
A Peer-based Social Relationship

Enhanced Recommendation Model

by

Youliang Zhong

A thesis submitted in fulfillment for the

degree of Doctor of Philosophy

in the

Department of Computing

Faculty of Science and Engineering

Supervisor: Prof. Jian Yang

September 2015



Copyright c⃝Youliang Zhong

September 2015

All Rights Reserved

2



Declaration of Authorship

I, YOULIANG ZHONG, declare that this thesis titled, ‘A PEER-BASED SOCIAL

RELATIONSHIP ENHANCED RECOMMENDATION MODEL’ and the work

presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research

degree at this University.

� Where I have consulted the published work of others, this is always clearly

attributed.

� Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

� Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself.

Signed:

Date:

i





iii

“In a group of three people, there is always something I can learn from. Choose to

follow the strengths of others, use the shortcomings to reflect upon ourselves.”

Confucius, 551-479 B.C.





Abstract

Recommender systems have been developed to address the “information overload”

issue by providing users with potentially useful products or services. While most

of the current systems are continuing to deal with globally collected large number

of users and items, little attention is paid to the situations where users ask for

recommendations through a limited number of personal social circles.

Social networks, on the other hand, are one of the most popular channels through

which people share and exchange information. Many studies in recent years have

shown that incorporating social relations and interactions into recommender sys-

tems will significantly improve recommendation qualities. To make superior rec-

ommendations from peers, we are especially interested in developing a recommen-

dation model that emulates the natural recommendation style in real life.

In this thesis, we propose a peer-based social recommendation model that imi-

tates the natural recommendation process in social networks. The model forms

neighborhoods from peers across social circles, through which the peers partici-

pate in the recommendation process by propagating requests and responses in a

relay fashion. Furthermore, we develop a machine learning method to measure tie

strengths among the peers in a social network, based on various social relation-

ships. Generally speaking, the stronger the tie strength between two individuals,

the more similar interests they may commonly share. Furthermore, the learned

tie strengths are then incorporated in recommendation process to increase the

accuracy and relevance of the recommendations.

v
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We have conducted comprehensive experiments by using the real datasets from

popular social media services. The evaluation results demonstrate that our pro-

posed recommendation model outperforms other popular and state-of-the-art rec-

ommendation methods in terms of widely accepted evaluation metrics.
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Chapter 1

Introduction

This thesis presents a novel recommendation model: a peer-based recommendation

model incorporated with social relationship strength. In this chapter, we highlight

the principal elements of the research in this thesis. We first provide an overview

of the research problem, then describe the main challenges confronting the peer-

based recommendation model, and finally summarize the major contributions of

the research. We show the organization of this thesis in the last section.

1.1 Research Overview

Recommendation is a natural social process in everyday life. People receive rec-

ommendations in various ways such as spoken words, travel guides, letters of refer-

ence, classified advertisement, purpose-specific surveys, and so on. Recommender

systems are those intelligent computer programs which help people to examine

1
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available information in computer systems in order to find potentially interest-

ing and favorable products or services - movies, books, music, restaurants, home

appliances, and so on.

In order to analyze a large amount of information, recommender systems mainly

employ two types of filtering approaches: Content-based Filtering (CN) and Col-

laborative Filtering (CF) [3]. The CN approach creates profiles for items or users

to describe their characteristics. For instance, a profile of a piece of music may

include its attributes such as debut date, composer, genre, album, playing time,

number of listeners, and so on. A profile of a user may contain age, gender, na-

tionality, education and employment history. These profiles are then used by the

recommender systems to find the items which may match users’ preferences.

In contrast to CN, the CF approach relies on users’ past behavior or experiences,

for instance users’ ratings over items, without the need for explicit profiles of

users or items. The fundamental assumption of CF is that, if user u and user v

give similar ratings over a number of items, the two users are considered to have

similar preferences, and consequently the two users may take similar actions for

other items [44].

The CF approach can be further categorized into two groups: memory-based and

model-based methods [20]. Memory-based CF methods directly use user’s ratings

to calculate the similarity between the users or items, and make predictions ac-

cording to these similarity values. While model-based CF methods firstly develop

certain mathematical models, and then apply the models to available rating data

to predict those items which have not yet been rated.
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Of the advanced model-based CF methods, Matrix Factorization (MF) represents

a type of state-of-the-art modeling techniques, providing superior accuracy and

flexibility than other model-based recommendation methods [67]. In its basic

form, matrix factorization decomposes a matrix (“target matrix”), for instance

a user-item rating relation, into two or more “latent matrices” representing the

latent features of the users and items, such that the matrix product (“approximate

matrix”) of the latent matrices will approximate to the original target matrix.

A basic approach for using matrix factorization for recommendation tasks is to

learn the missing values in the “target matrix” from the “approximate matrix”.

Usually, a high correspondence between the features users and items leads to a

recommendation.

Generally speaking, to make recommendations for a particular user (we often refer

to a user seeking recommendations as an “active user”), a typical CF method first

selects other users having similar tastes with the active user by analyzing the

rating patterns in computer systems. The selected users form a recommendation-

neighborhood in the context of collaborative filtering. From this neighborhood,

the CF method collects all the items rated by the neighbors. Finally, the method

chooses those items which are highly appreciated by the neighbors but not yet

experienced by the active user. Because the CF approach makes recommendations

based solely on users’ rating patterns without the need for knowledge of either

items or users, it has been widely adopted.

There are many issues related to CF recommendation methods. Of them, the

“data-sparsity” issue is one of the most well-known problems. Generally, in most
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of the user-item relations, the number of observed ratings will be far less than

the multiplication outcome of the numbers of users and items. For instance, the

well-cited Netflix data set has a 99% sparsity [17].

The “data-sparsity” issue also appears when new users or new items are added to

CF recommender systems, being called a “cold-start” problem as well. Because the

new users or new items are mostly associated with no ratings, it is difficult for the

CF recommender systems to make decisions for them. Besides these well-known

issues, when we take social connections and interactions into consideration, there

are several more challenging problems to be addressed: small-sized neighborhood,

types of networks, and rich social information.

The key to a successful CF recommender system is to form a reasonably small-

sized neighborhood. This is in fact a two-fold dilemma. On the one hand, a small

size of neighborhood means less computation load. On the other hand, however,

a small size may lose some of the potentially interesting items. Therefore, the

size of the neighborhood is sensitive to the performance of recommender systems.

This will become more severe when the number of the users and items explosively

grows. For instance, the aforementioned Netflix dataset includes over 100 million

ratings from more than 480 thousand users for nearly 18 thousand movies [17].

How to find a reasonably small-sized neighborhood from a huge numbers of users

and items becomes a practical issue for all CF methods.

Next, recall that the CF approach relies only on users’ ratings, therefore, the con-

ventional CF methods hardly take social information into account. The studies
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in social science point to the phenomenon that people have similar tastes essen-

tially because they may have similar personal or social characteristics, such as

age, gender, location, education, jobs, friends, associations, and so on. This is

called “homophily in social networks” [88]. In recent years, many studies have

proposed to include social information in recommender systems along with rating

data. Most of the current studies do so on an ad-hoc basis, for instance friend-

relationships, locations, tags, or the like. We believe that an integrated form of

various relationships should be developed so that recommender systems can make

use of rich social information.

Furthermore, recent studies suggest that the recommendation-neighborhoods can

be categorized into two basic types: similarity- and familiarity-networks [50, 108].

The former includes those users whose social activities are found to overlap with

other users’ behavior, while the latter consists of those users whom other users

have known. Intuitively, for the purpose of seeking recommendations, a user often

prefers self-organized social networks with whom the user was already familiar or

from whom the user often receives advice. In a survey conducted by Guy et al.

[50], the familiarity-network group showed proportions of 45.7% of the items being

interested versus 37.1% being not-interested in the recommended items; whereas,

the similarity-network group exhibited proportions of 38.7% and 48.2%, respec-

tively. These outcomes demonstrate “the superiority of the familiarity-network as

a basis for recommendations” [50]. A challenging task here is to formulate the

construction process of such a familiarity-network in computer systems.

To address the above issues, the peer-based recommendation process in daily life
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could be a promising solution. In such a process, the personal social circles are

typical familiarity-networks, each of which has a limited number of friends or peers.

When a user seeks recommendations in such a setting, he/she will mostly ask for

help from these peers, and the peers will respond to the recommendation request

by either utilizing their local resources or forwarding the request to their circles.

Owing to the nature of social circles, in many circumstances users are more willing

to share their personal information within local circles than over public platforms.

Owing to the advent of social media services in recent years, it becomes now

possible and necessary to build recommender systems following the same approach

as we make and receive recommendations in real life. Firstly, the online friend-

relationships have become increasingly popular, which form the basis of familiarity-

networks. As shown in the study by Lampe, Ellison and Steinfeld [73], the average

number of “Facebook friends” was 201 in 2006, and grew to 333 in 2008, increasing

about 65% in two years. Moreover, a recent survey [104] in 2012 reported that,

62% of the adults worldwide were using social media services, the numbers of

online friends per user ranged from 29 to 481 in various countries.

Besides the online friend-relationships, a new feature of the “Social Circle” has

been introduced in most popular social media services in recent years. For in-

stance, the “Circles” of Google+ 1 and the “Moments (Friend Circle)” of WeChat

2 allow users to assign classmates, family members, and colleagues to different

groups. This is a typical form of familiarity-networks. Likewise, Facebook en-

courages users to assign his/her friends into distinct “Groups” 3 for more finely

1https://plus.google.com/
2http://www.wechat.com/
3https://www.facebook.com/about/groups
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grained information-sharing than a single friend list. In the case of Twitter, users

are allowed to organize followees into distinct “Lists” 4 such that users are able to

see the tweets posted from the followees with particular concerns.

Nevertheless, it is not a straightforward task to build such models that emulate

the recommendation process in real life. There are a number of challenges:

• First, in the recommendation process of real life, most users have only a

limited number of friends or peers. For the purpose of forming recommen-

dation neighborhoods, simply considering all the friends or peers may not

make sense to deliver high quality recommendations. It is still a challenging

task to form reasonably sized neighborhoods from the available information

in computer systems.

• Next, most of the current filtering algorithms are based on globally collected

data, for instance all users’ ratings or preferences over all the items. However,

in the case of personal social circles, most users keep their data locally and

prefer the data to be only accessed by their peers. This private nature of

local data makes it difficult to collect and process users’ data by a global

approach. To deal with such a situation, a demanding job will be developing

a specific filtering algorithm to collaborate peers through social circles.

• Also, in real life, the recommendations for an active user are mostly con-

tributed by either the peers in the user’s direct social circles, or those in the

peers’ circles. On many occasions, the active user refines the recommended

items based on the social relationship strengths between the active user and

4https://twitter.com/(username)/lists
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the peers. This directly brings in two challenges: (i) how to capture an

integrated weight of various social relationships? (ii) how to measure the

weights or strengths?

• Last, supposing we are able to measure the strengths of the social relation-

ships among the users in a social network, the subsequent task is to employ

the strengths in recommender systems. Although there are many studies

that include particular social information in recommender systems, there re-

main a number of issues such as “robustness” that indicates the ability to

deal with the outliers and imbalance of data. It is still a demanding task to

develop and evaluate a robust recommendation method to incorporate the

relationship strengths in recommender systems.

In this thesis, we propose a peer-based social recommendation model to address

the aforementioned challenges. In particular, we develop a relay-based neighbor-

hood formation method, allowing active users to find the peers who can contribute

recommendations. We also design a set of efficient peer-based collaborative filter-

ing algorithms that propagate recommendation requests and responses through

social circles.

Utilizing the state-of-the-art Matrix Factorization (MF) technique, we develop a

machine learning method to measure the tie strengths among the users in a social

network from demographic and interactive information. This tie strength repre-

sents the integrated weight of combined social relationships. Subsequently, we

incorporate the tie strengths in recommendation process to improve recommenda-

tion qualities.
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We have conducted comprehensive experiments by using the real datasets from

popular social media services Flickr, Epinions.com and Last.fm. The evaluation

results demonstrate that our proposed recommendation model outperforms both

popular CF algorithms Pearson CF and Slope One, and certain state-of-the-art so-

cial recommendation methods KPMF, SoRec and SR2, in terms of widely-accepted

evaluation metrics: Precision-versus-Recall Curve (PRC), Mean Absolute Error

(MAE) and Root Mean Squared Error (RMSE).

1.2 Research Challenges

In this section, we describe three major challenges in our research: making rec-

ommendations within social circles, measuring tie strength, and incorporating tie

strength into a robust recommendation process.

1.2.1 Making Recommendations with Social Circles

Recommender systems are the computer programs that select potentially inter-

esting items for users by analyzing the information in computer systems about

the users and items. Taking the widely adopted CF approach as an example, a

conventional CF method takes the following steps to produce recommendations:

(i) based on an active user’s information and certain similarity definitions, the

method searches all the users with their preferences say ratings over the items



Chapter 1. Introduction 10

available in a computer system, in order to find those users who have the

similar tastes to the active user;

(ii) using certain prediction algorithms, the method predicts the ratings over the

items which have not been experienced by the active user, and finally selects

only the highly scored items as recommendations;

(iii) the above similarity definitions and prediction algorithms are defined based

on users’ rating patterns from a global perspective [3, 62].

However, such a conventional method may not directly match the peer-based na-

ture of recommendation in our daily life, where each user has one or more social

circles with a limited number of peers, and so do the peers. Usually, the rec-

ommendations are contributed by the peers in a parallel manner based on their

locally held data. That means the recommendation process should be essentially

based on a local perspective using a collaborative approach. Furthermore, the

active user often refines the feedback from the peers according to the weights of

the relationships between the active user and the peers. This suggests that the

recommendation process in real life often takes social information into considera-

tion.

The CF methods aiming to address the above issues can be grouped into two

types: Familiarity-based Collaborative Filtering and Decentralized Collaborative

Filtering. Of the first group, most studies built up recommendation neighborhoods

by searching the peers through a personal social network, and then predicted the
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rankings of the items rated by the neighbors using conventional CF algorithms

[16, 50, 51, 66].

Owing to the neighborhood formation from personal social networks, these studies

especially improved the quality of personalized recommendations. However, most

studies in this group manipulate data using a globally collecting and processing

approach. This approach may meet difficulties when dealing with personal social

circles where the users prefer the data to be propagated only by their peers. Also,

most of these studies did not fully exploit the rich social relationships between the

active user and his/her peers in a social network.

The studies in the group of Decentralized Collaborative Filtering were basically

applying distributed computing techniques to the recommendation process [11, 30,

53, 89, 128, 132, 136]. The term “decentralized” here indicates a direct opposition

to “centralized” computing of CF methods, which maintain data and conduct

filtering in a single computer. Such a centralized architecture consequently faces a

number of problems such as data sparsity and system scalability when the numbers

of users and items dramatically increase. In contrast to “centralized computing”,

most studies of Decentralized Collaborative Filtering deal with the data scattered

throughout a network of computers and perform information filtering in each node

of the network.

While some proposals in this group merely provided distributed data storage func-

tionality [53, 136], certain studies of Peer-to-Peer (P2P) recommendation models

emulated the peer-based recommendation process in daily life [11, 30]. For in-

stance, the P2Prec system proposed by Draidi, Pacitti and Kemme [30] was built
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up on a P2P network for large-scale document sharing by using LDA technique.

Here LDA stands for Latent Dirichlet Allocation, a generative probabilistic method

used for deriving topics from documents [18].

The P2Prec system of Draidi et al. [30] starts from a bootstrap server, which

runs an LDA program for periodically new-coming documents from all the peers,

and also maintains a matrix of global topic distribution. In the meantime, each

peer in the system executes a local LDA program for inferring local topics of the

peer’s local documents, using the global topics as prior knowledge. The local

topics are then used to characterize each peer by interests-in-topics. With these

interests, each user update its neighborhood of the most relevant peers by periodi-

cally gossiping with other peers in the network. When the neighborhood becomes

stable, the user then makes recommendations by using a certain form of general

CF algorithms.

Although the P2Prec system did allow every peer to work on its local data and

to communicate with other peers using distributed gossip protocol, the design of

the “bootstrap server” somehow becomes a bottleneck of distributed computing.

Also, the concept of “interests-in-topics” has limitations in dealing with additional

social information in the recommendation model.

In summation, to make recommendations for social networks with social circles,

there is a need to answer the following questions: (i) how to form quality rec-

ommendation neighborhoods from social circles? (ii) how to work with the data

locally kept by the peers in a distributed fashion? (iii) how to take account of the

rich social relationships among the peers in a social network?
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1.2.2 Measuring Tie Strength

The previous subsection describes the challenges to neighborhood formation from

social circles. The concept of “neighborhood” in recommender systems means a

collection of other users having similar tastes or interests. This concept directly co-

incides with the “homophily” and “tie strength” studied in Sociology. Homophily

is described as a “principle that a contact between similar people occurs at a higher

rate than among dissimilar people” [88], while the tie strength means users’ overall

attitudes towards others in a social network [47].

In particular, the studies in the literature investigate three types of homophily-

related characteristics: demographic, psychological and social. The demographic

characteristics include age, sex, race/ethnicity, education and religion. The ex-

amples of psychological characteristics are intelligence, attitudes and aspirations.

Social characteristics comprise occupation, social class, network positions, behav-

ior, and the like [88].

It is worth noting that the literature on “homophily in social networks” also noted

that peer groups were an important source of influence on people’s behavior. In

particular, the association of some characteristics between a user and its peers

could be used as the evidence to measure the tie strength among the users in a

social network [25, 31].

The early studies on homophily targeted at small social groups such as school

children, college students and small urban neighborhoods. Then, the objects being

studied were scaled up to schools, communities, or even the US population as a
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whole. In recent years, the studies of homophily concentrated on the organizational

contexts of networks, such as organizations, work force, web pages, and so on. [88].

While the studies on homophily focused on the significance of various individual

characteristics, the studies of tie strength paid attention to the overall attitudes

of users towards others in social networks. In particular, the tie strength is an

abstract and integrated concept, which was primarily defined by Granovetter as “a

combination of the amount of time, the emotional intensity, the intimacy (mutual

confiding), and the reciprocal services which characterize the ties” [47].

In line with the study by Granovetter [47], much work has been done to ana-

lyze the predictive factors of tie strength. The study by Marsden and Campbell

[85] pioneered the development of tie strength measurement among the users in

social networks by using multiple indicator techniques. In particular, this study

defined two types of variables with tie strength: indicators and predictors. The

indicators were observed measures of social network ties, including closeness, dura-

tion, frequency, breadth of discussion topics, and confiding, whereas the predictors

were unobserved aspects related to tie strength, such as kinship, co-worker, and

neighbor status. Using a regression-styled approach, this study designed a linear

function between tie strength and predictors, and a set of linear functions associ-

ating the predictors with the indicators. The major contribution of this study is

a comprehensive analysis of the significance of certain observed indicators of tie

strength. For instance, it suggested a measure of “closeness” or emotional intensity

was the best indicator of tie strength.
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Similarly, the study by Gilbert and Karahalios [42] used a statistical method to

analyze 74 variables of tie strength in seven major dimensions, based on a survey

over 35 participants with 2,184 rated Facebook friendships. The seven dimensions

were intensity, intimacy, duration, reciprocal services, structural, emotional sup-

port and social distance. Likewise, the study by Kahanda and Neville [61] proposed

a method for using 50 features to predict link strength, a synonym of tie strength,

among the users in online social networks. These 50 features were categorized into

four groups: attribute-based, topological, transactional and network-transactional.

Both studies made similar findings to those of Marsden and Campbell [85].

Owing to its importance and usability, tie strength has been applied to a wide

range of application domains, such as emotional health [113], professional social

networks [69, 70], economic outcomes [49], mobile communication [103, 141], online

social behavior analysis [9, 13, 60, 135, 141], criminal networks anatomy [28, 115],

and so on.

All the above studies defined or measured the tie strength directly based on

manifest variables, which were either observed or well-known ones. However, tie

strength is in fact an abstract and integrated form of various social relationships

or ties. Therefore, we believe that Latent Variable Models are the promising tech-

niques for measuring tie strength, where tie strength could be the projection of

some latent variables that are somehow unknown or potential ones though possi-

bly validated by facts, for example, peoples political tendency and business feeling

against particular events [12]. In other words, a major challenge of measuring tie

strength is to capture and quantify these latent variables.
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Recently, a number of studies are proposed to measure tie strength by means

of latent variables [135, 142, 149]. The study by Xiang et al. [135] is a typical

case. This study considered tie strength as a latent effect of “profile similari-

ties”, and also assumed that the tie strength would impact users’ interactions.

Consequently, this study modeled tie strength as the conditional probability of

a Gaussian distribution given profile similarities, and also the probability distri-

bution of social interactions. When apply this model, one needs to prepare two

specific data matrices: “profile similarities” and “user interactions”, compiled from

users’ demographic and interaction information.

Apart from the study by Xiang et al. [135], other studies on tie strength either

exploit a single type of data for instance users’ interactions, or use a single method

to handle diverse form of information. To perform these methods, one needs to

pre-compile diverse information into a single relation table. This may be difficult in

many cases, for example, users’ education information may have only three levels,

but the ethnicity information may comprise more than one hundred countries or

areas.

In order to precisely measure tie strength in social networks, a critical task is to

directly infer tie strength from heterogeneous social information, including users’

demographic and social interaction information. The former includes age, gen-

der, location, education, skills, jobs, and the like; and the latter contains posting

comments, setting tags, sharing reviews, and so on.
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1.2.3 Incorporating Tie Strength in Recommendation

Provided that we have successfully measured the tie strengths from rich social

information, the next challenging task is to incorporate the tie strength into rec-

ommender systems. Many studies have been proposed to include social infor-

mation in recommendation process. Most of these studies are based on variant

Matrix Factorization techniques [137], which we call Matrix Factorization based

Social Recommendation or MFSR methods. From the perspective of technology,

these methods can be categorized into three major approaches: Social Ensem-

ble [57, 82, 84, 102, 138], Kernelized Matrix Factorization [4, 148], and Collective

Matrix Factorization [35, 78, 83, 118, 119, 139].

A common rationality behind the methods of Social Ensemble is that the observed

ratings of a user should represent not only the user’s own taste but also the prefer-

ences of his/her friends. For this reason, these methods model the latent variables

by various combinations of the preferences of both the users and the friends.

On the other hand, Kernelized Matrix Factorization improves recommendation

qualities by assigning kernels to the priors of latent feature vectors. Certain studies

reported great achievements of using kernelized methods for image processing and

recommendation, however, in our experiments, for instance, of KPMF model [148]

we find the Kernelized Matrix Factorization approach always stay at the middle

positions for metrics measures in most evaluation cases.

Instead of treating social information as “side information” along with the single

rating matrix, Collective Matrix Factorization twistingly factorizes two or more
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target matrices in order to affect the distinct latent variables by each other. Taking

the SoRec model of [83] as an example, along with an existing rating matrix, the

SoRec constructs a specific “social network matrix” for side information, of which

each element represents the local authority and hub values between two users.

Then, the SoRec performs matrix factorization simultaneously over the two target

matrices.

Although the aforementioned three types of MFSR methods have achieved great

successes in various circumstances, several issues are remaining. In particular,

we found that, through our experiments with joining tie strength, most of the

existing methods received good values of Mean Absolute Error and Root Mean

Squared Error but poor measures of Precision-versus-Recall. That means these

methods might have good quality of proximity but poor character of relevance

[10].

This might be contributed by the fact that most of these methods applied a Gaus-

sian probabilistic approach to matrix factorization, in which the objective function

is derived from Gaussian priors, that makes it equivalent to a squared loss in fac-

torization process. The squared loss has shown sensitive to the outliers of data,

that is considered as a “robustness” issue of matrix factorization [1]. There are

several proposals to deal with this issue in general matrix factorization models

[72, 133]. However, we have not seen any reports on the improvement in relation

to robust MFSR methods, especially when incorporated with tie strength.
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1.3 Main Contributions

To address the challenges stated in the previous section, in this thesis, we propose

a peer-based social relationship enhanced recommendation model. The model

consists of three major parts, i.e., a peer-based collaborative filtering method,

a measuring method for tie strength, and a robust matrix factorization method

incorporated with tie strength. The main contributions of this thesis can be sum-

marized as follows.

• We develop a peer-based collaborative filtering method. The proposed method

follows the recommendation style in everyday life, where people find po-

tentially interesting items from peers through personal social circles. The

method fulfills the filtering task by allowing peers to propagate recommen-

dation requests and responses in a relay fashion.

• We propose a kernelized probabilistic matrix factorization method to mea-

sure the tie strengths among the peers in a social network. The method first

learns kernel matrices from users’ social interactions, then infers users’ la-

tent features by executing matrix factorization over users’ profiles, and lastly

calculates the tie strength from users’ latent features.

• We build a matrix factorization based social recommendation method, incor-

porated with tie strengths. This method also introduces a robust mechanism

in the factorization process.

• We have conducted comprehensive experiments over the real datasets from

actual social media services, including Flickr, Epinions.com and Last.fm.
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We evaluate our proposed model with two conventional CF algorithms i.e.,

Pearson CF and Slope One, and three state-of-the-art matrix-based social

recommendation methods i.e., SoRec, SR2 and KPMF.

Our evaluation results show that the proposed model outperforms the other

recommendation methods in most cases in terms of well-accepted metrics:

Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and Precision-

versus-Recall Curve (PRC). Our evaluation also reveals that tie strength does

make significant impact to the qualities of recommender systems.

• During the research for this thesis, we developed an evaluation system for the

purposes of experiment and evaluation. This evaluation system is equipped

with a number of functions such as measuring tie strength from multiple

relations, making recommendations using selected algorithms, evaluating the

performance of specific methods, drawing graphical presentation of various

metrics, and so on.

1.4 Thesis Organization

The rest of this thesis is organized as follows.

In Chapter 2, we provide a comprehensive review of recommender systems, espe-

cially focusing on two important categories of model-based collaborative filtering

methods: Regression Models and Latent Variable Models. Our proposed peer-

based filtering method belongs to Regression models, and our measuring method

for tie strength is a Latent Variable model. Furthermore, we explore the studies
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on three related topics: Familiarity based Neighborhood Formation, Tie Strength

Measurement, and Matrix Factorization based Social Recommendation.

Chapters 3, 4 and 5 are the core elements of the research in this thesis, describ-

ing three important aspects of our proposed recommendation model: peer-based

filtering, tie strength measurement, and incorporation of tie strength. All three

chapters are presented in a similar style. In each chapter, the first section intro-

duces the motivation of the work. Then, two or three sections are contributed

to elaborate the details of algorithms. After the algorithms, the experiment set-

tings and evaluation results are shown in the following two sections. At last, each

chapter is finished with a section of comparison and summary.

In particular, Chapter 3 presents a peer-based filtering method CoRec, which

emulates the recommendation process in real life. We elaborate two key aspects of

the method: a relay-based process and a variety of peer-based filtering algorithms.

In Chapter 4, we propose a collective matrix factorization method for measuring

tie strength, named as KPMCF. We firstly review the studies of tie strength. Then,

we present our method in three steps: (i) learning kernels from social interactions;

(ii) inferring users’ latent features by factoring users’ profiles; and (iii) calculating

pair-wise tie strengths from users’ latent features.

In connection with the techniques proposed in Chapter 3 and Chapter 4, Chapter

5 develops a robust matrix factorization method, named as TieRec, for incorporat-

ing tie strength in recommendation process. This chapter includes comprehensive

experiments on TieRec in comparison with other state-of-the-art recommendation
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methods. The evaluation results demonstrate that the proposed TieRec outper-

forms other methods in most evaluation cases, in terms of Root Mean Squared

Error and Precision-versus-Recall measures.

