Persistence of an isolated population of the temperate coral *Plesiastrea versipora* Sheena N. Su

Department of Biological Sciences, Macquarie University, Australia Supervisor: Dr Joshua Madin Date of submission: 10th October 2014 Manuscript written for submission to *Marine Ecology Progress Series*

1	Persistence of an isolated population of the temperate coral <i>Plesiastrea versipora</i>
2	
3	Running head: Population dynamics of Plesiastrea versipora.
4	
5	Sheena N. Su ¹
6	^{1*} Department of Biological Sciences, Macquarie University, North Ryde, 2109

7 8

* Corresponding author: Sheena.su@students.mq.edu.au

9

10 Abstract

11 Successful establishment of new populations outside present geographical ranges requires 12 the capacity for species to both disperse to and persist in isolated patches. By definition, 13 dispersal to such patches is typically rare or sporadic, making individual-level growth and 14 survival and self-recruitment key to population persistence. To better understand the 15 demographic processes that lead to the long-term establishment of species in isolated 16 patches, I studied a genetically isolated population of the reef coral Plesiastrea versipora 17 in Sydney Harbour. I hypothesized that persistence of the population was due to either high 18 levels of reproduction and self-recruitment or high levels of growth and survivorship that 19 could buffer population decline. I used a size-based adaption of the Leslie matrix model to 20 combine field-measured demographic rates and size structure data in order to quantify 21 intrinsic population growth rate and sensitivities to changes in demographic contributions 22 of different size classes. The results show that persistence of *P. versipora* population relies 23 mostly on yearly survival, especially in larger more fecund colonies, and is less reliant on 24 recruitment. The 'persistent' demographic strategy identified in this study may be key to 25 establishing new sub-populations outside native ranges as well as maintaining existing 26 populations during periods of environmental change, especially when dispersal is 27 diminished or unpredictable.

28

Keywords: Population modeling, growth rate, survivorship, recruitment, *Plesiastrea versipora*, dispersal

- 31
- 32
- 33

34 Introduction

35

36 The success of sub-populations outside species' native ranges is conditional upon the 37 intrinsic capacity for population growth in a new patch. This intrinsic capacity represents a 38 balance between adding individuals to the population (via recruitment) and taking 39 individuals away (via mortality). Despite the importance of demographic approaches for 40 understanding the persistence of populations, recent studies purporting geographical range 41 shifts in association with environmental changes are largely observational, and therefore 42 the dynamics or persistence of new populations cannot be quantified. For example, 43 increased connectivity between the Great Barrier Reef and South East Coast of Australia 44 due to the incursion of the East Australian current has allowed the dispersal and 45 recruitment of various reef corals and fishes to higher latitude locations (Figueira & Booth 46 2010, Hobbs 2010), but whether these species will persist is largely unknown; for example, 47 reef fishes rarely survive the cooler winters, resulting in ephemeral populations that are 48 reliant on an external source of recruits (Figueira & Booth 2010). Similarly, based on a 49 long record of historical observations, four reef-building corals have demonstrated pole-50 ward range expansions along the Japanese coast since the 1930s (Yamano et al. 2011). 51 These studies provide evidence that environmental change has led to an increasing number 52 of species moving towards and persisting at edges of their geographic ranges. However 53 the demographic requirements that facilitate these range expansion observations are not 54 understood. A demographic approach would elucidate the requirements for long-term 55 population persistence of species outside their known ranges as well as the potential future 56 changes to present day geographical ranges.

57

58 The persistence of a localized population in the marine environment requires adequate 59 recruitment of individuals, which occurs primarily during the pelagic larval stage. During 60 this stage, larvae can be passively and actively mobile and can potentially travel and settle 61 some distance away from natal populations. Population size and structure can vary greatly 62 due to variations that arise in the larval stage (Caley et al. 1996). Such variation is driven 63 by the interaction of oceanography with larval behavior and biological traits (Sponaugle et 64 al. 2002, Kinlan et al. 2005, Luiz et al. 2012, Luiz et al. 2013). For instance, dispersal of 65 larvae depends on the flow, speed and direction of ocean currents, which may augment or 66 impede dispersal patterns (Shanks et al. 2003, Cowen & Sponaugle 2009), while 67 topographical complexity can potentially redirect flows and create dispersal barriers (e.g.

68 protruding headlands that create large scale gyres; Sponaugle et al. 2002). In addition, 69 often, individual dispersal abilities and behavior such as duration in the larval phase 70 (Shanks et al. 2003, Lindsay 2012), swimming ability and orientation (Fisher et al. 2000, 71 Sponaugle et al. 2002) and depth range (Sponaugle et al. 2002) may influence the capacity 72 for larvae to disperse. This variation in larval dispersal ability can limit species' range sizes 73 but also the flow of recruits into existing populations and new patches. However, despite 74 successful dispersal capabilities of larvae, settlement and establishment often depends on 75 settlement choice and specific environmental cues that may hinder the opportunity for 76 recruitment.

77

78 Populations at range edges are likely to be more sensitive to recruitment, because dispersal 79 from native populations is usually rare or sporadic (Cowen & Sponaugle 2009). It has 80 previously been assumed that due to high connectivity in the marine environment, owing 81 to ocean currents and duration of larvae in the pelagic stage, dispersal of recruits to distant 82 populations can be achieved (Tanner et al. 1996, Roberts 1997). However, since the 83 concentration of larvae declines with increasing distance between populations as the result 84 of diffusion and mortality (Cowen et al. 2000), distant populations are unlikely to be 85 frequently replenished and maintained by external recruits. Distant populations that 86 become isolated typically rely on self-recruitment for population growth (Sponaugle et al. 87 2002, Swearer et al. 2002, Baums et al. 2005).

88

89 Various demographic tradeoffs have been observed in corals that contribute to the 90 maintenance of a population with limited recruitment. For instance, poorly self-recruiting 91 populations that experience diverse environmental conditions may rely on survivorship 92 instead (i.e. the storage effect (Warner & Chesson 1985)). This in turn enables a population 93 to accumulate adults when conditions become favorable (Edmunds 2000, Hughes & 94 Tanner 2000, Kersting & Linares 2012). In addition, studies have shown size-dependent 95 survivorship in long-lived organisms, where the probability of survivorship of a coral 96 colony increases with size (Tanner et al. 1996, Glassom & Chadwick 2006), demonstrating 97 the importance of survival in juvenile corals during the early growth stage. Such tradeoffs 98 may benefit the long-term persistence of isolated populations outside their normal ranges 99

Population models provide a useful framework for examining demographic tradeoffs. .Such models incorporate individual-level rates of growth, survivorship and recruitment to

3

102 estimate properties of populations, such as intrinsic growth rate, and enable the 103 quantification of a population's sensitivity to changes in age-, size- or stage-based 104 demographic rates. Intrinsic growth rate is given by the dominant eigenvalue (λ) and 105 'elasticity' is characterised by the sensitivity of the eigenvalue to relative changes in the 106 demographic contributions (Roughgarden 1998). The importance of individual-level 107 growth, survivorship and fecundity can be quantified by these model sensitivities (Caswell 108 1989, Easterling et al. 2000). While size-based population models have previously been 109 used to understand the population dynamic of corals (e.g. Hughes 1984), this is the first 110 study which will specifically address population dynamics of a temperate coral species in 111 order to understand the ecological attributes for persisting in an isolated setting.

