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Abstract

Online Social Networks (OSNs) have become an integral part of daily life in recent

years. They have been used as a means for a rich variety of activities, such as seek-

ing service providers or recommendations. In these activities, trust is one of the most

important factors for participants’ decision-making process. Therefore, it is necessary

and significant to predict the trust between two participants who have no direct inter-

actions. My thesis aims to provide effective and efficient trust prediction approaches

to evaluate trust values, which are introduced from the following four aspects.

The first aspect of the work is to study the factors that affect trust in OSNs and

solve the trust network extraction problem. OSNs contain important participants, the

trust relations between participants, and the contexts in which participants interact

with each other. All of such information has a significant influence on the prediction

of the trust from a source participant to a target participant without direct interactions.

In addition, the trust network, containing a truster and a trustee without direct inter-

actions, is the foundation to perform trust prediction. The extraction of a small-scale

trust subnetwork can deliver efficient and effective trust prediction results. We pro-

pose two heuristic algorithms called NBACA and NACA for the extraction of such

subnetworks.

The second aspect of the work is to address the trust prediction problem in the trust

network without any contextual information. We first analyze and extract the features

which affect the trust prediction from trust rating values in a trust network. Then, a

new trust prediction model based on trust decomposition and matrix factorization is

proposed to predict the trust value from a truster to a trustee. In this model, trust is

first decomposed into trust tendency and tendency-reduced trust. Based on tendency-

reduced trust ratings, matrix factorization with a regularization term is leveraged to
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predict the tendency-reduced values of missing trust ratings, incorporating both prop-

agated trust and the similarity of users’ rating habits. Finally, the missing trust ratings

are composed with predicted tendency-reduced values and trust tendency values.

The third aspect of the work is to study the trust prediction problem in OSNs with

social contextual information. We first categorize the factors that affect trust, and uti-

lize them according to their categories, to transfer or calculate existing trust values.

Then, a new trust transference method is proposed to predict the trust in a target con-

text from that in different but relevant contexts. Next, a social context-aware trust

prediction model based on matrix factorization is proposed to predict trust from a

source participant to a target participant in various situations. Finally, we analyze the

contextual trust prediction in three common scenarios.

The fourth aspect of the work is to study the dynamic trust to online service

providers to assist the decision making regarding a future interaction. First, static

features and dynamic features are extracted from historical interaction records. Then,

Principal Component Analysis and Vector Quantization techniques are leveraged to

reduce the dimension of features and project them into discrete values. Last, an ap-

proach based on Hidden Markov Model is proposed to model the dynamic changes of

trust, and to predict the trust in the future interactions.

For all the proposed approaches, extensive experiments have been conducted or

analyzed on real datasets, semi-synthetic datasets, synthetic datasets or real scenarios,

which demonstrates that they are superior to the exiting approaches in terms of quality

of results and efficiency.
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Chapter 1

Introduction

A social network is a social structure consisting of a set of nodes (i.e., individu-

als or organizations) and a set of links (i.e., interactions) connecting them, which is

first proposed in 1800s [53, 50, 214]. Major developments of social networks took

place in the 1930s in the fields of psychology, anthropology, and mathematics respec-

tively [175, 176]. In psychology, social interactions between participants were first

systematically recorded and analyzed by Moreno [176] in small groups, such as class-

rooms and work groups. In anthropology, the theoretical and ethnographic works of

Malinowski et al. [135, 161, 105] form the foundation of social networks. And in soci-

ology, Parsons [156] studied the social structure by analyzing the social relationships

between participants, which provided the foundation for sociologist Blau’s work in

analyzing the relational ties of social units on social exchange theory [26].

Nowadays, a diverse range of online social networks (OSNs), such as Facebook1,

Renren2, Twitter3, LinkedIn4 and Google+5, have sprung up attracting an increasingly

large number of participants. According to the statistics by a web statistic company

The eBusiness Knowledgebase6 on March 1st, 2015, the top 10 popular OSNs and the

approximate number of the monthly unique visitors of them are listed in Table 1.1.

From the table, we can see that, for the most popular OSN, Facebook, the number

1http://www.facebook.com/
2http://www.renren.com/
3http://www.twitter.com/
4http://www.linkedin.com/
5http://plus.google.com/
6http://www.ebizmba.com/
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2 Introduction

of unique visitors in a month approximates 900,000,000. Along with the continuous

popularity of OSNs, in recent years, social networking websites have proliferated to

be the platform for a variety of activities. For instance, according to a survey on

2600 hiring managers in 2009 by a popular job-hunting website CareerBuilder7, 45%

of those managers used social networking sites to investigate potential employees.

In 2012, the ratio increased to 90%. Furthermore, by connecting with OSNs (e.g.,

Facebook and Twitter), at some e-commerce websites such as ThisNext8 and eBay9,

buyers can recommend the products on these e-commerce websites to their friends who

participate the OSNs. In this type of activities, trust is one of the most important factors

for participants’ decision making. Conceptually, trust is the belief that an entity, such

as a person or an organization, will behave in an expected manner, despite the lack of

the ability to monitor or control the environment in which it operates [180]. As most

participants do not have previous direct interactions, approaches and mechanisms are

required to predict the trustworthiness between participants who are unknown to each

other.

Table 1.1: Top 10 popular OSNs
Ranking Name URL Unique Monthly Visitors

#1 Facebook facebook.com 900,000,000
#2 Twitter twitter.com 310,000,000
#3 LinkedIn linkedin.com 255,000,000
#4 Pinterest pinterest.com 250,000,000
#5 Google+ plus.google.com 120,000,000
#6 Tumblr tumblr.com 110,000,000
#7 Instagram instagram.com 100,000,000
#8 VK vk.com 80,000,000
#9 Flickr flickr.com 65,000,000

#10 Vine vine.co 42,000,000

An Online Social Network (OSN) can be represented as a graph, as shown in

Fig. 1.1. A node in the graph represents a participant in an OSN while the edge

7http://www.careerbuilder.com/
8http://www.thisnext.com/
9http://www.ebay.com/
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Figure 1.1: A contextual trust social network
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Figure 1.2: The social trust matrix in the context of playing tennis

pointing from one node to an adjacent node corresponds to their real-world or online

interactions (e.g., A→ B and B → C in Fig. 1.1). Different types of edges represent

different contexts, which refer to any information available for characterizing the par-

ticipants and the situations of interactions between them [206]. For example, a solid

line refers to the relationship in playing tennis, a dashed line refers to squash and a

dotted line refers to mechanics in Fig. 1.1. For adjacent nodes (i.e., the nodes with

a directed link between them), the trust can be explicitly given by one participant to

another based on their history of interactions. In OSNs, each participant usually has

interacted with a number of others forming multiple connections from one node. All

such participants and links form the social trust network (e.g., Fig. 1.1). In OSNs, such

a trust network is essential and fundamental for the trust prediction of two nonadjacent

participants, since it contains the important intermediate participants, the trust relations

between those participants and social context. All of these have critical influences on

the trust prediction between any unknown participants in OSNs. In addition, when a

social trust network is represented in the form of a matrix regarding one context, it
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Figure 1.3: A contextual social trust cube

is termed as a social trust matrix, e.g., Fig. 1.2. Furthermore, all the trust matrices,

regarding all the contexts respectively, form a social trust cube (e.g., Fig. 1.3).

This thesis will focus on the following two types of significant challenging prob-

lems: trust network extraction and trust prediction in OSNs.

1.1 Challenges of Trust Prediction in OSNs

1.1.1 Trust Subnetwork Extraction

In a social network depicted in Fig. 1.1, suppose A is looking for a service provider,

such as a tennis coach, and H is recommended to A as a tennis coach. However,

A does not know H before. In such a situation, according to the theory of social

psychology [39, 136] and computer science [65, 118], the trust of H in A’s mind can

be predicted using trust prediction methods [69, 66, 114, 131, 243]. Here we assume,

playing tennis is the target context, i.e., the context in which the trust between a source

node and a target node needs to be predicted. In A’s mind, B, E and G are good tennis

players. B, G and H trust each other and G also trusts A regarding tennis playing.

C trusts B, G and H regarding squash playing and vice versa. D, F , H and I are

good machinists. In order to predict if H will be a good tennis coach in A’ mind, it
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H 0 1 0.7 1 0 Figure 1.4: An extracted trust subnetwork

is unnecessary to use the whole social network in Fig. 1.1, because F , D and I are

only good at mechanics while tennis player E has no knowledge of others, and they

hardly affect the prediction of the trust toH inA’s mind. Let us assume that this social

network is only constructed in three contexts: tennis, squash and mechanics. In order

to boost the efficiency and effectiveness of trust prediction regarding the target context

tennis, the social subnetwork in Fig. 1.4 is extracted from Fig. 1.1 by removing the

social relations in mechanics and keeping only the important social relations for the

prediction of trust between A and H on tennis and squash playing, because mechanics

is irrelevant to the target context tennis, while squash is relevant to tennis.

In the literature, there are some existing works focusing on trust prediction, i.e.,

the process of estimating a new pairwise trust relationship between two nonadjacent

participants. Most of these works predict trust based on social graphs (e.g., Fig. 1.4)

using inference approaches [66, 119], while a few of them predict trust from a trust

matrix (i.e., Fig. 1.2 and 1.3, the representation of social networks in matrices rather

than graphs) using matrix factorization approaches [78, 243]. However, all these works

assume that the trust network has already been extracted, or even that the whole dataset

is directly used.

Therefore, given any two participants who do not have any historical direct interac-

tions, extracting a trust subnetwork containing them from a large-scale social network

becomes a critical and fundamental step prior to performing any trust prediction. Such

a task is called trust subnetwork extraction. An extracted subnetwork (e.g., Fig. 1.4)

needs to satisfy the following requirements: (i) it should contain the source node, the

target node and most of the nodes which are important for trust prediction between the



6 Introduction

source node and the target node; (ii) the scale of the subnetwork/matrix is kept rela-

tively small; and (iii) a source participant may introduce constraints of trust relations

or contextual information into the subnetwork extraction process for various purposes,

such as employee recruitment and movie recommendation, which makes the problem

more challenging.

Such an extracted trust subnetwork can help improve the effectiveness and effi-

ciency of trust prediction [162, 117]. However, extracting such a trust subnetwork/matrix

is a multi-objective optimization problem, which is known to be NP-complete [17,

117].

In the literature, there are very few approximation algorithms proposed for the

NP-complete subnetwork extraction problem for trust prediction in online social net-

works. As the resource discovery problem in peer-to-peer (P2P) networks has some

similar properties as the trust network extraction problem, some search strategies from

P2P networks can be applied to trust network extraction. These approaches can be di-

vided into two groups: traversal methods [35, 54] and heuristic methods [62, 63, 6, 73,

115, 117]. For the application on small-scale datasets, the traversal methods are able

to search the best subnetwork by adopting methods, such as breadth-first search and

depth-first search. However, on large-scale datasets, it is computationally unfeasible

to find the optimum solution, and therefore, only heuristic methods can be used to find

a near-optimal solution. Most of the relevant existing works do not consider the social

context in online social networks, such as expertise (e.g., an expert in a domain) and

preference (e.g., like playing tennis), which have significant influence on trust predic-

tion [31, 111, 231] and can be obtained by data mining techniques [141, 193]. On the

other hand, the existing works all rely on the existing social paths, which limits the

performance of trust prediction as some aspects such as expertise can affect the trust

without the need of social connections. In short, according to our knowledge, there

is no existing approach that focuses on the context-aware trust subnetwork extraction

problem specifically for trust prediction based on matrix factorization.
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1.1.2 Social Trust Prediction

With the development of Internet, people are increasingly active in various large, open

and dynamic network systems, including social networks, P2P systems, e-commerce

and e-service [208]. Due to many reasons such as the lack of diligence from users

and privacy concerns, missing trust values in a social trust network are inevitable [78].

On the other hand, uncertainty exists in online environments, especially those of e-

commerce and e-service. The prediction of the trust about online service applications

has been growing in importance [236][209][207]. Conceptually, trust prediction is the

process of estimating a new pair-wise trust relationship between two participants in

a context, who are not directly connected by interactions in the context [243]. The

challenges of trust prediction are introduced in the following three different situations.

1.1.2.1 Single-Context Trust Prediction

Many online social networks (e.g., Advogato [1]) allow users to give a trust value to

their friends, or to select a word from a list to describe the trust relationship between

them and their friends. The missing trust values can be predicted from trust ratings in

the forms of numbers or words.

The traditional approaches to predict trust are to evaluate trust from a source user

to a target user along a path between them that consists of links and trust values [69].

This type of approaches is termed as propagation-based trust prediction (i.e., trust

propagation/inference). Trust propagation has been studied in many web application

areas, including e-commerce [209, 236, 235], P2P systems [220], and social net-

works [82, 66, 119]. On the other hand, a user tends to trust other users who are

similar to himself/herself [112]. The trust value can be predicted from the behavior

of giving ratings in the trust matrix using latent factor models, such as matrix factor-

ization. Broadly speaking, latent factor-based trust prediction models are to estimate

the trust between two users from their similar habits etc. revealed in the trust rat-

ings [225, 226, 131].
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In the literature, existing works predict trust either via trust propagation only [69,

66, 114, 206], or considering propagated trust and tendency [225, 226], or merely

utilizing the similarity of rating values [131, 132]. In general, they have the following

drawbacks. First, all the tendency, propagated trust and similarity influence the trust

between two users. All of them should be utilized to predict pair-wise trust, rather

than considering only one or two influential factors. Second, the similarity of trust

rating distributions describes the similarity of users’ behaviors in giving trust ratings.

Thus, it is valuable for trust prediction [241]. However, it has been neglected in the

literature. Third, all these factors are of different types, representing either personal

properties or interpersonal properties. Therefore, they should be processed separately

and differently so as to deliver high accuracy in trust prediction.

1.1.2.2 Context-Aware Trust Prediction

Besides trust values or ratings, in recent years, online social networks have an amount

of context information, which can be mined by data mining techniques [141, 193].

Trust is context dependent [180] and it is rare for a person to have full trust on another

in every facet [189]. For example, the case of full trust in all aspects is less than 1%

at Epinions10 and Ciao11, both of which are popular product review websites [189].

In real life, people’s trust to another is limited to certain domains. For instance, in

Fig. 1.1, A trusts F in the context of mechanics because they had interactions in this

context before. However, this does not meanA trusts F in the other contexts of playing

tennis or playing squash. Therefore, the contextual information should be utilized to

further improve trust prediction.

In the literature, some studies have suggested to predict trust taking into account

some kind of social contextual information. Liu et al. [117] propose a randomized

algorithm for searching a subnetwork from a source participant to a target one, which

takes important contextual information into account for trust evaluation. An approx-

10http://www.epinions.com/
11http://www.ciao.co.uk/
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imation algorithm is proposed in [118] to search the near optimal social trust path

satisfying service providers with context constraints. Wang et al. [206] propose a

probabilistic social trust model to infer trust along a path in a social network exploring

all available social context information. Ma et al. [132] consider social tags to calcu-

late the preference similarity between friends. Zhong et al. [244] propose the KPMCF

model to learn social relationship strength by analyzing profile information including

tags, groups etc.

However, as pointed out in [41], social tags have limited capacity in reflecting

personal information, including individual preference, domain expertise, and the rela-

tionship and intimacy with others. Social context should contain any information that

reflects an individual’s social characteristics, and the social relationship with other peo-

ple within a social network [206]. Currently, most trust prediction models suffer from

the following drawbacks: (i) The property of trust values has not been studied suffi-

ciently. For example, the similarity of people’s trust can be modeled not only from the

trust values, but also from their distributions [241]; (ii) The diversity of social contexts

is not well dealt with. In real life, the connection between two people can be friend-

ship, family member, business partnership, or classmate etc. Even with the same type

of relationship—say friendship, their interaction frequency and interaction contexts

can be largely different [206]; (iii) The ways to incorporate social information require

further study, as inappropriate introduction of social information may introduce noise

and degrade the trust prediction quality [122]; (iv) Differences of contextual infor-

mation are not handled properly. For example, how to model the relationship of two

contexts? To what extent, the trust in context ci can be transferred to context cj?

1.1.2.3 Dynamic Trust Prediction

Trust may change as time goes on especially in an online environment [241]. In on-

line environments, especially in e-commerce and e-service environments, the system

maintains the past interaction information for a certain period which offers the possi-

bility to predict a participant’s (e.g., a service provider’s) future trust. There are many
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factors that affect a participant’s trust [48]. For instance, in e-commerce web sites,

such as eBay and Taobao12, the trust to a seller can be binary, i.e., honest or cheating.

It may vary unwittingly or consciously according to different items, different buyers

etc. It is more likely to trade imprudently in the afternoon just before the closing time

or in peak time [234, 235, 236]. So, the trust of a participant dynamically changes.

In the literature, a number of approaches have been proposed to model dynamic

trust of participants in e-commerce and e-service environments. The Beta model is an

early static model in which the trustworthiness of any service provider is assumed to

be represented by a fixed probability distribution over outcomes [82]. The Beta model

with a decay factor introduces an exponential decay factor to control the weight of each

outcome according the time of occurrence [52]. Although this approach shows success

in certain scenarios, it is not effective in other scenarios where the provider’s behav-

ior is highly dynamic. Several studies [52, 149] propose the Hidden Markov Model

(HMM) approaches in modeling transaction results, only focusing on the outcomes of

each past transaction. However, these approaches ignore the contextual information

about each transaction. Liu and Datta [124] propose a Markov model based on con-

textual information, which extracts features from transaction contextual information

as the HMM observation sequences, and treats the outcomes directly as the states of

the models. However, it reveals the hidden states and the authors also assume a series

of transactions occurring between a seller and the same customer, which can hardly

be true in most actual scenarios. In addition, there could be more features to be taken

into account, such as price changes, in addition to static features in the contextual

information.

1.2 Contributions of the Work

To extract a trust subnetwork for a source participant and a target participant is the

first step prior to the trust prediction between them. It is the foundation of any kind of

12http://www.taobao.com
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trust prediction. Based on the extracted trust subnetwork, the trust prediction between

two unknown participants is studied in three situations: single-context trust prediction,

context-aware trust prediction, and dynamic trust prediction.

In order to address the above significant and challenging problems of the trust

prediction in online environments of different situations, described in Section 1.1, this

thesis makes four major contributions.

1. The first contribution in this thesis is to extract a small-scale subnetwork, from

the original large-scale social trust network, containing most of the important

nodes and contextual information with a high density rate, in order to make the

trust prediction between two nonadjacent participants more efficient and effec-

tive.

(a) The contextual factors that affect trust prediction between two participants

in a complex online social network are analyzed, which includes role im-

pact factor, reliability preference, social intimacy and existing trust.

(b) A trust utility function is proposed to take the above trust impact factors

into account to illustrate the attributes of each participant in a social net-

work.

(c) To address the NP-complete trust subnetwork extraction problem, inspired

by the ant colony foraging process [47, 27], we propose two heuristic algo-

rithms: (i) A novel binary ant colony algorithm (NBACA) is designed for

the trust subnetwork extraction problems, by adding an initialization pro-

cess and a mutation process and improving the path selection and pheromone

update process of a conventional binary ant colony algorithms; (ii) A new

ant colony algorithm (NACA) is designed for the subnetwork extraction

problems. The mutation process designed for this algorithm enhances the

mechanism of path selection and pheromone update processes, allowing it

to further refine existing solutions.
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The experiments, conducted on two popular social network datasets, Epin-

ions and Slashdot13, demonstrate the superior performance of our proposed

approaches over the state-of-the-art approaches in terms of the quality of

extracted trust subnetworks and execution time.

2. The second contribution in this thesis is to predict missing trust values from

existing trust rating values, which incorporates more influential factors in matrix

factorization in order to improve the performance of trust prediction.

(a) Trust ratings are deeply analyzed and decomposed into trust tendencies

(i.e., trustor tendency and trustee tendency) and tendency-reduced ratings,

which enables trust prediction with tendency-reduced ratings to reduce the

negative effect of trust tendency.

(b) A new trust prediction model based on rating decomposition and matrix

factorization is proposed. Our model considers the similarity of trust rat-

ing distributions to further differentiate the trust between users and opti-

mize matrix factorization. This is particularly important when the com-

mon trust rating values are the same. In addition, our model considers both

propagated trust and similarity factors, which consist the propagation and

similarity regularization term of matrix factorization, in order to improve

the trust prediction accuracy.

Regarding the commonly used metrics of Mean Absolute Error (MAE) and

Root Mean Square Error (RMSE), the experiments conducted on a real-

world dataset, Advogato14, have demonstrated significant improvements

delivered by our model when comparing the trust prediction accuracy with

the state-of-the-art approaches.

3. The third contribution in this thesis is social context-aware trust prediction,

13http://slashdot.org/
14http://www.trustlet.org/wiki/advogato dataset
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which utilizes social contextual information to further improve the accuracy of

trust prediction in online social networks.

(a) We analyze the personal properties and interpersonal properties which im-

pact trust transference between contexts.

(b) A new trust transference method is proposed to predict the trust in a target

context from that in different but relevant contexts. In addition, the trust

transference method mitigates the sparsity problem, and enhances the trust

prediction accuracy.

(c) A social context-aware trust prediction model based on matrix factorization

is proposed to predict trust in various situations no matter whether there is

a path from a source participant to a target participant. To the best of our

knowledge, this is the first context-aware trust prediction model in social

networks in the literature.

Comparisons are conducted in trust inference between contexts, trust pre-

diction without trust connection and trust inference based on trust paths.

The experimental analysis in these three typical scenarios illustrates that

the proposed model can mitigate the sparsity situation in social networks

and generate more reasonable trust results than the state-of-the-art context-

aware trust inference approach.

4. The fourth contribution in this thesis is to predict the trust value between an

online service provider and a potential customer regarding a future transaction,

considering the dynamic changes of the provider and contextual information

in online environments, which tries to help customers avoid deceitful online

providers.

(a) The dynamic trust to service providers is modeled concerning a forthcom-

ing transaction in light of as much information as we can consider, includ-

ing static features, such as the provider’s reputation and item price, and
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dynamic features, such as the latest profile changes of a service provider

and price changes.

(b) Based on a service provider’s historical transactions, we predict the trust-

worthiness of the service provider in a forthcoming transaction. In addi-

tion, Mutual Information theories [92] and the Principle Component Anal-

ysis method [4] are leveraged to eliminate redundant information and com-

bine essential features to form lower dimensional feature vectors. Further-

more, by adopting Vector Quantization techniques [195], we apply the dis-

crete HMM in a more powerful way, in which all the features extracted

from both contextual information and the rating of each transaction are

treated as observations of the HMM.

We evaluate our approach empirically in order to study its performance.

Experiments are conducted in order to compare the prediction accuracy

between our model and other representative ones. The experiment results

illustrate that our approach significantly outperforms the state-of-the-art

probabilistic trust methods in accuracy in the cases with complex changes.

1.3 Roadmap of the Thesis

This thesis is structured as follows.

Chapter 2 proposes a comprehensive literature review of online social networks,

trust and three types of trust prediction methods: propagation-based trust prediction,

latent factor-based trust prediction and dynamic trust prediction, each of which pre-

dicts trust values in both situations: trust rating vales only (single-context trust predic-

tion) and contextual information (context-ware trust prediction).

Chapter 3 presents the factors that affect trust in an online social network. Then,

two ACA-based trust subnetwork extraction approaches, called BiNet and TrustNet,

are proposed, taking these trust impact factors into account. Experiments conducted

on two popular datasets, Epinions and Slashdot, demonstrate that our approaches can
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extract subnetworks covering important participants and contextual information while

keeping a high density rate, which is superior to the state-of-the-art approaches in

terms of the quality of extracted subnetworks within the same execution time .This

chapter is based on our papers published at ICWS2015 and TrustCom2015 (please

refer to [2] and [1] in the publication list on pages ix).

Chapter 4 analyzes the personal properties and interpersonal properties, extracted

from trust ratings, which affect trust prediction. Then a trust prediction model based

on trust decomposition and matrix factorization is proposed, which takes into account

these properties. Experiments conducted on a real trust rating dataset demonstrates

better performance of our model compared with the existing ones in terms of MAE

and RMSE. This chapter is based on our paper published at AAAI 2014 (please refer

to [4] in the publication list on page ix).

Chapter 5 analyzes the contextual trust impact factors, proposes a trust transitiv-

ity approach to transit trust between relevant contexts, and proposes a trust prediction

model based on matrix factorization. The experimental analysis demonstrates the ef-

fectiveness and capability of our model to predict trust, taking into account the con-

textual information in typical scenarios in the real world. This chapter is based on our

paper published at ICSOC 2014 (please refer to [3] in the publication list on page ix).

Chapter 6 proposes a dynamic trust prediction approach based on Hidden Markov

Model, taking both of the contextual information and trust as observations. In this

approach, techniques, such as Mutual Information, Principle Component Analysis and

Vector Quantization, are leveraged to lower the dimension of feature vectors and en-

hance the accuracy of dynamic trust prediction. Experiments conducted on synthetic

datasets of different scenarios demonstrate that our approach is more effective in pre-

dicting the future trust in complex dynamics. This chapter is based on our paper pub-

lished at ICWS 2013 (please refer to [5] in the publication list on page ix).

Finally, Chapter 7 concludes the work in this thesis and discusses some directions

for future research opportunities.
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Chapter 2

Literature Review

In recent years, a diverse range of Online Social Networks (OSNs) have attracted an

increasingly large number of users and proliferated to be a platform for a variety of

activities, where trust between participants has significantly affected their decision

making. In the literature, a number of scholars, across different fields, have studied

social network properties, the definitions, properties and influence of trust, the social

contexts affecting trust, as well as trust prediction methods in OSNs. In this chapter, a

literature review on the above aspects is organized as follows:

• Section 2.1 introduces the properties of social networks, and presents a new

taxonomy of OSNs.

• Section 2.2 introduces the definitions of trust existing in different disciplines,

the general properties of trust, the influence of trust, and the social contexts that

affect trust.

• Section 2.3 reviews the studies on trust subnetwork extraction in OSNs.

• Section 2.4 reviews the existing studies on different types of trust prediction

in OSNs, including propagation-based trust prediction, latent factor-based trust

prediction, and dynamic trust prediction.

17



18 Literature Review

2.1 Online Social Networks

In the discipline of social science [214], a social network is described as a social struc-

ture made up of a set of entities (such as individuals or organizations) and the dyadic

ties between these entities. A clear way of analyzing the structure of the whole so-

cial entities is provided in the perspective of social networks. In this section, social

network properties and a new taxonomy of OSNs will be introduced.

2.1.1 Social Network Properties

The foundation of social network theory can be traced back to the theoretical and

ethnographic work of Bronislaw Malinowski in anthropology [135] in 1913. Major

development of social networks took place in the 1930s in different fields including

psychology, anthropology and sociology, when Jacob Moreno systematically recorded

and analyzed social interaction in small groups, and Talcott Parsons set the stage for

taking a relational approach to understanding social structure [176, 175, 156].

The small-world characteristic (also known as ‘six degrees of separation’) in so-

cial networks was validated by Milgram [145] in the 1960s, illustrating that the average

path length between two Americans was about six hops in an experiment of mail send-

ing. In the 1970s, the influence of small-world characteristic on human interactions

was further analyzed by Pool et al. [157].

Associativity is a pervasive phenomenon found in many networks and has a pro-

found effect on the structural properties of a social network. Conceptually, associa-

tivity is the tendency for participants in a social network to be connected to others

with similar characteristics in some way [152]. McPherson et al., [143] validate the

associativity characteristic in social networks. Namely, in social networks, individuals

commonly choose to associate with others similar to themselves in aspects such as

age, nationality, location, race, income, educational level, religion and language.

