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M. Camenzuli Abbreviations, acronyms and symbols 

ABBREVIATIONS, ACRONYMS AND SYMBOLS 

a = 0.0027 (empirical parameter- Guenther model) 

A = efficiency factor (Bartelt and Zilkowski model) 

a = parameter which describes how fast the partition equilibrium can be achieved 

Ap = GC-FID peak area / mV.s 

ASPME - total BVOC peak area for n extractions (background subtracted) 

B = fibre radius / nm 

b = intercept of a linear function 

BVOC = Biogenic Volatile Organic Compound 

C = isoprene emission rate / ug g'^dry leaf weight) hr"1 (Guenther model) 

Q>coi= atmospheric carbon dioxide mixing ratio / ppm 

C, = 0.00195 for <DC02 < 100 ppm, 0 for 100 < <&C02 < 600 ppm, and -0.0041 for 

•&C02 > 600 ppm (empirical parameter - Guenther model) 

C2 = 0.805 for Oco2 < 100 ppm, 1 for 100 < <DC02 < 600 ppm, and 1.28 for <DCo2 > 600 ppm (empirical 

parameter - Guenther model) 

C^ = concentration of analyte in the air stream / ng ml"1 

Cflbn ~ concentration of analyte on the SPME fibre 

CL = light dependent term of the Guenther model 

cu = 1.066 (empirical parameter - Guenther model) 

CT = temperature dependent term of the Guenther model 

CTj = 95000 J mol"' (empirical parameter - Guenther model) 

C-n = 230000 J mol_1 (empirical parameter - Guenther model) 

CT3 = 0.961 (empirical parameter - Guenther model) 

S = thickness of the effective static boundary layer surrounding the fibre /nm 

AHvap = heat of vaporization for the pure analyte / kJ mol'1 

Dg = diffusion coefficient of the analyte in air 

DMAPP = dimethylalryl pyrophosphate 

DOXP= l-deoxy-D-xylulose-5-phosphate 
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F = SPME efficiency factor (as ratio) 

FACE = Free-Air Carbon dioxide Enrichment 

FTIR = Fourier Transform InfraRed 

G = functional group correction term (Bartelt and Zilkowski model) 

GC-FID = Gas Chromatography-Flame Ionisation Detector 

GC-MS = Gas Chromatography-Mass Spectrometry 

yl = analyte activity coefficient defined by C^RT = Yfc«bnP° 

IR = InfraRed 

K = fibre partition coefficient 

L = fibre length / cm 

L.O.Dx = limit of detection/ ng 

L.O.Q, = limit of quantification/ ng 

LTPRI = linear temperature - programmed retention index of the analyte on a non-polar column 

m = mass of analyte on fibre /ng 

MOT = average of the molecular weights of the components in air / g mol"1 

Mvoc = molecular weight of the analyte /g mol"1 

u = air kinematic viscosity /cm2 s'1 

Voir - volumetric flow rate past the fibre 

ng(Bvoc>= mass of BVOC either injected or extracted /ng 

n'f,=amount of analyte extracted by the fibre during the i * extraction /ng 

n°s = amount of analyte in sample before the extraction /ng 

nmat = t o t a ' amount of analyte extracted from all SPME extractions /ng 

p = ambient pressure during analysis/ Pa 

p° = pure analyte vapor pressure at a known temperature/Pa 

p * = analyte vapor pressure at a known temperature /Pa 

PAN=peroxyacyl nitrate 

PAR = Photosynthetically Active Radiation 

PDMS/DVB = polydimethylsiloxane / divinylbenzene 

Q = flux of PAR / umol m"2 s"1 
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R = universal gas constant (8.314 J K"1 mol"') 

R2 = Correlation coefficient of a function fitted to experimental data 

Re = the Reynolds number (Re = 2ub/u) 

/W= Relative Humidity 

RF = Radiative Forcing 

s = gradient of a linear function 

ab = standard deviation of the intercept 

Sc = the Schmidt number (Sc = u/Dg) 

SEF = standard emission factor (Guenther model) 

SO A = Secondary Organic Aerosol 

SPME = Solid-Phase Microextraction 

T=temperature of analysis / K 

Tabs= absolute temperature / K 

Tieaf- leaf temperature / K 

/ = SPME sampling or extraction time /mins 

T * = temperature at which p * is known 

Tu = 314 K (Guenther model) 

TPA-SPME = Total Peak Area-Solid-Phase Microextraction 

Ts = 303 K (Guenther model) 

u = linear velocity of the air /cm s'1 

Vat, = molar volume of air /l 

Vf = fibre coating volume / m3 

VOC = Volatile Organic Compound 

Vs - sample volume /ml 

Vyoc = molar volume of analyte/ ml 
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M. Camenzuli Abstract 

ABSTRACT 

Biogenic Volatile Organic Compounds (BVOCs) emitted by plants can affect the climate 

and play important roles in the chemistry of the troposphere. As ambient atmospheric 

carbon dioxide (CO2) levels are rapidly increasing knowledge of the effect of elevated 

atmospheric CO2 on plant BVOC emissions is necessary for the development of global 

climate models. 

During this study, the effect of elevated atmospheric CO2 mixing ratios on BVOC 

emissions from Corymbia citriodora (Lemon Scented Gum) and Tristaniopsis laurina 

(Water Gum) was determined for the first time through the combination of Solid-Phase 

Microextraction (SPME), Gas Chromatography-Flame Ionisation Detection (GC-FID), Gas 

Chromatography-Mass Spectrometry (GC-MS) and an environment chamber. For C. 

citriodora elevated atmospheric CO2 led to a decrease in the emission rate of a-pinene, P-

pinene, eucalyptol, citronellal and P-caryophyllene, however, elevated CO2 had no effect 

on the emission rate of citronellol. The emission profile of T. laurina has been determined 

for the first time. For T. laurina elevated CO2 led to a decrease in the emission rate of a-

pinene but the emission rates of P-pinene, limonene, eucalyptol and citronellol were 

unaffected. The results obtained in this work confirm that the effect of elevated 

atmospheric CO2 on plant BVOC emissions is species-specific. 
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