112

113 Plesiastrea versipora (Lamarck, 1816) is a hermatypic coral species characterized by a geographic range that extends from Japan to South Australia. It is one of a few species of 114 115 reef coral found at high latitudes, beyond the limiting range for most tropical species 116 (Rodriguez-Lanetty et al. 2001). Corals in high latitude environments tend to experience 117 greater fluctuations in light and temperature conditions compared to the relatively stable 118 conditions experienced by species closer to the equator (Burgess et al. 2009). At the 119 highest latitude where P. versipora is located (Port Phillip Bay, Victoria, Australia) the 120 annual temperature ranges between 10-21 degrees Celsius. Several sub populations of P. 121 versipora occur within the Sydney Harbour region, but the overall abundance of this 122 species is unknown. Populations in Sydney Harbour were established as a result of an 123 independent historical in which populations continued to persist over many generations. 124 However, due to the enclosed and branching nature of the Harbour that create dispersal 125 barriers, gene flow is restricted between other populations along the East Australian coast, 126 leading to geographical isolation and possibly genetic divergence. For these reasons, P. 127 versipora is a useful species for studying and understanding the demographic requirements 128 for range expansion in terms of population persistence in isolated patches.

129

This study used a size-based adaption of the Leslie matrix (Leslie 1945) to assess the population dynamics of *P. versipora* specifically located at Fairlight Beach, Sydney Harbour region, Australia. A size-based model was used because corals can undergo several individual-level trajectories that unitary organisms cannot, such as shrinkage, fragmentation and partial mortality (Hughes 1984). For this reason, size is a much better descriptor of demographic rates than age. To determine the demographic mechanisms allowing *P. versipora* to persist in isolated patches, I hypothesized that populations
receiving little or no external supply of recruits, must either have:

138 (a) High levels of self-recruitment and/or

139 (b) High levels of survivorship.

Population dynamics *P. versipora* was quantified using field estimates of growth rates, mortality rates, fecundity and recruitment, in order to gain insight into the underlying demographic processes that maintain the *P. versipora* population. The study provides a baseline for understanding population resilience in temperate areas and subsequently the likelihood of the persistence of other coral species given range fragmentation under global climate change.

146

147 Methodology

- 148
- 149 Study site and field measurements

150 Demographic rates and size structure were measured for the Sydney Harbour population of 151 Plesiastrea versipora at Fairlight Beach, Australia (151°16'32"E, 33°48'1"S). The Fairlight 152 Beach population is the largest of three known sub-populations within the harbor, with 153 high abundances between depths of 5 and 10 meters on the rocky sandstone shelf spanning 154 the bay. The two other, much less abundance sub-populations occur in similar habitats at 155 Camp Cove and Little Manly. Given limitations with replication at these sites, I assumed 156 that the field measurements at Fairlight Beach were representative of the entire Sydney 157 Harbour population.

158

159 To estimate individual demographic rates, three 10 m permanent transects were attached to 160 the rocky substrate on December 7th 2012 (Fig. 1). Transects were censused both after 161 they were attached and one year later on December 13th 2013. The census consisted of 20 x 1 m² quadrats placed consecutively along each side of the permanent transect line. Four 162 163 photographs were taken of quadrants within each quadrat, resulting in 80 photographs for 164 each transect. Photographs were corrected for barrel distortion and colonies of *P. versipora* 165 were numbered and outlined using ImageJ. The scale for estimating colony planar area 166 was based on a 25 cm section of the quadrat found in each quadrant photograph. Colonies that died over the year were recorded and new colonies in 2013 less than 10 cm^2 that were 167 168 clearly not present in 2012 were recorded as recruits. To increase the number of colonies 169 for calculating population size structure, a series of additional 20 x 2 m belt transects were run and 350 colonies were photographed with 10 x 10 cm scale plates. Photographs were
corrected for barrel distortion and colonies outlined using ImageJ. Planar areas were
estimated based on a 10 cm scale plate.

173

174 Population matrix modeling

175

Properties of the population were estimated using a size-structured Leslie matrix model (Hughes 1984, Caswell 1989). All colony areas were log10 transformed and size structure data were used to delineate seven equally spaced size classes spanning the range of planar areas in the population (Fig. 2). Size class I was defined as the recruitment class, ranging between 3.16 to 10cm². No colonies were observed for size classes VI and VII, but classes were included to allow for potential growth in the model.

182

183 To parameterize the growth component of the matrix model, size of colonies in the second 184 year were modeled as a linear function of size in the initial year using the *lm* function in 185 the statistical software R (R Development Core Team). The probability of moving from a 186 given size class in the initial year to neighboring size classes in the second year was then 187 estimated by calculating the normal probability distribution from the linear model for the 188 initial year size class mid-points, and then numerically summing the parts of this 189 distribution that fell into the prescribed size class bins (Table 1; Supplementary material 190 1).

191

To parameterize the survival component, survival of colonies in the second year was modeled as a function of size in the initial year using a generalized linear model (function *glm* in R) with binomial response and logit link function. Similarly to growth, the binomial probability distribution of yearly survival for size class midpoints was summed for size class bins (Supplementary material 1).

197

Given that fecundity per polyp is independent of colony size (Madsen et al. 2014) and the population was considered closed (i.e. not influenced by external recruitment), recruitment was modeled as a function of colony size, given by:

201

Recruitment = qx

202 Where x is colony size and q is the number of successful recruits per unit area of coral that

203 fell into size class 1 at t+1. q was estimated in two ways. First, the year's field observed

number of recruits was divided by the total area of coral within the permanent transects to give a *short-term* estimate of q. Second, by finding the q that gave the best-fit between the model eigenvector (i.e. stable size distribution) and the empirical population size structure measured in the field to give a *long-term* estimate of q (Fig.2). The fit was assessed using maximum log-likelihood and the function *optim* in R (Supplementary material 1). The latter recruitment calculation gives the best estimate of the mean recruitment that give rise to the empirical size structure at the study site.

211

The growth, survival and recruitment components were combined to form the transition matrix (M), where:

$M = growth \times survival + recruitment$

The intrinsic growth rate of the population is given by the dominant eigenvalue (λ), which was calculated using the function *eigen* in R. The relative effects of matrix transition probabilities on the intrinsic growth rate (i.e. elasticities) were calculated using the *elas* function in the *popbio* package in R (Stubben and Milligan 2007)

218

219 **Results**

220

221 5 size classes were derived from the 350 colonies measured independently and another 2 222 larger size classes to allow for potential growth (Fig 2). Size structure indicated majority of 223 colonies fell into size class II and III with the lowest proportion of colonies in size class V. 224 Of the 84 colonies tracked on the permanent transect, five were dead after a year. 225 Additionally, 11 new recruits were found. Asexual reproduction and fusion was not 226 observed in the field after one year. For the 79 colonies found in both years, their planar 227 areas were log-transformed and the best-fit relationship between areas a t and t+1 was 228 (Table 2; Fig. 3):

229

$X_{t+1} = 0.29 \times 10^{0.87 x_t}$

230

where the positive intercept showed positive growth on average when colonies are small,

but the exponent below 1 indicates slower growth for larger individuals until a maximum

size is reached (i.e., where the mode lines crosses the unity line in Fig. 3).

234

Overall, yearly survivorship was high at approximately 95%. There was also a significant relationship between colony size and survivorship (p=0.0124, df=71) (Table 2; Fig. 4), where larger colonies were more likely to survive.

238

The empirically-derived short-term recruitment parameter q was 0.0051 where every 1 m² of coral cover contributed 5.1 recruits on average in the following year. The recruitment parameter derived from fitting the model eigenvector to the empirical size structure was estimated to be lower at q = 0.0015, where every 1 m² of coral cover contributed 1.5 recruits on average in the following year.

