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Abstract

This thesis represents nine months of research in the area of embedded domain-specific
programming languages. Kiama is a pure embedded lightweight language processing li-
brary in Scala. It provides classes for language processing paradigms such as attribute
grammars, strategic term rewriting and abstract state machines (ASM) which can be used
for analyzing, translating and executing languages.

In this thesis, we evaluate the ASM component of Kiama by implementing several com-
plex machines for executing the dynamic semantics of the Java language and the Java
Virtual Machine byte code into which it is translated. We use the book “Java and the
Java Virtual Machine: Definition, Verification and Validation” by R. Stärk, J. Schmid and
E. Börger, as our reference. The book describes the Java language version 1.2 using the
ASM method.

We are able to implement the machines without any modifications to Kiama's ASM. The
combination of Scala and Kiama allows us to closely replicate the book’s ASM notations
in executable code. However, we find a few problems with the Kiama ASM library for
which we show workarounds. In addition, we discover a few bugs in the book's machine
definitions and provide fixes in our implementation.
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Chapter 1 Chapter 1  Introduction Introduction
Software is now used in many devices that can directly and indirectly affect our everyday
lives. From a microwave oven in our kitchen to a car in our garage, a cellular phone in
our hand, a pacemaker in the human body, to all modern airplanes are now being con-
trolled by computer software. Hence, software is a crucial part of many products today.
The failure of the software in these devices can be fatal. Hence, the software needs to be
developed using techniques that ensure high reliability. 

A software development process normally starts with capturing the requirements. The re-
sult of that process is an informal specification of the software. A formal model based on
the informal specification is then created which can be used for mathematically validating
the properties of the informal requirements. Abstract State Machines(ASM) which is the
topic of this thesis is one way to formally model systems and software. To implement the
software, the models are recoded using programming languages. Hence, programming
languages are very important in the software engineering process.

To implement a programming language, typically, requires four main components: The
syntax, semantic analyzer, the code generator and the execution engine. The syntax ana-
lyzer parses the textual form of a language into a structured form according to the gram-
mar of the language. Using the structured form, the semantic analyzer makes sure that the
program is correct according to the semantics defined by the language. The code genera-
tor takes the output from the semantic analyzer and linearized it into a sequence of in-
structions. The execution engine, then, executes those instructions.

Implementing a programming language normally requires tools such as parser generators,
syntactic and semantics analyzers. These tools normally live in a separate piece of soft-
ware. For example, JastAdd [1] may be used for attribute grammars for semantics ana-
lyzer, Tatoo [2] can be used for generating LALR parser generator and JFlex [3] is a flex
like tool for generating lexical analyzer for Java. Another approach uses tools that are in-
tegrated into a library. Kiama [4] is such a tool. It is a pure embedded lightweight lan-
guage processing library written in Scala. It moves aways from the traditional language
engineering approach that uses many external tools. The tools in Kiama are set of classes
and objects, packed in a library that can be invoked directly from the software that re-
quires language processing. Some of these components in the Kiama library are, the at-
tribute grammars, the strategic term rewriting and the abstract state machine. The attribute
grammars  which can  be  used  for  implementing the  semantic  analyzer.  Strategic  term
rewriting can be use for translating a tree structure into a linear structure (code generator)
and optimization. Abstract State Machines (ASM) [5] can be used for describing the dy-
namic semantics of programming languages and virtual machines.

In this study, we are interested in the ASM component in Kiama. An ASM is a formal
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method of specifying a system using a state based approach. A specification of a model is
written using the ASM notations which have clear and precise meaning. Similar to Finite
State Machines (FSM), ASM comprise states and rules. The rules update/transit the states.
ASM uses discrete time-step execution model. But contrary to FSM, ASM use abstract
states, not a single symbol state. ASM has a pseudo language to define rules to manipu-
late the abstract states. The rules can be viewed as the logic and states can be viewed as
the inputs and outputs of ASM. These features allow ASM to solve a wider range of prob-
lems than FSM.

1.1  Motivation
There are number of ASM programming languages [6]–[11]. All of them are designed as
an external tool and only for system modeling purposes, thus the models cannot be reused
in the software implementation phrase. Hence, recoding is required if the models are built
with these languages.  

Kiama is a library. The components are just classes and functions. ASM models defined
using Kiama can be invoked from application software written in any JVM languages
which have support for interoperability between languages. Hence, the recoding process
might be removed if the models are specified using Kiama ASM.

Most of the components in Kiama have been evaluated and tested in number of case stud-
ies [12], [13] except the ASM component. There is a sample that shows how Kiama ASM
can be used. The sample is a simple machine for executing the RISC instructions set that
was described in the book Compiler Construction [11]. The RISC example is a very small
example, however so we want to see if Kiama ASM can be scaled to specify a complex
system. 

1.2  Contribution
In this thesis, we evaluate the ASM implementation in Kiama. The research question that
we are investigating in this study is whether the current implementation of Kiama ASM
can be scaled up to a more complex problem than the simple RISC machine in the current
Kiama library. The approach that we use is to implement complex nontrivial machines
using the current ASM implementation in Kiama.

The book Java and the Java Virtual Machine: Definition, Verification and Validation [15]
has developed the formal ASM models of the semantics of the Java language and its vir-
tual machine. In this thesis, we use the term JBOOK to refer to this book. The JBOOK
uses the standard Java version 1.2 specification and divides the specification into 5 levels:
I, C, O, E, and T. Each level is divided into two sub sections: the dynamic semantics and
the virtual machine with its compiler. The I level describes the imperative core expres-
sions and statements. The C level describes the procedural features (static methods). The
O level describes the object-oriented features (dynamic method binding and inheritance).
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The E level describes exception handling features and the T level describes the multi-
threading features. On the JVM side, there is no the T level, but the N level that describes
the native method interface features. 

In addition to the formal mathematical versions of the ASM models, an appendix section
of the JBOOK contains an executable implementation of the ASM models. The imple-
mentation uses a programming language called AsmGofer [8].

We consider the machines in the JBOOK to be complex and non-trivial, so to sufficiently
evaluate the ASM component in Kiama, we implement the I, C and O levels of the dy-
namic  semantics,  the  virtual  machine  and the  compiler. Due  to  time limitation  (nine
months, including preparation of this thesis), we do not implement the E, the T and the N
level. In addition, we feel that the I, C and O level cover the major part of the Java lan-
guage and similar approaches and techniques to those used in the I, C and O can handle
the E, the T and the N level. 

 Our evaluation criteria are:

1. Our code should closely replicate  the mathematical  definition of the machines
used in the JBOOK with correct semantics. 

2. Our transition rules map one-to-one to the transition rules that are used in the
JBOOK.

3. The ASM models that we code using Kiama/Scala in this study, can be invoked
from an application just as any other parts of Kiama.

4. We implement  our  machines  for  this  study  without  modifying  to  any  part  of
Kiama or using any special version of Scala. 

To test our implementation we use the test cases available in the book. For each test case
we expect the execution of the dynamic semantic machines and the virtual machine to
produce the same result. The test cases are designed to exercise all the transition rules of
the machines.

We also compare our implementation and the AsmGofer implementation from the book to
show that Kiama/Scala is more suitable for specifying ASM than AsmGofer. 

We have encountered some problems while we are implementing our code. We present
the workarounds for the problems without modifying the Kiama ASM library. 

The source code of this study is available at  https://bitbucket.org/psksvp/compx/overview
and the appendix sections contain the excerpt of the code. 

1.3  Organization
This thesis is organized as follows. In chapter 2, we discuss the origin and the concept of
ASM. We focus on the concept of abstract states, execution model, the notations and the
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constructs used in the ASM models presented in the JBOOK. We then look at the current
implementation of ASM programming languages.

Chapter 3 describes Kiama ASM in more detail. We use an example that comes with the
Kiama library to describe how the library can be used to write an ASM definition and the
execution model. Some Scala techniques that are commonly used, are also described here.

Chapter 4 describes in detail the scope of this study and the assumptions that we have
made.

Chapter 5 and 6 describes the techniques that we used for implementing the dynamic se-
mantics ASMs and the JVM ASMs with its compiler respectively. These techniques are
available in Scala which allow us to closely replicate the mathematical notation used in
the JBOOK.

Chapter 7 focuses on testing and evaluation. The testing is done by using the test cases
available in the JBOOK and some additional test cases that we wrote. To ensure correct-
ness, we run each test case through the dynamic semantics machines and compile each
test case and run it through the JVM machines. The outputs from both the dynamic se-
mantics machines and the JVM machines must be the same. We also present problems
that we found in the current implementation of ASM in Kiama and how we work around
the problems. In addition, we compare our Kiama/Scala implementation with the Asm-
Gofer implementation by the JBOOK's authors. Moreover, we find bugs in the definitions
of the machines in the JBOOK and describe the fixes in our implementation. 

Chapter 8 presents the conclusion and significance of this study. We also present an idea
of an additional tool that might help developers easily debug ASM models written using
Kiama. 
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Chapter 2 Chapter 2  Related Works Related Works
Many systems of computation can be described using the concept of abstract mechanical
machines which have discrete time-steps execution model. These machines have a num-
ber of states and a set of transition rules which govern the transition and updating of their
states in each step. One such conceptual machine is the Turing machine  [16] which can
be used to model many computable problems. It is an idealized state machine which uses
the concept of tape and the tape reader/writer machine. The tape has a series of symbols
which are read by the reader head. The machine has a set of rules which govern how the
machine responds to a certain symbol. For example if the reader found symbol ’E’ and the
previous symbol that the reader read was ’Q’ then move the tape forward, and write out
symbol ’1’.

Another well known method of state machine modeling is Finite State Machines (FSM).
In a FSM, the behaviors of a system are described using a finite number of states and each
state is represented by a single symbol. In contrast, with Turing machines which use only
the reader  to  read a  symbol,  the FSM defines  arbitrary events  from the environment
which may cause the current state to move to another state. Similar to Turing machines, a
set of rules drives the state transition. 

Turing machines are intended to accept strings as the input and produce strings as the out-
put thus it can be difficult to express non-string operations such as floating point numeri-
cal computation. There are limitations in FSM as well. A state in a FSM is simply a single
symbol and there is no hierarchy in a FSM model. A large number of states is required to
model a large complex system. Thus, the transition rules become very complex and can
be hard to manage. In addition, a single symbol per state limitation results in FSM vari-
able-less which can be difficult to express certain problems. For example, it is not possi-
ble to use FSM to build a machine to do an unbounded counting, an external functionality
(in this case a variable) must be added to implement counting which results in depen-
dency to the underlining programming language which is used to implement the counting
FSM.

2.1  Abstract State Machines
A generalization of the FSM is the Abstract State Machines (ASM) [5]. An ASM is a for-
mal method for specifying a system using the state machine concept (state-based). The
specification of a model is done using the ASM notations with a clear and precise pro-
gramming language constructs. Similar to FSM, the ASM comprises states and rules that
update/transit the states and the discrete time-step execution model. But contrary to the
FSM, the ASM uses abstract states, not a single symbol. Moreover, ASM provides nota-
tions and language constructs to form rules to manipulate the abstract state. To develop a
system using ASM, the system is viewed as having a number of states. A set of transition
rules dictate if any state transition should occur. 
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ASM has been used to specify the semantics of many programming languages [15], [17]–
[19], to specify real and virtual CPU architectures [20], [21] and to specify hard realtime
systems [11], [22], [23]

2.1.1  States
Contrary to a single symbol per  state in FSM, a  state in  ASM is an n-arity function
f(a1,a2,...,an) where a1, a2, ..., an are called locations and f is the state name. An ASM state
could be thought as an unbounded n-dimension array or a multi-keyed hash table abstract
data type. A state can be thought as a memory unit of ASM which allows the read/write
operations. The location abstracts away the memory addressing. 

2.1.2  Rule Constructs
Rules in ASM are the logic which decide whether any states should be updated. It is,
sometime, called the transition rule which is in the form if Condition then Updates or us-
ing patterning matching Pattern → Updates. 

The Updates to each state in the form  f(a1, a2, ..., an) := t.

The updates are done in parallel and is guarded against  inconsistency. An inconsistency
occurs when a state is updated more than one time to a different value in the a step. The
symbol := is used to specify an update which value on the right side of the symbol.

Since ASM is inherently a parallel machine, there are also constructs to simplify the oper-
ations on collection of states. The forall x with p do R construct is to simultaneous exe-
cute rule R for all state x which has property p. The choose x with p do R construct is the
non-deterministic version of forall. It randomly picks a state x which has property p and
execute rule R. 

2.1.3  Execution Model
Contrary to the execution model of procedural programming languages where a program
starts at an entry point and stops when it reaches the end, the execution model of ASM
uses the concept of discrete time-step. In each step, it executes all the rules defined. If any
rule is fired, they may update the machine’s states. The updates to the states at the current
step will be seen at the next step, thus, the updates can be done in parallel. The execution
of ASM terminates, if its states have not changed from the previous step. This state of an
ASM is called the fixed-point. 

To illustrate the ASM execution model, let's look at an algorithm to estimate the loga-
rithm base 2 (log2) of an integer number n. An iterative method of this algorithm will keep
dividing 2 to the number n until n is 1.  Listing 1 shows the algorithm written in Scala.
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To model the algorithm using ASM, we can take advantage of the ASM execution model
to simplify the algorithm. In each step, we only need to divide the number N by 2, if N is
greater than one, otherwise we skip the update. The number of steps for the machine to
reach a fixed-point, will be the result of the algorithm. Listing 2 shows an ASM machine
to estimate log2(9) written using standard notations.  

Function N: ⇒ Number
InitRule = 
  N := 9

MainRule =
  if N > 1 then N := N / 2
  else skip

Step Value of State N

0 (Init) 9

1 4

2 2

3 1

Listing 2: ASM model to estimate log2(9) (left). Keyword Function N is to declare a state which in this case
a nullary function of type Number. The InitRule is executed once at when this machine starts. The MainRule
is executed at each step until a fixed-point is reached. The result (right) of execution of the ASM to estimate
log2(9). The number of steps (without the init step) is the result of log2(9).

2.2  ASM programming languages
Since the first publication on ASM [5] has been published which is also known as the Li-
pari Guide, several programming languages have been developed to execute ASM model
in computers  [24], [25]. These languages are not available, therefore in this report we
only pick the languages that are still available to review.

There are several  approaches to implement  the ASM languages,  we have categorized
them into, pure ASM language, hybrid ASM specification language and ASM extension
or library in another programming language.

2.2.1  Pure ASM language
A pure ASM language offers only the ASM constructs for system modeling, running and
testing of the model only. It does not offer any direct integration to other programming
language or operating system for application development. Hence, it can be used for sys-
tem modeling only.

2.2.1.1  CoreASM
CoreASM [9] is a dynamically typed interpreted ASM language. It runs on the Java Vir-
tual Machine (JVM). However, it does not offer any interface to the other JVM-based
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def log2(n:Int):Int=
{
  var t = 0
  while(n > 1)
  {
    n = n / 2
    t = t + 1
  }
  t // result
}

Listing 1: Iterative method of estimating log base 2 written in Scala using a while loop. 



programming languages. The language implements most of the notations described in the
Lipari guide.

The syntax of CoreASM aims to be close to the standard textual notation described in Li-
pari guide. A machine definition in CoreASM starts with the keyword CoreASM < machine
name >. The state syntax uses the -> symbol to separate the left which is the name and ar-
guments and the right hand side which is the return type of the function. Indentation is
used to indicate a block. The CoreASM type system provides the NUMBER, STRING
and ENUM types. The symbol := is used to update a state. 

CoreASM provides a plugin architecture for the states and rules. The collection of states
and rules can be packaged and reused in a later specification. In fact many of the ASM
standard constructs are written in CoreASM language as a library. 

The main disadvantage of CoreASM is the speed of execution, due to the fact that it is an
interpreted environment. In addition, ASM model written in CoreASM cannot be reused
in the software development phrase if CoreASM is not used as the main development lan-
guage. 

2.2.1.2  CASM
CASM [26] implementation is based on CoreASM syntax. However, CASM is statically
typed while CoreASM is a dynamically typed. CASM requires types to be clearly de-
clared for the arguments of the state and the rules. Type conversion cannot be done auto-
matically.

The aim of CASM is to improve the execution performance which is lacking in the Core-
ASM implementation due to the use of an interpreted approach. CASM offers both an in-
terpreter and a compiler. The compiler generates C++ code which requires a C++ com-
piler to generate the executable. The performance of the compiled ASM specification is
much faster than CoreASM. 

CASM can compile  ASM model  into C++,  however  it  is  not  possible  to  execute the
model from another C++ application.

2.2.1.3  Asmeta
Asmeta [10] is an attempt to steer away from just defining a programming language for
specifying an ASM model, but to use a meta-modeling approach.  Asmeta uses the Object
Management Group (OMG) standard XML Metadata Interchange (XMI) for modeling the
meta  ASM model  (AsmM).  The definition  of  an ASM model  in  AsmM is  served  as
medium between the ASM modeling and the ASM simulation engine.

AsmetaL is a dynamically typed ASM modeling language. It has a compiler which com-
piles AsmetaL to the AsmM XMI definition. The benefits of compiling the ASM model-
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ing language to AsmM XMI definitions are, first the model validation (AsmetaV) and
simulation engine (AsmetaS) can use the XMI directly which make them independent of
modeling languages. Second, the models written in different ASM languages can be inte-
grated, since they are compiled into a common AsmM XMI definition. AsmetaL has been
used for runtime monitoring of Java programs [27].

