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Abstract

In this thesis, our objective is to present a strategy of a new proof of the weak equiva-
lence Emb(R1,Rm) ∼ Ω2MapNOp(D1,Dm), where Emb(R1,Rm) is the space of tangentially
straightened long knots in Rm (see [1]) and MapNOp(D1,Dm) is the space of operadic mor-
phisms from the little 1-disk operad to the little m-disk operad.

The existing proofs of Turchin [2] and Dwyer-Hess [1] are based on homotopy theory.
We develop a more categorical proof which uses the theory of internal algebra classifiers [3]
and explains conceptually the ‘raison d’être’ of such a delooping. It also allows us to employ
powerful categorical/combinatorial techniques developed in [3] for proving and generalising
of this sort of results. Our proof should admit a generalisation to higher dimensions, known
as Dwyer-Hess conjecture.
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1
Introduction

A long embedding Rl ↪ Rm is an embedding which agrees with the standard embedding
outside the unit cube [1]. The space of long embeddings, written Emb(Rl,Rm), is therefore
a generalisation of the space of knots, which is the case l = 1 and m = 3.

In this thesis, we will only consider the case of long knots, that is the spaces Emb(Rl,Rm)
when l = 1.

Sinha showed in [4] that such spaces could be expressed as the totalization of cosimplicial
spaces involving configuration spaces. More precisely, there is a weak equivalence

Emb(R1,Rm) ∼ T̃ot(C●) (1.1)

where C● is the cosimplicial space which sends a non-negative integer n to a Fulton-
MacPherson completion [5] of the configuration space with n points.

In [6], Sinha established further, using the cosimplicial model of [4], the weak equivalence

Emb(R1,Rm) ∼ T̃ot(K) (1.2)

where Emb(R1,Rm) is the fiber of the map Emb(R1,Rm) → Imm(R1,Rm) and T̃ot(K) is the
totalization of the Kontsevich operad K [7].

This result can be put in relation with the McClure-Smith solution [8] of Deligne’s
conjecture. Indeed, Deligne’s conjecture implies that the totalization of a multiplicative
non-symmetric operad admits an action of an E2 operad, that is, an operad weakly equivalent
to the little 2-disk operad. By classical May’s recognition principle [9], such an action often
means that the space itself is a double loop space.

In the case of totalization of a multiplicative non-symmetric operad, one could then
wonder what are the conditions which guarantee the existence of a double delooping and
what this explicit double delooping might be. Turchin proved in [2] that if a multiplicative
non-symmetric operad O is reduced, that is, if O0 = O1 = 1, then there is a weak equivalence

T̃ot(O) ∼ Ω2MapNOp(Ass,O) (1.3)

where MapNOp is the homotopy mapping space between non-symmetric operads and Ass is
the non-symmetric version of the associative operad.



2 Introduction

Dwyer and Hess proved in [1] the more general fact that the weak equivalence 1.3 holds
as long as O0 and O1 are contractible.

The results of Sinha, Turchin and Dwyer-Hess lead then to the following important
statement: for m ≥ 4, there is a weak equivalence of spaces

Emb(R1,Rm) ∼ Ω2MapOp(D1,Dm) (1.4)

where Dk is an operad equivalent to the little k-disk operad.
Dwyer and Hess conjectured also that an analogous statement holds for higher dimensions

as well. This conjecture has been proved by Boavida and Weiss in [10]. More precisely,

Theorem 1.0.1 (Boavida-Weiss). If m ≥ l + 3, there is a weak equivalence

Emb(Rl,Rm) ∼ Ωl+1MapOp(Dl,Dm). (1.5)

Such results are very useful to understand the topology of embedding spaces. For example,
in [11], a number of results about the rational homotopy type of the embedding spaces was
obtained due to the existence of such a delooping and a connection between rational mapping
spaces of En-operads and Kontsevich’s (hairy) graph complex.

The proofs of the weak equivalence 1.3 from Turchin [2] and Dwyer-Hess [1] are both
based on homotopy theory but of different flavours. Turchin uses some very explicit cofibrant
resolutions for operads, bimodules and weak bimodules and then constructs all necessary
higher homotopies by hands. Dwyer and Hess use abstract homotopy theory of Quillen.
Unfortunately, both proofs are very technical and do not provide a conceptual explanation of
the result. Consequently both proofs are hard to generalise to higher dimensional situation if
one wants to prove the Dwyer-Hess conjecture 1.5.

In this thesis we will elaborate a strategy of a more categorical proof which uses the
theory of internal algebra classifiers developed by Batanin and Berger in [3, 12]. In a sense,
our approach is a combination of both Turchin’s and Dwyer-Hess’s approaches. The theory
of classifiers allows to construct some very explicit cofibrant resolutions of algebras in a spirit
of Turchin and abstract homotopy theory allows to complete the proofs à la Dwyer-Hess.

Our approach also reveals the algebraic or, better to say higher categorical, meaning of
the explicit delooping of Turchin-Dwyer-Hess. As a baby case one can prove by hands that
given two operadic morphisms Ass → O in a symmetric monoidal category (C,⊗, I) one can
construct an Ass-bimodule using first morphism to define left action of Ass onO and second
morphism to define right action of Ass. Now, suppose that C is a groupoid andO1 = I. Then
the functor above has an inverse, that is any bimodule over Ass is obtained from two operadic
morphisms Ass → O .

The idea of the proof we present here is that the Turchin-Dwyer-Hess delooping is
essentially a statement above where C is an ω-groupoid. Of course, in this case the inverse
functor reconstructs two operadic morphisms as well as an operadic structure on O up to
higher homotopies only.

Our thesis is constructed as follows. In the first chapter, we will remind the reader of
the existing results, from the work of Sinha [4, 6], where we will present the sketch of the
proof of the weak equivalences 1.1 and 1.2, to the delooping theorems of Turchin [2] and
Dwyer-Hess [1].

In the second chapter, we will introduce the theory of internal algebra classifiers [3, 12].
In the last chapter, we will present the elements of a proof of the weak equivalence 1.3,

using the theory introduced in the second chapter.
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Presentation of the existing results

2.1 Embedding spaces
In this section, we will introduce embedding spaces, which are the objects we want to study.

2.1.1 First definitions
We define the space of long embeddings [1] :

Definition 2.1.1. An embedding
f ∶ Rl → Rm

is called long embedding if it agrees outside a compact with the standard inclusion of Rl into
Rm, that is the map defined by

(x1, . . . , xl) ∈ Rl ↦ (x1, . . . , xl, 0, . . . , 0) ∈ Rm

Figure 2.1.1: A long embedding of R1 into R2
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Definition 2.1.2. We write
Emb(Rl,Rm)

for the set of long embeddings from Rl to Rm.

Remark 2.1.3. The set Emb(Rl,Rm) can be equipped with a structure of topological space,
called Whitney topology [4]. Moreover, this space has a canonical object which is the
standard inclusion everywhere. Emb(Rl,Rm) is therefore a pointed topological space.

Remark 2.1.4. In [4], Sinha defines the space Emb(I, Im), where I = [−1, 1], as the space of
embeddings from I to Im with the boundaries of I sent to fixed boundary points y0 and y1 of
Im, with fixed tangent vectors v0 and v1. This space is homotopy equivalent to Emb(R1,Rm).

Figure 2.1.2: An element of Emb(I, I2)

y0 v0 y1 v1

Remark 2.1.5. The space Emb(Rl,Rm) is homotopy equivalent to the space of embeddings
of Sl into Sm.

We can already make some remarks about Emb(Rl,Rm) in particular cases.

Remark 2.1.6. Emb(R1,R2) is contractible.

Remark 2.1.7. Emb(R1,Rm) is path connected for m ≥ 4.

In general, however, Emb(Rl,Rm) may be very complicated. For example, Emb(R1,R3)
is the space of knots, which is not path connected.

2.2 First Sinha’s paper
In this section, we will present a model for Emb(R1,Rm) using Goodwillie calculus [13]. It
will be a presentation of Sinha’s paper [4].
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2.2.1 Homotopy limits
Before starting the Goodwillie calculus, we will quickly remind the notion of homotopy limit
of a functor. Let C be a small category.