244

The final transition matrix indicated that corals tended to stay in the same size class after each year (Fig. 5). However, smaller colonies were more likely to grow and move to the larger sizes. Whereas, medium size colonies were more likely to stay in the same size class, while larger colonies had a higher probability of shrinking to smaller size classes.

249

The dominant eigenvalue based on the short-term recruitment parameter was λ =1.071 suggesting a doubling of the unconstrained population every 10 years. The dominant eigenvalue for this population, based on the model-derived long-term recruitment parameter, was λ =1.023, suggesting a doubling of the unconstrained population every 30 years.

255

Using the long-term recruitment parameter, model elasticities indicated λ to be particularly sensitive to growth and survivorship in size classes III and IV (Fig. 6). Moreover, elasticities indicated recruitment was relatively unimportant to population intrinsic growth rate. Results were similar for empirically derived short-term recruitment (Supplementary material 2).

261

262 **Discussion**

263

The intrinsic demographic capacities for isolated populations to grow are largely dependent on tradeoffs associated with survivorship and recruitment. This study used a size-based population model to assess these trade-offs in a genetically isolated population of the temperate coral species *Plesiastrea versipora*. It was found that the majority of the colonies tended to remain in the same size class after one year. Additionally, the field calibrated transition matrix indicated the long-term population growth rate was λ =1.023 with a relatively slow doubling of unconstrained densities every 30 years. Since the population growth was characterized by relatively low rates of recruitment (Fig. 6) and survivorship increased with larger size classes (Fig. 4), this support the hypothesis that *P*. *versipora* populations in isolated patches are characterized by high survivorship. The population also appears to be largely independent of recruitment. The results of this study are as discussed below.

276

Population size structure of *P. versipora* appears to be independent of the normal size frequency distribution for corals despite the exclusion of colonies below 3.16cm². Population size structure is likely species-specific and variation between species can be explained by differences in life histories processes such as growth, partial mortality, whole colony mortality and recruitment (Meesters et al. 2001). This was observed in Meesters (2001) where size structure patterns were consistent for the same species across different sites but not consistent among different species.

284

285 Elasticity analysis indicated the persistence of this population was largely dependent on 286 survivorship (Fig. 6). Population growth (λ) was most sensitive to survivorship in size 287 classes III and IV and to a lesser extent size class II, suggesting that small changes in the 288 survival of these classes would critically impact population growth the most. Similar trends 289 in size specific mortality in corals have been found in previous studies where the highest 290 probability of whole colony mortality mostly occurred in smaller colonies (Connell 1973, Hughes 1984, Babcock 1991). However these trends are not always limited to whole 291 292 colony mortality; Babcock (1991) showed partial mortality, particularly in larger size 293 classes, also contributed a significant proportion of overall tissue loss. As a corollary, 294 larger classes with partial mortality would be expected to show higher survivorship 295 because a proportion of a colony would remain unaffected (Hughes & Jackson 1980, 296 1985). Since P. versipora may exist as the result of sporadic recruitment events, survival in 297 larger classes therefore, may be crucial and key to the persistence of this population.

298

The survival rate for this study was approximately 95 percent (~5% mortality) indicating the *P. versipora* population is stable. Mortality was significantly higher in smaller colonies (Fig. 4). This result seems consistent with the annual survivorship rates in previous literature, suggesting increased survivorship as a function of colony size (Hall & Hughes 1996, Harriott et al. 2002, Vermeij & Sandin 2008). Harriott et al. (2002) also documented low mortality rates between 0.7 and 2.0 corals/m⁻² /yr⁻¹ for corals in the Solitary Islands Marine Park, but reported high mortality rates for encrusting, planulating species. Since *P. versipora* colonies can range from encrusting to massive forms (Burgess et al. 2009), the relationship between growth and survivorship is remains inconclusive.

308

309 Results indicated mortality was 5 percent, however this may likely be underestimated due 310 to discrepancies in photographs that limit visibility and locality of colonies over the study 311 period. Juvenile survivorship is highly variable over space and time (Irizarry-Soto & Weil 312 2009), such that survivorship may be driven by the interaction with other organisms and 313 habitat quality (Glassom & Chadwick 2006). Sources of mortality in high latitude benthic 314 communities have been attributed to competition with macroalgae species and filter 315 feeders as well as cold water and high nutrient influxes (Richmond 1993, Kleypas et al. 316 1999, Harriott et al. 2002). During censuses, P. versipora colonies were surrounded by 317 macroalgae and filter feeders, but the proportion of macroalgae to coral planar areas was 318 not empirically defined. It is unknown whether macroalgae has impact on colony radial 319 growth. Furthermore, given that photographs were taken with poor lighting, it was difficult 320 to accurately identify all survivors after one year. Survivorship exhibited for larger corals 321 was 100 percent, but does not account for individual colony tissue loss resulting from 322 partial mortality, which would otherwise contribute to overall mortality rates (Hughes & 323 Jackson 1980). To account for the possible discrepancies within the data, mortality rate 324 was also increased by 10 percent in the final transition matrix. The resulting dominant 325 eigenvalue was λ =0.923 with suggested population half-life of 9 years. This confirms that, 326 even with a temporary increase in mortality the population is able to persevere for a 327 number of years.

328

329 The elasticity analysis indicated recruitment was relatively unimportant compared to the 330 survivorship of colonies in terms of population persistence. This was a good sign given that the recruitment rate was quite low with an average of 1.5 recruits/ m^{-2}/yr^{-1} , consistent 331 332 with species characterized by high longevity in high latitudes (Nozawa et al. 2006, 333 Kersting & Linares 2012). Result showed similarities with that of subtropical coral communities in Solitary Islands Marine Park, where recruitment rates averaged 1.3 to 1.8 334 recruits/m⁻² /yr⁻¹ (Harriott et al. 2002). But was relatively high compared to the cold water 335 336 species Cladocora caespitosa where the recruitment rate was between 0.31 and 0.33

recruits/m⁻² /yr⁻¹. Comparatively, annual recruitment is greater for tropical corals, with recruitment ranging between 1.7 and 12.7 recruits m⁻² yr⁻¹ (Connell et al. 1997). However it should be pointed out that comparisons between the recruitment rates across studies are somewhat ambiguous due to differences in assumptions and methodologies (Harriott & Banks 1995).

342

343 Recruitment in the marine environment varies greatly on spatial and temporal scales 344 (Connell 1997). For example, habitat substrate type and orientation as well as presence of 345 other organism on substratum surfaces may influence larval settlement preferences in 346 corals (Glassom & Chadwick 2006). Similarly, variation in environmental conditions such 347 as seawater temperature, water quality and flow may influence larval settlement (Caley et 348 al. 1996). Due to those reasons, recruitment rates are expected to vary depending if favorable conditions are met. Although fitting the eigenvector to the P. versipora 349 population size structure that has accumulated over many years of recruitment events gives 350 351 the recruitment estimate, interannual variation and seasonal patterns in recruitment rates 352 are expected and corresponds to good and bad years of reproductive output (Connell et al. 1997, Glassom & Chadwick 2006). Considering the latter, this study also estimated actual 353 354 recruitment rates of *P. versipora* based on field observations (short-term). The resulting recruitment rate was 5.1 recruits $m^{-2} yr^{-1}$, which is considerably higher than the long-term 355 356 recruitment estimate and perhaps linked to a good year. This also had a significant affect 357 on the population growth rate, where $\lambda = 1.071$ with a suggested doubling of the population 358 every 10 years. Peak in recruitment may very well be the result of greater surface areas 359 available for settlement and reduced algal activity coupled with favorable environmental 360 conditions.

