
VERIFICATION OF WEBASSEMBLY

PROGRAMS

By

Diego Ignacio Ocampo Herrera
BSc Universidad Católica del Uruguay

A THESIS SUBMITTED TO MACQUARIE UNIVERSITY

FOR THE DEGREE OF

MASTER OF RESEARCH

DEPARTMENT OF COMPUTING

MAY 2019

http://www.mq.edu.au/

ii

© Diego Ignacio Ocampo Herrera, 2019.

Typeset in LATEX 2ε.

Declaration
I certify that the work in this thesis entitled VERIFICATION OF WEBASSEMBLY PROGRAMS

has not previously been submitted for a degree nor has it been submitted as part of the

requirements for a degree to any other university or institution other than Macquarie

University. I also certify that the thesis is an original piece of research and it has been

written by me. Any help and assistance that I have received in my research work and

the preparation of the thesis itself have been appropriately acknowledged. In addition, I

certify that all information sources and literature used are indicated in the thesis.

Diego Ignacio Ocampo Herrera

iii

iv DECLARATION

Abstract
WebAssembly is a new low-level language and compilation target mainly for the web

that is already shipped in all major browsers in its minimum viable product version. The

current version does not support exception handling, and therefore runtime errors cannot

be handled inside the WebAssembly code.

Our main contribution of this research is the development of an approach that can

detect runtime errors (traps) statically using Skink, a static analysis tool. To detect the

possible traps, we: 1. translate WebAssembly (stack machine) into LLVM-IR (register

machine), and 2. instrument the resulting code to reduce the problem of detecting traps

to a reachability problem.

To test our solution, we use C/C++ benchmarks files from SV-COMP compiled into

WebAssembly by Emscripten and compare the results against the standard verification

process of C/C++ files by Skink. After successfully testing our approach, we apply our

tool to verify programs that could abort execution due to runtime errors, detecting the

conditions under which the error would occur.

Internet browsers could benefit from this approach in the future, as they will execute

WebAssembly modules that originate from untrusted sources and possibly with malicious

intentions. Our approach would then aid in the early detection of runtime errors of these

WebAssembly modules.

v

vi ABSTRACT

Dedication
To Camila, without whom this journey wouldn’t have been possible.

vii

viii DEDICATION

Acknowledgements
I would like to thank my supervisors, Franck Cassez and Anthony Sloane, for their guidance

throughout this research project and for introducing me into the challenging world of

software verification.

This research has been co-funded by International Macquarie University research

Training Program Scholarship (CFMRTP) with ANII (The National Research and Innovation

Agency of Uruguay), allocation 2017503.

ix

x ACKNOWLEDGEMENTS

Contents

Declaration iii

Abstract v

Dedication vii

Acknowledgements ix

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Contributions . 2

1.2 Research aims . 3

2 Literature review 5

2.1 WebAssembly . 5

2.2 Software Verification . 7

2.2.1 Current approaches in automated program verification 8

2.2.2 Trace abstraction refinement . 11

3 Methods 13

3.1 Introduction . 13

4 Translating WebAssembly into LLVM 16

4.1 Overview . 17

4.2 Details . 19

5 Validating the translation 24

5.1 Introduction . 24

5.2 SV-COMP setting . 24

5.3 Validation . 25

xi

xii CONTENTS

5.4 Discussion . 27

6 Verifying WebAssembly 30

6.1 Introduction . 30

6.2 Traps . 30

6.2.1 Scenarios that cause traps . 31

6.3 Detecting unreachable code . 31

6.3.1 Detecting a reachable unreachable WebAssembly instruction 33

6.3.2 unreachable as a wildcard . 36

6.4 Detecting illegal memory access . 38

6.5 Detecting illegal operations . 40

6.6 Detecting stack overflows . 42

6.6.1 First attempt . 43

6.6.2 Manual attempt . 45

6.7 Detecting illegal indirect calls . 45

6.7.1 Modelling illegal indirect calls verification 47

7 Conclusions 49

References 51

A Code listings 54

A.1 Unreachable . 54

A.2 Failure witness in switch . 55

A.3 Function pointers . 56

A.3.1 Type mismatch error . 58

A.4 Illegal memory access . 58

A.5 Illegal operations . 60

A.6 Stack overflows . 60

B Skink logs and other output 67

B.1 Unreachable unreachable . 67

CONTENTS xiii

B.2 Reachable unreachable . 67

B.3 Skink on detecting illegal memory access . 67

C Diagrams 69

C.1 CFG diagram for the switch instruction in section 6.3.1 69

C.2 CFG diagram for illegal memory access verification 70

D Tables 71

D.1 Environment configuration . 71

xiv CONTENTS

List of Figures

2.1 Refinement process. Credit [1]. 12

3.1 Tools and environment . 14

4.1 Simplified WebAssembly syntax. 16

4.2 Box model and structured branching in the translation. 18

4.3 Implementation of rule defined in 4. 19

4.4 Implementation of rule defined in 1 and 5. 21

4.5 Translation rules from boxes into final LLVM-IR. 22

5.1 Validating the translation. 26

6.1 CFG for the translation of 6.1. 33

6.2 Switch in C++ . 34

6.3 Switch in WebAssembly . 34

6.4 CFG for reachable unreachable in a switch statement. 35

6.5 Verifying illegal operations. 41

6.6 Left: Factorial without assertions. Right: Factorial algorithm with call stack

overflow control instructions that lead to an error state. 44

6.7 Targeting the function pointer traps . 48

A.1 Mismatch runtime error . 58

B.1 Reaching an unreachable instruction using the WebAssembly API 1. 68

C.1 Tools and environment . 69

C.2 CFG for memory access verification . 70

xv

xvi LIST OF FIGURES

List of Tables

3.1 Approach decision summary. 15

5.1 Validation of the EMCCWASM frontend against the C frontend 28

5.2 Distribution of percentages for results and execution times. 29

D.1 Host configuration and used tools. 71

xvii

xviii LIST OF TABLES

1 | Introduction
Web applications have become increasingly popular, replacing many of the traditional

desktop applications such as e-mail clients, office suites, multimedia applications and

other heavy computation applications. This massive exodus to the web is primarily due

to the introduction of web standards such as HTML5 and increasing performance of

JavaScript engines after the introduction of Just-In-Time (JIT) compilers. Consequently,

web applications as online 3D software, online games and streaming platforms are becom-

ing more sophisticated, demanding faster execution times and secure environments that

can run untrusted code. However, as JavaScript is a dynamic language, its performance is

nowhere close to native code execution performance [2].

Several attempts were made to enhance the performance of applications on the web,

from early Java applets and ActiveX to the recent asm.js and Google’s Native Client.

Asm.js [3] is a specification of a strict subset of JavaScript, which resulted in more efficient

JavaScript code when compiling C/C++ files with Emscripten [4]. This subset as a

compilation target was promising, and even JIT compilers began to identify this code

and optimise even further. However, JavaScript was never designed as a compilation

target and still presents performance problems. Native client, on the other hand, was

designed as a compilation target for the web and allowed the execution of native code.

Nonetheless, it was only available for Google Chrome, and it has been discouraged in

favour of WebAssembly due to its low adoption.

WebAssembly1 is a new, standard and low-level programming language and compila-

tion target for the web and has the aim of making the web faster, more reliable and secure.

Currently, on its MVP version (Minimum Viable Product), it is already shipped in the major

browsers, and several applications have already been ported to its platform, from game

engines like Unreal Engine2 to medical applications [5]. The WebAssembly programs

that browsers run are from untrusted sources, and even though it runs sandboxed, these

programs could have malicious intentions. Furthermore, in its MVP version, WebAssembly

does not support exception handling, and therefore, every possible runtime error will

abort the execution. In order to make WebAssembly programs more reliable and less

1https://webassembly.org/
2https://s3.amazonaws.com/mozilla-games/ZenGarden/EpicZenGarden.html

1

https://webassembly.org/
https://s3.amazonaws.com/mozilla-games/ZenGarden/EpicZenGarden.html

2 INTRODUCTION

error-prone, they could be statically checked before they run in pursuance of finding and

removing bugs or preventing malicious code from running. In this research project, we

then deal with the verification of WebAssembly programs, either to determine if a specific

runtime error would occur or if the algorithm violates some correctness specifications.

To achieve this, we first explored the practical feasibility of applying software verifica-

tion on WebAssembly programs. Subsequently, we run the verification process over an

instrumented intermediate representation in order to verify properties of the WebAssembly

runtime and therefore, detecting possible runtime errors that would otherwise abort the

execution.

1.1 Contributions

These are the main contributions of this research project are:

• We developed a Scala based WebAssembly parser: ScalaWasm3. This parser is

generated using the sbt-rats parser generator [6] and is able to parse a comprehensive

subset4 of the WebAssembly language specification. This parser generates the

Abstract Syntax Tree (AST) for a given WebAssembly module in its text format 5

based on the specification for version 1.0 or Minimum Viable Product (MVP)6. This

parser is generic and does not add any metadata related to software verification and

therefore can be used for any task that involves the AST of a WebAssembly module.

• We also designed a WebAssembly to Low Level Virtual Machine Intermediate Rep-

resentation (LLVM-IR) translator, Wasm2llvm7. This translator uses ScalaWasm to

obtain the AST of a WebAssembly module which is then processed, and an LLVM-IR

file is generated. This tool is also capable of adding instrumentation code to the

3https://bitbucket.org/diegoocampohdr/scalawasm
4The set of covered instructions can be seen in the used sbt-rats grammar at: https:

//bitbucket.org/diegoocampohdr/scalawasm/src/default/src/main/scala/org/
scalawasm/wasm/Wasm.syntax

5WebAssembly modules can be represented either in binary or text format
6https://webassembly.github.io/spec/core/bikeshed/index.html#text-format
7https://bitbucket.org/diegoocampohdr/wasm2llvm

https://bitbucket.org/diegoocampohdr/scalawasm
https://bitbucket.org/diegoocampohdr/scalawasm/src/default/src/main/scala/org/scalawasm/wasm/Wasm.syntax
https://bitbucket.org/diegoocampohdr/scalawasm/src/default/src/main/scala/org/scalawasm/wasm/Wasm.syntax
https://bitbucket.org/diegoocampohdr/scalawasm/src/default/src/main/scala/org/scalawasm/wasm/Wasm.syntax
https://webassembly.github.io/spec/core/bikeshed/index.html#text-format
https://bitbucket.org/diegoocampohdr/wasm2llvm

1.2 RESEARCH AIMS 3

output LLVM-IR in order to comply with the International Competition on Soft-

ware Verification (SV-COMP8) specification and to verify runtime errors present in

WebAssembly. This translator is described in detail in chapter 4.

• We have also developed techniques to detect specific types of runtime errors present

in the WebAssembly runtime such as stack overflows, illegal memory access and

conversion operations. By using this technique, web browsers could perform these

kind of checks once an unsafe and untrusted WebAssembly module is transferred

over the wire. In case the module presents errors, the execution could be prevented

with a warning. This is covered in chapter 6.

• Overall we extended the capability of the static analysis tool Skink, providing

two new frontends: WASM and EMCCWASM. The first allows Skink to run over

WebAssembly modules in text format and the latter allows Skink to verify files that

compile to WebAssembly using Emscripten.

1.2 Research aims

This research is focused on the applicability of software verification to WebAssembly

programs and on verifying aspects that are particular to the WebAssembly language. By

applying these techniques to WebAssembly programs, we are then able to prove that

the verified programs are either correct or incorrect based on a specification. Correct

programs are those in which the error state is not reachable while incorrect programs are

those in which there are circumstances under which the error state is reachable. In case

they are proven incorrect, a witness is provided specifying the conditions under which the

program will fail. If the program is proven correct, we can then be sure that the program

will not fail and that the assertions will not be violated under any circumstances.

In order to verify WebAssembly programs, several steps are involved. The main

tool that we are using in this research is Skink [1], a static analysis tool that analyses

LLVM-IR code to verify its correctness. As Skink performs its analysis on LLVM-IR, we

8https://sv-comp.sosy-lab.org

https://sv-comp.sosy-lab.org

4 INTRODUCTION

present two projects carried out in this research, introduced in section 1.1: 1. A Scala

based WebAssembly parser, ScalaWasm. 2. A translator from WebAssembly into LLVM-IR,

Wasm2llvm.

Once we can translate WebAssembly into LLVM-IR, we can then verify such programs

using Skink. This is performed in two major and different steps:

1. Perform correctness analysis over the SV-COMP C files compiled into WebAssembly.

As Skink can also analyse these C files by compiling them into LLVM, we can: (a)

verify WebAssembly programs using Skink and the new developed frontends and,

(b) by comparing the analyses results, detect problems in both the translation from

WebAssembly into LLVM and possible bugs in Skink, as the generated LLVM-IR

may differ from the original LLVM-IR from the C compilation while keeping the

same semantics but comprised possibly of instructions of different complexity. The

translation from WebAssembly into LLVM-IR can be formally verified but is not part

of the scope of this research. These steps are described in the Methods section.

2. Instrument the resulting LLVM-IR from the translation in order to provide mecha-

nisms to prove that certain errors that are not handled by the WebAssembly execution

could be detected beforehand. As an example, these can be runtime errors that may

occur in WebAssembly and for which there exists no mechanism to define exception

handlers. WebAssembly does not support exception handling mechanisms so far 9.

The experiments that involve the validation of the translation and instrumentation

and the verification applied to WebAssembly traps are organised as follows:

1. The extent of the covered WebAssembly specification and limitations and the trans-

lation into LLVM-IR and instrumentation are explained in chapter 4.

2. After the parser and translator are presented, the first experimental step is to validate

the tool. This is developed in chapter 5.

3. The application of software verification to address the possible runtime errors of

WebAssembly is developed in chapter 6.

9https://github.com/WebAssembly/proposals/issues/4

https://github.com/WebAssembly/proposals/issues/4

2 | Literature review

2.1 WebAssembly

The web has become the most popular application platform and is growing in complexity,

giving rise to increasingly demanding applications, such as video games and other 3D

visualisation tools, high-quality video and audio streaming and cryptographic operations

among others. With this in mind, efficiency, reliability, security and portability are of

the utmost importance for the web to provide for these applications to fully flourish.

However, the most common programming language of the web, not by convention but

by historic choice, is the high-level JavaScript language, which cannot guarantee these

requirements. In order to cope with these new challenges, asm.js [3] and Native Client [7]

were introduced in the web without any standard and convention, leading to low adoption

of the latter. This led to a significant consensus of the four web giants; Apple, Google,

Microsoft and Mozilla to develop a standard approach to this problem: WebAssembly.

WebAssembly1 is a new, standard and low-level binary instruction stack-based pro-

gramming language for the web that is already shipped in the four major browsers: Firefox,

Chrome, Safari and Edge [8]. Started in 2015, WebAssembly was designed to be the uni-

versal compilation target for the web to provide fast processing and near-native execution

performance for web apps. WebAssembly provides a safe, fast, platform-independent and

deterministic low-level language [2]. Even though the compiled WebAssembly modules

are shipped in binary format, WebAssembly also supports text representation of the code

that is easy to read, debug and process.

Using the Emscripten toolkit2, C/C++/Rust programs can be compiled into WebAssem-

bly together with the necessary environment for calling its functions from the JavaScript

ecosystem. Consequently, those compiled functions will run at near-native speed. Com-

piled low-level code functions could be, for example, sorting algorithms and by using

this technology, the performance is optimised. Notwithstanding being on the first re-

lease (cross-browser consensus in March 20173), some applications are already using

1https://webassembly.org/
2https://github.com/kripken/emscripten
3https://webassembly.org/roadmap/

5

https://webassembly.org/
https://github.com/kripken/emscripten
https://webassembly.org/roadmap/

6 LITERATURE REVIEW

WebAssembly, such as a web-based cancer genome viewer [5], cryptography [9] and

3D visualizations 4. Function calls can be made from JavaScript to WebAssembly and

vice-versa, from the context of a Web application running on the client side (browser) or

the server side (Node.js application). WebAssembly is, therefore, not replacing JavaScript

but enhancing it by providing mechanisms of processing existing code bases at a faster

speed than if those code bases were translated to JavaScript.

Previous attempts and solutions to provide a near-native code to the web environment

such as asm.js and Native Client will be replaced by WebAssembly due to their lack of

standards and, in the case of Native Client, low adoption. In contrast to its predecessors,

WebAssembly was designed to be a compilation target for the web and to be embedded

in a host environment [8]. JavaScript is a high-level language and was never designed

to be a compilation target, i.e., to provide a safe and sound environment for compiling

programs in C, for example, into JavaScript, to reuse existing low-level code on the web.

Asm.js and Native Client among others provide such capabilities. Asm.js is the most used

compilation target and a significant portion of JavaScript code on the web is generated by

compiling C/C++ into asm.js [8]. asm.js is a subset of JavaScript which limits its features

to a more optimizable language and therefore achieves better performance results than

plain old JavaScript. Currently, C/C++ programs can be efficiently ported to the web

using the Emscripten toolchain 5 to asm.js.

On the other hand, Google developed Native Client, which was released in September

2011. Native Client (NaCl) was the first sandboxed execution environment able to execute

machine code on the web nearly as fast as native code [10]. This compilation target for

the web did not receive as much adoption as asm.js and presented several difficulties to

provide interoperability amongst all the browsers. Because of this scenario with multiple

compilation targets, no standards, and the will of the major web companies, WebAssembly

was designed to be a successor of the former.

4https://s3.amazonaws.com/mozilla-games/tmp/2017-02-21-SunTemple/SunTemple.
html

5https://github.com/kripken/emscripten

https://s3.amazonaws.com/mozilla-games/tmp/2017-02-21-SunTemple/SunTemple.html
https://s3.amazonaws.com/mozilla-games/tmp/2017-02-21-SunTemple/SunTemple.html
https://github.com/kripken/emscripten

2.2 SOFTWARE VERIFICATION 7

2.2 Software Verification

Software verification was introduced by King [11] and Floyd [12]. The general idea

and the foundations of the topic are going to be based on such references, the former

one being a doctoral thesis and the latter a publication. Although these publications are

quite old, they provide the pillars and the very foundation of the concepts in software

verification. As of 2018, software is necessary and essential for modern societies. It is so

ubiquitous that we can think of thousands of aspects of modern civilisation that are run

by software, from controlling power-grids, public transport, communication to medical

implants. Therefore, the level of dependency on such software is such that proving those

programs correct has never been more critical.

Concerns about software being correct and being able to automatically prove it date

back to 1970 with James King’s doctoral thesis; "A program verifier". Software verification

deals with proving that programs and algorithms will always execute as expected [11].

