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Abstract

Quantum field theory is so far the best description of the fundamental laws of Nature, yet
it does not fully incorporate gravitation. The first attempt toward unifying the quantum
field theory and gravity is a semi-classical theory of gravity, that in its basic form treats
the gravitational background as fixed and focuses on the dynamics of matter fields instead.
Well-known phenomena such as the Unruh effect and Hawking radiation provide elegant
partial unification of these theories but still present a number of unresolved issues. One
can attempt to address some of these challenging issues by relying on the semi-classical
theory of gravity but not all of them are resolvable in the absence of a complete theory
of quantum gravity, without fully incorporating both principles of general relativity and
quantum theory. In recent years, however, the core ideas of quantum field theory combined
with basic concepts of quantum information theory such as quantum entanglement have
provided powerful approaches to address such questions. Perhaps quantum information
theoretic methods could be a step towards uncovering the fundamental principles of quantum
gravity.

In this context, the new sub-discipline of relativistic quantum information underlies the
present thesis. Here, the fundamental features of radiation-matter interaction are explored in
various physical settings of quantum field theory in curved spacetimes using Unruh-DeWitt
particle detectors. In the first part of this thesis, a new model for computing the response of a
particle detector in localized regions of general curved spacetimes is introduced to circumvent
the mathematical complexity of standard methods for calculating the response function.
Also, signatures of transition probabilities of atoms that are relativistically moving through
optical cavities are shown to be very sensitive to their spatial trajectories. This allows
to use internal atomic degrees of freedom to measure small time-dependent perturbations
in the proper acceleration of an atomic probe, or in the relative alignment of a beam of
atoms and a cavity. Further, the extent to which the Unruh spectrum of non-uniformly
accelerated trajectories can be modulated and carry information is determined. Invoking
the equivalence principle, one can argue that these results indicate that Hawking radiation
could also be correspondingly strongly modulated and could, therefore, be carrying away
significant amounts of information. Furthermore, showing how and to what extent the
Unruh effect can be amplified is of interest in developing its experimental probes.

The last topic that is considered in this work concerns foundational issues associated with
relativistic quantum information. Motivated by recent suggestions that gravity might remain
classical, and by claims that Gaussian quantum mechanics is effectively a classical theory, the
dynamics of a hybrid classical-quantum system is investigated. While many explicit quantum
effects can be represented classically, we demonstrate that quantum aspects of the system
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xii Abstract

cannot be fully masked. These results could have implications for the no-cloning theorem,
quantum teleportation, and the Einstein-Podolski-Rosen (EPR) thought experiment. Also
they could be of importance in the ongoing discussion as to whether or not gravity should
be quantized.
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1
Introduction

1.1 Motivation and Context

The main body of work presented in this thesis is investigating the fundamental features
of the interaction between radiation and matter in different physical settings of quantum
field theory in curved spacetimes using Unruh-DeWitt (UDW) particle detectors [5]. The
motivation of this work is twofold. First, by exploring the Unruh effect and its relation to
Hawking radiation using particle detectors we can obtain hints towards a new approach to
the black hole information loss problem, which has defied explanation for decades [6, 7].
Second and on the more practical side, we are concerned with confronting the theoretical
and experimental aspects of physics. To this end, we will compare responses of particle
detectors with both uniform and nonuniform accelerations in Minkowski spacetime. One of
the main topics we investigate is the possibility of amplifying the Unruh effect and therefore
bringing it closer to observability with the current technology. So far, the Unruh effect and
most studies of the relationship between acceleration and entanglement are for idealized
cases when the detector is turned on forever while uniformly accelerating. However, to offer
reasonable prospects for testing fundamental physical phenomena such as the Unruh effect
in the lab, it is essential to study non-idealized cases of nonuniform acceleration. This could
also be of special importance as the entanglement present in quantum states depends on
the observer trajectory [8–10]. It was recently shown for the localized fermionic Gaussian
states that how increasing the uniform acceleration affects the vacuum entanglement and
entanglement of Bell states differently [11]. Similar studies can be done to investigate the
effect of nonuniform accelerations on such states.

The primary underlying framework of this thesis is Quantum Field Theory (QFT) – a
discipline in the overlap of quantum theory, general relativity and field theory, which holds a
central position in our description of Nature. Originally, QFT emerged from the inability of
relativistic quantum theory to fully explain the particle interactions, including annihilation
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2 Introduction

and creation processes. The problem was that the deterministic behavior of the wave function
described by the Schrödinger equation in quantum theory did not have any probabilistic
dynamics. By fixing the initial conditions, the wave function is just a classical field with a
precise evolution through the Schrödinger equation (or Klein-Gordon and Dirac equations)
without any uncertainty. But in quantum theory we expect all quantities including the wave
function to be subject to uncertainty, and that historically, brought researchers to the idea
of second quantization, where one applies quantum theory to the wave function itself. In
modern QFT, it is not exactly wave functions but general quantum fields that are subject
to quantum fluctuations, leading to loss of conservation of particle number.

QFT is resulting from the application of the principles of quantum theory to the classical
systems of fields. It has provided a very successful theoretical framework for studying ele-
mentary particles and their interactions for the last 70 years. QFT has succeed in predicting
the outcomes of high energy particle experiments such as the existence of the Higgs boson
[12], asymptotic freedom [13], and the anomalous magnetic moment of the electron [14].
The methods of quantum field theory have also been used in condensed matter physics for
studying complex quantum phenomena in solids, a critical requirement for understanding,
for example, superconductivity and superfluidity.

The validity of both QFT and Einstein’s general theory of relativity have been confirmed
via highly accurate experiments, the latest being those at LHC and from LIGO, respectively.
These theories seem to be the best available candidates to form the basis for the underlying
unified theory of nature. However, after more than forty years of rigorous attempts to
quantize the gravitational field [15, 16], a complete quantum theory of gravity is still lacking.
In the absence of such a theory, we can still consider a semiclassical approximation in which
the gravitational field is considered as a classical background that interacts with quantized
matter fields. This approach leads to the topic of QFT in a curved spacetime, which has been
studied in detail for several decades [17–19]. Treating gravitation classically, we can describe
the spacetime structure with a manifold, M, and a metric gµν on which the propagating
matter fields are treated as quantum fields. As long as we stay with energies well below the
Planck scale, one can expect to at least be able to construct a satisfactory theory for linear
fields in a curved background. This leads to interesting predictions such as the Unruh effect
[20], particle creation in an expanding universe, and Hawking radiation, which is particle
radiation from a black hole with a radius much larger than the Planck length.

Exploring quantum field theory in curved spacetimes, one finds that there is no global
notion of ‘particle’. This is quite unlike in a flat background where the Poincaré symmetry
can be used to pick out a preferred vacuum state, yielding in turn a preferred definition
of particles. However, even in this setting the notion of particle is an observer-dependent
concept. It has been shown [20] that when a uniformly accelerating detector is interacting
with a quantum field along its worldline, it observes particles in the vacuum state of its
inertial counterpart. The accelerating observer would describe itself as being in a thermal
bath with a temperature proportional to its acceleration. This phenomenon is known as
the Unruh effect. The accelerating observer in this example is a particle detector, which is
modeled as a two level quantum system, known as an Unruh-DeWitt detector [17, 20]. These
particle detectors have been proven to be effective tools in studying new phenomena that
arise when the basic concepts of quantum information get revised in relativistic settings. A



1.1 Motivation and Context 3

number of their applications are demonstrated in [21].

These particle detectors play a crucial role in the research field of Relativistic Quantum
Information (RQI) where the foundation of the work presented in this thesis lies. One can
interpret RQI as a new bridge between relativistic quantum field theory and information
theory where information-theoretic approaches and notions from quantum information can
be applied to questions in quantum field theory in curved spacetimes. These simple models
of quantum systems provide us with operational insight into various active topics of research
today, such as the black hole information paradox, the entropy of black holes, the vacuum
entanglement of quantum fields, and black hole thermodynamics.

In quantum-informatic studies, UDW detectors are used to find the detector-field corre-
lation functions of interest in the fidelity of quantum teleportation between two accelerating
observers [9], energy teleportation between two particle detectors which are locally inter-
acting with the field [22, 23], and measuring the entanglement between localized systems
which is shown to be an observer-dependent property. Recently it has been shown that
entanglement can even be harvested from the vacuum of a quantum field. For example,
two uncorrelated quantum systems (such as two Hydrogen atoms [24]) that are timelike or
spacelike separated can become entangled just by interacting locally with the quantum field
around them, even if the field is in the vacuum state (in other words the field is ‘empty’, con-
taining no photons in the case of the electromagnetic field) [25–28]. This is due to quantum
correlations in the fluctuations of fields such as the electromagnetic field. This phenomenon
of entanglement harvesting illustrates once more how the laws of (quantum) physics dictate
what can be done with information, even beyond the limits of what classical intuition would
indicate. The extracted entanglement can also be a tool to distinguish spacetimes with
different geometries [29–33].

One of the main motivations for exploring ideas such as quantum correlations and quan-
tum entanglement rests in both their theoretical and practical implications. For example,
knowledge about quantum correlations and effects produced by the gravitational interactions
can set a basis for experimental proposals aimed at finding signatures of quantum gravity
effects that cannot be observed directly. This could be a step towards uncovering the funda-
mental principles of quantum gravity. On a more practical side, by gaining new insights one
can propose using relativistic quantum fields as a resource for quantum technological tasks
such as information processing and metrology. In general, the real-world implementation
and application of the RQI tool box includes phenomena such as teleportation, superdense
coding, and the study of quantum channels, to fully relativistic quantum field theory in flat
and curved background spacetimes.

Unruh-DeWitt detectors are also useful in probing both the Unruh effect and Hawking
radiation from black holes [6], two of the most well-known and well-studied phenomena in
the field of QFT in curved spacetimes. The Unruh effect is one of the more conceptually
striking phenomena in QFT since it provides evidence that the notion of particle is observer
dependent. The discovery of this effect, which was initiated by discoveries of Fulling and
Davies [34, 35], was first derived using time-dependent perturbation theory [20]. The gen-
eralized version of this phenomenon in the presence of curved backgrounds and for finite
detector-field interaction time have been worked out in [36, 37].

In the vicinity of a radiating black hole, distinguishing between the Unruh and Hawking
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effects is not quite clear for different observers. However, there have been proposals to
separate these two effects for a detector that is freely falling into a black hole [38, 39]. The
contributions of Unruh and Hawking temperatures to the total effective temperature can be
consistently separated by considering an asymptotic region. For such consistency we need
the Unruh effect to be associated with the acceleration of an observer with respect to the
asymptotic reference frame and not to the local free-fall one. This interpretation is the same
as the standard one if one is calculating the observations of an observer in a specific vacuum
state. However if one would like to consider the backreaction of the field on the trajectory
of the observer, then the two interpretations do not have the same results [38].

Furthermore, comparing these two effects is a good example of a means for exploring
the validity of the equivalence principle in the quantum regime, which has also been a topic
of recent discussion [40, 41]. The equivalence principle forms the basis of general relativity,
where it states that locally, a uniformly accelerating reference frame cannot be distinguished
from a gravitational field. By the term ‘locally’ is meant the small region of spacetime
where the tidal forces of the gravitational field are negligible. For such a comparison, one
needs to choose a proper vacuum for each observer in different spacetimes since detection of
radiation depends on both the spacetime and the type of vacuum. According to the paper
[40], for an equivalent acceleration, a detector at rest in the Schwarzschild spacetime with
respect to Unruh vacuum registers a higher thermal radiation compared to an accelerating
detector in the Rindler spacetime with respect to Minkowski vacuum, therefore it is possible
to distinguish the two cases. The equivalence principle is restored as one approaches the
horizon and the temperatures approach the same limit.

RQI is also concerned about foundational questions. There is perhaps nowhere in physics
where this is more pertinent than in the relationship between classical and quantum systems.
The as yet unrealized goal of obtaining a quantum theory of gravity has only served to further
highlight the importance of understanding the classical/quantum boundary. Indeed, the need
to quantize gravity is receiving increased attention. Here we take a small but important step
in this direction by examining the consequences of coupling a classical system (as some
postulate gravity may be) with a quantum system (which all other forces certainly are). We
use harmonic oscillators for both, and examine the consequences of coupling the two together
in a quantum/classical hybrid system.

The methods and results that are presented in the next chapters not only enlighten the
fundamental features of the light-atom interaction in various physical settings of QFT in
curved backgrounds, but also open a number of avenues with high potentials for future
research.

1.2 Thesis outline

We will start in Ch.2 with a brief introduction to the basics of scalar quantum field theory and
its quantization in both Minkowski and curved backgrounds to the extent that is important
for the content of our work. We will continue with a review of Bogolyubov transformations
and their importance in our work.

In Ch.3, we will introduce Unruh-DeWitt particle detectors and their interaction with
the field in the cavity. We explore the Unruh effect in the framework of the cavity where



1.2 Thesis outline 5

the study is based on a perturbative approach to solve for the detector-field evolution. We
also review the Hawking effect and its connection with the Unruh effect.

In Ch.4, we will introduce a method for determining what a particle detector would
observe in general curved spacetimes within a specific range of curvature. Here we compare
the transition probability of a particle detector traveling through a cavity in Minkowski
and Schwarzschild backgrounds and show in which way and at what scales the equivalence
principle is recovered.

In Ch.5, we will show that relativistic signatures of the transition probability of atoms
moving through optical cavities are sensitive to perturbations in the kinematical parameters
of their trajectories. We propose to use this sensitivity in metrology, both in the accelerom-
eter and the alignment settings.

In Ch.6, we ask to what extent the Hawking spectrum can be modulated by a black hole’s
growth, and therefore to what extent such modulated Hawking radiation can carry away
information about the infalling matter. Via the equivalence principle, this motivated us to
determine the extent to which the Unruh spectrum of non-uniformly accelerated trajectories
can be modulated. Depending on the extent to which the Unruh radiation is modulated, it
can carry information about these trajectories. In this chapter we show that how what we
call generalized concomitant frequencies are underlying the calculation of β coefficients of
Bogolyubov transformations.

In Ch.7, we explore the difference between the behavior of a classical harmonic oscillator
and that of a quantum harmonic oscillator which is in a Gaussian state. We seek to under-
stand just how classical a quantum harmonic oscillator in a Gaussian state can be. This is
an interesting question to study because Gaussian quantum mechanics (GQM) is a compu-
tational tool that can simplify intensive quantum mechanical calculations. Furthermore, it
has been shown that Gaussian operations alone do not allow one to do universal quantum
computing.

In Ch.8 we will conclude this thesis with the summary of our work and the outlook of
future research.
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2
Quantum Field Theory

QFT is mainly a larger framework of quantum theory which is formed by applying the
second quantization to the quantum mechanical wave functions. Therefore, amplitudes of the
wave functions will be operators which are subject to the Heisenberg uncertainty relations.
Quantum fluctuations of the wave function give us the annihilation and creation operators
that obey the canonical commutation relations. After quantizing the field, one can try to find
the eigenvalues and eigenstates of the Hamiltonian. That being said, when we are studying
the relativistic dynamics of the field, the Lagrangian formulation of the field theory is more
suitable because all expressions are Lorentz invariant. As long as one works with quantum
field theory in a fixed background, renormalization procedure helps to resolve the infinities.
However if one take into account the dynamics of general relativity, renormalization is not
a effective procedure anymore. This could be another indication for the existence of a finite
shortest length, ε, in the nature which could be the Planck scale. There are number of
valuable resources on this topic including [42–44].

In this chapter, I will start with a brief review of the simplest case of quantum field
theory (QFT), namely, scalar Klein-Gordon field and its quantization. I will also review the
physics of QFT in curved spacetimes [17, 18] which I will refer to in the course of this thesis.
I will also review the field theory in the cavity which is the main foundation of this thesis.
The metric signature adopted in this work is (+−−−), and natural units (~ = c = kB = 1)
are used unless otherwise specified.

2.1 Scalar quantum field theory

In field theory we are studying dynamics of fields which form a system with infinite degrees
of freedom. A field is defined at every point of spacetime as

φ(x, t), (2.1)

7
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and its dynamics is governed by a Lagrangian which for a real scalar field is given by

L =
1

2
ηµν∂µ∂νφ−

1

2
m2φ2 (2.2)

where ηµν = diag(+1 − 1 − 1 − 1) is a Minkowski metric. The relativistic form of the
Euler-Lagrange equation which is the Klein-Gordon (KG) equation is then given by

�φ+m2φ = 0, (2.3)

where � = ∂µ∂
µ is the Laplacian in Minkowski space. There are two ways to link the

Lagrangian formalism and the quantum theory. It is either by using the path integral
methods or the canonical quantization which we describe here. For the latter approach we
start with the Hamiltonian formalism of the field theory with the free Hamiltonian of the
form

H =

∫
d3x
(
π(x, t)φ̇(x, t)− L

)
, (2.4)

where π(x, t) is the momentum conjugate of the field φ(x, t) computed as the functional
derivatives

π(x, t) ≡ δL[φ]

δφ̇(x, t)
= φ̇(x, t), (2.5)

L[φ] =

∫
Ld3x.

2.2 Quantization of a scalar field

To quantize the field theory we follow a similar procedure to quantum mechanics where we
use canonical quantization to upgrade the generalized position and momentum coordinates
to operators. To have the quantum field theory using the second quantization, we promote
the field and its momentum conjugate to be operator valued functions obeying the canonical
commutation relations at a given time t

[φ̂(x, t), φ̂(y, t)] = 0, (2.6)

[π̂(x, t), π̂(y, t)] = 0,

[φ̂(x, t), π̂(y, t)] = iδ3(x− y)

Here we are working in the Heisenberg picture where the field operators are time dependent
and they obey the Klein-Gordon equation,

˙̂π(x, t) = (∆−m2)φ̂(x, t), (2.7)

which is analogous to ˙̂p(t) = −kq̂(t), namely, the equation of motion for a quantized Har-
monic oscillator; however (∆ −m2) is not a number like k. By taking a Fourier Transform
of the field we can resolve this problem and replace the field φ with a collection of decoupled
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oscillators φk(t) which are moving in the configuration space. The Fourier decomposition is
given by

φ̂k(t) =
1√

(2π)3/2

∫
R3

d3xe−ik·xφ̂(x, t). (2.8)

Each complex function φk(t) is a k-mode of the field and satisfies the equation of motion for
a quantum harmonic oscillator of frequency,

ωk ≡
√
|k|2 +m2. (2.9)

We can write these Hermitian field operators in terms of orthonormal field modes {uk}
which are the plane wave solutions to the KG equation,

φ̂(x, t) =

∫
dk
(
uk(x, t)âk + u∗k(x, t)â†k

)
. (2.10)

The solutions {uk} form a complete set of orthonormal basis with respect to the Klein-
Gordon inner product evaluated at a fixed time,

(f, g) = i

∫
dx(f ∗ġ − ḟ ∗g). (2.11)

As this product is preserved under KG evolution, we demand

(uk, uk′) = δ(k − k′), (2.12)

(u∗k, u
∗
k′) = −δ(k − k′),

(uk, u
∗
k′) = 0.

Also {âk, â†k} are annihilation and creation operators of a Fock basis which are respecting
the canonical commutation relations equivalent to the field operators in Eq.(2.6),

[âk, âk′ ] = 0, (2.13)

[â†k, â
†
k′

] = 0,

[âk, â
†
k′

] = (2π)3δ3(k− k′).

One way of checking this equivalency is by assuming to have [âk, â
†
k′

] and show

[φ̂(x, t), π̂(y, t)] =

∫
dkdk′

−i

2(2π)6

√
ωk′

ωk

(
− [âk, â

†
k′

]ei(k·x−k′·y) + [â†k, âk′ ]e
i(−k·x+k′·y)

)
(2.14)

=

∫
dk

i

2(2π)3

(
eik·(x−y) + eik·(y−x)

)
= iδ3(x− y).

Based on the choice of mode basis that we have, the vacuum and excited states are respec-
tively defined as

âk |0〉 = 0, â†k |0〉 = |1k〉 . (2.15)

In general, a state containing n particles is defined as∣∣∣n(1)
k1
, n

(2)
k2
, ...
〉

=
1√

n(1)!n(2)!...

