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Abstract

Mortality models are mathematical approaches used to facilitate understanding and analy-

sis of mortality patterns and trends, and to provide a basis for mortality forecasting. In an

environment in which mortality is continuing to decline, there is considerable interest in

developing mortality models that are flexible enough to capture variations in mortality by

age, time and various other factors, and robust enough to produce reliable forecasts. Over

recent years, there has been growing interest in the development of joint mortality mod-

els. Joint models aggregate similar populations to jointly fit and forecast mortality. Such

models are able to incorporate the relationships among multiple populations and to en-

sure that forecast relationships remain reasonable over the long-term. However, existing

models – both individual and joint – do suffer from shortcomings.

This research develops a new model – the joint Wang Transform (JWT) model – which

aims to address shortcomings and improve upon existing models. As a joint model, the

JWT model is able to capitalise on information from similar populations and to ensure

that sensible relationships are maintained in the forecasts for such populations. The JWT

model allows for a flexible rate of mortality decline over time, which is more realistic

than the fixed rate of mortality decline assumed in other widely-used methods. The JWT

model has a simple form, reducing the risk of over-parameterization and of unreliable

forecasts. The JWT model has flexibility yet builds in constraints, such as ensuring non-

divergence of forecasts and hence appears to be appropriate for modelling and forecasting

xi



across multiple populations.

This research applies the JWT model and seven existing individual and joint models

to fit and forecast the mortality of 13 countries. The joint models are applied by pool-

ing both "across country" separately for each sex, and "across sex" separately for each

individual country. Model performance is evaluated by considering goodness of fit, fore-

casting accuracy, and ability to ensure a sensible relationship between forecasts of similar

countries in the long-term (primarily avoiding forecast divergence).

In the analyses of both data sets, the JWT model produces the best forecast accuracy

of all eight models according to the evaluation measures. While the evaluation has been

conducted only for a selection of developed countries and has compared only a selection

of models, the strong performance of the JWT model suggests its potential for further use

and evaluation.
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Chapter 1

Introduction

1.1 Motivation and findings

This research develops a new model to jointly fit and forecast mortality rates, and eval-

uates the new joint model by comparing it to existing individual and joint models. The

rationale of the research is as follows. Firstly, joint models have advantages for mortality

projection over individual models. Secondly, existing joint models have shortcomings in

application which the new joint model aims to address. Thirdly, the existing literature

lacks a comprehensive evaluation of joint models’ performance.

A mortality model is a mathematical or statistical approach to simplify and quantify

observed variation in mortality. Mortality data typically consist of a matrix of rates of

mortality classified according to ages and years – often called a mortality matrix. De-

mographers may have difficulties in understanding the patterns or variations in mortality

using such a matrix. Mortality models use a limited number of parameters to describe the

patterns and variations in mortality in a simple and quantitative way. For example, the

Wang Transform model (De Jong and Marshall, 2007) uses one parameter to describe the

1



variations in mortality for a single mortality matrix. Demographers can then more easily

understand and interpret the patterns of mortality without looking at the mortality data

directly.

In addition, models facilitate the prediction of future mortality, and mathematical or

statistical models enable the estimation of prediction intervals. As described in Section

2.2, mortality rates have decreased throughout the world (Cairns et al., 2009; Leon, 2011;

Richel, 2003). This decline varies from one country to another, due to differences in

economic conditions, culture and lifestyle (Mackenbach, 2012; McMichael et al., 2004;

Meslé et al., 2002). A large number of mortality models have been proposed during the

past decades (Booth, 2006; Booth and Tickle, 2008; Cairns et al., 2008) with the aim to

better understand and forecast mortality.

Existing mortality models can be classified as individual or joint models. Individual

models are applied to individual populations, and therefore implicitly assume that the

mortality in one country is unrelated to that in another country. In contrast, joint models

jointly analyse mortality by incorporating similar populations. With joint models, popu-

lations are assumed to be related and may share trends in mortality.

Individual models are reviewed in Section 3.2. The Lee-Carter model (Lee and Carter,

1992) and the Wang Transform model (De Jong and Marshall, 2007) are two examples of

individual models.

Individual models present shortcomings, such as projecting increasing differences in

mortality across populations in the long term (Li and Lee, 2005; Li, 2013), referred to as

divergence. These shortcomings mainly arise due to the fact that individual models ignore

relationships between populations, for example, between countries, or between females

and males within a country. Living in the same area and sharing the same culture, females

and males in a certain country would be expected to behave similarly and to experience

2



related mortality trends (Liu et al., 2012; Nolte et al., 2000a,b).

Figure 1.1 illustrates the the nature of the relationship between populations using fe-

male and male populations as an example. Displayed are trends in mortality in four

countries at selected ages. Disregarding the different scales, females (the dashed curves)

and males (the solid curves) experience similar trends and other variation, particularly for

the recent decades (since the 1950s).
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Figure 1.2 illustrates that the relationship also exists in short-term patterns. The figure

shows the annual difference in death rates for ages 0, 1, 20 and 80 in the USA from 1950

to 2009. In the same periods, the difference in death rates simultaneously increases or

decreases between females and males. Therefore, females and males experience high

correlation in mortality development. The high correlation suggests that a coherent fit

and forecast of mortality between females and males within a country is reliable and

necessary. Similar situations occur in other age groups and other countries.
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to 2009

4



Similarities between countries would also be expected to exist. In addition, globaliza-

tion might be expected to create increasing similarity in mortality trends due to increasing

similarity in economic conditions, culture and lifestyle (Li and Lee, 2005). By ignoring

the relationships in mortality across countries or between females and males, individ-

ual models fail to use correlated information from similar populations, and thus do not

fully capture the mortality information available. Individual models may also project un-

realistic relationships between the forecasts in related populations, such as divergence.

Consequently, individual models and in particular separate projections based on individ-

ual models may not be an optimal way to model and forecast mortality of populations

with similar characteristics (Li and Lee, 2005).

As described in Section 3.2, joint models are therefore proposed to incorporate rela-

tionships by aggregating or disaggregating populations. On the one hand, joint models

constrain the differences in mortality between populations, by aggregating similar pop-

ulations and jointly forecasting their mortality rates (Li and Lee, 2005; Li, 2013). On

the other hand, joint models may produce better estimation of mortality rates than indi-

vidual models, by disaggregating a population and explicitly modelling differences and

similarities of its sub-populations (Debón et al., 2011). Compared with modelling indi-

vidual populations separately, joint models have the potential to more reliably estimate

and predict mortality levels and trends (Li and Lee, 2005).

Existing joint models suffer from several shortcomings. The joint models proposed

by Li and Lee (2005) and Li (2013) may cause uncertainty in projection due to the use of

multiple time factors. The models proposed by Biatat and Currie (2010) and Russolillo

et al. (2011) may cause unreliability in projection due to irregular time trends. Some joint

models, such as those proposed by Cairns et al. (2011a) and Jarner and Kryger (2009), are

suitable for two-population analysis and only used for older ages. The joint model pro-

posed by Debón et al. (2011) is only suitable for geographically close populations, where

5



these populations are assumed to share patterns of mortality and the trends of mortality

decline, but possess different scales. In summary, the two major drawbacks of existing

joint models are unreliable projection and applicability only to specific populations.

Additionally, many existing individual and joint models ignore an important feature

of variation in mortality as described in Section 2.4 – the fact that the rate of mortality

decline varies over time. For instance, females in many countries have experienced a

smaller rate of mortality decline after the 1970s than before the 1970s (Liu et al., 2012).

However, many existing models structure the expected rate of mortality decline as con-

stant over time. For example, the Lee-Carter model (Lee and Carter, 1992) assumes that

mortality (the log death rate) varies linearly over time at each age, by using a random walk

with a drift process to model and forecast the time factor. If applying a model with the

assumption of a constant rate of mortality decline to forecast female mortality, the fore-

cast mortality will therefore generally be lower than the observed mortality. Therefore,

the assumption used in many existing individual and joint models is inflexible, and may

result in increasing bias in a long-term projection.

To address the shortcomings of existing models, this research proposes a new model

as described in Chapter 4. The proposed model is a joint model and is able to jointly

fit and forecast mortality of a group of similar populations. Furthermore, the new joint

model permits mortality to vary flexibly over time. The new joint model aims to forecast

mortality reliably by aggregating similar populations and by applying one time trend. In

addition, the new joint model can be generally applied to all age groups or populations.

The scale or metric used to model mortality – the z–scores of the survival probability

– is different to existing models. Modelling mortality in terms of this metric imposes

constraints on the progression of actual mortalities. The empirical results of this thesis

suggest that the metric is suitable and practical.

The proposed new joint model is an extension of the individual Wang Transform

6



model (De Jong and Marshall, 2007). The assumptions of the Wang Transform model

are that the z–score of the survival probability to each age is time-varying with a constant

drift and that all age groups share the same constant drift. The Wang Transform model

applies a constant drift as the unique parameter to model and forecast z–scores. The Wang

Transform model is non-specific by disregarding the effects of age, time and cohort.

The Wang Transform model has two main advantages over existing individual mod-

els, and thus is appropriate to be extended to a joint model. On one hand, the model is

concise, requiring only one parameter for mortality modelling and forecasting. Inherit-

ing the property of simplification, the extension of the Wang Transform model can also

be a simple model with convenient application. On the other hand, the Wang Transform

model describes changes in mortality on a z–score scale. In the original Wang Transform

model, the change in z–scores is a constant drift; however, the extension can incorporate

additional parameters to permit this constant drift to vary over time. Therefore, the exten-

sion of the Wang Transform model may use a flexible rate of mortality decline to fit and

forecast mortality.

The new joint model developed and evaluated in this thesis generalizes the Wang

Transform model to jointly fit and forecast mortality, and is referred as the joint Wang

Transform (JWT) model. The JWT model is developed in two steps. Firstly, the Wang

Transform model is generalized to include age-period-specific factors, allowing for more

flexible evolution of z–score behaviour. Hence, the constant drift of the z–score is now

replaced by a drift that varies by age and time. Secondly, the age-period specific Wang

Transform model is transformed into a joint model from an individual model, by assuming

that similar populations share a common drift over time.

The JWT model has advantages over existing joint models in forecasting mortality.

First of all, the use of the z–score measure and of a time-varying drift permits a flexible

increase of z–scores over time, consistent with observed mortality trends (Lee, 2000;
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Lee and Miller, 2001; Richel, 2003). Additionally, the JWT model inherits its concise

application from the Wang Transform model, using few parameters.

A further shortcoming addressed by the present study is the lack, in the existing litera-

ture, of an overall evaluation of joint models’ forecast accuracy. For example, Li and Lee

(2005), Li (2013), Cairns et al. (2011a) and Jarner and Kryger (2009) did not compare the

forecast accuracy of their own joint models to other joint models. Debón et al. (2011) did

not produce projections. Biatat and Currie (2010) and Russolillo et al. (2011) provided

neither comparison nor projection.

This research evaluates the JWT model and compares it with other existing widely-

used individual and joint models, addressing some of the limitations of the existing stud-

ies. The JWT and the selected existing models are applied to fit and forecast mortalities

of 13 developed countries. The joint models are applied to jointly fit and forecast mor-

talities "across country" and "across sex" separately. "Across country" refers to jointly

fitting and forecasting across the 13 countries, where females and males are separated.

"Across sex" indicates joint fitting and forecasting of females and males within each of

the 13 countries. The details of mortality data are introduced in Section 5.3.

The evaluation uses two main criteria of the models’ performance: goodness of fit and

forecasting performance. Goodness of fit reflects the match between observed and fitted

mortality data in the fitting period. Forecasting performance assesses forecast accuracy

and divergence control. The measures applied in explaining the models’ performance will

be introduced in Sections 5.7 to 5.11.

The analysis presented in Chapter 6 finds that the JWT model produces the highest

forecast accuracy in both "across country" and "across sex" forecasts, for the evaluation

measures used. The JWT model – like the existing joint models – yields a constant dif-

ference in mortality across countries ("across country") and between females and males

8



("across sex") in long-term projection, ensuring non-divergence. This research also finds

that individual models generally yield lower forecast accuracy than joint models, and pro-

duce increasing divergence of mortality in both evaluations in long-term projection.

1.2 Thesis structure

The thesis consists of three parts. Part 1 (Chapters 2 and 3) provides a background of

mortality modelling and forecasting, and demonstrates the limitations of existing mortal-

ity models and forecasting methods, and the gaps of existing studies in evaluating those

mortality models. To address the limitations and fill these gaps, Part 2 (Chapters 4 and

5) proposes a new model – the JWT model – and outlines measures to comprehensively

evaluate this new model. Part 3 (Chapters 6 and 7) illustrates the evaluations of this new

model using the measures introduced in Part 2 and presents the conclusions.

The background of mortality modelling and forecasting involves both an analysis of

variation in mortality (Chapter 2) and an outline of existing mortality forecasting meth-

ods (Chapter 3). Mortality rates vary over age, time and other factors, and mathematical

models and methods have been developed to reflect this variation and to enable the fore-

casting of mortality. Methods were usually developed for individual populations, and

ignore the additional information that could be incorporated from similar populations and

the fact that mortality tends to converge across countries (Wilmoth, 1998; Wilson, 2001)

(Section 3.2). More recently, joint models have been developed that jointly fit and fore-

cast mortality of similar populations (Section 3.3). Joint models have advantages over

individual models, but may also possess potential shortcomings – for example, uncertain

or unreliable forecasts and limited usefulness for specific groups of populations (Section

3.4). Furthermore, the rate of mortality decline by age has varied over time (Section

2.4), whereas most existing individual and joint models assume that the rate of mortality
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decline is constant over time, disregarding this important feature of temporal variation.

To address the above shortcomings of existing models, this research develops a new

model (Chapter 4). The new model, which is extended from the Wang Transform model

(De Jong and Marshall, 2007), permits the rate of mortality to flexibly vary over time

(Section 4.2.1) and jointly fits and forecasts mortality by aggregating a group of similar

populations (Section 4.2.2). This joint Wang Transform (JWT) model aims to produce re-

liable projection applying a unique time trend. The JWT model is suitable for application

to a range of scenarios, and is not restricted to certain age groups or populations.

A series of measures are introduced to evaluate the JWT model (Chapter 5). The eval-

uation compares the JWT model with a selection of existing individual and joint models

(Section 5.2), using mortality data sets of 13 countries (Section 5.3). The methods used

to forecast mortality are outlined (Section 5.4) along with the measures to evaluate fit

(Section 5.7) and forecasting performance (Section 5.8 and 5.10).

The new model and the selected existing models are applied to fit and forecast mortal-

ity for evaluations (Chapters 6). The evaluations consist of an "across country" analysis

(Section 6.2) and an "across sex" analysis (Section 6.3). The "across country" analy-

sis jointly fits and forecasts mortality across the 13 countries, where females and males

are analysed separately. The "across sex" analysis jointly fits and forecasts mortality of

females and males for each of the 13 countries. Each analysis illustrates the models’

goodness of fit (Sections 6.2.1 and 6.3.1), forecast accuracy (Sections 6.2.2 and 6.2.3,

Sections 6.3.2, 6.3.3 and 6.3.4) and divergence control (Sections 6.2.4 and 6.3.5). Con-

clusions are then drawn from these two analyses (Section 6.4) and from the research as a

whole (Chapter 7).
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Chapter 2

Mortality Patterns and Trends

2.1 Outline

This chapter introduces and discusses mortality patterns and trends in order to demon-

strate features that must be dealt with by mortality modelling and forecasting. Mortality

varies over ages, time, populations and other factors, where time and populations are

two of the main dimensions of variation in mortality. Variation of mortality over time de-

scribes mortality trends. Mortality rates have declined throughout the world (Section 2.2).

The decline in mortality has been variable and the future progression is uncertain. Vari-

ation of mortality across populations explains the cross sectional relationships between

rates of mortality, for example, across countries or between females and males (Section

2.3). Variation across cohorts deals with differences across groups of people born at dif-

ferent points of time.

These different sources of variation in mortality are typically modelled mathemati-

cally and these mathematical structures are called mortality models (Chapter 3). Individ-

ual models – incorporating the variation in mortality over time – are discussed in Section
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3.2. Joint models – incorporating the variation in mortality over time and across popula-

tions – are introduced in Section 3.3.

Many models, both individual and joint, do not incorporate an important feature of

mortality as described in Section 2.4 – the fact that the rate of mortality decline varies

over time. Most existing mortality models view this rate as constant, which typically

results in increasing bias when forecasting mortality.

2.2 Mortality rates have declined over time

Mortality rates have declined, or life expectancy at birth has increased, throughout the

world since the 1800’s. From 1840 to 2009, the average life expectancy at birth among

developed countries rose from under 40 to 80 years (Vaupel et al., 2011). From 1900

to 1988, in the USA, the combined sex life expectancy rose from 47 to 75 years (Lee

and Carter, 1992). From 1901-10 to 1999, in Australia, female life expectancy increased

from 57 to 80 years (Booth et al., 2002a). From the beginning of the 1900’s to 2000, in

the Netherlands, male life expectancy at birth increased from 47 to 76 years, and that of

female’s increased from 50 to 80 years (Hári et al., 2008).

To demonstrate the importance of joint models, the relationships in mortality across

populations are emphasised in this section. Population refers to females, males or com-

bined females and males in an area, such as a country. The trend in mortality decline

has become increasingly similar between countries and between genders since the 1950s

(Wilmoth, 1998; Wilson, 2001). This increasing similarity in mortality decline calls for

mortality models that incorporate similar populations. Separate projections are often un-

realistic and result in increasing differences in mortality between populations (Li and Lee,

2005).
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The universal decline in mortality rate is mainly due to the development of medi-

cal and biological technology, and improved public health care and economic conditions

(Cutler and Meara, 2001; McMichael et al., 2004; Moser et al., 2005; Klenk et al., 2007;

Gero, 2010; Finch, 2010; Vaupel et al., 2011). Economic conditions are the foundation

for all development and underpin the other two factors (Crimmins and Finch, 2006; Cutler

and Kadiyala, 1999; Cutler and Meara, 2001; Floyd et al., 2012; Preston et al., 1976; Vau-

pel et al., 2011). The advancement in medical and biological technology has improved

human beings’ ability to fight various diseases. The public health care system creates a

platform to help the whole population in heath care and in achieving a public hygienic

environment. Improvements in public health care particularly benefit the old ages and

low income populations.

2.3 Mortality rates have converged across populations

Relationships in mortalities between populations can be expressed by "convergence" and

"divergence". Convergence (divergence) is defined as the similar (different) mortality

decline trends between populations over time (Mathers et al., 2001; Moser et al., 2005).

The convergence or divergence can be across countries or between females and males.

Throughout the world, there has been convergence across most countries and between

females and males within most countries since the 1950s (Wilmoth, 1998; Wilson, 2001).

In an environment in which convergence exists, joint mortality modelling and forecasting

offers significant advantages (Jarner and Kryger, 2009; Li and Lee, 2005).
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2.3.1 Mortality rates converge across countries

Due, in part, to the global spread of mass schooling, information technology and liter-

acy, and convergence in economic conditions and public health measures, countries have

experienced increasing similarity in mortality decline (McMichael et al., 2004; Wilson,

2011). Overall, trends in mortality have become increasingly similar throughout the world

– across 184 territories and countries of the United Nations – in the past 50 years (Wilson,

2001).

Since economic growth is an important factor in mortality decline, countries with

different economic conditions have experienced different patterns of mortality decline

(Mathers et al., 2001; Meslé et al., 2002). Developed countries have experienced increas-

ingly similar economic conditions, and thus increasingly similar mortality rates, resulting

in convergence since the 1950s (Coale, 1996; White, 2002; Wilmoth, 1998).

Developing countries have experienced a higher rate of growth in their economies than

developed countries after the 1950s, and the difference in mortality between developed

and developing countries has also been narrowing (Elo and Preston, 1992; McMichael

et al., 2004). The convergence in mortality across countries has resulted in a narrowing

life expectancy between developing and developed countries from 1950 to 2010 (from 28

to 17 years for females and from 31 to 14 years for males) (Wilson, 2011).

In poor areas, like sub-Saharan Africa (McMichael et al., 2004), Central Europe

(Mackenbach, 2012) and Eastern Europe (Moser et al., 2005; Shkolnikov et al., 1998;

Wilson, 2011), the mortality rate has stagnated or increased. These odd patterns of mor-

tality decline trends have been mainly due to poverty and lack of medical measures. For

instance, AIDS contributed to over 40% of deaths in poor African countries (Dorrington,

2006), for example, Northern Malawi (Jahn et al., 2008), Mwanza of Tanzania (Urassa

et al., 2001) and KwaZulu Natal of South Africa (Hosegood et al., 2004). Malaria con-
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tributed to about 50% of the total mortality in poor African countries (Murray et al., 2012),

but it is treatable in developed and developing countries.

In summary, convergence in mortality dominates throughout the world. Most coun-

tries – developed and developing – have similar patterns in mortality decline trends. The

exception is that in some countries with poor socio-economic and environmental condi-

tions, mortality rates are stagnating or increasing.

2.3.2 Mortality rates converge between females and males

Mortality rates between females and males have become more and more similar in the

past few decades (Hosseinpoor et al., 2012; Liu et al., 2012). The sex difference in life

expectancy generally increased before the 1960s, stagnated between the 1970s and 1980s,

and decreased after the 1980s in most developed countries and some developing countries

(Glei and Horiuchi, 2007; Liu et al., 2012; McCartney et al., 2011; Saito et al., 2012;

Trovato and Heyen, 2006).

However, the sex difference in mortality is different in Japan, Turkey and the former

Soviet Union countries. Japanese females have had the largest rate of change in mortality

throughout the world from 1950 to 1990, and thus the sex difference in life expectancy

has increased in Japan since 1950 (Liu et al., 2012, 2013). Turkish females and males

have held a relatively constant rate of change in mortality, and thus the sex difference

in life expectancy has stagnated in Turkey since 1960 (Liu et al., 2012, 2013). Heavy

consumption of alcohol has caused the increasing mortality rate in males in the former

Soviet Union countries since 1990. For these reasons, the sex difference in life expectancy

has increased in these countries (Cockerham, 1997; McMichael et al., 2004; Men et al.,

2003; Shkolnikov et al., 1998).
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2.4 Variation in mortality decline

As seen in the previous two sections, the rate of mortality decline is not constant. For

example, the overall death rate in the USA decreased by 1% p.a. between 1900 and 1940,

2% p.a. between 1940 and 1955, 0% between 1955 and1965 and 1%-1.5% since 1965

(Cutler and Meara, 2001). Also, young and old age groups experience different rates of

mortality decline over time (Cutler and Meara, 2001; Lee, 2000). In addition, as described

in Section 2.3, the convergence of mortality across populations indicates that the rate of

mortality decline varies over time. For example, Japan had a smaller rate of mortality

decline after the 1990s than before the 1990s, but other developed countries experienced

a larger rate of mortality decline after the 1990s than before the 1990s (Wilmoth, 1998).

Over time, the rate of mortality decline varies. Most existing mortality forecasting

methods assume that the rate of mortality decline is constant. This assumption may be an

acceptable approximation for certain populations, but may result in increasing underesti-

mation or overestimation for general projection as discussed in Section 3.4.
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Chapter 3

Existing Mortality Models – A Review

3.1 Outline

Mortality models are mathematical and statistical approaches that describe the variation

in mortality. Mortality data comprise of a matrix of mortality rates classified according to

age and time. These numerics are difficult to understand without using a simple mathe-

matical expression. Hence, mortality models aim to intuitively reflect mortality data using

limited demographical explanation parameters. For example, a mortality model may use

relatively simple age and time factors to quantify the variation in mortality across age and

over time. Thus, mortality models simplify the expression of mortality data and increase

demographers’ understanding of mortality patterns. Furthermore, mortality models may

provide intuitive ways to forecast mortality. A mortality model may assume mortality to

vary linearly over time and use a time series – for example, random walk with drift – to

model the time factors. Such usefulness drives the development of mortality models.

This chapter reviews the existing commonly used mortality models. To develop a

new model, this chapter illustrates the advantages and disadvantages of existing models,
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by presenting the commonly used models. The new model, then, absorbs these advan-

tages and avoids these disadvantages. Therefore, the review of models is foundational to

develop a new model as detailed Chapter 4.

Models are then selected from the reviewed models, as detailed in Section 5.2, to com-

pare with the new model for a comprehensive evaluation as introduced in Chapter 6. The

selected models may be either directly related to the new model or the most commonly

used. The selected models constitute a subset of the reviewed models, and the reviewed

models comprise a subset of all existing models. The selected models represent the gen-

eral performance of existing mortality models in fitting and forecasting. Comparison with

the selected models reflects the practicability and performance of the new model.

Figure 3.1 displays a family tree of existing mortality models. The models to be

reviewed are displayed in green rectangles and the new model – the joint Wang Transform

(JWT) model – is displayed in the red rectangle. The mathematical form and relevant

sections are shown in Table 3.1.

Expectation

Explanation

Extrapolation

Non-specific
(WT)

Age-specific

Age-period-specific
(LC, LM, BMS, BDV,
DT, ASE, HU, CBD)

Age-period-cohort-specific
(RH, Currie, Plat,

CBD1, CBD2, CBD3)

JWT

JLC,
PJLC,
TLC,
PLC

CBDCK

Individual Joint

Figure 3.1: Family tree of mortality models
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To model and forecast mortality in a reliable way, numerous methods have emerged

(Booth and Tickle, 2008), since Gompertz (1825) proposed his mortality model. Mor-

tality forecasting methods may be classified as expectation, explanation and extrapola-

tion (Booth, 2006; Booth and Tickle, 2008). The expectation methods rely on experts’

opinions to determine the future path of mortality trends. This approach may cause bias

in short-term projections (Booth, 2006; Lee and Carter, 1992; Waldron, 2005) and may

be conservative and thus underestimate the rate of mortality decline (Alho and Spencer,

1990; Lee and Carter, 1992; Lee and Miller, 2001; Waldron, 2005). The explanation

methods apply structural or epidemiological models to quantify the relationships between

the causes of death and the total mortality by using regression methods (Tabeau, 2002).

This approach may produce poor accuracy in the long-term projections (Booth and Tickle,

2008; Keyfitz, 1982) and may result in unstable forecasts due to the unstable relationships

between mortality and the independent factors (Booth, 2006). The extrapolative methods

assume that past mortality trends will continue in future, and thus past trends are encap-

sulated in the model and the model aims to limit subjective judgement. Extrapolation

models are widely used (Booth, 2006).

Most models to date have been applied to individual populations, referred to as in-

dividual models. Mortality experience in countries has become increasingly similar as

described in Section 2.3, and thus the separate fitting and forecasting of mortality has be-

come relatively unreliable (Li and Lee, 2005). Models are now proposed to incorporate

mortalities of multiple similar populations, referred to as joint models.

This chapter focuses on extrapolative individual models, the most widely used type

of model. Extrapolative models can be divided into four categories regarding the number

of factors: non-specific, age-specific, age-period-specific and age-period-cohort-specific

models. This chapter reviews the non-specific and age-period-specific models in detail.

The Wang Transform model (De Jong and Marshall, 2007) is a non-specific model and
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is the model from which the new model is derived as detailed in Chapter 4. Age-period-

specific models are the most widely used and are foundational for many existing joint

models. Age-specific and age-period-cohort-specific models are unreliable in forecasts

(Booth, 2006; Booth and Tickle, 2008) as described in Section 3.2.2. However, the disad-

vantages of age-specific and age-period-cohort-specific models can be considered when

developing the new model.

Therefore, this chapter reviews the individual models in detail for the non-specific and

age-period-specific models, and briefly for the age-period-cohort-specific models (Sec-

tion 3.2). The joint models derived from these reviewed individual models are also de-

tailed (Section 3.3). The review of each model comprises the introduction, estimation

and evaluation. The "introduction" describes the definitions of the model. The "estima-

tion" explains the methods used to estimate the parameters. The "evaluation" assesses the

advantages and disadvantages of the model.

Table 3.1 lists the models to be reviewed. Column 1 displays the number of factors.

Columns 2, 3 and 4 give the names and the mathematical forms, where the error item, ε,

is omitted. Columns 5 and 6 illustrate the relevant sections and references.

Variables a and b, k and γ denote age, time and cohort factors. The a denotes the basic

age-specific factor, and b denotes the age-specific coefficient response to k or γ. The ε

denotes error terms. The ρ denotes the population effects. Subscripts x, t and i denote

the index of ages, year and population, respectively, where x = 1, ...,m, t = 1, ..., n and

i = 1, ..., `. Often the first age is 0, and then x = 1 denotes age 0.

Variables in joint models may have more than one subscript – often age x and/or time

t – with the population effect subscript i. For example, in a joint model, axi denotes the

basic age-specific factor for age x of population i and ax denotes the common basic age

specific factor for age x across all populations. The ρi denotes the effect of population i.
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The Lee-Carter (LC) model can be viewed as a "base" or benchmark model. The

common time trend LC model (CLC) and the integration time trend LC model (ILC) are

included to complete the framework, but are not reviewed further. The CLC model is

between the simple joint LC (SJLC) and parallel LC (PLC) models, assuming that all

populations share the same patterns and trends of mortality. The ILC model is between

the LC and SJLC models, assuming that populations share a common time trend.

Table 3.1 illustrates an overview of some of the existing popular mortality models,

where the LC model and its extensions constitute a LC family. The models of the LC

family generally directly model mortality – the central death rate m or one year death

rate q. However, the WT and JWT models are different from the LC models and its

extensions, as they apply different mortality scales λ, where λ denotes the change of z–

scores of the survival probability across years. The advantages of such an application

are discussed in Section 3.2.1 and incorporated in this research when proposing the new

model as described in Chapter 4.

Figure 3.2 displays the relationships between the models listed in Table 3.1. The yel-

low, blue and green colours represent zero-, two- and three-factor models. The rectangles

with round and square corners denote individual and joint models. The single-head ar-

rows between models express the derivation directions, and items around the arrows show

the change being made. The words "General" and "Restrictive" represent the directions

of derivation. The F denotes coefficient.

For population i, the LC model can be written as:

log(mxti) = axi + bxikti + εxti ,

where mxti denotes the central death rates for the age x, year t of population i and
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Figure 3.2: Relationships between models
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log(mxti) denotes the logarithm of the central death rate, named the log death rate in

the following parts of this thesis. The other symbols are detailed in Section 3.2.3.

Note in this version all effects are population specific and hence there is no "commu-

nality" across populations. Models may be derived from another model by specializing

or generalizing, for example, the age base level (axi), and the age-specific coefficient re-

sponse to the time trend (bxi) and time trend (kti). The ILC model is derived from the LC

model, by equating the kxi across i: kxi = kx. The SJLC model is derived from the ILC

model by equating the bxi across all i: bxi = bt. Thus, the SJLC model is more restrictive

than the ILC and LC models. The JLC model is derived from the SJLC model by adding

the individual factors, bxikti, so the JLC model is more general than the SJLC model.

Figure 3.2 illustrates two clusters – the LC family and the WT family. Many reviewed

models belong to the LC family. However, the WT model does not fit into the generic LC

family – it operates on a completely different scale – the z–score derived from the survival

probability. By using a different mortality scale, the WT family model provides another

way to model and describe the properties of mortality.

3.2 Individual models

Individual models deal with a single population in isolation of any other population.

Individual models may have one or more factors and can be classified as non-specific,

age-specific, age-period-specific and age-period-cohort-specific in each case detailing the

number of factors and their type – zero, one, two or three – used to explain mortality

variations. The non-specific, age-period-specific and age-period-cohort-specific models

are practical and commonly used. Hence, the individual models reviewed in this section

are confined to these three classifications of models.
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Non-specific models structure mortality without specific reference to age, time or

other factors. Non-specific models are simple to apply but lack flexibility. An example of

non-specific models is introduced in Section 3.2.1.

Age-specific models assume that mortality is a function of age. This function consists

of different parameters. To forecast, estimates of a parameter can be modelled and pre-

dicted using a time series process. Due to impracticability, age-specific models are not

commonly used (Booth and Tickle, 2008), and thus are not considered further here.

Age-period-specific models assume that mortality varies across the age and time di-

mensions. Age factors depend on age groups and are generally constant over time. Time

factors follow time series processes typically shared by all age groups. Age-period-

specific models are the most widely used in mortality modelling and forecasting (Booth

and Tickle, 2008). The commonly used age-period-specific models are introduced in Sec-

tions 3.2.3 to 3.2.6.

Age-period-cohort-specific models incorporate cohort effects, where a common co-

hort effect is shared by to those born in the same year. Cohort effects trends are often

irregular and difficult to forecast (Booth and Tickle, 2008). Several age-period-cohort-

specific models are introduced in Sections 3.2.6 to 3.2.7.

3.2.1 Non-specific model – the Wang Transform model

The WT model

De Jong and Marshall (2007) applied the Wang Transform proposed by Wang (2000) to

fit and forecast mortality. This is called the WT model. To adjust an insurance premium

for "risk," each exceedance probability for the risk can be transformed using the normal

cumulative probability to a z–score. The actual exceedance probability function is then
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adjusted for risk by uniformly shifting each of the z–scores (Wang, 2000) and using these

risk-adjusted z–scores, and the implied exceedance probabilities in the actual premium

calculation. This process of adjusting excellence probabilities via shifting the z–scores is

often called the Wang Transform method.

