Understanding the biology of transforming growth factor-β in colorectal cancers

Harish Reddy Cheruku

Master of Biotechnology, Macquarie University

Faculty of Medicine and Health Sciences

Macquarie University, Sydney, Australia

A thesis submitted to Macquarie University in fulfilment of the requirements for the degree of Doctor of Philosophy.

July 2015

Dedication

With love and gratitude

To my parents, whose support and encouragement made this thesis possible

k

To Trúc Thanh Lê, whose love and support make everything seem possible

TABLE OF CONTENTS

LIST OF TABLES	VII
LIST OF FIGURES	VII
STATEMENT OF DECLARATION	VIII
ACKNOWLEDGEMENTS	IX
ABSTRACT	X
PUBLICATIONS AND CONTRIBUTION STATEMENT	XI
PRESENTATIONS /AWARDS	
ABBREVIATIONS	
CHAPTER 1 INTRODUCTION	
1.1 COLORECTAL CANCER	2
1.1.1 CANCER – A GLOBAL BURDEN	2
1.1.2 SIGNIFICANCE OF CRC: STATISTICS	3
1.1.3 AETIOLOGY OF CRC	4
1.1.4 ANATOMY OF THE COLON AND RECTUM	5
1.1.5 SYMPTOMS OF CRC	6
1.1.6 STAGING OF CRC	7
1.1.7 BIOMARKERS ASSOCIATED WITH CRC	9
1.1.8 EARLY DIAGNOSIS AND SCREENING FOR CRC	10
1.1.9 TREATMENT OF CRC	20
1.1.10 CARCINOGENESIS AND GENETIC ALTERATIONS DURING CRC	21
1.1.11 METASTASIS	24
The Epithelial to mesenchymal transition	
Invasion	25
1.1.12 Key molecules in cancer progression	26
Integrin ανβ6 as an adhesion molecule	27
ECM proteolysis and uPAR	29
Growth and signalling factors	31
1.2 TRANSFORMING GROWTH FACTOR-B	35
1.2.1 TGFB SUPERFAMILY OF LIGANDS	
1.2.2 TGFB RECEPTORS	
The TGFβ Type III Receptor	
The TGF β Type II Receptor	
The TGFβ Type I Receptor	
1.2.3 CANONICAL TGFB RECEPTORS	
1.2.4 TRANSFORMING GROWTH FACTOR-B AND CANCER	41
1.2.5 GENETIC ALTERATIONS IN TGFB PATHWAY COMPONENTS IN CRC	
1.2.6 IMPORTANCE OF UNDERSTANDING THE ROLE OF TGFB IN CRC	
1.3 LITERATURE REVIEWS	47
REVIEW 1: TRANSFORMING GROWTH FACTOR-B, MAPK AND WNT SIGNALING INTERACTIONS IN	
COLORECTAL CANCER. EUPA OPEN PROTEOMICS (2015). IN PRESS, AVAILABLE ONLINE 2 JULY 2015.	
(DOI:10.1016/J.EUPROT.2015.06.004)	
REVIEW 1 – SUPPLEMENTAL FILES	60
REVIEW 2: THE AVB6 INTEGRIN SETS THE STAGE FOR COLORECTAL CANCER METASTASIS	

1.4 MASS SPECTROMETRY BASED CANCER PROTEOMICS	86
1.4.1 What is proteomics?	86
1.4.2 COLORECTAL CANCER PROTEOMICS	87
1.4.3 PROTEIN SAMPLE PREPARATION AND HANDLING	
1.4.4 LC MS/MS BASED PROTEOMICS	
Sample ionization	
Mass Analysers	
1.4.5 Shotgun Quantitative proteomics using iTRAQ 1.4.6 Bioinformatics tools for Data analysis	
1.5 AIMS OF THE THESIS	
CHAPTER 2: METHODS	
CHAPTER 3	
3.1 - Study I:	. 103
3.1.1 - EXPRESSION OF AVB6 INTEGRIN ENHANCES BOTH PLASMINOGEN AND LATENT-TRANSFORMING GROWTH FACTOR-B1 DEPENDANT PROLIFERATION, INVASION AND ERK1/2 SIGNALLING IN COLORECTAL CANCER CELLS.	
3.1.2 – Supplemental files	
3.2 - STUDY II:	
3.2.1 - TRANSFORMING GROWTH FACTOR-B SIGNALLING INDUCES DIFFERENTIAL PROTEIN EXPRESSION IN	
COLON CANCER CELLS THAT VARIES WITH THE LEVEL OF INTEGRIN B6 EXPRESSION	
3.2.2 – SUPPLEMENTAL FILES	. 186
CHAPTER 4	. 209
4.1 - DOES DIFFERENTIAL EXPRESSION OF CELL-SURFACE UPAR ALTER THE EFFECTS ACTIVE TGFB HAS	ON
THE COLORECTAL CANCER CELL MEMBRANE PROTEOME?	
4.2 – SUPPLEMENTAL FILES	
CHAPTER 5	
5.1 - A NOVEL MULTIPLEXED IMMUNOASSAY IDENTIFIES CEA, IL-8 AND PROLACTIN AS PROSPECTIVE MARKERS FOR DUKES' STAGES A-D COLORECTAL CANCERS. <i>CLIN PROTEOMICS</i> . APR 8; 12(1):10. DOI:	
10.1186/s12014-015-9081-x. ECollection 2015.	255
5.2 – SUPPLEMENTAL FILES.	
CHAPTER 6	
GENERAL DISCUSSION, FUTURE DIRECTIONS AND CONCLUSION	-
6.1 GENERAL DISCUSSION	
6.2 PROTEINS AS BIOMARKERS FOR CRC	
6.3 FUTURE DIRECTIONS	
REFERENCES	
APPENDICES	
APPENDIX I – EXPRESSION OF TGFB RECEPTORS 1 AND 2 IN THE CELL LINES USED IN THIS THESIS	. 355
APPENDIX II – CHARACTERIZATION OF THE INTERACTION BETWEEN HETERODIMERIC ALPHAVBETA6	IICE
INTEGRIN AND UROKINASE PLASMINOGEN ACTIVATOR RECEPTOR (UPAR) USING FUNCTIONAL PROTEOM	
APPENDIX III – AN IMPROVED METHOD FOR THE DETECTION AND ENRICHMENT OF LOW-ABUNDANT	
MEMBRANE AND LIPID RAFT-RESIDING PROTEINS	. 367
APPENDIX IV – ETHICS APPROVAL	. 377
APPENDIX V – BIOSAFETY CERTIFICATE	. 382

LIST OF TABLES

Table 1 Comparison of Dukes' and TNM classification of CRC [§]	8
Table 2 Summary of potential CRC biomarkers identified in the last 10 years	11
Table 3 Oncogenes and tumour suppressor genes commonly involved in CRC.	21
Table 4 The TGFβ-superfamily ligands, tissue specificity and their major functions [§]	32
Table 5 Mechanisms of TGFβ activation under different physiological conditions	36
Table 6 Receptors of the TGFβ superfamily:	39
Table 7 Smad family proteins§	40
Table 8 Genetic alterations in TGFβ signalling components in CRC	42
Table 9 Colorectal cancer cell lines used in this thesis [§]	88
Table 10 Summary of recent MS-based proteomic studies performed using the CRC cell lines	
employed in this thesis; and CRC patient plasma/serum samples in the recent years	89

LIST OF FIGURES

Figure 1 - Global cancer statistics	3
Figure 2 - Colorectal cancer statistics.	4
Figure 3 - (a) Basic anatomy of the colon and rectum (b) and the layers of colon and rectum wa	ll. 6
Figure 4 - The Dukes' staging system in the context of CRC	7
Figure 5 - The colorectal adenoma-carcinoma sequence.	23
Figure 6 - Concept of the Epithelial to Mesenchymal Transition (EMT)	25
Figure 7 - Key molecules in cancer progression.	26
Figure 8 - The uPAR-integrin β6-TGFβ signalling pathway.	29
Figure 9 - Basic workflow of LC-MS/MS-based label-free shotgun proteomics	87
Figure 10 - Basic workflow of iTRAQ based proteomics experiments	95
Appendix I Figure 1 – Expression TGFβ receptor 1	. 355
Appendix I Figure 2 – Expression TGFβ receptor 2	. 356

STATEMENT OF DECLARATION

I certify that the work presented in this thesis titled "Understanding the biology of transforming growth factor-beta in colorectal cancers" has not previously been submitted, in either whole or part, for obtaining any other degree to any other university or institution other than Macquarie University. The work in this thesis has been carried out by the author, unless otherwise acknowledged.

mist Cet

Harish R Cheruku 41629191

ACKNOWLEDGEMENTS

The thesis could not have been completed without the help and support of my family, friends and colleagues. Firstly, I would like to thank my supervisor Professor Mark S Baker for providing me the opportunity to work on this project. However, this would not have been possible without the scholarship (iMQRES) from Macquarie University. I would also like to thank Edouard Nice my adjunct supervisor and Shoba Ranganathan my co-supervisor for their support.

I also acknowledge the my colleagues and I would like to extend my earnest gratitude to the current and past members of the Baker research team including Abidali Mohamedali, Sadia Mahboob, David Cantor, Charlie (Seong Beom) Ahn, Nurul Jufri, Sock Hwee Tan, Alison Kan, Samyuktha Anand, Ilze Simpson, Susan Fanayan, Manveen Sethi and Ling Lee for their professional camaraderie, approachability and for providing a supportive environment of cooperation and collegiality. I would also like to thank Mehdi Mirzaei for his valuable discussions on various general experimental methods.

I would like to acknowledge the technical expertise provided by APAF staff including Dylan Xavier, Natasha Care and Thiri Zaw for assistance with mass spectrometry. I would alsolike to specially thank Dana Pascovici for all the help and guidance for statistical analysis for all the manuscripts.

I would also like to thank my friends outside of university for their continual support in everything. I would also like to acknowledge my friend Manoj Prajwal Bhattaram for proof-reading my thesis.

Most importantly, I would like to thank my parents, sister, my in-laws and especially my wife Thanh True Le for their support and understanding without whom this Ph.D. thesis would not have been possible.

ABSTRACT

Colorectal cancer (CRC) affects millions of people every year globally. Abnormal cells utilize several mutated proteins and perturbed pathways to progress from a benign tumour to malignant cancer. Expression of proteins such as uPAR, integrin $\beta 6$ and TGF β have been extensively implicated by us and others in CRC.

The primary aim of this thesis was to contribute additional knowledge to regarding the role TGFβ in CRC through investigation of the proposed hypothetical uPAR•αvβ6•TGFβ1 interactome. This was achieved by using six CRC cell lines as model systems where expression levels of two known activator systems of TGFβ, namely integrin β6 (SW480^{Mock}, SW480^{β 60E}, HT29^{Mock}, HT29^{β 6AS}) and the uPA protease receptor uPAR (HCT116^{WT} and HT29^{uPARAS}) have been artificially expressed or down regulated. The changes in these model systems following active TGFB1 treatment were investigated using state-of-the-art proteomics and a cell signalling assay (i.e., AlphaScreen® SureFire® Assay) technologies in conjunction with sophisticated bioinformatics. The cells expressing $\beta 6$ (SW480^{$\beta 60E$}, HT29^{Mock}, HT29^{β6AS}) exhibited increased proliferation, invasion and wound healing upon treatment with TGF^{β1}. The cells with higher uPAR expression did not respond to (HCT116^{WT}) TGFβ treatments. These results determined that malignancy was attained in a TGF_β-dependent manner when β6 was expressed or in a TGF_β-independent manner when uPAR was expressed. Additionally, the proteomic data presented in this thesis identified several perturbed proteins and biomolecular pathways that could be associated with CRC and has given important clues to understanding the role of TGFB and the proposed hvpothetical uPAR•αvβ6•TGFβ1 interactome.

Additionally, an Olink Proseek study using Dukes' stage A-D CRC patient plasma samples (1 μ L of plasma) identified CEA, IL-8 and prolactin were determined to differentiate unaffected controls from non-malignant (Dukes' A + B) and malignant (Dukes' C + D) stages and were published as potential plasma Dukes'-stage CRC biomarkers.

This thesis has demonstrated the immense power of high-throughput modern proteomic and multiplexing technologies to gain insights into the TGF β associated CRC pathogenesis at detailed molecular level and to identify avenues for disease biomarker exploration.