(
â†k1

)n(1)(
â†k2

)n(2)

... |0〉 , (2.16)

where it represents n(1) in mode k1 and so on.
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2.3 Infrared regularization: Field in the cavity

Now if we write the Hamiltonian in terms of creation and annihilation operators, we get

H =

∫
dk

1

(2π)3
ωk

[
â†kâk +

1

2
(2π)3δ3(0)

]
. (2.17)

According to our definition of the ground state, by applying this Hamiltonian to the ground
state, |0〉, we find the energy eigenvalue to be infinity. This is the infinity that is referred to
as an infra-red divergence and it arises because of the infinite size of space. We can resolve
it by imposing a boundary condition in the field and study the field theory in a cavity of
volume V = L3. Of course there is still an ultraviolet divergence due to an infinite number
of field modes that can be dealt with by imposing a cutoff on the number of modes. Here L
should be large enough so we do not have significant artificial effects because of the boundary
conditions. Depending on the boundary conditions being Periodic, Dirichlet, or Neumann,
the mode functions inside the cavity take different forms. In the case of a (1+1)-D Dirichlet
cavity with boundary conditions, φ̂(L, t), φ̂(0, t) = 0, which is what we are considering in
this thesis, the mode functions are the stationary waves

un(x, t) =
1√
Lωn

e−iωnt sin(knx). (2.18)

This boundary condition implies that the field operators are vanishing on the boundary which
can be achieved by replacing the walls of the cavity with ideal mirrors. In this equation we
have kn = nπ/L, n being natural positive number and ωn is a field mode-k frequency given
by Eq.(2.9). With this boundary condition, the field operator is given in terms of the field
modes as

φ̂(x, t) =
∑
n

(
un(x, t)ân + u∗n(x, t)â†n

)
. (2.19)

Similar to the case of the field in the continuum space in the absence of any boundary
conditions, field operators satisfy the canonical commutation relation and we can show that
the creation and annihilation operators satisfy the commutation relations,

[ân, ân′ ] = 0, [â†n, â
†
n′ ] = 0, [ân, â

†
n′ ] = δnn′ . (2.20)

2.4 Bogolyubov transformation

So far we showed that the quantization of the field operator with respect to a set of or-
thonormal mode basis {uk, u∗k}. However this is not a unique choice and we can expand the
field modes in terms of any orthonormal mode basis in the vector space. We can transform
the mode functions that we found as solutions of the KG equation in one basis {uk} to any
other basis {vl} using linear transformation which is called Bogolyubov transformation. In
continuum spacetime this unitary transformation is given by

vl =

∫
dk
(
αlkuk + βlku

∗
k

)
(2.21)
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where the coefficients are

αlk = (vl, uk), βlk = −(vl, u
∗
k). (2.22)

These coefficients are time independent because of the time independence of the Klein-
Gordon inner product which is given in Eq.(2.11) with respect to Klein-Gordon evolution.
We use this transformation of mode basis for example to bring all the observers to the
same spacetime coordinates without modifying them. The field operator can be expanded
equivalently in both basis as

φ̂ =

∫
dk(ukâk + u∗kâ

†
k) =

∫
dl(vlb̂l + v∗l b̂

†
l ), (2.23)

where {b̂l, bl†} are the creation and annihilation operators corresponding to the new ba-
sis {vl, v∗l }. The vacuum state that is defined in terms of one set of mode basis may not
correspond to a vacuum state after the mode basis is evolved under a time-dependent Hamil-
tonian. Therefore, to study the particle content of a field state, we consider the Bogolyubov
transformation. The linear transformation between the old and new operators is given by

b̂l =

∫
dk(α∗lkâk − β∗lkâ

†
k), (2.24)

âk =

∫
dl(αlkb̂l + β∗lkb̂

†
l ).

As we can see, only when the β coefficient is zero, b̂l and âk share the same vacuum state,
|0〉. On the other hand, the nonzero β coefficient can provide us with information on the
particle content of the vacuum state of the field in different basis. The average b-particle
number is given by

〈0| N̂ (b)
l |0〉 =

∫
dk |βlk|2, (2.25)

where N̂
(b)
l = b̂†l b̂l is the b-particle number operator for a specific mode l. By calculating the

expectation value of this number operator we can find the number of b-particles of mode vl
in the vacuum state of âk operator.〈

(a)0
∣∣ N̂ (b)

l

∣∣0(a)

〉
= |βk|2 δ3(0). (2.26)

To resolve the divergent factor δ3(0) which arises because of the infinite spatial volume, we
replace it with a box of volume V and we find the mean density of particles to be nk = |βk|2.

Similarly, when we have a confined field in a box where we have a discrete modes, we
can perform a Bogolyubov transformation between the stationary and non-stationary mode
functions vm as

vm =
∑
n

(
αmnun + βmnu

∗
n

)
, (2.27)

un =
∑
m

(
α∗mnvm − βmnv∗m

)
.
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3
Unruh-DeWitt particle detectors

In the last chapter we talked about how different observers in different coordinate systems
may parametrize their spacetime differently and even expand the field operators in terms
of different sets of modes and therefore perceive the particle content of the same quantum
state differently. But how does an observer measure the perceived number of particles in a
quantum state? To model the response of an accelerated probe measuring the quantum field,
it is commonplace to use the so-called Unruh-DeWitt detector (UDW) [5, 17] which is an
idealized model of a real particle detector that still encompasses all the fundamental features
of the light-matter interaction when there is no angular momentum exchange involved [45].
This model consists of a two level quantum system such as a qubit with a energy gap Ω that
couples to a scalar field via an interaction Hamiltonian along its worldline, φ̂(x(τ), t(τ)).

The Hamiltonian describing the whole system consists of three terms: Ĥ
(d)
free, the free

Hamiltonian of the detector, Ĥ
(f)
free, the free Hamiltonian of the field, and the field-detector

interaction Hamiltonian Ĥint given we are working in the interaction picture:

Ĥ = Ĥ
(d)
free + Ĥ

(f)
free + Ĥint. (3.1)

The general form of the interaction Hamiltonian [5, 37] is given by

Ĥint = λχ(τ)µ̂(τ)φ̂
(
x(τ)

)
, (3.2)

where the constant λ is the coupling strength, χ(τ) is the switching function or time window
function which is smooth and compactly supported function and it controls the well-defined
behaviour of the interaction model to avoid the divergences [46–48]. This function is a real-
valued function ranging between 0 and 1. µ̂(τ) is the monopole moment of the detector and
φ̂
(
x(τ)

)
is the massless scalar field in (1+1)-dimension to which the detector is coupling. We

consider the coupling constant to be a small parameter so we can work with perturbation
theory to second order in λ. The monopole moment operator of the detector has the usual

13
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form in the interaction picture,

µ̂(τ) = (σ+eiΩτ + σ−e−iΩτ ), (3.3)

in which, Ω is the proper energy gap between the ground state, |g〉 and the excited state, |e〉
of the detector and σ− and σ+ are Ladder operators.

3.1 Perturbative time evolution

The unitary time evolution operator generated by the interaction Hamiltonian in the time
interval [0, T ] is given by the Dyson’s perturbative expansion

Û(T, 0) = I−i
∫ T

0

dτĤint(τ)︸ ︷︷ ︸
Û(1)

+(−i)2

∫ T

0

dτ

∫ τ

0

dτ ′Ĥint(τ)Ĥint(τ
′)︸ ︷︷ ︸

Û(2)

+...

+(−i)n
∫ T

0

dτ...

∫ τ (n−1)

0

dτ (n)Ĥint(τ)...Ĥint(τ
(n))︸ ︷︷ ︸

Û(n)

. (3.4)

In this model, we assume that the detector which is in its ground state is weakly coupled
to the vacuum state of the field so that the initial state of the quantum system is ρ0 = |g〉 〈g|⊗
|0〉 〈0| and keep the terms in the expansion (3.4) up to the second order of perturbation in
λ. The system’s density matrix at a time T would be evaluated as [49]

ρT =
[
I + Û (1) + Û (2) +O(λ3)

]
ρ0

[
I + Û (1) + Û (2) +O(λ3)

]†
(3.5)

which we write as

ρT = ρ0 + ρ
(1)
T + ρ

(2)
T +O(λ3), (3.6)

where

ρ
(0)
T = ρ0, (3.7)

ρ
(1)
T = Û (1)ρ0 + ρ0Û

(1)†, (3.8)

ρ
(2)
T = Û (1)ρ0Û

(1)† + Û (2)ρ0 + ρ0Û
(2)†. (3.9)

We are interested to study the reduced state of the detector after the evolution which can
be obtained by tracing out the field from each order contribution to the density matrix.

TrFρ0 = |g〉 〈g| , (3.10)

TrFρ1 = TrF (Û (1)ρ0 + ρ0Û
(1)†),

TrFρ2 = TrF

(
Û (1)ρ0Û

(1)† + Û (2)ρ0 + ρ0Û
(2)†
)
.
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where

〈e|TrF

(
Û (1)ρ0Û

(1)†
)
|e〉=λ2

∫ T

0

dτ

∫ T

0

dτ ′χ(τ)χ(τ ′) exp−iΩ(τ−τ ′) 〈0|φ(τ)φ(τ ′) |0〉. (3.11)

The partial tracing of Û (2)ρ0 and ρ0Û
(2)† contributes two terms proportional to |g〉 〈g| to

the detector’s density matrix and all other terms vanish. The |g〉 〈g| term is the negative
of Eq.(3.11) and therefore normalizes the state. Therefore, the only contribution to the
reduced density matrix of the detector comes from the zeroth and second order terms in
the expansion. The two-point function 〈0|φ(τ)φ(τ ′) |0〉, which is also called the Wightmann
function, depends on the trajectory of the detector. As we will see in the next chapters,
computing the Wightmann function is the main part of evaluating the response function
of particle detectors. Wightmann functions are the correlation functions of quantum fields
which encode the relation between field operators in two different points of the field which
are either timelike or spacelike separated. The properties of these functions are detailed in
[17, 43]. For the theory to stay causal, commutators of the field are vanishing outside the
lightcone. This is the property of both free and interacting theories.

We can write the Wightmann function in (3+1)-D Minkowski spacetime for a massless
scalar field, in terms of the field modes uk as

〈0|φ
(
t(τ),x(τ)

)
φ
(
t(τ ′),x(τ ′)

)
|0〉 =

∫
d3k

1√
(2π)32ωk

e−i(ωk∆t−k·∆x), (3.12)

where ∆t = t(τ)− t(τ ′) and ∆x = x(τ)− x(τ ′).

3.2 Unruh effect

One of the renowned predictions of Quantum field theory in curved spacetime is called
the ‘Unruh effect’ [17, 20, 50–53]. It was suggested by Unruh that uniformly accelerated
observers in Minkowski spacetime detect a thermal distribution of particles (with a tem-
perature proportional to their proper acceleration) when probing the vacuum state for an
inertial observer. It is indeed a challenge to detect this effect using present technology, as it
involves measuring low temperatures with ‘thermometric probes’ that move with extremely
high accelerations. This effect also is mathematically related to the near horizon Hawking
effect [17, 54] as we will explain in more details in Ch.6.

There are two equivalent ways for calculating the Unruh effect, either by finding the
transition probability of a detector which is moving with a constant acceleration trajectory
or by using the Bogolyubov transformation to relate the Minkowski frame operators to the
Rindler frame operators and calculate the proper Bogolyubov coefficients.

In the first approach, consider a uniformly accelerated UDW detector with proper time
τ and a constant proper acceleration a = |ηµνaµaν |1/2 where ηµν is the Minkowski metric
and aµ is the observer 4-acceleration. The worldline of this observer is a hyperbola in the
inertial coordinates (t, x) with parametrization,

t(τ, ξ) =
1

a
eaξ sinh(aτ), (3.13)

x(τ, ξ) =
1

a
eaξ cosh(aτ).



16 Unruh-DeWitt particle detectors

where (τ, ξ) are the proper coordinates of the observer. We consider ξ = 0 for which the
observer has acceleration a and perceives a horizon at proper distance 1/a. In general the
proper coordinates vary in the intervals of −∞ < τ < +∞ and −∞ < ξ < +∞.

The transition amplitude for the detector to get excited is given by [17]

ψ(∆E) =
iλ 〈En| µ̂ |E0〉
(2π)3/2

√
2ωk

∫ +∞

−∞
χ(τ)ei(En−E0)τei

(
ωkt(τ)−k·x(τ)

)
dτ (3.14)

where (En − E0) is the energy gap between the zeroth and n-th state of the detector. For
our studies, considering a two level atom as our detector, we only have n = 1. This nonzero
excitation probability gives us the Unruh effect.

In the second approach, we calculate the β coefficients, using the Bogolyubov transforma-
tion between the vacuum state of the Minkowski frame and the vacuum state of the acceler-
ated frame of the detector (proper frame). Since the mode expansion and the transformation
has simpler forms in the lightcone coordinates, we are going to derive the Bogolyubov trans-
formation in this coordinates. The inertial Minkowski frame and the accelerated (Rindler)
frame in the lightcone coordinates are respectively given by (u, v) and (ū, v̄) where

u ≡ t− x, v ≡ t+ x, (3.15)

ū ≡ τ − ξ, v̄ ≡ τ + ξ,

u = − 1
a
e−aū.

In the Rindler frame, the quantum field mode in the Rindler wedge x > |t| can be expanded
in terms of the left and right moving modes as

φ̂(ū, v̄) =

∫ +∞

0

dω√
4πω

[
e−iωūb̂−ω + eiωūb̂+

ω + e−iωv̄ b̂−−ω + eiωv̄ b̂+
−ω
]

(3.16)

where ω = |k| is the integration variable. Equivalently, we can write the lightcone mode
expansion in the Minkowski frame as

φ̂(u, v) =

∫ +∞

0

dω′√
4πω′

[
e−iω′uâ−ω′ + eiω′uâ+

ω′ + e−iω′vâ−−ω′ + eiω′vâ+
−ω′
]

(3.17)

where ω and ω′ have both positive values. The relation between the â±±ω′ and b̂±±ω is the more
general form of the Bogolyubov transformation that we considered in Ch.2. The relation
between â±ω′ and b̂−ω is

b̂−ω =

∫ ∞
0

dω′[αω′ωâ
−
ω′ + βω′ωâ

+
ω′ ] (3.18)

Unlike Eq. (2.24), since ω 6= ω′, this relation mixes the operators with different momenta.
The reason for the domain of integration being only from (0,+∞) is that only Bogolyubov
coefficients that relate momenta of the same sign are nonzero, therefore the left-moving
(negative momenta) and right-moving (positive momenta) field modes do not mix. Then we
can calculate the coefficients αωω′ and βωω′ to be

αω′ω =

√
ω

ω′
F (ω′, ω), βω′ω =

√
ω

ω′
F (−ω′, ω), (3.19)
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where ω, ω′ > 0 and

F (±ω′, ω) ≡
∫ ∞
−∞

dū

2π
ei(∓ω′u+ωū) =

∫ 0

−∞

du

2π
e∓iω′u(−au)−iω

a
−1. (3.20)

Given that, we find the mean density of particles with the frequency mode ω to be

nω =
〈
N̂ω

〉
=

∫ +∞

0

dω |βω′ω|2 =
1

e2πω/a − 1
. (3.21)

This is also equivalent to the Bose-Einstein distribution

n(E) =
1

eE/T − 1
(3.22)

since for a massless particle E = |ω|, therefore T ≡ a/2π is the Unruh temperature. This ap-
proach also could help to clarify the mathematical analogy between the Unruh and Hawking
effects. Eq.(3.21) can also be derived from Eq.(3.14) if we use the trajectory of a uniformly
accelerated detector given by Eq.(3.13) for

(
x(τ), t(τ)

)
. This is derived in details in [17].

Using this parametrization, from Eq.(3.14) we can derive the transition probability per unit
time to be

|ψ|2 ∝ λ2

2π

∑
n

∆En |〈En|µ0 |E0〉|2

e2π∆En/a − 1
. (3.23)

The Plank factor that appeared here in the response of the accelerated particle detector
interacting with the field is equivalent to Eq.(3.21) which describes an unaccelerated detector
immersed in a thermal bath at the temparature T .

3.3 Hawking effect

Quantum theory predicts that vacuum fluctuations of quantum fields around the black holes
create particles that are moving away from the horizon in the form of Hawking radiation.
However, there is a limit as to how far the tunnelling picture can be extended because in the
pair-creation of very low energy particles, the wavelength of particles would be much larger
than the size of the black hole R, therefore they avoid falling through the event horizon
[55]. Independent of how this radiation forms, we can compute the density of the emitted
particles from a black hole registered by observers outside the horizon at different distances
from it.

To study this effect and its comparison to the Unruh effect, we consider the simplest
case of a non-rotating uncharged black hole which its stationary state is represented by the
Schwarzschild solution to the Einstein equation,

ds2 = gµνdx
µdxν =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2(dθ2 + dφ2 sin2 θ), (3.24)

with the physical singularity at r = 0 and the singularity at r = 2M . We can resolve
the coordinate singularity by a suitable change of coordinates in which the metric becomes
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regular at the BH horizon. To simplify the calculations, we consider a (1 + 1)-dimensional
toy model where the quantum field φ is independent of the angular variables (θ, ϕ). In this
toy model, we use the tortoise coordinates (t, r∗) to express the metric in a conformally flat
form,

ds2 =

(
1− 2M

r

)
(dt2 − dr∗2), (3.25)

where

r∗(r) = r − 2M + 2M ln
( r

2M
− 1
)
. (3.26)

r∗ ranges from −∞ to +∞. If we describe the tortoise frame in the lightcone coordinates
using the relations ū ≡ t− r∗ and v̄ ≡ t+ r∗, the metric will be

ds2 =

(
1− 2M

r

)
dū dv̄. (3.27)

This coordinates describes a locally accelerated observer. This metric is conformally flat
everywhere and it asymptotes to the Minkowski metric as r → ∞. However, it only covers
the spacetime outside the horizon r > 2M , therefore we need another coordinate system
to describe the entire spacetime, namely the Kruskal lightcone coordinates, (u, v). This
frame which describes a locally inertial observer (free falling observer) relates to the tortoise
lightcone coordinates by

u = −4M exp
(
− ū

4M

)
, v = −4M exp

( v̄

4M

)
. (3.28)

Therefore the metric becomes

ds2 =
2M

r
exp

(
1− 2M

r

)
dudv, (3.29)

where the parameters cover the intervals −∞ < u < 0 and 0 < v < +∞. If we compare
Eq.(3.28) with Eq.(3.15), it seems that the relation between the tortoise and Kruskal co-
ordinates is the same as the relation between the inertial and accelerated frames as we set
a ≡ 1/4M . Therefore the observer sitting at rest frame far from the horizon is analog to the
Unruh observer. It only sees a flux of outgoing (right-moving) modes with temperature

TH =
a

2π
=

1

8πM
. (3.30)

Another way of finding TH is by calculating the Bogolyubov coefficients using the Bogolyubov
transformation between the creation and annihilation operators of the tortoise and Kruskal
coordinates. Respectively, by quantizing the field φ̂ in these coordinates, we get the solution
to the corresponding KG equation as

φ̂(ū, v̄) =

∫ +∞

0

dω√
4πω

[
e−iωūb̂−ω + eiωūb̂+

ω + e−iωv̄ b̂−−ω + eiωv̄ b̂+
−ω
]
, (3.31)

φ̂(u, v) =

∫ +∞

0

dω√
4πω

[
e−iωuâ−ω + eiωuâ+

ω + e−iωvâ−−ω + eiωvâ+
−ω
]
.
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Both solutions are Hermitian operators and obey the canonical commutation relation. The
translation between the ladder operators from one coordinates to another follows what we
did in sec.3.2. We need to stress that this precise analogy between the Schwarzschild and
Rindler spacetimes only exists in 1+1 dimensions. If we consider the quantum field in 3 + 1
dimensions, the mode decomposition includes spherical harmonics Ylm(θ, φ) and the radial
part of the KG equation that can be solved separately. In general the field equation is

�φ(t, r, ϕ, θ) = 0, (3.32)

with its solution be written as

1

r
φ(r)Ylm(θ, ϕ)e−iωt. (3.33)

The angular part satisfies the equation

L̂2Ylm(θ, ϕ) = −l(l + 1)Ylm(θ, ϕ), (3.34)

where L̂2 is the angular derivative operator. Therefore for the radial part we have

(�r + Vl(r))φ̂(t, r) = 0, (3.35)

where �r includes the radial derivatives [56]. This is the equation for a wave propagating in
the effective potential of the form

Vl(r) ≡
(

1− 2M

r

)(
2M

r3
+
l(l + 1)

r2

)
. (3.36)

The presence of this effective potential weakens the Hawking radiation, namely, the emissivity
is less than a perfect black body. This effect is described as a greybody factor. The greybody
factors of black holes can be calculated using a path-ordered-exponential approach [57, 58].
The virtue of this method is that it provides a direct numerical evaluation of the intermediate
frequency regime for the greybody factors where the Hawking flux and most of information
are concentrated. This technique which is based on a “transfer matrix” formalism also
provides semi-analytic expression for Bogolyubov coefficients which in general increases our
understanding of transmission and reflection probabilities [59, 60].