For any object c ∈ C, the comma category C/c is the category whose

• objects are morphisms in C with c as codomain

• morphisms are commutative diagrams

a
f

//

��

b

��
c

We get a functor
C/− ∶ C→ Cat

that we can compose with the functor ∣N ∣ ∶ Cat → Top which consists in taking the geometric
realisation of the nerve.

Recall that the category of functorsC→ Top is topologically enriched where the enriched
hom-functor is given by the space of natural transformations Nat(−,−).

Definition 2.2.1. The homotopy limit of a functor F ∶ C→ Top, written

holim F

is the space of natural transformations

Nat(∣N ∣ ○ (C/−), F)

Here is an important lemma about homotopy limits [14] :

Lemma 2.2.2. Suppose that we have a category C and two functors

F,G ∶ C→ Top

If there is a natural transformation F ⇒ G which is a weak equivalence pointwise, then the
induced map between homotopy limits is a weak equivalence.

We will also need the notion of left cofinality :

Definition 2.2.3. A functor F ∶ C → D is (homotopically) left cofinal if for any functor
G ∶ D→ Top, the natural morphism

holim GF → holim G

is a weak equivalence.
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2.2.2 Approximation of a functor
In this subsection, we will define the n-th approximation of Emb(Rl,Rm), written

TnEmb(Rl,Rm)

We follow what is done in [6] and [15].
We begin by introducing the category of open subsets of Rl :

Definition 2.2.4. We write
U(Rl)

for the category whose

• objects are open subsets of Rl

• morphisms are the inclusions of subsets

Definition 2.2.5. For W ∈ U(Rl), we write

Un(W)

for the subcategory of U(Rl) where objects are disjoint unions of at most n open disks in W .

Figure 2.2.1: An object of U3(W)

Definition 2.2.6. The n-th approximation of a contravariant functor

F ∶ U(Rl) → Top

is the contravariant functor
TnF ∶ U(Rl) → Top

which sends W ∈ U(Rl) to the homotopy limit of F restricted to Un(W).
Definition 2.2.7. Let

F ∶ U(Rl) → Top

be a contravariant functor and W ∈ U(Rl). The following sequence, obtained for all n ≥ 1 by
restriction from Un(W) to Un−1(W), is called Taylor tower :

T0F(W) ← T1F(W) ← T2F(W) ← . . .
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Example 2.2.8. Emb(Rl,Rm) can be extended to a contravariant functor

Emb(−,Rm) ∶ U(Rl) → Top

which sends

• an object U ⊂ Rl to the space Emb(U,Rm) of long embeddings from U to Rm

• the inclusion U ⊂ V to the restriction map Emb(V,Rm) → Emb(U,Rm).

The interest of this approximation TnEmb(Rl,Rm) comes from the following theorem of
Goodwillie calculus [16, Corollary 2.5] :

Theorem 2.2.9. If m ≥ l +3, then Emb(Rl,Rm) is weakly equivalent to the limit of the Taylor
tower

T0Emb(Rl,Rm) ← T1Emb(Rl,Rm) ← T2Emb(Rl,Rm) ← . . .

2.2.3 Configuration spaces
In this subsection, we introduce the configuration spaces and we build contravariant functors
involving these configuration spaces.

Let us remind that the configuration space of n points in Rm is defined as

Cn(Rm) = {(x1, . . . , xn) ∈ (Rm)n , xi ≠ x j if i ≠ j}

We will work with a compactification of the configuration spaces, this is why we need
the following definition :

Definition 2.2.10. We define

π ∶ Cn(Rm) → (Sm−1)(
n
2)

by

(x1, . . . , xn) ∈ Cn(Rm) ↦ (πi j ∶=
x j − xi

∣x j − xi ∣
)
(i, j)∈(n2)

Figure 2.2.2: The morphism π

x1

x2

x3

π12

π13

π23
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Definition 2.2.11. We write
Cn[Rm]

the closure of the image of Cn(Rm) under π.

Finally, we equip these configuration spaces with unit vectors :

Definition 2.2.12. We write

C′
n(Rm) = Cn(Rm) × (Sm−1)n

and
C′

n[Rm] = Cn[Rm] × (Sm−1)n

Figure 2.2.3: An element of C′
5(R2)

1
2

3 4

5

2.2.4 Cosimplicial space involving configuration spaces
Let us remind that a cosimplicial object in a category C is a functor

X● ∶ ∆→ C

where ∆ is the simplex category, whose objects are non-negative integers and morphisms are
order-preserving maps.

The following proposition is proved in [4, Corollary 4.22] :

Proposition 2.2.13. There is a cosimplicial space

C′ ∶ ∆→ Top

which sends a non-negative integer i to C′
i [Rm].

Sketch of the proof. Sinha works with slightly different configuration spacesC′
i [Rm, ∂]which

are the compactification of configuration spaces of i + 2 points where the first and the last
points are fixed.

To a morphism σ ∶ i → j in ∆, Sinha associates a boundary-preserving and order-
preserving morphism σ∗ ∶ j + 1 → i + 1. The morphism C′

i [Rm, ∂] → C′
j[Rm, ∂] is then

induced by σ∗.
The cosimplicial space C′ can be constructed similarly.
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For example, the morphism

{0, 1, 2, 3, 4, 5} → {0, 1, 2, 3}
0, 1, 2, 3, 4, 5 ↦ 0, 1, 1, 2, 2, 3

will be sent to the morphism represented is the figure 2.2.4.

Figure 2.2.4: Morphism C′
5[R2] → C′

3[R2]

1
2

3 4

5 1

2

3

Definition 2.2.14. For n ≥ 0, we write

C′n ∶ ∆n → Top

for the restriction of C′ to∆n, where∆n is the subcategory of∆whose objects are non-negative
integers i ≤ n.

2.2.5 Model for embedding spaces
From now on, we will only work with spaces of knots, that is with Emb(Rl,Rm) in the case
l = 1.

The objective of this subsection is to prove the following theorem [4, Theorem 5.4] :

Theorem 2.2.15. There is a weak equivalence

TnEmb(R1,Rm) ∼ holim C′n

From theorem 2.2.15 and theorem 2.2.9, we deduce immediately the following theorem
[4, Theorem 5.5] :

Theorem 2.2.16. For m ≥ 4, there is a weak equivalence

Emb(R1,Rm) ∼ holim C′

To prove this theorem, we need to define functors from Un(R) to ∆n :

Definition 2.2.17. We define the contravariant functors

Fn ∶ Un(R) → ∆n

which send
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• an object U ⊂ R to the number of connected components of U

• an inclusion U ⊂ V to the boundary-preserving map induced by the canonical number-
ing of the connected components of the complement of U and of V

For example, the inclusion described in the following figure

Figure 2.2.5: Inclusion U ⊂ V

U

0 1 2 3 4

V

0 1 2 3

is sent to

{0, 1, 2, 3} → {0, 1, 2, 3, 4}
0, 1, 2, 3 ↦ 0, 3, 3, 4

The following lemma and its proof are inspired by [4, Proposition 5.15].

Lemma 2.2.18. There is a weak equivalence

TnEmb(R1,Rm) ∼ holim C′nFn

Sketch of the proof. First remind that by definition,

TnEmb(R1,Rm) = holim Emb(−,Rm)

We would like to prove that there is a natural transformation from Emb(−,Rm) to C′nFn
which is a weak equivalence pointwise. In this case, we get the conclusion from the lemma
2.2.2.

More precisely, we want to find a weak equivalence

Emb(U,Rm) → C′
i [Rm]

for any U ∈ Un(R) with i connected components.
This weak equivalence is given by the evaluation map

f ∈ Emb(U,Rm) ↦ π ( f (t1), . . . , f (ti)) , f ′(t1), . . . , f ′(ti) ∈ C′
i [Rm]

where (t1, . . . , ti) are points of each of the i connected components of U, for example their
midpoint.
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Unfornatunately these evaluationmaps do not formanatural transformationEmb(−,Rm) ⇒
C′nFn, but this problem can by bypassed easily. For example, in [4, Proposition 5.15], Sinha
constructs an intermediate space between Emb(U,Rm) and C′

i [Rm].

