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Abstract

The thesis focuses on the minimum time clearing objective for link scheduling in wireless

networks. We formulate the problem as a deterministic LP. We relate the problem to other

works on capacity and scheduling. In general, the problem is NP-complete. We consider

special networks where the additional structure makes the problem tractable. We argue that

explicitly solving the linear program is implausible. And proceed to show that the problem

is amenable to a greedy allocation scheme that only requires local information.

Beyond the special case, we consider simple ring networks where in general, the greedy

solution is sub-optimal. We solve the minimum clearing time problem for ring networks

under 1-hop interference model. We establish the su�ciency conditions for optimality of a

greedy solution. We also provide the solution when these conditions do not hold. For this

case, the solution depends on global information, unlike the greedy solution. However, the

solution only has a linear complexity in terms of computation.

The minimum clearing time problem can help us understand how the network is con-

strained under di�erent load distributions. Ultimately, in the future we aim to use these

insights to design a simple scheduling policy, with nearly optimal performance in a general

wireless network.
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Chapter 1

Introduction

1.1 Introduction

Understanding the capacity of a general wireless network is a problem that has received sig-

nificant attention from researchers. A general wireless network consists of several transmitter

- reciever pairs. Transmission of information from a transmitter to a receiver happens via a

wireless channel i.e., transmitter and receiver are connected via a wireless link. Now, given a

set of arrival rates of tra�c (on each link), is it possible to find a scheduling policy to stabilize

the network? This is an important question for which the answer is not straightforward,

because of the interference between wireless links. Interference occurs when two or more

links use the same frequencies at the same time.

It is clear that interference is an inherent property of wireless networks. However, the

power of a wireless signal attenuates rapidly with the distance travelled. Hence, two links that

are not in the vicinity (or range) of each other, can transmit simultaneously without significant

interference. Therefore in a wireless network, interference imposes constraints as to which

links can transmit simultaneously, and the rate at which the transmissions can happen. The

capacity region (or stability region) is the set of all the arrival rate vectors for which the

network can be stabilized. A system is stable i� tra�c does not build up indefinitely at the

network nodes. Methods implemented in current wireless networks achieve only a fraction

of the capacity region. Example: 802.11 MAC [1]. Finding simple policies that can achieve

close to optimal performance is a challenging task, and will enable support of more wireless

tra�c than what is possible today.
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In [2], Tassiulas et al. proposed a throughput optimal scheduling policy for general

wireless networks. A throughput optimal policy stabilizes the network for any arrival rate

vector within the capacity region. The proposed scheduling policy is often referred to

as maximum weighted scheduling (MWS), as it relies on finding the maximum weighted

activation set. In every slot, queue length based maximum weighted activation set is selected

for scheduling. Unfortunately, finding the maximum weighted activation set is equivalent to

finding the maximum weighted independent set (in the conflict graph), which is known to be

NP-hard in general. Hence, maximum weighted scheduling has an exponential complexity,

and requires centralized control. As a result, max weight scheduling is seldom implemented

in practice.

Following [2], a lot of e�ort has been put into finding low complexity approximations

of max-weight scheduling. The simplest of such algorithms is the Maximal Scheduling

considered in [3]. The basic idea behind maximal scheduling is to greedily select some

maximal activation set, even though it does not have the maximum weight. A maximal set of

non-interfering and non-empty queues are selected for scheduling in every slot. A distributed

implementation of a similar greedy scheduling scheme was studied in [4]. As one would

expect, the simplicity of maximal scheduling comes at a cost in terms of acheivable capacity.

Maximal scheduling only achieves a small fraction of the capacity region.

Longest Queue First (LQF) or Greedy Maximal Scheduling (GMS) considered in [5–7] is

a natural simplification of the max weight scheduling. In LQF, the queues are prioritized for

scheduling based on their queue lengths. And a maximal schedule is constructed by selecting

non-interfering queues based on the queue length, i.e., longest queue Q1 is selected first, and

then the longest queue from the set of queues that do not interfere with Q1 is selected, and

this process is repeated for maximality. LQF has received a lot of attention in the recent

literature, specifically its performance in various scenarios [5–7]. The e�ciency of the LQF

scheduling is given by the local pooling factor [5, 6]. Notable cases where performance of

LQF was analyzed include tree and ring networks. LQF was shown to be throughput optimal

in tree networks under the K-hop interference model [5]. LQF is shown to be sub-optimal in

ring networks, e.g. local pooling factor in a ring under the 1-hop interference model is 2/3

[7].

Another approach to the problem of scheduling in wireless networks is studied in [8].
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Under the 1-hop interference model, the problem of finding the maximum weighted activation

set boils down to the maximum weighted matching problem. Matching is a set of links such

that no two links share the same node. The authors in [8] extend this framework to a K-hop

interference model, by defining K-valid matching. Unsurprisingly, the hardness of maximum

weighted K-valid matching problem was shown to be NP-hard for K � 2 [8].

One of the earliest works on the capacity of a general wireless network is presented in [9].

The author, Erdal Arikan studied the problem of determining whether a given arrival rate

vector lies within the capacity region. The problem was studied as two sub-problems: the FF

(TDMA- ~f � f easibility) problem and the RF (~r-feasibility) problem. The FF problem deals

with the feasibility of a given rate vector under 1-hop tra�c, whereas the RF problem also

deals with optimal routing decisions involving multi-hop tra�c. Both FF and RF problems

were shown to be NP-hard. The FF problem is central to the topic of this thesis, we will

discuss this further after introducing some context via our problem formulation.

Recent works of Hanly et al. [10, 11] on capacity of HetNets, provide an interesting

approach to characterizing capacity. They formulated the minimum clearing time problem

as a linear program, and used the solution to the linear program to characterize the capacity

region. The linear program had special structural properties which were exploited to obtain

the solution. Minimum clearing time problem was also recently studied in [12]. They were

solving the problem for special wireless networks with structure (referred to as multi cluster

cardinality based rates), and they achieved polynomial time solvability for these networks.

The aim of this thesis is similar to these works [10–12]: we want to solve the minimum

clearing time problem for special networks where the additional structure makes the problem

tractable.

1.2 Capacity and Minimum Clearing Time Problem

We model a wireless network as an undirected graph G(V, E), where V represents the set of

wireless nodes and E represents the set of links. We model the interference as follows: a

link ` interferes with all the links in the set I (`) ✓ E. We assume that two interfering links

cannot transmit at the same time. We consider a slotted time model. We assume that in each

slot, a link ` can transmit one packet provided that no link in I (`) is transmitting in the same
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slot. Let {e1, e2, ...e|E | } denote an enumeration of the links in the set E. Let A

i

(t) denote the

number of packets arriving at a link e

i

at the beginning of slot t. We assume that the arrival

process {A
i

(t)}
t=1:1 is a sequence of i.i.d random variables for i = 1 : |E |. We further assume

that arrival processes are independent for di�erent links, and they satisfy the conditions for

the fluid limits to hold. Let, ⌧(e
i

) = E
t

[A

i

(t)] denote the arrival rate of packets at a link e

i

.

Definition 1.2.1. A feasible set is set A ✓ E such that 8` 2 A, I (`)
T

A = �.

From the definition, no two links in a feasible set interfere with each other. Therefore, all

the links in a feasible set can be scheduled together.

Definition 1.2.2. A maximal feasible set is a feasible set that is not a subset of any other

feasible set.

Let S denote the set of all the maximal feasible sets S for the graph G(V, E). Denote the

arrival rate vector as ~⌧ = [⌧(e1), ⌧(e2), ...⌧(e|E |)]. Consider the vector representation ~r
S

of a

maximal feasible set S as follows: ~r
S

is a vector of length |E |, and the i th element of ~r
S

is

given by

~r
S

(i) =

8>>>><>>>>:
1 if e

i

2 S,

0 o.w.

We refer to ~r
S

as a maximal scheduled vector. Let R denote the set of all the maximal

scheduled vectors {~r
S

}
S2S . Let Conv(A) denote the convex hull of a set A. Consider the set

of arrival rate vectors given by

� = {~⌧ |~⌧  ~� for some ~� 2 Conv(R)}

where ~a  ~
b denotes ~a is element wise less than or equal to ~

b.

We consider the system to be stable i� a scheduling policy can be found such that the

queue lengths do not grow to infinity. It is well known that � is the stability region for the

considered system [2].

Theorem 1.2.1. If the arrival rate vector ~⌧ < �, the system is unstable under any scheduling

policy.

Proof. See Lemma 3.3 in [2]. ⇤
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Observe that since ~� 2 Conv(R), ~� can be written as ~� =
P

S2S f

S

~r
S

such that
P

S2S f

S

=

1 and f

S

� 0,8S 2 S. Now imagine a policy that picks a maximal feasible set S for f

S

fraction of time slots, for scheduling. Under such a policy, if ~⌧  ~�, each link ` receives

a service rate higher than its arrival rate ⌧(`). So for any arrival rate vector ~⌧ 2 �, this

policy can stabilize the network. This is the intuition behind our formulation of the minimum

clearing time problem. We formulate the minimum clearing time problem as the following

linear program.

min
X

S2S
f

S

s.t.
X

S:`2S

f

S

� ⌧(`),8` 2 E,

f

S

� 0,8S 2 S (1.1)

where f

S

represents time alloted to a maximal feasible set S.

Observe that this linear program is a deterministic problem. For the graph G(V, E), we

consider a fixed load (equivalent to the arrival rate on each link) of ⌧(`) on each link ` 2 E.

⌧(`) is treated as the time required to clear a link `. Now the interference constraint can be

interpreted as: no two interfering links can be cleared simultaneously. The objective of the

minimum clearing time problem is to clear the network in the least possible time subject to

the interference constraints. We will now show the relation between the set � and the linear

program (1.1).

Claim 1. {~⌧ |P
S2S f

⇤
S

 1} = �, where { f ⇤
S

}
S2S is an optimal solution of the LP (1.1).

