
A thesis submitted to Macquarie University for the degree of Master of Research

Enriched Regular Theories

By

Giacomo Tendas

Supervisor

Stephen Lack

Department of Mathematics and Statistics

April 2019



i

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisor Steve Lack. This

work would not have been possible without his guidance, support and his many suggestions.

Thanks also to my colleagues from the Maths&Stats Department for creating such a friendly

environment, and to all the members of the CoACT for giving me the opportunity to learn

more and more about category theory.

Last but not least, thanks to my family and friends from Italy for always supporting me,

even when my path leads so far from home.

Statement of Originality
This work has not previously been submitted for a degree or diploma at any university. To

the best of my knowledge and belief, this thesis contains no material previously published or

written by another person except where due reference is made in the thesis itself.

Giacomo Tendas, April 2019



ii

Abstract

Regular and exact categories were first introduced by Michael Barr in 1971; since then,

the theory has developed and found many applications in algebra, geometry, and logic. In

particular, a small regular category determines a certain theory, in the sense of logic, whose

models are the regular functors into Set. In 1986 Barr showed that each small and regular

category can be embedded in a particular category of presheaves; then in 1990 Makkai gave

a simple explicit characterization of the essential image of the embedding, in the case where

the original regular category is moreover exact. More recently Prest and Rajani, in the

additive context, and Kuber and Rosicky, in the ordinary one, described a duality which

connects an exact category with its (definable) category of models. Considering a suitable

base for enrichment, we define an enriched notion of regularity and exactness, and prove a

corresponding version of the theorems of Barr, of Makkai, and of Prest-Rajani/Kuber-Rosicky.
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Introduction

When talking about theories we may think of two different approaches, a logical one and a

categorical one. From the logical point of view, a theory is given by a list of axioms on a

fixed set of operations, and its models are corresponding sets and functions that satisfy those

axioms. For instance algebraic theories are those whose axioms consist of equations based on

the operation symbols of the language (e.g. the axioms for abelian groups or rings). More

generally, if the axioms are still equations but the operation symbols are not defined globally,

but only on equationally defined subsets, we talk of essentially algebraic theories.

Example: Graphs, seen as sets with a relation, are models of the essentially algebraic

theory with two global operations s, t : edge→ vertex (source and target), a partial operation

σ : edge× edge→ edge such that σ(x, y) is defined if and only if s(x) = s(y) and t(x) = t(y).

The axioms of the theory are then: σ(x, y) = x, σ(x, y) = y.

A further step can be made considering regular theories, for which we can allow existential

quantification over the usual equations.

Example: Von Neumann regular rings are models the regular theory with axioms those of

rings plus the following: ∀x ∃y x = xyx.

Categorically speaking, we could think of a theory as a category C with some structure, and

of a model of C as a functor F : C → Set which preserves that structure, this approach was first

introduced by Lawvere in [Law63]. Algebraic theories then correspond to categories with finite

products, and models are finite product preserving functors. On the other hand a category

with finite limits represents an essentially algebraic theory, and functors preserving finite

limits are its models [Fre72]. Regular theories correspond instead to regular categories: finitely

complete ones with coequalizers of kernel pairs, for which regular epimorphisms are pullback

stable [MR77]. Models here are functors preserving finite limits and regular epimorphisms;

we refer to them as regular functors.

These two notions, categorical and logical, can be recovered from each other: given a
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logical theory, there is a syntactic way to build a category with the relevant structure for

which models of the theory correspond to functors to Set preserving this structure, and vice

versa. For essentially algebraic theories this translates into a duality between locally finitely

presentable and finitely complete categories:

Theorem (Gabriel-Ulmer, [GU71]). The following is a biequivalence of 2-categories:

Lfp(−,Set) : Lfp Lexop : Lex(−,Set),

where Lfp is the 2-category of locally finitely presentable categories, finitary right adjoints,

and natural transformations.

Such a duality can be considered also in the context of regular theories; to describe it let

us recall the most important results involving regular categories. First of all, Barr proved in

[Bar86] that every small regular category can be regularly embedded in the functor category

based on its models:

Theorem (Barr’s Embedding). Let C be a small regular category; then the evaluation functor

ev : C → [Reg(C,Set),Set] is fully faithful and regular.

Later Makkai proved in [Mak90] that if the category C is moreover exact, then it can be

recovered from its category of models Reg(C,Set) as follows:

Theorem (Makkai’s Image). Let C be a small exact category. The essential image of the

embedding ev : C → [Reg(C,Set),Set] is given by those functors which preserve filtered

colimits and small products.

Then on one side of the duality we can consider the 2-category Ex of exact categories,

regular functors, and natural transformations. On the other we have the categories of models

of regular theories; these can also be described as full subcategories of some locally finitely

presentable category which are closed under small products, filtered colimits, and pure sub-

objects. Equivalently they are finite injectivity classes in some locally finitely presentable

category; we refer to them as definable categories. A morphism between definable categories

is then a functor that preserves filtered colimits and products; denote by Def the correspond-

ing 2-category. The duality can hence be expressed as:

Theorem. The following is a biequivalence of 2-categories:
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Def(−,Set) : Def Exop : Reg(−,Set)

This was first proved in the additive context as Theorem 2.3 of [PR10]; while the ordinary

version is Theorem 3.2.5 of [KR18] (though we should mention that the proof appearing in

the latter contains a gap, as we explain at the end of Section 4.3).

Gabriel-Ulmer duality has been extended to the enriched context by Kelly in [Kel82b].

The aim of this thesis is to extend the other three theorems, finding a common path that

includes both the ordinary and the additive context. Note that an enriched version of Barr’s

Embedding Theorem already appeared in [Chi11], but the notion of regularity appearing there

is different from ours.

First we need to specify our assumptions on the base for enrichment we are going to

work with. Start as usual from a symmetric monoidal closed complete and cocomplete

V = (V0, I,⊗); since we want to talk about finite weighted limits and regularity, this should at

least be locally finitely presentable as a closed category (in the sense of [Kel82b]) and regular.

In fact we ask something more, our bases for enrichment will be (unsorted) finitary varieties:

categories of the form FP(C,Set), consisting of finite product preserving functors for some

small category C with finite products. Equivalently a finitary variety can be described as

an exact and cocomplete category with a strong generator made of finitely presentable and

projective objects. In addition to this, we ask these finitely presentable and projective objects

to respect the monoidal structure (in a sense made clear in Section 2.3). We call a finitary

variety with such a structure a symmetric monoidal finitary variety, while if the exactness

property is dropped we call it a symmetric monoidal finitary quasivariety (this, even if not

exact, is still a regular category).

In this context we define an enriched version of regularity and exactness (Section 3), which

are similar to the ordinary ones but with the additional request that regular epimorphisms

should be stable under finite projective powers. This allows us to prove an enriched version

of Barr’s Embedding Theorem (3.2.4), saying that for each small and regular V-category C

the evaluation functor

ev : C → [Reg(C,V),V ]

is a fully faithful regular embedding. If the underlying ordinary category on C is moreover

exact, the essential image of evC is given by those functors that preserve filtered colimits, prod-

ucts, and projective powers (Theorem 3.3.4), recovering a corresponding version of Makkai’s
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Image Theorem. To obtain these results it’s enough to enrich over a symmetric monoidal

finitary quasivariety.

An enriched notion of definable V-category is also introduced (Chapter 4); a priori this

lies somewhere between the ordinary one, and that of exactly-definable V-category, namely

categories of the form Reg(B,V) for an exact V-category B. Then, if our V is a symmetric

monoidal finitary variety, we are able to recover the duality between the 2-category V-Ex of

small exact V-categories, and V-Def of definable V-categories (Theorem 4.3.6), showing that

each definable V-category is actually exactly definable. In Section 4.4 we use this to give an

explicit description of the free exact completions over finitely complete V-categories and over

regular V-categories, while in Section 4.5 we treat the ordinary and additive cases.



Chapter 1

Background

1.1 Regular and Exact Categories

In this section we recall the definitions and the most important results about regular and exact

categories. These notions were first introduced and developed by Michael Barr in [BGO71];

a more recent description can also be found in [Bor94].

Definition 1.1.1. A category C is called regular if it has all finite limits, coequalizers of

kernel pairs, and regular epimorphisms are pullback stable. A functor F : C → B between

regular categories is called regular if it preserves finite limits and regular epimorphisms; write

Reg(C,B) for the full subcategory of [C,B] given by regular functors.

Examples 1.1.2. The following are examples of regular categories:

� the categories Set of sets and Ab of abelian groups;

� the category [A, C] for any small A and regular C;

� every Grothendieck topos;

� any abelian category;

� categories CT of T -algebras for a monad T : C → C that preserves regular epimorphisms,

over a regular category C (for C = Set any monad preserves regular epimorphisms since

they are all split).

The following is a list of the important properties involving regular epimorphisms in a

regular category; this is going to be useful also when we move to the enriched context.

Proposition 1.1.3. Let C be a regular category; then:
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1. each morphism f in C can be factored as f = m ◦ e, where e is a regular epimorphism

and m a monomorphism; the factorization is unique up to unique isomorphism;

2. regular and strong epimorphisms coincide in C;

3. if f and g are regular epimorphisms then f ◦ g is too;

4. if f = g ◦ h is a regular epimorphism, then g is too;

5. regular epimorphisms are stable under finite products.

Barr proved, in Theorem 1.3 of [BGO71], that each small regular category can be regu-

larly embedded in a category of presheaves [A,Set] for a small A; if we drop the smallness

hypothesis on A we can replace it with Reg(C,Set):

Theorem 1.1.4 (Barr’s Embedding, Corollary 15 in [Bar86]). Let C be a small regular cate-

gory; then the evaluation functor ev : C → [Reg(C,Set),Set] is fully faithful and regular.

Before introducing the notion of exactness we need to recall that of equivalence relation for

a morphism in a category:

Definition 1.1.5. An equivalence relation in a category C is a monomorphism r = (r1, r2) :

R → A × A such that C(X, r) is an equivalence relation in Set (namely, it is reflexive,

symmetric, and transitive). Equivalently, r is an equivalence relation if there exist:

� a map δ : A→ R such that ri ◦ δ = idA, for i = 1, 2;

� a map σ : R→ R such that r1 ◦ σ = r2 and r2 ◦ σ = r1;

� if ρ1, ρ2 : R×A R→ R denote the pullback of r1 and r2 (with ρi opposite to r1); a map

τ : R×A R→ R such that ri ◦ τ = r1 ◦ ρi, for i = 1, 2.

It’s easy to see that every kernel pair is an equivalence relation (checking that it is true in

Set, or using the universal property of the kernel pair to find the maps δ, σ, and τ). We may

ask the opposite implication to hold:

Definition 1.1.6. A category B is called exact if it is regular and all equivalence relations in

C are kernel pairs.

Remark 1.1.7. All the examples of 1.1.2 still hold if we replace regular with exact. Moreover

in the additive context, an additive category is exact if and only if it is abelian.
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For any regular category C, the category Reg(C,Set) is closed in [C,Set] under filtered col-

imits and small products; hence, for each C ∈ C the evaluation functor ev(C) : Reg(C,Set)→

Set preserves them. Makkai proved that, if C is moreover exact, then this is enough to describe

the essential image of ev:

Theorem 1.1.8 (Makkai, 5.1 in [Mak90]). Let B be a small exact category. The essential

image of the embedding ev : B → [Reg(B,Set),Set] is given by those functors which preserve

filtered colimits and small products.

1.2 Enriched Categories

In this section we recall the main features of enriched categories that we are going to use

throughout the thesis; the main reference for this is Kelly’s book [Kel82a].

Fix henceforth a complete and cocomplete symmetric monoidal closed category V = (V0, I,⊗);

where I is the unit and ⊗ : V0×V0 → V0 the tensor product. We denote by [−,−] the internal

hom V0×V0 → V0 that makes V closed, so that −⊗Y is left adjoint to [Y,−] for each Y ∈ V0.