2.2.2  Hybrid ASM language
Using this approach, the ASM language provides some interfaces to other programming
languages or the running platform operating system. This allows easier application devel-
opment. There are two approaches which this kind of ASM languages use, first is to allow
calling sub-routines written in other programming languages, second is to compile the
ASM specification into another programming language, e.g. C/C++ or Java, the compiled
target languages source code can, then be further integrated with the application source
code and compiled into the binary code of the target platform.

2.2.2.1  AsmL
AsmL [6] is a programming language with the ASM constructs and the execution model.
It is designed to easily interface with the .NET platform. The AsmL compiler generates
the .NET Common Language Runtime (CLR) code. Thus, AsmL can be used to write a
complete application to run on the .NET platform. An interface is also provided by the
AsmL for  other  .NET programming  languages  to  load  and  run  machines  defined  by
AsmL. Moreover, AsmL also supports object oriented programming.

The design goal of AsmL is to be a complete design language from specification phase to
coding and testing phase. The program source code can be written using plain text or em-
bedded in an XML file which can have other documentation tags. 

The execution model is a little different from the other ASM languages. The control of
step is left to the programmer by using a keyword step. The keyword is used to advance
the machine step by one. The statement  step until fixedpoint will execute the rules
within the block until all the states have reached a fixed-point.

AsmL sees the variables in CLR, including the abstract data type collection in the .NET
library as states. State update can be done using the := operator. The type system in AsmL
is the complete .NET platform type system, including the parameterized type.

2.2.2.2  XASM
The aim of XASM [7] is to be extensible, component based and able to interface with the
C/C++ programming language.  XASM is a  compiled language.  The XASM compiler
generates C language code which the programmer can integrate with additional libraries
using the XASM external language interface. This method offers both easy integration
with an application written in C and an efficient executable. XASM supports most of the
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ASM constructs described in the Lipari Guide. 

XASM provides two ways to interface with external C program, first a XASM machine
specification can call external C functions. Second a machine specification which is com-
piled by XASM compiler into C code, can be embedded into a project. Both ways require
the passing and returning of values into and from the machine from the C function must
be typed based on the standard C language data types.

The modular design of the component based concept in XASM makes it easy to reuse the
machine definitions. Each machine can be packaged into a component library. This fea-
ture allows easy structuring of large ASM projects. In addition, each submachine can be
called like a function in which the submachine cannot update any of the states of the
caller. Another way is to execute a machine as a submachine, in this case, the submachine
can update the state of the caller.

Like CASM, XASM is a statically and strongly typed language.  Every rule and state
needs to have a type declared on their arguments. The XASM types are that of the C lan-
guage but without the pointer type.

2.2.3  ASM extension in other programming languages
This kind of ASM implementation uses an existing programming languages and extends
and/or modifies the languages to support the writing and running of an ASM specifica-
tion. There are two approaches, first is to modify the semantics of a language to support
ASM execution mode which as a result, makes the language incompatible with the origi-
nal language.

The second approach is to implement the execution model of ASM as a library in a pro-
gramming language. The advantage of this approach is, there is very little complexity,
thus easy to maintain, because there is no language engineering involve. In addition, it is
easy to integrate in an application development. However, if the language cannot express
the notations and the constructs defined in the Lipari guide [5], this might be difficult to
express some problems in a high level abstraction.  

2.2.3.1  AsmGofer
AsmGofer [8] is a modification of Gofer [28] which is a Haskell-like functional program-
ming language. AsmGofer does not add any new syntax to Gofer, however the internal
evaluation engine of Gofer is modified to support the execution model of ASM which re-
quires updating global states in each of the machine time steps. As a result, code written
for AsmGofer will not run correctly on Gofer and vice versa. The type system in Asm-
Gofer is that of Gofer. The JBOOK has used AsmGofer to implement their ASM models
in executable form.

To define a state, AsmGofer provides a Gofer function (subroutine) initVal. For example
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to create a nullary state, AsmGofer provides a Gofer’s function initVal.

initVal :: Eq a => String → a → a

Hence, to create a new unary state f, the following expression is used.

f = initVal “name” init

The parameter name is the name of the state which is used only when AsmGofer needs to
print error messages related to the state. The state is kept in the variable f. The state up-
date operator := is also defined by AsmGofer as a Gofer’s function shown below.

(:=) :: AsmTerm a => a → a → a → Rule()

The function allows an update to a state in the form f := 10 where f is a state.

Defining a rule in AsmGofer is the same as defining a Gofer function. Gofer's flow con-
trol statements can be used in the body of a rule. AsmGofer implements the  forall and
choose rules which are described in [6]. 

2.2.3.2  Kiama ASM 
Kiama is a pure embedding language processing library. It is a library written in the Scala
language. Since Kiama is our focus in this study, we have put the detail about the Kiama
ASM in chapter 3.

2.3  Summary
Several ASM programming languages have been implemented to executed ASM model in
computer. We have categorized them into: pure ASM language, hybrid ASM language
and ASM that is hosted in another language. The last approach can be done by modifying
an existing language or implement ASM as a Library.

ASM languages reviewed in this chapter except AsmGofer, are implemented using pro-
gramming language development approach. The main advantage of this approach is the
syntax of the language is very similar to the notations used in the Lipari guide. 

The development of AsmGofer does not use the programming language development ap-
proach,  however the runtime of the Gofer  is modified to support  the ASM execution
model which as a result, code written in AsmGofer will not run correctly in Gofer and
vice versa.

Kiama ASM is reviewed in Chapter 3.
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Chapter 3 Chapter 3  Kiama ASM Kiama ASM
Kiama  [4] is a lightweight language processing library for Scala  [29]. The library pro-
vides components for language processing paradigms such as attribute grammars, strat-
egy-based term rewriting and abstract state machines. 

In general, a language processing pipeline comprises a parser, a semantic analyzer and a
code generator or an execution engine (illustrated in Figure 1). In Scala, a parser can be
built using the Scala parser combination library [30]. The Kiama attribute grammars can
be used for semantic analyzing and the strategy-based term rewriting can be used for code
optimization. The ASM component fits in the last part of the language processing pipeline
as the execution engine which is the focus of this study. 

Kiama ASM provides the ASM execution model in the abstract class Machine, the nullary
(0-ary) state in the class State[T] and the unary (1-ary) state in the class ParamState[T]. To
define a machine, a new class must be derived from the Kiama Machine class. The ASM
rules are defined as the methods of the derived machine class. There are two predefined
rules of the  Machine class:  Machine.init and  Machine.main.  Machine.init can optionally be
overridden to initialize the machine while the rule Machine.main must be overridden to pro-
vide an entry point for the machine to start executing. 

A nullary state in Kiama is an instance of the class Machine.State[T]. The class is a param-
eterized class which allows a state to be of any type T that exists in Scala. A unary state is
an instance of the Machine.ParamState[T, U] class. The T is the type of the location and U is
type of the value of the state at location T.
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The := symbol is used as the operator to update a state. The symbol is actually the name
of a method of the class Machine.State[T] and Machine.ParamState[T, U]. Each update to a
state is recorded. At the end of step, all the updates are checked for consistency before the
actual updates can occur. The if_then_else flow control in Scala is used as the if_then_else
rule in ASM, since they have the same semantic.

Kiama ASM is a library, thus there is no modification to the Scala language to support the
writing and running of ASM models. The current implementation of Kiama ASM does
not provide any other predefined rules described in the JBOOK, for example the forall
and the choose rules. However, some ASM constructs can easily be written in Scala. For
example listing  3 (left), shows the  choose rule written in Scala. The parameters to the
method are a list of type T where T can be an instance of class Machine.State and a predi-
cate function fProp. The function is used for determining if a state in the list of type T
meets the selection properties. The anonymous function rule does operations on the states
which has met with the properties. Listing 3 (right) shows an example call to the choose
rule where pc, sp and fp are nullary states of type Int. From the example, the choose rule's
parameters  sl is  List(pc, sp, fp),  fProp is a function  (s:State[Int]) => s.name == “pc”
which is the selection criterion and rule is case s => s + 1 which increases the value of the
state by one.

def choose[T](sl: Seq[T],
           fProp:T=>Boolean)(rule:T => Unit)
{
  val rnd = new scala.util.Random()
  var s = sl(rnd.nextInt(sl.length))
  if(fProp(s))
    rule(s)
}

//example call to the choose rule 
val pc = new State[Int]("pc")
val sp = new State[Int]("sp")
val fp = new State[Int]("fp")
choose(List(pc, sp, fp), 
       (s:State[Int]) => s.name == "pc")
{
  case s => s + 1
}

Listing 3: ASM choose rule written in Scala. The function takes a sequence of states type T (Seq[T]) and a
function that takes a state type T and returns a boolean (fProp:T=>Boolean). The function is used by the
choose rule to determine if  a state satisfies the selection properties.  rule:T => Unit  is  an anonymous
function that takes a state T and operate on it. 

3.2  A Simple RISC ASM in Kiama
To illustrate how Kiama ASM can be used, let's look at the RISC example from the li-
brary. The example implements the RISC instruction set that was described in the book
Compiler  Construction [14].  The  Instruction  set  comprises  memory  movement
(load/store),  integer  arithmetic,  bitwise operations,  control  flow, and input/output.  The
machine has 32 registers, each is 32 bits wide (one word). The full source code of this ex-
ample is available in the Kiama source distribution1.

3.2.1  States
In the RISC machine, the registers,  the flags,  the program counter,  frame pointer and

1 https://bitbucket.org/inkytonik/kiama.
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stack pointer are the states of the machine. 

Registers

The RISC Registers are a 1-ary state in ASM, thus ParamState class is used. 

type2 RegNo = Int
val3 R = new ParamState[RegNo,Int]("R")
The location of this state is the RegNo which is an alias for an Integer. Each location in the
state  stores  a  word  (Integer),  thus  the  class  ParamState is  instantiated  with
ParamState[RegNo, Int](“R”). The argument “R” is a string, defining the name of the
state. It is used for debugging. 

Program Counter, Frame Pointer and Stack Pointer

They are defined as special registers from number 28 to 31 of the state R. Hence they are
defined as the reference to location 28 to 32 of the states R.

val PC = R(28)   // program counter
val FP = R(29)   // frame pointer
val SP = R(30)   // stack pointer

Flags

There are three flags: zero, condition and halt. In Kiama, they are nullary states which are
defined as:

val Z = new State[Boolean]("Z")  // zero flag
val N = new State[Boolean]("N")  // condition flag
val halt = new State[Boolean]("halt") // halt flag 

3.2.2  Instructions
Scala case classes4 are used for representing the RISC instructions. In Scala, case classes
are used as the immutable data holding classes. The data of a case class are specified in
the parameters of the constructor.  Scala automatically generates the accessor methods
(getter) to the data. For example the MOV  instruction type is defined as a case class be-
low.

case class MOV(a:RegNo, b:RegNo, c:RegNo) extends Instr 

The MOV class derives from an abstract class Instr, so that the class can be used with a
polymorphic reference.  The sequence of instructions is  a Scala type  Seq[Instr]5.  The
MOV class can be instantiated like below. 

val m = MOV(1, 23, 2)
println(m.a) // accessor a, print 1
println(m.b) // accessor b, print 23

2 The type keyword defines a type alias. 
3 The val keyword defined an immutable variable (single assignment). 
4 http://www.scala-lang.org/old/node/107
5 The Scala trait Seq is a mixed-in type. Seq[T] provides common methods for accessing sequence structure
like array and list. 
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The RISC machine  keeps  the  instructions  to  be  executed in  a  variable  code  of  type
Seq[Instr]. It indexes the sequence to get the instruction at the PC state index.

3.2.3  Machine and Rules
The  RISC class derives from the abstract class  Machine. The  init method of the abstract
class  Machine is normally overridden to initialize the states. The  init method is invoked
once by the machine before the first step. 

The main method of the Machine class must be overridden to provide an entry point of the
RISC machine class. The main method is the first rule that the Machine class executes and it
is executed repeatedly in every step until fixed-point is reached. Listing 4 shows the code
of the init and main rule and Listing 5 shows the complete list of the rules that execute
the RISC instruction.

override def init {
  PC   := 0
  R(0) := 0
  Z    := false
  N    := false
  halt := false
}

override def main {
  if(!halt) {
  try {
          arithmetic(code(PC)) 
    control(code(PC))
    memory(code(PC))
    inputoutput(code(PC))
  } catch {
    case e: Exception => halt := true
 }
}

Listing 4: The rule init and main of the RISC machine.

The RISC machine executes each instruction by using Scala pattern matching6 of the in-
struction case classes. Pattern matching on case classes is done by putting the rules and
actions inside a match expression. 

 selector match { alternatives }

A sequence of alternatives starts with the case keyword followed by a pattern and the =>
symbol and followed by the action of the pattern. Scala will try to match each pattern in
the sequence in the order that they are written. if the  selector matches with any case
classes in the match block, the data of the matched case class are automatically bound to
the local variables that are passed to the pattern case statement. For example if the pattern

case MOV(x, y, z) => R (x) := R (z) << y 

matches, the local variables x, y, z are automatically bound to the case class data a, b, c of
the MOV class.

In each step, an instruction is selected by the main rule from code at the index which is
the current value of the PC state. The machine continues running until the halt state is set
to true, which prevents any further update to the states. Hence, the fixed-point is reached
and the RISC machine terminates.

6 http://docs.scala-lang.org/tutorials/tour/pattern-matching.html
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def arithmetic(instr : Instr) {
 instr match {
   case MOV(a,b,c)   => R(a) := R(c) << b
   case MOVI(a,b,im) => R(a) := im << b
   case MVN(a,b,c)   => R(a) := -(R(c) << b)
   case MVNI(a,b,im) => R(a) := -(im << b)
   case ADD(a,b,c)   => R(a) := R(b) + R(c)
   case ADDI(a,b,im) => R(a) := R(b) + im
   case SUB(a,b,c)   => R(a) := R(b) - R(c)
   case SUBI(a,b,im) => R(a) := R(b) - im
   case MUL(a,b,c)   => R(a) := R(b) * R(c)
   case MULI(a,b,im) => R(a) := R(b) * im
   case DIV(a,b,c)   => R(a) := R(b) / R(c)
   case DIVI(a,b,im) => R(a) := R(b) / im
   case MOD(a,b,c)   => R(a) := R(b) % R(c)
   case MODI(a,b,im) => R(a) := R(b) % im
   case CMP(b,c)     => Z := R(b) =:= R(c)
                                                      N := R(b) < R(c)
   case CMPI(b,im)   => Z := R(b) =:= im
                                                      N := R(b) < im
   case CHKI(a,im)=> if((R(a)<0)||(R(a)>=im))
                                                  R(a) := 0
   case _               =>
 }
}

def control(instr : Instr) {
 instr match {
   case b:BEQ if Z => PC:=PC+b.label.disp
   case b:BNE if !Z => PC:=PC + b.label.disp
   case b:BLT if N  => PC:=PC + b.label.disp
   case b:BGE if !N => PC:= PC + b.label.disp
   case b:BLE if Z||N =>PC:=PC + b.label.disp
   case b:BGT if !Z && !N =>
               PC:=PC+ b.label.disp
   case b:BR      => PC := PC + b.label.disp
   case b:BSR => LNK := PC + 1
                                      PC := PC + b.label.disp
   case RET(c) => PC := R(c)
                                       if(R(c)=:= 0) 
                  halt := true
   case _     => PC := PC + 1
 }
}

def memory(instr : Instr) {
 instr match {
   case LDW(a,b,im) => R(a):=Mem((R(b)+im)/4)
   case LDB(a,b,im) => halt:=true 
   case POP(a,b,im) => R(a):=Mem((R(b)-im)/4)
                                                 R(b):= R(b) - im
   case STW(a,b,im) => Mem((R(b)+im)/4):=R(a)
   case STB(a,b,im) => halt := true 
   case PSH(a,b,im) => Mem(R(b)/ 4) := R(a)
                                                  R(b) := R(b) + im
   case _           =>
  }
}

def inputoutput(instr : Instr) {
 instr match {
   case RD(a) => R(a):=console.readInt(“:”)
   case WRD(c) => emitter.emit(R(c))
   case WRH(c) =>
    emitter.emit((R(c):Int).toHexString)
   case WRL() => emitter.emitln
   case _     =>
 }
}

Listing 5: rules that execute RISC instruction. The default case _ (underscore character) causes the rules to
do nothing. 

3.3  Summary
In this chapter, we reviewed the Kiama ASM library. We looked at Kiama as a language
processing library in general and where Kiama ASM fitted in the language processing
pipeline.

To understand how to use Kiama ASM, we presented a sample RISC machine implemen-
tation from the Kiama ASM library. We showed how Scala case classes were used to rep-
resent the RISC instructions, how Scala pattern matching was used on the case classes,
how ASM states could be defined and how the rules were defined as the methods of the
RISC machine class. 
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Chapter 4 Chapter 4  Scope of this study  Scope of this study 
This section describes the scope of this study in more detail. Since the JBOOK is our ref-
erence definitions of the Java dynamic semantics and the JVM machines, we briefly de-
scribe the JBOOK. This section, then, describes the scope of our implementation and the
assumptions about what the machines accept. 