Finally, Chapter 6 makes brief concluding remarks and also discusses the potential

work in the near future.

The Chapter of Appendix describes an evaluation system developed during the

research work of this thesis. This chapter includes the outline of system modules,

graphic user interface, and major functions. The comprehensive functionality of

the evaluation system makes it possible to upgrade to a common tool for evaluating

social recommendation methods.



Chapter 2

Background

In this chapter we present the background of recommender systems. This chapter

is organized as follows:

The following section introduces the notations to be used throughout the the-

sis. Section 2.2 provides an outline of recommender systems, including two major

approaches: Content-based filtering and Collaborative filtering. In this section,

we particularly explore the popular collaborative filtering methods in two impor-

tant categories, i.e., Regression Models and Latent Variable Models. In fact, the

methods studied in this thesis mainly belong to these two categories.

In section 2.3, we briefly review three closely related topics: Familiarity based

Neighborhood Formation, Tie Strength Measurement, and Matrix Factorization

based Social Recommendation.

At last, section 2.4 recapitulates the research work of the thesis, showing our

position within underlying methodology.

23
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2.1 Notation

In this section, we provide the notations used throughout this thesis, including

those for variables and matrices, probability and statistics, as well as plate models.

2.1.1 Variables and Matrices

• Scalars are denoted by lower-case Roman or Greek letters when used to

express variables, for instance y, λ. When used as constants, the scalars

are denoted by upper-case Roman letters in order to differentiate from other

variables, for instance M or N for matrix dimensionality.

• Vectors are denoted by upper-case Roman or Greek letters: V , Λ. A vector

of length n can be denoted as V = (v1, v2, ..., vn). Vectors are assumed to

be row-vectors. When a vector is used as an element of a matrix, then the

notation of matrices is applied.

• Matrices are denoted by capital-italic Roman or Greek letters, and sometimes

shown with superscript, for instance M , Ψ, or Ψt. The rows, columns and

elements of a matrix are denoted by corresponding lower-case letters with

subscripts. For example, mi or mi: stands for the i-th row, m:j for the j-th

column of matrix M , whereas mij stands for an element of M at row i and

column j and (ψt)ij for that of Ψ
t.
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• The set of real numbers is denoted as R. Real coordinate spaces over N

coordinates are denoted by RN . In the case of matrices, real coordinate

spaces on M ×N dimensions are denoted as RM×N .

• A norm is denoted by || · ||, likewise, the Euclidean norm on RN is denoted

as || · ||2. The Frobenius norm on RM×N is denoted as || · ||F , and is defined

as

||X||F = (
M∑
i=1

N∑
j=1

x2ij)
1/2 (2.1)

• The gradient of a function f is denoted by ∂f . The gradient of a function f

with respect to its variable x is denoted as ∂f
∂x
.

2.1.2 Probability and Statistics

• Random variables are denoted in the same way as those of Variables and

Matrices (section 2.1.1). In particular, we refer to X as a dataset consisting

of a set of records, each being associated with a set of n random variables

x1, · · · , xn.

• A draw from a random variable x with probability density function f (θ) is

denoted as:

x ∼ f (θ) (2.2)

where θ represents the parameters of the probability density function f .
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• A simple distribution of a single random variable and a joint distribution on

multiple random variables are expressed as follows:

p(x|θ) or p(x; θ) (simple distribution) (2.3)

p(x1, · · · , xn|θ) or p(x1, · · · , xn; θ) (joint distribution) (2.4)

where θ represents the parameters of the distribution.

• The joint distribution of a set of random variables can also be expressed as

the product of all the probability distributions of the variables given their

corresponding parent variables:

p(x1, · · · , xn|θ) =
n∏

i=1

p(xi|xπi; θi) (2.5)

where xπi is the parent variable of xi in the manner in which the conditional

probability of xi is conditioned on xπi. Moreover, θi is the parameter of the

corresponding conditional probabilities.

• The above joint distribution can be used to define a likelihood function,

where X can be considered as a set of fixed training data, and the likelihood

function assigns a value to each possible θ for X .

Moreover, for a given set of a training data, the problem of choosing the pa-

rameters which maximize the likelihood function is called Maximum Likeli-

hood Estimation (MLE) (Equation 2.7), that is essentially a point estimation
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of the parameters.

l(θ) = p(X|θ) = p(x1, · · · , xn|θ) (2.6)

θMLE = argmax l(θ) = argmax p(X|θ) (2.7)

• Because a log-normalizer can reduce a high-dimensional integration to a low-

dimensional one, the problem of Maximum Likelihood Estimation (MLE)

can be equivalent to the problem of minimizing a log-summation form by

applying logarithm to the likelihood function. Equation 2.8 shows such a

log-likelihood function (ll(θ)).

Such an estimation can be simplified provided that each p(xi|xπi; θi) is a

certain type of a distribution, that depends only on the parent variable xπi

and parameter θi:

ll(θ) = −log p(x1, · · · , xn|θ)

= −log
n∏

i=1

p(xi|xπi; θi)

= −(
n∑

i=1

log p(xi|xπi; θi)) (2.8)

• Also, the parameters θ can be determined by Bayesian Inference, which

solves the posterior distribution of the parameters conditioned on the train-

ing data by using Bayes theorem:

p(θ|X ) =
p(X|θ)p(θ)
p(X )

(2.9)
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where p(θ) is called the prior probability distribution, representing the prior

belief in various conditions of parameter space. On the other hand, p(X|θ)

is called the posterior distribution, which is a combination of the prior belief

with the likelihood.

• To learn the posterior distribution, one can compute the training data by

calculating an integral over a potentially large parameter space.

p(X ) =

∫
p(X|θ)p(θ)dθ (2.10)

For the purposes of making recommendations, we need to predict the like-

lihood of new test data X new given training data X . This is an integral as

follows.

p(X new|X ) =

∫
p(X new|θ)p(θ|X )xθ (2.11)

• As the above integral (Equation 2.11) is usually difficult to calculate, we can

use Monte Carlo methods to approximate it. Monte Carlo methods are a

broad class of algorithms which perform repeated and random samplings to

obtain results. In the case of Equation 2.11, it can be approximated by using
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the following Monte Carlo estimation:

p(X new|X ) ≈ 1

S

S∑
s=1

p(X new|θs) (2.12)

where θs ∼ p(θ|X )

where X new represents the new test data, X the training data, and S the

size of parameter space.

2.1.3 Plate Models

Plate models are used to represent the repeated structures in probabilistic graphi-

cal modeling, where the nodes stand for variables and the arc for the dependencies

between the variables. Probabilistic graphical modeling is often used to define the

mathematical forms for joint or conditional probability distributions between vari-

ables [22, 96].

A plate indicates that the inside variables are repeated. The subscripts of the

variables are the indexes for repetition, and the frequency of the repetition is

usually denoted at the corner of a plate. If a variable is embedded in two or more

plates, that means it involves multiple layers of repetitions.

Figure 2.1 and Figure 2.2 demonstrate how plats are used to represent the repeti-

tion of variables. In these two figures, the already known variables are represented

by shading nodes, while those unknown or to-be-learned variables are shown as
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clear nodes. Usually, it is optional to draw circles surrounding hyper-parameters,

which are the variables defined by the users prior to learning process.

n

yj y1 y2 yn…

Figure 2.1: Single plate

m

n

yj
y1 y2 yn…

…

Figure 2.2: Hierarchical plates

In the left-hand image of Figure 2.1, a plate surrounding variable yj with a number

n at the corner. This indicates that variable y has n-times of its values. In

another word, one ϕ is associated with n-times y values. This can be alternatively

represented by an expanding image at the right-hand of the figure, where all the

values of y1, y2, · · · , yn are explicitly depicted. In contrast to y, either the variable

ϕ or the hyper-parameter σ still represents a single value in the expanded image.

Figure 2.2 shows a more complicated case of hierarchical plates. In the left-hand

image of Figure 2.2, the variable ϕ is also surrounded by a plate with repetition

times of m, and this variable ϕ is linking to an n-times-repeated variable y. The

expanded image at right-hand clearly shows the complicated relations among the

values of σ, ϕ and y: one σ is linking to m-times ϕ values, while each ϕ value is

associated with n-times y values.
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2.2 Recommender Systems in General

With the surge in the popularity of Web technology, people constantly use social

media services, collaboration tools, and wikis to search, accumulate and acquire

new knowledge, as well as to share the information with their friends and col-

leagues. The Web technology also allows users to be informed of the latest up-

dates from their social connections. However, the abundance of information on

the internet becomes a bottleneck of communication.

To address the “information overload” problem, recommender systems have been

widely adopted in various web systems. On one hand, the recommender systems

help users find personalized recommendations that suit users’ tastes. On the other

hand, these systems assist businesses to discover unprecedented opportunities for

special needs from customers. Nowadays, recommender systems have become an

indispensable part of our life.

Recommender systems are intelligent computer programs that are able to filter the

large amount of information in computer systems for users’ needs. Although such

systems have been available for long time, it is only since the mid-1990’s that the

study of recommender systems has emerged as an independent research area. The

problem being studied is the rating estimation for those items which have not yet

been experienced by the users, based on existing rating structures. Theoretically,

recommender systems are rooted from various research fields, such as information

retrieval [111], forecasting theories [7], management science [98], cognitive science

[107], approximation theory [105], machine learning [125, 134], and so on.
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2.2.1 Content-based and Collaborative Approaches

Generally speaking, the underlying methodology of various recommender systems

can be divided into two approaches: content-based filtering (CN ) [14] and col-

laborative filtering (CF ) [106, 117]. In the CN approach, every user and item is

associated with a profile describing its characteristics. For example, a user’s profile

may include age, gender, nationality, location and education. Similarly, a profile

of a piece of music may contain its attributes such as debut date, composer, genre,

album, performance time, number of listeners. These profiles are then used by

the recommender systems to select the items matching individual user’s requests

according to certain similarity definitions.

A well-known CN recommender system is the Music Genome system, used for

Internet radio service Pandora.com 1. In the system, each song is given scores

based on hundreds of distinct characteristics, which include not only the musical

attributes of music but also other significant qualities that help to understand

listeners’ preferences.

The CN approach has many limitations such as restricted feature extraction, the

“New User” problem and over-specialization. First, in order to create the profiles,

all the content regarding users and items must be in a text-based form so that

they can be “automatically and directly read” by computer systems. However, it

is often difficult to automatically and directly derive text descriptions from some

forms of data, for instance, images, audio and video streams.

1http://www.pandora.com/
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Another limitation occurs in the situation of “New User”. When a new user comes

to a CN -based recommender system, the system has too little knowledge to create

the user’s profile. Therefore, the system can not make accurate recommendations

for the user until a comprehensive profile is established.

The problem of over-specialization appears in two respects. On one hand, the

CN -based systems mostly cannot recommend certain “fresh” items for a user that

are different from the user’s profile, because new items are selected by matching

the existing profiles of users and items. On the other hand, these systems may

recommend so many items similar to those items which a user has already expe-

rienced; for instance a number of different articles for a single event but having

similar profiles to existing ones holding by the user.

Differing from the CN approach, the CF approach basically recommends those

items which are highly appreciated by other people having similar tastes. Coined

by the developers of the first recommender system Tapestry [43], the CF approach

was developed based on a common assumption: if two users u and v have similar

rating patterns over a number of items, then these two users may have overlap-

ping preferences for other items as well [44]. Some of the successful commercial

deployment of CF approach includes Amazon [77], TiVo [5] and Netflix [17].

Figure 2.3 illustrates how a CF recommendation method works. As shown, pro-

vided that there are seven users and six items (movies), all the users give ratings

over certain movies, ranging from one to six (one indicates the most-disliked, six

signifies the most-liked). The task is to recommend new movies for Joe. This

becomes a problem of predicting the scores for not-yet-seen movies Blimp and
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Rocky X. Firstly, according to the ratings patterns, the CF method may select

users Susan and Nathan as Joe’s recommendation neighborhood because all the

three people have a similar rating pattern - giving higher ratings to movies Hoop

Dreams, Star Wars and Pretty Woman. Then, the CF method predicts the ratings

over the remaining two movies from the ratings given by Susan and Nathan. For

simplicity, supposing the prediction takes an average value of the existing ratings

given by Susan and Nathan, thus a rating of 5.5 for Blimp (5.5 = (5 + 6)/2), and

2.5 for Rocky X (2.5 = (3 + 2)/2) are derived. Obviously, the movie Blimp attain

a higher rating (5.5) than Rocky X (2.5); accordingly, the movie Blimp would be

recommended for Joe.

Hoop 
Dreams

Star 
Wars

Pretty 
Woman

Titanic Blimp Rocky X

Joe 4 6 5 3 ? ?
John 2 1 2 1

Susan 5 6 6 5 3

Pat 3 6

Jean 2 4 3 4 3

Ben 1 6 1

Nathan 5 6 6 2

Figure 2.3: Illustration of collaborative filtering approach

A major attraction of the CF approach is that it purely relies on users’ past

experiences or observed ratings, without the need to know all the profiles of users

and/or items. Generally, CF approach achieves higher predictive accuracy than

CN approach. Nevertheless, the CF approach also suffers from a number of issues,

such as Cold-Start and Scalability. The Cold-Start issue is also known as the New
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User/Item problem, similar to that with CN approach. Because the CF approach

solely rely on users’ existing ratings to make recommendations, CF approach may

not work well with new users or new items which are associated with very few

ratings.

The Scalability problem occurs when the numbers of the users and items substan-

tially grow. For example, with tens of millions of users and/or items, a conventional

CF recommender system would suffer serious scalability difficulties when it needs

to immediately react to online requests for instant recommendations.

To address the above issues, many methods of CF approach have been studied.

These methods can be further categorized into memory-based and model-based

methods [20, 62]. Generally, the memory-based CF methods make predictions

based on the entire collection of existing ratings; while model-based CF methods

make recommendations based on certain mathematics models.

2.2.2 Memory-based and Model-based Methods

In memory-based methods, every user has a “neighborhood” consisting of other

users having similar interests. For a user seeking recommendations (called an

“active user”), by identifying a neighborhood of the user, the unknown rating for

a not-yet-experienced item can be computed as an aggregate of the ratings for

that item given by the neighbors.

To form the recommendation neighborhoods of users, Similarity is an important

concept for memory-based CF methods. Major similarity definitions are used
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in memory-based methods, including correlation-based similarity such as Pearson

Correlation Similarity [106].

The Pearson Correlation Similarity calculates the degree to which two entities, say

users, are linearly related with each other [106]. Formally, a Pearson Correlation

Similarity between two users u and v can be described as follows:

pcs(u, v) =

∑
i∈I(rui − r̄u)(rvi − r̄v)√∑

i∈I(rui − r̄u)2
√∑

i∈I(rvi − r̄v)2
(2.13)

where I stands for the set of the items rated by both users u and v; rui represents

the rating given by user u for item i, and rvi by user v for item i; and r̄u and r̄v

are the average rating values for user u and v respectively.

In memory-based methods, after having constructed a recommendation neighbor-

hood for an active user, the most important subsequent task is to predict the

ratings for “potential items”, and to produce a recommendation list for the user.

Here the potential items mean those items which are highly appreciated by the

neighbors but not yet experienced by the active user. A memory-based method

involves prediction and recommendation computation. The major algorithms of

prediction computation include Weighted Sum [106] and Weighted Average [112].

Most memory-based CF methods employ Top-N algorithm or its variants for rec-

ommendation computation.

Although the memory-based CF methods have many advantages such as being

easy to implement and easy to add new data, they also have several limitations.

First, because memory-based CF methods rely on similarities across all relevant
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users over all items, it is difficult to pre-compute all the similarities for online

queries. Also, because of the similarity computation, memory-based CF methods

often require all users, including the active user, to have a minimum number of

ratings.

To overcome the shortcomings of memory-based CF methods, many model-based

CF methods have been proposed. In recent years, the model-based CF methods

have become the mainstream of recommender systems. Generally speaking, the

model-based CF methods take two steps to make recommendations. First, to

develop a model from observed rating data; and second, to estimate the scores

for the items in question by utilizing the model. Such a model is usually a data

mining or machine learning method.

In this thesis, we are especially interested in two popular groups of model-based CF

methods: Regression Models and Latent Variable Models. In brief, the methods of

regression models develop models by learning the relationships between predicted

ratings and some other information, for instance, the characteristics of items.

Whereas, the methods of latent variable models work on such a presumption that

the observed variables in certain circumstances can be projected by some latent

variables or unobserved factors. In the next two subsections, we give a short review

of these two groups.

2.2.2.1 Regression Models

Regression Models or Regression Analysis is a well-established statistics and prob-

abilistic field, which can be traced back nearly two centuries or earlier, and has
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been actively applied in almost all scientific disciplines [34]. The studies of Re-

gression Models analyze the relationships between a set of explanatory variables

and a set of variables of primary interest. Usually the explanatory variables are

also called independent variables, and the variables of primary interest are called

dependent variables.

One real life example of Regression Models can be an analysis of the relationship

between a firm’s investment in promotion (independent variables) and its sales

achievement (dependent variables). The question here is, given the historical data

of promotion and sales, how can we predict the potential sales depending on the

investment in future promotion?

Although Regression Models have a large number of variations, most popular mod-

els used in recommender systems belong to Simple Linear Regression Model, that

basically deals with one independent variable and one dependent variable, and the

relationship between them is a linear function. A typical Simple Linear Regression

Model can be formally described as follows:

yi = β0 + β1xi + ϵi where (i = 1, · · · , n) (2.14)

where xi is an independent variable, and yi a dependent variable; β0 the popula-

tion Y-intercept, and β1 a population slope coefficient; ϵi is a random error term

assumed that ϵi ∼ N (0, σ2).

The establishment of a model like Equation 2.14 is to find the unknown parameters

β0 and β1. For example, they can be estimated according to the measure of Least
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Squares (LS):

LS(β0, β1) =
n∑

i=1

(yi − β0 − β1xi)
2 (2.15)

for given data (yi, xi) , i = 1 · · · n

In this subsection, we take a popular collaborative filter algorithm Slope One as an

example to show how a CF system predicts ratings for potential items by means

of Regression Models. Proposed by Lemire and Maclachlan, Slope One [76] is one

of the most popular model-based CF methods, based on a simplest form of linear

function: f(x) = x+ b.

Owing to its natures of “easy to implement” and “reasonable accuracy”, Slope

One has been widely used as building blocks in a number of recommender systems

[21, 39, 40, 59, 63, 91, 94, 124], as well as certain widely-spreading open-source

libraries such as Apache Mahout 2 and Easyrec 3.

The basic principle behind Slope One is the “popularity differential” between items

for users. This can be illustrated by a toy example in Figure 2.4. Consider two

users A and B, and two items I and J , User A rates item I as 1 and item J as

1.5, whereas, user B assigns a rating of 2 to item I. As we observe that user A

assigns a higher rating to item J than item I (1.5 > 1), we could assume that user

B would also give item J a higher rating then item I, say, 2 + 0.5 = 2.5 provided

that the two users somehow share similar interests.

2https://mahout.apache.org/, last access on 17/03/2014
3http://www.easyrec.org/, last access on 17/03/2014
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User A

User B

Item I Item J

1 1.5

2.0 ?

Figure 2.4: Illustration of the concept of popularity differential

The Slope One algorithm includes a family of schemes. The basic scheme can be

considered as a direct implementation of the “popularity differential” concept. Let

χ be the set of all the ratings in a training dataset. For any user u, rui stands for a

rating given by user u to item i. Furthermore, for any two items i and j, Sji(χ) is

defined as a subset of χ, including all the ratings rui and ruj if a user u has rated

both items i and j (such a user is denoted as ru ∈ Sji(χ)). Also, T (u) is defined

as the set of the items rated by a user u.

To formalize the Slope One algorithm, an average deviation of item i with respect

to item j, denoted by devji, is defined, based on which the prediction r̂uj for a

user u for item j can be defined as follows:

r̂uj = ru +
1

|Rj|
∑
i∈Rj

devji (2.16)

where devji =
∑

ru∈Sji(χ)

ruj − rui
|Sji(χ)|

(2.17)
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where ru represents the average rating of user u, Rj is the set of all the other items

that satisfy |Sji(χ)| > 0 other than i.

Most of the CF methods of Regression Models claim to be easy to implement,

efficient at query time, and working well for dense data. There are limitations when

applying them to sparse data, and as such, the accuracy of recommendations will

be severely downgraded [23]. To address this issue, we develop a peer-based CF

method of Regression Models so that reduce the impact of data sparsity. Moreover,

we investigate the feasibility of employing Latent Variable Models techniques in

our recommendation model. The basic concepts and techniques of Latent Variable

Models are briefly discussed in the next subsection.

2.2.2.2 Latent Variable Models

The study of Latent Variable Models (LVM) has a long history, that can be traced

from the early part of the last century [12, 33, 123]. The idea of latent variables

came from the fact that people who performed well in certain mental ability tests

also tended to do well in other things. This led to the thought that the scores

of an individual person might be the manifestations of some underlying general

ability, called general intelligence. The general intelligence can be considered as

the latent variables of test scores. It is the latent variables which are supposed to

combine in some way to produce the actual performance in tests.

LVM has been used in a wide range of domains, including education testing,

psychology, biology, economy, data mining, image and signal processing, topic

modeling, and so on [12, 131]. When apply LVM to recommender systems, the
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“latent variables” often mean the unobserved factors which may affect users’ rating

preferences. Some examples of unobserved factors are: a movie’s nature of serious

or escapism, users’ attitude towards females or males. The task of predicting

users’ potential ratings becomes a task of inferring these unobserved factors from

the observed ratings. The inferred factors are then used to project the users’

possible ratings over not-yet-experienced items. Owing to this reason, the term

Latent Variable Models is always interchangeably used with Latent Factor Models

in recommender systems.

As one of the most popular realizations of LVM, Matrix Factorization has shown

great promise for improving recommender systems in terms of good scalability and

high accuracy. In 2006 and 2007, the studies by Funk [38] and Bell and Koren [15]

took leading positions in Netflix prize competition [17, 67]. Since then, matrix

factorization has become one of the most successful and popular techniques for

recommender systems [67, 120, 126].

A general view of Matrix Factorization used for recommender systems can be

described as follows. Matrix factorization is a process of decomposing a matrix

(“target matrix”) into two or more “latent matrices”, each with a far lower dimen-

sionality than that of the target matrix, such that the matrix product (“approx-

imate matrix”) of the derived latent matrices will approximately get back to the

original target matrix. Based on the assumption that the latent matrices reflect

users’ preferences and items’ nature respectively in a low-dimension latent space,

a basic approach of making prediction is to learn the missing values in “target
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matrix” from “approximate matrix”. Usually, a high correspondence between the

factors of users and items leads to a highly potential recommendation.

The above description of matrix factorization can be depicted by Figure 2.5. The

target matrix is the matrix R ∈ RM×N representing the ratings for all the users

over the movies. Two latent matrices are Φ ∈ RM×K and Ψ ∈ RN×K , representing

users’ preferences and movie’s nature respectively, where ϕi and ψj are k-dimension

vectors, k is the number of latent factors, k << NorM .

Movie 1 2 3 4 5 6 7 8 9 …

User 1 4 3

2 1

3 4

4 5

5 2

6 4

Movie 1 2 3 4 5 6 7 8 9 …

… … … … … … … … …

… … … … … … … … … …

… … … … … … .. … …

User
…

1 … … …

2 … … …

3 … … …

4 … … …

5 … … …

6 … … …

Figure 2.5: Matrix factorization over user-movie matrix

As shown in Figure 2.5, the product of Φ and Ψ serves the potential ratings for

all the users over all the movies. Formally,

R ≈ R̃ = Φ ∗ΨT (2.18)

that is, rij ≈ r̃ij = ϕi: ∗ ψT
j:

The latent matrices are also called parameters or models. The task of Matrix Fac-

torization is exactly to infer these latent matrices, this is usually done by matrix
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decomposition - a well-defined mathematics problem. There are a number of exist-

ing matrix decomposition algorithms, for instance, Singular Value Decomposition

(SVD) [93]. The definition of SVD is that, for any matrix A ∈ RM×N there exist

two orthogonal matrices U ∈ RM×M and V ∈ RN×N such that

A = UΣV T (2.19)

where Σ is a diagonal matrix with σ1 ≥ σ2 ≥ . . . σmin(N,M) at its diagonal.

SVD has become a basic building block of many applications, such as noise-removal

for imaging and sound processing, dimensionality reducing in large scale datasets,

latent semantic analysis, and so on. However, when directly apply SVD to recom-

mendation applications, it faces several difficulties. First, conventional SVD can

only work well on dense datasets. However, most dataset in recommender systems

are very sparse. For instance, the sparsity of well-cited Netflix Prize dataset is

high up to 99% [17]. Second, SVD is basically used to minimize squared Frobe-

nius norm, that may not be appropriate to support a sound explanation of the

underlying latent factors in recommender systems.

An alternative way of factoring a matrix is to directly model the observed ratings,

in the meantime employing regularized terms to avoid over-fitting. In particular,

as the performance of a model is usually measured by Root Mean Squared Error

(RMSE) on test data, it is very likely to learn the latent matrices Φ and Ψ by

minimizing the squared difference between a target matrix and its approximate
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matrix, expressed by the following Objective Function:

L(R,Φ,Ψ) =
∑

(ij)∈K

(rij − ϕiψ
T
j )

2 + λ(∥Φ∥+ ∥Ψ∥)2 (2.20)

where R represents the user-item matrix of observed ratings, and rij represents

the rating given by user i for item j. K is the set of all the pairs of observed

ratings with regard to users and items. The second part of the object function is

a regularized term.

As the original LVM took a statistical point of view on latent variables, it is natural

to assume that the latent variables may follow certain statistical distributions [12].

Based on this assumption, the study by Salakhutdinov and Mnih [110] proposed

a matrix factorization model using a probabilistic approach, called Probabilistic

Matrix Factorization (PMF). In the PMF model, the latent variables are supposed

drawn from certain probability distributions:

- for each user, draw a user’s features ui from a Gaussian distribution

N (ui|0, σ2
UI); and

- for each item, draw an item’s nature vj from a Gaussian distribution

N (vj|0, σ2
V I);

- furthermore, each rating r(i, j) is treated as the posterior distribution over the

user’s features and item’s nature, that is, draw r(i, j) from N (rij|ui ∗ vTj , σ2
R).

Formally, let the matrix R ∈ RM×N represent the ratings given by N users for M

items, and U ∈ RM×D and V ∈ RN×D stand for the latent features of User and
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Item such that R ≈ UV T , where D is the dimensionality of latent matrices. To

predict the missing values in R, a conditional distribution is set over the observed

ratings R, and two zero-mean Gaussian priors on the latent matrices U and V

respectively.

p(R|U, V, σR) =
N∏
i=1

M∏
j=1

[N (rij|uTi vj, σ2
R)]

Iij (2.21)

p(U |σ2
U) =

N∏
i=1

N (ui|0, σ2
UI) (2.22)

p(V |σ2
V ) =

M∏
j=1

N (vj|0, σ2
V I) (2.23)

where N (x|µ, σ2) stands for the probability density function of Gaussian distribu-

tion; and Iij for an indicator function, that equals to one if user i gives a rating

for item j, otherwise becomes zero.