Figure 2.2.6: The evaluation map

Lemma 2.2.19. The functors Fn ∶ Un(R) → ∆n are left cofinal, therefore there is a weak
equivalence

holim C′nFn ∼ holim C′n
Sketch of the proof. To prove that the functors Fn are cofinal, we just have to show that the
nerve of the comma category Fn/d is contractible, which is obvious.

Proof of theorem 2.2.15. We just have to combine the weak equivalences of the two previous
lemmas.

2.2.6 Fiber of embedding spaces
The theorem 2.2.16 of the previous section gives a goodmodel to study. It is more convenient,
however, to work with the configuration spaces Cn[Rm] instead of C′

n[Rm].
This is why, in this subsection, following what is done in [6], we will study the fiber of

the map
Emb(R1,Rm) → Imm(R1,Rm)

Definition 2.2.20. We write
Emb(R1,Rm)

for the fiber over the standard inclusion

Emb(R1,Rm) → Imm(R1,Rm)

We can construct a cosimplicial space as in the proposition 2.2.13 :

Proposition 2.2.21. There is a cosimplicial space

C ∶ ∆→ Top

which sends an non-negative integer i to Ci[Rm].
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Sketch of the proof. C can be constructed similarly to C′ in the proposition 2.2.13.

The following theorem, similar to the theorem 2.2.16, is proved in [6, Theorem 6.4] :

Theorem 2.2.22. For m ≥ 4, there is a weak equivalence

Emb(R1,Rm) ∼ holim C

Sketch of the proof. This theorem can be proved by using the same arguments as in the proof
of the theorem 2.2.16, since the theorem 2.2.9 is also true for Emb(R1,Rm).

The weak equivalence of lemma 2.2.18 becomes the weak equivalence

Emb(U,Rm) → Ci[Rm]

induced by Emb(U,Rm) → C′
i [Rm] and Imm(U,Rm) → (Sm−1)i :

Emb(U,Rm) //

∼

��

Emb(U,Rm) //

∼

��

Imm(U,Rm)

∼

��

Ci[Rm] // C′
i [Rm] // (Sm−1)i

2.3 Categorical digression
Before going further, we will remind in this section some elements of category theory.

2.3.1 Non-symmetric operads and operadic morphisms
In this subsection, we introduce the definitions of non-symmetric operads and operadic
morphisms.

Let us first remind the definition of non-symmetric operad :

Definition 2.3.1. A non-symmetric operad O in a symmetric monoidal category (C,⊗, I) is
given by

• an object On in C for all n ≥ 0

• a morphism e ∶ I → O1 called unit

• morphisms
m ∶ Ok ⊗On1 ⊗ . . . ⊗Onk → On1+...+nk

called multiplication
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such that the following diagrams commute

Ok ⊗ I ⊗ . . . ⊗ I

1⊗e⊗...⊗e

''

Ok

Ok ⊗O1 ⊗ . . . ⊗O1

m

99

and
I ⊗On

e⊗1

##

On

O1 ⊗On

m

<<

and

Ok ⊗Ol1 ⊗ . . . ⊗Olk ⊗On1,1 ⊗ . . . ⊗Onk,lk
m⊗1⊗...⊗1

// Ol1+...+lk ⊗On1,1 ⊗ . . . ⊗Onk,lk

m

��

Ok ⊗Ol1 ⊗On1,1 ⊗ . . . ⊗On1,l1
⊗ . . . ⊗Olk ⊗Onk,1 ⊗ . . . ⊗Onk,lk

1⊗m⊗...⊗m

��

Ok ⊗On1,1+...+n1,l1
⊗ . . . ⊗Onk,1+...+nk,lk m

// On1,1+...+nk,lk

Remark 2.3.2. For a sake of brevity, we will often call non-symmetric operads just operads.
We hope it will not lead to a confusion.

Definition 2.3.3. An operadic morphism between two non-symmetric operads A and B is
given, for all n ≥ 0, by a morphism

ϕn ∶ An → Bn

such that the following diagram commutes

Ak ⊗An1 ⊗ . . . ⊗Ank
m //

ϕk⊗ϕn1⊗...⊗ϕnk

��

An1+...+nk

ϕn1+...+nk

��

Bk ⊗Bn1 ⊗ . . . ⊗Bnk m
// Bn1+...+nk
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2.3.2 Multiplicative operads, bimodules and weak bimodules
In this subsection, we introduce the definitions of multiplicative non-symmetric operads,
bimodules and weak bimodules.

The most trivial example of non-symmetric operad is the associative operad :

Definition 2.3.4. The associative operad Ass in a symmetric monoidal category C is given
for all n ≥ 0 by

Assn = I

where I is the tensor unit in C.

Remark 2.3.5. In the literature, Ass is often used to denote a symmetrised version of our
associative operad.

Definition 2.3.6. A multiplicative non-symmetric operad is a non-symmetric operad O to-
gether with an operadic morphism

Ass → O

Definition 2.3.7. Let A be a non-symmetric operad in a symmetric monoidal category C. A
bimodule over A is given by

• an object Bn in C for all n ≥ 0

• morphisms
Ak ⊗Bn1 ⊗ . . . ⊗Bnk → Bn1+...+nk

called left actions

• morphisms
Bk ⊗An1 ⊗ . . . ⊗Ank → Bn1+...+nk

called right actions

satisfying axioms which are obvious analogue of axioms for non-symmetric operad.

Before introducing the notion of weak bimodule, let us remind that a non-symmetric
operad can also be defined in terms of ○i-operations [17, Definition 11]. These ○i-operations
are obtained, for i = 1, . . . , k, as the composite :

Ok ⊗On = Ok ⊗ I⊗ . . .⊗On⊗ . . .⊗ I
1⊗e⊗...⊗1⊗...⊗eÐÐÐÐÐÐÐÐÐ→ Ok ⊗O1⊗ . . .⊗On⊗ . . .⊗O1

mÐ→ Ok+n−1

Definition 2.3.8. Let A be a non-symmetric operad in a symmetric monoidal category C. A
weak bimoduleW over A is given by

• an objectWn in C for all n ≥ 0

• for i = 1, . . . , k, morphisms

○i ∶ Ak ⊗Wn →Wk+n−1

called left actions
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• for i = 1, . . . , k, morphisms

●i ∶ Wk ⊗An →Wk+n−1

called right actions

satisfying axioms which are obvious analogue of axioms for non-symmetric operads in terms
of ○i-operation [17, Definition 11].

Remark 2.3.9. We can define morphisms of bimodules and morphisms of weak bimodules
similarly to morphisms of non-symmetric operads.

2.3.3 Forgetful functors from the category of multiplicative operads
In this subsection, we show that there are forgetful functors from the category ofmultiplicative
non-symmetric operads to the category of bimodules over Ass and to the category of weak
bimodules over Ass.

Proposition 2.3.10. A multiplicative non-symmetric operad gives rise to a bimodule over
Ass.

Proof. Let O be a multiplicative non-symmetric operad with multiplication

m ∶ Ok ⊗On1 ⊗ . . . ⊗Onk → On1+...+nk

and multiplicative structure
ϕn ∶ Assn → On

Then the bimodule is given by

Bn = On for all n ≥ 0

and the left and right actions are given by

Assk ⊗Bn1 ⊗ . . . ⊗Bnk
ϕk⊗1⊗...⊗1ÐÐÐÐÐÐ→ Bk ⊗Bn1 ⊗ . . . ⊗Bnk

mÐ→ Bn1+...+nk

and
Bk ⊗ Assn1 ⊗ . . . ⊗ Assnk

1⊗ϕn1⊗...⊗ϕnkÐÐÐÐÐÐÐÐ→ Bk ⊗Bn1 ⊗ . . . ⊗Bnk
mÐ→ Bn1+...+nk

Proposition 2.3.11. A multiplicative non-symmetric operad gives rise to a weak bimodule
over Ass.

