CHAPTER 8. CONCLUDING REMARKS AND SOME
SUGGESTIONS FOR FURTHER RESEARCH

8.1 Sferics correlations

In order to reduce sferics noise with neural network-based prediction filters, it
is necessary to understand the correlation between orthogonal components of sferics
noise and the spatial correlation of sferics noise in both horizontal and vertical planes.
Three-component sferics correlation measurements were carried out at four areas (i.e,

Ku-Ring-Gai National Park, Mt Isa, Darwin, and Parkes).

One-second time pulses derived from a Global Positioning System (GPS) were
used to synchronise sferics measurements at two station with various separations. For
measurements of the correlation of the three components of sferics noise at
frequencies above 5 kHz, a SIROTEM receiver coil (RVR-3C) was used. Horizontal-
axis induction coils (called Drovers) and a two-turn 100mx100m loop were used to
measure the horizontal (X and Y) components and the vertical (Z) component of low-

frequency (<1 kHz) sferics noise, respectively.

Low-frequency sferics measurements of each component were made with a
10 kHz anti-aliasing filter placed at the input of the preamplifiers, and a 1 kHz filter at
the output of the preamplifier.

Generally, it is concluded that there is close correlation between the three
components of high-frequency sferics noise measured at a given station, and between
corresponding components measured at two stations separated by distances up to
11 km. The largest dispersion effect caused by a difference in ground conductivity at

two separated stations can be seen on the vertical component of sferics noise.
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Simultaneous horizontal-component measurements of low-frequency sferics at
two separated receivers show a high degree of correlation and nearly no time shift
between corresponding sferics pulses even when the receivers are separated by a

distance of 11 km.

Twenty-four hour monitoring of sferics at Ku-Ring-Gai National Park has
shown that there are two periods of minimum activity each day. For example, during
one such measurement period, minima were recorded from 6:00 AM to 1:30 PM and
from 6:30 to 10:30 PM. While more extensive monitoring 1s required to determine
variations with latitude and time of year, these times can be used as guidelines for best
times to carry out airborne electromagnetic (AEM) surveys. The sferics count rates
during these minimum activity periods are about 3 to 9 times smaller than those during
the rest of the day. These lower count rates imply that the stacking time for AEM
measurements can be reduced by a factor of 3 to 9 to obtain the same data quality as

an AEM survey carried out during a period of maximum sferics activity.

8.2 Neural network-based noise reduection filters

Noise prediction filters using neural networks differ from most applications of
neural networks for classification problems (e.g., determination of crop types from
satellite photographs and handwriting recognition) and data (image) compression. Real
value (continuous)-output neural networks have been used for noise reduction instead
of binary (discrete)-output networks normally used for classification. In real-value
applications of a neural network with a hyperbolic tangent as an activation function,
the output values are theoretically limited to an output range of -1 to 1. In order to
achieve these values, the weighted summation at any PE in the network should
theoretically be infinite. In practice, the output values from the network are scaled in a
range of -0.9 to 0.9 at most. This scaling implies that small errors in the network
calculation during training become much larger for the corresponding unscaled values.

It is therefore necessary that, in real-value applications of neural networks, the
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network must be trained to near-perfection in order to have smali, unscaled output
errors. However, in most classification applications of a (binary output) neural

network, values of -0.9 and 0.9 can be considered equivalent to 0 and 1, respectively.

8.2.1 Model training method

A model training method (MTM) has been used to predict a noise-free
transient using a neural network trained with forward model calculations of the TEM
response of a range of layered-earth models. A neural network was configured with 20
processing elements (PE) in the input and output layers and 40 PEs in a single hidden
layer. A hyperbolic tangent was used as an activation function in the hidden and output
layers of the network. The output values were scaled in a narrow range (-0.8 to 0.8)
near the center of the network’s limits. This linearising of the network is not a sertous
problem, as hidden layers can still operate over their full nonlinear range, which is all

that 1s mathematically required.

