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Abstract

Abstract

Transport is expected to become electrified in coming decades, bringing new challenges and
opportunities for commuters and electricity distributors. This thesis presents analysis of Household
Travel Survey (2014/15) and Journey to Work (2011) census datasets from the New South Wales
(NSW) with the aim of;

(1) investigating whether electric vehicles (EVs) could meet the daily commuting needs, and
(i) quantifying the potential impact of EVs on the electricity distribution grid as a function of

location and time.

It was found that 87% of commuter vehicle trips could be provided using affordable EVs and that the
resulting electricity demand would increase by more than 10% in only 9 out of 35 local government
areas (LGAs) in NSW, Australia. We also quantified the potential spatiotemporal electric energy

available for vehicle-to-grid services.

It was found that greenhouse gas emissions across NSW would reduce by 26% COz(q) even if all EVs
were recharged from non-renewable coal-fired power plants, due to greater efficiency of EVs. The
results demonstrated the potential for wide-scale adoption of EVs in Australia. Lastly, to facilitate
analysis and prediction of key variables, the travel data was modelled using regression trees (RTs) and

artificial neural networks (ANNSs).
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Chapter-1 Introduction

Chapter 1

Introduction

1.1 Background

It is expected that transport will become electrified in coming decades, bringing new benefits,
challenges and opportunities [1]. Global sales of EVs increased by 70% in 2015 compared to 2014,
with over half a million EVs being sold worldwide in 2015. EVs stock has been growing since 2010.
Seven countries have reached over 1% EVs market share in 2015. The national EV sales are forecast
to reach 276,800 vehicles per annum by 2036 Fig. 1.1-1. As a result, total vehicles on the road are
forecasted to reach over 2.85 million by 2036 [2]. These growth trends are expected to be supported
by declining trends in battery prices, increasing battery energy densities and the increasing viability

of home-storage and charging options [3].

30%
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Fig. 1.1-1. EV Uptake by Region [2]
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In this thesis, we show that the introduction of electric vehicles (EVs) will be beneficial for both, the
environment and the individuals. As EVs displace internal combustion engine vehicles (ICEVs), the
expected benefits of electrification include reduction in GHG emissions, decrease in fuel oil
consumption, lower operation & maintenance costs, and opportunities to use the associated battery
energy storage systems (BESSs) for participation in an energy market through V2X (here ‘V’ refers

to vehicle and ‘X’ refers to grid, infrastructure, another vehicle, etc.) energy transfers [1].

Range anxiety is usually assumed to be one of the main factors hindering the uptake of EVs [4]. Other
than up-front costs, the other potential concerns are lack of infrastructure and the impact of EVs on
the electricity distribution system [1]. However, analysis of real travel data shows that such concerns
are largely unfounded for most vehicle commutes within cities, provided the EVs are recharged
nightly. For example, a study of commutes across the United States (US) estimated that 87% of
vehicle-days could be provided by existing affordable EVs [5].

We have analyzed two different sources of datasets (i.e. NSW Household Travel Survey data
(2014/15) [6, 7] and Journey to Work (2011) Census data [8]) for four diverse regions at different
scales depicting similar results, also the results were similar to a study conducted for major states
across US [5]. Our analysis showed that majority of the vehicle commutes in the State of NSW could
be provided by affordable EVs. We have estimated the potential impact of EVs on the electricity
distribution grid in terms of anticipated rise in electric energy demand during different times of the
day. The average SOC distribution of the EVs at key times during the day was also mapped within
the resolution of the available data. Considering the importance of the spatiotemporal availability of
EVs we have developed and compared two models for predicting location wise availability of EVs
during different times of the day. Additionally, we have also estimated the possible reduction in GHG

emissions due to the greater efficiency of EVs relative to ICEVs.

1.2 Literature Review

Electric vehicles are emerging as a promising solution for better environment accompanied by various
challenges and opportunities. In recent years, research around the globe was done to monitor and
analyse various sources of vehicle travel data to identify driving patterns and travel needs, so that
feasibility for EV adoption could be evaluated. Studies were conducted based on the travel surveys
to analyse the driving patterns to obtain detailed driving requirements and charging/discharging

availability of EVs [9, 10]. These studies mainly focused on availability and unavailability of EVs
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for power grid integration during different times of the day, without evaluating the potential impact
of EV recharging on the power grid. Another study analysed vehicle data from GPS devices installed
in 76 representative vehicles to predict load profiles and determine driving & parking patterns [11].
Although the data was collected from practical sources but it was very limited to represent the

population. Also, the potential impact on the existing power grid was not evaluated.

Charging behaviour of EVs would play an important role in determining the spatiotemporal load
profiles and opportunities for V2X operations. An analysis on charging patterns in Western Australia
show that 55% of the charging events occur at business and home locations, while only 33% of EV
charging was carried out at charging stations [12]. The analysis indicated the occurrence of the

charging events but did not evaluate the impact on the power grid.

One of the expected challenges after the adoption of EVs would be the increase in electric energy
demand along with spatiotemporal dynamics of moving EVs [13]. Research has been conducted to
model the spatiotemporal electric energy demand of EVs [14-17]. This was analysed based on
simulations, not using the real data. and the impact on the power grid was also not evaluated. A
research analysed the impact of EV charging on voltage levels and not on the existing network
capacity [18]. Another challenge with the adoption of EVs would be the dynamic behaviour of the
load and/or energy source. Prediction of spatiotemporal availability of EVs with their SOC is very
important for effective management of power distribution. Research has been conducted to forecast
the spatiotemporal availability, charging demand, respective load profiles and peak shaving potential
of EVs [19-26]. However, the impact on existing power grid was not analysed using real travel data.
Research has also been done to model stochastic mobility and the plug-in probability of a fleet of EV's
[27]. The issue of impact on the power grid due to additional load of EV recharging has been analysed
by most researchers but due to lack of available data for EV recharging and driving patterns, different
approaches were used to analyse the issue. Very little research has used the household travel survey

data to identify increased demand in potential problem areas.

One of the aspects of EVs as moving loads in the power system is when a vehicle is charged at a
weaker node of the network and may lead to adverse impacts [28]. The research explored one of the
network constraints (i.e.; minimum required voltage) at the distribution level and demonstrated that
the physical locations of the individual load in the network play a significant role in determining
voltage stability throughout the network. The analysis showed that the addition of a single load at a

weaker point of the network could have an equivalent impact as considerably greater number of loads
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added to stronger locations of the network. This research focused on the after effects of spatiotemporal
recharging of EVs on the power distribution network using a small network. The research did not

present methodology to identify regions with potential high electric energy demand.

Widespread adoption of EVs is anticipated in Australia over the next 30 years. Research has been
done to project spatial uptake of EVs and forecast market share of EV’s, PHEV’s, HEV’s and ICEV’s
[29]. This study anticipated the spatial uptake of EVs and demonstrated the potential rise in
spatiotemporal electric energy demand in the state of Victoria. The analysis and modelling were based
on census data. It did not identify specific regions which were vulnerable to an excess rise in electric
energy demand. On the other hand, research has also been done to address policy & infrastructure

issues and encourage the uptake of EVs [30].

EVs compared to ICEVs are not available on roads in good numbers for real-time data analysis. Due
to limitations of available data for precise analysis on EV driving and charging patterns, an effort was
done to create a test dataset for Plug-in Hybrid Electric Vehicle (PHEV) based on 536 GPS-equipped
taxi vehicles [31]. The research also identified the possibilities for vehicle-to-grid opportunities. Since
the dataset was very limited in numbers, therefore the sample size could not be considered

representative of the population.

Much research has been done to analyze the impact of EVs on the power grid, the spatiotemporal
uptake of EVs and predicting the availability of EVs for recharging. There are still gaps in the existing
research mainly due to unavailability of the adequate dataset of EVs for precise analysis. The aim of

this paper is to minimize this gap by analyzing the available travel data.
1.3 Research Framework & Objectives

This ‘Master of Research’ has been carried out in the Sustainable Energy Systems Engineering
(SESE) group of the Department of Engineering, Faculty of Science and Engineering at Macquarie
University, Sydney, Australia. This is a ten-month research effort starting in July 2016. Based on
Macquarie University guidelines, the main body of the thesis should be between 50 to 55 pages. The
work was funded by Research Training Pathway Scholarship (RTP) award.

The thesis aims to accomplish the following objectives;

1. Analyse widespread potential for EVs adoption in Australia by analysing household travel

survey and census datasets.




Chapter-1 Introduction

1l.

iil.

1v.

1.4

Quantify the spatiotemporal rise in electric energy demand and opportunities of electric
energy available for V2X operations due to the presence of EVs in the network.

Evaluate the aggregated reduction in GHG emissions for an average weekday and weekend
day.

Develop and compare models for the spatiotemporal distribution of vehicles.

Research Contributions

The main contributions of this thesis are;

il

iil.

1v.

1.5

One of the most commonly assumed problem in EVs is its limited range [4]. Our analysis
shows that range limitation of EV should not be the barrier for its adoption based on daily
commuting needs.

This research quantified the spatiotemporal impact of EV charging on power distribution grid.
The analysis also highlighted areas which require attention due to rise in electric energy
demand because of EV charging.

We have developed and compared two techniques to model the spatiotemporal distribution of
vehicles. The model provides compact organisation of measured dataset. This will help in
estimating the spatial and temporal electric energy required and/or available, planning of
charging infrastructure and developing the electric energy management strategies for EVs.
We have mapped the average SOC distribution of the EVs at key times during the day,
indicating the maximum net load (for recharging) and/or available electric energy (for V2X
services) across NSW.

This analysis also evaluated the reduction in GHG emissions due to electrification of

transportation.

Thesis Overview

The thesis consists of five chapters, including this introduction and a final conclusion. The remaining

three chapters are organised as follows: In Chapter 2, we have discussed the results evaluated from

the analysis of NSW travel survey and census data. Using realistic assumptions regarding EV battery

capacity and the availability of domestic charging, we have determined the ability of EVs to meet

daily commuting needs, spatial and temporal distribution of electric energy stored in EV batteries (i.e.
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available for V2X) and estimated the reduction in GHG emissions. The results of this work were

presented in the following publication:

 Rafique, S. and G. Town, “Potential for EVs adoption in Australia”. International Journal of

Sustainable Transportation, Taylor & Francis, 2017 (under review)

In Chapter 3, we have evaluated the spatial and temporal distribution of electric energy required for
EV recharging and potential impact on the power distribution grid, using the results from the analysis
in Chapter 2. The potential rise in electric energy demand was compared with average electric energy
consumption of respective LGAs. The results helped in identifying regions where aggregated EV
charging could cause serious disturbances in power distribution network. The results of this work are

to be presented as following publication:

* Rafique, S. and G. Town, “The impact of electric vehicles on electricity distribution in New South

Wales, Australia” (under preparation)

Modelling the spatiotemporal distribution of EV is necessary to estimate the potential impact of EVs
on the electricity distribution system and plan the roll out and charging facilities. In Chapter-4, we
have developed two models for estimating the spatiotemporal distribution of vehicles and compared
the results. By estimating the spatiotemporal distribution of vehicles, we will be able to calculate the

spatiotemporal electric energy requirement and availability for EVs.
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Chapter 2

Data Analysis

2.1 Introduction

The limited driving range of EVs is generally assumed to be the fear factor in adopting EVs [4]. The
other potential concerns are lack of infrastructure and the impact of EVs on the electricity distribution
system [1]. However, analysis of real travel data shows that these concerns are not realistic for the
majority of the vehicle commutes within cities. For example, a study of vehicle commutes across the

United States (US) estimated that 87% of vehicle-days could be provided by existing affordable EVs
[5].

