

 Chapter 1

Introduction

Extensible Markup Language (XML) has emerged as a standard for representing and

exchanging information on the Web. XML is widely accepted for its several

important capabilities. Among them are extensibility (XML content can be easily

extended by both technical and non-technical user-groups), flexibility (users can

create their own tags to support meaning of specific content) and interoperability

(many domain applications have adopted XML as a data interchange standard).

The adoption of XML is increasing rapidly. However, despite its popularity in both

research work and industrial applications, XML data management still faces many

challenges such as semantic specification, XML query processing and manipulation

(e.g. XPath, XQuery, XSL, etc), and query optimization, to name a few.

In XML data management models, an XML schema1 is normally used to structure

and constrain XML content. Among existing XML-based schemas, XML Schema 2 is

rich in semantics and has become a W3C recommendation [W3C, 2004a; 2004b].

The new features supported by W3C are available only in XML Schema.

Most XML documents are developed with an underlying XML Schema [Li & Miller,

2005]. Semantics in XML Schema are very useful for many XML-related areas such

as query satisfaction optimization and many others. The semantics in XML Schema

1 Refer to XML schema in general.
2 Refer to XML schema in XSD format.

Ch. 1

2

which is used for transforming XML queries to equivalent queries has attracted

renewed interest from the research community.

This thesis investigates semantic transformation methodologies using schema

knowledge to transform an XML query to its equivalent semantic query. The query

performance (accuracy and execution speed) is then evaluated, which allows us to

identify semantic transformation typologies used as generalized optimization

devices.

1.1 XML: Background

In 1996, the W3C announced the development of XML, which was based on SGML,

a Standard Generalized Markup Language defined by ISO [ISO, 1986]. The

consortium acknowledged that HTML [Conklin, 1987] - a subset of SGML, could

not function as a meta-language for describing mark-up languages, for it has rigid

tags that were designed for web presentation purposes.

XML was first endorsed by W3C in 1998 as a meta-language suitable for describing

mark-up languages [W3C, 1998]. XML tags are flexible and data relationships can

exist between tags, making XML self-documenting.

Figure 1.1 Example of XML Fragment

Its rich semantic extensibility and flexibility have made XML an open standard for

storing and exchanging information among applications and on the World Wide

Web. An example of an XML fragment is shown in Figure 1.1 which models a

computer PART. It is a well-formed, self-described document showing PART with

<?xml version="1.0" encoding="UTF-8"?>

<PART>

 <TITLE>Computer Parts</TITLE>

 <CONFIGURATION>

 <ITEM>Motherboard</ITEM>

 <MANUFACTURER>ASUS</MANUFACTURER>

 <MODEL>P3B-F</MODEL>

 <REMARK> Original</REMARK>

 </CONFIGURATION>

</PART>

Ch. 1

 3

other entities such as TITLE and CONFIGURATION. The entity

CONFIGURATION has its own entities such as ITEM, MANUFACTURER,

MODEL and REMARK. Each entity is enclosed by a pair of meaningful tags.

The simplicity of XML has enabled the Web to provide more effective publishing

and information exchange facilities. The online exchange of information and

requirements is no longer an issue. However, due to its convenience, the amount of

XML-facilitated information continues to increase rapidly. Existing challenges such

as performance, integrity and efficient storage are some of the many problems that

need to be addressed.

1.2 XML Databases

With the ubiquitous use of XML, efficient storage of XML data is becoming a

critical concern. XML document storage needs to be efficient; in addition, the

management of persistent XML data requires the capabilities to deal with data

independence, integration, access rights, versions, views, integrity, redundancy,

consistency, recovery, and the enforcement of standards [Salminen and Tompa

2001].

Any repository that can store XML data is categorized as an XML database. There

are two main XML database categories including Native XML database and XML-

Enabled database. Any database engine that has originally been constructed and

developed to manage XML data is known as a Native XML Database. XML-enabled

databases are those that are extended with XML capability from any existing

relational engine. Hence, any Relational Database Management System (RDBMS)

that extends its functionality to include XML data management capabilities is known

as an XML-enabled database system [Bourret, 2005].

While Native XML database systems preserve XML document structures and store

these natively, most XML-enabled database systems shred and store XML data in

relational or object-relational structures. Very few XML-enabled database systems

can store XML data natively; such XML-enabled database systems are referred to as

Hybrid XML databases [Beyer et al., 2006]. Since the introduction of the Hybrid

Ch. 1

4

XML database, it has often been referred to as a Hybrid XML Relational database

[Baqasah & Pardede, 2010; Jensen, et al., 2006; Moro, et al., 2007]. In fact, any

database (e.g. relational, object-oriented, etc.) is extended to support XML database,

and storing XML data natively is considered as a Hybrid XML database. Hence, an

important advantage of a Hybrid XML database is that it can facilitate complete

interoperability of XML and other databases (e.g. Relational or Object-Oriented)

storage paradigms [Beyer et al., 2006 and Stromback et al., 2009].

XML documents stored in an XML database can be divided into two categories:

document-centric and data-centric [Bourret, 2005]. The term document-centric

refers to XML documents in which information is expressed with no standard

structure required. Such XML documents include user manuals, static web pages, or

marketing leaflets. Native XML databases are most commonly used to

store document-centric documents as they preserve features such as full-text searches

of certain portions of documents [Bourret, 2005]. The term ‘data-centric’ refers to

XML documents in which information is expressed with a standard required

structure such as scientific data, or customer details: names and addresses, etc. An

XML-enabled database is grouped under the data-centric category due to its regular

record structure.

The structural storage requirement of XML data can become very complex in XML-

enabled databases. Several storage techniques for XML have been implemented by

different database vendors such as Oracle [Oracle, 2010], DB2 pureXML [IBM,

2009]. A simple solution is to store XML data as Character Large Object Binary

(CLOB); this technique is good for retrieving and inserting whole documents but not

for data processing as query performance faces significant problems. A slightly more

advanced storage technique is to shred XML into relational tables or object-relational

tables, which enables better query processing and performance than does the CLOB

storage technique. However, storing XML data in relational or object-relational

tables requires flattening the hierarchical structure of XML documents (i.e. relational

tables are used). A more advanced storage technique is to use an object-relational

method of storing XML data, that is, using an XML Schema for object mapping and

creating relations. The most advanced technique is to store XML data natively (e.g.

Ch. 1

 5

binary technique with XML Schema validation). Nevertheless, each technique poses

its own challenges.

XML-enabled databases and Hybrid XML Relational databases are based on existing

RDBMS products which have been augmented to provide XML support. For

example, prominent vendors such as IBM and Oracle have developed their respective

products to support XML. These vendors recognize the growing popularity of, and

support for, XML data structurally, and understand that without XML support, their

RDBMS would soon start to lose market share [Malloy & Mlynkova, 2009].

1.3 XML Schema & Its Importance

Document Type Definition (DTD) is a recommended schema by W3C which has

been released to facilitate the structure of XML documents. However, many

problems have been identified by the user community which have prompted the

W3C to look into the development of XML Schema. Problems faced by DTD

include: limited support for data types, no namespace awareness, and a structuring

element is nested only within other elements.

To address the shortcomings of DTD, many schema languages have been proposed.

These include, to name just a few: XML Schema [Sperberg-McQueen and

Thompson, 2005], Document Structure Description (DSD) [Klarlund et al., 2002],

Relax NG [Clark and Murata 2001] and Schematron [Jelliffe, 2005]. Of these, XML

Schema has been recommended by W3C.

The role of XML Schema is to constrain and structure XML content. Certain data

types for defining data elements may enable storage space efficiency. For example,

an integer data type used to declare a particular data element in the document would

create better memory space than would a string data type.

XML Schema plays several important roles in storage management including

validation of the XML documents. Documents that are declared with a particular

schema will need to use the schema to validate the documents during the insertion,

Ch. 1

6

deletion or updating of data into or from the databases. Some database systems

require schema validation prior to undertaking any data manipulation.

Furthermore, information in XML Schema plays a significant role in query

optimization. The creation of internal objects may influence the way in which a

query is processed. Some XML databases allow the shredding of XML documents

and store these in a set of tables. The set of tables and internal relationships among

them are automatically derived from the XML Schema. A well-designed XML

Schema facilitates better underlying structures thereby allowing queries to be

processed more efficiently.

1.4 XML: Query Languages

Since the arrival of XML, several XML query languages have emerged for the

manipulation of data. The query languages include Lorel [Abiteboul et al., 1997],

XPath 1.0 [W3C, 1999], XPath 2.0 [W3C, 1999; 2007a; 2010], XML-QL [Deutsch

et al., 1999], XML-GL [Ceri et al., 1999], and XQuery [W3C, 2007b]. XPath and

XQuery are still currently being used and have attracted a number of research works

on performance- related issues.

XPath is a navigational query language that is designed to access parts of XML

documents. It can support single or branching path structures by means of predicates

for filtering content. For navigating XML documents, XPath has a full set of axes

including child, descendant, descendant-or-self, parent, ancestor, ancestor-or-self,

preceding, preceding-sibling, following, following-sibling, self, attribute and

namespace. XQuery is derived from an XML query language named Quilt

[Chamberlin et al., 2000]. It borrows some features from other languages including

XPath. XQuery operates on the abstract and logical structure of an XML document

[W3C, 2007b].

Due to the ever-increasing adoption of XML, there is a need to ensure that XML

query languages perform efficiently. Query optimization and transformation for

XML query languages, both syntactically and semantically, have received much

attention from research communities in recent years. However, due to the rapid

Ch. 1

 7

development of XML data management, query optimization still requires much

attention.

Semantic query optimization utilizes schema constraints to directly optimize a given

query with a set of optimization rules. Due to the current complexity of the XML

data structure, which is enabled by rich semantics in XML Schema, semantic query

optimization should be done in a more systematic manner. For a complete solution,

we leverage the semantics from XML Schema and use it to investigate a set of

semantic transformation typologies. The semantic transformation typologies will be

empirically tested for performance evaluation by using a large set of XPath queries.

The performance results will be analyzed in order to identify semantic transformation

typologies as optimization devices.

1.5 Motivation

For any data management model and query language, the ability to rewrite queries

into equivalent queries is needed for several data management purposes. Of these,

rewriting a query with the purpose of query optimization plays an important role; this

is the case when rewritten queries can be evaluated more efficiently. Of the existing

query rewriting techniques, semantic query transformation is the one that uses only

semantics in the schema to transform any predefined user query to improve

performance.

In the early 1980s, semantic query transformation [Chakravarthy et al., 1990;

Hammer and Jdondik, 1980; King, 1981a and 1981b; Shenoy and Ozsoyoglu, 1987]

was introduced to utilize knowledge in the schemas to enable query rewriting. The

principle of semantic query transformation is to use certain transformation rules that

are developed with knowledge within the schema to reformulate a given query into

its equivalent query. Semantically equivalent query is expected to perform better

than its original query.

As the process of applying semantics to optimize queries has been adopted by other

databases including Relational, Object-Oriented and Deductive databases, it is also

useful in XML databases due to the availability of XML Schemas. However, there is

Ch. 1

8

a difference in terms of constraints among the database types. XML constraints in

XML Schema are driven by two sets of constraints: structural constraints (content

model) and constraints of elements. Semantic query transformation for XML queries

requires multiple semantics in most cases.

For example, in a collection of theses, is it possible to find theses that must have at

least one supervisor who is referenced to an existing thesis? With such rules, we can

determine from the schema that in order for a research student to be entered into the

database, the student must have a valid supervisor who is referenced by an existing

PhD thesis. These rules can be formulated to eliminate the unnecessary execution of

a condition in the query if the structural, referenced and cardinality constraints of

query components are correctly described. The benefit of having this rule is that the

query components can be reduced prior to the processing stage and which in turn

results in better performance.

The challenge of semantic transformation is the processing of schema information.

Processing techniques must be carefully designed and efficient enough that

overheads incurred by searching for the semantics can be kept to a minimum.

In addition to the above, semantic query transformation has the benefit of increasing

performance significantly, if constraint or semantic conflicts in the query can be

detected prior to reaching the database execution level.

For example, consider queries that contradict the semantics defined in the schema:

without semantic transformation, how long would the conflict query take to process

before the user is notified that the requested information is not available in the

database? Semantic query transformation takes advantage of constraints defined in

the XML Schema to transform the query. A query can be rejected if the semantics

used by the query cannot be mapped to those available in the schemas. The

performance comparison is based on the transformation time of the query and the

query that executes against the database. This is because the conflict query can never

reach the execution stage.

Ch. 1

 9

1.6 Objectives

XML Schema offers rich semantic capabilities providing both structural and data

semantics for validation of XML documents or data. While it has continued to gain

support from W3C, DTD has become obsolete and as a result of its lack of semantics

it cannot be used to accomplish many XML-related tasks. Yet semantic query

optimization still utilizes DTD to achieve query optimization tasks. Nevertheless,

this will soon change, as the most recent XML documents have been developed

using XML Schema, enabling the use of its semantics for semantic query

transformation as part of the optimization research area.

The main intention of this thesis is to utilize the semantic capabilities of the XML

Schema, and to apply them to the development of semantic transformation typologies

to transform XPath queries to equivalent but semantically restructured XPath queries.

The semantic transformation typologies are implemented and their performance is

evaluated. The results are used to identify semantic transformations that can become

generalized optimization devices.

The objectives of this thesis can be summarized as follows:

• To provide a suitable semantic transformation methodology to transform

XPath queries to equivalent but semantically restructured XPath queries by

exploiting semantics defined in the XML Schema.

• To ensure that the transformed semantic XPath queries and original XPath

queries produce the same result, i.e. establishing equivalence.

• To ensure that XML Schema semantics are well-derived in order to support

semantic transformation of XPath queries.

• To ensure that semantic transformations are efficiently evaluated, in order to

identify individual semantic transformation as an optimization device

(technique).

Ch. 1

10

1.7 Scope and Plan of the Thesis

A scope and a plan require a context. We delineate some fundamental requirements

that are essential to support our proposed methodology.

a. XML Schema provides essential resources which has made our research possible.

The minimal requirement for this research is the XML Schema.

In choosing a method of XML storage management, we consider any XML database

repository that is equipped with a facility to validate XML documents against XML

Schemas in this research.

Figure 1.2 Outline of Thesis Scope

The scope of the research is broadly summarized in Figure 1.2. The goals are

a. to leverage the XML Schema semantics,

b. to propose a complete typology of semantic transformations, and

c. to propose algorithms for semantic transformations.

There are two sets of constraints in XML Schema that need to be leveraged for

transformation tasks, namely structural constraints and constraints of elements.

Structural constraints describe how content is modeled as tree expressions in XML

documents. Constraints of elements are those restrictions and values imposed on

Semantics in

XML Schemas

(a)

Semantic

Transformation

Typologies (b)

Semantic

Transformation

Algorithms (c)

Derivation

Translation

Proposed solutions

Ch. 1

 11

each data element. To semantically transform an XML query, the structural

constraints are essential constraints, and constraints of elements are optional

constraints, which are used depending on the XML query components.

There are three important sets of XPath query components that need to be

transformed. These are: (a) XPath query with simple path expression, (b) Path query

specified with XPath axes, and (c) XPath query specified with predicates.

a. For XPath queries specified with simple path expressions such as *, /, //,several

semantic transformations are proposed, whereby each semantic transformation

addresses individual path expression.

b. For XPath queries specified with XPath axes such as child, self, parent,

preceding, following, preceding-sibling, following-sibling, ancestor, ancestor-or-

self, descendant descendant-or-self, several semantic transformations are

proposed, whereby each semantic transformation addresses individual XPath

axes.

c. For XPath queries specified with predicates, several semantic transformations are

proposed, whereby each semantic transformation addresses predicates that

support a single condition, conjunctive conditions and disjunctive conditions in a

given XPath query. The condition is a Boolean expression which may involve

comparisons between elements and values, path expressions denoting elements to

be compared as well as further path expressions. These will be taken into

consideration when semantic transformations are proposed.

This thesis is organized into ten chapters. The inter-relationship among the chapters

is depicted in Figure 1.3. The contributions of each chapter are briefly described

below.

 Chapter 1 provides a brief overview of the background of XML. It then briefly

discusses XML databases. This chapter also presents the details of XML Schema and

its importance in general. XML query processing is introduced in order to highlight

the main XML query languages. The motivation for this research is then explained,

highlighting the need for this study. This chapter also discusses the objectives and

scope of this research.

Ch. 1

12

Chapter 2 reviews previous works that address the semantic query transformation.

We provide analyses of various sections of existing works. Each section reviews a

particular approach that is adopted by several works. Various weaknesses and

strengths of existing techniques will be highlighted to explain the motivation for this

research.

Chapter 3 describes the open problems in XML semantic query transformation and

the problem areas that are going to be addressed in the thesis. The section addresses

the shortcomings of the existing techniques that were highlighted in Chapter 2. The

identified problems include the unavailable semantic transformations for certain

types of XPath structures, XPath components such as axes, and predicates where

conditions are specified for data filtering. This chapter also includes definitions of

XML Schema, data model, XPath fragments and related XML essentials required for

the semantic transformation methodology.

Chapter 4 consists of two sections:

1. The first section proposes a technique to derive semantics from given XML

Schemas to support the proposed semantic transformation typologies. The goal is

to minimize the transformation process when semantics are matched and selected

by semantic transformations.

2. The second section proposes the first category of semantic transformations. This

semantic transformation category proposes three typologies to transform a simple

XPath expression that is specified without conditions or axes. An XPath query

can be contracted, expanded or complemented based on the XPath fragment used

in the XPath query.

Chapter 5 proposes the second category of semantic transformation typologies, that

is, for an XPath query specified with axes. The goal of semantic transformations is to

eliminate the axes from the XPath query where possible.

Chapter 6 proposes the third category of semantic transformations which are

transformations for XPath queries specified with predicates. Due to the complexity

of the predicates in XPath query, the transformations are concerned with eliminating

Ch. 1

 13

a whole predicate or reducing the size of a predicate. The semantic transformation

rules identify the structure in predicates and matching semantics before deciding on

semantic transformation.

Figure 1.3 Inter-relationships between Chapters in the Thesis

Chapter 1: Introduction

Chapter 3: Preliminary &

Problem Definitions

Chapter 2: Literature

Survey

Chapter 7: Experimental

Design

Chapter 8: Evaluation

with Real Data Set

Chapter 9: Evaluation

with Benchmark Data

Set

Chapter 4: Semantics

Derivation & Semantic

Path Transformations with

Algorithms

Chapter 5: Semantic

Transformations for

Axes & Algorithms

Chapter 6: Semantic

Transformations for

Predicates & Algorithms

Chapter 10: Conclusion ,

Future Extension & Closing

Statement

Ch. 1

14

Chapter 7 describes the experimental methodology and design, which include the

experimental background, objective and two main strategies. The first describes the

common tasks that are shared by the experiments. The second describes the tasks

conducted by individual experimentations.

Chapter 8 evaluates and analyses the query performance results of the designed

XPath queries using a DBLP real data set [Ley, 2011]. Both DBLP schema and data

are studied and analyzed before new semantics are added. To ensure the consistency

and quality of the data, a validation tool for data consistency is employed.

Chapter 9 evaluates and analyses the query performance results produced by the

benchmark XPath queries and their semantic XPath queries using benchmark data

[Runapongsa et al., 2006]. While the real data and its XML Schema may not be

comprehensive enough for evaluating the effectiveness of the semantic

transformations, benchmarks that provide XML Schema, complex data structures and

queries are much more relevant in order to study query components that have an

impact on performance. The goal in this chapter is to apply semantic transformations

to eliminate the query components that are believed to affect query performance.

Chapter 10 presents an overall summary of the works and future directions of the

thesis. The conclusion addresses the contributions in each chapter. Finally, we

highlight future work that may arise from this current research.

Chapter 2

Literature Review

The aim of this chapter is to show the achievement of existing works in using

semantics from the database schemas for optimization purposes and more

importantly, to identify the issues which remain outstanding. Some of the

outstanding issues are the central focus of this research.

2.1 Clarification & Classification of Techniques

It is important to understand the terms semantic query optimization and semantic

query transformation in order to establish a semantic transformation methodology

for query optimization purposes.

The terms semantic query optimization and semantic query transformation refer to a

common concept that applies constraints in the database schemas for optimization

purposes. Semantic query optimization is a technique using rules or theories

formulated from semantics defined in database schemas for optimization purposes.

Semantic query transformations fulfill the optimization task through a systematic

approach. It first establishes a set of rules to transform queries to semantically

equivalent but restructured queries. The semantic transformations are then

implemented and empirically evaluated for their efficiency and effectiveness as

semantic query optimization devices.

Ch. 2

16

The utilization of semantics in the schemas for query optimization has been

introduced in relational, object-oriented and deductive databases. It is important to

understand how the semantics in the database schemas bring benefits for query

optimization purposes. We emphasize that different databases have different

structures and their schemas provide a different set of semantics. Some techniques

are specific to certain semantics. We study the techniques in the following

categories:

• Legacy Databases: In this category, we review several important works of

semantic query optimization in Relational, Deductive and Object-Oriented

databases. We believe the works from different databases would benefit

our research significantly.

• XML Databases: In this category, we review techniques that apply

semantics in XML schemas (DTD and XML Schema). In this category, the

techniques are further divided into several sub-groups.

2.2 Legacy Databases

The principle of semantic query optimization is to use semantic rules to reconstruct a

query into an equivalent query to deliver better performance [Haseman et. al., 1999;

King, 1981a]. Semantic rules are formulated by applying given database knowledge

such as constraints defined in the schema. The question is: how can efficient

semantic optimization rules be formulated to reduce the cost of performance?

Before discussing related works in semantic query optimization, a partial database

schema given below is used to give a brief overview of several semantic rules used in

semantic optimization [Haseman et al., 1999; King, 1981a]. Details of this example

can be found in the work of Haseman et al. [1999].

Relations

SHIP(shipname, owner, registry, type, capacity, deadwt)

CARGO(cargo#, ship, cargotype, quantity)

Ch. 2

17

OWNER(ownername, industrytype, assets, headquarters)

Join Paths

SHIP.shipname = CARGO.ship

OWNER.ownername = SHIP.owner

Conditional Reference Constraints

All cargos use available ships

CARGO.ship ⊆ SHIP.shipname

Bounding Constraints

Cargo quantities are bounded by ship capacity

CARGO.quantity ≤ SHIP.capacity

Semantic Integrity Constraints (SIC)

• All supertankers have deadweights of 100000 or more and all ships with

deadweight exceeding 100000 are supertankers.

SHIP.type = 'supertanker' ⇔ SHIP.deadwt ≥ 100000

• Owners with assets greater than 1 billion are considered to be in the petroleum

industry.

OWNER.assets > 1Billion ⇒ OWNER.industry = 'petroleum'

Suppose that the queries below are transformed based on the availability of semantic

integrity constraints (SIC) to obtain semantic equivalent queries (SEQ). While the

first SEQ has fewer clauses than those in first Query, the second SEQ has more

clauses than those in the second Query.

Query: SELECT SHIP.shipname, SHIP.owner

FROM SHIP WHERE SHIP.type = 'supertanker' AND SHIP.deadwt

> 75000

SIC: SHIP.type = 'supertanker' ⇒ SHIP.deadwt > 100000

Ch. 2

18

SEQ: SELECT SHIP.shipname, SHIP.owner

 FROM SHIP WHERE SHIP.type = 'supertanker'

Query: SELECT OWNER.headquarters

FROM OWNER WHERE OWNER.assets > 1 billion

SIC: OWNER.assets > 1Billion ⇒ OWNER.industry = 'petroleum'

SEQ: SELECT OWNER.headquarters

FROM OWNER

WHERE OWNER.assets > 1Billion

AND OWNER.industry = 'petroleum'

Over the past decades, several techniques for semantic query optimization have been

proposed. Figure 2.1 summarizes the main differences among the techniques applied

to legacy database types. This section reviews several important works to highlight

the foundation of the semantic query optimization concept.

King [1981a; 1981b] proposes a query language sub-class to optimize Select-Join-

Project queries for Relational databases. The query language sub-class is built by

analyzing the select-join-project query at several levels of detail, along the lines of

the plan-generate-test paradigm of artificial intelligence notations. The researcher

then integrates semantics, query structure, and query processing knowledge to

formulate transformation rules such as restriction elimination, join addition, index

and scan structures. The formulated rules are then applied to transform the sub-class

query language for optimizing Select-Join-Project queries. As a result, the

performance of the transformed queries was promising when restriction elimination

and join addition rules were applied.

The drawback of this work is that the proposed query language sub-class can handle

only a single join between relations in the query conditions. Moreover, this work

does not provide a control strategy of transformation iteration. For example, suppose

that a new restriction is added to a query condition, and after it passes through to the

next iteration, another rule decides that elimination of another restriction is needed.

The next iteration decides an additional restriction is needed and so forth; this

becomes an endless loop. To limit the cycle of transformations for a given query

Ch. 2

19

based on a set of rules, a controlling mechanism is needed to avoid the endless loop

of transformations.

Database Authors Approach/concept Constraint Drawbacks

Relational

King, 1981a and
King, 1981b.

Sub-class language to
optimize select-join-
project.

Schema
Knowledge and
data values.

No strategy to
control
transformations.
Could be caught
in an endless
Loop.

Shenoy &

Ozsoyoglu, 1987.

Theoretic graph-

based to identify

redundant joins.

Implication

integrity and

sub-set

integrity.

No strategy to

control

transformation

iteration.

Deductive

Chakravarthy et al.,
1986a;
Chakravarthy et al.,
1986b;
Chakravarthy et al.,
1988 and
Chakravarthy et al.,
1990

Modifying query
based on the
obtained residues.

Residues. -

Object-
oriented

Grant et al., 1997
Modifying query
based on the
obtained residues.

Residues.

Involves
extensive steps
before a query
can be modified.

Meier et al., 2010

Reasoning

redundant

components by

applying type-based

semantics.

Type-based

semantics. -

Figure 2.1 Semantic Query Optimization for Legacy Databases

The set of transformation rules in this work will influence our research, although the

structure of the XML data model is different from the structure of the relational data

model. Semantics in XML schemas are regarded as the superset of semantics in

relational schemas. XML schemas support both structural constraints and constraints

of elements; these constraints can be useful for semantic transformation techniques

such as restriction elimination, reduction and join addition.

Ch. 2

20

 Shenoy and Ozsoyoglu [1987] proposed a technique for relational databases to use

implied and sub-set constraints to formulate a set of heuristic rules including implied

expansion, semantic expansion and semantic reduction. The technique first

constructs a graph-based simplification method, which enables an identification of

redundant joins and redundant restrictions before the heuristic rules perform the tasks

of elimination and reduction. Similar to the limitations in [King, 1981a and King,

1981b], this approach does not have a heuristic strategy to control and select suitable

types of transformation.

On the positive side, this approach has provided some directions for the research

described here. It has a graph-based representation of join-queries which is useful for

deciding which of the redundant conditions in predicates can be eliminated. While

XML is a tree data structure, XML Schema is a directed graph that represents the

structural constraints. We consider this work to be close to our research, specifically

in relation to join-queries where conditions focus on an element comparison value.

Chakravarthy et al. [1990] consolidate all existing semantic query optimization

techniques for deductive databases [Chakravarthy et al., 1986a; et al. 1986b; et al.

1988]. By performing consolidation, they iteratively apply deductive rules to

relations in order to obtain residues, which are also known as integrity constraints.

This consolidation is very effective because, when using residues to modify the

queries, the performance of the modified queries is improved tremendously

compared with the performance of the original queries.

Grant et al. [1997] employ residues to propose a modification of queries in object-

oriented databases for optimization purposes. Their approach involves several steps;

for example, each object query is translated to a logical representation and then

applied with residues. One of the drawbacks of the technique is that they translated

an object-oriented schema to a relational schema to obtain the residues. This means

some object-oriented semantics are flattened when the object-oriented schema is

converted to a relational schema.

The approaches proposed by both Chakravarthy et al. [1990] and Grant et al. [1997]

have motivated us to consider the fact that regardless of the types of databases,

modified queries perform better than do the original queries.

Ch. 2

21

Meier et al. [2010] use type-based semantics to optimize queries on the database

types such as object-oriented databases and deductive databases. The type-based

semantics rely on rigorous first-order logic formalization. The first-order logic allows

reasoning of the redundant components and hence, some techniques can be applied to

modify the redundant components.

In regards to the evaluation strategy, the authors extend a cost-based model proposed

by Deutsch et al. [2006] and develop this further to minimize the union of

conjunctive queries with negations (using a constraint base, a type system, and a

generic cost function to accomplish this task) [Björklund et al., 2008]. This work

utilizes interrelation semantics, which model relationships among the objects. Their

captured techniques of interrelation semantics can benefit our research in the

modelling of both complex and simple type queries.

In summary, we believe various techniques of semantic query optimization proposed

for legacy databases that support optimization rules can be explored for our research.

Although the processing and structuring of queries in these databases are different

from the processing and structuring of XPath queries in XML databases, certain

constraints such as range values of data remain the same for most databases. In

addition to this, at the high level of using schema semantics, we can learn techniques

such as semantic capturing and concepts and then adopt these techniques in our

research. We also learn that by modifying a query, better performance can be

achieved in most cases.

2.3 XML Databases

This section reviews existing techniques that utilize semantics from XML schemas

for query optimization purposes in XML databases. An XML query (i.e. XPath or

XQuery query) can be expressed with or without predicates. We review the existing

works in two categories, namely, XML queries without predicates and XML queries

with predicates.

Since XML Schema (XSD) has not been fully exploited in semantic query

optimization and transformation, before the related works are formally discussed, a

Ch. 2

22

partial of XML schema (DTD) given below is used to give the reader a brief

overview of how semantics are used in semantic query optimization.

<!ELEMENT publisher (address, book*)>

<!ATTLIST publisher name CDATTA #REQUIRED>

<!ELEMENT address (#PCDATA)

<!ELEMENT book (title, author*)>

<!ELEMENT author (name,age)>

<!ELEMENT name (#PCDATA)>

 <!ELEMENT age (#PCDATA)

The schema above implies the publisher has an attribute of publisher name and

multiple copies of book as its children. Each book has a title but many authors

denoted as author who has a name and age. These are known as semantics or

constraints.

Suppose an XPath query ‘/publisher[@name]//author[age]’ is given. Without the

given schema above, the publisher and author satisfy the attribute name and element

age can be known only when the end tag of publisher is reached. Based on the

semantics in the given schema above, certain semantic rules can be formulated,

which are going to be studied in this section. Given these semantics, both attribute

name and element age are not required when a book author is queried. However, the

question is whether book should be introduced to the XPath query above so that the

axis ‘/’ allows the checking of parent publisher and child book then parent book and

child author. The other option is not to introduce book to the XPath query so that the

axis ‘//’ allows the checking of ancestor publisher then descendant author. The

answer depends on which option produces better query performance.

2.3.1 XML Queries without Predicates

In this category, the techniques of using semantics in XML schemas (i.e. DTD and

XML Schema) for query optimization purposes are further grouped into sub-

categories including XPath Query Containment, Tree Pattern Minimization and

Semantic Query Optimization. Figure 2.2 summarizes the existing works in this

section in terms of approach, constraints used and drawbacks.

Ch. 2

23

Figure 2.2 Summary of Existing Works for XML Query Specified without Predicates

XPath query containment determines a set of answers to one XPath query, is a subset

of of answers of another XPath query. Several techniques have been proposed to

study XPath query containment problems. We review the techniques that apply

semantics to find containment for optimization purposes.

Approach Authors Constraints Drawback

XPath Query
Containment

Miklau & Suciu,
2002

Semantic equivalences

Not able to find containment

if DTD constraints that are

equivalent to semantic

equivalences used.

Wood, 2003

Subclass and sibling

constraints

Suitable for small scale of

data size as limited

constraints are applied.

Wang et al.,
2008

Semantics derived from DTD
Not able to find containment

for ‘*’ from the equivalent

tree pattern

Zhou et al.,

2009 and Wang

& Yu, 2010

Parent-child Sibling and

cousin

Not supporting wild cards

and branching considers

non-disjunctive type.

Tree Pattern

Minimization

Amer-Yahia et
al., 2001, Amer-
Yahia et al.,
2002

Subtype, required- child and

required- descendant

Limited constraints.

Show better runtime when

subtype constraint is not

used

Ramanan et al.,
2002

Only show an improvement

when the subtype constraint

is excluded.

Chen &
Chan 2008

Required-child, required-
descendant, required-parent,
required-ancestor, subtype
and sibling constraints.

Supports no recursion and
requires uniqueness among
elements

Semantic
Query
Optimization

Bohm et al.,

1998

Exclusivity, Obligation, and

Entrance Locations
Do not directly apply

constraints to optimization

Wang et al.,

2003
Schema Paths Do not target for query

performance.

Su et al., 2005

Path constraints with

inference type support

Work targets for stream

processing. Do not consider

XPath axes

Che et at., 2006
Contain and Contains-in

Limited number of
semantics

Sun & Liu, 2006 ISA, PartOf and SynOf
Not sharing evaluation
results

Ch. 2

24

a. XPath Query Containment

XPath query containment normally involves XPath fragments such as parent-child,

descendant-ancestor, wildcard, and branching. These XPath fragments can be

effectively removed and replaced by containments found in an equivalent tree pattern

that is represented by an equivalent XPath query.

Miklau and Suciu [2002] propose a set of semantic equivalences to find containment

of XPath fragments such as parent-child, descendant-ancestor and branching XPath

fragments. Semantic equivalence is a tree-based mapping used to find similarity of

semantics detected in the DTD. Semantics derived directly from DTD are referred to

as conventional semantics.

By using semantic equivalence between two tree patterns that contain XPath

fragments such as parent-child, descendant-ancestor or branching, Miklau and Suciu

[2002] try to prove the existence of a homomorphism (a mapping between two tree

patterns that respects the whole data tree structure). For example, if the second tree

pattern contains some sub-patterns which match more XPath fragments such as

parent-child, descendant-ancestor or branching in the first tree pattern in the presence

of semantic equivalences, then a homomorphism exists. When semantic equivalence

is applied to the two tree patterns, they are verified by applying the semantics (or

constraints) in DTD (which are used to derive semantic equivalence); however, a

homomorphism cannot be detected. This shows that by using semantic equivalence,

deciding the containment of one tree pattern in another tree pattern is not always

successful. This adds a limitation to the work since semantic equivalence and

constraints (used to derived semantic equivalence) are not fully compliant.

Wood [2003] considers XPath fragments such as descendants-ancestor, wildcard and

branching in finding XPath containments. He shows that containments for these

XPath fragments can be found by applying a subclass and sibling constraints in

DTD. While the result for XPath containment of XPath fragments such as wildcard

or branching nodes indicates a polynomial runtime; however, when finding XPath

containment for descendant fragments, performance is slow. This solution is suitable

for a relatively small scale of data as the number of constraints would be minimal.

Ch. 2

25

Wang et al. [2008] explore the DTD semantics to find query containment for tree

patterns that contain XPath fragments such as parent-child, descendant-ancestor,

wildcard or branching. The objective of this work is to provide an efficient algorithm

that can take in DTDs directly and use the semantics to find containments in a tree

pattern represented for an XPath query. Their algorithm is designed to support a

wildcard existing in the first tree pattern, and the containment represented for the

wildcard is expected to be found in the second tree pattern. The first tree pattern is

different in structure from the second tree pattern but they are semantically

equivalent. However, it turns out the containment of a wildcard in the first tree

pattern cannot be found as a containment in the second tree pattern by the algorithm.

Unfortunately, this work does not fully meet its objectives. Therefore, the first tree

pattern must be transformed to a new tree pattern before the algorithm can determine

the containment of a wildcard in the second tree pattern.

Zhou et al. [2009] as well as Wang and Yu [2010] use a chasing technique of a tree

pattern to minimize XPath queries. They identify constraints of the required child,

sibling and cousin. These constraints are derived from a recursive DTD, which needs

a set of specific chasing rules to derive them. Even though the technique can show

the existence of a homomorphism between the tree patterns, a homomorphism is not

necessarily needed for the containment of tree patterns with self-or-descendant

edges. That is because an improvement in the self-or-descendant edges is not

sufficient.

To identify the existence of a homomorphism, the authors consider various special

cases. They consider XPath fragments such as parent-child, descendant-ancestor and

branching. XPath fragment branching supports only a non-disjunctive type. This

work does not consider finding containment for a wildcard, which has been

addressed by Wang and Yu [2010] under containment finding.

As techniques proposed for query containments revolve around fragments of child,

descendants, wildcard and branching, there are limitations in supporting XPath

fragments. Although the work here is not about XPath containments, the semantics

using tree-based mapping from XML documents are similar to those semantics

Ch. 2

26

captured from an XML Schema; and we can explore these semantics for our

research.

b. Tree Pattern Minimization

A tree pattern is used to represent the structure of XML queries such as XPath query

and XQuery. Tree pattern minimization is a technique that expresses an XML query

on a tree pattern and minimizes the size of a tree pattern for query optimization

purposes.

Amer-Yahia et al. [2001, 2002] apply constraints such as subtype, required-child and

required-descendant to minimize the size of a tree pattern that represents a given

XML query.

The performance of the execution of a minimized tree pattern is evaluated using two

proposed algorithms. The first algorithm augments the nodes and edges, and removes

any redundant nodes and edges. The second algorithm propagates the remaining

nodes and edges to a new pattern tree to produce the final result. The limitation of

the first algorithm is that it is restricted to supporting a small number of constraints to

produce the unique equivalent minimal query.

As the runtime shows, the technique used in this work is adequate for XML

documents that are not significantly large in scale. However, the runtime fluctuates

when the data sizes are relatively large. The technique was later refined by Ramanan

[2002], who modifies the algorithms proposed by Amer-Yahia et al. [2001, 2002] to

improve the runtime of the proposed minimization techniques with no additional

constraints other than subtype, required-child and required-descendant. The

mechanism involves combining the constraints and then switching them in

computations. However, the result indicates a better runtime when the subtype

constraint is excluded from the computations.

The common drawback of minimization techniques proposed by Amer-Yahia et al.

[2001, 2002] and Ramanan [2002] is that they involve the same set of constraints;

they lack the other common constraints such as required-parent or required-ancestor.

Ch. 2

27

Chen and Chan [2008] propose a technique to minimize XPath queries by

considering a larger set of constraints including subtype, required-child, required-

descendant, required-ancestor, required-parent and sibling. In their optimization

technique, they first categorize the constraints into forward (subtype, required-child,

required-descendant and sibling) and backward (required-ancestor and required-

parent) groups. Optimization is accomplished by a set of algorithms that provide

rules to produce a set of minimum XPath queries or single minimized XPath query

for an input XPath query.

Most of the input XPath query is minimized and results in a single minimized XPath

query. However, there are cases of an XPath query being minimized and resulting in

a set of minimum XPath queries. The reason is that the target element in the input

XPath query is a wildcard, which represents a set of different schema elements.

The runtime of a minimized XPath query or a set of minimum XPath queries

outperforms the runtime of the original XPath query. Although this work supports

more constraints than do any earlier works, it still has a limitation because it

recognizes only distinct element types in the structural constraints set.

As most of the techniques proposed for tree pattern minimization use constraints

such as subtype, required-child and required-descendant, very few works extend the

list of constraints to support required-parent, required-ancestor and sibling. Although

the work here is not about tree pattern minimization, the semantics such as subtype,

required-child and required-descendants are similar to semantics that can be captured

from XML Schema. The semantic terms are referred to as co-occurrence, occurrence

or nested type; they are very useful to determine the existence of a child and the

children of a child.

c. Semantic Query Optimization

Semantic query optimization is a technique that uses schema semantics to formulate a

set of rules and theories, which are then used to optimize XML queries (i.e. XPath

queries and XQuery queries).

Bohm et al. [1998] propose an approach using schema semantics to create a structure

index for query optimization. This approach first constructs a structured index

Ch. 2

28

(referred to as a structure index) based on a set of constraints including exclusivity,

obligation, and the entry locations. It then uses the structure index to speed up query

processing. Using the structure index to optimize the query is regarded as a logical

optimization, which is usually built directly on the database.

Due to the use of an index, the drawback of this approach is that the storage details

need to be known in order to make plans for query execution. The necessity of

having knowledge about the storage details defeats the purpose of semantic query

optimization. Semantic query optimization does not need to know about the storage

details and system resources. It only requires information such as schema semantics.

Wang et al. [2003] are concerned with two techniques, path shortening and path

complementing, to rewrite XPath queries using schema paths

• A path shortening technique rewrites a single path to a set of minimum path

expressions. They consider only simple path expressions such as parent-child

‘/’, descendant-ancestor ‘//’ or wildcard ‘*’. The single path does not indicate

the use of an XPath axis such as following, preceding, following-sibling or

preceding-sibling.

Their main intention is to evaluate memory efficiency instead of query

performance for optimization purposes. Each minimum path expression in the

set of minimum path expressions is executed to produce one schema node,

which produces a set of data nodes at a time. The aggregate result produced

by the set of minimum path expressions is able to improve memory

efficiency.

• The path complementing technique tests the aggregation of outputs to

complement the path shortening technique. It does not test for memory

efficiency or query performance. Currently, it does not clear the buffer before

the next minimum path takes over. For example, a query asks to return all

names in a given region, ‘//region//name’. In the schema, suppose that there

are two path expressions that compute information ‘name’. The first

expression produces the item name in all regions, ‘//region/item/name’ and

the second expression produces the name of the people in all regions,

‘//region/people/name’. It executes the first expression and then the second

Ch. 2

29

expression. The final result is the first result aggregated with the second

result.

The objective of this work is different from our objective here. We complement this

work and acknowledge the technique of path shortening to produce memory

efficiency.

Su et al. [2005] propose a semantic query optimization for XQuery for stream

databases. They use a query tree to capture a path constraint and then apply an

inference type that indicates a sequential order among the paths to resolve recursion

and descendant issues. In addition to path constraints, they also use constraints such

as order, occurrence and inclusivity. By using these constraints, they can identify the

redundant components in XQuery queries that do not contribute to the final result.

This work focuses on semantic query optimization specific to stream databases. In

XML stream processing, information retrieved is in a token that generally causes a

memory buffering issue. One of the critical issues for XML stream processing in this

work is a change of schema. They have not provided a mechanism for handling the

changes in a schema. In addition, they do not address optimization of XPath

fragments such as parent ‘..’, as they are concerned mainly about wildcard ‘*’ and

descendant-ancestor ‘//’. This work applies semantics derived directly from the

schema to rewrite XQuery queries. In a similar direction, here we derive semantics

directly from XML Schema and apply them in our transformations of XPath queries.

Che et al. [2006] propose a heuristic-based algebraic technique for a query

optimization framework. The heuristic-based algebraic notations are a set of PAT

algebraic expressions [Salminen & Tompa, 1994], which are developed for

structured text access. PAT algebraic expressions allow the checking of type

consistency and consequently produce constraints, namely ‘contain’ and ‘contain-in’.

The produced constraints are used to support their heuristic-based algebraic

transformation. Although the main technique proposed by this work does not focus

on semantic query transformation, the authors consider the use of constraints in

schemas such as DTD or XML Schema when available. Hence, they focus on the use

of schemas as additional resources for further optimization at the application level. In

this work, semantics are not the standard ones that can be directly derived from

Ch. 2

30

DTDs. They are specific semantics such as contain and contain-in that need PAT

algebraic expressions for derivation. Their heuristic-based algebraic technique is

influenced by the specific constraints.

Sun and Liu [2006] apply an ontology conceptualization to improve query

performance for optimization purposes. They utilize the hierarchical organization of

concepts such as inheritance ("ISA") relationship, part-whole ("PartOf"), concept-

value (“ValueOf”) and synonym ("SynOf") among many others to formulate a set of

rules. These rules transform normal XML queries to semantically equivalent XML

queries, which have a query runtime that is less than the query runtime of the original

XML queries.

Ontologies are useful for capturing the semantics of a data source and to unify the

semantic relationships between structures. From this work, we see an opportunity for

our future research so that it can support semantics derived from data sources. As for

this research, we do not consider semantics in data sources. We consider semantics

derived from an XML Schema.

We believe this work can be enhanced to provide a practical solution as currently no

performance evaluation study has been undertaken. One way to enhance this is to

provide additional rewriting rules to translate the rules derived from ontologies. The

translated rules can be implemented for experimentation. In this way, the technique

can fundamentally provide the value of semantic query optimization from the

ontological aspect.

In this section, we have studied techniques of semantic query optimization for query

optimization purposes. We find that some but not all, of the existing works use

semantics derived directly from a DTD. Some existing works do not use DTD

semantics directly; instead, they use specific constraints that need other techniques to

derive them [Bohm et al., 1998; Che et al., 2006]. The main outstanding issue is that

none of the existing works has addressed semantics in XML Schema for optimizing

XML queries. We believe XML Schema will improve the techniques of using

semantics for optimization purposes as there are many features that are not supported

in DTD.

Ch. 2

31

2.3.2 XML Query with Predicates

Figure 2.3 provides a summary of existing works in terms of constraints used and

their limitations.

Figure 2.3 Summary of Existing Works for XML Query Specified without Predicates

A predicate in an XML query expresses conditions to be fulfilled in addition to a

structural path. A condition is a Boolean expression. It may involve comparisons

between elements and values, path expressions denoting elements to be compared, as

well as further path expressions. We refer to predicates in XML as XML query

Authors Constraints Drawback

Fernandez &
Suciu, 1998

Schema graph Supports only single conditions

Kwong & Gertz,
2002 and Olteanu
et al., 2002

Parent-child, sibling,

order and semantics

from DTD

Supports only nested conditions

Supports no joins of conditions

Su et al., 2005

Occurrence, exclusive,

inclusive and

enumeration

Cannot modify conditions with value-based

types due to the use of DTD

Wang et al., 2006 Occurrence, inclusive

and exclusive

Provides only management plans on execution

of predicates

Groppe &

Böttcher 2005
Schema graphs Considers detection of semantic conflicts in

queries as optimization solutions.

Bao et al., 2008
Semantics from DTD Cannot support conjunctive predicates.

Need to break up the conditions

Li et al., 2008

Occurrence, inclusive,

exclusive and pattern

non-occurrence

Cannot support disjunctive predicate.

Conjunctive predicate cannot be modified or

removed if comparison is on a value-based

type.

Hanson & Mani,

2010

Parent-child and

ancestor-descendant

Translate XQuery to SQL/XML syntax which

modifies expressions of parent-child or

descendant pairings.

The work is a preliminary study of simple

XQuery that is limited to traditional database

management systems.

Wu et al., 2010

and Wu et al.,

2011

Structural semantics

and value-base

semantics of elements

Extract semantics from XML documents and

store into relational tables. Use them to

optimize twig pattern queries. As semantics

are stored in relational tables, the impact is

that they may be flattened once they are

converted to a relational structure.

Ch. 2

32

predicates. The existing work on the use of XML schemas (DTD and XML Schema)

semantics for optimizing XML queries specified with predicates is insignificant.

Fernandez and Suciu [1998] propose a query rewriting technique which they refer to

as state extents, based on a schema graph. The schema graph has a set of elements

regarded as a states noted as s1, s2, s3,…, sn called states in which s1 is the root and

edges are labelled with unary predicates.

The rewritten query using states, handles a single condition by breaking it into sub-

conditions. Each sub-condition is then processed as a sub-tree. Each sub-tree has a

target node. When searching for a target node, the sub-tree searches in a portion of an

XML document instead of the whole XML document. This not only reduces the

search space, but also improves the overall query performance. The weakness of the

technique is that due to the state extents, a query can have only single condition;

hence, no joins of conditions are supported.

Kwong and Gertz [2002] and Olteanu et al. [2002] provide a technique to optimize

XML queries by using semantic equivalences which are derived from DTDs. The

technique first formulates a set of XML query-algebra proposed by Bohm et al.

[1998] to establish a framework to modify complex nested XML query predicates.

The framework starts off by identifying the redundant conditions in an XML query

predicate using semantic equivalence. Some semantic equivalences are location

paths. Subsequently, the location paths are the ones that determine whether or not the

nested path expression is redundant.

This work focuses on nested conditions in XML query predicates, instead of using

sub-paths to express conditions. Although it is very rare for XML queries to adopt a

nested path expression for conditions, it is good to be aware of the different condition

structures which create further opportunities to study query performance for

predicates. The limitation of this work is that it does not support the joined

conditions in predicates.

Su et al. [2005] and Li et al. [2008] propose a semantic query optimization technique

for XML queries specified with predicates in XML stream databases using semantics

in DTD. While Su et al. [2005] address predicates that support single conditions

Ch. 2

33

using occurrence, inclusive and exclusive constraints, Li et al. [2008] address

predicates that support conjunctives using a non-occurrence pattern constraint; these

two works achieve different objectives. The former tries to cope with the buffering

issue that leads to a query performance issue; the latter tries to address the footprint

memory issue, which leads to a memory efficiency issue. Regardless of their

objectives, they use schema semantics to achieve their goals.

