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Abstract

Interferometry is one of the most important tools for precision measurments. Recently a
number of space-based quantum optics experiments were proposed in many areas of physics,
including tests of the theory of gravity. Of particular interest is the optical COW exper-
iment, in which a beam of light is split at the surface of the Earth, with one sub-beam
sent to the satellite in a low earth orbit, and the other beam sent through an optical delay
before being transmitted to the satellite. Using a semi-Newtonian analysis one can predict a
gravitationally induced phase shift of ∆ψ ∼ 2 rad. Furthermore, recent work has suggested
the importance of gravitational time dilation and its role in the reduction of interferometric
visibility.

The aim of this thesis is to provide a careful analysis of gravitationally induced phase
shift for an interferometer at the surface of the earth oriented vertically. We analyse it
by modelling a Mach-Zehnder interferometer placed in a spacetime described by the leading
order parametrised post-Newtonian (PPN) metric. We derive the relationship between phase
difference and the difference in the coordinate time of arrival at the point of recombination in
a stationary spacetime, ∆ψ = ω∞∆t, where ω∞ is the frequency of the light ray at infinity.
We then derive some simple relationships between the coordinate time difference ∆t, the
difference in the coordinates of the two arms ∆l, and the difference in the physical path
of the two arms ∆L. We estimate the the phase difference and visibility loss in different
scenarios. We carefully describe the trajectories of light rays along the arms of the Mach-
Zehnder interferometer. We calculate the difference in the coordinate time of arrival as a
function of the angle tilt of the mirrors, and of the initial propagation direction.
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List of Symbols & Notation

The is a following list of symbols used in this thesis. It is not exhaustive, but may be helpful.

p, k . . . . . . . . . four-vectors with components xµ, pµ, kµ

p, k . . . . . . . . three-vectors with components xi, pi, ki formed from the space-like com-
ponents of four-vectors, i.e. k = (k0,k).

xµ . . . . . . . . . . Spacetime coordinates. xµ = (t, ~x) where ~x is a triplet.

~x, ~n, ~b . . . . . . Euclidean three-vectors with components xi, ni, bi.

n̂ . . . . . . . . . . . Euclidean unit vector, that is n̂ = ~n/
√
~n · ~n

gµν . . . . . . . . . . spacetime metric tensor.

gµν . . . . . . . . . . inverse spacetime metric tensor.

ηµν . . . . . . . . . . flat spacetime metric tensor given by diag (−1, 1, 1, 1).

Notation and Conventions

Greek indices range over all spacetime components µ = (0, 1, 2, 3), Latin indices range over
only space-like components m = (1, 2, 3). Superscripts indicate contravariant components,
while subscripts indicate covariant components. We adopt the metric signature convention
(−,+,+,+).

We can define an inner product for each type of vector used:

k · f = gµνk
µf ν , k · f = γmnk

mfn ~k · ~f = k1f 1 + k2f 2 + k3f 3 (1)

where
γmn = gmn −

g0mg0n

g00

(2)

Unless otherwise stated, we adopt the Einstein summation convention, in which repeated
indices are assumed to be summed over.

At various points in this thesis, units will be chosen such that the speed of light c = 1.
This will be indicated at the beginning of each section when this occurs.
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1
Introduction

1.1 Interferometry in relativity

Interferometry is a wide-ranging tool which has has been crucial in performing precision
measurements in many different fields of physics. It played a crucial role in the genesis of
the theory of relativity and has an increasingly important role in the precision tests of general
relativity, particularly in searches for alternative theories and signatures of quantum gravity.
The Michelson-Morley experiment [1], which famously detected no velocity relative to the
luminiferous aether, led to the formulation of the postulates of special relativity. They used
a Michelson interferometer at different points of the Earth’s orbit to attempt to measure a
phase shift due to the change in direction of the aether with respect to the Earth.

One of the classical tests of relativistic gravity, the deflection of light, has been accu-
rately measured due to the techniques of Very-Long-Baseline Interferometry (VLBI) [2, 3].
Interferometry is used extensively in attempting to perform precision measurements of grav-
itational waves. The Laser Interferometer Gravitational-Wave Observatory (LIGO) used an
Earth-based Michelson interferometer to attempt to precisely measure the deformation of
spacetime due to gravitational waves [4].

Many proposed space missions use interferometry to make relativistic measurements. The
Laser Astrometric Test of Relativity (LATOR) was a proposed experiment to place a 100m
long baseline interferometer on the International Space Station, and use two other satellites
as sources, in order to accurately measure the post-Newtonian parameter γ [5] (discussed in
Section 3). The original Laser Interferometer Space Antenna (LISA) was a proposed space
mission to implement the first space-based gravitational wave detector. LISA consists of
three spacecraft, positioned as the vertices of an equilateral triangle, with sides of length on
the order of 106 km [6].

A number of other missions are in different stages of development. Here we mention the
Gravity Recovery and Climate Experiment (GRACE) US-German space mission, launched
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2 Introduction

in 2002. A pair of satellites spent nine years mapping the gravitational field of the Earth
using a highly accurate microwave ranging system between the two spacecraft. Its planned
successor, tentatively called the GRACE Follow-On (GRACE-FO) mission, is scheduled for
launch in 2017 [7].

From the 1970s, interferometry has been used to perform measurements of gravitational
effects in quantum systems. General relativity and quantum theory have both undergone
extensive testing and currently agree with all experimental results. Their independent ex-
perimental success is a result of general relativity only having measurable effects on very
large length scales, while quantum theory only has measurable effects on very small length
scales. In particular, matter interferometry is increasingly used to measure gravitational
effects on quantum systems. Matter interferometry exploits the wave-particle duality of
massive particles to measure a gravitationally induced phase shift. The first measurment of
gravitationally induced phase shift was by Colella, Overhauser and Werner [8].

1.2 Colella, Overhauser and Werner experiment

The Colella, Overhauser and Werner (COW) experiment (1975) was the first measurement
of a gravitationally induced phase shift. They used silicon crystals to split and recombine
a beam of neutrons and measure the resulting interference pattern. They observed a phase
shift in the interference pattern when they changed the angle of the interferometer with
respect to the horizontal plane. The phase shift between the two sub-beams of neutrons
with De Broglie wavelength λ and velocity v was given by [9]

∆ψ = −2π
g

λv2
A sinα . (1.1)

where A is the area enclosed by the trajectories of the two sub-beams, α is the angle tilt
of the interferometer above the horizontal plane, and g is the gravitational acceleration at
the surface of the Earth. Although there have been many improvements to the original
experiment [10, 11], a small discrepancy of 0.6%-0.8% remains [12].

Recently, many quantum optics space experiments have been proposed [13, 14] for the
Quantum EncrYption and Science SATellite (QEYSSAT) to probe regimes in which general
relativistic effects are detectable, ranging from experiments achievable with current tech-
nology, to the more fantastic. Achievable experiments involve performing interferometry
using satellites in low Earth orbit. Of particular interest is the optical COW experiment
(figure 1.1). Such an experiment would involve sending a beam of coherent light through a
beamsplitter, with one of the sub-beams directly transmitted to a satellite at height h, and
the other sub-beam sent through an optical delay of length l at the Earth’s surface before
being transmitted. The two beams are combined at the satellite, completing the interferom-
eter. The effect of the two sub-beams traversing paths with differing gravitational potentials
presents as a phase shift in the resulting interference pattern; a measurable effect of gravita-
tional redshift. The use of light rays instead of massive particles allows interferometry on the
scale of 105 m, not currently achievable with matter interferometry. Current optical interfer-
ometric techniques can measure phase shifts on the order of 10−7 rad [15], allowing extremely
precise measurements of phase shift. Using light rays allows significant simplification in the
parametrised Post-Newtonian (PPN) formalism (discussed in Section 3).
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Figure 1.1: A simplified schematic of the Optical COW Experiment [14]. A coherent lightsource
is split, with one sub-beam directly transmitted to the satellite at height h and the other sub-beam
travels through an optical delay of length l and then transmitted to the satellte.

Eq. (1.1) can be used to provide a Newtonian estimate of the phase shift for light from
[14]. Making the substitutions

A sinα→ hl , v → c , (1.2)

where h is the height of the satellite, l is the length of the optical delay, and c is the speed
of light, we get

∆φ =
2π

λ

ghl

c2
. (1.3)

Substituting possible values of λ = 800 nm, h = 400 km and l = 6 km we get a noticeable
phase shift of

∆ψ ∼ 2 rad. (1.4)

Recent work from Zych et al. [16] has argued that measurement of a phase shift alone is
not sufficient to consider the gravitational effect as being relativistic, and that the additional
measurement of visibility loss is necessary. They argued that although a gravitationally in-
duced phase shift is consistent with general relativity, it can alternatively be explained by
a Newtonian analogue of the Aharonov-Bohm effect, where the particle acquires a trajec-
tory dependent phase, even when the field is homogeneous. However, they propose that a
measurement of a reduction in the visibility of the interference pattern would constitute an
unambiguous measurement of gravitational time dilation. They consider a massive particle
with an oscillating degree of freedom which can be considered a ‘ticking clock’, which evolves
with the proper time of the particle. They show that the interference pattern is diminished
to the extent that the ‘clock states’ evolve into orthogonal states; that is, the extent one can
determine which-way information.
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The analysis was extended to photons in [17]. Since the proper time is undefined in
this case, the ‘clock’ is implemented in the positional degree of freedom of the photon,
or equivalently, the coordinate time. The photons will arrive at the detector at different
coordinate times due to the Shapiro time delay (discussed in section 4). To a stationary
observer at the detector, the physical time difference of the photon arrival times is denoted
∆τ . The authors of [17] propose that the measured phase shift will be

∆ψ = ω∆τ (1.5)

where ω is the frequency of the photon. With this interpretation, the loss in the visibility
is simply the photon wave packets ‘missing’ each other, a phenomenon which cannot be
described using Newtonian gravity.

1.3 Aim of this thesis

The aim of this thesis is to provide a careful analysis of how the coordinate time delay is
related to phase difference and visibility loss in near-Earth interferometry. While the analysis
of the wave propagation in gravitational fields is well-established, and effects of the actual
matter distributions are taken into account in design of the space missions (see, e.g., [7]),
the simple expressions presented in this thesis are both conceptually appealing and provide
a nice starting point for a more sophisticated perturbation theory.