The vehicle commute data for four regions at different scales in NSW, Australia were analysed. The
datasets were extracted from two different sources (i.e. NSW Household Travel Survey data
(2014/15) [6] and Journey to Work (2011) Census data [8]). The comparison cross-validated the
statistics at different levels (i.e. region size and population density), yet producing similar results. The
results were also similar to a study conducted for major states across US [5]. The first dataset of 20
suburbs in South-Western Sydney (Bankstown area) and the second dataset for Sydney Inner City
were retrieved from Journey to Work (2011) data tables [8], based on a five-yearly census of
population and housing, conducted by the Australian Bureau of Statistics (ABS). The third and fourth
dataset for the Statistical Areas Level-3 (SA3s) and Local Government Areas (LGAs) of NSW were
extracted from the NSW Household Travel Surveys (HTS) 2014/15 [6, 7].

Our analysis showed that majority of the vehicle commutes in the state of NSW could be provided

by affordable EVs. We have estimated the spatiotemporal rise in electric energy demand due to

7



Chapter-2 Data Analysis

potential recharging of EVs. Alternatively, we have also calculated the spatiotemporal electric energy
available for V2X (here ‘V’ refers to the vehicle and ‘X’ refers to the grid, infrastructure, another
vehicle, etc.) operations. The average SoC distribution of the EVs at key times during the day was
also mapped within the resolution of the available data. Additionally, we have also estimated the

possible reduction in GHG emissions due to the greater efficiency of EVs relative to ICEVs.
2.2 Methodology

The datasets were tabulated and key electric energy indicators (i.e. the rate of electric energy
consumption in Wh/km, charging capacity in km/hr, the rate of CO2(q) emissions in gm/km) were
calculated and compared with similar estimations in other studies. A brief schematic block diagram
of the methodology is presented in Fig. 2.2-1. These factors were used to calculate the electric energy
consumption per trip (kWh/km), overall electric energy requirements (kWh), electric energy available
(kWh), recharge duration required per trip (hrs), SOC after trip completion, electric energy densities
(kWh/km?) during different times of the day at different locations, thus estimating spatiotemporal
electric energy needs and opportunities. Spatiotemporal and aggregated CO2(cq) emission reductions
were also calculated, keeping in view indirect GHG emissions caused by charging of EVs through

coal-fired power plants.

Methodology

] 7] (] [0 [ (2] (o]
%

km
DPT (E)

km kWh km kWh km k
DPT (17 - . ip) « DPT (K1) . rpE (X2
(huurs)_ (&) BCPT (o) = DT + BCRGED) TNT (trip) - DPT (77:) RDE( )

km
i ) m DE(Mtons) =
rip CR (hour) 1000

kWh

L0 ECPT ()

TERR(kWh) = ECPT( . )*TNT(trip) %) = 100% — \trip)
trip S0C(%) =100% R 100

¥ 2

TERR(kWh) = RIE (k"Wgﬁ)

IE(Mtons) = 1000 TEA(kWh) = 50C (%) » TBC(kWh) = TNT (trip) ‘
O = origin RD = recharge duration per trip (hours/trip) TERR = total energy required to recharge (kWh)
D = destination DPT =distance per trip (km/trip) TNT = total number of trips
AT = arrival time CR = charge rate (km/hour) TEA = total energy available (kWh)
DT = departure Time ECPT = energy consumed per trip (kWh/trip) IE = indirect emissions produced due to recharging
TD = type of day (Weekday/Weekend) ECR =energy consumption rate (kWh/km) EVs from non-renewable sources (Mtons)
TP = trip purpose (Commute/Non-commute) SOC = state of charge after trip completion (%) RIE = rate of indirect emissions (kg/kWh)
NT = number of trips TBC =total battery capacity (kWh) DE = direct emissions produced by ICEVs (Mtons)

RDE = rate of direct emissions (kg/km)

Fig. 2.2-1. Systematic block diagram of energy parameter calculations
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2.3 Assumptions

The datasets were analysed using some conservative assumptions to extract realistic information. Two

types of assumptions were made, the first associated with data limitations and the second for

performance parameters.

2.3.1 Assumptions - data limitations

To avoid having an extremely large number of data points and due to privacy restrictions of

identifying individuals in the ABS data, the following assumptions were made;

1.

1l

1il.

1v.

Vi.

only one-way trips were considered, as evident in the travel survey dataset that great majority
of vehicle trips (i.e. 82% of the weekday and 94% of the weekend trips) were non-commute
as shown in Fig. 2.4-13 & Fig. 2.4-14.

only vehicle trips less than 30 ~ 40 km were considered so that the vehicle returns to its origin
without intermediate recharging. 87% of the total weekday and weekend day vehicle trips
were less than 35 km (Fig. 2.4-15) in 50 LGAs of NSW averaging 15.7 km/trip for weekday
and 15.3 km/trip for a weekend day which was consistent with Australia’s average commuting
distance i.e. 15.6 km/trip [32].

travel distance between the regions (i.e. suburbs, SA3s and LGAs) were based on Google map

driving distances from the centre of origin region to centre of destination region. This
assumption is appropriate as the average calculated distance was consistent with published
average commuting distance for Australia i.e. 15.6 km/trip [32].

travel distance within the regions (i.e. suburbs, SA3s and LGAs) were based on radial
distances from the centre to the boundary of the region, then evaluating the road distance using
‘road distance to air distance factor. This assumption is appropriate as the average calculated
distance was consistent with published average commuting distance for Australia i.e. 15.6
km/trip [32].

electric energy consumption due to the difference in height between origin and destination
was negligible as the differences in elevation between the analyzed regions extracted from
Google maps were negligible.

the vehicle type for all trips was a personal passenger car as the datasets used were based on

passenger cars.
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vil.  for the purpose of this analysis the number of passengers was not considered as the weight of
the passengers is usually negligible compared to weight of the vehicle.
viii. it is assumed that vehicles are recharged nightly. This assumption is appropriate mainly
becuase;
a. itissimple & easy
b. it is good for battery life to make-up the discharged energy in small states rather than
recharging from minimum energy levels

c. no additional charging infrastructure required in the regions
2.3.2 Assumptions — performance parameters

The actual dataset represents average weekday and weekend day trips conducted by ICEVs in NSW.
However, for analysis purposes, it was assumed that all these vehicle trips were conducted by Nissan
Leaf (2011-15) with a rated battery capacity of 24 kWh and a useful battery capacity of 19.2 kWh
(i.e. 80% depth of discharge). The Nissan Leaf (2011-15) had a maximum range of 135 km [27] on a
full charge based on EPA cycle. However, for realistic calculations, the maximum distance travel
range was taken as 120 km (75 miles) [5] on a full charge. It is expected that all the vehicles were
recharged using 220 V 15 A 3.0 kW Level-1 (L-1) chargers with 10% current losses. The average
rate of GHG emissions for ICEVs was 261 gm/km COzq) [33]. Indirect GHG emission factor for
consumption of purchased electricity from a coal-fired plant for NSW was 0.86 kg/kWh CO2(eq) [34].

It follows that;

1. The electric energy consumption rate for a passenger car is 0.12 kWh/km to 0.18 kWh/km
[30]. We have calculated 0.16 kWh/km as the electric energy consumption rate of the battery.
ii.  The charging rate was calculated to be 15 km/hr which was comparable to the charging rate
used by [11] and defined as the distance that could be travelled (in km) after charging for 1

hour.
A brief comparison of EVs and ICEVs is presented in Table 2.3-1. The comparison is based on five
years lease cost and 75000 miles travel distance in five years for both type of cars [35]. The table

compares key figures only.
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Parameters ICEV EV
efficiency 30 miles per gallon 3.80 miles per kWh
fuel cost 3.00 $ per gallon 0.15 $ per kWh
fuel consumption for 75000 miles 2,500 gallons 19740 kWh
total fuel cost 7,500 $ 2960 $
maintenance cost 400 $ per year 100 § per year
maintenance cost for 5 years 2,000 $ 500 $
GHG emissions 417 gm per mile 860 gm per kWh
total GHG emissions 31.28 Mtons 16.98 Mtons

Table 2.3-1. Comparison of EVs and ICEVs

2.4 Results

Travel data for four different regions within NSW were analyzed for trip distance (km), electric
energy consumed per trip (kWh/trip), SOC distribution during 24 hrs of the day, recharge duration
(at 3.0 kW), electric energy densities (kWh/km?) and reduction in GHG emissions (COz(cq). The latter

results were presented in the following sections for each region.
2.4.1 South Western Sydney (Bankstown Areas)

The census data of journey to work (2011) [8] was analysed and results were mapped dynamically
using MS-Excel. As an example, the spatial distribution of in-going vehicles trips was presented in
Fig. 2.4-1. Alternatively, this dynamic map could demonstrate the spatial distribution of electric
energy available for V2X operations, electric energy required for recharging EV batteries, average

SOC distributed in the region and the estimated duration required to recharge an EV battery.

Trips of these 20 suburbs were classified into two categories. The in-going trips, conducted by
residents of other suburbs who travel to these suburbs for work. The outbound trips, conducted by

residents of these suburbs who travel to other suburbs for work.

Detailed analysis shows that 77% in-going and 63% outbound trips were conducted using vehicles.
The average trip length of 85% in-going and 90% outbound vehicle trips was less than 30 km and an
average electric energy consumption per trip was 2.6 kWh. These vehicle trips were well within the

range of currently available electric vehicles such as the Nissan Leaf (2011-15).
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Dynamic Map Legend
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The estimated aggregated electric energy remaining in the in-going vehicles could exceed 1.1 GWh
which could be used for V2X electric energy transfer operations. Alternatively, the aggregated
increase in electric energy demand per day would reach 102 MWh. The outbound vehicles were
dispersed in 50 different suburbs and the assessed aggregated electric energy remaining in the

outbound vehicles would be around 0.88 GWh for V2X electric energy transfer operations.
2.4.2 Sydney Inner City

Statistics show that more than 0.4 million people work in Sydney Inner City and only 95,000 workers
(i.e. 23% of the total workers) use the vehicle to commute. 83,000 workers (i.e. 88% of the vehicle
commuters) commute less than 40 km (Fig. 2.4-2) which is well within the range of currently

available EVs.

The average commute distance for 88% of the vehicle trips was 21 km with an average electric energy
consumption per trip of 3.3 kWh. An estimated 1.75 GWh electric energy would be available for V2X
electric energy transfer operations. Alternatively, if these vehicles were recharged after their first trip
then the electric energy demand in Sydney Inner City would rise by 0.2 GWh per day. On average
83% of the vehicles had more than 75% SOC when they arrive at Sydney Inner City (Fig. 2.4-3).
Statistics clearly show that there is a good potential of replacing ICEVs with currently available EVs

based on travel requirements.
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2.4.3 Statistical Areas Level-3 (SA3) NSW

From the NSW Household Travel Survey 2014/15 data [6], on average there were 10.9 Million

vehicle trips on a weekday and 8.8 Million vehicle trips on a weekend day in 57 SA3 areas of NSW.

88% vehicle trips were less than 30 km (Fig. 2.4-4) and could be provided by currently available EVs.

The calculated average recharge duration for 88% of EVs was less than 2 hours using L-1 chargers

(Fig. 2.4-5).
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Fig. 2.4-4. Distance travelled per trip for
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Fig. 2.4-5. Calculated recharge duration per trip
for average weekday (blue) and weekend day
(orange) trips

Calculations also show that an EV would retain more than 70% SOC at the end of 92% of the vehicle

trips (Fig. 2.4-6). It was calculated that 84% of the vehicles would require less than 4 kWh per trip to

recharge using an L-1 charger (Fig. 2.4-7).
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There was a strong correlation between population density (people/km?) and trip concentration

(trips/km?). Data show that trip concentration is higher in densely populated areas (Fig. 2.4-8).
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Fig. 2.4-8. Relation between Population Density (persons/km?) and Trips Concentration (trips/km?)