4.1  The JBOOK
The JBOOK uses the Java language specification version 1.2 and specifies the dynamic
semantics of the language and its JVM using ASM method. The dynamic semantics of the
Java language and the JVM are described by dividing the language based on features into
five levels: I, C, O, E and T. The JBOOK does not have the T level for the JVM but pro-
vides the N. For each level in the JVM, the JBOOK also presents the compiler which
compiles the Java AST to the JVM instructions for that level. Table 1 summarizes the fea-
tures and the machines defined at each level.

Level Description Machines defined

JavaI/JVMI The imperative core Java expressions and statements. The features of 
the core language comprise the basic primitive data types, the 
expressions (literal, variable declaration, unary, binary inline 
conditional), the statements which include the control flow like, the 
while loop, the if conditional and abruption (break and continue). 

execJavaExpI

execJavaStmI

execVMI

JavaC/JVMC The procedural features. This level introduces the static method call 
and static variables with class and interface scoping. The return 
abruption statement is added.

execJavaExpC

execJavaStmC

execVMC

switchVMC

JavaO/JVMO The object-oriented features. This level extends the previous level 
with class instances and instance method calls.

execJavaExpO

execJVMO

JavaE/JVME The exception handling features. This level adds the exception 
handling statements: the try-catch block and  throw statements.

execJavaStmE

execJavaExpE

execVME

switchVME

JavaT The multithreading features. ExecJavaStmT

JVMN The native method interfacing features. execVMN

Table 1: Summarization of the levels of the Java language features that the JBOOK has divided. 

The ASMs that the JBOOK defines use transition rules and pattern matching to describe
how the Java language and the JVM instructions are evaluated. A transition rule consists
of two parts: a pattern and an action. They are separated by an arrow (→) where the pat-
tern is on the left of the arrow. The action of a transition rule is performed if the pattern
matching succeeds. To illustrate how the transition rules work, let look at an example how
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the machine executes the dynamic semantics of an inline condition expression which is
part of execJavaExpI. The transition rules to process the expression are shown in the last
four lines of listing 6. The α, β and 𝛾 denote the position of each expression in a syntax
tree and the  ►  symbol denotes the current node where  pos is pointing. pos is a nullary
state, its value is the position of a node that the machine is evaluating. At the beginning,
pos is set to the top of the syntax tree. 

execJavaExpI = case context(pos) of
  lit → yield(JLS(lit))
  loc → yield(locals(loc))

  uop αexp →pos := α
  uop ►val →yieldUp(JLS(uop, val))

  αexp1 bop  βexp2 → pos := α
  ►val bop  βexp2  → pos := β
  ►val1 bop ►val2 → if ¬(bop ∈ divMod⋀ isZero(val2)) then yieldUp(JLS(bop, val1, val2)) 

  loc = αexp → pos := α
  loc = ►val → locals := locals ⊕ {(loc, val)}
                                        yieldUp(val)

  αexp0 ? βexp1 : 𝛾exp2 → pos := α
  ►val ? βexp1 : 𝛾exp2 → if val then pos := β else pos := 𝛾
  αtrue ? ►val : 𝛾exp2 → yieldUp(val)
  αfalse ?  βexp1 : ►val → yeildUp(val)

Listing  6:  JavaI transition  rules  for  the  core  Java  expression  (execJavaExpI).  (source)  fig.  3.2  in  the
JBOOK.

The left hand side of the rule  αexp0 ? βexp1 : 𝛾exp2 → pos := α is the pattern of the inline
condition syntax. The pattern notations that the JBOOK uses are very similar to the actual
Java source code. If the pattern matching succeeds, the operation on the right hand side of
the arrow (→) executes which sets pos to α. This means, at the next step, the machine will
evaluate the  αexp0 node. Once the  αexp0 has been evaluated, the machine puts a node val
which is the result of the evaluation in position  α of  restbody.  restbody  is a unary state
which when given a position returns a node. Its purpose is to keep the results of the evalu-
ation which could be seen as an update-to-date version of the syntax tree. 

At the next step, the rule ►val ? βexp1 : 𝛾exp2 → pos := if val then pos := β else pos := 𝛾 is
fired. The action of the rule is to check if the value of val is true or false, if it is true βexp1 is
evaluated, otherwise 𝛾exp2 is evaluated at the next time step.

If pos is at β (►) then the rule αtrue ? ►val : 𝛾exp2 → yieldUp(val) is fired at the next step. As
the result, at the β position in restbody would contain a val which is the result of the evalu-
ation of βexp1. The action of this rule is to yield the result up. This is done using the yieldUp
rule. yieldUp puts the val node in restbody at the position of inline condition node. In fact,
it replaces the inline condition node with the val node in restbody. Table 2 shows the detail
of the execution in each step of an expression 1==1 ? 1 + 2 : -3. 
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When any transition rule has reached a result, there are two kind of actions that it will do:
yield(result) or  yieldUp(result).  yield(result) replaces the current node in  restbody with
the result, while  yieldUp(result) replaces the parent of the current node in  restbody with
the result. The nodes that depends on their children to reach a result, the transition rule
will use yieldUp, while nodes that do not have children, the transition rule will use yield.

4.2  What we implement
We implement all the machines from the I to the O level in both the dynamic semantics
part and the virtual machine part (including the compiler for each level). We feel that the
I, C and O level cover the major part of the Java language and similar approaches and
techniques to those used in the I, C and O levels can handle the E, the T and the N levels. 

The JVM accepts a list of the abstract instruction as input, hence in each level of the
JVM, the JBOOK describes a compiler for that level. We also implement the compiler, so
that we can test the JVM machines. The compiler accepts the Java Abstract Syntax Tree
(AST) as input and compiles the AST into a list of instructions for the JVM to execute.

Constructing an AST by hand can be difficult and time consuming which as a result will
not allow us to do adequate testing. Hence, we implement a simple Java parser using the
Scala parser combinator library [30]. Not all Java sources are accepted by the parser; we
have made some assumptions about what our parser accepts which we describe in the
next section.

Our testing ensure that given a Java program, the running of the machines for the dy-
namic semantics of the Java language and the JVM on the Java program, should produce
the same result. 

Figure 2 summarizes what we implement in this study. 
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Table 2: Step by step evaluation of an inline condition 1 == 1 ? 1+2 : -3.

step transition rule Source matched pos source at pos
1 1 == 1 ? 1 + 2 : -3 1==1
2 1==1 1
3 1 Val(1) 1
4 Val(1) == 1 ? 1 + 2 : -3 1
5 1 Val(1) 1
6 Val(1) == Val(1) Val(true) 1==1

7 val(1) == val(1) ? 1 + 2 : -3 1+2

8 1 + 2 1
9 1 Val(1) 1

10 Val(1) + 2 2
11 2 Val(2) 2
12 Val(1) + Val(2) Val(3) 1 + 2
13 Val(true) ? Val(3) : -3 Val(3)

αexp0 ? βexp1 : 𝛾exp2 → pos := α αexp0
αexp1 bop  βexp2 → pos := α αexp1 
lit → yield(JLS(lit))
►val bop  βexp2  → pos := β βexp2

lit → yield(JLS(lit))
►val1 bop ►val2 →
if ¬(bop ∈ divMod⋀ isZero(val2))
 then yieldUp(JLS(bop, val1, val2))
►val ? βexp1 : 𝛾exp2 →  βexp1
 if val then pos := β else pos := 𝛾
αexp1 bop  βexp2 → pos := α αexp1 
lit → yield(JLS(lit))
►val bop  βexp2  → pos := β βexp2

lit → yield(JLS(lit))
►val1 bop ►val2 →
αtrue ? ►val : 𝛾exp2 → yieldUp(val)



4.3  Assumptions
In this study, we focus on the execution engine (figure 1) of the Java language. At the ex-
ecution engine stage, the AST as been processed by other parts of a language processing
pipeline. Hence, our parser assumes the following:

1. The Java source file is syntactically correct. 

2. The Java source file has correct static semantics.

3. In each level, the JBOOK describes the constraints of the Java source which the
machines accept. Our parser assumes these constraints are already enforced in the
Java source code. For example, all static method calls must use the fully qualified
name.

4.4  Summary
We implement the JavaI, JavaC, JavaO, JVMI, JVMC, JVMO machines and the compiler. We
consider these machines to be non-trivial and suitable for evaluating the Kiama ASM li-
brary. Our research focuses on ASM, thus, we make some assumptions about what our
implementation can accept. These assumptions are what the machine definitions in the
JBOOK also expect. 
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Chapter 5 Chapter 5  The Dynamic Semantics of Java in The Dynamic Semantics of Java in
KiamaKiama

This section describes our implementation of the dynamic semantics of the Java language
in Scala/Kiama. First we show how the Java syntax tree can be represented in Scala, then
we describe the implementation of JavaI, JavaC and JavaO. In each section, we describe the
techniques that are used to implement the states and the transition rules in Scala/Kiama.
In the JavaI section, we give a more detailed account of the techniques that we use than in
the JavaC and the JavaO sections, because the same techniques that we use in JavaI are
reused throughout the implementation of JavaC and JavaO.

5.1  Defining the Java syntax in Scala
The  JBOOK defines  the  syntax  as  a  set  of  production  rules.  The  notations  that  the
JBOOK uses, are close to the textual Java source. For example the expression (Exp) can
be a literal (Lit), a local variable (Loc), a unary expression (Uop Exp), a binary expression
(Exp Bop Exp), an inline condition (Exp ? Exp : Exp) or an assignment (Asgn). The Asgn is
a rule which expands to Loc = Exp. Figure 3 shows the grammars of JavaI.

Section 3.2.2 showed how case classes were used for representing the RISC instructions.
The case classes do not require relationship between each others. However the grammar
of the Java language is a tree structure which requires parent-child relationship between
nodes. Hence, we make the class that represents the expression (class  Exp) an abstract
class, so that any classes extends from Exp can be used as a child of other case classes ex-
tending from class Exp (Listing 7).  

exp
Lit
Loc
Uop exp
exp1 Bop exp2

exp0 ? exp1:exp2

loc = exp

abstract class Exp(children:Seq[Node]) extends Phrase(children)
case class Lit(representation:String) extends Exp(Nil)
case class Local(name:String) extends Exp(Nil)
case class UnaryOp(op:Operator, exp:Exp) extends Exp(List(exp))
case class BinaryOp(op:Operator, exp1:Exp, exp2:Exp) extends Exp(List(exp1, exp2))
case class InlineCond(exp0:Exp, exp1:Exp, exp2:Exp) extends Exp(List(exp0,exp1,exp2))
case class Asgn(loc:Local, exp:Exp) extends Exp(List(loc, exp))

Listing 7: On the left is the syntax notation used by the JBOOK. On the right is the corresponding Scala
case classes of the Java expression (Exp) of JavaI. The hierarchy of these case classes is based on the
grammar in Figure 3.

Figure 4 shows an example of the textual form of a Java expression and its corresponding
case classes representation.
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Exp := Lit | Loc | Uop Exp | Exp Bop Exp | Exp ? Exp : Exp | Asgn
Asgn := Loc = Exp
Stm := ; | Asgn; | Lab: Stm | break Lab; | continue Lab; | if(Exp) Stm else Stm | while(Exp) Stm | Block
Block := {Bstm1….Bstmn}
Bstm := Type Loc; | Stm
Phrase := Exp | Bstm | Val | Abr | Norm

Figure 3: The grammar of the core Java (JavaI) expressions and statements which the JBOOK defines.



i = 2 + (8 * j) Asgn(Local(i), 
     BinaryOp(Lit(2), 
              Op(+), 
              BinaryOp(Lit(8),
                       Op(*),
                       Local(j))))

       Asgn
       /  \
Local(i)   BinaryOp
           /  |  \
      Lit(2)  +   BinaryOp
                  /  |  \
             Lit(8)  *   Local(j)

Figure 4: The textual form of a JavaI expression (i = 2 + (8 * j) ) and its case classes representation. The
case class can be visualized as a tree structure. 

5.2  JavaI

JavaI defines two machines to interpret the dynamic semantics of the imperative core Java
expressions and statements. The expressions consist of the literal of primitive data types,
unary and binary operations, assignment, and inline conditional. The statements consist of
the control flow like the  if condition and the  while loop, abruption statements like the
break, continue and label.  

5.2.1  States in JavaI

JavaI defines three states: pos, restbody and locals.

pos is a nullary (0-ary) state. It acts as a pointer to the current location of a node on the
AST that needs to be executed. The JBOOK defines it as pos: Pos. Pos is an abstract type
for the position of a node in an AST. We use an instance of class State[Int] for pos. Each
node in the AST is assigned a unique integer number, thus, we parameterize the state with
the Scala Int class. 

restbody is a unary (1-ary) state. It acts as the up-to-date state of an AST while the evalu-
ation is in progress. The JBOOK defines it as restbody: Pos → Phrase which is a unary
function that takes a Pos type and returns a Phrase (node type) in an AST. We implement
restbody using the class ParamState[Int, Node]. restbody can be viewed as a dictionary
where the key is a position (Int) and the value is the node at the position. A more detailed
explanation of how restbody is used is given in section 5.2.2.

locals is also a unary state. It acts as the register of the local variables and their values.
The JBOOK defines it as a map between AST node type Loc and another AST node type
Val.

type Locals = Map(Loc, Val)
locals: Locals

Val is a node type which can be any of the Java primitive types. 

type Val = boolean | byte | short | char | int | long | float | double

We implement local using the class ParamState[String, Value[_]]. The parameterized type
String is used as the location of the state which is the name of the local variable. The type
Value[_] is a parameterized class which corresponding with the JBOOK Val type (val is a
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keyword in Scala, hence we name the class Value to avoid any confusion.) In other word,
local is a dictionary where the key is a string (name of a local variable) and the value is
node type Value[_]. There are many meaning in Scala for the _ (underscore) character, but
when it is used in the parameterized part of a class (e.g. Value[_]), it tells the Scala com-
piler to ignore the type. Listing 8 shows our implementation of the Value[_] classes based
on the type Val in the JBOOK.

abstract class Value[T](val value:T, val typeT:Type) extends Phrase(Nil)
case class NullValue() extends Value[Byte](0, ByteType())
case class BoolValue(v:Boolean=false) extends Value[Boolean](v, BoolType())
case class ByteValue(v:Byte=0) extends Value[Byte](v, ByteType())
case class CharValue(v:Char='\u0000') extends Value[Char](v, CharType())
case class ShortValue(v:Short=0) extends Value[Short](v, ShortType())
case class IntValue(v:Int=0) extends Value[Int](v, IntType())
case class LongValue(v:Long=0L) extends Value[Long](v, LongType())
case class FloatValue(v:Float=0.0f) extends Value[Float](v, FloatType())
case class DoubleValue(v:Double=0.0d) extends Value[Double](v, DoubleType())
case class Ref(obj:Class) extends Value[String](obj.id, RefType(obj))

Listing 8: Our implementation of the Value classes.

5.2.2  Transition Rules of JavaI

The JBOOK combines the relevant transition rules in a sub-machine. A sub-machine is
actually a rule. Listing 6 (page 18) shows the sub-machine execJavaExpI that contains the
transition rules for the core Java expressions. We implement our machine by deriving a
new class from Kiama's abstract Machine class. Each of the sub-machines is a method of
the derived class and the states are the instance variables of the class. Listing 9 shows ex-
ecJavaExpI in Kiama/Scala.

The Scala pattern matching syntax is very similar to the notations used by the JBOOK.
However, the transition rules in the JBOOK use the Java syntax notation as the patterns
while our code uses case classes. If the code is compared with the notation used in the
JBOOK, the sequence of the alternatives in our code are reverse of what are written in the
JBOOK, because the pattern matching in Scala is done from the most specific case to the
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private def execJavaExpI: Unit=
{
  context(pos) match
  {
    case lit:Lit                                  => yieldResult(JLS(lit))
    case Local(name)                              => yieldResult(locals(name))
    case UnaryOp(op, Value(v))                    => yieldResultUp(JLS(op, v))
    case UnaryOp(_, exp)                          => pos := exp
    case BinaryOp(op, Value(left), Value(right))  => yieldResultUp(JLS(op, left, right))
    case BinaryOp(_, Value(_), exp2)              => pos := exp2
    case BinaryOp(_, exp1, _)                     => pos := exp1
    case Asgn(loc, Value(v))                      => locals(loc) := v
                                                                                                                          yieldResultUp(v)
    case Asgn(_, exp)                             => pos := exp
    case InlineCond(BooleanValue(_), Value(v), _) => yieldResultUp(v)
    case InlineCond(BooleanValue(_), _, Value(v)) => yieldResultUp(v)
    case InlineCond(BooleanValue(v), exp1, exp2)  => if(v.value) pos := exp1 else pos := exp2                           
    case InlineCond(exp0, _, _)                   => pos := exp2
  }
}

Listing  9:  execJavaExpI  in  Kiama/Scala.  Note:  we  name the  rule  yeild  as  yieldResult  and yieldUp as
yieldResultUp because yield is a keyword in Scala. 



most  general  case.  The reordering of  the  transition rules  does  not  We also move the
checking of divide by zero into the JLS function, instead of checking it at the action of the
transition rule.

