CHAPTER 5. NEURAL NETWORK BASED REMOTE NOISE
PREDICTION FILTER

General description of a remote noise prediction filter

Even though ultrasensitive sensors and micro-computers for in-field data

'_ ocessing have enabled collection of better data quality in an EM method, there are
I limitations set by external noise. A further advance for improving data quality in
low-frequency EM and TEM techniques has been achieved by the introduction of a
emote-reference technique (Clarke et al., 1983; Gamble et al., 1979, b; Goubau et
:'ai., 1984; San Filipo and Hohmann, 1983; Stephan and Strack, 1990; Wilt et al.,
'1983). The basic idea of the remote-reference technique in EM noise reduction is to
find the earth transfer function between the EM fields at the local and remote
receivers. The earth transfer function accounts for the lateral conductivity change
between the receivers, the measurement errors of the differently calibrated receivers,
and relative alignment errors between the local and remote receivers. During

subsequent data collection, the EM noise can be subtracted in real time.

The remote-reference technique can be generally considered as a geometry
where a local receiver measures EM signal and noise, while a remote receiver is
simultaneously measuring solely electronics and EM noise, some of which may be
correlated with the noise measured by the local receiver. In a simple model of a
situation such as this, the total EM field recorded at the local receiver is given as

foliows:
1ty = s()+n'(6) + £'(1) (5.1)

and the EM field measured at the remote receiver is given by:
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(5.2)

oise fields measured at the

r(t)=rn(D+e(1),

ere s(t) is the EM signal, #'(1) and 7' (1) are the EM n

.l and remote receivers, respectively, and é(t) and £(1) denote electronics noise at

he local and remote reference sites which are not correlated to each other or with the

M signal.

Since £(1) and £ (1) are not correlated, from Equations 5.1 and 5.2, the

mathematical relationship between the EM noise fields at the local and remote

receivers is given as:

H(f)= J:a(,t)nf(tﬂ)dz , (5.3)

whereby, assuming the receivers are identical, af4) is the impulse response of the

sfer function and tis the time shift between the local and remote fime seres.

éarth tran

For a digitised time series, Equation 5.3 is written as:

e S, i=0,. k=1 (5.4)

where & is the number of samples.

Theoretically, after removing the time shift between two time series, 7,

calculated from the slope of the cross phase spectrum (Equation A2.14 of Appendix

2), Equation 5.4 is written as:

nf = _Zoajnf,j . (S‘S)
f=

However, when the time shift, 7is not an integral multiple of the sample interval, a

residual time shift remains. Therefore, Equation 5.5 is written as:
= Lams- At < B <+At (5.6)
=

or
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(5.7)

A)y=A*n ¢+ 8),
here /3 is the residual time shift, At is the sample interval, 4 is the earth transfer

(riction, and * represents a convolution operator.

For application of a neural network to a remote-reference technique,

uation 5.7 is rewritten as:

(0= Fln 1+ ), (5.8)
: ﬁére the function F represents a linear system. A neural network RNPF can be
plemented by replacing the linear system by an artificial neural network with the

yperbolic tangent as an activation function.

2 Network model for a remote noise prediction filter

The prediction of a time series may be performed in a number of ways. In the
ime domain, an autoregressive moving average (ARMA) model and an artificial
ﬁ__éurai network may be fitted to the data. These then give empirical descriptions of the
elationship between the time series that can be used to predict a local noise from a

emote noise measurement.

A remote noise prediction filter (RNPF), based on an artificial neural network,
_is the technique that predicts a sferics pulse at the local site from the corresponding

sferics pulse recorded at the remote receiver. A multi-layer feed-forward network is

transfer function, ; and accommodate any time shift, 53, given by Equation 5.6. The

a})breviation (i+1) xhxi represents the network as follows:

o The i+/ input PEs ( yii ,n;,ni,.....,n;-lg,n{_l) are given by the residual

time shift and the time series recorded at a remote receiver,
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o The / hidden PEs are fully connected to the input PEs;
o The i output PEs are fully connected to the hidden PEs, producing

the time series (nf},ni,‘....,nﬁmz,nfui) recorded at a local receiver;

o Output and hidden PEs have adjustable biases;

o The connection weights can be positive, negative, or Zero,

e The nonlinearities are located in the activation function of the
hidden PEs for high-frequency sferics reduction, and both hidden
and output PEs for background EM noise reduction. A hyperbolic

tangent is used as an activation function.