Now, the problem of predicting the ratings for potential items becomes how to

find the posterior distribution r(i, j) given the distributions of latent variables ui

and vj. This can be depicted by a plate model shown in Figure 2.6.
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M
N

Figure 2.6: Graphical model of Probabilistic Matrix Factorization

The log-posteriors over the latent features U and V are given by

log p(U, V |R, σ2
R, σ

2
U , σ

2
V ) (2.24)

= log p(R|U, V, σ2
R) + log p(U |σ2

U) + log p(V |σ2
V )

= − 1

2σ2
R

N∑
i=1

M∑
j=1

Iij(rij − uTi vj)
2

− 1

2σ2
U

N∑
i=1

uTi ui −
1

2σ2
V

M∑
j=1

vTj vj

− 1

2
((

N∑
i=1

M∑
j=1

Iij)log σ
2
R +ND log σ2

U +MD log σ2
V ) + C

where C is a constant independent of U and V .

Inferring this model is equivalent to minimizing a sum-of-squared-error objective

function with quadratic regularization terms as follows,

E =
1

2

N∑
i=1

M∑
j=1

Iij(rij − uTi vj)
2 +

N∑
i=1

λU∥ui∥2F +
M∑
j=1

λV ∥vj∥2F (2.25)
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where λU =
σ2
R

2σ2
U
, λV =

σ2
R

2σ2
V
, and ∥.∥2F denotes the Frobenius norm.

A local minimum of the above objective function (Equation 2.25) can be learned

by executing a gradient descent algorithm on the latent variables ui and vj, as

described in the following derivatives.

∂E

∂ui
=

n∑
j=1

Iij(u
T
i vj − rij)vj + λUui (2.26)

∂E

∂vj
=

m∑
i=1

Iij(u
T
i vj − rij)ui + λV vj (2.27)

Similar to the PMF, many successful matrix factorization based recommender

systems have been proposed by using probabilistic and Bayesian approaches [97,

120, 126]. In order to incorporate social connections and interactions, matrix

factorization based recommender systems are facing two major challenges. The

first challenge is to include as much more social information as possible. And the

second one is to handle the sensitivity to data noise and outliers. The second issue

is mainly caused by the squared error in objective functions (known as L2 LOSS) in

matrix factorization models. A number of studies have reported that the L2 LOSS

lacks robustness under certain circumstances where severe noise and outliers occur

in data matrices, and several solutions to general matrix factorization models are

proposed. However, to introduce “robustness” in matrix factorization based social

recommendation methods is still a challenging task.

In the next section, we will dig into three interesting topics in the study of rec-

ommender systems: (i) familiarity based neighborhood formation, (ii) tie strength

measurement, and (iii) matrix factorization based social recommendation. For



Chapter 2. Background 49

each topic, we explore several representative methods and show how the limita-

tions or issues are appearing in existing studies.

2.3 Related Topics

This section shortly reviews the work in three interesting topics which are closely

related to the research in this thesis. The first topic is regarding neighborhood

formation, one of the most core techniques of CF methods. The second topic

is tie strength measurement. This topic is hardly comprehensively discussed in

the mainstream of recommender systems, we will discuss it in detail. The last

topic is for matrix factorization based social recommendation, focusing on the

incorporation of social information in recommendation process.

2.3.1 Familiarity based Neighborhood Formation

One of the key techniques of CF methods is the construction of recommendation

neighborhoods, from which the potentially interesting items are selected out. In

recent years, certain studies on recommender systems categorized the neighbor-

hoods into two main types: similarity-networks and familiarity-networks [50]. A

similarity-network contains those people whose social activities overlap others. By

contrast, the familiarity-network of a user includes those people whom the user

knows well or with whom the user has a social relationship [50, 108].

The studies by Ruffo et al. [108] and Guy et al. [50] suggest that, for the purpose

of seeking recommendations, a user often prefers familiarity-networks consisting
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of the people with whom the user is already familiar, or from whom the user often

receives advice. The experiment by Guy et al. revealed that, for the recommended

items, the group of familiarity-networks showed 45.7% interesting versus 37.1%

not-interesting. However, the similarity-network group manifested a ratio of 38.7%

interesting versus 48.2% not-interesting [50].

The above result coincides with the general knowledge in real life, where peo-

ple mostly receive recommendations from peers in personal social circles. Figure

2.7 (reproduced from [150]) illustrates two different approaches of neighborhood

formation: similarity-networks (left-hand image) and familiarity-networks (right-

hand image).

Figure 2.7: Neighborhood by similarity- and familiarity-networks

Obtaining useful recommendations through familiarity-networks matches the con-

cept of Small-World theory [32, 95, 99, 101] in social science. The Small-World

theory speculates that, almost any pair of people in the world can be connected

to one another by a chain of intermediate acquaintances in a typical chain length

of six people [29, 127]. Moreover, an empirical study by Killworth et al. [64]

revealed that the average Small-World path length was 3.23, based on an analysis
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of 10,920 shortest path connections between 105 people. This phenomenon is also

informally referred to as “six degrees of separation” [99].

Learning from the Small-World phenomenon, we believe that it is possible to pro-

duce quality recommendations by working through a user’s social circles and al-

lowing every peer on the network actively participate the recommendation process.

This is quite different from the conventional neighborhood formation methods, in

which recommendation process waits to start until the whole neighborhood gets

ready by incessantly collecting a huge amount of data regarding users and items.

The study by Ben-Shimon et al. [16] is a typical example of forming recom-

mendation neighborhoods directly from social networks. The study builds up a

neighborhood from an active user’s personal social network using a Breadth-First

Search (BFS) algorithm [100], then calculates the rankings of media items based

on the ratings given by other peers in the neighborhood. The ranking formula pe-

nalizes the distances between users. This ranking method may have a strong bias

towards a user’s direct friends. As the result, a user has more direct friends would

receive higher rankings than other users who have less direct friends. Besides, this

ranking method deals with only binary ratings (positive or negative), as such, it

will be difficult to work in general situations with numerical rating values.

A number of studies build their recommendation neighborhoods on top of existing

peer-to-peer networking topologies [11, 30, 108]. The study by Ruffo, Schifanella

and Ghiringello [108] proposed a preference network, which was a self-organized

and interest-based cluster on top of a Peer-to-Peer (P2P) network. To construct
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such a preference network, this study defines a neighborhood by a two-layer struc-

ture of social relationships: one is the contacts of the user, and the other is the

contacts of the contacts of the user. Based on these two sets, the list of friends

was formed for making recommendations.

Similarly, both of the PREGO system by Baraglia et al. [11] and P2Prec system

by Draidi et al. [30] imitate the peer-based recommendation approach in real

life. A common approach of these systems is to set up preference information over

the items, for example topics-of-interests [30]. Then, each user periodically gossips

with other peers to find neighbors having similar interests. Once the neighborhood

is stabilized, every peer makes recommendations using general CF algorithms.

Although these peer-to-peer systems work in on-line situations, they are still fol-

lowing the conventional neighborhood formation method. As such, the recommen-

dation process cannot start until a great amount of data of users and items have

been collected. In addition, these peer-to-peer systems directly utilize existing

networking protocols such as Distributed Hash Table (DHT) for communication.

That prevents the recommender systems providing flexible communication inter-

faces for complicated tasks, for instance, incorporating rich social information into

recommendation.

For all the aforementioned methods, another important issue is rating-style-adjustment.

We often see that some users in one circle are in favor of high ratings for their

movies. However, the users in another circle may prefer to vote all movies at low

ratings. When a user has a number of peers in different circles, directly aggregat-

ing other users’ ratings may lose some high quality movies owing to different rating
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styles. In the case of PREGO and P2Prec systems, the rankings are prepared via

directly gossiping with other peers, it would become difficult to adjust the diverse

rating styles in different social circles.

Sum the above studies up, there remain a number of issues in familiarity based

neighborhoods formation. Most of these issues will be addressed in our proposed

Peer-based Collaborative Filtering method in Chapter 3.

2.3.2 Tie Strength Measurement

Social relationship strength is one of the most important research topics in social

network analysis, it measures how strong or weak the relationships are among the

users in a social network. In the literature, social relationship strength is also

referred to Tie Strength. A theory of “The Strength of Weak Ties” was initially

introduced in [47, 48]. In line with the theory, [85] discussed the quantitative

measurement of social relationship strength using multiple indicator techniques.

Previous research of social relationship strength mainly focused on users’ face-to-

face communication, where one node often connected at most tens of other nodes;

and the relationship strengths were mostly of descriptive or binary forms such as

being friends or not, strong or weak. However, the situation on the web has been

significantly changed. Nowadays, an average user may have several hundreds of

connections, and some individuals have much more than usual [129]. In addition,

the measurement of tie strength has become sensitive to fine granularity instead

of a simple binary form.
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The study of Tie Strength emphasizes users’ overall attitudes towards other peo-

ple in a social network. As depicted in Figure 2.8, the tie strength is an abstract

and integrated measurement of the weights of combined social attributes and re-

lationships among the users. As illustrated in the figure, the strength between

two persons depends on various factors, such as location, education, job, ethnicity,

common actions on shopping and tweeting, etc.

Figure 2.8: Integrated measurement of users’ overall attitudes

A primary definition of Tie Strength is “a combination of the amount of time, the

emotional intensity, the intimacy (mutual confiding), and the reciprocal services

which characterize the ties” in the study by Granovetter [47]. This study differ-

entiated “strong ties” from “weak ties”. The former meant the close relationships

for instance family, trusted friends and certain personalized groups; the latter in-

dicated such a relationship which constituted a “local bridge” to link the others in

a social system that are otherwise disconnected. From the perspective of making

recommendations, we pay more attention to the strength of strong ties.
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Generally speaking, strong ties tend to bond similar people to each other, and these

similar people prefer to cluster together such that they are mutually connected [47].

In other words, the studies of strong ties focus more on the similarity or homophily

in flat social circles, based on various characteristics and relationships such as age,

gender, friendship, work, advice, support, information transfer, kinship [88]. This

is especially useful in recommendation applications. Therefore, in this these the

strength of strong ties is measured on symmetrical and transitive concepts. For

example, users A and B are of ages at 20’, while user C is of age 60’. From the

homophily principle, users A and B may have stronger tie strength than those of

A and C and B and C. Provided that the tie strength between A and B (as well

as between B and A) is 0.8, then those of A and C and B and C may be 0.3.

Furthermore, because A is a close peer of B (0.8), and B has a looser relation with

C (0.3). Consider both the direct and indirect links between A-C and A-B-C, we

may assign the tie strength between A and C as 0.54 (0.3 + (0.8 x 0.3)).

In line with Granovetter’s study [47], much work has been done to analyze various

factors or aspects of tie strength [42, 61, 85]. The work by Marsden and Campbell

[85] pioneered the concept of “predictive factors” of tie strength. This study

defines two types of variables for measuring tie strength: indicators and predictors.

The indicators are observed measures of social network ties, including closeness,

duration, frequency, breadth of discussion topics, and confiding. Whereas, the

predictors are unobserved aspects related to tie strength, such as kinship, co-

worker and neighbor status. Utilizing these variables, tie strength is then defined

by a linear function of the predictors, and the predictors can be solved by a set of
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linear functions associated with indicators. This study concluded that a measure

of “closeness” was the best indicator for tie strength.

Similar to Marsden and Campbell’s study [85] but with significant scale up, the

study by Gilbert and Karahalios [42] statistically analyzed 74 variables in seven

major dimensions, based on a survey over 35 participants with 2,184 rated Face-

book friendships. Of the seven dimensions (intensity, intimacy, duration, recipro-

cal services, structural, emotional support and social distance), this study found

that, the intimacy dimension accounted for 32.8% of the predictive capacity for

tie strength, the biggest capacity compared to other dimensions. This result coin-

cided with the main findings by Marsden and Campbell [85]. The study by Gilbert

and Karahalios [42] also made novel findings which had not been well-understood

in prior work, such as the significance of certain predictive variables in structural

dimension.

Likewise, the study by Kahanda and Neville [61] used 50 features to predict link

strength, a synonym of tie strength, among the users in online social networks.

These 50 features are categorized into four groups: attribute-based, topological,

transactional and network-transactional. The study conducted an investigation

over randomly selected Facebook users with 8,766 linked friends. This study

applied three supervised learning algorithms to classify the link strength: logis-

tic regression (LR), bagged decision trees (BDT) and naive Bayesian classifiers

(NBC) [134]. The findings of the study include two outcomes. First, this study

found that the features of network-transactional group had the largest impact on

the overall performance of link strength measurement, accounting for 12 of top 15
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most-impact-variables. Second, it concluded that the bagged decision trees (BDT)

performed the best, at overall ROC/AUC results.

In the meantime, many studies have been conducted to apply tie strength to a

wide range of application domains. While certain studies focused on “weak ties”,

the majority of the studies show more interests in “strong ties”. Intuitively, the

stronger the tie connecting two individuals, the more similar their behavior. For

instance, the study by Krackhardt [69] reported that strong ties helped organiza-

tions to deal with crises. The investigation by Schaefer, Coyne and Lazarus [113]

demonstrated that emotional support from strong ties such as trusted friends or

family would be important to health and well-being. Moreover, the study by

Ding et al. [28] proposed a method to identify strong ties in a criminal network

environment.

A common feature of the above studies is that, tie strength is measured directly

based on manifest variables, which are either observed or well-known ones. Just

recently, certain studies have shown two new trends: (i) exploiting comprehensive

information from online social media services, including users’ interaction and

demographic data; and (ii) employing latent variable models to develop measuring

methods. In particular, the studies by Xiang et al. [135] Zhao et al. [142] and

Zhuang et al. [149] attract our great interest.

The study by Xiang et al. [135] performs matrix factorization over users’ both

interaction activities and profile similarities. This study develops a probability

model based on the assumption that the tie strength is a “hidden effect” of users’

profiles, and is also the “hidden cause” of users’ interactions. In this study, each
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of the demographic and interaction data is compiled into a single table. Then,

the proposed model infers tie strength from the two tables. In fact, users’ social

attributes and relationships mostly have diverse forms, to pre-compile all informa-

tion in a single table may risk the loss of some important features. For example, it

will be not easy to combine users’ education and ethnicity information in a single

table.

Based on the similar assumption with [135], the study by Zhuang et al. [149]

exploits users’ interactions to measure tie strength. This study calculates a number

of users’ similarities based on common actions or interaction. For instance, it

defines the similarities of mutual comments, common groups, mutual friends, etc.

The model learns each type of similarity by a single kernel, and then combines

the multiple kernels into a single one using a Kernel Alignment technique. The

combined kernel is then used to measure the tie strengths among the users. This

study provides a good approach of capturing users’ interactions for measuring tie

strength. Unfortunately, it does not explore the way of dealing with users’ profile

information.

The framework proposed by Zhao et al. [142] predicts relationship strength on

various activity fields by calculating a joint distribution of profile strength and

interaction strength. The so-called interaction strength was determined by a relat-

edness value of the contents of messages. This is basically a semantic approach,

being limited in document-based environments.

In Chapter 4, we will address some of the current issues occurring in online social

media environments.
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2.3.3 Matrix Factorization based Social Recommendation

Inspired by the success of matrix factorization for general recommender systems, a

substantial amount of research has been conducted to incorporate social informa-

tion into matrix factorization [137]. The matrix factorization based social recom-

mendation methods are called MFSR methods in this thesis. All MFSR methods

commonly assume that, a user’s preference is mostly affected by the user’s social

connections and/or interactions. This assumption coincides with the principle of

“homophily in social networks” studied in sociology [88].

The study by McPherson, Smith-Lovin and Cook [88] associated the homophily

with three types of characteristics: the demographic, psychological and social. The

demographic attributes include age, sex, race/ethnicity, education and religion.

The psychological ones contain intelligence, attitudes and aspirations. At last, the

social characteristics involve occupation and social class, network positions, and

behavior. This homophily principle suggests that people tend to build connections

with other people having similar characteristics. Generally speaking, the stronger

the relationship, the higher the likelihood that more interactions occur between

the people.

From the technology perspective, a common approach of MFSR methods is treat-

ing social information as “side information” along with the basic rating or prefer-

ence data. Recent studies of MFSR methods can be categorized into three groups.

That is, Social Ensemble [57, 82, 84, 102, 138], Collective Matrix Factorization

[35, 78, 83, 118, 119, 139], and Kernelized Matrix Factorization [4, 148].
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A common rationality held by the studies of Social Ensemble group is that the

observed ratings of a user should represent the preferences of his/her trust friends.

For this reason, the study by Ma, King and Lyu [82] models a conditional distri-

bution over the observed ratings by a linear combination of the favors of all the

friends. Going one step further, the study by Jamali and Ester [57] makes use of

propagation of trustworthiness. Similar to the above two studies in [57, 82], the

study by Yang, Steck and Liu [138] develops a concept of “Trust Circles”. This

model infers the recommendations by the same way as that of [57], but using only

the observed ratings in a particular category with trust friends.

The studies of Social Ensemble approach claimed work well in certain circum-

stances. When design an ensemble method, most studies use linear combination

method. In addition, our experiments find that, for instance, the SR2 by Ma et al.

[84] achieves quite good accuracy measures (Root Mean Squared Error (RMSE)),

however, obtain low relevance (Precision-versus-Recall Curve (PRC)) in some eval-

uation cases.

Collective Matrix Factorization (CMF), or Matrix Co-Factorization in certain

literature, has received great attention in last few years. The application do-

mains of CMF include co-clustering [80, 81], image processing [119], signal process

[116, 140], algorithm improvement [65, 79], and of course social recommendation

[35, 56, 78, 83, 119, 139].

When applying CMF to social recommendation, a common approach is to factorize

two or more target matrices with shared entities such that the factorization can

simultaneously infer latent variables for multiple entities. This is based the idea
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that the latent variables will be twistingly affected by each other when being

simultaneously factorized. In the case of SoRec model by Ma et al. [83], this

model constructs a specific “social network matrix” for social relationships, of

which every element is calculated from the local authority and local hub value

between two users. Then, SoRec performs collective matrix factorization over the

rating matrix and the social matrix. Similarly, the study by Fang and Si [35] also

co-factorizes two target matrices, one implicit feedback matrix and one resource

information matrix, where the entity item participates in both matrices.

Taking SoRec as a representative of CMF methods, our experiments reveal that,

while SoRec performs superior for relevance (Precision-versus-Recall Curve (PRC)),

it gains slightly low accuracy (Root Mean Squared Error (RMSE)) in most eval-

uation cases.

In recent years, Kernel learning [55, 114] has become increasingly popular, used

in various applications such as Bayesian inference, computational biology and link

analysis. Some recent studies employed kernel methods in matrix factorization

to improve recommendation qualities [2, 4, 148]. The PMA model by Agovic,

Banerjee and Chatterjee [4] utilizes kernels to capture the covariance for rows and

columns of a target matrix, then additively combines the kernels to generate an

“approximate matrix” for prediction.

Similarly, the KPMF model proposed by Zhou et al. [148] assigns kernels to

the priors of latent matrices, and infers the prediction from the matrix product

of the latent matrices. Despite the fact that kernel learning effectively captures

the similarities between the nodes in a graph, our experiments show that KPMF
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method receives medium scores in both metrics of accuracy and relevance. This

may indicate that assigning kernels as a prior to users’ latent features may not

effectively handle the outliers of rating data in certain circumstances.

In our experiments on MFSR methods, we also find that nearly all the existing

MFSR methods receive good or reasonable values of Root Mean Squared Error, but

show poor performance in Precision-versus-Recall measurement in most evaluation

cases. This result suggests that these methods may have good quality of proximity

but poor character of relevance [10].

Though there are many factors affecting the poor relevance of MFSR methods, we

find that a “robust” approach improves the quality of relevance. For this reason,

we deploy the L1 LOSS technique proposed by Wang et al. [133]. Owing to this

technique, our proposed method achieves higher quality of relevance than all other

comparing MFSR methods. In Chapter 5 (Recommendation by Incorporating Tie

Strength), our new design of a robust matrix factorization method with tie strength

incorporated, as well as the detailed comparison between our method and other

MFSR methods will be elaborately discussed.

2.4 Quick Recap

Through the discussion so far, we understand that although much work has been

done for developing various recommender systems, there has been little attention

paid to the situations where users are seeking recommendations through their

social circles. Furthermore, few studies have been conducted for measuring tie
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strength from rich social relationships. To address these issues, in this thesis, we

propose a peer-based recommendation model incorporated with social relationship

strength - A Peer-based Social Relationship Enhanced Recommendation Model.

Figure 2.9 shows the position of the research in this thesis within the underlying

techniques.

Figure 2.9: The position of the research in this thesis

As shown, the research of this thesis is basically built upon two major CF mod-

els: Regression Models and Latent Variable Models. Firstly, the proposed model

includes a variety of peer-based filtering algorithms of Regression Models, which

help to form reasonably small-sized recommendation neighborhoods from social

circles. Moreover, web services are employed in the proposed model in order to

provide comprehensive communication among the peers in a relay process.

Secondly, we believe that incorporating tie strength in recommendation processes

will greatly improve recommendation qualities. To this end, we design a measuring
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method to estimate users’ tie strength from various social relationships. Further-

more, we develop a robust matrix factorization based method that incorporates

tie strength in recommendation process. Both the tie strength measuring method

and robust recommendation method are under the umbrella of Latent Variables

Models.

The major contributions of this thesis can be summarized as follows:

• We propose a relay-based collaborative filtering method CoRec, which em-

ulates the recommendation process in everyday life. The CoRec method

includes a relay process and a set of relay-based filtering algorithms. This

method allows peers in a social network to propagate recommendation re-

quests and responses over the social networks. The proposed CoRec method

is especially suitable for the situations where people are seeking recommen-

dations through their social circles.

• We design a measuring method to estimate users’ tie strength based on

various social relationships, named as KPMCF. The proposed measuring

method uses kernel learning to capture users’ interaction relationships, and

performs collective matrix factorization to infer users’ latent social attitudes.

The latent social attitudes are then used to calculate users’ tie strengths.

• We develop a robust matrix factorization method TieRec. This method

employs L1 LOSS to strengthen the robustness of matrix factorization. In

the meanwhile, it incorporates users’ tie strengths into factorization process.
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All the three parts, i.e., CoRec, KPMCF and TieRec, are integrated together

to form a Peer-based Social Relationship Enhanced Recommendation Model.

• We have conducted comprehensive experiments for every method of the pro-

posed model, using the real datasets from popular social media services. The

evaluation results demonstrate that the proposed recommendation model

outperforms representative state-of-the-art recommendation methods. Our

experiments also prove that the tie strength does play an important role in

recommender systems.

In the following three chapters, we will elaborately discuss the three key methods

of our proposed model. Chapter 3 presents a peer-based collaborative filtering

method CoRec; Chapter 4 discusses how to measure users’ tie strength using

KPMCF ; and Chapter 5 develops a robust matrix factorization method TieRec

with tie strength incorporated.





Chapter 3

Peer-based Collaborative

Filtering

In this chapter, we propose a peer-based collaborative filtering method, named as

CoRec, that imitates people’s natural information-collecting process in everyday

life. This method is especially suitable for the situations where people are seeking

recommendations through their social circles. Different from conventional CF

methods which need to globally collect a great amount of data, the CoRec method

produces recommendations for every user through local social circles. It works

well even if when some users have only a few peers.

This chapter is organized as follows: The following section illustrates the infor-

mation filtering process in real life. Sections 3.2 and 3.3 elaborate the proposed

CoRec method. In particular, we discuss the process and system aspects in section

3.2, and describe the filtering algorithms in section 3.3. After the method, section

67



Chapter 3. Peer-based Collaborative Filtering 68

3.4 and 3.5 shows the experiment settings and evaluation in comparison with other

advanced CF methods. Lastly, the comparison and summary of CoRec are given

in section 3.6.

3.1 Motivating Example

Learning from real life, we realize that a social fabric formed from various social

circles is potentially able to provide comprehensive information for users’ various

requests. Consider the scenario of literature search, where a researcher wants to

expand his/her collections of a specific topic through personal social circles. The

researcher may ask for help from his/her peers who are presumed to hold some

relevant articles. People who are asked can then pass along the request to their

associates, and the associates may continue to forward the request to other asso-

ciates. When some peers in the request-chain are able to offer recommendations,

they will mostly provide feedback with those articles that are highly rated by

themselves or by their peers. This scenario shows a natural way of asking for

recommendations in everyday life.

In this thesis, we propose a peer-based filtering method CoRec, that mimics the

information filtering practice in real life. Figure 3.1 illustrates the concept of the

CoRec method. In the figure, each user is supposed to maintain a collection of

items and associated ratings. For instance, user Alex possesses a list of items ”a,

c, e”, with associated ratings ”8, 7, 3”; he also has three friends: John, Peter and

Eddy. Alex has common item c with John, and e with Peter, but has nothing in
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common with Eddy. We designate an item such as c or e as Common Interested

Item, and the friends who commonly have these items as co-peers. Therefore, Alex

and Peter are the co-peers of Alex.
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Figure 3.1: Concept diagram of peer-based collaborative filtering

When user Alex wants to expand his collection, he sends a request to his co-peers

John and Peter; similarly John can forward the request to his co-peer Helen and

Tony, and so forth. For a given request, the initial requester and all his successive

co-peers will form a request-response structure, and every user in the structure

will produce recommendations on his own. Finally, after receiving responses from

his co-peers John and Peter, Alex aggregates and filters the recommended items

to create a final recommendation list for himself.



Chapter 3. Peer-based Collaborative Filtering 70

3.2 Relay Process via Social Networks

In this section, we present the relay process of CoRec which go through a user’s

social circles. Firstly, we describe the social network settings on which the CoRec

method is based. Then, depict the process flow of the method. Lastly, we propose

a Web Services design to realize the communication among the peers in the relay

process.

3.2.1 Social Network Settings

Social networks here refer to the networks of people connected through the inter-

net, helping people make friends and share information. We assume that each user

in a social network keeps a list of social relations or “friends”, with which a peer

to peer network is formed. Every user maintains a collection of items with associ-

ated ratings, and possibly with some other preference data, for instance, tags. To

summarize the social network settings used in this thesis, we define the following

notations:

• A social network is defined as a directed graph G = (V,E, I), where V stands

for a set of vertices, representing the users in question; E for the set of the

directed edges over V; and I for the set of items rated by some users in V.

• For any user v ∈ V , he/she maintains three sets: items I(v), ratings R(v)

and friends F (v). Here I(v) = {i1 . . . iN} stands for the set of the items rated

by the user; R(v) = {rvi | i ∈ I(v)} for the set of the associated ratings given
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by user v over the items I(v), where rvi is a rating given by v to i. Finally,

F (v) = {u | ⟨v, u⟩ ∈ E} stands for the set of friends of user v.

To conduct recommendation in a social network graph G, each active user v0 can

construct a recommendation neighborhood. This neighborhood is initiated the ac-

tive user by asking for recommendations of a specific topic. The recommendation

request will be sent to some of his/her friends who show common interests with

regard to the topic. We call these friends co-peers. When a co-peer receives a rec-

ommendation request from one of his/her friends, the co-peer may either directly

make recommendations for the friend, or forward the request to other social rela-

tions and aggregate their recommendations for feedback. The propagation process

may keep going until certain constraints are met. We name such a neighborhood

as a Co-Peer Graph (CPG), denoted CPGv0 = (v0, V
′
, E

′
, I

′
) as follows:

• Let v0 be an active user, having his/her items I(v0), ratings R(v0) and friends

F (v0). The active user initiates a recommendation request to his/her friends.