Automatic software verification is then the process of computers performing this kind

of analysis and verification on programs, automatically. As software is more and more

ubiquitous in our daily life, and some cases of mission-critical like pacemakers or insulin

pumps, verifying unequivocally that such software will run correctly and as expected is

critical. As a small example of a mission-critical system failing is NASA’s Mars Climate

Orbiter, which crashed in 1999 due to faulty software [13]. The error was introduced by

using different unit systems and not performing the necessary checks, tests and verification

of the algorithms, jeopardising a 327.6 million dollar mission. The US Department of

Commerce estimated that the losses caused by avoidable errors in software oscillated

around 20 and 60 billion USD annually, for the US economy only in 2002. A more recent

report based on the impact for 2017 concluded that the financial losses are approximately

1.7 trillion dollars, worldwide, affecting more than 3.6 billion people [14].

In order to address the software verification problem, Antony Hoare, emeritus professor

at Oxford University and a pioneer in the field, proposed the creation of a verifying compiler

in the context of a "Grand Challenge for Computing Research" in 2003, planned to be

achieved internationally and over the timespan of 15 years [15]. The proposed "verifying

8 LITERATURE REVIEW

compiler" is an enhanced compiler to which software verification capabilities are to be

added in order to guarantee properties such as correctness, safety, termination and many

other desirable properties. This was later presented at the conference on verified software,

VSTTE (Verified Software: Theories, Tools, Experiments) [16], where the top experts in

software verification participated.

2.2.1 Current approaches in automated program verification

This subsection will introduce modern advanced software verification techniques, software

model-checking and tools, implementing the foundations presented in the previous subsec-

tion. For a more recent study and approaches into software verification, the survey from

Silva [17] will be used to expand on the most modern techniques in the field. Beckert’s

survey [18] will also be used as a survey of existing tools used mostly in the industry,

such as tools to verify real (not only experimental) Java programs and part of its API,

for example. The current approaches in software verification can be categorised into

interactive proof techniques and automated software verification. The first are the ones

that need vast user interaction and effort to provide theorems and proofs of correctness

or in some of the tools, annotate the source code heavily.

In this category, we can find deductive software verification, which is a formal technique

for reasoning about program properties [18]. In this approach, the semantics of a program

are thoroughly specified, from which later theorems are stated. The developer then has

to provide a mathematical proof of such claims. These approaches are indeed effective

but they require extensive user interaction and training. Among the most popular tools in

this area are: Isabelle/HOL6, ACL27 and Coq8. Model-Checking techniques do not require

user interaction, and these are the kind of techniques that are going to be focused on in

this research, and therefore the literature review will cover this category.

6https://isabelle.in.tum.de/
7http://www.cs.utexas.edu/users/moore/acl2/
8https://coq.inria.fr/

https://isabelle.in.tum.de/
http://www.cs.utexas.edu/users/moore/acl2/
https://coq.inria.fr/

2.2 SOFTWARE VERIFICATION 9

Static Analysis

The most common verification is static analysis. This kind of analysis is also done by

compilers to perform several tasks such as dead code elimination and to prevent errors

before compiling. Broadly, static analysis automatically computes information about the

code and its behaviour without having to execute it [17]. Static analysis may not produce

100% accurate predictions or warnings about the code, but an approximation, as many of

the properties that are to be verified can be undecidable or infeasible problems. Because of

this approximate approach, some bugs can be missed (false negatives) and some spurious

warnings (false positives) can be obtained as a result as well.

Concrete static analysis works by propagating the set of values of the variables until a

fixpoint is reached. This is a theoretical aspect of accurate interpretation due to the large

size value-sets that could be possibly infinite. These can grow fast, and a fixpoint may not

be reached in a desirable amount of time. Therefore this technique does not scale well.

This drawback of concrete interpretation led to the introduction of abstract interpretation

by Cousot [19]. In the abstract interpretation of static analysis, the program’s behaviour

is analysed on an abstract domain (an approximation of concrete value-sets), and an

abstract solution is obtained. In this regard, precision is replaced with efficiency. However,

abstract interpretation cannot easily provide counterexamples or witnesses, and to remedy

this problem, model checking is introduced by Clarke [20] and Queille [21].

Model checking

Model checking is a method for verifying that a system model satisfies a specification [20,

21]. The model consists of states and transitions. The properties can be safety properties

such as assertion violations or buffer overflows. In comparison to static analysis, model

checkers examine the reachable states of a program exhaustively and being aware of the

path and program flow. The two approaches differ in their applicability in practice [17].

Model checkers were conceived to obtain precise results and provide a counterexample

when a state that violates the correctness property is found reachable. In this case, the

counterexample would be the trace that leads to such a state. This information is useful

10 LITERATURE REVIEW

for the developer, as the precise witness is indicating where the error would originate and

the potential error can be solved.

This approach has the drawback that when the state space is large or possibly infinite,

it is hard or infeasible to verify such models. Predicate abstraction was then introduced

by Graf in [22]. With this technique, the state space is abstracted into a finite abstraction

using a finite set of predicates. The predicate discovery process is where the complexity

resides, as synthesising them defines the accuracy of the model checker. When an abstract

counterexample is not realisable to the particular program, then the abstractions are

refined to a more precise version. This process is called counterexample-guided abstraction

refinement (CEGAR).

Model checkers use a range of solvers to analyse the feasibility of the predicates. These

can be SAT solvers for boolean predicates, QBF (Quantified Boolean Formula) solvers and

Satisfiability Modulo Theories (SMT) solvers. The latter is the most comprehensive and

used as back-end in Skink [1], the tool that is used in this research to obtain the results.

SMT Solvers

SMT solvers are present in software verification and formal methods since 1980 and the

interest in these has increased ever since to a point where they are largely present both

in academia and in the industry [18]. These can be found in theorem provers such as

HOL9 and model checkers such as SLAM10. SMT solvers are currently an increasingly

active area of software verification and instrumental in almost every tool in the SV-COMP

(Software-Verification competition) [23]. For SMT and SAT solvers in particular, there are

specific competitions to motivate research on these topics 11 12.

SMT solvers work by analysing the satisfiability of predicates in a particular theory.

These theories can be from set theories, lattices list or many other [18]. In the context of

this research, SMT solvers are part of the tool that analyses if a program trace is satisfiable,

or, in other words, if there exists a configuration of values for the variables that lead the

9https://hol-theorem-prover.org/
10https://www.microsoft.com/en-us/research/project/slam/
11http://www.satcompetition.org
12http://www.smtcomp.org

https://hol-theorem-prover.org/
https://www.microsoft.com/en-us/research/project/slam/
http://www.satcompetition.org
http://www.smtcomp.org

2.2 SOFTWARE VERIFICATION 11

program to a state that violates the specification.

2.2.2 Trace abstraction refinement

Trace abstraction refinement is a new approach in software verification proposed by

Heizmann [24]. In this new approach, the model checking is done using automata. In

this automata, the set of statements or expressions of the program is the alphabet, and,

each statement takes the place of a single letter, deprived of its meaning [25]. Different

types of automata are to be used for different verification objectives, e.g., finite automata

or nested word automata for recursion or Büchi automata for program termination [26].

In this approach, the first step is creating the automata based on a proof of infeasibility of

a trace. For reachability cases, the automata would have a final error state. If there are

traces that lead to such a state, the program would be incorrect. The initial abstraction is

an automaton that accepts the language of all the possible sequence of statements of the

program, given by the Control Flow Graph (CFG) extended with an error location.

In the next step, automata are generated for infeasible traces which are then removed

from the initial trace abstraction using the techniques for regular languages subtraction

defined in [24]. This is applied in an iterative CEGAR fashion. If by the end, no traces are

left, it means that there are no feasible traces that lead to an error state and therefore the

program is correct based on the proposed correctness model. Otherwise, if a feasible trace

is found, then an error is found. As the problem is undecidable, this iterative process may

never terminate and in practice, a timeout is set and once it is exceeded, an the result is

inconclusive.

Applying trace abstraction refinement

The authors of the trace abstraction refinement techique have developed their own tool,

UltimateAutomizer13. However, this tool analyses C programs and therefore we have

chosen to use Skink [1], as it can analyse LLVM-IR and is developed by the Computing

Department. As part of the review on tools that implement such theory, Goanna [27] is

13https://ultimate.informatik.uni-freiburg.de

https://ultimate.informatik.uni-freiburg.de

12 LITERATURE REVIEW

also presented and compared with Skink, providing details of why Skink is more suitable

for this current project.

Goanna, a commercial automated software verification tool is a software model checker

based on trace abstraction refinement. Contrary to typical academic solutions, this

tool can handle large and industrial sized C/C++ code bases for analysis. Goanna

has been benchmarked by participating in the Software Assurance Metrics and Tool

Evaluation [28], achieving interesting results: it detected the highest number of true

weaknesses in security and quality metrics [27]. However, Goanna implements a simple

trace abstraction refinement, while Skink performs a more elaborate technique.

Skink is the tool that will be used for the evaluation of the correctness of WebAssembly

programs and gathering of the experimental results. Skink can process LLVM-IR programs

through the analysis of their CFG, although it provides the option to be extended and

perform the analysis on custom CFGs, say, from different languages. Skink is built using

Mathias Heizmann’s algorithm refinement of trace abstraction [29], which uses the CEGAR

loop for refining the abstractions.

FIGURE 2.1: Refinement process. Credit [1].

The verification and refinement loop is

shown in figure 2.1. The first step is obtain-

ing the CFG of a program P and abstracting

it into the automaton A. The loop is then

iterated for all the traces generated by the

automaton A, checking the feasibility of the

traces. If the trace is feasible and leads to

an error, then the code is declared incor-

rect, and a witness with the details of the configuration that leads to the error is provided.

Infeasible traces that lead to an error state are removed from the automata abstraction us-

ing automata theoretic-operations. The feasibility of a trace is checked using SMT-solvers

and in Skink using ScalaSMT [30], which supports popular solvers such as Z3 [31]. The

loop may terminate with an automaton accepting the empty language ;. Otherwise, it

may end with the discovery of a feasible error trace, or might not come to a conclusion at

all and halting because of the timeout, resulting in an "unknown" result.

3 | Methods

3.1 Introduction

The primary methodology of this research is experimental; using WebAssembly programs

and applying software verification techniques to prove our first claim: WebAssembly

programs can be verified. The second objective of this research is to apply software

verification to allow the detection of certain types of errors in WebAssembly. The focus

of this research is not on testing the tool on large code bases but to try to verify as

many runtime errors as possible. These are runtime errors that cause the execution to

abort, named traps, are similar to exceptions in other programming languages. Exception

handling is not a feature in WebAssembly, so far1, meaning that the developer or the

compiler cannot produce mechanisms of catching errors and taking a particular action on

these events.

In order to run the verification tasks on WebAssembly programs, we used Skink. Skink

provides a C frontend which uses clang to compile C programs into LLVM-IR programs

and then uses the latter as the input. A diagram with the frontends is shown in figure

3.1 and explained later in that section. The resulting product of this research project is

a set of tools that extend Skink and would aid in the validation phase of WebAssembly

modules, preventing certain kind of runtime errors from occurring before execution.

The main decision concerning the methodology of this research was how the environ-

ment and tools, specially Skink, were to be used, set up and built. This is depicted in figure

3.1. The options were: 1. (left) Parse and translate WebAssembly into LLVM-IR, which is

then used as an input for Skink using the existing machinery available for LLVM-IR. 2.

(right) Modify Skink so that it also accepts WebAssembly direct input.

Implications of option 1: Skink already does the complicated processing of LLVM-IR

and transformation into an automaton and further translation into SMT terms. In that

1Exceptions are part of the post MVP (Minimum Viable Product) features. This feature was assigned in
October 2018, but no milestone or release has been planned. The issue is available at https://github.
com/WebAssembly/proposals/issues/4.

13

https://github.com/WebAssembly/proposals/issues/4
https://github.com/WebAssembly/proposals/issues/4

14 METHODS

Model checking tools

Contribution

Skink

LLVM­IR

C/C++ WASM

clang

(1)

wasm2llvm

Contribution

Skink

LLVM­IR

C/C++

(2)

WASM

clang

opt

FIGURE 3.1: Tools and environment

regard, using the existing solution means that this challenging and time-consuming step

is avoided. Skink has been tested extensively for reachability problems specifically and

has participated in several instances of SV-COMP. Furthermore, the Skink project has been

tested extensively, with a wide range of combinations of LLVM-IR instructions, from bit

vector operations, floating point and loops to arrays. By taking this approach, we can

build on top of the code that has been tested and used for years.

WebAssembly, as LLVM-IR, is an abstract low-level language. Almost every operation

in WebAssembly can be directly translated into LLVM-IR. The main difference is that

WebAssembly is a stack machine and LLVM-IR a register machine and the control flow is

structured in WebAssembly where it is not in LLVM-IR. In this regard, the control flow in

WebAssembly is a subset of that present in LLVM-IR and therefore it is translatable.

By translating WebAssembly into LLVM-IR, our tool is then independent of Skink,

meaning that any static analysis tool that is capable of processing SV-COMP reachability

problems in LLVM-IR would be able to use it and that there is no need to modify Skink. In

this regard, Skink could still be used via the LLVM-IR frontend and using it as-is, without

adding a frontend. Furthermore, using this approach, our solution would benefit from

the improvements of the way Skink processes LLVM-IR and further changes in the LLVM

specification that are incorporated into the tool.

3.1 INTRODUCTION 15

With this approach, we can also benefit from the optimisations that the LLVM optimiser,

opt, can apply to our resulting intermediate representation. These optimisations include

function dead code elimination, loop unwinding and function inlining. Function inlining,

which is the optimisation that replaces a function call by its body, is particularly useful in the

task of verifying programs using Skink, as it is not capable of verifying multiple functions.

Implications of option 2: As mentioned in the implications of option 1, translating

WebAssembly instructions into SMT terms and building the automata for further processing

by Skink is not trivial. Firstly, the stack and the structured control flow labelling would

have to be modelled into the SMT terms. Secondly, it requires an in-depth knowledge of

the theories involved in the SMT terms. These theories can be the one that can represent

floating point numbers and operations, for example.

By generating the terms from WebAssembly, this would be a new and untested code.

Code that never participated in a software verification competition. Furthermore, that

would require more time to develop a reliable tool, and given the limited timespan of this

research, that would be out of scope.

Given the time constraint of this research, our emphasis on verifying aspects of We-

bAssembly and the benefits of option 1, we chose to parse and translate WebAssembly

into LLVM-IR (wasm2llvm) to be further processed by software model checkers that can

analyse LLVM-IR. No other options, such as verifying C source code were considered as

both WASM and LLVM-IR are low level programming languages and with our approach we

can also improve Skink. This is achieved by developing a WebAssembly parser (scalaWasm)

and a tool that translates WebAssembly into LLVM-IR, wasm2llvm, that also performs

modifications in order to transform instructions that cause possible traps in reachability

problems. Table 3.1 shows a summary of the aspects to take into account for each option.

In green are the positive aspects and in red the negatives.

Parameters Option 1 Option 2

SMT terms semantics Already done Needs to be done
Reliability Tested, participated in SV-COMPs Needs to be tested from scratch
Independence from Skink Yes No
Access to optimizations Yes No

TABLE 3.1: Approach decision summary.

4 | Translating WebAssembly into LLVM

In the interest of being concise, a simplified version of the complete WebAssembly language

specification used in the parser is presented in image 4.1. The complete supported syntax

in sbt-rats format is available on the online repository1. Even though the parser is capable

of parsing almost the entire WebAssembly specification, the translation to LLVM-IR does

not cover the whole set of operations.

module ::= ftype∗ import∗ function+ global∗ export∗ element∗ (4.1)

ftype ::= valueType∗→ valueType? (4.2)

resultType ::= result valueType (4.3)

valueType ::= i32 | i64 | f32 | f64 (4.4)

import ::= functionImport | globalImport | tableImport | memoryImport (4.5)

function ::= ftype instr∗ (4.6)

instr ::= block resultType? instr∗ end | loop resultType? instr∗ end (4.7)

| if resultType? instr∗ (else instr∗)? end (4.8)

| br index | br_if index | call index | call_indirect ftype | return | unreachable (4.9)

| valueType.const | binOp | relOp | testOp (4.10)

| valueType.load | valueType.store | memory.grow | memory.size (4.11)

| (set | get | tee)_local index | (set | get)_global index (4.12)

| drop | select | nop (4.13)

binOp ::= i32.add | . . . | f64.div (4.14)

relOp ::= i32.eq | . . . | f64.gt (4.15)

testOp ::= i32.eqz (4.16)

export ::= functionExport | globalExport | tableExport | memoryExport (4.17)

index ::= n | n ∈ N∧ n< 232 (4.18)

FIGURE 4.1: Simplified WebAssembly syntax.

WebAssembly programs are shipped in modules which can be in binary or text repre-

sentation. Each file contains only one module, comprising several functions, metadata and

data segments. Then, each function contains a sequence of instructions.

1https://bitbucket.org/diegoocampohdr/scalawasm/src/default/src/main/scala/
org/scalawasm/wasm/Wasm.syntax

16

https://bitbucket.org/diegoocampohdr/scalawasm/src/default/src/main/scala/org/scalawasm/wasm/Wasm.syntax
https://bitbucket.org/diegoocampohdr/scalawasm/src/default/src/main/scala/org/scalawasm/wasm/Wasm.syntax

4.1 OVERVIEW 17

4.1 Overview

When performing the translation for WebAssembly functions, our goal is to translate each

WebAssembly instruction into the LLVM-IR blocks that comprise the LLVM-IR function. In

order to achieve this translation, we implement an intermediate representation with an

inductive type we named Box, that models graph elements which have one entry and one

exit. We implement different types of Box and each type expects different parameters,

which are explained later in this chapter. Finally, we translate these boxes into LLVM-IR

blocks. The first rule translates from a list of WebAssembly instructions into a Box:

C ` [WebAssembly inst.] C ′ ` Box (1)

The rule reads: given the list of WebAssembly instructions in the context C , we obtain

the translation of such instructions in an instance of Box and a modified context C ′. This

rule applies to the whole set of instructions (see 4.1 lines 4.7 to 4.13), meaning that each

instruction has a corresponding box. The context C stores information that is necessary to

perform the translation, being the most important contents the operand stack (os) and the

label stack (ls). As WebAssembly is a stack-based and LLVM-IR is register-based, we need

to keep track of the WebAssembly stack and simulate it. The operations and contents of

the context are described later in this chapter. We use a second main rule that translates

from each Box into a list of LLVM-IR blocks:

l bl ` Box ⇒ [LLVM-IR blocks] (2)

This second rule reads: given a Box, we generate a list of LLVM-IR blocks such that the

last of such blocks jumps to the label l bl. This rule therefore defines the final step of the

whole translation, generating and linking the LLVM-IR blocks that comprise each function.