Semi-Newtonian arguments (1.1) usually provide qualitatively good approximations, al-
though they are often incorrect by a factor of 2 [18, 19]. We choose to model the optical
COW experiment by a rectangular Mach-Zehnder interferometer (MZI) placed on the surface
of the Earth, oriented vertically. We model photons as fictitious classical massless particles
which travel along null geodesics in the first order parametrised post-Newtonian approxima-
tion. We then calculate the time delay along each section of the interferometer, and relate
it to path length and phase differences. Finally we propose an interesting candidate for an
internal clock for optical experiments: polarisation rotation.

It may be questioned whether such an experiment and analysis can be considered a
‘quantum’ experiment, given we are treating photons as classically massless particles which
travel along classical trajectories. However, in quantum optics, the propagation of light is
treated using classical wave propagation, with the particle nature of light arising from the
interaction with detectors.

This thesis is structured in the following way. Section 2 introduces the key quantities
of interferometry in a flat spacetime and discuss the approximation of geometrical optics.
In Section 3, we explain the parametrised post-Newtonian formalism and provide the first
order metric for a spherically symmetric, non-rotating uncharged mass. We then derive the
equations of motion and trajectories for photons travelling along null geodesics in the first
order PPN approximation. In section 4 we calculate the relationships between time delay
and phase difference, and compare it to physical path length and coordinate differences,
and use the trajectories for photons them to model the four sides of the Mach-Zehnder
interferometer, and calculate the effects of changing some of the parameters of the MZI.
Finally, we discuss the use of polarisation rotation as a possible candidate for an internal
‘clock’ degree of freedom for a photon.
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A note to the reader: the analysis of this thesis is predominantly from the perspective
of general relativity, rather than quantum optics. Some knowledge of quantum optics is
assumed, and used when required.
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2
Optics in flat spacetime

In this chapter we discuss the basic optics involved in interferometry in flat spacetime. In
particular, we discuss the approximation of geometrical optics, which is valid when propa-
gating waves over distances much larger than the wavelength. We discuss the coherence of
light rays and visibility loss associated with finite coherence length beams, and finally we
discuss the transition from classical waves to photons and quantum optics.

2.1 Geometrical Optics

Plane waves have the benefit of simplicity in that the direction of propagation and amplitude
are the same everywhere. In general however, waves are not plane waves and the amplitude
and direction of propagation will be a complicated function of position and time.

In considering the propagation of light on the scale of the distance between the Earth
and a satellite in low Earth orbit, we are justified in using the approximation of geometrical
optics. In this approximation, for a small region of space we can treat the wave as a plane
wave, which travel along rays. Geometrical optics is a good approximation in the limit which
λ→ 0 [20].

We introduce the complex vector potential

A = aeiψ , (2.1)

where in the approximation of geometrical optics, a is a slowly-varying amplitude which is
independent of wavelength and ψ is the phase (eikonal). Since ψ changes by 2π as the wave
propagates through one wavelength, and since we are in the limit in which the wavelength
λ → 0, the phase ψ will vary rapidly along a trajectory from the Earth to satellite in low
Earth orbit. This approximation can be used to derive the eikonal equation. The vector

7



8 Optics in flat spacetime

potential satisfies the wave equation

ηµν
∂2A

∂xµ∂xν
= 0 . (2.2)

Replacing A with aeiψ and expanding, we get

ηµν
(

∂2a

∂xµ∂xν
eiψ + 2ieiψ

∂a

∂xµ
∂ψ

∂xν
+ iaeiψ

∂2ψ

∂xµ∂xν
− aeiψ

∂ψ

∂xµ
∂ψ

∂xν

)
= 0. (2.3)

Since ψ varies rapidly, ∂ψ/∂xµ is very large, and thus we can ignore the first three terms.
The final term is known as eikonal equation

ηµν
∂ψ

∂xµ
∂ψ

∂xν
= 0 . (2.4)

The eikonal equation is mathematically equivalent to the Hamilton-Jacobi equation [20], and
thus we can make the identification with the wavevector

kµ =
∂ψ

∂xµ
. (2.5)

Thus the eikonal equation is the constraint that the wavevector is null along the trajectory,
that is

ηµνkµkν = 0 . (2.6)

2.2 Coherence

An important concept in interferometry is coherence. The amplitude produced by a typical
point source will be a function of position and time. Every realistic source of light has
a coherence length and a coherence time, which are regions of spacetime for which the
amplitude maintains a constant phase relationship. It is possible to observe interference
with waves which are superposed within their coherence length and coherence time. [21].
An interferometer is a system of beam splitters (for example, a half-silvered mirror) and
mirrors which split and recombine the wave and measure the resulting interference pattern,
to measure properties of the paths taken by the waves.

If two waves with complex electric fields ~E1, ~E2 are superposed at a point P , then the
electric field at P is given by the sum

~E = ~E1 + ~E2. (2.7)

Therefore ∣∣∣ ~E∣∣∣2 =
∣∣∣ ~E1

∣∣∣2 +
∣∣∣ ~E2

∣∣∣2 + ~E1
~E∗2 + ~E∗1

~E2. (2.8)

The intensity at of an electric field ~E is defined as I =

〈∣∣∣ ~E∣∣∣2〉 where 〈·〉 denotes a time

average. Therefore the intensity at P is

I = I1 + I2 + J12 , (2.9)
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where

I1 =

〈∣∣∣ ~E1

∣∣∣2〉 , I2 =

〈∣∣∣ ~E2

∣∣∣2〉 , J12 =
〈
~E1
~E∗2 + ~E∗1

~E2

〉
, (2.10)

J12 is known as the interference term and in general, will be a function of position. This term
oscillates with position and is responsible for interference fringes. If the optical path-length
difference between the two sub-beams changes within the coherence length and the coherence
time, then this will manifest in a phase shift of the interference pattern. If the path-length
difference is large enough that the waves no longer superpose within their coherence length
and coherence time, then there will be a loss in the contrast in the interference fringes. The
interference contrast is measured by the Michelson visibility V , defined as

V =
Imax − Imin
Imax + Imin

. (2.11)

where Imax and Imin are the maximum and minimum values of the intensity local to the
point P .

Figure 2.1: Mach-Zehnder Interferometer in flat spacetime. A photon passing through a beam
splitter at A reflects of mirrors at B and C and combines at D. Sides h and q form a rectangle,
and in a flat spacetime, no phase shift or visibility loss is expected to be observed.

The particular interferometer of interest is a Mach-Zehnder interferometer (MZI) as de-
picted in figure 2.1. A MZI can be used to measure minute differences in the optical length
between two different light paths. A single collimated source of light is split at A using
a beam splitter into two beams. Mirrors positioned at B and C reflect the light which is
recombined at D. The interference between the two paths is measured by observing the
intensity of the two detectors following D. If the lengths of the two paths are optically dif-
ferent, then there will be a phase shift between the two beams arriving at D. The intensities
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of light received at each detector will oscillate with this changing path length. If we assume
the two arms of the interferometer form a rectangle, and the optical path lengths of the two
sub-beams are the same, no phase shift will be observed.

2.3 Quantum Optics

The transition to quantum optics is made through the quantisation of the electromagnetic
field. We imagine the light ray is restricted to a volume such that the vector potential ~A
can be expanded in terms of a discrete set of orthogonal modes [22]

~A (~r, t) =
∑
k

ck
[
~uk (~r) e−iωkt + ~u∗k (~r) eiωkt

]
, (2.12)

where ck are the normilisation constants and ~uk (~r) is the vector mode function which must
satisfy the wave equation (2.2). We treat each discrete mode as a quantum harmonic os-
cillator, and associate each mode k with creation and annihilation operators a†k and ak
respectively.

~A (~r, t) =
∑
k

(
~

2ε0ωk

)1/2 [
ak~uk (~r) e−iωkt + a†k~u

∗
k (~r) eiωkt

]
, (2.13)

where a†k and ak obey the boson commutation relations

[ak, ak′ ] =
[
a†k, a

†
k′

]
= 0 ,

[
ak, a

†
k′

]
= δkk′ . (2.14)

The electric field is found by taking the time derivative of the vector potential in the Coulomb
gauge, giving

~E (~r, t) = i
∑
k

(
~ωk
2ε0

)1/2 [
ak~uk (~r) e−iωkt − a†k~u

∗
k (~r) eiωkt

]
. (2.15)

In general, we can model a single photon wave packet, with frequency amplitude distri-
bution f (ω) as

|1〉 =

∫
dω f (ω) ei(

~k·~x−ωt)a† |0〉 , (2.16)

where ∫
dω |f (ω)|2 = 1 . (2.17)

When considering interferometry of single photons, the interference pattern at the de-
tectors is now not the oscillating intensities of the light, but the probabilities of the each
detector detecting the photon.

Any realistic beam will spread as it propagates. However we are considering only the
events where photons are detected at the satellite, which in effect post-selects out the paths
that reach the detecting volume. This means the beam may be significantly attenuated but
this will have no effect on phase and hence interference.



2.3 Quantum Optics 11

We now summarise a calculation from [17] of the probability of detecting a photon at the
detectors labelled + and − in figure 2.1. The state of the photon after passing through the
second beam splitter at D is

|Ψ〉 =

∫
dωf (ω)

1

2

(
iU+a

†
+ + U−a†−

)
|0〉 , (2.18)

where a†± are the creation operators at detectors ± respectively, and

U± = ei(
~k·~x−ω(t+∆t)) ± ei(~k·~x−ωt) (2.19)

and ∆t is the Shapiro time delay between the two paths. The probability of the photon
hitting detector ± is given by

P± = |〈±|Ψ〉|2 = |〈0| a± |Ψ〉|2 =
1

2

(
1±

∫
dω |f (ω)|2 cos (ω∆t)

)
. (2.20)

For a Gaussian wave packet with width σ (which is the inverse of the variance) centered at
ω = ω0, the frequency amplitude distribution function is given by

f (ω) =
(σ
π

)1/4

exp
[
−σ

2
(ω − ω0)2

]
. (2.21)

Substituting this into (2.20) and integrating, we get the probabilities

P± =
1

2

(
1± e−(∆t/2

√
σ)

2

cos (ω0∆t)
)
. (2.22)

Using (2.11) we can calculate the visibility of this interference pattern,

V = e−(∆t/2
√
σ)

2

. (2.23)
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3
Optics in curved spacetime

In this section we discuss the general features of optics on a curved spacetime background.
Extending the discussion in Section 2, we present how the problem reduces to the motion of
free massless particles. We discuss the Schwarzschild and Kerr spacetimes, and the relevant
conservation laws that make the problem tractable. Finally we introduce the Parametrised
Post-Newtonian (PPN) formalism and present the PPN metric for massless particles which
will be used to perform calculations in this section and in Section 4.