The techniques have several drawbacks. For a single condition, Su et al. [2005] can

support only a condition without a value-base comparison. For example, if a single

condition is [zipcode > 3004] their technique is inadequate for checking the range

value due to the lack of data types in DTD. The same applies to conjunctive

conditions [Li et al., 2008] when conditions are joined. For example [zipcode >

3004][news/date], if the value ‘zipcode’ does not exist in the database, the technique

cannot determine this conflict. Hence the query needs to be sent to the database for

confirmation. This problem is caused by the limitation of data types supported by

DTD. Semantic query optimization for this kind of requirement can be achieved

using XML Schema because constraints on data types are available. This

shortcoming will be addressed in this research.

Groppe and Bottcher [2005] provide a schema-based approach to study XPath

satisfiability and optimization of XML queries. Their approach elaborates on an

ordered schema graph generated from XML documents. The ordered schema graph

is produced based on three constraints including parent-child, sibling and sequence

or choice between the elements. The input XPath query is transformed into an

ordered query graph which is evaluated against the ordered schema graph for

deciding if the query conditions affect the whole result set, which is either ‘no’ or an

empty result; this becomes the solution to optimize XML queries. Their work can be

considered as a work in the semantic query transformation, as their solution is

dependent on the semantic conflicts detected in a query. No further modification of

valid XML queries is made to reduce the processing of query components as

consequently it improves query performance for optimization purposes. This work

will influence part of our contribution as their detection of semantics is useful for our

work.

Ch. 2

34

Wang et al. [2006] propose a technique to trigger schema runtime information for

improving the static semantic query optimization technique proposed by Su et al.

[2005] in stream databases. In this work, Wang et al. [2006] provide a runtime

management plan to rewrite the algorithm provided by Su et al. [2005] to avoid data

buffering by an early detection of predicates and switching the output mode to

compute the result immediately.

Their work focuses on memory efficiency as processing consumption for stream

databases can be intensified due to the pattern retrieval concept and the volume of

processed data being significantly high. If the switching of the output mode works

well, then numerous resources can be saved for other useful tasks. In addition, their

work does not provide techniques for optimizing the XML query; instead, it provides

an online management plan to manage execution based on the detected predicates.

Therefore, we may conclude that the conditions they support in predicates still

remain as single element conditions, which is supported by Su et al. [2005] However,

we acknowledge this technique and will incorporate it in our future work to deal with

memory efficiency.

Bao et al. [2008] explore Object-Relationship-Attribute models (ORA-SS) [Wu et

al., 2001] to store semantics that are captured from DTDs for query optimization

purposes. The authors address three types of predicates. The first type is a single

condition with a value, the second type is a single condition with no value and the

third type is a disjunctive condition (referred to as a twig pattern) in predicates. Bao

et al. perform a query breakup to distinguish the processing of parts of twig patterns

in a predicate. They find the first twig pattern match and ignore the rest as they

regard the rest of the twig patterns as redundancies.

Due to this query breakup and processing of parts of twig patterns, the approach is

limited when addressing conjunctive predicates. When a conjunctive predicate

exists, each pattern in the predicate must be processed because conjunctive

predicates allow some conditions to be true and some not to be true. As a

consequence, the result of true conditions must be produced. Bao et al. [2008]

presented the result which indicates a promising query performance improvement.

This technique is evaluated by comparing its query performance results against the

Ch. 2

35

query performance result produced by TwigStack [Bruno et al., 2002]. In addition,

the technique does not evaluate various data sizes. With various data sizes, the query

performance can demonstrate scalability and effectiveness of the approach.

Hanson and Mani [2010] explore opportunities to utilize two structural constraints

such as parent-child and ancestor-descendant semantics to modify XPath expressions

in XQuery. By modifying an XPath expression, they investigate the pairings of

parent-child or ancestor-descendant and remove the pairs that they believe to be

redundancies. The new XQuery is then translated to SQL/XML syntax for

traditional database management systems.

Semantics in XML Schemas are useful in many areas including query processing.

Currently, there are no adequate strategies for optimizing XPath queries by utilizing

semantics defined in XML Schemas.

Due to the complexity of XML query predicates, we have seen several techniques

which have been integrated with other techniques. For example, Bohm et al. [1998;

Kwong and Gertz [2002] and Olteanu et al. [2002] derive semantic equivalence

instead of using semantics directly from XML schemas.

Wu et al. [2011] construct relational tables that store semantics extracted from XML

documents. They use the semantics in a table to optimize a twig pattern query by

avoiding process patterns that make no contribution to the final result. This work

which extracts semantics from XML documents and stores them in relational tables

would definitely face challenges, the obvious one being that the referenced path by

ID cannot be identified easily. Due to this problem, the work considers an extension

to using ID references in DTDs to improve the processing of referenced paths [Wu et

al., 2010]. We currently use semantics in XML Schemas to provide a transformation

strategy to find opportunities to optimize XPath queries. However, the work of Wu et

al. [2011] can be integrated into our future work on capturing semantics from XML

documents. The captured semantics can then be combined with semantics provided

in XML Schemas and DTD for a complete solution to semantic query

transformation.

Ch. 2

36

In summary, we have reviewed several works that apply different techniques using

semantics from the schemas to optimize XML queries specified with predicates. The

existing works support different types of predicates that in turn support single

conditions with or without values, join conditions and nested conditions. As

indicated by the literature review, most of the existing work focuses on conjunctive

predicates using semantics for optimization.

2.4 Summary and Open Challenges

In this literature survey, we have reviewed several major techniques for semantic

query optimization for XQuery and XPath queries using constraints from XML

schema. We have provided insights into individual techniques and studied the

constraints used by individual techniques to optimize XML queries.

Initially, we explained the difference between the terms semantic query optimization

and semantic query transformation. After that, a review was conducted of the

semantic query optimization techniques in legacy databases including relational,

object-oriented and deductive databases. We also reviewed the optimization

techniques relevant to our research.

After examining legacy databases, we reviewed the techniques that used semantics to

optimize XML queries. We divided the techniques into two categories of queries:

XML queries without predicates and XML queries with predicates. In the first

category, XML queries without predicates, we group the techniques into three groups

including XPath Query Containment, Tree Pattern Minimization and Semantic Query

Optimization. In the second category, XML queries with predicates, we reviewed the

existing works that focus on techniques and the types of predicates that these

techniques support. We found that few works addressed disjunctive conditions in

predicates, which has become one of the major outstanding issues for the research

presented here. Based on the summary above, we observed the following:

• There are no works that propose a semantic query transformation technique

which can be evaluated systematically so that each semantic query

transformation can be identified as an optimization device. Most of the

Ch. 2

37

existing works focus on semantic query optimization which is different from

semantic query transformation.

Semantic query optimization is a technique that targets query optimization

directly by using rules and theories to optimize XM queries. Semantic query

optimization techniques do not go through systematic evaluation.

 Semantic query transformation on the other hand first transforms an XML

query to a semantically equivalent query by using semantics derived from

XML schema. The semantic query transformations lead to optimization after

being systematically evaluated and able to produce optimized query

performance results.

• Most of the existing works address semantic query optimization techniques

using semantics derived from DTD. Works using semantics derived from

XML schema for optimization purposes require much attention; this is

important because there are many features that are available in XML Schema

but not in DTD [W3C, 2004a; 2004b].

In particular, the new features are useful for transforming XML queries

specified with predicates. For example, conditions in predicates have

comparison values and are based on various data types. The values cannot be

verified as atomic data types such as integer or date and many more are not

supported in DTD. Now that the data types are enhanced in XML Schema,

there is an increase in opportunities to use semantics for handling predicates

for query optimization purposes.

• Apart from simple XPath expressions and XPath predicates, XPath axes

including child, ancestor, parent, self, descendant, following, preceding,

namespace, attribute, ancestor-or-self, descendant-or-self, following-sibling,

preceding-sibling provide different navigations of XML documents. Most of

these axes, except namespace which provides a means to differentiate

elements, allow XML information to be navigated in various directions. None

of the existing works have addressed the semantic query optimization for the

complete set of axes even by using semantics in DTD.

Ch. 2

38

Today, more database vendors provide excellent techniques such as object-relational,

binary, native and many more, for managing and storing XML information.

However, query processing still focuses on simple path expressions such as child ‘/’,

and descendent ‘//’ [Liu and Murthy, 2009; Zhang et al., 2009]. This means the

processing of XPath axes such as following, preceding, following-sibling, ancestor,

or preceding-sibling among others, has not yet been improved for new XML storage

management techniques.

Chapter 3

Problem Definitions

Chapter 2 presented a literature review that led to the proposed research on semantic

query transformation. The review discussed existing works that focus on semantic

query optimization in several types of databases including legacy, object-oriented,

deductive and XML databases. Light was also shed on a number of outstanding

issues related to using semantics for optimizing queries. In this chapter, a problem

definition is given to form the basis of a methodology which will be utilized to

develop techniques to solve the currently identified problems.

This chapter defines and describes the problems that we are going to address and

resolve in this thesis. In order to do this, it is necessary to first provide overviews of

XML technology which relates to documents and the XML Schema, XML query

structure and query processing concept. The problem is then defined. We also

discuss our proposed choice of techniques.

3.1 An Overview of Problem Definition

With the increase in popularity of XML technology, XML Schema has become a

better choice due to its richness of semantics and greater flexibility with regard to

data structures [W3C, 2004a; 2004b].

Ch. 3

40

Due to the latest development of XML Schemas, the database developers can exploit

the great advantage of semantics defined in the XML Schema for transforming

XPath queries for facilitating query optimization.

Figure 3.1 provides an overview of two groups of XML Schema semantics including

structural constraints and constraints of elements and their usefulness for our

proposed semantic transformations. The main tasks of the semantic transformations

are:

• to make sure XML Schema semantics are fully utilized for establishing a

transformation methodology, to transform XPath queries to equivalent XPath

queries for optimization purposes.

• to be able to identify unsatisfied XPath queries so that they are not sent to

databases that may incur a high cost of resource usage.

 Semantics in

XML Schema

Semantics Transformations
of XPath Queries

?

Structural constraints Constraints of elements Semantic XPath queries

Unsatisfied XPath queries

XML Queries (e.g.

XPath query)

Figure 3.1 Overview of Semantic Transformation Methodology

Based on the semantic transformation methodology as illustrated in Figure 3.1, the

semantics (constraints) defined in XML Schema will address the following semantic

transformation categories and issues:

• The transformations of simple XPath expressions, which are specified with no

query conditions, to equivalent XPath queries.

 XML information can be navigated with different path expressions with simple

hierarchy relationships such as ancestor-descendant or parent-child relationships

Ch. 3

41

between the elements and wildcard expressions. Unfortunately, some simple

path expressions may lead to performance issues. Wildcard operators ‘*’ and ’//’

are commonly used in XML query [W3C, 1999; 2007a; 2007b; 2010] and are

well-known for contributing to performance issue during query processing

[Bashir & Boulos, 2005; Deutch et al., 2006 and Wood, 2003]; they should be

avoided if possible. It is advisable to transform all possible different path

expressions so that those that affect query performance can be avoided.

• The transformations of XPath queries which are specified with XPath axes such

as ancestor, parent, self, descendant, following, preceding, namespace, attribute,

ancestor-or-self, descendant-or-self, following-sibling or preceding-sibling.

• Since XPath axes [W3C, 1999; 2007a; 2010] are W3C standard axes, they play

very important roles in allowing navigation information for different purposes.

Some of them do have optional path operators, which make it easier to access

non-native XML databases. However, there are a number of XPath axes that do

not have optional path operators; therefore, there are significant challenges in

both processing and performance. This is due to the fact that some XML-Enabled

databases are still unable to provide full support for some of these axes. It is

necessary to transform XPath queries specified with these axes to equivalent

semantic XPath queries which enable smooth query processing and better query

performance.

• The transformations of XPath of XPath queries which are specified with

predicates. A predicate in an XPath query expresses a condition to be fulfilled in

addition to the structural constraint imposed by the path itself. The condition is a

Boolean expression. It may involve comparisons between elements and

values, path expressions denoting elements to be compared, as well as further

path expressions. Since predicates can accommodate different types of

conditions, this may lead to complexity issues. It is important to address the

differences in transforming each type of condition; therefore, semantic

transformations for XPath queries specified with predicates are needed.

The first two categories of semantic transformations associate their semantics with

structural constraints such as the hierarchy relationships of elements, the occurrence

Ch. 3

42

of elements within another element or in XML Schema as they deal with path

expressions and XPath axes.

The last category of semantic transformation associates their semantics with both

structural constraints and constraints of elements. As described, a condition may

involve a comparison between elements and values, or path expressions. In the

presence of a value comparison, the semantic transformation requires constraints of

elements such as enumeration, pattern, inclusive, exclusive and many others. We will

discuss the features and roles of these semantics later in this chapter.

3.2 XML and Query Essential Background

This section first introduces the basis of structures related to XML documents,

schemas and the data model such as query components and terminologies; it then

addresses the notions of XML query processing.

The XM Schema definition (XSD) describes the structure of XML documents or

databases. For reasons of consistency, the term XML node is going to be used

throughout this thesis. An XML node can be either an attribute or element. An XML

element contains everything within the beginning and ending tags. The definitions in

relation to XML schema and documents for this research concerns the structures of

both XML schemas and documents and not other XML related areas such as tree

grammars[Murata, et al., 2005].

Definition 3.1. (XML Schema Structure). An XML Schema structure S is a rooted

tree graph G that is represented by {L, E, r} where

• L is a non-empty set of labelled nodes

• E ⊂ L × L × N × (N ∪{∞}) where

• N = {1, 2, 3,…} and E is a set of edges associated with a multiplicity (j, k)

Such that <l1, l2, j, k> ∈ Ε . j and k represent the ordering of the nodes l1 and

l2 for the edge determined by a depth first search of the corresponding XML

Schema S where j < k

• r ∈ L where r is the root node of S

Ch. 3

43

 l1

 l6 l2

 l4

 l5

 l3

<l1, l2, 1, 2>

<l2, l3, 2, 3> <l2, l4, 2,4>

<l1, l5, 1, 5>

<l1, l6, 1, 6>

 Figure 3.2 Example of XML Schema Tree

Figure 3.2 shows an example of XML Schema structure where L=<l1, l2, l3, l4, l5, l6>,

E={<l1, l2, 1, 2>, <l2, l3, 2, 3>, …,<l1, l6, 1, 6>}, r=l1, N={1, 2, 3,…}, l1 and l2 are

associated with (j, k) = (1,2), l2 and l3 are is associated with (j, k) = (2,3) and so on.

An XML document provides hierarchical structure to organize nodes with respect to

their contents. Any XML document associated with given schemas means the XML

document conforms to structures described in the schemas.

Definition 3.2. (XML Document Structure). An XML document structure is a

rooted tree denoted by T = {N, ε, r} where

• No is a set of nodes

• ε is a set of directed edges

• r ∈ No is the root node

An XML document structure T conforms to an XML Schema structure S if and only

if the labelled structure of T corresponds to XML schema structure S.

An XML query such as an XPath query needs to consider the scope of query

components and types of paths.

3.2.1 XML Query Component and Structure

As our research focuses on XPath query, it is important for us to discuss the

important components of XPath queries such as XPath axes. XPath queries are

essentially composed of a succession of axes defining the navigation from a current

context node. We summarize how each axis navigates information; details of XPath

axes can be found on W3C [1999; 2007a; 2010]. Below, we discuss eleven XPath

Ch. 3

44

axes that are going to be used in XPath queries and transformed for optimization

purposes.

• The child axis navigates information of the children of the context node.

• The descendant axis navigates information of all the descendants, such as the

child, the child of a child and so on, of the context node. The descendant axis

does not navigate an attribute or a namespace.

• The descendant-or-self axis navigates information of all the descendants,

such as the child, the child of a child and so on, of the context node. The

descendant-or-self axis navigates attributes if there are any.

• The self axis navigates information of the context node itself.

• The parent axis navigates information of the parent of the context node.

• The ancestor axis navigates information of the ancestors of the context node.

The ancestors of the context node are the parent of the context node and the

parent's parent and so on. The ancestor axis includes the root node, if the

context node is not the root node.

• The ancestor-or-self axis navigates information of the context node and

ancestors of the context node. The ancestors of the context node are

the parent of the context node and the parents of parents and so on. The

ancestor-or-self axis includes the root node.

• The following axis navigates information that occurs right after the context

node begins and information traverses along the edges all the way down to

the lowest level of the schema.

• The preceding axis navigates the information that occurs before the context

nodes end and information traverses all the way along the edges back to the

root.

Both the following and preceding axes selection excludes the attributes and

descendants.

Ch. 3

45

• The following-sibling axis navigates information of following siblings

occurring on the right of the context node; it traverses horizontally to the far-

right sibling element of the context node. If the context node is an attribute,

the preceding sibling is empty.

• The preceding-sibling axis navigates information of preceding siblings that

occur on the left of the context node; it traverses horizontally to the far-left

sibling element of the context node. If the context node is an attribute, the

preceding sibling is empty.

Among the XPath axes family, child, descendant, parent and self can be optionally

specified using the path notations {/,//,..,.} which have been commonly used. XPath

axes such as descendant-or-self, ancestor, ancestor-or-self, following, following-

sibling proceeding, and preceding-sibling have unique functionalities which provide

different required information, and these XPath axes do not have optional operators.

The performance of queries denoting the same result by means of different axes may

significantly differ. The difference in performance can be affected by some axes, but

this can be avoided and will be addressed in this research. The next important

component of an XPath query is the predicate [Diao et al., 2003]. Below, we define

the XPath query predicates and also show the complexities in XPath query

predicates.

Definition 3.3. (XPath Query Predicate). An XPath query predicate is a component

that contains query conditions specified for filtering information. It is enclosed with

[].

The XPath query predicate filters a node-set with respect to an XPath axis to produce

a new node set. The query condition in the predicate is evaluated with

elements/nodes in the node-set as the context nodes/element. If the query predicate

evaluates to true in any given node, then it is kept in the resulting node set [W3C,

1999].

The scope of predicates in an XPath query is now illustrated. A predicate is

composed of one or more of the following:

Ch. 3

46

• binary operators (‘=’, ‘!=’, ‘<=’, ‘<’,’ >’ ‘=>’)

• connectives (‘OR’, ‘AND’)

• a constant

• path with/without constants

• Context position index function such as position()

Samples of predicates in XPath query forms, where e denotes elements and z denotes

constant values:

• e0/e1/e2/e3[z0] - A predicate, which contains only a constant value.

• e0/n1[e11]/e2[e3/e4], e0[e11]/e2[e3[e4]], e0/*/e2[e3/e4] – Predicates, which

contain path fragments e.g. [e3/e4], nest path e.g. [e3[e4]].

• /e0/e1/e2[e3 > z5] - A predicate, which contains both a path fragment and a

constant value.

• /e0/e1/e2[e3 > z5 or e3/e4 and e3 > z3] - A predicate, which contains path

fragments and constant values and disjunctive as well as conjunctive

operators.

• /e0/e1 [position()>z0] – A predicate, which contain both a context position

index function and constant value.

Definition 3.4. (Full Path). A full path pfull is a path expression that consists of a set

of nodes that can be an attribute or element and hierarchy ‘/’ or ‘//’ and contains no

predicate.

pfull ::= a/b | a//d | * | n | .

a, b and d are nodes requiring to be tested, hence are referred to as a node test [W3C,

1999; 2007a; 2010]. ‘/’ denotes a child axis, ‘//’ denotes a descendant axis, ‘*’

represents an arbitrary element, n denotes specific element that has a label l ∈ L,

Ch. 3

47

where L is a non-empty finite set of labels, and ’.’ is the current node. The set of full

path expressions is plin

Definition 3.5. (Partial Path). A partial path ppart is an extension from pfull that ppart

is defined as follows:

ppart ::= a/b |a//d |a[q] | * | n | .

a, b, and d are elements

q ::= a |a//d | a AND b | a OR b |a, b op v | n op v | NOT (n) | fn op v | fn op fn

op ::= > | < | ≤ | ≥ | !=

fn ::= position() | last()

v::= string | float | int

n::= constant integer

[] ::= predicate contains a set of conditions q

Definition 3.6. (Location Step). A location step ls is a navigational step that is

composed of three components including predicate (optional), test element and axis

(optional).

ls ::= α ::n | α::n [q] | α :: * |α:: * [q]

[q] is optional where q:: = a | b//d |a AND b | a OR d | a op v | n op v | NOT (n) | fn op v

| fn op fn where

op ::= > | < | ≤ | ≥|!=, fn ::= position() | last(), v ::= string | float | int

α::= child | descendant | parent | following | following-sibling | preceding | preceding

– sibling | self | ancestor | descendant-or-self | ancestor-or-self

n denotes a specific element that has label l ∈ L, where L is a none-empty finite set

of labels.

Both full path and partial path are formed by a set of location steps where the axis is

solely inclusive of a child, which can be optionally specified; that is, when a location

step is specified with no axis. As shown in Definition 3.6, a location step other than

a child axis supports a series of axes to navigate information for different purposes.

Ch. 3

48

Figure 3.3 provides a set of location steps derived from p, axes, node-test and

predicate that make up a full location step, which consequently makes up a location

path by the sequence of location steps.

Let us consider an example to demonstrate the location path, location step and other

XPath query components.

p = descendant::a/child::b[position()= 1]/child::*

Location Step Axis Node Test Predicate

1,2 Descendant, child a,b

3 Child *

2 [position()= 1]

Figure 3.3 Location Paths

Definition 3.7. (Target Element): A target element is an element that is located as

the right-most element in XPath query p.

Definition 3.8. (Non-Target Element): A non-target element is any element except

the target element, in XPath query p.

Definition 3.9. (Target Location Step): A target location step is the right-most

location step in XPath query p. If p contains only one location step, then the location

step is the target location step.

Definition 3.10. (Non-target Location Step): A non-target location step is any

location step, except the right-most location step, that is located anywhere in XPath

query p.

p = descendant::a/child::b[position()= 1]/child::g

 Target Element Non-target Elements

Non-target location steps
Target

location step

Figure 3.4 Non-target Elements and Location Step, Target Element and Location Step

Ch. 3

49

The example in Figure 3.4 shows non-target elements and non-target location step,

target element and target location step in XPath query p.

3.2.2 Notions of XML Query Structural Processing & Equivalence

An XPath expression is a tree pattern in a database [Al-Khalifa et al., 2002; 2002;

Yao & Zhang, 2004]. We provide the essential background for XML query

processing below.

Definition 3.11. (Tree Pattern). A tree pattern is a labelled tree σ= (V, E), where

V = {v1, v2, v3, ..., vn} is the vertex set, 1≤ n

E = {e1, e2, e3, ..., em} is the edge set. Each edge ei is represented by a pair of v, 1≤ m

An edge can be a child edge representing the parent-child hierarchy denoted as ‘/’ or

a descendant edge representing the ancestor-descendant hierarchy denoted as ‘//’.

A match of tree pattern σ, a smaller tree than T in a rooted node labelled document

tree T = (VΤ, EΤ), is a total mapping of

f:{u: u ∈ σ} → {x:x∈Τ}

For each node u ∈ σ is satisfied by f(u) and each edge (u, v) in σ, f(v) is the child or

descendant of f(u) in T.

We hereby define the notion of equivalence with regard to path expressions over the

XML documents (database) and XML Schema [Paparizos, et al., 2004; 2007].

Definition 3.12. (Path Equivalence). Two paths P and Q expressed over an XML

document T are equivalent if and only if one is a subset of the other and vice versa.

That is P ≡ Q iff [P] ⊆ [Q]and [Q] ⊆ [P] where [P] denotes the result set of P and

[Q] denotes the result set of Q.

Based on Definitions 3.11 and 3.12, we reason that two paths are equivalent if and

only if they both yield the same result set but are different in patterns; that is because

Ch. 3

50

the occurrence of a node in one path may be the subset of the same node in the other

path and vice versa.

Without the schema knowledge, such confirmation is obtained from a full processing

of paths on a given database to validate the results. Such a procedure can be very

costly. With the schema knowledge we can confirm two paths are only semantically

equivalent but produce the same result set.

Definition 3.13. (Schema Path Equivalent). Two paths P and Q are schema paths

equivalent if and only if one is a super set of the other. Assume Q is super set of P

that P ≡ Q, then

• All nodes in P map to some or all nodes in Q

• P and Q must end at the same node

• Start node in P can be any node but must occur within and match to the start

node in Q

Based on Definitions 3.12 and 3.13, we conclude that path equivalence falls into one

of two categories: (1) equivalence with regards to the XML document and (2)

equivalence with regards to the DTD/XML Schema. While the former is suitable for

conventional XML query optimization, the latter constitutes the research here that

uses semantics in XML Schemas to determine path equivalence.

3.3 Overview of Semantics & Features in XML Schemas

Semantics defined in XML Schema used throughout the thesis are outlined in this

section. As we indicated in Figure 3.1, the semantics in XML Schemas are described

by two groups of semantics including structural constraints and constraints of

elements. The following sub-sections address the constraints in each group.

3.3.1 Structural Constraints in XML Schema

XML Schema provides a mechanism for constraining the document structure using

order, occurrence of elements and attributes. In addition to these, the structural

Ch. 3

51

constraints can also be derived based on how elements are defined within the

schema.

In an XML Schema, a node can be an element which may be a complex type

(denoted as complexType), and permits other elements to exist within its content and

may also carry attributes. The complex type element is basically different from an

element that is a simple type (denoted as simpleType) which cannot have an element

content and cannot carry attributes. The element with a complex type and elements in

its content have a parent-child relationship. That is, the element with a complex type

is the parent of children in its content.

Figure 3.5 shows a portion of XML Schema, which depicts how the structural

expressions formed by a sequence of elements A and B, A and C, A and D, A and E,

A and F, F and G. The A element has a content of hierarchy elements B, C, D, E and

F that make element A a complex type, that has a name fullA.

Figure 3.5 An Overview of XML Schema Specification

The complex type fullA shows a content that has a nested complex type which is

made up by an independent complex type Ainfo and a number of elements (D, E and

F). The complex type Ainfo contain a set of element (B and C), that are on the

Ch. 3

52

same hierarchy with D, E and F. Ainfo demonstrates one of the powerful features in

XML Schema that allows a reuse of B and C later somewhere in the XML Schema.

As element F appears as a type in the content of element A; hence, element F is a

complex type, namely, Finfo has a content of one element G which demonstrates

another level of hierarchy among the elements in the schema. We will explain the

relationship between A and G after we show a hierarchical relationship between A

and its immediate children D, E, B, C and F.

The parent-child relationship allows a pair of a sequence of elements to establish a

path. Again in Figure 3.4, A and B can form a path using a parent-child relationship,

which also applies to A and C, A and D, A and E, A and F. The next immediate

hierarchical elements B, C, D, F, use a parent-child relationship to establish the

further paths which can be more effective as hierarchical relationships have been

skipped. Elements B, C, D do not have further hierarchical elements; however,

element F has an immediate child: G, hence the existing path between A and F can

be extended to G.

The parent-child relationship allows the complex element A and its content such as a

set of children B, C, D, E and F to derive paths A/B, A/C, A/D and A/E, A/F and

A/F/G. Elements in each path use a parent-child relationship, which is also referred

to as a structural constraint.

A complex type element (denoted as complexType) has a content of a series of

elements, in which some may be a complex type that has a content of another series

of elements. The first element that has a complex type and the descendant of the

children of the first element as well as its children, establish an ancestor-descendant

relationship; that is, the element with a complex type is the ancestor, and the content

in the lower hierarchies are the descendants (including the content of the first

element).

The pair of elements A and G in Figure 3.5 can form a path A//G using an ancestor-

descendant relationship ‘//’.

Both parent-child and ancestor-descendant relationships are categorized as structural

constraints that can be derived from XML schemas.

Ch. 3

53

In XML Schema, the order constraint is categorized as a structural constraint [W3C,

2004a]. The order constraint has a set of property values such as sequence, choice,

all to allow the order and presence of the children within the parent element in the

XML document.

The All property value enforces all the children of an element to appear in an

instance in an un-restricted order, as specified in XML Schema.

The sequence property value enforces all the children of an element in an instance in

the restricted order as specified in XML Schema.

The choice property value allow some children although may be not all of an

element, to appear in an instance in the restricted order as specified in XML Schema.

Most XML Schemas use the order constraint with the sequence property value to

control the order of the child elements within the parent element; this order constraint

is very useful and important for semantic query transformation.

In Figure 3.5, an order constraint that has a sequence value is used in each complex

type of element A and F. Children B, C, D, E and F of element A and child G in

element F must appear in the XML document in an order as a set in XML Schema.

The occurrence constraint is also categorized as a structural constraint [W3C,

2004a]. It has a set of boundary values such as minimal and maximal occurrences

denoted by minOccurs and maxOccurs. If the minOccurs of an element has a value 1

or greater than 1, then the element is required in XML documents. If the minOccurs

of an element can have a 0 value, indicates the presence of the element is optional in

a XML document. If the maxOccurs of an element has a positive value, it can be

greater than or equal to the value of minOccurs, or it can be unbounded meaning it

can be unlimited. When minimal and maximal occurrences of an element are not set,

then the default is 1 for both of them.

In Figure 3.4, elements A, B, C, D, E, F and G do not have occurrence constraints

set; therefore, the default occurrence for each element is 1 for both minimal and

maximal values.

Ch. 3

54

3.3.2 Constraints of Elements in XML Schema

XML Schema provides a large number of built-in data types and constraints for an

element in XML Schema [W3C, 2004b].

Identity Constraint: XML Schemas can enforce a unique constraint using ID

attribute and its associated attributes IDRef, IDRefs or Key and its associated

attribute KeyRef. Note that Key and KeyRef are only available in XML Schema.

These keys are categorized as identity constraints. The limitation of ID is that, since

it is a type of attribute, it cannot be applied to attributes, elements or their contents,

whereas Key and KeyRef can be created from combinations of elements and attribute

content [W3C, 2004b].

For example, in Figure 3.6, the number attribute is <field xpath="@number"/> of

those elements <selector xpath="parts/part"/> where reference (keyRef) name is

pKeyNum, that has a valid location regions/zip/part/partsNum which in turn has a

referenced value as parts/part/@number. This combination of an attribute and its

content attribute cannot be achieved by using ID [W3C, 2004b].

 <key name="pNumKey">

 <selector xpath="parts/part"/>

 <field xpath="@number"/>

 </key>

 <keyref name="pKeyNum" refer="pNumKey">

 <selector xpath="regions/zip/part"/>

 <field xpath="partsNum"/>

 </keyref>

Figure 3.6 An Overview of an Identity Constraint using Key and KeyRef

There are many constraints that are useful to restrict an element with a simple data

type. It is impossible to explain or describe all of them within the confines of the

thesis. However, it is possible to describe those that are very commonly used in

XML Schema. The following constraints are W3C standard constraints [W3C,

2004b].

Ch. 3

55

Enumeration constraint. This constraint is used to define acceptance values by an

element. For example, an element State has a string data type. The State element is

restricted with a value such as State A, State B or State C. Any values other than

these three values will be rejected when the element information is acquired. This

kind of restriction is very useful for information processing when one knows that a

certain type of information is available and a certain type of information is definitely

not available in the repository.

Inclusive constraint. This constraint is used to restrict the upper and lower bounds

of an element that has a numeric data type (e.g. integer). The lower bound (denoted

by minInclusive), restricts the element that has a greater than or equivalent value. An

upper bound (denoted by maxInclusive) restricts the element with a less than or

equivalent value. For example, an element zipcode has an integer data type; this

element is restricted with a value range between 1000 and 3000. If the zipcode is

queried for any value beyond 3000 and below 1000, this will be treated as a conflict

semantic query and as a result will be empty.

Exclusive constraint. This constraint is used to limit the exclusive lower and upper

boundaries of an element that has a data type which is a numeric data type (e.g.

integer). The lower bound (denoted by minExclusive) restricts the element that has a

less than or equivalent value, and upper bound (denoted by maxExclusive) restricts

the element with a greater than or equivalent value. For example, an element age has

an integer data type, which is restricted with an exclusive value less than 65 and

beyond 100. When age is queried for any values that are not between 65 and 100, the

results are exclusive for age.

Pattern constraint. This constraint is used to define a certain pattern that elements

can take on. For example, an element password has a string data type. The element

is restricted with a pattern value [a-zA-Z0-9]{8}. Any password that does not have 8

characters including upper and lower values between a and z, A and Z, 0 and 9

would be considered invalid.

The pattern constraint is very useful to unify values and provide efficient spaces and

resource utilization.

Ch. 3

56

Length constraint. This constraint is used to specify the number of characters or list

items allowed on an element. The length constraint also has proper value minLength

and maxLength; these two properties allow more flexibility regarding the length

within the boundaries. For example, an element password has a string data type. The

element is restricted to a length of 8 characters with no restricted pattern. To be

more flexible, the restriction of the length for a password element can also be set to

a length between 8 and 16 using minLength and maxLength; this allows the user to

specify a password of 8 to 16 characters.

Whitespace constraint. This constraint allows a whitespace (e.g. carriage return,

line feed, tab, etc..) to appear in an element and can be handled accordingly.

For example, an element address has a string data type. The address element has a

whitespace restriction and the property value:

collapse means that when there are white spaces such as carriage return, tab

or line feed, they will be replaced with a single space.

replace means that when spaces are detected on the element, they will be

removed.

preserve means that when spaces are detected on the element, they will be

preserved.

3.4 Semantic Transformations – Summary of Problem

Definition

The background information and semantic features described in Sections 3.2 and 3.3

will be used to determine problems in semantic query processing; these problems are

then addressed by our semantic transformations.

Based on the semantics described in Section 3.3, the semantic transformation of an

XML query into an equivalent semantic XML query (specific to XPath query)

constitutes two important concerns. The first concern is the semantic transformation

typologies that can provide a complete solution for transforming all types of XPath

Ch. 3

57

queries. The second concern is to determine the optimization devices of the results

produced by the first concern. The semantic transformation typologies to be

addressed include:

i. Semantic transformation typologies of full path expressions that consist of path

notations such as {//, ..,., *,/}.

ii. Semantic transformation typologies of full path expressions that support path

notations such as {//, .., ., *,/} as well as XPath axes such as child, descendant-

or-self, descendant, parent, self, ancestor, ancestor-or-self, preceding, following,

preceding-sibling, following-sibling.

iii. Semantic transformation typologies of partial path expression. The partial path

expression is accommodated with predicates where allowed conditions are varied

and complex. Hence, the semantic transformation typologies will be broken

down into an important structure of conditions.

iv. Query condition with or without comparison value:

• Single query condition with a comparison value, which is either a value or a

path expression.

• Multiple query conditions with disjunctive connections between the

conditions

• Multiple query conditions with conjunctive connections between the

conditions

• Multiple query conditions with both types of join conditions

v. With path expressions and query component structures, questions can be asked

to assist with the transformation starting with the following:

• What are the most common expressions or query components that can

represent the problem performance?

• What are the semantics that can be identified so they can serve the

transformations for certain types of XPath components?

Ch. 3

58

• What is the basis used to identify the opportunities of transformation for

optimization purposes?

vi. The result of semantic transformation typologies will either produce a semantic

XPath query or no semantic XPath queries. The semantic transformations focus

on the following:

• To show the usefulness of semantics in XML Schema in query processing.

• To modify the query structure in the presence of semantics, after being

transformed.

• To reduce the redundancies of query components to provide greater

efficiency in resource utilization.

• To provide a solution for query components that face database dependency

challenges for more flexibility in information navigation.

• To reduce the execution time of XPath queries after being transformed.

• To identity semantic transformations as optimization devices. Not all

semantic transformations guarantee an optimization. Therefore, the

semantic transformation provides a systematic methodology where thorough

experimentation can be carried out for optimization opportunities.

• To provide a better adaptation for future extension of both semantic

utilization and transformations.

3.5 Experiment & Performance Evaluation

After proposing semantic transformation typologies, the next step is to implement the

proposed algorithms and carry out the evaluation process. The evaluation preparation

process involves a few phases including experimental design and evaluation of query

performance.

Ch. 3

59

3.5.1 Experimental Design

Our experimental design section refers to a plan for conducting an experiment on a

set of queries and data in order to obtain the results for an evaluation. The

experimental design serves four main purposes:

i. A Background of Experiment Design: this section addresses the objectives

and evaluation of the strategy of experiments.

ii. Common Setup for the Experiments: this section addresses the

implementation framework and the database platform, keys to support

minimal requirements for experiments, experimental data and schema

selection, and setup overview and implementation modules.

The implementation framework and the database platform describe the

working relationship between the semantic transformations and databases and

how they enable the semantic transformations to work independently. The

minimal requirement for experiments basically states some minimal resource

requirements in order for the experimentation to be carried out.

The experiment data and schema selection describe the critical and central

parts that guarantee the success of the experiment. The semantic

transformations require semantics from XML Schema. Therefore, when

choosing data for an experiment, we must take into consideration the semantics

and structures in the XML Schema that conform to the data sets. To improve

chances of opportunities to find optimization devices from the semantic

transformations, two different sets of XML Schemas and data including real-

life and synthetic ones are adopted. This is because real-life DBLP3 data is rich

enough in semantics but structurally it faces a limitation of expressive

hierarchies. Therefore, the conducting of complex queries may be challenging.

To overcome the challenges, we also adopt a Michigan benchmark data set as

its data structure is very expressive [Runapongsa et al., 2006].

3 http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/index.html

Ch. 3

60

Finally, the setup operational hardware, software and system modules section

addresses the setup which includes software, hardware, data validation and

loading.

For the database storage, a very well-known XML database management

system that provides both XML native and XML-enabled storage

management (XDBMS) has been selected by this research. For licensing

purposes, the name of the vendor at this stage cannot be disclosed. The

selection of XDBMS supports the native approach to store XML documents

in RDBMS, and also facilitates the schema validation feature.

iii. Common Setup for the Experiments: We mentioned that DBLP and

Michigan XML Schemas and data are adopted. The structures and semantics

in DBLP are different from those in Michigan Schemas and the data set. For

each set of these data and schema, we carry out several improvement tasks

such as semantic enhancement, data scaling, data cleansing, query taxonomy,

metrics and computational procedures. Each of these tasks is addressed based

on individual schema and datasets.

Semantic enhancement is carried out by studying the XML Schema both

structurally and semantically to ensure they are well defined and that the

semantics can be added. By doing this, we can create more opportunities for

semantic transformations in XPath queries. Once the semantics in XML

Schema have been modified, the data need to be revalidated in a data

cleansing stage. The cleansing of data is based on semantic modification and

scaling. When semantics of data sets are not sufficient adding more semantics

means the contents of the data are also changed. Cleansing of data is very

important as data not only needs to conform to the XML schema, but it also

needs to be of high quality before being loaded into a repository.

With regard to a performance study, quality experimental data must be able to

scale to several data sets, if we are to examine the query components that

respond to various data sizes by applying the same type of semantic

transformation. Therefore, scaling data in our experiment implies that different

Ch. 3

61

result patterns may have an impact on the same query component for various

data sets, under the same semantic transformation.

In order to apply the semantic transformations, the XPath query taxonomy

needs to support both the semantics and components that are applicable to a

semantic transformation typology. For a DBLP data set, the XPath query

taxonomy is based on semantics available in the associated XML Schema. For

each type of semantic transformation, we design a set of XPath queries that

may return a sub-tree data or values of leaf nodes.

For the Michigan data set, the available benchmark provides XPath queries

which are applicable to our semantic transformation. However, since not all

benchmark XPath queries can be used, we select the XPath queries that

demonstrate the expressive hierarchies and several types of conditions ranging

from simple to a twig join [Wu et al., 2003].

As we adopt two sets of data including DBLP and the Michigan benchmark

data, we propose the computational strategy that applies warm-up techniques

during the execution stage where metrics such as transformation time and

query execution are recorded for the transformed XPath query and its

execution only. The computational strategy also applies special calculations for

the recorded time as each XPath query is executed more than once.

If semantic conflict is detected in the XPath query, then the transformation will

not produce any semantic XPath query.

3.5.2 Performance Evaluation

The proposed semantic transformations need to be evaluated thoroughly in order to

identify individual transformation as optimization devices. For each XPath query and

its semantic XPath query, the evaluation performance is based on the comparison

between the recorded performance times (as described in the previous section) as

well as the semantic rules applied to enable the success of the semantic

transformation.

Ch. 3

62

If the semantic XPath query is not produced due to semantic conflict in the original

XPath query, the evaluation comparison is based on the transformation time and the

execution time of the conflict XPath query against the execution time of the original

XPath query.

3.6 Summary

We have provided an overview of the problems to be addressed by our proposed

semantic transformations. The problem definition consists of three processes. The

first uses schema semantics to transform XPath queries with specified simple path

operators. The second uses schema semantics to transform XPath queries with

specified XPath axes. And the third uses schema semantics to transform XPath

queries specified with predicates.

This chapter has also provided the background of XML and query essentials. The

chapter has presented the basis related to XML documents, Schemas and data models

such as components and terminologies related to XML query structure and

processing. It has then addressed the notions of XML query processing.

The chapter has also provided an overview of XML semantics and properties; it

discusses the types of semantics including structural semantics and the semantics of

elements available in XML Schemas. Problems are then summarized based on the

problem definitions and available semantics as provided for proposed semantic

transformations. Finally, the experimental design and performance evaluation

methodology were discussed in detail.

In Chapter 4, a pre-processing semantic methodology is presented that is proposed

for pre-processing schemas semantics and efficiently storing them for the proposed

transformation typologies as required. Following this, the semantic transformation

typologies for the first group of problem definition will be proposed.

Chapter 4

Derivation of Semantics & Semantic

Path Transformation

The main objective of this research is to utilize semantics in XML schemas for the

purpose of semantic query transformations. In order to achieve the objective,

semantics need to be derived from given XML Schemas to support the

transformations proposed. This chapter proposes a framework for deriving semantics

from XML Schemas and semantic path transformations.

4.1 Derivation of Semantics

Since XML Schema is very rich in semantics, deriving semantics during the

transformation process is inefficient in terms of both time and resource consumption.

Such an approach will cause deterioration in performance. Without the semantic

derivation prior to the utilization of semantic transformations, the required semantic

will need to be searched throughout the whole schema and further processed if

found. We believe that the derivation of semantics not only expedites the

transformation process, but also makes it easier to retrieve semantics when required.

XML Schema contains two types of constraints: structural constraints and

constraints of elements [Paparizos et al., 2007; W3C, 2004a; 2004b].

Ch. 4

64

A structural constraint consists of path constraints [Fan, 2005] that are unique to

XML Schemas. The first type of a path constraint is the parent-child relationship of

two sequence elements along an edge of a schema tree. The second type of path

constraint is the ancestor-descendant relationship [Che et al., 2006] of two elements

that occurs along an edge of a schema tree. The third type of path constraint is the

identity constraint, which provides uniqueness or reference with respect to multiple

elements or attributes. The content of identity constraint is a path that combines the

relationships of both parent-child and ancestor-descendant [W3C, 2004a].

We use the parent-child constraint to build unique paths. Instead of numbering the

elements in the path [Kha & Yoshikawa, 2004], we use the element tag names in the

path and make the paths unique.

Definition 4.1. (Unique Path): A unique path q derived from a given schema S is a

sequence of elements E = {e1, e2, e3,…, en} that traverses from e1 to ei along an edge

where 1< i ≤ n. There exists only parent-child “/” relationship among the elements ei

in q.

Two types of elements can be found in a XML Schema. The first one is a complex

type (specified as complexType in XML Schema) element, which defines an XML

element that contains other elements and/or attributes. The second one is the simple

type (specified as simpleType in the XML Schema) which defines a schema element

that is an atomic or built-in data type [W3C, 2004a].

Figure 4.1 shows that an employee element has a fullpersoninfo complex type,

which is created by extending the existing complex type personinfo (using an

extension base) and three additional elements of address, city and country, which

are simple types. The personinfo complex type contains firstname, lastname and

age elements which are referred to as simple types because they have atomic data

types and do not contain other elements.

Ch. 4

65

Figure 4.1 ComplexType and SimpleType Elements

A parent-child relationship (also known as a structural constraint - as described in

Chapter 3), exists in the schemas between employee and firstname, employee and

lastname, employee and age, employee and address, employee and city, and

employee and country. The parent-child relationship is important and critical for our

unique path derivation.

The second type of a constraint in XML Schema is the constraints of elements. Each

schema element has at least one constraint. The compulsory constraint is a modelling

constraint [Ferrarotti et al., 2011; Link & Trinh, 2007] known as an occurrence

[W3C, 2004a]. The occurrence constraint states the cardinality of children present in

the sub-tree as it is useful in most of our proposed semantic transformations. Its

usefulness will be seen later in our transformations in Section 4.2, Chapters 5 and 6.

Apart from the occurrence constraint, a schema element may have other semantics

depending on its type.

<xs:element name="employee" type="fullpersoninfo"/>

<xs:complexType name="personinfo">

 <xs:sequence>

 <xs:element name="firstname" type="xs:string"/>

 <xs:element name="lastname" type="xs:string"/>

 <xs:element name="age">

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="18"/>

 <xs:maxInclusive value="99"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 </xs:sequence>

</xs:complexType>

<xs:complexType name="fullpersoninfo">

 <xs:complexContent>

 <xs:extension base="personinfo">

 <xs:sequence>

 <xs:element name="address" type="xs:string"/>

 <xs:element name="city" type="xs:string"/>

 <xs:element name="country" type="xs:string"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

Ch. 4

66

When the schema element is a complex type, compulsory occurrence and order

constraints are implemented. The order constraint has a set of values {sequence,

choice, all, group}, which are used to restrict the correspondence of the elements that

are contained within the complex type element. Figure 4.1 shows the sequence value

of order constraint used by the personinfo and fullpersoninfo complex types to

restrict the order of their elements. For personinfo complex type, the order of its

elements is firstname, lastname then age.

As personinfo complex type has a sequence value for order constraint, its content is

in the ordered elements including firstname, lastname, age. Hence, the order of

elements in fullpersoninfo complex type is firstname, lastname, age, address, city

and country.

An element may be a simple type. For example, an element age has an occurrence

constraint with a minimal occurrence of 1 and maximal occurrence of 1. In addition

to this, an age element will have an integer type and is set with an inclusive

constraint that has a value between 18 and 99; this shows that the age element is a

simple type that has two constraints: occurrence and inclusive.

Figure 4.2 depicts a set of common XML Schema constraints. The downward arrows

indicate they are open for more constraints to be added to the list. An element can be

identified as an Attribute, a complexType or a simpleType. The difference between

the complexType and simpleType elements is that a complexType can carry an

attribute and/or element content, which can be simpleType or another complexType;

for example, the complex type fullpersoninfo carries personinfo complex type in

Figure 4.1, or both. The simpleType element does not carry an attribute and or

element content. SimpleType element and attribute are atomic data types. However,

simpleType element is where data is directly specified [W3C, 2004a; W3C, 2004b].

Therefore, a simpleType element is one that is very rich in semantics.

Even though each type of element has its own associated semantics, there are two

constraints worth mentioning. The occurrence constraint is shared by an element that

is either a complex type or simple type. The identity constraint is shared by an

element that is an attribute or a simple type whose content is referenced by another

element. The constraints in Figure 4.2 are W3C standard recommendation. Details of

Ch. 4

67

each constraint can be found in [W3C, 2004a; 2004b]. All the constraints in Figure

4.2 are derived from the list of constraints of elements (details of which are provided

in Section 4.1.2).

Require

Optional

Identity

Element

Attributes

Occurrence

Pattern

Enumeration

Inclusion

Exclusion

Assertion

Length

Identity

SimpleType ComplexType

Order

Occurrence

Extension base

Figure 4.2 Some Common Constraints in XML Schema

This research proposes methodologies for semantic derivation. The first

methodology is to derive unique paths. The second methodology is to derive

constraints of each individual element.

4.1.1 Deriving Unique Paths

We derive the unique paths by adopting the depth-first search approach [Thomas et

al., 2001; Jin et al., 2011].

Definition 4.2. (Depth First Search (DFS)): a depth-first search is a searching

approach that explores the nodes along the edges of a directed tree, i.e. XML schema

as far as possible first, before backtracking.

Ch. 4

68

Figure 4.3 illustrates how the DFS is applied to derive a set of unique paths for all

nodes on a tree structure.

E

A

F B

C D

q0
q1

q2

 q3

q4

q5

G

H

q6
q7

Figure 4.3 Unique Path Derivation using Depth-First Search

As shown in Figure 4.3, let Q be a list that contains a set of unique paths. Each

unique path is derived based on Definitions 4.1 and 4.2.

Q= [q0, q1, q2, q3, q4, q5,…, qn] where n > 0

The directional numbering arrows (excluding the dash-arrows) represent a set of

unique paths Q = {q0, q1, q2, q3, q4, q5, q6, q7} = {A, A/B, A/B/C, A/B/D, A/E, A/F,

A/F/G, A/F/G/H} in order of sequence. In Definition 4.1, we define that a unique

path must be expressed from the root to any element in the schema along the path;

this simply means that all unique paths must begin with a root element.