.3 Investigation of an optimal network configuration

In the investigation of an optimal network configuration for sferics reduction
with an RNPF, the X-component time series of sferics pulses recorded in Darwin in
December 1994 were used. These measurements were made with a receiver

separation of 11 km (see Section 2.4.1).

A cross-validation method has been used for finding the optimal size of the
network and when to stop training. As mentioned in Section 3.3, the whole available
 time series is divided into three sets: a training set, a validation set, and a prediction

set. The ANFE for finding the optimal network size of an RNPF is defined as:

MN 2
ANPE“—;—AZN;;( i), (5.9)
where n;ﬂ. and 7, are the true and predicted local time series, respectively, at the ith
output PE in a given input pattern p, N is the number of the output PEs, M is the

number of input patterns, and ¢ is the variance of the true time series.

In order to investigate the dependence of performance of an RNPF on the

number of input PEs, four networks, 4x20x3, 6x20x3, 11x20x10, and 16x20x15,
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-- hyperbohc tangent as their activation function were trained for 1000 cycles. A

h network was made from 11 corresponding p
on of 11 km in Darwin in

:g et for eac airs of sferics pulses

=d at local and remote stations with a separati

mber 1994. The number of training patterns for the four networks, #x20x3,

0x135, was 316, 190, 94, and 62 patterns, respectively.

05, 11x20x10, and 16x2
ely, where 71p 1S

and momentum rates were 2/npg and 0.6, respectiv

nitial learning
to the hidden or output layer.

stal number of the previous layer’s PEs connected
e network, these initial rates were reduced at

v01d oscillations in the training of th

20, 270, 480, and 750 cycles to 70% of the value used in the previous training

‘Figure 5.1 shows ANFE values of each network as a function of the number of

-f'i"é:s'. ANFE values were calculated using Equation 5.9 when each validation set was

sented to the corresponding network every 10 training cycles. The validation set

 each trained network were made from three pairs of sferics pulses which were not

olved in the training set. The performance of an RNPF is best when the number of

ut PEs is six, (i.e., one PE for the residual time shift between two sferics pulses

.asured simultaneously at the local and remote stations and five PEs for the remote

ime series). The ANFE values of the 6x20x5 network are about 3% after 300 cycles
¢ larger as the

000 iterations with 190 training patterns). The ANFE values becom

number of input PEs increases or decreases from 6.

Tn order to investigate how the number of PEs at a hidden layer affects the

duction, the network configured as

network performance for high-frequency sferics re

6th5 with a hyperbolic tangent as an activation function was trained for 500 cycles

ie., 95,000 iterations with 190 training patterns). The number of hidden PEs, A,

varied from 5 to 30 in intervals of 5, and then to 50 in intervals of 10. The same

Jearning schedule above was used during the training of the network. An ANFE value

::-'Was calculated every 10 cycles during the training of the network. Figure 5.2 shows
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ontour of ANFE values as a function of the number of hidden PEs and the
mber of training cycles. The ANFE values of the network gradually decrease as the
mbers of hidden PEs and cycles increase up to 25 and 250, respectively. Therefore,

ptxmal network size for an RNPF for sferics reduction was chosen as 6x25 x5 and

number of cycles to stop training was chosen to be 250 (i.e., 47,500 iterations

:h 190 patterns). With this method, it takes less than 23 minutes for computing
ies including I/O operations on an Intel 486DX-66 MHz processor based PC.

Network performance for background EM noise reduction

For background EM noise reduction, the aforementioned network
nﬁguratlon used for sferics reduction was tested with the X component of
c¢kground EM noise (VLF) measured in Darwin in December 1994. The number of

cles to stop training was determined as 170 (i.e., 34,000 iterations with 200 training

atterns), because after 160 training cycles, the network became stable, and an ANFE

salue of about 23 % was obtained (Figure 5.3).

