
 

  Chapter 1 

Introduction 

Extensible Markup Language (XML) has emerged as a standard for representing and 

exchanging information on the Web. XML is widely accepted for its several 

important capabilities. Among them are extensibility (XML content can be easily 

extended by both technical and non-technical user-groups), flexibility (users can 

create their own tags to support meaning of specific content) and interoperability 

(many domain applications have adopted XML as a data interchange standard).  

The adoption of XML is increasing rapidly.  However, despite its popularity in both 

research work and industrial applications, XML data management still faces many 

challenges such as semantic specification, XML query processing and manipulation 

(e.g. XPath, XQuery, XSL, etc), and query optimization, to name a few.  

In XML data management models, an XML schema1 is normally used to structure 

and constrain XML content. Among existing XML-based schemas, XML Schema 2 is 

rich in semantics and has become a W3C recommendation [W3C, 2004a; 2004b].  

The new features supported by W3C are available only in XML Schema.  

Most XML documents are developed with an underlying XML Schema [Li & Miller, 

2005]. Semantics in XML Schema are very useful for many XML-related areas such 

as query satisfaction optimization and many others. The semantics in XML Schema 

                                                           
1 Refer to XML schema in general. 
2 Refer to XML schema in XSD format. 
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which is used for transforming XML queries to equivalent queries has attracted 

renewed interest from the research community.  

This thesis investigates semantic transformation methodologies using schema 

knowledge to transform an XML query to its equivalent semantic query. The query 

performance (accuracy and execution speed) is then evaluated, which allows us to 

identify semantic transformation typologies used as generalized optimization 

devices.   

1.1   XML: Background 

In 1996, the W3C announced the development of XML, which was based on SGML, 

a Standard Generalized Markup Language defined by ISO [ISO, 1986]. The 

consortium acknowledged that HTML [Conklin, 1987] - a subset of SGML, could 

not function as a meta-language for describing mark-up languages, for it has rigid 

tags that were designed for web presentation purposes.  

XML was first endorsed by W3C in 1998 as a meta-language suitable for describing 

mark-up languages [W3C, 1998]. XML tags are flexible and data relationships can 

exist between tags, making XML self-documenting.  

 

Figure 1.1  Example of XML Fragment 

Its rich semantic extensibility and flexibility have made XML an open standard for 

storing and exchanging information among applications and on the World Wide 

Web. An example of an XML fragment is shown in Figure 1.1 which models a 

computer PART. It is a well-formed, self-described document showing PART with 

 
<?xml version="1.0" encoding="UTF-8"?> 

<PART> 

   <TITLE>Computer Parts</TITLE> 

   <CONFIGURATION> 

      <ITEM>Motherboard</ITEM> 

      <MANUFACTURER>ASUS</MANUFACTURER> 

      <MODEL>P3B-F</MODEL> 

      <REMARK> Original</REMARK> 

   </CONFIGURATION> 

</PART> 
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other entities such as TITLE and CONFIGURATION. The entity 

CONFIGURATION has its own entities such as ITEM, MANUFACTURER, 

MODEL and REMARK. Each entity is enclosed by a pair of meaningful tags. 

The simplicity of XML has enabled the Web to provide more effective publishing 

and information exchange facilities. The online exchange of information and 

requirements is no longer an issue. However, due to its convenience, the amount of 

XML-facilitated information continues to increase rapidly. Existing challenges such 

as performance, integrity and efficient storage are some of the many problems that 

need to be addressed.    

1.2   XML Databases 

With the ubiquitous use of XML, efficient storage of XML data is becoming a 

critical concern. XML document storage needs to be efficient; in addition, the 

management  of  persistent XML data  requires  the capabilities  to deal  with data  

independence, integration,  access  rights,  versions,  views,  integrity,  redundancy, 

consistency, recovery, and the enforcement of standards [Salminen and Tompa 

2001].  

Any repository that can store XML data is categorized as an XML database. There 

are two main XML database categories including Native XML database and XML-

Enabled database. Any database engine that has originally been constructed and 

developed to manage XML data is known as a Native XML Database. XML-enabled 

databases are those that are extended with XML capability from any existing 

relational engine. Hence, any Relational Database Management System (RDBMS) 

that extends its functionality to include XML data management capabilities is known 

as an XML-enabled database system [Bourret, 2005]. 

While Native XML database systems preserve XML document structures and store 

these natively, most XML-enabled database systems shred and store XML data in 

relational or object-relational structures. Very few XML-enabled database systems 

can store XML data natively; such XML-enabled database systems are referred to as 

Hybrid XML databases [Beyer et al., 2006]. Since the introduction of the Hybrid 
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XML database, it has often been referred to as a Hybrid XML Relational database 

[Baqasah & Pardede, 2010; Jensen, et al., 2006; Moro, et al., 2007]. In fact, any 

database (e.g. relational, object-oriented, etc.) is extended to support XML database, 

and storing XML data natively is considered as a Hybrid XML database. Hence, an 

important advantage of a Hybrid XML database is that it can facilitate complete 

interoperability of XML and other databases (e.g. Relational or Object-Oriented) 

storage paradigms [Beyer et al., 2006 and Stromback et al., 2009].     

XML documents stored in an XML database can be divided into two categories: 

document-centric and data-centric [Bourret, 2005].  The term document-centric 

refers to XML documents in which information is expressed with no standard 

structure required. Such XML documents include user manuals, static web pages, or 

marketing leaflets. Native XML databases are most commonly used to 

store document-centric documents as they preserve features such as full-text searches 

of certain portions of documents [Bourret, 2005]. The term ‘data-centric’ refers to 

XML documents in which information is expressed with a standard required 

structure such as scientific data, or customer details: names and addresses, etc. An 

XML-enabled database is grouped under the data-centric category due to its regular 

record structure.  

The structural storage requirement of XML data can become very complex in XML-

enabled databases. Several storage techniques for XML have been implemented by 

different database vendors such as Oracle [Oracle, 2010], DB2 pureXML [IBM, 

2009]. A simple solution is to store XML data as Character Large Object Binary 

(CLOB); this technique is good for retrieving and inserting whole documents but not 

for data processing as query performance faces significant problems. A slightly more 

advanced storage technique is to shred XML into relational tables or object-relational 

tables, which enables better query processing and performance than does the CLOB 

storage technique. However, storing XML data in relational or object-relational 

tables requires flattening the hierarchical structure of XML documents (i.e. relational 

tables are used). A more advanced storage technique is to use an object-relational 

method of storing XML data, that is, using an XML Schema for object mapping and 

creating relations. The most advanced technique is to store XML data natively (e.g. 
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binary technique with XML Schema validation). Nevertheless, each technique poses 

its own challenges. 

XML-enabled databases and Hybrid XML Relational databases are based on existing 

RDBMS products which have been augmented to provide XML support.  For 

example, prominent vendors such as IBM and Oracle have developed their respective 

products to support XML. These vendors recognize the growing popularity of, and 

support for, XML data structurally, and understand that without XML support, their 

RDBMS would soon start to lose market share [Malloy & Mlynkova, 2009].  

1.3   XML Schema & Its Importance  

Document Type Definition (DTD) is a recommended schema by W3C which has 

been released to facilitate the structure of XML documents.  However, many 

problems have been identified by the user community which have prompted the 

W3C to look into the development of XML Schema. Problems faced by DTD 

include: limited support for data types, no namespace awareness, and a structuring 

element is nested only within other elements.   

To address the shortcomings of DTD, many schema languages have been proposed. 

These include, to name just a few: XML Schema [Sperberg-McQueen and 

Thompson, 2005], Document Structure Description (DSD) [Klarlund et al., 2002], 

Relax NG [Clark and Murata 2001] and Schematron [Jelliffe, 2005]. Of these, XML 

Schema has been recommended by W3C.  

The role of XML Schema is to constrain and structure XML content. Certain data 

types for defining data elements may enable storage space efficiency. For example, 

an integer data type used to declare a particular data element in the document would 

create better memory space than would a string data type.  

XML Schema plays several important roles in storage management including 

validation of the XML documents. Documents that are declared with a particular 

schema will need to use the schema to validate the documents during the insertion, 
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deletion or updating of data into or from the databases. Some database systems 

require schema validation prior to undertaking any data manipulation.  

Furthermore, information in XML Schema plays a significant role in query 

optimization.  The creation of internal objects may influence the way in which a 

query is processed. Some XML databases allow the shredding of XML documents 

and store these in a set of tables. The set of tables and internal relationships among 

them are automatically derived from the XML Schema. A well-designed XML 

Schema facilitates better underlying structures thereby allowing queries to be 

processed more efficiently.  

1.4   XML: Query Languages  

Since the arrival of XML, several XML query languages have emerged for the 

manipulation of data.  The query languages include Lorel [Abiteboul et al., 1997], 

XPath 1.0 [W3C, 1999], XPath 2.0 [W3C, 1999; 2007a; 2010], XML-QL [Deutsch 

et al., 1999], XML-GL [Ceri et al., 1999], and XQuery [W3C, 2007b]. XPath and 

XQuery are still currently being used and have attracted a number of research works 

on performance- related issues.  

XPath is a navigational query language that is designed to access parts of XML 

documents.  It can support single or branching path structures by means of predicates 

for filtering content.  For navigating XML documents, XPath has a full set of axes 

including child, descendant, descendant-or-self, parent, ancestor, ancestor-or-self, 

preceding, preceding-sibling, following, following-sibling, self, attribute and 

namespace. XQuery is derived from an XML query language named Quilt 

[Chamberlin et al., 2000]. It borrows some features from other languages including 

XPath. XQuery operates on the abstract and logical structure of an XML document 

[W3C, 2007b]. 

Due to the ever-increasing adoption of XML, there is a need to ensure that XML 

query languages perform efficiently. Query optimization and transformation for 

XML query languages, both syntactically and semantically, have received much 

attention from research communities in recent years. However, due to the rapid 
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development of XML data management, query optimization still requires much 

attention.  

Semantic query optimization utilizes schema constraints to directly optimize a given 

query with a set of optimization rules. Due to the current complexity of the XML 

data structure, which is enabled by rich semantics in XML Schema, semantic query 

optimization should be done in a more systematic manner. For a complete solution, 

we leverage the semantics from XML Schema and use it to investigate a set of 

semantic transformation typologies.  The semantic transformation typologies will be 

empirically tested for performance evaluation by using a large set of XPath queries. 

The performance results will be analyzed in order to identify semantic transformation 

typologies as optimization devices.    

1.5   Motivation 

For any data management model and query language, the ability to rewrite queries 

into equivalent queries is needed for several data management purposes. Of these, 

rewriting a query with the purpose of query optimization plays an important role; this 

is the case when rewritten queries can be evaluated more efficiently. Of the existing 

query rewriting techniques, semantic query transformation is the one that uses only 

semantics in the schema to transform any predefined user query to improve 

performance.  

In the early 1980s, semantic query transformation [Chakravarthy et al., 1990; 

Hammer and Jdondik, 1980; King, 1981a and 1981b; Shenoy and Ozsoyoglu, 1987] 

was introduced to utilize knowledge in the schemas to enable query rewriting.  The 

principle of semantic query transformation is to use certain transformation rules that 

are developed with knowledge within the schema to reformulate a given query into 

its equivalent query. Semantically equivalent query is expected to perform better 

than its original query.  

As the process of applying semantics to optimize queries has been adopted by other 

databases including Relational, Object-Oriented and Deductive databases, it is also 

useful in XML databases due to the availability of XML Schemas. However, there is 
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a difference in terms of constraints among the database types. XML constraints in 

XML Schema are driven by two sets of constraints: structural constraints (content 

model) and constraints of elements. Semantic query transformation for XML queries 

requires multiple semantics in most cases.  

For example, in a collection of theses, is it possible to find theses that must have at 

least one supervisor who is referenced to an existing thesis? With such rules, we can 

determine from the schema that in order for a research student to be entered into the 

database, the student must have a valid supervisor who is referenced by an existing 

PhD thesis. These rules can be formulated to eliminate the unnecessary execution of 

a condition in the query if the structural, referenced and cardinality constraints of 

query components are correctly described. The benefit of having this rule is that the 

query components can be reduced prior to the processing stage and which in turn 

results in better performance. 

The challenge of semantic transformation is the processing of schema information. 

Processing techniques must be carefully designed and efficient enough that 

overheads incurred by searching for the semantics can be kept to a minimum.   

In addition to the above, semantic query transformation has the benefit of increasing 

performance significantly, if constraint or semantic conflicts in the query can be 

detected prior to reaching the database execution level.   

For example, consider queries that contradict the semantics defined in the schema: 

without semantic transformation, how long would the conflict query take to process 

before the user is notified that the requested information is not available in the 

database? Semantic query transformation takes advantage of constraints defined in 

the XML Schema to transform the query. A query can be rejected if the semantics 

used by the query cannot be mapped to those available in the schemas. The 

performance comparison is based on the transformation time of the query and the 

query that executes against the database. This is because the conflict query can never 

reach the execution stage.    
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1.6   Objectives  

XML Schema offers rich semantic capabilities providing both structural and data 

semantics for validation of XML documents or data. While it has continued to gain 

support from W3C, DTD has become obsolete and as a result of its lack of semantics 

it cannot be used to accomplish many XML-related tasks. Yet semantic query 

optimization still utilizes DTD to achieve query optimization tasks.  Nevertheless, 

this will soon change, as the most recent XML documents have been developed 

using XML Schema, enabling the use of its semantics for semantic query 

transformation as part of the optimization research area.  

The main intention of this thesis is to utilize the semantic capabilities of the XML 

Schema, and to apply them to the development of semantic transformation typologies 

to transform XPath queries to equivalent but semantically restructured XPath queries. 

The semantic transformation typologies are implemented and their performance is 

evaluated. The results are used to identify semantic transformations that can become 

generalized optimization devices. 

The objectives of this thesis can be summarized as follows:   

• To provide a suitable semantic transformation methodology to transform 

XPath queries to equivalent but semantically restructured XPath queries by 

exploiting semantics defined in the XML Schema. 

• To ensure that the transformed semantic XPath queries and original XPath 

queries produce the same result, i.e. establishing equivalence. 

• To ensure that XML Schema semantics are well-derived in order to support 

semantic transformation of XPath queries.  

• To ensure that semantic transformations are efficiently evaluated, in order to 

identify individual semantic transformation as an optimization device 

(technique). 
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1.7   Scope and Plan of the Thesis 

A scope and a plan require a context. We delineate some fundamental requirements 

that are essential to support our proposed methodology. 

a. XML Schema provides essential resources which has made our research possible. 

The minimal requirement for this research is the XML Schema.  

In choosing a method of XML storage management, we consider any XML database 

repository that is equipped with a facility to validate XML documents against XML 

Schemas in this research.   

 

 

Figure 1.2  Outline of Thesis Scope 

The scope of the research is broadly summarized in Figure 1.2.  The goals are 

a. to leverage the XML Schema semantics,  

b. to propose a complete typology of semantic transformations, and 

c. to propose algorithms for semantic transformations.   

There are two sets of constraints in XML Schema that need to be leveraged for 

transformation tasks, namely structural constraints and constraints of elements.  

Structural constraints describe how content is modeled as tree expressions in XML 

documents. Constraints of elements are those restrictions and values imposed on 
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each data element.  To semantically transform an XML query, the structural 

constraints are essential constraints, and constraints of elements are optional 

constraints, which are used depending on the XML query components.  

There are three important sets of XPath query components that need to be 

transformed.  These are: (a) XPath query with simple path expression, (b) Path query 

specified with XPath axes, and (c) XPath query specified with predicates.  

a. For XPath queries specified with simple path expressions such as *, /, //,several 

semantic transformations are proposed, whereby each semantic transformation 

addresses individual path expression.  

b. For XPath queries specified with XPath axes such as child, self, parent, 

preceding, following, preceding-sibling, following-sibling, ancestor, ancestor-or-

self, descendant descendant-or-self, several semantic transformations are 

proposed, whereby each semantic transformation addresses individual XPath 

axes. 

c. For XPath queries specified with predicates, several semantic transformations are 

proposed, whereby each semantic transformation addresses predicates that 

support a single condition, conjunctive conditions and disjunctive conditions in a 

given XPath query.  The condition is a Boolean expression which may involve 

comparisons between elements and values, path expressions denoting elements to 

be compared as well as further path expressions.  These will be taken into 

consideration when semantic transformations are proposed.  

This thesis is organized into ten chapters. The inter-relationship among the chapters 

is depicted in Figure 1.3.  The contributions of each chapter are briefly described 

below.   

 Chapter 1 provides a brief overview of the background of XML. It then briefly 

discusses XML databases. This chapter also presents the details of XML Schema and 

its importance in general. XML query processing is introduced in order to highlight 

the main XML query languages.  The motivation for this research is then explained, 

highlighting the need for this study. This chapter also discusses the objectives and 

scope of this research.  
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Chapter 2 reviews previous works that address the semantic query transformation.  

We provide analyses of various sections of existing works.  Each section reviews a 

particular approach that is adopted by several works. Various weaknesses and 

strengths of existing techniques will be highlighted to explain the motivation for this 

research. 

Chapter 3 describes the open problems in XML semantic query transformation and 

the problem areas that are going to be addressed in the thesis.  The section addresses 

the shortcomings of the existing techniques that were highlighted in Chapter 2. The 

identified problems include the unavailable semantic transformations for certain 

types of XPath structures, XPath components such as axes, and predicates where 

conditions are specified for data filtering.  This chapter also includes definitions of 

XML Schema, data model, XPath fragments and related XML essentials required for 

the semantic transformation methodology. 

Chapter 4 consists of two sections:  

1. The first section proposes a technique to derive semantics from given XML 

Schemas to support the proposed semantic transformation typologies. The goal is 

to minimize the transformation process when semantics are matched and selected 

by semantic transformations.  

2. The second section proposes the first category of semantic transformations.  This 

semantic transformation category proposes three typologies to transform a simple 

XPath expression that is specified without conditions or axes. An XPath query 

can be contracted, expanded or complemented based on the XPath fragment used 

in the XPath query.  

Chapter 5 proposes the second category of semantic transformation typologies, that 

is, for an XPath query specified with axes. The goal of semantic transformations is to 

eliminate the axes from the XPath query where possible. 

Chapter 6 proposes the third category of semantic transformations which are 

transformations for XPath queries specified with predicates. Due to the complexity 

of the predicates in XPath query, the transformations are concerned with eliminating 
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a whole predicate or reducing the size of a predicate. The semantic transformation 

rules identify the structure in predicates and matching semantics before deciding on 

semantic transformation. 

 

Figure 1.3  Inter-relationships between Chapters in the Thesis 
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Chapter 7 describes the experimental methodology and design, which include the 

experimental background, objective and two main strategies. The first describes the 

common tasks that are shared by the experiments. The second describes the tasks 

conducted by individual experimentations.  

Chapter 8 evaluates and analyses the query performance results of the designed 

XPath queries using a DBLP real data set [Ley, 2011]. Both DBLP schema and data 

are studied and analyzed before new semantics are added. To ensure the consistency 

and quality of the data, a validation tool for data consistency is employed.  

Chapter 9 evaluates and analyses the query performance results produced by the 

benchmark XPath queries and their semantic XPath queries using benchmark data 

[Runapongsa et al., 2006]. While the real data and its XML Schema may not be 

comprehensive enough for evaluating the effectiveness of the semantic 

transformations, benchmarks that provide XML Schema, complex data structures and 

queries are much more relevant in order to study query components that have an 

impact on performance.  The goal in this chapter is to apply semantic transformations 

to eliminate the query components that are believed to affect query performance.   

Chapter 10 presents an overall summary of the works and future directions of the 

thesis.  The conclusion addresses the contributions in each chapter. Finally, we 

highlight future work that may arise from this current research.   



 

Chapter 2 

Literature Review   

The aim of this chapter is to show the achievement of existing works in using 

semantics from the database schemas for optimization purposes and more 

importantly, to identify  the issues which remain outstanding.  Some of the 

outstanding issues are the central focus of this research.  

2.1 Clarification & Classification of Techniques 

It is important to understand the terms semantic query optimization and semantic 

query transformation in order to establish a semantic transformation methodology 

for query optimization purposes.   

The terms semantic query optimization and semantic query transformation refer to a 

common concept that applies constraints in the database schemas for optimization 

purposes. Semantic query optimization is a technique using rules or theories 

formulated from semantics defined in database schemas for optimization purposes. 

Semantic query transformations fulfill the optimization task through a systematic 

approach. It first establishes a set of rules to transform queries to semantically 

equivalent but restructured queries.  The semantic transformations are then 

implemented and empirically evaluated for their efficiency and effectiveness as 

semantic query optimization devices.  
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The utilization of semantics in the schemas for query optimization has been 

introduced in relational, object-oriented and deductive databases.  It is important to 

understand how the semantics in the database schemas bring benefits for query 

optimization purposes. We emphasize that different databases have different 

structures and their schemas provide a different set of semantics. Some techniques 

are specific to certain semantics. We study the techniques in the following 

categories: 

• Legacy Databases: In this category, we review several important works of 

semantic query optimization in Relational, Deductive and Object-Oriented 

databases. We believe the works from different databases would benefit 

our research significantly.    

• XML Databases: In this category, we review techniques that apply 

semantics in XML schemas (DTD and XML Schema). In this category, the 

techniques are further divided into several sub-groups.  

2.2 Legacy Databases 

The principle of semantic query optimization is to use semantic rules to reconstruct a 

query into an equivalent query to deliver better performance [Haseman et. al., 1999; 

King, 1981a]. Semantic rules are formulated by applying given database knowledge 

such as constraints defined in the schema. The question is: how can efficient 

semantic optimization rules be formulated to reduce the cost of performance? 

Before discussing related works in semantic query optimization, a partial database 

schema given below is used to give a brief overview of several semantic rules used in 

semantic optimization [Haseman et al., 1999; King, 1981a]. Details of this example 

can be found in the work of Haseman et al. [1999]. 

Relations 

SHIP(shipname, owner, registry, type, capacity, deadwt) 

CARGO(cargo#, ship, cargotype, quantity) 
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OWNER(ownername, industrytype, assets, headquarters) 

Join Paths 

SHIP.shipname  =  CARGO.ship 

OWNER.ownername  =  SHIP.owner 

Conditional Reference Constraints 

All cargos use available ships 

CARGO.ship  ⊆  SHIP.shipname 

Bounding Constraints 

Cargo quantities are bounded by ship capacity 

CARGO.quantity  ≤  SHIP.capacity 

Semantic Integrity Constraints (SIC) 

• All supertankers have deadweights of 100000 or more and all ships with 

deadweight exceeding 100000 are supertankers. 

SHIP.type = 'supertanker'  ⇔  SHIP.deadwt ≥ 100000 

• Owners with assets greater than 1 billion are considered to be in the petroleum 

industry. 

OWNER.assets > 1Billion ⇒  OWNER.industry = 'petroleum' 

Suppose that the queries below are transformed based on the availability of semantic 

integrity constraints (SIC) to obtain semantic equivalent queries (SEQ). While the 

first SEQ has fewer clauses than those in first Query, the second SEQ has more 

clauses than those in the second Query. 

Query:  SELECT SHIP.shipname, SHIP.owner  

FROM SHIP WHERE SHIP.type = 'supertanker' AND SHIP.deadwt 

> 75000  

SIC:   SHIP.type = 'supertanker' ⇒  SHIP.deadwt > 100000 
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SEQ:   SELECT SHIP.shipname, SHIP.owner                 

                FROM SHIP WHERE SHIP.type = 'supertanker' 

Query:  SELECT OWNER.headquarters 

FROM OWNER WHERE OWNER.assets > 1 billion 

SIC:   OWNER.assets > 1Billion ⇒  OWNER.industry = 'petroleum' 

SEQ:   SELECT OWNER.headquarters 

FROM OWNER  

WHERE OWNER.assets > 1Billion 

AND OWNER.industry = 'petroleum' 

Over the past decades, several techniques for semantic query optimization have been 

proposed. Figure 2.1 summarizes the main differences among the techniques applied 

to legacy database types. This section reviews several important works to highlight 

the foundation of the semantic query optimization concept. 

King [1981a; 1981b] proposes a query language sub-class to optimize Select-Join-

Project queries for Relational databases. The query language sub-class is built by 

analyzing the select-join-project query at several levels of detail, along the lines of 

the plan-generate-test paradigm of artificial intelligence notations. The researcher 

then integrates semantics, query structure, and query processing knowledge to 

formulate transformation rules such as restriction elimination, join addition, index 

and scan structures.  The formulated rules are then applied to transform the sub-class 

query language for optimizing Select-Join-Project queries. As a result, the 

performance of the transformed queries was promising when restriction elimination 

and join addition rules were applied. 

The drawback of this work is that the proposed query language sub-class can handle 

only a single join between relations in the query conditions. Moreover, this work 

does not provide a control strategy of transformation iteration. For example, suppose 

that a new restriction is added to a query condition, and after it passes through to the 

next iteration, another rule decides that elimination of another restriction is needed. 

The next iteration decides an additional restriction is needed and so forth; this 

becomes an endless loop. To limit the cycle of transformations for a given query 
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based on a set of rules, a controlling mechanism is needed to avoid the endless loop 

of transformations.  

Database Authors Approach/concept Constraint Drawbacks 

Relational  

King, 1981a and  
King, 1981b. 

Sub-class language to 
optimize select-join-
project. 

Schema 
Knowledge and 
data values. 

No strategy to 
control 
transformations. 
Could be caught 
in an endless  
Loop. 

Shenoy & 

Ozsoyoglu, 1987. 

Theoretic graph-

based to identify 

redundant joins. 

Implication 

integrity and 

sub-set 

integrity. 

No strategy to 

control  

transformation 

iteration. 

Deductive 

Chakravarthy et al., 
1986a; 
Chakravarthy et al., 
1986b; 
Chakravarthy et al., 
1988 and 
Chakravarthy et al., 
1990 

Modifying query 
based on the 
obtained residues. 

Residues. - 

Object-
oriented 

Grant et al., 1997 
Modifying query 
based on the 
obtained residues. 

Residues. 

Involves 
extensive steps 
before a query 
can be modified. 

Meier et al., 2010 

Reasoning  

redundant 

components by 

applying type-based 

semantics. 

Type-based 

semantics. - 

Figure 2.1 Semantic Query Optimization for Legacy Databases 

The set of transformation rules in this work will influence our research, although the 

structure of the XML data model is different from the structure of the relational data 

model. Semantics in XML schemas are regarded as the superset of semantics in 

relational schemas. XML schemas support both structural constraints and constraints 

of elements; these constraints can be useful for semantic transformation techniques 

such as restriction elimination, reduction and join addition. 
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 Shenoy and Ozsoyoglu [1987] proposed a technique for relational databases to use 

implied and sub-set constraints to formulate a set of heuristic rules including implied 

expansion, semantic expansion and semantic reduction. The technique first 

constructs a graph-based simplification method, which enables an identification of 

redundant joins and redundant restrictions before the heuristic rules perform the tasks 

of elimination and reduction. Similar to the limitations in [King, 1981a and King, 

1981b], this approach does not have a heuristic strategy to control and select suitable 

types of transformation. 

On the positive side, this approach has provided some directions for the research 

described here. It has a graph-based representation of join-queries which is useful for 

deciding which of the redundant conditions in predicates can be eliminated. While 

XML is a tree data structure, XML Schema is a directed graph that represents the 

structural constraints. We consider this work to be close to our research, specifically 

in relation to join-queries where conditions focus on an element comparison value.  

Chakravarthy et al. [1990] consolidate all existing semantic query optimization 

techniques for deductive databases [Chakravarthy et al., 1986a; et al. 1986b; et al. 

1988]. By performing consolidation, they iteratively apply deductive rules to 

relations in order to obtain residues, which are also known as integrity constraints. 

This consolidation is very effective because, when using residues to modify the 

queries, the performance of the modified queries is improved tremendously 

compared with the performance of the original queries.    

Grant et al. [1997] employ residues to propose a modification of queries in object-

oriented databases for optimization purposes. Their approach involves several steps; 

for example, each object query is translated to a logical representation and then 

applied with residues. One of the drawbacks of the technique is that they translated 

an object-oriented schema to a relational schema to obtain the residues. This means 

some object-oriented semantics are flattened when the object-oriented schema is 

converted to a relational schema.  

The approaches proposed by both Chakravarthy et al. [1990] and Grant et al. [1997]   

have motivated us to consider the fact that regardless of the types of databases, 

modified queries perform better than do the original queries. 
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Meier et al. [2010] use type-based semantics to optimize queries on the database 

types such as object-oriented databases and deductive databases. The type-based 

semantics rely on rigorous first-order logic formalization. The first-order logic allows 

reasoning of the redundant components and hence, some techniques can be applied to 

modify the redundant components. 

In regards to the evaluation strategy, the authors extend a cost-based model proposed 

by Deutsch et al. [2006] and develop this further to minimize the union of 

conjunctive queries with negations (using a constraint base, a type system, and a 

generic cost function to accomplish this task) [Björklund et al., 2008]. This work 

utilizes interrelation semantics, which model relationships among the objects. Their 

captured techniques of interrelation semantics can benefit our research in the 

modelling of both complex and simple type queries.  

In summary, we believe various techniques of semantic query optimization proposed 

for legacy databases that support optimization rules can be explored for our research.  

Although the processing and structuring of queries in these databases are different 

from the processing and structuring of XPath queries in XML databases, certain 

constraints such as range values of data remain the same for most databases. In 

addition to this, at the high level of using schema semantics, we can learn techniques 

such as semantic capturing and concepts and then adopt these techniques in our 

research. We also learn that by modifying a query, better performance can be 

achieved in most cases.   

2.3 XML Databases 

This section reviews existing techniques that utilize semantics from XML schemas 

for query optimization purposes in XML databases. An XML query (i.e. XPath or 

XQuery query) can be expressed with or without predicates. We review the existing 

works in two categories, namely, XML queries without predicates and XML queries 

with predicates.  

Since XML Schema (XSD) has not been fully exploited in semantic query 

optimization and transformation, before the related works are formally discussed, a 
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partial of XML schema (DTD) given below is used to give the reader a brief 

overview of how semantics are used in semantic query optimization.  

<!ELEMENT publisher (address, book*)> 

<!ATTLIST publisher name CDATTA #REQUIRED> 

<!ELEMENT address (#PCDATA) 

<!ELEMENT book (title, author*)> 

<!ELEMENT author (name,age)> 

<!ELEMENT name (#PCDATA)> 

 <!ELEMENT age (#PCDATA) 

The schema above implies the publisher has an attribute of publisher name and 

multiple copies of book as its children. Each book has a title but many authors 

denoted as author who has a name and age. These are known as semantics or 

constraints. 

Suppose an XPath query ‘/publisher[@name]//author[age]’ is given. Without the 

given schema above, the publisher and author satisfy the attribute name and element 

age can be known only when the end tag of publisher is reached. Based on the 

semantics in the given schema above, certain semantic rules can be formulated, 

which are going to be studied in this section. Given these semantics, both attribute 

name and element age are not required when a book author is queried. However, the 

question is whether book should be introduced to the XPath query above so that the 

axis ‘/’ allows the checking of parent publisher and child book then parent book and 

child author. The other option is not to introduce book to the XPath query so that the 

axis ‘//’ allows the checking of ancestor publisher then descendant author. The 

answer depends on which option produces better query performance.  

2.3.1 XML Queries without Predicates 

In this category, the techniques of using semantics in XML schemas (i.e. DTD and 

XML Schema) for query optimization purposes are further grouped into sub-

categories including XPath Query Containment, Tree Pattern Minimization and 

Semantic Query Optimization.  Figure 2.2 summarizes the existing works in this 

section in terms of approach, constraints used and drawbacks. 
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Figure 2.2 Summary of Existing Works for XML Query Specified without Predicates 

XPath query containment determines a set of answers to one XPath query, is a subset 

of of answers of another XPath query. Several techniques have been proposed to 

study XPath query containment problems. We review the techniques that apply 

semantics to find containment for optimization purposes. 

 

Approach Authors Constraints Drawback 

XPath Query 
Containment 

Miklau & Suciu, 
2002 

Semantic equivalences 

Not able to find containment 

if DTD constraints that are 

equivalent to semantic 

equivalences used. 

Wood, 2003 

Subclass and sibling 

constraints 

Suitable for small scale of 

data size as limited 

constraints are applied. 

Wang et al., 
2008 

Semantics derived from DTD 
Not able to find containment 

for ‘*’ from the equivalent 

tree pattern 

Zhou et al., 

2009 and Wang 

& Yu, 2010 

Parent-child Sibling and 

cousin  

Not supporting wild cards 

and branching considers 

non-disjunctive type. 

 

Tree Pattern 

Minimization 

Amer-Yahia et 
al., 2001, Amer-
Yahia et al., 
2002  

Subtype, required- child and 

required- descendant 

Limited constraints.  

Show better runtime when 

subtype constraint is not 

used  

Ramanan et al., 
2002 

Only show an improvement 

when the subtype constraint 

is excluded. 

Chen & 
Chan 2008 

Required-child, required- 
descendant, required-parent, 
required-ancestor, subtype 
and sibling constraints. 

Supports no recursion and 
requires uniqueness among 
elements  

Semantic 
Query 
Optimization 

Bohm et al., 

1998 

Exclusivity, Obligation, and 

Entrance Locations 
Do not directly apply 

constraints to optimization 

Wang et al., 

2003 
Schema Paths Do not target for query 

performance. 

Su et al., 2005 

Path constraints with 

inference type support 

Work targets for stream 

processing. Do not consider 

XPath axes 

Che et at., 2006 
Contain and Contains-in 

Limited number of 
semantics  

Sun & Liu, 2006 ISA, PartOf and SynOf 
Not sharing  evaluation 
results 
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a. XPath Query Containment  

XPath query containment normally involves XPath fragments such as parent-child, 

descendant-ancestor, wildcard, and branching. These XPath fragments can be 

effectively removed and replaced by containments found in an equivalent tree pattern 

that is represented by an equivalent XPath query.  

Miklau and Suciu [2002] propose a set of semantic equivalences to find containment 

of XPath fragments such as parent-child, descendant-ancestor and branching XPath 

fragments. Semantic equivalence is a tree-based mapping used to find similarity of 

semantics detected in the DTD. Semantics derived directly from DTD are referred to 

as conventional semantics. 

By using semantic equivalence between two tree patterns that contain XPath 

fragments such as parent-child, descendant-ancestor or branching, Miklau and Suciu 

[2002] try to prove the existence of a homomorphism (a mapping between two tree 

patterns that respects the whole data tree structure). For example, if the second tree 

pattern contains some sub-patterns which match more XPath fragments such as 

parent-child, descendant-ancestor or branching in the first tree pattern in the presence 

of semantic equivalences, then a homomorphism exists. When semantic equivalence 

is applied to the two tree patterns, they are verified by applying the semantics (or 

constraints) in DTD (which are used to derive semantic equivalence); however, a 

homomorphism cannot be detected. This shows that by using semantic equivalence, 

deciding the containment of one tree pattern in another tree pattern is not always 

successful. This adds a limitation to the work since semantic equivalence and 

constraints (used to derived semantic equivalence) are not fully compliant. 

Wood [2003] considers XPath fragments such as descendants-ancestor, wildcard and 

branching in finding XPath containments. He shows that containments for these 

XPath fragments can be found by applying a subclass and sibling constraints in 

DTD. While the result for XPath containment of XPath fragments such as wildcard 

or branching nodes indicates a polynomial runtime; however, when finding XPath 

containment for descendant fragments, performance is slow. This solution is suitable 

for a relatively small scale of data as the number of constraints would be minimal.   
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Wang et al. [2008] explore the DTD semantics to find query containment for tree 

patterns that contain XPath fragments such as parent-child, descendant-ancestor, 

wildcard or branching. The objective of this work is to provide an efficient algorithm 

that can take in DTDs directly and use the semantics to find containments in a tree 

pattern represented for an XPath query. Their algorithm is designed to support a 

wildcard existing in the first tree pattern, and the containment represented for the 

wildcard is expected to be found in the second tree pattern. The first tree pattern is 

different in structure from the second tree pattern but they are semantically 

equivalent. However, it turns out the containment of a wildcard in the first tree 

pattern cannot be found as a containment in the second tree pattern by the algorithm. 

Unfortunately, this work does not fully meet its objectives. Therefore, the first tree 

pattern must be transformed to a new tree pattern before the algorithm can determine 

the containment of a wildcard in the second tree pattern.   

Zhou et al. [2009] as well as Wang and Yu [2010] use a chasing technique of a tree 

pattern to minimize XPath queries. They identify constraints of the required child, 

sibling and cousin. These constraints are derived from a recursive DTD, which needs 

a set of specific chasing rules to derive them. Even though the technique can show 

the existence of a homomorphism between the tree patterns, a homomorphism is not 

necessarily needed for the containment of tree patterns with self-or-descendant 

edges. That is because an improvement in the self-or-descendant edges is not 

sufficient.  

To identify the existence of a homomorphism, the authors consider various special 

cases. They consider XPath fragments such as parent-child, descendant-ancestor and 

branching. XPath fragment branching supports only a non-disjunctive type. This 

work does not consider finding containment for a wildcard, which has been 

addressed by Wang and Yu [2010] under containment finding.  

As techniques proposed for query containments revolve around fragments of child, 

descendants, wildcard and branching, there are limitations in supporting XPath 

fragments. Although the work here is not about XPath containments, the semantics 

using tree-based mapping from XML documents are similar to those semantics 
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captured from an XML Schema; and we can explore these semantics for our 

research. 

b. Tree Pattern Minimization 

A tree pattern is used to represent the structure of XML queries such as XPath query 

and XQuery.  Tree pattern minimization is a technique that expresses an XML query 

on a tree pattern and minimizes the size of a tree pattern for query optimization 

purposes.     

Amer-Yahia et al. [2001, 2002] apply constraints such as subtype, required-child and 

required-descendant to minimize the size of a tree pattern that represents a given 

XML query.  

The performance of the execution of a minimized tree pattern is evaluated using two 

proposed algorithms. The first algorithm augments the nodes and edges, and removes 

any redundant nodes and edges. The second algorithm propagates the remaining 

nodes and edges to a new pattern tree to produce the final result.  The limitation of 

the first algorithm is that it is restricted to supporting a small number of constraints to 

produce the unique equivalent minimal query.  

As the runtime shows, the technique used in this work is adequate for XML 

documents that are not significantly large in scale. However, the runtime fluctuates 

when the data sizes are relatively large. The technique was later refined by Ramanan 

[2002], who modifies the algorithms proposed by Amer-Yahia et al. [2001, 2002] to 

improve the runtime of the proposed minimization techniques with no additional 

constraints other than subtype, required-child and required-descendant. The 

mechanism involves combining the constraints and then switching them in 

computations. However, the result indicates a better runtime when the subtype 

constraint is excluded from the computations.     

The common drawback of minimization techniques proposed by Amer-Yahia et al. 

[2001, 2002] and Ramanan [2002] is that they involve the same set of constraints; 

they lack the other common constraints such as required-parent or required-ancestor.  



Ch. 2 

27 

Chen and Chan [2008] propose a technique to minimize XPath queries by 

considering a larger set of constraints including subtype, required-child, required-

descendant, required-ancestor, required-parent and sibling. In their optimization 

technique, they first categorize the constraints into forward (subtype, required-child, 

required-descendant and sibling) and backward (required-ancestor and required-

parent) groups. Optimization is accomplished by a set of algorithms that provide 

rules to produce a set of minimum XPath queries or single minimized XPath query 

for an input XPath query.  

Most of the input XPath query is minimized and results in a single minimized XPath 

query.  However, there are cases of an XPath query being minimized and resulting in 

a set of minimum XPath queries. The reason is that the target element in the input 

XPath query is a wildcard, which represents a set of different schema elements.  

The runtime of a minimized XPath query or a set of minimum XPath queries 

outperforms the runtime of the original XPath query. Although this work supports 

more constraints than do any earlier works, it still has a limitation because it 

recognizes only distinct element types in the structural constraints set.   

As most of the techniques proposed for tree pattern minimization use constraints 

such as subtype, required-child and required-descendant, very few works extend the 

list of constraints to support required-parent, required-ancestor and sibling. Although 

the work here is not about tree pattern minimization, the semantics such as subtype, 

required-child and required-descendants are similar to semantics that can be captured 

from XML Schema. The semantic terms are referred to as co-occurrence, occurrence 

or nested type; they are very useful to determine the existence of a child and the 

children of a child.  

c. Semantic Query Optimization 

Semantic query optimization is a technique that uses schema semantics to formulate a 

set of rules and theories, which are then used to optimize XML queries (i.e. XPath 

queries and XQuery queries). 

Bohm et al. [1998] propose an approach using schema semantics to create a structure 

index for query optimization. This approach first constructs a structured index 
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(referred to as a structure index) based on a set of constraints including exclusivity, 

obligation, and the entry locations. It then uses the structure index to speed up query 

processing. Using the structure index to optimize the query is regarded as a logical 

optimization, which is usually built directly on the database.  

Due to the use of an index, the drawback of this approach is that the storage details 

need to be known in order to make plans for query execution. The necessity of 

having knowledge about the storage details defeats the purpose of semantic query 

optimization. Semantic query optimization does not need to know about the storage 

details and system resources. It only requires information such as schema semantics.  

Wang et al. [2003] are concerned with two techniques, path shortening and path 

complementing, to rewrite XPath queries using schema paths  

•  A path shortening technique rewrites a single path to a set of minimum path 

expressions. They consider only simple path expressions such as parent-child 

‘/’, descendant-ancestor ‘//’ or wildcard ‘*’. The single path does not indicate 

the use of an XPath axis such as following, preceding, following-sibling or 

preceding-sibling. 

Their main intention is to evaluate memory efficiency instead of query 

performance for optimization purposes. Each minimum path expression in the 

set of minimum path expressions is executed to produce one schema node, 

which produces a set of data nodes at a time.  The aggregate result produced 

by the set of minimum path expressions is able to improve memory 

efficiency.  

•  The path complementing technique tests the aggregation of outputs to 

complement the path shortening technique. It does not test for memory 

efficiency or query performance. Currently, it does not clear the buffer before 

the next minimum path takes over.  For example, a query asks to return all 

names in a given region, ‘//region//name’. In the schema, suppose that there 

are two path expressions that compute information ‘name’. The first 

expression produces the item name in all regions, ‘//region/item/name’ and 

the second expression produces the name of the people in all regions, 

‘//region/people/name’. It executes the first expression and then the second 
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expression. The final result is the first result aggregated with the second 

result.  

The objective of this work is different from our objective here. We complement this 

work and acknowledge the technique of path shortening to produce memory 

efficiency.   

Su et al. [2005] propose a semantic query optimization for XQuery for stream 

databases. They use a query tree to capture a path constraint and then apply an 

inference type that indicates a sequential order among the paths to resolve recursion 

and descendant issues. In addition to path constraints, they also use constraints such 

as order, occurrence and inclusivity. By using these constraints, they can identify the 

redundant components in XQuery queries that do not contribute to the final result.  

This work focuses on semantic query optimization specific to stream databases. In 

XML stream processing, information retrieved is in a token that generally causes a 

memory buffering issue. One of the critical issues for XML stream processing in this 

work is a change of schema. They have not provided a mechanism for handling the 

changes in a schema. In addition, they do not address optimization of XPath 

fragments such as parent ‘..’, as they are concerned mainly about wildcard ‘*’  and 

descendant-ancestor ‘//’.  This work applies semantics derived directly from the 

schema to rewrite XQuery queries. In a similar direction, here we derive semantics 

directly from XML Schema and apply them in our transformations of XPath queries. 

Che et al. [2006] propose a heuristic-based algebraic technique for a query 

optimization framework. The heuristic-based algebraic notations are a set of PAT 

algebraic expressions [Salminen & Tompa, 1994], which are developed for 

structured text access. PAT algebraic expressions allow the checking of type 

consistency and consequently produce constraints, namely ‘contain’ and ‘contain-in’. 

The produced constraints are used to support their heuristic-based algebraic 

transformation. Although the main technique proposed by this work does not focus 

on semantic query transformation, the authors consider the use of constraints in 

schemas such as DTD or XML Schema when available. Hence, they focus on the use 

of schemas as additional resources for further optimization at the application level. In 

this work, semantics are not the standard ones that can be directly derived from 
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DTDs. They are specific semantics such as contain and contain-in that need PAT 

algebraic expressions for derivation. Their heuristic-based algebraic technique is 

influenced by the specific constraints.   

Sun and Liu [2006] apply an ontology conceptualization to improve query 

performance for optimization purposes. They utilize the hierarchical organization of 

concepts such as inheritance ("ISA") relationship, part-whole ("PartOf"), concept-

value (“ValueOf”) and synonym ("SynOf") among many others to formulate a set of 

rules. These rules transform normal XML queries to semantically equivalent XML 

queries, which have a query runtime that is less than the query runtime of the original 

XML queries. 

Ontologies are useful for capturing the semantics of a data source and to unify the 

semantic relationships between structures. From this work, we see an opportunity for 

our future research so that it can support semantics derived from data sources.  As for 

this research, we do not consider semantics in data sources. We consider semantics 

derived from an XML Schema. 

We believe this work can be enhanced to provide a practical solution as currently no 

performance evaluation study has been undertaken. One way to enhance this is to 

provide additional rewriting rules to translate the rules derived from ontologies. The 

translated rules can be implemented for experimentation. In this way, the technique 

can fundamentally provide the value of semantic query optimization from the 

ontological aspect.   

In this section, we have studied techniques of semantic query optimization for query 

optimization purposes. We find that some but not all, of the existing works use 

semantics derived directly from a DTD. Some existing works do not use DTD 

semantics directly; instead, they use specific constraints that need other techniques to 

derive them [Bohm et al., 1998; Che et al., 2006]. The main outstanding issue is that 

none of the existing works has addressed semantics in XML Schema for optimizing 

XML queries. We believe XML Schema will improve the techniques of using 

semantics for optimization purposes as there are many features that are not supported 

in DTD.  
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2.3.2 XML Query with Predicates 

Figure 2.3 provides a summary of existing works in terms of constraints used and 

their limitations.  