The type Box, defined in the next equation, can be composed of other boxes and a label

(bl) or in the example of SimpleBox LLVM-IR instructions. The IfBox contains an inner

Box for each possible path, which both exit to the final block of the IfBox. Each box then

generates additional LLVM-IR blocks, defined by the previous rule and developed later.

18 TRANSLATING WEBASSEMBLY INTO LLVM

Box ::= SimpleBox(l l vm, bl) | BrBox(l l vm, bl) | RetBox(l l vm, bl) (3)

| SeqBox(Box , Box , bl) | BlockBox(Box , Box , bl)

| I f Box(c, ThenBox , ElseBox , bl)

In figure 4.2, we show an example of the composition of boxes. The IfBox is composed

of two inner boxes, one for each path and in the then path it contains a LoopBox and

in the else a BlockBox. Loops are represented using BlockBoxes but we keep the name

LoopBox to make the example clearer. The only difference between blocks and loops is

how the branching behaves, which is discussed later. The IfBox then will be translated

into an initial block that evaluates the conditional and performs a conditional branch to

either the then box’s first block or the else box’s first block and a final block where both

paths will merge.

IfElseBox

label stack

be : if_N_end

bs : loop_N_entry

...

phi instruction to update operand
stack based on incoming path

be : if_N_end

condition
bs : if_N_start

True False

Block box: Box

be : block_N_exit

bs : block_N_entry

body: Box

br 0

br 1

Loop Box: Box

be: loop_N_exit

bs : loop_N_entry

body: Box

br 0

br 1

label stack

be: if_N_end

label stack

...

label stack

be : if_N_end

be : block_N_exit

...

FIGURE 4.2: Box model and structured branching in the translation.

The image includes details about the labelling and the labels stack, that we explain later.

4.2 DETAILS 19

4.2 Details

The rule defined in equation 1 uses auxiliary rules, as boxes are built using LLVM-IR

instructions. The next auxiliary rule translates a single WebAssembly instruction, given a

context C , and obtains a list of LLVM-IR instructions and a modified context C ′.

C `WebAssembly inst. −→ C ′ ` [LLVM-IR inst.] (4)

The following image shows the specification of this rule for a variety of instructions. This

rule is only applied for instructions that are not part of the structured control instructions.

The latter are: block, loop and if.

Context C= (os, ls, b(block label index), f uncs, locals, globals)

‘i32’+ ‘i32’ ‘i64’+ ‘i64’ ‘ f 32’+ ‘ f loat ’ ‘ f 64’+ ‘double’ ‘eq’* ‘eq’ ‘ne’* ‘ne’ ‘l t_s’* ‘sl t ’ ‘l t_u’* ‘ul t ’ ‘g t_s’* ‘sg t ’

‘g t_u’* ‘ug t ’ ‘le_s’* ‘sle’ ‘le_u’* ‘ule’ ‘ge_s’* ‘sge’ ‘ge_u’* ‘uge’

t + t ′ C .os = [x] C ′ = C , os[y :: x] fresh y

C ` t.const x −→ C ′ ` [‘y = add t ′ 0, x ’]

t + t ′ irelop* i C .os = [y :: x :: t] C ′ = C , os[z :: t] fresh z

C ` t.irelop −→ C ′ ` [‘z = icmp i t ′ x, y’]

C .ls = [h :: x :: t] C ′ = C , ls[t]

C ` br x −→ C ′ ` [‘br label x ’]

C .os = [h :: t] C ′ = C , os[t]

C ` drop −→ C ′ ` [] C ` nop −→ C ` [‘y = add i1 0, 0’]

C .os = []
C ` return −→ C ` [‘ret void’]

C .os = [x] C ′ = C , os[])

C ` return −→ C ′ ` [‘ret x’] C ` unreachable −→ C `
�

‘call void @__VERIFIER_error()’

‘unreachable’

�

f = f uncs(x) f .t ype = []→ []
C ` call x −→ C ` [‘call void f.name()’]

f = f uncs(x) f .name = ‘abortStackOverflow’

C ` call x −→ C ` [‘call void @__VERIFIER_error()’]

l = locals(n) l.t + t ′ C .os = [x :: t] C ′ = C , os[t]

C ` local.set n −→ C ′ ` [‘store t ′ x, t ′* l.label ’]

l = locals(n) l.t + t ′ C .os = [t] C ′ = C , os[y :: t] fresh y

C ` local.get n −→ C ′ ` [‘y = load t ′ x, t ′* l.label ’]

l = locals(n) l.t + t ′ C .os = [x :: t])

C ` local.tee n −→ C ` [‘store t ′ x, t ′* l.label ’]

g = globals(n) g.t + t ′ C .os = [x :: t] C ′ = C , os[t]

C ` global.set n −→ C ′ ` [‘store t ′ x, t ′* l.label ’]

g = globals(n) g.t + t ′ C .os = [t] C ′ = C , os[y :: t] fresh y

C ` global.get n −→ C ′ ` [‘y = load t ′ x, t ′* g.label ’]

t + t ′ C .os = [val :: addr :: t] C ′ = C , os[t] fresh p1 fresh p2

C ` t.store −→ C ′ `
�

‘p1 = getelementptr inbounds [@mem.size x i8], [@mem.size x i8]* @mem, i32 0, i32 addr

‘p2 = bitcast i8* p1 to t′*

‘call void @__VERIFIER_memaccess(i32 addr, i32 t.bi t leng th) ’

‘store t′ val, i8* p2

�

FIGURE 4.3: Implementation of rule defined in 4.

The first relations that we show in 4.3 are+ and*. The first is the relation between

WebAssembly types and LLVM-IR types, such as f64 in WebAssembly is represented as

double in LLVM-IR. The second denotes the translation of the integer relational operation

20 TRANSLATING WEBASSEMBLY INTO LLVM

keyword, which are quite similar, such as greater or equals signed ge_s maps to sge.

When referring to the operand stack, we use the notation C .os[h :: t], meaning that

the context C has an operand stack with h on its head and t on its tail, values that may be

used in the translation. When modifying a specific part of the context, we use the notation

C ′ = C , os[t], meaning that we have a new context C ′ with the stack of C replaced by [t]

and keeping the rest of the values of C , to avoid explicitly repeating the rest of the values.

The same notation applies for the modification of the label stack and rest of the values.

We use the notation fresh y to indicate that a fresh variable y is created. As an example,

the translation of the relational operations are defined with the rule:

t + t ′ irelop* i C .os = [y :: x :: t] C ′ = C , os[z :: t] fresh z
C ` t.irelop −→ C ′ ` [‘z = icmp i t ′ x, y’]

where the premises are indicating that the type t is translated into the LLVM-IR type t ′,

then translate the keyword for the irelop operation and given an operand stack with

y and x on its head, we end up with the context C ′ which has the same contents as C

but the stack is updated and now has z, a fresh variable, in its top. Finally, we build the

LLVM-IR instruction using y , x , t ′, i and z.

The rule defined in equation 1 also uses the following auxiliary rule, which is similar

to 1 and reads the same but applies to a single WebAssembly instruction and therefore

the different arrow (1).

C `WebAssembly inst. 1 C ′ ` Box (5)

This rule defines how each WebAssembly instruction is translated into a box, which may
contain other boxes or just LLVM-IR instructions. The ones that will contain inner boxes

are the structured control instructions, which will use rule 1 in its premises to perform

the recursive instruction. In figure 4.4, we define relations 1 and 5.

When translating the inner instructions of structured control instructions, the operand

stack needs to be empty, as instructions inside these constructs cannot access the stack

elements pushed outside and a label has to be pushed to the label stack. To model this,

we use C ′ = C , os[], ls[ble :: C .ls], meaning that we perform the recursive translation

4.2 DETAILS 21

with a new context with an empty operand stack and a label appended to the top of the

original C .ls.

{SI}= Simple instructions, 4.10 to 4.13 in 4.7

i = br x C ` i −→ C ′ ` i′ C ′, b(C .b+ 1)

C ` i 1 C ′ ` BrBox(i′, C .b)

i = return C ` i −→ C ′ ` i′ C ′, b(C .b+ 1)

C ` i 1 C ′ ` RetBox(i′, C .b)

i ∈ {SI} C ` i −→ C ′ ` i′ C ′, b(C .b+ 1)

C ` i 1 C ′ ` SimpleBox(i′, C .b)

bl = C .b C .ls = [t] C ′ = C , os[], ls[ble :: t], b(bl + 1) C ′ ` e∗ C ′′ ` bx C ′′′ = C , b(C ′′.b)

C ` block e∗ end 1 C ′′′ ` BlockBox(bx , bl)

bl = C .b C ′ = C , os[], ls[bls :: C .ls], b(bl + 1) C ′ ` e∗ C ′′ ` bx C ′′′ = C , b(C ′′.b), os[C ′′.os :: C .os]

C ` loop r t e∗ end 1 C ′′′ ` BlockBox(bx , bl)

bl = C .b C .os = [cond :: x] C ′ = C , os[], ls[ble :: C .ls], b(bl + 1) C ′ ` e∗ C ′′ ` bx C ′′′ = C , b(C ′′.b)

C ` if e∗ end 1 C ′′′ ` I f Box(cond, bx , bl)

C ′ = C , os[], ls[ble :: C .ls], b(bl + 1) C ′ ` e∗1 C ′′ ` ThenBox C ′′ ` e∗2 C ′′′ ` ElseBox

bl = C .b C .os = [cond :: x] C ′′′′ = C , b(C ′′′.b)

C ` if e∗1 else e∗2 end 1 C ′′′′ ` I f Box(cond, ThenBox , ElseBox , bl)

C ` i 1 C ′ ` box

C ` [i] C ′ ` box

C ` h 1 C ′ ` hBox C ′ ` t C ′′ ` tBox

C ` [h :: t] C ′′ ` SeqBox(hBox , tBox , hbox .label)

FIGURE 4.4: Implementation of rule defined in 1 and 5.

Control flow in WebAssembly is structured, meaning that branching can only jump

to the enclosing constructs and not to arbitrary locations in the code, behaviour that is

translated using the label stack. In the context of the recursive translation of the inner

instructions of a block, we push the block’s label to the labels’ stack ble and on the case

of the loop instruction, the subtle difference that we push bls. This is because when

branching with index 0 inside a block or if in WebAssembly, a jump to the end of the

block is performed, but on the case of a loop, a jump to the beginning of the loop is

performed, in order to perform a new iteration. This is depicted in image 4.2, where br n

is then translated into a branch label n′, where n′ is determined using the label stack

maintained in the context.

In the case of a loop, the label that was pushed to the label stack indicates a backwards

jump and in the case of a block a forward jump, based on the targets indicated by the

labels stack. As we can see in the figure, we have BlockBox as one of the inner boxes of

the IfBox, which is comprised of a start LLVM-IR block with the label bs, then links to its

inner Box with the translation of its instructions, which then jump to the block’s exit llvm

22 TRANSLATING WEBASSEMBLY INTO LLVM

block, with the be label.

The two rules at the end define the translation for a sequence of WebAssembly in-

structions. In the first case, when translating a list with a single element, [i], we use the

relation 1. Otherwise, we use 1 to translate the head of the list, obtaining the head

box and recursively translating the tail with and at the end, a sequence of WebAssembly

instructions gets translated into a single Box, which is a SeqBox.

The next figure implements the rule in equation 2. This rule has no context, as the

values in the context are used in the creation of boxes.

l bl ` tBox ⇒ l l t l l t[0].label ` hBox ⇒ l lh

l bl ` SeqBox(hBox , tBox , label)⇒ l lh++l l t l bl ` SimpleBox(i, label)⇒ LLBlock(label, i, ‘br label lbl ’)

BrBox(i, label)⇒ LLBlock(label, [], i) RetBox(i, label)⇒ LLBlock(label, [], i)

blockEnd = LLBlock(labele , [], ‘br label lbl ’) labele ` innerBox ⇒ inner Ll vm

fresh label_e label_s blockStar t = LLBlock(labels , [], ‘br label innerLlvm.[0].label ’)

l bl ` BlockBox(innerBox , label)⇒ [blockStar t]++inner Ll vm++[blockEnd]

labele ` thenBox ⇒ thenLlvm labele ` elseBox ⇒ elseLl vm

blockCond = LLBlock(labels , [], ‘tmp = icmp ne i32 c, 0’, ‘br i1 tmp, label thenLlvm.[0].label, label elseLlvm.[0].label ’),

blockEnd = LLBlock(labele , [], ‘z = phi [x, thenLlvm.last.label], [y, elseLlvm.last.label]’, ‘br label lbl ’) fresh label_e label_s

l bl ` I f Box(c, thenBox , elseBox , label)⇒ [blockCond]++thenLlvm++elseLl vm++[blockEnd]

FIGURE 4.5: Translation rules from boxes into final LLVM-IR.

This final rule builds the LLVM-IR blocks and links then. An LLVM-IR Block constructor,

defined as LLBlock(bl, phi?, i+, br I), expects a label (bl), an optional phi instruction, the

instruction in the body i+ and a final branching instruction. Phi instructions in LLVM-IR

are a mechanism to load a variable depending on the incoming edge to the current block.

When we have a conditional that opens two paths and then merges them at the end, we

need to know what value to assign to value on top of the stack when the conditional

yields a result. In such a case, it is required in WebAssembly that both paths return the

same type. Therefore, the type of the new variable is resolved in the translation of the if

instruction and the stack is modified in that occasion. At this point, we only need to build

the phi instruction that will load such variable.

4.2 DETAILS 23

The l bl on the left-hand side of the rule is calculated recursively for the sequence of

boxes in the rule in the top left, where l bl takes the value of the boxes’ labels. We use the

notation l l t[0].label to access the label of the LLVM-IR block at position 0 of the list of

l l t and in this way all the boxes in the sequence end up linked, and the last linked to l bl.

In the example of the IfBox, the inner boxes are translated and are both linked to the

final block denoted with labele. Then the conditional block is generated, which evaluates

the conditional and performs a conditional branch to either the then box’s first block

or the else box’s first block. Then a final block is created, that merges the two paths,

and in the case that the conditional returns a value, a phi instruction is generated to

choose the new operand at the top of the stack depending on the incoming edge. The

phi instruction needs to know the label of each predecessor, and we use the notation

thenLlvm.last.label to access the label of the last LLVM-IR block of the then path.

The introduced rules deal with the translations of the sequence of instructions that

comprise WebAssembly functions. The translation of the WebAssembly functions AST

node into LLVM-IR functions is not done using the box model, as they do not follow the

single-entry single-exit model. For the translation of a WebAssembly function into an

LLVM-IR function, the inner sequence of instructions is translated into boxes and then into

the final LLVM-IR blocks using the defined relations. The translation of a function will

generate an extra initial and final block. The final block’s label is used for the rule defined

in figure 4.5, and is used in l bl. In this way, the last box will jump to the function’s final

block. Then, the first block with a unique label identifying the function, allocating the

memory for local variables and branching to the first block of the translation of the inner

box is generated. In the last block, the function then returns the value that is present on

the top of the operand stack or returns void.

WebAssembly currently allows only one memory instance. Memory is translated into a

byte array and initialised to zero, see line 1 of listing A.12 for an example. Global variables

in WebAssembly are directly translated to LLVM-IR and placed in the top of the file, see

the first lines of listing A.15 for examples. Both globals and memory can be initialised in

the embedding environment, but as we only verify WebAssembly modules in isolation,

when these values are imported, we initialise them to 0.

5 | Validating the translation

5.1 Introduction

The approach we took to validate our translation with wasm2llvm tool is by using unit tests

instead of formal proof. Establishing a proof of correctness of the translation wasm2llvm

is hard and involves non-trivial techniques and, as mentioned in chapter 3, given the

time constraints of this research, the viable approach is using test cases instead. For the

test cases, files obtained from previous instances of SV-COMP were used. The SV-COMP

setting and definitions are defined in the following section. In this chapter, we present

the results of this validation phase and a discussion of such results.

5.2 SV-COMP setting

SV-COMP is the International Competition on Software Verification that has recently run

its eighth event at Prague, Czechia. This competition defines benchmarks and verification

tasks in order to assess a wide range of state-of-the-art verification tools [32]. A verification

task is defined as a non-interactive C file which is purely computational and therefore has

no side-effects and its main function has no parameters. In the context of SV-COMP, these

C files are not intended to be executed but to be verified. The C file includes a correctness

specification. For the category that we deal with, reachability, the specification consists of

error states determined by calls to a special function called __VERIFIER_error().

In reachability tasks, the verification tool has to determine if the error state(s) in

the program can be reached, and in the case that the reachability depends on a specific

value, such value would be the violation witness for specification provided in the scenario

of an incorrect program. The code in listing 5.1 combines an example of reachability

that depend on external values. Calls to __VERIFIER_error() are in essence assertions

of reachability. In a real C file, an assertion would have no effect other than debugging

purposes. As defined by SV-COMP, the call to __VERIFIER_error() aborts the execution

and the control flow never returns. In this regard, when computed the CFG of the program,

the call to the error state would be a final error state.

24

5.3 VALIDATION 25

1 extern void __VERIFIER_error () __attribute__ ((__noreturn__));
2 int __VERIFIER_nondet_int ();
3 int main (){
4 int m = 0;
5 int i = __VERIFIER_nondet_int ()
6 int j = __VERIFIER_nondet_int ();
7 if (i > j)
8 if (i > j) __VERIFIER_error ();
9 }

Listing 5.1: Sample incorrect program from SV-COMP

Some verification tasks, as 5.1, include function calls to obtain nondeterministic values

that may alter the control flow. These functions have the type __VERIFIER_nondet_X()

where X is the type of the value that the function returns. The X type can be an integer,

a floating point values, among others. In the cases such as listing 5.1, the verification

consists of determining the conditions under which the call void __VERIFIER_error()

is reachable, based on the possible values that variables i and j can take. When Skink

verifies this file as INCORRECT, it also provides the witness, specifying each of the values

that __VERIFIER_nondet_int() needs to return for the program to fail. The test cases used

in this validation phase involve files SV-COMP that cover different language constructions,

while always addressing reachability problems. These constructions cover loops, (nested)

conditionals, arrays, strings, floats/doubles, integers and arithmetic operations.