Given a V-category C, which hence has hom-objects C(X, Y ) in V0, we denote by C0 the un-

derlying ordinary category of C; this has the same objects as C, but C0(X, Y ) = V0(I, C(X, Y )).

Similarly, for any V-functor F : C → B we denote by F0 : C0 → B0 the induced ordinary func-

tor between C0 and B0. Note that we allow all our V-categories to be large, unless specified

otherwise.

For any two V-categories C and B, we denote by [C,B] the enriched category of V-functors

from C to B. If C is large this may not exist as a V-enriched category; this problem can be

avoided by considering [C,B] as a V ′-category for some extension V ′ of V (as explained in

Section 2.6 of [Kel82a]); this allows us still to work with category of functors with a large

domain.

Let’s now consider the various notion of limits (and colimits) present in the enriched context,

starting with powers and copowers:

Definition 1.2.1. Let C be a V-category, C an object of C, and X an object of V . The power

of C by X in C, if it exists, is given by an object CX of C together with a map X → C(CX , C)

inducing a V-natural isomorphism

C(B,CX) ∼= [X, C(B,C)]
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in V0. Dual is the notion of copower of C by X, which is denoted by X · C.

For an ordinary category K, the power if an object A of K with a set S is just the product∏
x∈S A of S copies of A.

Given an ordinary locally small category K, we can consider the free V-category KV over K;

it has the same objects of K but hom-objects given by KV(A,B) := K(A,B) · I the coproduct

of K(A,B) copies of I in V0. This will be useful for the next definition.

Definition 1.2.2. Let C be a V-category, T : K → C0 an ordinary functor, and TV : KV → C

the induced V-functor. The conical limit of TV in C, if it exists, is given by an object limTV of C

together with a V-natural transformation ∆(limTV)→ TV inducing a V-natural isomorphism

C(C, limTV) ∼= [K, C](∆(C), TV)

in V0. Dual is the notion of conical colimit.

If limTV exists in C, then it coincides with the ordinary limit of T : K → C0 in C0. The

converse doesn’t hold in general, but does so if C has copowers with a strong generator of V0.

Both the notion of power and of conical limit are a particular case of weighted limits. For

our purposes we don’t need to recall their definition (which can be found in Section 3.1 of

[Kel82a]); it’s important though to know the following fact: a V-category has all weighted

limits if and only if it has all conical limits and all powers.

Next we state the enriched version of the Yoneda Lemma for ordinary categories:

Lemma 1.2.3 (Yoneda). Let F : C → V be a V-functor and C an object of C. Then the map

[C,V ](C(C,−), F ) −→ FC

given by evaluating at 1C, is invertible.

A direct consequence is:

Theorem 1.2.4 (Yoneda Embedding). Let C be a V-category; the V-functor

Y : Cop [C,V ]

sending an object C to Y C = C(C,−), is fully faithful and continuous.
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Finally, we recall the notion of the right Kan extension RanJF for a V-functor F : C → V

along an embedding J : C → B. More generally one could replace V , from the codomain of

F , with any V-category A and J with any V-functor; in this case the existence of the right

Kan extension is related to that of some weighted limits in B. Since we are considering only

functors to V , which is complete, RanJF always exists and can be defined this way:

Definition 1.2.5. Let F : C → V be a V-functor and J : C → B be fully faithful. The right

Kan extension of F along J is the V-functor RanJF : B → V defined on objects by

RanJF (B) = [C,V ](B(B, J−), F )

for each B ∈ B.

Since J is assumed to be fully faithful, and thanks to Yoneda, the right Kan extension

satisfies RanJF ◦ J ∼= F .

1.3 Weak Reflections

Recall the following definitions for ordinary Set-enriched categories:

Definition 1.3.1. Given an arrow h : A → B in a category L, an object L ∈ L is said to

be h-injective if L(h, L) : L(B,L) → L(A,L) is a surjection of sets. Given a small set M of

arrows in L write M-inj for the full subcategory of L consisting of those objects which are

h-injective for each h ∈M. Categories arising in this way are called small injectivity classes.

Definition 1.3.2. Let D be a full subcategory of L and L ∈ L; we say that p : L → S is a

weak reflection of L into D if S ∈ D and each K ∈ D is p-injective. We say that D is weakly

reflective in L if each object of L has a weak reflection into D.

The first result of this section is a well-known one which relates injectivity classes and

weakly reflective subcategories:

Theorem 1.3.3. Each injectivity class M-inj in a locally presentable category is weakly re-

flective. Moreover, the weak reflections can be taken in the closure of M under transfinite

composition (along filtered colimits) and pushouts.

The proof we propose is inspired by that in Section III.6 of [AR93] with some changes to

make the last part of the statement true. A similar approach can be also found in [Bar86].
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Proof. Let D =M-inj be a small injectivity class in a locally presentable category L. Given

L ∈ L we want to build a weak reflection into D; we do this by defining a chain of objects

(Lα)α∈ORD indexed on ordinals, with connecting maps xβ,α : Lβ → Lα for β < α, and proving

that this reaches at some point an object of D with the desired property. Set L0 := L and

Lλ := colimβ<λLβ for each limit λ; for α = β + 1 we define Lα as the colimit of another chain

built as follows. Order the set of diagrams of the form:

A B

Lβ

h

f

for any h ∈M and f : A→ Lβ, and call the ordinal ordering this set κ. Then we can define

X0 := Lβ and Xλ := colimδ<λXδ for each limit λ < κ. Given Xδ, δ < κ, define Xδ+1 as the

pushout

Aδ

Lβ

Bδ

Xδ Xδ+1

hδ

fδ

where hδ and fδ correspond to δ in the given order. At the end we obtain a chain (Xδ)δ<κ

and we can define Lβ+1 as its colimit.

Now let γ be a regular cardinal such that each arrow in M has γ-presentable domain and

codomain; we are going to prove that Lγ is a weak reflection for L (the existence of γ is

guaranteed by the fact that L is locally presentable, Remark after 1.20 in [AR94]).

(1) Lγ ∈ D =M-inj. For each h : A → B in M and f : A → Lγ, since A is γ-presentable

and Lγ := colimβ<γLβ, f factors through some xβ,γ as f = xβ,γ ◦ f̄ . Consider then the

diagram:

A B

Lβ Lβ+1

Lγ

h

f̄

xβ,β+1

xβ+1,γ

xβ,γ

:= fh

where the square exists by definition of Lβ+1. Then f = fh ◦ h and, as a consequence, Lγ is

h-injective for each h ∈M.



1.3 Weak Reflections 11

(2) p := x0,γ : L → Lγ is a weak reflection of L in D. Let K ∈ D be M-injective; we

need to show that it is also p-injective. Given any g : L → K, travelling through the steps

of the construction of Lγ, we can prove inductively that g factors compatibly through each

x0,β and hence through p. Indeed, let’s first prove that if it’s true for β then it is also true

for β + 1; by definition Lβ+1 = colimδ(Xδ), and assume by induction that g factors through

L
x0,β−→ Lβ → Xδ with a map gδ : Xδ → K, then we can consider the following diagram

Aδ

Lβ

Bδ

Xδ Xδ+1

K

hδ

fδ

∃ gδ+1

gδ

l

where l exists since K is M-injective. This gives gδ+1 : Xδ+1 → K and iterating provides a

factorization of g through x0,β+1. For limit ordinals the factorization exists since each step is

done compatibly with the colimits Lλ = colimβ<λLβ.

Now we move to the enriched context and consider a corresponding notion of weak reflection.

For this, let us fix a symmetric monoidal closed complete and cocomplete category V =

(V0,⊗, I) as our base.

Definition 1.3.4. Let L be a V-category and D a full subcategory of L. Given F ∈ L, a

weak reflection of F into D is a morphism p : F → S such that S ∈ D and

L(p, T ) : L(S, T )→ L(F, T )

is a regular epimorphism in V for each T ∈ D. We say that D ⊆ L is weakly reflective if each

F in L has a weak reflection into D.

Since in V there are several kinds of epimorphisms; one could ask L(p, T ) to be just an

epimorphism, or a strong one (or even something else) instead of a regular epimorphism. For

instance, to prove the Proposition below it would be enough to consider just epimorphisms.

We prefer however, to keep the definition as it is since all the weakly reflective categories we’ll

consider in the following sections arise in that way.

The proof of the following Proposition is inspired by that of Theorem 9 in [Chi11].
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Proposition 1.3.5. Let J : D ↪→ L be the inclusion of a full weakly reflective subcategory for

which the weak reflections can be chosen to be regular monomorphisms. Then D is codense

in L; meaning that the functor

Ĵ := L(1, J) :Lop [D,V ]

F L(F, J−)

is full and faithful.

Proof. Let us fix F and G in L, we need to prove that ĴFG : L(G,F )→ [D,V ](ĴF, ĴG) is an

isomorphism. For each T in D denote by

πT : [D,V ](ĴF, ĴG) =

∫
S

[L(F, S),L(G,S)] −→ [L(F, T ),L(G, T )]

the projection; then ĴFG is defined by

πT ◦ ĴFG := L(−, T ) : L(G,F )→ [L(F, T ),L(G, T )].

Consider a weak reflection p : F � S of F in D, which by hypothesis we can assume to be a

regular monomorphism in L. Let u, v : S → S ′ be such that p is their equalizer; replacing u

and v with their composite with a weak reflection of S ′ we may suppose S ′ ∈ D.

Now, for each f : F → T with T ∈ D, define the morphism:

f : [D,V ](ĴF, ĴG)
πT−→ [L(F, T ),L(G, T )]

evf−→ L(G, T );

it’s easy to see that L(G, u) ◦ p = (u ◦ p) = (v ◦ p) = L(G, v) ◦ p. But L(G, p) is the equalizer

of L(G, u) and L(G, v), then there exists m : [D,V ](ĴF, ĴG)→ L(G,F ) such that

[D,V ](ĴF, ĴG) L(G,S)

L(G,F )

p

m L(G, p)

commutes. We want to prove that m is a section for ĴFG; to do this it’s enough to show that

the following triangle

[D,V ](ĴF, ĴG) [L(F, T ),L(G, T )]

L(G,F )

πT

m L(−, T )
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commutes for each T ∈ D. Fix then T in D; since p is a weak reflection, L(p, T ) is an epimor-

phism and hence [L(p, T ), 1] : [L(F, T ),L(G, T )] → [L(S, T ),L(G, T )] is a monomorphism.

Thus, it is enough to prove that [L(p, T ), 1] ◦ πT = [L(p, T ), 1] ◦ L(−, T ) ◦m. Consider hence

the diagram

[D,V ](ĴF, ĴG) L(G,F )

L(G,S)

[L(F, T ),L(G, T )] [L(F, T ),L(G, T )]

[L(S, T ),L(G, T )]

m

p L(G, p)
πT L(−, T )

[L(p, T ), 1] [L(p, T ), 1]
L(−, T )

The upper triangle commutes by the definition of m, the square on the right by naturality,

that on the left since p = evp ◦ πS and thanks to the commutativity of

[D,V ](ĴF, ĴG)

[L(F, T ),L(G, T )] [L(F, S),L(G,S)]

[L(S, T ), [L(F, S),L(G, T )]]

L(G,S)

[L(S, T ),L(G, T )]

πT
πS

σST ρST

[L(p, T ), 1]

evp

L(−, T )

[1, evp]

where σST and ρST are those appearing in the definition of [D,V ](ĴF, ĴG) as an end. Conse-

quently m is a right inverse for ĴFG, or equivalently ĴFG is a spit epimorphism. To conclude

observe that

p ◦ ĴFG = evp ◦ πS ◦ ĴFG = evp ◦ L(−, S) = L(G, p)

and L(G, p) is a monomorphism since p is. Thus ĴFG is both a monomorphism and a split

epimorphism, and hence is an isomorphism.