Figure  2.3 Summary of Existing Works for XML Query Specified without Predicates 

A predicate in an XML query expresses conditions to be fulfilled in addition to a 

structural path. A condition is a Boolean expression. It may involve comparisons 

between elements and values, path expressions denoting elements to be compared, as 

well as further path expressions.  We refer to predicates in XML as XML query 

Authors Constraints Drawback 

Fernandez & 
Suciu, 1998 

Schema graph Supports only single conditions 

Kwong & Gertz, 
2002 and Olteanu 
et al., 2002 

Parent-child, sibling, 

order and  semantics 

from DTD 

Supports only nested conditions  

Supports no joins of conditions 

Su et al., 2005 

Occurrence, exclusive, 

inclusive and 

enumeration 

Cannot modify conditions with value-based 

types due to the use of DTD 

Wang et al., 2006 Occurrence, inclusive 

and exclusive 

Provides only management plans on execution 

of predicates 

Groppe &  

Böttcher 2005 
Schema graphs Considers detection of semantic conflicts in 

queries as optimization solutions.  

Bao et al., 2008 
Semantics from DTD Cannot support conjunctive predicates.  

Need to break up the conditions 

Li et al., 2008 

Occurrence, inclusive, 

exclusive and pattern 

non-occurrence 

Cannot support disjunctive predicate. 

Conjunctive predicate cannot be modified or 

removed if comparison is on a value-based 

type.  

Hanson & Mani, 

2010 

Parent-child and 

ancestor-descendant 

Translate XQuery to SQL/XML syntax which 

modifies expressions of parent-child or 

descendant pairings. 

The work is a preliminary study of simple 

XQuery that is limited to traditional database 

management systems.  

Wu et al., 2010 

and Wu et al., 

2011 

Structural semantics 

and value-base 

semantics of elements  

Extract semantics from XML documents and 

store into relational tables. Use them to 

optimize twig pattern queries.  As semantics 

are stored in relational tables, the impact is 

that they may be flattened once they are 

converted to a relational structure. 
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predicates. The existing work on the use of XML schemas (DTD and XML Schema) 

semantics for optimizing XML queries specified with predicates is insignificant. 

Fernandez and Suciu [1998] propose a query rewriting technique which they refer to 

as state extents, based on a schema graph. The schema graph has a set of elements 

regarded as a states noted as s1, s2, s3,…, sn called states in which s1 is the root and 

edges are labelled with unary predicates. 

The rewritten query using states, handles a single condition by breaking it into sub-

conditions.  Each sub-condition is then processed as a sub-tree.  Each sub-tree has a 

target node. When searching for a target node, the sub-tree searches in a portion of an 

XML document instead of the whole XML document. This not only reduces the 

search space, but also improves the overall query performance. The weakness of the 

technique is that due to the state extents, a query can have only single condition; 

hence, no joins of conditions are supported.      

Kwong and Gertz [2002] and Olteanu et al. [2002] provide a technique to optimize 

XML queries by using semantic equivalences which are derived from DTDs. The 

technique first formulates a set of XML query-algebra proposed by Bohm et al. 

[1998] to establish a framework to modify complex nested XML query predicates. 

The framework starts off by identifying the redundant conditions in an XML query 

predicate using semantic equivalence. Some semantic equivalences are location 

paths. Subsequently, the location paths are the ones that determine whether or not the 

nested path expression is redundant.  

This work focuses on nested conditions in XML query predicates, instead of using 

sub-paths to express conditions. Although it is very rare for XML queries to adopt a 

nested path expression for conditions, it is good to be aware of the different condition 

structures which create further opportunities to study query performance for 

predicates. The limitation of this work is that it does not support the joined 

conditions in predicates. 

Su et al. [2005] and Li et al. [2008] propose a semantic query optimization technique 

for XML queries specified with predicates in XML stream databases using semantics 

in DTD. While Su et al. [2005] address predicates that support single conditions 
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using occurrence, inclusive and exclusive constraints, Li et al. [2008] address 

predicates that support conjunctives using a non-occurrence pattern constraint; these 

two works achieve different objectives. The former tries to cope with the buffering 

issue that leads to a query performance issue; the latter tries to address the footprint 

memory issue, which leads to a memory efficiency issue. Regardless of their 

objectives, they use schema semantics to achieve their goals. 

The techniques have several drawbacks. For a single condition, Su et al. [2005] can 

support only a condition without a value-base comparison. For example, if a single 

condition is [zipcode > 3004] their technique is inadequate for checking the range 

value due to the lack of data types in DTD. The same applies to conjunctive 

conditions [Li et al., 2008] when conditions are joined. For example [zipcode > 

3004][news/date],  if the value ‘zipcode’ does not exist in the database, the technique 

cannot determine this conflict. Hence the query needs to be sent to the database for 

confirmation. This problem is caused by the limitation of data types supported by 

DTD. Semantic query optimization for this kind of requirement can be achieved 

using XML Schema because constraints on data types are available. This 

shortcoming will be addressed in this research. 

Groppe and Bottcher [2005] provide a schema-based approach to study XPath 

satisfiability and optimization of XML queries. Their approach elaborates on an 

ordered schema graph generated from XML documents. The ordered schema graph 

is produced based on three constraints including parent-child, sibling and sequence 

or choice between the elements. The input XPath query is transformed into an 

ordered query graph which is evaluated against the ordered schema graph for 

deciding if the query conditions affect the whole result set, which is either ‘no’ or an 

empty result; this becomes the solution to optimize XML queries. Their work can be 

considered as a work in the semantic query transformation, as their solution is 

dependent on the semantic conflicts detected in a query.  No further modification of 

valid XML queries is made to reduce the processing of query components as 

consequently it improves query performance for optimization purposes. This work 

will influence part of our contribution as their detection of semantics is useful for our 

work. 
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Wang et al. [2006] propose a technique to trigger schema runtime information for 

improving the static semantic query optimization technique proposed by Su et al. 

[2005] in stream databases. In this work, Wang et al. [2006] provide a runtime 

management plan to rewrite the algorithm provided by Su et al. [2005] to avoid data 

buffering by an early detection of predicates and switching the output mode to 

compute the result immediately.  

Their work focuses on memory efficiency as processing consumption for stream 

databases can be intensified due to the pattern retrieval concept and the volume of 

processed data being significantly high. If the switching of the output mode works 

well, then numerous resources can be saved for other useful tasks. In addition, their 

work does not provide techniques for optimizing the XML query; instead, it provides 

an online management plan to manage execution based on the detected predicates. 

Therefore, we may conclude that the conditions they support in predicates still 

remain as single element conditions, which is supported by Su et al. [2005] However, 

we acknowledge this technique and will incorporate it in our future work to deal with 

memory efficiency.  

Bao et al. [2008] explore Object-Relationship-Attribute models (ORA-SS) [Wu et 

al., 2001] to store semantics that are captured from DTDs for query optimization 

purposes. The authors address three types of predicates. The first type is a single 

condition with a value, the second type is a single condition with no value and the 

third type is a disjunctive condition (referred to as a twig pattern) in predicates. Bao 

et al. perform a query breakup to distinguish the processing of parts of twig patterns 

in a predicate. They find the first twig pattern match and ignore the rest as they 

regard the rest of the twig patterns as redundancies.  

Due to this query breakup and processing of parts of twig patterns, the approach is 

limited when addressing conjunctive predicates.  When a conjunctive predicate 

exists, each pattern in the predicate must be processed because conjunctive 

predicates allow some conditions to be true and some not to be true. As a 

consequence, the result of true conditions must be produced. Bao et al. [2008] 

presented the result which indicates a promising query performance improvement. 

This technique is evaluated by comparing its query performance results against the 
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query performance result produced by TwigStack [Bruno et al., 2002]. In addition, 

the technique does not evaluate various data sizes. With various data sizes, the query 

performance can demonstrate scalability and effectiveness of the approach.     

Hanson and Mani [2010] explore opportunities to utilize two structural constraints 

such as parent-child and ancestor-descendant semantics to modify XPath expressions 

in XQuery. By modifying an XPath expression, they investigate the pairings of 

parent-child or ancestor-descendant and remove the pairs that they believe to be 

redundancies.  The new XQuery is then translated to SQL/XML syntax for 

traditional database management systems.   

Semantics in XML Schemas are useful in many areas including query processing. 

Currently, there are no adequate strategies for optimizing XPath queries by utilizing 

semantics defined in XML Schemas. 

Due to the complexity of XML query predicates, we have seen several techniques 

which have been integrated with other techniques. For example, Bohm et al. [1998; 

Kwong and Gertz [2002] and Olteanu et al. [2002] derive semantic equivalence 

instead of using semantics directly from XML schemas.  

Wu et al. [2011] construct relational tables that store semantics extracted from XML 

documents. They use the semantics in a table to optimize a twig pattern query by 

avoiding process patterns that make no contribution to the final result. This work 

which extracts semantics from XML documents and stores them in relational tables 

would definitely face challenges, the obvious one being that the referenced path by 

ID cannot be identified easily. Due to this problem, the work considers an extension 

to using ID references in DTDs to improve the processing of referenced paths [Wu et 

al., 2010]. We currently use semantics in XML Schemas to provide a transformation 

strategy to find opportunities to optimize XPath queries. However, the work of Wu et 

al. [2011] can be integrated into our future work on capturing semantics from XML 

documents. The captured semantics can then be combined with semantics provided 

in XML Schemas and DTD for a complete solution to semantic query 

transformation.      
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In summary, we have reviewed several works that apply different techniques using 

semantics from the schemas to optimize XML queries specified with predicates. The 

existing works support different types of predicates that in turn support single 

conditions with or without values, join conditions and nested conditions.  As 

indicated by the literature review, most of the existing work focuses on conjunctive 

predicates using semantics for optimization. 

2.4 Summary and Open Challenges 

In this literature survey, we have reviewed several major techniques for semantic 

query optimization for XQuery and XPath queries using constraints from XML 

schema. We have provided insights into individual techniques and studied the 

constraints used by individual techniques to optimize XML queries.   

Initially, we explained the difference between the terms semantic query optimization 

and semantic query transformation.  After that, a review was conducted of the 

semantic query optimization techniques in legacy databases including relational, 

object-oriented and deductive databases. We also reviewed the optimization 

techniques relevant to our research.  

After examining legacy databases, we reviewed the techniques that used semantics to 

optimize XML queries. We divided the techniques into two categories of queries: 

XML queries without predicates and XML queries with predicates. In the first 

category, XML queries without predicates, we group the techniques into three groups 

including XPath Query Containment, Tree Pattern Minimization and Semantic Query 

Optimization.  In the second category, XML queries with predicates, we reviewed the 

existing works that focus on techniques and the types of predicates that these 

techniques support. We found that few works addressed disjunctive conditions in 

predicates, which has become one of the major outstanding issues for the research 

presented here. Based on the summary above, we observed the following:  

• There are no works that propose a semantic query transformation technique 

which can be evaluated systematically so that each semantic query 

transformation can be identified as an optimization device. Most of the 
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existing works focus on semantic query optimization which is different from 

semantic query transformation.  

Semantic query optimization is a technique that targets query optimization 

directly by using rules and theories to optimize XM queries.  Semantic query 

optimization techniques do not go through systematic evaluation. 

 Semantic query transformation on the other hand first transforms an XML 

query to a semantically equivalent query by using semantics derived from 

XML schema. The semantic query transformations lead to optimization after 

being systematically evaluated and able to produce optimized query 

performance results. 

•  Most of the existing works address semantic query optimization techniques 

using semantics derived from DTD. Works using semantics derived from 

XML schema for optimization purposes require much attention; this is 

important because there are many features that are available in XML Schema 

but not in DTD [W3C, 2004a; 2004b]. 

In particular, the new features are useful for transforming XML queries 

specified with predicates. For example, conditions in predicates have 

comparison values and are based on various data types. The values cannot be 

verified as atomic data types such as integer or date and many more are not 

supported in DTD. Now that the data types are enhanced in XML Schema, 

there is an increase in opportunities to use semantics for handling predicates 

for query optimization purposes.  

• Apart from simple XPath expressions and XPath predicates, XPath axes 

including child, ancestor, parent, self, descendant, following, preceding, 

namespace, attribute, ancestor-or-self, descendant-or-self, following-sibling, 

preceding-sibling provide different navigations of XML documents. Most of 

these axes, except namespace which provides a means to differentiate 

elements, allow XML information to be navigated in various directions. None 

of the existing works have addressed the semantic query optimization for the 

complete set of axes even by using semantics in DTD.   
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Today, more database vendors provide excellent techniques such as object-relational, 

binary, native and many more, for managing and storing XML information. 

However, query processing still focuses on simple path expressions such as child ‘/’, 

and descendent ‘//’ [Liu and Murthy, 2009; Zhang et al., 2009]. This means the 

processing of XPath axes such as following, preceding, following-sibling, ancestor, 

or preceding-sibling among others, has not yet been improved for new XML storage 

management techniques. 



 

Chapter 3 

Problem Definitions 

Chapter 2 presented a literature review that led to the proposed research on semantic 

query transformation. The review discussed existing works that focus on semantic 

query optimization in several types of databases including legacy, object-oriented, 

deductive and XML databases.  Light was also shed on a number of outstanding 

issues related to using semantics for optimizing queries. In this chapter, a problem 

definition is given to form the basis of a methodology which will be utilized to 

develop techniques to solve the currently identified problems.  

This chapter defines and describes the problems that we are going to address and 

resolve in this thesis. In order to do this, it is necessary to first provide overviews of 

XML technology which relates to documents and the XML Schema, XML query 

structure and query processing concept. The problem is then defined.  We also 

discuss our proposed choice of techniques.  

3.1 An Overview of Problem Definition 

With the increase in popularity of XML technology, XML Schema has become a 

better choice due to its richness of semantics and greater flexibility with regard to 

data structures [W3C, 2004a; 2004b].  
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Due to the latest development of XML Schemas, the database developers can exploit 

the great advantage of semantics defined in the XML Schema for transforming 

XPath queries for facilitating query optimization.  

Figure 3.1 provides an overview of two groups of XML Schema semantics including 

structural constraints and constraints of elements and their usefulness for our 

proposed semantic transformations. The main tasks of the semantic transformations 

are:  

•  to make sure XML Schema semantics are fully utilized for establishing a 

transformation methodology, to transform XPath queries to equivalent XPath 

queries for optimization purposes.   

•  to be able to identify unsatisfied XPath queries so that they are not sent to 

databases that may incur a high cost of resource usage. 

 Semantics in 

XML Schema 

Semantics Transformations 
of XPath Queries 

? 

Structural constraints Constraints of elements  Semantic XPath queries 

Unsatisfied XPath queries 

XML Queries (e.g. 

XPath query) 

 

Figure 3.1  Overview of Semantic Transformation Methodology 

Based on the semantic transformation methodology as illustrated in Figure 3.1, the 

semantics (constraints) defined in XML Schema will address the following semantic 

transformation categories and issues: 

• The transformations of simple XPath expressions, which are specified with no 

query conditions, to equivalent XPath queries. 

 XML information can be navigated with different path expressions with simple 

hierarchy relationships such as ancestor-descendant or parent-child relationships 
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between the elements and wildcard expressions. Unfortunately, some simple 

path expressions may lead to performance issues. Wildcard operators ‘*’ and ’//’ 

are commonly used in XML query [W3C, 1999; 2007a; 2007b; 2010] and are 

well-known for contributing to performance issue during query processing 

[Bashir & Boulos, 2005; Deutch et al., 2006 and Wood, 2003]; they should be 

avoided if possible. It is advisable to transform all possible different path 

expressions so that those that affect query performance can be avoided. 

• The transformations of XPath queries which are specified with XPath axes such 

as ancestor, parent, self, descendant, following, preceding, namespace, attribute, 

ancestor-or-self, descendant-or-self, following-sibling or preceding-sibling.  

• Since XPath axes [W3C, 1999; 2007a; 2010] are W3C standard axes, they play 

very important roles in allowing navigation information for different purposes. 

Some of them do have optional path operators, which make it easier to access 

non-native XML databases.  However, there are a number of XPath axes that do 

not have optional path operators; therefore, there are significant challenges in 

both processing and performance. This is due to the fact that some XML-Enabled 

databases are still unable to provide full support for some of these axes. It is 

necessary to transform XPath queries specified with these axes to equivalent 

semantic XPath queries which enable smooth query processing and better query 

performance. 

• The transformations of XPath of XPath queries which are specified with 

predicates. A predicate in an XPath query expresses a condition to be fulfilled in 

addition to the structural constraint imposed by the path itself. The condition is a 

Boolean expression. It may involve comparisons between elements and 

values, path expressions denoting elements to be compared, as well as further 

path expressions.  Since predicates can accommodate different types of 

conditions, this may lead to complexity issues. It is important to address the 

differences in transforming each type of condition; therefore, semantic 

transformations for XPath queries specified with predicates are needed.   

The first two categories of semantic transformations associate their semantics with 

structural constraints such as the hierarchy relationships of elements, the occurrence 
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of elements within another element or in XML Schema as they deal with path 

expressions and XPath axes.  

The last category of semantic transformation associates their semantics with both 

structural constraints and constraints of elements. As described, a condition may 

involve a comparison between elements and values, or path expressions. In the 

presence of a value comparison, the semantic transformation requires constraints of 

elements such as enumeration, pattern, inclusive, exclusive and many others. We will 

discuss the features and roles of these semantics later in this chapter. 

3.2 XML and Query Essential Background  

This section first introduces the basis of structures related to XML documents, 

schemas and the data model such as query components and terminologies; it then 

addresses the notions of XML query processing.  

The XM Schema definition (XSD) describes the structure of XML documents or 

databases. For reasons of consistency, the term XML node is going to be used 

throughout this thesis. An XML node can be either an attribute or element.  An XML 

element contains everything within the beginning and ending tags. The definitions in 

relation to XML schema and documents for this research concerns the structures of 

both XML schemas and documents and not other XML related areas such as tree 

grammars[Murata, et al., 2005].   

Definition 3.1. (XML Schema Structure). An XML Schema structure S is a rooted 

tree graph G that is represented by {L, E, r} where 

• L is a non-empty set of labelled nodes 

• E  ⊂ L × L × N × (N ∪{∞}) where  

• N = {1, 2, 3,…} and E is a set of edges associated with a multiplicity (j, k) 

Such that <l1, l2, j, k> ∈ Ε .  j and k represent the ordering of the nodes l1 and 

l2 for the edge determined by a depth first search of the corresponding XML 

Schema S where  j < k    

• r ∈ L where r is the root node of S 
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 l1 

   l6  l2 

 l4 

    l5 

 l3 

<l1, l2, 1, 2> 

<l2, l3, 2, 3> <l2, l4, 2,4> 

<l1, l5, 1, 5> 

<l1, l6, 1, 6> 

 

 Figure 3.2 Example of XML Schema Tree 

Figure 3.2 shows an example of XML Schema structure where L=<l1, l2, l3, l4, l5, l6>, 

E={<l1, l2, 1, 2>, <l2, l3, 2, 3>, …,<l1, l6, 1, 6>}, r=l1, N={1, 2, 3,…}, l1 and l2 are 

associated with (j, k) = (1,2), l2 and l3 are is associated with (j, k) = (2,3) and so on. 

An XML document provides hierarchical structure to organize nodes with respect to 

their contents. Any XML document associated with given schemas means the XML 

document conforms to structures described in the schemas.  

Definition 3.2.  (XML Document Structure). An XML document structure is a 

rooted tree denoted by T = {N, ε, r} where 

• No is a set of nodes 

• ε is a set of directed edges  

• r ∈ No  is the root node 

An XML document structure T conforms to an XML Schema structure S if and only 

if the labelled structure of T corresponds to XML schema structure S.  

An XML query such as an XPath query needs to consider the scope of query 

components and types of paths.  

3.2.1 XML Query Component and Structure 

As our research focuses on XPath query, it is important for us to discuss the 

important components of XPath queries such as XPath axes. XPath queries are 

essentially composed of a succession of axes defining the navigation from a current 

context node. We summarize how each axis navigates information; details of XPath 

axes can be found on W3C [1999; 2007a; 2010]. Below, we discuss eleven XPath 
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axes that are going to be used in XPath queries and transformed for optimization 

purposes.  

•  The child axis navigates information of the children of the context node. 

• The descendant axis navigates information of all the descendants, such as the 

child, the child of a child and so on, of the context node. The descendant axis 

does not navigate an attribute or a namespace. 

• The descendant-or-self axis navigates information of all the descendants, 

such as the child, the child of a child and so on, of the context node. The 

descendant-or-self axis navigates attributes if there are any. 

•  The self axis navigates information of the context node itself.  

•  The parent axis navigates information of the parent of the context node. 

• The ancestor axis navigates information of the ancestors of the context node. 

The ancestors of the context node are the parent of the context node and the 

parent's parent and so on. The ancestor axis includes the root node, if the 

context node is not the root node. 

• The ancestor-or-self axis navigates information of the context node and 

ancestors of the context node. The ancestors of the context node are 

the parent of the context node and the parents of parents and so on. The 

ancestor-or-self axis includes the root node. 

• The following axis navigates information that occurs right after the context 

node begins and information traverses along the edges all the way down to 

the lowest level of the schema. 

• The preceding axis navigates the information that occurs before the context 

nodes end and information traverses all the way along the edges back to the 

root.  

Both the following and preceding axes selection excludes the attributes and 

descendants.  
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• The following-sibling axis navigates information of following siblings 

occurring on the right of the context node; it traverses horizontally to the far-

right sibling element of the context node. If the context node is an attribute, 

the preceding sibling is empty. 

• The preceding-sibling axis navigates information of preceding siblings that 

occur on the left of the context node; it traverses horizontally to the far-left 

sibling element of the context node. If the context node is an attribute, the 

preceding sibling is empty. 

Among the XPath axes family, child, descendant, parent and self can be optionally 

specified using the path notations {/,//,..,.} which have been commonly used. XPath 

axes such as descendant-or-self, ancestor, ancestor-or-self, following, following-

sibling proceeding, and preceding-sibling have unique functionalities which provide 

different required information, and these XPath axes do not have optional operators.  

The performance of queries denoting the same result by means of different axes may 

significantly differ. The difference in performance can be affected by some axes, but 

this can be avoided and will be addressed in this research. The next important 

component of an XPath query is the predicate [Diao et al., 2003].  Below, we define 

the XPath query predicates and also show the complexities in XPath query 

predicates.  

Definition 3.3. (XPath Query Predicate). An XPath query predicate is a component 

that contains query conditions specified for filtering information.  It is enclosed with 

[ ]. 

The XPath query predicate filters a node-set with respect to an XPath axis to produce 

a new node set. The query condition in the predicate is evaluated with 

elements/nodes in the node-set as the context nodes/element. If the query predicate 

evaluates to true in any given node, then it is kept in the resulting node set [W3C, 

1999].  

The scope of predicates in an XPath query is now illustrated. A predicate is 

composed of one or more of the following: 
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• binary operators ( ‘=’, ‘!=’, ‘<=’, ‘<’,’ >’ ‘=>’) 

• connectives (‘OR’, ‘AND’)  

• a constant 

• path with/without constants 

• Context position index function such as position()  

Samples of predicates in XPath query forms, where e denotes elements and z denotes 

constant values: 

•  e0/e1/e2/e3[z0]   - A predicate, which contains only a constant value.  

• e0/n1[e11]/e2[e3/e4], e0[e11]/e2[e3[e4]], e0/*/e2[e3/e4] – Predicates, which 

contain path fragments e.g. [e3/e4], nest path e.g. [e3[e4]]. 

• /e0/e1/e2[e3 > z5]  - A predicate, which contains both a path fragment and a 

constant value. 

• /e0/e1/e2[e3 > z5 or e3/e4 and e3 > z3] - A predicate, which contains path 

fragments and constant values and disjunctive as well as conjunctive 

operators. 

• /e0/e1 [position()>z0] – A predicate, which contain both a context position 

index function and constant value. 

Definition 3.4.  (Full Path). A full path pfull is a path expression that consists of a set 

of nodes that can be an attribute or element and hierarchy ‘/’ or ‘//’ and contains no 

predicate. 

pfull ::= a/b | a//d | * | n | . 

a, b and d are nodes requiring to be tested, hence are referred to as a node test [W3C, 

1999; 2007a; 2010]. ‘/’ denotes a child axis, ‘//’ denotes a descendant axis, ‘*’ 

represents an arbitrary element, n denotes specific element that has a label l ∈ L, 
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where L is a non-empty finite set of labels, and ’.’ is the current node. The set of full 

path expressions is plin 

Definition 3.5.  (Partial Path). A partial path ppart is an extension from pfull that ppart 

is defined as follows: 

ppart ::= a/b |a//d |a[q] | * | n | . 

a, b, and d are elements 

q ::= a |a//d | a AND b | a OR b |a, b op v | n op v | NOT (n) | fn op v | fn op fn 

op ::= > | < | ≤ | ≥ | != 

fn ::= position() | last() 

v::= string | float | int 

n::= constant integer 

[ ] ::= predicate contains a set of conditions q 

Definition 3.6. (Location Step). A location step ls is a navigational step that is 

composed of three components including predicate (optional), test element and axis 

(optional). 

ls ::= α ::n | α::n [q] | α :: * |α:: * [q] 

[q] is optional where q:: = a | b//d |a AND b | a OR d | a op v | n op v | NOT (n) | fn op v 

| fn op fn where  

op ::= > | < | ≤ | ≥|!=, fn ::= position() | last(), v ::= string | float | int 

α::= child | descendant | parent | following | following-sibling | preceding | preceding 

– sibling | self | ancestor | descendant-or-self | ancestor-or-self  

n denotes a specific element that has label l ∈ L, where L is a none-empty finite set 

of labels. 

Both full path and partial path are formed by a set of location steps where the axis is 

solely inclusive of a child, which can be optionally specified; that is, when a location 

step is specified with no axis. As shown in Definition 3.6, a location step other than 

a child axis supports a series of axes to navigate information for different purposes.   
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Figure 3.3 provides a set of location steps derived from p, axes, node-test and 

predicate that make up a full location step, which consequently makes up a location 

path by the sequence of location steps.  

Let us consider an example to demonstrate the location path, location step and other 

XPath query components. 

p = descendant::a/child::b[position()= 1]/child::* 

Location Step Axis Node Test Predicate 

1,2 Descendant, child a,b  

3 Child *  

2   [position()= 1] 

Figure 3.3  Location Paths 

Definition 3.7. (Target Element): A target element is an element that is located as 

the right-most element in XPath query p.  

Definition 3.8. (Non-Target Element): A non-target element is any element except 

the target element, in XPath query p.  

Definition 3.9. (Target Location Step): A target location step is the right-most 

location step in XPath query p. If p contains only one location step, then the location 

step is the target location step.  

Definition 3.10. (Non-target Location Step): A non-target location step is any 

location step, except the right-most location step, that is located anywhere in XPath 

query p.  

 

p = descendant::a/child::b[position()= 1]/child::g 

 

 Target Element Non-target Elements 

Non-target location steps 
Target 

location step 

 

Figure 3.4 Non-target Elements and Location Step, Target Element and Location Step 
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The example in Figure 3.4 shows non-target elements and non-target location step, 

target element and target location step in XPath query p. 

3.2.2 Notions of XML Query Structural Processing & Equivalence 

An XPath expression is a tree pattern in a database [Al-Khalifa et al., 2002;  2002; 

Yao & Zhang, 2004].  We provide the essential background for XML query 

processing below. 

Definition 3.11.  (Tree Pattern). A tree pattern is a labelled tree σ= (V, E), where  

V = {v1, v2, v3, ..., vn} is the vertex set, 1≤ n 

E = {e1, e2, e3, ..., em} is the edge set. Each edge ei is represented by a pair of v, 1≤ m 

An edge can be a child edge representing the parent-child hierarchy denoted as ‘/’ or 

a descendant edge representing the ancestor-descendant hierarchy denoted as ‘//’.   

A match of tree pattern  σ,  a smaller tree than T in a rooted node labelled document 

tree T = (VΤ, EΤ), is a total mapping of  

f:{u: u ∈ σ} → {x:x∈Τ} 

For each node u ∈ σ is satisfied by f(u) and each edge (u, v) in σ, f(v) is the child or 

descendant of f(u) in T. 

We hereby define the notion of equivalence with regard to path expressions over the 

XML documents (database) and XML Schema [Paparizos, et al., 2004; 2007]. 

Definition 3.12. (Path Equivalence). Two paths P and Q expressed over an XML 

document T are equivalent if and only if one is a subset of the other and vice versa.  

That is P ≡ Q iff [P] ⊆ [Q]and [Q] ⊆ [P] where [P] denotes the result set of P and 

[Q] denotes the result set of Q. 

Based on Definitions 3.11 and 3.12, we reason that two paths are equivalent if and 

only if they both yield the same result set but are different in patterns; that is because 
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the occurrence of a node in one path may be the subset of the same node in the other 

path and vice versa. 

Without the schema knowledge, such confirmation is obtained from a full processing 

of paths on a given database to validate the results. Such a procedure can be very 

costly. With the schema knowledge we can confirm two paths are only semantically 

equivalent but produce the same result set. 

Definition 3.13.  (Schema Path Equivalent). Two paths P and Q are schema paths 

equivalent if and only if one is a super set of the other.  Assume Q is super set of P 

that P ≡ Q, then  

• All nodes in P map to some or all nodes in Q 

• P and Q must end at the same node 

• Start node in P can be any node but must occur within and match to the start 

node in Q  

Based on Definitions 3.12 and 3.13, we conclude that path equivalence falls into one 

of two categories: (1) equivalence with regards to the XML document and (2) 

equivalence with regards to the DTD/XML Schema. While the former is suitable for 

conventional XML query optimization, the latter constitutes the research here that 

uses semantics in XML Schemas to determine path equivalence.  

3.3 Overview of Semantics & Features in XML Schemas 

Semantics defined in XML Schema used throughout the thesis are outlined in this 

section. As we indicated in Figure 3.1, the semantics in XML Schemas are described 

by two groups of semantics including structural constraints and constraints of 

elements. The following sub-sections address the constraints in each group.   

3.3.1 Structural Constraints in XML Schema 

XML Schema provides a mechanism for constraining the document structure using 

order, occurrence of elements and attributes. In addition to these, the structural 
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constraints can also be derived based on how elements are defined within the 

schema.  

In an XML Schema, a node can be an element which may be a complex type 

(denoted as complexType), and permits other elements to exist within its content and 

may also carry attributes. The complex type element is basically different from an 

element that is a simple type (denoted as simpleType) which cannot have an element 

content and cannot carry attributes. The element with a complex type and elements in 

its content have a parent-child relationship. That is, the element with a complex type 

is the parent of children in its content. 

Figure 3.5 shows a portion of XML Schema, which depicts how the structural 

expressions formed by a sequence of elements A and B, A and C, A and D, A and E, 

A and F, F and G. The A element has a content of hierarchy elements B, C, D, E and 

F that make element A a complex type, that has a name fullA.  

 

Figure 3.5  An Overview of XML Schema Specification 

The complex type fullA shows a content that has a nested complex type which is 

made up by an independent complex type Ainfo and a number of elements (D, E and 

F).     The complex type Ainfo contain a set of element (B and C), that are on the 
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same hierarchy with D, E and F.  Ainfo demonstrates one of the powerful features in 

XML Schema that allows a reuse of B and C later somewhere in the XML Schema.  

As element F appears as a type in the content of element A; hence, element F is a 

complex type, namely, Finfo has a content of one element G which demonstrates 

another level of hierarchy among the elements in the schema. We will explain the 

relationship between A and G after we show a hierarchical relationship between A 

and its immediate children D, E, B, C and F. 

The parent-child relationship allows a pair of a sequence of elements to establish a 

path. Again in Figure 3.4, A and B can form a path using a parent-child relationship, 

which also applies to A and C, A and D, A and E, A and F. The next immediate 

hierarchical elements B, C, D, F, use a parent-child relationship to establish the 

further paths which can be more effective as hierarchical relationships have been 

skipped. Elements B, C, D do not have further hierarchical elements; however, 

element F has an immediate child: G, hence the existing path between A and F can 

be extended to G.  

The parent-child relationship allows the complex element A and its content such as a 

set of children B, C, D, E and F to derive paths A/B, A/C, A/D and A/E, A/F and 

A/F/G.  Elements in each path use a parent-child relationship, which is also referred 

to as a structural constraint.  

A complex type element (denoted as complexType) has a content of a series of 

elements, in which some may be a complex type that has a content of another series 

of elements. The first element that has a complex type and the descendant of the 

children of the first element as well as its children, establish an ancestor-descendant 

relationship; that is, the element with a complex type is the ancestor, and the content 

in the lower hierarchies are the descendants (including the content of the first 

element).  

The pair of elements A and G in Figure 3.5 can form a path A//G using an ancestor-

descendant relationship ‘//’. 

Both parent-child and ancestor-descendant relationships are categorized as structural 

constraints that can be derived from XML schemas. 
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In XML Schema, the order constraint is categorized as a structural constraint [W3C, 

2004a]. The order constraint has a set of property values such as sequence, choice, 

all to allow the order and presence of the children within the parent element in the 

XML document.  

The All property value enforces all the children of an element to appear in an 

instance in an un-restricted order, as specified in XML Schema. 

The sequence property value enforces all the children of an element in an instance in 

the restricted order as specified in XML Schema. 

The choice property value allow some children although may be not all of an 

element, to appear in an instance in the restricted order as specified in XML Schema. 

Most XML Schemas use the order constraint with the sequence property value to 

control the order of the child elements within the parent element; this order constraint 

is very useful and important for semantic query transformation.  

In Figure 3.5, an order constraint that has a sequence value is used in each complex 

type of element A and F. Children B, C, D, E and F of element A and child G in 

element F must appear in the XML document in an order as a set in XML Schema.  

The occurrence constraint is also categorized as a structural constraint [W3C, 

2004a]. It has a set of boundary values such as minimal and maximal occurrences 

denoted by minOccurs and maxOccurs.  If the minOccurs of an element has a value 1 

or greater than 1, then the element is required in XML documents. If the minOccurs 

of an element can have a 0 value, indicates the presence of the element is optional in 

a XML document. If the maxOccurs of an element has a positive value, it can be 

greater than or equal to the value of minOccurs, or it can be unbounded meaning it 

can be unlimited. When minimal and maximal occurrences of an element are not set, 

then the default is 1 for both of them. 

In Figure 3.4, elements A, B, C, D, E, F and G do not have occurrence constraints 

set; therefore, the default occurrence for each element is 1 for both minimal and 

maximal values.  
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3.3.2 Constraints of Elements in XML Schema 

XML Schema provides a large number of built-in data types and constraints for an 

element in XML Schema [W3C, 2004b].       

Identity Constraint: XML Schemas can enforce a unique constraint using ID 

attribute and its associated attributes IDRef, IDRefs or Key and its associated 

attribute KeyRef. Note that Key and KeyRef are only available in XML Schema. 

These keys are categorized as identity constraints.  The limitation of ID is that, since 

it is a type of attribute, it cannot be applied to attributes, elements or their contents, 

whereas Key and KeyRef can be created from combinations of elements and attribute 

content [W3C, 2004b]. 

For example, in Figure 3.6, the number attribute is <field xpath="@number"/> of 

those elements <selector xpath="parts/part"/> where reference (keyRef) name is 

pKeyNum, that has a valid location regions/zip/part/partsNum which in turn has a 

referenced value as parts/part/@number.  This combination of an attribute and its 

content attribute cannot be achieved by using ID [W3C, 2004b]. 

 

 
   <key name="pNumKey"> 

      <selector xpath="parts/part"/> 

      <field xpath="@number"/> 

    </key> 

 

    <keyref name="pKeyNum" refer="pNumKey"> 

      <selector xpath="regions/zip/part"/> 

      <field xpath="partsNum"/> 

    </keyref> 
 

Figure 3.6  An Overview of an Identity Constraint using Key and KeyRef 

There are many constraints that are useful to restrict an element with a simple data 

type. It is impossible to explain or describe all of them within the confines of the 

thesis. However, it is possible to describe those that are very commonly used in 

XML Schema. The following constraints are W3C standard constraints [W3C, 

2004b]. 



Ch. 3 

55 

Enumeration constraint.  This constraint is used to define acceptance values by an 

element. For example, an element State has a string data type. The State element is 

restricted with a value such as State A, State B or State C.  Any values other than 

these three values will be rejected when the element information is acquired. This 

kind of restriction is very useful for information processing when one knows that a 

certain type of information is available and a certain type of information is definitely 

not available in the repository.  

Inclusive constraint. This constraint is used to restrict the upper and lower bounds 

of an element that has a numeric data type (e.g. integer). The lower bound (denoted 

by minInclusive), restricts the element that has a greater than or equivalent value. An 

upper bound (denoted by maxInclusive) restricts the element with a less than or 

equivalent value.  For example, an element zipcode has an integer data type; this 

element is restricted with a value range between 1000 and 3000. If the zipcode is 

queried for any value beyond 3000 and below 1000, this will be treated as a conflict 

semantic query and as a result will be empty. 

Exclusive constraint. This constraint is used to limit the exclusive lower and upper 

boundaries of an element that has a data type which is a numeric data type (e.g. 

integer). The lower bound (denoted by minExclusive) restricts the element that has a 

less than or equivalent value, and upper bound (denoted by maxExclusive) restricts 

the element with a greater than or equivalent value.  For example, an element age has 

an integer data type, which is restricted with an exclusive value less than 65 and 

beyond 100. When age is queried for any values that are not between 65 and 100, the 

results are exclusive for age. 

Pattern constraint. This constraint is used to define a certain pattern that elements 

can take on.  For example, an element password has a string data type. The element 

is restricted with a pattern value [a-zA-Z0-9]{8}. Any password that does not have 8 

characters including upper and lower values between a and z, A and Z, 0 and 9 

would be considered invalid.  

The pattern constraint is very useful to unify values and provide efficient spaces and 

resource utilization.  
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Length constraint. This constraint is used to specify the number of characters or list 

items allowed on an element. The length constraint also has proper value minLength 

and maxLength; these two properties allow more flexibility regarding the length 

within the boundaries. For example, an element password has a string data type. The 

element is restricted to a length of 8 characters with no restricted pattern.  To be 

more flexible, the restriction of the length for a password element can also be set to 

a length between 8 and 16 using minLength and maxLength; this allows the user to 

specify a password of 8 to 16 characters. 

Whitespace constraint. This constraint allows a whitespace (e.g. carriage return, 

line feed, tab, etc..) to appear in an element and can be handled accordingly.   

For example, an element address has a string data type. The address element has a 

whitespace restriction and the property value: 

collapse means that when there are white spaces such as carriage return, tab 

or line feed, they will be replaced with a single space. 

replace means that when  spaces are detected on the element, they will be  

removed. 

preserve means that when spaces are detected on the element, they will be      

preserved. 

3.4 Semantic Transformations – Summary of Problem 

Definition 

The background information and semantic features described in Sections 3.2 and 3.3 

will be used to determine problems in semantic query processing; these problems are 

then addressed by our semantic transformations.    

Based on the semantics described in Section 3.3, the semantic transformation of an 

XML query into an equivalent semantic XML query (specific to XPath query) 

constitutes two important concerns.  The first concern is the semantic transformation 

typologies that can provide a complete solution for transforming all types of XPath 
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queries.  The second concern is to determine the optimization devices of the results 

produced by the first concern. The semantic transformation typologies to be 

addressed include: 

i. Semantic transformation typologies of full path expressions that consist of path 

notations such as {//, ..,., *,/}. 

ii. Semantic transformation typologies of full path expressions that support path 

notations such as {//, .., ., *,/} as well as XPath axes such as child, descendant-

or-self, descendant, parent, self, ancestor, ancestor-or-self, preceding, following, 

preceding-sibling, following-sibling. 

iii. Semantic transformation typologies of partial path expression. The partial path 

expression is accommodated with predicates where allowed conditions are varied 

and complex. Hence, the semantic transformation typologies will be broken 

down into an important structure of conditions. 

iv. Query condition with or without comparison value: 

• Single query condition with a comparison value, which is either a value or a 

path expression. 

• Multiple query conditions with disjunctive connections between the 

conditions 

• Multiple query conditions with conjunctive connections between the 

conditions 

• Multiple query conditions with both types of join conditions 

v. With path expressions and query component structures, questions can be asked 

to assist with the transformation starting with the following: 

• What are the most common expressions or query components that can 

represent the problem performance? 

• What are the semantics that can be identified so they can serve the 

transformations for certain types of XPath components? 
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• What is the basis used to identify the opportunities of transformation for 

optimization purposes?  

vi. The result of semantic transformation typologies will either produce a semantic 

XPath query or no semantic XPath queries. The semantic transformations focus 

on the following: 

• To show the usefulness of semantics in XML Schema in query processing. 

• To modify the query structure in the presence of semantics, after being 

transformed. 

• To reduce the redundancies of query components to provide greater 

efficiency in resource utilization. 

• To provide a solution for query components that face database dependency 

challenges for more flexibility in information navigation. 

• To reduce the execution time of XPath queries after being transformed. 

• To identity semantic transformations as optimization devices.  Not all 

semantic transformations guarantee an optimization. Therefore, the 

semantic transformation provides a systematic methodology where thorough 

experimentation can be carried out for optimization opportunities. 

• To provide a better adaptation for future extension of both semantic 

utilization and transformations. 

3.5 Experiment & Performance Evaluation 

After proposing semantic transformation typologies, the next step is to implement the 

proposed algorithms and carry out the evaluation process. The evaluation preparation 

process involves a few phases including experimental design and evaluation of query 

performance.   
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3.5.1 Experimental Design 

Our experimental design section refers to a plan for conducting an experiment on a 

set of queries and data in order to obtain the results for an evaluation. The 

experimental design serves four main purposes: 

i. A Background of Experiment Design: this section addresses the objectives 

and evaluation of the strategy of experiments. 

ii. Common Setup for the Experiments: this section addresses the 

implementation framework and the database platform, keys to support 

minimal requirements for experiments, experimental data and schema 

selection, and setup overview and implementation modules.  

The implementation framework and the database platform describe the 

working relationship between the semantic transformations and databases and 

how they enable the semantic transformations to work independently. The 

minimal requirement for experiments basically states some minimal resource 

requirements in order for the experimentation to be carried out. 

The experiment data and schema selection describe the critical and central 

parts that guarantee the success of the experiment. The semantic 

transformations require semantics from XML Schema. Therefore, when 

choosing data for an experiment, we must take into consideration the semantics 

and structures in the XML Schema that conform to the data sets. To improve 

chances of opportunities to find optimization devices from the semantic 

transformations, two different sets of XML Schemas and data including real-

life and synthetic ones are adopted. This is because real-life DBLP3 data is rich 

enough in semantics but structurally it faces a limitation of expressive 

hierarchies. Therefore, the conducting of complex queries may be challenging.  

To overcome the challenges, we also adopt a Michigan benchmark data set as 

its data structure is very expressive [Runapongsa et al., 2006].       

                                                           
3 http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/index.html 
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Finally, the setup operational hardware, software and system modules section 

addresses the setup which includes software, hardware, data validation and 

loading.  

For the database storage, a very well-known XML database management 

system that provides both XML native and XML-enabled storage 

management (XDBMS) has been selected by this research. For licensing 

purposes, the name of the vendor at this stage cannot be disclosed. The 

selection of XDBMS supports the native approach to store XML documents 

in RDBMS, and also facilitates the schema validation feature. 

iii. Common Setup for the Experiments: We mentioned that DBLP and 

Michigan XML Schemas and data are adopted. The structures and semantics 

in DBLP are different from those in Michigan Schemas and the data set. For 

each set of these data and schema, we carry out several improvement tasks 

such as semantic enhancement, data scaling, data cleansing, query taxonomy, 

metrics and computational procedures. Each of these tasks is addressed based 

on individual schema and datasets. 

Semantic enhancement is carried out by studying the XML Schema both 

structurally and semantically to ensure they are well defined and that the 

semantics can be added. By doing this, we can create more opportunities for 

semantic transformations in XPath queries. Once the semantics in XML 

Schema have been modified, the data need to be revalidated in a data 

cleansing stage. The cleansing of data is based on semantic modification and 

scaling.  When semantics of data sets are not sufficient adding more semantics 

means the contents of the data are also changed. Cleansing of data is very 

important as data not only needs to conform to the XML schema, but it also 

needs to be of high quality before being loaded into a repository.  

With regard to a performance study, quality experimental data must be able to 

scale to several data sets, if we are to examine the query components that 

respond to various data sizes by applying the same type of semantic 

transformation. Therefore, scaling data in our experiment implies that different 
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result patterns may have an impact on the same query component for various 

data sets, under the same semantic transformation.  

In order to apply the semantic transformations, the XPath query taxonomy 

needs to support both the semantics and components that are applicable to a 

semantic transformation typology. For a DBLP data set, the XPath query 

taxonomy is based on semantics available in the associated XML Schema.  For 

each type of semantic transformation, we design a set of XPath queries that 

may return a sub-tree data or values of leaf nodes.   

For the Michigan data set, the available benchmark provides XPath queries 

which are applicable to our semantic transformation.  However, since not all 

benchmark XPath queries can be used, we select the XPath queries that 

demonstrate the expressive hierarchies and several types of conditions ranging 

from simple to a twig join [Wu et al., 2003]. 

As we adopt two sets of data including DBLP and the Michigan benchmark 

data, we propose the computational strategy that applies warm-up techniques 

during the execution stage where metrics such as transformation time and 

query execution are recorded for the transformed XPath query and its 

execution only. The computational strategy also applies special calculations for 

the recorded time as each XPath query is executed more than once.   

If semantic conflict is detected in the XPath query, then the transformation will 

not produce any semantic XPath query.  

3.5.2 Performance Evaluation 

The proposed semantic transformations need to be evaluated thoroughly in order to 

identify individual transformation as optimization devices. For each XPath query and 

its semantic XPath query, the evaluation performance is based on the comparison 

between the recorded performance times (as described in the previous section) as 

well as the semantic rules applied to enable the success of the semantic 

transformation.  
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If the semantic XPath query is not produced due to semantic conflict in the original 

XPath query, the evaluation comparison is based on the transformation time and the 

execution time of the conflict XPath query against the execution time of the original 

XPath query.   