PUBLICATIONS AND CONTRIBUTION STATEMENT

This thesis contains material that has been published, and the percentage contribution in each of the publication by the candidate "Cheruku HR" are as follows:

Publication I (First author)

Cheruku HR, Mohamedali A, Cantor DI, Tan SH, Nice EC and Baker MS (2015). Transforming growth gactor-β, MAPK and Wnt signaling interactions in colorectal cancer. *EuPA Open proteomics. In press, Available online 2 July 2015. (doi:10.1016/j.euprot.2015.06.004).*

The candidate contributed to all aspects of the manuscript. Concept – 90%; Writing – 70%; **Total (Average) – 80%**

Publication II (Co-author)

Cantor DI, **Cheruku HR**, Nice EC and Baker MS (2015). The β6 integrin sets the stage for colorectal cancer metastasis. *Cancer Metastasis Rev. 2015 Sep 4*. [Epub ahead of print]. PubMed ID: 23201117

The candidate contributed to all aspects of the manuscript. Concept – 25%; Writing – 25%; Total (Average) – 25%

Publication III (Co-first author)

Cantor DI, **Cheruku HR**, Ahn SB, Crouch MF, Nice EC and Baker MS (2015). Expression of $\alpha\nu\beta6$ integrin enhances both plasminogen and latent-transforming growth factor- $\beta1$ dependant proliferation, invasion and ERK1/2 signalling in colorectal cancer cells. (*Prepared for publication. The manuscript has been submitted to an early career researcher award competition at HUPO world congress 2015 and if accepted will be published in a HUPO affiliated journal*).

The candidate contributed to all aspects of the manuscript. Concept – 30%; Data collection – 30%; Analysis – 30%; Writing – 30%; Total (Average) – 30%

Publication IV (First author)

Cheruku HR, Cantor DI, Mohamedali A, Tan SH, Nice EC and Baker MS (2015). Transforming growth factor- β signalling induces differential protein expression in colon cancer cells that varies with the level of integrin β 6 expression. *(Prepared for publication to "Journal of Proteome Research")*.

The candidate contributed to all aspects of the manuscript. Concept – 50%; Data collection – 80%; Analysis – 80%; Writing – 70%; Total (Average) – 70%

Publication V (First author)

Cheruku HR, Cantor D, Mohamedali A, Tan SH, Nice E and Baker MS (2015). Does differential expression of cell-surface uPAR alter the effects active TGF β has on the colorectal cancer cell membrane proteome? (*Prepared for publication to "International Journal of Oncology"*).

The candidate contributed to all aspects of the manuscript. Concept – 50%; Data collection – 90%; Analysis – 80%; Writing – 70%; Total (Average) – 72.5%

Publication VI (Co-author)

Mahboob S, Ahn SB, **Cheruku HR**, Cantor D, Rennel E, Fredriksson S, Edfeldt G, Breen EJ, Khan A, Mohamedali A, Muktadir MG, Ranganathan S, Tan SH, Nice E and Baker MS (2015). A novel multiplexed immunoassay identifies CEA, IL-8 and prolactin as prospective markers for Dukes' stages A-D colorectal cancers. *Clin Proteomics*. Apr 8; 12(1):10. doi: 10.1186/s12014-015-9081-x. eCollection 2015. PubMed ID: 25987887.

The candidate contributed to all aspects of the manuscript. Concept – 30%; Data collection – 30%; Analysis – 30%; Writing – 30%; Total (Average) – 30%

Publication VII (Co-author)

Ahn SB, Mohamedali A, Anand S, **Cheruku HR**, Birch D, Sowmya G, Cantor D, Ranganathan S, Inglis DW, Frank R, Agrez M, Nice EC and Baker MS (2014). Characterization of the interaction between heterodimeric $\alpha\nu\beta6$ integrin and urokinase plasminogen activator receptor (uPAR) using functional proteomics. *J Proteome Res.* Dec 5;13(12):5956-64. doi: 10.1021/pr500849x. Epub 2014 Oct 29. PubMed ID: 25318615. The candidate performed the crucial structural bioinformatics analysis for the manuscript. Concept – 15%; Data collection – 20%; Analysis – 25%; Writing – 25%; **Total (Average)** – **21.25%**

Publication VIII (Co-author)

Kan A, Mohamedali A, Tan SH, **Cheruku HR**, Slapetova I, Lee LY and Baker MS (2013). An improved method for the detection and enrichment of low-abundant membrane and lipid raft-residing proteins. *J Proteomics*. Feb 21;79:299-304. doi: 10.1016/j.jprot.2012.11.019. Epub 2012 Nov 29. PubMed ID: 23201117.

The candidate performed some of the western blots for the manuscript. Concept – 15%; Data collection – 20%; Analysis – 25%; Writing – 15%; Total (Average) – 18.75%

All the original publications have been reproduced with permission of the authors and copyright holders. Additionally, unpublished data are also presented in this thesis.

PRESENTATIONS /AWARDS

International presentations (*Oral presentations)

- 1. HR Cheruku, D Cantor, A Mohamedali, SH Tan, E Nice, MS Baker. Integrin $\beta 6$ expression enhances TGF β -1 dependent proliferation, wound healing and induces changes to membrane proteome in colorectal cancer cells. 13th World Congress of the Human Proteome Organization (HUPO) (5th 8th Oct 2014) at Madrid, Spain.
- Mahboob, S., S. B. Ahn, H. R. Cheruku, D. Cantor, E. Rennel, S. Fredriksson, G. Edfeldt, E. J. Breen, A. Khan, A. Mohamedali, M. G. Muktadir, S. Ranganathan, S. H. Tan, E. Nice and M. S. Baker (2015). A novel multiplexed immunoassay identifies CEA, IL-8 and prolactin as prospective markers for Dukes' stages A-D colorectal cancers. 13th World Congress of the Human Proteome Organization (HUPO) (5th 8th Oct 2014) at Madrid, Spain
- **3.** HR Cheruku, D Cantor, A Mohamedali, SH Tan, E Nice, MS Baker "TGFβ1 induces membrane proteome changes in colorectal cancer Cells" 14th Human Proteomics Organization World Congress (HUPO 2015), Vancouver, Canada, 29th September 2015.
- **4.** *Invited Oral Presentation titled "TGFβ1 induces membrane proteome changes in colorectal cancer Cells" 14th Human Proteomics Organization World Congress (HUPO 2015), Vancouver, Canada, 29th September 2015
- **5.** D Cantor, **HR Cheruku**, Ahn SB, Crouch M, E Nice, MS Baker "ανβ6, Plasminogen and Latent TGF-β Drive Colorectal Cancer Aggression" 14th Human Proteomics Organization World Congress (HUPO 2015), Vancouver, Canada, 29th September 2015

Domestic presentations

- 1. HR Cheruku, D Cantor, A Mohamedali, SH Tan, E Nice, MS Baker. TGF β -1 increases cell proliferation, wound healing and induces changes to membrane proteome in colorectal cancer cells with varying integrin β 6 expression. 20th Lorne Proteomics Symposium (5th 8th Feb 2015), Lorne, Victoria, Australia.
- Mahboob S, A Mohamedali, HR Cheruku, E Nice, MS Baker. A proteomic investigation for detection of early stage CRC biosignatures. 20th Lorne Proteomics Symposium (5th 8th Feb 2015), Lorne, Victoria, Australia.
- 3. Ahn, S. B., A. Mohamedali, S. Anand, H. R. Cheruku, D. Birch, G. Sowmya, D. Cantor, S. Ranganathan, D. W. Inglis, R. Frank, M. Agrez, E. C. Nice and M. S. Baker. Characterization of the Interaction between Heterodimeric alphavbeta6 Integrin and Urokinase Plasminogen Activator Receptor (uPAR) Using Functional Proteomics. 20th Lorne Proteomics Symposium (5th 8th Feb 2015), Lorne, Victoria, Australia.
- **4.** HR Cheruku, D Cantor, A Mohamedali, SH Tan, E Nice, MS Baker. TGFβ-1 increases cell proliferation, wound healing and induces changes to membrane proteome in colorectal cancer cells with varying integrin β6 expression. MQ Biofocus Research Conference (11th Dec 2014), Macquarie university, Sydney, Australia.
- **5. HR Cheruku,** D Cantor, A Mohamedali, SH Tan, E Nice, MS Baker. Integrin $\beta 6$ expression enhances TGF β -1 dependent proliferation, wound healing and induces changes to membrane proteome in colorectal cancer cells. 2nd Proteomics and beyond

symposium (12th Nov 2014) by APAF at Macquarie university, Sydney, Australia.

- 6. HR Cheruku, D Cantor, A Mohamedali, SH Tan, E Nice, MS Baker. Examination of TGFβ receptor II expression and interactions in colorectal cancer cell lines. 18th Lorne Proteomics Symposium (7th – 10th Feb 2013), Lorne, Victoria, Australia.
- 7. S Nandakumar, A Kan, SH Tan, A Mohamedali, HR Cheruku, MS Baker. Urokinase plasminogen activator receptor (uPAR) is down regulated as cells approach confluence in Colorectal Cancer. Proteomics and beyond symposium (7th Nov 2012) by APAF at Macquarie university, Sydney, Australia.
- Mahboob, S., Tan S.H., S. B. Ahn, Cheruku H. R., D. Cantor, A. Khan, Rennel, E., Fredriksson, S., Edfeldt, G., Breen, E. J., Ranganathan, S., Nice, E., and Baker, M. S. "Targeted proteomic immunoassays of candidate plasma biomarkers for stage A-D CRC". 19th Lorne Proteomics Symposium (6th – 9th Feb 2013), Lorne, Victoria, Australia.

Awards

- Macquarie University Postgraduate Research Fund (PGRF), 2015
- Travel grant for EMBO Targeted Proteomics Experimental Design and Data Analysis course in Barcelona, Spain, 2014.
- Skipper Early Career Researcher Travel Award awarded by Australian School of Advanced Medicine, Macquarie University, 2014.

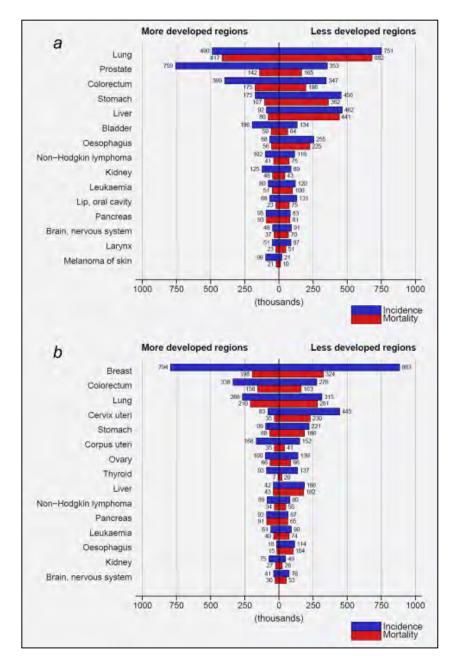
ABBREVIATIONS

5-FU	5- Fluorouracil
ACPS	Australian clinic-pathological Staging
ACTA2	Alpha-actin-2
ACTB	Actin cytoplasmic 1
ACTN4	Alpha-actinin-4
AFAP	Attenuated familial adenomatous polyposis
ANXA2	Annexin A2
APC	Adenomatous polyposis coli
BCAM	Basal cell adhesion molecule
BMP	Bone morphogenetic proteins
BSA	Bovine serum albumin
CAMs	Cell adhesion molecules
CEA	Carcinoembryonic antigen
CEACAM1	Carcinoembryonic antigen-related cell adhesion molecule 1
CID	Collision-induced dissociation
CIN	Chromosomal instability
CRC	Colorectal cancer
CTNND1	Catenin delta 1
DCC	Deleted in colorectal carcinoma
DDA	Data-dependent acquisition
DIA	Data-independent acquisition
DIGE	Difference gel electrophoresis
DMEM	Dulbecco's Modified Eagle Medium
DNA	Deoxyribonucleic Acid
DPC4	Deletion target in pancreatic carcinoma 4
ECM	Extracellular matrix
EDTA	Ethylenediaminetetraacetic acid
EGFR	Epidermal growth factor receptor
ELISA	Enzyme-linked immunosorbent assay
EMT	Epithelial-mesenchymal transition
ERK	Extracellular signal-regulated kinases
ESI	Electrospray ionization
ETD	Electron transfer dissociation
EZR	Ezrin
FAP	Familial adenomatous polyposis
FBS	Foetal bovine serum
FDA	Food and drug administration
FDR	False discovery rate
FIT	Fecal immunochemical test
FOBT	Fecal occult blood
FPR	False positive rate
FSH	Follicle-stimulating hormone
GAIP	G Alpha Interacting Protein
GDF	Growth differentiation factors
GIPC	GAIP-interacting protein C-terminus