Chapter 2

Bases for Enrichment

2.1 Locally Finitely Presentable Categories

In this Section we recall the most important properties of locally finitely presentable categories

in the ordinary and in the enriched context. The main reference for the first part is [AR94],

while for the second [Kel82b].

Definition 2.1.1. Let L be a category, an object A of L is called finitely presentable if the

hom-functor L(A,−) : L → Set preserves filtered colimits. Denote by Lf the full subcategory

of finitely presentable objects.

The following proposition will be useful later

Proposition 2.1.2 (1.7 in [AR94]). A category L has filtered colimits if and only if it has

colimits of smooth chains (diagrams D : α→ L, for an ordinal α, such that D(λ) ∼= colimD|λ
for any limit λ < α). Any functor between such categories preserves filtered colimits if and

only if it preserves colimits of smooth chains.

Definition 2.1.3. We say that a category L is locally finitely presentable if it is cocomplete

and has a small strong generator G ⊆ Lf .

Let us now state some properties of locally finitely presentable categories:

Proposition 2.1.4. Let L be a locally finitely presentable category with strong generator

G ⊆ Lf . Then:

1. Lf is the closure of G under finite colimits, in particular Lf is a small and finitely

cocomplete category;
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2. each object of L can be written as a filtered colimit of objects from Lf ;

3. filtered colimits commute in L with finite limits;

4. L is complete.

A morphism F : L → L′ between locally finitely presentable categories is a right adjoint

functor that preserves filtered colimits; denote then by Lfp the 2-category of locally finitely

presentable categories, morphisms between them, and natural transformations. Similarly

define Lex to be the 2-category of finitely complete categories, finite limit preserving functors,

and natural transformations.

Theorem 2.1.5 (Gabriel-Ulmer, [GU71]). The following is a biequivalence of 2-categories:

(−)opf : Lfp Lexop : Lex(−,Set)

The same concepts were introduced in the enriched context by Kelly in [Kel82b]. As al-

ways we should consider a symmetric monoidal closed complete and cocomplete category

V = (V0, I,⊗); but we ask in addition V0 to be locally finitely presentable and that finitely

presentable objects respect the monoidal structure in the following sense:

Definition 2.1.6. We say that V = (V0, I,⊗) is a locally finitely presentable as a closed

category if:

1. V0 is locally finitely presentable with strong generator G ⊆ (V0)f ;

2. I ∈ (V0)f ;

3. if A,B ∈ G then A⊗B ∈ (V0)f .

In this context we can talk about locally finitely presentable V-categories generalising the

previously stated results.

Definition 2.1.7. Let L be a V-category, an object A of L is called finitely presentable if

the hom-functor L(A,−) : L → V preserves conical filtered colimits. Denote by Lf the

full subcategory of finitely presentable objects. We call L locally finitely presentable as a

V-category if it is V-cocomplete and has a small strong generator G ⊆ Lf .

Note in particular that V is itself locally finitely presentable as a V-category; moreover by

the closure property (2) and (3) in Definition 2.1.6, being finitely presentable in V or in V0 is

the same: V0f = Vf0.
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Definition 2.1.8. We say that a V-category C has finite weighted limits, or that is finitely

complete, if it has all finite conical limits and finite powers, where with the latter we mean

powers with finitely presentable objects of V0. Denote by V-Lex the 2-category of finitely

complete V-categories, finite limit preserving V-functors, and V-natural transformations.

Finite limits can then be thought as combinations of finite conical limits and finitely pre-

sentable powers; a more direct description for general weighted limits can be found in Section

4 of [Kel82b].

Then all the properties of Proposition 2.1.4 still hold if we replace the ordinary notions with

the new enriched ones; as a consequence, if L is locally finitely presentable as a V-category,

then L0 is an ordinary locally finitely presentable category and L0f = Lf0.

Moreover, denoting by V-Lfp the 2-category of locally finitely presentable V-categories,

right adjoint V-functors that preserve filtered colimits, and V-natural transformations, we

obtain once again:

Theorem 2.1.9 (Kelly, [Kel82b]). The following is a biequivalence of 2-categories:

(−)opf : V-Lfp V-Lexop : Lex(−,V)

2.2 Locally Projective Categories

In this section we study the main properties of categories with a strong generator consisting

of projective objects:

Definition 2.2.1. Let K be a category; an object P of K is called projective if the hom-

functor K(P,−) : K → Set preserves all regular epimorphisms existing in K; in other words,

if K(P,−) sends regular epimorphisms to surjections. Denote by Kp the full subcategory of

K given by the projective objects.

Note that this is not the usual definition of projective object; indeed the normal request

would be for K(P,−) to preserve epimorphisms not regular epimorphisms.

Definition 2.2.2. We say that a category K is locally projective if it has finite limits and

coequalizers of kernel pairs, and there exists a (small) strong generator P ⊆ Kp.

Lemma 2.2.3. Let B be a regular category, A have finite limits and coequalizers of kernel

pairs, and F : A → B a functor which preserves finite limits and regular epimorphisms. Then

the following are equivalent:
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1. F is conservative;

2. F reflects regular epimorphisms.

Furthermore A is then regular.

Proof. (1) ⇒ (2). In a category with finite limits and coequalizers of kernel pairs, regular

epimorphisms coincide precisely with coequalizers of kernel pairs, and these are preserved by

regular functors. Now, since F is conservative, it reflects all limits and colimits that it pre-

serves; in particular it then reflects coequalizers of kernel pairs, namely regular epimorphisms.

(2)⇒ (1). Let f be a morphism in A such that F (f) is an isomorphism. Then (2) implies

that f is a regular epimorphism; thus we only need to prove that it also is monomorphism.

Let (u, v) be the kernel pair of f and δ the diagonal:

· · · ·δ u

v

f

Since F (f) is an isomorphism and F preserves finite limits, F (δ) is an isomorphism, and in

particular a regular epimorphism; thus (2) implies that δ is a regular epimorphism, which

means exactly that the kernel pair is trivial and f is a monomorphism.

Finally, if they hold, to prove thatA is regular it’s enough to show that regular epimorphisms

in A are stable under pullback. Consider a regular epimorphism e in A and the pullback ē of

e along any other morphism in A. The functor F preserves and regular epimorphisms; then

F (ē) is such (B is regular) and hence (2) implies that ē is a regular epimorphism in A.

The following result gives a simple way to recognise regular epimorphisms in a locally

projective category:

Proposition 2.2.4. Let K have finite limits and coequalizers of kernel pairs. The following

are equivalent:

1. K is locally projective;

2. there exists a small P ⊆ Kp such that for every morphism f in K, if K(P, f) is surjective

for each P ∈ P then f is a regular epimorphism in K.

Furthermore, if they hold, K is a regular category.

Proof. (1)⇒ (2). Let P ⊆ Kp be a strong generator for K, we are going to prove that it has

the required property. Consider the functor

N := î : K −→ [Pop,Set]
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such that N(K) = K(i−, K), where i : P → K is the inclusion (we are seeing P as a full

subcategory of K). Since P is a strong generator, N is continuous and conservative; thus by

the previous Lemma N reflects regular epimorphisms, which is a rephrasing of the property

in (2).

(2) ⇒ (1). Let P ⊆ Kp as in (2); we prove that it strongly generates K. For this, it is

enough to prove that N : K → [Pop, Set] defined as before, is conservative. This follows again

from the previous Lemma since N preserves finite limits and reflects regular epimorphisms

by construction.

Proposition 2.2.5. Let K be locally projective; then regular epimorphisms are stable under

all small products that exist in K.

Proof. Let (ei)i∈I be a set of regular epimorphisms in K such that
∏

i ei exists; then for each

P ∈ P , K(P,
∏

i ei)
∼=

∏
iK(P, ei) is a surjection (since they are product stable in Set). As a

consequence
∏

i ei is a regular epimorphism in K.

Proposition 2.2.6. Let K be locally projective with strong generator P and small coproducts;

then:

1. Kp is closed under small coproducts;

2. K has enough projectives;

3. Q is in Kp if and only if it is a split subobject of a coproduct from P.

Proof. (1) Consider a coproduct
∐

i Pi of projective objects, then K(
∐

i Pi,−) ∼=
∏

iK(Pi,−)

is surjective because surjections are product stable in Set. It follows that
∐

i Pi is projective.

(2). LetK be an object ofK, since P is strongly generating, there exists a regular epimorphism

P :=
∐

i Pi � K, with Pi ∈ P . But Kp is closed under coproducts, then P ∈ Kp.

(3). Let Q ∈ Kp, then as before there is a regular epimorphism
∐

i Pi � Q with Pi ∈ P

for each i. Since Q is projective this regular epimorphism splits as desired. On the other

hand, consider a coproduct P :=
∐

i Pi of elements from P (P ∈ Kp by the first point), and

a split subobject i : Q � P . Let p : P → Q be such that p ◦ i = idQ; then given a regular

epimorphism e : A → B in K and f : Q → B, since P is projective there is g′ : P → A such

that e ◦ g′ = f ◦ p. Define then g := g′ ◦ i; it is easy to see that e ◦ g = f and hence that

Q ∈ Kp.
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2.3 Finitary Varieties and Quasivarieties

We now merge the two notions of locally finitely presentable and locally projective categories

into the following:

Definition 2.3.1. A category K is called a finitary quasivariety if it is cocomplete and has

a strong generator formed by finitely presentable and projective objects. If moreover K is an

exact category, it is called a finitary variety.

Denote by Kpf the full subcategory of finitely presentable projective objects of K.

By Theorem 3.24 in [AR94] (or actually, the correction appearing in [AR13]), this corre-

sponds to the usual definition of finitary quasivariety and variety. In fact, finitary varieties

can be described as the categories of models of multi-sorted Algebraic Theories (whose axioms

are systems of linear equations); while finitary quasivarieties are the categories of models of

theories whose axioms are implications of linear equations.

Finitary varieties can also be described as some particular categories of functors:

Theorem 2.3.2 (3.16 in [AR94]). A category K is a finitary variety if and only if it is

equivalent to FP(C,Set) for some small category C with finite products. In particular we

could take C to be (Kpf )op.

Examples 2.3.3.

� Set and Ab are finitary varieties; we may take P equal to {1} and {Z} respectively.

� The category CRng of commutative rings (with unit) and ring homomorphisms is a

finitary variety: note first that a morphism in CRng is a regular epimorphism if and only

if it is surjective; then if we consider Z[x], it’s easy to see (since morphism Z[x]→ R are

in bijection with elements of R) that it is finitely presentable, projective, and a strong

generator. (It’s interesting to note that Z[x] is not projective in the usual algebraic

sense.)

� The category Gra of graphs seen as sets with a relation, is a finitary quasivariety (but

not a finitary variety), with strong generator given by the finite graphs.

� For any small A, the functor category [A,Set] is a finitary variety with strong generator

P given by the set af all representable objects.

� More generally, if (T, µ, η) is a monad on a finitary variety (resp. quasivariety) K and

T preserves filtered colimits, then the Eilenberg-Moore category KT is a finitary variety
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(resp. quasivariety). The strong generator of KT is given by the set of free algebras

over finitely presentable and projective objects of K.

� All the examples from 3.20 of [AR94].

Note that if K is a finitary quasivariety then it is both locally finitely presentable and locally

projective, and in particular a regular category.

Proposition 2.3.4. Let V be a symmetric monoidal closed complete and cocomplete category,

and let K be any cocomplete V-category for which K0 is a finitary variety (resp. quasivariety).

Then for any small V-category A, the category [A,K]0 of V-functors from A to K is a finitary

variety (resp. quasivariety).

Proof. Let P ⊆ Kp be a strong generator for K made of finitely presentable projective objects.

Define P ′ in [A,K] as the collection of those functors of the form A(d,−) · P for each d ∈ A

and P ∈ P . These are projective since for any regular epimorphism α in [A,K] the following

isomorphisms hold

[A,K](A(d,−) · P, α) ∼= [A,V ](A(d,−),K(P, α−)) ∼= K(P, αd)

and the last is a regular epimorphism since αd is one and P is projective. The same chain

of isomorphisms shows that the elements of P ′ are finitely presentable (each p ∈ P is finitely

presentable and evaluation at d preserves all limits and colimits).