Figure 5.4 shows an example of an RNPF used to attenuate the X component
series of background EM noise recorded in Darwin during very low sferics
C {fity period. This time series is a 4 ms block occurring 11 min after the time series
us¢d in the training of the network. The amplitude of background EM noise is about
10 times smaller than that of background EM noise in Ku-Ring-Gai National Park,
NSW (see Figure 4.14). The dominant frequency of background EM noise is ~20 kHz
_ (NWC). The ~20 kHz VLF noise is only a factor of two above the data gcquisition
-~ system noise level (see Figure 4.13). The RNPF can remove only the VLF noise, as
this is the only noise component that is correlated at the local and remote stations.
The residual noise therefore still contains significant (random) noise compared with
the measured noise, and a low NRF value of 2.2 is consequently obtained. The power

spectrum of the residual noise (Figure 5.4) shows attenuation by 20 dB (i.e,bya
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Remote Noise Prediction Filter {RNPF) for backgroud EM noise _ {

True Time Series of Local Receiver
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Example of performance of an RNPF used to attenuate the X
component of background EM noise. The data were a 4 ms block of
the time series occurring after the time series used in the training of
the 6x20x5 network.
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tor of 10 in amplitude) at the ~20 kHz VLF peak, and at other frequencies the
er spectrum reflects the character of the random noise measured at both the local

ote receivers.

" To test whether the performance of the RNPF is invariant with time, the

T was applied to other blocks of data. Figure 5.5 shows another example of
lt_é- from use of the RNPF. The time series for the prediction set is a 4 ms block
irring 4 sec after the time series used in Figure 5.4. An NRF value of 2.2 is
tained by the RNPF. From these and other similar results, it is concluded that the

ormance of the RNPF is stationary.

- Network performance for the reduction of the horizontal components of
high-frequency sferics

- Two time series of sferics pulses recorded simultaneously at two receivers

'us‘:t' be corrected for any time shift between them before an RNPF can be applied to
hem. However, when this time shift is not an integral multiple of the sampling interval
4 'us in this case), a residual time shift remains. Figure 5.6 shows two X-component
ime series after correcting for a time shift of -36 s, which is an integral multiple of
he sampling interval. The residual time series produced by simple subtraction of the
wo series and by the application of an RNPF are also shown in this figure. A residual
ime shift of -1.34 us still remains. The two time series were measured at 11 km
eparated stations. An NRF value of 8.5 was obtained with the neural network RNPF
plied in this case, compared with a corresponding significantly lower NRI" value of
4.0 obtained from simple subtraction of the two time series. This difference in
erformance is caused mainly by the residual time shift between the two time series.
“The simple subtraction is not accurate enough (without interpolation between sample
points) to give substantial noise reduction. On the other hand, the neural network

“RNPF can be trained to accommodate any residual time shift. A comparison of the
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5
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Example of stationarity test of an RNPF’s performance for
reduction of the X component of background EM noise. The data
were a 8 ms block of the time series occurring after the time series

shown in Figure 5.4.

Figure 5.5
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Remote Noise Prediction Filter (RNPF) for Sferics ]
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Figure 5.6  Example of performance of an RNPF used to reduce the X
component of high-frequency sferics noise. Two sferics pulses were
measured simultaneously at the local and remote receivers with a
separation of 11 km and the residual time shift between the two
sferics pulses is -1.34 s,
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,rmance of a neural network RNPF and simple subtraction is given in detail in

The power spectra plotted in Figure 5.6 demonstrate that the neural network
F can effectively attenuate sferics noise. Examination of the power spectra shows
at for amplitudes contributed by sferics in the frequency range of 5 to 50 kHz, the
ise reduction is even greater than that indicated by an NRF value of 8.5. For

nple, at 10 kHz the RNPF reduces sferics noise by 25 dB, i.e., the amplitude is

{z nuated by a factor of 18. On the other hand, the VLF peak observed at ~20 kHz in
¢ power spectrum is attenuated by 10 dB by both simple subtraction and the RNPF,
5 “the amplitude is attenuated by a factor of 3.2. When there is a time shift between
corresponding sferics pulses, the attenuation of any accompanying VLF noise may be

ess than that of sferics because correction for the time shift of a given sferics pulse

n oduces an inappropriate time shift in the VLF signals accompanying the sferics

because the amplitude of the sferics pulse in Figure 5.7 is smaller relative to
background noise than the amplitude of the sferics shown in Figures 5.6 and 5.8.
Tnspection of the power spectra shown in Figures 5.7 and 5.8 shows that, at some
frequenc1es where power is contributed by sferics pulse, the noise reduction is even
greater than those indicated by NRF values of 4.9 and 9.5, respectively. For example,
at ~9 kHz, the power is attenuated by 30 dB (i.e., a factor of 32in amplitude) in
Figure 5.7 and by 25 dB (i.e, a factor of 18 in amplitude) in Figure 5.8.
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Remote Noise Prediction Filter (RNPF) for Sferics
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Figure 5.7 Example of performance of an RNPF used to reduce the X
component of high-frequency sferics noise. Two sferics pulses were
measured simultaneously at the local and remote receivers with a
separation of 11 km and the residual time shift between the two