One can also find the Hawking radiation and its temperature using a different formalism;
for example, by calculating the stress-energy tensor Tµν of the quantum field in the vicinity of
black hole horizon. However this has only be explicitly done for 1+1-dimensional spacetime.
In general, when we get to curved spacetime, it is not possible to uniquely separate the
solutions to the field equations into orthonormal sets of positive and negative frequencies
because of the general coordinate invariance. Therefore, it is not possible to uniquely define
the vacuum state. Another approach is by evaluating the asymptotic form of the Bogolyubov
βij coefficient, which determines the number of emitted particles that are created by the
gravitational field; it only depends on the surface gravity of the black hole in its stable stage
when it has reached the equilibrium.
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3.4 Black hole information paradox

In 1976, it was argued in [7] and further discussed in [6, 61] that in the process of formation
and evaporation of black holes, information is destroyed. According to QM, for quantum
information to escape from a black hole, the evaporation of the black hole should be unitary
and the final state of the system after the black hole has evaporated is required to be pure,
meaning that there is no information loss in the formation and decay of a black hole. On the
other hand, in our current framework for physics, Local quantum field theory (LQFT) on
the semiclassical black hole background predicts information loss [6], which means violating
quantum mechanics. It has also been pointed out that the energy conservation can also be
violated via virtual production of black holes if information is lost [62, 63]. Therefore for
reconciling these two theories, it is suggested that by applying small corrections to LQFT in
the vicinity of BH horizon, there is a hope for unitarizing the evolution [62, 64, 65].

We know that Hawking radiation originated from the vicinity of the Horizon and that
black hole entropy can be derived from the degrees of freedom at the horizon. Therefore one
might think that by perturbing the horizon we can get more information out of it. Perturbing
the horizon creates quasinormal modes (QNMs), which we can study by applying the WKB
approximation. Quasinormal frequencies of black holes encode information regarding the
ringdown of the black hole after it is perturbed. These complex frequencies and information
they hold depend on the geometry of black holes and type of their perturbations. For example
look at [66–68]. These studies have been pursued for vacuum black holes with an attempt to
find a connection between the QNMs and possible quantization law for the horizon area. One
can also study regular black holes, for which the gravity is coupled to some form of matter,
and explore the possibility of finding such connections [69]. There are several reviews of all
recent developments related to the topic of QNMs and their applications such as [70, 71].

One elegant way to describe the information transfer from BH interior to its surrounding
is by entanglement transfer [72, 73]. This is either by the black hole absorption of matter
already entangled with the surrounding or by pair particle production which will be entangled
with the excited states inside the black hole. Unitarity demands that all the entanglement
should be transferred out at the end so that the von Neumann entropy of the black hole
does not change before and after complete evaporation. On the other hand, to have enough
energy transformation to unitarize the BH evaporation, there should be a mechanism for
transferring information from inside the black hole to the asymptotic observer outside so
that the structure of the horizon stays untouched and there is no extra net flux in addition
to the Hawking radiation. One candidate for such transformation channels can be described
as metric perturbation couplings to the stress-energy tensor. These couplings need to be
of order of unity for which the metric fluctuations can be soft. At linear order, the metric
perturbations do not result in extra average energy flux and therefore do not violate BH
thermodynamics. In the higher order in perturbations, we can keep the energy flux small by
controlling the information-carrying coupling.

This was one of the various proposals to resolve the information problem. There are
multiple reviews covering different approaches including [74, 75]. At the end of Ch.6 we will
speculate on a possible way of addressing this paradox based on the method that we used
to amplify the Unruh effect.



4
Cavities in Curved Spacetimes: The Response

of Particle Detectors

Note: The content presented in this chapter can be found in [1]. This work is in collaboration
with Eduardo Mart́ın-Mart́ınez and Robert B. Mann.

We introduce a method to compute a particle detector transition probability in spacetime
regions of general curved spacetimes provided that the curvature is not above a maximum
threshold. In particular we use this method to compare the response of two detectors,
one in a spherically symmetric gravitational field and the other one in Rindler spacetime
to compare the Unruh and Hawking effects: We study the vacuum response of a detector
freely falling through a stationary cavity in a Schwarzschild background as compared to the
response of an equivalently accelerated detector traveling through an inertial cavity in the
absence of curvature. We find that as we set the cavity at increasingly further radii from
the black hole, the thermal radiation measured by the detector approaches the quantity
recorded by the detector in Rindler background showing in which way and at what scales
the equivalence principle is recovered in the Hawking-Unruh effect, i.e. when the Hawking
effect in a Schwarzschild background becomes equivalent to the Unruh effect in Rindler
spacetime.

We could have a vacuum of the BH which is in thermal equilibrium or we could have a
vacuum of the black hole which is sitting in a zero temperature environment. The difference
is if the BH is in thermal equilibrium you get heat radiation from all direction but if it is
sitting in a zero temperature environment the radiation is only coming from the direction
of the BH. There is a general expectation that the radiation provides a kind of buoyant
force, that in principle could support the detector. It is therefore of interest to see what the
excitation rates of the detector near a black hole in situations that are not entirely in free
fall [38].

21
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4.1 Introduction

The response of a particle detector depends on the state of the field, the structure of space-
time and the detector’s trajectory. Regarding different types of trajectories, a number of
studies have been done in Minkowski spacetime and a variety of scenarios have been explored
[46, 47, 76]. For example, the transition rate of a UDW detector coupled to a massless scalar
field in Minkowski spacetime, regularized by the spatial profile, was analyzed in [47].

However, one faces technical difficulties when studying the response of detectors undergo-
ing non-trivial trajectories in curved backgrounds. Notwithstanding simple two dimensional
cases [40], in curved spacetimes the identification of the correct vacuum state of the theory,
which provides a physical interpretation of the results, is difficult because of the lack of a
global timelike Killing vector. Even when we can identify the relevant vacuum, obtaining
the Wightmann function and its appropriate regularization in general backgrounds can also
pose a challenging problem even for the simplest cases [77].

Given these difficulties it is interesting to explore some approximate regimes where it
may be possible to find the response of a particle detector without running into the severe
technical complications suffered by exact methods. In principle, approaches using cavity
quantum field theory have been explored in order to answer questions regarding the particle
content of the vacuum state of a field from the perspective of different observers [49, 78, 79].
In those approaches the treatment gets greatly simplified by the fact that the cavity field
gets isolated from the rest of the free field in the spacetime and so an IR-cutoff is built
into the theory. Futhermore, the problem of studying the response of particle detectors in
optical cavities in relativistic regimes is a problem of intrinsic interest [78, 79]; a recent result
showed that an accelerated detector inside a cavity does very approximately thermalize to
a temperature proportional to its acceleration [80].

Here we investigate the difference in the response of a detector when freely falling through
a stationary cavity subjected to a spherically symmetric gravitational field as compared to
the response of an equivalently accelerated detector that traverses an inertial cavity in the
absence of curvature 1. One might expect (via the equivalence principle) both responses to
be similar if the cavity is small compared to the distance from the source of the gravitational
field. However, as we will see, as the cavity is placed closer to the region of strong gravity
the detector responses increasingly differ.

With the help of some approximations that are applicable in the cavity scenario, we will
be able to characterize the transition probability of particle detectors in a Schwarzschild
background, circumventing the complexity involved in the calculation of the Wightmann
function in such scenarios [37].

To this end, in this chapter, first in Sec.4.2 we introduce a physical model of our system
including the methodology for investigating our cavity scenario. Then in Sec.4.3 and Sec.
4.4 we discuss our results and final remarks.

1Strictly speaking the proper comparison would be with an accelerated cavity and an inertial detector
which is a subject of current investigation.



4.2 The setting 23

4.2 The setting

In order to investigate our method, we consider the following scenario to calculate and
analyze the excitation probability of an UDW detector in the cavity. We consider a detector
to be a two-level pointlike quantum system, which is a reasonable approximation for atomic-
based particle detectors [45]. We will be working with three different coordinate systems.
One is the coordinate system of the stationary observer at infinity, (r, t), the second one is
the local coordinate system of the outermost wall of the cavity, (r′, t′) which is sitting at the
radius (r = R) and the third one is the proper frame of the detector, whose proper time we
denote as τ .

The proper frame (r′, t′) of the outermost wall is related to the asymptotically stationary
frame (r, t) by means of the following relationships:

r′ =

(
1− 2m

R

)− 1
2

(R− r), (4.1)

t′ =

(
1− 2m

R

) 1
2

t. (4.2)

Now, we want to parametrize the trajectory of a free-falling detector, which starts from
rest at the beginning of the cavity (r = R⇒ r′ = 0), in terms of its own proper time τ . We
would like to write the worldline of the detector in terms of a parametric curve in the cavity’s
frame coordinates, i.e. we want the detector’s worldline

(
r′(τ), t′(τ)

)
. The parametrization

of the detector’s trajectory in this frame is given by

r′
(
θ(τ)

)
=

(
1− 2m

R

)− 1
2

R sin2

(
θ(τ)

2

)
, (4.3)

t′
(
θ(τ)

)
=

(
1− 2m

R

)(
R3

2m

) 1
2
[

1

2

(
θ(τ) + sin [θ(τ)]

)
+

2m

R
θ(τ)

]
(4.4)

+

(
1− 2m

R

) 1
2

2m log

[
tan θH

2
+ tan θ(τ)

2

tan θH
2
− tan θ(τ)

2

]
,

where θ is the following function of the proper time of the detector τ :

θ(τ) = 2 arccos

(
r(τ)

R

) 1
2

. (4.5)

and θH is the value of θ at the horizon [81]. We depict the scheme for this setting in Fig.
4.1.

The size of the cavity will be considered small enough so we can ignore any tidal effects.
In this fashion we will assume that the reference frame of the outermost wall of the cavity
will very approximately be the same frame as for all the rest of the points in the whole
cavity. We will discuss the validity of this approximation later on; taking it as valid, the
stationary cavity placed at r = R has length L in its local coordinate system. Consequently,
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Figure 4.1: Scheme of a detector going through a cavity prepared in the vacuum state, in a
curved background. The cavity, of proper length L (Length Lr in the asymptotically flat frame)
is located at the arbitrary radius R in the asymptotically flat frame (r, t). The detector with
zero initial velocity is falling through the cavity and it spends an amount of proper time of T (or
equivalently T ′ from the cavity frame (r′, t′)) to travel through the cavity, exiting it with final
proper speed vT .

the length of the cavity as measured by a stationary observer at infinity, Lr, is related to L
via Lr = (1− 2m/r)1/2 L.

Now one would expect that a detector falling through the cavity, even if field and detector
are in the ground state, would experience a Hawking-effect-like response. There are two main
contributions to the distinct response of the detector in this regime. First, since the detector
is freely falling, its proper time is different at each point in the cavity. Second, the solution
to the Klein-Gordon equation would be different from the usual stationary waves in a flat-
spacetime Dirichlet cavity.

In our model, we will carry out the following ‘quasi-local’ approximation. If the cavity
is small enough and it is far enough from the strong gravity region, we can assume that
the solutions of the Klein-Gordon (KG) equation inside the cavity can be very well approxi-
mated by plane waves in the locally flat tangent spacetime (corrections due to the effects of
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curvature can be incorporated via the Riemann normal coordinate expansion [82]). While
moving through the cavity, the proper time of the detector will still experience a gravita-
tional redshift, which will be responsible for its thermal response. We expect that departures
in the KG solutions with respect to the flat spacetime scenario will introduce sub-leading
corrections in the appropriate regimes; it is these corrections that we are neglecting.

To check the range of validity of this estimation we proceed as follows: the KG equation
in a Schwarzschild background has the following form[

∂2
t −

1

r2

(
1− 2m

r

)(
∂r(r

2 − 2mr)∂r + ∆S

)]
ψ(t, r) = 0

where r and t are the coordinates of the stationary observer in the asymptotically flat region
and where ∆S is the Laplacian on S2. This expression can be written in a similar form as
in flat spacetime if we write it in terms of the Regge-Wheeler coordinate (as introduced in
Ch.3 to be r∗ = r + 2m ln(r/2m− 1)) to be[

∂2
t − ∂2

∗ + V (r)
]
ψ(t, r) = 0 (4.6)

where

V (r) =

(
1− 2m

r

)(
2m

r3
− ∆S

r2

)
In two regimes V (r) approaches zero: One is close to the horizon where r → 2m and the
other one is far away from the horizon where r → ∞. In these two ranges, the form of
KG equation in the Regge-Wheeler frame would be effectively of the same form as the flat
spacetime equation. Nevertheless, the KG equation in the cavity frame (r′, t′) (where we
carry out the field quantization) will not be of that form. We need to find an estimator that
tells us how precisely we can approximate the KG equation in a Schwarzschild background
with the one in a locally flat background associated with the rest frame of the cavity. If
the length of the cavity is small enough, the ratio between the length of the cavity in its
own reference frame (∆r′ = L) and the length of the cavity in the Regge-Wheeler frame
(∆r∗ = L∗) provides a physically meaningful estimator of the validity of the quasi-local
approximation. Given the relationship between r∗ and r′ for the radially ingoing detector

r∗=−R +

(
1− 2m

R

) 1
2

r′ − 2m ln

R− (1− 2m
R

) 1
2 r′

2m
−1

, (4.7)

the estimator takes the following form

L∗

L
=

∆r∗

∆r′
=

(
1− 2m

R

) 1
2

− 2m

L
ln

[
(R2 − 2mR)

1
2

(R2 − 2mR)
1
2 − L

]
. (4.8)

Figure 4.2 illustrates how this quantity changes as a function of R, the distance from the
black hole and L, the length of the cavity. We see that ∆r∗/∆r′ increases with both increasing
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cavity size and decreasing proximity to the Schwarzschild radius. Our approximation works
well for the small cavities in the vicinity of the black hole. As we will see, the threshold size
of the cavity is equal to the size of the black hole.

Note again that the estimator is reliable when we are very close to the event horizon, or
far away from it, as discussed above. Nevertheless, and as an interesting remark, in a 1+1
dimensional Schwarzschild background, it is easy to prove that the Klein-Gordon equation
in the Regge-Wheeler frame has the same form as (4.6) but with V (r) = 0,∀r. In this case
the estimator is reliable for any position of the cavity.

Figure 4.2: Estimator of the validity of the model: The closer to 1, the better the approxima-
tion. We see that, as expected, when we are far away from the horizon and when we consider small
cavities, ∆r∗/∆r′ approaches one. The inset located at the top right shows the behavior of the
ratio vs. R for a fixed value of L = 2 and the top left one shows how ratio changes with L when
the cavity is at R = 10 (all magnitudes are expressed in units of black hole mass).

Here we are using the same interaction Hamiltonian Ĥint as in Eq.(3.2). In our setting,
the switching function is nonvanishing only during the time the atom spends in the cavity,
i.e., χ(τ) = 1 during 0 ≤ τ ≤ T .

Expanding the field in terms of an orthonormal set of solutions inside the cavity yields
the Hamiltonian in the interaction picture [83]

Ĥint = λ
dτ

dt

∞∑
n=1

µ̂(t)√
ωnL

(
â†nun [r′(τ), t′(τ)] + ânu

∗
n [r′(τ), t′(τ)]

)
(4.9)

We will consider Dirichlet (reflective) boundary conditions for our cavity, (see Fig. 4.1)

φ [0, t′] = φ [L, t′] = 0 (4.10)



4.2 The setting 27

and so under our quasi-local approximation the field modes take the form of the stationary
waves

un [r′(τ), t′(τ)] = eiωnt
′(τ) sin [knr

′(τ)] . (4.11)

Note that ωn = |kn| = nπ/L, and r′(τ) and t′(τ) (given in equations (7.54) respectively)
parameterize the trajectory of the detector freely falling from a cavity whose first wall is
located at r = R in the frame (r, t), proper to a stationary observer at infinity.

We want to characterize the vacuum response of a particle detector undergoing the tra-
jectory in Eq.(7.54). For our purposes, we prepare the detector in its ground state and the
cavity in the vacuum state

ρ0 = |g〉〈g| ⊗ |0〉〈0| (4.12)

To proceed, we let this detector start free falling through the cavity as shown in Fig. 4.1.
The detector spends an amount of proper time T inside the cavity. The time evolution of
the system is governed by the interaction Hamiltonian (4.9) in the time interval 0 < τ < T ,
whereas for the detector in the cavity it is given by Eq.(3.4).

Using (4.9) and (3.4), the first order term of the perturbative expansion takes the form

Û (1) =
λ

i

∞∑
n=1

[
σ+a†nI+,n + σ−anI

∗
+,n + σ−a†nI−,n + σ+anI

∗
−,n
]
, (4.13)

in which

I±,n =

∫ T

0

dτ ei[±Ωτ+ωnt′(τ)] sin [knr
′(τ)] . (4.14)

To compute the density matrix for the detector, ρ
(d)
T , we need to take the partial trace

over the field degrees of freedom [49]. The first order contribution to the probability of
transition vanishes, so the leading contribution comes from second order in the coupling
strength, λ. The final form of the detector density matrix is

ρT,(d) = Tr(f)

[
ρ0 + Û (1)ρ0Û

(1)†+ Û (2)ρ0 + ρ0Û
(2)†
]
, (4.15)

which yields

ρT,(d) = Trf ρT =

[
1− P2 0
0 P1

]
, (4.16)

where P1 = P2 is given by

P1 = λ2

∞∑
n=1

|I+,n|2 (4.17)

= λ2

∞∑
n=1

∫ T

0

dτ

∫ τ

0

dτ1

[
e−i[Ωτ+ωnt′(τ)] sin [knr

′(τ)]× ei[Ωτ1+ωnt′(τ1)] sin [knr
′(τ1)]

]
.
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P1 gives the transition probability of the detector from the ground state to the first
excited state to the leading order in perturbation theory.

Note that we have decided to compute the probability of transition rather than the
transition rate. Given the time translational invariance of our setting, there is no formal or
computational advantage in computing the rate over the probability, and both magnitudes
contain the same information.

We furthermore note that the transition probability of a suddenly switched detector
becomes logarithmically divergent in the 3+1 dimensional case, but it is finite in lower
dimensional scenarios [37, 84], effectively rendering our calculation in the relevant radial
coordinate (where we assume the cavity is longer) divergence-free. A repetition of the same
calculation in 3 spatial dimensions would entail making the switching function of the detector
continuous. Alternatively one can compute differences between transition probabilities as in
[37, 85]. Since in this article we are comparing the Rindler with the Schwarzschild detector
response the fundamental results reported here would not be modified by these effects.

4.3 Transition probability of the detector

Applying the formalism of section 4.2, we proceed to present and compare our results for the
response of the detector freely falling in Schwarzschild spacetime to that of an accelerated
one in a Minkowski background.

For the Schwarzschild case, we consider a free-falling detector passing through a cavity.
It starts falling with zero initial velocity at at r = R, the entrance of the cavity. We assume
that the detector enters the cavity in the ground state (of the free Hamiltonian) and that the
field in the cavity is prepared in the local vacuum state. This set up is shown schematically
in Fig. 4.1. The detector gets excited due to the difference between its proper time and
the proper time in the cavity frame, which induces an effective time dependence in the
interaction Hamiltonian.

