CHAPTER 1. INTRODUCTION

Electromagnetic (EM) soundings, carried out with both controlled-source and

atural-source techniques, are widely used in petroleum, mineral, groundwater, and

'géaiﬁérmal exploration. Since controlled source time-domain electromagnetic (TEM)

jsﬁ}éiéms are broadband, they are affected by noise which arises from man-made and

cuituraf sources (power lines, generators, radio-navigation, and maritime mobile
f:t'réhs.mitters) and natural sources such as sferics and wind. Therefore, sferics, power
Ime, and very low frequency (VLF) noise provide major limitations to minimum
féétectabie signals in ground and airborne EM surveys. Conventional brute force

_ methods such as extended stacking times or dramatic increases in transmitter power
{;'-. afé not a viable option in airborne electromagnetic (AEM) methods, and are
undesirable for ground EM systems. It has been shown that a reduction in sferics
noise by a factor of 5 to 10 in an area where the sferics noise predominates over

5' variations in background geological signal will increase the detectable target depth by

50 to 80% (Buselli and Cameron, 1995).

The focus of this thesis is the development of new methods to reduce sferics
noise. These methods are based on an artificial neural network. Both a local noise
prediction filter (LNPF) and a remote noise prediction filter (RNPF) for reduction of
VLF noise and high-frequency sferics noise in TEM measurements are discussed. In
addition, a model training method (MTM) to map a noisy transient to a noise-free
transient is investigated. A backpropagation method is used as a neural network

algorithm to update the connection weights of the network.

The spatial correlation of sferics noise in both horizontal and vertical planes
and the correlation between three orthogonal componeats of the noise are

investigated to establish the efficacy of using multiple remote or local reference
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receivers. Also, the spatial correlation of sferics noise in the bandwidth of I Hz to

1 kHz has been studied.

Most EM noise reduction methods with a remote reference and an LNPF
based on the tipper method (e g., Spies, 1988) require an assumption about the
relationship between a local field and a remote field (e.g., a linear point-to-point
transfer function) or between two horizontal and vertical components (e.g., a linear
convolution between two horizontal and vertical components in time-domain), and
such methods focus on low-frequency EM noise reduction (e.g., Nichols and
Morrison, 1988; San Filipo and Hohmann, 1983; Wilt et al., 1983). Some noise
reduction techniques use fixed filter coefficients (e.g., Halverson, 1982 and 1990;
Halverson et al., 1987; Spies, 1988). Such filters with fixed filter coefficients are not
adaptive but typically process all training data before being used with new data. Such
filters are effective in reducing statistically stationary EM noise but, when

nonstationary noise is present, the performance of the filters is greatly reduced.

A multi-layer neural network can be considered as an universal approximator,
because it is possible to approximate any multi-dimensional functional to any desirable
degree of accuracy simply by superposition of a sigmoidal function (Cybenco, 1989;
Hornik et al., 1989, Lippmann, 1987). Therefore, to develop a remote reference
technique and an LNPF to reduce EM noise, a neural network can be found to

approximate any transfer function without the need to state the function explicitly.

Adaptation or learning is a major benefit of a neural network. The ability to
adapt and continue learning is essential in areas such as EM noise reduction when
nonstationary noise is present, where the training data is limited, and when spatial
characteristics of noise pattern change. Adaptation also provides a degree of
robustness by compensating for minor variabilities in the characteristics of processing

elements in the network.
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The backpropagation training algorithm for neural networks is a nonlinear
_extension of the linear least mean square (LMS) algorithm commonly used in adaptive
EM noise reduction (e.g., Kim and Hohmann, 1992) and adaptive signal processing
e.g., Widrow and Sterns, 1985; Widrow et al., 1975, 1976).

