CHAPTER 6. COMPARISONS OF NEURAL NETWORK
FILTERS WITH OTHER METHODS

Comparison of the model training method with least-square and simple
stacking methods

1.1 MTM and least-square power rule fitting

The general form of the power rule for a layered earth is given as:

Alt) =2 a,t?, 6.1)
i=1

here A(t;) is the TEM response at the delay time £, a; are amplitude coefficients, and
'ﬁ:;-:_are time constants. The first (m=1) and second order (m=2) power rules were used
for comparison between an MTM and least-square fitting. From Equation 6.1, the first

and second order forms of Equation 6.1 are given by:
A(ti) =aytf (6.2a)

| Alt) =asti+ayt? . (6.2b)
By taking the logarithm of both sides of Equation 6.2a, the parameters, i.e, the
coefficient and time constant, of the first order power rule can be solved by linear
least-square. One way to find the parameters of Equation 6.2b is to solve the

minimisation problem of nonlinear least-squares.

Roth an MTM and least-square method were applied to the samé 1noisy
transient generated from the model TS3 and EM noise data recorded in Darwin. The
noisy transient and the S/N ratio are shown in Figure 6.1. The S/N ratio at early delay
times is worse than the average S/N ratio (Figure 3 .4) calculated from 1000 different
n_oisy transients while the S/N ratio at late delay times is better than the average S/N

ratio. For example, the S/N ratio of this noisy transient at a delay time of 0.487 ms is
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Figure 6.1 Noise-free and noisy transient responses of the testing model TS3
and S$/N ratios over a range of delay times.
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Before windowing [window width:60 samples, i.e., 3 msec]

60 120 180 240 300 360 420 480 540 600
Samples

After applying a time window (3 msec) to consecutive
samples

60 120 180 240 300 360 420 480 540 600

Samples

After applying a time window (3 msec)
with an interval of 3 msec

60 120 180 240 300 360 420 480 54Q 600
Samples

Figure 6.3  Example of effect of the time windowing scheme when the time
: window (a width of 60 samples) was applied to a 600-sample block
of the vertical component time series shown in Figure 3.2.
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E_e time series when a moving time window is applied to the time series of the top
:fagram. The time window produces low-frequency (~111 Hz) noise in the range from
ﬁmple points 300 to 480. The bottom diagram of Figure 6.3 shows the effect of time
'.:_indowing when contiguous time windows are obtained from the time series in the top
diagram of Figure 6.3 in the same manner as applied by SIROTEM. If the noise values
gt sample values of 330 to 570 were added to the noise-free responses of Model TS3

t the delay times of 15.58, 18.72, 21.85, 24,99, and 28.12 ms, the peak at the late

elay times shown in the noisy transient would be considered to be low-frequency EM

Figure 6.4 shows a comparison of noise reduction of the MTM with a simple
tacking method. The noise-free transient of model TS3 is represented as a solid line.
The transient obtained by windowing and stacking 256 noisy transients is denoted as
_crosses. The open circles represents the filtered transient obtained from the MTM. As
': shown in Figure 6.4, the 256 stacked transient still shows spikes at the late delay
“times. Tt is noted that the noise peak at the delay time of 24.99 ms in Figure 6.4 is
produced by windowing high-frequency sferics spikes rather than by low-frequency
components of the sferics pulse itself (see bottom diagram of Figure 6.3). Also, the
transient obtained with 1000 stack still shows spikes at the late delay times

(Figure 6.5). Even though it is generally known that the worse S/N ratio at late delay
times is affected by low-frequency EM noise, the high-frequency EM spike-like noise

is an important contributor to the worse S/N ratio at the late delay times.

To compare the results of inversion of the two transients obtained {rom the
MTM and simple stacking methods, 2-layer models are used with progrém GRENDL.
The true values of the first and second layer resistivities and the first layer thickness in
the model TS3 are 600, 60 Q-m, and 350 m, respectively. Table 6.1 shows the values
of the model parameters and the inversion results obtained from the filtered transient
produced by the MTM and the transient obtained from 256 stacks. As shown in |

Table 6.1, the MTM produces better inversion results for all parameters. The initial
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el parameters used in the inversion are 1000, 500 Q-m, and 50 m as the

first and second layer resistivities and the first layer thickness.
of the filtered transient produced by the

m the 256 stacked

iflayer mod
The values of 679, 62

Q-m and 344 m are obtained from inversion

MTM, while the values of 414, 14 (-m and 475 m are obtained fro

ansient (Table 6.1 and Figure 6.6). In
£13,2,and 3 % mn the first and second layer re

model parameter space, the MTM shows

sistivities and the first layer

erTors 0
thickness, respectively, while the simple stacking method shows the corresponding
“errors of 31, 35, and 76 o, In Table 6.1, the values within parentheses represent

“inversion errors in parameters.