A common property of many large social networks is that the node connectivity

follows a scale-free power-law distribution [18, 10, 106]. Networks are usually open
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and formed by the continuous addition of new nodes (participants) to the system. Thus

the number of nodes increases throughout the lifetime of the network, e.g., the World

Wide Web grows exponentially over time by adding new web pages. Furthermore,

the nodes with a high-degree connection tend to be connected to other nodes with a

high-degree connection, which is discussed in detail by Li et al. [106]. In addition,

new nodes tend to attach to existing well-connected sites preferentially [18], e.g., a

new participant of Facebook is more likely to join a group of well-known popular

participants with an already-high connectivity.

In graph theory, a clustering coefficient measures the degree to which nodes in a

graph tend to cluster together. It is calculated as the average proportion, between the

existing edge number and the maximum edge number, over each node’s neighbors in

a social network [215]. In addition, in a network with a high clustering coefficient, if

A has a connection with B and C, then B has a high probability to connect with C.

Holland et. al [74] have validated that a social network usually has a high clustering

coefficient, which means most of the people we know may also know one another in

the social network in real-world scenarios.

In the past few years, sociologists and computer scientists have begun to investigate

the characteristics of online social networks, which are gaining growing popularity.

Ahn et al. [8] compare the online social networks with real-life social networks by an-

alyzing the structures of three online social networking services: Cyworld1, MySpace2

and Orkut3, in terms of degree distribution, clustering coefficient, degree correlation

and average path length. Mislove et al. [146] analyze the structure of many popu-

lar large-scale online social networks, including Flickr4, YouTube5, LiveJournal6 and

Orkut, and confirm the power-law, small-world and scale-free characteristics. Holme

1http://www.cyworld.com/
2https://myspace.com
3http://www.orkut.com
4http://www.flickr.com/
5http://www.youtube.com/
6http://www.livejournal.com
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et al. [75] study the time evolution of an Internet dating community, Pussokram7, in

the aspects of clustering, correlations, average geodesic length, degree and reciprocity.

McCallum et al. [141] discovers relationships and social roles from the Enron Email

Dataset8 using data mining techniques.

In recent years, the boundary between the social network and e-commerce has be-

come vague. In 2005, Yahoo first introduced the concept of social commerce, which

uses social networks in the context of e-commerce [3]. The service helps people es-

tablish an online presence, and exploits the user base for commercial purposes [8]. A

Lucid Marketing survey finds that 68% of individuals consult friends and relatives be-

fore purchasing home electronics, which is more than the half who use search engines

for product information [77]. Leskovec et al. [102] analyze the influence of social rela-

tionships in a person-to-person recommendation network for effective viral marketing.

Guo et al. [70] analyze the influence of social interactions between buyers on the pur-

chase decisions made by a buyer in buying products in Taobao, the world’s largest

online shopping website. In addition, e-commerce was integrated into online social

networks, such as Twitter, as the mock-up of a new platform called Twitter Commerce

in early 2014 [2].

2.1.2 The Categorization of OSNs

Online social networks can be extracted from many aspects, such as user relation-

ships through transactions on e-commerce websites, email connections, affinities and

co-authors in academic papers. Mislove et al. [146] point out that 1) online social

networks are organized around users, in which, participants join a network, publish

their profile and content, and create links with other participants; and 2) online social

networks provide the basis for maintaining social relationships, finding user similarity

and locating certain content and knowledge regarding users. Golbeck et al. [64, 65]

define an online social network as “a web-based social network” which must possess

7http://www.pussokram.com/
8http://www.cs.cmu.edu/enron/
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the following four characteristics: 1) accessibility over the web with a web browser, 2)

explicitly stated relationships with others, 3) explicitly built-in support for users mak-

ing connections, and 4) the visibility of relationships. Boyd et al. [29] define online

social networks as “web-based services that allow individuals to 1) construct public or

semi-public profiles within a bounded system, 2) articulate a list of other users with

whom they share connections, and 3) view and traverse their list of connections and

those made by others with the system.” However, so far, there has not been a widely

accepted formal definition of online social networks and it is still puzzling whether or

not to put websites such as YouTube, eBay and Taobao in the scope of online social

networks. Liu [113] provides a categorization, based on different socialites of partici-

pants in OSNs. Here, based on whether the social relationships are explicit, we divide

online social networks into two categories: explicit OSNs and implicit OSNs.

2.1.2.1 The Explicit OSNs

Online social networks, such as LinkedIn, MySpace and Facebook, founded in 2002,

2003 and 2005 respectively, mainly focus on socialization and allow users to explicitly

express social relationships (e.g., to add as “friends” and to join a group of interest)

and share information (e.g., to post words, pictures, sights and even videos). The main

characteristics of the explicit OSNs are summarized as below:

1. The social relationships between participants are explicitly specified by partici-

pants themselves, which are usually binary (i.e., “friends” or “non-friends”).

2. They have provided a platform, where users who participate the OSNs can up-

load personal profiles, meet new participants and conduct some activities of

communication, such as information sharing and recommendations.

3. Participants can make friends with friends’ friends or other participants of inter-

est (e.g., graduating from the same university and having the same interest).
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2.1.2.2 The Implicit OSNs

There are also a number of websites, including e-commerce and e-service, which pro-

vide rich functionality but do not explicitly support the conventional social relation-

ship. For example, the conventional e-commerce website eBay focuses on online com-

mercial activities where merchant-consumer relationships are revealed by transactions

and messages between them. The computer science bibliography website DBLP9 col-

lect the academic papers within this field. The relationships between authors can be

mined by the co-author relationship in their publications. This type of online network-

ing sites are termed as implicit OSNs, which have the following common characteris-

tics.

1. There are no explicitly specified social relationships, e.g., the participants cannot

keep their friendship lists and thus they cannot make new friends with friends of

friends.

2. They are rich in functionality and focus on certain activities, such as e-commerce,

e-services, email, blogs, publications and information sharing in the form of

words, photos, sights and videos etc.

3. The relationships between participants can be implicitly revealed by their in-

teractions in any types of activities, such as transactions in e-commerce, email

communication, and co-authorship in publications.

2.1.2.3 The Future Development of OSNs

As social commerce is emerging, the boundary between the concepts of conventional

online social networks and e-commerce or e-service websites is fading away. Cur-

rently, the development can be seen in the following three aspects:

1. E-commerce websites begin to allow participants to build their social networks

in a more explicit way. For example, the largest e-commerce website Taobao
9http://dblp.uni-trier.de/
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integrates an instant messaging tool, with which buyers can ask sellers about

products, or seek advice from other buyers. In this tool, users can specify the

relationships with sellers or others buyers.

2. Online social networks have begun to enrich their supported activities covering

e-commerce or e-service, such as the mock-up of Twitter Commerce, in which

apparently normal tweets can be expanded to reveal a buy button that enables

consumers to make a purchase within the Twitter app.

3. A large number of people use online social networks to conduct commercial ac-

tivities. For instance, many international students studying overseas use WeChat

or QQ to post advertisements and provide overseas procurement services.

2.2 Overview of Trust

“Trust is the glue of life. It’s the most essential ingredient in effective communication.

It’s the foundational principle that holds all relationships.” — Stephen Covey

Trust is defined as “firm belief in the reliability, truth, or ability of someone or

something” in the Oxford Dictionary10. It is further explained as “acceptance of the

truth of a statement without evidence or investigation” in the viewpoint of trustor (i.e.,

the subject that trusts a target entity) and “the state of being responsible for someone or

something” in the viewpoint of trustee (i.e., the entity that is trusted by others). From

the definition, it is clear that the trustees should be highly reliable and behave honestly

in the interactions with trustors.

Actually, trust is a complex subject relating to many different aspects including be-

lief, truth, competency and reliability. As there are complex factors affecting trust rela-

tionships, in the literature, there is no existing consensus definition on trust [95, 158],

and trust cannot be easily modeled in a computational system [65]. In this section, the

definitions of trust in different fields, the properties of general trust, the influence of

10http://www.oxforddictionaries.com/definition/english/trust
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trust, and the social context that affects trust will be introduced.

2.2.1 Defining Trust

Trust is a common daily phenomenon. Humans would not succeed in facing the com-

plexities of the world without trust, because without trust we are not able to reason

sensibly in daily life [126]. It plays a role in multiple disciplines, including sociology,

psychology, economics, political science, history, philosophy and computer science.

In addition, there has not yet been a uniform definition of trust. In the literature, trust

has been defined in different disciplines respectively [139].

2.2.1.1 Trust in Psychology

In psychology, the definition of trust given by Deutsch [44] is the most popular and

widely accepted. He states that trusting behavior takes place when an individual con-

fronts an ambiguous path leading to a perceived either beneficial or harmful result

contingent on the action of another person. Jøsang et al. [87] state that “Trust is the

subjective probability by which an individual expects that another performs a given

action on which its welfare depends.” More similar descriptions of trust can also be

found in [170, 179]. The core of these definitions is that trust occurs when an indi-

vidual believes the trusted other will act in an expected way, and the future action is

committed by the individual based on that belief. In addition, Beatty et al. [22] point

out that cognitive, emotive and behavioral aspects should be included in trust, where

the cognitive aspect refers to a rational decision [12] based on the current knowledge

of the trustee; the emotive aspect refers to emotional drive [194]; and behavioral aspect

refers to the final actions. Misztal [147] states that trust affects people’s lives in three

aspects—it makes social life predictable, create the sense of community and eases the

cooperation among people.
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2.2.1.2 Trust in Sociology

Trust in sociology stems from the works of Luhmann [126], Barber [19] and Gid-

dens [59]. The interest in trust has been growing, as trust is one of the main elements

in social reality [177]. It is a means of overcoming the complexity of society, as people

in society generally obey certain rules [126].

Furthermore, trust is attributable to relationships between social entities, both in-

dividuals and groups. Thus, the definition of trust in sociology can be further divided

into an individual level and a societal level. The individual level is similar as the ones

from psychology [171, 180]. For example, Sztompka [187] summarizes the definition

of trust as “Trust is a bet about the future contingent actions of others,” which is sim-

ilar to the definition given by Deutsch [44] in Psychology. At this level, the specific

trust between the trustors and trustees is termed as “relational trust”, which is built

up through repeated direct interactions between two parties and declines when be-

trayed [171]. At the societal level, trust is treated as one of properties of social groups.

From the perspective of sociology, Luhmann [126] considers trust as “a means for

reducing the complexity of society”. Seligman [178] proposes a more detailed defi-

nition that “trust enters into social interaction in the interstices of systems, when for

one reason or another systematically defined role expectations are no longer viable.

If people play their roles according to role expectations, we can safely conduct our

own transaction accordingly.” Seligman [178] also points out that the problem of trust

(distrust) emerges only in the situation where there is “role negotiability”, i.e., a gap

exists between roles and role expectations. At the societal level, a general belief of the

trustor towards a group of members is termed as “generalized trust” [170]. It implies

that the members of a group act as expected. For example, professors are always con-

sidered professional in their research fields. In human society, the generalized trust

initializes the trust relationship between unfamiliar trustors and trustees, and makes

opportunity for the relational trust to be established through forthcoming interactions

between them. Moreover, Marsh [139] declares that ignoring either rational or gener-
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alized trust will lead to the inevitable loss of understanding trust as both personal and

social concepts.

2.2.1.3 Trust in Economics

In the field of economics, the European Commission Joint Research Center [83] de-

fines trust as “trust is the property of a business relationship, such that reliance can be

placed on the business partners and the business transactions developed with them.”

This definition implies the importance of trust in commercial activities, from the per-

spective of business management. In addition, trust is often conceptualized as reliabil-

ity in transactions in economics [138].

More precisely, Akerlof [9] points out that trust affects economic costs. Ba et

al. [16] demonstrate that trust can reduce transaction risks, mitigate information asym-

metry and generate price premiums for reputable vendors. This phenomenon is quite

evident in online trading environments, such as e-commerce and e-service, where con-

sumers cannot directly interact with products and workers, and the credibility of online

information may be doubtful [168]. The quality of products cannot be judged in ad-

vance because the online information is mainly posted by the vendors themselves.

Thus, trust is considered by some economists as a mechanism to restrict opportunistic

behavior and establish a reciprocal relationship between consumers and vendors.

2.2.1.4 Trust in Computer Science

In computer science, trust is a widely used term with various definitions among re-

searchers. Bonatti et al. [28] categorize trust using reputation and policy. Mui et

al. [150] define trust as “a subjective expectation an agent has about another’s fu-

ture behavior based on the history of their encounters,” which is widely accepted as

reputation-based trust. Reputation-based trust uses an entity’s historical behaviors or

observations to compute trust, and may utilize information from others in the absence

of first-hand knowledge [13]. For example, when a consumer purchases a product
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from an unknown eBay vendor, the initial trust is established only based on the ex-

periences (ratings) of others. On the contrary, policy-based trust is established, when

sufficient necessary conditions are met, to control access rights [13]. It is founded on

logical rules and verifiable properties encoded in digital credentials [28]. The aim of

policy-based trust is to determine whether an unknown participant can be trusted or

not based on a certain number of credentials and a set of relevant policies.

Moreover, in computer science, a number of various trust prediction models are

designed to help establish trust relationships by simulating the process of trust estab-

lishment among people in human society. For example, Marsh [139] proposes a set

of variables and a method to incorporate them all into a continuous value in the range

of [−1, 1] to represent trust. The details of trust prediction will be presented in Sec-

tion 2.4.

2.2.2 Properties of Trust

After reviewing the definitions of trust in different disciplines, this subsection sum-

marizes the general properties of trust. These proposed properties are believed to be

significant to the study of trust prediction, as they are based on either experimental

verification or long-term observations of human activities, and provide the theoretical

foundation for the design of various trust prediction approaches.

2.2.2.1 Trust is Subjective

In social psychology, trust is a subjective phenomenon as a personal psychological

state [72, 136, 170]. It is determined by an individual’s personal subjective attitude

to another based on the individual’s own psychological experience, evaluation and the

domains of both. Even the trust towards the same individual can vary significantly.

For instance, Alice trusts Bob, since Alice has a very good experience during all the

historical interactions with Bob. But, Cathy distrusts Bob because of a betrayal. Gol-

beck [65] provides another example that the population split significantly when asked
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about whether or not to trust the current President’s effective leadership.

Subjectivity is one of the major properties of trust in computer science [233].

Jøsang [84, 85] leverages subjective logic to explain trust and further explains that an

opinion can be uniquely described from belief, disbelief and uncertainty. Moreover,

the subjective property is also applied to evaluate the trustworthiness of a vendor in

online trading environments, such as e-commerce [109]. For instance, eBay provides

a rating system to assist vendors and buyers. A buyer can provide a rating (+1, 0, or -1)

after each transaction regarding to the transaction quality. In particular, a number of

mathematical models have been proposed to model the changes of subjective trustwor-

thiness, such as the Beta model [82] and the Markov chain model [124]. In addition,

some researchers treat the subjective property as personalization, e.g., Richardson et

al. [167] consider that the user ratings in a trust management system attribute to per-

sonalization.

2.2.2.2 Trust is Asymmetric

Trust is asymmetric. This property means that trust between participants does not

necessarily exist in both directions or to the same extent. For example, the buyer

Alice trusts the vendor Bob, since Alice has had a very good experience during all

her historical interactions of buying goods from Bob. But, conversely, Bob may not

trust Alice any more, if Alice starts to sell products. In this example, the asymmetry is

mainly caused by the different roles in the historical interactions.

However, even between two trusted individuals, the amounts of trust in each other’s

minds can differ significantly, due to different personal experiences, psychology and

backgrounds, such as the trust between a supervisor and a research student. The stu-

dent trusts the supervisor because of the ability of the supervisor in the research field.

Yet, the supervisor trusts the student in the expectation of potential good working per-

formance. So, the two directional trusts are totally different. This can be seen in a

variety of hierarchies [223]. The asymmetric property is also named “one-way trust”

in [40, 72]. In summary, trust is not reciprocal or equivalent between two entities,
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which must be taken into account in trust prediction (or evaluation).

2.2.2.3 Trust is Propagative

Propagation, also known as inference, is one of essential properties of trust, and es-

tablishes a trust relationship between unfamiliar entities. For instance, if Alice trusts

Bob and Bob trusts Cathy, Alice might trust Cathy to some extent [66, 114]. In this

case, Alice may not even know Cathy at all. The establishment of the trust to Cathy

in Alice’s mind depends both Alice’s trust to Bob and Bob’s trust to Cathy [228, 86].

This property enables trust information to be passed from one to another, resulting

in forming a trust path from the source to the target. This meets the fact that when

encountering an unknown person, it is common for people to ask trusted friends for

opinions about how much to trust this new person [65].

Furthermore, the property of propagation sets up the foundation of a number of

trust inference models, which evaluate trust from a source entity to a target entity along

a trust path between them that consists of links and trust values [69]. In the propagation

process, trust decays with the increase of propagation hops along a social trust path [39,

136]. In addition, as the multiple entities and contexts are involved in a trust path, trust

propagation becomes complicated [114, 233]. In computer science, it has attracted

more and more researchers to study trust propagation in large-scale complex social

networks, such as finding the most trustworthy path [86, 116]. Moreover, it has also

been studied in many web application areas including e-commerce [209, 236, 235],

P2P systems [220], and social networks [82, 66, 119].

2.2.2.4 Trust is Context Dependent

Rousseasu et al. [171] review the concept of trust extensively and suggest that “re-

search on trust requires the attention to context.” It is also stated in [7, 212] that a per-

son’s trust in another person changes regarding different contexts, because expertise

of a recommender may vary in different domains. Similar suggestions or statements
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can be found in a huge number of works in the literature, and the core is that “trust is

highly context-dependent,” as described by O’Hara et al. [154] in social psychology.

Conceptually, context is generally defined as “the circumstances that form the setting

for an event, statement, or idea, and in terms of which it can be fully understood,” as

stated in Oxford Dictionary11.

In computer science, a more specific and widely accepted definition is proposed by

Dey et al. [45]: “Context is any information that can be used to characterize the situa-

tion of an entity. An entity is a person, place or object that is considered relevant to the

interaction between a user and an application, including the user and the application

themselves.” In addition, from the viewpoint of context, Grandison and Sloman [67]

define trust as “the firm belief in the competence of an entity to act dependably, se-

curely, and reliably within a specified context”. More specifically, McKnight et al.

[142] propose “interpersonal and personal trust” as one of topological categories on

trust. Namely, one person trusts another person in a specific context. For example,

Alice may trust Bob as a mechanic in the specific context of servicing her car but

probably not in the context of babysitting her children [5]; and “Whilst I may trust

my brother to drive me to the airport, I most certainly would not trust him to fly the

plane!” [139]. Furthermore, Marsh [139] proposes the concept of “situational trust” as

an alternative way of contextual trust, suggesting that context affects trustworthiness.

In addition, Mui [150] stresses that trust depends on the context in the viewpoint of

reputation, and states “Bill Clinton’s reputation as a politician is likely to be very dif-

ferent from his reputation as a cook,” which means we could only trust Bill Clinton as

a politician instead of a cook from past experiences.

In OSNs, Liu et al. [120] state that social context includes social relationship, so-

cial position, preference and residential location etc. And, trust can be transferred

between relevant contexts [240, 206]. For example, if Alice trusts Bob in teaching Vi-

sual C (VC), Alice can also trust Bob in teaching Java to some extent, as the contexts

of teaching VC and teaching Java are similar. Furthermore, it is indicated in social

11http://www.oxforddictionaries.com/definition/english/context
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psychology that these social contexts have significant influence on trust prediction in

OSNs [7, 111, 33] and a growing number of studies have been focusing on context in

trust prediction in recent years [220, 121, 163, 209, 197, 108, 234, 165, 124].

2.2.2.5 Trust is Dynamic

It is easy to understand that trust is dynamic, which means the trust between two

entities may change over time. The establishment process of trust itself has already

indicated this property of trust. Rousseau et al. [171] state that trust can occur, in-

tensify, or decay based on repeated direct interactions with new experiences, which

reflects temporal characteristics of trust. Dealing with the changes of trust over time,

there are three main types of ways in the literature: trust decay, trust time window and

probabilistic trust models.

Trust may decay over time, because the experience based on which the trust is es-

tablished fades over time. New interactions are usually more important than older ones

for the prediction of the current trust towards an entity. Based on this characteristic, re-

searchers in computer science gradually reduce the influence of old interactions, or in-

crease the weight of recent interactions, when predicting trust [172, 90, 210, 134, 205,

82]. In particular, Spitz et al. [183] point out a common phenomenon in e-commerce

websites that sellers can have a large lapse of time since their last transactions, in

which the decay of trust over time is more essential.

Trust time window is another way to deal with the temporal characteristic of trust.

For example, the e-commerce website eBay offers the choice of time window to be

set to last one month, last six months or last twelve months. In addition, a number

of researchers predict trust using a time window in different applications. For in-

stance, PeerTrust [219, 220] allows users to set the time window; and Shi et al. [181]

propose a mechanism for dynamic peer-to-peer trust based on time-window feed-

back. Furthermore, in some works, the hybrid of trust decay and time window is

adopted [211, 210, 205].

Trust can fluctuate strategically, especially in on trading environments, where ven-
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dors strategically and consciously change their behaviors in order to maximize per-

sonal profit [241]. To deal with this type of difficult situations, probabilistic models

are the most promising tools to deal with uncertainty. For instance, a Hidden Markov

Model is leveraged by ElSalamouny et al. [52] to predict the trust of outcomes of fu-

ture transactions. Liu et al. [124] propose a model based on Markov chains and context

information to predict trust.

A more detailed review regarding dynamic trust prediction will be presented in

Subsection 2.4.3.

2.2.3 The Influence of Trust

Having introduced the definition and property of trust, it is easy to recognize that

trust is an essential element of many fields. Social scientists have illustrated that both

real life societies and online communities greatly depend on trust [40, 57, 58]. For

example, Uslaner et al. [198] argue societies with higher trust levels function better.

Munns [151] state that in any society, trust is necessary for processes to operate effi-

ciently and effectively.

For individuals in the reality of our society, trust is the foundation of the daily

life. When a car is given to a mechanic for repair, trust is placed on the mechanic

for his/her skill of car repair, and is expected to return the car in an expected condi-

tion [151]. Researchers in social psychology [60, 55] have indicted that people tend to

accept the recommendations from their trusted friends rather than that from unknown

others. A similar statement is also proposed by Bedi et al. [23] in computer science.

Furthermore, some researchers [37, 41] have investigated the mechanism and extent

of the influence of trust on individuals’ decision-making process showing that trusted

friends have significant influence on the process in both real societies and online envi-

ronments.

Organizations have recognized the increasing importance of trust in terms of ef-

ficiency and effectiveness. Braddach et al. [30] state that trust is a control mecha-
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nism for companies. Wicks et al. [217] discuss trust in ethics and management, and

point out that trust is an important part of improving company performance. Fur-

thermore, Ring et al. [169] examine the influence of trust between two organizations

showing that trust is a fundamental ingredient for inter-organizational cooperation.

Similarly, Dodgeson [46] claims that trust facilitates strategic collaboration and coop-

eration. Moreover, trust is also studied regarding citizenship behavior [43, 94, 140],

conflict resolution [155], organizational commitment [40], perception [34, 182] and

satisfaction [11, 166, 38, 185].

In addition, trust has a great influence on government [104]. For instance, Chanley

et al. [36] state that the decline of trust in government can lead to less evaluation of

Congress and weaken government action; Van de Walle et al. [199] state “concerns for

restoring citizens’ trust in government are at the core of public sector modernization”;

and Warkentin et al. [213] point out that citizen trust is an important catalyst of e-

Government.

2.2.4 Social Context that Affects Trust

A social network usually contains not only the trust links and nodes, but also com-

plex social information describing each trust relationship, including social relation-

ship type, social position, residential location, and preference. A number of features

can be mined from the complex social information and utilized to analyze the trust

between nodes. This subsection presents a detailed review of features extracted from

social context information, which can be incorporated into trust prediction models and

further improve their performance.

2.2.4.1 Definition of Social Context

Context is a multi-faceted concept across different research disciplines with various

definitions [180]. In social science, Barnett et al. [20] define social contexts as “social

environments that encompass the immediate physical surroundings, social relation-
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ships, and cultural milieus within which defined groups of people function and inter-

act including built infrastructure; industrial and occupational structure; labor markets;

social and economic processes; wealth; social, human, and health services; power

relations; government; race relations; social inequality; cultural practices; the arts;

religious institutions and practices; and beliefs about place and community.”

In computer science, multiple definitions of social context have been proposed in

some specific social networks. Yang et al. [222] give the definition of social context in

micro-blog systems as “compared with traditional contexts that are defined based on

textual information, social context in micro-blog systems need incorporate various dy-

namic social relationships, such as the follower-followee relationships between users,

retweeting relationships and replying relationships between tweets.” Ma et al. [128]

define the social context in recommender systems, emphasizing “social context infor-

mation including users’ social trust network, tags issued by users, information about

the interests of users, or properties of items.”

In this thesis, we define social context as any information available for characteriz-

ing the participants and the situations of interactions between them. Furthermore, we

adopt the terminology used in [206]. If participant p1 has an interaction with partic-

ipant p2, the context about p1 and p2 in the social society is referred to as the social

context, among which the interaction context refers to any information about the in-

teraction including time, place, and type of services. If p2 recommends a service to

p1, then the information about the service is referred to as the target context, when

predicting the trust of p2 in p1’s mind.

2.2.4.2 Social Contextual Impact Factors

Social context describes the context about participants. Before it can be utilized, the

properties of each aspect must be extracted modeling the characteristics of partici-

pants and the relationships between them. In addition, social context can be divided

into two groups according to the characteristics of impact factors: personal properties

(e.g., social position, expertise, preference, indegree, outdegree, reliability, and loca-
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tion) and interpersonal properties (e.g., preference similarity, social intimacy, social

relationship type, location distance, and trust).

Social Position: Social position is the position of an individual in a given commu-

nity and culture [113]. In addition, an individual usually has multiple social positions

in different domains [7]. For example, an individual can be a professor of computer

science in a university and a tennis coach in spare time. In this case, the social posi-

tions of this person in computer science and teaching tennis can be greatly different.

Expertise: Expertise is a person’s formal training and technical knowledge, often

contrasted with the knowledge of people with no formal training [184, 201]. Expert

judgments are attractive and especially important in the situations of stretched time and

resources, inadequate existing data, unique circumstances, or requiring extrapolations.

In addition, it is illustrated in social psychology [7, 42] that in a certain domain of

interest, an expert’s recommendation is more credible than that of a beginner.

Preference: Preference is an individual’s attitude or affinity towards a set of ob-

jects in a decision making process [111]. A person may have different preferences in

different domains [113]. For example, a professor may prefers collaborating with oth-

ers of the same research area, and the same professor may also like watching movies

on weekends.

Indegree: The indegree of a participant in a social network is the number of links

connecting to him/her. A participant has a large indegree in an OSN means the par-

ticipant is well-known in the community. It is illustrated in cognitive science [97] and

computer science [159] that a well-known person is more credible than the ones inter-

acting with less people. Moreover, in social science, Prell [159] has validated that the

recommendation from a participant with a larger indegree is more credible.

Outdegree: The outdegree of a participant in a social network is the number of

links connecting from him/her. A participant with a larger outdegree in an OSN has

more opportunities to connect with others in the community, which means this partic-

ipant is more active in social activities in the community.

Reliability: In a certain context, reliability means the rate a participant’s sug-
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gestions are accepted by others [81]. It reflects a participant’s ability to give useful

suggestions which fit the others’ favor.