1.1 Natural and artificial EM sources

_ Natural EM fields in the frequency range of interest in exploration, 10” to

10* Hz, have their origin in the atmosphere and the magnetosphere. Their typical
“spectra (Macnae et al., 1984) are shown in Figure 1.1. The spectrum below 1 Hz
originates predominantly in micropulsations. This geomagnetic micropulsations arise
from interactions between radiation emitted by the sun, and the earth’s ionosphere and
magnetosphere. The spectrum above 1 Hz is primarily due to sferics, which are EM
transients generated by lightning discharges, or by any subsidiary feature of the

lightning that occurs in the lower atmosphere.

These natural EM fields are considered as a signal for the magnetotelluric
(MT) method (Cagniard, 1953; Tikhonov, 1950; Vozofl, 1972; Vozoff and Ellis,
1966), while they are noise sources for frequency-domain electromagnetic (FEM)
methods, TEM methods, and the Induced Polarisation (IP} method (Busells, 1977;
Buselli and Cameron, 1992, 1993 and 1995; Halverson, 1982 and 1990; Halverson et
al., 1987; Kim and Hohmann, 1992; Macnae et al., 1984; Nichols and Morrison,
1988; San Filipo and Hohmann, 1983; Spies, 1988; Sumner, 1976; Vozoff, 1984).

Typical lightning has a total path length on the order of kilometres. Most
lightning consists of two to four strokes and is produced by thunderclouds. Sferics
generally propagate directly to a receiver near the source. Therefore, the effect of
local sferics is to produce large spikes. Waveforms of sferics observed at some
distance from the origin are controlled both by the characteristics of the lightning

channel (electric current distribution, channel configuration, and orientation) and by
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isp ._r-sion characteristics of the propagation medium between the surface of the
nid-ionosphere (Pierce, 1977). An essential feature of these waveforms is the
pass filtering effect of the wave guide. The EM noise from sferics is quasi-

.oftinuous at the lower end of sferics low band shown in Figure 1.1 but 1s

ominantly impulsive in nature at high frequencies.

.- Radiation from lightning discharges in a relatively low frequency range of ~0.3
) kHz is the source of “whistlers” that propagate through the ionosphere and
netosphere in the whistler mode. This mode of propagation is possibie only in a

netised plasma and at frequencies below both the plasma frequency and the

Some lightning currents, most probably subsequent return strokes, contain a
Qng “continuous” component, which is the ELF component { <~ 3 kHz). The
”'-efr_'sstrial wave guide has a pronounced attenuation maximum around 1 to 3 kHz,
W ;. en the free space wavelength is large, compared with the distance between two
‘concentric spherical shells, only the lowest order transverse magnetic (TM) mode can
:";ﬁropagate (Wait, 1970). This is clearly the case at ELF, with a wavelength of

: ;'OOOO km at 10 Hz in the Earth-ionosphere wave guide (with a height of ~100 km).

The spherical Earth-ionosphere waveguide has resonant frequencies of
approximately 8, 14, 20, 26, and 32 Hz. These Schumann resonances occur when the
ELF component propagates and reinforces through the Earth-ionosphere wave guide

__(Poik, 1982; Balsfer and Wagner, 1960).

: Many types of VLF (~10 to 50 kHz) waves in the magnetosphere are
: _-génerated by naturally occurring plasma processes or by man-made devices on the
‘ground rather than by sferics. These waves propagate in the whistler mode and

interact with energetic electrons in the same way as do whistler. Naturally occurring
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VLF signals, with a wide variety of tonal characteristics but distinctively different
from whistlers, have been classified into two broad categories. One category, called
- “chorus”, consists of a series of clearly discernible discrete tones, while the second

category, called “hiss”, sounds like amorphous broadband noise.

Several dozens of high-power transmitters (each up to a few megawatts
“radiated power) operate around the world in the ~10 to 50 kHz range for purposes of
-:_"'submarine communication and navigation. EM signals from these VLF transmutters
entef the magnetosphere and propagate in the whistler mode through regions where

: the electron gyrofrequency exceeds the wave frequency. It has been discovered that

- radiation from electrical power lines is another source of whistler-mode waves in the

magnetosphere (Park, 1982; Park and Helliwell, 1978).

