0 (c1), . . . ,

f ∗0 (cU−2)]
T . Then the remaining two elements [ f0(cU−1), f0(cU)]

T were expressed as functions

of f ∗0 through equations (ii) and (iii), and they can be obtained from f̂ ∗0 . Let a vector h∗
0

be defined as h∗
0 = [h

∗
0(c1), . . . , h∗0(cU−2)]

T , the non-negativity constraints f0(cu) ≥ 0 were

imposed by reparameterizing f ∗0 such that f ∗0 (cu) = exp{h∗0(cu)} for u = 1, . . . ,U − 2. The

Fisher scoring method can be applied to estimate h∗
0, where a step size of, for example, 1/2

can multiply the Fisher information matrix for h∗
0 until the constraint f0(cu) ≤ 1 is satisfied.
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For given µi and f̃0, θi can be solved from the mean condition µi = b′(θi; f̃0). However,

since µi ∈ (m,M) where m = inf(C) and M = sup(C), an ad-hoc method using the logit

transform was applied to stabilize the solution. The logit transform function was defined

as gl(µi) = logit
( µi−m

M−m

)
= log

(
µi−m
M−µi

)
, and then the Newton’s method is used to estimate θi

which solves for θi from gl(µi) = gl(b′(θi; f̃0)).

In the paper of Rathouz and Gao (2009), the numerical results of some polytomous

responses for small cardinality U were shown.

Huang’s method

Huang (2014) approximated f0 by the non-negative empirical probability masses p, which is

a vector containing pi’s for i = 1, . . . ,n. β and p are estimated simultaneously via maximum

empirical likelihood estimation. The empirical log-likelihood function is

l(β, p) =
n∑

i=1
(log pi + bi + θiyi) ,

where bi = −b(θi; p) are normalizing constants and both θi and bi are treated as unknown

parameters in the model fitting algorithm.

The MATLAB built-in optimization function named fmincon() is used to estimate

β j , log pi, bi and θi for j = 1, . . . q and i = 1, . . . n that satisfies two constraints: (i) the

normalization constraint

n∑
i=1

pu exp{bi + θiyu} = 1, for u = 1, . . . ,n

and (ii) the mean constraint
n∑

u=1
yupu exp{bi + θiyu} = g−1(Xiβ), for i = 1, . . . ,n.

The optimization scheme is set as follows:
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1. Set the initial values of all parameters. Specifically, log p(0)i = log(n−1), b(0)i = 0 and

θ
(0)
i = 0 for all i where n is the number of observations. β(0)j = g(ȳ) for j = 1 and for

other j, β(0)j = 0, where ȳ is the average of the observed response values.

2. At iteration k, set the options for the MATLAB optimization function as follows.

(a) Set the algorithm to be the interior point algorithm.

(b) Set the maximum number of iteration to be 105.

(c) Set the convergence criterion of this optimization function to be

i. max j |β
(k+1)
j − β

(k)
j | < 10−8,

ii. maxi | log p(k+1)
i − log p(k)i | < 10−8,

iii. maxi |b
(k+1)
i − b(k)i | < 10−8,

iv. maxi |θ
(k+1)
i − θ

(k)
i | < 10−8 and

v. |l(k+1) − l(k) | < 10−8.

(d) Set the normalization constraint to be 1 −
n∑

i=1
p(k)u exp{b(k)i + θ

(k)
i yu} = 0 for

u = 1, . . . ,n.

(e) Set the mean constraint to be g−1(Xiβ
(k)) −

n∑
u=1

yup(k)u exp{b(k)i + θ
(k)
i yu} = 0 for

all i.

3. In each iteration, the negative log-likelihood is computed according to l(k) = −
n∑

i=1

(
log p(k)i

+b(k)i + θ
(k)
i yi

)
. Note that the negative log-likelihood function is used since fmincon()

searches for a minimum.

4. The stopping criteria is either when the maximum number of iteration is reached or the

convergence criterion is satisfied.
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This MATLAB function can only handle sample sizes of less than 800 observations

(tested with a computer having Intel Core i5 CPU, 2.80 GHz, RAM 8 GB, 64-bit OS).

Wurm and Rathouz’s method

As mentioned in Chapter 1, we recently found the paper (in press) of Wurm and Rathouz

(2018) that proposed an alternative algorithm to fit the SP-GLM.

Recall that the observed support is C = [c1, . . . , cU]
T . In general, U = n, but it is

possible that U < n if there are ties in the observed response values. In Wurm and Rathouz’s

algorithm, f0 is approximated by f̃0 = [ f0(c1), . . . , f0(cU)]
T , the corresponding probability

masses at c1, . . . , cU . Note that this approximation method for f0 is the same as Rathouz and

Gao (2009).

An iterative approach is applied to find the optimal solutions of β and f̃0 that maximizes

the log-likelihood,

l(β, f̃0) =
n∑

i=1

(
θiyi − log

U∑
u=1

f0(cu) exp{θicu} +

U∑
u=1

I(yi = cu) log f0(cu)

)
,

subject to the constraints:

1. g−1(Xiβ) ∈ (m,M) for i = 1, . . . ,nwherem ≡ min{c1, . . . , cU} and M ≡ max{c1, . . . , cU};

2. f0(cu) ≥ 0 for u = 1, . . . ,U;

3.
U∑

u=1
f0(cu) = 1 and

4.
U∑

u=1
cu f0(cu) = µ

∗
0 where µ

∗
0 is some pre-specified value within the range (m,M).

f̃0 is transformed using log function, i.e. g̃0 = [g0(c1), . . . ,g0(cU)]
T = [log f0(c1), . . . ,

log f0(cU)]
T , to impose the non-negativity constraints on f̃0. The estimate of g̃0 is then

achieved by solving the unconstrained optimization problems using the Broyden-Fletcher-
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Goldfarb-Shanno (BFGS) algorithm (Broyden, 1970; Fletcher, 1970;Goldfarb, 1970; Shanno,

1970). To enforce increasing log-likelihood after updating g̃0, the newly updated g̃0 at iter-

ation k + 1 is half-step backtracked, i.e. continuously reupdates g̃0
(k+1) = 1

2 (g̃0
(k+1) + g̃0

(k))

until the log-likelihood increases. After obtaining the estimate of g̃0 at each BFGS itera-

tion, the f̃0 estimate can be obtained. According to the procedure described in Wurm and

Rathouz (2018)’s paper, they then rescale the estimate f0(cu) for all u, to the results satisfy

the constraint
U∑

u=1
f0(cu) = 1. Then they solve for θ∗0 from equation

U∑
u=1

cu f0(cu) exp{θ∗0cu}/

U∑
u=1

f0(cu) exp{θ∗0cu} = µ∗0. Finally, all estimates f0(cu) are exponentially tilted to give

f0(cu) exp{θ∗0cu}/
U∑
v=1

f0(yv) exp{θ∗0yv}. Note that this rescaling strategy may cause the solu-

tion to be suboptimal.

For the estimation of θi, Wurm and Rathouz (2018) use the same estimation procedure

as Rathouz and Gao (2009) (see page 18), that can restrict g−1(Xiβ) in its boundary (m,M).

However, if g−1(Xiβ) is close to a boundary, θi will converge to ±∞ which can cause

numerical instability. To overcome this issue, a limit on the maximum value of |θi | could be

placed (such as 500) as a default value.

Aeberhard and Hannay’s method

Aeberhard and Hannay (2018) also provides an alternative model fitting method for the SP-

GLM. As there is no published paper on Aeberhard and Hannay’s method yet, the following

information is based on Aeberhard and Hannay’s presentation at the 2nd International Con-

ference on Econometrics and Statistics on 21 June 2018. Aeberhard and Hannay (2018) uses

a linear B-spline to approximate log f0. The data are viewed as if they are independent and

identically distributed to obtain good starting values of f0. However, a particular optimization

method has not been set yet.
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Note that the inverse of the information matrix for f0 is required for the estimation of f0 in

Rathouz and Gao (2009)’s method. If this matrix has high dimension, then the computational

costs are high. In addition, Rathouz and Gao (2009), Huang (2014), Wurm and Rathouz

(2018) and Aeberhard and Hannay (2018) all adopted logarithm transformation of f0 to

impose the non-negativity constraints on f0. The risk is this transformation may generate

multiple local maxima. The main reason is that the second derivative matrix under the

transformed parameter is no longer negative definite. Hence the final solution may depend

on the starting value. Another problem is that this approach will exclude the possibility of

f0 = 0.

2.4 Maximum likelihood estimation

Our parameter estimation in Chapters 3 and 4 are based on the constrained maximum likeli-

hood estimation. Thus in this section, we briefly explain the maximum likelihood estimation

which is the basis for the constrained maximum likelihood estimation. Maximum likeli-

hood estimation is a method used to estimate the unknown parameters based on the given

sample. Maximum likelihood estimation chooses the parameter estimates that maximize the

likelihood (or equivalently log-likelihood) function for a given sample.

In parametric GLMs, maximum likelihood estimation can be used to estimate β. The

probability function (2.2) for each Yi is now denoted as f (yi; β) to emphasise its dependence

on β. All random variables Yi are assumed independent. The likelihood function can be

expressed as

L(β) =
n∏

i=1
f (yi; β),
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and the log-likelihood function is

l(β) =
n∑

i=1
log f (yi; β).

Maximum likelihood estimates β̂ are the solutions that maximize the log-likelihood.

Often it is obtained by solving the following equation

∂l(β)
∂β

= 0.

The maximum likelihood estimator has many desirable properties such as functional

invariance, i.e. if g(β) is a monotonic transformation of β and the maximum likelihood

estimator of β is β̂, then the maximum likelihood estimator of g(β) is g(β̂). For a sufficiently

large sample size, the maximum likelihood estimator has the minimum variance in the

class of unbiased estimators and is consistent (i.e. β̂ converges in probability to its true

value as n→∞). However, a closed form of the maximum likelihood estimator is not always

available. In this situation, an iterative numerical method can be applied to find the maximum

likelihood estimate. There are many different iterative methods and the user often selects

an algorithm based on speed and reliability. Examples of famous optimization methods are

Newton’s method and Fisher scoring method. More details of these methods can be found

in, for example, Thisted (1988).

2.5 Constrained optimization method

We propose a constrained optimization algorithm to estimate the regression coefficients and

f0. The SP-GLM described in Chapters 3 and 4 will have to deal with both the equality and

the inequality constraints. Therefore in this section, some constrained optimization methods

that can be used to impose the constraints for the SP-GLM are explained.
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2.5.1 Lagrange Multipliers

The method of Lagrange multipliers is a convenient and well-known optimization method

for imposing equality constraints. It can find the local maxima or minima of an objective

function subject to equality constraints.

For simplicity, we explain the method of Lagrange multipliers for one parameter and a

single equality constraint, although our methods in Chapters 3 and 4 have more than one

constraints. Let β be a parameter of interest. Define l(β) to be a log-likelihood function.

Suppose the optimization problem is to maximize l(β) subject to equality constraint h(β) = 0.

l and h are assumed to be continuously differentiable. The Lagrangian is in the form

L (β,λ) = l(β) − λh(β),

where λ is a Lagrange multiplier. An optimal solution of the original constrained problem

coincides with an unconstrained stationary point of the Lagrangian, but not always vice

versa. The method of Lagrange multipliers produces a necessary condition for constrained

optimization problems. The method of Lagrange multipliers is to solve for β̂ that is a solution

of

∂L (β,λ)

∂β
= 0 and

∂L (β,λ)

∂λ
= 0.

In other words,

∂l(β)
∂β

= λ
∂h(β)
∂β

and h(β) = 0.

2.5.2 KKT conditions

The Karush-Kuhn-Tucker (KKT) conditions (Kuhn & Tucker, 1951) generalize the method of

Lagrangemultipliers to handle equality and inequality constraints. Given that some regularity

conditions are satisfied, the KKT conditions provide first-order necessary conditions for the
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following optimal solution.

Suppose we want to find the solution to

arg max
β

l(β)

subject to h(β) = 0 and g(β) ≥ 0 where h and g are the equality and inequality constraint

functions, respectively. Assume all l,g and h are continuously differentiable. The Lagrangian

is

L (β,λ, ν) = l(β) − λh(β) + νg(β),

where λ and ν are Lagrange multipliers. The KKT necessary conditions for the optimal

solution are

∂l(β)
∂β
− λ

∂h(β)
∂β

+ ν
∂g(β)

∂β
= 0 (Stationarity)

h(β) = 0 (Primal feasibility)

g(β) ≥ 0 (Primal feasibility)

ν ≥ 0 (Dual feasibility)

νg(β) = 0 (Complementary slackness).

Then solving the KKT system for finding an optimal solution β̂ can be obtained by using

an algorithm such as an interior point method. However, the algorithms to solve the KKT

system may not be feasible when a large number of constraints is required as in the SP-GLM.

In this thesis we use an alternative method, a Multiplicative Iterative algorithm (Ma, 2010), to

handle the inequality constraints. The Multiplicative Iterative algorithm was developed from

the KKT necessary conditions to impose the non-negativity constraints, but its computational

cost is relatively small.
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2.5.3 Multiplicative Iterative algorithm

Our proposed methods in Chapters 3 and 4 apply the Multiplicative Iterative (MI) algorithm

(Ma, 2010) to impose the non-negativity constraints. The MI algorithm is a useful iterative

algorithm which is able to handle a large number of non-negativity constraints. This MI

algorithm only needs the first derivative of the objective function and therefore is easy to

implement.

Suppose β is a parameter of interest with constraint β ≥ 0. An objective function is a

log-likelihood function l(β). We estimate β that is

β̂ = arg max
β≥0

l(β).

The corresponding KKT necessary conditions are

∂l(β)
∂β

= 0 if β > 0,

∂l(β)
∂β

< 0 if β = 0.

An optimal solution for β that satisfies non-negativity constraint can be found by solving

β
∂l(β)
∂β

= 0, (2.13)

subject to β ≥ 0. We rearrange (2.13) to have positive values on both sides

− β

[
∂l(β)
∂β

]−
= β

[
∂l(β)
∂β

]+
, (2.14)

where [a]+ is a positive component and [a]− is a negative component, so that [a]++ [a]− = a.

Let β(k) be an iterative solution for β at iteration k and define l′(β(k)) = ∂l(β(k))
∂β . This equation

(2.14) directs to a temporary update step for the MI algorithm

β(k+
1
2 ) = β(k)

[
l′(β(k))

]+
−

[
l′(β(k))

]− . (2.15)
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If β(k) is positive, the updated value of β(k+ 1
2 ) is guaranteed to be positive and β(k+ 1

2 ) will

only be equal to zero if the numerator of the right hand side of (2.15) is zero. Equation (2.15)

can also be seen as a gradient algorithm

β(k+
1
2 ) = β(k) +

(
β(k)

−
[
l′(β(k))

]− ) l′(β(k)). (2.16)

Even though this temporary update step can ensure a non-negative updated parameter, it is

possible that divergence may occur. The objective function may not increase when moving

from β(k) to β(k+
1
2 ). A line search step is then included to ensure an increasing objective

function.

Line search

Define ω(k) ∈ (0,1] as a step length and d(k) as a search direction. Line search will result in

the following iterative scheme

β(k+1) = β(k) + ω(k)d(k).

Comparing to (2.16), the MI search direction is d(k) =
(

β(k)

−[l ′(β(k))]
−

)
l′(β(k)).

An optimal line search for maximizing l(β) is to find ω(k) such that

l
(
β(k) + ω(k)d(k)

)
= max

ω>0
l
(
β(k) + ωd(k)

)
.

However, the exact value of ω(k) is computationally expensive. In practice, an inexact line

search is more desirable since it uses less computation time but has sufficient accuracy.

It chooses ω(k) from an acceptable step size rule to ensure sufficient ascent amount of an

objective function in a maximization problem. An example of an inexact line search is

Armijo’s rule. More details for line search techniques can be found in Luenberger and Ye

(1984); Sun and Yuan (2006).
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The line search method used in the MI and other algorithms in Chapters 3 and 4 is the

Armijo’s rule that adopts the following scheme. Suppose ω starts from 1, then we can find ω

using the Armijo’s condition:

l
(
β(k) + ωd(k)

)
≥ l

(
β(k)

)
+ γωd(k)l′

(
β(k)

)
, (2.17)

where γ ∈ (0,1) is a small fixed threshold, e.g. γ = 0.01. If ω satisfies (2.17), then stop;

otherwise reset ω = ρω where ρ ∈ (0,1), e.g. ρ = 0.8, then re-evaluate (2.17) and continue

this procedure until condition (2.17) is satisfied, and then assign ω value to ω(k).

The MI algorithm with line search can guarantee l(β(k+1)) ≥ l(β(k)), and the final update

is given by

β(k+1) = β(k) + ω(k)(β(k+
1
2 ) − β(k)). (2.18)

Equation (2.18) is also seen as a gradient algorithm:

β(k+1) = β(k) + ω(k)

(
β(k)

−
[
l′(β(k))

]− ) l′(β(k)). (2.19)

2.6 The proposed methods

The SP-GLM is an extension of GLMs where the response mean is a parametric component

but the response distribution is partially unspecified and contains a nonparametric component

f0. Exponential tilting is applied to the response distribution so that the model is still written

in a full probability setting. The link function is specified similar to the way it is done in

GLMs. In this thesis, the SP-GLM only considers the case where the response distribution

follows an exponentially tilted distribution with φ = wi = 1 (see page 9 and 15). The

usefulness of the SP-GLM over parametric GLM was already explained in Chapter 1.

The methods proposed in this thesis are efficient model fitting algorithms for the SP-

GLM. They are able to handle large data sets with less computational costs. Our approach
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distinguishes from the existing methods mainly on the computational algorithm and the

asymptotic properties which will be introduced in Chapter 3. Our method can make the

SP-GLM more easily applicable in practice.

Our proposed method estimates f0 together with the regression coefficients. The esti-

mation of f0 is achieved using a piecewise constant approximation. An iterative approach

is used to estimate the regression coefficients and f0 simultaneously by maximizing the log-

likelihood function subject to some constraints. The Lagrange multipliers method and the

Multiplicative Iterative algorithm are applied to compute the constrained estimates. The

asymptotic properties for the constrained maximum likelihood estimate are provided. Sim-

ulation studies are used to test the performance of our proposed method, particularly on

accuracy of the parameter estimates and the asymptotic variances. Real data examples are

also used to investigate model performance.

In addition, we also propose a special SP-GLM model by adopting the canonical link

function in the SP-GLM. The estimation method for this special model is simplified. The

main advantage of this special model is that it is simple to use. The regression coefficients and

f0 are again estimated simultaneously via the constrained maximum log-likelihood estimate.

The asymptotic properties of parameter estimates are also derived.
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3
The semiparametric generalized linear

model

3.1 Introduction

The response distribution is only partly specified in the SP-GLM compared with the classical

GLM, consequently, regression analysis is more flexible with the SP-GLM. Although the
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response distribution is again a member of the exponential family of distributions, the ob-

served data will be used to specify this membership. This approach is very useful in applied

settings, especially when there is a doubt about the response distribution. Therefore this

approach can help to avoid undesirable results caused by model misspecification such as

biased inference for parameters (e.g. Gardner et al. (1995), White (1982), Drake (1993)).