Location: Locations of participants are the residential places where participants

are living.

Preference Similarity: “Things of a kind come together. People of a mind fall

into the same group.” Similar to this old saying, in social psychology [126, 232], it

is illustrated that a participant can trust and have more social interactions with others,

with whom the participant has more similar preferences. For example, two individuals

with the hobby of playing badminton are more likely to play badminton together. In

addition, in computer science, Wang et al. [206] point out that the similarity of two

participants’ preferences can impact the trust between them to some extent.

Social Intimacy: Social intimacy refers to the frequency of connections between

participants in a social network. The degree of social intimacy can impact trust, as

people tend to trust those with more intimate social relationships [33]. It is also illus-

trated in social psychology [14, 31] that a participant can trust and have more social

interactions with others with whom the participant has more intimate social relation-

ships.

Social Relationship Type: Social relationship type in this thesis refers the nature

of social relationships, such as “neighbors”, “live together”, “manager of”, “member

of ”, “supervisor of”, “competitor of”, to name a few, as rich activities of participants

in social networks can be categorized into different domains based on their character-

istics [212]. In social science, Brehm [33] has indicated that two participants can have

more than one type of social relationships. For example, Alice and Bob are classmates;

both of them join the same club; and Alice is the daughter of Bob.

Location Distance: It is illustrated in social psychology [20, 61] that compared

with the participants living far away, a participant can trust more and have more social

interactions with others who live closer.

Trust: Trust is a belief that an entity, such as a person or an organization, will

behave in an expected manner, despite the lack of the ability to monitor or control the
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environment in which it operates [180]. It can be impacted by all the above properties,

and the trust value can be greatly different between the same two participants in dif-

ferent interaction contexts [212, 136]. A detailed review of the definition of trust has

been presented in Subsection 2.2.1.

2.3 Trust Network Extraction in OSNs

In social networks, participants usually interact with multiple others. The interactions

between participants contain a lot of information regarding giving trust ratings, trans-

actions, sending emails, sharing information etc. and the context information when the

interactions occurred. Then, a social trust network, such as Figs 1.1 or 1.2 in Chap-

ter 1, is formed based on the trust relationships and context information between any

two participants. Thus, the social trust network provides a foundation for predicting

the trust to a target participant in a source participant’s mind. However, predicting the

trust between any participants who do not have any historical direct interactions from

the entire social trust network can be very time-consuming, especially when the scale

of the social trust network is large. Therefore, prior to trust prediction, it is an essential

step for the accuracy and efficiency of trust prediction to extract a trust subnetwork for

these two nonadjacent participants, which contains exclusively the important interme-

diate participants and relationships in the target context, and is kept relatively small in

scale.

In the literature, there are few approximation algorithms proposed for the subnet-

work extraction problem for trust prediction in online social networks [113, 242]. In

addition, extracting a subnetwork from a cyclic network, such as social trust network,

has been proved to be an NP-complete problem [146]. Fortunately, as the resource dis-

covery problem in P2P networks has some similar properties as the trust subnetwork

extraction problem, some search strategies from P2P networks can be applied to trust

subnetwork extraction. These approaches can be divided into two groups: traversal

methods and heuristic methods.
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2.3.1 Traversal Methods

Traversal methods usually search the whole social trust network and have the capa-

bility to find the best subnetwork. This type of methods mainly includes breadth-first

search (BFS) and depth-first search (DFS) and their variations, such as high degree

search (HDS) and flooding-based search (FBS). HDS [6] sends a query to all its neigh-

bors based on the BFS method to determine whether they contain the resources or not.

Then, it broadcasts the search along directions of the highest degree using DFS method

if none of the neighbors contain the resources until reaching a threshold or traversing

all nodes. The typical FBS [113] searches the network from the source node using

BFS strategy to find the target resource in a P2P network, and is applied in a large

P2P network, Gnutella (rfc-gnutella.sourceforge.net), where users are allowed to di-

rectly exchange files over the Internet without going through a web site as a way of

downloading music files from or sharing with other Internet users.

For the application on small-scale datasets, the traversal methods are able to search

for the best subnetwork. However, on large datasets, it is computationally unfeasible to

find the optimum solution. For example, FBS sends a query to every neighboring node

in the network to find the target resource, which makes the FBS mechanism inherently

unscalable in a large scale network.

2.3.2 Heuristic Methods

Compared with traversal methods, heuristic methods are to find a near-optimal so-

lution in a large-scale network. We divide existing heuristic methods available for

subnetwork extraction problem into the following three categories.

First, heuristic methods can be developed from traversal methods by incorporat-

ing heuristic strategies. By adding heuristic strategy to BFS, the time-to-live breadth

first search (TTL-BFS) model [35, 54] is proposed, in which the time-to-live (TTL)

is introduced to indicate the time consumption of BFS. TTL decreases as the depth of

search increases and terminates TTL-BFS when TTL reaches 0. Another typical algo-
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rithm for locating resources in P2P networks is random walk search (RWS) [62, 63].

In this algorithm, the source node randomly selects K neighboring nodes (named ran-

dom walkers) and sends out the queries. The process is repeated if the target is not

found. Similar as TTL-BFS, each random walker has a TTL which limits the number

of times the process is repeated.

Second, a few models are proposed specially for the trust subnetwork extraction

problem from the perspective of trust propagation or inference. Hintsanen et al. [73]

propose a model to find the most reliable subnetwork. They treat social networks

as Bernoulli random graphs and extract a sub-graph by adding paths to the extracted

sub-graph one by one till the most reliable status is reached. Liu et al. [115] pro-

pose a model to find K optimal social trust paths for the selection of trustworthy

service providers in complex social networks. The K paths selected from a source

participant to a target one actually form a subnetwork. Liu et al. [117] propose a so-

cial context-aware trust network extraction model, which applies an optimized Monte

Carlo method to extract an optimal trust network from the source to the target par-

ticipants, under user-given constraints of trust network utility yielding the highest

utility. These existing works rely on trust paths and do not perform well for ma-

trix factorization-based trust prediction approaches, as the density of extracted subnet-

work is not considered, and even state-of-art subnetwork extraction models still need

improving in the aspects of both efficiency and effectiveness.

Third, some heuristic algorithms based on bionics can be leveraged to solve the

trust subnetwork extraction problem, such as Genetic Algorithm, Particle Swarm Al-

gorithm and Ant Colony Algorithm. Among these algorithms, algorithms based on the

ant colony are proved to be the most suitable one for problems such as trust subnet-

work extraction [218, 242]. In addition, Jang et al. [80] propose a binary ant colony

algorithm (BACA) in which the initial pheromone on paths is equally distributed, and

the path selection only depends on the existing pheromone. This BACA can also be

utilized to find the most reliable subnetwork. However, when compared with the above

approaches, the performance of BACA is not improved much, as the scale of the se-
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lected subnetwork is affected by the initialization.

2.3.3 The Problems of Existing Methods

In summary, traversal methods [35, 54, 6] usually adopt methods, such as breadth-

first search and depth-first search, and are applicable on small-scale datasets. How-

ever, on large-scale datasets, they are computationally unfeasible to find the optimum

solution, and heuristic methods [62, 63, 6, 73, 115, 117] can be used to find a near-

optimal solution. In addition, most of the relevant existing works do not consider the

social context in online social networks, which has significant influence on trust pre-

diction [31, 111, 231]. On the other hand, all the existing works rely on the existing

social trust paths, which limits the performance of trust prediction, as some aspects,

such as expertise, can affect the trust without the need of social connections. Accord-

ing to our knowledge, there is no existing approach focusing on the context-aware trust

subnetwork extraction specifically for trust matrix-based trust prediction.

2.4 Trust Prediction

In human society, trust depends on a host of factors such as direct interaction, opinions,

and motivations. [25]. But, in online social networks, people cannot directly interact

with each other, and the credibility of online information may be doubtful [168]. As

a result, trust mainly depends on the past experience with a participant, the profiles

or descriptions, reputation etc. However, it is quite common for a participant in on-

line environments to conduct activities with another participant without any previous

direct knowledge, such as online shopping, recommender systems and online recruit-

ment. Thus, an effective approach and mechanism to predict the trust between two

participants without any direct connection is highly demanded.

The process of estimating a new pair-wise trust relationship between two partici-

pants who are not directly connected, based on existing observations, is termed as trust
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Figure 2.1: The categorization of trust prediction (TP)

prediction. In the literature, a number of trust prediction models have been proposed.

As shown in Fig. 2.1, from the perspective of the different characteristics of algo-

rithms, existing trust prediction models can be divided into static trust prediction and

dynamic trust prediction. Furthermore, static trust prediction can be further divided

into propagation-based trust prediction and latent factor-based trust prediction. In

addition, based on application situations and dependent information, each of the above

categories contains single-context trust prediction and context-aware trust prediction.

2.4.1 Propagation-based Trust Prediction

Propagation is an important property, as introduced in Subsection 2.2.2.3, which has

been validated in both social psychology [39] and computer science [88, 65]. In

addition, trust propagation has been studied in many application areas including e-

commerce [209, 236, 235], P2P systems [220], and social networks [82, 66, 119].

Based on this property of trust, a type of trust prediction approaches named trust prop-

agation or inference are proposed. Trust propagation/inference is the process of evalu-

ating trust from a source participant to a target participant along a path between them

that consists of trust links and trust values [69]. For example, if Alice trusts Bob, and

Bob trusts Cathy, then Alice can trust Cathy to some extent [66, 114]. This means that
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if Alice needs a tennis coach, and Alice’s trusted friend Bob is very satisfied with the

experience when he learned tennis from the coach Cathy, then Alice can trust Cathy

regarding teaching tennis to some extent, as Alice trusts Bob, believing Bob would tell

the truth, and Bob believes Cathy is good tennis coach.

In earlier years, most of the trust prediction models focused on the propagation of

trust along the trust paths connecting users. The most simple and typical approaches

are based on either multiplication strategy or averaging strategy. When adopting mul-

tiplication strategy, the trustworthiness of a target participant, in a source participant’s

mind, is computed as the multiplication of the trust values between any two adjacent

participants along the social trust path from the source participant to the target one.

For example, if Alice trusts Bob with the trust value of TAB and Bob trusts Cathy with

trust values of TBC , then the predicted trust value to Cathy in Alice’s mind will be

TAC = TαAB ∗ T
β
BC , where α and β are coefficients. Adopting multiplication strategy,

Walter et al. [200] propose a social network based recommendation system, in which

the predicted trust value of a target recommender is calculated along a social trust path

from a recommendee to a recommender. Lei et al. [110] propose a composite service

trust evaluation method to compute the aggregated trust value of a composite service

along a service composition path. When adopting the averaging strategy, the trust-

worthiness of a target, in a source participant’s mind, is computed as the average trust

value between any two adjacent participants along a social trust path. The predicted

trust value to Cathy in Alice’s mind will change to TAC = αTAB + βTBC , where,

α + β = 1. Adopting the averaging strategy, Gary et al. [68] propose a trust-based

admission control model to predict the trust of unknown participants, and Golbeck et

al. [65] propose a trust inference method to compute the inferred trust value of the

target participant, which is further applied to FilmTrust.

In later years, the performance of propagation based trust prediction has been fur-

ther improved by adding more information into the propagation process. Guha et

al. [69] propose a trust propagation model considering the number of hops and the

trust situations of intermediate nodes, when calculating the propagated trust value be-
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tween a source user and the target one. Huang et al. [71] utilize operators such as

concatenation, aggregation and selection to propagate trust. Kuter et al. [98] propose

a trust inference model taking into account the confidence values given by domain ex-

perts. Lesani et al. [99, 100, 101] propose a trust propagation model using fuzzy logic

which supports linguistic terms as low, medium low, medium high and high. Taherian

et al. [188] infer trust values in web-based social networks based on the resistive net-

work concept. The trust propagation model proposed by BuBois et al. [203] takes a

trust network as a random graph and creates an inferred trust-metric space, in which

a shorter distance means higher trust. Wang et al. [203] propose a flowtrust approach

using network flows to model a trust graph to calculate the maximum amount of trust

under flow theory.

Moreover, a few researchers have started to add social context information into

trust inference models to further improve the performance of trust prediction. Liu

et al. [116] argue that social relationships and recommendation roles are also impor-

tant for trust propagation. Taking into account these factors, a Bayesian network-based

trust inference model is proposed [114]. Furthermore, Wang et al. [206] propose a trust

prediction model to infer the trust between non-adjacent participants in online social

networks taking into account both the social context of participants and the context

of the target service to be recommended. In this model, the characteristics of partici-

pants in a social network are divided into personal characteristics (e.g., preference and

domain expertise) and mutual relations (e.g., existing trust, social intimacy and inter-

action context), and finally the social context-aware trust inference model is proposed

based on probabilistic theories. The proposal of such works is based on these two

foundations: 1) Trust is context-dependent [180] and it is rare for a person to have full

trust on another in every facet [189]. For example, the case of full trust in all aspects

is less than 1% at Epinions.com and Ciao.co.uk, both of which are popular product

review websites [189]. 2) In real life, a person’s trust to another is limited to certain

domains, demonstrated by social psychologists [7, 39]. For instance, Alice trusts Bob

in playing tennis and Bob trusts Cathy in repairing cars. In such a case, Alice may not
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trust Cathy in repairing cars at all, as playing tennis and repairing cars are not relevant

contexts in the common sense of people and the trust in these two different contexts

can be greatly different.

In summary, these existing trust propagation (or inference) models provide a type

of feasible solutions to predict the trust values of a target participant in a source partic-

ipant’s mind along a social trust path from a source participant to a target one. They all

possess the same feature that the trust values to be predicted must be calculated along

a social trust path. There would be no trust values predicted, if there are no social trust

paths connecting the source participant and the target one. However, trust can also be

predicted from other aspects besides a social trust path. Lin et al. [112] demonstrate

that people tend to trust others who are similar to themselves. For example, people

from the same hometown or school are easy to become friends, and people prefer the

recommendations from recommenders who have the same preferences as themselves.

In addition, the reputation of a person is also an element affecting the trust towards the

target, especially in online trading environments [134, 172, 28, 219, 87, 209]. For ex-

ample, we may trust a professor in his/her research field more than his/her new students

in real life, and we are more likely to buy items from sellers with a high reputation in

e-commerce websites such as eBay and Taobao. Therefore, predicting trust not only

from social trust paths has attracted a growing attention from researchers, and a review

of this type of trust prediction will be presented in Subsection 2.4.2.

2.4.2 Latent Factor-based Trust Prediction

As propagation-based trust prediction models strictly depend on the social trust path

from a source participant to a target participant, they are not able to predict the trust

between two participants if there is no trust path between them, or if the path be-

tween them is so long that the trust along the path has decayed to zero. However,

if trustees (the users who receive trust ratings) are regarded as the items in a recom-

mender system, the general idea of latent factor-based approaches originally employed
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in recommender systems can be leveraged for trust prediction [225, 226].

Latent factor-based approaches, such as matrix factorization and factorization ma-

chine, analyze the relationships between trusters (the users who give trust ratings) and

trustees, with factors representing latent characteristics of the participants to identify

new truster-trustee associations [96]. They mainly rely on users’ past behaviors, such

as previous trust ratings, and are trained based on the available data and later used to

predict the trust value between two non-adjacent participants. In addition, the propa-

gated trust from a trust path can also be incorporated if needed.

2.4.2.1 Matrix Factorization

Matrix factorization is the foundation of most successful realizations of latent factor

models [130, 127, 129, 131, 132, 227, 76, 79, 153, 186, 189, 190, 191, 221, 229]. In

addition, in Netflix price competition, Koren et al. [96] have shown that matrix factor-

ization methods outperform other rating prediction methods significantly, especially

in sparse datasets. Matrix factorization models map truster-trustee rating matrix into a

joint latent factor space of dimensionality l, so that each truster-trustee trust rating ri,j

is modeled as the inner product of a truster-specific (user-specific) vector ui ∈ Rl and

a trustee-specific (item-specific) vector vj ∈ Rl in that space, i.e., ri,j ≈ uTi vj . For the

whole trust rating matrix, we have R ≈ UTV , where, U ∈ Rl×n and V ∈ Rl×n. This

can be usually achieved by minimizing the Frobenius norm ||R − UTV ||2F . In appli-

cation, the matrix R usually contains a large amount of missing values and becomes a

sparse matrix. In addition, in order to avoid overfitting, zero-mean spherical Gaussian

priors are introduced [174]. Here, factorization is achieved by:

min
U,V

n∑
i=1

n∑
j=1

Iij(rij − uTi vj)2 + λ1||U ||2F + λ2||V ||2F , (2.1)

where, Iij is an indicator function. Iij = 1 iff. user i (truster) rated user j (trustee),

i 6= j. Otherwise, Iij = 0. The gradient descent method [96] is usually utilized to

realize this learning process.
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Matrix factorization methods have a number of advantages, which can be summa-

rized as follows: (i) many optimization methods can be applied in matrix factoriza-

tion, such as gradient descent [49]; (ii) there is a good probabilistic interpretation with

Gaussian noises in matrix factorization [144]; (iii) it is very flexible to incorporate

prior knowledge [192]; (iv) it scales well to large-scale datasets, as it scales linearly

with the number of observations [174]; and (v) it performs relatively well on sparse

and imbalanced datasets [174].

2.4.2.2 Modifications of Matrix Factorization

In the literature, matrix factorization methods have been modified in different ways

to achieve better prediction accuracy. According to the ways of incorporating prior

knowledge, we summarize the existing trust prediction approaches that apply modified

matrix factorization into the following two categories.

Semi-Latent Matrix Factorization: In conventional matrix factorization-based

trust prediction models, the physical meaning of latent factors is not explicitly defined.

We cannot point out which latent factor corresponds to which trust property. On the

contrary, semi-latent matrix factorization-based trust prediction models expose part of

the latent factors in the l-dimensional latent factor space by replacing the part of the

latent factors with trust properties under physical meanings such as propagated trust,

truster tendency and trustee tendency.

One typical semi-latent matrix factorization-based trust prediction model is pro-

posed by Yao et al. [226]. In this model, the tendency and propagated trust values are

treated as some of the latent factors of matrix factorization to boost trust prediction ac-

curacy, while other latent factors of matrix factorization are kept unchanged and latent.

In this matrix factorization model, the trust rating is represented as:

r̂i,j = uTi vj + α[µ, x(ui), y(vj)]
T + βzTui,vj . (2.2)

where, uTi vj is the traditional part of matrix factorization with latent factors; [µ, x(ui), y(vj)]
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is the exposed latent factors representing global trust bias, truster bias and trustee bias;

and the vector zui,vj is the exposed latent factors representing four types of propagated

trust regarding direct propagation, transpose trust, co-citation and trust coupling. α

and β are the coefficient vectors correspondingly. In this model, the training process

of Equation (2.1) is changed to:

min
U,V,α,β

n∑
i=1

n∑
j=1

(rij − (α[µ, x(ui), y(vj)]
T + βzTui,vj + uTi vj)

2

+ λ(||U ||2F + ||V ||2F + ||α||2 + ||β||2),

(2.3)

This type of matrix factorization-based trust prediction models have a very good vi-

sualization of the trust impact properties, and improves the performance of the trust

prediction. However, the sparsity consideration is not revealed in this formulation.

Whether the explosion of latent factors limits part of the capability of matrix factoriza-

tion needs further studying. The trust properties in the model are limited and demand

further research. For example, the social context information is not included.

Matrix Factorization with Social Regularization: This type of matrix factor-

ization models focus on a user’s preference and utilize the assumption that a user’s

preference should be similar to that of his/her social network. In other words, regular-

ization terms are added to force a given user’s preference to be closer to that of his/her

social network. In addition, this type of matrix factorization models have the capabil-

ity of incorporating the propagation of user favors in social networks and reducing the

cold-start effect [192].

As the behavior of a user ui is affected by the user’s direct neighborsNui [56], a so-

cial regularization term (average-based regularization) of
∑n

i=1(ui−
∑

uk∈Ni Sikuk)
2

is introduced into matrix factorization to force that the latent factors of user ui is

dependent on the latent factors of all the user’s direct neighbors uk ∈ Nui , where∑
uk∈Ni Sikuk is the weighted average preference of users in ui’s neighbors [79, 192].

Sik is the similarity of two users’ previous ratings, which can be calculated by Vector

Space Similarity (VSS) or Pearson Correlation Coefficient (PCC) [32, 79]. In addition,
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through a propagation mechanism, the neighborsNui can be extended to almost all the

users in the social network. Thus, the training process of Equation (2.1) is changed to:

min
U,V

n∑
i=1

n∑
j=1

Iij(rij − uTi vj)2 + α
n∑
i=1

(ui −
∑
uk∈Ni

Sikuk)
2 + λ(||U ||2F + ||V ||2F ). (2.4)

However, for a given user ui, users in his/her social network may have different

favors. According to this intuition, a pair-wise social regularization is proposed as

individual-based regularization
∑n

i=1

∑
uk∈Ni Sik(ui − uk)

2, in which the similarity

of two users determines the closeness of the two users’ preferences in the latent factor

space [131]. Thus, the training process of Equation (2.1) is changed to:

min
U,V

n∑
i=1

n∑
j=1

Iij(rij − uTi vj)2 +α
n∑
i=1

∑
uk∈Ni

Sik(ui− uk)2 + λ(||U ||2F + ||V ||2F ). (2.5)

A comparison between average-based regularization and individual-based regulariza-

tion on the influence of the performance of matrix factorization is conducted by Ma

et al. [131] and the conclusion is that the matrix factorization with individual-based

regularization achieves better performance.

Moreover, the calculation of similarity Sik between two users ui and uk is critical

to matrix factorization with regularization models. In the literature, most existing

models, including the above two, use VSS or PCC [32, 131, 79, 192]. The difference

between VSS and PCC is that PCC takes into account the average rates while VSS

does not.

In summary, matrix factorization with social regularization is a powerful tool for

trust prediction. But, there are still a number of drawbacks in most existing works

of this type. Firstly, all the tendency, propagated trust and similarity that influence

the trust between two users should be utilized to predict pair-wise trust, rather than

only one or two influential factors. Secondly, the similarity of trust rating distributions

describes the similarity of users’ behaviors in giving trust ratings. Thus, it is valuable

for trust prediction [241]. However, it has been neglected in most existing works,
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which merely utilize the similarity of rating values. Thirdly, trust impact factors are

of different types, representing either personal properties or interpersonal properties.

They should be processed separately and differently so as to deliver high accuracy in

trust prediction. Finally, trust is context-dependent [180] and it is rare for a person

to have full trust on another in every facet [189]. Therefore, contextual information

should be taken into account to trust prediction for further improvement.

2.4.2.3 Other Latent Models Available for Trust Prediction

As trust is a critical factor in the decision-making process of participants in online

social networks [98], the prediction of trust is attracting more researchers.

Factorization machine is a regressive model that factorizes truster-trustee (user-

item) collaborative data into real valued feature vectors [164]. It can be treated as a

generalized model of matrix factorization, as most factorization models can be mod-

eled as the special case of factorization machines [164]. In factorization machines, the

interaction is represented by a tuple (x, r) consisting of a n-dimensional feature vector

x = (x1, x2, ...xn) ∈ Rn and a corresponding label (rating) r. The second order fac-

torization machine is the most common one used for prediction and recommendation,

as only pairwise interactions are considered. This model can be formulated as:

r̂(x) = w0 +
n∑
j=1

wjxj +
n∑
j=1

n∑
j′=j+1

wj,j′xjxj′ , (2.6)

where, wj are model parameters and wj,j′ = vj · vj′ are factorized interaction parame-

ters and vj is k-dimensional factorized vector for feature j. In addition, this model can

be trained by Gibbs Sampling, Stochastic Gradient Descent, Alternating Least-Squares

and Markov Chain Monte Carlo methods [164].

Based on factorization machines, Loni et al. [125] propose a cross-domain collab-

orative filtering recommendation model, in which the auxiliary information is encoded

as a real-valued feature vector as a supplement to the information of a user-item matrix.

The authors constitute particular domains with specific types of items and utilize inter-
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action information from auxiliary domains to generate recommendation in the target

domain. In other words, encoding domain-specific knowledge in terms of real-valued

feature vectors betters the exploitation of interaction patterns in an auxiliary domain

with the help of factorization machines.

Moreover, utilizing factorization machines, Liu [122] proposes a trust network

based context-aware social recommendation model, which takes into account both so-

cial and non-social contextual information. In his work, random walk is used to collect

the most relevant ratings regarding the multi-dimensional trustworthiness of users from

a trust network, and the factorization machine is applied to predict the missing ratings

while considering the contexts. Especially, different from conventional factorization

machine models, the n-dimensional feature vector is constructed of the information

from a user, an item and any contexts regarding this interaction, and by this strategy,

the contextual information is incorporated into the factorization machine model.

2.4.3 Dynamic Trust Prediction

Due to the nature of virtual communities, people including vendors (providers) and

consumers do not meet or interact physically. As shown in Figure 2.4.3, the evidence

of cheating can be easily seen in eBay community. In such an environment with un-

certainty, the prediction of the dynamic trust about a vendor or a service provider in

online environments has become increasingly important [107][209][207]. Modeling

the dynamic trust of an online vendor or a service provider is a challenging task. Ac-

cording to the applied algorithms, the existing works are mainly classified into three

categories.

2.4.3.1 Beta Models

One typical approach is the Beta reputation method proposed by Jøsang [82], which

combines feedback and derives reputation ratings based on Beta probability density

functions. The advantage of the Beta reputation system is its flexibility and simplicity
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as well as its foundation on statistics theories. Later on, based on the intuition that

recent information is more important for the prediction of dynamic trust, the Beta

model is improved by adding a decay factor to control the weight of data [52], which

makes the model focus more on recent data. Furthermore, Zhang and Cohen [238]

model agent behaviors with a time window, in which the numbers of successful and

failed transactions are aggregated with a forgetting rate, and the trustworthiness is

adjusted accordingly. Although these approaches show success in certain scenarios,

they are not effective in the scenarios where the vendor’s (or provider’s) behavior is

highly dynamic or is changing strategically.

2.4.3.2 HMM-based Models

Several trust prediction methods based on Hidden Markov Model (HMM) have been

proposed to deal with the dynamics of the online vendor or service provider. Several

studies [52, 149] propose the HMM approach in modeling transaction results. In these

models, the outcomes of each past transaction, say failure or success, are treated at the

observation of HMM. This type of HMM-based approaches work much better than

Beta model-based methods in detecting a service provider’s changes, and are more

suitable for modeling dynamics. However, such HMM-based approaches utilize only

the outcomes of the past transactions as the observation sequence, but ignores the

contextual information about each transaction, and makes the prediction a full guess.

To solve this problem, Liu and Datta [124] propose a contextual information-based

Markov model, which extracts features from transaction contextual information as the

observation sequences of HMM and treats the outcomes directly as the states of the

models. Liu and Datta [124] also apply information theories and Multiple Discrim-

inant Analysis to reduce the feature space. This approach utilizes the contextual in-

formation and speeds up the calculation, as it simplifies the training of HMM to the

statistics of past records. However, it reveals the hidden states of HMM and the authors

also assume a series of transactions occurring between a seller and the same customer,

which can hardly be true in most actual scenarios. In addition, there could be more
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features to be taken into account, such as price changes, in addition to static features

in the contextual information.

2.4.3.3 ANN-based Models

Besides HMM-based dynamic trust prediction models, Artificial Neural Network (ANN)

is another favorite heuristic algorithm for the prediction of future trust values. For ex-

ample, Azadeh [15] proposes an ANN-based trust prediction model. In this model

both the linguistic expressions of trust values and the reliability of recommendations

are taken into account; Z-numbers, introduced by Zadeh [230], are used to convert

qualitative expressions to real numbers; and then ANN is applied to predict the trust

values in the future.