It has been demonstrated that an MTM can filter out spike-like EM noise from
a noisy transient and can produce a noise filter error (NFE) of less than 17% at late
delay times. Also, comparison between an MTM and a least-square fitting method
shows that the MTM reduces noise by a factor of 2.5 greater than the least-square
method. However, an MTM cannot be generally applied, since the method 1s model
dependent. Therefore, the use of this method would be Iimited to curves where
training can be applied with a range of enough models to cover the geological

structure of a given region where EM data are being collected.

However, there are limits beyond which a given network will fail to learn as
Minsky and Papert (1988) have pointed out for a linear neural network (e.g., a
perceptron network). The magnitude of the parameters of a perceptron is not the only
source of this scaling failure, and another source involves the size, or rather the

information content, of the weight coefficients. The scaling problem is not unique to
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the linear network and arises in real-value applications of a backpropagation network.
The backpropagation network encounters longer and more difficult training sessions as
the scope of the problem is scaled up. In an MTM, the scale of the problem increases
exponentially as the training region (i.e., the size of the training set) increases. For
example, if a dynamic range of 10° at each delay time of a training region is scaled in
an output range of -0 8 to 0.8 mentioned in the previous section, the number of hidden
processing elements (PEs) and the number of cycles needed for learning to converge

dramatically increase.

In order to avoid this scaling problem occurring in the application of an MTM,
further study of the MTM should be performed. One approach is to break a complex
and large problem into several smaller toy-scale problems through the use of multiple

networks referred to as a modular neural network by Poulton and Birken (1995).
8.2.2 Noise prediction filters

A neural network-based local noise prediction filter (LNPF) has been used to
predict the vertical component of EM noise from the two horizontal components
measured simultaneously. A neural network was configured with 102 PEs in the input,
one PE in the output layer, and no hidden layer. A hyperbolic tangent was used as the
activation function in the output layer of the network. The output values were scaled

to a range of -0.8 to 0.8.

For the reduction of VLF (e.g., 10, ~20, and 44 kHz), high-frequency
(>~35 kHz) sferics, and low-frequency (<~1 Hz) geomagnetic field variations, a neural
network-based LNPF achieves an NRF of more than 5 and consistent performance
over time (stationarity). For high-frequency sferics pulses, the LNPF suppresses sferics
power by 20 dB (i.e., an NRF of 10 in amplitude) when only sferics power reduction is
considered in a frequency range of 5 to 50 kHz, where power from sferics pulses is

generally measured with an RVR-3C.
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The neural network-based LNPF has been compared with the Spies LNPF
based on the tipper method. For reduction of low-frequency geomagnetic field
variations, the neural network-based LNPF and the Spies LNPF with a 48-point filter
length achieve nearly the same performance. However, the Spies LNPF needs more
than S times longer computation time than the neural network method. For high-
frequency sferics reduction, the Spies method with a 24-point filter length is worse
than the neural network method when the sferics pulse has approximately equal
amplitudes in both the X and Y components. In cases where the sferics pulse is
polarised mainly along the X or Y direction, the two methods achieve almost same

performance.

The application of a neural network-based LNPF has been assessed with
ground-based TEM measurements made in exploration conditions. Measurements of
TEM responses with an in-loop geometry were made at a mineral prospect near
Parkes in August, 1995, Smooth TEM profiles were obtained by applying the LNPF
compared with the profiles obtained without applying the LNPF. When the LNPF was
applied to the in-loop TEM data, the network coefficients were updated with new
sferics noise every two stations (i.e., a distance of 100 m). With this adaptation
procedure, the neural network shows good performance at most stations. However, in
areas where the ground conductivity changes from station to station (e.g., near a
mineralised zone), the performance of the neural network method is significantly

reduced and the network needs to be completely retrained.