3.6 Summary 

We have provided an overview of the problems to be addressed by our proposed 

semantic transformations.  The problem definition consists of three processes.  The 

first uses schema semantics to transform XPath queries with specified simple path 

operators. The second uses schema semantics to transform XPath queries with 

specified XPath axes. And the third uses schema semantics to transform XPath 

queries specified with predicates.  

This chapter has also provided the background of XML and query essentials. The 

chapter has presented the basis related to XML documents, Schemas and data models 

such as components and terminologies related to XML query structure and 

processing. It has then addressed the notions of XML query processing.  

The chapter has also provided an overview of XML semantics and properties; it 

discusses the types of semantics including structural semantics and the semantics of 

elements available in XML Schemas. Problems are then summarized based on the 

problem definitions and available semantics as provided for proposed semantic 

transformations. Finally, the experimental design and performance evaluation 

methodology were discussed in detail.  

In Chapter 4, a pre-processing semantic methodology is presented that is proposed 

for pre-processing schemas semantics and efficiently storing them for the proposed 

transformation typologies as required. Following this, the semantic transformation 

typologies for the first group of problem definition will be proposed. 



 

 

Chapter 4 

Derivation of Semantics & Semantic 

Path Transformation  

The main objective of this research is to utilize semantics in XML schemas for the 

purpose of semantic query transformations.  In order to achieve the objective, 

semantics need to be derived from given XML Schemas to support the 

transformations proposed. This chapter proposes a framework for deriving semantics 

from XML Schemas and semantic path transformations. 

4.1 Derivation of Semantics  

Since XML Schema is very rich in semantics, deriving semantics during the 

transformation process is inefficient in terms of both time and resource consumption. 

Such an approach will cause deterioration in performance. Without the semantic 

derivation prior to the utilization of semantic transformations, the required semantic 

will need to be searched throughout the whole schema and further processed if 

found. We believe that the derivation of semantics not only expedites the 

transformation process, but also makes it easier to retrieve semantics when required. 

XML Schema contains two types of constraints: structural constraints and 

constraints of elements [Paparizos et al., 2007; W3C, 2004a; 2004b].  
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A structural constraint consists of path constraints [Fan, 2005] that are unique to 

XML Schemas. The first type of a path constraint is the parent-child relationship of 

two sequence elements along an edge of a schema tree. The second type of path 

constraint is the ancestor-descendant relationship [Che et al., 2006] of two elements 

that occurs along an edge of a schema tree. The third type of path constraint is the 

identity constraint, which provides uniqueness or reference with respect to multiple 

elements or attributes. The content of identity constraint is a path that combines the 

relationships of both parent-child and ancestor-descendant [W3C, 2004a]. 

We use the parent-child constraint to build unique paths. Instead of numbering the 

elements in the path [Kha & Yoshikawa, 2004], we use the element tag names in the 

path and make the paths unique. 

Definition 4.1. (Unique Path): A unique path q derived from a given schema S is a 

sequence of elements E = {e1, e2, e3,…, en} that traverses from e1 to ei along an edge 

where  1< i ≤ n. There exists only parent-child “/” relationship among the elements ei 

in q. 

Two types of elements can be found in a XML Schema. The first one is a complex 

type (specified as complexType in XML Schema) element, which defines an XML 

element that contains other elements and/or attributes. The second one is the simple 

type (specified as simpleType in the XML Schema) which defines a schema element 

that is an atomic or built-in data type [W3C, 2004a]. 

Figure 4.1 shows that an employee element has a fullpersoninfo complex type, 

which is created by extending the existing complex type personinfo (using an 

extension base) and three additional elements of address, city and country, which 

are simple types. The personinfo complex type contains firstname, lastname and 

age elements which are referred to as simple types because they have atomic data 

types and do not contain other elements. 
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Figure  4.1 ComplexType and SimpleType Elements 

A parent-child relationship (also known as a structural constraint - as described in 

Chapter 3), exists in the schemas between employee and firstname, employee and 

lastname, employee and age, employee and address, employee and city, and 

employee and country. The parent-child relationship is important and critical for our 

unique path derivation. 

The second type of a constraint in XML Schema is the constraints of elements. Each 

schema element has at least one constraint. The compulsory constraint is a modelling 

constraint [Ferrarotti et al., 2011; Link & Trinh, 2007] known as an occurrence 

[W3C, 2004a]. The occurrence constraint states the cardinality of children present in 

the sub-tree as it is useful in most of our proposed semantic transformations. Its 

usefulness will be seen later in our transformations in Section 4.2, Chapters 5 and 6.  

Apart from the occurrence constraint, a schema element may have other semantics 

depending on its type.  

 

 

 

 

 

 

<xs:element name="employee" type="fullpersoninfo"/> 

<xs:complexType name="personinfo"> 

  <xs:sequence> 

    <xs:element name="firstname" type="xs:string"/> 

    <xs:element name="lastname" type="xs:string"/> 

    <xs:element name="age"> 

      <xs:simpleType> 

        <xs:restriction base="xs:integer"> 

        <xs:minInclusive value="18"/> 

        <xs:maxInclusive value="99"/> 

      </xs:restriction> 

     </xs:simpleType> 

    </xs:element> 

  </xs:sequence> 

</xs:complexType> 

<xs:complexType name="fullpersoninfo"> 

  <xs:complexContent> 

    <xs:extension base="personinfo"> 

      <xs:sequence> 

        <xs:element name="address" type="xs:string"/> 

        <xs:element name="city" type="xs:string"/> 

        <xs:element name="country" type="xs:string"/> 

      </xs:sequence> 

    </xs:extension> 

  </xs:complexContent> 

</xs:complexType> 
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When the schema element is a complex type, compulsory occurrence and order 

constraints are implemented. The order constraint has a set of values {sequence, 

choice, all, group}, which are used to restrict the correspondence of the elements that 

are contained within the complex type element. Figure 4.1 shows the sequence value 

of order constraint used by the personinfo and fullpersoninfo complex types to 

restrict the order of their elements.  For personinfo complex type, the order of its 

elements is firstname, lastname then age. 

As personinfo complex type has a sequence value for order constraint, its content is 

in the ordered elements including firstname, lastname, age. Hence, the order of 

elements in fullpersoninfo complex type is firstname, lastname, age, address, city 

and country. 

An element may be a simple type. For example, an element age has an occurrence 

constraint with a minimal occurrence of 1 and maximal occurrence of 1. In addition 

to this, an age element will have an integer type and is set with an inclusive 

constraint that has a value between 18 and 99; this shows that the age element is a 

simple type that has two constraints: occurrence and inclusive. 

Figure 4.2 depicts a set of common XML Schema constraints. The downward arrows 

indicate they are open for more constraints to be added to the list. An element can be 

identified as an Attribute, a complexType or a simpleType. The difference between 

the complexType and simpleType elements is that a complexType can carry an 

attribute and/or element content, which can be simpleType or another complexType; 

for example, the complex type fullpersoninfo carries personinfo complex type in 

Figure 4.1, or both. The simpleType element does not carry an attribute and or 

element content.  SimpleType element and attribute are atomic data types. However, 

simpleType element is where data is directly specified [W3C, 2004a; W3C, 2004b]. 

Therefore, a simpleType element is one that is very rich in semantics.  

Even though each type of element has its own associated semantics, there are two 

constraints worth mentioning. The occurrence constraint is shared by an element that 

is either a complex type or simple type. The identity constraint is shared by an 

element that is an attribute or a simple type whose content is referenced by another 

element. The constraints in Figure 4.2 are W3C standard recommendation. Details of 
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each constraint can be found in [W3C, 2004a; 2004b]. All the constraints in Figure 

4.2 are derived from the list of constraints of elements (details of which are provided 

in Section 4.1.2). 
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Figure 4.2  Some Common Constraints in XML Schema 

This research proposes methodologies for semantic derivation. The first 

methodology is to derive unique paths.  The second methodology is to derive 

constraints of each individual element.   

4.1.1 Deriving Unique Paths  

We derive the unique paths by adopting the depth-first search approach [Thomas et 

al., 2001; Jin et al., 2011]. 

Definition 4.2. (Depth First Search (DFS)): a depth-first search is a searching 

approach that explores the nodes along the edges of a directed tree, i.e. XML schema 

as far as possible first, before backtracking.   
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Figure 4.3 illustrates how the DFS is applied to derive a set of unique paths for all 

nodes on a tree structure. 
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Figure 4.3  Unique Path Derivation using Depth-First Search 

As shown in Figure 4.3, let Q be a list that contains a set of unique paths. Each 

unique path is derived based on Definitions 4.1 and 4.2.   

Q= [q0, q1, q2, q3, q4, q5,…, qn] where n > 0 

The directional numbering arrows (excluding the dash-arrows) represent a set of 

unique paths Q = {q0, q1, q2, q3, q4, q5, q6, q7} = {A, A/B, A/B/C, A/B/D, A/E, A/F, 

A/F/G, A/F/G/H} in order of sequence. In Definition 4.1, we define that a unique 

path must be expressed from the root to any element in the schema along the path; 

this simply means that all unique paths must begin with a root element.  

The derivation of unique paths greatly influences the semantic transformation for the 

XPath axes such as following, preceding, following- or preceding-sibling. The order 

of unique paths helps speed up the search of the elements; this is important since 

semantic transformations for most XPath axes require the order of the elements to 

accomplish the tasks.   

For example, based on Figure 4.3, we want to retrieve all the following members of 

element D under B.  

The following members occur after D in the depth-first search order of the nodes. To 

achieve this, the following axis is designed for this purpose. In semantic 

transformation with the ordered unique paths, the transformation could not have been 

easier.  
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Let us consider Figure 4.3 where an XPath query for the above requirement is: 

p = A/B/D/following::* 

From the list of unique path list Q, we can locate {A/B/D, A/E, A/F, A/F/G, 

A/F/G/H} because these unique paths come after A/B/D in Q. These unique paths are 

schema paths; therefore, the final result that responds to the requirement would be 

the set of unique paths {A/B/D, A/E, A/F, A/F/G, A/F/G/H} excluding the first 

occurrence of element D.  This can be easily handled by using the context position 

function position(), which will be addressed later in the semantic transformation 

[W3C, 1999; 2007a; 2010]. 

The significance of deriving unique paths in an ordered manner is to eliminate the 

unnecessary searching and matching of ordered elements when dealing with the 

transformation of XPath axes.  

This section has proposed a methodology for deriving unique paths and ordering 

them, based on the order constraint of the elements. In the next section, we propose a 

methodology for deriving the constraints of elements. 

4.1.2 Deriving Constraints of Elements 

Constraints of elements in XML Schemas are very rich. An element may have a 

number of constraints assigned to it. 

We propose a methodology for deriving the constraints and their associated values of 

an element as follows. 

• W is a set of constraints in a given schema S where W = {w1, w2,..., wn}  and V 

is a set of values where vi = {vi,1, vi,2, vi,3,…vi, l } for a constraint wi , 1 ≤ i ≤ n  

and 1 ≤ k ≤ l 

• ej is an element that has constraint wi where j is a sequence that starts with 1.  

• C is a list where C = [c1, c2, c3, c4, c5,..., cy],  1 ≤ x ≤ y 

cx is composed as cx = z/ejwiV 

z is a path formed by an element or a sequence of elements e separated by ‘/’.   

z/ej = e0/e1/e2/..../ ej  where 1≤ j. 
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Based on Figure 4.3 let us consider elements B and E, each of which has an 

occurrence constraint with a minimal and maximal occurrence of 1. Element D has a 

minimal occurrence of 1 and maximal occurrence of 5. B also has an inclusive 

constraint with inclusive range values between 1 and 20. The derivation of list C is 

shown below: 

C = [A/B occurrence 1 1, A/B inclusive 1 20, A/E occurrence 1 1, A/B/D occurrence 

1 5, etc...] 

From the derived C we can interpret c1 = A/B occurrence 1 1 where the value of z is 

A, the value of e is B, the value of w is occurrence and the value of V is 1 1. 

We may now state that C is a list that contains elements, constraints of associated 

elements and values of associated constraints of elements.  

By deriving the semantics of each element in the proposed manner, items in the C list 

can avoid duplication issues.  

This section has proposed a derivation of semantics methodology for constraints of 

each schema element to create a C list. From this point onwards, our semantic 

transformation rules will utilize the information in Q and C. Both Q and C are treated 

as global inputs to semantic transformations. 

4.2 Semantic Path Transformation 

This section proposes the semantic path transformations. The inter-relationships of 

semantic path transformations are presented in Figure 4.4.  

We present a set of semantic transformation typologies to transform a simple XPath 

query with fragment {/, //, * , ... ,.} into equivalent semantic XPath queries by using 

unique path list Q and constraints of element list C.   

Unique paths represent structural constraints as elements in each unique path and are 

connected by a parent-child ‘/’ relationship. The constraints of elements in list C also 

play an important role in assisting with semantic path transformations. We show how 
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performance changes significantly when such constraints are applied in semantic 

path transformations. 
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Figure 4.4  Inter-relationships of Semantic Path Transformations 

4.2.1 Semantic Path Expansion  

This section proposes a technique to transform an XPath query that has a path 

fragment ‘//’ ancestor-descendant relationship between two location steps (refer to 

Definition 3.6 in Chapter 3).   

Definition 4.3.  (Semantic Path Expansion - SPE) Semantic path expansion is a 

transformation that replaces an ancestor-descendant ‘//’ in the XPath query with a 

path fragment of a sequence of elements that has only a parent-child ‘/’ relationship 

among a set of sequence of elements. 

Following Definition 4.3, we can develop SPE rules as a guideline to produce the 

semantic XPath query. First, let us consider the following parameters. 

Let: 

• p be the given XPath query 

• β be a fragment represented by // in p 

• S (abbreviation of semanticXPath list) be the list of transformation results 
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SPE Rules. The semantic path expansion of β occurs when all elements in the XPath 

query are successfully matched to elements in a unique path q∈Q and ‘//’ can match 

to a fragment in q. Semantic XPath query S is produced such that S = {q} if and only 

if the number of matched q is 1 and it must also satisfy one of the following rules: 

1.  a target element in matched q is a descendant element in β where the 

descendant element must be a leaf element; 

2. a non-target element  (refer to Definition 3.8 in Chapter 3) in matched q and p 

is also a descendant element in  β where the descendant element is a non-leaf 

element. 

The SPE rule (1) simply means that if there is a fragment ‘//’ in the XPath query 

where the descendant in p is in the left most location step, this descendant element 

must appear in identified q as a target element, which must be a leaf element in the 

schema.  

Given XPath query p = */b//d/f and Q = {q1,..,q9} as shown in Figure 4.5.  

          Q = {q1, q2, q3,...,q8, q9}                                  p = */b//d/f  

 

 

 

 

 

b 

q1 

q2 

q8 
q9 

a a 

q3 

p 

a 

h 

* 

f 

a 

b 

c 

d 

g 

a 

b 

c 

e 

b 

d 

f 

 

Figure 4.5  XPathQuery p and List of Unique Paths Q 

Based on the structure and locations of β where  β = b//d, the SPE rule (2) is 

identified as being the suitable one. It shows the descendant element d in p is a non-

target element in both p and q. The matching process adopts a bottom-up approach. It 

first matches all valid elements in p to each element in each q∈Q (q1,…,q9 in Figure 
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4.5). It then matches // by using the path fragment b//d to find the unmatched path 

fragment in q, which is enclosed by elements b and d. To match *, it finds the 

unmatched element in q that is the parent of element b. β is now matched to the 

fragment b/c/d in q8 and * can be mapped to the parent of element b, which is 

element a. As the result, it produces semantic XPath query S = {q8}. Let us consider 

an example based on the DBLP schema (which is presented in Appendix1). Q and C 

are derived from the DBLP schema using a semantics derivation technique.  

Requirement. XPath query selects the title names of all theses in the DBLP 

database. 

XPath query p = */phdthesis//tn 

Value of β = phdthesis//tn 

From the schema: 

Q={dblp, dblp/article, dblp/article/author,…,dblp/phdtheis, 

       dblp/phdthesis/author, dblp/phdthesis/title, dblp/phdthesis/title/tn,…,} 

Now we apply the semantic transformation SPE rules. We use a bottom-up matching 

approach by which both elements phdthesis and tn elements can be matched to qi 

where qi = dblp/phdthesis/title/tn in Q.  As tn is in the right-most location step of p, 

tn is a target element in both p and qi.  

Once the qi has been identified, the transformation uses fragment phdthesis/title/tn 

in qi to replace the fragment phdthesis//tn in p and the fragment dblp/ in qi replaces 

fragment ‘*/’ in p. The semantic path expansion transformation satisfies the SPE rule 

(1) where it produces a semantic path query S= {q} = dblp/phdthesis/title/tn 

We now propose Function 1, namely semanticPathExpansion, to implement the 

proposed semantic path expansion rule.   

Function 1 is called upon when “//” is detected in a given XPath query. Input 

parameters semanticXPath and p are prepared and passed in by the main algorithm, 

prior to calling Function 1. Note that Q and C are the list of unique paths and the list 

of constraints of elements respectively. 
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The descendant element in p is first determined as either a target element or a non-

target element (Lines 1:1-1:4) so that verification can be carried out appropriately.  

For each unique path in tempList, the transformation matches information 

accordingly and obtains q that meets the required information. The matched q is then 

stored in the semanticXPath list. During the matching process, the transformation 

takes care of the case where both descendant and ancestor elements are specified 

with valid element tag names or ‘*’ or ‘node()’ (Lines 1:3-1:4). 

When the descendant element in p is detected as a non-target element (Lines 1:5-1:9) 

in XPath query p, the transformation also takes care of the case when both 

descendant and ancestor elements are specified with valid element tag names, or 

specified with ‘*’ or ‘node()’. 

 

When both the descendant and the ancestor are ‘*’ or node(), the transformation must 

first ensure that all the elements in p are matched with the descendant element. It 

then verifies the descendant as a target element and confirms that the target element 

Function 1:  List semanticPathExpansion(List  semanticXPath, String p) 

        Let β  be fragment in p where ‘//’ exists, ∂ ϵ β be descendant element, θ ∈ β be ancestor element,  

               tempLit be empty lists, target=false be Boolean, o={*, node()}, Q be the list of unique path q 

1:1   For each q in Q       

1:2       If found ∂ and θ in q and ∂ is not a complex element type Then  

1:3           push q to semanticXPath  

1:4   End Loop       

1:5   If target == false Then 

1:6      For each q in Q  

1:7          If  ((∂ or θ or both found as non-target element in q)|| ( ∂ and θ are ‘*’ or node()) Then  

1:8              push q to tempList 

1:9     End Loop 

1:10  If tempList is NULL Then semanticXPath = NULL 

1:11  Else if tempList is not NULL Then semanticXPath = tempList 

1:12  If semanticXPath is not NULL Then  

1:13    For each s inSemanticXPath 

1:14         verify all elements in p to current s 

1:15         If ((∂ and θ)∈ο) && target = true ) Then  
1:16             ∂ must not contain further descendants 

1:17    End Loop 

1:18  If length(semanticXPath) > 1  Then semanticPath = p 

1:19  Else semanticXPath =’Retain’ 

1:20  Return semanticXPath 
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in matched q is a leaf node; otherwise, the result would be inaccurate (Lines 1:12-

1:17). 

The semanticXPath is produced only if the final result holds only one semantic 

XPath query. If multiple unique paths are produced for semanticXPath, a message 

‘retain’ is assigned to semanticXPath to indicate the main algorithm; that is to say, 

the XPath query is valid but cannot be expanded (Lines 1:18-1:19).  Finally, the 

semanticXPath is returned to the main function (Line1:20). 

When the semanticXPath list is NULL (Line 1:10), structurally the XPath query does 

not satisfy any q in Q. This requires the application of a semantic conflict detection 

rule proposed in Section 4.2.4. The function returns NULL since semantic conflict 

has been detected. 

4.2.2 Semantic Path Contraction  

This section proposes a semantic path contraction (SPCon) transformation to 

transform an XPath query specified with a wildcard ‘*’ to a single semantic XPath 

query without a wildcard ‘*’.  The wildcard ‘*’ in this case represents multiple path 

fragments [Wu et al., 2008].  

When ‘*’ represents a single element in the XPath query, the transformation 

produces a single semantic XPath query, to which a SPE is applied. Otherwise, 

SPCon is responsible for the semantic XPath query when wildcard ‘*’ represents a 

set of elements or path fragments. SPCon produces multiple unique paths which are 

then contracted to a single semantic XPath query by using ‘//’ to replace the different 

path fragments in the multiple unique paths. 

Definition 4.4. (Semantic Path Contraction – SPCon) Semantic path contraction is 

a transformation to replace ‘*’ in the user XPath query with ‘//’ in which ‘*’ 

represents a set of path fragments in the multiple unique paths. 

Based on Definition 4.4, we develop a SPCon transformation rule.  First let us 

consider the following parameters.  
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Let: 

• p be the given XPath query 

• β be a fragment in p where  β holds ‘*’, e.g. ’*/*’, ‘a/*’, ‘*/b’   

• S (abbreviation of semanticXPath list) be the list of transformation results 

SPCon Rule. The SPCon transformation proceeds when β is detected in the XPath 

query p. ‘*’ is successfully matched to elements that are located in {qi,...,qj} where q 

∈ Q, if one of the following rules is satisfied: 

1. given i ≠ j that qi to qj share the same target element, which must match the 

target element in p there exists some different path fragments among qi to qj 

or;  

2. if i = j  then S = {q} and no contraction occurs, as only one semantic XPath is 

produced or; 

3. if i ≠ j S(SPCon)= {qi,...,qj} ={q} where q constrains // that represents different 

path fragments among {qi,...,qj} except the target element.  

The semantic rule focuses on the target element in all the identified unique paths 

which must have the same target element. For example, if p is a path a/*/c, all the 

identified unique paths are a/b/c and a/d/f/c in which both traverse in two different 

paths but start from the same root a and reach the same target element c.  

If * is specified as the right-most element in p, there is a possibility that * represents 

the different fragments or elements, in which case the SPCon rule is not applicable. 

In Figure 4.6 we demonstrate the XPath query p (right most query tree), which can 

be contracted based on unique paths in Q (left most query trees). As the mapping 

process (a bottom-up approach) starts from the target element g in p to the same 

target element g in each unique path q, unique paths q10, q15 and q16 are identified.  
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            Q = {q1, q2,,...,q10, q11,...,q13, q14, q15, q16}                                     p = //c/*/g 
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Figure 4.6  XPath Query p and list of Unique Paths Q 

When matching from element c in p to elements in q10, q15 and q16, the SPCon 

transformation drops q10, which does not contain element c. In p, the SPCon solves 

the problem of wildcard * in path fragment c/*/g. Given unique paths q15 and q16, two 

fragments c/e/g in q15 and c/k/g in q16 are identified as corresponding to fragment 

c/*/g in p. 

The SPCon transformation contracts {q15, q16} that produces S = //c//g 

Let us consider an example based on the DBLP schema (which is presented in 

Appendix 1). Q and C are derived from the DBLP schema using a semantics 

derivation technique proposed in Section 4.1.  

Requirement: XPath query to select all the title names of all existing items (such as 

‘article’, ‘proceedings’, ‘inproceedings’, etc...), in the DBLP database.  

XPath query p = dblp/*/title/tn  

In the given p there exists β = dblp/*/title 

In p, element tn is the target element in some unique paths q where q ∈ Q. As the 

mapping process (a bottom-up approach) starts from target element tn in p to the 

same target element tn in any q, we find more than one unique path q that satisfies 

the fragment represented by * in p.  



Ch. 4 

78 

Q = {‘dblp/article/title/tn’, ‘dblp/inproceedings/title/tn’, ‘dblp/proceedings/title/tn’, 

‘dblp/book/title/tn’, ‘dblp/phdthesis/title/tn’, ‘dblp/incollections/title/tn’, 

‘dblp/www/ title/tn’}.  

The SPCon rule produces the semantic contracted path S = dblp//title/tn. The 

contraction occurs at the fragments that contain different elements such as article, 

inproceedings ..., www in all located q. 

Function 2 (below), semanticPathContraction, accepts two inputs which are 

semanticXPath list and XPath query p from the main algorithm. The function is 

designed based on the proposed SPCon semantic rule; that is, * is allowed to appear in 

any XPath location step.  

 

The semanticPathContraction contracts the path fragments labelled with ‘*’ or 

node() in p. The contraction contracts only the fragment of ‘*’ or node() that is a 

non-target element. It first checks to ensure that the valid elements in p match 

elements in q. It detects ‘*’ or node() in q and pushes q to the semanticXPath list. 

During this stage, a semantic conflict may be detected (Lines 2:3). Otherwise, it 

produces a semanticXPath list (Lines 2:1 – 2:5).  

If the semanticXPath list is produced, that means semantic XPath queries are 

identified to produce the result set. Contraction is performed to contract the path 

fragments that are different in the multiple semantic XPath queries. If semanticXPath 

is NULL, this means that a conflict has been detected in (Line 2:9). If there is more 

Function 2:  List semanticPathContraction (List  semanticXPath, String p)  

         Let β  be fragment ‘*’ or node()’ in p, Q be the list of unique path q, dq be different path fragments  

2:1   For each q in Q  

2:2      If elements in p match elements in q Then  

2:3         β be a path fragment contained all un-matched elements in q 

2:4         Push q to semanticXPath 

2:5   End Loop 

2:6   If Length of semanticXPath greater 1 Then  

2:7      Locate dq in all q in semanticXPath  

2:8      Replace all dq  with ‘//’ in q that ultimately derive a contracted q  

2:9   Else length of semanticXPath is 0 Then semanticXPath = p 

2:10  Return semanticXPath 
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than one semantic path in the semanticXPath list, then contraction proceeds in order 

to produce a single path (Lines 2:6 – 2:8). It finally returns the semanticXPath list to 

the main algorithm (Line 2:10).    

When the semanticXPath is NULL it means that either the elements in p or the 

structure in p do not match information in Q. If the semanticXPath returns empty to 

the main function, it determines the conflicts detected in p (Definition 4.6).  

4.2.3 Semantic Path Complement 

A semantic path complement transforms a given XPath query specified with a parent 

location step ‘..’ to a semantic XPath query without the parent ‘..’ operator.  

Definition 4.5. (Semantic Path Complement - SPCom) A semantic path 

complement is a transformation which transforms operator ‘..’ or the parent axis 

location step by eliminating ‘..’ and the element that occurs before it.  

We now develop SPCom rules as a guideline to achieve the transformation goal.   

Let: 

• p be the given XPath query 

• δ be an element that occurs in a location step next to and before the location 

step containing only ‘..’ 

• ϑ be an element that occurs in a location step next to and after the location 

step containing ‘..’ 

• θ  be an parent element of δ  and ϑ 

• β be the fragment in p that is formed as δ/../ϑ, ϑ and δ are in β   

• S (abbreviation of semanticXPath list) be the list of transformation results 

SPCom Rule. The SPCom proceeds when there exists β in which δ is * or ϑ is * or 

both δ and ϑ are *. The path fragment in p leading * and/or ‘..’ matches a fragment in 

unique path qi and the path fragment in p tailing ‘..’ and/or * matches a fragment in 
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unique path qj. That is, qi and qj share the same ancestors of elements ϑ and δ.  

Semantic XPath query S(SPCom) = {qj} if and only if 

1. Target element ϑ  in qi has a minimal occurrence (retrieved from list C) 

greater than 0 

2. There exists a branching element θ  in qi and qj   

 ∴  i≠j  and some ancestors of δ are also ancestors of ϑ. 

The SPCom rule imposes a structure on p that matches two unique paths qi and qj in 

Q where qi and qj have ϑ as a target element. ϑ has a maximal occurrence (verified in 

list C) of at least 1, ϑ always exists in the database regardless of whether or not δ 

exists.  

The SPCom not only eliminates the unnecessary use of the operator ‘..’ in the XPath 

query p, but also makes use of SPConn and SPE transformations to achieve the best 

possible optimization. 

Figure 4.7 demonstrates the XPath query p (left most query tree), which can be 

complemented based on unique path information provided in Q (right-most query 

trees where bold nodes are the branching nodes).  

          p = a/i/o/../k/g                Q = {q1,...,q17,..,q19, q20,..., q22}    
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Figure 4.7  XPath Query p and List of Unique Paths Q 

Due to the presence of ‘..’ in p, the query tree shows a branching element in p. This 

indicates a number of required unique paths based on the number of branches, after 

the branching node i. 
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The mapping process (a bottom-up approach) starts from the target element g in p, 

traversing along the edge to the root (this path is referred to as the right branching 

path) a in p, to the same target element g in each unique path q. Hence, the unique 

path q22 is identified.   

The process repeats for the left branching path, which starts from the o element 

traversing along the edge back to root a in p; hence, we identify unique path q19.   

By following semantic rule SPCom, two unique paths {q19, q22} have been identified. 

If the occurrence constraint defined for element o is (1, ∞), then we can use rule 

SPCom to remove fragment o/../ from the XPath query p. The ancestors of element o 

are also the ancestors of g.  S is now produced as S = a/i/k/g 

Let us consider an example based on the DBLP schema and a list of derived unique 

paths Q and a list of constraints of elements C.   

Requirement: XPath query to select all titles of theses that must have valid authors 

in the DBLP database. 

XPath query p = dblp/phdthesis/author/../title  

In the given p there exists β = author/../title, δ = author, ϑ= title  

In XPath query p, target element title is first matched to a target element in any q ∈ 

Q, which initially produces potential q such that {qi,...,qk} = {dblp/article/title,.., 

dblp/phdthesis/title,...,dblp/www/title}. As a result, more than one unique path has 

title as a target element. 

From the potential Q = {qi,...,qk}, it then matches the elements along the edge of 

element title in p which are dblp and phdthesis.  These elements match elements in 

one of the potential unique paths such as dblp/phdthesis/title. So now the valid path 

for selecting information is identified as dblp/phdthesis/title. 

Next, the transformation identifies the condition element author to any unique path q 

in Q that has author as the target element, which produces another set of potential 

{qn,...,qz} = {dblp/article/author, ..., dblp/proceedings/author, 

dblp/phdthesis/author...}  
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The elements dblp and phdthesis occurring along the edge of author are then 

matched to one of q in potential list {qn,...,qz} to find the matched q for elements 

dblp, phdthesis and author. The matched q is dblp/phdthesis/author.  

Finally, the transformation needs to verify the occurrence constraint of element 

author under parent phdthesis in list C, which indicates an entry of 

‘phdthesis/author occurrence 1 ∞∞∞∞’ presented.  This means that for every phdthesis 

in dblp, there must be at least one associated author.  It now removes fragment 

/author/.. from p, which produces: 

S = dblp/phdthesis/title 

We now propose Function 3, namely semanticPathComplement to achieve the 

semantic rule SPCom.   

Function 3 accepts two inputs. The first one is semantic XPath query list 

semanticXPath and the second one is the XPath query p. In this transformation, we 

consider semanticXPath list to be empty. The transformation always uses a unique 

path list Q.  

Function 3 first separates p into two paths, p1 and p2, based on information such as ϑ, 

∂ and θ. The transformation starts with p1 by matching all possible information 

regarding elements and structure to q in Q. The matching process considers several 

checks by allowing flexibility in ∂ and θ. In order to cover most possibilities, the 

transformation also ensures that ∂ and θ are specified as ‘*’, node(). Once it 

completes the matching process, it confirms some q, which are then stored in the 

semanticXPath list (Lines 3:1-3:3). 

Function 3 (shown below) then moves on to verify p2 only if there is a valid p1.  If p1 

is not valid, there is no reason to check p2. In addition to this, the transformation 

becomes invalid if either p1 or p2 is invalid. To ensure that p2 is valid, it relies on the 

semanticXPath (Lines 3:4 – 3:7) which must not be empty. When checking for p2, it 

considers several checks for ϑ and θ specified as ‘*’or node(). Based on the 

hierarchies that enclose ϑ, the unique paths associated with p2 are identified 

accordingly. Once all valid elements, ϑ and θ have been matched, q is identified as p2 

and q is put into the semanticXPath list. 
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Once the semanticXPath has been built with unique paths that have been identified 

for p1 and p2 respectively, the transformation then eliminates ∂ from p. There are two 

identified unique paths q in the semanticXPath list. One represents the path of query 

condition and the other represents the path of selected information. 

To remove the condition element, SPCom needs to check the occurrence constraint 

of a condition held by ∂ under parent θ using information in the list of constraints of 

elements C. The condition ∂ can be removed from p only if its minimal occurrence is 

greater than 0 (Lines 3:9 – 3:10). The condition ∂ cannot be removed from p only if 

its minimal occurrence is between 0 and 1(Lines 3:11). The transformation detects a 

semantic conflict (Definition 4.6), and applies the semantic conflict detection rule in 

Section 4.2.4, when it detects semanticXPath with NULL (Line 3:12). It finally 

returns the semanticXPath list to the main algorithm (Line 3:13). 

4.2.4 Semantics Conflict Detection 

The satisfactory XPath query study for XPath query has been proposed by Groppe 

and  Böttcher [2005], such that during the transformation the structure of XPath 

query can be detected with a conflict (unsatisfactory) that will produce an empty 

Function 3: List  semanticPathComplement (List  semanticXPath, String p )  

         Let β be fragment contained ‘..’, ∂ ∈ β be query condition element, ϑ∈β be target element, θ be branching     

         element, tempQ and tempList be empty list, p1 be right branching path w.r.t  p1= p exclude (∂ and ‘..’),  Q be  

         the list of unique path q,  p2 be left branching path w.r.t p2=p exclude fragment from ‘..’ to ϑ, O =  {*, node()}      

3:1   For each q in Q               

3:2      push q to semanticXPath when (∂ ∈ο && valid elements including θ  in p1 match non-target elements in q 

   && ϑ is not in q ) ||  ∂  &&  θ in p1 match elements in q && ∂ is target element in q)       

3:3   End Loop 

3:4   If semanticXPath is not NULLThen 

3:5     For each q in Q               

3:6        pubsh q to semanticXPath when (∂ ∈ο  && valid elements && θ  in p2 match non-target elements in q && ∂     

     is not target element in q)  || (valid elements && θ in p2 match elements in q && ∂ is target element in q)     

3:7    End Loop 

3:8    If   ϑ and ∂ exist in separate q in sematnicXPath Then 

3:9       If (minimum(occurrence) of (θ/ ∂) ≥ 1 found in list C) Then  

3:10          semanticXPath = p1  

3:11       Else semanticXPath= p  

3:12  Else sematnicXPath = NULL 

3:13  Return semanticXPath 
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result set. We show how this can be achieved by using Q and C. The difference 

between the work here and existing work [Groppe & Böttcher 2005], is that we 

incorporate the semantics conflict detection in our semantic transformation rule. The 

existing work does not provide a transformation of XPath query if no semantic 

conflict is detected.  

Definition 4.6. (Semantic Conflict Detection - SCD) Semantic conflict detects 

conflicts of structure and element names specified in an XPath query by using unique 

path Q and constraints of elements in list C during the transformation process.  

We develop a guideline for semantic conflict detection, namely SCD to assist with 

the termination of SPE, SPCon, and SPCom transformations. The algorithm of SCD 

is part of functions 1, 2 and 3.  

Let us consider the following parameters:  

• p is a given XPath query 

• ε is ‘*’, ‘.’, node() or valid element in a location step of p 

• Q is a list of unique paths derived from given schemas 

• C is a list of constraints of elements 

SCD Rule. The semantic conflict exists if one of the following rules is satisfied  

1. elements in p do not appear in any q where q∈Q 

2. ε  exists in p so ε does not satisfy a path fragment in any q where q∈Q 

The SCD semantic rule simply checks the correctness of the structure in p whereby if 

valid elements exist in p, they must match the same set of elements in a q first. 

Thereafter it matches ε based on the patterns that enclose ε in p to identify q. Here, 

for example, is an XPath query dblp/*/*/tns 

This query will be matched to all q∈Q based on the elements dblp and tns first. 

However, the matching process cannot locate tns in any q∈Q. As a result, a conflict 

of element non-existence has been detected in p. 
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In SCD, we do not develop an independent algorithm; instead, it is implemented 

within each semantic transformation as described earlier in semantic path 

transformations..  

4.3 Summary 

In this chapter, we have proposed: (1) a methodology to derive semantics provided in 

XML Schema and (2) semantic path transformation typologies including semantic 

path expansion, semantic path contraction and semantic path complement. 

In the semantic derivation methodology, the semantics are classified and then 

divided into two lists including a unique path list and constraints of elements list. 

Ultimately, two sets of essential information are produced: a unique path and 

constraints of elements lists.  

Once the essential information has been derived, we then propose the first semantic 

transformation category which is semantic path transformation; this consists of 

semantic path expansion, semantic path contraction and semantic path complement. 

The semantic path expansion typology transforms a path fragment ‘//’, ‘*’ or ‘node()’ 

into a sequence of elements if and only if the XPath query can match a single unique 

path. The transformation takes into consideration any element labelled with ‘*’, 

node(), or a valid element tag name. The transformation must first satisfy the 

proposed semantic rule. The rules are then translated into a function, namely 

semanticPathExpansion as a guideline. 

The semantic path contraction typology transforms fragments that have elements 

labelled with ‘*’ or node () in the user XPath query into fragment ‘//’. This can be 

true only when the XPath query is matched to multiple unique paths that have the 

same target element. This means that an element labelled with ‘*’ represents multiple 

different path fragments within the multiple identified unique paths. The 

transformation must satisfy the proposed semantic rules, which are then translated to 

a function, namely semanticPathContraction.  
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The semantic path complement typology transforms path fragments with elements 

labelled with ‘..’ in the user XPath query into a sequence of elements in an identified 

unique path. When ‘..’ is specified in an XPath query, ‘..’ expects to associate with a 

condition element to filter information. The goal of this transformation is to eliminate 

the condition fragment including ‘..’ using unique paths in Q and also an occurrence 

constraint from the constraints of elements list C. The transformation must satisfy the 

proposed semantic rule followed by a function, namely semanticPathContraction 

to remove the condition fragment.  

During the transformation, we have also integrated a technique to detect semantic 

conflicts that may return an empty query response. In this way, the transformation 

can immediately provide an answer without needing to complete the transformation 

process and avoid accessing the database unnecessarily. In the implementation, we 

demonstrate that the conflict detection makes a significant contribution to query 

transformation and ultimately boosts performance.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Chapter 5 

Semantic Transformations for 

XPath Queries specified with XPath 

Axis 

XPath queries are essentially composed of a succession of axes defining the 

navigation from a current context node. Among the XPath query axes family, child, 

descendant, parent and self can be optionally specified using the path notations 

{/,//,..,.} which have been commonly used. Axes such as following, preceding, 

ancestor, ancestor-or-self, following-sibling and preceding-sibling have unique 

functionalities which provide different required information that cannot be achieved 

by others. However, XPath query optimization using schema constraints do not yet 

consider the XPath axes family.  

The performance of queries denoting the same result by means of different axes may 

significantly differ. The difference in performance can be affected by some axes, but 

this can be avoided. The aim of these proposed semantic transformations is to modify 

the structures of XPath queries by eliminating the XPath axes to improve query 

performance.  
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For a complete solution, this chapter proposes several semantic transformations to 

transform XPath queries specified with XPath axes {following-sibling, preceding-

sibling, following, preceding, ancestor, ancestor-or-self, parent, descendant, 

descendant-or-self, self, child} [W3C, 1999; 2007a; 2010] for optimization 

purposes. 

Unique paths in list Q and constraints of elements in list C, which have been derived 

from XML Schemas [W3C, 2004a; 2004b] in Section 4.1 Chapter 4, are used to 

propose the transformations. Recall that list Q contains a list of unique paths q where 

each q is a sequence of elements that express a path from the root to a particular 

element in a given XML Schema. Only the parent-child “/” relationship among the 

elements is in q. List C contains a list of c where each c contains the element and its 

constraints specified in the XML schema.  

5.1 Query Transformation Direction and Defining 

Parameters  

This section achieves the following tasks: 

1. The tree pattern (refer to Definition 3.11) represents the structure of XPath 

queries. The directional approach used by semantic transformations for XPath 

queries may start from the left-most location step (refer to Definition 3.6) or 

the right-most location step [Bashir and Boulos, 2005; Furfaro & Masciari, 

2003]. Such a directional approach is adopted in this research, which is 

sometimes referred to as a right-most or left-most direction. The first task of 

this section is to describe the directional approach of semantic 

transformations. 

2. The proposed semantic transformations in this chapter share a number of 

parameters; these parameters are referred to as global parameters. The second 

task of this section is to define a set of global parameters. 
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5.1.1 Transformation Direction for XPath Query 

As mentioned in the previous section, the transformation of XPath queries uses 

information such as unique paths q in Q and constraints c in C. This section proposes 

that the query transformation direction start from the right-most XPath query; that is 

the target element, which is the right-most element and is located in the right-most 

location step in an XPath query. It is easy to match the target element in an XPath 

query to the target element in q to first identify all possible q. The remaining 

elements in XPath can then easily be matched to those in the identified q. Such a 

transformation direction is explained in more detail with examples in this section. 

An XPath query may be specified with an axis to navigate to a specific location, for 

example, consider the following XPath query  

p = i/k/following-sibling::* 

In this XPath query, location steps i and k are specified with no axis names and the 

right-most location step following-sibling::* is specified with axis name following-

sibling. This research proposes a translation of an XPath axis for all the elements in 

the XPath query that are specified without an axis before the transformation as 

shown below.  

i/k/following-sibling::* translates to child::i/child::k/following-sibling::* 

The transformation goal is to obtain the semantic XPath query/queries. It can be a 

single semantic XPath query or multiple XPath queries, which is referred to as a 

semanticXPath list. 

Figure 5.1 shows how the semanticXPath list is first produced using the right-most 

direction.  

 

Figure 5.1  Sample of Semantic Transformation with a Bottom-up Approach 

p = dblp/article/following-sibling::*/title    

 

 

Semantic transformation first transforms title to produce 
semanticXPath list  using Q 

Semantic transformation next transforms following-sibling::* produces new 
semanticXPath list using the current semanticXPath list 
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As the title is in the right-most location step, which is also known as the target 

location step (refer to Definition 3.9), the semanticXPath list is always empty and 

information in the Q list will be used to produce the semanticXPath list. The next 

location step is following-sibling::*, which is a non-target location step (refer to 

Definition 3.10). Therefore, following-sibling::* is transformed using the 

semanticXPath list instead of a unique path list, as the semanticXPath list is not 

empty. For example, consider the transformation of p in Figure 5.1. The 

transformation starts from the title using information in Q list and the result would 

be stored in semanticXPath list. It then moves on to transform the next location step, 

which is following-sibling::* in which it will use the semanticXPath list because at 

this point, the semanticXPath list is not empty. 

The semantic transformation relies on input information including unique paths in 

list Q or semanticXPath (the arrival of semanticXPath has been explained above), 

and constraints and their values of elements in list C. In addition to this provided 

information, the transformation also explores the context position functions such as 

position(), last() and context position value [Brantner , 2005; W3C, 1999; 2010]. 

5.1.2 Defining Global Parameters 

The semantic transformations proposed in this chapter utilize the same terms and 

information related to XPath query, lists of Q and C to progress to semantic rules. 

This section defines a set of global parameters that reference to the terms and 

information which are used to define the semantic transformation rules and translate 

them to the algorithms throughout this chapter. 

• β is a transforming location step in an XPath query p.  

• α is an axis.  

• ε is a a node-test where β = α::ε and ε is ‘*’, node() or a valid element tag 

• ∂ is a context element that occurs in the location step next to β, which must 

appear on the left of β. 

• ϑ is the parent element of ∂ that occurs in the location step next to ∂ which must 

appear on the left of ∂. 
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• ∞ is an infinite occurrences of an element. It is used to denote a maximal 

occurrence of an element.  

• Q is list of unique paths derived from schemas. 

• C is the list of elements, their constraint names, and values of the constraints. 

• S (abbreviation for semanticXPath list) is a list that contains semantic XPath 

query/queries. 

5.2 Semantic Transformation for Following- or Preceding-

sibling Axis 

The semantic transformation aims to remove a following- or preceding-sibling axis 

using information in lists Q and C. Depending on the location of the following- or 

preceding-sibling axis in an XPath query, S is used when S is not empty.  

Firstly, we propose semantic rules to transform a given XPath query to its equivalent 

semantic XPath query. Secondly, we translate the proposed rules to a semantic 

transformation algorithm. 

It is possible to produce a single semantic XPath query for a given XPath query 

specified with following- or preceding-sibling axis. However, the majority of 

transformations expect multiple XPath queries.  

Before the semantic rules are proposed below, the XPath query 

‘*/article/author/following-sibling::*’ is used to shade light on how semantics are 

used to obtain the semantic XPath queries by eliminating the axis. This given XPath 

query finds all the followed siblings of the first occurrence of the article author. By 

using information in Q, the unique path ‘dblp/article/author’ selects the article 

author and its following unique paths that select the siblings of the article author, 

e.g. dblp/article/title, dblp/article/chapter, etc.., are retrieved as semantic XPath 

queries. Depending on the occurrence constraint, located in C, of article author, the 

unique path that selects the author may be excluded from the semantic XPath 

queries. Otherwise the context index position function such as position() is used by 

the unique path that selects article author to reassure the last occurrence of author is 
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not selected. This example will be revisited later on in great details by the proposed 

semantic transformation rules. 

Prior to the proposal of semantic rules, it should be kept in mind that if the 

transforming location step is the right most location step, also known as target 

location step, in the XPath query  then Q will be used to derive S(temp). If the 

transforming location step is not the right most location step in the XPath query, also 

known as a non-target location step, S is not empty, and hence S is used to derive 

S(temp). S(temp) is a temporary list that contains semantic XPath queries. Finally S(temp) is 

used to derived S where the transformation rule will decide if the last or first 

occurrence of context element is selected. This important note is also applied to 

semantic rules proposed in section 5.3. 

For each of the following- or preceding-sibling location steps (referred to as the 

transforming/transformation location step) in an XPath query p, the semantic 

transformation rule called STfps is now proposed. 