However, there are a few disadvantages limiting ANN. The initialization and net-

work topology design rely on the experience of a designer. ANN-based models are

susceptible to over-fitting and hard to converge to the global optimal solution.

2.5 Conclusion

A general overview of the research works has been provided in this chapter includ-

ing online social networks, trust, trust network extraction and trust prediction. First,

we have presented the properties of social networks indicated by social scientists, and

have categorized the online social networks according to their different characteris-

tics. Second, we have provided a detailed overview of trust from the aspects of multi-

discipline definition, property, influence and the social context that affects trust, as

indicated by social scientists based on their long-term observation of a large number

of human activities. Therefore, these properties of trust and social contexts should be

considered in the trust prediction process in any situation. Third, we have reviewed the

existing approaches that are able to extract a social trust subnetwork from the whole

online social network, which is used to improve the efficiency and effectiveness of

forthcoming trust prediction. Last but not least, we have analyzed the advantages and
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disadvantages of the existing studies of different categories of trust prediction, and the

studies that can be leveraged for trust prediction in online social networks, including

propagation-based trust prediction, latent factor-based trust prediction and dynamic

trust prediction.



Chapter 3

Subnetwork Extraction in Trust Social

Networks

As introduced in Chapter 1, Online Social Networks (OSNs) contain important par-

ticipants, the trust relations between participants, and the contexts in which partici-

pants interact with each other. All of these are of great value for the prediction of

the trust between a source participant and a target participant, which is important for

a participant’s decision-making process in many applications such as seeking service

providers. However, predicting the trust from a source participant to a target one based

on the whole social network is not really feasible. Prior to trust prediction, the extrac-

tion of a small-scale subnetwork containing most of the important nodes and contex-

tual information with a high density rate could make trust prediction more efficient

and effective.

In order to address this challenging subnetwork extraction problem, in this chapter,

Section 3.1 describes the problem of social trust subnetwork extraction. In Section 3.2,

we define a utility function to measure the trust factors of each node in a social net-

work and formulate the subnetwork extraction problem. Section 3.3 presents the basic

knowledge of Ant Colony Algorithm (ACA) which is the basis of our proposed mod-

els in the following sections. In Section 3.4, we propose a social context-aware trust

subnetwork extraction model, called BiNet, which can extract a contextual subnetwork

for the specific purpose of predicting the trust from a source node to a target node in

the target social context of an item to be recommended. In this model, we design a

55
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novel binary ant colony algorithm (NBACA) with newly-designed initialization and

mutation processes for subnetwork extraction incorporating the utility function. Then,

we compare BiNet with the existing approaches in Section 3.5. The experiments con-

ducted on two popular social network datasets, Epinions and Slashdot, demonstrate

the superior performance of our proposed BiNet over the state-of-the-art approaches.

In Section 3.6, we propose another social context-aware trust subnetwork extraction

model, called TrustNet, in which, we design a novel ant colony algorithm (NACA)

for the subnetwork extraction problem, by adding an mutation process and improving

the path selection and pheromone update processes of traditional ACA. Next, TrustNet

is compared with BiNet and other state-of-the-art approaches in Section 3.7 on both

Epinions and Slashdot datasets. The results show that TrustNet is superior to BiNet

and other state-of-the-art approaches in terms of the quality of extracted subnetworks

within the same execution time. This chapter is finally summarized in Section 3.8.

3.1 The Trust Network Extraction Problem

OSNs are usually represented as graphs as shown in Fig. 3.1. A node in the graph rep-

resents a participant in an OSN while the edge pointing from one node to an adjacent

node corresponds to their real-world or online interactions (e.g., A → B in Fig. 3.1).

Different types of edges represent different contexts, which refer to any information

available for characterizing the participants and the situations of interactions between

them [206], e.g., a solid line refers to the relationship in Swift programming, a dashed

line refers to C++ programming and a dotted line refers to tennis playing in Fig. 3.1.

The trust can be explicitly given by one participant to another based on their history of

interactions.

In Fig. 3.1, suppose A is looking for a collaborator such as a Swift programmer

and H is recommended to A as a Swift programmer. But, A does not know H . Here

we assume Swift programming is the target context, i.e., the context in which the trust

between a source node and a target node needs to be predicted. In A’s mind, B, E
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Figure 3.1: A social network
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  A B C D E F G H I 

A 0 1 0 0 1 1 1 0 0 

B 0 0 1 0 0 0 1 1 0 

C 0 1 0 0 0 0 1 1 0 

D 0 0 0 0 0 0 0 1 1 

E 0 0 0 0 0 0 0 0 0 

F 0 0 0 0 0 0 0 0 0 

G 1 1 1 0 0 0 0 1 0 

H 0 1 1 1 0 0 1 0 0 

I 0 0 0 1 0 0 0 0 0 

  A B C G H 

A 0 1 0 1 0 

B 0 0 0.7 1 1 

C 0 0.7 0 0.7 0.7 

G 1 1 0.7 0 1 

H 0 1 0.7 1 0 
Figure 3.2: Subnetwork

and G are good Swift programmers. B, G and H trust each other and G also trusts

A regarding Swift. C trusts B, G and H regarding C++ programming and vice versa.

D also trusts C regarding C++. F , I , J and H are good tennis players. In order to

predict if H will be a good Swift programmer in A’s mind, it is unnecessary to use

the whole social network in Fig. 3.1, because F , I and J are only good at tennis while

Swift programmer E and C++ programmer D have little knowledge of others. Let

us assume this social network is only constructed in three contexts: Swift, C++ and

tennis. In order to boost the efficiency and effectiveness of trust prediction regarding

the target context Swift, the social subnetwork in Fig. 3.2 is extracted from Fig. 3.1 by

removing the social relations in tennis playing and keeping only the important social

relations for the prediction of trust between A and H on Swift and C++ teaching,

because 1) tennis is irrelevant to the target context Swift; 2) C++ is relevant to Swift;

and 3) nodes, such as D and E, are not so important as others for the trust prediction

task. In addition, the density of the subnetwork in Fig. 3.2 is raised from the original

0.23 of Fig. 3.1 to 0.6, which can enhance the trust prediction accuracy of matrix

factorization-based approaches [89, 225, 243].

In the literature, there are some existing works focusing on trust prediction, i.e., the

process of estimating a new pairwise trust relationship between two nonadjacent par-

ticipants. Most of these works predict trust based on social graphs (e.g., Fig. 3.2) using
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inference approaches [66, 110, 118, 119, 206], while a few of them predict trust from a

trust matrix, i.e., a representation of social networks in matrices rather than graphs, us-

ing matrix factorization approaches [225, 78, 243]. All of these trust prediction models

assume that the trust network or matrix including the source and the target participants

has already been extracted, or even that the whole dataset is directly used. However,

subnetwork extraction is a necessary step prior to trust prediction as it provides the

foundation for trust prediction, and can help improve the effectiveness and efficiency

of trust prediction [162, 117]. In addition, extracting such a trust subnetwork/matrix is

a multi-objective optimization problem, which is known to be NP-complete [17, 117].

An extracted subnetwork (e.g., Fig. 3.2) needs to satisfy the following require-

ments: (i) it should contain the source node, the target node and most of the nodes

which are important for trust prediction between the source node and the target node;

(ii) the scale of the subnetwork/matrix is kept relatively small; and (iii) a source par-

ticipant may introduce constraints of trust relations or contextual information into the

subnetwork extraction process for various purposes, such as employee recruitment and

movie recommendation, which makes the problem more challenging.

In addition, there are very few approximation algorithms proposed for the NP-

complete subnetwork extraction problem for trust prediction in online social networks.

As introduced in Subsection 2.3.3, most existing works rely on trust paths and do not

perform well for matrix factorization-based trust prediction approaches, as the density

of the extracted subnetwork is not considered. And even the state-of-art subnetwork

extraction models still need improvement in the aspects of both efficiency and effec-

tiveness.

3.2 Formulation with Social Information

As an extracted subnetwork is specific to the subsequent trust prediction from a source

node to a target node, and trust is affected by a number of social contexts which have

been introduced in Section 2.2.4, the information affecting trust prediction must be
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considered in the subnetwork extraction process.

3.2.1 Trust Impact Factors

In order to utilize social information about participants and their interactions for the

subnetwork extraction process, the social information in all relevant contexts needs to

be organized into several aspects, which are called trust impact factors. The detail of

each trust impact factor is described below.

In addition, a pre-process based on context relevance can be applied to determine

the initial searching scope before proceeding to subnetwork extraction.

Role Impact Factor: In a certain context, the role impact factor (denoted as RIF )

illustrates the impact of a participant’s social position and expertise on his/her trust-

worthiness, based on the fact that a person who has expertise in a domain is more

credible than others with less knowledge [117].

Reliability: In a certain context, reliability (RLB) measures the rate a participant’s

suggestions are accepted by others [81]. A participant with high reliability is likely to

be sought suggestions from, which can affect the trust towards the participant. The

reliability is calculated as one minus the deviation between the predicted rating and

the actual ratings of a participant in [81].

Preference Similarity: It is illustrated in social psychology [232] that a participant

can trust and have more social interactions with another participant, with whom he/she

shares more preferences (e.g., both of them like teaching C++). Preference similarity

(PS) between two participants’ preferences can impact the trust between them to some

extent [206]. Here, PSi,j = PSj,i for participants i and j.

Social Intimacy: Social intimacy (SI) refers to the frequency of connections be-

tween participants in a social network. The degree of social intimacy can impact trust

as people tend to trust those participants, with whom they have more intimate social

relationships [33].

Existing Trust: Trust is a belief that an entity, such as a person or an organization,
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will behave in an expected manner, despite the lack of ability to monitor or control the

environment in which it operates [180]. It can be impacted by all the above properties

and the trust value can be greatly different between the same two participants in dif-

ferent interaction contexts [212]. Let Ti,j denote the existing trust participant i gives

to participant j. A higher Ti,j indicates more trust to j in i’s mind. Here, trust between

two participants in a given context is not symmetrical, which means Ti,j may not be

equivalent to Tj,i.

3.2.2 Utility

For the extraction of a subnetwork which is specific to the prediction of the trust from

a source participant to a target one, for each node in the subnetwork, we propose a

node utility (denoted by ui) which is the weighted sum of all the above trust impact

factors in a subnetwork. It can be formulated by:

ui = F ·W ′ (3.1)

where, W is a coefficient vector given by users; and

F = [RIFi, RLBi, SIs,i, PSs,i, Ts,i, SIi,t, PSi,t, Ti,t], (3.2)

is a vector containing all the factors that affect the trust between the source participant

and the target participant. These factors can be divided into three groups: (i) RIFi and

RLBi are personal factors and are independent of the source and target participants;

(ii) SIs,i, PSs,i and Ts,i are the factors revealing the relationship with the source par-

ticipant; and (iii) SIi,t, PSi,t and Ti,t reveal the relationship with the target participant.

ui ∈ [0, 1] as the range of each factor is [0, 1].
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3.2.3 Formulation of the Problem

The problem can be described as finding a certain number of nodes (say m, 0 < m ≤

n) out of the n nodes to compose a subnetwork which increases the objective function

value (the weighted sum of the average node utility of the extracted subnetwork and

the density of the extracted subnetwork) as much as possible. The objective function

is formulated as:

G(X) = ζ

∑n
i=1 uixi∑n
i=1 xi

+ ζ̃D(X), (3.3)

where X = 〈xi|i = 1, ..., n〉 is a vector representing the selection of nodes for a

subnetwork; xi = 1 means the ith node is selected while xi = 0 means the ith node

is not selected.
∑n

i=1 xi is the number of the selected nodes. D(X) is the density

of the current subnetwork. ui(i = 1, 2, ..., n) is the utility of node i calculated by

Equation (3.1). ζ and ζ̃ are the weights.

Therefore, the subnetwork extraction problem can be formulated as:

max G(X) s.t.


xi ∈ {0, 1}, 1 ≤ i ≤ n

xs + xt = 2

uixi ≥ Kt

(3.4)

where, xs and xt are the selection of the source node and the target node; xs + xt = 2

means both of the source node and the target node must be selected; Kt is a threshold

value of the judgment of the important nodes.

3.3 Brief Introduction to Ant Colony Algorithm

As ant colony algorithm (ACA) is a type of efficient approaches with robustness and

global searching ability for solving multi-objective optimization problems [218, 47],

our proposed subnetwork selection approach is based on ant colony algorithms. This

section briefly introduces the basic idea of ACA.
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Figure 3.3: Demonstration of food finding process

ACA was first inspired by the observation of ant colonies in the early 1990s [27,

47]. Ants are social insects and live in colonies. Their behaviors are revealed by

the whole colony rather than by individuals. When ants go out to search for food,

initially, every ant randomly explores the area around its nest and leaves chemical

pheromone on the path it travels. Once an ant finds a food source, it takes part of the

food back to the nest leaving pheromone along all the way. When other ants come near

paths with pheromone, they tend to choose the path, with a high probability, with the

strongest pheromone which guides other ants to follow the same path. Meanwhile, the

pheromone on the path is strengthened by each ant traveling along the path. Thus in

the end, most ants will follow the same path to the food source from the nest. However,

when choosing a path, individual ants can make incidental mistakes. Therefore, they

have a certain probability not to choose the path with the highest pheromone, forming

new paths and enabling most ants to find the shortest path [27].

Considering the example shown in Fig. 3.3, suppose that the distances of A − B,

A − C and B − C are equal. At the beginning, there are N ants starting from their

nest to find food by randomly choosing the paths. When the first few ants find food

and return to the nest, the pheromone on the paths they have passed (i.e. A − C) is

enhanced. Forthcoming ants have a higher probability to choose the path with more

pheromone. After repeating several times, most ants will follow the path A − C to

fetch food which is the shorter way.

The ant colony algorithm simulates the process of foraging in an ant society and

provides a mechanism for searching for optimal solutions. For the subnetwork ex-
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traction problem, the above foraging process has to be specially designed. Generally,

there are normally two ways of applying ant colony algorithms: the binary way and

the non-binary way, which will be detailed in Section 3.4 and Section 3.6.

3.4 The Proposed Novel Binary Ant Colony Algorithm

In this section, we propose our NBACA-based model to find a subnetwork in a social

network including the source and target nodes. While the number of nodes in the ex-

tracted subnetwork should be as small as possible, it has to contain as many important

nodes as possible. Thus, the final solution is a trade-off between a high average node

importance and the density of the subnetwork.

3.4.1 The Design of Our NBACA

For the trust subnetwork extraction problem, the conventional BACA [80, 93] has two

main disadvantages: (i) the number of the selected nodes in the extracted subnetwork

fluctuates around the mathematical expectation of the number of the selected nodes

in initialization; and (ii) the path selection process is only determined by pheromone

information without any heuristic function from prior knowledge. These two disadvan-

tages slow down the convergence speed of BACA. To overcome these disadvantages,

a novel binary ant colony algorithm is designed.

Fig. 3.4 shows the designed weighted graph containing n+1 knots (stops) arranged

in the order from 1 to n + 1. Ant movement starts from knot 1. At each knot i(i =

1, 2, ..., n), there are 2 directed paths a[i, j](j ∈ {0, 1}) connecting to knot i + 1. On

each path a[i, j](i = 1, 2, ..., n; j = 0, 1), there is a value ui, representing the utility of

node i, and U = {ui|i = 1, ..., n}. Therefore, an ant k going via path a[i, 1] means the

ith node is selected ( noted by xki = 1) by the ant k for the subnetwork, while the ant

k going via path a[i, 0] means the ith node is not selected (xki = 0). The subnetwork

selected by ant k is called solution k, represented by Xk = 〈xki |i = 1, ..., n〉.
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Figure 3.4: Construction of the weighted graph

Different from the conventional ACA and BACA, in our designed NBACA, the

pheromone on path a[i, j] is represented by a percentage value, denoted by τij(t).

Therefore, only one of the two paths from knot i to i + 1 needs to be stored in each

iteration, as there are only two paths connecting knot i and knot i + 1 as well as

τi0(t) = 1−τi1(t). The detailed processes in NBACA are summarized in the following

subsections.

3.4.2 Initialization

In ants’ natural world, when an ant selects a path for foraging, its selection is affected

by the pheromone on each available path. And the path with more pheromone has

a higher probability to be selected. Utilizing a random value and the node utility,

our proposed initialization process is to produce the pheromone of each path at the

beginning time t = 0. The initial pheromone on path a[i, 1] can be formulated as:

τi1(0) = ϕχi + ψηi (3.5)

where, χi ∼ N (µ, σ2) represents a random distribution of the pheromone on each path.

As there are two paths connecting two adjacent knots, the mathematical expectation µ

of the distribution is fixed to 0.5, and the variance σ is adjustable. ηi is an expectation

heuristic function representing the nodes’ importance in a social network. Here, ηi =

ui/max{U} is the rate of node i’s utility to the maximum node utility in the whole

social network. Coefficients ϕ and ψ represent the weights of χi and ηi respectively.

In addition, the initial pheromone on path a[i, 0] is τi0(0) = 1− τi1(0) in our NBACA.
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3.4.3 Path Selection

On path a[i, j] at time t(t = 0, 1, 2, ...), the probability of the path to be selected is

determined by both the pheromone τij(t) and the heuristic function value ηi. At time

t = 0, y ants are created and put on knot 1. Then each ant selects a path and moves to

the next knot according to both the pheromone on each path and the heuristic function.

This process continues till the ant reaches the terminal knot n + 1. The solutions are

represented by {Xk|k = 1, ..., y}.

At time t, the transition probability of ant k(k = 1, 2, ..., y) moving from knot

i (i = 1, 2, ..., n) to knot i+ 1 via path a[i, 1] is:

pki1(t) = ατi1(t) + βηi (3.6)

where, ηi is a heuristic function value which is the same as that in the initialization

process. The larger ηi is, the more likely ant k selects node i (goes via the path a[i, 1]).

α and β are the weights of the pheromone and the heuristic function when ants select

the paths. In addition, the transition probability of moving via a[i, 0] is:

pki0(t) = 1− pki1(t). (3.7)

3.4.4 Mutation

The mathematical expectation of the number of paths a[i, 1] (selected nodes from a

social network) is affected by the initialization [93]. In order to increase the variance

of the number of selected nodes in each iteration, we propose a mutation process to

produce new solutions especially with a different number of selected nodes. In the

mutation process, ants can more easily forget the selection of paths corresponding to

the unimportant nodes in a social network. For each ant k, this process is formulated

as:

Xk
− = 〈xki ∗ 1{pki1 > λi}|i = 1, ..., n〉 (3.8)
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Xk
+ = 〈1{(xki + 1{pki1 > λi}) > 0}|i = 1, ..., n〉 (3.9)

where λi ∼ U(0, 1) is a normal number obtained from a continuous uniform distri-

bution. 1{.} is a Boolean function. It is equal to 1 if the condition in {} is satisfied.

Otherwise it equals 0. Eqs. (3.8) and (3.9) are able to generate solutions with less and

more numbers of selected nodes from a social network respectively. Finally, an ant k

obtains 3 different solutions after finishing its trip {Xk, Xk
−, X

k
+}.

Although the mutation process increases the calculation time of the quality of so-

lutions, the overall execution time is reduced, because: 1) mutation process does not

affect the time period of an ant’s movement in all life time; 2) the extra two solu-

tions are generated from the solution obtained by an ant using simple equations; and

3) the diversity of solutions in each iteration is increased greatly, which speeds up the

convergence significantly.

3.4.5 Upgrade of Pheromone

When all the y ants reach the terminal knot, 3y feasible solutions {Xk, Xk
−, X

k
+|k =

1, ..., y} can be obtained. If the best solution in the current iteration (denoted by X ′best)

is better than that of all the past iterations (the best-so-far solution, denoted by Xbest),

then, Xbest = X ′best and the pheromone on each path i is upgraded accordingly. The

pheromone upgrade procedure consists of two parts: (i) the pheromone evaporation

procedure which is applied to path i if node i is not selected for the so-far-best solution

( xi = 0 and xi ∈ Xbest) and is formulated as:

τi1(t+ 1) = (1− ρ)τi1(t) (3.10)

and (ii) the pheromone intensification procedure which is only available for path i if

node i is selected for the best-so-far solution (xi = 1 and xi ∈ Xbest) and formulated

as:

τi1(t+ 1) = τi1(t) + %|1− τi1(t)| (3.11)
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where ρ(0 < ρ < 1) is a parameter called the pheromone evaporation rate and (1− ρ)

is the pheromone residue rate; %(0 < % < 1) is the pheromone increment rate on path

a[i, j] in the current iteration.

Because pki0(t) = 1 − pki1(t) and the pheromone in our NBACA is presented as a

percentage, the evaporation and intensification processes need to be conducted only

on the paths of a[i, 1](i = 1, 2, ..., n).

3.4.6 Algorithm

Algorithmic Process: The main process of finding the subnetwork in a social

network using NBACA is described in Algorithm 1. In each iteration, the best solution,

among the solution sets X(NC) = {Xk, Xk
−, X

k
+|k = 1, ..., y} obtained from the y ants

in the current iteration, is used to update the pheromone, if it is better than the so-far-

best solution. Then, the next iteration starts using the updated pheromone information.

Finally, the iteration process ends returning the best solution, when NC, the number

of iterations already run, reaches the maximum value NCmax or NF , the number of

iterations where the best-so-far solution stayed the same, reaches the preset maximum

value NFmax.

Summary: Different from the conventional BACA, the design of our NBACA is

greatly improved in each step. Its characteristics are as follows: (i) An initialization

process is introduced. The pheromone on each path is initialized by both a random

value generated from a Gaussian distribution and the node utility proposed in Sec-

tion 3.2, which improves the initial probability of each path to be selected in ants’

initial movement. (ii) In our designed NBACA, the pheromone information is repre-

sented by percentage values, which reduces the storage of pheromone information and

simplifies path selection and pheromone update processes resulting in a reduction of

execution time. (iii) A mutation strategy is first introduced into conventional BACA,

which increases the solution range in each iteration and speeds up the convergence of
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Algorithm 1: Binary Ant Colony Algorithm
Data: ϕ, ψ, α, β, ρ, %, y, n, NCmax, NFmax
Result: The best solution when the iteration ends
begin

Initialize NC & NF & Xbest;
while NC < NCmax&NF < NFmax do

Produce y ants and put them on knot 1;
Initialize τi1(0)(i = 1, 2, ..., n);
NC=NC+1;
for each ant k(k = 1, 2, ..., y) do

for each movement i(i = 1, ..., n) do
Select next path a[i, j] via Eq.(4);
xki = j;

end
Return Xk = 〈xki |i = 1, ..., n〉;
Get Xk

− & Xk
+ via Eq.(3.8&3.9);

end
X(NC) = {Xk, Xk

−, X
k
+|k = 1, ..., y};

X ′best = arcmaxG(X(NC));
if G(X ′best) > G(Xbest) then

Xbest = X ′best;
Upgrade pheromone via Eq. (3.10&3.11);

else
NF=NF+1;

end
end
Return Xbest;

end

the NBACA. And (iv) our designed NBACA is not limited to the application of sub-

network extraction problems, and it can be applied to any case where the conventional

ACA is applicable.

3.5 Experiments on NBACA

We have conducted experiments on two popular social network datasets, Epinions and

Slashdot [103], and compared the performance of our BiNet with two state-of-the-art
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approaches, SCAN [117] and FDRS [73], and a baseline approach, BACO [80].

3.5.1 Dataset Description

Although, there are a number of studies on mining a single impact factor in social net-

works [141, 202], there is no dataset in place that contains all the contextual values we

need. Thus, the experiments are conducted on semi-synthetic datasets which consist of

the datasets from real social networks of Epinions (131,828 nodes and 841,372 edges)

and Slashdot (82,144 nodes and 549,202 edges), and synthetic trust impact factor val-

ues. In order to demonstrate that the performance of our model is not data sensitive,

10 groups of the trust impact factor values are randomly generated for both Epinions

and Slashdot datasets in the experiments respectively.

3.5.2 Comparisons

In order to evaluate the performance of our proposed model BiNet, we compare it with

two state-of-the-art models, SCAN and FDRS, and a baseline model, BACO.

SCAN is a social context-aware trust network discovery approach which considers

social contextual impact factors and finds the context-aware trust network under certain

constraints of each trust impact factor, by adopting a Monte Carlo search method with

optimization strategies [117].

FDRS is a fast discovery approach of reliable subnetworks which treats a social

network as a Bernoulli random graph, and builds up the sub-graph by incrementally

adding paths from a source node to a target node to an initially empty sub-graph until

the addition of any paths will not increase the objective function value of the whole

subnetwork [73].

BACO is a binary ant colony optimization algorithm which is based on the con-

cept and principles of ant colony optimization to solve the binary and combinatorial

optimization problems. It can be applied, as a baseline approach, to extract the trust

subnetwork when the selection of a node in a social network is treated as the selection
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from binary paths in ants’ movements [80].

In addition, all three models are coded and executed in Matlab R2012B on a desk-

top powered with an Intel i7-2600 CPU and 8G memory running Windows 7 64-bit

Professional.

3.5.3 Experiment Setting

In order to compare the differences in efficiency and effectiveness between our pro-

posed model BiNet and each of SCAN, FDRS and BACO, experiments are conducted

on both Epinions and Slashdot datasets enhanced with synthetic trust impact factor

values respectively, to find the near optimal subnetwork for each of 10 pairs of nodes

which are randomly selected, with different social connection degrees, as the source-

target node pairs.

In the experiments on the Epinions dataset, the subnetwork extraction for each

source-target node pair is performed on the trust relationships of the Epinions dataset

with each of the 10 groups of trust impact factor values. Likewise, in the experiments

on the Slashdot dataset, the subnetwork extraction for each source-target node pair is

performed with each of the 10 groups of trust impact factor values.

Then, the 10-time cross validation is applied for each of BiNet, SCAN, FDRS and

BACO. In total, each model is run for 2000 times (2 datasets × 10 groups of impact

factor values× 10-time cross validation× 10 source-target pairs). The average results

on both datasets are plotted in Figs. 3.5-3.6 respectively.

Parameters, such as the trust factor constraints, only affect the utility values ob-

tained in the experiments but do not affect the performance comparison between dif-

ferent models, as all models are compared on the same datasets. This type of param-

eters are given by users in application. Suppose, equal weights are given by users in

the experiments. Other parameters, such as the ones in the ant colony algorithm, are

determined by the experimental performance of the models after trying different pa-

rameter values using grid search, where ζ = ζ̃ = 0.5, ϕ = 0.2, ψ = 0.8, α = β = 0.5,
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Table 3.1: The results of experiment 1 at 40th second
Dataset Cases BiNet SCAN FDRS BACO

Min 0.575 0.540 0.485 0.294
Improvement - 6.1% higher 15.7% higher 48.9% higher

Epinions Mean 0.631 0.587 0.541 0.301
Improvement - 6.9% higher 14.3% higher 52.3% higher
Max 0.69 0.612 0.581 0.312
Improvement - 11.3% higher 15.8% higher 54.8% higher
Min 0.529 0.503 0.513 0.279
Improvement - 4.9% higher 3.0% higher 47.4% higher

Slashdot Mean 0.611 0.559 0.561 0.285
Improvement - 8.5% higher 8.2% higher 53.4% higher
Max 0.657 0.599 0.598 0.292
Improvement - 8.8% higher 9.0% higher 55.6% higher

ρ = 0.1, % = 0.1, Kt = 0.5, NCmax = 400 and y = 40.