3.1 Photon propagation in curved spacetime

When considering the propagation of light with wavelength λ over distances L, where

λ� L , (3.1)

then the propagation is typically treated using the approximation of geometrical optics as
discussed in Section 2. On a curved background we have a new scale given by the radius of
curvature R. Near the Earth, we have

λ� L� R . (3.2)

Thus for the purposes of propagation, we treat photons as fictitious classical massless par-
ticles which can be described by a two-dimensional Hilbert space which travel along null
geodesics in spacetime. The quantum mechanical behaviour of the photons occurs only as
in Section 2. At the scales of interest we can ignore all the subtle issues regarding photon
localisation [23–25]. We also ignore all possible effects of quantum field theory [26], such as
particle creation and Unruh radiation as they are negligible in the near-Earth environment.

For a massless particle, we introduce the tangent vector k (also known as the wavevector),
with components

kµ =
dxµ

dσ
, (3.3)

13



14 Optics in curved spacetime

where σ is an affine parameter. Free particles travel on geodesics in spacetime. That is,
along the trajectory,

∇kk = 0 , (3.4)

where ∇k represents the covariant derivative of the tangent vector k along the trajectory.
Explicitly, this corresponds to paths which satisfy the geodesic equation

d2xρ

dσ2
+ Γρµν

dxµ

dσ

dxν

dσ
= 0 . (3.5)

where Γρµν are the Christoffel symbols, given by

Γρµν =
1

2
gρα
(
∂gαµ
∂xν

+
∂gαν
∂xµ

− ∂gµν
∂xα

)
, (3.6)

for a spacetime with metric tensor gµν . The phase ψ of the wave is determined by the eikonal
equation

gµν
∂ψ

∂xµ
∂ψ

∂xν
= 0 , (3.7)

where we have generalised (2.4) to a general spacetime metric gµν . This is discussed further
in section 4. We saw in section 2 that the eikonal equation was equivalent to the tangent
vector being null everywhere along the trajectory

k2 = gµνk
µkν = 0 , (3.8)

which is preserved by the geodesic equation.
For massive particles, the natural choice for the affine parameter is proper time τ , and

thus the geodesic equation can be derived from an an action principle.

S =

∫
dτ , (3.9)

where dτ is the differential proper time given by

dτ 2 = −ds2 = −gµνdxµdxν . (3.10)

The corresponding Lagrangian is [27, 28]

L =
1

2
gµν

dxµ

dτ

dxν

dτ
. (3.11)

The equations of motion for a free particle are derived from the Euler-Lagrange equations

d

dτ

∂L

∂ẋµ
− ∂L

∂xµ
= 0 , (3.12)

where ẋµ represents dxµ/dτ . The most powerful method of finding trajectories is using the
Hamilton-Jacobi equation

gµν
∂S

∂xµ
∂S

∂xν
= −m2c4 , (3.13)
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where the Hamilton-Jacobi equation for massless particles is given by settingm = 0. However
the Hamilton-Jacobi equation is a first order partial differential equation and can be difficult
to solve, and the use of the Euler-Lagrange equations is much preferred.

Massless particles have the additional property that locally they travel at the speed of
light, and globally travel along null geodesics. That is, along the trajectory of the light ray,
the line element

ds2 = −dτ 2 = 0 . (3.14)

Consequentially, null trajectories cannot be parametrised by proper time τ , but must now
be parametrised by an affine parameter σ. That is, we need to use the Lagrangian in the
form

L =
1

2
gµν

dxµ

dσ

dxν

dσ
. (3.15)

and thus the Euler-Lagrange equations are now

d

dσ

∂L

∂ẋµ
− ∂L

∂xµ
= 0 , (3.16)

where ẋµ now represents dxµ/dσ. These equations are solved to find the trajectories xµ (σ).
Note that some authors [2] alternatively write the Lagrangian as

L′ =
√

2L =

√
gµν

dxµ

dσ

dxν

dσ
. (3.17)

This can be shown to produce the same equations of motion and thus be equivalent. The
Euler-Lagrange equations for this new Lagrangian are

d

dσ

∂L′

∂ẋµ
− ∂L′

∂xµ
=

d

dσ

1√
2L

∂L

∂ẋµ
− 1√

2L

∂L

∂xµ
= 0 , (3.18)

and since L is constant along a trajectory, we find that both formulations of the Lagrangian
produce identical equations of motion.

3.2 Modelling spacetime

The Einstein field equations are a set of ten highly non-linear, coupled partial differential
equations and cannot be solved in general. Exact solutions to the Einstein field equations
typically exist for geometrically or algebraically special situations [29]. Two of the sim-
plest solutions to Einstein’s equations are the Schwarzschild metric and the Kerr metric.
The Schwarzschild metric describes the spacetime outside of a spherically symmetric, non-
rotating, uncharged mass M and only has diagonal components. The Kerr metric describes
the spacetime outside of a cylindrically symmetric, uncharged rotating mass M with angular
momentum J , and has off-diagonal temporal components as well as diagonal components.

The leading order gravitational affects appear already when considering when the space-
time modelled by the Schwarzschild metric, which is our primary focus; thus we choose to
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use the Schwarzschild metric in the PPN formalism (discussed below). The Schwarzschild
line element in Schwarzschild coordinates (t, r̄, θ, ϕ) is

ds2 = −
(

1− 2GM

c2r̄

)
c2dt2 +

(
1− 2GM

c2r̄

)−1

dr̄2 + r̄2
(
dθ2 + sin2 θdϕ2

)
, (3.19)

where we have used the (−+ ++) metric signature. The gravitating mass (in this case, the
Earth) is located at the origin, and the coordinate r̄ is defined such that a circle centred at
the origin has circumference 2πr̄. Performing the following coordinate transformation

r̄ = r

(
1 +

GM

2c2r

)2

, (3.20)

we get the Schwarzschild metric in isotropic coordinates (t, r, θ, ϕ), in which interval is given
by

ds2 = −(1−GM/2c2r)
2

(1 +GM/2c2r)2 c
2dt2 +

(
1 +

GM

2c2r

)4 [
dr2 + r2

(
dθ2 + sin2 θdϕ2

)]
. (3.21)

A further coordinate transformation, given by

r =
√
x2 + y2 + z2 , (3.22)

θ = arctan
(√

x2 + y2/z
)
, (3.23)

ϕ = arctan
(y
x

)
, (3.24)

gives the Schwarzschild line element in Cartesian spacetime coordinates,

ds2 = −(1−GM/2c2r)
2

(1 +GM/2c2r)2 c
2dt2 +

(
1 +

GM

2c2r

)4 [
dx2 + dy2 + dz2

]
. (3.25)

Spacetimes which do not have an explicit dependence on a coordinate xµ, give rise to a Killing
vector field ∂/∂xµ. Any geometry endowed with a symmetry described by a Killing vector
field, then motion along any geodesic leaves the corresponding component of the tangent
vector kµ constant (for a full discussion, see [28], Chapter 25.2). This is analagous to cyclic
coordinates producing conserved quantities in classical mechanics [30]. The Schwarzschild
and Kerr spacetimes are examples of stationary spacetimes. That is, the metric tensors of
these spacetimes have no explicit dependence on t. From this, for light ray with tangent
vector kµ,

kt = const . (3.26)

We call this covariant component the conserved energy of the light ray. As a result, the
Hamilton-Jacobi equation for trajectories in the Schwarzschild and Kerr metric can be solved
by the method of separation of variables. The Schwarzschild geometry has an additional
symmetry. From (3.19) we can see there is no explicit dependence on the coordinate ϕ.
Therefore we have that for a wavevector given in Schwarzschild coordinates,

kϕ = const. (3.27)
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This covariant component is known as the angular momentum of the light ray. From this
conserved quantity it is possible to show (see [27], chapter 19) that in the Schwarzschild
spacetime, a free particle will remain in the plane through the origin in which it began.
Therefore, without loss of generality we can simplify our equations by assuming that all
motion of interest takes place in the plane

θ =
π

2
↔ z = 0 , (3.28)

that is, from this point onwards we ignore the z coordinate, unless otherwise specified.

3.3 Parametrised post-Newtonian formalism

Solar system tests of gravity employ the parametrised post-Newtonian (PPN) formalism. It
was developed as a phenomenological parametrisation which Eddington originally developed
for a special case. This method represents the metric tensor components for slowly moving
bodies and weak gravity. Several parameters in the PPN metric expansion vary from theory
to theory, and they are associated with various symmetries and invariance properties of the
underlying theory.

In the vicinity of weakly gravitating, slowly moving objects (such as the Earth),

|Φ|
c2
� 1 ,

v2

c2
� 1 , (3.29)

where Φ is the gravitational potential, and v is the velocity of the gravitating mass with
respect to the centre of the solar system. A back-of-the-envelope calculation shows that near
the surface of the Earth is safely within this regime. For the earth

|Φ|
c2
∼ GM

c2r
∼ 10−10 ,

v2

c2
∼ 10−10 . (3.30)

Therefore it makes sense to expand the metric tensor in powers of the small parameter |Φ| /
c2 ∼ v2/c2. The zeroth order terms correspond to flat, empty spacetime. In Newtonian
gravitation, we have the exact relationship v2 = |Φ| = GM/r. Thus the first order terms
are considered to correspond with the predictions of Newtonian gravity. The second order
terms are known as the post-Newtonian corrections.