De Jong and Marshall (2007) applied the Wang Transform in the context of mortality

survival probabilities. A survival probability and z–score are calculated for each age

and time period. Consecutive z–scores corresponding to consecutive periods are then

assumed to be related by a fixed shift. In an empirical study (De Jong and Marshall,

2007), the z–score shift appears to be virtually independent of age and time leading to the

conclusion that improvements in mortality can be reliably modelled using one "z–score

shift" parameter. The parameter – called the z–score drift – captures the dynamics across

the entire age spectrum. Thus, in the simplest case, all ages are assumed to share the

same constant drift on the z–score scale over time. The process of using a constant drift

to model the variation of z–scores over time is called the Wang Transform (WT) model.

The WT model has the unique parameter – the constant drift of z–scores – and is one of

the simplest existing mortality models.

The WT model is written as follows:

zxt − zx,t−1 = λxt ≈ λ+ εxt = ρ+ εxt , (3.1)

where zxt denotes the z–score for age x in year t, λxt denotes the change or drift of z–

score between year t − 1 and t and λ is the unique parameter of the WT model. For

a given population, λ is assumed to be constant. Typically one would expect λ to vary

across populations, although this was not considered by De Jong and Marshall (2007).

To be consistent with the other population effects models surveyed and reviewed in this

thesis, λ can be written as ρ.
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Estimation of parameter in the WT model

The WT model has two steps for modelling and forecasting mortality. Step 1 calculates

the survival probability (sxt):

sxt = p0tp1t · · · px−1,t =
x−1∏
j=0

pjt , s1t = p0t , s0t = 1 , (3.2)

sxt denotes the probability of surviving from birth to age x and pxt is the one year survival

rate and denotes the probability of surviving between age x and x + 1. There is pxt =

1− qxt, where qxt is the one year death rate and denotes the probability of dying between

age x and x+ 1. The qxt can be replaced by, for example, mxt, where mxt is the mid year

death rate and denotes the probability of age x dying at the middle of year t. Both qxt and

mxt can be obtain directly from a life table. All rates are those applying in year t.

Step 2 calculates z–scores:

sxt = Φ (zxt) , zxt = Φ−1 (sxt) , (3.3)

where Φ denotes the cumulative function of normal distribution and Φ−1 is its inverse

mapping function. Using CDF simplifies the expression of survival probabilities.

Step 3 estimates the change in the z–score via the following computations:

λxt = zxt − zx,t−1 , λ̂x =
1

n− 1

∑
t

λxt , λ̂ =
1

m

∑
x

λ̂x , (3.4)

where λ̂x and λ̂ denote the estimates of λx and λ and λ̂ is the estimated overall parameter.

After estimating λ̂, the fitted z–scores and the survival probabilities are

ẑxt = zx1 + (t− 1)λ̂ , ŝxt = Φ (ẑxt) = Φ
{
zx1 + (t− 1)λ̂

}
. (3.5)
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where ŝxt is the estimate of the survival probability, sxt, and zx1 is the observation of the

z–scores at the first year of the fitting period.

The forecasts of z–scores and the survival probability are

ẑx,n+h = zxn + hλ̂ , ŝx,n+h = Φ
(
ẑx,n+h

)
= Φ

(
zxn + hλ̂

)
, (3.6)

where h denotes the h year ahead forecast. The fitted and forecast qxt are calculated from

the fitted or forecast surival probabilities as follows:

q̂xt = 1− p̂xt , p̂xt =
ŝx+1,t

ŝxt
, p̂0t = ŝ1t , ŝ0t = s0t = 1 , (3.7)

where p̂xt and ŝxt denote the estimates of pxt and sxt.

Advantages of the WT model in forecasting mortality

The WT model describes the variation in mortality in terms of z–scores, differing from

most existing models which use the log death rate. The z–scores are transformed from

the survival probabilities, and the survival probabilities are the product of the one year

survival rates across age. Over time, survival probabilities vary more smoothly than the

mortality rates by individual age and year. Modelling smooth scales is often more reliable

than modelling jagged scales, for example, the log death rates.

Furthermore, for each age, z–scores vary linearly over time. The linearity is easy to

model by using a linear mathematical expression. The WT model captures the trends of

z–scores by using a constant drift λ or ρ, where all age groups share the same constant

drift of z–scores over time. The WT model uses few parameters to describe mortality in

terms of z–scores, and thus is one of the simplest existing mortality models. Therefore,

the WT model is simpler than many other existing mortality models, for example, the
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Lee-Carter model (Lee and Carter, 1992) as described in Section 3.2.3.

Thirdly, although λ is assumed to be constant, the WT model potentially allows for a

flexible drift of z–scores (De Jong and Marshall, 2007). The rate of mortality varies over

time as described in Section 2.4. This property enables the WT model to be extended for

wider application as discussed in Chapter 4.

Limitations of the WT model in forecasting mortality

A shortcoming of the WT model is that in some applications the assumption of a con-

stant λ may be unreasonable. The original application found that the λ̂ overestimates the

change of zxt for the young age groups but underestimates that for the old age groups

(De Jong and Marshall, 2007, Figure 3). Furthermore, the zxt fluctuates over time more

seriously for the old age groups than for the young age groups. Therefore, the simple WT

model may not be suitable for the old age groups and may need to be extended to cover

these apparent extra sources of variation.

Moreover, transforming zxt to the log death rate, log(mxt), may result in curious pro-

jection patterns over the long term. When transforming zxt to log(mxt), the constant

increase in zxt over t results in the accelerated decline in log(mxt) over t. Therefore,

when using the WT model, mortality (the log death rate) varies nonlinearly over time.

Consequently, the properties of the WT model conflict with the common view that mor-

tality – in the log death rate scales – behaves linearly over time (Cairns et al., 2006; Carter

and Lee, 1992; Lee and Carter, 1992).

In addition, if the mortality data set does not start from age 0, the WT model is im-

practical. The λ̂x sequence increases across ages (De Jong and Marshall, 2007, Figure 6),

if the start age is 50, 65 or 80. For these cases, λ̂ is not the average of λ̂x across x, and

thus the WT model is not applicable.
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Lastly, since λ depends on populations, the WT model allows individual populations

to possess their own drift of z–scores. This individual drift may result in increasing dif-

ferences in z–scores between populations in projection.

3.2.2 Age-specific models

Age-specific models assume that annual mortality rate can be expressed by a function of

age. This function consists of different parameters. For one parameter, when applying

the function to annual mortality rates alternatively, there are a series values of this param-

eter which can can be modelled as a time series process. Therefore, mortality rates are

projected vis the projection of every parameter.

Heligman and Pollard (1980) applied a function with eight parameters, called the HP

model, to capture the age patterns of mortality. The HP model combines three functions to

describe mortality – a rapidly declining exponential function for mortality in childhood, a

lognormal function for mortality of the ’accident hump’ in young age groups and a Gom-

pertz exponential function for mortality of adults and in the old age group. Rogers and

Planck (1983) extended the HP model, called the RP model, by incorporating a constant

parameter for all ages and using a double exponential function for the ’accident hump’ in

the young age group. Similar age specific models have been proposed (Carriere, 1992;

Hannerz, 1999, 2001a,b; Siler, 1983).

An advantage of age-specific models is that mortality rates are smooth across ages

(Booth and Tickle, 2008). Furthermore, age-specific models are able to interpret the

relationships between across ages (Bell, 1997).

However, age-specific models have two main disadvantages. Firstly, estimated pa-

rameters correlated to other parameters and these correlations affect the parameters’ inter-
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pretability (Forfar and Smith, 1985). Secondly, the series of parameters may be irregular

and thus difficult to forecast (Booth and Tickle, 2008) and cause unreliable mortality pro-

jection (Bell, 1997). Therefore, the age-specific models are not detailed in this research.

3.2.3 Age-period-specific model – the Lee-Carter model

The LC model

Lee and Carter (1992) introduced an age-period-specific model to forecast mortality, re-

ferred to as the Lee-Carter (LC) model. The LC model considers age and period factors

and can be viewed as an improvement of the age-period mortality models given by Bell

and Monsell (1991) and Bell (1992). Differing from the traditional method used by the

Social Security Administration (SSA) and the US Census Bureau (USCB), the LC model

relies on mortality data and excludes experts’ ideas. For the LC model, the mortality trend

in the future is the extension of that in the past obtained via mortality data.

The LC model applies two age factors and a time factor to express the log death rate.

Age factors are constant over time. The time trend can be modeled as a time series of a

random walk with drift. All age groups share the same trend in mortality decline.

The LC model is:

log(mxt) = ax + bxkt + εxt , (3.8)

where log(mxt) is the observed log death rate at age x and year t. The definition of ax, bx,

kt and εxt are described in Section 3.1. The ax, bx and kt are unknown parameters. The

ax sequence is the "base" level of mortality. The kt sequence describes the overall change

of log(mxt) over time, and kt sequence is assumed as a random walk with drift. The

bx sequence is the age-specific coefficient response to kt, reflecting the rate of mortality

decline for the specific age group x.
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Estimation of parameters in the LC model

The ax is estimated to be the average of log(mxt) across t,

âx =
1

n

n∑
t=1

log(mxt) , (3.9)

where âx is the estimate of ax. For any non-zero c, bxkt = (bxc)× (kt/c), and thus bx and

kt are not unique. Constraints are introduced to ensure the uniqueness of bx and kt:

∑
x

bx = 1 ,
∑
t

kt = 0 . (3.10)

The bx and kt are estimated via singular value decomposition (SVD). Let Y denote a

matrix with dimension m× n and entries yxt, where

yxt = log(mxt)− âx , Y =


y11 · · · y1n

... . . . ...

ym1 · · · ymn

 ,

Let bx and kt be expressed in terms of U , D and V ,

Y ′ = U[n×n]D[n×n]V
′

[n×m] , b̃x = Vx1 , k̃t = D11Ut1 , (3.11)

where Y ′ is the transposition matrix of Y . Matrices U and V are the left and right singular

vectors of Y ′, andD is a diagonal matrix containing the singular values of Y ′. Dimensions

of U , D and V are shown in square brackets.

The b̃x and k̃t are initial estimates of bx and kt. The constraints in (3.10) are applied
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to adjust b̃x and k̃t to avoid the identifiability problem,

b̂x =
b̃x∑
x b̃x

, k̂t = k̃t
∑
x

b̃x , (3.12)

where b̂x and k̂t are final estimates of bx and kt.

To forecast mortality, k̂t is assumed to be a random walk with drift:

k̂t = k̂t−1 + δ + εt , δ =
k̂n − k̂1

n− 1
, (3.13)

where δ is the average drift of the k̂t sequence.

The k̂1 and k̂n denote the first and last value in the sequence k̂t. The forecast of k̂t is

k̂n+h = k̂n+h−1 + δ + εh , (3.14)

where h denotes the hth year in the forecasting period. The forecast of mortality is

log
(
m̂x,n+h

)
= log (m̂xn) + b̂x

(
k̂n+h − k̂n

)
, (3.15)

where log (m̂xn) is the jump-off rate. The jump-off rate is defined as the mortality rate for

the final year in the fitting period (Booth et al., 2002b; Lee and Miller, 2001).

log(m̂xn) = âx + b̂xk̂n .

Advantages of the LC model in forecasting mortality

The LC model has lower uncertainty than the traditional method used by the SSA and

the USCB. Moreover, minimizing subjective judgement is another advantage of the LC
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model (Lee and Carter, 1992; Lee, 2000). The traditional method relies on experts’ views

and is conservative (Booth and Tickle, 2008), while the LC model relies on data and is

more objective in projection than the traditional methods.

In the application to the USA (Lee and Carter, 1992) for ages 0-109 (grouped as 0, 1-

4, 5-9, ... 105-109) and for years 1900-1989, and forecast mortality for years 1990-2065,

the LC model yields a narrower confidence interval (CI) than the traditional method. By

2065, the LC model yields a CI (95%) of 6.8 years for the forecast of life expectancy,

whereas the traditional method produces a CI of 9.3 years. The kt sequence is assumed

to be linear, and the projection of kt produces a narrower CI of life expectancy than the

traditional method. By year 2065, the LC model forecasts life expectancy of 86.05 years,

higher than the 80.45 years predicted by the traditional method.

Limitations of the LC model in forecasting mortality

The forecast of kt causes increasing difference in mortality between populations. Let kti

and ktj denote the time factors of populations i and j and kti > ktj for t < s, where

1 < s < n. Due to the constraints of the time factors,
∑

t kti =
∑

t ktj = 0, and

thus kti < ktj for t > s. Therefore, the kti and ktj sequences have different slopes and

cause increasing differences between i and j in the long-term projection, referred to as

divergence. Moreover, the random walk with drift may not be suitable for the kt sequence

(Jarner et al., 2008).

The assumption of constant bx over time is unrealistic when forecasting mortality. In

practice b̂x varies in different periods, indicating that an age group has a different rate of

mortality decline over time (Lee, 2000).

The b̂x sequence is normally jagged and may include irregular values. The jagged b̂x

will result in jagged forecast mortality across age, and these differences across ages will
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increase over time (Czado et al., 2005; De Jong and Tickle, 2006; Delwarde et al., 2007).

Additionally, the LC model does not incorporate cohort factors. For populations

where cohort effects exist, the LC model may yield poor accuracy in estimation and pro-

jection (Renshaw and Haberman, 2006).

3.2.4 Improvements to the LC model

Due to the advantages over the traditional methods, the LC model has been widely ap-

plied, including analyse and forecast the mortality of Australia (Booth et al., 2002a),

Austria (Carter and Prskawetz, 2000), Canada and England and Wales (Chan et al., 2008),

Denmark (Jarner et al., 2008), China and Korea (Li et al., 2004), the G7 countries (Tul-

japurkar et al., 2000), England and Wales (Renshaw and Haberman, 2003a), and so on.

However, the LC model has shortcomings in applications. To address these short-

comings, methods have been proposed to improve the LC model as described in this

subsection. The improvements of the LC model can be classified as three types: applying

methods rather than the SVD to estimate parameters (Booth et al., 2002b; Brouhns et al.,

2002; Lee and Miller, 2001), introducing additional parameters into the LC model (Booth

et al., 2002b; Girosi and King, 2007; Koissi et al., 2006; Renshaw and Haberman, 2003c)

and smoothing the LC model (Czado et al., 2005; De Jong and Tickle, 2006; Delwarde

et al., 2007).

The improved methods criticize the LC model from different angles and provide dif-

ferent measures to address the relevant shortcomings. By briefly introducing the improved

methods, this research considers the potential advantages and disadvantages, when devel-

oping and evaluating a new model.
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Adjusting time trend incorporating life expectancy – the Lee-Miller model

Lee and Miller (2001) pointed out three shortcomings of the LC model as follows. Firstly,

the forecast mortality and the observed mortality in the fitting period are not consistent.

Secondly, the decrease of time trend and the increase of life expectancy are not consistent.

Thirdly, there is large bias of the forecast life expectancy.

Three measures are consequently introduced to improve the LC model, referred to

as the Lee-Miller (LM) model. Firstly, mortality data after 1950 as recommended by

Tuljapurkar et al. (2000) are used for fitting and forecasting, where the bx sequence is

relatively constant and is reliable for projection (Lee, 2000). Secondly, kt is adjusted by

minimizing errors between the observed and fitted life expectancy. Thirdly, the observed

log death rates, log(mxn), are used as the jump-off rates.

Finding a linear time trend and adjusting the time trend incorporating number of

deaths – the Booth-Maindonald-Smith model

Booth et al. (2002b) pointed out two shortcomings of the LC model as follows. Firstly,

the time trend may not be linear, and thus the forecast is unreliable. Secondly, the errors in

the log death rate are assumed to be constant, whereas the errors relate to the population

size.

Two measures are then applied to improve the LC model, referred to as the Booth-

Maindonald-Smith (BMS) model. Firstly, kt is adjusted by minimizing the errors between

the observed and estimated age pattern of deaths to avoid irregular noise of small size age

groups. Secondly, a subset of the total time range in the data set is selected to use as the

fitting period, based on optimising the linear fit to kt.

The âx and b̂x are obtained using processes introduced in Section 3.2.3. Poisson re-
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gression (Brillinger, 1986) is applied to adjust k̂t by minimizing D̂t:

D̂t =
∑
x

dxt log

(
dxt

d̂xt

)
−
(
dxt − d̂xt

) , (3.16)

where D̂t is the residuals in the number of deaths across x and dxt and d̂xt denote the

observed and estimated number of deaths, where ext is the observed mid-year population

d̂xt = ext exp
(
âx + b̂xk̂t

)
. (3.17)

A ratioR(s) is introduced to assess the linearity of the kt sequence, where 1 ≤ s < n,:

R(s) =

∑n
t=s

(
D̃t/r1

)
∑n

t=s

(
D̂t/r2

) ,
where D̂t is defined in (3.16), and D̃t is also calculated via (3.16), but replacing k̂t by k̃t,

where the k̃t sequence is the fitted straight line of the k̂t sequence. The r1 and r2 denote

the degrees of freedom of D̂t and D̃t respectively, where r1 = (m − 1)(n − s − 1) and

r2 = m(n − s − 1). Trying s from 1 to n − 1, the s resulting in the smallest R(s) is

selected.

Estimating parameters using Poisson regression – the Brouhns-Denuit-Vermunt model

Brouhns et al. (2002) argued that the LC model did not consider the population’s size

when estimating the parameters. A Poisson log-bilinear regression approach (Brillinger,

1986) was then introduced to estimate all parameters of the LC model, referred to as the

Brouhns-Denuit-Vermunt (BDV) model, as where the number of deaths is assumed to

follow a Poisson distribution, the estimates of parameters could be robust.
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The maximum log-likelihood estimation (MLE) is:

L(a, b, k) =
∑
x,t

{
dxt(ax + bxkt)− ext exp(ax + bxkt)

}
+ C , (3.18)

where L denotes the log-likelihood about a, b and k, and C is a constant. The Newton-

Raphson iterative process is used as follows:

â(0)
x = 0, b̂(0)

x = 0, k̂
(0)
t = 0 ,

â(v+1)
x = â(v)

x −

∑
t

(
dxt − d̂(v)

xt

)
−
∑

t d̂
(v)
xt

, b̂(v+1)
x = b̂(v)

x , k̂
(v+1)
t = k̂

(v)
t

k̂
(v+2)
t = k̂

(v+1)
t −

∑
x

(
dxt − d̂(v+1)

xt

)
b̂

(v+1)
x

−
∑

x d̂
(v+1)
xt

(
b̂

(v+1)
x

)2 , â(v+2)
x = â(v+1)

x , b̂(v+2)
x = b̂(v+1)

x

b̂(v+3)
x = b̂(v+2)

x −

∑
t

(
dxt − d̂(v+2)

xt

)
k̂

(v+2)
t

−
∑

t d̂
(v+2)
xt

(
k̂

(v+2)
t

)2 , â(v+3)
x = â(v+2)

x , k̂
(v+3)
t = k̂

(v+2)
t

where d̂xt is defined in (3.17) and v denotes the vth step in the iterative process. The

iteration stops at the step where the difference between L(v−1) and L(v) is very small, for

example, 10−10, and

L(v) = L(v)
(
θ̂(v)
)
, θ̂(v+1) = θ̂(v) − ∂L(v)/∂θ

∂2L(v)/∂θ2
, (3.19)

where θ denotes the parameters a, b or k.

Age-specific enhancement with additional parameters

The LC model involves a pair of bx and kt. More pairs of bx and kt are introduced to

generalise the LC model (Booth et al., 2002b; Girosi and King, 2007; Koissi et al., 2006;

Renshaw and Haberman, 2003c). These generalizations of the LC model use additional
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parameters to enhance the age-specific effects, referred to as the age-specific enhancement

(ASE) model. The ASE model is

log(mxt) = ax +
J∑
j=1

b(j)
x k

(j)
t + εxt , (3.20)

where the j denotes the jth order of bx and kt. If J = 1 or b(j)
x k

(j)
t = 0 for j > 1, the ASE

model becomes the LC model. Generally, the fact that J = 2 enables the ASE model to

account for 90% of the variance for the fitted data (Renshaw and Haberman, 2003c). The

estimation of ASE can be the SVD method applied by Koissi et al. (2006) or the Poisson

regression applied by Renshaw and Haberman (2003c).

Due the additional parameters, the ASE model yields better fit than the LC model

(Booth et al., 2002b; Girosi and King, 2007; Koissi et al., 2006; Renshaw and Haber-

man, 2003c). However, the k(j)
t sequence is normally irregular (Renshaw and Haberman,

2003c), and thus may be difficult to forecast.

The smooth Lee-Carter model

The LC model has jagged sequences of age factors and may yield jagged forecasts (Czado

et al., 2005; De Jong and Tickle, 2006; Delwarde et al., 2007). To address this shortcom-

ing, approaches have been formulated to create a “smooth" LC model. A smooth LC

model has at least one smooth factor. For example, due to the jagged shape, the bx se-

quence is smoothed by applying a Bayesian Poisson log-bilinear approach (Czado et al.,

2005) or by applying a penalised log-likelihood approach (Delwarde et al., 2007).

Among the smooth LC models, the model proposed by De Jong and Tickle (2006),

referred to as the De Jong-Tickle (DT) model, is widely evaluated (Booth et al., 2006;

Shang et al., 2010). The DT model involves smooth ax and bx by using a "design" matrix.
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Let yxt denote the log death rate log(mxt), then the LC model is written as:

yt = a+ bkt + εt , (3.21)

where yt, a, b and εt are column vectors with entries yxt, ax, bx and εxt, respectively. The

kt is defined the same as in the LC model.

Let X be a "design" matrix with more rows than columns, then the DT model is as

follows:

yt = Xa+ (Xb)× kt + εt . (3.22)

Since X has fewer columns compared to rows, the DT model has fewer age parameters

than the LC model. The effect of X is to make Xa and Xb relatively smooth. The

smoothness enables the DT model to avoid the non smooth estimation of age effects and to

reduce the risk in projection. Therefore, the DT model and other smooth LC models yield

more reasonable fits and more reliable forecasts as compared to the LC model (Czado

et al., 2005; De Jong and Tickle, 2006; Delwarde et al., 2007).

3.2.5 Age-period-specific model – the Lee-Carter model using func-

tional data analysis

The HU model

Hyndman et al. (2007) extended the LC model by incorporating two features: age-specific

enhancement (like the ASE model) and smoothness (like the DT model), referred to as

the Hyndman-Ullah (HU) model. The HU model uses a functional data analysis (Ramsay

and Silverman, 2005) to estimate parameters and aims to provide robust statistics to fit

and forecast mortality.
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The HU model assumes that the log death rate is a smooth and continuous function,

and then the HU model is

log(mxt) = a(x) +
J∑
j=1

b(j)(x)k
(j)
t + εt(x) + σt(x)εxt , (3.23)

where a(x) and b(j)(x) are smooth and continuous functions of ax and b(j)
x and J ≤ n−1.

The error items σt(x)εxt and σt(x) are defined as follows:

log(mxt) = ft(x) + σt(x)εxt , ft(x) = log(m̂xt) + εt(x) ,

where ft(x) is the smooth function of logmxt of x, estimated with penalised regression

splines (Wood, 2000). The log(m̂xt) is the fitted log death rate using (3.23). The εxt is an

independent and identically distributed (i.i.d.) noise and σt(x) is the noise related to x.

Estimation of parameters in the HU model

The a(x) is the average of the smooth function, ft(x), across t:

â(x) =
1

n

n∑
t=1

ft(x) .

Let f ∗t (x) denote the difference between ft(x) and â(x),

f ∗t (x) = ft(x)− â(x) =
R∑
r=1

αts(x)ξr(x) ,

where αtr(x) denotes the entries of a matrix A with dimensions n × R and ξr(x) relates

to the R×R matrix V with entries vIJ =
∫
ξI(x)ξJ (x), where 1 ≤ I,J ≤ R.
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Let V = U ′U , applying the Cholesky decomposition to V, there is

b̂(j)(x) =
(
U−1g(j)

)′
ξ(x) ,

where ξ(x) =
{
ξ1(x), ...ξr(x)

}′ and g(j) is the jth normalized eigenvector of (U−1)′V SV ′U−1,

and where S = (n−1)−1A′W 2A, W is a diagonal matrix of dimensions n×nwith entries

wt, the weights of populations’ size in year t. Constraints of b(j)(x) are

∫ {
b(j)(x)

}2

dx = 1 J = 1 ,∫ {
b(j)(x)b(j−1)(x)

}
dx = 0 J ≥ 2 .

Let F denote the n×mmatrix with entries f ∗t (x) andB denote them×(n−1) matrix

with entries b̂(j)(x). There is K = FB, where K is a matrix with entries k̂(j)
t .

In the HU model, the order J is determined according to the forecast accuracy. Given

that s is a break year in the fitting period and 1 < s < n, the HU model is applied to

fit mortality data for the sub-fitting period 1, ..., s and then to forecast mortality in the

sub-forecasting period s+ 1, ..., n. The forecast accuracy is denoted as follows:

εs+h(x) = log(mx,s+h)− log(m̂x,s+h) ,

where h denote the hth year in the sub-forecasting period, and log(mx,s+h) and log(m̂x,s+h)

denote the observed and forecast log death rate in year s+ h. There are

SSE =
n−s∑
h=1

∑
x

ε2s+h(x) , SSSE =
n−1∑
s=S

n−s∑
h=1

∑
x

ε2s+h(x) ,

where SSE is the sum of square errors of the forecast log death rate and SSSE is the sum

of SSE when shifting s from a given year, denoted by S, until n− 1.
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Trying a different J and obtaining a series of SSSE, the J resulting in the smallest

SSSE is the most appropriate for the specific mortality data set. The process of finding

the appropriate order is as follows:

1) Set initial order as J = 1;

2) Set initial s;

3) Calculate SSE;

4) Increase s by 1 and go to step 3) until s = n− 1;

5) Sum these SSE as as SSSE and record this SSSE for the current order;

6) Increase order by 1 and go to step 2) until the given maximum order;

7) Obtain a series of SSSE for orders from J = 1 to the given maximum order, for

example, J = n− 1.

The J corresponding to the lowest SSSE is chosen.

Hyndman et al. (2007) produced a function called "fdm" to use the HU model to fit

mortality and a function called "forecast.fdm" to forecast mortality. These two functions

are included by the Demography package in R. This "forecast.fdm" function provides

more than one method to forecast the time trends, including the random walk with drift

and the ARIMA process.

Advantages of the HU model in estimating and forecasting mortality

The HU model uses the functional data analysis approach, where smoothness is applied.

The smoothness reduces the inherent randomness of observations and avoids the unex-

pected patterns in mortality improvements caused by, for example, war, epidemic or catas-

trophes. Thus, the HU model may have be more robust estimation than the LC model.
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Moreover, the HU model may use more parameters than the LC model. The order J

is determined by a series of trials, the process of determining J enables the HU model to

be used for a flexible application. Due to the trials, the HU model captures the properties

of a given mortality data set better than the LC model.

Hyndman et al. (2007) applied the HU model to fit and forecast the French mortality,

and Booth et al. (2006) and Shang et al. (2010) applied the HU model to multiple coun-

tries. In these analyses, the HU model – similar to the DT model – performs better than

the LC, LM and BMS models, particularly in forecast accuracy.

Limitations of the HU model in fitting and forecasting mortality

If J > 1, the HU model has more than one time trend. The additional time trends may

increase the uncertainty and unreliability of projection as in the description of the ASE

model. The selection of J increases the computation but may not result in significantly

better performance compared with similar models, such as the LM, BMS and DT models

(Booth et al., 2006; Shang et al., 2010).

3.2.6 Age-period-specific model – the two time factors model

The CBD models

The LC model is suitable for all age groups, but generally fits poorly or in any case worse

for the old age groups (Cairns et al., 2009). To model the mortality rate of old age groups,

Cairns et al. (2006) developed a stochastic model with two time factors, referred to as the

Cairns-Blake-Dowd (CBD) model. In the CBD model, mortality rates of ages 60-89 vary

linearly across ages and vary stochastically over time.
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The CBD model is extended to CBD1, CBD2 and CBD3 models (Cairns et al., 2009).

These three extensions include cohort effects and are age-period-cohort-specific models.

The CBD model and its extensions are called the CBD models.

The CBD model includes two time trends:

logit(qxt) = k
(1)
t + k

(2)
t (x− x̄) + εxt , (3.24)

where x̄ denotes the average age of the age vector, and

logit(qxt) =
qxt

1− qxt
, (3.25)

where k(1)
t reflects general mortality decline for all ages over time and k(2)

t reflects the rate

of mortality decline for specific age groups.

The CBD1, CBD2 and CBD3 models (Cairns et al., 2009) are displayed as (3.26),

(3.27) and (3.28):

logit(qxt) = k
(1)
t + k

(2)
t (x− x̄) + γc + εxt , (3.26)

logit(qxt) = k
(1)
t + k

(2)
t (x− x̄) + k

(3)
t

{
x− x̄)2 − σ̂x

}
+ γc + εxt , (3.27)

logit(qxt) = k
(1)
t + k

(2)
t (x− x̄) + γc(x

∗ − x) + εxt , (3.28)

where σ̂x in (3.29) is the estimated variance of ages,

σ̂x =
1

m

m∑
x=1

(x− x̄)2 , (3.29)

and x∗ in (3.28) is a constant age and needs to be estimated. The subscript c of the cohort

factor is c = t − x. The range of c is from t1 − xm to tn − x1, where t1 and tn, x1 and

xm denote the exact year and ages in the vectors of years and ages. The length of the γc
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sequence is (tn−x1)−(t1−xm)+1 = m+n−1. The CBD model is age-period-specific,

and the CBD1, CBD2 and CBD3 models are age-period-cohort-specific.

Estimation of parameters in the CBD models

The observed mortality scale is

qxt = 1− pxt = 1− exp (−µxt) = 1− exp (−mxt) , (3.30)

where µxt denotes the force of mortality and µxt = mxt for the old age groups. Constraints

are set as follows:
∑

c γc = 0 and
∑

c cγc = 0 for the CBD1 model,
∑

c γc = 0,
∑

c cγc =

0 and
∑

c c
2γc = 0 for the CBD2 model and

∑
c γc = 0 for the CBD3 model.

The Poisson regression with the Newton-Raphson iterative process (Brouhns et al.,

2002) is applied to estimate the parameters in the CBD models.

Advantages of the CBD models in estimating mortality

Differing from the log death rate (log(mxt)) used by many other existing models, the CBD

models use the logit death rate (logit(qxt)). By using the logit death rate, the CBD models

assume linear relationships in the logit of mortality across age, particularly appropriate for

the older age groups where linearity in log mortality is typically inappropriate. Linearity

is convenient for modelling, and thus the CBD models have better fit for older age groups

than many other existing models, such as the LC, Currie and RH models (Cairns et al.,

2009, 2011b; Gogola, 2014). Due to the advantages in older age groups, the CBD models

are widely used to deal with longevity problems (Cairns et al., 2006, 2014) and financial

pricing (Cairns et al., 2014; Chan et al., 2014).
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Limitations of the CBD models in estimating mortality

The CBD models have time and cohort trends. The multiple trends increase the uncer-

tainty in long-term projection. The cohort trends of the CBD1, CBD2 and CBD3 models

are irregular and may be unreliable in prediction. In addition, the CBD models are only

for the older ages and perform poorly for general age groups (Plat, 2009a).

3.2.7 Age-period-cohort-specific models

Cohort effects aim to model the common experience in mortality for people born at the

same point of time. Such common experience may be important and any model that

ignores cohort effects, such as the LC model may yield poor fit and forecast. Since the

LC model is one of the most widely used mortality models (Booth, 2006; Girosi and

King, 2007; Tuljapurkar et al., 2000), cohort factors have been introduced into the LC

framework yielding the age-period-cohort-specific (APC) model. The models proposed

by Renshaw and Haberman (2006), Currie (2006) and Plat (2009a) are representatives of

the APC models. APC models generally yield better fit than the LC model.

However, the APC models involve at least a time factor and a cohort factor. Cohort,

time and age factors are not orthogonal and may generally lead to uncertainty in estima-

tion and forecast. In addition, cohort trends are normally irregular and difficult to forecast

(Booth, 2006), and hence, while there is a basis for cohort effects, the forecast mortality

may be unreliable.

The Renshaw-Haberman model

Renshaw and Haberman (2006) extended the LC model by adding a cohort factor, referred
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to as the Renshaw-Haberman (RH) model:

log(mxt) = ax + b(1)
x kt + b(2)

x γc + εxt , (3.31)

where γc denotes the cohort effect, and c represents the year of birth: c = t − x and is

detailed in Section 3.2.6.

Using cohort factors, the RH model avoids producing clusters of diagonal residuals

when fitting mortality data (Cairns et al., 2009). In the analyses given by Cairns et al.

(2009), Cairns et al. (2011b) and Gogola (2014), the RH model also performs well for

older age groups according to the Bayesian information criterion (BIC) measure. How-

ever, the γ̂c sequence of the RH model is not robust for forecasting (Cairns et al., 2011b).

The Currie model

Currie (2006) simplified the RH model, by setting the coefficients of kt and γc as 1,

referred to as the Currie model:

log(mxt) = ax + kt + γc + εxt . (3.32)

The Currie model inherits the shortcomings of the RH model. Moreover, the Currie model

is less flexible than the RH model, due to the constant coefficients.

The Plat model

Plat (2009a) developed an age-period-cohort-specific model, by introducing a time factor

to describe the mortality patterns for the young age groups and absorbing the "good"

features from the LC, RH (or Currie) and CBD models. This combined age-period-cohort-
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specific model is referred to as the Plat model:

log(mxt) = ax + k
(1)
t + (x̄− x)k

(2)
t + (x̄− x)+k

(3)
t + γc + εxt , (3.33)

where the ax, k(1)
t and γc come from the Currie model, (x̄− x)k

(2)
t comes from the CBD

model, and (x̄ − x)+ was introduced by Plat (2009a). The (x̄ − x)+ ensures that k(3)
t

describes the overall mortality varying trends for the younger age groups in the data set,

where (x̄− x)+ = max(x̄− x, 0).