5.3 Validation

The validation process is depicted in figure 5.1. In the current Skink workflow, the process

that Skink uses to verify C programs and produce a result is shown. In this process, C

files are compiled and optimised with clang and then the resulting LLVM-IR is processed

by Skink to analyse its correctness. This set of files are the ones currently used to test

Skink extensively. The same set of files is then applied to our workflow, the one beneath

the current Skink workflow. Our workflow then compiles the C files into WebAssembly

using Emscripten (emcc)1. Then the WebAssembly file gets translated and instrumented by

1http://kripken.github.io/emscripten-site/

http://kripken.github.io/emscripten-site/

26 VALIDATING THE TRANSLATION

wasm2llvm into LLVM-IR, which is further optimised with opt in order to inline functions

and optimise the code.

Testing wasm2llvm

EMCCWASM Frontend
Results B

Current Skink workflow

Skink

LLVM­IR

C/C++

clang

wasm2llvm

C/C++

emcc

SV­COMP
TEST
CASES

LLVM­IR

WASM

Results A

C Frontend

FIGURE 5.1: Validating the translation.

In our tests we use different levels of optimisations. The C frontend relies on the

optimisation done by clang and in the case of our translation, we use opt. In EMCCWASM,

additionally, default optimisation is included in the emcc step as a means to get rid of

WebAssembly runtime code that is not used. Following the execution of both workflows,

we then compare the results.

Skink produces three possible results: • TRUE: The program is correct and__VERIFIER_error()

is not reachable. In some cases, the optimizer can get rid of unreachable/dead code that

contains the error state, and in these cases, Skink concludes the correctness without effort.

It is in these cases that the optimisation takes less time than the actual verification and

that is reflected in the results and discussed later in this chapter. • FALSE: The program is

incorrect, __VERIFIER_error() is reachable, and a witness for the values that may produce

the error is produced as well. This occurs when the program involves a call to a function

that returns a value which is then used in the control flow of the program. The witness

reveals the sequence of possible values returned by the non-det-calls. • UNKNOWN: Skink

could not determine the correctness status of the program.

In our evaluation we then categorise a test case as Passed if the tool produces the

expected SV-COMP verification result for the file (correct or incorrect), Failed if the tool

produces the wrong result and Unknown if the tool cannot decide. The results of the

5.4 DISCUSSION 27

validation are shown in table 5.1. The column C Frontend correspond to the current Skink

workflow in figure 5.1 whereas the results under the column EMCC Frontend correspond to

the second workflow. Verification tasks No
¯ 41, 42 and 43 are only run on -02 as originally

they contain multiple functions, which Skink cannot process. The tests were conducted

with the host configuration and tools listed in table D.1.

5.4 Discussion

The main result to highlight is that no false positives or false negatives result from the

execution on both frontends on different optimisation levels. Therefore, no program was

incorrectly categorised. Table 5.2 shows the distribution of the percentages for correctly

verified programs (% Correct) vs those that resulted in unknown (% Unknown).

As presented in table 5.2, we obtained less cases of unknown by using the new frontend,

EMCCWASM. With EMCCWASM only 3.51% resulted in unknown while the remaining

96.49% where correctly verified. The percentage of unknowns is 0% when not optimising

and 6.67% when optimising the LLVM-IR. With regards to the C frontend, it resulted

in almost five times the amount of unknowns than our frontend, reaching a 17.54% of

unknowns. However, with the optimizer at -O2, only 3.33% resulted in unknown.

With regards to the average execution times, shown in milliseconds per frontend

and optimisation level, it is important to highlight that when the optimiser is on, the

average time is lower than when it is off for both frontends. This indicates that the

optimiser improvement of the code, making it simpler and in some cases getting rid of the

unreachable error states takes less time than it would take for Skink to complete the task.

This fact highlights how beneficial can be the optimiser in the execution of the verification

task and seems to indicate that our choice for re-using the LLVM-IR with the optimiser,

discusses earlier in 3.

28 VALIDATING THE TRANSLATION

C Frontend EMCCWASM Frontend

File Desc. Opt. Time (ms.) Result Time (ms.) Result

1 array-hard_true-unreach-call.c Arrays -O0 1,787 Passed 7,286 Passed
2 - - -O2 53 Passed 6,231 Passed
3 array-sequence_true-unreach-call.c Arrays -O0 86 Passed 5,324 Passed
4 - - -O2 46 Passed 5,139 Passed
5 count-up-down_false-unreach-call.c While loop -O0 5,027 Passed 6,524 Passed
6 - - -O2 1,046 Passed 6,518 Passed
7 count-up-down_true-unreach-call.c While loop -O0 N/A Unknown 5,881 Passed
8 - - -O2 77 Passed 5,376 Passed
9 eca-like_false-unreach-call.c ECA -O0 988 Passed 6,058 Passed
10 - - -O2 927 Passed 5,906 Passed
11 float_false-unreach-call.c Floating point -O0 1,371 Passed 8,316 Passed
12 - - -O2 1,314 Passed 7,332 Passed
13 fpspecial_true-unreach-call.c Floating point -O0 12,136 Passed 7,106 Passed
14 - - -O2 2,581 Passed 6,885 Passed
15 getelementptr_true-unreach-call.c Structs -O0 N/A Unknown 11,051 Passed
16 - - -O2 107 Passed 13,330 Passed
17 getelementptr1_false-unreach-call.c Structs -O0 N/A Unknown 6,573 Passed
18 - - -O2 1,154 Passed 7,695 Passed
19 getelementptr2_false-unreach-call.c Structs -O0 N/A Unknown 6,279 Passed
20 - - -O2 954 Passed 6,211 Passed
21 getelementptr3_false-unreach-call.c Structs -O0 N/A Unknown 6,202 Passed
22 - - -O2 947 Passed 6,191 Passed
23 getelementptr4_false-unreach-call.c Structs -O0 N/A Unknown 9,635 Passed
24 - - -O2 986 Passed 7,753 Passed
25 getelementptr5_false-unreach-call.c Structs -O0 N/A Unknown 7,707 Passed
26 - - -O2 1,168 Passed 7,601 Passed
27 global_init_true-unreach-call.c Arrays/Strings -O0 4,563 Passed 6,126 Passed
28 - - -O2 1,957 Passed N/A Unknown
29 implicitunsignedconversion_false-unreach-call.c Unsigned Int -O0 1,941 Passed 8,613 Passed
30 - - -O2 1,356 Passed 8,744 Passed
31 implicitunsignedconversion_true-unreach-call.c Unsigned Int -O0 88 Passed 5,187 Passed
32 - - -O2 48 Passed 5,236 Passed
33 multi_float_false-unreach-call.c Floating point -O0 1,177 Passed 7,322 Passed
34 - - -O2 995 Passed 7,114 Passed
35 multi_int_false-unreach-call.c Unsigned Int -O0 1,021 Passed 5,970 Passed
36 - - -O2 901 Passed 6,150 Passed
37 multi_true-unreach-call.c Int multiplication -O0 228 Passed 6,400 Passed
38 - - -O2 63 Passed 5,738 Passed
39 multiple-error-calls_false-unreach-call.c Conditionals -O0 1,312 Passed 6,458 Passed
40 - - -O2 954 Passed 6,505 Passed
41 newton_1_1_true-unreach-call.c Polynomials -O2 N/A Unknown N/A Unknown
42 simple-function_false-unreach-call.c Function calls -O2 1,145 Passed 7,315 Passed
43 simple-function_true-unreach-call.c Function calls -O2 73 Passed 6,289 Passed
44 simple-if_false-unreach-call.c Nested conditionals -O0 1,038 Passed 6,085 Passed
45 - - -O2 949 Passed 6,037 Passed
46 simple-if_true-unreach-call.c Nested conditionals -O0 315 Passed 5,161 Passed
47 - - -O2 55 Passed 5,232 Passed
48 simple-loop_false-unreach-call.c While loop -O0 N/A Unknown 7,088 Passed
49 - - -O2 1,149 Passed 7,364 Passed
50 simple-loop_true-unreach-call.c While loop -O0 N/A Unknown 5,754 Passed
51 - - -O2 66 Passed 6,293 Passed
52 simple-loop-array_true-unreach-call.c While loop/Arrays -O0 3,791 Passed 7,012 Passed
53 - - -O2 49 Passed 6,270 Passed
54 test-interpolant-franck_true-unreach-call.c Interpolant -O0 4,321 Passed 5,777 Passed
55 - - -O2 65 Passed 6,259 Passed
56 unsigned_true-unreach-call.c Unsigned Ints -O0 83 Passed 5,169 Passed
57 - - -O2 50 Passed 5,075 Passed

TABLE 5.1: Validation of the EMCCWASM frontend against the C frontend

The set of files that produced unknown by EMCCWASM is almost a subset of the set of

the files that produced unknown by the C frontend, except for test case N°28. For those

5.4 DISCUSSION 29

Frontend Opt. Correct Total % Unknown % Correct Time (ms.) avg.

C -O0 18 27 33.33% 66.67% 2,293
-O2 29 30 3.33% 96.67% 732

C Total 47 57 17.54% 82.46% 1,330

EMCCWASM -O0 27 27 0.00% 100.00% 6,743
-O2 28 30 6.67% 93.33% 6,707

EMCCWASM Total 55 57 3.51% 96.49% 6,725

Grand Total 102 114 10.53% 89.47% 4,027

TABLE 5.2: Distribution of percentages for results and execution times.

cases that result in unknown in the C frontend but are valid in EMCCWASM, it seems that

a small optimisation is done by default in every case by emcc, resulting in a less complex

program, to begin with, making the verification task easier and thus not exceeding the

timeout. Moreover, as WebAssembly is low-level code, we generate LLVM-IR with simple

instructions, and this also contributes to the reason why our frontend performs best.

For the particular case of N°28, it is failing when the LLVM-IR is optimised. This is

because the program in the file has two arrays, which in WebAssembly are compiled as

data initialisation and further in the LLVM-IR translation produces a sequence of pairs of

instructions to initialise the memory present in the WebAssembly module.

1 %temp_N = getelementptr inbounds [128 x i8], [128 x i8]* @mem , ←-
i8 0, i8 %addr

2 store i8 %value , i8* %temp_N
3

4 store i8 %value , i8* getelementptr inbounds ([128 x i8], [128 x←-
i8]* @mem , i32 0, i32

Listing 5.2: Instructions for data initialization

The first line gets the pointer to address specified by %addr while the second line stores

the value held by \%value at the previously retrieved pointer. Skink can process this pair

of instructions, but when the LLVM-IR is optimised, the two instructions transform into

the instruction in line 4, which is more complex and Skink does not currently handle

this case. Adding the capability to process this particular construction of store and also

load will solve this problem. All in all, our frontend performs better when using these

benchmark files, but it takes five times longer than the C frontend, on average.

6 | Verifying WebAssembly

6.1 Introduction

In this chapter, we cover the application of software verification to WebAssembly sources

in order to address possible runtime errors called traps. To achieve this, we turn the

possible traps into reachability problems. This is done after the WebAssembly source file

is translated into LLVM-IR, where the instructions from the source that would produce

a trap are instrumented and modified so they can be transformed into a reachability

problem. Although the semantics from the original source program are kept, the resulting

instrumented LLVM-IR is not intended to be executed but to be analysed.

The first and most important aspect of this verification is that we are then able to verify

if C programs will run without errors in the WebAssembly runtime environment. The

main difference is that in Skink’s normal verification process, the LLVM-IR is processed

as-is, without making any modifications to verify reachability problems on the C/C++

source code. With our approach, we are also able to check reachability problems of C/C++

programs but also the potential problems that may occur running in the WebAssembly VM.

6.2 Traps

Traps in WebAssembly are runtime exceptions that abort the execution [33]. Some

instructions unconditionally produce a trap and others may produce a trap depending on

the operands involved in the instruction. As WebAssembly does not support exception

handling, these traps are reported to the embedding environment, where they can be

handled. The embedding environment can be the web browser, a node.js environment or

native execution such as Lucet1. In the case of the browser, for example, WebAssembly

traps would have to be handled in the JavaScript code to inform the user of the error. In

any case, these traps abort the execution, and there are no mechanisms like try/catch,

and therefore traps must be prevented, as they could cause serious problems

1https://github.com/fastly/lucet

30

https://github.com/fastly/lucet

6.3 DETECTING UNREACHABLE CODE 31

6.2.1 Scenarios that cause traps

The unreachable instruction: This instruction produces an unconditional trap. This is

covered in section 6.3.

Illegal memory access: When an instruction that reads or writes to memory tries to

access out of bounds addresses, a trap is produced. This is not checked in the validation

phase as that phase is mainly concerned about types and the address operand is not static

but popped from the stack and therefore can be a result from a function call. This is

covered in section 6.4.

Operations: Some operations, such as conversions or binary operations, may cause

traps. Examples of binary operations producing traps are divisions by 0 and remainder by

0. Conversions can be instructions such as i32.trunc_f32_s, that converts a floating point

value into an integer representation, based on the IEEE 754-2008 standard convertToIn-

tegerTowardZero operation. When the operand does not have an integer representation,

such as NaN or Infinity, then the instruction produces a trap. This is covered in section 6.5

Call stack overflow: As specified in the official documentation, the allocated space

for the call stack is unspecified in the module, depends on the embedding environment

and it is a source of nondeterminism [34]. The program before being executed has no

means of checking the allowed call stack space in order to prevent stack overflows. This

is covered in section 6.6

Indirect calls: WebAssembly supports the call_indirect instruction, which is an indirect

call to a function, based on the stack operand that points to a function reference on a

table. A trap will occur if the index provided for the function call exceeds the table size,

resulting in an out of bounds table access or if the table is not initialised in the provided

index. This is covered in section 6.7

6.3 Detecting unreachable code

One of the WebAssembly instructions that unconditionally produces a trap is unreachable.

The validation phase of WebAssembly does not check whether the unreachable instructions

32 VERIFYING WEBASSEMBLY

are actually unreachable. Instead, this instruction has the role of asserting that the

execution should never reach the blocks that begin with the unreachable instruction.

These instructions can be introduced by the compiler, such as Emscripten, as assertions

that such instructions should not be reached.

Therefore, if an unreachable instruction is reachable then either the compiler is faulty,

or in the case of a manually crafted WebAssembly module, the module has bugs introduced

by the developer. In the first case, the errors present in the compiler led to the incorrect

assumption that a particular block of code is not reachable and in this regard, our approach

could detect bugs in compilers. In the second case, although WebAssembly is designed as

a compilation target, modules can still be manually crafted, a process which is error-prone

and could be exploited by malicious attackers. In either case, there are no checks or

validation performed by the WebAssembly validator before the execution that would

inform the developer that a specific module will fail and therefore abort execution.

In this section, we present the methods applied to this particular instruction that

enable us to statically verify that the unreachable instruction is indeed reachable or not

and therefore enhancing the validation phase of WebAssembly.

Listing 6.1 shows a simple function that always returns 10.

1 (module
2 (func $main (result i32)
3 block
4 i32.const 10
5 return
6 end
7 unreachable))

Listing 6.1: Unreachable instruction

The instruction at line 4 is pushing 10 to the

top of the stack. The return instruction inside the

block will end the function execution and return

the value that is on the top of the stack, as the

execution will unconditionally enter the block.

Therefore, whatever code is after the block, after

line 6, should never be executed or the execution would present a runtime error. In

order to verify that unreachable instructions will never be executed without executing

the code, we apply software verification with the following steps. Each occurrence of

unreachable is translated as two LLVM-IR instructions: 1. call void @__VERIFIER_error().

2. unreachable.

In this regard, even though the LLVM-IR code is not to be executed but to be anal-

ysed, the original semantics are kept: if the unreachable WebAssembly instruction is

6.3 DETECTING UNREACHABLE CODE 33

reached, then the program fails. The translation to LLVM-IR and instrumentation of the

WebAssembly is given in listing A.1 and the corresponding CFG in figure 6.1.

CFG for 'main' function

main_entry:
 br label %block_0

block_0:
 br label %box_1

box_1:
 %s_0 = add i32 0, 10, !Stack !0
 br label %box_2

box_2:
 ret i32 %s_0

block_0.end:
 br label %box_3

box_3:
 tail call void @__VERIFIER_error()
 unreachable

main_exit:
 unreachable

FIGURE 6.1: CFG for the translation of 6.1.

We can see that the call instruc-

tion to __VERIFIER_error is on block

with label box_3. As the entry point of

the function is the main_entry block

and the only possible ending being

the block box_2, there are no possi-

ble paths that lead to the execution of

instructions in box_3. Therefore, the

error is not reachable under any cir-

cumstances, and we can conclude that

this function is correct.

The blocks that are unreachable from main_entry, being the main path the one that

goes from main_entry to box_2, are unlinked because of the semantics of the return

instruction in line 5 in listing 6.1. Therefore, block_0.end, box_3 and main_exit represent

dead code and the optimizer can get rid of them. Before the code is optimised, we run

Skink over this WebAssembly file (listing 6.1) with the WASM frontend and it reports

that the program is correct, meaning that there are no failure traces. The command line

execution of Skink and its resulting log is available at B.1.

When we run the LLVM optimizer, dead code is eliminated, including traces to possible

error states that are not reachable, and the function just returns 0, meaning that the

verification of this simple scenario by Skink was accurate. In this case, the optimiser could

get rid of the dead code, including the error states. However, this is not always possible,

especially when entering into a state depends on an external value.

6.3.1 Detecting a reachable unreachable WebAssembly instruction

In the following scenario, we can detect if a switch statement incorrectly ends up in the

default case. The example switch in C++ in listing 6.2 could be compiled into WebAssembly

and generate a code similar to the one in listing 6.3. WebAssembly does not have a switch

34 VERIFYING WEBASSEMBLY

expression but has table branching. Table branching specifies a vector of labels to jump

to, depending on the value that is on the top of the stack.

FIGURE 6.2: Switch in C++

In the case of listing 6.3, the table branch depends

on the value yielded by call 0. The resulting i32 is a

zero-based index that indicates to which of the labels in

the labels vector to jump. In the case of line 9 of listing

6.3, br_table 0 1 2, if the result points to the first label

to jump to is 0, the second is 1 and the last, 2, indicates the default jump.

As the control flow in WebAssembly is structured, jumps to arbitrary parts of the

code are not allowed. Instead, jumps are only legal to enclosing blocks in the form of

blocks, loops and ifs. The index of the branch targets depends on the nesting depth of the

enclosing construction. This means that index 0 targets the innermost control instruction

and as it increases it targets those farther out [33]. This is the reason why the switch

statement is represented with nested blocks in WebAssembly.