Since Parkes data show that the sferics activity was very low (i.e., 6 sferics
pulses per sec), the neural network-based LNPF has been applied to very high sferics
activity data (i.e., 76 sferics pulses per sec) added to transient responses measured at
Parkes. In this application, an NRF value of 3.4 was obtained from calculating the
RMS of the average of fifty 20-ms bipolar stacks of the noise without use of the LNPF
and dividing by the corresponding average obtained by stacking after applying the
LNPF to each bipolar stack.
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A remote noise prediction filter (RNPF) has been tested with separations
between the local (primary) receiver and remote receiver varying from 1 to 11 km. The
nonlinearities were located in the activation function of the hidden PEs for the
reduction of high-frequency sferics. For the reduction of background noise,
nonlinearities were located in both hidden and output PEs. Such a filter produces a
reduction of background EM (VLF) noise by 20 dB (i.e., an NRF of 10 in amplitude).
For the horizontal (X and Y) component reduction of high-frequency sferics, the
RNPF attenuates the power of sferics noise by more than 25 dB (i.e., by a factor of 18
in amplitude) at frequencies in the range of 5 to 50 kHz, where power 15 contributed

by sferics.

For reduction of the vertical component of sferics, the disperston effect caused
by a variation in ground conductivity between the two separated stations makes it
difficult for the neural network to recognise the amplitude change and time shift
between the two Z component of sferics pulses at the local and remote stations. In this
case, the performance of an RNPF is improved when an LNPF concept is applied. For
such filter, a neural network has been configured to predict the local Z-component
sfertcs using all three components of corresponding sferics at the remote station. This

filter has been referred to in this thesis as an XYZ-RNPF.

In the comparison between an RNPF and simple subtraction, it is shown that
the RNPF is superior to simple subtraction of the remote time series from the local one
in the reduction of all three components of sferics. The performance of an
autoregressive moving average model (a transfer function model) is worse when the
residual time shift is different from the residual time shift between the local and remote
sferics time series used in the training of the transfer function model. Otherwise, the
performance of the transfer function model is only marginally worse than the
performance of the neural network-based RNPF. On the other hand, the RNPF gives a
consistently better performance because it is trained to accommodate different residual

time shifts between the two series.
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An RNPF has been applied to ground-based TEM measurements made in
exploration conditions. Measurements of the three-component TEM responses with a
fixed-loop geometry were made at a mineral prospect near Parkes, 1995. The RNPF
produces smooth TEM profiles. When the RNPF was applied to the fixed-loop TEM
data, the network coefficients trained at the previous station were adjusted with new
sferics noise measured at the present station. At all stations, the RNPF for reduction of
the X and Y components of sferics noise gives good performance. However, the
network for reduction of the Z component of sferics noise has to be completely

retrained near a mineralised zone.

The RNPF has also been evaluated with high sferics activity (i.e., 86 sferics
pulses per sec) data recorded simultaneously at two stations with 1 km separation in
Darwin in December 1994, It was found that the RNPF reduced sferics noise by a
factor of 4.7 when the RMS of the average of fifty 20-ms bipolar stacks of the noise
without the use of the RNPF was divided by the corresponding average obtained after
applying the RNPF.

In order to improve the signal-to-noise (S/N) ratio at a late time, most TEM
systems use a windowing scheme. This windowing scheme can achieve good noise
reduction only when the peak of a given sferics pulse occurs near the centre of an
applied window and the width of the applied window is enough wide to cover this
sferics pulse. Otherwise, a high S/N ratio at late delay times cannot be obtained by
applying the windowing scheme. Referring to Figures 6.3 and 712, low-frequency noise
(depends on the width of the applied window ) is produced by the windowing scheme
when it is applied to high-frequency sferics noise. This disadvantage of the windowing
scheme emphasises the fact that to obtain a good S/N ratio at late times (see
Figures 713 and 7.23), high-frequency sferics noise should be reduced before stacking

and applying the windowing scheme to a noisy transient.
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For practical implementation of noise prediction filters (LNPF and RNPY), an
automatic method for determining the occurrence of sferics is required. The brute
force method described in Section 2.2 for detection of sferics pulses greater than
background noise level is very effective but this method cannot be used to recognise
sferics pulses just above or below background noise level or, more importantly, when
TEM signal is present. Automatic recognition of the occurrence of sferics pulses is
required. This automatic detection of sferics pulses could possibly be accomplished

with wavelet analysis (Meyer and Ryan, 1993) and neural networks.