Ej-Table: 6.1 Results of inversion of two transient responses derived from an MTM

and simple stacking method.

True model Model training Simple stacking
method method
- Firstlayer 600 679 (13 %) 414 (31 %)
- Secondlayer 60 62 (2 %) 14 (35 %)
- resistivity [Q-m]
First layer 350 344 (3 %) 475 (76 %)
thickness [m}

6.2 Comparison of the local noise prediction filter with the tipper method

In an LNPF based on the tipper method (called Spies LNPF in this thesis), the
ied to solve the

uation 4.2 into two coupled subsystems was applie

decomposition of Eq
s. Rearranging Equation 4.2 gives the two

overdetermined system of linear equation

equations:

[X(r)*hxm]:hz(r)w[m)*hym] (6.32)

(6.3b)

[F(yh, (0] = e (D)~ [ X (O )] -
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An iterative solution of the two coupled equations 6.3 is used and proceeds as follows:

e A starting estimate of ¥(#)*h,(1) is inserted into Equation 6.3a, which
is solved for X{#) by least-square;

e With this X7#), the right side of Equation 6.3b is computed and
Equation 6.3b is solved for ¥(#) by least-square;

e This ¥(# is put into Equation 6.3a and so on until the values of X{?)
and Y(t) become stationary to the desired number of significant

figures.

1In the comparison between a neural network LNPF and the Spies LNPF, the iterative
procedure of the Spies LNPF to update the filter coefficients stops when it meets one

of three criteria as follows:

¢ The noise-to-signal ratio (NSR) (Spies, 1988) is less than or equal to
15 %;

o The absolute difference between the average of NSR values at the
previous three iterations and an NSR value at the present iteration is
less than or equal to 1.0E-10;

¢ The number of iterations is equal to 60.

Spies (1988) has demonstrated that the LNPF improves the S/N ratio by a
factor of five using a three-point prediction filter (i.e., the length of the impulse
responses of the magnetic transfer functions prediction filter is three). However, for
comparison of the neural network LNPF with the Spies LNPF applied to the reduction
- of low-frequency (below 1 Hz) geomagnetic field variations, 3-point and 48-point
prediction filters were used for the Spies LNPF. Actually, the filter size for the optimal
performance of the Spies LNPF is highly related to the nﬁmber of samples to be used
in iterative procedures to update the impulse responses of the magnetic transfer

functions of the Spies LNPF. For example, when few samples are used, then the size
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thie filter is small but this filter gives rise to a non-stationary performance (ie., the

er performance is not invariant with time). The data set used in the training of the

utal network LNPF (see Figure 4.30) was used in the determination of the filter

efficients of the Spies LNPF.

The iterative procedure of the Spies LNPF with both the 3-point and 48-point
ediction filters stopped because it had satisfied Criterion 2. It took about 2 and 54
nutes to train the 3-point and 48-point prediction filters, respectively. As mentioned
Section 4.3.3 of Chapter 4, the neural network was trained for 60,000 iterations,

ch are equivalent to less than 10 minutes of elapsed computation time on an Intel

86DX2-66 Mhz processor based PC.

The comparison between the three-point prediction Spies LNPF and the neural
otwork LNPF shows that the neural network filter achieves an NRF value of 6.8
:.iﬁ_r:hiie the Spies LNPF obtains an NRF of 2.6 (Figure 6.7). Compared to the factor of 5
quoted by Spies, this ‘dlustrated the non-stationary performance of the 3-point filter.
The result from the 48-point prediction Spies filter is shown in Figure 6.8. An NRF' of

6.5 is obtained by this filter. The neural network LNPF is superior to the Spies LNPF
‘with the three-point prediction filter. The Spies LNPF with the 48-point prediction

_'j_ﬁlter is only marginally worse.

For high-frequency (above 5 kHz) sferics reduction, a 24-point prediction filter
as chosen as the optimal prediction filter length of the Spies LNPF. An example of
the Spies LNPF resuits obtained with Class 2 sferics (i.e., the amplitude of the X

_ component of sferics is almost equal to that of the Y component, and the polarities of
“the two components are opposite to each other) is displayed in Figure 6.9. The
:-'1eaming procedure of the Spies LNPF stops when Criterion 2 is satisfied. An NRF of
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btained with this filter, and thus the neural network filter performs better n this

it yielded an NRF of 7.8 (see Figure 4.23).