The Plat model uses three time factors to reflect different information in mortality.

The k(1)
t reflects the general trend in mortality decline. The k(2)

t reflects the relationships

between ages and the mortality decline. The k(3)
t captures particular trends in young age

groups. Young age groups have a higher risk of mortality from external factors, such

as drugs, AIDS, alcohol abuse and violence. Since the dynamics of mortality rates at

younger ages (below 50) are significantly different than those at older ages, if k(3)
t is

removed, the Plat model is for old age groups only.

The Plat model performs well for whole age ranges in the analysis given by Plat

(2009a) according to BIC. However, by using a large number of parameters, the Plat

model may yield large uncertainty of projection. Furthermore, k̂(2)
t , k̂(3)

t and γ̂c are irreg-

ular and may be difficult to predict. Then, the forecast mortality may not be reliable.

3.3 Joint models

With globalization, countries are becoming increasingly similar in terms of lifestyle, cul-

ture and socio-economic conditions (Li and Lee, 2005), and thus experience increasingly

similar mortality improvements (Mathers et al., 2001; Moser et al., 2005). Given the con-

text of a worldwide convergence of mortality, combined mortality projection of different
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countries appears more cogent than treating each country separately and in isolation.

Joint mortality models aim to pool mortality information and trends across popula-

tions so as to provide a more robust and sound analysis compared to that provided by

separate analyses based on segmented data. Joint models can describe both similarities

and differences between populations. Incorporating or pooling across similar populations

with joint models aims to achieve four goals – reducing divergence in forecasting, im-

proving reliability in forecasting for small populations, analysing relationships between

populations and increasing goodness of fit. In addition, incorporating more information,

joint models – although not comprehensively assessed but illustrated by this research as

detailed in Chapter 6 – may yield better forecast accuracy than individual models.

3.3.1 Joint Lee-Carter model

As described previously, the LC model and other similar individual models normally

produce increasing differences in mortalities between populations in long-term projection.

The projection of individual models is inconsistent with observations that mortalities in

similar populations do not indefinitely diverge, whereas mortalities converge worldwide

convergence in mortality as described in Section 2.3.

To address this shortcoming, Li and Lee (2005) extended the LC model to a joint

form by incorporating common factors, referred to as the joint LC (JLC) model. The JLC

model captures the common properties across similar populations. The common items

consist of the common time trend and the common age-specific response to the common

time trend. The JLC model stabilises the differences in mortality across populations in

long-term projection.
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The JLC model

Incorporating i as a population index, the LC model can be written as follows:

log(mxti) = axi + bxikti + εxti , (3.34)

where i = 1, ...` and axi, bxi and kti are defined the same as ax, bx and kt in the LC model

with the i index stressing the fact that, initially, all the coefficients are distinct for different

i.

A simplified joint LC (SJLC) model is

log(mxti) = axi + bxkt + εxti ,

where bx and kt denote the common time trend and common age-specific coefficient re-

sponse to the common time trend. The SJLC model assumes that populations have indi-

vidual "base" levels (axi) but share a common trend bx and kt in mortality decline.

A general joint LC model, referred to as the JLC model, is

log(mxti) = axi + bxikti + bxkt + εxti , (3.35)

where bxi and kti denote the individual factors as defined in (3.34). The JLC model allows

populations to possess both individual and common trends to model mortality declines.

Estimation of parameters in the JLC model

The common trend is dominant in the mortality decline across populations (Li and Lee,

2005), and thus common factors are estimated prior to individual factors. Therefore, step
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1 estimates bx and kt. Step 2 estimates axi, bxi and kti.

Estimation of common factors Applying the LC model to the aggregated population:

log(mxt) = âx + b̂xk̂t + εxti , (3.36)

where

mxt =

∑p
i=1 dxti∑p
i=1 exti

âx =

∑n
t=1 log(mxt)

n
, (3.37)

where dxti and exti are defined in (3.16) and (3.17), and b̂x and k̂t are estimated using SVD

as described in (3.11).

Estimation of individual factors The âxi is estimated the same as (3.9),

âxi =

∑n
t=1 log(mxti)

n
, (3.38)

Let Yi denote a matrix with entries yxti:

yxti = log(mxti)− âxi − b̂xk̂t = bxikti + εxti . (3.39)

Then, (3.11) and (3.10) are applied to Yi to obtain b̂xi and k̂ti.

Advantages of the JLC model in forecasting mortality

The JLC and LC models are evaluated by applying them to two groups of populations.

Each group consists of multiple countries. The JLC model is applied to jointly fit and

forecast mortality across countries in each group. Two measures are applied to evaluate

the models’ forecasting performance: the standard deviation of forecast life expectancy
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across countries and the average 95% confidence interval (CI) of the forecast life ex-

pectancy across countries.

Group 1 (the low mortality group) contains Austria, Canada, Denmark, England, Fin-

land, France, Germany (West), Italy, Japan, the Netherlands, Norway, Spain, Sweden,

Switzerland and the USA. In this analysis, the JLC model yields a smaller standard de-

viation and a smaller average CI of the forecast life expectancy across countries than the

LC model.

Group 2 (the high mortality group) includes Bulgaria, Czech Republic, Germany

(East), Hungary, Lithuania and Russia. In this analysis, the JLC model produces a smaller

standard deviation but larger average CI of the forecast life expectancy across countries.

For low mortality countries or developed countries, mortalities converge across coun-

tries. The JLC model captures the convergence and yields higher certainty than the LC

model. For high mortality countries or developing countries, mortalities diverge across

countries as described in Section 2.3. The JLC model is not appropriate.

Since the AR(1) process requires kti to converge at zero, in the long term, member

populations experience the same mortality decline bxkt. In the long term, the JLC model

produces constant difference in the log death rate across populations, referred to as non-

divergence. The SJLC model excludes individual time trends, and thus yields a non-

divergent forecast log death rate in both the short term and the long term.

Limitations of the JLC model in forecasting

The JLC model uses a common time factor (kt) and an individual time factor (kti) to

describe the mortality trends of each population. The kti sequence is modelled as a AR(1)

process. In the short term, the multiple trends may increase the forecast uncertainty.
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Li and Lee (2005) introduced a ratio of similarity to determine whether populations are

similar enough to jointly fit and forecast, but the criterion is determined subjectively. The

JLC inherits some shortcomings of the LC model – the assumption of constant bx and bxi,

lack of smoothness in forecast rates, and the lack of cohort effects.

Improving the estimation of the JLC model using Poisson regression

Li (2013) applied Poisson regression (Brouhns et al., 2002) to estimate the common fac-

tors of the JLC model, referred to as the Poisson JLC (PJLC) model. The individual

factors are estimated by using the SVD method. By considering the aggregating popula-

tion’s size, the PJLC model enhances the effects of the whole group.

The PJLC model performs more reliably than the LC model when forecasting mortal-

ity in the long term. The PJLC model yields relatively constant differences – the male-

to-female death ratio – between Australian males and females. However, the LC model

yields an increasing male-to-female death ratio over time. Furthermore, the PJLC model

produces a smaller difference of forecast life expectancy between females and males.

However, the comparison is only between the PJLC and LC models, disregarding the

original JLC model proposed by Li and Lee (2005). Hence, it is unknown whether and

how much the Poisson regression improves the JLC model. Furthermore, the forecast

accuracy was not examined. In addition, the PJLC model is an enhancement of the JLC

model, and thus contains the shortcomings of the JLC model.

3.3.2 Joint Lee-Carter model with three-way decomposition

The LC model applies to two-dimensional data sets – ages and years. To incorporate an

extra dimension – for example, the population effect – Russolillo et al. (2011) extended
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the LC model by introducing a three-way approach, referred to as the TLC model. The

TLC model incorporates factors of ages, years and populations and thus describes the

relationships in mortality between populations.

The TLC model

The TLC model is

log(mxti) = axi + bxktρi + εxti , (3.40)

where ρi denotes the population specific factor of i. The axi, bx and kt are defined in

(3.3.1). The TLC model allows populations to have the age-specific "base" level, axi, but

share the common factors, bx and kt, and bx and kt are affected by ρi.

Estimation of parameters in the TLC model

The axi is estimated using (3.38). The item bxktρi is three-dimensional and Russolillo

et al. (2011) introduced a three-way SVD approach – the Tucker approach (Tucker, 1966).

Let Y denote a cube with dimensions m× n× ` and entries yxti, where

yxti = log(mxti)− âxi = bxktρi + εxti , (3.41)

In the Tucker approach, yxti can be written as follows:

yxti =
F∑
f=1

G∑
g=1

J∑
j=1

bxfktgpijψfgj , (3.42)
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where the new factor ψfgj is the entry of the "designed" cube Ψ. The Tucker approach

rearranges the Y to a matrix Y with dimensions m× (n`),

Y[m×(n`)] = B[m×F ]Ψ[F×G×J ](P′[J×`] ⊗K′[G×n]) , (3.43)

where B, K and P are a matrix with entries bxf , ktg and pij . The bx, kt and ρi in (3.40)

denote the xth, tth and ith row of the matrix B, K and P. The core array, Ψ, captures the

relationships between the F components of mode B, the G components of mode K and

the J components of mode P. The P′ and K′ denote the transposition matrix of P and

K. The dimensions of Ψ are determined via trials of experiments (Kiers and Kinderen,

2003). The notation ⊗ denotes the Kroneker product.

Advantages of the TLC model in analysing relationships between mortalities

Russolillo et al. (2011) applied the TLC model to 10 European countries for the ages 0,

1-4, 5-9, ... 95-99 and the years 1950-2000 with combined genders. The countries were

Austria, Belgium, Denmark, Finland, France, Italy, the Netherlands, Spain, Sweden and

the United Kingdom (UK). The TLC model illustrates a high similarity of mortality trends

in mortality across the countries, with a correlation coefficient of 0.9876. By applying the

Tucker approach, the TLC model is able to analyse the relationship in mortality among

countries. Mortality of ages 20-40 and 45-94 is similar for all countries, Belgium, Finland,

France, Italy and the UK experience overall similarity in mortality, while the Netherlands,

Denmark and Spain differ from the other member countries.
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Limitations of the TLC model in forecasting mortality

The TLC model may have more than one time factor. The additional time trends are

normally irregular and difficult to forecast as can be seen in Russolillo et al. (2011, Figure

3). Secondly, the TLC model may cause increasing differences in mortality between

populations. Since bxktρi ≈ bxkti, the kti sequences result in different mortality decline

of individual populations, and then lead to increasing differences in mortality between

populations in long-term projection as described in Section 3.2.3.

3.3.3 Joint Lee-Carter model with parallels

The PLC model

Debón et al. (2011) extended the LC model to a joint form. In this joint LC model, ge-

ographically close member populations share the same basic pattern of mortality which

can be expressed by the LC model. For given populations, the differences between mem-

ber populations is constant for all age groups. Therefore, curves of age-specific mortality

are parallel across populations. This joint LC model is referred to as the PLC model.

Contrary to the TLC model, the population effect factor in the PLC model is "added" not

"multiplied". The "parallel" property is less flexible for general application.

The PLC model is

logit(qxti) = ax + bxkt + ρi + εxti , (3.44)

where logit(qxti) is defined in (3.25) and other symbols are defined the same as in (3.40).

For a give age group, the curves of age-specific mortality are parallel between given pop-

ulations. Populations share the same patterns of mortality, but with different shifts.
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Estimation of parameters in the PLC model

Debón et al. (2011) applied a generalised nonlinear model (GNM) to estimate parameters

in the PLC model. Under the GNM, the constraints described in (3.10) are not applied to

bx and kt. The initial values of bx and kt are set as 1 and 0, respectively. The application

of the GNM method to the LC model was detailed by Turner and Firth (2012). During the

estimation, the weights of each age group and populations are incorporated. The whole

group is viewed as an independent group.

Advantages of the PLC model in estimating mortality

The PLC model yields the best fit in comparison with the JLC and TLC models, and

with a model proposed by Brass et al. (1971), when applying to fit mortality data sets –

17 of the 19 Spanish regions for the ages 0-97 and the years 1980-2006. The PLC model

generates the smoothest bx and kt and the lowest overall errors in the number of deaths for

both females and males. Errors generated by the PLC model were distributed normally

and centralized around 0 across ages, time and populations.

Furthermore, by using a unique index – the population effect, ρi, the PLC models

simplifies the differences in mortality across populations. The PLC model (3.44) can

written as

logit(qxti) = (ax + ρi) + bxkt + εxti ≈ axi + bxkt + εxti , (3.45)

the PLC model is similar to the SJLC model (3.3.1). If applying (3.45) to forecast mor-

tality, populations possess individual initial difference axi, but share the same trend in

projection. Therefore, (3.45) yields constant difference in logit death rate over time, re-

ferred to as non-divergence.
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Limitations of the PLC model in estimating and forecasting mortality

The assumption of "parallel" of age-specific logit death rate across countries may not be

appropriate for a general application. For geographically close populations, for exam-

ple, where the regions in a country share similar economic, cultural and environmental

conditions and experience improvements in mortality, this assumption could be suitable.

However, for worldwide populations, for a given age group, the age-specific mortality is

not parallel across countries, such as the USA and Belgium (Lee, 2000), Japan and the

Netherlands (Biatat and Currie, 2010). Therefore, the assumption of "parallel" may be

reliable for forecasts with non-divergent demands, but may be inappropriate for fits.

3.3.4 Joint age-period-cohort model

The CBDCK model

Cairns et al. (2011a) extended the Currie model to jointly forecast mortality between two

populations, referred to as the Cairns-Blake-Dowd-Coughlan-Khalaf-Allah (CBDCK) model.

The CBDCK model is separately applied to a large population and to a small population.

The parameters estimated for the small population are adjusted using parameters esti-

mated for the large population via a Bayesian framework. The CBDCK model improves

the forecast reliability of the small population, by referencing a similar large population.

Cairns et al. (2011a) changed the Currie model (3.32) as:

log(mxti) = axi +
1

Nx

kti +
1

Nx

γci + εxti , (3.46)

where Ny is constant and denotes the length (in years) of the fitting period.

The CBDCK model is designed to jointly forecast mortality between two similar pop-
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ulations. These two populations are denoted as Population 1 (the large population) and

population 2 (the small population). For instance, Population 2 (Sydney) can be one of the

subsets of Population 1 (Australia). With a small size, Population 2 may have unreliable

estimation of parameters and may result in unreliable projection of mortality. Therefore,

Population 2 relies on Population 1 to forecast mortality.

The CBDCK model assumes that Population 2 possesses its own mortality decline

trend in the short-term, but shares the common trend with Population 1 in the long-term.

According to this assumption, the CBDCK model applies a Bayesian method to adjust the

projection of Population 2, using the parameters estimated for Population 1.

Estimation of parameters in the CBDCK model

Estimates of axi, kti and γci are introduced in Section 3.2.7. The Bayesian framework is

used to adjust the projection of kt2 and γc2, using kt1 and γc1 as follows:

Rk(t) = kt1 , Sk(t) = kt1 − kt2 , Rγ(c) = γc1 , Sγ(c) = γc1 − γc2 ,

where Rk(t) is modelled as a random walk and Rk(t1) = 0. The Sk(t) sequence follows

an AR(1) time series with mean reversion 0. The innovations for Rk(t) and Sk(t) are i.i.d

bivariate normal from one to the next year with non-zero correlation. The series Rγ(c)

is an AR(2) process around a deterministic linear trend around 0. The Sγ(c) sequence

is an AR(2) process with mean reversion 0. The innovation of Rγ(t) and Sγ(t) are i.i.d

from one year to the next year with small correlation. The Markov chain Monte Carlo

(MCMC) method is applied to produce a Bayesian posterior distribution of parameters in

the CBDCK model. The MCMC method deals with the missing data using the posterior

distribution estimation and incorporating uncertainty.
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Advantages of the CBDCK model in forecasting mortality

Compared with the Currie model, the CBDCK model increases the describability for a

small population. With the application to England and Wales (the large population) and

continuous mortality investigation (CMI) (the small population) males for the ages 60-89

and the years 1961-2005, with forecasts for 2006 - 2050, the CBDCK model produces

less fluctuation in mortality forecasts for the CMI males than the Currie model. Since

the Bayesian method reduced the uncertainty of projection for the CMI data, the CBDCK

model yielded more smooth time trends and cohort trends than the Currie model. The

CBDCK model provides consistent central projections for the CMI data, with a smaller

width of the fans of projections for the small population, compared with the Currie model.

Limitations of the CBDCK model in forecasting mortality

The CBDCK model inherits the shortcomings of the Currie model. The cohort trend is

irregular and is difficult to forecast. The 1
Nx

is constant, and thus causes inflexible ap-

plication and may result in an unreliable long-term projection. The Currie model may

be unreliable for projection, and thus the CBDCK model may also be unreliable for pro-

jection. Furthermore, the CBDCK model was designed for a two-population – a large

population and a small population – projection. If these two populations have similar

sizes or there are more than two populations, the CBDCK model may not be suitable.

The CBDCK model is for old age groups and may not be appropriate for general age

groups. Hence, the CBDCK model is limited for a general application.
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3.3.5 Other joint mortality models

Villegas and Haberman (2014) proposed a two-step model to model the differences of

mortality across subpopulations, referred to as the VH model. The VH model is:

log(mxt) = ax + bxkt + γc + εxt , (3.47)

log(mxti) = log(mxt) + axi + bxikti + εxti , (3.48)

where (3.47) is a simplification of the APC model, (3.31), and describes the mortality of

the whole population. Equation (3.48) is an extension of the LC model, (3.8), and models

the mortality of the subpopulation i in the whole population. The VH model assumes that

the subpopulations share the same cohort trend, γc, of the whole population but experience

individual time trend, kti and the age-specific factors, axi and bxi. The VH model inherits

the disadvantages of cohort factors as described in Section 3.2.7, where (3.47) may cause

unreliable projection. Furthermore, the VH model may not be appropriate for modelling

mortality across countries (Villegas and Haberman, 2014).

Hatzopoulos and Haberman (2013) introduce a ratio to model the relationship of mor-

tality between females and males within a country and jointly model the female and male

mortality:

log(µxt) = αx +
J∑
j=1

β(j)
x κ

(j)
t + ξxt , (3.49)

log(mxt1) = ax1 +
J∑
j=1

b
(j)
x1 k

(j)
t1 +

J∑
j=1

b(j)
x k

(j)
t + εxt1 , (3.50)

log(mxt2) = ax2 +
J∑
j=1

b
(j)
x2 k

(j)
t2 +

J∑
j=1

b(j)
x k

(j)
t + εxt2 +

J∑
j=1

β(j)
x κ

(j)
t , (3.51)
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where the three models constitute the HH model. Equation (3.49) models the ratio of

central death rate between two populations – for example, females and males, and

log(µxt) = log

(
µxt1
µxt2

)
.

Equations (3.50) and (3.51) are extended from the HU model, (3.23), and the JLC

model, (3.35) and model the mortality of populations 1 and 2, respectively. Equation

(3.51) is based on (3.50) and incorporates the trends of ratio,
∑J

j=1 β
(j)
x κ

(j)
t , to ensure

a non-divergent projection between populations 1 and 2. The HH model inherits the

disadvantages of the HU and JLC models as described in Section 3.2.5 and 3.3.1, referred

to as the problems of over-parameterization and the irregular time trends.

3.4 Conclusion of existing individual and joint models

This chapter highlights the WT, LC, HU, JLC, TLC, PLC and CBDCK models in detail,

briefly introducing some improved methods of the LC model and briefly reviewing the

age-period-cohort-specific (APC) models. Understanding and criticizing the properties

of an existing mortality model provide an appropriate way to propose a new model.

The WT model describes mortality in terms of z–scores, using a different mortality

scale from many existing models. The advantages of using z–scores are described in

Section 3.2.1. Thus, using z–scores can be a way to establish a new joint model.

The LC model is widely used and evaluated mortality forecasting model. This chapter

also briefly introduces the LC model’s improved methods – the LM, BMS, BDV and

DT models. The HU model is an extension of the LC model, by absorbing features –

additional parameters and an application of smooth function for age factors. As a result,
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the HU model performs better than the LC model and its improved methods (Booth et al.,

2006; Shang et al., 2010).

The JLC, TLC and PLC models are derived from the LC model, inheriting advantages

and disadvantages of the LC model. Then, the new joint model can be extended from

an existing individual model, considering the advantages and avoiding or minimizing the

disadvantages. The CBDCK model is based on a APC model – the Currie model, and

thus the CBDCK model inherits the strength and weakness of the APC models.

However, joint models have shortcomings as shown in Table 3.2. The JLC uses more

than one time trend, and may result in uncertainty in projection as criticized in Section

3.3.1. The PLC model is appropriate for subnational populations as described in Section

3.3.3. As described in Section 3.3.4, the CBDCK model uses a cohort trend and may

yield unreliable forecasts, and being designed for old age groups and for two-population

analysis. The TLC model allows population effects to influence the common factors, and

thus may produce divergence in projection as described in Section 3.3.2.

Table 3.2: Limitations of existing joint models and limitations of the relevant studies

Model Irregular Trends Multiple Trends Limited Application
JLC X 3.3.1

PJLC X 3.3.1
TLC X 3.3.2
PLC X 3.3.3

CBDCK X X X 3.3.4

Note: The "trends" include time and cohort trends.

Based on the shortcomings of existing individual and joint models, the new model

developed in Chapter 4 is a joint model and therefore ensures non-divergence of forecasts.

Furthermore, the new model does not involve cohort factors to ensure a reliable projection

and uses one time trend to minimize the forecast uncertainty. In addition, the new model

is suitable for all age groups and is appropriate for general populations.
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Chapter 4

Joint Wang Transform Model – the

Proposed New Joint Model

4.1 Objectives of the new model

This section develops a new joint model to describe the variations in mortality. This new

model is an extension of the WT model introduced in Section 3.2.1 and has the following

three features which address the deficiencies of existing mortality models.

Firstly, the new model is a joint model, enabling the joint fitting and forecasting of

the mortality for groups of similar populations. As described in Section 2.3, mortalities

throughout the world are increasingly similar or converging. Therefore, separate fitting

and forecasting of mortality is inappropriate. Existing joint models have various short-

comings as described in Section 3.4, such as unreliable projection due to multiple trends

and limited application for specific age groups and populations. The new model uses one

time trend to minimize the uncertainty of projection yet captures the improvements across

all ages – the new model aims to apply to all age groups and populations.
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Secondly, the new model permits flexible mortality trends over time. As described

in Section 2.4, mortality rates have declined with a fair amount of uncertainty. However,

existing individual and joint mortality models generally assume mortality to vary linearly

over time (Lee and Carter, 1992; Renshaw and Haberman, 2003a; Tuljapurkar and Boe,

1998). The assumptions of mortality models conflict with actual mortality trends over

time. To address this shortcoming, the new model permits mortality in terms of z–scores

to vary flexibly over time, which is detailed in Section 4.2.

Thirdly, the new model is simple to apply. Existing individual and joint models gen-

erally use a large number of parameters to describe mortality, which may result in over–

parameterization, and yield non-robust forecasts (Cairns et al., 2008). There are advan-

tages in keeping models simple (Cairns et al., 2009; Plat, 2009b).

The new model is extended from the WT model. The WT model possesses two main

advantages over other existing individual mortality models. Firstly, the WT model de-

scribes changes in mortality over time in terms of z–scores as described in Section 3.2.1.

Existing mortality models almost always model the log death rate. By using another

mortality scale – the changes in z–scores – the new model may describe the features of

mortality from another angle, differing from the existing models. Secondly, although the

shift of the z–scores is assumed to be constant over time, the WT model can be extended to

allow a flexible shift of the z–scores. Additionally, by using one parameter, the WT model

is one of the simplest models. The extension of the WT model inherits this simplicity.

The new model is a joint model extended from the WT model, referred to as the joint

Wang Transform (JWT) model. The JWT model allows a flexible mortality trend and has

a simple form. With these features, the JWT model is expected to perform better than

existing individual and joint models. The evaluation in Chapter 6 suggests that the JWT

model meets the above three targets and is a reliable joint model.
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4.2 The JWT model

The JWT model is developed in two steps. Step 1 extends the WT model from a non-

specific to an age-period-specific model, referred to as the Wang Transform Age Period

(WTAP) model. Step 2 extends the WTAP model from an individual model to a joint

model.

4.2.1 Age-period-specific WT model

The WT model assumes that the z–scores (zxti) experience a constant drift over time. The

definition of z–scores is introduced in Section 3.1 and detailed in Section 3.2.1. Introduc-

ing the population index, i, to the WT model, Equation (3.1) becomes

zxti = zx,t−1,i + λi + εxti , (4.1)

where the subscript i indicates that quantities, including λi, are dependent on population i.

Thus the expected change in the z–score of population i may be different from the change

or improvement in other populations. Hence this model supposes separate improvements

for different populations – there is no communality across populations.

With λi depending only on i, an unbiased estimate of λi is derived as

λ̂i =
1

m(n− 1)

∑
x,t

λ̂xti , λ̂xti = zxti − zx,t−1,i .

In this situation, while λi is population dependent, it tends to be restrictive as described in

Section 3.2.1. For example, if the age range of the mortality data set is different from 0 to

100, then it is often found that the shift in z–scores tends to be non-constant across age.
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A very general extension of the WT model permits both age and time effects as

zxti = zx,t−1,i + λxti + εxti . (4.2)

where (4.1) uses few parameters to describe the change of z–scores, while (4.2) uses

many parameters. Equation (4.2) is impractical, since it is over-parameterized leading to

overfitting and non-robust forecasting.

A possible extension of the population specific WT model is between the extremes of

(4.1) and (4.2). The λxti is expressed by a function of age and time, referred to as the

Wang Transform Age Period (WTAP) model:

λxti = axi + kti , (4.3)

where axi and kti are age and period factors for population i. Thus, (4.3) is an age-period-

specific model linking the progression of ages and time periods within a given population

i. In fitting, the axi permit age effects – i.e. different progressions in z–scores for different

ages – which are especially useful if the base age is not zero. Furthermore, kti is expected

to be a stationary process indicating that the z–score processes are, in terms of time series

terminology, at most integrated of order 1.

The WTAP model uses age-specific factors, axi. There are no age–time effects bxi as

with the LC model – saving on parameters. The LC model describes the mortality (the

log death rate) directly and (3.8) is written as

E{log(mxti)} = axi + bxikti , (4.4)

indicating that the expected age specific mortality in population i at time t has both "in-

tercept" axi and "slope" effects bxi. The WTAP model describes changes in z–scores. The
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age-specific factor, axi, reflects the rate of z–score increase over time for age x, and thus

plays a role of "slope" as the bxi does in (4.4) in describing variation in mortality over

time. Hence, bxi is not necessary in (4.3).

The time trend kti in the WTAP model monitors and models the mortality trends.

When the kti sequence is relatively constant over time, z–scores increase constantly over

time. When the kti sequence increases (decreases) over time, z–scores increase with

acceleration (deceleration).

4.2.2 Extending the WTAP model to a joint model

The λxti as developed above fluctuates across years and ages. Pooling across similar

populations can improve forecasting and yield insight into similarities and differences

between populations. The joint form of the WTAP model is called the JWT model:

λxti = ax + kt , (4.5)

where ax and kt are common age and time factors for all members in the group – that is

the ax and kt do not depend on i. In this formulation z–score shifts for each age and time

are common across all considered populations. Since λxti is a shift or change in z–scores,

kt is expected to follow a stationary process. The kt sequence is expected to be stationary

with an expected unconditional mean zero implying, in the long run, the z–scores shift by

a constant amount ax.

An expected zero value for kt ensures the ax and kt are identifiable. In particular on the

right hand side of (4.5), the ax and kt can be replaced by ax + c and kt − c, respectively,

indicating lack of identification unless ax and/or kt are normalised. The normalisation

where kt has unconditional expectation is convenient and aids interpretation.
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The JWT model uses only common factors to describe the change in z–score over

time. As a result, the JWT model assumes that populations share a common variation

in mortality over time. This assumption is the same as the SJLC model (3.3.1) and the

PLC model (3.44). In forecasting the z–score, however, the JWT model allows popula-

tions to use population and age-specific z–scores as jump-off rates. Therefore, individual

populations possess individual age-specific mortality "base" levels, but share a common

mortality trend. The forecast methods are discussed in Section 4.3.

4.2.3 Alternative joint Wang Transform models

Other models are possible for λxti and were tried. These alternative models have similar

forms to the joint models introduced in Section 3.3 and allow for more intricate age,

period and population effects and their possible interaction:

λxti =



ax + bxkt , (4.6a)

ax + kt + ρi , (4.6b)

kt + ρi , (4.6c)

ax + bxktρi , (4.6d)

ax + bxkt + ρi , (4.6e)

ax + ktρi . (4.6f)

However, when fitting and forecasting mortality as introduced in Chapter 6, the gener-

alisations embodied in Equations (4.6a) to (4.6f) do not fit well, or have insignificant

coefficients. This is partly the result of the smoothing inherent in moving from mortal-

ity mxti or qxti to the z–scores. Therefore, the JWT model, for fitting and forecasting

mortality, appears to have advantages over (4.6a) to (4.6f), particularly in forecasting.

The age-specific coefficient, bx, does not significantly influence fit and forecast. In-
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stead, the use of bx may cause over-parameterization, indicating that bx is largely redun-

dant in modelling the changes in z–scores and therefore that (4.6a) is inappropriate.

The population effect, ρi, models the individual effect in a population as distinct from

another population. Using ρi, the JWT model may yield a better fit, but was found to

lead to inferior forecasts. Furthermore, the use of ρi generally produces divergence in the

z–scores in long-term projection. Take (4.6b) as an example, for populations i and j,

λxti − λxtj = ρi − ρj .

The differences in z–scores between i and j depend on the accumulative differences in λ

between i and j over time. The accumulative difference in λ between i and j is increas-

ing over time, and thus results in divergence of z–scores between i and j. The models

(4.6c) to (4.6f) suffer from the similar problem accounted by (4.6b). With convergence

demands, the population effect, ρi, results in divergence of z–scores across populations,

and is therefore inappropriate to model the changes in z–scores.

4.3 Fitting and forecasting mortality using the JWT model

This section introduces the use of the generalised linear model (GLM) to estimate the

parameters (ax and kt) in the JWT model. The methods to obtain the fitted and forecast

mortality using these estimated parameters are then introduced.

4.3.1 Estimation of parameters in the JWT model

The model

zxti − zx,t−1,i = ax + kt + εxti
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can be viewed as a two-way Analysis of Variance (ANOVA) setup with different countries

i serving as "within cell" replications. Since replications relate to different populations,

they can be considered independent observations. However changes in z–scores for dif-

ferent ages within a population are related since they are derived from the same survival

curve. Thus the εxti, for given i are related for different x. Any time series structure

however is expected to be picked up in the kt.

To estimate the unique values of ax and kt, constraints are required. As described

in Section 4.2.2, the kt varies in stationary manner over time. Then, the expectation of

kt is zero, E(kt) = 0, ensuring kt to be around zero over time. Therefore, constraints,∑
t kt = 0 and k1 = 0 are applied to the GLM estimation. This research applies the glm

package in R. The ages and the years are set as factors.

Since the JWT model is linear in the ax and kt, the generalised linear model (GLM)

can be applied to estimate parameters. Similar applications of the GLM to estimate pa-

rameters in mortality models have been undertaken (Currie et al., 2004; Debón et al.,

2008; Renshaw and Haberman, 2003a). The GLM model is generically provided by

commonly used statistical programs, in for example, R, S-Plus and Matlab. Therefore,

parameters of the JWT model are readily estimated by existing software packages.

GLM fitting routines generally assume the errors are independent and identical distri-

bution (i.i.d.) and, at best, normal. In the current context, this assumption as stated above

is inappropriate, since the adjacent "observations" zxti − zx,t−1,i come from correlated

transformed variables:

λ̂xti = zxti − zx,t−1,i = Φ−1(sxti)− Φ−1(sx,t−1,i) ,

where, sxti is the product of pxti across ages 0− x as introduced in (3.2). As a result, sxti

correlates to sx̃ti where x̃ 6= x. Hence, λxti is cross sectionally and serially correlated.
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Accordingly, λxti does not represent independent observations and any estimation is ap-

propriately interpreted as a smoothing or fitting exercise rather than formal estimation in

an i.i.d. framework.

Nevertheless, the GLM estimation generally delivers unbiased estimates. Weighting

with the population’s size reflects the desire to give more weight to those ages and times

with the most observations and ignore those ages and times where there are few obser-

vations. In this way GLM fitting is used to arrive at a reasonably coherent fit. In the

application of the GLM estimation, the survivors out of the radix, lxti (Wilmoth et al.,

2007), are used to weight the population’s size corresponding to λxti. The change of z–

scores, λ, varies around a constant, the mean of λxt across x and t as used by De Jong

and Marshall (2007). Hence, λ can be viewed as a variable of a normal distribution, and

the family in the GLM function is set as Gaussian (Forfar et al., 1988; McCullagh and

Nelder, 1989).