The arrival times of the 10.9 million vehicle trips (Fig. 2.4-9) on an average weekday and 8.8 million
vehicle trips (Fig. 2.4-10) on an average weekend day, show that there was a margin of 10 hours for
EVs to recharge during night time (i.e. from 9 PM in the evening to 6 AM in the morning). More than
86% of the weekday trips and 88% of the weekend day trips use electric energy that could be
recharged in less than 3 hours on average, using an L-1 charger (Fig. 2.4-5). Even if the EVs were

recharged nightly, there was sufficient time to be fully charged.
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Fig. 2.4-9. Arrival times of 10.9 Million trips on Fig. 2.4-10. Arrival times of 8.8 Million trips on
an average weekday an average weekend

The spatiotemporal energy distribution is important for grid operators to manage the energy required
to recharge EVs as a function of location and time. It also helps the grid operators to avoid the
electricity distribution hot spots. The spatiotemporal energy density (kWh/km?) available for V2X
operations in NSW was calculated based on the number of trips completed (Fig. 2.4-11). It could be
estimated that Fig. 2.4-11 represents the minimum local energy densities available at 09:00 AM, as
the vehicles which are garaged and/or parked are not considered in the analysis. The Fig. 2.4-11

shows that energy density available is concentrated around Sydney Inner City due to;

1. the destination for majority of the trips is Sydney Inner City and its nearby surrounding
regions

ii.  the land area of Sydney Inner City and its nearby surrounding regions is smaller compared to

regions which are further away from Sydney Inner City therefore the energy density is higher

iii.  the trip lengths are shorter for vehicle trips whose destination is Sydney Inner City and its

nearby surrounding regions therefore more number of vehicles are expected to retain high

state of charge after trip completion

On the contrary, the energy density (kWh/km?) required for recharging EVs was also at its peak at
09:00 AM (Fig. 2.4-12) because the energy densities were evaluated based on number of trips
completion, and majority of the trips were completed at 9AM. Hence, it could be inferred that many
EVs which require recharge and/or charge transfer are expected to be located close to each other and

energy transfer between vehicles can take place without overloading the electric power grid.

It is evident that electric energy available for V2X operations is much higher than the electric energy

required to recharge EVs. It is also evident from the maps presented in Fig. 2.4-11 & Fig. 2.4-12 that
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the demand of energy required for charging EVs could easily be met by the energy available with
EVs present in the nearby areas (e.g. energy transfer between vehicles via the electricity distribution
network). This would redistribute charge among the vehicles. This may be useful during the peak

load times of the power grid (i.e. where no additional generation capacity is needed).
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2.4.4 Local Government Areas (LGAs) NSW

Aggregated vehicle trips for an average weekday were 11.1 Million and 8.6Million for an average

weekend day in 56 LGAs of NSW, extracted from the NSW Household Travel Survey 2014/15 data

[7]. 2.0 Million vehicle trips (Fig. 2.4-13) for an average weekday and 0.5 Million vehicle trips (Fig.

2.4-14) for an average weekend day were categorised as a commute (i.e. home to work and back).

Trip length of 87% of the total weekday and weekend day vehicle trips were less than 35 km (Fig.
2.4-15) in 50 out of 56 LGAs in NSW. Whereas, 82% of the weekday commute vehicle trips and 81%

of the weekend commute vehicle trips, travel similar distance per trip (Fig. 2.4-16). This show that

based on trip lengths, these conventional vehicle trips could potentially be replaced with affordable

electric vehicle trips.

Weekday Vehicle Trips

2,047,545
(18%)

® Commute
9,078,419

® Non-Commute
(82%)

Fig. 2.4-13. Weekday vehicle trips categories
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Fig. 2.4-14. Weekend vehicle trips categories
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Fig. 2.4-16. Distance travelled per trip for an
average weekday and weekend day (commutes)

The average recharge duration for 90% of the total (Fig. 2.4-17) and 88% of the commute (Fig.

2.4-18) vehicle trips for an average weekday and weekend day were less than 3 hours using L-1

chargers.
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It was estimated that more than 90% of the total (Fig. 2.4-19) and 88% of the commute (Fig. 2.4-20)

vehicle trips for an average weekday and weekend day consume less than 30% of the total battery

capacity per trip.
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Fig. 2.4-19. Estimated % electric energy Fig. 2.4-20. Estimated % electric energy
consumption per trip for an average weekday and consumption per trip for an average weekday and
weekend day (all trips) weekend day (commutes)

The analysis for commute trips (i.e. home to work and back) show that for 82% of the total weekday
commute vehicle trips (i.e. trip length less than 35 km/trip), total electric energy required to recharge
the EVs after completing round trip, was less than 10 GWh/day, whereas electric energy available for
V2X operations was 23 GWh/day (considering the depth of discharge to be 80%). Similarly, for 81%
of the total weekend commute vehicle trips, the total electric energy required to recharge the EVs
after completing round trip, was less than 3 GWh/day, whereas electric energy available for V2X

operations was 6 GWh/day.
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The arrival times of the 11.1 Million vehicle trips on an average weekday (Fig. 2.4-21) and 8.8
Million vehicle trips on an average weekend (Fig. 2.4-22) show that there is a margin of 10 hours to
recharge during night time (i.e. from 9 PM in the evening to 6 AM in the morning). Which is
sufficient to recharge an electric vehicle battery, since more than 90% of the weekday and weekend
day vehicle trips use electric energy that could be recharged in less than 3 hours using an L-1 charger

(Fig. 2.4-17).

Arrival time of Weekday Trips Arrival time of Weekend Trips
1200000 900000
800000 npE
1000000 200000
& 800000 & 600000
= 500000
5 600000 S 400000
s 2 oo
200000 100000
0 0
7 9 11131517192123 1 3 5 7 911131517 192123 1 3 5
Time of Day Time of Day
Fig. 2.4-21. Arrival times of 11.1 Million trips Fig. 2.4-22. Arrival times of 8.6 Million trips on
on an average weekday an average weekend

2.4.5 Reduction in fuel depletion and GHG emissions

Fossil fuels are the source of 82% (Fig. 2.4-23) of the world’s energy supply and are responsible for

99% (Fig. 2.4-24) of the greenhouse gas (GHG) emissions [36]. The transport sector consumes
about 64% (Fig. 2.4-25) of the global oil supply [36] and causes about 23% (Fig. 2.4-26) energy-
related GHG emissions [37].

Biofuels and waste

[32 190 Mt of CO, |

Fig. 2.4-23. World total primary energy Fig. 2.4-24. World CO, emissions from fuel
supply (1971 to 2013) by fuel type [36] combustion by fuel type (1971 to 2013) [36]

In 2011/12 total emissions in Australia were 543.6 Mtons CO2q), where NSW accounted for 148.9
Mtons COzq) (1.. 27.4% of the total GHG emissions in Australia) [38]. The transport sector in
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Australia was responsible for 90.2 Mtons COz(q) emissions, where NSW accounted for 26.4 Mtons

CO2(eq) (1-€. 29.3% of the GHG emissions from Transport sector in Australia) [38].

Non-energy use

16.2% Industry Services ~ Other*
-

8.4% . %

Residential

Transport
6%

0.5%

Other!

11.6% Industry

19% Electricity
and heat Residential

42% 11%
Services
8%

Transport
23%

Other *
5%

3 716 Mtoe

Fig. 2.4-26. World CO; emissions from fuel

Fig. 2.4-25. Total oil consumption by sector combustion by sector in 2014 [37]

(1971 to 2013) [36]

The GHG emissions can be broadly categorised into two major types; ‘Direct’ and ‘Indirect’
emissions. ‘Direct emissions are produced from sources within the boundary of an organisation and
as a result of that organisation’s activities’ and ‘Indirect emissions are emissions generated in the
wider economy as a consequence of an organisation’s activities (particularly from its demand for
goods and services), but which are physically produced by the activities of another organisation’ [34].
EVs do not contribute to direct GHG emissions, they produce indirect emissions through the

consumption of electricity.

There can be various scenarios for evaluating the reduction in GHG emissions due to the adoption of
EVs. We have evaluated the reduction in GHG emissions using two scenarios. Both scenarios were

evaluated based on vehicle trips in 50 LGAs of NSW.

2.4.5.1 Case-1

When EVs were recharged using renewable sources (the wind, solar etc.). In this case, EVs would
not contribute to indirect emissions. Therefore, 56% of NSW transport sector GHG emissions
(compared with emissions in 2011/12) would be reduced if 87% of the vehicle trips were conducted

by EVs in 50 LGAs of NSW.

2.4.5.2 Case - 11

When EVs were recharged using electricity generated from coal-fired power plants, EVs would

contribute in indirect emissions. Therefore, 26% of NSW transport sector GHG emissions (compared
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with emissions in 2011/12) would be reduced if 87% of the vehicle trips were conducted by EVs in
50 LGAs of NSW.

The results of both cases discussed above are compared to reported GHG emissions of NSW

(2011/12) and presented in Fig. 2.4-27.

‘Reported' Vs 'Potential’
GHG emissions
30 as a result of EV adoption

26.4

25

m Actual GHG emissions NSW
20 19.5 Transport sector (2011/12)

15 M Potential GHG emissions
after EV adoption (when
11.7 recharged thru coal fired

power plants only)

10
Potential GHG emissions

after EV adoption (when
recharged thru renewable
sources only)

GHG emissions MTons CO2(eq)

2]

0

Fig. 2.4-27. Comparison of 'Reported' & 'Potential' GHG emissions as a result of EV adoption

2.5 Conclusion

Four different sources of datasets representing diverse ranges of boundary divisions were thoroughly
analysed to quantify the possible adoption of EVs in Australia and its respective outcomes in terms
of V2X opportunities and reduction in GHG emissions. Under realistic assumptions (i.e. mid-range
battery capacity, home charging) the analysis of Journey to Work (2011) data tables [8] and NSW
Household Travel Survey (HTS) 2014/15 [6, 7] show that more than 87% of daily vehicle trips across
NSW were less than 35 km. This range could readily be provided by currently available EVs.

I£87% ICEV trips across NSW were conducted by an average EV, it would potentially result in more
than 200 GWh of aggregated electric energy available for V2X electric energy transfer operations for
an average weekday across 50 LGAs of NSW. Alternatively, EVs would impact the existing power

infrastructure in terms of increased load. The aggregated rise in the electric energy demand would be
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26 GWh across during an average weekday. Detailed analysis of the spatiotemporal rise in electric

energy demand is conducted in Chapter-3.

Mapping the spatiotemporal distribution of the average SOC of vehicles showed that concentration
of electric energy (kWh/km?) was higher in densely populated areas. It was evaluated that the electric
energy available for V2X operations was much higher than the electric energy required to recharge
EVs. Therefore, transfer of electric energy from EV to other infrastructure and/or vehicle (V2X) via
grid could effectively fulfil the additional electric energy demand. Hence, power grid could be

managed during peak electric energy demand.

The pattern of arrival times of vehicle trips show that vehicles were parked at home for about 10
hours overnight, this duration was sufficient to recharge EVs which were used for commuting needs
during the day. More than 90% of the weekday and weekend day trips across NSW, require less than

3 hours to recharge using L-1 chargers.