3.5.4 Results and Analysis

Results: BiNet, SCAN and BACO are all iterative algorithms whose results get better

as the time goes. In Figs. 3.5-3.6, we present the mean results over each group of

datasets delivered within the first 40 seconds time limitation which are sufficient to

demonstrate the performance of each model, as in real applications, we cannot really

execute the models for such a long time. The best, mean and worst results on each

group of datasets at the 40th second are presented in Table 3.1. As the FDRS model is

not an iterative model, it yields one fixed result on each dataset using over 100 seconds.

Fig. 3.5 shows the average objective function values (Eq.(3.3)) of the subnetworks

extracted by all the four models on the Epinions dataset within the first 40 seconds.

As time goes on, the best-so-far solutions of BiNet, SCAN and BACO become better,

while the result of FDRS keeps unchanged as it is not an iterative algorithm. Our

proposed BiNet outperforms all other three models after 3.2 seconds. At the 40th

second, the average objective function value of the subnetwork delivered by BiNet is
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Figure 3.5: Results on Epinions dataset
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Figure 3.6: Results on Slashdot dataset

6.9% higher than the one delivered by SCAN, 14.3% higher than the one delivered by

FDRS, and 52.3% higher than the one delivered by BACO.

Fig. 3.6 shows the average objective function values of the subnetworks extracted

by the four models on the Slashdot dataset within the first 40 seconds. On this dataset,

our BiNet outperforms both SCAN and BACO from the very beginning and outper-

forms FDRS after 3.5 seconds. At the 40th second, the average result of BiNet is 8.5%

higher than that of SCAN, 8.2% higher than that of FDRS, and 53.4% higher than that

of BACO.

Analysis: The differences between our BiNet model and SCAN, FDRS and BACO

on both datasets, especially, the significant improvement between BiNet and BACO,
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mainly come from the following aspects: (i) the initialization process of our proposed

algorithm set up our model using both random values from the normal distribution

and a heuristic function from nodes utilities, which makes our model able to find so-

lutions with a relatively high utility from the first iteration without losing diversity;

(ii) the mutation process generates an extra solution with a smaller number of selected

nodes and another extra solution with a larger number of selected nodes in each iter-

ation, and thus can broaden the scope of search in each iteration; (iii) the percentage

representation of pheromone information only needs to record the pheromone on half

the number of paths, and thus can save memory and reduce execution time; (iv) our

designed model selects nodes from both pheromone information and a heuristic func-

tion, which speeds the convergence and betters the performance within a fixed time; (v)

pheromone update process is kept simple, which makes our model more efficient; and

(vi) the big improvement between BiNet and BACO demonstrates that our proposed

model significantly overcomes the conventional disadvantages of BACAs.

In addition, our proposed model outperforms the other models in all the three cases

presented in Table 3.1 shows that our model is not data sensitive and applies to a wide

scope of applications.

3.6 The Proposed Novel Ant Colony Algorithm

Although our proposed NBACA has achieved a great improvement over the state-of-

the-art approaches, the non-binary way of applying ACA is still worth trying, which

can get a better diversity of solutions in each iteration than binary ACA. In this section,

we propose a non-binary ant colony algorithm for subnetwork extraction problem in

order to achieve better performance.
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3.6.1 The Design of Our NACA

Inspired by the conventional ACA for the Knapsack problem [47, 239], we proposed

a novel ant colony algorithm (NACA) for subnetwork extraction. In particular, a mu-

tation process is designed in order to provide a strategy to remove the nodes already

selected for the subnetwork.

Fig. 3.7 shows the designed weighted graph containing n + 1 knots (stops) ar-

ranged in the order from 1 to n + 1. Starting from each knot i(i = 1, 2, ..., n), there

are n directed paths a[i, j](j = 1, 2, ..., n) connecting to knot i + 1. On each path

a[i, j](i, j = 1, 2, ..., n), there is a value uj , the utility of node j. Therefore, “an ant

going via path a[i, j]” means the jth node is selected by the ant for the subnetwork.

Knot 
  1 

Knot 
  2 

a[1,1] 

a[1,2] 

a[1,n] 

Knot 
   n 

Knot 
 n+1 

a[n,1] 

a[n,2] 

a[n,n] 

Figure 3.7: Construction of the weighted graph

3.6.2 Path Selection

In ants’ natural world, when an ant selects a path for foraging, its selection is af-

fected by the pheromone on each available path. A path with more pheromone has

a higher probability to be selected. In ACA, the pheromone on path a[i, j] at time

t(t = 0, 1, 2, ...) is denoted by τij(t). At the beginning t = 0, the pheromone on each

path is equal to a small positive value C, formulated as τij(0) = C (note that if C = 0,

the denominator will be 0). At time t = 0, y ants are created and put on knot 1. Then

each ant selects a path and moves to the next knot according to the pheromone on each

path and a heuristic factor independently. This process continues till the ant reaches

the terminal condition.



§3.6 The Proposed Novel Ant Colony Algorithm 75

At time t, affected by the current pheromone and utility information, the transition

probability of ant k (k = 1, 2, ..., y) moving from knot i (i = 1, 2, ..., n) to knot i + 1

via path a[i, j] is:

pkij(t) =


[τij(t)]

α·[ηij ]β∑
f∈Jk(i)

[τif (t)]α·[ηij ]β , if j ∈ Jk(i)

0, otherwise

(3.12)

where ηij =
uj∑n
i=1 ui

is the percentage of node j’s utility in the whole social network.

It is a heuristic function, the expectation to transit to knot i + 1 from i via a[i, j]. The

larger ηij is, the more likely ant k selects node j (goes via the path a[i, j]). Jk(i) is the

set of available paths ant k can select at knot i. Jk(i) = {1, 2, ..., n} − tabuk − tabu′k,

where tabuk is a tabu table recording all the paths ant k has gone through and tabu′k

is the tabu recording all the paths selected but discarded (i.e., nodes which cannot

increase the value of Eq. (3.3)). In Fig. 3.7, for paths a[i1, j1] and a[i2, j2], if j1 = j2,

then these two paths are considered the same. Any ant k is not allowed to select the

same path when moving forward, which is controlled by the tabu mechanism, as each

node in the whole social network is unique. α and β are the weights of the pheromone

and the heuristic function when ants select the paths. α is a pheromone heuristic factor

reflecting the importance of pheromone traces when the ants are moving. β is an

expectation heuristic factor representing the importance of what an ant can see [239].

The path selection process will continue till no path under the constraints of Equa-

tion (3.4) could increase the value of Equation (3.3). Then, the ant k dies.

Suppose the selected numbers in tabuk are {j1, j2, ..., jr}, where r is the number

of paths the ant k has passed and {j1, j2, ..., jr} ∈ {1, 2, ..., n}. The whole path passed

by ant k is:

Lk = pj1 + pj2 + ...+ pjr . (3.13)
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The solution is the set of nodes which correspond to the paths selected by ant k.

Xk = 〈xi|i = 1, ..., n〉, (3.14)

where xi = 1 if ji ∈ tabuk.

3.6.3 Upgrade of Pheromone

When all the y ants die, y feasible solutions can be obtained. Among the y solutions,

if solution k is the best in the current iteration (denoted by L′best) and is better than that

of all past iterations (best-so-far solution, denoted by Lbest), then, it is used to upgrade

the pheromone on the paths ant k has passed. The pheromone upgrade procedure

consists of two parts: (i) the pheromone evaporation procedure and (ii) the pheromone

intensification procedure. These two procedures can be formulated as:

τij(t+ 1) = (1− ρ) · τij(t) + ∆τij (3.15)

∆τij =
m∑
k=1

∆τ kij (3.16)

where ρ(0 < ρ < 1) is a parameter called pheromone evaporation rate and (1 − ρ)

is pheromone residue rate which prevents the unlimited accumulation of pheromone

on paths; ∆τij is the pheromone increment on path a[i, j] in current generation while

∆τ kij is the pheromone on the path a[i, j] left by ant k. ∆τ kij can be formulated as:

∆τ kij =


Lk

Q
, if ant k passes path a[i, j] in current iteration

0, otherwise
(3.17)

where Q is a positive constant; Lk is the solution obtained by ant k in current iteration.
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3.6.4 Mutation

In order to further refine the selected nodes for the subnetwork, a new strategy named

as mutation is introduced into the ACA to enable the algorithm to delete nodes from

the extracted subnetwork utilizing the node utility when needed.

The mutation process selects a node i from the extracted subnetwork L′best with the

probability p′ which enables that the nodes with lower utility in the selected subnet-

work have a higher probability to be deleted from the subnetwork.

p′i =


1−ui∑

j∈L′
best

(1−uj) , if i ∈ L
′
best

0, otherwise
(3.18)

If deleting the selected node i betters the subnetwork, node i is deleted. This process

is repeated till deleting any node from the extracted subnetwork cannot improve the

corresponding value of equation (3.4).

3.6.5 Algorithm

The main process of finding the subnetwork in a social network using ant colony

algorithm is described in Algorithm 2. The process runs for NCmax times. In each

iteration, the best solution is selected from y solutions obtained from the y ants to

update the pheromone. Then, the next iteration starts. Finally, the best solution is

returned. In addition, NFmax is a counter for the number of iterations where the best-

so-far solution has kept the same.

The algorithm 3 implements the process of getting the paths an ant passed during

its life time. The ant dies when there is no available node to better Equation (3.4) after

AFmax times of path selections via Equation (3.12). And the paths it has passed are

the solution. After obtaining a complete solution, a mutation process is conducted on

the current solution to refine the final solution. MFmax is the maximum number of
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Algorithm 2: Ant Colony Algorithm Process
Data: α, β, ρ, NCmax, y, n, NFmax, AFmax, MFmax
Result: Lbest
begin

Initialize NC, NF , Lbest, τij(0) (i, j = 1, 2, ..., n);
//Start the iteration and look for the best solution;
while NC < NCmax && NF < NFmax do

Produce y ants and put them on knot 1;
NC = NC + 1 //count the running times;
for each ant k(k = 1, 2, ..., y) do

Get path track Lk via Algorithm 3
end
Calculate the best solution L′best in current iteration;
//Update pheromone information if a better solution is gotten;
if G(L′best) > G(Lbest) then

Lbest = L′best;
Upgrade pheromone via Eq. (3.15);

else
NF = NF + 1;

end
end
Return best-so-far solution Lbest;

end

mutation processes. Finally, a subnetwork from a social network is constructed from

the corresponding nodes in the final solution and the connections between them.

Summary: (i) Each step of the ACA is designed by incorporating the node utility

to extract a subnetwork maximizing the objective function value in each iteration; (ii)

A mutation process is introduced into the conventional ACA to overcome the drawback

that there is no mechanism to remove any nodes from the extracted subnetwork; (iii)

The node utility is incorporated into the path selection process by a heuristic function

to increase the objective function value; (iv) A double-tabu mechanism designed in

path selection process improves the performance of the solution obtained by each ant;

and (v) This algorithm is capable of searching the whole solution space, which can

deliver a near-optimal solution, if it exists.
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Algorithm 3: The Movement of Each Ant k
Data: α, β, n, AFmax, MFmax,
Result: Lk
begin

Initialize tabuk, tabu′k, AF , MF ;
Set available paths Jk;
//An ant begins to move;
for each movement i(i = 1 : n) do

Select next path ji via Eq. (3.12);
if ji /∈ ∅ && AF < AFmax then

if G(tabuk) < G(tabuk + ji) then
tabuk = tabuk + ji;
i = i+ 1;

else
AF = AF + 1;
tabu′k = tabu′k + ji

end
else

break;
end

end
//Refine the solution already gotten;
Set available paths J ′k = tabuk;
while J ′k 6= ∅ && MF < MFmax do

Select path jk from J ′k via Eq. (3.18);
MF = MF + 1;
if G(tabuk − jk) > G(tabuk) then

tabuk = tabuk − jk;
else

break;
end

end
Return Lk = tabuk;

end
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Table 3.2: The results of experiment 2 at 40th second
Dataset Cases TrustNet BiNet SCAN FDRS

Min 0.643 0.575 0.540 0.485
Improvement - 10.6% higher 16.0% higher 24.6% higher

Epinions Mean 0.709 0.631 0.587 0.541
Improvement - 11.0% higher 17.2% higher 23.7% higher
Max 0.741 0.690 0.612 0.581
Improvement - 6.8% higher 17.4% higher 21.6% higher
Min 0.579 0.529 0.503 0.513
Improvement - 8.6% higher 13.1% higher 11.4% higher

Slashdot Mean 0.634 0.611 0.559 0.561
Improvement - 3.6% higher 11.8% higher 11.5% higher
Max 0.670 0.657 0.599 0.598
Improvement - 1.9% higher 10.6% higher 10.7% higher

3.7 Experiments on NACA

3.7.1 Experimental Setup

In this experiment, we have compared the performance of our TrustNet with BiNet and

two state-of-the-art approaches SCAN [117] and FDRS [73] on the same two popular

social network datasets of Epinions and Slashdot [103], and in the same environment

and experimental setting as subsection 3.5.1. In addition, the parameters for TrustNet

are ζ = ζ̃ = 0.5, ρ = 0.1, α = β = 1,Kt = 0.5,NCmax = 400 and y = 20. Similar to

experiments in Subsection 3.5, the 10-time cross validation is applied for each of Trust-

Net, BiNet, SCAN and FDRS. In total, each model is run for 2000 times (2 datasets

× 10 groups of impact factor values × 10-time cross validation × 10 source-target

pairs). The average results on both datasets are plotted in Figs. 3.8-3.9 respectively.

3.7.2 Results and Analysis

Results: TrustNet, BiNet and SCAN are all iterative algorithms whose results get

better as the time goes. In Figs. 3.8-3.9, we present the mean results over each group
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Figure 3.8: Results on Epinions dataset
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Figure 3.9: Results on Slashdot dataset

of datasets delivered within the first 40 seconds time limitation which are sufficient to

demonstrate the performance of each model, as in real applications, we cannot really

execute the models for such a long time. The best, mean and worst results on each

group of datasets at the 40th second are presented in Table 3.2. As the FDRS model

is not an iterative model, it yields one fixed result on each dataset using up over 100

seconds.

Fig. 3.8 shows the average objective function values (Eq.(3.3)) of the subnetworks

extracted by all the four models on the Epinions dataset within the first 40 seconds. As

time goes on, the best-so-far solutions of TrustNet, BiNet and SCAN become better,

while the result of FDRS keeps unchanged as it is not an iterative algorithm. Our
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proposed TrustNet outperforms all other three models after 0.6 second. At the 40th

second, the average objective function value of the subnetwork delivered by TrustNet

is 11% higher than the one delivered by BiNet, 17.2% higher than the one delivered by

SCAN, and 23.7% higher than the one delivered by FDRS.

Fig. 3.9 shows the average objective function values of the subnetworks extracted

by the four models on the Slashdot dataset within the first 40 seconds. On this dataset,

our TrustNet outperforms both BiNet and SCAN from the very beginning and outper-

forms FDRS after 2.5 seconds. At the 40th second, the average result of TrustNet is

3.6% higher than that of BiNet, 11.8% higher than that of SCAN, and 11.5% higher

than that of FDRS.

Analysis: Although BiNet has achieved significant improvement over BACA [242],

our proposed TrustNet still outperforms BiNet, showing its advantages for subnetwork

extraction. In summary, the result differences between our model TrustNet and state-

of-the-art models on both datasets mainly come from the following aspects: (i) the

mechanism of ant colony is capable of searching the whole solution space and deliver

a near-optimal solution; (ii) the added mutation process further improves the itera-

tion, which enables the algorithm to delete the previously selected bad nodes; (iii) the

double-tabu mechanism in path selection allows an ant to try multiple times in select-

ing the path to go on before it dies, and thus improves the quality of the solution of each

ant; (iv) both the path selection and pheromone update processes have been designed

for the subnetwork extraction problem, taking the node utility into account in the form

of a heuristic function; and (v) TrustNet is a non-binary way of applying ACA. Thus,

its finial performance is not limited by initialization that does limit BACA.

3.8 Conclusion

In this chapter, we first present the social trust subnetwork extraction problem. Next,

we have presented the formulation of the extraction problem, in which we have dis-

cussed the impact factors that affect the trust of a participant in another participant’s
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opinion in online social networks and proposed a trust utility function that takes these

impact factors to illustrate the attribute of each node.

Then, we have proposed two social context-aware trust subnetwork extraction

models, BiNet and TrustNet, to search near-optimal solutions effectively and effi-

ciently. In the model BiNet, we have proposed a novel binary ant colony algorithm

in which an initialization process and a mutation process are designed and the con-

ventional path selection and pheromone update process are improved for subnetwork

extraction. The experiments, conducted on Epinions and Slashdot datasets enhanced

with synthetic trust impact factor values, demonstrate that our proposed model outper-

forms the existing comparable heuristic methods in terms of the quality of extracted

trust subnetworks. In particular, our newly-designed NBACA overcomes the disad-

vantages of the conventional BACA for subnetwork extraction. In the model TrustNet,

we have proposed a new ant colony algorithm in which a mutation process is designed,

and the conventional path selection and pheromone update process are improved for

subnetwork extraction. The experiments, conducted on Epinions and Slashdot datasets

enhanced with synthetic trust impact factor values, demonstrate that TrustNet outper-

forms the existing comparable heuristic methods and BiNet in terms of the quality of

extracted trust subnetworks.

In addition, the proposed approaches do not rely on the paths in the online so-

cial networks, and are essential for the subsequent trust prediction process. Both of

our proposed ant colony algorithms can be applied to any case where the traditional

(binary) ant colony algorithm applies, but achieve significantly better performance.
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Chapter 4

Single-Context Trust Prediction in

OSNs

Online social networks (OSNs) have proliferated to be the platforms for a variety of

rich activities, in which trust, the commitment to a future action based on a belief

that it will lead to a good outcome [66], is one of the most critical factors for the

decision-making of participants. In human society, trust depends on a host of factors

such as direct interactions, opinions, motivations etc. [25]. But in OSNs, people can-

not directly interact with each other, and the credibility of online information may be

doubtful [168]. As a result, trust mainly depends on the past experience with a partic-

ipant, profiles or descriptions, reputation etc. Many OSNs allow participants to give a

trust rating to their friends or select a word from a list to describe the trust relationship

between them and their friends, such as Advogato. In OSNs, a participant usually has

given trust ratings to only a few of other participants. Thus, there is no direct trust ex-

isting between most of the participants in an OSN, i.e., the sparsity of the trust matrix

is very high. However, it is quite common for a participant in online environments to

conduct activities with another participant without any prior direct knowledge, such as

online shopping, recommender systems and online recruitment. This demands effec-

tive approaches and mechanisms to predict the trust between two participants without

any direct interaction.

Due to the fact that not every online social network provides contextual informa-

tion, this chapter focuses on the trust prediction based on trust rating values (both

85
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literal and numerical) with matrix factorization. In addition, the dynamics of trust is

not considered in this chapter, which will be introduced in Chapter 6. It is organized

as follows. In Section 4.1, we discuss the drawbacks of current trust prediction mod-

els based on trust ratings, and introduce the motivation of the work in this chapter.

Section 4.2 introduces the basic idea of conventional matrix factorization. Section 4.3

analyzes the properties extracted from trust ratings, which impact trust prediction, and

proposes a matrix factorization-based trust prediction model. Experiments are de-

scribed in Section 4.4, including datasets, measurement methods, comparisons with

state-of-the-art approaches, experimental settings, experimental results and analysis.

Section 4.5 summarizes our work in this chapter.

4.1 The Single-Context Trust Prediction Problem

In some online environments, where trust is given in the form of ratings without avail-

able contextual information, trust can mainly be predicted from these existing trust

values (including propagated trust values) and the similarity of giving and receiving

trust ratings. These two mechanisms form two groups of trust prediction approaches:

propagation-based trust prediction (i.e., trust propagation/inference) and latent factor-

based trust prediction depending on whether they are based on trust paths only.

Trust propagation/inference is the process of evaluating trust from a source partic-

ipant to a target participant along a path between them that consists of links and trust

values [69]. For example, as shown in Fig. 4.1, if participant A trusts participant B, and

participant B trusts participant C, then A trusts C to some extent [66, 114]. Trust prop-

agation has been studied in many web application areas including e-commerce [209,

236, 235], P2P systems [220], and social networks [82, 66, 119].

On the other hand, a participant tends to trust other participants who are similar to

himself/herself [112]. Broadly speaking, latent factor-based trust prediction, such as

matrix factorization, can estimate the trust between two participants from both their

similarity (including similar habits, context and profiles) as well as propagated trust,
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Figure 4.1: Trust propagation
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Figure 4.2: Trust ratings

by modeling the similarity of participants in a social network in a latent factor space.

In the application of predicting trust from trust ratings, similarity is calculated from

two participants’ common trust rating values given to others [131]. Such similarity is

termed as trust rating value similarity in this chapter. In the meantime, it should be

noted that similarity can also be calculated from two participants’ distributions of trust

ratings, which is termed as trust rating distribution similarity. Zheng et al. [241] have

shown that the distribution of participants’ trust ratings is an important property that

influences the trust between the source participant and the target participant. There-

fore, it is essential to take advantage of distribution to further boost trust prediction

accuracy. For example, as shown in Fig. 4.2, the trust values given to G by D and E

are the same. However, they come from two different distributions showing that even

the same trust value given to G could be different in the minds of D and E — the trust

value 3 is the higher value participant D has given, while it is the lower one in E’s

ratings.

Propagated trust and the two types of similarities are interpersonal properties. They

influence the trust between two participants. By contrast, trust tendency (also termed

as trust bias in [224, 226]) is a type of properties extracted from all the trust ratings that

one participant gave or received, showing his/her dispositional tendency to trust others

or to be trusted by others on average (termed as truster tendency and trustee tendency

respectively) [224, 226]. Trust tendency is regarded as a very important concept in so-

cial science, and it is recognized as an integral part of the final trust decision [196]. For

instance, some participants tend to give relatively high trust ratings more generously

than others, while some participants receive higher trust ratings compared with others.
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The details of trust tendency will be presented in Section 4.3.

In summary, to predict trust values from trust ratings without available contextual

information, the existing works predict trust either via trust propagation only [69, 66,

114, 206], or considering propagated trust and tendency [225, 226], or merely utilizing

the similarity of rating values [131, 132]. In addition, the way in which the influential

properties are used needs to be improved as well. On one hand, personal properties

such as tendencies are decomposed from every single participant’s ratings and influ-

ence the participant’s global ratings; on the other hand, interpersonal properties such

as similarity and propagated trust are extracted from two participants’ trust ratings to

reflect the features between them. Therefore, the two types of properties should be

treated differently in order to improve trust prediction accuracy.

In general, they have the following drawbacks needing to be overcome.

1. All the tendency, propagated trust and similarity influence the trust between two

participants, all of which should be utilized to predict pair-wise trust, rather than

considering only one or two influential properties.

2. The similarity of trust rating distributions describes the similarity of participants’

behaviors in giving trust ratings, which has been neglected in the literature.

3. The two different types of properties are not processed separately and differently,

which affects the accuracy of trust prediction.

4.2 Basic Matrix Factorization

In this section, we present the basic matrix factorization method from the viewpoint

of trust prediction. Matrix factorization is an efficient and effective approach in rec-

ommender systems, which factorizes the user-item rating matrix into user-specific and

item-specific matrices, and predicts missing data based on both matrices [131, 173,

174]. In the application of trust prediction, trustees are regarded as the “items” in
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recommender systems [225]. Thus, matrix factorization methods factorize the trust

ratings matrix into truster-specific and trustee-specific matrices respectively.

We consider an n×n trust rating matrix R describing n trusters’ numerical ratings

on n trustees. The matrix factorization models map both trusters and trustees to a joint

latent factor space of dimensionality l, so that truster-trustee trust ratings are modeled

as inner products in that space. Accordingly, each truster i is associated with a vector

ui ∈ Rl, while each trustee is associated with a vector vj ∈ Rl. Finally, all the vectors

{ui} constitute the truster-specific matrix U indicating to what extent the correspond-

ing participants trust others w.r.t. the specific latent factors. Meanwhile, vectors {vj}

compose the trustee-specific matrix V indicating to what extent the corresponding par-

ticipants are trusted by others w.r.t. the specific latent factors. So, the rating matrix R

is factorized as a multiplication of l-rank factors,

R ≈ UTV, (4.1)

where U ∈ Rl×n and V ∈ Rl×n with l < n. Once the factorization is completed, the

missing ratings could be calculated from

ri,j ≈ uTi vj. (4.2)

Note that participant ui and participant vi are the same participant with two different

roles—truster and trustee respectively. The factorization is achieved by minimizing

the equation:
1

2
||R− UTV ||2F , (4.3)

where ||.||2F represents the Frobenius norm. Note that each participant only gives trust

ratings to a few other participants. Hence, the matrix R contains a large amount of

missing values as an extremely sparse matrix. Therefore, Eq. (4.3) is changed to

min
U,V

1

2

n∑
i=1

n∑
j=1

Iij(rij − uTi vj)2, (4.4)
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where Iij is an indicator function. Iij = 1 iff. participant i (truster) rated participant j

(trustee) , i 6= j. Otherwise, Iij = 0. In order to avoid overfitting, two regularization

terms from zero-mean spherical Gaussian priors [174] are placed into Eq. (4.2). Hence,

we have

min
U,V

1

2

n∑
i=1

n∑
j=1

Iij(rij − uTi vj)2 +
λ1

2
||U ||2 +

λ2

2
||V ||2, (4.5)

where λ1 > 0 and λ2 > 0. Thus, the learning process of the method can be achieved

by Eq. (4.5) using the gradient descent method [96].

4.3 The Proposed Trust Prediction Approach

In this section, we first discuss the properties influencing trust between participants in

detail. Then we propose a novel method to incorporate these influential properties into

a regularization in matrix factorization to improve trust prediction accuracy.

4.3.1 Properties that Influence Trust

In real life, trust is influenced by many properties, including trust tendency, propagated

trust, value similarity, and distribution similarity [66, 131, 117, 81, 226, 237].

Trust Tendency: When rating others in trust, some participants give relatively

higher trust ratings than others, showing different tendencies. On the other hand, some

participants receive higher trust ratings than others, meaning that they are more likely

to be trusted. So, there are two types of tendencies in trust ratings: truster tendency

Tu(i) and trustee tendency Tv(i). Truster tendency can be considered as a personal

property that implies a participant’s average dispositional tendency to trust others. It

can be calculated as the average of all the trust ratings a participant i gives to oth-

ers [225]. On the other hand, trustee tendency can be treated as another personal

property that shows a participant’s tendency to be trusted. It can be calculated as the

average of all the ratings a participant j has received [225]. r̂ij is the trust ratings

adjusted by both tendencies above termed as tendency-reduced ratings in the thesis.



§4.3 The Proposed Trust Prediction Approach 91

Therefore, each trust rating rij can be decomposed as rij = α1Tu(i)+α2Tv(j)+α3r̂ij ,

where, α’s are the coefficients. Only r̂ij is used for matrix factorization. Thus, the neg-

ative effect of trust tendency can be reduced.

Propagated Trust: It is concluded in social network studies that people can trust

a stranger to some extent if the person is a friend’s friend [69]. Thus, many trust prop-

agation methods infer trust along a path between two participants without direct con-

nections [66, 119]. Here, we adopt the propagation method introduced in [119, 110] to

select the path with the highest propagated trust value infer(i, j) between participant

i and participant j by multiplication within H hops. If no path is available within H

hops, we set infer(i, j) = 0. Here, infer(i, j) 6= infer(j, i) in most circumstances

because when participant i trusts participant j with a certain trust value, it does not

mean participant j trusts participant i to the same extent.