The derivation of unique paths greatly influences the semantic transformation for the

XPath axes such as following, preceding, following- or preceding-sibling. The order

of unique paths helps speed up the search of the elements; this is important since

semantic transformations for most XPath axes require the order of the elements to

accomplish the tasks.

For example, based on Figure 4.3, we want to retrieve all the following members of

element D under B.

The following members occur after D in the depth-first search order of the nodes. To

achieve this, the following axis is designed for this purpose. In semantic

transformation with the ordered unique paths, the transformation could not have been

easier.

Ch. 4

69

Let us consider Figure 4.3 where an XPath query for the above requirement is:

p = A/B/D/following::*

From the list of unique path list Q, we can locate {A/B/D, A/E, A/F, A/F/G,

A/F/G/H} because these unique paths come after A/B/D in Q. These unique paths are

schema paths; therefore, the final result that responds to the requirement would be

the set of unique paths {A/B/D, A/E, A/F, A/F/G, A/F/G/H} excluding the first

occurrence of element D. This can be easily handled by using the context position

function position(), which will be addressed later in the semantic transformation

[W3C, 1999; 2007a; 2010].

The significance of deriving unique paths in an ordered manner is to eliminate the

unnecessary searching and matching of ordered elements when dealing with the

transformation of XPath axes.

This section has proposed a methodology for deriving unique paths and ordering

them, based on the order constraint of the elements. In the next section, we propose a

methodology for deriving the constraints of elements.

4.1.2 Deriving Constraints of Elements

Constraints of elements in XML Schemas are very rich. An element may have a

number of constraints assigned to it.

We propose a methodology for deriving the constraints and their associated values of

an element as follows.

• W is a set of constraints in a given schema S where W = {w1, w2,..., wn} and V

is a set of values where vi = {vi,1, vi,2, vi,3,…vi, l } for a constraint wi , 1 ≤ i ≤ n

and 1 ≤ k ≤ l

• ej is an element that has constraint wi where j is a sequence that starts with 1.

• C is a list where C = [c1, c2, c3, c4, c5,..., cy], 1 ≤ x ≤ y

cx is composed as cx = z/ejwiV

z is a path formed by an element or a sequence of elements e separated by ‘/’.

z/ej = e0/e1/e2/..../ ej where 1≤ j.

Ch. 4

70

Based on Figure 4.3 let us consider elements B and E, each of which has an

occurrence constraint with a minimal and maximal occurrence of 1. Element D has a

minimal occurrence of 1 and maximal occurrence of 5. B also has an inclusive

constraint with inclusive range values between 1 and 20. The derivation of list C is

shown below:

C = [A/B occurrence 1 1, A/B inclusive 1 20, A/E occurrence 1 1, A/B/D occurrence

1 5, etc...]

From the derived C we can interpret c1 = A/B occurrence 1 1 where the value of z is

A, the value of e is B, the value of w is occurrence and the value of V is 1 1.

We may now state that C is a list that contains elements, constraints of associated

elements and values of associated constraints of elements.

By deriving the semantics of each element in the proposed manner, items in the C list

can avoid duplication issues.

This section has proposed a derivation of semantics methodology for constraints of

each schema element to create a C list. From this point onwards, our semantic

transformation rules will utilize the information in Q and C. Both Q and C are treated

as global inputs to semantic transformations.

4.2 Semantic Path Transformation

This section proposes the semantic path transformations. The inter-relationships of

semantic path transformations are presented in Figure 4.4.

We present a set of semantic transformation typologies to transform a simple XPath

query with fragment {/, //, * , ... ,.} into equivalent semantic XPath queries by using

unique path list Q and constraints of element list C.

Unique paths represent structural constraints as elements in each unique path and are

connected by a parent-child ‘/’ relationship. The constraints of elements in list C also

play an important role in assisting with semantic path transformations. We show how

Ch. 4

71

performance changes significantly when such constraints are applied in semantic

path transformations.

Semantic Path

Transformation

Semantic Path

Expansion

Semantic Path

Contraction
Semantic Path

Contraction

Semantic Conflict

Detection

Figure 4.4 Inter-relationships of Semantic Path Transformations

4.2.1 Semantic Path Expansion

This section proposes a technique to transform an XPath query that has a path

fragment ‘//’ ancestor-descendant relationship between two location steps (refer to

Definition 3.6 in Chapter 3).

Definition 4.3. (Semantic Path Expansion - SPE) Semantic path expansion is a

transformation that replaces an ancestor-descendant ‘//’ in the XPath query with a

path fragment of a sequence of elements that has only a parent-child ‘/’ relationship

among a set of sequence of elements.

Following Definition 4.3, we can develop SPE rules as a guideline to produce the

semantic XPath query. First, let us consider the following parameters.

Let:

• p be the given XPath query

• β be a fragment represented by // in p

• S (abbreviation of semanticXPath list) be the list of transformation results

Ch. 4

72

SPE Rules. The semantic path expansion of β occurs when all elements in the XPath

query are successfully matched to elements in a unique path q∈Q and ‘//’ can match

to a fragment in q. Semantic XPath query S is produced such that S = {q} if and only

if the number of matched q is 1 and it must also satisfy one of the following rules:

1. a target element in matched q is a descendant element in β where the

descendant element must be a leaf element;

2. a non-target element (refer to Definition 3.8 in Chapter 3) in matched q and p

is also a descendant element in β where the descendant element is a non-leaf

element.

The SPE rule (1) simply means that if there is a fragment ‘//’ in the XPath query

where the descendant in p is in the left most location step, this descendant element

must appear in identified q as a target element, which must be a leaf element in the

schema.

Given XPath query p = */b//d/f and Q = {q1,..,q9} as shown in Figure 4.5.

 Q = {q1, q2, q3,...,q8, q9} p = */b//d/f

b

q1

q2

q8
q9

a a

q3

p

a

h

*

f

a

b

c

d

g

a

b

c

e

b

d

f

Figure 4.5 XPathQuery p and List of Unique Paths Q

Based on the structure and locations of β where β = b//d, the SPE rule (2) is

identified as being the suitable one. It shows the descendant element d in p is a non-

target element in both p and q. The matching process adopts a bottom-up approach. It

first matches all valid elements in p to each element in each q∈Q (q1,…,q9 in Figure

Ch. 4

73

4.5). It then matches // by using the path fragment b//d to find the unmatched path

fragment in q, which is enclosed by elements b and d. To match *, it finds the

unmatched element in q that is the parent of element b. β is now matched to the

fragment b/c/d in q8 and * can be mapped to the parent of element b, which is

element a. As the result, it produces semantic XPath query S = {q8}. Let us consider

an example based on the DBLP schema (which is presented in Appendix1). Q and C

are derived from the DBLP schema using a semantics derivation technique.

Requirement. XPath query selects the title names of all theses in the DBLP

database.

XPath query p = */phdthesis//tn

Value of β = phdthesis//tn

From the schema:

Q={dblp, dblp/article, dblp/article/author,…,dblp/phdtheis,

 dblp/phdthesis/author, dblp/phdthesis/title, dblp/phdthesis/title/tn,…,}

Now we apply the semantic transformation SPE rules. We use a bottom-up matching

approach by which both elements phdthesis and tn elements can be matched to qi

where qi = dblp/phdthesis/title/tn in Q. As tn is in the right-most location step of p,

tn is a target element in both p and qi.

Once the qi has been identified, the transformation uses fragment phdthesis/title/tn

in qi to replace the fragment phdthesis//tn in p and the fragment dblp/ in qi replaces

fragment ‘*/’ in p. The semantic path expansion transformation satisfies the SPE rule

(1) where it produces a semantic path query S= {q} = dblp/phdthesis/title/tn

We now propose Function 1, namely semanticPathExpansion, to implement the

proposed semantic path expansion rule.

Function 1 is called upon when “//” is detected in a given XPath query. Input

parameters semanticXPath and p are prepared and passed in by the main algorithm,

prior to calling Function 1. Note that Q and C are the list of unique paths and the list

of constraints of elements respectively.

Ch. 4

74

The descendant element in p is first determined as either a target element or a non-

target element (Lines 1:1-1:4) so that verification can be carried out appropriately.

For each unique path in tempList, the transformation matches information

accordingly and obtains q that meets the required information. The matched q is then

stored in the semanticXPath list. During the matching process, the transformation

takes care of the case where both descendant and ancestor elements are specified

with valid element tag names or ‘*’ or ‘node()’ (Lines 1:3-1:4).

When the descendant element in p is detected as a non-target element (Lines 1:5-1:9)

in XPath query p, the transformation also takes care of the case when both

descendant and ancestor elements are specified with valid element tag names, or

specified with ‘*’ or ‘node()’.

When both the descendant and the ancestor are ‘*’ or node(), the transformation must

first ensure that all the elements in p are matched with the descendant element. It

then verifies the descendant as a target element and confirms that the target element

Function 1: List semanticPathExpansion(List semanticXPath, String p)

 Let β be fragment in p where ‘//’ exists, ∂ ϵ β be descendant element, θ ∈ β be ancestor element,

 tempLit be empty lists, target=false be Boolean, o={*, node()}, Q be the list of unique path q

1:1 For each q in Q

1:2 If found ∂ and θ in q and ∂ is not a complex element type Then

1:3 push q to semanticXPath

1:4 End Loop

1:5 If target == false Then

1:6 For each q in Q

1:7 If ((∂ or θ or both found as non-target element in q)|| (∂ and θ are ‘*’ or node()) Then

1:8 push q to tempList

1:9 End Loop

1:10 If tempList is NULL Then semanticXPath = NULL

1:11 Else if tempList is not NULL Then semanticXPath = tempList

1:12 If semanticXPath is not NULL Then

1:13 For each s inSemanticXPath

1:14 verify all elements in p to current s

1:15 If ((∂ and θ)∈ο) && target = true) Then
1:16 ∂ must not contain further descendants

1:17 End Loop

1:18 If length(semanticXPath) > 1 Then semanticPath = p

1:19 Else semanticXPath =’Retain’

1:20 Return semanticXPath

Ch. 4

75

in matched q is a leaf node; otherwise, the result would be inaccurate (Lines 1:12-

1:17).

The semanticXPath is produced only if the final result holds only one semantic

XPath query. If multiple unique paths are produced for semanticXPath, a message

‘retain’ is assigned to semanticXPath to indicate the main algorithm; that is to say,

the XPath query is valid but cannot be expanded (Lines 1:18-1:19). Finally, the

semanticXPath is returned to the main function (Line1:20).

When the semanticXPath list is NULL (Line 1:10), structurally the XPath query does

not satisfy any q in Q. This requires the application of a semantic conflict detection

rule proposed in Section 4.2.4. The function returns NULL since semantic conflict

has been detected.

4.2.2 Semantic Path Contraction

This section proposes a semantic path contraction (SPCon) transformation to

transform an XPath query specified with a wildcard ‘*’ to a single semantic XPath

query without a wildcard ‘*’. The wildcard ‘*’ in this case represents multiple path

fragments [Wu et al., 2008].

When ‘*’ represents a single element in the XPath query, the transformation

produces a single semantic XPath query, to which a SPE is applied. Otherwise,

SPCon is responsible for the semantic XPath query when wildcard ‘*’ represents a

set of elements or path fragments. SPCon produces multiple unique paths which are

then contracted to a single semantic XPath query by using ‘//’ to replace the different

path fragments in the multiple unique paths.

Definition 4.4. (Semantic Path Contraction – SPCon) Semantic path contraction is

a transformation to replace ‘*’ in the user XPath query with ‘//’ in which ‘*’

represents a set of path fragments in the multiple unique paths.

Based on Definition 4.4, we develop a SPCon transformation rule. First let us

consider the following parameters.

Ch. 4

76

Let:

• p be the given XPath query

• β be a fragment in p where β holds ‘*’, e.g. ’*/*’, ‘a/*’, ‘*/b’

• S (abbreviation of semanticXPath list) be the list of transformation results

SPCon Rule. The SPCon transformation proceeds when β is detected in the XPath

query p. ‘*’ is successfully matched to elements that are located in {qi,...,qj} where q

∈ Q, if one of the following rules is satisfied:

1. given i ≠ j that qi to qj share the same target element, which must match the

target element in p there exists some different path fragments among qi to qj

or;

2. if i = j then S = {q} and no contraction occurs, as only one semantic XPath is

produced or;

3. if i ≠ j S(SPCon)= {qi,...,qj} ={q} where q constrains // that represents different

path fragments among {qi,...,qj} except the target element.

The semantic rule focuses on the target element in all the identified unique paths

which must have the same target element. For example, if p is a path a/*/c, all the

identified unique paths are a/b/c and a/d/f/c in which both traverse in two different

paths but start from the same root a and reach the same target element c.

If * is specified as the right-most element in p, there is a possibility that * represents

the different fragments or elements, in which case the SPCon rule is not applicable.

In Figure 4.6 we demonstrate the XPath query p (right most query tree), which can

be contracted based on unique paths in Q (left most query trees). As the mapping

process (a bottom-up approach) starts from the target element g in p to the same

target element g in each unique path q, unique paths q10, q15 and q16 are identified.

Ch. 4

77

 Q = {q1, q2,,...,q10, q11,...,q13, q14, q15, q16} p = //c/*/g

q1

q2 q11

q10 q14

q13

q15

p

q16

a a

b

c

e

c

*

g

f

a

b

c

e

g

a

b

c

e

g

a

b

c

k

a

h

g

a

i

o

e

a

b

Figure 4.6 XPath Query p and list of Unique Paths Q

When matching from element c in p to elements in q10, q15 and q16, the SPCon

transformation drops q10, which does not contain element c. In p, the SPCon solves

the problem of wildcard * in path fragment c/*/g. Given unique paths q15 and q16, two

fragments c/e/g in q15 and c/k/g in q16 are identified as corresponding to fragment

c/*/g in p.

The SPCon transformation contracts {q15, q16} that produces S = //c//g

Let us consider an example based on the DBLP schema (which is presented in

Appendix 1). Q and C are derived from the DBLP schema using a semantics

derivation technique proposed in Section 4.1.

Requirement: XPath query to select all the title names of all existing items (such as

‘article’, ‘proceedings’, ‘inproceedings’, etc...), in the DBLP database.

XPath query p = dblp/*/title/tn

In the given p there exists β = dblp/*/title

In p, element tn is the target element in some unique paths q where q ∈ Q. As the

mapping process (a bottom-up approach) starts from target element tn in p to the

same target element tn in any q, we find more than one unique path q that satisfies

the fragment represented by * in p.

Ch. 4

78

Q = {‘dblp/article/title/tn’, ‘dblp/inproceedings/title/tn’, ‘dblp/proceedings/title/tn’,

‘dblp/book/title/tn’, ‘dblp/phdthesis/title/tn’, ‘dblp/incollections/title/tn’,

‘dblp/www/ title/tn’}.

The SPCon rule produces the semantic contracted path S = dblp//title/tn. The

contraction occurs at the fragments that contain different elements such as article,

inproceedings ..., www in all located q.

Function 2 (below), semanticPathContraction, accepts two inputs which are

semanticXPath list and XPath query p from the main algorithm. The function is

designed based on the proposed SPCon semantic rule; that is, * is allowed to appear in

any XPath location step.

The semanticPathContraction contracts the path fragments labelled with ‘*’ or

node() in p. The contraction contracts only the fragment of ‘*’ or node() that is a

non-target element. It first checks to ensure that the valid elements in p match

elements in q. It detects ‘*’ or node() in q and pushes q to the semanticXPath list.

During this stage, a semantic conflict may be detected (Lines 2:3). Otherwise, it

produces a semanticXPath list (Lines 2:1 – 2:5).

If the semanticXPath list is produced, that means semantic XPath queries are

identified to produce the result set. Contraction is performed to contract the path

fragments that are different in the multiple semantic XPath queries. If semanticXPath

is NULL, this means that a conflict has been detected in (Line 2:9). If there is more

Function 2: List semanticPathContraction (List semanticXPath, String p)

 Let β be fragment ‘*’ or node()’ in p, Q be the list of unique path q, dq be different path fragments

2:1 For each q in Q

2:2 If elements in p match elements in q Then

2:3 β be a path fragment contained all un-matched elements in q

2:4 Push q to semanticXPath

2:5 End Loop

2:6 If Length of semanticXPath greater 1 Then

2:7 Locate dq in all q in semanticXPath

2:8 Replace all dq with ‘//’ in q that ultimately derive a contracted q

2:9 Else length of semanticXPath is 0 Then semanticXPath = p

2:10 Return semanticXPath

Ch. 4

79

than one semantic path in the semanticXPath list, then contraction proceeds in order

to produce a single path (Lines 2:6 – 2:8). It finally returns the semanticXPath list to

the main algorithm (Line 2:10).

When the semanticXPath is NULL it means that either the elements in p or the

structure in p do not match information in Q. If the semanticXPath returns empty to

the main function, it determines the conflicts detected in p (Definition 4.6).

4.2.3 Semantic Path Complement

A semantic path complement transforms a given XPath query specified with a parent

location step ‘..’ to a semantic XPath query without the parent ‘..’ operator.

Definition 4.5. (Semantic Path Complement - SPCom) A semantic path

complement is a transformation which transforms operator ‘..’ or the parent axis

location step by eliminating ‘..’ and the element that occurs before it.

We now develop SPCom rules as a guideline to achieve the transformation goal.

Let:

• p be the given XPath query

• δ be an element that occurs in a location step next to and before the location

step containing only ‘..’

• ϑ be an element that occurs in a location step next to and after the location

step containing ‘..’

• θ be an parent element of δ and ϑ

• β be the fragment in p that is formed as δ/../ϑ, ϑ and δ are in β

• S (abbreviation of semanticXPath list) be the list of transformation results

SPCom Rule. The SPCom proceeds when there exists β in which δ is * or ϑ is * or

both δ and ϑ are *. The path fragment in p leading * and/or ‘..’ matches a fragment in

unique path qi and the path fragment in p tailing ‘..’ and/or * matches a fragment in

Ch. 4

80

unique path qj. That is, qi and qj share the same ancestors of elements ϑ and δ.

Semantic XPath query S(SPCom) = {qj} if and only if

1. Target element ϑ in qi has a minimal occurrence (retrieved from list C)

greater than 0

2. There exists a branching element θ in qi and qj

 ∴ i≠j and some ancestors of δ are also ancestors of ϑ.

The SPCom rule imposes a structure on p that matches two unique paths qi and qj in

Q where qi and qj have ϑ as a target element. ϑ has a maximal occurrence (verified in

list C) of at least 1, ϑ always exists in the database regardless of whether or not δ

exists.

The SPCom not only eliminates the unnecessary use of the operator ‘..’ in the XPath

query p, but also makes use of SPConn and SPE transformations to achieve the best

possible optimization.

Figure 4.7 demonstrates the XPath query p (left most query tree), which can be

complemented based on unique path information provided in Q (right-most query

trees where bold nodes are the branching nodes).

 p = a/i/o/../k/g Q = {q1,...,q17,..,q19, q20,..., q22}

q20

q19

q17

q1

a

i

0 k

g
q22

a

i

o

e

a

i

o

a

i

a a

i

k

g

Figure 4.7 XPath Query p and List of Unique Paths Q

Due to the presence of ‘..’ in p, the query tree shows a branching element in p. This

indicates a number of required unique paths based on the number of branches, after

the branching node i.

Ch. 4

81

The mapping process (a bottom-up approach) starts from the target element g in p,

traversing along the edge to the root (this path is referred to as the right branching

path) a in p, to the same target element g in each unique path q. Hence, the unique

path q22 is identified.

The process repeats for the left branching path, which starts from the o element

traversing along the edge back to root a in p; hence, we identify unique path q19.

By following semantic rule SPCom, two unique paths {q19, q22} have been identified.

If the occurrence constraint defined for element o is (1, ∞), then we can use rule

SPCom to remove fragment o/../ from the XPath query p. The ancestors of element o

are also the ancestors of g. S is now produced as S = a/i/k/g

Let us consider an example based on the DBLP schema and a list of derived unique

paths Q and a list of constraints of elements C.

Requirement: XPath query to select all titles of theses that must have valid authors

in the DBLP database.

XPath query p = dblp/phdthesis/author/../title

In the given p there exists β = author/../title, δ = author, ϑ= title

In XPath query p, target element title is first matched to a target element in any q ∈

Q, which initially produces potential q such that {qi,...,qk} = {dblp/article/title,..,

dblp/phdthesis/title,...,dblp/www/title}. As a result, more than one unique path has

title as a target element.

From the potential Q = {qi,...,qk}, it then matches the elements along the edge of

element title in p which are dblp and phdthesis. These elements match elements in

one of the potential unique paths such as dblp/phdthesis/title. So now the valid path

for selecting information is identified as dblp/phdthesis/title.

Next, the transformation identifies the condition element author to any unique path q

in Q that has author as the target element, which produces another set of potential

{qn,...,qz} = {dblp/article/author, ..., dblp/proceedings/author,

dblp/phdthesis/author...}

Ch. 4

82

The elements dblp and phdthesis occurring along the edge of author are then

matched to one of q in potential list {qn,...,qz} to find the matched q for elements

dblp, phdthesis and author. The matched q is dblp/phdthesis/author.

Finally, the transformation needs to verify the occurrence constraint of element

author under parent phdthesis in list C, which indicates an entry of

‘phdthesis/author occurrence 1 ∞∞∞∞’ presented. This means that for every phdthesis

in dblp, there must be at least one associated author. It now removes fragment

/author/.. from p, which produces:

S = dblp/phdthesis/title

We now propose Function 3, namely semanticPathComplement to achieve the

semantic rule SPCom.

Function 3 accepts two inputs. The first one is semantic XPath query list

semanticXPath and the second one is the XPath query p. In this transformation, we

consider semanticXPath list to be empty. The transformation always uses a unique

path list Q.

Function 3 first separates p into two paths, p1 and p2, based on information such as ϑ,

∂ and θ. The transformation starts with p1 by matching all possible information

regarding elements and structure to q in Q. The matching process considers several

checks by allowing flexibility in ∂ and θ. In order to cover most possibilities, the

transformation also ensures that ∂ and θ are specified as ‘*’, node(). Once it

completes the matching process, it confirms some q, which are then stored in the

semanticXPath list (Lines 3:1-3:3).

Function 3 (shown below) then moves on to verify p2 only if there is a valid p1. If p1

is not valid, there is no reason to check p2. In addition to this, the transformation

becomes invalid if either p1 or p2 is invalid. To ensure that p2 is valid, it relies on the

semanticXPath (Lines 3:4 – 3:7) which must not be empty. When checking for p2, it

considers several checks for ϑ and θ specified as ‘*’or node(). Based on the

hierarchies that enclose ϑ, the unique paths associated with p2 are identified

accordingly. Once all valid elements, ϑ and θ have been matched, q is identified as p2

and q is put into the semanticXPath list.

Ch. 4

83

Once the semanticXPath has been built with unique paths that have been identified

for p1 and p2 respectively, the transformation then eliminates ∂ from p. There are two

identified unique paths q in the semanticXPath list. One represents the path of query

condition and the other represents the path of selected information.

To remove the condition element, SPCom needs to check the occurrence constraint

of a condition held by ∂ under parent θ using information in the list of constraints of

elements C. The condition ∂ can be removed from p only if its minimal occurrence is

greater than 0 (Lines 3:9 – 3:10). The condition ∂ cannot be removed from p only if

its minimal occurrence is between 0 and 1(Lines 3:11). The transformation detects a

semantic conflict (Definition 4.6), and applies the semantic conflict detection rule in

Section 4.2.4, when it detects semanticXPath with NULL (Line 3:12). It finally

returns the semanticXPath list to the main algorithm (Line 3:13).

4.2.4 Semantics Conflict Detection

The satisfactory XPath query study for XPath query has been proposed by Groppe

and Böttcher [2005], such that during the transformation the structure of XPath

query can be detected with a conflict (unsatisfactory) that will produce an empty

Function 3: List semanticPathComplement (List semanticXPath, String p)

 Let β be fragment contained ‘..’, ∂ ∈ β be query condition element, ϑ∈β be target element, θ be branching

 element, tempQ and tempList be empty list, p1 be right branching path w.r.t p1= p exclude (∂ and ‘..’), Q be

 the list of unique path q, p2 be left branching path w.r.t p2=p exclude fragment from ‘..’ to ϑ, O = {*, node()}

3:1 For each q in Q

3:2 push q to semanticXPath when (∂ ∈ο && valid elements including θ in p1 match non-target elements in q

 && ϑ is not in q) || ∂ && θ in p1 match elements in q && ∂ is target element in q)

3:3 End Loop

3:4 If semanticXPath is not NULLThen

3:5 For each q in Q

3:6 pubsh q to semanticXPath when (∂ ∈ο && valid elements && θ in p2 match non-target elements in q && ∂

 is not target element in q) || (valid elements && θ in p2 match elements in q && ∂ is target element in q)

3:7 End Loop

3:8 If ϑ and ∂ exist in separate q in sematnicXPath Then

3:9 If (minimum(occurrence) of (θ/ ∂) ≥ 1 found in list C) Then

3:10 semanticXPath = p1

3:11 Else semanticXPath= p

3:12 Else sematnicXPath = NULL

3:13 Return semanticXPath

Ch. 4

84

result set. We show how this can be achieved by using Q and C. The difference

between the work here and existing work [Groppe & Böttcher 2005], is that we

incorporate the semantics conflict detection in our semantic transformation rule. The

existing work does not provide a transformation of XPath query if no semantic

conflict is detected.

Definition 4.6. (Semantic Conflict Detection - SCD) Semantic conflict detects

conflicts of structure and element names specified in an XPath query by using unique

path Q and constraints of elements in list C during the transformation process.

We develop a guideline for semantic conflict detection, namely SCD to assist with

the termination of SPE, SPCon, and SPCom transformations. The algorithm of SCD

is part of functions 1, 2 and 3.

Let us consider the following parameters:

• p is a given XPath query

• ε is ‘*’, ‘.’, node() or valid element in a location step of p

• Q is a list of unique paths derived from given schemas

• C is a list of constraints of elements

SCD Rule. The semantic conflict exists if one of the following rules is satisfied

1. elements in p do not appear in any q where q∈Q

2. ε exists in p so ε does not satisfy a path fragment in any q where q∈Q

The SCD semantic rule simply checks the correctness of the structure in p whereby if

valid elements exist in p, they must match the same set of elements in a q first.

Thereafter it matches ε based on the patterns that enclose ε in p to identify q. Here,

for example, is an XPath query dblp/*/*/tns

This query will be matched to all q∈Q based on the elements dblp and tns first.

However, the matching process cannot locate tns in any q∈Q. As a result, a conflict

of element non-existence has been detected in p.

Ch. 4

85

In SCD, we do not develop an independent algorithm; instead, it is implemented

within each semantic transformation as described earlier in semantic path

transformations..

4.3 Summary

In this chapter, we have proposed: (1) a methodology to derive semantics provided in

XML Schema and (2) semantic path transformation typologies including semantic

path expansion, semantic path contraction and semantic path complement.

In the semantic derivation methodology, the semantics are classified and then

divided into two lists including a unique path list and constraints of elements list.

Ultimately, two sets of essential information are produced: a unique path and

constraints of elements lists.

Once the essential information has been derived, we then propose the first semantic

transformation category which is semantic path transformation; this consists of

semantic path expansion, semantic path contraction and semantic path complement.

The semantic path expansion typology transforms a path fragment ‘//’, ‘*’ or ‘node()’

into a sequence of elements if and only if the XPath query can match a single unique

path. The transformation takes into consideration any element labelled with ‘*’,

node(), or a valid element tag name. The transformation must first satisfy the

proposed semantic rule. The rules are then translated into a function, namely

semanticPathExpansion as a guideline.

The semantic path contraction typology transforms fragments that have elements

labelled with ‘*’ or node () in the user XPath query into fragment ‘//’. This can be

true only when the XPath query is matched to multiple unique paths that have the

same target element. This means that an element labelled with ‘*’ represents multiple

different path fragments within the multiple identified unique paths. The

transformation must satisfy the proposed semantic rules, which are then translated to

a function, namely semanticPathContraction.

Ch. 4

86

The semantic path complement typology transforms path fragments with elements

labelled with ‘..’ in the user XPath query into a sequence of elements in an identified

unique path. When ‘..’ is specified in an XPath query, ‘..’ expects to associate with a

condition element to filter information. The goal of this transformation is to eliminate

the condition fragment including ‘..’ using unique paths in Q and also an occurrence

constraint from the constraints of elements list C. The transformation must satisfy the

proposed semantic rule followed by a function, namely semanticPathContraction

to remove the condition fragment.

During the transformation, we have also integrated a technique to detect semantic

conflicts that may return an empty query response. In this way, the transformation

can immediately provide an answer without needing to complete the transformation

process and avoid accessing the database unnecessarily. In the implementation, we

demonstrate that the conflict detection makes a significant contribution to query

transformation and ultimately boosts performance.

Chapter 5

Semantic Transformations for

XPath Queries specified with XPath

Axis

XPath queries are essentially composed of a succession of axes defining the

navigation from a current context node. Among the XPath query axes family, child,

descendant, parent and self can be optionally specified using the path notations

{/,//,..,.} which have been commonly used. Axes such as following, preceding,

ancestor, ancestor-or-self, following-sibling and preceding-sibling have unique

functionalities which provide different required information that cannot be achieved

by others. However, XPath query optimization using schema constraints do not yet

consider the XPath axes family.

The performance of queries denoting the same result by means of different axes may

significantly differ. The difference in performance can be affected by some axes, but

this can be avoided. The aim of these proposed semantic transformations is to modify

the structures of XPath queries by eliminating the XPath axes to improve query

performance.

Ch.5

88

For a complete solution, this chapter proposes several semantic transformations to

transform XPath queries specified with XPath axes {following-sibling, preceding-

sibling, following, preceding, ancestor, ancestor-or-self, parent, descendant,

descendant-or-self, self, child} [W3C, 1999; 2007a; 2010] for optimization

purposes.

Unique paths in list Q and constraints of elements in list C, which have been derived

from XML Schemas [W3C, 2004a; 2004b] in Section 4.1 Chapter 4, are used to

propose the transformations. Recall that list Q contains a list of unique paths q where

each q is a sequence of elements that express a path from the root to a particular

element in a given XML Schema. Only the parent-child “/” relationship among the

elements is in q. List C contains a list of c where each c contains the element and its

constraints specified in the XML schema.

5.1 Query Transformation Direction and Defining

Parameters

This section achieves the following tasks:

1. The tree pattern (refer to Definition 3.11) represents the structure of XPath

queries. The directional approach used by semantic transformations for XPath

queries may start from the left-most location step (refer to Definition 3.6) or

the right-most location step [Bashir and Boulos, 2005; Furfaro & Masciari,

2003]. Such a directional approach is adopted in this research, which is

sometimes referred to as a right-most or left-most direction. The first task of

this section is to describe the directional approach of semantic

transformations.

2. The proposed semantic transformations in this chapter share a number of

parameters; these parameters are referred to as global parameters. The second

task of this section is to define a set of global parameters.

Ch.5

89

5.1.1 Transformation Direction for XPath Query

As mentioned in the previous section, the transformation of XPath queries uses

information such as unique paths q in Q and constraints c in C. This section proposes

that the query transformation direction start from the right-most XPath query; that is

the target element, which is the right-most element and is located in the right-most

location step in an XPath query. It is easy to match the target element in an XPath

query to the target element in q to first identify all possible q. The remaining

elements in XPath can then easily be matched to those in the identified q. Such a

transformation direction is explained in more detail with examples in this section.

An XPath query may be specified with an axis to navigate to a specific location, for

example, consider the following XPath query

p = i/k/following-sibling::*

In this XPath query, location steps i and k are specified with no axis names and the

right-most location step following-sibling::* is specified with axis name following-

sibling. This research proposes a translation of an XPath axis for all the elements in

the XPath query that are specified without an axis before the transformation as

shown below.

i/k/following-sibling::* translates to child::i/child::k/following-sibling::*

The transformation goal is to obtain the semantic XPath query/queries. It can be a

single semantic XPath query or multiple XPath queries, which is referred to as a

semanticXPath list.

Figure 5.1 shows how the semanticXPath list is first produced using the right-most

direction.

Figure 5.1 Sample of Semantic Transformation with a Bottom-up Approach

p = dblp/article/following-sibling::*/title

Semantic transformation first transforms title to produce
semanticXPath list using Q

Semantic transformation next transforms following-sibling::* produces new
semanticXPath list using the current semanticXPath list

Ch.5

90

As the title is in the right-most location step, which is also known as the target

location step (refer to Definition 3.9), the semanticXPath list is always empty and

information in the Q list will be used to produce the semanticXPath list. The next

location step is following-sibling::*, which is a non-target location step (refer to

Definition 3.10). Therefore, following-sibling::* is transformed using the

semanticXPath list instead of a unique path list, as the semanticXPath list is not

empty. For example, consider the transformation of p in Figure 5.1. The

transformation starts from the title using information in Q list and the result would

be stored in semanticXPath list. It then moves on to transform the next location step,

which is following-sibling::* in which it will use the semanticXPath list because at

this point, the semanticXPath list is not empty.

The semantic transformation relies on input information including unique paths in

list Q or semanticXPath (the arrival of semanticXPath has been explained above),

and constraints and their values of elements in list C. In addition to this provided

information, the transformation also explores the context position functions such as

position(), last() and context position value [Brantner , 2005; W3C, 1999; 2010].

5.1.2 Defining Global Parameters

The semantic transformations proposed in this chapter utilize the same terms and

information related to XPath query, lists of Q and C to progress to semantic rules.

This section defines a set of global parameters that reference to the terms and

information which are used to define the semantic transformation rules and translate

them to the algorithms throughout this chapter.

• β is a transforming location step in an XPath query p.

• α is an axis.

• ε is a a node-test where β = α::ε and ε is ‘*’, node() or a valid element tag

• ∂ is a context element that occurs in the location step next to β, which must

appear on the left of β.

• ϑ is the parent element of ∂ that occurs in the location step next to ∂ which must

appear on the left of ∂.

Ch.5

91

• ∞ is an infinite occurrences of an element. It is used to denote a maximal

occurrence of an element.

• Q is list of unique paths derived from schemas.

• C is the list of elements, their constraint names, and values of the constraints.

• S (abbreviation for semanticXPath list) is a list that contains semantic XPath

query/queries.

5.2 Semantic Transformation for Following- or Preceding-

sibling Axis

The semantic transformation aims to remove a following- or preceding-sibling axis

using information in lists Q and C. Depending on the location of the following- or

preceding-sibling axis in an XPath query, S is used when S is not empty.

Firstly, we propose semantic rules to transform a given XPath query to its equivalent

semantic XPath query. Secondly, we translate the proposed rules to a semantic

transformation algorithm.

It is possible to produce a single semantic XPath query for a given XPath query

specified with following- or preceding-sibling axis. However, the majority of

transformations expect multiple XPath queries.

Before the semantic rules are proposed below, the XPath query

‘*/article/author/following-sibling::*’ is used to shade light on how semantics are

used to obtain the semantic XPath queries by eliminating the axis. This given XPath

query finds all the followed siblings of the first occurrence of the article author. By

using information in Q, the unique path ‘dblp/article/author’ selects the article

author and its following unique paths that select the siblings of the article author,

e.g. dblp/article/title, dblp/article/chapter, etc.., are retrieved as semantic XPath

queries. Depending on the occurrence constraint, located in C, of article author, the

unique path that selects the author may be excluded from the semantic XPath

queries. Otherwise the context index position function such as position() is used by

the unique path that selects article author to reassure the last occurrence of author is

Ch.5

92

not selected. This example will be revisited later on in great details by the proposed

semantic transformation rules.

Prior to the proposal of semantic rules, it should be kept in mind that if the

transforming location step is the right most location step, also known as target

location step, in the XPath query then Q will be used to derive S(temp). If the

transforming location step is not the right most location step in the XPath query, also

known as a non-target location step, S is not empty, and hence S is used to derive

S(temp). S(temp) is a temporary list that contains semantic XPath queries. Finally S(temp) is

used to derived S where the transformation rule will decide if the last or first

occurrence of context element is selected. This important note is also applied to

semantic rules proposed in section 5.3.

For each of the following- or preceding-sibling location steps (referred to as the

transforming/transformation location step) in an XPath query p, the semantic

transformation rule called STfps is now proposed.

STfps Rule. Semantic XPath query S is derived as follows:

a. When ε and ∂ are ‘*’ or node() and ϑ is a valid element name, then locate qk in

Q or S, where qk must contain ϑ as a target element. The child element of ϑ is

the first child element or the last child element of ϑ.

b. When ε and ϑ are ‘*’ or node() and ∂ is valid element name, then locate qk in Q

or S where qk must contain ∂ as a target element.

c. When ∂ and ϑ are ‘*’ or node() and ε is valid element name, then locate qk in Q

or S where qk must contain ε as a target element.

d. When ε is ‘*’ and ∂ and ϑ are valid element names, then locate qk in Q or S

where qk must contain ∂ as a target element.

In summary, the S(temp) is derived with given qk as follows

 If α is following-sibling then k < m.

If α is preceding-sibling then k > m
S(temp) = {qk,...,qm}

Ch.5

93

By now, the S(temp) contains a set of semantic XPath queries that has been

transformed by the semantic rule as proposed above. However, the first

semantic XPath in S(temp) may select the first or last context element, which

needs to be further transformed so that the first or last occurrence is excluded

from the final result. The first occurrence of the context element is not selected

when the following-sibling axis is used. The last occurrence of the context

element is not selected when the preceding-sibling axis is used. To achieve

this, the context function (position() > 1 or position()<last()) is used as below

so that the final result S is derived:

Derivation of S using S(temp)

S = S(temp) where qk will not select the first occurrence of ∂ by placing index

context function [position()>1] or [position()<last()] (for following- or

preceding-sibling axis) on ∂ when the occurrence set for ∂ is between 1 and ∞.

If occurrence of ∂ is set between 1 and 1 then qk is removed from S as qk

produces only one occurrence of ∂ which is not required for the collection set.

List S contains information that occurs on the right or left (depending on α is

following or preceding axis) of the first occurrence of ∂ selected by qk.

The following examples show how S is ultimately derived.

p = */child::i/preceding-sibling::* Q = {q1,...,q12,..,q17,.., q19, q20,..., q22}

Figure 5.2 Semantic Transformation for Preceding-sibling Axis Query

An XPath query tree p and a set of unique paths Q = {q1,…,q22} are given as shown

in Figure 5.2. The left directional arrow indicates that the selected elements must

p

q22 q20

q19

a

i

k

g

a

i

o

e

a

i

o

q17

a

i

q12

a

b
q1

a *

i * *

Ch.5

94

occur on the left of the last occurrence of i in the XML data tree. The dashed arrow

lines (from p to q) indicate the information to be selected that must occur on the left

of element i in p, which can be accomplished by unique paths q12 to q17. The thick

lines (from p to q) indicate the context element in the first identified q. Note that both

dashed and thick lines map to the same element i in q17; this is to indicate that

element i may have many occurrences. If this is the case, only the last occurrence of i

is not selected.

By following rule (a) in ST(fps), q17 has i as a target element. q12 to q17 share the same

parent a; hence, S(temp) = {q12, ...,q17}. The occurrence constraint of element i needs to

be verified against list C to decide if [position()<last] is added to i in q17 or q17 should

be removed from S(temp) to produce S.

Assuming that list C indicates that the occurrence of a/i is between 1 and infinity

(denoted as ∝) then,

S = S(temp) and q17 is now q17 = a/i[position()<last()]

Let us consider an example based on the DBLP schema (Appendix 1) that is used to

derive lists Q and C.

Example. A requirement selects all the siblings of article and author that follow it in

the DBLP database.

XPath query p = */article/author/following-sibling::*

Based on given p, the values of the required parameters are now extracted such that

• β is following-sibling::*

• ∂ is author

• ε is ****

• ϑ is article

• Q is {dblp, dblp/article/@key, dblp/article/@mdate, dblp/article/author,

dblp/article/title, dblp/article/year,…, dblp/article/url,…,}

• C is {dblp sequence,…, article/author occurrence 1 ∞,…,}

Ch.5

95

• S is empty

By following rule (d) in ST(fps) rule, p has following-sibling::* as the target location

step; therefore, S is empty and Q will be used to produce S(temp) where S(temp) =

{dblp/article/author, dblp/article/title, .., dblp/article/url} because author has title,

year, …, url as siblings followed (or were to the right of) author.

Next, the transformation also finds that C contains a list item ‘article/author

occurrence 1 ∞’. This means that each article must have at least one author as a

minimal occurrence and an infinite number of authors as the maximal occurrence.

Therefore, there is a need to add [position()>1] to author in the unique path that

selects the author information. This context function will select all the authors of each

article except the first author. The transformation produces the result as follows:

S={dblp/article/author[position()>1],dblp/article/title,..,dblp/article/url}

Function 1. transformFollowPrecedingSibling translates the semantic

transformation rules for transforming XPath query specified with following- or

preceding-sibling axis.

The function is called from the main algorithm when following- or preceding-sibling

location step is detected in a given XPath query.

Let us remind readers that any parameters that are not defined in the algorithms from

this point onward should be the global parameters which have been defined earlier in

the Chapter.

The function determines whether the transforming location step is a target or a non-

target location step. This is done by checking the SemanticXPath. If it is empty (Line

1:1), list Q will be used for transformation otherwise SemanticXPath is used for

transformation.

When followingSibling (Line 1:2) is not NULL, which means the transforming

location step is specified with following-sibling axis, the function sets the starting

point and direction for searching unique paths as well as the label of the axis.

Ch.5

96

Otherwise, the function checks for preceding-sibling axis, starting point, search

direction and axis label (Line 1:3).

Based on the identified axis and search direction, the transformation determines

whether the transforming location step is a target location step or a non-target

location step. The transformation first builds up the tempList.

Function 1: List transformFollowPrecedingSibling(String eContext, String followingSibling, String precedingSibling, String

 parentContext, List semanticXPath)

 Let tempQ and tempList be empty lists, O be occurrence of eContext, ϒ be an initial point of traversing and searching

 Direction, ω= {∗, node()}, Q be the list of unique path q, C be the list of constraints of elements

1:1 IF semanticXPath is empty THEN tempQ = Q ELSE tempQ = semanticXPath

1:2 IF followingSibling is not NULL THEN ϒ starts from top of list in tempQ Set axis = following-sibling

1:3 ELSE preceedingSibling THEN ϒ starts from the end of list in tempQ and Set axis = preceding-sibling

1:4 IF semanticXPath is empty THEN

1:5 For each q, using ϒ, in tempQ

1:6 IF ((parentContext not in ω && found in q) && target element in q is eContext) THEN

1:7 For each q in Q

1:8 IF ((q has parentContext && (target element as (sibling of eContext || eContext) in q)

 || ((q has parentContext && eContext is ‘*’ target element as in q is axis) THEN push q to tempList

1:9 ELSE IF ((parentContext is in ω && target element in q is eContext) THEN

1:10 For each q in Q

1:11 IF ((target element (as sibling of eContext || as eContext) in q) && axis element is in ω ||

 ((target element in q is axis element) THEN push q to tempList

1:12 ELSE

1:13 FOR each unique path q, using ϒ, in tempQ

1:14 IF (axis element is not in ω and found eContext in q) THEN

1:15 FOR each current q in tempQ IF q contain axis element THEN Push q to tempList

1:16 ELSE push q to tempList

1:17 IF followingSibling is not NULL THEN

1:18 IF O of eContext is (1, ∞" THEN add [position()>1] to eContext of first q in tempList

1:19 ELSE IF O of eContext is (1,1" THEN remove first q from tempList

1:20 ELSE IF precedingSibling is not NULL THEN use tempList

1:21 IF O of eContext is (1, ∞" THEN add [position()<last()] to eContext of last q

1:22 ELSE IF O of eContext is (1,1" THEN remove last q from tempList

1:23 ELSE IF O of eContext is (0,1" semanticXPath = ‘Retain’

1:24 IF (tempList is empty) semanticXPath = NULL

1:25 ELSE IF semanticXPath Not ‘Retain’ THEN semanticXPath= tempList;

1:26 RETURN semanticXPath

When semantic transformation detects a transformation location step as a target

location step, it locates all the unique paths by considering the following scenarios:

first, parent of context element is not ‘*’ or node() and context element has a valid

Ch.5

97

label name or ‘*’ or node(). Second parent of context element is ‘*’ and context

element has a valid label name or ‘*’ specified with indicated axis (Lines 1:4-1:12).

When semantic transformation detects a transformation location step as a non-target

location step, it locates all the unique paths by considering the axis and context

elements as a combination (Lines 1:13-1:16).

Once the transformation produces a tempList, it then decides to add the context

position function position() or last() when minimal and maximal values of

occurrence constraint of the context element are 1 and ∝ (Lines 1:18, Line 1:21). The

unique path q is removed from the potential list of semantic XPath queries when the

minimal and maximal values of occurrence constraint of context element are 1 (Line

1:19, Line 1:22).

The algorithm also handles the case of minimal and maximal values of occurrence

constraint of 0 and 1. It is not possible to detect that the first context element occurs

in the database unless it accesses the XML document data during the transformation.

In the case of an occurrence constraint that has minimal and maximal occurrences of

0 and 1, the semanticXPath is set to ‘Retain’ acknowledges to the main algorithm

that the location step is valid but retains its original specification (Line 1:23). This

means that the XPath query has not been transformed.

The semantic transformation is also able to detect conflicts (Line 1:25), which results

in an empty data set by detecting the tempList. This will boost performance

significantly as the query does not need to access the database before it returns the

answer to the user.

If the semanticXPath has no information and the tempList is not empty, then the

semanticXPath is assigned with the tempList and it is returned to the main algorithm

(Line 1:26).

Ch.5

98

5.3 Semantic Transformation for Following or Preceding

Axis

The following or preceding axis navigates the information on the right or left of the

context element as well as the information following or preceding where the context

element begins or ends.

To obtain the semantic equivalent XPath query, the semantic transformation is now

proposed for the following or preceding axis. The semantic transformation aims to

remove a following or preceding axis by using list Q of unique paths and list C of

constraints of elements. The semantic transformation for these two axes, in most

cases, produces more than one semantic XPath query (referred to as a set of semantic

XPath queries).

The XPath query ‘dblp/article/title/preceding::*’ is now used to shade light on how

semantics are used to obtain the semantic XPath queries by eliminating the axis

preceding. This given XPath query finds everything that occurs in front of the first

occurrence of article title. The unique path ‘dblp/article/title’ and all unique paths in

Q that select information occurs in front of the first occurrence of article title.

Basically it is looking at all the unique paths that occur in front of the unique path

‘dblp/article/title’ and all unique paths that select the siblings of article title.

Furthermore, depending on the occurrence constraint, located in C, of article title,

the transformation also needs to use the context index position function position() so

that it re-assures the last occurrence of title and everything following it will not be

selected. This example will be revisited later on in great details by the proposed

semantic transformation rules.

For each of the location steps specified with following or preceding, also known as

transforming location steps, in an XPath query p, the semantic transformation rule

called Steps is now proposed.

Steps Rule. Semantic XPath query S is derived as follows:

a. When ε is ‘*’ or node() and ϑ and ∂ are valid element names, then locate qk in

Q or S where qk contains ∂ as a target element.

Ch.5

99

b. When ε and ϑ are ‘*’ or node() and ∂ is a valid element name, then use ∂ to

locate qk in Q or S where qk contains ∂ as a target element.

c. When ε and ∂ are ‘*’or node() and ϑ is a valid element name, then use ϑ to

locate qk in Q or S where qk has ϑ which also has a child as a target element

and is the first or last child of ϑ.

d. When ε is a valid element name and ϑ and ∂ are ‘*’or node(), then locate qk in

Q or S where qk has ε as a target element.

If α is the preceding axis then qi, qk-1 are all unique paths that are in front of qk.

qk,…,qz must contain ϑ and their target elements are children of ϑ and its

siblings occur in all q leading qk. i = 0 (at the top of Q), i < k < z.

If α is the following axis, then qi,…,qk+1 are all unique paths that are located after

qk. qk,…,qz and must contain ϑ; their target elements are children of ϑ and its

siblings occur in all q following qk. i = length of Q, i > k and z >k

Derivation of S using S(temp)

When the occurrence of ∂ in qk is between 1 and ∝, context function [position()

>1] or [position() < last()] is replaced on ∂ and [position() = 1] or [position() =

last()] on ϑ in qk. qZ+1 = qk and [position() >1] or [position() <last()] is placed on ϑ

in qk+1,…, qz+1.

When the occurrence of ∂ is between 1 and 1, context function [position() >1] or

[position() <last()], depending on α, is placed on ϑ in qk,…, qz or qk,…, qz.

These functions are important as they handle the role of not selecting the first or

last occurrence of ∂ and the siblings occur before or after the first ∂ in the whole

document.

S = S(temp) where qk,…, qz are modified as described above.