Proof. From the definition, for any ~⌧ 2 �, 9~� 2 Conv(R) such that~� � ~⌧. We can write

~� =
P

S2S f

S

~r
S

such that
P

S2S f

S

= 1 and f

S

� 0,8S 2 S.
P

S2S f

S

~r
S

� ~⌧ is equivalent to

the constraints
P

S:`2S

f

S

� ⌧(`),8` 2 E. Therefore, { f
S

}
S2S is a feasible solution of the LP

(1.1). Therefore,
P

S2S f

⇤
S

 P
S2S f

S

= 1. Hence, � ✓ {~⌧ |P
S2S f

⇤
S

 1}.
Conversely, given ~⌧, suppose that

P
S2S f

⇤
S

 1. we construct the following solution

f

S

=
f

⇤
SP

S2S f

⇤
S

,8S 2 S
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and set ~� =
P

S2S f

S

~r
S

. Observe that f

S

� f

⇤
S

,8S 2 S and
P

S2S f

S

= 1. Therefore,

~� � ~⌧ and ~� 2 Conv(R), which implies ⌧ 2 �. Hence, {~⌧ |P
S2S f

⇤
S

 1} ✓ �. ⇤

From Claim 1, it is clear that solution of the minimum clearing time problem can

determine the capacity region of the network. In [9], the minimum clearing time problem

was considered in the same context, although Claim 1 is not made. The formulation of � is a

result of much later works in the literature [2]. Using Claim 1, we establish the equivalence

of the two formulations.

In [9], the author considers the problem of determining whether a given arrival rate vector

belongs to the capacity region of a packet radio network. The FF (TDMA- ~f -feasibility

problem) is equivalent to our formulation of the minimum clearing time problem. The

complexity of the FF problem was well analyzed in [9]. The author provides algorithms that

transforms the FF problem to the CLIQUE problem. The CLIQUE problem is known to be

NP-complete in general [9]. Therefore in general, the minimum clearing time problem is

NP-complete.

Much of the hardness of the problem can be attributed to constructing the set S. The

number of maximal feasible sets grow exponentially with respect to the number of links.

Therefore, constructing the set S is not practical except in case of small networks. The LP

itself has exponentially many number of variables due to size of S. Therefore, explicitly

solving the LP is not practical. We will discuss more on this topic in Chapter 2.



Chapter 2

Tree Networks

2.1 Introduction

In the previous chapter, we have established that solving the minimum clearing time problem

in a general network is NP-hard. So, it is natural to start with graphs with additional structural

properties, and see whether the problem is tractable. In this chapter, we focus on solving the

minimum clearing time problem in tree networks under the K-hop interference model.

2.2 Network Model and Problem Formulation

Figure 2.1: An example graph containing 6 links

We model a wireless network as an undirected graph G(V, E), where V represents the set

of wireless nodes and E represents the set of links. Furthermore, we assume that G(V, E)



8 Tree Networks

is a tree. We consider a K-hop interference model [8], i.e., a link ` interferes with all the

links within a K-hop distance of `. We assume that two interfering links cannot be cleared

at the same time. We define the 1-hop neighbourhood of ` 2 E as the set of all edges in

E that share a common node with `. Denote the 1-hop neighbourhood of ` as N1(`). For

example in Figure 2.1, N1(`1) = {`1, `2, `3} and N1(`3) = {`1, `2, `3, `4, `5}. Note that N1(`)

also includes `. For a set of edges A, define N1(A) =
S
`2A

N1(`). Now we can define l-hop

neighbourhood of a link ` inductively as follows

Definition 2.2.1. The l-hop neighbourhood of a link `, denoted by N

l

(`) is defined as

N

l

(`) = N1(N

l�1(`)).

From the definition, N

K

(`) is the set of all the links within a K-hop distance of `, including

`. Hence, ` interferes with every link in N

K

(`) � {`}. Based on this, we can redefine the

feasible set as follows

Definition 2.2.2. A feasible set is a set A ✓ E such that 8` 2 A, N

K

(`)
T

A � {`} = �.

From the definition, no two links in a feasible set are within K-hop distance of each other.

Therefore, all the links in a feasible set can be scheduled together.

We treat time as an infinitely divisible resource, and clear the network by sharing time

among the maximal feasible sets of the given graph G(V, E). Let S denote the set of all the

maximal feasible sets S for the graph G(V, E). Let ⌧(`) denote the time required to clear

a link ` 2 E. We formulate the minimum clearing time problem as the following linear

program

min
X

S2S
f

S

s.t.
X

S:`2S

f

S

� ⌧(`),8` 2 E,

f

S

� 0,8S 2 S (2.1)

where f

S

represents the time allocated to a maximal feasible set S.
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2.3 Lower Bounds

Definition 2.3.1. A clique set is a set C ✓ E such that, 8` 2 C, N

K

(`) ◆ C.

Definition 2.3.2. A maximal clique set is a clique set that is not a subset of any other clique

set.

Observe that a maximal clique set represents a set of mutually interfering links, i.e., every

two links in a maximal clique set interfere with each other. Now, we will discuss a few

properties of maximal clique sets. To help with the discussion, we introduce some notation.

Let P(`1, `2) denote the path joining `1 and `2 also including `1 and `2. |P(`1, `2) | denotes

the length of the path P(`1, `2) in terms of number of links.

Lemma 2.3.1. Let C be a maximal clique set of the graph G(V, E). If `1, `2 2 C , then

P(`1, `2) ✓ C.

Proof. Consider a link ` 2 C and ` , `1, `2. Since, ` and `1 interfere, |P(`, `1) |  K + 1.

Thus, N

K

(`) ◆ P(`, `1). Similarly, N

K

(`) ◆ P(`, `2). And thus N

K

(`) ◆ P(`, `1)
S

P(`, `2).

Since G(V, E) is a tree, P(`, `1)
S

P(`, `2) ◆ P(`1, `2) which implies N

K

(`) ◆ P(`1, `2).

Since this is true8` 2 C, every link ` 2 C interferes with every link in the path P(`1, `2). Since

`1, `2 2 C, |P(`1, `2) |  K + 1, which implies for every ` 2 P(`1, `2), N

K

(`) ◆ P(`1, `2).

Therefore, P(`1, `2) is itself a clique set.

Therefore, P(`1, `2)
S

C is also a clique set. If C + P(`1, `2), it contradicts the assumption

that C is a maximal clique set. Hence, C ◆ P(`1, `2). ⇤

Claim 2. Any maximal clique set C of the graph G(V, E) is a tree.

Proof. It is clear from the definition that C is a sub-graph of G(V, E). Since G(V, E) is a

tree, C cannot contain any loops. Lemma 2.3.1 implies that every two links in a maximal

clique set are connected. It follows that C is a tree. ⇤

We define ⌧(C) =
P
`2C ⌧(`), for a maximal clique set C. It can be observed that ⌧(C)

is the minimum time required to clear a maximal clique set C. And since C is a sub-graph

of G(V, E), ⌧(C) forms a lower bound on clearing time of the graph G(V, E). We formally

prove this using duality theory.
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Claim 3. ⌧(C) is a lower bound to the minimum clearing time of G(V, E).

Proof. Consider the dual-program of the minimum clearing time LP (1.1).

max
X

`2E

⌧(`).x`

s.t.
X

`:`2S

x`  1,8S 2 S

x` � 0,8` 2 E (2.2)

Observe that there is 1 � 0 feasible solution to the dual given by a maximal clique set C:

x` =

8>>>><>>>>:
1 if ` 2 C,

0 o.w.

Since, any two links in a clique set interfere with each other, they cannot be present in the

same maximal feasible set. As a result, at most one link ` 2 C can be present in a maximal

feasible set S. Thus, for every maximal feasible set S 2 S, under the current solution,
P
`:`2S

x`  1. Therefore, the solution is feasible.

The value of the dual objective function under the solution is given by
P
`2C ⌧(`).1 = ⌧(C).

Using weak-duality theorem, ⌧(C) is a lower bound of the primal (1.1). ⇤

Let C denote the set of all the maximal clique sets for the graph G(V, E). Let C

M :=

argmax
C2C ⌧(C), denote the maximal clique set that has the maximum clearing time. We

refer to ⌧(CM ) as the clique time. Using Claim 3, we can establish that minimum clearing

time � ⌧(CM ). We refer to this bound as the clique bound.

2.4 Greedy Scheme

Explicitly solving the linear program (1.1) for the minimum clearing time requires the knowl-

edge of all the maximal feasible sets S. Before even attempting to solve the linear program,

one must construct the entire state space S containing maximal feasible sets for the given

graph. It can be observed that the number of maximal feasible sets grows exponentially with

number of links, even in the case of trees. e.g. For a linear chain of 30 links, under 1-hop
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interference model, there are 4410 maximal feasible sets, the number grows to 1.22 ⇥ 106

for 50 links. Moreover, the linear program itself has exponentially many variables, due to

the size of the state space. Therefore, traditional methods like the simplex algorithm are not

suitable for solving this problem in general.

Due to the above reasons, we are interested in finding an alternate approach for solving

the minimum time clearing problem. As it turns out, we can employ greedy methods that

exploit the structure of trees and solve the minimum clearing time problem. The greedy

scheme uses local information (within a maximal clique set) to allocate time to each link. To

broadly describe the scheme, we start with a small tree and greedily allocate time to the links

in this tree. Then we gradually start adding new links growing the size of the tree, every time

new links are added the time is allocated greedily.

Before proceeding to explain the greedy scheme in context of a general tree. We use a

special example, a chain of links, to illustrate key ideas behind the greedy scheme. Consider

the chain of N links shown in Figure 2.2. The interference model is considered to be a 2-hop

interference model. There is a load of ⌧(`
i

) on a link `
i

.

Figure 2.2: Chain of links

For this example, observe that any three consecutive links {`
i

, `
i+1, `i+2} form a maximal

clique set. Therefore, there are N � 2 maximal clique sets. Let C

i

= {`
i

, `
i+1, `i+2} denote

a maximal clique set, then {C
i

}
i=1:N�2 denotes all the maximal clique sets for Figure 2.2.