361

362 This study found the resilience of *P. versipora* in Sydney Harbour was attributed to the faster growth of smaller colonies that reduces early life mortality rates and very high 363 364 survivorship in larger, slow growing colonies, which together buffered low recruitment 365 rates. Although, isolated populations are generally expected to be self-recruiting (Swearer 366 et al. 2002), it seems P. versipora colonies at Fairlight beach is not reliant on high levels of 367 recruitment for persistence, but rather high survivorship. Furthermore, given that the 368 population is geographically isolated accentuating bottlenecks in gene flow (Rodriguez-369 Lanetty & Hoegh-Guldberg 2002), survival in larger colonies seems to be the key limiting 370 factor in determining population persistence.

372 The next step would be to assess the population dynamics of *P. versipora* over multiple 373 generations that take into account extrinsic factors such as environmental conditions that 374 decouple the effects of change. It is possible that the intrinsic population growth predicted 375 from model reflected a good year, but does not denote possible changes in population 376 dynamics that reflect ecological and environmental variables that would occur over 377 multiple years. This is important since populations in coastal temperate locations are 378 subjected to greater variation in conditions that reflect environmental and anthropological 379 perturbations (Halfar et al. 2005, Halpern et al. 2008). Furthermore, there are limitations 380 associated with this population model, which include the assumption that populations are 381 'closed' and not influenced by external recruits and the practicality of estimating 382 recruitment rate in terms of size structure rather than the latter observed recruitment. 383 Ideally, the population model used in this study can be augmented to understand the 384 population dynamics of other isolated metapopulations within the Sydney region and their 385 connectivity in terms of recruitment.

386

371

387 The success of sub-populations outside species' present geographical ranges is conditional 388 on the intrinsic capacity for a population to grow in a new patch and is made up of 389 variations in mortality and recruitment. This study has shown that a population modeling 390 approach can provide useful insight into the important demographic strategy that allow 391 isolated coral reef populations to persist outside native ranges. The demographic fate of an 392 individual or population can be accurately predicted using size related classification 393 Finally, it can be elucidated from this study that the dispersal of marine organisms to 394 temperate locations, resulting in regional isolation, may require population-specific 395 survival strategies (Baums et al. 2005). More specifically, high level of survivorship that 396 buffers low recruitment as well as rapid juvenile growth. In summary, this is the first study 397 that specifically addressed the persistence of corals in temperate locations using population 398 models and may contribute to the testing of population parameters among other sites.

399

400 Acknowledgements

I sincerely thank J. Madin for providing supervision and support during the project. T.
Mizerek, D. Barneche and A. Madsen helped with data collection.

403

404 **References**

12

- Babcock RC (1991) Comparative demography of 3 species of scleractinian corals using
 age-dependent and size-dependent classifications. Ecological Monographs 61:225 244
- Bak RPM, Meesters EH (1998) Coral population structure: the hidden information of
 colony size-frequency distributions. Marine Ecology Progress Series 162:301-306
- 410 Baums IB, Miller MW, Hellberg ME (2005) Regionally isolated populations of an 411 imperiled Caribbean coral, Acropora palmata. Molecular Ecology 14:1377-1390
- Burgess SN, McCulloch MT, Mortimer GE, Ward TM (2009) Structure and growth rates
 of the high-latitude coral: Plesiastrea versipora. Coral Reefs 28:1005-1015
- Caley MJ, Carr MH, Hixon MA, Hughes TP, Jones GP, Menge BA (1996) Recruitment
 and the local dynamics of open marine populations. Annual Review of Ecology and
 Systematics 27:477-500
- 417 Caswell H (1989) Matrix population models. Wiley Online Library
- 418 Connell JH (1973) Population ecology of reef-building corals. Biology and geology of
 419 coral reefs 2:205-245
- Connell JH, Hughes TP, Wallace CC (1997) A 30-year study of coral abundance,
 recruitment, and disturbance at several scales in space and time. Ecological
 Monographs 67:461-488
- 423 Cowen RK, Lwiza KM, Sponaugle S, Paris CB, Olson DB (2000) Connectivity of marine
 424 populations: open or closed? Science 287:857-859
- 425 Cowen RK, Sponaugle S (2009) Larval Dispersal and Marine Population Connectivity.
 426 Annual Review of Marine Science 1:443-466
- Easterling MR, Ellner SP, Dixon PM (2000) Size-specific sensitivity: Applying a new
 structured population model. Ecology 81:694-708
- Edmunds PJ (2000) Patterns in the distribution of juvenile corals and coral reef community
 structure in St. John, US Virgin Islands. Marine Ecology Progress Series 202:113 124
- Figueira WF, Booth DJ (2010) Increasing ocean temperatures allow tropical fishes to
 survive overwinter in temperate waters. Global Change Biology 16:506-516
- Fisher R, Bellwood DR, Job SD (2000) Development of swimming abilities in reef fish
 larvae. Marine Ecology Progress Series 202:163-173
- Glassom D, Chadwick NE (2006) Recruitment, growth and mortality of juvenile corals at
 Eilat, northern Red Sea. Marine Ecology Progress Series 318:111-122
- Halfar J, Godinez-Orta L, Riegl B, Valdez-Holguin JE, Borges JM (2005) Living on the
 edge: high-latitude Porites carbonate production under temperate eutrophic
 conditions. Coral Reefs 24:582-592
- Hall VR, Hughes TP (1996) Reproductive strategies of modular organisms: Comparative
 studies of reef-building corals. Ecology 77:950-963
- Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D'Agrosa C, Bruno JF,
 Casey KS, Ebert C, Fox HE, Fujita R, Heinemann D, Lenihan HS, Madin EMP,
 Perry MT, Selig ER, Spalding M, Steneck R, Watson R (2008) A global map of
 human impact on marine ecosystems. Science 319:948-952
- Harriott VJ, Banks SA (1995) Recruitment of scleractinian corals in the solitary-islands marine-reserve, a high-latitude coral-dominated community in eastern australia.
 Marine Ecology Progress Series 123:155-161
- Harriott VJ, Smith SDA, Moosa MK, Soemodihardjo S, Romimohtarto K, Nontji A,
 Soekarno, Suharsono (2002) Coral population dynamics in a subtropical coral
 community. Solitary Islands Marine Park. Australia. Proceedings of the Ninth
 International Coral Reef Symposium, Bali, 23-27 October 2000 Volume 1:573-581

- Hobbs J-PA (2010) Poleward range expansion of a tropical coral reef fish (Centropyge flavissima) to Lord Howe Island, Australia. Marine Biodiversity Records 3:Unpaginated-Unpaginated
- Hughes TP (1984) Population-dynamics based on individual size rather than age a
 general-model with a reef coral example. American Naturalist 123:778-795

Hughes TP, Connell JH (1987) Population dynamics based on size or age? A reef-coral
analysis. American Naturalist:818-829

- 461 Hughes TP, Jackson JBC (1980) Do corals lie about their age some demographic
 462 consequences of partial mortality fission and fusion. Science (Washington D C)
 463 209:713-715
- Hughes TP, Jackson JBC (1985) Population-dynamics and life histories of foliaceous
 corals. Ecological Monographs 55:141-166

Hughes TP, Tanner JE (2000) Recruitment failure, life histories, and long-term decline of
 Caribbean corals. Ecology 81:2250-2263