Most of the world’s power systems use either 50 Hz or 60 Hz. These power
systems and their harmonics may be considered as local EM noise. Their high
harmonics in the kilo-hertz range (produced by mechanical imperfections, nonlinear or
unbalanced loads, etc.) can be radiated by transmission hines and leak into the
magnetosphere with sufficient intensity to stimulate wave growth and emission
generation, in the same manner as the VLF transmitter noise discussed above.
However, since power line radiation is much weaker than VLF transmitter noise,
observations of power line radiation effects in the frequency range of about 0.3 to

50 kHz depend strongly on amplification in the magnetosphere (Park, 1982).

1.2 Survey of EM noise reduction techniques

The general way to improve S/N ratios in TEM methods is exponential
averaging or digital integration of successive transients (Macnae et al., 1984). The
resultant reduction in noise is approximately proportional to the square root of the

number of stacks. In quiet areas, very good data quality can be obtained in a relatively
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- short time, whereas in very noisy environments, extensive stacking is needed and

often it is virtually impossible to reduce noise to acceptable levels.

Buselli and Cameron (1995, 1993 and 1992) have developed a sferics rejection
. algorithm for SIROTEM (Buselli and O’Neill, 1977). In order to decrease the storage
requirements, this sferics rejection method uses recursive algorithm for updating an
M-estimator of the mean and its standard error each time that a new observation 1s
collected. This method can reduce noise by a factor of about 5. In areas where sferics
predominates over geological background signal, this method increases target

detection depth by approximately 50%, without any increase in transmitter power.

An adaptive filter which uses the LMS method has been applied for reducing
natural, nonstationary magnetic fields in TEM data (Kim and Hohmann, 1992). The
LMS adaptive filter is formulated as a steepest descent method (Widrow et al, 1975;
Widrow et al., 1976; Widrow and Stearns, 1985). Stacking of the adaptively filtered
transient response achieves a mean-square noise reductton of 10 to 15 times greater
than that obtained by the simple stacking procedure. The main advantage of the
adaptive filter in EM noise cancellation is its ability to learn from the statistics of

previous measurements and adjust its coeflicients during the filtering process.

For a long offset transient electromagnetic (LOTEM) sounding, two selective
stacking techniques which are termed the symmetric rejection and the area-defined
rejection have been developed for reducing sporadic noise caused by many different
culture sources (Strack et al., 1989), Sporadic noise may be caused by many different
cultural sources such as water pumps, electric fences, trains, factories and/or vehicles
passing by the receiver. An approach for eliminating this kind of noise with data
processing is to consider the statistics of all signals, and to analyse their corresponding
amplitude distributions. The first step in both selective stacking schemes is to sort in
ascending order the data amplitudes at a given time sample for all transients. Then for

symmetric rejection known as the alpha-trimmed mean method, a determined
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sntage (10 to 40%) of the total number of transients is symmetrically rejected
m__;b'oth ends of the sorted amplitudes. For the area-defined rejection method,
plitude-frequency distributions are calculated by sliding overlapping windows over

he' _s"orfed amplitude curves for each time sample of all transients. A percentage of the

a under each distribution curve, symmetric about the maximum, is calculated and

é_fafa within that area are kept.

- For EM surveys in areas with coherent cultural EM noise (e.g., power line
oise), a local noise compensation (LNC) technique has been developed for a multi-
."c_:_ﬁ'énnel TEM acquisition system with dense station spacing (Stephan and Strack,
11990). This technique uses several mobile receivers referenced to a nearby (local)

ase station. LNC is applied as a prestack processing technique and it is intended for

‘multi-channel systems with close receiver spacings. The main premise for LNC is that
5 tﬁe regional noise is highly correlated over a region around the base station and that

ny other, more localised noise, is small.