Let T (`
i

) denote the union of time intervals allocated to a link `
i

. Under this notation,

the length of the time allocation is given by |T (`
i

) | = ⌧(`
i

). For a set of links A, define

T (A) =
S
`2A

T (`).

We describe the greedy scheme as follows. For links in C1 = {`1, `2, `3}, assign time as

T (C1) = (0, ⌧(C1)]. Since ⌧(C1) = ⌧(`1) + ⌧(`2) + ⌧(`3), the time allocation is feasible.

For the rest of the links, we define the allocation inductively as follows: Assuming the

time allocation for C

i

= {`
i

, `
i+1, `i+2} is known, time allocation for C

i+1 = {`i+1, `i+2, `i+3}
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has to be made.

Since, link `
i+3 interferes with both `

i+2 and `
i+1, we allocate time to `

i+3 such that

T (`
i+3) ✓ (0, ⌧(C

i+1)] � {T (`
i+1)
ST (`

i+2)}. We will show that the time allocation is

feasible by showing that the time allocation (0, ⌧(C
i+1)]� {T (`

i+1)
ST (`

i+2)} is longer than

⌧(`
i+3).

|(0, ⌧(C
i+1)] � {T (`

i+1)
[
T (`

i+2)}| � ⌧(C
i+1) � ⌧(`

i+1) � ⌧(`
i+2)

= ⌧(`
i+3)

Thus, the algorithm assigns time to a link `
i+1 within the interval (0, ⌧(C

i+1)]. Thus the

time allocation for all the links lies within the interval (0,max
i=1:N�2 ⌧(Ci

)]. Therefore, the

greedy scheme clears the network in clique time, and hence it is optimal.

Observe that `
i

and `
i+3 do not interfere with each other, so allocating the same time

resources to `
i

and `
i+3 does not violate any interference constraints. This kind of time reuse

is the key idea behind the greedy scheme.

Figure 2.3: A rooted tree with r as the root
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2.4.1 Algorithm

In this section, we describe the algorithm that solves the minimum clearing time problem in

a tree. We describe the algorithm for disjoint cases, for a K-hop interference model: 1) K is

odd and 2) K is even.

2.4.1.1 K is odd

We use the rooted tree T (V, E, r) representation for the tree G(V, E). In the rooted tree

representation, a node r 2 V is chosen as the root. We now introduce new terms that will

help in the discussion.

If node u is the neighbour of v in the path from v to r , then u is a parent of v and v is a

child of u. Since the path from u to r is unique, every node has exactly one parent, expect for

the root. For example, in Figure 2.3, n2 is a parent of n4 and n5. The root only has children,

it has no parent. We can similarly define an ancestor as follows: every node u , v in the path

from v to r is an ancestor of v, and v is a descendant of u. For example, in Figure 2.3, n7 is

a descendant of n2, but not of n3 or n1. Observe that the root is an ancestor of every node in

the tree, but a descendant of none. Let V1(u) denote the set of children of node u. For a set of

nodes A, define V1(A) =
S

u2A

V1(u). We can inductively define V

i

(u) = V1(V
i�1(u)). The set

V

i

(u) can be interpreted as the ith generation descendants of a node u. For a node u, let L(u)

denote the link connecting u and its parent. For a set of nodes A, define L(A) =
S

u2A

L(u).

Now, we introduce some necessary notation before decribing the algorithm. P(`, n)

denotes the path from a link ` to a node n, including `. |P(`, n) | denotes the length of the path

P(`, n). T (`) denotes the union of time intervals allocated to a link `. For a set of links A,

⌧(A) =
P
`2A

⌧(`), and T (A) =
S
`2A

T (`). Let C denote the set of all maximal clique sets

for the tree T . Define C

M := arg max
C2C ⌧(C). We now present Algorithm 1(see page 14 ).

It can be observed that the algorithm spans the whole tree. In the first step, by adding

links T

(0) =
S

m=1:(K+1)/2 L(V
m

(r)), we add the first (K + 1)/2 generation descendant nodes

of the root, and the corresponding parental links. By iterating until T

( j) , T , we add all the

subsequent generation descendants of the root in the tree T . Under Algorithm 1, the addition

of links is exhaustive, and also exclusive in the sense that no link is added twice. Now, we

prove some important results that will help in understanding how the algorithm works, and
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Algorithm 1 K is odd
1: i = 1, j = 1;

2: T

(0) =
S

m=1:(K+1)/2 L(V
m

(r));

3: T (T (0) ) = (0, ⌧(T (0) )];

4: while T

( j) , T do
5: for n 2 V

i

(r) do
6: T

( j+1)  T

( j)S
A

( j+1); where A

( j+1) = L(V(K+1)/2(n)).

7: // A

( j+1) is the set of links being newly added.

8: Allocate time such that T (A

( j+1) ) ✓ (0, ⌧(B

( j+1) )] � T (B

( j+1) � A

( j+1) ); where

B

( j+1) = {` 2 T

( j+1) : |P(n, `) |  (K + 1)/2}.
9: // B

( j+1) is the maximal clique set containing A

( j+1) in the tree T

( j+1) . This will be shown in

Lemmas 2.4.2, 2.4.3.

10: // Take any arbitrary union of intervals within (0, ⌧(B

( j+1) )] � T (B

( j+1) � A

( j+1) ) that has

a length ⌧(A

( j+1) ), and allocate this time to links in A

( j+1) . In Theorem 2.4.4, we will show that such an

allocation is always possible.

11: j  j + 1;

12: end for
13: i  i + 1;

14: end while

also establish its optimality.

Lemma 2.4.1. T

(0)
is a clique set.

Proof. By definition, T

(0) =
S

m=1:(K+1)/2 L(V
m

(r)). Therefore, every link ` 2 T

(0) satisfies

|P(`, r) |  (K + 1)/2. For any two links `1, `2 2 T

(0), |P(`1, `2) |  |P(`1, r) | + |P(`2, r) |,
equality occurs when node r is in the path P(`1, `2). Therefore, |P(`1, `2) |  K+1. Therefore,

any two links `1, `2 2 T

(0) are with in a K-hop distance of each other, and hence interfere

with each other. ⇤

Lemma 2.4.2. Assuming A

( j+1)
is non-empty, any link `1 2 A

( j+1)
does not interfere with a

link `2 2 T

( j+1) � B

( j+1)
, i.e., |P(`1, `2) | > K + 1.

Proof. We divide the tree T

( j+1) into two disjoint trees T1 and T2 by removing the link between

the node n and its parent. T1 is the tree that contains the node n and its (K+1)/2 generations of
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descendants. And T2 = T

( j+1)� {T1
SL(n)}. Since node n has at most (K +1)/2 generations

of descendants in T1, for any ` 2 T1, |P(`, n) |  (K + 1)/2. Therefore, B

( j+1) ◆ T1 ◆ A

( j+1).

By definition, B

( j+1) = {` 2 T

( j+1) : |P(n, `) |  (K + 1)/2}. Therefore, for any

`2 2 T

( j+1) � B

( j+1), |P(`2, n) | > (K + 1)/2. From the previous arguments, we have B

( j+1) ◆
T1 ◆ A

( j+1). Therefore, `2 < T1, and hence `2 2 T2. Now choose any link `1 2 A

( j+1),

from the definition of A

( j+1), |P(`1, n) | = (K + 1)/2. Now since `1 2 T1, and `2 2 T2, the

path P(`1, `2) must contain node n. Therefore, |P(`1, `2) | = |P(`1, n) | + |P(n, `2) | > K + 1.

Hence, any link `1 2 A

( j+1) does not interfere with a link `2 2 T

( j+1) � B

( j+1). ⇤

Lemma 2.4.3. B

( j+1)
is a maximal clique set of T

( j+1)
.

Proof. From definition, B

( j+1) = {` 2 T

( j+1) : |P(n, `) |  (K + 1)/2}. Therefore, for any

two links `1, `2 2 B

( j+1), |P(`1, `2) |  |P(`1, n) | + |P(`2, n) |  K + 1. Therefore, any two

links `1, `2 2 B

( j+1) are with in a K-hop distance of each other, and hence interfere with each

other. Therefore, B

( j+1) is a clique set. Now, using Lemma 2.4.2, B

( j+1) is a maximal clique

set of T

( j+1). ⇤

Theorem 2.4.4. Under Algorithm 1, the time allocation is feasible and lies within the interval

(0, ⌧(CM )].

Proof. We use proof by induction. Using Lemma 2.4.1, (0, ⌧(CM )] ◆ (0, ⌧(T (0) )]. Since,

⌧(T (0) ) =
P
`2T (0) ⌧(`), each link gets enough time. Therefore, the time allocation for T

(0) is

feasible, and lies within the interval (0, ⌧(CM )].

Assume that the time allocation for the links in T

( j) is feasible, and lies within the interval

(0, ⌧(CM )]. Now, the set of new links A

( j+1) are added to the tree T

( j), and the tree evolves

into T

( j+1) = T

( j)S
A

( j+1). We will show that the time allocation for A

( j+1) is feasible and

lies within the interval (0, ⌧(CM )], and hence showing that the time allocation for T

( j+1) is

feasible, and lies within the interval (0, ⌧(CM )].

Upon addition of links in A

( j+1), the time for the new links under Algorithm 1 is allocated

as T (A

( j+1) ) ✓ (0, ⌧(B

( j+1) )]�T (B

( j+1)�A

( j+1) ). Using Lemma 2.4.2, we have established

that B

( j+1) is a maximal clique set of T

( j+1). Hence, B

( j+1) must be a clique set of T (V, E, r).

Therefore, (0, ⌧(B

( j+1) )] ✓ (0, ⌧(CM )).