FIGURE 6.3: Switch in WebAssembly

Therefore, if the selected index is 0, then

the execution will jump to the end of block 2

as it is the first enclosing structure, pushing 10

to the stack and returning it. If the selected

index is 1, then the execution will jump to the

second outermost enclosing structure, jumping

to the end of block 1, pushing 11 to the stack

and returning it. In any other scenario, then

the execution will jump to the 3rd outermost

structure, jumping to the end of block 0, execut-

ing unreachable and therefore producing a trap.

The arrows in the image indicate where each

value from the vector of labels jumps to.

The optimised CFG of the translated and instrumented LLVM-IR is shown in figure 6.4.

6.3 DETECTING UNREACHABLE CODE 35

CFG for 'main' function

main_entry:
 %temp_0 = tail call i32 @__VERIFIER_nondet_int()
 switch i32 %temp_0, label %box_9 [
 i32 0, label %box_6
 i32 1, label %box_7
]

def 0 1

box_9:
 tail call void @__VERIFIER_error()
 unreachable

box_6:
 %merge = phi i32 [11, %box_7], [10, %main_entry]
 ret i32 %merge

box_7:
 br label %box_6

FIGURE 6.4: CFG for reachable unreachable in a
switch statement.

In the interest of keeping the example

concise, the corresponding translation

to LLVM-IR is available at appendix

A.1 and the complete version of the

CFG at appendix C.1. Each WebAssem-

bly block is translated into LLVM-IR

as a pair of blocks: the starting block

and the closing block. All the instruc-

tions that are inside each WebAssem-

bly block are then enclosed within the

translated starting and closing block. This can be appreciated in A.1: for each block open-

ing as block_0:,block_1:,block_2:, there is block_2.end:, block_1.end:, block_0.end:.

The br_table is then translated into the innermost block, table_branch_4:, where the

switch is generating, which then performs jumps to block_N.end:, being N the given

value to jump.

The block main_entry is where the switch decision is made, and the def (default) path

is taking place whenever the function called yields a value other than 0 and 1. After

running the verification process on this file, Skink indicates that the program is incorrect,

meaning that the only present assertion can be violated. The resulting log is available at

B.2. A witness is generated by Skink that indicates the conditions under which the error

state is reachable. In these simple scenarios, Skink is reporting that if the called function

returns 2, then the program will fail. The complete witness is available at A.3.

Although this is a simple scenario, this kind of verification could be applied to ensure

that a function’s contract is respected over time and that further changes have not affected

the possible results. Moreover, the complexity of control flow of a function could increase

with time, and the error will not always be visible as this case, and our approach can deal

with this situation and in that regard preventing an unreachable instruction from aborting

the execution. Since these are synthetic and straightforward cases to demonstrate the

capabilities of the verification on WebAssembly developed in this research, more complex

and realistic cases are covered in the validation section 5.3.

36 VERIFYING WEBASSEMBLY

6.3.2 unreachable as a wildcard

The validation phase of WebAssembly has its limitations, and in some cases, modules are

validated where unreachable instructions are indeed reachable. Even though that is not

the responsibility of the validator, currently there are no tools to detect these scenarios

and prevent a trap from happening.

Listings 6.2 and 6.3 are manually crafted modules. In the example in listing 6.2,

the return inside the block is returning control to the caller of the current function and

returning the expected value. By returning control to the caller at that specific line, the

code that follows the block is unreachable by the nature of the return instruction.
1 (module
2 (func (result i32)
3 block
4 i32.const 10
5 return
6 end
7

8))

Listing 6.2: Invalid function

1 (module
2 (func (result i32)
3 block
4 i32.const 10
5 return
6 end
7 i32.const -1
8))

Listing 6.3: Valid function
The function in listing 6.2 is declared invalid by the WebAssembly validator, generating

the following output B.3. The validator is detecting that the function should return an

i32, but the stack is empty. This is because instructions inside a block cannot access the

stack values pushed before entering the block and the instructions that follow the block

do not have access to values pushed into the stack inside the block. In this example the

block is void, but the block could yield a result, making it available to the outer section of

the block. Therefore, as the stack is empty at line 6 and the function type indicates that

an i32 must be returned, the instructions in the function fail to satisfy the type constraint.

The problem is that the return in line 5 is returning an i32 = 10 that is on top of stack

pushed by the instruction i32.const 10. The function is finishing its execution returning

that value, meaning that the rest of the code is unreachable. As a result of this simple

scenario, the validation phase does not consider the return instructions inside the blocks,

and therefore this is a case of a false positive of non-valid WebAssembly module for the

validator. One workaround to bypass this validator error is to push a dummy value at the

end, as shown in line 7 of listing 6.3. This last instruction may confuse someone reading

6.3 DETECTING UNREACHABLE CODE 37

the code, and even the translation to machine code will keep that instruction.

According to the WebAssembly specification, the unreachable instruction is valid with

type [t∗1]→ [t
∗
2], this means that accepts any types in the stack and produces values of

any type, making it a stack-polymorphic instruction [33]. This unreachable "wildcard" is

tricking the validator into thinking that the last instruction indeed returns an i32 and the

validation phase succeeds for this program. When the last instruction is executed, the

stack would have the required value for the function to be valid, which will never happen.

1 (module
2 (func (result i32)
3 block
4 i32.const 1
5 drop
6 end
7 unreachable))

Listing 6.4: Reachable unreachable

This has the drawback that when function is

expected to return a value but the instructions in

the function fail to do so, then the validation will

succeed if there is an unreachable instruction at the

end. This is shown in listing 6.4. When the code

in listing 6.4 is executed, a runtime error occurs, as

expected and error is available in B.1. This means that the use of unreachable in these

cases could potentially cause a runtime error if false assumptions are in place.

As Hass points out in [2] regarding the instructions that perform unconditional control

transfer such as unreachable, return and others, the control never continues to the instruc-

tions that follow them, making that code dead code. Therefore, as the next instructions

would never be executed, there are no requirements for the types that the stack requires

as input or output and therefore, every type or sequence of types is valid.

This is expectable of any sound compiler that has no errors, but as mentioned before,

there is no restriction that WebAssembly could be altered manually and the developer

can introduce errors. Moreover, the compiler could have bugs itself as this is the first

version of WebAssembly and it is a relatively new technology. Our tool can aid in the

validation process in the sense that it can detect if the blocks marked by unreachable are

truly unreachable and a trap by that condition will never happen.

1For this purpose, a validator and executor for simple WebAssembly modules was imple-
mented in https://bitbucket.org/diegoocampohdr/wasm2llvm-testfiles/src/default/
wasmExecutor.html

https://bitbucket.org/diegoocampohdr/wasm2llvm-testfiles/src/default/wasmExecutor.html
https://bitbucket.org/diegoocampohdr/wasm2llvm-testfiles/src/default/wasmExecutor.html

38 VERIFYING WEBASSEMBLY

6.4 Detecting illegal memory access

In WebAssembly, memory is modelled as a single array of bytes. In this regard, it does

not have information of the bounds of memory allocated to structs or variables inside the

code and in this way it is very simple. As the memory address operand is an unsigned int,

the only check that we can perform is an out-of-bounds one. Instructions that access the

memory must specify the address, which is a zero-based index of the array, and optionally

an offset. Depending on the size of the value to load, the number of consecutive bytes

that are to be read starting from the given address plus the optional offset. The main

operations that deal with memory are t.load and t.store, where t is the type of the loaded

value into the stack when reading and the type of the value to be written, present on the

top-of-stack when writing. The condition for the trap is the same for both the store and

load, therefore, we refer to the memory instruction as meminstr:

1. Given the memory instruction t.meminstr offset, where offset is an unsigned 32

bits integer.

2. Let i be the i32.const value on top-of-stack, which indicates the memory address.

3. Let ea = i + offset be the effective address.

4. Let N be the bit width of the value to write/read.

5. If ea+ N/8>mem.length then trap.

1 define void @__VERIFIER_memaccess(i32 %addr , i32 %bits) #0 {
2 %b = sdiv i32 %bits , 8
3 %eab = add i32 %addr , %b
4 %memsize = load i32 , i32* @__verif_memory_size_bytes
5 %if = icmp sgt i32 %eab , %memsize
6 br i1 %if , label %box_error , label %exit
7

8 box_error:
9 tail call void @__VERIFIER_error ()

10 unreachable
11

12 exit:
13 ret void
14 }

Listing 6.5: Memory bounds check

Given these conditions for the trap, we then instrument the LLVM-IR in order to check if

these conditions are met on each memory instruction. The function in listing 6.5 is the

6.4 DETECTING ILLEGAL MEMORY ACCESS 39

central part of the instrumentation.

This function expects the memory address, which already includes the optional offset

and the byte width of the target in bits. This function then compares the intended target

address, which also includes the size in bytes (see line 3, where the byte width is added)

and compares it against the memory size in bytes.

In order to be able to do so, a global variable has to be defined previously in the

LLVM-IR program, __verif_memory_size_bytes, that stores the current memory size. This

global variable is then modified each time the memory is incremented, with the memory←-

.grow instruction, which increments its size by 65536 bytes. Therefore, potential memory

size increments are considered in this check.

By calling this function before a memory store or load is executed and in the case that

the address would exceed the memory’s limits, this function will call the __VERIFIER_error←-

function, turning this problem into a reachability problem. Skink can, therefore, detect

if this error call is reachable and in such case, a memory access violation will be de-

tected. This function receives two parameters: address (%adds) and bit width (%bits).

The address parameter already includes the offset as that is part of the translation of

the memory instruction that calculates the effective address (see line 11 in A.4). The bit

width indicates the intended number of bits to be read/written from memory. For the

case of truncated memory instructions, such as i32.store8, where the i32 value to be

stored is wrapped to 8 bits, the value for bit width that is passed for the (%bits) is then 8.

A complete example of truncated store in WebAssembly and its translation into LLVM-IR

is available at A.11 and A.12. This solution supports the full set of memory instructions.

In the example in the following WebAssembly listing, memory is imported with a

minimum and maximum size of 1 page. In order to keep the translation simple and to keep

the SMT terms generation to a minimum for these case studies, the page size is reduced

to 128 bytes in the translation and instrumentation tool. This value is configurable2.

In listing 6.6, the initial address provided in the stack is 500, plus an offset of 50,

trying to store the i32.const 10 value. As the memory size is 128 bytes and therefore it

2https://bitbucket.org/diegoocampohdr/wasm2llvm/src/default/src/main/scala/
org/bitbucket/diegoocampohdr/wasm2llvm/ConfigParams.scala

https://bitbucket.org/diegoocampohdr/wasm2llvm/src/default/src/main/scala/org/bitbucket/diegoocampohdr/wasm2llvm/ConfigParams.scala
https://bitbucket.org/diegoocampohdr/wasm2llvm/src/default/src/main/scala/org/bitbucket/diegoocampohdr/wasm2llvm/ConfigParams.scala

40 VERIFYING WEBASSEMBLY

is modelled into an array of bytes of length 128, the intended target address will cause an

illegal memory access trap and this runtime error is not detected by the validation phase.

1 (module
2 (type (;0;) (func (result i32)))
3 (import "env" "memory" (memory (;0;) 1 1))
4 (func $_main (type 0)(result i32)
5 i32.const 500 (; addr ;)
6 i32.const 10 (; value to store ;)
7 i32.store offset =50 (; stores 4 bytes ;)
8 i32.const 0
9)

10)

Listing 6.6: Memory trap example

When running Skink with the WASM frontend, Skink concludes that the program is

INCORRECT and a witness provided, specifying that the error state is reachable. The

witness is available in appendix B.3. The produced LLVM-IR is available in appendix A.4

and the CFG in C.2. This LLVM-IR contains the code corresponding to the translation of

the WebAssembly instruction plus the necessary instructions to check the illegal memory

access and the global variable declaration to keep track of the current memory size.

Our tool is adding the function presented in listing 6.5 to the end of the generated

LLVM-IR file and called before either a memory store or load. As the function is relatively

short, the LLVM optimiser is capable of inlining the blocks and instructions into the

function that it is being called from and the resulting inlined code is the presented at A.4.

In summary, with this approach, we are able to detect all possible illegal memory

accesses, either in a store or load and taking into account the possible offset provided in

the instruction and truncated memory operations.

6.5 Detecting illegal operations

Several binary or unary operations can produce traps when the result is undefined.

Examples of undefined results are divisions by 0, remainder by 0 or illegal conversions

such as trying to convert Infinity into a signed integer representation. In this section we

explain the design involved in detecting these scenarios and an implemented case.

In figure 6.5, we model on the left how the translation of an operation is performed

and on the right, how a translation with the instrumentation necessary to verify illegal

6.5 DETECTING ILLEGAL OPERATIONS 41

operations is done. The diagram of the left shows a simple sequence of blocks showing a

binary operation, where the two operands (%s_x and %s_x+1) are calculated and kept in

the stack on previous blocks and then the operation is translated.

To instrument the CFG on the left to be able to verify if the conditions of an illegal

operation are met while at the same time keeping the semantics of the original instruction,

we generate the blocks that are modelled on the right. Instead of a single block for the

instruction, block_N, we need to generate 3 blocks in total. In block_N_entry, we generate

the code that is responsible for checking if the operands, or at least one of them, is going

to cause a trap given the operation that is being translated. The boolean result (True

for violation and False otherwise) is then stored in the variable %temp_check, which is

used then used for the condition of the conditional branch to either the error block or

performing the operation.

%temp_check = ... check operand ...
block_N_entry

%s_x = ... operand 1 code ...
%s_x+1 = ... operand 2 code ...

...rest of the function...

%s_x = ... operand 1 code ...
%s_x+1 = ... operand 2 code ...

...rest of the function...

call void @__VERIFIER_error()

block_N_error

%s_x+2 = {operation}

block_N

True False

%s_x+2 = {operation}

block_N_op

Translation Translation + instrumentation

FIGURE 6.5: Verifying illegal operations.

If the operation is illegal, then the conditional branch will jump to block_N_error

and call __VERIFIER_error, reaching an error state. Otherwise, the operation is executed

as expected in block_N_op the same way as in block_N. In this way, the semantics are

kept but the trap is modelled into a detectable state, that Skink can figure out if the

conditions to reach such state are feasible, whereas in the simple translation (left), an

illegal operation is not detectable and will result in a runtime error. When verifying the

42 VERIFYING WEBASSEMBLY

example in listing 6.7 with Skink and the WASM frontend, Skink concluded that the

program is INCORRECT.

1 (module
2 (func (result i32)
3 i32.const 10
4 i32.const 0
5 i32.div_u
6))

Listing 6.7: Illegal operation
example

The generated LLVM-IR code, resulting from the ex-

ecution of Skink on the previous WebAssembly file and

presented in A.13, contains the blocks mentioned in

the model design. In this case, N = 2, and we can ap-

preciate the operand error for the unsigned division:

icmp eq i32 %s_1, 0 in line 11, checking if the divisor

is 0; the possible path to the error state in block_2_box_error and the actual execution of

the operation in box_2_op, udiv i32 %s_0, %s_1, performing the unsigned division.

Wasm2llvm only supports this case, but implementing the checks for the rest of the

possible undefined results is trivial. With this approach we can then verify if a WebAssembly

program will produce runtime traps originating from illegal operations.

6.6 Detecting stack overflows

Call stack overflows are a source of nondeterminism in WebAssembly [34]. As of the first

version of WebAssembly, it is not possible to access the allocated space for the call stack.

Furthermore, the first version of WebAssembly does not support tail call, and therefore

simple recursive functions could overflow the stack easily. This feature is planned to be

added as part of the post MVP features3. Therefore, it is not possible to reason about the

limits of the call stack space allocated by the embedding environment and to predict if it is

going to cause an overflow or not. Emscripten, when executed with the -s ASSERTIONS←-

=2 -s TOTAL_STACK=1024 options, can generate assertions to detect the stack overflow

when the stack space is specified, limiting the stack space to 1024 bytes, in this case.

This value is independent of the space that the embedding environment will allocate and

should only be used to verify if a specific function will cause this kind of runtime error

given a particular stack space size.

When Emscripten generates the HTML+JS for the WebAssembly module, the function

in listing A.19 is included in the code and imported into the module. This function is
3https://github.com/WebAssembly/proposals/issues/17

https://github.com/WebAssembly/proposals/issues/17

6.6 DETECTING STACK OVERFLOWS 43

invoked from the WebAssembly function once the 1024 stack size limit has been exceeded,

aborting the execution and displaying an error message.

In order to keep track of the stack size, Emscripten also generates another function

into the WebAssembly module, __post_instantiate, where the call stack size is stored

into a global variable. This function type is void and does not accept any parameters. This

function has to be executed before executing the main function, in order to initialise the

mentioned global variable. This is not done inside the module and is the responsibility

of the embedding environment, such as a web page, to invoke such function before the

execution of the main function. Given the fact that we analyse isolated WebAssembly

modules, there is no embedding environment in our translation and verification process

and therefore, the call to __post_instantiate is included in the translation of the main

function, after the memory allocation for the local variables.

In the figure 6.6, we show on the left an example WebAssembly function for calculating

the factorial of a number, without the generated assertions by Emscripten. On the right,

we present the same factorial code but with the added instructions that check if the stack

is being overflown. On each call, the global variable that stores the actual stack size is

increased by a number of bytes, depending on factors such as the local variables used in

the function. At the end of the recursive call, the original size of the call stack is restored.

Our approach is then to rewrite the function invocation to abortStackOverflow that Em-

scripten generates into a call to __VERIFIER_error. The latter does not expect parameters

while the first expects a number, indicating the amount of bytes that were to be allocated

in the stack and failed. Therefore, we translate this call as: dropping the top of the stack

and then calling __VERIFIER_error. Furthermore, we call __post_instantiate in the first

part of the main function, to make sure the global variables are properly initialized.

6.6.1 First attempt

On our first attempt, we compiled the factorial in C A.20 with Emscripten, then run our

tool, wasm2llvm and finally optimised the result in order to try to inline the factorial

recursion into the main function. This is because Skink does not support multiple functions

44 VERIFYING WEBASSEMBLY

Factorial	with	assertionsFactorial

get_local	0			
i32.const	-1		
i32.add

True

False

get_local	0
if	(result	i32)	

recursive	call	return
return

i32.const	1

R
e
c
u
r
s
i
v
e
	
c
a
l
l

call	0

i64.mul

True
if	stack	space

exceeded

call	stack	space
bookkeeping
instructions

error

get_local	0			
i32.const	-1		
i32.add

Trueget_local	0
if	(result
i32)	

restore	call
stack	space

i32.const	1

False

R
e
c
u
r
s
i
v
e
	
c
a
l
l

call	0

recursive	call	return

i64.mul

False

return

FIGURE 6.6: Left: Factorial without assertions. Right: Factorial algorithm with call stack overflow
control instructions that lead to an error state.

and in order to be able to verify this code, it has to be inlined.