- 468 Irizarry-Soto E, Weil E (2009) Spatial and temporal variability in juvenile coral densities,
 469 survivorship and recruitment in La Parguera, southwestern Puerto Rico. Caribbean
 470 Journal of Science 45:269-281
- Kai S, Sakai K (2008) Effect of colony size and age on resource allocation between growth
 and reproduction in the corals Goniastrea aspera and Favites chinensis. Marine
 Ecology Progress Series 354:133-139
- Kersting D-K, Linares C (2012) Cladocora caespitosa bioconstructions in the Columbretes
 Islands Marine Reserve (Spain, NW Mediterranean): distribution, size structure and
 growth. Marine Ecology-an Evolutionary Perspective 33:427-436
- Kinlan BP, Gaines SD, Lester SE (2005) Propagule dispersal and the scales of marine
 community process. Diversity and Distributions 11:139-148
- Kleypas JA, McManus JW, Menez LAB (1999) Environmental limits to coral reef
 development: Where do we draw the line? American Zoologist 39:146-159
- 481 Lindsay SM (2012) Dispersal of Marine Organisms and the Grand Challenges in Biology:
 482 An Introduction to the Symposium. Integrative and Comparative Biology 52:443 483 446
- Luiz OJ, Allen AP, Robertson DR, Floeter SR, Kulbicki M, Vigliola L, Becheler R, Madin
 JS (2013) Adult and larval traits as determinants of geographic range size among
 tropical reef fishes. Proceedings of the National Academy of Sciences of the United
 States of America 110:16498-16502
- 488 Luiz OJ, Madin JS, Ross Robertson D, Rocha LA, Wirtz P, Floeter SR (2012) Ecological
 489 traits influencing range expansion across large oceanic dispersal barriers: insights
 490 from tropical Atlantic reef fishes. Proceedings of the Royal Society B-Biological
 491 Sciences 279:1033-1040
- Meesters EH, Hilterman M, Kardinaal E, Keetman M, de Vries M, Bak RPM (2001)
 Colony size-frequency distributions of scleractinian coral populations: spatial and
 interspecific variation. Marine Ecology Progress Series 209:43-54
- 495 Nozawa Y, Tokeshi M, Nojima S (2006) Reproduction and recruitment of scleractinian
 496 corals in a high-latitude coral community, Amakusa, southwestern Japan. Marine
 497 Biology 149:1047-1058
- 498 Richmond RH (1993) Coral-reefs present problems and future concerns resulting from
 499 anthropogenic disturbance. American Zoologist 33:524-536
- 500 Riegl B (2003) Climate change and coral reefs: different effects in two high-latitude areas
 501 (Arabian Gulf, South Africa). Coral Reefs 22:433-446
- Rinkevich B, Loya Y (1979) The reproduction of the Red Sea coral Stylophora pistillata. 1.
 Gonads and planulae. Marine Ecology Progress Series 1:133-144

- 504Roberts CM (1997) Connectivity and management of Caribbean coral reefs. Science505278:1454-1457
- Rodriguez-Lanetty M, Hoegh-Guldberg O (2002) The phylogeography and connectivity of
 the latitudinally widespread scleractinian coral Plesiastrea versipora in the Western
 Pacific. Molecular Ecology 11:1177-1189
- Rodriguez-Lanetty M, Loh W, Carter D, Hoegh-Guldberg O (2001) Latitudinal variability
 in symbiont specificity within the widespread scleractinian coral Plesiastrea
 versipora. Marine Biology 138:1175-1181
- 512 Roughgarden, J (1998) The primer of ecological theory. Prentice Hall
- Shanks AL, Grantham BA, Carr MH (2003) Propagule dispersal distance and the size and
 spacing of marine reserves. Ecological Applications 13:S159-S169
- Sponaugle S, Cowen RK, Shanks A, Morgan SG, Leis JM, Pineda JS, Boehlert GW,
 Kingsford MJ, Lindeman KC, Grimes C, Munro JL (2002) Predicting selfrecruitment in marine populations: Biophysical correlates and mechanisms.
 Bulletin of Marine Science 70:341-375
- Stubben CJ, Milligan BG (2007) Estimating and Analyzing Demographic Models Using
 the popbio Package in R. Journal of Statistical Software 22:11.
- Swearer SE, Shima JS, Hellberg ME, Thorrold SR, Jones GP, Robertson DR, Morgan SG,
 Selkoe KA, Ruiz GM, Warner RR (2002) Evidence of self-recruitment in demersal
 marine populations. Bulletin of Marine Science 70:251-271
- Tanner JE, Hughes TP, Connell JH (1996) The role of history in community dynamics: A
 modelling approach. Ecology 77:108-117
- Vermeij MJA, Sandin SA (2008) Density-dependent settlement and mortality structure the
 earliest life phases of a coral population. Ecology 89:1994-2004
- Warner RR, Chesson PL (1985) Coexistence mediated by recruitment fluctuations a field
 guide to the storage effect. American Naturalist 125:769-787
- Yamano H, Sugihara K, Nomura K (2011) Rapid poleward range expansion of tropical
 reef corals in response to rising sea surface temperatures. Geophysical Research
 Letters 38
- 533
- 534

Tables

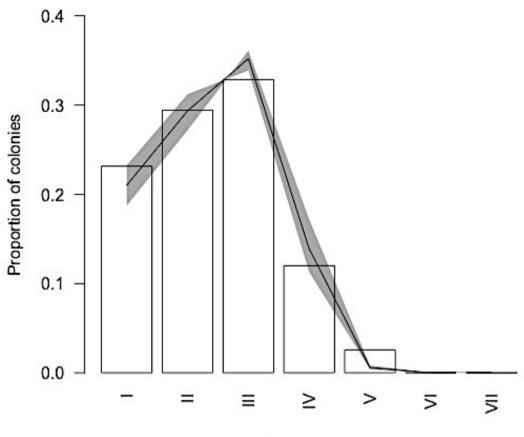
535 **Table 1:** *P. versipora* size classes given by unconstrained colony planar areas.

Size class	Planar areas (cm ²)
Ι	3.16 - 10
II	10-31.62
III	31.62 - 100
IV	100 - 316.23
V	316.23 - 1000
VI	1000 - 3162.28
VII	3162.28 - 10000

- 536
- 537

538

Table 2. Results from linear models for growth and survivorship


		df	SE	p
	Growth	43	0.844	< 0.005
	Survivorship	71	2.010	0.0124
541				
542			Figu	ire legends
543	Figure 1: Aerial	view of Fa	airlight beach,	Sydney Harbour, Aus
544	transects 1, 2 and	13		
545				
546	0 1			ize class. Line indicat
547		-	•	5 recruits/cm ² . Shade
548	lower 95 % conf	idence inte	rvals.	
549				
550	e	C		versipora colony grov
551	0 1			's size at t and one ye
552				grey lines indicate 95
553	The dotted line is	s the unit li	ne that indicate	es unchanged colony
554				
555		-		a versipora survivors
556			-	's size at time t and in
557	at t+1. Solid line	is the mod	el mean fit and	l dashed lines are 95 %
558			0 · 1	
559	-		_	obabilities for <i>Plesia</i>
560		-		m^2 . The top row repre
561				gonal is the yearly pro
562	e			ove this diagonal indic
563	fragmentation an	d those bel	ow the diagona	al indicate growth to l
564				
565	e	5 5	1 2 0	the sensitivity of lan
566	1	0	their magnit	ude. Red shading i
567	sensitivity to cha	nge.		