It remains to prove that P ′ is a strong generator. Given F in [A,K], it’s enough to prove that

for any d ∈ A there are P ∈ P and η : A(d,−) ·P → F such that ηd is a regular epimorphism;

because then we can just take the coproduct of those maps over d ∈ A. Since K is locally

projective, given d there are P ∈ P and a regular epimorphism f : P � Fd, define then η as

the natural transformation whose transpose η̄ : A(d,−) → K(P, F−) corresponds, through

Yoneda, to f . Consider then the following diagram

I · P

FdA(d, d) · P

f
id · P

ηd

since K0 is regular (by Proposition 2.2.5) and f a regular epimorphism, ηd is regular too.

Example 2.3.5. It follows that, for each commutative ring R, the categories R-Mod, GR-

R-Mod of R-modules and graded R-modules, are finitary varieties. Moreover if A is abelian



2.3 Finitary Varieties and Quasivarieties 21

and a finitary variety (resp. quasivariety) then so is the category Ch(A) of chain complexes

on A.

Definition 2.3.6. Let V = (V0,⊗, I) be a symmetric monoidal closed category. We say that

V is a symmetric monoidal finitary quasivariety if:

1. V0 is a finitary quasivariety with strong generator P ⊆ (V0)pf ;

2. I ∈ (V0)pf ;

3. if P,Q ∈ P then P ⊗Q ∈ (V0)pf .

We call it a symmetric monoidal finitary variety if V0 is also a finitary variety.

Examples 2.3.7. The following are examples of symmetric monoidal finitary quasivarieties:

� Set and Ab with the cartesian and group tensor product respectively;

� R-Mod and GR-R-Mod, for each commutative ring R, with the usual algebraic tensor

product;

� [Cop,Set], for any category C with finite products, equipped with the cartesian product;

� non-positively graded chain complexes Ch(A)− for each abelian and symmetric monoidal

finitary quasivariety A, with the tensor product inherited from A;

� the category Abf of torsion free abelian groups with the usual tensor product;

� Gra with the cartesian product, as well as the category DGra of directed graphs;

� the full subcategory Mono of all monomorphisms in Set2.

The first three are always symmetric monoidal finitary varieties, the same holds for the fourth

if A is such. Non examples are: Cat with any tensor product (since it is not a quasivariety);

the categories RGra of reflexive graphs, and sSet of simplicial sets with the cartesian product

(since the product of two projective objects may not be projective).

Remark 2.3.8. Let V be a symmetric monoidal finitary quasivariety; then point (3) of the

previous definition implies, by Proposition 5.2 in [Kel82b], that V0f is closed under tensor

product. The same holds for V0p: given two projective objects P,Q ∈ V0p, there are split

monomorphisms P �
∐

i Pi and Q �
∐

j Qj, with Pi, Qj ∈ P . Then P ⊗ Q is a split

subobject of ∐
i

Pi ⊗
∐
i

Qi
∼=

∐
i,j

(Pi ⊗Qj),

which is projective; hence P ⊗Q is projective. It follows then that (V0)pf is also closed under

tensor product.
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The following Proposition gives a characterization of the monoidal structures on a finitary

variety that make it a symmetric monoidal finitary variety.

Proposition 2.3.9. Let C be a category with finite products; there is an equivalence between

� symmetric monoidal structures on C for which − ⊗ − : C × C → C preserves finite

products in each variable;

� symmetric monoidal structures on FP(C,Set) which make it a symmetric monoidal

finitary variety.

Moreover, the induced structures make the Yoneda embedding Y : Cop → FP(C,Set) a strong

monoidal functor.

Proof. On one side, since FP(C,Set)pf ' Cop, the remark above implies that every symmetric

monoidal structure on FP(C,Set) which makes it a symmetric monoidal finitary variety,

restricts to a symmetric monoidal structure on C. The functor −⊗− : C × C → C preserves

finite products since Y : Cop → FP(C,Set) preserves finite coproducts and these commute

with the tensor product.

On the other side, let (C,⊗, I) be a symmetric monoidal structure on C as in the first point.

It is proven in [Day70] that it induces a symmetric monoidal closed structure on [C,Set] for

which the Yoneda embedding Cop → [C,Set] is strong monoidal and for every F,G : C → Set

and c ∈ C

(F ⊗G)(c) ∼=
∫ c1,c2∈C

C(c1 ⊗ c2, c)× F (c1)× F (c2)

can be expressed as a coend. Now, if F and G preserve finite products, by Corollary 2.8

of [AR11], we can write them as sifted colimits of representables: F ∼= colimiY (ci) and

G ∼= colimjY (dj). Since sifted colimits commute with products and coends in Set, it follows

that

F ⊗G ∼= colimi,jY (ci)⊗ Y (dj) ∼= colimi,jY (ci ⊗ dj),

making F⊗G a sifted colimits of representables and hence a finite product preserving functor.

As a consequence the tensor product on [C,Set] restricts to FP(C,Set), and satisfies condi-

tions (2) and (3) of Definition 2.3.6 (with P = Y Cop); we are only left to prove that the sym-

metric monoidal structure induced on FP(C,Set) is closed. For this it’s enough to show that

if F and G preserve finite products, then the internal hom [G,F ] (seen in [C,Set]) preserves

them too. Write G ∼= colimjY (dj) as before; then [G,F ] ∼= [colimjY (dj), F ] ∼= limj[Y (dj), F ]
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and it suffices to show that [Y (c), F ] preserves finite products for every c ∈ C. Fix d ∈ C,

then

[Y (c), F ](d) ∼= [C,Set](Y (d), [Y (c), F ])

∼= [C,Set](Y (d)⊗ Y (c), F )

∼= [C,Set](Y (d⊗ c), F )

∼= F (d⊗ c);

in other words [Y (c), F ] ∼= F (− ⊗ c), and this preserves finite products since F does and

−⊗− : C × C → C preserves finite products in each variable by assumption.

Remark 2.3.10. Note that if V is a symmetric monoidal finitary quasivariety it is in particular

locally finitely presentable as a closed category, and hence V0f = Vf0.

We can show similar results for the full subcategory of projectives. Denote with Vp the full

subcategory of V given by the V-projective objects: those P ∈ V such that [P,−] : V →

V preserves regular epimorphisms. Then the equality V0p = Vp0 holds too; indeed given

P ∈ V0p and a regular epimorphism e, the function of sets V0(Q, [P, e]) ∼= V0(Q ⊗ P, e) is a

surjection for each Q ∈ P (since Q⊗P is projective); hence [P, e] is a regular epimorphism (by

Proposition 2.2.4) and P ∈ Vp0 (this means exactly that regular epimorphisms are stable in

V under projective powers). Conversely, given P ∈ Vp0, since I ∈ V0p, the functor V0(P,−) ∼=

V0(I, [P,−]) preserves regular epimorphisms; thence P ∈ V0p. As a consequence we can omit

the subscript 0 and write Vf for the full subcategory of finitely presentable objects, Vp for

the full subcategory of projectives, and Vpf for the full subcategory of both projective and

finitely presentable ones.
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Regular and Exact V-categories

3.1 Regular V-Categories

From now on we assume that our base category V is a symmetric monoidal finitary quasivariety

with strong generator P ⊆ Vpf .

The following is the notion of regular category we are going to introduce in this context:

Definition 3.1.1. A V-category C is said to be regular if it has all finite weighted limits

(equivalently finite conical limits and finite powers), coequalizers of kernel pairs, and is such

that regular epimorphisms are stable under pullback and powers with elements of P .

A V-functor F : C → D between regular V-categories is called regular if it preserves finite

weighted limits and regular epimorphisms; we denote by Reg(C,D) the V-category of regular

functors from C to D.

Remark 3.1.2. A different notion of regularity appeared before in [Chi11]; there, in a regular

V-category, regular epimorphisms need to be stable under all finite powers, instead of just

finite-projective ones like in our case. At the same time the base for enrichment can be

assumed to be only locally finitely presentable as a closed category, and one can still prove

the analogue of 3.2.4. We chose to consider a different approach to recover the usual notions

of regularity and exactness for V = Ab; in fact Ab itself is not regular as an additive category

in the sense of [Chi11], but it is regular in our sense (since P can be chosen to be just Z).

It follows from the definition that a V-category C is regular if and only if it has all finite

weighted limits, C0 is an ordinary regular category, and regular epimorphisms are stable under

powers with elements of P . Indeed, this is easily checked to be necessary; on the other hand it
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is sufficient because, considering that C has P-powers and P is a strong generator, coequalizers

of kernel pairs in C and C0 are the same.

Remark 3.1.3. Our notion of regular V-category is a particular case of what are called Φ-

exact V-categories in [GL12], Φ being a class of weights. More precisely, there is a suitable

choice of Φ for which a V-category is regular if and only if it is Φ-exact; this follows by our

embedding Theorem 3.2.4 and Theorem 4.1 of [GL12]. As a consequence, by Corollary 3.7

of the same paper, it follows that every finitely complete V-category C has a free regular

completion Creg/lex; meaning that there is a lex functor F : C → Creg/lex which induces an

equivalence Reg(Creg/lex,B) ' Lex(C,B) for each regular V-category B. See also Remark 3.3.2

and Section 4.4.

Proposition 3.1.4. Let C be a regular V-category; then regular epimorphisms are stable under

powers with each element of Vpf .

Proof. Let h : A → B be a regular epimorphism in C and P ∈ Vpf . By Proposition 2.2.6,

P is a split subobject of a coproduct Q :=
∐

i Pi with Pi ∈ P ; write m : P → Q for the

split monomorphism. Since P is also finitely presentable, we can assume the coproduct to be

finite; as a consequence Q is finitely presentable and hQ exists in C. Moreover hQ ∼=
∏

i(h
Pi)

is a regular epimorphism since the hPi are, and regular epimorphisms are stable under finite

products in each ordinary regular category. Consider then the square

AQ BQ

AP BP

hQ

Am Bm

hP

where Aq and Bq are split epimorphisms, and hence regular. As a consequence, since C0 is

regular, it follows that hP is a regular epimorphism as desired.

Remark 3.1.5. V itself is regular as a V-category since it is both complete and cocomplete,

V0 is regular in the ordinary sense by Proposition 2.2.5, and regular epimorphisms are stable

under all projective powers (by Remark 2.3.10).

3.2 Barr’s Embedding Theorem

Let us fix a small regular V-category C and consider R := Reg(C,V) as a full subcategory of

L := Lex(C,V).
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Lemma 3.2.1. L is a coregular V-category.

Proof. It is shown in Theorem 3 of [Chi11] that regular monomorphisms are stable in L

under pushouts (note that the notion of regular category appearing in the cited paper is

different from ours, but the same proof applies to this setting). Hence we only need to show

that if H is a regular monomorphism in L then so is P · H for each P ∈ P . It is proven

in the same Theorem of [Chi11] that each regular monomorphism of L is a filtered colimit

of regular monomorphisms between representables; since P · − preserves colimits it is then

enough to consider H = C(h,−) for a regular epimorphism h in C. Now, the restricted Yoneda

embedding C → Lop preserves finite limits; hence P · C(h,−) ∼= C(hP ,−) for each P ∈ P .

But C is regular, therefore hP is a regular epimorphism and as a consequence, P · C(h,−) is

a regular monomorphism as claimed.

The next definition and the following result are useful to understand how R sits inside L.

Definition 3.2.2. Let L be a V-category andM a set of arrows in L; denote byM-inj the full

subcategory of L whose objects are those L ∈ L for which L(h, L) is a regular epimorphism

for each h ∈ M. Subcategories of this form are called enriched injectivity classes, or just

injectivity classes if no confusion will arise. If L is locally finitely presentable and the arrows in

M have finitely presentable domain and codomain, we callM-inj an enriched finite injectivity

class.