The response density f in this SP-GLM can be written in an exponentially tilted form

for the reference density f0, where f0 is nonparametric. Since this model is specified

by a complete density function, further information about the probability mechanism for

generating the data can be obtained. Due to the flexibility of f0, its exponentially tilted

distributions can handle data sets generated by distributions beyond the common distributions

for GLMs, such as zero-inflated data and overdispersed count data.

We consider f0 to be an unknown parameter which will be estimated simultaneously with

the regression coefficient parameters β. However, f0 is nonparametric and thus is infinite

dimensional. Direct estimation of f0 is ill-conditioned. Some approximation techniques are

needed to reduce f0 to a finite dimensional parameter. Imposing constraints on f0 also adds

complexity to computational algorithms.

To make the model suitable for practical use, we have developed a novel effective com-

putational algorithm (named SP-GLM-I) which can handle large sample sizes and converge

with less computational time.

This chapter is set out as follows. The next section presents the approximation for f0.

In Section 3.3, we demonstrate our computational algorithm for model fitting. Section 3.4

presents the asymptotic properties of the estimate. Simulation results are presented in Section

3.5. Finally, conclusions are given in Section 3.6.
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3.2 Approximation of the reference density f0

The SP-GLM with unspecified f0 was explained in Section 2.3. Recall that the probability

density function for the SP-GLM (2.7) is

fi(y |Xi) ≡ fi(y) = f0(y) exp {yθi − b(θi; f0)} ,

where

b(θi; f0) = log
∫
Y

exp{yθi} f0(y)dy.

However, as shown in Section 2.3.2 that fi(y) is not identifiable since exponentially tilted

versions of f0 can generate the same fi(y). The tilted f0 will change the canonical parameter

θi by shifting θi by a constant θ∗0. One way to resolve this identifiability issue suggested by

Rathouz and Gao (2009) is that f0 is required to have a specified mean, such as
∫
Y

y f0(y)dy =

µ∗0 where µ
∗
0 is an arbitrary reference mean within the observed response range. As explained

in Section 2.3.2, our strategy (used in this chapter) to make the model identifiable is to fix

θ∗0 at zero, and it is clear that there exists a mean value µ∗0 corresponding to this θ∗0 = 0. In

other words, we implicitly specified a µ∗0 which corresponds to θ∗0 = 0. Setting θ∗0 to zero is

equivalent to considering the yi’s as independent and identically distributed. This makes the

corresponding µ∗0 equal to the empirical mean of the observations.

Note that here f0 is an unspecified density and it will be determined from the data.

However, f0 is an infinite dimensional parameter and this creates computational difficulties.

To overcome this problem, we assume f0 can be expressed as a combination of basis functions:

f0(y) =
m∑

u=1
αuψu(y). (3.1)

Here ψu(y) are some known non-negative basis functions and αu are the coefficients for

these basis functions. The αu are constrained to be non-negative to ensure that f0(y) is

non-negative. In general, we require m ≤ n where n is the sample size.
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In this thesis, we consider particularly the indicator basis functions forψu(y). Equivalently,

the approximate f0 becomes a piecewise constant function. Suppose the observed response

vector y = [y1 . . . yn]
T has minimum and maximum observations y(1) and y(n), respectively.

The range of the observed response isH =
[
y(1), y(n)

]
. Indicator basis functions partitionH

intom "bins"which are denoted by B1, . . . ,Bm. Themethods of equal-width, equal-frequency,

or fixed-frequency can be applied for selecting the bin sizes. The bins are designed to contain

a certain number of observations, so that the location of bins will change from one sample

to another. The partitions of the bins are mutually exclusive and exhaustive. So if y ∈ Bu,

we have ψu(y) = 1 and otherwise ψu(y) = 0. Then f0(y) in (3.1) becomes f0(y) = αu for

y ∈ Bu. Let pu = αuδu where δu is the width of bin Bu. Since f0 is a density, it must satisfy

the constraints: (i) f0(y) ≥ 0 and (ii)
∫
Y

f0(y)dy = 1. So under indicator basis functions, pu

are required to be: (i) pu ≥ 0 for u = 1, . . . ,m and (ii)
m∑

u=1
pu = 1. Thus pu themself can be

seen as probability mass.

3.2.1 Log-likelihood function

For the probability density function of the SP-GLM in (2.7) and the approximation of f0, the

log-likelihood function becomes

l (β, p) =
n∑

i=1
(yiθi − b(θi; p)) +

m∑
u=1

nu log pu, (3.2)

where nu is the number of observed responses in bin Bu. A direct derivation yields

b(θi; p) = log
m∑

u=1
pu

∫
Bu

exp {yθi} dy = log
m∑

u=1

pu

θi
[exp {max(Bu)θi} − exp {min(Bu)θi}] .

(3.3)
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Note that if cu is the mid-point of bin Bu and is used to be the representative value of each

bin, then b(θi; p) can be approximated by:

b(θi; p) = log
m∑

u=1
exp {cuθi} pu. (3.4)

This formula (3.4) is a simple version of formula (3.3) and is used for calculation.

From an estimation point of view, there is no difference between pu or αu. Along with

the log-likelihood function (3.2), constraints (i) - (ii) on pu defined above must be imposed.

Technically, only (m − 2) pu’s are free. For identifiability, the mean constraint on pu that is
m∑

u=1
cupu = µ∗0, is applied by implicitly specifying µ∗0 corresponding to θ∗0 = 0 (see Sections

2.3.2 and 3.2).

3.3 Constrained maximum likelihood estimation

We apply a special constrained maximum likelihood estimation method to estimate β and p

simultaneously. The non-negativity of pu are constrained directly using the MI (Ma, 2010)

algorithm and themethod of Lagrangemultipliers is applied to impose the equality constraint.

Suppose λ is the Lagrange multiplier. The Lagrangian for the equality constraint is

L (β, p) =
n∑

i=1
(yiθi − b(θi; p)) +

m∑
u=1

nu log pu − λ

(
1 −

m∑
u=1

pu

)
. (3.5)

We wish to maximize L (β, p) subject to pu ≥ 0. The corresponding KKT conditions for

this constrained optimization are,

∂L

∂β
= 0,

∂L

∂pu
= 0 if pu > 0,

∂L

∂pu
< 0 if pu = 0, and

∂L

∂λ
= 0.

Note that the last equation gives the original equality constraint.

We follow theNewton -MI algorithmofMa, Heritier, andLô (2014) to develop an iterative

method, named the MI - Scoring algorithm, to estimate p and β. Suppose the estimate value
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of any parameter a at iteration k is denoted by a(k). We will develop an alternating algorithm

where p and β are updated separately in each iteration. We adopt the strategy that at each

iteration, we first apply the MI algorithm to update p(k+1) using (β(k), p(k),θ(k)). Note that

θi’s are functions of β and p, all θi and b(θi, p) need to be updated first after obtaining the

updated values of p, and then they will be updated again after updating β. Let θ(k+
1
2 ) be the

estimate of θ based on p(k+1) and β(k). After that we use (β(k), p(k+1),θ(k+
1
2 )) to update β(k+1)

by applying the Fisher scoring algorithm, then θ(k+1) is obtained from β(k+1) and p(k+1). This

process is repeated until convergence occurs with the convergence criterion defined to be

maxu |p
(k+1)
u − p(k)u | < 10−6 and max j |β

(k+1)
j − β

(k)
j | < 10−6. Details of the algorithm are

given as follows.

3.3.1 Estimate the pu’s

The MI algorithm is applied to estimate p ≥ 0. This is achieved by solving the KKT

conditions: 
∂L

∂pu
= 0 if pu > 0,

∂L

∂pu
< 0 if pu = 0.

A necessary condition for these equations is:

pu
∂L

∂pu
= 0 subject to pu ≥ 0.

For our problem, the score function for pu is

∂L

∂pu
= −

n∑
i=1
(yi − b′(θi; p))(cu − b′(θi; p))

1
b′′(θi; p)

exp {cuθi − b(θi; p)} +
nu

pu
+ λ, (3.6)

where

b′(θi; p) =
m∑

u=1
cupu exp {cuθi − b(θi; p)} , (3.7)

b′′(θi; p) =
m∑

u=1
(cu − b′(θi; p))2 pu exp {cuθi − b(θi; p)} . (3.8)
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From
m∑

u=1
pu

∂L
∂pu
= 0, we can easily derive λ = −n.

We separate the score function (3.6) into positive and negative terms, and then rearrange

the equation so that its both sides are positive. This gives us a temporary updating formula:

p(
k+ 1

2 )
u = p(k)u

©­­­­«
nu
p(k)u

−
n∑

i=1
[A]−

(
1

b′′(θ(k)i ;p(k))

)
exp

{
cuθ
(k)
i − b(θ(k)i ; p(k))

}
+ ε

n +
n∑

i=1
[A]+

(
1

b′′(θ(k)i ;p(k))

)
exp

{
cuθ
(k)
i − b(θ(k)i ; p(k))

}
+ ε

ª®®®®¬
(3.9)

where A =
(
yi − b′(θ(k)i ; p(k))

) (
cu − b′(θ(k)i ; p(k))

)
. In this scheme, ε is a small positive

constant added to avoid division by zero, and it has no effect on the estimated value of

pu. p(
k+ 1

2 )
u in (3.9) is clearly non-negative if p(k)u > 0. However, L

(
β(k), p

)
may not be

guaranteed to increase when it moves from p(k) to p(k+
1
2 ). Thus in the second step we require

a line search step size ω(k)1 ∈ (0,1] to guarantee that L
(
β(k), p(k+1)

)
≥ L

(
β(k), p(k)

)
.

Therefore pu is updated by

p(k+1)
u = p(k)u + ω

(k)
1

(
p(

k+ 1
2 )

u − p(k)u

)
. (3.10)

After obtaining p(k+1) we need to update θ to give θ(k+
1
2 ). The estimation algorithm for θ is

explained in the next section.

3.3.2 Computation of θ

As explained in Chapter 2, in parametric GLMs, parameters θi are explicitly known from the

distribution. In the SP-GLM, however, θi are unknown but can be derived from the mean

condition:

µi = b′(θi; p). (3.11)

There is a restriction on the possible range of the mean function b′(θi; p). Recall that cu

is a value for bin Bu, then possible upper and lower bounds for b′(θi; p) (see equation (3.7)) is

[c(1), c(m)] where c(1) = min{c1, . . . , cm} and c(m) = max{c1, . . . , cm}. Thus when we estimate
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θi, if the corresponding µi value is outside these bounds, we need to reset µi to the boundary

value c(1) or c(m).

If β and p are known, we can obtain θi by solving equation (3.11). The Newton algorithm

can be used to estimate θi. Note that µ(k)i = g−1(Xiβ
(k)). For fixed β(k) and p(k+1), we update

θi according to equation (3.12)

θ
(k,r+1)
i = θ

(k,r)
i − ω

(r)
2i

[
b′′(θ(k,r)i ; p(k+1))

]−1 (
b′(θ(k,r)i ; p(k+1)) − µ

(k)
i

)
, (3.12)

where ω(r)2i ∈ [0,1] is a step length to assure convergence of this algorithm. There is a

computational issue when the absolute value of exp{cuθi} becomes too large and may exceed

the largest positive floating-point number thatMATLAB can handle. Based on our simulation

results, the best strategy is to control the increment on θi at each iteration. For each iteration,

we have ω(r)2i = 10−di where di is an integer digits of the increment on θi. This strategy can

work well to find θi that makes µi and b′(θi; p) equivalent. The last term (b′(θi; p) − µi) is

monotonic increasing with respect to θi. The convergence criterion of this algorithm is set

as maxi |θ
(k,r+1)
i − θ

(k,r)
i | < 10−6 and maxi |b′(θ

(k,r+1)
i ; p(k+1)) − µ

(k)
i | < 10−6. Note that this

equation for θi must be "fully solved" i.e. at each iteration, the updated θi must be iterated

until it converges, to give θ(k+
1
2 ), as otherwise computations for other components can become

unstable. After updating θ we next need to update the estimate for β, denoted by β(k+1).

Then θ is updated again using the same formula as (3.12) but now based on (β(k+1), p(k+1)).

3.3.3 Estimating the regression coefficient β

In the SP-GLM, the linear predictor ηi, the link function g(·) and the response mean µi are

defined in the same way as in the GLMs (see Sections 2.1.2 and 2.1.3). The linear predictor

is defined as ηi = Xiβ. The linear predictor and the response mean are linked through the

specified link function that is g(µi) = ηi. Define h(·) = g−1(·) as the inverse link function,
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and thus µi = h(ηi). The coefficient parameters β can be estimated using the Fisher scoring

algorithm. The score function for β is

Sβ =
∂L

∂β
=

n∑
i=1
(yi − µi)

1
b′′(θi; p)

h′(ηi)Xi,

where h′(ηi) = ∂µi/∂ηi. The Fisher information matrix for β is given by

− E
(
∂2L

∂β∂βT

)
=

n∑
i=1

XT
i

1
b′′(θi; p)

[h′(ηi)]
2Xi . (3.13)

Define y to be n-column vector for all yi. Using the Fisher scoring algorithm, β is updated

by:

β(k+1) = β(k) + ω(k)3

(
XTW(k)X

)−1
XTV(k)

(
y − µ(k)

)
, (3.14)

whereW(k) = diag
(
h′(η(k)i )[b

′′(θ
(k+ 1

2 )

i ; p(k+1))]−1h′(η(k)i )

)
andV(k) = diag

(
[b′′(θ

(k+ 1
2 )

i ; p(k+1))]−1

h′(η(k)i )

)
. Here ω(k)3 ∈ (0,1] is a line search step size applied to ensure the increasing log-

likelihood L
(
β, p(k+1)

)
when β moves from β(k) to β(k+1).

Once this updated β(k+1) is obtained, in order to get the estimated log-likelihood, we

need to obtain θ(k+1) by solving the Newton algorithm (3.12) again using (β(k+1), p(k+1)).

If this updated β(k+1) does not increase the log-likelihood, a line search step size ω(k)3 is

applied to reupdate β(k+1) and then reupdate θ(k+1) until the log-likelihood increases, i.e.

L
(
β(k+1), p(k+1)

)
≥ L

(
β(k), p(k+1)

)
. Note that equality holds here only when the iterations

have converged.

3.4 Asymptotic properties

The asymptotic properties of the constrained maximum likelihood estimation of β̂ and p̂

are given in this section for a fixed number of basis functions i.e. p is finite-dimensional.

Let the combined parameter vector be γ =
(
βT, pT )T , which has dimension q + m. The



40 The semiparametric generalized linear model

log-likelihood function (3.2) is then written as l
(
γ) = l

(
β, p

)
. Let γ∗ be the true parameter

value of γ and γ̂ be the maximum likelihood estimate of γ. γ̂ is estimated by maximizing

l
(
γ) subject to constraint pu ≥ 0 and

m∑
u=1

pu = 1.

Suppose the Fisher information matrix at γ is given by

I(γ) =

Iββ Iβp

Ipβ Ipp


where components of this matrix are defined as follows:

Iββ is the Fisher information matrix for β with q× q dimensions similar to that is defined

in (3.13). Iβp = −E
(
∂2l
∂β∂ p

)
is the q × m Fisher information matrix for the covariance of β

and p with the elements corresponding to pu given by

−E
(

∂2l
∂β∂pu

)
= −

n∑
i=1
(cu − b′(θi; p)) exp{cuθi − b(θi; p)}pu

1
b′′(θi; p)

h′(ηi)Xi .

Ipβ is the transpose of a matrix Iβp with m×q dimensions. Ipp is the m×m Fisher information

matrix for p with the elements given by

−E
(

∂2l
∂pu∂pv

)
=

n∑
i=1
(cu − b′(θi; p))(cv − b′(θi; p)) exp{(cu + cv)θi − 2b(θi; p)}pupv

1
b′′(θi; p)

+
nu

p2
u
1u=v,

where 1u=v is an indicator for u = v (i.e. diagonal element of Ipp).

For constrainedmaximum likelihood problems, the standard asymptotic variance from the

inverse of the Fisher information matrix (for unconstrained problem) will provide incorrect

variances since the active constraints will affect the variance.

For the SP-GLM, there are active constraints on p. We need to consider the possibility

of active constraints on p, especially when we want to do inference about p. For example,

an insurance company may be interested in the probability that a particular person will claim

at least once, i.e. that the number of claims ≥ 1, for the next year, then p is required when

computing this probability.
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The asymptotic properties developed here take account of the active constraints on p.

We closely follow the asymptotic properties presented in Moore, Sadler, and Kozick (2008).

The asymptotic properties for semiparametric proportional hazard models developed by Ma,

Couturier, Heritier, and Marschner (2017) are also considered as a guide for the asymptotic

properties in this semiparametric model.

Next we explain the active constraints. Our model deals with the equality constraint
m∑

u=1
pu − 1 = 0 and the inequality constraints pu ≥ 0 for u = 1, . . . ,m. The equality constraint

is always active. While an inequality constraint is active if pu = 0 and ∂L
∂pu

< 0. Suppose

there are m1 active inequality constraints. Then there are m1 + 1 active constraints in total.

Let the first derivative of the active constraints with respect to γ be denoted as matrix

G(γ) = [0T
(m1+1)×q, G1(p)

T
(m1+1)×m]

T with dimension (m1 + 1) × (q + m) where 0 is a zero

matrix. The zero matrix in G(γ) comes from the derivative of the active constraints with

respect to β and matrix G1(p) = [1T
1×m, G2(p)

T
m1×m]

T is the derivative result of the active

constraints with respect to p. The row of 1s corresponds to the derivative of the equality

constraint. Matrix G2(p) is a matrix of 0s and 1s where each row only has the value of 1 at

the column u if pu = 0 and ∂L
∂pu

< 0. To be clear, let τ = [τ1, . . . , τm]
T be an indicator vector

of the active inequality constraints that is τu = 1 for the corresponding active constraint and

zero otherwise. Then the rows of matrix G2(p) are selected from an identity matrix Im×m

using the non-zero portion of τ.

We define matrix U(γ)(q+m)×(q+m−m1−1) whose columns form an orthonormal basis of the

null space of G(γ) such that

G(γ)U(γ) = 0(m1+1)×(q+m−m1−1) and UT (γ)U(γ) = I(q+m−m1−1)×(q+m−m1−1). (3.15)

Then the inverse of the Fisher information matrix for γ accommodating active constraints is

F(γ)−1 = U(γ)(UT (γ)I(γ)U(γ))−1UT (γ). (3.16)
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The assumptions required for consistency in Theorem 1 and the asymptotic normality in

Theorem 2 are:

A1. Random variables Xi for i = 1, . . . ,n are independent and identically distributed.

A2. The distribution of Xi is independent of γ.

A3. The domain of γ, denoted by Γ, is a compact subset of Rq+m.

A4. Eγ∗[n−1l(γ)] exists and has a unique maximum at γ∗ ∈ Γ.

A5. l(γ) is continuous over Γ and is twice differentiable in a neighborhood of γ∗.

A6. The Fisher information matrix at γ∗ exists.