Proof. Let O be a multiplicative non-symmetric operad. Recall that, as it was already
mentioned in the previous subsection, such an operad can be defined in terms of ○i-operations
for i = 1, . . . , k [17, Definition 11]

○i ∶ Ok ⊗On → Ok+n−1

Moreover, we write
ϕn ∶ Assn → On

for the morphisms given by the multiplicative structure.
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Then the weak bimodule is given by

Wn = On for all n ≥ 0

and the left and right actions are given, for i = 1, . . . , k, by

Assk ⊗Wn
ϕk⊗1ÐÐÐ→Wk ⊗Wn

○iÐ→Wk+n−1

and
Wk ⊗ Assn

1⊗ϕnÐÐÐ→Wk ⊗Wn
○iÐ→Wk+n−1

Remark 2.3.12. Let us denote by NOp(C), MultOp(C), Bimod(C) and W Bimod(C) the
categories of non-symmetric operads, multiplicative non-symmetric operads, bimodules over
Ass and weak bimodules over Ass correspondingly. The two previous propositions give us
two functors :

Ψ∗ ∶ MultOp(C) → Bimod(C)
Υ∗ ∶ MultOp(C) →W Bimod(C)

We also have a functor
Φ∗ ∶ MultOp(C) → NOp(C)

which forgets the multiplicative structure.

2.3.4 Weak bimodules over Ass and cosimplicial objects
In this subsection, we establish the isomorphism between the category of weak bimodules
over Ass and the category of cosimplicial objects in a symmetric monoidal category C.

The following proposition comes from [18, Lemma 4.2] but the proof is inspired by [8,
Section 3] :

Proposition 2.3.13. The category of weak bimodules over Ass is isomorphic to the category
of cosimplicial objects in C.

Sketch of the proof. Let W be a weak bimodule with left and right actions given, for i =
1, . . . , k, by

○i ∶ Assk ⊗Wn →Wk+n−1

and
●i ∶ Wk ⊗ Assn →Wk+n−1

Then the cosimplicial object X● is given by

Xn = Wn for all n ≥ 0

and
di ∶ Xn → Xn+1

is given by

di =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Xn = Ass2 ⊗ Xn ○1Ð→ Xn+1 if i = 0

Xn = Xn ⊗ Ass2
●iÐ→ Xn+1 if 1 ≤ i ≤ n

Xn = Ass2 ⊗ Xn ○2Ð→ Xn+1 if i = n + 1
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Finally,
si ∶ Xn → Xn−1

is given by
Xn = Xn ⊗ Ass0

●iÐ→ Xn−1

It is not hard to see that this gives us a functor from the category of weak bimodules over
Ass to the category of cosimplicial objects in C and that this functor is an isomorphism of
categories.

2.4 Second Sinha’s paper
In this section, we will present the main theorem of Sinha’s paper [6, Theorem 6.9], which is
the weak equivalence

Emb(R1,Rm) ∼ T̃ot(K)

2.4.1 Choose-two operad
In this subsection, we introduce the non-symmetric version of the choose-two operad. This
presentation is inspired by [6, Section 4]. The symmetric version of this operad is presented
in [19, Section 3.2].

We want to define the multiplication of the choose-two operad. To the non-negative
integers (k; n1, . . . , nk)we associate the tree where the root has k branches and the i-th branch
of this root has ni leaves (see figure 2.4.1 for the case where (k; n1, . . . , nk) = (5; 3, 4, 2, 2, 3)).

We call the root path of a leaf the shortest path from this leaf to the root. We write (n
2)

for the set of pairs of elements i, j ∈ {1, . . . , n} with i < j. If (i, j) ∈ (n
2), we write vi, j for the

first vertex at which the root paths of the i-th leaf and the j-th leaf coincide. Also, we write
∣vi, j ∣ for the number of incoming edges of vi, j . Finally, we write (Ji, Jj) ∈ (∣vi, j ∣2 ) if the i-th leaf
and the j-th leaf lies over the Ji-th and the Jj-th incoming edge of vi, j respectively.

For example, in the following picture, (J3, J10) = (1, 4) ∈ (5
2) and (J5, J7) = (2, 4) ∈ (4

2) :

Figure 2.4.1: Multiplication of the choose-two operad

1 2 3 4 5 6 7 8 9 10 11 12 13 14

v5,7

v3,10

The category FSet of pointed sets is a symmetric monoidal category with tensor product
given by pointed union written ∨ and tensor unit given by the singleton set 1. We write
FSetop for the dual of this category.

For a set S, we also write S+ for the disjoint union of S with a point.
We can finally define the choose-two operad :
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Definition 2.4.1. The choose-two operad B in (FSetop,∨, 1) is given for all n ≥ 0 by

Bn = (n
2
)
+

and
m ∶ Bk ∨ Bn1 ∨ . . . ∨ Bnk → Bn1+...+nk

is defined by m(+) = + and for (i, j) ∈ (n1+...+nk
2 ),

m(i, j) = (Ji, Jj) ∈ (∣vi, j ∣
2

)

2.4.2 Kontsevich operad
Definition 2.4.2. We write

(Sm−1)B

for the non-symmetric operad in Top given by (Sm−1)(
n
2) for all n ≥ 0 and

m ∶ (Sm−1)(
k
2) × (Sm−1)(

n1
2 ) × . . . × (Sm−1)(

nk
2 ) → (Sm−1)(

n1+...+nk
2 )

is induced by the multiplication of the choose-two operad.

The following proposition is in [6, Theorem 4.5] :

Proposition 2.4.3. The operad (Sm−1)B described in definition 2.4.2 restricts on Cn[Rm].

We can therefore define a non-symmetric operad called Kontsevich operad [7] :

Definition 2.4.4. The Kontsevich operad K is the operad given by the previous proposition.

The Kontsevich operad can be equipped with multiplicative structure [6] :

Proposition 2.4.5. The Kontsevich operad is multiplicative. Its multiplicative structure

Ass → K

is given by the basepoint
(v, . . . , v) ∈ Cn[Rm]

where v is a fixed point in Sm−1.

2.4.3 Sinha’s theorem
In this subsection, we will present the main result of Sinha’s paper [6, Theorem 6.9].

Before introducing this result, let us remind the definition of totalization :

Definition 2.4.6. The totalization
T̃ot(X●)

of a cosimplicial space X● is the homotopy limit of this cosimplicial space.

The main result of Sinha, [6, Theorem 6.9], can be stated as follows :
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Theorem 2.4.7. For m ≥ 4, there is weak equivalence :

Emb(R1,Rm) ∼ T̃ot(K●)

where K● is the cosimplicial space obtained from the Kontsevich operad (see proposition
2.3.13).

Proof of theorem 2.4.7. The theorem 2.2.22 gives us the weak equivalence :

Emb(R1,Rm) ∼ holim C

It is easy to see that C is actually the cosimplicial space obtained from the Kontsevich operad,
that is C = K●. The conclusion is obvious.

2.5 Delooping theorems
In this section, we present the delooping theorems from Turchin [2] and Dwyer-Hess [1].

2.5.1 Model structures

We will first introduce some notations. We write SSet for the category of simplicial sets.
We write NOp for the category of non-symmetric operads in SSet, MultOp for the cate-

gory of multiplicative non-symmetric operads in SSet, Bimod for the category of bimodules
over Ass in SSet and W Bimod for the category of weak bimodules over Ass in SSet.

We equip NOp with projective model structure [3, 20, 21]. That is, f ∶ A→ B is a weak
equivalence (resp. fibration) if and only if U f ∶ U A → UB is a weak equivalence (resp.
fibration), where

U ∶ NOp→ SSetN

is the forgetful functor.
The categories MultOp, Bimod and W Bimod can be equipped with projective model

structures similarly to NOp.
LetM be a model category and A,B ∈M be two objects. We write

MapM(A,B)

for the homotopy mapping space from A to B in the model categoryM.
Recall that we have three forgetful functors

Φ∗ ∶ MultOp→ Nop
Ψ∗ ∶ MultOp→ Bimod
Υ∗ ∶ MultOp→W Bimod

If O is a multiplicative non-symmetric operad, then the spaces MapNOp(Ass,Φ∗O),
MapBimod(Ass,Ψ∗O) and MapW Bimod(Ass,Υ∗O) are pointed with the canonical map.
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2.5.2 Turchin - Dwyer-Hess theorems
The main theorem of [2, Theorems 6.2 and 7.2] is the following :

Theorem 2.5.1. Let O be a multiplicative non-symmetric operad. If O1 = 1, then there is a
weak equivalence

ΩMapNOp(Ass,Φ∗O) ∼ MapBimod(Ass,Ψ∗O)

Moreover, if O0 = 1, then there is a weak equivalence

ΩMapBimod(Ass,Ψ∗O) ∼ MapW Bimod(Ass,Υ∗O)

By combining these two weak equivalences, we get the following corollary.