A more detailed treatment on finite injectivity classes will be given in Section 4.1. We will

see, in that section, how they relate to definable categories and categories like R, namely of

the form Reg(C,V) for a regular V-category C.

Lemma 3.2.3. R is an enriched finite injectivity class and a weakly reflective subcategory of

L.

Proof. A lex functor F ∈ L is in R if and only if Fh is a regular epimorphism for each regular

epimorphism h in C, as a consequence R =M-inj where

M := {C(h,−) | h regular epimorphism in C},

since by Yoneda Lex(C,V)(C(h,−), F ) ∼= Fh. Moreover, L(C(h,−), S) is a regular epimor-

phism in V if and only if the function V0(P,L0(C(h,−), S)) ∼= L0(P · C(h,−), S) is surjective
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for each P ∈ P (Proposition 2.2.4), it follows that D0 =M0-inj, with

M0 := {P · C(h,−) | h regular epimorphism in C, P ∈ P},

is an ordinary finite injectivity class in L0. By Theorem 1.3.3, R0 is then an ordinary weakly

reflective subcategory of L0. But given any ordinary weak reflection s : L → S and T ∈ R,

the function V0(P,L(s, T )) ∼= L0(s, T P ) is surjective for each P ∈ P , since T P ∈ R (R is

closed under projective powers in L by Proposition 4.1.4). It follows then that L(s, T ) is a

regular epimorphism and s is an enriched weak reflection.

This allows us to prove an enriched version of Barr’s Embedding Theorem.

Theorem 3.2.4 (Barr’s Embedding). Let C be a small regular V-category; then the evaluation

functor evC : C → [Reg(C,V),V ] is fully faithful.

Proof. Let R = Reg(C,V) and L = Lex(C,V) as before. It follows by the previous Lemma

that R is a weakly reflective subcategory of L and that an ordinary weak reflection is also an

enriched one. Remember also, from Theorem 1.3.3, that the ordinary weak reflections can be

obtained as filtered colimits and pushouts of the arrows that define R0 as a finite injectivity

class.

Our aim is to apply Proposition 1.3.5, hence we need to prove that our weak reflections can

be chosen to be regular monomorphisms. For this let us first note that, since L is coregular by

Lemma 3.2.1, the elements P · C(h,−) in the class defining R0 are regular monomorphisms.

Now, the fact that L is locally finitely presentable (since C is finitely complete) and coregular

implies that filtered colimits commute in L with finite limits, and regular monomorphisms are

stable under pushouts. Thus, by Theorem 1.3.3, our weak reflections can actually be chosen

to be regular monomorphisms.

In conclusion, note that the functor evC is given by the composite of the restricted Yoneda

embedding Y : C → Lop and of Ĵ : Lop → [R,V ] = [Reg(C,V),V ] where Ĵ = L(1, J) (J being

the inclusion of R in L); the first is always fully faithful and the second is so because R is

codense in L. Hence evC is fully faithful.

Similarly, for each small regular category C, we can find a regular embedding of C into a

category of presheaves over a small base:

Theorem 3.2.5. Let C be a small regular V-category. Then there exists a small V-category

A and a fully faithful and regular functor F : C → [A,V ].
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Proof. Let Y : C → Lop = Lex(C,V)op be the codomain restriction of the Yoneda embedding.

For each representable functor L = C(C,−) in L we can consider an equalizer

L SL TL
s u

v

where SL and TL are in Reg(C.V), and s is a weak reflection of L into Reg(C.V). Consider

then the full subcategory B of L given by the representable functors and, for each of them,

two regular functors SL and TL with the property just described. Let A ⊂ B be the full

subcategory consisting of all regular functors in B. Then A is weakly reflective in B and the

weak reflection can be chosen to be regular monomorphisms (if B ∈ B is representable, then

this is true by construction; if B is one of the new objects, then B ∈ A and the identity map is

a weak reflection). By construction A and B are small categories, and, thanks to Proposition

1.3.5, A is codense in B. Write Y ′ : C → Bop for the codomain restriction of Y ; then we can

consider the functor F : C → [A,V ] defined as the composite

C Bop [A,V ]
Y ′ B(1, J)

where J : A → B is the inclusion. F turns out to be just the evaluation functor restricted

to A; thence, since A ⊆ Reg(C,V), the functor F is regular too. Finally F is fully faithful

because Y ′ is, and A is codense in B.

3.3 Makkai’s Image Theorem

A notion strictly related to that of regularity is exactness:

Definition 3.3.1. A V-category B is called exact if it is regular and in addition the ordinary

category B0 is exact in the usual sense.

Taking V = Set or V = Ab this notion coincides with the ordinary one of exact or abelian

category. Note moreover that our base V may not be exact (but only regular).

Remark 3.3.2. If V is a symmetric monoidal finitary variety, then V0 is an ordinary exact

category and V is exact as a V-category. Arguing as in Remark 3.1.3, it’s easy to see that our

notion of exactness coincides with that of Φ′-exactness for a suitable Φ′ (different from that

defining regularity). It follows then by Theorem 7.7 of [GL12] that each regular V-category

has an exact completion Cex/reg. Similarly each finitely complete V-category C has an exact

completion Cex/lex. These will be described explicitly in Section 4.4.
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Given any exact category B, which is in particular a regular category, we can consider the

fully faithful functor

evB : B → [Reg(B,V),V ]

given by Theorem 3.2.4. Moreover Reg(B,V) is closed in [B,V ] under products, projective

powers and filtered colimits: this can be checked directly, or will follows from Proposition

4.1.4 plus the fact that Lex(B,V) is closed in [B,V ] under the same (co)limits. It’s then easy

to see that the essential image of evB is contained in the full subcategory Def(Reg(B,V),V)

of [Reg(B,V),V ] given by those functor preserving products, projective powers and filtered

colimits (the notation is that of Section 4.2). We are going to see that it actually is the

essential image of evB; to do this we use the following result for ordinary categories:

Lemma 3.3.3 (1.4.9 in [MR77]). Suppose that F : B → C is a conservative, full and regular

functor between ordinary regular categories, and B is exact. If for every object C ∈ C there

are an object B ∈ B and a regular epimorphism F (B) � C, then F is an equivalence of

categories.

Then we are ready to prove the following Theorem; the ordinary version appeared originally

as Theorem 5.1 of [Mak90]. Another proof of the same result in the ordinary context can be

found in Theorem 2.4.2 of [Lur18].

Theorem 3.3.4 (Makkai’s Image). For any exact V-category B; the evaluation map

evB : B −→ Def(Reg(B,V),V)

is an equivalence.

Note that the proof relies on two results proven in Section 4.2 below, but of course we will

not use it in obtaining these.

Proof. Since evB is fully faithful by Theorem 3.2.4, we only need to prove that it is essentially

surjective on objects, or equivalently, that the ordinary functor (evB)0 is an equivalence.

Thanks to Remark 4.2.2 and Proposition 4.2.7, applied to Reg(B,V) as a definable subcategory

of Lex(B,V), for each F ∈ Def(Reg(B,V),V) there are an object C ∈ B and a regular

epimorphism evB(C) � F ; hence we can apply the previous Lemma and conclude.
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Definable V-categories

4.1 Enriched Finite Injectivity Classes

We consider again categories enriched over a base V which is a symmetric monoidal finitary

quasivariety with strong generator P ⊆ Vpf .

The following is the corresponding enriched version of Definition 1.3.1:

Definition 4.1.1. Given an arrow h : A→ B in a V-category L, an object L ∈ L is said to

be h-injective if L(h, L) : L(B,L) → L(A,L) is a regular epimorphism in V . Given a small

setM of arrows from L writeM-inj for the full subcategory of L consisting of those objects

which are h-injective for each h ∈ M. V-categories arising in this way are called enriched

injectivity classes, or just injectivity classes if no confusion will arise. If L is locally finitely

presentable and the arrows in M have finitely presentable domain and codomain, we call

M-inj an enriched finite injectivity class.

Remark 4.1.2. Injectivity classes in the enriched context were first considered in [LR12].

In that setting a more general notion is introduced: regular epimorphisms are replaced by a

suitable class E of morphisms from V . This way an object L is called E-injective if L(h, L) ∈ E ,

and an E-injectivity class is a full subcategory of E-injective objects with respect to a small

set of morphisms.

It’s easy to see that, since V is locally projective, for each enriched injectivity class D the

underlying category D0 is an ordinary injectivity class: indeed, if D = M-inj in L, then

D0 =M0-inj in L0 where

M0 = {P · h | P ∈ P , h ∈M},
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this because L(h, S) is a regular epimorphism in V if and only if L0(P ·h, S) ∼= V0(P,L(h, S))

is surjective for each P ∈ P . In particular, the underlying ordinary category of each injectivity

classD of a locally finitely presentable L is accessible and accessibly embedded in L0 (Theorem

4.8 in [AR94]).

In the ordinary case each finite injectivity class is known to be closed under pure subobjects

inside its locally finitely presentable category; let us recall the definition.

Definition 4.1.3. Let f : X → Y be a morphism in a locally finitely presentable V-category

L. We say that f is pure if for each commutative square

A B

X Y

h

u v

f

with h : A→ B in Lf , there exists l : B → X such that l ◦ h = u.

Note that the notion of purity we are considering is the ordinary one; meaning that when-

ever we consider f pure in L, we are actually seeing it as a pure morphism in the underly-

ing category L0. Proposition 2.29 in [AR94] shows that each pure morphism is actually a

monomorphism, so that we can talk about pure subobjects.

Proposition 4.1.4. Each finite injectivity class D = M-inj of a locally finitely presentable

V-category L is closed under (small) products, projective powers, filtered colimits and pure

subobjects (meaning that if f : X → Y is pure and Y ∈ D then X ∈ D).

Proof. Given any arrow h ∈ M and L ∈ L0, we can see L(h, L) as an object of the category

of arrows V2
0 ; since the domain and codomain of h are finitely presentable, the hom-functor

L(h,−)0 : L0 → V2
0 preserves filtered colimits as well as products and projective powers (since

it preserves all limits). Note moreover that regular epimorphisms are stable in V under filtered

colimits, products, and projective powers (as we saw in Section 2.2). As a consequence, if

S = colimiSi is a filtered colimits of objects of D, then L(h, S) ∼= colimiL(h, Si) is a regular

epimorphism; hence S ∈ D. The same applies if S is a product or a projective power of

elements from D.

Now let f : X → Y be pure with Y ∈ D, and consider h ∈ M. By hypothesis L(h, Y ) is a

regular epimorphism; thus L0(P ·h, Y ) is surjective for each P ∈ P and then, since P ·h is still

a morphism with finitely presentable domain and codomain, purity implies that L0(P · h,X)

is surjective as well for each P ∈ P ; thus L(h,X) is a regular epimorphism and X ∈ D.
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In the ordinary case, closure under these constructions is enough to characterize finite

injectivity classes; indeed it is proven in Theorem 2.2 of [RAB02] that a full subcategory D of

a locally finitely presentable category L is a finite injectivity class if and only if it is closed in

L under products, filtered colimits and pure subobjects (powers are not necessary since they

are a special kind of products). We can obtain a similar result in this context.

Proposition 4.1.5. Let D be a full subcategory of a locally finitely presentable V-category L;

then D is a finite injectivity class of L if and only if it is closed in L under products, projective

powers, filtered colimits, and pure subobjects.

Proof. One side is given by the previous Proposition. For the other, assume that D is closed

in L under products, projective powers, filtered colimits, and pure subobjects. By Theorem

2.2 in [RAB02], D0 is an ordinary finite injectivity class in L0. Let M be the set of arrows

defining D as such; we prove that it also defines D as an enriched finite injectivity class of

L. Given S ∈ D, L0(h, S) is surjective for each h ∈ M; but D is closed under projective

powers, hence V0(P,L(h, S)) ∼= L0(h, SP ) is surjective for each P ∈ P ; thus L(h, S) is a

regular epimorphism and S ∈M-inj. Conversely, given S ∈M-inj, L0(h, S) = V0(I,L(h, S))

is surjective since I ∈ V0p, and as a consequence, S ∈ D.