• For two users u, v ∈ V , suppose that u is a friend of v. Let I(u,v) = I(u)∩I(v),

refer to the Common-Interested-Items (CII) between u and v. Users u and

v are called co-peers if I(u,v) ̸= ∅. That is, there is at least one item in which

both u and v are interested.

• For any user v ∈ V , those co-peers that forward a request to v are called the

inbound co-peers of v, and consequently the directed edges from the inbound

co-peers to v are added to CPG. These inbound co-peers are denoted as

IN (v) = {w|v ∈ F (w), I(w,v) ̸= ∅}. For the active user v0, we set IN (v0) = ∅.
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• Those co-peers to whom user v forwards a request are called the outbound

co-peers of v, denoted as OT (v), OT (v) = {u | u ∈ F (v), I(v,u) ̸= ∅}. All

the directed edges from v to the outbound co-peers are also added to CPG.

Furthermore, the set of the outbound co-peers who are especially interested

in a particular item i is represented by OT i(v).

When make actual recommendation in social circles, provided that user A

asks user B for recommending books, user B may forward the request to

user C and D, but would not forward back to user A. For this purpose, we

request that OT (v) ∩ IN (v) = ∅ for a given user v.

• From the stand point of the active user v0, a relay depth level is defined

as the path length by which a recommendation request travels from v0 to

a certain outbound co-peer. Therefore, all the outbound co-peers of v0 are

named as the 1 -level co-peers, expressed as V 1. Here “k-level” stands for

“the level of relay depth k”.

Now, the construction of the Co-Peer Graph of user v0 or CPGv0 starts from the

active user v0 and proceeds to its 1 -level co-peers in a breadth-first fashion.

Let V 1 = {v|v ∈ OT (v0)}

E1 = {⟨v0, v⟩|v ∈ V 1}

I1 = {i|i ∈ I(v), v ∈ V 1}
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Subsequently, all the 2 -level co-peers are those users who are the outbound co-

peers of the 1 -level peers, represented by V 2.

Let V 2 = {v|v ∈ ∪u∈V 1OT (u)}

E2 = {⟨u, v⟩|u ∈ V 1 and v ∈ V 2}

I2 = {i|i ∈ I(v), v ∈ V 2}

In general, all the k-level co-peers for k > 2 are those users who are the outbound

co-peers of k-1 -level ones, represented by V k.

Let V k = {v|v ∈ ∪u∈V k−1OT (u)}

Ek = {⟨u, v⟩|u ∈ V k−1 and v ∈ V k}

Ik = {i|i ∈ I(v), v ∈ V k}

When the construction process terminates, the Co-Peer Graph of user v0 is ob-

tained as follows:

CPGv0 = (v0, V
′
, E

′
, I

′
) (3.1)

where V
′
=

∪
k

V k E
′
=

∪
k

Ek I
′
=

∪
k

Ik

The above definition of CPG represents the situation in online environments where

users propagate information through their personal social networks. It is worth

mentioning that a CPG is not simply a duplicate of a personal social network,
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although it is a subset of the graph representing the social network rooted from

an active user. In particular, the peers in a CPG are the active user’s direct or

indirect social relations, who share common interests with each other. The edges

of the CPG are dynamically formed during the recommendation process, based

on the active user’s preference data, as well as the decisions made by the co-peers.

The CPG has a distinct advantage of constructing a more effective recommenda-

tion neighborhood than those formed in conventional CF methods. According to

the definition of CPG, the peers in the neighborhood formed by CPG may have

no directly co-rated items with an active user, or are not the direct friends of the

active user. This increases the opportunities of gathering more co-peers and more

potential items, and as such, to ensure that all users can obtain quality recommen-

dations even if some users may have very few co-peers. We strongly believe that

the concept of CPG does match the general practice of making recommendation

in real life.

We notice that the above definition of CPG may implicate some potential issues

as those occurring in online circumstances. For instance, a user might receive

repeated requests in a single request-response chain, or even a loop of requests

and responses. Also a recommendation request might be repeatedly forwarded

over a dynamically growing network without proper ending. These issues can be

resolved by using certain control features deployed in relay process flow, such as

maximum-relay-depth, due-date-time, and a cache-of-executed-requests.

Based on the above social network settings, in the next subsection we define the

relay process flow of the CoRec method.
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3.2.2 Sequence Flow of Relay Process

In connection with the multi-level neighborhood CPG form from social circles, we

design a relay process for making recommendation. Figure 3.2 shows the sequence

diagram of the relay process, consisting of five important methods: initiate ,

relay , receive , wait , and recommend .

Figure 3.2: The sequence diagram of relay process

• initiate : To initiate a recommendation request, an active user (ActiveUser)

sends an initial request to his/her outbound co-peers (CoPeer) by calling

the initiate method. In the meantime, the user forks a parallel process

wait to control the relay process. The initial request consists of the active

user’s preference data including his/her ratings R(v0). The initial request

also includes user-defined constraints such as maximum-relay-depth and due-

date-time which are used to control the relay process.
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• relay : When an outbound co-peer (CoPeer) receives a request from his/her

inbound co-peer, he/she calls relay method to send a consequent request

to his/her outbound co-peers (CoPeer), and also creates a parallel process

wait in the meantime.

A consequent request has two parts. One part is the initial request issued

by the active user, and the other is the preference data of the inbound co-

peer calling relay method. When a user receives a consequent request, the

user forwards only the initial request part to his/her outbound co-peers. By

doing so, only the active user’s preference data is forwarded throughout the

whole CPG.

• receive : While both the initiate and relay methods serve the function of

sending requests, the receive method collects responses from the outbound

co-peers at the next relay depth level. In the receive method the co-peer

keeps a cache-of-executed-requests in order to avoid repeated requests or

request-response loops. Whenever a response arrives, the receive method

reports to the wait process.

• wait : The wait method executes control functionality to ensure a successful

process cycle. When some control constraints (maximum-relay-depth, due-

date-time, cache-of-executed-requests, etc) are reached, for instance if a user

is at maximum-relay-depth, the wait method will directly invoke the rec-

ommend method, instead of waiting for responses from outbound co-peers.

• recommend : This recommend method represents the procedure of pre-

dicting items for inbound co-peers. In general, nearly all the users in a CPG
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perform three functions:

(a) Prediction: to predict the ratings of the potentially interesting items,

based on the preferences of all the related users, including the active

user, inbound co-peer, and the peer who is making predictions;

(b) Aggregation: to consolidate the ratings of those items which are recom-

mended by a number of outbound co-peers;

(c) Filtering : to select the predicted items according to certain decision

rules such as a threshold of the ratings for qualified items.

After Filtering, the recommend method sends the selected items to the

corresponding inbound co-peer by invoking the receive method. In the case

of active user, the recommend method will produce a final recommendation

list.

We will elaborate the three functions of recommend method in section 3.3. Be-

fore this, we present a realization of the relay process using Web Services in next

subsection.

3.2.3 Relay via Web Services

In order to implement the communication among the peers in the above relay

process, we design a RESTful Web Services in CoRec. This design equips every

user with a dedicated personal-hosting RESTful web services engine, that will

perform the peer-based filtering algorithms via a gossip-styled communication. To
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demonstrate the feasibility of the design, we have developed a simulation system

on the top of tornado, a Python web framework and asynchronous networking

library 1. In this section, we highlight the workflow of the web services.

Web Services (WS) has been widely adopted as one of the promising integration

technologies because of its advanced features of loose-coupling and interoperability.

Conceptually, a web service is a software component provided through one or

more network-accessible endpoints, by which service provider and service consumer

exchange requests and responses in the form of self-contained documents [46].

The core technology of Web Services (WS) is based on Simple Object Access Pro-

tocol (SOAP) and Web Services Description Language (WSDL), which we call

SOAP-WS [6]. While this SOAP-WS effectively delivers interoperability among

heterogeneous systems, REpresentational State Transfer Web Services (hereafter

call REST-WS ) [37] explores great potential for communication in a wide range of

computing facilities, as long as the facilities satisfy existing industrial standards,

such as Hypertext Transfer Protocol (HTTP) and Extensible Markup Language

(XML). Consider the situation of peer-based relay process, each co-peer works in

his/her own environment. For this reason, we select REST-WS as the communi-

cation platform of the relay process.

The peer-based workflow of REST-WS is shown in Figure 3.3, involving three

important parts: Tornado, a REST server that provides peers with an http-server

and http-client for communication; Recomm-Engine, the recommendation engine

1http://ww.tornadoweb.org/
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responsible for performing recommend method; and MongoDB, the database for

storing the resources.

Figure 3.3: The REST-WS workflow in a simulation system

There are four key endpoints in the system used to propagate the ratings and

recommendations: GET/urls/4post, POST/ratings/up, GET/recommends, and

GET/copeers. Every peer can either receive or request the invocations of these

endpoints as an Http-server or an Http-client. The workflow of these endpoints is

described as follows:

• GET/urls/4post : This is the initial message flow between a user and one of

his/her social relations when the user invites the peer to join a recommenda-

tion process. If the peer is able to do so, then the user will receive a positive

response, with a hyperlink for posting the users’ rating data, otherwise, the

user will receive a negative answer with a NULL for the hyperlink.
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• POST/ratings/up: The user will post his/her ratings to the peer. The peer

will check the incoming information, and decide whether they become co-

peers or not. In the case of a positive answer, the reply from the peer to the

user will include a hyperlink for getting recommendations.

• GET/recommends/ : This endpoint represents an asynchronous communica-

tion, which requires a certain amount of time for the co-peer to reply to the

recommendation requests and responses. Usually, a co-peer receiving this

call will initiate further REST workflow with his/her social relations via an

Http-client.

The response to this endpoint includes recommended items with predicted

ratings, as well as the hyperlinks to the other peers who made the recom-

mendations.

• GET/copeers/ : This endpoint is used for obtaining further information from

the co-peers who made certain recommendations in the relay process.

In this section, we have discussed the process and system aspects of the CoRec

method. The core filtering algorithms in the recommendation engine will be dis-

cussed in the next section.

3.3 Peer-based Filtering Algorithms

This section contributes to the details of the three key functions of the recom-

mend method in CoRec: Prediction,Aggregation and Filtering. For the purposes
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of description, we assume three users involve in a recommendation process: w, v

and u. Suppose that user w is an inbound co-peer of v, and user u an outbound

co-peer of v; and consequently, user v is an outbound co-peer of w, and meanwhile

an inbound co-peer of u. Recall the motivating example, we can image that user

John can be v between Alex (w) and Helen (u), where Alex sends a recommen-

dation request to John, and John forwards the request to Helen. From the point

view of sending back recommendation response, Helen sends a response to John,

and subsequently John sends a response to Alex.

3.3.1 Prediction

The purpose of CoRec is to recommend new items for active users. To this end,

the Prediction function needs to estimate the scores of the items which are not

experienced by active users but highly rated by other users. Then, the items

which are given higher scores (hereafter called as “potential items”) are selected

for further filtering. In a relay-based process, such potential items are limited to

those items which should be highly recommended by any of the co-peers of an

initial active user but are not rated by the active user. As user v has an outbound

co-peer u, user v obtains extra items Ir(v) from u, in addition to his/her own

rated items I(v). So, the potential items held by user v will become Ip(v) =

(I(v) + Ir(v)) \ I(v0).

In the relay process, when user v predicts the items through user w, user v needs

to take w’s preference into account. Using a linear model of f(x) = x+ b, the best

predictions for w from v can be inferred by minimizing the Mean Square Error
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E =
∑

j∈I(v,w)
(rvi + b − rwi)

2. That means, the constant b must be the average

difference between the ratings of the Common-Interested-Items of users v and w.

For a potential item i ∈ Ip(v), r̂vwi denotes the rating given by CoRec system for

user w from user v on item i, refer to “predicted rating”. Whereas, the rating

rvi and rwi are the ratings given by users w and v for item i before the system

running, refer to “original rating”.

The concept of the above Minimizing Mean Square Error is basically working

for those items which are not the Common-Interested-Items between users v and

w. However, owing to the nature of relay-based process, a potential item for an

active user may be also the Common-Interested-Items between two co-peers (none

of them is active user). We may also want to recommend such items if they are

highly-appreciated by these co-peers. To not miss these items for the active user,

we develop two prediction formulas for the corresponding situations.

The following Equation 3.2 is for those items which are not the Common-Interested-

Items between users v and w:

r̂vwi = rvi +
1

|I(v,w)|
∑

j∈I(v,w)

(rwj − rvi)

=
1

|I(v,w)|
∑

j∈I(v,w)

(r∗vi − r∗vj) + rvw (3.2)

where rvw = 1
|I(v,w)|

∑
j∈I(v,w)

rwj, standing for the average rating of the Common-

Interested-Items between user v and w but given by w; r∗vi and r
∗
vj represent either

an original rating or an aggregated rating held by v; and rwj is the original rating

given by w for item j.
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And, the following prediction formula (Equation 3.3) is especially used for the

potential items for the active user, but these items are also the Common-Interested-

Items between users v and w:

r̂vwi = (r∗vi − rv) + rw (3.3)

where i ∈ Ip(v) ∩ I(v,w)

where rv and rw are the corresponding average ratings of users v and w respectively.

To illustrate the Prediction function (Equation 3.2), let’s pick up a scenario in

motivating example where Tony is making predictions for John. Tony rates three

items (d, r, w) on (3, 4, 5) respectively. Of these items, items d is a Common-

Interested-Item, which is rated by John at 7. So, the average rating of the

Common-Interested-Items between Tony and John is (7 + 3)/2 = 5.

If Tony wants to predict the ratings of items r and w for John, he firstly calculates

the derivations of item d with respect to r and w. The derivations are (item r) :

4−3 = 1 and (item w) : 5−3 = 2 respectively. And then, the derivations are added

on top of the average rating of Common-Interested-Items for prediction. That is,

Tony recommends the items r and w for John at ratings of (item r) : 1 + 5 = 6

and (item w) : 2 + 5 = 7 respectively.

3.3.2 Aggregation

During the course of peer-based process, a user in the process may receive a same

item from multiple outbound co-peers, each co-peers sends its predicted rating
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over the item. In order to make prediction for an inbound co-peer of the user, the

user needs to consolidate all the ratings for such items. Consider a scenario of user

John, he obtains a recommended item r from both Helen and Tony. In another

word, one item r now has two ratings. In that case, John needs to aggregate the

ratings of the item r in order to make predictions for his inbound co-peer Alex.

The Aggregation function is essentially the problem of Preference Aggregation [121]

in the domain of Social Choice [8], where a vast number of aggregation algorithms

have been studied [24]. In this these we focus on the mechanism of a peer-based

collaborative filtering method with relay process. All the main algorithms should

be adaptive for various applications. Therefore, instead of using some existing

aggregation algorithms, we prefer to design our own that is explicitly expressed

by two most direct and relevant variables derived in the Prediction function: the

predicated ratings and the number of the co-peers who contribute the potential

items.

Let Ir(v) be the items recommended by all the outbound co-peers of v after com-

pleting a filtering function (to be discussed in section 3.3.3). For an item i in

Ir(v), it might be recommended by multiple outbound co-peers. To retain the

information, we compute a vote-count Cu(i) for the accumulated number of users

who have already recommended item i through to user u. If item i is only rated

by a single user u, we define Cu(i) = 1.

In the following discussion, rvi stands for the rating given by user v for item i;

r̃vi for the aggregated rating by user v for item i; and r̂uvi for the predicted rating

for user v for item i recommended by a peer user u (to be discussed in the next
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subsection). The aggregated rating can be calculated by the following Equation

3.4:

r̃vi =
1

Cv(i)

∑
u∈χi

r̂uvi ∗ Cu(i) (3.4)

where Cv(i) =
∑
u∈χi

Cu(i)

where χi represents OT i(v) ∪ {v}. Along with the aggregated rating, the vote-

count of item i through to v is also aggregated.

The Aggregation function can be explained by continuing the same scenario in the

Prediction function, where Tony recommends items r and w for John at ratings of

6 and 7 respectively. Using the same Prediction function, Helen recommends the

items r and s for John at ratings of 4 and 6 respectively. Of the three items w, r

and s, item r is recommended by both Tony and Helen, while w is recommended

only by Tony, and s only by Helen. According the Equation 3.4, John aggregates

the three items by (i) item r : (6 + 6)/2 = 6, (ii) item w : 7/1 = 7 , and (iii)

items : 4/1 = 4. These ratings of w, r and s will become the source to be used by

John in the Prediction function for his inbound co-peer Alex.

3.3.3 Filtering

In order to select highly appreciated items for inbound co-peers, all outbound co-

peers perform a Filtering function after Aggregation. The filtering rules should

also be adaptive, for instance in favor of some users’ rating styles. On principle,

so-called “highly appreciated items” of a user are those which are given higher
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ratings by the user. However, in the circumstance of relay-based recommendation,

users in different circles usually have different ratings styles even in a single scale

for instance from 1 to 10. Some users may prefer to give preferred items with

higher rates, say 8 or 9; while some others like to rate items with lower scores, for

instance 3 or 4. To ensure that no discrimination is taking against the potential

items owing to diverse rating styles, we adopt a “top-N nearest items” policy in the

filtering process. That is, we will select only top-N items which have close rating

style to that of every corresponding inbound co-peer. By doing so, a potential

item would have a relatively higher rate than other items for every co-peer.

Usually a user’s rating style is basically represented by the average rating value

of the user. Therefore, when user v selects items for user w, the filtering function

can be described by the following Equation 3.5:

Ifv (w) = {i|i ∈ Ip(v) and |r̂vwi − rvw| < α} (3.5)

where Ifv (w) represents the selected ”nearest top-N” items recommended for user

w by user v; other notations have the same meaning as in Equation 3.2. In the

formula α is a parameter affecting recommendation results. A smaller α may

produce recommendations having more similar rating style but less relevant items

to active users, whereas a larger α may bring in more relevant items but with less

similar rating style to active users. We will discuss this in section 3.5.

After filtering, the selected items are sent to the previous inbound co-peer for

aggregation purposes (section 3.3.2), where Ir(v) are the items recommended by
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all the outbound co-peers for user v. In other words, Ir(v) = ∪u∈OT (v)I
f
u (v).

By iteratively applying the aforementioned Equations 3.4, 3.2 and 3.5, an active

user v0 obtains a set of recommended items with predicted ratings. From the

items and ratings, the active user will perform further aggregation and filtering,

and produce his/her final recommendation list ⟨If (v0), Rf (v0)⟩, where If (v0) is

derived from the filtering function over the aggregated ratings, and Rf (v0) =

{r̃v0i|i ∈ If (v0)}, and r̃v0i is the aggregated rating after the filtering process.

Most of the users in a CPG execute the above three functions, excepting two

cases. The first exception occurs when some users hit the control constraints. For

example, when a user knows that he/she has reached maximum-relay-depth, then,

this user will directly make predictions on his/her own items without waiting for

the recommendations from outbound co-peers.

Another case is for active users. Because active users have no inbound co-peers,

they do need to perform Prediction function. But all active users need to perform

Filtering function in order to produce high quality recommendations.

The activity diagram in Figure 3.4 illustrates how an item 10095 in the Last.fm

dataset is recommended following the peer-based filtering algorithms. The item

10095 is rated by user 7118 and user 4289, as well as the active user 63. If the

item is hidden from the active user, the users 7118 and 4289 will recommend the

item to user 63 through relevant co-peers.

In the last two sections, we present the details of the proposed CoRec method,

including peer-based relay process and peer-based filtering algorithms. In the
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Figure 3.4: An example of peer-based filtering process

following two sections, we will show the experiments of proposed method. In

particular, Section 3.4 describes the settings of the experiments, and Section 3.5

discusses the evaluation results in comparison with other advanced CF methods.

3.4 Experiment Settings

In this section, we give the experiment settings for our studies in this thesis,

including the datasets for experiments, the algorithms for comparison and the

metrics being evaluated. A part of this section will be repeated in chapters 4 and

5 as well.
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3.4.1 Dataset Description

In the study of the CoRec method, we have conducted comprehensive experiments

over two real datasets from actual social media services Last.fm 2 and Epinions.com

3. The original datasets are provided by the studies of [66] (Last.fm dataset) and

[86] (Epinions.com dataset) respectively.

Table 3.1 highlights the datasets from Last.fm and Epinions.com. Last.fm allows

users to create profiles and augment them with the music tracks that they listen

to. Whereas, Epinions.com encourages users to contribute reviews on a variety

of products. The main tasks of the experiments are to recommend the potential

music or products for users.

Table 3.1: Last.fm and Epinions.com datasets

Source user items ratings items/user friends/user tags
Last.fm 3,148 30,520 802,963 222 3.5 8,296

Epinions.com 40,163 139,738 664,823 16.5 14.3 NA

As shown in Table 3.1, the Last.fm dataset comprises about 3,000 users, 30,000

items and 800,000 ratings. Each user in this dataset on average rates 200 and

more items and has 3.5 friends. This dataset also includes more than 8,000 tags.

On average, each user assigns 21 tags and each tag is attached to 14 items. The

Last.fm dataset includes a “play-count” of the music tracks to which users have

listened. The values of ‘play-count’ range from 1 to 7,939. To use the “play-count”

values as rating scores in the experiments, we apply a logarithmic function to these

play-count values.

2http://www.last.fm
3http://www.epinions.com/



Chapter 3. Peer-based Collaborative Filtering 90

For the dataset of Epinions.com, the numbers of users and items in this dataset are

about 10 and 5 times larger respectively than those of Last.fm. This dataset has

about 665,000 ratings, which are given by integer values ranging from 1 to 5. Any

pair of users who hold a trust value of 1 are treated as friends in the experiments.

In contrast to the Last.fm dataset, each user in Epinions.com dataset on average

has a smaller number of rating items (16.5) but more friends (14.3) (whereas 200

items and 3.5 friends for each user in the Last.fm dataset).

3.4.2 Methods for Comparison

Using the foregoing datasets, we have compared the proposed CoRec method with

certain popular collaborative filtering and state-of-the-art recommendation meth-

ods. Of the general collaborative filtering models, we select Pearson CF (Pearson)

and Slope One, two typical memory-based and model-based CF methods respec-

tively.

• Pearson CF is one of the most well-known memory-based CF algorithms

[106]. A major appeal of Pearson CF is its simplicity such that the Pearson

CF is always used as a building block in many other recommender systems.

The following Equation 3.6 is the formula of Pearson CF used in the exper-

iments.

r̂vi = rv +

∑
u∈U(rui − ru)wvu∑

u∈U wvu

(3.6)
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where r̂vi stands for the predicted rating on item i for user v; while rui

represents the rating on item i given by user u; rv and ru represent the mean

ratings of users v and u respectively; and u ∈ U stands for the neighborhood

of user v.

• Slope One is one of the popular model-based CF algorithms [76], which in-

cludes a family of algorithms. We useWeighted Slope One Scheme (Equation

3.7) in the experiments as follows:

r̂ws1
uj =

∑
i∈T j(u)(devji + rui)Cji∑

i∈T j(u)Cji

(3.7)

where devji =
∑

ru∈Sji(χ)

ruj − rui
|Sji(χ)|

where T j(u) = T (u) − {j}, the set of the items rated by the user u except

item j, Cji = |Sji(χ)|.

3.4.3 Evaluation Metrics

In the experiments and evaluations, we mainly employ three types of metrics:

Precision-versus-Recall Curve (PRC),Mean Absolute Error and Root Mean Squared

Error (MAE and RMSE). Each is outlined as follows.

PRC

Precision-versus-Recall Curve (PRC) is a widely accepted metric to evaluate the

performance of information retrieval algorithms. Here Precision is defined as the
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fraction of the retrieved relevant items in the answer set, whereas Recall is the

fraction of the retrieved relevant items of the whole set of the relevant items [10].

In the experiments, the “relevant items” of an active user are defined as those

items rated by the user.

Furthermore, we measure Average PRC of all active users in all experiments. In

the following discussion, the term PRC refers to the Average PRC. In the following

Equation 3.8, where A stands for the set of retrieved items, R for the whole

relevant items, and Ra for the intersection of A and R (retrieved relevant items).

Furthermore, P u
p (r) is the precision at recall level r for the p-th experiments for user

u; Np and Nu are the numbers of the experiments and the users respectively. As

such, P (r) represents the Average PRC value at recall level r in all Np experiments

and for all Nu users.

Precision =
|Ra|
|A|

Recall =
|Ra|
|R|

(3.8)

and Average PRC : P (r) =
Nu∑
u=1

Np∑
p=1

P u
p (r)

Np

Figure 3.5 shows an example of a PRC Curve, with the Precision as the Y-

coordinate and Recall as the X-coordinate. If we exemplify with an analogy,

namely the PRC plot with web suffering, the curve represents the relevant items

appearing on the retrieved web pages. On one hand, the lower the Recall value

(start from 0%), the higher likelihood the retrieved relevant items appear on earlier

pages. On the other hand, the higher the Precision value, the more retrieved

relevant items on the pages.
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Figure 3.5: A sample PRC curve

Mean Absolute Error - MAE

While the Precision-versus-Recall (PRC) curve is used to measure the precision-

recall performance of various algorithms, Mean Absolute Error (MAE) is com-

monly adopted in the collaborative filtering community to evaluate the accuracy

of algorithms [54]. MAE calculates the errors between the predicted ratings gen-

erated by recommendation methods and the ratings made by users. In the ex-

periments, we use Normalized Mean Absolute Error (NMAE) described in the

following Equation 3.9:

NMAE =
1

|V |
∑
v∈V

MAEv

rmax
v − rmin

v

(3.9)

where MAEv =
1

|T (v)|
∑

j∈T (v)

|r̂vj − rvj|

where V stands for all the users in the test dataset, rmax
v and rmin

v for the minimum

and maximum values of the original ratings given by each user, T (v) for those

recommended items which are originally rated by the user, r̂vj for the predicted

rating given by a recommendation method for user v over item j, and rvj for the
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original rating made by user v on item j.

Based on the above settings, we conduct experiments to evaluate the performance

of the proposed CoRec method. The following section gives the details of the

evaluation.

3.5 Evaluation

In the experiments, we compared the proposed model CoRec with the baseline al-

gorithms: Pearson CF (Pearson), weighted Slope One (wS1) on the same datasets

from Last.fm and Epinions.com. In particular, we performed experiments on 829

users of the Last.fm dataset, where each user had two to eight co-peers; and 1,360

users of the Epinions.com dataset with five to 25 co-peers. Every user is treated

as an active user once engaged in the experiments. Using the average values of

the recommendations for these users, we then calculated the evaluation metrics

described in section 3.4.3.

3.5.1 Parameter Setting

In the experiments, we have tried the relay depth levels at two, three, four and

five. The recommendation results shown that the experiment of deploying relay

depth at three achieved the best performance with regards to the above metrics.

When using filtering formula (Equation 3.5), we picked up at most one thousand

items every time to form a nearest top-N list.
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The parameter α in Equation 3.5 affects the balance between the rating styles and

relevant items of recommendations. Our experiments show that, when the α was

assigned a smaller value, for instance 0.5, the recommendation results showed a

quite close rating style to the active user but with a relatively less relevant items.

In contrast, a larger value of α, for example 1.0, often brought more relevant items

in the final recommendations but with less similar rating styles to active users.

To achieve a reasonable balance, we assigned 0.65 to α for both datasets in the

experiments.