GPI	Glycosylphosphotidylinositol
HNPCC	Hereditary non-polyposis colon cancer
HPLC	High-performance liquid chromatography
HSP27	Heat shock 27 kDa protein
HSP60	Heat shock protein 60
HSP90B1	Endoplasmin
HSPA5	Heat shock 70 kDa protein 5
ICAT	Isotope coded protein labels
IGFR2	Insulin-like growth factor receptor 2
IHC	Immunohistochemistry
IMPs	Integral membrane proteins
IPA	Ingenuity pathway analysis
IPI	International Protein Index
ITGAV	Integrin alpha V
ITGB1	Integrin beta 1
ITGB2	Integrin beta 2
ITGB3	Integrin beta 3
ITGB6	Integrin beta 6
iTRAQ	Isobaric tags for relative and absolute quantization
K-RAS	Kirsten rat sarcoma viral oncogene homolog
KRT1	Keratin 1
KRT10	Keratin 10
KRT13	Keratin 13
KRT15	Keratin 15
KRT18	Keratin 18
KRT19	Keratin 19
KRT2	Keratin 2
KRT20	Keratin 20
KRT23	Keratin 23
KRT5	Keratin 5
KRT8	Keratin 8
LAP	Latency associated peptide
LC	Liquid chromatography
LOH	Loss of heterozygosity
LS	Lynch syndrome
MAPK	Mitogen-activated protein kinases
miRNA	microRNA
MMP	Matrix metalloprotease
MMR	Mismatch repair
MRM	Multiple reaction monitoring
MS	mass spectrometry
MS/MS	Tandem mass spectrometry
MSI	Microsatellite instability
MYL9	Myosin regulatory light polypeptide 9
NCBI	National Center for Biotechnology Information
PAGE	Polyacrylamide gel electrophoresis

PDFG	Platelet-derived growth factor
PDGF-B	B chain of PDGF
PLG	Plasminogen
pro-uPA	Pro-urokinase-type plasminogen activator
PTM	Post-translational modifications
PVDF	Polyvinylidene difluoride
QIT	Quadrupole ion-trap
Q-TOF	Quadrupole time-of-flight
RNA	Ribonucleic acid
RPMI	Roswell Park Memorial Institute medium
SCC	Squamous cell carcinomas
SCX	Strong cation exchange chromatography
SDS	Sodium dodecyl sulfate
SILAC	Stable isotope labelling by amino acids in culture
SRM	Selected reaction monitoring
SWATH	Sequential window acquisition of all theoretical fragment ion spectra
TAGLN	Transgelin
TBS	Tris buffered saline
TGFβ	Transforming growth factor-β
TGFβR1	Transforming growth factor- β type I receptor
TGFβR2	Transforming growth factor- β type II receptor
TGFβR3	Transforming growth factor- β type III receptor
TMT	Tandem mass tags
TNM	Tumor, Nodes, Metastasis
TOF	Time-of-flight
uPA	Urokinase-type plasminogen activator
uPAR	Urokinase-type plasminogen activating receptor
VEGF	Vascular endothelial growth factor
VIM	Vimentin
VTN	Vitronectin

CHAPTER 1 INTRODUCTION


1.1 Colorectal Cancer

1.1.1 Cancer – A global burden

Cancer is not a modern disease and has clearly existed for many centuries [1].Cancer can be defined as by Ruddon [2] is the "abnormal growth of cells caused by multiple changes in gene expression leading to dysregulated balance of cell proliferation and cell death and ultimately evolving into a population of cells that can invade tissues and metastasize to distant sites, causing significant morbidity and, if untreated, death of the host" [2].

The term 'cancer' often referred to as a single condition, is one of the most diverse class of pathologies studied and compromises of a large group of diseases that can arise and affect any part of the body. There are more than 100 types of cancer, classified primarily by the organ or the cell type of origin [3]. Histologically, cancer has been classified into five major groups: carcinoma, of epithelial origin; sarcoma, of connective tissues; leukaemia, of whiteblood cells; lymphoma, of the lymphatic system; and myeloma. Carcinoma, for example, is a type cancer that arises from epithelial cells/organs. Most common cancers like breast, colorectal, prostate and lung fall under the broad categorisation of carcinoma. For cancer to survive and metastasise to other organs, it was proposed that 'normal' healthy cells need to acquire six essential "hallmark" properties - self-sufficiency in growth signals, insensitivity to growth inhibition, evasion of apoptosis, uncontrolled cell growth, sustained angiogenesis, and tissue invasion and metastasis [4]. These six properties are however mostly acquired through genetic alterations in the cancer cells which are a result of rare malfunctioning of the human genome maintenance system and are exploited by cancerous cells. Despite the difficulty in acquiring the six hallmarks of cancer and the rarity of the associated genetic mutations, cancers have become one of the most feared disease of all times.

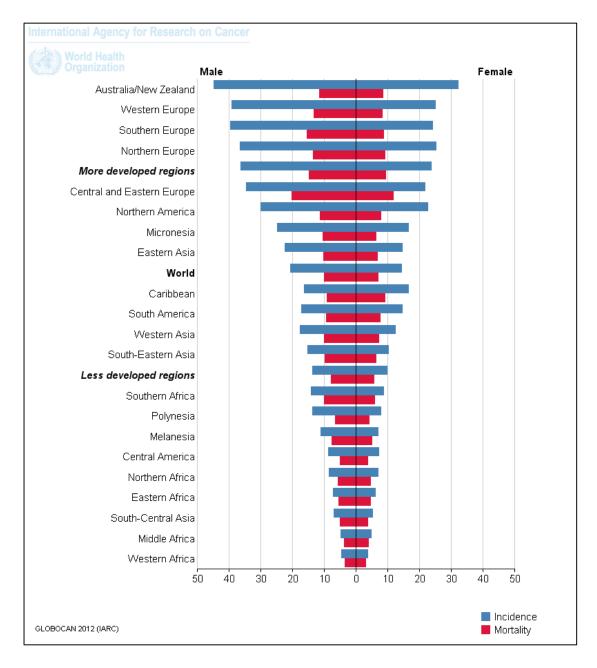

The International Agency for Research on Cancer (IARC), estimated in 2012 that there were 14.1 million new cancer cases, 8.2 million cancer deaths and 32.6 million people living with cancer (within 5 years of diagnosis), with 57% (8 million) of the new cases and 65% (5.3 million) of the cancer deaths, and 48% (15.6 million) of the 5-year prevalent cancer occurring in the economically underdeveloped parts of the world [5, 6]. In 2014 the World Cancer Report predicted that the number of cancer cases per annum will increase to about 22 million resulting in up to 13 million deaths within the next two decades [7]. According to the IARC the three most commonly diagnosed cancers globally were lung (1.82 million), breast (1.67 million) and colorectal (1.36 million) and the most common cause of cancer deaths were lung (1.61 million), liver (745, 000), and stomach (723,000) [7], **Figure 1**.

Figure 1 - Global cancer statistics. Incidence and Mortality rates comparison between more and less developed regions. a) Males, b) females. Image source [6, 7]

1.1.2 Significance of CRC: Statistics

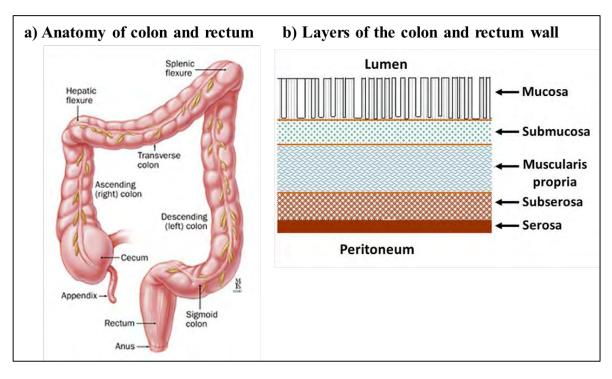
Colorectal cancer (CRC), specifically, in 2012 was the third most common cancer globally, with 9.7% of total cancer cases, almost 55% of which occurred in well developed countries. It is the third most common cancer in men (746,000 cases, 10% of total) and the second in women (614,000 cases, 9.2% of total). The highest incidence rates of CRC were observed in Australia/New Zealand (age-standardized ratio 44.8 and 32.2 per 100,000 in men and women respectively) and lowest in western Africa (4.5 and 3.8 per 100,000), (figure 2). CRC was the fourth most common cause of cancer deaths (694,000 deaths, 8.5% of total) in 2012 with 52% of deaths in less developed countries which reflects the lack of better prognosis in those regions [6].

Figure 2 - Colorectal cancer statistics. Estimated (age-standardised rates (World) per 100,000) incidence, Mortality and prevalence in 2012. Image source [6, 7].

1.1.3 Aetiology of CRC

The precise cause of CRCs is not very well understood. However, a number of risk factors have been associated with CRC although the sporadic nature of this disorder continues to baffle the research community [8]. Some of these include increasing age, gender, personal and/or family history of CRC, colonic polyps, inflammatory bowel disease, ulcerative colitis or Crohn's disease, ethnic background, and various environmental factors [8, 9]. Genetic alterations have also been implicated with increased risk of CRC and are detailed in section "1.1.10 Carcinogenesis and Genetic alterations during CRC".

Advancing age is a risk factor for CRC, as more than 90% of the people diagnosed with CRC are over 50 years of age. In Australia, the lifetime risk of developing CRC before the age of 75 years is approximately 1 in 19 men and 1 in 28 women [10], which is the highest rate globally. Kim *et.al* recently showed that females over 65 years with CRC showed higher mortality and lower 5-year survival than males of the same age [11].


Most cases of CRC occur in individuals without any personal or family history of CRC or its associated diseases. Approximately 20-25% of cases occur in individuals with a familial history of CRC. The risk of developing CRC increases for the other family members either by having more than one relative with CRC, or having CRC diagnosed at a younger age [8, 9]. The diagnosis of CRC or colonic polyps, in a first-degree relative, before the age of 60 is an increased risk and may vary extensively, with none to a 6.3-8 fold increased risk [12].

Various lifestyle risk factors are involved in the development of CRC. A few important ones are diets high in fat and cholesterol and/or low in fiber, alcohol consumption, smoking, or, sedentary lifestyle. It is believed that alcohol stimulates gastro intestinal cell proliferation and promotes carcinogenesis in the presence of unabsorbed carcinogens such as nitrosamines [13, 14]. There is also strong evidence that smoking increases risk for CRC [15, 16]. Study by Giovannucci showed that long-term, heavy cigarette smokers have a 2-3 fold increased risk of CRC [16]. Carr *et.al* also showed that high consumption of beef and lamb was associated with increased risk of CRC [17].

1.1.4 Anatomy of the colon and rectum

An understanding of normal colon or large intestine anatomy is crucial to study the development of CRC. The colon is about 5 feet (150 cm) long and divided into five major segments: caecum, ascending colon, transverse colon, descending colon and sigmoid colon. The rectum is the last anatomic segment of the colon before the anus (see **Figure 3a**). The walls, colon and rectum are composed of five distinct cellular layers – mucosa, submucosa, muscularis propria, subserosa and serosa as shown in **Figure 3b**. The serosa is absent in most of the rectum [9, 18]. The mucosa is the inner lining of the colon wall including the thin layer of epithelium, connective tissue (lamina propria) and a thin muscle layer (muscularis mucosa). In presentations of CRC, polyps are usually shown to begin in the mucosa and contains the glands, blood and lymphatic vessels, and nerves. The muscularis propria comprises circular and longitudinal muscle layers that assists in peristalsis whist the subserosal layer consists of connective and fat tissues that supports the colon. The serosal layer derived from the visceral peritoneum, is the most superficial layer that surrounds the

colon and is made of sessile or pedunculated fat masses that protect the large intestine from damage.

Figure 3 - (a) Basic anatomy of the colon and rectum (b) and the layers of colon and rectum wall. Images adopted from [19, 20].

1.1.5 Symptoms of CRC

Colorectal cancer presents with many common symptoms of over a long period of time. The most commonly noted symptoms of CRC are rectal bleeding, abdominal pain, change in bowel habits, anaemia and weight loss [21]. During CRC onset, these symptoms may manifest in combinations rather than in isolation [22]. Majumdar et.al and Astin et.al have showed that rectal bleeding is often accompanied by anaemia [21, 22]. However, most of these symptoms are reasonably common in general population. For example, a study by Fijten et al. showed that of the 3-15% of the population that present with rectal bleeding, only 3% of these actually are CRC patients [23]. Due to the high percentage of commonality between the symptoms exhibited by the general population and CRC patients it is very difficult to ascertain the exact observable symptoms that are specific only to the CRC patients. However, it may be possible to determine a set of "CRC specific" symptoms by evaluating the common symptoms based on severity, frequency and persistence rather than occurrence [24]. Surprisingly, duration of the symptoms do not correlate with development of CRC [25, 26] or provide any clinical utility. This lack of a "standard CRC diagnosis chart" makes it difficult for health practitioners to diagnose CRC at early stages, and can only rely upon a combination of 'unstandardized' staging systems.