In order to keep the assertions generated by Emscripten, no optimisations on the

Emscripten level can be used. Otherwise, Emscripten gets rid of all the assertions. In this

regard, by using the parameter -O0, the resulting WebAssembly code is significantly larger

than the optimised version.

The WebAssembly module generated by Emscripten is available A.14 and our transla-

tion to LLVM-IR in A.15. The resulting LLVM-IR inlines the __post_instantiate function

in the first block of main, setting the stack size to 1024 bytes. However, the factorial

function is not inlined by the optimizer and therefore this program is not verifiable by

Skink, being this one of the most significant limitations in our verification of WebAssembly:

if the LLVM optimiser cannot inline the functions called by main, then the main function

is not verifiable. Even though the optimizer does not inline the functions in this program,

our tool is generating the necessary code in LLVM-IR that would make it possible for Skink

to verify it if it was able to process function calls, which may be introduced in the future.

Moreover, as our tool is not tied to Skink, other LLVM-IR based verification tools that do

6.7 DETECTING ILLEGAL INDIRECT CALLS 45

not have such limitation will be able to verify stack overflows in WebAssembly using our

tool, wasm2llvm.

6.6.2 Manual attempt

Unfortunately, there is no possible configuration on Emscripten to compile a C program,

perform some optimisations but at the same time keep the generated assertions. In order

to reduce the size of the generated program, we manually created a factorial program

in WebAssembly, based on the Emscripten output for the stack control when using -O0

and the compilation of the factorial when using -O2 flags. We then merged the optimised

version of the factorial with the stack control instructions, which store, increment and

restore the stack space usage. The WebAssembly code for this file, available in A.16 and

its translation, instrumentation and further optimization available in A.17.

When running the optimizer over the translation generated by wasm2llvm, the code for

the factorial function gets inlined into the main function, simulating recursion with a loop.

In each iteration, 16 bytes are "allocated" to the stack and checked upon the maximum

stack size, 1024. When running Skink, it determines that the program is INCORRECT,

providing the witness A.18, indicating that if we calculate the factorial of 7, the program

will fail because of a stack overflow error.

Even though we were able to craft a WebAssembly recursive program that when

translated into LLVM-IR the compiler was able to transform the recursion into a loop,

that will not always be the case. Therefore, for the cases that the LLVM-IR file, after

optimisation, keeps the recursion with function calls, our approach will not be able to

verify it, not at least with Skink.

6.7 Detecting illegal indirect calls

Indirect function calls can result in traps when the table is not initialised in the targeted

index or if the index is out of bounds. These two cases are slightly different; the table

metadata describes its minimum, and maximum size and the original size of the table is

based on this minimum. Based on this size is that the out of bounds can occur. A table is

46 VERIFYING WEBASSEMBLY

then initialised by the element tag, initialising each of the elements of the table and based

on this initialisation the first mentioned trap can occur.

The indirect call instruction has the form call_indirect X, where X indicates the

type of the function to be called, indicating its parameter types and result type. The

validation phase of WebAssembly validates that the type specified by X is present in the

type definitions of the module, but, as the function to be called is determined dynamically

during runtime, the validation is not able to check that the type use specified by X

corresponds to the type of the targeted function. This possible type mismatch is another

cause of a trap which is discussed later, and an example is provided in A.3.1.

The instruction also expects that a value of type i32 is present on the top-of-stack,

which is the function index for the table. This is asserted in the validation phase, and

therefore this cannot be violated during runtime. Currently, WebAssembly only supports

the declaration and initialisation of a single table, and therefore no index for the table

needs to be provided. The steps that would cause a trap on runtime, given a table tab,

are then:

1. Let i be the i32 value popped from the stack.

2. If i >= tab.leng th, trap

3. If tab[i] is not initialized, trap.

4. If 2 and 3 do not trap, then let f t be the function type of the function at tab[i].

5. If f t 6= X , then there is a type mismatch trap.

Where tab.leng th indicates the number of elements in the table and tab[i] is the ith

element present on the table, on a zero-based index.

Function pointers, such as the ones present in C, are emulated in WebAssembly by

using a table and indirect calls [2]. When function pointers are stored in an array in a

C program, Emscripten compiles that code into WebAssembly and simulates the array

of function pointers with a table and its initialisation, as the example included in A.3.

The corresponding WebAssembly file for this C program is available online4. For the

cases that function pointers are not stored in an array but declared separately, Emscripten

4https://bitbucket.org/diegoocampohdr/wasm2llvm-testfiles/src/default/wasm/
parsing/indirect/indirect-Os.wat

https://bitbucket.org/diegoocampohdr/wasm2llvm-testfiles/src/default/wasm/parsing/indirect/indirect-Os.wat
https://bitbucket.org/diegoocampohdr/wasm2llvm-testfiles/src/default/wasm/parsing/indirect/indirect-Os.wat

6.7 DETECTING ILLEGAL INDIRECT CALLS 47

is smart enough to determine the target of the function pointers and generate simple

WebAssembly function calls. An example of this case is available at A.6 and its compilation

into WebAssembly A.7. Our tool and Skink supports the verification of these cases.

Function pointers can be translated into LLVM-IR in order to be verified, but this

presents several challenges. Firstly, the LLVM optimiser does not inline functions that

are dynamically referenced. An example of a C file that uses function references and its

compilation into LLVM-IR is available at A.3, to which after running the optimiser, the

code for the referenced functions is not inlined. Skink does not support LLVM-IR code that

is not inlined and therefore, this kind of dynamic referencing is not verifiable by the tool.

The reason why this is not supported by Skink yet is that processing a CFG for dynamic

referencing and transforming from dynamic code to precomputed static, with dynamic

GOTOs, is a complex problem.

Secondly, WebAssembly adds the complexity that tables are heterogeneous, allowing

function pointers that reference to functions of different types. In the example compiled

LLVM in A.3, it can be appreciated that the function pointers are stored in an array, because

they share the same type. This is not possible when translating from WebAssembly into

LLVM-IR and therefore a different approach to an array of pointers has to be taken. Due to

this complexity and the fact that Skink does not support indirect calls that are not inlined,

the implementation of this verification is future work. However, in the next section, we

sketch the solution on how to instrument this kind of calls in order to transform these

runtime errors into reachability problems.

6.7.1 Modelling illegal indirect calls verification

The diagram on image 6.7 depicts one possible approach to translating WebAssembly

tables and indirect calls into LLVM-IR and its further instrumentation. The boxes represent

blocks, and the indirect call is translated as a switch statement that jumps to different

blocks, depending on the value of the function index. Each possible function call is then

translated into a separate block, where the function pointer is retrieved and called. In the

case of the block block_func1, a type mismatch detection is modelled, discussed later.

48 VERIFYING WEBASSEMBLY

Case 0

Default

Case 1

...
%n = ...obtain function index (i32)...
switch i32 %n, label %error [i32 0, label %func1
 i32 1, label %func2
 ...]

...rest of the function...

%fp1 = load ... @fun1_ptr
call retT? %fp1([params]*)

block_func1

type mismatch error

block_func2

call void @__VERIFIER_error()

block_error

FIGURE 6.7: Targeting the function pointer traps

A final block is modelled as the

error state, where we would call

__VERIFIER_error. A possible transla-

tion of WebAssembly tables into LLVM-

IR following this model is available at

A.8. This allows us to verify that the

function index is not out of bounds: if

an invalid index is provided, the con-

trol flow will jump to this error block,

which is the default case for the switch.

This would cover uninitialized tables

and index out of bounds traps.

In order to detect if the type mis-

match is reachable, we analyse the tar-

get function type that is part of the indirect call instruction. The target type indicated

in indirect calls, such as call_indirect (type 0), is static and therefore we can use that

information in our verification instrumentation. When generating each of the blocks that

retrieve the function pointers and call them, such as block_func1, we know the information

of the intended target type (such as (type 0)) and the type of the actually selected target

function, as such information is stored in the context of our translation, and at this point

we know the value of the function index.

These function types are part of the context of the translation and are needed when

processing call $label instructions from WebAssembly, as function calls in LLVM-IR need

to specify the function signature. It is at this point, therefore, that we can be sure if an

indirect call results in a type mismatch error and instead of generating the instructions to

retrieve the function from its pointer and calling it, we jump to the error block.

With this approach, we would be able to verify all the possible traps produced by the

indirect call instruction, but, due to the mentioned limitations, the implementation of this

verification is part of the future work.

7 | Conclusions
In this research, we developed a general purpose Scala WebAssembly parser scalaWasm,

a translator from WebAssembly to LLVM-IR, wasm2llvm, that instruments the code to

perform validations and included two new frontends for Skink: EMCCWASM and WASM.

The first frontend, which handles C/C++ files compiled to WebAssembly using Emscripten,

was developed for the validation of our translation. The second frontend, WASM, uses

the tool developed in this research, wasm2llvm, and enables Skink to verify WebAssembly

programs and, by extension, any language that compiles to WebAssembly, provided the

resulting program is within the limitations of Skink and our translation.

We successfully tested our tool using the EMCCWASM frontend with benchmarks from

SV-COMP, comparing the results against the C path, scoring better than the C frontend. In

this regard, one of the contributions of this research is that our tool could be used not

only to verify that the added assertions to the source file remain true but also to verify

that a C/C++ source file will run properly under the WebAssembly runtime environment.

After checking that our tool could be used to verify WebAssembly modules to a

reasonable degree of confidence, we used the tool to address traps in WebAssembly. We

identified all the types of instructions that cause traps, based on the official WebAssembly

specification [33] and covered the mechanisms to verify a large subset of the scenarios

that produce traps in WebAssembly. We were able to develop the instrumentation code

for almost every type of instruction that can lead to a runtime error. This is therefore,

the second main contribution of this research: we were able to successfully apply the

translation with instrumentation and further verification by Skink to detect incorrect

WebAssembly modules, where the assertions were automatically added by our solution to

check if a trap would occur. In the cases that traps would occur depending on stack state,

we provide a witness that specifies the conditions under which the WebAssembly module

would abort. The toolchain we have developed is available online at bitbucket.org/

diegoocampohdr/wasm2llvm.

Future work needs to be done on our approach to be able to verify larger and more

complex WebAssembly modules. In cases such as 5.2, the translation with optimisations

resulted in an instruction that was not processable by Skink because the translation of

49

bitbucket.org/diegoocampohdr/wasm2llvm
bitbucket.org/diegoocampohdr/wasm2llvm

50 CONCLUSIONS

a specific LLVM-IR instruction into SMT terms is not available yet. With regards to the

covered instructions that produce trap, implementing the indirect calls is part of the future

work. This particular instruction, as explained in 6.7, is not part of the translation and

instrumentation capabilities and is not covered in the run experiments but the approach

was designed, due to the Skink limitation that does not support the verification of function

calls in LLVM-IR and even though we would have implemented it, we would not be able

to carry out the experiments. To add this capability to our approach and using it with

Skink, Skink needs to be modified first to be able to process function calls. However, the

translation of indirect calls could also be developed to be used with any other verification

tool that processes LLVM-IR and the SV-COMP setting.

Furthermore, we currently verify single WebAssembly modules in isolation, without

input and that are purely computational, without side effects. By single we mean that

we do not support the verification of multiple modules that are linked, share function

pointers and can call each other’s functions. This means that we do not take into account

the values that are instantiated in the embedding environment and then imported into the

module, which could be global variables, chunks of the memory byte array, functions from

other WebAssembly modules or function tables. Further expansion of this research could

involve the verification of WebAssembly programs within an embedding environment,

such as web browsers and bringing into the equation the initialised values in JavaScript.

With the current limitations, we believe that web browsers could still benefit from this

tool and this provides a solid basis to build on. Web browsers run WebAssembly modules

that are untrusted and originates from unknown sources, and even though the code runs

sandboxed, they could benefit from our approach by leveraging the validation phase of

WebAssembly and preventing runtime errors from occurring and possibly malicious code

from running. Furthermore, compilers, such as Emscripten, could benefit from our tool

to check that C/C++ files that are correct are compiled into WebAssembly and that they

will not produce any of the runtime errors such as illegal memory access or unreachable

code actually being run. In this regard, compilers could also simulate the configuration

parameters such as the call stack size and memory size limits of a particular target with

our approach and test the compilation in a particular environment configuration.

References
[1] F. Cassez, A. M. Sloane, M. Roberts, M. Pigram, P. Suvanpong, and P. G. de Aledo.

Skink: Static analysis of programs in LLVM intermediate representation. In Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 10206 LNCS, pp. 380–384 (2017). xv, 3,
10, 11, 12

[2] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman, L. Wagner,
A. Zakai, and J. Bastien. Bringing the web up to speed with WebAssembly. ACM
SIGPLAN Notices 52(6), 185 (2017). URL http://dl.acm.org/citation.cfm?
doid=3140587.3062363. 1, 5, 37, 46

[3] D. Herman, L. Wagner, and A. Zakai. asm.js. URL http://asmjs.org/spec/
latest/. 1, 5

[4] A. Zakai. Emscripten: an LLVM-to-JavaScript compiler. In Proceedings of the ACM
international conference companion on Object oriented programming systems languages
and applications companion - SPLASH ’11, p. 301 (ACM Press, New York, New
York, USA, 2011). URL http://dl.acm.org/citation.cfm?doid=2048147.
2048224. 1

[5] R. Finney and D. Meerzaman. Chromatic: WebAssembly-Based Cancer Genome
Viewer. Cancer Informatics 17, 117693511877197 (2018). URL http://journals.
sagepub.com/doi/10.1177/1176935118771972. 1, 6

[6] A. M. Sloane, F. Cassez, and S. Buckley. The sbt-rats parser generator plugin for Scala
(tool paper). Proceedings of the 2016 7th ACM SIGPLAN Symposium on Scala -
SCALA 2016 pp. 110–113 (2016). URL http://dl.acm.org/citation.cfm?
doid=2998392.3001580. 2

[7] Google. Native Client. URL https://developer.chrome.com/
native-client/overview. 5

[8] Watt and Conrad. Mechanising and verifying the WebAssembly specification. Pro-
ceedings of the 7th ACM SIGPLAN International Conference on Certified Programs
and Proofs pp. 53–65 (2018). URL https://dl.acm.org/citation.cfm?id=
3167082&CFID=851114064&CFTOKEN=83204809. 5, 6

[9] N. Attrapadung. Efficient Two-level Homomorphic Encryption in Prime-order Bilinear
Groups and A Fast Implementation in WebAssembly pp. 685–697 (2018). 6

[10] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka, N. Narula,
and N. Fullagar. Native client: A sandbox for portable, untrusted x86 native code.
Proceedings - IEEE Symposium on Security and Privacy pp. 79–93 (2009). 6

[11] J. King. A program verifier. Ph.D. thesis (1969). URL http://search.proquest.
com/docview/302239822/citation/9F7E6667508A4F0DPQ/3?accountid=
28962. 7

51

http://dl.acm.org/citation.cfm?doid=3140587.3062363
http://dl.acm.org/citation.cfm?doid=3140587.3062363
http://asmjs.org/spec/latest/
http://asmjs.org/spec/latest/
http://dl.acm.org/citation.cfm?doid=2048147.2048224
http://dl.acm.org/citation.cfm?doid=2048147.2048224
http://journals.sagepub.com/doi/10.1177/1176935118771972
http://journals.sagepub.com/doi/10.1177/1176935118771972
http://dl.acm.org/citation.cfm?doid=2998392.3001580
http://dl.acm.org/citation.cfm?doid=2998392.3001580
https://developer.chrome.com/native-client/overview
https://developer.chrome.com/native-client/overview
https://dl.acm.org/citation.cfm?id=3167082&CFID=851114064&CFTOKEN=83204809
https://dl.acm.org/citation.cfm?id=3167082&CFID=851114064&CFTOKEN=83204809
http://search.proquest.com/docview/302239822/citation/9F7E6667508A4F0DPQ/3?accountid=28962
http://search.proquest.com/docview/302239822/citation/9F7E6667508A4F0DPQ/3?accountid=28962
http://search.proquest.com/docview/302239822/citation/9F7E6667508A4F0DPQ/3?accountid=28962

52 REFERENCES

[12] R. W. Floyd. Assigning Meanings to Programs pp. 65–81 (1993). URL http://www.
springerlink.com/index/10.1007/978-94-011-1793-7_4. 7

[13] D. Isbell and D. Savage. Mars Climate Orbiter Failure Board Releases Report. URL
https://mars.jpl.nasa.gov/msp98/news/mco991110.html. 7

[14] Trucentis.com. Software Fail Watch. URL https://www.tricentis.com/
software-fail-watch/. 7

[15] T. Hoare. The Verifying Compiler : A Grand Challenge for Computing Research.
Computer pp. 1–12 (2003). 7

[16] D. Hutchison and J. C. Mitchell. Verified Software : Theories , Tools , Experiments
(2005). 8

[17] V. D. Silva, D. Kroening, and G. Weissenbacher. Keynote Paper Formal Software
Verification 27(7), 1165 (2008). 8, 9

[18] B. Beckert. Intelligent Systems and Formal Methods in Software Engineering. IEEE In-
telligent Systems 21, 71 (2006). URL http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=4042539. 8, 10

[19] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings of
the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
pp. 238–252 (ACM, 1977). 9

[20] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic . 9

[21] J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In International Symposium on programming, pp. 337–351 (Springer, 1982).
9

[22] S. Graf and H. Saidi. Construction of abstract state graphs with PVS . 10

[23] D. Beyer. Software Verification with Validation of Results BT - Tools and Algorithms for
the Construction and Analysis of Systems. pp. 331–349 (Springer Berlin Heidelberg,
Berlin, Heidelberg, 2017). 10

[24] M. Heizmann. Traces, Interpolants, and Automata: A New Approach to Automatic
Software Verification. Ph.D. thesis (2015). 11

[25] M. Heizmann, J. Hoenicke, and A. Podelski. Software Model Checking for
People who Love Automata URL www.springerlink.com/index/10.1007/
978-3-642-39799-8_2. 11