3.5.2 Precision and Accuracy

Figures 3.6 and 3.7 show all the PRC curves of the evaluation algorithms over

Last.fm and Epinions.com datasets. As a whole, the PRC of CoRec outperforms

the other three methods in most of the recall levels. In particular, for the Last.fm

dataset (Figure 3.6), the PRC curve of CoRec starts from a high precision of

0.11 at the 10% recall level, while both wS1 (weighted Slope One) and Pearson

(Pearson CF ) start from 0.02. In the case of the Epinions.com dataset (Figure

3.7), the PRC of CoRec shows over 0.085 precision at the 10% recall level, while

the corresponding precision of wS1 is at 0.05 and that of Pearson is at 0.03.

As to the Accuracy measurement, Table 3.2 shows that the MAE of CoRec stay

at the leading level of the three methods (0.09159 for Last.fm dataset and 0.2279

for Epinions.com dataset). The greatly superior PRC of CoRec indicates that the
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CoRec model does recommend more relevant items than the other three meth-

ods. This can be attributed by the highly social-relevant co-peers in the Co-Peer

Graphs.
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Figure 3.6: Last.fm
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Figure 3.7: Epinions.com

Table 3.2: NMAE values

Dataset \ Algorithm CoRec wS1 Pearson
Last.fm 0.09159 0.0927 0.2928

Epinions.com 0.2279 0.2462 0.2771

It is observed that the PRC curve of wS1 in Epinions.com rises after the recall level

40%, and reaches a peak value of over 0.08 precision at the 60% recall level. That

result shows a high rate of the relevant items recommended by the wS1 algorithm,

however it also suggests that these relevant items are recommended at the lower-

end of the top-N lists. In contrast, the PRC of CoRec always leads high precisions

at the early recall levels, which intuitively demonstrates that the CoRec method

recommends relevant items at the higher-end of the top-N recommendation results.

3.5.3 Personalized Rating Style

To examine how the recommendations made by CoRec are close to users’ personal

rating styles, we prepared two datasets with different rating styles for a same



Chapter 3. Peer-based Collaborative Filtering 97

user (63) in Last.fm data. In particular, the user 63 gets the average rating of

3.6658 in the first dataset, and of 6.6879 in the second dataset. In the meantime,

we kept the same friendship relations for the two datasets. We carried out two

recommendation processes over the two datasets with distinct rating styles.

Two plots in Figure 3.8 visually display the distinct rating styles of the two rec-

ommendation results, with each plot taking the top-20 recommended items. The

left-hand image shows the recommended rating distribution for the first rating

setting, an average rating of 3.6658. And, the right-hand image shows the second

rating setting, an average rating of 6.6879. These two plots show that recom-

mendations made by CoRec are always close to a user’ individual rating style,

regardless of the changes in the setting of the user’s rating.

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

recommended_ratings(A)

user_ratings(A)

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

recommended_ratings(B )

user_ratings(B )

Figure 3.8: Personalized rating styles

3.5.4 Evaluation on Non-Response

When a user sends a request to his/her friends for recommendations in online

circumstances, it is difficult to expect that all the friends will respond to him/her.
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This is also true for the CoRec model in which the recommendations are co-

produced by the co-peers in a multi-level neighborhood. To investigate the behav-

ior of non-responses, we conducted an experiment of all the 829 users in the Last.fm

dataset at different response-rates by randomly hiding some of the co-peers in a

CPG. Here the response-rate was defined as the percentage of the responses from

outbound co-peers.

Figure 3.9 shows four (4) PRC curves of the 829 users at varied response-rates,

100%, 75%, 50% and 33% respectively. As shown, all the PRC curves are close to

the style of 100% response-rate. In particular, the PRC curve of 75% response-

rate fully matches that of 100% response-rate, and even achieves superior precision

at some recall levels. On the other hand, the PRC curves of both 50% and 33%

response-rates are lower at most recall levels. In particular, most of the PRC

values of the 33% response-rates are about 3-5% lower than those of the 100%

response-rates. These curves suggest that, the CoRec model should work properly

in online situations with varied response-rates, although too few responses will

decrease the recommendation performance in terms of the precision-recall metric.

3.5.5 Evaluation on Relay Depths

Intuitively, in a propagation process, the deeper the relay depth, the more the co-

peers, and the more the co-peers, the more the recommended items. The question

to be asked, is do more recommended items mean more relevant items for active

users? To examine the correlation between relay depths and recommendation
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Figure 3.9: The effect of non-responses

quality, we conducted experiments on the same Last.fm dataset at various relay

depths. Figure 3.10 shows four (4) PRC curves of all the 829 users at relay paths

from two to five. As shown, the PRC curves of different relay paths show distinctly

different precision values at most recall levels. Of them, the PRC curves of relay

depths two and three have better performance than those of relay depths four and

five.

We have discovered that, when the relay depth increases, the precision values of the

corresponding PRC tend to decrease, especially at the recall levels between 10%

and 30%. This can be interpreted as more co-peers at deeper relay depth levels in

a CPG probably contribute more items, however, that may not correspondingly

increase the number of relevant items for the active user of the CPG. Consequently,

too many irrelevant items recommended to the user, impair the Precision of the

recommendations instead.

So far, we present the methodology aspects of the proposed CoRec method. We
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Figure 3.10: The impact of relay depths

also demonstrate the experiments of the method, and discuss the evaluations re-

sults. In the following section, we review those existing studies which are closely

related to the CoRec method.

3.6 Comparison and Summary

In this section, we compare our proposed CoRec method with two typical CF

methods: Pearson CF and Slope One.

While Pearson CF is a classic memory-based CF method, Slope One is an effec-

tive model-based one. Both methods are based on the conventional approach of

neighborhood formation. In order to obtain quality recommendations, they re-

quest a great amount of data, usually tens of thousands or even millions of users
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and ratings. In contrast, the peer-based CoRec allows every user to obtain qual-

ity recommendations by asking for help from his/her peers in a Co-Peer Graph

(CPG).

The CPG of each active user is in fact a small-sized and dynamic familiarity based

social network. For every peer in the CPG, the number of all his/her inbound and

outbound co-peers is small, ranging from tens to hundreds. The CPG does not

request to globally gather all the peers with all their ratings in a central place.

In CoRec, the whole filtering process is distributed in individual peers, each peer

works on a small amount of data, only tens or hundreds of ratings. The relay-based

approach makes it possible for CoRec to work in distributed online environments.

Owing to the peer-based filtering algorithms, CoRec also has the ability to adjust

rating styles in different social circles. We often see that a group of users like

to give high ratings for their preferred movies. Whereas, the users in another

circle may prefer to vote all the movies at low ratings. When an active user has a

number of peers participating in different circles, directly aggregating other peers’s

ratings should not be an appropriate way, as that would probably miss some highly

appreciated items by other users because of different rating styles. To address this

issue, CoRec let every peer aggregate and predict ratings on one’s own, locally

adjusting rating styles before making final decision.

With the advent of social networking services and mobile computing in recent

years, much work has been done to develop recommender systems with social in-

formation incorporated. The majority of these systems extract various similarities

among the users from social information, such as tags, comments, trustworthiness,
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sharing documents, etc. Then, they exploit the similarities to make recommenda-

tions as side information along with the rating data [51, 66, 71, 150]. However,

most of these systems lack a method of dynamic neighborhood formation and a

mechanism for adjusting rating style.

There are very few studies which directly utilize personal social networks to form

a recommendation neighborhood. The studies in [16] and [41] are two typical

examples. For instance, the method proposed by Ben-Shimon et al. [16] constructs

a recommendation neighborhood by travel over users’ personal social networks,

then collect all the rating information from the neighbors. A ranking is calculated

by a linear formula over the collected ratings of all other users. The ranking

formula is penalized by the distances between an active user and other users.

And, the ratings in the study are of binary values (positive or negative). Because

the formula penalizes the distances between users, such a ranking formula has a

strong bias towards a user’s direct friends. As a result of this, a user has more direct

friends may receive higher rankings of all the items than other users who have less

direct friends. Besides, the method of [16] deals with only binary ratings, whereas,

the CoRec works with numerical values - a more general condition in recommender

systems.

The proposed CoRec method can also be categorized in the group of peer-to-peer

distributed collaborative filtering systems, such as the studies in [11, 30, 108].

A basic approach of these methods is to set up preference information over the

items, for example “topics-of-interests” [30]. Then, each user periodically gossips

with other peers to find the neighbors having similar interests. Once a user’s
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neighborhood is stabilized, the user makes recommendations by using general CF

algorithms.

Although the peer-to-peer collaborative filtering systems work in on-line situations,

they are still taking the conventional approach of neighborhood formation. That

makes these system need a great amount of data for quality recommendations.

Moreover, because all these systems collect data through direct communication

between an active user and all other peers, it is difficult to adjust diverse rating

styles in different social circles.

In addition, existing peer-to-peer filtering systems are built on top of the strict net-

working protocols such as Distributed Hash Table (DHT). In contrast, the CoRec

method employs universal REST-WS design, which provides flexible interfaces

for comprehensive communication among users. The REST-WS design in CoRec

helps to incorporate rich social information into recommender systems.

In summary, we propose a relay-based collaborative filtering method CoRec, which

emulates the information filtering process in everyday life. The CoRec method in-

cludes a relay process and a set of peer-based filtering algorithms, allowing peers

to propagate recommendation requests and responses over the social networks.

The proposed CoRec method is especially suitable for the situations where people

are seeking recommendations through their social circles. In addition, the embed-

ded REST-WS design in CoRec makes it easy to work in truly distributed online

environments.

Incorporating social relationships is an effective way to increase recommendation
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qualities. In the next two chapters, we will discuss this topic from two important

aspects: (i) measuring tie strengths among the users in a social network (Chapter

4), and (ii) incorporating the tie strengths into recommender systems (Chapter 5).



Chapter 4

Measuring Tie Strength

With the increasing popularity of social networking services in recent years, a great

amount of information becomes available on the Web. Nowadays, it is possible to

derive social relationships from various forms of resources such as tags, comments,

documents, pictures, etc. This brings a new challenge and also a great opportunity

for the study of social relationship strength.

The studies in social science have suggested that tie strength is one of the best

choices to represent the abstract and integrated form of social relationship strength.

In this chapter, we present a novel method for measuring tie strength among the

users in a social network, named as KPMCF.

This chapter is organized as follows: In next section 4.1, we briefly review the

studies of tie strength measurement. The following three sections describe three

subsequent steps of the proposed method: section 4.2 models various social rela-

tionships by means of kernel learning techniques; section 4.3 factorizes multiple

105
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profiles into users’ latent social attitudes, jointly with the kernel of interactions;

and section 4.4 calculates the tie strength by using the inferred latent variables.

After the three-step-description, sections 4.5 and 4.6 discuss the experiment and

evaluation on the proposed method. At last, we sum up this chapter in the last

section.

4.1 Social Relationship Strength

The studies of Tie Strength emphasize users’ overall attitudes towards other peo-

ple in a social network. The tie strength is an abstract and integrated form of

various social relationships among the users. A primary definition of Tie Strength

was defined by Granovetter [47] as “a combination of the amount of time, the

emotional intensity, the intimacy (mutual confiding), and the reciprocal services

which characterize the ties”.

In line with Granovetter’s study [47], much work has been done to analyze vari-

ous factors for tie strength measurement [42, 61, 85]. The work of Marsden and

Campbell [85] pioneered the concept of “indicators and predictive factors” of tie

strength. In particular, this study defines two types of variables with tie strength:

indicators and predictors. The indicators are observed measures of social network

ties, including closeness, duration, frequency, breadth of discussion topics, and

confiding, whereas, the predictors are unobserved aspects of tie strength, such as

kinship, co-worker and neighbor status.
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Similar to the above study [85] but with significant scale up, the study by Gilbert

and Karahalios [42] used a statistical method to analyze 74 variables in seven major

dimensions, including intensity, intimacy, duration, reciprocal services, structural,

emotional support and social distance, of tie strength. Of the seven dimensions,

this study found that the intimacy dimension accounted for more than 30% of

the predictive capacity for tie strength - the biggest capacity compared to other

dimensions. These finding coincide with the main findings by Marsden and Camp-

bell [85]. Basically, all these studies were based on the relationships derived from

face-to-face communication.

The widely spreading social media and mobile services provide great opportunities

for analyzing and measuring user’s online behavior related to social ties. Many

studies have been reported to measure the tie strength in Mobile Phone networks

[141], micro-blog platform Twitter [9], professional network LinkedIn [135], music

sharing services Last.fm [13], global social network Facebook [60], and so on.

A common feature of the above studies is that most of them calculate tie strength

directly based on manifest variables, which are either observed or well-known

ones. In fact, tie strength is an abstract and integrated form of combined social

relationships. In other words, the factors of tie strength should be underlying

latent variables. Therefore, to infer these latent variables of tie strength is the key

to measuring tie strength.

In recent years, a number of methods [135, 142, 149] are proposed for measuring tie

strength using state-of-the-art techniques such as Latent Variable Models (LVM).



Chapter 4. Measuring Tie Strength 108

Although these studies have achieved great success, several issues are to be ad-

dressed. The first issue is how to integrate the diverse forms of social information.

All the methods in [135, 142, 149] uses a single table to represent either character-

istics and behaviors. This will be difficult for varied datasets with quite different

sizes. For example, in the case of Flickr test dataset, the number of Labels is low

at 42 while that of Tags is 654. To simply put these information in a single table

will risk the outliers and imbalance of the data.

Another issue is how to integrate two important parts of users’ information: pro-

file characteristics and interaction behaviors? The former basically represent users’

static and long term information such as gender, nationality and education, while

the latter usually reflect users’ short term intention, for instance, users’ shopping

time and place in a particular duration show their tendency during that time.

That is, the latter can be considered as the effect of the former. Consequently,

tie strength measurement should take both types of the information into consid-

eration, but with the characteristics at a higher priority. However, the studies of

[142, 149] treat all these information equally when they work on the two types

of information. Moreover, the study of [135] employs only the information of

interactions.

To address the above two issues, we develop two tactics in our proposed method.

On one hand, to handle the diverse forms of social information, we deal with

two types of information by two different techniques: using kernel learning to

handle interaction tables having a same size, whereas employing collective matrix

factorization to process profile matrices with different sizes. On the other hand, in
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the matrix factorization process we impose the kernel of interactions to the latent

variables of profiles. By doing so, we are able to infer the tie strength on both

characteristics and behaviors, meanwhile keeping the characteristics at a higher

priority than behaviors.

In the next three sections, we present a three-step method, named as KPMCF to

measure tie strength from rich social information. These three subsequent steps

are: (i) modeling social relationships by means of kernel methods (section 4.2),

(ii) learning users’ latent social attitudes using collective matrix factorization over

both characteristics and behaviors (section 4.3), and (iii) calculating tie strength

from the latent social attitudes (section 4.4).

4.2 Modeling Social Relationships

Nowadays, social networking and social media services have become an indispens-

able part of everyday life. People use these services to enjoy interest groups, to

forward messages and photos, to post comments and tags, and so on. Using these

services, one is able to collect rich and diverse forms of social information from

various sources, such as tags, comments, documents, pictures, etc. As tie strength

is an integrated form of users’ profile characteristics and interaction behaviors, one

important task of measuring tie strength is to handle the diverse forms of social

relationships, as many as possible.

In this section, we propose a kernel learning method to represent varied social

relationships in a combined form. Firstly, we illustrate the rich information derived
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from an actual dataset. Next, we outline a kernel method of representing user’s

relationship. At last, we combine the multiple relationships in a single kernel

matrix, which will be used for learning users’ latent social attitudes in next section.

4.2.1 Users’ Characteristics and Behaviors

Users’ profile characteristics and interaction behaviors have heterogeneous forms,

including users’ demographic and interaction information. Some examples of the

information are location, education, jobs, friend-assignment, posting comments,

writing tags, sharing reviews, and so on. Most of these pieces of information can

be mathematically represented by matrix.

Matrix is a mathematical form of an entities-attributes data block, that is also

called a “relation”. Generally, a matrix is a rectangular array of numbers, symbols,

or expressions, arranged in rows and columns. Every entity is represent by a row,

and every attribute by a column. Each entry of the matrix is called an element,

which stores a value. Generally speaking, a relation of users’ characteristics will

be such a matrix that the rows represent users but the columns the attributes. On

the other hand, a relation of users’ interactions with other people can be represent

by a square matrix where both rows and columns are users. Consider a matrix of

users’ friendship, the rows of the matrix represent the users themselves, and the

columns represent the friends of these users. Each element in the matrix is a value

of 1 or 0, indicating whether a user accepts a person in the columns as his/her

friend (1) or not (0).
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In particular, in order to measure the tie strength among the users in a social

network, we need to extract users’ various social information from existing dataset.

In the following, we illustrate the users’ relations derived from a real dataset of

Flickr 1.

Flickr helps users post and share photos with other people, it also encourages

users to make contact lists, join interesting groups, and add comments on photos.

The users of Flickr have formed extensive social networks, which involve a great

amount of information with regard to users’ profile characteristics and interaction

behavior. Especially, the dataset we are using in this study includes a wide range

of users’ activities, such as a user’s friends, interesting groups, location (country)

of posting photos, the time of posting, label of photos, tags of photos, etc. Based

on these information, we are able to derive a number of explicit and implicit

relationships among users.

Actually, we extract seven (7) matrices from the dataset. Of them, three are used

as profile relationships: User-Country (P c), User-Label (P b) and User-Tag (P t),

and another four as interaction relationships: User-Friend (Xf), Co-Tag (X t),

Co-Label (Xb) and Co-Group (Xg). The details of these matrices are specified as

follows:

User-Country (P c)- A User-Country matrix P c associates users with countries,

which are converted from the locations in the original dataset. The rows of P c

stands for users, and the columns for countries from which users post photos. As

1http://www.flickr.com/
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one user may post many photos in a same country, we set each entry pcij by the

number of the photos posted by a user i from a country j.

User-Label (P b)- Labeling in Flickr is essentially a facility of classification pro-

vided by image sources, therefore the labels in some degree indicate users’ prefer-

ences for photos. The number of the labels in Flickr dataset is about 50, defined

by Flickr. Of the user-label matrix P b, the rows stand for users, and the columns

for labels. Each entry pbij is set to the count of a same label j received by a user i.

User-Tag (P t)- In Flickr, each author is able to assign tags to his/her photos,

thus the tags can be read as a sign of users’ intention. We calculate a tag-vector

for each user in a tag space developed by Bag-of-Words model [10]. In other

words, each row in P t specifies a user’s preferences for tags. The number of the

tags are really huge comparing to those of labels. In our test dataset, it reaches

at 27,250. To conduct our evaluation, we have filtered out meaningless tags such

as a single character or punctuations, as well as those tags which occur only one

time. Finally, the number of the tags used in experiments dropped to 654.

User-Friend (Xf)- The User-Friend matrix Xf is an interaction matrix, of which

both the rows and columns are users. Friends often share many photos, so an entry

xfik is set by the numbers of the photos posted by both users i and k. Instinctively,

the more shared photos, the stronger the relationship of the two users.

Co-Tag (X t)- While the User-Friend matrix specifies explicit connections, the

Co-Tag matrix X t represents implicit interactions among users by observing how
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many of the same tags are posted by user-pairs. Each entry of X t is set by the

accumulated count of the same tags posted by the corresponding pair.

Co-Label (Xb)- Similar to Co-Tag matrix X t, the Co-Label matrix Xb also rep-

resents the implicit interactions among users. Each entry of Xb is the accumulated

count of the common labels posted by two corresponding users of the same photos.

Co-Group (Xg)- Intuitively, if two users join the same groups, then the two

users probably have strong social ties. The Co-Group matrix Xg is constructed by

specifying the numbers of the same groups in which two users post their photos.

For further discussion in the following subsection and sections, we denote the

User-Label matrix P b as P to represent a profile relationship, and refer PR =

{P c, P b, P t} to all the profile relationships, and Np to the size of PR. Similarly,

we denote the User-Friend matrix Xf as X to stand for a interaction relationship,

and XR = {Xf , X t, Xg, Xb} for all the interaction relationships, Nx for the size

of XR.

Thus, given the various profile and interaction matrices, we need to deal with them

in a uniformed way. To this end, we introduce a technique of Kernel Learning for

integrating interaction matrices in the next subsection.

4.2.2 Kernel Learning

Kernel learning [55, 114] offers a natural framework to study the relationships be-

tween structured objects. In machine learning, one of the most important tasks is
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to learn the general relationships between objects. To this end, one need to trans-

form the raw representation of data into feature vectors. Many machine learning

algorithms perform the transformation by using mapping functions, which are

mostly very complicated. However, kernel methods can achieve the transforma-

tion by taking only the covariance structure of the raw data.

Using specific transformation mechanism, kernel methods can map raw data from

a limited dimensional space into a much higher or theoretically infinite dimensional

space without the need of explicit computation over the mapping. In recent years,

kernel methods have been successfully studied in a wide range of applications

such as hand-writing recognition, text classification, biological computation, face

detection, temporal prediction, etc [114].

As graph is one of the most general representation of discrete metric data, the

study of graph kernels have received great interests by researchers. In particular,

the study by Smola and Kondor [122] proposed a family of graph kernels based

on the theory of graph Laplacian. Of the proposed kernels, Regularized Laplacian

kernel is a simple but effective form to measure the similarities between the nodes

in a graph. As defined in the previous subsection, because all the social relation-

ships are metric data, we prefer to make use of Regularized Laplacian kernels for

representing social relationships.

Let X ∈ RNU×NU stand for one of the users’ interaction graphs, and KX =

(k(i, k))ik for a Regularized Laplacian kernel matrix [74] that specifies the sim-

ilarities between any pair of two users i and k with regard to W , where NU is
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the number of users involved in X. The kernel matrix KX is constructed by the

following steps [122].

1. Normalize X to ensure every entry in X is not negative:

∀xik ∈ X, xik ≥ 0 where i, k ∈ {1, ..., NU} (4.1)

2. Define a Normalized Laplacian L̃X for the graph represented by X:

L̃X = D− 1
2LD− 1

2 where L = D −X (4.2)

D is a degree matrix with dii =

NU∑
k=1

xik, i = 1, ..., NU

3. Construct a Regularized Laplacian kernel matrix KX as follows, where γ > 0

is a constant:

KX = (I+ γL̃X)−1 (4.3)

Once we are able to represent each interaction relationship by a corresponding ker-

nel matrix, the next step is to combine them into a uniformed structure, discussed

in next subsection.

4.2.3 Kernels of Social Interactions

In this subsection, we construct a single kernel to represent the multiple inter-

action relationships, at this moment, all the relationships can be expressed by a
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Regularized Laplacian kernel matrix as described in the previous subsection.

Let X ∈ RNu×Nu stand for the user-friend interaction matrix, then a Regularized

Laplacian kernel matrix K = (k(i, j))ij can be used to stipulate the correlation

between any pair of two users i and j participating in X, where Nu is the number

of the users in X.

So far, we have constructed one individual kernel Kk for each interaction re-

lationship Xk, where k ∈ {f, t, g, c} representing the interaction relationships

Xk ∈ {Xf , X t, Xg, Xc}. To well match the natures of multiple relationships, we

generate a combined kernel KU by a linear combination of these individual kernels.

Figure 4.1 shows the integration of the kernels from multiple social interactions,

following the plate notation of the graph models [22] (section 2.1).

Figure 4.1: Multiple kernels of social interactions

Consider a collection of users, we make a linear combination KU of all the ker-

nels Kk, where k ∈ {f, t, g, c}. Intuitively, an entry (KU)ij specifies the overall

correlation between two users i and j with regard to all the given interaction
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relationships:

KU = (k(i, j))ij, k(i, j) =
1

Nk

∑
k∈{f,t,g,c}

αk(K
k

)ij (4.4)

where i, j ∈ {1, ..., Nu}, k = |{f, t, g, c}| and
∑

αk = 1

Besides the set of users, we also have other three profile relationships P c, P b

and P t. For all these profile relationships, we denote L as the representative of

them, where L ∈ {C,B, T}. Now, we simply set a diagonal kernel KL = σ2
LI for

L ∈ {C,B, T}, where I is an identity matrix.

The above Equation 4.4 is a simple form in order to evaluate the concept of mea-

suring tie strength. There are certain studies regarding the optimal combination

of multiple kernels [26, 27, 45], and we will leave the detailed study to future work.

In the following section, the above kernels KU and KL are jointly used with users’

profile matrices to learn users’ latent variables, which represent the users’ social

preferences.

4.3 Factorizing User Profiles

As we understand that, tie strength is an abstract and integrated form of users’

characteristics and behaviors. That is, tie strength is an integration of multiple

sources. Furthermore, tie strength is not an explicit measurement such as weight

and length, it should be a measurement based on some sort of Latent Social
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Attitudes, for example, people’s political tendency and business feeling against a

particular event. The study of social science has speculated that the behavior of

an individual person might be the manifestations projected by some underlying

latent social attitudes [47, 88]. The task of measuring tie strength is the problem

of finding and calculating these latent social attitudes.

Recent studies indicated that users’ profile characteristics affect their behaviors

on the web, and exploiting social information could improve the qualities of social

network analysis, such as recommendation task [83]. Motivated by these studies,

we believe that an integrated approach is needed to deal with profile and inter-

action relations with diverse forms. To this end, we propose a collective matrix

factorization method to learn users’ underlying social attitudes.

This section contributes to the details of the proposed method. Firstly, we out-

line the concept of collective matrix factorization. Then, we present a graphical

representation of the method. At last we elaborate the inferring algorithms.

4.3.1 Collective Matrix Factorization

Our goal is to learn users’ latent social attitudes from multiple social relations. In

order to deal with the multiple relations with diverse natures, Collective Matrix

Factorization (CMF) is a natural choice. Generally, the technique of matrix factor-

ization is to factorize a single matrix (target matrix) into two dimension-reduced

matrices (latent matrices) which represent the latent variables behind the target
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matrix. As such, the single matrix factorization 2 limits itself to deal with only

one target matrix. In the situations where multiple relations or target matrices

need to be analyzed, the single matrix factorization becomes powerless.

In order to deal with multiple target matrices, a number of studies Collective

Matrix Factorization (CMF) have been proposed such as the studies of [78, 118,

119], though some different names are used in the literature. All of these studies

are based on the assumption that the latent variables will be twistingly affected

each other within the course of collective factorization.

Figure 4.2 (reproduced from [118]) shows a typical CMF model proposed by Singh

[118]. In this figure, only two target matrices are used, but this does not affect

the generality of the concept of CMF for dealing with multiple target matrices.

ui

vj

Xij

N

UΣ

Uµ Yjp

zp

VΣ Vµ

ZΣ

Zµ

M

P

Figure 4.2: Graphical model of CMF

In Figure 4.2, X and Y are two target matrices. X represents a relationship

between two entities: User and Movie. Similarly, Y stands for that of Movie and

2we in this thesis call general matrix factorization as “Single Matrix Factorization” in order
to differentiate from “Collective Matrix Factorization” when needed.
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Actor. A special feature of CMF is that one entity is participating in both target

matrices X and Y . In this example, it is Movie.

When CMF is performed, it generates three latent variables: V , U and Z. Of

the three latent variables, U represents the latent behavior of User in X, and Z

indicates the latent behavior of Actor in Y . However, the latent variable V stands

for the latent behavior of Movie in both target matrices X and Y . In addition,

variables ΣU , µU ,ΣV , µV ,ΣZ , µZ are the super-parameters of the corresponding

latent variables.

4.3.2 Graphical Model

Based on the concept of CMF, we develop a model to learn users’ latent social

attitudes from their social relationships. In the case of Flickr dataset, we have

user’s profile matrices P c, P b, P t, representing User-Country, User-Label and User-

Tag relationships.