5.2.2.1  The Scala Extractor Pattern and the restbody state
In general, an execution of a Java program in an AST form can be viewed as a series of
actions:  traversing, evaluating and replacing.  The traversing action moves through the
tree and does pattern matching. The evaluating action evaluates the matched tree node us-
ing the action on right-hand side of the pattern matching rule. The current node is then re-
placed with the result of the evaluating action. For example an expression node 1 + 2 when
the traversing action gets to this node, the left side of this node is a literal node (Lit(1)),
so it gets evaluated into a value node (Val(1)). The Lit(1) node is replaced with a Val(1)
node. The same thing happens with the right side node Lit(2), which gets replaced with
Val(2) node. And last, the whole expression is then replaced with a Val(3) node which is
the result of this evaluation. Figure 5 illustrates this example.

The transition rules in the JBOOK appears as the node replacing action is being done,
however,  restbody is where the result of each evaluation is kept. For example with the
transition rules below, the node ►val in the second rule is the result of evaluating the node
αexp1 of the first rule. The JBOOK does not mention that the ►val node is actually pulled
from restbody.

 αexp1 bop  βexp2 → pos := α
►val bop  βexp2  → pos := β
  ►val1 bop ►val2 → if ¬(bop ∈ divMod⋀ isZero(val2)) then yieldUp(JLS(bop, val1, val2))

One of our aims in this study is to be able to write our Scala code as closely as possible to
the notation used in the JBOOK. Our implementation uses Scala extractor patterns7 to ac-
complish this [31]. In short, a Scala extractor object is an object that has a method name
unapply. When an extractor object is used in a pattern, the unapply method is invoked by
default. The return value from the  unapply method appears as the argument in the Scala
match-case block. The return value also indicates whether the pattern matched or not,
rather than just providing the value which is used for sub-matching.

The unapply method, in our case, is used to pull the up-to-date node from restbody. For ex-
ample, we use an extractor object Value in the transition rules for the binary operator to
pull the up-to-date node of type  Value[_] from restbody (listing 10). In listing  10, what
appear  to  be  the  argument  of  the  extractor  object  Value is  actually  what  the  unapply

7 http://docs.scala-lang.org/tutorials/tour/extractor-objects.html
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      +               +               +             
      /\       =>     /\       =>     /\   =>  Val(3)
 Lit(1) Lit(2)   Val(1) Lit(2)   Val(1) Val(2)

Figure 5: An execution of 1 + 2 expression by way of replacing each node with the result of the evaluation
of the node.



method returns and is matched against the identifier patterns left and right. The under-
score character (_) in this case is a wildcard pattern that matches anything. Listing  11
shows the code of the extractor objects that we define to pull different types of an AST
node including the Value[_] node. They derive from an abstract parameterized class Sin-
gleExtractor. The derived classes specify the node type in the parameterized type of the
class SingleExtractor. The extractor objects are reused throughout our implementation in
JavaC and JavaO. 

   case BinaryOp(op, Value(left), Value(right)) => yieldResultUp(JLS(op, left, right))
    case BinaryOp(_, Value(_), exprRight)        => pos := exprRight
    case BinaryOp(_, exprLeft, _)                => pos := exprLeft

Listing 10: The extractor object Value is used for pulling the up-to-date node from restbody.

// T is an AST node type
abstract class SingleExtractor[T:ClassTag]
{
  def extract(e:Node):Option[T]=
  {
    val n:Node = restbody(e)
    n match
    {
   // if the type of n is the same with T
      case v:T => Some(v)
      case _   => None  // unless return none
    }
  }
}

object Value extends SingleExtractor[Value[_]]
{
  def unapply(e:Node) = extract(e)
}
object BooleanValue extends SingleExtractor[BoolValue]
{
  def unapply(e:Node) = extract(e)
}
object RefValue extends SingleExtractor[Ref]
{
  def unapply(e:Node) = extract
}
object Normal extends SingleExtractor[Norm]
{
  def unapply(e:Node) = extract(e)
}

Listing 11: The restbody extractor classes (Value, BooleanValue, RefValue and Normal). Each is used for
matching a different type of Node in restbody. The unapply(e:Node) method of an extractor class is invoked
by  default  when  it  is  used  in  a  pattern.  The  unapply(e:Node)  method  invokes  the  base  class
(SingleExtractor) method extract(e:Node) which looks up a single node from restbody of a specified type T. 

The extractor object  Value only pulls a single node from  restbody. However, there are
some other cases where the list of children of a node needs to be pulled from restbody.
An example of this case is the Block node. The children of a Block node are statements
(Stm). The processing of these statements is done one by one which normally yields a Norm
node as a result, except for the abruption statements (break, continue and return). Listing
12 (left) shows the transition rules defined by the JBOOK to process Block node. The first
rule checks for an empty block. The second rule matches a non-empty block, and sets pos
to the first statement in the block, so that it gets processed in the next step. The third rule
matches with a non-empty block that all statements have been processed (Norm node is a
result of processing statement). The forth rule matches with a partially processed block
where some statements in the block have been processed (Norm) and some have not been
processed (Stm). 

{}                                                           → yield(Norm)
{α1stm1 … αnstmn}                                  → pos := α1

{α1Norm … ▸Norm}                              → yieldUp(Norm)
{α1Norm … ▸Normαi+1 stmi+1 … αnstmn} → pos := αi+1

case Block(Nil,Nil) => yieldResult(Norm())  
case Block(_,Nil)   => yieldResultUp(Norm())
case Block(_,stm::_)=> pos := stm

Listing 12: The transition rules to process block statements. JBOOK is on the left and Kiama/Scala is on
the right.
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We implement another extractor object which pulls the children of a node from restbody.
It works by splitting the list of the children into two lists where the first list contains just
the Norm nodes (already processed). The second list contains the Stm nodes which have not
been processed. Hence, we can write our transition rules as in listing 12 (right). The first
argument of the Block extractor is a list of Stm nodes that have been processed and the sec-
ond is the list of unprocessed Stm nodes. We only need three rules, because the second and
the fourth rules are written together in our third rule (Block(_, stm :: _)). If all the Stm
nodes in that block have been processed, the second list is empty (Block(_, Nil)). Other-
wise, the head of the second list is the next stm node to be processed (Block(_, stm :: _)).
In Scala, the :: symbol is a method of the List8 class. When using it in a pattern, the left
hand side of the :: symbol is bound to the head node of the list and the right hand side is
bound to the rest of the list. 

We encapsulate these functionalities in an abstract class  SequenceExtractor, so that we
can share it among different type of nodes. Listing 13 shows the source code of the ex-
tractor object Block. The SequenceExtractor class is reused in the processing of arguments
list in the implementation of the Java method call in JavaC  and JavaO (class Exprs ).

5.2.2.2  Scala Implicit conversion and the pos State
The JBOOK does not specify the type of pos state. It uses an abstract type Pos. We use an
integer to represent the position of a node in an AST. In the JBOOK, pos is assigned to an

8 http://www.scala-lang.org/api/current/index.html#scala.collection.immutable.List
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abstract class SequenceExtractor[T:ClassTag](listProcessedNodeType:List[Node])
{
  def extract(e:Node):Option[(List[Node], List[Node])]=
  {
    e match
    {
      case v: T =>
        val ls = childrenInRestbodyOf(e)
        if(Nil == ls) 
     Some((Nil, Nil)) // empty sequence
        else
          findNode.index(notOfTheseTypes = listProcessedNodeType, inList = ls) match
          {
            case Some(idx) => Some(ls.splitAt(idx))// still some nodes to be processed
            case None      => Some(ls, Nil)        // all has been processed
          }
    }
  }
}
object Block extends SequenceExtractor[AST.Block](List(Norm()))
{
  def unapply(e:Node) = extract(e)
}
object Exprs extends SequenceExtractor[AST.Exprs](Group.valueNodeList)
{
  def unapply(e:Node) = extract(e)
}

Listing 13: The extractor object Block and Exprs. The objects extend from an abstract class
SequenceExtractor. The unapply method returns two lists, the first list contains list of nodes
that have been processed and the second contains the nodes which still need to be processed. 



abstract position using greek alphabets (α, β and 𝛾). Each AST node in our implementa-
tion has an Int value attached with it. Every node type in our implementation is derived
from an abstract class Node. The method position of the root class Node returns its posi-
tion in an AST. Normally if we want to code an expression written using the notation in
the JBOOK like

 uop αexp →pos := α, 

our code would look like below

case UnaryOp(_, expr) => pos := expr.position

In Scala, an implicit function is a function that has the implicit keyword modifier. When
a variable is assigned with a value from different type, the Scala compiler will search for
an implicit function that can provide a conversion from the assigned type to the variable
type. With an implicit function, we can rewrite the above code like below.

case UnaryOp(_, expr) => pos := expr

This simplifies our code and makes it easy to read. We do not just use the implicit conver-
sion technique here, we have used it to greatly simplify the code in the implementation of
the Java compiler which we describe in section 6.3. 

5.3  JavaC

JavaC introduces the dynamic semantics and the syntax of the procedural Java language. It
adds support for the procedural call of static methods. Before calling a static method, all
the states of JavaI are pushed on to a stack frame and initialized to a new environment of
the  method  call.  Before  returning  from a  method  call,  the  top  of  the  stack  frame is
popped. The states in JavaI are set to the values that are popped from the stack frame.

5.3.1  States in JavaC

globals is a unary state where the location of the state is the Field.ID and the value of the
state is a node type Value[_]. A Field.ID is a string that contains the fully qualified name
of a static field. The value of each static fields are kept in this state through the lifetime of
the program.

meth is a nullary state of type Method. A Method is a node type. The state meth is pointing
to the current method that is being executed. 

classState is a unary state where the location is the Class node and the value is a type
ClassState.  ClassState can be the following values;  Linked,  InProgress,  Initialized
and Unusable. 

superClass is also a unary state. It is a dictionary where the key is a Class node and the
value is also a Class node which is the super class of the key.

frames is a nullary state of type List. It serves as the stack frame between method calls.
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Each item in the stack contains the caller method pointer (meth),  restbody, pos of the
node where the invocation occurs and local of the caller. 

5.3.2  Transition Rules of JavaC

Similar to the transition rules of JavaI, the transition rules of JavaC are also divided into
the expression (execJavaExpC) and the statement (execJavaStmC). 

The execJavaExpC sub-machine contains transition rules to process the getting/setting of
static the fields value which are stored in the global state. The transition rules for invoca-
tion of a method in execJavaExpC require the arguments of the method to be evaluated be-
fore the invocation can be processed. Each of the arguments of a method invocation is an
expression which the transition rules of JavaI handles. An invocation is ready to take place
when all the arguments have been processed into values (Value[_] node).

execJavaStmC contains transition rules to process the  return statement. The statement is
an abruption in addition to break and continue which are defined by JavaI. 

In JavaC, restbody contains the AST of the method that is currently running. Thus, JavaC

requires an entry point method to be specified before running. 

The JBOOK defines two rules to support the invocation of methods: invokeMethod and ex-
itMethod. invokeMethod puts all the states defined in JavaI on the stack frame and exitMethod
does the opposite which is to restore the environment of the caller method. Listing  14
shows the implementation of the rules. 

private def invokeMethod(nextPos:Int, method:Method, vals:Vals): Unit=
{
  firstPos = positionInBodyOfNode(method.body)
  frames := push(frames, (meth.value, restbody.value, nextPos, locals.value))
  meth := method
  pos := firstPos 
  restbody := copyFromBody(fromNode=method.body)
  locals := makeLocals(method.signature.parameterList, vals)
}

private def exitMethod(result:Node): Unit=
{
  val (oldMeth, oldPgm, oldPos, oldLocal) = top(frames)
  meth := oldMeth
  pos := oldPos
  locals := oldLocal
  frames := pop(frames)
  firstPos = oldMeth.body.position 
  if(methNm(meth) == "<clinit>" && result.isInstanceOf[Norm])
  {
    restbody := oldPgm
    classState(classOf(meth)) := ClassState.Initialized
  }
  else
  restbody := updateTree(result, oldPos, oldPgm)
}

Listing 14: The implementation of the invokeMethod and exitMethod rules in Scala/Kiama.

If the callee method returns a value, a corresponding Value[_] node is passed as a parame-
ter to the exitMethod rule. restbody of the caller at the position of the method invocation is
replaced with that Value[_] node and otherwise, for methods with no return value, the po-
sition is replaced with a Norm node.
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We have found a problem with the definition of exitMethod in the JBOOK. The explana-
tion of the problem is in section 7.4.1. 

5.4  JavaO

JavaO introduces the object-oriented aspect of the Java language. The Ref and Null type are
added to the type system. JavaO uses heaps to model the dynamic of objects’ state. A heap
is storage for keeping track of the values of the instance fields of a class. The JBOOK de-
fines it as is:

data Heap = Object(Class, Map(Class/Field, Val))

In Scala, we define a heap as:

abstract class Heap
case class Object(clazz:Class, fields:MutableMap[Field, Value[_]]) extends Heap

JavaC keeps the values of all static fields in the global state, but they are kept uniquely by
using  the  fully  qualified  name of  the  fields.  However,  JavaO keeps  the  values  of  all
instance fields in the heap. 

5.4.1  State of JavaO

JavaO adds one more state to keep track of the heap objects. It is a map from the Ref type
to the Heap class. 

val heap = new ParamState[Ref, Heap]("heap")

5.4.2  Transition Rules of JavaO

The JBOOK defines a sub-machine execJavaExpO which consists of transition rules to
process the following: the this reference is a Ref type. In every instance method call, this
is stored in the local state (JavaI defines the state). The new keyword is used for creating a
new instance of a class. The transition rule ensures that the class is initialized. Then, it
creates a heap object for the class and place the heap in the heap state.

The transition rules for setting/getting of the values of instance fields of a class are similar
to the setting/getting of static fields except instance variable (type  Ref) needs to be re-
solved by looking up the value from the associated heap object.

The instanceof keyword is used for checking if a class is derived from another class. The
transition rule searches the class hierarchy and yields up a boolean value Node.

The transition rule for casting of one class to another searches for a sub-class of the target.
The machine stops, if the sub-class is not found.

The transition rules to process instance method calls have to determine the call kind. If
the method belongs to the class, the call kind is special. However, if the method belongs
to the parent class, the call kind is super. The last kind of method call searches the method
from within the class and up to the parent classes, this call kind is virtual. To determine
the kind of method calls, the JBOOK defines an abstract rule callKind for which our im-
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plementation is shown in listing 15. 

private def callKind(pos:Int):CallKind=
{
  restbody(pos) match
  {
    case InstanceInvk(RefValue(ref), m, Values(params)) =>
      val c:Class = classOf(ref)
      val msig = makeSignature(m, params)
      c.lookupMethod(msig) match
      {
        case Some(method) => CallKind.Special
        case None         => env.superClassOf(c).lookupMethod(msig) match
                                                         {
                                                             case Some(method) => CallKind.Super
                                                             case None         => CallKind.Virtual
                                                         }
      }
 }
}

Listing 15: The implementation of callKind rule in Scala.

The visibility of the methods and fields are enforced at the earlier stages in the language 
processing pipeline. 

5.5  JLS
The JBOOK defines an abstract function JLS to handle Java literal recognition and the
computation for unary and binary operators. The notations that the JBOOK uses appear as
there are three overloads of the function: one for converting literal to a  Value[_] node
(JLS(lit)) and one for the computation of unary operator (JLS(uop, val)) and another one for
the computation of the binary operator (JLS(bop, val1,  val2)). To keep the notations that the
JBOOK uses, we implement these functions in Scala as an object (a singleton) with three
different overload of the apply methods. They allow the JLS object be used like a func-
tion. Listing shows our implementation of the JLS object. 

object JLS
{
  def apply(lit:AST.Lit):Node = litParser.parse(lit.representation)
  def apply(op:Operator, v:Value[_]):Node=
  {
    v match
    {
      case BoolValue(t)   => doUnary(op, t)
      case ByteValue(t)   => doUnary(op, toInt(t))
      case CharValue(t)   => doUnary(op, toInt(t))
      case ShortValue(t)  => doUnary(op, toInt(t))
      case IntValue(t)    => doUnary(op, t)
      case FloatValue(t)  => doUnary(op, toDouble(t))
      case DoubleValue(t) => doUnary(op, toDouble(t))
    }
  }
  def apply(op:Operator, left:Value[_], right:Value[_]):Node=
  {
    val result = doBinary(op, left, right)
    systemValueToJLSValue(result)
 }
}

Listing 16: The implementation of the JLS function in Scala. The apply methods allow us to call the object
just  like a function:  JLS(lit)  invokes  apply(lit:AST.Lit), JLS(uop,  val)  invokes  apply(op:Operator,
v:Value[_]) and JLS(bop, val1, val2) invokes apply(op:Operator, left:Value[_], right:Value[_])
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We use the Scala combinator parser library for literal recognition. In particular, we use the
JavaTokenParser9 class of the library to do most of the work. The class can recognize
whole numbers, decimal numbers, string and floating numbers. 