Using equation (4.17), we find the transition probability. We select an arbitrary value
(of λ = 0.01) for the coupling strength and set Ω = 6π/L so the detector resonates with the
6th mode of the field in the cavity. This somewhat arbitrary choice is convenient in that by
coupling the detector to a higher harmonic of the cavity we avoid its decoupling from the
cavity field by being taken off-resonance through the blueshift the field modes experience in
the detector’s frame [80].

Now, to compare these results with the Rindler scenario, we set a cavity of the same
proper length in a Minkowski background, traversed by an accelerated detector (of proper ac-
celeration a equal to the gravitational field intensity in the spherically symmetric Schwarzschild
background at a radius r = R) and with the same energy gap as above. The detector’s world-
line, parametrized in terms of its proper time is

x(τ) =
1

a
(cosh(aτ)− 1) , (4.18)

t(τ) =
1

a
sinh(aτ) (4.19)

so that the detector is at x = 0 (the cavity entrance) at time t = τ = 0. By inserting these
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functions in the interaction Hamiltonian (4.9) (substituting r′ and t′ by x and t) and following
the same calculation that we did for the Schwarzschild case, we find the transition probability
for the detector in Rindler spacetime. The behavior of the response of the accelerated
detector while it is passing through the cavity is shown in Fig. 4.3 (green squared curve). As
noted above, to compare the excitation probability of the detector in Rindler spacetime with
those at different radii in the Schwarzschild background, the detector’s proper accelerations
in the Rindler scenario will be taken to be

a =
m

R2
(
1− 2m

R

) 1
2

(4.20)

so that they are equivalent to the real acceleration measured by the detector at the specific
radii considered in the curved background (i.e. the local strength of the gravitational field).

Plotting all quantities in units of the black hole mass m, Fig. 4.3 shows the behaviour of
the excitation probability of the detector while it is traveling from the beginning to the end
of a cavity of size L = 5 located at radius R = 10 for both the Schwarzschild and Rindler
cases.

 0

 0.5

 1

 1.5

 2

 2.5

 0  1  2  3  4  5

Ex
ci

ta
tio

n 
pr

ob
ab

ili
ty

 (
×

10
-6

)

Position of the detector in the cavity

Schwarzschild
Rindler

Figure 4.3: Excitation probability of the detector while it is traveling from the beginning to
the end of the cavity of size L = 5. The green (squared) curve indicates the transition probability
in the Rindler background and the blue (circled) curve is for the case of Schwarzschild spacetime.
The coupling strength set to be λ = 0.01.

Figure 4.4 shows how the transition probability changes as we set the cavity at different
distances from the black hole for the cavity of fixed length and the consistent change in the
atom’s acceleration for the Rindler cavity.

To compare our results in the presence and absence of curvature, we present the ratio
of the probabilities of the two scenarios in Fig. 4.5. Each curve represents the behaviour of
the ratio for a specific length of the cavity as it is located at different R. According to the
approximation estimator we considered, the longer L cases are less accurate. However for all
radii above R = 40, the estimator (4.8) remains less than 3% above 1 even when the cavity
proper length is L = 6, which is the largest cavity length considered.

We see from Fig. 4.5 that the larger the cavity, the greater the difference in excitation
probability as the cavity is placed close to the horizon. As expected from the equivalence
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principle, very small cavities (L = 10−3) are virtually indistinguishable from the Rindlerian
case, therefore to see any distinction one would have to place the cavity much closer to
the horizon than our present computational resolution admits. However departures from
the Rindlerian case can be seen even for moderately small cavities (L = 0.3), and these
departures rapidly increase with cavity size provided one is within the vicinity of about 20
horizon radii.

A better comparison is given in Fig.4.5b, in which we compute the ratio of the probabil-
ities of the two scenarios where the constant acceleration for the Rindlerian case is taken to
be the Schwarzschild acceleration in the middle of the cavity. We see that the Schwarzschild
case is consistently smaller than the Rindler case, with the discrepancy increasing with both
increasing cavity size and closer proximity to the horizon.

4.4 Conclusions

We have introduced a cavity model in which we can find the transition probability of a
Unruh-DeWitt detector in a curved spacetime without facing the difficulties of solving the
wave equations, regularizations and defining the notion of vacuum state for different observers
in a curved background. Our model works well where the interplay of the size of the cavity
and strength of the curvature provides an environment in which a quasi-local approximation
to the wave equation is valid.

We studied the cavity setting in two scenarios: that of a freely falling detector in
Schwarzschild and that of a uniformly accelerated detector in flat space-time crossing a
stationary cavity. We found near-identical transition rates for both scenarios in the limit of
small cavities, with increasing departures from this situation as the cavity size increases.

Consequently, in the limit of small cavity and large R we are studying a particular case
of the equivalence principle: the Schwarzschild scenario is completely equivalent to a Rindler
scenario consisting of a cavity accelerating toward a stationary detector. We have shown that
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Figure 4.5: The ratio of the transition probability of an Unruh-DeWitt detector in a
Schwarzschild background to the equivalent quantity in Rindler spacetime. Each curve shows
the behaviour of the ratio for a different cavity length as it gets placed at different R from the
Schwarzschild black hole and equivalently gets assigned with different constant accelerations equal
to the Schwarzschild acceleration at the a) entrance to the cavity and b) middle of the cavity.



32 Cavities in Curved Spacetimes: The Response of Particle Detectors

this scenario coincides exactly with a setup where we have a uniformly accelerated detector
crossing an inertial cavity. Our work stands in contrast to that in which transition rates
of detectors are computed for scalar fields in free space (for a review see [21]). It would be
desirable in future work to go beyond the quasi-local approximation to better understand
the effect of curvature in the excitation probability.

More generally, comparing the Schwarzschild scenario to the Rindler scenario in which
the uniform acceleration is taken to be the Schwarzschild acceleration (average of the field
strength) in the middle of the cavity, we find that the latter case is consistently larger
than the former, the discrepancy increasing with both closer proximity to the horizon and
increasing cavity size. Our results show that the amounts of thermal radiation recorded by
a detector in a Rindler space and the Hawking-like radiation that the detector observes in a
Schwarzschild background approach the same quantity.

For larger cavities, the quasi-local approximation breaks down for distances closer to the
black hole where the curvature is large. To find the transition probability of the detector
in this case, one must solve for the response function of the detector using the Wightmann
function in free space.

Note that the response of our detector is independent of the global vacuum choice outside
the cavity since, in our idealized setting, the detector is ‘shielded’ by the cavity walls. For
non-ideal cavities the outside field could leak inside the cavity, which would indeed have an
effect on the response of the detector, particularly when the cavity is placed close to the
event horizon. In those situations the choice of vacuum outside the cavity would become
important. Considering these effects remains a subject of study for further research.

The methods we present in this chapter should be applicable to a much broader class
of situations. Inclusion of mass is straightforward, and it would be interesting to study the
effects of curvature relative to those previously obtained for uniform acceleration [86]. Of
particular interest is to understand the effects of an ergoregion on transition probabilities.



5
Measuring motion through relativistic

quantum effects

Note: The content presented in this chapter can be found in [2]. This work is in collaboration
with Eduardo Mart́ın-Mart́ınez and Robert B. Mann.

Quantum metrology provides techniques to make precise measurements which are not
possible with purely classical approaches. In quantum metrology protocols such as quantum-
positioning and clock-synchronization [87, 88], the exploitation of quantum effects such as
quantum entanglement has allowed for a significant enhancement of the precision in estimat-
ing unknown parameters as compared to classical techniques [89].

On the other hand, there exist metrology settings where general relativistic effects play
an important role in establishing the ultimate accuracy of the measurement of physical
parameters [90]. It is thus pertinent to introduce a framework where relativistic effects are
considered even in quantum metrology schemes [91], where it is relevant to study how (or if)
incorporating relativistic approaches to quantum metrology may increase the precision and
accuracy of the estimation and measurement of physical parameters.

In this chapter we focus on finding suitable quantum optical regimes where the response
of particle detectors becomes sensitive to small variations of the parameters governing their
motion, incorporating relativistic effects. Our goal is to assess the sensitivity of the response
of particle detectors to such variations, in turn allowing for the precise measurement of such
parameters.

In particular, we consider a setting in which an atomic detector crosses a stationary opti-
cal cavity while undergoing constant acceleration. Relativistic accelerating atoms in optical
cavities have been considered before in the context of an enhancement of Unruh-like radia-
tion effect [92–94], and later, in this context, to analyze the subtleties of the Unruh effect
in the presence of boundary conditions [80]. The suitability of such settings as theoretical
accelerometers was studied in [86], where it was shown that a detector’s response is sensitive

33
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to variations of its proper acceleration. In this chapter, we will show that near the rela-
tivistic regimes, but still, much below the accelerations required for the Unruh effect to be
detectable, the detectors’ response becomes sensitive to small (and maybe time-dependent)
perturbations in either the parameters that govern their trajectory or in the alignment of
the optical cavity. We will study this sensitivity to determine to what extent it is possible
to exploit it for quantum metrological effects.

We consider two different scenarios of metrological interest. In the first, we study the
sensitivity of the response of the detector to time-dependent variations of its proper acceler-
ation. Specifically, we consider a uniformly accelerated atomic detector crossing an optical
cavity with constant proper acceleration that undergoes a small harmonic time-dependent
perturbation. If the system alignment is tuned, we might wonder how sensitive it is to the
amplitude and frequency of the perturbation.

In the second scenario we study the sensitivity of the detector’s response to variations of
its trajectory. To accomplish this, we consider small harmonic perturbations of the spatial
trajectory of a uniformly accelerated observer. We explore how sensitive this setting is to
the amplitude and frequency of the perturbation, thus providing a setting to measure the
wellness of the atom’s trajectory alignment with respect to the cavity frame.

In the next section, we start by introducing two physical settings including the method-
ology for investigating our two scenarios.

5.1 The setting

In this section we consider two different scenarios in which we want to precisely measure
different parameters of the trajectory of an atomic probe. For the first scenario, which we
will call the accelerometer setting, we consider an atomic probe following a constantly accel-
erated trajectory, but whose proper acceleration undergoes a harmonically time-dependent
perturbation. In the second scenario, which we will refer to as the alignment metrology set-
ting, we consider that the atomic probe’s trajectory undergoes small harmonic perturbations
as seen from the lab frame, so as to be able to measure the precision of the alignment of a
cavity with a beam of atomic detectors.

In both scenarios we model the light-atom interaction by means of the Unruh-DeWitt
model. Although simple, this model captures the fundamental features of the coupling be-
tween atomic electrons and the EM field involving no exchange of orbital angular momentum
[45, 95].

5.1.1 A quantum accelerometer

Particle detectors with time dependent accelerations have been previously studied in [96, 97],
where the response of an Unruh-DeWitt detector with time dependent acceleration in the
long time regimes has been considered in a flat spacetime with no boundary conditions. We
would like to study how sensitive the detector response is to time-dependent perturbations
of its proper accelerations in the short-time regime and in optical cavity settings.

In order to analyze this accelerometer setting, let us first consider the parametrization
of the trajectory of an atomic probe for a general time dependent trajectory in terms of the
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probe’s proper time τ [98]:

x(τ) = x0 +

∫ τ

τ0

dτ ′ sinh
[
ξ(τ ′)

]
, (5.1)

t(τ) = t0 +

∫ τ

τ0

dτ ′ cosh
[
ξ(τ ′)

]
, (5.2)

where

ξ(τ ′) = ξ0 +

∫ τ

τ0

dτ ′a(τ ′) (5.3)

represents the atom’s instantaneous speed, and a(τ) is the instantaneous proper acceleration
of the probe.

For our purposes, we consider that the probe undergoes a constant acceleration, which
is disturbed by a small harmonic perturbation:

a(τ) = a0

[
1 + ε sin(γτ)

]
. (5.4)

ε and γ are the respective relative amplitude and frequency of the harmonic perturbation.
The general form of the trajectories for both perturbed and constant accelerations is

shown in Fig. 5.1.
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Figure 5.1: (Color online) The non-perturbed (blue-dashed curve) and perturbed (green-solid
curve) trajectory for the accelerometer scenario. The trajectory is parameterized in terms of the
proper time, τ of the detector.

In our setting, to find the transition probability of the detector, we let it cross a cavity of
length L with an initial velocity ξ0 and we measure its excitation probability for the period of
time T that it spends traveling the full length of the cavity. The Hamiltonian that describes
our system generates translations with respect to time τ in the detector’s proper frame. As
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in the last chapter, we model the detector-field interaction Hamiltonian with (3.2). The
Hamiltonian in the interaction picture that we apply here is

Ĥint(t) = λ
∞∑
n=1

µ̂d(τ)√
ωnL

(
â†nun [x(τ), t(τ)] + ânu

∗
n [x(τ), t(τ)]

)
. (5.5)

We still consider Dirichlet (reflective) boundary conditions for our cavity as in the last
chapter, φ

(
0, t
)

= φ
(
L, t
)

= 0. Working in the Minkowski background, the field modes take
the form of stationary waves

un [x(τ), t(τ)] = eiωnt(τ) sin [knx(τ)] . (5.6)

To characterize the vacuum response of the particle detector undergoing trajectory (5.1),
we initially prepare the detector in the ground state and the field in the optical cavity in
a coherent state |α〉. We choose the coherent state to be in the j-th cavity mode with
frequency ωj = jπ/L, while the rest of the cavity modes are in the ground state. This way
the main effects will not come from vacuum fluctuations but will instead be amplified by the
stimulated emission and absorption of photons by the atom coupled to the coherent state
[49, 99]. Therefore the initial state of the system will be

ρ0 = |g〉〈g| ⊗ |αj〉〈αj|
⊗
n6=j

|0n〉〈0n| . (5.7)

While passing through the cavity, the detector spends a period of proper time T inside
the cavity. Time evolution of the system is governed by the interaction Hamiltonian (3.2) in
the proper frame of the detector. Time evolution operator for the detector inside the cavity
and the system density matrix are given by (3.4) and (3.5), respectively.

Using the interaction Hamiltonian and the time evolution operator, the first order term
of the perturbative expansion will be

Û (1) =
λ

i

∞∑
n=1

[
σ+a†nI+,n + σ−anI

∗
+,n + σ−a†nI−,n + σ+anI

∗
−,n
]
, (5.8)

where I±,n is

I±,n =

∫ T

0

dτ ei[±Ωτ+ωnt(τ)] sin [knx(τ)] . (5.9)

As in Eqs. (5.10), to compute the density matrix for the detector, ρ
(d)
T , we need to take

the partial trace over the field degrees of freedom [49]. The leading contribution comes from
second order in the coupling strength, λ and the final form of the detector density matrix
will be [1]

ρT,(d) = Tr(f)

[
ρ0 + Û (1)ρ0Û

(1)†+ Û (2)ρ0 + ρ0Û
(2)†
]
, (5.10)
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which yields

ρT,(d) = Trf ρT =

[
1− Pα 0
0 Pα

]
. (5.11)

Pα is the transition probability of the detector from the ground state to the first excited
state to leading order in perturbation theory, given by [99]

Pα(ε, γ) =
λ2

L

[
α2
j

kαj

(
|I+,j|2 + |I−,j|2

)
+
∞∑
n=1

|I+,n|2

kn

]
, (5.12)

where αj is the amplitude of a coherent state in a cavity mode j of frequency kαj . Notice
that the probabilities Pα(ε, γ) depend on γ and ε through the integrals I±,n, given in (5.9) as
functions of x(τ) and t(τ). x(τ) and t(τ) dependence on a0, γ, ε is obtained by substituting
(5.3) and (5.4) into (5.1).

5.1.2 Alignment metrology

In the alignment metrology setting, we study the sensitivity of the response of a detector to
small harmonic spatial perturbations of its otherwise constantly accelerated trajectory, and
analyze its possible use as a witness of the relative alignment of an optical cavity with a beam
of atomic detectors. In this setting, the atomic probes move along a constantly accelerated
trajectory which undergoes a spatial perturbation that is harmonic in the cavity’s reference
frame, (x, t):

x(t) =
1

a

[√
1 + a2t2 − 1

]
+ ε sin(γt), (5.13)

where ε and γ are characterizing the amplitude and frequency of the perturbation, respec-
tively. In this case, since the motion is analyzed from the lab’s frame, we need to find
the (rather non-trivial) relationship between the proper time of the accelerated atom and
the cavity frame. The relationship between the cavity frame’s proper time and the atomic
probe’s proper time can be worked out from(

dτ

dt

)2

= 1−
(
dx

dt

)2

. (5.14)

Solving this differential equation for dτ/dt together with (5.13) yields

τ(t) =
arcsinh(at)

a
−
aε
(

cos(γt) + tγ sin(γt)
)

γ
+O(ε2). (5.15)

The general form of this trajectory is shown in Fig. 5.2 for both the perturbed and the
non-perturbed cases.

While crossing the cavity, the detector spends a period of time T in traversing the full
length along its trajectory. In order to find the time evolution of the system, we first need
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Figure 5.2: (Color online) The non-perturbed (blue-dashed curve) and perturbed (green-solid
curve) trajectory for the alignment metrology setting. The trajectory is parameterized in the lab’s
frame (x, t).

to find the form of the atom-field Hamiltonian that generates evolution for the entire system
with respect to the time coordinate of the lab frame, t. The way to obtain this is explained
in detail in [78]. The correct time-reparametrization of (3.1) in terms of t is given by

Ĥ(t) =
dτ

dt
Ĥ

(d)
free[τ(t)] + Ĥ

(f)
free(t) +

dτ

dt
Ĥint[τ(t)]. (5.16)

The monopole moment operator takes the usual form

µ̂(t) =
(
σ+eiΩτ(t) + σ−e−iΩτ(t)

)
, (5.17)

and interaction Hamiltonian becomes

Ĥint(t) = λ
dτ

dt

∞∑
n=1

µ̂(t)√
ωnL

(
â†nun [x(t), t] + ânu

∗
n [x(t), t]

)
, (5.18)

with

un [x(t), t] = eiωnt sin [knx(t)] . (5.19)

Working in this frame, the form of the function I±,n in the time evolution operator (5.8)
turns into

I±,n =

∫ T

0

dt ei[±Ωτ(t)+ωnt] sin [knx(t)] . (5.20)

Using the same approach as in the accelerometer setting, for characterizing the vacuum
response of the particle detector undergoing trajectory (5.13), we prepare a coherent state
(5.7) for the scalar field to which the ground state of the detector is coupled and find the
transition probabilities from (5.12).
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5.2 Results

The transition probabilities of atomic detectors crossing the cavity contain information about
the parameters characterizing the detectors’ motion. Of course, we would not want to use
perturbations of the Unruh temperature as a means to characterize the the trajectory of the
detector. This would be a rather futile endeavour since the the Unruh temperature itself is
something extremely difficult to measure, let alone small perturbations of it. Instead, we
will operate in a non-equillibrium regime where the detector will not have enough time to
thermalize with the ‘modified’ Unruh radiation. Therefore, we let the detector spend a small
amount of time inside the cavity such that it does not thermalize with its environment. On
top of that, and as discussed above, we consider a coherent state background which helps
amplify the signal. This is the reason why we may expect our system to show more sensitivity
to the atom’s trajectory. In this section, we analyze the sensitivity of the response of the
detectors to perturbations in the kinematical parameters of the detectors’ trajectory that we
want to measure, both in the accelerometer and the alignment settings.

We pause to remark that our choice of switching function χ(t) (shown above equation
(6.2)) removes the interaction between the field and the atom is off when the atom is outside
of the cavity. This assumption needs some justification since one cannot just ‘switch off’
the interaction of the atom with the electromagnetic field when it is outside the cavity.
The rationale of this assumption is twofold. On one hand we assume that the atomic
state preparation happens at the entrance of the cavity, when the atom’s speed is zero.
Equivalently, we are considering a situation in which the atom is post-selected to be in its
ground state prior to entering the cavity, and so pre-existing excitations as may be present
outside of the cavity are not relevant. On the other hand, the main effects on the atomic
state responsible for the results reported here are provoked by the variation of the boundary
conditions and the perturbation of the atomic trajectory, which are amplified by the fact that
the trajectory is relativistic. As we discussed above, the signature of the Unruh effect itself
is small as compared to the non-equilibrium effects coming from the time dependence of the
trajectory perturbations. Therefore if the flight of the atom includes some small segments
of free flight (outside the cavity), since the Unruh noise would be in these cases arguably
negligible it should not modify our results.