Using Lemma 2.4.2, we have established that a link in A

( j+1) only interferes with the links

in B

( j+1). As a result, the time that is unavailable due to interference for links in A

( j+1) is
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given by T (B

( j+1) � A

( j+1) ). As can be observed, the algorithm does not use the unavailable

time: T (A

( j+1) ) ✓ (0, ⌧(B

( j+1) )] � T (B

( j+1) � A

( j+1) ). Now we will show that algorithm

allocates enough time by calculating length of the time allocation

|(0, ⌧(B

( j+1) )] � T (B

( j+1) � A

( j+1) ) | �⌧(B

( j+1) ) � ⌧(B

( j+1) � A

( j+1) )

=
X

`2B

( j+1)

⌧(`) �
X

`2B

( j+1)�A

( j+1)

⌧(`)

=
X

`2A

( j+1)

⌧(`)

⇤

Let us look at an example: Consider the tree shown in Figure 2.4(a), under the 3-

hop interference model. For this example, T

(0) is shown in Figure 2.4(b). For n = n1,

A

(1) = L({n6, n7, n8}) and T

(1) = T

(0)S
A

(1). The sets A

(1), B

(1) and T

(1) are shown

in Figure 2.4(c). Since n2 does not have any 3rd generation descendants, for n = n2,

A

(1) = V2(n2) = �. Therefore, no time needs to be allocated to A

(2), and T

(2) = T

(1). For

n = n3, A

(3) = L({n9, n10, n11}) and T

(3) = T

(2)S
A

(3). The sets A

(3), B

(3) and T

(3) are

shown in Figure 2.4(d). Since T

(3) = T , the algorithm terminates.

2.4.1.2 K is even

For this case, we use a slight modification of the rooted tree model. In this case, we have

two roots r1, r2 that are joined by a link, say `0. It can be interpreted as the union of two

rooted trees, joined by a link between their roots. e.g., see Figure 2.5. Let ⇡(n) denote the

parent of a node n. Every node has an unique parent except for the roots r1, r2. The rest of

the terminology and notation is carried over from the previous section. Now the algorithm is

described in Algorithm 2 (see page 18).

Similar arguments used in the previous case can establish the optimality of the algorithm.

The Lemmas 2.4.1, 2.4.2, 2.4.3, and Theorem 2.4.4 can also be proved under Algorithm 2.

Due to the strict page limit of this thesis, we will not repeat the arguments here.
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(a) T (b) T

(0)

(c) T

(1) (d) T

(3)

Figure 2.4: Algorithm example

Figure 2.5: A tree with two roots r1 and r2
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Algorithm 2 K is even
1: i = 1, j = 1;

2: T

(0) =
S

m=1:K/2 L(V
m

(r1))
S

m=1:K/2 L(V
m

(r2))
S
`0;

3: T (T (0) ) = (0, ⌧(T (0) )];

4: while T

( j) , T do
5: for n 2 V

i

(r1)
S

V

i

(r2) do
6: T

( j+1)  T

( j)S
A

( j+1);

7: where A

( j+1) = L(V
K/2(n))

8: Allocate time such that T (A

( j+1) ) ✓ (0, ⌧(B

( j+1) )] � T (B

( j+1) � A

( j+1) );

9: where B

( j+1) = {` 2 T

( j+1) : |P(n, `) |  K/2}S{` 2 T

( j+1) : |P(⇡(n), `) |  K/2}
10: j  j + 1;

11: end for
12: i  i + 1;

13: end while

We conclude that the clique bound on the minimum clearing time is tight for tree networks

under the K-hop interference model. We have also provided a greedy algorithm that solves

the minimum clearing time problem in such graphs.

2.5 Applications

In this section, we apply the results on tree networks to a few particular, but interesting

wireless networks, which are special cases of networks known as Heterogeneous Networks

(HetNets).

2.5.1 Single Cell HetNet

Consider a setup shown in Figure 2.6 with a macro basestation M and a set of pico basestations

P = {P1, P2, ...PN

}. We consider the minimum clearing time problem in a downlink scenario.

We assume that all the pico basestations in P are connected to the core network via the macro

M using wireless backhaul. LetU
i

= {U
i,1,Ui,2, ...Ui,|Ui | } denote the set of users being served

by the pico basestation P

i

. LetU0 = {U0,1,U0,2, ...U0,|U0 | } denote the set of users being served
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Figure 2.6: Single cell HetNet

by the macro basestation M . We assume that each user only associates to a single basestation.

We assume that a pico cell does not experience any co-tier interference from the other pico

cells. For this setup, the network graph is shown in Figure 2.7. Observe that the graph shown

in Figure 2.7 is a tree. Also observe that the interference constraints for this setup can be

characterized using a 2-hop interference model.

Figure 2.7: HetNet graph

For the graph shown in Figure 2.7, there are exactly N maximal clique sets, one involving

(user links of ) each pico cell P

i

. The maximal clique set involving the pico cell P

i

is shown
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in Figure 2.8.

Figure 2.8: A Maximal clique set for the HetNet graph shown in Figure 2.7

Let ⌧(`) denote the time required to clear a link `. The minimum clearing time for a

single cell HetNet is given by the clique time= max
i=1:N {

P
j=1:|Ui | ⌧(P

i

U

i, j )}+
P

N

i=1 ⌧(M

i

P

i

)+
P|U0 |

j=1 ⌧(MU0, j ). The first term in the sum max
i=1:N {

P
j=1:|Ui | ⌧(P

i

U

i, j )} is the time required

to clear all the transmissions within the pico cells. Since pico cells do not face any co-tier

interference, they can all transmit at the same time. So, the time required is determined

by the bottleneck among the pico cells. The other two terms in the sum
P

N

i=1 ⌧(M

i

P

i

) +
P|U0 |

j=1 ⌧(MU0, j ) is the time required to clear the macro cell transmissions. Since a transmission

from the macro cell interferes with a transmission from any pico cell, they cannot happen at

the same time.

Notice that the considered model can be modified to include pico cells with wired backhaul

by setting ⌧(M1P

i

) = 0. By choosing ⌧(M1P

i

) = 0, we are assuming that the backhaul has an

infinite rate. Since the cross-tier interference constraint supplants the half-duplex constraint,

the model is still valid for a setup where pico cells have wired backhaul.

The minimum clearing time scheme in a single cell HetNet can be realized using the

Almost Blanking Subframes (ABS) scheme introduced as part of the interference mitigation

eICIC in the 3GPP project. During the ABS subframes, the macro basestation does not
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transmit any information, allowing the pico cells to transmit at the maximum rate. By setting

the fraction of the ABS subframes based on the solution of the minimum clearing time

problem, the minimum clearing time can be achieved. The minimum clearing time for the

wired backhaul case was studied in [10, 11]. The authors have further optimized the clearing

time with respect to user-cell association, and have derived the optimal user-cell association

for this problem.

2.5.2 Two Cell HetNet

Figure 2.9: Two cell HetNet

Consider a model similar to earlier setup, but this time with two macro BSs M1,M2,

shown in Figure 2.9. The pico cells are divided into three disjoint sets: {P1,P2,P0}.
P1 = {P1,1, P1,2, .., P1,i ....} represents the set of pico cells that are within the range of M1, but

not M2. Similarly P2 = {P2,1, P2,2, .., P2,i ....} represents the set of pico cells that are within

the range of M2, but not M1. P0 = {P0,1, P0,2, .., P0,i ....} represents the set of pico cells that

are in the range of both M1 and M2. We assume that pico cells are connected to the core

network via the macro basestations using wireless backhaul. The pico cells in P0 can be

served by either M1 or M2. Similarly, pico cells in P0 face interference from both M1 and

M2, and can only transmit data to users when both the macros are silent. U
i, j denotes the set

of users that are being served by the pico cell P

i, j . We do not consider the macro exclusive

users for the sake of simplicity, even though including them does not change any of the main
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results. Observe that the interference constraints for this setup can still be characterized using

a 2-hop interference model.

There are 4 types of maximal clique sets for this network, they are shown in Figure 2.10.

The clique bound on the clearing time can be calculated as :

max{
X

i:P1, i2P1

⌧(M1P1,i) +
X

i:P0, i2P0

⌧(M1P0,i) + max
i:P1, i2P1

{
X

U2U1, i

⌧(P1,iU)},

X

i:P2, i2P2

⌧(M2P2,i) +
X

i:P0, i2P0

⌧(M2P0,i) + max
i:P2, i2P2

{
X

U2U2, i

⌧(P2,iU)},

X

i:P1, i2P1

⌧(M1P1,i) +
X

i:P0, i2P0

⌧(M1P0,i) +
X

i:P0, i2P0

⌧(M2P0,i) + max
i:P0, i2P0

{
X

U2U0, i

⌧(P0,iU)},

X

i:P2, i2P2

⌧(M2P2,i) +
X

i:P0, i2P0

⌧(M1P0,i) +
X

i:P0, i2P0

⌧(M2P0,i) + max
i:P0, i2P0

{
X

U2U0, i

⌧(P0,iU)}}

For the sake of brevity, we re-write these expressions as follows:

max{⌧(M1P1) + ⌧(M1P0) + ⌧(P1U1),

⌧(M2P2) + ⌧(M2P0) + ⌧(P2U2),

⌧(M1P1) + ⌧(M1P0) + ⌧(M2P0) + ⌧(P0U0),

⌧(M2P2) + ⌧(M1P0) + ⌧(M2P0) + ⌧(P0U0)}

In this new notation, each term represents the aggregate load of a particular set, e.g.

⌧(M1P1) =
P

i:P1, i2P1 ⌧(M1P1,i), and ⌧(P1U1) = max
i:P1, i2P1 {

P
U2U1, i ⌧(P1,iU)}. This moti-

vates us to simplify the HetNet model by using a single pico cell in each set P
i

and a single

user in each set U
i

. The load on the links in the new model can be thought to represent the

aggregate load of the whole set. This simplified model will also help better illustrate the next

problem.

Using this model, we will illustrate the benefit of co-ordinating scheduling decisions

between the two cells. The results may also provide insight into how to run the ABS scheme

when there is interference from more than one macro basestation.
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(a) 1 (b) 2

(c) 3 (d) 4

Figure 2.10: Maximal clique sets for the two cell HetNet

Figure 2.11: Two cell HetNet example

We will use a simple example with a fixed load on various links in the network. The

considered model with loads is shown in Figure 2.11. The value of the loads represented in

Figure 2.11 are in ms. As explained earlier, each load represents the aggregate value. For

example, ⌧(M1P0) is the aggregate backlog of transmissions of the macro M1 to the cell-edge
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region of M1 and M2. ⌧(P1U1) is maximum transmission backlog among the pico cells only

in range of M1. Under this assumption, the maximal clique sets are shown in Figure 2.12.