Corollary 2.5.2. Let O be a multiplicative non-symmetric operad. If O is reduced, that is if
O0 = O1 = 1, then there is a weak equivalence

Ω2MapNOp(Ass,Φ∗O) ∼ MapW Bimod(Ass,Υ∗O)

In the paper of Dwyer-Hess [1, Theorems 1.9 and 1.12], the following theorems are
proved:

Theorem 2.5.3. Let O be a multiplicative non-symmetric operad. There are a fibration
sequences

ΩMapNOp(Ass,Φ∗O) → MapBimod(Ass,Ψ∗O) → O1

and
ΩMapBimod(Ass,Ψ∗O) → MapW Bimod(Ass,Υ∗O) → O0

Remark 2.5.4. Dwyer and Hess have actually a more general result about monoids in a
monoidal model category [1, Theorem 1.7] for which this theorem is a consequence.

Again, we can deduce an immediate corollary about double delooping [1, Theorem 1.1] :

Corollary 2.5.5. Let O be a multiplicative non-symmetric operad. If O0 and O1 are con-
tractible, then there is a weak equivalence

Ω2MapNOp(Ass,Φ∗O) ∼ MapW Bimod(Ass,Υ∗O)

Remark 2.5.6. In fact, both Sinha [4, 6] and Turchin [2] use operads in topological spaces
whereas Dwyer and Hess [1] work with simplicial operads. We adopt the last approach.
Geometric realisation/singular complex functors obviously establish an equivalence between
the two approaches.



3
Introduction to classifiers

3.1 Monads, algebras and lax morphisms
In this section, wewill introduce the notion of internal algebra classifier. This section presents
some of the ideas developed by Batanin in [12] and Batanin-Berger in [3].

3.1.1 Monads and algebras
In this subsection, we remind the reader of the definitions of monad and algebra.

Recall that a monad on a category C is given by a functor T ∶ C → C and two natural
transformations µ ∶ T2 ⇒ T and η ∶ idC ⇒ T called multiplication and unit respectively,
satisfying associativity and identity axioms.
Definition 3.1.1. An algebra over a monad T on a category C is given by

• an object A ∈ C

• a morphism ξA ∶ T A→ A

such that the following diagram commute

T2 A
TξA //

µA

��

T A

ξA

��

T A
ξA

// A

and
A

ηA //

1A

T A

ξA

��

A
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Definition 3.1.2. Let T be monad. A morphism of algebras between (A, ξA) and (B, ξB) is
given by a morphism f ∶ A→ B such that the following diagram commutes

T A
T f

//

ξA

��

T B

ξB

��

A
f

// B

Definition 3.1.3. Let T be a monad on a category C. We write

AlgT(C)

for the category of algebras over T .

Remark 3.1.4. If the category C is implicitly given, we will simply write AlgT instead of
AlgT(C).

3.1.2 2-monads and their lax morphisms

There is a 2-dimensional generalisation of the classical theory of monads [3]. There are
different versions of it [22] but we only need strict 2-monads. These are simply monads
enriched over Cat. The definition of category of algebras is just a Cat-enriched version of
classical definition but since the resulting category is Cat-enriched, we have a 2-category
of algebras for a 2-monad T . A new phenomenon in here is that we can extend the usual
definition of morphism between algebras (now called strict T-algebras morphisms).

Definition 3.1.5. Let T be a cartesian monad on a 2-category. A lax morphism between two
algebras (A, ξA) and (B, ξB) over T is given by

• a morphism f ∶ A→ B

• a 2-cell φ ∶ ξB ⋅T f ⇒ f ⋅ ξA

T A

}� φ

T f
//

ξA

��

T B

ξB

��

A
f

// B
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such that
A

f
//

ηA

��

B

ηB

��

A

1A

��

f
// B

1B

��

T A

}� φ

T f
//

ξA

��

T B

ξB

��

=

A
f

// B A
f

// B

and

T2 A
µA

ww

T2 f

''

T2 A

v~ Tφ

TξA

��

µA

ww

T2 f

''

T A

v~ φ

ξA

��

T f
''

T2B

TξB

��

µB
ww

T A

ξA

��

T2B

TξB

��

T B

ξB

��

= T A

ks
φ

ξA
ww

T f
''

A

f
''

T B

ξB
ww

A

f
''

T B

ξB
wwB B

3.2 Internal algebra classifiers

3.2.1 Internal categories
Let C be a category with pullbacks. We will define internal categories in C as 2-truncated
simplicial objects

C0 i // C1
soo

t
oo C1 ×C0 C1moo

p1oo

p2
oo

with the additional property that the following square commutes :

C1 ×C0 C1 ×C0 C1
1×C0 m

//

m×C01

��

C1 ×C0 C1

m

��

C1 ×C0 C1 m
// C1

One can also define internal functors and internal natural transformations [3].

Definition 3.2.1. Let C be a category with pullbacks. We write

Cat(C)
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for the 2-category whose

• objects are internal categories in C

• morphisms are internal functors

• 2-cells are internal natural transformations

Remark 3.2.2. It is well known that internal categories in C can be defined equivalently as
simplicial objects in C which satisfy Segal’s conditions.

Definition 3.2.3. We say that a monad T on a category with pullbacks is cartesian if

• it preserves pullbacks

• the multiplication and unit are cartesian natural transformations, that is all naturality
squares involved in these tranformations are pullbacks

Proposition 3.2.4. [3, 12] A cartesian monad T on a category C with pullbacks induces a
2-monad on Cat(C).

Proof. We apply T termwise to an internal category in C. Since T preserves pullbacks, the
resulting simplicial object is again an internal category in C. It is obvious also that this
correspondence can be equipped with the 2-monad structure extending the monad T .

By slightly abusing notations, we will call this 2-monad T again. We will also call
algebras of T in Cat(C) categorical algebras of T .

3.2.2 Absolute internal algebra classifiers
Definition 3.2.5. Let T be a monad on a 2-category C with terminal object and A be a
T-algebra. An internal T-algebra a in A is given by a lax morphism of T-algebra

a ∶ 1 laxÐÐ→ A

where 1 is the terminal T-algebra.

The following theorem is [3, Theorem 5.4] :

Theorem 3.2.6. Let T be a cartesian monad on Cat(C). There is a categorical T-algebra
TT such that for all categorical T-algebra A, there is an isomorphism between the category
of internal T-algebras in A and the category of strict T-algebras morphisms TT → A :

1 laxÐÐ→ A
TT → A

Moreover the underlying internal category TT is given by

T1 Tη1 // T21
µ1oo

T!
oo T31T µ1oo

µT1oo

T2!
oo

Definition 3.2.7. The T-algebra TT is called the absolute internal algebra classifier of T .
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Example 3.2.8. The free monoid monad [3]

Mon ∶ Set → Set

which is defined by
Mon(X) = ∐

n∈N
Xn

gives a cartesian monad on Set. The multiplication of this monad is the concatenation. The
category of algebras of this monad is the category of monoids.

This monad induces a 2-monad on Cat(Set) = Cat (see proposition 3.2.4). Algebras
over this 2-monad are strict monoidal categories. Internal algebras are monoids in these strict
monoidal categories.

The absolute classifierMonMon is the augmented simplex category ∆+, that is the simplex
category ∆, whose objects are non-negative integers and morphisms are order-preserving
functions, augmented with an initial object [23].

3.2.3 Relative internal algebra classifiers
A cartesian morphism between two cartesian monads is a morphism between monads where
all natural transformations involved are cartesian. Notice that these two monads can be
monads on two different categories, so that a part of the morphism structure is a functor
between these categories.

Definition 3.2.9. Let Φ ∶ S → T be a cartesian monad morphism between two cartesian
monads. We write

Φ∗ ∶ AlgT → AlgS

for the restriction functor between categories of algebras.