[26] A. Farzan, M. Heizmann, J. Hoenicke, Z. Kincaid, and A. Podelski. Automated
program verification. In International Conference on Language and Automata Theory
and Applications, pp. 25–46 (Springer, 2015). 11

http://www.springerlink.com/index/10.1007/978-94-011-1793-7_4
http://www.springerlink.com/index/10.1007/978-94-011-1793-7_4
https://mars.jpl.nasa.gov/msp98/news/mco991110.html
https://www.tricentis.com/software-fail-watch/
https://www.tricentis.com/software-fail-watch/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4042539
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4042539
www.springerlink.com/index/10.1007/978-3-642-39799-8_2
www.springerlink.com/index/10.1007/978-3-642-39799-8_2

REFERENCES 53

[27] M. Bradley, F. Cassez, A. Fehnker, T. Given-wilson, R. Huuck, and N. South. High
Performance Static Analysis for Industry. Electronic Notes in Theoretical Computer
Science 289, 3 (2012). URL http://dx.doi.org/10.1016/j.entcs.2012.11.
002. 11, 12

[28] NIST. SAMATE - Software Assurance Metrics And Tool Evaluation project main page.
URL https://samate.nist.gov/Main_Page.html. 12

[29] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstraction. Lec-
ture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 5673 LNCS(Sas), 69 (2009). 12

[30] F. Cassez and A. Sloane. ScalaSMT: Satisfiability Modulo Theory in Scala (tool paper).
SCALA 2017 - Proceedings of the 8th ACM SIGPLAN International Symposium on
Scala, co-located with SPLASH 2017 (2017). 12

[31] Microsoft Corporation. The Z3 theorem prover (2017). URL https://github.
com/Z3Prover/z3. 12

[32] D. Beyer. SV-COMP 2015 - 4th International Competition on Software Verification
(2015). URL http://sv-comp.sosy-lab.org/2015/. 24

[33] W. C. Group. WebAssembly Specification (2017). 30, 34, 37, 49

[34] WebAssembly Semantics. URL https://webassembly.org/docs/semantics/.
31, 42

http://dx.doi.org/10.1016/j.entcs.2012.11.002
http://dx.doi.org/10.1016/j.entcs.2012.11.002
https://samate.nist.gov/Main_Page.html
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
http://sv-comp.sosy-lab.org/2015/
https://webassembly.org/docs/semantics/

A | Code listings

A.1 Unreachable

1 define i32 @main() #0 {
2 main_entry:
3 br label %block_0
4

5 block_0:
6 br label %box_1
7 %s_0 = add i32 0, 10
8 ret i32 %s_0
9

10 block_0.end:
11 br label %box_3
12

13 box_3:
14 tail call void @__VERIFIER_error ()
15 unreachable
16

17 main_exit:
18 unreachable
19 }
20 declare void @__VERIFIER_error ()

Listing A.1: Intermediate representation of the unreachable instruction

1 define i32 @main() #0 {
2

3 main_entry:
4 br label %block_0
5

6 block_0:
7 br label %block_1
8

9 block_1:
10 br label %block_2
11

12 block_2:
13 br label %box_3
14

15 box_3:
16 %temp_0 = call i32 @__VERIFIER_nondet_int ()
17 br label %tableBranch_4
18

19 tableBranch_4:
20 switch i32 %temp_0 , label %block_0.end [
21 i32 0, label %block_2.end
22 i32 1, label %block_1.end
23]
24

25 block_2.end:
26 br label %box_5
27

28 box_5:
29 %s_0 = add i32 0, 10
30 br label %box_6
31

32 box_6:
33 ret i32 %s_0
34

35 block_1.end:
36 br label %box_7
37

38 box_7:

54

A.2 FAILURE WITNESS IN SWITCH 55

39 %s_1 = add i32 0, 11
40 br label %box_8
41

42 box_8:
43 ret i32 %s_1
44

45 block_0.end:
46 br label %box_9
47

48 box_9:
49 tail call void @__VERIFIER_error ()
50 unreachable
51

52 main_exit:
53 unreachable
54

55 }
56 declare i32 @__VERIFIER_nondet_int ()
57 declare void @__VERIFIER_error ()

Listing A.2: Translation and instrumentation of switch statement with default as
unreachable.

A.2 Failure witness in switch

1 <graphml xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"
2 xmlns="http:// graphml.graphdrawing.org/xmlns"
3 >...
4 <graph edgedefault="directed">
5 <data key="witness -type">violation_witness </data>
6 <data key="sourcecodelang">C</data>
7 <data key="producer">skink </data>
8 <data key="specification">CHECK(init(main()), LTL(G ! call(←-

__VERIFIER_error ())))</data>
9 <data key="programfile">/home/diego/uni/repos/thesisOverleafRepo /5←-

c6d2cebd1ba83158575460d/code/unreachable/reachable/reachableUnreachable←-
-switch.wat</data>

10 <data key="programhash">9d2543a231fc765de8b227d9a7ecf81f5660470b </data>
11 <data key="memorymodel">simple </data>
12 <data key="architecture">32bit</data>
13 <node id="N0">
14 <data key="entry">true</data>
15 </node>
16 <edge id="E0" source="N0" target="N1">
17 <data key="assumption">\result == 2;</data>
18 <data key="assumption.note">hex: 2</data>
19 <data key="assumption.scope">main</data>
20 <data key="assumption.resultfunction">__VERIFIER_nondet_int </data>
21 </edge>
22 <node id="N1">
23 <data key="violation">true</data>
24 </node>
25 </graph >
26 </graphml >

Listing A.3: Switch failure witness 1.

1Listing A.3 at lines 40-45 shows the most important part of the witness that indicates the values that
make the trace to the error state feasible and where it is coming from. This witness is specifying that
in the context (assumption.scope) of the main function, if the call to the function __VERIFIER_nondet_int
(assumption.resultfunction) results in 2 (assumption), then an error state is reachable.

56 CODE LISTINGS

A.3 Function pointers

1 unsigned int __VERIFIER_nondet_uint ();
2 int add2(int a) {
3 return a+2;
4 }
5 int multiply(int a){
6 return a*2;
7 }
8 int main() {
9 unsigned int n = __VERIFIER_nondet_uint ();

10 int (* fun_ptr_arr [])(int) = {add2 , multiply };
11 return (* fun_ptr_arr[n])(n);
12 }

Listing A.4: C file with function pointers stored in array.

1 @main.fun_ptr_arr = private unnamed_addr constant [2 x i32 (i32)*] [i32 (i32)* ←-
@add2 , i32 (i32)* @multiply], align 16

2 define i32 @add2(i32) #0 {
3 %2 = add nsw i32 %0 , 2
4 ret i32 %2
5 }
6 define i32 @multiply(i32) #0 {
7 %2 = shl nsw i32 %0 , 1
8 ret i32 %2
9 }

10 define i32 @main() local_unnamed_addr #1 {
11 %1 = tail call i32 (...) @__VERIFIER_nondet_uint () #3
12 %2 = zext i32 %1 to i64
13 %3 = getelementptr inbounds [2 x i32 (i32)*], [2 x i32 (i32)*]* @main.←-

fun_ptr_arr , i64 0, i64 %2
14 %4 = load i32 (i32)*, i32 (i32)** %3, align 8, !tbaa !2
15 %5 = tail call i32 %4(i32 %1) #3
16 ret i32 %5
17 }
18

19 declare i32 @__VERIFIER_nondet_uint (...) local_unnamed_addr #2

Listing A.5: Function pointers in LLVM, compiled from A.4.

1 int __VERIFIER_nondet_int ();
2 int add2(int a){
3 return a+2;
4 }
5 int mult(int a) {
6 return a*2;
7 }
8 int (* fun_ptr)(int) = add2;
9 int (* fun_ptr2)(int) = mult;

10 int main() {
11 int val = __VERIFIER_nondet_int ();
12 return fun_ptr(val) + fun_ptr2(val);
13 }

Listing A.6: C file with function pointers without using arrays.
1 (module
2 (type (;0;) (func (result i32)))
3 (type (;1;) (func (param i32) (result i32)))
4 (type (;2;) (func))
5 (import "env" "___VERIFIER_nondet_int" (func $___VERIFIER_nondet_int (type 0)←-

))
6 (func $_add2 (type 1) (param i32) (result i32)
7 (local i32)
8 local.get 0

A.3 FUNCTION POINTERS 57

9 i32.const 2
10 i32.add
11 local.set 1
12 local.get 1)
13 (func $_mult (type 1) (param i32) (result i32)
14 (local i32)
15 local.get 0
16 i32.const 1
17 i32.shl
18 local.set 1
19 local.get 1)
20 (func $_main (type 0) (result i32)
21 (local i32 i32)
22 call $___VERIFIER_nondet_int
23 local.set 0
24 local.get 0
25 call $_add2
26 local.set 1
27 local.get 0
28 call $_mult
29 local.set 0
30 local.get 0
31 local.get 1
32 i32.add
33 local.set 0
34 local.get 0)
35)

Listing A.7: Simple indirect calls in WebAssembly

1 @fp1 = local_unnamed_addr global i32 (i32)* @add2 , align 8
2 @fp2 = local_unnamed_addr global i32 (i32)* @mult , align 8
3 define i32 @add2(i32) #0 {
4 %2 = add nsw i32 %0, 2
5 ret i32 %2
6 }
7 define i32 @mult(i32) #0 {
8 %2 = shl nsw i32 %0, 1
9 ret i32 %2

10 }
11 define i32 @main() local_unnamed_addr #1 {
12 main_entry:
13 %n = tail call i32 (...) @__VERIFIER_nondet_int () #3
14 switch i32 %n, label %error [
15 i32 0, label %f1
16 i32 1, label %f2
17]
18

19 f1:
20 %0 = load i32 (i32)*, i32 (i32)** @fp1 , align 8, !tbaa !2
21 %1 = tail call i32 %0(i32 0) #3
22 br label %main_end
23

24 f2:
25 %2 = load i32 (i32)*, i32 (i32)** @fp2 , align 8, !tbaa !2
26 %3 = tail call i32 %2(i32 1) #3
27 br label %main_end
28

29 error:
30 tail call void @__VERIFIER_error () #4
31 unreachable
32

33 main_end:
34 %main_ret = phi i32 [%1, %f1], [%3 , %f2]
35 ret i32 %main_ret
36 }
37 declare i32 @__VERIFIER_nondet_int (...) local_unnamed_addr #2
38 declare void @__VERIFIER_error () local_unnamed_addr

58 CODE LISTINGS

Listing A.8: Indirect calls implementation in LLVM-IR

A.3.1 Type mismatch error

1 (module
2 (table 1 10 anyfunc)
3 (type (func (result i32)))
4 (type (func (param i32) (result i32)))
5 (func $_main (type 0) (result i32)
6 i32.const 0
7 call_indirect (type 0)
8)
9 (func $_add2 (type 1) (param i32) (result i32)

10 (local i32)
11 local.get 0
12 i32.const 2
13 i32.add
14)
15 (elem (i32.const 0) $_add2)
16 (export "_main" (func 0))
17)

Listing A.9: Type mismatch

FIGURE A.1: Mismatch runtime error

A.4 Illegal memory access

1 @mem = global [128 x i8] zeroinitializer , align 1
2 @__verif_memory_size_bytes = global i32 128
3

4 define i32 @main() {
5 main_entry:
6 br label %box_0
7

8 box_0:
9 %s_0 = add i32 0, 500

A.4 ILLEGAL MEMORY ACCESS 59

10 %s_1 = add i32 0, 10
11 %temp_2 = add i32 50, %s_0
12 %temp_0 = getelementptr inbounds [128 x i8], [128 x i8]* @mem , i32 0, i32 ←-

%temp_2
13 %temp_1 = bitcast i8* %temp_0 to i32*
14 %memsize.i = load i32 , i32* @__verif_memory_size_bytes
15 %if.i = icmp sgt i32 554, %memsize.i
16 br i1 %if.i, label %box_error.i, label %__VERIFIER_memaccess.exit
17

18 box_error.i:
19 call void @__VERIFIER_error ()
20 unreachable
21

22 __VERIFIER_memaccess.exit:
23 store i32 %s_1 , i32* %temp_1
24 %s_2 = add i32 0, 0
25 br label %main_exit
26

27 main_exit:
28 ret i32 %s_2
29 }
30 declare void @__VERIFIER_error ()

Listing A.10: Memory trap example

1 (module
2 (type (;0;) (func (result i32)))
3 (import "env" "memory" (memory (;0;) 1 1))
4 (func $_main (type 0)(result i32)
5 i32.const 500 (; addr ;)
6 i32.const 10 (; value to store ;)
7 i32.store8 offset =50 (; stores 4 bytes ;)
8 i32.const 0
9)

10)

Listing A.11: Truncated memory trap example

1 @mem = global [128 x i8] zeroinitializer , align 1
2 @__verif_memory_size_bytes = global i32 128
3

4 define i32 @main() {
5 main_entry:
6 br label %box_0
7

8 box_0: ; preds = %main_entry
9 %s_0 = add i32 0, 500, !Stack !0

10 %s_1 = add i32 0, 10, !Stack !1
11 %temp_0 = trunc i32 %s_1 to i8
12 %temp_3 = add i32 50, %s_0 , !Stack !2
13 %temp_1 = getelementptr inbounds [128 x i8], [128 x i8]* @mem , i32 0, i32 ←-

%temp_3 , !Stack !2
14 %temp_2 = bitcast i8* %temp_1 to i8*, !Stack !2
15 %memsize.i = load i32 , i32* @__verif_memory_size_bytes
16 %if.i = icmp sgt i32 551, %memsize.i
17 br i1 %if.i, label %box_error.i, label %__VERIFIER_memaccess.exit
18

19 box_error.i: ; preds = %box_0
20 call void @__VERIFIER_error ()
21 unreachable
22

23 __VERIFIER_memaccess.exit: ; preds = %box_0
24 store i8 %temp_0 , i8* %temp_2 , !Stack !2
25 %s_2 = add i32 0, 0, !Stack !3
26 br label %main_exit
27

60 CODE LISTINGS

28 main_exit: ; preds = ←-
%__VERIFIER_memaccess.exit

29 ret i32 %s_2
30 }
31

32 declare void @__VERIFIER_error ()

Listing A.12: Truncated memory trap example translation

A.5 Illegal operations

1 define i32 @main() {
2 main_entry:
3 br label %box_0
4

5 box_0:
6 %s_0 = add i32 0, 10
7 %s_1 = add i32 0, 0
8 br label %box_2
9

10 box_2:
11 %temp_0 = icmp eq i32 %s_1 , 0
12 br i1 %temp_0 , label %box_2_box_error , label %box_2_op
13

14 box_2_box_error:
15 tail call void @__VERIFIER_error ()
16 unreachable
17

18 box_2_op:
19 %s_2 = udiv i32 %s_0 , %s_1
20 br label %main_exit
21

22 main_exit:
23 ret i32 %s_2
24 }
25

26 declare void @__VERIFIER_error ()

Listing A.13: Generated code for the illegal operation example

A.6 Stack overflows

1 (module
2 (type (;0;) (func (param i32 i32)))
3 (type (;1;) (func (param i32)))
4 (type (;2;) (func (result i32)))
5 (type (;3;) (func (param i32) (result i32)))
6 (type (;4;) (func))
7 (import "env" "abortStackOverflow" (func $abortStackOverflow (type 1)))
8 (import "env" "___VERIFIER_nondet_int" (func $___VERIFIER_nondet_int (type 2)←-

))
9 (import "env" "__memory_base" (global (;0;) i32))

10 (import "env" "__table_base" (global (;1;) i32))
11 (import "env" "tempDoublePtr" (global (;2;) i32))
12 (import "env" "DYNAMICTOP_PTR" (global (;3;) i32))

A.6 STACK OVERFLOWS 61

13 (import "global" "NaN" (global (;4;) f64))
14 (import "global" "Infinity" (global (;5;) f64))
15 (import "env" "memory" (memory (;0;) 1))
16 (import "env" "table" (table (;0;) 0 funcref))
17 (func $_factorial (type 3) (param i32) (result i32)
18 (local i32 i32 i32 i32 i32 i32 i32 i32 i32 i32 i32 i32)
19 global.get 8
20 local.set 12
21 global.get 8
22 i32.const 16
23 i32.add
24 global.set 8
25 global.get 8
26 global.get 9
27 i32.ge_s
28 if ;; label = @1
29 i32.const 16
30 call $abortStackOverflow
31 end
32 local.get 0
33 local.set 3
34 local.get 3
35 local.set 4
36 local.get 4
37 i32.const 0
38 i32.eq
39 local.set 5
40 local.get 5
41 if ;; label = @1
42 i32.const 1
43 local.set 1
44 local.get 1
45 local.set 2
46 local.get 12
47 global.set 8
48 local.get 2
49 return
50 else
51 local.get 3
52 local.set 6
53 local.get 6
54 i32.const 1
55 i32.sub
56 local.set 7
57 local.get 7
58 call $_factorial
59 local.set 8
60 local.get 3
61 local.set 9
62 local.get 8
63 local.get 9
64 i32.mul
65 local.set 10
66 local.get 10
67 local.set 1
68 local.get 1
69 local.set 2
70 local.get 12
71 global.set 8
72 local.get 2
73 return
74 end
75 unreachable)
76 (func $_main (type 2) (result i32)
77 (local i32 i32 i32 i32 i32)
78 global.get 8
79 local.set 4
80 global.get 8

62 CODE LISTINGS

81 i32.const 16
82 i32.add
83 global.set 8
84 global.get 8
85 global.get 9
86 i32.ge_s
87 if ;; label = @1
88 i32.const 16
89 call $abortStackOverflow
90 end
91 i32.const 0
92 local.set 0
93 call $___VERIFIER_nondet_int
94 local.set 1
95 local.get 1
96 call $_factorial
97 local.set 2
98 local.get 4
99 global.set 8

100 local.get 2
101 return)
102 (func $__post_instantiate (type 4)
103 global.get 0
104 i32.const 0
105 i32.add
106 global.set 8
107 global.get 8
108 i32.const 1024
109 i32.add
110 global.set 9)
111 (global (;6;) (mut i32) (global.get 2))
112 (global (;7;) (mut i32) (global.get 3))
113 (global (;8;) (mut i32) (i32.const 0))
114 (global (;9;) (mut i32) (i32.const 0))
115 (global (;10;) (mut i32) (i32.const 0))
116 (global (;11;) (mut i32) (i32.const 0))
117 (global (;12;) (mut i32) (i32.const 0))
118 (global (;13;) (mut i32) (i32.const 0))
119 (global (;14;) (mut i32) (i32.const 0))
120 (global (;15;) (mut i32) (i32.const 0))
121 (global (;16;) (mut i32) (i32.const 0))
122 (global (;17;) (mut f64) (f64.const 0x0p+0 (;=0;)))
123 (global (;18;) (mut f64) (global.get 4))
124 (global (;19;) (mut f64) (global.get 5))
125 (global (;20;) (mut f32) (f32.const 0x0p+0 (;=0;)))
126 (global (;21;) (mut f32) (f32.const 0x0p+0 (;=0;)))
127 (export "__post_instantiate" (func $__post_instantiate))
128 (export "_main" (func $_main)))

Listing A.14: Factorial in WebAssembly compiled with Emscripten.