Real-time application of an RNPF to rejection of high-frequency sferics noise
presents two main difficulties. Firstly, noise data measured at the remote station has to
be transferred in real time with either telemetry or a wire link between the local and
remote stations. A wire link cannot be used for AEM system and would limit the
separation between local and remote stations for ground-based TEM methods. With
telemetry, remote reference data will be lost whenever communication between the
local and remote receiver fails. Secondly, the number of operations and calculations
(e.g., the determination of the occurrence of sferics pulses, transfer of noise data
measured at the remote station, and calculation of cross-phase spectrum) required to
determine the time shift between high-frequency components of corresponding sferics
pulses measured at the local and remote stations is extremely large. Without the
introduction of an expensive parallel processing procedure, involving up to five
independent computers at both the local and remote stations to handle the various
operations, it would not be possible to apply an RNPF in real time. Therefore,
application of an RNPF for reduction of high-frequency sferics noise in ground-based
TEM and AEM measurements is at present practical only as a post-processing

procedure.

To mimimise computer memory and storage space required to apply the an
LNPF and RNPF to non-windowed time series, it would be desirable to investigate |

whether the noise prediction filters can be applied effectively after windowing and
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stacking of a given response. When the horizontal component has a large signal caused
by lateral changes in conductivity, it would be valuable to investigate an LNPF which
predicts the vertical component of noise using the two horizontal components applied

by a first-order difference method (as described in Section 7.2.2.1).

We have set up a remote receiver at sufficient distance from a local receiver
such that no transmitter primary signal is detectable. Remote referencing where
reference is too close and contains some TEM signal has not been studied but would

be very worthwhile to remove noise from power lines near the primary receiver.
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APPENDIX 1. INDUCTION COIL DESIGN

The design of an induction coil for use in detecting significant sferics above the
combined electronics and coil noise was initially based on using a sferics spectrum
published by Macnae et al. (1984) as a guide to the average expected sferics power
expected in a given frequency range. The sferics noise in units of nV/VHz was
compared with the corresponding electronics noise to produce the sferics-to-
electronics noise ratio as an indication of the possibility of detecting sferics in a given

frequency range with an induction coil of a given area.

The horizontal components of the noise are a factor of about 10 greater than
the vertical component. However, even for the horizontal components of the noise; the
above calculations show that with the present SIROTEM roving vector receiver
(RVR-3C), sferics noise will only be detectable at frequencies above 2 to 5 kHz. To
detect sferics at lower frequencies, coils with a greater passive area are required.
These coils need to be wound to minimise coil noise, and if possible the electronics

noise should be mimimised with appropriate components.

Figure A1.1 shows the hortzontal-component sferics noise compared with
electronics and coil noise in the frequency range of 10 Hz to 1 kHz for a 10* m* coil as
used in an RVR-3C. The sferics noise detected by an induction coil was calculated
from values given by Macnae et al. (1984). It is seen that the sferics noise is a factor of
10 to 30 greater than the electronics noise in the frequency range of 10 to 100 Hz, and
should be detectable at this frequencies. In summer, when sferics activity is expected
to be higher, the plotted sferics-to-electronics ratios can be expected to be even

higher.

Since the vertical component of the sferics noise is a factor of about 10 lower

than the horizontal components, the area of the induction coil has to be increased by a
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factor of at least 10 while keeping the coil noise as low as possible. Since this
construction would produce an extremely heavy coil, it 1s not practical to use coils to
measure the vertical component of the sferics noise. A large loop is used instead of a
multi-turn coil. Figure A1.2 shows the sferics noise (labelled ‘signal’ on the diagram)
detected with a 100-m loop compared with electronics noise for two different types of
preamplifiers (FET and bipolar). Since a loop of wire is used as the sensor, there is no
contribution to the electronics noise by coil noise (unlike the electronics notse plotted

for the coil in Figure AT.1).