Definition 3.2.10. Let Φ ∶ S → T be a monad morphism and A be a T-algebra. An internal
S-algebra a in A is given by a lax morphism of S-algebra

a ∶ 1 laxÐÐ→ Φ∗A

where 1 is the terminal S-algebra.

The following theorem is [3, Theorem 5.10] :

Theorem 3.2.11. Let Φ ∶ S → T be a cartesian monad morphism. There is a categorical
T-algebra T S such that for all categorical T-algebra A, there is an isomorphism between the
category of internal S-algebras in A and the category of strict T-algebras morphisms T S → A
:

1 laxÐÐ→ Φ∗A
T S → A

Moreover the underlying internal category T S is given by

T1 Tη1 // TS1
µ1⋅TΦ1oo

T!
oo TS21T µ1oo

µS1⋅TΦS1oo

TS!
oo
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Example 3.2.12. The monad
Id+ ∶ Set → Set

which is defined by
Id+(X) = 1∐ X

gives a cartesian monad on Set. The category of algebras of this monad is the category of
pointed sets.

This monad induces a 2-monad on Cat(Set) = Cat (see proposition 3.2.4).
There is a canonical cartesian monad morphism

Id+ →Mon

whereMon is the monad of the example 3.2.8.
The classifier MonId+ is the category ∆inj+ which is the subcategory of ∆+ (see example

3.2.8) where morphisms are injective.

3.2.4 Polynomial monads
In this subsection, we introduce the definition of polynomial monads, following what is done
in [3, Section 6]. We will see later, and particularly in the subsection 4.1.2, that polynomial
monads are easy to describe.

Definition 3.2.13. A polynomial is a diagram in Set of the form

J Esoo
p

// B t // I

Remark 3.2.14. A polynomial induces a functor

P ∶ Set/J → Set/I

which is defined as the composite

Set/J
s∗ // Set/E

p∗
// Set/B

t! // Set/I

where
s∗(X)e = Xs(e)

and
p∗(X)b = ∏

e∈p−1(b)
Xe

and
t!(X)i = ∐

b∈t−1(i)
Xb

Definition 3.2.15. A monad
T ∶ Set/I → Set/I

is polynomial if its functor part is induced by a polynomial and unit and multiplication are
cartesian natural transformations.

Definition 3.2.16. A polynomial monad is finitary if the generating polynomial is of finite
type, that is p−1(b) is a finite set for any b ∈ B.
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From now on we will consider only finitary polynomial monads.

Example 3.2.17. The free monoid monadMon of the example 3.2.8 is a finitary polynomial
monad. Indeed, this monad induced by the polynomial

1 MonTr∗soo
p

// MonTr t // 1

where

• MonTr∗ is the set of linear trees with one marked vertex

• MonTr is the set of linear trees

• p forgets the marking

Figure 3.2.1: Representation of the polynomial

1 ← → → 1

Example 3.2.18. The monads for non-symmetric operads, multiplicative non-symmetric
operads, bimodules and weak bimodules over Ass are finitary polynomial monads. We will
give their explicit description in the subsection 4.1.2.

Definition 3.2.19. A morphism of polynomials is given by a diagram of the form

I ′

��

E ′s′oo
p′

//

��

B′ t′ //

��

I ′

��

I Es
oo

p
// B t

// I

where the horizontal lines are polynomials and the middle square is a pullback.

Definition 3.2.20. A morphism of polynomial monads is a morphism of the corresponding
polynomials compatible with the multiplications and units in the obvious sense.

Proposition 3.2.21 ([24]). The category of finitary polynomial monads over I is equivalent
to the category of symmetric I-coloured operads in Set. In particular, the monad generated
by a finitary polynomial monad is cartesian.

Remark 3.2.22. Since polynomial monads are cartesian and every morphism of polynomial
monads induces a cartesian morphism of monads, the theory of internal algebra classifiers
(see theorems 3.2.6 and 3.2.11) is applicable to this class of monads. In the Batanin-Berger
paper [3], an explicit description of the classifiers in terms of polynomial monad morphism
is given.
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Remark 3.2.23. It was shown in [3, Proposition 6.9], that finitary polynomial monads may
have algebras in an arbitrary symmetric monoidal category C. From now on, we will write
AlgTC for this category of algebras if the category C has to be specified. Sometimes we will
omit C from the notation for the sake of brevity if the category in question is clear from the
context.

3.2.5 Important results about classifiers
The following results about classifiers are contained or can be deduced from [3].

This first theorem can be deduced from [3, Theorem 6.17] :

Theorem 3.2.24. Let Φ ∶ S → T be a polynomial monad morphism and C be a cocomplete
symmetric monoidal category. Then the restriction functor

Φ∗ ∶ AlgTC→ AlgSC

has a left adjoint
Φ! ∶ AlgSC→ AlgTC

Moreover, if AlgSC and AlgTC admit projective model structures then this adjunction is a
Quillen adjunction.

Remark 3.2.25. It was observed in [3] that for C = SSet or Top the projective model
structures on AlgTC exists for any finitary polynomial monad T .

Proposition 3.2.26. For a polynomial monad morphism Φ ∶ S → T , there is a natural
isomorphism of categorical T-algebras

Φ!(SS) ≃ T S

Sketch of the proof. The category Cat is a cocomplete symmetric monoidal category. So Φ!
exists and the isomorphism above can be established by comparing the universal properties
of Φ!(SS) and T S.

The following theorem is the homotopy analogue of proposition 3.2.26. It can be deduced
from [3, Theorem 8.2] :

Theorem 3.2.27. For any polynomial monad morphism Φ ∶ S → T , the simplicial T-algebra
N(T S) is cofibrant. Moreover, there is a natural weak equivalence of simplicial T-algebras

Φ!N(SS) ∼ N(T S)

where N is the nerve functor applied componentwise to the corresponding categorical alge-
bras.

We can deduce from this theorem the following corollary :

Corollary 3.2.28. Let T be a polynomial monad. Then the nerve N(TT) is a cofibrant
replacement of the terminal T-algebras in the model category of simplicial T-algebras.

Sketch of the proof. If I is the set of colours of T then the T-algebras TT is an I-collection of
categories. For each i ∈ I, (TT)i has a terminal object given by the canonical lax morphism
(1)i

laxÐÐ→ (TT)i [3].
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The following fact has been proved by Michael Batanin as a part of a theorem about
characterisation of aspherical morphisms between polynomial monads :

Theorem 3.2.29. For a commutative diagram of polynomial monads

S
f

//

h

��

T

g

��

R

N(T S) is contractible if and only if N(R f ) ∶ N(RS) → N(RT) is a weak equivalence of
simplicial R-algebras for any commutative triangle as above.

Sketch of the proof. Assume that N(T S) is contractible. Then the canonical map T f ∶ T S →
TT induces a weak equivalence between nerves because of the corollary 3.2.28.

The functor g! is a left Quillen functor and, thanks to theorem 3.2.27, N(T S) and N(TT)
are cofibrant. This implies that

g!N(T S) → g!N(TT)

is a weak equivalence.
Thanks to theorem 3.2.27, we have on the left

g!N(T S) ∼ g! f!N(SS) ≃ h!N(SS) ∼ N(RS)

and on the right
g!N(TT) ∼ N(RT)

Conversely, suppose N(R f ) is a weak equivalence for any morphism g ∶ T → R. Take
g = id. So, we have that N(T S) → N(TT) is a weak equivalence. Since N(TT) is contractible,
we finish the proof.
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4
New proof of the delooping theorems

4.1 First delooping using classifiers
We will concentrate in this chapter on a proof of the first delooping of the Dwyer-Hess
theorem 2.5.3. The second delooping can be proved similarly. We will also comment on how
the first delooping of the Turchin’s theorem 2.5.1 admits a similar treatment.

4.1.1 Classifiers and mapping spaces
Let us introduce some notations.

Definition 4.1.1. Let T be a polynomial monad. The category of simplicial algebras over T ,
AlgT = AlgT(SSet), has a natural enrichment over SSet, and, for X,Y ∈ AlgT , we write

SSetAlgT (X,Y)

for the associate simplicial set.

Remark 4.1.2. [21] The model category of simplicial algebras ofT is also a simplicial model
category, so that for X,Y ∈ AlgT , we have

MapAlgT (X,Y) ∼ SSetAlgT (co f (X), f ib(Y))

where co f and f ib are cofibrant and fibrant replacements respectively.