1 ; ModuleID = 'Factorial -O0-wasm2llvm.ll '
2 source_filename = "Factorial -O0-wasm2llvm.ll"
3 target datalayout = "e-p:32:32 -m:e-i64:64-f80:128-n8 :16:32:64 - S128"
4

5 @Global_0 = local_unnamed_addr global i32 0
6 @Global_1 = local_unnamed_addr global i32 0
7 @Global_2 = local_unnamed_addr global i32 0
8 @Global_3 = local_unnamed_addr global i32 0
9 @Global_4 = local_unnamed_addr global double 0x7FF8000000000000

10 @Global_5 = local_unnamed_addr global double 0x7FF0000000000000
11 @Global_6 = local_unnamed_addr global i32 0
12 @Global_7 = local_unnamed_addr global i32 0

A.6 STACK OVERFLOWS 63

13 @Global_8 = local_unnamed_addr global i32 0
14 @Global_9 = local_unnamed_addr global i32 0
15 @Global_10 = local_unnamed_addr global i32 0
16 @Global_11 = local_unnamed_addr global i32 0
17 @Global_12 = local_unnamed_addr global i32 0
18 @Global_13 = local_unnamed_addr global i32 0
19 @Global_14 = local_unnamed_addr global i32 0
20 @Global_15 = local_unnamed_addr global i32 0
21 @Global_16 = local_unnamed_addr global i32 0
22 @Global_17 = local_unnamed_addr global double 0.000000e+00
23 @Global_18 = local_unnamed_addr global double 0x7FF8000000000000
24 @Global_19 = local_unnamed_addr global double 0x7FF0000000000000
25 @Global_20 = local_unnamed_addr global float 0.000000e+00
26 @Global_21 = local_unnamed_addr global float 0.000000e+00
27 @mem = local_unnamed_addr global [128 x i8] zeroinitializer , align 1
28 @__verif_memory_size = local_unnamed_addr global i32 1
29 @__verif_memory_size_bytes = local_unnamed_addr global i32 128
30

31 define i32 @_factorial(i32 %param_0) local_unnamed_addr {
32 _factorial_entry:
33 %s_0 = load i32 , i32* @Global_8 , align 4, !Stack !0
34 %s_3 = add i32 %s_0 , 16, !Stack !1
35 store i32 %s_3 , i32* @Global_8 , align 4, !Stack !2
36 %s_5 = load i32 , i32* @Global_9 , align 4, !Stack !3
37 %temp_1 = icmp slt i32 %s_3 , %s_5 , !Stack !4
38 br i1 %temp_1 , label %box_12 , label %box_10
39

40 box_10: ; preds = %_factorial_entry
41 tail call void @__VERIFIER_error ()
42 br label %box_12
43

44 box_12: ; preds = %_factorial_entry , ←-
%box_10

45 %temp_3 = icmp eq i32 %param_0 , 0, !Stack !5
46 br i1 %temp_3 , label %box_29 , label %box_30
47

48 box_29: ; preds = %box_12 , %box_30
49 %merge = phi i32 [%s_26 , %box_30], [1, %box_12]
50 store i32 %s_0 , i32* @Global_8 , align 4
51 ret i32 %merge
52

53 box_30: ; preds = %box_12
54 %s_21 = add i32 %param_0 , -1
55 %temp_6 = tail call i32 @_factorial(i32 %s_21)
56 %s_26 = mul i32 %temp_6 , %param_0 , !Stack !6
57 br label %box_29
58 }
59

60 define i32 @main() local_unnamed_addr {
61 main_entry:
62 %s_43.i = load i32 , i32* @Global_0 , align 4, !Stack !7
63 %s_48.i = add i32 %s_43.i, 1024, !Stack !8
64 store i32 %s_48.i, i32* @Global_9 , align 4, !Stack !2
65 %s_34 = add i32 %s_43.i, 16, !Stack !9
66 store i32 %s_34 , i32* @Global_8 , align 4, !Stack !2
67 %temp_9 = icmp slt i32 %s_34 , %s_48.i, !Stack !10
68 br i1 %temp_9 , label %box_66 , label %box_64
69

70 box_64: ; preds = %main_entry
71 tail call void @__VERIFIER_error ()
72 br label %box_66
73

74 box_66: ; preds = %main_entry , ←-
%box_64

75 %temp_11 = tail call i32 @__VERIFIER_nondet_int ()
76 %temp_12 = tail call i32 @_factorial(i32 %temp_11)
77 store i32 %s_43.i, i32* @Global_8 , align 4, !Stack !2
78 ret i32 %temp_12

64 CODE LISTINGS

79 }
80

81 ; Function Attrs: norecurse nounwind
82 define void @__post_instantiate () local_unnamed_addr #0 {
83 __post_instantiate_entry:
84 %s_43 = load i32 , i32* @Global_0 , align 4, !Stack !7
85 store i32 %s_43 , i32* @Global_8 , align 4, !Stack !2
86 %s_48 = add i32 %s_43 , 1024, !Stack !8
87 store i32 %s_48 , i32* @Global_9 , align 4, !Stack !2
88 ret void
89 }
90

91 declare void @__VERIFIER_error () local_unnamed_addr
92

93 declare i32 @__VERIFIER_nondet_int () local_unnamed_addr
94

95 attributes #0 = { norecurse nounwind }
96

97 !0 = !{!"Stack ((s_0 , W32Int ()))"}
98 !1 = !{!"Stack ((s_3 , W32Int ()))"}
99 !2 = !{!"Stack ()"}

100 !3 = !{!"Stack ((s_5 , W32Int ()), (s_4 , W32Int ()))"}
101 !4 = !{!"Stack ((s_6 , W32Int ()))"}
102 !5 = !{!"Stack ((s_12 , W32Int ()))"}
103 !6 = !{!"Stack ((s_26 , W32Int ()))"}
104 !7 = !{!"Stack ((s_43 , W32Int ()))"}
105 !8 = !{!"Stack ((s_48 , W32Int ()))"}
106 !9 = !{!"Stack ((s_34 , W32Int ()))"}
107 !10 = !{!"Stack((s_37 , W32Int ()))"}

Listing A.15: Transtaltion into LLVM-IR of A.14

1 (module
2 (type (;0;) (func (param i32) (result i32)))
3 (type (;1;) (func))
4 (type (;2;) (func (result i32)))
5 (import "env" "__memory_base" (global (;0;) i32))
6 (import "env" "___VERIFIER_error" (func (;0;) (type 1)))
7 (import "env" "___VERIFIER_nondet_int" (func (;1;) (type 2)))
8 (func $_factorial (type 0) (param i32) (result i32)
9 (local i32 i32)

10 (;-- call stack usage control --;)
11 get_global 1
12 set_local 2 (; store current state of used stack ;)
13 get_global 1
14 i32.const 16
15 i32.add
16 set_global 1
17 get_global 1
18 get_global 2
19 i32.ge_s
20 if ;; label = @1
21 call $___VERIFIER_error
22 end
23 (; --------------------- -;)
24 get_local 0
25 if (result i32) ;; label = @1
26 get_local 0
27 i32.const -1
28 i32.add
29 call $_factorial
30 get_local 0
31 i32.mul
32 return
33 else
34 i32.const 1
35 end
36 get_local 2

A.6 STACK OVERFLOWS 65

37 set_global 1 (; restore the used stack size;)
38)
39 (func $_main (type 2) (result i32)
40 (local i32)
41 call 1
42 call 2
43)
44 (global (;1 -Used stack space;) (mut i32) (i32.const 0))
45 (global (;2 -Max stack space ;) (mut i32) (i32.const 1024))
46 (export "_main" (func 3))
47)

Listing A.16: Factorial in WebAssembly manually crafted.

1 @Global_0 = local_unnamed_addr global i32 0
2 @Global_1 = local_unnamed_addr global i32 0
3 @Global_2 = local_unnamed_addr global i32 100
4

5 define i32 @main() local_unnamed_addr {
6 _main_entry:
7 br label %tailrecurse.i
8

9 tailrecurse.i:
10 %accumulator.tr.i = phi i32 [1, %_main_entry], [%s_14.i, %box_11.i]
11 %param_0.tr.i = phi i32 [2, %_main_entry], [%s_10.i, %box_11.i]
12 %s_0.i = load i32 , i32* @Global_1 , align 4, !Stack !0
13 %s_2.i = add i32 %s_0.i, 16, !Stack !1
14 store i32 %s_2.i, i32* @Global_1 , align 4, !Stack !2
15 %s_4.i = load i32 , i32* @Global_2 , align 4, !Stack !3
16 %s_5.i = icmp slt i32 %s_2.i, %s_4.i, !Stack !2
17 br i1 %s_5.i, label %box_9.i, label %box_8.i
18

19 box_8.i:
20 tail call void @__VERIFIER_error ()
21 br label %box_9.i
22

23 box_9.i:
24 %temp_1.i = icmp eq i32 %param_0.tr.i, 0, !Stack !2
25 br i1 %temp_1.i, label %_factorial.exit , label %box_11.i
26

27 box_11.i:
28 %s_10.i = add i32 %param_0.tr.i, -1, !Stack !4
29 %s_14.i = mul i32 %param_0.tr.i, %accumulator.tr.i, !Stack !5
30 br label %tailrecurse.i
31

32 _factorial.exit:
33 ret i32 %accumulator.tr.i
34 }
35 declare void @__VERIFIER_error () local_unnamed_addr

Listing A.17: Transtaltion into LLVM-IR of A.16.

1 <graphml xmlns="http:// graphml.graphdrawing.org/xmlns" xmlns:xsi="http: //www.w3←-
.org /2001/ XMLSchema -instance">

2 ...
3 <graph edgedefault="directed">
4 <data key="witness -type">violation_witness </data>
5 <data key="sourcecodelang">C</data>
6 <data key="producer">skink </data>
7 <data key="specification">CHECK(init(main()), LTL(G ! call(←-

__VERIFIER_error ())))</data>

66 CODE LISTINGS

8 <data key="programfile">/home/diego/uni/repos/wasm2llvm -testfiles/wasm/←-
Factorial/CallStackOverflow/SimpleFactorial/FactorialAssert -wasm2llvm←-
-opt2.ll</data>

9 <data key="programhash">6a20b5759b1986a89fd2081796e9860bcf3a7dc9 </data>
10 <data key="memorymodel">simple </data>
11 <data key="architecture">32bit</data>
12 <node id="N0">
13 <data key="entry">true</data>
14 </node>
15 <edge id="E0" source="N0" target="N1">
16 <data key="assumption">\result == 7;</data>
17 <data key="assumption.note">hex: 7</data>
18 <data key="assumption.scope">main</data>
19 <data key="assumption.resultfunction">__VERIFIER_nondet_int </data>
20 </edge>
21 <node id="N1" />
22 <edge id="E1" source="N1" target="N2" />
23 <node id="N2">
24 <data key="violation">true</data>
25 </node>
26 </graph >
27 </graphml >

Listing A.18: Manual factorial failure witness.

1 function abortStackOverflow(allocSize) {
2 abort('Stack overflow! Attempted to allocate ... ');
3 }

Listing A.19: JavaScript function that captures stack overflows in WebAssembly.

1 extern int __VERIFIER_nondet_int ();
2

3 int factorial(int n) {
4 if (n == 0){
5 return 1;
6 }else{
7 return factorial(n-1) * n;
8 }
9 }

10

11 int main(){
12 return factorial(__VERIFIER_nondet_int ());
13 }

Listing A.20: Factorial in C

B | Skink logs and other output

B.1 Unreachable unreachable

Skink log from the execution that verified WebAssembly code present in listing 6.1.

1 /skink$ skink -frontend wasm unreachable.wat
2 skink.verifier.TraceRefinement - main has no failure traces
3 skink.verifier.Verifier - verify: CORRECT
4 skink.verifier.Verifier - verify: main is correct

Listing B.1: Running Skink over unreachable.wat with the WASM frontend.

B.2 Reachable unreachable

Skink log from the execution that verified WebAssembly code present in listing 6.3.

1 /skink$ skink -frontend wasm reachableUnreachable -switch.wat
2 skink.verifier.Verifier - verify: INCORRECT
3 skink.verifier.Verifier - verify: main is incorrect

Listing B.2: Running Skink on the switch with the WASM frontend.

1 unreachable.wat :6:5: error: type mismatch in implicit return , ←-
expected [i32] but got []

2 end
3 ^^^

Listing B.3: WebAssembly validator: Invalid function

B.3 Skink on detecting illegal memory access

1 <?xml version="1.0" encoding="UTF -8"?>
2 <graphml xmlns="http: // graphml.graphdrawing.org/xmlns" ←-

xmlns:xsi="http: //www.w3.org /2001/ XMLSchema -instance">
3 ... key declarations ...
4 <graph edgedefault="directed">
5 <data key="witness -type">violation_witness </data>
6 <data key="sourcecodelang">C</data>
7 <data key="producer">skink </data>
8 <data key="specification">CHECK(init(main()), LTL(G ! ←-

call(__VERIFIER_error ())))</data>
9 <data key="programfile">.../ MemoryTrap.wat</data>

10 <data key="programhash">9268←-
a5b2fb41224e430495e453633ff1f3b3922e </data>

11 <data key="memorymodel">simple </data>
12 <data key="architecture">32bit</data>
13 <node id="N0">
14 <data key="entry">true</data>
15 </node>
16 <edge id="E0" source="N0" target="N1" />

67

68 SKINK LOGS AND OTHER OUTPUT

17 <node id="N1">
18 <data key="violation">true</data>
19 </node>
20 </graph >
21 </graphml >

Listing B.4: Memory access verification witness.

FIGURE B.1: Reaching an unreachable instruction using the WebAssembly API 1.

C | Diagrams

C.1 CFG diagram for the switch instruction in section 6.3.1

CFG for 'main' function

main_entry:
 br label %block_0

block_0:
 br label %block_1

block_1:
 br label %block_2

block_2:
 br label %box_3

box_3:
 %temp_0 = call i32 @__VERIFIER_nondet_int()
 br label %tableBranch_4

tableBranch_4:
 switch i32 %temp_0, label %block_0.end [
 i32 0, label %block_2.end
 i32 1, label %block_1.end
]

def 0 1

block_0.end:
 br label %box_9

block_2.end:
 br label %box_5

block_1.end:
 br label %box_7

box_9:
 tail call void @__VERIFIER_error()
 unreachable

box_5:
 %s_0 = add i32 0, 10, !Stack !0
 br label %box_6

box_7:
 %s_1 = add i32 0, 11, !Stack !1
 br label %box_8

box_6:
 ret i32 %s_0

box_8:
 ret i32 %s_1

main_exit:
 unreachable

FIGURE C.1: Tools and environment

69

70 DIAGRAMS

C.2 CFG diagram for illegal memory access verification

CFG for 'main' function

main_entry:
 br label %box_0

box_0:
 %s_0 = add i32 0, 500
 %s_1 = add i32 0, 10
 %temp_2 = add i32 50, %s_0
 %temp_0 = getelementptr inbounds [128 x i8], [128 x i8]* @mem, i32 0, i32
... %temp_2
 %temp_1 = bitcast i8* %temp_0 to i32*
 %memsize.i = load i32, i32* @__verif_memory_size_bytes
 %if.i = icmp sgt i32 554, %memsize.i
 br i1 %if.i, label %box_error.i, label %__VERIFIER_memaccess.exit

T F

box_error.i:
 call void @__VERIFIER_error()
 unreachable

__VERIFIER_memaccess.exit:
 store i32 %s_1, i32* %temp_1
 %s_2 = add i32 0, 0
 br label %main_exit

main_exit:
 ret i32 %s_2

FIGURE C.2: CFG for memory access verification

D | Tables

D.1 Environment configuration

Tool Version

Scala 2.12.6
JDK OpenJDK version "1.8.0_191"
Sbt 1.2.1
sbt-rats 2.6.0
Skink 3.0-SNAPSHOT
Emscripten 1.38.27
Clang 6.0.1
WABT1 1.0.10
O.S. Ubuntu 18.04.2 LTS
Memory 15GiB
CPU Intel® Core™ i7-4500U CPU @ 1.80GHz

64 bits
Haswell type

TABLE D.1: Host configuration and used tools.

1WebAssembly provides a binary toolkit (WABT) that includes a validator, that validates modules in
binary format and is also executed when a module in text format is being translated to binary format. WABT
is available at https://webassembly.github.io/wabt

71

https://webassembly.github.io/wabt

	Declaration
	Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Contributions
	1.2 Research aims

	2 Literature review
	2.1 WebAssembly
	2.2 Software Verification
	2.2.1 Current approaches in automated program verification
	2.2.2 Trace abstraction refinement

	3 Methods
	3.1 Introduction

	4 Translating WebAssembly into LLVM
	4.1 Overview
	4.2 Details

	5 Validating the translation
	5.1 Introduction
	5.2 SV-COMP setting
	5.3 Validation
	5.4 Discussion

	6 Verifying WebAssembly
	6.1 Introduction
	6.2 Traps
	6.2.1 Scenarios that cause traps

	6.3 Detecting unreachable code
	6.3.1 Detecting a reachable unreachable WebAssembly instruction
	6.3.2 unreachable as a wildcard

	6.4 Detecting illegal memory access
	6.5 Detecting illegal operations
	6.6 Detecting stack overflows
	6.6.1 First attempt
	6.6.2 Manual attempt

	6.7 Detecting illegal indirect calls
	6.7.1 Modelling illegal indirect calls verification

	7 Conclusions
	References
	A Code listings
	A.1 Unreachable
	A.2 Failure witness in switch
	A.3 Function pointers
	A.3.1 Type mismatch error

	A.4 Illegal memory access
	A.5 Illegal operations
	A.6 Stack overflows

	B Skink logs and other output
	B.1 Unreachable unreachable
	B.2 Reachable unreachable
	B.3 Skink on detecting illegal memory access

	C Diagrams
	C.1 CFG diagram for the switch instruction in section 6.3.1
	C.2 CFG diagram for illegal memory access verification

	D Tables
	D.1 Environment configuration