Note further that in Equation (4.5), there are no age factors bx serving to multiply and

modulate kt, for the sake of saving parameters. The bx does not appear to add significantly

to the explanatory power of the model. Equation (4.5) is thus viewed as a basis to fit a

surface to in the (x, t) plane, independent of the population i , and where the error terms

serve to model deviations that a population has from the surface. The structure to any

set of deviations, for example, related to a particular population, may be used to explore

specific features of the given population, indicating where the model is deficient, and

suggesting structural peculiarities of the population.

After obtaining âx and k̂t, the estimated λ̂xt is

λ̂xt = âx + k̂t .

The estimate of JWT model across countries is displayed in Table A.1 as an example.
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4.3.2 Example of fitting mortality using the JWT model

Figure 4.1 displays examples of the estimated âx and k̂t sequences, when fitting the JWT

model to jointly fit mortality across populations. The populations are described in Sec-

tion 5.3. The mortality data sets of the populations are for the years 1948-1994. Since

this research aims to evaluate the performance in a general application for common age

groups, the age groups are selected for 0-89. Over ages 95, the z–scores may not be linear

(De Jong and Marshall, 2007), and thus the modelling of λ for ages above 95 could be

undertaken in a further study. The application and evaluation of the JWT model are de-

scribed in Chapter 6. The JWT model is, thus evaluated and illustrated prior to a detailed

analysis in subsequent chapters.
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Figure 4.1: Estimates of ax and kt for females and males in the "across country" and
"across sex" analyses
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The top two panels of Figure 4.1 display âx and k̂t from an "across country" analysis,

pooling across 13 countries for females and for males, separately. The 13 countries are

introduced in Section 5.3 and the "across country" analysis is detailed in Section 6.2. The

curves denote the âx or k̂t sequence of a group, in this case, females or males.

The bottom two panels of Figure 4.1 display the âx and k̂t from an "across sex" anal-

ysis for 13 different countries, pooling across males and females within each of the 13

countries introduced in Section 5.3. The "across sex" analysis is detailed in Section 6.3.

The curves denote the âx or the k̂t sequence of a group, in this case, a country.

The top left panel of Figure 4.1 displays the âx sequence versus age in the "across

country" analysis. For both males and females, the âx follows a V-shape across ages. The

âx is initially high, drops to a minimum at age 65, and then increases with increasing age.

The minimum of ax is for the age group of 65 years old and is common for different sexes

and countries. The age group of 65 years old experiences the smallest change rate of z–

scores over time. For females, the old age groups, particularly ages over 80, experience

a large drift of z–scores. However, for males, the old age groups experience a similar

drift of z–scores as the young age groups. The plots of âx illustrate different patterns of

variation in mortality in terms of the log death rates.

The top right panel of Figure 4.1 displays the k̂t sequence versus year in the "across

country" analysis. For both males and females, the k̂t sequences generally decline but

with cyclical trends, reflecting the fluctuation of the drift of the z–scores over time. The

downward tendency of k̂t sequences indicate that the drift of the z–scores become smaller

over time, agreeing the findings that developed countries have experienced a decrease of

rate of mortality (the log death rate) decline (McMichael et al., 2004; Wilson, 2011).
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By using the time-varying k̂t, the JWT model offers the advantage of permitting a flex-

ible drift of z–scores in the short term. The assumption of stationarity ensures movement

to a constant drift of z–scores in the long term.

The bottom left panel of Figure 4.1 displays âx in the "across sex" analysis. For all

13 countries, the âx sequences experience similar shapes in the left panel of Figure 4.1,

although of a different magnitude, resulting in a series of somewhat parallel curves. The

curves follow a shallow V-shape similar to that in the top left panel of Figure 4.1.

The bottom right panel of Figure 4.1 displays k̂t in the "across sex" analysis. For

all 13 countries, the k̂t sequences have an initial downward tendency, and then fluctuate

around zero. The curves of k̂t are less similar than the curves displayed in the top right

panel of Figure 4.1. For individual years, k̂t may be positive or negative, but generally

tend to converge at zero. Therefore, the k̂t sequence in the "across sex" analysis, supports

the assumption that k̂t varies stationarily over time.

In the left panels of Figure 4.1, ax obtains the lowest values for age groups in the

60s, denoting that the z–scores experience the smallest change for such age groups. The

finding of these two panels is consistent with the conclusion drawn by Debón et al. (2012)

where people aged 60 years old contribute the least to life expectancy. Therefore, the JWT

model is basically practical in describing mortality in terms of z–scores.

Figure 4.2 displays the average drifts of the log death rate and z–scores for females

and males in Australia, using data for ages 0-89 and years 1948-1994. The correlation co-

efficient between females and males is 0.81 for the left panel and 0.88 for the right panel.

By using both log death rate and z–scores, females and males are highly correlated. On

one hand, z–scores capture the features of mortality as well as the log death rate. On the

other hand, females and males experience homogeneous variation in mortality, suggest-

ing that the "across sex" analysis is reliable. The coherent analysis and joint forecast for
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females and males have been proposed in the literature and have been found to enhance

forecasts (Li and Lee, 2005; Li, 2013; Hyndman et al., 2013)
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Figure 4.2: Average of annual differences in the log death rate and the z–scores across
ages for females and males in Australia

4.3.3 Forecast of mortality using the JWT model

Forecasting mortality using the JWT model involves three steps.

Step 1 forecasts the k̂t sequence using an appropriate time series model fitted to the k̂t.

Ideally, the fit of the time series model is undertaken simultaneously with the estimation

of the ax and kt. However, in this thesis, we have not done this: instead we have estimated

the kt using GLMs and then used time series methods to model the k̂t. Separating forecast

from estimate is generally applied by many of existing mortality models. For example, in

the LC model, k̂t is estimated via the SVD, Poisson process or other methods, and then a

random walk with drift is applied to model and forecast the k̂t sequence.
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Consider, for example, the AR(1) process. As described in Sections 4.2.1 and 4.3.2,

using a non-stationary process to forecast k̂t may yield infinite z–scores in the long-term

projection. However, when k̂t trends to zero, the z–scores shift with a constant drift, âx,

for age x. This constant drift of z–scores is similar to the assumption of a random walk

with drift for the time trend in the LC model as introduced in Section 3.2.3. Therefore,

the stationary k̂t is reliable. Furthermore, using a stationary process to forecast k̂t allows

the drift of z–scores to vary in the short-term, but to be constant in the long-term. The

JWT model is more flexible than models that use a fixed rate of mortality decline over

time as, for instance, with the LC model.

Step 2 forecasts the λ̂xti. Suppose n denotes the latest observed time point. Since the

JWT model assumes that all populations share the same mortality trends in the forecasting

horizon,

λ̂x,n+h,i = λ̂x,n+h = âx + k̂n+h , (4.7)

where k̂n+h and λ̂x,n+h,i denote h step ahead forecasts of k̂t and λ̂xti at time t = n.

Step 3 forecasts the z–scores. The JWT model permits individual populations to pos-

sess a "base" level of mortality. The forecast of z–scores uses the latest z–scores zxni of

individual populations at each age x as the jump-off rates:

ẑx,n+h,i = zxni +
(
λ̂x,n+1 + · · ·+ λ̂x,n+h

)
= zxni +

(
hâx + k̂n+1 + · · ·+ k̂n+h

)
(4.8)

where zxni is the observation of the z–scores in year n and the future λ̂s are forecast as

in (4.7). Note that with a zero mean process k̂n+h → 0 as h → ∞. In the long term,

k̂n+h → 0 and the z–scores increase by âx per period.

The JWT model (4.5) models the change in the z–scores. This emphasises the critical

nature of jump-off rates. For example consider the case where a different i refers to males

and females in a given country. Then, (4.5) models the common change from given z–
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score levels for males and for females. Equation (4.8) uses zxni as the jump-off rates

and reflects the principal and actual differences in mortality across populations at the

beginning of the forecasting period. In spite of these differences, mortalities are expected

to converge across populations during the long term, for example, the forecasting period.

Step 4 transforms the forecast z–scores to the forecast survival probability:

ŝx,n+h,i = Φ(ẑx,n+h,i) ,

where ŝx,n+h,i is the h step ahead forecast of the survival probability for age x of popula-

tion i. In turn, (3.7) can be used to calculate one year death rates such as q̂x,n+h,i, m̂x,n+h,i

or log(m̂x,n+h,i) for direct comparison to the output used by other models – for example,

the LC model (3.8).

4.4 Advantages of the JWT model

The JWT model possesses a number of novel features and possible advantages. Unlike

the existing models that model mortality directly, the JWT model describes the change of

mortality in terms of the z–scores. The use of z–scores has advantages as described in

Section 3.2.1. Analysis shows that z–score trend to more linearly over time. Linear time

series are easy to deal with and in particular to forecast. Therefore, the scales of z–score

describe mortality data in an efficient way, where the variations in mortality are smooth

and linear, and thus are easy to capture. Figure 4.3 displays the z–scores of Australian

females and Dutch males between 1948 and 1994 for ages 0-89. The z-scores vary almost

linearly for each age group over time.
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Figure 4.3: The z–scores of Australian females and Dutch males between 1948 and 1994

By applying kt to model the change in z–scores, the JWT model permits a flexible

trends of z–scores. An increase in kt indicates an accelerated increase in the z–scores.

Similarly a decrease in kt indicates a decelerating increase in the z–scores. If kt is zero

for all t, the z–scores increase by the same amount ax depending on age x. Existing

mortality models assume log–mortality varies with constant drift: the expected change is

constant. For example, the LC model, as described in Section 3.2.3, gives a random walk

with drift for the time trends. Therefore, the JWT model operates on a different "scale"

and can be viewed both as more flexible or less flexible depending on the scale viewpoint.

As a joint model, the JWT model yields non-divergent forecast of mortality across

populations. From (4.8), the current differences – for instance, the jump-off differences

in z–scores – between populations do not change. Given populations i and jthe year n+h,

the difference in z–scores is estimated to be

ẑx,n+h,i − ẑx,n+h,j =
{
zxni + g(h)

}
−
{
zxni + g(h)

}
= zxni − zxnj , (4.9)
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where g(h) is a function of h and denotes the cumulative growth of z–scores from year n

to n+ h. From (4.8),

g(h) = λ̂x,n+1 + · · ·+ λ̂x,n+h = hâx + k̂n+1 + · · ·+ k̂n+h . (4.10)

Hence, for any ax, kt or h, the difference in the forecast z–scores between populations i

and j is constant for given x. Since z–scores increase over time, g(h) > 0 for h > 0.

The constant differences in z–scores across populations imply the convergence of the

survival probability functions of the different populations. Let f(z) and F (z) denote

the probability density function and the cumulative distribution function of the standard

normal distribution of z, with the properties of f(z) as:

f(z2) < f(z1) , −∞ < z2 < z1 < 0 ,

f(z2) > f(z1) , 0 < z2 < z1 < +∞ .

(4.11)

Given populations i and j and 0 < zxnj < zxni < +∞,

sxni − sxnj = Φ(zxni)− Φ(zxnj) = F (zxni)− F (zxnj) =

∫ zxni

zxnj

f(z)dz , (4.12)

Similarly,

ŝx,n+h,i − ŝx,n+h,j =

∫ ẑx,n+h,i

ẑx,n+h,j

f(z)dz . (4.13)

When the difference between zxni and zxnj is small, (4.12) and (4.13) become

sxni − sxnj ≈ f

(
zxni + zxnj

2

)(
zxni − zxnj

)
,

ŝx,n+h,i − ŝx,n+h,j ≈ f

{
zxni + zxnj

2
+ g(h)

}(
zxni − zxnj

)
.
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Since g(h) > 0 and 0 < zxnj < zxni < +∞, from (4.11),

f

(
zxni + zxnj

2

)
> f

{
zxni + zxnj

2
+ g(h)

}
,

and thus

sxni − sxnj > ŝx,n+h,i − ŝx,n+h,j .

Therefore, the difference in survival probability between populations i and j decreases

over time, when the difference in z–scores between i and j is constant over time.

Given zxni = 1.2, zxnj = 1 and g(h) = 0.5, from the standard normal distribution

table, the difference in survival probability between i and j in year n is

sxni = Φ (zxni) = Φ (1) = 0.8849 ,

sxnj = Φ
(
zxnj

)
= Φ (1.2) = 0.8413 ,

sxni − sxnj = 0.0436 ,

and the difference in survival probability between i and j in year n+ h is

ŝx,n+h,i = Φ
(
ẑx,n+h,i

)
= Φ (1.5) = 0.9554 ,

ŝx,n+h,j = Φ
(
ẑx,n+h,j

)
= Φ (1.7) = 0.9332 ,

ŝx,n+h,i − ŝx,n+h,j = 0.0222 ,

Then, sxni − sxnj > ŝx,n+h,i − ŝx,n+h,j . The constant differences in z–scores across

populations result in convergence in survival probability across populations. Therefore,

the JWT model captures the convergence properties of mortality across populations.

Finally, the JWT model is simple for estimation and application. The JWT model

is an extension of the WT model which, in its simplest form, uses one parameter to fit

and forecast mortality. Hence, the JWT model uses much fewer parameters than existing
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individual or joint models. Furthermore, the JWT model is linear. With a linear format,

the parameters of the JWT model are easy to fit, and thus many of the existing fitting tools

can be applied. Additionally, the unique time trend has less forecast divergence than the

models with multiple time trends.

4.5 Disadvantages of the JWT model

Transformed from the survival probability, the z–scores are not a direct mortality indicator

and hence may not be easily understood. However, the z–scores also fully reflect the

mortality information available as shown in Figure 4.2. In addition, the z–scores can be

transformed into any well-understood mortality scales, for example, the log death rate. To

transform from z–scores to log death rate is simply introduced in Step 4 in Section 4.3.3

with a reverse process to (3.7).

From (3.2), the survival probability (sxt) is a product of the one year survival rate

(pxt) across age x. Hence, the survival probabilities correlate with each other across ages.

However, the dependent survival probability can be converted back to the independent

one year death rates. Therefore, modelling the correlated z–scores is acceptable in this

scenario.

In addition, the JWT model has the risk of permitting z–scores to cross over by age.

For observed z–scores, the curves of zxti and zyti do not cross over, where i is a given

population and x and y are two given age groups. The WT model assumes that all age

groups share the same constant drift of z–scores over time, and thus avoids the risk of

cross over. Nevertheless, the JWT model permits different age groups to vary by ax, and

then a crossover between the curves of zxti and zyti is possible. However, this risk does not

significantly influence the application of the JWT model. On one hand, the ax is estimated

83



using non-crossing z–scores, and the estimates of z–scores are expected to be similarly

consistent. On the other hand, in the application of the JWT model as introduced in

Chapter 6, the estimates of ax are similar across x as displayed in the left panels of Figure

4.1. Incorporating the different values between zxni for different x, the small differences

of ax across x do not appear to result in crossover of z–scores in the forecasting horizon

n+ h.
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Chapter 5

Methods and Measures to Evaluate

Models

5.1 Outline

This chapter introduces measures to evaluate the models, including the JWT model de-

veloped in Chapter 4 and some other existing models introduced in Chapter 3. Existing

literature may not comprehensively evaluate joint models. The measures introduced in

this chapter indicate the performance of the JWT model versus existing models, and in-

dividual versus joint models. These comparisons illustrate the usefulness, efficacy and

advantages of the JWT model. In this comparative analysis we also cover individual

models and hence provide answers as to the utility, practicability and efficacy of joint as

opposed to individual models.

Comparative evaluation include both fit and forecast performance. To make the rele-

vant comparisons requires measures to evaluate models, especially for forecast accuracy.

To benchmark the strengths and weaknesses of the JWT model, a range of existing indi-
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vidual and joint models are selected for comparison. In particular we select seven exist-

ing models, including three individual models and four joint models, to compare with the

JWT model (Section 5.2). To ensure a fair comparison, the eight models are applied to

the same scenarios – the same fitting period, jump-off rates and forecasting period.

The eight models are applied to fit and forecast mortality of a group of populations

(Section 5.3). Due to the reliable record of deaths, the mortality data of developed coun-

tries are more reliable than those of developing or poor countries. As a result, mortality

data of developed countries are usually applied by demographers to evaluate the perfor-

mance of mortality models, such as the G7 countries (Tuljapurkar et al., 2000), Australia

(Tickle and Booth, 2014), Denmark (Jarner et al., 2008), Italy (D’Amato et al., 2011),

England & Wales (Renshaw and Haberman, 2003b, 2006), the USA (Cairns et al., 2009;

Lee and Carter, 1992), Sweden (Lundström and Qvist, 2004) and Japan (Wilmoth, 1993).

Conversely, less developed countries experience various mortality trends over time and

might not be robust for the evaluation of joint models Li and Lee (2005). Therefore, de-

veloped countries with large populations are reliable for the evaluation of models. This

research selects the 13 developed countries used by Li and Lee (2005) and Russolillo et al.

(2011)

Joint models are applied to jointly fit and forecast mortality "across country" and

"across sex". The "across country" analysis jointly fits and forecasts mortality of the

13 countries for females and then for males. The "across sex" analysis jointly fits and

forecasts mortality of the females and males for each of the 13 countries. Thus, in the

"across country" analysis, mortality experience across countries is pooled. In the "across

sex" analysis experience is pooled across the two sexes.

To evaluate forecast performance of the models, the time horizon is divided into two

parts: the fitting period (1948-1994) and the forecasting period (1995-2009 or 1995-

2044). Model parameters are estimated using data from 1948 to 1994, 47 years in total.
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The goodness of fit is measured in the fitting period. Models are then applied to forecast

mortality from 1995 to 2009, a 15-year projection, where the forecast accuracy is mea-

sured. For an out-of sample prediction, the length of fitting period is three times of that of

the forecasting period. To evaluate the models’ ability in controlling divergence of mor-

tality across populations, models are applied to forecast mortality from 1995 to 2044, a

50-year projection, where the convergence properties of mortality across populations are

measured. Although the forecasting period (50 years) is longer than the fitting period (45

years), this prediction does not evaluate the forecast accuracy by the convergence proper-

ties. Furthermore, all these models are under the same scenario, and thus the prediction

is acceptable and fare for the selected models.

Methods are applied consistently to ensure that the evaluation assesses the models

rather than the specific details of its application (Section 5.4). For example, for all se-

lected models, actual mortality is used as the jump-off rate in order to reduce the bias in

forecasting (Booth et al., 2002b; Lee and Miller, 2001). However, since the actual mortal-

ity rate is jagged across ages and may cause high bias for specific age groups (Hyndman

et al., 2013), the jump-off log death rate is smoothed across age by using b-splines prior

to projection. Since all models are based on the same conditions, smooth jump-off rates

are expected to improve the performance of all models similarly.

Goodness of fit is measured using the Bayesian information criterion (BIC) (Section

5.7). BIC is widely used to describe the match between a model and data. BIC measures

the size of the fitting error – the difference between observed and estimated number of

deaths and penalises for the number of parameters in a model.

Forecasting performance is based on forecast accuracy (Section 5.8) and convergence

properties of mortality across populations (Section 5.10). The measures of forecast accu-

racy reflect the match between observed and forecast mortality. Individual models may

forecast increasing differences in mortality between populations, referred to as diver-
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gence. The convergence properties examine the models’ ability in controlling divergence

when forecasting mortality. Thus BIC decreases with lower fitting error and a decrease in

number of parameters.

The forecast accuracy is based on the analysis of errors, including mean error (ME)

and mean absolute error (MAE). The ME can be positive, negative or zero, indicating

underestimation, overestimation and zero error between observation and fit. The MAE

is non-negative and low MAE indicates high forecast accuracy. Total ME and MAE are

averaged across ages and over time, and reflect the overall forecast accuracy without

specific reference to age or time. The ME and MAE over time illustrate the trends of

errors over the forecasting period.

The comparative MAE (CMAE) is the percentage difference in the MAE between a

model and a given benchmark model. The LC model is widely used and understood, and

is thus used as the benchmark. For example, a CMAE of 50% indicates the MAE of the

current model is 50% higher than that of the LC model. A positive CMAE indicates that

the current model has worse forecast accuracy than the LC model, while negative a CMAE

means that the current model produces better forecast accuracy than the LC model.

The convergence properties of mortality across populations describes the relative dif-

ferences in mortality of populations as described in Section 5.10. The convergence prop-

erty is described by the standard deviation of the forecast of mortality across different

populations. A model causes divergence across populations when forecasting mortality,

if such a standard deviation increases over time. Mortality is increasingly similar among

most countries as described in Section 2.3, referred to as convergence. However, individ-

ual models may project an increasing difference, referred to as divergence. The conflict

between divergence and convergence requires measures to be used to evaluate the per-

formance of models. The convergence properties of mortality across populations assess

whether a model produces an increasing difference in mortality across populations. Gen-
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erally, joint models are expected to produce non-divergent projections.

5.2 Selection of models for evaluation

The models discussed in the previous chapters are listed in Table 5.1 with a symbol "X"

indicating those models used in the empirical evaluation. This research selects three indi-

vidual models (WT, LC and HU) and four joint models (SJLC, JLC, TLC and PLC) and

these seven models are compared to the JWT model.

Table 5.1: The models applied in this research

Factors Name Selected Section Reference
Zero WT X 3.2.1 De Jong and Marshall (2007)

Two

WTAP 4 Proposed by this research
LC X 3.2.3 Lee and Carter (1992)
HU X 3.2.5 Hyndman et al. (2007)
LM 3.2.4 Lee and Miller (2001)

BMS 3.2.4 Booth et al. (2002b)
BDV 3.2.4 Brouhns et al. (2002)
DT 3.2.4 De Jong and Tickle (2006)

ASE 3.2.4 Renshaw and Haberman (2003c)
CBD

3.2.6

Cairns et al. (2006)

Three

CBD1
Cairns et al. (2009)CBD2

CBD3
RH

3.2.7
Renshaw and Haberman (2006)

Currie Currie (2006)
Plat 3.2.7 Plat (2009a)

Joint

SJLC
3.3.1 Li and Lee (2005)JLC X

PJLC
TLC X 3.3.2 Russolillo et al. (2011)
PLC X 3.3.3 Debón et al. (2011)

CBDCK 3.3.4 Cairns et al. (2011a)
ILC

3.1
Proposed by this researchCLC

JWT X 4
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The LC model is widely used, and thus the LC model is generally chosen as a bench-

mark to compare with a new model. Furthermore, the LC model is a "base" model for

many existing mortality models. These models may inherit the advantages and disadvan-

tages of the LC model. The use of a Poisson model for deaths for estimation is widely

applied to the LC model and its extensions (Delwarde et al., 2007; Dowd et al., 2010; Li

et al., 2006; Wang and Lu, 2005). In the analyses detailed in Chapter 6, Poisson regression

is applied to the LC model and to the common factors in the SJLC and JLC models.

The new joint model proposed in this research – the JWT model – is derived from the

WT model, so the WT model is also selected. The HU model is a classical extension of

the LC model, combining the good features of the LC model and its improved methods,

and thus is selected. The SJLC, JLC, TLC and PLC models are selected as the joint

models for comparison.

5.3 Data

This research selects 13 low mortality and high income countries from the Human Mor-

tality Database (HMD) according to existing studies (Crimmins et al., 2011; Li and Lee,

2005; Russolillo et al., 2011). The 13 developed countries (and their acronyms) are: Aus-

tralia (AUS), Canada (CAN), England and Wales (ENW), Finland (FIN), France (FRA),

Italy (ITA), Spain (ESP), Sweden (SWE), Switzerland (CHE), the United States (USA),

Japan (JPN), Denmark (DNK) and the Netherlands (NLD). Developed countries have

more reliable mortality data records, compared to developing countries.

The evaluation splits the available records into fitting and forecasting periods. Good-

ness of fit depends on the fitting period: years 1948-1994. Forecast accuracy relates to

the short forecasting period: years 1995-2009. The convergence properties of mortality
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across populations are assessed using the long forecasting period: years 1995-2044. The

ages are between 0 and 89. The data extracted is exposed to risk and central mortality

rates by year and single year of age.

5.4 Methods used to forecast time trends

The data analysis in this research is completed using R for all estimates and forecasts. The

LC model is modelled using the open source R code provided by life metrics (www.jpmorgan.com/lifemetrics)

and widely used by academics, such as Cairns et al. (2009), Cairns et al. (2011b) and Plat

(2009a). The HU model is modelled by its original R demography package, provided

by Hyndman et al. (2007). The TLC model is based on the R package, ThreeWay. The

PLC model comes from the R codes provided by Debón et al. (2011). The JLC model is

partially completed in this research: the common factors are the same with the LC model

and the individual factors are amended from the demography package. The WT and JWT

models are written in this research using R language, but the fitted process of the JWT

model is based on the glm package. All predictions are based on the arima package.

The WT model uses constant drift as described in Section 3.2.1. The time trend of the

JWT model is assumed to be stationary as described in Section 4.3, and thus an AR(1)

process is applied. Due to fluctuation, b-splines are applied to smooth the kt sequence

prior to the application of the AR(1) process, in order to reduce the forecast uncertainty.

The random walk with drift (RW) was introduced by Lee and Carter (1992), and is

widely accepted by the LC model and its extensions (Booth et al., 2002b; Cairns et al.,

2006; Lee, 2000; Tuljapurkar et al., 2000). Although the RW may not be acceptable in

certain populations, for a general and simple application, this research applies RW to

most LC family models. The RW is applied to the SJLC, PLC and TLC models. For the
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JLC model, RW is applied to the common trend and a AR(1) process is applied to the

individual time trends (Li and Lee, 2005; Li, 2013).

The HU model uses different processes and orders for specific data sets. The selection

of order J is discussed in Section 3.2.5. Let s denote the break year and 1980 ≤ s ≤ 1992.

To ensure that the HU model is applied as intended, this research uses the "fdm" and "fore-

cast.fdm" functions included in the Demography R package provided by Hyndman et al.

(2007) to fit and forecast mortality. Table 5.2 displays the orders and forecast methods for

time trends determined for the HU model.

Table 5.2: Orders and forecast methods used by the HU model to forecast time trends

Fe
m

al
es

Country AUS CAN ENW FIN FRA ITA ESP
Order 4 2 1 1 1 1 1

Method ARIMA RW RW RW RW RW ARIMA
Country SWE CHE USA JPN DNK NLD
Order 1 1 1 2 1 1

Method ARIMA ARIMA ARIMA ARIMA ARIMA ARIMA

M
al

es

Country AUS CAN ENW FIN FRA ITA ESP
Order 2 3 3 3 3 3 1

Method ARIMA RW RW RW RW RW ARIMA
Country SWE CHE USA JPN DNK NLD
Order 1 1 1 1 1 1

Method ARIMA ARIMA ARIMA ARIMA ARIMA ARIMA

5.5 The jump-off rates

This research applies smooth actual jump-off rates, by applying b-spline methods to

smooth the log death rates across age. The jump-off rates of the PLC and WT, JWT

models are transformed from the smooth actual log death rate. Using smooth mortal-

ity rates provides more certainty in projection (Delwarde et al., 2007; Hyndman et al.,

2007). Also, using the same jump-off rates across all models ensures that comparisons of

forecasting performance are on a consistent basis.
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Jump-off can be from either fitted rates or actual rates (Booth et al., 2002b; Lee and

Miller, 2001). Fitted jump-off rates refer to the estimated mortality rates in year n using a

given mortality model, where n is the last year in the fitting period. Actual jump-off rates

refer to the observed mortality rates in year n. Smooth actual jump-off uses methods, for

example, b-spline, to smooth the actual jump-off rates across age.

Fitted jump-off rates are generated by models, and thus do not provide a consistent

basis for the comparison of forecasting performance across models. Also, the differences

of jump-off rates across populations may be caused by models, and then the analysis of

convergence properties across populations as described in Section 5.10 is not reliable.

Also, fitted jump-off rates may cause cumulative bias over the forecasting horizon (Lee

and Miller, 2001).

Actual rates avoid jump-off error/bias and reflect the actual initial differences in mor-

tality across different populations. Actual jump-off rates enable a clear assessment of

forecast accuracy and of non-divergence to be made. Joint models are expected to yield

non-increasing differences of the forecast mortality in the long term. Therefore, the use

of actual jump-off rates clearly illustrates models’ ability in controlling divergence. How-

ever, actual jump-off rates may be jagged due to unexpected outliers for individual age

groups in certain year. For example, the death rate was zero for age 8 in year 1994 of

Swedish females. Smooth jump-off rates avoids the errors caused by such outlier values.

Table 5.3 displays the formulae used for projection. The WT and JWT models apply

three steps to obtain λ̂x,n+h,i, ẑx,n+h,i, and the ŝx,n+h,i. The z̃xni is transformed from

˜log(mxni), where ˜log(mxni) denotes the smooth log(mxni) across x. The PLC model uses

logit(q̃xni) as jump-off rates, due to the better forecast accuracy of (3.45) than (3.44),1

where logit(q̃xni) is transformed from log(m̃xni).

1The PLC model has MAE of 0.223 (females) and 0.236 (males) if using logit(q̃xn) in Section 6.2.2.
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Table 5.3: The forecast formulae of the models
Models Forecast of mortality

WT
λ̂x,n+h,i = λ̂i
ẑx,n+h,i = zxni +

∑n+h
t=n+1 λ̂xti = z̃xni + hλ̂

ŝx,n+h,i = Φ
(
ẑx,n+h,i

)
= Φ

(
z̃xni + hλ̂

)
LC log

(
m̂x,n+h,i

)
= ˜log (mxni) + b̂xik̂n+h,i

HU log
(
m̂x,n+h,i

)
= ˜log (mxni) +

∑
j b̂

(j)
xi k̂

(j)
n+h,i

SJLC log
(
m̂x,n+h,i

)
= ˜log (mxni) + b̂xk̂n+h

JLC log
(
m̂x,n+h,i

)
= ˜log (mxni) + b̂xk̂n+h + b̂xik̂n+h,i

TLC log
(
m̂x,n+h,i

)
= ˜log (mxni) + b̂xk̂n+hρi

PLC logit
(
q̂x,n+h,i

)
= ˜logit (qxni) + b̂xk̂n+h

JWT
λ̂x,n+h = âx + kn+h

ẑx,n+h,i = zxni +
∑n+h

t=n+1 λ̂xti

ŝx,n+h,i = Φ
(
ẑx,n+h,i

)
= Φ

(
z̃xni +

∑n+h
t=n+1 λ̂xti

)

5.6 Transforming mortality scales

The measure introduced in Section 5.7 is calculated using the number of deaths (d). Ob-

served d is obtained from data sets. Fitted (or forecast) d is calculated using (3.17) as

d̂xt = extm̂xt, where ext is the observed exposure for age x and year t and m̂xt denotes

the fitted or forecast central death rate using a given mortality model.

Measures introduced in Section 5.8 are calculated using the log death rate (log(m)).

However, the WT and JWT models use the drifts of z–scores (λ), and the PLC model uses

the logit death rate (logit(q)). Equations (3.2) to (3.7) illustrate the transform between λ

and q. The transform between m and q (Wilmoth et al., 2007) is

qx =
mx

1 + (1− ζx)mx

, (5.1)

where the subscripts t and i are omitted. The ζx is the average number of years lived in

the age interval [x, x+ 1) for people dying at that age, and ζx = 0.5 for 1 ≤ x ≤ 109 and
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ζx = 1/mx for x ≥ 110. If the forecasting horizon is beyond recorded data, ζx in year n

is used for the transform between the forecast qx and mx.

For x = 0, ζ0 can be estimated as (Coale et al., 1983; Preston et al., 2001):


ζF0 = 0.350 , ζM0 = 0.330 , m0 ≥ 0.107

ζF0 = 0.053 + 2.800mF
0 , ζ

M
0 = 0.045 + 2.684mM

0 , m0 < 0.107

where the superscripts F and M denote females and males. For sex combination T ,

ζT0 =
ζF0tid

F
0 + ζM0 dM0
dF0 + dM0

.

5.7 Bayesian information criterion

The Bayesian information criterion (BIC) is a standardized measure used to evaluate mod-

els’ performance. The BIC reflects the difference between observation and estimation,

considering the penalty of number of parameters. This research applies the BIC as:

BIC = L+K log(N) , (5.2)

where L = −2L and L denotes the log-likelihood introduced by Brouhns et al. (2002):

L =
∑
xti

{
dxti log (extim̂xti)− extim̂xti − log(dxti!)

}
, (5.3)

where dxti! denotes the product of dxti. Since log (m̂xti) and −extim̂xti are negative, L is

negative and L is positive. TheN denotes the number of observations,N = Nx×Nt×Ni,

where Nx, Nt and Ni denote the number of ages, years and populations. The K denotes

the number of parameters in a model for a group of populations, calculated via Table 5.4.
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The number of parameters of the TLC model relies on the dimensions of the core

cube, Ψ. In Tucker method, the dimensions of Ψ are determined by trials of experiments

(Kiers and Kinderen, 2003). This research applies F = G = J = 1 to Ψ for two reasons.

Firstly, the 1× 1× 1 of Ψ produces the lowest MAE in the forecasting period. With trials

from 1 to 5 applied to F , G and J , the increase of F , G or J results in a decrease of

forecast accuracy. Secondly, when G > 1, the TLC model has multiple time trends and

thus has difficulties in forecasting.

Table 5.5 displays the number of parameters (K), according to the data introduced in

Section 5.3. TheK denotes the number of parameter used by a model for a group. In this

case, a group means females (or males) of the 13 countries in Section 6.2 or the combined

sex (females and males) within a country in Section 6.3. Across the eight models, the WT

model uses the fewest parameters. As a non-specific model, the number of parameters in

the WT model depends on the number of populations. The JWT model uses the second

fewest parameters. By assuming populations to share the same trend in mortality decline,

the JWT model has the same number of parameters (136) in both analyses.