The PPN formalism allows experimental results to be used to test the different theories
of gravity (e.g. Brans-Dicke-Jordan theory and Ni theory). The PPN formalism develops a
metric tensor which depends on a set of ten parameters which are built up from integrals of
the energy/momentum tensor and the velocities of the gravitating body (see [28], Chapter
39). Different theories of gravity predict different values of these parameters, and thus solar
system measurements of gravitational phenomena can be used to measure these parameters
and distinguish between the various theories of gravity.

We introduce the bookkeeping parameter ε to help keep track of the order of terms in
the PPN approximation. Whenever one wishes to calculate any physical quantities, one
would set ε = 1. We adopt the convention of labelling terms of first order in GM/c2r as
being of order ε2. For example, the line element in the vicinity of a spherically symmetric,
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non-rotating, uncharged mass M , to post-Newtonian order in the PPN formalism, is given
by

ds2 = −

(
1− ε2 2GM

c2r
+ ε42β

(
GM

c2r

)2
)
c2dt2 +

(
1 + ε2γ

2GM

c2r

)[
dx2 + dy2

]
. (3.31)

The reason for this convention is that the metric is expanded in in orders of GM/c2r ∼ v2/c2

more complicated metrics contain off-diagonal terms of which contain terms such as GMv/
c2r, and it is more convenient to label these terms by ε3 rather than ε1.5. An example of
such a metric is the metric tensor outside of a cylindrically symmetric, uncharged, rotating
mass M with angular momentum ~J , given by [28]

g00 = −1 + ε2
2GM

c2r
− ε42β

(
GM

c2r

)2

, (3.32a)

gij = δij

(
1 + ε2γ

2GM

c2r

)
, (3.32b)

g01 = ε3 (1 + γ)
2GJy
c3r3

, (3.32c)

g02 = −ε3 (1 + γ)
2GJx
c3r3

, (3.32d)

g03 = 0 , (3.32e)

where δij is the Kronecker delta. This is the PPN equivalent of the Kerr metric in general
relativity. For a discussion on the why different metric components are expanded to different
orders, see [31], chapter 9-1.

Further simplification can be made when considering massless particles. Since Newtonian
physics predicts the gravitational force on a massless particle to be zero, a first order PPN
expansion is sufficient to be considered a post-Newtonian correction; in which case, only one
PPN parameter is required [2, 31].

ds2 = −
(

1− ε2 2GM

c2r

)
c2dt2 +

(
1 + ε2γ

2GM

c2r

)[
dx2 + dy2

]
. (3.33)

The PPN parameter γ is known as the spacetime curvature parameter. In general relativity,
it takes on the value γ = 1. It has currently been measured with great accuracy [32] to be

γ = 1 + (2.1± 2.3)× 10−5. (3.34)

We choose to model the Mach-Zehnder interferometer by the metric in (3.33). We assume
that trajectories, parametrised by σ, in this PPN spacetime have the form

xµ (σ) = xµ(0) (σ) + ε2xµ(2) (σ) , (3.35)

where xµ(0) (σ) are lightlike trajectories on a flat spacetime, and xµ(2) (σ) are first order cor-

rections due to spacetime being curved, and we ignore all terms of O (ε4) or greater.
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We introduce the simplifying notation to be used from this point onwards,

V (r) = 1− ε2 rg
2r
, W (r) = 1 + ε2γ

rg
2r
, (3.36)

where

rg =
2GM

c2
, (3.37)

is known as the gravitational radius, so that (3.33) is now

ds2 = −V 2 (r) dt2 +W 2 (r) d~x · d~x . (3.38)

3.4 Equations of motion and trajectories

Although trajectories the exact Schwarzschild and Kerr spacetimes are given in quadratures,
in general the expressions are very complicated. The most convenient way of finding the
trajectories in the PPN expansion (3.33) and using the Lagrangian method. For the rest of
section 3 we have chosen units such that the speed of light c = 1.

3.4.1 Lagrangian method

The Lagrangian for the metric (3.38) is

L = −1

2
V 2 (r) ṫ2 +

1

2
W 2 (r) ẋ2 , (3.39)

where ẋµ represents dxµ/dσ and σ is an affine parameter. We first calculate the canonical
momenta

p0 =
∂L

∂ẋ0
= −V 2ṫ , (3.40a)

pi =
∂L

∂ẋi
= W 2ẋi , (3.40b)

and then the derivative of the Lagrangian with respect to the coordinates yield the canonical
forces

∂L

∂x0
= 0 , (3.41a)

∂L

∂xi
= −ε2

(
ṫ2 + γẋ2

) rg
2r2

∂r

∂xi
. (3.41b)

Using the fact that
∂r

∂xi
= xi

(
x2 + y2

)− 1
2 =

xi

r
, (3.42)

and the Euler-Lagrange equations, our equations of motion are

d

dσ
V 2ṫ = 0 , (3.43a)

d

dσ
W 2ẋi = −ε2

(
ṫ2 + γẋ2

) rg
2r3

xi . (3.43b)
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(3.43a) shows the conservation of energy of the light ray, arising due to the metric not
depending on the time coordinate t. The quantity p0 is constant along the trajectory. We
label this conserved quantity

ω := p0 = V 2ṫ =
(

1− ε2 rg
r

)
ṫ , (3.44)

which corresponds to the frequency of the light ray measured by someone at r = ∞. We
assume solutions xµ (σ) of (3.43) can be expanded as a power series in ε2 to first order

t (σ) = t(0) (σ) + ε2t(2) (σ) , (3.45a)

xi (σ) = xi(0) (σ) + ε2xi(2) (σ) . (3.45b)

The equations of motion for each order can be found by substituting (3.45) into (3.43) and
equating orders of ε. This firstly yields the equations of motion for the zeroth order terms
t(0) (σ) and xi(0) (σ), which are

d2

dσ2
t(0) = 0 , (3.46a)

d2

dσ2
xi(0) = 0 , (3.46b)

which show that the zeroth order four-force on the light ray is 0. Integrating with respect
to σ we get the zeroth order four-momentum of the light ray, which is constant along the
trajectory.

pµ(0) =
(
ṫ(0), ẋ

i
(0)

)
= ω(0)

(
1, ni

)
, (3.47)

where ω(0) is the frequency of the light ray in a flat spacetime and ni is the ith component
of the velocity. Integrating again yields the parametrised straight-line trajectories xµ(0)

t(0) (σ) = ω(0)σ , (3.48)

xi(0) (σ) = ω(0)n
iσ + bi , (3.49)

where bi is the initial position. For a full derivation of the corrections to the trajectories of
order ε2, and a specific derivation of the trajectories for a simple case of a radial motion, see
Appendix A.

3.4.2 Parametrisation by t

In comparing time and length differences is convenient to parametrise the trajectories by
coordinate time t, instead of the affine parameter σ. In such a parametrisation, the tangent
vector is given by

kµ =
dxµ

dt
=

(
1,

dxi

dt

)
, (3.50)

and is related to the covariant tangent vector by

dxµ

dt
=

dxµ

dσ

dσ

dt
. (3.51)
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Eq. (A.25a) provides t (σ), which we can easily invert to find σ (t), given by

σ (t) =
t

ω
− ε2 rg

ω
ln

t+ n̂ ·~b+ r

n̂ ·~b+
∣∣∣~b∣∣∣

 . (3.52)

If we substitute this into (A.25b) we get the spatial coordinates parametrised by t,

xi (t) = nit+ bi − ε2
rg

2
ni (1 + γ) ln

t+ n̂ ·~b+ r

n̂ · b+
∣∣∣~b∣∣∣


−rg

2
(1 + γ)

r − n̂ ·~b∣∣∣~b∣∣∣ t−
∣∣∣~b∣∣∣
 ni

(
n̂ ·~b

)
− bi

~b ·~b−
(
n̂ ·~b

)2

 . (3.53)

Taking the derivative we get the spatial components of the wave vector

ẋi (t) = ni + bi − ε2

 rg
2r
ni (1 + γ)− rg

2
(1 + γ)

t+ n̂ ·~b
r

− n̂ ·~b∣∣∣~b∣∣∣ −
∣∣∣~b∣∣∣
 ni

(
n̂ ·~b

)
− bi

~b ·~b−
(
n̂ ·~b

)2

 ,

(3.54)
where ẋ now represents dx/dt. In particular, a useful quantity to calculate is

W 2 d~x

dt
· d~x

dt
= 1− rg

r
, (3.55)

which will be used later in this thesis.

In the case of radial motion along the y axis, we invert (A.32a) to get σ (t),

σ (t) =
t

ω
− ε2 rg

ω
ln

(
t+ by

by

)
, (3.56)

and substituting into (A.32c), we get

x (t) = 0 , (3.57)

y (t) = t+ by − ε2 rg
2

(1 + γ) ln

(
t+ by

by

)
, (3.58)

with wave vector components

ẋ (t) = 0 , (3.59)

ẏ (t) = 1− ε2 (1 + γ) rg
by + t

. (3.60)



22 Optics in curved spacetime

3.4.3 Shapiro time delay

Here we reproduce a calculation of the formula for Shapiro time delay which can be found in
[2] in the first order PPN approximation, in which we relate the coordinate time difference
of a light ray compared to the difference in coordinates. A light ray begins at coordinate
time t = 0 with spatial coordinates ~b. From (3.53) we have that at time t, the light ray has
position.

~x (t)−~b = n̂t+ ε2~x(2) . (3.61)

If we take the square of the Euclidean norm of both sides, we get∣∣xi (t)− bi∣∣2 =
∣∣n̂t2 + ε2~x(2)

∣∣2 = t+ ε22n̂ · ~x(2) . (3.62)

Taking the square root we get ∣∣∣~x (t)−~b
∣∣∣ = t+ ε2n̂ · ~x(2) . (3.63)

We calculate n̂ · ~x(2) from (3.53). Such a calculation gives

n̂ · ~x(2) = − (1 + γ)
rg
2

ln

t+ n̂ ·~b+ r

n̂ ·~b+
∣∣∣~b∣∣∣

 (3.64)

Thus, we get the equation for Shapiro time delay that the coordinate time elapsed for a light
ray travelling between ~b and ~x (t)

t =
∣∣∣~x (t)−~b

∣∣∣+ (1 + γ)
rg
2

ln

t+ n̂ ·~b+ r

n̂ ·~b+
∣∣∣~b∣∣∣

 . (3.65)



4
Results

4.1 Calculation of phase

In this section we present a simple, but important result that will serve as the starting
point in the analysis of the interferometric experiments. Unlike e.g. [7], instead of the flat

spacetime expression ψ = −ωt + ~k · ~x we use the exact result that is valid in a general
stationary spacetime.