sferics pulses is 1.86 ps.
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Remote Noise Prediction Filter (RNPF) for Sferics |
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Example of performance of an RNPF used to reduce the X
component of high-frequency sferics noise. Two sferics pulses were
measured simultaneously at the local and remote receivers with a
separation of 11 km and the residual time shift between the two
sferics pulses is 0.3 ps.
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Figures 5.9 and 5.10 show results when the neural network RNPF is applied
e__Y-component time series of sferics noise. NRF values of 7.7 and 20.0 are

ied from the filter. This difference of the NRE values is mainly caused by the fact
he residual signals (the NRF denominators) are about the same in the two cases,
f;'e peak-to-peak sferics amplitude (the NRF numerator) in Figure 5.10 is about 3

greater than that in Figure 5.9.

A comparison of a neural network RNPF with an autoregressive moving

ge (ARMA) model is given in Section 6.3.2 of Chapter 6.

Network performance for the reduction of the vertical component of high-
frequency sferics

For distant sferics and a uniformly conducting earth, the plane of the ellipse is
orizontal. Local sferics and local conductivity inhomogeneities tilt the plane of the
'pse (Ward, 1967) and produce a vertical (Z) component of the sferics pulses.
erefore, this component is the one most affected by a ground conductivity change

etween two separated stations.

Figure 5.11 shows the effect of different ground conductivity at two separated
fations at which simultaneous measurements of high-frequency sferics were made.
AH time series depicted in Figure 5.11 were measured at Koolpinyah near Darwin, in

_ f:___cember 1994. For a separation of 0 km between two receivers, the amplitude ratio
(i.e, 1.15) of the Z component of sferics is caused by differences in the characteristics
f the two sensors. At5and 11 km separations, after compensating for the difference
n sensor characteristics the amplitude ratios of 0.90 and 0.66 arise from the lateral

onductivity change between the two stations.

The greatest effect of conductivity heterogeneity on the Z component

measured at Koolpinyah is shown in the measurement with a separation of 8.9 km,
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Example of performance of an RNPF used to reduce the Y
component of high-frequency sferics noise. Two sferics pulses were
measured simultaneously at the local and remote recetvers with a
separation of 11 km and the residual time shift between the two

sferics pulses is -0.54 us.
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Remote Noise Prediction Filter (RNPF) for Sferics |
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lgure 5.10 Example of performance of an RNPF used to reduce the Y
component of high-frequency sferics noise. Two sferics pulses were
measured simultaneously at the local and remote receivers with a
separation of 11 km and the residual time shift between the two
sferics pulses is ~0.65 ps.



Chapter 5 : Neural network based remote noise prediction filter

156

The Z-component time series with 0 km separation
Amplitude ratio : 1.145
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Figure 5.11 Effect of ground conductivity change on the Z component of sferics
noise measured simultaneously at two stations with station
separations of 5 and 11 km in addition to two sferics pulses
measured simultaneously at the same station. These measurements
were carried out at Koolpinyah, near Darwin in December 1594.
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was obtained after compensating for the sensor

e amplitude ratio of 0.63
civer was placed near the sea

nce (Figure 5.12). In this measurement, one rec
d receiver was placed inland. The cross-
delay calculated from the pha
varying slope of this

~20 to 30 kHz is

correlation of two time series

e secon
se spectrum has

anti-correlation, and the time
frequencies as shown by the

at values at different
ency range from

e, the time delay in the frequ
2 kHz the time delay is +12
g in quite different

qum. For exampl
s. Itis

s. In the frequency range from ~30t0 4

¢ that this response consists of two sferics pulses originatin

stions, and hence its structure s more complicated.

examples of an RNPF applied to the 7 component

Figures 5.13 and 5.14 show
ed time series shown in

e shift between the two measur

sferics. The residual tim
ift in Figure 5.14is 239 1. An NRF

us, while the residual time sh
4 is obtained from the simple subtraction in both examples. The neural

s of 0.6 and 1.2 in Figures 5.13 and 5.14,

ction methods do not produce

re 5.13is -1.76

ue of 0.
twork filter achieves NRF value

s, the RNPF and simple subtra

spectively. In both case
on to the X or Y component. Since the

e reduction, unlike their applicati
1 times smaller than the X or Y
eater on the Z component

fective nois
component of sferics is generally te
electronics noise is relatively gr
d random electronic noise and the

component of

erics, uncorrelated random
al component. This uncorrelate

1an on the horizont
5 make it difficult for the neural network to

on effect explained in Section 2.4.

