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Summary

Functional data analysis is concerned with the analysis of data for which the observed re�

sponses for each subject are continuous curves� In practice� measurements are taken at

discrete time points but estimates are required over the entire time interval� Traditional

techniques for analysis of multiple curves� such as longitudinal data analysis or time series

methods� are unsuitable for this type of data� since there are generally more measurements

per subject than subjects and stationarity assumptions do not necessarily hold� With a

technology induced growth in data of this kind� research into techniques for functional data

analysis has become an emerging area in recent years�

This thesis aims to develop new techniques for functional data analysis� focusing on three

problems� logistic regression with a functional regressor� linear and logistic regression for

a repeatedly stimulated functional regressor� and a functional mixed�e�ects type model for

joint mean and covariance modelling�

For each of the problems� we develop solutions using a basis function approach� that is� ex�

pressing the data for each subject as a linear combination of known basis functions� Using this

approach we are able to overcome singularity problems associated with having more measure�

ments than subjects� As well as calculating maximum likelihood or least squares parameter

estimates� model diagnostic and smoothing parameter selection issues are addressed�

The techniques developed in this thesis are applied to novel biostatistical data sets� electroen�

cephalographic data and fetal heart rate data� Of main interest is the fetal heart rate data�

which motivated the development of the regression techniques for a repeatedly stimulated
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functional parameter� It was found that the stimulated fetal heart rates could be used to

predict an infant�s risk category at birth and psychomotor development at �� months of age�

Most of the material presented in the thesis is my own work� The exception is�

�� the work described in Section �� is partly due to Victor Solo�
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Chapter �

Introduction

In recent years� developments in technology have resulted in the growth of collection and

storage of data where the observed responses for each subject are continuous curves or func�

tions or time series� In practice� measurements are taken at discrete time points so that the

data are long time series but estimates of quantities of interest are required over the entire

time interval of observation of the curves� Such data are referred to as Functional Data�

Functional data are actually a special type of longitudinal data� Traditionally� for longitu�

dinal data� the number of measurements per subject p is much smaller than the number of

subjects n� For functional data� usually the reverse is true� that is� usually n � p� Thus� if

classical longitudinal data analysis techniques �eg� Diggle et al�� ����� were used on functional

data� singularity problems would occur� Another approach is to use time series methods �eg�

Brillinger� ����a� which also involve data with n� p� However� these methods assume that

the covariance structure of the data is stationary� Because we have multiple subjects� it is

possible to move away from the stationarity assumption by using nonparametric smoothing

methods� Thus� new methods have been developed to analyse functional data and these meth�

ods have come to be known as Functional Data Analysis� �FDA� �Ramsay and Silverman�

������

�Traditional nonparametric methods might legitimately be called functional data analysis methods� since

they deal with estimation of curves� but for this thesis we use the phrase as in Ramsay and Silverman ������

where perhaps we might say functional longitudinal data analysis�
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Any statistical technique available for the analysis of multivariate or longitudinal data is also

desired for functional data but there are also new features� Of particular interest is functional

growth curve modelling �e�g� Ramsay� ���
� Kneip and Gasser� ���
� and principal compo�

nent analysis �e�g� Besse and Ramsay� ����� Castro et al�� ����� Solo� ������ The various

approaches rely on some form of smoothing and�or constraints to overcome the singular�

ity problem resulting from more unknown parameters than subjects� Common approaches

have been basis expansions� smoothing splines� kernel estimators� the addition of a roughness

penalty term or some combination of these� In this thesis we aim to develop new methods for

analysing functional data� functional logistic regression� joint mean and covariance modelling

and regression techniques for repeatedly stimulated functional data�

We begin this chapter by outlining some of the issues involved in functional data analysis�

This is followed by an overview of each of the research areas listed above� Finally� we indicate

the contents of the remaining chapters in Section ���

��� Functional Data Analysis

Functional data analysis is concerned with the analysis of multiple� non�stationary curves

with n � p� The data for each subject is correlated but it is assumed that the data from

di�erent subjects are independent� Some examples of functional data are shown in Figure

���� These include heart rate tracings� recordings of the position of the centre of the lower

lip during the utterance of the syllable �bob� �Ramsay et al�� ����� Ramsay and Silverman�

������ hip angles formed over the gait cycle �one double step� of walking children �Olshen

et al�� ����� Rice and Silverman� ������ and daily smoke levels during the winters of ���������

in London �Shumway et al�� �����

����� Data Display

As seen from the examples� one issue for functional data is how the data should be displayed�

A simple time plot of the data may not be useful� as shown by the London smoke data
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Figure ��
� Curves corresponding to an estimated mean curve �solid line� and the highest and

lowest �dashed lines� scores on the �rst principal component for the hip data�

�Figure ����d��� For other data� eg� the lip data of Figure ����b�� this type of plot may be

useful for seeing common patterns or trends but it is hard to identify an individual curve�

Plotting the data individually or in small groups would allow the curves for each subject to be

seen but this makes comparing the curves di�cult� So� additional methods are needed� One

suggestion� presented by Jones and Rice ����
�� is to plot just a few representative curves�

These curves were chosen to be the ones corresponding to the median� highest and lowest

scores with respect to a particular principal component� �Functional principal component

analysis is described in Section 
���
�� A similar method was suggest by Rice and Silverman

������ but instead of plotting the curve corresponding to the median value� they plotted

the overall sample mean curve� For example� Figure ��
 shows the mean curve for the hip

data plus the individual curves corresponding to the highest and lowest scores for the main

�	rst� principal component� These methods are e�ective at displaying the main sources of

variability in the data� However� this type of plot will not be useful for all data sets� Other

plotting ideas are yet to be developed� Thus� data display is a wide research area in itself�

However� we do not address this issue further in this thesis�
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����� Curve Registration

A problem encountered in some applications is that of curve registration� the alignment of

curves at main features� The idea is to remove the time shifts in the peaks�troughs of the

curves before analysis� These shifts are considered to be a nuisance in application since� eg�

they may lead to severe bias� For example� Ramsay et al� ������ examined the force exerted

during a pinch made by the thumb and fore	nger� These pinches commenced at an arbitrary

time point for each curve� and masked the e�ect of interest� Thus� Ramsay et al� transformed

the time scale for each curve so that the pinches started at the same point and were also

aligned at the time of maximum force� Special cases of this problem have long been known

in nonparametric time series �eg� cross�spectral estimation� Jenkins and Watts� ������

A number of transforms that could be used to align curves are described in Ramsay and

Silverman ������� These include the Procrustes method and time warping� Time warping

has an extensive history in the engineering literature �e�g� Sakoe and Chiba� ����� and adjusts

the curves so that important features are aligned with their occurence in the mean function

via a warping function� Kneip and Gasser ����
�� Wang and Gasser ������ ������ Ramsay

������ 
����� and others� have all used �dynamic� time warping� Another approach� as used

by Silverman ������ in functional principal component analysis� is to incorporate the time

shift for each curve directly into the analysis by the addition of a parametric e�ect�

However� problems still exist with curve registration� In removing the time shifts� one could

also be removing variation that is of interest� This may be overcome by aligning derivatives

of the curves instead of the actual curves� Curve registration is a whole research area in itself

and is not discussed further in this thesis�

����� Analysis

Having displayed and�or aligned the curves� the next step is to carry out some form of analysis�

Classical longitudinal data analysis techniques �eg� Diggle et al�� ����� are inappropriate

for functional data� Since n � p� classical analysis would involve inverting a matrix of
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less than full rank� resulting in singularity problems� Time series methods �eg� Brillinger�

����a� Shumway� ����� are not preferred� as the stationarity assumption does not necessarily

hold� Thus� new techniques have been developed for the analysis of functional data� These

techniques are an extension of nonparametric smoothing methods� If the functional data

were stationary� then time series methods could be used as they would be more e�cient�

However� at present� there are no suitable methods for testing for stationarity of functional

data� Developing such tests would be an area of future research�

Generally� in order to analyse the curves� the dimensionality of the data is reduced since

there are less subjects than measurements per subject� Suppose n subjects have had p

measurements of a variable y recorded at equispaced time points t�� � � � � tp on some interval

J � Values of y are available at the discrete time points but we wish to estimate y over J �

Then y�t� is known as a functional variable and we can model the relationship between y and

t for subject i� yi�t�� using a nonparametric smoothing method �Section 
��� such as basis

functions� kernels� local polynomials or smoothing splines�

The basis function approach is the most commonly used method for functional data analysis

�Ramsay and Silverman� ������ In this method� the data for each subject is represented as a

linear combination of known basis functions� �k�t�� k � �� � � � �m�

yi�t� �
mX
k��

cik�k�t�

where the basis functions are chosen to re�ect the characteristics of the data� The basis ap�

proach has been used alone and in conjuction with a penalty term �as also used by smoothing

splines�� There has been some use of smoothing splines to model each subject�s curve� How�

ever� kernel and local polynomial methods have not yet received much development� Having

modelled the data for each subject� these are then used in what are essentially multivariate

data analysis techniques�
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��� Areas of Research

This thesis aims to develop new techniques for FDA� in particular logistic regression with

a functional regressor� linear and logistic regression for a repeatedly stimulated functional

regressor� and joint functional mean and covariance modelling� The methods were developed

using a basis function approach� Whilst other nonparametric smoothing methods could have

been used� they are left for future research� In this section� we present an overview of the

research issues�

Functional Logistic Regression

In the past� functional regression and ANOVA have concentrated on the cases of a continuous

and a functional response variable� with continuous and�or functional regressors �see Section


������ The main approach used to calculate estimates has been a basis function approach�

However� to the author�s knowledge� no methods have been presented for modelling a binary

response variable with a functional regressor� In this thesis� we develop such a functional

logistic regression with maximum likelihood parameter estimation�

Functional Data with a Repeated Stimulus

In many cases� functional data have special structures that make standard regression tech�

niques unsuitable� One such case is repeatedly stimulated functional data� The functional

regressor now consists of two parts� the curve measured within the time frame of each stim�

ulus� and the timing of the stimulus in relation to the other stimuli� Both parts need to be

incorporated into the structure of any model�

In this thesis� both functional linear and logistic regression models were needed to analyse

data with a repeated stimulus� Thus� we developed basis solutions to both problems� The

functional linear regression model builds on the model given by Ramsay and Silverman �������

while the functional logistic regression model for this type of data extends the functional linear

regression model previously developed�
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Functional Mean and Covariance Modelling

Principal component analysis �PCA� applied to functional data has been considered by several

authors �see Section 
���
�� These techniques are able to move away from the stationarity

assumption inherent in time series modelling of the covariance function� However� they

assume that the curves have a zero mean function� that is� ��t� � � for all t� Thus� before

functional principal component analysis �fPCA� can be performed� the data needs to be mean

adjusted� In most cases� this has been done by subtracting the average value at each discrete

time point� though other nonparametric methods could be used�

Having mean adjusted the data� fPCA was developed by expanding the population covariance

function in a Karhunen�Loeve expansion �Kanwal� ������ Eigenfunctions were then estimated

using some nonparametric smoothing technique� generally a basis function approach�

However� in most cases� estimating and subtracting the mean function from the data before

fPCA is performed is ine�cient� The mean and covariance functions need to be estimated

together� as one estimate can a�ect the other� This leads to a functional mixed�e�ects

type model� incorporating fPCA in the covariance estimate� A basis function approach for

estimating the parameters in a functional mixed�e�ects type model is developed in this thesis�

��� Plan of Thesis

To recap� in this thesis we develop new methods for analysing functional data� in particular

logistic regression with a functional regressor� linear and logistic regression for a repeatedly

stimulated functional regressor� and joint functional mean and covariance modelling�

Chapter 
 provides technical background for the methods used in this thesis� as well as

showing the development of FDA techniques� In particular� Section 
�� provides an overview

of nonparametric smoothing methods� namely the basis function approach� kernel methods�

local polynomials and smoothing splines� A comparision of these methods is also given�
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Section 
�
 deals with smoothing parameter selection while Section 
� outlines modi	cations

needed for correlated data� Section 
�� overviews existing methods for handling multiple

curves� longitudinal data analysis and time series techniques� Finally� Section 
�� describes

techniques for functional regression and functional principal component analysis�

In Chapter � we model a functional regressor with a binary response variable� in what we

call functional logistic regression� A basis function approach is used with and without an

integrated squared second derivative penalty term� The resulting algorithm is easy to use�

with only simple modi	cations needed to the existing logistic regression algorithm� Model

diagnostic issues are also discussed and we use a cross�validated log�likelihood function to se�

lect the optimal number of basis functions and�or smoothing parameter� We apply functional

logistic regression to electroencephalographic �EEG� data�

In Chapter �� we derive algorithms for linear and logistic regression for a repeatedly stimulated

functional regressor� The basis function approach is again used to generate estimates that

are both least�squares and maximum likelihood� The development of the algorithms was

motivated by the fetal heart rate data� The functional regressor from this data set consists of

fetal heart rate tracings recorded at ��
 second intervals for �� minutes� with a noise stimulus

applied at regular one minute intervals� giving the regressor a special structure�

We analyse the fetal heart rate data in Chapter �� using the algorithms developed in Chapter

�� The two response variables presented in this thesis are the infant�s risk category at birth

�binary� and psychomotor development at �� months �continuous�� Functional models of

these data represented a substantial improvement over the best standard linear � logistic

models produced using the other covariates� It was found that the heart rates were signi	cant

in the prediction of an infant�s risk category� and its development at �� months of age� The

need for the stimuli was established through the use of unstimulated control subjects� in the

case of the risk category�

In Chapter �� we present an iterative basis algorithm for the joint modelling of the mean
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and covariance functions for functional data� It is essentially a functional mixed�e�ects type

model� incorporating functional principal component analysis in the covariance estimate�

Analysis of the algorithm showed that while a unique solution is not guaranteed� it does

converge to the unique Moore�Penrose solution for some starting values� A simulation study

was used to examine how well the algorithm performed� before applying it to the EEG data

from Chapter  and human gait data from Rice and Silverman �������

Findings from Chapter 
�� are summarised in Chapter �� where recommendations for future

research are also discussed� Further details of the Bayley scales used to determine variable

values in the fetal heart rate data are given in Appendix A� A glossary of abbreviations

and notation used in each chapter is provided in Appendix B� Appendix C documents the

software developed during the course of this thesis� Finally� Appendix D lists the author�s

publications in the 	eld of work contained in this thesis�
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Technical Background

This chapter gives a technical background to the development of functional data analysis� Sec�

tions 
�� � 
� deal with nonparametric smoothing methods� descriptions of various smoothing

methods �which are later used as the basis of models developed for functional data�� smooth�

ing parameter selection via cross�validation� and an outline of adjustments for dealing with

correlated data� In these sections we keep to traditional notation and use n for the num

ber of time points rather than p� Since these smoothing methods are concerned with the

estimation of a single function� Section 
�� then moves towards functional data analysis by

describing existing techniques for multiple curves� Finally� we provide details on functional

regression and functional principal component analysis in Section 
���

��� Nonparametric Smoothing Methods

Many nonparametric smoothing methods have been developed for function estimation� Two

main areas requiring these techniques are nonparametric regression and density estimation�

There is extensive literature on both of these areas� For example� surveys of nonparametric

regression techniques are given in H�ardle ������� Hastie and Tibshirani ������� and Green

and Silverman ������� and nonparametric density estimation in Silverman ������� and H�ardle

������� We describe the use of nonparametric methods in regression� and where necessary

density estimation�
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Suppose we are interested in the relation between two continuous variables� t �scaled to the

interval ������ and y� If n observations of y are taken at preset values ti �eg� equispaced at

ti � i�n� we don�t consider random ti in this thesis�� i � � � � � n� then the most common way

of testing for a relationship between the resulting data pairs �ti� yi�� i � �� � � � � n� has been

via linear regression� That is� 	tting the model

yi � �� �ti � 	i� i � �� � � � � n

where 	i are independent random errors with mean zero and common variance 
�� However�

a straight line model is inappropriate for many data sets� The response variable is better

estimated by some sort of curve or function of t� say g�t�� giving a model

yi � g�ti� � 	i� i � �� � � � � n� �
���

In general� a nonparametric estimate of g�t� is just a weighted sum of observed responses�

�g�t� � n��
nX
i��

wi�t�yi

The main methods which have been developed to provide these weights� wi�t�� are� basis

functions� kernel estimators� local polynomials and smoothing splines and these are discussed

in turn below� As well as providing an estimation of the function� these methods can provide

estimates of derivatives� which may also be of interest� A special kind of basis method� namely

wavelets �Chui� ���
� Antoniadis et al�� ����� Donoho and Johnstone� ������ is important for

irregular functions� However� in this thesis we deal with smooth functions only and so wavelets

are not discussed�

We illustrate each of the nonparametric regression techniques using birth rate data �Cook

and Weisberg� ����� Simono�� ������ This data consists of monthly birth rates in the United

States between ���� and ���� �Figure 
���� As noted by Cook and Weisberg� there appears

to be an increase in the birth rate from January ���� until the peak around August ���
 �

September ���� This peak would correspond to � � �� months after the entry of the United

States into World War II� There is a decline after this time� presumably due to the war�

until approximately January ���� �nine months after the end of the war in Europe� when the
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Figure 
��� Scatter plot of monthly birth rates in the United States�

birth rate rises quickly� Nonparametric smoothing methods should provide function estimates

which pick up these features in the data�

����� Basis Functions

The idea behind the basis method is to expand the curve or function to be estimated in terms

of a linear combination of known basis functions� �k�t�� i�e�

g�t� �
�X
k��

ck�k�t�� � � t � � �
�
�

where the coe�cients ck need to be estimated� The basis functions need not be orthogonal and

so the simplest kind are polynomials� �k�t� � tk� k � �� �� � � � � However� these can produce

a nearly singular matrix in the calculation of �ck via least squares� This can be overcome by

using orthogonal basis functions such as Legendre polynomials�

���t� � ��
p

�

���t� � t�
q

��

�k � ���k���t� � �
k � ��t�k�t�� k�k���t�� k � �� 
� � � �
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or Fourier basis functions

���t� � ��

��k���t� � cos
�kt�

��k�t� � sin
�kt� k � �� 
� � � �

Having chosen the type of basis� the coe�cients� and hence the function� can be estimated�

In order to do this� the sum needs to be truncated at some point� say m�

gm�t� �
mX
k��

ck�k�t�

This truncation also controls the smoothness of the estimated function� �g�t�� The fewer basis

functions� the smoother the estimate� With a Fourier basis� truncation is also equivalent to

applying a low�pass 	lter �as used in time series analysis� to the coe�cients ck�

One approach for calculating the basis estimator is best illustrated by an example� Suppose

the unknown regression function g�t� is to be estimated on the interval J � ��� �� using Fourier

basis functions� Using orthogonality

Z �

�
�j�t��k�t�dt � �j�k

where �j�k is the Kronecker delta function� the coe�cients ck can be found by the covariance

calculation

ck �

Z �

�
g�t��k�t�dt

However� this equation involves the unknown function g�t�� To develop an estimator for �ck

over a set of disjoint subintervals fJigni�� spanning J and containing ti� we 	rst approximate

the integral by a sum

ck �
nX
i��

Z
Ji

g�t��k�t�dt

�
nX
i��

g�ti�

Z
Ji

�k�t�dt
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provided g�t� is smooth and Ji is not too big� It is now natural to estimate �ck by replacing

g�ti� by yi� Thus

�ck �
nX
i��

yi

Z
Ji

�k�t�dt �
��

When the basis is not an orthogonal basis� the coe�cients can be estimated using multiple

regression techniques �see for example Seber� ������ Substitute the basis expansion for g�t�

into the regression model �
��� to give

yi �
mX
k��

ck�k�ti� � 	i

The ck can then be estimated via least squares� When ti � i�n� n is large and the basis is

orthogonal� this estimator is nearly the same as �
���

The most commonly used non�orthogonal basis is the B�spline basis� B�splines are piecewise

polynomials that are joined together in a continuous fashion at values j� j � �� � � � � � called

knots� These knots are chosen so that they span ��� ��� the interval of the data� and satisfy

� � � � � � � � � � �� The k�th B�spline basis function� k � �� � � � �m� of degree d �order

d� �� can be de	ned recursively as �Cox� ���
� de Boor� ���
� ����� �k�t� � Nk�d�t� where

Nk�d�t� �
t� k

k�d � k
Nk�d���t� �

k�d�� � t

k�d�� � k��
Nk���d���t�

Nk���t� �

�����
����
�� if k � t � k�� or t � � when k � m�

�� otherwise�

That is� the k�th B�spline basis function is a polynomial of degree d on the subinterval