Exploration for deep IP targets, particularly in conductive environments, can
‘present severe temporal signal-to-noise problems. These problems are usually related
‘10 EM coupling, telluric noise (Sumner, 1976; Vozoff, 1984), and weak signal

_ _-voltages. Halverson (1982 and 1990) and Halverson et al. (1987) have presented a
:"_:' method for real-time telluric noise cancellation in broad-band [P exploration. In one

: mode, an in-line telluric dipole, hard-wired to the receiver, provides cancellation for
the pole-dipole array. In another mode, remote orthogonal telluric dipoles, which
ir_ansmit telluric data to the IP receiver by radio telemetry, provide cancellation for the
pole-dipole or dipole-dipole arrays. Berdichevskiy (1965) describes a meihod for

: _telluric noise cancellation in [P data, whereby the telluric voltage on a random-
 oriented dipole can be predicted by a linear combination of telluric voltages measured
with orthogonally-oriented dipoles located several or more kilometres away. In real-
time cancellations, the potential-dipole and telluric-dipole voltages for successive

segments of a wavetrain are averaged into half-period representations, labelled
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cks” Using a least-square algorithm, the telluric and potential-dipole stacks are

1bined to yield telluric-cancelled potential-dipole stacks.

" Nichols and Morrison (1988) have claimed that the application of a remote
.rence receiver in a controlled source FEM survey reduces the natural magnetic
ds by ~40 to 60 dB without increasing transmitter power and averaging time,

because the fields are coherent over large distances. They use a least-square fit

. ;é't'hod to allow for correction of calibration and orientation errors of sensors as well

.-;a's.'-f the removal of apparent fields originating from sensor movement.

A local noise prediction filter (LNPF) based on the tipper method (Vozoff,

_1_9.72) for noise reduction has been designed to predict the vertical magnetic field from

SEQ-op or central induction sounding over a horizontally-layered earth, the TEM signai
:"'e_;x.i's'ts wholly within the vertical component. Thus the predicted time series obtained
from an LNPF is the predicted vertical-component EM noise which can be subtracted
.from the measured vertical component in subsequent processing. The magnetic
:ﬁfansfer function in the time domain is solved by a least-square method using the
approach of McMechan and Barrodale (1985). For low-frequency noise, the LNPF
with a three-point prediction filter reduces the vertical magnetic field by a factor of 5

in amplitude.

The remote reference cancellation scheme with a simple, single component,

';:: analogue-bucking system in controlled source EM soundings has been shown to
éu_ppress natural magnetic fields by 20 dB (Wilt et al,, 1983). The EM-60 (a
'fr.equency—domain system using three-component detection) was used for this survey.
They applied £65 A to a 100 m diameter four-turn horizontal loop, generating a
dipole moment > 10° A-m? over the frequency range of 107 to 10° Hz. With such a
transmitter and a remote magnetic reference, soundings were made at transmitter-

 receiver separations of up to 4 km over the frequency range of 0.05 to 500 Hz. A
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1ote receiver (SQUID magnetometer) was placed at a location far enough (usually
t;o"'. t:10 km) from the transmitter loop so that the measured remote fields would
isist-only of the geomagnetic variations. Measurements of the horizontal magnetic

e _:ds"at the remote station were transmitted to the mobile receiver station from the

Jote station via FM radio telemetry. Before adding the transmitted remote fields to
1e local fields in order to reduce the geomagnetic vaniations, the remote fields were

erted and adjusted in amplitude.

.3 Neural networks

Neural networks are considered by some to be computer analogues to the
bfain’s neural functions. They provide an approach which s designed to be closer to
'_ﬁt?ih'lan perception and recognition than traditional computing and are intended to A
_-é':(_.).mbine the efficiency of human perception with the precision and speed of a
::é{.)'r'nputer. Neural networks have shown capabilities for handwriting recognition
"('I")"énker et al., 1989; Huang and Lippmann, 1988), pattern recognition (Ahalt et al ,
'1:989; Alvelda and Martin, 1989; Lee et al., 1990; Pao, 1989, Widrow et al., 1988),

. tfme sertes prediction {Jasic and Poh, 1995; Lowe and Webb, 1989; Weigend et al |
19904, b), fault detection and diagnosis (Malkoff and Cohen, 1990), signal and speech
.processing (Malkoff, 1989; Lapedes and Farber, 1987; Lippmann and Beckman,