Note that by keeping m fixed, the true data generating process is assumed to have a density

created by exponential tilts from a piecewise constant density, for which there is a true p

towards which the estimate converges.

Theorem 1 Assume that assumptions A1 - A6 hold, the constrained maximum likelihood

estimation of γ̂ is consistent for γ∗ as n→∞.

Theorem 2 Assume that assumptions A1 - A6 hold and assume that there are m1 active

inequality constraints in the maximum likelihood estimate of p. Let matrix U(γ∗) be defined

as in (3.15). Then the distribution of
√

n(γ̂ −γ∗) converges in distribution to the multivariate

normal distribution N(0(q+m)×1,F(γ∗)−1) as n→∞.

Proof. The proof is omitted here as this is a simple modification of that given in Moore et al.

(2008) and Ma et al. (2017).

Our asymptotic standard error results are compared with standard errors obtained from

Monte Carlo simulations in Section 3.5. These results demonstrate that our asymptotic

variances on β are accurate.
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3.5 Simulation results

Simulation studies were conducted to investigate the effectiveness of our proposed iterative

method (SP-GLM-I) to fit the SP-GLM with response data that are generated from distri-

butions from both within and beyond the standard distributions of GLM framework. We

examine the performance of SP-GLM-I in handling datasets with small, medium and large

sample sizes. The regression coefficient estimates and inferences are also examined. We also

investigate the accuracy of the asymptotic variance proposed in Section 3.4. We perform

three simulation studies and set the goals for these simulation studies as follows. We expect

that when the response distribution is generated by a traditional GLM, the SP-GLM-I algo-

rithm will produce results close to the standard GLM. When the response distribution is not

generated by the standard GLM, SP-GLM-I performs much better than the standard GLM.

In addition, we expect that for small and medium size data sets, SP-GLM-I is as good as the

existing SP-GLM method of Huang (2014) (which we will hereafter call SP-GLM-H). We

also expect that for large data sets, SP-GLM-H will not produce results since it cannot handle

large data sets, while the SP-GLM-I method is still feasible. We compare these simulation

results using biases and variances, and also using Type I error rates.

In the first simulation, we aim to investigate the performance of SP-GLM-I to fit the

response data that are generated from a standard distribution in the GLM framework, that is

the Poisson distribution. We use small sample sizes (n = 30) and we wish to explore the

effectiveness of our model fitting method compared with the standard GLM and SP-GLM of

Huang.

In the second simulation, the performance of SP-GLM-I is examined where the response

data are generated from a zero-inflated Poisson distribution, a non-standard distribution in

the GLM framework. In this simulation, sample sizes of n = 300 and n = 10,000 are used to



44 The semiparametric generalized linear model

explore the performance of SP-GLM-I.

In the third simulation, we investigate the performance of SP-GLM-I with different

numbers of bins m. The response data in this simulation are generated from the exponential

distribution with inverse link. Note that we only investigate the choice of m for continuous

responses. When the response is count data as in the first and second simulations, we choose

m equal to the number of possible values for that response variable.

For each simulation, the results from SP-GLM-I are compared to the results from the SP-

GLM-H and the classical GLM methods. The MATLAB code for our SP-GLM-I method is

provided in Appendix A.1. We compare SP-GLM-I with the SP-GLM-H method to evaluate

the accuracy of SP-GLM-I for data sets with small and medium sizes. We use the spglm4()

MATLAB function provided by Huang to implement SP-GLM-H. This function uses the

built-in MATLAB solver function fmincon() to solve the optimization problem. For GLM,

we use the fitglm() MATLAB function. We compare the results of SP-GLM-I with the

classical GLM to investigate the accuracy of SP-GLM-I when fitting standard GLM models.

To assess the accuracy of SP-GLM-I by using simulation studies, we compare its average

estimate (MEAN), bias (BIAS), average asymptotic standard error (AASE), Monte Carlo

standard error (MCSE), and mean squared error (MSE) on β̂ with other methods. More

specifically, for each simulation study we generate N samples of size n. For each sample of

size n, we fit the model and obtain the estimates of β and their corresponding asymptotic

standard errors for each method. Define β̂ jr for j = 0,1,2 and r = 1, . . . ,N to be the estimate

of β j for the rth sample and let ASE
(
β̂ jr

)
be the asymptotic standard error of β̂ jr . Then we

can compute

MEAN
(
β̂ j

)
=

∑N
r=1 β̂ jr

N
, (3.17)

BIAS
(
β̂ j

)
= β j −MEAN

(
β̂ j

)
, (3.18)
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AASE
(
β̂ j

)
=

∑N
r=1 ASE

(
β̂ jr

)
N

, (3.19)

MCSE
(
β̂ j

)
=

√√√
1

N − 1

N∑
r=1

[
β̂ jr −MEAN

(
β̂ j

)]2
, (3.20)

and

MSE
(
β̂ j

)
=

[
BIAS

(
β̂ j

)]2
+

[
AASE

(
β̂ j

)]2
. (3.21)

The average asymptotic standard errors are compared with theMonte Carlo standard errors to

examine the accuracy of our asymptotic variances. To avoid confusion, the MCSE results are

shown in brackets in Tables 3.1, 3.4, 3.7 and 3.8. The asymptotic covariance matrix F(γ∗)−1

for SP-GLM-I is computed as specified in equation (3.16). The SP-GLM-I asymptotic

standard error values for β̂ are the square root of the first q diagonal values in F(γ∗)−1. The

asymptotic standard errors of β̂ for SP-GLM-H are not available from Huang’s spglm4()

MATLAB function, so we have modified the spglm4() function to include asymptotic

standard errors for β̂ from the square root of the inverse of the Fisher information matrix for

β (Huang, 2014, Proposition 1).

To explore the performance of SP-GLM-I, the average residual sum of squares of different

methods are also compared. Let yir be the ith response value for the rth sample and µ̂ir be

the corresponding fitted value. The residual sum of squares for the rth sample (RSSr) is

RSSr =

n∑
i=1
[yir − µ̂ir]

2 . (3.22)

Then the average residual sum of squares (ARSS) is given by

ARSS =
∑N

r=1 RSSr

N
. (3.23)

To examine the computation costs of each computational method, we compute the average

computational time (in seconds) for each method. Define TIMEr to be the computational



46 The semiparametric generalized linear model

time spend for the rth sample. Then the average computational time spend (ATIME) is given

by

ATIME =
∑N

r=1 TIMEr

N
. (3.24)

To investigate the accuracy of the parameter inference of the SP-GLM-I algorithm, we

perform a hypothesis test. We calculate Type I errors for testing the null hypothesis at 5%

significance level using SP-GLM-I and compare them with those of other methods. The

response data are generated under the null hypothesis and Type I error rates are calculated

from:

(i) the Wald test with average asymptotic standard error of β̂1 (WALD-AASE),

(ii) the Wald test with Monte Carlo standard error of β̂1 (WALD-MCSE) and

(iii) the likelihood ratio test for chi-square distribution with 1 degrees of freedom (LR).

3.5.1 Log-linear model

In this section, simulated count data with log-linear model is used to examine the performance

of the model fitting for the SP-GLM-I method. In this simulation, values for xi1 and xi2 were

generated independently from the uniform (0,1) distribution. We simulated N = 1,000

samples of size n = 30. The true β was [1,−0.3,0.5]T . In each sample, the response variable

was randomly generated from a Poisson distribution with the log link. That is

yi ∼ Poi (exp{1 − 0.3xi1 + 0.5xi2}) .

In the model fitting, the Poisson distribution with log link was specified for the GLM

model fitting; but SP-GLM-I and SP-GLM-H only require us to specify a link function which

was the log link in these cases.
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The simulation results in Table 3.1 suggest that SP-GLM-I provides accurate regression

coefficient estimation since the coefficient biases and the MSEs are small and close to those

of GLM. Furthermore, the AASE values of SP-GLM-I are close to the MCSE values and they

are also close to the standard errors of SP-GLM-H and GLM. This indicates the accuracy of

the asymptotic variances presented in Section 3.4.

Table 3.1: Simulation results for Poisson response with n = 30.

Method β̂0 β̂1 β̂2

True β 1.0000 -0.3000 0.5000

SP-GLM-I MEAN 0.9990 -0.3137 0.4810

BIAS -0.0010 -0.0137 -0.0190

AASE 0.3044 0.3299 0.3874

MCSE (0.3080) (0.3574) (0.4012)

MSE 0.0926 0.1090 0.1505

SP-GLM-H MEAN 0.9981 -0.3149 0.4832

BIAS -0.0019 -0.0149 -0.0168

AASE 0.2859 0.3103 0.3655

MCSE (0.3085) (0.3594) (0.4033)

MSE 0.0817 0.0965 0.1339

GLM MEAN 1.0007 -0.3126 0.4759

BIAS 0.0007 -0.0126 -0.0241

AASE 0.3093 0.3404 0.3973

MCSE (0.3054) (0.3536) (0.3979)

MSE 0.0957 0.1161 0.1584

The ARSS and ATIME are presented in Table 3.2. The ARSS of SP-GLM-I is similar

to the results of the SP-GLM-H and GLM methods, indicating SP-GLM-I provides good fit

for small data sets (n = 30). In addition, SP-GLM-I used less computational time on model
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Table 3.2: ARSS and ATIME (in seconds) for the model fitting of Poisson response with

n = 30.

Method ARSS ATIME

SP-GLM-I 76.44 0.028

SP-GLM-H 76.45 0.068

GLM 76.40 0.002

fitting than SP-GLM-H.

Type I error

Next we used the previous data set for hypothesis testing, H0: β1 = −0.3 and H1: β1 , −0.3

and calculated Type I error rates. Type I errors were tested based on theWald test with average

asymptotic standard error and with Monte Carlo standard error of β̂1, and also the likelihood

ratio test at 5% significance level. Results are shown in Table 3.3. Type I error rates of

SP-GLM-I from the WALDs and LR are all accurate as they are relatively close to 0.05, and

also the results are close to those of GLM. This suggests that the parameter inference for

the SP-GLM-I method is accurate. Note that Type I error rates of WALD-AASE and LR of

SP-GLM-H are higher than the nominated value 0.05.

Table 3.3: Type I errors for β1 for Poisson response with n = 30.

Method WALD-AASE WALD-MCSE LR

SP-GLM-I 0.069 0.054 0.055

SP-GLM-H 0.103 0.054 0.086

GLM 0.062 0.048 0.064

In conclusion, the SP-GLM-I method can fit the log-linear Poisson model well and it can

provide accurate regression coefficient estimates and inferences.
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3.5.2 Zero-inflated data

Zero-inflated data is data that contains an excessive frequency of zeros, and thus the probability

mass at zero exceeds that allowed by, for example, the Poisson distribution. Zero-inflated data

is regularly found in insurance claim applications. The number of claims for an insurance

policy can follow a zero-inflated Poisson distribution or a zero-inflated negative binomial

distribution. For example, the majority of the policies for car insurance make no claim.

Some of them may make a few claims during a year. It is rare for policies to generate more

than 4 claims a year.

Simulation studies of zero-inflated Poisson data were conducted to assess the performance

of SP-GLM-I. The response data were generated from a mixture distribution. The zero-

inflated Poisson distribution contains two sub-populations:

(i) sub-population 1 is the zero counts with proportion π,

(ii) sub-population 2 is the counts that follow the Poisson distribution with proportion

(1 − π).

For data generation, first we generated a Bernoulli random variable to define a sub-population.

Then the response count Yi was generated corresponding to this sub-population. Thus Yi had

its probability function given by

f (yi) =


π + (1 − π)e−µi for yi = 0

(1 − π) e
−µi µ

yi
i

yi! for yi = 1,2, . . . .

For this simulation study, we specified β = [1,−0.3,0.5]T . The zero counts proportion

π = 0.3 was applied. Note that the constant zero-inflated Poisson model is not an exponential

family, thus such a data-generating mechanism is in fact misspecified for the SP-GLM. The

sample sizes of n = 300 and 10,000 were used to examine the results for medium and large
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data sets. For each of the simulation studies, N = 1,000 samples were generated. The SP-

GLM-I and SP-GLM-H methods required specification of a link function for model fitting

which we chose the log-link function for each model. For GLM model fitting, as well as the

link function (log-link) we also had to specify the response distribution (Poisson).

The simulation results of β̂ with π = 0.3 are shown in Table 3.4. MEAN and BIAS of

SP-GLM-I are relatively close to those of the GLM and SP-GLM-H methods. The smaller

sample sizes mainly result in bigger biases than the larger sample sizes. The biggest biases

for zero-inflated data are in the intercepts which are probably because of the zero inflation.

Note that the SP-GLM-H method cannot handle sample size of n = 10,000.

The simulation results for the asymptotic and theMonte Carlo standard errors of SP-GLM-

I show consistency between these two standard errors. For the case of n = 300, the AASEs

and MCSEs of SP-GLM-I are similar to those of SP-GLM-H. On the other hand, while GLM

provides accurate regression coefficient estimation, their asymptotic standard errors are not

correct. These simulation results confirm the accuracy of our proposed asymptotic variance.

The MSEs decrease with increasing sample sizes (Table 3.4). For medium samples, the

MSEs of SP-GLM-I are very close to the MSEs of SP-GLM-H. This can also indicate the

accuracy of parameter estimation of SP-GLM-I. Although the MSEs of GLM are the lowest,

they are inaccurate due to the errors in their asymptotic standard errors.

The ARSS of SP-GLM-I in Table 3.5 are very similar to ARSS of SP-GLM-H for medium

samples and ARSS of GLM for both medium and large samples. This demonstrates that SP-

GLM-I can fit the data well and is comparable with SP-GLM-H and GLM.

When it comes to the time formodel fitting (ATIME), SP-GLM-I tookmore computational

time than GLM (Table 3.5). However, SP-GLM-I was faster than SP-GLM-H. These figures

show that the computational algorithm for our proposed SP-GLM-I is feasible and efficient
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Table 3.4: Simulation results for zero-inflated Poisson response with zero proportion π = 0.3

and n = 300 and 10,000.

n = 300 n = 10,000

Method β̂0 β̂1 β̂2 β̂0 β̂1 β̂2

True β 1.0000 -0.3000 0.5000 1.0000 -0.3000 0.5000

SP-GLM-I MEAN 0.6300 -0.2912 0.5058 0.6421 -0.3002 0.5009

BIAS -0.3700 0.0088 0.0058 -0.3579 -0.0002 0.0009

AASE 0.1530 0.1952 0.2053 0.0264 0.0334 0.0338

MCSE (0.1530) (0.1997) (0.2100) (0.0266) (0.0320) (0.0342)

MSE 0.1603 0.0382 0.0422 0.1288 0.0011 0.0011

SP-GLM-H MEAN 0.6300 -0.2913 0.5059 - - -

BIAS -0.3700 0.0087 0.0059 - - -

AASE 0.1513 0.1930 0.2030 - - -

MCSE (0.1531) (0.1998) (0.2101) (-) (-) (-)

MSE 0.1598 0.0373 0.0412 - - -

GLM MEAN 0.6302 -0.2915 0.5057 0.6420 -0.3001 0.5009

BIAS -0.3698 0.0085 0.0057 -0.3580 -0.0001 0.0009

AASE 0.1086 0.1394 0.1469 0.0186 0.0237 0.0240

MCSE (0.1525) (0.1987) (0.2092) (0.0266) (0.0319) (0.0340)

MSE 0.1485 0.0195 0.0216 0.1285 0.0006 0.0006

to implement.

Type I error

For testing Type I errors, the previous data were used. We set the null hypothesis to be

β1 = −0.3 and the alternative hypothesis is β1 , −0.3. The Type I errors for each simulation

with different sample sizes are shown in Table 3.6. Type I errors are tested at 5% significance

level. While Type I errors for the SP-GLM-I method are acceptable and are comparable to



52 The semiparametric generalized linear model

Table 3.5: ARSS and ATIME (in seconds) for the model fitting of zero-inflated Poisson

response with zero proportion π = 0.3 and n = 300 and 10,000.

ARSS ATIME

Method n 300 10,000 300 10,000

SP-GLM-I 1,216.9 41,323 0.022 0.412

SP-GLM-H 1,216.9 - 5.670 -

GLM 1,217.0 41,323 0.003 0.011

Type I errors for the SP-GLM-Hmethod when n = 300, Type I errors based onWALD-AASE

and LR for GLM are incorrect. For n = 10,000, the SP-GLM-H method is unable to produce

results and Type I errors (WALD-AASE and LR) for the GLM method are incorrect, while

the SP-GLM-I method can produce accurate Type I error rates that are close to the nominal

rate (0.05). These are excellent type I errors, considering the SP-GLMmodel is misspecified

for constant zero-inflated counts.

Table 3.6: Type I errors for β1 for zero-inflated Poisson response with zero proportion

π = 0.3 and n = 300 and 10,000.

n = 300 n = 10,000

WALD- WALD- LR WALD- WALD- LR

Method AASE MCSE AASE MCSE

SP-GLM-I 0.052 0.045 0.049 0.052 0.062 0.058

SP-GLM-H 0.056 0.045 0.051 - - -

GLM 0.174 0.048 0.174 0.158 0.064 0.158

The conclusion drawn from these simulations is that the SP-GLM-I method works well

with zero-inflated Poisson data. The coefficient biases of SP-GLM-I are similar to the

biases of SP-GLM-H and GLM. In addition, the SP-GLM-I and SP-GLM-H methods can
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provide accurate asymptotic standard errors of regression coefficients, while GLM cannot.

Thus the SP-GLM can offer more accurate inference than GLM when the specified response

distribution is not a member of the exponential family and hence does not suit the model

structure of GLM. Moreover, our SP-GLM-I method for fitting SP-GLM can handle larger

data sets with less computational time.

3.5.3 Comparing different number of bins

In our method the number of bins m in SP-GLM-I must be specified and thus we wish to

study the effect of varying m. In these simulation studies, we compared the effect of model

fitting using different values of m for a continuous response.

The response data were generated from an exponential distribution with an inverse link

function. We simulated N = 1,000 samples. Each sample had size n = 500 observations

with the true coefficient values β = [1,0.5,0.8]T . The model fitting for GLM used the gamma

distribution with an inverse link function, and for SP-GLM-I and SP-GLM-H we adopted the

inverse link. Note that the exponential distribution is a special gamma distribution, so GLM

should work well in this case.

The number of observations in each bin is assumed fixed and it is denoted as n0. It is

possible that the actual number of observations nu in bin Bu is not equal to n0 due to ties.

Different n0 were examined to compare the effect of m: n0 was assigned to be 1, 5, 20, 25,

50 and 100 corresponding to m = 500, 100, 25, 20, 10 and 5 bins respectively.

The simulation results for the coefficient estimates with different m using the SP-GLM-I

method are shown in Table 3.7. Table 3.8 shows the results of SP-GLM-I with m = 500 and

simulation results from SP-GLM-H and GLM. Different m values provide similar biases and

the MCSEs of β̂ for SP-GLM-I which are also similar to those for SP-GLM-H and GLM.
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The AASEs and MSEs in SP-GLM-I generally decrease with increasing m. The gap between

the asymptotic and the Monte Carlo standard errors is slightly higher for small m (5 and 10

bins) than for large m.