5.2.1 A quantum accelerometer

We focus first on the accelerometer setting, in which there might be small fluctuations of the
probe’s acceleration of the detector in its own proper frame. We will model this by assuming
that the proper acceleration of a set of uniformly accelerated detectors is perturbed by a
small harmonic function. One possible way to think about these time dependent oscillations
is to associate them with possible inexactnesses in the measure of the acceleration in the
proper frame of the detector, so that through relativistic quantum effects we may expect to
be able to use the internal degree of freedom of the atomic probe to increase the accuracy
in exactly determining this proper acceleration.

With this aim, we study the sensitivity of the transition probability of the detector to
the amplitude of the harmonic perturbations and characterize the spectral response of the
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setting to the specific frequency range of the perturbations. The detector’s trajectory (with
a harmonically perturbed acceleration) is given by inserting (5.4) in (5.1).

To study how sensitive the setting is to the parameters of the perturbation, we will
analyze the following sensitivity estimator:

S(ε, γ) =
|Pα(ε, γ)− Pα(0, γ0)|

Pα(0, γ0)
(5.21)

where P (ε, γ) is the transition probability of the detector with a perturbed acceleration given
by (5.4), and P (0, γ0) is the transition probability for a constantly accelerated detector whose
trajectory is unperturbed.

Fig.5.3 shows the explicit dependence of the sensitivity estimator (5.21) on the parameters
characterizing the perturbation. Namely, it shows the sensitivity of the response of the
detector to the amplitude ε of the perturbations for different values of acceleration, whereas
the spectral response of the sensitivity to different values of the perturbation frequency (γ)
is shown in Fig.5.4.
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Figure 5.3: (Color online) Behaviour of the sensitivity of the detector’s transition probability
as a function of the amplitude of a perturbed proper acceleration for different initial accelerations.

As one can observe in Fig.5.3, for small accelerations, closer to the regimes where the
atom does not attain relativistic speeds while crossing the cavity, the sensitivity (to acceler-
ation perturbations) of the detector’s transition probability is monotonic on the amplitude
of the perturbations. However, for large accelerations the sensitivity does not behave mono-
tonically, and there appear specific amplitudes for which the sensitivity dips. The spectral
response displayed in Fig.5.4 shows that the response of the detector is always more sensitive
to the lower frequencies. The behaviour for higher frequencies depends on the energy gap
of the atomic probe. For a fixed gap, the sensitivity of the probe seems to be exponentially
suppressed as the frequency of the perturbations grows. One possible way to understand this
is that when the frequency of the harmonic acceleration perturbation is much higher than
the frequency associated with the transition of the atom, the the atomic probe is primarily
responsive to its average constant acceleration; the perturbations are much faster than the
dynamics of the atom and so become invisible to it. However, as we see in Fig. 5.4b), it is
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possible to adjust the gap of the atomic transition used as a probe to tune out to a specific
frequency range of the perturbations.

In Fig. 5.4c), we show how sensitive the response of the atomic probes is to the length of
the cavity they’re traversing. This in turns also determines how much relativistic the probes
are when existing the cavity for constant acceleration. These curves also suggest that it may
be possible to use similar settings as a means to determine the length of an optical cavity.

Of course, the sensitivity estimator we studied only gives us an idea of the potentiality of
these settings for the measurement of the parameters of the perturbation. A more realistic
practical implementation of such settings would require considerable effort. For example this
might be implemented by comparing one setting where all the parameters are known with
another setting where the parameters are not known. The comparison of the transition rates
of beams of atoms in these two settings may reveal the information about the parameters to
be determined. In such a comparison the estimator built here becomes relevant.

5.2.2 Alignment metrology

In the alignment setting we assume that the trajectory of uniformly accelerated detectors is
perturbed by a small harmonic motion, that we could, for instance, ascribe to oscillations
of the trajectory of the detector in the cavity frame. These can be understood as time
dependent imprecisions in the alignment of the setting with the optical cavity.

Here we study the sensitivity of the detector’s response to the amplitude of the harmonic
perturbations and characterize the spectral response of the setting to the frequency of per-
turbations. We consider the spatial perturbation as expressed in equation (5.13). Since in
the derivation of the parametrization of the detector’s world line (5.15) we linearized in the
amplitude of the perturbation ε, we only consider small amplitudes 0 < ε < 0.1 in our study.
The sensitivity of the response of the detector as a function of the amplitude ε for different
values of acceleration and different frequencies are shown in Fig. 5.5a) and b) respectively.
We estimate this sensitivity by using the same quantity (5.21) as in the accelerometer setting
with the only difference that P (ε, γ) represents transition probability of the detector with a
spatially perturbed trajectory which is otherwise constantly accelerated.

As shown in Fig. 5.5a) for small accelerations where the system is closer to nonrelativistic
regimes, the detector’s response shows more sensitivity to the perturbation of its trajectory
than in the case of higher accelerations (relativistic regimes). In contrast to the previous case
of perturbations in the probe’s proper acceleration, we see from Fig. 5.5b) that the detector’s
response is less sensitive to low frequency perturbations of its spatial trajectory. This is
again reasonable, considering that the higher the frequency of perturbations of the spatial
trajectory in the lab frame, the more of an effective change they will have on the detector’s
proper acceleration; a high frequency spatial perturbation in the lab frame corresponds to a
large instantaneous change of the proper acceleration of the detector. This in turn affects the
response of the detector more dramatically than if the perturbation of the spatial trajectory
is slow. As expected, the sensitivity increases monotonically as the amplitude of fluctuations
grows, as seen in the figures.

We display in Fig. 5.6 the spectral response of the sensitivity of the probe’s excitation



42 Measuring motion through relativistic quantum effects

Ï

Ï

Ï

Ï Ï
Ï

Ï
Ï

Ï
Ï

Ï

Ê

Ê

Ê

Ê
Ê

Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê

Á

Á

Á
Á

Á
Á Á Á Á Á

‡

‡

‡
‡

‡
‡

‡ ‡ ‡ ‡

Ù
Ù

Ù

Ù Ù
Ù

Ù
Ù

Ù
Ù

0.0 0.2 0.4 0.6 0.8 1.0

0.1
0.2

0.5
1.0
2.0

5.0
10.0

g

SHe=
0.
1,
gL

Ù a=1

Ï a=0.7

‡
a=0.4

Á
a=0.1

Ê
a=0.05

a

Ï

Ï

Ï

Ï

Ï

Ï Ï Ï Ï Ï

Ù Ù
Ù Ù

Ù

Ù

Ù Ù Ù Ù
‡

‡

‡

‡
‡

‡ ‡ ‡ ‡ ‡

Á
Á

Á

Á Á
Á

Á
Á

Á
Á

Ê

Ê
Ê Ê

Ê
Ê

Ê
Ê

Ê
Ê

0.0 0.2 0.4 0.6 0.8 1.0

0.01

0.1

1

10

g

SHe=
0.
1,
gL

Ù a=18

Ï a=15

‡
a=12

Á
a=6

Ê
a=3

b

Ù

Ù Ù
Ù

Ù Ù Ù Ù Ù Ù

Ï

Ï

Ï Ï Ï Ï Ï Ï Ï Ï Ï

‡
‡

‡ ‡
‡

‡
‡ ‡ ‡ ‡

Á

Á

Á

Á
Á
Á Á Á Á Á Á Á Á Á Á

Ê Ê

Ê

Ê Ê

Ê

Ê

Ê
Ê

Ê Ê Ê Ê Ê Ê

0.0 0.2 0.4 0.6 0.8 1.0

0.01

0.05
0.10

0.50
1.00

5.00
10.00

g

SHe=
0.
1,
gL

Ù L=3.4

Ï L=2.8

‡
L=1.6

Á
L=1

Ê
L=0.4

c

Figure 5.4: (Color online) Spectral response of the detector for a) both relativistic and nonrel-
ativistic accelerations, b) different modes of the field which are in coherent states and coupled to
the ground state of the detector and c) different lengths of the cavity.
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probability for a fixed amplitude of the perturbation for different values of the setting pa-
rameters: proper accelerations Fig. 5.6a), cavity lengths Fig. 5.6b) and detector gaps Fig.
5.6c).

The general trend in all cases is that the transition probability of the detector presents
dips for specific values of the perturbation frequency γ. In other words, there are some
specific perturbation frequencies for which the sensitivity of the setting goes down abruptly,
being the position of these dips is a function of the system parameters. This resonance-like
effect may be related with the spatial distribution of the cavity modes as seen from the
reference frame of the atom whose trajectory is perturbed, but it seems to depend non-
trivially on the system parameters and we have not been able to identify its exact origin
through numerical analysis.

5.3 Conclusions

We have analyzed the sensitivity of the response of a constantly accelerated atomic probe,
traversing an optical cavity, when its trajectory is perturbed. We showed that the probe’s
transition probability is, in principle, sensitive to small deviations from constant acceleration.
We conclude that the transition rate of a beam of atoms transversing optical cavity can
provide information about its past spatial trajectory.

We have theoretically studied the potential of the use of an atomic internal quantum
degree of freedom to design novel quantum metrology settings. In particular we considered
two scenarios: one where the probe undergoes small time-dependent perturbations of its
proper acceleration, and another one when the probe’s trajectory experiences small spatial
time-dependent perturbations as seen from the laboratory’s frame.

The first scenario could correspond to an accelerometer setting where we use the internal
degree of freedom of the atom to identify small time-dependent forces acting on the probe
that will cause it to deviate from constant proper acceleration. The second scenario could
correspond to an alignment measurement setting where we use the internal atomic degree
of freedom to characterize small vibrations or imperfections of the alignment of an optical
cavity with a beam of atoms transversing it.

While an analysis of a proper experimental implementation goes beyond the scope of
this chapter, these findings have a potential use in quantum metrology of optical setups. For
instance one could compare one setting where all the parameters are known with another
setting where they are not known.

In practice, however, the ratio of the probabilities will be subject to significant statistical
fluctuations that could mask the effects we have obtained. To achieve the sensitivity levels
that are potentially available, the implementation of our scheme will require accumulation of
statistics over a number of identical experiments by sending a large number of atomic probes
through the cavity. Thus, by analyzing the transition rates of different atomic beams, one
could in principle deduce the specific form of the trajectory of such beams or infer the
parameters of the optical cavities they are traversing.
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Figure 5.5: (Color online) The sensitivity of the excitation probability of the detector to the
amplitude ε of the trajectory perturbations for a) different constant accelerations and for b) different
frequencies of perturbation.
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Figure 5.6: (Color online) Spectral response of the detector for a) different accelerations from
nonrelativistic regimes (a = 0.005, 0.01, 0.05) to relativistic regimes (a = 0.1, 0.4, 0.7, 1), b) different
lengths of the optical cavity and c) different modes of the field which are in coherent states and
coupled to the state of the detector.
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6
Strong transient modulation of horizon

radiation

Note: The content presented in this chapter can be found in [4]. This work is in collaboration
with Achim Kempf.

The spectrum of the Unruh radiation of non-uniformly accelerated trajectories is not
thermal and, depending on the extent to which the Unruh radiation is modulated, it can
carry information about the trajectory. Analogously, via the equivalence principle, as a
black hole accretes matter, its Hawking radiation is not thermal and, depending on the
extent to which the Hawking spectrum is modulated, it may carry classical and possibly
quantum information about the infalling matter. With this motivation, we here focus on
the Unruh effect, answering the long-standing question of to what extent Unruh spectra
can be modulated through non-uniform acceleration and, correspondingly, what the optimal
trajectories are. Our findings should be of interest also for experimental efforts to detect the
Unruh effect.

6.1 Introduction

Our aim here is to answer a long-standing question regarding the Unruh effect, see [5, 20, 37,
47, 51, 97], namely the question of to what extent Unruh spectra can be modulated through
non-uniform acceleration and, correspondingly, which trajectories between given initial and
final velocities optimize the magnitude of the Unruh effect.

On one hand, our findings should be useful for designing experiments to detect the
Unruh effect. On the other hand, our findings should be of interest because the Unruh and
Hawking effects [6, 61] are closely related via the equivalence principle: a particle detector
stationed close to the horizon of a black hole behaves in many ways similar to a detector
in Minkowski space with corresponding acceleration, see [17, 39, 40, 55, 100, 101]. This

47
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connects our study here to a long-standing question regarding the Hawking effect: while
a black hole accretes matter its Hawking radiation may not be thermal, i.e., it may not
be of maximum entropy for the given energy, which means that it may carry classical and
potentially quantum information away. In the context of the black hole information loss
problem [62, 73, 102–104], a key question is, therefore, to what extent the transient Hawking
radiation can be modulated.

From the perspective of the Unruh effect that we will focus on here, there is indeed
reason to expect that horizon radiation can be modulated significantly by variations in the
acceleration (or, as far as the equivalence principle applies, by variations in a black hole’s
surface gravity). To see this, we begin by recalling the mechanism behind the Unruh effect.
First, any quantum system that can act as a detector of field quanta must contain a charge
in order to couple to the field. As the detector is accelerated so is its charge and it will,
therefore, radiate, i.e, it will excite the quantum field. The quantum field backreacts by
exciting the detector, which is then interpreted as the detector registering Unruh radiation.
The formation of a horizon is not strictly necessary for the Unruh effect to occur.

For accelerated classical charges, backreaction effects, such as the Abraham Lorentz force
[105] or Feynman and Wheeler’s radiation resistance [106], are known to be sensitive to varia-
tions in acceleration. It is, therefore, plausible that the Unruh effect can also be significantly
modulated by variations in a particle detector’s acceleration, i.e., by higher-than-second
derivatives in the detector’s trajectory. For prior work on detectors with non-uniform ac-
celeration, see, in particular, [2, 41, 49, 97, 107–111]. In the chapter, our main goal is to
determine to what extent the Unruh effect can be enhanced or suppressed by a suitable
choice of non-uniformly accelerated trajectory, as compared to the uniformly accelerated
trajectory with the same initial and final velocities.

6.2 The Setting

While we will not carry out an information theoretic analysis here, the underlying motivation
is ultimately information theoretic. Therefore, we will not calculate the magnitude of the
overall Unruh effect. Instead, we will calculate for each elementary Unruh process separately
how its probability amplitude is affected by non-uniformity of the acceleration. By an
elementary Unruh process we mean a process in which the accelerated detector creates a
field quantum of momentum k while transitioning from its ground state of energy E0 into
an excited state of energy E1.

For simplicity, we consider a free scalar field and we model particle detectors as localized
first-quantized two-level systems, so-called Unruh-DeWitt (UDW) detectors with interaction
Hamiltonian [5, 17, 24, 37, 45, 95, 112]:

ĤI = λχ(τ)µ̂(τ)φ̂ (x(τ), t(τ)) . (6.1)

Here, τ is the proper time of the UDW detector, (t(τ),x(τ)) is its trajectory, and φ̂ (x(τ))
is the field along the trajectory. λ is a small coupling constant and χ(τ) ≥ 0 is a window
function to switch the detector. µ̂(τ) is the detector’s monopole moment operator:

µ̂(τ) = (σ̂+eiτ∆E + σ̂−e−iτ∆E). (6.2)
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Here, ∆E = E1−E0 is the proper energy gap between the ground state, |E0〉, and the excited
state, |E1〉, of the detector. In Minkowski space, the first-order probability amplitude for an
UDW detector to register a particle, i.e., to transition from its ground to its excited state,
|E0〉 → |E1〉 while creating a particle of momentum k ∈ R3 from the vacuum is given by
[17],

ψk(∆E) = η

∫ ∞
−∞

ei∆E τei(ωkt(τ)−k.x(τ))χ(τ)dτ, (6.3)

where

η =
iλ 〈E1| µ̂0 |E0〉
(16π3ωk)1/2

. (6.4)

Apart from a constant prefactor, ψk(∆E) is the Fourier transform of the τ -dependent func-
tion ei(ωkt(τ)−k.x(τ)). Since the interaction Hamiltonian is time-dependent (as a result of
time-dependent trajectory), energy is not conserved. One source of energy here is coming
from the agent who transfers energy to the detector to accelerate it and also to the field.

If an always-on detector, χ(τ) ≡ 1, is on an inertial trajectory through the origin with a
velocity v, then

ei(ωkt(τ)−k.x(τ)) = eiτ(ωk−k.v)(1−v2)−1/2

= eiω̄τ , (6.5)

yielding

ψk(∆E) = 2πηδ(∆E + ω̄). (6.6)

Since ∆E ≥ 0 and ω̄ = (ωk − k.v)(1− v2)−1/2 > 0, we have ψk(∆E) = 0, i.e., an always-on
inertial detector will not get excited. ψk(∆E) is non-vanishing for a suitable ∆E < 0. This
is the case of an initially excited detector that decays while emitting a field quantum of
momentum k.

Here, we are interested in the amplitude, ψk(∆E), for an Unruh process to occur, i.e.,
for an accelerated detector that starts in the ground state (i.e., ∆E > 0) to get excited
in the Minkowski vacuum. This amplitude can be nonzero because of the mathematical
phenomenon that a wave that monotonically changes its frequency within a certain (e.g.,
negative) frequency interval will have a Fourier transform which contains also frequencies
outside that interval, including positive frequencies. The mathematical machinery underlying
the Fourier Transform (FT) has been widely used in both science and engineering areas
such as quantum mechanics, imaging, signal processing and communication. The Fourier
transform reveals the frequency composition of a signal (function of time) by transforming it
from the time domain into the frequency domain while its inverse combines the contribution
of all the frequencies to recover the original signal. There is a mathematical phenomenon that
when a wave generator has its frequency vary over time from frequency ω1 to ω2, then the
Fourier transform of the resulting signal includes not only plateau, namely, the frequencies
in the interval from ω1 to ω2 but also significantly includes the highly oscillatory frequencies
outside that interval on the tail of the FT both in positive and negative frequencies as shown
in Fig.6.1.
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CFCF

Figure 6.1: Fourier transform of a monotonically increasing function which includes the con-
comitant frequencies (CF).

The occurrence of such concomitant frequencies, is at the heart of the Unruh effect:
Intuitively, ei(ωkt(τ)−k.x(τ)) runs through a set of positive values for ω̄, which should prevent
excitation. The Fourier transform, ψk(∆E), generally shows, however, the presence of both
positive and negative frequencies in ei(ωkt(τ)−k.x(τ)), i.e., the probability amplitude ψk(∆E)
is nonzero also for ∆E > 0.

A simple example is a detector with constant acceleration, a, and trajectory (t(τ), x(τ)) =
(sinh(aτ)/a, cosh(aτ)/a, 0, 0) with k = (1, 1, 0, 0) and χ(τ) ≡ 1. The Fourier integral Eq.6.3
can be solved using the Gamma function:

ψk(∆E) =
µ

a

√
∆E

ωk
e−

π∆E
2a ei ∆E

a
ln(

ωk
a

)Γ(−i∆E/a). (6.7)

Another example is an always-on detector which, for a finite amount of time, is accelerated
so that the frequency increases linearly, preceded and followed by inertial motion. Fig.6.2
shows the Fourier transforms ψk(∆E) for this trajectory and for a trajectory of uniform
acceleration. Both exhibit the presence of concomitant frequencies, including finite ampli-
tudes for positive ∆E which cause the Unruh effect: We expect the Fourier transform for
the trajectory of temporary acceleration to contain frequencies within the interval from the
initial to the final frequency (on the negative half axis), as well as a peak at either end of
the interval because the initial and final velocities are maintained for an infinite amount of
time. The Fourier transform contains these features as well as concomitant frequencies on
the negative and positive ∆E axes. Similarly the case of the trajectory of uniform accelera-
tion is expected to contain frequencies on the negative ∆E half axis but it also has support
on the positive half axis.

Our aim now is to study the origin of the phenomenon of concomitant frequencies in order
to determine how strong and how weak the phenomenon can be made, i.e., to what extent
ψk(∆E) can be modulated by choosing trajectories with suitable non-uniform accelerations.