Table 5.5: Number of parameters (K) of the selected models

Evaluation
Individual Joint

WT LC HU SJLC JLC TLC PLC JWT
Section 6.2 13 2,951 * 1,308 3,088 1,320 240 136
Section 6.3 2 454 * 317 591 319 229 136

Ranking 8 3 1 5 2 4 6 7

* See Table 5.6.

Table 5.6 illustrates the details ofK used by the HU model for individual populations.

The K is 3,636 for females and 4,458 for males in the "across country" analysis (Section

6.2). The K in the "across sex" analysis (Section 6.3) is from 454 to 1,002 and displayed

as the bold figures in the "Overall".
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Table 5.6: Number of parameters (K) used by the HU model for individual populations
Fe

m
al

es
Country AUS CAN ENW FIN FRA ITA ESP
Order 4 2 1 1 1 1 1
K 638 364 227 227 227 227 227

Country SWE CHE USA JPN DNK NLD Total
Order 1 1 1 2 1 1
K 227 227 227 364 227 227 3,636

M
al

es

Country AUS CAN ENW FIN FRA ITA ESP
Order 2 3 3 3 3 3 1
K 364 501 501 501 501 501 227

Country SWE CHE USA JPN DNK NLD Total
Order 1 1 1 1 1 1
K 227 227 227 227 227 227 4,458

O
ve

ra
ll Country AUS CAN ENW FIN FRA ITA ESP

K 1002 865 728 728 728 728 454
Country SWE CHE USA JPN DNK NLD Total
K 454 454 454 591 454 454 8,094

5.8 Forecast accuracy: mean error and mean absolute

error

Forecast accuracy reflects the difference between the observed and the forecast mortality

and is measured by mean error (ME) and mean absolute error (MAE). The ME reflects

underestimation or overestimation. The MAE illustrates the size of the deviation.

5.8.1 Mean error

The error is the difference between observed and forecast mortalities:

εxti = log(mxti)− log(m̂xti) , (5.4)

where εxti is the difference between the observed (log(mxti)) and the forecast (log(m̂xti))

log death rates. Negative εxti indicates overestimation and positive εxti indicates underes-
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timation. The following averages of εxti provide different dimensions of the ME:

ε·ti =
1

m

∑
x

εxti , ε··i =
1

mn

∑
x,t

εxti , (5.5)

where ε·ti denotes the ME over time for population i and ε··i denotes the overall ME for

population i. The averaged MEs of a model across populations are as follows:

ε·t· =
1

`

∑
i

ε·ti , ε··· =
1

`

∑
i

ε··i . (5.6)

5.8.2 Mean absolute error

Corresponding to (5.5), the MAEs are as follows:

ε̃·ti =
1

m

∑
x

|εxti| , ε̃··i =
1

mn

∑
x,t

|εxti| , (5.7)

where |εxti| is the absolute value of εxti, ε̃·ti denotes the MAE over time for population i

and ε̃··i denotes the overall MAE for population i. The averaged MAEs of a model across

populations are as follows:

ε̃·t· =
1

`

∑
i

ε̃·ti , ε̃··· =
1

`

∑
i

ε̃··i . (5.8)

5.8.3 Comparative mean absolute error

The comparative MAE (CMAE) reflects the percentage increase (decrease) in the MAE

compared with a "base" model – in this research, the LC model:

%
(j)
i =

ε̃
(j)
··i − ε̃

(LC)
··i

ε̃
(LC)
··i

× 100 , (5.9)

99



where %(j)
i denotes the CMAE of model j. Positive (negative) %(j)

i indicates that model j

has higher (lower) MAE expressed as a percentage than the LC model.

5.9 Test of significant differences between models

The test of significant differences examines the differences of forecast accuracy between

two models, by using t-test to compare ε̃(j)
xt· for different j:

ε̃
(j)
xt· =

1

`

∑
i

ε̃
(j)
xti , (5.10)

where j denotes the models selected in Section 5.2 and ε̃(j)
xti is the absolute error yielded

by model j. For example, the differences of forecast accuracy between models 7 and 8

can be measured by applying t-test to two matrices with entries ε̃(7)
xt· and ε̃(8)

xt· .

To test the differences of forecast accuracy between two groups of models, t-test is

used to compare ε̃(g)
xt· for different g:

¯̃ε
(g)
xt· =

1

Ng

∑
j

ε̃
(j)
xt· , (5.11)

where g denotes the group and Ng denotes the number of models included in group g. Let

g = 1, 2 denotes individual models (j = 1, 2, 3) and joint models (j = 4, 5, 6, 7, 8):

¯̃ε
(1)
xt· =

1

3

3∑
j=1

ε̃
(j)
xt· , ¯̃ε

(2)
xt· =

1

5

8∑
j=4

ε̃
(j)
xt· ,

where ¯̃ε
(1)
xt· and ¯̃ε

(2)
xt· are the averages of ε̃(j)

xt· across individual models and across and across

joint models. To verify the differences of forecast accuracy between individual and joint

models, the t-test is used to examine the two matrices with entries ¯̃ε
(1)
xt· and ¯̃ε

(2)
xt· .
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5.10 Convergence properties of mortality across popula-

tions

Convergence properties of mortality across populations are measured by the differences

in forecast mortalities across populations. This research uses the standard deviation of

forecast log(m) across populations to reflect the differences in the forecast mortality:

ϑxt =

√
1

`− 1

∑
i

(
log(m̂xti)− log(m̂xt·)

)2

, log(m̂xt·) =
1

`

∑
i

log(m̂xti) , (5.12)

where ϑxt denotes the difference of forecast log death rate across populations for age x

in year t, log(m̂xti) denotes the forecast log death rate and log(m̂xt·) is the average of

forecast log death rate across i for the age x and the year t.

5.11 Rate of mortality decline

Rate of mortality decline (ROMD) reflects an averaged annual change in log death rate

across ages and over years:

ROMDi = − 1

m(n− 1)

∑
x,t

{
log(mxti)− log(mx,t−1,i)

}
.

where log(mxti) > log(mx,t−1,i) in the long term, and thus
∑

x,t

{
log(mxti)− log(mx,t−1,i)

}
is negative. The sign "-" ensures a positive ROMD to simplify the comparison. Replacing

log(mxti) by log(m̂xti), ROMD represents the average annual rate of fitted (or predicted)

log death rate across ages and over year. A large ROMD indicates that the log death rate

is declining quickly.
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Chapter 6

Evaluating the Fits and Forecasts of

Individual and Joint Mortality Models

6.1 Introduction to the evaluation and the main findings

This chapter evaluates and compares a variety of individual and joint models. The eval-

uation aims to address shortcomings in the existing literature where, to date, there has

been limited evaluation and comparison of joint models. Generally, it is shown that the

performance of the JWT model is superior to that of the other considered models.

As discussed in Section 3.4, two of the major shortcomings of the existing literature

are the lack of evaluation of forecast accuracy of joint models and the lack of comparison

across these same joint models. Addressing these two shortcomings is necessary for two

reasons. Firstly, new models aim to have advantages over existing models. Therefore,

the new models must be compared with existing models to demonstrate advantages or

disadvantages. Secondly, mortality models are used for projection. Therefore, forecast

accuracy is a critical component of a model’s performance.
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Evaluation and comparison of fitting and forecasting are conducted using annual data

for the period 1948-2009. The period is divided into two parts. The first part, from 1948

to 1994, is used as the fitting period. The second part, from 1995 to 2009, is used as

the forecasting period. The fitting period is used to estimate the parameters and assess the

goodness of fit. Goodness of fit reflects the difference between observations and estimates

of the number of deaths in the fitting period, with relatively small differences indicating

a good fit and an appropriate model. The forecasting period is used to assess forecasting

performance. Forecast accuracy is measured by the error between observed and forecast

mortality (the log death rate), with a small error (in absolute value) indicating a good

forecast and a possibly appropriate and/or robust model.

Convergence properties of mortality forecasts across populations are also evaluated.

Mortalities of different developed countries around the world have common trends and

have tended to become more similar as described in Section 2.3, referred to as conver-

gence. In the long run, differences in mortality across populations are expected to be

reasonably constant or declining. Constant differences or declines in forecast therefore

suggest appropriate models. Convergence properties of mortality across countries is a

long-term assessment, and the forecasting period of 15 years (1995-2009) may not be

sufficiently long. Hence, to demonstrate whether a model yields convergent or divergent

long-run forecasts, the forecasting period is extended from 15 years to 50 years (1995-

2044) to evaluate convergence properties.

This chapter presents the evaluation of eight models:

• The three "individual" models: WT, LC, and HU

• The five "joint" models: SJLC, JLC, TLC, PLC and JWT

Section 5.2 outlines the reasons for selection of these models. The evaluation includes

an assessment of how these eight models perform in the fitting period, as well as an
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assessment of accuracy and convergence properties in the forecasting period.

The evaluation demonstrates the advantages of the JWT and other joint models based

on the comparison of forecasting performance. Firstly, the JWT model produces the best

forecast accuracy of the eight models. Secondly, joint models have better accuracy than

individual models in forecasting. Thirdly, the SJLC, JLC, PLC and JWT models yield

constant differences in mortality across populations in the long run, and therefore, produce

forecasts with favourable convergence properties.

The eight models are applied to female and male mortality of the 13 developed coun-

tries selected in Section 5.3: Australia (AUS), Sweden (SWE), Canada (CAN), Switzer-

land (CHE), England and Wales (ENW), the United States of America (USA), Finland

(FIN), Japan (JPN), France (FRA), Denmark (DNK), Italy (ITA), the Netherlands (NLD)

and Spain (ESP). To evaluate the models on a consistent basis, parameters of the selected

models are estimated using the mortality data for years 1948-1994 and ages 0-89, and

the forecasting periods are 1995-2009 for measuring forecast accuracy and 1995-2044 for

measuring convergence properties.

Joint models are applied in two different ways – pooling across countries ("across

country", Section 6.2) for each sex, or pooling across sex ("across sex", Section 6.3)

for each of the 13 countries. The "across country" approach therefore consists of two

analyses – females and males – each combining 13 countries, permitting common trends

across countries for females, and then for males. The "across sex" approach consists of 13

analyses each combining the two sexes, allowing common trends for females and males

and considering each country independently.

Goodness of fit is measured by the Bayesian information criterion (BIC) as introduced

in Section 5.7. The BIC is a standard measure used to evaluate models’ performance and is

built up from the log-likelihood and the number of parameters. The log-likelihood reflects
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the match between observations and estimations in the fitting period. The BIC penalises

the log-likelihood for the number of parameters when assessing a model’s performance.

Forecast accuracy refers to "out of sample" forecasting accuracy. The "out of sample"

period in this case is 1995-2009. In this chapter, forecast accuracy is measured by mean

error (ME) and mean absolute error (MAE) as described in Section 5.8, with averaging

over ages, time and populations. The ME can be positive, negative or zero, indicating

that the forecast mortality is below (underestimation), above (overestimation) or equal to

observed mortality. This research also uses comparative MAE (CMAE), as described in

Section 5.8, to illustrate the percentage increase or decrease in the MAE of a model as

compared to the LC model benchmark.

The overall ME, MAE and CMAE reflect overall forecast accuracy. These measures

average over populations, ages and time points. Each measure can be decomposed by av-

eraging over, for example, just populations and ages in which case a time series indicating

the trend of the statistic over time is produced. For example, the ME over time reflects

whether the underestimation or overestimation is stable or is getting worse. The MAE

over time reflects whether a model’s forecast accuracy is limited to certain time points or

extends over the whole range of time. We could similarly average over other dimensions

to gain an understanding of behaviour over different populations or ages.

To analyse the differences in projected mortality across populations, this research uses

the standard deviation of mortality across populations as described in Section 5.10. If a

model forecasts an increasing standard deviation over time, the model admits divergence

in projection. Individual models project individual mortality trends over time and there-

fore generally produce increasing differences in mortality across similar populations in

the long run (Li and Lee, 2005). Joint models, on the other hand, allow populations to

share a more or less stringent common mortality trend and aim to reduce or control any

difference. Joint models are expected to have smaller divergence than individual models.
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6.2 "Across country" analysis, separately for females and

males

This section illustrates the evaluation of the eight models to fit and forecast mortality of

the 13 countries. The joint models are separately applied to females and males, with the

combined country experience used for the common experience.

This section demonstrates the advantages of the JWT model and other joint models in

jointly forecasting mortality. Using BIC, in spite of the penalty accorded to the number

of parameters, models with more parameters generally fit better than those with fewer

parameters. Individual models are found to fit better than joint models, and joint models

incorporating more individual factors fit better than those with fewer individual factors.

These findings apply to both females and males (Section 6.2.1).

However, joint models generally deliver superior forecasts than individual models

(Sections 6.2.2 and 6.2.3) and the JWT model – with relatively few parameters – has the

best forecast accuracy in projection across the eight models. The JWT model allows for a

flexible rate of mortality decline over time where the flexibility is accorded not through the

number of parameters but rather through the functional form of the parameterizations (i.e.

the z–score). Joint models generally produce non-divergent forecasts whereas individual

models produce divergent forecasts.

Although individual models use more parameters and experience better goodness of

fit, the joint models – particularly, the JWT model – behave better in the forecast accuracy

and divergence properties.
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6.2.1 Goodness of fit according to BIC

Table 6.1 illustrates the overall fit of the models. The BIC and log-likelihood (L) are for

the group of 13 countries. A small L or BIC indicates good performance and results in a

high ranking. For example, the LC model has the smallest BIC (0.81) for females and is

ranked first, indicating that the LC model performs the best of the eight models according

to BIC. Note that the WT and JWT model have almost the same L and BIC, due to the

small number of parameters used.

Table 6.1: BIC and log-likelihood of the models in the fitting period

Models
Individual Joint

WT LC HU SJLC JLC TLC PLC JWT
K 13 2,951 * 1,308 3,088 1,320 240 136
N 90× 47× 13

Fe
m

al
es L(106) 1.57 0.78 0.86 2.19 0.93 1.47 3.61 2.31

BIC(106) 1.57 0.81 0.90 2.23 0.96 1.48 3.61 2.31
Ranking 5 1 2 6 3 4 8 7

M
al

es L(106) 2.13 0.93 0.98 2.27 0.98 1.71 3.91 2.45
BIC(106) 2.13 0.96 1.03 2.30 1.02 1.73 3.91 2.45
Ranking 5 1 3 6 2 4 8 7

O
ve

ra
ll L(106) 1.85 0.85 0.92 2.23 0.96 1.59 3.76 2.38

BIC(106) 1.85 0.89 0.96 2.26 0.99 1.61 3.76 2.38
Ranking 5 1 2 6 3 4 8 7

Note:

• The number of parameters,K, is calculated via formulae displayed in Table 5.4.

• The K of the HU model is 3,636 for females and 4,458 for males.

• The number of observed data, points N, is described in Section 5.3: ages 0-89 (90) and
years 1948-1994 (47) and the selected countries (13). Therefore,N = 90× 47× 13.

• The L is calculated according to (5.3):
L = −2

∑
xti

{
dxti log (extim̂xti)− extim̂xti − log(dxti!)

}
.

• BIC is calculated according to (5.2): BIC = L+K log(N).

Note the following highlights in Table 6.1; further explanations are shown in subse-

quent sections.
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1) The BIC rankings of the models are almost the same between females and males,

indicating that the relative performance of the model is consistent across both pop-

ulations. Despite the number of parameters penalising goodness of fit using BIC,

models with more parameters generally perform better than those with fewer pa-

rameters.

2) The general finding that models with more parameters have a lower BIC does not

always apply. Exceptions are the HU (versus LC), JLC (versus LC) and PLC (versus

WT) models. The HU, JLC and PLC models use more parameters but yield worse

fit than the comparison models displayed in the brackets. Additional parameters

usually, but do not always, result in better fit.

Models perform consistently in different populations – models with more parameters

fit better than those with fewer parameters

The ranking of the eight models is almost the same for females and males. Females and

males are biologically different and the same ranking of a model between females and

males indicates that the models perform relatively consistently in different populations.

The number of parameters significantly influences a model’s fit. A decrease in the number

of parameters is generally associated with an increase in BIC across the LC, HU, JLC,

TLC, SJLC, PLC, JWT and WT models.

Within the individual models, the WT, LC and HU models span the range from a very

small to a very large number of parameters. There is an inverse relationship between the

number of parameters and BIC, although the HU model has more parameters and a larger

BIC than the LC model.

Within the joint models, the number of parameters is not as clearly related to BIC.

A joint model may involve both individual and joint factors. Individual (or joint) factors
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refer to the parameters used by a model to describe mortality of an individual population

(or all member populations). When the joint factors are inappropriate or the model is

not suitable, a model with more parameters may not perform better than one with fewer

parameters. The JLC and PLC models are two examples of this case.

Additional parameters usually, but do not always, result in better fits

Models use parameters to describe the features of mortality rates. Generally, adding pa-

rameters enables a model to better describe the mortality rates. A model with more pa-

rameters generally fits better than a model with fewer parameters, based on the BIC.

However, specific models may not follow this rule. For example, the HU model has

more parameters but a worse BIC than the LC model. Parameters of the LC model are

estimated using the log death rate, while those of the HU model are estimated via the

smoothed log death rate of ages. The HU model experiences additional bias between the

estimated and smooth rates, and thus yields a worse BIC than the LC model.

Reviewing two pairs of models – the LC and JLC models and the WT and PLC mod-

els, additional common factors may not result in better fit. Recall the fomulae for – LC

(3.8) and JLC (3.35), WT (3.1) and PLC (3.44):


log(mxti) = axi + bxikti + εxti ,

log(mxti) = axi + bxikti + bxkt + εxti ,


λxti = ρi + εxti ,

logit(qxti) = ax + bxkt + ρi + εxti .

The additional common factors (bxkt and ax+bxkt) do not enhance the fits of the JLC and

PLC models. This may be due to the estimation of the common factors not being robust

from the aggregated mortality data sets.

Furthermore, inappropriate application may influence a model’s performance. The
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PLC model assumes that age-specific logit death rates, logit(qxti), are parallel between

populations i. The assumption may be reasonable for geographically close populations,

for example, regions in Spain, which is the purpose for which this model was developed

(Debón et al., 2011). However, this assumption may not be generalised across countries.

Using the PLC model, Figure 6.1 displays the observed and fitted average logit(qxti) over

t (1948-1994) for the USA and Japan. Solid curves (observed) are not parallel between

the USA and Japan, but dashed curves (fitted) are parallel between these two countries.

Therefore, the PLC model imposes an unreasonable parallel relationship for the fitted

rates, and thus produces the worst fits of the eight models.
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Figure 6.1: Average logit(qxti) over t (1948-1994) of the USA and Japan

6.2.2 Overall forecast accuracy

Forecast accuracy reflects the difference between the observed and the forecast of log

death rate produced by a model, and is measured by the ME, MAE and CMAE as de-

scribed in Section 5.8. The ME indicates whether forecast mortality is higher or lower

than the observed mortality in the forecasting period (1995-2009). A value of ME close
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to zero indicates an overall small forecast bias and a high ranking. A small ME can

arise from an averaging of large positive and large negative values. The MAE reflects the

absolute departure of forecast mortality from observed mortality in 1995-2009. A small

overall MAE indicates a good forecast accuracy and a high ranking. The CMAE describes

the percentage of difference between a model and the LC model. A model with negative

CMAE is better than the LC model, while a model with a positive CMAE is worse than

the LC model.

Table 6.2 illustrates the overall ME, MAE and CMAE of the 13 countries, separately

for females and males.

Table 6.2: ME, MAE and CMAE of the forecast log death rate

Models
Individual Joint

WT LC HU SJLC JLC TLC PLC JWT
K 13 2,951 3,636 1,308 3,088 1,320 240 136

Fe
m

al
es

ME 0.081 0.018 -0.007 0.045 0.099 0.023 0.021 -0.004
Ranking 2 6 8 4 1 7 5 3

MAE 0.175 0.158 0.145 0.151 0.183 0.148 0.143 0.142
Ranking 7 6 3 5 8 4 2 1

CMAE(%) 10.86 0.00 -8.35 -4.25 15.53 -6.67 -9.57 -10.21

M
al

es

ME -0.025 -0.077 -0.105 -0.066 -0.020 -0.079 -0.077 -0.037
Ranking 2 6 8 4 1 7 5 3

MAE 0.153 0.176 0.172 0.156 0.155 0.163 0.159 0.147
Ranking 2 8 7 4 3 6 5 1

CMAE(%) -12.71 0.00 -1.76 -11.02 -11.84 -7.03 -9.63 -16.04

O
ve

ra
ll

ME 0.028 -0.030 -0.056 -0.011 0.039 -0.028 -0.028 -0.020
Ranking 5 6 8 1 7 4 3 2

MAE 0.164 0.167 0.159 0.154 0.169 0.155 0.151 0.145
Ranking 6 7 5 3 8 4 2 1

CMAE(%) -1.54 0.00 -4.88 -7.81 1.13 -6.86 -9.60 -13.27

Note:

• The number of parameters,K, is the same as shown in Table 6.1.

• The K of the HU model is 3,636 for females and 4,458 for males.

• The full information of ME, MAE, CMAE and the rankings of MAE of each of the 13
countries is shown in Tables B.1 to B.10 in Appendix B.

• The "Overall" means the average of females and males.
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Note the following highlights in Table 6.2; explanations are given below the high-

lights.

1) The JWT model has the smallest MAE for both females (0.142) and males (0.147),

and provides the most reliable forecasts for both females and males.

2) The HU model has the most parameters (3,636 for females and 4,458 for males), but

relatively poor forecast accuracy (fifth overall according to MAE). The HU model

may involve more than one time factor and these additional time factors are difficult

to forecast. As a result, the HU model may be unreliable to forecast mortality for

specific populations.

3) The WT model has different rankings between females (7) and males (2). Since

the WT model uses one parameter to describe mortality for all ages over time, the

unique parameter results in very constrained and inflexible forecasting.

4) The JLC model performs the worst of the eight models for females (though third for

males). The SJLC model excludes kti and performs better than the JLC model, and

thus kti appears to reduce the forecast accuracy. The JLC model may be unreliable

for short-term projection.

5) Overall, simple models perform better than complex models. The JWT, TLC, PLC

and SJLC models use fewer parameters but obtain better forecast accuracy than the

LC, HU and JLC models. Using fewer parameters may avoid over-parameterization

and reduce the risk of inaccurate forecasts.

6) Six of the eight models yield positive ME for females and all eight models produce

negative ME for males. Females experience a smaller rate of mortality decline

(ROMD) in the forecasting period than in the fitting period, while males experience

a larger ROMD in the forecasting period. Most models, therefore, underestimate

mortality of females and overestimate that of males.
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7) The average of overall MAE across joint models is 0.153 for females and 0.156 for

males, smaller than those – 0.159 for females and 0.169 for males – of individual

models. In projection, the joint models perform better than the individual models,

using the t-test to evaluate the significance of the difference between individual and

joint models (Section 5.9).

The advantages of the JWT model when forecasting mortality

The JWT model performs best when forecasting. This may be due to one or more of

three reasons. Firstly, the JWT model is a joint model, and thus incorporates multiple

similar populations. By aggregating similar populations, the JWT model exploits and

capitalises on the relationships of mortality between populations. Aggregating popula-

tions also enables the JWT model to make use of more information and to give a more

reliable forecast.

Secondly, the JWT model is flexible in projection. The sequence kt, as described in

Section 4.4, adjusts the drift of z–scores in the short term. Therefore, the JWT model

permits z–scores to flexibly vary over time. In contrast, the other seven models have a

lack of flexibility. For example, the WT model assumes that the z–scores increase with

a constant drift, and the LC model assumes that the log death rates decline linearly. The

SJLC, JLC, TLC and PLC models are joint models, but do not allow a flexible ROMD.

Therefore, the JWT model is more flexible and performs more accurately than these joint

models.

Table 6.3 displays the rate of mortality decline (ROMD) in the log death rate as intro-

duced in Section 5.11. For the "observed" column, ROMD is calculated using observed

log death rate. For the models columns, ROMD is calculated using the fitted and forecast

log death rate by the relevant models.
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From Table 6.3, in the observed column, females have a smaller ROMD in the fore-

casting period than in the fitting period (0.024 vs. 0.025) and males are the reverse (0.030

vs. 0.017). Since the JWT model permits the ROMD to vary over time as described in

Section 4.4, the changed directions of ROMD produced by the JWT model (the arrow

notations in Table 6.3) are consistent with those of the observed log death rate while the

other seven models assume an expected constant rate of mortality decline. This property

enables the JWT model to perform better than the other seven models.

Thirdly, the JWT model has a simpler form than the other models (except for the

WT model), incorporating only an age factor and a time factor. Among the eight mod-

els, the LC, HU and JLC models have the most parameters and produce the best fit as

described in Section 6.2.1. However, a larger number of parameters may result in over-

parameterization, and thus increase the unreliability when forecasting mortality. The

WT model has too few parameters and thus has a lack of flexibility. The JWT model

uses an appropriate number of parameters and keeps a balance between over- and under-

parameterization. The JWT model, with a simple form, obtains high forecast accuracy.

Relatively weak performance of the HU model

The HU model is ranked fifth according to overall MAE as shown in Table 6.2. Amongst

the eight models, the HU model has the most parameters (3,636 for females and 4,458 for

males). However, the large number of parameters does not result in superior forecasting

performance. This may be due to the following two main factors.

Firstly, the forecast of time trends may not be reliable. Figure 6.2 displays the estimate

and forecast of k(j)
ti for Australian females with the HU model using an ARIMA time

series. For k(1)
ti , the forecast may be reliable, but the patterns of k(2)

ti , k(3)
ti and k(4)

ti are

irregular and the forecasts may therefore not be reliable.
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Figure 6.2: Estimates and forecasts of time trends (k(j)
ti ) of Australian females with the

HU model using ARIMA process

The HU model forecasts well for females (ranked third according to overall MAE),

but poortly for males (ranked seventh). Using the ARIMA process to forecast k(1)
ti results

in a smaller decline than using random walk with drift. From Table 5.2, the HU model

uses a ARIMA process to forecast k(j)
ti for nine out of the 13 countries. Then, the HU

model yields a decrease of ROMD from the fitting period to the forecasting period. The

decrease of ROMD happens to match the reality of females, but differs from that of males

as can be seen in Table 6.3. Therefore, the HU model forecasts well for females, but

poorly for males.

Secondly, the order J – the maximum of j – of b(j)
xi and k(j)

ti is determined via trials
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as described in Section 3.2.5 and as shown in Table 5.2 in Section 5.4. However, since

the variation in mortality varies over time, good forecast accuracy in the sub-forecasting

period (1980-1994) does not indicate consistent performance in the actual forecasting

period (1995-2009). Therefore, the selection of orders may not be reliable.

Potentially reliable forecast of the WT model

The WT model is ranked higher for males (second) than for females (seventh). The differ-

ent performance between females and males is due to the fact that the WT model always

results in an increasing ROMD as can be seen in Table 6.3. The increasing ROMD occurs

because the WT model assumes that z–scores increase over time constantly, causing a

constant decrease in mxt. Since the logarithm function is a concave function, the constant

decrease in mxt results in an accelerating decrease in log(mxt).

Figure 6.3 displays the forecast annual rate of mortality decline (AROMD) in 1995-

2009 for Australian females and males using the WT model. Each curve denotes the

AROMD for an age group. The top curve in both panels denotes the AROMD of new

born babies. The bottom curves in both panels denote the AROMD of older age groups.

In spite of the different scales, all age groups experience the same increase in AROMD.

When using the WT model to forecast mortality, the improvement of log death rate is not

linear but accelerative.

In the long term, mortality of both females and males may decline with a smaller

rate in future than at present (1995-2009) (Denison, 2011; Kogan et al., 2011; Richel,

2003), indicating that the increase of male ROMD may not last. Therefore, the WT model

matches the mortality improvements of males currently, but may be inappropriate in long-

term projection.
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Figure 6.3: Annual rate of forecast log death rate decline in 1995-2009 of Australian
females and males using the WT model

Unreliable short-term forecast of the JLC model

The JLC model is uncertain in forecasting due to the individual time trends. Figure 6.4

displays the estimates and forecasts of the common time trend, kt, and the individual time

trends, kti, of the 13 countries for females as an example.
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Figure 6.4: Estimates and forecasts of kt and kti using the JLC model for females
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The solid black curve denotes sequence kt and other colour curves represent kti. The

vertical grey dashed line separates the horizon into fitting (1948-1994) and forecasting

(1995-2009) periods. The kti sequences are assumed to follow the AR(1) processes as

introduced in Section 3.3.1. Therefore, the forecast of kti converges to zero in the fore-

casting period.

Another time series ARIMA(1,1,0) is tried to forecast kti, and gives an overall MAE

of 0.152 for females and 0.156 for males. Compared to using the AR(1) process, the

ARIMA(1,1,0) process results in better accuracy for females and marginally worse accu-

racy for males than the AR(1) process. However, the ARIMA(1,1,0) process may cause

uncertain projection and result in increasing differences in mortality across populations,

referred to as divergence. The AR(1) process may not be appropriate for short-term pro-

jection, and the ARIMA(1,1,0) process is not suitable for long-term projection.

Furthermore, in Table 6.3, the JLC model has a larger ROMD in the forecasting period

(0.033 for females and 0.023 for males) than in the fitting period (0.023 for females and

0.017 for males). In Figure 6.4, the estimates of kti sequences are upward for all countries

except Japan. Using the AR(1) process, the forecast kti sequences decline in the forecast-

ing period. The decline of kt and kti results in an increase of ROMD in the short-term

projection. In the long term, the forecast kti sequences converge at zero, that is at 2030.

Then, after 2030, the ROMD will be constant and similar to the ROMD in 1948-1994.

In Table 6.2, the SJLC model has a lower overall MAE than the JLC model (0.151

for females and 0.156 for males) by excluding individual factors. The SJLC model has

a simpler format but better forecast accuracy than the JLC model. The individual time

trends, kti, reduce the forecast accuracy at least in the short term.
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Advantages of simple models when forecasting mortality

Models of simple form perform better than models of complex form. In Section 6.2.1,

models with more parameters have a better fit than those with fewer parameters. On the

contrary, Table 6.2 shows that the JWT, TLC, PLC and SJLC models use fewer parameters

but obtain better forecast accuracy than the LC, HU and JLC models.

Using a large number of parameters may result in a good fit, but may result in over-

parameterization and irregular time trends. These two risks lead to unreliable projection.

An example is the HU model in this research. Using few parameters may avoid over-

parameterization and reduce the risk of unreliable projection.

Underestimation of female rates and overestimation of male rates

The average ME across the eight models is 0.034 for females and -0.061 for males. The

different signs indicate that the models underestimate the log death rate for females and

overestimate that for males. Females and males experience increasingly similar ROMD,

referred to as convergence across sex as mentioned by Liu et al. (2012).

The underestimation of female rates and overestimation of male rates are due to the

different ROMD between the fitting and forecasting periods. In Table 6.3, the ROMD

decreases for females and increases for males from the fitting period to the forecasting

periods. Most models use constant ROMD when forecasting mortality, and thus underes-

timate mortality for females and overestimate that for males.

The LC, SJLC, TLC and PLC models use constant ROMD and yield underestimation.

The HU model also uses constant ROMD, but the use of the ARIMA process yields a

smaller ROMD in the fitting period than in the forecasting period. Therefore, the HU

model overestimates mortality for both females and males.
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Significant differences between joint and individual models

From Table 6.2, the average overall MAE across individual models (WT, LC and HU)

is 0.163 (0.159 for females and 0.167 for males) and the related value for joint models

(SJLC, JLC, TLC, PLC and JWT) is 0.155 (0.153 for females and 0.156 for males). The

difference between individual and joint models, although small, is highly significant using

a t-test (see Section 5.9) for both females and males.1 Despite the fact that the JLC model

is the worst performing of the eight models, the advantages of joint models are apparent

and significant (Cairns et al., 2011a; Jarner and Kryger, 2009; Li and Lee, 2005; Li, 2013).

6.2.3 Forecast accuracy over time

This section shows the trends in ME and MAE over the forecasting period and provides

more information than the overall ME and MAE to evaluate the models. Section 6.2.2

described the performance in the forecasting period of 15 years, which does not reflect

performance in the longer term. An analysis of forecast accuracy over time complements

this shortcoming by describing the trends of ME and MAE over time, allowing us to

anticipate performance over a longer forecasting period.

The ME over time is introduced in Section 5.8.1 and denoted by ε·ti, reflecting the

trends of difference between observed and forecast log death rate of population i over

t. The MAE over time is introduced in Section 5.8.1 and denoted by ε̃·ti, reflecting the

absolute difference between observed and forecast log death rate of population i over t.

The slopes of the fitted straight lines of the curves are defined as the average difference

between ε̃·ti and ε̃·,t−1,i, reflecting the trend in MAE in the forecasting period. The trend in

MAE is helpful to assess a model’s performance in a long-term projection. For example,

1A t-test comparing average MAE across countries and for individual versus joint models (for ages 0-89,
years 1995-2009) gives p-value = 0.0015 for females and p-value = 0.0046 for males.
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the forecasting period is 1995-2009, while the slope of ε̃·ti over t indicates the patterns of

MAE after 2009.