Table 3.9 shows the ARSS and the ATIME. The model fitting of SP-GLM-I with different

m provide similar ARSS with slightly smaller for decreasing m. These results are also

close to those of GLM and SP-GLM-H. These ARSS suggest our SP-GLM-I method can fit

the data well with different m at a similar accuracy level as for the SP-GLM-H and GLM

methods. SP-GLM-I used less model fitting time than SP-GLM-H, but more than GLM. The

computational times of SP-GLM-I increase with increasing m. The time spent and the MSE

values suggest the trade-off between the accuracy of the fitted model and the computational

speed.

Type I error

The simulation results indicate that our proposed SP-GLM-I method performs well in param-

eter estimation regardless of the m value chosen. Our coefficient estimates are comparable to

GLM and SP-GLM-H. Type I errors in Table 3.10 were generated based on H0: β1 = 0.5 and

H1: β1 , 0.5 using the previous simulated data sets. Type I errors were provided based on the

Wald test with asymptotic and Monte Carlo standard errors of β̂1, and likelihood ratio tests at

5% significance level. Type I errors from the Wald test with MCSEs of β̂1 in SP-GLM-I are

all accurate. However, the results fromWald test with AASEs of β̂1 and likelihood ratio tests

show that Type I error rates deviate from the nominal rate 5% for small m (m = 5,10). So m

needs to be large enough to show the features of the data. However, beyond some value of m,

there is only a small impact on the model fitting for increasing m, while the computation time

increases. Ruppert (2002) also conducted the testing on the impact of the number of knots
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Table 3.7: Simulation results of SP-GLM-I with different number of bins (m) and n = 500.

m β̂0 β̂1 β̂2

True β 1.0000 0.5000 0.8000

5 MEAN 1.0100 0.5083 0.8011

BIAS 0.0100 0.0083 0.0011

AASE 0.2034 0.3079 0.3177

MCSE (0.1743) (0.2468) (0.2645)

MSE 0.0415 0.0948 0.1010

10 MEAN 1.0103 0.5087 0.8002

BIAS 0.0103 0.0087 0.0002

AASE 0.1929 0.2869 0.2949

MCSE (0.1735) (0.2467) (0.2636)

MSE 0.0373 0.0824 0.0870

20 MEAN 1.0105 0.5088 0.7998

BIAS 0.0105 0.0088 -0.0002

AASE 0.1843 0.2709 0.2783

MCSE (0.1732) (0.2469) (0.2633)

MSE 0.0341 0.0735 0.0774

25 MEAN 1.0105 0.5088 0.7998

BIAS 0.0105 0.0088 -0.0002

AASE 0.1820 0.2670 0.2743

MCSE (0.1732) (0.2469) (0.2632)

MSE 0.0332 0.0714 0.0753

100 MEAN 1.0106 0.5087 0.7998

BIAS 0.0106 0.0087 -0.0002

AASE 0.1745 0.2549 0.2624

MCSE (0.1731) (0.2471) (0.2628)

MSE 0.0305 0.0650 0.0689
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Table 3.8: Simulation results with one observation in each bin (n0 = 1) and n = 500.

m Method β̂0 β̂1 β̂2

True β 1.0000 0.5000 0.8000

500 SP-GLM-I MEAN 1.0105 0.5090 0.7996

BIAS 0.0105 0.0090 -0.0004

AASE 0.1748 0.2539 0.2616

MCSE (0.1733) (0.2472) (0.2630)

MSE 0.0307 0.0646 0.0684

- SP-GLM-H MEAN 1.0102 0.5090 0.8002

BIAS 0.0102 0.0090 0.0002

AASE 0.1696 0.2471 0.2548

MCSE (0.1735) (0.2471) (0.2632)

MSE 0.0289 0.0611 0.0649

- GLM MEAN 1.0099 0.5092 0.8005

BIAS 0.0099 0.0092 0.0005

AASE 0.1713 0.2482 0.2559

MCSE (0.1730) (0.2474) (0.2627)

MSE 0.0294 0.0617 0.0655

selection for a different problem in a penalized spline context and his results agree with what

we found here.

These simulation results show the effectiveness of the SP-GLM-I method in handling

small, medium and large data sets. It can handle different types of response data with fast

convergence. In addition, we have also conducted simulations with larger sample sizes

(n ≥ 10,000) and more covariates (q ≥ 15), the results will be reported in a paper we

are preparing currently. Based on its performance in these simulations, we believe that the

SP-GLM-I method is a good option for model fitting in practice.
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Table 3.9: ARSS and ATIME (in seconds) for the model fitting of continuous response with

different number of bins (m) and n = 500.

m Method ARSS ATIME

5 SP-GLM-I 197.97 0.030

10 SP-GLM-I 198.00 0.039

20 SP-GLM-I 198.01 0.058

25 SP-GLM-I 198.02 0.064

100 SP-GLM-I 198.02 0.174

500 SP-GLM-I 198.03 0.938

- SP-GLM-H 198.02 23.969

- GLM 198.03 0.004

Table 3.10: Type I errors for β1 for continuous response with different number of bins (m)

and n = 500.

m Method WALD-AASE WALD-MCSE LR

5 SP-GLM-I 0.012 0.054 0.018

10 SP-GLM-I 0.024 0.052 0.020

20 SP-GLM-I 0.038 0.052 0.034

25 SP-GLM-I 0.042 0.052 0.038

100 SP-GLM-I 0.046 0.052 0.050

500 SP-GLM-I 0.048 0.054 0.040

- SP-GLM-H 0.050 0.052 0.052

- GLM 0.048 0.054 0.050

3.6 Conclusions

The SP-GLM relaxes the response distribution assumption required in GLMs by including

a nonparametric component into the response distribution. This is an advantage in that

fewer assumptions are required from the user. In model fitting, there is no need to specify
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the response distribution, only the link function needs to be specified. Another strength of

the SP-GLM is the ability to interpret the relationship between the expected mean and the

coefficient parameters through the link function.

If the responses are generated from the parametric model in GLMs framework such as a

Poisson distribution with log link and an exponential distribution with inverse link, the SP-

GLM provides results comparable with the parametric model (GLM) which is expected to

provide the best results. On the other hand, if the response distribution is unknown or beyond

the set of standard distributions for GLM, e.g. the zero-inflated situation, the SP-GLM can

provide better results than the parametric model (GLM). In this case, the GLMmethod shows

discrepancy between the asymptotic standard errors and the Monte Carlo standard errors. As

a result, the GLM method provides incorrect Type I error for the Wald test (with asymptotic

standard error) and the likelihood ratio test.

In this chapter, a new computational algorithm for fitting the SP-GLM is proposed. TheMI

- Scoring algorithm is applied to iteratively estimate the reference density and the regression

coefficients. The regression coefficients are estimated using the Fisher scoring algorithm.

The MI algorithm is used to estimate the reference density. In addition, this MI algorithm

does not require the inverse of the information or Hessian matrix for the parameter estimation,

and thus reducing the computational burden in SP-GLM-H. Note that in our algorithm for

SP-GLM the piecewise constant is used to approximate the reference density, however, kernel

or spline methods can also be easily applied in the approximation of the reference density.

The simulation studies demonstrate that the asymptotic standard errors and the Monte

Carlo standard errors of our method are close to each other, which provides evidence for the

validity of the theoretical asymptotic standard error formula presented in Section 3.4. The

results of the proposed method are comparable to the results of Huang’s method for small and
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medium samples. The proposed method is also effective and is capable to handle large data

sets. Furthermore, the simulation studies also indicate that the model fitting results are not

very sensitive to the choice of number of bins as long as the number of bins is large enough

(e.g. m ≥ 20 for n = 500) so that the features of the response data can be captured.
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4
The semiparametric generalized linear

model with canonical link

4.1 Introduction

GLMs are important tools of parametric regression analysis to explore the linear relationships

between predictors and the response variable via a link function. However, to find the final
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model with an appropriate combination of the response distribution and the link function may

take time and can be difficult for an inexperienced modeller. So in many cases, modellers

tend to use a canonical link function of a response variable distribution for model fitting.

The canonical link function is a link function that has the canonical parameter θi equivalent

to the linear predictor ηi. One of the obvious benefits of the canonical link is that the

estimated response mean is, in most cases, assured to stay within the response variable’s

range (Breheny, 2013). Another benefit of using the canonical link is that the derivation of

the maximum likelihood estimator is simplified (Breheny, 2013). Furthermore, some linear

regression properties, e.g. the sum of the residuals (i.e. the difference between observed

and predicted response values) equals zero, are guaranteed to hold (Breheny, 2013). In

addition, the minimal sufficient statistic for the regression coefficients exists (Lindsey, 1997;

Rodriguez, 2007).

In this chapter, we propose a novel regression model for a special case of the SP-GLM

with unspecified canonical link function and a computational algorithm for fitting this model.

The advantage of this model is that it is convenient and easy to use. In addition to its flexibility

in handling the response distribution, users do not need to explicitly specify the link function

as the data will automatically choose the canonical link function and fit it for the users. This

is a kind of nonparametric link function. We do not need to see a mathematical expression

for this canonical link function but can still visualize the canonical link function by plotting

the linear predictor against the fitted mean. Examples of the visual displays to illustrate the

implicit canonical link function will be shown in Section 4.5. Furthermore, this canonical

link method can reduce the computational complexity of the SP-GLM, thus this method can

handle larger data sets and with less computational time than the model fitting method for the

SP-GLM discussed in Chapter 3.
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In the following section, we explain the details of this SP-GLM with the canonical link

function. The identifiability issue of the model is presented in Section 4.2.1. Then Section

4.3 describes the computational algorithm used to estimate the regression coefficients and

the reference density. The asymptotic properties of this model are presented in Section 4.4.

Visual displays of the canonical link function that is implicitly applied in model fitting, are

shown in Section 4.5. Section 4.6 reports results from simulation studies. Finally, conclusions

are set out in Section 4.7.

4.2 Semiparametric generalized linear model with canoni-

cal link

In this section, we summarize the main features of the SP-GLM that was explained in Section

2.3.1, then connect it with our proposed model with canonical link.

Observations yi for i = 1, . . . ,n corresponding to response variables Yi for given Xi are

assumed to be independent. The conditional distribution function F(Yi |Xi) is a distribution in

the exponential family with probability density function fi(y |Xi) = f0(y) exp{yθi − b(θi; f0)}

where b(θi; f0) = log
∫
Y

exp{yθi} f0(y)dy. Denote the conditional mean and variance by

E(Yi |Xi) = µi and Var(Yi |Xi) = σ
2
i respectively. According to the exponential family proper-

ties, µi = b′(θi; f0) and σ2
i = b′′(θi; f0) for ai(φ) = 1.

In parametric GLMs, f0(·) is a known function. However, as in Rathouz and Gao (2009)

and Huang (2014), the SP-GLM assumes that f0(·) is unknown and can be estimated from

the data. Thus f0(·) is nonparametric and fi(y |Xi) can be seen as the exponential tilting form

of the reference density f0.

The linear predictor in GLMs is specified as ηi = Xiβ where β is a q-column vector of
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regression coefficients. The linear predictor ηi is connected to the response mean µi through

the link function g(·) that is g(µi) = ηi.

θi is known as the canonical parameter or the natural parameter in GLMs. It is related to

the response mean µi via the first derivative of b(θi; f0)with respect to θi that is µi = b′(θi; f0).

Then we define the inverse of the first derivative of b(·) to be a known monotonic function

z(·), i.e. z(·) = b′−1(·). Then θi can be expressed as θi = z(µi; f0). If function z(·) is chosen to

be the same function as the link function g(·), then g(·) is known as a canonical link function

since this choice gives θi = ηi. In GLMs, the canonical link function is extensively applied.

For example, the well-known logistic regression employs the logit link with binary response

distribution.

In the parametric distribution, the canonical link function and the canonical parameter

can be explicitly specified. For instance, the normal distribution has θi = µi, so the canonical

link function is the identity link. The canonical link function for the Poisson distribution is

the log link with θi = log(µi). However, unlike the parametric GLMs where θi is clearly

defined from the response distribution, the SP-GLM has to estimate θi that satisfies the mean

constraint, g−1(ηi) = b′(θi; f0) as explained in Chapter 3.

In this chapter, we consider the special case of the SP-GLM when the canonical link

function is chosen. This special link function gives θi = ηi. The main advantage of this

model is that it simplifies computations. It also reduces the complexity and time involved

in estimating θi. Another advantage is that the modellers do not have to explicitly specify

a link function since data itself will determine implicitly a canonical link function. This

model is beneficial for inexperienced modellers. Even the experienced users can also enjoy

the convenience of model building.

Under the SP-GLMwith the canonical link, the probability density function can bewritten
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as

fi(y |Xi) = f0(y) exp{yηi − b(ηi; f0)}, (4.1)

where

b(ηi; f0) = log
∫
Y

exp{yηi} f0(y)dy. (4.2)

Then the mean and variance of yi become µi = b′(ηi; f0) and σ2
i = b′′(ηi; f0) respectively.

4.2.1 Identifiability

As stated in Chapter 2, f0 in the SP-GLM is not identifiable as the tilted version of f0 can

provide the same density function (2.7). This is because θi in (2.7) can be shifted by some

constant. For this special SP-GLM with canonical link, to make the model identifiable,

some restrictions are required on f0 and β. Basically, we require (i) the restriction on f0:∫
Y

f0(y)dy = 1 and (ii) the restriction on β: β0 = 0 where β0 is the intercept. To clarify, let

f ∗0 be a tilted version of f0 as

f ∗0 (y) = f0(y) exp{yη∗0 − b(η∗0; f0)}, (4.3)

where

b(η∗0; f0) = log
∫
Y

exp
{
yη∗0

}
f0(y)dy, (4.4)

and η∗0 is any constant on (−∞,∞). The identifiability issue exists if we also have

fi(y |Xi) = f ∗0 (y) exp{yη∗i − b∗(η∗i ; f ∗0 )}, (4.5)

where

b∗(η∗i ; f ∗0 ) = log
∫
Y

exp
{
yη∗i

}
f ∗0 (y)dy. (4.6)

Letting η∗i = ηi − η
∗
0 and we get b∗(η∗i ; f ∗0 ) = b(ηi; f0) − b(η∗0; f0) after substituting f ∗0 (y) from

(4.3) in (4.6). This f ∗0 (y) can produce the same density function as f0(y) in (4.1). Substituting
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f ∗0 (y) of (4.3) in (4.5) we get

fi(y |Xi) = f0(y) exp
{
y(η∗0 + η

∗
i ) −

(
b(η∗0; f0) + b∗(η∗i ; f ∗0 )

)}
.

Thus ηi can be shifted by η∗0 and makes the model not identifiable. As ηi = Xiβ and η∗0 is

a constant, this η∗0 will only affect the intercept β0. We need to impose the identifiability

constraint that β0 = 0, which gives η∗0 = 0. In many practical applications, the intercept is

not of primary interest. So this should have no affect on model performance. With η∗0 = 0,

f ∗0 (y) in (4.3) becomes f ∗0 (y) = f0(y) exp{−b(η∗0; f0)} where b(η∗0; f0) = log
∫
Y

f0(y)dy. Since∫
Y

f0(y)dy = 1, then we get b(η∗0; f0) = 0 and it follows that f ∗0 (y) = f0(y) as required.

The constraint on f0 already exists and can be imposed by the Lagrange multipliers

method. The constraint on β0 can be imposed by centering the design matrix X. That is the

column mean of X be subtracted from the value of the corresponding column X.

4.3 Computation algorithm

Let ψu(·) be non-negative basis functions and define its coefficients to be αu. For compu-

tational purposes, the infinite dimensional parameter f0 can be approximated using some

non-negative basis functions:

f0(y) =
m∑

u=1
αuψu(y).

We have a restriction on αu that αu ≥ 0 to ensure the non-negativity of f0.

The response data range is denoted as H = [y(1), y(n)] where y(1) = min{y1, . . . , yn} and

y(n) = max{y1, . . . , yn}. Suppose Bu for u = 1, . . . ,m is a partition ofH where each partition

is mutually exclusive and exhaustive, i.e. ∪m
u=1Bu = H and if u , v, Bu ∩ Bv = ∅. We define
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ψu(y) to be indicator basis functions

ψu(y) = 1Bu (y) =


1, if y ∈ Bu

0, if y < Bu.

Then f0 is regarded as a piecewise constant function. Suppose bin Bu has the width δu and

define its probability mass as pu = αuδu. We have the constraints on pu that (i) pu ≥ 0 for all

u and (ii)
m∑

u=1
pu = 1.

We define the number of response observations and the mid-point corresponding to bin

Bu as nu and cu, respectively. Denote a m-vector for all pu by p and let β be the vector for all

β j excluding the intercept. Then the log-likelihood function with this approximation to f0 is

l(β, p) =
n∑

i=1
(yiηi − b(ηi; p)) +

m∑
u=1

nu log pu, (4.7)

where

b(ηi; p) = log
m∑

u=1
exp{cuηi}pu. (4.8)

The mean and variance for observation yi are

µi = b′(ηi; p) =
m∑

u=1
cupu exp{cuηi − b(ηi; p)},

σ2
i = b′′(ηi; p) =

m∑
u=1
[cu − µi]

2pu exp{cuηi − b(ηi; p)}. (4.9)

Note that the expression of b(ηi; p) in (4.8) is a simplification obtained by applying cu as a

representative value of bin Bu. The exact result of approximating f0 by a piecewise constant

function yields

b(ηi; p) = log
m∑

u=1

pu

ηi
[exp {max(Bu)ηi} − exp {min(Bu)ηi}] . (4.10)

We simultaneously estimate β and p using a special constrained maximum likelihood

estimation method (named SP-GLM-CL). The equality constraint
m∑

u=1
pu = 1 is imposed
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through the method of Lagrange multipliers and the MI (Ma, 2010) algorithm is used to

ensure that pu satisfies the inequality constraints pu ≥ 0, for all u. Let the Lagrange

multipliers be λ. Due to the equality constraint, the Lagrangian is given by

L (β, p) = l(β, p) − λ(1 −
m∑

u=1
pu)

=

n∑
i=1
(yiηi − b(ηi; p)) +

m∑
u=1

nu log pu − λ(1 −
m∑

u=1
pu). (4.11)

The KKT necessary conditions for the constrained maximum likelihood estimates are

∂L

∂β j
= 0 for j = 1, . . . , (q − 1),

∂L

∂pu
= 0 if pu > 0,

∂L

∂pu
< 0 if pu = 0 for u = 1, . . . ,m,

∂L

∂λ
= 0.

We apply the Newton - MI algorithm (Ma et al., 2014) to iteratively estimate β and p. Let

a(k) be an estimate of any parameter a at iteration k. β is updated via the Newton algorithm

β(k+1) = β(k) + ω(k)1 (X
TW(k)X)−1XT (y − µ(k)), (4.12)

whereW = diag(σ2
1 , . . . ,σ

2
n ) (seeσ2

i in equation (4.9)), and y and µ are vectors of yi’s and µi’s

respectively. A line search step size ω(k)1 ∈ (0,1] is applied in (4.12) to guarantee increasing

log-likelihood when moving from β(k) to β(k+1), namely L (β(k+1), p(k)) ≥ L (β(k), p(k)).