Proposition 4.1.6. Each finite injectivity class D of a locally finitely presentable V-category

L is a weakly reflective subcategory of L (in the sense of Definition 1.3.4).

Proof. We saw at the beginning of this section that D0 is also an ordinary injectivity class

in L0; hence, by Theorem 1.3.3, it is an ordinary weakly reflective subcategory of L0. It’s

then enough to show that the weak reflections are actually enriched. Given an ordinary weak

reflection s : L→ S and T ∈ D, the function V0(P,L(s, T )) ∼= L0(s, T P ) is surjective for each

P ∈ P , since T P ∈ D (D is closed under projective powers in L). It follows then that L(s, T )

is a regular epimorphism and s is an enriched weak reflection.

4.2 Definable V-Categories

As we move on to the notion of definable V-category, we should point out that our definition

looks different from the usual one introduced in [Pre11] for V = Ab, and in [KR18] for

V = Set, for which a definable category is just a finite injectivity class.
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Definition 4.2.1. Call a V-category D definable if there is a locally finitely presentable V-

category L, with L0 coregular, for which D is an enriched finite injectivity class of L with

respect to a small set of regular monomorphisms. A morphism between definable V-categories

is a V-functor that preserves products, projective powers and filtered colimits. Denote by

V-Def the 2-category of definable V-categories, morphisms between them, and V-natural

transformations.

Remark 4.2.2. For any regular V-category C, the category Reg(C,V) is a definable subcategory

of Lex(C,V). Indeed, Lex(C,V) is coregular by Lemma 3.2.1; moreover, by Lemma 3.2.3,

Reg(C,V) = M-inj in Lex(C,V) where M := {C(h,−) | h regular epimorphism in C}. To

conclude it’s then enough to note that each C(h,−) in M is a regular monomorphism since

h is a regular epimorphism in C.

The notion of definable category we are considering lies somewhere between the ordinary

one, of finite injectivity class, and that of exactly-definable category. We call a V-category D

exactly-definable if D ' Reg(B,V) for an exact V-category B. Then the previous Remark

says that each exactly-definable V-category is definable, and hence a finite injectivity class.

If we take V to be Set or Ab, then we can prove (see Section 4.5) that each finite injectivity

class is conversely an exactly-definable category; showing that in the ordinary and additive

context the three notions coincide.

Remark 4.2.3. Note that each locally finitely presentable V-category is definable. Indeed, if

L is locally finitely presentable, then L ' Lex(C,V) for a finitely complete V-category C; thus

by Remark 3.1.3, L ' Reg(B,V) for some regular V-category B (this will also follow later

from Proposition 4.3.4). Hence L is definable by the previous Remark.

Proposition 4.2.4. Let D be a definable subcategory of L (which is thence a locally finitely

presentable V-category and L0 is coregular). Then D is weakly reflective in L and the weak

reflections can be chosen to be regular monomorphisms.

Proof. By definition D = M-inj for a small set M of regular monomorphisms in L. That

D is a weakly reflective subcategory of L follows from Proposition 4.1.6. The fact that the

weak reflections can be chosen to be regular monomorphisms follows from Theorem 1.3.3

since filtered colimits commute in L with finite limits (being locally finitely presentable) and

regular monomorphisms are pushout stable (L0 is coregular).
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Given any V-categories M and N with filtered colimits, products, and projective powers,

we can consider the full subcategory Def(M,N ) of [M,N ] consisting of those V-functors

that preserve filtered colimits, products, and powers with projective objects. IfM and N are

definable categories, this is just the hom-category Def(M,N ) in the 2-category V-Def .

In the remaining part of this section, we are going to see some properties about the V-

category Def(D,V) for a definable V-category D.

Lemma 4.2.5 (First part of 3.2.2 in [KR18] for V = Set). Let L be a locally finitely

presentable V-category and J : D ↪→ L an enriched finite injectivity class of L. Given

F ∈ Def(D,V), suppose that for each L ∈ D and x : I → FL there exist A ∈ Lf and

η : L(A, J−) → F such that x factors through ηL. Then there is a B ∈ Lf and a regular

epimorphism L(B, J−) � F .

Proof. Since D0 is an ordinary injectivity class, it is also an accessible category. Consider

then a regular cardinal λ such that D0 is λ-accessible, and denote by Dλ the full subcategory

of λ-presentable objects in D0. For each S ∈ Dλ take PS ∈ Vp and a regular epimorphism

x̄S : PS � FS which corresponds to an arrow xS : I → (FS)PS ∼= F (SPS).

Define Ŝ :=
∏

S∈Dλ S
PS with projection maps πS : Ŝ → SPS ; then Ŝ ∈ D and, since F

preserves products and projective powers, F (Ŝ) ∼=
∏

S∈Dλ F (S)PS . Consider then x : I → FŜ

with components xS : I → F (S)PS for each S ∈ Dλ. By our assumptions there exist A ∈ Lf
and a natural transformation η : L(A, J−)→ F such that x = ηŜ◦y for some y : I → L(A, Ŝ).

For each S ∈ Dλ we can consider the following diagram:

I

L(A, Ŝ) FŜ

L(A, SPS) F (SPS)

L(A, S)PS F (S)PS

y x

η
Ŝ

FπSL(A, πS)

η
(SPS )

∼= ∼=

(ηS)PS

Transposing the vertical arrows then we obtain maps ȳS : PS → L(A, S) such that the diagram

PS

L(A, S) FS

ȳS x̄S

ηS
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commutes.

Since x̄S is a regular epimorphism, ηS is a regular epimorphism too for each S ∈ Dλ (remember

that V0 is regular by Proposition 2.2.4), but Dλ generates D under λ-filtered colimits and

L(A, J−) and F preserve them; then ηT is a regular epimorphism for each T in D. Since

regular epimorphisms in Def(D,V) are computed pointwise, it follows that η is a regular

epimorphism as desired.

Lemma 4.2.6. Let L be a locally finitely presentable V-category with L0 coregular, and D

a definable subcategory of L; denote by J : D ↪→ L be the inclusion. Then for any functor

F : D → V preserving filtered colimits, the right Kan extension RanJF : L → V preserves

filtered colimits too.

Proof. First we prove that RanJF preserves some particular limits. For each L ∈ L there

is a weak reflection s : L � S, with S ∈ D, which by Proposition 4.2.4 can be chosen

to be a regular monomorphism. Consider then the cokernel pair u, v : S → M of s and

a weak reflection t : M � T associated to M (which again we suppose to be a regular

monomorphism):

L S M T
s u

v

t

Then t◦u and t◦ v define L as an equalizer of elements from D; call this a presentation for L.

We are going to prove that these presentations are J-absolute, in the sense that they are sent

to coequalizers by L(−, R) for each R ∈ D. For, given R ∈ D, consider the induced diagram

L(T,R) L(M,R) L(S,R) L(L,R).
L(t, R) L(u,R)

L(v,R)

L(s,R)

Then L(t, R) and L(s, R) are regular epimorphisms since t and s are weak reflections; while

L(u,R) and L(v,R) form the kernel pair of L(s, R) since L(−, R) transforms colimits into

limits. As a consequence L(s, R) is the coequalizer of L(t ◦ u,R) and L(t ◦ v,R) as desired.

It follows then that the presentations we are considering are actually codensity presentations,

and hence by Theorem 5.29 of [Kel82a], RanJF preserves those limits. In particular, since

moreover RanJF ◦ J ∼= F , the object RanJF (L) is defined as the equalizer

RanJF (L) F (S) F (T )
F (t ◦ u)

F (t ◦ v)
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To prove that RanJF preserves filtered colimits it is enough to show, by Proposition 2.1.2,

that it preserves colimits of smooth chains: diagrams (Lβ)β<α indexed by an ordinal α, such

that for each limit λ < α, Lλ = colimβ<λLβ.

Consider hence a smooth chain (Lβ)β<α in L with connecting maps dβ,γ : Lβ → Lγ; for each

β < α we define by transfinite induction a presentation

Lβ Sβ Mβ Tβ
sβ

uβ

vβ

tβ

for Lβ, and smooth chains of such presentations compatibly with (Lβ)β<α; meaning that for

each β < γ < α we define a commutative diagram:

Lβ Sβ Mβ Tβ

Lγ Sγ Mγ Tγ

dβ,γ eβ,γ fβ,γ gβ,γ

If β = 0 any presentation for L0 is fine. Suppose now that everything is defined at level

β < α, then we define a presentation for Lβ+1 and the connecting maps

Lβ Sβ Mβ Tβ

Lβ+1 Sβ+1 Mβ+1 Tβ+1

sβ
uβ

vβ

tβ

sβ+1

uβ+1

vβ+1 tβ+1

dβ,β+1 eβ,β+1 fβ,β+1 gβ,β+1

as follows: take the pushout S̃β+1 of sβ and dβ,β+1 and call the two induced maps s̃β+1 :

Lβ+1 � S̃β+1 and ẽβ,β+1 : Sβ → S̃β+1, where s̃β+1 is a regular monomorphism because L0 is

coregular. Consider now a weak reflection rβ+1 : S̃β+1 � Sβ+1; it’s then enough to consider

sβ+1 := rβ+1 ◦ s̃β+1, which is still a weak reflection and a regular monomorphism (using

projective powers each ordinary weak reflection is an enriched one), and eβ,β+1 := rβ+1◦ẽβ,β+1.

We define (uβ+1, vβ+1) as the cokernel pair of sβ+1, while fβ,β+1 is induced by the universal

property of uβ and vβ. Finally define tβ+1 and gβ,β+1 as in the first step. This gives a

presentation for Lβ+1 which is compatible with the chain already defined.

If λ < α is a limit ordinal, we take as presentation associated to Lλ the one obtained as

the colimit of the presentations defined so far, in other words we consider xλ := colimβ<λ(xβ)

for x = s, u, v, t. It’s easy to check that sλ and tλ are still weak reflections: given an arrow

f : Lλ → T , define by induction compatible arrows f̃β : Sβ → T , for β < λ, such that

f ◦ dβ,λ = f̃β ◦ sβ; then the colimit of the f̃β induces a factorization of f through sλ. This
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proves that sλ is an ordinary weak reflection and hence, using projective powers, an enriched

one (the same applies for tλ). As a consequence, since in addition regular monomorphisms

and cokernel pairs commute with filtered colimits, the one just defined is a presentation for

Lλ. Moreover, by construction, the colimit cocones induce maps eβ,λ, fβ,λ and gβ,λ which are

compatible with the chains defined so far.

We can then consider the colimit of these chains:

colimβ<α(Lβ) colimβ<α(Sβ) colimβ<α(Mβ) colimβ<α(Tβ)
s u

v

t

By the previous arguments this is a presentation for colimβ<α(Lβ); hence it is preserved by

RanJF , which means that the following is an equalizer

RanJF (colimβ<αLβ) F (colimβ<αSβ) F (colimβ<αTβ)
F (t ◦ u)

F (t ◦ v)

Similarly each RanJF (Lβ) is given by the equalizer

RanJF (Lβ) F (Sβ) F (Tβ)
F (tβ ◦ uβ)

F (tβ ◦ vβ)

In conclusion, since F preserves filtered colimits and equalizers commute with them, the

following isomorphisms hold

RanJF (colimβ<αLβ) ∼= eq(F (t ◦ u), F (t ◦ v))

∼= eq(colimβ<αF (tβ ◦ uβ), colimβ<αF (tβ ◦ vβ))

∼= colimβ<α(eq(F (tβ ◦ uβ), F (tβ ◦ vβ)))

∼= colimβ<αRanJF (Lβ)

as desired.