568			
569			
570			
571			
572			
573			
574			
575			
576			
577			
578			
579			
580			
581			
582			
583			
584			
585			
586			
587			
588			
589			
590			
591			
592			
572			

FIGURES

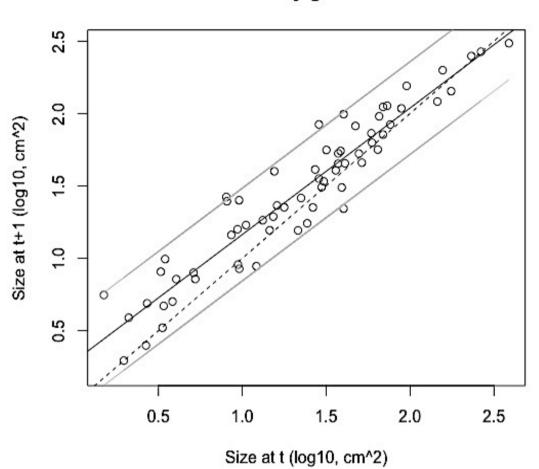


Figure 1

Size classes

Figure 2

Colony growth

Figure 3

Survival

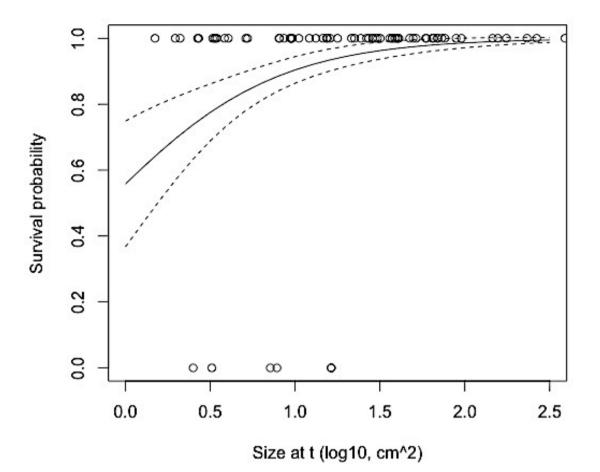


Figure 4

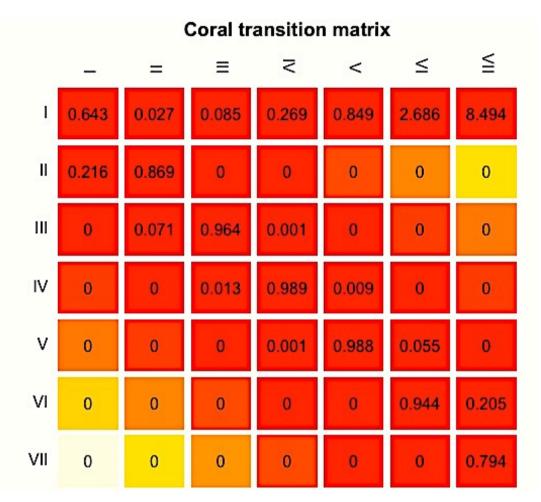


Figure 5

Coral elasticity matrix

Figure 6

Supplementary material 1

R Script for population matrix modeling

Packages

```
if (!"popbio" %in% rownames(installed.packages())) install.packages("popbio",
repos="http://cran.csiro.au", dependencies=TRUE)
library(popbio)
if (!"stats4" %in% rownames(installed.packages())) install.packages("stats4",
repos="http://cran.csiro.au", dependencies=TRUE)
library(stats4) # for mle
```

Size structure

Input size structure data based on planar areas of unconstrained colonies ss = read.delim("data/sizestructure_output.txt", as.is = T) hh = hist(log10(ss\$area_T), breaks = seq(-0.5, 4, 0.5))

Smaller classes 1 -3 were grouped due to undersampling of these classes hh = hh\$counts hh[3] = sum(hh[1:3]) hh = hh[3:9]

Population size classes given by log10

This means that the "recruitment" class is 3 to 10 cm² (or 10⁰.5 to 10¹ is log10 space) ends = seq(0.5, 4, 0.5) mids = seq(0.75, 3.75, 0.5)

Growth

Input of individual demographic rates, i.e. colony planar areas for 2012 and 2013 tag_dat = read.delim("data/Colony_areas_outlined.txt", as.is = T)

x = tag_dat\$x[!is.na(tag_dat\$y)]
y = tag_dat\$y[!is.na(tag_dat\$y)]

Planar areas for 2012 and 2013 log transformed. x = log10(x) y = log10(y) $mod \le lm(y \ge x)$

Parameterization of the growth component of the matrix model using a linear function; Roman numerals represent size classes.

lm(x, y, xlab = "Size at t (log10, cm^2)", ylab = "Size at t+1 (log10, cm^2)", main =
"Colony growth")
abline(mod)
abline(0, 1, lty = 2)
lines(x, predict(mod, list(x)) + 1.96*sd(residuals(mod)), col=("grey"))
lines(x, predict(mod, list(x)) - 1.96*sd(residuals(mod)), col=("grey"))

```
G = matrix(0, length(mids), length(mids))
rownames(G) = colnames(G) = 1:length(mids)
rownames(G) = colnames(G) = c("I", "II", "III", "IV", "V", "VI", "VII")
```

```
for (x in 1:length(mids)) {
    z = seq(-0.5, 4, 0.001)
    p = dnorm(z, predict(mod, list(x=mids[x])), sd(residuals(mod))/2)
    for (y in 1:length(mids)) {
        G[y,x] = sum(p[z >= mids[y]-0.25 & z < mids[y]+0.25])/sum(p)
    }
}</pre>
```

```
Growth matrix
image2(G, mar=c(1,3.5,5,1), box.offset=.1)
title("Growth matrix", line=2.5)
```

Survivorship

Parameterization of the survivorship component of the matrix model using a general linear model with a binomial response and logistic function of the initial year tag_dat\$x_log10 <- log10(tag_dat\$x)

sur_mod = glm(Survival ~ x_log10, family = binomial, data = tag_dat)
summary(sur_mod)
ss = seq(0, 2.5, 0.1)

est <- predict(sur_mod, list(x_log10=ss), type="response", se.fit=TRUE)

plot(Survival ~ x_log10, data = tag_dat, xlim=c(0, 2.5))
lines(ss, est\$fit)
lines(ss, est\$fit + est\$se.fit, lty=2)
lines(ss, est\$fit - est\$se.fit, lty=2)

```
pred = sur_mod$coef[1] + sur_mod$coef[2] * mids
est <- exp(pred) / (1 + exp(pred))</pre>
```

```
S = matrix(est, length(mids), length(mids), byrow = T)
rownames(S) = colnames(S) = 1:length(mids)
rownames(S) = colnames(S) = c("I", "II", "III", "IV", "V", "VI", "VII")
```

```
Survival matrix
```

image2(S, mar=c(1,3.5,5,1), box.offset=.1) title("Survival matrix", line=2.5)

Recruitment

Recruitment was modeled as a function of colony size; q was estimated in two ways Recruitment based on field observations

recr <- 11 total_area_pop <- sum(dat[,3], na.rm=T) q_field <- recr/total_area_pop

Recruitment best fitted to model stable and field size structure.