This Newton algorithm is based on the score function for β

∂L

∂β
= XT (y − µ)

and the second derivative of the log-likelihood with respect to β

∂2L

∂β∂βT = −XTWX.
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Next, we apply the MI algorithm to update pu ≥ 0 by solving the KKT conditions on pu

that is

pu
∂L

∂pu
= 0 subject to pu ≥ 0, for u = 1, . . . ,m,

where

∂L

∂pu
= −

n∑
i=1

exp{cuηi − b(ηi; p)} +
nu

pu
+ λ. (4.13)

We get λ = 0 by solving
∑m

u=1 pu
∂L
∂pu
= 0. We employ the MI algorithm to estimate the

iterative solution of pu, even though pu in (4.13) is non-linear. To ensure that pu is non-

negative, pu
∂L
∂pu

is manipulated to have non-negative values on both sides. Then, for all u, pu

is temporarily updated by

p
(k+ 1

2 )
u =

nu + ε∑n
i=1 exp{cuη

(k)
i − b(η(k)i ; p(k))} + ε

. (4.14)

To avoid zero in the denominator, a small positive constant ε is added in (4.14). Note that the

updated p is not affected by ε. The updated pu obtained using equation (4.14) can guarantee

non-negative values of pu but the log-likelihood may not increase when moving from p(k) to

p(k+
1
2 ). Thus to guarantee increasing log-likelihood, a line search step size ω(k)2 ∈ (0,1] is

applied so that L (β(k+1), p(k+1)) ≥ L (β(k+1), p(k)). Then p is updated by

p(k+1) = p(k) + ω(k)2 (p
(k+ 1

2 ) − p(k)). (4.15)

If it converges, the solution will satisfy the KKT conditions on pu. Equation (4.14) indicates

that p
(k+ 1

2 )
u ≥ 0 and thus (4.15) shows if p(k) ≥ 0, then p(k+1) ≥ 0. Here, the inequalities are

interpreted element-wise. Note that p
(k+ 1

2 )
u = 0 only when nu = 0. In this situation, it can be

clearly seen from (4.13) that ∂L∂pu
< 0.

We define the convergence criterion of the Newton - MI algorithm as being that the

differences in absolute values of both β and p estimated in two consecutive iterations being

less than 10−5. We iteratively update β and p until the convergence criterion is achieved.
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4.4 Asymptotic results

In this section we apply the samemethod for the asymptotic results in Chapter 3 to develop the

asymptotic properties for the maximum likelihood estimates for parameters γ =
(
βT, pT )T .

Let Γ be a domain of γ. For the analysis of the asymptotic properties in this section we fix

the dimension of p, i.e. fix the number of bins m, therefore γ has length (q − 1) + m. For

fixed m, we assume that a density in the true data generating mechanism is the exponential

tilting of a piecewise constant density. Suppose γ has the true parameter value γ∗ and the

maximum likelihood estimator γ̂. This γ̂ is an optimal solution that maximizes l
(
γ) subject

to
m∑

u=1
pu = 1 and pu ≥ 0.

Asmentioned in Chapter 3 that for the constrained problem, the usual asymptotic variance

based on the unconstrained Fisher information matrix is incorrect since the active constraints

affect the variance of the estimator. The active constraints presented in the parameter

estimation algorithm have to be considered. Suppose the constraints are satisfied at a feasible

point γ. The equality constraint
m∑

u=1
pu = 1 is always an active constraint, but the inequality

constraint pu ≥ 0, u = 1, . . . ,m, will be an active constraint only if pu = 0 and ∂L
∂pu

< 0.

Assume the inequality constraints have m1 active constraints, thus the total active constraints

are m1 + 1.

The Fisher information matrix for γ with active constraints requires matrix U(γ) where

the columns of matrix U(γ)(q−1+m)×(q+m−m1−2) form orthonormal bases for the null space of

G(γ), that is

G(γ)U(γ) = 0(m1+1)×(q+m−m1−2) and UT (γ)U(γ) = I(q+m−m1−2)×(q+m−m1−2), (4.16)

where I is an identity matrix and 0 is a zero matrix. We define G(γ) = [G1(β),G2(p)] which

has dimension (m1+1)×(q−1+m). Let G1(β) be the first derivative of the active constraints
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with respect to β which is a zero matrix with (m1 + 1) × (q − 1) dimensions. The derivative

of all active constraints with respect to p is denoted as G2(p)(m1+1)×m = [G3(p)
T,G4(p)

T ]T

where G3(p) is a m-row vector of 1s resulted from derivative of the equality constraint and

matrixG4(p) contains the values of 0 and 1. For each row ofG4(p), the value of 1 is contained

only at the column u if pu = 0 and ∂L
∂pu

< 0. Suppose τ is a m-column vector of τu’s where

τu = 1 if the corresponding inequality constraint is active, otherwise zero. Then G4(p) is

defined by a matrix for which its rows are the rows of the identity matrix Im×m choosing if

the corresponding τu = 1, thus G4(p) has dimension m1 × m.

In order to develop the consistency and the asymptotic normality in Theorem 3, we require

the following assumptions.

B1. For i = 1, ...,n, the random variables Xi are independent and identically distributed, and

the distribution of Xi is independent of γ.

B2. Γ is a compact subset of Rq−1+m.

B3. Eγ∗[n−1l(γ)] exists and has a unique maximum at γ∗ ∈ Γ.

B4. l(γ) is twice differentiable in a neighborhood of γ∗ and is continuous over Γ.

B5. The Fisher information matrix at γ∗ exists and define as follows.

Let the (q − 1) × (q − 1) Fisher information matrix for β be

Iββ = −E
(

∂2l

∂β∂βT

)
= XTWX.

We define Ipp as the Fisher information matrix for p with m×m dimensions and its elements

can be found from

−E
(

∂2l
∂pu∂pv

)
= −

n∑
i=1

exp{(cu + cv)ηi − 2b(ηi; p)} +
nu

p2
u
1u=v .
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If it is a diagonal element of Ipp (u = v), then 1u=v equals to 1, otherwise is zero. The

(q − 1) × m dimensional Fisher information matrix of β and p is defined as Iβp where its

element corresponding to pu is

−E
(

∂2l
∂β∂pu

)
=

n∑
i=1
(cu − µi) exp{cuηi − b(ηi; p)}Xi .

Based on all of these elements, we have the Fisher information matrix for γ as

I(γ) = −E
(
∂2l(γ)
∂γ∂γT

)
=


Iββ Iβp

Ipβ Ipp

 ,
where Ipβ = IT

βp.

Theorem 3 Suppose that assumptions B1 - B5 are satisfied, there are m1 active inequality

constraints and U(γ∗) is defined as in (4.16), then when n → ∞, the constrained maximum

likelihood estimator γ̂ is a consistent estimator for γ∗ and

√
n(γ̂ − γ∗)

D
−→ N(0(q−1+m)×1,F(γ∗)−1

(q−1+m)×(q−1+m)),

where

F(γ)−1 = U(γ)(UT (γ)I(γ)U(γ))−1UT (γ). (4.17)

The proof is omitted here since it is simply modified from Moore et al. (2008) and Ma et al.

(2017).

The accuracy of our asymptotic normality for the regression coefficients is examined via

simulation studies in Section 4.6 by comparing the proposed asymptotic standard error results

with the Monte Carlo standard error results as the Monte Carlo standard errors are considered

to be an accurate estimate of the standard errors.
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4.5 Display the canonical link function

In this section, we show that the implicit canonical link function used in our model can

be identified via the plotting of the linear predictor η̂ against the fitted mean µ̂. We use

three data sets for the illustration. They are simulated binary, count and continuous response

observations. We fit the canonical link function model to these generated data sets and then

plot η̂ against µ̂. In order to verify the accuracy of the estimated canonical links, we plot the

true linear predictor η∗ = Xβ∗ where β∗ are the true coefficients, against the true mean µ∗,

then compare the true canonical links with the estimated canonical links.

In the first simulated sample, we generated the response data from the binomial distribution

with logit link for sample size of n = 1,000. The true coefficient was β1 = 2. The covariate

vector was Xi = [xi1]where values for xi1 were randomly generated from the standard normal

distribution.

For the second simulated sample, the response data were generated from the Poisson

distribution with log link for sample of sizes n = 1,000. We set the true coefficient as

β1 = 0.5. The covariates were set to be the same as in the first sample.

The response data with sample size of n = 1,000 in the third simulated sample had the

normal distribution with identity link. The true coefficient was β1 = 0.9. We also used the

same set of covariates from the first example.

Figures 4.1 - 4.3 present the plots of the true canonical links (left plots) and the estimated

canonical links (right plots) for samples 1 to 3, respectively. These figures show that the

canonical links are automatically chosen by these models. For all samples, the plots of the

true canonical links indicate that the estimated canonical links are correct.
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Figure 4.1: True mean (left) and fitted mean (right) curves of binomial response with logit

link.

Figure 4.2: True mean (left) and fitted mean (right) curves of Poisson response with log link.
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Figure 4.3: True mean (left) and fitted mean (right) curves of normal response with identity

link.

4.6 Simulation studies

In this section, we conducted simulation studies with the aim of demonstrating the effec-

tiveness of our implicit canonical link method. To indicate its accuracy, we compare the

simulation results of the SP-GLMwith unspecified canonical link function, named SP-GLM-

CL, that we proposed in this chapter with the SP-GLM-I fitting method introduced in Chapter

3 and the classical GLM. We provide the MATLAB code for SP-GLM-CL and SP-GLM-I in

Appendix A.2 and A.1, respectively. fitglm()MATLAB function is used for GLM.

In the following simulations, we generated three data sets. All response data were

generated from the distributions within the GLM framework with their canonical links that

were (i) the normal distribution with identity link, (ii) the binomial distribution with logit

link and (iii) the Poisson distribution with log link. Thus we can explore the performance
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of the SP-GLM-CL method in handling different types of response data (e.g. continuous,

binary and count data) that are generated from different canonical link functions. In addition,

different sample sizes are used in these simulated data sets, so that the effectiveness of the

SP-GLM-CLmethod to fit the data with small, medium and large samples can be investigated.

In the first simulated data set, we also aim to explore the impact of different choice of the

common number of observations n0 in each bin on the model fitting results of SP-GLM-CL.

The results of SP-GLM-CL with different n0 are compared with those of SP-GLM-I and the

simulation results from model fitting with n0 = 1 are compared to those of GLM.

For each simulated data set, we conducted Monte Carlo simulations with N = 1,000

trials. To explore the goodness of fit of model fitting with SP-GLM-CL, the average residual

sum of squares (ARSS) of SP-GLM-CL are calculated using formula (3.23) and compared

with those of SP-GLM-I and GLM.

The accuracy of the β estimates of SP-GLM-CL is evaluated by comparing its β̂ with

the β̂ of other specified link function methods (SP-GLM-I and GLM). We obtained 1,000

estimated values and asymptotic standard errors of β from 1,000 repeated samples of each

Monte Carlo simulation for each method. Then for each simulation setting, we compute the

average estimate (MEAN), bias (BIAS), average asymptotic standard error (AASE), Monte

Carlo standard error (MCSE), and mean squared error (MSE) for the coefficient estimate of

SP-GLM-CL by the formulas (3.17) - (3.21) and compare with those of SP-GLM-I and GLM.

However, as specified in Section 4.2.1, the constraint on regression coefficients, β0 = 0,

is needed to make the semiparametric model identifiable, thus β̂0 was not estimated in the

SP-GLM-CL model. Except for this SP-GLM-CL model, the intercepts were estimated but

were omitted from the tables. Note that the AASE is used to calculate the MSE. The MCSE

results shown in Tables in this section are put in brackets to avoid confusion with the AASE
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results.

The accuracy of our asymptotic standard errors of β̂ as proposed in Section 4.4 is evaluated

by comparing the AASE to the MCSE of SP-GLM-CL. The ASE of β̂ in SP-GLM-CL are

calculated from the square root of the first (q−1) diagonal values of the asymptotic covariance

matrix in (4.17).

Speed of our computational algorithm for model fitting in SP-GLM-CL is explored by

comparing the average computational time spend (ATIME) in seconds, computed by formula

(3.24).

The accuracy of the coefficient estimate and inference is also examined through a hypoth-

esis test. We generated the data under the null hypothesis that β1 equals a specified value,

then performed tests with Type I errors at 5% significance level for testing the null hypothesis

by using (i) Wald test with AASE of β̂1 (WALD-AASE), (ii) Wald test with MCSE of β̂1

(WALD-MCSE) and (iii) likelihood ratio test for χ2
1 (LR).

4.6.1 Impact of different number of observations in each bin (Normal

distribution with identity link)

The SP-GLM-CL method uses the same technique to approximate f0 as in the SP-GLM-I

explained in Chapter 3. In both methods, the equal-frequency discretization technique is

applied to set the indicator basis functions. We define n0 to be the pre-specified number of

observations in each bin. Note that this n0 could be different from nu which is the actual

number of observations in bin Bu due to ties. In these simulation studies, we explore the

impact of using different n0 to our model fitting and the β estimates for a continuous response.

We generated N = 1,000 repeated samples of continuous response with sample sizes n =

500 from a normal distribution with identity link and the true coefficients were [β0, β1, β2]
T =
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[1,−0.3,0.5]T . The covariate vector wasXi = [1 xi1 xi2]where xi1 and xi2 were independently

generated from the uniform distribution with the interval (0,1). We set n0 = 1,5,20,25,50 and

100 and fitted SP-GLM-CL and SP-GLM-I corresponding to these settings. These assigned

n0 correspond to the number of bins m = 500,100,25,20,10 and 5 respectively. For GLM,

there is no bin to specify and these models are comparable with models of SP-GLM-CL and

SP-GLM-I with n0 = 1.

Tables 4.1 - 4.2 show the simulation results of (β̂1, β̂2) for normal response with different

n0. For SP-GLM-CL with increasing n0, the BIAS increases while both standard errors

decrease and the MSE decreases until n0 = 25 then rises.

Table 4.1: Simulation results for one observation in each bin (n0 = 1) with n = 500.

SP-GLM-CL SP-GLM-I GLM

β̂1 β̂2 β̂1 β̂2 β̂1 β̂2

True β -0.3000 0.5000 -0.3000 0.5000 -0.3000 0.5000

MEAN -0.3023 0.5090 -0.2989 0.5030 -0.2990 0.5032

BIAS -0.0023 0.0090 0.0011 0.0030 0.0010 0.0032

AASE 0.1597 0.1589 0.1592 0.1564 0.1573 0.1545

MCSE (0.1659) (0.1587) (0.1627) (0.1523) (0.1629) (0.1524)

MSE 0.0255 0.0253 0.0254 0.0245 0.0247 0.0239

Comparing the results of SP-GLM-CL with SP-GLM-I, when we increase n0, the BIAS

in SP-GLM-CL grows much larger than in SP-GLM-I. The BIAS values of SP-GLM-I are

consistent with different n0. Except for n0 = 1,5, the difference between AASE and MCSE,

the standard errors and the MSE are smaller in SP-GLM-CL than in SP-GLM-I. The results

of these two methods are close when n0 = 1,5. For n0 = 1, the results of SP-GLM-CL are

close but the values are slightly larger than other methods. Thus if we want very small BIAS

similar to other methods, we can choose a small number of n0 e.g. n0 = 1,5. However, we
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Table 4.2: Simulation results to compare different number of observations in each bin (n0)

with n = 500.

SP-GLM-CL SP-GLM-I

n0 β̂1 β̂2 β̂1 β̂2

True β -0.3000 0.5000 -0.3000 0.5000

5 MEAN -0.3005 0.5060 -0.2988 0.5030

BIAS -0.0005 0.0060 0.0012 0.0030

AASE 0.1592 0.1585 0.1596 0.1567

MCSE (0.1649) (0.1577) (0.1627) (0.1523)

MSE 0.0253 0.0252 0.0255 0.0246

20 MEAN -0.2779 0.4678 -0.2988 0.5031

BIAS 0.0221 -0.0322 0.0012 0.0031

AASE 0.1530 0.1522 0.1659 0.1630

MCSE (0.1530) (0.1465) (0.1626) (0.1523)

MSE 0.0239 0.0242 0.0275 0.0266

25 MEAN -0.2697 0.4541 -0.2988 0.5030

BIAS 0.0303 -0.0459 0.0012 0.0030

AASE 0.1507 0.1499 0.1683 0.1653

MCSE (0.1485) (0.1423) (0.1626) (0.1523)

MSE 0.0236 0.0246 0.0283 0.0273

50 MEAN -0.2332 0.3923 -0.2988 0.5030

BIAS 0.0668 -0.1077 0.0012 0.0030

AASE 0.1399 0.1388 0.1803 0.1769

MCSE (0.1295) (0.1244) (0.1626) (0.1523)

MSE 0.0240 0.0309 0.0325 0.0313

100 MEAN -0.1843 0.3098 -0.2988 0.5030

BIAS 0.1157 -0.1902 0.0012 0.0030

AASE 0.1241 0.1226 0.2016 0.1976

MCSE (0.1035) (0.1010) (0.1625) (0.1522)

MSE 0.0288 0.0512 0.0406 0.0391
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can also choose larger n0 e.g. n0 = 20,25 that have larger BIAS, but smaller values of MSE.

The ARSS for model fitting are shown in Table 4.3. The ARSS are similar in all methods

for n0 = 1,5. However, they slightly increased with increased n0. ARSS for SP-GLM-CL are

very close to SP-GLM-I except for n0 = 100.

Table 4.3: ARSS for the model fitting of continuous response with different number of

observations in each bin (n0) for SP-GLM-CL and SP-GLM-I with n = 500.

n0 SP-GLM-CL SP-GLM-I GLM

1 496.59 496.60 496.60

5 496.60 496.60

20 496.64 496.60

25 496.67 496.60

50 496.93 496.60

100 498.04 496.60

Table 4.4 shows the time spent for model fitting. SP-GLM-CL was slower than GLM

but much faster than SP-GLM-I. The computational time for SP-GLM-CL decreases with

increasing n0 until n0 = 20. Then it is slightly fluctuates around the time required for n0 = 20

which can be said that it is stable. These results suggest that we can choose any n0 that is not

too large compared to its sample sizes. However, since the trade-off between the goodness of

fit and the computational time spend is presented, the medium size of n0 that can still provide

good fit with less time consumption is preferred.

Type I error

The accuracy of the parameter inferences of SP-GLM-CL with different n0 is examined

via hypothesis testing. We used the previous data sets that were generated based on the

hypothesis that β1 = −0.3 and did hypothesis testing H0: β1 = −0.3 and H1: β1 , −0.3 at
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Table 4.4: ATIME for the model fitting of continuous response with different number of

observations in each bin (n0) for SP-GLM-CL and SP-GLM-I with n = 500.

n0 SP-GLM-CL SP-GLM-I GLM

1 0.154 3.696 0.003

5 0.043 0.690

20 0.012 0.231

25 0.011 0.205

50 0.008 0.131

100 0.009 0.094

the 5% significance level. Type I errors shown in Table 4.5 corresponding to the Wald test

with asymptotic and Monte Carlo standard errors of β̂1, and the likelihood ratio test statistic.