~ 1989; Principe and Zahalka, 1994), dynamic control system (Gu et al., 1993; Pao et
al,, 1992), noise cancellation (Masters, 1993; Park, 1990; Tamura and Waibel, 1988),
frequency-domain EM inversion problem (Poulton and Birken, 1995; Poulton et al |
19924, b), inverse problem of downhole TEM data (Schmidt and Cull, 1995),
inversion of seismic waveforms (Roth and Tarantola,1992), predicting lithology from
P-wave and S-wave velocities, (Lorenzetti, 1992), trace editing of seismic data (Cary
and Upham, 1992), picking peaks defining reflection events (Kemp et al., 1992) and
feature recognition and lineaments analysis from potential fields (Guo et al., 1992;

Fossati et al., 1992).
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In this thesis, the focus on neural networks is system modelling to
approximate any transfer function for EM noise reduction. Such neural networks

' 'éttempt to model an arbitrary transfer function or mapping function, since an arbitrary
idécision surface can be formed in a multi-layer neural network with any continuous

sigmoid nonlinearity (Cybenko, 1989; Lippmann, 1987).

The backpropagation algorithm, described in Section 1.3.4, as a supervised
:ieaming procedure is a generalisation of the least squares procedure to train multi-
layer networks (Rumelhart et al., 1986a, b). Even though backpropagation for
training networks has a strong mathematical foundation which is capable of producing
.:very rich results, it has several disadvantages. First, there 1s no guarantee that the
“network will converge in a finite number of steps. Second, the phenomenon of

.' :p'aralysis, in which weights take on large negative values and learning ceases, can be a
~“severe problem unless very small learning rates are used (Rumelhart et al., 1986a, b).
However, small learning rates can greatly increase training times. Third,
backpropagation networks can be trapped in local minima on highly convoluted error
| surfaces (Gori and Tesi, 1992; Sutton, 1986; Rumelhart et al, 1986a). Fourth,
backpropagation networks are not well suited to temporal problems. i e, if the
network faces a continuously changing environment where 1t may never see the same
input pattern twice, the training process may never converge (Wasserman, 1989). For
example, if a network is learning to recogmse the alphabet, it does no good to learn

“B” if, in so doing, it forgets “A”.

Many researchers have introduced improvements and extensions to the
traditional backpropagation algorithm to solve the aforementioned disadvantages.
Since the literature is far too extensive to explain here, the reader is referred to
references for details (Ahmad and Tesauro, 1989; Bahl et al., 1987, Brent, 1991,
Becker and Le Cun, 1988; Chan and Fallside, 1987; Fahlman, 1988; Fahlman and
Lebiere, 1989; Jacobs, 1988; Moody, 1989; Moody and Darken, 1988 and 1989, Park
et al. 1991; Pineda, 1988, Stornetta and Huberman, 1987; Sutton, 1986).
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3.1 Biological neuron

Nerve cells, called neurons, are the fundamental elements of the central
ervous system. The central nervous system is made up of about 5 billion neurons.
Neurons possess a number of points in common with other cells in their general
rganisation and their biochemical systems, but they also possess a number of

distinctive characteristics (Aleksander and Morton, 1989, Davalo and Naim, 1991).

A neuron is built up of three parts: the cell body, the dendrites, and the axon
igure 1.2). The body of the cell contains the nucleus of the neuron and carries out
the biochemical transformations necessary to synthesise enzymes and other molecules
necessary to the life of the neuron. Its shape, in most cases, is a pyramid or a sphere.
hie shape often depends on its position in the brain, and most neurons in the

“neocortex have a pyramid shape. The cell body is some microns in diameter.

Neuron

Dendrites

w Nucleus Z

Figure 1 2 Biological neuron.

Each neuron has a hair-like structure of dendrites around it. These are fine
“tubular extensions some tenths of a micron across and tens of microns in length. They
- branch out into a tree-like form around the cell body. The dendrites are the principal

“receptors of the neuron and serve to connect its incoming signals.
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ore than a metre in length. It branches at its extremity where it communicates with

:tfiér neurons, while the branching of dendrites takes place much closer to the cell

Neurons are connected one to another in a complex spatial arrangement to
form the central nervous system. As shown in Figure 1.2, the connection between two
eurons takes place at synapses, where they are separated by a synaptic gap of the

rder of one-hundredth of a micron.