Figure 6.10 shows the Spies LNPF results obtained with Class 1 sferics (i.e.,
; "ﬁiitude of the X component of sferics is much smaller than that of the Y
iponent, and the polarities of the two components are opposite to each other). This

achieves an NRF value of 5.4. In this case, an NRF of 5.9 was obtained by the
eural network LNPF.

1t is concluded that the Spies method performs worse than the neural network
od: LNPF when the sferics pulse has approximately equal amplitudes in both the X
Y components (e.g., Figure 6.9). In cases where the sferics pulse is polarised

inly along the X or Y direction (e.g., Figure 6. 10), the performance of the Spies

F is only marginally worse than the performance of the neural network filter.

Comparison of the remote noise prediction filter with simple subtraction,
" autoregressive, and interpolation methods

.3.1 RNPF and a simple subtraction of two time series

Figure 6.11 shows the X-component time series and their power spectra when
both the neural network RNPF and simple subtraction method are applied to
background EM noise (mainly, ~20 kHz). The two residual time series show that the
RNPF performs marginally better than the simple subtraction method. On the power
spectra, both methods attenuate the ~20 kHz VLF by 20 dB (i.e,, by a factor of 10 in

amplitude).

Figure 6.12 shows the performance of the RNPF and subtraction method when
they are applied to the X-component time series of sferics noise. The residual time
shift between the local and remote time series is 1.86 ps. An NRF' value of 2.9 is

_obtained by simple subtraction, while the RNPF achieves 4.9 as an NRF value. In the
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Remote Noise Prediction Filter (RNPF) for backgroud EM noise _J
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Figure 6.11 Example of performance of an RNPF and simple subtraction to
reduce the horizontal component of background noise.
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Remote Noise Prediction Filter (RNPF) for Sferics _ |

Area : Koolpinyah Separation : 11 km  Residual time shift : 1.86 Micro-sec [

True Time Series at Local Receiver
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Figure 6.12 Example of performance of an RNPF and simple subtraction to
reduce the X component of high-frequency sferics noise. Two
sferics pulses were measured simultaneously at the local and remote
receivers with a separation of 11 km and the residual time shift
between the two sferics pulses 1s 1.86 us.
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ency-domain, the power spectrum of the time series measured at the local

giver shows that the sferics pulse contributes power in the frequency range of ~5 to
0 kHz. At a frequency of ~9 kliz, the RNPF and simple subtraction reduce sferics by
‘e, by a factor of ~32 in amplitude) and 20 dB (i.e., by a factor of 10 in

plitude), respectively. At a frequency of ~37 kHz, the neural network filter reduces

fetics by 20 dB, while simple subtraction reduces sferics by 7 dB (i.e., by a factor of

in amplitude).

Figure 6.13 shows an example of attenuation with the neural network RNPF
nd simple subtraction methods, using the Y-component time series of a sferics pulse.
_. ¢ maximum amplitude of the sferics pulse is about 3 V. The duration of the sferics
‘pulse is about 1 ms. The residual time shift between the local and remote sferics pulses
is -0.65 us. NRF values of 9.7 and 20 are obtained from simple subtraction and the
‘neural network RNPF, respectively. Effect of the residual time shift on simple
‘ubtraction is discussed in Section 6.3.3. At some frequencies, the neural network
filter gives a much higher NRF than a factor of 20 in amplitude. For example, sferics
power at 25 kHz is suppressed by 47 dB, i.e., an attenuation by a factor of 224 in

amplitude. Probably, this noise is more coherent than average.

6.3.2 RNPF and an autoregressive moving average model

Suppose that pairs of cbservations (X,Y) are available at equispaced intervals
of time, of an input X and an output ¥ from some dynamic system, which can be
represented by a linear filter of the form

Y=v, X, +v, X, +v, X , +-

= (v, +v,B+v,B+-) X, 6.4)
=y(B)X,
in which the output at some time 7 is represented as a linear aggregate of the input at’

times t, t-1, ... The operator v(B) is called the transfer function of the filter. The
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Remote Noise Prediction Filter (RNPF) for Sferics ]
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Figure 6.13 Example of performance of an RNPF and simple subtraction to
reduce the Y component of high-frequency sferics noise. Two
sferics pulses were measured simultaneously at the local and remote
receivers with a separation of 11 km and the residual time shift
between the two sferics pulses is -0.65 ps.
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eights vo, Vi, Va,... 81€ called the impulse response function of the system. B is the

tcward shift operator as follows:
BX,=X, andB'X, =X, ;.