All methods provide appropriate error rates for n0 = 1. For SP-GLM-I, the error rates are

not appropriate for the WALD-AASE and LR for n0 = 100. For SP-GLM-CL, the error rates

are all approximately correct except the WALD-AASE for n0 = 100, and WALD-MCSE and

LR for n0 = 50,100. That is SP-GLM-CL for too large n0 provide inaccurate parameter

inference. So we need n0 not to be too large.

In conclusion, n0 in SP-GLM-CL can increase till some point yet still provide good

parameter estimates and inferences while computational time decreases. However, from

n0 = 20 onwards, the time spent for model fitting is stable. The β estimates in SP-GLM-CL

is more sensitive to very large n0 than in SP-GLM-I. Compared to SP-GLM-I, the possible

largest n0 in SP-GLM-CL that can still provide accurate results is smaller than in SP-GLM-I.

Hence, n0 in SP-GLM-CL should not be too large relative to the sample sizes, so that the

features of the data can still be captured and since the computational speed for large n0 will

not be improved from the medium n0.
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Table 4.5: Type I errors for β1 for continuous response with different number of observations

in each bin (n0) for SP-GLM-CL and SP-GLM-I with n = 500.

n0 Method WALD-AASE WALD-MCSE LR

1 SP-GLM-CL 0.059 0.050 0.060

SP-GLM-I 0.059 0.053 0.057

- GLM 0.063 0.054 0.060

5 SP-GLM-CL 0.060 0.051 0.037

SP-GLM-I 0.058 0.053 0.055

20 SP-GLM-CL 0.047 0.048 0.054

SP-GLM-I 0.051 0.053 0.048

25 SP-GLM-CL 0.046 0.045 0.064

SP-GLM-I 0.049 0.053 0.043

50 SP-GLM-CL 0.055 0.080 0.214

SP-GLM-I 0.033 0.052 0.021

100 SP-GLM-CL 0.126 0.201 0.385

SP-GLM-I 0.011 0.052 0.007

4.6.2 Binomial distribution with logit link

In the second simulated data set, the response variable was randomly generated from the

binomial distribution with logit link which is its canonical link. Each simulated sample

had sample size n = 10,000 and there were N = 1,000 repetitions. The covariates were

generated the same way as in the previous simulated data sets. The true coefficients were

[β0, β1, β2]
T = [−0.5,0.3,0.2]T .

In model fitting for GLM, the binomial distribution with logit link was specified. The

logit link function was also used in SP-GLM-I. For SP-GLM-CL, neither the distribution of

the response data nor the link function was required to be specified.

The simulation results for model fitting of data generated from a binomial distribution
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with logit link shown in Table 4.6 indicate that SP-GLM-CL can produce accurate coefficient

estimates and inferences, compared to SP-GLM-I and GLM. SP-GLM-CL can provide the

same BIASes as other methods that had a specified canonical link (logit link) in their model

fittings. The AASEs of (β̂1, β̂2) for SP-GLM-CL are close to their corresponding MCSEs,

and these standard errors are also the same as the standard errors provided by SP-GLM-I and

GLM. Thus these results can confirm the accuracy of our asymptotic standard errors formula

in (4.17).

Table 4.6: Simulation results for binary response with n = 10,000.

Method SP-GLM-CL SP-GLM-I GLM

β̂1 β̂2 β̂1 β̂2 β̂1 β̂2

True β 0.3000 0.2000 0.3000 0.2000 0.3000 0.2000

MEAN 0.3682 0.1858 0.3682 0.1858 0.3682 0.1858

BIAS 0.0682 -0.0142 0.0682 -0.0142 0.0682 -0.0142

AASE 0.7096 0.7266 0.7096 0.7266 0.7096 0.7266

MCSE (0.7301) (0.7537) (0.7301) (0.7537) (0.7301) (0.7537)

MSE 0.5081 0.5281 0.5081 0.5281 0.5081 0.5281

The ARSS of SP-GLM-CL in Table 4.7 also suggests that SP-GLM-CL can fit the data

well at the same level as SP-GLM-I and GLM. Time taken in model fitting, on average in

each repetition (seconds), is provided in Table 4.7. SP-GLM-CL spent slightly more compu-

tational time than GLM, but less than SP-GLM-I. Thus the performance of our computational

algorithm is good, it can converge almost as fast as GLM.

Type I error

Next we perform the hypothesis testing, H0: β1 = 0.3 and H1: β1 , 0.3, at 5% significance

level using the previous data set to examine the accuracy of the coefficient inferences of
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Table 4.7: ARSS and ATIME for binary response with n = 10,000.

Method SP-GLM-CL SP-GLM-I GLM

ARSS 23.820 23.820 23.820

ATIME 0.006 0.034 0.003

SP-GLM-CL. The previous data set was generated under the null hypothesis. Table 4.8

shows Type I error rates based on the likelihood ratio test, the Wald test with Monte Carlo

and asymptotic standard errors of β̂1. Not surprisingly, Type I error rates for SP-GLM-CL

are accurate. Note that since the AASE and MCSE values in all methods are the same, then

the results from the Wald tests are also the same in all methods.

Table 4.8: Type I errors for β1 for binary response with n = 10,000.

Method SP-GLM-CL SP-GLM-I GLM

WALD-AASE 0.048 0.048 0.048

WALD-MCSE 0.051 0.051 0.051

LR 0.054 0.054 0.054

To conclude, our proposed SP-GLM-CL method works well with the binary response

generated using a logit link. SP-GLM-CL correctly chosen the canonical link to fit the data.

It can be used as an alternative regression method to the logistic regression as it can provide

the same results with similar convergence speed as the model fitting in GLM using binomial

distribution with logit link, while less information are required from users.

4.6.3 Poisson distribution with log link

For this simulated data set, the model fitting results of our SP-GLM-CL method were com-

pared to those of other methods for count response. The response variable was randomly
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generated from the Poisson distribution with its canonical link, that is the log link, for sample

size n = 100 in N = 1,000 repeated samples. The covariates and the true coefficients were

the same as in the second data set. In GLM, the Poisson distribution with log link was

specified to fit the data, while only the log link function was specified for SP-GLM-I. For

SP-GLM-CL, there was no need to specified the response distribution and link function.

Table 4.9 shows the Monte Carlo simulation results for these fitted models. SP-GLM-CL

provides slightly higher BIAS for β̂1 but slightly less absolute BIAS value for β̂2 than other

methods with log link. For SP-GLM-CL, the AASEs of (β̂1, β̂2) are close to the MCSEs of

(β̂1, β̂2). Both standard errors in SP-GLM-CL are slightly higher than for the other methods

with log link model. The AASEs that are matching with the MCSEs in SP-GLM-CL support

the appropriateness of our proposed asymptotic variance. SP-GLM-CL has slightly higher

MSEs than others with log link model.

Table 4.9: Simulation results for Poisson response with n = 100.

Method SP-GLM-CL SP-GLM-I GLM

β̂1 β̂2 β̂1 β̂2 β̂1 β̂2

True β 0.3000 0.2000 0.3000 0.2000 0.3000 0.2000

MEAN 0.3265 0.1970 0.3120 0.1868 0.3114 0.1866

BIAS 0.0265 -0.0030 0.0120 -0.0132 0.0114 -0.0134

AASE 0.4060 0.4001 0.3895 0.3841 0.3927 0.3874

MCSE (0.3941) (0.4065) (0.3753) (0.3850) (0.3740) (0.3842)

MSE 0.1655 0.1601 0.1519 0.1477 0.1544 0.1503

The ARSS for SP-GLM-CL in Table 4.10 is very close to that of the other methods with

log link function. This result indicates that our SP-GLM-CL method works well for model

fitting.
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Table 4.10 also shows the time taken for model fitting. Our computational algorithm is

very fast. Its computational time is comparable to GLM and it is much faster than SP-GLM-I.

Table 4.10: ARSS and ATIME for Poisson response with n = 100.

Method SP-GLM-CL SP-GLM-I GLM

ARSS 75.586 75.582 75.585

ATIME 0.004 0.014 0.004

Type I errors

To examine the accuracy of the statistical inference of our SP-GLM-CL method, we perform

the following hypothesis test. We tested the previous data under H0: β1 = 0.3 and H1:

β1 , 0.3 at 5% significance level. Type I errors computed according to the likelihood ratio

test and the Wald test using the asymptotic and the Monte Carlo standard errors of β̂1 in

Table 4.11 suggest reasonable parameter inferences for the SP-GLM-CL method since its

error rates are close to the nominal rate 0.05.

Table 4.11: Type I errors for β1 for Poisson response with n = 100.

Method SP-GLM-CL SP-GLM-I GLM

WALD-AASE 0.041 0.042 0.038

WALD-MCSE 0.063 0.048 0.047

LR 0.045 0.041 0.041

To summarize, our proposed SP-GLM-CL method performs well for model fitting of

the count response data generated from the Poisson distribution with log link. The results

of the SP-GLM-CL method are comparable with those of the other methods with specified

canonical link function. These results support the effectiveness of our model fitting method
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and the accuracy of our regression coefficient estimations and inferences. Furthermore, our

proposed asymptotic standard errors are comparable with the Monte Carlo standard errors.

This supports the suitability of our proposed asymptotic variance. In addition, our method

uses much less computational time than SP-GLM-I, it is as fast as the GLM method.

4.7 Conclusions

In this chapter, the novel model and its algorithm for a special case of the SP-GLM when the

canonical link function is applied, are proposed. In addition to the relaxation of the response

distribution by including the unspecified reference density, this proposed canonical link

model also relaxes the requirement of the specified link function in the SP-GLM by implicitly

applying the canonical link function in the model. Thus in addition to other advantages of

the SP-GLM, this canonical link setting can make the model fitting algorithm converge faster

than the algorithm fitting method proposed in Chapter 3 since the computational complexity

of the SP-GLM is reduced. Moreover, the estimated canonical link can be visualized via the

plot of the linear predictor and the fitted mean.

In model fitting, we used the Newton - MI algorithm to simultaneously estimate the

regression coefficients and the reference density. Even though we applied the indicator basis

functions to approximate the reference density, other nonparametric approximation methods

such as spline or kernel can also be applied in this algorithm. The MI algorithm that is

used to estimate the reference density and also impose the non-negativity constraints on the

reference density, has less computational cost than other traditional iterative methods (e.g.

the Fisher scoring method) since this MI algorithm does not require the inverse of the Fisher

information matrix which possibly has large dimension.

The simulation results showed that our proposed model fitting method for the SP-GLM
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with unspecified canonical link function works well with data that are generated from para-

metric distributions with its canonical link such as the binomial distribution with logit link,

Poisson distribution with log link and normal distribution with identity link, for small,

medium and large sample sizes. The coefficient estimates and inferences are accurate and are

comparable with the GLM and SP-GLM-I methods that are fitted with the correctly specified

canonical link functions. Moreover, the accuracy of the asymptotic standard errors discussed

in Section 4.4 is supported by our simulation results. For continuous response data, the β

estimates and inferences are not very sensitive to the choice of n0 as long as n0 is not too large

compared to its sample size. Furthermore, the proposed SP-GLM-CL method can handle

sample sizes in the millions using a small number of bins. In addition, the computational

speed for model fitting algorithm is very fast and it is comparable with GLM. Thus our

proposed model fitting method is a good choice for regression analysis due to its simplicity

and computational accuracy and efficiency.



5
Application to real data sets

In this chapter, we aim to demonstrate the performance of the SP-GLM-I and SP-GLM-CL

methods proposed in Chapters 3 and 4 with real data sets. This chapter provides comparative

results of applying the SP-GLM-I and SP-GLM-CL methods to the following real data sets

(1) Vehicle insurance data (De Jong & Heller, 2008), (2) PhD students’ research productivity

data (Long, 1990) and (3) CD4 count data (Wade & Ades, 1994). For the first application,

the model fitting results of the SP-GLM-I, SP-GLM-CL and GLM methods are compared by
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using a vehicle insurance policies data set. This data set is typical of a real insurance data set

which is relatively large (number of observations = 67,856; number of variables = 10). The

SP-GLM-Hmethod cannot handle this volume of data. In the second application, we compare

the regression analysis of the PhD biochemists’ article data set (number of observations =

915; number of variables = 6) using the SP-GLM-I, SP-GLM-CL and GLM methods. For

the last application, a CD4 (number of lymphocytes per cubic millimeter of blood) count data

(number of observations = 609; number of variables = 2) is used as a test data set to compare

the model fitting results between the proposed SP-GLM-CL and the GLM methods.

The MATLAB code for the SP-GLM-I and SP-GLM-CL model fitting are provided in

Appendix A.1 and A.2, respectively. For the GLM, the fitglm()MATLAB function is used

to fit the model.

5.1 Vehicle insurance data

In this example, we demonstrate application of the SP-GLM-I and SP-GLM-CL methods

to the one-year vehicle insurance policies data given by De Jong and Heller (2008). This

data set contains 67,856 vehicle insurance policies that were taken out in 2004 or 2005. The

variables in this data set are described in Table 5.1. For insurance companies, it is important

to investigate the risk factors that influence policyholders to make claims, to predict the

number of claims and claim size. The insurance companies use these data to determine the

insurance premiums.

De Jong andHeller (2008) used this data set to demonstrate the risk factors associatedwith

making claims (clm) by vehicle insurance policyholders. In this example, we are interested

in the regression analysis with the response variable numclm, which is the number of claims

for each vehicle insurance policy. The frequencies for the count response, numclm, are shown



5.1 Vehicle insurance data 91

Table 5.1: Variables from vehicle insurance policies.

Variables Description

clm Claim occurrence (1 = have at least one claim, 0 = have no claim).

numclm Number of claims.

clmcst Claim amount.

exposure Exposure, ranging from 0 to 1.

veh_val Vehicle value in $10,000s.

veh_body Vehicle body category, coded as BUS, CONVT (convertible), COUPE,

HBACK (hatchback), HDTOP (hardtop), MCARA (motorized caravan),

MIBUS (minibus), PANVN (panel van), RDSTR (roadster), SEDAN,

STNWG (station wagon), TRUCK, UTE (utility)

where SEDAN is the reference category.

veh_age Vehicle’s age.

gender Driver’s gender, coded as M (Male), F (Female)

where M is the reference category.

agecat Driver’s age category, coded as 1 to 6

where 1 is the youngest and is the reference category.

area Driver’s residential area, coded as A to F

where A is the reference category.

in Table 5.2. The possible risk factors for numclm are vehicle value (veh_val), vehicle body

type (veh_body), vehicle’s age (veh_age), driver’s gender (gender), driver’s age (agecat)

and driver’s residential area (area).

We fit a Poisson regression (GLM), SP-GLM-I and also SP-GLM-CL to this data set.

Note that for GLM, both the Poisson response distribution and log link need to be specified,

while for SP-GLM-I only the log link is required. We do not need to specify the response

distribution nor the link function for SP-GLM-CL.

The amount of exposure during the year is denoted as "exposure". Exposure takes
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Table 5.2: The frequency table of the number of claims.

Value Count Percent

0 63,232 93.19%

1 4,333 6.39%

2 271 0.40%

3 18 0.03%

4 2 0.00%

a value between 0 and 1 where 1 indicates full exposure. Each policy may have different

exposure to risk, thus the adjustment for differing observation periods is required. That is the

number of claims for each policy is adjusted to be per unit time (numclm/exposure). Since

we fit the model using log link function for the SP-GLM-I and GLM methods, we adjust for

exposure to risk of each policy by including log of exposure as the offset in the model. We

assume the same offset for the SP-GLM-CL method to be able to compare its result with the

results of SP-GLM-I and GLMmethods. This pre-defined offset function for SP-GLM-CL is

appropriate since in this example, the SP-GLM-CL model is automatically selected the log

link in its model fitting as indicated by plotting the linear predictor and fitted mean shown in

Figure 5.1.

The results of the SP-GLM-I and SP-GLM-CL methods are compared with the results

obtained from GLM. These proposed models are assessed by using the histogram and Prob-

ability - Probability (P-P) plots of PIT (nonrandomized version of the probability integral

transform (Czado, Gneiting, & Held, 2009)). The PIT is used to assess the model fit, to indi-

cate appropriateness of an implicit distribution to fit the SP-GLM and to check an underlying

distribution assumption in GLM (Czado et al., 2009; Fung & Huang, 2016). We follow the

PIT formula of Czado et al. (2009). If the model fitting uses a correct response distribution
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Figure 5.1: The fitted mean curve of SP-GLM-CL model for the vehicle insurance data set.

and the model fit is good, the PITs should follow a standard uniform distribution. That is the

PIT histogram should be uniform and the P-P plot should follow the 45◦ line. The P-P plot

compares the cumulative distribution of PIT with the standard uniform cumulative distribu-

tion. Departure from uniformity suggests the possibility of model insufficiency (Czado et al.,

2009). An example of the use of the PIT histogram as a diagnostic check for an unspecified

distribution of the SP-GLM can be found in Fung and Huang (2016).

The final model results for SP-GLM-I, SP-GLM-CL andGLMare shown in Table 5.3. For

all three methods, veh_body, veh_age and agecat are the risk factors that are significant at

5% of significance level to explain the expected number of claims made by the policyholders.

Both parameter estimates and standard errors for SP-GLM-I and SP-GLM-CL are close to

those for GLM.

Figures 5.2 - 5.4 are the PIT histograms of SP-GLM-I, SP-GLM-CL and GLM, respec-

tively. All plots appear to be uniform. In addition, the P-P plots of PITs as shown in Figure
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Table 5.3: The final model results of the vehicle insurance data set.

SP-GLM-I SP-GLM-CL GLM

Parameter Estimate ASE Estimate ASE Estimate ASE

Intercept -1.4038 0.0656 - - -1.4149 0.0602

veh_body BUS 0.9000 0.3862 0.8679 0.3037 0.9191 0.3175

veh_body CONVT -0.5892 0.5982 -0.5826 0.5729 -0.5976 0.5780

veh_body COUPE 0.4265 0.1311 0.4086 0.1159 0.4206 0.1185

veh_body HBACK -0.0563 0.0402 -0.0586 0.0368 -0.0603 0.0374

veh_body HDTOP 0.0963 0.0980 0.0968 0.0880 0.1017 0.0897

veh_body MCARA 0.5817 0.2944 0.5540 0.2525 0.5776 0.2596

veh_body MIBUS -0.0647 0.1629 -0.0474 0.1498 -0.0497 0.1519

veh_body PANVN 0.0504 0.1366 0.0576 0.1217 0.0639 0.1241

veh_body RDSTR 0.3524 0.6647 0.3884 0.5639 0.4024 0.5782

veh_body STNWG 0.0331 0.0412 0.0321 0.0375 0.0333 0.0381

veh_body TRUCK -0.0505 0.0993 -0.0376 0.0900 -0.0374 0.0915

veh_body UTE -0.2037 0.0699 -0.1913 0.0646 -0.1971 0.0656

veh_age -0.0625 0.0147 -0.0649 0.0134 -0.0665 0.0136

age_cat 2 -0.1852 0.0592 -0.1624 0.0531 -0.1682 0.0542

age_cat 3 -0.2413 0.0577 -0.2214 0.0518 -0.2289 0.0529

age_cat 4 -0.2719 0.0575 -0.2501 0.0517 -0.2587 0.0527

age_cat 5 -0.4940 0.0638 -0.4638 0.0578 -0.4779 0.0590

age_cat 6 -0.4857 0.0727 -0.4519 0.0662 -0.4656 0.0675

5.5 for SP-GLM-I (dashed-dotted green line), SP-GLM-CL (dashed red line) and GLM (solid

blue line) models all follow the 45◦ line. So these indicate that the model fit of these methods

are good. This also means the SP-GLM-I and SP-GLM-CLmethods use appropriate response

distributions in their model fittings.
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Figure 5.2: PIT histogram of SP-GLM-I for the vehicle insurance data set.