Lastly, it was calculated that even if all EVs were recharged from non-renewable coal-fired power
plants, the greater efficiency of EVs would result in a reduction of 26% COzq) across NSW
(compared to GHG emissions from transport sector across NSW in 2011/12). This chapter

demonstrates the potential for widespread adoption of EVs in Australia.
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Chapter 3

Grid Impact

3.1 Introduction

The transport sector is expected to become increasingly electrified in coming years, bringing new
benefits, challenges and opportunities [1]. The electric vehicle (EV) stock has been growing since
2010 and sales of EVs increased by 70% in 2015 compared to 2014 globally, with over half a million
EVs being sold worldwide in 2015. The growth trend in EV sales is likely to accelerate with the
declining cost of batteries [5], increasing battery energy densities, and the increasing viability of

home-storage and charging options [3].

One of the consequences of the widespread adoption of EVs will be an increase in electricity demand,
hence there is potential to overload electric power distribution networks, especially if a large
proportion of EV charging is rapid and/or unscheduled [19]. The data available on EV usage and
impact is relatively sparse, however existing travel data for internal combustion engine vehicles
(ICEVs) may be used to indicate the expected impacts of EVs assuming vehicle usage remains
unchanged. Here we have evaluated the spatiotemporal aggregated rise in electricity demand based
on the NSW Household Travel Surveys (HTS) 2014/15 [7] dataset. Although the survey data was
based on ICEVs, we have used it with some careful assumptions to infer useful conclusions about the

potential impact of EVs on the electric power grid.

We have estimated the potential spatiotemporal rise in electric energy demand across 50 Local

Government Areas (LGAs) of New South Wales (NSW). It was found that 87% of the total vehicle
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trips, 82% of the weekday commute vehicle trips and 81% of the weekend commute vehicle trips
were less than 35 km/trip. Our estimations for the spatiotemporal rise in electric energy demand
assumed that all vehicle trips were conducted using EVs with trip lengths less than 35 km/trip. The
potential electric energy demand of these LGAs was compared with average electric energy
consumption across respective LGAs. The electricity consumption data was retrieved from customer
billing data in Ausgrid's network [39]. Data of only 35 out of 50 LGAs was compared since services
to other LGAs were provided by different service providers and electricity consumption data was not
available. Additionally, a potential solution for the rise in electric energy demand is presented in terms
of the available state of charge (SOC) with EV batteries after round trip completion. This electric

energy could be used for V2X energy transfer operations.

3.2 Analysis

NSW Household Travel Surveys (HTS) 2014/15 [7] dataset show that there were 11.1 million and
8.6 million vehicle trips for an average weekday and weekend day respectively in 56 LGAs of NSW.
The purpose of 2.0 million (i.e. 18% of total weekday vehicle trips) and 0.5 million (i.e. 6% of total
weekend vehicle trips) vehicle trips for an average weekday and weekend day respectively was
commute (i.e. home to work and back). The average trip length of 87% of total vehicle trips was 15.7
km/trip and 15.3 km/trip for an average weekday and weekend day respectively, which was consistent

with Australia’s average commuting distance i.e. 15.6 km [32].

In this chapter, the analysis is presented for two scenarios, the potential spatiotemporal rise in electric
energy demand during an average week for (i) all-purpose (i.e. commute and non-commute) vehicle
trips and (i1) commute vehicle trips. The aggregated electric energy consumption was calculated for
vehicle trips with trip lengths less than 35 km/trip. We have considered the vehicle trips with one side

trip length of less than 35 km/trip due to following reasons;

1. 87% of the total weekday and weekend day vehicle trips were less than 35 km
it.  82% weekday commute vehicle trips were less than 35 km/trip
. 81% weekend day commute vehicle trips were less than 35 km/trip
iv.  We have assumed the Nissan Leaf (2011-15) with full charge distance travel range of 120
km. Considering 35 km for one side trip, means 70 km for full commute trip with 50 km
range still available after completing the round trip without requiring intermediate

recharging.
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After presenting both scenarios, a detailed analysis was conducted to evaluate the potential
spatiotemporal rise in electric energy demand for scenario two (i.e. commute vehicle trips only). The
spatiotemporal aggregated electric energy available for V2X opportunities across LGAs of NSW

were also estimated and the results were presented in the respective sections.
3.2.1 Scenario-1 (all purpose vehicle trips)

In scenario-1, the potential rise in spatiotemporal electric energy demand for all-purpose (i.e.
commute and non-commute) vehicle trips during an average weekday and weekend day was
evaluated. Fig. 3.2-1 summarised the rise in electric energy demand at different times of the day in
50 LGAs of NSW during (a) an average weekday and (b) average weekend day. The figures represent
aggregated electric energy demand at respective destinations after the trip completion. The aggregated
electric energy required to recharge EVs after completing the trip were summarised in Table 3.2-3 &

Table 3.2-4.

The aggregated electric energy required to recharge the EVs were evaluated based on one side trips
since the detailed spatial information for non-commute vehicle trips was not available. It is clear from
Fig. 3.2-1 that there were many trips conducted during the weekday and weekend day. When we
consider all-purpose (i.e. commute and non-commute) vehicle trips, then it is difficult to estimate
recharging of EVs during the day time. Therefore, based on the availability of EVs for all-purpose

vehicle trips, it could be assumed that EVs would be recharged overnight only.

The rise in electric energy demand due to EV recharging is dependent on the driving and recharging
patterns. Autonomous vehicles (AVs) are expected to change the way we travel. This new technology
will potentially impact personal travel in areas which include safety, congestion, and travel behaviour.
It is expected that vehicle miles travel will increase by 20% compared to non-AVs travel at 10%
market penetration rate of AVs [40]. This implies that electric energy management of autonomous
EV fleets would be more predictable compared to non-AVs. Therefore, it would be easy to predict
the availability of vehicles for charging and discharging operations (where discharging of vehicles

refers to V2X operations).
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Fig. 3.2-1. Spatiotemporal rise in electricity demand during (a) an average weekday (b) average weekend

day due to recharging of EVs for all-purpose vehicle trips
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Table 3.2-1. Spatiotemporal rise in electricity demand during an average weekday for all-purpose vehicle
trips under 35 km/trip (green-minimum, yellow—medium, red-maximum electricity demand-MWh)
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Table 3.2-2. Spatiotemporal rise in electricity demand during an average weekend day for all-purpose
vehicle trips under 35 km/trip (green-minimum, yellow—medium, red-maximum electricity demand-MWh)

3.2.2 Scenario-2 (commute vehicle trips only)

In scenario-2, the potential rise in spatiotemporal electric energy demand for commute vehicle trips

during an average weekday and weekend day was evaluated. Due to limitations of the spatial

information about vehicle trips following assumptions were made in addition to EV specifications

assumed in Chapter-2;

11.

Vehicle trips with the purpose of travel — commute (i.e. to work and back) were considered

because spatial information of all non-commute vehicle trips was not available

Vehicle trips with one side travel distance less than 35 km/trip were considered so that all EVs

would return home without needing an intermediate recharge

3.2.2.1 Electric energy required

We have evaluated the aggregated rise in electric energy demand across 50 LGAs of NSW during

key times of the day. Fig. 3.2-2 summarised the rise in electric energy demand at different times of

the day in 50 LGAs of NSW during (a) an average weekday and (b) average weekend day. The figures
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represent aggregated electric energy demand at respective destinations after the trip completion. The
aggregated electric energy required to recharge after completing the trip were summarised in Table

3.2-3 & Table 3.2-4.

Fig. 3.2-2 (a) shows that there were two clear peaks when trips were conducted during the weekday.
Therefore, it could be evaluated that for weekday commute vehicle trips, EVs could potentially be
recharged during the day when they were parked at work (provided a charging facility is available at
the workplace). Fig. 3.2-2 (b) shows the electric energy demand for weekend commute trips. It is
clear from the comparison of electric energy demands for weekday and weekend day that there is a
specific pattern of vehicle trips for the weekday commute vehicle trips. Whereas, there is no specific

pattern for weekend commute trips.
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Fig. 3.2-2. Spatiotemporal rise in electricity demand during (a) an average weekday (b) average weekend
day due to recharging of EVs for commute vehicle trips
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Table 3.2-3. Spatiotemporal rise in electricity demand during an average weekday for vehicle commute
trips under 35 km/trip (green-minimum, yellow—medium, red-maximum electricity demand-MWh)

Lake Macquarie
Gosford
Wollongong
Sutherland Shire
Newcastle
Blacktown
Wyong
Baulkham Hills
Liverpool
Penrith
Campbelltown
Parramatta
Hornsby
Bankstown
Sydney

Port Stephens
Maitland
Fairfield
Camden
Warringah
Botany Bay
Rockdale
Shellharbour
Ryde

Kiama
Hurstville
North Sydney
Canterbury
Auburn
Canada Bay
Randwick
Holroyd
Willoughby
Ku-ring-gai
Pittwater
Marrickville
Kogarah

Lane Cove
Cessnock
Manly
‘Wollondilly
Ashfield
Waverley
Strathfield
Burwood
Leichhardt
Woollahra
Mosman
Hunters Hill
Shoalhaven

Spatiotemporal
1

2 3

distribution of aggregated ENERGY REQUIRED
S5 6 7 8 9 10 1

(MWh) to recharge
12 13 14

1 15

EVs for WEEKEND (commute trips < 35 km/trip) ‘

Table 3.2-4. Spatiotemporal rise in electricity demand during an average weekend day for vehicle
commute trips under 35 km/trip (green-minimum, yellow—medium, red-maximum electricity demand-MWh)
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Table 3.2-5 show a comparison between the aggregated rise in electric energy demand, average
electric energy consumption and population density across 35 LGAs of NSW. The aggregated rise in
electric energy demand was calculated based on recharging of EVs after completion of round trip
vehicle commute for average weekday and weekend day. The analysis identified 09 LGAs where the
rise in electric energy demand would increase by more than 10% of current electric energy
consumption. Based on the analysis of 35 LGAs it could be inferred that if 82% of the weekday and
81% of the weekend vehicle commute trips were conducted using commonly available EVs, then
there would be an aggregated increase in electric energy demand per day of 8% compared to current

electric energy consumption.

5.No. LGA Population ACTUAL o Ene\r/%::?ed perc(%) of
Density CONSUMPTION|  Weekday Weekend .
Avg consumption
people/sq.km | MWh/day MWh/day MWh/day MWh/day %
1  LAKEMACQUARIE 304 2,328 501 221 421 18%
2 GOSFORD 179 2,456 518 193 425 17%
3 PORTSTEPHENS 78 980 202 65 163 17%
4 WYONG 209 2,087 434 112 342 16%
5  NEWCASTLE 833 2,243 436 149 354 16%
6  HORNSBY 354 1,843 337 77 263 14%
7  BOTANYBAY 1,914 808 121 4 98 12%
8  MAITLAND 179 956 127 64 109 11%
9  WARRINGAH 994 1,894 282 46 214 11%
10 RYDE 2,686 2,219 269 35 202 9%
11 KU-RING-GAI 1,342 1,433 171 15 126 9%
12 MANLY 2,983 541 61 8 46 9%
13 HURSTVILLE 3,644 911 89 28 71 8%
14 PITTWATER 669 756 75 14 58 8%
15 ASHFIELD 5,258 425 41 7 32 7%
16 ROCKDALE 3,667 965 86 35 72 7%
17 BANKSTOWN 2,485 2,789 255 69 202 7%
18  LANECOVE 3,171 547 51 9 39 7%
19  STRATHFIELD 2,679 657 63 7 47 7%
20 RANDWICK 3,793 1,558 138 22 105 7%
21 CANADABAY 4,025 1,085 91 23 72 7%
22 AUBURN 2,395 1,888 161 24 122 6%
23 CANTERBURY 4,323 1,293 100 28 79 6%
24 KOGARAH 3,789 669 52 9 40 6%
25 WILLOUGHBY 3,172 1,639 127 18 9% 6%
26 NORTH SYDNEY 6,374 1,490 105 28 83 6%
27  MARRICKVILLE 4,911 1,038 76 12 57 6%
28 MOSMAN 3,393 379 25 2 18 5%
29  LEICHHARDT 5,274 656 43 3 31 5%
30 HUNTERS HILL 2,431 193 10 1 7 4%
31 BURWOOD 4,795 523 22 4 17 3%
32 CESSNOCK 27 733 25 8 20 3%
33 SYDNEY 6,858 9,915 305 67 237 2%
34 WAVERLEY 7,432 915 26 7 21 2%
35  WOOLLAHRA 4,589 848 26 3 19 2%

Table 3.2-5. Comparison of actual electricity consumption and rise in electricity demand due to EV
recharging for all commute trips less than 35 km/trip
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Fig. 3.2-3 show the relation between the rise in electric energy demand and population density. It is
clear by comparing Fig. 3.2-3 (a) & (b) that rise in electric energy demand was higher in regions
where population density is low. This is because people travel large distances for the commute (i.e.
home to work and back) using private vehicles since public train networks are limited in regions with
low population density. The average commute distance in 09 LGAs (highlighted in Table 3.2-5) was
24.3 km/trip for weekday and 24.2 km/trip for the weekend day. Whereas, the average commute
distance in other 41 LGAs was 15.9 km/trip during a weekday and 15.2 km/trip for an average
weekend day.