By Proposition 4.2.4 and Theorem 1.3.5, each definable category J : D ↪→ L is a codense

subcategory of L, in other words the functor L(1, J) : Lop → [D,V ] is fully faithful. Hence

we can consider the full and faithful functor

YD : Lopf → Def(D,V)

defined as the composite of the inclusion Lopf ↪→ Lop and L(1, J); explicitly, this sends A ∈ Lopf
to L(A, J−) : D → V . Then the following holds:
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Proposition 4.2.7. Let D be a definable V-category; for each F ∈ Def(D,V) there exist

A,B ∈ Lf and maps f, g : B → A such that F is the coequalizer of YD(f), YD(g):

L(A, J−) L(B, J−) F
L(f, J−)

L(g, J−)

In particular Def(D,V) is a small V-category.

Proof. Let us first prove that the hypotheses of Lemma 4.2.5 are satisfied. For this, consider

F ∈ Def(D,V), L ∈ L, and x : I → FL, and write L as a filtered colimit of finitely presentable

objects L ∼= colim(Aj). By the previous Lemma, G := RanJF preserves filtered colimits, then

GL ∼= colim G(Aj). Since I is finitely presentable in V , x factors through some colimit map

G(Aj)→ GL; but G(Aj) ∼= [L,V ](L(Aj,−), G), hence the factorization corresponds to some

η : L(Aj,−)→ G. Its restriction ηJ : L(Aj, J−)→ F then satisfies the required property.

Now, thanks to Lemma 4.2.5, for each F ∈ Def(D,V) there exists a regular epimorphism

η : L(B, J−) � F with B ∈ Lf ; take then the kernel pair α, β : F ′ → L(B, J−) of η.

Considering again a regular epimorphism γ : L(A, J−) � F ′ (A ∈ Lf ) and composing it

with α and β we obtain F as the coequalizer of restricted representables. Finally, the maps

defining F as a coequalizer come from Lf since the functor YD : Lopf → Def(D,V) is full.

The same result holds for any locally finitely presentable V-category, even if it is not coreg-

ular:

Proposition 4.2.8. Let L be a locally finitely presentable V-category and YL : Lopf →

Def(L,V) as before. For each F ∈ Def(L,V) there exist A,B ∈ Lf and maps f, g : B → A

such that F is the coequalizer of YL(f), YL(g):

L(A, J−) L(B, J−) F
L(f, J−)

L(g, J−)

In particular Def(L,V) is a small V-category.

Proof. The same proof of the previous Proposition applies, with the only difference that there

is no need to consider the right Kan extension of F .

Remark 4.2.9. The coequalizers defined in the previous proofs are preserved by regular func-

tors since they are given by the composite of a coequalizer of a kernel pair and a regular

epimorphism.
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4.3 Duality for Enriched Exact Categories

Let us consider again categories enriched over a base V which is a symmetric monoidal finitary

quasivariety with strong generator P ⊆ Vpf .

We proved in Proposition 4.2.7 that, for a definable D, the category Def(D,V) is small; since

V is regular as a V-category, Def(D,V) is a regular V-category too (being closed in [D,V ] under

finite limits and coequalizers of kernel pairs). Moreover, given any regular category B, regular

functors from B to V form a definable category Reg(B,V) of Lex(B,V) (as shown in Remark

4.2.2). As a consequence, if we denote by V-Reg the 2-category of small regular V-categories,

regular V-functors, and V-natural transformations, we obtain an adjunction

V-Def V-Regop⊥
Def(−,V)

Reg(−,V)

of 2-categories. Indeed for each regular C and each definable category D the following holds

V-Def(D,Reg(C,V)) ∼= V-Reg(C,Def(D,V))

since a functor D → Reg(C,V) is definable if and only if the corresponding functor D⊗C → V

is definable on the first variable and regular on the second, if and only if the induced functor

C → [D,V ] is regular and takes values in Def(D,V).

The counit and unit of this adjunction are given by the evaluation functors:

evC : C → Def(Reg(C,V),V)

for a regular C, and

evD : D → Reg(Def(D,V),V)

for a definable D. We already saw in Theorems 3.2.4 and 3.3.4 that the counit is a fully

faithful functor, and an equivalence if the category is moreover exact. In the next passages

we are going to show that the unit is always an equivalence.

Fix a definable subcategory D of L and consider the regular functor Q : Def(L,V) →

Def(D,V) given by precomposition with the inclusion J : D ↪→ L. Remember also that we

have defined (just before Proposition 4.2.7) the two fully faithful functors YL and YD such

that the following
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Lopf

Def(D,V)

Def(L,V)

YD

YL

Q

commutes.

Lemma 4.3.1. Let f ∈ Def(D,V) be fixed; consider the category Cf whose objects are of the

form

YDa g YDb f
w x

y

z

with a, b ∈ Lf , w and z are regular epimorphisms, and (x, y) is the kernel pair of z. Morphisms

between such objects are commutative diagrams:

YDa g YDb

f

YDa
′ g′ YDb

′

Then Cf is connected, in the sense that it is non-empty and given any two objects in Cf there

is a zigzag of arrows connecting them.

Proof. That Cf is not empty follows by Proposition 4.2.7. Before proceeding note that given

a cospan g
x
� f

y← h in Def(D,V) with x a regular epimorphism, we can always complete it

to a square

YDa h

g f

x′

y

x

with a in Lf and x′ a regular epimorphism. Indeed it’s enough to take the pullback l of (x, y)

and then a regular epimorphism YDa� l as in Proposition 4.2.7.

Consider now two different objects of Cf

YDai gi YDbi f
wi

xi

yi

zi

for i = 1, 2, and construct the following diagram:
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YDa1 g1 YDb1 f

YDa2

g2

YDb2YDb11

g22

YDb33

YDa32

YDa23

(1)

(2)

(3)(4)

w1

x1

y1
z1

w2

x2y2

z2z12

z21

x22

y22

Square (1) is built as explained at the beginning of the proof; the pair (x22, y22) is defined as

the kernel pair of z1◦z12 (or, which is the same, of z2◦z21). The horizontal and vertical arrows

from g22 are given by the universal property of the kernel pair, while the squares (2), (3), and

(4) are obtained with the same argument as (1). To conclude, it’s then easy to check that the

diagonal of this diagram is an object of Cf and, together with the remaining horizontal and

vertical arrows, gives a zigzag of length 2 between the two fixed objects of Cf .

Lemma 4.3.2. The functor

Reg(Def(D,V),V) ↪→ Lex(Def(D,V),V)
−◦YD−→ Lex(Lopf ,V)

is fully faithful. The same holds for any locally finitely presentable V-category L′ in place of

D, with respect to YL′ : (L′f )op → Def(L′,V).

Proof. Call that functor (−◦YD)′; since P ⊆ V is a strong generator, it’s enough to prove that

V0(P, (− ◦ YD)′F,G) is a isomorphism of sets for each P ∈ P and F,G ∈ Reg(Def(D,V),V).

Now, D̃ := Reg(Def(D,V),V) and L̃ = Lex(Lopf ,V) are definable, hence they have powers

with elements of P and (− ◦ YD)′ preserves them; therefore

V0(P, (− ◦ YD)′F,G) ∼= V0(I, (− ◦ YD)′F,GP ) : D̃0(F,GP )→ L̃0(F ◦ YD, GP ◦ YD).

But V0(I, (− ◦ YD)′F,GP ) is the action of the ordinary functor (− ◦ YD)′0 on morphisms; as a

consequence, if the ordinary functor (− ◦ YD)′0 is fully faithful, V0(P, (− ◦ YD)′F,G) will be an

isomorphism for each P ∈ P , and hence (− ◦ YD)′ will be fully faithful. In conclusion, it’s

enough to show that (− ◦ YD)′0 is fully faithful.
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To prove faithfulness, take η, γ : F → G such that ηYD = γYD. For any f ∈ Def(D,V) there

is a regular epimorphism q : YDa� f with a ∈ Lf ; consider then the square:

FYDa GYDa

Ff Gf

ηYDa

γYDa

ηf

γf

Fq Gq

Now, since ηYDa = γYDa by hypothesis, and Fq is a regular epimorphism (F being a regular

functor), it follows that ηf = γf , and so that η = γ.

It remains to prove fullness; given η : FYD → GYD in Reg(Def(L,V),V), we define γ : F → G

such that γYD = η as follows: for each f ∈ Def(D,V) consider a presentation in Cf

YDa YDb f
YDx

YDy

where we are discarding the middle term since it is not needed now. Then, since F and G

are regular functors, we obtain a diagram

GYDa GYDb Gf

FYDa FYDb Ff

ηa ηb ∃! γf

in which the rows are coequalizers and so there is a unique γf : Ff → Gf making the right

square commute. This defines γ : F → G; it’s easy to see that γYD = η; hence we only need

to prove that γ is well defined and V-natural.

Given f ∈ Def(D,V) and two different presentations, if there is a morphism in Cf between

them, then the universal property of the coequalizer implies that the induced γf is the same

for both presentations. In general this follows since, by the previous Lemma, Cf is connected.

To prove V-naturality, first note that since F and G (being regular functors) preserve powers

with finitely presentable objects, it’s enough to show that the γ just defined is natural in the

ordinary sense. Consider hence x : f → g in Def(D,V) and fix a presentation

YDa YDb g

for g; arguing as in the previous Lemma, we can build a presentation for f and a diagram



4.3 Duality for Enriched Exact Categories 43

YDa
′ YDb

′ f

YDa YDb g

x

Now, since YD is fully faithful, the two vertical arrows on the left come from Lopf . As a

consequence, applying F,G and η : FYD → GYD to that diagram, we find a commutative

square expressing the naturality of γ at x : f → g.

The last assertion regarding a locally finitely presentable V-category L′, follows with exactly

the same proof since, thanks to Proposition 4.2.8, the previous Lemma still holds if we replace

D with L′.

Corollary 4.3.3. The functor

− ◦Q : Reg(Def(D,V),V) −→ Reg(Def(L,V),V)

is fully faithful.

Proof. The functors (− ◦ YD)′ and (− ◦ YL)′ are fully faithful by the previous Lemma, and

(− ◦ YL)′ ◦ (− ◦Q) = (− ◦ YD)′. It follows then that (− ◦Q) is fully faithful.

Proposition 4.3.4. For each locally finitely presentable category L the following is an equiv-

alence:

evL : L −→ Reg(Def(L,V),V).

Proof. Write L ' Lex(C,V) where the category C = Lopf is finitely complete, and consider

the evaluation functor ev : C → Def(L,V) (which can also be seen as YL). Then we define

R : Reg(Def(L,V),V) −→ L as the composite

Reg(Def(L,V),V) ↪→ Lex(Def(L,V),V)
−◦ev−→ Lex(C,V);

this is fully faithful by Lemma 4.3.2. In the other direction, we consider the evaluation map

L := evL : L −→ Reg(Def(L,V),V) as suggested. Take f ∈ L ∼= Lex(C,V) and C ∈ C, then

RLf(C) = (Lf ◦ ev)(C) = Lf(ev(C)) = ev(C)(f) = f(C).

Similarly for each morphism η in L, RLη = η; as a consequence V0(I, (RL)fg) = V0(I, id) for

each f, g ∈ L. Since both R and L preserve powers from P , this implies that V0(P, (RL)fg) ∼=
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V0(P, id) for each P ∈ P ; but P is a strong generator, then (RL)fg ∼= id, and hence RL ∼= id.

As a consequence R is also essentially surjective; therefore R is an equivalence and L its

inverse.

It remains only to prove the equivalence for each definable category D:

Proposition 4.3.5. If D is a definable V-category, then the evaluation map

evD : D −→ Reg(Def(D,V),V)

is an equivalence.

Proof. D is a definable subcategory of some locally finitely presentable L; denote by J the

inclusion. We can hence consider the commutative square:

D Reg(Def(D,V),V)

L Reg(Def(L,V),V)

evD

− ◦QJ

'
evL

where Q : Def(L,V)→ Def(D,V) is the restriction along J , and we already know that evL is

an equivalence. It follows that evD is fully faithful since J , evL, and − ◦Q are; therefore we

only need to prove that evD is essentially surjective.