Different from the typical CMF model depicted in Figure 4.2, we replace the super-

parameters with kernels as the priors of latent variables. Particularly, we set the

prior of users’ latent variables by the users’ combined interaction kernel KU , and

the prior of other latent variables of profile relationships by corresponding kernel

KL.

Apply the above consideration into account, we design the graphical model of the

learning model as shown in Figure 4.3, following the plate notation of graphical

models [22].
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Figure 4.3: Graphical representation of learning model

As shown in the graphical model, the proposed KPMCF model is essentially a

matrix co-factorization process, with kernels for the priors of latent vectors. In

the middle of the picture, pcij, p
b
ik and ptis stand for the observed values in profile

matrices {P c, P b, P t}, whereas cj, bk, ts and ui stand for the latent vectors of

countries, labels, tags and users respectively. At the corners of the plates, Nc, Nb,

Nt and Nu specify the dimensions of the corresponding latent vectors.

Out of the plates are input parameters. σpc , σpb and σpt representing the variances

of Gaussian distributions to be set over the profile matrices. On the other hand,

KC , KB, KT and KU are the kernels for the priors of corresponding latent vectors.

In particular, KU is a combination of multiple kernels derived from interaction

matrices: user − friend (Xf ), mutual − tag (X t), mutual − group (Xg) and

mutual − comment (Xc).

This graphic model is translated to a collective matrix factorization algorithm in

the following subsection.
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4.3.3 Inferring Latent Variables

According to the above graphic model, we now perform a co-factorization over

multiple profile matrices P c, P b and P t. For each profile matrix P ∈ {P c, P b, P t}.

We set the likelihood over these profiles given latent variable U of users and other

latent variables C,B, T of corresponding profile relationships P c, P b, P t. In the

meantime, we assign the kernel KU as the prior to latent variable U , and KL to

the priors of other latent variables C,B, T respectively. These probability settings

can be expressed by the following formulas:

p(P |U,L, σ2
P ) =

Nu∏
i=1

Nl∏
j=1

[N (pij|ui:lTj:, σ2
P )]

I(i,j) (4.5)

p(U |KU) =

Nd∏
d=1

GP(u:d|0, KU) p(L|KL) =

Nd∏
d=1

GP(l:d|0, KL) (4.6)

Applying Bayesian inference to the above distributions, the log-posterior over U

and L can be formulated as follows:

log p(U,L|P, σ2, KU , KL) = − 1

2σ2

Nu∑
i=1

Nb∑
j=1

I(i, j)(pij − ui:l
T
j:)

2 (4.7)

− 1

2

Nd∑
d=1

uT:dK
−1
U u:d −

1

2

Nd∑
d=1

lT:dK
−1
L l:d

− A log(σ2)− Nd

2
(log(|KU |) + log(|KL|)) + C

where A is the number of non-missing entries in P , |KU | and |KL| are the deter-

minants of KU and KL, and C an independent constant.
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Maximizing the log-posterior over U and L is equivalent to minimizing the follow-

ing object function Ẽ:

Ẽ =
P∈RNu×Nl∑

P∈PR

1

2σ2
P

Nu∑
i=1

Nl∑
j=1

I(i, j)(pij − ui:l
T
j:)

2 (4.8)

+
1

2

∑
Np=|PR|

Nd∑
d=1

uT:dK
−1
U u:d +

1

2

∑
L∈RNl×Nd

Nd∑
d=1

lT:dK
−1
L l:d

A local minimum of the objective function Ẽ can be found by executing a gradient

descent program over each row of U and L ∈ {C,B, T} alternatively:

∂Ẽ

∂uid
=

P∈RNu×Nl∑
P∈PR

(
1

σ2
P

Nl∑
j=1

I(i, j)(ui:l
T
j: − pij)ldj + ϵ(u)TK−1

U u:d) (4.9)

∂Ẽ

∂ljd
=

P∈RNu×Nl∑
P∈PR

(
1

σ2
P

Nu∑
i=1

I(i, j)(ui:l
T
j: − pij)udi + ϵ(l)TK−1

L l:d) (4.10)

where ϵ(k) denotes a k-dimensional unit vector with the k-th component being

one and others being zero.

Finally, the latent variables ui and lj can then be updated iteratively until certain

conditions are satisfied. The update equations are as follows:

ut+1
i = uti − η

∂E

∂ui
(4.11)

lt+1
j = ltj − η

∂E

∂lj
(4.12)

where η is a parameter of a learning rate.
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4.4 Calculating Tie Strength

Having users’ latent social attitudes inferred from varied social information, we

in this section calculate users’ tie strength by means of their latent social atti-

tudes. Doing this is based on the Principle of Homophily in social networks. This

principle suggests people tend to build connections with other people having sim-

ilar characteristics. Generally speaking, the stronger the relationship among the

people, the higher the likelihood that more interactions occur among them [47, 88].

As discussed in section 2.3.2, we in this these focus on strong ties, the strength

of which is measured with symmetrical and transitive properties. The symmetry

means the tie strength between two users are equal in either direction. Further-

more, in a social circle users’ tie strengths are potentially transitive. Provided

that both users u and v have strong tie strength with user w, consequently, users

u and v will mostly have stronger tie strength than the situation where no tie

exists with user w. Based on this assumption, we calculate users’ tie strengths by

accumulating the tie strengths with commonly related other users. The detailed

formula is as follows.

First, by applying Pearson Correlation Coefficient (pcc) function to the latent

matrix U ∈ RNu×Nd , we calculate the pair-wise similarities between all the pairs

of the users in U . Then, for every pair of two users i and j, we find out the other

users who interact with both users, named as “mutual peers” and denoted asM ij.

Finally, we sum the similarities between the two users and the similarities between

the pair and these “mutual peers” to obtain the social relationship strength sij
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between i and j. Formally:

sij = pcc(i, j) +
∑

m∈M ij

(pcc(i,m) + pcc(m, j))

where pcc(x, y) =

∑Nd

d=1(uxd − ūx)(uyd − ūy)√∑Nd

d=1(uxd − ūx)2
∑Nd

d=1(uyd − ūy)2
(4.13)

The values calculated from the Equation 4.13 can be used as the tie strength

among the users in a social network, which represents the users’ whole attitudes

towards other users in the network. In the following two sections, we demonstrate

how the measured tie strengths can be used in certain social applications, and how

the tie strengths represent a closer relationship then other affinities among users.

4.5 Experiment Settings

4.5.1 Dataset Description

We have conducted experiments of the proposed KPMCF method over a dataset

outlined in Table 4.1. The Flickr-PASCAL dataset is sourced from the study by

McAuley and Leskovec [87], which in fact includes four datasets: Flickr-CLEF,

Flickr-MIR, Flickr-NUS and Flickr-PASCAL.

From the data source Flickr-PASCAL, we extracted seven relations for experi-

ments (named as Flickr3 dataset): User-group, User-Location (Country), User-

Label, User-Friend, Co-Tag, Co-Group and Co-Label. Of them, the first three

relations were treated as users’ profile relations, whereas the last four were treated
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as interaction relations. The experimental tasks are to recommend the might-be-

interested groups for users.

Table 4.1: Flickr-PASCAL data source and relations

Flickr Photos Users Groups Tags Locations Label Friends
Source 10,189 8,698 6,951 27,250 1,222 50 N/A

Relations 1,324 562 654 62 42 1324

4.5.2 Evaluation Metrics

Receiver Operating Characteristics - ROC

In the experiments, we evaluate a case of how the tie strength can be used to

classify friendships in a existing dataset. To compare the performance of the

classification, we employ a classification metric: Receiver Operating Characteristics

(ROC) [19, 36]. ROC specifically deals with classification accuracy, as well as

“sensitivity” and “specificity” [92].

Consider a classification problem with two classes, where each instance is mapped

to one element of {p(ositive), n(egative)} of the two class labels. Given a classifier,

there are four possible outcomes for any instance: true positive (TP ), false negative

(FN), true negative (TN) and false positive (TP ). Subsequently, we can estimate

the true positive rate (tp rate) and false positive rate (fp rate) as follows.

tp rate =
#TP

#TP +#FN
(4.14)

fp rate =
#FP

#FP +#TN
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With the tp rate plotted on the Y axis and fp rate on the X axis, an ROC graph

can be drawn, which depicts the relative tradeoffs between benefits (true positives)

and costs (false positives); that is, the classification accuracy of the classifier. To

compare the performance of classifiers, an alternative method is to calculate a

single scalar value for the Area Under the (ROC) Curve, denoted as AUC [19].

In the experiments, both ROC and AUC are taken into account when used for

evaluation.
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Figure 4.4: A sample ROC curve

Figure 4.4 show a sample ROC Curve, with the AUC value displayed in the

legend label. This example demonstrates how a method can be used to classify

each pair of users as friends or not, comparing with the ground truth of friendships.

Intuitively, the higher the curve to the left-upper direction (or the larger the AUC

value), the more accurate the classifier.

Precision-versus-Recall Curve - PRC

In the evaluation, we also employ metric Precision-versus-Recall Curve (PRC)

[10], which has been introduced in section 3.4.3. For the purposes of convenience,
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we repeat the formula of Precision-versus-Recall Curve as follows (Equation 4.15):

Precision =
|Ra|
|A|

Recall =
|Ra|
|R|

(4.15)

and Average PRC : P (r) =
Nu∑
u=1

Np∑
p=1

P u
p (r)

Np

where A stands for the set of retrieved items, R for the whole relevant items, and

Ra for the intersection of A and R (retrieved relevant items). Furthermore, P u
p (r)

is the precision at recall level r for the p-th experiments for user u; Np and Nu

are the numbers of the experiments and the users respectively. As such, P (r)

represents the Average PRC value at recall level r in all Np experiments and for

all Nu users.

4.6 Evaluation

To validate the effectiveness of the tie strength learned in KPMCF, we conducted

two experiment cases on real-world datasets from Flickr3 : Evaluation of Friend

Identification and Evaluation of Group Recommendation.

In the evaluation, we extract three profile relationships (User-group, User-Location

(Country), User-Label) and four interaction ones (User-Friend, Co-Tag, Co-Group

and Co-Label) from the Flickr-PASCAL data source. We also denote the tie

strength values calculated from the measuring method as KPMCF.
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4.6.1 Evaluation of Friend Identification

In the first evaluation case of Friend Identification, we use the values of various

relationships to classify the friendships of every user-pairs in the dataset. The

friendship itself is a ground truth concluded in User-Friend table. The tie strength

values are calculated by the KPMCF method. What we want to see is, whether the

tie strength values can be used to classify friendship? and how the classification

performance of tie strength can be compared with other relationships such as

Co-Tag, Co-Label and Co-Group? The relationship values of the latter three

relationships are taken from the corresponding matrices X t, Xb and Xg.

we built an ROC Curve of each relationship by testing all the user-pairs according

to corresponding relationship values, where the test value of each pair equals to

one if the two users are friends, otherwise zero. Then, we measured the Receiver

Operating Characteristic / Area Under Curve (ROC/AUC) (section 4.5.2) for each

relationship.

We process the evaluation as follows. First, we use a combination of users’

profile and interaction matrices to compute the KPMCF relationship strengths

(KPMCF ) among these users. Next, we calculate the relationship values for the

other three relationships: Co-Tag, Co-Label and Co-Group. Then, we prepare test

data with the labels of “friend” or “not friend” for all the user-pairs involved in

the test data, according to the information in the user − friend matrix. Finally,

we perform an ROC/AUC test over the KPMCF and other three relationships.
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The following Figure 4.5 shows the ROC curves of the test results, where the

X- and Y-coordinates represent the False-Positive-Rate and True-Positive-Rate

respectively. The corresponding AUC values are 0.67121 (KPMCF ), 0.59459 (Co-

Tag), 0.52984 (Co-Label) and 0.63864 (Co-Group) respectively.
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Figure 4.5: ROC curves

As the results demonstrate that the tie strength, represented by KPMCF, shows

superior to all other relationships in the Friend-Identification application. In par-

ticular, the KPMCF earns the highest AUC value at 0.67121, which is about 10%

higher than those of Co-Tag and Co-Label. On the other hand, the Co-Label re-

lationship has the lowest AUC value at 0.52984. That means, whereas the tie

strength learned from KPMCF is helpful for identifying friendship between users,

the number of the labels commonly set by user-pairs is not a meaningful help in

friendship-judgment.
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4.6.2 Evaluation of Group Recommendation

The second evaluation case is Group Recommendation. In Flickr web site, users

are encouraged to join different interesting groups. When a new user comes to

Flickr, or when an existing user wants join a new group, what are the potential

interesting groups (but not joined yet) for the user? In the evaluation, we use

users’ different relationships to make recommendations. As such, we evaluate the

usefulness of each relationship for making recommendation. In this context, tie

strength is considered as one of the relationships among the users.

The evaluation was conducted on four types of relationships (Tie Strength (KPMCF),

Co-Tag, Co-Label and Co-Group). Firstly, we made recommendation for all the

groups over the test dataset, named as G. Then, for each type of relationship, we

produced a top-K recommendation list of potential interesting groups for every

user.

The recommendation list and recommendation scores are determined by Equation

4.16. In the formula, a recommendation list is a sorted list of recommendation

scores (rs) predicted for a particular user u against every available group g in G.

For each group, this recommendation score is defined as the sum of the relationship

values (normalized) between the user and other users who are joining the group.

The relationship values are taken from the corresponding matrix of the evaluating
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relationships. In particular, for an individual user u,

recommendation list = arg sort
g∈G

rs(u, g) (4.16)

where rs(u, g) =
∑

k∈User,k ̸=u

rlv(u, k) I(k, g)

In the Equation 4.16, rlv(u, k) represents the value of a particular relationship

under evaluation, and I(k, g) is an indicating function, which returns one if a user

k joins the group g, otherwise zero. Intuitively, if a group is joined by the other

users having strong relationships with a user u, then this group will be more likely

recommended to the user u.

Using all the information of the top-K recommendation lists, we then calculate

the PRC values for the recommendation results for each relationship. In terms of

PRC, the relevant groups are the joined groups of each user, and retrieved relevant

groups are those joined groups which also appear in the top-K lists.

To compare the PRC performance between tie strength and other relationships,

and also to investigate the impact of the tie strength, we organize four-groups

of experiments, as shown in Figures 4.6, 4.7, 4.8 and 4.9. All four experiments

measured the PRC for the four types of relationships, each experiment selecting

users of different “weight levels”: High, Medium, Low and Average. The three

levels are generated as follows:

Normalizing all the relationship values to scale from 0 to 1.0, the users of High

weight level are those having relationship values higher than 0.70. Similarly, the
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Medium level means the relationship values are between 0.30 and 0.70, and the Low

level indicates the relationship values are lower than 0.30. Finally, the Average

weight level means taking all the users without selection. Figures 4.6, 4.7, 4.8 and

4.9 are the PRC plots for the four experiments of Average, High, Medium and Low

weight levels respectively.
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Figure 4.6: PRC curves - Average
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Figure 4.7: PRC curves - High
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Figure 4.8: PRC curves - Medium
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Figure 4.9: PRC curves - Low

As shown in the plot Average PR curves (Figure 4.6), the Precision-Recall per-

formance based on Tie Strength (KPMCF) receives the best result for high-end

recall levels from 0% to 70%. All other relationships deliver a PRC only after re-

call level 70%, though, some of the Co-Tag and Co-Label obtain a slightly higher

PRC than Tie Strength after the recall level of 70%. Drawing an analogy between

this experiment result and web suffering, it is as if the recommendations by tie
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strength come up in the first several pages, while those by other relationships come

out in later pages.

It is worth noting that the Precision-Recall performance delivered by Tie Strength

shows a decreasing trend when the strength level changes from high to low. In

the case of High level tie strength (Figure 4.7), the PRC curve starts from the

highest point 0.14 near the 10% recall level, and then steadily moves down to

0.01 at the 70% recall level. However, for the PRC of Medium level (Figure 4.8),

it starts from 0.033 as its highest precision, and moves down to 0.0075 at the

70% recall level. The PRC for Low level shows a very poor performance (Figure

4.9), where the Precision remains at around 0.005 for all the recall levels. These

experiment results demonstrate that the tie strength does play an important in

the recommendation process: the stronger the tie strengths among the users, the

higher the precision of the recommendation results.

4.7 Comparison and Summary

In this section, we compare our proposed KPMCF method with the studies in two

closely related fields: tie strength measurement and extended matrix factorization

methods.

Along with the increasing popularity of social media services, it becomes possible

to capture users’ both interaction and profile information. This brings greater

opportunities for measuring tie strength. However, many existing studies use only

interaction data to predict tie strength by using classic statistical or graph theory
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[42, 61, 85]. Compare to these studies, the proposed KPMCF method explores a

new way to measure tie strength from users’ varied social relationships.

In recent years, there appear certain studies that exploit profile and/or interac-

tion information to estimate the relationship strength for online social networks

[135, 142, 149]. Of the studies, The study by Zhuang [149] utilizes similarity-based

combination of kernels to capture users’ interaction relationships. The combina-

tion of kernels is then used to estimate the tie strength among the users. We are

impressed by the kernel learning techniques used in this study. However, although

this study well seizes users’ interactions using kernels where all the matrices are

square ones of the size of users. This method seems not suitable for capturing

users’ profile information where the sizes of profile entities are basically far differ-

ent from that of the users.

The study by Xiang [135] proposed a learning method of latent variable models

over both of users’ interaction activities and profile similarities. This method

deals with two tables of the data, one is users’ profile similarities, and the other is

of users’ interactions. To have these two tables, one needs to pre-compile all the

interactions and all the profile attributes each in a single table. As the actual social

relationships mostly have diverse forms, pre-compiling all information in a single

table may risk the loss of important features. For instance, the number of users’

education level may be only 3 or 4, whereas, that of users’ ethnicity will be more

than one hundred. Contrastingly, the KPMCF method employs kernel method to

handle interaction information, but uses collective matrix factorization technique
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to deal with users’ profile information. This flexible approach of KPMCF better

serves the varied natures of profile characteristics and interaction behavior.

In the study by Zhao et al. [142], users’ relationship strength is predicted for

various activity fields based on a joint distribution of profile strength and inter-

action strength. These two types of “strength” are determined by the relatedness

values of application resources - documents. Therefore, this method is limited by

the application resources. Whereas, the KPMCF method defines tie strength by

using users’ latent variables, which are inferred from users’ profile and interaction

relationships, regardless whatever forms the application resources are. This makes

KPMCF method more universal than others.

As matrix factorization is one of the most promising techniques of Latent Variable

Models, using matrix factorization to infer users’ tie strength is a natural choice.

The general matrix factorization methods basically work on a single matrix. To

exploit additional information, many studies on extended matrix factorization have

drawn great interests in recent years, such as Kernelized Matrix Factorization

(KMF) and Collective Matrix Factorization (CMF). The studies of [4, 148] are

two typical cases of KMF, although none of them is related to tie strength. The

PMA model proposed by Agovic [4] utilizes kernels to capture the covariance for

rows and columns of a target matrix, and then additively combines the kernels

to generate matrix for prediction. Similarly, the KPMF model proposed by Zhao

[148] assigns kernels to the priors of latent variables, and then infers prediction

from the matrix product of latent matrices.
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Although the technique of assigning kernels to priors the priors of latent variables

strongly stimulates our research interest, both PMA andKPMF focused on a single

rating matrix or a single kernel due to the nature of recommendation tasks. To

include both of users’ profile characteristics and social interactions, our KPMCF

method makes two important extensions to matrix factorization. One extension

is using multiple kernels for varied social interactions, and the other is employing

collective matrix factorization to deal with multiple profiles.

Collective Matrix Factorization is an effective way to deal with the situations where

one or more entities participate in multiple matrices [35, 78, 83, 119]. The frame-

work SoRec proposed by Ma [83] can be used to illustrate the mechanism of CMF.

SoRec introduces a social network matrix, in which a social-related term c∗ik repre-

sents the social information following certain distribution. SoRec performs matrix

factorization over both social network matrix and original rating matrix, where

the entity “User” participates in both matrices. The major difference between

SoRec and the proposed KPMCF method is that, while SoRec places Gaussian

priors on the latent variables of users, KPMCF assigns the kernels of social inter-

actions to the priors of users’ latent features. Because of this assignment, KPMCF

becomes able to measure tie strength from both of users’ profile and interaction

information.

Sum up this chapter, we develop a measuring method, named as KPMCF, to

measure users’ tie strengths based on various social relationships. The proposed

KPMCF method shows three advanced features. Firstly, it uses kernel learning
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technique to capture users’ varied interaction relationships; and secondly it per-

forms collective matrix factorization to learn users’ latent social attitudes. Lastly,

it calculates users’ tie strengths from the inferred latent variables instead of man-

ifest data.

The tie strength measured by KPMCF can be used in various applications. In

the next chapter (Chapter 5), we will develop a recommendation method that

incorporates tie strength into recommendation process.



Chapter 5

Robust Recommendation with

Tie Strength

In the previous chapters 3 and 4, we have developed a peer-based filtering method

CoRec and a measuring method for tie strength KPMCF. In this chapter, we

exploit the results derived from these two methods to build a Robust Matrix Fac-

torization method with Tie Strength incorporated. This recommendation method

is named as TieRec.

This chapter is organized as follows: The next section outlines the motivation of

incorporating tie strength. Section 5.2 and section 5.3 jointly describe two impor-

tant aspects of the TieRec method. The former discusses the propagation of tie

strength; and the latter elaborates the robust algorithms of matrix factorization,

focusing on L1 LOSS mechanism. The following sections 5.4 and section 5.5 show

139
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the comprehensive experiments and evaluations, in comparison with certain state-

of-the-art MFSR methods. At last, section 5.6 summarizes the proposed TieRec

method.

5.1 Matrix Factorization based Social Recom-

mendation

When social media services become increasingly popular, incorporating users’ so-

cial information has become possible and also necessary to make high quality rec-

ommendations. In this thesis, we are especially interested in matrix factorization

based social recommendation (MFSR) methods. This is because matrix factoriza-

tion has shown great promise for making highly accurate recommendations, and

it also provides outstanding flexibility in working with additional information. In

spite of that, to effectively incorporate social information into matrix factorization,

one needs to answer three major questions: which social information is included?

which techniques are used? and how to increase the recommendation qualities of

both accuracy and relevance?

Since the start of recommender systems, various social information has been in-

cluded in recommendation process, such as friendship and trustworthiness. In

recent years, common activities on tag, label, comments, posting have also been

studied in many applications. More recently, some parts of user’s profile become

available on the web, such as users’ location, gender, education, occupation, etc.

When more and more types of social information become available, an abstract
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and integrated form is needed to facilitate the incorporation of rich and varied

social information. Tie strength should be one of the right choices. A feasibility

study of incorporating tie strength in MFSR methods is one of the two important

aspects in this chapter.

There are many MFSR methods proposed in recent years. Each method has its

own advantages in a particular situation. When incorporating tie strength, our

experiments reveal that, while certain methods (such as SR2 [84]) show higher

accuracy of the recommendations but lower relevance than other methods, some

(such as SoRec [83]) exhibits higher relevance of the recommendations but poorer

accuracy than others. From the point view of information retrieval, we believe

that both accuracy and relevance are very important criteria for high quality

recommender systems.

We also find that the work on robust matrix factorization helps to improve the

quality of the relevance of recommendation results. There are a number of so-

lutions to robust matrix factorization [1, 72, 133]. Of them, the PRMF model

proposed by Wang [133] improved robustness of matrix factorization by adopting

L1 LOSS technique for objective functions. Usually, Gaussian probabilistic matrix

factorization employs L2 LOSS over objective function. Here, the L1 LOSS means

Least Absolute Errors that minimizes the sum of the absolute differences between

two sets of objects. Whereas, the L2 LOSS represents Least Squares Error which

squares the differences between the elements of two sets. Owing to the nature of

L2 LOSS, most proposed MFSR methods are still sensitive to noise, outliers and

even missing entries occurring in data source. In this chapter, we develop a robust
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matrix factorization based on L1 LOSS technique, and meanwhile incorporate tie

strength in matrix factorization.

The next two sections contribute to the algorithms of our proposed recommenda-

tion method. We firstly consolidate the relationships between active users and their

recommenders (subsection 5.2.1), and formalize the propagation of tie strengths

among the users (subsection 5.2.2). Then, we introduce the robust matrix factor-

ization method based on L1 LOSS (subsection 5.3.1, and develop the algorithms of

integrating tie strength (subsection 5.3.2). The proposed recommendation method

is named as TieRec.

5.2 Consolidating Users’ Tie Strength

In this section, we discuss the consolidation of tie strength with the recommenders

derived in CoRec. We also formalize the propagation of tie strength over users’

latent variables.

5.2.1 Relationships with Recommenders

As a social network based recommendation method, we want to include various

types of social relations as more as possible. Besides the explicit relationships

such as User-friend, we can also find and use implicit relationships, such as the

relationship between a user and the peers who give him/her feedback. In the

CoRec method, when an active user receives a set of recommendations, he/she at
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the same time gets a list of the peers who make recommendation for this user. We

call these peers as recommenders. Now, we formalize the relationship between an

active user and the recommenders.

To define the interactive relationships between an active user and all the rec-

ommenders, we deisgn a Recommending Co-peer Graph or PCG, which can be

expanded from the concepts and notations introduced in Chapter 3 (3.2.1):

• For a user v in a CPG , a direct recommender of v is one of his/her out-

bound co-peers, who recommends certain items to v. A single item i may

be recommended by multiple recommenders. We define the set of these rec-

ommenders as Direct Recommenders (DD) for v w.r.t. item i, DDv(i) =

{u | u ∈ OT i(v) and i ∈ Ifu (v)}.

• For a user v and a recommended item i, we denote those direct and indirect

recommenders who recommend item i as Relaying Recommenders (RR) for

v w.r.t. (with regard to) i. This can be recursively defined as follows:

RRv(i) = DDv(i) ∪ (∪u∈DDv(i)RRu(i)) (5.1)

DDv(i) represents the Direct Recommenders for v w.r.t. item i

if DDv(i) = ∅, then RRv(i) = ∅

• For a user v and a direct recommender u ∈ DDv(i), as well as a recommended

item i ∈ Ifu (v), a Direct Recommending Path (DRP) between v and u w.r.t.

i is defined as a set of the requesting and responding paths between v and

u. That is, DRPu
v(i) = {⟨v, u⟩, ⟨u, v⟩}.
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• Moreover, for a user v and a recommended item i, a Combined Recommend-

ing Path (CRP) for v w.r.t. i is defined as the combination of the union of

all the DRPs between v and its direct recommenders u ∈ DDv(i) and all the

CRPs for these recommenders with regard to the item i. This is a recursive

definition, whereas if a user u does not have further direct recommenders for

item i, then the CRP for u w.r.t. i is simply an empty set:

CRPv(i) = ∪u∈DDv(i)(DRP
u
v(i) ∪ CRPu(i)) (5.2)

DDv(i) represents the Direct Recommenders for v w.r.t. item i

if DDv(i) = ∅, then CRPv(i) = ∅

• Therefore, a Recommending Co-peer Graph (RCG) of an active user v0 or

RCGv0 is defined by means of the concepts of RR and CRP as follows.

RCGv0 = (v0, V
∗, E∗, If (v0)) (5.3)

where V ∗ = ∪i∈If (v0)RRv0(i), E
∗ = ∪i∈If (v0)CRP v0(i)

The graph in Figure 5.1 illustrates an RCG for user 63, after consolidating all the

Relaying Recommenders for all the recommended items.