1.1.6 Staging of CRC

The staging of CRC is primarily based on how deep the cancer has penetrated the bowel wall and/or spread to other organs. Colonic polyps usually begin within the mucosal layer which then penetrate the submucosal layer and enter the lymph nodes after which the cancers spread to distant organs. Regrettably, more than 75% of CRC patients present with this late stage cancer whose 5-year survival rate is very low [27, 28]. The stage of a tumour, clinical or pathological, is a description of a tumour that informs the prognosis of the disease. The two most commonly used CRC staging systems globally are: the TNM (Tumour, Nodes, Metastasis) and the Dukes' system. The TNM staging system is based on the local spread (T-stage), lymph-node spread (N-stage) and the distant metastasis to distant organs (Mstage) while the Dukes' system also assess all these features though it reports the stages in a single-lettered format. However, these two systems do not consider the size of the tumour as a factor and only consider the pathological information while staging them. A more recent, not so very commonly used alternative staging system, is the Australian Clinico-Pathological Staging (ACPS) system which is similar to Dukes' on how it reports CRC stage. ACPS uses additional clinical, radiologic, operative, and pathological data for staging along with the pathological information that is commonly used in the TNM and Dukes' staging systems [29]. The Dukes' staging system is summarised in Figure 4 and its comparison with TNM staging is shown in Table 1.

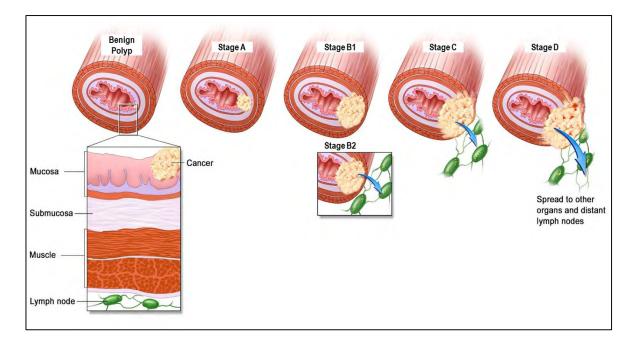


Figure 4 - The Dukes' staging system in the context of CRC. It is based on the depth of tumour progression and the presence or absence of metastasis. Benign polyp: Cancerous are still confined to the mucosal layer; Stage A: The tumour is still confined to the inner most lining of colon; Stage B: The tumour has spread into the muscle layer of the colon but no further; Stage C: The

tumour cells have spread to lymph nodes near the colon; **Stage D:** The tumour has metastasised to distant sites organs e.g. liver or lungs. Image adapted from [30].

Dukes' System	(by A)	TNM System (by American Joint Commission of Cancer)				
Stages	Stages	Primary Tumor (T)	Lymph node (N)	Distant metastasis (M)		
	Stage 0	Tis/T0	N0	M0		
А		T1	N0	M0	>90%	
B1	– Stage I	Τ2	N0	M0	>85%	
B2	Stage IIA	Т3	N0	M0	80%	
B2	Stage IIB	T4	N0	M0	72%	
С	– Stage III	Any T	N1 or N2	M0	42-64%	
C2	- Stage III	Any T	N3	M0	27-44%	
D	Stage IV	Any T	Any N	M1	<10%	
T0 – no evide Tis – carcinon T1 – tumor ir T2 – tumor ir If Serosa pres T3 – tumo prop thro T4 – tumo spre struct If Serosa abso T3 – tumo	oria into subser ugh Serosa or invades throu ads to adjoing ctures ent (rectal wall) or invades throu ria or invades throu	v tumor ent osa uris propria l) ugh muscularis osa but not ugh serosa and organs or) ugh muscularis	assessed N0 - no r N1 - met N2 - met N3 - pos MX - dis M0 - no	gional lymph nodes c regional node metas tastasis in 1-3 region tastasis in ≥4 regiona itive for central node stant metastasis cann distant metastasis tant metastasis	tasis al nodes al nodes es	

Table 1 Comparison of Dukes' and TNM classification of CRC[§]. Key is shown at the bottom of the table.

Despite the availability of these staging systems, it has been difficult for health practitioners and clinicians to precisely identify the stage of the disease as there are no standard histological or morphological parameters for evaluation of the samples. It would be useful to develop a standardised staging system that can be used objectively by evaluating the expression signatures of biomarkers or normal protein that are expressed in the tumour cells. Developing such a staging system will be advantageous to health practitioners and clinicians, and will substantially speed up the diagnosis of the disease and treatments that follow it.

1.1.7 Biomarkers associated with CRC

A biomarker is a characteristic that is objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention [32]. According to the National Cancer Institute (NCI) a biomarker is *"a biological molecule found in blood, other body fluids, or tissues that is a sign of a normal or abnormal process, or of a condition or disease"* such as cancer [33]. Biomarkers can typically be used to differentiate a healthy person from a diseased person and also be study the response of body to various treatments. Various molecules, such as proteins, peptides, microRNAs and DNA amongst others, can be used as biomarkers. Several studies have shown that a biomarker can also be a collection of alterations can be used in a "panel".

Biomarkers can be used to estimate risk of disease, screen for primary cancers, distinguish benign from malignant or different types of malignancies from one another, determine prognosis for patients who have been diagnosed with cancer, and monitor status the disease, either to detect recurrence or determine response or progression to therapy [34]. For example, carcinoembryonic antigen (CEA) is used to monitor CRC recurrence. Most commonly it is used to monitor CRC patients, following adjuvant therapy, with the goal of detecting liver metastases [35]. Another such example is the use of KRAS mutation as a predictive biomarker to predict response to anti-EGFR therapy in CRC patients [36].

A multitude of potential biomarkers for cancers including CRC have been identified and reported in the literature are summarised in **Table 2**. However, there are very few Food and Drug Administration (FDA) approved biomarkers for CRC [37, 38]. Despite a global research effort and reports of multi-marker panels or gene signatures, there are very few FDA diagnostic panels for CRC. Additionally, it is not possible for all the reported proteins or genes to be used as biomarkers due to the fact that majority of these are not carefully designed and tested in randomized clinical trials which is required prior to FDA approval. Therefore, it is important to scrutinize these potential biomarkers before they can be clinically translated for early stage diagnosis, where it is still resectable. Therefore, identification of a CRC-specific early stage biomarker panels could be an advantage to the patients and increase the overall survival. Importantly, these panels need to have high specificity and sensitivity for detection. The NCI defines specificity as *"the percentage of people who test negative for a specific disease among a group of people who do not have the disease"* and sensitivity *"may describe how well a test can detect a specific disease or condition in people who actually have the disease or condition"*. No test is 100% specific

nor will it be 100% sensitive because some people without the disease or the condition will test positive for it (false positive result) and those with the disease or condition will test negative for it (false negative result).

1.1.8 Early diagnosis and screening for CRC

The early detection of CRC is essential to determine the stage related prognosis. Despite the availability of numerous screening strategies aggressive surgical therapies and extensive research on the genomic, molecular and cellular basis of CRC, detection at the earliest stages remains elusive. It is very well known that CRCs develop over time, can take as long as ten years or more, which gives plenty of opportunities to diagnose the CRC at early-stages [39]. If found, early-stage CRC is associated with good 5-year survival rates (> 90%) following simple (often curative) surgical resection, while patients diagnosed with later stage cancers (ACPS C or D) experience recurrence and distant metastases leading to poor 5-year survival rates of less than 10% [4]. The early detection of CRC might be improved by implementing various 'currently' available CRC screening strategies and emerging assays, summarised in **Table 1** of **publication I**.

The most commonly used method for screening of CRC is by testing the stool using fecal occult blood test (FOBT) or fecal immunochemical test (FIT) [40-42]. Studies have shown that FOBT, when performed every 1 to 2 years in people aged 50-80, can help reduce the number of deaths due to CRC by 15-33% [43, 44]. However, FOBT and FIT have limited sensitivity compared to colonoscopy and sigmoidoscopy which have a sensitivity of >95%. Despite the high sensitivity of colonoscopy and sigmoidoscopy these are often invasive and can be painful for some patients. Other screening strategies include barium enema that used X-ray examination, rectal ultrasound and/or PET/CT scan [39-42, 45]. There are also new and emerging non-invasive screening assays that test for expression changes of proteins, microRNAs (miRNA) and DNA methylation patterns using blood or serum samples. The most promising test stool DNA test to date is comprised of a panel of four methylated genes (BMP3, NDRG4, vimentin, TFPI2), a mutant form of KRAS and α -actin as the internal reference control. This panel was able to accurately detect Stage I-III CRC patients with 87% sensitivity at 90% specificity in a training set and with 78% sensitivity at 85% specificity in a test set (combined sensitivity of 85% at 90% specificity) and is awaiting FDA approval [37]. Based on the results from one or more screening tests, CRC can be staged and the associated prognosis and available treatment options reported to the individual.

Candidate Biomarker	Sample Type	Mechanism	Colorectal cancer stage	Sensitivity (%)	Specificity (%)	Reference
Protein Biomarkers						
3 protein panel - IGFBP2, DKK3 and PKM2	Blood/serum			73	95	[46]
4 protein panel - DK-BLY, CEA, Ca 19-9, S-p53	Blood/Serum	Aberrantly expressed protein isoforms	CRC	61	80	[47]
6 protein panel - SULF1,NHSL1,MST1,GTF2i,SREBF2,GRN	Blood/Serum	Auto-antibodies targeting tumor- associated antigens	CRC	74	72	[48]
Alpha 1-antitrypsin	Blood/Serum			87	73	[49]
Amphiregulin	Blood/serum		Dukes' A, C from CRC	nd	nd	[50]
C3a-desArg	Blood/Serum	Auto-antibodies targeting tumor- associated antigens	CRC	61	93	[51]
			Adenoma	79	78	-
CEA	Blood/Serum	Over expression of proteins in cancer tissue	CRC	22	100	[52]
			Adenoma+ Stage I CRC	21	100	-
			Dukes' A, B, C, D	53	93	[49, 50, 53, 54]
Collagen type X alpha1 (CPL10A1)	Blood/serum		Controls from Adenoma and colon cancer	63	85	[55]
CXCL11	Blood/serum		Dukes' A, C from CRC	nd	nd	[50]

Table 2 Summary of potential CRC biomarkers identified in the last 10 years.

CXCL5	Blood/serum		Dukes' A from D	nd	nd	[50, 56]
GRN	Blood/Serum	Auto-antibodies targeting tumor- associated antigens	CRC	59	58	[48]
GTF2i	Blood/Serum	Auto-antibodies targeting tumor- associated antigens	CRC	52	58	[48]
IL6	Blood/serum		Dukes' B from Dukes' A and controls	27	95	[50]
IL8	Blood/serum		Dukes' A, D from controls	30	95	[50, 57]
MMP9	Blood/Serum	Over expression of proteolytic enzymes	CRC	79	70	[58]
			CRC	55	nd	[59]
MMP9 + CEA	Blood/Serum	Proteolytic enzyme degradation	CRC	75	nd	[59]
MMP9+TIMP-1	Blood/Serum	Proteolytic enzyme degradation	CRC	75	nd	[59]
MST1	Blood/Serum	Auto-antibodies targeting tumor- associated antigens	CRC	71	46	[48]
MUC1 + MUC4	Blood/Serum	Auto-antibodies with altered glycosylation and expression	CRC	79	92	[60]
NHSL1	Blood/Serum	Auto-antibodies targeting tumor- associated antigens	CRC	52	52	[48]

RPH3AL auto-antibodies	Blood/Serum	Auto-antibodies	CRC			
		targeting tumor- associated antigens		73	84	[61]
			Dukes' A+B	65	nd	-
			Dukes' C+D	78	nd	-
S100A8	Blood/Serum	Over expression of	CRC			
		proteins in cancer		41	95	[52]
		tissue				_
			Adenoma+	32	95	
			Stage I CRC	52	55	
S100A9	Blood/Serum	Over expression of	CRC			
		proteins in cancer		44	95	[52]
		tissue				
			Adenoma+	40	95	[52]
			Stage I CRC	10	55	[32]
sCD26	Blood/Serum	Diminished protein	CRC	82	79	[62]
		expression				-
			CRC+adenoma	58	76	
SREBF2	Blood/Serum	Auto-antibodies	CRC			
		targeting tumor-		61	48	[48]
		associated antigens				
SULF1	Blood/Serum	Auto-antibodies	CRC			
		targeting tumor-		74	50	[48]
		associated antigens				
TIMP-1	Blood/Serum	Proteolytic enzyme	CRC	61	100	[59]
		degradation		÷-	200	[33]
Transthyretin	Blood/Serum	Auto-antibodies	CRC			
		targeting tumor-		61	100	[51]
		associated antigens				-
			Adenoma	86	68	