STfps Rule. Semantic XPath query S is derived as follows: 

a. When ε and ∂ are ‘*’ or node() and ϑ is a valid element name, then locate qk in 

Q or S, where qk must contain ϑ as a target element. The child element of ϑ is 

the first child element or the last child element of ϑ.  

b. When ε and ϑ are ‘*’ or node() and ∂ is valid element name, then locate qk in Q 

or S where qk must contain ∂ as a target element.  

c. When ∂ and ϑ are ‘*’ or node() and ε is valid element name, then locate qk in Q 

or S where qk must contain ε as a target element.  

d. When ε is ‘*’ and ∂ and ϑ are valid element names, then locate qk in Q or S 

where qk must contain ∂ as a target element. 

In summary, the S(temp) is derived with given qk as follows 

 

    If α is following-sibling then  k < m.   

If α is preceding-sibling then k > m  
S(temp) = {qk,...,qm} 
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By now, the S(temp) contains a set of semantic XPath queries that has been 

transformed by the semantic rule as proposed above. However, the first 

semantic XPath in S(temp) may select the first or last context element, which 

needs to be further transformed so that the first or last occurrence is excluded 

from the final result. The first occurrence of the context element is not selected 

when the following-sibling axis is used. The last occurrence of the context 

element is not selected when the preceding-sibling axis is used.  To achieve 

this, the context function (position() > 1 or position()<last()) is used as below 

so that the final result S is derived: 

Derivation of S using S(temp) 

S = S(temp) where qk will not select the first occurrence of ∂ by placing index 

context function [position()>1] or [position()<last()] (for following- or 

preceding-sibling axis) on ∂ when the occurrence set for ∂ is between 1 and ∞. 

If occurrence of ∂ is set between 1 and 1 then qk is removed from S as qk 

produces only one occurrence of ∂ which is not required for the collection set.  

List S contains information that occurs on the right or left (depending on α is 

following or preceding axis) of the first occurrence of ∂ selected by qk.  

The following examples show how S is ultimately derived. 

p = */child::i/preceding-sibling::*      Q = {q1,...,q12,..,q17,.., q19, q20,..., q22} 

 

Figure 5.2  Semantic Transformation for Preceding-sibling Axis Query 

An XPath query tree p and a set of unique paths Q = {q1,…,q22} are given as shown 

in Figure 5.2. The left directional arrow indicates that the selected elements must 
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occur on the left of the last occurrence of i in the XML data tree. The dashed arrow 

lines (from p to q) indicate the information to be selected that must occur on the left 

of element i in p, which can be accomplished by unique paths q12 to q17. The thick 

lines (from p to q) indicate the context element in the first identified q. Note that both 

dashed and thick lines map to the same element i in q17; this is to indicate that 

element i may have many occurrences. If this is the case, only the last occurrence of i 

is not selected.  

By following rule (a) in ST(fps), q17 has i as a target element. q12 to q17 share the same 

parent a; hence, S(temp) = {q12, ...,q17}. The occurrence constraint of element i needs to 

be verified against list C to decide if [position()<last] is added to i in q17 or q17 should 

be removed from S(temp) to produce S.  

Assuming that list C indicates that the occurrence of a/i is between 1 and infinity 

(denoted as ∝) then, 

S = S(temp) and q17 is now q17 = a/i[position()<last()] 

Let us consider an example based on the DBLP schema (Appendix 1) that is used to 

derive lists Q and C. 

Example. A requirement selects all the siblings of article and author that follow it in 

the DBLP database. 

XPath query p = */article/author/following-sibling::*  

Based on given p, the values of the required parameters are now extracted such that 

• β is following-sibling::* 

• ∂ is author 

• ε is **** 

• ϑ is article 

• Q is {dblp, dblp/article/@key, dblp/article/@mdate, dblp/article/author, 

dblp/article/title, dblp/article/year,…, dblp/article/url,…,} 

• C is {dblp sequence,…, article/author occurrence 1 ∞,…,} 
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• S is empty 

By following rule (d) in ST(fps) rule, p has following-sibling::* as the target location 

step; therefore, S is empty and Q will be used to produce S(temp) where S(temp) =  

{dblp/article/author, dblp/article/title, .., dblp/article/url} because author has title, 

year, …, url as siblings followed (or were to the right of) author. 

Next, the transformation also finds that C contains a list item ‘article/author 

occurrence 1 ∞’. This means that each article must have at least one author as a 

minimal occurrence and an infinite number of authors as the maximal occurrence. 

Therefore, there is a need to add [position()>1] to author in the unique path that 

selects the author information. This context function will select all the authors of each 

article except the first author. The transformation produces the result as follows: 

S={dblp/article/author[position()>1],dblp/article/title,..,dblp/article/url} 

Function 1. transformFollowPrecedingSibling translates the semantic 

transformation rules for transforming XPath query specified with following- or 

preceding-sibling axis.  

The function is called from the main algorithm when following- or preceding-sibling 

location step is detected in a given XPath query. 

Let us remind readers that any parameters that are not defined in the algorithms from 

this point onward should be the global parameters which have been defined earlier in 

the Chapter. 

The function determines whether the transforming location step is a target or a non-

target location step. This is done by checking the SemanticXPath. If it is empty (Line 

1:1), list Q will be used for transformation otherwise SemanticXPath is used for 

transformation. 

When followingSibling (Line 1:2) is not NULL, which means the transforming 

location step is specified with following-sibling axis, the function sets the starting 

point and direction for searching unique paths as well as the label of the axis. 
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Otherwise, the function checks for preceding-sibling axis, starting point, search 

direction and axis label (Line 1:3). 

Based on the identified axis and search direction, the transformation determines 

whether the transforming location step is a target location step or a non-target 

location step. The transformation first builds up the tempList. 

Function 1: List transformFollowPrecedingSibling(String eContext, String followingSibling, String precedingSibling,  String        

                                                                                  parentContext, List semanticXPath) 

         Let tempQ and tempList be empty lists, O be occurrence of eContext,  ϒ be an initial point of traversing and searching   

          Direction, ω= {∗, node()}, Q be the list of unique path q, C be the list of constraints of elements 

1:1   IF  semanticXPath is empty THEN  tempQ = Q ELSE tempQ = semanticXPath  

1:2   IF followingSibling is not NULL THEN ϒ starts from top of list in tempQ  Set axis = following-sibling 

1:3   ELSE preceedingSibling THEN ϒ starts from the end of list in tempQ and Set axis = preceding-sibling 

1:4   IF semanticXPath is empty THEN 

1:5       For each q, using ϒ, in tempQ 

1:6          IF ((parentContext not in ω && found in q) && target element in q is eContext ) THEN 

1:7             For each q in Q   

1:8               IF ((q has parentContext && (target element as (sibling of eContext || eContext) in q)    

                || ((q has parentContext && eContext is ‘*’ target element as in q is axis) THEN push q to tempList 

1:9          ELSE IF ((parentContext is  in ω && target element in q is eContext ) THEN  

1:10              For each q in Q   

1:11                 IF ((target element (as sibling of eContext || as eContext) in q) && axis element is in ω  || 

                     (( target element in q is axis element) THEN push q to tempList      

1:12    ELSE  

1:13      FOR each unique path q, using ϒ, in tempQ  

1:14          IF (axis element is not in ω and found eContext in q) THEN 

1:15                FOR each current q in tempQ IF q contain axis element THEN Push q to tempList 

1:16          ELSE push q to tempList 

1:17    IF followingSibling is not NULL THEN   

1:18       IF  O of eContext is (1, ∞" THEN add [position()>1] to eContext of first q in tempList 

1:19      ELSE IF O of eContext is (1,1" THEN remove first q from tempList  

1:20    ELSE IF precedingSibling is not NULL THEN use tempList 

1:21       IF  O of eContext is (1, ∞" THEN add [position()<last()] to eContext of last q 

1:22       ELSE IF O of eContext is (1,1" THEN remove last q from tempList  

1:23    ELSE IF O of eContext is (0,1" semanticXPath = ‘Retain’         

1:24    IF (tempList is empty) semanticXPath = NULL   

1:25    ELSE IF semanticXPath Not ‘Retain’ THEN semanticXPath= tempList;  

1:26    RETURN semanticXPath 

 

When semantic transformation detects a transformation location step as a target 

location step, it locates all the unique paths by considering the following scenarios: 

first, parent of context element is not ‘*’ or node() and context element has a valid 
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label name or ‘*’ or node(). Second parent of context element is ‘*’ and context 

element has a valid label name or ‘*’ specified with indicated axis (Lines 1:4-1:12). 

When semantic transformation detects a transformation location step as a non-target 

location step, it locates all the unique paths by considering the axis and context 

elements as a combination (Lines 1:13-1:16). 

Once the transformation produces a tempList, it then decides to add the context 

position function position() or last() when minimal and maximal values of 

occurrence constraint of the context element are 1 and ∝ (Lines 1:18, Line 1:21). The 

unique path q is removed from the potential list of semantic XPath queries when the 

minimal and maximal values of occurrence constraint of context element are 1 (Line 

1:19, Line 1:22).  

The algorithm also handles the case of minimal and maximal values of occurrence 

constraint of 0 and 1. It is not possible to detect that the first context element occurs 

in the database unless it accesses the XML document data during the transformation. 

In the case of an occurrence constraint that has minimal and maximal occurrences of 

0 and 1, the semanticXPath is set to ‘Retain’ acknowledges to the main algorithm 

that the location step is valid but retains its original specification (Line 1:23). This 

means that the XPath query has not been transformed.   

The semantic transformation is also able to detect conflicts (Line 1:25), which results 

in an empty data set by detecting the tempList. This will boost performance 

significantly as the query does not need to access the database before it returns the 

answer to the user. 

If the semanticXPath has no information and the tempList is not empty, then the 

semanticXPath is assigned with the tempList and it is returned to the main algorithm 

(Line 1:26). 
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5.3 Semantic Transformation for Following or Preceding 

Axis 

The following or preceding axis navigates the information on the right or left of the 

context element as well as the information following or preceding where the context 

element begins or ends.  

To obtain the semantic equivalent XPath query, the semantic transformation is now 

proposed for the following or preceding axis. The semantic transformation aims to 

remove a following or preceding axis by using list Q of unique paths and list C of 

constraints of elements. The semantic transformation for these two axes, in most 

cases, produces more than one semantic XPath query (referred to as a set of semantic 

XPath queries). 

The XPath query ‘dblp/article/title/preceding::*’ is now used to shade light on how 

semantics are used to obtain the semantic XPath queries by eliminating the axis 

preceding. This given XPath query finds everything that occurs in front of the first 

occurrence of article title. The unique path ‘dblp/article/title’ and all unique paths in 

Q that select information occurs in front of the first occurrence of article title. 

Basically it is looking at all the unique paths that occur in front of the unique path 

‘dblp/article/title’ and all unique paths that select the siblings of article title. 

Furthermore, depending on the occurrence constraint, located in C, of article title, 

the transformation also needs to use the context index position function position() so 

that it  re-assures the last occurrence of title and everything following it will not be 

selected.  This example will be revisited later on in great details by the proposed 

semantic transformation rules. 

For each of the location steps specified with following or preceding, also known as 

transforming location steps, in an XPath query p, the semantic transformation rule 

called Steps is now proposed. 

Steps Rule. Semantic XPath query S is derived as follows: 

a. When ε is ‘*’ or node() and ϑ and ∂ are valid element names, then locate qk in 

Q or S where qk contains ∂ as a target element.  
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b. When ε and ϑ are ‘*’ or node() and ∂ is a valid element name, then use ∂ to 

locate qk in Q or S where qk contains ∂ as a target element.  

c. When ε and ∂ are ‘*’or node() and ϑ is a valid element name, then use ϑ to 

locate qk in Q or S where qk has ϑ which also has a child as a target element 

and is the first or last child of ϑ.  

d. When ε is a valid element name and ϑ and ∂ are ‘*’or node(), then locate qk in 

Q or S where qk has ε as a target element.  

 

If α is the preceding axis then qi, qk-1 are all unique paths that are in front of qk. 

qk,…,qz  must contain ϑ and their target elements are children of ϑ  and its 

siblings occur in all q leading qk.  i = 0 (at the top of Q), i < k < z.    

If α is the following  axis, then qi,…,qk+1 are all unique paths that are located after 

qk. qk,…,qz and must contain ϑ; their target elements are children of ϑ and its 

siblings occur in all q following qk.  i = length of Q, i  > k  and z >k  

Derivation of S using S(temp) 

When the occurrence of ∂ in qk is between 1 and ∝, context function [position() 

>1] or [position() < last()] is replaced on ∂ and [position() = 1] or [position() = 

last()] on ϑ in qk. qZ+1 = qk and [position() >1] or [position() <last()] is placed on ϑ 

in qk+1,…, qz+1.  

When the occurrence of ∂ is between 1 and 1, context function [position() >1] or  

[position() <last() ], depending on α, is placed on ϑ in qk,…, qz or qk,…, qz. 

These functions are important as they handle the role of not selecting the first or 

last occurrence of ∂ and the siblings occur before or after the first ∂ in the whole 

document. 

S = S(temp) where qk,…, qz  are modified as described above. 

                       

 

S(temp) = {qi,…, qk,…,qz} 
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The following example show how S is ultimately derived. An XPath query p = 

*/child::i/ child::k/preceding::* and a set of unique paths  Q = {q1,q1,q3,..,q4, q5, q6, q7,..., 

q22} is given as shown in Figure 5.3.    

The left-most tree represents the XPath query p. The left-pointed and vertical-pointed 

arrows show the direction of selected information in the XML data tree that is 

expected to occur before the last context element k. The mapping arrows from p to Q 

indicate the information to be selected.  By following rule a in Steps, both the parent 

and context elements are valid for deriving S(temp). As a result, S(temp) = {q6,…,q2,q1} 

has been derived where q5 is the unique path that selects the context element k. 

 

Figure 5.3  Semantic Transformation for Preceding Axis Query 

S now can be derived based on the presence of the preceding axis in p by checking 

the occurrence of i/k in list C. Suppose that the occurrence of i/k is between 1 and ∞, 

then  

S = S(temp) where q5 and q6 are replaced as follows: 

   q5 = a/i[position() =last()]/k[position()<last()], a/i[position()<last()]/k 

  q6 = a/i[position() < last()]/m/g 

Let us consider an example based on the DBLP schema that is used to derive lists Q 

and C.   
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Example. A requirement selects all the members preceding the article and title in the 

DBLP database. 

A user defined XPath query p = dblp/article/title/preceding::*  

Based on given p, the values of the required parameters are extracted as follows: 

• β is preceding::* 

• ∂ is title  

• ε is **** 

• ϑ is article  

• Q is {dblp, dblp/article/@key, dblp/article/@mdate, dblp/article/author,  

dblp/article/title, dblp/article/years,…, dblp/article/url, dblp/inproceedings,…,} 

• C is {dblp sequence, dblp/article sequence, dblp/article occurrence 1 ∞…,} 

• S is empty as the preceding location step is specified as a target location step in 

p 

By following rule a in Steps Rule, S(temp) is derived as follows:  

S(temp)={dblp, dblp/article/@key, dblp/article/@mdate, dblp/article/author,  

dblp/article/title, dblp/article/years,…, dblp/article/url} 

The occurrence of article/title is between 1 and 1 and is located in list C. The 

context function [position()<last()] is added to the article in the unique path 

dblp/article/title and all the unique paths that appear behind it in S(temp). The result of 

S is as follows: 

 S = {dblp, dblp/article/@key, dblp/article/@mdate, dblp/article/author,  dblp/ 

article[position()<last()]/title, dblp/article[position()<last()]/years,…, 

dblp/article [position()<last()]/url} 

Function 2 transformFollowPreceding translates the semantic transformation rules.  

Function 2 is called when the transforming location step in an XPath query is 

specified with following or preceding axis. 
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The transformation first determines if the Q or semanticXPath list is used. This is 

when the following or preceding location step in the XPath query is the target or 

non-target location step (Line 2:1). The tempQ list is set. 

The transforming location step then detects whether the following or preceding axis 

is present so that the initial point and traversing direction for retrieving unique paths 

are set (Lines 2:2 – 2:3).  

 Function 2: List transformFollowPrecedingt(String eContext, String following, String preceding, String parentContext,  

                                                                               List semanticXPath) 

          Let tempQ and tempList be empty lists, O be occurrence of eContext,  Q be the list of unique paths q,  

          ϒ be an initial point of traversing and searching direction, ω = {∗, node()},C be the list of constraints of elements 

2:1   IF  semanticXPath is empty THEN  tempQ = Q ELSE tempQ = SemanticXPath  

2:2   IF following is not NULL THEN ϒ starts from top of list in tempQ  Set axis = following 

2:3   ELSE it is preceedingSibling THEN ϒ starts from the end list in tempQ and Set axis = preceding 

2:4   IF semanticXPath is empty 

2:5      FOR each q, using ϒ, in tempQ  

2:4          IF ((q contains parentContext && eContext is the target element in q) || axis element is the target element in q) THEN 

2:5              FOR each q in tempQ    

2:6                 IF (axis element is in ω  || (eContext found in q && axis element is target node in q) ||  (eContex is in ω  &&    

                   axis element is target node in q)) THEN  push q to tempList  

2:7              END LOOP 

2:8      END LOOP 

2:9    ELSE 

2:10   FOR each unique path q, from top of list, in semanticXPath  

2:11        IF ((eContext is in ω  && a target element in q) || (eContext is in ω && following found in q)) THEN Push q to tempList 

2:12   END LOOP 

2:13   IF (tempList is empty) THEN semanticXPath = NULL; Exist 

2:14   IF following && tempList !=NULL THEN  q = first q that has both eContext and parent from tempList 

2:15   ELSE IF preceding && tempList !=NULL THEN q = last q that has both eContext and parent from tempList 

2:16                Get the minOccurrence and maxOccurrence values of eContext node  

2:17   IF ((following && minOccurrence>=1 && maxOccurrence > 1) THEN  

2:18        Append position()>1 to eContext location step and position()= 1 to parentContext in current q                                                   

2:19        Duplicate current q and append position()>1 to parentContext of duplicated q and add it to tempList 

2:20        Append position()>1 to parentContext in all q that comes after current q 

2:21    ELSE IF (preceding && minOccurrence>=1 && maxOccurrence > 1) THEN  

2:22        Append ‘position()<last()’ to eContext and ‘position()=last()’ to parentContext in current q                                 

2:23        Duplicate current q and append ‘position()< last()’ to parentContext of duplicated q and add it to tempList  

2:24        Append position()<last parentContext in all q that comes before current q  

2:25     ELSE IF ((following && minOccurrence=1 && maxOccurrence = 1) || 

                   (preceding && minOccurrence=1 && maxOccurrence = 1)) THEN 

2:26                    Append (position()>1 or position()<last() to parentContext in current q  

                  and all q that have target elements are siblings of eContext  

2:27     ELSE IF  (( minOccurrence=0) || (minOccurrence=0) ) THEN tempList =’Retain’ 

2:28     semanticXPath = tempList;  

2:29     RETURN semanticXPath 
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The first part in the transformation is to locate the unique paths q for following axis 

specified in p (Lines 2:4-2:8). The first matched unique path q in Q is located where 

q contains a valid parent element and valid context as the target element or the 

context element is ‘*’ or node() and the parent element is a valid element name. 

Otherwise, it checks for a valid context element name and parent element is ‘*’ or 

node(). The transformation continues to retrieve all the unique paths q that produce 

information following or preceding information produced by q. The tempList is built. 

When the context element is not a target element, the transformation locates the q 

from the existing semanticXPath list in which q has only the parent element and the 

context is a non-target (Lines 2:9-2:12). The tempList is built here. 

When the tempList is empty, this indicates that a conflict has been detected and no 

further transformation is needed. The semanticXPath returns to the main program as 

NULL that allows the main program to handle the configured message set in the 

main program (Line 2:13).  

If the tempList is not empty, the transformation will continue to produce the 

semanticXPath list. The occurrence constraint of the context element is retrieved 

from list C (Line 2:16). The tempList list produced for the following axis is to use the 

context functions position() that does not select the first occurrence of the context 

element if the minimal and maximal values of occurrence constraint of context 

element are 1 and ∝  (Lines 2:17 – 2:20). The occurrence constraint values are also 

applied to produce the tempList list for the preceding axis, and the index context 

functions such as position(), and last() are used for the preceding axis (Lines 2:21-

2:24).  

When the minimal and maximal values of the occurrence constraint of the context 

element are 1, the context functions position() and last() ensure that the context 

element under the first or last parent is not selected (Lines 2:25-2:26).  

When the minimal value of the occurrence constraint of the context element is 0, a 

‘Retain’ message is set in the tempList, which is subsequently assigned to the 

semanticXPath. This message tells the main program that the following or preceding 

location step in the XPath query is valid but has no new transformation (Line 2:27).  
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Finally, the valid semantic XPath queries are returned to the main algorithm (Line 

2:29). 

5.4 Semantic Transformation for Ancestor or Ancestor-or-

self Axis 

While Ancestor axis in an XPath query navigates information of all ancestors 

(parent, grandparent, etc...) of the context element, ancestor-or-self navigates 

information of all ancestors (parent, grandparent, etc..) of the context element and the 

context element itself [W3C, 2010]. An ancestor or ancestor-or-self axis may be 

specified with “*” or node(). 

Before the semantic transformation rule is proposal, the XPath query 

‘//article/ancestor::dblp’ is now used to give a brief overview of how semantics are 

used in semantic transformation by eliminating XPath axis. This XPath query 

performs a task to select ancestor of article that must be dblp. By using list Q, the 

unique path that selects article is selected first. Because of dblp is the ancestor of 

article, any unique path that precedes the unique path of selecting article and also 

selects dblp is selected. This example will be revisited later on in great details by the 

proposed semantic transformation rules.      

A set of semantic transformation rules called STas is now proposed for transforming 

an XPath query specified with an ancestor or ancestor-or-self axis. 

Along with the proposal of semantic transformation rule STdos, an important note 

confirms that if the transforming location step is the right most location step, also 

known as target location step, in the XPath query then Q will be used to derive S. If 

the transforming location step is not the right most location step in the XPath query, 

also known as a non-target location step, S is not empty, and hence S is used to 

derive the new S. This important note is also applicable to all semantic rules in 

sections 5.5, 5.6, 5.7, 5.8 and 5.9. 

STas Rule. Semantic XPath query S is derived as follows: 
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a. When ε is ‘*’ or node() and ϑ and ∂ are valid element names, then locate qk in 

Q or S where qk must contain ϑ and ∂ where ∂ is a target element.  

b. When ε and ∂ are ‘*’ or node() and ϑ is a valid element name, then locate qk 

in Q or S where qk must contain ϑ that must have a child. 

c. When ε and ϑ are ‘*’ or node() and ∂ is a valid element name, then locate qk 

in Q or S where qk must contain ∂ as the target element. 

 

d. When ε, ϑ and ∂ are valid element names, then locate qk where ε must be a 

valid ancestor of ∂.  

 

The following examples show how S is derived. 

p = */child::i/child::o/ancestor::*            Q = {q1,..., q 12,.., q 17,.., q 19, q 20,..., q 

22}      

 
 

Figure 5.4  Semantic Transformation for Ancestor or Ancestor-or-self 

An XPath query tree p and a set of unique paths Q = {q1,…, q22} are given as shown 

in Figure 5.4.  

Based on STas rule set, rule a is suitable because according to the given p, the value 

of ε is ‘*’, the value of ϑ is o and the value of ∂ is i. For each element in p, except the 

 S = {qi,…,qk}  where i = 0 and i  ≤ k  

 

S = {qk}  where 0 ≤ k  

 

   p 

Ancestor::* 

q22 

a 

i 

k 

g 

q20 

a 

i 

o 

e 

q18 

a 

i 

o 

q17 

a 

i 

q12 

a 

b 

q1 

a 
* 

i 

o 

* 



Ch.5 

 

106 

context element o, the latter of which is mapped to the target element in any q in Q. 

In this case, q18 is found. Unique path q17 satisfies the presence of element i, which is 

the target element and the parent of o in q18. Using q17, the parent of element i is a. 

Any unique path that has an element label with a as the target element and occurs 

before q17 is selected. q1 is identified. q18 is not needed as it produces the information 

for the context element.  

In this query, the result is a collection of information about the ancestors only.  

S  = {q1, q17} 

Let us consider an example using the DBLP Schema that is used to derive lists Q and 

C. 

Example. A requirement selects ancestry information of article titles as well as their 

own information in the DBLP database. 

XPath query p = */article/title/ancestor-or-self::*   

Based on given p, the values of the required parameters are extracted as follows: 

• β is ancestor-or-self::*  

• ∂ is title  

• ε is *  

• ϑ is article  

• Q  = {dblp, dblp/article/@key, dblp/article/@mdate, dblp/article/author,   

          dblp/article/title,..., dblp/article/url,..., dblp/www/url} 

• S is empty as ancestor-or-self location step is the target location step. 

By using Q, a unique path that selects context information title for article is 

dblp/article/title, the next unique path that selects the article are 

dblp/article/@key, dblp/article/mdate and dblp.   

S = {dblp, dblp/article/@mdate, dblp/article/@key, dblp/article/title} 
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Function 3. transformAncestors translate the semantic transformation rules for 

transforming XPath query specified with ancestor or ancestor-or-self axis.  

A tempList is built when an ancestor element is a non-target element and the context 

element is a valid element name that appears to be the target element, or q has an 

ancestor element as a non-target element, and the target element can be any element 

(Lines 3:1–3:5).   

When the transforming location step is a non-target location step, the tempList is 

derived using S. The tempList is built by q that has an ancestor as a non-target 

element, and the context element which appears to be target element or q has an 

ancestor element as a non-target element, and the target element can be any child 

(Lines 3:6–3:10).   

In the case where the tempList is NULL, a conflict is detected for the transforming 

location step (Line 3:11). 

 

Function 3: List transformAncestors(String eContext, String eAncestor, List semanticXPath, Boolean ancestorOnly) 

          Let tempList be an empty list, ω = {∗, node()},Q be the list of unique paths q 

3:1    IF  semanticXPath is empty Then   

3:2         FOR  each unique path q in Q 

3:3            IF ((eContext found as target element in q && (eAncestor found in q || eAncestor   

             element is in ω ) )|| (eContext element is in ω && (eAncestor element found as target element in q) ) Then 

3:4               push q to tempList  

3:5         END LOOP 

3:6    ELSE IF  semanticXPath is not empty Then       

3:7       FOR each q in semanticXPath 

3:8         IF ((eContext element found as target element in q && 

         (eAncestor elemnt found in q || eAncestor element  is in ω) ) Then 

3:9          push q to tempList   

3:10    END LOOP    

3:11    IF (tempList is empty) semanticXPath = NULL 

3:12    ELSE IF (tempList not empty && ancestorOnly is true)  

3:13        construct a new list of semanticXPath q in tempList 

3:14        Each new q produces information of each ancestor starting from the left most element in q to the eAncestor        

3:15    ELSE IF (tempList not empty && ancestorOnly is false)  

3:16        construct a new list of semanticXPath using q in tempList 

3:17        Each new q produces information of each ancestor starting from the left most element in q to the eContext       

3:18    RETURN semanticXPath 
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The tempList expects a unique path that has the context element as a target element. 

When the axis is ancestor, unique paths are used to produce ancestry information 

which must be located as stated (Lines 3:12-3:14). When the axis is ancestor-or-self, 

unique paths are used to produce ancestor-or-self information which must be located 

as stated (Lines 3:15-3:17). The final semanticXPath that produces information based 

on the ancestor or ancestor-or-self location step is returned to the main program 

(Line 3:18). 

5.5 Semantic Transformation for Parent Axis 

The Parent axis in an XPath query navigates information of the element that 

immediately occurs before the target element [Ozcan et al, 2008; W3C, 2007a; 2010; 

Yuen & Poon 2005]. A parent location step can also optionally be specified with ‘..’. 

The optional operator ‘..’ can be very useful to replace the parent axis in the XPath 

query for XML databases that do not  support XPath axes. 

Semantic used in semantic transformation is very straight forward by using 

information in Q.  Take, for instance, the XPath query ‘dblp/*/title/parent::*’ which 

performs the task to query information of all the parents of title. By using Q, the 

unique path that selects the title is located first then any unique path that selects the 

parent of title and occurs before the unique path that selects the title is the semantic 

XPath query. This example will be revisited later on in great details by the proposed 

semantic transformation rules.    

The semantic transformation rule called STp, which aims to remove the parent axis 

from an XPath query, is now proposed.  

STp Rule. Semantic XPath query S is derived as follows: 

a. When ε is ‘*’ or node() and ∂ and ϑ are valid element names, then locate qk that 

contains a ϑ as a target element if Q is used. Otherwise ϑ is a non-target 

element if S is used. 
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b. When ε and ϑ  are valid element names and ∂ is * or node(), then locate qk that 

contains ε as target element if Q is used. Otherwise ε is a non-target element if 

S is used. 

c. When ε and ϑ are * or node() and ∂ is a valid element name, then locate any q 

that contains ∂ as a target element. It then uses current q to locate qk where qk 

contains ϑ as the parent of ∂. 

S = {qi,…,qk} where 0 ≤ i  ≤ κ where each q must contain ϑ or ε 

The following examples illustrate how S is derived.  

p = */child::*/child::o/parent:*   Q = {q1,...,q12,..,q17,..,q19, q20,...,q22} 

 

Figure 5.5  Semantic Transformation for Parent Axis Location Step 

Following STp rules, rule c is suitable as it is based on Q and given p in Figure 5.5. ∂ 

is a valid element name and ε and ϑ are *. The value of ∂ is o. Due to the presence of 

the transforming location step parent::* as a target location step in p, the 

transformation uses Q to first locate q where q has o as a target element. The unique 

path q19 has elements o as a target element. The unique path q19 has a target element 

o, which is also the parent element of element o in q19. As a result, S is derived as 

follows: 

S = {q17} 

Example. A requirement selects the parents of all item titles in the DBLP database.  

XPath query p = dblp/*/title/parent::*  
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Based on given p, the values of the required parameters are now extracted as below  

• β is parent::*  

• ε is ****   

• ∂ is title   

• ϑ is * 

• Q is {dblp, dblp/article, dblp/article/author, dblp/article/title,....,    

dblp/inproceedings/title,  dblp/proceedings/title,..., dblp/www/title,...} 

• S is empty as the parent location step is the target location step. 

Following STp Rules, rule c is identified for transforming p.  

Since the parent axis is specified with * and title is the target element in p, title 

appears in more than one unique path in Q; therefore the unique path that has a target 

element as the parent element of title will be selected. In this case, the transformation 

locates dblp/article, dblp/inproceedings, dblp/proceedings, dblp/incollection, 

dblp/book, dblp/phdthesis, dblp/www. Note that each of these unique paths 

produces its attributes or keys; hence, S is derived as follows:  

S = {dblp/article/@mdate, dblp/article/@key, dblp/inproceedings/@mdate,..., 

www/@mdate, www/@key}. 

 Function 4. tranformParent translates the semantic transformation rules for 

transforming an XPath query specified with the parent axis. The function first 

determines whether the parent element is a target element or a non-target element 

(Line 4:1).  

When the transforming location step is a target location step, the transformation is 

straight forward to build the tempList  by locating the unique path that has the parent 

element as a target element (Lines 4:2 – 4:7). If both context and parent elements are 

*, a message ‘Retain’ will be assigned to the tempList and transformation is not 

required. This informs the main algorithm that the parent location step remains as it 

is (Line 4:7); therefore, no transformation is needed.  
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In the case where the transforming location is determined as a non-target location 

step, semanticXPath list is used. If both context and parent elements are *, then the 

tempList is a semanticXPath list and transformation is no longer required. When the 

context element is ‘*’ and the parent element is a valid element name then it locates 

the unique path that has parent element. When the context is a valid element name 

and the parent element is *, it locates a unique path that has the parent of the context 

element and no context element is present (Lines 4:8-4:13). For example, the XPath 

query dblp/*/title/parent::*/author. In this case, the transformation locates any 

unique path that has author as a target element and the parent of author should also 

be the parent of title. Hence 

S ={dblp/article/author, dblp/inproceedings/author, dblp/proceedings/author, ...., 

dblp/www/author}. 

 

 Once the tempList is completely built, it will be assigned to semanticXPath list (Line 

4:15). If tempList is empty, it indicates a conflict has been detected (Line 4:14). 

semanticXPath is returned to the main algorithm (Line 4:16). 

Function 4: List transformParent(String eContext, String parent, List semanticXPath) 

        Let tempList be, empty list, tempQ be an empty list, ω = {∗, node()}, Q be the  list of unique paths q 

4:1   IF  semanticXPath is empty THEN tempQ = Q ELSE tempQ = semanticXPath, semanticXPath = NULL    

4:2     FOR each unique path q in tempQ 

4:3        IF (((parent  is in ω  &&  eContext element is valid )  &&  context as target element in q)  ||   

4:4             ((eContext is in ω && parent element is valid)  && parent element in the second right most location step in  q)) THEN  

4:5             push q to tempList  

4:6        ELSE IF  (parent and eContext are in ω ) Then tempList = ‘Retain’; Exit 

4:7      END LOOP 

4:8    ELSE IF  semanticXPath is not empty THEN       

4:9      FOR each q in tempQ 

4:10       IF (eContext is in ω  && parent is in ω ’ THEN  tempList = semanticXPath; Exit 

4:11       ELSE IF (eContext is in ω  && parent is valid)  THEN locate q that has parent element and push q to tempList 

4:12       ELSE IF (eContext is valid && parent is in ω ) THEN locate q that has context element and push q to tempList 

4:13    END LOOP    

4:14    IF (tempList is empty) THEN semanticXPath = NULL 

4:15    ELSE semanticXPath = tempList 

4:16    RETURN semanticXPath 
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5.6 Semantic Transformation for Descendant or 

Descendant-or-self Axis 

An optional operator ‘//’ has been recommended for the descendant axis [W3C, 

1999; 2007a; 2010]. The semantic rule to transform XPath query location steps 

specified with a descendant or descendant-or-self axis is proposed.   

The semantic transformation aims to remove a descendant or descendant-or-self 

axis from the XPath query. The expected semantic XPath query may result in 

multiple semantic XPath queries or a single semantic XPath query.  

Before the semantic transformation rule is proposal, the XPath query 

‘dblp/article/*/descendant::tn’ is now used to give a brief overview of how semantics 

are used in semantic transformation by eliminating XPath axis. This XPath query 

performs a task to select the descendant tn of article. By using list Q, the unique path 

that selects tn of article is first located. Any unique path  which appears after the 

located unique path, and also selects tn in which the article element is also included 

in the unique path is the semantic XPath query. This example will be revisited later 

on in great details by the proposed semantic transformation rules. 

For each descendant or descendant-or-self location step in an XPath query p, a set of 

semantic transformation rules called STdos is now proposed.   

STdos. Semantic XPath query S is derived as follows: 

a. When ε is ‘*’ or node() and ϑ and ∂ are valid element names, then locate all in 

Q or S where each q selects a descendant of ∂. qk selects ∂ if α is descendant-

or-self.   

b. When both ε and ∂ are valid element names and ϑ is ‘*’ or node(), then locate 

all q in Q or S where each q contains ∂ and selects ε if Q is used; or each q 

contains both ∂ and ε if S is used. 

c. When ε and ϑ are valid element names and ∂ is ‘*’ or node(), then locate all q 

in Q or S where each q contains ϑ and selects ε if Q is used; or each q contains 

both ϑ and ε if S is used.    
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d. When ε is a valid element name and ϑ and ∂ are ‘*’ or node(), then locate qi to 

qk in Q or S where each q select ε.  

S  = {qi,..,qk} where k = k-1 if α is descendant axis and qk-1 does not select the   

                                             context node itself 

 

The following examples show how S is derived.  

p = */child::i/child::o/descendant::*               Q= {q1,...,q12,..,q17,..,q19, q20,..., q22}     

 

Following STdos, rule a is suitable based on given p, the value of ε is *, the value of ∂ 

is o. 

The unique paths q19, q20 and q21 in Figure 5.6 have elements o as the context 

element. The transformation needs to locate unique paths that have a valid context 

element o, which also has descendants. 

 

   

Figure 5.6  Semantic Transformation for Descendant or Descendant-or-self Axis Query 

The mapping starts, with dot-line arrows, from element * in p to those expected 

descendants in q20 and q21 and element o in p to element o in q20 and q21. 

S = {q20, q21} 

Example. A requirement selects all information of the titles, including the title name, 

of articles in the DBLP database.  
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XPath query p = dblp/article/title/descendant-or-self::*  

Based on given p, the values of the required parameters are extracted as follows: 

• β is descendant-or-self::*   

• ∂ is title 

• ε is * 

• ϑ is article 

• Q is {dblp, dblp/article, dblp/article/author, dblp/article/title, dblp/article/title/tt, 

dblp/article/title/tn, dblp/article/title/ref,....dblp/inproceedings/title, 

dblp/proceedings/title,..., dblp/www/title,...}  

• S is empty as the descendant-or-self location step is a target location step in p 

Based on STdos, rule a is suitable to transform p as ∂ and ϑ are valid, ε is ‘*’. Unique 

paths dblp/article/title, dblp/article/title/tt, dblp/article/title/tn and 

dblp/article/title/ref are selected.  

In this example, the semantic XPath queries based on STdos would be produced as 

follows: 

S = {dblp/article/title, dblp/article/title/tt, dblp/article/title/tn, dblp/article/title/ref} 

Since unique path dblp/article/title does not have any key or attribute, selecting title 

would produce nothing for self information.  

Let us consider another example using the descendant axis that is specified with an 

element which does not have descendants.  

Example. A requirement selects all the information under the title names in the 

DBLP database.  

XPath query p = dblp/article/*/descendant::tn 

Based on given p, the values of required parameters are extracted as follows: 

• β is descendant::tn 
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• ∂ is * 

• ε is tn  

• ϑ is article 

• Q is {dblp, dblp/article, dblp/article/author, dblp/article/title, dblp/article/title/tt,  

         dblp/article/title/tn, dblp/article/title/ref,...,dblp/inproceedings/title,  

         dblp/proceedings/title,..., dblp/www/title,...} 

• S is empty 

Following STdos, rule c is suitable as ε and ϑ have valid element names and ∂ is *. 

The rule locates all unique paths that have article as a non-target element with tn as 

a descendant element. As a result, unique path {dblp/article/title/tn} is located. Since 

tn does not have any descendants, S is derived as follows: 

S = {dblp/article/title/tn} 

Function 5 transformDescendants translates semantic transformation rules for 

transforming an XPath query that is specified with descendant or descendant-or-self 

axis. When the transforming location step is specified with descendant-or-self axis, 

descendantOnly is set to false. The function transformDescendants checks to 

determine whether the transforming location step is a target or non-target location 

step (Line 5:1).  When the transforming location step is a target location step, the 

transformation builds tempList by locating q given a valid descendant element and 

the context element is * or, context and descendant elements are valid or both 

descendant and context elements are ‘*’ (Lines 5:2 – 5:9). 

When the transforming location step is a non-target location step tempList is built by 

selecting q given a valid descendant element and the context element is ‘*’or; valid 

context and descendant element names or both context and descendant elements are 

‘*’. 

(Lines 5:10 – 5:15). The tempList now contains a set of unique paths that produces 

information about descendants only.  

Before the transformation verifies the axis for descendant or descendant-or-self, it 

must check a termination condition, that is, that the tempList is empty (Line 5:16).  
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Note that function 5 has a Boolean type parameter descendantOnly, which is used to 

determine that the axis is descendant or descendant-or-self.  If the descendantOnly 

flag is false, the transformation transforms a location step specified with descendant-

or-self axis, an addition q that selects the descendant itself to the list (Lines 5:17-

5:24). The tempList is assigned to semanticXPath list and returns to the main 

algorithm (Lines 5:25-5:26). 

 

 

Function 5:  List transformDescendants(String eContext, String descendant, List semanticXPath,  

                      Boolean descendantOnly)  

    Let TempQ,tempList be an empty lists, ω = {∗, node()},Q be the list of unique paths q  

5:1      IF  semanticXPath is empty THEN  tempQ = Q Else tempQ =  semanticXPath, semanticXPath=NULL  

5:2      IF  semanticXPath is empty 

5:3         FOR  each unique path q in tempQ 

5:4            IF (((eContext is in ω  && descendant is valid) && q has descendant as target element) ||  

                       ((eContext is valid && descendant is valid) && q has descendant as target element and eContext  

                         as non-target)) THEN 

5:5                  push q to tempList        

5:6             ELSE IF (eContext is in ω && descendant is in ω)  Then  

5:7                  Locate first valid element ω && eContext element determined based on its hierarchy in ρ.  

5:8                  Locate q that has determine eContext as non-targert element && push q to tempList                       

5:9           End Loop 

5:10        ELSE IF  semanticXPath is not empty Then       

5:11           FOR each q in tempQ 

5:12              IF (((eContext is in ω && descendant is valid) && q has descendant as non target element) ||  

                         ((eContext is valid && descendant is valid) && q has descendant and eContext as non-target   

                            elements)) Then 

5:13                    push q to tempList        

5:14              ELSE IF (eContext is in ω && descendant is in ω )  THEN tempList = tempQ; Exist                       

5:15           End Loop    

5:16      IF tempList is empty THEN semanticXPath=NULL; EXIST 

5:17      ELSE IF (tempList not empty && descendantOnly is false) THEN 

5:18         FOR each q in tempList 

5:19               Obtain eContext element τ in q 

5:20         End Loop 

5:21         FOR each q in unique path Q  

5:22                 Find q with τ and attribute/id/key as target element  

5:23                 q to tempList 

5:24          End Loop 

5:25    ELSE tempList is not NULL  semanticXPath = tempList 

5:26    RETURN semanticXPath 
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5.7 Semantic Transformation for Self Axis 

The Self axis navigates information of a context element. It has an optional ‘.’.  For 

example, an XPath query is as follows: 

dblp/article/self::* is equivalent to dblp/article or dblp/article/. 

The semantic transformation for XPath query specified with the self axis to obtain an 

equivalent XPath query is now proposed. In the proposed semantic transformation, 

the goal is to remove these axes by using unique paths Q.   

Wildcard expression ‘*’ used with an axis such as the self axis in an XPath query has 

been identified as one of the causes of query performance issues.  Works have been 

performed to study the minimization of the tree patterns or containment that include 

‘*’ without using semantics [Amer-Yahia et al., 2001; et al., 2002; Furfaro & 

Masciari, 2003]. Here, a different technique is proposed. That is a semantic 

transformation to achieve similar goals. 

First let us address the semantic transformation for the self axis. The semantic 

transformation rule called STs is now proposed.  

STs Rule. Semantic XPath query S is derived the following rules are satisfied. 

a. When ε is * or node() and ∂ is a valid element name, then locate {qi,...,qk} in Q 

or S where each q contains ∂  

b. When ε and ∂ are valid element names, then locate {qi,...,qk} in Q or S where 

each q contain both ε and ∂ as a target or non-target element depending on 

whether Q or S is used, ∂ and ε are the same element.  

c. When ε and ∂ are * or node() then p will be processed to get the next valid 

element e. Locate  {qi,...,qk} where each q contains e  

S = {qi,...,qk} where 0 ≤ i ≤ k 

Figure 5.7 show how S is derived for the self axis specified in a location step.  



Ch.5 

 

118 

Following STs, rule a is suitable to transform p as ε is * and ∂ is a valid element 

name in the given p.  

By mapping elements in p to elements in q of Q using arrow-dotted lines in Figure 

5.7, unique path q19 has elements o as ∂ and ε is ‘*’ which is represented by o that 

satisfies the requirement of XPath query. As the result, the transformation derives S 

as below: 

S  = {q19} 

   p = */child::i/child::o/self::*  Q= {q1,...,q12,..,q17,..,q19, q20,..., q22}  
 

  

Figure 5.7  Semantic Transformation for Self Axis Query 

Let us consider an example based on the DBLP schema that produced a list of 

derived unique paths Q. 

Example. A requirement selects the titles of articles in the DBLP database.  

XPath Query p = dblp/article/title/self::* 

p is specified with the self axis; we refer readers to the previous example for the 

values of parameters β, ε, ∂, Q, and S 

Following STs, rule a is suitable.  The semantic transformation locates all unique 

paths that have article title as a target element, which is dblp/article/title. As a 

result, S is derived as follows: 

S =  {dblp/article/title} 
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Function 6. transformSelflAxis translates the semantic transformation rules for 

transforming XPath query specified with the self axis.  

The function first checks to confirm whether the self location step is a target location 

step or a non-target location step (Line 6:2). 

 

When the transforming location step is a target location step, the transformation uses 

Q to derive tempList. q is located to build the tempList given self specified with ‘*’ 

and valid context element or, self is a valid element name and the context element is 

*. When both self and context elements are specified with ‘*’, p is used to locate first 

valid element then the new q is located that has the first located valid element as a 

non-target element (Lines 6:1 - 6:9).  

When the transforming location step is a non-target location step, the transformation 

uses S to derive tempList. q is located to build the tempList given self  specified with 

‘*’ and a valid context element name, select q that has the context element as a non-

target element or; self is specified with a valid element name and the context element 

is ‘*’. When both child and context elements are ‘*’, p is used to locate the first valid 

Function 6: List transformSelfAxis (String eContext, String Self, List semanticXPath) 

 Let tempList be, empty list, tempList and tempQ be empty lists, ω = {∗, node()},Q be the list of unique paths q 

6:1    IF  semanticXPath is empty THEN tempQ = Q ELSE tempQ = semanticXPath, semanticXPath = NULL  

6:2        FOR each unique path q in tempQ 

6:3               IF  (self is in ω  or node()&& eContext is valid and q has eContext as a target element)  THEN 

6:4                      push q to tempList 

6:5               ELSE IF  (self is valid && eContext is in ω or node()) THEN  

6:6                       push q to tempList IF q has self as target element 

6:7              ELSE IF  (self && eContext are in ω) THEN  

6:8                     process next valid element in ρ &&  locate q using hierarchy of self in p && push q to tempList  

6:9        END LOOP 

6:10    ELSE IF  semanticXPath is not empty THEN   

6:11         FOR each q in tempQ 

6:12              IF  ((self is in ω && eContext is target element in q)||  

                    (self is a valid && eContext is in ω))  THEN  

6:13                    push q to tempList IF q has eContext or self as a non-target element              

6:14              ELSE IF  (self && eContext are in ω) THEN  push q to tempList                

6:15        END LOOP 

6:16     IF (tempList not empty) THEN semanticXPath = tempList 

6:17     ELSE IF (tempList is empty) THEN semanticXPath = NULL 

6:18     RETURN semanticXPath 
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element e then new q is located that has first located valid element as non-target 

(Lines 6:10- 6:16).  