Trust Rating Value Similarity: Conventionally, with the rating information of all

the participants, the trust rating value similarity of two participants can be calculated

from the common trust ratings that the two participants give to others [81]. The most

prevalent approaches of this similarity evaluation are Vector Space Similarity (VSS)

and Pearson Correlation Coefficient (PCC) [32]. VSS calculates the similarity from

ratings of common trustees that participant i and participant j have rated respectively:

vss(i, j) =

∑
f∈I(i)

⋂
I(j)

rif � rjf√ ∑
f∈I(i)

⋂
I(j)

r2
if �

√ ∑
f∈I(i)

⋂
I(j)

r2
jf

, (4.6)

where participant f belongs to the subset of trustees that participant i and participant

j both have rated. rif and rjf are the trust ratings participant i and participant j give

to participant (trustee) f .

On the other hand, PCC takes into account the rating styles that some participants

would like give relatively higher ratings to all the others while some may not. Hence,
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PCC adds a mean of ratings as follows:

pcc(i, j) =

∑
f∈I(i)

⋂
I(j)

(rif − ri) � (rjf − rj)√ ∑
f∈I(i)

⋂
I(j)

(rif − ri)2 �
√ ∑

f∈I(i)
⋂
I(j)

(rjf − rj)2
, (4.7)

where ri and rj represent the average rates of participant i and participant j respec-

tively. In addition, the range of the PCC is [−1, 1]. Thus, PCC is normalized into [0, 1]

in applications by q(x) = (p(x) + 1)/2 [131].

Trust Rating Distribution Similarity: The distribution of a participant’s ratings

reveals the participant’s rating habits. For example, a participant gives diverse ratings

with equal probability (Uniform distribution) while another participant prefers giving

a certain trust rating value with a high probability (Gaussian distribution). The same

trust value from these two distributions should be treated differently. Kullback-Leibler

(KL) -distance (Relative Entropy) is a natural distance function from one participant’s

distribution of ratings to the other’s [92]. It can depict the difference in trust rating

distributions between two participants. For discrete probability distributions, the KL-

distance is formulated as follows:

DKL(i||j) =
∑
k

ln(
Pi(k)

Pj(k)
)Pi(k), (4.8)

where k ∈ K is the space of all the trust ratings that participant i has given; Pi and Pj

are the trust rating distributions of participants i and j. As the range of KL-distance

is [0,∞], we use the projection function q(x) = e−p(x) to convert the range to [0, 1],

where, after conversion, 1 means the two distributions are exactly the same while 0

means they are different.

Different from trust tendency, the last three properties have the same character-

istics that they influence the trust between two participants and have the same value

range and trend (after conversion). The weighted sum of interpersonal trust properties

between participant i and participant j is termed as trust property utility, which can be
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formulated as:

TP(i, j) = β1infer(i, j) + β2pcc(i, j) + β3DKL(i||j) (4.9)

where β’s are coefficients.

4.3.2 The Modified Matrix Factorization

As mentioned above, studies in social science have pointed out that people would like

to seek suggestions from friends in the real world. They adopt suggestions according

to the trust levels of friends which are influenced by interpersonal trust properties [24].

Hence, different from existing works, we propose a propagation and similarity regu-

larization term to impose constraints between truster i and trustee f to minimize the

distances between participant-specific vectors ui and uf . It is formulated as:

γ

2

n∑
i=1

∑
f∈F+(i)

TP(i, f)||ui − uf ||2F , (4.10)

where γ > 0, F+(i) is the set of trustees who, at least, have a trust path connected

from truster i. TP(i, f) is the trust property utility in Eq. (4.9). If a trustee f ∈ F+(i)

of participant i has a very similar habit to i and a high trust value propagated from

participant i, then the value of TP(i, f) will be close to 1, otherwise it is close to 0.

Furthermore, a small value of TP(i, f) means that the distance between participant-

specific vectors ui to uf should be large, while a large value of TP(i, f) indicates

the distance should be small. Thus, the trust property utility TP(i, j) enables the

matrix factorization method to incorporate the different similarities and propagated

trust between participant i and his/her truster or trustee. Finally, our trust prediction

model can be formulated as:



94 Single-Context Trust Prediction in OSNs

min
U,V
L(R,U, V ) =min

U,V

1

2

n∑
i=1

n∑
j=1

Iij(r̂ij − uTi vj)2

+
λ1

2
||U ||2 + λ2

2
||V ||2

+
γ

2

n∑
i=1

∑
f∈F+(i)

TP(i, f)||ui − uf ||2F .

(4.11)

In our model, TP(i, j) 6= TP(j, i) in most cases, because trust propagation and

KL-distance are asymmetric (infer(i, j) 6= infer(j, i) and DKL(i||j) 6= DKL(j||i)) in

most circumstances, indicating that “participant i trusts participant j” does not mean

“participant j trusts participant i to the same extent”.

This method improves the accuracy of trust prediction and propagates participants’

trust ratings indirectly. In details, if participant i rates participant f and participant f

rates participant g (suppose participant i does not rate participant g), the distances

between feature vectors ui and ug is minimized when we minimize TP(i, f)||ui −

uf ||2F and TP(f, g)||uf − ug||2F .

A local minimum value of the objective function (4.11) can be obtained using

gradient descent methods in latent factors of ui and vi:

∂L
∂ui

=−
n∑
j=1

Iij(r̂ij − uTi vj)vj + λ1ui

+ γ
∑

f∈F+(i)

TP(i, f)(ui − uf )

+ γ
∑

g∈F−(i)

TP(g, i)(ui − ug),

(4.12)

∂L
∂vi

= −
n∑
i=1

Iij(r̂ij − uTi vj)uj + λ2vi. (4.13)

where F−(i) is a set of trusters, each of whom, at least, has a trust path to trustee i.
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4.4 Experiments

In this section, we present and analyze the results of the experiments we have con-

ducted on a real-world dataset to illustrate the trust prediction accuracy of our method

in comparison with state-of-the-art approaches.

4.4.1 Dataset Description

The dataset Advogato1 used in our experiments is obtained from a trust-based social

network. The network collects trust data between participants and refreshes the dataset

regularly. We adopt the dataset released on September 10th, 2013, which contains

7,425 participants. In the dataset, there are 56,535 trust ratings given by 6,633 trusters

to 7,041 trustees, out of which 51,400 are pair-wise ratings and 5,135 are self-ratings.

This paper aims to predict pair-wise ratings, and thus self-ratings are ignored. Trust

ratings in this dataset are divided into 4 levels which are ‘Observer’, ‘Apprentice’,

‘Journeyer’ and ‘Master’ in ascending order. ‘Observer’ is the lowest trust level while

‘Master’ is the highest trust level. In our experiments, we map the trust levels of

‘Observer’, ‘Apprentice’, ‘Journeyer’ and ‘Master’ to 0.1, 0.4, 0.7 and 1 respectively.

4.4.2 Measures

In the area of prediction and recommendation, both the Mean Absolute Error (MAE)

and the Root Mean Square Error (RMSE) are the most common metrics used to mea-

sure the prediction accuracy of a model [224, 226]. Thus, we adopt them to compare

the prediction accuracy of our proposed approach with the related state-of-the-art ap-

proaches. The metric MAE is formulated as:

MAE =
1

T

∑
i,j

|rij − r̃ij|, (4.14)

1http://www.trustlet.org/wiki/advogato dataset.
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where rij denotes the actual trust ratings participant i gives to participant j. r̃ij repre-

sents the predicted trust ratings that participant i will give to participant j. T denotes

the total number of trust ratings in the validation dataset. MAE weights the individual

differences equally as a linear score.

The metric RMSE is defined as:

RMSE =

√
1

T

∑
i,j

(rij − r̃ij)2. (4.15)

RMSE gives higher weights to larger errors as the errors are squared before taking their

average. It is always larger or equal to the MAE. Both MAE and RMSE are usually used

together to diagnose the variation in the errors of prediction. Lower values of MAE and

RMSE mean better accuracy.

4.4.3 Comparisons

In order to evaluate the prediction accuracy of our approach, we compare it with the

state-of-the-art promising approaches—an trust inference model (MATRI) [225] and

matrix factorization with social regularization (MFISR) [132].

MATRI: This approach [225, 226] considers trust tendency and propagated trust to

predict missing trust ratings, which treats trust tendency and propagated trust as some

of the latent factors when conducting matrix factorization, while other latent factors in

matrix factorization are kept unchanged.

MFISR: This approach [132] adds social regularization into conventional matrix

factorization by introducing average-based and individual-based social regularization

terms separately. In addition, matrix factorization with individual-based social regular-

ization (MFISR) was proved to be more effective and accurate than that with average-

based regularization. Therefore, in our experiments, we compare our method with

MFISR.

The comparisons of the three models are conducted in the metrics of MAE and
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RMSE on the same dataset of Advogato, respectively, where the smaller values of

MAE and RMSE demonstrate better accuracy of trust prediction.

4.4.4 Experimental Settings

In our model, the coefficients α’s and β’s determine the weight of each property that

influences the trust between two participants. They are essential to the trust prediction

accuracy. In order to obtain the best coefficients, we treat each coefficient as a ‘gene’

and construct a ‘chromosome’ containing all the six coefficients of α’s and β’s. The

prediction result from our modified matrix factorization is used as a fitness function.

Thus, the real-valued Genetic Algorithm [148] has been used to determine the best

weight for each trust property. To make comparison fair, this method is also used for

both MATRI and MFISR to determine their coefficients on the same training dataset.

In total, we have conducted three groups of experiments with different percentages

(80%, 60% and 40%) of the data for training. 10 groups of randomly generated initial

matrices are used to initialize each model. In all of the three approaches, we use the

same gradient descent method for the matrix factorization process and set λ1 = λ2 =

0.01,γ = 0.1, H = 2 and l = 10.

Setting of parameters γ and λ: γ and λ’s are very important. γ controls to

what extent propagation and similarity regularization should be incorporated, while

λ’s manage to what extent Gaussian priors should be incorporated. Figs. 4.3 and 4.4

show the impacts of γ, from which we can see no matter which training data setting

is used, MAE and RMSE decrease when γ increases. But MAE and RMSE start to

increase when γ is less than a certain threshold such as 0.1. Therefore, setting γ = 0.1

is proper. As the impact of λ’s shares the same trend as γ in terms of both MAE and

RMSE, the same method is used to determine λ1 = λ2 = 0.01.
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4.4.5 Experimental Results and Analysis

For model validation, we have conducted repeated random sub-sampling for 10 times

in each experiment. Finally, each model is experimented with 300 times (3 different

percentages × 10 different initial matrices × 10 times cross validations). The exper-

imental results, in the best, average and worst initialization cases, are shown in Table

4.1.

From the results of the three groups of experiments, we can see that in the best

initialization cases, our model improves over MATRI by 11.4%–13.6% in terms of

MAE and by 21.8%–24.0% in terms of RMSE. In the worst initialization cases, the

improvements increase to 45.3%–46.4% in terms of MAE and 39.6%–41.4% in terms
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Table 4.1: Experiment results
Training% Cases Metrics Ours MATRI MFISR

MAE 0.1717 0.1938 0.4006
Best RMSE 0.2284 0.3004 0.4856

MAE 0.1802 0.3091 0.3711
80% Average RMSE 0.2404 0.3875 0.4561

MAE 0.1883 0.3514 0.4476
Worst RMSE 0.2474 0.4222 0.5268

MAE 0.1734 0.1970 0.3578
Best RMSE 0.2362 0.3022 0.4418

MAE 0.1804 0.3109 0.3774
60% Average RMSE 0.2413 0.3889 0.4611

MAE 0.1862 0.3476 0.3998
Worst RMSE 0.2471 0.4190 0.4827

MAE 0.1792 0.2073 0.3516
Best RMSE 0.2389 0.3099 0.4517

MAE 0.1821 0.3165 0.3813
40% Average RMSE 0.2431 0.3930 0.4643

MAE 0.1855 0.3392 0.3924
Worst RMSE 0.2481 0.4111 0.4749

of RMSE. This result means that our model has better robustness. In other words,

it not only performs well with the best initialization but also overcomes the worst

initialization situations with slightly lower accuracy. In addition, our model improves

MFISR by 49.0%–57.9% in terms of MAE and by 46.5%–53% in terms of RMSE in

all initialization cases.

Summary: The experimental results have demonstrated that our model signifi-

cantly outperforms the state-of-the-art models in trust prediction accuracy. This is

due to the following reasons. First, in our model, both personal trust properties and

interpersonal trust properties are comprehensively taken into account. Second, per-

sonal trust properties (i.e., tendencies) are utilized to produce tendency-reduced trust

ratings, based on which, the negative effect of trust tendency is reduced. Third, dif-



100 Single-Context Trust Prediction in OSNs

ferent from personal properties, the weighted sum of all interpersonal trust properties

becomes part of regularization in matrix factorization. That means propagated trust,

trust rating value similarity and rating distribution similarity are all incorporated in

trust prediction.

4.5 Conclusion

In this chapter, we have proposed a method of trust decomposition and a new matrix

factorization-based trust prediction model with our trust regularization term. First, we

have analyzed the properties of trust that can be extracted from existing trust rating

values, and that can be leveraged to predict missing trust rating values. Then, these

properties have been further divided into personal properties and interpersonal proper-

ties, and utilized respectively in different ways. Different from the existing approaches,

the personal properties (i.e., trust tendencies) are used to decompose trust ratings into

truster tendency, trustee tendency and tendency-reduced trust ratings, which can re-

duce the effect of trust tendency. The interpersonal properties (i.e., propagated trust

and similarities) are incorporated into a propagation and similarity regularization term.

In this regularization term, in addition to propagated trust, both the similarity of trust

rating distributions and the similarity of trust rating values are included to further dif-

ferentiate the trust between participants and optimize matrix factorization. Next, based

on both rating decomposition and matrix factorization, we have proposed a new trust

prediction model by adding such a regularization term to control the distance between

participants in the latent factor space of matrix factorization. In particular, an impor-

tant feature of our approach is that we do not impose any limitation on latent factors of

matrix factorization. Finally, the experiments conducted on a real-world dataset have

demonstrated significant improvements delivered by our model in trust prediction ac-

curacy over the state-of-the-art approaches using the metrics of RMSE and MAE.



Chapter 5

Social Context-Aware Trust Prediction

in OSNs

In Chapter 4, we have introduced the proposed matrix factorization-based approach to

trust prediction from trust ratings without taking contextual information into account.

This chapter will focus on context-aware trust prediction, as most recent OSNs contain

contextual information of interactions, which can be mined by applying data mining

techniques [141, 193]. In addition, context dependency is a basic property of trust, as

described in Subsection 2.2.2.4, and it is rare for a person to have full trust on another

in all aspects [189, 180]. For example, the case of full trust in all aspects is less than

1% at Epinions.com and Ciao.co.uk, both of which are popular product review web-

sites [189]. In real life, one’s trust to another is limited to certain domains. Therefore,

contextual information is critical for accurate trust prediction. And utilizing social net-

work information to infer or predict trust among people to recommend services from

trustworthy providers has drawn growing attention, especially in online environments.

This chapter is organized as follows. We first describe the trust prediction based on

contextual information in Section 5.1. Then, the personal properties and interpersonal

properties of social context which impact trust transference between contexts are ana-

lyzed in Section 5.2. Next, in Section 5.3 a new trust transference method is proposed

to predict the trust in a target context from that in different but relevant contexts. In

addition, a social context-aware trust prediction model based on matrix factorization

is proposed to predict trust in various situations no matter whether there is a path from

101
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a source participant to a target participant. To the best of our knowledge, this is the

first context-aware trust prediction model in social networks in the literature. Finally,

Section 5.4 presents the experiments and the experimental analysis illustrating that the

proposed model can mitigate the sparsity situation in social networks and generate

more reasonable trust results than the most recent state-of-the-art context-aware trust

inference approach. Section 5.5 gives a summary of the work in this chapter.

5.1 The Trust Prediction Problem in Contextual Social

Networks

Trust prediction is the process of estimating a new pair-wise trust relationship between

two participants regarding a specific context, who are not directly connected by in-

teractions in the context [243]. As described in Subsection 2.2.2.4, trust is context

dependent. For example, A trusts B in teaching Visual C++ because B taught A C++

very well. In this situation, A can trust B in the context of teaching Java to some ex-

tent, because Java is a similar programming language as C++. This example indicates

that trust can be transferred between relevant contexts to some extent.

As introduced in Section 2.4, recently, some studies have suggested taking into

account some kind of social contextual information in trust propagation, which relies

on trust paths and ignores participants not on the path. In addition, latent factor-based

prediction methods also begin to incorporate some social contextual information. Fur-

thermore, Wang et al. [206] point out that social context should contain any infor-

mation to reflect an individual’s social characteristics and the social relationship with

other people within a social network.

However, most existing trust prediction models suffer from the following draw-

backs: (i) The property of trust values has not been studied sufficiently. For example,

the similarity of people’s trust can be modeled not only from the trust values but also

from their distributions [241]; (ii) The diversity of social contexts is not well dealt
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with. In real life, the connection between two people can be friendship, family mem-

ber, business partnership, or classmate etc. Even within the same relationship, such

as classmate, the interaction frequency and interaction context can be largely differ-

ent [206]; (iii) The ways to incorporate social information require further study, as

inappropriate introduction of social information may introduce noise and degrade the

trust prediction quality [122]; (iv) The differences of contextual information are not

handled properly. For example, how to model the relationship of two contexts? To

what extent, the trust in context ci can be transferred to context cj?

Therefore, in order to address the above drawbacks, a new social context-aware

trust prediction model is needed between a recommender and a recommendee.

5.2 Contextual Social Networks

In this section, we first introduce a social network structure containing important social

contextual impact factors. Then, a trust matrix is constructed based on these impact

factors in the social network, providing data for trust prediction.

Context is a multi-faceted concept across different research disciplines with vari-

ous definitions [180]. In this chapter, we define context as any information available

for characterizing the participants and the situations of interactions between them. Fur-

thermore, we adopt the terminology used in [206]. If participant p1 has an interaction

with participant p2, the context about p1 and p2 in the social society is referred to as

the social context, among which the interaction context refers to any information about

the interaction including time, place, type of services etc. If p2 recommends a service

to p1, then the information about the service is referred to the target context.

5.2.1 Social Context

Social context describes the context about participants. Before it can be used to de-

scribe trust of participants, the properties of each aspect must be extracted modeling
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the characteristics of participants and the relationship between them. Therefore, social

context can be divided into two groups according to the characteristics of each impact

factor: personal properties (e.g., role impact factor, reliability and preference) and

interpersonal properties (e.g., preference similarity, social intimacy and trust).

Role Impact Factor: Role impact factor has a significant influence on the trust

between participants in a society [123]. It illustrates the impact of a participant’s so-

cial position and expertise on his/her trustworthiness when making recommendations

based on that the recommendation from a person who has expertise in a domain is more

credible than others with less knowledge about the domain. Let RIF ci
pk
∈ [0, 1] denote

the participant pk’s role impact factor in context ci, where RIF ci
pk

= 1 means pk is an

expert regarding context ci whileRIF ci
pk

= 0 indicates that pk has no idea of context ci.

Therefore, higher RIF ci
pk

would mean more influence when giving recommendations

to others in context ci.

There are various ways to calculate the role impact factor in different domains. For

example, the social position between email users is discovered by mining the subjects

and contents of emails in Enron Corporation1 [91]. Using large databases such as

DBLP2 and ACM Digital Library3, the role impact factor values of scholars can be

calculated by some approaches, such as the PageRank model [193].

Recommendation Reliability: In a certain context, the reliability of recommen-

dations measures the rate of a participant’s recommendations accepted by recom-

mendees [81]. Let RLBci
pk
∈ [0, 1] denote the participant pk’s reliability in context

ci, where RLBci
pk

= 1 means that each of pk’s historical recommendations in context

ci has been accepted by the recommendee, while RLBci
pk

= 0 indicates that pk has

had no recommendation accepted in context ci in the past. Therefore, a higher RLBci
pk

indicates more influence when making recommendations to others in context ci.

There are many different ways to measure the reliability values. For example, on

1http://www.cs.cmu.edu/∼enron/
2http://www.informatik.uni-trier.de/ ley/db/
3http://portal.acm.org/
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the dataset MovieLens4, the leave-one-out approach is used in [81] to calculate the

deviation between the predicted rating and the actual ratings as the reliability of a

participant.

Preference: Preference is an individual’s attitude or affinity towards a set of ob-

jects in a decision making process [111]. This property may differ greatly between

different contexts in real life. The similarity of two participants’ preferences can im-

pact the trust between them to some extent [206]. Let PScipx,py ∈ [0, 1] denote the

preference similarity between participants px and py in context ci. PScipx,py = 1 means

that px and py have the same preference in context ci, while PScipx,py = 0 indicates that

there is no common preference in the interaction context ci. Higher PScipx,py means a

high degree of similarity between px and py regarding context ci and leads to higher

trust between them in the same context. Here, PScipx,py = PScipy ,px .

Since preferences are stored in users’ profiles in some online social networks, such

as Facebook5, the similarity between users can then be mined [206]. In addition, on

some e-commerce websites, the similarity can be calculated from the rating values

given by users using models such as PCC and VSS [131]. Besides, this similarity can

also be complemented from the distribution of these ratings [243].

Social Intimacy: Social intimacy refers to the frequency of connections between

participants in a social network. The degree of social intimacy can impact trust as

people tend to trust those with more intimate social relationships [33]. Let SIcipx,py ∈

[0, 1] denote the social intimacy between participants px and py in context ci in px’s

mind, where SIcipx,py = 1 means, among the group of participants who have a social

relationship with px, py has the most intimate relationship with px in context ci, while

SIcipx,py = 0 indicates that py has the least intimate social relationship with px. Here,

SIcipx,py is not equivalent to SIcipy ,px . For example, px interacts with all of his/her friends,

including py, regularly (with equal frequency). On the contrary, py only interacts with

px regularly among his/her friends. In this situation, between px and py, the social

4http://movielens.sumn.edu/
5http://www.facebook.com/
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intimacy degree in py’s mind must be larger than that in px’s mind, i.e., SIcipy ,px >

SIcipx,py .

In the literature, there are many available approaches to the computation of the

social intimacy degree. For example, in the Enron Corporation case, the intimacy

degree can be extracted from pairs of emails between senders and receivers [91]. The

coauthor relationship in DPLB or ACM Digital Library can be used to figure out the

social intimacy between authors. Using these databases, models like PageRank [193],

are able to calculate the social intimacy degree values.

Existing Trust: Trust is a belief that an entity, such as a person or an organization,

will behave in an expected manner, despite the lack of ability to monitor or control the

environment in which it operates [180]. It can be impacted by all the above proper-

ties and the trust value can be greatly different between the same two participants in

different interaction contexts [212]. Let T cipx,py ∈ [0, 1] denote the trust px gives to py

in context ci, where T cipx,py = 1 means participant px fully trusts participant py on any

recommendation in context ci, while T cipx,py = 0 indicates that px does not trust py at all

in context ci. Higher T cipx,py indicates more trust to py in px’s mind. Here, trust between

two participants in a given context is not symmetrical, so T cipx,py may not be equivalent

to T cipy ,px .

5.2.2 Social Context Similarity

Interaction context is the information about the situation when the interaction hap-

pens between participants p1 and p2. For example, suppose that p2 has recommended

mobile phones to p1 many times in the past. As a result, p1 trusts p2 with the value

T cip1,p2 = 0.8 in the context of mobile phones. Now p2 recommends p1 a laptop. As

there is no historical recommendation in the context of laptops, and there does exist

similarity between the contexts of mobile phones and laptops, we need to calculate the

context similarity in order to determine how much p1 can trust p2 in the target con-

text of recommending laptops. Let CSci,cj ∈ [0, 1] denote the similarity between two
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contexts ci and cj . Only when ci and cj are exactly the same context, CSci,cj = 1.

And CSci,cj = 0 indicates that the information in context ci is not relevant to cj at

all and cannot impact participants’ trust in context cj . Here, CSci,cj = CScj ,ci . We

adopt the classification of contexts introduced in [206] with a number of existing meth-

ods to compute similarity [234, 206], such as linear discriminant analysis and context

hierarchy-based similarity calculation. In addition, the interaction context cj is rele-

vant to the interaction context ci if CSci,cj > µ (µ is a threshold, e.g., 0.7), denoted as

ci ∼ cj . Otherwise, if cj is irrelevant to ci, denoted as ci � cj .

5.2.3 Contextual Presentation of Trust

In order to apply our prediction model on the trust information in different contexts,

we present a contextual trust matrix to represent the contextual information and social

properties. Fig. 5.1 shows a social network graph in a context ci, in which the arrows

between nodes mean the existing trust resulting from past interactions. In context ci,

we construct a Np × Np matrix R, where Np is the number of participants. In this

2-dimensional matrix, if we put the trust value between participants at each context,

the structure can be shown as in Fig. 5.2.

The contextual social network graph is shown in Fig. 5.3 with the trust links in

all contexts, where the superscript ci, i = 1...5 indicates the context in which the

trust exists. Once taking all contexts into consideration, the matrix R turns into a

Np ×Np ×Nc cube as shown in Fig. 5.4, where, Nc is the number of contexts.

In Fig. 5.2 and Fig. 5.4, only the trust values are shown in the matrix. Actually, each

element in the matrix is a social property vector containing all the relative properties

discussed in detail in this section.
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Figure 5.1: Social network graph in a context
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Figure 5.2: Trust matrix in a context

5.3 The Proposed Contextual Trust Prediction Model

The process to predict the trust between participants px and py in the target context

of cj can be divided into two situations based on available information. They are

discussed in the following subsections.

5.3.1 Trust Transference between Contexts

In the example described in Section 5.1, A’s trust to B in the context of teaching C++

can be transferred to the context of teaching Java because Java and C++ are similar

programming languages, which means that trust can be transferred between relevant

contexts. In this subsection, we discuss trust transference for the prediction of the

trust between two participants px and py when they have no prior interactions in the

target context but have many interactions in relevant interaction contexts between each

other. Conceptually, trust transference is the process to evaluate trust from that in
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Figure 5.3: Contextual social network graph
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Figure 5.4: Social trust matrices/cube

different but relevant contexts (termed as interaction contexts) to a target context, e.g.,

the context of an item to be recommended [206]. The result is called transferred trust.

As introduced in Section 5.2, personal properties and interpersonal properties can

impact how much of the trust in interaction contexts can be transferred to that in a

target context, which is termed as trust transference degree. Thus the transference

degree of trust to py in px’s mind from interaction context ci to target context cj can be

calculated from the following equation:

αci,cjpx,py = ω1 · PScipx,py + ω2 · SIcipx,py + ω3 · CSci,cj (5.1)

This equation assumes that participant px trusts participant py with the trust value

T cipx,py after interactions in context ci in the past. It calculates the transference degree

from the trust in interaction context ci to the trust in target context cj , when participant

py makes recommendations to participant px. Here, {ωi}, i = 1...3 are the weights of
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the properties that impact the trust of py in the mind of px, and
∑
i

ωi = 1. Therefore,

the trust value to py in the mind of px regarding the context ci, T cipx,py , can be transferred

to the one in the target context cj by αci,cjpx,py · T cipx,py .