�k� k�d��� and zero elsewhere� Also� the polynomials that meet at an interior knot match

in the values of a set number of derivatives� usually d� ��

B�splines are widely used as they have some nice properties� They are non�negative� linearly

independent functions with compact or local support� That is� �k�t� � � if t �� �k� k�d����

Hence� estimating ck via least squares is computationally quick since the matrix to be inverted

will be a 
d�� banded matrix� Also� for an arbitrary knot span �j � j���� the basis functions
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form a partition of unity� That is�
Pj

j�d �k�t� � �� All derivatives of �k�t� exist in the

interior knot spans� and �k�t� is d � � times continuously di�erentiable at the knots� Thus�

for B�splines the derivatives of the basis estimator �g�t� can be easily computed� For example�

the 	rst derivative of �g�t� can be found by simply di�erencing the estimated coe�cients� �ck�

Finally� �k�t� attains exactly one maximum value� except for degree zero B�splines� Properties

of B�splines with non�distinct knots and algorithms for calculating B�spline basis functions

can be found in de Boor ������� Schumaker ������� Piegl and Tiller ������� for example�

One limitation of B�splines is that the solution is sensitive to both the number and placement

of the knots� In general� more knots should be placed in areas of high curvature and fewer in

areas where g�t� appears relatively smooth� Methods developed for the selection of the knots

include Friedman and Silverman ������ but are not discussed here� Since ti � i�n� we use

� � m� �� d equispaced knots on ��� ���

Figure 
�
 illustrates the results of the basis method for the birth rate data� Two di�erent

bases� Legendre polynomials and B�splines� and three di�erent m values have been used� As

m increases the basis estimators become less smooth� particularly the Legendre polynomial

estimator�

In general� basis function estimators are relatively easy to compute and use� Basis estimators

are also consistent under mild regularity conditions �H�ardle� �����

lim
m��P �j�gm�t�� g�t�j � 	� � �

provided as n�m � �� m�n � � and the ti are equispaced� Thus� the number of basis

functions should grow at a slower rate than the sample size� Consistency is not guaranteed

if the ti are not equispaced but we only deal with equispaced data in this thesis�

The type of basis functions used should be chosen with care� Basis functions that work well

with one set of data may be unsuitable for another� This is particularly important as the

behaviour of g�t� at the boundaries a�ects the rate of convergence of the estimator� as de	ned
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�a� Legendre polynomial basis estimators with
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�b� B�spline basis estimators with m  � �dashed

line�� m  �� �solid line�� and m  �� �dotted

line� basis functions

Figure 
�
� Basis estimators for the birth rate data�

by the pointwise mean square error �MSE�� For example� a Fourier basis estimator �Eubank�

�����

�gm�t� �
mX

k��m
cmke

��ikt

for regularly spaced� periodic data has �Eubank� �����

Bias ��gm�t�� �
X
jkj�m

cke
��ikt �

X
jkj�m

�
�X
r ���

ck�nr

�
A e��ikt

Var ��gm�t�� � n��
��
m� ��

where

ck �

Z �

�
g�s�e���iksds

Hence� the optimal basis size is m � n��� and the optimal pointwise MSE convergence rate is

O
	
n����



� However� if non�periodic data is used with a Fourier basis estimator� the optimal

convergence rate is O
	
n����



� Also� unless m is large� basis estimators cannot exhibit very

local features� as seen in Figure 
�
� Kernel� local polynomial� and spline estimators were

developed to overcome this problem� Further statistical properties of basis estimators can be

found in the above mentioned references� and references found therein�
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����� Kernel Estimators

Kernel estimators were 	rst introduced by Rosenblatt ������ and Parzen ����
� for density

estimation� with statistical properties being calculated by Whittle ������� A considerable

literature has developed since then� A brief outline of their use is given here� For further

information see� for example� Wand and Jones ������� H�ardle ������ and references therein�

We begin with kernel density estimation� The idea is to construct functions centered at each

data point and then average across these to produce the density estimate� This results in the

kernel density estimator� given by

�fh�y� �
�

nh

nX
i��

K

�
y � yi
h

�

where K�u� is the kernel function and h is the window width� or smoothing parameter� which

controls the width of the kernel functions�

Kernels are usually non�negative� symmetric functions� The most commonly used kernels are

second order kernels satisfyingZ
K�u�du � �

Z
uK�u�du � �

Z
u�K�u�du � k� �� �

Since kernels are themselves density functions� it follows that �fh�y� will also be a density

function� The pointwise asymptotic bias and variance of the kernel density estimator are �eg�

Silverman� �����

Bias
h
�fh�y�

i
� E �fh�y�� f�y�

�
�



h�f ���y�k� � o

	
h�


� h� �

Var
h
�fh�y�

i
�

�

nh
f�y�

Z
K��u�du� o

�
�

nh

�
� nh��

Thus� the bias depends only on the window width h� while the variance depends on both h

and n� A small h value will decrease the bias but increase the variance of the estimator� The

pointwise mean square error of the estimator is

MSE
h
�fh�y�

i
�

�

nh
f�y�

Z
K��u�du�

�

�
h�

f ���y�

��
k��

� o

�
�

nh

�
� o

	
h�


� h� �� nh�� �
���
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Kernel K�u� k� �
R
u�K�u�du

R
K��u�du

Uniform �
�I�juj � �� �� ��


Triangular ��� juj� I�juj � �� ��� 
�

Epanechnikov �
�


�� u�

�
I�juj � �� ��� ��

Biweight ��
�	


�� u�

��
I�juj � �� ��� ���

Gaussian �p
��

exp��u��
� � ��
�
�

Table 
��� Some common kernel functions�

Thus� provided h� � and nh��� the MSE will converge to zero� and hence� the estimator

will be consistent� From �
���� the optimal rate of convergence for the MSE is O
	
n����



�

using an optimal window width of h � n�����

Nadaraya ������ and Watson ������ used the kernel density estimator to develop a kernel

regression estimator as follows�

�gh�t� �
�

nh

nX
i��

K
t�ti

h

�
�fh�t�

yi �
���

It is again a weighted average with the divisor �fh�t� ensuring the weights sum to unity� Other

kernel estimators have been developed� including the Priestly�Chao estimator �Priestly and

Chao� ���
� and the Gasser�M�uller estimator �Gasser and M�uller� ������ These also estimate

gh�t� using kernel functions but with a di�erent weight function� w�t�� to that used by the

Nadaraya�Watson estimator�

Some common kernel functions are given in Table 
�� The smoothness of the estimated

functions are controlled by the window width� h� As h� �� the estimated regression function

with exhibit more local behaviour� This is illustrated in Figure 
�� As h becomes smaller� the

estimator becomes less smooth� In particular� a very small value of h results in an estimator

which simply interpolates the data� So� we can regard h as a measure of the size of the

smallest feature or �bump� that can be estimated in the function�

Kernel estimators� in general� are easily computed and have desirable statistical properties�
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Figure 
�� Kernel estimators for the birth rate data with h � ��
 �dashed line�� h � ����

�solid line�� and h � ��� �dotted line��

Let �gh�t� � �rh�t�� �fh�t�� �rh�t� � �
nh

P
K
t�ti

h

�
yi� then for the Nadaraya�Watson estimator�

the pointwise asymptotic bias� variance and MSE of �rh�t� is the same as that for �fh�t�� That

is� �H�ardle� �����

Bias ��rh�t�� �
�



h�r���t�k� � o

	
h�


� h� �

Var ��rh�t�� �
�

nh
r�t�

Z
K��u�du � o

�
�

nh

�
� nh��

MSE ��rh�t�� �
�

nh
r�t�

Z
K��u�du �

�

�
h�

r���t�

��
k��

� o

�
�

nh

�
� o

	
h�


� h� �� nh��

Thus� �rh�t� is also a consistent estimator� Combining the results for �rh�t� and �fh�t�� the

approximate MSE for the Nadaraya�Watson estimator is �H�ardle� �����

MSE ��gh�t�� � �

nh


��t�

f�t�

Z
K��u�du�

�

�
h�
�
g���t� � 


g��t�f ��t�
f�t�

��

k��

� o
	
nh��



� o

	
h�


� h� �� nh��

where 
��t� is the conditional variance� Hence� if h� � and nh��� the Nadaraya�Watson

kernel regression estimator �gh�t� is also pointwise consistent� The optimal trade�o� between

the bias and variance is achieved when h � n����� Using this h value� the optimal MSE rate

of convergence for the estimator is O
	
n����



� Note that� comparing the above expressions

with those for the basis estimator shows that ��m may be regarded as a window width�
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However� traditional kernel estimators have a boundary bias problem �see Wand and Jones�

����� and references therein�� The bias has a di�erent order of magnitude at boundary points

as compared to interior points� For example� the Nadaraya�Watson estimator has boundary

bias of O �h�� This is due to part of the kernel window having no data at boundary points�

This boundary bias results in an in�ated optimal MSE convergence rate� For example� the

rate for the Nadaraya�Watson estimator is O
	
n����



near the boundaries� Kernels that are

modi	ed near the boundary have been used to correct this asymptotic discrepancy �Gasser

and M�uller� ������ Another advantage of kernel estimators is that asymptotic con	dence

intervals for �gh�t� can be calculated �H�ardle� ����� Section ��
�� as can derivatives of �gh�t��

����� Local Polynomial Regression

Local polynomial regression 	nds the estimate of the regression function at any point� t� by

	tting a degree m polynomial to the data nearby t via weighted least squares� The weights

are chosen so that data points close to t have large weights� with the weights decreasing as

the points become further away from t� Thus� the local polynomial estimator at t� �gh�t�� is

the intercept term �c��t� found by minimising

X
i

wh�ti � t�

�
yi �

mX
�

ck�ti � t�k
��

�
���

where wh�	� is a hump shaped weight function centered at �� Common weight functions are

nearest neighbour weights and kernel weights found using kernel functions� Nearest neighbour

weight functions are symmetric� non�increasing functions for t 
 �� At each t� the weight

function is centered and scaled so that at the r�th nearest neighbour �data point� of t the

weight function is zero� Weight functions satisfying these properties are known as r�th nearest

neighbour estimators� Figure 
�� illustrates local linear �m � �� polynomial estimation on

the birth rate data using Epanechnikov kernel weights�

Like the kernel estimator� the local polynomial estimator is linear in the data� This can

be more clearly seen by expressing the estimator using an equivalent kernel� An equivalent
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Figure 
��� Local linear polynomial estimators for the birth rate data with h � ��� �dashed

line�� h � ���� �solid line�� and h � ��
 �dotted line��

kernel is de	ned as �Gasser et al�� �����

K�
� � the �� � ��th element of S�� �� t � � � tm�T K�t�

where

S � ��j�l���j�l�m

�j �

Z
ujK�u�du

and K�u� is a kernel function� For example� if an Epanechnikov kernel function was used to

generate the weights the equivalent kernel would be �see Figure 
���

K�
� �u� �

m��X
j��

�ju
j

where for a local linear curve estimation �m � �� � � ��

�j �

�����
����
� if j � 
 odd�

� 
���j��
��j��
 j� 
j��� ���j� �� ���j� ��

if j � 
 even�

For a local cubic �m � � curve estimation

�j �

�����
����
� if j � � odd�

�� 
���j��
��j��
	� j� 
j��� ���j� �� ���j� ��

if j � � even�
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Figure 
��� The Epanechnikov kernel and its equivalent kernel for local polynomial curve

estimation� for some values of m�

Thus� we can rewrite the local polynomial estimator �or any derivative of the estimator� as

�Fan and Gijbels� �����

�g

��
h �t� � �c��t� �

�

nh���f�t�

nX
�

K�
�

�
ti � t

h

�
yi �� � o ����

A special case of local polynomial regression is the Nadaraya�Watson kernel estimator �
����

It corresponds to 	tting degree zero polynomials with a kernel weight function� In fact� local

polynomial regression is closely related to kernel estimation in general �M�uller� ������ The

degree of the polynomial plays the role of the order of the kernel� It is also similar to the

basis estimator� Instead of 	nding the coe�cients for g�t� via least squares� it 	nds them

via weighted least squares� However� local polynomial estimators have superior properties�

especially when the ti are random� For example� kernel estimators result in either an increased

bias �eg� Nadaraya�Watson estimator� or variance �eg� Gasser�M�uller estimator� when the ti
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are random� Local polynomials adapt to random ti�s without increasing the bias or variance�

They also have the advantage of no boundary bias problem� That is� the bias doesn�t increase

near the boundaries� as for other estimators� but remains constant over the entire data

interval�

The conditional asymptotic bias and variance of �gh�t� are given by �Simono�� ����� and

references therein�

Bias ��gh�t�jt�� � � � � tn� �

�����������
����������

hm��g�m���
t��m��
K�m��


m���� � o

hm��

�
� if m is odd

hm��
h
g�m���
t�f �
t�
f
t�
m���� � g�m���
t�


m����

i

��m���K
m�� � o

hm��

�
� if m is even

Var ��gh�t�jt�� � � � � tn� �

��t�

R
K�


m��u�du

nhf�t�
� o

�
�

nh

�

where �q�K
m�� �
R
uqK
m��u�du and K
m� is a �m � ��th order kernel function when m

is odd and a �m � 
�th order kernel function when m is even� So for example� a local

linear polynomial estimator �m � �� would have asymptotic conditional bias of O

h�
�
and

conditional MSE of

MSE ��gh�t�jt�� � � � � tn� � �

�
h�
	
g���t����K
���


�

�

��t�

R
K�


���u�du

nhf�t�
� o

	
h�


� o

�
�

nh

�

A local quadratic polynomial estimator �m � 
� would have conditional bias of O

h�
�
and

MSE ��gh�t�jt�� � � � � tn� � h
�
g
���t�f ��t�

�f�t�
�
g
���t�


�

��

���K
���
�

�

��t�

R
K�


���u�du

nhf�t�
� o

	
h


� o

�
�

nh

�

A local cubic estimator would also have conditional asymptotic bias of O

h�
�
but the bias�

and hence the MSE� has a simpler expression

MSE ��gh�t�jt�� � � � � tn� � �


�
h
	
g
���t����K
���


�

�

��t�

R
K�


���u�du

nhf�t�
� o

	
h


� o

�
�

nh

�
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So� the degree of the 	tted polynomials determines the order of the bias for the estimator�

Generally� even degree polynomial �m � �� 
� � � � � 	ts are not recommended as their asymp�

totic bias involves f ��t� and they are outperformed by polynomial 	ts with an odd degree

�m � �� � � � � ��

The optimal asymptotic conditional MSE is achieved using the Epanechnikov kernel to gen�

erate the weights �Fan et al�� ������ The optimal window width is then h � n���
�m���

for odd m and h � n���
�m��� for even m� These result in optimal MSE convergence rates

of O
	
n�
�m����
�m���



and O

	
n�
�m����
�m���



respectively� For example� local linear�

quadratic and cubic polynomial estimators would have optimal MSE convergence rates of

O
	
n����



� O

	
n���



and O

	
n���



� respectively�

However� local polynomial estimators can be sensitive to outliers� A robust extension was

proposed by Cleveland ������ for smoothing scatter plots which overcomes this problem� His

idea was to iteratively 	t the estimator using nearest neighbour weights� The weights are

updated at each iteration according to the residuals of the previous 	t� small residuals give

large weights and large residuals small weights� His estimator is known as Locally Weighted

Scatter plot Smoothing or Loess �or lowess�� When the ti are equispaced� the loess estimator

corresponds exactly to �
��� �except at the boundaries��

Local polynomial 	tting has been used for many years to smooth time series data �Macauley�

����� Other important references for local polynomials include Stone ������� M�uller �������

Cleveland and Devlin ������� Fan ����
� ����� and Hamming ������� Kendall and Ord

������ in the time series domain� Fan in particular illustrated the MSE properties of �gh�t�

and that local polynomials with kernel weights have certain minimax optimality properties�

A description of local polynomial regression and its properties can also be found in Fan and

Gijbels ������� Simono� ������� for example�
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����� Penalty Method � Smoothing Splines

A spline is a piecewise polynomial� The polynomials are joined at points� called knots� such

that they form a continuous function with a speci	ed number of continuous derivatives� A

spline of order r has piecewise polynomials of degree r � �� r � 
 continuous derivatives

and an �r � ��st derivative that is a step function with jumps at the knots� In addition� a

natural spline on ��� �� of order r � 
d satis	es the boundary conditions g
j���� � g
j���� � ��

j � d� � � � � r � ��

Smoothing splines were derived in nonparametric regression as a solution to the following

minimisation problem� Find g�t� to minimise

n��
X

�yi � g�ti��
� � h�d

Z �

�

	
g
d��t�


�
dt �
���

where h � � is the smoothing parameter� The penalty term is used to explicity control the

smoothness of the estimated function� If h � �� the estimator would simply interpolate the

data� passing through each of the yi� As h��� the smoothing spline estimator approaches

the least squares regression line� Thus� the penalty term gives a tradeo� between the 	t to

the data and the smoothness of the estimator�

Schoenberg ������� and independently Reinsch ������� showed that the minimiser of �
���

is a natural polynomial spline� although the basic idea of splines is attributed to Whittaker

���
�� In particular� they showed that the natural cubic spline �r � �� with knots at the

ti�s is the unique solution to the minimisation of

n��
X

�yi � g�ti��
� � h�

Z �

�


g���t�

��
dt

with g����� � g����� � g
����� � g
����� � �� This is the most commonly used and widely

studied smoothing spline �eg� Wahba� ������ A simple derivation of the smoothing spline

using basic matrix analysis is given in Solo �
����� Figure 
�� shows the natural cubic

smoothing spline estimator for the birth rate data�

A smoothing spline estimator of g�t� can be written in general form� as the weighted sum
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Figure 
��� Cubic smoothing spline estimators for the birth rate data with h � ��� �dashed

line�� h � ��� �solid line�� and h � ������ �dotted line��

of the responses� The weight function for splines is actually equivalent in form to a kernel

estimator� This is most easily understood in the case where ti � i�n� In this case� changing

to a Fourier series by Parseval�s theorem� �and taking �a� b� � ��� ����

n��
X

�yi � g�i�n��� � h�
Z �

�


g���t�

��
dt

�
X

� yk �  gk�
� � h�

X
k� g�k

where  gk �
P
g�i�n� exp��j
�k i

n� �
R
g�t� exp��j
�kt�dt are the Fourier coe�cients of g�t�

and similarly  yk �
P
yi exp��j
�k i

n�� Di�erentiating with respect to  gk gives

� � yk �  gk� � h�k� gk � �

�  gk �
 yk

� � �hk��

This exhibits the Fourier coe�cients of the function estimator as a product of the data Fourier

coe�cients and a low pass 	lter� Taking inverse Fourier series gives �g�t� as a convolution

� �g�t� �
X �

h
K

�
t� i�n

h

�
yi

K�u� � inverse Fourier transform of
�

� � k�

� �



exp ��juj� sin

�
juj� �

�

�

For example� Figure 
�� shows the Fourier coe�cients of the birth rate data� the low pass

	lter�

� � �hk��

���
� and the resulting Fourier coe�cients of the estimator�
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Figure 
��� Fourier coe�cients for the birth rate data� the low pass �lter and the resulting

Fourier coe�cients for the smoothing spline estimator with h � ��� �dashed line�� h � ���

�solid line�� and h � ���� �dotted line��

Continuing with the Fourier analysis� we can derive approximate pointwise asymptotic prop�

erties of the natural smoothing spline� thus�

� gk �
 yk

� � �hk��

� E�� gk� �
 gk

� � �hk��

� E�� gk��  gk �
��hk��
� � �hk��

 gk

� Bias ��g�t�� � h�g
iv��t�

Var
h
� gk

i
�


��n

�� � �hk����

�g�t� �
X

� gk exp��j
�kt�

� Var ��g�t�� �
X

Var
h
� gk

i

� 
�

n

X �

�� � �hk����

� 
�

nh

Z
�

�� � ����
d�

So� assuming h � � and nh � �� the pointwise asymptotic bias is of O�h�� and the

variance of O ����nh��� The asymptotic MSE is minimised when h � n����� giving an
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optimal convergence rate of O
	
n���



�

Splines that do not satisfy the boundary conditions have a boundary bias problem �Rice and