Transthyretin + C3a-desArg	Blood/Serum	Auto-antibodies targeting tumor- associated antigens	CRC	61	100	[51]
			Adenoma	96	70	
TuM2-PK	Stool	lsoenzyme expressionin proliferating cells	Adenoma	28	NS	[63]
			Adenoma	26	NS	[64]
			Adenoma	38	NS	
			Adenoma <1cm	20	NS	[65]
			Adenoma >1cm	60	92	
			CRC	78	74	[64]
			CRC	85	NS	[63]
			CRC	91	NS	[65]
			CRC	68	79	[66]
			CRC	81	71	[67]
			CRC	78	93	[68]
			Dukes' A/B	67	NS	[63]
			Dukes' A/B/C/D	67/61/67/100	NS	[66]
			Dukes' A/B/C/D	60/76/89/90	NS	[68]
			Dukes' C/D	89	90	[63]
Integrin β6	Tissue	Overexpression in cancer tissue	ACPS B and C	NS	NS	[69]
SATB2	Tissue	Antibody expression	CRC	85	NS	[70]
SATB2 + CK20	Tissue	Antibody expression	CRC	97	NS	[70]
uPAR	Tissue/serum	Expression in tissue samples	ACPS B and C	NS	NS	[49, 71]

mrina Biomarkers						
miR-532-3p, miR-331, miR-195, miR- 17, miR-142-3p, miR-15b, miR-532, and miR-652	Blood/Plasma	RNA expression	Polyps from controls	88	64	[72]
miR-601 and miR-760	Blood/Plasma	RNA expression	CRC to normal controls	83.3	69.1	[73]
			Adenomas to normal controls	72.14	62.1	
miR17-3p	Blood/Serum	Tumor-associated RNA expression	CRC	64	70	[74]
miR-19a-3p, miR-223-3p, miR-92a-3p and miR-422a	Blood/Serum	RNA expression	CRC from Adenoma and controls	84.3	91.6	[75]
miR21	Blood/Serum	Tumor-associated RNA expression	CRC	90	90	[76]
miR29a	Blood/Serum	Tumor-associated RNA expression	CRC	69	89	[77]
			Adenoma	62	85	
miR29a + miR92a	Blood/Serum	Tumor-associated RNA expression	CRC	83	85	[77]
			Adenoma	73	80	
miR601	Blood/Serum	RNA expression	CRC	70	72	[77]
			Adenoma	72	52	
miR760	Blood/Serum	RNA expression	CRC	80	72	[73]
			Adenoma	69.8	62	
miR92	Blood/Serum	Tumor-associated RNA expression	CRC	89	70	[74]
miR92a	Blood/Serum	Tumor-associated RNA expression	CRC	84	71	[77]

			Adenoma	65	81	-
Panel miR760 + miR 29a + miR92a	Blood/Serum	RNA expression	CRC	83.3	93	[73]
COX2 mRNA	Stool	Over expression of mRNA	CRC	87	100	[78]
			Dukes' A/B/C/D	77/96/82/82	NS	-
MMP7 mRNA	Stool	Over expression of mRNA	CRC	65	100	[78]
			Dukes' A/B/C/D	38/78/73/55	NS	-
COX2 mRNA + MMP7 mRNA	Stool	Over expression of mRNA	CRC	90	NS	[78]
DNA Biomarkers						
4 gene panel - APC, MGMT, RASSF2A, Wif-1	Serum/plasma	DNA hypermethylation	CRC	86.5	92	[79]
			Adenoma	75	91	-
4 gene panel – RARB2, P16 ^{INK4A} , MGMT, APC	Stool	DNA hypermethylation	CRC	62	NS	[80]
			Adenoma	40	NS	-
5 gene panel - CDA, MGC20553, BANK1, BCNP1, MS4A1	Serum/plasma	DNA hypermethylation	CRC	94	77	[81]
6 Gene panel - CYCD2, HIC1, PAX 5, RASSF1A, RB1, SRBC	Serum/plasma	DNA hypermethylation	CRC	83.7	68	[82]
			Adenoma	55	64	-
6 Gene panel—APC, ATM, hMLH1, sFRP2, HLTF, MGMT	Stool	Overexpression of mRNA + DNA hypermethylation	CRC	75	90	[83]
ALX4 +SEPT9	Serum/plasma	DNA hypermethylation	Precancerous Colorectal lesion	71	95	[84]

APC	Serum/plasma	DNA hypermethylation	CRC	57	86	[85]
			Stage I	57	89	
BMP3, NDRG4, VIM, TFPI2 and a mutant KRAS	Stool	DNA methylation	Cancer	68-86	77-92	[86-89]
			Adenoma (Size >1 cm)	52-73	85-92	[86-89]
			Adenoma (Size ≥1 cm)	45-62	85-92	- [86-89]
Calprotectin	Stool		CRC	72	75.5	[90]
			Adenoma	28	NS	-
COX2 DNA + mRNA	Stool	Overexpression of mRNA + DNA hypermethylation	CRC	50	93	[83]
			Adenoma	4	NS	-
DAPK1	Serum/plasma	DNA hypermethylation	CRC	50	74	[85]
			Stage I	43	70	_
E-cadherin	Serum/plasma	DNA hypermethylation	CRC	60	84	[85]
			Stage I	48	87	_
FHIT	Serum/plasma	DNA hypermethylation	CRC	50	84	[85]
			Stage I	29	67	-
Long DNA	Stool	DNA promoter methylation	CRC	53	83.3	[91]
			CRC	79	92	_
			Adenoma	17	NS	_
NDRG4	Stool	DNA promoter methylation	CRC	61	93	[92]

NGFR	Serum/plasma	DNA hypermethylation	CRC	33	95	[93]
SEPT9	Serum/plasma		CRC	90	88	[94]
			Stage I/II/III/IV	71/90/100/100		-
			Stage I + II	87		
			CRC	52	95	[93]
				67-96	81-99	[95-98]
SFRP2	Stool	DNA hypermethylation	CRC	87	NS	[99]
			Adenoma	62	76.8	
SMAD4	Serum/plasma	DNA hypermethylation	CRC	52	64	[85]
			Stage I	47	87	
SP20	Stool	DNA hypermethylation	CRC	80	100	[100]
SPG20 Ti	Tissue	DNA hypermethylation	CRC	88	NS	[101]
			Adenoma	82	NS	-
TFPI2 Stoc	Stool	DNA promoter methylation	CRC	68	100	[91]
			CRC	93	93	[89]
			Adenoma	21	93	
TFP12 + Long DNA	Stool	DNA promoter methylation	CRC	87	83.3	[91]
THBD-M Serum/p	Serum/plasma	DNA hypermethylation	CRC	71	80	[102]
		•	Stage I/II	74		-
TMEFF2	Serum/plasma	DNA hypermethylation	CRC	30	95	[93]

Tumor associated monocyte genetic finger print	Blood monocyte samples	Gene expression		93	92	[50]
VSX2	Tissue	DNA	CRC	83	92	[103]
		hypermethylation		65	92	[103]

1.1.9 Treatment of CRC

CRC is one of the most potentially curable cancers (by surgical resection) if found in the early localised (Dukes' A or B1) stages with high survival rates >90% [28]. However, most CRC (~65%) is found in Dukes' stage B2-C and require use of other treatment options that are briefly outlined here. If CRC is found at TNM stages 0, I or II, the preferred treatment is to remove the cancer by surgical resection [104]. If found at stage III, surgical resection is usually followed by adjuvant chemotherapy. If found at metastatic stages, treatment options include surgical resection, neoadjuvant chemotherapy, local ablation of CRC tissues, adjuvant chemotherapy, intra-arterial chemotherapy and targeted chemotherapy [104].

The most commonly used chemotherapeutic agents for CRC are 5- Fluorouracil (5-FU), leucovorin (LV), irinotecan, oxaliplatin, capecitabine, and bevacizumab. To improve the efficacy of the treatment these drugs are often using in combination and are affordable by families of a normal cancer patient. Depending on the stage of diagnosis various combinations of drugs are used. Briefly, a stage II patient can be treated only with 5-FU and LV and a stage III patient can be treated either with FOLFOX (5-FU, LV, and oxaliplatin) or CapeOx (capecitabine and oxaliplatin) regimens [105]. These regimens can vary with degree of CRC, age and other health needs of the patients. Stage IV metastatic CRC patients can be treated with FOLFOXIRI (LV, 5-FU, oxaliplatin, and irinotecan) plus cetuximab as first-line treatment [106].

The progress in cancer research has led to development of targeted therapies that often have less severe side effects than chemotherapy. For example, these therapies use specific monoclonal antibodies against epidermal growth factor receptor (EGFR) or vascular endothelial growth factor (VEGF). Cetuximab (Erbitux®) and panitumumab (Vectibix®) are EGFR treatments that are used in metastatic CRC patients. Phase 1 and 2 trials showed that Cetuximab is efficacious when used in combination with irinotecan- or oxaliplatin-based chemotherapy [107, 108]. Bevacizumab (Avastin®), ramucirumab (Cyramza®), and zivaflibercept (Zaltrap®) drugs, that target VEGF known to assist in the process of angiogenesis. A combination ramucirumab and FOLFIRI (irinotecan, folinic acid, and 5-FU) regimen is now being used to treat patients with metastatic CRC [109]. The use of multiagent combination therapy has been associated with higher cytotoxicity than single agent administration but has a significant improvement in response rate, progression time and survival rate [110].

1.1.10 Carcinogenesis and genetic alterations during CRC

Human cancer development (carcinogenesis) is a multistep process in which epithelial cells progress through a series of premalignant phenotypes until an invasive cancer emerges [111, 112]. The concept of multi-stage carcinogenesis was proposed by various groups in the 1940s and was supported by later studies [113-115]. In 1988, Vogelstein *et al.* published a molecular analysis of 172 colorectal neoplasia, including APC-associated familial adenomatous polyposis (FAP, also known as classic FAP) and CRCs, using what they outlined the 'traditional pathway' model also known as "adenoma-carcinoma sequence". This model explained how the majority of CRCs develop [116, 117]. Since the proposal of adenoma-carcinoma sequence, CRC has been an effective model for studying multi-staged carcinogenesis [116-118].

Gene name	Type of cancer gene	Frequency of mutation	Consequences
APC	Tumor suppressor	70%	Constitutive activation of Wnt signalling pathway. Regulates cell proliferation, cell migration, cell adhesion, cytoskeletal reorganization, and chromosomal stability.
KRAS	Oncogene	35%	Constitutive activation of MAPK pathway
BRAF	Oncogene	10%	Constitutive activation of MAPK pathway
TGFBR2	Tumor suppressor	15-30%	Decreased/loss of TGFβ-mediated growth inhibition
SMAD2	Tumor suppressor	6%	Decreased/loss of TGFβ-mediated growth inhibition
SMAD4	Tumor suppressor	16-25%	Decreased/loss of TGFβ-mediated growth inhibition
TP53	Tumor suppressor	50%	Impaired DNA damage response and cellular stress
MLH1	Mismatch repair	10%	Defective DNA mismatch repair
*Data forr	nat adapted from	n [119]	

 Table 3 Oncogenes and tumour suppressor genes commonly involved in CRC.

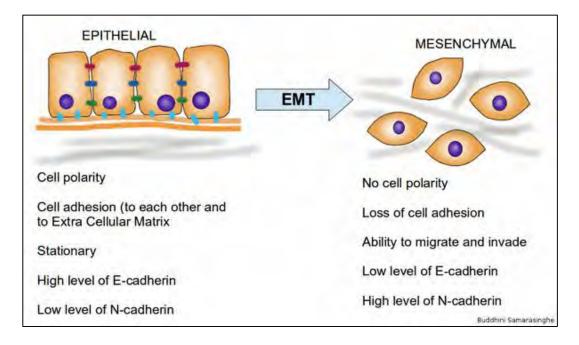
Carcinogenesis is a result of mutations in genes, specifically, proto-oncogenes, tumor suppressor genes and stability genes (see **Table 3**). Mutations in these genes initiate the development of CRC and are reasonably well-understood [9, 120]. The classical adenoma-carcinoma sequence and genetic changes that parallel the adenoma-carcinoma sequence during CRC can be a result of either chromosomal instability (CIN) or microsatellite instability (MSI) (see **Figure 5a**). The onset of CRC is characterised by formation of early stage dysplasia involving a single crypt (unicryptal) to formation of cluster of dysplastic crypts (adenoma) and then finally the appearance of malignancy (adenocarcinoma) [118].

However, this sequence of events are slightly different in individuals that are genetically predisposed to CRC particularly FAP and hereditary nonpolyposis CRC (HNPCC) (see **Figure 5b**). There are also other hereditary CRC syndromes such as Lynch syndrome (LS), attenuated FAP (AFAP), MUTYH-associated polyposis (MAP), and familial CRC type X [121].