.3.2 Neuron operation and artificial neuron

A simple description of the operation of a neuron is that it processes the
electric currents which arrive on its dendrites and transmits the resulting electric
:&_Jrrents to other connected neurons using its axon. The classic biological explanation
of this processing is that the cell carries out a summation of the incoming signals on
its dendrites. If this summation exceeds a certain threshold, the neuron responds by
_1-§§uing a new pulse which is propagated along its axon. If the summation is less than
:i_hg_threshold, the neuron remains inactive. The pulse which is propagated between
d:ifferent neurons is therefore an electrical phenomenon. An artificial neuron used in
neural network methods is based on the biological neuron operation explained above.
'F_igure 1.3 shows an artificial neuron. This artificial neuron or processing element
(PE) has four important components:
* Input connections (synapses), through which the artificial neuron receives
activation from other artificial neurons;
o Summation function that combines the various input activations into a

single activation;
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e Threshold function that converts this summation of input activations into
output activation,
s Qutput connections (axonal paths) by which a neuron’s output activation

arrives as input activation at other neurons.

Xa

N

Y

4
Output Path \
Win \

Processing
Element

Weights

Xa

Figure 1.3 Artificial neuron.

3.3 Multi-layer neural network architecture

An artificial neural network consists of many PEs (artificial neurons) joined
.-fo_gether. The PEs are usually organised into groups called layers. A typical network
'cdnsists of a sequence of layers with full or random connections (called connection
_eight in Figure 1.4) between successive layers. There are typically two lavers (like
buffers) to be connected to the outside of a network: an input layer where data is
'ﬁresented to the network, and an output layer which holds the actual response of the
network to a given input. Layers between the input and output layers are called
Ihidden layers (Figure 1.4). The reader is referred to several references on neural
networks for more details (Aleksander and Morton, 1989; Anderson and Rosenfeld,
1989; Caudill, 1988; Davalo and Naim, 1991; Dayhoff, 1989; Hinton, 1989;
Lippmann, 1987; McClelland and Rumelhart, 1988; Rumelhart et al., 1986a, b;
3'Wasserman, 1989).
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'_Learning by backpropagation

The backpropagation learning procedure has become one of the most popular
g paradigms. It is a supervised learning paradigm that seeks to minimise the
ared error between a desired output and the actual network’s output given by its

rent input and network connection strengths.

' The backpropagation learning procedure involves two phases:

o During the first phase the input is presented and propagated forward
through the network, and 1s compared with the desired output to produce
the error for each output PE;

s The second phase involves a backward pass through the network A
(analogous to the initial forward pass) during which the error is passed to

each PE in the network and the appropriate weight changes are made.

: The error at the output layer can be easily calculated using the delta rule
(Rumeihart et al, 1986a, b) but the error cannot be so easily computed at the hidden
iayer where the desired output is unknown. For a network with hidden layers, the
-~ appropnate weight changes are calculated from the generalised delta rule (Rumelhart

et al, 1986a, b; Werbos, 1974).

The net output of PE ; for a pattern p (which is one input set of training or

testing data) can be calculated as follows:
apjzza)jiopi 3 (11)

where @, is the connection weight from PE i to PE j and O, 1s the activation value of
the net output from PE i for pattern p. The activation value from PE J for pattern p,

fay), is given by:

Op=flay), (1.2)
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ere £is a non-linear transfer function such as a sigmoid function. The weight

nges at the output and hidden layers are made as follows:
:Aa)p,,,r(n%ul) = n(apJOm)wLaAwpﬂ(n) , (1.3)

_-hefe Am,;, is the change to be made to the weight from PE 7 to PE / following
esentation of a training pattern p, n is the presentation number, &, is the error
rédxent at PE j. 77 is the learning rate, and « is the momentum rate which determines
éﬁ'eci of the past weight change on the current direction of convergence

jovement in error weight space.