Rosenblatt� ���� Utreras� ������ For example� a cubic spline satis	ng g����� � g����� � �

but not g
����� � g
����� � � has a bias of O
	
h���



near the boundaries and if neither of

these conditions is satis	ed� a bias of O
	
h���



� Smoothing splines have the advantage of

uniqueness� That is� there is only one function �gh�t� which minimises �
���� However� splines

can be severely a�ected by outliers� Further properties of the smoothing spline can be found

in de Boor ������� Eubank ������� Wahba �������

����� Comparison of Methods

In practice� choosing the nonparametric smoothing method to use will partially depend on the

context of the problem� No method is �best� in all situations� Instead� the best method for

a particular dataset will depend on many factors including the complexity of the relationship

and the sample size �eg� Banks et al�� ����� Marron� ������ We outline below some of the

strengths and weaknesses of the methods in di�erent situations�

The basis method is relatively simple to use and understand� It is particularly good when the

relationship is of a known� relatively smooth form �eg� periodic�� In other situations� using

B�spline basis functions allows for greater �exibility in the model� through piecewise poly�

nomials� while maintaining the simplicity of the calculations and understanding� However� a

large number of basis functions �m� may be needed in order for the estimator to exhibit very

local behaviour� A large m will reduce the bias but at the expense of a large variance� Thus�

basis estimators are not recommended for estimating functions with a large amount of local

behaviour�

Kernel estimators can model local behaviour with overparameterisation� They are still easy

to understand since they simply 	t a local constant to the data around each point at which

the estimator is required� Weighted least squares can be used to 	nd each estimate� Kernel
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estimators su�er from a boundary bias problem as the kernel window at boundary points is

missing data� This problem will occur in any area with only a small amount of data� Hence�

kernel estimators are not recommended for sparse datasets�

Local polynomial estimators retain the advantages of kernel estimators but without the

boundary bias problem� Sparse data problems can be overcome to some extent by 	tting

nearest neighbour weights rather than kernel weights� The resulting estimates are even more

�exible than kernel estimates as they 	t a local polynomial at each point instead of a local

constant� They are particularly superior when the ti�s are random as they adapt without

increasing the bias or variance� However� local polynomial estimators are sensitive to out�

liers� as are kernel estimators� This problem can be overcome though by using a robust local

polynomial method such as loess�

Another approach which corrects the boundary bias problem of kernels while still allowing

the estimator to have di�ering degrees of smoothness is the natural smoothing spline� Instead

of 	tting local polynomials of low degree possessing all derivatives� the smoothing spline 	ts

piecewise polynomials with discontinuities at the knots in lower order derivatives� However�

if the natural boundary conditions are not satis	ed� then a smoothing spline will still have

a boundary bias problem� Smoothing spline estimators also di�er in optimising a penalised

likelihood� although a penalty term can also be easily incorporated into the basis method�

They are also sensitive to outliers since they are a least squares method� Like the local

polynomial method� smoothing spline estimators behave well for random ti�s� However� the

problem of choosing the number and position of the knots is a di�cult one�

In terms of asymptotic pointwise MSE� the kernel� local linear polynomial� and Fourier basis

methods all have an optimal convergence rate of O
	
n����



� Local quadratic or cubic poly�

nomial estimators and natural smoothing splines have a slightly better convergence rate of

O
	
n���



� Since the methods have similar asymptotic rates for equispaced ti�s �which are of

interest�� this is not a large consideration in determining the �best� method�
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��� Controlling Smoothness

With any of the nonparametric methods discussed� the smoothness of the estimated function

needs to be controlled� Smoothing is actually a trade�o� between the goodness�of�	t and the

�roughness� of the estimated function� The amount of smoothing is controlled by the window

width or smoothing parameter� h� and�or ��m �as seen by comparing the asymptotic MSE

formulae� for basis functions� In the following we will refer to any of these as the smoothing

parameter h�

Choosing the smoothing parameter is an extremely important part of any nonparametric

method� Oversmooth and local features will be missed �not a good 	t to the data�� Un�

dersmooth and the function will closely follow the data� resulting in an extremely �bumpy�

estimate� Thus� there have been extensive investigations into automated techniques for choos�

ing the smoothing parameter� These include Cross�Validation �CV� �Stone� ����� Green

and Silverman� ������ Akaike�s Information Criterion �AIC� �Akaike� ����� ���� Bozdogan�

������ and Bayesian Information Criterion �BIC� �Akaike� ����� Schwarz� ������ The most

commonly used method is cross�validation� which we discuss below�

����� Cross�Validation

Cross�validation is a data driven method for choosing the smoothing parameter� It is orig�

inally due to Allen ������ and Stone ������� and was motivated by the idea of prediction�

Suppose we take a new observation ynew at the point tnew� Then a good estimator� �g�t��

would give a small error value� However� generally in practice no new data is available� This

is where the �leave one out� idea of cross�validation comes in� The idea is to omit each sub�

ject in the data set in turn� generate estimates using the remaining data� and then minimise

the error over all the omitted ��new�� data to 	nd the optimal smoothing parameter value�

In practice� the error criterion should relate to the problem being studied� Such an analysis is

outside the scope of this thesis and we follow standard practice and deal with mean integrated
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squared error �MISE�� Also we assume deterministic ti thoughout�

MISE � E

Z
�g�t�� �gh�t��

� dt

� Ekg�t� � �gh�t�k�

where �gh�t� is the estimated regression function found using any of the methods from Section


�� with a smoothing parameter value of h� Since g�t� is unknown� we estimate the MISE

using cross�validation� Let �g

�i�
h �t� be the estimated function when the i�th subject is omitted

from the data� Then the cross�validation function is

CV�h� � n��
nX
�

	
yi � �g


�i�
h �ti�


�
�
���

Since E�CV�h�� � MISE �eg� Stone� ������ the optimal smoothing parameter is then the

value of h which minimises CV�h�� A grid search is usually used to 	nd h as CV�h� may not

have a unique minimum� Wahba and Wold ������ were the 	rst to use cross�validation to

choose h for smoothing splines� while Clark ������ used it in the context of kernel smoothing�

Extensive work has also be carried out in the 	eld of density estimation �eg� Rudemo� ���
�

Bowman� ������

Direct calculation of CV�h� for a number of h values can be time consuming as it requires

the estimation of n curves �g

�i�
h �ti�� for each value of h� The calculation of the CV function

can be sped up using the hat matrix� A�h�� Since the nonparametric estimators discussed

above are linear in ti there will exist a matrix A�h� such that�
������
�g

�i�
h �t��

���

�g

�i�
h �tn�

�
������ � A�h�

�
������
y�
���

yn

�
������

The CV function can then be calculated in O�n� computations using the estimated regression

function for the full data set

CV�h� � n��
nX
�

�yi � �gh�ti��
�

��� aii�h��
� �
���

For further details on the calculation of A�h� for di�erent nonparametric methods see Eubank

������� for example�



Technical Background ��

0 20 40 60 80 100
0

1

2

3

4

5

6

7
x 10

4

h

C
V

(h
)

0 20 40 60 80 100
0

1

2

3

4

5

6

7
x 10

4

h

G
C

V
(h

)

Figure 
��� Cross�validation �left� and generalised cross�validation �right� plots for a kernel

estimator of the birth rate data�

A related criterion is Generalised Cross�Validation �GCV�� It was 	rst proposed by Craven

and Wahba ������ and is essentially a weighted version of CV�h�� Instead of dividing the

residuals by ��aii�h� as in CV� GCV divides by the average of these values� ��n�� trA�h��

GCV�h� � n��
Pn

�

	
yi � �g


�i�
h �ti�


�
��� n�� trA�h���

�
����

GCV has the advantage of being computationally quicker as trA�h� can be computed without

	nding the aii�h��s� It is also less sensitive to extreme values� As noted in Green and

Silverman ������� when ti � i�n and periodic boundary conditions are satis	ed� then aii�h�

are equal for all i and GCV is identical to CV� This can be seen in the birth rate example

�Figure 
���� Since the ti�s are equispaced� the CV and GCV plots for a kernel estimator are

identical� However� the CV �h� values took longer to compute� If the ti are random� then

GCV outperforms CV �Kohn et al�� ������

In practice� smoothing parameters chosen using CV generally tend to result in an under�

smoothed estimator �Chiu� ������ That is� the curves are too �bumpy�� CV is intended to

be an unbiased estimator of the MISE� resulting in an asymptotically optimal choice of h�

but it has high variability� Also� the estimated smoothing parameter �h from CV converges to
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the optimal value �hopt� which minimises the MISE for the given data set� at a slow rate� For

example� H�ardle et al� ������ showed this rate to be of O
	
n�����



for kernel estimators� That

is� n������h� �hopt���hopt tends to an asymptotic normal distribution� However� the estimated

function found using �h� �g�h�t�� is asymptotically consistent in that as n��

L��h� � n��kg�t� � �g�h
t�k� � �

in probability� for all t� where g�t� is the true function� Li ������ proved this for the case of

local polynomials with nearest neighbour weights� Thus� cross�validation is asymptotically

optimal under regularity conditions in that �Li� �����

L��h�

infh L�h�
� �

in probability�

��� Methods for Correlated Data

The nonparametric smoothing methods as decribed in Section 
�� relied on the assumption

of independent errors� However� in many datasets this assumption is false� Of particular

interest is data sampled over time� such as the US birth rate data� Obviously� the data at

adjacent time points are not independent� This autocorrelation can e�ect the asymptotic

properties of the estimator and the behaviour of data�based smoothing parameter selectors�

such as cross�validation� Thus� some modi	cation of the techniques are needed for correlated

data� Since nonparametric smoothing methods for correlated data are beyond the scope of

this thesis� we present a short outline of the two main approaches only� Further information

can be found in �H�ardle� ����� Chapter �� and �Simono�� ����� Section ����� for example�

The 	rst method is to assume that the errors are independent and use one of the standard

smoothing techniques to estimate the function� g�t�� In this case� cross�validation �Section


�
� tends to oversmooth data with negatively autocorrelated errors and undersmooth data

with positively autocorrelated errors �eg� Diggle and Hutchinson� ������ Thus� the smooth�

ing parameter needs to be adjusted due to the correlation� For example� Chiu ������� Alt�
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man ������� and Hart ������ all looked at modi	cations of cross�validation �and generalised

cross�validation� for autocorrelated errors with kernel smoothing� These methods require the

correlation function to be estimated� The standard approach assumes Cov�	i� 	j� � ��ji�jj��
for some known function ��u��

The second method for modelling correlated data is to modify the estimator to allow for

correlated noise� For example� Kohn et al� ����
� developed a state space solution for a spline

estimator with stationary noise modelled by an ARMA �Box and Jenkins� ����� model� This

approach also requires a modi	cation of the cross�validation procedure using an estimated

correlation function� Thus� this approach is more complex than the previous method�

��� Towards Functional Data Analysis

The previous smoothing techniques were concerned with the estimation of a single function or

curve� We now move towards functional data by brie�y examining techniques for the analysis

of multiple curves� We now have� for each of the n subjects� measurements of the dependent

variable y taken repeatedly� usually through time� Thus� yi�tj� is the measurement of the

dependent variable taken at time tj for subject i� We look at the simplest case� equispaced

time points with measurements taken at the same times for each subject� That is� tj � j�p�

where p is the number of measurements on each subject�

����� Classical Longitudinal Data Analysis

Classical longitudinal data analysis assumes that the individual subjects are independent

while the measurements for each subject are correlated� This correlation is assumed to be

consistent for all subjects� However� the number of measurements per subject must be much

smaller than the number of subjects� that is� p� n� Numerous books and papers have been

written on longitudinal data analysis� see� for example� Goldstein ������� Cox and Oakes

������� Jones ������ Lindsey ������ Diggle et al� ������� Vonesh and Chinchilli ������ and

references therein� We brie�y outline the various approaches below�
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All multivariate statistical techniques have been adapted to longitudinal data� These adap�

tations take into account the correlation within subjects� However� in order to model the

correlation� assumptions about its structure are required� eg� stationarity�

Three of the main approaches to longitudinal data analysis are marginal models� random

e�ects models� and transition models� Marginal models �Liang et al�� ���
� separately model

the mean �plus predictor e�ects� and covariance� For example� in a regression model� the

within�subject correlation is modelled separately from the mean and the e�ect of the inde�

pendent variables� A marginal model assumes that the variance at time tj depends on the

mean at tj through a known variance function� and the correlation between measurements

at times tj and tk depend on the mean at these times through another known function�

Random e�ects models �Laird and Ware� ���
� allow the regression coe�cients to vary from

one subject to another� according to a known distribution� This allows for heterogeneity due

to unmeasured factors� They model the conditional expectation of the response� yi�tj�� given

the subject speci	c coe�cients� �i� as E�yi�tj�j�i� � xTi �tj��i� where xi�tj� is the vector of

independent variables for subject i at time tj � and the �i � ��Ui follow a known distribution

with mean � and Ui is a mean zero random vector� Random e�ects models are particularly

useful when we are interested in inference about individual subjects rather than population

averages� which are of interest with marginal models�

Transition models �eg� Muenz and Rubinstein� ����� more closely resemble time series models�

They assume the present observation for a subject depends on the past observations� as well

as any predictor variables� A special case of these types of models are Markov chains �eg�

Billingsley� ����� Feller� ������ Time series models� such as autoregressive processes� which

have been adapted to longitudinal data �eg� Kenward� ����� also fall into this category�

For any of these model� methods for estimating the parameters include weighted least squares�

restricted maximum likelihood �REML� �Patterson and Thompson� ������ generalised esti�

mating equations �GEE� �Zeger et al�� ������ best linear unbiased predictor �BLUP� �Robin�
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son� ������ and Gibbs sampling �Zeger and Karim� ������

����� Functional Data Analysis based on Stationarity

When the number of measurements per subject is greater than the number of subjects �p � n�

then classical longitudinal data analysis techniques are generally no longer suitable� Using

these methods would result in singularity problems� Time series analysis can be used to

overcome this problem by relying on stationarity� In fact� longitudinal data analysis via time

series analysis can be thought of as stationary functional data analysis�

Most of the time series techniques have been developed in the frequency domain� wherein the

data is modelled as a sum of periodic sine and cosine waves of di�erent periods or frequencies�

This approach relies on the fact that the ordinates of Fourier frequencies of 	nite Fourier

transform of the data are nearly independent and approximately normally distributed with

variance equal to the spectrum at that frequency�

Techniques developed for the analysis of multiple time series include ANOVA� regression

analysis� and principal component analysis� Further information on these techniques can be

found in Shumway ������ and Brillinger �����b�� and references therein�

Time series ANOVA �Shumway� ����� Brillinger� ���� can be performed on ordinary sta�

tionary time series or on components of a stationary point process� It can be thought of as a

special kind of functional data analysis but with a stationarity assumption� Both 	xed and

random e�ects models have been developed� For example�

yij�t� � �ij � ��t� � �j�t� � 	ij�t�

where i is the subject index� �ij are constant� ��t� is constant in the 	xed e�ect model

or a stationary series in the random e�ects models� and �j�t� and 	ij�t� are independent

realisations of stationary series� Parameter estimates are found by a complex version of

standard ANOVA carried out on the discrete Fourier transforms of the observed series yij�t��
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Regression analysis is also carried out in the frequency domain� Let xij�t� be the jth regressor

time series for the ith subject� Assuming xij�t� is a stationary� zero�mean normal process�

then

yi�t� � ��t� �
qX

j��

�X
s���

�j�s�xij�t� s� � 	i�t�

The Fourier transform of the parameters can be found via least squares type calculations on

the cross�spectrum vector between the regressors and response and the cross�spectral matrix

of the regressor series� both of which can be easily found from the Fourier transforms of

the covariances and autocovariances of the observed time series �eg� Shumway� ������ The

frequency domain approach has the advantage of only requiring a q�q matrix to be inverted�

Also� the regressor series are allowed to be cross�correlated�

Principal component analysis for stationary time series �Hannan� ����� Brillinger� ����� for

example� is concerned with approximating a set of time series by a 	ltered version of itself�

However� the linear 	lter is constrained to be of a rank less than the set of series� Direct

calculation of the covariance matrix would result in singularity problems� since n � p� The

stationarity assumption allows the covariance matrix to be estimated using the 	nite Fourier

transforms of all the series in the set� Hence� time series principal components can be found

using a complex version of multivariate principal component analysis�

��� Functional Data Analysis

So far we have discussed function estimation for a single curve and techniques for multiple

curves when n � p or the curves are stationary� We now turn our attention to functional

data analysis techniques� Classical longitudinal data analysis techniques �Section 
����� are

inappropriate for functional data since n� p� The time series methods described in Section


���
 are not preferred as the stationarity assumption does not necessarily hold� Thus� new

techniques have been developed for the analysis of functional data�

In this section we describe existing methods for functional data in two areas� regression and
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principal component analysis� Whilst other areas are also important� these methods form the

background to the techniques developed in this thesis�

����� Functional ANOVA and Regression

Linear regression and ANOVA are common statistical techniques for exploring the relation�

ship between variables� In the functional setting� either the response variable� regressor

�predictor� variable or both can be functional�

Functional Response

When only the response is functional� modi	cations to standard ANOVA have been devel�

oped� Ramsay et al� ������ proposed a �naive� functional ANOVA �FANOVA� model to

analyse lip motions produced from the utterance of di�erent syllables �treatments�� They did

this by extending multivariate ANOVA �MANOVA� by simply replacing the discrete variable

index in MANOVA with a continuous time variable and using standard ANOVA techniques

to 	nd the estimates at each t� Thus� their model was

yij�t� � ��t� � �j�t� � 	ij�t�

subject to

X
j

�j�t� � � for all t

and estimates at t were found by minimising the least squares criterion �or alternatively a

penalised criterion to account for the constraints�� Continuous estimates were then generated

by interpolating between the 	tted t values� FANOVA was also presented in Ramsay and

Silverman ������ and used to model temperature data by climate zones and the e�ect of

shoeing conditions on horses� While the �naive� approach is relatively simple� it does not take

into account the continuous nature of the parameters� That is� the fact that the parameters

are correlated across the time frame of the data is ignored�

Faraway ������ proposed a functional ANOVA which used nonparametric smoothing� The
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	rst step was to generate estimates of smooth curves for each subject� Any of the methods

from Section 
�� could be used but loess was recommended because of its robustness prop�

erties� Once curve estimates were found at speci	ed values of t� pointwise estimates of the

parameters were found using traditional ANOVA techniques� While Faraway presented some

statistical inference for the model� it is only tentative and further theoretical investigation of

its properties is needed� This model is better than the naive approach but it still requires

estimates to be generated separately at each time point t� Fan and Lin ������ used Fourier

transforms of the functional response to develop a high�dimensional ANOVA �HANOVA� to

determine if there was a signi	cant di�erence in the curves between groups� However� they

assumed that the errors were stationary time series with zero means�

A fully nonparametric functional ANOVA was presented by Ramsay and Silverman �������

They modelled both the response and the parameter functions via basis expansions� Let

Z be a design matrix for the model and ��t� � ���t�� ���t�� ���t�� � � � �
T be a vector of

the parameters to be estimated� then the model can be written as Y �t� � Z��t� � 	�t��

where Y �t� � �y��t� � � � yn�t��
T � 	�t� � �	��t� � � � 	n�t��

T � The estimates were then found

by minimising the least squares criterion
R kY �t� � Z��t�k�dt� subject to any constraints�

and substituting basis expansions for Y �t� and ��t�� Let L��t� � �� for all t� represent the

constraints� and assume � is given� Then� this leads to solving

	
ZTZ � �LTL



B � ZTC

where

yi�t� �
X

cik�k�t� � cTi ��t�

� Y �t� � C��t�

��t� � B��t�

��t� � ����t� � � � �m�t��T

C � �c� � � � cn�
T

Ramsay and Silverman recommended using a value of � � �� A further model was also

outlined which controlled the smoothness of the estimated ���t� explicitly through the addition
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of a roughness penalty term to the least squares criterion� One of the advantages of Ramsay

and Silverman model is that the correlation across t is taken into account for both the

response and the parameters� Also a single step is needed to generate the estimates� rather

than separate smoothing and estimation steps�

Functional Regressor

When data containing a functional regressor �or covariate� is to be modelled� functional linear

modelling techniques have been developed� For these models� either just a predictor or both

the response and a predictor can be functional� Of most interest is the case of a continuous