In the approximation of geometrical optics, the phase (eikonal) of a light ray satisfies the
eikonal equation

k2 = gµν
∂ψ

∂xµ
∂ψ

∂xν
= 0 , (4.1)

We wish to calculate the phase difference at the point of recombination between the two
beams that were derived from the same source and followed different paths in the MZI,

∆ψ (t, ~x) := ψABD (t, ~x)− ψACD (t, ~x) . (4.2)

where subscripts differentiate the two paths taken by light rays as in figure 4.1. Stationary
spacetimes, such as the Schwarzschild or Kerr spacetimes in which the time coordinate is
cyclic, allow us define the conserved energy (3.44) (see Section 3.1)

p0 =
ω∞
c

=
V ωL
c

= const , (4.3)

where we distinguish between frequency measured by a local stationary observer ωL and
frequency measured at infinity ω∞. Since the time coordinate is cyclic, the solution to the
Hamilton-Jacobi (eikonal) equation can be separated into

ψ (t, ~x) = −ω∞ (t− t0) + ω∞S (~x, ~x0) , (4.4)

23
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for initial coordinates (t0, ~x0), and the explicit form of S (~x, ~x0) is irrelevant for our purposes.
Light rays are null geodesics that generate three-dimensional hypersurfaces of constant

phase in a four-dimensional spacetime. Hence

∆̃ψ (t, ~x) = 0 (4.5)

i.e. the phase is constant along the points of a given geodesic. In interferometry we consider
the propagation in time of surfaces of constant phase ψ = const. At a given moment of
coordinate time the three-dimensional projections of the light rays are orthogonal to the
surfaces of constant S,

km
dxm

dz
= 0, (4.6)

for any curve x(z) that is contained in the surface S = const.
Different families of the constant phase hypersurfaces correspond to different families of

rays. Different paths correspond to different initial momenta of the photons. Hence the
phase difference for the beams that follow the trajectories ABD and ACD is

∆ψ (t, ~xD) = ω∞ (S (~xBD (tABD) , ~xA)− S (~xCD (tACD) , ~xA)) = ω∞ (tABD − tACD) = ω∞∆t
(4.7)

where the subscripts BD and CD indicate the branch of the MZI that a given trajectory
follows, and tABD and tACD are the arrival times for the photons that follow these trajectories.

In general, the physical time difference at a point is related to the coordinate time
difference through

dτ =
√
−g00 dt , (4.8)

Hence in our spacetime ∆τ = V∆t, and therefore the phase difference is

∆ψ (t, ~xD) = ω∞∆t = ωL∆τ . (4.9)

This expression for the phase difference is valid in any stationary spacetime (and at all
orders of PPN). It is our starting point for analyzing different interferometric experiments.
It provides a rigourous derivation of the result (1.5) as seen in [17].

4.2 Phase difference and path difference

We can immediately calculate some standard relationships involving the coordinate time
difference and length differences. We recall from Section 3.4.3 the formula for Shapiro time
delay: the elapsed coordinate time it takes for light to travel from general coordinates ~xA to
~xB in the first order PPN approximation is given by

c (tB − tA) = |~xB − ~xA|+ ε2 (1 + γ)
rg
2

ln

(
rB + ~xB · n̂
rA + ~xA · n̂

)
, (4.10)

where we have restored the speed of light c using dimensional analysis. The phase difference
is found by substituting this into (4.7) for a given configuration of end points.
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In our setting the coordinate difference of the arms of the MZI

∆l := |~xB − ~xA|+ |~xD − ~xB| − |~xC − ~xA| − |~xD − ~xC | . (4.11)

We have the zeroth order coordinates of the corners of the MZI.

(xA, yA) = (0, b) , (xB, yB) = (q, b) , (xC , yC) = (0, b+ h) , (xD, yD) = (q, b+ h) ,
(4.12)

the n̂ vectors for the four sides of the MZI are

n̂AB = n̂CD = (1, 0) , n̂AC = n̂BD = (0, 1) . (4.13)

Therefore the time difference between the two paths is

c∆t = ∆l + ε2 (1 + γ)
rg
2

ln

(√
b2 + q2 + q

b

)
+ ln


√

(b+ h)2 + q2 + b+ h√
b2 + q2 + b


− ln

(
b+ h

b

)
− ln


√
q2 + (b+ h)2 + q

b+ h

 . (4.14)

Taking as a guide the scale of the QEYSSAT optical COW experiment, we can assume that
q/b � 1; h/b � 1. Then if we expand this term to leading order in inverse powers of b, we
have

c∆t = ∆l + ε2 (1 + γ)
rg
2

hq

b2
, (4.15)

Now we relate the phase differences to the physical path length differences. The physical
length of a curve AB is

LAB =

∫ B

A

√
gmndxmdxn =

∫ tB

tA

√
W 2

d~x

dt
· d~x

dt
dt . (4.16)

Using (3.55), we see that in the first PPN approximation, this reduces to

LAB =

∫ tB

tA

(
1− ε2 rg

2r

)
dt (4.17)

= c (tB − tA)− ε2 rg
2

ln

(
rB + ~xB · n̂
rA + ~xA · n̂

)
. (4.18)

We introduce the physical difference of the arms of the MZI

∆L := LAB + LBD − LAC − LCD , (4.19)

then using the same expansion as in (4.15), we obtain

∆L = c∆t− ε2 rg
2

hq

b2
. (4.20)
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Substituting (4.15) into (4.20) we get the relationship

∆L = ∆l + ε2γ
rg
2

hq

b2
. (4.21)

We can immediately consider two regimes. First we consider a setup such as QEYSSAT in
which the physical length of the arms is the same, that is ∆L = 0. Then from (4.9) and
(4.20) the phase difference is given by

∆ψ = ω∞∆t = ε2ω∞
rg
2c

hq

b2
. (4.22)

We can use (2.23) to calculate the visibility loss for a Gaussian wave packet with width σ in
the case in which ∆L = 0,

V = e−(∆τ/2
√
σ)

2

= e−(ε2GMhq/2c3b2
√
σ)

2

≈ 1−
(
ε2

GM

2c3
√
σ

hq

b2

)2

. (4.23)

The second regime is the case in which the difference in coordinate length ∆l is zero. We
have from (4.15)

∆ψ = ω∞∆t = ε2ω∞ (1 + γ)
rg
2c

hq

b2
. (4.24)

If we consider general relativity, for which γ = 1, this gives a phase shift of twice the
magnitude of the case in which ∆L = 0.

∆ψ = ε2ω∞
2GM

c3

hq

b2
, (4.25)

And thus a visibility for a Gaussian wavepacket

V ≈ 1−
(
ε2
GM

c3
√
σ

hq

b2

)2

. (4.26)

4.3 Modelling a Mach-Zehnder Interferometer

For a Mach-Zehnder Interferometer where light propagates freely between the arms, the
physical and coordinate length differences will be entirely determined by the experimental
setup. Thus it is of interest to know the time difference (and hence the phase shift) for a
light ray as a function of the adjustable experimental parameters of the MZI. In this section
we choose units such that the speed of light c = 1.

In contrast to the case of flat spacetime, a curved spacetime, for example the spacetime
produced by the gravitational field of the Earth, will give rise to effects which break the
symmetry between the two arms, if the arms are placed at different gravitational potentials.
As shown in figure 4.1, curved spacetime will cause the light ray to deviate from a straight-
line, increasing the length of each arm. Furthermore, in a curved spacetime, light rays
appear to travel slower than in a flat spacetime, an effect known as the Shapiro time delay.
These effects become are larger in stronger gravitational fields, which creates an asymmetry
between the two arms of the MZI.
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We now use our trajectory equations to model the four sides of a Mach-Zehnder Inter-
ferometer, and do a careful analysis of the propagation of the light ray along each arm. Our
trajectory equations for each side take the form

xµ (t) = xµ(0) (t) + ε2xµ(2) (t) ,

where we ignore all terms of O (ε4) or greater. We also use the approximation when needed

Figure 4.1: Mach-Zehnder Interferometer on a curved background. The difference of the grav-
itational potential along both arms induced an asymmetry in the path length of each arm, causing
a phase shift.

that h, q � rE where rE is the radius of the Earth, and expand in inverse powers of rE, since
typical values for h/rE are ∼ 0.05.

At zeroth order we model the MZI as a closed rectangular path as in figure 2.1, with
corners at

(xA, yA) = (0, b) , (xB, yB) = (q, b) , (xC , yC) = (0, b+ h) , (xD, yD) = (q, b+ h) .
(4.27)

This data is then used to calculate the second order corrections to each path. We first cal-
culate the trajectories of a light ray passing through a beamsplitter at A, which travel on
(initially) horizontal and vertical trajectories. We then calculate the changes in the intersec-
tion point, angle of incidence and angle of reflection of the mirrors at B and C due to the
bending of light up until that point. We then use those initial conditions from the reflection
off the mirrors to determine the final trajectories, and the spatial coordinate of intersection
of the two light rays near D. Finally we calculate the effect of changing the adjustable pa-
rameters of a MZI, such as the angle of the mirrors, and the initial angle of the light ray at A.
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4.3.1 Initial trajectories

In this section we calculate the initial horizontal and vertical trajectories of the light ray
after it passes through the beamsplitter at A.