Fit was assessed using the maximum log likelihood function optim

```
R \leq function(q)
```

```
R = matrix(0, length(mids), length(mids))
R[1,] = q * 10^mids
rownames(R) = colnames(R) = 1:length(mids)
return(R)
}
fit <- function(q) {
    M = G*S+R(q) # growth x survival + recruitment
    pre = abs(Re(eigen(M)$vectors[,1])) / sum(abs(Re(eigen(M)$vectors[,1])))
    obs = hh #/ sum(hh)
# bb <- barplot(c(obs / sum(obs)), ylim=c(0, 0.4))
# lines(bb[1:7], pre)
return(-sum(obs * log(pre)))
}</pre>
```

```
The number of successful recruits per unit area of corals into class 1 in t+1 is given by q
q = optimise(fit, c(0.0001, 0.01))$minimum
q mle = mle(fit, start=list(q=2))
```

```
q = q_mle@coef
q_ci=confint(q_mle)
sum(dat[,3], na.rm=TRUE) * q
sum(dat[,3], na.rm=TRUE) * q_ci[1]
sum(dat[,3], na.rm=TRUE) * q_ci[2]
```

```
bb <- barplot(c(hh / sum(hh)), ylim=c(0, 0.4), names.arg=c("I", "II", "III", "IV", "V", "VI",
"VII"), las=2, col="white", ylab="Proportion of colonies", xlab="Size classes")
M = G*S+R(q) # growth x survival + recruitment
pre = abs(Re(eigen(M)$vectors[,1])) / sum(abs(Re(eigen(M)$vectors[,1])))
```

```
Ml = G*S+R(q_ci[1]) # growth x survival + recruitment

prel = abs(Re(eigen(Ml)$vectors[,1])) / sum(abs(Re(eigen(Ml)$vectors[,1])))

Mu = G*S+R(q_ci[2]) # growth x survival + recruitment

preu = abs(Re(eigen(Mu)$vectors[,1])) / sum(abs(Re(eigen(Mu)$vectors[,1])))
```

polygon(c(bb, rev(bb)), c(prel, rev(preu)), col=rgb(0, 0, 0, 0.4), border=NA) lines(bb[1:7], pre)

Recruitment matrix

image2(R(q_ci), mar=c(1,3.5,5,1), box.offset=.1)
title("Recruitment matrix", line=2.5)

Final transition model

M = G*S+R(q_field) x survival + recruitment rownames(M) = colnames(M) = 1:length(mids) rownames(M) = colnames(M) = c("I", "II", "III", "IV", "V", "VI", "VII")

Mu <- G*S+R(q_ci[2]) rownames(Mu) = colnames(Mu) = 1:length(mids) Ml <- G*S+R(q_ci[1]) rownames(Ml) = colnames(Ml) = 1:length(mids)

Transition matrix image2(M, mar=c(1,3.5,5,1), box.offset=.1) title("Coral transition matrix", line=2.5)

The estimated population intrinsic growth rate was given by dominant eigenvalue lam = Re(eigen(M)\$values[1]) lamu = Re(eigen(Mu)\$values[1]) laml = Re(eigen(MI)\$values[1])

The number of years it would take an unconstrained population to double in size years_double = log(2)/log(lam) years_doubleu = log(2)/log(lamu) years_doublel = log(2)/log(laml)

Increased mortality

Mortality increased by 10 percent in the final transition matrix M_im = G*(S*0.9)+R(q) x survival + recruitment rownames(M_im) = colnames(M_im) = 1:length(mids)

Mu_im <- G*(S*0.9)+R(q_ci[2]) rownames(Mu_im) = colnames(Mu_im) = 1:length(mids) Ml_im <- G*(S*0.9)+R(q_ci[1]) rownames(Ml_im) = colnames(Ml_im) = 1:length(mids)

Final transition matrix with increased mortality image2(M_im, mar=c(1,3.5,5,1), box.offset=.1) title("Coral transition matrix, increased mortality", line=2.5)

Resulting dominant eigenvalue after increasing mortality lam_im = Re(eigen(M_im)\$values[1]) lamu_im = Re(eigen(Mu_im)\$values[1]) laml_im = Re(eigen(Ml_im)\$values[1])

The resulting number of years it would take an unconstrained population to double in size after increasing mortality years_half = $\log(0.5)/\log(\text{lam_im})$ years_halfu = $\log(0.5)/\log(\text{lamu_im})$ years_halfl = $\log(0.5)/\log(\text{lamu_im})$

Elasticity

This is the sensitivity of the eigenvalue to changes in the demographic contributions elas = elasticity(M) image2(elas, mar=c(1,3.5,5,1), log=FALSE) rownames(M) = colnames(M) = 1:length(mids) rownames(M) = colnames(M) = c("I", "II", "III", "IV", "V", "VI", "VII") title("Coral elasticity matrix", line=2.5)

Supplementary material 2

	-	=	≡	<	<	\leq	≦
I	0.085	0.012	0.026	0.013	0.001	0	0
Ш	0.052	0.223	0	0	0	0	0
III	0	0.04	0.356	0	0	0	0
IV	0	0	0.014	0.169	0	0	0
v	0	0	0	0.001	0.009	0	0
VI	0	0	0	0	0	0	0
VII	0	0	0	0	0	0	0

Coral elasticity matrix

Supplementary material 3.a

Colony planar areas (cm²) for 2012 and 2013, 'NA' indicates colonies not present.

2012	2013	Survival	5.115119588	7.943739859	1
37.30336136	53.00569522	1	2.66208331	2.499522764	1
30.56114099	33.94972632	1	10.51114613	16.96088754	1
40.16950236	22.0068747	1	2.100269409	3.881642526	1
22.38951077	26.06858978	1	9.421891357	9.044410115	1
24.3720643	17.42881545	1	9.582721793	8.462317214	1
NA	20.48995298	1	2.702892932	4.881526824	1
26.3507183	22.4476169	1	16.30708888	NA	0
1.965459956	1.963660986	1	37.20787528	44.9599367	1
14.55795857	15.61367541	1	264.7637839	267.0346177	1
28.60354206	35.52144854	1	36.03012749	40.4948233	1
12.12442339	8.813509455	1	21.47831209	15.57190122	1

5.23832188	7.18523621	1	58.73956448
8.598973811	14.49161379	1	NA
NA	1.625585763	1	76.28078809
NA	2.643523698	1	65.44533733
NA	3.44701441	1	95.41078249
17.76765782	22.47211067	1	156.467323
27.16484549	41.04660419	1	28.61827924
40.91959425	45.24701849	1	69.06675153
39.1690296	30.83715945	1	13.23777537
64.21406834	56.32861887	1	3.265177951
8.099071683	24.75736579	1	40.191661
3.463516532	9.868814411	1	9.565448352
16.09585475	23.14024655	1	8.024893577
9.358764033	15.86721909	1	73.03123846
NA	5.261555855	1	51.59122466
3.395512483	4.685733465	1	59.3265188
1.493744097	5.576474649	1	232.1702821
15.28349016	19.39375232	1	29.70637088
38.54248508	55.09537524	1	3.83435151
15.50694647	39.86979324	1	31.7220799
NA	2.645292741	1	47.26018869
NA	2.301330999	1	388.822845
88.7740582	108.3796743	1	2.505595831
NA	5.035042166	1	0.147502617
NA	2.649445635	1	16.34211076
69.00741331	71.49927871	1	7.138531416
145.5429039	120.963363	1	
4.037758031	7.171844466	1	
175.8265276	142.6202478	1	
49.54631138	52.818652	1	
3.341427309	3.313118424	1	
NA	5.859820086	1	
3.229650697	NA	0	
7.80122555	NA	0	

58.73956448	72.90735144	1
NA	7.311895943	1
76.28078809	83.92645158	1
65.44533733	95.58973366	1
95.41078249	155.0801232	1
156.467323	198.9978956	1
28.61827924	84.08971961	1
69.06675153	111.05489	1
13.23777537	18.30194169	1
3.265177951	8.072717196	1
40.191661	98.93210197	1
9.565448352	25.15470793	1
8.024893577	26.49410974	1
73.03123846	113.1188261	1
51.59122466	45.71204687	1
59.3265188	62.80494563	1
232.1702821	249.2712152	1
29.70637088	30.97687618	1
3.83435151	5.027631596	1
31.7220799	55.96849807	1
47.26018869	81.99649151	1
388.822845	305.8117941	1
2.505595831	NA	0
0.147502617	NA	0
16.34211076	NA	0
7.138531416	NA	0
		-