Figure 6.5 displays the ME of the forecast log death rate over time of the overall 13

countries, which is the average of ε·ti across i, denoted by ε·t·. Figure 6.6 displays the

MAE of the forecast log death rate over time of the overall 13 countries, which is the

average of ε̃·ti across i, denoted by ε̃·t·. For example, the WT model yields an increasing

ε̃·t· of the 13 countries over time with a slope 1.12 (×10−2) for females.
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Figure 6.5: ME of the forecast log death rate over time for females and males
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Note the following highlights in Figures 6.5 and 6.6 and the explanations given below

the highlights.

1) The PLC model has nearly constant ε·t· for females (the left panel of Figure 6.6)

and the JWT model has nearly constant ε·t· for males (the right panel of Figure 6.6),

indicating possible use of these models for hedging.

2) The JWT model has the smallest slopes for both females (0.58) and males (0.95)

among the eight models in Figure 6.6 and would therefore be expected to retain its

advantages in a longer-term projection.

Hedging mortality risk using the JWT and PLC models

Mortality derivatives (i.e. q-forward and longevity bonds) rely on the forecast mortality.

A model with good forecast accuracy is the best basis for hedging mortality derivatives. In

this study, the JWT and PLC models yield constant ME over time for males and females,

respectively. The stable bias indicates a predictable hedging risk.

The LC and TLC models have constant ME over time for females (Figure 6.5), but are

inappropriate to hedge mortality risks due to the poor forecast accuracy and the divergent

projection across populations as described in Section 6.2.4. The divergent projection con-

travenes the finding of increasing similarities in mortality decline throughout the world.

Reliable long-term projection of the JWT model

The JWT model produces the highest forecast accuracy of the eight models over the 15-

year projection period. The advantage of the JWT model arises due to its property of
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flexible ROMD as described in Section 6.2.2. Figure 6.6 illustrates the JWT model’s ad-

vantage for short-term and medium-term projection – for example, the 15-year projection

in this research. This advantage of the high forecast accuracy of the JWT model may

also be maintained in the longer-term projection. Information in Figure 6.6 supports the

finding in Table 6.2.2 and further illustrates that the JWT model is better in projection

than the other seven models.

6.2.4 Convergence properties of mortality across countries

This section illustrates the differences in the forecast mortality across countries, measured

by the standard deviation of the forecast log death rate across populations – in this case

countries, denoted by ϑxt as introduced in Section 5.10. Mortalities of countries are con-

verging throughout the world, ϑxt is expected to be reducing or remaining constant over

time.

As described in Section 3.3, individual models permit populations to have individual

mortality trends and allow for divergence. Joint models, in contrast, constrain populations

to share common mortality trends and do not permit divergence. If a model yields con-

stant or decreasing ϑxt over t, the model is verified to control the divergence in forecast

mortality and is suitable for the convergence properties of mortality across countries.

Figures 6.7 and 6.8 display the standard deviation of the log death rate across the 13

countries for years 1948-2044 and randomly selected ages 0, 10, 20, 30, 49, 59, 69, 79 and

89 for females and males, respectively. Every panel displays the ϑxt of a model. In the

fitting period (1948-1994), the ϑxt is calculated using the observed log death rate, and thus

the eight models have the same patterns of ϑxt. In the forecasting period (1995-2044), ϑxt

is calculated using the forecast log death rate produced by a specific model.
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Figure 6.7: Standard deviation of log death rate across countries for females
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Figure 6.8: Standard deviation of log death rate across countries for males
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Note the following highlights in Figures 6.7 and 6.8 and the explanations given below

the highlights.

1) In the fitting period (1948-1994), the standard deviations for the younger ages de-

crease for both females and males.

2) In the forecasting period, the WT, LC, HU and TLC models yield increasing stan-

dard deviation in the forecast rates of mortality over time. Therefore, individual

models (WT, LC, HU) and the TLC model produce apparently unreliable results as

their forecasts are likely to diverge, which is inconsistent with preconceptions about

the future trajectory of mortality across countries.

3) In the forecasting period, the SJLC, PLC and JWT models produce constant stan-

dard deviation over time. The SJLC, PLC and JWT models may be reliable for

mortality projection, due to the non-divergence across populations.

4) In the forecasting period, the JLC model produces, in the short term, and for dif-

fering age groups, differing directions in the standard deviation over time. The

JLC model is reasonable in long-term mortality forecasting, since this model per-

mits divergence in mortality across populations in short-term projection and keeps

a constant difference across populations in long-term projection.

Mortality converges in young age groups

The improvements of mortality for younger ages mainly benefit from medical progress,

while the older ages mainly benefit from public health care (Cutler and Meara, 2001;

Deaton and Paxson, 2001; Wilmoth, 1998). Both females and males of younger ages

benefit from medical progress similarly across countries, and thus experienced similar

improvements in mortality. (Mathers et al., 2001; Nolte et al., 2000a,b). Therefore, the

standard deviation in log death rate across countries decreases over time for both females
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and males of younger ages. In particular, newborn babies in simultaneously benefited

from medical factors (Finch, 2010). The infant death rate declined and the differences in

the infant death rate across countries decreased (the black curves in Figures 6.7 and 6.8).

Unreliable long-term projection of the TLC model and the individual models

The WT, LC and HU models produce increasing standard deviation during the forecast-

ing period, referred to as divergence. These three models are individual models and allow

populations to hold an individual ROMD. The individual ROMD is different across pop-

ulations and results in increasing differences in mortality across populations. Divergence

in forecasts is one of the shortcomings of individual models as discussed in Section 3.3.

The TLC model has a problem in controlling divergence as described in Section 3.3.2,

where ktρi ≈ kti. Individual populations effectively have individual time trends, and thus

the TLC model causes increasing differences in forecast mortality over time. The JWT

and SJLC models do not incorporate population effects and the ρi in the PLC model does

not influence the common time trend. Therefore, as joint models, the JWT, SJLC and

PLC models yield non-divergent forecasts which the TLC model is unable to do.

Reliable long-term projection of the SJLC, PLC and JWT models

Joint models reduce the divergence in forecasting, by applying common trends among the

member populations. Figures 6.7 and 6.8 display consistent results with the hypothesis

introduced in Section 3.3. The SJLC, PLC and JWT models use one unique time trend,

kt, to forecast mortality for all populations. As a result, member populations have the

same path in mortality variation over time. The same rate of mortality decline results in

the same difference in mortalities of the 13 countries over time. Consequently, the three

joint models have horizontal standard deviation across populations over time.
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Reliable long-term projection of the JLC model

The JLC model is a joint model. Compared to the SJLC model, the JLC model involves

more parameters – the individual factors, bxi and kti. The SJLC model produces con-

stant standard deviation of forecasts over time, while the JLC model produces various

directions of standard deviation for different ages, due to the individual time trends, kti.

Figure 6.9 displays the estimates and forecasts of kti of the JLC model from 1995 to

2044 for females using an AR(1) process. During 1995-2009, kti sequences are converg-

ing and varying over time. As a result, the standard deviations are fluctuating during that

period. During 2020-2044, kti sequences are almost converged and the standard deviation

trends to stable over time.
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Figure 6.9: Estimates and forecasts of kti with the JLC model for females

The standard deviations may fluctuate in the short term and be constant in the long

term. In the short term, the JLC model permits populations to hold individual mortality

trends, whereas in the long term, populations share the common trend. Therefore, the

JLC model permits mortality divergence in the short term, but constrains divergence in

the long term.
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6.3 "Across sex" analysis, separately for each country

This section illustrates the evaluation of the eight models to fit and forecast female and

male mortality within each of the 13 countries as shown in Section 5.3. The eight models

can be classified as individual (WT, LC and HU) and joint (SJLC, JLC, TLC, PLC and

JWT) models. The joint models are applied to jointly fit and forecast mortality, with the

combined female and male experience used for the common experience. This section

demonstrates the advantages of the JWT model and other joint models in jointly forecast-

ing mortality.

Using BIC, models with more parameters have better fit than those with fewer param-

eters (Section 6.3.1). The individual models perform better than the joint models and the

joint models that incorporate more individual factors perform better than those with fewer

individual factors. These findings apply to most of the 13 countries.

However, using ME and MAE, joint models produce better forecasting accuracy than

individual models (Sections 6.3.2, 6.3.3 and 6.3.4). The JWT model – with few parame-

ters – yields the best forecast accuracy across the eight models. The JWT model performs

the best because it allows for a flexible rate of mortality decline (ROMD) over time.

In the analysis of convergence properties of mortality across females and males, the

models perform differently (Section 6.2.4). The SJLC, PLC and JWT models yield con-

stant differences of mortality between females and males over time (non-divergence). The

JLC model produces various directions of difference in the short term, but yields constant

difference in the long term, whereas the individual models and the TLC model yield di-

vergence.

The relationships between females and males are discussed in Section 2.3. Due to

sharing the same culture and lifestyle, females and males in the same area generally expe-
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rience similar mortality trends. Joint forecasting helps reduce the difference in mortality

between females and males in the long-term projections. The finding from this analysis

are very similar to those for the "across country" analysis in Section 6.2.

6.3.1 Goodness of fit according to BIC

Table 6.4 illustrates the overall performance of the models in the fitting period. The eight

selected models are grouped as individual (WT, LC and HU) and joint (SJLC, JLC, TLC,

PLC and JWT) models. The L and BIC are the average across 13 countries, with a small

L or BIC indicating good performance and a high ranking. For example, the LC model

has the smallest BIC (0.135) and is ranked first, indicating the best performance among

the eight models.

Table 6.4: Average BIC and log-likelihood across the 13 countries in the fitting period

Models
Individual Joint

WT LC HU SJLC JLC TLC PLC JWT
K 2 454 * 317 591 319 229 136
N 90× 47× 2

L(106) 0.285 0.131 0.142 0.195 0.138 0.200 0.280 0.279
BIC(106) 0.285 0.135 0.147 0.200 0.143 0.203 0.282 0.280
Ranking 8 1 3 4 2 5 7 6

Note:

• BothK and N are for females and males within a country.

• The HU model hasK from 454 to 1,002 for each country as can be seen in Section 5.6.

• The number of parameters,K, is calculated via formulae displayed in Table 5.4.

• The number of observed data, points N, is described in Section 5.3: ages 0-89 (90) and
years 1948-1994 (47) and females and males within a country (2).

• The log-likelihood, L, is calculated via (5.3):
L = −2

∑
xti

{
dxti log (extim̂xti)− extim̂xti − log(dxti!)

}
.

• BIC is calculated via (5.2): BIC = L+K log(N).

• The full information of L, BIC and the BIC ranking are displayed in Tables C.1, C.2 and
C.3 in Appendix C.

131



Note the following highlights in Table 6.4 and the explanations given below the high-

lights.

1) Models have similar rankings in Table 6.4 to those in Table 6.1, suggesting that

models perform consistently in different populations. In general, there is a pattern

that models with more parameters have a lower BIC.

2) The PLC and JWT models perform better than the WT model, whereas this was

not the case for the "across country" analysis in Section 6.2. The WT model is an

individual model and its performance is, therefore, the same in the two analyses.

The better performance of PLC and JWT models indicates that the assumptions of

these two models are more appropriate for "across sex" analysis than for "across

country" analysis.

Further evidence – models perform consistently in different populations

The models perform consistently in this analysis as in the "across country" analysis (Sec-

tion 6.2.1); the rankings in Tables 6.1 and 6.4 are similar. Furthermore, the eight models

perform similarly across countries (Table C.3, Appendix C).

Models with more parameters generally perform better than those with fewer parame-

ters. In both analyses, the LC, HU and JLC models use the most parameters and perform

the best according to BIC, while the WT, PLC and JWT models use the least parameters

and perform the worst.
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Assumptions of the PLC and JWT models are more appropriate for "across sex"

than for "across country"

In this analysis, the JWT and PLC models perform better than the WT model, whereas the

JWT and PLC models perform worse than the WT model in the "across country" analysis.

The WT model is an individual model, and thus is applied in the same way for the "across

country" and "across sex" analyses. The similarities of mortality thus appear to be more

easily captured by the JWT and PLC models in the case of sex rather than country.

6.3.2 Overall forecast accuracy – ME

Table 6.5 displays the overall ME of the forecast log death rate for the 13 countries. The

ME indicates whether forecast mortality is higher or lower than the observed mortality.

Note the following highlights in Table 6.5 and the explanations given below the high-

lights:

1) Six of the eight models yield negative overall ME for the countries. From the fitting

period (1948-1994) to the forecasting period (1995-2009), males experience an in-

creasing ROMD, while females experience a slightly decreasing ROME (Table 6.3).

The combining of females and males gives a forecast log death rate generally above

the observed log death rate in 1995-2009.

2) The JWT model produces a small ME (0.019) average across countries, as well as

a small standard deviation of ME (0.066) across countries. This indicates values

– ME – close to zero in most countries, rather than from a combination of large

negative and large positive MEs, as can be observed in Table 6.5. The JWT model

performs well in most countries.
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Table 6.5: ME of the forecast log death rate of each of the 13 countries

Models
Individual Joint

WT LC HU SJLC JLC TLC PLC JWT
AUS -0.025 -0.062 -0.058 -0.068 -0.070 -0.057 -0.067 -0.028
CAN 0.022 -0.042 -0.036 -0.047 -0.065 -0.033 -0.051 0.031
ENW 0.034 -0.008 0.002 -0.022 0.026 0.006 -0.020 0.018
FIN 0.114 0.059 0.050 0.036 0.106 0.052 0.038 0.114
FRA 0.009 -0.069 -0.067 -0.087 -0.071 -0.062 -0.084 0.007
ITA 0.007 -0.066 -0.085 -0.084 0.026 -0.084 -0.084 0.012
ESP 0.076 -0.001 -0.111 -0.013 0.094 -0.010 -0.015 0.077
SWE 0.043 0.007 -0.069 -0.005 0.013 0.016 -0.009 0.042
CHE -0.086 -0.146 -0.134 -0.152 -0.115 -0.140 -0.153 -0.096
USA -0.012 -0.049 -0.044 -0.052 -0.045 -0.041 -0.052 0.000
JPN 0.271 0.196 0.012 0.177 0.279 0.166 0.187 0.139
DNK -0.084 -0.164 -0.137 -0.158 -0.214 -0.127 -0.170 -0.074
NLD -0.002 -0.042 -0.050 -0.052 -0.056 -0.039 -0.060 0.005
Mean 0.028 -0.030 -0.056 -0.040 -0.007 -0.027 -0.042 0.019
SD 0.092 0.090 0.055 0.085 0.122 0.079 0.089 0.066

Table 6.6: Ranking of ME of the 13 countries

Models
Individual Joint

WT LC HU SJLC JLC TLC PLC JWT
AUS 1 5 4 7 8 3 6 2
CAN 1 5 4 6 8 3 7 2
ENW 8 3 1 6 7 2 5 4
FIN 7 5 3 1 6 4 2 8
FRA 2 5 4 8 6 3 7 1
ITA 1 4 8 5 3 6 7 2
ESP 5 1 8 3 7 2 4 6
SWE 7 2 8 1 4 5 3 6
CHE 1 6 4 7 3 5 8 2
USA 2 6 4 8 5 3 7 1
JPN 7 6 1 4 8 3 5 2
DNK 2 6 4 5 8 3 7 1
NLD 1 4 5 6 7 3 8 2
Mean 4 5 8 6 1 3 7 2
SD 7 6 1 4 8 3 5 2

3) The eight models all produce positive ME for Japan. Japanese females and males

experienced the largest difference of ROMD between the fitting and forecasting

periods as displayed in Table 6.3. The forecast log death rate is below the observed

log death rate in 1995-2009.
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General overestimation of mortality for the countries

The eight models yield negative overall ME averaged across countries. From the fitting

period (1948-1994) to the forecasting period (1995-2009), the observed ROMD of fe-

males decreases from 0.025 to 0.024, while that of males increases from 0.017 to 0.030

(Table 6.3). Comparing the 0.001 reduction with the 0.013 increase, males dominate the

trends of mortality, and thus the eight models overestimate mortality in 1995-2009.

However, the WT and JWT models are different from the other six models. The WT

model always produces increasing ROMD as described in Section 6.2.2 and thus results

in a larger underestimation for females but a smaller overestimation for males than the

other six models when forecasting mortality. The JWT model uses a time trend to adjust

the drift of z–scores. However, the time trend converges to zero in the long term, and the

JWT model may be similar to the WT model, yielding increasing ROMD. Therefore, the

WT and JWT models yield positive ME.

Small projection bias of the JWT model

The JWT model produces a small overall ME (0.019) across the 13 countries, where

"small" means close to zero. The small standard deviation (0.066) indicates that the over-

all ME does not result from a combination of large positive and large negative MEs of

individual populations. The JWT model performs well across most countries.

The JLC model yields an ME closest to zero (-0.007), but with the largest standard

deviation (0.122) of the eight models. The small overall ME of the JLC model is due to

a combination of large positive and large negative MEs of individual countries. The JLC

model is not appropriate for the "across sex" joint forecasting for general populations.
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Underestimation of mortality for Japan

The eight models yield a positive overall ME for Japan. From the fitting period (1948-

1994) to the forecasting period (1995-2009), the observed ROMD of Japanese females

decreases from 0.044 to 0.023, while that of males increases from 0.034 to 0.024 (Table

6.3). Both females and males in Japan have the largest reduction of ROMD among the 13

countries. The large change of ROMD in Japan results in the underestimation of mortality

for Japan.

6.3.3 Overall forecast accuracy – MAE

Tables 6.7, 6.8 and 6.9 display the overall MAE, the ranking of MAE and the CMAE for

the 13 countries.

Table 6.7: MAE of the forecast log death rate of the 13 countries

Models
Individual Joint

WT LC HU SJLC JLC TLC PLC JWT
AUS 0.148 0.147 0.141 0.143 0.147 0.143 0.143 0.145
CAN 0.116 0.115 0.118 0.105 0.109 0.106 0.106 0.106
ENW 0.122 0.110 0.115 0.103 0.148 0.110 0.102 0.113
FIN 0.245 0.218 0.217 0.206 0.240 0.213 0.207 0.244
FRA 0.111 0.136 0.132 0.132 0.121 0.130 0.133 0.098
ITA 0.126 0.145 0.140 0.137 0.138 0.138 0.140 0.117
ESP 0.161 0.146 0.156 0.133 0.160 0.134 0.135 0.156
SWE 0.196 0.209 0.215 0.203 0.203 0.204 0.203 0.188
CHE 0.202 0.233 0.231 0.229 0.203 0.228 0.229 0.195
USA 0.091 0.099 0.099 0.092 0.085 0.092 0.092 0.082
JPN 0.287 0.221 0.111 0.206 0.316 0.199 0.212 0.165
DNK 0.204 0.251 0.246 0.246 0.275 0.233 0.250 0.199
NLD 0.127 0.140 0.142 0.136 0.137 0.133 0.138 0.120
Mean 0.164 0.167 0.159 0.159 0.176 0.159 0.161 0.148
SD 0.058 0.052 0.050 0.052 0.068 0.049 0.053 0.048
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Table 6.8: Ranking of MAE of the 13 countries

Models
Individual Joint

WT LC HU SJLC JLC TLC PLC JWT
AUS 8 6 1 4 7 2 3 5
CAN 7 6 8 1 5 3 4 2
ENW 7 3 6 2 8 4 1 5
FIN 8 5 4 1 6 3 2 7
FRA 2 8 5 6 3 4 7 1
ITA 2 8 6 3 5 4 7 1
ESP 8 4 5 1 7 2 3 6
SWE 2 7 8 5 4 6 3 1
CHE 2 8 7 5 3 4 6 1
USA 3 7 8 5 2 6 4 1
JPN 7 6 1 4 8 3 5 2
DNK 2 7 4 5 8 3 6 1
NLD 2 7 8 4 5 3 6 1
Mean 6 7 3 4 8 2 5 1
SD 7 5 3 4 8 2 6 1

Table 6.9: CMAE of the forecast log death rate of each of the 13 countries

Models
Individual Joint

WT LC HU SJLC JLC TLC PLC JWT
AUS 1.19 0.00 -3.73 -2.46 0.15 -2.94 -2.75 -0.25
CAN -1.92 0.00 2.77 -9.09 -5.35 -7.95 -7.58 -10.12
ENW 4.37 0.00 4.71 -6.25 34.42 0.47 -7.55 2.95
FIN 6.85 0.00 -0.47 -5.61 10.41 -2.04 -5.15 6.03
FRA -19.49 0.00 -3.48 -3.45 -11.57 -4.79 -2.50 -26.95
ITA -13.19 0.00 -3.18 -5.40 -4.42 -4.96 -3.01 -19.84
ESP 0.67 0.00 6.87 -8.29 10.19 -7.90 -7.36 -1.53
SWE -7.10 0.00 2.98 -2.57 -2.62 -2.35 -2.80 -9.97
CHE -10.72 0.00 -0.68 -1.69 -12.77 -2.04 -1.65 -12.80
USA -6.46 0.00 0.27 -6.93 -13.88 -6.52 -7.11 -15.22
JPN 10.79 0.00 -49.75 -6.83 43.32 -10.07 -3.80 -33.41
DNK -16.90 0.00 -1.95 -1.95 9.57 -7.00 -0.29 4.91
NLD -9.67 0.00 1.10 -3.41 -2.72 -5.56 -1.98 -14.70
Mean -4.78 0.00 -4.88 -4.55 5.26 -4.90 -3.66 -9.73
SD -0.00 0.00 -2.74 -0.25 31.65 -4.53 1.42 5.98
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Note the following highlights in Tables 6.7, 6.8 and 6.9, and the explanations given

below the highlights.

1) The JWT model has the lowest overall MAE (0.148) and is ranked first in seven of

the 13 countries. This provides further evidence that the JWT model performs the

best among the eight models, by allowing a flexible ROMD.

2) The HU model performs better than the other seven models for Japan. However, the

good performance can not be generalised to other populations. The HU model is

appropriate for specific populations and may not be suitable for general application.

3) The JLC model is ranked last according to the overall MAE (0.176). The SJLC

model excludes individual time trends and performs better than the JLC model.

The JLC model may not be appropriate for short-term projection "across sex".

4) The average of MAE across joint models and across the 13 countries is slightly

smaller than that of individual models (0.161 vs. 0.163). Using the t-test to evaluate

the significance of the difference between individual and joint models (see Section

5.9), the joint models are not significantly better than the individual models.

Further evidence – reliable projection of the JWT model

The JWT model has the lowest overall MAE (0.148) and is ranked first in seven of the

13 countries. The advantages of the JWT model as described in Section 6.2.2 are also

appropriate for this application.

Inappropriate general projection of the HU model

The HU model performs much better than the other seven models for Japan (Table 6.9).

Japanese females and males experience a decrease in ROMD over time as described in
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Section 6.3.2. The HU model uses the ARIMA process for most of the individual popu-

lations, which results in a smaller decline of time trends in the forecasting period than in

the fitting period. As a result, the HU model produces a smaller ROMD in the forecasting

period than in the fitting period. This forecast happens to be appropriate for the variation

in mortality of Japan. This also accounts for the relatively good performance of the HU

model for females in Table 6.2, and the poor performance for males. The HU model does

not perform consistently well in different scenarios.

Unreliable short-term projection of the JLC model

The JLC model yields the largest overall MAE (0.176) among the eight models and may

be inappropriate for short-term projection. The MAE of 0.176 is produced using the

AR(1) process to forecast kti. Using the ARIMA(1,1,0) process to forecast kti, the JLC

model has an overall MAE of 0.160, which is much smaller than overall MAE using the

AR(1) process. The forecast methods of kti significantly influence the forecast accuracy.

Excluding kti, the JLC model becomes the SJLC model which has an overall MAE of

0.159, which is smaller than that of the JLC model using either AR(1) or ARIMA(1,1,0)

processes. Therefore, the kti sequences reduce the short-term forecast accuracy of the

JLC model, regardless of the forecasting time series used.

Insignificant differences between joint and individual models

From Table 6.7, the average MAE across the 13 countries is similar between the individ-

ual models (WT, LC and HU) and the joint models (SJLC, JLC, TLC, PLC and JWT).2

Using a t-test, the p-value (see Section 5.9) is 0.478. Therefore, the difference between

individual and joint models is not significant in this analysis.

2The average of MAE is 0.1633 for individual models and 0.1605 for joint models.
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Table 6.10 combines Tables 6.2 and 6.7 and illustrates that the joint models perform

relatively better in the evaluations of "across country" than in those "across sex". This

difference in performance of joint models is due to the differences in mortality across

populations. The standard deviations of mortality across females and males (discussed in

Section 6.3.5) are generally larger than those across the 13 countries (Section 6.2.4). The

larger standard deviations indicate less similarities of mortalities across populations, and

thus reduce the forecast accuracy of the joint models.

Table 6.10: Overall MAE of the forecast log death rate for evaluations of "across country"
(Section 6.2.2) and "across sex" (Section 6.3.3)

Models
Individual Joint

WT LC HU SJLC JLC TLC PLC JWT
By country 0.164 0.167 0.159 0.154 0.169 0.155 0.151 0.145

By sex 0.164 0.167 0.159 0.159 0.176 0.159 0.161 0.148

6.3.4 Forecast accuracy over time

This section shows the trends in ME and MAE over the forecasting period and provides

more information to evaluate the models. Sections 6.3.2 and 6.3.3 described the overall

performance in the 15-year projection, which does not reflect the performance in the

longer term. An analysis of forecast accuracy over time complements this shortcoming

by describing the trends of ME and MAE over time, allowing us to anticipate performance

over a longer forecasting period.

The ME of the forecast log death rate over time is introduced in Section 5.8.1 and

denoted by ε·ti, reflecting the difference between observed and forecast log death rate of

population i over t. Positive ME indicates that the observed log death rate is higher than

the forecast log death rate. Negative ME indicates that the observed log death rate is

lower than the forecast log death rate. An ε·ti close to zero means the difference between
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observed and forecast mortality is small.

The MAE of the forecast log death rate over time is introduced in Section 5.8.2 and

denoted by ε̃·ti, reflecting the absolute difference between the observed and forecast log

death rate of population i over t. Slopes of the fitted straight lines of the curves are

defined as the average difference between ε̃·ti and ε̃·,t−1,i, reflecting the trend of MAE in

the forecasting period. The trend of MAE is helpful to assess a model’s performance in

the long-term projection. For example, the forecasting period is from 1995 to 2009 in this

research and the trend of MAE, or the slope of sequence ε̃·ti over t, can be used to give

some indication of the patterns of MAE after 2009.

Let ε·t· (ε̃·t·) denote the average ε·ti (ε̃·ti) across i – in this case, females and males.

Figure 6.10 displays the average ε·t· (ME, left panel) and the average ε̃·t· (MAE, right

panel) across the 13 countries. For example, the WT model yields an increasing ε̃·t· of the

13 countries over time with a slope 1.08 (×10−2).
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Note:
• The ME and MAE over time here are average ε·t· and ε̃·t· across the 13 countries.

• The numerics in the left panel denote the slopes of the fitted straight lines of the curves.
The unit is 10−2.

Figure 6.10: ME and MAE over time of the forecast log death rate
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Note the following highlights in Figure 6.10 and the explanations given below the

highlights:

1) The WT and JWT models produce increasingly ME over time while the other six

models yield increasingly negative ME over time. The WT and JWT models use

the z–score to forecast mortality. When transforming the z–score to the log death

rate, the constant increase in z–scores results in an accelerating decline in the log

death rate as described in Section 3.2.1.

2) The JWT model has the smallest slope (0.81) in MAE. Since the JWT model per-

mits a flexible ROMD over the forecasting period, the JWT model is better able to

capture the path of mortality decline than the other seven models. As a result, the

JWT model keeps the advantage of projection during the forecasting horizon and

may maintain this advantage in the longer term.

3) The performance of forecast accuracy across the eight models is more similar in the

"across sex" analysis than in the "across country" analysis. The joint models per-

form better in forecast accuracy in the "across country" analysis than in the "across

sex" analysis, and thus the difference between individual and joint models is smaller

in the "across sex" analysis.

Differences between the LC family and WT family

The LC family (LC, HU, SJLC, JLC, TLC and PLC) and WT family (WT and JWT)

produce different directions of ME over time as can be seen in the left panel of Figure

6.10, due to these two families using different mortality scales. The models of the LC

family use log(m) or logit(q) as mortality scales and apply a constant ROMD to forecast

mortality.

Table 6.3 illustrates that females experience a slight decrease in ROMD but males
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experience a large increase in ROMD. As a result, the models of the LC family almost

always overestimate mortality in the forecasting period. However, the models of the WT

family use z–scores which may result in an increasing ROMD as described in Section

6.3.2. Therefore, the models of the WT family underestimate mortality.

Further evidence – reliable projection of the JWT model

The JWT model has the smallest slope (0.81) in the MAE over time. The flexible ROMD

over time enables the JWT model to perform the best in the joint forecast of "across

country" as discussed in Section 6.2.2. The best performance in the joint forecast of

"across sex" further supports the advantages of the JWT model. During the forecasting

horizon, the JWT model holds the lowest MAE which can be maintained in the longer-

term projection.

Smaller difference in performance across the models in the "across sex" analysis

than in the "across country" analysis

As described in Section 6.3.3, the difference in forecast accuracy between individual and

joint models is smaller in the "across sex" analysis than in the "across country" analysis.

This finding reflects the overall performance in the limited forecasting horizon.

The standard deviation of the slopes is 0.21 (×10−2) for females and 0.18 (×10−2) for

males in the "across country" analysis and 0.10 (×10−2) in the "across sex" analysis. The

slopes are displayed in Figures 6.6 and 6.10. A small difference of the slopes indicates

that the models may experience little difference in the long-term projection. Therefore, in

the long-term projection, the difference across the eight models is smaller for the "across

sex" analysis than for the "across country" analysis.
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6.3.5 Convergence properties of mortality between females and males

within a country

This section illustrates the forecast differences in mortality across females and males over

the forecasting period. Throughout the world, mortalities of females and males in a coun-

try are generally converging (Mathers et al., 2001; Moser et al., 2005). The difference in

forecast mortality between females and males is therefore expected to be constant or re-

ducing over time. In this section, the differences in mortality between females and males

are measured by the standard deviation of the forecast log death rate across populations –

in this case, females and males, ϑxt, as introduced in Section 5.10.

As described in Section 3.3, individual models permit populations to have individ-

ual rates of mortality decline, hence allowing for divergence. Joint models, in contrast,

constrain populations to share common mortality trends and do not permit divergence. If

a model yields horizontal or decreasing ϑxt over t, the model is verified to control the

divergence in forecast mortality.

Figure 6.11 displays the standard deviation of the log death rate of females and males

in Italy as an example. Other countries display similar patterns. The randomly selected

ages are 0, 10, 20, 30, 49, 59, 69, 79 and 89. Every panel displays the ϑxt of a model.

In the fitting period (1948-1994), the ϑxt is calculated using the observed log death rate.

The eight models have the same patterns of ϑxt in this period. In the forecasting period

(1995-2044), ϑxt is calculated using the forecast log death rate by a given model. Since

convergence properties of mortality of females and males require a long-term assessment,

the forecasting period is 1995-2044 in this evaluation.
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Figure 6.11: Standard deviation of log death rate across females and males in Italy
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Note the following highlights in Figure 6.11 and the explanations given below the

highlights.

1) In the fitting period, standard deviations increase before the 1970s-1980s and de-

crease after the 1980s. The patterns of standard deviation are consistent with the

conclusions of Liu et al. (2012). Differences in mortality between females and

males have generally been converging since the 1980s in developed countries.

2) In the forecasting period, the WT, LC, HU and TLC models yield increasing stan-

dard deviations in the forecast rates of mortality over time. For some ages, the

LC and HU models yield decreasing standard deviations. The decrease in standard

deviation is due to the larger ROMD of males and the smaller ROMD of females.

Individual models (WT, LC and HU) and the TLC model produce apparently un-

reliable results as their forecasts are likely to diverge, which is inconsistent with

preconceptions about the future trajectory of mortality by sex.

3) In the forecasting period, the SJLC, PLC and JWT models produce constant stan-

dard deviation over time. The SJLC, PLC and JWT models appear more reliable

for mortality forecasting since they inhibit divergence in forecast mortality across

populations. The JLC model produces, in the short term, and for differing age

groups, differing directions in the standard deviation over time. The JLC model is

reasonable in long-term projection, since this model permits divergence in mortality

across populations in short-term projection and keeps a constant difference across

populations in long-term projection.

Convergence of mortality between females and males

The differences in mortality between females and males can be assessed by using differ-

ent mortality scales, for example, male-to-female ratio of death rate (Li, 2013), standard
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deviation in life expectancy (Li and Lee, 2005) or difference in life expectancy (Liu et al.,

2012). This research applies the standard deviation of log death rate across populations.

In the fitting period, standard deviations increase before the 1970s-1980s and decrease

after the 1980s (Figure 6.11). The patterns of standard deviation are consistent with the

conclusions of Liu et al. (2012), indicating that the measure of standard deviation is suit-

able to analyse the relationships of mortality between females and males.

Since the 1980s, females and males have convergent mortality in many developed

countries. Table 6.3 illustrates that the ROMD is generally getting smaller for females

and larger for males. However, the change of the ROMD may trend to zero and the

differences of mortality between females may be constant in the long term as described in

Section 2.3.2. As a result, mortality (the log death rate) of females may remain lower than

that of males, in spite of the ROMD being currently larger for males than for females.

Unreliable projection of the TLC model and the individual models

The TLC model and the individual models (WT, LC and HU) have similar patterns of

standard deviation to those displayed in Figures 6.7 and 6.8. Increasing standard devi-

ations indicate divergence of mortality between females and males. The WT and TLC

models yield increasing standard deviation for all ages and therefore the WT and TLC

models are apparently unreliable for long-term projection.