The following weak equivalence will be used later :

Theorem 4.1.3. Let S,T be polynomial monads, X ∈ AlgT and Φ ∶ S → T be a cartesian
morphism of monads. Then there is a weak equivalence

MapAlgS(1,Φ∗X) ∼ SSetAlgT (N(T S), f ibX)

where 1 is the terminal object in AlgS.
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Proof. Thanks to theorem 3.2.24, there is an adjunction

Φ! ∶ AlgS ⇆ AlgT ∶ Φ∗

We have successively

MapAlgS(1,Φ∗X) ∼ SSetAlgS(co f (1), f ib(Φ∗X)) remark 4.1.2
∼ SSetAlgS(co f (1),Φ∗ f ibX)
∼ SSetAlgS(N(SS),Φ∗ f ibX) corollary 3.2.28
≃ SSetAlgT (Φ!N(SS), f ibX) adjunction
∼ SSetAlgT (N(T S), f ibX) theorem 3.2.27

4.1.2 Polynomial representation of basic monads
Definition 4.1.4. Wewrite NOpTr for the set of planar trees with white vertices and NOpTr∗

for the set of planar trees with white vertices and one marked vertex.
We write

NOp

for the monad induced by the polynomial

N NOpTr∗soo
p

// NOpTr t // N

where

• s counts the number of incoming edges of the marked vertex

• p forgets the marking

• t counts the number of leaves

• multiplication in this monad is induced by insertion of a tree inside a vertex of another
tree

Figure 4.1.1: Representation of the polynomial

3 ← → → 10

Remark 4.1.5. The category of algebras of NOp is the category of non-symmetric operads.
The classifier NOpNOp is the classical categorical operad of trees.
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Remark 4.1.6. If in the definition of the polynomial above, we use planar trees whose
vertices have valencies at least 3, we obtain a monad for the reduced version of the non-
symmetric operads. The corresponding absolute classifier is the collection of categories
(Dn)n∈N described in Turchin’s paper [2].

Figure 4.1.2: The category D4 [2, Figure 4]

Definition 4.1.7. We write
NOpTr+

for the set of planar trees with black and white vertices, where there can not be two adjacent
black vertices and

NOpTr∗+
if one white vertex is marked.

Figure 4.1.3: A tree in NOpTr+

Definition 4.1.8. We write
NOp+

for the monad induced by the polynomial

N NOpTr∗+
soo

p
// NOpTr+

t // N

where



34 New proof of the delooping theorems

• s counts the number of incoming edges of the marked vertex

• p forgets the marking

• t counts the number of leaves

• multiplication in this monad is induced by insertion of a tree inside a white vertex of
another tree and contraction of edges which connect two black vertices

Remark 4.1.9. The category of algebras of NOp+ is the category MultOp of multiplicative
non-symmetric operads. The description of this polynomial monad as a coloured Σ-free
operad is given in [19]. This operad is denoted L(2) in [19] as it is identified with the second
filtration stage of the lattice path operad.

Definition 4.1.10. We write
NOpTr++

for the set of planar trees with white vertices and two types of black vertices, where there can
not be two adjacent black vertices of the same type and

NOpTr∗++

if one white vertex is marked.

Figure 4.1.4: A tree in NOpTr++

1

2

1

Definition 4.1.11. We write
NOp++

for the monad induced by the polynomial

N NOpTr∗++
soo

p
// NOpTr++

t // N

where

• s counts the number of incoming edges of the marked vertex

• p forgets the marking

• t counts the number of leaves

• multiplication in this monad is induced by insertion of a tree inside a white vertex of
another tree and contraction of edges which connect two black vertices of the same
type
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Remark 4.1.12. The category of algebras of NOp++ is the category of double multiplicative
non-symmetric operads, that is, non-symmetric operads O equipped with two operadic
morphisms α, β ∶ Ass → O.

Since the description of these polynomial monads are very similar, we will omit some
explanations for the rest of our monads list.

Definition 4.1.13. We write
BimodTr

for the set of planar trees with black and white vertices, where there can not be two adjacent
black vertices and white vertices are aligned on the same level.

Figure 4.1.5: A tree in BimodTr

Definition 4.1.14. We write
Bimod

for the monad induced by the polynomial

N BimodTr∗soo
p

// BimodTr t // N

Remark 4.1.15. The category of algebras of Bimod is the category of bimodules over Ass.

Remark 4.1.16. If in the definition of the polynomial above, we use planar trees whose
black and white vertices have valencies at least 2, we obtain a monad for the reduced version
of bimodules. The corresponding absolute classifier is the collection of categories (◻n)n∈N
described in Turchin’s paper [2].

Figure 4.1.6: The category ◻3 [2, Figure 3]
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Definition 4.1.17. We write
W BimodTr

for the set of planar trees with black and white vertices, where there can not be two adjacent
black vertices and there is only one white vertex.

Figure 4.1.7: A tree in W BimodTr

Definition 4.1.18. We write
WBimod

for the monad induced by the polynomial

N W BimodTr∗soo
p

//W BimodTr t // N

Remark 4.1.19. The category of algebras of WBimod is the category of weak bimodules
over Ass.

Remark 4.1.20. If in the definition of the polynomial above, we use planar trees whose
black vertices have valencies at least 3, we obtain a monad for the reduced version of weak
bimodules. The corresponding absolute classifier is the collection of categories (△n)n∈N
described in Turchin’s paper [2].

Figure 4.1.8: The category △2 [2, Figure 2]

Proposition 4.1.21. There are morphisms of polynomial monads
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Φ ∶ NOp→ NOp+
Ψ ∶ Bimod→ NOp+
Υ ∶ WBimod→ NOp+

such that the forgetful functors

Φ∗ ∶ MultOp→ NOp
Ψ∗ ∶ MultOp→ Bimod
Υ∗ ∶ MultOp→W Bimod

are restriction functors along these morphisms.

Proof. These morphisms are induced by the inclusion of NOpTr , BimodTr and W BimodTr
into NOpTr+.

We will also need several other polynomial monads :

Definition 4.1.22. We write
BimodTr+

for the set of planar trees with black and white vertices in BimodTr , where leaves can be
added to the lowest black vertex, plus trees with only one black vertex and no white vertices.

Definition 4.1.23. We write
Bimod+

for the monad induced by the polynomial

N BimodTr∗+
soo

p
// BimodTr+

t // N

Remark4.1.24. The algebras ofBimod+ are bimodulesB over Ass equipedwith an additional
morphism 1→ B1. We call them pointed bimodules.

Let also Id be the identity monad on Set. This monad is a polynomial monad induced by

1 1soo
p

// 1 t // 1

Finally, we consider the polynomial monad Id+ on Set which adds a point to a set (see
example 3.2.12). So algebras of Id+ are pointed sets. The polynomial for this monad is

1 1soo
p

// 1∐1 t // 1

where p is the inclusion of 1 (a single point) to the two elements set 1∐1.

4.1.3 Turchin’s theorem in the language of classifiers
Lemma 4.1.25. The following commutative square is a homotopy pushout of cofibrant mul-
tiplicative operads whose legs are cofibrations :

NNOpNop
++

+ NNOpNop
+

+oo

NNOpNop
+

+

OO

NNOpNop
+oo

OO
(4.1)
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Proof. First we observe from universal property that there is a pushout of categorical multi-
plicative non-symmetric operads :

NOpNop+++ NOpNop++oo

NOpNop++

OO

NOpNop+oo

OO

To finish the proof we apply [3, Theorem 8.2] again.