&, at the output layer is calculated by

521':(51*0?1)%_) , | (1-4)‘

ere £, is the desired output for PE j for pattern p, O, is the actual output from PE ;
for pattern p, and 8f(a,)/éw; is the derivative of an activation function with respect to

a connection weight from the hidden PE 7 to the output PE ;.

&,; at the hidden layer is calculated by a recursive equation that propagates the

rror from the output layer to the hidden layer:

& (a,)
515}':?;?”;5.9&@@: (1.5)

J

where @y, is the weight connecting PE & back to PE j and of{a,,)/dw; is the derivative
of an activation function with respect to a connection weight from the previous layer’s

hidden PE i to the present hidden layer’s PE /.

1.4 Outline of thesis

The contents of this thesis are summarised as:
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here /is a non-linear transfer function such as a sigmoid function. The weight

nges at the output and hidden layers are made as follows:
8@y (n+1) =78, 0} + ab @, (1) (13)

here A, is the change to be made to the weight from PE /1 to PE/ following
pr-_eséntation of a training pattern p, n is the presentation number, &, 1s the error
g_r_a;di.ént at PE j, i7is the learning rate, and « is the momentum rate which determines
_e-'éffect of the past weight change on the current direction of convergence

movement in error weight space.

J8,, at the output layer is calculated by:

I la,)
O.Df) _—gf .

J

5;?1:(5.91” (1'4)A

here #,; is the desired output for PE j for pattern p, O, is the actual output from PE /
for pattern p, and df(a,)/dw, is the derivative of an activation function with respect to

“a connection weight from the hidden PE / to the output PE J.

&, at the hidden layer is calculated by a recursive equation that propagates the

error from the output layer to the hidden layer:

g (a,)
5‘01:“""5&2?””;5%@@ ) (1.5)

- where ay; is the weight connecting PE & back to PE j and 8f(a,,)/Gaw; is the derivative
~of an activation function with respect to a connection weight from the previous layer’s

- hidden PE / to the present hidden layer’s PE j.

1.4 Qutline of thesis

The contents of this thesis are summarised as:
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Chapter I describes general EM noise sources, conventional EM noise

reduction methods, the general description of a multi-layer neural network, and the

“packpropagation learning algorthm.

Chapter 11 describes instrumentation for sferics measurements. The correlation
relationship between the measured X and Y components, the Z and X components,
“and the Z and Y components of sferics pulses recorded at a single station, and the
spatial correlation of the X, Y, and Z components of sferics pulses recorded

simultaneously at two stations are discussed.

Chapter III presents a model training method (MTM) to realise a mapping
from a set of noisy transients to a set of noise-free transients. The advantages and
disadvantages of this approach to improve $/N ratio in TEM and AEM methods
without increasing source power and intensely stacking successive transients are

discussed.

Chapter IV explains a neural network-based local noise prediction filter
(LNPF) to reduce the vertical component of EM noise fields (high-frequency sferics,
VLF EM noise, and geomagnetic fietd variations below 1 Hz} in an in-loop TEM

geometry.

Chapter V describes a remote noise prediction filter (RNPF) for TEM and
AEM methods using a remote reference receiver for minimising high-frequency

sferics.

Chapter VI presents comparisons of neural-network-based EM noise

reduction methods with other methods as follows:

o Comparison of an MTM with least-square fitting and simple stacking
methods;

e Comparison of a neural network-based LLNPF with the tipper method;
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s Comparison of an RNPF with simple subtraction, autoregressive moving

average, and interpolation methods.

Chapter VII shows examples of the applications of neural network filters to

EM field data as follows:
"« Application of noise prediction filters to AEM data (SALTMAP data);

o Application of noise prediction filters to ground-based TEM data obtained

in exploration conditions at a mineral prospect near Parkes, NSW.

Finally, Chapter VIIT presents a general discussion of the results and

‘oriclusions obtained in earlier chapters.