The above defined interaction graph RCGv0 represents the relationship between

an active user and his/her recommenders. This relationship can be used in several

ways. For instance, it can be used to re-construct a special user-item matrix, based

on the original one, in order to achieve higher quality of recommendations than
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Figure 5.1: RCG for user 63

using the original user-item matrix. Another usage is to include this relationship

in tie strength - the abstract and integrated form of social relationships among the

users in a social network. Such a tie strength can be learned through the KPMCF

method. In this thesis, we simply take the latter approach in order to focus on our

TieRec recommendation method. For this purpose, the tie strengths between the

active user v0 and all the recommenders V ∗ are denoted as a 2-dimension relation

S ∈ RM×M where M = |V ∗|+ 1.

5.2.2 Propagating Tie Strength

Provided that we have measured the tie strength among the users, the follow-

ing question is how to bring this tie strength into matrix factorization process.
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Although there are many approaches to do so, we want to take a concept of so-

cial ensemble in the proposed method. This concept closely coincides with the

principle of homophily discussed in previous chapters.

As discussed so far, a contact between similar people usually occurs at a higher

rate than those among dissimilar people, and moreover, co-peers are an important

source of influence on people’s behavior. To apply the homophily to matrix factor-

ization based social recommendation, a user’s latent features ui can be considered

as the combined effect of the latent features uk of the user’s co-peers, associating

with the corresponding tie strength sik = S(i, k), where k ∈ RCGi, RCGi is a Rec-

ommending Co-peer Graph of user i, and S ∈ RM×M represents the 2-dimension

tie strength relation among the the active user and all the recommenders.

The association between these latent feature vectors of the users can be expressed

as the following Equation 5.4:

ui =

∑
k∈RCGi

sikuk∑
k∈RCGi

sik
(5.4)

where ui and uk are the latent feature vectors of users i and k respectively; RCGi

is a Recommending Co-peer Graph of user i, and sik represents the tie strength

between users i and k, where sik = S(i, k), S ∈ RM×M ; M is the number of the

users involved in the recommendation process.
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By normalizing the tie strength matrix as to enforcing
∑

k∈RCGi
sik = 1, we get a

simplified form of the association formula of users’ latent feature vectors as follows:

ui =
∑

k∈RCGi

sikuk (5.5)

Now, the inclusion of tie strengths brings two joint probabilities affecting users’

latent variables. One is the general Gaussian distribution with a mean of zero,

and the other is the conditional distribution given the latent feature vectors of the

co-peers. these joint probabilities can be described as the following Equation 5.6:

p(U |S, σ2
U , σ

2
S) (5.6)

∝ p(U |0, σ2
U) p(U |S, σ2

S)

=
M∏
i=1

N (ui|0, σ2
U)×

M∏
i=1

N (ui|
∑

k∈RCGi

sikuk, σ
2
U)

So far, we have prepares the tie strength, the associations between users’ tie

strengths and users’ latent feature vectors. Now, we discuss the robust solution

for matrix factorization.

5.3 Robust Matrix Factorization with Tie Strength

In this section, we firstly introduce the concept of robust matrix factorization

using L1 LOSS mechanism. Then, we present the algorithms of the proposed

recommendation method, which includes tie strength in the factorization process.
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5.3.1 Robust Matrix Factorization

Probabilistic matrix factorization can be seen as a realization of Latent Variable

Models or LVM in matrix decomposition. It is based on the assumption that the

latent variables follow certain statistical distributions [12]. Based on this assump-

tion, the study by Salakhutdinov and Mnih [110] proposed a matrix factorization

model using a probabilistic approach, called PMF. In the design of PMF, it is pre-

sumed that the latent variables of the users and items follow Gaussian distribution

as follows:

• for each user, the user’s latent features are drawn from a Gaussian distribu-

tion,

• for each item, the item’s latent natures are draw from a Gaussian distribu-

tion,

• furthermore, each rating is treated as a posterior distribution over the user’s

features and item’s natures. It also follows Gaussian distribution.

Formally, let R ∈ RM×N be a rating matrix, representing the ratings given by

N users for M items. Also, let U ∈ RM×D and V ∈ RN×D stand for the latent

features of User and Item such that R ≈ UV T , where D is the dimensionality

of the latent matrices. The above presumption can be expressed by the following



Chapter 5. Robust Recommendation with Tie Strength 149

formulas:

R = U ∗ V ′ + E where E = (eij) ∈ RM×N (5.7)

p(U |σ2
U) =

M∏
i=1

N (ui|0, σ2
UI) (5.8)

p(V |σ2
V ) =

N∏
j=1

N (vj|0, σ2
V I) (5.9)

p(R|U, V, σ2
R) =

M∏
i=1

N∏
j=1

[N (rij|uiv′j, σ2
R)]

Iij (5.10)

where U ∈ RM×D and V ∈ RN×D represent the latent features of users and items

respectively, D is the dimensionality of the latent features; R ∈ RM×N is the

observed rating matrix of users over items; Iij stands for an indicator function,

that equals to one if user i has a rating for item j, otherwise it becomes zero.

Therefore, the log-posteriors of the latent features U and V can be described by an

equation associating with Frobenius norms. This can be expressed by the following

Equation 5.11:

log p(U, V |R, σ2
R, σ

2
U , σ

2
V ) (5.11)

= λR∥W ⊙ (R− U ∗ V ′)∥2F + λU∥U∥2F + λV ∥V ∥2F + C

where λR = 1
2σ2

R
, λU = 1

2σ2
U
, λV = 1

2σ2
V
; ∥.∥2F denotes the Frobenius norm; W =

(Iij) ∈ RM×N represents the availability of the observed ratings; and finally, E is

an error matrix of i.i.d. zero-mean Gaussian variables with constant variance σR.

As such, the problem of predicting users’ ratings can be solved by minimizing the

Frobenius norm of the difference (Frobenius Distance) between the rating matrix
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R and a low-rank matrix that is the product of the latent matrices U and V

(Equation 5.12):

argmin
U,V

λR∥W ⊙ (R− U ∗ V ′)∥2F + λU∥U∥2F + λV ∥V ∥2F (5.12)

where ⊙ means an entry-wise product between two matrices.

The above Equation 5.12 is a function of Least Squares Error or L2 LOSS, as its

first part is a sum of the square of the differences between the elements of R and

those of U ∗ V ′. Intuitively, because L2 LOSS squares the errors, when an error is

greater than 1, one will see a much larger error result than Least Absolute Errors

or L1 LOSS. Here, L1 LOSS is to minimize the sum of the absolute differences

between two sets of objects. If this error is caused by an outlier, a model of L2

LOSS will be adjusted to minimize this single outlier at the cost of many other

common and small errors. This is called a “Robust” issue. Owing to the L2 LOSS,

although the PMF and its variants achieved great successes, they are still sensitive

to noise, outliers and even missing entries appearing in target matrices.

There are a number of solutions for Robust matrix factorization [1, 72, 133]. In

particular, the study by Wang [133] proposed a PRMF model that brings L1

LOSS in a probabilistic approach for matrix factorization. To perform matrix

factorization under L1 LOSS, the elements eij of error matrix E in Equation can

be set as a Laplace distribution [68] with the mean of zero and the scale parameter
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as lambda:

p(eij|0, λ) =
λ

2
exp(−λ|eij|) (5.13)

where E = R− U ∗ V ′ (5.14)

By the Equation , the log-posteriors of U and V can be described by an L1 LOSS

form as follows (Equation 5.15):

p(U, V |R, λ, λU , λV ) (5.15)

∝ p(R|U, V, λ) p(U |λU) p(V |λV )

log p(U, V |R, λ, λU , λV ) (5.16)

= λ∥R− U ∗ V ′∥1 + λU∥U∥2F + λV ∥V ∥2F + C

Consequently, the problem of maximizing p(U, V |R, λ, λU , λV ) is equivalent to the

minimization of the following L1 LOSS equation (Equation 5.17):

argmin
U,V

λ∥R− U ∗ V ′∥1 + λU∥U∥2F + λV ∥V ∥2F (5.17)

Once the tie strength among the users are ready, the association between users’ tie

strengths and latent feature vectors are established, and the robust issue has been

taken into account, we are now getting in the phase of incorporating tie strength

into matrix factorization.
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5.3.2 Incorporating Tie Strength

In this subsection, we induce a set of algorithms that incorporate tie strength into

recommendation process. In the meanwhile, we realize an inference model for the

L1 LOSS based matrix factorization discussed in the previous subsection.

The aforementioned Laplace distribution makes it possible to perform L1 LOSS

based matrix factorization, however, conventional gradient methods may become

unsuitable for implementation because the L1 norm is basically non-smooth at

zero. To address this issue, a hierarchical form of Laplace distribution is a feasible

option, which was initially proposed by Lange, K. and Sinsheimer, J.S. [75]. In the

hierarchical form, a Laplace distribution is suggested to be equivalently expressed

as a scaled mixture of Gaussian variables (Equation 5.18):

L(z|µ, α2) =

∫
N (z|µ, τ)E(τ |α2)dτ (5.18)

where E(t|α2) =
α2

2
exp(−α

2t

2
)

Applying the above hierarchical form of Laplace distribution to the posteriors

of rating distribution, the equation 5.10 can be re-formulated by the following

Equation 5.19:

p(R|U, V, T ) =
M∏
i=1

N∏
j=1

N (rij|uiv′j, τij) (5.19)

where p(T |λ) =
M∏
i=1

N∏
j=1

E(τij|(
√
λ

2
)2)
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where τij ∈ T, T ∈ RM×N is named as an embedded variable in terms of the

hierarchical form of Laplace distribution.

The above Equation 5.19 is depicted in Figure 5.2, in which the bottom part shows

that a rating rij is depending on two latent feature vectors Ui and Vj, as well as

the embedded latent variable τij ∈ T following an exponential distribution.

Vσ Uσ

λ

ijτ Sσ

Figure 5.2: Graphical model of TieRec

The embedded latent variable τij can be iteratively estimated in the same Expec-

tation Maximization cycles for estimating latent feature vectors U and V . That

is,

p(T |R,U, V, λ) ∝ p(R|U, V, T ) p(T |λ) (5.20)

E[τ−1
ij |R,U, V ] =

√
λ

|rij − uiv′j|
(5.21)

where τ−1
ij ,

√
λ

|rij − uiv′j|
(5.22)

in fact τ−1
ij follows an inverse Gaussian distribution.
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Now, taking both of the embedded latent variable T and the strength matrix S

into account, the posteriors of latent variables U and V can be described by the

following Equation 5.23:

p(U, V |R, T, S, λ, λU , λV , λS) (5.23)

∝ p(R|U, V, T, λ) p(U |S, λU , λS) p(V |λV )

The model parameters U and V can be learned by using Conditional Expectation

Maximization (CEM) algorithm [58], in which U and V are updated alternatively,

with all hyper-parameters fixed and T estimated by the above Equation 5.22.

In particular, in order to update parameter V , we in the Expectation step need

to compute the expectation of the log-posterior of V w.r.t. R and T , or the lower

bounding function Q(V ) as follows:

Q(V ) = ET [log p(V |R, T, U, λ, λV )] (5.24)

Applying Bayes rule to the above Q(V ) Equation, we get the following Equation

5.25:

p(V |R, T, U, λ, λV ) (5.25)

∝ p(R|U, V, T, λ) p(V |λV )

=
M∏
i=1

N∏
j=1

N (rij|uiv′j, τij)×
N∏
j=1

N (vj|0, λV I)
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The log form of the above Equation 5.25 can be expressed as follows (Equation

5.26):

log p(V |R, T, U, λ, λV ) (5.26)

= log p(R|U, V, T, λ) + log p(V |λV )

= −1

2

M∑
i=1

N∑
j=1

(τ−1
ij (rij − uiv

′
j)

2)− λV
2

N∑
j=1

vjv
′
j + C

where U in this formula remains a fixed value; and C is a constant independent

of other variables.

In the Maximization step, we maximize Q(V ) function by setting the partial

derivative of the function to zero w.r.t. vj for all the j = 1, · · · , N . Let Ω = (⟨τ−1
ij ⟩)

where ⟨τ−1
ij ⟩ =

√
λ

|rij−uiv′j |
, we get the following increment formula (Equation 5.27):

∆vj =
∂Q(V )

∂vj
(5.27)

= (U ′diag(ω:j)U + λV I)
−1 U ′diag(ω:j)r:j + λV vj

where ω:j and r:j are the jth columns of Ω and R respectively.

Then, we update the parameter V by adding the increment value ∆V for all vj:

vj = vj + ηv∆vj, j = 1, · · · , N (5.28)

where ηv is a parameter of learning-rate for parameter V .

The Expectation Maximization process for U is similar to that of V , except that it
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has an additional part of strength propagation (Equation 5.6). The lower bounding

function Q(U) is expressed as follows, representing the expectation of the log-

posterior of U w.r.t. R and T :

Q(U) = ET [log p(U |R, T, V, S, λ, λU , λS)] (5.29)

Consequently, the posterior of U can be expanded as the following Equation 5.30:

p(U |R, T, V, S, λ, λU , λS) (5.30)

∝ p(R|U, V, T, λ) p(U |0, λU) p(U |S, λS)

=
M∏
i=1

N∏
j=1

N (rij|uiv′j, τij)×
M∏
i=1

N (ui|0, λU)×
M∏
i=1

N (ui|
∑

k∈RCGi

sikuk, λS)

The log form of the above Equation 5.30 is shown as follows (Equation 5.31):

log p(U |R, T, V, S, λ, λU , λS) (5.31)

= log p(R|U, V, T, λ) + log p(U |0, λU) + log p(U |S, λS)

= −1

2

M∑
i=1

N∑
j=1

(τ−1
ij (rij − uiv

′
j)

2)− λU

M∑
i=1

uiu
′
i

− λS

M∑
i=1

((ui −
∑

k∈RCGi

sikuk)
T (ui −

∑
k∈RCGi

sikuk)) + C

where V in this formula means a fixed variable; and C is a constant independent

of other variables.
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Using the Ω = (⟨τ−1
ij ⟩) defined in Equation 5.27, the maximization of Q(V ) func-

tion for each ui can be achieved by the following Equation 5.32:

∆ui =
∂Q(U)

∂ui
(5.32)

= (V ′diag(ωi)V + λUI)
−1V ′diag(ωi)ri + λUui

+ λS(ui −
∑

k∈RCGi

sikuk)− λS
∑

k∈RCGi

sik(uk −
∑

l∈RCGk

sklul)

= (V ′diag(ωi)V + λUI)
−1V ′diag(ωi)ri + ζUui

+ 2 λS
∑

k∈RCGi

sikuk + λS
∑

k∈RCGi

sik
∑

l∈RCGk

sklul

where ζU = −(λU + λS); ωi and ri are the ith rows of Ω and R respectively.

In the above Equation 5.32, the last item (λS
∑

k∈RCGi
sik

∑
l∈RCGk

sklul) repre-

sents the impact of the strength propagation over the co-peers of the direct rec-

ommenders for an active user. Observed that this item hardly affect the recom-

mendation performance of the proposed method, we took off this item by using

the following simplified form (Equation 5.33) in experiments.

∆ui =
∂Q(U)

∂ui
(5.33)

= (V ′diag(ωi:)V + λUI)
−1V ′diag(ωi)ri + 2λS

∑
k∈RCGi

sikuk + ζUui

And finally, we update the parameter U by adding the increment value ∆U for all

ui:

ui = ui + ηu∆ui, i = 1, · · · ,M (5.34)
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where ηu is a parameter of learning-rate for parameter U .

The above Equations 5.27, 5.28, 5.33 and 5.34 are then used to estimate the latent

matrices U and V , which are further multiplied for predict the “missing ratings” in

the target matrix R. In the following two sections, we will show the experiments

of the proposed TieRec method on three aspects: the performance of TieRec

method comparing with other MFSR methods, the impact of Tie Strength, and

the feasibility of directly exploiting tie strength in other MFSR methods.

5.4 Experiment Settings

In this section, we describe the experiment settings, including experimental datasets,

comparing methods and evaluation metrics.

5.4.1 Data Preparation

Two datasets are used in the experiments. One is derived from Flickr-PASCAL,

and the other from Epinions.com. The Flickr-PASCAL data is sourced from the

study by McAuley and Leskovec [87], outlined in Table . The second dataset used

in the experiment is Epinions, described in Table 5.2. This dataset is provided by

the studies by Konstas [66].

Table 5.1: Flickr-PASCAL data source and relations

Flickr Photos Users Groups Tags Locations Label Friends
Source 10,189 8,698 6,951 27,250 1,222 50 N/A

Relations 1,324 562 654 62 42 1324
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Table 5.2: Epinions.com dataset

Source user items ratings items/user friends/user tags
Epinions.com 40,163 139,738 664,823 16.5 14.3 NA

From the Flickr-PASCAL data source, we extract six relationships for experiments:

User-group, User-Country, User-Label, User-Friend, Co-Tag and Co-Label. For

the Epinions.com data source, The values of User-Friend relationship is directly

taken from the Trust table in the data source. For Epinions.com, we generate

User-Rating and User-Friend relationships. Using these relationships, we calculate

the corresponding tie strengths of the users by employing the KPMCF method

proposed in previous chapter (Chapter 4). The derived tables and tie strengths are

called Flickr3 and Epinions3 datasets respectively for the experiments of TieRec.

The recommendation task of Flickr3 dataset is to suggest interesting groups for

a new user or a user want to join a new group in the photo-sharing web service

Flickr 1, where users are mostly joining several interesting groups such as groups

of movies, dancing, outdoor, etc. Likewise, the recommendation task of Epinions3

is to recommend products for review. Epinions.com is such a web site, on which

users are encouraged to post reviews on any products for sharing with others 2.

In Epinions.com, users are able to assign other people as “trust” relationship in

terms of their reviews.

1http://www.flickr.com/
2http://www.epinions.com/
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5.4.2 Methods for Comparison

In the experiments, we employ threeMFSR methods for evaluation: SoRec, KPMF

and SR2. A common feature of these methods is that all methods exploit social

information in the factorization process. Nevertheless, these three methods rep-

resent three different approaches of MFSR methods. SoRec takes a Collective

Matrix Factorization (CMF) approach to factorize two target matrices: one is

rating matrix and the other social network matrix. KPMF assign kernels as the

priors to the latent variables, the kernels are learned from users’ interactions. and

SR2 employs regularization techniques in factorization process, in which the so-

cial relationships is constrained in regularization terms of the objective function

of matrix factorization.

SoRec

Although not explicitly declared, the SoRec model proposed by Ma et al. [83]

employs a Collective Matrix Factorization (CMF) approach. The SoRec simul-

taneously factorizes two target matrices, User − Item(R) and User − User(C).

The User entity is jointly participating with both of the two target matrices. The

matrix (C) is called a “social network matrix”, of which each entry c∗ik represents

a combination of local authority and hub values on top of the trust value between

user i and user k. The c∗ik is defined as follows:

c∗ik =

√
d−(k)

d+(i) + d−(k)
× cik (5.35)
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where d+(i) represents the out-degree of user i, while d−(k) indicates the in-degree

of user k; and, cik is a confidence of trust value, provided that it is explicitly stated

by user i with respect to user k.

To take the “social network matrix” (c∗ik) into account, the objective function of

SoRec can be described as follows:

L(R,C, U, V, Z) = 1

2

∑∑
IRij (rij − g(uTi vj))

2 (5.36)

+
λC
2

∑∑
ICik(c

∗
ik − g(UT

i Zk))
2 +

λU
2
||U ||2 + λV

2
||V ||2 + λZ

2
||Z||2

where c∗ik =

√
d−(vk)

d+(vi) + d−(vk)
× cik

where R and C are user-rating and social network matrices respectively; U , V and

Z the corresponding latent matrices of User, Item and Social-factor respectively;

d+(vi) represents the out-degree of node vi, while d
−(vk) indicates the in-degree

of node vk.

KPMF

As kernel methods [55, 114] can be effectively measure the similarities between the

nodes in graphs, the KPMF model of Zhou et al. [148] leverages kernel methods to

incorporate the social graph in the matrix factorization. In particular, the KPMF

model set the kernel of users’ interactions as the priors of latent variables. Owing

to the nature of kernel learning, KPMF is claimed to be especially useful when

dealing with users’ interaction information.
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The objective function of KPMF can be expressed as follows:

E =
1

2σ2

N∑
i=1

M∑
j=1

I(i, j)(rij − ui:v
T
j:)

2 (5.37)

+
1

2

D∑
d=1

uT:dK
−1
U u:d +

1

2

nd∑
d=1

vT:dK
−1
V v:d

where rij is an element of the target matrix R; ui: and vj: are row vectors of the

latent matrices U and V ; u:d and v:d represent column vectors of U and V ; and

KU and KV are the kernel matrices of users and items respectively. In particular,

KU is learned from the users’ interactions through a Regularized Laplacian kernel

[122]. As claimed in the study of [148], such a kernel KU allows latent variables

to be affected by the underlying covariances among users.

SR2

The study by Ma et al. [84] presents a different way of incorporating social infor-

mation in the recommendation methods. Instead of co-factorizing two matrices

(such as SoRec) or setting specific priors to latent variables (such as KPMF ), SR2

exploits social network information by embedding the information in regularization

terms so as to directly constrain the objective function of factorization.

In particular, this study proposed a variety of algorithms: SR1vss, SR1pcc, SR2vss

and SR2pcc by using different regularized schemes and distinct similarities. Of the

variants, it was reported that SR2pcc achieved the best performance. The SR2pcc

is used in our evaluation, simply called as SR2.
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In the SR2 methods, the Friendship among users is employed to regularize the Ob-

jective Function. The algorithm SR2pcc is an individual-based regularization with

Pearson Correlation Coefficient (PCC). The objective function can be expressed

as follows:

L(R,U, V ) =
1

2

M∑
i=1

N∑
j=1

Iij(rij − uTi vj)
2 (5.38)

+
β

2

M∑
i=1

∑
f∈F+(i)

simif ||ui − uf ||2 + λ1||U ||2 + λ2||V ||2

where simif =

∑
j(rij − ri)(rfj − rf )√

(rij − ri)2
√
(rfj − rf )2

(5.39)

where rij is an element of the target matrix R; ui and vj are row vectors of

the latent matrices U and V ; Iij is an indicator function; F+(i) stands for the

set of outlink friends of user i; simif is the general definition of PCC, in which

j ∈ T (i) ∩ T (f); and T (u) represents the items rated by the user u.

5.4.3 Evaluation Metrics

Two metrics are used in the evaluation during the experiments: Root Mean Squared

Error or RMSE and Precision-versus-Recall Curve or PRC. The following two

subsections outline these metrics.

Root Mean Squared Error - RMSE

Root Mean Squared Error (RMSE) is used to evaluate the accuracy performance of

information retrieval algorithms, including recommendation methods. Intuitively,
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the RMSE measures how much of the differences between the original dataset and

the predicted one. A special feature of RMSE is that it varies with the variability

within the distribution of error magnitudes. In another word, the bigger the error

values between the two datasets, the greater the penalization on the RMSE result.

The following Equation 5.40 is the formula of RMSE :

RMSE =

√∑N
i=1(ri − r̂i)2

N
(5.40)

where ri denotes the ground-truth rating value given by a user, r̂i denotes its

predicted value made by a recommendation method, and N is the total number

of the ratings being predicted.

Precision-versus-Recall Curve - PRC

In the evaluation, we also employ Precision-versus-Recall Curve (PRC) as an im-

portant metric to measure the robustness of evaluation methods. Here Precision

is defined as the fraction of the retrieved relevant items in the answer set, whereas

Recall is the fraction of the retrieved relevant items of the whole set of the relevant

items [10]. The formula of Precision-versus-Recall Curve is described as follows

(Equation 5.41):
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Precision =
|Ra|
|A|

Recall =
|Ra|
|R|

(5.41)

and Average PRC : P (r) =
Nu∑
u=1

Np∑
p=1

P u
p (r)

Np

where A stands for the set of retrieved items, R for the whole relevant items, and

Ra for the intersection of A and R (retrieved relevant items). Furthermore, P u
p (r)

is the precision at recall level r for the p-th experiments for user u; Np and Nu

are the numbers of the experiments and the users respectively. As such, P (r)

represents the Average PRC value at recall level r in all Np experiments and for

all Nu users.

To obtain consistent evaluation results for all the methods, we initialized all the

latent matrices by an ordinary SVD decomposition. All the metrics were measured

by the average values of the corresponding evaluation task, and each task ran for

50-100 times based on independently-generated random conditions.

In terms of the hyper-parameters, we set the dimensionality of the latent features

to 10 for all the methods over all the datasets. For TieRec method, we set σV to 1

for both datasets, set σ to 1 for Flickr3 dataset and 10 for the Epinions3 dataset.

For other methods being compared (SoRec, KPMF and SR2 ), we set the hyper-

parameters to be optimized according to the corresponding studies [83, 84, 148].
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5.5 Evaluation

In the experiments, we focus on the robustness of matrix factorization and im-

pact of tie strength to recommendation methods. We conduct three evaluation

cases. The first case compares the TieRec method with other start-of-the-art Ma-

trix Factorization based Social Recommendation (MFSR) methods. The second

evaluation case investigates the impact of different levels of tie strength to TieRec

over the same datasets. The last case studies the feasibility of directly using tie

strength as side information in existing MFSR methods.

5.5.1 Evaluation with MFSR Methods

The comparison of TieRec with other MFSR methods is shown in Figures 5.3

and 5.4 for PRC, as well as in Table 5.3 for RMSE. The MFSR methods being

compared include KPMF, SoRec and SR2.
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Table 5.3: RMSE: Comparison with MFSR methods

Dataset \ Methods TieRec KPMF SoRec SR2
Flickr3 0.098437 0.10001 0.10363 0.09958

Epinions3 0.22128 0.23203 0.25336 0.21864
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As shown in Figures 5.3 and 5.4, the PRC measures of TieRec are far superior to

other MFSR methods for both datasets Flickr3 and Epinions3, especially in the

first 0% to 30% recall levels in both figures. In Figures 5.3 for Flickr3 dataset, the

Precision values of TieRec are about five times higher than those of KPMF and

SR2, and about 30% higher than that of SoRec, at all the first 20% recall levels.

The Precision values of TieRec stay higher than others until 30% recall level, and

then merge with the other methods after 60% recall level. Figure 5.4 shows a same

pattern as that of Figure 5.3 for the PRC over Epinions3 dataset, except that all

the PRC start to merge from 40% recall level.

Comparing the RMSE values of all the methods in Table 5.3, we can see that,

TieRec is leading all other methods for both datasets (0.098437 for Flickr3 and

0.22128 for Epinions3 ), except for SR2 method on Epinions3 dataset (0.21864).

The above results show that the proposed TieRec method not only recommends

more relevant items than other MFSR methods, but also provides higher relevance

than others. The higher RMSE values can be considered as the contribution of

the integration nature of tie strength, which helps to find other peers with high

homophily in a social network. The superior PRC performance of TieRec demon-

strates that the robust factorization mechanism embedded in TieRec achieves bet-

ter relevance than other MFSR methods.
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5.5.2 Impact of Tie Strengths

We investigate the impact of tie strength to the TieRec method at different

strength levels. To this end, we run the experiments for TieRec method at three

levels: High, Medium and Low. When applying “High” strength level to recom-

mendation tasks, we select those users, of whom the strength values were higher

than 70% of the whole range. Accordingly, the “Medium” level was between 30%

and 70%, and the “Low” level was lower than 30%.