S(temp) = {qi,…, qk,…,qz}

Ch.5

100

The following example show how S is ultimately derived. An XPath query p =

/child::i/ child::k/preceding:: and a set of unique paths Q = {q1,q1,q3,..,q4, q5, q6, q7,...,

q22} is given as shown in Figure 5.3.

The left-most tree represents the XPath query p. The left-pointed and vertical-pointed

arrows show the direction of selected information in the XML data tree that is

expected to occur before the last context element k. The mapping arrows from p to Q

indicate the information to be selected. By following rule a in Steps, both the parent

and context elements are valid for deriving S(temp). As a result, S(temp) = {q6,…,q2,q1}

has been derived where q5 is the unique path that selects the context element k.

Figure 5.3 Semantic Transformation for Preceding Axis Query

S now can be derived based on the presence of the preceding axis in p by checking

the occurrence of i/k in list C. Suppose that the occurrence of i/k is between 1 and ∞,

then

S = S(temp) where q5 and q6 are replaced as follows:

 q5 = a/i[position() =last()]/k[position()<last()], a/i[position()<last()]/k

 q6 = a/i[position() < last()]/m/g

Let us consider an example based on the DBLP schema that is used to derive lists Q

and C.

*

i

k

q6 q4

 q3 q5

q 22

a

b

a

i

m

g

i

a

k

a

i

o

e

a

i

o

q2

a

i
q1

a

p

Ch.5

101

Example. A requirement selects all the members preceding the article and title in the

DBLP database.

A user defined XPath query p = dblp/article/title/preceding::*

Based on given p, the values of the required parameters are extracted as follows:

• β is preceding::*

• ∂ is title

• ε is ****

• ϑ is article

• Q is {dblp, dblp/article/@key, dblp/article/@mdate, dblp/article/author,

dblp/article/title, dblp/article/years,…, dblp/article/url, dblp/inproceedings,…,}

• C is {dblp sequence, dblp/article sequence, dblp/article occurrence 1 ∞…,}

• S is empty as the preceding location step is specified as a target location step in

p

By following rule a in Steps Rule, S(temp) is derived as follows:

S(temp)={dblp, dblp/article/@key, dblp/article/@mdate, dblp/article/author,

dblp/article/title, dblp/article/years,…, dblp/article/url}

The occurrence of article/title is between 1 and 1 and is located in list C. The

context function [position()<last()] is added to the article in the unique path

dblp/article/title and all the unique paths that appear behind it in S(temp). The result of

S is as follows:

 S = {dblp, dblp/article/@key, dblp/article/@mdate, dblp/article/author, dblp/

article[position()<last()]/title, dblp/article[position()<last()]/years,…,

dblp/article [position()<last()]/url}

Function 2 transformFollowPreceding translates the semantic transformation rules.

Function 2 is called when the transforming location step in an XPath query is

specified with following or preceding axis.

Ch.5

102

The transformation first determines if the Q or semanticXPath list is used. This is

when the following or preceding location step in the XPath query is the target or

non-target location step (Line 2:1). The tempQ list is set.

The transforming location step then detects whether the following or preceding axis

is present so that the initial point and traversing direction for retrieving unique paths

are set (Lines 2:2 – 2:3).

 Function 2: List transformFollowPrecedingt(String eContext, String following, String preceding, String parentContext,

 List semanticXPath)

 Let tempQ and tempList be empty lists, O be occurrence of eContext, Q be the list of unique paths q,

 ϒ be an initial point of traversing and searching direction, ω = {∗, node()},C be the list of constraints of elements

2:1 IF semanticXPath is empty THEN tempQ = Q ELSE tempQ = SemanticXPath

2:2 IF following is not NULL THEN ϒ starts from top of list in tempQ Set axis = following

2:3 ELSE it is preceedingSibling THEN ϒ starts from the end list in tempQ and Set axis = preceding

2:4 IF semanticXPath is empty

2:5 FOR each q, using ϒ, in tempQ

2:4 IF ((q contains parentContext && eContext is the target element in q) || axis element is the target element in q) THEN

2:5 FOR each q in tempQ

2:6 IF (axis element is in ω || (eContext found in q && axis element is target node in q) || (eContex is in ω &&

 axis element is target node in q)) THEN push q to tempList

2:7 END LOOP

2:8 END LOOP

2:9 ELSE

2:10 FOR each unique path q, from top of list, in semanticXPath

2:11 IF ((eContext is in ω && a target element in q) || (eContext is in ω && following found in q)) THEN Push q to tempList

2:12 END LOOP

2:13 IF (tempList is empty) THEN semanticXPath = NULL; Exist

2:14 IF following && tempList !=NULL THEN q = first q that has both eContext and parent from tempList

2:15 ELSE IF preceding && tempList !=NULL THEN q = last q that has both eContext and parent from tempList

2:16 Get the minOccurrence and maxOccurrence values of eContext node

2:17 IF ((following && minOccurrence>=1 && maxOccurrence > 1) THEN

2:18 Append position()>1 to eContext location step and position()= 1 to parentContext in current q

2:19 Duplicate current q and append position()>1 to parentContext of duplicated q and add it to tempList

2:20 Append position()>1 to parentContext in all q that comes after current q

2:21 ELSE IF (preceding && minOccurrence>=1 && maxOccurrence > 1) THEN

2:22 Append ‘position()<last()’ to eContext and ‘position()=last()’ to parentContext in current q

2:23 Duplicate current q and append ‘position()< last()’ to parentContext of duplicated q and add it to tempList

2:24 Append position()<last parentContext in all q that comes before current q

2:25 ELSE IF ((following && minOccurrence=1 && maxOccurrence = 1) ||

 (preceding && minOccurrence=1 && maxOccurrence = 1)) THEN

2:26 Append (position()>1 or position()<last() to parentContext in current q

 and all q that have target elements are siblings of eContext

2:27 ELSE IF ((minOccurrence=0) || (minOccurrence=0)) THEN tempList =’Retain’

2:28 semanticXPath = tempList;

2:29 RETURN semanticXPath

Ch.5

103

The first part in the transformation is to locate the unique paths q for following axis

specified in p (Lines 2:4-2:8). The first matched unique path q in Q is located where

q contains a valid parent element and valid context as the target element or the

context element is ‘*’ or node() and the parent element is a valid element name.

Otherwise, it checks for a valid context element name and parent element is ‘*’ or

node(). The transformation continues to retrieve all the unique paths q that produce

information following or preceding information produced by q. The tempList is built.

When the context element is not a target element, the transformation locates the q

from the existing semanticXPath list in which q has only the parent element and the

context is a non-target (Lines 2:9-2:12). The tempList is built here.

When the tempList is empty, this indicates that a conflict has been detected and no

further transformation is needed. The semanticXPath returns to the main program as

NULL that allows the main program to handle the configured message set in the

main program (Line 2:13).

If the tempList is not empty, the transformation will continue to produce the

semanticXPath list. The occurrence constraint of the context element is retrieved

from list C (Line 2:16). The tempList list produced for the following axis is to use the

context functions position() that does not select the first occurrence of the context

element if the minimal and maximal values of occurrence constraint of context

element are 1 and ∝ (Lines 2:17 – 2:20). The occurrence constraint values are also

applied to produce the tempList list for the preceding axis, and the index context

functions such as position(), and last() are used for the preceding axis (Lines 2:21-

2:24).

When the minimal and maximal values of the occurrence constraint of the context

element are 1, the context functions position() and last() ensure that the context

element under the first or last parent is not selected (Lines 2:25-2:26).

When the minimal value of the occurrence constraint of the context element is 0, a

‘Retain’ message is set in the tempList, which is subsequently assigned to the

semanticXPath. This message tells the main program that the following or preceding

location step in the XPath query is valid but has no new transformation (Line 2:27).

Ch.5

104

Finally, the valid semantic XPath queries are returned to the main algorithm (Line

2:29).

5.4 Semantic Transformation for Ancestor or Ancestor-or-

self Axis

While Ancestor axis in an XPath query navigates information of all ancestors

(parent, grandparent, etc...) of the context element, ancestor-or-self navigates

information of all ancestors (parent, grandparent, etc..) of the context element and the

context element itself [W3C, 2010]. An ancestor or ancestor-or-self axis may be

specified with “*” or node().

Before the semantic transformation rule is proposal, the XPath query

‘//article/ancestor::dblp’ is now used to give a brief overview of how semantics are

used in semantic transformation by eliminating XPath axis. This XPath query

performs a task to select ancestor of article that must be dblp. By using list Q, the

unique path that selects article is selected first. Because of dblp is the ancestor of

article, any unique path that precedes the unique path of selecting article and also

selects dblp is selected. This example will be revisited later on in great details by the

proposed semantic transformation rules.

A set of semantic transformation rules called STas is now proposed for transforming

an XPath query specified with an ancestor or ancestor-or-self axis.

Along with the proposal of semantic transformation rule STdos, an important note

confirms that if the transforming location step is the right most location step, also

known as target location step, in the XPath query then Q will be used to derive S. If

the transforming location step is not the right most location step in the XPath query,

also known as a non-target location step, S is not empty, and hence S is used to

derive the new S. This important note is also applicable to all semantic rules in

sections 5.5, 5.6, 5.7, 5.8 and 5.9.

STas Rule. Semantic XPath query S is derived as follows:

Ch.5

105

a. When ε is ‘*’ or node() and ϑ and ∂ are valid element names, then locate qk in

Q or S where qk must contain ϑ and ∂ where ∂ is a target element.

b. When ε and ∂ are ‘*’ or node() and ϑ is a valid element name, then locate qk

in Q or S where qk must contain ϑ that must have a child.

c. When ε and ϑ are ‘*’ or node() and ∂ is a valid element name, then locate qk

in Q or S where qk must contain ∂ as the target element.

d. When ε, ϑ and ∂ are valid element names, then locate qk where ε must be a

valid ancestor of ∂.

The following examples show how S is derived.

p = */child::i/child::o/ancestor::* Q = {q1,..., q 12,.., q 17,.., q 19, q 20,..., q

22}

Figure 5.4 Semantic Transformation for Ancestor or Ancestor-or-self

An XPath query tree p and a set of unique paths Q = {q1,…, q22} are given as shown

in Figure 5.4.

Based on STas rule set, rule a is suitable because according to the given p, the value

of ε is ‘*’, the value of ϑ is o and the value of ∂ is i. For each element in p, except the

 S = {qi,…,qk} where i = 0 and i ≤ k

S = {qk} where 0 ≤ k

 p

Ancestor::*

q22

a

i

k

g

q20

a

i

o

e

q18

a

i

o

q17

a

i

q12

a

b

q1

a
*

i

o

*

Ch.5

106

context element o, the latter of which is mapped to the target element in any q in Q.

In this case, q18 is found. Unique path q17 satisfies the presence of element i, which is

the target element and the parent of o in q18. Using q17, the parent of element i is a.

Any unique path that has an element label with a as the target element and occurs

before q17 is selected. q1 is identified. q18 is not needed as it produces the information

for the context element.

In this query, the result is a collection of information about the ancestors only.

S = {q1, q17}

Let us consider an example using the DBLP Schema that is used to derive lists Q and

C.

Example. A requirement selects ancestry information of article titles as well as their

own information in the DBLP database.

XPath query p = */article/title/ancestor-or-self::*

Based on given p, the values of the required parameters are extracted as follows:

• β is ancestor-or-self::*

• ∂ is title

• ε is *

• ϑ is article

• Q = {dblp, dblp/article/@key, dblp/article/@mdate, dblp/article/author,

 dblp/article/title,..., dblp/article/url,..., dblp/www/url}

• S is empty as ancestor-or-self location step is the target location step.

By using Q, a unique path that selects context information title for article is

dblp/article/title, the next unique path that selects the article are

dblp/article/@key, dblp/article/mdate and dblp.

S = {dblp, dblp/article/@mdate, dblp/article/@key, dblp/article/title}

Ch.5

107

Function 3. transformAncestors translate the semantic transformation rules for

transforming XPath query specified with ancestor or ancestor-or-self axis.

A tempList is built when an ancestor element is a non-target element and the context

element is a valid element name that appears to be the target element, or q has an

ancestor element as a non-target element, and the target element can be any element

(Lines 3:1–3:5).

When the transforming location step is a non-target location step, the tempList is

derived using S. The tempList is built by q that has an ancestor as a non-target

element, and the context element which appears to be target element or q has an

ancestor element as a non-target element, and the target element can be any child

(Lines 3:6–3:10).

In the case where the tempList is NULL, a conflict is detected for the transforming

location step (Line 3:11).

Function 3: List transformAncestors(String eContext, String eAncestor, List semanticXPath, Boolean ancestorOnly)

 Let tempList be an empty list, ω = {∗, node()},Q be the list of unique paths q

3:1 IF semanticXPath is empty Then

3:2 FOR each unique path q in Q

3:3 IF ((eContext found as target element in q && (eAncestor found in q || eAncestor

 element is in ω))|| (eContext element is in ω && (eAncestor element found as target element in q)) Then

3:4 push q to tempList

3:5 END LOOP

3:6 ELSE IF semanticXPath is not empty Then

3:7 FOR each q in semanticXPath

3:8 IF ((eContext element found as target element in q &&

 (eAncestor elemnt found in q || eAncestor element is in ω)) Then

3:9 push q to tempList

3:10 END LOOP

3:11 IF (tempList is empty) semanticXPath = NULL

3:12 ELSE IF (tempList not empty && ancestorOnly is true)

3:13 construct a new list of semanticXPath q in tempList

3:14 Each new q produces information of each ancestor starting from the left most element in q to the eAncestor

3:15 ELSE IF (tempList not empty && ancestorOnly is false)

3:16 construct a new list of semanticXPath using q in tempList

3:17 Each new q produces information of each ancestor starting from the left most element in q to the eContext

3:18 RETURN semanticXPath

Ch.5

108

The tempList expects a unique path that has the context element as a target element.

When the axis is ancestor, unique paths are used to produce ancestry information

which must be located as stated (Lines 3:12-3:14). When the axis is ancestor-or-self,

unique paths are used to produce ancestor-or-self information which must be located

as stated (Lines 3:15-3:17). The final semanticXPath that produces information based

on the ancestor or ancestor-or-self location step is returned to the main program

(Line 3:18).

5.5 Semantic Transformation for Parent Axis

The Parent axis in an XPath query navigates information of the element that

immediately occurs before the target element [Ozcan et al, 2008; W3C, 2007a; 2010;

Yuen & Poon 2005]. A parent location step can also optionally be specified with ‘..’.

The optional operator ‘..’ can be very useful to replace the parent axis in the XPath

query for XML databases that do not support XPath axes.

Semantic used in semantic transformation is very straight forward by using

information in Q. Take, for instance, the XPath query ‘dblp/*/title/parent::*’ which

performs the task to query information of all the parents of title. By using Q, the

unique path that selects the title is located first then any unique path that selects the

parent of title and occurs before the unique path that selects the title is the semantic

XPath query. This example will be revisited later on in great details by the proposed

semantic transformation rules.

The semantic transformation rule called STp, which aims to remove the parent axis

from an XPath query, is now proposed.

STp Rule. Semantic XPath query S is derived as follows:

a. When ε is ‘*’ or node() and ∂ and ϑ are valid element names, then locate qk that

contains a ϑ as a target element if Q is used. Otherwise ϑ is a non-target

element if S is used.

Ch.5

109

b. When ε and ϑ are valid element names and ∂ is * or node(), then locate qk that

contains ε as target element if Q is used. Otherwise ε is a non-target element if

S is used.

c. When ε and ϑ are * or node() and ∂ is a valid element name, then locate any q

that contains ∂ as a target element. It then uses current q to locate qk where qk

contains ϑ as the parent of ∂.

S = {qi,…,qk} where 0 ≤ i ≤ κ where each q must contain ϑ or ε

The following examples illustrate how S is derived.

p = */child::*/child::o/parent:* Q = {q1,...,q12,..,q17,..,q19, q20,...,q22}

Figure 5.5 Semantic Transformation for Parent Axis Location Step

Following STp rules, rule c is suitable as it is based on Q and given p in Figure 5.5. ∂

is a valid element name and ε and ϑ are *. The value of ∂ is o. Due to the presence of

the transforming location step parent::* as a target location step in p, the

transformation uses Q to first locate q where q has o as a target element. The unique

path q19 has elements o as a target element. The unique path q19 has a target element

o, which is also the parent element of element o in q19. As a result, S is derived as

follows:

S = {q17}

Example. A requirement selects the parents of all item titles in the DBLP database.

XPath query p = dblp/*/title/parent::*

q17

q22 q21 q20

q19

q12

q1
*

*

o

 ρ

a

i

a

i

k

g

a

i

o

f

a

i

e

o

a

i

o

a

b

a

Ch.5

110

Based on given p, the values of the required parameters are now extracted as below

• β is parent::*

• ε is ****

• ∂ is title

• ϑ is *

• Q is {dblp, dblp/article, dblp/article/author, dblp/article/title,....,

dblp/inproceedings/title, dblp/proceedings/title,..., dblp/www/title,...}

• S is empty as the parent location step is the target location step.

Following STp Rules, rule c is identified for transforming p.

Since the parent axis is specified with * and title is the target element in p, title

appears in more than one unique path in Q; therefore the unique path that has a target

element as the parent element of title will be selected. In this case, the transformation

locates dblp/article, dblp/inproceedings, dblp/proceedings, dblp/incollection,

dblp/book, dblp/phdthesis, dblp/www. Note that each of these unique paths

produces its attributes or keys; hence, S is derived as follows:

S = {dblp/article/@mdate, dblp/article/@key, dblp/inproceedings/@mdate,...,

www/@mdate, www/@key}.

 Function 4. tranformParent translates the semantic transformation rules for

transforming an XPath query specified with the parent axis. The function first

determines whether the parent element is a target element or a non-target element

(Line 4:1).

When the transforming location step is a target location step, the transformation is

straight forward to build the tempList by locating the unique path that has the parent

element as a target element (Lines 4:2 – 4:7). If both context and parent elements are

*, a message ‘Retain’ will be assigned to the tempList and transformation is not

required. This informs the main algorithm that the parent location step remains as it

is (Line 4:7); therefore, no transformation is needed.

Ch.5

111

In the case where the transforming location is determined as a non-target location

step, semanticXPath list is used. If both context and parent elements are *, then the

tempList is a semanticXPath list and transformation is no longer required. When the

context element is ‘*’ and the parent element is a valid element name then it locates

the unique path that has parent element. When the context is a valid element name

and the parent element is *, it locates a unique path that has the parent of the context

element and no context element is present (Lines 4:8-4:13). For example, the XPath

query dblp/*/title/parent::*/author. In this case, the transformation locates any

unique path that has author as a target element and the parent of author should also

be the parent of title. Hence

S ={dblp/article/author, dblp/inproceedings/author, dblp/proceedings/author,,

dblp/www/author}.

 Once the tempList is completely built, it will be assigned to semanticXPath list (Line

4:15). If tempList is empty, it indicates a conflict has been detected (Line 4:14).

semanticXPath is returned to the main algorithm (Line 4:16).

Function 4: List transformParent(String eContext, String parent, List semanticXPath)

 Let tempList be, empty list, tempQ be an empty list, ω = {∗, node()}, Q be the list of unique paths q

4:1 IF semanticXPath is empty THEN tempQ = Q ELSE tempQ = semanticXPath, semanticXPath = NULL

4:2 FOR each unique path q in tempQ

4:3 IF (((parent is in ω && eContext element is valid) && context as target element in q) ||

4:4 ((eContext is in ω && parent element is valid) && parent element in the second right most location step in q)) THEN

4:5 push q to tempList

4:6 ELSE IF (parent and eContext are in ω) Then tempList = ‘Retain’; Exit

4:7 END LOOP

4:8 ELSE IF semanticXPath is not empty THEN

4:9 FOR each q in tempQ

4:10 IF (eContext is in ω && parent is in ω ’ THEN tempList = semanticXPath; Exit

4:11 ELSE IF (eContext is in ω && parent is valid) THEN locate q that has parent element and push q to tempList

4:12 ELSE IF (eContext is valid && parent is in ω) THEN locate q that has context element and push q to tempList

4:13 END LOOP

4:14 IF (tempList is empty) THEN semanticXPath = NULL

4:15 ELSE semanticXPath = tempList

4:16 RETURN semanticXPath

Ch.5

112

5.6 Semantic Transformation for Descendant or

Descendant-or-self Axis

An optional operator ‘//’ has been recommended for the descendant axis [W3C,

1999; 2007a; 2010]. The semantic rule to transform XPath query location steps

specified with a descendant or descendant-or-self axis is proposed.

The semantic transformation aims to remove a descendant or descendant-or-self

axis from the XPath query. The expected semantic XPath query may result in

multiple semantic XPath queries or a single semantic XPath query.

Before the semantic transformation rule is proposal, the XPath query

‘dblp/article/*/descendant::tn’ is now used to give a brief overview of how semantics

are used in semantic transformation by eliminating XPath axis. This XPath query

performs a task to select the descendant tn of article. By using list Q, the unique path

that selects tn of article is first located. Any unique path which appears after the

located unique path, and also selects tn in which the article element is also included

in the unique path is the semantic XPath query. This example will be revisited later

on in great details by the proposed semantic transformation rules.

For each descendant or descendant-or-self location step in an XPath query p, a set of

semantic transformation rules called STdos is now proposed.

STdos. Semantic XPath query S is derived as follows:

a. When ε is ‘*’ or node() and ϑ and ∂ are valid element names, then locate all in

Q or S where each q selects a descendant of ∂. qk selects ∂ if α is descendant-

or-self.

b. When both ε and ∂ are valid element names and ϑ is ‘*’ or node(), then locate

all q in Q or S where each q contains ∂ and selects ε if Q is used; or each q

contains both ∂ and ε if S is used.

c. When ε and ϑ are valid element names and ∂ is ‘*’ or node(), then locate all q

in Q or S where each q contains ϑ and selects ε if Q is used; or each q contains

both ϑ and ε if S is used.

Ch.5

113

d. When ε is a valid element name and ϑ and ∂ are ‘*’ or node(), then locate qi to

qk in Q or S where each q select ε.

S = {qi,..,qk} where k = k-1 if α is descendant axis and qk-1 does not select the

 context node itself

The following examples show how S is derived.

p = */child::i/child::o/descendant::* Q= {q1,...,q12,..,q17,..,q19, q20,..., q22}

Following STdos, rule a is suitable based on given p, the value of ε is *, the value of ∂

is o.

The unique paths q19, q20 and q21 in Figure 5.6 have elements o as the context

element. The transformation needs to locate unique paths that have a valid context

element o, which also has descendants.

Figure 5.6 Semantic Transformation for Descendant or Descendant-or-self Axis Query

The mapping starts, with dot-line arrows, from element * in p to those expected

descendants in q20 and q21 and element o in p to element o in q20 and q21.

S = {q20, q21}

Example. A requirement selects all information of the titles, including the title name,

of articles in the DBLP database.

q1

p

*

*
q22 q20

q19

q21

q12 q17
i

o

a a

i

o

a

i

o

e

a

i

o

f

a

i

k

g

a

b

a

i

Ch.5

114

XPath query p = dblp/article/title/descendant-or-self::*

Based on given p, the values of the required parameters are extracted as follows:

• β is descendant-or-self::*

• ∂ is title

• ε is *

• ϑ is article

• Q is {dblp, dblp/article, dblp/article/author, dblp/article/title, dblp/article/title/tt,

dblp/article/title/tn, dblp/article/title/ref,....dblp/inproceedings/title,

dblp/proceedings/title,..., dblp/www/title,...}

• S is empty as the descendant-or-self location step is a target location step in p

Based on STdos, rule a is suitable to transform p as ∂ and ϑ are valid, ε is ‘*’. Unique

paths dblp/article/title, dblp/article/title/tt, dblp/article/title/tn and

dblp/article/title/ref are selected.

In this example, the semantic XPath queries based on STdos would be produced as

follows:

S = {dblp/article/title, dblp/article/title/tt, dblp/article/title/tn, dblp/article/title/ref}

Since unique path dblp/article/title does not have any key or attribute, selecting title

would produce nothing for self information.

Let us consider another example using the descendant axis that is specified with an

element which does not have descendants.

Example. A requirement selects all the information under the title names in the

DBLP database.

XPath query p = dblp/article/*/descendant::tn

Based on given p, the values of required parameters are extracted as follows:

• β is descendant::tn

Ch.5

115

• ∂ is *

• ε is tn

• ϑ is article

• Q is {dblp, dblp/article, dblp/article/author, dblp/article/title, dblp/article/title/tt,

 dblp/article/title/tn, dblp/article/title/ref,...,dblp/inproceedings/title,

 dblp/proceedings/title,..., dblp/www/title,...}

• S is empty

Following STdos, rule c is suitable as ε and ϑ have valid element names and ∂ is *.

The rule locates all unique paths that have article as a non-target element with tn as

a descendant element. As a result, unique path {dblp/article/title/tn} is located. Since

tn does not have any descendants, S is derived as follows:

S = {dblp/article/title/tn}

Function 5 transformDescendants translates semantic transformation rules for

transforming an XPath query that is specified with descendant or descendant-or-self

axis. When the transforming location step is specified with descendant-or-self axis,

descendantOnly is set to false. The function transformDescendants checks to

determine whether the transforming location step is a target or non-target location

step (Line 5:1). When the transforming location step is a target location step, the

transformation builds tempList by locating q given a valid descendant element and

the context element is * or, context and descendant elements are valid or both

descendant and context elements are ‘*’ (Lines 5:2 – 5:9).

When the transforming location step is a non-target location step tempList is built by

selecting q given a valid descendant element and the context element is ‘*’or; valid

context and descendant element names or both context and descendant elements are

‘*’.

(Lines 5:10 – 5:15). The tempList now contains a set of unique paths that produces

information about descendants only.

Before the transformation verifies the axis for descendant or descendant-or-self, it

must check a termination condition, that is, that the tempList is empty (Line 5:16).

Ch.5

116

Note that function 5 has a Boolean type parameter descendantOnly, which is used to

determine that the axis is descendant or descendant-or-self. If the descendantOnly

flag is false, the transformation transforms a location step specified with descendant-

or-self axis, an addition q that selects the descendant itself to the list (Lines 5:17-

5:24). The tempList is assigned to semanticXPath list and returns to the main

algorithm (Lines 5:25-5:26).

Function 5: List transformDescendants(String eContext, String descendant, List semanticXPath,

 Boolean descendantOnly)

 Let TempQ,tempList be an empty lists, ω = {∗, node()},Q be the list of unique paths q

5:1 IF semanticXPath is empty THEN tempQ = Q Else tempQ = semanticXPath, semanticXPath=NULL

5:2 IF semanticXPath is empty

5:3 FOR each unique path q in tempQ

5:4 IF (((eContext is in ω && descendant is valid) && q has descendant as target element) ||

 ((eContext is valid && descendant is valid) && q has descendant as target element and eContext

 as non-target)) THEN

5:5 push q to tempList

5:6 ELSE IF (eContext is in ω && descendant is in ω) Then

5:7 Locate first valid element ω && eContext element determined based on its hierarchy in ρ.

5:8 Locate q that has determine eContext as non-targert element && push q to tempList

5:9 End Loop

5:10 ELSE IF semanticXPath is not empty Then

5:11 FOR each q in tempQ

5:12 IF (((eContext is in ω && descendant is valid) && q has descendant as non target element) ||

 ((eContext is valid && descendant is valid) && q has descendant and eContext as non-target

 elements)) Then

5:13 push q to tempList

5:14 ELSE IF (eContext is in ω && descendant is in ω) THEN tempList = tempQ; Exist

5:15 End Loop

5:16 IF tempList is empty THEN semanticXPath=NULL; EXIST

5:17 ELSE IF (tempList not empty && descendantOnly is false) THEN

5:18 FOR each q in tempList

5:19 Obtain eContext element τ in q

5:20 End Loop

5:21 FOR each q in unique path Q

5:22 Find q with τ and attribute/id/key as target element

5:23 q to tempList

5:24 End Loop

5:25 ELSE tempList is not NULL semanticXPath = tempList

5:26 RETURN semanticXPath

Ch.5

117

5.7 Semantic Transformation for Self Axis

The Self axis navigates information of a context element. It has an optional ‘.’. For

example, an XPath query is as follows:

dblp/article/self::* is equivalent to dblp/article or dblp/article/.

The semantic transformation for XPath query specified with the self axis to obtain an

equivalent XPath query is now proposed. In the proposed semantic transformation,

the goal is to remove these axes by using unique paths Q.

Wildcard expression ‘*’ used with an axis such as the self axis in an XPath query has

been identified as one of the causes of query performance issues. Works have been

performed to study the minimization of the tree patterns or containment that include

‘*’ without using semantics [Amer-Yahia et al., 2001; et al., 2002; Furfaro &

Masciari, 2003]. Here, a different technique is proposed. That is a semantic

transformation to achieve similar goals.

First let us address the semantic transformation for the self axis. The semantic

transformation rule called STs is now proposed.

STs Rule. Semantic XPath query S is derived the following rules are satisfied.

a. When ε is * or node() and ∂ is a valid element name, then locate {qi,...,qk} in Q

or S where each q contains ∂

b. When ε and ∂ are valid element names, then locate {qi,...,qk} in Q or S where

each q contain both ε and ∂ as a target or non-target element depending on

whether Q or S is used, ∂ and ε are the same element.

c. When ε and ∂ are * or node() then p will be processed to get the next valid

element e. Locate {qi,...,qk} where each q contains e

S = {qi,...,qk} where 0 ≤ i ≤ k

Figure 5.7 show how S is derived for the self axis specified in a location step.

Ch.5

118

Following STs, rule a is suitable to transform p as ε is * and ∂ is a valid element

name in the given p.

By mapping elements in p to elements in q of Q using arrow-dotted lines in Figure

5.7, unique path q19 has elements o as ∂ and ε is ‘*’ which is represented by o that

satisfies the requirement of XPath query. As the result, the transformation derives S

as below:

S = {q19}

 p = */child::i/child::o/self::* Q= {q1,...,q12,..,q17,..,q19, q20,..., q22}

Figure 5.7 Semantic Transformation for Self Axis Query

Let us consider an example based on the DBLP schema that produced a list of

derived unique paths Q.

Example. A requirement selects the titles of articles in the DBLP database.

XPath Query p = dblp/article/title/self::*

p is specified with the self axis; we refer readers to the previous example for the

values of parameters β, ε, ∂, Q, and S

Following STs, rule a is suitable. The semantic transformation locates all unique

paths that have article title as a target element, which is dblp/article/title. As a

result, S is derived as follows:

S = {dblp/article/title}

 p

*

*

q1

q22 q20

q19

q21

q12 q17

o

i

a a

i

a

i

o

a

i

o

e

a

i

o

f

a

i

k

g

a

b

Ch.5

119

Function 6. transformSelflAxis translates the semantic transformation rules for

transforming XPath query specified with the self axis.

The function first checks to confirm whether the self location step is a target location

step or a non-target location step (Line 6:2).

When the transforming location step is a target location step, the transformation uses

Q to derive tempList. q is located to build the tempList given self specified with ‘*’

and valid context element or, self is a valid element name and the context element is

. When both self and context elements are specified with ‘’, p is used to locate first

valid element then the new q is located that has the first located valid element as a

non-target element (Lines 6:1 - 6:9).

When the transforming location step is a non-target location step, the transformation

uses S to derive tempList. q is located to build the tempList given self specified with

‘*’ and a valid context element name, select q that has the context element as a non-

target element or; self is specified with a valid element name and the context element

is ‘*’. When both child and context elements are ‘*’, p is used to locate the first valid

Function 6: List transformSelfAxis (String eContext, String Self, List semanticXPath)

 Let tempList be, empty list, tempList and tempQ be empty lists, ω = {∗, node()},Q be the list of unique paths q

6:1 IF semanticXPath is empty THEN tempQ = Q ELSE tempQ = semanticXPath, semanticXPath = NULL

6:2 FOR each unique path q in tempQ

6:3 IF (self is in ω or node()&& eContext is valid and q has eContext as a target element) THEN

6:4 push q to tempList

6:5 ELSE IF (self is valid && eContext is in ω or node()) THEN

6:6 push q to tempList IF q has self as target element

6:7 ELSE IF (self && eContext are in ω) THEN

6:8 process next valid element in ρ && locate q using hierarchy of self in p && push q to tempList

6:9 END LOOP

6:10 ELSE IF semanticXPath is not empty THEN

6:11 FOR each q in tempQ

6:12 IF ((self is in ω && eContext is target element in q)||

 (self is a valid && eContext is in ω)) THEN

6:13 push q to tempList IF q has eContext or self as a non-target element

6:14 ELSE IF (self && eContext are in ω) THEN push q to tempList

6:15 END LOOP

6:16 IF (tempList not empty) THEN semanticXPath = tempList

6:17 ELSE IF (tempList is empty) THEN semanticXPath = NULL

6:18 RETURN semanticXPath

Ch.5

120

element e then new q is located that has first located valid element as non-target

(Lines 6:10- 6:16).

After transformation, if the tempList is empty, this means that no semantic XPath

query has been produced; this is caused by many factors, one of which is that

semantic conflicts have been detected in the XPah query (Line 6:17). The

transformation produces a list of semantic XPath queries that may contain a single

semantic XPath query or a set of queries (Line 6:18).

5.8 Semantic Transformation for Child Axis

The child axis in a location step of an XPath query can be optionally specified. For

example, dblp/article/title/child::* is equivalent to dblp/article/title/*

The semantic transformation for the child axis to obtain the equivalent XPath query

is now proposed. It aims to remove these axes by using unique paths Q. In the

process of elimination of the child axis, semantic transformation may produce

multiple semantic XPath queries if the context element has more than one child in

the schema. Take, for instance, the XPath query ‘dblp/article/crossref/child::*’ means

to select all the children of crossref of article. By using information in Q, the unique

path that selects crossref of article is first located. Any unique path appears after the

located unique path but also includes the crossref of article as the parent of the target

element (right most element) is selected as semantic XPath query.

A wildcard expression used with the child axis in an XPath query has been identified

as one of the causes of query performance issues. Works have been performed to

study the minimization of the tree patterns or containment that include ‘*’ without

using semantics [Amer-Yahia et al., 2001; et al., 2002, Furfaro & Masciari, 2003].

Here a semantic transformation is proposed to achieve similar goals.

First, let us address the semantic transformation for the child axis. The semantic

transformation rule called STc is now proposed.

STc Rule. Semantic XPath query S is derived as follows:

Ch.5

121

a. When ε is * or node() and ∂ is a valid element name, then locate {qi,...,qk} in Q

or S where each q contains ∂

b. When ε and ∂ are valid element names, then locate {qi,...,qk} in Q or S where

each q contains both ε and ∂. ε is a target or non-target element depending on

whether Q or S is used and ∂ is the parent of ε.

c. When ε and ∂ are * or node() then p will be processed to obtain the next valid

element. Locate {qi,...,qk} where each q the next valid element.

S = {qi,...,qk} where 0 ≤ i ≤ k

The following examples are used to show how S is derived for the child axis

specified in a location step

p = */child::i/child::o/child::* Q = {q1,...,q12,..,q17,..,q19, q20,..., q22}

Figure 5.8 Semantic Transformation for Child Axis Query

Following STc, rule a is suitable as ε is ‘*’ and ∂ is a valid element name in p.

By mapping elements in p to elements in q of Q using arrow-dotted lines in Figure

5.8, unique paths q20 and q21 have elements o as ∂ and ε are e and f that satisfy the

requirement of the XPath query as they demonstrate the children e and f of context

elements o. As a result, the transformation derives S as follows:

S = {q20, q21}

Let us consider an example based on the DBLP schema that produced a list of

derived unique paths Q.

 p

*

*

q1

q22 q20

q19

q21

q12 q17

o

i

a a

i

a

i

o

a

i

o

e

a

i

o

f

a

i

k

g

a

b

Ch.5

122

Example. A requirement selects all the children of context element, namely the cross

reference for articles in the DBLP database.

XPath query p = dblp/article/crossref/child::*

The values of the required parameters from p are extracted as shown below:

• β is child::*

• ε is *

• ∂ is crossref

• Q is {dblp, dblp/article/crossref, dblp/article/crossref/href,

 dblp/article/book/title,...}

• S is empty

Following STc, rule a is suitable. The semantic rule first locates all unique paths q

that have article crossref as a non-target element and an immediate child of crossref

as target element. As a result, the transformation locates dblp/article/crossref/href.

Hence,

S = {dblp/article/crossref/href}

 Function 7 TransformChildAxis translates the semantic rules for transforming an

XPath query specified with the child axis.

The transformation first determines whether the transforming location step is a target

location step in the XPath query (Line 7:1).

When the transforming location step is a target location step, the transformation uses

Q to derive tempList; q is located to build the tempList given child specified with ‘*’

and a valid context element name in p. Select q if q has a valid context element name

as a non-target element or child is specified with a valid element name and context

element is ‘*’. Otherwise, select q if q has a child axis specified with a valid target

element. If both child and the context elements are specified with *, obtain the first

valid element in p, and then locate q that has the obtained valid element as a non-

target element (Lines 7:2-7:9).

Ch.5

123

When the transforming location step is a non-target location step, the transformation

uses S to derive tempList, q is located to build the tempList given child is specified

with ‘*’ and a valid context element name, or child is specified with a valid element

name and context element is ‘*’. When both child and the context elements are

specified with‘*’, use p to locate the first valid element and then locate q that has the

first located valid element as a non-target element (Lines 7:10-7:15).

When the tempList is empty, it means that semantic conflicts have been detected in

the XPath query (Line 7:16). Otherwise, a list of semantic XPath queries may contain

a single semantic XPath query or a set of semantic XPath queries (Line 7:17).

5.9 Conclusion

The semantic transformation rules and their algorithms for XPath axes including

{following-sibling, preceding-sibling, following, preceding, ancestor, ancestor-or-

self, parent, descendant, descendant-or-self, self, child} have been proposed.

For axes such as parent, child, descendant, descendant-or-self, ancestor, ancestor-

or-self and self, the transformations are straightforward as paths are traversed in a

Function 7: List transformChildAxis (String eContext, String Child, List semanticXPath)

Let tempList be an empty list, tempList and tempQ be empty lists, ω = {∗, node()},Q be the list of unique paths q

7:1 IF semanticXPath is empty THEN tempQ = Q Else tempQ = semanticXPath,semanticXPath = NULL

7:2 FOR each unique path q in temp

7:3 IF (child is in ω && eContext in q has immediate child as target element) THEN

7:4 push q to tempList

7:5 ELSE IF (child is a valid && eContext is in ω) THEN

7:6 push q to tempList IF q has child as target element

7:7 ELSE IF (child && eContext are in ω) THEN

7:8 process next valid element in ρ && locate it in q then push q to tempList

7:9 End Loop

7:10 ELSE IF semanticXPath is not empty THEN

7:11 FOR each q in tempQ

7:12 IF ((child is in ω && eContext exist in q)|| (child is a valid element && eContext is in ω)) Then

7:13 push q to tempList IF q has eContext as a non-target element

7:14 ELSE IF (child && eContext are in ω) Then push q to tempList

7:15 END LOOP

7:16 IF (tempList not empty) THEN semanticXPath = tempList

7:17 RETURN semanticXPath

Ch.5

124

vertical direction. On the other hand, for the remaining axes - following, preceding,

following- and preceding-sibling - the transformation needs to combine both vertical

and horizontal directions for traversing paths.

The proposed semantic transformation rules have also been translated to algorithms.

Each algorithm provides a feature to detect the unsatisfied query. These algorithms

are then implemented for our performance evaluation discussed in Chapters 8 and 9.

Chapter 6

Semantic Transformations for

XPath Queries Specified with

Predicates

This chapter proposes the third category of semantic transformations to transform

XPath queries specified with predicates.

A predicate in an XPath query expresses a query condition to be fulfilled. The query

condition is a Boolean expression. It may involve comparisons of elements and

values, path expressions denoting elements to be compared as well as further path

expressions. The proposed semantic transformations for XPath queries specified with

predicates enable predicates to be removed or modified for optimization purpose.

Among the benefits of semantic transformations is one that detects and removes any

redundancy, which could be the whole predicate, in the query that may impact upon

performance. Otherwise, if predicates are retained, the semantics also show how

they can be semantically transformed to boost efficiency and reduce resource

utilization.

As in chapters 4 and 5, the semantic transformations in this chapter use information

lists Q and C. Unique paths in list Q and constraints of elements in list C have been

proposed to be derived from XML Schema [W3C, 2004a; 2004b] in Section 4.1

Ch. 6

126

chapter 4, are used to propose the transformations. A summary is now presented to

remind the readers about the derivation of Q and C. List Q contains a list of unique

paths q where each q is a sequence of elements that express from root to a particular

element in a given XML Schema. Only the parent-child “/” relationship among the

elements is in q. List C contains a list of c where each c contains the element and its

constraints specified in the XML Schema.

6.1 Semantic Transformation for Predicates: Motivation

Each XPath query consists of a sequence of location steps (as described in chapter 3).

Chapter 3 also described predicates as an optional component in an XPath query;

however, its presence plays a critical role in filtering required information.

A query condition may involve comparison between elements and values, path

expressions denoting elements and further path expressions [Diao et al., 2003; Wu, et

al., 2003]. The complexity of XPath predicates is based on different types of query

condition connections (hence, OR/AND) and types of query condition comparisons.

Such complexity certainly produces a number of challenges, among these challenges

is the query processing techniques and query performance. As part of this research,

we propose a typology of semantic transformations for XPath queries specified with

predicates for optimization purposes.

Figure 6.1 shows an overview of the proposed tasks in this chapter. The semantic

transformations for predicates are divided into two proposed methods, which are

predicate elimination and predicate reduction semantic transformations, shown as

(2a & b). In order to remove or modify the predicates in a given query for

transformation, the query conditions in the predicates must be determined with a

status, shown as (1), that allows a necessary action to be taken; this is done by

condition status determination and algorithmic functions, shown as (3).

The semantic transformations to eliminate or reduce them can be processed if the

predicates are given a valid status. If a semantic conflict is detected in a predicate; an

empty result set will be returned and the transformation can be terminated without

further processing.

Ch. 6

127

Figure 6.1 Semantic Transformations for XPath Queries Specified with Predicates

Framework

6.2 XPath Query Predicate Structures and Global

Parameters

This section addresses the structures of XPath query predicates and a common set of

required parameters.

6.2.1 XPath Query Predicate Structures

This section addresses the XPath query predicate structure that consists of XPath

query conditions that are expressed in an XPath query predicate.

A user-defined XPath query may be specified with a predicate that holds one or more

query conditions to filter selected information. For example, consider the XPath

query given below:

p = i//k/j[l = 3 or m/n = /i@id and 2]/r

In p, XPath query predicate is [l=3 or m/n = /i@id and 2], where j is a branching

element. The XPath query predicate in p consists of three query conditions including

l=3, m/n = /i@id and 2. The first query condition l=3 is a comparison between

element l and constant value 3. The second query condition m/n = /i@id is the

Predicate Elimination

Semantic Transfor-

mation (2a)

Algorithmic Functions

(3)

Condition Status

Determination

(1)

Predicate Reduction

Semantic

Transformation (2b)

Ch. 6

128

comparison between the path fragment m/n and a further path fragment value /i@id.

The third query condition 2 is the evaluation of an index ordered value 2 of element

j. The comparison values of three conditions are 3, /i@id and 2 respectively.

6.2.2 Defining Global Parameters

Similar to chapter 5, the semantic transformations proposed in this chapter utilize the

same terms and information related to XPath query, lists of Q and C to progress to

semantic rules. This section defines a set of global parameters that reference to the

terms and information which are used to define the all the semantic transformation

rules in this chapter.

• e is a branching element where a query predicate occurs

• Pr is a query predicate that holds one or more query conditions

• σ is a query condition status, which is further extended in details in section 6.3.1

• ω is a query condition awarded with σ

• Φ is a connective operator AND/OR

• γ is an XPath query comparison element/path fragment

• θ is a comparison value of γ

• S is a semantic XPath query

6.3 Semantic Transformations for Predicates

This section proposes for predicate elimination and predicate reduction semantic

transformations. In order to modify or eliminate the predicate in a given XPath

query, a methodology is now proposed to determine the status of the query

conditions and their predicates.

6.3.1 Determination of Status for Query Conditions and Their Predicate

Before a function is defined to determine the status of query conditions specified in a

predicate, one of the following three terms is adopted for referring to a status of a

Ch. 6

129

query condition that is going to be determined by the function proposed here. The

terms are defined as followed:

Definition 6.1 (Full-qualifier (FQ)). Full-qualifier is a query condition status σ,

which is determined for a query condition ω if and only if the comparison value θ of

comparison element/path γ in ω matches with θ of the same element/path fragment

γ located in Q and C.

For example, the XPath query ‘//phdthesis[supervisor =

‘/dblp/phdthesis/@key’]/title/tn’ performs the task to find all the thesis titles that

must have at least one supervisor who must also hold a PhD qualification. In this

example the query condition can be associated with a full-qualifier status if in the

given XML Schema, the supervisor must be referenced to an existing PhD thesis.

This example will be revisited later in great details by the semantic transformation

rule.

Definition 6.2 (Partial-qualifier (PQ)). Partial-qualifier is a query condition status σ,

which is determined for the query condition ω if and only if the comparison value

θ of comparison element/path γ in ω matches some θ, but not all, of same γ located in

Q and C.

For example, the XPath query ‘dblp/phdthesis[year =1999 or urls]’ performs the task

of retrieving all the thesis that are published in year 1999 or have a url for viewing.

In this example the query condition can be associated with a partial-qualifier status

if, in the given XML Schema, the published year for a thesis is between 1995 and

2020. This example will be revisited later in great details by the semantic

transformation rule.

Definition 6.3 (Conflict-qualifier). Conflict-qualifier is a query condition status σ,

which is determined for the query condition ω when the comparison value θ of

comparison element/path γ in ω does not match θ of the same γ located in Q and C.

For example, the XPath query ‘dblp/phdthesis[year =1995 or urls]’ performs the task

of retrieving all theses that are published in year 1999 or have a url for viewing. In

this example the query condition ‘urls’ can be associated with a conflict-qualifier

Ch. 6

130

status if, in the given XML Schema, phdthesis node does not have any child labelled

as ‘urls’. This example will be revisited later in great details by the semantic

transformation rule.

The examples above will be revisited after a function namely conditionStatus, is

defined to determine the status, using one of the terms defined above, of the query

conditions specified in a predicate.

Pr is a predicate that contains a set of query conditions ω where Pr = [ω1(Φ) ω2(Φ)

... (Φ) ωn], and ο is the logical connective operator representing AND/OR; e is a

branching element. Q is a list of unique paths, C is a list of constraints of elements.

Both Q and C are derived in chapter 4. R is the result based on the status of query

conditions in Pr determined by the conditionStatus function.

ePr is the combined information of a branching element e and predicate Pr which

consists of information that comes from the XPath query p. Each query condition

ω in predicate Pr is evaluated based on information in Q and C. Each query

condition is associated with full-qualifier, partial-qualifier or conflict-qualifier.

On obtaining the query condition status, the conditionStatus function takes into

account the connective operator such as OR or AND or both so that R finally can be

full-qualifier, partial-qualifier or conflict-qualifier. The comparison operators such

as {!=, =, ≤, ≥, <, >} used when XPath query comparison elements/path fragment

have XPath query comparison values. ω could be a set if there exist one or more OR

or AND or both where each comparison element/path γ in query condition ω is

optionally specified with comparison value θ.

An XPath query p = //phdthesis[supervisor = ‘/dblp/phdthesis/@id’]/title/tn. In this

example, the predicate R = [supervisor = ‘/dblp/phdthesis/@id’] where its status

needs to be identified as a full-qualifier, conflict-qualifier or partial-qualifier.

 (Q, C)

conditionStatus(ePr) → eR

Ch. 6

131

As shown in p, predicate R contains query condition is a comparison of the value of

the supervisor; element with an absolute path /dblp/phdthesis/@id. By applying the

function conditionStatus, it first verifies if //phdthesis/supervisor is a subset of a

unique path in list Q. Second, the function also verifies whether supervisor is

referenced to dblp/phdthesis/@id in constraint list C. As the result, function

conditionStatus finds that //phdthesis/supervisor is a subset of the unique path

dblp/phdthesis/supervisor in list Q and supervisor refers to id of an existing

phdthesis. As a result, it associates status of full-qualifier to the query condition and

ultimately to predicate R.

Definition 6.4 (Context Position Index) Context Position Index is an index position

value of a context element, which is currently being processed for a return of index

node in the sequence of nodes.

For example, considering an XPath query dblp/book[2] where 2 is a context position

index on the context element book. The XPath query returns the second book as the

result.

Context position index in a query form context is used when there is a query

condition with no comparison element and enclosed with []. It is normally placed

on the context element in the XML query.