Figure 5.3: PIT histogram of SP-GLM-CL for the vehicle insurance data set.
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Figure 5.4: PIT histogram of GLM for the vehicle insurance data set.

Figure 5.5: The P-P plots of PITs for SP-GLM-I (dashed-dotted green), SP-GLM-CL (dashed

red) and GLM (solid blue) with the vehicle insurance data set.
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To conclude, this example shows the effective performance of the SP-GLM-I and SP-

GLM-CL methods in application to a real data set. They can handle multiple and different

types of covariates in very large samples where the offset is also included in the model.

5.2 Research productivity of PhD graduates data set

Long (1990) studied the effects of gender on the productivity of PhD students in biochemistry.

In this example, we perform a regression analysis on the mean number of articles produced

by biochemistry PhD students in the last 3 years of their PhD (art). The frequency and the

histogram of art are shown in Figure 5.6 and Table 5.4, respectively. The suggested variables

by Long (1990) that affect the number of PhD articles are gender (fem: female [reference

group], male), marital status (mar: single [reference group], married), number of children

aged under 6 years old (kid5), PhD department’s prestige (phd) and the number of articles

by PhD mentors in last 3 years (ment) (Long, 1997). This data set is the bioChemists data

given in the R package pscl (Jackman, 2017).

We apply the SP-GLM-I and SP-GLM-CL methods as well as the Poisson with log link

model (GLM) to fit this data set. The performance of each method and the diagnostics for

the underlying distribution assumption is checked by the PIT.

The final model results for all three methods are given in Table 5.5. All variables

except the prestige of department (phd) are significant predictors for the expected number

of publications by PhD biochemists. The absolute coefficient estimate values for SP-GLM-I

are higher than the results of SP-GLM-CL, but are lower than those of GLM (except for

ment). Even though the estimated coefficient parameters of each method are not the same,

the predictors of all models show similar effect (e.g. increase / decrease) to the average

number of articles. The coefficient standard errors of SP-GLM-I are the highest compared
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Figure 5.6: Histogram of art.

Table 5.4: The frequency table of the number of articles.

Value Count Percent

0 275 30.05 %

1 246 26.89 %

2 178 19.45 %

3 84 9.18 %

4 67 7.32 %

5 27 2.95 %

6 17 1.86 %

7 12 1.31 %

8 1 0.11 %

9 2 0.22 %

10 1 0.11 %

11 1 0.11 %

12 2 0.22 %

16 1 0.11 %

19 1 0.11 %
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Table 5.5: The final model results of the PhD articles data set.

SP-GLM-I SP-GLM-CL GLM

Parameter Estimate ASE Estimate ASE Estimate ASE

intercept 0.091 0.077 - - 0.120 0.054

fem 0.199 0.080 0.124 0.041 0.225 0.055

mar 0.140 0.090 0.083 0.045 0.152 0.061

kid5 -0.169 0.057 -0.106 0.030 -0.185 0.040

ment 0.029 0.004 0.011 0.002 0.026 0.002

to those of SP-GLM-CL and GLM. Note that since the link function in the SP-GLM-CL

method is implicitly determined, the interpretations of its coefficient estimates are different

from other methods where the link function is specifically specified.

The PIT histograms of SP-GLM-I and SP-GLM-CL in Figures 5.7 - 5.8 are close to

uniform, while the histogram of the PITs for GLM (Figure 5.9) is U-shaped. Figure 5.10

shows the P-P plots of PITs for all methods. The P-P plots for both SP-GLM-I (dashed-dotted

green line), SP-GLM-CL (dashed red line) are very close to the comparison line (dotted black

line), but the plot for GLM (solid blue line) deviate from the 45◦ line. These plots indicate

good model fit for SP-GLM-I and SP-GLM-CL, while for the GLM method they indicate a

lack of model fit. The response distributions are appropriate for SP-GLM-I and SP-GLM-CL,

but there is an inappropriate underlying distribution for GLM and thus its standard errors and

inferences may be biased.
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Figure 5.7: PIT histogram of SP-GLM-I for the PhD articles data set.

Figure 5.8: PIT histogram of SP-GLM-CL for the PhD articles data set.
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Figure 5.9: PIT histogram of GLM for the PhD articles data set.

Figure 5.10: The P-P plots of PITs for SP-GLM-I (dashed-dotted green), SP-GLM-CL (dashed

red) and GLM (solid blue) with the PhD articles data set.
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5.3 CD4 data

In this section, we show the simplicity and effectiveness of the SP-GLM-CLmethod when the

response distribution and the relationship between the response variable and the covariates

are unknown and not suggested by intuition.

We apply the SP-GLM-CL method to find a relationship between the average of CD4

count and child’s age. This data set was described inWade and Ades (1994) and was provided

in the R package gamlss.data (Rigby & Stasinopoulos, 2005). This data set contains n =

609 observations, with no missing data. The response variable is cd4 – the CD4 counts of

uninfected children born to HIV-1 infected mother, and the predictor variable is age – the

child’s age, in years.

Figure 5.11 (a) shows the histogram of CD4 counts. cd4 is a discrete variable (count).

age is a continuous variable and its histogram is shown in Figure 5.11 (b). The scatter plot

of CD4 counts and child’s age shown in Figure 5.12 suggests the possibility of a non-linear

relationship between the two variables and the variation in cd4 decreases with increasing

age.

When fitting the model, SP-GLM-CL is fitted without any specification of the response

distribution and link function. For GLM, we fit two models using (1) the Poisson distribution

with log link (Poi-log) and (2) the normal distribution with identity link (N-id). We first fit

the data using the Poisson regression model since cd4 is a count response. For the second

regression model, we assume that cd4 has a continuous distribution since it is large enough to

be treated as a continuous variable and the observed response values range from 0 to 2,327.

We build the model with the normal distribution and identity link as cd4 contains zero and

it is a convenient way to fit a model. We have tried to fit the normal regression model with

log and square root link functions to the data, however, these models did not converge.
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Figure 5.11: Histogram of cd4 and age.

Figure 5.12: Scatter plot of CD4 counts and child’s age.
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We evaluate the estimated regression coefficients and the coefficient standard errors for

each model. The fit of the models are assessed using the mean squared error (MSE) of the

predictor that is obtained from
∑n

i=1 [cd4i − µ̂i]
2 /n where µ̂i is the fitted value of the response

cd4i. We also compare the MSE of the predictor using the leave-one-out cross- validation

method (MSE-CV) for the SP-GLM-CL, Poi-log and N-id models. The P-P plot of PIT

and the PIT histogram are used for diagnostic checking for the model fit and the underlying

distribution in each model.

The fitted model results are provided in Table 5.6. However, the comparison of the

coefficient estimates and their standard errors in each model may not make sense since

the response distribution and link function of SP-GLM-CL are not specified. The implicit

canonical link function used in the SP-GLM-CL model can be observed from the plot of the

linear predictor and the fitted mean. Figure 5.13 suggests that the SP-GLM-CL model uses

the log link in model fitting for this data set. Even though the log link is used in both the

SP-GLM-CL and Poi-log models, it is clearly seen from the coefficient estimates that the

distribution used in the SP-GLM-CL model is not the Poisson distribution.

Table 5.6: The final model results of the CD4 data set.

SP-GLM-CL Poi-log N-id

Parameter Estimate ASE Estimate ASE Estimate ASE

intercept - - 7.2479 0.0039 1,007.70 36.78

age -0.0016 0.0001 -0.3956 0.0017 -171.72 12.56

The fitted line shown in Figure 5.14 shows a better fit to the data for SP-GLM-CL (dashed

red line) and Poi-log (dashed-dotted green line) than for N-id (solid black line). The poor fit

of the N-id model may due to the constant variance assumption which does not agree with

the data. This is supported by the MSE and MSE-CV values as shown in Table 5.7, where
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Figure 5.13: The fitted mean curve of SP-GLM-CL model for the CD4 data set.

Figure 5.14: The scatter plot of cd4 and age and the fitted curves for SP-GLM-CL (dashed

red), Poi-log (dashed-dotted green) and N-id (solid black).
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Table 5.7: The mean squared error (MSE) and the MSE using the leave-one-out cross-

validation method (MSE-CV) for the model fitting of the cd4 data set.

SP-GLM-CL Poi-log N-id

MSE 149,440 151,476 163,257

MSE-CV 150,835 152,739 164,459

both SP-GLM-CL and Poi-log models have lower values than the N-id model. However,

the SP-GLM-CL method has the lowest MSE and MSE-CV values. Thus the SP-GLM-CL

model provides better fit to the data than the Poi-log and N-id models.

When we assess the model fit and the underlying distribution in model fitting, only the

SP-GLM-CLmodel has a good model fit and a proper response distribution. This is indicated

by the histogram of the PITs shown in Figures 5.15 - 5.17. While the PIT histogram of the

SP-GLM-CL model (Figure 5.15) is close to uniform, the plot of the PITs for the Poi-log

model (Figure 5.16) shows an obvious U-shaped and a curve pattern has appeared in the plot

for the N-id model (Figure 5.17). Moreover, the P-P plots of PITs in Figure 5.18 show that

only the plot for SP-GLM-CL (dashed red line) is close to the 45◦ line (dotted black line),

while the Poi-log (dashed-dotted green line) and N-id (solid blue line) plots are bent away

from the comparison line.

The example in this section has demonstrated the usefulness and effectiveness of the

proposed canonical link model fitting. The method is significantly simpler and easier to use

for model fitting than the GLM method, where it is more cumbersome to find a suitable

combination of the response distribution and the link function.
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Figure 5.15: PIT histogram of SP-GLM-CL model for the CD4 data set.

Figure 5.16: PIT histogram of Poi-log model for the CD4 data set.
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Figure 5.17: PIT histogram of N-id model for the CD4 data set.

Figure 5.18: The P-P plots of PITs for SP-GLM-CL (dashed red), Poi-log (dashed-dotted

green) and N-id (solid blue) with the CD4 data set.
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5.4 Summary of applications to real data sets

These examples demonstrate increased effectiveness of the SP-GLM-I and SP-GLM-CL

methods in practice compared with the GLM method. Both methods can handle very large

data sets with several types of predictor variables. Their models usually show a better fit than

GLMwhen the response distribution is beyond the set of distributions in the GLM framework.

For SP-GLM, the response distribution is automatically selected by the data. In addition,

when the response distribution and the link function are in doubt, the SP-GLM-CL method is

very helpful to the modeller since neither the response distribution nor the link function are

required to be specified and the SP-GLM-CL method usually shows better results than GLM

in this situation.
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6
Conclusions and Future Work

In this thesis, we have developed two novel methods to fit the SP-GLM with an unspecified

reference density. The first method (SP-GLM-I) is developed for general cases in the SP-

GLM, while the second one (SP-GLM-CL) is developed specifically for canonical link

functions. This chapter provides summary of our proposed methods and possible future

research directions.
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6.1 Conclusions

The SP-GLM in this thesis refers to the one introduced by Rathouz and Gao (2009), that con-

tains a nonparametric component in the response distribution. The SP-GLM provides greater

flexibility for regression analysis than the traditional GLM, particularly when the response

distribution is in doubt. To be clear, the SP-GLM offers great convenience of model fitting

by eliminating the need to explicitly specify the response distribution. Such simplification

provides great benefits to users/analysts, who may be unfamiliar with or inexperienced in

model building.

However, the computational algorithm for the SP-GLM is more challenging than GLM.

One reason for this is that the SP-GLM incorporates the unknown response density which

is an infinite dimensional parameter. Moreover, the constraints on the response density

make the model fitting algorithm more complex. The existing SP-GLM method (Huang,

2014) that relies on the built-in optimization function cannot handle large data sets and the

model fitting algorithm is slow. Thus we have developed a novel model fitting method for

the SP-GLM that is effective and reliable to use in practice. When using the first method

(SP-GLM-I) to fit the SP-GLM, we iteratively estimate the regression coefficients together

with the unknown reference density by maximizing the constrained log-likelihood function

using the MI - Scoring algorithm.

For GLM, the canonical link function of the response variable is generally used in model

fitting since the response mean is mostly guaranteed to be within the response’s range. For

the second method, we develop a novel fitting method for a special case of the SP-GLMwhen

the canonical link is applied. Again, the regression coefficients are simultaneously estimated

with the reference density through an iterative method. The Newton - MI algorithm is used

to obtain these parameter estimates that maximize the constrained log-likelihood function.



6.1 Conclusions 113

The model fitting algorithm is simplified, and in general this method (SP-GLM-CL) can

converge faster than the first method (SP-GLM-I). In terms of model building, this canonical

link method (SP-GLM-CL) has demonstrated the ability to reduce the complexity of model

building in GLM because it allows the model builder to bypass the cumbersome steps of

working out suitable combinations of the response distribution and the link function, which

would be required to ensure good model fitting in conventional GLM. In addition, the GLM

method may fail to converge with some combinations of the specified response distribution

and the link function.

In bothmethods, the reference density is approximated using piecewise constant functions.

The constraints on the reference density are imposed via a Lagrange multipliers approach and

the MI algorithm. TheMI algorithm is used to estimate the reference density as it can impose

the non-negativity constraints. This method also reduces the computational cost since the

inverse of the information matrix is not required when estimating the reference density.

The consistency and asymptotic normality of the constrained maximum likelihood esti-

mators for both methods are provided for a fixed number of bins. The asymptotic variances

with active constraints are derived and the accuracy of the asymptotic standard errors of the

regression coefficients have been verified through the simulation studies.

The simulation studies also show that both of the proposed methods provide accurate

coefficient estimates and inferences. They converge fast and can deal with large data sets.

They can work well with various types of response variables i.e. continuous, count and binary

responses. Our model fitting methods are competitive with the existing SP-GLM method.

SP-GLM models provide comparable results to the standard GLM regression model if

the response variable follows a distribution from the exponential family. In addition, they

can provide effective results for fitting the model with a response variable that may have a
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distribution outside the GLM framework, where standard GLMs may not be able to provide

accurate parameter inferences. This is mainly due to the incorrect standard errors provided

in GLM.

By applying our methods to real data, we were able to show that both of the proposed

methods have good model fitting properties. They can handle the offset in the model. These

methods can work well with various types of predictors in very large data sets. These

applications show that an appropriate response distribution is automatically chosen in both

models. In addition, the proposed methods can provide a better model fit than the GLM

method when the distribution of the response is questionable.

Overall, both of our proposedmodel fittingmethods have demonstrated their effectiveness

when applied to simulated and real data sets. Both methods can be employed to enhance the

use of the SP-GLM in practice, in particular through their ability to handle much larger data

sets with significantly shorter computational time.

6.2 Future Work

A possible topic for future research is the application of the proposed SP-GLM-I and SP-

GLM-CL model fitting methods on a random effects model such as the generalized linear

mixed models (GLMMs) (McCulloch, 2003). GLMMs are extensions of GLMs where the

random effects are included in the linear predictor besides the fixed effects. GLMMs provide

an extension to the use of GLMs to allow for different distributions in the response variable.

GLMMs can also handle correlated data such as the longitudinal data and grouped data. An

example of the longitudinal data is the claims on one-year health insurance policies for each

policyholder over some consecutive years. For a given policyholder, claims in consecutive

years are correlated. Thus, a possibility exists to extend the SP-GLM-I and SP-GLM-CL
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model fitting methods to include the random effects in the linear predictor, which would

further broaden the types of data that the proposed methods can handle.

Another future direction is on improving estimation of the canonical parameter (θi). In

the estimation of θi in Section 3.3.2, we reset the estimated response mean µi to stay within

the possible range of b′(θi; p). In practice, this ad-hoc method can work well since most link

function of interest satisfying the constraints on µi. However, we wish to explore in future

how to impose the constraints on µi using constrained optimization methods.

Another possible direction for future work is the development of automatic selection of

the optimal number of bins in the model. In the current model fitting methods, we use

piecewise constant functions to approximate the reference density and the user is required to

choose the number of bins. However, we wish to develop a procedure to automatically select

the optimal number of bins.

We also wish to study in future extensions of the piecewise constant approximation of

reference density approximation to other approximation methods.

All the computations for this thesis are made based on MATLAB. However, currently

we are developing the glmsp R package. This new R package includes both model fitting

methods proposed in this thesis, and it provides estimation results on regression coefficients

and their standard errors, diagnostic check plots and likelihood ratio tests.
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A
Appendix

This appendix contains the MATLAB code for the proposed methods presented in Chapter 3

(Appendix A.1) and Chapter 4 (Appendix A.2).

A.1 MATLAB code for SP-GLM-I

function [beta,den,other,SEb]=spglmI(y,X,distF,binC,maxI,link,ofs,b0)

% SPGLM_I: Semiparametric GLM fitting where regression coefficients
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% and reference density are estimated using the maximum

% likelihood(ML).