CRC is considered to be more sporadic accounting for almost 80-90% of all reported cases, implying that lifestyle choices may have a more significant impact in CRC development than genetic factors [122]. Interestingly, 80% of the sporadic CRCs possess mutations in APC [123], suggesting these may follow the adenoma to carcinoma sequence similar to that of FAP. Although, genetic alterations are associated with higher risk of CRC they account for only 5-6% of total CRC cases [121]. Commonly, tumours with CIN are characterised with mutations in APC, KRAS, and TP53. In contrast, tumours with MSI are a result of both CIN and MSI, and are characterised with alterations in Wnt signalling, BRAF, TGFBR2, and IGFR2 required for cancer progression. FAP is an example of CIN CRC and is caused by a germline mutation in the APC gene, located on the long arm of chromosome 5q21, which is dominant trait inherited by many individuals with adenomatous polyps in the colon. Colonic neoplastic progression and apoptosis in colonic cells are controlled by APC which is often referred to as the "gatekeeper" of those functions [12]. FAP is only associated with 1-2% of total CRC incidences and serves as a good model to study CRC polyp pathobiology. HNPCC makes up 5-10% of all CRCs and confers a very high lifetime risk (up to 80%) of developing CRC [124]. HNPCC is a classic example of MSI CRCs. MSI is observed in 90% and in about 10-15% of HNPCC and sporadic CRC respectively [125, 126]. With a sufficient number of mutations, a small number of cells can detach from the primary tumour site and become malignant or metastatic.



Figure 5 - The colorectal adenoma-carcinoma sequence. a) Sporadic colorectal cancer: Progression from normal through adenoma to carcinoma is a result of accumulated abnormalities, loss or mutation, of the genes involved at each stage of the sequence are shown. In detail, the chromosomally unstable CRC (CIN+) begins with the mutation or loss of adenomatous polyposis coli (APC) tumor suppressor gene results in the uncontrolled growth of normal cell sin the colon resulting in the formation of polyps or early adenoma. The activation of KRAS oncogene followed by the loss of chromosome 18q with Smad 4, required for transforming growth factor- β (TGF β) signalling, and TP53 tumor suppression genes promote the formation of carcinoma and eventually leading to metastasis. The MSI CRCs (MSI+) occur when there is loss in microsatellites that maintain genomic stability and are infrequently. Consequently, the development of CRC through MSI, must involve different, but analogous, genetic changes to those detailed in CIN+ CRC. The initial step in MSI+ CRC formation is thought be alteration of Wnt signalling pathway. This is then followed by the mutations in BRAF, sometimes KRAS, and further mutations in TGFB receptor 2 (TGFBR2), insulin-like growth factor receptor 2 (IGFR2) and BAX, which then allow for p53-independent mechanism for progression to carcinoma and eventual metastasis. During, both CIN and MSI there are mutations or loss of various mismatch repair (MMR) genes. b) Familial colorectal cancer: These sequence of events usually occur in individuals that are genetically predisposed with cancer. More specifically, during FAP (b.i), a mutation and loss of the APC gene results in the development of adenoma faster but the progression from adenoma and carcinoma happens at the same rate as of sporadic cancer. During HNPCC (b.ii), the inactivation of either the MSH2 or MLH1 MMR genes along with other somatic mutations speeds up the adenoma to carcinoma progression. (Figure adopted from http://syscol-project.eu/about-syscol/ and [127]).

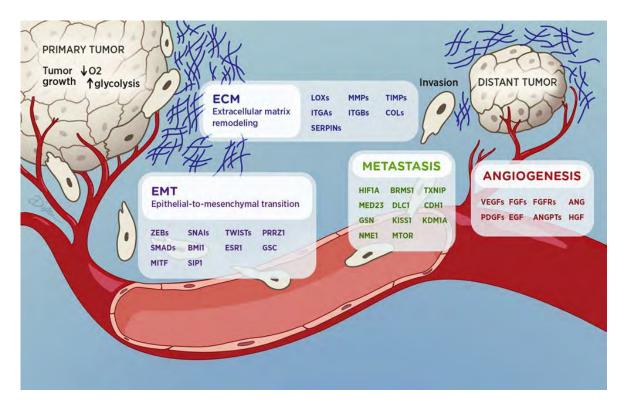

1.1.11 Metastasis

Metastasis can be defined as the movement of the cancerous cells to secondary sites (organs i.e. liver, heart), via circulatory or lymphatic systems, to form malignant cancer growth away from the primary site of cancer. Metastasis, rather than primary tumours, is directly responsible for the majority (almost 90%) of CRC deaths [128, 129]. It is thought to be an inefficient process since very few tumour cells escape from the primary tumour form metastasis [130-133]. Metastasis is a cascade of complex molecular interactions which alter various regulatory and signalling pathways to successfully form secondary sites of cancer [128, 134, 135]. It is thought is some way to begin with the epithelial to mesenchymal transition (EMT), which leads to invasion followed by migration and spread to distant organs.

The Epithelial to mesenchymal transition

The normal epithelial cells in an organism have two very important roles – to act as protective barrier and to secrete and absorb substances necessary for growth and metabolism. The structural integrity of the epithelial layers is maintained by the cell-cell and cell-extracellular matrix (ECM) interactions, which also define tissue polarity [136] allowing different functions for the apical and basal surfaces. In some tissues such as the colorectal epithelium, the apical surface of the cell has a role in absorption or secretion and faces into the intestinal lumen.

EMT is a key process during embryogenesis and is considered a crucial hallmark of cancer malignancy. EMT is an orchestrated series of events in which adherent epithelial cells are converted into individual migratory cells which are able to invade the ECM [137]. The term EMT is often misused to describe distinct biological events as if it were a single conserved event. However, the EMT-related processes can vary in intensity from loss of cell polarity to total cellular reprogramming [138]. The epithelial to mesenchymal transition can result in the loss of baso-apical polarization to acquire front-rear polarization required for cell migration, a modulation of the organization of the actin cytoskeleton that enhances ECM-structured communication, loss of the cell-cell adhesion structures, increased mobility, acquisition of resistance to anoikis and most importantly switch expression from keratin- to vimentin-type intermediate filaments which defines mesenchymal origin [138, 139]. The main differences in the epithelial and mesenchymal cells are summarised in **Figure 6**. These changes are all hallmarks of increased malignancy and the EMT provides a mechanism for carcinoma cells to acquire this aggressive mesenchymal phenotype.


Figure 6 - Concept of the Epithelial to Mesenchymal Transition (EMT) illustrating major differences between epithelial and mesenchymal cells during the process. Image credit: Buddhini Samarasinghe [140].

The EMT is an uninterrupted process that allows the pre-malignant epithelial cells to escape the constriction of adjoining cells and the ECM, to breach the basement membrane, migrate out of the primary tumour and to locally invade surrounding tissue. This process also involves the induction of a new transcriptional program to drive and maintain the acquired mesenchymal phenotype. The EMT involves the alteration of the function, expression and distribution of proteins involved in cell adhesion and ECM remodelling. Most often the EMT has been associated with the loss of cell-cell adhesions through repression of Epithelial (E)cadherin expression, the dissociation of desmosomes, tight- and adherens-junctions [137, 139]. Once the mesenchymal phenotype is acquired, it provides the capacity for the cells to invade surrounding tissues and metastasise to distant organs.

Invasion

Invasion is a hallmark of cancer development. Invasion can be defined as the active translocation of neoplastic cells across tissue boundaries and through host cellular and extracellular matrix barriers [141]. The majority of times the term "invasion" is used it refers to "local invasion" which compromises the function of involved tissues by compression, destruction, or prevention of normal organ functioning [142]. The process of invasion can only be achieved by breaching the basement membrane with cells entering the underlying interstitial stroma, followed by distant dissemination through lymphatics and blood vessels. It is not an innate ability of all tumour cells

Upon gaining the invasive phenotype tumour cells will acquire the ability to alter their adhesive interactions with the basement membrane, gain ability to interact with the exposed vascular or lymphatic basement membranes and finally, occupy the basement membrane from where locomotion is possible. Invasion is a dynamic process involving cyclic repetition of pseudopod protrusion, proteolysis, antiproteolysis, adhesion, and detachment, through various proteins and their associated signalling pathways [142]. It is certainly a prerequisite for metastasis [133]. The existence of an invading cancer does not necessarily imply metastasis and a fatal outcome and metastases can be prevented by averting invasion.

Figure 7 - Key molecules in cancer progression. The illustration shows various molecules associated with different stages of cancer development. Image source [143].

1.1.12 Key molecules in cancer progression

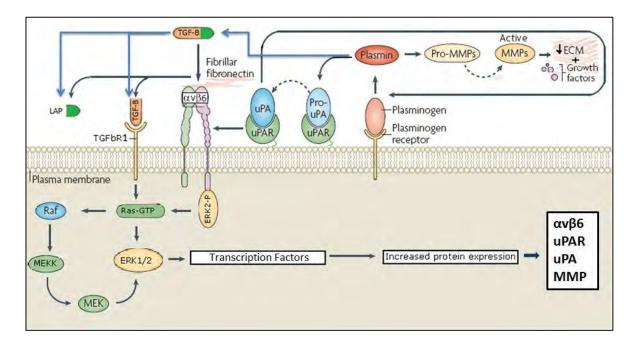
The complex process of metastasis relies on EMT and invasion during which various molecules that control various cellular processes such as cell adhesion, ECM degradation and cell growth are altered. These molecules associated have been reported to deviate from their normal physiological function/s and have different functional outcomes in cancer. Some key molecules or protein groups that are thought to be involved at various stages of cancer progression (see **Figure 7**) include various integrins, proteolytic enzymes and their signalling, and growth factors. The following sections will briefly focus upon the role of one integrin ($\alpha\nu\beta6$) with respect to cell adhesion, and with one protease receptor (urokinase

plasminogen activator receptor; uPAR) with respect to ECM proteolysis and a short summary of growth and signalling factors implicated in cancer.

Integrin αvβ6 as an adhesion molecule

Cell adhesion is a fundamental process for the development and functioning of a multicellular organism. There are more than 50 cell adhesion molecules (CAMs) that have been classified into various superfamilies such as integrins, cadherins, selectins, and immunoglobulin-like CAMs [144]. Various CAMs are now thought to act as both positive and negative modulators of the metastatic process [145]. Specifically, differential expression of various integrins has been implicated in multiple cancers including CRC [69, 146-150]. They are also viewed as regulators of inflammation, metastasis and drug resistance in cancer [151].

Integrins are a group of prominent transmembrane receptor proteins that were identified as cell adhesion molecules [152, 153]. Integrins can be composed from one of the 18 alpha (α) and 8 beta (B-) subunits and form at least 24 distinct integrin heterodimer combinations known [154]. Integrins can bind to ECM proteins such as collagen IV, laminin, vitronectin, fibronectin and leukocyte-specific ligands and mediate cellular adhesion through cell-ECM and cell-cell adhesion [155, 156]. For example, α 5 β 1, α V β 3, α V β 5 and α V β 6 heterodimers mediate cellular adhesion by binding to Arg-Gly-Asp (RGD) motifs within ECM proteins such as fibronectin, vitronectin, fibrinogen and osteopontin [155, 157]. Integrins also serve as bidirectional signalling molecules that participate in other vital cellular functions including polarity, differentiation, migration and cell division [158] wherein they associate with adapter proteins that connect the integrins to the cytoskeleton, cytoplasmic kinases, and transmembrane growth factor receptors [159]. These functions are critical during embryogenesis and maintaining cellular homeostasis during normal cell growth [158]. During cancer, however, defective integrin signalling can result in abnormal regulation of gene expression [150, 160], cell proliferation [161, 162], regulation of apoptosis [163-165], invasion and metastasis [166, 167] and angiogenesis [148, 168, 169]. Several integrin subunits and heterodimers such as $\alpha\nu\beta6$ [146, 149, 170, 171], $\alpha\nu\beta1$ [172-174], $\alpha\nu\beta3$ [175], and $\alpha 6\beta 4$ [176] have been implicated in CRC.


The integrin β 6 subunit is unique in three ways. Firstly, it is only expressed in wounded or transformed epithelial cells and secondly it only binds with α v subunit [158]. Lastly, the β 6 has a unique C-terminal cytoplasmic tail that can bind to phospho-ERK1/2 [146, 171]. The α v β 6 heterodimer is highly expressed during development of lung, skin and kidney epithelia and the expression is down-regulated in adult epithelia [177]. Elevated expression of α v β 6

has been observed in various epithelial cancers including colorectal, breast, endometrium, gastric, liver, lung, and oral and skin squamous cell carcinomas (SCC), where its expression usually correlated with poor patient survival [158]. A recent clinical study by Ahn *et al.* [69] from our group assessing surgical resections from 362 rectal cancer patients (168 Duke's stage B and 194 Duke's stage C) using tissue microarray (TMA) immunohistochemistry (IHC) reported that $\alpha\nu\beta6$ expression is significantly higher in the invasive frontal region of rectal tumours relative to the central region or adjacent non-neoplastic mucosa tissue. However, this study noted no significant difference in $\alpha\nu\beta6$ expression and overall survival between the Dukes' stage B and C patients [69].