6.3.2 Predicate Elimination Semantic Transformation

A predicate can be completely eliminated when it satisfies a set of semantic rules

which are going to be proposed in this section. As in the previous section, we

describe the derivation of the query condition status for query conditions specified in

a predicate. A predicate may contain a single condition or multiple conditions.

A single query condition can be a value such as the position context index on a

context node. A condition comparison is between an element/path fragment and a

value or an existence of an element/path fragment; that is when a condition element

is specified with no value.

Ch. 6

132

Multiple query conditions can be connected using AND and OR connective operators

between the pair of query conditions and each query condition can be specified with

or without a comparison value. A query condition without a comparison value

occurs when the query condition is specified with an element or a path fragment or a

position index value on a context element.

For instance, consider the following queries: //book[author], //book[author/name],

//book/author[2], //phdthesis[supervisor=//phdthesis/@id]. The first query condition

author from [author] is an element. The second query condition author/name from

[author/name] is a path fragment. The third query condition 2 from [2] is a position

index value that evaluates to return the second author from the sequence of authors.

The fourth query condition supervisor=//phdthesis/@id from

[supervisor=//phdthesis/@id] is a comparison element supervisor that has a value

of the PhD thesis identification.

Here a set of semantic transformation rules is proposed that eliminates predicates

from a given XPath query. When a predicate contains a set of query conditions, each

of them must be given a full-qualifier (FQ) or partial-qualifier (PQ) by the functions

in Section 6.3.1. The query conditions can be removed if they satisfy the set of

semantic rules, namely STpe.

As mentioned earlier, a predicate in an XPath query expresses a query condition

which is a Boolean expression.The logic of semantic rules STpe below are presented

to remove a predicate when one of the three circumstances is satisfied. (a) When

there is no connective operator present and the query condition is associated with a

full-qualifier status whose comparison element has occurrence constraint of 1 or

above. (b) When only connective OR is present among the query conditions which

project the same comparison element. E.g. [profession = ‘lecturer’ or profession =

‘tutor’] is determined to [PQ or PQ] whose comparison element, profession, also has a

constraint value of 1 or above. In the XML Schema, employee/profession is

restricted with enumeration values of {lecturer, tutor}. (c) When only connective OR

is presents among the query conditions, only one of the query conditions is

associated with a full-qualifier status whose comparison element has a constraint

value is 1 or above. E.g. dblp[book/year >= 1995 or book/classification = ‘classic’]

Ch. 6

133

is determined to [FQ or CQ]. This is because in the XML Schema a book restricted

with a published year between 1995 and 2020, the classification of books is in

several areas such as classic, action, romance, and many more.

The statement above is now put into a rule set of STpe Rule below. The aim of the

rule set STpe Rule is to avoid the processing of unnecessary predicates in the XPath

query to achieve optimization objectives. XPath query Predicate Pr is eliminated if

one of the following rules is satisfied:

a. When predicate Pr contains query condition whose associated status σ is

FQ, connective ο is NULL and comparison elements γ have minimal occurrences

greater than 0.

b. When predicate Pr contains query conditions ω whose associated status σ is PQ,

connective Φ is only OR, comparison elements γ project the same element and their

comparison values θ match all restricted values θ of the same γ located in C

whose minimal occurrence is greater than 0.

c. When Pr contains query conditions ω where one or more associated status σ is FQ,

connective Φ is OR, comparison element of γ whose minimal occurrence is greater

than 0.

An exceptional case arises when all query conditions are joined by conjunction

operators and one of them is associated with a status of CQ, this causes the whole

predicate conflict and XPath query certainly returns an empty result. Hence XPath

query is not needed to send to database for validation to avoid unnecessary query

processing. This is an add-on feature automatically built in these proposed semantic

transformation. This also applies to the rule set in section 6.3.3.

The following examples in Figure 6.2 show how XPath queries specified with

predicates can be transformed by eliminating predicates. Two XPath queries p1 and

p2 and a set of unique paths Q are used for the demonstration. Both p1 and p2 are

specified with query conditions that have no comparison values. Also, a connection

operator such as AND is used between the pair of query conditions in p2.

Ch. 6

134

The condition status function ePr is derived and the values of the required

parameters are extracted based on XPath queries p1 and p2 are given in Figure 6.2. as

follows

ePr = i[o/e], γ = o/e (p1)

ePr = i[k AND o/e], γ = o/e, Φ is AND (p2)

 p1 = */i[o/e]/k/g Q={q1,...,q17,..,q19, q20,..., q22}

 p2 = */i[k and o/e]/k/g

q22

q21
q19

q20

a

g

q17

q1

a a

i

k

g

O

e

a

e

O

i i

k

a

O

i

*

i

*

i

k k

g

o

e

a

i

k

Figure 6.2 XPath Query Predicate Holds a Single XPath query Condition with No Value

As shown in Figure 6.2, p1 has an enclosed dash-line around the path that expresses

from the root specified by wildcard ‘*’ to i then o and finally e in which o/e is the

query condition specified in predicate []. The elements, except the wildcard ‘*’

operator, in the path within the enclosed dash-line are matched with those in the

unique path q20 in Q as shown by an arrow dash-line from e in p1 to e in q20. As the

wildcard operator ‘*’ is an unidentified element in the path, it is matched to any

eligible element that must be the ancestor of i in q20. In this case it is the root element

in q20. The selected information is projected by the open path that traverses from the

root specified with the wildcard * via k to g. The elements in the open path are

Ch. 6

135

matched with those in a unique path q in Q as shown by an arrow dash-line from g in

p1 to g in unique path q22. Both q20 and q22 are intersected at the branching element i.

As shown in Figure 6.2, p2 has two enclosed dash-lines around the paths. The first

enclosed dash-line shows a full path that contains the element k as the first query

condition. The second enclosed dash-line shows a full path that contains the path

fragment o/e as the second query condition. The elements, except the wildcard

operator ‘*’, in the paths enclosed by dash-lines are matched with those unique paths

q20 and q21 in Q as shown by an arrow dash-line from e in p2 to e in q20 and k in p2 to

k in q21. As the wildcard operator ‘*’ is an unidentified element in the path, it is

matched to any eligible element that must be an ancestor of i in q20 and q21. The

selected information based on the path goes from the root to element g, which is

mapped by an arrow dash-line from element g in p2 to unique path q22. Unique paths

mapped for p2 such as q20, q21 and q22 are intersected at the branching element i.

The XPath query conditions in the XPath query predicates Pr of p1 and p2 first need

to associate with the status by using function conditionStatus which has been

proposed earlier.

The status of query conditions are obtained and shown in Figure 6.3. The

conditionStatus function obtains status (as outputs) for predicates ePr (as inputs) in

p1 and p2 (as XPath queries).

XPath Query XPath Query XPath Query XPath Query Predicate Predicate Predicate Predicate Inputs Outputs

p1 ePr = i[o/e] i[FQ]

p2 ePr = i[k AND o/e] i[FQ AND FQ]

Figure 6.3 Condition Status for Predicates in p1 and p2

To transform p1 by following XPath query predicate elimination semantic

transformation STpe, Rule a is used to remove the predicate [o/e] from p1 as the status

σ satisfies a full-qualifier FQ. In addition the comparison element o and e of γ are

verified against the same set of elements in C, and they have minimal occurrences

greater than 0.

Ch. 6

136

To transform p2 by following XPath query predicate elimination semantic

transformation STpe, Rule c is used to remove the predicate [k and o/e] from p2 as

the status σ satisfies a full-qualifier FQ . In addition, the comparison element k, o and

e of γ are verified against the same set of elements in C, and they have minimal

occurrences greater than 0.

Below are the running examples to demonstrate the predicate elimination semantic

transformation. The examples are based on DBLP XML Schema as shown in

Appendix 1.

Example. Select all PhD theses of the candidates who must have a valid supervisor.

XPath query p = //phdthesis[supervisor = ‘/dblp/phdthesis/@key’]/title/tn

As shown in p, XPath query predicate Pr is [supervisor = ‘/dblp/phdthesis/@key’]

where branching element e is phdthesis.

First, function conditionStatus is used to determine the status of the XPath query

condition supervisor = ‘/dblp/phdthesis/@key’ imposed on element phdthesis.

Figure 6.4 shows a key referenced constraint used for supervisor element in the

DBLP Schema, which exists in list C and used by conditionStatus function.

<xs:selector xpath="dblp/phdthesis"/>

 <xs:field xpath="@key"/>

<xs:key>

 <xs:keyref name="supervisor" refer="phdthesisKey">

 <xs:selector xpath="dblp/phdthesis"/>

 <xs:field xpath="supervisor"/>

 </xs:key>

Figure 6.4 Schema Fragment Which Exhibits a Keyref Constraint

After performing the function conditionStatus, it locates in C the following entries

phdthesis/supervisor=dblp/phdthesis/@key and in Q the following entry

dblp/phdthesis/title/tn. The located information determines the status result for

query condition in predicate

Ch. 6

137

ePr = phdthesis[FQ].

Following semantic transformation rule a in STpe, the query condition is associated

with full-qualifier and it is confirmed that query condition join operator is NULL in

the predicate. Information entry “phdthesis/supervisor occurrence 1 1” is located in

list C, which means the minimal occurrence of comparison path fragment

phdthesis/supervisor is greater than 1 and its maximal occurrence is also 1. This

also means for every existing phdthesis, there must be a valid supervisor. Hence the

semantic transformation can now remove the predicate and produce semantic XPath

query:

S = //phdthesis/title/tn

Another running example, as shown below, demonstrates XPath query specified with

a predicate that has two query conditions. While the first query condition has a

comparison element and a value, the second query condition has a comparison path

fragment without any comparison value.

Example. Select all articles published in and after 1950 and which have a valid title.

XPath query p = dblp/article[year >=1950 and title/tn]

In p, XPath query predicate Pr is [year >=1950 and title/tn] where branching

element e is article.

The function ConditionStatus is used to determine the status of the XPath query

conditions year >=1950 and title/tn imposed on article.

After performing the function conditionStatus, the information entry article/year

inclusive 1950 2020 is located in C and entries dblp/article/year and

dblp/article/title/tn are located in Q. The located information indicates that the first

query condition year>=1950 is a semantic matching to article/year inclusive 1950

2020 that shows articles published between 1950 and 2020 in the database. The

second condition is the path fragment title/tn which is part of the unique path

dblp/article/title/tn. Hence, the ConditionStatus function determines the status for

predicate Pr such that:

Ch. 6

138

ePr = article[FQ and FQ]

By following semantic transformation rule c in STpe, both query conditions are

associated with full-qualifier status that each query condition projects on different

comparison elements such as year and title/tn respectively. The query conditions are

joined by AND connective. The first query condition year has a comparison value

1950 and above, that matches the whole range of restricted values of year located in

C. The second query condition title/tn has no comparison value. Information entries

article/year occurrence 1 ∞∞∞∞ and article/tn occurrence 1 1 are located in list C. This

means the comparison element year and comparison path fragment title\tn have

minimal occurrences greater than 0. Hence, semantic transformation can now remove

the predicate and produce the semantic XPath query as below

S = dblp/article

Another running example is now considered that an XPath query has query

conditions joined by AND connective and both query conditions have no comparison

values.

Example. Select all articles in which each article must have valid authors or title

name.

XPath query p = dblp/article[author or title[tn]]

As shown in p, XPath query predicate Pr is [author or title[tn]] where branching

element e is article.

First, function conditionStatus is used to determine the status of the XPath query

conditions author and title[tn] imposed on article.

By using function conditionStatus, information entries dblp/article/author and

dblp/article/title/tn are located in Q. The located information indicates that while

first query condition path fragment author is a semantic match as part of unique path

dblp/article/author, the second query condition path fragment title[tn] is a semantic

match as part of unique path dblp/article/title/tn. Hence, the conditionStatus

function determines the status for predicate Pr such that:

Ch. 6

139

ePr =article[FQ or FQ]

Following rule c in semantic transformation rules STpe, both query conditions have

been associated with full-qualifier and projected on different comparison elements

such as author and title[tn] respectively. The semantic rule c also confirms query

conditions are joined by AND connective and locates entries article/title/tn

occurrence 1 1 and article/author occurrence 1 ∞ ∞ ∞ ∞ in list C. As a result,

comparison element author and comparison path fragment title[tn] have minimal

occurrences greater than 0. Hence, the semantic transformation rule c in STpe can

now remove the predicate and produces semantic XPath query as below

S = dblp/article

6.3.3 Predicate Reduction Semantic Transformation

Not all XPath query predicates can be eliminated during semantic transformations.

However, the query conditions in the predicates can be modified. That is, some

conditions can be transformed so that they can be removed to reduce the size of the

predicates. This is referred to as predicate reduction semantic transformation.

Similar to the elimination semantic transformation, the status of each query

condition first needs to be determined before reduction semantic transformation can

take place.

A predicate that has a single query condition cannot be reduced by semantic

transformations. On the other hand, not all multiple XPath query conditions in an

XPath query predicate can be modified. The query condition that has a conflict-

qualifier status and is joined with another query condition may have a significant

impact on the query result such that an empty or a non-empty result returned by the

main query. The result depends on the type connective AND or OR that is used

between the query conditions.

Definition 6.5 (Mutual Exclusive Condition). A mutual exclusive condition is a

joined query condition that is connected with another query condition by an OR

operator and whose status is a conflict-qualifier (CQ) and its existence does not affect

the result set returned by the main query.

Ch. 6

140

A query condition that may have no impact on the result returned by the main query

is referred to as a ‘mutual exclusive’ query condition.

To elaborate on the ‘mutual exclusive’ condition, consider an XPath query p =

dblp/book[year <1950 or year = 1952]. C list contains entries where one of them is

book/year inclusive 1950 2020. If Q has unique paths where one of them is

dblp/book/year then branching node and predicate ePr = book[year <1950 or year =

1952] is a fragment of dblp/book/year. The query condition year < 1950 has a

conflict-qualifier status because the comparison value is below the lower bound of

1950. The query condition year = 1952 has a partial-qualifier status as it matches a

value within the restricted bound. In this predicate, query condition year < 1952 is a

mutual exclusive query condition as its existence does not affect the result returned

by the main query,

A mutual exclusive query condition that exists in the predicate is one of the query

components that co-ordinate with the rest of query components within the query to

make up the main component, that is the whole query. Hence it is also a co-existing

query component.

The semantic rules STpr below are presented to reduce the number of query

conditions in a predicate when one of the three circumstances is satisfied.

(a) When connective OR is present among the query conditions, one or more query

conditions are associated with conflict-qualifier status, which can be removed. For

example in a simplified form of book[profession = ‘research’ AND year =1999 OR

year = 1952], the expression book[PQ AND PQ OR CQ] is equivalent to book[PQ

AND PQ] if book has a published year restricted between 1995 and 2020 in the XML

Schema. (b) When connective AND is present among the query conditions, if query

conditions are associated with full-qualifier status and their comparison elements

have constraint of 1 or above, then the query condition can be removed. For example

the expresssion book[year =>1995 AND profession = ‘lecture’] is determined to

book[FQ AND PQ] which is equivalents to book[PQ] if book has a published year

restricted between 1995 and 2020. (c) When connective OR is present among the

query conditions, which associate with partial-qualifier status and project the same

condition element whose comparison element has a constraint value of 1 and above.

Ch. 6

141

If the comparison values of the comparison element in these query conditions must

satisfy a complete set of restriction values of the element in the schema then those

query conditions can be removed. For example the expression

phdthesis[supervisor/year = 1999 AND profession = ‘teaching’ OR profession =

‘research’] is determined to phdthesis[PQ AND PQ OR PQ]. While in the XML

Schema a supervisor thesis published is restricted between 1995 and 2010,

profession is restricted with the enumeration values of {teaching, research}.

The statement above is now put into a rule set of STpr Rule below. The aim of the

rule set STpr Rule is to avoid the processing of unnecessary predicates in an XPath

query to achieve optimization objectives. Query conditions in XPath predicate Pr is

eliminated if one of the following rules is satisfied:

a. When predicate Pr contains query conditions ω and CQ are status σ associated to

some ω and connective Φ is OR between the pair of those ω, then ω that has σ=

CQ can be removed from Pr.

b. When predicate Pr contains query conditions ω, PQ and FQ are status

σ associated to ω. If connective Φ is AND/OR or both between the pair of ω and

comparison element γ of ω has minimal occurrences > 0 and ω is associated with

FQ,, then ω can be removed from Pr.

c. When predicate Pr contains query conditions ω, PQ are status σ associated to ω. If

connective Φ is OR among ω that have σ=PQ which must project the same

comparison elements γ and has a minimal occurrences > 0, all comparison values

θ of γ in those ω match all θ of γ in C then ω be removed from Pr.

The following example in Figure 6.5 shows how an XPath query predicate is

transformed using lists Q and C.

The required parameters and their values are as follows

ePr= i[o/e = ϖ1 or s], γ = {o/e,s}, o = OR, θ = {ϖ1} where ϖ1 is value of e

As shown in Figure 6.5 p has two enclosed dash-lines. The first enclosed dash-line

shows a path that contains the path fragment o/e as the first query condition in which

Ch. 6

142

e has a comparison value ϖ1. The second enclosed dash-line shows a full path that

contains the element s as the second query condition.

After performing the conditionStatus, the first query condition is associated with a

PQ status because the query condition o/e has value ϖ1 which matches an exact

value of same e in list C, which does not satisfy the range value as specified for o/e

in C.

 p = */i[o/e = ϖ1 or s] Q = {q1,...,q17,..,q19, q20, q 21, q22}

 C = {...; o/e occurrence 0,∞; o/e inclusive ϖ1, ϖ2;... }

q20

q19

*

i

s
o

e
ϖ1

a

i

o

e

a

i

o

q17

q1

a a

i

Figure 6.5 Sample XPath Path and Semantics for Semantic Predicate Reduction

The second condition s cannot be matched with any element in existing unique paths

in Figure 6.5. Therefore the second condition is associated with a CQ status. The

existence of the second query condition allows the co-existence of the first query

condition due to the connective OR. Hence the second condition is a mutual

exclusive query condition to the whole XPath query.

Figure 6.6 summarises an XPath query, its components in terms of the query

conditions and predicate as inputs for conditionStatus and output produced by the

function.

XPath QueryXPath QueryXPath QueryXPath Query Predicate Predicate Predicate Predicate Inputs Outputs

p ePr = i[o/e = ϖ1or s] i[PQ or CQ]

Figure 6.6 Condition Status for Predicates

Ch. 6

143

According to the proposed set of reduction semantic transformation rules STpe, rule a

is used to remove the query condition s from p as the status σ satisfies a conflict-

qualifier CQ and connective Φ is OR, which allows it to be a mutual exclusive query

condition in p. The semantic XPath query is produced as follow:

S= */i[o/e=ϖϖϖϖ1111]]]]

A running example based on the DBLP schema given in Appendix 1 is now used to

demonstrate query conditions whose status are partial-qualifier and conflict-qualifier

respectively.

Example. Select all PhD theses, which has been published in the year 1999 or have

valid urls.

XPath query p = dblp/phdthesis[year =1999 or urls]

As shown in p, the predicate Pr = [year =1999 or urls] has two query conditions

year = 1999 and urls. After being processed by function conditionStatus, a unique

path entry phdthesis/year inclusive 1950, 2020 is located in C list and

phdthesis/year as part of unique path dblp/phdthesis/year located in Q list. Query

condition urls cannot be matched to any element in unique paths in Q. Hence,

function conditionStatus is associated with the first query condition with PQ because

the comparison value is an exact matched value within the restricted value range.

The second query condition is associated with CQ because it is a mutually exclusive

query condition.

By following reduction semantic transformation rule STpr, rule a is used to remove

the second query condition due to its conflict-qualifier status and the connective OR

that makes the query condition a mutual exclusive query condition. The semantic

XPath query is produced as below:

dblp/phdthesis[year =1999]

Another running example is now considered to demonstrate the existence of query

conditions whose status is full-qualifier and partial-qualifier respectively.

Ch. 6

144

Example. Selects all PhD theses that have been published in 1999 or supervisor and

title must be valid.

XPath query p where

p= dblp/phdthesis[year =1999 or supervisor =/dblp/phdthesis/@id and title/tn]

As shown in p, predicate Pr = [year =1999 or supervisor =/dblp/phdthesis/@id and

title/tn] has three query conditions including year=1999, supervisor

=/dblp/phdthesis/@id and title/tn. After being processed by the conditionStatus,

phdthesis/year inclusive 1950 2020 is located in Q, and phdthesis/supervisor =

/dblp/phdthesis/@id in phdthesis/title/tn occurrence 1 1 is located in C. As a

result, the first query condition is associated with a partial-qualifier as the

comparison value 1999 is an exact value within the range 1950 and 2020 of year.

The second query condition is associated with a full-qualifier status as the

comparison value of the reference path is an exact match value for the supervisor

defined in the schema. The third query condition is associated with a full-qualifier

status as each Ph.D. A thesis must have at least one title as defined in the schema.

The required parameters and their values are now extracted as follows

ePr = phdthesis[year = 1999 or supervisor = dblp/phdthesis/@key and title/tn],

θ2 = year = 1999,θ2 = supervisor = dblp/phdthesis/@key, θ3= title/tn whose status

are PQ, FQ and FQ respectively.

Rule c in semantic transformation STpr is used to determined the second and third

query conditions are associated with FQ and connective is AND. In addition, the

comparison elements in both query conditions have minimal occurrence greater than

0, and the transformation rule produces semantic XPath query

dblp/phdthesis[year=1999].

6.3.4 Proposed Functions

This section proposes a set of functions including transformPredicate,

conditionStatus, nPCV, yPCV and getOccurrenceValue. These functions

Ch. 6

145

consolidate all the rules proposed in 6.3.1, 6.3.2 and 6.2.3. Before each function

above is described in details, their important roles are summarized below.

The function transformPredicate is called by the main algorithm when predicates

are detected in the XPath query. The function transformPredicate first calls the

conditionStatus function to obtain the status of each query condition in the

predicate. The nPCV and yPCV functions are called through the conditionStatus

function according to the type of the comparison values of each condition. Function

nPCV handles the checking of a condition whose comparison value is not a path

value. Instead the condition may be a constant for example article[1] where 1 is the

constant, or no value, phdthesis[title] where title is the condition with no value.

Function yPCV handles the checking of the condition whose comparison value is a

path value.

The getOccurrenceValue function is used to obtain the minimal occurrence value of

the branching element so that it can determine whether the whole predicate can be

removed.

Function 1: transformPredicates first calls the function conditionStatus to

determine the status of query conditions in a predicate (Line 1:1), in which the results

are stored in resultCondition. Once the resultCondition has been obtained, the

semantic rules, proposed in sections 6.3.2 and 6.3.3, are implemented and applied

(Lines 1:2-1:9).

The predicate is eliminated when the final resultCondition is empty because all the

query conditions have been removed (Line 1:10). Otherwise the predicate is

regarded as predicate reduction (Line 1:3-1:8) because only some query conditions

have been removed. On the other hand, the predicate can be completely in conflict,

that is when there is a query condition associated with CQ status. For example, a

query condition has status CQ and is connected by AND to the leading query

condition and following query conditions are given a status other than CQ such as FQ

or PQ (Lines 1:11-1:12).

Ch. 6

146

Function 1:transformPredicates (String ePr, String p)

 Let resultCondition be an empty list, Φ ={OR,AND} be connective, Q be the list of unique path q, FQ be full-

 qualifier status, PQ be partial- qualifier status

1:1 resultCondition = conditionStatus(predLocation, p)

1:2 FOR each condition in resultCondition

1:3 IF (condition is ‘FQ’ && no Φ) || (conditions is ‘FQ’ && Φ is OR)THEN

1:4 Remove condition from resultCondition

1:5 ELSEIF (condition is ‘FQ’ &&Φ) || (condition and neighbour project different comparison element) THEN

1:6 Remove condition from ResultCondition

1:7 ELSEIF (condition is ‘CQ’ && Φ is OR) THEN

1:8 Remove condition from ResultCondition

1:9 END LOOP

1:10 IF resultCondition is NULL THEN remove predicate [] from ePr

1:11 ELSEIF resultCondition is not NULL THEN check IF there is CQ which is join by AND

1:12 among conditions with ‘FQ’ or ‘PQ’ THEN ePr = NULL

1:13 RETURN ePr

The resultCondition is updated with a set of statuses such as FQ, PQ or CQ together

with OR or AND if any exists. The transformation will then decide if the predicate is

eliminated completely or modified.

Function 2: conditionStatus performs tasks to determine the statuses of query

conditions by first accepting the input ePr and XPath query p. It then evaluates query

condition(s) to determine the status of each query condition by using information of

Q and C. Pr is a predicate that holds a set of query conditions ω such that [ω1 (ο) ω2

(ο) ... (ο) ωn], and ο is the connective represented for AND/OR; e is a branching

element of a predicate.

Each query condition in the predicate is evaluated based on several principles. The

comparison operator τ is detected to determine the existence of a comparison value

in the query condition. The query condition is then verified against the unique paths

in list Q. The resultCondition is then updated with ‘FQ’ for the current query

condition if no τ has been detected and the comparison element or path fragment is

found in Q (Lines 2:3 – 2:4). When AND or OR is detected after each processed

query condition it is brought over to resultCondition (Line 2:2).

Ch. 6

147

Function 2: conditionStatus (String ePr, String p)

 Let τ be =, ≤, ≥, < or >,temp be a temp variable, e be outer element extract from ePr, condList be

 an empty list, Φ be connectives {OR, AND}, ω be a condition in ePr, FQ be full-qualifier status, PQ be partial-

 qualifier status, CQ be conflict-qualifier

2:1 FOR each ω waiting to be evaluated in ePr

2:2 IFΦ is ‘OR’ or ‘AND’ update condList with ω

2:3 ELSEIFω is (a path expression or element) with no τ THEN

2:4 Check for ω in q && update resultCondition with ‘FQ’

2:5 ELSEIFω is a value without element THEN check e exist in q of Q update resultCondition with ‘PQ’

2:6 ELSEIF τ exists in ωTHEN

2:7 extract the compareFragment and compareValue

2:8 IF compareValue contains no ‘/’ or ‘//’ THEN resultCondition = nPCV(e, compareElement,

 compareValue, τ, resultCondition)

2:9 ELSEIF compareValue contains ‘/’ or ‘//’ THEN resultCondition = yPCV(e, compareElement,

 ePr,compareValue, τ, resultCondition)

2:10 END LOOP

2:11 Find all those that have value and project same element && exists OR only

2:12 IF values match complete set of values for same element in C THEN

2:13 IF minimal occurrence of the element by calling function 4 is greater 1 THEN

2:14 Set these condition in resultCondition to ‘FQ’

2:15 RETURN resultCondition

A query condition can also be a context position index value. A position index value

normally refers to the context element for a certain index value, for example, as in

the XPath query //article[1].

The predicate [1] placed on element article is, also known as a branching element. 1

is the context position index where the context element is article and the predicate is

used selecting the first article only. When the predicate is specified with a query

condition that has a context index value only, the context index value is based on the

branching element. The transformation checks for the validity of the branching

element in one of the q in Q. When element article in a valid q, that satisfies the

structure of p is located, its status is set to PQ (Line 2:5).

When a query condition is detected with a comparison operator τ, this means that a

query condition is expected with a comparison path fragment or element and

comparison value. Here we need to determine whether the comparison value is a path

(‘/’ or ‘//’) or a value such as a name or an integer. If comparison value is not a path

then the transformation calls function nPCV, which is an abbreviation of a non-

parent constraint value (Line 2:8). If the comparison value is a path value where ‘/’

Ch. 6

148

or ‘//’ detected in value, then the transformation calls function nPCV, an abbreviation

for pattern constraint value (Line 2:9).

The transformation also takes care of the case where a set of query conditions carries

status PQ but they all project the same comparison element and their values match the

complete set of values for the same element specified in C. These query conditions

are set with FQ (Lines 2:10-2:14). This case most likely applies to an enumeration

constraint applied on an element.

Function nPCV accepts parameters such as comparison element comparee,

comparison values comparev, comparison operator τ, and the resultCondition.

Function 3: List nPCV(String outerE, String comparee, string comparev, string , τ, List condList)

 Let τ be =, ≤, ≥, < or >, FQ be full-qualifier status, PQ be partial-qualifier status, CQ be conflict-qualifier,

 minO and maxO be occurrences, C be list of constraints of elements

3:1 FOR each c in C

3:2 Locate c contains comparee

3:3 IF ((τ is ‘=’ && comparev match a value of set in c)) THEN update condList with PQ

3:4 ELSEIF(τ not ‘=’ && comparev satisfy full value set in c) THEN

3:5 IF (minO = getOccurrenceValue(outterE, comparee))>=1THEN update condList with FQ

3:6 ELSEIF (minO = getOccurrenceValue(outterE, comparee))<1 THEN update condList with PQ

3:7 ELSE update condList with CQ

3:8 END LOOP

3:9 RETURN condList

The function first locates the constraint and values of comparison elements in list C

(Line 3:2). Based on τ, the comparison value is determined whether it is an exact

match value or within the match range which is set for comparison in list C. If τ is an

equality operator and the comparison value matches only part of the value set in list

C then query condition is associated with a status PQ (Line 3:3). Otherwise if τ

indicates with an operator other than an equality or non-equality operator, that means

the values of comparison element cover a restricted range value set in list C and then

the comparison element needs to confirm its minimal occurrence before FQ is

associated with it. If the minimal occurrence value of the comparison element is

greater than 0, this indicates the existence of data in the databases for the comparison

element. The query condition can be associated with FQ. Otherwise the query

condition is associated with PQ (Lines 3:4-3:6). The query condition is set to CQ if a

comparison element or values are not satisfied as specified in the list C (Line 3:7);

Ch. 6

149

where “not satisfied” means the comparison element cannot be located or values do

not match.

Note that a comparison element may have more than one constraint. For example an

element may be restricted by an enumeration constraint and occurrence constraint in

which the occurrence constraint is compulsory.

Function yPCV accepts parameters such as a comparison path fragment, comparison

value, τ, and the resultCondition. The function first locates the constraint and values

in list C based on the comparison path fragment (Line 4:2). When comparison

operator τ is an equality operator and if the comparison path value expected to match

the path value of the path fragment in list C, then the query condition status is set to

FQ if the minimal occurrence of comparison path is greater than 0. Otherwise the

query condition needs to be set to PQ if the minimal occurrence is less than 1 (Lines

4:3-4:5). If the comparison path fragment and the value cannot be found then the

query condition is set to CQ (Line 4:6). The condiList is returned to the function that

calls Function 4.

Function 4: List yPCV(String outterE, String comparee, string comparev, string , τ, List condList)

 Let CQ be conflict-qualifier, FQ be full-qualifier, PQ be partial-qualifier, minO and maxO be occurrences,

 C be list of constraints of elements

4:1 FOR each c in C

4:2 Locate c contains comparee

4:3 IF (τ is ‘=’ && c satisfy comparev) THEN

4:4 IF (minO = getOccurrenceValue(outterE, comparee))>=1 THEN update condList with FQ

4:5 ELSEIF (minO = getOccurrenceValue(outterE, comparee))<1 THEN update condList with PQ

4:6 ELSE update condList with CQ

4:7 END LOOP

4:8 RETURN condList

Function getOccurrenceValue performs a simple task to retrieve the minimal

occurrence values for a comparison element or a path fragment by locating them in

list C and returns them to calling function (Lines 5:1-5:5).

Function 5:getOccurrenceValue(String outerE, String comparee, integer oValue)

5:1 FOR each c in C

5:2 Locate c contains outterE/comparee

5:3 Obtain the lower bound value of occurrence of outterE/compareeTHEN exist

5:4 END LOOP

5:5 RETURN oValue

Ch. 6

150

6.4 Summary

In this chapter, we have proposed predicate elimination and reduction semantic

transformations. A predicate in an XPath query expresses a query condition to be

fulfilled in addition to the structural constraint imposed by the path itself. The query

condition is a Boolean expression. It may involve comparisons between elements and

values, path expressions denoting elements to be compared as well as further path

expressions. Due to a variety of predicates which have been given in a query, this

chapter has proposed techniques to first determine the status of the query condition

such as full-qualifier, partial-qualifier or conflict-qualifier. Once the query

conditions are associated with appropriate status, semantic transformation rules for

predicate elimination or predicate reduction are applied to transform the XPath

query.

Each semantic transformation produces

• a semantic XPath query with no predicate. This is when the predicate is

completely removed; or

• a semantic XPath query with a presence of a predicate. That is when a

predicate is reduced by removing some, but not all, query conditions; or

• a semantic XPath query cannot be produced due to the conflict detected in the

whole predicate; that is either every query condition produces conflict or some

query conditions produce a conflict. Query conditions have connectivity AND

may cause the whole predicate conflict if one of them is associated with a

conflict-qualifier. If the conflict makes the semantic path NULL, then the

transformation of the whole XPath query is terminated in the main program.

Semantic transformation is the best way to avoid a conflicting XPath query

being sent to the database, thereby wasting resources unnecessarily.

Chapter 7

Experimental Design

The aim of this chapter is to present an experimental design method that formulates

the elementary experiment for conducting an evaluation to study the impact of query

performance of XPath queries before and after they are transformed.

Two experiments are designed to evaluate the proposed semantic transformations

presented in Chapters 4, 5 and 6.

The first experiment measures the query performance of a set of customized XPath

queries and their semantic counter-parts using the DBLP data set. The second

experimentation measures a set of micro-benchmarks (also known as the Michigan

benchmark [Runapongsa et al., 2006]) XPath queries and their semantic counter-

parts using the Michigan data set.

7.1 Experiment Design: A Background

Chapters 4, 5 and 6 proposed a series of semantic transformations using the available

semantics in given XML Schemas to transform XPath queries to equivalent semantic

XPath queries for optimization purposes. The proposed semantic transformations are

intended to address the potential of semantics defined in XML Schemas (XSD) to

overcome the limitations of semantics defined in Documentation Type Definition

(DTD) used in semantic XML query optimization prior to this work.

Ch. 7

152

7.1.1 Experiment Objectives

There are three main contributions of semantic transformations including semantic

path transformations, semantic transformations for XPath queries specified with

axes, and semantic transformations for XPath queries specified with predicates. For

each main contribution, a set of semantic transformation rules have been proposed.

Each rule is automatically determined and applied to a given XPath query. The

semantic transformation rules are platform-independent. This means that they are

capable of transforming XPath queries without needing to rely on the database

platform. Details of the experiment strategies and operations are discussed in the

following sections.

7.1.2 Experiment Evaluation Objectives

To achieve the experiment objectives, the experimental design is conducted using the

following objectives:

a. To identify the implementation of semantic transformation framework. That

is, the implementation can be used for evaluation purposes, under the scope

of query transformation for optimization purposes, within the availability of

hardware and software.

b. To choose a database platform (either native XML data storage or XML-

Enabled data storage), where research must determine the availability of

minimal requirements such as the XML Schema validation feature that is

provided by the database platform.

c. To select appropriate datasets and queries, the research must review several

available real data sets to compare and investigate their completeness and

limitations in terms of semantics, data structures and query processing

coverage. This research also studies existing micro-benchmark data and

queries to address the gaps and limitations that real data sets cannot

comprehend.

d. To define and unify variable names such as metrics, measuring units and

computation procedures for two experimentations; this is to enable a logical

Ch. 7

153

query performance comparison to be achieved across a range of relevant

variables in the same system and environment.

e. To describe the operational environment, in which experiments take place,

including hardware configuration, software specification, system modules

and the system capability such as the front-end and back-end interface (e.g.

support connectivity to the database platform).

f. To obtain and analyse the results of query performance. The conclusion must

be drawn for the performance and limitation so that they can be used to

identify the potential of semantic transformations as semantic query

optimization devices.

Several of the set-ups are common to both experiments; however, others need to be

designed according to the particular requirements of each experiment. In the next

section, the set-ups common to the two experiments are described.

7.2 Common Setup for Experiments

The two experiments are concerned with evaluating the semantic transformation

rules when applied to given sets of XPath queries. Section 7.2 details the several set-

ups and decision making processes common to the two experiments.

7.2.1 Implementation Framework & Platform

The implementation of semantic transformation rules (or proposed algorithms) can

be evaluated as an independent application module from the database platform. This

means that the transformation can work without needing to know in advance whether

the type of the database platform is either an XML-native or non-native database.

Due to the current predominance of relational databases, most of the major relational

database systems are available with an XML-enabled feature. For our experiment, a

decision was made to select one of the leading commercial relational database

systems.

Ch. 7

154

7.2.2 Supporting of Minimal Requirement

Because of the decision to select a relational database system with an XML-enabled

feature, a minimal requirement for storing experiment data must be met. That is,

regardless of the technique used to store the experimental XML data, the XML

Schema must be able to reside on the database so that the data can be checked for

consistencies and conformation.

7.2.3 Choice of Experiment Data and Schema

Semantic query transformations require semantics defined in the schemas in order to

transform the given queries to equivalent queries. We select XML data for

experimentation based on various factors, but the most important one is semantics

provided by its associated XML Schema. The more the semantics are available in the

XML schemas, the more successful the evaluation will be.

When the data volume is significantly large and the semantics are insufficient, only

certain semantic transformations can be applied. If the semantics are too rich but the

volume of data is insubstantial, then the impact of the query performance study may

not be effective.

Having considered the aforementioned factors of semantics and data sizes, we

choose to adopt two sets of data. One is a real data set with an accompanying

schema, namely DBLP [Ley, 2011]; the other is the micro-benchmark data set with

an accompanying schema and a set of XPath queries [Runapongsa et al., 2006].

a. Real Data: DBLP

DBLP is the online resource providing bibliographies and subfield information on

computer science books, conference proceedings, journals and so on [Ley, 2011].

DBLP data is selected for three important reasons. The first is that the actual real-

world data such as DBLP data provides us with an insight into data that has user

characteristics and expectations. The second is that the semantics in the schema are

sufficient and able to support our proposed semantic transformations. The third is

that the data size satisfies our current experiment environment in terms of hardware.

Ch. 7

155

As XML data structure is represented by a tree-structured model, the XPath query

expressiveness depends on the data hierarchy and selection of query patterns

specified with or without predicates on multiple elements to match XML documents.

If an XPath query is specified with predicates, some complex conditions in

predicates enable a Twig pattern query [Runapongsa et al., 2006, Che et al., 2011].

A twig pattern query is the core operation in querying tree-structured data. Although

the semantics in DBLP schema are relatively rich, the data hierarchy is not

expressive as it supports only a six-level data hierarchy. We are not able to specify

the extreme expressive structural and complex joins selection by conditions such as

twig pattern queries by a using DBLP data set. It is a challenge to find such features

in the real dataset. For this reason, we take the option of utilizing existing micro-

benchmark data.

b. Micro-benchmark Data: Michigan

Several XML database management systems such as Tamino XML Database

[Software AG, 2009], Oracle DB 11g [Oracle, 2010] and DB2 pureXML [IBM,

2009] to name just a few, have been developed on various database platforms.

Technically, these databases are constructed differently from one another and their

storage management models also differ. The way in which each individual system

works and behaves has attracted an increasing interest from both industry and the

research world. Hence, a great amount of effort has been put into developing XML

benchmarking such as XMark [Schmidt et al., 2002], X007 benchmark [Li, et al.,

2001], XBench [Yao and Ozsu, 2002], Michigan benchmark [Runapongsa, et al.,

2006], TPoX [Nicola et al., 2007] and many more. Most of the existing

benchmarking systems listed here are known as application benchmarks, except for

the Michigan benchmark which is known as a micro benchmark.

The roles of application benchmarks focus on assessing the performance of given

XML database systems by performing a large number of tasks such as selection,

access method, modification, computation and insertion. These benchmarking

systems provide an indication of performance to the database systems for potential

users so that they can set their expectation for their applications.

Ch. 7

156

On the other hand, there are various micro-benchmark systems that focus on generic

database operations such as selection, computation and joins. A micro-benchmark

system can provide an insight into generic database operations that assist the

developers to understand and evaluate query operations which are significant or

perform poorly.

We find that both data and XPath queries provided by the Michigan benchmark

[Runapongsa et al., 2006] fulfill our requirements of evaluating expressive structural

queries and complex selection query predicates. Because the Michigan data set

provides a significant data hierarchy which is accompanied by an available schema,

their XPath queries support much more complex joins than those that can be

accomplished with the DBLP data set. Throughout the rest of the chapter, the

Michigan benchmark is referred to as the micro-benchmark.

7.2.4 Setup of Operational Hardware, Software and System Modules

Figure 7.1 provides an overview of the system and implementation phases before

semantic transformations take place. On the left of the vertical dash-line, the phase of

schema registration is indicated by 2, data validation is indicated by 1 and loading of

XML data into the XML database is indicated by 3. On the right of the vertical dash-

line, the module for preprocessing semantics in XML Schema is indicated by 4, the

semantic transformations module is indicated by 5, and the execution module of both

the original and semantic XPath queries on the database is indicated by 6. Task 7

returns an informative message to the user if the XPath query cannot be transformed.

Task 8 returns a valid performance measurement to the users for evaluation. The

arrows show the inter-relationships among the tasks.

a. Set-up of Hardware and Software

The two experiments are conducted in the same environment. The following

hardware and software setup was used for both experiments:

(1) The hardware includes a machine that has a configuration of Intel® Core™ Duo

E7300 2.66 GHz. 2.67GHz and 2.0 GB of RAM; and

Ch. 7

157

(2) the software includes Windows 7 Professional OS, Java VM 1.6 and Matlab

2009.

 Task Modules

XML –

Enabled

Database

XML

Schemas

2

XML

Documents
3

Semantic

Transformations

QueryExecution

Database

Pre-processing

Schemas

1

User

XPath

Queries

4

5

6

7

8

Figure 7.1 Overview of System Architecture and Task Modules

All semantic transformation algorithms are written and compiled in Java while all

XPath queries are executed on a prominent off-the-shelf commercial relational

database with an XML-enabled feature. Our semantic transformations can be run as

add-on devices for any existing database as long as an XML capability with schema-

awareness facility is supported. We adopt an out-of-box installation for our chosen

database platform. We do not perform any database configuration such as indices or

specific joins.

b. Setup of System Modules and Detailed Description

Upon the completion of XML Schema registration, data loading and verification, the

semantic transformations can take place. The effectiveness of semantic

transformations greatly depends on how the semantics are derived and managed. We

have proposed our semantic derivation technique to derive and store semantics in

Ch. 7

158

Chapter 4, Section 4.1. We derive and pre-process the semantics prior to beginning

of the semantic transformation process. This initial pre-processing of semantics is

time consuming; however, this is worthwhile because we need to accomplish this

task only once and the derived semantics can be used for the transformation of all

XPath queries until the semantic transformation application is terminated. By doing

such a pre-processing of semantics we can avoid the overhead of searching and

processing the semantics in the XML Schema during the transformation stage.

Preprocessing Schema Module: we now present an algorithm that

implements the semantic derivation technique proposed in section 4.1 in Chapter 4.

Algorithm PreprocessingSchema accepts two input parameters T and R where

R is the root name of the schema and T is the file name of the schema (Line 1). The

main objective of the algorithm is to produce lists Q and C (Line 2). Q contains a list

of unique paths and C contains a list of constraints (together with their associated

values) of elements. Parameters such as par, element, ePair and cName are defined

(Lines 4 - 5). Parameter cName is a list that contains predefined constraint names.

The constraint names can be increased at any time. Currently, we store constraint

names based on the DBLP schema.

At start-up, the algorithm will require the input parameters R and T. It then starts

reading the schema file and checks if the root R is valid. If the root is valid, then the

first item added to the C list is the root and occurrence constraint as well as its values

(Line 8). It sets the flag foundR to true and sets the root as the parent and allows the

processing to progress further (Line 9-10). If the given root is not found, the schema

cannot be processed (Line 24).

For each line read from the schema, the process first searches for an element and its

constraints. If the element is a complex type, then it sets the element as the parent

(Line 12) and processes the constraints of the element (Line 18) by calling the

Function List constraintValues.

The children of the complex type are processed (Lines 13-20) by building up the

ePair list where each item is expressed as parent/child e.g. dblp/article. Within the

building block of parent/child, the child element is also identified as either an

Ch. 7

159

attribute element or non-attribute element so that the information can be prepared

properly. For example, if it is an attribute, then it should be parent/@attribute (Line

19). If it is a non-attribute element, then its constraints such as occurrence, inclusive,

inclusive, etc are processed to build up list C in which Function List

constraintValues is called (Line 18). Once it reaches the end of the schemas,

two lists, ePair and C, are built. Upon complete reading of the schema file, the

algorithm produces R and ePair, which are then used to construct list uniquePath

(Lines 21-23).

Algorithm 1: PreprocessingSchema (Schema S, String root)

1 Input : T = XSD schema; R = root name of the schema
2 Output: Q = List of sequence elements defined in XSD Schema; C = Semantic knowledge of elements obtained from T
3 Begin
4 Let par be parent, element be child, Let ePair be a list to contain pairs of elements that has a parent/child relationship
5 Let cName ={keyref, key, enumeration, inclusive, exclusive, pattern, sequence, choice, all, length, attribute,

occurrence}
6 While not end of file (T)
7 read next line
8 If found R in l Then
9 foundR=true; push R + “ Occurrence=(1,1)”
10 If (foundR) Then
11 Extract element from l
12 If element is a type Then par = element
13 Do
14 Read next line l
15 Extract element from l
16 If element is an attribute type Then element = @element
17 Push par/element to ePair
18 If l contains cname in cName Then C = constraintValues(l, C, List ePair, cname)
19 Until end of type
20 Loop
21 If (foundR) {
22 Push R into Q
23 Q = UniquePath(ePair, Q)
24 Esle “invalid root. Nothing derived”.
25 End
26 Function List UniquePath(List pair, List Q)
27 For each item x in pair
28 For each item y in pair
29 Push x+”/”+y into uP if found leftmost element in y occurs in x as right most element
30 End For
31 End For
32 Return Q
33 End Function
34 Function List constraintValues (String Line, List C, List ePair, String cName)
35 Let vals be a set of values of cName extracted from Line, e be element of cName
36 extend e to es using ePair until es is unique in c
37 Push es constrName=(vals) to C
38 Return C
39 End Function

The Function List constraintValues (Lines 34-39) accepts the input

such as the line line that contains information about the element including name,

constraint name and value of constraint. The ancestors of the element e needing to be

Ch. 7

160

constrained are extended to further ancestors using an ePair list to make it unique in

C (Line 36). The item c is then formed to carry the sequence of new extended

elements including constraint element and name of constraints as well as the values

of the constraint. New item c is placed into list C (Line 37).

The next step is to construct the unique path Q list. The root is first added to the Q

list with root as the first unique path and then starts to process the remaining unique

paths using items in the ePair list. The first item in the ePair should have the parent

as root and child is the left most element on the next level as was proposed in chapter

4, section 4.1. For example, in the DBLP schema, dblp is the parent. The first item

in the ePair list is dblp/article.

The Function UniquePath accepts the ePair and R values (Lines 26 – 32).

This function is a guideline for simultaneously processing and sorting the unique

path. It basically uses the proposed breath-first search direction as proposed in

Chapter 4, Section 4.1 to derive all unique paths.

The pre-processing schema module performs the task only once at start-up and is

terminated once it completes the processing of all input schemas, as indicated by

module number 4 enclosed by the dotted line in Figure 7.1. The Semantic

Transformation module then takes control as indicated by module number 5 in

Figure 7.1. If any changes are made to the XML Schemas, this module will need to

restart (though we do not expect the structure of the schema to change frequently).

Semantic Transformation Module is the one that implements all the

algorithms proposed in Chapters 4, 5 and 6; this is a real-time module. It is called

after the pre-processing schema module has successfully produced a unique path list

Q and constraints of elements list C. It continually detects the users’ XPath queries

and transforms them. This module will return valid semantic XPath queries and also

send the queries to the database for execution; hence, it is called the Query Execution

Database module. The Semantic Transformation module logs the transformation time

and valid semantic XPath query in a dynamic file so that the user can manipulate this

information independently. We fetch this information to plot results in MatLab.

Ch. 7

161

If any conflicts of constraints are detected in an XPath query, a message is returned

to inform the user as indicated by an upward arrow labeled with number 7 in Figure

7.1. The returned message is logged in a dynamic text file and will be used to

measure the performance of those queries that return no result.

For a valid transformed XPath query, the transformation time is tracked so that it can

be added to the average execution time of the semantic XPath query to calculate the

total performance time. The average execution time is the total execution time of an

XPath query divided by the number of executions. The performance of the semantic

transformation XPath query is measured by the total performance time.

Query Execution Database Module sends an XPath query and its semantic XPath

query to access the required information in the database, as indicated by module 6 in

Figure 7.1. Once the required information is retrieved, it is returned directly to the

user instead of via the XML transformation module as indicated by task module 8 in

Figure 7.1. This module can be called by the Semantic Transformation module or it

can work independently.

As the Semantic Transformation module also provides semantic XPath queries and

their transformation time in a dynamic text file, the query execution database module

can be executed independently using information in the dynamic file.