The clique time is given by max{9, 10, 10, 10} = 10ms. Under the LTE standards, each frame

has 10 sub-frames, each with a value of 1ms. Our results show that the network in Figure 2.11

can be cleared in 1 frame.

(a) 1 (b) 2

(c) 3 (d) 4

Figure 2.12: Maximal clique sets for the two cell HetNet in Figure 2.11

We use three di�erent methods to clear the given load: 1) Joint Greedy ABS Scheme, 2)

Joint Fixed ABS Scheme, and 3) Frequency Sharing on the Cell-Edge.
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2.5.2.1 Joint Greedy ABS Scheme

In this scheme, we will try to emulate the greedy scheme discussed earlier in this chapter,

using the ABS scheme with co-operation between macros M1 and M2. We assume macros

M1 and M2 are synchronized and can exchange their ABS sub-frame values with each other.

Under this assumption, the greedy scheme can be realized. For the example in Figure 2.11,

Macro M1 looks at the load with in its range, and sees a macro load of 4ms and a pico load of

5ms. Hence, M1 can choose the ABS values for the frame as follows. N represents a normal

sub-frame, and A represents an ABS sub-frame.

N N N N A A A A A A

Similarly, M2 sees a macro load of 5ms and a pico load of 5ms, and chooses 5 normal

subframes and 5 ABS subframes. Since M1P1 and M2P2 can use the same time resource,

M2 chooses 2 normal subframes overlapping with the normal subframes of M1. Since M2P0

cannot use same time as any macro transmission of M1, 3 normal subframes of M2 should

overlap with ABS subframes of M1. Therefore, relative to the ABS choice of M1, M2 can

choose its frame as follows

N N A A N N N A A A

Under this choice of ABS subframes, we will show that the network can be cleared in one

frame.

1 2 3 4 5 6 7 8 9 10

M1: N N N N A A A A A A

M2: N N A A N N N A A A

During subframes 1 and 2, the links M1P1 and M2P2 are cleared. During sub-frames 3

and 4, the links M1P0 is cleared and P2U2 clears a tra�c of 2ms. During sub-frames 5 � 7,

the link M2P0 is cleared and a tra�c of 3ms is cleared from P1U1. During sub-frames 8�10,

the links P1U1, P0U0, P2U2 are cleared. Therefore with some co-operation, the scheduling

decisions can be co-ordinated between cells to clear the network in minimum time.
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2.5.2.2 Joint Fixed ABS scheme

We consider a scheme similar to the one proposed in [13]. Although, the salient feature

of [13] is the joint optimization of user-association and interference mitigation, we are only

interested in the interference mitigation part achieved through ON-OFF scheduling. Our

model does not have interference between pico-basestations as considered in [13]. Macro

basestations are assumed to be synchronized in [13]. Our main focus is on the assumption

that all the macro basestations transmit simultaneously. Due to this assumption, a macro

basestation and pico basestation never transmit simultaneously, which could be ine�cient.

Under the scheme proposed in [13], the macro cell transmissions and pico-cell transmis-

sions are cleared at di�erent times. The time to clear macro cell transmissions in Figure 2.11

is given by max{⌧(M1P1), ⌧(M2P2)} + ⌧(M1P0) + ⌧(M2P0) = 7ms. The time to clear pico

cell transmissions is given by max{⌧(P1U1), ⌧(P2U2), ⌧(P0U0)} = 5ms. The time required

to clear the network under this scheme is given by 12ms. So, in this scheme, even with

co-ordination and synchronization, the network could not be cleared in 1 frame. The scheme

requires 2 extra sub-frames to clear all the tra�c.

2.5.2.3 Frequency Sharing on the Cell Edge

In this scheme, the macro basestations use the whole frequency band for transmissions within

the cell, where as on the cell-edge, the macro basestations M1 and M2 share the frequency

band. The macro basestations M1 and M2 use orthogonal frequencies for transmissions on

the cell-edge so as to eliminate the interference. This scheme is similar to the fractional

frequency reuse (FFR) schemes proposed in the literature.

By sharing the frequency band on the cell-edge, the rate of the links on the cell-edge

decreases. This means the clearing times of the tra�c on the cell-edge increase inversely

proportional to the fraction of the frequency band used. Assuming infinite divisibility of the

frequency band, let M1 use an � proportion of the available frequency band on the cell-edge,

and let M2 use the other 1 � � proportion of the band. The new values of the load under the

frequency sharing scheme is shown in Figure 2.13.

Due to the frequency sharing, the links M1P0 and M2P0 no longer interfere. The

maximal clique sets in this case are given by {M1P1, P1U1,M1P0}, {M2P2,M2P0, P2U2},
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Figure 2.13: Value of the loads with frequency sharing on the cell-edge

{M1P1,M1P0, P0U0} and {M2P2,M2P0, P0U0}. Therefore, the minimum clearing time is

given by max{7 + 2/�, 7 + 3/(1 � �)}ms.

The scheduling scheme which can achieve minimum time clearing is very straightforward.

M1P1 and M2P2 are cleared together, which takes 2ms. Clearing link P0U0 takes 3ms,

during this time links P1U1, P2U2 also clear a tra�c of 3ms. Since M1P0 and M2P0 do

not interfere, the rest of the transmissions in each cell can happen independently of the

transmissions in the other cell. The time to complete the remaining transmissions can

be calculated as max{2 + 2/�, 2 + 3/(1 � �)}ms. Therefore, the total time is given by

max{7 + 2/�, 7 + 3/(1 � �)}ms.

Observe that the value of max{7+2/�, 7+3/(1� �)} is minimized at � = 2/5. Therefore,

max{7+2/�, 7+3/(1� �)} � 12, which shows that frequency sharing on the cell-edge (even

when done in an optimal manner) is sub-optimal compared to the greedy scheme.

2.5.3 Chain of HetNets

Consider the network shown in Figure 2.14. At the centre of each cell i is a macro basestation

M

i

. A pico basestation P

i

is exclusively present in cell i, and experiences interference only

from the macro basestation M

i

. Each pico cell P

i

is serving a single user U

i

. A pico

basestation P

i,i+1 is present on the cell-edge of cell i and cell i + 1. The pico basestation

P

i,i+1 receives data, and experiences interference from both the macros M

i

and M

i+1. And
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Figure 2.14: Chain of HetNets

each pico cell P

i,i+1 is serving a single user U

i,i+1. We assume that pico cells are connected

to the core network via the macro basestations using wireless backhaul, and that pico cells

do not experience any co-tier interference. Assume that there are a total of N cells in the

chain. This model is the HetNet analogue of the Wyner Model [14] for cellular networks.

It can be noted that even though we are solving the problem for a chain, the result can also

be extended to tree like arrangements involving cells. The graph model for this network is

shown in Figure 2.15. Observe that the interference constraints for this setup can still be

characterized using a 2-hop interference model.

Figure 2.15: Graph for the chain of HetNets

There are three types of maximal clique sets for this network. They are shown in

Figure 2.16. There are 3N � 2 maximal clique sets for the considered network. Let us

denote them as {C
k

}
k=1:3N�2 going from cell 1 to cell N . See Figure 2.16. Define ⌧(CM ) =

max
k=1:3N�2{⌧(Ck

)}. Let T (`) denote the union of time intervals allocated to a link `,



2.5 Applications 29

(a) C3i�2 (b) C3i�1 (c) C3i

Figure 2.16: Maximal clique sets for the HetNet chain

observe that |T (`) | =
R
T (`) dt = ⌧(`). For a clique set C, define T (C) =

S
`2C T (`). The

greedy algorithm can be used to solve the minimum clearing time problem. Allocate time to

links in C1 from the interval (0, ⌧(C1)], i.e., T (C1) = (0, ⌧(C1)]. Assume that time allocation

for links in C

k

is known. Using the greedy algorithm, we allocate time to links in C

k+1 � C

k

as follows

if ⌧(C
k+1)  ⌧(C

k

)

Allocate time from the set T (C
k

� C

k+1) to the links in C

k+1 � C

k

. Such an allocation is

possible since ⌧(C
k+1 � C

k

)  ⌧(C
k

� C

k+1).

if ⌧(C
k+1) > ⌧(C

k

)

Assign time from the set T (C
k

� C

k+1) to the links in C

k+1 � C

k

. There is still a residual

demand of ⌧(C
k+1) � ⌧(C

k

) in C

k+1 � C

k

. For this residual demand, time can be allocated

from (0, ⌧(CM )] � T (C
k

). Since ⌧(CM ) � ⌧(C
k

) � ⌧(C
k+1) � ⌧(C

k

), such an allocation is

possible.

As shown earlier with the two cell HetNet case, realizing minimum clearing time scheme

is possible by co-ordinating the ABS scheme between neighbouring macro basestations. This

still holds true for the chain of HetNets. e.g., Under the greedy scheme, the time resources

used by C3i�2 � C3i�1 = {Pi

U

i

} should be reused by C3i�1 � C3i�2 = {Mi+1P

i,i+1, Pi,i+1U

i,i+1}.
This can be achieved using co-operation between the cell i and the cell i + 1.
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Chapter 3

Ring Networks

3.1 Introduction

In the previous chapter, we have solved the minimum clearing time problem in tree networks.

For tree networks, the minimum clearing time is equal to the clique time. We have also shown

that a distributed greedy algorithm that allocates time to a link based on only local information

is optimal. At this point, one would like to understand the consequences of introducing a

loop into the graph. Is the clique bound still tight? Does some greedy algorithm still solve

the minimum clearing problem? As it turns out, the clique bound is not necessarily tight

in presence of loops. We demonstrate this with a simple counter example: Consider the

pentagon shown in Figure 3.1, where each edge `
i

represents a link. We assume that each

link interferes with its immediate neighbours i.e., 1-hop interference model. Each link has a

load of 1 unit i.e., ⌧(`
i

) = 1.