persi
e shifts between the local and re

ecognise the amplitudes and tim mote time series.

correlation between the local vertical

A description of the analysis of cross-
etwork configured to

components, and of a neural n

and remote horizontal (X and Y)
X, Y, and Z components is

cal component using the remote

sredict the local verti

given in Section 72.2.2 of Chapter 7.




Chapter 5 : Neural network based remote noise prediction filter 158

T
T

DARWIN

Area : Koolpinyah Component . Z Separation : 8.9 km

Receiver #1 Time Series

g - —p— T
g 010 020 030 040 050 060 070 080 090 100 1.10 120 1.30

Vertical Unit ; Volts Horizontal Unit - msec

T ‘—MWW”W—NWW’T‘MW” "
.0.800 -0800 -0.400 -0.200 0.000 0.200 0.400 0.600 0.800 1.000
Vertical Unit : Dimensionless Horizontal Unit : msec
Amplitude Cross-Spectrum

T

|
I
l
l
|
l
l
|

S - l
25000 50000 75000 10000 125000 ¥
Verticat Unit : dBVrms*2 Horizonial Unit - Hz j

Phase Cross-Spectrum  7ime series delay - -0.020 msec

e T s

e S e

S

]

25000 50000 75000 100000 125000 |

Vertical Unit - radians Harizontal Unit : Hz 1|
squared Coherency Spectrum ' 1

N
é\
e

<

£

ISt b S '

0 25000 50000 75000 100060 125000

e e e e e

‘Figure 5.12 Example of time series, correlation function, and cross-power and
cross-phase spectra for the Z component of high-frequency sferics
data recorded in December 1994 at a station separation of 11 km at
Koolpinyah, near Darwin.
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“Figure 5.13 Example of performance of an RNPF and simple subtraction used to
reduce the Z component of high-frequency sferics noise. Two
sferics pulses were measured simultaneously at the local and remote
receivers with a separation of 11 km and the residual time shift

between the two sferics pulses is -1.76 ps.
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4 Example of performance of an RNPF and simple subtraction used to
reduce the Z component of high-frequency sferics noise. Two
sferics pulses were measured simultaneously at the local and remote
receivers with a separation of 11 km and the residual time shift

between the two sferics pulses is 2.39 ps.
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Conclusion

A neural network-based remote noise prediction filter (RNPF) has been

.rk for both background EM noise and high-frequency sferics consists of 6 input
. 25 hidden PEs, and 5 output PEs. The nonlinearities are located in the activation
tion of hidden PEs for sferics pulse prediction and in both hidden and output PEs
background EM noise prediction. A hyperbolic tangent is used as the network
ti_vation function. The networks for background EM noise and sferics noise are

ained for 170 and 250 cycles, respectively.

For two time series of given X and Y components of high-frequency sferics
measured at two separated stations, the noise attenuation produced with a neural
twork RNPF is much greater than the noise attenuation obtained from simple
btraction of one time series from the other. The neural network RNPF can be

rained to accommodate any residual time shift smaller than the sample interval (4 us).

An RNPF achieves an attenuation in the reduction of background EM noise by
20 dB (i.e., by a factor of 10 in amplitude) at the VLF frequency of ~20 kHz (NWC).

T'he performance of an RNPF is invariant over time.

For the reduction of the horizontal (X and Y) components of high-frequency
sferics, an RNPF attenuates the power of sferics noise by a factor of more than 25 dB
(i.e., by a factor of 18 in sferics amplitude) at frequencies in the range of 5 to 50 kHz.
When there is a time shift between corresponding sferics pulses measured at two
stations, the attenuation of any accompanying VLF noise may be less than that of
sferics because correction for the time shift of a given sferics pulse introduces an

nappropriate time shift in the VLF signals accompanying the sferics pulse.
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The vertical (Z) component of sferics pulse was the component most affected

¥ a ground conductivity change between two separated stations in the case studied.

or the reduction of this component of high-frequency sferics, both an RNPF and

uﬁple subtraction method do not show the same performance obtained when the

aine filter is applied to the X and Y components.