7.2.5 Computation Procedure and Metrics

Computation Procedure. Each original/semantic XPath query is executed for five

runs. The average execution time is calculated based on the last 3 runs. This is

achieved in module 6 in Figure 7.1. By ignoring the first two runs and calculating the

average execution time of the last three runs, this supports both cold and hot warm-

ups that prevents any data buffering problem from previous runs.

Metrics. For each pair of queries (original XPath query and its semantic XPath

query), the experiment compares the total performance time (in milliseconds).

For the original XPath query, the execution time of query performance is measured

by the average execution time as calculated by the computation procedure.

Ch. 7

162

As explained earlier in the Semantic Transformation module, for the semantic XPath

query, the execution time of query performance is measured by the average

execution time plus the transformation time as calculated by the computation

procedure.

7.3 Individual Setup for Individual Experiment

This section describes the individual experiment set-up including semantic

enhancement, data scaling, data cleansing, query design, metrics and computation

procedures.

7.3.1 Experiment 1: Using DBLP Data

This section describes the process of enhancing semantics in XML Schema that

enables data cleansing, data scaling sets and query design. Metrics and computation

procedures are also described here for individual experimentation.

a. Semantics Enhancement for XML Schema

The actual DBLP schema is in DTD format which we have decided to convert to

DBLP.xsd. This is because our semantic transformations support more semantics

than what DBLP.dtd can offer. To enable all semantic transformations to work with

this DBLP schema, all semantics offered in the DTD Schema remain. In addition, the

semantics can be enriched by adding further semantics so that we can demonstrate

the whole range of our semantic transformations. The alteration of the DTD Schema

must be kept as simple as possible so that the verification of data will take less effort.

One advantage of adopting the DBLP is that we can also prove that our semantic

transformations are not limited to DTD. The proposed semantic transformations

enable us to take care of semantics in both DTD and XML Schemas (xsd).

In summary, the depth of the DBLP XML Schema is 5 and the second hierarchy has

a breadth of 7 schema elements. Each different labeled schema element on the

second hierarchy must have at least one data node. The rest of the hierarchies depend

on the occurrence constraint of each labeled element. We convert from DBLP.dtd to

Ch. 7

163

DBLP.xsd and maintain all the existing semantics that have been transferred from the

DBLP.dtd. At the same time, we also add a number of constraints to achieve our

semantic transformations. The semantics are modified and added as follows:

First, the data type of year element is changed from string to integer. Then the year

is restricted with a range of values between 1950 and 2020. This range of values is

not compulsory; however, it is good to have to demonstrate the usefulness and

practicality of predicate elimination semantic transformation. In this schema, year

element is a global element whose setting is applied throughout the schema. For

each PhD thesis, there must be at least one supervisor who is identified by his/her

PhD qualifier. To achieve this, we use a key reference for the supervisor. That is, a

supervisor is referenced by an existing thesis but not by the current thesis. This is to

prevent the supervisor from being confused with the student undertaking the PhD

thesis.

For each element on the second hierarchy in the schema, we modify the order

constraint by replacing the ‘choice’ with a ‘sequence’ value for ‘dblp’, ‘article’,

‘inproceedings’, ‘proceedings’, ‘book’, ‘incollection’, ‘phdthesis’, ’www’. This is to

ensure data such as ‘article’, ‘inproceedings’, ‘proceedings’, ‘book’, ‘incollection’,

‘phdthesis’, ’www’, ‘author’, ‘title’, ‘pages’, ‘year’,…, ‘url’ are in the order as set

out in the schema. For the occurrence constraint, the minimal occurrence is set to

for elements including ‘dblp’,‘article’, ‘inproceedings’, ‘proceedings’, ‘book’,

‘incollection’, ‘phdthesis’, ’www’, ‘author’, ‘title’, title name, and ‘year’. The

occurrence for these elements varies between 1 and infinite.

XML data in Figure 7.2 conforms to the DBLP XML Schema. The schema is rich in

semantics of elements which enables semantic transformations to be applied to a

wider range of XPath queries.

b. Data Cleansing

Once the XML Schema has been changed, we also need to change the data in order

to achieve data conformation. Data cleansing is important for DBLP data sets as we

have made alterations to the semantics in the DBLP XML Schema. Therefore, we

have developed a data cleansing module (written in Java) to eliminate the

Ch. 7

164

inconsistencies of data according to the modified semantics. For example, the new

data order based on the sequence property of the order constraint is enforced on

elements in the order of article, inproceedings, proceedings, book, incollection,

phdthesis, www from left to right and they are the children of dblp. The order

constraint is also applicable to children of some of these elements.

In addition to the order constraint, the data of element supervisor also needed to be

checked for correct values that are set in the XML Schema. The values of year are

also needed to be ensured within the specified range. The data cleansing module also

validates the occurrence data for all the elements according to the changes that have

been made in the XML Schema.

To ensure the conformation of the new data after cleansing, a validation tool such as

XMLSpy is used to validate the new data against the XML DBLP Schema.

Data scaling is important. Good experiment data with regards to a performance study

must be able to scale to several data sets if we are to examine the query components

that respond to various data sizes. There are several scaling options that one can

follow to tailor the data sets. For our experiment, we need several incremental data

sets.

c. Data Scaling

We choose two DBLP data sets of 350 and 100 mega bytes (MB). The first data set

350MB is referred to as Experiment Data Group 1 and the second data set of 100MB

of Experiment Data Group 2. We find that XPath queries specified with XPath axes

are unstable or cannot be executed most of the time when the data set of 350MB is

tested. We suspect this is due to a combined limitation of XPath axes supported by

our chosen DBMS with XML-enabled feature and availability of the hardware. For

this reason, we have to reduce the size of the data set (Experiment Data Group 2)

until the XPath queries specified with XPath axes show a stable processing.

Each data set (DS) is scaled down to 10 incremental data sets: 0.1DS, 0.2DS, 0.3DS,

0.4DS, 0.5DS, 0.6DS, 0.7DS, 0.8DS, 0.9DS, 1DS. Hence, Experiment Data Group 1

and Experiment Data Group 2 will each have 10 scaled data sets.

Ch. 7

165

<dblp
xsi:noNamespaceSchemaLocation="http://localhost:8081/public/dbl
p.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <article mdate="2005-11-15" key="journals/4or/WerraH05">
 <author>Pierre Hansen</author>
 <title>
 <tn>Variations on the Roy-Gallai theorem</tn>
 <tt>Variations on the Roy-Gallai theorem</tt>
 </title>
 <pages>243-251</pages>
 <year>2005</year>
 <volume>3</volume>
 <journal>4OR</journal>
 <number>3</number>
 <ee>http://dx.doi.org/10.1007/s10288-004-0043-9</ee>
 <url>db/journals/4or/4or3.html#WerraH05</url>
 </article>
 .
 .
 <phdthesis mdate="2002-01-03" key="phd-S-95">
 <author>Heping Shang</author>
 <title>
 <tn>Trie Methods for Text and Spatial Data on Secondary
 Storage</tn>
 <tt>Applications</tt>
 </title>
 <year>1994</year>
 <school>McGill University</school>
 <supervisor>phd-S-94</supervisor>
 </phdthesis>
 .
 .
 <www mdate="2006-10-02" key="homepages/a/EitanAltman">
 <author>Eitan Altman</author>
 <title>
 <tn>Home Pag</tn>
 </title>
 <url>http://www-
 sop.inria.fr/mistral/personnel/Eitan.Altman/me.html</url>
 </www>
</dblp>

XML Data Conforms to DBLP

XML Schema

Figure 7.2 DBLP XML Schema and Snapshot of XML Data (after modification)

Ch. 7

166

As we do not change the depth and the breadth of the schema, each data set is scaled

by scaling the number of data nodes on the second hierarchies. There are 7 schema

elements on the second hierarchy including article, inproceeding, proceeding,

incollection, book, phdthesis, www. For each of these 7 element groups, we split

the data into 10 sets.

Assume the element data group of article has 70MB, inproceedings has 50MB in

the whole DBLP XML document of 350MB, then

article: (0.1DS) =7MB, (0.2DS) = 14MB,.., (1DS) = 70MB

inproceedings: (0.1DS)=5MB, (0.2DS)=14MB,.., (1DS)=50MB.

Once we have 10 scaled sets for each element data group, we then compile the actual

10 DBLP incremental data sets by merging the seven element data sets in the order

of schema elements. Hence, the first DBLP scaled data set (0.1DS) is the result of

merging of article(0.1DS), inproceedings(0.1DS), inproceedings(0.1DS), …,

www(0.1DS), and then the second set of data is the result of merging of those with

(0.2DS) in the order of schema elements and so forth.

We apply the same concept of scaling to the Experiment Data Group 2 sets. We

develop a module, using Java, to automate this scaling process. For the actual data

sizes and scales for each Experiment Data Group, refer to Figure 7.3.

Experiment Data Group 1 Experiment Data Group 2

Data

Set

% Scale on

Data Nodes

Data Size

(MB)

Data Set % Scale on

Data Nodes

Data

Size(MB)

1 0.1 35 1 0.1 10

2 0.2 70 2 0.2 20

3 0.3 105 3 0.3 30

4 0.4 140 4 0.4 40

5 0.5 175 5 0.5 50

6 0.6 210 6 0.6 60

7 0.7 245 7 0.7 70

8 0.8 280 8 0.8 80

9 0.9 315 9 0.9 90

10 1 350 10 1 100

Figure 7.3 Scaled Data Sets for DBLP Data

Ch. 7

167

10 sets of incremental size of DBLP data for experiment data groups 1 and 2, as

shown in Figure 7.3, are loaded into a database platform with XML Schema

validation enabled.

d. XPath Query Taxonomy

This section first provides the XPath query taxonomy; second, it recommends XPath

query patterns that are suitable for each semantic transformation typology. The

XPath query patterns suggested for the experiment are based on the XPath taxonomy.

To simplify the subject matter, the XPath query taxonomy is either a full-path

pattern or partial-path pattern (refer to chapter 3 for definitions of these patterns).

An XPath query has a full-path pattern if and only if it satisfies one of one or more of

the following properties:

• XPath query is specified without any predicate []

• Path element is represented by a valid element name or wildcard ‘*’

Figure 7.4 shows four different types of full-path patterns; hence, no predicate exists

in any of the four different XPath queries.

Figure 7.4 Full-path XPath Queries

(1) (2) (3) (4)

dblp

article

title

tn

dblp

phdthesis

tt

dblp

*

title

tn

dblp

*

title

Ch. 7

168

In XPath query (1) dblp, article, title and tn have parent-child relationships. In

XPath query (2) dblp and phdthesis have a parent-child relationship and phdthesis

and tt have an ancestor-descendant relationship. In XPath query (3) dblp, *

(wildcard), and title have only parent-child relationships. In XPath query (4) while

parent-child relationships are between dblp and * (wildcard) and between title and

tn, ancestor-descendant relationship exists between * (wildcard) and title.

An XPath query has a partial-path pattern if and only if it has a combination of the

following and satisfies one or both of the following properties:

• Composition of full-path pattern properties

• Essentially defined with a composition of a predicate []

As mentioned earlier, predicates that exist in an XPath query indicates a twig pattern

in the query. That is, a path pattern has a branching element, which has a further one

or more children. We categorize a twig query as either a simple twig pattern XPath

query or a complex twig pattern XPath query.

An XPath query has a simple twig pattern when a branching element has more than

one child and each child has no further children.

An XPath query has a complex twig pattern when a branching element has more than

one child and each child has further children or descendants.

Figure 7.5 show various types of partial-path XPath queries. In XPath query (5)

dblp, article, title and author have parent-child relationships. The branching

element article has two immediate children, title and author; none of them has

further children. In XPath query (6) the branching element dblp has two immediate

children, article and author, and none has further children. In XPath query (5), * is a

branching element that has an immediate child, year, and descendant tn. In XPath,

query (6) has more than one child and each child does not have any further children,

making both (5) and (6) simple twig pattern queries.

Ch. 7

169

(5) (6) (7) (8)

Note: 5 & 6. Simple Twig Pattern Queries

 7 & 8. Complex Twig Pattern Queries

dblp

* phdthesis article

title author

dblp

article book

dblp

year tn

dblp

tt tn

title year

Figure 7.5 Partial-Path XPath Queries

In the XPath query tree (7), the branching element * has an immediate child year and

a descendant tn. There is expected to be one or more hierarchical elements between

wildcard * and element tn. Hence tn is not an immediate child of *, therefore XPath

query (7) is a complex twig pattern query. In an XPath query (8), the first branching

element phdthesis has two immediate children year and title. The immediate child

title has further children tn and tt, which makes XPath query (8) a complex twig

pattern query.

For each semantic transformation category, we need to propose a set of XPath

queries with regard to the query taxonomy above. By manipulating DBLP data sets

and XML schema, we make it possible to issue queries with better XPath query

patterns. XPath queries enable us accommodate a variety of XPath query

components, which respond to our semantic transformations. Below, we provide the

guidelines for XPath query patterns for each category of semantic transformations.

• Semantic Path Transformations

Based on the query taxonomy, the XPath queries suggested for semantic path

transformation are as follows:

Ch. 7

170

� Semantic Path Expansion: XPath query patterns are full-path patterns in

which each XPath query is expressed with an ancestor-descendant and/or

parent-child hierarchy and/or with the wildcard element *.

� Semantic Path Contraction: XPath query patterns are full-path patterns in

which each XPath query is expressed with an ancestor-descendant and/or

parent-child hierarchy ‘//’ and/or wildcard element ‘*.

� Semantic Path Complement: XPath query pattern is a simple twig query

pattern that is implemented by the parent axis (or optional operator ‘..’).

• Semantic Transformations for Axes

XPath queries suggested for semantic transformations for XPath query axes are full-

path patterns in which element(s) is specified with an XPath axis from {child, self,

parent, descendant, descendant-or-self, following, preceding, following-sibling,

preceding-sibling, ancestor, ancestor-or-self}.

• Semantic Transformations for Predicates

XPath query predicates support query conditions. Query conditions in a predicate

joined by operators AND or OR are classified as value-based type or pointer-selected

type [Runapongsa et al., 2006].

A value-based type condition compares the values of different elements and a value

of an element that is either an attribute or a leaf node. A pointer-selected type

compares the values of a path fragment and most likely returns a sub-tree instead of a

single value. XPath queries specified with predicates for semantic transformations

are partial-path patterns.

Semantic Predicate Elimination is applied to query conditions, which are connected

by AND and/or OR operator(s). Semantic Predicate Reduction is applied to query

conditions which are connected by an OR operator.

For the DBLP data sets, due to the shallowness of data hierarchies, complex twig

pattern queries are very primitive. For this reason, more complex twig patterns are

carried out in the second experiment.

Ch. 7

171

7.3.2 Experiment 2: Using Benchmark Data

This section describes the semantics required for the experimentation, scaled data

sets, query selection, metrics and the computation procedure.

a. Semantics in XML Schema

The micro-benchmark schema is available in both XSD and DTD schema formats.

The micro-benchmark data set is adopted mainly because of its significant number of

hierarchies of 16, which enables this experiment to evaluate the expressiveness of

path expressions and complex predicates for selection of query type. There is no

alteration made to the micro-benchmark XML Schema.

The micro-benchmark schema and its sample XML data are shown in Figure 7.6.

The schema is constructed around a BaseType element which contains a set of

attributes such as aUnique1, aUnique2, aFour, aSixty, aSixteen, aLevel, aString.

The hierarchy is indicated by a level value of attribute aLevel. Each Basedtype

element contains two setf of subelements such as BaseType and OccasionalType.

The presence of the OccasionalType element is determined by the value 0 of the

attribute aSixtyFour of the parent. Each OccasionalType element has a content

including the attribute @aRef [Runapongsa, et. al, 2003]. The described informration

in this section together with the information given in the XML Schema are used to

derive the semantics for performaning the transformations.

As there is no modification made to the benchmark XML Schema, no data cleansing

is performed. In the next section, data scaling is presented. As the names of all the

hierarchy elements in this micro-benchmark schema are the same, i.e. eNest, this

could raise a recursive schema problem. However, we have clarified earlier that the

schema hierarchy’s hieght is 16 which is determined by eLevel. Therefore the

recursive problem has been avoided.

b. Data Scaling

To keep the micro-benchmark data set simple, we use two data sets of size 50 and

550 mega bytes (MB) given by the Data Generator developed by the micro-

benchmark, which can be downloaded from [Michigan, 2011]. We use the large

Ch. 7

172

document of 550 megabytes (MB) to scale down the data set (DS) including 0.2DS,

0.4 DS, 0.6 DS, 0.8 DS and 1SD. So, by adding 50 (MB) to the new scaled data sets,

the complete sets of 50(MB), 150(MB), 250(MB), 350(MB), 450(MB) and 550(MB)

is obtained.

<?xml version="1.0"?>

<eNest

xsi:noNamespaceSchemaLocation="http://localhost:8081/public/mb.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 aUnique1="1" aUnique2="1" aLevel="1" aFour="1" aSixteen="2"

 aSixtyFour="1" aString="Sing a

 song of oneB1">

 Sing a song of oneB1

 A pocket full of oneB3

.

.

 <eNest aUnique1="2" aUnique2="8768" aLevel="2" aFour="0"

 aSixteen="2" aSixtyFour="0" aString="Sing a song of

 7seventyfourB11">

 Sing a song of 7seventyfourB11

 A pocket full of oneB1

 .

 .

 <eOccasional aRef="1">

 Sing a song of 7seventyfourB11

 A pocket full of oneB1

 .

 .

 </eOccasional>

 <eNest aUnique1="4" aUnique2="50365" aLevel="3" aFour="1"

 aSixteen="1" aSixtyFour="61" aString="Sing a song of oneB5">

 Sing a song of oneB5

 A pocket full of oneB1

 .

 .

 <eNest aUnique1="8" aUnique2="30572" aLevel="4"

 aFour="0" aSixteen="4" aSixtyFour="44" aString="Sing

 a song of threeB5">

 Sing a song of threeB5

 .

 .

 </eNest>

 </eNest>

 </eNest>

 </eNest>

 </eNest>

 </eNest>

XML Data Conforms to micro-

benchmark (Mitchigan) XML Schema

Figure 7.6 Micro-benchmark and Snapshot of XML Data

Ch. 7

173

c. Query Selection

Unlike experiment 1, most of the XPath queries for experimentation are provided by

the benchmark system. There are not many XPath query returning the sub-tree of an

element, a few XPath queries are modified to select the sub-tree instead of the value

of an element. A small number of XPath queries are newly created so that semantics

such as subtype element can be applied for transformation.

For each semantic transformation category, we need to propose a set of selection

XPath queries with regard to the query pattern and selection type. To make it simple,

and due to the importance of XML structural selection, an XPath query either returns

values of an XML element, or returns sub-trees.

• Semantic Path Transformations

Micro-benchmark XPath queries do not provide any query patterns suitable for the

application of a semantic path complement. However, semantic path transformations

are expected to have the following query pattern requirements:

� XPath query patterns are in a descendant hierarchy ‘//’ or wildcard element

‘*. These are used to demonstrate a successful application of Semantic Path

Expansion.

� XPath query patterns are in a descendant hierarchy (or optional operator ‘//’)

or wildcard element ‘*. These are used to demonstrate a successful application

of Semantic Path Contraction.

• Semantic Transformations for Axes

The XPath queries designed and provided by a micro-benchmark system do not

focus on XPath axes. The only axis that is incorporated in the XPath queries are the

self ‘.’.

• Semantic Transformations for Predicates

Due to the richness in data hierarchies of the micro-benchmark data set, the XPath

queries that support complex twig pattern queries will be addressed here as we are

Ch. 7

174

not able to accomplish this by using DBLP data sets. The condition patterns

accommodate hierarchies ‘/’ and ‘//’.

� Structural condition type supports pattern ‘/’ or ‘//’ or axes which can enable

parent-child or ancestor-descendant joins or a more complex one is twig join.

� Comparison values support constant value, range-value and path-value (full

path expression based on key/keyref attribute).

We find that our choice of micro-benchmark data sets justify the evaluation purposes

as their data characteristics and semantics complement each other, thereby producing

an evaluation that is both complete and comprehensive.

7.4 Summary

In this chapter, we have described the design and the implementation of our

experiment for evaluation. The chapter comprises three main sections:

• The first section describes the experimental design background and the strategy

to achieve the experiment objective.

• The second section describes the expected strategies including framework,

platform with minimal supportability, operational set-up such as hardware,

software system modules including algorithm and system architecture that are

shared by the two experiments.

• The third section presents the unique parts of the strategies used for each

individual experiment. This includes the process and technique used to enhance

semantics, cleanse data, scale data, design and select queries, metrics and

computation procedures.

In the next two chapters, we present the evaluation results and analyses which enable

us to identify the optimization devices.

Chapter 8

Experimental Evaluation - Using

Real Data Sets

This chapter focuses on the experimental evaluation of semantic transformations

using a real data set of DBLP which is accompanied by an XML schema. It is our

goal to study the performance of XPath queries before and after undergoing semantic

transformations. The query performance enables us to thoroughly evaluate the impact

of semantic transformations that have been applied to XPath queries to obtain their

semantic XPath queries, but more importantly, to identify semantic transformations

as optimization devices.

8.1 Performance Evaluation Preface

As discussed in Chapter 7, each XPath query and its semantic XPath query over each

data set would be executed for n runs. The execution time is accumulated for the last

three runs. The average execution time is then produced based on the last three runs.

The average execution time is referred to as the performance result throughout this

chapter. While the performance result for the semantic XPath query is the average

execution time plus the transformation time, the performance result for the original

XPath query is the average execution time. The experimental evaluation is based on

the performance results of the original XPath query and its semantic XPath query.

Ch. 8

176

Readers are reminded that the constraints used to transform XPath queries are the

information in lists Q and C, which have been derived from the XML schema and

proposed in Chapter 4. While Q contains a list of unique paths in which each unique

path is a full path of a sequence of schema elements that must start from the schema

root. Finally C contains a list of constraints of the XML schema elements.

Based on the availability of semantics available in the DBLP schema, a set of XPath

queries is designed to satisfy the semantic transformations. Due to the shallowness of

the data hierarchies in the DBLP schema, hierarchy query types cannot be too

expressive. This limitation can be overcome by exploring a benchmarking data set

which is addressed in the next chapter. Moreover, XPath queries considered in this

chapter are able to fully facilitate all semantic transformations.

An XPath query and its semantic XPath query are equivalent if and only if they

produce the same result set even though they have different structures.

8.2 Semantic Path Transformation

This section presents a set of XPath queries that are transformed by applying

semantic path transformations including semantic path expansion, semantic path

contraction and semantic path complement transformations. Figure 8.1 presents a

set of customized XPath queries. Each individual XPath query is presented with its

relevant details such as Figure, Semantic Transformation, Path Pattern, Semantic

XPath Query and Result Type.

a. Semantic Path Expansion Transformation

Figure 8.2 (a, b and c) shows the query performance results of XPath queries

//phdthesis//tn, dblp/inproceedings//tn and */book/*/tn and their semantic

counterparts respectively. While the first two XPath queries use descendant-ancestor

‘//’ relationships, the third XPath query uses only wildcard ‘*’ and parent-child ‘/’

relationships. The ancestor-descendant ‘//’ relationship is purposely used in one

XPath query and not in the other to observe its impact on query performance.

Ch. 8

177

Figure 8.1 XPath Queries and Semantic XPath Queries by Semantic Path Transformation

For XPath query //phdthesis//tn, the semantic path expansion transformation

replaces the path fragments ‘//phdthesis’ and ‘//tn’ with the path fragments

‘dblp/phdthesis’ and ‘title/tn’ based on the unique path dblp/phdthesis/title/tn

located in list Q. For XPath query dblp/inproceedings//tn, semantic path expansion

transformation replaces //tn with title/tn based on the unique path

dblp/inproceedings/title/tn located in Q. For XPath query */book/*/tn, the semantic

path expansion transformation replaces ‘*/’ with path fragment ‘dblp/’ and ‘/*/’ with

/title/ based on the unique path dblp/book/title/tn located in Q. The performance

results of semantic XPaths improve linearly along with the increase in the data sizes

in Figure 8.2 (a and b). While the semantic XPath query gains an average of 40%

over its original XPath query in Figure 8.2 (a); the semantic XPath query gains

almost 22% over its original XPath query in Figure 8.2 (b).

The overall performance achieved by the two semantic XPath queries in 8.2 (a) and

8.2 (b) is very good due to the fact that in the full path expressions, none of the

elements is represented by ‘*’. In Figure 8.2 (c), the query performance results

indicate that the semantic XPath query outperforms the XPath query by 4% to 9%.

The performance result shows a slight linear improvement in performance as the data

sizes increase.

Figure

Semantic
Transformatio

ns

Path Pattern XPath query Semantic XPath Query Result

Type

8.2 a Path
Expansion

Ancestor-
descendant

//phdthesis//tn dblp/phdthesis/title/tn Values

8.2 b dblp/inproceedings//tn dblp/inproceedings/title/tn

8.2 c Wildcard */book/*/tn phdthesis/book/title/tn

8.3 a Path
contraction

Ancestor-
descendant and
wildcard

//*/isbn //isbn

8.3 b Ancestor-
descendant

///title //title Sub-

trees

8.3 c Wildcard dblp/*//title //title

8.4 a Path
Complement

Parent operator
‘..’ and Ancestor-
descendant

//book/year/../title/tn //book/title/tn Values

8.4 b Parent operator
‘..’

dblp/phdthesis/title/tn/..
/tt

dblp/phdthesis/title/tt

Ch. 8

178

35 70 105 140 175 210 245 280 315 350
0

2

4

6

8

10

12

14

16

18

20

Data Size (mb)

IO
 T

im
e
 (

s
e
c
s
)

Semantic Path Expansion

Original XPath Query

Semantic XPath Query

35 70 105 140 175 210 245 280 315 350
0

10

20

30

40

50

60

Data Size (mb)

IO
 T

im
e

 (
s
e

c
s
)

Semantic Path Expansion

Original XPath Query

Semantic XPath Query

35 70 105 140 175 210 245 280 315 350
0

5

10

15

20

25

30

Data Size (mb)

E
x
e

c
u

ti
o

n
 T

im
e

s
 (

s
e

c
s
)

Semantic Path Expansion

Original XPath Query

Semantic XPath Query

Figure 7.4. Semantic Path Expansion

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
s
)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
s
)

(c)

(b)

(a)

 Figure 8.2 Performance Results Before and After Semantic Path Expansion Applied

Ch. 8

179

Although the first element in the XPath query is in Figure 8.2 (c) starts with ‘*’, the

evaluation of the XPath query still starts from the root element dblp. This is because

‘*’ is not led by the ‘//’ relationship. The evaluation then searches for book as an

immediate child of dblp where children of book are unknown, represented by ‘*’.

Therefore, the evaluation continues to move down until it locates tn. To be able to

search for all tn of book, it must repeat the same evaluation process. Due to the use

of ‘/’ in the XPath query and the semantic XPath query, the improvement between

the original XPath query and the semantic XPath query is not significant in this case.

For the descendant-ancestor ‘//’ and the wildcard ‘*’ in the original XPath queries in

8.2 a, b & c, each is mapped to a single path fragment as each XPath query matches

only one unique path. It also observes that the query with ‘//’ performs worst than the

query with ‘*’ in any case. For such an XPath query pattern, semantic path

expansion transformation is an optimization device if it can minimize the use of

descendant-ancestor ‘//’ and/or wildcard ‘*’.

b. Semantic Path Contraction Transformation

Figure 8.3 (a) depicts the performance results for XPath query //*/isbn and its

semantic XPath query. The XPath query uses the ‘//’ relationship and the wildcard

‘*’. The semantic path contraction transforms the XPath query by replacing the path

fragment ‘//*/’ with ‘//’ based on the unique paths dblp/book/isbn,

dblp/incollection/isbn and dblp/proceedings/isbn located in Q. This is done for two

reasons: (1) element isbn is the target element in the XPath query therefore any

unique path that has isbn as its target element which has a valid parent element is

picked up; and (2) the returned data set produced by XPath query //*/isbn is

equivalent to the result produced by dblp/book/isbn, dblp/incollection/isbn and

dblp/proceedings/isbn.

The graph in Figure 8.3 (a) shows that the performance results of the semantic XPath

query grows linearly with the increase in data sizes. The growth of 20% for the larger

data sets indicates that the bigger the data sizes, the greater the improvement on

query performance will be.

Ch. 8

180

35 70 105 140 175 210 245 280 315 350
10

11

12

13

14

15

16

17

18

19

20

Data Size (mb)

E
x
e

c
u

ti
o

n
 T

im
e
 (

s
e

c
s
)

Semantic Path Contraction

Original XPath Query

Semantic XPath Query

35 70 105 140 175 210 245 280 315 350
14

16

18

20

22

24

26

28

Data Size (mb)

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e
c
s
)

Semantic Path Contraction

Original XPath Query

Semantic XPath Query

35 70 105 140 175 210 245 280 315 350
14

16

18

20

22

24

26

28

30

32

34

Data Size (mb)

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e
c
s
)

Semantic Path Contraction

Original XPath Query

Semantic XPath Query

(a)

(c)

(b)

Figure 8.3 Perfomrance Results Before and Afer Semantic Path Contraction Applied

 The use of ‘//*’ by the original XPath query //*/isbn means that for every

hierarchical element, starting from the root, an element is evaluated for a descendant

which must be a parent of isbn. Unlike the original XPath query, the semantic XPath

query evaluates every element, that starts from the root, for a descendant that must

Ch. 8

181

satisfy isbn. The evaluation process performed by the semantic XPath query is

slightly less than the evaluation performed by the original XPath query.

Figure 8.3 (b & c) shows the performance result of XPath queries */*//title and

dblp/*//title and their semantic counterparts. Note that these two XPath queries use

both wildcard ‘*’ and hierarchy ‘//’ before the descendant title. The semantic path

contraction transforms XPath queries */*//title and dblp/*//title by first locating

unique paths that that has title and its further descendant due to the use of ‘//’

preceding titles. The unique paths: dblp/article/title/tn, dblp/article/title/tt,

dblp/article/title/ref, dblp/inproceedings/title/tn, dblp/inproceedings/title/tt,…..,

dblp/www/title/tn, dblp/www/title/tt, dblp/www/title/ref are located in list Q.

These located unique paths contain descendants of title in the whole document. Due

to the existing multiple unique paths, the semantic path contraction transformation

then contracts the XPath queries to a single semantic XPath query, which is //title.

The performance of the semantic XPath queries in Figure 8.3 (b & c) show a

constant improvement along with the growth in data sizes. Both graphs show a

significant improvement of an average of 40% for smaller data sizes but a decline in

improvement at a constant rate on an average of 25%, as the data size grow bigger.

Both XPath queries */*//title or dblp/*//title have appeared to require the same

evaluation number of elements such as dblp, article, precedings, books,.., www that

occur before title due to the use of ‘*//’. While dblp/*//title appears to require less

evaluation space due to the specified dblp/*, XPath query */*//title appears to

require more evaluation space due to the specified */*. The first wildcard * in

///title does not make much difference in terms of evaluation space as it is

identified as the root element dblp when evaluation begins.

By eliminating the wildcard ‘*//’ in both XPath queries, a significant improvement

would be expected as the data issue grows. However, this does not appear to do so;

this could be due to the contracted path where XPath queries in both 8.2 (b & c) are

contracted on the element type title. XPath query in 8.2 (a) is contracted on the leaf

element. In the case of 8.2 (b & c), they both produce multiple semantic XPath

queries. However, the overall performance of the semantic XPath queries is much

better as shown in the graphs.

Ch. 8

182

Based on our analyses and results, it can be concluded that semantic path contraction

is an optimization device especially when it occurs on the leaf element.

c. Semantic Path Complement Transformation

Figure 8.4 (a & b) shows query performance results of XPath queries

//book/year/../title/tn and dblp/phdthesis/title/tn/../tt as well as their semantic

XPath query. Both XPath queries use parent operator ‘..’.

35 70 105 140 175 210 245 280 315 350
0

2

4

6

8

10

12

14

16

18

Data Size (mb)

IO
 T

im
e

 (
s
e

c
s
)

Semantic Path Complement

Original XPath Query

Semantic XPath Query

35 70 105 140 175 210 245 280 315 350
0

5

10

15

20

25

30

35

Data Size (mb)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
s
)

Semantic Path Complement

Original XPath Query

Semantic XPath Query

E
xe

c
u
ti
o
n
 T

im
e
 (

s
e
c
s
)

(a)

(b)

Figure 8.4 Performance Results Before and After Semantic XPath Complement Applied

The semantic path complement transforms the XPath queries by removing year/../

and tn/../ from the XPath queries //book/year/../title/tn and

dblp/phdthesis/title/tn/../tt respectively.

Ch. 8

183

The XPath query //book/year/../title/tn matches two unique paths dblp/book/year

and dblp/book/title/tn where book is the branching element of year and title, in

which year is the condition element.

The XPath query dblp/phdthesis/title/tn/../tt matches two unique paths

dblp/phdthesis/title/tn and dblp/phdthesis/title/tt where title is the branching

element (refer to Chapter 3 for the definition) of tn and tt, in which tn is the

condition element. The semantic path complement transformation removes tn/.. from

dblp/phdthesis/title/tn/../tt and year/.. from //book/year/../title/tn with respect to

occurrence constraints of year and tn restricted in the schema that satisfy the

semantic rule.

Both the query performances in Figure 8.4 (a & b) performed by semantic XPath

query improves linearly along with the growth in data sizes. The use of parent ‘..’

requires the execution of an XPath query that is specified with a query condition

element. The semantic path complements the transformation by removing the query

condition elements from the XPath queries to reduce the processing of multiple path

expressions. That is, the path expression from the root to the target element is

considered as one path. The root expression to the query condition element is

considered as another path. Hence, the execution of each XPath query is considered

as the execution of two path expressions.

As shown in Figure 8.4 (a), the performance of the query indicates that the semantic

XPath query outperforms the original query by between 2% and 8%. The rate of

improvement on query performance continues to increase as the size of the data set

grows.

Figure 8.4 (b) shows a fluctuating improvement on query performance. This is

normal as there are only a small number of PhD thesis titles existing in the database.

Nevertheless, when the information increases relatively in larger data sets, the query

performance improvement actually increases as expected. As has also been observed,

the execution times by XPath queries in Figure 8.4 (b) are more than those for 8.4

(a). This is probably due to a higher number of hierarchies in one XPath query than

in the other.

Ch. 8

184

Based on the result patterns in Figure 8.4 (a & b), it can be concluded that the

semantic path complement transformation is an optimization device with regards to

two noticeable facts: 1) the greater the amount of data present for retrieval, the

greater the improvement on query performance achieved by the semantic path

complement query will be and 2) when more query hierarchies appear in the XPath

queries, the longer it will take longer for traversal.

8.3 Semantic Transformations for Predicates

In this section, given XPath queries are transformed by applying predicate

elimination and predicate reduction semantic transformations.

a. Predicate Elimination Semantic Transformation

Figure 8.6 (a) shows the query performance results of the XPath query

dblp/phdthesis[supervisor=/dblp/ phdthesis/@key]/title/tn and its counter-part.

The predicate contains a single condition of an element that has a key reference

attribute constraint. The comparison element supervisor has a value of a path

expression /dblp/ phdthesis/@key that has only a parent-child relationship. In order

to remove the predicate, the query condition supervisor=/dblp/ phdthesis/@key

must be determined with a full-qualifier status.

As the query condition status determination rule locates the matched unique path

dblp/phthesis/supervisor in list Q, and dblp/phthesis/supervisor =

dblp/phthesis/@key in list C that allows a full-qualifier status to be awarded to the

condition. To remove the predicate, the predicate reduction semantic transformation

then verifies that the supervisor element satisfies the semantic transformation rules.

In this query, the minimal occurrence must be 1 or above and the query join

condition is NULL.

Ch. 8

185

Figure Query Type Join XPath query Semantic XPath Query
Returned
Results

8.6 a
Query
Condition with
Path Value

None

dblp/phdthesis[supervisor=/dbl
p/phdthesis/@key]/title/tn

dblp/phdthesis/title/tn

Values of
Leaf
Node/Attr
ibutes

8.6 b
Query
Condition with
No Value

dblp/proceedings[title/tn]/url

dblp/proceedings/url

8.6 c
Query
Condition with
Range Value

dblp[proceedings/year>=1950]/
inproceedings/title/tn

dblp/inproceedings/title/tn

8.7 a

Connective
Query
Conditions
with
RangeValue

AND

dblp/incollection[author and
year >=1950]/title/tn

dblp/incollection/title/tn

8.7 b

Connective
Query
Conditions
with Range
Value

dblp/incollection[title and year
>=1950]/title/tt

dblp/incollection/title/tt

8.8 a
Connective
Query
Condition with
Attribute and
Range value

//book[@mdate and title/tn and
year >=2000]/@key

//book[year>=2000]/@key

8.8 b
//book[@mdate and title/tn and
year >=2000 and author]/@key

//book[year>=2000]/@key

8.9 a

Connective
Query
Conditions
with .Matching
Value &
Range Value OR

dblp/book[year=1948 or
year<=2010] /author

dblp/book[year<=2010]/autho
r

8.9 b

Connective
Query
Conditions
with Range
Value

dblp/book[year < 1950 or
url]/title/tn

dblp/book[url]/title/tn

Figure 8.5 Original and Semantic XPath Queries and Related Information

Figure 8.5 summarizes a set of XPath queries, including the figure numbers where

the query performance is provided, their query types, types of query conditions joins

in the predicates, the corresponding semantic XPath query and the result selection

type.

The query performance result in Figure 8.6 (a) increases linearly along with the

increase of data sizes. The query performance of semantic XPath query is effectively

improved by between 20% and 25% on larger data sets of 210 to 350 megabytes. The

query result pattern for the smaller data sets shows an improvement. From the

improvement pattern in the larger data set, it appears that the key reference element

Ch. 8

186

does not perform effectively on smaller data sets. It can be concluded that semantic

transformation for predicate reduction for this query pattern is an optimization

device.

35 70 105 140 175 210 245 280 315 350
0

5

10

15

20

25

Data Size (mb)

IO
 T

im
e

 (
s
e
c
s
)

Predicate Elimination

Original XPath Query

Semantic XPath Query

35 70 105 140 175 210 245 280 315 350
0

5

10

15

20

25

30

Data Size (mb)

IO
 T

im
e
 (

s
e

c
s
)

Predicate Elimination

Original XPath Query

Semantic XPath Query

35 70 105 140 175 210 245 280 315 350
0

5

10

15

20

25

30

Data Size (mb)

C
P

U
 T

im
e

 (
s
e
c
s
)

Predicate Elimination

Original XPath Query

Semantic XPath Query

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
s
)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
s
)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
s
)

(a)

(b)

(c)

Figure 8.6 Performance Results Before and After Predicate Elimination Applied

Ch. 8

187

Figure 8.6 (b & c) show the performance results of XPath queries

dblp/proceedings[title/tn]/url,

dblp[proceedings/year>=1950]/inproceedings/title/tn and of their semantic XPath

queries. Both XPath queries demonstrate a single query condition using a path

fragment. While the first query condition title/tn has no comparison value, the

second query condition title/tn has a comparison value of 1950.

The query condition status determination rule locates the matched unique paths

dblp/proceedings/title/tn and dblp/proceedings/url in list Q and proceedings/year

1950 2020 in list C. Such located information gives both query conditions full-

qualifier status.

To remove the predicates, the predicate reduction semantic transformation then

verifies whether the query conditions title/tn and proceedings/year >= 1950 satisfy

the semantic transformation rules. List C shows that the minimal occurrence of title

and year under proceedings is 1 and the published year is between 1950 and 202 as

well as that the query join condition is NULL. Hence, the predicates have been

successfully removed from the XPath queries.

As shown in Figure 8.6 (b & c), the query performance improvement for both

semantic XPath queries increases linearly along with the growth in the size of data

sets. The average gain improvement on query performance is between 25% and 50%.

Hence it can be concluded that the predicate reduction semantic transformation,

applied to remove a predicate when its query condition is a path fragment, is an

optimization device.

The improvement of query performance achieved by semantic XPath queries can be

explained on follows: for all the semantic XPath queries in 8.6, the evaluation starts

from the root that has children which must satisfy specific elements before the next

children are evaluated. Due to the hierarchy ‘/’ used in all semantic XPath queries,

the evaluation is able to minimize the search space. With the original XPath queries,

the hierarchy element in which the predicate is specified is evaluated before the

hierarchy element in the path is evaluated.

Ch. 8

188

For instance in 8.6 (a) the evaluation of XPath query starts from the root dblp that

has children which must satisfy element phdthesis where the predicate

[supervisor=/dblp/phdthesis/@key] is specified. The phdthesis is evaluated for

children that must satisfy element supervisor, which must also satisfy a referenced

value for dblp/phdthesis/@key. In 8.6 (b) the predicate [title/tn] does not have a

comparison value and the evaluation needs to assure the condition path is valid

title/tn before the next hierarchy element url in the main path is evaluated.

Therefore, the required evaluation of conditions and the path condition in the XPath

queries takes much longer to process.

35 70 105 140 175 210 245 280 315 350
0

5

10

15

20

25

30

35

40

45

50

Data Size (mb)

E
x
e

c
u

ti
o
n

 T
im

e
 (

s
e

c
s
)

Semantic Predicate Elimination

Original XPath Query

Semantic XPath Query

35 70 105 140 175 210 245 280 315 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Data Size (mb)

E
x
e
c
u

ti
o

n
 T

im
e

 (
s
e
c
s
)

Semantic Predicate Elimination

Original XPath Query

Semantic XPath Query

 (a)

 (b)

Figure 8.7 Performance Results Before and After Predicate Elimination Applied

Figure 8.7 (a & b) shows the query performance results of XPath queries

dblp/incollection[author and year >=1950]/title/tn, dblp/incollection[title and

year >=1950]/title/tt and of their semantic counterparts. The XPath queries

Ch. 8

189

demonstrate the use of the AND operator between the query conditions. In order to

remove the predicate, each condition must be verified as a full-qualifier.

Predicate reduction semantic transformation eliminates the predicate [author and

year >=1950]/title/tn from the XPath query dblp/incollection[author and year

>=1950]/title/tn with the regards to the matching unique paths

dblp/incollection/author, dblp/incollection/year and dblp/incollection/title/tn. In

addition, elements author and year have occurrences that satisfy the semantic

transformation rule. The range values of element year must fully match the range

values of the year element under collection specified in the XML Schema.

The predicate reduction semantic transformation is also able to remove the predicate

in the XPath query dblp/incollection[title and year >=1950]/title/tt with regards to

the matching unique paths dblp/incollection/title, dblp/incollection/year and

dblp/incollection/title/tt. Based on the information located in list C, elements title

and year have occurrence that satisfies the semantic transformation rule and the

range value of element year fully matches the range value of year under collection

specified in the XML Schema.

The query performance improvement grows linearly along with the growth in data

sizes in Figure 8.7 (both a & b). This means that the overall performance of the

semantic XPath queries is better than that of the XPath queries. However, due to the

simple condition and the insignificant amount of existing data in the DBLP database,

semantic XPath queries do not show a significant improvement. Nevertheless, there

is some evidence of improvement in query performance based on the graph patterns

shown in Figure 8.7.

b. Predicate Reduction Semantic Transformation

This section demonstrates the predicate reduction semantic transformation that

reduces the size of a predicate by removing some conditions which are identified as

full-qualifiers.

Figure 8.8 (a & b) shows the query performance the XPath queries //book[@mdate

and title/tn and year >=2000]/@key, //book[@mdate and title/tn and year

Ch. 8

190

>=2000 and author]/@key and of their semantic counterparts. The query conditions

in the predicate demonstrate the use of the AND operator.

The predicate reduction semantic transformation, based on the identified unique

paths, determines the full-qualifiers for query conditions. This is because @mdate

has a required attribute value, and both title/tn and author have an occurrence

constraint that satisfies a minimal occurrence of 1 as required by the semantic rule

proposed in Chapter 5. Therefore, @mdate, title/tn and author have been removed

from the predicates.

35 70 105 140 175 210 245 280 315 350
0

2

4

6

8

10

12

14

16

18

Data Size (mb)

IO
 T

im
e
 (

s
e
c
s
)

Predicate Reduction

Original XPath Query

Semantic XPath Query

35 70 105 140 175 210 245 280 315 350
0

2

4

6

8

10

12

14

16

18

20

Data Size (mb)

IO
 T

im
e
 (
s
e
c
s
)

Predicate Reduction

Original XPath Query

Semantic XPath Query

(a)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
s
)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
s
)

(b)

Figure 8.8 Performance Results Before and After Predicate Reduction Applied

As shown in Figure 8.8 (a and b) the semantic XPath queries outperform the original

XPath queries between 2% and 20%. The query performance for both the XPath

query and the equivalent semantic XPath query shows a linear pattern along with the

growth of data sizes. The semantic XPath queries outperform the original XPath

Ch. 8

191

queries due to reduced evaluation of the query conditions as @mdate, title/tn and

author have been removed from the XPath queries after performing the

transformation.

The slowness of query performance shown by the original XPath queries can be

caused by the fact that each query condition is evaluated along the path that must

start from the root of tree. For example, XPath query //book[@mdate and title/tn

and year >=2000]/@key has two query conditions @mdate and title/tn and year

>=2000, therefore the evaluation must start from the root of the document which is

dblp until it finds the descendant book, then it continues to search for @mdate. To

evaluate title/tn, it starts again from the root of the document tree which is dblp and

traverses down until it finds title/tn under book. Once the conditions are satisfied,

the book is then evaluated which must be started from the root of document tree

dblp, for @key.

35 70 105 140 175 210 245 280 315 350
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Data Size (mb)

E
x
e

c
u
ti
o

n
 T

im
e

 (
s
e
c
s
)

Semantic Predicate Reduction

Original XPath Query

Semantic XPath Query

35 70 105 140 175 210 245 280 315 350
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Data Size (mb)

E
x
e
c
u

ti
o
n

 T
im

e
 (

s
e

c
s
)

Semantic Predicate Reduction

Original XPath Query

Semantic XPath Query

(a)

(b)

Figure 8.9 Performance Results Before and After Predicate Reduction Applied

Ch. 8

192

Graphs in Figure 8.9 (a & b) depict the query performance results of XPath queries

dblp/book[year=1948 or year<=2010]/author, dblp/book[year < 1950 or

url]/title/tn and their semantic counterparts. The XPath queries demonstrate the use

of OR between the query conditions.

To confirm the correctness of path expressions in XPath queries

dblp/book[year=1948 or year<=2010]/author and dblp/book[year < 1950 or

url]/title/tn, semantic transformation uses matching unique paths dblp/book/year,

dblp/book/author, dblp/book/url and dblp/book/title/tn in list Q. For

dblp/book[year=1948 or year<=2010]/author the semantic transformation first

verifies the query conditions year=1948 and year < 1950 and confirms that they are

mutually inclusive because year=1948 is never present in the database because the

inclusive constraint set for year is between 1950 and 2020. Query conditions

year<=2010 and url are partial-qualifers as the specified value 2010 is within the

range values of the year and the url has a minimal value of 0 for the occurrence

constraint found in list C.

Due to the use of OR between two query conditions in [year=1948 or year<=2010],

the mutually inclusive query condition exists because year = 1948 is in conflict with

what was found for the years between 1950 and 2020 in list C. The mutual inclusive

query condition does not cause the whole XPath query to return an empty answer,

but allows the co-existence of data produced by the other query condition year

<=2010.

The result patterns in Figure 8.9 (a & b) show a linear growth along with the growth

in data sizes. With the increase in data sizes, the rate of improvement of between

50% and 85% achieved by semantic XPath queries also increases significantly. This

shows that the larger the data sizes, the better the improvement of query performance

for the semantic XPath queries will be.

The transformation of an XPath query using AND between the query conditions is

very different from those using OR. For OR between query conditions, as soon as it

is verified that one condition is a full-qualifier, the semantic rule can immediately

remove the condition. Whereas if AND is used between the query conditions, the

query condition cannot be removed even though it is verified and given a full-

Ch. 8

193

qualifier; all query conditions are completely verified and then the query condition is

removed based on its status.

8.4 Semantic Transformation for Axes

This section demonstrates the semantic transformations for the XPath query that are

specified with XPath axes. XPath query performance specified with XPath axes is

evaluated to identify opportunities for semantic transformations. The family of XPath

axes includes child, descendant, descendant-or-self, parent, self, following,

following-sibling, preceding, preceding-sibling, ancestor and ancestor-or-self.

Figure 8.10 summarizes a list of XPath queries used to perform the evaluation.