The LC and HU models yield different directions of standard deviations for some

ages. Figure 6.12 displays the observed and forecast log death rate using the HU model

for ages 0 and 49 in Italy. Since males and females have different ROMD, the two curves

cross over in the two panels. The mortalities of age 0 converge between females and

males and then diverge. This type of cross over is unrealistic and can be avoided by the

use of joint models.
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Figure 6.12: Observed and forecast log death rate for ages 0 and 49 of Italian females and
males using the HU model

Reliable projection of the SJLC, JLC, PLC and JWT models

As in Section 6.2.4, the SJLC, PLC and JWT models yield constant standard deviations

over time. As kti sequences converge at zero in 2009 as displayed in Figure 6.13, the

JLC model yields constant standard deviations over time. These four models produce

non-divergent projections between females and males.
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Figure 6.13: Estimates and forecasts of kti with the JLC model for Italy
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6.4 Conclusion of the fits and forecasts

This chapter displays the finds of the WT, LC, HU, SJLC, JLC, TLC, PLC and JWT mod-

els. These eight models are applied to fit and forecast the mortality of females and males

of 13 countries. Since the 13 countries have not been specifically selected, the findings

related to the eight models should be able to be generalised to other mortality data sets.

Additionally, the eight models have not been specially selected, and thus the performance

of these eight models should also be broadly representative of the performance of general

individual and joint models.

Joint models (SJLC, JLC, TLC, PLC and JWT) are applied to jointly fit and forecast

mortality combining the 13 countries by a single sex – "across country" (Section 6.2),

and to jointly fit and forecast mortality combining females and males within each of the

13 countries – "across sex" (Section 6.3). Both the "across country" and "across sex"

analyses illustrate the eight models’ goodness of fit and forecasting performance.

Conclusion one: Models with more parameters generally provide a better fit to mor-

tality data (Sections 6.2.1 and 6.3.1). In both evaluations, the LC, HU and JLC models,

which have the most parameters, gave better goodness of fit than the other five models.

A large number of parameters generally enables a model to quantitatively describe the

properties of mortality data well. However, a model with few parameters may miss some

important features of mortality data. Therefore, models with more parameters generally

have better fit than those with fewer parameters.

Although this research does not apply the models to analyse mortality, a model that

fits better will provide a more appropriate basis for analysis. The analysis of mortality is

influenced by the factors involved in a model. In this research, the HU and LC models

use only individual factors, while the JLC and TLC models involve both individual and
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common factors. As a result, the LC model has the best goodness of fit, but can only

be applied to individual populations. The JLC and TLC models – ranked second and

fourth in terms of fit – are able to describe both individual populations and common

features across the member populations. Therefore, if a model involves individual factors,

it is appropriate to analyse the mortality of individual populations. If a model involves

both individual and common factors, it is appropriate to analyse relationships of mortality

across multiple populations.

Conclusion two: Joint models generally have better forecasting performance than indi-

vidual models. Specifically, in this study, the joint models (SJLC, JLC, TLC, PLC and

JWT) have better forecast accuracy than the individual models (WT, LC and HU). Fur-

thermore, the individual models (WT, LC and HU) produce increasing standard deviations

of forecast mortality across populations over time, but the joint models (SJLC, JLC, PLC

and JWT) yield constant standard deviations (Sections 6.2.4 and 6.3.5). The different

performance of projection between individual and joint models is due to the properties of

the models. Firstly, joint models aggregate similar populations to jointly fit and forecast

mortality. Aggregating data enables joint models to grasp more information than individ-

ual models, resulting in better forecast accuracy. Secondly, joint models are more realistic

than individual models. Mortalities of different populations are increasingly similar, since

the 1950s as described in Section 2.3. However, individual models allow populations to

hold individual mortality trends over time, and thus generally yield increasing differences

in mortality across populations in the long-term projection.

Conclusion three: Simple models have better forecasting performance than compli-

cated models. In this research, the LC, HU and JLC models have the most parameters,

but their forecasting performance is unexpectedly worse than the other five models. The

JWT model has much fewer parameters, but better forecasting performance than the LC,
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HU and JLC models. The better performance of simple models may be due to two fac-

tors. Firstly, if a model uses a large number of parameters, the errors may be cumulatively

large when forecasting these parameters. Secondly, forecasts of time trends significantly

influence the forecast of mortality (Lee and Miller, 2001). If a model involves more than

two time trends, these time trends may be in conflict in the long-term projection and the

conflict may result in poor forecast accuracy.

Conclusion four: The JWT model is generally reliable for both short-term and long-

term projections. This research proposes the JWT model and illustrates its advantages

in forecasting. In the short-term projection (1995-2009), the JWT model yields the best

forecast accuracy in both the "across country" and "across sex" analyses. This advantage

may be extended to a longer-run forecast, since the JWT model has the smallest slope of

MAE over time of the eight models (Sections 6.2.3 and 6.3.4). In the long-term projection

(1995-2044), the JWT model yields constant differences of mortality across populations.

The JWT model yields the highest forecast accuracy and non-divergence over time, and

thus is the most reliable in both short-term and long-term forecasts.

The JWT model is more practical than existing mortality models. Mortality trends

are uncertain over time and the rate of mortality decline (ROMD) varies over time as

described in Section 2.4. Existing mortality models assume that the ROMD is constant

over time, but the JWT model permits the ROMD to vary over time. As a result, the JWT

model is consistent with the variation of mortality over time, and thus is more practical

than existing individual and joint mortality models. In addition, the JWT model possesses

the advantages of joint models and simple models. Therefore, in projection, the JWT

model performs the best of the eight models. In this research, the other seven models

(WT, LC, HU, SJLC, JLC, TLC and PLC) and the mortality data sets (females and males

in the 13 countries) are randomly selected. Therefore, the advantages of the JWT model
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can be generalised to other mortality data sets and compared.

However, the JWT model has its limitations. The "across country" and "across sex"

analyses demonstrate that these limitations do not influence the JWT model’s perfor-

mance, at least in the selected data sets. However, these limitations are potential risks

in application to other data sets.

Firstly, transformed from the survival probability, the z–scores do not directly reflect

mortality data. Hence, a model using z–scores may not be easily understood. However,

forecast z–scores can be transformed into commonly used and understood mortality mea-

sures, for example, the log death rates.

Secondly, the survival probabilities are the product of the one year death rates across

ages, and thus correlated across ages. Modelling highly correlated variables is not usually

satisfactory. However, in this case, the dependent survival probability can be converted

back to the independent one year death rate. Therefore, modelling the correlated z–scores

is acceptable in this scenario.

Thirdly, z–scores varying with age-specific factors (ax) may theoretically result in

crossover of z–scores. This risk does not significantly influence the application of the

JWT model. The ax is estimated using non-crossing z–scores, and the estimates of z–

scores are expected to be non-crossing. Considering the initial differences of z–scores

(zxni), the forecast z–scores do not appear to cross over by age in practice.

Conclusion five: The PLC and SJLC models are also reliable for projection, but do not

perform as well as the JWT model. On one hand, for forecast accuracy, the SJLC and

PLC models are ranked second and third in the evaluation of "across country" (Section

6.2.2) and ranked fifth and sixth in the evaluation of "across sex" (Section 6.3.3). Since

the SJLC and PLC models assume that the ROMD varies constantly over time, these
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two models do not have the same flexibility as the JWT model. Therefore, the PLC and

SJLC models have worse forecast accuracy than the JWT model. On the other hand,

for divergence control, the SJLC and PLC models yield constant differences in mortality

across populations over time (Sections 6.2.4 and 6.3.5). Since the SJLC and PLC models

use one time trend to forecast mortality, member populations share the same time trend

and have the same patterns of mortality decline in the forecasting horizon. As a result,

the differences of mortality across populations are constant over time. Consequently, the

SJLC and PLC models possess the advantages of both joint models and simple models,

and are thus reliable for projection but are less flexible than the JWT model.

Conclusion six: The JLC model is not reliable for short-term projection, but may be

appropriate for long-term projection. Firstly, in the short-term projection (1995-2009)

for forecast accuracy, the JLC model performs the worst in both "across country" and

"across sex" analyses (Sections 6.2.2, 6.3.2 and 6.3.3). The poor performance may be due

to the inappropriate forecast methods of the individual time trends (kti), but not the JLC

model itself. Secondly, in the long-term projection (1995-2044), the JLC model is able

to constrain the divergence when forecasting mortality. The JLC model yields constant

standard deviations of the forecast log death rate across populations over the forecasting

horizon (Sections 6.2.4 and 6.3.5). Therefore, in spite of the reliable long-term projection,

the JLC model may produce poor forecast accuracy in the short term.

Conclusion seven: The TLC model is appropriate for the short-term projection, but may

be unreliable for the long-term projection. In the projection of 1995-2009, for forecast

accuracy, the TLC model is ranked fourth in the evaluation of "across country" (Section

6.2.2) and ranked second and fourth in the evaluation of "across sex" (Section 6.3.3). Ac-

cording to the rankings in this research, the TLC model has high accuracy in short-term

projection. However, in the projection of 1995-2044, the TLC model produces diver-

153



gence. The TLC model yields increasing standard deviations of the forecast log death

rate across populations over the forecasting horizon. Therefore, the TLC model is unreli-

able when forecasting mortality in the long run.

Conclusion eight: The WT, LC and HU models may be unreliable to forecast mortal-

ity of a group of similar populations. First of all, these three models cause divergence

of mortality across populations (Sections 6.2.4 and 6.3.5) because, as individual models,

they permit different populations to hold individual mortality trends over time. These in-

dividual mortality trends result in increasing differences in mortality across populations in

the long term, referred to as divergence. Furthermore, the LC model yields poor forecast

accuracy, being ranked seventh in both analyses. The WT and HU models produce good

forecast accuracy for either females or males in the "across country" analysis (Sections

6.2.2) but are inappropriate for general projection as described in Section 6.3.3. Conse-

quently, the WT, LC and HU models are unreliable for projection.

In conclusion, the JWT model has a simple form, incorporates similar populations to

jointly forecast mortality and allows rate of mortality decline (ROMD) to vary over time.

These three features enable the JWT model to perform the best in both short-term and

long-term forecasting. The other models may perform well according to fit or forecast,

but offer fewer advantages compared with the JWT model.
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Chapter 7

Discussion and Further Research

Directions

Mortality modelling – using mathematical and statistical approaches – increases demog-

raphers’ understanding of mortality variation and patterns. Raw mortality data comprise

a mass of numbers and these numbers are difficult to comprehend and understand without

the aid of a model. Thus, mortality models aim to describe the levels and variation in

mortality across ages, years and populations. For example, the LC model uses age and

time factors to describe the variation of mortality across ages and over time. These pa-

rameters are estimated using mathematical and statistical techniques and constraints. By

using a limited number of parameters, mortality models simplify the expression of mor-

tality variation. Demographers can more easily understand the patterns of mortality via a

mortality model, which is generally difficult from a direct inspection of raw mortality.

In addition, mortality models provide an intuitive and consistent method to forecast

mortality. For example, the LC model forecasts mortality by forecasting the time factors,

where the time factors can be viewed as a time series process of random walk with drift.
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By using statistical methods to forecast, uncertainty of the projection is incorporated and

the risk of projection can be analysed. Hence, mortality models provide convenient and

reliable forecasts. In addition, mortality models can be applied to foresee the risks of

industries that are operating products related to mortality.

This research firstly provides an overview of variations in mortality, illustrating how

mortality rates vary over time (Section 2.2 and Section 2.4) and how the variations be-

come increasingly similar (Section 2.3). These two features of the variation of mortality

demonstrate that mortality models that use a constant rate of mortality decline to forecast

and that use separate populations are generally inappropriate and/or fail to exploit com-

mon features of mortality across populations. However, there are no existing mortality

models which satisfy both these conditions.

For this purpose, this research develops a new joint model – the JWT model (Chapter

4). The JWT model incorporates three features: jointly fitting and forecasting mortal-

ity, allowing a flexible rate of mortality decline and simplicity. These three features are

expected to enable the JWT model to perform well when forecasting mortality.

The JWT model assumes that populations share the same increase of z–scores over

time, subject to common age and time variations, but permit populations to possess indi-

vidual initial rates – the jump-off z–scores. The differences of z–scores across populations

are constant and are equal to the differences of the jump-off z–scores. The constant differ-

ences of z–scores result in decreased differences of survival probability across populations

as detailed in Section 4.4. Therefore, the JWT model captures the convergence properties

of survival probabilities across populations. The JWT model constrains mortality to be

non-divergent across populations in long-term projections (Sections 6.2.4 and 6.3.5).

By using a time trend to describe the changes of z–scores over time, the JWT model

permits z–scores to vary flexibly over time in the short term. Since the time trend is
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stationary, the z–scores vary constantly over time in the long term. The flexibility enables

the JWT model to yield good forecast accuracy in both short-term projections (Sections

6.2.2, 6.3.2 and 6.3.3) and long-term projections (Sections 6.2.3, 6.2.4, 6.3.4 and 6.3.5).

The JWT model is simple in application. The JWT model uses z–scores and the

variation of mortality is linear over time under the scales of z–scores. Therefore, the

JWT model uses a linear form to model the linear variation of z–scores. The JWT model

provides simple estimation and forecasting (Section 4.3).

To evaluate the performance of the JWT model, this research compares the JWT model

with seven other existing commonly used individual models (WT, LC and HU) and joint

models (SJLC, JLC, TLC and PLC). These eight models are applied to fit and forecast

the mortality of 13 countries. The joint models are applied to jointly fit and forecast

mortalities "across country" (Section 6.2) and "across sex" (Section 6.3) separately. Both

analyses illustrate the goodness of fit and forecasting performance of the models.

Goodness of fit reflects the match between mortality data and the models in the fit-

ting period. Using a large number of parameters generally enhances the describability of

mortality data. Therefore, the models with more parameters normally perform better than

those with fewer parameters. The LC, HU and JLC models use more parameters and thus

produce better BIC than the five other models. However, using additional parameters may

result in over-parameterizations and may produce poor projection.

Forecasting performance consists of forecast accuracy and convergence properties of

mortality across populations. Forecast accuracy illustrates the differences between the

observed and forecast mortality and small differences indicate good forecast accuracy.

Convergence properties of mortality across populations illustrate the differences of fore-

cast mortality across populations, using the standard deviation of the forecast log death

rate across populations. Due to the increasing similarities in mortality across populations,
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the standard deviations are expected to decrease or to be constant over time.

In the evaluation of forecasting performance, the JWT model performs the best of the

eight models. The JWT model possesses three main features which result in good perfor-

mance in both short-term and long-term projections. Allowing a flexible rate of mortality

decline over time enables the JWT model to grasp the trends of mortality decline. Ag-

gregating similar populations enables the JWT model to incorporate the relationships of

mortality across populations. Having a simple form helps the JWT model to reduce the

risk of over-parameterization. Therefore, the JWT model yields the highest forecast ac-

curacy and a constant difference of mortality during the forecasting horizon. The other

joint models (SJLC, JLC, TLC and PLC) generally have better forecast accuracy and

divergence control than the individual models (WT, LC and HU).

In the evaluation of convergence properties of mortality across populations, the joint

models (JWT, SJLC, JLC and PLC) yield constant differences of forecast log death rates

across populations. However, the individual models (WT, LC and HU) and the TLC

model produce increasing differences of forecast log death rates across populations. There-

fore, the joint models generally are able to control the divergence when forecasting mor-

tality, but individual models produce divergence.

While these models all perform differently and may be appropriate for different appli-

cations, the JWT model is the most appropriate for short-term and long-term projections,

followed by the PLC and SJLC models. The remaining models may only be appropriate

for long-term (JLC) or short-term (TLC) projection or for analysing mortality of individ-

ual populations (LC and HU) or a group of populations (JLC and TLC).

The evaluations carried out in this research may not be comprehensive. The poor

performance of a model may not be due to the model itself but due to an inappropriate

application. The forecast methods of the time trends may not be appropriate for the JLC
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model, which may have contributed to the weak forecast accuracy. The analysis is con-

cerned only with the fit and forecast accuracy of models, not with their ability to describe

and assist the understanding of the properties of mortality. Furthermore, the analysis of

relationships across populations using joint models is not considered. Finally, the mortal-

ity data sets of the 13 developed countries may not completely reflect the performance of

the models for other data sets, specifically of developing countries.

The JWT model has the risk of permitting z–scores to cross over ages as described

in Section 4.5. This risk does not significantly influence the performance of the JWT

model in this research, but may be inappropriate in other applications. A further study

can generalise the JWT model to avoid the risk of crossing z–scores over ages.

Acknowledgement of the above mentioned shortcomings points to the need for further

research to address the following areas. Firstly, the existing models can be improved or

extended to match the advantages of the JWT model. In particular, the methods used to

forecast can be enhanced to better reflect actual mortality trends. Secondly, since females

and males within a country are similar and countries are similar by given sex, a com-

bination of females and males across the 13 countries may also be appropriate for joint

fitting and forecasting. More mortality data sets can be applied to evaluate the models

performance, for example, data sets of developing countries. Thirdly, the JWT model can

be applied to analyse the properties of mortality of multiple populations. In this way, a

comprehensive application of the JWT model would be demonstrated.

159



References

Alho, J., Spencer, B., 1990. Error models for official mortality forecasts. Journal of the

American Statistical Association, 609–616.

Bell, W., 1992. Arima and principal component models in forecasting age-specific fertil-

ity.

Bell, W., 1997. Comparing and assessing time series methods for forecasting age-specific

fertility and mortality rates. Journal Of Official Statistics-Stockholm 13, 279–304.

Bell, W., Monsell, B., 1991. Using principal components in time series modeling and

forecasting of age-specific mortality rates.

Biatat, V. D., Currie, I. D., 2010. Joint models for classification and comparison of mortal-

ity in different countries. In: Proceedings of 25th International Workshop on Statistical

Modelling, Glasgow. pp. 89–94.

Booth, H., 2006. Demographic forecasting: 1980 to 2005 in review. International Journal

of Forecasting 22 (3), 547–581.

Booth, H., Hyndman, R. J., Tickle, L., De Jong, P., 2006. Lee-Carter mortality forecast-

ing: a multi-country comparison of variants and extensions. Working Paper-Monash

University Department Of Econometrics and Business Statistics 13.

160



Booth, H., Maindonald, J., Smith, L., 2002a. Age-time interactions in mortality projec-

tion: Applying Lee-Carter to Australia. Working Papers in Demography (85).

Booth, H., Maindonald, J., Smith, L., 2002b. Applying Lee-Carter under conditions of

variable mortality decline. Population Studies 56 (3), 325–336.

Booth, H., Tickle, L., 2008. Mortality modelling and forecasting: A review of methods.

Annals of Actuarial Science 3 (1-2), 3–43.

Brass, W., et al., 1971. On the scale of mortality. Biological aspects of demography, 69–

110.

Brillinger, D., 1986. A biometrics invited paper with discussion: the natural variability of

vital rates and associated statistics. Biometrics, 693–734.

Brouhns, N., Denuit, M., Vermunt, J. K., 2002. A Poisson log-bilinear regression ap-

proach to the construction of projected lifetables. Insurance: Mathematics and Eco-

nomics 31 (3), 373–393.

Cairns, A., Blake, D., Dowd, K., Coughlan, G., Khalaf-Allah, M., 2011a. Bayesian

stochastic mortality modelling for two populations. ASTIN Bulletin-Actuarial Studies

in non LifeInsurance 41 (1), 29.

Cairns, A. J., Blake, D., Dowd, K., Coughlan, G. D., Epstein, D., Khalaf-Allah, M.,

2011b. Mortality density forecasts: An analysis of six stochastic mortality models.

Insurance: Mathematics and Economics 48 (3), 355–367.

Cairns, A. J., Blake, D., Dowd, K., Coughlan, G. D., Epstein, D., Ong, A., Balevich,

I., 2009. A quantitative comparison of stochastic mortality models using data from

England and Wales and the United States. North American Actuarial Journal 13 (1),

1–35.

161



Cairns, A. J., Dowd, K., Blake, D., Coughlan, G. D., 2014. Longevity hedge effectiveness:

A decomposition. Quantitative Finance 14 (2), 217–235.

Cairns, A. J. G., Blake, D., Dowd, K., 2006. A two-factor model for stochastic mortality

with parameter uncertainty: Theory and calibration. The Journal of Risk and Insurance

73 (4), 687–718.

Cairns, A. J. G., Blake, D. P., Dowd, K., 2008. Modelling and management of mortality

risk: a review. Scandinavian Actuarial Journal 2, 79–113.

Carriere, J. F., 1992. Parametric models for life tables. Transactions of the Society of

Actuaries 44, 77–99.

Carter, L., Lee, R., 1992. Modeling and forecasting us sex differentials in mortality. In-

ternational Journal of Forecasting 8 (3), 393–411.

Carter, L., Prskawetz, A., 2000. Examining structural shifts in mortality using the Lee-

Carter method. Methoden und Ziele Septemper, 39–54.

Chan, W., Li, S., Cheung, S., 2008. Testing deterministic versus stochastic trends in

the Lee-Carter mortality indexes and its implications for projecting mortality improve-

ments at advanced ages. Living to 100, 7–9.

Chan, W.-S., Li, J. S.-H., Li, J., 2014. The cbd mortality indexes: modeling and applica-

tions. North American Actuarial Journal 18 (1), 38–58.

Coale, A., 1996. Age patterns and time sequence of mortality in national populations with

the highest expectation of life at birth. Population and Development Review, 127–135.

Coale, A., Demeny, P., Vaughan, B., 1983. Regional model life tables and stable popula-

tions. Vol. 41. Academic Press New York.

162



Cockerham, W., 1997. The social determinants of the decline of life expectancy in Russia

and Eastern Europe: a lifestyle explanation. Journal of Health and Social Behavior,

117–130.

Crimmins, E., Finch, C., 2006. Infection, inflammation, height, and longevity. Proceed-

ings of the National Academy of Sciences of the United States of America 103 (2),

498–503.

Crimmins, E., Preston, S., Cohen, B., 2011. Difference between life expectancy in the

United States and other high-income countries.

Currie, I., 2006. Smoothing and forecasting mortality rates with p-splines. DP Heriot Watt

University.

Currie, I. D., Durban, M., Eilers, P. H. C., 2004. Smoothing and forecasting mortality

rates. Statistical Modelling 4 (4), 279.

Cutler, D., Meara, E., 2001. Changes in the age distribution of mortality over the 20th

century. Tech. rep., National Bureau of Economic Research.

Cutler, D. M., Kadiyala, S., 1999. The economics of better health: the case of cardiovas-

cular disease. New York (NY): The Lasker Foundation.

Czado, C., Delwarde, A., Denuit, M., 2005. Bayesian poisson log-bilinear mortality pro-

jections. Insurance: Mathematics and Economics 36 (3), 260–284.

D’Amato, V., Piscopo, G., Russolilo, M., 2011. The mortality of the Italian popula-

tion: Smoothing techniques on the Lee–Carter model. The Annals of Applied Statistics

5(2A), 705–724.

De Jong, P., Marshall, C., 2007. Mortality projection based on the Wang Transform. Astin

Bulletin 37 (1), 149.

163



De Jong, P., Tickle, L., 2006. Extending Lee–Carter mortality forecasting. Mathematical

Population Studies 13 (1), 1–18.

Deaton, A., Paxson, C., 2001. Mortality, education, income, and inequality among amer-

ican cohorts.

Debón, A., Martínez-Ruiz, F., Montes, F., 2012. Temporal evolution of mortality indica-

tors: Application to spanish data. North American Actuarial Journal 16 (3), 364–377.

Debón, A., Montes, F., Martínez-Ruiz, F., 2011. Statistical methods to compare mortality

for a group with non-divergent populations: an application to Spanish regions. Euro-

pean Actuarial Journal 1 (2), 291–308.

Debón, A., Montes, F., Puig, F., 2008. Modelling and forecasting mortality in spain. Eu-

ropean Journal of Operational Research 189 (3), 624–637.

Delwarde, A., Denuit, M., Eilers, P., 2007. Smoothing the Lee-Carter and Poisson log-

bilinear models for mortality forecasting: A penalized log-likelihood approach. Statis-

tical Modelling 7 (1), 29.

Denison, R., 2011. Past evolutionary tradeoffs represent opportunities for crop genetic

improvement and increased human lifespan. Evolutionary Applications 4 (2), 216–224.

Dorrington, R., 2006. Demographic Impact of HIV/AIDS in South Africa: National and

Provinsial Indicators for 2006. Centre for Actuarial Research.

Dowd, K., Cairns, A., Blake, D., Coughlan, G., Epstein, D., Khalaf-Allah, M., 2010.

Evaluating the goodness of fit of stochastic mortality models. Insurance: Mathematics

and Economics 47 (3), 255–265.

Elo, I., Preston, S., 1992. Effects of early-life conditions on adult mortality: a review.

Population Index, 186–212.

164



Finch, C., 2010. Evolution of the human lifespan and diseases of aging: Roles of infec-

tion, inflammation, and nutrition. Proceedings of the National Academy of Sciences

107 (suppl 1), 1718–1724.

Floyd, S., Marston, M., Baisley, K., Wringe, A., Herbst, K., Chihana, M., Kasamba,

I., Bärnighausen, T., Urassa, M., French, N., et al., 2012. The effect of antiretroviral

therapy provision on all-cause, AIDS and non-AIDS mortality at the population level–a

comparative analysis of data from four settings in Southern and East Africa. Tropical

Medicine & International Health 17 (8), e84–e93.

Forfar, D., McCutcheon, J., Wilkie, A., 1988. On graduation by mathematical formula.

Journal of the Institute of Actuaries 115 (01), 1–149.

Forfar, D., Smith, D., 1985. The changing shape of english life tables. Transactions of the

Faculty of Actuaries 40, 98–134.

Gero, D., 2010. The East–West health divide in Europe: growing and shifting eastwards.

Girosi, F., King, G., 2007. Understanding the lee-carter mortality forecasting method.

Glei, D., Horiuchi, S., 2007. The narrowing sex differential in life expectancy in high-

income populations: effects of differences in the age pattern of mortality. Population

Studies 61 (2), 141–159.

Gogola, J., 2014. Stochastic Mortality Models. Application to CR Mortality Data. In:

Mathematical and Statistical Methods for Actuarial Sciences and Finance. Springer,

pp. 113–116.

Gompertz, B., 1825. On the nature of the function expressive of the law of human mor-

tality, and on a new mode of determining the value of life contingencies. Philosophical

Transactions of the Royal Society of London 115, 513–583.

165



Hannerz, H., 1999. Methodology and applications of a new law of mortality. Department

of Statistics, Lund University.

Hannerz, H., 2001a. An extension of relational methods in mortality estimation. Demo-

graphic Research 4 (10), 337–368.

Hannerz, H., 2001b. Presentation and derivation of a five-parameter survival function in-

tended to model mortality in modern female populations. Scandinavian Actuarial Jour-

nal 2001 (2), 176–187.

Hári, N., De Waegenaere, A., Melenberg, B., Nijman, T., 2008. Longevity risk in portfo-

lios of pension annuities. Insurance: Mathematics and Economics 42 (2), 505–519.

Hatzopoulos, P., Haberman, S., 2013. Common mortality modelling and coherent fore-

casts. an empirical analysis of worldwide mortality data. Insurance: Mathematics and

Economics.

Heligman, L., Pollard, J. H., 1980. The age pattern of mortality. Journal of the Institute of

Actuaries 107 (1), 49–80.

Hosegood, V., Vanneste, A., Timæus, I., 2004. Levels and causes of adult mortality in

rural south africa: the impact of aids. Aids 18 (4), 663–671.

Hosseinpoor, A., Harper, S., Lee, J., Lynch, J., Mathers, C., Abou-Zahr, C., 2012. Interna-

tional shortfall inequality in life expectancy in women and in men, 1950-2010. Bulletin

of the World Health Organization 90 (8), 588–594.

Hyndman, R., Ullah, S., et al., 2007. Robust forecasting of mortality and fertility rates:

A functional data approach. Computational Statistics & Data Analysis 51 (10), 4942–

4956.

Hyndman, R. J., Booth, H., Yasmeen, F., 2013. Coherent mortality forecasting: the

166



product-ratio method with functional time series models. Demography 50 (1), 261–

283.

Jahn, A., Floyd, S., Crampin, A., Mwaungulu, F., Mvula, H., Munthali, F., McGrath,

N., Mwafilaso, J., Mwinuka, V., Mangongo, B., et al., 2008. Population-level effect of

hiv on adult mortality and early evidence of reversal after introduction of antiretroviral

therapy in malawi. The Lancet 371 (9624), 1603–1611.

Jarner, S., Kryger, E., 2009. Modelling adult mortality in small populations: The SAINT

model. ASTIN Bulletin.

Jarner, S., Kryger, E., Dengsøe, C., 2008. The evolution of death rates and life expectancy

in Denmark. Scandinavian Actuarial Journal 2008 (2-3), 147–173.

Keyfitz, N., 1982. Can knowledge improve forecasts? Population and Development Re-

view, 729–751.

Kiers, H., Kinderen, A., 2003. A fast method for choosing the numbers of components

in Tucker3 analysis. British Journal of Mathematical and Statistical Psychology 56 (1),

119–125.

Klenk, J., Rapp, K., Büchele, G., Keil, U., Weiland, S., 2007. Increasing life expectancy

in Germany: quantitative contributions from changes in age- and disease-specific mor-

tality. The European Journal of Public Health 17 (6), 587–592.

Kogan, N., Tucker, J., Porter, M., 2011. Extending the human life span: an exploratory

study of proand anti-longevity attitudes. The International Journal of Aging and Human

Development 73 (1), 1–25.

Koissi, M., Shapiro, A., Högnäs, G., 2006. Evaluating and extending the Lee-Carter

model for mortality forecasting: Bootstrap confidence interval. Insurance: Mathemat-

ics and Economics 38 (1), 1–20.

167



Lee, R., 2000. The Lee-Carter method for forecasting mortality, with various extensions

and applications. North american actuarial journal 4 (1), 80–93.

Lee, R., Miller, T., 2001. Evaluating the performance of the Lee-Carter method for fore-

casting mortality. Demography 38 (4), 537–549.

Lee, R. D., Carter, L. R., 1992. Modeling and forecasting US mortality. Journal of the

American Statistical Association 87 (419), 659–671.

Leon, D., 2011. Trends in european life expectancy: a salutary view. International Journal

of Epidemiology 40 (2), 271–277.

Li, J., 2013. A Poisson common factor model for projecting mortality and life expectancy

jointly for females and males. Population Studies 67 (1), 111–126.

Li, J. S.-H., Hardy, M. R., 2011. Measuring basis risk in longevity hedges. North Ameri-

can Actuarial Journal 15 (2), 177–200.

Li, N., Lee, R., 2005. Coherent mortality forecasts for a group of populations: An exten-

sion of the Lee-Carter method. Demography 42 (3), 575–594.

Li, N., Lee, R., Tuljapurkar, S., 2004. Using the lee-carter method to forecast mortality

for populations with limited data. International Statistical Review/Revue Internationale

de Statistique, 19–36.

Li, S.-H., Hardy, M. R., Tan, K. S., 2006. Uncertainty in mortality forecasting: an exten-

sion to the classical Lee-Carter approach. University of Waterloo.

Liu, Y., Arai, A., Kanda, K., Lee, R., Glasser, J., Tamashiro, H., 2012. Gender gaps in life

expectancy: generalized trends and negative associations with development indices in

OECD countries. The European Journal of Public Health.

Liu, Y., Arai, A., Obayashi, Y., Kanda, K., Boostrom, E., Lee, R. B., Tamashiro, H., 2013.

Trends of gender gaps in life expectancy in Japan, 1947–2010: associations with gender

168



mortality ratio and a social development index. Geriatrics & gerontology international

13 (3), 792–797.

Lundström, H., Qvist, J., 2004. Mortality forecasting and trend shifts: An application

of the Lee–Carter model to Swedish mortality data. International Statistical Review

72 (1), 37–50.

Mackenbach, J., 2012. Convergence and divergence of life expectancy in Europe: a cen-

tennial view. European Journal of Epidemiology.

Mathers, C., Sadana, R., Salomon, J., Murray, C., Lopez, A., 2001. Healthy life ex-

pectancy in 191 countries, 1999. The Lancet 357 (9269), 1685–1691.

McCartney, G., Mahmood, L., Leyland, A., Batty, G., Hunt, K., 2011. Contribution of

smoking-related and alcohol-related deaths to the gender gap in mortality: evidence

from 30 European countries. Tobacco Control 20 (2), 166–168.

McCullagh, P., Nelder, J. A., 1989. Generalized linear models.

McMichael, A., McKee, M., Shkolnikov, V., Valkonen, T., 2004. Mortality trends and

setbacks: global convergence or divergence? The Lancet 363 (9415), 1155–1159.

Men, T., Brennan, P., Boffetta, P., Zaridze, D., 2003. Russian mortality trends for 1991-

2001: analysis by cause and region. Bmj 327 (7421), 964.

Meslé, F., Vallin, J., et al., 2002. Mortality in Europe: the divergence between east and

west. Population (English Edition) 57 (1), 157–197.

Moser, K., Shkolnikov, V., Leon, D., 2005. World mortality 1950-2000: divergence re-

places convergence from the late 1980s. Bulletin of the World Health Organization

83 (3), 202–209.