Handling the unary and binary operators requires type computation. For example, the ex-
pression 1 + 1.2 has result of type double, since 1.2 is a double literal. Table 3.3 and 3.2 in
JBOOK define how the type computation can be done for the Java unary and binary oper-
ators. We have encoded the tables in Scala for which the code is shown in listing 17. To
encode the table, we use pattern matching to match the operators with the operands. The
function max in the source code returns the type that has the widest size.

def typeOf(op:Operator, opdType:Type):Type=
{
  (Operator.toString(op), opdType) match
  {
    case ("!", _:BoolType)        => BoolType()
    case ("~", a:IntegralType)    => max(a, IntType())
    case ("-"|"+", a:NumericType) => max(a, IntType())
  }
}
def typeOf(op:Operator, opdLType:Type, opdRType:Type):Type=
{
  (Operator.toString(op), opdLType, opdRType) match
  {
    case ("*"|"/"|"%"|"+"|"-", a:NumericType, b:NumericType)  => max(a, b, IntType())
    case ("<<"|">>"|">>>", a:IntegralType, b:IntegralType)    => max(a, IntType())
    case ("<"|"<="|">"|">=", a:NumericType, b:NumericType)    => BoolType()
    case ("=="|"!=", a, b) if(subType(a, b) || subType(b, a)) => BoolType()
    case ("&"|"^"|"|", a:IntegralType, b:IntegralType)        => max(a, b, IntType())
    case ("&"|"^"|"|", _:BoolType, _:BoolType)                => BoolType()
    case ("||" | "&&", _:BoolType, _:BoolType)                => BoolType()
  }
}

Listing 17: The type calculation for the Java unary and binary operators.

5.6  Summary
In this chapter, we described the techniques that we used to implement the Java dynamic
semantic  machines.  These  techniques  include  pattern  matching,  case  classes,  implicit
functions, and extractor patterns.

Scala pattern matching is used as our main coding pattern. The machines pattern matches
the case classes which are used for representing the abstract syntax tree. In addition, the
type computation and the compiler (section 6.3) also use pattern matching extensively.

We use Scala extractor patterns to pull the up-to-date nodes from restbody which stores
the results of evaluation. In effect, this process makes it appear as if the nodes of an AST
are replaced by their evaluation results.  

The implicit functions make the code more readable and frees us from the details of con-
verting between types. 

9 http://www.scala-lang.org/api/2.10.2/index.html#scala.util.parsing.combinator.JavaTokenParsers
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Chapter 6 Chapter 6  The Dynamic Semantics of the JVM The Dynamic Semantics of the JVM
and the Java Compiler in Kiamaand the Java Compiler in Kiama

This chapter describes our implementation of the dynamic semantics of the JVM and the
Java compiler. We first describe how the JVM instructions are implemented, then we de-
scribe each level of the JVM machines that we implement. Last, we describe the imple-
mentation of the Java compiler which the JBOOK has left out the details of many func-
tions.

6.1  The Abstract Instructions
To simplify the transition rules of the JVM, the JBOOK groups the actual JVM instruc-
tions into abstract instructions based on the similarity of their functions. For example the
arithmetic  and  conditional  operations  are  grouped  into  a  Prim(p) abstract  instruction
where p is the type of the operator. The JBOOK summarizes all the abstract instructions
in its reference section C.8 page 355.  

Similar to the RISC example (section 3.2), we implement these abstract instructions using
the Scala case classes. For example listing 18 shows the definition of the instructions sup-
ported by the JVMI.

abstract class Instruction
case class Prim(opcode:PrimOp) extends Instruction
case class Load(t:MoveType, x:RegNo) extends Instruction
case class Store(t:MoveType, x:RegNo) extends Instruction
case class Dupx(s1:Size, s2:Size) extends Instruction
case class Pop(s:Size) extends Instruction
case class Goto(lab:LabelDef) extends Instruction
case class Cond(opcode:PrimOp, lab:LabelDef) extends Instruction
case class Halt() extends Instruction

data Instr = Prim(PrimOp)
           | Load(MoveType,RegNo)
           | Store(MoveType,RegNo)
           | Dupx(Size,Size)
           | Pop(Size)
           | Goto(Offset)
           | Cond(PrimOp,Offset)
           | Halt

Listing 18:  The instructions for JVMI, defined in Scala (left) and the notations used by the JBOOK (right).

6.2  The JVM ASM
The JVM is a word (4 bytes) stack-based machine. All the primitive data types in the Java
language are mapped into one word or two words: boolean, char, short, int and float are
mapped to a word and long and double are mapped into two words. 

Our Scala/Kiama JVM ASM implementations are similar to the RISC example (section
3.2). Pattern matching and case classes are used extensively in the implementation. Im-
plicit functions are used to simplify our code, for example list concatenation in the imple-
mentation of the compiler. The implementation is more straightforward than the imple-
mentation of the dynamic semantics of the Java language machines because the input to
the JVM is just a list of instructions which is a linear structure. Executing a list of instruc-
tions is like walking on a straight line which is simpler than walking on a tree. Moreover,
there are no node replacing actions (restbody) like in the machines for the dynamic se-
mantics of the Java language, because a list of instructions that the JVM executes doesn’t
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evolve as the evaluation proceeds since the complete state of the machine is represented
by other states. The pattern matching in the JVM implementation is also simpler than the
pattern matching of the dynamic semantics of the Java language.

Our Scala implementation is a one-to-one mapping with the mathematical definitions in
the JBOOK.  Listing 19 shows a side by side comparison of JVMI between the mathemat-
ical definition in the JBOOK and our Kiama/Scala implementation. 

private def execVMi(inst:Instruction): Unit =
{
  inst match
  {
    case Prim(p) =>
      val (opdP, ws) = split(opd, argSize(p))
      opd := opdP ::: JVMS(p, ws)  
      pc := pc + 1
    case Dupx(s1, s2) =>
      val (opdP, ws1::ws2::_) = splits(opd, List(s1, s2))
      opd := opdP ::: ws2 ::: ws1 ::: ws2
      pc := pc + 1
    case Pop(s) =>
      val (opdP, ws) = split(opd, s)
      opd := opdP
      pc := pc + 1
    case Load(t, x) =>
      if(1 == size(t))
        opd := opd :+ reg.value(x) 
      else
        opd := opd :+ reg.value(x) :+ reg.value(x + 1)
      pc := pc + 1
    case Store(t, x) =>
      val (opdP, ws) = split(opd, size(t))
      if(1 == size(t))
        reg(x) := ws(0)
      else
      {
        reg(x) := ws(0)
        reg(x + 1) := ws(1)
      }
      opd := opdP
      pc := pc + 1
    case Goto(offset) => pc := offset
    case Cond(p, offset) =>
      val (opdP, ws) = split(opd, argSize(p))
      opd := opdP
      if(1 == JVMS(p, ws).head)
        pc := offset
      else
        pc := pc + 1
    case Halt() => halt := "Halt"
    case _ =>
  }
}

execVMI(instr) = case instr of
  Prim(p) → let(opdʹ, ws) = split(opd, argSize(p))

         if p ∈ divMod ⇒ sndArgIsNotZero(ws) then
           opd := opdʹ · JVMS(p, ws)
           pc  := pc + 1

  Dupx(s1,s2) → let(opdʹ,[ws1,ws2])=splits(opd,[s1,s2])
             opd :=  opdʹ · ws2 · ws1 · ws2

             pc  := pc + 1

  Pop(s) → let(opdʹ, ws) = split(opd, s)
        opd :=  opdʹ
        pc := pc + 1

  Load(t,x) → if size(t)=1 then opd := opd · [reg(x)]
          else opd := opd · [reg(x), reg(x + 1)]
          pc := pc + 1

  Store(t,x) → let(opdʹ,ws) = split(opd,size(t))
            if size(t) = 1 then
              reg := reg ⊕ {(x, ws(0))}
            else
              reg := reg ⊕ {(x,ws(0)),(x+1,ws(1))}
            opd := opdʹ
            pc := pc + 1

  Goto(o) → pc := o

  Cond(p,o) → let(opdʹ, ws) = split(opd,argSize(p))
           opd := opdʹ
           if JVMS(p,ws) then 
             pc := o 
           else 
             pc := pc + 1

  Halt → halt := “Halt”

Listing 19: JVMI ASM, Kiama/Scala Implementation on left and the mathematical definition of the machine
in the JBOOK.

6.2.1  JVMI

There are number of states defined by JVMI: halt, pc, opd, and reg. halt is a nullary
state of type string, if it is set to “Halt”, the JVM is terminated. pc (program counter) is
a nullary state of type Int. It points to the current instruction. opd is a nullary state of type
List[Int]. It acts as the operand stack. reg is a unary state where the location is a RegNo
type which is an alias for a string and the value is the Int type. reg is similar to the local
state in JavaI. It keeps track of the values of the local variables. 

JVMI defines instructions, transition rules for the core Java expressions and statements.
These instructions include the primitive (Prim) operations for unary and binary operators,
Load,  Store and Pop for stack operations, direct (Goto) and conditional jump (Cond). The
transition rules map these instructions to their semantics. For example, the semantic of the
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Prim(p) is to take the operand from the top of the stack and do the calculation (JVMS)
based on the primitive p (listing 20). The result of the calculation is pushed back on the
stack. The JBOOK defines JVMS as an abstract function which we explain in section 6.4.
We have added one extra instruction: LabelDef which has no execution semantics and its
purpose is explained in section 6.3.2. 

case Prim(p) => val (opdP, ws) = split(opd, argSize(p))
                                      opd := opdP ::: JVMS(p, ws)       
                                      pc := pc + 1                     

Listing  20: Transition rule for the abstract instruction Primp(p). The ::: symbol is a method of the List
class. It concatenates two lists together. JVMS is an abstract function defined by the JBOOK. Section 6.4
describes our implementation of JVMS.

6.2.2  JVMC

JVMC defines instructions and transition rules for static method calls and static fields.
Getting and setting values of static fields are handled by the GetStatic and PutStatic in-
structions. The InvokeStatic instruction is used for static method calls and the Return in-
struction is used for returning a value from a method call.

The states in JVMC are defined to keep track of class state, method calls and the values of
static fields. classState is a unary state where the location is a Class node and the value
is the state of the Class which can be Linked or Initialized.  stack is a nullary state of
type List[Frame]. It is used for saving and restoring the states of JVMI for method calls.
The type  Frame is a tuple of all state types defined by JVMI. globals is a unary state
whose location is the fully qualified name for a static field and the value is the Value[_]
node of the static field.  meth is a nullary state of type  Method which is a node type. It
points to the current method that is being executed by the JVM. code is nullary state of
type List[Instruction]. It contains the list of instructions of a Method which meth state is
pointing.  switch is a nullary state of type  Switch which can be:  NoSwitch,  Call,  Result
and InitClass which are the modes that the JVM can be in. When the JVM is in the Call
mode, it pushes the current Frame on top of the stack state while the Result mode pops
the previous frame from top of the stack state. The InitClass mode is used when a class
is first used and has not been initialized.

JVMC defines rules pushFrame, popFrame and switchVMC. pushFrame and popFrame are used
in the  Call and  Result modes. We have found some problems with the rules that the
JBOOK defines, and have devised fixes which we explain in more detail in section 7.4.2.
The logic of context switching is defined in the  switchVMC  rule where listing  21 and  22
show the JBOOK definition and our implementation respectively.
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switchVMC = case switch of
     Call(meth, args) → if ¬isAbstract(meth) then  
                                         pushFrame(meth, args) 
                                         switch := Noswitch
     Result(res)          → if implicitCall(meth) then popFrame(0, []) else popFrame(1, res)
     InitClass(c)        → if classState(c) = Linked then classState(c) := Initialized
                                     forall f ∈ staticFields(c) 
                                         global(c/f) := default(type(c/f))
                                     if c = Object ⋁ initialized(super(c)) then switch := Noswitch 
                                     else switch := InitClass(c)

Listing 21: The definition of switchVMC which the JBOOK defines. 

private def switchVMc(): Unit=
{
  switch.value match
  {                             
    case Call(method, args) => if(method.access != AbstractModifier())
                             {
                               pushFrame(method, args)
                                                                           switch := Noswitch()
                             }
    case Result(res)        => if(implicitCall(meth)) popFrame(0, List[Word]()) else popFrame(1, res)
                                                                     switch := Noswitch()
    case InitClass(c)       => val cs:ClassState = classState(c)
                                                                      if(cs == ClassState.Linked)
                                                                     {
                                                                         classState(c) := ClassState.Initialized
                                                                        for(field <- staticFields(c))
                                                                           globals(field) := JVMS.valueToWords(JLS.valueFromType(field.fType))
                                                                        if(c == JLS.Object ||initialized(superClassOf(c))) switch := Noswitch()
                                                                        else switch := InitClass(superClassOf(c))
                                                                      }
  }
}

Listing 22: Rule switchVMC in Scala. The JVM uses it to do context switching.

6.2.3  JVMO

JVMO defines instructions for instance method calls.  InvokeSpecial and  InvokeVirtual
are for early and late bound method invocations. The selection between the two instruc-
tions is done at compile time using the callKind (listing 15) rule defined by JVMO. The
GetField and PutField instructions are for getting and setting values of instance variables
on heap.  New is for instantiation of a class.  InstanceOf for checking class hierarchy and
Checkcast for type casting. 

There is one state in JVMO which is the heap state. The definition and purpose are the
same as the heap state in JavaO. However, the Ref type, which is a node type, needs to be
converted to an integer number before it can be used with the opd state. The JBOOK de-
fines the number as an address type (32 bits word). We need a lookup table which when
given an address, returns a Ref node. The JBOOK does not define this but it makes as the
Ref node can magically be converted into an address and vice versa. 

The transition rules of JVMO uses the same context switching mode as in JVMC. 

6.3  The Java Compiler
The JBOOK presents a set of functions (Ɛ, Ɓ, 𝘴) in each level. Given a Java AST, the func-
tions compile the AST to a series of abstract instructions which the JVM can execute. The

 35



Ɛ  function compiles the expressions,  Ɓ compiles the control flows and 𝘴 compiles the
statements. Listing 23 shows the definition of function Ɛ to compile the JavaI core expres-
sions. 

Ɛ(lit)               = Prim(lit)
Ɛ(loc)               = Load(T(loc), loc)
Ɛ(loc = exp)         = Ɛ(exp)·Dupx(0, size(T(exp)))·Store(T(exp), loc)
Ɛ(!exp)              = Ɓ1(exp, una1)·Prim(1)·Goto(una2)·una1·Prim(0)·una2

Ɛ(uop exp)           = Ɛ(exp)·Prim(uop)
Ɛ(exp1 bop exp2)      = Ɛ(exp1)·Ɛ(exp2)·Prim(bop)
Ɛ(exp0 ? exp1 : exp0) = Ɓ1(exp0, if1)·Ɛ(exp0)·Goto(if2)·if1·Ɛ(exp1)·if2

Listing 23: The compiler function Ɛ. It compiles the core JavaI expressions to a list of virtual instructions.
una1, una2, if1 and if2 are labels not abstract instructions. 

The definition of the function Ɛ maps each type of expression to a list of abstract instruc-
tions. The definition of the function shows labels are concatenated to the list of instruc-
tions which the JBOOK has left out the detail how the labels are removed before execu-
tion.

The notation  loc is used as an abstraction for the location of a local variable  loc in the
JVM registers. In addition, the JBOOK defines a function T which when given an expres-
sion, computes the type of the expression. However, the JBOOK does not define how this
computation can be accomplished. The sub-sections below explain how we implement
these abstract functions in Scala.

6.3.1  The Java AST Compiler in Scala
Instead of using many overloaded functions Ɛ like in listing 23, we use the pattern match-
ing of the syntax tree case classes, to implement the compiler. Listing 24 shows our im-
plementation of the function Ɛ in Scala. The ::: symbol in our code is the method of the
Scala List class. The method allows the concatenation of two or more lists. The JBOOK
uses the · (middle dot) notion for this purpose. 

6.3.2  Label Generator in Scala
We define an abstract instruction LabelDef. The JBOOK does not define this abstract in-

 36

private def E(node:Node): List[Instruction] =
{
  node match
  {
    case Lit(lit)                     =>  Prim(lit)
    case loc:Local                    => Load(T(loc), Bar(loc))
    case Asgn(loc, exp)               => E(expr) ::: Dupx(0, size(T(exp))) ::: Store(T(exp), Bar(loc))
    case UnaryOp(Op.NOT, exp)         => val una1 = LabelDef("una1") val una2 = LabelDef("una2")
                                                                                            B1(exp, una1) ::: Prim(1) ::: Goto(una2) ::: una1 ::: 
                                      Prim(0) ::: una2
    case uop@UnaryOp(_, exp)          => E(exp) ::: Prim(uop)
    case bop@BinaryOp(_, exp1, exp2)  => E(exp1) ::: E(exp2) ::: Prim(bop)
    case InlineCond(exp0, exp1, exp2) =>  val if1 = LabelDef("if1") val if2 = LabelDef("if2")
                                                                                              B1(exp0, if1) ::: E(exp2) ::: Goto(if2) ::: if1 ::: 
                                       E(exp1) ::: if2
  }
}

Listing 24: Scala implementation of the compiler E function. Each instance of LabelDef (una1, una2, if1,
and if2) is stripped from the list of instructions before the JVM executes it. 



struction, but we need it in the compilation stage to temporary occupy a location in a list
of instructions which the compiler is generating code. The location of a LabelDef instruc-
tion in a list of instructions represents the location of the next instruction which is a desti-
nation of a Goto or a  Cond instruction. Before the JVM executes a list of instructions, it
strips the LabelDef instructions from the list and computes the absolute location for each of
the Goto and the Cond instruction in the list. 