However, in the target context cj , even if participant px has no interaction with

participant py, px can trust py to some extent primarily due to py’s social effect and

his/her ability to give an appropriate recommendation, which can be depicted by the

role impact factor and recommendation reliability. We use the term “ego trust” [139]

to refer to this kind of trust, which can be formulated as:

BT cjpx,py = δ1 ·RIF cj
py + δ2 ·RLBcj

py (5.2)

where, δ1 + δ2 = 1. Finally, based on the trust in all the interaction contexts C

and the ego trust in the target context cj , the transferred trust representing how much

participant px can trust py in the target context cj can be formulated as follows:

T̃ cjpx,py = β1 max
ci∈C
{αci,cjpx,py · T

ci
px,py}+ β2BT

cj
px,py (5.3)

where, β1 + β2 = 1; max
ci∈C
{·} means the maximum trust value among all the trust

values transferred from relevant contexts without ego trust. These coefficients can be

calculated using the leave-one-out approach [81] in the historical data.

5.3.2 Trust Prediction based on Matrix Factorization

A more complicated situation is to predict trust between a source participant and a tar-

get participant when they have no interaction trust between each other in both the target

context and relevant contexts, but they do have interactions with other participants re-

spectively. In such a situation, even if all the trust in all the interaction contexts has

been transferred to the target context using the method introduced in Subsection 5.3.1,

the trust we want to predict in the target context is still absent. For instance, we want

to predict the trust between p2 and p3 in Figs. 5.5 and 5.6.
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Figure 5.5: Graph presentation of contextual social network with transferred trust
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Figure 5.6: Matrix presentation of contextual social network with transferred trust

However, the transference method of trust can assist trust prediction. With dashed

arrows representing the trust calculated by Eq. (5.3) from the interaction contexts,

the social network graph is shown in Fig. 5.5. Correspondingly, Fig. 5.6 shows a 2-

dimensional trust matrix in which, the trust values in bold are interaction trust in the

target context while the other trust values are transferred from all contexts as shown in

Fig. 5.4.

In order to predict the trust between two participants in the target context at the

situation where there is no trust information available between them in all the contexts,

we modify the matrix factorization approach to fit the needs of trust prediction.

As shown in Fig. 5.6, the trust matrix R is a Np ×Np matrix representing the trust

from trusters (recommendees) to trustees (recommenders). The matrix factorization

model maps trust values to a joint latent factor space of dimensionality l so that each

trust value rxy in matrix R is the inner product of truster vector ux ∈ Rl (the rela-

tionship between truster x and the l latent factors) and trustee vector vy ∈ Rl (the



112 Social Context-Aware Trust Prediction in OSNs

relationship between trustee y and the l latent factors).

rxy ≈ uTx vy (5.4)

Accordingly, the truster-trustee trust matrix R is modeled as the inner product of a

truster-specific matrix U = {ux} and a trustee-specific matrix V = {vy}.

R ≈ UTV (5.5)

Note that, when x = y, participants ux and vy are the same participant with two dif-

ferent roles — truster and trustee (recommendee and recommender) respectively. Tra-

ditionally, the factorization process is approximated by Singular Value Decomposition

by minimizing the following equation:

1

2
||R− UTV ||2F , (5.6)

where ||.||2F represents the Frobenius norm. Because each user only has trust values

to a few other users, the matrix R contains a large amount of missing values as an

extremely sparse matrix. Therefore, Eq. (5.6) is changed to

min
U,V

1

2

n∑
x=1

n∑
y=1

(Ixy + ηĨxy)(rxy − uTx vy)2, (5.7)

where Ixy is an indicator function of interaction trust. Ixy = 1 iff participant px

(truster) trusts participant py (trustee) in the target context originally, x 6= y. Oth-

erwise, Ixy = 0. In addition, Ĩxy is another indicator function of transferred trust.

Ĩxy = 1 iff participant px (truster) has trust calculated by Eq. (5.3) to participant py

(trustee), x 6= y. Otherwise, Ĩxy = 0. η ∈ [0, 1] is a coefficient controlling the weight

of transferred trust.

In order to avoid overfitting, two regularization terms from zero-mean spherical

Gaussian priors [174] are placed into Eq. (5.7). In addition, a participant’s properties
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are usually similar to those trusted by him/her in the social network [243], thus a

social regularization is placed into Eq. (5.7). Hence, we have

min
U,V

1

2

n∑
x=1

n∑
y=1

(Ixy+ηĨxy)(rxy−uTx vy)2+
λ1

2
||U ||2+λ2

2
||V ||2+γ

2

n∑
x=1

∑
f∈F+(x)

TP(x, f)||ux−uf ||2F ,

(5.8)

where λ1 > 0 and λ2 > 0; TP is a trust factor utility introduced in Eq. (4.9), which

reduces the distance between two participants’ truster-specific vectors according to

their characteristics such as trust tendency. Once the learning process of the method is

achieved by Eq. (5.8), the trust we want to predict can be calculated by Eq. (5.4).

5.4 Experiments

In this section, we evaluate the effectiveness of our model in typical scenarios includ-

ing the basic cases of social networks in real world. We also compare our model with

the state-of-the-art approach social context-aware trust inference (SocialTrust) [206],

as well as the prevalent multiplication strategy (MUL) [110].

5.4.1 Scenario I: Comparison of Trust Inference between Contexts

In real life, a typical situation needing trust prediction is that a recommender and a

recommendee do not have any interactions in the target context cj . However, they

have many interactions in the past in other relevant contexts C = {ci}, i = 1, ...n

and i 6= j. Without any loss of generality, the trust values between two participants

are generated using a random function in Matlab. We adopt the coefficients from

SocialTrust [206] giving the same weight for each coefficient, where applicable, and

set ω1 = ω2 = ω3 = 0.333, δ1 = δ2 = 0.5, β1 = β2 = 0.5, CSc1,c2 = 0.8,

CSc1,c3 = 0.1. The context information we used in this case study can be found in

Table 5.1.

In this situation, the trust to p2 in p1’s mind can be calculated by Eq. (5.3). We also

calculate the result using SocialTrust. They are presented in Table 5.2. Note that MUL
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Table 5.1: Contextual tust to p2 in p1’s mind
ID Context Context Relation Tp1,p2 PSp1,p2 SIp1,p2 RIFp1 RIFp2 RLBp1 RLBp2

c1 Teaching C++ c1 ∼ c2 & c1 � c3 ? 0 0 0 0.8 0 0.9

c2 Teaching Java c2 ∼ c1 & c2 � c3 0.7 1 1 0.5 0.8 0.5 0.9

c3 Car repair c3 � c1 & c3 � c2 0.8 1 1 0.5 0.8 0.5 0.9

Table 5.2: Trust prediction results in all situations

Trust prediction models Scenario I Scenario II Scenario III

MUL [110] - - 0.2

SocialTrust [206] 0.57 - 0.56

Our model 0.74 0.8 0.78

does not apply in this case, as it does not deal with trust between contexts.

SocialTrust neglects the concept of ego trust while taking the role impact factor of

p1 in the target context c1 into account. In real life, this value should be 0 consistently,

because when a participant seeks suggestions from others, he/she usually has no ex-

perience in the target context. Otherwise, he/she has his/her own trust in the target

context already, and may not need recommendations. Therefore, our result is the most

reasonable one in this scenario. It fits the case in real life that, a C++ teacher is usually

also good at teaching Java, as they are similar contexts.

5.4.2 Scenario II: No Existing Paths

Since we have compared the transference methods in Subsection 5.4.1, in the following

subsections, we assume that the transferred trust values from interaction contexts are

the same so that the comparison of trust prediction models in the target context focuses

on the same trust matrix.

In order to show that our proposed model does not rely on trust paths between the

source and the target participants, this subsection considers the scenario in which there

is no trust path between a source participant and a target participant. In other words,

in this scenario, the source participant is not linked to the target participant by existing
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Figure 5.7: Social trust network graph in Scenario II
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Figure 5.8: Contextual trust matrix in Scenario II

trust paths in all contexts. For example, when participant p5 gives a recommendation

to participant p1, what is the trust to p5 in p1’s mind in the social network as shown

in Fig. 5.7? The trust values in bold fonts in Fig. 5.8 represent interaction trust in

the target context while other trust values are transferred from relevant contexts. The

question mark stands for the trust value we want to predict.

Because there is no path between the source participant and the target one, MUL

and SocialTrust do not apply in this scenario. By contrast, our model detailed in Sub-

section 5.3.1 differentiates the interaction trust in the target context and the transferred

trust from relevant contexts. It analyzes the features of the contextual trust matrix and

predicts the trust in the target context based on these features.

As shown in Table 5.2, our model predicts the missing trust value as 0.8 which

is in the trust value range of p1’s history and similar to the trust values p5 receives.

Thus, our model can generate a reasonable trust value in this scenario, which is not

vulnerable to the lack of trust paths in the trust prediction process.
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Figure 5.9: Social trust network graph in Scenario III
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Figure 5.10: Contextual trust matrix in Scenario III

5.4.3 Scenario III: More Connections than a Path

In this subsection, we consider a very common situation in social networks when mak-

ing recommendations. As shown in Figs. 5.9 and 5.10, when participant p5 gives a

recommendation to participant p1, there is a trust path in the target context connecting

the source p1 and the target p5 in a social network. However, there are also some other

participants in the social network connecting p1 and p5 respectively. These connections

are believed to offer some valuable trust information and should be taken into account.

But they do not form paths connecting the source participant and the target participant

in the target context. Therefore, they are not useful in trust inference models, e.g.,

SocialTrust.

We give an example in Fig. 5.9, showing the interaction trust and transferred trust

between contexts. Fig. 5.10 presents the trust matrix representing exactly the same

social trust network, where the question mark stands for the trust to be predicted.

From Table 5.2, we can see that all MUL, SocialTrust and our model are able to
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predict the missing trust value in this scenario. But the trust value 0.78 predicted by

our model is more reasonable than both 0.2 predicted by MUL and 0.56 predicted by

SocialTrust for the following reasons: (i) in Fig. 5.10, participant p5 receives relatively

high trust values 0.85 and 0.8, indicating that p5 tends to be trusted in the target context;

(ii) the trust values to the others in p1’s mind are not very low, which means that p1

tends to trust others. Therefore, the trust to p5 in p1’s mind should not be very low.

In this scenario, because MUL does not deal with trust between contexts, its result

relies on the trust path consisting of only the interaction trust in the target context. So-

cialTrust relies on paths consisting of both interaction trust and transferred trust in the

target context, and gets a better result than MUL. However, the results of both Social-

Trust and MUL are determined by each trust value on the trust path from the source

participant to the target participant, while our model utilizes all the trust information

in the trust matrix to predict Tp1,p5 , as the trust information not on a path can also be

used to extract features of participants.

5.5 Conclusion

As trust prediction is a context sensitive process, it is essential for the generation of

trustworthy recommendations and still remains a challenging and complex task. In

this chapter, we have first analyzed the properties that can impact trust transference

between different but relevant contexts. Based on these impact properties, we have

proposed a new trust transference method to transfer trust from interaction contexts to

a target context considering personal properties and interpersonal properties and the

features of contexts, which forms a social contextual trust matrix with a smaller spar-

sity degree. Then, a new social context-aware trust prediction model, with indicator

functions of both interaction trust and transferred trust, has been proposed to predict

trust from a source participant to a target participant. The proposed approach ana-

lyzes and incorporates the characteristics of participants’ trust values, and predicts the

missing trust in the target context using modified matrix factorization, regardless of
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whether or not there is a path connecting them. To the best of our knowledge, this is

the first context-aware trust prediction model in social networks in the literature. It not

only utilizes the trust relationships in the target context, but also incorporates the trust

information from relevant contexts via our trust transference methods.

The experimental analysis shows that our proposed model transfers trust between

contexts in a reasonable way and is able to predict trust between a source and a target

participants in all the above situations. It leverages trust transference from relevant

interaction contexts to target context to mitigate the traditional sparsity problem in the

target context, which is particularly important when seeking recommendations from

other disconnected participants in social networks.



Chapter 6

Dynamic Trust Prediction of Online

Environments

Both the single-context trust prediction introduced in Chapter 4 and the context-aware

trust prediction in Chapter 5 predict a static trust value no matter whether context

is considered or not. As described in Subsection 2.2.2.5, trust changes over time,

which is especially important in the online trading environments. Online trading takes

place in a very complex environment full of uncertainty, in which deceitful service

providers or sellers may strategically change their behaviors to maximize their profits.

The proliferation of deception cases makes it essential to model the trust dynamics

of a service provider and predict the trustworthiness of the service provider in future

transactions. Therefore, this chapter focuses on modeling trust dynamics to predict

future trust values in the online trading environments.

This chapter is organized as follows. We first analyze the dynamic trust prediction

problem in Section 6.1. Then, Section 6.2 presents the feature extraction process for

dynamic trust prediction of service providers concerning a forthcoming transaction in

light of as much information as we can consider, including the static features, such as

the provider’s reputation and item price, and the dynamic features, such as the latest

profile changes of a service provider and price changes. In Section 6.3, we first in-

troduce the basic knowledge of HMM needed in this chapter; and then we propose an

HMM-based dynamic trust prediction model to predict the trustworthiness of a service

provider in a forthcoming transaction based on the features from the service provider’s

119
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historical transactions. In this model, all the features extracted from both contextual

information and the rating of each transaction are treated as observations of HMM. In

Section 6.4 we evaluate our approach empirically in order to study its performance.

The experiment results illustrate that our approach significantly outperforms the state-

of-the-art probabilistic trust methods in accuracy in the cases with complex changes.

Section 6.5 summaries the work in this chapter.

6.1 Description of Dynamic Trust Prediction

In recent years, people are increasingly active in various large, open and dynamic net-

work systems including social networks, P2P systems, e-commerce and e-service [208].

Due to the nature of virtual communities, people including service providers and ser-

vice consumers do not meet or interact physically. In such an environment with un-

certainty, the prediction of the dynamic trust to a service provider in online service

applications has been growing in importance [107, 209, 207]. Without trust, prudent

business operators and clients may leave the Internet market and revert to traditional

business [137]. In human society, trust depends on a host of factors such as past ex-

perience with a person, opinions, and motivations [25]. In electronic commerce and

service environments, consumers cannot directly interact with products and workers,

and the credibility of online information may be doubtful [168]. As a result, trust

mainly relies on the past experience with a service provider or seller, the description

of services, the provider’s reputation etc. Thus how to determine the trust of a ser-

vice provider becomes a major challenge to ensure that every forthcoming transaction

is reliable for honest buyers. As the issue of trust exists in both e-commerce and e-

service environments, in this chapter, we use the terms “seller” and “service provider”

interchangeably.

A number of techniques have been proposed for establishing trust online. These

techniques fall under two main categories: security based solutions and social control

based solutions [133]. The former techniques include authentication, access control,
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and public key infrastructure. The latter techniques mainly focus on trust recommen-

dations and reputation. So, trust emerges as the most popular concept to manage the

uncertainty of service providers’ behaviors online [204]. In addition, probabilistic trust

can broadly be characterized as aiming to build probabilistic models upon which the

future behavior can be predicted [51].

In online e-commerce and e-service environments, such as eBay and Amazon, the

system maintains past transaction information for a certain period, which offers the

possibility to infer a service provider’s future action, and could provide useful advice

to customers. As introduced in Subsection 2.4.3, a number of approaches have been

proposed to model the behavior of a service provider. The Beta model is a static model

but not effective when the provider’s behavior is highly dynamic. Probabilistic models

are the most promising tools to deal with dynamic uncertainty. One of the most typ-

ical and powerful probabilistic models is Hidden Markov Model (HMM). HMM is a

stochastic model appropriate for nonstationary stochastic sequences whose statistical

properties undergo distinct random transitions among a set of, say k, different station-

ary processes. In other words, HMMs are used to model piecewise stationary processes

whose statistical properties do not change with time themselves [195]. HMM treats the

list of transactions as a Markov chain and assumes the service provider’s behavior has

finite salient states which determine the distribution of the outcomes of transactions.

A given state, which determines the distribution of observations, only depends on its

previous state; thus, the trustworthiness of the next transaction could be inferred from

the historically recorded list in the system.

The application of HMM for trust prediction has led to many approaches with dif-

ferent efficiencies and precisions. ElSalamouny et al. [52] uses HMM to predict the

outcome of the future transaction based solely on the list of past outcomes, achiev-

ing better performance than the Beta model with a forgetting factor [82]. However, a

transaction includes contextual information and an outcome/rating. The contextual in-

formation, which characterizes all the details of a transaction, may contain more clues

leading to the outcome and can be utilized to predict the status of the future trans-
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Figure 6.1: Flowchart of our approach

action. From contextual information, Liu and Datta [124] extract useful features, as

observations, to construct an HMM to model the dynamic trust of a seller. However,

they directly treat outcomes of transactions as hidden states, which eliminates the hid-

den characteristic of HMM and limits the ability of HMM to model a service provider’

dynamics in trust/reputation.

In order to overcome the disadvantages of existing approaches, we propose a new

approach as shown in Figure 6.1. We firstly analyze what features of transactions can

affect the outcomes resulting in a more comprehensive characterization of contextual

information. Based on contextual information, we extract not only static features but

also dynamic changes as features. For instance, some sellers may change their profile

before committing deception. Secondly, we boost the execution effectiveness through

three steps: (i) we select the most powerful features as observations using informa-

tion theories [92]; (ii) we use the Principal Component Analysis (PCA) algorithm [4]
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to combine the most powerful features to form relatively lower dimensional feature

vectors; and (iii) we apply Vector Quantization (VQ) techniques [92] to project final

feature vectors into discrete values. Lastly, we propose a Discrete Hidden Markov

Model (DHMM) to model the trust trend. We treat all the contextual features and

outcomes/ratings as HMM observations, and predict the most possible rating of the

observation of the forthcoming transaction.

6.2 Producing Features

Liu and Datta [124] have shown that a service provider’s interaction behavior can be

estimated by contextual information. Based on the features extracted from the contex-

tual information of transactions, we analyze the dynamic characters of the sellers in

online trading web sites and build our own HMM trust model.

We propose four main steps to produce the most effective features from contex-

tual information. Firstly, we conceptually choose as much information related to the

behaviors of a seller as possible. Secondly, based on the data, we use information the-

ories like mutual entropy to reveal the most powerful features and eliminate the least

powerful ones. Thirdly, we use PCA to combine the feature vectors. In other words,

the features are projected into another coordinate space with lower dimensionality.

Lastly, Vector Quantization techniques are used to project the combined feature vector

into different discrete observations that are provided to the Discrete Hidden Markov

Model as the input.

6.2.1 Feature Extraction

Contextual information refers to all the information that characterizes the transactions

and from which classifying features could be extracted. The state-of-the-art features

used in HMM models usually can be divided into two main types—static features and

dynamic features which also occur in the seller’s behaviors. Here following Liu and
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Datta’s method [124], the static features are extracted from three aspects as described

below.

1. About the service provider/seller: the contextual information includes the fea-

tures about the provider who offers service. Taking eBay as an example, the

features are mainly collected from the provider profiles including seller’s sys-

tem age, detailed connection information, actual age, gender, location, number

of items sold already, reputation value, and average delivery time.

2. About the service: the contextual information contains item price, category av-

erage price, comments, the number of items in stock, the number of buyers etc.

3. About the social relationships: these kinds are the features concerning the re-

lationships between the service provider and others, such as family, colleague,

friend, acquaintance ties, community, organization, trust networks and so on.

In order to accurately model the dynamics of a service provider, the dynamics must

be captured precisely to represent the changes of providers. For instance, some online

sellers may change their profiles or prices before committing a cheating action, which

can lead to an essential caution for the buyers.

In this step, we extract features which have the probability to distinguish the service

providers’ behaviors. However, not all of them may be essential. The next step is to

refine the extracted features.

6.2.2 Feature Selection

To reduce the computation time and eliminate the less powerful features, we choose

the mutual entropy to select and maintain the K most powerful features or the ones

over a threshold as our final observation in the HMM model.

Entropy usually has two views: the lower bound on the average number of bits

to encode our feature values or the measure of the uncertainty about the feature val-

ues [92]. Here the latter meaning is more suitable to our case.
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Features are usually dependent on the exact e-commerce, e-service or auction web

site. The potential features extracted are represented as Ω = {w1, w2, ...}, where

wr ∈ Ω corresponds to an exact feature. Suppose we are given the past transaction

list of a seller Θ = {θ1, θ2, ...}, and all the transaction outcomes/ratings coming from

a set of discrete quantitative variables in a certain range denoted by L = {l1, l2, ..., ll}

with the probability distribution P = {p1, p2, ..., pl}. According to the definition of

entropy, the entropy of a seller’s all past transactions Θ is:

HP (Θ) = EP [log 1
pj

] =
∑l

j=1 P (θ)log 1
pj

In the extremely simple situation, when all the feedback of a service provider’s

transaction history is positive, then according to the equation, the entropy of the feed-

back is 0. If there is 1/2 positive, 1/3 neutral and 1/6 negative feedback in this

provider’s history, the entropy is 1.459. If there is 1/3 positive, 1/3 neutral and 1/3

negative feedback in this provider’s history, the entropy is 1.585. So it is clear that

entropy can be utilized to identify different distributions of data.

For each feature wr ∈ Ω, we use Υ(wr) to denote its value set. For each value

v ∈ Υ(wr), we represent all the past transactions associated with v for feature wr by

Θv. Then the Mutual Information between Θ and Θv represents the extent to which

the knowledge of Θv reduces our uncertainty about Θ, which is:

Ip(Θ;wr) = Hp(Θ)−Hp(Θ|wr)

= Hp(Θ)−
∑

v∈Υ(wr)

|Θv|
|Θ|

Hp(Θ
v)

The mutual entropy actually calculates a certain feature’s effect on the probability

distribution of the entire feature data. So it is clear that the higher the Mutual Infor-

mation is, the lower the corresponding entropy becomes, and as a result, the better the

classification is [124]. Then the top K features or the features above a certain threshold

are selected according to Mutual Information.
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6.2.3 Feature Combination

So far it is not guaranteed that the feature vectors are best presented in the current

orthogonal coordinate system. In other words, the variance of the vectors along the

axes is not maximized. If it is, we could select the principal components and reduce

the vector dimension. So, in order to further reduce the computation time and maintain

only the essential information, we apply Principal Component Analysis [4] to simplify

the features selected from Mutual Information.

Mathematically PCA is a procedure to determine an orthogonal transformation

of the coordinate system to convert a set of observations of possibly correlated vari-

ables into a set of values of linearly uncorrelated variables such that in the new co-

ordinate system, the variance of the transformed data along the new axes has been

maximized [4]. PCA performs the transformation using the statistical nature of the

information so that the number of principal components is less than or equal to the

number of original variables keeping the information of the data set lossless or only

with a little loss.

After applying PCA, we can find the key components and structure of data and

eliminate noise and redundancy resulting in the reduction of the number of dimen-

sions by calculating eigenvalues and eigenvectors. For each transaction, we denote the

key features as a vector: Ei. After including the contextual information, the rating

li is absorbed into the key features. The optimized feature vector together with the

rating element forms the full feature vector, denoted by Ei = [Ei, li], describing the

transaction’s contextual information with little redundancy.

6.2.4 Feature Quantization

With the final feature vectors, we can either quantize them to discrete values and apply

the Discrete Hidden Markov Model, or directly apply continuous HMM. Due to the

fact that some information is discrete and the consideration of computation time, here

we choose DHMM.
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Vector Quantization is an area that has close affinity with clustering. This tech-

nique is mainly used for data compression which is a prerequisite for achieving better

computer storage utilization and better bandwidth utilization, especially in communi-

cations [195].

Let E = {Ei} be the set of all feature vectors for our prediction problem including

the features extracted from contextual information and the rating, both of which are

finally mapped to the observation of HMM. We separate E into M distinct regions

{Rj} that exhaust E and represent each of them with a code vector vj (here in our

problem that is simplified as a value). The major goal in VQ is to define the regions

{Rj} and their representatives {vj} so that the information loss (called distortion) is

minimized. The discrete representatives {vj}, projected from the feature vector {cj},

are the observations of DHMM.

6.3 Markov Trust Prediction Models

Although statistical methods of Markov source or Hidden Markov Model were first

introduced and studied in late 1960s, it is still popular in the pattern recognition area

because of its richness in mathematical structure and good performance in practical

applications [160]. It is very powerful for predicting the future trend based on sequen-

tial datasets. In this study, we modify HMM and make it suitable for e-commerce and

e-service scenarios.

6.3.1 Basic Knowledge of HMM

A Hidden Markov Model is a statistical Markov model in which the system being

modeled is assumed to be a Markov process with unobserved (hidden) states that con-

trol the mixture components to be selected for each observation [160]. So, each HMM

has a hidden state sequence from a finite state set and its corresponding observation

sequence. The basic structure is shown in Figure 6.2. It also obeys the Markov chain
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Figure 6.2: First-order hidden Markov chain

hypothesis: each state is only determined by the previous one; the distribution of ob-

servations is only dependent on its corresponding state and independent with other

observations; the number of states is finite [92].

Suppose in a sequential data we have T observations O = {o1, o2, ..., oT}, oi ∈

V = {v1, v2, ..., vM} and the states we infer from the observation areQ = {q1, q2, ..., qT},

qi ∈ S = {s1, s2, ..., sN}, where M is the number of distinct observation symbols and

N is the number of states in the model. Then the HMM can be represented as [160]:

λ = (V, S,A,B, π).

A is the state transition probability distribution:

A = {aij}N×N , where aij = P (qt+1 = Sj|qt = Si), 1 ≤ i, j ≤ N , 1 ≤ t ≤ T ;

B is the emission probability distribution:

B = {bj(k)}N×M , where bj(k) = P (vk@t|qt = Sj), 1 ≤ j ≤ N , 1 ≤ k ≤ M ,

1 ≤ t ≤ T ;

π is the initial state distribution:

π = {πi}N×1, where πi = P (q1 = si), 1 ≤ i ≤ N .

In general, there are three basic HMM problems of interest to be solved for the

model to be useful in real-world applications described as follows:

• Problem 1: Given the observation sequenceO and a model λ, how to efficiently

compute the probability of the observation sequence P (O|λ)?

• Problem 2: Given the observation sequence O and a model λ, how to choose a

corresponding state sequence Q?
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• Problem 3: How to adjust the model parameters λ?

In the application for the calculation of trustworthiness, we only refer to the basic Prob-

lem 1 and Problem 3. Our goal is to calculate the probability: P (Ot+1 = vi|O1:t, λ)

which means the probability of the case that the next observation will be vi if we have

already known the past observations from time 1 to time t.

In the following sections, we present, in more detail, how to predict the outcome

by HMM in the most powerful way.

6.3.2 Our Proposed HMM-based Approach

As stated before, the outcome-based HMM achieves better performance than the Beta

model with a decay factor, and the Markov Model (MM)-based on contextual infor-

mation with visualized states is even better than the outcome-based HMM in accuracy

and efficiency. We therefore propose an HMM algorithm based on both contextual in-

formation and outcomes to model the service providers’ behaviors with hidden states.

To further explain the use of HMM, we give a simple example. A malicious

provider honestly sold cheap but good-quality items in 80 transactions to accumu-

late a good reputation and then started to deceive in the next 20 transactions. The

history of this provider can be considered consisting of two states—honest and dis-

honest which are not visible. But when the provider was in the honest state in the first

80 transactions, we had very high probabilities (not 100% necessarily) to observe rel-

ative low prices, reputation rises and positive feedbacks. However, when the provider

was in the dishonest state in the last 20 transactions, we were more likely to observe

higher prices, reputation declines and negative feedbacks. Each transaction can be

treated as one time point in HMM. The observations are the prices, reputation changes

and feedbacks, all of which are determined by the hidden states (honest or dishonest).

Therefore, the states are hidden but they can be predicted by the observations. Then

the whole transaction history can be modeled by HMM.