Discrete dynamic systems can be represented by the general difference

quation (Box, 1976; Bennett, 1979)

(A+EV+--EVIY, = g(Lam V47V ) Xy (6.5)

vhich we refer to as a transfer function model of order (r,5), where g is called the

ady state gain and b is pure delay or dead time before the response to a given input

egins to take effect. The difference Equation 6.5 may also be written in terms of the

sackward shift operator B=1-V as

(1-8,B—-~6,B")Y, =(w,~ @B---~a B )X_, (6.6a)
or
_ S(BY, =w(B)X,, . (6.6b)
Iquivalently, writing Q@):a}(B)Bb, the model (Equation 6.6b) becomes
(6.7)

5(BYY, = AB)X, .
Comparing Equation 6.7 with Equation 6.4 the transfer function of this model is
written by

v(B) =8 (BYXAB) . (6.8)

Thus, the transfer function is represented by the ratio of two polynomials in B.

An autoregressive integrated moving average (ARIMA) model

@(B)z, = 0(B)a, (6.9)

used for the representation of a time series {z,} relates z, and a; by the linear filtering

operation

z,= 9 (BY0(Ba,, (6.10)
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here a, is white noise. Therefore, the ARIMA model postulates that a time series can
be usefully represented as an output from a dynamic system to which the input is white

fioise and for which the transfer function can be parsimoniously expressed as the ratio

d_f two polynomials in B.

In practice, the system will be infected by disturbances, or noise, whose net
effect is to corrupt the output predicted by the transfer function model by an amount
&. The combined transfer function-noise model for predicting a local time series from a

remote time series may then be written as

Y, =8 (B)w(B)X,, +&, . (6.11)

For testing whether or not the statistical model can be trained to accommodate
any residual time shift smaller than the sample interval (4 us), the transfer function
model (Equation 6.6b) is used in this comparison. In order to apply a transfer function
model for the prediction of a local time series from a remote time series, the input and
output of Eqﬁation 6.6b can be replaced with remote and local sferics pulses,
respectively, and b represents the time shift between the local and remote time series.
The methods for identifying, fitting, and checking transfer function models are referred

to in Chapter 11 of Box’s book {1976).

Figure 6.14 shows an example of results obtained with the transfer function
model when this model is applied to the remote X-component time series. Two X-
component time series were simultaneously measured at stations separated by 11 km
near Darwin. These time series are time shifted before doing identification (i.e,,
procedure to obtain some idea of the values of r and s in Equation 6.6 and to obtain
initial guesses for the parameters) of the transfer function models (i.e., 5=0). A
residual time shift of -0.79 us remains between the two series. The identification

suggests the transfer function model of order (0,2) as follows:

Y, =(0,~0,B-w,B%)X,
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The measured time series at a local receiver
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Figure 6.14

Example of performance of the transfer function model and simple
subtraction to reduce the X component of high-frequency sferics
noise. The residual time shift between the two sferics pulses 18

-0.79 us.
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ér the prediction of a local time series from a remote time series. Furthermore, the
nitial estimates cﬁo:().%, (31%0‘46, and @,=0.23 can be used as rough starting values
br the estimation procedures. The estimates of 1.26, 0.35, and -0.03 are obtained as
@y, @, and w,, respectively, by least-square minimisation. The transfer function model
nd simple subtraction method give NRF values of 8.9 and 5.9, respectively,

(Figure 6.14) while a neural network RNPF achieves an NRF value of 9.6

(Figure 6.15).

Figure 6.16 shows the result of the transfer function model obtained above
when it is applied to another time series that has the same residual time shift of

0.79 ps as the time series shown in Figure 6.14. In this case, the transfer function
model shows consistent performance (an NRF value of 9.6). NRF values of 11.0 and

4 are obtained by the neural network RNPF and simple subtraction, respectively

. (Figure 6.17).