Supplementary material 3.b

Size structure given by planar areas of unconstrained colonies

Coloi	ny no. Area	9	1.745766573	18	32.12951511
1	15.18327821	10	11.85500753	19	48.15230835
2	4.324705918	11	7.368063462	20	76.76691824
3	42.63932904	12	108.5011555	21	59.32175581
4	1.019824475	13	9.457650123	22	2.659327359
5	30.09062596	14	77.36237833	23	36.50439503
6	14.24034118	15	23.37822147	24	2.916366126
7	6.51150429	16	42.22303557	25	5.444270572
8	11.19674994	17	49.83971527	26	3.087298928

27	2.847947675	77	2 (00(00(2	107	17.08726841
27	13.42692637	77 78	3.69868063	127 128	
28		78 70	35.56179488		50.08842753
29	26.65306924	79	9.373330065	129	19.71809412
30	52.72256633	80	17.00043078	130	16.79456898
31	5.546968892	81	106.318241	131	23.40566324
32	1.201523066	82	8.574950745	132	64.35217097
33	42.17297551	83	42.75465478	133	5.7735256
34	149.1340433	84	1.639328609	134	11.03360384
35	11.41741582	85	6.850078968	135	15.75970909
36	71.38799168	86	9.891354375	136	199.0285731
37	13.00455035	87	41.15979285	137	180.3836159
38	3.443219214	88	27.81645288	138	442.9061997
39	87.97702211	89	1.480222592	139	11.88056744
40	121.802725	90	9.352262918	140	7.695924341
41	31.88854598	91	5.16904958	141	32.79191845
42	119.2046012	92	8.208199217	142	16.75909012
43	21.09209511	93	16.72630187	143	43.36786506
44	2.582591008	94	7.094093869	144	22.03488552
45	30.50782072	95	17.46520053	145	46.73123602
46	138.8754196	96	7.719061845	146	9.671613972
47	42.46919657	97	75.49965042	147	59.32726966
48	1.061952463	98	24.32844629	148	24.82821598
49	3.389555373	99	22.06122637	149	9.403517655
50	18.97166556	100	1.823817105	150	5.654105337
51	291.333672	101	48.61080995	151	17.8682507
52	19.38063246	102	28.32491214	152	12.12343134
53	6.094182825	103	193.7225581	153	8.535254903
54	56.92925842	104	4.678931269	154	180.7045313
55	41.56295062	105	8.660749594	155	22.39890327
56	475.2922482	106	2.53199089	156	44.87463078
57	34.77789133	107	13.25525674	157	37.29022345
58	28.99732602	108	43.27710211	158	25.24404943
59	1.785689286	109	1.509931926	159	43.47854882
60	72.6664423	110	8.650364476	160	25.41889082
61	17.18072998	111	67.22083825	161	11.20231964
62	23.04844535	112	15.36331794	162	9.339434856
63	69.83620112	113	30.24393803	163	44.51276939
64	57.20801419	114	81.38434224	164	12.97154271
65	0.416799175	115	8.471506837	165	37.7068026
66	3.277695863	116	11.41204319	166	18.69537704
67	8.788278868	117	80,99990058	167	32.14941114
68	3.54271268	118	13.71363625	168	11.07857268
69	11.78683238	119	6.715353179	169	2.279135173
70	8.559345307	120	12.51823729	170	55.01810512
71	17.02594763	121	59.24545599	171	132.2170882
72	5.706439439	121	3.661555768	172	261.9249301
73	2.845373443	122	34.99780652	172	14.45737838
74	2.089463236	123	23.88746217	174	8.262079526
75	7.112711701	124	84.92124132	175	11.92158337
76	5.04873786	125	11.87366465	175	9.889646382
, 0	2.0.075700	120	11.07200102	170	2.002010202

177	84.56608151	227	43.96924202	277	47.24849925
178	466.0842575	228	126.0599866	278	44.76819096
179	11.49383129	229	32.67319618	279	267.2718593
180	135.0736609	230	20.76933525	280	74.44223012
181	189.4209771	231	15.89697779	281	108.1540299
182	11.18050807	232	55.25983757	282	5.017545267
183	99.09338347	233	70.96410314	283	99.36162083
184	45.67729974	234	92.57584109	284	113.1862286
185	310.3527849	235	67.46036689	285	29.16495095
186	259.241703	236	9.794114201	286	269.7595177
187	11.42267864	230	25.38825893	287	166.7871733
188	90.28573884	238	66.08104457	288	33.20528069
189	75.4152881	239	185.8644102	289	25.0722128
190	67.33081253	240	59.08583336	290	47.45467846
191	58.17170111	240	130.7473538	290	58.34850918
192	61.33459374	241	38.41350081	292	69.45858653
192	59.76496369	242	40.59384167	292	21.70627162
193	27.96158639	243	227.6805449	293 294	16.45910431
194 195	40.90018476	244 245	30.39970203	294 295	1.739977579
			107.5879208	293 296	
196	44.93275469	246			3.68289085
197	76.46882569	247	28.63741784	297	2.310353161
198	67.58346026	248	29.29649843	298	0.612671995
199	56.89780019	249	62.50559961	299	5.418676893
200	53.57749257	250	48.12310877	300	4.857369186
201	39.6601663	251	17.18382162	301	36.36118011
202	56.16994182	252	42.74501556	302	28.0327605
203	27.21790806	253	27.73829282	303	36.65338923
204	38.4316712	254	18.32467304	304	4.512724588
205	347.7352743	255	33.36268455	305	21.33816031
206	16.57844141	256	10.24137638	306	57.21794845
207	62.83374965	257	180.4912235	307	19.77012782
208	185.794839	258	41.72503145	308	5.553057094
209	103.4342816	259	6.152091293	309	11.76491713
210	48.91979744	260	22.21472044	310	31.09710052
211	114.9362916	261	18.86606554	311	6.630767471
212	25.82013281	262	14.6343327	312	11.14666529
213	48.99824033	263	29.69355685	313	59.08289515
214	18.35786857	264	15.7715941	314	4.798215399
215	29.06633078	265	64.57045511	315	17.41657091
216	53.2086647	266	12.50310714	316	3.067624398
217	30.98277916	267	55.37737466	317	3.735802011
218	36.6885756	268	83.55314412	318	7.035740479
219	49.19815147	269	27.3046348	319	2.477151147
220	85.91485753	270	31.34699465	320	6.121865268
221	15.70490937	271	36.81586316	321	2.442844607
222	15.21335942	272	147.1024927	322	43.52231022
223	49.391109	273	30.04185109	323	42.19775434
224	90.83584624	274	50.12665762	324	16.30513341
225	7.597336737	275	79.29677061	325	19.09832966
226	34.72679344	276	727.6128582	326	17.78118991
-				-	

327	29.29808717
328	2.502093443
329	12.63319347
330	57.08535784
331	117.9634678
332	105.6363342
333	122.3174965
334	99.3448537
335	58.84133843
336	60.09749274
337	25.58415028
338	100.4643813
339	359.5738182
340	443.5175434
341	167.3121674
342	299.053776
343	195.7382021
344	250.8314971
345	31.82477239
346	324.6725914
347	350.4470732
348	156.8184716
349	66.68345826
350	131.0205121