6.3.3  The T(exp) Function in Scala
We use the Java language specification version 1.2 as the guide to write the T function.
The specification defines for each type of expression what is the type of the result of the
evaluation of that expression. Listing 17 shows the unary and binary expression type cal-
culation in Scala. Listing 25 shows our implementation of the function T. Our function T
uses pattern matching to match each expression and returns the type. If any expression
has multiple parts, then the function recurses on each of the part to have the type resolved.
For example, the binary operator needs to have the type of the left and the right operand
resolved before the function can compute the type of the whole expression.

6.3.4  The loc Notation in Scala
The JBOOK defines this notation to convert a local variable to a register number. The
register (the reg state of JVMI) in this case is just a state in JVM similar to the local state
of JavaI which is a look up table from a local variable name to its value. However the
JVM register is a word (4 bytes) register where each entry stores only a word. Thus, a
double precision floating point (double) variable occupies two entries in the register.  We
implement the loc notation by using the local variable name as the location (key) of the
reg state. If any variables require two entries, the next entry will have the “+1” string ap-
pended at the end of the variables name. For example, if the type of a variable foo is dou-
ble (two words), the reg state will have two entries, the first one is “foo” which is associ-
ated with the high word and the second entry is “foo+1” which is associated with the low
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private def T(e:Phrase): MoveType
{
      e match
      {
        case t: Type                    => t
        case lit: Lit                   => JLS.typeOf(lit)
        case v: Value[_]                => v.typeT
        case loc: Local                 => T(loc)
        case Asgn(loc, exp)             => JLS.assignmentResultType(T(loc), T(exp))
        case FieldAsgn(cf, exp)         => JLS.assignmentResultType(T(cf), T(exp))
        case InlineCond(_, texp, fexp)  => JLS.inlineCondResultType(T(texp), T(fexp))
        case StaticFieldRef(c, f)       => T(env.fieldForName(c, f))
        case Field(_, _, fType, _)      => fType
        case Method(_, _, signature, _) => signature.returnType
        case StaticInvk(c, m, _)        => T(env.methodForName(c, m))
        case UnaryOp(op, expr)          => JLS.typeOf(op, T(expr))
        case BinaryOp(op, lexp, rexp)   => JLS.typeOf(op, T(lexp), T(rexp))
      }
}

Listing 25: Type calculation for the compiler.



word of the value of the variable.

6.4  JVMS
Similar to the JLS function (section 5.5), the JBOOK defines an abstract function JVMS
to handle the operations for the  Prim and Cond abstract instructions. There are four cases
that the JVMS function needs to handle:

• Converting literals to words: our implementation uses the JLS function to convert
literals to a Value[_] node. The node is then converted to a list of words using the
Scala bitwise operators. 

• Unary operation: We first convert a list of words to a  Value[_] node. The JLS
function is used for calculating the result, which is then converted back to a list of
words.

• Binary operation: This implementation is the same as the unary operation except
there are two operands.

• Cond operation: The abstract instruction Cond handles two native JVM instructions:
Ifne and Ifeq. The operand of the instruction is a word which can be 0 or 1. Ifne
puts 1 back on the operand stack if it is given a 1, otherwise 0. Ifeq puts 1 back on
the operand stack if it is given 0, otherwise 1.

6.5  Summary
This chapter described the implementation of the JVM and the Java to JVM compiler in
Kiama/Scala.  The implementation is more straightforward than the implementation of the
dynamic semantic of the Java language machines. The techniques that we use to imple-
ment them are very similar to the RISC machine example from the Kiama library. Pattern
matching and implicit functions are used extensively. 

The implementation of the compiler is a little more complicated, because the JBOOK de-
fines many abstract functions and does not clearly define how they can be implemented.
For example, the T(exp) function for computation of the type of an expression, the loc op-
erator which converts a local variable to a register number and the labels generation for
jump destinations. We implement these abstractions in our code.
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Chapter 7 Chapter 7  Testing and Evaluation Testing and Evaluation
This chapter describes how we test and evaluate our implementation. We first describe the
testing. Then, we show the evaluation based on the criteria that we set. We also describe
some minor problems of Kiama, and the workarounds that we use. Then, we compare our
implementation with the AsmGofer implementation that the JBOOK provides. And last
we show a few bugs that we found in the JBOOK and describe our fixes.

7.1  Testing 
To test our implementation, we implemented a simple Java parser using the Scala Combi-
nator Parser library  [30]. The parser combinator concept is well known. Several simple
parsers can be combined to produce a complex parser. It allows us to write our parser in
just few hundred lines of code. More importantly, having a parser as an integral part of
Scala has simplified our work, since because our parser is written in Scala, it is easily in-
tegrated with the rest of our code.

We used the example Java code available in the JBOOK to test both the dynamic seman-
tics of the Java language and the JVM. These programs exercise all of the transition rules.
We also wrote additional test cases, where the test code in the JBOOK lacks, for example
recursion, nested function calls and floating point arithmetic. The source code is available
at https://bitbucket.org/psksvp/compx/overview.

For each test case, we generated the AST from the test Java source using our parser. We
ran the dynamic semantics machines with the AST. For the JVM, the compiler compiles
the AST to a list of the abstract instructions for the JVM to run. The dynamic semantic
machines and the JVM were required to produce the same result from the AST.

7.2  Evaluation
We found the combination of Kiama and Scala allows us to closely replicate the mathe-
matical definition of the machines in JBOOK. Kiama ASM has all the features needed to
allow us  to  implement  the  states  and  the  execution  model  of  ASM presented  in  the
JBOOK. The Scala pattern matching syntax, implicit functions and extractor patterns al-
low us to closely replication the JBOOK mathematical notation. The following sections
elaborate our evaluation, based on the criteria we set in section 1.2.

7.2.1  Replication of the mathematical notation and definition
We were able to accomplish this criteria by using many techniques which we have de-
scribed in chapter 5 and 6. The notations are not exactly the same, but they are very close.

The JBOOK book uses pattern matching notation to define the transition rules which we
use Scala pattern matching. The sample code below shows the transition rules for unary
operators; on the left is the JBOOK mathematical notation and our Kiama/Scala code is
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on the right. The matching order that the JBOOK uses is from the most general (uop αexp

→pos := α) to the most specific (uop ►val →yieldUp(JLS(uop, val))) while the Kiama/Scala code is
the opposite, because Scala pattern matching will  try to match each pattern in the se-
quence in the order that they are written. The reordering of the patterns do not change the
clarity of the machines. 

uop αexp →pos := α
uop ►val →yieldUp(JLS(uop, val))

case UnaryOp(uop, Value(v)) => yieldResultUp(JLS(uop, v))
case UnaryOp(_, exp)        => pos := exp

The JBOOK uses greek letter notation to refer to a node (pos := α) while we use the node
itself (pos := exp). We feel that our code is clearer to read than using the greek letter nota-
tion.

We cannot replicate the pattern (the left hand side of the transition rule before the → sym-
bol). The notation that the JBOOK uses, is close to the textual notation of Java code, but
we use the cases classes for the pattern. Listing 7 (page 21) summarizes the JavaI syntax
comparison between the JBOOK and Scala. After we have finalized our implementation,
we discover that we might be able to replicate the JBOOK notations of the syntax tree by
using the Concrete Object Syntax [32].

7.2.2  One-to-one mapping of the transition rules
Listing 26 shows the mathematical definition of JavaI expression machines and our imple-
mentation in Kiama/Scala. The listing shows a one-to-one mapping between the transition
rules. The same result is seen for the JavaC and JavaO.  Our JVM implementation also sees
the same result, where our implementation is a one-to-one mapping with the mathemati-
cal definition in the JBOOK (listing 19 page 28, listing 23 page 36 and listing 24 page
36). 

7.2.3  Reusability of our implementation
Kiama ASM is an embedded solution so ASM definitions can easily be used by other
Scala programs and any JVM languages in general. Listing 31 shows a Java source pro-
gram is defined as a string. The Parser class parses the source and produces an AST. The
method  execute of class  JavaSemanticMachine and class  JavaVirtualMachine takes the
AST and execute it. JavaSemanticMachine executes the AST directly while JavaVirtual-
Machine invokes the compiler to compile the AST before executing. The classes can be
invoked from any Scala applications to execute Java source code.  

7.2.4  No modification to Kiama to implement our code
In this study, we want to implement the case study ASM models without modifying any
part of Kiama. The main reason was to see the limitations and problems of Kiama when
we scale up the complexity of the ASM models. We are able to implement all the ASM
models that we planned without changing Kiama at all.

We encountered some problems while we were implementing the ASMs for this study.
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However, we consider that these problems are minor problems because they did not stop
us from completing our work. The sub-sections below explains what we have done to
work around the problems. These workarounds might suggest areas of investigation for
future updates of the Kiama ASM library.

execJavaExpI = case context(pos) of
  lit → yield(JLS(lit))
  loc → yield(locals(loc))

  uop αexp →pos := α
  uop ►val →yieldUp(JLS(uop, val))

  αexp1 bop  βexp2 → pos := α
  ►val bop  βexp2  → pos := β
  ►val1 bop ►val2 → if ¬(bop ∈ divMod⋀ isZero(val2)) then yieldUp(JLS(bop, val1, val2)) 

  loc = αexp → pos := α
  loc = ►val → locals := locals ⊕ {(loc, val)}
                                        yieldUp(val)

  αexp0 ? βexp1 : 𝛾exp2 → pos := α
  ►val ? βexp1 : 𝛾exp2 → if val then pos := β else pos := 𝛾
  αtrue ? ►val : 𝛾exp2 → yieldUp(val)
  αfalse ?  βexp1 : ►val → yeildUp(val)

private def execJavaExpI: Unit=
{
  val node = context(pos)
  node match
  {
    case lit:Lit                                  => yieldResult(JLS(lit))
    case Local(name)                              => yieldResult(locals(name))
    case UnaryOp(op, Value(v))                    => yieldResultUp(JLS(op, v))
    case UnaryOp(_, exp)                          => pos := exp
    case BinaryOp(op, Value(left), Value(right))  => yieldResultUp(JLS(op, left, right))
    case BinaryOp(_, Value(_), exp2)              => pos := exp2
    case BinaryOp(_, exp1, _)                     => pos := exp1
    case Asgn(loc, Value(v))                      => locals(loc) := v
                                                                                                                          yieldResultUp(v)
    case Asgn(_, exp)                             => pos := exp
    case InlineCond(BooleanValue(_), Value(v), _) => yieldResultUp(v)
    case InlineCond(BooleanValue(_), _, Value(v)) => yieldResultUp(v)
    case InlineCond(BooleanValue(v), exp1, exp2)  => if(v.value) pos := exp1 else pos := exp2                        
    case InlineCond(exp0, _, _)                   => pos := exp2
  }
}

Listing 26: The JBOOK definition of execJavaExpI (top) and Kiama/Scala implementation (bottom) shows
a one-to-one mapping between the transition rules. 

7.2.4.1  AST, body and position of a node in body 
The processing of loop statements like the while(){} loop and the label: … continue label
abruption, require the original copy of the sub-structure of the statements to replace the
sub-structure in restbody of the statements in each iteration. For example, in an iteration of
a while loop, each statement in the body of the loop is transformed into a Norm node. Thus,
at the next iteration, the machine needs the original copy of the body of the while loop to
continue the execution. Hence, the JBOOK defines body to be a state to store the syntax
tree  of  a  program that  is  being executed.  It  is  initialized  at  the  beginning  and never
changed throughout the execution of the program. body is a unary state. When given an
integer number, it returns a node at that position. In each iteration of any loop statement,
the sub-structure of the loop is copied from body into restbody.
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We define body as a ParamState[Int, Node] in our implementation. And to keep track of the
position of nodes in  body, we add an additional unary state  positionInBodyOfNode. When
given a node, positionInBodyOfNode returns the original position of the node in  body. In
other words, the state is a reverse lookup of the body state.  We need the positionInBodyOfN-
ode state, because to copy the sub-structure of a loop node from body, we need to know the
position of the node in body.

positionInBodyOfNode is  an  instance  of  class  ParamState[Node,  Int].  Internally
ParamState[Node, Int] uses a Scala mutable map to store the reference of a Node class as the
key and Int class as the value. A problem occurs when we initialize the positionInBodyOfN-
ode state from an AST. To clearly understand the problem, let's look at an example of ini-
tializing the possitionInBodyOfNode state with a simple binary expression 1 + 1. The parser
would generate an AST like this BinaryOp(Operator.plus, Lit(1), Lit(1)) which can be vi-
sualized as follows:

       BinaryOp
     /   |    \
    +  Lit(1) Lit(1)

If we try to initialize possitionInBodyOfNode with the AST, we would get an InconsistentUp-
dateException, because the Kiama updater thinks that the left operand Lit(1) and the right
operand Lit(1) are the same node because Kiama’s ASMs use value equality to compare
locations not reference equality. The ASM does not allow a state to be updated at the
same location with different values in a step. Listing 27 shows an example code of this
problem.

In Kiama, while the Machine class is running, a series of updates to a state updates within a
step is recorded in a sequence (Seq[Update]). At the end of a step the performUpdates method
is called. To check for inconsistency before the actual update, the method builds a list of
unique updates to compare with the intended updates list. If they are not the same, an In-
consistentUpdateException is raised. In Scala, an expression Lit(1) == Lit(1) evaluates to
true, because the content of the two objects are compared, though they are two different
references. The performUpdates method builds a list of the unique updates by calling on the
method groupBy of the Seq class. Internally, the groupBy method may be using the == opera-
tor to compare the key of each update, thus Lit(1) is the same as another Lit(1). Hence,
the location  Lit(1) appears twice on the intended update list while  Lit(1) appears only
once in the unique updates list. Hence, a mistaken of inconsistency update is detected. 
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val m = makeMachine() 
val s = new m.ParamState[Node, Int]("s")
s(BinaryOp(Operator.plus, Lit("1"), Lit("1"))) := 1
s(Lit("1")) := 2
s(Lit("1")) := 3   
m.performUpdates() 

Listing 27: An example problem scenario where two different case classes Lit that have the same data "1".
Even though the two Lit("1") nodes are two different objects, the Kiama updater thinks they are the same
since they have the same value.



To work around the problem, instead of using the reference of a Node as the location of
the possitionInBodyOfNode state, we use a unique identification string as the location. The
identification string is set to a uuid value when a Node class is instantiated. Hence, the
possitionInBodyOfNode state is ParamState[Node.ID, Int].

7.2.4.2  Accessing value of a unary state
To access the current value of a location in a unary state, the notation used by the JBOOK
is f(l) where f is the state name and l is the location. In Kiama, the ParamState class pro-
vides us with same notation. In Scala, any classes or objects that define a method apply,
can use the notation. The  apply method allows the class and the object with the  apply
method be used like a function call. For example “Scala is cool”(4) yields 'a' as the result,
because the Scala String class implements the apply method to return a character at the in-
dex given by the parameter of the apply method.

The apply method of the class ParamState takes a location as its parameter. The apparent
meaning of this is that the method should return the value of the state at the location spec-
ified in the parameter. However, the method returns an instance of the class ParamUpdater.
To make this appears as if the apply method is returning the current value, the Kiama Ma-
chine class  provides  an  implicit  function  which  implicitly  converts  an  instance  of
ParamUpdater to the last updated value of that state at the current step. This strategy works
most of the time, but there are cases where it does not work. 

To illustrate this problem, let's look at our implementation of the  context rule which is
used for determining the next node that is needed to be evaluated. Listing 28 shows the
code of the rule. The code on the left does not work correctly because the inferred type of
the variable  n is  the ParamUpdater class,  hence the statements n.isInstanceOf[Bstm] and
n.isInstanceOf[Expr] would always yield false. In this case the Scala compile does not use
the implicit function mentioned in the previous paragraph, because the type of variable n
is inferred from the return type of the restbody function (the apply method of the ParamUp-
dater class). However the code on the right is working, because when the variable node is
declared, the type of the node is specified (val n:Node). Hence, the Scala type checker uses
the implicit function to convert the instance of the class ParamUpdater to type Node. Listing
29 shows the implicit function that is used for the conversion. 

private def context(aPos:POS): Node =
{
  val n = restbody(aPos)
  if(aPos =:= firstPos    || 
        n.isInstanceOf[Bstm] || n.isInstanceOf[Expr])
    restbody(aPos)     
  else
    restbody(up(aPos)) 
}

private def context(aPos:POS): Node =
{
  val n:Node = restbody(aPos) 
  if(aPos =:= firstPos    ||
         n.isInstanceOf[Bstm] || n.isInstanceOf[Expr])
    restbody(aPos)     
  else
    restbody(up(aPos)) 
}

Listing 28:context(pos). The code on the left does not work because, the type of val n is not a Node type
while the code on the right works because val n is explicitly declared as type Node. It works, because the
Scala compiler automatically uses the implicit function in Listing 29 to convert ParamUpdater to Node.
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implicit def paramUpdaterToU[T,U,V >: U] (up : ParamUpdater[T,U]) : V = up.state.value (up.t)

Listing 29: The implicit function that can convert an instance of ParamUpdater to the type of the value of a
state

This problem also occurs when an instance of the class ParamUpdater is used in the condi-
tional part of an if statement or the selector part of a match statement. To work around
this problem, we explicitly call the method value of the class ParamUpdater. The method
returns the current value of the restbody state at location pos. Listing 30 shows this work-
around. 

case Load(t, x) => if(1 == size(t)) opd := opd :+ reg.value(x) //opd :+ reg(x)
                                              else             opd := opd :+ reg.value(x) :+ reg.value(x + 1)
                   pc := pc + 1

Listing 30: The transition rule for the Load instruction of JVMI shows looking up the value at location x of
the reg state requires calling the method value. The :+ symbol is a method of the List class which appends
an element to the end.