Suppose that the past transactions of a service provider are denoted by Θ = {θ1, θ2, ...}.
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We also assume that the outcomes are discrete quantities such as rating numbers from 1

to 5. Using the HMM described above and the same symbols to model the transaction

list which describes the behavior of the service provider, the service provider’s behav-

ior can be denoted by λ = (V, S,A,B, π), or λ = (A,B, π) for short, where there are

N possible hidden states, denoted by S. The hidden states can be understood as the

provider’s working periods/states that determine the distribution of observations. M

extracted features/observations are denoted by V . A and B are the transition probabil-

ity matrix and the emission probability matrix respectively as described above. From

Θ, we extract observation sequence O = {o1, o2, ..., oT} and train the model param-

eters λ with a finite number of hidden states which maximizes the expectation that

the HMM λ could emit the observation sequence (the list of past transactions), where

Oi ∈ V and qi ∈ S, 1 ≤ i ≤ T . The observation and the state of the next transaction

are denoted by OT+1 and qT+1 respectively.

To predict the next transaction behavior based on the past knowledge of a service

provider, we need to calculate the probability distribution of the rating in the next

transaction at time T + 1 given the observation sequence for the past time [1, T ]. In

our model, a rating to a service provider is part of the observation. So, the probability

of each possible observation in the forthcoming transaction can be computed by:

P (oT+1 = vj|O1:T ,λ) =
P (oT+1 = vj, O1:T , |λ)

P (O1:T , |λ)

=
P (oT+1 = vj, O1:T |λ)∑N
j=1 P (oT+1 = vj, O1:T , |λ)

(6.1)

The numerator is the joint probability that observations O1:T are observed in the first

T transactions and at next transaction T + 1 the feature vj is observed as the next

observation. The denominator represents the sum of all the possible oT+1 together

with previous observations O1:T given the model λ.

Following the structure in Figure 6.2 to calculate the probability of the observation

sequence P (O|λ), the most straightforward way is to enumerate every possible state
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sequence of length T (the number of observations) [160].

P (O1:T |λ) =
∑
allQ1:T

P (O1:T |Q1:T , λ)P (Q1:T |λ)

=
∑

q1,q2,...,qT

πq1bq1(o1)aq1q2bq2(o2)

...aqT−1qT bqT (oT )

(6.2)

where Q1:T = {q1, q2, ..., qT} is a fixed state sequence which emits the observation

sequence; P (Q1:T |λ) is the probability of the state sequence Q1:T given the model

λ; P (O1:T |Q1:T , λ) is the probability of the observation sequence O1:T for the state

sequence of Q1:T given the model λ.

According to Equation (6.2), the calculation of P (O1:T |λ) has a complexity of

the order of 2T × NT . Clearly a more efficient method is required. Fortunately, the

Forward-Backward procedure [21] can solve the calculation problem.

The Forward algorithm could calculate P (O1:T+1|λ) avoiding an exponentially

growing calculation. For t = 1, 2, ..., T + 1 and i, j = 1, 2, ..., N , we define αt(i) =

P (O1:t, qt = si|λ), that is, the probability of the partial observation sequence o1, o2, ..., ot

and state si at time t, given the model λ. The calculation of αt(i) can be solved induc-

tively as follows:

1. Initialization: α1(i) = πiBi(1)

2. Induction: αt+1(j) = [
N∑
i=1

αt(i)ai,j]bj(t)

3. Termination: P (O1:T |λ) =
N∑
i=1

αT (i)

Then, we have P (oT+1 = vj, O1:T |λ) =
N∑
i=1

αT+1(i)

For the next transaction at time T + 1, usually we have already known the contextual

information so we can extract the feature vector Et+1 and limit the possible outcomes

to a subset of the whole observation set V ′ = {v′j} ∈ V , where the subset V ′ contains

all the observations projected from the same feature vector together with different
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possible ratings. Finally, the most possible predicted outcome of the next transaction

is the rating in the observation with the highest probability:

oT+1 = arg max
v′j∈V ′

[P (oT+1 = v′j, O1:T |λ)].

6.3.3 HMM Training

Given the output sequences: λ = arg max
λ

P (O1:T |λ), the training procedure of HMM

is to find the best state transition probability and observation emission probability.

The task is usually carried out by the Baum-Welch algorithm [216] using the Forward-

Backward algorithm. The Baum-Welch algorithm is a particular case of the Expec-

tation Maximization (EM) algorithm. It could reestimate the parameters of HMM

given only emissions/observations as training data by maximizing Baum’s auxiliary

function. The details can be found in [160][216].

We first define the three variables:

• βt(i) = P (Ot+1:T |qt = si, λ): the probability of the partial observation sequence

from t+ 1 to the end, given state si at time t and the model λ;

• γt(i) = P (qt = si|O, λ): the probability of being in state si at time t, given the

observation sequence O and the model λ; and

• ξt(i, j) = P (qt = si, qt+1 = sj|O, λ): the probability of being in state si at time

t and state sj at time t+ 1.

Then the iterative reestimating procedure could be conducted as follows:

π̄ = γ1(i);

āij =
∑T−1
t=1 ξt(i,j)∑T−1
t=1 γt(i)

;

b̄j(k) =
∑T
t=1,s.t.ot=vk

γt(j)∑T
t=1 γt(j)

.

where π̄ is the expected frequency in state si at time t = 1; āij is the ratio of the

expected number of transitions from state si to state sj to the expected number of
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transitions from state sj; b̄j(k) is the ratio of the expected number of times in state j

and observation symbol vk to the expected number of times in state j.

ξt(i, j) and γt(i) can be calculated by the Forward-Backward algorithm. We do

not discuss the details here. Usually, there are a number of local minima and the data

surface is complicated. The EM algorithm leads to local minima only. Fortunately, the

local minima are usually adequate [160]. EM does not estimate the number of states.

So, that must be given by experience or other algorithms such as standard gradient

techniques. The initialization of HMM does affect performance, but it can be opti-

mized by other standard optimization algorithms. Usually, the reestimating procedure

could be conducted several times to lessen the effect of random initialization.

6.4 Evaluation

6.4.1 Experimental Methodology

With the APIs released by eBay, we have developed a program using PHP to extract

real datasets from the popular e-commerce website eBay (http://www.ebay.com.au/).

The data we obtained from eBay contains the records of transactions of sellers within

three months. In order to evaluate the performance of our modified model and to

compare it with the state-of-the-art models, we generate synthetic datasets following

the scenarios in the real data. Each dataset has 1000 sellers, each of which has finished

100 transactions for the same item.

For the complexity issue, we assume binary values for each property of each trans-

action and select only typical features to evaluate the approach. We treat any transac-

tion with 5 points (highest points in eBay) positive feedback as successful transactions.

Otherwise, we handle them as unsuccessful transaction records. We use the category

ID to differentiate items. Within the same category, the features we used contain static

features (item price, the time each transaction occurred, reputation and quantity, all

of which are calculated as the percentage of the averages in the same category) and
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dynamic features (price changes, reputation changes). To investigate the performance

of feature extraction, we set the time one transaction occurred as random noise.

From the analysis of the real datasets, we consider two scenarios of sellers’ behav-

iors:

• Scenario I: The sellers conducted a number of transactions with very good at-

titudes and quality, obtaining successful transaction records. Then they become

imprudent, completing several unsuccessful forthcoming transactions.

• Scenario II: The sellers change their behaviors randomly but most of the trans-

actions are still successful.

We perform the feature extraction process as described in Section 3. Based on the

extracted features, we compare our approach with the outcome-based HMM [52] and

the contextual information-based Markov Model [124] on the performance of the rates

of correct predictions.

6.4.2 Results and Analysis

We compare the rates of correct predictions of our model with the outcome-based

HMM (OHMM) [52] and the contextual information-based Markov Model (CIMM) [124]

on the synthetic datasets in the above two scenarios.

Results of Scenario I: The sellers all remain prudent at the beginning and then

start to become imprudent. In this scenario, we mainly compare the performance

of the three approaches on different percentages of unsuccessful transactions. We

synthesize 25 groups of seller transaction datasets and each group has 1000 sellers. For

each seller, there are 100 records of recent transactions. The difference between the

groups is that the sellers in the first group have unsuccessful outcomes only on the last

transaction, the sellers in the second group are unsuccessful on the last 2 transactions,

and so on.

For each approach, we use the first 99 transactions to train the models and use
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Figure 6.3: Rates of correct predictions in Scenario I

the last transaction to evaluate the rates of correct predictions. From the experimen-

tal results, we notice that in the first group, none of the three approaches can predict

correctly with a zero correct rate, because there is no unsuccessful transaction in the

training data. As the percentage of unsuccessful transactions goes higher, there are

more unsuccessful transactions in training data. As a result, the rates of correct pre-

dictions delivered by the three approaches all improve.

Figure 6.3 shows the performance of each approach with different numbers of

continuous unsuccessful transactions in the end (CUTE). In the results of the first

several groups, our approach is not as good as the other models. But the performance

of all the three approaches improve and the correct rates of our approach go up to

100%, equal to or better than the others while the number of unsuccessful transactions

accumulates to more than 13. This is because the number of observations is larger

when treating both features and outcomes as observations and the data is relatively

less dynamic in this scenario.

Results of Scenario II: To compare the three approaches in Scenario II, we also

synthesize a dataset of 1000 sellers. Each seller maintains 100 historical records of

transactions. But in this scenario, the ratings of sellers are randomly generated follow-

ing the rule that most of transactions are successful. The distributions of contextual in-
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Figure 6.4: The effect of numbers of hidden states in Scenario II
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Figure 6.5: Comparison with various sizes of training data in Scenario II

formation at different ratings are different, which is the characteristic used to evaluate

different prediction models. Figure 6.4 shows the performance of the three approaches

with different hidden state numbers, where we use the first 99 transactions to train the

three models and use the last transaction to examine the prediction result. Again, the

performance of our approach and OHMM changes according to different numbers of

hidden states, while CIMM could not change this parameter which is also plotted in

the figure for comparison.

From Figure 6.4, we can see that the performance of our approach and OHMM
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fluctuates with different number of hidden states. On average, our approach achieves

21% higher than CIMM and 27% higher than OHMM on the rates of correct pre-

dictions. Thus, our approach significantly outperforms both OHMM and CIMM ap-

proaches in this scenario.

In addition, we also compare the three approaches with different sizes of training

data. That is, for each seller, we use first x percent of the previous transactions to train

the three models separately and predict the next transaction. The results of experiments

presented in Figure 6.5 demonstrate that the size of training data affects the prediction

performance of all the three approaches. Our approach outperforms the others on the

rates of correct predictions when the number of training transactions is more than 55

out of 100. As the number of training transactions goes higher, our approach becomes

much better than the others. The gap reaches the peak which is 16% better than the

others when 99 transactions are used as training data. This is because there are more

observations in our approach.

6.5 Conclusion

This chapter has proposed an HMM-based trust prediction model, which, differently

from existing works, trades both contextual information and trust ratings as observa-

tions. First, this chapter has analyzed the features that can be extracted from historical

transactions and are useful for dynamic trust prediction. Then, instead of directly using

contextual information, the information theories and PCA have been utilized to refine

these features, which significantly reduces calculation time, because these strategies

preserve the essentials of contextual information, and reduce the noise in presenting

the service provider’s behaviors. Next, we have proposed an HMM-based trust pre-

diction approach which is different from the outcome-based HMM and the contextual

information-based Markov Model using outcomes as hidden states. In our model, both

the refined features from contextual information and the rating of each transaction are

projected by VQ to the observations of a discrete HMM to predict the future result,
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which, unlike previous methods, uses HMM in a different and more effective way.

The experiments have been conducted on synthetic datasets regarding typical appli-

cation scenarios. The experimental results have demonstrated that HMM based on

both contextual information and outcomes needs more training data than the others,

but is more effective in predicting the future results of a service provider in complex

dynamics.



Chapter 7

Conclusions and Future Work

7.1 Conclusion

In recent years, Online Social Networks (OSNs) have attracted a growing number of

participants and have grown to the platform for a variety of activities such as recruit-

ment and recommendation. In such type of activities, trust is one of the most important

factors for participants’ decision making. However, most participants do not have pre-

vious direct interactions in OSNs. In addition, it is rare for a participant to have full

trust on another in every facet [189, 180]. Therefore, predicting the trustworthiness

between two unknown participants in OSNs becomes significant and necessary.

In order to predict reasonable trust values efficiently and effectively for different

application environments, our studies in this thesis have been conducted in four main

aspects. The contributions can be summarized as below.

1. The first aspect of the work presented in this thesis is social trust subnetwork

extraction from large-scale social trust networks. This is an essential step for the

performance of forthcoming trust prediction process.

(a) As described in Subsection 2.2.4, social contexts have significant influence

on trust prediction, yet are ignored by most existing trust prediction mod-

els. In our model, social contextual impact factors, including role impact

factor, reliability, preference, social intimacy and existing trust, have been

taken into account the social information.

139



140 Conclusions and Future Work

(b) We have proposed a trust utility function to incorporate the above social

contextual impact factors to reflect participants’ attributes in a social net-

work. Via utility function, participants are allowed to place special con-

straints to each trust impact factor.

(c) To extract a contextual subnetwork for the specific purpose of predict-

ing the trust from a source participant to a target participant using latent

factor-based prediction models, we have proposed two models named Bi-

Net and TrustNet. In these two models, inspired by the ant colony foraging

process [27, 47], we have designed a novel binary ant colony algorithm

(NBACA) and a non-binary novel ant colony algorithm (NACA) for the

subnetwork extraction problems respectively. In NBACA, an initialization

process and a mutation process have been added and the path selection

and pheromone update processes inherited from conventional BACA have

been improved for the trust subnetwork extraction problem. In NACA, we

have improved the path selection and pheromone update processes inher-

ited from traditional ACA and added a mutation process that betters the

performance of this algorithm. The experiments conducted on two popu-

lar social network datasets, Epinions and Slashdot, have demonstrated the

superior performance of our proposed algorithms over the state-of-the-art

approaches.

2. The second aspect of the work presented in this thesis is to predict trust values

from the existing trust rating values using matrix factorization with regulariza-

tion.

(a) We have analyzed the properties which can be extracted from existing trust

ratings including truster tendency, trustee tendency, propagated trust val-

ues, trust rating value similarity and trust rating distribution similarity.

(b) We divide these properties into personal properties and interpersonal prop-

erties and utilize both of them in different ways. In order to reduce the
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negative effect of trust tendency, the personal properties (trust tendencies)

have been used to decompose trust ratings into truster tendency, trustee

tendency and tendency-reduced trust ratings. The interpersonal properties

(propagated trust and similarities) have been incorporated into a propaga-

tion and similarity regularization term.

(c) Considering both propagated trust and similarity factors including the prop-

agation and similarity regularization terms of matrix factorization, we have

proposed a trust prediction model based on rating decomposition and ma-

trix factorization to predict trust ratings from tendency-reduced ratings.

Based on the commonly-used metrics of Mean Absolute Error and Root

Mean Square Error, the experiments conducted on a real-world dataset

have demonstrated significant improvements delivered by our model in

trust prediction accuracy over the state-of-the-art approaches.

3. The third aspect of the work presented in this thesis is to predict trust values

considering contextual information.

(a) We have analyzed the social contexts in detail and proposed a new trust

transference method to transfer trust from relevant interaction contexts into

a target context, which reduces the sparsity of social contextual trust ma-

trices.

(b) We have proposed a context-aware trust prediction model based on matrix

factorization to predict the trust from one participant to another regard-

ing a specific target context in the contextual matrix processed by trust

transference, which mitigates the traditional sparsity problem in the target

context. This model is based on both propagated trust in the target context

and similarity between participants, and does not rely on social paths. The

conducted experiments have examined the model in three different typi-

cal situations, showing that our proposed transference method can transfer
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trust between contexts in a reasonable way, that the proposed prediction

model can generate more reasonable trust values than the state-of-the-art

method, and that our model is able to predict trust in the situation where is

no trust path.

4. The last aspect of the work presented in this thesis is to predict future trust values

in the dynamic online environments.

(a) We have analyzed static and dynamic features that can be extracted from

a seller’s (or provider’s) historical transactions and utilized to predict fu-

ture trust. These features are selected, refined and projected using Mutual

Information, Principle Component Analysis, and Vector Quantization re-

spectively, producing the observation for HMM-based methods.

(b) We have proposed an HMM-based dynamic trust prediction model to pre-

dict the trust value of a seller in the forthcoming transaction, in which

both contextual information and transaction outcomes are incorporated into

observations. The experiments conducted in two typical scenarios have

demonstrated that our model is superior to existing models, and more ef-

fective in complex dynamic environments.

7.2 Future Work

We have completed a great deal of work in trust subnetwork extraction and trust pre-

diction in different application situations, which provides critical technical foundations

for a number of applications based on online social networks.

The following are some suggestions for future research in this direction. On one

hand, the performance of social trust subnetwork extraction models can be further

improved in terms of quality and efficiency by further optimizing our current extraction

algorithms or proposing a new heuristic algorithm. In addition, trust subnetworks can
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also be extracted from the viewpoint of important links, or the mix with the current

important nodes, to further improve the quality of extracted trust subnetwork.

On the other hand, as trust is dynamic and context sensitive, there is still room

to study the factors that affect trust and the features that can be extracted from any

information regarding trust. Then, a multi-dimensional context-aware trust prediction

method can be proposed to model the changes of trust including conventional trust

information, contextual information and time series, and to predict the future trust re-

garding specific context and time. In addition, this model includes suitable algorithms,

such as tensor decomposition, and the study of efficient training methods.

Furthermore, based on the trust prediction model, a trust-oriented recommendation

system can be developed taking full advantage of a social network with complex his-

torical social contextual information. With the help of such a system, an employer is

capable of finding the most trustworthy employees, a vendor can find loyal customers,

a buyer can easily find the most trustworthy seller selling the product the buyer prefers,

and many more similar cases can be imagined.
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Appendix A

Notations Used in This Thesis

Table A.1: Notations used in Chapter 3

First
Notation Representation occurrence
RIF the role impact factor Section 3.2.1
RLB the reliability Section 3.2.1
PS the preference similarity Section 3.2.1
SI the social intimacy Section 3.2.1
Ti,j the trust of trustee j in truster i’s mind Section 3.2.1
ui a node utility Section 3.2.1
F a vector of all trust factors Eq. 3.1
W a coefficient vector given by users Eq. 3.1
m the number of nodes in a sub-network Section 3.2.3
n the number of nodes in a original network Section 3.2.3

G(X) the objective function Eq. 3.3
X the selected nodes Eq. 3.3
xi a selected node Eq. 3.3

D(X) the density of current sub-network Eq. 3.3
ζ&ζ̃ the weights in Eq. 3.3 Eq. 3.3
xs the source node Eq. 3.4
xt the target node Eq. 3.4
Kt a threshold value Eq. 3.4
t time Section 3.4.1

a[i, j] the path from knot i to i+ 1 Section 3.4.1
xki the node selected by ant k Section 3.4.1
Xk all the nodes selected by ant k Section 3.4.1
τij(t) the pheromone on patha[i, j]at time t Section 3.4.1
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Table A.2: Notations used in Chapter 3 (continued)

First
Notation Representation occurrence

U a set of node utilities Section 3.4.1
χi a random value Eq. 3.5
ηi the heuristic function Eq. 3.5

ϕ&ψ the weights of χi&ηi in Eq. 3.5 Eq. 3.5
pkij(t) the transition probability of ank k Eq. 3.6
α&β the weights of τi1(t)&ηi in Eq. 3.6 Eq. 3.6
1{.} a boolean function Eq. 3.8
λi a value from a uniform distribution Eq. 3.8

Xk
−&Xk

+ the solutions from mutation Eq. 3.8&3.9
y the number of ants Section 3.4.5

Xbest the best-so-far solution Section 3.4.5
X ′best the best solution in the current iteration Section 3.4.5
ρ the pheromone evaporation rate Eq. 3.10
% the pheromone increment rate Eq. 3.11
NC the number of iterations already run Section 1

the number of iterations where the best-so-far
NF solution stayed the same Section 1

X(NC) the solution set in an iteration Section 1
NCmax the maximum value of NC Section 1
NFmax the maximum value of NF Section 1
Jk(i) the set of available paths ant k can select at knot i Eq. 3.12
tabuk the tabu recording all the paths ant k has gone through Section 3.6.2
tabu′k the tabu recording all the paths selected but discarded Section 3.6.2
Lk the whole path passed by ant k Eq. 3.13
L′best the best solution in the current iteration Section 3.6.3
Lbest the best-so-far solution Section 3.6.3

the pheromone increment on path a[i, j] in current
∆τij generation Eq. 3.16

∆τ kij the pheromone on the path a[i, j] left by ant k Eq. 3.16
Q a positive constant Eq. 3.17
p′i the probability of node i to be removed Section 3.6.4

the number of times that adding a node cannot
AF better the solution Algorithm 3

AFmax the maximum value of AF Algorithm 3
MF the count of mutation process Algorithm 3

MFmax the maximum value of MF Algorithm 3
Jk&J ′k the set of available paths Eq. 3.12
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Table A.3: Notations used in both Chapter 4 and Chapter 5

First
Notation Representation occurrence

R a trust matrix Section 4.2
l the dimension of a joint latent factor space Section 4.2
ui the truster vector Section 4.2
vj the trustee vector Section 4.2
Rl the joint latent factor space Section 4.2
rij the trust of trustee j in truster i’s mind Eq. 4.2
U the truster-specific matrix Section 4.2
V the trustee-specific matrix Section 4.2
||.||2F the Frobenius norm Eq. 4.3
Iij the indicator function of interaction trust Eq. 4.4
λi the coefficients of regularization terms Eq. 4.5
TP a trust property utility Eq. 4.9
γ the coefficient of our proposed regularization term Eq. 4.10
F+(i) the set of trustees with at least a link from truster i Eq. 4.10

Table A.4: Notations used in Chapter 4

First
Notation Representation occurrence
Rl×n the joint latent factor space Section 4.2
Tu(i) truster tendency Section 4.3.1
Tv(i) trustee tendency Section 4.3.1
r̂ij a tendency reduced trust value Section 4.3.1
αi coefficients in trust decomposition Section 4.3.1

infer(i, j) a propagated trust value Section 4.3.1
H the number of hops in propagation Section 4.3.1

vss(i, j) the Vector Space Similarity Eq. 4.6
pcc(i, j) the Pearson Correlation Coefficient Eq. 4.7
q(x) a normalization function q(x) = (p(x) + 1)/2 Section 4.3.1

DKL(i||j) Kullback-Leibler (KL) -distance (Relative Entropy) Eq. 4.8
q(x) a projection function q(x) = e−p(x) Section 4.3.1
βi coefficients in Eq. 4.9 Eq. 4.9
F−(i) the set of trusters with at least a link to trustee i Eq. 4.13
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Table A.5: Notations used in Chapter 5

First
Notation Representation occurrence
ci & cj a specific context Section 5.1
pk a participant in a social network k = x, y, 1, 2, ... Section 5.2

RIF ci
pk

participant pk’s role impact factor in context ci Section 5.2.1
RLBci

pk
participant pk’s reliability in context ci Section 5.2.1

PScipx,py the preference similarity between px and py in context ci Section 5.2.1
SIcipx,py the social intimacy between px and py in ci in px’s mind Section 5.2.1
T cipx,py the trust px gives to py in context ci Section 5.2.1
CSci,cj the similarity between two contexts ci and cj Section 5.2.2
µ a threshold value Section 5.2.2
Np the number of participants Section 5.2.3
Nc the number of contexts Section 5.2.3

the transference degree of trust to py in px’s mind from
α
ci,cj
px,py interaction context ci to target context cj

Eq. 5.1

ωi the weight of a property Eq. 5.1
BT

cj
px,py the basic trust value Eq. 5.2
δi the coefficients in Eq. 5.2 Eq. 5.2
C a set of contexts Section 5.3.1

T̃
cj
px,py the transferred trust Eq. 5.3
βi the coefficients in Eq. 5.3 Eq. 5.3
Ĩxy the indicator function of transferred trust Eq. 5.7
η the coefficient controlling the weight of transferred trust Eq. 5.7
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Table A.6: Notations used in Chapter 6

First
Notation Representation occurrence

k the number of stationary processes Section 6.1
Ω potential features Section 6.2.2
wr an exact features Section 6.2.2
Θ a seller’s past transaction list Section 6.2.2
θi a past transaction Section 6.2.2
L a set of transaction outcomes/ratings Section 6.2.2
li a transaction outcome/rating Section 6.2.2
P the probability distribution of L Section 6.2.2
pi the probability distribution of li Section 6.2.2

HP (Θ) the entropy of Θ Section 6.2.2
Υ(wr) the value set of wr Section 6.2.2
v a value in Υ(wr) Section 6.2.2

Θv all the past transactions with v for wr Section 6.2.2
Ip(Θ;wr) the mutual entropy Section 6.2.2

Ei a key feature vector Section 6.2.3
Ei a full feature vector Ei = [Ei, li] Section 6.2.3
E the set of all feature vectors Section 6.2.4
Rj a distinct region Section 6.2.4
M the number of distinct observation symbols Section 6.2.4
vj a code vector Section 6.2.4
V the feature set V = {v1, v2, ..., vM} Section 6.3.1
T the number of observations Section 6.3.1
O a sequential observation set Section 6.3.1
oi an observation oi ∈ V , i = 1, ..., T Section 6.3.1
Q a sequential state set inferred from observations Section 6.3.1
qi a state in qi ∈ S, i = 1, ..., T Section 6.3.1
S the unique state set Section 6.3.1
si a unique state i = 1, ..., N Section 6.3.1
N the number of distinct states in a model Section 6.3.1
λ the presentation of an HMM λ = (V, S,A,B, π) Section 6.3.1
A the state transition probability distribution Section 6.3.1

aij = P (qt+1 = Sj|qt = Si),
aij 1 ≤ i, j ≤ N , 1 ≤ t ≤ T

Section 6.3.1
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Table A.7: Notations used in Chapter 6 (continued)

First
Notation Representation occurrence

B the emission probability distribution Section 6.3.1
bj(k) = P (vk@t|qt = Sj), 1 ≤ j ≤ N ,

bj(k)
1 ≤ k ≤M , 1 ≤ t ≤ T

Section 6.3.1

π the initial state distribution Section 6.3.1
πi πi = P (q1 = si), 1 ≤ i ≤ N Section 6.3.1
t the time Section 6.3.1

O1:T the observations in the first T transactions Section 6.3.2
Q1:T the states emitting the first T transactions Section 6.3.2

the probability of the observation sequence
P (O|λ) given the model λ Section 6.3.2

the probability of the state sequence Q1:T
P (Q1:T |λ) given the model λ Section 6.3.2

the probability of the observation sequence O1:T
P (O1:T |Q1:T , λ) for the state sequence of Q1:T given the model λ Section 6.3.2

the probability of the partial observation
αt(i) sequence o1, o2, ..., ot and state si at time t, Section 6.3.2

given the model λ
the probability of the partial observation

βt(i) sequence from t+ 1 to the end, given state si Section 6.3.3
at time t, and the model λ
the probability of being in state si at time t,

γt(i) given observation sequence O and the model λ Section 6.3.3

the probability of being in state si at time t
ξt(i, j) and state sj at time t+ 1

Section 6.3.3

π̄ the expected frequency in state si at time t = 1 Section 6.3.3
the ratio of the expected number of transitions

āij from state si to state sj to the expected number Section 6.3.3
of transitions from state sj
the ratio of the expected number of times in

b̄j(k) state j and observation symbol vk to Section 6.3.3
the expected number of times in state j
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