(a) population density
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5,000
4,000

3,000
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2,000

1,000

percentagge rise in energy demand

20%
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10%
8%
6%
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LAKE MACQUARIE
GOSFORD
PORT STEPHENS
WYONG
NEWCASTLE
HORNSBY
BOTANY BAY
MAITLAND
WARRINGAH
RYDE
KU-RING-GAI
HURSTVIL!
ASHFIE
BANKSTOWN
LANE COVE
STRATHFIELD
RANDWICK
CANADA BAY
AUBURN
CANTERBURY
KOGARAH
WILLOUGHBY
NORTH SYDNEY
MARRICKVILLE
MOSMAN
LEICHHARDT
HUNTERS HILL
BURWOOD
CESSNOCK
SYDNEY
WAVERLEY
WOOLLAHRA

Local Government Areas (LGAs)
Fig. 3.2-3. (a) region-wise population density (b) region-wise rise in electricity demand as percentage of
average electricity consumption

Cessnock (an LGA) appeared as an exception, which contradicts with the above estimations. Here,
the population density and potential rise in energy demand due to recharging of EVs, both were low.
The reason being, we have only considered vehicle trips with trip length less than 35 km/trip.
Whereas, the length of average vehicle commute trip to Cessnock was 46.6 km/trip for a weekday
and 44.6 km/trip for a weekend day. Only 15% of the total weekday commute vehicle trips were less
than 35 km/trip with an average of 25.9 km/trip. Whereas 16% of the total weekend commute vehicle
trips were less than 35 km/trip with an average of 25.9 km/trip, the majority of the trips were excluded

from analysis.
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Similarly, Pittwater (an LGA) do not follow the above-established relation between the rise in energy
demand and population density. Here, the population density is low but rise in energy demand was
high. The dataset shows that 88% of the weekday and 100% of the weekend vehicle commute trips
were less than 35 km/trip. The average trip length for all vehicle commute trips to Pittwater was 21.6
km/trip on a weekday and 13.4 km/trip on a weekend. Despite having low population density, the
majority of the trips were conducted in nearby regions, unlike other local government areas which

have low population density and travel far distances for the commute.

It could be evaluated that the potential rise in electric energy in 09 out of 35 LGAs would exceed
10% of the current electric energy consumption for 82% of weekday and 81% of weekend commute
vehicles trips (trip lengths less than 35 km/trip) if these trips were conducted with commonly available

EVs (highlighted in Table 3.2-5).
3.2.2.2 Electric energy available

Besides charge scheduling, peak shaving and/or upgrading the electric power network, one of the
potential solutions for increased electric energy demand could be the utilisation of available electric
energy in terms of remaining SOC of EV batteries. The available electric energy could be transferred
to nearby EVs and/or the power grid, using the available electric power distribution infrastructure.
Based on similar analysis and assumptions, we have estimated the amount of electric energy available

for V2X operations.

We have estimated the aggregated electric energy available across 50 LGAs of NSW during key times
of the day. Fig. 3.2-4 summarised the potential spatiotemporal electric energy available for V2X
operations during (a) an average weekday and (b) average weekend day. The figures represent
aggregated electric energy available at respective destinations after the trip completion. Specific
details of the summarised graphs in Fig. 3.2-4 were presented in Table 3.2-6 & Table 3.2-7 for
aggregated spatiotemporal electric energy available during an average weekday and weekend day
respectively. The spatiotemporal aggregated values of electric energy available in respective LGAs

were calculated based on following considerations,

i.  EV batteries would not discharge below 20% SOC
ii.  Available electric energy was calculated after considering energy consumption of round trip

by EVs (trip lengths less than 35 km/trip)
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300 (a) Distribution of ENERGY AVAILABLE for V2X —Ashfield —Auburn
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Fig. 3.2-4. Spatiotemporal electricity available during (a) an average weekday (b) average weekend day
for V2X operations of commute vehicle trips

Spatiotemporal distribution of aggregated ENERGY AVAILABLE (MWh) for V2X on WEEKDAY (commute trips < 35 knv/trip) ‘
LGA 2 3 a 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | Total
Blacktown 4.0 117 534 374 1242 1344 520 121 141 142 243 604 84.0 1603 1655 118.6 414 354 188 240 8.7
Sydney 7.2 153 30.8 623 136.7 77.1 201 14.4 225 113 260 245 879 762 372 282 189 146
Newcastle 417 729 345 114 162 246 80 175 674 616 1696 653 189 123 113 9.7
Parramatta K 44 79 536 1357 543 200 [[45] 205 100 108 47.6 681 1155 1112 47.0 195 17.9 187
Sutherland Shire 81 273 760 976 309 207 180 149 313 259 641 107.8 1359 1344 444 173 140 9.4
Ryde 34.9 140.4 128.4 1016 41.8 16.0 17.4 12.4 192 229 56.4 767 840 30.6 9.8 319 11.1
Fairfield 4 400 625 872 1363 362 43 6.6 93 288 537 802 927 1014 453 161 94 156 834
Bankstown o 199 550 763 1140 388 104 112 9.0 81 749 1272 1199 623 314 74 204 5.4 814
Warringah 251 700 1104 453 93 87 202 55 150 386 567 1115 1013 23.6 87 153 105 690
Penrith 140 28.0 663 70.5 233 169 193 21.1 156 36.6 1025 99.4 688 27.8 9.5 13.8 13.9 686
Wollongong 47 721 614 1122 263 245 135 9.2 19.4 66.7 625 90.8 50.4 103 8.6 186 11.1 681
Liverpool 19.5 69.9 70.4 852 144 9.1 134 196 220 371 33.0 728 665 570 179 151 63 19.7 679
Randwick 109 343 450 62.8 390 167 35 37 209 261 166 1025 959 67.8 467 235 145 2138 664
Lake Macquarie 211 338 517 688 211 156 51 10.8 193 11.0 442 657 1370 51.6 181 133 99 76 614
Auburn 257 478 955 853 462 135 | 23 45 279 182 375 266 533 422 302 83 98 607
Baulkham Hills 53 171 647 881 330 237 78 105 168 7.2 226 57.4 1027 567 41.0 7.2 144 9.2 586
Hornsby 56 247 356 837 293 57 132 176 109 7.1 328 456 997 756 501 165 115 577
Campbelltown 106 31.6 648 765 123 167 58 9.2 67 37.6 505 581 549 493 214 58 69 114 558
Holroyd 523 513 704 231 [0 156 [ 22 42 77 260 480 57.8 494 238 105 297 81 513
Ku-ring-gai 56.3 50.8 28.8 153 5.0 106 163 7.4 23.5 254 684 1037 519 74 97 6.6 501
Wyong 339 689 554 17.8 92 133 81 85 328 303 510 53.8 324 7.8 7.0 467
Canada Bay 20.8 303 59.1 2438 168 10.6 215 63.8 556 62.8 19.8 9.8 122 445
Gosford 183 420 783 176 49 104 138 292 216 451 579 335 197 55 100 442
Hurstville 62 417 555 110 9.4 92 54 379 528 768 584 274 148 46 436
Canterbury 229 417 59.7 36.0 4.4 80 267 313 559 53.8 285 238 38 35 428
Willoughby 144 704 905 54.6 55 9.8 6.8 199 253 44.8 214 6.1 124 422
Camden 26.9 243 464 198 47 75 248 317 77.7 485 183 7.6 9.1 389
Rockdale 84 172 217 493 93 173 159 327 823 340 249 6.8 106 388
Botany Bay 382 196 447 720 284 36.6 277 332 139 63 107 381
Marrickville 124 324 706 164 o § r 132 292 465 581 119 11.0 1238 : 375
North Sydney 135 455 941 36.1 17.5 29.8 330 127 80 7.4 d y 348
Kogarah 3 63 344 393 7.4 17.4 597 152 141 10.2 264
Shellharbour 251 441 85 10.7 407 7.5 300 308 124 43 7.3 b N 258
Strathfield 19.2 335 489 147 56 202 69 364 246 33 50 78 251
Waverley 43 335 204 135 6.7 13.0 160 27.9 402 101 123 226
Leichhardt 8.7 281 29.0 206 4 .0 28 31 136 487 224 189
Ashfield 7.6 255 257 79 89 320 194 372 69
Maitland 129 83 385 84 17.4 259 224 139 95
Woollahra 40 216 281 48 53 95 164 513 389 7.4
Pittwater 9.8 9.4 279 7.8 d 53 48 120 11.0 431 276 13.0
Lane Cove 39.0 230 214 67 33 67 194 408 93
Manly 52 177 17.4 5 62 103 11.0 11.7 222 40.7
Port Stephens 163 237 64 5 62 47 4 180 187 186 9.1
Burwood 150 317 121 9.4 105 264
Mosman 63 104 | 5.9 | 43 | 133 246 217
Hunters Hill 20.9 o 53 65 153
Kiama d g 11.9 6.6 4.4
‘Wollondilly 8.5 11.1 4.3
Cessnock 45 6.5
Shoalhaven

Table 3.2-6. Spatiotemporal electricity available during an average weekday for vehicle commute trips
under 35 km/trip (red-minimum, yellow—medium, green-maximum electricity available-MWh)
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Spatiotemporal distribution of aggregated ENERGY AVAILABLE (MWh) for V2X on WEEKEND (commute trips < 35 knv/trip)
2 3

LGA 1 a 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Newcastle | 66 | 22.1 293 149 242 111 29.2 21.0 186 23.3 219 247 63 4.7 8.4 235
Sutherland Shire | 10.5 10.0 30.8 101 87 18.6 17.3 282 164 207 9.2 30.7 13.0 104 8.4
Fairfield 7.4 12.8 208 [570/| 9.8 17 200 137 250 130
Lake Macquarie 9.7 146 170 217 75 269 217 193 200 31.0 209 39 119 7.8 144
Blacktown 47 85 | 2.4 191 7.9 260 199 166 4.7 17.5 59 383 295

Parramatta 10.2 135 150 281 104 45 102 284 9.1 263 173 158 86 85 125 7.7
Bankstown 9.2 17.6 100 | 212 262 68 83 115 172 278 318 83 48 137 5.1
Sydney 81 268 114 73 131 155 124 194 81 61 00| 72 81