Maximal feasible sets for this setup are given by S1 = {`1, `3}, S2 = {`2, `4}, S3 =

{`3, `5}, S4 = {`4, `1}, S5 = {`5, `2}. Let f

i

denote the time allocated to a feasible set S

i

.

The minimum clearing time problem can be formulated as:
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Figure 3.1: Ring network: pentagon

min
5X

i=1
f

i

s.t.

f1 + f3 � 1

f2 + f4 � 1

f3 + f5 � 1

f4 + f1 � 1

f5 + f2 � 1

Any two adjacent links in the network form a maximal clique set. Hence, clique bound on

the network is given by 2 units. Observe that by adding the constraints of the LP, we obtain

the following inequality.

2
5X

i=1
f

i

� 5.

This shows that the minimum clearing time has to be at least 2.5 units, which means that the

clique bound is not tight. This new bound is tight, and the solution is given by f

i

= 0.5,8i =
1 : 5. Observe that constraint matrix is full-rank, and also all the constraints are binding.
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Hence, the solution is unique. This hints at the fact that the minimum clearing algorithm may

have to use global information.

Solving the minimum clearing time problem even in a simple ring like a pentagon has

shown that the clique constraint is not necessarily tight. Therefore, before proceeding to

solve the minimum clearing time problem in more complex graphs, it is important to study

the problem in context of rings. Ring networks are also often used to demonstrate the sub-

optimality of LQF or GMS algorithm [5, 7]. This further motivates us to understand the

minimum clearing time problem in context of ring networks.

First thing to observe is that the number of maximal feasible sets still grows exponentially

with the number of links. Therefore, we face the same problems discussed in the previous

chapter to explicitly solve the linear program. So, our main aim here again is to find feasible

algorithms that solve the minimum clearing time problem in rings, i.e., in polynomial time

or in linear time if possible.

In this chapter, we will be using the conflict graph representation of the network. We will

solve the minimum clearing time problem for the conflict graph.

(a) G(V, E) (b) Gc (Vc, Ec )

Figure 3.2: Under 1-hop interference model, the graph on right is the conflict graph of the

graph on the left.

Consider the conflict graph representation of the graph G(V, E) denoted by G

c

(V
c

, E
c

). In

the conflict graph representation G

c

(V
c

, E
c

), each node corresponds to an edge of the original

graph G(V, E). Hence, V

c

= E. Two nodes in the conflict graph are joined by an edge, if the

corresponding links interfere in the original graph G(V, E). Notice that maximal feasible sets
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of G(V, E) corresponds to maximal independent sets of G

c

(V
c

, E
c

). An example is shown

in Figure 3.2. Another example, the conflict graph of the pentagon network in Figure 3.1 is

shown in Figure 3.3. Observe that when using the conflict graph representation, we no longer

need a model for interference since it is implicit in the conflict graph: no two adjacent nodes

can be cleared simultaneously.

Figure 3.3: Conflict graph of the pentagon network

Definition 3.1.1. An independent set is a set of nodes I ✓ V , such that no two nodes in I are

adjacent.

Definition 3.1.2. A maximal independent set is an independent set that is not a subset of any

other independent set.

Let ⌧(n) denote the time to clear a node n 2 V

c

. Let S denote the set of all the maximal

independent sets S of the graph G

c

(V
c

, E
c

). For the conflict graph G

c

(V
c

, E
c

), we reformulate

the minimum clearing time linear program as follows

min
X

S2S
f

S

s.t.
X

S:n2S

f

S

� ⌧(n),8n 2 V

c

f

S

� 0,8S 2 S (3.1)
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where f

S

represents the time allocated to a maximal independent set S. And the dual program

can be reformulated as

max
X

n2Vc

⌧(n).x
n

s.t.
X

n:n2S

x

n

 1,8S 2 S

x

n

� 0,8n 2 V

c

(3.2)

Definition 3.1.3. A clique C is either a singleton set C ✓ V

c

or if |C | > 1, it is a subset of

nodes C ✓ V

c

, such that 8n1, n2 2 C, n1 and n2 are adjacent.

Definition 3.1.4. A maximal clique is a clique that is not a subset of any other clique.

Note that clique of a conflict graph represents a set of mutually interfering links in the

original graph. Observe that every clique set of G(V, E) corresponds to a clique of the

conflict graph G

c

(V
c

, E
c

).

3.2 Bipartite Graphs

Before proceeding to analyze ring networks, we study the special case of bipartite graphs,

for which the clique bound can be shown to be tight. We later apply these results to ring

networks.

Bipartite graphs were studied extensively in the context of graph colouring problems.

Bipartite graphs have a chromatic number and a clique number of 2. Bipartite graphs do not

contain an odd cycle. Conversely, any graph that does not contain an odd cycle is bipartite

[15]. It so happens that the structure of bipartite graphs also provides an easy solution to

minimum clearing time problem.

Definition 3.2.1. Bipartite Graph

A graph G(V,E) is bipartite i� 9V1,V2 such that

1) V = V1
S

V2, where V1
T

V2 = �.

2) every edge e 2 E must join a node in V1 to a node in V2.
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Consider a bipartite graph G

c

(V
c

, E
c

), where V

c

is divided into two disjoint sets V1 and

V2. Every edge e 2 E connects a node in V1 to a node V2. A node a is a neighbour of a node b

i� there is an edge joining the nodes a and b. For every node n 2 V

c

, let N (n) denote the set

of neighbours of node n. Since the graph is bipartite, observe that if n 2 V2, then N (n) ✓ V1,

and if n 2 V1, then N (n) ✓ V2. Let ⌧(n) denote the clearing time of a node n. Let T (n)

denote the time interval allocated to a node n. We describe the greedy algorithm that uses

only local information as follows:

T (n) = (0, ⌧(n)],8n 2 V1

T (n) = ( max
n12N (n)

⌧(n1), max
n12N (n)

⌧(n1) + ⌧(n)],8n 2 V2

Observe that this allocation is feasible. Since |T (n) | = ⌧(n),8n 2 V

c

, each node gets enough

time for clearing. Since T (n)
TT (n1) = �,8n1 2 N (n),8n 2 V

c

, interference constraints

are satisfied for all nodes n 2 N .

Claim 4. If the conflict graph G

c

(V
c

, E
c

) is bipartite, then the clique bound is tight.

Proof. Firstly, observe that maximal cliques of the graph G

c

(V
c

, E
c

) are given by the node

pairs C = {n1, n2}, where n1 2 V

c

and n2 2 N (n1). Let C denote the set of all the maximal

cliques of G

c

(V
c

, E
c

). Define C

M := arg max
C2C ⌧(C), where ⌧(C) =

P
n2C ⌧(n).

Under the proposed algorithm, for every node n 2 V1, T (n) = (0, ⌧(n)]. Since any single

node n 2 V1 is a clique, T (n) ✓ (0, ⌧(CM )].

For every node n 2 V2, T (n) = (max
n12N (n) ⌧(n1),max

n12N (n) ⌧(n1) + ⌧(n)]. As dis-

cussed earlier, the node pair C = {n1, n2}, n1 2 V

c

and n2 2 N (n1) is a maximal clique of

G

c

(V
c

, E
c

), therefore T (n) ✓ (0, ⌧(CM )]. Hence, the clique bound is tight. ⇤

3.3 Ring with 2N nodes

Note that a ring R2N

with 2N nodes is the conflict graph representation of the following

wireless network: 2N links placed in a ring and under the 1-hop interference model. Choose

a node in R2N

, and label the nodes as n1, n2, ...n2N

going clockwise around the ring.
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Claim 5. R2N

is bipartite.

Proof. Say, V = {n1, n2, ...n2N

} represents the set of nodes. Choose V1 = {n1, n3, ...n2N�1}
and V2 = {n2, n4, ...n2N

}. V = V1
S

V2 and V1
T

V2 = �. Observe that every edge of R2N

connects a node in V1 to a node in V2. Hence, R2N

is bipartite. ⇤

So for R2N

, clique bound is tight and a greedy solution using only local information is

optimal.

3.4 Ring with 2N + 1 nodes

Note that a ring R2N+1 with 2N +1 nodes is the conflict graph representation of the following

wireless network: 2N + 1 links placed in a ring and under the 1-hop interference model.

Choose a node in R2N+1, and label the nodes as n1, n2, ...n2N+1 going clockwise around the

ring. Let the time to clear a node n

i

be denoted by ⌧(n
i

). Observe that any two adjacent nodes

in R2N+1 forms a maximal clique. Let C

i

= {n
i

, n
i+1} denote a maximal clique, 8i = 1 : 2N ,

and C2N+1 = {n2N+1, n1}. Define ⌧(C
i

) =
P

n2Ci
⌧(n). Also define ⌧

A

=
P2N+1

i=1 ⌧(C
i

)/2N .

Let S denote the set of all the maximal independent sets S of the graph R2N+1. We can

reformulate the minimum clearing time as follows :

min
X

S2S
f

S

s.t.
X

S:ni2S

f

S

� ⌧(n
i

),8i = 1 : 2N + 1

f

S

� 0,8S 2 S (3.3)

where f

S

represents the time allocated to a maximal independent set S.

Claim 6. ⌧
A

is a lower bound of the minimum clearing time.
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Proof. Consider the dual of the linear program (3.3).

max
2N+1X

i=1
⌧(n

i

).x
i

s.t.
X

i:ni2S

x

i

 1,8S 2 S

x

i

� 0,8i = 1 : 2N + 1 (3.4)

Consider the maximal independent set {n1, n3, n5, ...n2N�1}, constructed in this manner start-

ing at n1 and going around the ring including every other node. The node n2N+1 cannot be

included because it is adjacent to the node n1. Due to the circular symmetry of the ring, sim-

ilar sets can be constructed starting at any node, by rotating the above choice so that the start

node is at the desired node. Observe that the cardinality of any of the considered maximal

independent sets is N . It can also be noted that N is the maximum possible cardinality for

a maximal independent set S 2 S. We propose the following solution to the dual program

(3.4)

x

i

= 1/N,8i = 1 : 2N + 1 (3.5)

Clearly, x

i

> 0,8i = 1 : 2N + 1. Also observe that
P

i:ni2S

x

i

= |S |/N  1, where |S |
represents the cardinality of the set S. Hence, the proposed solution (3.5) is feasible. The

value of the dual objective function under (3.5) is given by

2N+1X

i=1
⌧(n

i

)/N

=

2N+1X

i=1
⌧(C

i

)/2N

=⌧
A

Using weak-duality theorem, ⌧
A

is a lower bound to the primal problem (3.3). ⇤

We will solve the minimum clearing time problem for the two cases: 1) ⌧
A

� ⌧(CM ) and

2) ⌧(CM ) � ⌧
A

. We will show that the minimum clearing time equals max{⌧
A

, ⌧(CM )}. More
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importantly, we will discuss the algorithms that solve the minimum clearing time problem in

each case.