After transformation, if the tempList is empty, this means that no semantic XPath 

query has been produced; this is caused by many factors, one of which is that 

semantic conflicts have been detected in the XPah query (Line 6:17). The 

transformation produces a list of semantic XPath queries that may contain a single 

semantic XPath query or a set of queries (Line 6:18). 

5.8 Semantic Transformation for Child Axis 

The child axis in a location step of an XPath query can be optionally specified. For 

example, dblp/article/title/child::* is equivalent to dblp/article/title/* 

The semantic transformation for the child axis to obtain the equivalent XPath query 

is now proposed. It aims to remove these axes by using unique paths Q. In the 

process of elimination of the child axis, semantic transformation may produce 

multiple semantic XPath queries if the context element has more than one child in 

the schema. Take, for instance, the XPath query ‘dblp/article/crossref/child::*’ means 

to select all the children of crossref of article. By using information in Q, the unique 

path that selects crossref of article is first located. Any unique path appears after the 

located unique path but also includes the crossref of article as the parent of the target 

element (right most element) is selected as semantic XPath query. 

A wildcard expression used with the child axis in an XPath query has been identified 

as one of the causes of query performance issues. Works have been performed to 

study the minimization of the tree patterns or containment that include ‘*’ without 

using semantics [Amer-Yahia et al., 2001; et al., 2002, Furfaro & Masciari, 2003]. 

Here a semantic transformation is proposed to achieve similar goals. 

First, let us address the semantic transformation for the child axis. The semantic 

transformation rule called STc is now proposed.  

STc Rule. Semantic XPath query S is derived as follows: 
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a. When ε is * or node() and ∂ is a valid element name, then locate {qi,...,qk} in Q 

or S where each q contains ∂  

b. When ε and ∂ are valid element names, then locate {qi,...,qk} in Q or S where 

each q contains both ε and ∂. ε is a target or non-target element depending on 

whether Q or S is used and ∂ is the parent of ε.  

c. When ε and ∂ are * or node() then p will be processed to obtain the next valid 

element. Locate  {qi,...,qk} where each q the next valid element.  

S = {qi,...,qk} where 0 ≤ i ≤ k 

The following examples are used to show how S is derived for the child axis 

specified in a location step 

p = */child::i/child::o/child::*  Q = {q1,...,q12,..,q17,..,q19, q20,..., q22}  

 

 

Figure 5.8  Semantic Transformation for Child Axis Query 

Following STc, rule a is suitable as ε is ‘*’ and ∂ is a valid element name in p.  

By mapping elements in p to elements in q of Q using arrow-dotted lines in Figure 

5.8, unique paths q20 and q21 have elements o as ∂ and ε are e and f that satisfy the 

requirement of the XPath query as they demonstrate the children e and f of context 

elements o. As a result, the transformation derives S as follows: 

S  = {q20, q21} 

Let us consider an example based on the DBLP schema that produced a list of 

derived unique paths Q. 

 p 

* 

* 

q1 

q22 q20 

q19 

q21 

q12 q17 

o 

i 

a a 

i 

a 

i 

o 

a 

i 

o 

e 

a 

i 

o 

f 

a 

i 

k 

g 

a 

b 



Ch.5 

 

122 

Example. A requirement selects all the children of context element, namely the cross 

reference for articles in the DBLP database.  

XPath query p = dblp/article/crossref/child::*  

The values of the required parameters from p are extracted as shown below: 

• β is child::*      

• ε is *  

• ∂ is crossref     

• Q is {dblp, dblp/article/crossref, dblp/article/crossref/href,  

                 dblp/article/book/title,...}  

• S is empty 

Following STc, rule a is suitable. The semantic rule first locates all unique paths q 

that have article crossref as a non-target element and an immediate child of crossref 

as target element. As a result, the transformation locates dblp/article/crossref/href. 

Hence, 

S =  {dblp/article/crossref/href} 

 Function 7 TransformChildAxis translates the semantic rules for transforming an 

XPath query specified with the child axis.   

The transformation first determines whether the transforming location step is a target 

location step in the XPath query (Line 7:1). 

When the transforming location step is a target location step, the transformation uses 

Q to derive tempList; q is located to build the tempList given child specified with ‘*’ 

and a valid context element name in p. Select q if q has a valid context element name 

as a non-target element or child is specified with a valid element name and context 

element is ‘*’. Otherwise, select q if q has a child axis specified with a valid target 

element. If both child and the context elements are specified with *, obtain the first 

valid element in p, and then locate q that has the obtained valid element as a non-

target element (Lines 7:2-7:9). 



Ch.5 

 

123 

When the transforming location step is a non-target location step, the transformation 

uses S to derive tempList, q is located to build the tempList given child is specified 

with ‘*’ and a valid context element name, or child is specified with a valid element 

name and context element is ‘*’. When both child and the context elements are 

specified with‘*’, use p to locate the first valid element and then locate q that has the 

first located valid element as a non-target element (Lines 7:10-7:15).  

 

When the tempList is empty, it means that semantic conflicts have been detected in 

the XPath query (Line 7:16). Otherwise, a list of semantic XPath queries may contain 

a single semantic XPath query or a set of semantic XPath queries (Line 7:17).  

5.9 Conclusion 

The semantic transformation rules and their algorithms for XPath axes including 

{following-sibling, preceding-sibling, following, preceding, ancestor, ancestor-or-

self, parent, descendant, descendant-or-self, self, child} have been proposed.  

For axes such as parent, child, descendant, descendant-or-self, ancestor, ancestor-

or-self and self, the transformations are straightforward as paths are traversed in a 

Function 7: List transformChildAxis (String eContext, String Child, List semanticXPath) 

Let tempList be an empty list, tempList and tempQ be empty lists, ω = {∗, node()},Q be the list of unique paths q 

7:1   IF  semanticXPath is empty THEN tempQ = Q Else tempQ = semanticXPath,semanticXPath = NULL 

7:2      FOR each unique path q in temp 

7:3        IF  (child is in ω  && eContext in q has immediate child as target element)  THEN 

7:4             push q to tempList 

7:5        ELSE IF  (child is a valid && eContext is in ω)  THEN  

7:6             push q to tempList IF q has child  as target element 

7:7        ELSE IF  (child && eContext are in ω) THEN 

7:8            process next valid element in ρ &&  locate it in q then  push q to tempList  

7:9       End Loop 

7:10   ELSE IF  semanticXPath is not empty THEN 

7:11     FOR each q in tempQ 

7:12       IF  ((child is in ω  && eContext exist in q)|| (child is a valid element && eContext is in ω))  Then  

7:13           push q to tempList IF q has eContext as a non-target element             

7:14       ELSE IF  (child && eContext are in ω) Then  push q to tempList                

7:15     END LOOP 

7:16   IF (tempList not empty) THEN semanticXPath = tempList 

7:17   RETURN semanticXPath 
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vertical direction. On the other hand, for the remaining axes - following, preceding, 

following- and preceding-sibling - the transformation needs to combine both vertical 

and horizontal directions for traversing paths.  

The proposed semantic transformation rules have also been translated to algorithms. 

Each algorithm provides a feature to detect the unsatisfied query. These algorithms 

are then implemented for our performance evaluation discussed in Chapters 8 and 9. 



 

Chapter 6 

Semantic Transformations for 

XPath Queries Specified with 

Predicates 

This chapter proposes the third category of semantic transformations to transform 

XPath queries specified with predicates.  

A predicate in an XPath query expresses a query condition to be fulfilled. The query 

condition is a Boolean expression. It may involve comparisons of elements and 

values, path expressions denoting elements to be compared as well as further path 

expressions. The proposed semantic transformations for XPath queries specified with 

predicates enable predicates to be removed or modified for optimization purpose. 

Among the benefits of semantic transformations is one that detects and removes any 

redundancy, which could be the whole predicate, in the query that may impact upon 

performance.  Otherwise, if predicates are retained, the semantics also show how 

they can be semantically transformed to boost efficiency and reduce resource 

utilization. 

As in chapters 4 and 5, the semantic transformations in this chapter use information 

lists Q and C.  Unique paths in list Q and constraints of elements in list C have been 

proposed to be derived from XML Schema [W3C, 2004a; 2004b] in Section 4.1 
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chapter 4, are used to propose the transformations. A summary is now presented to 

remind the readers about the derivation of Q and C. List Q contains a list of unique 

paths q where each q is a sequence of elements that express from root to a particular 

element in a given XML Schema. Only the parent-child “/” relationship among the 

elements is in q. List C contains a list of c where each c contains the element and its 

constraints specified in the XML Schema. 

6.1 Semantic Transformation for Predicates: Motivation 

Each XPath query consists of a sequence of location steps (as described in chapter 3). 

Chapter 3 also described predicates as an optional component in an XPath query; 

however, its presence plays a critical role in filtering required information. 

A query condition may involve comparison between elements and values, path 

expressions denoting elements and further path expressions [Diao et al., 2003; Wu, et 

al., 2003]. The complexity of XPath predicates is based on different types of query 

condition connections (hence, OR/AND) and types of query condition comparisons.  

Such complexity certainly produces a number of challenges, among these challenges 

is the query processing techniques and query performance. As part of this research, 

we propose a typology of semantic transformations for XPath queries specified with 

predicates for optimization purposes. 

Figure 6.1 shows an overview of the proposed tasks in this chapter. The semantic 

transformations for predicates are divided into two proposed methods, which are 

predicate elimination and predicate reduction semantic transformations, shown as 

(2a & b). In order to remove or modify the predicates in a given query for 

transformation, the query conditions in the predicates must be determined with a 

status, shown as (1), that allows a necessary action to be taken; this is done by 

condition status determination and algorithmic functions, shown as (3).  

The semantic transformations to eliminate or reduce them can be processed if the 

predicates are given a valid status. If a semantic conflict is detected in a predicate; an 

empty result set will be returned and the transformation can be terminated without 

further processing. 
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Figure  6.1  Semantic Transformations for XPath Queries Specified with Predicates 

Framework 

6.2 XPath Query Predicate Structures and Global 

Parameters 

This section addresses the structures of XPath query predicates and a common set of 

required parameters. 

6.2.1 XPath Query Predicate Structures 

This section addresses the XPath query predicate structure that consists of XPath 

query conditions that are expressed in an XPath query predicate. 

A user-defined XPath query may be specified with a predicate that holds one or more 

query conditions to filter selected information. For example, consider the XPath 

query given below: 

p = i//k/j[l = 3 or m/n = /i@id and 2]/r 

In p, XPath query predicate is [l=3 or m/n = /i@id and 2], where j is a branching 

element. The XPath query predicate in p consists of three query conditions including 

l=3, m/n = /i@id and 2. The first query condition l=3 is a comparison between 

element l and constant value 3.  The second query condition m/n = /i@id is the 
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comparison between the path fragment m/n and a further path fragment value /i@id. 

The third query condition 2 is the evaluation of an index ordered value 2 of element 

j. The comparison values of three conditions are 3, /i@id and 2 respectively. 

6.2.2 Defining Global Parameters 

Similar to chapter 5, the semantic transformations proposed in this chapter utilize the 

same terms and information related to XPath query, lists of Q and C to progress to 

semantic rules. This section defines a set of global parameters that reference to the 

terms and information which are used to define the all the semantic transformation 

rules in this chapter.  

• e is a branching element where a query predicate occurs 

• Pr is a query predicate that holds one or more query conditions  

• σ is a query condition status, which is further extended in details in section 6.3.1  

• ω is a query condition awarded with σ 

• Φ is a connective operator AND/OR 

• γ  is an XPath query comparison element/path fragment 

• θ is a comparison value of γ 

• S is a semantic XPath query 

6.3 Semantic Transformations for Predicates 

This section proposes for predicate elimination and predicate reduction semantic 

transformations. In order to modify or eliminate the predicate in a given XPath 

query, a methodology is now proposed to determine the status of the query 

conditions and their predicates. 

6.3.1 Determination of Status for Query Conditions and Their Predicate 

Before a function is defined to determine the status of query conditions specified in a 

predicate, one of the following three terms is adopted for referring to a status of a 
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query condition that is going to be determined by the function proposed here. The 

terms are defined as followed: 

Definition 6.1 (Full-qualifier (FQ)). Full-qualifier is a query condition status σ, 

which is determined for a query condition ω if and only if the comparison value θ of 

comparison element/path γ in ω matches with θ of the same element/path fragment 

γ located in Q and C. 

For example, the XPath query ‘//phdthesis[supervisor = 

‘/dblp/phdthesis/@key’]/title/tn’ performs the task to find all the thesis titles that 

must have at least one supervisor who must also hold a PhD qualification. In this 

example the query condition can be associated with a full-qualifier status if in the 

given XML Schema, the supervisor must be referenced to an existing PhD thesis. 

This example will be revisited later in great details by the semantic transformation 

rule. 

Definition 6.2 (Partial-qualifier (PQ)). Partial-qualifier is a query condition status σ, 

which is determined for the query condition ω if and only if the comparison value 

θ of comparison element/path γ in ω matches some θ, but not all, of same γ located in 

Q and C. 

For example, the XPath query ‘dblp/phdthesis[year =1999 or urls]’ performs the task 

of retrieving all the thesis that are published in year 1999 or have a url for viewing.  

In this example the query condition can be associated with a partial-qualifier status 

if, in the given XML Schema, the published year for a thesis is between 1995 and 

2020. This example will be revisited later in great details by the semantic 

transformation rule. 

Definition 6.3 (Conflict-qualifier). Conflict-qualifier is a query condition status σ, 

which is determined for the query condition ω when the comparison value θ of 

comparison element/path γ in ω does not match θ of the same γ located in Q and C. 

For example, the XPath query ‘dblp/phdthesis[year =1995 or urls]’ performs the task 

of retrieving all theses that are published in year 1999 or have a url for viewing. In 

this example the query condition ‘urls’ can be associated with a conflict-qualifier 
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status if, in the given XML Schema, phdthesis node does not have any child labelled 

as ‘urls’. This example will be revisited later in great details by the semantic 

transformation rule. 

The examples above will be revisited after a function namely conditionStatus, is 

defined to determine the status, using one of the terms defined above, of the query 

conditions specified in a predicate.  

 

Pr is a predicate that contains a set of query conditions ω where Pr = [ω1(Φ) ω2(Φ) 

... (Φ) ωn], and ο is the logical connective operator representing AND/OR; e is a 

branching element. Q is a list of unique paths, C is a list of constraints of elements. 

Both Q and C are derived in chapter 4. R is the result based on the status of query 

conditions in Pr determined by the conditionStatus function. 

ePr is the combined information of a branching element e and predicate Pr which 

consists of information that comes from the XPath query p. Each query condition 

ω in predicate Pr is evaluated based on information in Q and C. Each query 

condition is associated with full-qualifier, partial-qualifier or conflict-qualifier.  

On obtaining the query condition status, the conditionStatus function takes into 

account the connective operator such as OR or AND or both so that R finally can be 

full-qualifier, partial-qualifier or conflict-qualifier. The comparison operators such 

as {!=, =, ≤, ≥, <, >} used when XPath query comparison elements/path fragment 

have XPath query comparison values. ω could be a set if there exist one or more OR 

or AND or both where each comparison element/path γ in query condition ω is 

optionally specified with comparison value θ. 

An XPath query p = //phdthesis[supervisor = ‘/dblp/phdthesis/@id’]/title/tn. In this 

example, the predicate R = [supervisor = ‘/dblp/phdthesis/@id’] where its status 

needs to be identified as a full-qualifier, conflict-qualifier or partial-qualifier.   

 
            (Q, C) 

conditionStatus(ePr) →  eR 
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As shown in p, predicate R contains query condition is a comparison of the value of 

the supervisor; element with an absolute path /dblp/phdthesis/@id. By applying the 

function conditionStatus, it first verifies if //phdthesis/supervisor is a subset of a 

unique path in list Q. Second, the function also verifies whether supervisor is 

referenced to dblp/phdthesis/@id in constraint list C. As the result, function 

conditionStatus finds that //phdthesis/supervisor is a subset of the unique path 

dblp/phdthesis/supervisor in list Q and supervisor refers to id of an existing 

phdthesis. As a result, it associates status of full-qualifier to the query condition and 

ultimately to predicate R. 

Definition 6.4 (Context Position Index) Context Position Index is an index position 

value of a context element, which is currently being processed for a return of index 

node in the sequence of nodes.    

For example, considering an XPath query dblp/book[2] where 2 is a context position 

index on the context element book. The XPath query returns the second book as the 

result. 

Context position index in a query form context is used when there is a query 

condition with no comparison element and enclosed with [ ].  It is normally placed 

on the context element in the XML query. 

6.3.2 Predicate Elimination Semantic Transformation 

A predicate can be completely eliminated when it satisfies a set of semantic rules 

which are going to be proposed in this section.  As in the previous section, we 

describe the derivation of the query condition status for query conditions specified in 

a predicate.  A predicate may contain a single condition or multiple conditions. 

A single query condition can be a value such as the position context index on a 

context node. A condition comparison is between an element/path fragment and a 

value or an existence of an element/path fragment; that is when a condition element 

is specified with no value.   
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Multiple query conditions can be connected using AND and OR connective operators 

between the pair of query conditions and each query condition can be specified with 

or without a comparison value.  A query condition without a comparison value 

occurs when the query condition is specified with an element or a path fragment or a 

position index value on a context element.  

For instance, consider the following queries: //book[author], //book[author/name], 

//book/author[2], //phdthesis[supervisor=//phdthesis/@id]. The first query condition 

author from [author] is an element. The second query condition author/name from 

[author/name] is a path fragment. The third query condition 2 from [2] is a position 

index value that evaluates to return the second author from the sequence of authors. 

The fourth query condition supervisor=//phdthesis/@id from 

[supervisor=//phdthesis/@id] is a comparison element supervisor that has a value 

of the PhD thesis identification.  

Here a set of semantic transformation rules is proposed that eliminates predicates 

from a given XPath query. When a predicate contains a set of query conditions, each 

of them must be given a full-qualifier (FQ) or partial-qualifier (PQ) by the functions 

in Section 6.3.1. The query conditions can be removed if they satisfy the set of 

semantic rules, namely STpe. 

As mentioned earlier, a predicate in an XPath query expresses a query condition 

which is a Boolean expression.The logic of semantic rules STpe below are presented 

to remove a predicate when one of the three circumstances is satisfied. (a) When 

there is no connective operator present and the query condition is associated with a 

full-qualifier status whose comparison element has occurrence constraint of 1 or 

above. (b) When only connective OR is present among the query conditions which 

project the same comparison element. E.g. [profession = ‘lecturer’ or profession = 

‘tutor’] is determined to [PQ or PQ] whose comparison element, profession, also has a 

constraint value of 1 or above. In the XML Schema, employee/profession is 

restricted with enumeration values of {lecturer, tutor}. (c) When only connective OR 

is presents among the query conditions, only one of the query conditions is 

associated with a full-qualifier status whose comparison element has a constraint 

value is 1 or above. E.g. dblp[book/year >= 1995 or book/classification = ‘classic’]  
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is determined to [FQ or CQ]. This is because in the XML Schema a book restricted 

with a published year between 1995 and 2020, the classification of books is in 

several areas such as classic, action, romance, and many more. 

The statement above is now put into a rule set of STpe Rule below. The aim of the 

rule set STpe Rule is to avoid the processing of unnecessary predicates in the XPath 

query to achieve optimization objectives. XPath query Predicate Pr is eliminated if 

one of the following rules is satisfied: 

a. When predicate Pr contains query condition whose associated status σ is 

FQ, connective ο is NULL and comparison elements γ have minimal occurrences 

greater than 0.  

b. When predicate Pr contains query conditions ω whose associated status σ is PQ, 

connective Φ is only OR, comparison elements γ project the same element and their 

comparison values θ match all restricted values θ of the same γ  located in C 

whose minimal occurrence is greater than 0.  

c. When Pr contains query conditions ω where one or more associated status σ is FQ, 

connective Φ is OR, comparison element of γ whose minimal occurrence is greater 

than 0. 

An exceptional case arises when all query conditions are joined by conjunction 

operators and one of them is associated with a status of CQ, this causes the whole 

predicate conflict and XPath query certainly returns an empty result. Hence XPath 

query is not needed to send to database for validation to avoid unnecessary query 

processing. This is an add-on feature automatically built in these proposed semantic 

transformation. This also applies to the rule set in section 6.3.3. 

The following examples in Figure 6.2 show how XPath queries specified with 

predicates can be transformed by eliminating predicates. Two XPath queries p1 and 

p2 and a set of unique paths Q are used for the demonstration.  Both p1 and p2 are 

specified with query conditions that have no comparison values.  Also, a connection 

operator such as AND is used between the pair of query conditions in p2. 
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The condition status function ePr is derived and the values of the required 

parameters are extracted based on XPath queries p1 and p2 are given in Figure 6.2. as 

follows 

ePr = i[o/e], γ = o/e       (p1) 

ePr = i[k AND o/e], γ = o/e, Φ is AND    (p2) 

       p1 = */i[o/e]/k/g                  Q={q1,...,q17,..,q19, q20,..., q22}      

      

 

 

 

       p2 = */i[k and o/e]/k/g  
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Figure 6.2  XPath Query Predicate Holds a Single XPath query Condition with No Value 

As shown in Figure 6.2, p1 has an enclosed dash-line around the path that expresses 

from the root specified by wildcard ‘*’ to i then o and finally e in which o/e is the 

query condition specified in predicate [ ]. The elements, except the wildcard ‘*’ 

operator, in the path within the enclosed dash-line are matched with those in the 

unique path q20 in Q as shown by an arrow dash-line from e in p1 to e in q20. As the 

wildcard operator ‘*’ is an unidentified element in the path, it is matched to any 

eligible element that must be the ancestor of i in q20. In this case it is the root element 

in q20. The selected information is projected by the open path that traverses from the 

root specified with the wildcard * via k to g. The elements in the open path are 
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matched with those in a unique path q in Q as shown by an arrow dash-line from g in 

p1 to g in unique path q22.  Both q20 and q22 are intersected at the branching element i. 

As shown in Figure 6.2, p2 has two enclosed dash-lines around the paths. The first 

enclosed dash-line shows a full path that contains the element k as the first query 

condition. The second enclosed dash-line shows a full path that contains the path 

fragment o/e as the second query condition. The elements, except the wildcard 

operator ‘*’, in the paths enclosed by dash-lines are matched with those unique paths 

q20 and q21 in Q as shown by an arrow dash-line from e in p2 to e in q20 and k in p2 to 

k in q21. As the wildcard operator ‘*’ is an unidentified element in the path, it is 

matched to any eligible element that must be an ancestor of i in q20 and q21. The 

selected information based on the path goes from the root to element g, which is 

mapped by an arrow dash-line from element g in p2 to unique path q22. Unique paths 

mapped for p2 such as q20, q21 and q22 are intersected at the branching element i. 

The XPath query conditions in the XPath query predicates Pr of p1 and p2 first need 

to associate with the status by using function conditionStatus which has been 

proposed earlier.   

The status of query conditions are obtained and shown in Figure 6.3. The 

conditionStatus function obtains status (as outputs) for predicates ePr (as inputs) in 

p1 and p2 (as XPath queries). 

XPath  Query XPath  Query XPath  Query XPath  Query                                         Predicate Predicate Predicate Predicate Inputs    Outputs 

p1        ePr  = i[o/e]        i[FQ]   

p2        ePr  = i[k AND o/e]      i[FQ AND FQ]   

 

Figure 6.3  Condition Status for Predicates in p1 and p2 

To transform p1 by following XPath query predicate elimination semantic 

transformation STpe, Rule a is used to remove the predicate [o/e] from p1 as the status 

σ satisfies a full-qualifier FQ. In addition the comparison element o and e of γ  are 

verified against the same set of elements in C, and they have minimal occurrences 

greater than 0.  
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To transform p2 by following XPath query predicate elimination semantic 

transformation STpe, Rule c is used to remove the predicate [k and o/e] from p2 as 

the status σ satisfies a full-qualifier FQ . In addition, the comparison element k, o and 

e of γ  are verified against the same set of elements in C, and they have minimal 

occurrences greater than 0.  

Below are the running examples to demonstrate the predicate elimination semantic 

transformation. The examples are based on DBLP XML Schema as shown in  

Appendix 1. 

Example. Select all PhD theses of the candidates who must have a valid supervisor.  

XPath query p = //phdthesis[supervisor = ‘/dblp/phdthesis/@key’]/title/tn 

As shown in p, XPath query predicate Pr is [supervisor = ‘/dblp/phdthesis/@key’] 

where branching element e is phdthesis.  

First, function conditionStatus is used to determine the status of the XPath query 

condition supervisor = ‘/dblp/phdthesis/@key’ imposed on element phdthesis.   

Figure 6.4 shows a key referenced constraint used for supervisor element in the 

DBLP Schema, which exists in list C and used by conditionStatus function.  

 

 

<xs:selector xpath="dblp/phdthesis"/> 

      <xs:field xpath="@key"/> 

<xs:key> 

   <xs:keyref name="supervisor" refer="phdthesisKey"> 

    <xs:selector xpath="dblp/phdthesis"/> 

  <xs:field xpath="supervisor"/> 

            </xs:key> 

 
Figure 6.4  Schema Fragment Which Exhibits a Keyref Constraint 

After performing the function conditionStatus, it locates in C the following entries 

phdthesis/supervisor=dblp/phdthesis/@key and in Q the following entry 

dblp/phdthesis/title/tn. The located information determines the status result for 

query condition in predicate 
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ePr = phdthesis[FQ]. 

Following semantic transformation rule a in STpe, the query condition is associated 

with full-qualifier and it is confirmed that query condition join operator is NULL in 

the predicate. Information entry “phdthesis/supervisor occurrence 1 1” is located in 

list C, which means the minimal occurrence of comparison path fragment 

phdthesis/supervisor is greater than 1 and its maximal occurrence is also 1. This 

also means for every existing phdthesis, there must be a valid supervisor. Hence the 

semantic transformation can now remove the predicate and produce semantic XPath 

query: 

S = //phdthesis/title/tn 

Another running example, as shown below, demonstrates XPath query specified with 

a predicate that has two query conditions. While the first query condition has a 

comparison element and a value, the second query condition has a comparison path 

fragment without any comparison value. 

Example. Select all articles published in and after 1950 and which have a valid title.  

XPath query p = dblp/article[year >=1950 and title/tn] 

In p, XPath query predicate Pr is [year >=1950 and title/tn] where branching 

element e is article.  

The function ConditionStatus is used to determine the status of the XPath query 

conditions year >=1950 and title/tn imposed on article. 

After performing the function conditionStatus, the information entry article/year 

inclusive 1950 2020 is located in C and entries dblp/article/year and 

dblp/article/title/tn are located in Q. The located information indicates that the first 

query condition year>=1950 is a semantic matching to article/year inclusive 1950 

2020 that shows articles published between 1950 and 2020 in the database. The 

second condition is the path fragment title/tn which is part of the unique path 

dblp/article/title/tn. Hence, the ConditionStatus function determines the status for 

predicate Pr such that: 
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ePr = article[FQ and FQ] 

By following semantic transformation rule c in STpe, both query conditions are 

associated with full-qualifier status that each query condition projects on different 

comparison elements such as year and title/tn respectively. The query conditions are 

joined by AND connective. The first query condition year has a comparison value 

1950 and above, that matches the whole range of restricted values of year located in 

C. The second query condition title/tn has no comparison value. Information entries 

article/year occurrence 1 ∞∞∞∞ and article/tn occurrence 1 1 are located in list C. This 

means the comparison element year and comparison path fragment title\tn have 

minimal occurrences greater than 0. Hence, semantic transformation can now remove 

the predicate and produce the semantic XPath query as below 

S = dblp/article 

Another running example is now considered that an XPath query has query 

conditions joined by AND connective and both query conditions have no comparison 

values. 

Example. Select all articles in which each article must have valid authors or title 

name.  

XPath query p = dblp/article[author or title[tn]] 

As shown in p, XPath query predicate Pr is [author or title[tn]] where branching 

element e is article.  

First, function conditionStatus is used to determine the status of the XPath query 

conditions author and title[tn] imposed on article. 

By using function conditionStatus, information entries dblp/article/author and 

dblp/article/title/tn are located in Q. The located information indicates that while 

first query condition path fragment author is a semantic match as part of unique path 

dblp/article/author, the second query condition path fragment title[tn] is a semantic 

match as part of unique path dblp/article/title/tn. Hence, the conditionStatus 

function determines the status for predicate Pr such that: 
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ePr =article[FQ or FQ] 

Following rule c in semantic transformation rules STpe, both query conditions have 

been associated with full-qualifier and projected on different comparison elements 

such as author and title[tn] respectively. The semantic rule c also confirms query 

conditions are joined by AND connective and locates entries article/title/tn 

occurrence 1 1 and article/author occurrence  1 ∞  ∞  ∞  ∞ in list C. As a result, 

comparison element author and comparison path fragment title[tn] have minimal 

occurrences greater than 0. Hence, the semantic transformation rule c in STpe can 

now remove the predicate and produces semantic XPath query as below 

S = dblp/article 

6.3.3 Predicate Reduction Semantic Transformation 

Not all XPath query predicates can be eliminated during semantic transformations.  

However, the query conditions in the predicates can be modified. That is, some 

conditions can be transformed so that they can be removed to reduce the size of the 

predicates. This is referred to as predicate reduction semantic transformation. 

Similar to the elimination semantic transformation, the status of each query 

condition first needs to be determined before reduction semantic transformation can 

take place. 

A predicate that has a single query condition cannot be reduced by semantic 

transformations. On the other hand, not all multiple XPath query conditions in an 

XPath query predicate can be modified. The query condition that has a conflict-

qualifier status and is joined with another query condition may have a significant 

impact on the query result such that an empty or a non-empty result returned by the 

main query. The result depends on the type connective AND or OR that is used 

between the query conditions.  

Definition 6.5  (Mutual Exclusive Condition). A mutual exclusive condition is a 

joined query condition that is connected with another query condition by an OR 

operator and whose status is a conflict-qualifier (CQ) and its existence does not affect 

the result set returned by the main query. 
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A query condition that may have no impact on the result returned by the main query 

is referred to as a ‘mutual exclusive’ query condition. 

To elaborate on the ‘mutual exclusive’ condition, consider an XPath query p = 

dblp/book[year <1950 or year = 1952].  C list contains entries where one of them is 

book/year inclusive 1950 2020. If Q has unique paths where one of them is 

dblp/book/year then branching node and predicate ePr = book[year <1950 or year = 

1952] is a fragment of dblp/book/year. The query condition year < 1950 has a 

conflict-qualifier status because the comparison value is below the lower bound of 

1950. The query condition year = 1952 has a partial-qualifier status as it matches a 

value within the restricted bound. In this predicate, query condition year < 1952 is a 

mutual exclusive query condition as its existence does not affect the result returned 

by the main query,  

A mutual exclusive query condition that exists in the predicate is one of the query 

components that co-ordinate with the rest of query components within the query to 

make up the main component, that is the whole query.  Hence it is also a co-existing 

query component. 

The semantic rules STpr below are presented to reduce the number of query 

conditions in a predicate when one of the three circumstances is satisfied.  

(a) When connective OR is present among the query conditions, one or more query 

conditions are associated with conflict-qualifier status, which can be removed. For 

example in a simplified form of book[profession = ‘research’ AND year =1999 OR 

year = 1952], the expression book[PQ AND PQ OR CQ] is equivalent to book[PQ 

AND PQ] if book has a published year restricted between 1995 and 2020 in the XML 

Schema. (b) When connective AND is present among the query conditions, if query 

conditions are associated with full-qualifier status and their comparison elements 

have constraint of 1 or above, then the query condition can be removed. For example 

the expresssion book[year =>1995 AND profession = ‘lecture’] is determined to 

book[FQ AND PQ] which is equivalents to book[PQ] if book has a published year 

restricted between 1995 and 2020. (c) When connective OR is present among the 

query conditions, which associate with partial-qualifier status and project the same 

condition element whose comparison element has a constraint value of 1 and above. 
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If the comparison values of the comparison element in these query conditions must 

satisfy a complete set of restriction values of the element in the schema then those 

query conditions can be removed. For example the expression 

phdthesis[supervisor/year = 1999 AND profession = ‘teaching’ OR profession = 

‘research’] is determined to phdthesis[PQ AND PQ OR PQ]. While in the XML 

Schema a supervisor thesis published is restricted between 1995 and 2010, 

profession is restricted with the enumeration values of {teaching, research}. 

The statement above is now put into a rule set of STpr Rule below. The aim of the 

rule set STpr Rule is to avoid the processing of unnecessary predicates in an XPath 

query to achieve optimization objectives. Query conditions in XPath predicate Pr is 

eliminated if one of the following rules is satisfied: 

a. When predicate Pr contains query conditions ω and CQ are status σ associated to 

some ω  and connective Φ is OR between the pair of those ω, then ω  that has σ= 

CQ can be removed from Pr. 

b. When predicate Pr contains query conditions ω, PQ and FQ  are status 

σ  associated to ω. If connective Φ is AND/OR or both between the pair of ω and 

comparison element γ of ω has minimal occurrences > 0 and ω is associated with 

FQ,, then ω can be removed from Pr. 

c. When predicate Pr contains query conditions ω,  PQ are status σ associated to ω. If 

connective Φ is OR among ω that have σ=PQ which must project the same 

comparison elements γ and has a minimal occurrences > 0, all comparison values 

θ of γ in those ω match all θ of γ in C then ω be removed from Pr. 

The following example in Figure 6.5 shows how an XPath query predicate is 

transformed using lists Q and C.  

The required parameters and their values are as follows 

ePr= i[o/e = ϖ1 or s], γ = {o/e,s}, o = OR,  θ = {ϖ1} where ϖ1 is value of e 

As shown in Figure 6.5 p has two enclosed dash-lines. The first enclosed dash-line 

shows a path that contains the path fragment o/e as the first query condition in which 
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e has a comparison value ϖ1. The second enclosed dash-line shows a full path that 

contains the element s as the second query condition.  

After performing the conditionStatus, the first query condition is associated with a 

PQ status because the query condition o/e has value ϖ1  which matches an exact 

value of same e in list C, which does not satisfy the range value as specified for o/e 

in C. 

 

   p = */i[o/e = ϖ1 or s]      Q = {q1,...,q17,..,q19, q20, q 21, q22}          

                              C = {...; o/e occurrence 0,∞; o/e  inclusive ϖ1, ϖ2;... } 
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Figure 6.5 Sample XPath Path and Semantics for Semantic Predicate Reduction 

The second condition s cannot be matched with any element in existing unique paths 

in Figure 6.5. Therefore the second condition is associated with a CQ status. The 

existence of the second query condition allows the co-existence of the first query 

condition due to the connective OR. Hence the second condition is a mutual 

exclusive query condition to the whole XPath query. 

Figure 6.6 summarises an XPath query, its components in terms of the query 

conditions and predicate as inputs for conditionStatus and output produced by the 

function.  

XPath  QueryXPath  QueryXPath  QueryXPath  Query                                                                Predicate Predicate Predicate Predicate Inputs     Outputs 

p                    ePr = i[o/e = ϖ1or s]    i[PQ or CQ]   

Figure 6.6  Condition Status for Predicates 
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According to the proposed set of reduction semantic transformation rules STpe, rule a 

is used to remove the query condition s from p as the status σ satisfies a conflict-

qualifier CQ and connective Φ is OR, which allows it to be a mutual exclusive query 

condition in p. The semantic XPath query is produced as follow: 

S= */i[o/e=ϖϖϖϖ1111]]]] 

A running example based on the DBLP schema given in Appendix 1 is now used to 

demonstrate query conditions whose status are partial-qualifier and conflict-qualifier 

respectively.   

Example. Select all PhD theses, which has been published in the year 1999 or have 

valid urls.   

XPath query p = dblp/phdthesis[year =1999 or urls] 

As shown in p, the predicate Pr = [year =1999 or urls] has two query conditions 

year = 1999 and urls. After being processed by function conditionStatus, a unique 

path entry phdthesis/year inclusive 1950, 2020 is located in C list and 

phdthesis/year as part of unique path dblp/phdthesis/year located in Q list. Query 

condition urls cannot be matched to any element in unique paths in Q. Hence, 

function conditionStatus is associated with the first query condition with PQ because 

the comparison value is an exact matched value within the restricted value range. 

The second query condition is associated with CQ because it is a mutually exclusive 

query condition.  

By following reduction semantic transformation rule STpr, rule a is used to remove 

the second query condition due to its conflict-qualifier status and the connective OR 

that makes the query condition a mutual exclusive query condition.  The semantic 

XPath query is produced as below: 

dblp/phdthesis[year =1999] 

Another running example is now considered to demonstrate the existence of query 

conditions whose status is full-qualifier and partial-qualifier respectively. 
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Example. Selects all PhD theses that have been published in 1999 or supervisor and 

title must be valid.   

XPath query p where  

p= dblp/phdthesis[year =1999 or supervisor =/dblp/phdthesis/@id and title/tn] 

As shown in p, predicate Pr = [year =1999 or supervisor =/dblp/phdthesis/@id and 

title/tn] has three query conditions including year=1999, supervisor 

=/dblp/phdthesis/@id and title/tn. After being processed by the conditionStatus,  

phdthesis/year inclusive 1950 2020 is located in Q, and phdthesis/supervisor = 

/dblp/phdthesis/@id in phdthesis/title/tn occurrence 1 1 is located in C. As a 

result, the first query condition is associated with a partial-qualifier as the 

comparison value 1999 is an exact value within the range 1950 and 2020 of year. 

The second query condition is associated with a full-qualifier status as the 

comparison value of the reference path is an exact match value for the supervisor 

defined in the schema. The third query condition is associated with a full-qualifier 

status as each Ph.D. A thesis must have at least one title as defined in the schema.  

The required parameters and their values are now extracted as follows 

ePr = phdthesis[year = 1999 or supervisor = dblp/phdthesis/@key and title/tn],  

θ2 = year = 1999,θ2 = supervisor = dblp/phdthesis/@key, θ3= title/tn whose status 

are PQ, FQ and FQ respectively. 

Rule c in semantic transformation STpr is used to determined the second and third 

query conditions are associated with FQ and connective is AND.  In addition, the 

comparison elements in both query conditions have minimal occurrence greater than 

0, and the transformation rule produces semantic XPath query 

dblp/phdthesis[year=1999]. 

6.3.4 Proposed Functions 

This section proposes a set of functions including transformPredicate, 

conditionStatus, nPCV, yPCV and getOccurrenceValue. These functions 
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consolidate all the rules proposed in 6.3.1, 6.3.2 and 6.2.3. Before each function 

above is described in details, their important roles are summarized below.    

The function transformPredicate is called by the main algorithm when predicates 

are detected in the XPath query. The function transformPredicate first calls the 

conditionStatus function to obtain the status of each query condition in the 

predicate. The nPCV and yPCV functions are called through the conditionStatus 

function according to the type of the comparison values of each condition. Function 

nPCV handles the checking of a condition whose comparison value is not a path 

value. Instead the condition may be a constant for example article[1] where 1 is the 

constant, or no value, phdthesis[title] where title is the condition with no value. 

Function yPCV handles the checking of the condition whose comparison value is a 

path value.  

The getOccurrenceValue function is used to obtain the minimal occurrence value of 

the branching element so that it can determine whether the whole predicate can be 

removed. 

Function 1: transformPredicates first calls the function conditionStatus to 

determine the status of query conditions in a predicate (Line 1:1), in which the results 

are stored in resultCondition.  Once the resultCondition has been obtained, the 

semantic rules, proposed in sections 6.3.2 and 6.3.3, are implemented and applied 

(Lines 1:2-1:9).  

The predicate is eliminated when the final resultCondition is empty because all the 

query conditions have been removed (Line 1:10).  Otherwise the predicate is 

regarded as predicate reduction (Line 1:3-1:8) because only some query conditions 

have been removed.  On the other hand, the predicate can be completely in conflict, 

that is when there is a query condition associated with CQ status. For example, a 

query condition has status CQ and is connected by AND to the leading query 

condition and following query conditions are given a status other than CQ such as  FQ 

or PQ (Lines 1:11-1:12). 
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Function 1:transformPredicates (String  ePr, String p)   

         Let resultCondition be an empty list, Φ ={OR,AND} be connective, Q be the list of unique path q, FQ be full- 

         qualifier status, PQ be partial- qualifier status 

1:1    resultCondition = conditionStatus(predLocation, p) 

1:2    FOR each condition in resultCondition 

1:3    IF (condition is ‘FQ’ && no Φ) || ( conditions is ‘FQ’ && Φ is OR)THEN 

1:4            Remove condition from resultCondition 

1:5    ELSEIF (condition is ‘FQ’ &&Φ) || (condition and neighbour project different comparison element) THEN 

1:6            Remove condition from ResultCondition 

1:7    ELSEIF (condition is ‘CQ’ && Φ is OR) THEN 

1:8            Remove condition from ResultCondition 

1:9    END LOOP 

1:10  IF resultCondition is NULL THEN remove predicate [ ] from ePr 

1:11  ELSEIF resultCondition is not NULL THEN check IF there is CQ which is join by AND 

1:12          among conditions with ‘FQ’ or ‘PQ’ THEN ePr = NULL 

1:13  RETURN ePr 

 

The resultCondition is updated with a set of statuses such as FQ, PQ or CQ together 

with OR or AND if any exists.  The transformation will then decide if the predicate is 

eliminated completely or modified.     

Function 2: conditionStatus performs tasks to determine the statuses of query 

conditions by first accepting the input ePr and XPath query p. It then evaluates query 

condition(s) to determine the status of each query condition by using information of 

Q and C. Pr is a predicate that holds a set of query conditions ω such that [ω1 (ο) ω2 

(ο) ... (ο) ωn], and ο is the connective represented for AND/OR; e is a branching 

element of a predicate.   

Each query condition in the predicate is evaluated based on several principles. The  

comparison operator τ is detected to determine the existence of a comparison value 

in the query condition. The query condition is then verified against the unique paths 

in list Q. The resultCondition is then updated with ‘FQ’ for the current query 

condition if no τ has been detected and the comparison element or path fragment is 

found in Q (Lines 2:3 – 2:4).  When AND or OR is detected after each processed 

query condition it is brought over to resultCondition (Line 2:2). 
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Function 2: conditionStatus (String  ePr, String p)   

         Let τ be  =, ≤, ≥, < or >,temp be a temp variable, e be outer element extract from ePr, condList be  

  an empty list, Φ be connectives {OR, AND}, ω be a condition in ePr, FQ be full-qualifier status, PQ be partial- 

  qualifier status, CQ be conflict-qualifier 

2:1   FOR each ω waiting to be evaluated in ePr 

2:2   IFΦ is ‘OR’ or ‘AND’  update condList with ω 

2:3   ELSEIFω is (a path expression or element) with no τ THEN 

2:4       Check for ω in q && update resultCondition with ‘FQ’ 

2:5   ELSEIFω is a value without element THEN check e exist in q of Q update resultCondition with ‘PQ’ 

2:6   ELSEIF τ exists in ωTHEN 

2:7      extract the compareFragment and compareValue 

2:8   IF compareValue contains no ‘/’ or ‘//’ THEN resultCondition = nPCV(e, compareElement,  

     compareValue, τ, resultCondition) 

2:9   ELSEIF compareValue contains ‘/’ or ‘//’ THEN resultCondition = yPCV(e, compareElement,  

      ePr,compareValue, τ, resultCondition)     

2:10  END LOOP 

2:11  Find all those that have value and project same element && exists OR only 

2:12  IF  values match complete set of values for same element in C THEN 

2:13     IF  minimal occurrence of the element by calling function 4 is greater 1 THEN 

2:14          Set these condition in resultCondition to ‘FQ’ 

2:15 RETURN resultCondition 

 

A query condition can also be a context position index value. A position index value 

normally refers to the context element for a certain index value, for example, as in 

the  XPath query //article[1]. 

The predicate [1] placed on element article is, also known as a branching element. 1 

is the context position index where the context element is article and the predicate is 

used selecting the first article only. When the predicate is specified with a query 

condition that has a context index value only, the context index value is based on the 

branching element. The transformation checks for the validity of the branching 

element in one of the q in Q.  When element article in a valid q, that satisfies the 

structure of p is located, its status is set to PQ (Line 2:5). 

When a query condition is detected with a comparison operator τ, this means that a 

query condition is expected with a comparison path fragment or element and 

comparison value. Here we need to determine whether the comparison value is a path 

(‘/’ or ‘//’) or a value such as a name or an integer.  If comparison value is not a path 

then the transformation calls function nPCV, which is an abbreviation of a non-

parent constraint value (Line 2:8). If the comparison value is a path value where ‘/’ 
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or ‘//’ detected in value, then the transformation calls function nPCV, an abbreviation 

for pattern constraint value (Line 2:9).  

The transformation also takes care of the case where a set of query conditions carries 

status PQ but they all project the same comparison element and their values match the 

complete set of values for the same element specified in C.  These query conditions 

are set with FQ (Lines 2:10-2:14). This case most likely applies to an enumeration 

constraint applied on an element.    

Function nPCV accepts parameters such as comparison element comparee, 

comparison values comparev, comparison operator τ, and the resultCondition.   