Figur
e

XPath Query Semantic XPath Query
Returned
Result

8.11a
dblp/article/preceding-
sibling::*’

dblp/article[position() < last()]

Sub-tree

8.11b
dblp/article/following-
sibling::*

dblp/article[position()>1],dblp/inproceedings,
dblp/proceedings,dblp/book,dblp/phdthesis,
dblp/incollection,dblp/www

8.12a
dblp/article/title/preceding
::*

dblp/article[position()<last()],
dblp/article[position=last()]/author

Values of
attributes and leaf
nodes

8.12b

dblp/inproceedings/title/fol
lowing::*

dblp/inproceeding[position()>1],dblp/inproceeding[po
sition()=1]/pages,dblp/inproceeding[position()=1]/ye
ar, dblp/inproceeding[position()=1]/url,
dblp/proceedings, dblp/book,
dblp/incollection/dblp/phdthesis, dblp/www

Values of
attributes, leaf
nodes and sub-
trees

8.13a dblp/*/title/ancestor::*

dblp,dblp/article,
dblp/inproceedings,dblp/proceedings,
dblp/book,dblp/incollection,dblp/phdthesis,
dblp/www

Sub-trees

8.13b dblp/*/ancestor-or-self::*

dblp,dblp/article,
dblp/inproceedings,dblp/proceedings,
dblp/book,dblp/incollection,dblp/phdthesis,
dblp/www

8.14a //inproceedings[@key]/titl
e[tn]/preceding-sibling::*

//inproceedings/author Values of
attributes and leaf
elements

8.14b //article[@key]/title[tn]/pre
ceding::*

//article[position()=last()/author
//article[position()<last()]

Figure 8.10 Original and Semantic XPath Queries and Related Information

Ch. 8

194

Figure 8.11 (a & b) shows the query performance result of XPath queries

dblp/article/preceding-sibling::*, dblp/article/following-sibling::* and their

semantic counterparts. The XPath queries demonstrate the use of preceding-sibling

and following-sibling axes.

The semantic transformation removes the preceding-sibling and following-sibling

axes from the XPath queries by following the semantic rule proposed in Chapter 5.

The preceding-sibling and following-sibling XPath queries retrieve information

about siblings that occur before or after the last or first occurrence of the context

element.

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

Data Size (mb)

IO
 T

im
e

 (
s
e
c
s
)

Axis Elimination

Original XPath Query

Semantic XPath Query

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Data Size (mb)

IO
 T

im
e

 (
s
e

c
s
)

Axis Elimination

Original XPath Query

Semantic XPath Query

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
s
)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
s
)

(a) Before and After Removing Preceding-sibling Axis

(b) Before and After Removing Following-sibling Axis

Figure 8.11 Before and After Semantic Transformation for Preceding-/Following-sibling Axis

Applied

Ch. 8

195

The unique paths listed before dblp/article whose context element must be the

sibling of article and after dblp/article whose context element must the sibling of

article in list Q, are the target semantic XPath queries. XPath query selects the

information of the context element that will be added to the target semantic XPath

queries if it has an occurrence constraint in which the minimal occurrence is 1 on

above and the maximal occurrence is above 1.

For the XPath query dblp/article/preceding-sibling::* there are no unique paths to

produce siblings that precede the article. When the occurrence constraint of article

has an occurrence between 1 and many, the unique path selects the ‘all’ article, the

transformation would then:

• add the context function [position()<last()] to the article so that the last

occurrence of article is not selected.

For the XPath query dblp/article/following-sibling::* unique paths such as

dblp/inproceedings, dblp/proceedings, dblp/book,dblp/phdthesis,

dblp/incollection, dblp/www are the semantic XPath queries because they are listed

after the unique path that selects the articles. In addition, the occurrence constraint of

article has an occurrence between 1 and many; unique path selects the information

of article and this must be added to the semantic XPath queries. The transformation

would:

• add the context function [position()=1] to the article so that the first

occurrence of article is not selected.

 See Figure 8.10 for the full list of the semantic XPath queries.

The query performance results in Figure 8.11 (a & b) indicate an exponential curve

along with the growth in the data sizes with the original XPath queries, but a linear

growth along with the growth in the data sizes with the semantic XPath queries. In

both 8.11 (a & b) figures, the semantic XPath queries significantly outperform the

original XPath queries by between 50% and 80%. The difference in query

performance between the XPath queries and their semantic XPath queries indicates a

significant query improvement.

Ch. 8

196

As mentioned earlier, semantic transformation removes the axis from the XPath

query to support some commercial database systems which are unable to support the

processing of XPath query axes. One of the most outstanding commercial database

systems (For lisencing reason, the name of the database can not be disclosed) is

adopted to carry out the experimental evaluation; hence, the semantic XPath queries

significantly outperform the original XPath queries.

Figure 8.12 (a & b) shows the performance results of the XPath queries

dblp/article/title/preceding::*, dblp/inproceedings/title/following::* and their

semantic XPath queries. The XPath queries demonstrate the use of preceding and

following axes.

10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

Data Size (mb)

IO
 T

im
e
 (

s
e
c
s
)

Axis Elimination

Original XPath Query

Semantic XPath Query

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

Data Size (mb)

IO
 T

im
e
 (

s
e
c
s
)

Axis Elimination

Original XPath Query

Semantic XPath Query

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
s
)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
s
)

(a) Before and After Removing Preceding Axis

(b) Before and After Removing Following Axis

Figure 8.12 Before and After Semantic Transformation for Preceding/Following Axis Applied

The semantic transformation removes the preceding and following axes from the

XPath queries by following the semantic rule proposed in Chapter 5. The preceding

Ch. 8

197

and following XPath queries retrieve information that occurs before or after the last

or the first occurrence of the context element including the ancestors or descendants.

Due to the efficiency of the derivation of our proposed unique paths described earlier

in Chapter 4, the unique paths listed before dblp/article/title and those after

dblp/inproceedings/title in list Q are the target semantic XPath queries. XPath

query selects the information of context element which will be added to the target

semantic XPath queries if it has an occurrence constraint in which the minimal

occurrence is 1 and above, and the maximal occurrence must be above 1.

For XPath query dblp/article/title/preceeding::*, unique paths such as

dblp/article/author is the semantic XPath query, because it is listed before the

unique path that selects the title of the article. In addition, the occurrence constraint

of the article title has an occurrence between 1 and many, so the unique path selects

the information of article title that must be added to the semantic XPath queries. The

transformation would:

• add the context function [position()<last()] to the unique path dblp/article so

that the last occurrence of article title in the whole document is not selected.

• add the context function [position()=last()] to the author in unique path

dblp/article/author so that all authors under the last article are selected; this

is because the author occurs before article title in the XML document.

For XPath query dblp/inproceedings/title/following::*, unique paths such as

dblp/proceedings, dblp/book, dblp/incollection/dblp/phdthesis, dblp/www

are the semantic XPath queries because they are listed after the unique path that

selects the inproceedings title. In addition, since the occurrence constraint of title of

inproceedings has an occurrence between 1 and 1, the unique path selects the

information of title of article that must be added to the semantic XPath queries;

hence, the transformation would:

• add [position()>1] to element inproceedings in dblp/inproceeding so that it

can select all information of inproceedings except the first occurrence of

inproceedings

Ch. 8

198

• add [position()=1] to element inproceedings in dblp/inproceeding/pages,

dblp/inproceeding/year, dblp/inproceeding/url to select all information,

occur after title, of the first occurrence of inproceedings

The query performance result patterns shown in Figure 8.12 (a) indicate an

exponential growth along with the growth of the data sizes by the original XPath

query, and a linear growth along with the growth in the data sizes by a set of

semantic XPath queries. It has been observed that the total time taken by the

semantic XPath queries is significantly smaller compared with the time taken by the

original XPath query, with the performance improvement percentage being between

95% and 100%.

As can be seen, the query performance result patterns in Figure 8.12(b) increase

linearly along with an increase in the data sizes for both the original and the semantic

XPath queries. The performance by the semantic XPath queries shows a consistent

improvement rate (almost 90%), along with the growth in the data sizes.

As demonstrated in Figure 8.12 the query performance of XPath queries specified

with preceding or following axis are significantly slow as the data sizes increase, but

query performance performed by semantic XPath queries increases linearly. The

semantic transformations are considered as optimization devices especially for XML-

enabled database management systems that inadequately support XPath axes.

Figure 8.13 (a & b) shows the query performance results of the XPath queries

dblp/*/title/ancestor:*, dblp/*/title/ancestor-or-self:* and their semantic XPath

queries. These XPath queries demonstrate the use of ancestor and ancestor-or-self

axes.

The XPath queries specified with the ancestor axis selects information about all the

ancestors of the context element. The semantic transformation locates all the unique

paths that are listed before the one that selects the information of the context element.

For the XPath query dblp/*/title/ancestor:*, the unique paths dblp, dblp/article,

dblp/inproceedings, dblp/proceedings, dblp/book, dblp/incollection,

dblp/phdthesis and dblp/www are the semantic XPath queries. They are listed

before all the unique paths that select information about title in list Q. Due to the use

Ch. 8

199

of ‘*’ between dblp and title elements in the XPath query, further semantic XPath

queries are produced.

The XPath queries specified with the ancestor-or-self axis select information about

all the ancestors of the context element. The semantic transformation locates all the

unique paths that are listed before the one that selects the information about the

context element. For the XPath query dblp/*/title/ancestor-or-self::*, unique paths

dblp/article, dblp/inproceedings, dblp/proceedings, dblp/book dblp/incollection

dblp/phdthesis, dblp/www, dblp/article/title, dblp/inproceedings/title,

dblp/proceedings/title, dblp/book/title dblp/incollection/title,

dblp/phdthesis/title, dblp/www/title are the semantic XPath queries. They are listed

before all unique paths that select information of title in list Q.

10 20 30 40 50 60 70 80 90 100
1.5

2

2.5

3

3.5

4

4.5

Data Size (mb)

IO
 T

im
e
 (

s
e
c
s
)

Axis Elimination

Original XPath Query

Semantic XPath Query

10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

8

Data Size (mb)

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e

c
s
)

Axis Elimination

Original XPath Query

Semantic XPath Query

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
s
)

(b) Before and After Removing Ancestor-or-self Axis

(a) Before and After Removing Ancestor Axis

Figure 8.13 Before and After Semantic Transformation for Ancestor/Ancestor-Or-Self Axis

Applied

Ch. 8

200

The query performance result patterns in Figure 8.13 (a & b) show a linear growth

along with an increase in data sizes. The semantic XPath queries in Figure 8.13 (a)

show a significant query performance improvement of almost 80% initially.

Unfortunately, they show a smaller query performance improvement rate of about

30% when approaching larger data sizes. This may be caused by the irregular amount

of data being retrieved or some hiccups during the processing stage. On the other

hand, the semantic XPath queries in Figure 8.13 (b) show a constant query

performance improvement rate of between 40% and 50%. This is because the

ancestor-or-self axis can be optionally specified by the operator ‘//’ in some XML-

enabled database management systems. There may also be an interpretation between

the axis and the operator done by the database engine which is not disclosed to the

public by the vendor. This research is unable to comment on such information.

For a query specified with an ancestor-or-self axis, the performance improvement

will be reflected at a consistent rate along with the growth in the data sizes.

However, for the XPath query specified with an ancestor axis, further investigation

is planned for future work. Either the query processing foundation of the adopted

database needs further study, or a benchmark needs to be run on those queries on

which the current semantic transformations cannot perform well.

Figure 8.14 (a & b) show the query performance results of XPath queries

//inproceedings[@key]/title[tn]/preceding-sibling::*,

//article[@key]/title[tn]/preceding::* and their semantic XPath queries.

The XPath query //inproceedings[@key]/title[tn]/preceding-sibling::*

demonstrates the use of the XPath axis preceding-sibling and also of predicates. The

semantic transformation locates the unique paths that are listed preceding the unique

path selects title of proceedings. The located unique path must have a context

element that is a sibling of title, and in this case dblp/inproceedings/author is

located. In addition, the occurrence constraint of title of inproceedings has an

occurrence between 1 and 1, and apart from author as the sibling, title also has other

title as a sibling. Therefore title of inproceedings, except the last title of

inproceedings, must also be selected. Because each inproceedings has only 1 title,

Ch. 8

201

only the unique path that selects author of inproceedings would be considered to be

semantic.

As the XPath query is also specified with predicates [@key] and [tn], semantic

transformation for predicates has been applied to remove both the predicates. This is

due to the required value of attribute of key and occurrence constraint of tn, which

has an occurrence between 1 and 1. Both constraints confirm the existence of

inproceedings and title in the database.

The XPath query //article[@key]/title[tn]/preceding::* demonstrates the use of the

XPath axis preceding and also of predicates. The semantic transformation locates the

unique paths that are listed in front of the one that selects title of proceedings. The

located unique path must have a context element that is a sibling of title as well as

those that occur in front of title; in this case, unique paths are dblp/article/author

and dblp/article. However, to make the two unique paths produce a result equivalent

to the result produced by the original XPath query, semantic transformation needs to

verify the occurrence constraint of article title. The title has occurrence between 1

and 1, so the semantic transformation would:

• add the context function [position()<last()] to the article in unique path

dblp/article so that the last occurrence of article is not selected

• add the context function [position()=last()] to the article in unique path

dblp/article/author so that the last occurrence of author is selected

The patterns of performance results in Figure 8.14 (a) show a linear increase along

with the increase in data sizes. The semantic queries outperform the original XPath

queries by a percentage between 95% and 98%. On the other hand, the query

performance result patterns in Figure 8.14 (b) show an exponential growth along

with the growth in data sizes for the XPath query and a linear growth for the

semantic XPath query. The semantic queries outperform the original XPath query by

a percentage between 98% and 99.5%.

The significant query performance difference shown by the XPath queries and their

semantic XPath queries indicate a substantial evaluation required when XPath axes

and predicates are used in the XPath query.

Ch. 8

202

In the case of XPath queries in Figure 8.14, the evaluation requires both downward

and horizontal directions due to the use of the preceding-sibling axes. In addition, it

appears that the lack of support for processing XPath axes for certain types of XML-

enabled databases also contributes to the slow performance. It so happens that the

database chosen for this evaluation faced this challenge. Of course, not all XML-

enabled databases would follow this trend. However, this evaluation result leads us

to believe that our semantic transformations are very useful in preparing similar

XML-enabled database systems to meet the challenge of processing such query

XPath axes.

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

Data Size (mb)

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
s
)

Semantic Transformations

Original XPath Query

Semantic XPath Query

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

Data Size (mb)

E
x
e
c
u

ti
o

n
 T

im
e

 (
s
e
c
s
)

Semantic Transformations

Original XPath Query

Semantic XPath Query

(a) Before and After Removing Preceding-sibling Axis

(b) Before and After Removing Preceding Axis

Figure 8.14 Semantic Transformation of XPath Queries with Combination of Axes

8.5 Semantic Conflict Detection

One of the benefits of semantic transformation is that a query can be answered

without any need to access the database. Often the users are unaware of the structure

Ch. 8

203

of the data source. The users may issue XPath queries that do not satisfy the

semantics. When such situations are encountered, an XPath query will definitely

return an empty result. With semantic transformations, such XPath queries can be

detected avoiding the waste of unnecessary resources. Such detection is referred to as

semantic conflict detection.

Semantic conflict detection works like a satisfiability study of XPath queries

[Benedikt et al., 2005; Figueira, 2009; Ishihara et al., 2010]. The unsatisfied query

problem is linked more with the complexity of XPath queries, both syntactically and

semantically. However, due to the earlier use of satisfiability of semantics defined in

DTD, this work uses semantics in XML schemas to complement the earlier work on

satisfiability.

Prior to the query transformation, the semantic transformation will ensure that there

are no conflicts such as element name, query structure and irregularities in the XPath

expression. This can be achieved by using the semantics derived in given unique

paths and the constraints of elements. This section demonstrates a number of XPath

queries that are specified incorrectly in terms of either data structures or semantics. It

also shows the query performance of XPath queries without the transformation.

When these queries are transformed, the semantic conflict detection is triggered,

which will inform the user that no data is returned for a particular XPath query.

Figure XPath Query Conflicts

8.16a dblp/article[year <1950]/title/tn
Semantic conflict is detected in condition
as comparison value is out of range value
defined in the Schema.

8.16b dblp/phdthesis[supervisor = /dblp/book/@id]/title/tn
Semantic conflict is detected in condition
where path comparison value
/dblp/book/@id is not valid.

8.16c

//book/title[2]/tn

Semantic conflict is detected in index
position condition 2 which is not within
occurrence range.

8.17a dblp/article/title/following-sibling::author
Semantic conflict is detected in structural
element order as author is preceding
sibling of title in the XML Schema.

8.17b dblp/article/title/preceding::book
Semantic conflict is detected in structural
element order as book follows article in
the XML Schema.

Figure 8.15 XPath Queries with No Semantic XPath Queries

Ch. 8

204

Figure 8.15 demonstrates a series of XPath queries that do not have semantic

counterparts due to the conflicts detected in them.

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

Data Size (mb)

 E
x
e

c
u
ti
o

n
 T

im
e

 (
s
e

c
s
)

Semantic Conflict Detected

Original XPath Query

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

Data Size (mb)

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
s
)

Semantic Conflict Detected

Original XPath Query

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Data Size (mb)

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
s
)

Semantic Conflict Detected

Original XPath Query

(a)

(b)

(c)

Figure 8.16 Before and After Applied Semantic Conflict Detection of XPath Transformation

Ch. 8

205

The XPath queries in Figure 8.16 demonstrate the semantic conflicts detected in the

condition on the element that definitely returns an empty result.. The query

performance result patterns in Figure 8.16 (a, b & c) indicate a linear increase along

with an increase in data sizes regarding the empty results. This indicates that there is

a high consumption of resources during the search for answers for those queries.

The XPath queries in Figure 8.17 demonstrate the semantic conflicts detected in path

elements with regards to the order constraint of the element that definitely returns an

empty result.

10 20 30 40 50 60 70 80 90 100
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

Data Size (mb)

 E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
s
)

Semantic Conflict Detected

Original XPath Query

(b)

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Data Size (mb)

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
s
)

Semantic Conflict Detected

Original XPath Query

(a)

Figure 8.17 Before and After Applied Semantic Conflict Detection Transformation

The patterns of performance result patterns in Figure 8.17 (a & b) indicate a linear

increase along with an increase in data sizes. The resulting pattern demonstrates that

there is a significant amount of execution time spent on the search for answers for

those queries. By using semantic transformation, the average time taken to transform

Ch. 8

206

the XPath queries shown in Figure 8.17 is between 0.091 and 0.186 seconds, which

is negligible when compared to the time take by the original queries.

8.6 Summary

This chapter has presented an evaluation of the proposed techniques for semantic

transformations using a real data set, that of DBLP together with the accompanying

DBLP XML Schema and an off-shelf commercial XML-enabled database

management system. The evaluation is carried out using incrementally scaled data

sets from the DBLP data set, which allows a thorough analysis of the impact of query

performance. For each main category of semantic transformations, a set of XPath

queries is specified and then by applying specific semantic transformation within

each category, one or more semantic XPath queries are produced. The semantic

XPath queries and their original XPath queries produce equivalent result sets. The

experimental evaluation enables us to determine the semantic transformation as an

optimization device summarized in Figure 8.18.

Semantic

Transformation

Optimization

Devices
Optimization Devices with Limitations

Semantic Path
Expansion

�
As long as ‘//’ is expanded to one single path fragment, this
certainly reduces the path evaluation and ultimately query
processing.

Semantic Path
Complement

�
As long as ‘..’ and the condition element are removed from the
XPath query, this certainly reduces the path evaluation and
ultimately query processing.

Semantic Path
Contract

 � Optimized when ‘*’ is replaced with ‘//’ and * represented
multiple paths fragments or elements

Predicate
Elimination

� Optimized when

• Comparison elements are made up by a path fragment,
with or without a comparison value

• Comparison value is an absolute path

Predicate
Reduction

�
� Optimize when

• Comparison elements are made up by a path fragment,
with or without a comparison value

• Comparison value is an absolute path

Preceding- or
Following-sibling

Significantly optimize

Following or
Preceding

� Significantly optimize.

Ancestor /
Ancestor-or-self

� Confidently optimize when ancestor-or-self axis is removed.

Parent � Significantly optimize

Descendant or
descendant-or-self

 Optimize when ‘*’ is replaced with ‘//’

Figure 8.18 Identifiying Semantic Transformations as Optimization Devices

Chapter 9

Experimental Evaluation Using

Benchmark Data Sets

This chapter focuses on the effectiveness of the proposed semantic transformations

by conducting experimentation on Michigan benchmarking data sets. Most of the

experimental queries are the Michigan queries. However,

As discussed in Chapter 3, XML data is a tree structure expression where the depth

of the data hierarchy can greatly influence the performance of query processing. This

research has found that most of the real application data sets have shallow data

hierarchies that make the query structures less expressive. This chapter focuses on an

evaluation of expressiveness of data hierarchies by exploring more complex query

structures and predicates in XPath queries.

9.1 Performance Evaluation

As described in Chapter 7 in this experimental design, each XPath query and its

semantic XPath query over each data set would be executed n runs. The execution

time is accumulated for the last three runs. The average execution time is then

produced based on the last three runs. The average execution time is referred to as

Ch. 9

208

the performance result throughout this chapter. While the performance result for an

original XPath query is the average execution time, the performance result for its

semantic XPath query is the average execution time plus the transformation time.

The evaluation involves the comparison between the performance results of the

original XPath query and its semantic XPath query.

The reader is reminded that the constraints used to transform XPath queries are the

information in lists Q and C, which have been proposed in Chapter 4. While Q

contains a list of possible unique paths (full path expressions) derived from XML

schema, list C contains a list of constraints of elements defined in XML schema.

From the available Michigan XPath queries, the evaluation of XPath queries is

divided into three categories: Single Query condition of Value-based Comparison,

Joined Query conditions with Value-based Comparison and Twig Join with Value-

based Comparison. This experiment focuses on the XPath queries that can be

executed using the adopted XML-Enabled database management system. In short,

the performance of XPath queries specified with axes is not central to the study in

this chapter.

An XPath query and its semantic XPath query/queries are equivalent if and only if

they produce the same result set although they may be different in structure.

9.1.1 Single Query Condition with Value-based Comparison

This section presents the performance results of a set of XPath queries specified with

predicates that have only a single query condition. Figure 9.1 summarizes the

information related to XPath queries used by the experiment in this section that

includes the Query Type, XPath query, Semantic XPath query that is produced after

being transformed, and the Result Type.

Figure 9.2 shows the performance results of the benchmark XPath query

//eNest[@aLevel=2] and the equivalent semantic XPath query. For this XPath query,

semantic path expansion and predicate elimination semantic transformations are

applied to obtain the equivalent semantic XPath query.

Ch. 9

209

Figure 9.1 XPath Queries and Semantic XPath Queries

The semantic path expansion transformation first expands //eNest[@aLevel=2] to

eNest/eNest[@aLevel=2] based on the unique path eNest/eNetst located in list Q.

The first semantic XPath query is a full path that represents the number of data

hierarchies based on the value of the query condition, which in this case is 2.

Figure 9.2 Performance Results Before and After Semantic Transformations

The second semantic transformation removes the predicate [@aLevel=2] from the

semantic XPath query /eNest/eNest[@aLevel=2] by applying predicate elimination

semantic transformation. In this way, we study the impact of query performance

without using the predicate which is considered as a redundant component after the

XPath query has been expanded to a full path expression. Note that the semantic path

Figure Query Type XPath

Semantic
Selectio
n Return

 Path Expansion Predicate Elimination

9.2

Ancestor-

Descendant

//eNest[@aLevel=2] /eNest/eNest[@Level=2] /eNest/eNest Sub-tree

9.3

//eNest[@aLevel=7]/

eNest[position()=2]/

@aUnique1

/eNest/eNest/eNest/eNest/

eNest/eNest/eNest[@Level

=7]/eNest[position()=2]/@a

Unique1

/eNest/eNest/eNest/eN

est/eNest/eNest/eNest/

eNest[position()=2]/@a

Unique1

Values of

field

9.4
//eNest[@aLevel=16

]

/eNest/eNest/eNest/eNest/

eNest/eNest/eNest/eNest/e

Nest/eNest/eNest/eNest/eN

est/eNest/eNest/eNest

[@Level=16]

/eNest/eNest/eNest/eN

est/eNest/eNest/eNest/

eNest/eNest/eNest/eNe

st/eNest/eNest/eNest/e

Nest/eNest

Sub-tree

50 150 250 350 450 550
0

10

20

30

40

50

60

70

80

Data Size (mb)

E
x
e
c
u

ti
o
n

 T
im

e
 (

s
e

c
s
)

Semantic Transformations

Original XPath Query

Semantic Path Expansion

Semantic Predicate Elimination

Ch. 9

210

expansion must be applied before removing the predicate. That is because the

predicate indicates the levels of data hierarchies in the XPath query.

The performance results in Figure 9.2 show a linear increase along with the increase

in data sizes. As expected, among the three patterns of results, the query performance

of the original XPath query is the worst and the performance results of two semantic

XPath queries are almost the same. The reduction of predicate does not reduce much

of the performance as expected, as it actually reduces the verification of attributes;

however, the result does not reflect what is expected. The negligible result of

removing the predicate is possibly caused by the shallowness of the data hierarchy

indicated by the value of 2 in the query condition. To verify this, another similar

query with further data hierarchies based on the value of the query condition is

evaluated next.

Figure 9.2 show the performance of both semantic XPath queries (the former is

marked with Semantic Path Expansion and the latter is applied with Semantic

Predicate Elimination transformations) outperforms the original XPath query by

between 30% and 50%. There is a linear increase of performance results along with

the increase in the size of the data sets. Hence, it can be expected that the

improvement produced by the semantic XPath queries will continue to increase along

with the growth in the larger data sets.

The next XPath query used for evaluation is to increase the data hierarchy by

increasing the value of the query condition. Figure 9.3 provides further evidence for

the argument previously made about the cause of the negligible performance result

after the predicate has been removed as in Figure 9.2. The performance results in

Figure 9.3 are for the XPath query

//eNest[@aLevel=7]/eNest[position()=2]/@aUnique1 and its equivalent semantic

XPath queries.

As the query condition has value 7, the semantic path expansion replaces //eNest

with /eNest/eNest/eNest/eNest/eNest/eNest/eNest which is a unique path located in

Q. The first semantic XPath query

/eNest/eNest/eNest/eNest/eNest/eNest/eNest[@aLevel=7] is now produced

Ch. 9

211

showing a full path that has 7 data hierarchies based on the value 7 of the query

condition.

Figure 9.3 Performance Results Before and After Semantic Transformations

Since the XPath query has already been expanded to a full path, it is not necessary to

use the predicate that has a query condition to restrict the data hierarchy of the full

path. The semantic transformation applies a predicate elimination semantic

transformation to remove the predicate [@aLevel=7] from the first semantic XPath

query. The query performance result patterns for XPath query and semantic path

expansion XPath query in Figure 9.3 grow exponentially along with the growth in

data sizes. The query performance result pattern of the predicate reduction XPath

query increases linearly along with the data sizes. In summary, the semantic path

expansion XPath queries outperform the original XPath query by 30% to 70%.

The semantic XPath query, which is obtained by predicate elimination semantic

transformation, outperforms the semantic path expansion XPath query by between

30% and 50%, and outperforms the original XPath query by 50% to 70%. This

means that the semantic XPath query rewriting from the predicate elimination

semantic transformation performs the best. This supports the conclusion that when

the XPath query is expressive in structure, the semantic path expansion significantly

improves the query performance. Following the application of semantic path

expansion transformation and the removal of predicates, the performance

improvement is even more promising.

50 150 250 350 450 550
0

10

20

30

40

50

60

Data Size (mb)

E
x
e

c
u

ti
o

n
 T

im
e
 (

s
e

c
s
)

Semantic Transformations

Original XPath Query

Semantic Path Expansion

Semantic Predicate Elimination

Ch. 9

212

Based on the performance result shown in Figure 9.3, especially the query

performance result after the removal of the predicates, it can be concluded that the

data hierarchy used in the XPath query condition greatly contributes to query

performance. It has been proven that the deeper the data hierarchy used by the query

condition, the greater will be its effect will be on the query performance despite the

full expansion of the path as in Figure 9.3.

Predicate elimination semantic transformations undoubtedly benefit XPath queries

that delve deeply into data hierarchies. Some data tree structures are fan-out

structures [Runapongsa et al., 2006] meaning that the deeper the tree grows, the

greater its number of branches, also known as a fan-out. This means that when the

query delves into a deeper data hierarchy, there is a possibility that more data will be

returned and searching of the data tree is significantly increased. If the verification of

redundant components during processing can be eliminated, as was done in the

XPath query above, there is a significant gain in performance.

Next, another evaluation is performed based on the depth of data hierarchy. The

lowest hierarchy in the data tree is used for this experiment.

Figure 9.4 shows the performance results of the XPath query //eNest[@aLevel=16]

and its equivalent semantic XPath query.

Figure 9.4 Performance Results Before and After Semantic Transformations

50 150 250 350 450 550
0

10

20

30

40

50

60

70

Data Size (mb)

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
s

)

Semantic Transformations

Original XPath Query

Semantic Path Expansion

Semantic Predicate Elimination

Ch. 9

213

The semantic path expansion transformation first expands //eNest[@aLevel=16] to a

full path that has 16 hierarchies, which is restricted to the value of 16 in the query

condition. This full path is the located unique path in Q. The first semantic XPath

query is the full path together with the predicate [@aLevel=16]. Following the first

semantic transformation, the predicate elimination semantic transformation

eliminates the predicate [@aLevel=16] from the first semantic XPath query.

The XPath query //eNest[@aLevel=16] is similar to the earlier XPath queries in

Figures 9.2 and 9.3, except that the hierarchy of the XPath query in Figure 9.4 is

much deeper; in fact it traverses the lowest data hierarchies in the Michigan XML

document tree.

The graphs in Figure 9.4 indicate the performance results obtained by the XPath

query and its semantic XPath queries grow linearly as the data sizes increase. The

performance result obtained by applying semantic XPath query semantic path

expansion transformation is better than the performance result obtained by the

original XPath query by between 25% and 40%. However, the most significant

performance improvement, between 50% and 70%, is achieved by the semantic

XPath query in which the predicate is eliminated.

The query performance results in Figure 9.4 demonstrate that the deeper the

hierarchy data, the slower the XPath query will perform. The transformation of such

an XPath query to a full path expression and the reduction of query conditions, if

possible, would boost performance significantly.

The performance results obtained by XPath queries and their semantic XPath queries

confirm the benefits of semantic path transformation and predicate elimination

semantic transformations. Those semantic transformations would certainly provide

performance improvement for similar data hierarchies and XPath query structures.

9.1.1 Multiple Query Condition with Value-based Comparison

This section presents the query performance results of a set of XPath queries

specified with predicates that have query conditions joined with operators AND or

OR or both.

Ch. 9

214

Figure 9.5 summarizes the information related to XPath queries used in the

experiment in this section, including Query Type, XPath queries, Semantic XPath

that is produced after being transformed, and the Result Type.

Figure
Query Type XPath

Semantic
Selectio
n Return

 Path Expansion Predication Reduction

9.6

Ancestor-

Descendant,

Conjunctive

& Disjunctive

Conditions

//eNest[@aLevel =

17 or @aLevel =14

and @aFour=1]

/eNest/eNest/eNest/eNe

st/eNest/eNest/eNest/e

Nest/eNest/eNest/eNest

/eNest/eNest/eNest[@a

Level = 17 or

@aFour=1]

//eNest [@aLevel =14

and @aFour=1]

Sub-tree

9.7

Ancestor-

Descendant,

Disjunctive

Condition

//eNest[eOccasional

/@aRef and

@aSixtyFour =0]

//eNest[eOccasional/@a

Ref] (1)

//eNest[@aSixtyFour=0]

(2)

9.8

eNest[@aLevel =12

and

eOccasional/@aRef

and @aSixtyFour

=0]

/eNest/eNest/eNest/eNe

st/eNest/eNest/eNest/e

Nest/eNest/eNest/eNest

/eNest[@aLevel =12

and eOccasional/@aRef

and @aSixtyFour =0]

/eNest/eNest/eNest/eNes

t/eNest/eNest/eNest/eNe

st/eNest/eNest/eNest/eN

est[eOccasional/@aRef]

(1)

/eNest/eNest/eNest/eNes

t/eNest/eNest/eNest/eNe

st/eNest/eNest/eNest/eN

est[@aSixtyFour=0]

(2)

Figure 9.5 XPath Queries and Semantic XPath Queries

Figure 9.6 presents the performance of the XPath query //eNest[@aLevel =17 or

@aLevel =14 and @aFour=1] and its equivalent semantic XPath queries. Note that

the query condition @aLevel =17 is not specified by the actual benchmark query, it

has been added for a special purpose to perform a mutual exclusion described in

detail below.

Ch. 9

215

Figure 9.6 Performance Results Before and After Semantic Transformations

As stated in Chapter 7, the Michigan benchmark data has only 16 hierarchies; this

means @aLevel =17 is regarded as a conflict attribute. When a conflict query

condition exists and it is joined by OR with another query condition, it is known as a

mutual exclusion (refer to Chapter 3). To demonstrate the mutual exclusion,

@aLevel =17 is added to show how it allows the co-existence of two query

conditions @aLevel =14 and @aFour=1. The existence of the query condition

@aLevel =17 does not affect the overall result.

The first step in the semantic transformation applies the predicate reduction semantic

transformation to remove the query condition @aLevel =17 from the original XPath

query. This produces the first semantic XPath query.

Following the first semantic transformation, the second semantic transformation is to

apply the semantic path expansion transformation that removes the query condition

@aLevel=14 from the predicate based on a matched unique path located in Q. The

matched unique path contains 14 data hierarchies of eNest.

Notice that in this semantic path expansion transformation, the valid hierarchy query

condition @aLevel =14 is removed but it is joined by AND to the next query

condition; this is allowed as long as the full path represents the expected data

hierarchies restricted by the query condition @aLevel =14. This transformation is

done because the query condition @aLevel=14 refers to a very deep hierarchy data.

The simultaneous removal of a hierarchy query condition and expansion of the

XPath expression would reduce the validation of each data hierarchy every time it is

50 150 250 350 450 550
0

10

20

30

40

50

60

Data Size (mb)

E
x
e
c
u

ti
o
n

 T
im

e
 (

s
e
c
s
)

Semantic Transformations

Original XPath Query

Semantic Path Expansion

Semantic Predicate Reduction

Ch. 9

216

accessed. At the same time, it also guarantees a significant improvement in query

performance. This has been proven in XPath queries in Figures 9.3 and 9.4.

The graph in Figure 9.6 indicates the performance results obtained by the original

and the equivalent semantic XPath queries increasing linearly, along with the

increase in data sizes. The semantic path expansion XPath query outperforms the

original XPath query by an average of 98%. However, there is no difference in

performance results between the original XPath query and the semantic XPath query

produced by applying the predicate reduction semantic transformation to the original

XPath query. This shows that the removal of the mutual exclusive query condition is

not significant. Recall that the performance result of this semantic XPath query is the

average execution time plus the transformation time. Therefore, based on the result

depicted by the graph in Figure 9.6, there is only a slight improvement in

performance.

The scope of this research does not include a study of the storing and mapping

techniques of the database engine, especially for those XML-Enabled Databases.

Different XML-Enabled Databases may have different techniques to achieve these

kinds of storage objectives. To be able to comment on this, a broader investigation of

several systems is required and will be considered as a future extension of this

research.

Up to this point, this chapter has demonstrated the semantic transformations using a

set of XPath queries that are specified with query conditions, conditions that are

joined based on data hierarchies using an OR or AND operator. The query conditions

are also based on the attributes that appear to be on the same data hierarchy. For

example, the XPath query in Figure 9.6 has a query condition @aLevel =14 join

with the query condition @aFour=1. For every eNest at hierarchy 14th, the attribute

aFour exists.

The hierarchy query condition is eliminated and replaced by the full hierarchical path

expression that speeds up the traversing direction. This has been achieved by the

previous XPath queries in Figures 9.2 to 9.4 & 9.6. On the other hand, removing

query conditions from the XPath queries predicate does not always produce benefits,

Ch. 9

217

especially when a query condition is non-hierarchical and restricts the searching

space. We show this in the XPath query of Figure 9.7.

In Figure 9.7, we demonstrate the performance results of the XPath query

//eNest[eOccasional/@aRef and @aSixtyFour =0] and its equivalent semantic

XPath query. The XPath query has a predicate containing a set of query conditions

based on the attributes other than the hierarchy attribute. As can be seen, there is no

query condition that indicates the hierarchy of the data element; therefore, it is

expected that the searching sometimes covers the whole document.

Figure 9.7 Performance Results Before and After Semantic Transformations

The first semantic transformation removes the query condition @aSixtyFour = 0 in

accordance with the constraint of eOccasional existence in list C, which is a

dependant of aSixtyFour that have value of 0. However, not all eNest has

eOccasional. This means that as long as the eOccasional element is present,

@aSixtyFour expects to have a value of 0. This does not work in reverse, which

leads to the second semantic transformation that applies predicate reduction semantic

transformation to the original XPath query. This time the query condition

eOccasional/@aRef is removed instead of the query condition @aSixtyFour = 0.

There is a significant difference when one but not the other is removed.

50 150 250 350 450 550
0

10

20

30

40

50

60

70

80

90

100

Data Size (mb)

E
x
e

c
u

ti
o

n
 T

im
e
 (

s
e

c
s
)

Semantic Transformations

Original XPath Query

Semantic Predicate Reduction (1)

Semantic Predicate Reduction (2)

Ch. 9

218

The first predicate reduction semantic transformation produces the first semantic

XPath query //eNest[eOccasional/@aRef]. The second predicate reduction semantic

transformation produces the second semantic XPath query //eNest[@SixtyFour = 0].

The performance result patterns in Figure 9.7 increase exponentially along with the

increase in data sizes. As can be seen, there is a significant improvement of almost

100% in query performance obtained by //eNest[eOccasional/@aRef], which is the

first semantic XPath query.

In the second semantic transformation, the query condition eOccasional/@aRef is

removed from the original XPath query in accordance with the constraints set for

aSixtyFour = 0 in the schema that guarantees the existence of eOccasional. The

semantic XPath query //eNest[@SixtyFour=0] is produced by applying predicate

elimination semantic transformation. The semantic XPath query shows no difference

in performance compared with the performance result obtained by the original XPath

query. This is because the data of eNest elements do not have to be accessed if the

attribute SixtyFour of eNest is not 0.

Sometimes, additional query conditions are introduced to the predicate enabling the

query to perform more efficiently. This transformation is known as semantic

introduction [Chakravarthy et al., 1986a]. The semantic introduction transformation

has been introduced to optimize queries in deductive databases. Currently, this

research does not consider semantic introduction in XML databases because such a

transformation requires reasoning theory in order to accomplish the task, which is

beyond the scope of this research. This research uses the standard W3C semantics in

XML Schemas. This kind of transformation will be considered for a future work.

Figure 9.8 shows the query performance results of the XPath query //eNest[@aLevel

=12 and eOccasional/@aRef and @aSixtyFour =0] and the equivalent semantic

XPath queries. In this XPath query, a new query condition @aLevel =12 is added to

the predicate. The new query condition allows the query hierarchy to be expanded to

its full path and it also allows a smaller amount of data to be returned.

When applying the semantic path expansion transformation, @aLevel =12 is

removed and //eNest is expanded to a full path of 12 hierarchies according to an

Ch. 9

219

existing unique path located in list Q. The application of an XPath query semantic

path expansion transformation shows a significant linearly increasing pattern of

performance improvement of between 50% and 80% along with the increase in data

sizes.

Figure 9.8 Performance Results Before and After Semantic Transformations

Next, the predicate reduction semantic transformation is applied to remove

eOccasional/@aRef from the first semantic XPath query as when @aSixtyFour = 0,

it guarantees the existence of eOccasional/@aRef. The second semantic XPath

query is a full path expanded to 12 hierarchies with a predicate [@aSixtyFour = 0].

As indicated earlier, Figure 9.7 shows how eOccasional/@aRef and @aSixtyFour

work with each other. Therefore, the third transformation applies the predicate

reduction transformation to remove [@aSixtyFour = 0] from the first semantic

XPath query. The third semantic XPath query is a full path expanded to 12

hierarchies with a predicate [eOccasional/@aRef]

Figure 9.8 shows that the performance result in it increases linearly along with the

growth of the data sizes. The semantic XPath query, with semantic path expansion

transformation applied, outperforms the original XPath query by between 50% and

80%. The second semantic XPath query (where predicate reduction semantic

transformation is applied) shows a query performance improvement of between 10%

and 30% along with the increase in data sizes.

50 150 250 350 450 550
0

5

10

15

20

25

30

35

40

Data Size (mb)

E
x
e
c
u
ti
o
n

 T
im

e
 (

s
e
c
s
)

Semantic Transformations

Original XPath Query

Semantic Path Expansion

Semantic Predicate Reduction (1)

Semantic Predicate Reduction (2)

Ch. 9

220

As can be seen, the removal of query conditions eOccasional/@aRef or

@aSixtyFour = 0 from the semantic path expansion XPath query, have not

contributed to an improvement of query performance. It is suspected that a special

means of structuring and storing data in this particular XML-Enabled database was

required, of which users are not aware. For this reason, in the near future, there

should be a more thorough investigation into this kind of query patterns using a

similar data structure.

9.1.2 Twig Pattern Query Conditions with Value-based Comparison

So far, XPath queries that are specified with a single predicate containing simple

query conditions, have been demonstrated. In this section, XPath queries specified

with multiple predicates that represent simple or twig pattern query conditions are

used for further experiments. These complex query conditions, carried out over real

data sets, as in the previous chapter, are challenging due to the shallow depth of the

data structure; the benchmark data sets in this chapter address this challenge.

Figure Query Type Original XPath
Semantic

Selectio
n Return

 Path Expansion Axis Elimination

8.11

Ancestor-

Descendant,

Parent-child

Condition

and Self Axis

//eNest[@aLevel =

"11"][./eNest/@aFo

ur="3"]/@aUnique1

/eNest/eNest/eNest/e

Nest/eNest/eNest/eNe

st/eNest/eNest/eNest/

eNest[./eNest/@aFour

="3"]/@aUnique1

/eNest/eNest/eNest/eNes

t/eNest/eNest/eNest/eNe

st/eNest/eNest/eNest[eN

est/@aFour="3"]/@aUniq

ue1

Values of

Attribute

8.12
Twig Pattern,

(Parent-child

and

Ancestor-

descendant

Join)

//eNest[@aLevel="8

"][.//eNest[@aFour=

"3"]][./eNest[@aSixt

yFour="3"]]

/eNest/eNest/eNest/e

Nest/eNest/eNest/eNe

st/eNest[.//eNest[@aF

our="3"]][./eNest[@aSi

xtyFour="3"]]

/eNest/eNest/eNest/eNes

t/eNest/eNest/eNest/eNe

st[//eNest[@aFour="3"]][

eNest[@aSixtyFour="3"]]

Sub-tree

8.13

//eNest[@aLevel="1

2"][./eNest[@aFour

="3"]][./eNest[@aSi

xtyFour="3"]]

/eNest/eNest/eNest/e

Nest/eNest/eNest/eNe

st/eNest/eNest/eNest/

eNest/eNest[./eNest[

@aFour="3"]][./eNest[

@aSixtyFour="3"]]

/eNest/eNest/eNest/eNes

t/eNest/eNest/eNest/eNe

st/eNest/eNest/eNest/eN

est[eNest[@aFour="3"]][

eNest/[@aSixtyFour="3"]

]

Figure 9.9 XPath Queries and Semantic XPath Queries

Ch. 9

221

Figure 9.9 shows a list of XPath queries and information pertaining to the

transformations such as Query Type, Original XPath queries, Semantic

Transformation and Result Type.

Figure 9.10 shows the performance results of the XPath query //eNest[@aLevel =

"11"][./eNest/@aFour="3"]/@aUnique1 and the equivalent semantic XPath

queries.

The XPath query demonstrates the use of multiple predicates and self axis, optionally

specified with operator “.”. This is not a twig query because the first query condition

projects on an element.

Figure 9.10 Performance Results Before and After Semantic Transformations Applied

The first semantic XPath query is produced by applying double semantic

transformations. The first is semantic path expansion transformation to expand

//eNest to a full path that has eleven elements eNest using only the parent-child ‘/’

relationships. This is due to the unique path located in Q that satisfies the query

condition value of 11. The second is to remove the first predicate [@aLevel = "11"].

The second semantic XPath query is produced by applying semantic transformation

to the self axis to remove the operator ‘.’ from the second predicate and the third

predicate.

50 150 250 350 450 550
0

10

20

30

40

50

60

70

Data Size (mb)

E
x
e
c
u

ti
o
n

 T
im

e
 (

s
e
c
s
)

Semantic Transformations

Original XPath Query

Semantic Path Expansion

Semantic Transformation for XPath Axis

Ch. 9

222

The performance result patterns in Figure 9.10 show a linear increase along with the

growth in data sizes. The semantic XPath query obtained by the semantic path

expansion outperforms the original XPath query by between 40% and 50%.

However, the equivalent semantic XPath query without the operator “.” axis does not

seem to perform better than the first semantic XPath query. Nevertheless, it is not the

worst because its fluctuating pattern is not much different from the result obtained by

the first semantic XPath query. For this reason, it can be concluded that both

semantic XPath queries perform at the same rate of improvement and they both

outperform the original XPath query.

As can be seen from the semantic XPath queries, when the XPath query operator‘//’

is used, the impact is significant. However, this may not be the only factor that

affects the performance, because as explained earlier, this impact can also be caused

by the structure of the individual database engine which is not within the scope of

this research. However, if the impact is caused by some implicit ways of specifying

queries, this can be handled. In this case, path component such as ‘//’ has been

eliminated by the semantic path expansion transformation. The result shows a great

improvement in performance after this elimination.

The next evaluation demonstrates the use of more complex query conditions in an

XPath query, which is referred to as a ‘twig pattern’ query condition.

Figure 9.11 shows the performance result obtained by the XPath query

//eNest[@aLevel="8"][.//eNest[@aFour="3"]][./eNest[@aSixtyFour="3"]]. Due

to the nested query condition in the second and the third predicates

[.//eNest[@aFour="3"]] and [./eNest[@aSixtyFour="3"]] respectively, this XPath

query is known as the twig pattern XPath query type [Runapongsa et al., 2006]. Such

a query condition in the second predicate is equivalent to a fragment of comparison

paths .//eNest/@aFour and ./eNest/@aSixtyFour in which each has comparison

values of 3.

In summary, the given XPath query has three predicates. While the first predicate is

based on a single element that restricts the hierarchy of the accessed data, the last

two predicates are based on query conditions that make the XPath query a twig

pattern type.

Ch. 9

223

The equivalent semantic XPath query is produced by applying the semantic path

expansion transformation which enables //eNest to be expanded to a full path of 8

eNest elements using only the parent-child relationship hierarchies. At the same

time, it also applies predicate reduction semantic transformation to remove the

predicate [@aLevel="8"] from the XPath query.

Figure 9.11 Performance Results Before and After Semantic Transformations Applied

The performance result obtained by the semantic XPath query, which is identified by

the term Semantic Path Expansion in Figure 9.11, after applying semantic path

expansion transformation, outperforms the performance result obtained by the

original XPath query by between 25% and 70%. There is also a strong linear growth

along with the increase in data sizes performed by both the XPath queries. This

confirms that the larger the dataset, the greater the improvement is in query

performance that can be achieved.

The semantic transformation of the XPath axis is applied on the first semantic XPath

query to produce the second semantic XPath query, whose performance pattern is

identified by the term Semantic Transformation for the XPath Axis in Figure 9.11.

The semantic transformation removes the self “.” axis from the first semantic XPath

query. The performance result in Figure 9.11 again indicates that the second

50 150 250 350 450 550
0

5

10

15

20

25

30

35

40

45

Data Size (mb)

E
x
e
c
u
ti
o
n

 T
im

e
 (

s
e
c
s
)

Semantic Transformations

Original XPath Query

Semantic Path Expansion

Semantic Transformation for XPath Axis

Ch. 9

224

semantic XPath query outperforms the original XPath query by between 27% and

72%.

Even though there is a slight improvement in performance obtained by the second

XPath query over the one performed by the first XPath query, both the semantic

XPath queries perform almost the same. Therefore, it is better to remove unnecessary

XPath components to optimize the performance.

Figure 9.12 shows the performance result of the selected twig pattern XPath query

//eNest[@aLevel="12"][./eNest[@aFour="3"]][./eNest[@aSixtyFour="3"]] and

its semantic XPath queries.

The selected twig pattern XPath query in this case is very similar to the previous

XPath query except that the predicate contains the query condition, which is used to

restrict the selection of hierarchical data on a much deeper hierarchy of 12. As the

second and third predicates are the same as those in the previous XPath query

(Figure 9.11), it is not necessary to repeat the earlier analysis before transformation

takes place.

The semantic XPath query is produced by applying double semantic transformations.

The first semantic XPath query is produced by applying the semantic path expansion

which enables the expansion of //eNest to a full path of 12 eNest that has only

parent-child relationships. At the same time, predicate reduction semantic

transformation is applied to remove the predicate [@aLevel="12"].