3.4.1 ⌧
A

� ⌧(CM )

Claim 7. If ⌧
A

� ⌧(CM ), ⌧
A

is the minimum clearing time.

Proof. Define the function

g( j, k) =

8>>>><>>>>:
j + 2k (mod 2N + 1) if j + 2k (mod 2N + 1) > 0

2N + 1 if j + 2k (mod 2N + 1) = 0

Consider the maximal independent sets S

j

= {ng( j,k)}k=1:N for j = 1 : 2N + 1. Observe that

|S
j

| = N . e.g. S1 = {n3, n5, n7, ....n2N�1, n2N+1}. Let S
N

= {S
j

}
j=1:2N+1 denote the set of all

such maximal independent sets. We only timeshare among the sets in S
N

. We present the

following solution to the primal LP (3.3)

f

j

= ⌧
A

� ⌧(C
j

),8 j = 1 : 2N + 1.

where f

j

is the time allocated to the maximal independent set S

j

.

Since ⌧
A

� max
i=1:2N+1 ⌧(Ci

), f

j

� 0,8 j = 1 : 2N + 1.

Observe that the node n1 is only present in the sets S2, S4, S6...S2N

. Due to the circular

symmetry of the problem, the node n

i

is only present in the sets {Sg(i�1,k)}k=1:N . Therefore,

X

j:ni2Sj

f

j

=

NX

k=1
fg(i�1,k)

=N .⌧
A

�
NX

k=1
⌧(Cg(i�1,k) )

=

2N+1X

j=1
⌧(n

j

) �
NX

k=1
⌧(ng(i�1,k) ) + ⌧(ng(i�1,k)+1)

=⌧(n
i

)
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Hence the solution is feasible. Each node n

i

has exactly enough time to clear its load. The

total time required under the solution is given by

2N+1X

j=1
f

j

=

2N+1X

j=1
⌧

A

� ⌧(C
j

)

=(2N + 1)⌧
A

�
2N+1X

j=1
⌧(C

j

)

=(2N + 1)⌧
A

� (2N )⌧
A

=⌧
A

Hence, the network can be cleared in ⌧
A

. ⇤

So, it can be seen that if ⌧
A

� ⌧(CM ), the minimum clearing time problem can be solved

by time sharing among 2N + 1 maximal independent sets. We have also provided the value

of time that needs to be spent in each of these states. The solution in this case has a linear

complexity, as it only involves calculating the values of ⌧
A

� ⌧(C
j

)’s. As can be seen from

the solution, the value of the minimum clearing time depends on global information.

3.4.2 ⌧(CM ) � ⌧
A

In this case, we will show that a greedy algorithm can solve the minimum clearing time

problem. The greedy algorithm can clear the ring network in clique time. Without loss

of generality, we assume ⌧(C1) = ⌧(CM ). To initialize the algorithm, we allocate time to

the nodes n1, n2 as T (n1) = (0, ⌧(n1)] and T (n2) = (⌧(n1), ⌧(n1) + ⌧(n2)]. Observe that

the time to n3 can be allocated as T (n3) = (0, ⌧(n3)] ✓ T (n1), because ⌧(C1) � ⌧(C2).

Before describing the algorithm, we introduce some necessary notation. For each node n

i

, the

allocated timeT (n
i

) can be written asT (n
i

) = T1(n
i

)
ST2(n

i

), such thatT1(n
i

)
TT2(n

i

) = �

and T1(n
i

) ✓ T (n1), T2(n
i

) ✓ T (n2). T1(n
i

) = |T1(n
i

) | is the length of T1(n
i

). Similarly,

T2(n
i

) = |T2(n
i

) |. Under this notation, observe T1(n3) = ⌧(n3), and T2(n3) = 0. For nodes

{n
i

}
i=4:2N

, we describe the greedy time allocation as follows
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For i = 4 : 2N

If i is even :

T1(n
i

) = min{⌧(n1) � T1(n
i�1), ⌧(n

i

)}

T2(n
i

) = ⌧(n
i

) � T1(n
i

) = max{⌧(n
i

) + T1(n
i�1) � ⌧(n1), 0}

If i is odd :

T2(n
i

) = min{⌧(n2) � T2(n
i�1), ⌧(n

i

)}

T1(n
i

) = ⌧(n
i

) � T2(n
i

) = max{⌧(n
i

) + T2(n
i�1) � ⌧(n2), 0}

For every {n
i

}
i=4:2N

, greedily allocate such that T1(n
i

) ✓ T (n1) � T1(n
i�1), with a

length of T1(n
i

) described in the algorithm. Similarly, greedily allocate time such that

T2(n
i

) ✓ T (n2) � T2(n
i�1) with a length of T2(n

i

) described in the algorithm. And for

i = 2N + 1, we allocate time such that T (n2N+1) ✓ T (n2) � T2(n2N

). This is because the

node n2N+1 is adjacent to n1, and therefore cannot use any time from the interval T (n1). Now

we prove some results that will help in establishing the feasibility of the greedy algorithm.

Lemma 3.4.1. 0  T1(n
i

)  ⌧(n1), 0  T2(n
i

)  ⌧(n2), for i = 3 : 2N .

Proof. We use proof by induction. Since T1(n3) = ⌧(n3) and T2(n3) = 0. Therefore, for

i = 3, we have 0  T1(n
i

)  ⌧(n1), 0  T2(n
i

)  ⌧(n2).

Assume 0  T1(n
i

)  ⌧(n1), 0  T2(n
i

)  ⌧(n2) for i = k, where 4  k  2N � 1. Now,

we will show that 0  T1(n
i

)  ⌧(n1), 0  T2(n
i

)  ⌧(n2) for i = k + 1 in two cases: 1)k is

odd and 2) k is even.
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If k is odd:

T1(n
k+1) = min{⌧(n1) � T1(n

k

), ⌧(n
k+1)}. Since both ⌧(n1) � T1(n

k

), ⌧(n
k+1) � 0, we can

write T1(n
k+1) � 0.

T1(n
k+1) = min{⌧(n1) � T1(n

k

), ⌧(n
k+1)}

 ⌧(n1) � T1(n
k

)

 ⌧(n1).

It follows from the definition that T2(n
k+1) = max{⌧(n

k+1) + T1(n
k

) � ⌧(n1), 0}, thus

T2(n
k+1) � 0.

T2(n
k+1) = max{⌧(n

k+1) + T1(n
k

) � ⌧(n1), 0}

T2(n
k+1) + T2(n

k

) = max{⌧(n
k+1) + T1(n

k

) + T2(n
k

) � ⌧(n1),T2(n
k

)}

T2(n
k+1) + T2(n

k

) = max{⌧(n
k+1) + ⌧(n

k

) � ⌧(n1),T2(n
k

)}

T2(n
k+1) + T2(n

k

) = max{⌧(C
k

) � ⌧(C1) + ⌧(n2),T2(n
k

)}

Since ⌧(C1) = ⌧(CM ) � ⌧(C
k

), ⌧(C
k

) � ⌧(C1)  0. Therefore, max{⌧(C
k

) � ⌧(C1) +

⌧(n2),T2(n
k

)}  ⌧(n2), which implies that T2(n
k+1)  ⌧(n2).

If k is even:

T2(n
k+1) = min{⌧(n2) � T2(n

k

), ⌧(n
k+1)}. Since both ⌧(n2) � T2(n

k

), ⌧(n
k+1) � 0, we can

write T2(n
k+1) � 0.

T2(n
k+1) = min{⌧(n2) � T2(n

k

), ⌧(n
k+1)}

 ⌧(n2) � T2(n
k

)

 ⌧(n2)

It follows from the definition that T1(n
k+1) = max{⌧(n

k+1) + T2(n
k

) � ⌧(n2), 0}, thus
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T1(n
k+1) � 0.

T1(n
k+1) = max{⌧(n

k+1) + T2(n
k

) � ⌧(n2), 0}

T1(n
k+1) + T1(n

k

) = max{⌧(n
k+1) + T1(n

k

) + T2(n
k

) � ⌧(n2),T1(n
k

)}

T1(n
k+1) + T1(n

k

) = max{⌧(n
k+1) + ⌧(n

k

) � ⌧(n2),T1(n
k

)}

T1(n
k+1) + T1(n

k

) = max{⌧(C
k

) � ⌧(C1) + ⌧(n1),T1(n
k

)}

Since ⌧(C1) = ⌧(CM ) � ⌧(C
k

), ⌧(C
k

) � ⌧(C1)  0. Therefore max{⌧(C
k

) � ⌧(C1) +

⌧(n1),T1(n
k

)}  ⌧(n1), which implies that T1(n
k+1)  ⌧(n1). ⇤

Lemma 3.4.2. T1(n
i

) + T1(n
i�1)  ⌧(n1) and T2(n

i

) + T2(n
i�1)  ⌧(n2) for i = 4 : 2N

Proof. If i is odd

T1(n
i

) + T1(n
i�1) = T1(n

i�1) +max{⌧(n
i

) + T2(n
i�1) � ⌧(n2), 0}

= max{⌧(n
i

) + ⌧(n
i�1) � ⌧(n2),T1(n

i�1)}

= max{⌧(C
i�1) � ⌧(C1) + ⌧(n1),T1(n

i�1)}

From Lemma 3.4.1 T1(n
i�1)  ⌧(n1), and since ⌧(C1) = ⌧(CM ), ⌧(C

i�1) � ⌧(C1)  0.