Function 3: List nPCV(String outerE, String comparee, string comparev, string , τ, List condList) 

        Let τ be  =, ≤, ≥, < or >, FQ be full-qualifier status, PQ be partial-qualifier status, CQ be conflict-qualifier, 

        minO and maxO be occurrences, C be list of constraints of elements 

3:1   FOR each c in C 

3:2      Locate c contains comparee 

3:3      IF ((τ is ‘=’ && comparev match a value of set in c) ) THEN update condList  with PQ 

3:4      ELSEIF(τ not ‘=’ && comparev satisfy full value set in c)  THEN 

3:5         IF (minO = getOccurrenceValue(outterE, comparee))>=1THEN update condList  with FQ 

3:6         ELSEIF (minO = getOccurrenceValue(outterE, comparee))<1 THEN update condList  with PQ 

3:7      ELSE update condList with CQ 

3:8   END LOOP 

3:9   RETURN condList 

The function first locates the constraint and values of comparison elements in list C 

(Line 3:2). Based on τ, the comparison value is determined whether it is an exact 

match value or within the match range which is set for comparison in list C. If τ is an 

equality operator and the comparison value matches only part of the value set in list 

C then query condition is associated with a status PQ (Line 3:3).  Otherwise if τ 

indicates with an operator other than an equality or non-equality operator, that means 

the values of comparison element cover a restricted range value set in list C and then 

the comparison element needs to confirm its minimal occurrence before FQ is 

associated with it.  If the minimal occurrence value of the comparison element is 

greater than 0, this indicates the existence of data in the databases for the comparison 

element. The query condition can be associated with FQ. Otherwise the query 

condition is associated with PQ (Lines 3:4-3:6).   The query condition is set to CQ if a 

comparison element or values are not satisfied as specified in the list C (Line 3:7); 
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where “not satisfied” means the comparison element cannot be located or values do 

not match. 

Note that a comparison element may have more than one constraint.  For example an 

element may be restricted by an enumeration constraint and occurrence constraint in 

which the occurrence constraint is compulsory.  

Function yPCV accepts parameters such as a comparison path fragment, comparison 

value, τ, and the resultCondition.  The function first locates the constraint and values 

in list C based on the comparison path fragment (Line 4:2). When comparison 

operator τ is an equality operator and if the comparison path value expected to match 

the path value of the path fragment in list C, then the query condition status is set to 

FQ if the minimal occurrence of comparison path is greater than 0. Otherwise the 

query condition needs to be set to PQ if the minimal occurrence is less than 1 (Lines 

4:3-4:5).  If the comparison path fragment and the value cannot be found then the 

query condition is set to CQ (Line 4:6). The condiList is returned to the function that 

calls Function 4. 

Function 4: List yPCV(String outterE, String comparee, string comparev, string , τ, List condList) 

   Let CQ  be conflict-qualifier, FQ be full-qualifier, PQ be partial-qualifier, minO and maxO be occurrences,  

   C be list of constraints of elements 

4:1   FOR each c in C 

4:2      Locate c contains comparee 

4:3       IF (τ is ‘=’  && c satisfy comparev) THEN 

4:4          IF (minO = getOccurrenceValue(outterE, comparee))>=1 THEN update condList  with FQ 

4:5          ELSEIF (minO = getOccurrenceValue(outterE, comparee))<1 THEN update condList  with PQ 

4:6      ELSE update condList with CQ 

4:7   END LOOP 

4:8   RETURN condList 
 

Function getOccurrenceValue performs a simple task to retrieve the minimal 

occurrence values for a comparison element or a path fragment by locating them in 

list C and returns them to calling function (Lines 5:1-5:5). 

Function 5:getOccurrenceValue(String outerE, String comparee, integer oValue) 

5:1 FOR each c in C 

5:2      Locate c contains outterE/comparee 

5:3      Obtain the lower bound value of occurrence of outterE/compareeTHEN exist          

5:4 END LOOP 

5:5 RETURN oValue 
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6.4 Summary  

In this chapter, we have proposed predicate elimination and reduction semantic 

transformations. A predicate in an XPath query expresses a query condition to be 

fulfilled in addition to the structural constraint imposed by the path itself. The query 

condition is a Boolean expression. It may involve comparisons between elements and 

values, path expressions denoting elements to be compared as well as further path 

expressions. Due to a variety of predicates which have been given in a query, this 

chapter has proposed techniques to first determine the status of the query condition 

such as full-qualifier, partial-qualifier or conflict-qualifier.  Once the query 

conditions are associated with appropriate status, semantic transformation rules for 

predicate elimination or predicate reduction are applied to transform the XPath 

query.  

Each semantic transformation produces 

• a semantic XPath query with no predicate. This is when the predicate is 

completely removed; or 

• a semantic XPath query with a presence of a predicate.  That is when a 

predicate is reduced by removing some, but not all, query conditions; or 

• a semantic XPath query cannot be produced due to the conflict detected in the 

whole predicate; that is either every query condition produces conflict or some 

query conditions produce a conflict. Query conditions have connectivity AND 

may cause the whole predicate conflict if one of them is associated with a 

conflict-qualifier.  If the conflict makes the semantic path NULL, then the 

transformation of the whole XPath query is terminated in the main program. 

Semantic transformation is the best way to avoid a conflicting XPath query 

being sent to the database, thereby wasting resources unnecessarily. 



 

Chapter 7 

Experimental Design   

The aim of this chapter is to present an experimental design method that formulates 

the elementary experiment for conducting an evaluation to study the impact of query 

performance of XPath queries before and after they are transformed. 

Two experiments are designed to evaluate the proposed semantic transformations 

presented in Chapters 4, 5 and 6.  

The first experiment measures the query performance of a set of customized XPath 

queries and their semantic counter-parts using the DBLP data set. The second 

experimentation measures a set of micro-benchmarks (also known as the Michigan 

benchmark [Runapongsa et al., 2006]) XPath queries and their semantic counter-

parts using the Michigan data set.   

7.1 Experiment Design: A Background 

Chapters 4, 5 and 6 proposed a series of semantic transformations using the available 

semantics in given XML Schemas to transform XPath queries to equivalent semantic 

XPath queries for optimization purposes. The proposed semantic transformations are 

intended to address the potential of semantics defined in XML Schemas (XSD) to 

overcome the limitations of semantics defined in Documentation Type Definition 

(DTD) used in semantic XML query optimization prior to this work.   



Ch. 7 

 

152 

7.1.1 Experiment Objectives 

There are three main contributions of semantic transformations including semantic 

path transformations, semantic transformations for XPath queries specified with 

axes, and semantic transformations for XPath queries specified with predicates. For 

each main contribution, a set of semantic transformation rules have been proposed.  

Each rule is automatically determined and applied to a given XPath query.  The 

semantic transformation rules are platform-independent. This means that they are 

capable of transforming XPath queries without needing to rely on the database 

platform. Details of the experiment strategies and operations are discussed in the 

following sections. 

7.1.2 Experiment Evaluation Objectives 

To achieve the experiment objectives, the experimental design is conducted using the 

following objectives: 

a. To identify the implementation of semantic transformation framework. That 

is, the implementation can be used for evaluation purposes, under the scope 

of query transformation for optimization purposes, within the availability of 

hardware and software. 

b. To choose a database platform (either native XML data storage or XML-

Enabled data storage), where research must determine the availability of 

minimal requirements such as the XML Schema validation feature that is 

provided by the database platform. 

c. To select appropriate datasets and queries, the research must review several 

available real data sets to compare and investigate their completeness and 

limitations in terms of semantics, data structures and query processing 

coverage. This research also studies existing micro-benchmark data and 

queries to address the gaps and limitations that real data sets cannot 

comprehend.  

d. To define and unify variable names such as metrics, measuring units and 

computation procedures for two experimentations; this is to enable a logical 
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query performance comparison to be achieved across a range of relevant 

variables in the same system and environment. 

e. To describe the operational environment, in which experiments take place, 

including hardware configuration, software specification, system modules 

and the system capability such as the front-end and back-end interface (e.g. 

support connectivity to the database platform). 

f. To obtain and analyse the results of query performance. The conclusion must 

be drawn for the performance and limitation so that they can be used to 

identify the potential of semantic transformations as semantic query 

optimization devices.  

Several of the set-ups are common to both experiments; however, others need to be 

designed according to the particular requirements of each experiment. In the next 

section, the set-ups common to the two experiments are described. 

7.2 Common Setup for Experiments  

The two experiments are concerned with evaluating the semantic transformation 

rules when applied to given sets of XPath queries.  Section 7.2 details the several set-

ups and decision making processes common to the two experiments.  

7.2.1 Implementation Framework & Platform 

The implementation of semantic transformation rules (or proposed algorithms) can 

be evaluated as an independent application module from the database platform. This 

means that the transformation can work without needing to know in advance whether 

the type of the database platform is either an XML-native or non-native database. 

Due to the current predominance of relational databases, most of the major relational 

database systems are available with an XML-enabled feature. For our experiment, a 

decision was made to select one of the leading commercial relational database 

systems.  
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7.2.2 Supporting of Minimal Requirement  

Because of the decision to select a relational database system with an XML-enabled 

feature, a minimal requirement for storing experiment data must be met. That is, 

regardless of the technique used to store the experimental XML data, the XML 

Schema must be able to reside on the database so that the data can be checked for 

consistencies and conformation.  

7.2.3 Choice of Experiment Data and Schema  

Semantic query transformations require semantics defined in the schemas in order to 

transform the given queries to equivalent queries. We select XML data for 

experimentation based on various factors, but the most important one is semantics 

provided by its associated XML Schema. The more the semantics are available in the 

XML schemas, the more successful the evaluation will be.  

When the data volume is significantly large and the semantics are insufficient, only 

certain semantic transformations can be applied. If the semantics are too rich but the 

volume of data is insubstantial, then the impact of the query performance study may 

not be effective.   

Having considered the aforementioned factors of semantics and data sizes, we 

choose to adopt two sets of data. One is a real data set with an accompanying 

schema, namely DBLP [Ley, 2011]; the other is the micro-benchmark data set with 

an accompanying schema and a set of XPath queries [Runapongsa et al., 2006]. 

a. Real Data: DBLP 

DBLP is the online resource providing bibliographies and subfield information on 

computer science books, conference proceedings, journals and so on [Ley, 2011]. 

DBLP data is selected for three important reasons. The first is that the actual real-

world data such as DBLP data provides us with an insight into data that has user 

characteristics and expectations.  The second is that the semantics in the schema are 

sufficient and able to support our proposed semantic transformations. The third is 

that the data size satisfies our current experiment environment in terms of hardware. 
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As XML data structure is represented by a tree-structured model, the XPath query 

expressiveness depends on the data hierarchy and selection of query patterns 

specified with or without predicates on multiple elements to match XML documents. 

If an XPath query is specified with predicates, some complex conditions in 

predicates enable a Twig pattern query [Runapongsa et al., 2006, Che et al., 2011].  

A twig pattern query is the core operation in querying tree-structured data. Although 

the semantics in DBLP schema are relatively rich, the data hierarchy is not 

expressive as it supports only a six-level data hierarchy. We are not able to specify 

the extreme expressive structural and complex joins selection by conditions such as 

twig pattern queries by a using DBLP data set. It is a challenge to find such features 

in the real dataset.  For this reason, we take the option of utilizing existing micro-

benchmark data. 

b. Micro-benchmark Data: Michigan  

Several XML database management systems such as Tamino XML Database 

[Software AG, 2009], Oracle DB 11g [Oracle, 2010] and DB2 pureXML [IBM, 

2009] to name just a few, have been developed on various database platforms. 

Technically, these databases are constructed differently from one another and their 

storage management models also differ. The way in which each individual system 

works and behaves has attracted an increasing interest from both industry and the 

research world. Hence, a great amount of effort has been put into developing XML 

benchmarking such as XMark [Schmidt et al., 2002], X007 benchmark [Li, et al., 

2001], XBench [Yao and Ozsu, 2002], Michigan benchmark [Runapongsa, et al., 

2006], TPoX [Nicola et al., 2007] and many more.  Most of the existing 

benchmarking systems listed here are known as application benchmarks, except for 

the Michigan benchmark which is known as a micro benchmark.   

The roles of application benchmarks focus on assessing the performance of given 

XML database systems by performing a large number of tasks such as selection, 

access method, modification, computation and insertion. These benchmarking 

systems provide an indication of performance to the database systems for potential 

users so that they can set their expectation for their applications.  
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On the other hand, there are various micro-benchmark systems that focus on generic 

database operations such as selection, computation and joins. A micro-benchmark 

system can provide an insight into generic database operations that assist the 

developers to understand and evaluate query operations which are significant or 

perform poorly.  

We find that both data and XPath queries provided by the Michigan benchmark 

[Runapongsa et al., 2006] fulfill our requirements of evaluating expressive structural 

queries and complex selection query predicates. Because the Michigan data set 

provides a significant data hierarchy which is accompanied by an available schema, 

their XPath queries support much more complex joins than those that can be 

accomplished with the DBLP data set.  Throughout the rest of the chapter, the 

Michigan benchmark is referred to as the micro-benchmark. 

7.2.4 Setup of Operational Hardware, Software and System Modules 

Figure 7.1 provides an overview of the system and implementation phases before 

semantic transformations take place. On the left of the vertical dash-line, the phase of 

schema registration is indicated by 2, data validation is indicated by 1 and loading of 

XML data into the XML database is indicated by 3.  On the right of the vertical dash-

line, the module for preprocessing semantics in XML Schema is indicated by 4, the 

semantic transformations module is indicated by 5, and the execution module of both 

the original and semantic XPath queries on the database is indicated by 6. Task 7 

returns an informative message to the user if the XPath query cannot be transformed. 

Task 8 returns a valid performance measurement to the users for evaluation. The 

arrows show the inter-relationships among the tasks.  

a. Set-up of Hardware and Software  

The two experiments are conducted in the same environment. The following 

hardware and software setup was used for both experiments: 

(1) The hardware includes a machine that has a configuration of Intel® Core™ Duo 

E7300 2.66 GHz.  2.67GHz and 2.0 GB of RAM; and  
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(2) the software includes Windows 7 Professional OS, Java VM 1.6 and Matlab 

2009. 
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Figure 7.1  Overview of System Architecture and Task Modules 

All semantic transformation algorithms are written and compiled in Java while all 

XPath queries are executed on a prominent off-the-shelf commercial relational 

database with an XML-enabled feature. Our semantic transformations can be run as 

add-on devices for any existing database as long as an XML capability with schema-

awareness facility is supported. We adopt an out-of-box installation for our chosen 

database platform. We do not perform any database configuration such as indices or 

specific joins.  

b. Setup of System Modules and Detailed Description 

Upon the completion of XML Schema registration, data loading and verification, the 

semantic transformations can take place. The effectiveness of semantic 

transformations greatly depends on how the semantics are derived and managed. We 

have proposed our semantic derivation technique to derive and store semantics in 
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Chapter 4, Section 4.1. We derive and pre-process the semantics prior to beginning 

of the semantic transformation process. This initial pre-processing of semantics is 

time consuming; however, this is worthwhile because we need to accomplish this 

task only once and the derived semantics can be used for the transformation of all 

XPath queries until the semantic transformation application is terminated. By doing 

such a pre-processing of semantics we can avoid the overhead of searching and 

processing the semantics in the XML Schema during the transformation stage.  

Preprocessing Schema Module: we now present an algorithm that 

implements the semantic derivation technique proposed in section 4.1 in Chapter 4.  

Algorithm PreprocessingSchema accepts two input parameters T and R where 

R is the root name of the schema and T is the file name of the schema (Line 1).  The 

main objective of the algorithm is to produce lists Q and C (Line 2).  Q contains a list 

of unique paths and C contains a list of constraints (together with their associated 

values) of elements. Parameters such as par, element, ePair and cName are defined 

(Lines 4 - 5). Parameter cName is a list that contains predefined constraint names. 

The constraint names can be increased at any time. Currently, we store constraint 

names based on the DBLP schema. 

At start-up, the algorithm will require the input parameters R and T.  It then starts 

reading the schema file and checks if the root R is valid.  If the root is valid, then the 

first item added to the C list is the root and occurrence constraint as well as its values 

(Line 8). It sets the flag foundR to true and sets the root as the parent and allows the 

processing to progress further (Line 9-10). If the given root is not found, the schema 

cannot be processed (Line 24).   

For each line read from the schema, the process first searches for an element and its 

constraints.  If the element is a complex type, then it sets the element as the parent 

(Line 12) and processes the constraints of the element (Line 18) by calling the 

Function List constraintValues.   

The children of the complex type are processed (Lines 13-20) by building up the 

ePair list where each item is expressed as parent/child e.g. dblp/article.  Within the 

building block of parent/child, the child element is also identified as either an 
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attribute element or non-attribute element so that the information can be prepared 

properly. For example, if it is an attribute, then it should be parent/@attribute (Line 

19). If it is a non-attribute element, then its constraints such as occurrence, inclusive, 

inclusive, etc are processed to build up list C in which Function List 

constraintValues is called (Line 18).  Once it reaches the end of the schemas, 

two lists, ePair and C, are built.  Upon complete reading of the schema file, the 

algorithm produces R and ePair, which are then used to construct list uniquePath 

(Lines 21-23). 

Algorithm 1: PreprocessingSchema (Schema S, String root) 

1 Input :    T   = XSD schema;  R  = root name of the schema 
2 Output:  Q = List of sequence elements defined in XSD Schema;  C = Semantic knowledge of elements obtained from T 
3 Begin 
4    Let par be parent, element be  child, Let ePair be a list to contain pairs of elements that has a parent/child relationship   
5    Let  cName ={keyref, key, enumeration, inclusive, exclusive, pattern, sequence, choice, all, length, attribute, 

occurrence} 
6    While not end of file (T) 
7       read next line  
8       If found R in l  Then 
9            foundR=true;    push R + “ Occurrence=(1,1)”        
10       If (foundR ) Then  
11              Extract element from l             
12              If element  is a type Then par = element 
13              Do  
14                   Read next line l 
15                   Extract element from l 
16                   If element is an attribute type Then  element = @element  
17                   Push par/element to ePair 
18                   If l contains cname in cName Then C = constraintValues(l,  C, List ePair, cname) 
19               Until end of type                
20   Loop 
21   If (foundR) {  
22        Push R into Q  
23        Q = UniquePath(ePair, Q)   
24   Esle “invalid root. Nothing derived”.  
25  End 
26  Function List UniquePath(List pair, List Q) 
27     For each item x in pair 
28          For each item y in pair 
29                   Push x+”/”+y into uP if found leftmost element in y occurs in x as right most element 
30           End For 
31     End For   
32     Return Q 
33  End Function 
34  Function List constraintValues (String Line, List C, List ePair, String cName)  
35     Let vals be a set of values of cName extracted from Line, e be element of cName      
36     extend e to es using ePair until es is unique in c  
37     Push es constrName=(vals)  to C        
38     Return C 
39   End Function 

 

The Function List constraintValues (Lines 34-39) accepts the input 

such as the line line that contains information about the element including name, 

constraint name and value of constraint. The ancestors of the element e needing to be 
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constrained are extended to further ancestors using an ePair list to make it unique in 

C (Line 36).  The item c is then formed to carry the sequence of new extended 

elements including constraint element and name of constraints as well as the values 

of the constraint. New item c is placed into list C (Line 37). 

The next step is to construct the unique path Q list. The root is first added to the Q 

list with root as the first unique path and then starts to process the remaining unique 

paths using items in the ePair list. The first item in the ePair should have the parent 

as root and child is the left most element on the next level as was proposed in chapter 

4, section 4.1. For example, in the DBLP schema, dblp is the parent.  The first item 

in the ePair list is dblp/article. 

The Function UniquePath accepts the ePair and R values (Lines 26 – 32).  

This function is a guideline for simultaneously processing and sorting the unique 

path. It basically uses the proposed breath-first search direction as proposed in 

Chapter 4, Section 4.1 to derive all unique paths.  

The pre-processing schema module performs the task only once at start-up and is 

terminated once it completes the processing of all input schemas, as indicated by 

module number 4 enclosed by the dotted line in Figure 7.1. The Semantic 

Transformation module then takes control as indicated by module number 5 in 

Figure 7.1. If any changes are made to the XML Schemas, this module will need to 

restart (though we do not expect the structure of the schema to change frequently).   

Semantic Transformation Module is the one that implements all the 

algorithms proposed in Chapters 4, 5 and 6; this is a real-time module. It is called 

after the pre-processing schema module has successfully produced a unique path list 

Q and constraints of elements list C. It continually detects the users’ XPath queries 

and transforms them.  This module will return valid semantic XPath queries and also 

send the queries to the database for execution; hence, it is called the Query Execution 

Database module. The Semantic Transformation module logs the transformation time 

and valid semantic XPath query in a dynamic file so that the user can manipulate this 

information independently. We fetch this information to plot results in MatLab. 
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If any conflicts of constraints are detected in an XPath query, a message is returned 

to inform the user as indicated by an upward arrow labeled with number 7 in Figure 

7.1. The returned message is logged in a dynamic text file and will be used to 

measure the performance of those queries that return no result. 

For a valid transformed XPath query, the transformation time is tracked so that it can 

be added to the average execution time of the semantic XPath query to calculate the 

total performance time. The average execution time is the total execution time of an 

XPath query divided by the number of executions. The performance of the semantic 

transformation XPath query is measured by the total performance time.  

Query Execution Database Module sends an XPath query and its semantic XPath 

query to access the required information in the database, as indicated by module 6 in 

Figure 7.1. Once the required information is retrieved, it is returned directly to the 

user instead of via the XML transformation module as indicated by task module 8 in 

Figure 7.1. This module can be called by the Semantic Transformation module or it 

can work independently.   

As the Semantic Transformation module also provides semantic XPath queries and 

their transformation time in a dynamic text file, the query execution database module 

can be executed independently using information in the dynamic file.  

7.2.5 Computation Procedure  and Metrics 

Computation Procedure. Each original/semantic XPath query is executed for five 

runs. The average execution time is calculated based on the last 3 runs. This is 

achieved in module 6 in Figure 7.1. By ignoring the first two runs and calculating the 

average execution time of the last three runs, this supports both cold and hot warm-

ups that prevents any data buffering problem from previous runs.  

Metrics. For each pair of queries (original XPath query and its semantic XPath 

query), the experiment compares the total performance time (in milliseconds). 

For the original XPath query, the execution time of query performance is measured 

by the average execution time as calculated by the computation procedure. 
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As explained earlier in the Semantic Transformation module, for the semantic XPath 

query, the execution time of query performance is measured by the average 

execution time plus the transformation time as calculated by the computation 

procedure. 

7.3 Individual Setup for Individual Experiment 

This section describes the individual experiment set-up including semantic 

enhancement, data scaling, data cleansing, query design, metrics and computation 

procedures. 

7.3.1 Experiment 1: Using DBLP Data   

This section describes the process of enhancing semantics in XML Schema that 

enables data cleansing, data scaling sets and query design. Metrics and computation 

procedures are also described here for individual experimentation.    

a. Semantics Enhancement for XML Schema 

The actual DBLP schema is in DTD format which we have decided to convert to 

DBLP.xsd. This is because our semantic transformations support more semantics 

than what DBLP.dtd can offer. To enable all semantic transformations to work with 

this DBLP schema, all semantics offered in the DTD Schema remain. In addition, the 

semantics can be enriched by adding further semantics so that we can demonstrate 

the whole range of our semantic transformations. The alteration of the DTD Schema 

must be kept as simple as possible so that the verification of data will take less effort. 

One advantage of adopting the DBLP is that we can also prove that our semantic 

transformations are not limited to DTD. The proposed semantic transformations 

enable us to take care of semantics in both DTD and XML Schemas (xsd). 

In summary, the depth of the DBLP XML Schema is 5 and the second hierarchy has 

a breadth of 7 schema elements. Each different labeled schema element on the 

second hierarchy must have at least one data node. The rest of the hierarchies depend 

on the occurrence constraint of each labeled element. We convert from DBLP.dtd to 
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DBLP.xsd and maintain all the existing semantics that have been transferred from the 

DBLP.dtd. At the same time, we also add a number of constraints to achieve our 

semantic transformations. The semantics are modified and added as follows:  

First, the data type of year element is changed from string to integer. Then the year 

is restricted with a range of values between 1950 and 2020. This range of values is 

not compulsory; however, it is good to have to demonstrate the usefulness and 

practicality of predicate elimination semantic transformation.  In this schema, year 

element is a global element whose setting is applied throughout the schema. For 

each PhD thesis, there must be at least one supervisor who is identified by his/her 

PhD qualifier. To achieve this, we use a key reference for the supervisor. That is, a 

supervisor is referenced by an existing thesis but not by the current thesis. This is to 

prevent the supervisor from being confused with the student undertaking the PhD 

thesis.  

For each element on the second hierarchy in the schema, we modify the order 

constraint by replacing the ‘choice’ with a ‘sequence’ value for ‘dblp’, ‘article’, 

‘inproceedings’, ‘proceedings’, ‘book’, ‘incollection’, ‘phdthesis’, ’www’. This is to 

ensure data such as ‘article’, ‘inproceedings’, ‘proceedings’, ‘book’, ‘incollection’, 

‘phdthesis’, ’www’, ‘author’, ‘title’, ‘pages’, ‘year’,…, ‘url’ are in the order as set 

out in the schema. For the occurrence constraint, the minimal occurrence is set to 

for elements including ‘dblp’,‘article’, ‘inproceedings’, ‘proceedings’, ‘book’, 

‘incollection’, ‘phdthesis’, ’www’, ‘author’, ‘title’, title name, and ‘year’. The 

occurrence for these elements varies between 1 and infinite. 

XML data in Figure 7.2 conforms to the DBLP XML Schema. The schema is rich in 

semantics of elements which enables semantic transformations to be applied to a 

wider range of XPath queries. 

b. Data Cleansing 

Once the XML Schema has been changed, we also need to change the data in order 

to achieve data conformation. Data cleansing is important for DBLP data sets as we 

have made alterations to the semantics in the DBLP XML Schema. Therefore, we 

have developed a data cleansing module (written in Java) to eliminate the 
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inconsistencies of data according to the modified semantics.  For example, the new 

data order based on the sequence property of the order constraint is enforced on 

elements in the order of article, inproceedings, proceedings, book, incollection, 

phdthesis, www from left to right and they are the children of dblp. The order 

constraint is also applicable to children of some of these elements.  

In addition to the order constraint, the data of element supervisor also needed to be 

checked for correct values that are set in the XML Schema. The values of year are 

also needed to be ensured within the specified range. The data cleansing module also 

validates the occurrence data for all the elements according to the changes that have 

been made in the XML Schema. 

To ensure the conformation of the new data after cleansing, a validation tool such as 

XMLSpy is used to validate the new data against the XML DBLP Schema. 

Data scaling is important. Good experiment data with regards to a performance study 

must be able to scale to several data sets if we are to examine the query components 

that respond to various data sizes. There are several scaling options that one can 

follow to tailor the data sets. For our experiment, we need several incremental data 

sets.  

c. Data Scaling 

We choose two DBLP data sets of 350 and 100 mega bytes (MB). The first data set 

350MB is referred to as Experiment Data Group 1 and the second data set of 100MB 

of Experiment Data Group 2. We find that XPath queries specified with XPath axes 

are unstable or cannot be executed most of the time when the data set of 350MB is 

tested. We suspect this is due to a combined limitation of XPath axes supported by 

our chosen DBMS with XML-enabled feature and availability of the hardware. For 

this reason, we have to reduce the size of the data set (Experiment Data Group 2) 

until the XPath queries specified with XPath axes show a stable processing.    

Each data set (DS) is scaled down to 10 incremental data sets: 0.1DS, 0.2DS, 0.3DS, 

0.4DS, 0.5DS, 0.6DS, 0.7DS, 0.8DS, 0.9DS, 1DS. Hence, Experiment Data Group 1 

and Experiment Data Group 2 will each have 10 scaled data sets.    
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<dblp 
xsi:noNamespaceSchemaLocation="http://localhost:8081/public/dbl
p.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 
  <article mdate="2005-11-15" key="journals/4or/WerraH05"> 
     <author>Pierre Hansen</author> 
        <title> 
               <tn>Variations on the Roy-Gallai theorem</tn> 
               <tt>Variations on the Roy-Gallai theorem</tt> 
        </title> 
        <pages>243-251</pages> 
        <year>2005</year> 
        <volume>3</volume> 
        <journal>4OR</journal> 
        <number>3</number> 
        <ee>http://dx.doi.org/10.1007/s10288-004-0043-9</ee> 
         <url>db/journals/4or/4or3.html#WerraH05</url> 
   </article>  
   . 
   . 
   <phdthesis mdate="2002-01-03" key="phd-S-95"> 
         <author>Heping Shang</author> 
         <title> 
                <tn>Trie Methods for Text and Spatial Data on Secondary  
                       Storage</tn> 
 <tt>Applications</tt> 
          </title> 
 <year>1994</year> 
 <school>McGill University</school> 
 <supervisor>phd-S-94</supervisor> 
   </phdthesis> 
   . 
   . 
   <www mdate="2006-10-02" key="homepages/a/EitanAltman"> 
         <author>Eitan Altman</author> 
          <title> 
 <tn>Home Pag</tn> 
          </title> 
          <url>http://www- 
                 sop.inria.fr/mistral/personnel/Eitan.Altman/me.html</url> 
    </www> 
</dblp> 
 

XML Data Conforms to DBLP 

XML Schema 

 

Figure 7.2  DBLP XML Schema and Snapshot of XML Data (after modification)  



Ch. 7 

 

166 

As we do not change the depth and the breadth of the schema, each data set is scaled 

by scaling the number of data nodes on the second hierarchies. There are 7 schema 

elements on the second hierarchy including article, inproceeding, proceeding, 

incollection, book, phdthesis, www. For each of these 7 element groups, we split 

the data into 10 sets.  

Assume the element data group of article has 70MB, inproceedings has 50MB in 

the whole DBLP XML document of 350MB, then  

article: (0.1DS) =7MB, (0.2DS) = 14MB,.., (1DS) = 70MB 

inproceedings: (0.1DS)=5MB, (0.2DS)=14MB,.., (1DS)=50MB. 

Once we have 10 scaled sets for each element data group, we then compile the actual 

10 DBLP incremental data sets by merging the seven element data sets in the order 

of schema elements.  Hence, the first DBLP scaled data set (0.1DS) is the result of 

merging of article(0.1DS), inproceedings(0.1DS), inproceedings(0.1DS), …, 

www(0.1DS), and then the second set of data is the result of merging of those with 

(0.2DS) in the order of schema elements and so forth. 

We apply the same concept of scaling to the Experiment Data Group 2 sets. We 

develop a module, using Java, to automate this scaling process. For the actual data 

sizes and scales for each Experiment Data Group, refer to Figure 7.3. 

Experiment Data Group 1 Experiment Data Group 2 

Data 

Set 

% Scale on 

Data Nodes 

Data Size 

(MB) 

Data Set % Scale on 

Data Nodes 

Data 

Size(MB) 

1 0.1 35 1 0.1 10 

2 0.2 70 2 0.2 20 

3 0.3 105 3 0.3 30 

4 0.4 140 4 0.4 40 

5 0.5 175 5 0.5 50 

6 0.6 210 6 0.6 60 

7 0.7 245 7 0.7 70 

8 0.8 280 8 0.8 80 

9 0.9 315 9 0.9 90 

10 1 350 10 1 100 

Figure 7.3 Scaled Data Sets for DBLP Data 
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10 sets of incremental size of DBLP data for experiment data groups 1 and 2, as 

shown in Figure 7.3, are loaded into a database platform with XML Schema 

validation enabled.  

d. XPath Query Taxonomy  

This section first provides the XPath query taxonomy; second, it recommends XPath 

query patterns that are suitable for each semantic transformation typology. The 

XPath query patterns suggested for the experiment are based on the XPath taxonomy. 

To simplify the subject matter, the XPath query taxonomy is either a full-path 

pattern or partial-path pattern (refer to chapter 3 for definitions of these patterns). 

An XPath query has a full-path pattern if and only if it satisfies one of one or more of 

the following properties: 

• XPath query is specified without any predicate [ ] 

• Path element is represented by a valid element name or wildcard ‘*’ 

Figure 7.4 shows four different types of full-path patterns; hence, no predicate exists 

in any of the four different XPath queries. 

 
 

Figure 7.4 Full-path XPath Queries   

 

 

 

 

 

 

 

 

 

(1)                        (2)                                  (3)                                 (4) 

dblp 

article 

title 

tn 

dblp 

phdthesis 

tt 

dblp 

* 

title 

tn 

dblp 

* 

title 
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In XPath query (1) dblp, article, title and tn have parent-child relationships. In 

XPath query (2) dblp and phdthesis have a parent-child relationship and phdthesis 

and tt have an ancestor-descendant relationship. In XPath query (3) dblp, * 

(wildcard), and title have only parent-child relationships. In XPath query (4) while 

parent-child relationships are between dblp and * (wildcard) and between title and 

tn, ancestor-descendant relationship exists between * (wildcard) and title.  

An XPath query has a partial-path pattern if and only if it has a combination of the 

following and satisfies one or both of the following properties: 

• Composition of full-path pattern properties  

• Essentially defined with a composition of a predicate [ ] 

As mentioned earlier, predicates that exist in an XPath query indicates a twig pattern 

in the query. That is, a path pattern has a branching element, which has a further one 

or more children. We categorize a twig query as either a simple twig pattern XPath 

query or a complex twig pattern XPath query. 

An XPath query has a simple twig pattern when a branching element has more than 

one child and each child has no further children. 

An XPath query has a complex twig pattern when a branching element has more than 

one child and each child has further children or descendants. 

Figure 7.5 show various types of partial-path XPath queries. In XPath query (5) 

dblp, article, title and author have parent-child relationships. The branching 

element article has two immediate children, title and author; none of them has 

further children. In XPath query (6) the branching element dblp has two immediate 

children, article and author, and none has further children. In XPath query (5), * is a 

branching element that has an immediate child, year, and descendant tn. In XPath, 

query (6) has more than one child and each child does not have any further children, 

making both (5) and (6) simple twig pattern queries. 
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(5)                        (6)                                  (7)                                 (8) 

Note: 5 & 6. Simple Twig Pattern Queries  

          7 & 8. Complex Twig Pattern Queries 

dblp 

* phdthesis article 

title author 

dblp 

article book 

dblp 

year tn 

dblp 

tt tn 

title year 

 

Figure 7.5 Partial-Path XPath Queries 

In the XPath query tree (7), the branching element * has an immediate child year and 

a descendant tn. There is expected to be one or more hierarchical elements between 

wildcard * and element tn. Hence tn is not an immediate child of *, therefore XPath 

query (7) is a complex twig pattern query. In an XPath query (8), the first branching 

element phdthesis has two immediate children year and title.  The immediate child 

title has further children tn and tt, which makes XPath query (8) a complex twig 

pattern query. 

For each semantic transformation category, we need to propose a set of XPath 

queries with regard to the query taxonomy above. By manipulating DBLP data sets 

and XML schema, we make it possible to issue queries with better XPath query 

patterns.  XPath queries enable us accommodate a variety of XPath query 

components, which respond to our semantic transformations. Below, we provide the 

guidelines for XPath query patterns for each category of semantic transformations. 

• Semantic Path Transformations 

Based on the query taxonomy, the XPath queries suggested for semantic path 

transformation are as follows:  
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� Semantic Path Expansion: XPath query patterns are full-path patterns in 

which each XPath query is expressed with an ancestor-descendant and/or 

parent-child hierarchy and/or with the wildcard element *.  

� Semantic Path Contraction: XPath query patterns are full-path patterns in 

which each XPath query is expressed with an ancestor-descendant and/or 

parent-child hierarchy ‘//’ and/or wildcard element ‘*. 

� Semantic Path Complement: XPath query pattern is a simple twig query 

pattern that is implemented by the parent axis (or optional operator ‘..’).   

• Semantic Transformations for Axes  

XPath queries suggested for semantic transformations for XPath query axes are full-

path patterns in which element(s) is specified with an XPath axis from {child, self, 

parent, descendant, descendant-or-self, following, preceding, following-sibling, 

preceding-sibling, ancestor, ancestor-or-self}.   

• Semantic Transformations for Predicates 

XPath query predicates support query conditions. Query conditions in a predicate 

joined by operators AND or OR are classified as value-based type or pointer-selected 

type [Runapongsa et al., 2006].  

A value-based type condition compares the values of different elements and a value 

of an element that is either an attribute or a leaf node. A pointer-selected type 

compares the values of a path fragment and most likely returns a sub-tree instead of a 

single value. XPath queries specified with predicates for semantic transformations 

are partial-path patterns.   

Semantic Predicate Elimination is applied to query conditions, which are connected 

by AND and/or OR operator(s). Semantic Predicate Reduction is applied to query 

conditions which are connected by an OR operator.    

For the DBLP data sets, due to the shallowness of data hierarchies, complex twig 

pattern queries are very primitive. For this reason, more complex twig patterns are 

carried out in the second experiment.   
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7.3.2 Experiment 2: Using Benchmark Data   

This section describes the semantics required for the experimentation, scaled data 

sets, query selection, metrics and the computation procedure.    

a. Semantics in XML Schema 

The micro-benchmark schema is available in both XSD and DTD schema formats.  

The micro-benchmark data set is adopted mainly because of its significant number of 

hierarchies of 16, which enables this experiment to evaluate the expressiveness of 

path expressions and complex predicates for selection of query type. There is no 

alteration made to the micro-benchmark XML Schema.  

The micro-benchmark schema and its sample XML data are shown in Figure 7.6. 

The schema is constructed around a BaseType element which contains a set of 

attributes such as aUnique1, aUnique2, aFour, aSixty, aSixteen, aLevel, aString. 

The hierarchy is indicated by a level value of attribute aLevel. Each Basedtype 

element contains two setf of subelements such as BaseType and OccasionalType. 

The presence of the OccasionalType element is determined by the value 0 of the 

attribute aSixtyFour of the parent. Each OccasionalType element has a content 

including the attribute @aRef [Runapongsa, et. al, 2003]. The described informration 

in this section together with the information given in the XML Schema are used to 

derive the semantics for performaning the transformations. 

As there is no modification made to the benchmark XML Schema, no data cleansing 

is performed. In the next section, data scaling is presented. As the names of all the 

hierarchy elements in this micro-benchmark schema are the same, i.e. eNest, this 

could raise a recursive schema problem. However, we have clarified earlier that the 

schema hierarchy’s hieght is 16 which is determined by eLevel. Therefore the 

recursive problem has been avoided. 

b. Data Scaling 

To keep the micro-benchmark data set simple, we use two data sets of size 50 and 

550 mega bytes (MB) given by the Data Generator developed by the micro-

benchmark, which can be downloaded from [Michigan, 2011]. We use the large 
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document of 550 megabytes (MB) to scale down the data set (DS) including 0.2DS, 

0.4 DS, 0.6 DS, 0.8 DS and 1SD. So, by adding 50 (MB) to the new scaled data sets, 

the complete sets of 50(MB), 150(MB), 250(MB), 350(MB), 450(MB) and 550(MB) 

is obtained. 

 

<?xml version="1.0"?> 

<eNest 

xsi:noNamespaceSchemaLocation="http://localhost:8081/public/mb.xsd"  

  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"    

  aUnique1="1"  aUnique2="1" aLevel="1" aFour="1" aSixteen="2"  

  aSixtyFour="1" aString="Sing a  

  song of oneB1"> 

  Sing a song of oneB1 

   A pocket full of oneB3 

. 

. 

    <eNest aUnique1="2" aUnique2="8768" aLevel="2" aFour="0"  

      aSixteen="2"   aSixtyFour="0" aString="Sing a song of  

      7seventyfourB11"> 

      Sing a song of 7seventyfourB11 

      A pocket full of oneB1 

     . 

    . 

          <eOccasional aRef="1"> 

         Sing a song of 7seventyfourB11 

         A pocket full of oneB1 

        . 

        . 

           </eOccasional> 

           <eNest aUnique1="4" aUnique2="50365" aLevel="3" aFour="1"  

              aSixteen="1"   aSixtyFour="61" aString="Sing a song of oneB5"> 

              Sing a song of oneB5 

             A pocket full of oneB1 

            . 

            . 

                                 <eNest aUnique1="8" aUnique2="30572" aLevel="4"  

                                   aFour="0"   aSixteen="4" aSixtyFour="44" aString="Sing  

                                   a song of  threeB5"> 

                                   Sing a song of threeB5 

                                               . 

                                              . 

                                 </eNest> 

                             </eNest> 

                       </eNest> 

                 </eNest> 

           </eNest> 

    </eNest> 

 

XML Data Conforms to micro-

benchmark (Mitchigan) XML Schema 

 

Figure 7.6  Micro-benchmark and Snapshot of XML Data 
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c. Query Selection   

Unlike experiment 1, most of the XPath queries for experimentation are provided by 

the benchmark system. There are not many XPath query returning the sub-tree of an 

element, a few XPath queries are modified to select the sub-tree instead of the value 

of an element. A small number of XPath queries are newly created so that semantics 

such as subtype element can be applied for transformation. 

For each semantic transformation category, we need to propose a set of selection 

XPath queries with regard to the query pattern and selection type.  To make it simple, 

and due to the importance of XML structural selection, an XPath query either returns 

values of an XML element, or returns sub-trees. 

• Semantic Path Transformations 

Micro-benchmark XPath queries do not provide any query patterns suitable for the 

application of a semantic path complement. However, semantic path transformations 

are expected to have the following query pattern requirements:   

�  XPath query patterns are in a descendant hierarchy ‘//’ or wildcard element 

‘*. These are used to demonstrate a successful application of Semantic Path 

Expansion.  

�  XPath query patterns are in a descendant hierarchy (or optional operator ‘//’) 

or wildcard element ‘*. These are used to demonstrate a successful application 

of Semantic Path Contraction. 

• Semantic Transformations for Axes 

The XPath queries designed and provided by a micro-benchmark system do not 

focus on XPath axes.  The only axis that is incorporated in the XPath queries are the 

self ‘.’.  

• Semantic Transformations for Predicates 

Due to the richness in data hierarchies of the micro-benchmark data set, the XPath 

queries that support complex twig pattern queries will be addressed here as we are 
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not able to accomplish this by using DBLP data sets. The condition patterns 

accommodate hierarchies ‘/’ and ‘//’.  

� Structural condition type supports pattern ‘/’ or ‘//’ or axes which can enable 

parent-child or ancestor-descendant joins or a more complex one is twig join.   

�  Comparison values support constant value, range-value and path-value (full 

path expression based on key/keyref attribute).  

We find that our choice of micro-benchmark data sets justify the evaluation purposes 

as their data characteristics and semantics complement each other, thereby producing 

an evaluation that is both complete and comprehensive.  

7.4 Summary 

In this chapter, we have described the design and the implementation of our 

experiment for evaluation. The chapter comprises three main sections: 

•  The first section describes the experimental design background and the strategy 

to achieve the experiment objective. 

•  The second section describes the expected strategies including  framework, 

platform with minimal supportability, operational set-up such as hardware, 

software system modules including algorithm and system architecture that are 

shared by the two experiments.  

• The third section presents the unique parts of the strategies used for each 

individual experiment. This includes the process and technique used to enhance 

semantics, cleanse data, scale data, design and select queries, metrics and 

computation procedures.  

In the next two chapters, we present the evaluation results and analyses which enable 

us to identify the optimization devices. 



 

Chapter 8 

Experimental Evaluation - Using 

Real Data Sets  

This chapter focuses on the experimental evaluation of semantic transformations 

using a real data set of DBLP which is accompanied by an XML schema.  It is our 

goal to study the performance of XPath queries before and after undergoing semantic 

transformations. The query performance enables us to thoroughly evaluate the impact 

of semantic transformations that have been applied to XPath queries to obtain their 

semantic XPath queries, but more importantly, to identify semantic transformations 

as optimization devices.   

8.1 Performance Evaluation Preface 

As discussed in Chapter 7, each XPath query and its semantic XPath query over each 

data set would be executed for n runs. The execution time is accumulated for the last 

three runs. The average execution time is then produced based on the last three runs. 

The average execution time is referred to as the performance result throughout this 

chapter. While the performance result for the semantic XPath query is the average 

execution time plus the transformation time, the performance result for the original 

XPath query is the average execution time. The experimental evaluation is based on 

the performance results of the original XPath query and its semantic XPath query.   



Ch. 8 

176 

Readers are reminded that the constraints used to transform XPath queries are the 

information in lists Q and C, which have been derived from the XML schema and 

proposed in Chapter 4. While Q contains a list of unique paths in which each unique 

path is a full path of a sequence of schema elements that must start from the schema 

root. Finally C contains a list of constraints of the XML schema elements.  

Based on the availability of semantics available in the DBLP schema, a set of XPath 

queries is designed to satisfy the semantic transformations. Due to the shallowness of 

the data hierarchies in the DBLP schema, hierarchy query types cannot be too 

expressive. This limitation can be overcome by exploring a benchmarking data set 

which is addressed in the next chapter. Moreover, XPath queries considered in this 

chapter are able to fully facilitate all semantic transformations. 

An XPath query and its semantic XPath query are equivalent if and only if they 

produce the same result set even though they have different structures. 

8.2 Semantic Path Transformation 

This section presents a set of XPath queries that are transformed by applying 

semantic path transformations including semantic path expansion, semantic path 

contraction and semantic path complement transformations.  Figure 8.1 presents a 

set of customized XPath queries. Each individual XPath query is presented with its 

relevant details such as Figure, Semantic Transformation, Path Pattern, Semantic 

XPath Query and Result Type. 

a. Semantic Path Expansion Transformation 

Figure 8.2 (a, b and c) shows the query performance results of XPath queries 

//phdthesis//tn, dblp/inproceedings//tn and */book/*/tn and their semantic 

counterparts respectively. While the first two XPath queries use descendant-ancestor 

‘//’ relationships, the third XPath query uses only wildcard ‘*’ and parent-child ‘/’ 

relationships. The ancestor-descendant ‘//’ relationship is purposely used in one 

XPath query and not in the other to observe its impact on query performance. 
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Figure  8.1  XPath Queries and Semantic XPath Queries by Semantic Path Transformation 

For XPath query //phdthesis//tn, the semantic path expansion transformation 

replaces the path fragments ‘//phdthesis’ and ‘//tn’ with the path fragments 

‘dblp/phdthesis’ and ‘title/tn’ based on the unique path dblp/phdthesis/title/tn 

located in list Q. For XPath query dblp/inproceedings//tn, semantic path expansion 

transformation replaces //tn with title/tn based on the unique path 

dblp/inproceedings/title/tn located in Q. For XPath query */book/*/tn, the semantic 

path expansion transformation replaces ‘*/’ with path fragment ‘dblp/’ and ‘/*/’ with 

/title/ based on the unique path dblp/book/title/tn located in Q. The performance 

results of semantic XPaths improve linearly along with the increase in the data sizes 

in Figure 8.2 (a and b). While the semantic XPath query gains an average of 40% 

over its original XPath query in Figure 8.2 (a); the semantic XPath query gains 

almost 22% over its original XPath query in Figure 8.2 (b). 