Integrin $\alpha\nu\beta6$ is an RGD-motif binding protein. It is known to activate latent-TGF $\beta1$ (L-TGF $\beta1$) by binding to the RGD sequence on the latency-associated peptides (LAP) of L-TGF $\beta1$ and L-TGF $\beta3$ [178]. As a result of its specific expression pattern, $\alpha\nu\beta6$ -mediated TGF β activation is observed only near epithelial cells. For instance, in ovarian cancer cells, increased TGF $\beta1$ levels was observed when $\alpha\nu\beta6$ was overexpressed [179]. Saldanha *et al.* showed that the inhibition of $\alpha\nu\beta6$ using specific antibodies resulted in the blockade of TGF $\beta1$ and ERK activation through the $\alpha\nu\beta6$ -uPAR axis [180]. Interestingly, in colon carcinoma cells, the loss of $\alpha\nu\beta6$ -mediated ERK activation was abrogated when the unique 11 amino acid (EKQKVDLSTDC) cytoplasmic-tail motif of the integrin was deleted [146, 171]. Likewise, SCC9 cells expressing $\beta6$ subunit that lacked this unique cytoplasmic-tail did not develop the mesenchymal phenotype when compared to the full length $\beta6$ -overexpression cell line [154]. Morgan *et al.* then showed that the expression of this unique cytoplasmic-tail sequence at the end of a different integrin subunit ($\beta3$) enhanced $\alpha\nu\beta3$ mediated tumour cell invasion thorough matrix metalloproteinases (MMP2 or MMP9) [181].

Interestingly, Ahmed *et al.* [182] also showed that increased expression of $\alpha\nu\beta6$ in ovarian cancer cells was accompanied by the secretion of high molecular weight-urokinase plasminogen activator (hmw-uPA), MMP2 and MMP9 in the tumour conditioned media and a marked reduction of these molecules was observed in the absence of $\alpha\nu\beta6$ expression. It was therefore very surprising to observe that $\alpha\nu\beta6$ interacts directly with urokinase plasminogen activating receptor (uPAR), when co-immunoprecipitation (co-IP) experiments were performed using ovarian cancer cells (OVCA429) [180]. These results from the IP experiments suggest the possibility of a $\alpha\nu\beta6$ -uPAR mediated ECM degradation through activation of various proteolytic enzymes [176]. Proposed interactome associations between $\alpha\nu\beta6$, uPAR and TGF β cascades is illustrated in **Figure 8**. The role of integrin $\alpha\nu\beta6$ in CRC metastasis has been reviewed in **Publication II** of this thesis.

Integrin β 6 has also been reported to be involved in inflammation. During inflammation or epithelial injury β 6 expression is rapidly induced [178, 182]. Huang XZ, et al., showed that knockout of β 6 in mice resulted in increased macrophages in the skin, accumulation of lymphocytes in the lungs and showed airway hyper-responsiveness to acetylcholine (a bronchoconstrictor). These results suggest that β 6 may have important anti-inflammatory effects in skin and lungs [182]. Munger S, et al., also observed that mice lacking integrin β 6 developed exaggerated inflammation however, were protected from profibrotic agent bleomycin induced pulmonary fibrosis [178]. Early pre-malignant tumors are often recognised as wounds by the immune system which leads to inflammation resulting in high β 6 expression. This increased β 6 can then assist in the activation of L-TGF β 1 during cancer and further contribute to the growth of the tumor [183].

Figure 8 - The uPAR-integrin \beta6-TGF\beta signalling pathway. uPAR binds to the inactive serine protease zymogen pro-urokinase-type plasminogen activator (pro-uPA) and converts it to active uPA. uPA can then catalyse the conversion of plasminogen into highly active plasmin[184]. The active plasmin is capable of catalysing the conversion of pro-MMPs to active MMPs. Plasmin along with the MMPs is then capable of degrading the ECM proteins such as fibronectin, vitronecton, laminin and fibrin that are key components for maintain the ECM stability. Plasmin can also activate TGF β , through cleavage of the LAP of the L-TGF β . Integrin $\alpha\nu\beta6$ can activate TGF β by binding to the RGD-motif on LAP of L-TGF β 1. The active TGF β through its receptors can activate Erk1/2 signalling alongside $\alpha\nu\beta6$. (Image modified from Smith and Marshall, 2010 [184].).

ECM proteolysis and uPAR

The ECM is a tight fabrication of multiple proteins and polysaccharides expressed by cells. Receptors such as integrins interact with ECM molecules and participate in signalling required for regulating cell adhesion, proliferation, differentiation, migration and survival. This intricate network of ECM-interactions are essential for normal functioning of an organism. Therefore, alterations in these ECM molecules or systems can be exploited during human diseases. During cancer, loss of cell-ECM and cell-cell adhesion is a pre-requisite for increased cell motility that results in eventual migration and invasion. The majority of the times the loss in cell adhesion can be associated with increased expression of proteolytic enzymes such as plasmin and MMPs that can cleave almost all ECM related molecules. One of the ways to achieve is through the increased expression of receptors such as uPAR that are integral to plasminogen activation to plasmin which is then capable of activating various MMPs [184].

uPAR/CD87 is a cell surface glycophosphatidylinositol (GPI-) anchored protein that belongs to lymphocyte antigen 6 (Ly6) protein superfamily and is integral to the plasminogen activation cascade (see Figure 8). uPAR consists of a single polypeptide that is 283 amino acids in length and is composed of three domains denoted DI (residues 1-80), DII (residues 93-191) and DIII (residues 192-283). These three domains adopt a three-finger fold like tertiary structure which typically compromises of six β -strands in antiparallel and four disulphide bonds. These three domains form a concave structure and the central cavity acts as the binding site for the uPA, the primary ligand of uPAR and the outer surface is available for secondary binding partners. Apart from binding to uPA to facilitate the activation of zymogen plasmin, uPAR has also been reported to interact with $\alpha v\beta 6$ [180] using co-IP studies. This interaction with $\alpha\nu\beta6$ was recently further investigated by Ahn *et al.* using peptide array studies and they reported six potential $\alpha\nu\beta6$ binding sites spanning across all three domains of uPAR [185]. Using homology modelling and docking studies, Sowmya et al. then confirmed the site of interaction to be in domain III of uPAR [186]. It is also important to note that crystal structure of $\alpha\nu\beta6$ has not been reported and therefore the homology model reported by Sowmya *et al.* only offers a glimpse of the structure of $\alpha\nu\beta6$ [186]. Various other integrins including $\alpha 3\beta 1$, $\alpha 4\beta 1$, $\alpha 5\beta 1$, $\alpha \nu \beta 3$ and $\alpha M\beta 2$ have been reported to bind with uPAR and to facilitate downstream intracellular signalling [184].

Under normal physiological conditions, expression of uPAR is believed to be relatively limited. High expression is observed during tissue remodelling [187] and wound healing [188]. However, high expression of uPAR has been observed various cancers [189]. In CRC, specifically, elevated uPAR expression has been correlated with poor prognosis [71, 190] [189, 191-193]. A recent study by Ahn *et al.*, examining the Dukes' stages B (n=170) and C (n=179) rectal cancer tissue samples showed the expression of uPAR in epithelial and stromal cells correlated with patient survival [71]. They reported that elevated epithelial uPAR expression in both the central region and invasive tumour front adversely correlated

with overall survival of stage B patients while elevated stromal uPAR at the invasive front favourably correlated with overall survival of stage C patients [71]. In contrast, another study by Boonstra *et al.*, examining CRC tumour tissue (n=262; all stages) samples showed that stromal uPAR expression was adversely associated with overall survival as well as disease free survival [191]. Another study by Illemann *et al.* also reported, similar results to Boonstra *et al.*, that uPAR expression on tumor-associated macrophages negatively correlated with overall survival in all stages (n=244) [192]. From these reports it can be inferred that high expression of uPAR during cancer result in increased levels of plasmin that may contribute to sustaining high levels of TGF β during cancer. Therefore, it is not very surprising to observe alterations in plasmin or plasminogen binding [194], expression of MMP-2 and MMP-9 [195], integrin $\alpha\nu\beta6$ [170] and active TGF $\beta1$ [196] which have collectively been associated with poor CRC prognosis and subsequently poor survival.

Growth and signalling factors

Growth factors are polypeptides that stimulate cell proliferation and are a major class of growth regulatory molecules for cells in culture and probably *in vivo* [197]. Under normal physiological conditions the cells receive fate-determining signals from their tissue surroundings in the form of polypeptide growth factors to control homeostasis [198]. During cancer, the departure from homeostasis and tumour initiation are instigated by oncogenic mutations rather than by growth factors [198]. However, the growth factors "are major regulators of tumour progression, namely clonal expansion, invasion across tissue barriers, angiogenesis, and colonization of distant niches" [198]. Various growth factors such as TGF β , VEGF, EGFR and platelet-derived growth factor (PDFG) amongst others have been implicated in cancer [197, 198]. TGF β and its signalling components have also been widely implicated in various cancers [199-207]. It has been proposed that it regulates cancer-related cellular processes such as EMT, cell proliferation, invasion and metastasis [204, 207]. Considering TGF β is the main of focus of this thesis it will be addressed with greater detailed in the section 1.2.

Names	Tissue Specificity	Molecular weight (kDa)	Representative functions	
TGFβ subfamily				
TGFβ1		44.34	Control of cell growth, cell proliferation and cell differentiation	
TGFβ2	Most epithelial cells	47.74	in mesenchymal cells, wound healing, ECM production [208,	
TGFβ3		47.32	209]	
Activin/Inhibin/Nodal su	ıbfamily			
Activin subgroup				
Activin A		47.44	_ Regulates production of follicle-stimulating hormone (FSH),	
Activin B	Secreted by gonads, pituitary	45.12	 cell proliferation, differentiation, apoptosis, metabolism, homeostasis, immune response, wound repair, and endocri 	
Activin C	gland	38.23		
Activin E		38.56	function [210-213]	
Inhibin subgroup				
Inhibin A	Secreted by gonads, pituitary		Negatively regulate FCH Secretion [214]	
Inhibin B	gland		- Negatively regulate FSH Secretion [214]	
Nodal				
Nodal	Secreted	39.56	Essential for mesoderm formation and axial patterning during embryonic development [215]	
LEFTY				
LEFTY-1		40.88	Essential for formation of mesoderm and axial patterning	
LEFTY-2		40.92	during embryonic development [216]	
BMP/GDF Subfamily				
BMP 2/4 subgroup				
BMP-2	Abundant in lung, spleen and colon	44.7	Participate in embryogenesis, neurogenesis, development of cartilage and bone formation [200, 209, 217, 218]	

Table 4 The TGF β -superfamily ligands, tissue specificity and their major functions[§].

BMP-4	Liver, low levels in Kidney	46.55	
BMP 3 subgroup			
BMP-3	Adult and fetal cartilage	53.37	
BMP-3b/GDF-10	Expressed in femur, brain, lung, skeletal muscle, pancreas and testis	53.12	Negatively regulates osteogenic properties of other BMPs [219]
BMP 5 subgroup			
BMP-5	Lung and Liver	51.73	
BMP-6/Vgr1		57.22	
BMP-7/OP-1	Expressed in kidney and bladder	49.31	development and also take part in neurogenesis [200, 203, 209,
BMP-8a/OP-2		iilage 53.37 r, brain, 53.12 iilage 53.12 Negatively regulates osteogenic properties of ot 51.73 57.22 y and 49.31 44.79 44.79 44.76 44.76 47.32 Acts a circulating vascular quiescence factor [2: neurogenesis like BMP 2/4 and 5 subfamilies 48.04 39.47 Cell differentiation events during embryonic de 41.38 55.41 Chondrogenesis [221-223] and neurogenesis [22 50.66 Osteogenesis of limbs, skull and axial skeleton Required for the specification of neuronal identi	— 217, 218]
BMP-8b		44.76	
BMP 9 subgroup			
BMP-9/GDF2		47.32	Acts a circulating vascular quiescence factor [220], takes part in neurogenesis like BMP 2/4 and 5 subfamilies
BMP-10		48.04	
GDF 1 subgroup			
GDF-1	Expressed in brain	39.47	Cell differentiation events during embryonic development
GDF-3/Vgr2		41.38	
GDF 5 subgroup			
GDF-5/BMP-14	Bone development	55.41	Chondrogenesis [221-223] and neurogenesis [224]
GDF-6/BMP-13	Bone development	50.66	Osteogenesis of limbs, skull and axial skeleton [225]
GDF-7	Secreted during neurogenesis	46.95	Required for the specification of neuronal identity in the dorsal spinal cord and other functions embryo development [226]
GDF 8 subgroup			
GDF-8/Myostatin	Skeletal-muscles	42.75	Negative regulator of skeletal muscle growth [227]

GDF-11/BMP-11	Secreted during embryogenesis	45.09	Facilitates temporal progression of neurogenesis in the developing spinal cord [228], controls axial vertebral development [229-231]	
GDF 9 subgroup				
GDF-9	Expressed in ovarian granulosa cells	51.44	Required for ovarian folliculogenesis [232, 233], regulate — ovarian functions [234]	
GGDF-9b/BMP-15				
GDF-15	High expression in placenta, low expression in prostate, colon and kidney	34.14		
MIS				
MIS	Produced by Sertoli cells of the testis	59.19	Mullerian duct regression [235]	
[§] TGFβ – transforming protein; MIS - mülleria		hogenetic pr	otein; GDF - growth differentiation factor; OP - Osteogenic	

1.2 Transforming Growth Factor-β

Transforming Growth Factor- β (TGF β) superfamily of growth factors and their signalling emerged with the evolution of complex multicellular organisms [236]. They are vital growth factors pathways that contribute to the increased diversity and complexity required for development and homeostasis of the metazoans [237]. The TGF β family members have been reported to regulate various processes during embryonic development including trophoblast differentiation, endocardium, neural crest cell, lung, and palate development [238]. For example, neural crest cell morphogenesis is shown to be influenced by TGF β 1, TGF β 2, TGF β 3, BMP2/BMP4 and Wnt signalling which determines the fate of those cells [238].