A light ray at passes through a beamsplitter at point A at time t = 0 and is sent towards
mirrors at points B and C. We consider the vertical trajectory A → C to be a radial
trajectory along the y-axis. This means that bx = 0, and for simplicity we will re-label
by → b = rE. Thus the point A has coordinates ~bA = (0, b). Thus our initial conditions are

~bA = (0, b) , n̂AB = (1, 0) , n̂AC = (1, 0) . (4.28)

where subscripts refer to the particular trajectory of the interferometer. Substituting n̂AB
and ~bA into (3.53) we get the spatial trajectories parametrised by time t for the path A→ B

xAB (t) = t− ε2 rg
2

(1 + γ) ln

(
t+ rAB

b

)
, (4.29a)

yAB (t) = b+ ε2
rg
2

(1 + γ)
(

1− rAB
b

)
. (4.29b)

where
rAB =

√
t2 + b2 . (4.30)

Since the path A → C is a radial trajectory, we use the radial trajectory equations (3.58).
That is,

xAC (t) = 0 , (4.31a)

yAC (t) = t+ b− ε2 rg
2

(1 + γ) ln

(
t+ b

b

)
. (4.31b)

4.3.2 Reflection off mirrors

In this section we examine the interaction of the light rays with the mirrors. We define the
‘angle’ of the light ray, to be the angle of the wave vector with respect to the x-axis. That
is, for a light ray with spatial wavevector components (kx, ky), the angle θ of the light ray is
defined as

θ = arctan

(
ky

kx

)
. (4.32)

We treat the reflection off of the mirrors using Euclidean geomtery. Figure 4.2 shows the
effect on the angle of the light ray upon reflection off of a mirror with angle M . For now we
consider the mirrors at B and C to be have respective angles MB and MC

MB = MC =
π

4
. (4.33)

Let us first consider the mirror at B. In a flat spacetime, the light ray would hit the mirrors
at θAB = 0, and reflect at an angle θBD = π/2. However the curved spacetime will cause
the light to bend, changing the intersection point of the light ray with the mirror, and the
angle of reflection.
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Figure 4.2: A light ray (black) arriving with an angle 0, at a mirror with angle M with respect
to the x axis will be reflected at an angle of 2M . A light ray (red) arriving with an angle θ will be
reflected at an angle 2M − θ.

We first calculate the point at which the light will hit the mirror at B. To do this, we
consider the mirror to be represented by the coordinate straight-line y = x− q+ b which has
the following parametrisation by ξ

(ξ, ξ − q + b) . (4.34)

The intersection point will occur at

tB = q + ε2tB2 ,

ξB = q + ε2ξB2 .

We substitute these into (4.29) and (4.34) and solve for tB, using the fact that up to second
order in ε

xAB
(
q + ε2tB2

)
= xAB (q) + ε2tB2 , (4.35a)

yAB
(
q + ε2tB2

)
= yAB (q) . (4.35b)

which can be seen from the form of (4.29). We find that

tB2 = yAB,(2) (q)− xAB,(2) (q) . (4.36)

Substituting this time into (4.29), we find the intersection point has coordinates

xAB
(
q + ε2tB2

)
= q + ε2

rg
2

(1 + γ)

(
1−

√
q2 + b2

b

)
, (4.37a)

yAB
(
q + ε2tB2

)
= b+ ε2

rg
2

(1 + γ)

(
1−

√
q2 + b2

b

)
. (4.37b)

If we expand in inverse powers of b and keep only the leading order, we see that this point
is

xAB
(
q + ε2tB

)
= q − ε2 q

2rg (1 + γ)

4b2
, (4.38a)

yAB
(
q + ε2tB

)
= b− ε2 q

2rg (1 + γ)

4b2
. (4.38b)
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We now calculate the angle of incidence of the light ray at B. We notice that since the wave
vector has no terms which depend on t at zeroth order

kµAB
(
q + ε2tB

)
= kµAB (q) +O

(
ε4
)
. (4.39)

thus, there is no change in the angle of incidence up to second order in ε from to the change
in intersection point with the mirror, due to spacetime being curved. The angle of incidence
θAB will have second order corrections

θAB = θAB,(0) + ε2θAB,(2) = 0 + ε2θAB,(2) , (4.40)

where we know θAB,(0) = 0, as the light ray travels along the x-axis in flat spacetime. θAB is
explicitly given by

θAB = arctan

(
kyAB
kxAB

)
t=q

= −ε2 q
2b

rg (1 + γ)√
b2 + q2

= −ε2 qrg (1 + γ)

2b2
+O

(
1

b4

)
, (4.41)

where we have subtituted ~bA and n̂AB into (3.54) to find the components of the wavevector
kAB. From figure 4.2 and (4.33), the angle of reflection will be

θBD =
π

2
− θAB . (4.42)

Since the path A→ C is radial, the interaction of the light ray with the mirror at C is greatly
simplified. The light ray will not deviate from the y-axis and will intersect the mirror at
C = (0, b+ h). However due to the Shapiro time delay, it will intersect the mirror when

tC = h+ ε2tC2 , (4.43)

where

tC2 = −yAC,(2) (h) =
rg
2

(1 + γ) ln

(
b+ h

b

)
. (4.44)

Thus since the light ray does not deviate from the y-axis, it will hit the mirror at C at the
original angle it was sent, that is θAC = π/2, and will therefore reflect at an angle of θCD = 0.

4.3.3 Final trajectories

In this section we use the previous section for the initial conditions for the final trajectories.
We first consider the path C → D. Since the path A→ C was a radial trajectory, this final
path has particularly simple initial conditions

~bC = (0, b+ h) , n̂CD = (1, 0) . (4.45)

Using (3.53) we get the trajectories

xCD (t) = t− rg
2

(1 + γ) ln

(
t+ rCD
b+ h

)
, (4.46a)

yCD (t) = b+ h+
rg
2

(1 + γ)

(
1− rCD

b+ h

)
, (4.46b)
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where

rCD =

√
t2 + (b+ h)2 . (4.47)

Now consider the path B → D. The light ray begins this trajectory at the point it hits
mirror B (4.37). The vector n̂BD along the path B → D is a unit vector along the angle of
reflection and is given by

n̂BD =
(

cos
(π

2
− θAB

)
, sin

(π
2
− θAB

))
.

Expanding this to second order in ε we have

n̂BD = (θAB, 1) . (4.48)

We can see second order corrections appearing in the originally ‘zeroth order’ trajectory
components, due to the bending of the previous path. We notice that n̂BD is still a unit
vector up to second order in ε. Substituting this initial data into (3.53) we find the zeroth
order spatial trajectories for the B → D path are

xBD,(0) (t) = θABt+ xAB (q) + ε2tB2 , (4.49a)

yBD,(0) (t) = t+ yAB (q) , (4.49b)

where we have used (4.35). The second order corrections are

xBD,(2) (t) = − rg
2q

(1 + γ)

(
rBD −

b

|b|BD
t− |b|BD

)
, (4.50a)

yBD,(2) (t) = −rg
2

(1 + γ) ln

(
t+ b+ rBD
b+ |b|BD

)
, (4.50b)

where

rBD =

√
q2 + (b+ t)2, (4.51a)

|b|BD =
√
q2 + b2. (4.51b)

4.3.4 Intersection point

In flat spacetime, the two trajectories would intersect at the point (q, b+ h) , at the same
coordinate time. However the curvature of spacetime causes the paths to bend and meet at
a slightly different point at different coordinate times. To find this intersection point, we
need to solve

xiBD (t1) = xiCD (t2) , (4.52)

for t1 and t2. In a flat spacetime, we would have t1 = h and t2 = q, so if we expand t1 and
t2 in powers of ε, we should have

t1 = h+ ε2tBD , (4.53a)

t2 = q + ε2tCD . (4.53b)
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Substituting t1 and t2 into the trajectory equations for xiBD and xiCD respectively and
expanding to second order, we can use our trick from before in (4.35); that is

xBD
(
h+ ε2tBD

)
= xBD (h) ,

yBD
(
h+ ε2tBD

)
= yBD (h) + ε2tBD ,

and

xCD
(
q + ε2tCD

)
= xCD (q) + ε2tCD ,

yCD
(
q + ε2tCD

)
= yCD (q) .

Equating these two points, we find the intersection point has parametrisations

ε2tBD = yCD (q)− yBD (h) , (4.54a)

ε2tCD = xBD (h)− xCD (q) . (4.54b)

If we substitute either t1 or t2 into xiBD or xiCD respectively, and expand to leading order in
inverse powers of b, we find the intersection point has coordinates

(xD, yD) =

(
q − ε2 q (2h+ q) rg (1 + γ)

4b2
, b+ h− ε2 q

2rg (1 + γ)

4b2

)
. (4.55)

We can also calculate the coordinate time difference between the two light rays at the
intersection point. The coordinate time difference ∆t will be given by

∆t = tB + t1 − tC − t2 . (4.56)

which is the difference in the elapsed coordinate time between the two arms at the respective
corners of the interferometer. Since the interferometer is rectangular at zeroth order, the
terms h and q will cancel out and thus ∆t is be entirely of order ε2, given by

∆t = ε2 (tB2 + tBD − tC2 − tCD) . (4.57)

Expanding this expression to the leading order in inverse powers of b, we get the coordinate
time difference

∆t = ε2 (1 + γ)
rghq

b2
. (4.58)

4.3.5 Adjusting MZI parameters

A Mach-Zehnder Interferometer has many adjustable parameters including the angle of the
mirrors and the initial angle that one sends the light ray along path A → B. We don’t
consider the effects of adjusting initial angle of the path A→ C as we wish to continue using
the simplification that it is a radial trajectory. In this section we analyse the effect of such
changes has on our model of the MZI. Suppose we change the angle of the mirrors at B and
C

MB →
π

4
+ ε2

αB
2
,

MC →
π

4
+ ε2

αC
2
.
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We first calculate the change in the intersection point of the mirror at B with the path
A → B. It can be shown that the effect on the intersection point due to the change in the
angle of the mirror is O (ε4), and is negligible. The mirror is now represented by a coordinate
straight line with a gradient

tan (MB) = 1 + ε2αB +O
(
ε4
)
. (4.59)

and is therefore represented by the coordinate straight line y = (1 + ε2αB) (x− q) + b. We
expect the light to hit at the point x = q + ε2ζ. Substituting this into the straight line
equation, we see that the y coordinate of this point is up to second order in ε,

y = b+ ε2ζ , (4.60)

and thus is independent of αB. There is however, a noticeable effect on the angle of reflection.
From figure 4.2, the angle of reflection of the mirror at B is