Wollongong 56 39 26.0 10.6 223 55 [[007 163 205 154 196 224 50

Liverpool 6.6 10.4 16.7 285 83 108 82 [[00 178 85 30.9

Rockdale 3.8 259 266 87 112 46 167 7.0 26.7

Gosford 3.7 36 88 205 114 109 37 50 7.8 130 54 286 3.7 114
Campbelltown 8.3 61 115 63 66 7.4 [J00W 259 82 11.6 124 63

Penrith 9.4 10.6 89 83 158 7.9 5.8 92 47 136 92 9.8

Ryde 53 76 52 105 75 10.2 22.0 209 146

Wyong 84 73 82 83 191 61 41 153 115 83

Baulkham Hills 7.2 00 311 14.4 5 5.4 105 4.4

Canterbury 1.9 3.1 18.6 1.8 8.6 3.1

Camden 12.7 15.9 59 4.4 L 83 7.9 192

Hornsby b 16.3 17.7 255 4.8 d 34 178 136

Canada Bay X 75 145 13.7 g 7.8 100 298

Warringah 5 71 56 198 29 4 ¥ 5.8 13.4 23.0

Shellharbour 80 61 166 6.5 14.7 18.1

Botany Bay 265 60 126 - 8.2 |

Maitland 5 § 9.9 74 136 19.1 § i 6.8 5.3

Holroyd . .. . 21.4 g 1.9

Randwick b 3.9 9.9 16.1

Kogarah .. . 9.7

Auburn b 5.1

Willoughby 1.9

North Sydney b 14.5

Hurstville

Kiama 7.7 [520]

Marrickville 5 8.9 8.9 2.0

Pittwater 11.7 59 52

Port Stephens ! 47 47 114

Burwood

Strathfield

Ku-ring-gai

Lane Cove

Waverley

Ashfield

Woollahra

Leichhardt

Manly

Cessnock

Wollondilly . 4.6 |

Hunters Hill

Mosman

Table 3.2-7. Spatiotemporal electricity available during an average weekend day for vehicle commute
trips under 35 km/trip (red-minimum, yellow—medium, green-maximum electricity available-MWh)

Table 3.2-8 present a comparison of aggregated electric energy available and estimated the rise in
electric energy demand due to recharging of EVs (for weekday and weekend) with trip length less
than 35 km/trip across 50 LGAs of NSW. The estimated rise in electric energy demand due to
recharging of EVs was calculated for the round trips. The location-wise aggregated energy available
in terms of SOC of EV batteries was evaluated after considering the 80% depth of discharge (i.e.
batteries of EV could be discharged up to 20% SOC only). The analysis shows that the rise in energy
demand in 48 out of 50 LGAs of NSW could easily be met by the available electric energy of EVs
for both weekdays and weekends without any additional load on the power grid. More than 50
MWh/day electric energy could be made available for V2X operations in 43 out of 50 LGAs on a
weekday and 23 out of 50 LGAs on weekend day.
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Population Estimated rise in energy Energy available after Diff b/w required &
S.No. LGA density demand commute trips available energy
Weekday Weekend Weekday Weekend Weekday Weekend
people/sq.km | MWh/day MWh/day MWh/day MWh/day MWh/day MWh/day
1 Sydney 6,858 305 67 1,152 207 846 140
2 Fairfield 1,935 248 64 834 290 586 226
3 Ryde 2,686 269 35 848 132 579 97
4 Parramatta 2,849 326 79 899 240 573 161
5  Bankstown 2,485 255 69 814 226 559 157
6  Newcastle 833 436 149 967 323 531 174
7 Randwick 3,793 138 22 664 92 526 70
8  Blacktown 1,301 691 140 1,212 251 521 111
9  Auburn 2,395 161 24 607 80 446 56
10  Warringah 994 282 46 690 115 408 69
11 Sutherland Shire 660 492 158 895 304 404 146
12 Holroyd 2,590 134 20 513 101 379 81
13 Canada Bay 4,025 91 23 445 115 354 92
14 Liverpool 616 331 95 679 187 348 91
15 Hurstville 3,644 89 28 436 72 347 44
16 Ku-ring-gai 1,342 171 15 501 37 330 22
17  Canterbury 4,323 100 28 428 121 328 93
18 Rockdale 3,667 86 35 388 171 302 135
19 Marrickville 4,911 76 12 375 60 299 49
20 Willoughby 3,172 127 18 422 74 295 56
21 Campbelltown 484 284 81 558 157 274 76
22 Botany Bay 1,914 121 41 381 108 260 67
23 North Sydney 6,374 105 28 348 73 243 46
24 Hornsby 354 337 77 577 117 240 40
25  Penrith 456 458 93 686 145 228 52
26 Camden 290 165 58 389 118 225 60
27  Kogarah 3,789 52 9 264 86 212 76
28  Waverley 7,432 26 7 226 34 200 27
29  Strathfield 2,679 63 7 251 39 189 33
30 Leichhardt 5,274 43 3 222 18 180 15
31  Woollahra 4,589 26 3 203 18 177 15
32 Ashfield 5,258 41 7 218 23 177 16
33 Shellharbour 449 101 35 258 111 157 76
34  Lane Cove 3,171 51 9 194 37 143 28
35 Manly 2,983 61 8 185 12 123 4
36 Pittwater 669 75 14 199 54 123 39
37  Burwood 4,795 22 4 143 40 120 36
38  Lake Macquarie 304 501 221 614 266 113 45
39  Mosman 3,393 25 2 131 3 106 0
40  Baulkham Hills 442 485 98 586 127 101 29
41  Maitland 179 127 64 205 104 78 40
42 Wollongong 295 608 181 681 191 73 10
43 Hunters Hill 2,431 10 1 67 7 57 6
44 Wyong 209 434 112 467 131 33 19
45  Kiama 81 24 30 50 72 26 41
46 Wollondilly 18 25 7 35 10 10 3
47  Cessnock 27 25 8 33 11 8 3
48  Shoalhaven 21 10 0 12 0 2 0
49  Port Stephens 78 202 65 164 53 -37 -12
50 Gosford 179 518 193 442 164 -77 -28

Table 3.2-8. Comparison of aggregated electricity available and estimated rise in electricity demand due
to recharging of EVs with trip length less than 35 km/trip
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3.3 Conclusion

In this chapter, the potential rise in electricity demand due to recharging of EV batteries was
calculated as a function of time and location and compared with existing electricity consumption. The
analysis showed that 82% of weekday and 81% of the weekend vehicle commuter trips were for trip
lengths less than 35 km/trip, which could easily be provided by an electric vehicle, and that the
associated increase in average demand for electricity would be 8% on average over all regions. The
results also showed that the rise in demand for electrical energy is likely to be higher in regions where

population density is low.

The results show that the rise in electric energy demand is likely to be higher in regions where
population density is low. This is because people travel large distances for the commute (i.e. home to
work and back) using private vehicles since public train networks are limited in regions with low
population density [41]. It was analysed that rise in electric energy demand was higher in 9 LGAs

compared to other 41 LGAs due to larger commute distance travels.

Lastly, a potential solution for the rise in electric energy demand is presented in terms of available
SOC with EV batteries after round trip completion. This electric energy could be used for V2X energy
transfer operations. The analysis also showed that if recharged every night then many commuter
vehicles would at most times have a substantial excess of electrical energy stored in their batteries,
which could be used for vehicle to grid and other applications. It was calculated that more than 50
MWh/day would be available in 43 out of 50 LGAs on weekdays, or in 23 out of 50 LGAs on weekend
days.
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Chapter 4

Modelling Vehicle Movement

4.1 Introduction

Modelling the spatial distribution of electric vehicle (EV) specifically location and state of charge
(SOC) at a given time is necessary to estimate the potential impact of EVs on the electricity
distribution system and plan the roll out and charging facilities. Unmanaged charging could cause
demand side management issues such as increased power losses, phase imbalances and power quality
problems, as well as overloading and degradation of transformers. The modelling of spatiotemporal

distribution of EVs with their state of charge (SOC) is important for;

1. estimating the impact of dynamic load and/or dispersed electric energy sources on the electric
power infrastructure in terms of overloading, unpredicted peaks in the power demand, power
quality issues and V2X (here ‘V’ refers to vehicle and ‘X’ refers to grid, infrastructure, another
vehicle, etc.) operations management.

ii.  planning the locations of charging infrastructure based on electricity demand

iii.  developing electric energy management strategies

The modelling of data provides simple and compact organisation of measured dataset. In this chapter,
we have modelled the raw data using two techniques (i.e. Regression Tree (RT) and Artificial Neural
Network (ANN)) for estimating the spatiotemporal distribution of vehicles and compared the results.
By estimating the spatiotemporal distribution of vehicles, we will be able to calculate the

spatiotemporal electric energy requirement and availability for EVs by processing the data as in
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Chapter-3. The techniques were implemented on household travel survey data using MATLAB for

two scenarios;

1.  Weekday commute trips

ii.  Weekday non-commute trips
4.2 Modelling Techniques

The data was processed to estimate the spatiotemporal distribution of the vehicles. Models were
compared using statistical methods to evaluate the efficiency. Two techniques (i.e. RT and ANN)
were used to develop models for two scenarios (i.e. ‘weekday commute’ and ‘weekday non-commute’

vehicle trips). This resulted in four cases for spatiotemporal distribution of vehicles.

1.  ‘weekday commute’ vehicle trips using RT

1.  ‘weekday commute’ vehicle trips using ANN
iii.  ‘weekday non-commute’ vehicle trips using RT
iv.  ‘weekday non-commute’ vehicle trips using ANN

4.2.1 Datasets & Assumptions

Aggregated vehicle trips for an average weekday in 56 LGAs of NSW were 11.1 million and for an
average weekend were 8.6 million, extracted from the NSW Household Travel Survey 2014/15 data
[7]. 2.0 million vehicle trips for an average weekday and 0.5 million vehicle trips for an average
weekend day were categorised as commute trips (i.e. home to work and back). Whereas, 9.1 million
vehicle trips for an average weekday and 8.1 million vehicle trips for an average weekend day were
categorised as non-commute trips. The travel patterns for weekday and weekend, commute and non-

commute vehicle trips are plotted in Fig. 4.2-1.
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Fig. 4.2-1. Vehicle travel patterns

There were five input variables ‘X’ (also known as predictors, features, or attributes) and one target

variable ‘Y’ (also known as a response) for all four cases. These input variables are available from

the raw dataset (household travel survey data). The target ‘Y’ was ‘number of trips’ and the five input

predictors ‘X’ were;

1. Origin

2. Depart Time

3. Destination

4. Arrive Time

5. Distance per trip

4.2.2 Performance Measurement

The accuracy of the models is measured using following statistical parameters. In all equations,

A = actual value

F = forecasted value

n = number of periods

t = specific time

40



Chapter-4 Modelling Vehicle Movement

4.2.2.1 Bias

Bias is a measure of general tendency or direction of error. It is a consistent deviation from the mean
in one direction (high or low). The lower value of Bias represents a good model. It is calculated using

equation (1) as follows;

B =Z(A_F) _________ e(l)
n

4.2.2.2 Mean Absolute Deviation

The mean absolute deviation (MAD) is a measure of dispersion. A measure of by how much the
values in the data set are likely to differ from their mean. The lower value of MAD represents a good

model. It is calculated using equation (2) as follows;

Tl Fi
= - e (2)

4.2.2.3 Tracking Signal

Tracking Signal (TS) is used to determine the larger deviation (in both plus and minus) of error in the

model. The lower value of TS represents a good model. It is calculated using equation (3) as follows;

_X(A-F)
M

4.2.2.4 Mean Squared Error

T =—/——— = —————— = e (3)

The Mean Squared Error (MSE) is a measure of how close a fitted line is to data points. The lower
value of MSE represents a good model. It is calculated using equation (4) as follows;
1 (i — Fi)?