The overall performance achieved by the two semantic XPath queries in 8.2 (a) and 

8.2 (b) is very good due to the fact that in the full path expressions, none of the 

elements is represented by ‘*’. In Figure 8.2 (c), the query performance results 

indicate that the semantic XPath query outperforms the XPath query by 4% to 9%. 

The performance result shows a slight linear improvement in performance as the data 

sizes increase.  

Figure 
 

Semantic 
Transformatio

ns  

Path Pattern  XPath query Semantic XPath Query Result    

Type 

8.2 a  Path 
Expansion 

Ancestor-
descendant  

//phdthesis//tn dblp/phdthesis/title/tn Values 

8.2 b dblp/inproceedings//tn dblp/inproceedings/title/tn 

8.2 c Wildcard */book/*/tn phdthesis/book/title/tn 

8.3 a Path 
contraction 

Ancestor-
descendant and 
wildcard 

//*/isbn //isbn 

8.3 b Ancestor-
descendant 

*/*//title //title Sub-

trees 

8.3 c Wildcard  dblp/*//title //title 

8.4 a Path 
Complement 

Parent operator 
‘..’ and Ancestor-
descendant 

//book/year/../title/tn  //book/title/tn Values 

8.4 b Parent operator 
‘..’  

dblp/phdthesis/title/tn/..
/tt 

dblp/phdthesis/title/tt 
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Figure 7.4. Semantic Path Expansion 
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          Figure 8.2  Performance Results Before and After Semantic Path Expansion Applied 
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Although the first element in the XPath query is in Figure 8.2 (c) starts with ‘*’, the 

evaluation of the XPath query still starts from the root element dblp. This is because 

‘*’ is not led by the ‘//’ relationship. The evaluation then searches for book as an 

immediate child of dblp where children of book are unknown, represented by ‘*’. 

Therefore, the evaluation continues to move down until it locates tn. To be able to 

search for all tn of book, it must repeat the same evaluation process. Due to the use 

of ‘/’ in the XPath query and the semantic XPath query, the improvement between 

the original XPath query and the semantic XPath query is not significant in this case. 

For the descendant-ancestor ‘//’ and the wildcard ‘*’ in the original XPath queries in 

8.2 a, b & c, each is mapped to a single path fragment as each XPath query matches 

only one unique path. It also observes that the query with ‘//’ performs worst than the 

query with ‘*’ in any case.  For such an XPath query pattern, semantic path 

expansion transformation is an optimization device if it can minimize the use of 

descendant-ancestor ‘//’ and/or wildcard ‘*’.   

b. Semantic Path Contraction Transformation 

Figure 8.3 (a) depicts the performance results for XPath query //*/isbn and its 

semantic XPath query. The XPath query uses the ‘//’ relationship and the wildcard 

‘*’. The semantic path contraction transforms the XPath query by replacing the path 

fragment ‘//*/’ with ‘//’ based on the unique paths dblp/book/isbn, 

dblp/incollection/isbn and dblp/proceedings/isbn located in Q. This is done for two 

reasons: (1) element isbn is the target element in the XPath query therefore any 

unique path that has isbn as its target element which has a valid parent element is 

picked up; and (2) the returned data set produced by XPath query //*/isbn is 

equivalent to the result produced by dblp/book/isbn, dblp/incollection/isbn and 

dblp/proceedings/isbn. 

The graph in Figure 8.3 (a) shows that the performance results of the semantic XPath 

query grows linearly with the increase in data sizes. The growth of 20% for the larger 

data sets indicates that the bigger the data sizes, the greater the improvement on 

query performance will be.   
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Figure 8.3  Perfomrance Results Before and Afer Semantic Path Contraction Applied 

 The use of ‘//*’ by the original XPath query //*/isbn means that for every 

hierarchical element, starting from the root, an element is evaluated for a descendant 

which must be a parent of isbn. Unlike the original XPath query, the semantic XPath 

query evaluates every element, that starts from the root, for a descendant that must 
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satisfy isbn. The evaluation process performed by the semantic XPath query is 

slightly less than the evaluation performed by the original XPath query. 

Figure 8.3 (b & c) shows the performance result of XPath queries */*//title and 

dblp/*//title and their semantic counterparts. Note that these two XPath queries use 

both wildcard ‘*’ and hierarchy ‘//’ before the descendant title. The semantic path 

contraction transforms XPath queries */*//title and dblp/*//title by first locating  

unique paths that that has title and its further descendant due to the use of ‘//’ 

preceding titles. The unique paths: dblp/article/title/tn, dblp/article/title/tt, 

dblp/article/title/ref, dblp/inproceedings/title/tn, dblp/inproceedings/title/tt,….., 

dblp/www/title/tn, dblp/www/title/tt, dblp/www/title/ref are located in list Q. 

These located unique paths contain descendants of title in the whole document. Due 

to the existing multiple unique paths, the semantic path contraction transformation 

then contracts the XPath queries to a single semantic XPath query, which is //title. 

The performance of the semantic XPath queries in Figure 8.3 (b & c) show a 

constant  improvement along with the growth in data sizes. Both graphs show a 

significant improvement of an average of 40% for smaller data sizes but a decline in 

improvement at a constant rate on an average of 25%, as the data size grow bigger.  

Both XPath queries */*//title or dblp/*//title have appeared to require the same 

evaluation number of elements such as dblp, article, precedings, books,.., www that 

occur before title due to the use of ‘*//’. While dblp/*//title appears to require less 

evaluation space due to the specified dblp/*, XPath query */*//title appears to 

require more evaluation space due to the specified */*. The first wildcard * in 

*/*//title does not make much difference in terms of evaluation space as it is 

identified as the root element dblp when evaluation begins.  

By eliminating the  wildcard ‘*//’ in both XPath queries, a significant improvement 

would be expected as the data issue grows. However, this does not appear to do so; 

this could be due to the contracted path where XPath queries in both 8.2 (b & c)  are 

contracted on the element type title. XPath query in 8.2 (a) is contracted on the leaf 

element.  In the case of 8.2 (b & c), they both produce multiple semantic XPath 

queries. However, the overall performance of the semantic XPath queries is much 

better as shown in the graphs.  
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Based on our analyses and results, it can be concluded that semantic path contraction 

is an optimization device especially when it occurs on the leaf element.  

c. Semantic Path Complement Transformation 

Figure 8.4 (a & b) shows query performance results of XPath queries 

//book/year/../title/tn and dblp/phdthesis/title/tn/../tt as well as their semantic 

XPath query. Both XPath queries use parent operator ‘..’. 
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Figure 8.4  Performance Results Before and After Semantic XPath Complement Applied 

The semantic path complement transforms the XPath queries by removing year/../ 

and tn/../ from the XPath queries //book/year/../title/tn and 

dblp/phdthesis/title/tn/../tt respectively.   
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The XPath query //book/year/../title/tn matches two unique paths dblp/book/year 

and dblp/book/title/tn where book is the branching element of year and title, in 

which year is the condition element.  

The XPath query dblp/phdthesis/title/tn/../tt matches two unique paths 

dblp/phdthesis/title/tn and dblp/phdthesis/title/tt where title is the branching 

element (refer to Chapter 3 for the definition) of tn and tt, in which tn is the 

condition element. The semantic path complement transformation removes tn/.. from 

dblp/phdthesis/title/tn/../tt and year/.. from //book/year/../title/tn with respect to 

occurrence constraints of year and tn restricted in the schema that satisfy the 

semantic rule. 

Both the query performances in Figure 8.4 (a & b) performed by semantic XPath 

query improves linearly along with the growth in data sizes. The use of parent ‘..’ 

requires the execution of an XPath query that is specified with a query condition 

element. The semantic path complements the transformation by removing the query 

condition elements from the XPath queries to reduce the processing of multiple path 

expressions. That is, the path expression from the root to the target element is 

considered as one path. The root expression to the query condition element is 

considered as another path.  Hence, the execution of each XPath query is considered 

as the execution of two path expressions.  

As shown in Figure 8.4 (a), the performance of the query indicates that the semantic 

XPath query outperforms the original query by between 2% and 8%. The rate of 

improvement on query performance continues to increase as the size of the data set 

grows.    

Figure 8.4 (b) shows a fluctuating improvement on query performance. This is 

normal as there are only a small number of PhD thesis titles existing in the database. 

Nevertheless, when the information increases relatively in larger data sets, the query 

performance improvement actually increases as expected. As has also been observed, 

the execution times by XPath queries in Figure 8.4 (b) are more than those for 8.4 

(a). This is probably due to a higher number of hierarchies in one XPath query than 

in the other.  
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Based on the result patterns in Figure 8.4 (a & b), it can be concluded that the 

semantic path complement transformation is an optimization device with regards to 

two noticeable facts: 1) the greater the amount of data present for retrieval, the 

greater the improvement on query performance achieved by the semantic path 

complement query will be and 2) when more query hierarchies appear in the XPath 

queries, the longer it will take longer for traversal. 

8.3 Semantic Transformations for Predicates  

In this section, given XPath queries are transformed by applying predicate 

elimination and predicate reduction semantic transformations.  

a. Predicate Elimination Semantic Transformation 

Figure 8.6 (a) shows the query performance results of the XPath query 

dblp/phdthesis[supervisor=/dblp/ phdthesis/@key]/title/tn and its counter-part. 

The predicate contains a single condition of an element that has a key reference 

attribute constraint. The comparison element supervisor has a value of a path 

expression /dblp/ phdthesis/@key  that has only a parent-child relationship. In order 

to remove the predicate, the query condition supervisor=/dblp/ phdthesis/@key 

must be determined with a full-qualifier status. 

As the query condition status determination rule locates the matched unique path 

dblp/phthesis/supervisor in list Q, and dblp/phthesis/supervisor = 

dblp/phthesis/@key in list C that allows a full-qualifier status to be awarded to the 

condition. To remove the predicate, the predicate reduction semantic transformation 

then verifies that the supervisor element satisfies the semantic transformation rules. 

In this query, the minimal occurrence must be 1 or above and the query join 

condition is NULL. 

 

 

 



Ch. 8 

185 

Figure Query Type Join XPath query Semantic XPath Query 
Returned 
Results  

8.6 a 
Query 
Condition with 
Path Value  

None 

  
dblp/phdthesis[supervisor=/dbl
p/phdthesis/@key]/title/tn 

 

dblp/phdthesis/title/tn 
 

Values of 
Leaf 
Node/Attr
ibutes  

8.6 b 
Query 
Condition with 
No Value  

dblp/proceedings[title/tn]/url 
 

dblp/proceedings/url 
 

8.6 c 
Query 
Condition with 
Range Value    

dblp[proceedings/year>=1950]/
inproceedings/title/tn 

 
 

dblp/inproceedings/title/tn 

8.7 a 

Connective 
Query 
Conditions 
with 
RangeValue 

AND 

dblp/incollection[author and 
year >=1950]/title/tn 
 

dblp/incollection/title/tn 
 

8.7 b 

Connective 
Query  
Conditions 
with Range 
Value  

dblp/incollection[title and year 
>=1950]/title/tt 

dblp/incollection/title/tt 

8.8 a 
Connective 
Query 
Condition with 
Attribute and  
Range value 

//book[@mdate and title/tn and 
year >=2000 ]/@key 

//book[year>=2000]/@key 

8.8 b 
//book[@mdate and title/tn and 
year >=2000 and author]/@key 

//book[year>=2000]/@key 

8.9 a 

Connective 
Query 
Conditions 
with .Matching 
Value  &  
Range Value  OR 

 

dblp/book[year=1948 or 
year<=2010] /author 

 

dblp/book[year<=2010]/autho
r  

8.9 b 

Connective 
Query 
Conditions 
with Range 
Value   

dblp/book[year < 1950 or 
url]/title/tn  

dblp/book[url ]/title/tn 

Figure 8.5  Original and Semantic XPath Queries and Related Information 

Figure 8.5 summarizes a set of XPath queries, including the figure numbers where 

the query performance is provided, their query types, types of query conditions joins 

in the predicates, the corresponding semantic XPath query and the result selection 

type.  

The query performance result in Figure 8.6 (a) increases linearly along with the 

increase of data sizes. The query performance of semantic XPath query is effectively 

improved by between 20% and 25% on larger data sets of 210 to 350 megabytes. The 

query result pattern for the smaller data sets shows an improvement. From the 

improvement pattern in the larger data set, it appears that the key reference element 
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does not perform effectively on smaller data sets. It can be concluded that semantic 

transformation for predicate reduction for this query pattern is an optimization 

device. 
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Figure 8.6  Performance Results Before and After Predicate Elimination Applied 
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Figure 8.6 (b & c)  show the performance results of XPath queries 

dblp/proceedings[title/tn]/url, 

dblp[proceedings/year>=1950]/inproceedings/title/tn and of their semantic XPath 

queries. Both XPath queries demonstrate a single query condition using a path 

fragment. While the first query condition title/tn has no comparison value, the 

second query condition title/tn has a comparison value of 1950.  

The query condition status determination rule locates the matched unique paths 

dblp/proceedings/title/tn and dblp/proceedings/url in list Q and proceedings/year 

1950 2020 in list C. Such located information gives both query conditions full-

qualifier status.  

To remove the predicates, the predicate reduction semantic transformation then 

verifies whether the query conditions title/tn and proceedings/year >= 1950 satisfy 

the semantic transformation rules. List C shows that the minimal occurrence of title 

and year under proceedings is 1 and the published year is between 1950 and 202 as 

well as that the query join condition is NULL. Hence, the predicates have been 

successfully removed from the XPath queries. 

As shown in Figure 8.6 (b & c), the query performance improvement for both 

semantic XPath queries increases linearly along with the growth in the size of data 

sets. The average gain improvement on query performance is between 25% and 50%. 

Hence it can be concluded that the predicate reduction semantic transformation, 

applied to remove a predicate when its query condition is a path fragment, is an 

optimization device. 

The improvement of query performance achieved by semantic XPath queries can be 

explained on follows: for all the semantic XPath queries in 8.6, the evaluation starts 

from the root that has children which must satisfy specific elements before the next 

children are evaluated.  Due to the hierarchy ‘/’ used in all semantic XPath queries, 

the evaluation is able to minimize the search space. With the original XPath queries, 

the hierarchy element in which the predicate is specified is evaluated before the 

hierarchy element in the path is evaluated.  
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For instance in 8.6 (a) the evaluation of XPath query starts from the root dblp that 

has children which must satisfy element phdthesis where the predicate 

[supervisor=/dblp/phdthesis/@key] is specified. The phdthesis is evaluated for 

children that must satisfy element supervisor, which must also satisfy a referenced 

value for dblp/phdthesis/@key. In 8.6 (b) the predicate [title/tn] does not have a 

comparison value and the evaluation needs to assure the condition path is valid 

title/tn before the next hierarchy element url in the main path is evaluated. 

Therefore, the required evaluation of conditions and the path condition in the XPath 

queries takes much longer to process. 
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Figure 8.7  Performance Results Before and After Predicate Elimination Applied 

Figure 8.7 (a & b) shows the query performance results of XPath queries 

dblp/incollection[author and year >=1950]/title/tn, dblp/incollection[title and 

year >=1950]/title/tt and of their semantic counterparts.  The XPath queries 
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demonstrate the use of the AND operator between the query conditions. In order to 

remove the predicate, each condition must be verified as a full-qualifier. 

Predicate reduction semantic transformation eliminates the predicate [author and 

year >=1950]/title/tn from the XPath query dblp/incollection[author and year 

>=1950]/title/tn with the regards to the matching unique paths 

dblp/incollection/author, dblp/incollection/year and dblp/incollection/title/tn. In 

addition, elements author and year have occurrences that satisfy the semantic 

transformation rule. The range values of element year must fully match the range 

values of the year element under collection specified in the XML Schema.   

The predicate reduction semantic transformation is also able to remove the predicate 

in the XPath query dblp/incollection[title and year >=1950]/title/tt with regards to 

the matching unique paths dblp/incollection/title, dblp/incollection/year and 

dblp/incollection/title/tt. Based on the information located in list C, elements title 

and year have occurrence that satisfies the semantic transformation rule and the 

range value of element year fully matches the range value of year under collection 

specified in the XML Schema.   

The query performance improvement grows linearly along with the growth in data 

sizes in Figure 8.7 (both a & b). This means that the overall performance of the 

semantic XPath queries is better than that of the XPath queries. However, due to the 

simple condition and the insignificant amount of existing data in the DBLP database, 

semantic XPath queries do not show a significant improvement. Nevertheless, there 

is some evidence of improvement in query performance based on the graph patterns 

shown in Figure 8.7. 

b. Predicate Reduction Semantic Transformation 

This section demonstrates the predicate reduction semantic transformation that 

reduces the size of a predicate by removing some conditions which are identified as 

full-qualifiers.  

Figure 8.8 (a & b) shows the query performance the XPath queries //book[@mdate 

and title/tn and year >=2000 ]/@key, //book[@mdate and title/tn and year 
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>=2000 and author]/@key and of their semantic counterparts. The query conditions 

in the predicate demonstrate the use of the AND operator. 

The predicate reduction semantic transformation, based on the identified unique 

paths, determines the full-qualifiers for query conditions. This is because @mdate 

has a required attribute value, and both title/tn and author have an occurrence 

constraint that satisfies a minimal occurrence of 1 as required by the semantic rule 

proposed in Chapter 5. Therefore, @mdate, title/tn and author have been removed 

from the predicates. 
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Figure 8.8  Performance Results Before and After Predicate Reduction Applied 

As shown in Figure 8.8 (a and b) the semantic XPath queries outperform the original 

XPath queries between 2% and 20%.  The query performance for both the XPath 

query and the equivalent semantic XPath query shows a linear pattern along with the 

growth of data sizes. The semantic XPath queries outperform the original XPath 
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queries due to reduced evaluation of the query conditions as @mdate, title/tn and 

author have been removed from the XPath queries after performing the 

transformation.  

The slowness of query performance shown by the original XPath queries can be 

caused by the fact that each query condition is evaluated along the path that must 

start from the root of tree. For example, XPath query //book[@mdate and title/tn 

and year >=2000]/@key has two query conditions @mdate and title/tn and year 

>=2000, therefore the evaluation must start from the root of the document which is 

dblp until it finds the descendant book, then it continues to search for @mdate.  To 

evaluate title/tn, it starts again from the root of the document tree which is dblp and 

traverses down until it finds title/tn under book. Once the conditions are satisfied, 

the book is then evaluated which must be started from the root of document tree 

dblp, for @key. 
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Figure 8.9  Performance Results Before and After Predicate Reduction Applied 
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Graphs in Figure 8.9 (a & b) depict the query performance results of XPath queries 

dblp/book[year=1948 or year<=2010]/author, dblp/book[year < 1950 or 

url]/title/tn and their semantic counterparts.  The XPath queries demonstrate the use 

of OR between the query conditions. 

To confirm the correctness of path expressions in XPath queries 

dblp/book[year=1948 or year<=2010]/author  and dblp/book[year < 1950 or 

url]/title/tn, semantic transformation uses matching unique paths dblp/book/year, 

dblp/book/author, dblp/book/url and dblp/book/title/tn in list Q. For 

dblp/book[year=1948 or year<=2010]/author the semantic transformation first 

verifies the query conditions year=1948 and year < 1950 and confirms that they are 

mutually inclusive because year=1948 is never present in the database because the 

inclusive constraint set for year is between 1950 and 2020. Query conditions 

year<=2010 and url are partial-qualifers as the specified value 2010 is within the 

range values of the year and the url has a minimal value of 0 for the occurrence 

constraint found in list C. 

Due to the use of OR between two query conditions in [year=1948 or year<=2010], 

the mutually inclusive query condition exists because year = 1948 is in conflict with 

what was found for the years between 1950 and 2020 in list C. The mutual inclusive 

query condition does not cause the whole XPath query to return an empty answer, 

but allows the co-existence of  data produced by the other query condition year 

<=2010.  

The result patterns in Figure 8.9 (a & b) show a linear growth along with the growth 

in data sizes. With the increase in data sizes, the rate of improvement of between 

50% and 85% achieved by semantic XPath queries also increases significantly. This 

shows that the larger the data sizes, the better the improvement of query performance 

for the semantic XPath queries will be.  

The transformation of an XPath query using AND between the query conditions is 

very different from those using OR. For OR between query conditions, as soon as it 

is verified that one condition is a full-qualifier, the semantic rule can immediately 

remove the condition.  Whereas if AND is used between the query conditions, the 

query condition cannot be removed even though it is verified and given a full-
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qualifier; all query conditions are completely verified and then the query condition is 

removed based on its status.  

8.4 Semantic Transformation for Axes 

This section demonstrates the semantic transformations for the XPath query that are 

specified with XPath axes. XPath query performance specified with XPath axes is 

evaluated to identify opportunities for semantic transformations. The family of XPath 

axes includes child, descendant, descendant-or-self, parent, self, following, 

following-sibling, preceding, preceding-sibling, ancestor and ancestor-or-self. 

Figure 8.10 summarizes a list of XPath queries used to perform the evaluation. 

Figur
e 

XPath Query Semantic XPath Query 
Returned 
Result 

8.11a 
dblp/article/preceding-
sibling::*’ 

 
dblp/article[position() < last()] 

Sub-tree 

8.11b 
dblp/article/following-
sibling::* 

 

dblp/article[position()>1],dblp/inproceedings, 
dblp/proceedings,dblp/book,dblp/phdthesis, 
dblp/incollection,dblp/www 

8.12a 
dblp/article/title/preceding
::* 

dblp/article[position()<last()], 
dblp/article[position=last()]/author 
 

Values of 
attributes and leaf 
nodes 

8.12b 
 

   
dblp/inproceedings/title/fol
lowing::* 

 

dblp/inproceeding[position()>1],dblp/inproceeding[po
sition()=1]/pages,dblp/inproceeding[position()=1]/ye
ar, dblp/inproceeding[position()=1]/url, 
dblp/proceedings, dblp/book, 
dblp/incollection/dblp/phdthesis, dblp/www 

Values of 
attributes, leaf 
nodes and sub-
trees 

8.13a dblp/*/title/ancestor::* 

dblp,dblp/article, 
dblp/inproceedings,dblp/proceedings, 
dblp/book,dblp/incollection,dblp/phdthesis, 
dblp/www 

Sub-trees 

8.13b dblp/*/ancestor-or-self::* 

dblp,dblp/article, 
dblp/inproceedings,dblp/proceedings, 
dblp/book,dblp/incollection,dblp/phdthesis, 
dblp/www 

8.14a //inproceedings[@key]/titl
e[tn]/preceding-sibling::* 

//inproceedings/author Values of 
attributes and leaf 
elements 

8.14b //article[@key]/title[tn]/pre
ceding::* 

//article[position()=last()/author 
//article[position()<last()] 

 

Figure 8.10  Original and Semantic XPath Queries and Related Information 
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Figure 8.11 (a & b) shows the query performance result of XPath queries 

dblp/article/preceding-sibling::*, dblp/article/following-sibling::* and their 

semantic counterparts. The XPath queries demonstrate the use of preceding-sibling 

and following-sibling axes.  

The semantic transformation removes the preceding-sibling and following-sibling 

axes from the XPath queries by following the semantic rule proposed in Chapter 5. 

The preceding-sibling and following-sibling XPath queries retrieve information 

about siblings that occur before or after the last or first occurrence of the context 

element.  

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

Data Size (mb)

IO
 T

im
e

 (
s
e
c
s
)

Axis Elimination

 

 

Original XPath Query

Semantic XPath Query

 

 

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Data Size (mb)

IO
 T

im
e

 (
s
e

c
s
)

Axis Elimination

 

 

Original XPath Query

Semantic XPath Query

 
 

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
s
) 

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
s
) 

(a) Before and After Removing Preceding-sibling Axis  

(b) Before and After Removing Following-sibling Axis 
  

Figure 8.11  Before and After Semantic Transformation for Preceding-/Following-sibling Axis 

Applied 
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The unique paths listed before dblp/article whose context element must be the 

sibling of article and after dblp/article whose context element must the sibling of 

article in list Q, are the target semantic XPath queries. XPath query selects the 

information of the context element that will be added to the target semantic XPath 

queries if it has an occurrence constraint in which the minimal occurrence is 1 on 

above and the maximal occurrence is above 1.  

For the XPath query dblp/article/preceding-sibling::* there are no unique paths to 

produce siblings that precede the article. When the occurrence constraint of article 

has an occurrence between 1 and many, the unique path selects the ‘all’ article, the 

transformation would then: 

•   add the context function [position()<last()] to the article so that the last 

occurrence of article is not selected. 

For the XPath query dblp/article/following-sibling::* unique paths such as 

dblp/inproceedings, dblp/proceedings, dblp/book,dblp/phdthesis, 

dblp/incollection, dblp/www are the semantic XPath queries because they are listed 

after the unique path that selects the articles. In addition, the occurrence constraint of 

article has an occurrence between 1 and many; unique path selects the information 

of article and this must be added to the semantic XPath queries. The transformation 

would: 

• add the context function [position()=1] to the article so that the first 

occurrence of article is not selected. 

 See Figure 8.10 for the full list of the semantic XPath queries. 

The query performance results in Figure 8.11 (a & b) indicate an exponential curve 

along with the growth in the data sizes with the original XPath queries, but a linear 

growth along with the growth in the data sizes with the semantic XPath queries. In 

both 8.11 (a & b) figures, the semantic XPath queries significantly outperform the 

original XPath queries by between 50% and 80%. The difference in query 

performance between the XPath queries and their semantic XPath queries indicates a 

significant query improvement.  
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As mentioned earlier, semantic transformation removes the axis from the XPath 

query to support some commercial database systems which are unable to support the 

processing of XPath query axes. One of the most outstanding commercial database 

systems (For lisencing reason, the name of the database can not be disclosed) is 

adopted to carry out the experimental evaluation; hence, the semantic XPath queries 

significantly outperform the original XPath queries. 

Figure 8.12 (a & b) shows the performance results of the XPath queries 

dblp/article/title/preceding::*, dblp/inproceedings/title/following::* and their 

semantic XPath queries. The XPath queries demonstrate the use of preceding and 

following axes.  
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(a) Before and After Removing Preceding Axis 

(b)    Before and After Removing Following Axis 
 

Figure 8.12  Before and After Semantic Transformation for Preceding/Following Axis Applied 

The semantic transformation removes the preceding and following axes from the 

XPath queries by following the semantic rule proposed in Chapter 5. The preceding 
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and following XPath queries retrieve information that occurs before or after the last 

or the first occurrence of the context element including the ancestors or descendants. 

Due to the efficiency of the derivation of our proposed unique paths described earlier 

in Chapter 4, the unique paths listed before dblp/article/title and those after 

dblp/inproceedings/title in list Q are the target semantic XPath queries.  XPath 

query selects the information of context element which will be added to the target 

semantic XPath queries if it has an occurrence constraint in which the minimal 

occurrence is 1 and above, and the maximal occurrence must be above 1. 

For XPath query dblp/article/title/preceeding::*, unique paths such as 

dblp/article/author is the semantic XPath query, because it is listed before the 

unique path that selects the title of the article. In addition, the occurrence constraint 

of the article title has an occurrence between 1 and many, so the unique path selects 

the information of article title that must be added to the semantic XPath queries. The 

transformation would: 

• add the context function [position()<last()] to the  unique path dblp/article so 

that the last occurrence of article title in the whole document is not selected. 

• add the context function [position()=last()] to the author in unique path 

dblp/article/author so that all authors under the last article are selected; this 

is because the author occurs before article title in the XML document.  

For XPath query dblp/inproceedings/title/following::*, unique paths such as 

dblp/proceedings, dblp/book, dblp/incollection/dblp/phdthesis, dblp/www 

are the semantic XPath queries because they are listed after the unique path that 

selects the inproceedings title. In addition, since the occurrence constraint of title of 

inproceedings has an occurrence between 1 and 1, the unique path selects the 

information of title of article that must be added to the semantic XPath queries; 

hence, the transformation would: 

• add [position()>1] to element inproceedings in dblp/inproceeding so that it 

can select all information of inproceedings except the first occurrence of 

inproceedings 
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• add [position()=1] to element inproceedings in dblp/inproceeding/pages, 

dblp/inproceeding/year, dblp/inproceeding/url to select all information, 

occur after title, of the first occurrence of inproceedings  

The query performance result patterns shown in Figure 8.12 (a) indicate an 

exponential growth along with the growth of the data sizes by the original XPath 

query, and a linear growth along with the growth in the data sizes by a set of 

semantic XPath queries. It has been observed that the total time taken by the 

semantic XPath queries is significantly smaller compared with the time taken by the 

original XPath query, with the performance improvement percentage being between 

95% and 100%.   

As can be seen, the query performance result patterns in Figure 8.12(b) increase 

linearly along with an increase in the data sizes for both the original and the semantic 

XPath queries. The performance by the semantic XPath queries shows a consistent 

improvement rate (almost 90%), along with the growth in the data sizes. 

As demonstrated in Figure 8.12 the query performance of XPath queries specified 

with preceding or following axis are significantly slow as the data sizes increase, but 

query performance performed by semantic XPath queries increases linearly. The 

semantic transformations are considered as optimization devices especially for XML-

enabled database management systems that inadequately support XPath axes. 

Figure 8.13 (a & b) shows the query performance results of the XPath queries 

dblp/*/title/ancestor:*, dblp/*/title/ancestor-or-self:* and their semantic XPath 

queries. These XPath queries demonstrate the use of ancestor and ancestor-or-self 

axes.  

The XPath queries specified with the ancestor axis selects information about all the 

ancestors of the context element. The semantic transformation locates all the unique 

paths that are listed before the one that selects the information of the context element. 

For the XPath query dblp/*/title/ancestor:*, the unique paths dblp, dblp/article, 

dblp/inproceedings, dblp/proceedings, dblp/book, dblp/incollection, 

dblp/phdthesis and dblp/www are the semantic XPath queries. They are listed 

before all the unique paths that select information about title in list Q. Due to the use 
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of ‘*’ between dblp and title elements in the XPath query, further semantic XPath 

queries are produced. 

The XPath queries specified with the ancestor-or-self axis select information about 

all the ancestors of the context element. The semantic transformation locates all the 

unique paths that are listed before the one that selects the information about the 

context element. For the XPath query dblp/*/title/ancestor-or-self::*, unique paths 

dblp/article, dblp/inproceedings, dblp/proceedings, dblp/book dblp/incollection 

dblp/phdthesis, dblp/www, dblp/article/title, dblp/inproceedings/title, 

dblp/proceedings/title, dblp/book/title dblp/incollection/title, 

dblp/phdthesis/title, dblp/www/title are the semantic XPath queries. They are listed 

before all unique paths that select information of title in list Q. 
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Figure 8.13  Before and After Semantic Transformation for Ancestor/Ancestor-Or-Self Axis 

Applied 
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The query performance result patterns in Figure 8.13 (a & b) show a linear growth 

along with an increase in data sizes.  The semantic XPath queries in Figure 8.13 (a) 

show a significant query performance improvement of almost 80% initially. 

Unfortunately, they show a smaller query performance improvement rate of about 

30% when approaching larger data sizes. This may be caused by the irregular amount 

of data being retrieved or some hiccups during the processing stage. On the other 

hand, the semantic XPath queries in Figure 8.13 (b) show a constant query 

performance improvement rate of between 40% and 50%. This is because the 

ancestor-or-self axis can be optionally specified by the operator ‘//’ in some XML-

enabled database management systems.  There may also be an interpretation between 

the axis and the operator done by the database engine which is not disclosed to the 

public by the vendor. This research is unable to comment on such information.    

For a query specified with an ancestor-or-self axis, the performance improvement 

will be reflected at a consistent rate along with the growth in the data sizes.  

However, for the XPath query specified with an ancestor axis, further investigation 

is planned for future work. Either the query processing foundation of the adopted 

database needs further study, or a benchmark needs to be run on those queries on 

which the current semantic transformations cannot perform well.  

Figure 8.14 (a & b) show the query performance results of XPath queries 

//inproceedings[@key]/title[tn]/preceding-sibling::*, 

//article[@key]/title[tn]/preceding::* and their semantic XPath queries.  

The XPath query //inproceedings[@key]/title[tn]/preceding-sibling::* 

demonstrates the use of the XPath axis preceding-sibling and also of predicates. The 

semantic transformation locates the unique paths that are listed preceding the unique 

path selects title of proceedings. The located unique path must have a context 

element that is a sibling of title, and in this case dblp/inproceedings/author is 

located. In addition, the occurrence constraint of title of inproceedings has an 

occurrence between 1 and 1, and apart from author as the sibling, title also has other 

title as a sibling. Therefore title of inproceedings, except the last title of 

inproceedings, must also be selected. Because each inproceedings has only 1 title, 
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only the unique path that selects author of inproceedings would be considered to be 

semantic.  

As the XPath query is also specified with predicates [@key] and [tn], semantic 

transformation for predicates has been applied to remove both the predicates. This is 

due to the required value of attribute of key and occurrence constraint of tn, which 

has an occurrence between 1 and 1. Both constraints confirm the existence of 

inproceedings and title in the database.  

The XPath query //article[@key]/title[tn]/preceding::* demonstrates the use of the 

XPath axis preceding and also of predicates. The semantic transformation locates the 

unique paths that are listed in front of the one that selects title of proceedings. The 

located unique path must have a context element that is a sibling of title as well as 

those that occur in front of title; in this case, unique paths are dblp/article/author 

and dblp/article. However, to make the two unique paths produce a result equivalent 

to the result produced by the original XPath query, semantic transformation needs to 

verify the occurrence constraint of article title. The title has occurrence between 1 

and 1, so the semantic transformation would: 

• add the context function [position()<last()] to the article in unique path 

dblp/article so that the last occurrence of article is not selected 

• add the context function [position()=last()] to the article in unique path 

dblp/article/author so that the last occurrence of author is selected 

The patterns of performance results in Figure 8.14 (a) show a linear increase along 

with the increase in data sizes. The semantic queries outperform the original XPath 

queries by a percentage between 95% and 98%. On the other hand, the query 

performance result patterns in Figure 8.14 (b) show an exponential growth along 

with the growth in data sizes for the XPath query and a linear growth for the 

semantic XPath query. The semantic queries outperform the original XPath query by 

a percentage between 98% and 99.5%.  

The significant query performance difference shown by the XPath queries and their 

semantic XPath queries indicate a substantial evaluation required when XPath axes 

and predicates are used in the XPath query. 
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In the case of XPath queries in Figure 8.14, the evaluation requires both downward 

and horizontal directions due to the use of the preceding-sibling axes. In addition, it 

appears that the lack of support for processing XPath axes for certain types of XML-

enabled databases also contributes to the slow performance. It so happens that the 

database chosen for this evaluation faced this challenge. Of course, not all XML-

enabled databases would follow this trend. However, this evaluation result leads us 

to believe that our semantic transformations are very useful in preparing similar 

XML-enabled database systems to meet the challenge of processing such query 

XPath axes. 
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(a) Before and After Removing Preceding-sibling Axis 

(b) Before and After  Removing Preceding Axis 
 

Figure 8.14  Semantic Transformation of XPath Queries with Combination of Axes 

8.5 Semantic Conflict Detection  

One of the benefits of semantic transformation is that a query can be answered 

without any need to access the database. Often the users are unaware of the structure 
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of the data source. The users may issue XPath queries that do not satisfy the 

semantics.  When such situations are encountered, an XPath query will definitely 

return an empty result. With semantic transformations, such XPath queries can be 

detected avoiding the waste of unnecessary resources. Such detection is referred to as 

semantic conflict detection.   

Semantic conflict detection works like a satisfiability study of XPath queries 

[Benedikt et al., 2005; Figueira, 2009; Ishihara et al., 2010]. The unsatisfied query 

problem is linked more with the complexity of XPath queries, both syntactically and 

semantically. However, due to the earlier use of satisfiability of semantics defined in 

DTD, this work uses semantics in XML schemas to complement the earlier work on 

satisfiability.  

Prior to the query transformation, the semantic transformation will ensure that there 

are no conflicts such as element name, query structure and irregularities in the XPath 

expression. This can be achieved by using the semantics derived in given unique 

paths and the constraints of elements. This section demonstrates a number of XPath 

queries that are specified incorrectly in terms of either data structures or semantics. It 

also shows the query performance of XPath queries without the transformation. 

When these queries are transformed, the semantic conflict detection is triggered, 

which will inform the user that no data is returned for a particular XPath query. 

Figure XPath Query Conflicts 

8.16a dblp/article[year <1950]/title/tn  
Semantic conflict is detected in condition 
as comparison value is out of range value 
defined in the Schema. 

8.16b dblp/phdthesis[supervisor = /dblp/book/@id]/title/tn 
Semantic conflict is detected in condition 
where path comparison value 
/dblp/book/@id is not valid.  

8.16c 
 

   
//book/title[2]/tn  

Semantic conflict is detected in index 
position condition 2 which is not within 
occurrence range. 

8.17a dblp/article/title/following-sibling::author 
Semantic conflict is detected in structural 
element order as author is preceding 
sibling of title in the XML Schema.  

8.17b dblp/article/title/preceding::book 
Semantic conflict is detected in structural 
element order as book follows article in 
the XML Schema. 

 

Figure 8.15  XPath Queries with No Semantic XPath Queries 

 



Ch. 8 

204 

Figure 8.15 demonstrates a series of XPath queries that do not have semantic 

counterparts due to the conflicts detected in them. 
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Figure 8.16  Before and After Applied Semantic Conflict Detection of XPath Transformation 
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The XPath queries in Figure 8.16 demonstrate the semantic conflicts detected in the 

condition on the element that definitely returns an empty result.. The query 

performance result patterns in Figure 8.16 (a, b & c) indicate a linear increase along 

with an increase in data sizes regarding the empty results.  This indicates that there is 

a high consumption of resources during the search for answers for those queries. 

The XPath queries in Figure 8.17 demonstrate the semantic conflicts detected in path 

elements with regards to the order constraint of the element that definitely returns an 

empty result. 
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Figure 8.17  Before and After Applied Semantic Conflict Detection Transformation 

The patterns of performance result patterns in Figure 8.17 (a & b) indicate a linear 

increase along with an increase in data sizes.  The resulting pattern demonstrates that 

there is a significant amount of execution time spent on the search for answers for 

those queries. By using semantic transformation, the average time taken to transform 
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the XPath queries shown in Figure 8.17 is between 0.091 and 0.186 seconds, which 

is negligible when compared to the time take by the original queries. 

8.6 Summary   

This chapter has presented an evaluation of the proposed techniques for semantic 

transformations using a real data set, that of DBLP together with the accompanying 

DBLP XML Schema and an off-shelf commercial XML-enabled database 

management system. The evaluation is carried out using incrementally scaled data 

sets from the DBLP data set, which allows a thorough analysis of the impact of query 

performance. For each main category of semantic transformations, a set of XPath 

queries is specified and then by applying specific semantic transformation within 

each category, one or more semantic XPath queries are produced. The semantic 

XPath queries and their original XPath queries produce equivalent result sets. The 

experimental evaluation enables us to determine the semantic transformation as an 

optimization device summarized in Figure 8.18.  

 

Semantic 

Transformation 

Optimization 

Devices 
Optimization Devices with Limitations 

Semantic Path 
Expansion 

�  
As long as ‘//’ is expanded to one single path fragment, this 
certainly reduces the path evaluation and ultimately query 
processing.  

Semantic Path 
Complement 

�  
As long as ‘..’  and the condition element are removed from the 
XPath query, this certainly reduces the path evaluation and 
ultimately query processing. 

Semantic Path 
Contract 

 � Optimized when ‘*’ is replaced with ‘//’  and  * represented 
multiple paths fragments or elements 

Predicate 
Elimination  
 

 
� Optimized when  

• Comparison elements are made up by a path fragment, 
with or without a comparison value 

• Comparison value is an absolute path  

Predicate 
Reduction 

�  
� Optimize when  

• Comparison elements are made up by a path fragment, 
with or without a comparison value 

• Comparison value is an absolute path 

Preceding- or 
Following-sibling 

 
Significantly optimize  

Following or 
Preceding 

�  Significantly optimize. 

Ancestor / 
Ancestor-or-self 

�  Confidently optimize when ancestor-or-self axis is removed. 

Parent �  Significantly optimize 

Descendant or 
descendant-or-self 

 Optimize when ‘*’ is replaced with ‘//’ 

Figure 8.18  Identifiying Semantic Transformations as Optimization Devices 



 

 

Chapter 9 

Experimental Evaluation Using 

Benchmark Data Sets  

This chapter focuses on the effectiveness of the proposed semantic transformations 

by conducting experimentation on Michigan benchmarking data sets. Most of the 

experimental queries are the Michigan queries. However,    

As discussed in Chapter 3, XML data is a tree structure expression where the depth 

of the data hierarchy can greatly influence the performance of query processing. This 

research has found that most of the real application data sets have shallow data 

hierarchies that make the query structures less expressive. This chapter focuses on an 

evaluation of expressiveness of data hierarchies by exploring more complex query 

structures and predicates in XPath queries. 

9.1 Performance Evaluation 

As described in Chapter 7 in this experimental design, each XPath query and its 

semantic XPath query over each data set would be executed n runs. The execution 

time is accumulated for the last three runs. The average execution time is then 

produced based on the last three runs. The average execution time is referred to as 
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the performance result throughout this chapter. While the performance result for an 

original XPath query is the average execution time, the performance result for its 

semantic XPath query is the average execution time plus the transformation time. 

The evaluation involves the comparison between the performance results of the 

original XPath query and its semantic XPath query.   

The reader is reminded that the constraints used to transform XPath queries are the 

information in lists Q and C, which have been proposed in Chapter 4. While Q 

contains a list of possible unique paths (full path expressions) derived from XML 

schema, list C contains a list of constraints of elements defined in XML schema. 

From the available Michigan XPath queries, the evaluation of XPath queries is 

divided into three categories: Single Query condition of Value-based Comparison, 

Joined Query conditions with Value-based Comparison and Twig Join with Value-

based Comparison. This experiment focuses on the XPath queries that can be 

executed using the adopted XML-Enabled database management system. In short, 

the performance of XPath queries specified with axes is not central to the study in 

this chapter. 

An XPath query and its semantic XPath query/queries are equivalent if and only if 

they produce the same result set although they may be different in structure. 

9.1.1 Single Query Condition with Value-based Comparison 

This section presents the performance results of a set of XPath queries specified with 

predicates that have only a single query condition. Figure 9.1 summarizes the 

information related to XPath queries used by the experiment in this section that 

includes the Query Type, XPath query, Semantic XPath query that is produced after 

being transformed, and the Result Type.  

Figure 9.2 shows the performance results of the benchmark XPath query 

//eNest[@aLevel=2] and the equivalent semantic XPath query. For this XPath query, 

semantic path expansion and predicate elimination semantic transformations are 

applied to obtain the equivalent semantic XPath query. 
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Figure 9.1  XPath Queries and  Semantic XPath Queries 

The semantic path expansion transformation first expands //eNest[@aLevel=2] to 

eNest/eNest[@aLevel=2] based on the unique path eNest/eNetst located in list Q.  

The first semantic XPath query is a full path that represents the number of data 

hierarchies based on the value of the query condition, which in this case is 2. 

Figure 9.2  Performance Results Before and After Semantic Transformations  

The second semantic transformation removes the predicate [@aLevel=2] from the 

semantic XPath query /eNest/eNest[@aLevel=2] by applying predicate elimination 

semantic transformation. In this way, we study the impact of query performance 

without using the predicate which is considered as a redundant component after the 

XPath query has been expanded to a full path expression. Note that the semantic path 
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expansion must be applied before removing the predicate. That is because the 

predicate indicates the levels of data hierarchies in the XPath query.  

The performance results in Figure 9.2 show a linear increase along with the increase 

in data sizes. As expected, among the three patterns of results, the query performance 

of the original XPath query is the worst and the performance results of two semantic 

XPath queries are almost the same. The reduction of predicate does not reduce much 

of the performance as expected, as it actually reduces the verification of attributes; 

however, the result does not reflect what is expected.  The negligible result of 

removing the predicate is possibly caused by the shallowness of the data hierarchy 

indicated by the value of 2 in the query condition. To verify this, another similar 

query with further data hierarchies based on the value of the query condition is 

evaluated next.  

Figure 9.2 show the performance of both semantic XPath queries (the former is 

marked with Semantic Path Expansion and the latter is applied with Semantic 

Predicate Elimination transformations) outperforms the original XPath query by 

between 30% and 50%. There is a linear increase of performance results along with 

the increase in the size of the data sets. Hence, it can be expected that the 

improvement produced by the semantic XPath queries will continue to increase along 

with the growth in the larger data sets.  

The next XPath query used for evaluation is to increase the data hierarchy by 

increasing the value of the query condition.  Figure 9.3 provides further evidence for 

the argument previously made about the cause of the negligible performance result 

after the predicate has been removed as in Figure 9.2. The performance results in 

Figure 9.3 are for the XPath query 

//eNest[@aLevel=7]/eNest[position()=2]/@aUnique1 and its equivalent semantic 

XPath queries.  

As the query condition has value 7, the semantic path expansion replaces //eNest 

with /eNest/eNest/eNest/eNest/eNest/eNest/eNest which is a unique path located in 

Q. The first semantic XPath query 

/eNest/eNest/eNest/eNest/eNest/eNest/eNest[@aLevel=7] is now produced 
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showing a full path that has 7 data hierarchies based on the value 7 of the query 

condition.  

 

Figure 9.3  Performance Results Before and After Semantic Transformations 

Since the XPath query has already been expanded to a full path, it is not necessary to 

use the predicate that has a query condition to restrict the data hierarchy of the full 

path. The semantic transformation applies a predicate elimination semantic 

transformation to remove the predicate [@aLevel=7] from the first semantic XPath 

query. The query performance result patterns for XPath query and semantic path 

expansion XPath query in Figure 9.3 grow exponentially along with the growth in 

data sizes. The query performance result pattern of the predicate reduction XPath 

query increases linearly along with the data sizes. In summary, the semantic path 

expansion XPath queries outperform the original XPath query by 30% to 70%.  