2MB − θAB =
π

2
+ ε2αB − θAB , (4.61)

where θAB is the angle of incidence of the light ray, and for the path A→ B, is of order ε2.
For the path A→ C, the angle of incidence θAC is π/2 and therefore the angle of reflection
is

2MC − θAC = ε2αC , (4.62)

This will change the vectors n̂BD and n̂CD, which now become

n̂BD =
(

cos
(π

2
+ ε2αB − θAB

)
, sin

(π
2

+ ε2αB − θAB
))

=
(
−ε2αB + θAB, 1

)
, (4.63)

n̂CD =
(
cos ε2αC , sin ε

2αC
)

=
(
1, ε2αC

)
, (4.64)

From the form of the trajectory equations for the path A → B, we can see this will simply
add an extra term to xBD (t) and yCD (t),

xBD (t)→ xBD (t)− ε2αBt , (4.65)

yCD (t)→ yCD (t) + ε2αCt . (4.66)

From (4.54) we can see that this change will add a constant to the parametrisations of the
intersection point

ε2tBD → ε2tBD + ε2αCq , (4.67a)

ε2tCD → ε2tCD − ε2αBh , (4.67b)

which corresponds to the point

(xD′ , yD′) =
(
xD − ε2αBh, yD + ε2αCq

)
. (4.68)

where (xD, yD) are the coordinates of the intersection point when no mirror adjustment
was made (4.55). We see that changing the angle of the mirror at B changes the time of
intersection for the opposite arm.
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Now suppose that we change the initial angle of the wavevector of the path A→ B

0→ ε2β .

Then the vector n̂AB becomes

n̂AB =
(
cos ε2β, sin ε2β

)
=
(
1, ε2β

)
. (4.69)

Likewise, from the form of the trajectory equations we can see this will simply add an extra
term to yAB (t)

yAB (t)→ yAB (t) + ε2βt . (4.70)

Adding such a term will certainly change the intersection point with the mirror at B. One
could imagine sending a light ray with such an angle that it hit the mirror at the ‘flat-
coordinates’ (q, b). The coordinate time of the intersection (4.36) is now

tB2 = yAB,(2) (q)− xAB,(2) (q) + ε2βq . (4.71)

From (4.38) this corresponds to the point

xAB
(
q + ε2tB2

)
= q − ε2 q

2rg (1 + γ)

4b2
+ ε2βq , (4.72a)

yAB
(
q + ε2tB2

)
= b− ε2 q

2rg (1 + γ)

4b2
+ ε2βq . (4.72b)

Therefore a choice of

β =
qrg (1 + γ)

4b2
, (4.73)

will cause the light ray to intersect the mirror at (q, b). As to be expected, there are additional
terms in the angle of incidence θ′AB

θ′AB = θAB + ε2β , (4.74)

and the angle of reflection is

2MB − θ′AB =
π

2
+ ε2αAB − θAB − ε2β . (4.75)

This means that

n̂BD =
(
−ε2αB + ε2θ′AB, 1

)
=
(
−ε2αB + θAB + ε2β, 1

)
, (4.76)

and therefore there is a change to the initial position and angle of the light ray due to the
additional β terms.

xBD (t)→ xBD (t) + ε2β (t+ q) , (4.77)

yBD (t)→ yBD (t) + ε2βq . (4.78)



4.4 Discussion and Future Work 35

From (4.54), the change to the parametrisations of t at the intersection point at D is

ε2tBD → ε2tBD − ε2βq , (4.79a)

ε2tCD → ε2tCD + ε2β (h+ q) . (4.79b)

From (4.52), the intersection point is now given by

(xD′ , yD′) =
(
xD + ε2β (h+ q)− ε2αBh, yD + ε2αCq

)
. (4.80)

where (xD, yD) are the coordinates of the intersection for the case αB = αC = β = 0,
i.e. (4.55). We can calculate ∆t as a function of these new parameters

∆t = ε2 (tB2 + tBD − tC2 − tCD) , (4.81)

by using the generalised values for tB2 (4.71), tBD and tCD (4.79), and the previous expansion
of ∆t (4.58). We get that the generalised coordinate time difference is given by

∆t = ε2
rghq (1 + γ)

b2
− ε2β (h+ q) + ε2αBh+ ε2αCq . (4.82)

4.4 Discussion and Future Work

We provided a careful derivation of the phase difference between the two possible paths of
the interferometer ∆ψ. In stationary spacetimes, such as Schwarzschild or Kerr, it is simply
given by

∆ψ = ω∞∆t = ωL∆τ . (4.83)

where ωL is the locally observed frequency, ω∞ is the frequency measured by an observer
at infinity, and ∆τ is the difference in arrival time measured by a local stationary observer.
This is very similar to (1.5), the phase difference proposed by Zych et al. in [17]. However
we have provided a clarification of ω, which was previously left somewhat ambiguous. We
note that for a rectangular MZI, since all phase phase differences are second order in ε, we
may use either ω∞ or ωL since

ε2ω∞ = ε2V ωL = ε2ωL +O
(
ε4
)
. (4.84)

and we will just refer to ω.
We derived relationships between ∆t, the coordinate length difference along the MZI

∆l (4.15) and the physical length difference ∆L (4.20). From these relationships, we can
immediately consider two regimes. The first regime to be considered can be called the
‘QEYSSAT-like’ regime, in which ∆L = 0. This corresponds to an interferometer (such as
that discussed in Section 1.2) in which the lower and upper horizontal arms are the fixed
length of the optical fibres used. In such a regime we have the phase difference

∆ψ = ε2ω
rg
2c

hq

b2
= ε2ω

GM

c3

hq

b2
. (4.85)

If we make the substitutions
GM

b2
= g ,

ω

c
=

2π

λ
, (4.86)
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we recover the phase difference predicted by the Newtonian calculation (1.3) in [14]. The
other regime can be called ‘LISA-like’, in which we may adjust the paths to have ∆l =
0. This corresponds to an interferometer where the vertices have fixed positions, and the
interferometer measures changes in physical distance between them. Such a set up has a
phase difference of

∆ψ = ε2ω (1 + γ)
rg
2c

hq

b2
= ε2ω (1 + γ)

GM

c3

hq

b2
. (4.87)

We calculated calculated the visibility of these two regimes. For example, the visibility of
the LISA-like regime for a Gaussian wave packet of width σ, is

V ≈ 1−
(
ε2
GM

c3
√
σ

hq

b2

)2

. (4.88)

Thus one has to go to the order ε4 to see any visibility loss. Substituting standard values
for a satellite interferometer and a photon of a small pulse width,

GM

b2
= g ≈ 9.8 ms−2 , hq ≈ 1000 km ,

√
σ ≈ 10−15 s , (4.89)

we get a visibility of
V ≈ 1− 10−7. (4.90)

Finally we used the trajectory equations developed in section 3.4 and appendix A to provide a
close analysis of the trajectories of the two possible paths in a Mach-Zehnder interferometer.
We calculated the effects of gravity on each trajectory, including the point of intersection
(4.55) and the difference in coordinate time (4.58) of the two trajectories. Of course, a Mach-
Zehnder interferometer has many adjustable parameters, including the angle of the mirrors
and the initial angle of propagation. We calculated the effects of adjusting these parameters
to the intersection point (4.80) and difference in coordinate time (4.82). Eq. (4.82) allows
us the freedom to tune the parameters of the Mach-Zehnder interferometer to any regime of
choice or to reveal particular effects. For example, as briefly mentioned in section 4.3.5, a
choice of parameters

β = −αB = αC =
rgq (1 + γ)

4b2
, (4.91)

will cause the terms of order ε2 in the coordinates of the corners of the MZI to be 0. That
is, the corners of the MZI will be given by (4.27). This is a LISA-like regime; which can
be verified by substituting (4.82) into (4.15) and solving for ∆l, which yields a result of
∆l = 0. One can also adjust this parameters to try and engineer a QEYSSAT-like regime.
For example, one only need choose parameters such that up to the order of b−4,

β = αC =
rgq (1 + γ)

b2
, αB =

rgq

2b2
, (4.92)

and the condition ∆L = 0 will be satisfied. If one chooses the following parameters,

β = 0 , αB = −rgq (1 + γ)

2b2
, αC = −rgh (1 + γ)

2b2
(4.93)



4.4 Discussion and Future Work 37

then one will have an example of a regime for which ∆t = 0. In such a regime the MZI is set
up such that the coordinate travel time along either trajectory is the same, and thus there
will be no phase shift and no visibility loss.

Another method of removing the phase shift and visibility loss is to place along the upper
trajectory. Such a medium would be selected to slow down the light ray along the upper
trajectory, and cause the two trajectories to intersect at the same coordinate time. This fact
motivates the investigation of polarisation rotation as a possible candidate for an internal
clock. The spacetime caused by a massive rotating object causes the polarization vector of a
photon to rotate; this is known as gravimagnetic/Faraday/Rytov-Skrotski rotation [33–35].
For a light ray, the polarisation vector f has components fµ given by

fµ =
aµ√
aµa∗µ

, (4.94)

where aµ are the components of the complex vector potential introduced in section 2.1
and ∗ denotes complex conjugation. The polarisation vector is always transverse to the
direction of propagation (wavevector) and parallel transported along the null geodesic. That
is, everywhere along the trajectory

f · k = 0 , ∇kf = 0 . (4.95)

The rotation of the polarisation is primarily due to the frame dragging effects generated by
the spacetime of a rotating mass. It is proportional to ~J , thus it is ε3 effect; however it is
independent of frequency. It has been shown [36, 37] that the propagation equations (4.95)
result in three dimensional expressions