Before we do so, we need to separate off another effect which can also lead to detec-
tor excitations in the vacuum, namely the effect of a switching of the detector through a
nontrivial function χ(τ). Assume that the detector is inertial, which means that in Eq.6.3
the complete integrand, u(τ) = ei∆Eτei(ωkt(τ)−k.x(τ)), takes the form u(τ) = ei

∫ τ
0 ω(τ ′) dτ ′ with
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Figure 6.2: The Fourier transform, |ψk(∆E)|, for a trajectory of uniform acceleration (dashed)
and a trajectory of temporary acceleration (solid) with the frequencies running through the interval
(5, 80). The finite amplitudes on the positive axis show the concomitant frequencies that cause the
Unruh effect.

ω(τ ′) ≡ ω and ω > 0. Then if the detector is switched on for an integer number of cycles of

the integrand, its integral ψk(∆E) vanishes,
∫ 2πN/ω

0
eiωτdτ = 0.

However, if the detector is kept on for a non-integer number of cycles (or if χ(τ) is a
generic smooth switching function), then ψk(∆E) is finite. The effect is maximal for a half
integer number of cycles, in which case |ψk(∆E)| = 2/ω. Physically, the finite probability for
an inertial detector to click due to this truncation effect expresses the time-energy uncertainty
principle. Our interest here, however, is not in the time-energy uncertainty principle but in
the phenomenon of concomitant frequencies. Therefore, we now investigate the contribution,
ψ

(N)
k (∆E), of an integer number, N , of complete cycles of the integrand in Eq.6.3, to the
ψk(∆E) of an always-on detector.

We can thereby trace the origin of concomitant frequencies (and acceleration-induced
detector clicks in the vacuum) to the fact that the integral over N complete cycles does not
need to be zero if the frequency changes during the N cycles. Consider an always-on detector
with a trajectory with an integer number, N , of cycles completed in the time interval [0, τf ],
i.e., u(0) = u(τf ) = 1. In the integrand u(τ) = ei

∫ τ
0 ω(τ ′) dτ ′ , when the detector accelerates

(or decelerates), ω(τ ′) > 0 is a monotonically increasing (or decreasing) function.
We arrive at the extremization problem to find those monotonic functions, ω(τ ′), obeying

0 < ω(0) < ω(τf ) which extremize

|ψ(N)
k (∆E)| =

∣∣∣∣∫ τf

0

ei
∫ τ
0 ω(τ ′)dτ ′dτ

∣∣∣∣ (6.8)

while completing N cycles. Given ω(τ), corresponding trajectories, differing by directions,
can then be reconstructed straightforwardly. The question is which ω(τ) and corresponding
trajectories, i.e., which accelerations as a function of time, contribute maximally or minimally
to ψk(∆E) for fixed k,∆E, N and for fixed initial and final velocities.
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We can solve the corresponding constrained variational problem by using symmetry
considerations. To this end, we change the integration variable in Eq.(6.8) by defining
v(τ) :=

∫ τ
0
ω(τ ′)dτ ′, so that dτ/dv = 1/ω(τ(v)):

ψ
(N)
k (∆E) =

∫ 2πN

0

eiv 1

ω(τ(v))
dv. (6.9)

The extremization problem is now to find those monotonic functions ω(τ(v)) which extremize

|ψ(N)
k (∆E)|. The integral is equivalent to calculating the center of mass of a wire of length

2πN coiled up N times on the unit circle in the complex plane with the wire’s mass density
at length v being 1/ω(τ(v)). The problem of maximizing |ψ(N)

k (∆E)| is now to monotonically
vary the mass density of the wire between its prescribed initial and final values 1/ω(0) and
1/ω(τ(2πN)) such that the center of mass of the coiled-up wire is as much as possible off
center.

For N = 1, the answer is clearly to put as much mass as possible on one half circle and as
little as possible on the other half. This means that |ψ(1)

k (∆E)| is maximal if the initial ω is
maintained, ω(τ(ν)) ≡ ω(0), in the first half of the cycle and then the frequency is abruptly
changed to the final frequency which is then maintained, ω(τ(ν)) ≡ ω(2π), for the second
half of the cycle. All acceleration happens abruptly mid cycle. The maximum is, therefore:

|ψ(1)
k (∆E)| =

∣∣∣∣∫ 2π

0

eiv

ω(τ(v))
dv

∣∣∣∣ = 2

∣∣∣∣ 1

ω(0)
− 1

ω(τf )

∣∣∣∣ . (6.10)

For N > 1, by the same argument, it is optimal to pursue this acceleration regime in one
of the cycles and to have all prior and subsequent cycles at constant velocity. Eq.6.10 also
shows that the effect of concomitant frequencies can grow as large as

2 max(1/ω(0), 1/ω(τ(2π))), (6.11)

which is the maximal size of the truncation effect due to the time-energy uncertainty prin-
ciple.

Conversely, there are trajectories over N cycles that contribute minimally to |ψk(∆E)|.
These are the trajectories where all accelerations are abrupt and occur only at the beginnings
(or ends) of cycles. In this way, all cycles are individually monochromatic and do not

contribute. The minimum is, therefore, |ψ(N)
k (∆E)| = 0.

We conclude that suitable non-uniform acceleration over N cycles is able to modulate the
amplitude, |ψ(N)

k (∆E)|, for individual Unruh processes within the range (0, 2 |1/ω(0)− 1/ω(τf )|).
This confirms our expectation that suitable nonzero higher-than-second derivatives in

trajectories can significantly modulate the Unruh amplitudes |ψ(N)
k (∆E)|. However, these

trajectories are unrealistic in the sense that they are distributional by requiring a sud-
den contribution of arbitrarily large higher derivatives. The question arises to what extent
|ψ(N)
k (∆E)| can be modulated by trajectories that are regular in the sense that they possess

only a few nonzero higher derivatives and to what extent such trajectories can enhance the
Unruh effect compared to trajectories of uniform acceleration with the same initial and final
velocities.
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In order to calculate those trajectories that optimize |ψ(N)
k (∆E)| when allowing only

finitely many derivatives to be nonzero, we solved the problem of constrained optimization
of |ψ(N)

k (∆E)| by finding a suitable trajectory numerically. The trajectory is indirectly
represented by a polynomial function, ω(τ), of a pre-determined maximal degree, which is
monotonically increasing between set initial and final values, within a fixed integer number,
N , of cycles.

constant acceleration tarjectory
polynmial trajectory

Figure 6.3: The velocity, v(τ), for a straight line trajectory of uniform acceleration (dashed),
and the velocity v(τ) of a polynomial straight line trajectory that is orthogonal to k, of degree 13

and optimizes |ψ(3)
k (∆E)| over three cycles (solid).

We remark that since ω(τ) is not the trajectory itself, its polynomial expansion is not the
same as the standard expansion of a trajectory in terms of acceleration, jerk, snap and higher
derivatives, which was used, for example, in the analysis of non-uniform trajectories in [97].
Fig.6.3 compares a trajectory of constant acceleration with the trajectory that maximizes
|ψ(N)
k (∆E)| among all trajectories of polynomial degree n ≤ 13 for N = 3 cycles and the same

overall change in velocity. We notice that the latter trajectory involves alternating periods
of diminished and enhanced acceleration. We can now address to what extent a trajectory
with non-uniform acceleration can increase the probability for an elementary Unruh process
to occur.

To this end we compare, in Fig.6.4, the moduli of the probability amplitudes |ψ(N)
k (∆E)|

for elementary Unruh processes for an optimal trajectory (which is of distributional accel-
eration), for a regular trajectory of non-uniform acceleration that is polynomial of a given
degree, and for a trajectory of uniform acceleration, all with the same initial and final veloc-
ities. We see that the larger the difference between the initial and final velocities, the more
|ψ(N)
k (∆E)| can be enhanced by a trajectory of non-uniform acceleration.

We asked to what extent the Hawking spectrum can be modulated by a black hole’s
growth, and therefore to what extent the modulated Hawking radiation can carry away
information about the infalling matter. Via the equivalence principle, this motivated us to
determine the extent to which the Unruh spectrum of non-uniformly accelerated trajectories
can be modulated.
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Technically, we asked how much the probability for an individual Unruh process can be
enhanced by choosing a trajectory of suitable non-uniform acceleration while holding fixed
the initial and final velocities and the number of cycles. We found that the probability for
an Unruh process can be enhanced strongly over its probability for a trajectory of uniform
acceleration. |ψ(N)

k (∆E)| can reach as high as 2 |1/ω(0)− 1/ω(τf )|, whose magnitude is
comparable to max(2/ω(0), 2/ω(τf )), which is the maximal size of the effect due to a sudden
switching of the detector. The effect of sudden switching of an UDW detector is known to be
very large in the sense that in 3+1 dimensional Minkowski space the cumulative excitation
probability obtained by integrating |ψk(∆E)|2 over all modes k, diverges [37, 47, 113].

Further, we determined the condition for the modulation of |ψk(∆E)| to be strong by
analysing the origin of concomitant frequencies. We found that the condition is that there is
a significant change in frequency within one cycle, i.e, that the trajectory is non-adiabatic in
this sense. Let us now estimate if this condition can realistically be met in the cases of the
Unruh and Hawking effects. The Unruh temperature for a trajectory of uniform acceleration,
a, is T = a/2π, with the dominant radiation at a wavelength of λ ≈ 1/a, in natural units.
Therefore, to significantly modulate the dominant Unruh processes, the acceleration needs
to significantly change at or below the time scale λ ≈ 1/a.

To the extent that the equivalence principle applies, this indicates that for the dominant
modes of Hawking radiation to be modulated significantly by an infalling body, the time scale
for the black hole to settle after accreting the body should be at or below the oscillation time
scale of the dominant wavelength of the Hawking radiation. Since these time scales are of the
same order, namely of the order of the formal light crossing time of the Schwarzschild radius,
our results indicate that the spectrum of Hawking radiation may indeed be significantly
modulated by the transient non-adiabaticity caused by infalling matter.

Going forward, it may not be necessary to continue to invoke the equivalence principle to
transfer results about the Unruh effect to the Hawking effect. Instead, our new approach to
concomitant frequencies may be useful directly in any study of the modulation of Hawking
radiation and the amount of classical and quantum information it can carry away. This
is because any such calculation should in some regime yield a modulation of Bogolyubov
β coefficients and these are in effect concomitant frequencies: to choose a definition of the
vacuum state is to choose a definition of what constitutes positive frequencies in mode
functions. The Bogolyubov β coefficients that arise with a change of vacuum are then the
amplitudes of negative frequencies that arise from the varying of positive frequencies. For
example, in the case of uniform acceleration, the same integral as that leading to Eq.6.7
arises in the calculation of the Bogolyubov β coefficients, see, e.g., [55]. It should, therefore,
be of interest to try to adapt and apply the new method of concomitant frequencies directly
in any of the various models for how Hawking radiation could be modulated by infalling
matter, models such as those discussed in [62, 64, 65, 72, 73].
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Figure 6.4: (a) Contribution to |ψk(∆E)| by one cycle, as a function of ∆ω for a trajectory
of constant acceleration (circles), for a polynomial trajectory (triangles), and for a trajectory with
a distributional acceleration (squares). (b) Relative enhancement of elementary Unruh processes:
the two curves show the ratio of the two upper curves by the lowest curve of Fig.6.4a. Here, the
initial frequency is ω(0) = 5 and the energy gap of the detector is Ω = 3.
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7
Classicality of a Quantum Oscillator

Note: The content presented in this chapter can be found in [3]. This work is in collaboration
with Robert B. Mann, and Daniel R. Terno.

Gaussian quantum systems exhibit many explicitly quantum effects, but can be sim-
ulated classically. Using both the Hilbert space (Koopman) and the phase-space (Moyal)
formalisms we investigate how robust this classicality is. We find failures of consistency of the
dynamics of hybrid classical-quantum systems from both perspectives. By demanding that
no unobservable operators couple to the quantum sector in the Koopmanian formalism, we
show that the classical equations of motion act on their quantum counterparts without expe-
riencing any back-reaction, resulting in non-conservation of energy in the quantum system.
Using the phase-space formalism we study the short time evolution of the moment equations
of a hybrid classical-Gaussian quantum system, and observe violations of the Heisenberg
Uncertainty Relation in the quantum sector for a broad range of initial conditions. We esti-
mate the time scale for these violations, which is generically rather short. This inconsistency
indicates that while many explicitly quantum effects can be represented classically, quantum
aspects of the system cannot be fully masked. We comment on the implications of our results
for quantum gravity.

7.1 Concise review of Gaussian quantum mechanics

In this section we give a brief introduction to the formalism of Gaussian quantum mechanics
(GQM), including the definition of Gaussian states, operations, and measurements. There
are a number of complete introductions and reviews to the topic such as [114, 115], and
specifically in the context of particle detectors in [78]. Gaussian continuous variable quantum
information processes are mainly of interest in quantum communication, quantum telepor-
tation, relativistic quantum field theory, and quantum optics. Gaussian framework provides
applicable theoretical and experimental tools for a wide variety of tasks and applications in

57
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the field of quantum information.
Consider a continuous-variable quantum system such as N quantum harmonic oscillators

which could be N bosonic modes. These N modes are corresponding to N pairs of annihilation
and creation operators {âi, â†i}. This system can also be described by the quadrature field
operators, {q̂i, p̂i} arranged in the form of the vector

x̂ = (q̂1, p̂1, ..., q̂N , p̂N)T (7.1)

The field operators are dimensionless canonical observables of the system which satisfy the
canonical commutation relations

[x̂i, x̂j] = iΩij, (7.2)

where Ωij are the entries of a symplectic form matrix given by

Ω =
N⊕
i=1

(
0 1
−1 0

)
. (7.3)

The relation between the quadrature operators and creation and annihilation operators
of each mode is given by

q̂i =
1√
2

(âi + â†i ), p̂i =
i√
2

(â†i − âi). (7.4)

In general, the quantum state of a system of N-bosonic modes can be presented by a
density matrix ρ̂ which is a trace-one positive operator acting on the corresponding Hilbert
space. This density operator can also be represented in terms of a quasi-probability distri-
bution or Wigner function in the phase space. The Wigner function is a Fourier transform
of a Wigner characteristic function χ(ξ) and has the form

W (x) =

∫
R2N

d2Nξ

(2π)2N
exp (−ixTΩξ)χ(ξ). (7.5)

The Wigner functions are characterized by the statistical moments of a quantum state. The
first moment is the mean value and the second moment is the covariance matrix σ given by

〈x̂〉 = Tr(x̂ρ̂), (7.6)

σij =
1

2
〈{∆x̂i,∆x̂j}〉 =

1

2
(〈x̂ix̂j + x̂jx̂i〉 − 2 〈x̂i〉 〈x̂j〉).

In the case of a Gaussian state, the first two moments characterize the Wigner function fully.
There are a number of important classes of pure, Gaussian states including the vacuum state
with covariance matrix σvac = I2N . Note that Gaussian states are pure iff its Wigner function
is non-negative. Single-mode squeezed vacuum states are pure states with a covariance
matrix of the form

σsq =

(
e−r 0
0 er

)
, (7.7)
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where r is the squeezing parameter. Squeezed states share the minimum uncertainty princi-
ple. Thermal states are another group of Gaussian states with the covariance matrix of the
form

σT =
N⊕
i=1

(
νi 0
0 νi

)
, (7.8)

where

νi =
exp(ωi/T ) + 1

exp(ωi/T )− 1
, (7.9)

and T is temperature of the thermal state.

7.2 Introduction to hybrid classical-quantum systems

The shifting boundary between quantum and classical regimes [116, 117] is a long-standing
subject of scrutiny, both for its foundational and technical aspects. Indeed, the emergence of
classical behaviour from the underlying quantum structure is still a controversial subject with
several attempts aiming to address and resolve it such as [118]. To this end, semiclassical
methods play an important role both in quantum mechanics and quantum field theory.

From a purely pragmatic viewpoint, it often happens that some degrees of freedom can
be much easier described classically, commonly to an excellent degree of approximation.
However either for consistency (e.g., in semiclassical quantum gravity, [119]), or for practical
purposes (e.g., study of chemical reactions) it becomes necessary to follow their interaction
with other degrees of freedom that must be described by quantum mechanics. Indeed, there
have been several attempts to formulate a consistent hybrid classical-quantum (CQ) theory
[120–126], each with varying results [126, 127].

Both fundamental and practical aspects were explored in recent efforts investigating
the equivalence of Gaussian Quantum Mechanics (GQM) and classical statistical mechan-
ics (more precisely, epistemically-restricted Liouville mechanics (ERL)) [128, 129]. GQM
[115, 130] restricts allowed states only to the so-called Gaussian states that have Gaussian
Wigner quasiprobability distribution [131], and transformations and measurements that pre-
serve this property. A positive Wigner distribution can be interpreted as a probability density
on the phase space of a corresponding classical system. By imposing epistemic restrictions
on Liouville classical mechanics — postulating that conjugate quantities cannot be known
with precision better than the fundamental quantum uncertainty — one can assign classical
statistical interpretations (probability distributions) to those Gaussian procedures, allowing
a phenomenon to be described equivalently in both languages [128, 129]. Remarkably, ERL
captures many phenomena that are usually considered explicitly quantum, including entan-
glement (though not the ability to violate Bell-type inequalities), while being describable by
local hidden variable theory.

These results indicate that a Gaussian quantum system behaves classically in some im-
portant respects. An interesting complementary question is then to what extent GQM can be
regarded as fully classical, or alternatively, whether or not GQM inevitably displays tell-tale
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signs of quantum physics. For an isolated Gaussian system a specific question along these
lines concerns the behaviour of the expectation values of reasonable classical observables (to
be defined precisely in Sec. 7.4). Another is that of the dynamics of interacting Gaussian and
classical systems, and the pre-requisites for a consistent description of such dynamics. Such
mixed dynamics is used to treat a variety of phenomena that range from gas kinetics and
dynamics of chemical reactions to one-loop quantum gravity. Indeed, this latter question is
of particular importance in the ongoing discussion as to whether or not gravity should be
quantized.

Motivated by the above, our goal in this chapter is to investigate the consistency of
combined classical and Gaussian quantum systems, or CGQ. If a Gaussian quantum system
is indeed equivalent (under certain criteria) to a classical system, then its coupling to another
classical system should be consistent with this equivalence whilst retaining the intrinsic
quantum characteristics of the former. In particular, can CGQ ensure that quantum sector
of the system respects the uncertainty principle?

A Gaussian Hamiltonian is at most quadratic in canonical variables and, as a result,
perfectly satisfies the correspondence principle: equations of motion for quantum dynamical
variables are the same as their classical counterparts. Thus it is natural to investigate if
the different mathematical structures used to describe classical and quantum systems can
be made fully compatible.

We first investigate this question from the perspective of the Koopmanian formalism of
mechanics in Sec. 7.3. In this approach, both quantum and classical systems are described
by wave functions on their respective Hilbert spaces. It is known that the Hilbert space
description of a classical system is fully consistent and sometimes advantageous. We consider
one quantum and one classical harmonic oscillator and the most general Gaussian interaction
coupling the two. We find that various inconsistencies appear for any non-trivial bilinear
interaction.

The phase-space description of a combined quantum-classical system that we use in
Sec. 7.4 is based on the opposite approach. It is possible to describe the evolution of a
quantum system on its classical phase space if Moyal brackets replace Poisson brackets. The
two coincide for a harmonic oscillator, giving an additional interpretation to the results of
[128]. If again the classical and quantum oscillators are linearly coupled, preservation of
the Heisenberg uncertainty relation for the quantum oscillator requires introduction of a
minimal uncertainty in the classical one. This is again consistent with a view that effectively
replaces classical mechanics (that allows, in principle, for infinite precision) with a statistical
description that evolves according to the classical dynamical laws. In Sec. 7.4 we show how
prior correlations between classical and quantum systems and/or different non-quadratic
classical potentials lead to violation of the uncertainty relation for the quantum initially
Gaussian system.