�not functional� response variable y and a functional predictor variable x� In this case� the

functional linear model is given by

yi � ��

Z
J
xi�t���t� dt � 	i� i � �� � � � n

where � is a constant parameter and ��t� is the functional parameter� both of which need

to be estimated� A solution analgous to ridge regression was found by Goutis ������ by

minimising the penalised sum of squares� Ramsay and Silverman ������ presented a basis

solution to this problem� Both the functional predictor and parameter were modelled as

linear combinations of the basis functions� �k�t��

xi�t� �
mX
k��

cik�k�t� � cTi ��t�

��t� �
mX
k��

bk�k�t� � bT��t�

Substituting these basis expansions into the linear model gives

yi � ��

Z
J
cTi ��t��

T �t�b dt� 	i

� �� cTi Wb� 	i

where W �
R
J ��t��

T �t�dt� If a Fourier basis is used� then W � Im� the order m identity

matrix� Otherwise� W must be approximated using a method of quadrature or calculated

analytically� The parameter estimates ��� �b can then be found using standard linear regression

techniques� Ramsay and Silverman also modi	ed this model to include a roughness penalty

term� as well as giving computational details on generating the estimates�



Technical Background ��

Functional Response and Regressor

Functional linear models with both a functional response and a predictor have been presented

in Ramsay and Dalzell ������� They investigated the relationship between precipitation

and temperature values over a year at di�erent weather stations� They did this by 	nding

smoothing spline representations of the data for each station� and then relating the variables

via harmonic weight functions� A basis solution to the same problem was given in Ramsay

and Silverman ������� This method is simply a combination of the two basis methods outlined

above� Ramsay and Silverman also outlined a smoothing spline solution for functional linear

modelling�

The functional linear models are more general than time series methods for regression� In

time series models the function linking the regressors and response must be time invariant�

In functional models� this does not have to hold� Thus� models of the form

yi�t� � ��

Z
��t� s�xi�s�ds

are possible in the functional setting�

����� Functional Principal Component Analysis

Principal component analysis of time series data with n � p 	rst received attention in the

time series domain in the ����s� see Shumway ������� Brillinger ����� ������ The curve for

each subject was modelled as

yi�t� � ��t� � 	i�t�

where ��t� represents the mean at time t and 	i�t� the residual variation� The idea was

that removing the mean from yi would result in the modelling of a stationary process for the

residual variation� However� the assumption of a stationary residual covariance structure may

not hold for functional data� Several papers have considered principal component analysis

applied to functional data without the stationarity assumptions�

However� before functional Principal Component Analysis �fPCA� can be performed� the
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data needs to be mean adjusted� In most cases� this has been done by simple averaging�

	nding the average value at each discrete time point� Rice and Silverman ������ extended

this by smoothing the pointwise averages using penalized least squares to produce a cubic

spline estimate of ��t�� Other nonparametric methods could also be used� for example� Hart

and Wehrly ������ use a kernel regression estimator� Having mean adjusted the data� the

eigenfunctions of the residual variation can be found� We assume in the following that yi�t�

has been mean adjusted� so Eyi�t� � � for all t�

To develop a principal component analysis we expand the population covariance function in

a Karhunen�Loeve expansion �Kanwal� �����

Cov�Y �s�� Y �t�� � !�s� t� �
�X
�

�u�u�s��u�t�

Each eigenfunction� �u�t�� and its corresponding eigenvalue� �u� can be found by solving the

eigenproblem

Z
!�s� t��u�t�dt � �u�u�s�� u � �� 
� � � � �
����

subject to k�uk� � � and h�u� �vi � �� u �� v� A number of methods have been developed to

	nd these eigenfunctions from 	nite data estimates�

Castro et al� ������ looked at extending traditional multivariate PCA to smooth curves� They

took into account the spacing of the time points to develop an algorithm capable of handling

both equispaced and random ti�s� However� they calculate the sample covariance function�

!n� directly from the data using the standard estimator�

�!n�s� t� �
�

n

nX
i��

yi�s�yi�t� �
��
�

This estimator results in singularity problems if used with functional data since n � p�

The most commonly used approach to overcome this singularity problem is a basis approach�

The basic idea is to model the curve for each subject using known basis functions� �k�t��
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k � �� � � � �m� as in functional regression� Thus�

yi�t� �
X

cik�k�t� � cTi ��t�

� Y �t� � C��t�

However� the eigenfunctions� �u� are also modelled using these basis functions�

�u�t� �
X

fu�k�t�

� �T �t�fu

Using the sample covariance function �
��
� as the estimate for the population covariance

function along with the basis expansions� the eigenproblem �
���� becomes

n��
Z
�T �s�CTC��t��T �t�fu dt � �u�

T �s�fu

Since this equation must hold for all s we deduce

n��CTCWfu � �ufu

Further� the constraint k�uk� � � implies that fTuWfu � �

Ramsay ����
�� Besse and Ramsay ������� Ramsay and Dalzell ������ used a basis approach�

They calculated smooth principal components by extending traditional multivariate PCA

using Hilbert spaces� The resulting equations were solved using a basis expansion with

reproducing kernels� to produce a weighted PCA� Ramsay et al� ������ ����� used these

techniques to analysis human growth data and lip motion data� respectively�

Rice and Silverman ������� Ramsay and Silverman ������ also used a basis approach to

	nd the eigenfunctions� However� they imposed smoothing via the addition of a roughness

penalty to the basis expansion� This penalty was the integrated squared second derivative

of the eigenfunction� P ��� �
R
D��D��� where D is d�dt� although other penalties could be

used� Assuming D�� and D�� satisfy either natural or periodic boundary conditions� the

modi	ed eigenequation became

WCTCWfu � �u�W � �P ����fu
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subject to

fTu Wfu � � and

fTuWfv � �fTu P ���fv � �� u �� v

This method has the advantage that the smoothing can be controlled more precisely and

the basis can be truncated� for computational purposes� without substantially altering the

results� Pezzulli and Silverman ����� looked at some of the theoretical properties of Rice

and Silverman�s procedure� They showed that the estimates were consistent providing the

smoothing parameter converged to zero as n � �� and that smoothing improved the es�

timated eigenfunctions compared to the eigenfunctions calculated using the raw empirical

covariance kernel�

A di�erent form of smoothing was used by Silverman ������� The method is similar to that

of Rice and Silverman ������ but Silverman incorporated the roughness penalty into the

orthonormality constraint instead of incorporating it into the eigenanalysis directly�

Kneip ������ estimated the smooth eigenfunctions of the data via cubic B�splines� However�

he assumed that var�	i�t�� � �� or could be transformed to equal one using the estimated

variances� The eigenfunctions were then used to give a low dimensional model of the curve

for each subject� The technique was applied to the U�K� family expenditure survey data from

���� to ����

Another approach to fPCA was presented by Solo ������� Here� the estimates were found

exactly using a roughness penalty but without the use of a basis expansion or discretisation�

The eigenfunctions were solved using �continuous�discrete� variational calculus�

In most cases� estimating and subtracting the mean function from the data before fPCA is

performed is inadequate� The mean and covariance functions need to be estimated together�

as one estimate can a�ect the other� This leads to a functional mixed�e�ects type model�

incorporating fPCA in the covariance estimate as developed in chapter ��
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Functional Logistic Regression

��� Introduction

In recent years� techniques have been presented for the linear modelling of data where one

covariate is a function rather than a single measurement� However� as outlined in Section ����

existing regression techniques deal with either a continuous or functional response� Presented

in this chapter is a method for FDA with a binary response� which we call functional logistic

regression�

We develop a basis solution to functional logistic regression by extending existing functional

linear models� using standard generalized linear modelling �glm� techniques �McCullagh and

Nelder� ������ to the case of a binary response variable� This results in a functional logistic

regression with maximum likelihood parameter estimates� The methods presented in Chap�

ters  � � and the results from Chapter � also appear in Ratcli�e et al� �
���a� and Ratcli�e

et al� �
���b��

��� Basis Method

For each of the n subjects� the observed response� yi� is assumed to come from a Bernoulli

distribution with probability of success �i� As with standard glm� the data are modelled
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using the logit or logistic link function� giving the functional logistic regression model

log

�
�i

�� �i

�
� �� �

rX
j��

�jzi�j �

Z
xi�t���t� dt� i � �� � � � � n ����

where

�� � the constant parameter�

�j � the parameter for the jth scalar covariate�

zi�j � the jth scalar covariate for the ith subject�

xi�t� � the functional covariate for the ith subject at time t�

��t� � the functional parameter at time t�

i � �� � � � � n j � �� � � � � r

As mentioned earlier� solving the above problem directly requires the inversion of a singular

matrix� Instead we model the functional covariate and parameter nonparametrically by basis

functions� �k�t�� t � t�� � � � � tp� Clearly� the basis functions should be chosen to re�ect

the characteristics of the data� An inappropriate choice of basis functions would require a

larger number of functions �m� to adequately model the data and parameter� For example�

if the data for each subject came from a straight line� say xi�t� � ai� � ai�t� then the

polynomial basis functions �k�t� � tk��� k � �� � � � �m� would model xi�t� perfectly with

only m � 
 functions� However� Fourier basis functions� ���t� � �� ��k�t� � cos 
�kt�

��k���t� � sin 
�kt� k � �� � � � �m�
� would require a large m in order to adequately model

xi�t��

Having chosen the basis functions� the data and functional parameter are modelled as

xi�t� �
mX
k��

cik�k�t�� cTi ��t� ��
�

��t� �
mX
k��

bk�k�t� � bT��t� ���
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where b and ci are vectors of basis coe�cients which need to be estimated� Using

x�t� � �x��t� � � � xn�t��
T

X
n�p� � �x�t�� � � � x�tp��

C
n�m� � �c� � � � cn�
T

"
m�p� � ���t�� � � � ��tp��

estimates for C can be found easily via least squares�

xi�t� � cTi ��t�

� X � C"

� �C � X"T
	
""T


��

Substituting the basis expansions ��
�� ���� and using zi � �� zi� � � � zir�
T � � � ��� �� � � � �r�

T �

the regression model ���� becomes

log

�
�i

�� �i

�
� zTi ��

Z
cTi ��t��

T �t�b dt

� zTi �� cTi Wb

� log

�
�

�� �

�
� Z�� CWb ����

whereW �
R
��s��T �s� ds� � � ��� � � � �n�

T � Z � �z� � � � zn�
T � and log�u� � �log�u�� � � � log�un��

T �

����� Estimating Parameters

Model ���� can be written as

log

�
�

�� �

�
� �Z CW �

�
�� �

b

�
��

which is similar to standard logistic regression models� Hence� maximum likelihood parameter

estimates can be found using the Fisher scoring method �Fisher� ��
���

Since the observed responses� yi� are assumed to be Bernoulli��i�� the log�likelihood function

can be expressed as

l��� y� �
nX
i��

�
yi log

�
�i

�� �i

�
� log��� �i�

�
����
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Using

�l

��i
�

yi � �i
�i��� �i�

log

�
�i

�� �i

�
� �i � zTi �� cTi Wb

the derivative of the log�likelihood with respect to �j is

�l

��j
�

nX
i��

�l

��i

d�i
d�i

��i
��j

�
nX
i��

�yi � �i�z
T
i�j

����

and the Fisher information for � is given by

�E
�

��l

��j��k

�
�

nX
i��

�i��� �i�z
T
i�jz

T
i�k

� fZTw�Zgjk

where w� is the diagonal weights matrix with �i�� � �i� as its diagonal elements� Thus� by

Fisher�s scoring method� the new estimate of �� ��new� is given by

��new � ��
�
E

�
��l

����T

���� �
�l

��

�

� ��
	
ZTw�Z


�� 	
ZT �y � ���



�
	
ZTw�Z


�� 	
ZTw�Z�� ZT �y � ���



�
	
ZTw�Z


��
ZTw��� � CW�b� ����

where �i � ��i� �yi� ��i��w
�
ii is analogous to the local dependent variable zi in standard glm�

Similarly�

�b �
	
W TCTw�CW


��
W TCTw��� � Z ��� ����

Combining equations ����� ���� gives

�
�� ��

�b

�
�� �

�
�� ZTw�Z ZTw�CW

�CW �Tw�Z �CW �Tw�CW

�
��
�� �
�� ZT

�CW �T

�
��w�� ����

which corresponds to a weighted least squares estimate�
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Since � depends on the parameter estimates and these estimates in turn depend on �� an iter�

ative algorithm �as given in McCullagh and Nelder� ����� is used to estimate the parameters

in practice�

Step �� Given initial estimates ��� and ���� calculate w
�
ii � �i�� � �i� and hence ��i � ��i �

�yi � ��i��w
�
ii�

Step �� Given ��� calculate new estimates ��� and ��� using �����

Generally� initial estimtes ���� ��� are found using standard least squares with ��� � �y� �
���
�

This adjustment of the yi�s is necessary to prevent problems associated with a response of

zero� namely the evalution of log��� as the starting value for ��

Also� note that the 	nal predicted probabilities are found using the basis expansion� C"� and

not the raw functional data� X� since the basis expansion is a smoothed estimate of X� Using

the raw data could result in unstable predictions� especially if the raw data are not smooth�

����� Choosing the Basis Dimension

For the basis method� the number of basis functions� m� is selected via the cross�validated

log�likelihood� We have

CV�m� � �

X
i

�yi log ��i��i � ��� yi� log��� ��i��i�� �����

where ��i��i is the predicted probability of a success for subject i when the parameter estimates

are found without subject i� The optimal m value is the one which maximises the CV score�

��� Truncated Basis Expansion plus Penalty

As with functional regression� the smoothness of the functional parameter ��t� can also be

contolled via the addition of a roughness penalty �Rice and Silverman� ����� Green and

Silverman� ����� Ramsay and Silverman� ������ This has the advantage that the smoothing
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can be controlled more precisely and the basis expansions can be truncated� for computational

purposes� without substantially altering the results�

One common choice for the penalty is the integrated squared second derivative of the func�

tional parameter� P ��� �
R
����t��dt� The parameter estimates are then found by maximising

the penalised log�likelihood function

l��� y� � �



h

Z
����t��dt �����

Under the penalised log�likelihood� the estimate for � remains unchanged but not ��t��

Using the basis expansion for ��t�� the penalty term becomes

P ��� �

Z
bT����t������t��T b dt

� bTP	b

where P	 �
R
����t������t��T dt� The derivative of the penalised log�likelihood with respect to

b is

�l

�b
� �CW �T �y � ���� hP	b

and the Fisher information for b is given by

�E
�

��l

�b�bT

�
� �CW �Tw�CW � hP	

Thus� using Fisher scoring� the estimate for b becomes

bnew � b�
�
E

�
��l

�b�bT

���� �
�l

�b

�

� b�
	
�CW �Tw�CW � hP	


�� 	
�CW �T �y � ���� hP	b



�
	
�CW �Tw�CW � hP	


�� 	
�CW �Tw�CWb� hP	b� �CW �T �y � ���� hP	b



�
	
�CW �Tw�CW � hP	


��
�CW �Tw��� � Z ��� ���
�

Thus combining equations ���� and ���
�� the parameter estimates are�
�� ��

�b

�
�� �

�
�� ZTw�Z ZTw�CW

�CW �Tw�Z �CW �Tw�CW � hP	

�
��
�� �
�� ZT

�CW �T

�
��w��

under a penalised functional logistic regresion model� Once again� an iterative algorithm

�McCullagh and Nelder� ����� is used to 	nd the estimates in practice�
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����� Choosing m and h

As in the basis method� the number of basis functions and the smoothing parameter can

be chosen using the cross�validated log�likelihood� However� the log�likelihood is now being

maximised over m and h�

CV �m�h� � �

X
i

	
yi log ��

h
i��i � ��� yi� log

	
�� ��hi��i




����

where ��hi��i is the predicted probability of success for subject i when the parameter estimates

are found without subject i and using a smoothing parameter of h�

��� Model Diagnostics

To compare functional logistic regression models� the residual deviance can be used� For

functional logistic regression� this will reduce to �see McCullagh and Nelder� ����� page �
�

for details�

D�y� ��� � �
��T �� � 

X
i

log��� ��i� �����

For standard logistic regression� the deviance function is not uniquely de	ned� it depends on

whether the data are grouped or ungrouped� However� with functional logistic regression we

will always have ungrouped data since each subject has a unique functional covariate�

As with standard glm� the importance of a covariate�s� can be examined by looking at the

change in deviance between the model with and the model without the covariate�s�� The

change in deviance between these two nested models� A and B say�

D�y� ��A��D�y� ��B�

can be approximated by a �� distribution�

Another common measure of the goodness of 	t of a model is the Pearson X� test statis�

tic� However� as described in McCullagh and Nelder ������� the extreme sparseness of the
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functional data reduces this statistic to

X� �
X �yi � #y��

#y��� #y�
� n

which is not a useful measure of the goodness of 	t of a functional model�

Classi	cation tables can be used as another indicator of a model�s goodness�of�	t� Models

can be compared by examining the percentages correctly classi	ed within the two observed

response groups� However� these tables depend upon the cut�o� probability� or cut value�

used� The cut value is the probability at which the classi	cation of a subject changes from

failure to success� For example� with a cut�o� probability of ���� subjects with a predicted

probability of success� ��i� greater than ��� would be classi	ed as having a success� while the

remaining subjects would be classi	ed as having a failure�

For any model� the sensitivity is de	ned to be the probability of predicting a success when

the observed response is a success� and the false positive rate is the probability of predicting a

success when the observed response is a failure� These two measures are used to 	nd the best

cut�o� probability for the model� This value gives the best trade�o� between the measures�

we want the highest sensitivity possible without the corresponding false positive rate being

too high� or over some acceptable limit�

Receiver Operating Characteristic �ROC� curves �Hanley� ����� use the sensitivity and false

positive rates to compare models� An ROC curve is produced by plotting these two measures�

found for a range of cut�o� probabilities� An example of an ROC curve is given in Figure

��� Generally� if the curve is below the �sensitivity � false positive rate� line� the model is a

poor predictor� if it�s above the line� the model is a useful predictor� Thus� when comparing

models� the �higher� the curve the better the model�
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Figure ��� Example of an ROC Curve�

��� Application to EEG Data

These techniques were applied to electroencephalographic �EEG� recordings from human sub�

jects� These recordings are part of a continuing larger study at the Department of Psychiatry�

University of Sydney and Westmead Hospital� The data have been kindly provided by Dr

Evian Gordon� The data �Figure �
� consist of evoked response potentials from the centre

of the Frontal Lobe position of the brain for �� subjects� For each subject� equispaced mea�

surements were taken every four milliseconds over an eight second period� �� measurements

were taken before a noise stimulus was applied� one measurement at the stimulus� and ���

measurements after the stimulus� The EEG recordings were adjusted to remove the e�ect

of normal brain wave activities� such as blinking� The response variable is the sex of the

subject� the aim is to investigate if males and females process the noise stimulus di�erently�

not to predict the sex of the patient�

Figure � shows EEG tracings for males and females separately� as well as the simple average

EEG tracings for each sex� Both sexes follow the same general pattern with a rise followed

by a fall in the EEG value after the noise stimulus before approximately returning to the

baseline value� However� there are two main di�erences between the sexes� the average EEG

tracings for females has a larger amplitude after the noise stimulus than males� and the EEG
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Figure �
� EEG recordings for 	
 subjects from the Frontal Lobe position of the brain�
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Figure �� Left� EEG tracings for males �top� and females �bottom�� Right� Simple average

EEG tracings for males �solid� and females �dashed��

tracings before the stimulus would indicate that the sexes process random environmental

in�uences di�erently� Thus� there may be a di�erence in the way males and females process

a noise stimulus�

Using Fourier basis functions to model the traces� cross�validation �Figure ��� gave an opti�

mal basis size of m � �� and smoothing parameter of h � �� Thus� the penalty term is not
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Figure ��� Cross�validation plots for functional logistic regression of the EEG data�
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Figure ��� Estimated functional parameter ��t� using m � �� Fourier basis functions for the

EEG data�

needed to control the smoothness for these data and the straight basis method can be used�

Assigning female as a �success� and male as a �failure�� the resulting functional logistic model

was

log

�
��i

�� ��i

�
� ���
�� �

Z
xi�t���t� dt

with the estimated functional parameter ���t� given in Figure ��� This model had a deviance

of ������� on �� degrees of freedom �p � ������� Other variables� such as age� had no
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Figure ��� Predicted probabilities of being female� split by known sex� in the EEG data�

signi	cant e�ect�

Figure �� shows the distribution of the predicted probabilities� split by sex� There appears to

be some distinction in the probabilities for males and females� The best cut�o� probability was

found to be �� � ���� Using this value� approximately three�quarters of the males and females

were correctly classi	ed �see Table ���� Thus� it appears there is a slight but signi	cant

di�erence in the EEG tracings between the sexes� The functional parameter appears to

mainly use di�erences in the pre�stimulus tracings and the height of the initial reaction to

the stimulus to di�erentiate between the sexes� Similar results could have also been obtained

using �� B�spline basis functions� Thus� for this EEG data the choice of basis functions was

not too important�

In standard logistic regression� the choice of the starting value ���� is also not too important

�McCullagh and Nelder� ������ although a bad value can result in the algorithm diverging�

We investigated the e�ect of di�erent ���s on the results for functional logistic regression

using the EGG data� Under a range of starting values� the functional logistic regression

algorithm converged to the same solution� The only e�ect was in the number of iterations

to convergence� This ranged from six to eight iterations� with the proposed starting value

from Section 
�
�� achieving the optimal six iterations� So� di�erent starting values only give
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Classi�cation Table for EEG Data

Observed Level

Predicted Male Female Total

Male � �


Female �
 

$ Correct ���$ ��$ ���$

Table ��� Summary of classi�cations for sex using the basis method for functional logistic

regression with a cut�o� of �� � ����

a small change in the number of iterations to convergence �if convergence is achieved�� This

result was also evident in other data sets tested�

��� Discussion

In this chapter� we have presented a basis solution to functional logistic regression assuming

a Bernoulli distribution for the observed responses� The maximum likelihood parameter

estimates can be found easily using a slight modi	cation of the existing glm algorithm� Like

standard glm� the choice of the starting value was not too important� with the number of

iterations being reduced by one or two� In the data sets tested� the optimal number of

iterations �and convergence� was always achieved using � � �y � �
���
� The number of basis

functions� and the optimal smoothing parameter value in the penalised model� was chosen

using a cross�validated log�likelihood function�

The EEG traces taken at the Frontal lobe �Fz� position of the brain were used to illustrate

functional logistic regression� There appears to be a di�erence in the tracings of males and

females� They appear to process their environment di�erently and females record more of a

reaction to the stimulus in their tracing than males� For this data set it was found that the

choice of basis functions was also not too important�
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Functional Data with a Repeated

Stimulus

��� Introduction

In this chapter we extend the methods for both functional regression �Section 
����� and

functional logistic regression �Chapter � to the situation where there is a special structure

in the functional data� viz a repeated stimulus� These models have been motivated by the

fetal heart rate data set which is described in detail in Chapter ��

The functional covariate now consists of two parts� the curve measured within the time frame

of each stimulus� and the timing of the stimulus in relation to the other stimuli� The curves

are functions of time although measurements are only taken at p points in time� Both of

these parts need to be incorporated into the structure of the models�

��� Continuous Response

We begin by looking at the model for a continuous response� The proposed model is a modi	ed

version of the functional linear regression model given by Ramsay and Silverman �������

incorporating the special repeated stimulus structure� Scalar �categorical or continuous�
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covariates are also included� The regression model is

yi � �� �
rX

j��

�jzi�j �
qX

s��

�s

Z
xi�s�t���t�dt � 	i� i � �� � � � � n �����

where

yi � the scalar response for the ith subject�

�� � the constant parameter�

�j � the parameter for the jth scalar covariate�

zi�j � the jth scalar covariate for the ith subject�

�s � the parameter for the sth stimulus�

xi�s�t� � the functional covariate for the ith subject� measured at time t

within the sth stimulus

��t� � the functional parameter for time within a stimulus� measured

at time t

	i � the error associated with subject i�  NID��� 
�
 �

i � �� � � � � n j � �� � � � � r s � �� � � � � q

As before� the normal equations cannot be solved directly� There will always be more unknown

parameters than subjects in the estimation of ��t�� resulting in an in	nite number of solutions

with a perfect but meaningless 	t� Once again� we present a basis solution to this problem�

Thus� the functional time parameter� ��t�� is modelled as

��t� �
mX
�

bk�k�t� � bT��t� ���
�

The functional covariate was measured at each �s� t� combination� resulting in q�p measure�

ments for each subject� A basis expansion was also used to model the time measurements
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within each stimulus

xi�s�t� � cTi�s��t�

xi � �xi���t� � � � xi�q�t��
T

Xi�
q�p� � �xi�t�� � � � xi�tp��
T

Ci�
q�m� � �ci�� � � � ci�q�
T

"
m�p� � ���t�� � � � ��tp��
T

� Xi � Ci" ����

Estimates for Ci were found using least squares� Ci � Xi"
T
	
""T


��
�

Substituting ���
� and ���� into the regression model ����� gives

yi � �� �
rX

j��

�jzi�j �
qX

s��

�s

Z
cTi�s��t��

T �t�b dt� 	i

� zTi �� �TCiWb� 	i

where � � ��� �� � � � �r�
T � � � ��� � � � �q�

T � zi � �� zi�� � � � zi�r�
T and W �

R
��s��T �s�ds

� ""T � Thus� the parameter estimates� ��� �� and ��� are found by solving

yi � zTi ��� ��TCiW�b �����

and using equation ���
� to estimate ��� The predicted responses� �yi� are calculated using

these estimates�

�yi � zTi ��� ��TCiW�b �����

As in Section �
��� the predicted values are found using CiW�b and not
R
xi�s�t� ���t�dt� as the

raw data� xi�s�t�� may not be smooth� Any roughness� or irregularities� in xi�s�t� would result

in extremely inaccurate �unstable� predictions�
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����� Estimating Parameters

Least squares parameter estimates were found by minimising the error� or residual� sum of

squares �RSS��

RSS �
X
i

�yi � �yi�
�

�
X
i

h
yi �

	
zTi ��� ��TCiW�b


i�

For each parameter� RSS is minimised by equating the appropriate partial derivative to zero�

i�e� by solving �RSS�� �� � �� �RSS���b � � and �RSS���� � � simultaneously for ��� �b and

��� Taking partial derivatives gives

�RSS

� ��
� �


X
i

zi
h
yi �

	
zTi ��� ��TCiW�b


i

� �

�X

i

ziyi �
X
i

ziz
T
i ���

X
i

zi��
TCiW�b

�
� �

�RSS

��b
� �


X
i

���TCiW �T
h
yi �

	
zTi ��� ��TCiW�b


i

� �

�X

i

W TCT
i ��yi �

X
i

W TCT
i ��z

T
i ���

X
i

W TCT
i ����

TCiW�b

�
� �

�RSS

���
� �


X
i

h
yi �

	
zTi ��� ��TCiW�b


i
�CiW�b�T

� �

�X

i

yi�b
TW TCT

i �
X
i

zTi ���bTW TCT
i �

X
i

��TCiW�b�bTW TCT
i

�
� �

Thus�

�� �

�X
i

ziz
T
i

��� �X
i

ziyi �
X
i

zi��
TCiW�b

�

�b �

�X
i

W TCT
i ����

TCiW

��� �X
i

W TCT
i ��yi �

X
i

W TCT
i ��z

T
i ��

�

��T �

�X
i

yi�b
TW TCT

i �
X
i

zTi ���bTW TCT
i

��X
i

CiW�b�bTW TCT
i

���
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Substituting for �� and �b� results in parameter estimates given by

�� �

�
�X

i

ziz
T
i �

�X
i

zi��
TCiW

��X
i

W TCT
i ����

TCiW

��� �X
i

W TCT
i ��z

T
i

��
A
��

�
�
�X

i

ziyi �
�X

i

zi��
TCiW

��X
i

W TCT
i ����

TCiW

��� �X
i

W TCT
i ��yi

��
A

�b �

�
�X

i

W TCT
i ����

TCiW �
�X

i

W TCT
i ��z

T
i

��X
i

ziz
T
i

����X
i

zi��
TCiW

��A
��

�
�
�X

i

W TCT
i ��yi �

�X
i

W TCT
i ��z

T
i

��X
i

ziz
T
i

����X
i

ziyi

��A

��T �

�X
i

yi�b
TW TCT

i �
X
i

zTi ���bTW TCT
i

��X
i

CiW�b�bTW TCT
i

���

Now� let

D �

�
������

��TC�W

���

��TCnW

�
������

E �
h
�C�W�b� � � � �CnW�b�

iT
y � �y� � � � yn�

T

Z � �z� � � � zn�
T

Then� summing over the subjects� the parameter estimates become

�� �
	
ZTZ � ZTD�DTD���DTZ


�� 	
ZTy � ZTD�DTD���DT y



�b �

	
DTD �DTZ�ZTZ���ZTD


�� 	
DTy �DTZ�ZTZ���ZT y



��T �

	
yTE � �Z ���TE


	
ETE


��

which reduce to

�� �
	
ZT

	
I �D�DTD���DT



Z

��

ZT
	
I �D�DTD���DT



y �����

�b �
	
DT

	
I � Z�ZTZ���ZT



D

��

DT
	
I � Z�ZTZ���ZT



y �����

��T � �y � Z ���T E
	
ETE


��
�����
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Thus� both �� and �b depend on �� and �� depends on �� and �b� Note that equations ����� and

����� can be combined and written as

�
�� ��

�b

�
�� �

�
�� ZTZ ZTD

DTZ DTD

�
��
�� �
�� ZT

DT

�
�� y �����

These estimates lend themselves to an iterative solution� The algorithm used to 	nd the

estimates is described below� In semi�parametric regression� this type of problem can be

solved without iteration �Speckman� ������ However� developing a non�iterative approach in

a FDA setting is a future research topic�

Algorithm

In practice� the following iterative algorithm is used to estimate the parameters�

Step �� Find initial estimates for � and b�

These estimates are found by setting ��i � � for all i� These � values correspond to the

assumption that the timing of the stimulus has no e�ect� The initial estimates� ��
��

and �b
��� are then found using equation ������

�
�� ��
��

�b
��

�
�� �

�
�� ZTZ ZTD
��

DT

��Z DT


��D
��

�
��
�� �
�� ZT

DT

��

�
�� y

where D
�� is calculated using ��
�� � �� a �q � �� vector of ones�

At iteration k� the parameter estimates� ��
k�� �b
k� and ��
k�� are given by�

Step �� Estimate �
k�� using ��
k��� and �b
k����

��T
k� �
	
y � Z ��
k���


T
E
k���

	
ET

k���E
k���


��

where E
k��� is calculated using �b
k����

Step �� Estimate � and b� using ��
k��

�
�� ��
k�

�b
k�

�
�� �

�
�� ZTZ ZTD
k�

DT

k�Z DT


k�D
k�

�
��
�� �
�� ZT

DT

k�

�
�� y

where D
k� is calculated using ��
k��
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Step �� Check for convergence�

If the algorithm has converged� then stop�

else repeat from Step ��

Convergence is determined by examining the relative change in the parameter estimates

from one iteration to the next� If the changes are su�ciently small� then the algorithm

is assumed to have converged�

����� Model Diagnostics

The assumptions of the model can be tested by examining the residuals� �	i � yi � �yi� as in

standard linear regression� For example� the assumption of normally distributed residuals

could be checked via a normal probability plot of the residuals� The overall 	t of any model

can be evaluated using the usual coe�cient of determination R��

As in standard linear regression� the importance of any scalar covariate can be determined

using a t�test on n� �m� q� r� degrees of freedom� The null hypothesis is that the covariate

and the response are independent and the alternate hypothesis is that the two are related�

The standard error of ��j is given by �


p
sjj� where

�
�
 �
RSS

n�m� q � r

and sjj is the j�th diagonal element of

S �

�
�� ZTZ ZTD

DTZ DTD

�
��
��

The importance of the functional covariate can be determined via a partial F test� If the

functional covariate and the response are independent� then either one or both of the func�

tional parameters will be zero since the e�ect of the two parameters is multiplicative� Thus

the null and alternate hypotheses for the test are�

H� �� � � and�or ��t� � �

H� �� �� � and ��t� �� �
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The partial F statistic is calculated by 	tting two models� A model containing only the r

scalar covariates plus a constant is 	rst 	tted to the data to obtain a residual sum of squares

�RSS��� The full model� with the m � q functional parameters� is then 	tted to obtain a

second residual sum of squares �RSSf �� The partial F statistic is then

F �
�RSSf �RSS�� � �m� q�

RSSf� �n�m� q � r�

which has the Fm�q�n�m�q�r distribution under H�� If F � Fm�q�n�m�q�r��� then the null

hypothesis is rejected and the functional covariate is judged to be a signi	cant predictor of

the response�

����� Choosing m

The number of basis functions� m� used to model both the functional time parameter� ��t��

and the raw data� xi�s�t�� must be chosen� Cross�validation �Rice and Silverman� ����� has

been used for this purpose� Cross�validation involves omitting each subject in turn� estimating

the parameters with the remaining subjects� and then using these estimates to predict the

response for the missing subject� For functional regression� the number of basis functions is

found by minimising the cross�validated residual sum of squares

CV�m� � n��
X
i

�	�i��i�m�

� yi � zTi ���i � ��T�iCiW�b�i ������

where �	i��i is the error associated with the predicted value for the ith subject when the

parameter estimates are found omitting the ith subject� and where Ci� W � and �b�i are all

found using m basis functions�

The choice of m also depends on the scalar parameters in the model� since these parameter

estimates depend on �� Thus� a two step procedure is used to 	nd the best model for each

response� Firstly� cross�validation is used to 	nd the best m value for the functional model

containing no scalar covariates� This m value is then used to 	nd the signi	cant scalar

covariates� Once the parameters that are important have been determined� cross�validation

is re�run to get the optimal number of basis functions for the 	nal model�
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Using a non�iterative procedure for estimating the parameters� eg� analogous to that devel�

oped by Speckman ������ in semiparametric regression� would only require cross�validation

to be performed once� However� as previously mentioned� this type of approach is yet to be

developed�

��� Binary Response

We now propose a model for a binary response with a repeatedly stimulated functional

covariate� using a modi	cation of functional logistic regression �Chapter �� Assuming that

the observed response� yi� comes from a Bernoulli distribution with probability of success �i�

the functional logistic regression model incorporating the repeated stimulus is

log

�
�i

�� �i

�
� �� �

rX
j��

�jzi�j �
qX

s��

�s

Z
xi�s�t���t�dt� i � �� � � � � n

������

where ��� �j� zi�j � �s� xi�s�t�� ��t� are de	ned in Section ��
� Once again� we model the

functional parameter and covariate using basis expansions� as given in ���
�� ����� Using

these� the logistic regression model ������ becomes

log

�
�i

�� �i

�
� �� �

rX
j��

�jzi�j �
qX

s��

�s

Z
xi�s�t���t�dt� i � �� � � � � n

� zTi �� �TCiWb

where again W �
R
��s��T �s�ds � ""T �

����� Estimating Parameters

Maximum likelihood parameter estimates are found using a combination of the generalized

linear modelling �glm� algorithm �McCullagh and Nelder� ����� and the algorithm for func�

tional regression with a repeated stimulus� given in section ��
���

As with standard glms� the actual responses� yi� are assumed to come from a Bernoulli��i�
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distribution� Thus� the log�likelihood function can be expressed as

l��� y� �
nX
i��

�
yi log

�
�i

�� �i

�
� log�� � �i�

�
����
�

Parameter estimates can be found by maximising equation ����
� with respect to �� b and ��

This is done using the Fisher scoring method �Fisher� ��
���

Firstly� the derivative of the log�likelihood function with respect to �i is

�l

��i
�

yi � �i
�i��� �i�

Using

log

�
�i

�� �i

�
� �i � zTi �� �TCiWb

the derivative of the log�likelihood with respect to �k is

�l

��k
�

nX
i��

�l

��i

d�i
d�i

��i
��k

�
nX
i��

yi � �i
�i��� �i�

�i��� �i�z
T
i�k

�
nX
i��

�yi � �i�z
T
i�k

The Fisher information for � is given by

�E
�

��l

��j��k

�
�

nX
i��

�

�i��� �i�

��i
��j

��i
��k

�
nX
i��

�

�i��� �i�
�i��� �i�z

T
i�j�i��� �i�z

T
i�k

�
nX
i��

�i��� �i�z
T
i�jz

T
i�k

� fZTw�Zgjk

where w� is the diagonal weights matrix with w�i � ��i�� � ��i�� By Fisher�s scoring method�

the new estimate of �� ��new� is given by

�E
�
��l

���

�
��new � �E

�
��l

���

�
���

�l

��

Now

�E
�
��l

���

�
�� � ZTw�Z ��

� ZTw���� �D�b�
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Thus� the new estimate is found by solving

ZTw�Z ��new � ZTw���� �D�b� � ZT �y � ���

� ZTw��� �D�b�

� �� �
	
ZTw�Z


��
ZTw��� �D�b� �����

� � �� � �w�����y � ���

Similarly�

�b �
	
DTw�D


��
DTw��� � Z ��� ������

��T � �� � Z ���Tw�E
	
ETw�E


��
������

Note that equations ����� and ������ for �� and �b can be combined and written as

�
�� ��

�b

�
�� �

�
�� ZTw�Z ZTw�D

DTw�Z DTw�D

�
��
�� �
�� ZT

DT

�
��w�� ������

As with functional regression with a repeated stimulus� these estimates lend themselves to

an iterative solution�

Algorithm

Step �� Find an initial estimate for �i�  �i�

 �i � �yi � �����


Since yi is either � or �� we need to adjust the response by ��� �see McCullagh and

Nelder� ������ Using  �i� 	nd estimates for the parameters �� �� and b� These estimates

are found by applying the functional regression algorithm from section ��
�� with  � �

� �� � � �  �n�
T as the response�

�
�� ��

�b

�
�� �

�
�� ZTZ ZTD

DTZ DTD

�
��
�� �
�� ZT

DT

�
��  �

��T � � � � Z ���T E
	
ETE


��

Step �� Find the linear predictors ��i for the regression using the parameter estimates�

��i � zTi ��� ��TCiW�b
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Step �� Calculate the probability of a success for each subject�

��i �
exp���i�

� � exp���i�

Step �� Calculate the adjusted dependent variable �i and weights wi�

wi � ��i��� ��i�

�i � ��i �
yi � ��i
wi

Step �� Re�estimate the parameter values via a weighted version of the functional regression

algorithm in section ��
��� with �i as the response variable�

�i � zTi �� �TCiWb

where the parameter estimates in the algorithm are found using equations ������ and

������� with w� as the diagonal weights matrix and � the vector of adjusted dependent

variables� �
�� ��

�b

�
�� �

�
�� ZTw�Z ZTw�D

DTw�Z DTw�D

�
��
�� �
�� ZT

DT

�
��w��

��T � �� � Z ���T w�E
	
ETw�E


��

Step �� Check for convergence�

If the algorithm has converged� then STOP�

else REPEAT from STEP ��

Convergence is determined by looking at the relative change in the parameter estimates

from one iteration to the next� If the changes are su�ciently small� the algorithm is

assumed to have converged�

����� Choosing m

The number of basis functions� m� in any model can be chosen using the cross�validation

techniques given for the functional logistic regression model �Section �
�
�� Similarly� the

goodness�of�	t of any model can be determined using techniques such as residual deviance

and classi	cation tables� given in section ���
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The Fetal Heart Rate Data

��� Introduction

The fetal heart rate data� consists of measurements from periodically stimulated fetal heart

rate tracings� Approximately ���� measurements per subject were recorded over a �� minute

period for � subjects� The aim of the study was to determine if the fetal heart rate responses

to the stimulus are predictive of birth outcomes� and the infant�s development at �� and �

months of age�

In the past� researchers have analysed this response to stimulus data using the concept of ha�

bituation� which is de	ned as the decrease leading to cessation of a behavioural response that

occurs when an initially novel stimulus is presented repeatedly �Thompson and Glansman�

������ It has been shown that the habituation pattern re�ects the processes of the central

nervous system� A normal habituation pattern is evidence of an intact and fully functioning

central nervous system �Je�rey and Cohen� ����� Lewis� ����� Madison et al�� ����� while

an impaired habituation pattern may indicate some form of brain damage �Holloway and

Parsons� ������ For example� hyperactive �Hutt and Hutt� ����� Tizard� ����� and autistic

children �Hutt et al�� ����� have been found to have impaired habituation� as have high risk

�Eisenberg et al�� ����� and traumatized newborn infants �Bronstein et al�� ������ Over�

�Supplied by Dr Leo Leader� School of Obstetrics and Gynaecology� University of New South Wales� Sydney�

Australia
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all� it has been concluded that habituation in infants can more accurately predict cognitive

development than traditional tests �Bornstein and Sigman� ����� McCall and Carriger� �����

However� the notion of habituation is partially subjective due to the way in which it is de	ned�

Three main de	nitions have been used� a response less than some percentage of the initial

reponse �Ferguson et al�� ������ a response less than some amount for all subjects �Buckwald

and Humphrey� ����� and a lack of response for a speci	ed number of successive stimuli

�Brackbill et al�� ����� Leader et al�� ���
�� For these criteria� the researcher chooses the

percentage� the response amount or what quali	es as a lack of response and the number of

successive stimuli�

In order to remove the subjective de	nition of habituation� we have used the entire stimulated

fetal heart rate tracings over the �� minute period instead of determining habituation� Since

there are many more heart rate measurements per fetus than there are fetuses in the study�

functional data analysis techniques have been used to analyse the data�

��� Study Description

The fetal heart rate measurements were taken on � pregnant women� in late pregnancy�

For each subject� the fetal heart rate was recorded over a �� minute period� �� days or less

before birth� The fetus was stimulated by placing a vibroacoustic stimulator on the mother�s

abdomen over the fetal head� A one�second stimulus was given every minute for a total of ��

stimuli� It is expected that this stimulus initially results in an increase in the fetal heart rate�

with the response decreasing with repetition of the stimulus� The heart rates were measured

every ��
 seconds from � seconds before the 	rst stimulus� until �� seconds after the ��th

stimulus�

Of the � fetuses� �� were removed from the study� � since the fetus failed to respond to the

stimulus until approximately the ��th minute� � due to the heart rate monitor continually
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dropping out�  fetuses who had their heart rate measured for less than �� minutes and �

premature babies� since the heart rate was not taken during late pregnancy� These exclusions

resulted in a 	nal sample of � subjects�

Besides the heart rates� other covariates were included in the study� These included the

gestational age of the fetus at the time of the heart rate measurements� and the sex of the

infant� Maternal measurements included parity �number of previous births�� age at delivery

�in years�� and average smoking� drinking and ca�eine intake levels� Parental in�uences

upon the infant�s development were accounted for through two other measurements� a global

measure of the socio�ecomonic factors� which includes the highest level of education and

occupation of both parents� and the Home Observation for Measurement of the Environment

�HOME� �Caldwell et al�� ������ which examines the level of emotional support and parental

involvement available to the infant at home�

As previously stated� the aim was to determine if the fetal heart rate responses to the stimulus

are predictive of birth outcomes� and of the infant�s development at �� and � months of

age� as de	ned using the Bayley Scales of Infant Development �BSID� �Bayley� ���� �see

Appendix A for further details�� Two of the outcomes are presented here� the infant�s risk

category at birth� and psychomotor development at �� months of age�

In addition� a further �� unstimulated subjects were included in the study� For these subjects�

the fetal heart rate measurements were recorded every ��
 seconds for ����� minutes without

a stimulus being applied� These subjects were used to determine if stimulation was necessary

for the heart rates to be predictive� However� only the birth outcomes were available for these

subjects� the �� month results were not collected in six cases and in four cases the infant

had not reached �� months of age at the time of writing� Validation of the method using the

controls was therefore only possible for the birth outcome�

To begin with� the outcomes were modelled using standard linear or logistic regression with�

out the functional covariate� Functional linear or logistic regression for a repeated stimulus
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�Chapter �� was then used to 	nd the best model containing the functional heart rate covari�

ate� Thus� comparisons between the best models with and without the heart rate could be

made�

����� Description of Covariates

For the fetal data� the functional covariate is the fetal heart rates� or pulse� We assume that

the functional time parameter within a stimulus ��t� is the same for all of the stimuli� that

is� ��t� is independent of the timing of the stimuli� Since measurements were taken every

��
 seconds for � seconds before the stimulus� at the stimulus� and every ��
 seconds for ��

seconds after the stimulus� there were p � 
� � � � 
�� � �� measurements taken within

each stimulus� Although each stimulus actually contained one minute and ��
 seconds worth

of data� for simplicity we refer to this as a minute�

For the analyses� the raw heart rate data and the time parameter� �� were modelled using

Fourier basis functions since the heart rates were roughly periodic� This is due to each fetus

having an initial base heart rate to which they approximately returned after each stimulus�

but before the next stimulus was applied� The equations for the parameter estimates simplify

slightly using Fourier basis functions since

W �

Z
��s��T �s�ds � Im

where Im is the order m identity matrix�

As well as the pulse covariate� three scalar covariates were found to be important in the

modelling of the outcomes�

� agegp��

The mother�s age at delivery was divided into two groups� � � years of age �level ��

and 
 � years of age �level ��� Of the � subjects in the study� �� �����$� of the

mothers were younger than � years of age�
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� parity

Parity was also divided into two groups� no previous births �level ��� and one or more

previous births �level ��� For this sample� � �����$� of the mothers had borne no

previous children�

� sex

The sex variable was used to indicate the sex of the child� � for male and � for female�

Thirty�four �����$� of the infants were male�

Since the heart rate tests were conducted in late pregnancy� the average gestational age at

the tests was ��� weeks� with a standard deviation of ���� The maximum gestational age

was �
 weeks and the minimum was � weeks� Within this range� the actual gestational

age was not signi	cant in any model� Other covariates were also used but were found to be

insigni	cant�

��� Risk Category

For the risk category� subjects were divided into two groups depending on their antenatal

course and other birth outcomes� normal and high risk� The high risk group included med�

icated hypertension� fetal distress� intra uterine growth retardation� and poor doppler� In

this study� �� of the � pregnancies ����$� were considered to be normal �level ��� while ��

�
���$� were considered high risk �level ���

None of the covariates was signi	cant in a logistic regression model using only the scalar

covariates� However� for comparison purposes� the best of these insigni	cant models is given

below� Included in this model were the mother�s age group and her parity� Mothers who

have never borne a child are 
��� �� ������� times more likely to have a high risk birth

outcome than mothers who have borne previous children� Also� mothers over the age of �

are 
��� times more likely to have a high risk outcome than younger mothers �see Table �����

Under this model� using a classi	cation cut�o� of �� � ���� only ��� �����$� of the high risk

pregnancies were correctly identi	ed �see Table ��
�� The cut�o� of �� � ��� was chosen as
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Logistic Regression Analysis for Risk Category

MODEL� parity � age group

Covariate Coef StDev P Exp�coef�

Constant ������ ��� �����

Parity ��� ������ ����� ����� ����

Agegp� ��� ����� ����� ����� 
���

D � �����

Table ���� Logistic Regression Summary for Risk Category�

Classi�cation Table for Risk Category

MODEL� parity � age group

Observed Level

Predicted Normal High Risk Total

Normal �� ��

High Risk 
 

$ Correct ����$ ����$ ����$

Table ��
� Logistic Regression � Summary of Classi�cations for Risk Category with cut�o� of

�� � ����

it gave the best result in terms of balancing the false positive rate and the sensitivity of the

model�

Using functional logistic regression with a repeated stimulus� the best model contained only

the functional pulse covariate� all other scalar covariates were not signi	cant� as expected�

The functional model was found to be

log

�
��i

�� ��i

�
� ������ �

��X
s��

��s

Z
xi�s�t� ���t�dt �����

with a deviance of ������ on � degrees of freedom� The functional time parameter� ��t�� was

modelled usingm � � basis functions� The classi	cation table for this model is given in Table
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Classi�cation Table for Risk Category

MODEL� pulse

Observed Level

Predicted Normal High Risk Total

Normal �� �

High Risk � ��

$ Correct ����$ ����$ ����$

Table ��� Functional Logistic Regression � Summary of Classi�cations for Risk Category

with cut�o� of �� � ����
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MODEL: pulse

Figure ���� Cross�Validation plot for basis size selection for Risk Category�

��� Overall� ����$ of the subjects were correctly classsi	ed� Using the best classi	cation

cut�o� of �� � ���� only one normal and one high risk birth were incorrectly classi	ed�

The number of basis functions was found using cross�validation� see Figure ���� Since in this

case we are using CV to maximise the likelihood� we wish to maximise the cross�validation

score� The optimal number of basis functions is m � ��� however� from a clinical viewpoint�

the functional parameter is di�cult to interpret when �� basis functions are used� Another

local maximum occurs at m � �� using this value� the results produced were similar �only one
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�b� Time �min� parameter estimate

Figure ��
� Parameter estimates from Functional logistic regression for Risk Category� Within

each minute� the stimulus occurs after  seconds� indicated by a circle on the time parameter

estimate�

subject was classi	ed di�erently�� The parameter was also more easily interpreted� in terms

of seeing if the functional model would relate to the clinical idea of habituation� Another

advantage of using the m � � model is that 	ve fewer parameters needed to be estimated�

Thus� 	ve basis functions were used�

The estimated functional time parameter� ���t�� and minute parameters� ��s� are shown in

Figure ��
� The timing of the stimulus within each minute is indicated by a circle on the

time parameter estimate� The functional parameter appears to place more emphasis on the

heart rate in the later stages of each minute� This ties in with the clinical idea of habituation�

�Normal� fetuses should have stopped reacting to any stimulus well before the end of each

minute�

The histogram of the predicted probabilities is given in Figure ��� This clearly shows a

di�erentiation in the predicted probabilities between the normal and high risk groups�
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Figure ���� ROC Curves for the functional and simple logistic regression models for Risk

Category�

Comparing the logistic and functional logistic models� we see that the functional model is

signi	cantly better than the simple logistic model� The functional model correctly detected

����$ of the high risk pregnancies� while the logistic model only correctly detected 
���$�

The ROC curves �Figure ���� also show that the functional logistic model is superior to the

logistic model� However� this improvement does come at the cost of more degrees of freedom

being used in the model�
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Classi�cation Table for Risk Category

MODEL� pulse

Observed Level

Predicted Normal High Risk Total

Normal � 


High Risk  �

$ Correct ����$ �$ ����$

Table ���� Summary of Classi�cations of Risk Category for the Controls� cut�o� probability

�� � ����

����� Controls

The results of the stimulated heart rates were validated using the �� unstimulated subjects

as controls� Since the models were based on �� minutes worth of heart rate measurements�

the subjects with less than �� minutes had the start of their measurements replicated at the

end to produce a full �� minutes worth of data� The predictors and heart rate measurements

were then placed into the model ������ found using the stimulated heart rates� in order to

predict the risk category for the controls�

Of the �� controls� � of the fetuses were normal and  were high risk� Using the functional

logistic model� the classi	cation summary for the controls is given in Table ���� It appears

that there is no relationship between the true and predicted outcomes� Thus� without the

stimuli being applied� the heart rate does not give a useful prediction of the infant�s risk

category�

��� PDI at �� Months

We now turn our attention to the continuous responses at �� and � months of age� Since

the techniques are the same for each of the possible responses� the modelling of only one of
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Figure ���� Normal probability plot for the PDI scores at 
� months�

the variables� PDI at �� months� is given�

The Psychomotor Development Index �PDI� is used to measure the child�s 	ne� and gross�

motor development� The PDI scores were found to be approximately normally distributed

�Figure ���� with a mean of ����� points and a standard deviation of ������ The highest score

was �
� and the minimum was ��� We are modelling the raw PDI scores but� once found�

the PDI scores are generally classi	ed into � groups�

PDI Score Class

� � �� �

�� � �� 


�� � ��� 

���� �

with class � being the highest �best� category�

A standard linear regression model� without the functional covariate� was 	tted 	rst� In the

best linear regession model� the only signi	cant covariate was found to be the child�s sex

�p������� Girls have� on average� a ��� points higher PDI score than boys� The R� for this

model was ����$ �Table �����
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Regression Analysis for PDI	 �
 Months

Covariate Coef StDev T P

Constant ���
� ����� ���� �����

Sex ���� 
���� 
��� ����

R� � ����$

Table ���� Regression summary for PDI at 
� months� using only scalar covariates�

Functional Regression Analysis

for PDI	 �
 Months

Covariate Coef StDev T P

Constant ���� ������ ��
� �����

Sex ���� 
���� 
��� �����

ANOVA

Source df SS MS F P

Scalar Cov� � ����� ����� ��
 �����

Pulse 
� ������ ����� 
��� ����


��� ���� ������� �������

���t�� ��� ������
� �������

Residual � 
����� ����

Total �
 ��
��

R� � �����$

Table ���� Functional regression summary for PDI at 
� months�

Using functional regression� the best model �Table ���� for PDI at �� months had an R� of

����$� a substantial improvement over the simple linear regression model� The child�s sex

was still signi	cant �p�������� with girls having an average increase of ��� points over boys�

The functional heart rate covariate was also found to be highly signi	cant �p�����
��
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Figure ���� Cross�Validation plot for basis size selection for PDI� 
� months�

Cross�validation of the RSS �Figure ���� was used to estimate the number of basis functions

needed to model both the raw heart rate data and ��t�� The absolute minimum was found

to be m � �� however� six basis functions were used as m � � produced similar results to

m � � but had a more interpretable functional time parameter and the CV values at m � �

and m � � are close�

The estimated functional time parameter� ���t�� is shown in Figure ���� In Figures ��� �a�

� �d�� four sample heart rates from within one minute have been shown and their integral�R
x�t� ���t�dt� calculated using this estimated parameter� is given� The integral value is used to

show the relationship between the heart rate within one minute� ignoring the stimulus e�ect�

and the PDI score� Assuming the infants are of the same sex and the subjects have the same

heart rate pattern for all of the �� minutes� then a subject with the pattern in Figure ����a�

would have a higher PDI score than one with the pattern in Figure �d�� with Figures �b� and

�c� somewhere in between� Thus� subjects with a higher PDI score are more likely to have a

heart rate that does react to the stimulus but this reaction stops fairly quickly� However� in

practice� it is hard to determine by inspection which subject will have a higher PDI score� as

a subject will have a combination of these� and other� patterns over the �� minutes and the

minute e�ect also needs to be taken into account�
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Figure ���� Functional time parameter for PDI� 
� months� and its e�ect on sample heart

rates� �
R
�
R
x�t� ���t�dt � using smoothed x�t��� The time at which the stimulus occurred is

indicated by a circle�dot� near the start of each function�
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Figure ���� Time parameter estimates� ��s� for PDI� 
� months�

The estimated stimuli parameters� ��s� produced a weighted average over the �� minutes of

the heart rate �Figure ����� Ignoring the functional time e�ect� within each minute� the most

important minutes are the �th� ��th� ��th� and ��th in the the positive direction� and the ��th

and ��th in the negative direction� The negative values for ��s mean that subjects who have

stopped reacting to the stimulus in these minutes will have higher PDI scores�
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Figure ���� Functional regression model diagnostics for PDI� 
� months�

The diagnostics for this model are given in Figure ���� The 	tted values and residuals are

plotted in Figure ����a�� There does not appear to be any pattern in the plot� Figure ����b�

gives the observed versus 	tted values� The dashed lines indicate the class subdivisions for

PDI� Only seven of the subjects have been incorrectly classi	ed under this model� However�

these subjects� in particular those in the lower classes� are close to their true classes� Note�

there is only a small number of subjects not in class � This may be the reason why the 	tted

values for the bottom two classes are higher than the observed values� The assumption of

normally distributed errors was checked via a normal probability plot of the residuals� Figure

����c�� The residuals appear to be normally distributed� with one large residual corresponding

to the maximum PDI score of �
��

��� Discussion

The stimulated fetal heart rates were found to be a good predictor of the infant�s risk category

and psychomotor development at �� months� For both responses� the functional models

represented a substantial improvement over the standard linear�logistic models� These models

also have the advantage that no notion of habituation needed to be incorporated into the

methodology� and hence there were no subjective de	nitions�
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The functional model correctly predicted ����$ of the high risk pregnancies� compared to

����$ for the best standard logistic regression model� However� it should be borne in mind

that these percentages are optimistic� as the parameter estimates were based on the same

data on which predictions were made�

The importance of the stimulus was established through the use of control subjects� It was

found that the stimuli were necessary for the heart rates to be predictive� Without the

repeated stimlus� the heart rates were no more predictive of the infant�s risk category at

birth than chance�

Similarly� it was shown that the changes in fetal heart rate after stimulation� as well as the

infant�s sex� are important predictors of a child�s psychomotor development at �� months�

As with risk category� the predictions are optimistic as the observed PDI scores were used

to predict themselves� Jackkni	ng could be used to overcome this problem� However� for

the fetal heart rate data this method does not produce accurate predictions for the extreme

classes� Of the PDI scores� ��$ of the data were in class � Thus� when a score from class ��


 or � was omitted� there were not enough data remaining in the class to provide adequate

information for the prediction� the predictions were drawn towards class  values� This was

especially true for classes � and �� with predictions for the omitted scores being made outside

the range of the data generating the parameter estimates�

The results for PDI showed there was a signi	cant gender e�ect with females outperforming

males� This has important rami	cations for future developmental studies� It suggests that

all developmental data needs to be analysed by gender to ensure that di�erences in outcomes

are not concealed by gender�

A disadvantage of the functional models is that they use substantially more degrees of freedom

compared to the standard linear and logistic models� Thus� the more complex the functional

covariate structure� the more subjects are needed in the study�
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Also of interest was that parental in�uences had no e�ect on the outcomes� However� the PDI

scores at � months were also modelled using the functional techniques� At this age� HOME

�as well as sex� had become a signi	cant predictor �p������� of PDI� the more parental

involvement and emotional support provided� the higher the PDI score� Thus� while parental

in�uences have no signi	cant e�ect at �� months� they are important in a child�s development

at � months of age�

The study found that smoking� drinking and ca�eine intake had no e�ect on the outcomes

measured� However in the sample population� these rates were particularly low� It may be

that a higher preponderance of these factors in a sample would lead to a better assessment

of their impact on the newborn infant�s health and development�

The 	ndings from this study may have important clinical implications� Using the functional

model after stimulation as a clinical test may help alert the obstetrician to a high risk birth�

and to determine the optimal time to deliver a fetus in a complicated pregnancy� It may

also have a useful role in alerting parents about possible developmental delay� so that early

intervention could be undertaken�



Chapter �

Functional Mean and Covariance

Modelling

In this chapter we examine the problem of joint mean and covariance modelling� Unlike

functional principal component analysis or growth curve modelling� the mean function is

not considered separately to the covariance function� the two are estimated together� This

chapter presents a basis solution to the joint modelling� as well as discussing properties of

the resulting algorithm�

��� Previous Approaches

Suppose n subjects have had measurements of a variable y recorded at a number of time

points� Each subject can have a di�erent number of measurements taken at di�erent times�

Thus� yil � yi�til� is the measurement on the i�th subject taken at the l�th time for subject

i� til� i � � � � � n� l � � � � � pi� Estimates are now needed for the mean function� ��t�� and for

the covariance function� !�s� t�� of yi�t��

Although there is a considerable literature on FDA �see references in Ramsay and Silverman�

����� there is not much work on joint modelling of mean and covariance� Hart and Wehrly

������ used a kernel method to estimate the mean but the covariance structure was assumed

to be stationary and was estimated from the averages of the time series�

A kernel method was also used by Staniswalis and Lee ������ to estimate the mean and co�
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variance functions of longitudinal data� The mean was estimated using scatterplot smoothers

while the random e�ects were modelled using a basis expansion� with the normalised eigen�

functions of the random e�ects covariance function used as the bases� A boundary corrected

kernel at each time point was used to estimate both the basis coe�cients and the covariance

function of the data� Their method assumes a small number of measurements on each sub�

ject at di�erent times and that the times at which these measurements occur provide a dense

coverage of the time interval as n increases� For large data sets with many measurements per

subject this approach will be computationally prohibitive�

Fan and Zhang ������ developed a two step procedure for modelling the mean and covariance

functions� The 	rst step involves 	nding raw estimates of the mean parameters at each time

point via least squares on all those subjects with measurements taken at the same time point�

The covariance function is modelled using the residual and hat matrix from these least squares

	ts� These raw parameter estimates are smoothed in the second step� Fan and Zhang used

local polynomial smoothing but splines� kernel or local linear regression could have been

used� Given there are T distinct time points across the subjects� Fan and Zhang�s method

overcomes the problem of inverting a matrix of approximate size �nT �� �nT � found in other

methods �eg� Brumback and Rice ������ who modelled the curves for each subject using

cubic smoothing splines� assuming a particular form for the covariance kernel� Estimates

were found using mixed�e�ects methodology��� However� their smoothing step still requires

the inversion of a T � T matrix� For functional data� where T is large� this inversion will be

computationally intensive�

Anderson and Jones ������ used polynomials to model the mean function but the random

e�ect for each subject was approximated via a smoothing spline� They used a state�space

representation of the model to generate the estimates for the parameters� The mean param�

eters were estimated using maximum likelihood� Since the random e�ect smoothing splines

plus the measurement error could be thought of as an integrated random walk with error�

the likelihood for the covariance functions was maximised recursively using a Kalman 	lter�

Once estimated� Anderson and Jones produce the splines using a smoothing algorithm�
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Wang ������ reversed this and used smoothing splines to model the mean while the ran�

dom e�ects were modelled parametrically via mixed e�ects methodology� He assumed that

the covariance matrices for both the random e�ects and measurement error depended on

a parsimonious set of parameters� The mean function was then estimated using penalised

maximum likelihood� The smoothing parameter for the mean was estimated with the random

e�ect parameters via generalised maximum likelihood�

Rice and Wu ������ presented a mixed e�ects solution to the modelling of the mean and

covariance functions for functional data� Random e�ects terms were used to allow the sub�

jects to vary about the mean curve� Their technique extends classical linear mixed e�ects

methods by modelling both the mean and random e�ects nonparametrically using spline basis

functions� Uncorrelated measurement errors �il  iid��� 
�� were also included in the model

yil �
mX
�

�r #Br�til� �
qX
�

�irBr�til� � �il

where the �i � f�irg are assumed to be random coe�cients with mean � and covariance !�

and #Br�t� and Br�t� are the mean and random e�ect B�spline basis functions� respectively�

The covariance function of the data is thus

Vs�t � cov�yi�s�� yj�t�� �

� qX
�

qX
�

!ruBr�s�Bu�t� � 
��s�t

�
�i�j

where � is the Kronecker delta function�

Rice and Wu then proceed to estimate the model parameters using standard mixed e�ects

methodology� The EM algorithm �Dempster et al�� ����� is used to estimate the �r�s� 

� and

!� while the �ir�s are found using the BLUP estimator �Robinson� ������ As noted by Rice

and Wu� the estimate for each individual curve will be shrunk towards the population mean�

and there is no simple connection between ! and the eigenanalysis of V � However� the 	rst

term of V can be approximated using the estimated �! and eigenanalysis can be performed

on the resulting matrix�

James and Hastie ������ used a reduced rank form of a mixed e�ects model to estimate
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the data� Their concern is with data di�erent to standard functional data in that only a

small number of measurements are available from the curve of each subject� instead of the

usual large number of measurements� Both the mean and random e�ects are represented

using spline basis functions� However� instead of estimating the entire covariance matrix�

and its principal components� they restrict the rank of the covariance function and estimate

the principal components directly� The only di�erence between their reduced rank model and

standard mixed e�ects is in the 	tting procedure�

All these methods use either basis expansions or smoothing splines� The basis expansion

technique is quite �exible but it does have the weakness that the regularising parameters

��m� ��q can only take discrete values� This can be overcome by using a joint basis�penalty

method as in Ramsay and Silverman ������� However� that technique does not produce

orthogonal eigenfunctions� We develop a basis method that is computationally much simplier

than Ramsay and Silverman ������ and preserves eigenfunction orthogonality� Our procedure

bears some relation to that of James and Hastie ������� however our work is independent��

The remainder of the chapter is organised as follows� In Section ��
 we present the basis

algorithm with an intuitive approach that views it as a natural extension of functional PCA�

We examine this algorithm� and its convergence� in more detail in Section ��� Section ���

contains a simulation study while real data are analysed in Section ���� Conclusions are

o�ered in section ���� In the following� we assume equispaced sampling at times tl � l%�

l � � � � � p�

��� The Basis Method

For the ith subject� we represent the time series as a mean plus a noise�

yi�t� � ��t� � �i�t�

�Our algorithm was presented at the ���� Joint Statistical Meetings �Ratcli�e and Solo� ����� where we
also became aware of the work of James and Hastie�
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where ��t� is the mean at time t and the noise� �i�t�� consists of random e�ects and a residual�

Both the mean and the noise are modelled nonparametrically by basis expansions but the

basis elements need not be the same� Thus

��t� �
mX
�

�k�t��k � xT �t�� �����

�i�t� �
qX
�

�k�t�b
i
k � zT �t�bi ���
�

and m� q � n� By collecting the various time series into vectors

Yi � �yi�t�� � � � yi�tp��
T

X
p�m� � �x�t�� � � � x�tp��
T

Z
p�q� � �z�t�� � � � z�tp��
T

we can express the time series for the ith subject as

Yi � X� � Zbi

We write the basis expansions and vectors in a di�erent form from the previous chapters for

ease of use in future calculations� Also� in this form the expression for Yi resembles standard

mixed e�ects notation�

We now estimate the model by an iterative algorithm which we call cyclic estimating equations

�c�f� cyclic descent�� The two steps in this algorithm are�

R	step � getting the random e�ects

Given � do a functional principal component analysis �Ramsay and Silverman �������

�fPCA� to get the random e�ects�

F	step � getting the 	xed e�ects

Given the random e�ects estimate � by least squares�

We begin by describing the R�step� Suppose a value �� is given� We calculate the random

coe�cients bi by

bi �
D
z� zT

E�� D
z� yi � xT��

E
�
	
ZTZ


��
ZT �Yi �X��� ����
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The sample covariance matrix for Y is de	ned as

!n�t� s� � n��
nX
�

�i�t��i�s�

Substituting the basis expansions for �i�t� gives

!n�t� s� � zT �t�Sbz�s� �����

with Sb � n��
Pn

� bib
T
i � The fPCA of this sample covariance matrix generates eigenfunc�

tions �k�t� and corresponding eigenvalues �k �ordered from the largest down� satisfying the

eigenequations

Z
!n�t� s��k�s�ds � �k�k�t�Z

�k�t��u�t�dt � h�k� �ui � �k�u

Substituting ����� and a corresponding basis expansion for the eigenfunctions�

�k�t� � zT �t�fk

into the eigenequations gives

zT �t�

Z
Sbz�s�z

T �s�fk � �kz
T �t�fkZ

fTk z�t�z
T �t�fu � �k�u

This is equivalent to a weighted matrix PCA

SbWfk � �kfk� k � � � � � q �����

fTk Wfu � �k�u �����

W �

Z
z�s�zT �s�ds � ZTZ%

Having found fk �and hence �k�t�� from ������ ������ we estimate the random e�ect component
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of the noise from the dominant eigenfunctions corresponding to the r �� q� largest eigenvalues�

��i�t� �
rX
�

�k�t� h�k� �ii

� �T �t� h�� �ii

�T �t� � ����t� � � � �r�t��

� ��i�t� � �T �t�
D
�� yi � xT��

E

� �Ni �

�
������
��i�t��

���

��i�tp�

�
������

� &&T �Yi �X���% �����

& �

�
������
�T �t��

���

�T �tp�

�
������

Substituting the basis expansion gives

�T �t� � zT �t�F �����

F � �f� � � � fr�

� & � ZF

so that 	nally ����� becomes

� �Ni � ZFF TZT �Yi �X���% �����

So given ��� we get bi �and hence Sb� from ����� then calculate fk �and hence �k�t�� from

������ ������ and 	nally estimate the random e�ects �Ni from ������

Turning to the F�step� given F � and hence �k�t� and ��i�t�� we get �� from the least squares
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problem �� � arg minJ���

J��� � n��
X

kyi � ��i � xT�k�

� �� �
D
x� xT

E�� D
xT � #Y � �#�

E
�
	
XTX


��
XT

	
#Y � �#N



�
	
XTX


��
XT

	
#Y �%ZFF TZT  #Y �X��

�

������

where #Y � n��
Pn

� Yi and �#� � n��
Pn

� ��i�

Thus the algorithm iterates between the R�step ����� ������ ������ ����� and the F�step ������

�which uses only r of the eigenvectors found in ������ �������

Actually� some computational simpli	cations can be made to speed up the calculations� For

example� Sb� which is used in ������ can be found at each iteration by a rank one modi	cation

to #S�

#Sb � ZTZSbZ
TZ � #S � ZT  #Y �X��

� 
#Y �X��

�T
Z ������

#S �
�

n

nX
�

	
ZTYi � ZT #Y


 	
ZTYi � ZT #Y


T

So ����� can be rewritten as

#Sbfk �
�k
%�

Wfk

Also� using ��� �
	
XTX


��
XT #Y and Rxz �

	
XTX


��
XTZ� we can rewrite ������ as

�� � ��� �%RxzFF
TZT  #Y �X��

�

where ���� Rxz� Z
T #Y � and ZTX can be precomputed� This could also be written as

�� �
	
XTX


��
XTU


#Y �X��

�
� �� ����
�

U � I
p�p� �%ZFF TZT

Thus� we see that if the algorithm converges� the converged values of F and � satisfy

#Sbfk �
�k
%�

Wfk �����

#Sb � #S �
	
ZT #Y � ZTX�


	
ZT #Y � ZTX�


T
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and

XTU

#Y �X�

�
� �

� XTUX� � XTU #Y ������

��� Algorithm Analysis

We now examine the algorithm in more detail�� While ����� and ������ give the converged

values� the algorithm does not result in a unique solution for �� This was established by a

perturbation expansion of the log�likelihood L for the model �further details can be found in

Solo and Ratcli�e� 
�����

Y i
l � ��tl� �

kX
�

�u�tl�g
i
u � 	il

� ��tl� � �T �tl�gi � 	il

� L � ��



tr
	
Se'

��
� �



ln j'j

� � �



�
tr�Se� �

�



�
tr
	
&TSe&%



� �



�p� k� ln
�

� �



ln j(

%
j � �



tr
	
Se&(

��&T



where Y i
l � l � � � � � p is the time series observed on the i�th individual� gi are the random

e�ects of variance (� 	il is a white noise sequence of variance 
��%� ei � Yi�� is the residual�

and Se � n��
Pn

� eie
T
i �

Investigation of the likelihood as 
� � � revealed that the algorithm provides �small noise�

maximum likelihood equations� That is� under the small noise condition


���u � �� u � � � � � k

the maximum likelihhod estimates of F and � are the PCA ������ ������ and the least squares

computation ������� as well as ������� Further� it was shown that the likelihood equations

could be solved to give a unique solution for F but that the value for � is not unique� Thus�

�This work is joint with Victor Solo�
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a suitable initial value must be chosen for �� To throw some light on this we explore the

algorithm in more detail�

Let  X � X
	
XTX


����
and � �

	
XTX


���
�� then we can write the iteration ����
� as

�where k is the iteration index�

�k �  XTU #Y �  XTU  X�k�� � �k��

�  XTU #Y �
	
I �  XTU  X



�k��

� �k � � �BBT �k��

� �  XTU #Y

B
m�r� �  XTZF
p
%

Iterating this gives

�k � �BBT �k�� �
k��X
�

�BBT �i� � � ������

We now proceed by examining the decomposition of BBT � We claim all the eigenvalues of

this matrix will be � �� Since the eigenvalues of BBT are the same as for BTB� we prove

this by showing that BTB is positive semide	nite with eigenvalues � ��

Proof� Let Qp�
p�m� be a matrix of rank p �m such that QTX � �� then the projection

theorem gives that� with PX � X
	
XTX


��
XT � PQ � Q

	
QTQ


��
QT �

Ip � PX � PQ

� ZTZ � ZTPXZ � ZTPQZ

� %F TZTZF � Ir

� %F TZTPXZF �%F TZTPQZF

� BTB �%F TZTPQZF

Thus� BTB is positive semide	nite with eigenvalues � �� �
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We now partition the eigenvectors of BBT into three groups�

qu with eigenvalues � � �u � ��

�qu with unit eigenvalues�

#qu with � eigenvalue�

Since these eigenvectors are orthogonal� we can write

Im �
X

quq
T
u �

X
�qu�q

T
u �

X
#qu#q

T
u

BBT �
X

�uquq
T
u �

X
�qu�q

T
u ������

� �BBT �i �
X

�iuquq
T
u �

X
�qu�q

T
u

� �BBT �n�� �
X

�qu�q
T
u ��� as n��

Also

nX
�

�BBT �i� �
X

quq
T
u�

�u � �nu
�� �u

�
X

quq
T
u�

�u
�� �u

� as n��

Using �qTu� � �qTu �I �BBT �� � �� we 	nd that � �
P
quq

T
u��

P
#qu#q

T
u�� Hence� returning to

������� we 	nd that

�k � �� �
X

�qu�q
T
u �� �

X quq
T
u�

�� �u
�
X

#qu#q
T
u�

Now� note that the minimum norm least squares solution of the iteration ������ is given by

�� � R�� where R� is the �unique� Moore�Penrose generalised inverse of I �BBT �

I �BBT �
X

��� �u�quq
T
u �

X
#qu#q

T
u � from ������

� R� �
X quq

T
u

�� �u
�
X

#qu#q
T
u

� �� �
X quq

T
u�

�� �u
�
X

#qu#q
T
u�

So we see that if �� � � or �� � �� then �� � ��� That is� the iteration converges to

the Moore�Penrose solution if �� � � or �� otherwise the uniqueness of the solution is not

guaranteed�
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Of further interest is the special case of X � Z� Then

B �  ZTZF
p
%

�
	
ZTZ%


���
F �  F

and BTB �  F T  F � I� The projection lemma can then be used to show that all the

eigenvalues of BTB are equal to ��

Proof� Let  Gq�
q�r� be a rank �q � r� orthogonal matrix orthogonal to  F then by the pro�

jection lemma

Iq �  F  F T �  G  GT

� BBT �  G  GT

Hence all the eigenvalues of BTB are �� �

So qu � � while the eigenvectors �qu �  fu � u�th column of  F since

BBT  fu �  F  F T  fu �  Feu �  fu

Similarly� #qu �  gu � u�th column of  G� Thus

�� �
X

#qu#q
T
u�

�
X

#qu#q
T
u��

�  G  GT��

�� �  XT #Y

�� �  F  F T �� �  G  GT�

So if �� � �� we 	nd that �� � ��� Hence� in this case the iteration converges in one step�

��� Simulation Study

We examined the results of our 	tting algorithm using a simulation study� Twenty curves

were simulated with measurements taken at ��� equispaced time points on an arbitary time

scale� The data was generated using a known mean or trend function plus AR�
� noise time
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Figure ���� Top left� simulated data using a known mean or trend function and AR��� noise
time series� Top right� theoretical spectrum for the simulated data� Bottom left� true mean
function generated using  Fourier basis functions� Bottom right� line spectrum for the trend�

series� The mean or trend function was a linear combination of 	ve Fourier basis functions

with randomly generated coe�cients� The AR�
� noise time series used for the random e�ects

and error was generated using parameter values of �� and ����� The variance of the error

was 
� � ����� The true eigenvalues of the covariance function can be estimated from the

spectrum of the time series �Brillinger �������� Figure ��� shows the true mean function�

and its line spectrum� the theoretical spectrum of the time series �eigenvalues� and the data

generated using these functions�

The basis algorithm given in Section  was used to estimate the mean and covariance functions

of the simulated data� Fourier basis functions were used for the mean� while orthogonal

polynomial basis functions were used to estimate the random e�ects and eigenfunctions�

Cross�validation �Figure ��
� was used to determine the number of basis functions for both

the mean and covariance� The absolute minimum occurred at m � 
� �mean basis size� and

q � � �random e�ect basis size�� However� the cross�validation scores dropped at m � � �� �
�

and �� basis functions� In fact� the cross�validation scores are fairly close using anywhere
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Figure ��
� Cross�validation plot for the simulated data�

from � to 
� mean basis functions� and the estimated mean function is relatively the same

using any of these values� Using m �  basis functions� the small change around time �� is

missed� Thus� m � � and q � � will be used to model the simulated data�

In Figure �� we show the estimated mean� eigenvalue ratios ��u � �u�
P
�k�� and 	rst two

eigenfunctions using m � �� q � �� and summing over r �  eigenfunctions in the algorithm�

The estimated mean function is approximately equal to the true function and the estimated

eigenratio resemble the spectrum values� The 	rst eigenfunction accounts for approximately

�$ of the variation in the data� while the second and third eigenfunctions account for ap�

proximately 
�$ and 
$ respectively� Using four eigenfunctions� the theoretical eigenratios

for the 	rst three eigenfunctions would be 
��$� 
��$ and 

�$� respectively� The esti�

mated eigenratios are approximately equal to the true values� Eigenfunction � approximately

represents a random intercept� in that it has the e�ect of adding a constant to the mean�

However� this constant changes from an increase to a decrease around the ��th time point�

Eigenfunction 
 represents an increase�decrease in the amplitude of the curves� with a slight

time shift in the occurance of the peaks�troughs�

The above results were calculated using �� � �� resulting in the unique Moore�Penrose

solution� We studied the e�ect of this start value by examining the results found using

di�erent �� values� These values included �� � �� a constant equal to the overall mean of the

data� a constant equal to the absolute maximum�minimum value of all the data� and vectors
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Figure ��� Top left� estimated and true mean functions for the simulated data� ��� mean
function estimated using  Fourier basis functions� � � true mean function� ���� estimated
mean function using the average of the data at each time point� Top right� estimated eigen�
ratios� Bottom left� estimate of the �rst eigenfunction� Bottom right� estimate of the second
eigenfunction�

with randomly generated elements� While the number of iterations to convergence varied� we

found that the converged values were actually the same for all the di�erent �� values tested�

The fastest convergence was achieved with �� � � �in both this simulation and other data

sets tested�� Thus� we favour �� � � in practice as it results in the Moore�Penrose solution

with the fastest convergence time�

��� Examples

In this section we examine the results from two examples� the electroencephalographic �EEG�

recordings described in Section 
��� and the human gait data from Rice and Silverman �������

In the following examples we start the iteration with an initial value of �� � ��
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Figure ���� Cross�validation plot for the EEG recordings�

����� EEG Data

We return to the EEG data from Section 
��� We are now interested in modelling the mean

and 	nding the main sources of variation across all of the subjects� To do this� we modelled

both the mean function and the random e�ects using Fourier basis functions� Using cross�

validation� shown in Figure ���� the optimal mean and random e�ects basis sizes were m � ��

and q � ���

In Figure ��� we show the estimated mean function� covariance function and 	rst two eigen�

functions using m � �� q � ��� The estimated mean function shows that generally the noise

stimulus results in a rise� followed by a fall� in the EEG values before approximately return�

ing to the baseline value� The 	rst eigenfunction accounts for ����$ of the variability in the

data� It represents an approximately linear increase�decrease in the EEG values� and could

be captured by a straight line random e�ect� Eigenfunction 
 accounts for approximately

��
$ of the variability� It represents an increase �decrease� in amplitude of the EEG curves�

especially around the �� milliseconds trough� plus a small time shift� The third important

eigenfunction accounted for �
��$ of the variability in the data�
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Figure ���� Top left� estimated covariance function for the EEG data using q � �� Fourier
basis functions� Top right� estimated mean function using m � � Fourier basis functions�
Bottom left� estimate of the �rst eigenfunction� Bottom right� estimate of the second eigen�
function�
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Figure ���� Top left� estimated covariance function for the gait data using q � � Fourier basis
functions� Top right� estimated mean function using m � � Fourier basis functions� Bottom
left� estimate of the �rst eigenfunction� Bottom right� estimate of the second eigenfunction�

����� Gait Data

We now turn our attention to the human gait data analysed in Rice and Silverman �������

and again in Rice and Wu ������� Measurements were taken on the angles formed by the

hip over a single gait cycle for � children� The gait cycles started and ended with the heel

on the ground� For each child� �� to 

 measurements were taken� and then interpolated to

give 
� equispaced points� In Rice and Silverman ������� the interpolated data was used to

illustrate eigenfunction analysis while in Rice and Wu ������ the uninterpolated data was

used to illustrate mixed e�ects modelling� We apply our basis mixed e�ects model to the

interpolated data� which was given in Figure ����c��

Since the data is periodic� it is reasonable to model both the mean and random e�ects using

Fourier basis functions� Using cross�validation� the optimal number of mean and random

e�ects basis functions were found to be m � � and q � �� There were three important

eigenfunctions accounting for ���
$� �
��$ and ���$ of the variation� The estimated mean

function� covariance function and 	rst two eigenfunctions are displayed in Figure ���� These

estimates are similar to those obtained by Rice and Wu �������
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��� Discussion

In this chapter� we presented a basis method for the joint modelling of the mean and covari�

ance functions of functional data� The data was modelled as the sum of a smooth mean func�

tion and a small number of random e�ects� The mean was represented as a linear combination

of known basis functions while the random e�ects were modelled using the eigenfunctions of

the mean adjusted data� where the eigenfunctions were approximated by a basis expansion�

The iterative algorithm was found to be simple to implement and fast to run� While a unique

� is not guaranteed� we�ve found that the algorithm converges to the Moore�Penrose solution

for a wide variety of starting values �����
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Conclusion

	�� Thesis Contribution

A number of problems in the 	eld of functional data analysis have been considered in this

thesis� In particular� we have developed

� a new technique for logistic regression with a functional predictor� A basis function

approach was used to generate maximum likelihood parameter estimates via an iter�

ative algorithm� Estimates were found without and with a penalty term� which more

explicitly controlled the smoothness of the resulting parameters �Chapter ��

� new methods for functional regression and functional logistic regression when the func�

tional regressor has a special structure� viz a repeated stimulus� Both the time within a

stimulus �functional� and the position of the stimulus were incorporated into the model�

A basis function approach was again used �Chapter ��� and�

� a new algorithm for the joint modelling of the mean and covariance functions of func�

tional data� in what is a functional mixed�e�ects type model� Basis functions were used

to model the mean� random e�ects and eigenfunctions� While a unique solution is not

guaranteed� the algorithm converges to the �unique� Moore�Penrose solution for some

starting values �Chapter ���

The new techniques for FDA developed in this thesis were applied to biostatistical data� It

was found that
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� there is a slight di�erence in the way males and females process a stimulus� as found

by examining the stimulated EEG tracings from the frontal lobe �Fz� position of the

brain �Chapter ��

� the stimulated fetal heart rates can be used to predict the infant�s risk category at

birth and the infant�s development at �� �and �� months of age� The infant�s sex was

also important in predicting the child�s psychomotor development at �� months� with

females outperforming males� The importance of the stimulus for the risk category at

birth was established through the use of unstimulated control subjects� �Chapter ���

and�

� the average EEG tracing shows a rise and then a fall resulting from the stimulus� The

	rst three eigenfunctions account for ����$ of the variability in the EEG data and the

	rst two could be represented by a straight line random e�ect and an increase in the

amplitude of the tracings �Chapter ���

	�� Recommendations for Future Research

� Functional data analysis techniques do not rely on a stationarity assumption� If the

functional data were stationary� then time series methods could be used as they are more

e�cient� Development of suitable methods for testing for stationarity of functional data

is still needed�

� The methods presented in this thesis used the basis function approach to overcome

the singularity problems associated with more measurements than subjects� However�

other nonparametric smoothing techniques could be used� Whilst there has been some

use of smoothing splines and kernels� further investigation of these and other methods�

such as local polynomials� is required�

� The estimates generated by FDA techniques depends on the smoothing parameters�

In this thesis� we used cross�validation to select the smoothing parameters� However�

cross�validation can be time consuming� Further research is needed into this and other
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data based selection procedures in order to develop e�cient� reliable procedures for

smoothing parameter selection�

� In this thesis� we examined the case of equispaced time points� Whilst the techniques

can be adapted to random time points� research into its e�ect on the estimates� model

diagnostics� smoothing parameter selection� etc is required�

� Research into other issues and techniques associated with FDA is also needed� for

example data display� curve registration� and a true functional discriminant analysis�
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Infant Developmental Assessment

Seventy�three infants were tested at �� months of age using the Bayley Scales of Infant Devel�

opment �BSID� �Bayley� ����� All the tests were done by Dr Robyn Dolby�� a psychologist

who has �� years of experience in infant developmental assessment� She had no knowledge

of the clinical details of any of the infants�

The BSID were chosen for this assessment because they are standardised and are the scales

most widely used in published research in child development� In addition� the second edition

has been written to improve the utility of the scales with clinical populations� including

children born at risk due to adverse antenatal factors or delivery complications� The scales

consist of�

�� The Mental Development Index �MDI� and Psychomotor Developmental Index �PDI�

assess the infant�s current level of cognitive� language� personal�social and 	ne� and

gross�motor development�


� The Behaviour Rating Scale assesses qualitative aspects of the infant�s test�taking be�

haviour� There are large di�erences between children in how they work� for example�

in how much structure they need to be able to concentrate� in how smoothly they move

from one task to the next� in how persistent they are� in how quickly they become frus�

trated� and in whether they are distracted from the task at hand by restless activity or

hypersensitivity� The Behaviour Rating Scale has been speci	cally developed to assess

such subtle behavioural di�erence�

�School of Behavioural Sciences� Macquarie University� Sydney� Australia
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Outcome assessment also takes into account the contribution of parenting in�uences upon

child development� The impact of parenting on development is evaluated in two ways�

�� globally� by assessing socio�economic indices� including highest level of education and

occupation for both mother and father�


� by examining the level of emotional support and parental involvement available to the

child at home� The Home Observation for Measurement of the Environment �HOME�

�Caldwell et al�� ����� assesses such support� through interview and observation�

By deliberately measuring parenting in�uences in such detail� a large proportion of the vari�

ability in developmental outcome due to parenting in�uences can be captured� These parent�

ing in�uences can then be corrected for to assess how much development can be attributed

to antenatal events�
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Notation and Abbreviations

B�� Abbreviations

ANOVA Analysis of variance

BLUP Best linear unbiased estimator

BSID Bayley scales of infant development

CV Cross�validation

EEG Electroencephalographic

FANOVA Functional ANOVA

FDA Functional data analysis

fPCA Functional principal component analysis

Fz Frontal lobe

GCV Generalised cross�validation

glm Generalised linear model

HOME Home observation for measurement of the environment

MISE Mean integrated squared error

MSE Mean squared error

NID Normally and independently distributed

PCA Principal component analysis

PDI Psychomotor development index

ROC Receiver operating characteristic

RSS Residual sum of squares
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B�� Notation

kak� � ha� ai
ha� bi �

R
a�t�b�t�dt

Chapter �  Technical background

Let an and bn be sequences of real numbers� Then� as n��
an � o�bn� if and only if limn�� jan�bnj � �

an � O�bn� if and only if limsupn�� jan�bnj ��

A�h� Hat matrix associated with a smoothing parameter of h� �g�t� � A�h�y

ck Basis coe�cient

f�y� Kernel density function

g�t� Nonlinear function relating t and y

h Smoothing parameter � window width

K�u� Kernel function

K�
v Equivalent kernel function

m Number of basis functions

n Number of time points �Sections 
�� � 
��

Number of independent subjects �Section 
�� and elsewhere in the thesis�

p Number of time points � measurements per subject

ti Time associated with yi

yi Observed response

y Vector of observed responses

w�t� Weight function

	i Error associated with subject i

�k�t� Basis function



Notation and Abbreviations ���

Chapter �  Functional logistic regression

b �m� �� vector of basis coe�cients for ��t�

ci �m� �� vector of basis coe�cients for subject i

C �n�m� matrix of basis coe�cients for X

D�y� ��� Deviance function

h Smoothing parameter

l��� y� Log�likelihood function

m Number of basis functions used to model functional data and parameter

n Number of subjects

p Number of time points � measurements per subject

P ��� Penalty function� integrated squared second derivative of ��t�

r Number of scalar covariates

t Time

w� Diagonal weights matrix

W
R
��s��T �s�ds

xi�t� Observed functional data at time t

x�t� �n� �� vector of functional data at time t

X �n� p� matrix of functional data at all t

yi Observed response

zi �r � �� �� design vector for subject i scalar covariates

Z �n� r � �� design matrix for scalar covariates

� �r � �� �� vector of mean and scalar parameters

��t� Functional parameter

	i Error associated with subject i

�i Linear predictor

�i Adjusted response variable

� �n� �� vector of adjusted response variables

�i Probability of success

� �n� �� vector of probabilities



Notation and Abbreviations ���

�k�t� Basis function

��t� �m� �� vector of basis functions at time t

" �m� p� matrix of basis functions at all t

Chapter �  Functional data with a repeated stimulus

Ci �q �m� matrix of basis coe�cients for subject i

D Functional design matrix for estimating b

E Functional design matrix for estimating �

p Number of time points � measurements per subject within a stimulus

q Number of stimuli

xi�s�t� Observed functional data at time t within the sth stimulus for subject i

Xi �q � p� matrix of functional data for subject i at all �s� t� combinations

��t� Functional parameter within a stimulus

� �q � �� vector of stimuli parameters



Notation and Abbreviations ���

Chapter �  Functional mean and covariance modelling

ha� bi �Pp
l�� a�l%�b�l%�%

bik Basis coe�cient for subject i noise

bi �q � �� vector of noise basis coe�cients

e �n� �� vector of residuals

fk �q � �� vector of eigenfunction basis co�cients

F �q � r� matrix of basis coe�cients for the dominant eigenfunctions

L Log�likelihood function of the model

m Number of mean basis functions

n Number of subjects

Ni �p� �� vector of subject i noise at all t

p Number of time points � measurements per subject

q Number of noise basis functions

r Number of dominant eigenfunctions

Sb Sample covariance matrix for the bi

Se Sample covariance matrix for the residuals

t Time

W ZTZ%

X �p�m� matrix of mean basis functions for all t

yi�t� Observed functional data for subject i at time t

Yi �p� �� vector of observed functional data for subject i

Z �p� q� matrix of noise basis functions for all t

�k Mean basis coe�cient

� �m� �� vector of mean basis coe�cients

��� Initial estimate of �

!�s� t� Covariance function between times s and t

!n�s� t� Sample covariance matrix for Y

% Distance between successive time points



Notation and Abbreviations ��


��t� Noise basis function

�k Eigenvalue ratio �� �k�
P
�u�

�k Eigenvalue

��t� Mean function

�i�t� Noise �random e�ect plus residual�

�k�t� Eigenfunction

��t� �r � �� vector of dominant eigenfunctions at time t

& �p� r� matrix of dominant eigenfunctions at all t

�k�t� Mean basis function



Appendix C

Software Documentation

In this appendix we document the software developed in the course of this thesis� All analyses

were performed in Matlab using code developed by the author� The software has been

organised into a Matlab toolbox called fda�

The fda toolbox is divided into four directories�

fglm Functional Generalised Linear Modelling

fregrep Regression Analysis with a Repeatedly Stimulated Functional Regressor

fmucov Functional Mean and Covariance Modelling

util Utility Functions

containing the following functions�

fglm Functional Generalised Linear Modelling

flog Calculate a functional generalised linear model for binary data

cvflog Parameter selection for flog via cross�validation



Software Documentation ��	

fregrep Regression Analysis with a Repeatedly Stimulated Functional Regressor

loadfet Load and format repeatedly stimulated functional regressor for all subjects

fetmod Generates and formats basis coe�cients for repeatedly stimulated regressor

flmfet Performs functional linear modelling with a repeatedly stimulated regressor

cvflmfet Parameter selection for flmfet via cross�validation

fetglm Performs functional generalised linear modelling with a repeatedly stimulated

regressor

cvfetglm Parameter selection for fetglm via cross�validation

fmucov Functional Mean and Covariance Modelling

fmucov Performs functional mean and covariance modelling

cvfmucov Parameter selection for fmucov via cross�validation

util Utility Functions

basisfns Generate basis functions

bsplineb Generate B�spline basis functions

fcvplot Plot results from any function performing cross�validation

fourierb Generate Fourier basis functions

splitgp Separates grouped data listed in one column into multiple columns

The software documentation is organised as follows�

� name of function

� a statement of purpose

� a synopsis of the function�s syntax

� a description of what the function does



Software Documentation ���

�og

Purpose

Calculate a functional generalised linear model for binary data

Syntax

�alpha�beta�prob� � flog�y�x�t�pin�

�alpha�beta�prob� � flog�y�x�t�pin�pred�

�alpha�beta�prob� � flog�y�x�t�pin�pred�link�

�alpha�beta�prob� � flog�y�x�t�pin�pred�link�MAXIT�tol�

Description

�alpha�beta�prob� � flog�y�x�t�pin� for a binary response vector given in 	le y� �n�p�

functional regressor matrix in 	le x� with measurements taken at times given in 	le t� returns

parameter estimates for the constant alpha� functional parameter beta� and the predicted

probabilities of success prob from a functional logistic regression�

The number of basis functions m� the type of basis functions btype and their period or degree

deg� and the smoothing parameter value h� is controlled by pin � �m�btype�deg�h�� The

possible types of basis functions are� � � B�spline� 	 � Fourier�

The parameter estimates alpha�beta�prob are found using an adaptation of the standard

glm algorithm �McCullagh and Nelder� ������ as outlined in Chapter �

�alpha�beta�prob� � flog�y�x�t�pin�pred� includes other scalar covariates �regressors�

in the model� Their parameter estimates will be included in alpha�

�alpha�beta�prob� � flog�y�x�t�pin�pred�link� speci	es the link function to be used

in the algorithm� If it is not speci	ed� functional logistic regression is performed�

�alpha�beta�prob� � flog�y�x�t�pin�pred�link�MAXIT�tol� speci	es the maximum num�

ber of iterations to perform and the stopping tolerance of the algorithm� The default MAXIT

is 
� and tol is �e��
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cv�og

Purpose

Parameter selection for flog via cross�validaton

Syntax

cv � cvflog�y�x�t�pin�

cv � cvflog�y�x�t�pin�mvec�

cv � cvflog�y�x�t�pin�mvec�hvec�

cv � cvflog�y�x�t�pin�mvec�hvec�pred�

Description

cv � cvflog�y�x�t�pin� for a binary response vector given in 	le y� functional regressor

matrix in 	le x� with measurements taken at times given in 	le t� returns the CV results for

all possible number of basis functions�

The CV scores �cv�scores� are calculated using the function given in ������ The optimal

number of basis functions �cv�m� is the value of m which maximises the log�likelihood�

cv � cvflog�y�x�t�pin�mvec� speci	es the number of basis functions �m� to be tested�

with mvec � �mmin mmax stepm�� The default values are a minimum value of mmin � ��

maximum value of mmax � the number of subjects� with the values increasing in steps of

stepm � ��

cv � cvflog�y�x�t�pin�mvec�hvec� speci	es the smoothing parameter h values to be tested�

with hvec � �hmin hmax nh�� The default values are a minimum h value of hmin � �� max�

imum value of hmax � �� with nh � �� values of h tested� The CV scores under this option

are calculated using the function given in �����

cv � cvflog�y�x�t�pin�mvec�hvec�pred� includes other scalar covariates �regressors� in

the model�



Software Documentation ���

loadfet

Purpose

Load and format repeatedly stimulated functional regressor for all subjects

Syntax

loadfet�datafile�

Description

Given a 	le datafile listing the 	les containing the repeatedly stimulated functional regressor

for each subject� loadfet�datafile� loads and formats each 	le in datafile into a single

variable for use in later analyses�

fetmod

Purpose

Generates and formats basis coe�cients for repeatedly stimulated regressor

Syntax

fetmod�m�

Description

Takes single variable generated by loadfet and calculates Fourier basis coe�cients for the

data� within a stimulus� for each subject� The number of basis functions used is controlled

by m�
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�mfet

Purpose

Performs functional linear modelling with a repeatedly stimulated regressor

Syntax

�alpha�beta�gamma�fit�resid� � flmfet�y�m�pred�

�alpha�beta�gamma�fit�resid� � flmfet�y�m�pred�maxit�gamstart�ind�

Description

�alpha�beta�gamma�fit�resid� � flmfet�y�m�pred� for a continuous response vector given

in 	le y� m basis functions� and pred listing the repeatedly stimulated regressor variable �fol�

lowed by any optional scalar regressors�� returns estimates for the scalar regressor parameters

alpha� functional parameter beta� and stimuli parameters gamma from a functional regres�

sion with a repeatedly stimulated regressor� as well as the 	tted values fit and the residuals

resid of the model�

The parameter estimates alpha�beta�gamma are found using the algorithm developed� and

described� in Section ��
���

Further� maxit speci	es the maximum number of iterations� and gamstart the starting values

for gamma �default is a vector of ones�� ind speci	es the algorithm�s output mode� � �standard

output�� � �quiet� and 
 �extended output��
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cv�mfet

Purpose

Parameter selection for flmfet via cross�validation

Syntax

cv � cvflmfet�y�mvec�pred�

cv � cvflmfet�y�mvec�pred�maxit�gamstart�

Description

cv � cvflmfet�y�mvec�pred� for a continuous response vector given in 	le y and pred list�

ing the repeatedly stimulated regressor variable �followed by any optional scalar regressors��

returns the CV results for the number of basis functions �m� as determined by mvec�

mvec � �minm�maxm�sm� speci	es the minimum m value to test �minm�� maximum value

�maxm� and the step size �sm� to take between minm and maxm�

The CV scores �cv�scores� are calculated using the function given in ������� The optimal

number of basis functions �cv�m� is the value of m which minimises the cross�validated residual

sum of squares�

Further� maxit speci	es the maximum number of iterations� and gamstart the starting values

for gamma �default is a vector of ones��
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fetglm

Purpose

Performs functional generalised linear modelling with a repeatedly stimulated regressor

Syntax

�alpha�beta�gamma�fit�prob� � fetglm�y�m�pred�

�alpha�beta�gamma�fit�prob� � fetglm�y�m�pred�pval�maxit�

Description

�alpha�beta�gamma�fit�prob� � fetglm�y�m�pred� for a continuous response vector given

in 	le y� m basis functions� and pred listing the repeatedly stimulated regressor variable �fol�

lowed by any optional scalar regressors�� returns estimates for the scalar regressor parameters

alpha� functional parameter beta� and stimuli parameters gamma from a functional gener�

alised linear model with a repeatedly stimulated regressor� as well as the 	tted values fit

and the residuals resid of the model�

The parameter estimates alpha�beta�gamma are found using the algorithm developed� and

described� in Section �����

Further� pval speci	es the cut�o� probability for classi	cation of the predicted probabilities�

The default is ��
� maxit speci	es the maximum number of iterations�
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cvfetglm

Purpose

Parameter selection for fetglm via cross�validation

Syntax

cv � cvfetglm�y�mvec�pred�

cv � cvfetglm�y�mvec�pred�maxit�

Description

cv � cvfetglm�y�mvec�pred� for a continuous response vector given in 	le y and pred list�

ing the repeatedly stimulated regressor variable �followed by any optional scalar regressors��

returns the CV results for the number of basis functions �m� as determined by mvec�

mvec � �minm�maxm�sm� speci	es the minimum m value to test �minm�� maximum value

�maxm� and the step size �sm� to take between minm and maxm�

The CV scores �cv�scores� are calculated using the function given in ������ The optimal

number of basis functions �cv�m� is the value of m which maximises the cross�validated log�

likelihood�

Further� maxit speci	es the maximum number of iterations to be performed�
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fmucov

Purpose

Performs functional mean and covariance modelling

Syntax

�mu�re�phi�lam� � fmucov�y�t�pin�m�q�r�

�mu�re�phi�lam� � fmucov�y�t�pin�m�q�r�maxit�

Description

�mu�re�phi�lam� � fmucov�y�t�pin�m�q�r� for functional data given in 	le y� with mea�

surements recorded at times given in 	le t� returns the mean mu� random e�ects re� eigen�

functions phi and eigenvalues lam from a functional mean and covariance modelling�

pin � �mubtype�mudeg�rebtype�redeg� controls the type of basis functions used for the

mean� and their degree�periodicity� plus the type of basis functions used for the random

e�ects and eigenfunctions� and their degree�periodicity� The possible types of basis functions

are� � � B�spline� 	 � Fourier� � � polynomial� � � Legendre polynomials� The number of

mean basis functions is controlled by m� the number of random e�ects basis functions by q�

and the number of important eigenfunctions by r�

The estimated �mu�re�phi�lam� are calculated using the algorithm described in Section ��
�

Further� maxit speci	es the maximum number of iterations�
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cvfmucov

Purpose

Parameter selection for fmucov via cross�validation

Syntax

cv � cvfmucov�y�t�pin�mvec�qvec�r�

cv � cvfmucov�y�t�pin�mvec�qvec�r�maxit�

Description

cv � cvfmucov�y�t�pin�mvec�qvec�r� for functional data given in 	le y� with measure�

ments recorded at times given in 	le t� returns the CV results for choosing the optimal

number of mean �cv�m� and random e�ect basis functions �cv�q��

pin � �mubtype�mudeg�rebtype�redeg� controls the type of basis functions used for the

mean� and their degree�periodicity� plus the type of basis functions used for the random e�ects

and eigenfunctions� and their degree�periodicity� The number of important eigenfunctions is

speci	ed by r�

mvec � �minm�maxm�stepm� speci	es the number of mean basis functions to be tested� minm

� minimum m value to test� maxm � maximum value� and stepm � the step size to take

between minm and maxm� Similarly� qvec � �minq�maxq�stepq� speci	es the number of

random e�ects basis functions to be tested�



Appendix D

Publications

Papers

The journal editor has indicated likely acceptance subject to revision of the following papers�

� S�J�Ratcli�e� L�R�Leader and G�Z�Heller� �Functional Data Analysis with Application

to Periodically Stimulated Fetal Heart Rate Data� I� Functional Regression�� Submitted

to Statistics in Medicine�

� S�J�Ratcli�e� G�Z�Heller and L�R�Leader� �Functional Data Analysis with Application

to Periodically Stimulated Fetal Heart Rate Data� II� Functional Logistic Regression��

Submitted to Statistics in Medicine�

Conference Presentations

� S�J�Ratcli�e and V�Solo� �Functional Mean and Covariance Modelling�� In ASA Pro�

ceedings� Joint Statistical Meetings� Section on Statistical Computing� pages 
���
���

August �����

� S�J�Ratcli�e and V�Solo� �Some Issues in Functional Principal Component Analysis��

In ASA Proceedings� Joint Statistical Meetings� Section on Statistical Computing� pages

�����
� August �����
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