Dk̂

dσ
= Ω× k̂ ,

Df̂

dσ
= Ω× f̂ . (4.96)

where D is a three dimensional covariant derivative and k̂, f̂ are three dimensional unit
vectors under the metric γmn. Polarisation rotation provides a natural candidate for an
internal ‘clock’ degree of freedom. While the Shapiro time delay can be ‘wiped out’ or
‘deleted’ by adjusting the angles of the mirrors or by slowing down light using a medium,
polarisation rotation can still be used to distinguish the two trajectories. This corresponds
to which way information and should result in a loss of interferometric visibility; it provides
a different time information from the trajectories. Thus polarisation rotation may provide
an alternative ‘clock’ degree of freedom for light, analogous to the degree of freedom of
massive particles discussed in [16]. Furthermore polarisation rotation is interesting in its
own right. Observation of the frame-dragging (Lense-Thirring) effects is the last of the
classical tests of general relativity [2] that has not yet been performed with a sufficient
accuracy [38]. The main difficulty in these experiments is the necessity to isolate a much
larger geodetic effect due to the Earths mass from the frame-dragging that is caused by its
angular momentum. The net rotation (along a closed trajectory) of the polarisation vector
is insensitive to this geodetic term. Thus, precise evaluation of polarisation rotation and the
higher order corrections from the PPN spacetime of a rotating mass is a natural next step
of this research.
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A
Appendix - Trajectory derivation

In this section we develop the equations of motion in terms of the affine parameter σ. In this
section we have chosen units such that the speed of light c = 1. Our equations of motion are

d

dσ
V 2ṫ = 0 , (A.1a)

d

dσ
W 2ẋi = −ε2

(
ṫ2 + γẋ2

) rg
2r3

xi . (A.1b)

We assume trajectory equations of the form

t (σ) = t(0) (σ) + ε2t(2) (σ) , (A.2a)

xi (σ) = xi(0) (σ) + ε2xi(2) (σ) . (A.2b)

where

t(0) (σ) = ω(0)σ , (A.3a)

xi(0) (σ) = ω(0)n
iσ + bi , (A.3b)

For light we require that

ηµνp
µ
(0)p

ν
(0) = −ω2

(0) + ω2
(0)~n · ~n = 0 , (A.4)

which implies that
~n · ~n = 1 , (A.5)

that is, n is a unit vector, and thus we use the symbol n̂. The equations of motion for the
second order are found by substituting (A.2) and (A.3) into (A.1).

In (3.43) terms containing r only multiply terms containing ε2, therefore we can take r
to zeroth order

r → r(0) =
√
x2

(0) + y2
(0) . (A.6)
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For simplicity, we choose to retain the symbol r and state here that for all instances, the
zeroth order subscript is implied.

The equations of motion for xµ(2) (σ) are

d2

dσ2
t(2) = −rgω2

(0)

(
ω(0)σ + n̂ ·~b

r3

)
, (A.7a)

d2

dσ2
xi(2) =

rgω
2
(0)

2r3

(
2γni

(
ω(0)σ + n̂ ·~b

)
− (1 + γ)xi(0)

)
, (A.7b)

Integrating with respect to σ, we find the second order components of the four-momentum

ṫ(2) (σ) =
rgω(0)

r
+ l0 , (A.8a)

ẋi(2) (σ) =
rgω(0)n

i (1− γ)

2r
+
rg
2
ω(0) (1 + γ)

(
ω(0)σ + n̂ ·~b

r

)
ni
(
n̂ ·~b

)
− bi

~b ·~b−
(
n̂ ·~b

)2 + li . (A.8b)

where lµ are integration constants, which are to be chosen to ensure the light ray travels on
a null trajectory. The second order components of the trajectory are found by integrating
the four-momentum. Integrating ṫ(2) we get

t(2) (σ) = rg ln
(
ω(0)σ + n̂ ·~b+ r

)
+ l0σ + c0 . (A.9)

All the initial positional data must be contained within the zeroth order equations, that is

xµ(2) (0) = 0 , (A.10)

and therefore

t(2) (0) = rg ln
(
n̂ ·~b+

∣∣∣~b∣∣∣)+ c0 ,

c0 = −rg ln
(
n̂ ·~b+

∣∣∣~b∣∣∣) . (A.11)

Similarly, integrating ẋi(2) we get

xi2 (σ) =
rg
2
ni (1− γ) ln

(
ω(0)σ + n̂ ·~b+ r

)
+
rg
2

(1 + γ)
r
(
ni
(
n̂ ·~b

)
− bi

)
~b ·~b−

(
n̂ ·~b

)2 + liσ + ci , (A.12)

and enforcing (A.10),

xi2 (0) =
rg
2
ni (1− γ) ln

(
n̂ ·~b+

∣∣∣~b∣∣∣)+M (1 + γ)

∣∣∣~b∣∣∣ (ni (n̂ ·~b)− bi)
~b ·~b−

(
n̂ ·~b

)2 + ci ,

ci = −rg
2
ni (1− γ) ln

(
n̂ ·~b+

∣∣∣~b∣∣∣)−M (1 + γ)

∣∣∣~b∣∣∣ (ni (n̂ ·~b)− bi)
~b ·~b−

(
n̂ ·~b

)2 . (A.13)
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A.1 Enforcing the null condition

The integration constants lµ are restricted by enforcing that the tangent vector is a null
(lightlike) vector at all orders of interest, i.e. kµ satisfies kµk

µ = 2L = 0. That is, in
expanded form, we require

V 2ṫ2 = W 2ẋ2 , (A.14)

Using (A.8) we can expand ṫ2 and ẋ2:

ṫ2 = ω2
(0) + 2ω(0)ε

2
(rgω(0)

r
+ l0

)
, (A.15a)

ẋ2 = ω2
(0) + 2ω(0)ε

2

(
rgω(0) (1− γ)

2r
+ n̂ ·~l

)
, (A.15b)

and furthermore

V 2ṫ2 = ω2
(0) + ε22ω(0)

(rgω(0)

2r
+ l0

)
, (A.16a)

W 2ẋ2 = ω2
(0) + ε22ω(0)

(rgω(0)

2r
+ n̂ ·~l

)
. (A.16b)

thus we find that to enforce the null condition we require that

n̂ ·~l = l0 . (A.17)

From (3.44) we see there is a convenient choice for initial temporal conditions

ṫ (0) = ṫ(0) (0) + ṫ(2) (0) = ω

(
1 + ε2

rg
r (0)

)
. (A.18)

Comparing with (A.8a) we see that this choice will require that

ω(0) = ω , (A.19)

l0 = 0 . (A.20)

Substituting (A.18) into (A.14) we see to make the trajectory null at σ = 0 we require√
ẋ (0)2 = ω

(
1 + ε2 (1− γ)

M

r (0)

)
(A.21)

Comparing with (A.8b) we see a logical choice for ẋi is

ẋi (0) = ωni
(

1 + ε2 (1− γ)
rg

2r (0)

)
, (A.22)

from which we deduce that

li = −Mω (1 + γ)

 n̂ ·~b∣∣∣~b∣∣∣
 ni

(
n̂ ·~b

)
− bi

~b ·~b−
(
n̂ ·~b

)2 (A.23)
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We confirm that this is a valid choice by observing that

n̂ ·~l = l0 = 0 . (A.24)

Finally, our equations for the trajectory xµ (σ) of a light ray up to second order

t (σ) = ωσ + ε2rg ln

ωσ + n̂ ·~b+ r∣∣∣~b∣∣∣
 , (A.25a)

xi (σ) = ωniσ + bi + ε2

rg
2
ni (1− γ) ln

ωσ + n̂ ·~b+ r

n̂ ·~b+
∣∣∣~b∣∣∣


+
rg
2

(1 + γ)

r − n̂ ·~b∣∣∣~b∣∣∣ ωσ −
∣∣∣~b∣∣∣
 ni

(
n̂ ·~b

)
− bi

~b ·~b−
(
n̂ ·~b

)2

 , (A.25b)

with four-momentum pµ (σ), with components

ṫ (σ) = ω + ε2
rgω

r
, (A.26a)

ẋi (σ) = ωni + ε2
[
rgωn

i (1− γ)

2r

+
rg
2
ω (1 + γ)

ωσ + n̂ ·~b
r

− n̂ ·~b∣∣∣~b∣∣∣
 ni

(
n̂ ·~b

)
− bi

~b ·~b−
(
n̂ ·~b

)2

 . (A.26b)

A.2 Special case - Radial Motion

Upon observation of (A.25), one will notice that the trajectory equations are undefined when
one of the following two conditions is true:

ωσ + n̂ ·~b+ r = 0 , (A.27)

~b ·~b−
(
n̂ ·~b

)2

= 0 . (A.28)

These conditions are related, as simple algebraic manipulation of (A.27) will produce (A.28).
This shows that the ‘break down’ of the trajectory equations is independent of σ and arises
from a choice of initial conditions. In the event of such a choice of initial conditions, the
second order equations of motion (A.7) must be re-solved for that specific case. A simple
example of this is radial motion along the x or y axes, which will be required in this thesis.
Let us solve the equations of motion for radial motion along the y axis. In this case, we will
have initial conditions

ny = 1 , nx = bx = 0 . (A.29)
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These initial conditions obviously satisfy (A.28), and we must therefore re-solve the equations
of motion for this case. Substituting these initial conditions into the second order equations
of motion (A.7), we get the equations of motion for radial motion along the y axis:

d2

dσ2
t(2) =

−rgω2
(0)(

ω(0)σ + by
)2 , (A.30a)

d2

dσ2
x(2) = 0 , (A.30b)

d2

dσ2
y(2) =

−rgω2
(0) (1− γ)

2
(
ω(0)σ + by

)2 . (A.30c)

with solutions

t(2) (σ) = rg ln
(
ω(0)σ + by

)
+ l0σ + c0 , (A.31a)

x(2) (σ) = l1σ + c1 , (A.31b)

y(2) (σ) =
rg
2

(1− γ) ln
(
ω(0)σ + by

)
+ l2σ + c2 . (A.31c)

After applying initial conditions (A.10), (A.18) and (A.22), and including the zeroth order
terms, we have radial trajectories

t (σ) = σ + ε2rg ln

(
ωσ + by

by

)
, (A.32a)

x (σ) = 0 , (A.32b)

y (σ) = σ + by + ε2
rg
2

(1− γ) ln

(
ωσ + by

by

)
. (A.32c)

We can see that this radial trajectory does not deviate from the y-axis. This is a special case
of a well known result of the Schwarzschild geometry, that light rays on radial trajectories
remain on radial trajectories.
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