Therefore, T1(n
i

) + T1(n
i�1)  ⌧(n1).

T2(n
i

) + T2(n
i�1) = T2(n

i�1) +min{⌧(n2) � T2(n
i�1), ⌧(n

i

)}

= min{⌧(n2), ⌧(n
i

) + T2(n
i�1)}

 ⌧(n2)
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If i is even

T1(n
i

) + T1(n
i�1) = T1(n

i�1) +min{⌧(n1) � T1(n
i�1), ⌧(n

i

)}

= min{⌧(n1), ⌧(n
i

) + T1(n
i�1)}

 ⌧(n1)

T2(n
i

) + T2(n
i�1) = T2(n

i�1) +max{⌧(n
i

) + T1(n
i�1) � ⌧(n1), 0}

= max{⌧(n
i

) + ⌧(n
i�1) � ⌧(n1),T2(n

i�1)}

= max{⌧(C
i�1) � ⌧(C1) + ⌧(n2),T2(n

i�1)}

From Lemma 3.4.1 T2(n
i�1)  ⌧(n2), and since ⌧(C1) = ⌧(CM ), ⌧(C

i�1) � ⌧(C1)  0.

Therefore, T2(n
i

) + T2(n
i�1)  ⌧(n2).

⇤

Claim 8. If ⌧(C1) = ⌧(CM ) � ⌧
A

, then ⌧(n2N+1)  ⌧(n2) � T2(n2N

)

Proof. Consider the following sequence {T2(n2N

),T1(n2N�1),T2(n2N�2), ...

..T2(n2k

),T1(n2k�1), ...T2(n4),T1(n3)}. Due to the iterative definition of the greedy scheme,

the value of ⌧(n2N+1) + T2(n2N

) � ⌧(n2) can be calculated from this sequence.

If every element in the sequence > 0:

T2(n2k

) = max{⌧(n2k

) +T1(n2k�1) � ⌧(n1), 0} = ⌧(n2k

) +T1(n2k�1) � ⌧(n1) and T1(n2k�1) =

max{⌧(n2k�1) + T2(n2k�2) � ⌧(n2), 0} = ⌧(n2k�1) + T2(n2k�2) � ⌧(n2), for k = 2 : N .

Summing the expressionsT2(n2k

) = ⌧(n2k

)+T1(n2k�1)�⌧(n1) andT1(n2k�1) = ⌧(n2k�1)+
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T2(n2k�2) � ⌧(n2) from k = 2 : N , we have

T2(n2N

) = *
,

2NX

i=3
⌧(n

i

)+- � (N � 1)⌧(n1) � (N � 1)⌧(n2) + T2(n2)

= *
,

2NX

i=3
⌧(n

i

)+- � (N � 1)⌧(n1) � (N � 1)⌧(n2) + ⌧(n2)

= *
,

2NX

i=1
⌧(n

i

)+- � N⌧(n1) � (N � 1)⌧(n2)

Now, the value of ⌧(n2N+1) + T2(n2N

) � ⌧(n2) can be calculated as

⌧(n2N+1) + T2(n2N

) � ⌧(n2)

= *
,

2N+1X

i=1
⌧(n

i

)+- � N⌧(n1) � N⌧(n2)

= N⌧
A

� N⌧(C1)

= N {⌧
A

� ⌧(C1)}

 0 (since ⌧(CM ) � ⌧
A

)

Hence, ⌧(n2N+1)  ⌧(n2) � T2(n2N

).

If one or more elements in the sequence are = 0:

Case 1:

In the sequence {T2(n2N

),T1(n2N�1),T2(n2N�2), ...T2(n4),T1(n3)}, going from the left to the

right, T2(n2i

) is the first zero that we encounter. So T2(n2i

) = 0.

We can write T1(n2k�1) = ⌧(n2k�1)+T2(n2k�2)�⌧(n2) and T2(n2k

) = ⌧(n2k

)+T1(n2k�1)�
⌧(n1) for k = i + 1 : N . Summing these expressions from k = i + 1 : N , we can write

T2(n2N

) =
⇣P2N

j=2i+1 ⌧(nj

)
⌘
� (N � i){⌧(n1) + ⌧(n2)}.
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⌧(n2N+1) + T2(n2N

) � ⌧(n2)

=
*.
,

2N+1X

j=2i+1
⌧(n

j

)+/
-
� (N � i)⌧(n1) � (N � i + 1)⌧(n2)

=
*.
,

N�1X

j=i

{⌧(n2 j+1) + ⌧(n2 j+2)}+/
-
+ {⌧(n2N+1) + ⌧(n1)} � (N � i + 1){⌧(n1) + ⌧(n2)}

=
*.
,

NX

j=i

⌧(C2 j+1)+/
-
� (N � i + 1)⌧(C1)

 0 (since ⌧(C1) = ⌧(CM ))

Hence, ⌧(n2N+1)  ⌧(n2) � T2(n2N

).

Case 2:

In the sequence {T2(n2N

),T1(n2N�1),T2(n2N�2), ...T2(n4),T1(n3)}, going from the left to the

right, T2(n2i�1) is the first zero that we encounter. So T2(n2i�1) = 0.

We can write T2(n2k

) = ⌧(n2k

)+T1(n2k�1)� ⌧(n1) and T1(n2k+1) = ⌧(n2k+1)+T2(n2k

)�
⌧(n2) for k = i : N � 1. Summing these expressions from k = i : N � 1 along with

T2(n2N

) = ⌧(n2N

) + T1(n2N�1) � ⌧(n1), we can write T2(n2N

) =
⇣P2N

j=2i

⌧(n
j

)
⌘
� (N � i +

1)⌧(n1) � (N � i)⌧(n2).

⌧(n2N+1) + T2(n2N

) � ⌧(n2)

=
*.
,

2N+1X

j=2i

⌧(n
j

)+/
-
� (N � i + 1){⌧(n1) + ⌧(n2)}

=
*.
,

NX

j=i

⌧(n2 j

) + ⌧(n2 j+1)+/
-
� (N � i + 1){⌧(n1) + ⌧(n2)}

=
*.
,

NX

j=i

⌧(C2 j

)+/
-
� (N � i + 1)⌧(C1)

 0 (since ⌧(C1) = ⌧(CM ))

Hence, ⌧(n2N+1)  ⌧(n2) � T2(n2N

). ⇤
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Using Lemma 3.4.1 and Lemma 3.4.2, for nodes {n
i

}
i=3:2N

, we can establish the feasibility

of time allocation under the greedy algorithm. From Lemma 3.4.1, we know that since

T1(n
i

),T2(n
i

) � 0, we have established that all the terms are non-negative. From Lemma 3.4.2,

we know that T1(n
i

) + T1(n
i�1)  ⌧(n1) and T2(n

i

) + T2(n
i�1)  ⌧(n2), implying that it is

possible to allocate time such that T1(n
i

) ✓ T (n1)�T1(n
i�1), and T2(n

i

) ✓ T (n2)�T2(n
i�1).

Since, this also meansT (n
i

)
TT (n

i

�1) = �, interference constraints are not violated. From

the definition, T1(n
i

)+T2(n
i

) = ⌧(n
i

) which implies that the demand of each node is satisfied

under the allocation.

Now the only remaining step is to allocate time for the node n2N+1. As discussed earlier,

time has to be allocated such that T (n2N+1) ✓ T (n2) � T2(n2N

). Therefore, for the greedy

algorithm to work the following condition must be satisfied: ⌧(n2N+1)  ⌧(n2) � T2(n2N

).

And using Claim 8, we have established that the condition is satisfied whenever ⌧(CM ) �
⌧(C

a

).
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Chapter 4

Future Work

4.1 More General Networks

In the future, one can attempt to solve the minimum clearing time problem in more general

networks. With the help of additional structure, the minimum clearing time problem may

be polynomial time solvable. We present one such example: Consider a setup where the

plane is divided into square cells. e.g., see Figure 4.1. A transmission in any cell interferes

with its immediate neighbours. e.g., In Figure 4.1, a transmission in cell C24 interferes with

transmissions in cells C14,C23,C34,C25. Observe that there are 4 immediate neighbours for

any cell.

Figure 4.1: Square Cells
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For this setup, the conflict graph is given by the square lattice, shown in Figure 4.2. As

can be seen from Figure 4.2, the conflict graph is bipartite. Therefore for this example, using

the results from Chapter 3, the clique bound is tight, and the minimum clearing time problem

can be solved using a greedy algorithm based on local information.

Figure 4.2: Square Lattice

This approach to solving the minimum clearing time problem in general networks is not

scalable. We will eventually have to concede, due to the NP-hardness of the general minimum

clearing time problem [9]. However, there might be a few important general networks where

the problem is polynomial time solvable.

4.2 Scheduling Algorithm

The solution to the minimum clearing time problem helps us understand how the network

is constrained under various load distributions. It also provides the quickest way to clear a

given load. In the future, we want to use these insights to design a scheduling policy.

We expect such a policy to perform optimally in tree like network topologies, and perform

close to optimal in simple ring topologies. We would also like to study its performance in a

general network, and benchmark it against other similar policies such as LQF scheduling.
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4.3 HetNet Applications

In Chapter 2, we have discussed a few applications of the minimum clearing time problem

in a HetNet. We want to solidify these results by considering a setup with random tra�c

arrivals, instead of deterministic loads. This will also be a part of the scheduling policy

design.

In Chapter 2, we have demonstrated the benefit of coordinating scheduling decision

between neighbouring cells in a deterministic setup. Under random arrivals, we want to

design a policy to coordinate the ABS scheme between neighbouring cells.

Using our current model, we want to derive results on how the wireless backhaul might

be coordinated in an optimal manner. We are also interested in the capacity of a wireless

backhaul system relative to its wired counterpart. Understanding this will have implications

on the deployment of pico-cells, and HetNet design.

We are also interested in other parameters such as cell-association, and load balancing in

the context of sharing cell-edge tra�c.
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