To test whether the transfer function model can accommodate any residual
time shift between two sferics pulses measured simultaneously at local and remote
stations, the trained transfer function model with a residual time shift of -0.79 ps was
applied to the remote time series with a residual time shift of 1.71 us with respect to
the corresponding local time series. Figure 6.18 shows that the performance of the
;__: transfer function model is worse than that of simple subtraction. The transfer function
‘model achieves an NRF of 1.6 while the simple subtraction method gives an NRF
~value of 2.3. It is therefore concluded that the transfer function model cannot be
generally applied to predict the local sferics pulse with various residual time shift with
respect to the corresponding remote sferics pulse. On the other hand, the neural
- network can be trained to accommodate any residual time shift between the local and

‘remote sferics pulses (see Section 5.5).
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Remote Noise Prediction Filter (RNPF) for Sferics |

Area : Koolpinyah Separation : 11 km Residual time shift : -0.79 Micro-sec [
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Figure 6.15 Example of performance of an RNPF and simple subtraction to
reduce the X component of high-frequency sferics noise shown in

Figure 6.14.
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Remote Noise Prediction Filter (RNPF) for Sferics |
Area : Koolpinyah  Separation : 11 km Residual time shift : -0.79 Micro-sec |
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Figure 6.17 Example of performance of an RNPF and simple subtraction to
reduce the X component of high-frequency sferics noise shown in
Figure 6.16.
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.:6_.'3.3 RNPF and the interpolation method

To investigate whether or not the performance difference between simple
subtraction and the neural network LNPF is caused mainly by the residual time shift
‘between two X-component time series at the local and remote stations, the two time
‘series shown in Figure 6.14 (residual time shift of 0.79 us in this case) were
interpolated in time intervals of 0.4 us and were compensated for the residual time

shift of 0.8 s (i.e., two times the interpolation interval) before subtraction of one

interpolated time series from the other.

Figure 6.19 shows that the interpolation method achieves an NRF value of 7.8
“without compensating for any difference between the characteristics of the sensors at
the two stations. An NRF value of 6.3 is obtained from simple subtraction with
‘compensation for both the residual time shift and sensor difference while the neural
network RNPF achieves an NRF value of 9.6 (Table 6.2). Since in this case the total
time shift between the local and remote sferics pulses has been essentially removed
(apart from a residual time shift of 0.01 ps), the performance difference of 3.3 in the
NRFE value is considered to arise from an amplitude difference caused by different

~ground conductivity at the two stations.
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Interpolated local time series
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Figure 6.19 Example of performance of an RNPF and interpolatton method. The
local and remote sferics pulses with a residual time shift of -0.79 us
shown in Figure 6.14 were interpolated at time intervals of 0.4 ys.
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Conclusion

In the reduction of EM noise on a noisy single transient, the model traimng
method (MTM) has been compared with the simple stacking and least-square

nethods. The first and second order power rules are used. The performance of the
MTM at early delay times is equal to the performance of the least-square fitting while
late delay times, the MTM performs better than the ieast—scjuare fitting method by a

actor of 2.5.

In the comparison between the Spies and neural network local noise prediction
Slters (LNPF) for reduction of low-frequency variations of the geomagnetic field, the

_ riéural network LNPF is superior to the Spies LNPF based on the tipper method with
.-.three-point prediction filter. The Spies LNPF with 48-point prediction filter is only

: marginally worse, but takes 54 minutes to train, whereas the neural network based

'LNPF takes only less than 10 minutes to train.

For reduction of high-frequency (above 5 kHz) sferics, the Spies LNPF with
24-point prediction filter performs worse when the sferics pulse has approximately
equal amplitudes in both the X and Y components. In cases where the sferics pulse is
polarised mainly along the X or Y direction, the performance of the Spies filter is only

marginally worse than the performance of the neural network LNPF.

In the use of a remote reference technique for reducing EM noise (VLF and
sferics), simple subtraction, a transfer function model (e.g., autoregressive model), and

interpolation method have been compared with a neural network based remote noise

prediction filter (RNPF).

For reduction of background EM (VLF) noise, both the neural network RNPF
and simple subtraction reduce VLF (~20 kHz) noise by 20 dB (i.e., by a factor of 10 in
amplitude). In all horizontal (X and Y) component reductions of high-frequency
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sferics, the performance of the neural network RINPF is superior to the performance of
simple subtraction. The performance difference between simple subtraction and the
neural network RNPF is caused by both the residual time shift between the local and
remote time series, and amplitude differences between the two time series caused by a

lateral conductivity change between the local and remote stations.

The performance of a transfer function model (e.g., an autoregressive
integrated moving average model) is the worst when the residual time shift is different
from the residual time shift between the local and remote time series used in the
training of the transfer function model. Otherwise, the performance of the transfer

function model is only marginally worse than the performance of the neural network