We discuss the implication of these results and the connection to the logical necessity to
quantize gravity in the concluding section.
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7.3 Hilbert space picture

We start with a brief discussion of the Koopmanian formalism, followed by applying it to the
most general interacting Gaussian system with two degrees of freedom, one treated classically
and the other quantum-mechanically. A more detailed presentation of the mathematical
aspects of this approach can be found in [132, 133], while applications to measurement
theory, entanglement, and mixed states were discussed in [116, 126]. For simplicity we
consider a single degree of freedom and denote the canonical variables as x and k (we reserve
the symbols p and q for the momentum and position (operators) of a quantum system, to
be introduced later). Consider the Liouville equation for a system with the phase space
variables (x, k), the Hamiltonian H(x, k), and the probability density f(x, k),

i ∂f/∂t = Lf, (7.10)

where L is the Liouville operator, or Liouvillian,

L =

(
∂H

∂k

)(
−i

∂

∂x

)
−
(
∂H

∂x

)(
−i

∂

∂k

)
. (7.11)

Since the Liouville density f is never negative it is possible to introduce likewise a function

ψc ≡
√
f, (7.12)

which in this case satisfies the same equation of motion as f ,

i ∂ψc/∂t = Lψc. (7.13)

It has the structure of the Schrödinger equation with the Liouvillian taking the role of
the generator of time translations, and its self-adjointness can be established under mild
conditions of the potential [132, 133]. Hence we can interpret ψc as “classical wave function.”

We shall now consider ψ as the basic object. However, for our classical system only
f = |ψ|2 has a direct physical meaning. It can be proven that, under reasonable assumptions
about the Hamiltonian, the Liouvillian is an essentially self-adjoint operator and generates
a unitary evolution [132, 133]:

〈ψc|φc〉 :=

∫
ψc(x, k, t)

∗ φc(x, k, t) dxdk = const. (7.14)

Note that while the classical wave function of Eq. (7.12) is real, complex-valued functions
naturally appear in this space, which can be extended to a Hilbert space with inner product
given by (7.14) above [116]. It is possible to further mimic quantum theory by introducing
commuting position and momentum operators x̂ and k̂, defined by

x̂ ψc = xψc(x, k, t) and k̂ ψc = k ψc(x, k, t), (7.15)

respectively. Note that the momentum k̂ is not the shift operator (the latter is p̂x = −i∂/∂x).
Likewise the boost operator is p̂k = −i∂/∂k. These two operators are not observable.
We shall henceforth omit the hats over the classical operators when there is no danger of
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confusion. The physical quantities are represented by x and k. The operators p̂x and p̂k
generate translations in the variables x and k, respectively.

What we have above is a “Schrödinger picture” (operators are constant, wave functions
evolve in time as ψ(t) = U(t)ψ(0), where the unitary operator U(t) = e−iLt if the Hamiltonian
is time-independent). We can also define a “Heisenberg picture” [126] where wavefunctions
are fixed and operators evolve:

XH(t) = U †XU. (7.16)

The Heisenberg equation of motion

i dXH/dt = [XH , LH ] = U †[X,L]U, (7.17)

together with the Liouvillian (7.11), readily give Hamilton’s equations

dx

dt
=
∂H

∂k
,

dk

dt
= −∂H

∂x
. (7.18)

This formalism allows one to describe the states of classical and quantum systems in a
single mathematical framework, namely in the joint Hilbert spaceH = Hq⊗Hc. Since we are
dealing with the Hilbert spaces, the concepts of a partial trace and entanglement (including
the one between classical and quantum states) are naturally defined.

In the following we discuss coupled classical and quantum harmonic oscillators with the
frequencies ωc and ωq, respectively. To simplify the analysis we use dimensionless canonical
variables. For a quantum oscillator we set the position and the momentum scales as l and
lp = ~/l, by defining q̄ := q/l and p̄ := p/lp, respectively. For a classical oscillator the scales
are set by λ and λk = κ/λ, where κ is a parameter with the units of action. The scales are
set as

l =

√
~

mωq
, lp =

~
l

=
√
~mωq, (7.19)

λ =

√
κ

mωc
, λk =

κ

λ
=
√
κmωc, (7.20)

so
[q̄, p̄] = [x̄, p̄x] = [k̄, p̄k] = 1 (7.21)

and the Hamiltonians can be expressed as

Hq = 1
2
~ωq
(
q̄2 + p̄2

)
, Hc = 1

2
κωc
(
x̄2 + k̄2

)
. (7.22)

In terms of creation and annihilation operators, the most general bilinear Hermitian term
coupling the quantum and classical systems is

Ki = i
(
β∗0xabx − β0xb

†
xa
† + β∗0kabk − β0kb

†
ka
†
)

+α0xa
†bx +α∗0xb

†
xa+α0ka

†bk +α∗0kb
†
ka. (7.23)

Using the relations α0x = α
(1)
0x + iα

(2)
0x and β0x = β

(1)
0x + iβ

(2)
0x , and similar ones for α0k and

β0k, and demanding that no unobservable operators are coupled to the quantum sector, we
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obtain the following form for the equations of motion

˙̄q = ωqp̄+ 2α
(2)
0x x̄+ 2α

(2)
0k k̄, ˙̄p = −ωq q̄ − 2α

(1)
0x x̄− 2α

(1)
0k k̄, (7.24)

˙̄x = ωck̄,
˙̄k = −ωcx̄,

˙̄px = ωcp̄k − 2β
(2)
0x q̄ + 2β

(1)
0x p̄, ˙̄pk = −ωcp̄x − 2β

(2)
0k q̄ + 2β

(1)
0k p̄.

See Appendix A for a detailed derivation of these results.
Providing an alternative derivation of the results in [125, 126], we observe that the clas-

sical position and momentum act on their quantum counterparts as external forces without
experiencing any backreaction. This bizarre state of affairs also brings the system to reso-
nance when ωc = ωq, describing an unlimited increase of energy of the quantum oscillator,
similar to [125, 126].

7.4 Phase space picture

The phase-space formulation of quantum mechanics provides us with an alternative way
of analyzing hybrid quantum-classical systems. In this formulation, which is based on the
Wigner function, the quantum mechanical operators are associated with c-number functions
in the phase space using Weyl’s ordering rule [131]. The quantum mechanical features of
operators in Hilbert space, such as their noncommutativity, represents itself in the noncom-
mutative multiplication of c-number functions through the Moyal ?-product in the phase
space, which corresponds to the Hilbert space operator product.

In classical mechanics the evolution of a dynamical variable, represented by an arbitrary
function of the form f(x, k, t) in a phase space whose conjugate variables are (x, k), is
described by Hamilton’s equations of motion. These equations are

d

dt
f(x, k, t) = {f,H}+

∂

∂t
f(x, k, t), (7.25)

where {· , ·} is the Poisson bracket and H is a classical Hamiltonian. In quantum mechanics
one can obtain an analogous phase space description by replacing the Poisson with the Moyal
bracket, and the Liouville function with the Wigner function W (x, k, t). The Moyal evolution
equation is given by [134, 135]

∂

∂t
W (x, k, t) =

H ?W −W ?H

i~
≡ {{W,H}}, (7.26)

where {{· , ·}} represents the Moyal bracket and the ?-product is defined as

? ≡ e
i~
2

(←
∂x
→
∂k−

←
∂k
→
∂x

)
, (7.27)

where
←
∂ means that the derivative acts on the function to its left and

→
∂ acts on the function

to its right. One can represent the Moyal bracket with a Poisson bracket plus correction
terms

{{W,H}} = {W,H}+O(~). (7.28)
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It is also important to note that for quadratic Hamiltonians the Moyal bracket reduces to
the Poisson bracket.

The question of equivalence of quantum and classical descriptions makes sense in the
following context. A positive initial Wigner function W (x, k, t = 0) that corresponds to the
quantum state ρ̂(t = 0) can be identified with the Liouville function, f(t = 0)← W (t = 0).
This function is evolved classically by Eq. (7.25), and then the reverse identification is made:
W (t) ← f(t). If this represents a valid quantum state ρf the procedure is consistent.
If, furthermore, the phase space expectation values, calculated with f(t) or, equivalently,
the quantum expectations calculated with ρ̂f (t) are the same as the expectations that are
obtained with the quantum-evolved state ρ̂(t), the two descriptions are equivalent.

This is the context of the statement of equivalence of GQM and classical statistical
mechanics. Already at this stage, however, we point a minor issue that directly follows from
properties of the Wigner function [131]. The phase space expectation with Wρ is equivalent to
the Weyl-ordered expectation with the state ρ. If the expectation of a different combination
of operators needs to be evaluated, it cannot be done directly in the phase space; rather the
Liouville/Wigner function needs first to be converted to the corresponding quantum state.

Let us consider a system with two degrees of freedom with the Hamiltonian

H =
1

2

(
p2 + k2

)
+ V (q, x), (7.29)

where (q, p) and (x, k) are the canonical pairs for the first and the second subsystems,
respectively. As before, we use the dimensionless canonical variables and ~→ 1.

We consider the most general form of the potential given by

V (q, x) = U1(q) + U2(x) + U(q, x). (7.30)

Mixed quantum-classical dynamics, with substitution of Moyal brackets for Poisson brackets
in the quantum subsystem, may be either a good approximation or produce unphysical
results. A clear signature of the latter would be violation of the Heisenberg uncertainty
relation for the presumably quantum subsystem.

The subsequent analysis can be thought as an investigation of the consistency of the
phase-space based mixed quantum-classical dynamics, where the first pair (q, p) is a quantum
system, that unless specified otherwise is a harmonic oscillator (U1(q) = αq2/2), whilst the
classical potential U2(x) and the interaction term U(q, x) are general. Alternatively, it can
be viewed as an investigation of how the phase-space description of the quantum dynamics
breaks down. From either perspective, since Gaussian states are particularly well-behaved,
we assume that the initial Wigner functions and/or Liouville distributions are of Gaussian
form.

To observe the violation of uncertainty relations we must trace the evolution of statistical
moments in time. Here we briefly review their basic properties and the role in characteriza-
tion of Gaussian states.

The quantum moments are defined as

Ma,b ≡
〈
δq̂aδp̂b

〉
ord
, (7.31)
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where the subscript ‘ord’ refers to a particular ordering, e.g. symmetric or Weyl, and the
expectation value of an operator Â is given by the trace formula〈

Â
〉

= tr(ρ̂Â). (7.32)

The quantities δq̂ = q̂−〈q̂〉 and δp̂ = p̂−〈p̂〉 are the operators for deviations from the mean
(expectation) values, and the sum of the indices (a+ b) is the order of the moment Ma,b.

Analogously, we define the classical moments as

Ma,b
C ≡

〈
δxaδkb

〉
, (7.33)

where δx = x − 〈x〉 and δk = k − 〈k〉 are deviations from the mean values of position and
momentum respectively in the classical system. The mean (average) value of a function
A(x, k) is obtained by using the Liouville density f(x, k, t),

〈A(t)〉 =

∫ ∞
−∞

∫ ∞
−∞

A(x, k)f(x, k, t)dx dk. (7.34)

We shall use angle brackets for both classical means and quantum expectation values, em-
ploying (7.32) and (7.34) as appropriate.

A Gaussian state ρ̂ has a Gaussian characteristic function which its Fourier transform
gives us a (Gaussian) Wigner function [115, 130],

W (X) =
exp

[
−1/2(X − µ)Tσ−1(X − µ)

]
(2π)N

√
detσ

, (7.35)

where µ ≡ 〈X〉 and where σ is a covariance matrix, namely, the second moment of the
state ρ̂. By definition, a Gaussian probability distribution can be completely described by
its first and second moments; all higher moments can be derived from the first two using the
following method 〈

(X − µ)k
〉

= 0 for odd k, (7.36)〈
(X − µ)k

〉
=
∑

(cij...cxz) for even k (7.37)

also known as Wick’s theorem [136]. The sum is taken over all the different permutations
of k indices. Therefore we will have (k− 1)!/(2k/2−1(k/2− 1)!) terms where each consists of
the product of k/2 covariances cij ≡ 〈(Xi − µi)(Xj − µj)〉.

Epistemically-restricted Liouville mechanics (ERL) [128] is obtained by adding a restric-
tion on classical phase-space distributions, which are the allowed epistemic states of Liouville
mechanics. These restrictions are the classical uncertainty relation (CUP) and the maximum
entropy principle (MEP). CUP implies that the covariance matrix of the probability distri-
bution χ must satisfy the inequality

χ+ iεΩ/2 ≥ 0, (7.38)

where ε is a free parameter of ERL theory and Ω is known as the symplectic form [115, 130].
To reproduce GCM we must set ε = ~. The MEP condition requires that the phase-space
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distribution of the covariance matrix χ has the maximum entropy compared to all the
distributions with the same covariance matrix. Any distribution that satisfies these two
conditions is a valid epistemic state and can be equivalently described by a Gaussian state.

Now consider a system of two interacting degrees of freedom. Its initial state (quantum,
classical or mixed) is Gaussian, i.e. fully described by the first two statistical moments. If
the system is in a valid quantum or ERL state, its covariance matrix σ is non-negative,
namely,

σ + iΩ/2 ≥ 0, (7.39)

This condition requires that all the symplectic eigenvalues of the covariance matrix be non-
negative or equivalently, its leading principal minors be all non-negative. Having the sym-
plectic matrix organized in pairs of coordinates for each oscillator as (q, p, x, k), the covariance
matrix σ describing the state of the entire system can be decomposed as

σ =

(
σQ γQC
γTQC σC

)
, (7.40)

where σQ, σC are 2 × 2 covariance matrices that describe the reduced states of respective
subsystems Q and C. The 2 × 2 matrix γQC encodes the correlations between the two
subsystems.

As discussed above we take the initial state of the entire system to be Gaussian. The
first moments at the time t = 0 are

〈q̂(0)〉 = q0, 〈p̂(0)〉 = p0, 〈x(0)〉 = x0, 〈k(0)〉 = k0, (7.41)

and the reduced correlation matrices are

σQ =

(
1/2 + z1 〈δpδq〉
〈δpδq〉 1/2 + z2

)
, σC =

(
1/2 + y1 0

0 1/2 + y2

)
. (7.42)

where to simplify the exposition we assume a diagonal correlation matrix for the system C.
Up to now these are simply two distinct systems. Anticipating the uncertainty relation,

we consider the first system Q to be quantum-mechanical and the second system C to be
classical, and parametrize 〈

δq2
〉
≡ 1

2
+ z1,

〈
δp2
〉
≡ 1

2
+ z2, (7.43)

with analogous meanings for y1 and y2 for the system C. By definition z1, z2, y1, and y2 can
take any value from (−1/2,∞). The classical-classical correlations (CC) are assumed to be
zero for simplicity. Depending on how squeezed the state can get and how two systems are
interacting with each other through correlation matrices, one can determine a specific range
for these free parameters while satisfying the positivity condition (7.39) of the covariance
matrix of the whole ensemble.

It is straightforward to show that for the Gaussian quantum subsystem alone the Heisen-
berg Uncertainty Relation (UR) is

f(t) =
〈
δp2
〉 〈
δq2
〉
− 〈δqδp〉2 − 1

4
≥ 0. (7.44)
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The same requirement holds for the classical subsystem only if it is in a valid ERL state.
Instead of evolving the quantum state or the Liouville density, it is possible to follow the

(generally infinite) hierarchy of statistical moments [137, 138]. To find the moment equations
we use the general formula for the time derivatives of the classical moments [137], as detailed
in Appendix A.2. As we are not looking for numerical solutions to these equations but rather
wish only to probe for (lack of) consistency, we study their short-term temporal behaviour
via series expansions. We therefore write

〈
δp2
〉
≡

N∑
n=0

〈δp2〉(n)
0

n!
tn,

〈
δq2
〉
≡

N∑
n=0

〈δq2〉(n)
0

n!
tn, 〈δqδp〉 ≡

N∑
n=0

〈δqδp〉(n)
0

n!
tn, (7.45)

truncating the series at N = 3, which is sufficient for our purposes.
Our goal is to study the behaviour of f(t) in CGQ. In particular, we investigate under

what circumstances (if any) f(t) < 0, signifying violation of uncertainty relations. For non-
Gaussian states it is easy to see the violation even in the first order term since not all the
odd moments are zero. We can observe this by considering an arbitrary potential with a
single degree of freedom, V (q), as in the following example. For such potential without any
initial QQ and CQ correlations we have

f(t) =
1

2

(
z1 + z2 + 2z1z2

)
− 1

120

[
(1 + 2z1)

(
60
〈
δp δq2

〉
V (3)(q) (7.46)

+ 20
〈
δp δq3

〉
V (4)(q) + 5

〈
δp δq4

〉
V (5)(q) +

〈
δp δq5

〉
V (6)(q)

)]
t+O(t2).

where V (n)(q) = ∂nq V (q) and the first term (the uncertainty at t = 0 can be zero and the
overall sign of the first order term is negative. Hence for a generic state that initially saturates
the uncertainty relation, f(0) = 0, the time evolution with any potential immediately violates
it. However, Gaussian states are quite robust against the violation of Heisenberg uncertainty
relation. If f(t = 0) = 0, then any potential of the form V (q) will lead to a violation only in
the third order term.

Next we consider the most general form of the potential (7.30). By including both initial
QQ 〈δqδp〉0 and, e.g., QC 〈δqδx〉0 correlations, while setting other correlations to zero, the
general form of (7.44) becomes

f(t) =
1

2

(
z1 + z2 + 2z1z2 − 2 〈δqδp〉20

)
(7.47)

+
1

16
〈δqδp〉0 〈δqδx〉0

[
32U (1,1) + 8(1 + 2y2)U (1,3) +

(
1 + 4y2 + 4y2

2

)
U (1,5)

+ 32 〈δqδx〉0 U
(2,2) + 8 〈δqδx〉0 U

(2,4)(1 + 2y2) + (8 + 16z1)U (3,1)
(

2 + 16 〈δqδx〉20 + 4y2

+ 4z1 + 8y2z1

)
U (3,3) + 8 〈δqδx〉0 U

(4,2)(1 + 2z1) + (1 + 4z1 + 4z2
1)U (5,1)

]
t+O(t2),

up to the leading order in time. Here we used the short form for U (i,j)(q, x) = ∂iq∂
j
xU(q, x)

to be U (i,j). The first term of this relation, which describes UR at t = 0, cannot be initially
saturated (namely f(0) 6= 0) since inclusion of the QC correlation implies the reduced state
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of the quantum subsystem will no longer be pure (the only case where UR saturates). In this
case the quantum system has some positive initial value f(0) that can be minimized whilst
satisfying the positivity condition (7.39) of the covariance matrix of the whole system.

We can establish the inconsistency if the linear term is negative and the second order term
is either negative or sufficiently small as to enable f(t∗) < 0 for some time t∗. We therefore
observe that a necessary condition for violation of UR in the linear term is that neither of
〈δqδp〉0, 〈δqδx〉0 vanish, and at least one of the U (i,j)(q, x) is nonzero. Otherwise terms of
higher order in t must be included in (7.47) for any possibility of observing a violation of
UR. For example if we consider no QC or QQ correlations, the first term in (7.47) saturates
at t = 0 and the first order term disappears. If the second order term can be made negative
then a violation of UR follows immediately. Similar considerations hold for higher-order
terms if the second-order term is positive. In the following examples we will analyze the
behaviour of each term.

Consider a specific form of an interaction potential given by

U(q, x) = β1qg(x) + β2q
2g(x), (7.48)

where
g(x) = γ1x+ γ2x

2. (7.49)

For the case with no QQ or QC correlations, equation (7.44) takes the following form up to
the third order in time

f(t) =
1

2

(
z1 + z2 + 2z1z2

)
(7.50)

+
1

4
(1 + 2y2)(1 + 2z1)

(
β2

1 + 4q0β1β2 + 2β2
2

(
1 + 2q2

0 + 2z1

))(
γ2

1 + 2x0γ1γ2

+
(
1 + 4x2

0 + 2y2

)
γ2

2

)
t2 + 2k0

(
1

2
+ z1

)
× β2(γ1 + 2x0γ2)

[
1

2
+ z2 −

(
1

2
+ z1

)
α

− 2

(
1

2
+ y2

)(
1

2
+ z1

)
β2γ2 − x0(1 + 2z1)β2(γ1 + x0γ2)

]
t3 +O(t4).