Moo= e (4)

4.2.2.5 Root Mean Squared Error

Root Mean Squared Error (RMSE) represents the sample standard deviation of the differences
between predicted values and observed values. The lower value of RMSE represents a good model.

It is calculated using equation (5) as follows.
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4.2.2.6 Mean Absolute Percentage Error

Mean Absolute Percentage Error (MAPE) is a measure of the accuracy of a model in statistics. It
expresses the accuracy as a percentage. The lower value of MAPE represents a good model. It is
calculated using equation (6) as follows;

100" |Ai — Fi
h n i=1 A

————¢ (6
4.2.3 Regression Tree

Decision trees can be categorised as ‘Classification trees’ and ‘Regression trees’. Classification trees
give responses that are discrete (e.g. true or false). Regression trees give numeric responses.
Regression is a data mining technique of predicting the value of a target based on one or more
predictors (categorical or numerical) [42]. Decision tree builds regression models in the form of a tree
structure. It breaks down a dataset into smaller and further smaller subsets while developing an
associated decision tree incrementally at the same time. The result is a tree with decision and leaf
nodes. A decision node has two or more branches with each branch representing values for the tested

attributes. Leaf node represents a decision on the numerical target [43].

We used the Regression Tree (RT) because preparing data, making predictions, representation of
information and selection of predictor variables are fast, easy and reliable. The predictor variables
can be of any type (numeric, categorical, etc.). The trees are insensitive to outliers and missing data
in the predictor variables can be adjusted by using surrogates. The hierarchical structure of a tree
ensures that the response to one input variable depends on values of inputs which are higher in the

tree, therefore, interactions between predictors are modelled automatically [44].

4.2.3.1 Algorithm

The core algorithm for building decision trees is called ID3 (Iterative Dichotomiser 3) invented by
J.R. Quinlan. This employs a top-down, greedy search through the space of possible branches with
no backtracking. The ID3 algorithm uses Standard Deviation Reduction to construct a decision tree

for regression [43].
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A decision tree is built top-down from a root node involving the data partitioning into subsets of
similar values. Standard deviation is used to calculate the homogeneity of a numerical sample. The

standard deviation is zero for the numerical sample which is completely homogeneous [43].

The reduction of standard deviation is based on the decrease in standard deviation after a dataset is
split on an attribute. The main task of constructing a decision tree is to find the attribute that returns
the maximum reduction of standard deviation (i.e., the most homogeneous branches) [43]. Following

are the steps of standard deviation reduction;

1. The standard deviation of the target is calculated.
The dataset is then split into the different attributes.

The standard deviation for each branch is calculated.

Eal e

The resulting standard deviation is subtracted from the standard deviation before the split. The
result is the standard deviation reduction.

The attribute with the maximum standard deviation reduction is chosen for the decision node.
Dataset is divided based on the values of the selected attribute.

The branch set with standard deviation more than ‘0’ needs further splitting.

The process is run recursively on the non-leaf branches until all data is processed.

A S I AR

When the number of instances is more than one at a leaf node, the average is calculated as the

final value for the target.
4.2.3.2 Model Implementation

A model using Regression Tree was developed with MATLAB function ‘fitrtree’. The syntax
“tree = fitrtree(X,Y)” returns a regression tree based on the input variables ‘X’ and output ‘Y. The
“tree” is a binary tree where each branching node is split based on the values of a column of ‘X’. The

model takes the spatiotemporal inputs ‘X’ and predicts the expected number of vehicle trips “Y’.
4.2.3.3 Performance Analysis

The results of Regression Tree models for two scenarios (‘weekday commute’ and ‘weekday non-

commute’ vehicle trips) were tabulated in Table 4.2-1.
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Regression Tree (RT)

Description Weekday Commutes Weekday Non-commutes
No. of Trips 2,047,545 9,078,417
No. of Inputs (predictor) 5 5
No. of Outputs (response) 1 1
Bias 2E-14 1E-14
Mean Absolute Deviation (MAD) 129 305
Tracking Signal (TS) 9E-13 5E-13
Mean Squared Error (MSE) 73,969 771,744
Root Mean Square Error (RMSE) 272 878
Mean Absolute Percentage Error (MAPE) 46% 49%

Table 4.2-1. Statistical analysis of Regression Tree models for 'weekday commute' and ‘weekday non-
commute’ vehicle trips

The analysis shows that the MAD, MSE, RMSE and MAPE for ‘weekday commute’ vehicle trips

were lower compared to similar parameters for ‘weekday non-commute’ vehicle trips. This implies

that RT model for ‘weekday commute’ vehicle trips was better than the RT model for ‘weekday non-

commute’ vehicle trips. Also, Bias and TS for both scenarios are extremely low, almost approaching

zero. This implies that RT models for both scenarios are unbiased.

A Scatter plot of ‘target’ and ‘predicted’ vehicle trips for ‘weekday commute’ and ‘weekday non-

commute’ vehicle trips was presented in Fig. 4.2-2 & Fig. 4.2-3. The comparison of scattered plots

shows that the RT model for ‘weekday non-commute’ trips was more accurate compared to RT model

for ‘weekday commute’ trips.

Scatter Plot
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Fig. 4.2-2. RT Scatter plot of 'Target' Vs
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An Artificial Neutral Network (ANN) is a system which is analogous to the biological neural network,

such as the brain. It is comprised of a network of artificial neurons (also known as "nodes"). These
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nodes are connected to each other. A value is assigned to each connection based on their strength,
with higher values indicating a strong connection. There are three types of neurons in an ANN; input

nodes, hidden nodes and output nodes (Fig. 4.2-4) [45].

Artificial Neural Network

O Weights

O O Weights
O

O O—> o

o O

o 1 |

Input Hidden Output
nodes nodes nodes

Fig. 4.2-4. Types of neurons in Neural Network
The fundamental building block for the neural network is the perceptron. It receives inputs, sums
those inputs, checks the result and produces an output. It is used to classify linearly separable classes.

The perceptron consists of weights, the summation processor, and an activation function.

The inputs and connection weights are typically real values. Within each node's design, there is a
built-in transfer function. The transfer function translates the input signals to output signals. It uses a
threshold to produce an output. Fig. 4.2-5 shows various activation/transfer functions which are used
for training the network. Due to the differentiable property of the log-sigmoid and tan-sigmoid

functions, these are commonly used in back-propagation algorithms.

+1 C o U N0 S I .0 S

__________________________ v 1 v = eap(x)-exp(-x)

-1 -1 1 1

(a) Hard Limit Activation Function (b} Linear Activation Function (¢) Log-sigmoid Activation Function  {(d) Tan-sigmoid Activation Function

Fig. 4.2-5. Examples of Activation/Transfer Functions [46]

ANN is good at fitting functions. We have used ANN models because they require less formal
statistical training to develop. ANN models can implicitly detect complex nonlinear relationships
between independent and dependent variables. They can detect all possible interactions between

predictor variables [47].
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4.2.4.1 Algorithm

Basic steps of an ANN were extracted from [45] and are presented (Fig. 4.2-6) as follows;

1. The input nodes take in numerical information.
This information is presented as activation values and passed throughout the network.

Each node is given a number, the higher the number the greater the activation.

Eal e

The activation value is passed from node to node based on the connection strengths (weights),

inhibition or excitation, and transfer functions.

5. Each of the nodes sums the activation values it receives and then modifies the value based on
its transfer function.

6. The activation flows through the network and hidden layers until it reaches the output nodes.

7. The output nodes then reflect the input as meaningful information.

Process flow for ANN

Output node
reflects input as
meaningful info

Numerical input to Activation values
input node: " passed onto nodes

A A

Each node sums
and modifies the
received values

Info passed onto
network

A A

Activation flows
through the

network untilit |

reaches the output

Each node
assigned a
number

Fig. 4.2-6. Basic process flow for Artificial Neural Network

We have used a supervised two-layer feed-forward network with sigmoid hidden neurons and linear
output neuron. It is called supervised because the trained network can produce the desired outputs in

response to a set of inputs and allow to see how closely the actual output match the target.

ANN models are generally classified into feed-forward (FF) and feed-back (FB) networks. An FF
network is a non-recurrent network which contains inputs, outputs, and hidden layers. It is called FF
because the signals can only travel in one direction. We have used an FF network because it is fast

and easy. The algorithm for FF network extracted from [45] is presented (Fig. 4.2-7) as follows;
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Input data is passed onto a layer of processing elements where it performs calculations.

Each processing element makes its computation based upon a weighted sum of its inputs.
The newly calculated values then become the new input values that feed the next layer.

This process continues until it has gone through all the layers and determines the output.

A threshold transfer function is sometimes used to quantify the output of a neuron in the output

layer.

Process flow for Feed Forward Network

Data input to
layers of Process continues
processing for all layers

elements

A A

Threshold transfer
function used to
quantify output of
neurons

Computations
made based on
weighted sums

New calculated
values — input for
next layer

Fig. 4.2-7. Process flow for Feed Forward Network

The network was trained with Levenberg-Marquardt backpropagation algorithm. We have used this

algorithm because this algorithm typically requires less time. The algorithm for back-propagation

(BP) neural network was extracted from [45]. The backpropagation algorithm is presented (Fig.
4.2-8) as follows;

1.
2.

A training input pattern is provided to the input layer.

The data pattern is then propagated from layer to layer through the network until a pattern is
generated in the output layer.

If the generated output pattern is different from the target, then errors occur.

The errors are calculated and then propagate backwards through the input layer to adjust the
weights to get the required output.

To minimise the error function, the BP algorithm updates the network weights and biases in
the direction in which the negative gradient vector of the error function decreases rapidly.
This is made possible by using a sigmoid as the non-linear transfer function. The sigmoid is

used because it is differentiable.
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Fig. 4.2-8. Process flow for Back Propagation Neural Nework

4.2.4.2 Model Training

A supervised two-layer feed-forward network with fifty (50) sigmoid hidden neurons and one (1)

linear output neuron is used for model training (Fig. 4.2-9).

Hidden Layer Output Layer
Input . : Output
- + Ok
5 b — b — 1
50 1

Fig. 4.2-9. Neural Network Architecture for 'weekday commute' and ‘weekday non-commute’ vehicle
trips

For both datasets (i.e. ‘weekday commute’ and ‘weekday non-commute’ vehicle trips), data was
randomly divided into three categories; ‘training’ (80% of the total data), ‘validation’ (10% of the
total data) and ‘testing’ (10% of the total data). The ‘training’ dataset was presented to the network
during training, and the network was adjusted according to its errors. The ‘validation’ dataset was
used to measure network generalisation, and to halt training when generalisation stops improving.
The last dataset ‘testing’ have no effect on training and therefore provides an independent measure

of network performance during and after training.
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4.2.4.3 Performance Analysis

The results of Artificial Neural Network models for two scenarios (weekday commute and non-

commute vehicle trips) were tabulated in Table 4.2-2.

Artificial Neural Network (ANN)

Description Weekday Commutes Weekday Non-commutes

No. of Trips 2,047,545 9,078,417
No. of Neurons 50 50
No. of Inputs (predictor) 5 5

No. of Outputs (response) 1 1
Bias -1.4 16.2
Mean Absolute Deviation (MAD) 220 673
Tracking Signal (TS) -37 277
Mean Squared Error (MSE) 142,134 1,642,706
Root Mean Square Error (RMSE) 377 1,282
Mean Absolute Percentage Error (MAPE) 98% 226%

Table 4.2-2. Statistical Analysis of Artificial Neural Network models for '‘weekday commute' and
'weekday non-commute' vehicle trips

The analysis shows that the MAD, MSE, RMSE and MAPE for ‘weekday commute’ vehicle trips
were lower compared to similar parameters for ‘weekday non-commute’ vehicle trips. This implies
that ANN model for ‘weekday commute’ vehicle trips was better than the ANN model for ‘weekday
non-commute’ vehicle trips. However, Bias and TS values indicate inappropriate modelling for both
scenarios. The negative values of Bias and TS for ‘weekday commute’ vehicle trips model indicate
that the actual number of trips were consistently less than the predicted model. And, positive values
of Bias and TS for ‘weekday non-commute’ vehicle trips model indicate that the actual number of

trips were greater than predicted model.