The semantic XPath query, which is obtained by predicate elimination semantic 

transformation, outperforms the semantic path expansion XPath query by between 

30% and 50%, and outperforms the original XPath query by 50% to 70%. This 

means that the semantic XPath query rewriting from the predicate elimination 

semantic transformation performs the best. This supports the conclusion that when 

the XPath query is expressive in structure, the semantic path expansion significantly 

improves the query performance. Following the application of semantic path 

expansion transformation and the removal of predicates, the performance 

improvement is even more promising.  
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Based on the performance result shown in Figure 9.3, especially the query 

performance result after the removal of the predicates, it can be concluded that the 

data hierarchy used in the XPath query condition greatly contributes to query 

performance. It has been proven that the deeper the data hierarchy used by the query 

condition, the greater will be its effect will be on the query performance despite the 

full expansion of the path as in Figure 9.3.  

Predicate elimination semantic transformations undoubtedly benefit XPath queries 

that delve deeply into data hierarchies. Some data tree structures are fan-out 

structures [Runapongsa et al., 2006] meaning that the deeper the tree grows, the 

greater its number of branches, also known as a fan-out. This means that when the 

query delves into a deeper data hierarchy, there is a possibility that more data will be 

returned and searching of the data tree is significantly increased. If the verification of 

redundant components during processing can be eliminated, as was done in the 

XPath query above, there is a significant gain in performance.   

Next, another evaluation is performed based on the depth of data hierarchy. The 

lowest hierarchy in the data tree is used for this experiment. 

Figure 9.4 shows the performance results of the XPath query //eNest[@aLevel=16] 

and its equivalent semantic XPath query.   

 

Figure 9.4  Performance Results Before and After Semantic Transformations  
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The semantic path expansion transformation first expands //eNest[@aLevel=16] to a 

full path that has 16 hierarchies, which is restricted to the value of 16 in the query 

condition.  This full path is the located unique path in Q. The first semantic XPath 

query is the full path together with the predicate [@aLevel=16]. Following the first 

semantic transformation, the predicate elimination semantic transformation 

eliminates the predicate [@aLevel=16] from the first semantic XPath query. 

The XPath query //eNest[@aLevel=16] is similar to the earlier XPath queries in 

Figures 9.2 and 9.3, except that the hierarchy of the XPath query in Figure 9.4 is 

much deeper; in fact it traverses the lowest data hierarchies in the Michigan XML 

document tree.   

The graphs in Figure 9.4 indicate the performance results obtained by the XPath 

query and its semantic XPath queries grow linearly as the data sizes increase. The 

performance result obtained by applying semantic XPath query semantic path 

expansion transformation is better than the performance result obtained by the 

original XPath query by between 25% and 40%. However, the most significant 

performance improvement, between 50% and 70%, is achieved by the semantic 

XPath query in which the predicate is eliminated.   

The query performance results in Figure 9.4 demonstrate that the deeper the 

hierarchy data, the slower the XPath query will perform.  The transformation of such 

an XPath query to a full path expression and the reduction of query conditions, if 

possible, would boost performance significantly.  

The performance results obtained by XPath queries and their semantic XPath queries 

confirm the benefits of semantic path transformation and predicate elimination 

semantic transformations. Those semantic transformations would certainly provide 

performance improvement for similar data hierarchies and XPath query structures.  

9.1.1 Multiple Query Condition with Value-based Comparison 

This section presents the query performance results of a set of XPath queries 

specified with predicates that have query conditions joined with operators AND or 

OR or both. 
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Figure 9.5 summarizes the information related to XPath queries used in the 

experiment in this section, including Query Type, XPath queries, Semantic XPath 

that is produced after being transformed, and the Result Type. 
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Figure 9.5  XPath Queries and Semantic XPath Queries 

Figure 9.6 presents the performance of the XPath query //eNest[@aLevel =17 or 

@aLevel =14 and @aFour=1] and its equivalent semantic XPath queries. Note that 

the query condition @aLevel =17 is not specified by the actual benchmark query, it 

has been added for a special purpose to perform a mutual exclusion described in 

detail below.  
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Figure 9.6  Performance Results Before and After Semantic Transformations  

As stated in Chapter 7, the Michigan benchmark data has only 16 hierarchies; this 

means @aLevel =17 is regarded as a conflict attribute. When a conflict query 

condition exists and it is joined by OR with another query condition, it is known as a 

mutual exclusion (refer to Chapter 3).  To demonstrate the mutual exclusion, 

@aLevel =17 is added to show how it allows the co-existence of two query 

conditions @aLevel =14 and @aFour=1.  The existence of the query condition 

@aLevel =17 does not affect the overall result. 

The first step in the semantic transformation applies the predicate reduction semantic 

transformation to remove the query condition @aLevel =17 from the original XPath 

query. This produces the first semantic XPath query. 

Following the first semantic transformation, the second semantic transformation is to 

apply the semantic path expansion transformation that removes the query condition 

@aLevel=14 from the predicate based on a matched unique path located in Q. The 

matched unique path contains 14 data hierarchies of eNest. 

Notice that in this semantic path expansion transformation, the valid hierarchy query 

condition @aLevel =14 is removed but it is joined by AND to the next query 

condition; this is allowed as long as the full path represents the expected data 

hierarchies restricted by the query condition @aLevel =14. This transformation is 

done because the query condition @aLevel=14 refers to a very deep hierarchy data. 

The simultaneous removal of a hierarchy query condition and expansion of the 

XPath expression would reduce the validation of each data hierarchy every time it is 
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accessed. At the same time, it also guarantees a significant improvement in query 

performance. This has been proven in XPath queries in Figures 9.3 and 9.4. 

The graph in Figure 9.6 indicates the performance results obtained by the original 

and the equivalent semantic XPath queries increasing linearly, along with the 

increase in data sizes. The semantic path expansion XPath query outperforms the 

original XPath query by an average of 98%. However, there is no difference in 

performance results between the original XPath query and the semantic XPath query 

produced by applying the predicate reduction semantic transformation to the original 

XPath query. This shows that the removal of the mutual exclusive query condition is 

not significant. Recall that the performance result of this semantic XPath query is the 

average execution time plus the transformation time. Therefore, based on the result 

depicted by the graph in Figure 9.6, there is only a slight improvement in 

performance.  

The scope of this research does not include a study of the storing and mapping 

techniques of the database engine, especially for those XML-Enabled Databases. 

Different XML-Enabled Databases may have different techniques to achieve these 

kinds of storage objectives. To be able to comment on this, a broader investigation of 

several systems is required and will be considered as a future extension of this 

research. 

Up to this point, this chapter has demonstrated the semantic transformations using a 

set of XPath queries that are specified with query conditions, conditions that are 

joined based on data hierarchies using an OR or AND operator. The query conditions 

are also based on the attributes that appear to be on the same data hierarchy. For 

example, the XPath query in Figure 9.6 has a query condition @aLevel =14 join 

with the query condition @aFour=1. For every eNest at hierarchy 14th, the attribute 

aFour exists. 

The hierarchy query condition is eliminated and replaced by the full hierarchical path 

expression that speeds up the traversing direction. This has been achieved by the 

previous XPath queries in Figures 9.2 to 9.4 & 9.6. On the other hand, removing 

query conditions from the XPath queries predicate does not always produce benefits, 
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especially when a query condition is non-hierarchical and restricts the searching 

space. We show this in the XPath query of Figure 9.7. 

In Figure 9.7, we demonstrate the performance results of the XPath query 

//eNest[eOccasional/@aRef and @aSixtyFour =0] and its equivalent semantic 

XPath query. The XPath query has a predicate containing a set of query conditions 

based on the attributes other than the hierarchy attribute. As can be seen, there is no 

query condition that indicates the hierarchy of the data element; therefore, it is 

expected that the searching sometimes covers the whole document.  

 
Figure 9.7  Performance Results Before and After Semantic Transformations  

The first semantic transformation removes the query condition @aSixtyFour = 0 in 

accordance with the constraint of eOccasional existence in list C, which is a 

dependant of aSixtyFour that have value of 0. However, not all eNest has 

eOccasional. This means that as long as the eOccasional element is present, 

@aSixtyFour expects to have a value of 0. This does not work in reverse, which 

leads to the second semantic transformation that applies predicate reduction semantic 

transformation to the original XPath query. This time the query condition 

eOccasional/@aRef is removed instead of the query condition @aSixtyFour = 0. 

There is a significant difference when one but not the other is removed.  
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The first predicate reduction semantic transformation produces the first semantic 

XPath query //eNest[eOccasional/@aRef]. The second predicate reduction semantic 

transformation produces the second semantic XPath query //eNest[@SixtyFour = 0].  

The performance result patterns in Figure 9.7 increase exponentially along with the 

increase in data sizes. As can be seen, there is a significant improvement of almost 

100% in query performance obtained by //eNest[eOccasional/@aRef], which is the 

first semantic XPath query.  

In the second semantic transformation, the query condition eOccasional/@aRef is 

removed from the original XPath query in accordance with the constraints set for 

aSixtyFour = 0 in the schema that guarantees the existence of eOccasional. The 

semantic XPath query //eNest[@SixtyFour=0] is produced by applying predicate 

elimination semantic transformation. The semantic XPath query shows no difference 

in performance compared with the performance result obtained by the original XPath 

query. This is because the data of eNest elements do not have to be accessed if the 

attribute SixtyFour of eNest is not 0. 

Sometimes, additional query conditions are introduced to the predicate enabling the 

query to perform more efficiently. This transformation is known as semantic 

introduction [Chakravarthy et al., 1986a]. The semantic introduction transformation 

has been introduced to optimize queries in deductive databases. Currently, this 

research does not consider semantic introduction in XML databases because such a 

transformation requires reasoning theory in order to accomplish the task, which is 

beyond the scope of this research. This research uses the standard W3C semantics in 

XML Schemas. This kind of transformation will be considered for a future work. 

Figure 9.8 shows the query performance results of the XPath query //eNest[@aLevel 

=12 and eOccasional/@aRef and @aSixtyFour =0] and the equivalent semantic 

XPath queries. In this XPath query, a new query condition @aLevel =12 is added to 

the predicate. The new query condition allows the query hierarchy to be expanded to 

its full path and it also allows a smaller amount of data to be returned. 

When applying the semantic path expansion transformation, @aLevel =12 is 

removed and //eNest is expanded to a full path of 12 hierarchies according to an 
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existing unique path located in list Q. The application of an XPath query semantic 

path expansion transformation shows a significant linearly increasing pattern of 

performance improvement of between 50% and 80% along with the increase in data 

sizes. 

 
Figure 9.8  Performance Results Before and After Semantic Transformations  

Next, the predicate reduction semantic transformation is applied to remove 

eOccasional/@aRef from the first semantic XPath query as when @aSixtyFour = 0, 

it guarantees the existence of eOccasional/@aRef. The second semantic XPath 

query is a full path expanded to 12 hierarchies with a predicate [@aSixtyFour = 0]. 

As indicated earlier, Figure 9.7 shows how eOccasional/@aRef and @aSixtyFour 

work with each other. Therefore, the third transformation applies the predicate 

reduction transformation to remove [@aSixtyFour = 0] from the first semantic 

XPath query. The third semantic XPath query is a full path expanded to 12 

hierarchies with a predicate [eOccasional/@aRef ]   

Figure 9.8 shows that the performance result in it increases linearly along with the 

growth of the data sizes. The semantic XPath query, with semantic path expansion 

transformation applied, outperforms the original XPath query by between 50% and 

80%. The second semantic XPath query (where predicate reduction semantic 

transformation is applied) shows a query performance improvement of between 10% 

and 30% along with the increase in data sizes.  
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As can be seen, the removal of query conditions eOccasional/@aRef or 

@aSixtyFour = 0 from the semantic path expansion XPath query, have not 

contributed to an improvement of query performance. It is suspected that a special 

means of structuring and storing data in this particular XML-Enabled database was 

required, of which users are not aware. For this reason, in the near future, there 

should be a more thorough investigation into this kind of query patterns using a 

similar data structure.   

9.1.2 Twig Pattern Query Conditions with Value-based Comparison 

So far, XPath queries that are specified with a single predicate containing simple 

query conditions, have been demonstrated. In this section, XPath queries specified 

with multiple predicates that represent simple or twig pattern query conditions are 

used for further experiments. These complex query conditions, carried out over real 

data sets, as in the previous chapter, are challenging due to the shallow depth of the 

data structure; the benchmark data sets in this chapter address this challenge.  
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Figure 9.9  XPath Queries and Semantic XPath Queries  
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Figure 9.9 shows a list of XPath queries and information pertaining to the 

transformations such as Query Type, Original XPath queries, Semantic 

Transformation and Result Type. 

Figure 9.10 shows the performance results of the XPath query //eNest[@aLevel = 

"11"][./eNest/@aFour="3"]/@aUnique1 and the equivalent semantic XPath 

queries. 

The XPath query demonstrates the use of multiple predicates and self axis, optionally 

specified with operator “.”. This is not a twig query because the first query condition 

projects on an element. 

 

Figure 9.10  Performance Results Before and After Semantic Transformations Applied 

The first semantic XPath query is produced by applying double semantic 

transformations. The first is semantic path expansion transformation to expand 

//eNest to a full path that has eleven elements eNest using only the parent-child ‘/’ 

relationships. This is due to the unique path located in Q that satisfies the query 

condition value of 11. The second is to remove the first predicate [@aLevel = "11"]. 

The second semantic XPath query is produced by applying semantic transformation 

to the self axis to remove the operator ‘.’ from the second predicate and the third 

predicate. 
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The performance result patterns in Figure 9.10 show a linear increase along with the 

growth in data sizes. The semantic XPath query obtained by the semantic path 

expansion outperforms the original XPath query by between 40% and 50%.  

However, the equivalent semantic XPath query without the operator “.” axis does not 

seem to perform better than the first semantic XPath query. Nevertheless, it is not the 

worst because its fluctuating pattern is not much different from the result obtained by 

the first semantic XPath query. For this reason, it can be concluded that both 

semantic XPath queries perform at the same rate of improvement and they both 

outperform the original XPath query. 

As can be seen from the semantic XPath queries, when the XPath query operator‘//’ 

is used, the impact is significant. However, this may not be the only factor that 

affects the performance, because as explained earlier, this impact can also be caused 

by the structure of the individual database engine which is not within the scope of 

this research. However, if the impact is caused by some implicit ways of specifying 

queries, this can be handled. In this case, path component such as ‘//’ has been 

eliminated by the semantic path expansion transformation. The result shows a great 

improvement in performance after this elimination.   

The next evaluation demonstrates the use of more complex query conditions in an 

XPath query, which is referred to as a ‘twig pattern’ query condition.   

Figure 9.11 shows the performance result obtained by the XPath query 

//eNest[@aLevel="8"][.//eNest[@aFour="3"]][./eNest[@aSixtyFour="3"]]. Due 

to the nested query condition in the second and the third predicates 

[.//eNest[@aFour="3"]] and [./eNest[@aSixtyFour="3"]] respectively, this XPath 

query is known as the twig pattern XPath query type [Runapongsa et al., 2006]. Such 

a query condition in the second predicate is equivalent to a fragment of comparison 

paths .//eNest/@aFour and ./eNest/@aSixtyFour in which each has comparison 

values of 3. 

In summary, the given XPath query has three predicates. While the first predicate is 

based on a single element that restricts the hierarchy of the accessed data, the last 

two predicates are based on query conditions that make the XPath query a twig 

pattern type.  
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The equivalent semantic XPath query is produced by applying the semantic path 

expansion transformation which enables //eNest to be expanded to a full path of 8 

eNest elements using only the parent-child relationship hierarchies. At the same 

time, it also applies predicate reduction semantic transformation to remove the 

predicate [@aLevel="8"] from the XPath query.  

 

Figure 9.11  Performance Results Before and After Semantic Transformations Applied 

The performance result obtained by the semantic XPath query, which is identified by 

the term Semantic Path Expansion in Figure 9.11, after applying semantic path 

expansion transformation, outperforms the performance result obtained by the 

original XPath query by between 25% and 70%. There is also a strong linear growth 

along with the increase in data sizes performed by both the XPath queries.  This 

confirms that the  larger the dataset, the greater the improvement is in query 

performance that can be achieved. 

The semantic transformation of the XPath axis is applied on the first semantic XPath 

query to produce the second semantic XPath query, whose performance pattern is 

identified by the term Semantic Transformation for the XPath Axis in Figure 9.11. 

The semantic transformation removes the self “.” axis from the first semantic XPath 

query. The performance result in Figure 9.11 again indicates that the second 
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semantic XPath query outperforms the original XPath query by between 27% and 

72%.  

Even though there is a slight improvement in performance obtained by the second 

XPath query over the one performed by the first XPath query, both the semantic 

XPath queries perform almost the same. Therefore, it is better to remove unnecessary 

XPath components to optimize the performance.   

Figure 9.12 shows the performance result of the selected twig pattern XPath query 

//eNest[@aLevel="12"][./eNest[@aFour="3"]][./eNest[@aSixtyFour="3"]] and 

its semantic XPath queries.  

The selected twig pattern XPath query in this case is very similar to the previous 

XPath query except that the predicate contains the query condition, which is used to 

restrict the selection of hierarchical data on a much deeper hierarchy of 12. As the 

second and third predicates are the same as those in the previous XPath query 

(Figure 9.11), it is not necessary to repeat the earlier analysis before transformation 

takes place. 

The semantic XPath query is produced by applying double semantic transformations. 

The first semantic XPath query is produced by applying the semantic path expansion 

which enables the expansion of //eNest to a full path of 12 eNest that has only 

parent-child relationships. At the same time, predicate reduction semantic 

transformation is applied to remove the predicate [@aLevel="12"]. 

The first semantic XPath query is then transformed once more by using semantic 

transformation for the axis where self ‘.’ axis is removed from the second and the 

third predicates. Hence, the second semantic XPath query is produced. 
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Figure 9.12  Performance Results Before and After Semantic Transformations Applied 

The performance results in Figure 9.12 show a linear increase along with the growth 

in data sizes. There is a significant improvement of 100% for the semantic path 

expansion XPath query compared with the performance result obtained by the 

original XPath query.  There is a slight declined in performance of the largest data 

set performed by the first semantic XPath query; this could probably be due to a 

hiccup in the processing memory. 

The overall benefits of using semantic transformation are that both semantic XPath 

queries show a significant improvement compared with the performance of the 

original XPath query. Furthermore, according to performance results the 

performance improves with the increase in data sizes. 

9.2 Summary 

This chapter has conducted an evaluation of a series of selective benchmark XPath 

queries using benchmark incremental data sets.  The evaluation is based on the 

semantic transformation techniques and XPath query components that are 

transformed in order optimize the performance results.  

The evaluation is divided into three sections: 
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•   The first evaluation section focuses on a set of XPath queries, each of which 

has a predicate containing a query condition, which restricts the access to 

hierarchical data depending on the type of the hierarchy, that is whether it is 

shallow, medium or deep (the lowest hierarchy in the data tree).  

•   The second evaluation section focuses on a set of XPath queries, each of 

which has predicates containing simple query conditions that are joined by 

AND or OR. The query conditions restrict the access to hierarchical data 

based on data that are not necessarily hierarchical data.   

•   The third evaluation section focuses on a set of XPath queries, each of 

which has predicates containing twig patterns in a path fragment and is joined 

by AND.  

Most benchmark XPath queries used in the evaluation show very promising 

improvement in performance after they have been transformed to equivalent XPath 

queries. In some semantic XPath queries, the performance result increases 

significantly after one or more query condition(s) have been removed. This is 

because the removal of a query condition plays a critical role in narrowing down the 

search space during the processing stage. However, there are cases when the removal 

of a query condition may affect the performance result, as shown in Figure 9.7. This 

discovery enables the scope of the research to extend to new findings in XML query 

transformations. The challenge of introducing extra query conditions to XPath 

queries is to use reasoning on semantics similar to what has been done using 

reasoning techniques for deductive databases. 



 

Chapter 10 

Conclusions and Future Work 

The ever-increasing adoption of XML has created a need to ensure that XML query 

languages perform efficiently. Query optimization and transformation for XML 

query languages, both syntactically and semantically, have received a lot of attention 

by research communities in recent years. However, due to the fast progress of the 

application of XML data management solutions, XML-Enabled Database 

Management Systems still face several challenges. Among these challenges are 

query processing specific to query optimization. Semantic query optimization utilizes 

constraints in XML schemas to directly optimize a given query with a set of 

optimization rules. Due to the current complexity of the XML data structure, which 

is enabled by rich semantics in XML Schemas, semantic query transformations 

should be performed in a more systematic manner. This research has proposed a 

series of semantic transformations for XML queries for optimization purpose. In this 

chapter, a summary of the work of this thesis is presented, together with the main 

conclusion and an outline of topics for future work that may arise from this study.   

10.1 Summary of the Contributions 

Chapter 1 provided a broad overview of the XML background, XML database, 

XML schemas and query processing in XML.  The description explored the 

following three concerns related to XML technology.  
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The first is the significant growth of XML data that leads to the development of 

XML schema in order to increase the supportability of further semantics to deal with 

data structure and the quality of XML documents. 

The second is the critical concern of efficient storage management. XML document 

storage needs to be efficient. The management of permanent XML data must be able 

to deal with data independence, integration, access rights, versions, views, integrity, 

redundancy, consistency, recovery, and the enforcement of standards.  

The third is a need to ensure that XML query languages perform efficiently. 

Therefore query optimization and transformation for XML query languages, both 

syntactic and semantic, have received a great deal of attention from research 

communities in recent years. Due to the rapid development of XML, query 

optimization still needs much attention.  

The chapter describes the challenges of using semantics in XML Schema for 

optimization purposes for XML queries. This chapter explained the current 

complexity of the XML data structure which is enabled by the rich semantics in 

XML Schema. The utilization of semantics for query optimization purposes should 

be done in a more systematic manner. That can be done by leveraging the semantics 

from XML Schema and using it to investigate a set of semantic transformations.   

The introductory section in Chapter 1 presents an overview of XML technology, 

XML schemes and XML Databases, and identifies the need for semantic 

transformations. Furthermore, it proposes the use of semantics in XML Schemas to 

overcome the limitations of semantics available in DTD for proposing semantic 

query transformations.  

The chapter also provides the research motivation for semantic query 

transformations. That is, the process of applying semantics to optimize queries has 

been adopted by other databases including relational, object-oriented and deductive 

databases, and is also useful in XML databases due to the availability of XML 

Schemas. The research motivation clarifies the difference between semantic query 

transformations in XML database and other databases due to the types of XML 



Ch. 10 

229 

constraints in XML schemas which are driven by two sets of constraints: structural 

constraints and constraints imposed by elements.  

Chapter 2 presented a survey and evaluation of the existing literature in the field of 

XML query optimization using semantics. We categorized the existing works into 

legacy databases and XML databases. 

The legacy databases consist of the works of relational data, object-oriented, and 

deductive databases which utilize semantics in the schemas to optimize queries. 

The XML databases consist of two sub-categories: XML queries without predicates 

and XML queries with predicates. 

For the sub-category of XML query without predicates, we review existing 

techniques that utilize semantics from XML schemas for query optimization 

purposes in XML databases. An XML query (i.e. in XPath or XQuery) can be 

expressed without predicates. The works in this category are further divided into 

XPath query containment, tree pattern minimization and semantic query 

optimization. In XPath query containment, all techniques that apply semantics to find 

containment are reviewed. XPath query containment determines a set of answers of 

one XPath query, which is contained in another XPath query.  In tree pattern 

minimization, all techniques express an XML query on a tree pattern and minimize 

the size of a tree pattern for query optimization purposes. In semantic query 

optimization, all works use schema semantics to formulate a set of rules, which are 

then used to optimize XML queries (i.e. in XPath query and XQuery). 

A predicate in an XML query expresses conditions to be fulfilled in addition to the 

given structural path. A condition is a Boolean expression. It may involve 

comparisons between elements and values, path expressions denoting elements to be 

compared, as well as further path expressions. XML query with predicates review all 

existing techniques that use semantics in XML schemes to optimize XML queries 

that focus on XML query predicates.  

At the end of Chapter 2, outstanding problems in these existing techniques have been 

identified. The scope of the work in this thesis is defined in the context of these 

problems. 
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Chapter 3 describes the problem definition of using semantics in XML schemas (i.e. 

DTD and XSD denoted as XML Schema or XML-Schema) to transform XML 

queries for optimization purposes. Chapter 3 provided a brief overview of the 

problem definitions.  

Due to the increase in popularity of XML technology, XML Schema has become a 

better choice due to its richness of semantics and its variety of flexible data 

structures. There is a need to provide a comprehensive and systematic means of 

assisting database developers to exploit the great advantage of semantics contained in 

the XML Schema in order to transform XPath queries for query optimization 

purposes. 

The overview also points out the problems of using semantics in XML Schemas 

since the types of semantics used for the important task of query optimization need to 

be very clear. Also, when using semantics for query transformation, the semantics 

are also useful for preventing certain types of queries from accessing databases. This 

is because these queries are identified as having conflicts and definitely return empty 

result sets. The overview also describes the problems of different components of 

XPath query such as simple path expressions, XPath axes and XPath query axes that 

need to be addressed depending on the different types of semantics in XML Schema.  

In this chapter, formal definitions of the XML model and the XML Schema 

structures were provided. XML query components such as the type of path 

expressions, XPath query axes and XPath query conditions in predicate, structures 

and the notion of query processing were also defined and described. The chapter also 

described the details of available and standard semantics in the XML Schema, which 

are recommended by W3C, so that their importance can be emphasized for query 

transformation purposes.  

Based on the semantics and types of semantics as well as the notation of query 

processing in XML, a summary of problem definitions was given; that is, the 

semantic transformations for XPath queries specified with simple path expressions, 

XPath queries specified with XPath axes and XPath queries specified with 

predicates. The semantic transformation algorithms were implemented for 

evaluation. A highly respectable commercial off-the-shelf Relational Database with 
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XML-Enabled features was chosen for data management. The most important aspect 

of the usefulness of the semantic transformations was the evaluation that enabled this 

research to identify semantic transformations as optimization devices.  

Chapter 4 proposed two main streams of work. The first was the proposal of a 

methodology to derive the semantics in XML Schemas that prepared for semantic 

transformations.  

The second was the proposal of semantic path transformations.  

The derivation of semantics consisted of the derivation of two types of semantics: 

• structural or path semantics (or constraints) produced list Q 

• constraints of elements produced list C    

The semantic path transformations included the following: 

• semantic path expansion transformation transformed XPath queries that were 

specified with ‘//’ or ‘*’ to a full path;  

• semantic path contraction transformation transformed XPath queries that 

were specified with ‘*’ to a contracted path; and  

• semantic path complement transformation transformed XPath queries that 

were specified with ‘..’ to a contracted path or a full path. 

Each semantic transformation given above was accompanied by an algorithm. 

Chapter 5 proposed semantic transformation typologies for XPath queries specified 

with XPath axes. The semantic transformation rules were formulated by using 

semantics defined in XML Schemes that transformed XPath queries specified with 

axes including the following: 

• semantic transformation for XPath queries specified with following-sibling 

or preceding-sibling axes;  
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• semantic transformation for XPath queries specified with following or/and 

preceding axes;  

• semantic transformation for XPath queries specified with ancestor or/and 

ancestor-or-self axes;  

• semantic transformation for XPath queries specified with parent axis. 

• semantic transformation for XPath queries specified with descendant or/and 

descendant-or-self axes; and 

• semantic transformation for XPath queries specified with child or/and self 

axes.  

Each semantic transformation above is also accompanied by an algorithm. 

Chapter 6 proposes semantic transformation typologies for XPath queries that are 

specified with predicates. The predicates are first determined by the proposed 

condition status determination function whereby each condition in the predicate is 

awarded a status with a full-qualifier or a partial-qualifier. The connectives between 

the query conditions ultimately determine the status of the predicate to enable either 

one of the following semantic transformation to be applied:   

• Predicate Elimination Semantic transformation for XPath queries. This 

semantic transformation eliminated a predicate if it satisfied the rule 

condition.  

• Predicate Reduction Semantic transformation for XPath queries. This 

semantic transformation reduced the size of a predicate by eliminating some 

conditions in the predicate if they satisfied the rule condition.  

Each semantic transformation above was also accompanied by an algorithm. 

Chapter 7 described the designs of the experiments used to evaluate the proposed 

semantic transformation algorithms in Chapters 4, 5 and 6. The experiments 

contrasted the query performance of XPath queries and their semantically equivalent 

counterparts.  
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While the first experiment contrasted the query performance of a set of designed 

XPath queries and their semantic counterparts based on the a real data set DBLP, the 

second experiment contrasted the query performance of a set of micro-benchmarks 

(also known as Michigan benchmarks) XPath queries and their counterparts based on 

the available benchmark data sets.   

The elementary design in this chapter began by providing the background of 

experimental design that included the main objectives and evaluation strategies. The 

evaluation strategies focused on the implementation framework, the database 

platform, data sets, metrics, and the operational environment and result analyses. 

The remainder of the chapter is divided into two main sections: 

• Common set-up for experiments: Even though the evaluation strategy 

involves two experiments, each of which concerned the evaluation of specific 

semantic transformation formulated rules applied on a given set of XPath 

queries, the section detailed several parts of the strategy and decision making 

process that are common to both experiments. These were Implementation 

Framework & Platform, Supporting of Minimal Requirement, Choice of 

Experiment Data and Schema, Setup of Operational Hardware, Software and 

System Modules 

 

• Individual set-up for experiments: This section described individual 

experiment set-ups including semantics enhancement based on individual 

XML Schema (DBLP or Michigan XMLSchema), data scaling, data 

cleansing, query-set, metrics and procedures. 

Chapter 8 evaluates semantic transformations based on the query performance of 

XPath queries and their semantic counterparts using DBLP data sets.  The main goal 

was to demonstrate the significant performance of XPath queries before and after 

undergoing semantic transformation. The results enable us to thoroughly evaluate the 

performance of XPath queries to which particular semantic transformations have 

been applied, but more importantly, to identify semantic transformations as 

optimization devices.   
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The evaluation is divided into three main categories: 

• Semantic path transformations: XPath queries specified with simple path 

expressions were transformed by applying semantic path expansion and/or 

semantic path contraction or/and semantic path complement.  

• Semantic transformations for XPath axes: XPath queries were specified with 

XPath axes such as child, descendant, descendant-or-self, parent, ancestor, 

ancestor-or-self, following, preceding, following-or-preceding sibling were 

transformed by the corresponding semantic rule to individual axis.  

• Semantic transformations for predicates: XPath queries that were specified with 

XPath predicates were transformed by applying semantic predicate elimination 

semantic transformation or predicate reduction semantic transformation.  

The original XPath queries and their semantic XPath queries were then run to access 

the database. The performance results (for semantic XPath query, performance result 

includes the transformation time) of the two XPath queries were compared, analyzed 

and evaluated. The corresponding semantic transformation was then identified as an 

optimization device based on the analyzed result. 

The chapter also included the evaluation of those XPath queries detected with 

conflicts that were unsatisfied and therefore as a result, the transformation, namely 

Semantic Conflict Detect produced no semantic XPath query and the returned result 

produced by the original XPath query was NULL.  

Chapter 9 evaluated semantic transformations based on query performance XPath 

queries and their semantic counterparts using the Michigan benchmark queries and 

data sets.  This chapter complemented Chapter 8 as most of the real application data 

including DBLP had a very shallow data hierarchy but more branching elements that 

made the data structures less expressive in depth. The focus in this chapter was on 

the evaluation of expressiveness of data hierarchies which enabled more complex 

query predicates to be specified. 

The query performance of XPath queries, some of which were specified with XPath 

axes, simple path expressions and predicates were presented. Since XPath queries in 
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this chapter were transformed based mainly on the presence of the predicates, the 

XPath query predicates were grouped under three different categories: 

•  Single Query Condition with Value-based Comparison 

•  Multiple Query Conditions with Value-based Comparison 

•  Twig Pattern Query Condition with Value-based Comparison  

Under each of these categories, the XPath queries were transformed and then run to 

access the database. The query performance results for each pair of queries (original 

and semantic XPath queries) were evaluated and analyzed. 

The experimental results have illustrated the majority of semantic transformations 

achieved a significant improvement on performance of XML query processing. 

Semantic transformations have been done in a more systematic manner. As the 

semantic transformations were done in a more systematic manner, this enabled the 

research here to identify semantic transformations as optimization devices. 

10.2 Limitations of the Work 

The outcome of every research faces some challenges and limitations. Some can be 

overcome, but others may require further investigation and extension left for future 

work. This research faces a few challenges, the major one being the limitation of 

resources, such as hardware which meant not being able to accommodate a bigger 

set of data for experimentation. Due to the excess research contributions, handling 

recursive XML Schemas is not yet addressed in thesis.   

The hardware environment restricts the possibilities of testing the implementation on 

different platforms which require better hardware architecture. Because of the 

limitation of the hardware, we were not able to consider the range of data sets as 

significantly as planned. Chapter 7 has presented the incremental data sets used for 

evaluating XPath queries specified with XPath axes that have been reduced partly 

due to available hardware memory and database platform limitations. 
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When an XML Schema contained cycles, it causes recursion in XML data. The 

traditional approaches of matching paths or enumerating paths no longer work as it 

will cause an indefinite path matching issue.  

10.3 Future Work 

The following complementary work could address the limitations mentioned above, 

and at the same time broaden the scope of the current research. 

� The affordability of upgrading hardware facilities with an improved availability 

configuration should allow the same experimentation using much larger sets of 

data possibly run on different platforms. This will provide more comprehensive 

analytical outcomes of queries, whose performance can be determined by the 

platform or/and engine-dependent hardware. 

� Sometimes, further query conditions introduced to the predicate may enable the 

query to perform more efficiently. This transformation technique is known as 

Semantic introduction [Chakravarthy et al., 1986a]. The next phase of this work 

should explore the study of reasoning theory to extend the semantic 

transformation for XPath queries specified with a predicate. That is, the predicate 

is introduced with further query conditions. 

� Among the family members of XML queries, XPath query is the most important 

one as it is used by most of the other family members. Semantic transformations 

are now recommended for application on both XQuery and XSLT to explore the 

optimization opportunities. In XQuery, the structure is FLWOR (For-Let-While-

Or by-Return) [W3C, 2010], the semantic transformation approach should first 

explore the needs to determine which component to start with, before the 

semantic transformations apply. 

� Semantically, this research focused on standard semantics that were defined in 

XML Schemas and recommended by W3C, 2010. Semantic transformations 

should ideally support semantics from alternative aspects. This research will 

greatly focus on ontologies in the next phase, as ontologies provide a different set 

of semantics that can enrich XML data structures [Sun et al., 2006].  
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�  Capturing recursive paths in recursive XML Schema and data in order to handle 

the transformation of recursive XML queries would create a fresh opportunity in 

semantic query transformation. Again this must be conducted in a systematic 

manner to identify optimization opportunities. 

�  Exploring the existing index optimization techniques to study their usefulness. 

This also gives us opportunity to bridge the gap that this research cannot support 

in optimization. This also allows us to explore the integration opportunities of 

techniques to provide one complete solution which is highly efficient in terms of 

resources and optimization.  

10.4 Closing Statement 

The objective in this research was ultimately to offer a comprehensive semantic 

query optimization framework for XML databases. This was necessary since vendors 

are proposing versatile but opaque solutions that do not allow intrusive or even fine-

grain optimization techniques. The vision here was one of loosely-coupled semantic 

optimizations that respected the vendors’ autonomy, while providing significant 

benefits to the user.  
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Appendix 1: DBLP XML Schema  

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 
<!-- edited with XMLSpy v2010 (http://www.altova.com) by Department Computer Sciene & 
Computer Engineering (Department Computer Sciene & Computer Engineering) --> 
<!--W3C Schema generated by XMLSpy v2010 (http://www.altova.com)--> 
<!--Please add namespace attributes, a targetNamespace attribute and import elements according to 
your requirements--> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"> 
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"/> 
 <xs:element name="dblp"> 
  <xs:complexType> 
   <xs:sequence maxOccurs="unbounded"> 
    <xs:element ref="article" maxOccurs="unbounded"/> 
    <xs:element ref="inproceedings" maxOccurs="unbounded"/> 
    <xs:element ref="proceedings" maxOccurs="unbounded"/> 
    <xs:element ref="book" maxOccurs="unbounded"/> 
    <xs:element ref="incollection" maxOccurs="unbounded"/> 
    <xs:element ref="phdthesis" maxOccurs="unbounded"/> 
    <xs:element ref="www" maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
  <xs:key name="phdthesisKey"> 
   <xs:selector xpath="dblp/phdthesis"/> 
   <xs:field xpath="@key"/> 
  </xs:key> 
  <xs:keyref name="supervisor" refer="phdthesisKey"> 
   <xs:selector xpath="dblp/phdthesis"/> 
   <xs:field xpath="supervisor"/> 
  </xs:keyref> 
 </xs:element> 
 <xs:element name="article"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="author" maxOccurs="unbounded"/> 
    <xs:element ref="title"/> 
    <xs:element ref="pages" minOccurs="0"/> 
    <xs:element ref="year"/> 
    <xs:element ref="volume" minOccurs="0"/> 
    <xs:element ref="journal" minOccurs="0"/> 
    <xs:element ref="number" minOccurs="0"/> 
    <xs:element ref="ee" minOccurs="0"/> 
    <xs:element ref="url"/> 
   </xs:sequence> 
   <xs:attribute name="key" type="xs:anySimpleType" use="required"/> 
   <xs:attribute name="reviewid" type="xs:anySimpleType"/> 
   <xs:attribute name="rating" type="xs:anySimpleType"/> 
   <xs:attribute name="mdate" type="xs:anySimpleType"/> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="inproceedings"> 
  <xs:complexType> 
   <xs:sequence maxOccurs="unbounded"> 
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    <xs:element ref="author" maxOccurs="unbounded"/> 
    <xs:element ref="title"/> 
    <xs:element ref="pages" minOccurs="0"/> 
    <xs:element ref="year"/> 
    <xs:element ref="crossref" minOccurs="0"/> 
    <xs:element ref="booktitle" minOccurs="0"/> 
    <xs:element ref="ee" minOccurs="0"/> 
    <xs:element ref="url"/> 
   </xs:sequence> 
   <xs:attribute name="key" type="xs:anySimpleType" use="required"/> 
   <xs:attribute name="mdate" type="xs:anySimpleType"/> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="proceedings"> 
  <xs:complexType> 
   <xs:sequence maxOccurs="unbounded"> 
    <xs:element ref="author" maxOccurs="unbounded"/> 
    <xs:element ref="title"/> 
    <xs:element ref="booktitle" minOccurs="0"/> 
    <xs:element ref="publisher" minOccurs="0"/> 
    <xs:element ref="series" minOccurs="0"/> 
    <xs:element ref="volume" minOccurs="0"/> 
    <xs:element ref="isbn" minOccurs="0"/> 
    <xs:element ref="year"/> 
    <xs:element ref="url"/> 
   </xs:sequence> 
   <xs:attribute name="key" type="xs:anySimpleType" use="required"/> 
   <xs:attribute name="mdate" type="xs:anySimpleType"/> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="book"> 
  <xs:complexType> 
   <xs:sequence maxOccurs="unbounded"> 
    <xs:element ref="author" maxOccurs="unbounded"/> 
    <xs:element ref="title"/> 
    <xs:element ref="editor" minOccurs="0"/> 
    <xs:element ref="publisher" minOccurs="0"/> 
    <xs:element ref="year"/> 
    <xs:element ref="booktitle" minOccurs="0"/> 
    <xs:element ref="isbn" minOccurs="0"/> 
    <xs:element ref="url" minOccurs="0"/> 
    <xs:element ref="chapter" minOccurs="0"/> 
   </xs:sequence> 
   <xs:attribute name="key" type="xs:anySimpleType" use="required"/> 
   <xs:attribute name="mdate" type="xs:anySimpleType"/> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="incollection"> 
  <xs:complexType> 
   <xs:choice maxOccurs="unbounded"> 
    <xs:element ref="author"/> 
    <xs:element ref="title"/> 
    <xs:element ref="pages" minOccurs="0"/> 
    <xs:element ref="year" minOccurs="0"/> 
    <xs:element ref="isbn" minOccurs="0"/> 
    <xs:element ref="booktitle" minOccurs="0"/> 
    <xs:element ref="url" minOccurs="0"/> 
    <xs:element ref="crossref" minOccurs="0"/> 
    <xs:element ref="publisher" minOccurs="0"/> 
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    <xs:element ref="cdrom" minOccurs="0"/> 
    <xs:element ref="ee" minOccurs="0"/> 
   </xs:choice> 
   <xs:attribute name="key" type="xs:anySimpleType" use="required"/> 
   <xs:attribute name="mdate" type="xs:anySimpleType"/> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="phdthesis"> 
  <xs:complexType> 
   <xs:sequence maxOccurs="unbounded"> 
    <xs:element ref="author"/> 
    <xs:element ref="title"/> 
    <xs:element ref="year"/> 
    <xs:element ref="school" minOccurs="0"/> 
    <xs:element ref="number" minOccurs="0"/> 
    <xs:element ref="series" minOccurs="0"/> 
    <xs:element ref="url" minOccurs="0"/> 
    <xs:element ref="ee" minOccurs="0"/> 
    <xs:element name="supervisor" type="xs:IDREFS"/> 
   </xs:sequence> 
   <xs:attribute name="key" type="xs:ID" use="required"/> 
   <xs:attribute name="mdate" type="xs:anySimpleType"/> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="www"> 
  <xs:complexType> 
   <xs:sequence maxOccurs="unbounded"> 
    <xs:element ref="author" maxOccurs="unbounded"/> 
    <xs:element ref="title"/> 
    <xs:element ref="editor" minOccurs="0"/> 
    <xs:element ref="year" minOccurs="0"/> 
    <xs:element ref="url" minOccurs="0"/> 
   </xs:sequence> 
   <xs:attribute name="key" type="xs:anySimpleType" use="required"/> 
   <xs:attribute name="mdate" type="xs:anySimpleType"/> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="author" type="xs:string"/> 
 <xs:element name="editor" type="xs:string"/> 
 <xs:element name="address" type="xs:string"/> 
 <xs:element name="title"> 
  <xs:complexType mixed="true"> 
   <xs:sequence maxOccurs="unbounded"> 
    <xs:element ref="tn"/> 
    <xs:element ref="tt" minOccurs="0"/> 
    <xs:element ref="ref" minOccurs="0"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="booktitle" type="xs:string"/> 
 <xs:element name="pages" type="xs:string"/> 
 <xs:element name="year"> 
  <xs:simpleType> 
   <xs:restriction base="xs:integer"> 
    <xs:minInclusive value="1950"/> 
    <xs:maxInclusive value="2020"/> 
   </xs:restriction> 
  </xs:simpleType> 
 </xs:element> 
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 <xs:element name="journal" type="xs:string"/> 
 <xs:element name="volume" type="xs:string"/> 
 <xs:element name="number" type="xs:string"/> 
 <xs:element name="month" type="xs:string"/> 
 <xs:element name="url" type="xs:string"/> 
 <xs:element name="ee" type="xs:string"/> 
 <xs:element name="cdrom" type="xs:string"/> 
 <xs:element name="school" type="xs:string"/> 
 <xs:element name="publisher"> 
  <xs:complexType mixed="true"> 
   <xs:attribute name="href" type="xs:anySimpleType"/> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="note" type="xs:string"/> 
 <xs:element name="crossref"> 
  <xs:complexType mixed="true"> 
   <xs:attribute name="href" type="xs:anySimpleType"/> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="isbn" type="xs:string"/> 
 <xs:element name="chapter"> 
  <xs:simpleType> 
   <xs:restriction base="xs:int"> 
    <xs:minInclusive value="1"/> 
    <xs:maxInclusive value="30"/> 
   </xs:restriction> 
  </xs:simpleType> 
 </xs:element> 
 <xs:element name="series"> 
  <xs:complexType mixed="true"> 
   <xs:attribute name="href" type="xs:string"/> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="ref"> 
  <xs:complexType> 
   <xs:attribute name="href" type="xs:anySimpleType" use="required"/> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="tn" type="xs:string"/> 
 <xs:element name="tt" type="xs:string"/> 
</xs:schema> 
 
  



 

 

Appendix 2: Michigan 

Benchmarking XML Schema 

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 
<!--W3C Schema generated by XMLSpy v2010 (http://www.altova.com)--> 
<!--Please add namespace attributes, a targetNamespace attribute and import elements according to 
your requirements--> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"> 
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"/> 
 <xs:element name="eNest"> 
  <xs:complexType mixed="true"> 
   <xs:sequence> 
    <xs:element name="eNest" maxOccurs="unbounded"> 
     <xs:key name="aU1PK"> 
      <xs:selector xpath=".//eNest"/> 
      <xs:field xpath="@aUnique1"/> 
     </xs:key> 
     <xs:unique name="aU2"> 
      <xs:selector xpath=".//eNest"/> 
      <xs:field xpath="@aUnique2"/> 
     </xs:unique> 
    </xs:element> 
    <xs:element name="eOccasional" minOccurs="0"> 
     <xs:keyref name="aU1FK" refer="aU1PK"> 
      <xs:selector xpath=".//eOccasional"/> 
      <xs:field xpath="@aRef"/> 
     </xs:keyref> 
    </xs:element> 
   </xs:sequence> 
   <xs:attribute name="aUnique1" type="xs:anySimpleType" 
use="required"/> 
   <xs:attribute name="aUnique2" type="xs:anySimpleType" 
use="required"/> 
   <xs:attribute name="aLevel" type="xs:anySimpleType" use="required"/> 
   <xs:attribute name="aFour" type="xs:anySimpleType" use="required"/> 
   <xs:attribute name="aSixteen" type="xs:anySimpleType" use="required"/> 
   <xs:attribute name="aSixtyFour" type="xs:anySimpleType" 
use="required"/> 
   <xs:attribute name="aString" type="xs:anySimpleType" use="required"/> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="eOccasional"> 
  <xs:complexType mixed="true"> 
   <xs:attribute name="aRef" type="xs:anySimpleType" use="required"/> 
  </xs:complexType> 
 </xs:element> 
</xs:schema>  