In this example, the quadratic term is always positive; we can minimize its effect by
choosing y2 → −1/2. This is the case of the extreme squeezing, namely, the Gaussian distri-
bution in phase space is squeezed in one dimension and elongated in the other. Violations of
UR will occur if the coefficient of the t3 term is negative, which can be arranged by setting
β2, α > 0, with all other variables also being positive. Three out of five terms in the square
bracket are negative, and so the entire coefficient can be made negative by choosing large
positive values for α and β2. The fourth-order order term included both negative and positive
terms and one can strengthen the negative terms by choosing the initial values arbitrarily
large while diminishing the positive terms by choosing y2 → −1/2. For quadratic potentials
the implications of these results remain to be understood, since previous work has indicated
that a valid classical epistemic state can be equivalently described by a Gaussian state [128].
Therefore, in our case of study, the evolution should be identical to that of two coupled
quantum systems.

In the second example we consider an interaction potential of the form

U(q, x) = β1qx
2 + β2q

2x, (7.51)
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for which the equation (7.44) takes the form

f(t) =
1

2

(
z1 + z2 + 2z1z2

)
(7.52)

+
1

4
(1 + 2y2)(1 + 2z1)

((
1 + 4x2

0 + 2y2

)
β2

1 + 8q0x0β1β2 + 2β2
2

(
1 + 2q2

0 + 2z1

))
t2

− 1

2

(
k0(1 + 2z1)β2(−1− 2z2 + α + 2z1α + 2x0β2 + 4x0z1β2)

)
t3 +O(t4).

Like the previous example, the second order term can be minimized by choosing y2 → −1/2.
Violation of the UR will be manifest in the third and fourth order terms provided the free
parameters x0, k0, α, and β2 are chosen to be large enough to make the quantity in the
brackets positive.

For a potential of the form (7.51), by introducing non-zero cross correlations (QC) be-
tween the classical and quantum subsystems (for example by considering 〈δqδx〉0 in the
correlation matrix γQC) and also taking 〈δqδp〉0 6= 0, we have

f(t) =
1

2

(
z1 + z2 + 2z1z2 − 2 〈δqδp〉20

)
+ 2 〈δqδp〉0 〈δqδx〉0 (β1x0 + β2q0)t (7.53)

+
1

4

[
β1

(
8k0 〈δqδx〉0 〈δqδp〉0 + 4x0(〈δqδx〉0 + 2 〈δqδx〉0 z2) + (1 + 2y2)2(1 + 2z1)β1

+ 4x2
0β1

(
1− 4 〈δqδx〉20 + 2y2 + 2z1 + 4y2z1

))
+ 4β2

(
2p0 〈δqδp〉0 〈δqδx〉0

+ 2β1 〈δqδx〉0 (1 + 2y2)(1 + 2z1) + q0

(
〈δqδx〉0 + 2z2 〈δqδx〉0 − 8x0β1 〈δqδx〉20

+ 2x0β1(1 + 2y2)(1 + 2z1)
))

+ 2β2
2

(
q2

0

(
2− 8 〈δqδx〉20 + 4y2 + 4z1 + 8y2z1

)
+ (1 + 2z1)

(
4 〈δqδx〉20 + (1 + 2y2)(1 + 2z1)

))]
t2 +O(t3).

In this case we cannot saturate the first term since by including the QC correlation terms
the reduced state of the quantum subsystem will not be pure anymore which is the only case
where UR saturates. So we shall begin with some positive initial value that we can minimize
while satisfying the positivity condition (7.39) of the covariance matrix of the whole system.
However, we can make the first and second derivative negative by satisfying the following
conditions,

• q0 < 0, p0 < 0, k0 < 0, and β1 < 0. p0 can be as large as it is needed to make the
whole second order term negative and rest of the parameters need to be positive.

Applying these conditions keeps both linear and quadratic terms negative and the upper
limit for the time scale during which f(t) crosses zero can be obtain from

t∗ ≤

∣∣∣∣∣− z1 + z2 + 2z1z2 − 2 〈δqδp〉20
4 〈δqδp〉0 〈δqδx〉0 (β1x0 + β2q0)

∣∣∣∣∣ . (7.54)
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7.5 Conclusions

Our investigation has produced a result that is complementary to that of Bartlett, Rudolph
and Spekkens [128]: while a stand-alone Gaussian quantum system can be treated classically,
it exhibits telltale quantum features that are revealed when it is coupled to a classical system.

The results of Sec.7.3 show that Koopmanian formalism distinguishes between quantum
and classical descriptions even if the interaction between the two systems is Gaussian. The
correspondence principle cannot be enforced, and exclusion of the non-observable operators
from the equations of motion eliminates the very possibility for the quantum subsystem to
influence the classical one. In addition, since the classical Liouvillian operator is unbounded
from below, a resonance leading to an infinite flow of energy from the classical to quantum
system is possible.

The phase space quantum-classical picture is, as expected, consistent if the statistical
moments satisfy the ERL restrictions and the Hamiltonian is Gaussian. However, if the
interaction term is U(x, q) is not bilinear, the mixed evolution quickly becomes inconsistent
(after a time given in (7.54)) even if the initial state is Gaussian.



8
Conclusions and Future Directions

In this thesis we addressed several questions of interest in RQI, the field that elegantly forms a
framework encompassing three main fields of theoretical physics: general theory of relativity,
quantum theory and information theory. Our aim was to pave the way toward a better
understanding of fundamental features of light-matter interaction and the notion of particle
creation in relativistic quantum fields. For our investigations we used one of the well-studied
tools in RQI, the Unruh-DeWitt particle detector. Along the way, in Ch.4 we introduced a
method for computing particle detector transition probabilities in localized regions of general
curved spacetimes provided that the curvature is not above a maximum threshold. With the
help of some approximations that are applicable in the cavity scenario we employed, we were
able to circumvent the complexity involved in the calculation of the Wightmann function in
the transition probability of the detector in such scenarios [37]. In Ch.5 we exhibited the
sensitivity of the relativistic signatures on the transition probability of atoms that are moving
through optical cavities. We have studied the potential of the use of an atomic internal
quantum degree of freedom to design novel quantum metrology settings. In particular we
considered two scenarios: one where the probe undergoes small time-dependent perturbations
of its proper acceleration, and another one when the probe’s trajectory experiences small
spatial time-dependent perturbations as seen from the laboratory’s frame.

The results that are stated in Ch.6 settle a long-standing question regarding the Unruh
effect: which trajectories will maximize the Unruh effect, and exactly how strong can the
Unruh effect be made? By introducing the new method of analyzing concomitant frequencies,
we established the exact answers nonperturbatively and fully generally for each field mode
and for each choice of detector gap. In particular, our new results show that the usually-
considered paths of uniform acceleration are sub-optimal and how they can be improved
upon. This is also of interest regarding the great challenge of developing experiments that
probe the Unruh effect.

And finally in Ch.7 we studied the dynamics of a hybrid classical-quantum system using
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both Hilbert space and the Moyal formalism. We showed that while many explicitly quantum
effects can be represented classically, quantum aspects of the system cannot be fully masked.
Our results have implications for the no-cloning theorem, quantum teleportation, and the
EPR thought experiment, insofar as the lack of consistency of the hybrid models we describe
render them unable to properly account for these phenomena. In addition, our result has
a bearing on the question of the logical necessity of quantizing linearized gravity [139–142].
Consider a scalar field minimally coupled to a linearized gravitational field. Expanding both
systems into normal modes we have two families of non-linearly coupled oscillators. In a
consistent mixed description a family of quantum oscillators (scalar field) non-linearly inter-
acts with classical oscillators (gravity). Assuming that the results of [127] can be extended
to a setting with infinite degrees of freedom, it is necessary to introduce uncertainty into
the state of classical oscillators, thus indicating that a consistent mixed dynamics should
involve at least a stochastic gravity. Moreover, the presence of the nonlinear interaction as
in the examples above should eventually lead to the violation of uncertainty relations for
quantum oscillators, making the entire scheme untenable. We will make a rigorous analysis
along these lines in a future work.

In this final chapter, we address several directions for future research based on the ground
work and results of this thesis. For advancing these ideas, further developments in theoretical
methods will be required. In principle, these ideas are not only important in the fundamental
theoretical aspects, but they have potentially great impact on real-world quantum technolo-
gies and specifically on quantum communications.

8.1 Transition probability: Trajectories with non-uniform

accelerations

One largely unexplored aspect of RQI is the physics of detectors that are non-uniformly
accelerating. It is essential to study such non-idealized cases since these offer realistic phys-
ically realizable setups, in contrast to the forever uniformly accelerating observers that are
typically investigated. Often in experimental proposals to test the Unruh effect [92, 143–
146], it is required for a detector to have non-uniform [76, 96, 97] or finite-time acceleration
[47, 147, 148]. Therefore, there are no past/future horizons for such detectors; to check the
robustness of the Unruh effect in these non-ideal cases one needs to apply concepts and
techniques in non-equilibrium quantum field theory [149].

Interesting related work along these lines was considered by Good [150], who generalized
the moving mirror model of Davies and Fulling [151, 152] to a variety of non-uniformly ac-
celerated trajectories. The motivation of his work was to find trajectories along which the
particle creation from the initial non-thermal phase of the mirror till its late time thermal
distribution resembles the entire history of black hole Hawking radiation from initial forma-
tion of a black hole. It would be interesting to examine the response of detectors following
the same kinds of trajectories as those employed by Good for mirrors. In particular, we are
interested to compare the class of mirror trajectories that model the radiation from a black
hole. For this class, the number of created particles and the finite energy flux asymptotes in
time to the thermal distribution of black hole radiation.
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8.2 Modulation of Hawking radiation: Black hole in-

formation paradox

We developed the results in Ch.6 with a view to their eventual application to the black
hole information loss problem. Indeed, having shown how Unruh radiation can be mod-
ulated very strongly, we invoke the equivalence principle to argue that this indicates that
Hawking radiation could also be correspondingly strongly modulated and could, therefore,
be carrying away significant amounts of information. The applicability of the equivalence
principle in this context is discussed in a key paper by Candelas [39], a paper by Singleton
and Willburn [40] and the subsequent discussion [100, 101]. They discuss how the equiv-
alence principle relates the Unruh effect to the Hawking effect close to the horizon. Even
without invoking the equivalence principle, our new approach to concomitant frequencies
could be directly useful in studies of the modulation of Hawking radiation. This is because
any such calculation should ultimately yield a modulation of Bogolyubov β coefficients (or
it can be re-formulated in this way, e.g., when working in the path integral formalism). And
Bogolyubov β coefficients are amplitudes of concomitant frequencies: to choose a definition
of the vacuum state is to choose a definition of what constitutes positive frequencies in mode
functions. The Bogolyubov β coefficients are then the amplitudes of negative frequencies
that arise from the varying of positive frequencies. This suggests trying to adapt and apply
the new method of concomitant frequencies directly in any of the various models for how
Hawking radiation could be modulated by infalling matter.

In Ch.6 we demonstrated a general method for analyzing how concomitant frequencies
arise when they are maximally modulated, and what the magnitude of this maximal modula-
tion is. We worked this out in full detail only for the case of the Bogolyubov transformations
of the Unruh effect, but the approach should work more generally. In particular, we used the
new techniques to determine the exact circumstances when strong modulation of Bogolyubov
β coefficients is possible. This circumstance is a particular kind of non-adiabaticity, which is
sufficient and necessary for strong modulation of the horizon radiation. For the Unruh effect,
we determined when this non-adiabaticity condition holds: namely when the acceleration
changes on a time scale that is comparable to the time scale of the dominant frequency of
the Unruh radiation. This non-adiabaticity condition is likely to also hold in the case of
matter falling into a black hole because the time scale of the ringdown after a black hole
consumes an infalling object is roughly comparable to the time scale of the peak frequency
of the Hawking spectrum, namely the light crossing time of the black hole.

Another question that one may explore is how purified the outgoing radiation is, or how
much quantum information can be carried out of the black hole. Here the challenge is to
determine how infalling matter (which may be modeled using massive UDW detectors) is
deforming the black hole, by using techniques of quasinormal modes, and then to apply
the mathematical analysis of concomitant frequencies to establish the modulation of the
Hawking spectrum. This should provide us with a channel that maps the entropy of the
infalling matter to changes in the entropy of the outgoing Hawking radiation. The challenge
is to find the maximum quantum channel capacity. In order to determine this channel
capacity, the infalling matter needs to be assumed to be entangled with matter that remains
outside the black hole. The task then would be to calculate to what extent this preexisting



74 Conclusions and Future Directions

entanglement can be transferred into entanglement with the outgoing Hawking radiation. So
far, in Ch.6, we have studied the phenomenon of concomitant frequencies only for the purpose
of determining the overall size of the possible modulation of the horizon radiation. We can
extend the present analysis of concomitant frequencies to include a careful tracking not only
of the magnitudes but also of the phases of concomitant frequencies. Then we would expect
that such a complete picture could enable us to draw general conclusions about the possible
magnitude of quantum channel capacities and therefore about the purity of the final state.
While any calculations with a similar purpose are generally very difficult, a key advantage
of the new approach that focuses on the generic phenomenon of concomitant frequencies, is
that it is independent of the assumption of any particular mechanism for how the classical
and quantum information gets transferred into the outgoing Hawking radiation.

8.3 Closing remarks

One of the key lessons of this thesis is that the incorporation of quantum information in
our understanding of gravity and quantum physics appears to be essential in achieving our
ultimate goal of uncovering the fundamental principles of quantum gravity. The methods and
results presented have, through several examples, demonstrated the applicability of effective
information-theoretic approaches of RQI in studying foundational ideas and issues in physics.
The tools developed should find application in confronting a broad range of theoretical and
experimental aspects of physics, and perhaps will make useful and important contributions
to quantum technologies.
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APPENDICES

.1 Details of the Koopmanian calculation

Pursuing the classical-quantum analogy, similar to the quantum-mechanical creation and
annihilation operators which are

a = 1√
2

(q̄ + ip̄) , a† =
1√
2

(q̄ − ip̄) , (1)

we also introduce classical creation and annihilation operators:

bx = 1√
2

(x̄+ ip̄x) , b†x =
1√
2

(x̄− ip̄x) , (2)

bk = 1√
2

(
k̄ + ip̄k

)
, b†k =

1√
2

(
k̄ − ip̄k

)
(3)

where px = −i∂/∂x (p̄x = λpx) and pk = −i∂/∂k (p̄k = λkpk). Similarly to their quantum
analog,

[bx, b
†
x] = 1, [bk, b

†
k] = 1. (4)

Since [x, k] = 0, their respective creation/annihilation operators commute. The Liouvillian
(the time-translation generator) is given by

L = κωc
(
k̄p̄x − x̄p̄k

)
= iκωc

(
b†xbk − b

†
kbx

)
, (5)

while the Hamiltonian (the energy operator) is

Hc =
κωc
4

(
b2
x + b†2x + b2

k + b†2k + 2bxb
†
x + 2b†kbk

)
. (6)

The rescaled equations of motion have now an identical appearance

i
dŌc

dt
= [Ōc, L/κ], i

dĀq
dt

= [Āq, Hq/~] (7)

in both the classical and quantum sectors.
The most general bilinear Hermitian term coupling the quantum and classical systems is

Ki = i
(
β∗0xabx − β0xb

†
xa
† + β∗0kabk − β0kb

†
ka
†
)

+ α0xa
†bx + α∗0xb

†
xa+ α0ka

†bk + α∗0kb
†
ka, (8)
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and so we obtain

ȧ = −iωqa− β0xb
†
x − β0kb

†
k − iα0xbx − iα0kbk, (9)

ȧ† = iωqa
† − β∗0xbx − β∗0kbk + iα∗0xb

†
x + iα∗0kb

†
k,

ḃx = ωcbk − β0xa
† − iα∗0xa,

ḃ†x = ωcb
†
k − β∗0xa+ iα0xa

†,

ḃk = −ωcbx − β0ka
† − iα∗0ka,

ḃ†k = −ωcb†x − β∗0ka+ iα0ka
†.

for the coupled equations of motion.

We can write the general form of the equations of motion in terms of both quantum and
classical position, momentum and shift operators. Using the relations α0x = α

(1)
0x + iα

(2)
0x

and β0x = β
(1)
0x + iβ

(2)
0x , and similar ones for α0k and β0k, the equations of motion take the

following form

˙̄q = ωqp̄+ (α
(2)
0x − β

(1)
0x )x̄+ (α

(2)
0k − β

(1)
0k )k̄ + (α

(1)
0x − β

(2)
0x )p̄x + (α

(1)
0k − β

(2)
0k )p̄k, (10)

˙̄p = −ωq q̄ − (β
(2)
0x + α

(1)
0x )x̄− (β

(2)
0k + α

(1)
0k )k̄ + (β

(1)
0x + α

(2)
0x )p̄x + (β

(1)
0k + α

(2)
0k )p̄k,

˙̄x = ωck̄ − (β
(1)
0x + α

(2)
0x )q̄ + (α

(1)
0x − β

(2)
0x )p̄,

˙̄k = −ωcx̄− (β
(1)
0k + α

(2)
0k )q̄ + (α

(1)
0k − β

(2)
0k )p̄,

˙̄px = ωcp̄k + (β
(1)
0x − α

(2)
0x )p̄− (β

(2)
0x + α

(1)
0x )q̄,

˙̄pk = −ωcp̄x + (β
(1)
0k − α

(2)
0k )p̄− (β

(2)
0k + α

(1)
0k )q̄.

The presence of the unobservable classical operators px and pk in the equations of motion
for quantum position and momentum act as driving forces. This leads to a violation of the
correspondence principle, in the sense that the new equations for p and q are different from
both purely classical and quantum equations of motion. Those terms generally result in non-
conservation of energy in the quantum system [125, 126]. If we demand that no unobservable
operators couple to the quantum sector, we obtain

α
(1)
0x = β

(2)
0x α

(1)
0k = β

(2)
0k (11)

α
(2)
0x = −β(1)

0x α
(2)
0k = −β(1)

0k .

Therefore, equations of motion will take the form (7.24).

.2 Details of the phase space calculation

Here we derive the moment equations for 〈δp2〉, 〈δq2〉, and 〈δpδq〉. If we consider the most
general form of a classical moment for a system of two oscillators in one dimension to be
[137] 〈

(δp)k1(δk)k2(δq)n1(δx)n2
〉
≡ S[k1, k2, n1, n2], (12)
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therefore we have its time derivative to be

d

dt
S[k1, k2, n1, n2] = n1S[k1 + 1, k2, n1 − 1, n2] + n2S[k1, k2 + 1, n1, n2 − 1] (13)

− k1
dP

dt
S[k1 − 1, k2, n1, n2]− k2

dK

dt
S[k1, k2 − 1, n1, n2]

− k1

nmax∑
l=0

l∑
j=0

S[k1 − 1, k2, n1 + l − j, n2 + j]

(l − j)!j!
∂l+1V (Q,X)

∂Ql−j+1∂Xj

− k2

nmax∑
l=0

l∑
j=0

S[k1, k2 − 1, n1 + l − j, n2 + j]

(l − j)!j!
∂l+1V (Q,X)

∂Ql−j∂Xj+1

where we restrict the series by nmax = 6 and V (Q,X) is a general potential. Also we have
Q ≡ 〈q〉, X ≡ 〈x〉, P ≡ 〈p〉, K ≡ 〈k〉, which their time derivatives are given by

dQ

dt
= P,

dX

dt
= K, (14)

dP

dt
= −

nmax∑
l=0

l∑
j=0

S[0, 0, l − j, j]
(l − j)!j!

∂l+1V (Q,X)

∂Ql−j+1∂Xj
,

dK

dt
= −

nmax∑
l=0

l∑
j=0

S[0, 0, l − j, j]
(l − j)!j!

∂l+1V (Q,X)

∂Ql−j∂Xj+1
.

Now as a simple example we can derive a moment equation for 〈δq2〉 as follows

d

dt
S[0, 0, 2, 0] = 2S[1, 0, 1, 0], (15)

which is equivalent to
d

dt

〈
δq2
〉

= 2 〈δpδq〉 . (16)

Equations for 〈δp2〉 and 〈δpδq〉 can be derived similarly.
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