Figures 5.5 and 5.6 show that the PRC curves of both High and Medium strength

levels outperform those of Lowstrength level for all datasets. For both datasets,

the PRC curves of High strength level start about two or three times higher than

those of Low strength level. In particular, the PRC curve of of High strength

level remains higher than that of Low strength level until the recall level reaches

60% for Flickr3 dataset, until 30% for Epinions3 dataset. In the meanwhile, all

the PRC curves of Medium strength level perform very close with those of High

strength level.

The corresponding RMSE values are shown in Table 5.4. The RMSE values of

High strength level are the lowest for both datasets, while those of the Low strength

level perform the worst (0.09666 against 0.097909 for Flickr3, and 0.21084 against

0.25104 for Epinions3 ). This phenomenon coincides with the PRC curves in Fig-

ures 5.5 and 5.6. This observation indicates that the users with strong tie strengths

will mostly contribute more relevant and more accurate recommendations.
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Table 5.4: RMSE: Impact of tie strength

Dataset \ Strength level High Medium Low
Flickr3 0.09666 0.097723 0.097909

Epinions3 0.21084 0.25090 0.25104

5.5.3 Tie Strength as Side Information

In the experiments, we also study the feasibility of directly using tie strength as

side information in existingMFSR methods, We conduct a series of experiments for

KPMF, SoRec and SR2 method. In the evaluation, we run each method on three

conditions. The first condition is using tie strength at High strength level. The

second condition is at Low strength level. The last condition is running a method

using general social relationships (“Friend” in Flickr3 and “Trust” in Epinions3 ).

These three conditions are denoted as “High”, “Low” and “No” respectively.
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Figure 5.10:
Epinions3-KPMF
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Figure 5.11:
Epinions3-SoRec
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Epinions3-SR2

Table 5.5: RMSE: Tie strength as side information

Dataset \ Method High Low No
Flickr3
KPMF 0.10087 0.10184 0.10001
SoRec 0.096926 0.11452 0.10363
SR2 0.097707 0.10361 0.09958

Epinions3
KPMF 0.22454 0.23619 0.23203
SoRec 0.24195 0.25062 0.25336
SR2 0.20958 0.2188 0.21864

Figures 5.7, 5.8 and 5.9 show the results of the evaluation for Flickr3 dataset,

while Figures 5.10, 5.11 and 5.12 for Epinions dataset. As shown in these figures,

on the whole, the PRC curves using High strength level of tie strength are higher

than those using primary social relationship at most recall levels, except that of

Flickr3-SR2. However, look at the PRC of Flickr3-SR2, the PRC curve of “High”

is about two times higher than that of ’No’ until the recall level of 10%. This

observation confirms that the tie strength learned from KPMCF method does

reflect the users’ overall attitudes towards other peers in a social network. These

tie strengths are helpful for making recommendations.

It is interesting to note that, in most cases except for Flickr3-KPMF, the PRC

curves using “Low” strength level of tie strength perform the same or even worse

than those of “No”. This also demonstrates that the tie strength values are very
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sensitive in applications. A “Low” level of tie strength reflects a weak relationship

between two persons. In the applications of recommendation, such a relationship

may play a downgrade role. This observation motivates us to further investigate

the applicability of the tie strengths for various applications.

The RMSE values for all evaluation cases are shown in Table 5.5. All in all, the

trends of these RMSE values coincide with the PRC curves in above figures. That

is, the RMSE values derived from the methods using High strength level of tie

strength mostly stay at the leading positions, except that of Flickr3-KPMF. In

the meantime, most of the RMSE values of “Low” level are slightly worse than

those of “No”.

5.6 Comparison and Summary

In this section, we sum up our proposed TieRec method by comparing it with

other Matrix Factorization based Social Recommendation or MFSR methods.

A common approach taken by MFSR methods is to treat social connections and

relationships as side information along with the user-item rating matrix [137].

From technology perspective,MFSR methods can be categorized into three groups:

Social Ensemble [57, 82, 84, 102, 138], Kernelized Matrix Factorization [4, 148],

and Collective Matrix Factorization [35, 78, 83, 118, 119, 139].

A common rationality held by the studies of Social Ensemble is that, a user’s

observed ratings represent the preferences of not only the user’s own but also of

his/her friends. For this reason, the study by Ma et al. [82] models the distribution
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of a user’s observed ratings conditioned on a linear combination of the favors of all

the friends of the user. Based on the same idea, the study by Jamali and Ester [57]

takes trust propagation into account, and the study of Yang et al. [138] makes use

of “Trust Circles”. Our experiments have demonstrated that, the SR2 proposed

by Ma et al. [84] exhibits quite higher accuracy measures (RMSE ) than other

methods. However, it shows lower relevance in terms of PRC measures.

Collective Matrix Factorization (CMF), or Matrix Co-Factorization in certain lit-

erature, has received great attention in last few years. Especially, the studies of

[35, 56, 78, 83, 119, 139] contribute to MFSR methods. The basic idea of CMF is

the multiple latent features will be twistingly affected by each other when being

simultaneously factorized. As shown in experiments, in comparison with other

MFSR methods, the SoRec method proposed by Ma et al. [83] demonstrates out-

standing relevance of PRC values but disappointing accuracy of RMSE measures.

Certain recent studies employ kernel techniques in matrix factorization to improve

recommendation qualities. For example, the PMA model proposed by Adams et

al. [2] and the KPMF in the study by Zhou et al. [148]. A common approach

of these kernelized methods is to assign kernels to the priors of latent variables.

This should be a promising approach to incorporate users’ social information in

recommendation process. Unfortunately, in the experiments of KPMF, we find

that the KPMF model always stays at the middle positions in all the evaluation

cases for either accuracy and relevance measures.
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In comparison with the aforementioned MFSR methods, the experiments demon-

strate that the proposed TieRec method achieves superior accuracy of RMSE mea-

sures to nearly all other methods in all but one evaluation cases, in the meantime

it also leads far higher relevance of PRC than all other methods in all cases.

There are a number of solutions for robust matrix factorization [1, 72, 133]. The

TieRec method is partially motivated by the PRMF model in the study of Wang

et al. [133], which uses L1 LOSS to perform a probabilistic matrix factorization.

While PRMF is a general matrix factorization on single target matrix, the TieRec

method incorporates users’ tie strengths in the factorization process. Because

PRMF and TieRec work on different datasets, it is difficult to directly compare

the performance of them.

It is worth noting that, although the TieRec method incorporates tie strength into

recommendation by employing social ensemble approach, the tie strength used in

the method is a static measurement. As defined in section 5.2.2 and 5.3.2, the

matrix S ∈ RM×M does represent the tie strengths among the users in question.

However, such a relation represents the tie strength only during a particular time

frame, but it does not include the dynamic features of tie strength where the social

information are evolving over time. We will improve this issue in our future work.

Recapping the discussion in this chapter, we develop a matrix factorization method

for social recommendation, that incorporates users’ tie strength into factorization

process. In the meanwhile, the TieRec method employs L1 LOSS technique to

increase the robustness of the method. We have conducted comprehensive exper-

iments by using real datasets from popular social media services. The evaluation
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demonstrates the TieRec outperforms other state-of-the-art MFSR methods. The

experiments also prove that tie strength does make significant impact to the rec-

ommendation qualities of MFSR methods.



Chapter 6

Conclusion and Future Work

6.1 Concluding Remarks

In this thesis, we propose a peer-based social relationship enhanced recommen-

dation model, which especially fits in the situations where users are looking for

recommendations from their peers through social circles.

Firstly, a Regression-based filtering method, named as CoRec, is designed to en-

sure that all the co-peers in a neighborhood participate in the recommendation

processes by propagating requests and responses. This filtering method produces

a twofold result. On one hand, the feedback from the peers can be considered as

an initial recommendation to be directly accepted or to be further refined. On the

other hand, the filtering method forms a reasonably small-sized neighborhood for

each active user, of which all the co-peers are have great overlap with the user.
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The information of these co-peers can also be used in other applications such as

social relationship analysis.

Also, a probabilistic method is developed to measure the tie strengths among the

users in a social network. The proposed method, named as KPMCF, employs Col-

lective Matrix Factorization and Kernel Learning techniques to simultaneously

capture users’ profile characteristics and social interaction behaviors. This mea-

suring method has three advantageous features: (i) Tie strength is measured by

making use of latent features, which are learned from users’ demographic and so-

cial interaction information; (ii) The learning process utilizes Collective Matrix

Factorization to deal with the diverse forms of various relationships; (iii) Users’

interaction information is captured by Kernel Learning techniques.

Utilizing the achievement in the above methods, we develop a robust matrix fac-

torization method TieRec, that incorporates tie strength into recommendation

process. The research proceeds in two directions: one is to explore the techniques

of incorporating tie strength in matrix factorization process, and the other is to

develop the mechanism of robust matrix factorization.

Our proposed Peer-based Social Relationship Enhanced Recommendation Model

consists of three parts: CoRec, KPMCF and TieRec. These three parts can either

work collaboratively to form an integrated solution, or be used independently in

individual applications.

We have conducted comprehensive experiment and evaluation for all the methods

of our model. Our experiments use the real datasets from popular social media
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services Last.fm, Epinions.com and Flickr. The recommendation methods being

compared include two popular rating-based CF methods, i.e., Pearson CF and

Slope One, and three state-of-the-artMFSR methods, i.e., SoRec, SR2 and KPMF.

The experiments show that, the proposed model outperforms all other methods

in nearly all evaluation cases in terms of widely accepted metrics: Mean Abso-

lute Error (MAE), Root Mean Squared Error (RMSE) and Precision-versus-Recall

Curve (PRC). The experiments also reveal that tie strengths do make significant

contributions to recommendation qualities. Generally speaking, the stronger the

tie strengths among users, the more accurate and relevant the recommendation

results.

6.2 Future Work

The proposed recommendation model addresses the issues of making personalized

recommendations, in the conditions where people are seeking for recommendations

through social circles. The study of this thesis also raises a number of questions

or issues for further work.

First, the concept of Common-Interested-Items (CII) helps to construct dynamic

and reasonably small-sized neighborhoods. The current definition of CII makes

use of users’ ratings only. The subsequent question is: how shall we include other

explicit or implicit social information in the definition of CII, for instance, Tags

or Trustworthiness ?
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Next, the proposed KPMCF method uses collective matrix factorization tech-

niques to measure users’ tie strength, that involves not only users’ comprehensive

information but also a number of parameters and hyper-parameters. To improve

the quality of learning process, parameter-optimization becomes a key. A number

of studies have been reported to address this issue for instance Bayesian Inference

[97, 109]. Applying parameter-optimization methods to the proposed model has

been listed in our to-do list.

Furthermore, as social networking has become one of the most active parts of our

real life, the study on tie strength needs to challenge the dynamic social relation-

ships where people’s connections and interactions are evolving over time. In order

to support the temporal features of tie strength, we will study the incorporation of

the real-time evolution of tie strength into recommender systems and other various

applications.

Besides the above issues, our experiments have indicated that different combina-

tions of the profile and interaction relationships resulted in varied recommendation

results. It will be a challenging task to quantitatively and qualitatively analyze

the relationships between tie strength and various social factors in the context of

social recommendations.

On the whole, the research of this thesis employs a variety of state-of-the-art

techniques. All of them are well-established, and are continuously and actively

deploying in a wide range of research fields. Following up these techniques and

exploring new study topics are within our long-term research interests.



Appendix A

Evaluation System

During the research work for this thesis, we developed an evaluation system for ex-

periment and evaluation, especially for evaluating the impacts and benefits brought

by tie strength. The system is constructed in MatLab environment 1 with Mon-

goDB database 2. The evaluation system, named as EvTie was originally used

for setting parameters when learning tie strength, and later on evolved into a sys-

tematic tool with comprehensive functionality such as accessing the database for

retrieving raw data, learning tie strength from multiple relations, generating rec-

ommendations for selected state-of-the-art algorithms, evaluating algorithm per-

formance, showing graphic plots for various metrics, reviewing the statistics of raw

data, and so on.

Owing to its rich functions, the EvTie system can be used for not only internal

experiment and evaluation but also for further development for public use. This

1http://www.mathworks.com.au/products/matlab/, last access on 17/03/2014
2https://www.mongodb.org/, last access on 17/03/2014
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appendix provides the readers with highlights of the system, including a system

overview, system modules, graphic user interfaces, and various evaluation scenar-

ios. Interested readers can contact the author of the thesis for further details.

A.1 System Overview

A.1.1 Main Modules

Figure A.1 shows the main modules of the EvTie system.

Figure A.1: Main Modules of evaluation system

As shown, the evaluation system is constructed in MatLab environment and with a

MongoDB database, and several openly published MatLab and MongoDB related

programs 3. The main modules include:

3We are grateful to the corresponding authors of the following MatLab and MongoDB related
programs, which are either partially or totally used in the system: (a) Mongo-MatLab-Driver,
(b) prec rec, (c) colAUC, (d) octave pdist, (e) simpletab, (f) RoboMongo.
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• Data access - Accessing raw data and retrieving recommendation and eval-

uation results;

• KPMCF - Learning tie strength from multiple relations;

• TieRec - making recommendation using Tie Strength;

• MF Methods - Implementation of selected social recommendation methods:

PMF, SoRec, KPMF and SR2;

• Evaluation Metrics - Evaluating metrics, including PRC, ROC, MAE and

RMSE;

• GUI - Interactive graphic user interfaces built up on top of GUIDE (GUI

Builder);

• Drawing - Tools to draw PRC and ROC curves, with MAE/RMSE tables in

plots.

A.1.2 Functionality

“MATLAB c⃝ is a high-level language and interactive environment for numerical

computation, visualization, and programming. Using MatLab, you can analyze

data, develop algorithms, and create models and applications. The language, tools,

and built-in mathematical functions enable you to explore multiple approaches

and reach a solution faster than with spreadsheets or traditional programming

languages, such as C/C++ or JavaTM”

(quoted from http://www.mathworks.com.au/products/matlab/).



Appendix A. Evaluation System 182

Nearly all the codes are written by MatLab, with the relevant toolboxes such as

Statistics Toolbox and GUIDE (GUI Builder). The main functionality of the EvTie

system is listed in Table A.1.

Table A.1: Functionality of evaluation system

MODULE FUNCTIONALITY FUNCTIONALITY
Learning Tie Strength

Settings
Select dataset
Select entities
Select parameters

Learn tie strength
Recommend by TieRec

Recommend Other Methods
Settings

Select dataset
Select entities
Select parameters

Recommend by MF
PMF
SoRec
KPMF
SR2

Evaluation
Settings

Select MF methods
Select dataset
Select entities
Select parameters

Evaluation TieRec
Evaluation MF

PMF
SoRec
KPMF
SR2

Evaluation metrics
PRC
ROC
MAE
RMSE

Database Access
Save raw data
Retrieve raw data
Save recommendations
Retrieve recommendations
Save evaluation
Retrieve evaluation

Drawing
PRC
ROC
MAE/RMSE Table

Utilities
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A.1.3 Database

MongoDB is one of the popular NoSql database [52, 90, 130], which is “an open-

source document database that provides high performance, high availability, and

automatic scaling”

(quoted from https://www.mongodb.org/).

There were several reasons why we selected MongoDB for persistent data store in

our research, and especially for the EvTie system. First, because MongoDB is a

NoSql database, there is no need to define a schema before accessing data. Using

this feature, we are able to easily change the data formats for research purpose;

for instance, the evaluation data with gradually added metrics values.

Second, we can access MongoDB by directly using MatLab variables - especially

vectors and matrices, as if we were using the cache of the MatLab environment.

And finally, the data we were dealing with did not have complex inter-relations.

Therefore, no complicated aggregation is needed. In a word, MongoDB brings us

a simple and efficient way to handle persistent data.

In MongoDB, the database is organized according to the following rules:

• A database holds collections;

• A collection holds documents;

• A document is a set of fields;

• A field is a Key-Value pair;
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• A Key is a name of string, and a Value is either a basic type value, or a

document, or an array of values.

Table A.2 outlines the data store information of EvTie down to the level of docu-

ment ; the details of the fields are basically omitted.

Table A.2: Data store for evaluation system

DATABASE COLLECTION DOCUMENT (FIELDS)
Data

flickr
prof group
prof location
prof label
prof tag
user friend
co tag
co label
co group

epinions
user rating
usertrust

lastfm
prof track
prof tag
user friend
co tag

Evaluation
prc mf

prc xml
prc wt

prc xml
roc

roc xml
params

strength default
strength previous
recommend default
recommend previous

A.2 Graphic User Interface

To develop a successful algorithm, the development tasks involve four aspects: (i)

the program of the algorithm; (ii) the various combinations of the parameters; (iii)
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the various datasets to be tested and evaluated; and (iv) the visual presentation

of the metrics measurement (some metrics such as MAE and RMSE do not need

visual illustration, however, other metrics such as PRC and ROC do need them).

It is the graphic user interface which integrates all these four aspects in one place,

in an interactive fashion. In this evaluation system, all the graphic user interfaces

are grouped into two windows: Learning and Evaluation, which will be discussed

in the following two subsections.

A.2.1 Learning Parameters

The first part of the GUI is to learn tie strength and to make recommendation by

various methods. The Learning window can be further divided into four groups:

Dashboard, KPMCF, TieRec and MF Methods.

Dashboard

There are three dashboards, each representing a type of functionality. The dash-

boards are presented to the user by clicking the corresponding TAB. As the names

indicate, the KPMCF dashboard (Figure A.2) includes the functions of learning

tie strength by using the KPMCF method, the MF Methods (Figure A.3) helps

to make recommendations from select matrix factorization (MF ) methods, and

finally the Data Analysis (Figure A.4) is used to analyze the statistical character-

istics of the datasets to be tested.
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Figure A.5 is a pop-up view, used to adjust the parameters used in corresponding

conditions. Every change in the parameters will be saved in the database in order

to be used in subsequent executions.

Figure A.2: Learn tie
strength

Figure A.3: Recommend by
matrix factorization methods

Figure A.4: Data analysis
Figure A.5: Parameters for

learning method

KPMCF

From the above KPMCF dashboard (Figure A.2), the tie strength can be inferred

according to special settings in the dashboard. The kpmcf-app (Figure A.6) win-

dow is a start point to apply tie strength to various applications. In the kpmcf-app

window, the left-hand image is a list of the learned tie strength, and the right-

hand image shows a number of action buttons. If the Graph button is selected,
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then a network graph of the tie strength among all the users will be shown in a

pop-up window (Figure A.7). In the network graph window, the strength level

can be changed by a slice bar, and different evaluation results appear. In this

evaluation system, four evaluation metrics are implemented: PRC (section 3.4.3),

ROC (section 4.5.2), and MAE and RMSE (section 3.4.3).

Figure A.6: KPMCF-APP Figure A.7: KPMCF-Graph

TieRec

Figures A.8 and A.9 show the performance measurement for applying multiple

metrics to the recommendations made by TieRec, which incorporates the learned

tie strength in the matrix factorization. In particular, Figure A.8 shows the met-

rics values of PRC and RMSE, and Figure A.8 shows that of ROC. It is the

visual performance measurement which helps us to investigate and improve our

algorithms.
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Figure A.8: TieRec-PRC Figure A.9: TieRec-ROC

MF Methods

Similar to the above two figures, Figures A.10 and A.11 are the performance

measurements for applying metrics to other MF methods. Used as two examples,

Figure A.10 shows the PRC and RMSE values for the recommendations made by

SoRec, and Figure A.11 shows ROC for those by KPMF.

Figure A.10: SoRec-PRC Figure A.11: KPMF-ROC

A.2.2 Evaluation

While the Learning part of the GUI basically works for a single execution of the

algorithms under a specific condition, the second part of the GUI is used to evaluate

the performance of the algorithms by analyzing the experiment data stored in the



Appendix A. Evaluation System 189

database. The experiment data can be accumulated execution multiples in the

tens or hundreds. The evaluation can also be done in a headless fashion (refer to

headless functions in section A.3.2).

Dashboard

In this part, we provide three types of evaluations: evaluating tie strength against

various collaborative relationships (Figure A.12); investigating the insight of the

TieRec with various settings (Figure A.13); and comparing TieRec with certain

state-of-the-art MF methods (PMF, Sorec, KPMF, SR2 ) under various conditions

(Figure A.14).

Figure A.12: Evaluate Tie
Strength

Figure A.13: Insight of
TieRec

Insight

Figure A.15 and Figure A.16 show the impact of tie strength on the recommenda-

tions by TieRec at different strength levels, for PRC and ROC measures respec-

tively. That helps us to acquire a comprehensive insight into the TieRec model.
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Figure A.14: Evaluate matrix factorization methods

As the figures show, all the PRC curves, MAE and RMSE values are listed in the

figure window.

Figure A.15: Insight - PRC Figure A.16: Insight - ROC

Comparison

Figures A.17 and A.18 show the comparison between TieRec and other MF meth-

ods, by applying the same datasets to these methods. Figure A.17 illustrates four

PRC curves for corresponding methods on the Flickr3 data set, with a training-

validation-rate of 70-30% and strength level of 3/4. And, Figure A.18 shows ROC
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curves on the same Flickr3 dataset, but with a training-validation-rate of 80-20%

and strength level of 3/4.

Figure A.17: PRC - matrix
factorization Methods

Figure A.18: ROC - matrix
factorization Methods

A.3 Key Functions

A.3.1 Algorithm Related Functions

The core part of the evaluation system is a variety of algorithms to learn tie

strength and to make recommendation by various algorithms. In particular, these

algorithms include KPMCF (Chapter 4), SoRec [83], KPMF [148] 4, SR2 [84],

PMF [110] 5, and TieRec (Chapter 5). Table A.3 lists the major functions of

these algorithms.

4The KPMF related functions are derived from the authors’ coding, refer to
http://www.eecs.berkeley.edu/ tinghuiz/code/kpmf.zip, last access on 10/07/2013

5The PMF related functions are derived from the authors’ coding, refer to
http://www.cs.toronto.edu/ rsalakhu/BPMF.html, last access on 10/07/2013
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Table A.3: Tie strength and recommendation related functions

ALGORITHM DESCRIPTION
run kpmcf evaluate( ... ) set up dataset and parameters for learning tie strength.
make kernel( ... ) make kernels from social interactions.
kpmcf fact( ... ) perform matrix co-factorization on multiple profile matrices.
learn strength( ... ) learn tie strength from inferred latent matrix of users.
run tierec evaluate( ... ) set up dataset and parameters for invoking gd tierec().
gd tierec( ... ) gradient descent algorithm of TieRec.
run pmf evaluate( ... ) set up dataset and parameters for invoking gd pmf().
gd pmf( ... ) gradient descent algorithm of pmf.
run kpmf evaluate( ... ) set up dataset and parameters for invoking gd kpmf() or sgd kpmf().
gd kpmf( ... ) Gradient descent algorithm of KPMF.
sgd kpmf( ... ) Stochastic Gradient Descent algorithm of KPMF.
run sorec evaluate( ... ) set up dataset and parameters for invoking gd sorec().
gd sorec( ... ) Gradient descent algorithm of SoRec.
run sr2 evaluate( ... ) set up dataset and parameters for invoking gd sr2().
gd sr2( ... ) Gradient descent algorithm of SR2.

A.3.2 Headless Functions

While the above GUIs are developed for investigating the algorithms and pa-

rameters, the “headless” functions listed in Table A.4 are used to repeatedly and

randomly run given datasets, so as to obtain statistical results of the recommenda-

tion performance. Usually, we run each case more than 50 times. One case means

a particular setting for a particular dataset and method. For example, one case

might be running a recommendation by using TieRec at a training-validation-rate

80-20% and with strength level High. The execution results will be saved to the

MongoDB database, such that we are able to retrieve this data later on by means

of statistics functions (section A.3.3).

Table A.4: Headless functions for randomly running

FUNCTION DESCRIPTION
run headless(iteration) a delegation of individual headless functions.
run headless factors(dataset, train val rate) for various collaborative relationships.
run headless kpmcf(dataset, train val rate) for various settings of TieRec.
run headless methods(dataset, train val rate) for various settings of MF methods.
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A.3.3 Statistics Functions

There are number of statistics functions, listed in Table A.5, used to export PRC

or ROC curves for evaluation and reporting purposes. These functions retrieve

data from the database, and run statistical calculations on a needs basis. Usually,

the data is saved when performing headless functions (section A.3.2). These statis-

tics functions decompose the XML data and calculate the average PRC or ROC

values (section 3.4.3), and finally produce corresponding PRC or ROC curves and

MAE/RMSE values. All the figures from Figure 5.3 to Figure 5.6 in Chapter 5

are produced from these export functions. Most of the figures in this thesis are

directly produced by these statistics functions.

Table A.5: Statistics functions for performance evaluation

FUNCTION DESCRIPTION
export prc methods(dataset) export PRC curves for MF methods.
export prc impact(dataset) export PRC curves of various settings.
export prc sideinfo(method,dataset) export PRC using tie strength in an MF method.
export prc factors(dataset) export PRC curves of various relationships.
export roc factors(dataset) export ROC curves of various relationships.
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J. Kertész, and A-L Barabási. Structure and tie strengths in mobile com-

munication networks. Proceedings of the National Academy of Sciences,

104(18):7332–7336, 2007.

[104] Cara P. 99 new social media stats for 2012. URL:

http://thesocialskinny.com/99-new-social-media-stats-for-2012/ (last access

on 11/03/2014), 2012.

[105] M. Powell and James D. Approximation theory and methods. Cambridge

university press, 1981.

[106] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens:

an open architecture for collaborative filtering of netnews. In Proceedings of

the 1994 ACM conference on Computer supported cooperative work, pages

175–186. ACM, 1994.

[107] E. Rich. User modeling via stereotypes. COGNITIVE SCIENCE, 3:329–354,

1979.



Bibliography 209

[108] G. Ruffo, R. Schifanella, and E. Ghiringhello. A decentralized recommenda-

tion system based on self-organizing partnerships. In NETWORKING 2006.

Networking Technologies, Services, and Protocols; Performance of Computer

and Communication Networks; Mobile and Wireless Communications Sys-

tems, pages 618–629. Springer, 2006.

[109] R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization

using markov chain monte carlo. In Proceedings of the 25th International

Conference on Machine Learning, pages 880–887. ACM, 2008.

[110] R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. Advances

in Neural Information Processing Systems, 20:1257–1264, 2008.

[111] G. Salton. Automatic text processing: the transformation, analysis, and

retrieval of information by computer. Addison-Wesley Series In Computer

Science, page 530, 1989.

[112] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative

filtering recommendation algorithms. In Proceedings of the 10th international

conference on World Wide Web, pages 285–295. ACM, 2001.

[113] C. Schaefer, J.C. Coyne, and R.S. Lazarus. The health-related functions of

social support. Journal of behavioral medicine, 4(4):381–406, 1981.

[114] B. Scholkopf and A. Smola. Learning with kernels: support vector machines,

regularization, optimization, and beyond, volume 1. MIT press Cambridge,

MA, 2002.



Bibliography 210

[115] J. Schroeder, J. Xu, and H. Chen. Crimelink explorer: Using domain knowl-

edge to facilitate automated crime association analysis. In Intelligence and

Security Informatics, pages 168–180. Springer, 2003.

[116] N. Seichepine, S. Essid, C. Févotte, and O. Cappé. Soft nonnegative ma-
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