169



Murray, C., Rosenfeld, L., Lim, S., Andrews, K., Foreman, K., Haring, D., Fullman, N.,

Naghavi, M., Lozano, R., Lopez, A., 2012. Global malaria mortality between 1980 and

2010: a systematic analysis. The Lancet 379 (9814), 413–431.

Nolte, E., Shkolnikov, V., McKee, M., 2000a. Changing mortality patterns in East and

West Germany and Poland. I: Long term trends (1960–1997). Journal of Epidemiology

and Community Health 54 (12), 890–898.

Nolte, E., Shkolnikov, V., McKee, M., 2000b. Changing mortality patterns in East and

West Germany and Poland. II: Short-term trends during transition and in the 1990s.

Journal of Epidemiology and Community Health 54 (12), 899–906.

Plat, R., 2009a. On stochastic mortality modeling. Insurance Mathematics and Economics

45, 393–404.

Plat, R., 2009b. Stochastic portfolio specific mortality and the quantification of mortality

basis risk. Insurance: Mathematics and Economics 45 (1), 123–132.

Preston, S., Heuveline, P., Guillot, M., 2001. Demography: measuring and modeling

population processes. Population and Development Review 27, 365.

Preston, S., et al., 1976. Mortality patterns in national populations. With special reference

to recorded causes of death. Academic Press, Inc., Ltd., 24/28 Oval Road, London,

NWI.

Ramsay, J. O., Silverman, B. W., 2005. Functional data analysis (2nd edition). Springer,

New York.

Renshaw, A., Haberman, S., 2003a. Lee-Carter mortality forecasting: a parallel general-

ized linear modelling approach for England and Wales mortality projections. Applied

statistics 52 (1), 119–137.

170



Renshaw, A., Haberman, S., 2003b. On the forecasting of mortality reduction factors.

Insurance: Mathematics and Economics 32 (3), 379–401.

Renshaw, A. E., Haberman, S., 2003c. Lee-Carter mortality forecasting with age-specific

enhancement. Insurance Mathematics and Economics 33 (2), 255–272.

Renshaw, A. E., Haberman, S., 2006. A cohort-based extension to the Lee-Carter model

for mortality reduction factors. Insurance Mathematics and Economics 38 (3), 556–

570.

Richel, T., 2003. Will human life expectancy quadruple in the next hundred years? Sixty

gerontologists say public debate on life extension is necessary. Journal of anti-aging

medicine 6 (4), 309–314.

Rogers, A., Planck, F., 1983. Model: A General Program for Estimating Parametrized

Model Schedules of Fertility, Mortality, Migration, and Marital and Labor Force Status

Transitions. IIASA, International Institute for Applied Systems Analysis.

Russolillo, M., Giordano, G., Haberman, S., 2011. Extending the Lee–Carter model: a

three-way decomposition. Scandinavian Actuarial Journal 2011 (2), 96–117.

Saito, M., Kondo, N., Kondo, K., Ojima, T., Hirai, H., 2012. Gender differences on the

impacts of social exclusion on mortality among older Japanese: AGES cohort study.

Social Science & Medicine.

Shang, H., Hyndman, R., Booth, H., 2010. A comparison of ten principal component

methods for forecasting mortality rates. Monash Econometrics and Business Statistics

Working Papers.

Shkolnikov, V., Cornia, G., Leon, D., Meslé, F., 1998. Causes of the Russian mortality

crisis: evidence and interpretations. World Development 26 (11), 1995–2011.

171



Siler, W., 1983. Parameters of mortality in human populations with widely varying life

spans. Statistics in Medicine 2 (3), 373–380.

Tabeau, E., 2002. A review of demographic forecasting models for mortality. In: Fore-

casting Mortality in Developed Countries. Springer, pp. 1–32.

Tickle, L., Booth, H., 2014. The longevity prospects of Australian seniors: An evaluation

of forecast method and outcome. Asia-Pacific Journal of Risk and Insurance 8(2), 149–

327.

Trovato, F., Heyen, N., 2006. A varied pattern of change of the sex differential in survival

in the G7 countries. Journal of Biosocial Science 38 (3), 391.

Tucker, L., 1966. Some mathematical notes on three-mode factor analysis. Psychometrika

31 (3), 279–311.

Tuljapurkar, S., Boe, C., 1998. Mortality change and forecasting: how much and how

little do we know? North American Actuarial Journal 2, 13–47.

Tuljapurkar, S., Li, N., Boe, C., 2000. A universal pattern of mortality decline in the G7

countries. Nature 405 (6788), 789–792.

Turner, H., Firth, D., 2012. Generalized nonlinear models in r: An overview of the gnm

package.(r package version 1.0-7).

URL http://go.warwick.ac.uk/gnm

Urassa, M., Boerma, J., Isingo, R., Ngalula, J., Ng’weshemi, J., Mwaluko, G., Zaba, B.,

2001. The impact of hiv/aids on mortality and household mobility in rural tanzania.

Aids 15 (15), 2017–2023.

Vaupel, J., Zhang, Z., van Raalte, A., 2011. Life expectancy and disparity: an international

comparison of life table data. BMJ Open 1 (1).

172

http://go.warwick.ac.uk/gnm


Villegas, A. M., Haberman, S., 2014. On the modeling and forecasting of socioeconomic

mortality differentials: An application to deprivation and mortality in england. North

American Actuarial Journal 18 (1), 168–193.

Waldron, H., 2005. Literature review of long-term mortality projections. Social Security

Bulletin 66, 16.

Wang, D., Lu, P., 2005. Modelling and forecasting mortality distributions in England and

Wales using the Lee–Carter model. Journal of Applied Statistics 32 (9), 873–885.

Wang, S., 2000. A class of distortion operators for pricing financial and insurance risks.

Journal of Risk and Insurance 67 (1), 15–36.

White, K., 2002. Longevity advances in high-income countries, 1955–96. Population and

Development Review 28 (1), 59–76.

Wilmoth, J., 1998. Is the pace of japanese mortality decline converging toward interna-

tional trends? Population and Development Review, 593–600.

Wilmoth, J., Andreev, K., Jdanov, D., Glei, D., 2007. Methods protocol for the human

mortality database. University of California, Berkeley, and Max Planck Institute for

Demographic Research, Rostock. URL: http://mortality. org [version 31/05/2007].

Wilmoth, J. R., 1993. Computational methods for fitting and extrapolating the lee-carter

model of mortality change. Tech. rep., Technical report, Department of Demography,

University of California, Berkeley.

Wilson, C., 2001. On the scale of global demographic convergence 1950–2000. Popula-

tion and Development Review 27 (1), 155–171.

Wilson, C., 2011. Understanding global demographic convergence since 1950. Population

and Development Review 37 (2), 375–388.

173



Wood, S., 2000. Modelling and smoothing parameter estimation with multiple quadratic

penalties. Journal of the Royal Statistical Society: Series B (Statistical Methodology)

62 (2), 413–428.

174



Appendix A

Estimates of the JWT model

Table A.1: Estimates of the Parameters of the JWT model using

GLM (across countries)

Estimate Std. Error t value Pr(>|t|)

Age(0) 0.01782709 0.00090909 19.60992584 0.00000000

Age(1) 0.01841896 0.00091381 20.15617020 0.00000000

Age(2) 0.01863512 0.00091430 20.38173366 0.00000000

Age(3) 0.01878886 0.00091458 20.54377661 0.00000000

Age(4) 0.01883511 0.00091477 20.58994717 0.00000000

Age(5) 0.01888840 0.00091493 20.64471498 0.00000000

Age(6) 0.01888866 0.00091505 20.64213159 0.00000000

Age(7) 0.01889913 0.00091516 20.65107134 0.00000000

Age(8) 0.01889693 0.00091526 20.64647991 0.00000000

Age(9) 0.01888071 0.00091535 20.62684215 0.00000000

Age(10) 0.01885134 0.00091543 20.59298056 0.00000000

Age(11) 0.01881550 0.00091550 20.55215337 0.00000000

Age(12) 0.01879698 0.00091557 20.53026837 0.00000000

Age(13) 0.01875865 0.00091565 20.48666308 0.00000000
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Age(14) 0.01872694 0.00091573 20.45019948 0.00000000

Age(15) 0.01870919 0.00091583 20.42872331 0.00000000

Age(16) 0.01864974 0.00091593 20.36142910 0.00000000

Age(17) 0.01859902 0.00091606 20.30331402 0.00000000

Age(18) 0.01854863 0.00091620 20.24527742 0.00000000

Age(19) 0.01849138 0.00091635 20.17946163 0.00000000

Age(20) 0.01843792 0.00091651 20.11763967 0.00000000

Age(21) 0.01841050 0.00091667 20.08414402 0.00000000

Age(22) 0.01842139 0.00091684 20.09235069 0.00000000

Age(23) 0.01844503 0.00091701 20.11432291 0.00000000

Age(24) 0.01845066 0.00091719 20.11652716 0.00000000

Age(25) 0.01843071 0.00091737 20.09072831 0.00000000

Age(26) 0.01841372 0.00091757 20.06798248 0.00000000

Age(27) 0.01839028 0.00091777 20.03806589 0.00000000

Age(28) 0.01835083 0.00091797 19.99056238 0.00000000

Age(29) 0.01829769 0.00091819 19.92791541 0.00000000

Age(30) 0.01828072 0.00091842 19.90449259 0.00000000

Age(31) 0.01819528 0.00091866 19.80631377 0.00000000

Age(32) 0.01814251 0.00091891 19.74353033 0.00000000

Age(33) 0.01806722 0.00091918 19.65586191 0.00000000

Age(34) 0.01801479 0.00091946 19.59273473 0.00000000

Age(35) 0.01792207 0.00091977 19.48548331 0.00000000

Age(36) 0.01783472 0.00092009 19.38361140 0.00000000

Age(37) 0.01772493 0.00092044 19.25694270 0.00000000

Age(38) 0.01763032 0.00092082 19.14635607 0.00000000

Age(39) 0.01753217 0.00092123 19.03134093 0.00000000

Age(40) 0.01744354 0.00092166 18.92611933 0.00000000

Age(41) 0.01727108 0.00092214 18.72927958 0.00000000

Age(42) 0.01716848 0.00092265 18.60772091 0.00000000
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Age(43) 0.01702592 0.00092322 18.44189167 0.00000000

Age(44) 0.01689263 0.00092384 18.28532737 0.00000000

Age(45) 0.01672731 0.00092450 18.09328954 0.00000000

Age(46) 0.01655716 0.00092524 17.89507454 0.00000000

Age(47) 0.01638085 0.00092604 17.68920775 0.00000000

Age(48) 0.01622354 0.00092692 17.50270764 0.00000000

Age(49) 0.01606822 0.00092789 17.31700537 0.00000000

Age(50) 0.01591322 0.00092894 17.13051420 0.00000000

Age(51) 0.01575807 0.00093009 16.94243276 0.00000000

Age(52) 0.01562982 0.00093133 16.78220997 0.00000000

Age(53) 0.01551967 0.00093271 16.63934366 0.00000000

Age(54) 0.01540839 0.00093419 16.49392378 0.00000000

Age(55) 0.01529377 0.00093581 16.34284754 0.00000000

Age(56) 0.01518375 0.00093756 16.19503641 0.00000000

Age(57) 0.01506394 0.00093948 16.03433545 0.00000000

Age(58) 0.01499987 0.00094157 15.93065339 0.00000000

Age(59) 0.01494371 0.00094390 15.83191273 0.00000000

Age(60) 0.01489833 0.00094644 15.74148573 0.00000000

Age(61) 0.01483997 0.00094928 15.63293210 0.00000000

Age(62) 0.01483479 0.00095234 15.57717988 0.00000000

Age(63) 0.01479993 0.00095581 15.48418252 0.00000000

Age(64) 0.01483464 0.00095964 15.45848399 0.00000000

Age(65) 0.01491487 0.00096391 15.47326435 0.00000000

Age(66) 0.01494627 0.00096869 15.42929811 0.00000000

Age(67) 0.01502214 0.00097398 15.42351850 0.00000000

Age(68) 0.01513506 0.00097993 15.44508148 0.00000000

Age(69) 0.01526349 0.00098663 15.47036622 0.00000000

Age(70) 0.01548891 0.00099415 15.58000610 0.00000000

Age(71) 0.01568484 0.00100280 15.64098671 0.00000000
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Age(72) 0.01595791 0.00101241 15.76237281 0.00000000

Age(73) 0.01625121 0.00102359 15.87670071 0.00000000

Age(74) 0.01650701 0.00103629 15.92887892 0.00000000

Age(75) 0.01691740 0.00105084 16.09889832 0.00000000

Age(76) 0.01727187 0.00106754 16.17907200 0.00000000

Age(77) 0.01762345 0.00108680 16.21594509 0.00000000

Age(78) 0.01808525 0.00110886 16.30975104 0.00000000

Age(79) 0.01844446 0.00113457 16.25675971 0.00000000

Age(80) 0.01885443 0.00116432 16.19345755 0.00000000

Age(81) 0.01922706 0.00119904 16.03542281 0.00000000

Age(82) 0.01965776 0.00123886 15.86765934 0.00000000

Age(83) 0.02006941 0.00128629 15.60259948 0.00000000

Age(84) 0.02050895 0.00134204 15.28192372 0.00000000

Age(85) 0.02094997 0.00140846 14.87442885 0.00000000

Age(86) 0.02141591 0.00148683 14.40377445 0.00000000

Age(87) 0.02187095 0.00158085 13.83493114 0.00000000

Age(88) 0.02233385 0.00169277 13.19364094 0.00000000

Age(89) 0.02272675 0.00182711 12.43864519 0.00000000

k(1950) 0.03029481 0.00081518 37.16333620 0.00000000

k(1951) -0.00137056 0.00081459 -1.68251698 0.09247403

k(1952) 0.02411362 0.00081194 29.69863660 0.00000000

k(1953) 0.00683748 0.00081108 8.43008448 0.00000000

k(1954) 0.02233795 0.00080894 27.61371977 0.00000000

k(1955) -0.00173513 0.00080815 -2.14703888 0.03179433

k(1956) 0.00070204 0.00080784 0.86902729 0.38483581

k(1957) -0.01635338 0.00080763 -20.24868184 0.00000000

k(1958) 0.02549078 0.00080550 31.64610481 0.00000000

k(1959) -0.00857766 0.00080504 -10.65495522 0.00000000

k(1960) 0.00260798 0.00080449 3.24179370 0.00118847
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k(1961) -0.00169768 0.00080358 -2.11264594 0.03463536

k(1962) -0.01312844 0.00080376 -16.33369455 0.00000000

k(1963) -0.00332151 0.00080329 -4.13487428 0.00003556

k(1964) 0.00788397 0.00080207 9.82956629 0.00000000

k(1965) -0.00544567 0.00080188 -6.79109606 0.00000000

k(1966) -0.00260173 0.00080128 -3.24695475 0.00116713

k(1967) -0.00225069 0.00080058 -2.81133844 0.00493525

k(1968) -0.01235102 0.00080060 -15.42726510 0.00000000

k(1969) -0.01022997 0.00080045 -12.78032603 0.00000000

k(1970) 0.00244362 0.00079953 3.05632269 0.00224172

k(1971) -0.00512598 0.00079898 -6.41563275 0.00000000

k(1972) 0.00512201 0.00079825 6.41653291 0.00000000

k(1973) -0.00304730 0.00079774 -3.81991696 0.00013364

k(1974) 0.00236982 0.00079707 2.97316386 0.00294869

k(1975) 0.00368710 0.00079637 4.62988752 0.00000367

k(1976) 0.00052510 0.00079590 0.65976007 0.50941044

k(1977) 0.00842238 0.00079481 10.59666649 0.00000000

k(1978) -0.00469463 0.00079443 -5.90941826 0.00000000

k(1979) -0.00255675 0.00079385 -3.22068257 0.00127956

k(1980) -0.00328128 0.00079354 -4.13500919 0.00003554

k(1981) 0.00430583 0.00079297 5.43001044 0.00000006

k(1982) -0.00468133 0.00079246 -5.90734795 0.00000000

k(1983) -0.01168069 0.00079227 -14.74338593 0.00000000

k(1984) 0.00491215 0.00079159 6.20538609 0.00000000

k(1985) -0.01706375 0.00079166 -21.55436251 0.00000000

k(1986) -0.00597011 0.00079125 -7.54519892 0.00000000

k(1987) -0.00496561 0.00079073 -6.27979733 0.00000000

k(1988) -0.01435672 0.00079064 -18.15831986 0.00000000

k(1989) -0.00821320 0.00079024 -10.39325229 0.00000000
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k(1990) -0.00882158 0.00078998 -11.16679292 0.00000000

k(1991) -0.00445558 0.00078962 -5.64268119 0.00000002

k(1992) -0.00118262 0.00078924 -1.49843286 0.13402628

k(1993) -0.00756635 0.00078917 -9.58776185 0.00000000

k(1994) -0.00001708 0.00078860 -0.02166364 0.98271634
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Appendix B

"Across country" analysis, separately

for females and males
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Table B.1: ME of the forecast log death rate for females of the 13 countries

Models
Individual Joint

WT LC HU SJLC JLC TLC PLC JWT
AUS 0.017 -0.024 -0.024 0.035 0.090 -0.019 0.010 -0.014
CAN 0.092 0.014 0.033 0.074 0.120 0.032 0.049 0.025
ENW 0.076 0.031 0.049 0.101 0.152 0.034 0.076 0.052
FIN 0.152 0.090 0.084 0.064 0.112 0.084 0.039 0.015
FRA 0.075 -0.009 -0.004 0.028 0.057 -0.009 0.004 -0.021
ITA 0.062 -0.019 -0.041 -0.046 0.013 -0.025 -0.071 -0.095
ESP 0.134 0.064 -0.080 -0.000 0.040 0.055 -0.025 -0.049
SWE 0.104 0.052 -0.031 0.114 0.172 0.065 0.089 0.065
CHE -0.006 -0.077 -0.061 -0.035 0.016 -0.072 -0.060 -0.084
USA 0.058 0.018 0.027 0.117 0.223 0.029 0.092 0.068
JPN 0.324 0.258 0.057 0.074 -0.004 0.225 0.050 0.025
DNK -0.076 -0.157 -0.100 -0.021 0.103 -0.121 -0.046 -0.070
NLD 0.048 -0.011 -0.001 0.086 0.190 0.016 0.061 0.037
Mean 0.081 0.018 -0.007 0.045 0.099 0.023 0.021 -0.004
SD 0.094 0.096 0.056 0.056 0.072 0.083 0.056 0.056

Table B.2: ME of the forecast log death rate for males of the 13 countries

Models
Individual Joint

WT LC HU SJLC JLC TLC PLC JWT
AUS -0.066 -0.101 -0.092 -0.075 -0.053 -0.100 -0.085 -0.045
CAN -0.048 -0.098 -0.104 -0.076 -0.031 -0.093 -0.086 -0.047
ENW -0.008 -0.047 -0.046 -0.015 0.025 -0.051 -0.025 0.015
FIN 0.076 0.028 0.015 -0.027 -0.014 -0.003 -0.037 0.003
FRA -0.058 -0.129 -0.129 -0.096 -0.053 -0.132 -0.106 -0.066
ITA -0.049 -0.113 -0.130 -0.128 -0.110 -0.117 -0.139 -0.099
ESP 0.018 -0.066 -0.142 -0.087 -0.006 -0.060 -0.098 -0.058
SWE -0.019 -0.038 -0.106 -0.026 0.038 -0.052 -0.036 0.004
CHE -0.166 -0.216 -0.208 -0.194 -0.111 -0.214 -0.204 -0.164
USA -0.081 -0.116 -0.115 -0.052 0.045 -0.110 -0.062 -0.022
JPN 0.219 0.134 -0.033 0.002 -0.075 0.110 -0.008 0.032
DNK -0.092 -0.172 -0.173 -0.056 0.057 -0.131 -0.066 -0.026
NLD -0.053 -0.074 -0.099 -0.033 0.032 -0.073 -0.044 -0.004
Mean -0.025 -0.077 -0.105 -0.066 -0.020 -0.079 -0.077 -0.037
SD 0.093 0.088 0.059 0.053 0.058 0.076 0.053 0.053
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Table B.3: Ranking of ME for females of the 13 countries

Models
Individual Joint

WT LC HU SJLC JLC TLC PLC JWT
AUS 3 5 6 7 8 4 1 2
CAN 7 1 4 6 8 3 5 2
ENW 5 1 3 7 8 2 6 4
FIN 8 6 4 3 7 5 2 1
FRA 8 4 2 6 7 3 1 5
ITA 6 2 4 5 1 3 7 8
ESP 8 6 7 1 3 5 2 4
SWE 6 2 1 7 8 4 5 3
CHE 1 7 5 3 2 6 4 8
USA 4 1 2 7 8 3 6 5
JPN 8 7 4 5 1 6 3 2
DNK 4 8 5 1 6 7 2 3
NLD 5 2 1 7 8 3 6 4
Mean 7 3 2 6 8 5 4 1
SD 7 8 1 3 5 6 2 3

Table B.4: Ranking of ME for males of the 13 countries

Models
Individual Joint

WT LC HU SJLC JLC TLC PLC JWT
AUS 3 8 6 4 2 7 5 1
CAN 3 7 8 4 1 6 5 2
ENW 1 7 6 3 4 8 5 2
FIN 8 6 4 5 3 1 7 2
FRA 2 6 7 4 1 8 5 3
ITA 1 4 7 6 3 5 8 2
ESP 2 5 8 6 1 4 7 3
SWE 2 6 8 3 5 7 4 1
CHE 3 8 6 4 1 7 5 2
USA 5 8 7 3 2 6 4 1
JPN 8 7 4 1 5 6 2 3
DNK 5 7 8 2 3 6 4 1
NLD 5 7 8 3 2 6 4 1
Mean 2 6 8 4 1 7 5 3
SD 8 7 5 2 4 6 1 2

Note: Mean and SD refer to the ranking of Mean and SD.
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Table B.5: MAE of the forecast log death rate for females of the 13 countries

Models
Individual Joint

WT LC HU SJLC JLC TLC PLC JWT
AUS 0.149 0.134 0.131 0.149 0.181 0.139 0.140 0.140
CAN 0.133 0.092 0.100 0.116 0.148 0.096 0.103 0.098
ENW 0.124 0.108 0.114 0.133 0.168 0.094 0.114 0.106
FIN 0.275 0.227 0.226 0.219 0.265 0.223 0.209 0.205
FRA 0.121 0.111 0.111 0.098 0.108 0.097 0.094 0.095
ITA 0.140 0.110 0.113 0.113 0.145 0.103 0.119 0.136
ESP 0.183 0.143 0.140 0.123 0.136 0.135 0.119 0.128
SWE 0.200 0.195 0.197 0.210 0.238 0.190 0.200 0.197
CHE 0.194 0.212 0.213 0.187 0.195 0.194 0.190 0.199
USA 0.079 0.068 0.070 0.121 0.224 0.062 0.101 0.084
JPN 0.342 0.286 0.111 0.146 0.110 0.243 0.128 0.118
DNK 0.207 0.245 0.236 0.208 0.243 0.221 0.208 0.215
NLD 0.132 0.124 0.123 0.144 0.215 0.121 0.133 0.125
Mean 0.175 0.158 0.145 0.151 0.183 0.148 0.143 0.142
SD 0.071 0.067 0.054 0.041 0.052 0.059 0.043 0.046

Table B.6: MAE of the forecast log death rate for males of the 13 countries

Models
Individual Joint

WT LC HU SJLC JLC TLC PLC JWT
AUS 0.147 0.160 0.151 0.161 0.191 0.165 0.165 0.149
CAN 0.098 0.138 0.136 0.127 0.118 0.128 0.130 0.110
ENW 0.119 0.112 0.116 0.114 0.129 0.114 0.116 0.120
FIN 0.215 0.208 0.208 0.200 0.201 0.198 0.201 0.200
FRA 0.101 0.162 0.152 0.142 0.135 0.151 0.143 0.115
ITA 0.111 0.179 0.168 0.167 0.175 0.155 0.173 0.146
ESP 0.138 0.148 0.172 0.153 0.135 0.142 0.154 0.143
SWE 0.192 0.222 0.233 0.198 0.180 0.202 0.202 0.204
CHE 0.211 0.254 0.250 0.239 0.207 0.249 0.245 0.219
USA 0.103 0.130 0.128 0.109 0.124 0.120 0.108 0.098
JPN 0.231 0.156 0.111 0.092 0.106 0.139 0.093 0.096
DNK 0.201 0.256 0.256 0.195 0.182 0.221 0.198 0.192
NLD 0.123 0.157 0.161 0.133 0.129 0.139 0.136 0.125
Mean 0.153 0.176 0.172 0.156 0.155 0.163 0.159 0.147
SD 0.050 0.046 0.049 0.043 0.035 0.042 0.044 0.043
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Table B.7: Ranking of MAE for females of the 13 countries

Models
Individual Joint

WT LC HU SJLC JLC TLC PLC JWT
AUS 6 2 1 7 8 3 5 4
CAN 7 1 4 6 8 2 5 3
ENW 6 3 5 7 8 1 4 2
FIN 8 6 5 3 7 4 2 1
FRA 8 7 6 4 5 3 1 2
ITA 7 2 3 4 8 1 5 6
ESP 8 7 6 2 5 4 1 3
SWE 6 2 4 7 8 1 5 3
CHE 4 7 8 1 5 3 2 6
USA 4 2 3 7 8 1 6 5
JPN 8 7 2 5 1 6 4 3
DNK 1 8 6 2 7 5 3 4
NLD 5 3 2 7 8 1 6 4
Mean 7 6 3 5 8 4 2 1
SD 8 7 5 1 4 6 2 3

Table B.8: Ranking of MAE for males of the 13 countries

Models
Individual Joint

WT LC HU SJLC JLC TLC PLC JWT
AUS 1 4 3 5 8 7 6 2
CAN 1 8 7 4 3 5 6 2
ENW 6 1 5 3 8 2 4 7
FIN 8 7 6 3 4 1 5 2
FRA 1 8 7 4 3 6 5 2
ITA 1 8 5 4 7 3 6 2
ESP 2 5 8 6 1 3 7 4
SWE 2 7 8 3 1 5 4 6
CHE 2 8 7 4 1 6 5 3
USA 2 8 7 4 6 5 3 1
JPN 8 7 5 1 4 6 2 3
DNK 5 7 8 3 1 6 4 2
NLD 1 7 8 4 3 6 5 2
Mean 2 8 7 4 3 6 5 1
SD 8 6 7 3 1 2 5 4

Note: Mean and SD refer to the ranking of Mean and SD.
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Table B.9: CMAE based on the LC model for females of the 13 countries

Models
Individual Joint

WT LC HU SJLC JLC TLC PLC JWT
AUS 10.87 0.00 -2.04 11.18 35.26 3.69 4.63 4.45
CAN 45.04 0.00 9.02 25.62 60.84 4.29 11.96 6.63
ENW 15.04 0.00 5.88 23.54 55.81 -12.65 5.45 -2.22
FIN 21.01 0.00 -0.68 -3.45 16.61 -2.00 -8.04 -9.68
FRA 8.47 0.00 -0.03 -12.41 -3.09 -12.47 -15.24 -14.33
ITA 27.28 0.00 2.21 2.87 31.80 -6.60 8.14 23.69
ESP 28.24 0.00 -2.40 -13.66 -5.08 -5.84 -16.71 -10.73
SWE 2.40 0.00 1.01 7.37 21.62 -2.80 2.35 0.71
CHE -8.52 0.00 0.36 -11.94 -8.15 -8.64 -10.41 -6.13
USA 16.96 0.00 2.81 79.02 229.80 -8.47 48.54 23.24
JPN 19.68 0.00 -61.31 -48.71 -61.60 -14.78 -55.15 -58.58
DNK -15.83 0.00 -3.99 -15.20 -1.12 -9.83 -15.15 -12.45
NLD 6.39 0.00 -0.49 16.51 73.89 -1.96 7.75 1.21
Mean 10.86 0.00 -8.35 -4.25 15.53 -6.67 -9.57 -10.21
SD 5.01 0.00 -20.17 -39.10 -23.09 -11.74 -36.30 -31.63

Table B.10: CMAE based on the LC model for males of the 13 countries

Models
Individual Joint

WT LC HU SJLC JLC TLC PLC JWT
AUS -7.82 0.00 -5.15 0.97 19.81 3.13 3.07 -6.71
CAN -28.85 0.00 -1.39 -8.14 -14.78 -7.84 -5.87 -20.34
ENW 6.65 0.00 3.59 2.30 15.28 1.93 3.57 7.48
FIN 3.34 0.00 -0.24 -3.84 -3.77 -4.90 -3.40 -4.20
FRA -37.59 0.00 -5.86 -12.34 -16.22 -6.64 -11.74 -28.90
ITA -37.90 0.00 -6.49 -7.06 -2.19 -13.48 -3.77 -18.47
ESP -6.81 0.00 15.81 3.17 -8.99 -4.07 3.87 -3.69
SWE -13.77 0.00 4.71 -11.05 -18.78 -9.10 -9.20 -8.23
CHE -16.96 0.00 -1.55 -5.86 -18.49 -2.11 -3.43 -13.93
USA -20.32 0.00 -1.06 -15.93 -4.56 -7.48 -17.05 -24.77
JPN 48.28 0.00 -28.59 -40.72 -31.88 -11.15 -40.41 -38.51
DNK -21.23 0.00 0.01 -23.75 -28.99 -13.47 -22.57 -24.71
NLD -21.73 0.00 2.35 -15.28 -18.15 -11.70 -13.69 -20.62
Mean -12.71 0.00 -1.76 -11.02 -11.84 -7.03 -9.63 -16.04
SD 7.76 0.00 7.06 -7.15 -23.62 -9.28 -3.98 -7.04

Note: Mean and SD refer to the CMAE of Mean and SD according to Table B.5 and B.6
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Appendix C

"Across sex" analysis, separately for

each country

Table C.1: Log-likelihood of each of the 13 countries

Models
Individual Joint

WT LC HU SJLC JLC TLC PLC JWT
AUS 0.109 0.076 0.073 0.083 0.077 0.085 0.108 0.114
CAN 0.136 0.089 0.079 0.109 0.092 0.109 0.145 0.114
ENW 0.227 0.125 0.129 0.157 0.125 0.185 0.244 0.181
FIN 0.095 0.075 0.074 0.084 0.076 0.084 0.115 0.103
FRA 0.367 0.146 0.148 0.228 0.171 0.216 0.407 0.468
ITA 0.492 0.168 0.179 0.298 0.228 0.314 0.454 0.642
ESP 0.375 0.192 0.315 0.271 0.159 0.340 0.337 0.443
SWE 0.098 0.071 0.074 0.093 0.078 0.086 0.103 0.111
CHE 0.090 0.069 0.072 0.079 0.075 0.075 0.095 0.100
USA 0.630 0.204 0.239 0.350 0.237 0.346 0.735 0.400
JPN 0.855 0.342 0.300 0.585 0.315 0.569 0.664 0.713
DNK 0.099 0.068 0.073 0.079 0.076 0.080 0.086 0.083
NLD 0.127 0.082 0.085 0.120 0.087 0.113 0.146 0.150
Mean 0.285 0.131 0.142 0.195 0.138 0.200 0.280 0.279
SD 0.246 0.080 0.090 0.150 0.079 0.152 0.224 0.225
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Table C.2: BIC of each of the 13 countries

Models
Individual Joint

WT LC HU SJLC JLC TLC PLC JWT
AUS 0.109 0.081 0.082 0.089 0.082 0.087 0.110 0.115
CAN 0.136 0.093 0.087 0.115 0.097 0.112 0.147 0.116
ENW 0.227 0.129 0.135 0.162 0.130 0.188 0.246 0.183
FIN 0.095 0.079 0.080 0.089 0.081 0.087 0.117 0.104
FRA 0.367 0.151 0.155 0.233 0.177 0.219 0.409 0.469
ITA 0.492 0.172 0.185 0.303 0.233 0.317 0.456 0.644
ESP 0.375 0.196 0.319 0.276 0.164 0.343 0.339 0.444
SWE 0.098 0.075 0.078 0.098 0.084 0.089 0.106 0.112
CHE 0.090 0.073 0.076 0.085 0.080 0.078 0.097 0.101
USA 0.630 0.208 0.243 0.355 0.242 0.349 0.737 0.401
JPN 0.855 0.346 0.305 0.590 0.321 0.572 0.666 0.714
DNK 0.099 0.072 0.077 0.085 0.082 0.082 0.088 0.084
NLD 0.127 0.086 0.089 0.125 0.092 0.116 0.148 0.151
Mean 0.285 0.135 0.147 0.200 0.143 0.203 0.282 0.280
SD 0.246 0.080 0.089 0.150 0.079 0.152 0.224 0.225

Table C.3: Ranking of BIC

Models
Individual Joint

WT LC HU SJLC JLC TLC PLC JWT
AUS 6 1 2 5 3 4 7 8
CAN 7 2 1 5 3 4 8 6
ENW 7 1 3 4 2 6 8 5
FIN 6 1 2 5 3 4 8 7
FRA 6 1 2 5 3 4 7 8
ITA 7 1 2 4 3 5 6 8
ESP 7 2 4 3 1 6 5 8
SWE 6 1 2 5 3 4 7 8
CHE 6 1 2 5 4 3 7 8
USA 7 1 3 5 2 4 8 6
JPN 8 3 1 5 2 4 6 7
DNK 8 1 2 6 3 4 7 5
NLD 6 1 2 5 3 4 7 8
Mean 8 1 3 4 2 5 7 6
SD 8 2 3 4 1 5 6 7
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