For simplicity, the sferics-to-electronics noise ratio for a 100-m loop 1s plotted
separately in Figure A1.3 as a function of frequency. For the bipolar electronics now
used in the preamplifiers of the noise measurement system, this ratio varies from 12.6
to 38 in the frequency range of 10 Hz to 1 kHz, demonstrating that low-frequency-
sferics should be detectable with a 100-m loop. Since such a loop is usually laid out
using twin-flex wire, a two-turn 100-m foop is readily useable for these measurements,
and the values of the sferics-to-electronics noise ratio would be double the values

shown in Figure Al.3.
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APPENDIX 2, MATHEMATICAL FUNCTIONS FOR MEASURES
OF CORRELATION

A2.1 Cross-correlation function

The normalised cross-correlation function, ¢.(7) is given by;

n-1

$u(7)= f=" o r=-(n-1), -, -1, 0,1, -, n-1 | (A21)

where, 7 is the number of samples.

A2.2 Power spectrum

The power spectra, G(f) and H(f), of the time series, g(#) and /(%) are obtained
by applying the FFT to each of the time series as follows:

G = FFT )] (A22)

and

2
3

HU )= FET o) (423)

where, the number of samples, #, in the input time series is a valid power of two, n=2"

fork=1,2,3, ..., 23.

A2.3 Cross-power and cross-phase spectra

The cross power spectrum, Sy(f) is given by:
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1
Sa(N==GNH ), (A2.4)
where, n=2"for k=1, 2, 3,...... , 23 and is the number of samples that can

accommodate both time series, G () is the complex conjugate of the FFT of 2(1), and

H{f) 1s the FFT of the time series, A(%).
The cross phase spectrum, gex(f) is given by:

s, )|
R

. (A2.5)
| Re{S,.(1)} |

A2.4 Squared coherency spectrum
The squared coherency spectrum, K(f;), between two time series, g(#) and h(?)

at a frequency, £, is given by:

2

s
S, () xS,

K(f) (A2.6)

X

where, Sg(f), Si(f) are power spectra of the two time series, g(2) and (1), respectively,

and Sga(f) is cross spectrum of g(z) and A(z).

A2.5 Power coherency number

For a given block of data, if S;(f) and K(f)) are the cross power spectrum and
squared coherency spectrum, respectively, the power coherency number, C is defined

as:

2.8,(f) K(f,)

C= S50 (A2.7)
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. A value of " may be calculated when the two time series, g(t) and A(?) are
recorded for a given component at two separated stations, or when they are recorded

for two components (e.g., the X and Z components) at the same station.

A2.6 Time shift

Assuming that two time series, g(¢) and A1) are recorded simultaneously at the
local and remote receivers, respectively, and one time series is identical to the other
with a time shift between two stations of 7, the mathematical relationship between the

two time series is given as:

g()=h(t+1). (Az8)

The FFT of Equation (A2.8) is given by:

n-l ) n-l )

%} g A= Zz,h(mz)g"‘”m (A2.9)
= =

or

n-1 . . -] .

Zogme”‘”m =g D ht+7)e ", (A2.10)
t= =0

where @ is 27f,

Therefore, the FFT of the time series, g(7), is given by:
G)=¢g ™ H(w) . (A2.11)
By multiplying Equation A2.11 with H (@), the complex conjugate of the FET

of (1), Equation A2.11 is written as:

G()H' (@) =¢ ™ |H(w)f (A2.12)

or

Glo)H (@)= " |H(w)] . (A2.13)
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According to Equations A2.12 and A2.13, the time shift between the two time

series 18 given as:

Po(@) = 7@
or
Go(f) =277 (A2.14)

Therefore, The time shift, 7, between two time series is determined by the slope of

cross phase spectrum, @g(f), on the plot of gg(f) and f.