The frequency distribution of errors for the ANN model for ‘weekday commute’ and ‘weekday non-
commute’ vehicle trips was presented in Fig. 4.2-10 & Fig. 4.2-11. The ‘error’ is the difference
between desired ‘target’ and ‘output’ of the model. The blue bars represent training data, the green
bars represent validation data, and the red bars represent testing data. For a more accurate model of
prediction, the error should be zero and/or close to zero. The errors for both the models were much
higher. This implies that the model for weekday commute and non-commute vehicle trips could not

be accurately modelled by ANN.
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Fig. 4.2-11. Weekday non-commute trips error
frequency distribution using ANN

Fig. 4.2-12 represent the scatter plot of ANN model for ‘weekday commute’ vehicle trips. The figure

represents the scatter plot of ‘target’ (i.e. desired results) against ‘output’ (i.e. results from the model).

The plot did not represent a good model. A good model would be represented when all data points

follow the desired target represented by a diagonal line.

Fig. 4.2-13 represent the scatter plot of ANN model for ‘weekday non-commute’ vehicle trips. The

figure represents the scatter plot of ‘target’ (i.e. desired results) against ‘output’ (i.e. results from the

model). The plot did not represent a good model.
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4.2.5 Comparison of Modelling Techniques

Two different techniques (i.e. RT and ANN) were used for modelling the spatiotemporal distribution

of vehicles in 50 LGAs of NSW. We have compared these techniques for similar datasets (i.e.
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‘weekday commute’ and ‘weekday non-commute’ vehicle trips). These two models were used

because these models provide good pattern recognition for large and complex datasets.

The comparison of RT and ANN techniques to model the spatiotemporal distribution of vehicle trips
for ‘weekday commute’ vehicle trips using same inputs is tabulated in Table 4.2-3. The comparison
shows that parameters MAD, MSE, RMSE and MAPE were much lower for RT compared to ANN.
The Bias value for RT was almost negligible which implies that the model developed for ‘weekday

commute’ vehicle trips using RT was more accurate compared to ANN.

Weekday Commute

Description Regression Tree (RT) Artificial Neural Network (ANN)
No. of Trips 2,047,545 2,047,545
No. of Inputs (predictor) 5 5
No. of Outputs (response) 1 1
Bias 2E-14 -1.4
Mean Absolute Deviation (MAD) 129 220
Tracking Signal (TS) 9E-13 -37
Mean Squared Error (MSE) 73,969 142,134
Root Mean Square Error (RMSE) 272 377
Mean Absolute Percentage Error (MAPE) 46% 98%

Table 4.2-3. Comparison of RT and ANN models for 'weekday commute' vehicle trips

Similarly, the comparison of RT and ANN techniques to model the spatiotemporal distribution of

vehicle trips for ‘weekday non-commute’ vehicle trips using same inputs is tabulated in Table 4.2-4.

Weekday Non-Commute

O A

9,078,417

No. of Trips 9,078,417

No. of Inputs (predictor) 5 5

No. of Outputs (response) 1 1
Bias 1E-14 16.2
Mean Absolute Deviation (MAD) 305 673
Tracking Signal (TS) 5E-13 277
Mean Squared Error (MSE) 771,744 1,642,706
Root Mean Square Error (RMSE) 878 1,282
Mean Absolute Percentage Error (MAPE) 49% 226%

Table 4.2-4. Comparison of RT and ANN models for 'weekday non-commute' vehicle trips

The comparison shows that MAD, MSE, RMSE and MAPE was much lower for RT compared to

ANN. The Bias value for RT was almost negligible which implies that the model developed for

‘weekday non-commute’ vehicle trips using RT was more accurate compared to ANN.
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Comparing the two models (i.e. RT and NN) for both datasets (i.e. ‘weekday commute’ and ‘weekday
non-commute’ vehicle trips), it could be evaluated that RT models performed significantly better in

modelling the spatiotemporal distribution of vehicles.

4.3 Conclusion

To facilitate analysis and prediction of key variables, the household survey travel data was modelled
using regression trees (RTs) and artificial neural networks (ANNSs). Four scenarios were developed,
two using RT for ‘weekday commute and non-commute’ vehicle trips and other two using ANN for

the same datasets.

The statistical analysis of RT and ANN models for ‘weekday commute’ vehicle trips show that RT
modelled the data more accurately compared to ANN. The statistical parameters MAD, MSE, RMSE
and MAPE for the RT model were very low compared to same parameters for the ANN model.
Similarly, the results of statistical analysis of RT and ANN models for ‘weekday non-commute’
vehicle trips were compared. And a comparison of all statistical parameters show that for ‘weekday

non-commute’ vehicle trips also RT modelled more accurately compared to ANN.

It could be concluded that RT models performed significantly better in modelling the spatiotemporal
distribution of vehicles compared to ANN models. However, these models could be made more

precise by using high-resolution spatial dataset.
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Chapter 5

Conclusion & Future Work

5.1 Conclusion

This research quantified the potential of electric vehicles (EVs) adoption and its consequences in
Australia. Limited distance travel range of EVs is assumed to be the major hurdle in its adoption. We
have analysed household travel survey data for 50 local government areas (LGAs) in New South
Wales (NSW), Australia. It was evaluated that 87% of the total vehicle trips were less than 35 km/trip,
which could easily be provided by an affordable EV. We conducted a similar analysis for regions
with different geographic boundaries (i.e. statistical areas level-3 and suburbs) within NSW,
Australia. The results were consistent and these results were also similar to a study conducted for
vehicle commutes in the United States [5]. Therefore, it could be established that limited range of

EVs would not be a hurdle based on travel needs.

This research also quantified the spatiotemporal impact of EV charging on the electric power grid.
The analysis of household travel survey data for 35 LGAs in NSW shows that electricity demand
would increase by 8% compared to actual electricity consumption per day when 82% of the weekday
commute vehicle trips (i.e. home to work and back) were conducted by EVs. On the contrary, the rise
in electric energy demand in 48 out of 50 LGAs of NSW could easily be met by the available electric
energy from EV batteries without any additional load on the power grid, while EVs are recharged

overnight only.

This research also estimated the potential reduction in greenhouse gas (GHG) emissions. It was

calculated that even if all EVs were recharged from non-renewable coal-fired power plants, the
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greater efficiency of EVs would result in a reduction of 26% COz(eq) across NSW (compared to GHG
emissions from transport sector across NSW in 2011/12). This implies that introduction of EVs could

play a significant role in the reduction of GHG emissions.

Lastly, to facilitate analysis and prediction of key variables, the travel data was modelled using
regression trees (RTs) and artificial neural networks (ANNs). The model provides compact
organisation of measured dataset. The models help in estimating the spatiotemporal distribution of
EVs and calculating the impact of dynamic electric load and/or dispersed electric energy sources on
the electric power network. On comparing both models, it was found that RT models performed

significantly better than ANNs in modelling the travel data.

5.2 Future Work

This research was a macro level analysis of the potential for EV adoption and its consequences in
Australia. This research can be extended to the micro-level evaluation of the spatiotemporal impact
of EV recharging on the power grids. The evaluation could be detailed down to distribution substation
and/or transformer level by estimating the potential spatiotemporal charging and discharging events
for EVs. Thus, comparing electric energy demand due to EV recharging and existing electric power

grid capacity at higher spatial resolution.

It is expected that in future the fleet of vehicles would be electrified. Therefore, another aspect that
could be extended from the existing research is the evaluation of spatiotemporal electric energy

demand due to recharging of automated self-driven electric vehicles fleet.

The models developed in this research were based on some assumptions due to limitations of the
available dataset. These models could be made more accurate by training with a more refined dataset

with higher spatiotemporal resolution.
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Appendix-B Data Samples
LGA Sample Data
day_type|purpose|O_LGA11|D_LGA1l|d_timeperiod|a_timeperiod| weekday_estimates | weekend_estimates
2.00 2.00 9999 8350 24.00 1.00 H#NULL! 465.92
1.00 1.00 8550 8550 24.00 24.00 197.38 H#NULL!
1.00 2.00 8550 8550 24.00 24.00 564.89 H#NULL!
2.00 2.00 8550 8550 24.00 1.00 H#NULL! 202.55
2.00 2.00 8500 8050 24.00 24.00 H#NULL! 525.87
1.00 2.00 8500 7200 24.00 1.00 280.99 H#NULL!
1.00 1.00 8450 8450 24.00 24.00 477.73 HNULL!
1.00 2.00 8450 8450 24.00 1.00 536.83 H#NULL!
1.00 2.00 8450 8450 24.00 24.00 895.82 H#NULL!
2.00 2.00 8450 8450 24.00 1.00 H#NULL! 751.86
2.00 1.00 8450 8450 24.00 24.00 H#NULL! 308.84
2.00 2.00 8450 8450 24.00 24.00 HNULL! 757.47
1.00 2.00 8450 8350 24.00 2.00 214.89 H#NULL!
2.00 2.00 8450 5950 24.00 2.00 H#NULL! 838.38
1.00 1.00 8450 4400 24.00 24.00 285.17 H#NULL!
1.00 2.00 8400 8400 24.00 24.00 335.91 H#NULL!
2.00 2.00 8400 4900 24.00 1.00 #NULL! 530.39
1.00 2.00 8350 8350 24.00 24.00 267.71 H#NULL!
2.00 2.00 8350 8350 24.00 1.00 H#NULL! 558.13
2.00 1.00 8350 8350 24.00 24.00 H#NULL! 416.59
1.00 2.00 8350 7150 24.00 1.00 351.16 H#NULL!
SA3 Sample Data
day_type|O_SA3_11|D_SA3_11| a_timeperiod| d_timeperiod | weekday2014_estimates | weekend_day2014_estimates
1.00 10201 99999 10.00 8.00 336.85 H#NULL!
1.00 10201 99999 18.00 10.00 336.85 H#NULL!
2.00 10201 12802 22.00 20.00 H#NULL! 655.00
1.00 10201 12801 12.00 10.00 303.68 H#NULL!
1.00 10201 12702 8.00 6.00 341.10 H#NULL!
2.00 10201 12602 8.00 7.00 H#NULL! 702.67
2.00 10201 12602 15.00 14.00 H#NULL! 228.22
2.00 10201 12602 20.00 18.00 H#NULL! 816.05
1.00 10201 12601 18.00 17.00 166.47 H#NULL!
1.00 10201 12601 18.00 18.00 296.88 #NULL!
2.00 10201 12601 14.00 13.00 H#NULL! 836.72
1.00 10201 12504 7.00 6.00 1061.03 H#NULL!
1.00 10201 12504 8.00 6.00 348.40 H#NULL!
2.00 10201 12504 9.00 8.00 #NULL! 749.22
2.00 10201 12504 17.00 16.00 #NULL! 826.74
2.00 10201 12503 10.00 9.00 H#NULL! 787.19
2.00 10201 12503 16.00 15.00 #NULL! 730.29
1.00 10201 12501 6.00 5.00 298.73 H#NULL!
1.00 10201 12501 9.00 7.00 329.44 H#NULL!
2.00 10201 12403 11.00 9.00 H#NULL! 1648.91
1.00 10201 12203 6.00 5.00 472.44 H#NULL!
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