7.3  Comparison with the AsmGofer Implementation
This section compares our implementation with the implementation by the JBOOK in As-
mGofer.  The AsmGofer implementation is considered to be a reference implementation.
Hence, the comparison supports our aims for this study. 

7.3.1  Transition Rules 
In our implementation, we are able to code the machine definitions that map one-to-one
with the definitions in the JBOOK. The AsmGofer implementation does not map one-to-
one and there are many noises which makes the code hard to read. 

Our implementation uses Scala pattern matching on the case classes while the AsmGofer
implementation uses pattern matching on lists called. The AST in the AsmGofer imple-
mentation is represented using the zippers [33] method where a node is represented by a
list (path) from the root node to the node. The AsmGofer implementation uses Term as the
type of the node.

Table 3 shows a side by side comparison of the transition rules for the literal (Lit) pro-
cessing and local variable (Local) value lookup. The Scala/Kiama code is closer to the
mathematical notation used by the JBOOK than the AsmGofer implementation. The Asm-
Gofer  code has extra  scaffolding in the pattern matching terms which make the code
harder to read and it can be difficult to debug. 

The AsmGofer code has extra transition rules to do some error handling. For example the
rule  (Term(Lit(NoValue),_)[],_)->fail(nullPointerException) is  for  handling the unrecog-
nized literal error. Normally, the checking of literals should be done earlier with the syn-
tactic analyzer, however, the JBOOK uses an abstract function JLS for this purpose, hence,
we implement the function to do the same which as a result, allows our code to closely
replicate the JBOOK notation. The detail of the JLS function is given in section 5.5. The
AsmGofer  supports  the  String  class  while  our  implementation  does  not,  because  the
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JBOOK does not specify the type string. 

JBOOK Scala/Kiama AsmGofer
 lit → yield(JLS(lit))
 loc → yield(locals(loc))

case lit:Lit     => yieldResult(JLS(lit))
case Local(name) => yieldResult(locals(name))

(Term(Lit(NoValue),_)[],_) ->
                        fail(nullPointerException)
(Term(Lit(lit),_)[],_) | isString(lit) ->
                createStringObject(stringVal(lit))

(Term(Lit(lit),_)[],_) -> yield(Val(lapply(lit))) 

(Term(LocAcc(loc),t)[],_) -> 
                          yield(Val(locals#(loc)))

Table 3: Transition rules for literal processing and local variable look up. On the left is the notation used in
the JBOOK, in the middle is our Scala/Kiama code and on the right is the AsmGofer code. 

7.3.2  Node position representation and pos
Every node in an AST has a position associated with it. The JBOOK uses abstract posi-
tions where the greek letters (α,  β  and 𝛾) represent the positions. Our implementation
uses an integer to represent the position of a node in an AST. AsmGofer implementation
also uses integers. 

The JBOOK uses the notation pos := α to assign pos to a node which the position is indi-
cated by α. Our Scala/Kiama implementation uses pos := node where node is a node in an
AST that is going to be processed in the next step. An implicit function converts the node
to its position automatically. The AsmGofer implementation uses a state to look up the
position of a node. The state is defined as followed down :: (Pos,Nat) -> Pos which is a 2-ary
state which when given a  Pos and a  Nat (natural number) returns the position of the nth
child of a node at  Pos.  For example,  pos := down(pos, 0) where  down(pos, 0) is the first
child of a node at pos. Table 4 shows the transition rules to process a unary operator writ-
ten using the JBOOK, Scala/Kiama and AsmGofer notation. 

JBOOK uop αexp →pos := α
uop ►val →yieldUp(JLS(uop, val))

Scala/Kiama case UnaryOp(op, Value(v)) => yieldResultUp(JLS(op, v))
case UnaryOp(_, exp)       => pos := exp

AsmGofer (Term(Una(op),_)[exp],_)-> pos := down(pos,0)    
(_,Term(Una(op),_)[Term(Val(val),t)[]])|pos==down(up(pos),0)-> 
                                                       yieldUp(Val(uapply(op,t,val)))

Table  4:  The  comparison  of  the  transition  rules  to  process  a  unary  operator.  The  transition  rules  in
Scala/Kiama are written in reverse, because pattern matching in Scala requires more specific patterns to
appear before the more general ones. 

As we see from table 4, our code in Scala/Kiama is more intuitive to write and easier to
understand than the AsmGofer code. The code pos := exp gives an intuition right away
that the exp is assigned to pos which to be processed in the next step while the AsmGofer
expression  pos := down(pos,0) does not give any intuition. In addition, the use of the
side condition pos==down(up(pos),0) in the pattern of the second rule makes pattern more
complex than the Scala/Kiama version. We do not need the side condition because the
pattern is already ensured that pos is pointing to the ►val node.
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7.3.3  Reusability of the Java ASMs. 
The ASMs that we implement for this study can be invoked from any JVM language that
supports interoperability with Scala. Listing  31 shows an example of invoking the dy-
namic semantic machine to interpret a Java code. AsmGofer, in contrast, is implemented
by modifying the Gofer runtime. It supports no interoperability with anything except it-
self. 

Though Gofer and AsmGofer have the same syntax, the execution model of AsmGofer is
different from that of Gofer. As a result, Gofer code and AsmGofer code may have differ-
ent semantics, thus they cannot be mixed. 

In contrast to Kiama ASM, the execution model and the semantics of ASM is encapsu-
lated in the  Machine class, thus, Kiama ASM can be mixed with normal imperative or
functional style Scala code.  This offers great reusability.

val source = “””
class Main
{
  public static double sine(double x)
  {
    double term = 1.0;
    double sum = 0.0;
    for(int i = 1; term != 0.0; i = i + 1)
    {
      term = term * (x / i);
      if(1 == i % 4)
        sum = sum + term;
      else if(3 == i % 4)
        sum = sum - term;
    }
    return sum;
  }

  public static void entryPoint()
  {
    double s = Main.sine(30.0);
    sys.print(s);
  }
}
“””

val p   = new Parser
val ast = p.parseProgram(source)

JavaSemanticMachine.execute(ast, 
                            "Main", 
                            "entryPoint")

JavaVirtualMachine.execute(ast, 
                           "Main",
                           "entryPoint")

Listing  31: An example shows how the machine classes we have defined using Kiama can be used to
execute a Java source.  JavaVirtualMachine.execute  invokes the compiler to compile the AST before
executing while JavaSemanticMachine.execute executes the AST directly.

7.4  The JBOOK bugs
While we encoded the machine definitions using Kiama/Scala, we encountered several
problems with the JBOOK definitions. After some hand tracing of the definitions, we
have found where the problems are and provide fixes in our implementation. This section
provides detail descriptions of the problems and the fixes that we made. 

7.4.1  firstPos is not restored
In JavaC, the JBOOK presents the rule exitMethod whose purpose is to set the execution
environment back to the caller environment. The environment includes all the states de-
fined by JavaI (pos, locals and restbody) and the state  meth (current method) defined by
JavaC. The environment is popped from a stack (the state  frames of JavaC).  Listing 32
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shows the definition of the rules.

exitMethod(result) = 
  let(oldMeth, oldPgm, oldPos, oldLocals) = top(frames)
  meth   := oldMeth
  pos    := oldPos
  frames := pop(frames)
  if methNm(meth) = “<clinit>” ⋀ result = Norm then
    restbody                  := oldPgm
    classState(classNm(meth)) := Initialized
  else
    restbody := oldPgm[result/oldPos]

Listing 32: The exitMethod rule. (JBOOK page 66)

We found a problem with the definition of the rule when we run the dynamic semantic
machine with a Java source file that makes nested methods call, the machine would not
reach a fixed-point. The cause of the problem is the variable firstPos which is defined by
JavaI to indicate the position of a root node in restbody which is the start point of the exe-
cution. In JavaI the value of firstPos remains constant. However, JavaC extends the mean-
ing of firstPos to be the top node of the body of the current executing method. Hence, the
value of  firstPos changes according which method the machine is currently executing
(the state meth defined by JavaC). 

The rule exitMethod defined by the JBOOK does not set the value of firstPos back to the
top node of the caller method. As a result, the transition rules which are responsible for
returning from a method call are never activated. Listing 33 shows the transition rules de-
fined by execJavaStmC. The rules depend on the value of firstPos being point to the cur-
rent top node of a method that is being executed. The conditional statements in listing 33
always evaluates to false if firstPos is not set to the position of the top node of the caller
method. This problem does not occur if there is only one layer method call or there is no
method call from an entry point method. Listing 14 (page 28) shows our exitMethod imple-
mentation which sets firstPos back to the caller method body.

Return      →  if pos = firstPos ⋀ ¬null(frames) then exitMethod(Norm)
Return(val) →  if pos = firstPos ⋀ ¬null(frames) then exitMethod(val)

Listing 33: The transition rules of execJavaStmC that process returning from a method call. (JBOOK Fig.
4.5)

7.4.2  JVM pushFrame and popFrame
JVMC defines two rules:  pushFrame and  popFrame, to support invoking and existing from
method calls. pushFrame is used to save the environment of the current method before in-
voking another method.  popFrame is used to restore the environment back to that of the
caller method. Listing 34 shows the JBOOK's definition of pushFrame and popFrame. 

The environment consists of the program counter (pc), the operand stack (opd), the local
register (reg) and the byte codes of the method to be invoked (code). The code state is a
unary state which when passed a program counter, returns an instruction that is going to
be executed in the next step.
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pushFrame(newMeth, args) = 
  stack := stack · [(pc, reg, opd, meth)]
  meth  := newMeth
  pc    := 0
  opd   := []
  reg   := makeRegs(args)

popFrame(offset, result) = 
 let(stack’,[(pc’, reg’, opd’, meth’)] = split(stack, 1)
  pc    := pc’ + offset
  reg   := reg’
  opd   := opd’ · result
  meth  := meth’
  stack := stack’

Listing 34: The JBOOK definition of the rules pushFrame and popFrame.

The compilation of a Java program is done by compiling all methods of all classes into
byte-codes. A class file organizes byte-codes of all methods of a class. Hence, a Java class
has a corresponding class file. Therefore, given a class/method, the JVM loads the byte-
codes from the class/method's class file to execute. 

The definitions of pushFrame and popFrame in the JBOOK do not mention the code state at
all. The  code state is a list of instructions (byte-codes) of the current executing method.
The code state cannot remain the same, it must be set to the byte-code of the method that
is going to be invoked, otherwise the JVM would execute the byte-codes of the caller
method again. In addition, at popFrame, the code state must be set back the byte-code of the
caller method. 

Our implementation fixes this problem by adding a unary state  codeOfMethod. The state
when given a method, returns the byte-code of the method. In pushFrame, we set the code
state to the byte-code of the method that is going to be invoked and set it back to the
caller method at popFrame. Listing 35 shows our implementation.

private def pushFrame(newMeth:AST.Method, args:Args): Unit =
{
  stack := push(stack, (pc.value, reg.value, opd.value, meth.value))
  meth := newMeth
  pc := 0
  opd := List[Word]()
  reg := makeRegs(newMeth, args)
  code := codeOfMethod(newMeth)
}

private def popFrame(offset: Offset, result:List[Word]): Unit =
{
  val (pcP, regP, opdP, methP) = top(stack)
  pc := pcP + offset
  reg := regP
  opd := opdP ::: result
  meth := methP
  stack := pop(stack)
  code := codeOfMethod(methP)
}

Listing 35: Our implementation of pushFrame and popFrame with fixes (codeOfMethod state is added).

An interesting observation about the definition of pushFrame and popFrame in the JBOOK is
the  stack  is  manipulated  differently  from  invokeMethod and  exitMethod.  pushFrame and
popFrame do not use the  push and  pop definition that the JBOOK describes in section 2.3
(page 27 in the JBOOK). However, they use list operations where pushFrame concatenates
the environment of the calling method at the bottom of the stack state. While popFrame uses
split to split the stack frame to simulate pop. We feel that this is inconsistent. Therefore,
we use push and pop in our implementation.
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7.4.3  Declaration of variable with assignment
The JBOOK provides some example Java expressions and statements that the transition
rules should be able to process, however the JBOOK example 3.2.2 and 3.2.3 (shown be-
low) cannot be processed by the transition rules.

int i = 2;
int j = (i = i * i) + i;

The JavaI machines do not define any transition rule that can process the declaration of
variables with assignment statement, for example int i = 2;. The statement contains both
a declaration of a variable statement (int i) and an assignment expression (i = 2).  The
statement  int i is processed by the rule  Type x; → yield(Norm) and the expression i = 2 is
processed by the following rules. 

loc = αexp → pos := α
loc = ►val → locals := locals ⊕ {(loc, val)}
             yieldUp(val)

To fix this problem, we add two more transition rules to process the statement. Listing 36
shows the rules which is part of execJavaStmI. 

⓵  case VarDeclAsgn(vtype, local, Value(v)) =>  locals(local) := v
                                                                                                                     yieldResultUp(Norm())
⓶  case VarDeclAsgn(_, _, expr)             =>  pos := expr

Listing 36: The extra rules we add to process the variable declaration with assignment statement.

The int i = 2; statement would, first, get processed by the rule ⓶. Once the literal 2 has
been processed which yields a Value(2) node, rule ⓵ would associate the variable i with
the Value(2) to the locals state of JavaI. 

7.5  Summary
Our machines are tested with the sample Java code in the JBOOK. In addition, we wrote
some extra testing code to fill in gaps where the JBOOK test codes are lacking. The Scala
parser combinator library allowed quick implementation of our simple parser.

We have met the criteria that we set at the beginning. The criteria aim to make coding ex-
ecutable ASM using Scala/Kiama as close as possible to the ASM mathematical defini-
tion. However,  we have encountered some minor problems with Kiama for which we
showed the workarounds.  

The comparison  with  the  AsmGofer  implementation  by the  JBOOK showed that  our
Scala/Kiama implementation is much closer to the JBOOK mathematical definitions. We
have also pointed out bugs in the mathematical definitions and the fixes provided in our
implementation.
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Chapter 8 Chapter 8  Conclusion Conclusion
In this study, we have used Kiama ASM to implement the dynamic semantics of the Java
language, the virtual machine and the compiler for the Java language. We use the JBOOK
as our reference. The JBOOK describes the dynamic semantics and the virtual machine
using the ASM method. Our aim was to see if Kiama ASM can be scaled up to implement
complex machines. The evaluation criteria was to be able to closely replicate the mathe-
matical definitions that are used in the JBOOK.  

We have shown that the combination of Scala and Kiama allows our code to closely repli-
cate the machine definitions in the JBOOK. The transition rules in our code map one-to-
one to the rules in the JBOOK. The techniques that we use to accomplish are Scala pat-
tern matching, implicit functions and extractor patterns. The Kiama ASM library provides
us with the ASM execution model and state. 

We found some minor problems with Kiama ASM. We were able to provide the work-
arounds without modifying any part of Kiama ASM. While we are coding and testing our
implementation, we also found bugs in the JBOOK and provide fixes in our code.

The JBOOK has also implemented their machines using AsmGofer. The comparison be-
tween our Scala/Kiama code and the AsmGofer code shows that our code is more read-
able and closer to the mathematical definitions. In addition, Kiama is a library, the com-
ponents are callable, thus what we have implemented can easily be reused by any JVM
languages that support interoperability with JVM language. The AsmGofer implementa-
tion cannot be reused because AsmGofer modifies the runtime of Gofer, thus, the imple-
mentation cannot be interoperable with any other programming languages. 

8.1  Significance of this study
This study shows that ASM implementation as a library can be used to specify complex
ASM models. A Library approach is less complex than implementing an ASM program-
ming language, because the number of lines of code required to implement a library is
much less than implementing a programming language. The programming language ap-
proach can provide syntax which is closer to what the Lipari guide has used. However we
have shown that using the expressiveness of Scala and the Kiama ASM library, we are
able to closely replicate the mathematical notations of the reference models presented in
the JBOOK. 

The significance of this result is one can take ASM mathematical definitions  and code
them up in Scala to execute them and be able to use the code in an application develop-
ment. We believe that the techniques that we have used to accomplish the goals in this
study can be applied to other applications of ASM.  
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8.2  Future work
ASM can be thought of as a programming paradigm. The ASM programming model con-
sists of states and rules. The execution model uses discrete time-steps where in every step,
all rules are executed which may update states. The updates to states at step t are not visi-
ble until the next step t + 1. Hence, debugging ASM rules can be difficult. Internally,
Kiama ASM provides some diagnostics when states are updated inconsistently. However,
that is not enough when we have to deal with complex transition rules such as those of the
JBOOK. In this study, we use the debugger provided with our integrated development en-
vironment and paper and pencil to manually trace to debug our code. We feel that there
should be a graphical debugger designed specifically for debugging ASM rules. The de-
bugger should allow us to see n-arity states visually in the current and the next step while
we are single stepping through the rules. The would be a good future addition to Kiama
ASM. 