% Outputs:

% beta = vector of final regression coefficients estimiates

% den = estimate of the discretized reference density

% other = collection of iterations numbers and corresponding

% log−likelihoods

% SEb = estimate standard errors of regression coefficients

% Inputs:

% y = a vertical n−vector

% X = covariates matrix (n by q matrix) with intercept

% distF = 0 if there is 1 observation in each bin;

% distF = 1 if there is more than 1 observation in each bin

% binC = number of observations in each bin

% maxI = maximum number of iterations; default 500

% link = link function

% ofs = offset; default 0

% b0 = initial value for beta; default 0

%% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++

y = y(:);

[n, q] = size(X); % n = No. of rows; q = No. of columns

EY = mean(y) ; % mean of y

% Initial beta

if b0==0

% first value of initial beta

if strcmp(link,'identity')

b1 = EY;

elseif strcmp(link,'log')

b1 = log(EY);

elseif strcmp(link,'inverse')

b1 = 1./EY;
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elseif strcmp(link,'logit')

b1 = log(EY/(1−EY)) ;

elseif strcmp(link,'sqrt')

b1 = sqrt(EY) ;

elseif strcmp(link,'neginv')

b1 = −1./EY;

elseif strcmp(link,'invsq')

b1 = EY.^(−2);

end

betaO = [b1; zeros(q−1, 1)];

else

betaO = b0;

end

%% Equal bin count

binid = 1:binC:n;

nbins = numel(binid); % No. of bins

sy = sort(y);

binedg = (sy(binid))'; % vector of bin edges

cvg = zeros(maxI, 3);

i = 0;

while i < nbins

i = i+1;

ntie = sum(binedg(i)==binedg);

if ntie > 1

binedg = [binedg(1:i), binedg((i+ntie):nbins)];

nbins = length(binedg);

end

end

if binedg(end)==max(y) && nbins>1

binedg(nbins+1) = max(y)+(binedg(nbins)−binedg(nbins−1));
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dbstop if error

else

binedg(nbins+1) = max(y)+1e−5;

end

binwv = binedg(2:end)−binedg(1:end−1); % vector of bin width

% bin counts (No. of obs. in each bin)

[binCounts, index] = histc(y, binedg);

binCounts = binCounts(1:end−1);

% mid−point of bin

if distF==1 % if more than 1 obs. in each bin

binM = binedg(1:nbins)+binwv/2;

elseif distF==0 % if 1 obs. in each bin

binM = binedg(1:nbins);

end

binMm = repmat(binM,n,1);

maxYu = max(binM) ; % max. value of mid−point of bin

minYu = min(binM) ; % min. value of mid−point of bin

%% MI−Scoring iterations

denO = binCounts/n; % initial reference density

theO = zeros(n, 1);

muXB = muXBeta(X, betaO, link, ofs); % initial mu

% reset \mu_i to boundary value

muXB(muXB<minYu) = minYu;

muXB(muXB>maxYu) = maxYu;

% initial Theta, bTheta, bpTheta, bppTheta

[theO,bthe,eytbt,mu,sig2]=Thetai(binMm,theO,denO,nbins,muXB,n);

% initial log−likelihood

llik0 = sum(y.*theO−bthe) + sum(binCounts.*log(denO));
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for iter = 1:maxI

%% MI algorithm for updating reference density

sig2m = repmat(sig2,1,nbins);

ymum = repmat(y−mu,1,nbins).*(binMm−repmat(mu,1,nbins));

numer = binCounts./denO −(sum(min(0,ymum).*eytbt./sig2m))' ;

denom = n + (sum(max(0,ymum).*eytbt./sig2m))' ;

% update reference density

denN = denO .* (numer+0.1) ./ (denom+0.1);

denInc = denN−denO;

% update Theta, bTheta, bpTheta, bppTheta

[theN,bthe,~,mu,sig2]=Thetai(binMm,theO,denN,nbins,muXB,n);

% update log−likelihood

llik1 = sum(y.*theN−bthe) + sum(binCounts.*log(denN));

% line search

ome = 0.6;

while llik1 <= llik0

denN = denO+ome*denInc;

[theN,bthe,~,mu,sig2]=Thetai(binMm,theN,denN,nbins,muXB,n);

llik1 = sum(y.*theN−bthe) + sum(binCounts.*log(denN));

if ome >= 1e−4

ome = ome*0.6;

elseif ome < 1e−4 && ome >= 1e−6

ome = ome*0.6^2;

elseif ome < 1e−6 && ome >= 1e−20

ome = ome*0.6^4;

else

break;

end

end



122 Appendix

%% Fisher scoring algorithm for updating beta

% derivative of inverse link

if strcmp(link,'identity')

dgeta = ones(n,1);

elseif strcmp(link,'log')

dgeta = muXB ;

elseif strcmp(link,'inverse')

dgeta = − muXB.^2 ;

elseif strcmp(link,'logit')

dgeta = muXB.*(1−muXB) ;

elseif strcmp(link,'sqrt')

dgeta = 2* sqrt(muXB) ;

elseif strcmp(link,'neginv')

dgeta = muXB.^2 ;

elseif strcmp(link,'invsq')

dgeta = −0.5* muXB.^3 ;

end

W = (dgeta.^2)./sig2 ;

Fisher = zeros(q,q);

for i=1:n

Xi = X(i,:);

Fisheri = Xi'*W(i)*Xi;

Fisher = Fisher + Fisheri;

end

V = dgeta./sig2 ;

Score = X' *((y − mu).*V);

binc = Fisher\Score;

% update beta

betaN = betaO + binc;

% update mu

muXB = muXBeta(X, betaN, link, ofs);



A.1 MATLAB code for SP-GLM-I 123

muXB(muXB<minYu) = minYu;

muXB(muXB>maxYu) = maxYu;

% update Theta, bTheta, bpTheta, bppTheta

[theN,bthe,eytbt,mu,sig2]=Thetai(binMm,theN,denN,nbins,muXB,n);

% update log−likelihood

llik2 = sum(y.*theN−bthe)+sum(binCounts.*log(denN));

% line search

ome = 0.6;

while llik2 <= llik1

betaN = betaO + ome*binc;

muXB = muXBeta(X, betaN, link, ofs);

muXB(muXB<minYu) = minYu;

muXB(muXB>maxYu) = maxYu;

[theN,bthe,eytbt,mu,sig2]=Thetai(binMm,theN,denN,nbins,muXB,n);

llik2 = sum(y.*theN−bthe) + sum(binCounts.*log(denN));

if ome >= 1e−4

ome = ome*0.6;

elseif ome < 1e−4 && ome >= 1e−6

ome = ome*0.6^2;

elseif ome<1e−6 && ome>1e−20

ome = ome*0.6^4;

else

break;

end

end

%%

cvg(iter, :) = [iter, llik2, sum(denN)];

if all(abs(betaN−betaO)<1e−6) && all((abs(denN−denO))<1e−6)

cvg = cvg(1:iter, :);

break
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else

betaO = betaN;

denO = denN ;

theO = theN;

llik0 = llik2;

end

end

%%

beta = betaN ;

den = [binM', binwv', denN, binCounts, (1:nbins)'];

other.cvg = cvg;

other.fit = mu;

other.var = sig2;

phat = ones(n, nbins);

for i=1:n

phat(i,:) = denN.*exp(binM'.*theN(i)−bthe(i));

end

%% Var−Cov matrix

% Fisher Information matrix

% derivative of inverse link

if strcmp(link,'identity')

dgeta = ones(n,1);

elseif strcmp(link,'log')

dgeta = muXB ;

elseif strcmp(link,'inverse')

dgeta = − muXB.^2 ;

elseif strcmp(link,'logit')

dgeta = muXB.*(1−muXB) ;

elseif strcmp(link,'sqrt')

dgeta = 2* sqrt(muXB) ;

elseif strcmp(link,'neginv')



A.1 MATLAB code for SP-GLM-I 125

dgeta = muXB.^2 ;

elseif strcmp(link,'invsq')

dgeta = −0.5* muXB.^3 ;

end

W = (dgeta.^2)./sig2 ;

Fisher = zeros(q,q);

for i=1:n

Xi = X(i,:);

Fisheri = Xi'*W(i)*Xi;

Fisher = Fisher + Fisheri;

end

I11 = Fisher; % information matrix(beta)

denNm = repmat(denN',n,1);

mum = repmat(mu,1,nbins);

A = (binMidm−mum).*eytbt.*denNm;

V = diag((dgeta)./sig2) ;

I12 = −X'*V* A;

I21 = I12';

np2 = binCounts./(denN.^2) ;

I22_1 = zeros(nbins,nbins);

for i=1:n

I22_1i = A(i,:)'/sig2(i)*A(i,:);

I22_1 = I22_1 + I22_1i;

end

I22 = I22_1;

for id = 1:nbins

I22(id,id) = I22(id,id)+np2(id);

end

% Fisher information matrix

Info = [I11, I12; I21, I22];
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%% active constraint (pu=0 and sum(pu)=1)

sig2m = repmat(sig2,1,nbins);

ymum1 = repmat(y−mu,1,nbins);

% derivative of log−likelihood wrt. p

dldp=−(sum(ymum1.*(binMidm−mum).*eytbt./sig2m))'+binCounts./denN;

activecon2 = zeros(nbins,1);

activecon2(denN<1e−5 & dldp<1e−2 )=1; % active constraint pu=0

W1 = eye(nbins) ; % identity matrix for constrained pu=0

% choose row W1 only if active constrained pu=0

W2 = W1(activecon2==1,:);

W3 = [ones(1,nbins) ; W2] ; % add active constraint sum(pu)=1

rW = size(W3,1);

W4 = [zeros(rW,q), W3]; % add 0 for beta in active constraint

u4 = orth(W4');

Idbeta = [eye(q),zeros(q,nbins)] ;

% u'*u = Identity matrix

u = [Idbeta' , u4] ; % add column of Identity matrix for beta

% Asymptotic covariance matrix

Finv = u* inv(u'* Info * u )*u';

VarB = Finv(1:q,1:q); % cov for beta

SEb = diag(sqrt(VarB)); %standard error for beta

Varp = Finv(q+1:q+nbins,q+1:q+nbins);

SEp = diag(sqrt(Varp));

end

%% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++

function [theN,bthe,eytbt,mu,sig2]=Thetai(binMidm,theO,denO,nbins,muXB,n

)

% update Theta using Newton algorithm

theObc = theO ;
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for itertheta = 1:30

denOm = repmat(denO',n,1);

theOm = repmat(theO,1,nbins);

iebm = (exp(binMidm).^theOm).*denOm;

eb = sum(iebm,2); eb(eb<=eps) = eps; eb(eb==Inf) = realmax;

bthe = log(eb); % bTheta

bthem = repmat(bthe,1,nbins);

eytbtp = exp(binMidm.*theOm − bthem).*denOm;

mu = sum(binMidm.*eytbtp,2); % bpTheta

sig2 = sum((binMidm−repmat(mu,1,nbins)).^2.*eytbtp,2);% bppTheta

sig2(sig2<eps) = eps; sig2(sig2==Inf) = realmax;

inct = (mu − muXB)./ sig2 ;

% number of integer digits of increment Theta

inte = floor(log10(floor(abs(inct)))) +1 ;

inte(inte==−Inf) = 0 ;

w = 10.^(−inte) ; % weight for increment theta

w(eb==realmax) = 0;

theN = theO − w.*inct ;

theN(eb==realmax) = theObc(eb==realmax);

if all(abs(theO − theN)<1e−6) && all((abs(mu − muXB))<1e−6)

break

else

theObc = theO ;

theO = theN ;

end

end

theNm = repmat(theN,1,nbins);

iebm = (exp(binMidm).^theNm).*denOm;

eb = sum(iebm,2); eb(eb<=eps) = eps; eb(eb==Inf) = realmax;

bthe = log(eb);

bthem = repmat(bthe,1,nbins);
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eytbt = exp(binMidm.*theNm − bthem);

eytbtp = eytbt.*denOm;

mu = sum(binMidm.*eytbtp,2);

mu(mu==−Inf) = realmin; mu(mu==Inf) = realmax;

sig2 = sum((binMidm−repmat(mu,1,nbins)).^2.*eytbtp,2);

sig2(sig2<eps) = 1e−15; sig2(sig2==Inf) = realmax;

end

%% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++

function muXB = muXBeta(X, betaO, link, offset)

% Update mu

if strcmp(link,'identity')

muXB = X*betaO + offset ;

elseif strcmp(link,'log')

muXB = exp(X*betaO + offset);

elseif strcmp(link,'inverse')

muXB = 1./(X*betaO + offset);

elseif strcmp(link,'logit')

muXB = exp(X*betaO + offset)./(1+exp(X*betaO+offset));

elseif strcmp(link,'sqrt')

muXB = (X*betaO + offset).^2 ;

elseif strcmp(link,'neginv')

muXB = −1./(X*betaO + offset);

elseif strcmp(link,'invsq')

muXB = (X*betaO + offset).^(−0.5) ;

end

end
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A.2 MATLAB code for SP-GLM-CL

function [beta,den,other,SEb]=spglmCL(y,X,distF,binC,maxI,ofs)

% SPGLM_CL: Semiparametric GLM fitting with an unspecified

% canonical link, where regression coefficients

% and reference density are estimated using the

% maximum likelihood(ML).

%Outputs:

% beta = vector of final regression coefficients estimiates

% den = estimate of the discretized reference density

% other = collection of iterations numbers and corresponding

% log−likelihoods

%Inputs:

% y = a vertical n−vector

% X = covariates matrix (n by q matrix) without intercept

% distF = 0 if there is 1 observation in each bin;

% distF = 1 if there is more than 1 observation in each bin

% binC = number of observations in each bin

% maxI = maximum number of iterations; default 500

% ofs = offset; default 0

%% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++

y = y(:);

[n, q] = size(X); % n = No. of rows; q = No. of columns

tX = X;

meanX = mean(X); % mean of each X column

X = X − repmat(mean(X), n, 1); % centering X

betaO = zeros(q, 1);
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%% Equal bin count

binid = 1:binC:n;

nbins = numel(binid); % No. of bins

sy = sort(y);

binedg = (sy(binid))'; % bin edges

cvg = zeros(maxI, 3);

i = 0;

while i < nbins

i = i+1;

ntie = sum(binedg(i)==binedg);

if ntie > 1

binedg = [binedg(1:i), binedg((i+ntie):nbins)];

nbins = length(binedg);

end

end

if binedg(end)==max(y)

binedg(nbins+1) = max(y)+(binedg(nbins)−binedg(nbins−1));

else

binedg(nbins+1) = max(y)+1e−5;

end

binwv = binedg(2:end)−binedg(1:end−1); % bin width

% mid−point of bin

if distF % if more than 1 obs. in each bin

binM = binedg(1:nbins)+binwv/2;

else % if 1 obs. in each bin

binM = binedg(1:nbins);

end

binMm = repmat(binM,n,1);

% bin counts (No. of obs. in each bin)

[binCounts, ~] = histc(y, binedg);

binCounts = binCounts(1:end−1);
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%% Newton−MI iterations

denO = binCounts/n; % initial reference density

theO = X*betaO + ofs; % initial Theta

theOm = repmat(theO,1,nbins);

denOm = repmat(denO',n,1);

iebm = exp(binMm.*theOm).*denOm;

eb = sum(iebm,2); eb(eb<=eps) = eps; eb(eb==Inf) = realmax;

llik0 = sum(y.*theO−log(eb)) + sum(binCounts.*log(denO));

for iter = 1:maxI

%% Newton algorithm for updating beta

mu = sum(binMm.*iebm,2)./eb;

sig2 = sum((binMm−repmat(mu,1,nbins)).^2.*iebm,2)./eb;

sig2(sig2<eps) = eps; sig2(sig2==Inf) = realmax;

WX = repmat(sqrt(sig2),1,q).*X;

Score = X'*(y−mu);

Fisher = WX'*WX;

binc = Fisher\Score;

% update beta

betaN = betaO + binc;

% update Theta

theN = X*betaN + ofs;

theNm = repmat(theN,1,nbins);

iebm = exp(binMm.*theNm).*denOm;

eb = sum(iebm,2); eb(eb<=eps) = eps;

% update log−likelihood

llik1 = sum(y.*theN−log(eb)) + sum(binCounts.*log(denO));

% line search

ome = 0.6;
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while llik1 <= llik0

betaN = betaO + ome*binc;

theN = X*betaN + ofs;

theNm = repmat(theN,1,nbins);

iebm = exp(binMm.*theNm).*denOm;

eb = sum(iebm,2); eb(eb<=eps) = eps;

llik1 = sum(y.*theN−log(eb)) + sum(binCounts.*log(denO));

if ome >= 1e−4

ome = ome*0.6;

elseif ome < 1e−4 && ome >= 1e−6

ome = ome*0.6^2;

elseif ome<1e−6 && ome>1e−20

ome = ome*0.6^4;

else

break;

end

end

%% MI algorithm for updating baseline function

% update reference density

denN = binCounts./(sum(exp(binMm.*theNm)./repmat(eb,1,nbins)))';

denN(denN<eps)=eps;

denInc = denN−denO;

denNm = repmat(denN',n,1);

iebm = exp(binMm.*theNm).*denNm;

eb = sum(iebm,2); eb(eb<=eps) = eps; eb(eb==Inf) = realmax;

% update log−likelihood

llik2 = sum(y.*theN−log(eb)) + sum(binCounts.*log(denN));

% line search

ome = 0.6;

while llik2 <= llik1
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denN = denO+ome*denInc;

denN = denN/sum(denN);

denNm = repmat(denN',n,1);

iebm = exp(binMm.*theNm).*denNm;

eb = sum(iebm,2); eb(eb<=eps) = eps;

llik2 = sum(y.*theN−log(eb)) + sum(binCounts.*log(denN));

if ome >= 1e−4

ome = ome*0.6;

elseif ome < 1e−4 && ome >= 1e−6

ome = ome*0.6^2;

elseif ome < 1e−6 && ome >= 1e−20

ome = ome*0.6^4;

else

break;

end

end

%%

cvg(iter, :) = [iter, llik2, sum(denN)];

if all(abs(betaN−betaO)<1e−5) && all((abs(denN−denO))<1e−5)

cvg = cvg(1:iter, :);

break

else

betaO = betaN;

denO = denN;

denOm = denNm;

llik0 = llik2;

end

end

den = [binM', binwv', denN, binCounts];

other.cvg = cvg;

theNm = repmat(theN,1,nbins);

denNm = repmat(denN',n,1);
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iebm = exp(binMm.*theNm).*denNm;

eb = sum(iebm,2); eb(eb<=eps) = eps;

mu = sum(binMm.*iebm,2)./eb;

sig2 = sum((binMm−repmat(mu,1,nbins)).^2.*iebm,2)./eb;

other.fit = mu; other.var = sig2;

bthe = log(eb);

phat = ones(n, nbins);

for i=1:n

phat(i,:) = denN.*exp(binM'.*theN(i)−bthe(i));

end

%% Var−Cov matrix

% Fisher Information matrix

ebm = repmat(eb,1,nbins);

eytbt = exp(binMm.*theNm)./ebm;

WX = repmat(sqrt(sig2),1,q).*X;

Fisher = WX'*WX;

I11 = Fisher; % information matrix(beta)

mum = repmat(mu,1,nbins);

A = (binMm−mum).*eytbt;

I12 = X'* A;

I21 = I12';

np2 = binCounts./(denN.^2) ;

I22_2 = −(eytbt'*eytbt);

I22 = I22_2;

for id = 1:nbins

I22(id,id) = I22(id,id)+np2(id);

end

% Fisher information matrix

Info = [I11, I12; I21, I22];
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%% active constraint (pu=0 and sum(pu)=1)

% derivative of log−likelihood wrt. p

dldp = −eytbt' + binCounts./denN;

activecon2 = zeros(nbins,1);

activecon2(denN<1e−5 & dldp<1e−2 )=1; % active constraint pu=0

W1 = eye(nbins) ; % identity matrix for constrained pu=0

% choose row W1 only if active constrained pu=0

W2 = W1(activecon2==1,:);

W3 = [ones(1,nbins) ; W2] ; % add active constraint sum(pu)=1

rW = size(W3,1);

W4 = [zeros(rW,q), W3]; % add 0 for beta in active constraint

u4 = orth(W4');

Idbeta = [eye(q),zeros(q,nbins)] ;

% u'*u = Identity matrix

u = [Idbeta' , u4] ; % add column of Identity matrix for beta

% Asymptotic covariance matrix

Finv = u* inv(u'* Info * u )*u';

VarB = Finv(1:q,1:q); % cov for beta

SEb = diag(sqrt(VarB)); %standard error for beta

Varp = Finv(q+1:q+nbins,q+1:q+nbins);

SEp = diag(sqrt(Varp));

end
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