Consider a regular functor F : Def(D,V) → V , then F ◦ Q ∼= evL(L) some L ∈ L. It’s

enough to prove that L ∈ D, this would imply evD(L) ◦ Q ∼= evL(L) ∼= F ◦ Q and hence, by

Corollary 4.3.3, F ∼= evD(L). Consider then a collection M of morphisms from Lf such that

D =M-inj. For each (h : A→ B) ∈ M, since A and B are finitely presentable L(A,−) and

L(B,−) are in Def(L,V); moreover Q(L(h,−)) is a regular epimorphism in Def(D,V) since

Q(L(h,−))(D) = L(h,D) is for each D ∈ D. But F is a regular functor, thus F ◦Q(L(h,−))

is still a regular epimorphism. As a consequence L(h, L) = evL(L)(L(h,−)) ∼= F ◦Q(L(h,−))

is a regular epimorphism for each h ∈M, and L is in D.

Now assume that our base for enrichment V is a symmetric monoidal finitary variety; then

V0 is an exact category and V is exact as a V-category. As a consequence Def(D,V) is an

exact V-category for each definable D; hence the 2-adjunction between V-Def and V-Reg

restricts to
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V-Def V-Exop⊥
Def(−,V)

Reg(−,V)

where V-Ex is the 2-category of all small exact V-categories, regular V-functors, and V-natural

transformations. By Theorem 3.3.4 the counit of this adjunction is an equivalence; the same

holds for the unit by the previous results. Thence we have proven:

Theorem 4.3.6. Let V be a symmetric monoidal finitary variety. Then the 2-adjunction

Def(−,V) : V-Def V-Exop : Reg(−,V)

is a biequivalence.

This duality was first shown for the additive case in Theorem 2.3 of [PR10], while the

ordinary version appeared more recently in Theorem 3.2.5 of [KR18]. We should mention

that the proof of Proposition 3.2.2 from [KR18] contains an unjustified isomorphism which

affects the proof of the duality; our Theorem 4.3.6, together with the results in Section 4.5,

provides a solution for this.

4.4 Free Exact V-Categories

Consider again V to be a symmetric monoidal finitary variety as in the last part of the previous

section. We are going to use Theorem 4.3.6 to find the free exact categories associated to

finitely complete and regular ones.

In the ordinary context, exact completions over regular categories were first considered in

[Law73]; while regular and exact completions over finitely complete categories have been dealt

with in [CCM82] and [CV98]. A different, but equivalent, description of them has been given

in [Hu96] and [HT96], where exact completions are built as certain categories of functors

preserving determined limits and colimits.

Proposition 4.4.1. Let C be a finitely complete V-category and define L = Lex(C,V). Then

for each exact V-category B, precomposition with ev : C → Def(L,V) induces an equivalence:

Reg(Def(L,V),B) ' Lex(C,B).

In other words Def(L,V) is the free exact V-category over C as a V-category with finite limits.



4.4 Free Exact V-Categories 46

Proof. By Proposition 4.3.4, the equivalence holds for B = V and hence for all functor cate-

gories [A,V ]. Let now B be any exact category; by Theorem 3.2.4 we can assume that B is

a full subcategory of some [R,V ] with the inclusion H : B → [R,V ] a regular functor. Since

the equivalence holds for [R,V ] we can consider the commutative square

Reg(Def(L,V),B) Lex(C,B)

Reg(Def(L,V), [R,V ]) Lex(C, [R,V ])

− ◦ ev

H ◦ −H ◦ −

'
− ◦ ev

in which the bottom arrow is invertible and the vertical ones fully faithful.

Thus the upper horizontal is fully faithful, and it is enough to prove that, given F ∈ Lex(C,B),

the induced extension of HF to Def(L,V) takes values in B. Let G be the mentioned extension

of HF , then we can consider the diagram

C B

Def(L,V) [R,V ]

F

Hev

G

The commutativity of this square (up to isomorphism) says that G restricted to the evaluation

functors ev(C), for C ∈ C, takes values in B. Given any other M ∈ Def(L,V) we can write it

as a coequalizer:

ev(C) N ev(D) M
γ α

β

η

where (α, β) is the kernel pair of η and, since ev if fully faithful, α◦γ = ev(u) and β◦γ = ev(v)

for some u, v : C → D in C. Since G preserves finite limits and coequalizers of kernels pair,

the image of the previous diagram through G leads to

FC GN FD GM
Gγ Gα

Gβ

Gη

where Gα,Gβ : GN → FD form the kernel pair of Gη. Since [R,V ] is regular, GN and

(Gα,Gβ) are given by the image factorization of (Fu, Fv) : FC → FD×FD and hence GN

is actually in B and Gα and Gβ exist as arrows of B. Moreover, being a kernel pair (in [R,V ])

the pair (Gα,Gβ) is an equivalence relation. But B is exact and hence all equivalence relations

are effective; this means that Gα and Gβ have a coequalizer in B which hence coincides with
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GM . As a consequence G takes values in B as claimed.

This says that the left biadjoint to the forgetful functor Uex/lex : V-Ex → V-Lex is given

by the composite

V-Lex V-Lfpop V-Defop V-Ex
Lex(−,V) Ulfp/def Def(−,V)

where Ulfp/def : V-Lfp → V-Def is the forgetful functor. Since the first and the last are

actually biequivalences, it follows that Ulfp/def has a left biadjoint too, which is given by

V-Def V-Exop V-Lexop V-Lfp.
Def(−,V) Uex/lex Lex(−,V)

The next Proposition gives an explicit description of the free exact V-category on a regular

one:

Proposition 4.4.2. Let C be a regular V-category and define R = Reg(C,V). Then for each

exact V-category B, precomposition with ev : C → Def(R,V) induces an equivalence:

Reg(C,B) ' Reg(Def(R,V),B).

In other words Def(R,V) is the free exact V-category over C as a regular V-category.

Proof. Note that R is a definable subcategory of Lex(C,V), hence by Theorem 4.3.6, the

equivalence

Reg(C,V) = R ' Reg(Def(R,V),V)

holds and is induced by the evaluation map. Arguing as in the preceding proof we obtain the

equivalence for any exact B in place of V .

As before, this says that the left biadjoint to the forgetful functor Uex/reg : V-Ex→ V-Reg

is given by the composite

V-Reg V-Defop V-Ex.
Reg(−,V) Def(−,V)
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4.5 The Ordinary Case

In this last section we give an equivalent characterization of definable categories in the ordinary

case, showing how things get easier in this context.

Recall the definition of regular congruence from [Ben89]:

Definition 4.5.1. Let C be a regular category. A regular congruence on C is a class Σ of

maps of C satisfying:

� every isomorphism belongs to Σ;

� if f = h ◦ g and two of the three maps are in Σ, so is the third;

� Σ is pullback stable: for any pullback in C

X ′ X

Y Y ′

g′

f ′ f

g

if f ∈ Σ, then f ′ ∈ Σ;

� Σ is local: for any pullback in C as above, for which f is a regular epimorphism, if g′ ∈ Σ

then g ∈ Σ.

The following Lemma states the existence of categories of fractions (for regular congruences)

in the 2-category Reg:

Lemma 4.5.2 (1.7.3 and 2.2.3 of [Ben89]). Let C be a regular category and Σ a regular

congruence on C. There exists a regular category C[Σ−1] and a regular functor PΣ : C → C[Σ−1]

such that:

� a functor F : C → B factors uniquely through PΣ as F = FΣ◦PΣ if and only if F inverts

the elements of Σ;

� FΣ is a regular functor if and only if F is.

Next we can proceed with the characterization of definable categories in the ordinary con-

text.

Proposition 4.5.3. Let D be a category; the following are equivalent:

1. D is definable in the sense of Definition 4.2.1.
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2. D is a finite injectivity class in some locally finitely presentable category L;

3. D is exactly definable: there exists an exact category B such that D ' Reg(B,Set).

Proof. (1)⇒ (2) follows by definition and (3)⇔ (1) is Theorem 4.3.6; hence it suffices to prove

(2) ⇒ (3). Let then D = M-inj be a finite injectivity class in a locally finitely presentable

category L. Write L as Lex(C,Set) where C = Lopf ; thenM can be identified with a collection

of morphisms from C, and D coincides with the full subcategory of Lex(C,Set) given by those

functors that send each h ∈ M to an epimorphism. Consider now C ′ = Creg/lex to be the free

regular category over C; it follows that Lex(C,Set) ' Reg(C ′,Set). Under this equivalence

M corresponds to a small set of arrows in C ′, and D to the full subcategory of Reg(C ′,Set)

given by those regular functors that send each h ∈ M to an epimorphism. For each h ∈ M

take its image factorization h = mh ◦ eh in C ′, where eh is a regular epimorphism and mh a

monomorphism; then a regular functor F : C ′ → Set sends h to a regular epimorphism in

Set if and only if it sends mh to an isomorphism. Thus, defining N = { mh | h ∈ M }, D

corresponds to the full subcategory of Reg(C ′,Set) given by those regular functors that invert

the maps in N . Let now Σ be the saturation of N with respect to D:

Σ := {f ∈ C ′ | F (f) is invertible for each F ∈ D} ⊇ N ,

where we are seeing D in Reg(C ′,Set) as above. It’s easy to check that Σ is a regular

congruence in C ′; hence by the previous Lemma, C ′′ := C ′[Σ−1] exists and by construction

D ' Reg(C ′′,Set). Finally take B to be the free exact category over C ′′, then D ' Reg(B,Set)

as desired.

Remark 4.5.4. Assuming this result it’s easy to prove the duality

Def(−,Set) : Def Exop : Reg(−,Set).

Indeed the 2-functor Reg(−,Set) is essentially surjective by the previous Proposition, and

(bi)fully faithful since the unit of the adjunction is an equivalence (Theorem 3.3.4). It then

follows that Reg(−,Set) is a biequivalence of 2-categories.

Let us also note that Lemma 4.5.2 has an additive version (corollary 2.6.2 in [Ben89]),

saying that if C is abelian and Σ a regular congruence on C then C[Σ−1] is abelian too. It

follows that the same arguments apply to the additive context, retrieving the characterization

of definable categories given in [Pre11].
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Future Directions

There are several ways we could continue this project:

� We strongly believe that the same argument used for V = Set in Section 4.5 works also

for a general V ; so that one could consider a definable V-category to be just a finite

injectivity class in a locally finitely presentable V-category. The only thing left to prove

would be the analogue of Lemma 4.5.2 for regular V-categories.

� Another possible generalization would be to give an infinitary version of each of the

obtained results; replacing everywhere “finite” with “less than λ” for a fixed regular

cardinal λ. In this context V would be a λ-(quasi)variety, and the notions of regularity

and exactness would be replaced by some notions of λ-regularity and λ-exactness (that

should be compared to those appearing in [Mak90]). Similarly, λ-definable categories

would be λ-injectivity classes in some locally λ-presentable V-category.

� In the ordinary and the additive context the notion of definable category is strictly

related to logic and model theory. In fact, a category D is definable if and only if there

exists a regular logical theory T whose category of models Mod(T) is equivalent to D. It

would be interesting to recover this equivalence in our context too, introducing suitable

notions of Logical Theories and Models for enriched categories.

� In this thesis we saw two different dualities, one involving finitely complete V-categories

(Theorem 2.1.9) and the other about exact V-categories (Theorem 4.3.6). In the or-

dinary context a further step has been made; Makkai in [Mak87] moved from exact

categories to the 2-category of pretoposes, proving a new duality. One could then ask

if this has a corresponding enriched version.

� As suggested by the examiners, it would be interesting to find more examples of sym-

metric monoidal finitary quasivarieties, and in these new cases to spell out in detail how

the enriched notions actually differ from the ordinary ones.
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