Theorem 4.1.26. For any multiplicative non-symmetric operad O in SSet, there are two
weak equivalences

ΩMapNOp(Ass,Φ∗O) ∼ ΩSSetNOp
+
(NNOpNOp

+ , f ibO) ∼ SSetNOp
+
(NNOpNOp

++

+ , f ibO)

Sketch of the proof. The first equivalence is obtained by an application of the theorem 4.1.3
to the morphism of polynomial monads

Φ ∶ NOp→ NOp+

For the second equivalence, we apply the contravariant functor

SSetNOp
+
(−, f ibO)

to the pushout 4.1, to get the following homotopy pullback

SSetNOp
+
(NNOpNOp

++

+ , f ibO) //

��

SSetNOp
+
(NNOpNOp

+

+ , f ibO)

��

SSetNOp
+
(NNOpNOp

+

+ , f ibO) // SSetNOp
+
(NNOpNOp

+ , f ibO)

Thanks to the theorem 4.1.3,

SSetNOp
+
(NNOpNOp

+

+ , f ibO) ∼ MapNOp
+
(Ass,O)

which is contractible since Ass is a zero object (both initial and terminal) in NOp+. Hence
we have the second weak equivalence

ΩSSetNOp
+
(NNOpNOp

+ , f ibO) ∼ SSetNOp
+
(NNOpNOp

++

+ , f ibO)

Theorem 4.1.27. For any multiplicative non-symmetric operad O in SSet, there is a weak
equivalence

MapBimod (Ass,Ψ∗O) ∼ SSetNOp
+
(NNOpBimod

+ , f ibO)
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Proof. It is a direct application of the theorem 4.1.3.

At this point, we can already apply the results obtained to prove the first delooping of
Turchin’s theorem 2.5.1. We only need to adapt the argument to the reduced versions of
non-symmetric operads and bimodules as used by Turchin [2]. To simplify the exposition,
we use the same notations for polynomial monads involved as in the previous sections. We
warn the reader that we do it only in the rest of this section.

Theorem 4.1.28 (Turchin). For any multiplicative non-symmetric operad O in SSet such
that O1 = 1, there is weak equivalence

ΩMapNOp(Ass,Φ∗O) ∼ MapBimod(Ass,Ψ∗O)

Sketch of the proof. Thanks to the two previous theorems, we only need to establish that the
morphism of monads Bimod→ NOp++ induces a weak equivalence

NNOpBimod
+ → NNOpNOp

++

+ (4.2)

There is the following commutative triangle of polynomial monads :

Bimod //

##

NOp++

{{

NOp+

Thanks to the theorem 3.2.29, we only need to prove the contractibility of the nerve of
NOpBimod

++ to establish the weak equivalence 4.2.
The classifier NOpBimod

++ can be computed explicitely using the machinery from the
Batanin-Berger paper [3]. One can prove that each component of it is a finite poset which has
a nice cover by contractible subsets such that all intersections of these subsets are contractible.
We show an example of this poset (for trees with 3 leaves) on the picture 4.1.5.

4.1.4 Dwyer-Hess’s theorem in the language of classifiers
The Dwyer-Hess’s theorem requires some more preparations.

Recall that in the subsection 4.1.2, two monads on Set were introduced : Id and Id+. The
unit of the monad Id+ is a morphism of polynomial monads ε ∶ Id → Id+. We also have a
morphism of polynomial monads γ1 ∶ Id → Bimod which sends 1 to the linear tree with a
single white vertex in the component of degree 1.

Lemma 4.1.29. The pushout of γ1 and ε in the category of polynomial monads is the monad
Bimod+.

Proof. This statement is obvious if we study the algebras of this pushout.

There are also two morphisms of monads Bimod → NOp++ and Id+ → NOp++ which
make the square with γ1 and ε commutative. So, this generates a morphism of polynomial
monads Bimod+ → NOp++. Observe, that all morphisms constructed are morphisms of
polynomial monads over the monad NOp+.
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Proposition 4.1.30. The morphisms described above generate the following pushout of clas-
sifiers:

NOpBimod+
+ NOpId+

+
oo

NOpBimod
+

OO

NOpId
+

oo

OO
(4.3)

and a morphism of classifiers

σ ∶ NOpBimod+
+ → NOpNOp

++

+

After application of the nerve functor the square 4.3 gives a homotopy pushout of simplicial
multiplicative operads

NNOpBimod+
+ NNOpId+

+
oo

NNOpBimod
+

OO

NNOpId
+

oo

OO
(4.4)

whose legs are cofibrations in the category of simpicial multiplicative operads.

Proof. The fact that this is a pushout can be checked directly by universal properties of the
objects involved. The fact that after application of nerve this produces a homotopy pushout
can be again deduced from [3, Theorem 8.2].

Theorem 4.1.31. For any multiplicative non-symmetric operadO in SSet, there is a fibration
sequence

SSetNOp
+
(NNOpBimod+

+ , f ibO) → SSetNOp
+
(NNOpBimod

+ , f ibO) → O1

Proof. By applying the contravariant functor

SSetNOp
+
(−, f ibO)

to the pushout 4.4, we get the following homotopy pullback

SSetNOp
+
(NNOpBimod+

+ , f ibO) //

��

SSetNOp
+
(NNOpId++ , f ibO)

��

SSetNOp
+
(NNOpBimod

+ , f ibO) // SSetNOp
+
(NNOpId+ , f ibO)

Observe that

SSetNOp
+
(NNOpId++ , f ibO) → SSetNOp

+
(NNOpId+ , f ibO)

is homotopy equivalent to the path-fibration over O1.
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Indeed, let β ∶ Id → NOp+ be the morphism of polynomial monad which sends 1 to the
linear tree with a single white vertex. Thanks to theorem 4.1.3, we have

SSetNOp
+
(NNOpId+ , f ibO) ∼ MapId(1, β∗O) ∼ MapId(1,O1) ∼ O1

Similarly, if α ∶ Id+ → NOp+ is a morphism which sends one copy of 1 to the linear tree with
a single white vertex and another copy of 1 to the linear tree with a single black vertex, then

SSetNOp
+
(NNOpId++ , f ibO) ∼ SSetId+(NIdId++ , f ib(α∗O)).

The category of algebras of Id+ is the category of pointed simplicial sets. The space α∗O
is the space O1 with the unit of O as its based point. Finally, it is not hard to see by direct
verification of universal property that the classifier IdId++ is just a pointed category with two
objects 0 (a point) and 1, and one nontrivial arrow 0 → 1. The nerve of this category is a
pointed simplicial interval and the result follows.

Theorem 4.1.32 (Dwyer-Hess). For any multiplicative non-symmetric operad O in SSet,
there is a fibration sequence

ΩMapNOp(Ass,Φ∗O) → MapBimod(Ass,Ψ∗O) → O1

Sketch of a proof. The theorem 4.1.31 in combination with the theorems 4.1.26 and 4.1.27
shows that the first Dwyer-Hess fibration sequence will be established if we manage to prove
that

N(σ) ∶ NNOpBimod+
+ → NNOpNOp

++

+

is a weak equivalence.
Similarly to the argument in the proof of Turchin’s theorem we have the following com-

mutative triangle of polynomial monads :

Bimod+ //

##

NOp++

{{

NOp+

Applying theorem 3.2.29 again, we see that we only need to prove the contractibility of
the nerve of

NOpBimod+
++

to complete the proof. As we said it before such a classifier admits an explicit combinatorial
description. This time it is not a finite poset but as we are going to show it does contain a
contractible poset as a deformation retract. The details will be published in a future but we
give some indications how it goes in the next subsection.

4.1.5 Description of the category NOpBimod+
++

Using a machinery developed in [3] we describe the classifier

NOpBimod+
++
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• the objects of this category are elements of the set NOpTr++ of trees with white vertices
and two types of black vertices, where there can not be two adjacent black vertices of
the same type

• the morphisms are generated by

– contractions to a white vertex of edges where the upper vertices are black of first
type and the lower vertex is white

1 1 1
Ð→

– contractions to a white vertex of edges where the upper vertices are white and the
lower vertex is black of second type

2 Ð→

– transformation of a unary black vertex of type 1 or 2 to a unary white vertex.

1 2Ð→ ←Ð

• the relations are generated by the relations in the category of bimodules over Ass,
which means that the squares like below commute :

1 1
1 1 1

1 1

1 1 1

2
2 2

2

2

2

1 1 1

2

1 1 1
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In the reduced case as in the Turchin paper [2], we get the following category containing
the trees with 3 leaves. In general, it is expected that the whole picture can be contracted to
the reduced case by using degeneracies.

Figure 4.1.9: The category in the reduced case and when n = 3

12

1 2

211 2

1 2

1 22 1

1 2

1 2
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