The first semantic XPath query is then transformed once more by using semantic

transformation for the axis where self ‘.’ axis is removed from the second and the

third predicates. Hence, the second semantic XPath query is produced.

Ch. 9

225

Figure 9.12 Performance Results Before and After Semantic Transformations Applied

The performance results in Figure 9.12 show a linear increase along with the growth

in data sizes. There is a significant improvement of 100% for the semantic path

expansion XPath query compared with the performance result obtained by the

original XPath query. There is a slight declined in performance of the largest data

set performed by the first semantic XPath query; this could probably be due to a

hiccup in the processing memory.

The overall benefits of using semantic transformation are that both semantic XPath

queries show a significant improvement compared with the performance of the

original XPath query. Furthermore, according to performance results the

performance improves with the increase in data sizes.

9.2 Summary

This chapter has conducted an evaluation of a series of selective benchmark XPath

queries using benchmark incremental data sets. The evaluation is based on the

semantic transformation techniques and XPath query components that are

transformed in order optimize the performance results.

The evaluation is divided into three sections:

50 150 250 350 450 550
0

5

10

15

20

25

30

35

40

45

Data Size (mb)

E
x
e
c
u
ti
o
n

 T
im

e
 (

s
e
c
s
)

Semantic Transformations

Original XPath Query

Semantic Path Expansion

Semantic Transformation for XPath Axis

Ch. 9

226

• The first evaluation section focuses on a set of XPath queries, each of which

has a predicate containing a query condition, which restricts the access to

hierarchical data depending on the type of the hierarchy, that is whether it is

shallow, medium or deep (the lowest hierarchy in the data tree).

• The second evaluation section focuses on a set of XPath queries, each of

which has predicates containing simple query conditions that are joined by

AND or OR. The query conditions restrict the access to hierarchical data

based on data that are not necessarily hierarchical data.

• The third evaluation section focuses on a set of XPath queries, each of

which has predicates containing twig patterns in a path fragment and is joined

by AND.

Most benchmark XPath queries used in the evaluation show very promising

improvement in performance after they have been transformed to equivalent XPath

queries. In some semantic XPath queries, the performance result increases

significantly after one or more query condition(s) have been removed. This is

because the removal of a query condition plays a critical role in narrowing down the

search space during the processing stage. However, there are cases when the removal

of a query condition may affect the performance result, as shown in Figure 9.7. This

discovery enables the scope of the research to extend to new findings in XML query

transformations. The challenge of introducing extra query conditions to XPath

queries is to use reasoning on semantics similar to what has been done using

reasoning techniques for deductive databases.

Chapter 10

Conclusions and Future Work

The ever-increasing adoption of XML has created a need to ensure that XML query

languages perform efficiently. Query optimization and transformation for XML

query languages, both syntactically and semantically, have received a lot of attention

by research communities in recent years. However, due to the fast progress of the

application of XML data management solutions, XML-Enabled Database

Management Systems still face several challenges. Among these challenges are

query processing specific to query optimization. Semantic query optimization utilizes

constraints in XML schemas to directly optimize a given query with a set of

optimization rules. Due to the current complexity of the XML data structure, which

is enabled by rich semantics in XML Schemas, semantic query transformations

should be performed in a more systematic manner. This research has proposed a

series of semantic transformations for XML queries for optimization purpose. In this

chapter, a summary of the work of this thesis is presented, together with the main

conclusion and an outline of topics for future work that may arise from this study.

10.1 Summary of the Contributions

Chapter 1 provided a broad overview of the XML background, XML database,

XML schemas and query processing in XML. The description explored the

following three concerns related to XML technology.

Ch. 10

228

The first is the significant growth of XML data that leads to the development of

XML schema in order to increase the supportability of further semantics to deal with

data structure and the quality of XML documents.

The second is the critical concern of efficient storage management. XML document

storage needs to be efficient. The management of permanent XML data must be able

to deal with data independence, integration, access rights, versions, views, integrity,

redundancy, consistency, recovery, and the enforcement of standards.

The third is a need to ensure that XML query languages perform efficiently.

Therefore query optimization and transformation for XML query languages, both

syntactic and semantic, have received a great deal of attention from research

communities in recent years. Due to the rapid development of XML, query

optimization still needs much attention.

The chapter describes the challenges of using semantics in XML Schema for

optimization purposes for XML queries. This chapter explained the current

complexity of the XML data structure which is enabled by the rich semantics in

XML Schema. The utilization of semantics for query optimization purposes should

be done in a more systematic manner. That can be done by leveraging the semantics

from XML Schema and using it to investigate a set of semantic transformations.

The introductory section in Chapter 1 presents an overview of XML technology,

XML schemes and XML Databases, and identifies the need for semantic

transformations. Furthermore, it proposes the use of semantics in XML Schemas to

overcome the limitations of semantics available in DTD for proposing semantic

query transformations.

The chapter also provides the research motivation for semantic query

transformations. That is, the process of applying semantics to optimize queries has

been adopted by other databases including relational, object-oriented and deductive

databases, and is also useful in XML databases due to the availability of XML

Schemas. The research motivation clarifies the difference between semantic query

transformations in XML database and other databases due to the types of XML

Ch. 10

229

constraints in XML schemas which are driven by two sets of constraints: structural

constraints and constraints imposed by elements.

Chapter 2 presented a survey and evaluation of the existing literature in the field of

XML query optimization using semantics. We categorized the existing works into

legacy databases and XML databases.

The legacy databases consist of the works of relational data, object-oriented, and

deductive databases which utilize semantics in the schemas to optimize queries.

The XML databases consist of two sub-categories: XML queries without predicates

and XML queries with predicates.

For the sub-category of XML query without predicates, we review existing

techniques that utilize semantics from XML schemas for query optimization

purposes in XML databases. An XML query (i.e. in XPath or XQuery) can be

expressed without predicates. The works in this category are further divided into

XPath query containment, tree pattern minimization and semantic query

optimization. In XPath query containment, all techniques that apply semantics to find

containment are reviewed. XPath query containment determines a set of answers of

one XPath query, which is contained in another XPath query. In tree pattern

minimization, all techniques express an XML query on a tree pattern and minimize

the size of a tree pattern for query optimization purposes. In semantic query

optimization, all works use schema semantics to formulate a set of rules, which are

then used to optimize XML queries (i.e. in XPath query and XQuery).

A predicate in an XML query expresses conditions to be fulfilled in addition to the

given structural path. A condition is a Boolean expression. It may involve

comparisons between elements and values, path expressions denoting elements to be

compared, as well as further path expressions. XML query with predicates review all

existing techniques that use semantics in XML schemes to optimize XML queries

that focus on XML query predicates.

At the end of Chapter 2, outstanding problems in these existing techniques have been

identified. The scope of the work in this thesis is defined in the context of these

problems.

Ch. 10

230

Chapter 3 describes the problem definition of using semantics in XML schemas (i.e.

DTD and XSD denoted as XML Schema or XML-Schema) to transform XML

queries for optimization purposes. Chapter 3 provided a brief overview of the

problem definitions.

Due to the increase in popularity of XML technology, XML Schema has become a

better choice due to its richness of semantics and its variety of flexible data

structures. There is a need to provide a comprehensive and systematic means of

assisting database developers to exploit the great advantage of semantics contained in

the XML Schema in order to transform XPath queries for query optimization

purposes.

The overview also points out the problems of using semantics in XML Schemas

since the types of semantics used for the important task of query optimization need to

be very clear. Also, when using semantics for query transformation, the semantics

are also useful for preventing certain types of queries from accessing databases. This

is because these queries are identified as having conflicts and definitely return empty

result sets. The overview also describes the problems of different components of

XPath query such as simple path expressions, XPath axes and XPath query axes that

need to be addressed depending on the different types of semantics in XML Schema.

In this chapter, formal definitions of the XML model and the XML Schema

structures were provided. XML query components such as the type of path

expressions, XPath query axes and XPath query conditions in predicate, structures

and the notion of query processing were also defined and described. The chapter also

described the details of available and standard semantics in the XML Schema, which

are recommended by W3C, so that their importance can be emphasized for query

transformation purposes.

Based on the semantics and types of semantics as well as the notation of query

processing in XML, a summary of problem definitions was given; that is, the

semantic transformations for XPath queries specified with simple path expressions,

XPath queries specified with XPath axes and XPath queries specified with

predicates. The semantic transformation algorithms were implemented for

evaluation. A highly respectable commercial off-the-shelf Relational Database with

Ch. 10

231

XML-Enabled features was chosen for data management. The most important aspect

of the usefulness of the semantic transformations was the evaluation that enabled this

research to identify semantic transformations as optimization devices.

Chapter 4 proposed two main streams of work. The first was the proposal of a

methodology to derive the semantics in XML Schemas that prepared for semantic

transformations.

The second was the proposal of semantic path transformations.

The derivation of semantics consisted of the derivation of two types of semantics:

• structural or path semantics (or constraints) produced list Q

• constraints of elements produced list C

The semantic path transformations included the following:

• semantic path expansion transformation transformed XPath queries that were

specified with ‘//’ or ‘*’ to a full path;

• semantic path contraction transformation transformed XPath queries that

were specified with ‘*’ to a contracted path; and

• semantic path complement transformation transformed XPath queries that

were specified with ‘..’ to a contracted path or a full path.

Each semantic transformation given above was accompanied by an algorithm.

Chapter 5 proposed semantic transformation typologies for XPath queries specified

with XPath axes. The semantic transformation rules were formulated by using

semantics defined in XML Schemes that transformed XPath queries specified with

axes including the following:

• semantic transformation for XPath queries specified with following-sibling

or preceding-sibling axes;

Ch. 10

232

• semantic transformation for XPath queries specified with following or/and

preceding axes;

• semantic transformation for XPath queries specified with ancestor or/and

ancestor-or-self axes;

• semantic transformation for XPath queries specified with parent axis.

• semantic transformation for XPath queries specified with descendant or/and

descendant-or-self axes; and

• semantic transformation for XPath queries specified with child or/and self

axes.

Each semantic transformation above is also accompanied by an algorithm.

Chapter 6 proposes semantic transformation typologies for XPath queries that are

specified with predicates. The predicates are first determined by the proposed

condition status determination function whereby each condition in the predicate is

awarded a status with a full-qualifier or a partial-qualifier. The connectives between

the query conditions ultimately determine the status of the predicate to enable either

one of the following semantic transformation to be applied:

• Predicate Elimination Semantic transformation for XPath queries. This

semantic transformation eliminated a predicate if it satisfied the rule

condition.

• Predicate Reduction Semantic transformation for XPath queries. This

semantic transformation reduced the size of a predicate by eliminating some

conditions in the predicate if they satisfied the rule condition.

Each semantic transformation above was also accompanied by an algorithm.

Chapter 7 described the designs of the experiments used to evaluate the proposed

semantic transformation algorithms in Chapters 4, 5 and 6. The experiments

contrasted the query performance of XPath queries and their semantically equivalent

counterparts.

Ch. 10

233

While the first experiment contrasted the query performance of a set of designed

XPath queries and their semantic counterparts based on the a real data set DBLP, the

second experiment contrasted the query performance of a set of micro-benchmarks

(also known as Michigan benchmarks) XPath queries and their counterparts based on

the available benchmark data sets.

The elementary design in this chapter began by providing the background of

experimental design that included the main objectives and evaluation strategies. The

evaluation strategies focused on the implementation framework, the database

platform, data sets, metrics, and the operational environment and result analyses.

The remainder of the chapter is divided into two main sections:

• Common set-up for experiments: Even though the evaluation strategy

involves two experiments, each of which concerned the evaluation of specific

semantic transformation formulated rules applied on a given set of XPath

queries, the section detailed several parts of the strategy and decision making

process that are common to both experiments. These were Implementation

Framework & Platform, Supporting of Minimal Requirement, Choice of

Experiment Data and Schema, Setup of Operational Hardware, Software and

System Modules

• Individual set-up for experiments: This section described individual

experiment set-ups including semantics enhancement based on individual

XML Schema (DBLP or Michigan XMLSchema), data scaling, data

cleansing, query-set, metrics and procedures.

Chapter 8 evaluates semantic transformations based on the query performance of

XPath queries and their semantic counterparts using DBLP data sets. The main goal

was to demonstrate the significant performance of XPath queries before and after

undergoing semantic transformation. The results enable us to thoroughly evaluate the

performance of XPath queries to which particular semantic transformations have

been applied, but more importantly, to identify semantic transformations as

optimization devices.

Ch. 10

234

The evaluation is divided into three main categories:

• Semantic path transformations: XPath queries specified with simple path

expressions were transformed by applying semantic path expansion and/or

semantic path contraction or/and semantic path complement.

• Semantic transformations for XPath axes: XPath queries were specified with

XPath axes such as child, descendant, descendant-or-self, parent, ancestor,

ancestor-or-self, following, preceding, following-or-preceding sibling were

transformed by the corresponding semantic rule to individual axis.

• Semantic transformations for predicates: XPath queries that were specified with

XPath predicates were transformed by applying semantic predicate elimination

semantic transformation or predicate reduction semantic transformation.

The original XPath queries and their semantic XPath queries were then run to access

the database. The performance results (for semantic XPath query, performance result

includes the transformation time) of the two XPath queries were compared, analyzed

and evaluated. The corresponding semantic transformation was then identified as an

optimization device based on the analyzed result.

The chapter also included the evaluation of those XPath queries detected with

conflicts that were unsatisfied and therefore as a result, the transformation, namely

Semantic Conflict Detect produced no semantic XPath query and the returned result

produced by the original XPath query was NULL.

Chapter 9 evaluated semantic transformations based on query performance XPath

queries and their semantic counterparts using the Michigan benchmark queries and

data sets. This chapter complemented Chapter 8 as most of the real application data

including DBLP had a very shallow data hierarchy but more branching elements that

made the data structures less expressive in depth. The focus in this chapter was on

the evaluation of expressiveness of data hierarchies which enabled more complex

query predicates to be specified.

The query performance of XPath queries, some of which were specified with XPath

axes, simple path expressions and predicates were presented. Since XPath queries in

Ch. 10

235

this chapter were transformed based mainly on the presence of the predicates, the

XPath query predicates were grouped under three different categories:

• Single Query Condition with Value-based Comparison

• Multiple Query Conditions with Value-based Comparison

• Twig Pattern Query Condition with Value-based Comparison

Under each of these categories, the XPath queries were transformed and then run to

access the database. The query performance results for each pair of queries (original

and semantic XPath queries) were evaluated and analyzed.

The experimental results have illustrated the majority of semantic transformations

achieved a significant improvement on performance of XML query processing.

Semantic transformations have been done in a more systematic manner. As the

semantic transformations were done in a more systematic manner, this enabled the

research here to identify semantic transformations as optimization devices.

10.2 Limitations of the Work

The outcome of every research faces some challenges and limitations. Some can be

overcome, but others may require further investigation and extension left for future

work. This research faces a few challenges, the major one being the limitation of

resources, such as hardware which meant not being able to accommodate a bigger

set of data for experimentation. Due to the excess research contributions, handling

recursive XML Schemas is not yet addressed in thesis.

The hardware environment restricts the possibilities of testing the implementation on

different platforms which require better hardware architecture. Because of the

limitation of the hardware, we were not able to consider the range of data sets as

significantly as planned. Chapter 7 has presented the incremental data sets used for

evaluating XPath queries specified with XPath axes that have been reduced partly

due to available hardware memory and database platform limitations.

Ch. 10

236

When an XML Schema contained cycles, it causes recursion in XML data. The

traditional approaches of matching paths or enumerating paths no longer work as it

will cause an indefinite path matching issue.

10.3 Future Work

The following complementary work could address the limitations mentioned above,

and at the same time broaden the scope of the current research.

� The affordability of upgrading hardware facilities with an improved availability

configuration should allow the same experimentation using much larger sets of

data possibly run on different platforms. This will provide more comprehensive

analytical outcomes of queries, whose performance can be determined by the

platform or/and engine-dependent hardware.

� Sometimes, further query conditions introduced to the predicate may enable the

query to perform more efficiently. This transformation technique is known as

Semantic introduction [Chakravarthy et al., 1986a]. The next phase of this work

should explore the study of reasoning theory to extend the semantic

transformation for XPath queries specified with a predicate. That is, the predicate

is introduced with further query conditions.

� Among the family members of XML queries, XPath query is the most important

one as it is used by most of the other family members. Semantic transformations

are now recommended for application on both XQuery and XSLT to explore the

optimization opportunities. In XQuery, the structure is FLWOR (For-Let-While-

Or by-Return) [W3C, 2010], the semantic transformation approach should first

explore the needs to determine which component to start with, before the

semantic transformations apply.

� Semantically, this research focused on standard semantics that were defined in

XML Schemas and recommended by W3C, 2010. Semantic transformations

should ideally support semantics from alternative aspects. This research will

greatly focus on ontologies in the next phase, as ontologies provide a different set

of semantics that can enrich XML data structures [Sun et al., 2006].

Ch. 10

237

� Capturing recursive paths in recursive XML Schema and data in order to handle

the transformation of recursive XML queries would create a fresh opportunity in

semantic query transformation. Again this must be conducted in a systematic

manner to identify optimization opportunities.

� Exploring the existing index optimization techniques to study their usefulness.

This also gives us opportunity to bridge the gap that this research cannot support

in optimization. This also allows us to explore the integration opportunities of

techniques to provide one complete solution which is highly efficient in terms of

resources and optimization.

10.4 Closing Statement

The objective in this research was ultimately to offer a comprehensive semantic

query optimization framework for XML databases. This was necessary since vendors

are proposing versatile but opaque solutions that do not allow intrusive or even fine-

grain optimization techniques. The vision here was one of loosely-coupled semantic

optimizations that respected the vendors’ autonomy, while providing significant

benefits to the user.

References

Abiteboul, S., Quass, D., McHugh, J., W., J., and Wiener, J. 1997, ‘The Lorel Query

Language for Semistructured Data’, International Journal on Digital Libraries.

vol. 1, no.1, pp. 68-88.

Al-Khalifa, S., Jagadish, H. V., Koudas, N., Patel, J.M., Srivastava, D., Wu, Y. 2002,

‘A Primitive for Efficient XML Query Pattern Matching’, Proceedings of 18
th

International Conference on Data Engineering, pp. 141-152.

Amer-Yahia, S., Cho, S., Lakshmanan, V. and Srivastava, D. 2001, ‘Minimization of

Tree Pattern Queries’, Proceedings of the ACM Sigmod Conference on

Management of Data, pp. 497-508.

Amer-Yahia, S., Cho, S., Lakshmanan, V. and Srivastava, D. 2002, ‘Tree Pattern

Query Minimization’, Very Large Data Bases Journal, vol. 11, no. 4, pp. 315-

331.

Bashir, E. and Boulos, J. 2005, ‘Trading Precision for Throughput in XPath

Processing’, Proceedings of the 2
nd

 Workshop on XQuery Implementation, pp.

552-559.

Baqasah, A. and Pardede., E. 2010, ‘Managing Schema Evolution in Hybrid XML-

Relational Database Systems’, Proceedings of the 2010 IEEE 24th

International Conference on Advanced Information Networking and

Applications Workshops, pp. 455-460.

Bao, Z., Ling, T., Lu, J., Chen, B. 2008, ‘SemanticTwig: A Semantic Approach to

Optimize XML Query Processing’, Proceeding of the 13
th

 Conference of

Database Systems for Advanced Applications, pp. 282-298.

Ref.

240

Brantner, M., Helmer, S., Kanne, C., Moerkotte, G. 2005, ‘Full-Fledged Algebraic

XPath Processing in Natix’, Proceedings of 21
st
 Conference on Data

Engineering, pp. 705-716.

Beyer, K. Cochrane, R. Hvizdos, M. Josifovski, V. Kleewein, J. Lapis,

G. Lohman, G. Lyle, R. Nicola, M. Ozcan, F. Pirahesh, H. Seemann,

N. Singh, A. Truong, T. Van der Linden, R. C. Vickery, B. Zhang,

C. Zhang, G. 2006, ‘DB2 Goes Hybrid: Integrating Native XML and XQuery

with Relational Data and SQL’, IBM System Journal, vol. 4, no. 2, pp. 271 –

298.

Benedikt, M., Fan, W. and Geerts, F. 2005, ‘XPath satisfiability in the presence of

DTDs’, Proceedings of the 24
th

 ACM Symposium on Principles of Database

Systems, pp. 25-36.

Björklund, H., Martens, W., and Schwentick, T. 2008, ‘Optimizing Conjunctive

Queries over Trees Using Schema Information’, Proceedings of the 33
rd

Symposium on Mathematical Foundations of Computer Science, pp. 132-143.

Bohm, k., Aberer, K., Ozsu, M. and Gayer, K. 1998, ‘Query Optimization for

Structured Documents Based on Knowledge on the Document Type

Definition’, Advances in Digital Libraries, pp. 196-205.

Bourret, R. 2005, XML and Databases,

<http://www.rpbourret.com/xml/XMLAndDatabases.htm>

Bruno, N., Koudas, N., Srivastava, D. 2002, ‘Holistic Twig Joins: Optimal XML

Pattern Matching’, Proceeding of 2002 ACM SIGMOD Conference on

Management of Data, pp. 310–321.

Ceri, S., Comai, S., Damiani, E., Fraernali, P., Paraboschi, S., and Tanca, L. 1999,

‘XML-GL: A Graphical Language for Querying and Restructuring XML

Documents, Proceedings of the 8
th

 World Wide Web Conference, pp. 1171–

1187.

Ref.

241

Chakravarthy, U. S., Grant, J. and Minker, J. 1986a, ‘Semantic Query Optimization’,

Proceedings of the 1
st
 International Workshop on Expert Database Systems,

pp. 659-675.

Chakravarthy, U. S., Grant, J. and Minker, J. 1986b, ‘Semantic Query Optimization:

Additional Constraints and Control Strategies’, Proceedings of the 1
st

International Conference in Expert Database Systems, pp. 345-379.

Chakravarthy, U. S., Grant, J. and Minker, J. 1988, ‘Foundations of Semantic Suery

Optimization for Deductive Databases’, in Foundations of Deductive

Databases and Logic Programming Minker J. (ed.), Morgan Kaufmann

Publisher Inc., pp. 243-273.

Chakravarthy, U. S., Grant, J. and Minker, J. 1990, ‘Logic–Based Approach to

Semantic Query Optimization’, ACM Transactions on Database Systems, vol.

15, no. 2, pp. 162-207.

Chamberlin, D., Robie,J., and Florescu, D. 2000, ‘Quilt: An XML Query Language

for Heterogeneous Data Sources’, Third Workshop WebDB 2000 on the World

Wide Web and Databases, pp. 1-25.

Che, D., Aberer, K., and Özsu, T. 2006, ‘Query Optimization in XML Structured-

Document Databases’, The Very Large Data Bases Journal, vol. 15, no.3, pp.

263-289.

Che, D.; Ling, T.; Hou, W. 2011, ‘Holistic Boolean-Twig Pattern Matching for

Efficient XML Query Processing’, Transactions on Knowledge and Data

Engineering, vol. PP, no. 99, pp. 1-15.

Chen, D. and Chan, C. 2008, ‘Minimization of Tree Pattern Queries with

Constraints’, Proceedings of 2008 ACM SIGMOD Conference on

Management of Data, pp. 609-622.

Clark, J. and Murata, M. 2001, Relax NG Specification, <http://www.relaxng.org/

spec-20011203.html>

Conklin, J. 1987, ‘Hypertext: An Introduction and Survey’, Computer, vol. 20, no. 9,

pp. 17–41.

Ref.

242

Diao, Y., Altinel, M., Franklin, J. M., Zhang, H. and Fischer, P. 2003, ‘Path Sharing

and Predicate Evaluation for High-performance XML Filtering’, ACM

Transaction Database Systems, vol. 28, no.4, pp. 467-516.

Deutsch, A., Fernandez, M., and Florescu, D. 1999, ‘A Query Language for XML’,

Proceedings of the 8th World Wide Web Conference, pp. 1155–1169.

Deutsch, A., Popa, L., and Tannen, V. 2006, ‘Query Reformulation with

Constraints’, SIGMOD Record, vol. 35, no.1, pp. 65-73.

Fan, W. 2005, ‘XML Contraints: Specification, Analysia, and Applications’,

Proceedings of the 16
th

 International Workshop on Database and Expert

Systems Applications, pp. 805-809.

Ferrarotti, F., Hartmann, S., and Link, S. 2011, ‘A Precious Class of Cardinality

Constraints for Flexible XML Data Processing’, Proceedings of the 30
th

International Conference on Conceptual Modeling, pp. 175-188.

Fernandez, M. F. and Suciu, D. 1998, ‘Optimizing Regular Path Expressions Using

Graph Schemas’, Proceedings of the 14
th

 Conference on Data Engineering,

pp. 14-23.

Figueira, D. 2009, ‘Satisfiability of Downward XPath with Data Equality Tests’,

Proceedings of the 28
th

 ACM SIGMOD-SIGACT-SIGART Symposium on

Principles of Database Systems, pp. 197-206.

Furfaro, S., Masciari, E. 2003, ‘On the Minimization of XPath Queries’, Proceedings

of 29
th

 Very Large Database Conference, pp. 153-164.

Grant, J., Gryz, J., Minker, J., and Raschid, L. 1997, ‘Semantic Query Optimization

for Object Databases’, Proceedings of the 13
th

 Conference on Data

Engineering, pp. 444-453.

Groppe S. and Bottcher, S. 2005, ‘Schema-based Query Optimization for XQuery

Queries’, Proceeding of the 9th East-European Conference on Advances in

Databases and Information Systems, pp. 80-94.

Groppe J. and Groppe S. 2006, ‘Satisfiability-Test, Rewriting and Refinement of

Users’ XPath Queries According to XML Schema Definitions’, Advances in

Databases and Information Systems, vol. 4152, pp. 22-38.

Ref.

243

Hammer, M. and Jdondik, S. B. 1980, ‘Knowledge-based Processing’, Proceedings

of the 6
th

 Conference on Very Large Data Bases, pp. 137-146.

Hanson, P. and Mani, M. 2010, ‘Semantic Optimization of XQuery by Rewriting’,

Advances in Databases and Information System Workshop, pp. 87-95.

Haseman, W., Lin, T., Nazareth, D. 1999, ‘An Intelligent Approach to Semantic

Query Processing’, Proceedings of the Fifth Americas Conference on

Information Systems, pp.52-54

IBM Corporation 2009, DB2 pureXML, < http://www-

01.ibm.com/software/data/db2/xml/ >

ISO 8879-1986 Information Processing - Text and Office Systems Standard

Generalized Markup Language (SGML) 1996, Geneva, Switzerland:

International Standards Organization.

Ishihara, Y., Shimizu, S. and Fujiwara, T. 2010, ‘Extending the Tractability Results

on XPath Satisfiability with Sibling Axes’. Proceedings of the 7th

International XML Database Conference on Database and XML Technologies,

pp. 33-48.

Jelliffe, R. 2005, Schematron, http://xml.ascc.net/schematron/.

Jensen, S., Plale, B., Lee, P. S. and Sun, Y. 2006, ‘A Hybrid XML-Relational Grid

Metadata Catalog’, Proceedings of the 2006 International Conference

Workshops on Parallel Processing, pp. 15-24.

Jin, R., Ruan,N., Xiang, Y., and Wang, H. 2011, ‘Path-tree: An Efficient

Reachability Indexing Scheme for Large Directed Graphs’, Journal of ACM

Transaction Database System, vol. 36, no.1, pp. 1- 44.

Kha, D., Yoshikawa, M. 2006, ‘An Efficient Schema-Based Technique for Querying

XML Data’, IEICE Transactions, vol. 89, no. 4, pp. 1480-1489.

King, J. 1981a, ‘Quist: A System for Semantic Query Optimization in Relational

Databases’, Proceedings of the 7
th

 Conference on Very Large Data Bases, pp.

510-517.

Ref.

244

King, J. J. 1981b, ‘Query Optimization Through Semantic Reasoning’. Ph.D.

Dissertation, Stanford University.

Klarlund, N., Moller, A., and Schwartzbach, M. I. 2002, ‚‘The DSD schema

language. Automat‘, Software. Engineering, vol., 9, no.3, pp. 285–319.

Kwong A. and Gertz, M. 2002, Schema-based Optimization of XPath Expressions.

Technical Report, University of California. Department of Computer Science.

Ley, M. 2011, XML records - DBLP Computer Science Bibliography - Universität

Trier, <http://dblp.uni-trier.de/xml/>

Li, J. B. And Miller, J. 2005, ‘Testing the Semantics of W3C XML Schema’,

Proceedings of the 29
th

 Annual International Computer Software and

Applications Conference, pp. 443-448.

Li, Y., Bressan, S., Dobbie, G., Lacroix, Z., Lee, M., Nambiar, U and Wadhwa, B.

2001, ‘XOO7: Applying OO7 Benchmark to XML Query Processing Tool’,

Proceedings of the 10
th

 International Conference on Information and

Knowledge Management, pp. 167-174.

Li, M., Mani, M. and Rundensteiner, E. A. 2008, ‘Semantic Query Optimization for

Processing XML Streams with Minimized Memory Footprint’, Proceedings

of the 2008 EDBT Workshop on Database Technologies for Handling XML

Information on the Web, pp. 27-36.

Link, S., Trinh, T. 2007, ‘Know Your Limits: Enhanced XML Modeling with

Cardinality Constraints’, Tutorials and Posters Contributions of the 26
th

Conference on Conceptual Modeling, pp. 19-30.

Liu, C, Millist, Vincent, V. M., and Liu, J. 2006, ‘Constraint Preserving

Transformation from Relational Schema to XML Schema’, World Wide Web

Journal, vol. 9, no. 1, pp. 93-110.

Liu, Z. and Murthy, R. 2009, ‘A Decade of XML Data Management: An Industrial

Experience Report from Oracle’, Proceedings of the 2009 IEEE Conference

on Data Engineering, pp. 1351-1362.

Malloy, M and Mlynkova, I. 2009, ‘Closing the Gap Between XML and Relational

Database Technologies: State-of-the-Practice, State-of-the-Art and Future

Ref.

245

Directions’. In Pardede, E. (ed.), Open and Novel Issues in XML Database

Applications: Future Directions and Advanced Technologies, pp. 1-27.

Meier, M., Schmidt, M., Wei, F. and Lausen, G. 2010, ‘Semantic Query

Optimization in the Presence of Types’, Proceedings of the 29
rd

ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems of

Data, pp. 111-122.

Miklau, G. and Suciu, D. 2002, ‘Containment and Equivalence for an XPath

Fragment’, Proceedings of the 21
st
 ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems, pp. 65-76.

Moro, M. M., Lim, L., Chang, L. 2007, ‘Schema advisor for hybrid relational-XML

DBMS’, Proceedings of the 2007 ACM SIGMOD Conference on

Management of Data, pp. 959-970.

Murata, M., Lee, D., Mani, M. and Kawaguchi, K. 2005. ‘Taxonomy of XML

Schema Languages Using Formal Language Theory’. ACM Transaction.

Internet Technology. vol.5, no.4, pp. 660-704.

Nicola, M., Kogan, I and Schiefer, B. 2007, ‘An XML Transaction Processing

Benchmark’, Proceedings of 2007 ACM SIGMOD International Conference

on Management of Data, pp. 937-948.

Olteanu, D., Meuss, H., Furche, T., and Bry, F. 2002, ‘XPath: Looking Forward’,

Proceedings of the EDBT Workshop on XML Data Management, 109-127.

Oracle Corporation 2010, Oracle Database 11g Release 2,

<http://www.oracle.com/technetwork/database/enterprise-edition/overview

/index.html>.

Ozcan, F., Seemann, N., Wang, L. 2008, ‘XQuery Rewrite Optimization in IBMR

DB2 pureXML’, Data Engineering Bulletin, vol. 31, no. 4, pp. 25-32.

Paparizos, S., Wu, Y, Lakshmanan, L. V. S. and Jagadish. V. H. 2004, ‘Tree logical

Classes for Efficient Evaluation of XQuery’, Proceeding of 2004 Conference

on Management of Data, pp.71-82.

Ref.

246

Paparizos, S., Patel, J. and Jagadish, V. H. 2007, ‘SIGOPT: Using Schema to

Optimize XML Query Processing’, Conference on Data Engineering, pp.

1456-1460.

Ramanan, P. 2002, ‘Efficient Algorithms for Minimizing Tree Pattern Queries’,

Proceedings of the ACM SIGMOD Conference on Management of Data, pp.

299-309.

Runapongsa K., Patel J.M., Jagadish H.V., Chen Y., and Al-Khalifa S. 2003,

‘Method for Efficient Storage and Indexing in XML Database’, Ph.D. Thesis,

University of Michigan.

Runapongsa K., Patel J.M., Jagadish H.V., Chen Y., and Al-Khalifa S. 2006, ‘The

Michigan Benchmark: Towards XML Query Performance Diagnostics’,

Information System, vol.31, No. 2, pp. 73–97.

Salminen, A. and Tompa, F.W. 1994, ‘PAT expressions: an Algebra for text Search’,

Acta Linguistica Hungarica, vol. 41, no. 1, pp. 277-306.

Salminen, A. and Tompa, Wm. 2001, ‘Requirements for XML Document Database

Systems’, Proceedings of the 2001 ACM Symposium on Document

Engineering, pp. 85-94.

Schmidt, S., Waas, F., Kersten, M., Carey, J. M., Manolescu, I. and Busse, R. 2002,

‘XMark: a Benchmark for XML Data Management’, Proceedings of the 28th

International Conference on Very Large Data Bases, pp. 974-985.

Shenoy, S. T. and Ozsoyoglu, Z. M. 1987, ‘Design and Implementation of a

Semantic Query Optimizer’, IEEE Transactions on Knowledge and Data

Engineering, vol. 1, no. 3, pp. 344 –361.

Software AG 2009, Tamino XML Database,

<http://www.softwareag.com/corporate/products/wm/tamino/default.asp>.

Sperberg-McQueen, C. and Thompson, H. 2005, XML Schema,

<http://www.w3.org/XML/Schema>.

Stromback, L., Asberg, M. and Hall, D. 2009, ‘HShreX - A Tool for Design and

Evaluation of Hybrid XML Storage’, Database and Expert Systems

Application 20th International Workshop, pp. 417 – 421.

Ref.

247

Su, H., Rundensteiner, E and Mani, M. 2005, ‘Semantic Query Optimization for

XQuery over XML Streams’, Proceedings of the 31
st
 Conference on Very

Large Data Bases, pp. 277-282.

Sun, W. and Liu, D. 2006, ‘Using Ontologies for Semantic Query Optimization of

XML Databases’, The 5
th

 Workshop on Knowledge Discovery from XML

Documents, pp. 64 -73.

Thomas, H., Cormen, Charles E., Leiserson Ronald L. 2001, Introduction to

Algorithms, 2nd edn, MIT Press and McGraw-Hill, pp. 540–549.

W3C Clark, J. 1998, Extensible Markup Language (XML) 1.0, W3C

Recommendation, November 1998, <http://www.w3.org/TR/1998/REC-xml-

19980210>.

W3C Clark, J., DeRose, S. 1999, XML Path Language (XPath) 1.0, W3C

Recommendation, November 1999, <http://www.w3.org/TR/1999/REC-xpath-

19991116>.

W3C Thompson, H., Beech D., Maloney, M., Mendelsohn, N. 2004a, XML Schema

Part 1: Structures Second Edition, W3C Recommendation 28 October 2004

<http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/>.

W3C Brion, P., Permanente, K., Malhotra, A. 2004b, XML Schema Part 2:

Datatypes Second Edition, W3C Recommendation 28 October 2004,

<http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/>.

W3C Berglund, A., Boag, S., Chamberlin, D., Fernández, M., Kay, M., Robie, J.,

Siméon, J. 2007a, XML Path Language (XPath) 2.0, W3C Recommendation,

December 2007, <http://www.w3.org/TR/2010/REC-xpath20-20070123/>.

W3C Boag, S., Chamberlin, D., Fernández, M., Kay, Florescu, D., Robie, J.,

Siméon, J. 2007b, XQuery 1.0: An XML Query Language, W3C

Recommendation, 2007, <http://www.w3.org/TR/2007/REC-xquery-

20070123/>.

W3C Berglund, A., Boag, S., Chamberlin, D., Fernández, M., Kay, M., Robie, J. and

Siméon, J. 2010, XML Path Language (XPath) 2.0, Second Edition, W3C

Ref.

248

Recommendation, December 2010, <http://www.w3.org/TR/2010/REC-

xpath20-20101214/>.

Wang, G., Liu, M. and Yu, J. 2003, ‘Effective Schema-Based XML Query

Optimization Techniques’, Proceedings of the 7
th

 Database Engineering and

Application Symposium, pp. 1-6.

Wang, S., Su, H., Li, M., Wei,M., Yang,S., Ditto, D., Rundensteiner, A. E., and

Mani, M. 2006, ‘R-SOX: Runtime Semantic Query Optimization Over XML

Streams’, Proceedings of the 32
nd

 Conference on Very Large Data Bases, pp.

1207-1210.

Wang, J., Yu, J., Liu, C. 2008, ‘Transforming Tree Pattern with DTD for Query

Containment Test’, Proceedings of the 19
th

 of Database and Expert Systems

Application, pp. 727-734.

Wang, J. Yu, J. 2010, ‘Chasing Tree Patterns under Recursive DTDs’, Proceeding of

the 15
th

 of Database Systems for Advanced Applications, pp. 250-261.

Wood, P. 2003, ‘Containment for XPath Fragments under DTD Constraints’,

Proceedings of the 9
th

 Conference on Database Theory, pp. 300-314

Wu, X., Ling, T.W., Lee, M.-L., Dobbie, G. 2001, ‘Designing Semistructured

Databases using ORA-SS Model’, Proceedings of the 2
nd

 Conference on Web

Information Systems Engineering, 171–180.

Wu, Y., Patel, J.M.; Jagadish, H.V. 2003, ‘Structural Join Order Selection for XML

query optimization’, Proceedings of 19th International Conference on Data

Engineering, pp. 443-454.

Wu, X., Souldatos,S., Theodoratos, D., Dalamagas, T., Sellis, T. 2008, ‘Efficient

Evaluation of Generalized Path Pattern Queries on XML Data’, Proceedings

of the 17
th

 Conference on World Wide Web, pp. 835-844.

Wu, H., Ling, T.W., Dobbie, G., Bao, Z., Xu, L. 2010, ‘Reducing Graph Matching to

Tree Matching for XML Queries with ID References’, Proceedings of 21st

International Conference on Database and Expert Systems Applications, pp.

391–406.

Ref.

249

Wu, H., Ling, T.W., Chen, B., Xu, L. 2011, ‘TwigTable: Using Semantics in XML

Twig –Pattern Query Processing’, Journal on Data Semantics, vol. 6720, no.

xv, pp. 102-129.

Yao, Benjamin B., Ozsu, T., Keenleyside, J 2002, ‘XBench - A Family of

Benchmarks for XML DBMSs’, Proceedings of the 2002 Workshop EEXTT

and Workshop DTWeb on Efficiency and Effectiveness of XML Tools and

Techniques and Data Integration over the Web, pp. 162-164.

Yao, T. J. and Zhang, M., A. 2004, ‘Fast Tree Pattern Matching Algorithm for XML

Query’, Proceedings of the 2004 Conference on Web Intelligence, pp. 235-

241.

Yuen, L., Poon, C. K. 2005, ‘Relational Index Support for XPath Axes’, Proceedings

of Third International XML Database Symposium, pp. 84-98

Zhang, N., Agarwal, N., Chandrasekar, S., Dicula, S., Medi, V., Petride, S, and

Sthanikam, B. 2009, ‘Binary XML Storage and Query Processing in Oracle

11g’, Very Large Data Bases Endow, pp. 1354-1365.

Zhou, R., Liu, C., Wang, J., Li, J. 2009, ‘Containment between Unions of XPath

Queries’, Proceedings of the 14
th

 Conference of Database Systems for

Advanced Applications, pp. 405-420.

Appendix 1: DBLP XML Schema

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!-- edited with XMLSpy v2010 (http://www.altova.com) by Department Computer Sciene &
Computer Engineering (Department Computer Sciene & Computer Engineering) -->
<!--W3C Schema generated by XMLSpy v2010 (http://www.altova.com)-->
<!--Please add namespace attributes, a targetNamespace attribute and import elements according to
your requirements-->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"/>
 <xs:element name="dblp">
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element ref="article" maxOccurs="unbounded"/>
 <xs:element ref="inproceedings" maxOccurs="unbounded"/>
 <xs:element ref="proceedings" maxOccurs="unbounded"/>
 <xs:element ref="book" maxOccurs="unbounded"/>
 <xs:element ref="incollection" maxOccurs="unbounded"/>
 <xs:element ref="phdthesis" maxOccurs="unbounded"/>
 <xs:element ref="www" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:key name="phdthesisKey">
 <xs:selector xpath="dblp/phdthesis"/>
 <xs:field xpath="@key"/>
 </xs:key>
 <xs:keyref name="supervisor" refer="phdthesisKey">
 <xs:selector xpath="dblp/phdthesis"/>
 <xs:field xpath="supervisor"/>
 </xs:keyref>
 </xs:element>
 <xs:element name="article">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="author" maxOccurs="unbounded"/>
 <xs:element ref="title"/>
 <xs:element ref="pages" minOccurs="0"/>
 <xs:element ref="year"/>
 <xs:element ref="volume" minOccurs="0"/>
 <xs:element ref="journal" minOccurs="0"/>
 <xs:element ref="number" minOccurs="0"/>
 <xs:element ref="ee" minOccurs="0"/>
 <xs:element ref="url"/>
 </xs:sequence>
 <xs:attribute name="key" type="xs:anySimpleType" use="required"/>
 <xs:attribute name="reviewid" type="xs:anySimpleType"/>
 <xs:attribute name="rating" type="xs:anySimpleType"/>
 <xs:attribute name="mdate" type="xs:anySimpleType"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="inproceedings">
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">

App. 1

252

 <xs:element ref="author" maxOccurs="unbounded"/>
 <xs:element ref="title"/>
 <xs:element ref="pages" minOccurs="0"/>
 <xs:element ref="year"/>
 <xs:element ref="crossref" minOccurs="0"/>
 <xs:element ref="booktitle" minOccurs="0"/>
 <xs:element ref="ee" minOccurs="0"/>
 <xs:element ref="url"/>
 </xs:sequence>
 <xs:attribute name="key" type="xs:anySimpleType" use="required"/>
 <xs:attribute name="mdate" type="xs:anySimpleType"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="proceedings">
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element ref="author" maxOccurs="unbounded"/>
 <xs:element ref="title"/>
 <xs:element ref="booktitle" minOccurs="0"/>
 <xs:element ref="publisher" minOccurs="0"/>
 <xs:element ref="series" minOccurs="0"/>
 <xs:element ref="volume" minOccurs="0"/>
 <xs:element ref="isbn" minOccurs="0"/>
 <xs:element ref="year"/>
 <xs:element ref="url"/>
 </xs:sequence>
 <xs:attribute name="key" type="xs:anySimpleType" use="required"/>
 <xs:attribute name="mdate" type="xs:anySimpleType"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="book">
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element ref="author" maxOccurs="unbounded"/>
 <xs:element ref="title"/>
 <xs:element ref="editor" minOccurs="0"/>
 <xs:element ref="publisher" minOccurs="0"/>
 <xs:element ref="year"/>
 <xs:element ref="booktitle" minOccurs="0"/>
 <xs:element ref="isbn" minOccurs="0"/>
 <xs:element ref="url" minOccurs="0"/>
 <xs:element ref="chapter" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="key" type="xs:anySimpleType" use="required"/>
 <xs:attribute name="mdate" type="xs:anySimpleType"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="incollection">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:element ref="author"/>
 <xs:element ref="title"/>
 <xs:element ref="pages" minOccurs="0"/>
 <xs:element ref="year" minOccurs="0"/>
 <xs:element ref="isbn" minOccurs="0"/>
 <xs:element ref="booktitle" minOccurs="0"/>
 <xs:element ref="url" minOccurs="0"/>
 <xs:element ref="crossref" minOccurs="0"/>
 <xs:element ref="publisher" minOccurs="0"/>

App. 1

253

 <xs:element ref="cdrom" minOccurs="0"/>
 <xs:element ref="ee" minOccurs="0"/>
 </xs:choice>
 <xs:attribute name="key" type="xs:anySimpleType" use="required"/>
 <xs:attribute name="mdate" type="xs:anySimpleType"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="phdthesis">
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element ref="author"/>
 <xs:element ref="title"/>
 <xs:element ref="year"/>
 <xs:element ref="school" minOccurs="0"/>
 <xs:element ref="number" minOccurs="0"/>
 <xs:element ref="series" minOccurs="0"/>
 <xs:element ref="url" minOccurs="0"/>
 <xs:element ref="ee" minOccurs="0"/>
 <xs:element name="supervisor" type="xs:IDREFS"/>
 </xs:sequence>
 <xs:attribute name="key" type="xs:ID" use="required"/>
 <xs:attribute name="mdate" type="xs:anySimpleType"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="www">
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element ref="author" maxOccurs="unbounded"/>
 <xs:element ref="title"/>
 <xs:element ref="editor" minOccurs="0"/>
 <xs:element ref="year" minOccurs="0"/>
 <xs:element ref="url" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="key" type="xs:anySimpleType" use="required"/>
 <xs:attribute name="mdate" type="xs:anySimpleType"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="author" type="xs:string"/>
 <xs:element name="editor" type="xs:string"/>
 <xs:element name="address" type="xs:string"/>
 <xs:element name="title">
 <xs:complexType mixed="true">
 <xs:sequence maxOccurs="unbounded">
 <xs:element ref="tn"/>
 <xs:element ref="tt" minOccurs="0"/>
 <xs:element ref="ref" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="booktitle" type="xs:string"/>
 <xs:element name="pages" type="xs:string"/>
 <xs:element name="year">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="1950"/>
 <xs:maxInclusive value="2020"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>

App. 1

254

 <xs:element name="journal" type="xs:string"/>
 <xs:element name="volume" type="xs:string"/>
 <xs:element name="number" type="xs:string"/>
 <xs:element name="month" type="xs:string"/>
 <xs:element name="url" type="xs:string"/>
 <xs:element name="ee" type="xs:string"/>
 <xs:element name="cdrom" type="xs:string"/>
 <xs:element name="school" type="xs:string"/>
 <xs:element name="publisher">
 <xs:complexType mixed="true">
 <xs:attribute name="href" type="xs:anySimpleType"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="note" type="xs:string"/>
 <xs:element name="crossref">
 <xs:complexType mixed="true">
 <xs:attribute name="href" type="xs:anySimpleType"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="isbn" type="xs:string"/>
 <xs:element name="chapter">
 <xs:simpleType>
 <xs:restriction base="xs:int">
 <xs:minInclusive value="1"/>
 <xs:maxInclusive value="30"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="series">
 <xs:complexType mixed="true">
 <xs:attribute name="href" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="ref">
 <xs:complexType>
 <xs:attribute name="href" type="xs:anySimpleType" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="tn" type="xs:string"/>
 <xs:element name="tt" type="xs:string"/>
</xs:schema>

Appendix 2: Michigan

Benchmarking XML Schema

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!--W3C Schema generated by XMLSpy v2010 (http://www.altova.com)-->
<!--Please add namespace attributes, a targetNamespace attribute and import elements according to
your requirements-->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"/>
 <xs:element name="eNest">
 <xs:complexType mixed="true">
 <xs:sequence>
 <xs:element name="eNest" maxOccurs="unbounded">
 <xs:key name="aU1PK">
 <xs:selector xpath=".//eNest"/>
 <xs:field xpath="@aUnique1"/>
 </xs:key>
 <xs:unique name="aU2">
 <xs:selector xpath=".//eNest"/>
 <xs:field xpath="@aUnique2"/>
 </xs:unique>
 </xs:element>
 <xs:element name="eOccasional" minOccurs="0">
 <xs:keyref name="aU1FK" refer="aU1PK">
 <xs:selector xpath=".//eOccasional"/>
 <xs:field xpath="@aRef"/>
 </xs:keyref>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="aUnique1" type="xs:anySimpleType"
use="required"/>
 <xs:attribute name="aUnique2" type="xs:anySimpleType"
use="required"/>
 <xs:attribute name="aLevel" type="xs:anySimpleType" use="required"/>
 <xs:attribute name="aFour" type="xs:anySimpleType" use="required"/>
 <xs:attribute name="aSixteen" type="xs:anySimpleType" use="required"/>
 <xs:attribute name="aSixtyFour" type="xs:anySimpleType"
use="required"/>
 <xs:attribute name="aString" type="xs:anySimpleType" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="eOccasional">
 <xs:complexType mixed="true">
 <xs:attribute name="aRef" type="xs:anySimpleType" use="required"/>
 </xs:complexType>
 </xs:element>
</xs:schema>