Currently Kiama ASM allows only nullary and unary states. There are applications that
need more than one arity state; e.g. cellular automata simulation. We think that this fea-
ture can be done using the Scala macro, which should allow n-arity state be generated at
compile time.
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Appendix 1 execJavaStmI

private def execJavaStmI: Unit=
{
  context(pos) match
  {
    case LabelStm(_, Normal(_))        => yieldResultUp(Norm())
    case LabelStm(lab, Break(brk))     => if(lab.name == brk.label) yieldResultUp(Norm())
                                                                                               else yieldResultUp(AST.Break(brk.label))
    case LabelStm(lab, Continue(cont)) =>
      if(lab.name == cont.label)
      {
        val theOriginalNode:Node = body(pos)
        replaceInRestbody(fromBodyNode = theOriginalNode, deep=true)
        yieldResult(theOriginalNode)
      }
      else
        yieldResultUp(AST.Continue(cont.label))
    case LabelStm(_, stm)       => pos := stm
    case BreakStm(lab, semi)    => yieldResult(AST.Break(lab.name))
    case ContinueStm(lab, semi) => yieldResult(AST.Continue(lab.name))

    case _:Phrase if restbody.value(pos).isInstanceOf[Abr] =>
      if(pos.value != firstPos && propagatesAbr(restbody(up(pos))))
      {
        val abr:Node = restbody(pos)
        yieldResultUp(abr)
      }

    case Block(Nil, Nil)    => yieldResult(Norm())  // empty block {}
    case Block(_, Nil)      => yieldResultUp(Norm())// all stm in block has been processed
    case Block(_, stm :: _) => pos := stm
      

    case If(BooleanValue(_), Normal(_), _) => yieldResultUp(Norm())
    case If(BooleanValue(_), _, Normal(_)) => yieldResultUp(Norm())
    case If(BooleanValue(v), exp1, exp2)   =>  if(true == v.value) pos := exp1
                                                                                                          else pos := exp2
    case If(exp0, _, _)  => pos := exp0

    case While(BooleanValue(_), Normal(_)) => val theOriginalNode = body(up(pos))
                                                                                                         replaceInRestbody(theOriginalNode, deep=true)
                                                                                                         yieldResultUp(theOriginalNode)
    case While(BooleanValue(b), stm)       => if(true == b.value) pos := stm
                                                                                                         else yieldResultUp(Norm())
    case While(exprTest, stm)              => pos := exprTest

    case VarDecl(vtype, local)              => locals(local) := JLS.valueFromType(vtype)
                                                                                                            yieldResult(Norm())
    case VarDeclAsgn(vtype, local, Value(v))=> locals(local) := v
                                                                                                               yieldResultUp(Norm())
    case VarDeclAsgn(_, _, expr)            => pos := expr

    case Semi()                  => yieldResult(Norm())
    case ExprStm(Value(_), semi) => yieldResultUp(Norm())
    case ExprStm(expr, semi)     => pos := expr
    case Print(Value(v))         => println(v.value)
                                                                                yieldResultUp(Norm())
    case Print(expr)             => pos := expr
  }
}
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Appendix 2 execJavaExpC and execJavaStmC

private def execJavaExpC: Unit =
{
  context(pos) match
  {
    case StaticFieldRef(c, f) => if(initialized(c)) yieldResult(globals((c,f)))
                                                                          else initialize(c)
    case FieldAsgn(StaticFieldRef(c, f), Value(v)) => if(initialized(c))
                                                    {
                                                                                                                                 globals((c,f)) := v
                                                                                                                                 yieldResultUp(v)
                                                                                                                              }
                                                                                                                             else 
                                                      initialize(c)
    case FieldAsgn(StaticFieldRef(_, _), expr) => pos := expr
    case StaticInvk(c, m, Values(params))      => if(initialized(c))
                                                  invokeMethod(up(pos), (c,m), params)
                                                                                                                  else
                                                                                                                        initialize(c)
    case StaticInvk(_, _, params) => pos := params
    case Exprs(Nil, Nil)          => yieldResult(Vals(Nil))// empty param list
    case Exprs(valList, Nil)      => yieldResultUp(makeValuesNode(valList)) //all done
    case Exprs(_, expr :: _)      => pos := expr // next to eval is expr
  }
}

private def execJavaStmC: Unit =
{
  context(pos) match
  {
    case Static(Return(returnAbr)) => yieldResultUp(returnAbr)
    case Static(block) =>  val c:Class = classOf(meth)
                                                            if(c == JLS.Object || initialized(superClass(c))) pos := block
                                                            else initialize(superClass(c))
    case ReturnStm(Void(v), semi)      => yieldResult(AST.Return(v))
    case ReturnStm(Value(v), semi)     => yieldResultUp(AST.Return(v))
    case ReturnStm(expr, semi)         =>  pos := expr
    case LabelStm(_, Return(Void(v)))  => yieldResultUp(AST.Return(v))
    case LabelStm(_, Return(Value(v))) =>  yieldResultUp(AST.Return(v))
    case AST.Return(Void(_))  => if(pos =:= firstPos && false == frames.isEmpty)
                                                                            exitMethod(Norm())
    case AST.Return(Value(v)) =>  if(pos =:= firstPos && false == frames.isEmpty)
                                                                               exitMethod(v)
    case ExprStm(Normal(_), semi) =>  yieldResultUp(Norm())
  }
}
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Appendix 3 execJavaO

private def execJavaExpO:Unit=
{
  context(pos) match
  {
    case This() => yieldResult(locals("this"))
    case NewClassInvk(c, param) => 
      if(initialized(c))
      {
        val ref = Ref(c)
        heap(ref) := Object(c, env.makeInstanceFieldsMap(c))
        yieldResult(ref)
      }
      else
        initialize(c)
    case InstanceFieldRef(RefValue(ref), field) => yieldResultUp(getField(ref, field))
    case InstanceFieldRef(exp, field) => pos := exp
    case FieldAsgn(InstanceFieldRef(RefValue(ref), field), Value(v)) =>
      setField(ref, field, v)
      yieldResultUp(v)
    case FieldAsgn(InstanceFieldRef(RefValue(ref), field), exp2) => pos := exp2
    case FieldAsgn(InstanceFieldRef(exp1, field), exp2)          => pos := exp1
    case InstanceOf(RefValue(ref), c) => val bval = env.subClass(classOf(ref), c) 
                                                                                             yieldResultUp(BoolValue(bval))
    case InstanceOf(exp, c) => pos := exp
    case CastRef(c, RefValue(ref)) => if(env.subClass(classOf(ref), c)) yieldResultUp(ref)
                                                                                     else sys.error("ref cannot be casted to class”)
    case CastRef(c, exp) => pos := exp
    case InstanceInvk(RefValue(ref), m, Values(params)) =>
      val msig:MethodSignature = makeSignature(m, params)
      val c:Class = callKind(up(pos)) match
      {
        case CallKind.Virtual => env.lookup(classOf(ref), msig)
        case CallKind.Super   => env.lookup(superClass(classOf(ref)), msig)
        case CallKind.Special => classOf(ref)
      }
      invokeMethod(up(pos), (c,m), Vals(ref :: params.values))
    case InstanceInvk(RefValue(_), _, params) => pos := params
    case InstanceInvk(exp, _, _)              => pos := exp
  }
}
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Appendix 4 execVMC and switchVMC

private def execVMc(inst:Instruction): Unit =
{
  execVMi(inst)
  inst match
  {
    case GetStatic(_, field) => if(initialized(field.parent[AST.Class]))
                                                                      {
                                                                          opd := opd ::: globals(field)
                                                                          pc := pc + 1
                                                                       }
                                                                      else
                                                                         switch := InitClass(field.parent[AST.Class])
    case PutStatic(_, field) => if(initialized(field.parent[AST.Class]))
                                                                       {
                                                                          val (opdP, ws) = split(opd, size(field))
                                                                          globals(field) := ws
                                                                          opd := opdP
                                                                          pc := pc + 1
                                                                       }
                                                                       else
                                                                           switch := InitClass(field.parent[AST.Class])
    case InvokeStatic(_, method) => if(initialized(method.parent[AST.Class]))
                                                                                 {
                                                                                     val (opdP, ws) = split(opd, argSize(method))
                                                                                     opd := opdP
                                                                                     switch := Call(method, ws)
                                                                                  }
                                                                                  else
                                                                                    switch := InitClass(method.parent[AST.Class])
    case Return(t)               => val (opdP, ws) = split(opd, size(t))
                                                                                  switch := Result(ws)
  }
}

private def switchVMc(): Unit=
{
  switch.value match
  {                             
    case Call(method, args) => 
             pushFrame(method, args)
                               switch := Noswitch()
    case Result(res) => 
          if(implicitCall(meth))
                          popFrame(0, List[Word]())
                        else
                          popFrame(1, res)
                        switch := Noswitch()
    case InitClass(c) => 
           val cs:ClassState = classState(c)
                         if(cs == ClassState.Linked)
                         {
                           classState(c) := ClassState.Initialized
                           for(field <- environment.staticFields(c))
                           {
                             globals(field) := JVMS.valueToWords(JLS.valueFromType(field.fType))
                           }
                           if(c.name.identifier == JLS.Object.name.identifier ||
                              initialized(environment.superClassOf(c)))
                             switch := Noswitch()
                           else
                             switch := InitClass(environment.superClassOf(c))
                         }
  }
}
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Appendix 5 execVMO

private def execVMo(inst:Instruction): Unit =
{
  execVMc(inst)
  inst match
  {
    case New(c) =>
      if(initialized(c))
      {
        val ref = AST.Ref(c)
        heap(ref) := Object(c, environment.makeInstanceFieldsMap(c))
        opd := opd :+ addressOf(ref)
        pc := pc + 1
      }
      else
        switch := InitClass(c)
    case GetField(_, cf) =>
      val (opdP, r :: _) = split(opd, 1)
      opd := opdP ::: getField(r, cf)
      pc := pc + 1
    case PutField(_, cf) =>
      val (opdP, r :: ws) = split(opd, 1 + size(cf))
      setField(r, cf, ws)
      pc := pc + 1
      opd := opdP
    case InvokeSpecial(_, cm) =>
      val (opdP, r :: ws) = split(opd, 1 + size(cm))
      opd := opdP
      switch := Call(cm, r :: ws)
    case InvokeVirtual(_, cm) =>
      val (opdP, r :: ws) = split(opd, 1 + size(cm))
      opd := opdP
      switch := Call(environment.lookup(classOf(r), cm), r :: ws)
    case InstanceOf(c) =>
      val (opdP, r :: _) = split(opd, 1)
      val sc = if(environment.subClass(classOf(r), c)) 1 else 0
      opd := opdP :+ sc
      pc := pc + 1
    case Checkcast(c) =>
      val r = top(opd)
      if(true == environment.subClass(classOf(r), c))
        pc := pc + 1
  }
}
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Appendix 6 Java Compiler
private def E(node:Node): List[Instruction] =
{
  node match
  {
    case Lit(lit)                     =>  Prim(lit)
    case loc:Local                    => Load(T(loc), Bar(loc))
    case Asgn(loc, exp)               => E(expr) ::: Dupx(0, size(T(exp))) ::: Store(T(exp), Bar(loc))
    case UnaryOp(Op.NOT, exp)         => val una1 = LabelDef("una1") val una2 = LabelDef("una2")
                                                                                            B1(exp, una1) ::: Prim(1) ::: Goto(una2) ::: una1 ::: 
                                      Prim(0) ::: una2
    case uop@UnaryOp(_, exp)          => E(exp) ::: Prim(uop)
    case bop@BinaryOp(_, exp1, exp2)  => E(exp1) ::: E(exp2) ::: Prim(bop)
    case InlineCond(exp0, exp1, exp2) =>  val if1 = LabelDef("if1") val if2 = LabelDef("if2")
                                                                                              B1(exp0, if1) ::: E(exp2) ::: Goto(if2) ::: if1 ::: 
                                       E(exp1) ::: if2
  case StaticFieldRef(c, f)                  => val cf:AST.Field = (c, f)
                                                                                                                      GetStatic(T(cf), cf)
  case FieldAsgn(StaticFieldRef(c, f), expr) => val cf:AST.Field = (c, f)
                                                                                                                   E(expr) ::: Dupx(0, size(T(expr))) ::: 
                                                PutStatic(T(cf), cf)
  case StaticInvk(c, m, exprs)               => val cm:AST.Method = (c, m)
                                                                                                                    E(exprs) ::: InvokeStatic(T(cm), cm)
  case Exprs(exprs)                          => exprs.map((exp:Node) => E(exp)).flatten.toList
  case This()                                => Load(MoveType(AddrType()), "0")
  case NewClassInvk(c, params)               => New(c) ::: Dupx(0, 1)
  case InstanceFieldRef(exp, f)              => val cf:AST.Field = (classNameOf(exp), f)
                                                                                                                  E(exp) ::: GetField(T(cf), cf)
  case FieldAsgn(InstanceFieldRef(exp1, f), exp2) =>val cf:AST.Field = (classNameOf(exp1), f)
                                                                                                                   E(exp1) ::: E(exp2) ::: 
                                                Dupx(1, size(T(cf))) ::: PutField(T(cf), cf)
  case InstanceInvk(exp, m, params) =>
           val cm:AST.Method = (classNameOf(exp), m)
            E(exp) ::: E(params) ::: (callKind(cm) match
             {
                              case CallKind.Virtual => InvokeVirtual(T(cm), cm)
                              case CallKind.Super   => InvokeSpecial(T(cm), cm)
                              case CallKind.Special => InvokeSpecial(T(cm), cm)
               })
  case AST.InstanceOf(exp, c) =>  E(exp) ::: JavaVirtualMachine.InstanceOf(c)
  case CastRef(c, exp) => E(exp) ::: Checkcast(c) 
 }
}
private def B1(node:Node, lab:LabelDef): List[Instruction] =
{
  node match
  {
    case BoolValue(true) => Goto(lab)
    case BoolValue(false) => List()
    case UnaryOp(Operator.NOT, expr) => B0(expr, lab)
    case InlineCond(expr0, expr1, expr2) =>
      val if1 = LabelDef("if1")
      val if2 = LabelDef("if2")
      B1(expr0, if1) ::: B1(expr2, lab) ::: Goto(if2) ::: if1 ::: B1(expr1, lab) ::: if2
    case expr: Phrase => E(expr) ::: Cond(Ifne(), lab)
  }
}
private def B0(node:Node, lab:LabelDef): List[Instruction] =
{
  node match
  {
    case BoolValue(true) => Nil
    case BoolValue(false) => Goto(lab)
    case UnaryOp(Operator.NOT, expr) => B1(expr, lab)
    case InlineCond(expr0, expr1, expr2) =>
      val if1 = LabelDef("if1")
      val if2 = LabelDef("if2")
      B1(expr0, if1) ::: B0(expr2, lab) ::: Goto(if2) ::: if1 ::: B0(expr1, lab) ::: if2
    case expr: Phrase => E(expr) ::: Cond(Ifeq(), lab)
  }
}
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private def S(node:Node):List[Instruction]=
{
  node match
  {
    case Semi() => 
   Nil
    case VarDeclAsgn(typeId, loc, expr) =>
      typeOfNode.set(loc, typeId)
      E(expr) ::: Dupx(0, size(T(expr))) ::: Store(T(expr), Bar(loc))
    case VarDecl(typeId, loc) =>
      typeOfNode.set(loc, typeId)
      E(JLS.defaultLiteralFromType(typeId)) ::: Dupx(0, size(T(typeId))) ::: Store(T(typeId), Bar(loc))
    case ExprStm(expr, semi) =>
      E(expr) ::: Pop(size(T(expr)))
    case prt@Print(expr) =>
      E(expr) ::: Prim(prt)
    case Block(blockStmSeq) =>
      blockStmSeq.map((stm:Node) => S(stm)).flatten.toList
    case If(exp, stm1, stm2) =>
      val if1 = LabelDef("if1")
      val if2 = LabelDef("if2")
      B1(exp, if1) ::: S(stm2) ::: Goto(if2) ::: if1 ::: S(stm1) ::: if2
    case While(exp, stm) =>
      val while1 = LabelDef("while1")
      val while2 = LabelDef("while2")
      Goto(while1) ::: while2 ::: S(stm) ::: while1 ::: B1(exp, while2)
    case LabelStm(lab, stm) =>
      val labC = LabelDef(lab.name + "C")
      ContinueJavaLabel2LabelDefMap(lab) = labC
      val labB = LabelDef(lab.name + "B")
      BreakJavaLabel2LabelDefMap(lab) = labB
      labC ::: S(stm) ::: labB
    case ContinueStm(lab, semi) =>
      val labC = ContinueJavaLabel2LabelDefMap(lab)
      Goto(labC)
    case BreakStm(lab, semi) =>
      val labB = BreakJavaLabel2LabelDefMap(lab)
      Goto(labB)
    /// Java C
    case Static(stm) =>
      S(stm)
    case ReturnStm(_:VoidValue, semi) =>
      JavaVirtualMachine.Return(MoveType(VoidType()))
    case ReturnStm(exp, semi) =>
      E(exp) ::: JavaVirtualMachine.Return(T(exp))
    case _ =>
      Nil
  }
}
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