The EMT, a key process during embryogenesis, is considered to be important during cancer development [238]. During embryogenesis EMT is essential for a variety of developmental processes and is regulated by TGF β family members [236]. For instance, during the development of heart valves invasion of the heart cushion by endocardial cells from the atrioventricular canals is essential and is mediated by TGF β signalling components [239]. However, the TGF β s function as crucial inhibitors of epithelial cell growth in adult tissues [240]. Tied to these opposing yet critical regulatory roles at various stages of the organismal growth "are the serious consequences that result when this signalling components can result in cancer cells gaining the capacity to avoid or adulterate the TGF β growth inhibitory effects leading to TGF β -mediated cancer cell growth. This has attracted considerable attention in recent years and efforts are being made to understand the role of TGF β during cancer. This thesis has tried to understand the effects of TGF β on CRC cell lines and being the main focus will details the TGF β signal transduction and its role in cancer.

1.2.1 TGFβ superfamily of ligands

The TGF β superfamily is found in all metazoans and is a large group of more than 30 secreted proteins that regulate a multitude of cellular functions and disease pathogenesis. The superfamily includes TGF β s, activins, inhibins, Nodal and bone morphogenetic proteins (BMP) and growth differentiation factors (GDF), all of which possess diverse and complementary physiological effects. The important functions of these ligands are summarised in **Table 4**.

TGF β s are named after their cell transforming activities (i.e., cell growth and differentiation) from *in vitro* assays and are now unequivocally known to be involved in both tumour suppression and tumour progression (i.e., proliferation, invasion and metastases). Initially,

TGF β 1 was isolated as one of two components (TGF α and TGF β) that could induce a phenotype transformation in normal kidney rat fibroblasts [242]. Subsequently, it was understood that TGF β was a potent growth inhibitor to most cell types whereas TGF α was a ligand for EGFR and stimulates growth in most cell types [242, 243]. The *bona fide* TGF β subfamily consists of three TGF β isoforms, TGF β 1, TGF β 2 and TGF β 3 encoded by genes located on different chromosomes (19q13.1, 1q41 & 14q24 respectively) but they signal through the same receptor system.

All TGF β ligands are secreted *in vivo* as 'latent' inactive zymogen complexes in a noncovalent complex with LAPs that are bound to their respective latent TGF β binding proteins [244]. The LAP domain ensures that 'inadvertent' activation of TGF β does not occur in normal cells under physiological conditions. The two major ways by which activation can occur include cleavage of LAP by proteases and by conformational changes, assisted by ECM molecules such as integrins. However, L-TGF β can also be activated *in vivo* through a variety of other mechanisms and they are summarised in **Table 5**.

Activation environment/ molecule	Mechanism of activation [Reference]
Physicochemical	
Extremes of pH (acid treatment)	Denaturing of LAP [199, 245]
Acidic cellular microenvironment	Possible denaturing of LAP [246]
Gamma-irradiation	Disabling of LAP by the hydroxyl radicals [247]
Reactive oxygen species	Disabling of LAP by the hydroxyl radicals [248, 249]
Proteases	
Plasmin	Cleaves the LAP [250]
MMP-2 and MMP-9	Cleaves the LAP [251]
Unidentified protease in Kato III cells	Unknown [252]
Physical interaction	
Thrombospondin-mediated	Disrupt non-covalent interactions between the LAP and TGF β [253, 254]
Integrin αvβ6	Direct interaction with the RGD amino acid sequence LAP β 1 and LAP β 3 [178]
Integrin αvβ8	Unclear [255]
Integrin αvβ1	Direct interaction with the RGD amino acid sequence LAP β1 [256]

Table 5 Mechanisms of TGFβ activation under different physiological conditions

1.2.2 TGFβ Receptors

The TGF β receptors were identified by affinity labelling of cells with radio-iodinated TGF β (¹²⁵I-TGF β) ligand and subsequent isolation of receptors to which it bound [257]. Three

primary TGF β receptors, the type I receptor (53 kDa), the type II receptor (73-95 kDa) and the type III receptor (110 kDa) were identified depending on molecular weights [258]. A fourth non-proteoglycan membrane glycoprotein that co-expresses with the type I, type II, and type III TGF- β receptors in epithelial cells and other cell types but not in certain carcinoma cells was reported as the type V TGF- β receptor is a 400-kDa by O'Grady *et al.*, in 1991 [259, 260].

This thesis will only elaborate on the three primary TGF β receptors. The structure of these three primary receptors is illustrated in **Figure 1** of this thesis' **Publication I**. Like the TGF β ligands, there are a family of receptors (summarised in **Table 6**) that can bind to various ligands and initiate a specific signalling pathways. The three TGF β receptors are discusses in the order of ligand presentation that occurs *in vivo*.

The TGFβ Type III Receptor

Transforming growth factor- β type III receptor (TGF β R3) is also known as betaglycan and is the most abundant of all the three TGF β receptors followed by endoglin [261]. Betaglycan is a 851 amino acid proteoglycan comprising of a large N-terminal extracellular domain, a single-pass hydrophobic transmembrane region and a short 42 amino acid C-terminal cytoplasmic domain [261]. The cytoplasmic domain is rich in serine and threonine, but does not exhibit any kinase activity. The last three amino acids of the cytoplasmic tail comprise a class I PDZ binding motif which binds with the G Alpha Interacting Protein (GAIP)interacting protein C-terminus (GIPC). This interaction has been found to increase stability of betaglycan at cell surface and increase TGF β 1 and TGF β 2 mediated gene expression in Mv1Lu mink lung epithelial and L6 myoblast cells expressing the GIPC [262]. Recently the GIPC-betaglycan interaction has been shown to inhibit TGF β -mediated Smad signaling and migration in breast cancer cells [263]. However, the exact mechanism/s by which this occurs are yet to be characterized.

Betaglycan also functions as a co-receptor (accessory receptor) for TGF β receptors and can bind to all three TGF β ligand isoforms. Affinity-labelled saturation experiments showed that betaglycan has a 5- to 10-fold higher affinity for TGF β 2 than for TGF β [264]. However, it has a 7-fold higher capacity for TGF β 1 than TGF β 2, which explains why betaglycan is required for mediating the binding of TGF β 1 to TGF β R2 [265]. Further increasing its functional complexity, proteolytic cleavage of the extracellular domain of betaglycan by MT1-MMP and MT3-MMP near the transmembrane region results in the release of a soluble 90kDa fragment, capable of binding and presenting TGF β ligands to its receptors [266]. The ability to present TGF β ligands is also affected by cleavage of the 50-amino acid linker region extracellular domain by plasmin [267]. Plasmin mediated cleavage generates fragments of 45kDa and 55kDa which can no longer bind to and present TGF β ligands to TGF β R1 and TGF β R2 [267].

The TGFβ Type II Receptor

Transforming growth factor- β type II receptor (TGF β R2) is a 567 amino acid serine/threonine kinase receptor which includes a 22 amino acid signal peptide, a cysteinerich N-glycosylated extracellular domain, a transmembrane domain, and a cytoplasmic serine/threonine kinase domain flanked by a short juxtamembrane domain and C-terminal tail [268]. TGF β R2 can also bind to all three TGF β ligands with varying affinities. It has strong affinity towards TGF β 1 followed by TGF β 3 and TGF β 2 [269]. However, the presence of the co-receptor betaglycan is essential to facilitate high affinity TGF β 1 binding to TGF β R2 to enable downstream signaling [270]. However, it cannot participate in downstream signaling in the absence of TGF β R1 [269].

The TGFβ Type I Receptor

Transforming growth factor- β type I receptor (TGF β R1) is a 503 amino acid transmembrane serine/threonine kinase receptor that closely resembles TGF β R2 in structure. TGF β R1 structure contains a 33 amino acid signal peptide, a cysteine-rich N-glycosylated extracellular domain, cytoplasmic kinase region with 41% sequence homology to TGF β R2, a very short C-terminal tail [271]. A unique feature of TGF β R1 is its highly conserved 30 amino acid region preceding the cytoplasmic kinase region called the GS domain because of the characteristic SGSGSG sequence it contains. The ligand-induced phosphorylation or serine and threonine in the GS region is required for activation of signaling [270]. TGF β R1 forms a heterodimer with TGF β R2 and this complex collectively takes part in TGF β -mediated downstream signaling. Unlike TGF β R2, TGF β R1 has similar affinities for TGF β 1 and TGF β 3 and has 10-20 fold higher affinity for TGF β 1 than it has for TGF β 2 [269].

1.2.3 Canonical TGF_β Receptors

A well-characterized signalling pathway that is initiated by active heterodimeric TGF β receptors is through Smads. The family of mammalian Smads consists of eight proteins divided into three subfamilies, namely receptor-activated (R-) Smads, common-mediator (Co-) Smads, and inhibitory (I-) Smads (see **Table 6**). TGF β signalling via Smads is facilitated by TGF β R1 and TGF β R2, that form both homodimeric and heterodimeric complexes required for signalling.

Receptors	Alternative names	Molecular weight (kDa)	Ligands partners	References
Type I Receptors				
Alk-1	TSR-1, SKR3, AVCRL1	56.12	TGFβ, Activin A	[272, 273]
Alk-2 (Type 1 Activin receptor)	ActR1A, Tsk7L, SKR1	57.15	Activin A, TGFβ, BMP 2/4, BMP 6/7	[272, 274-278]
Alk-3 (BMP receptor type 1/1a)	BMPR1 (BMP type 1 receptor), BMPR1A, BRK1, Tfr11, AVCRLK3	60.198	BMP 2/4, BMP 6/7	[274, 275, 278]
Alk-4 (Type 1b Activin receptor)	ActR1B, ACVR1BSKR2	56.807	Activin A, GDF-1, Nodal, GDF-11	[272, 275, 279- 281]
Alk-5 (Type 1 TGFβ receptor)	TGFβR1, SKR4	55.96	TGFβ	[282, 283]
Alk-6 (BMP receptor type 1b)	BMPR1B, BRK2	56.93	BMP2/4, GDF5/6, BMP 6/7, GDF9b, MIS	[274, 275, 278, 284-287]
Alk-7		54.87	Nodal	[288]
Type II receptors				
ActR2A (Activin type 2 receptor)	AVCR2	57.84	Activins, Inhibin A/B, BMP-6/7, GDF-1, GDF-5, GDF8/11, GDF-9b	[274-276, 279- 281, 284, 287, 289]
ActR2B	AVCR2B	57.72	Activins, Inhibin A/B, BMP-6/7, GDF-1, GDF-5, GDF8/11	[274-276, 279- 281, 284, 289]
TGFβR2	Type 2 TGFβ receptor	64.568	TGFβ	[282, 283]
BMPR2	BRK3	115.3	Inhibin A, BMP-2/4, BMP-6/7, GDF-5/6, GDF9b	[274, 284, 285, 287, 290-292]
MIS R2 (Mullerian inhibitory substance type 2 receptor)	AMHR2	62.75	MIS	[286]
Type III receptors				
TGFβR3	Betaglycan	93.49	TGFβ1, TGFβ2, TGFβ3, BMP 2, BMP 4, BMP7, GDF 5	[261, 283, 290 293]

Table 6 Receptors of the TGFβ superfamily:Nomenclature, molecular weight and their known ligand-binding partners.

Subfamily	Name	Molecular Weight (kDa)	Associated Ligands
R-Smads	Smad1	52.26	BMP
	Smad2	52.306	TGFβ, Activin
	Smad3	48.08	TGFβ, Activin
	Smad5	52.25	BMP
	Smad8	52.49	BMP
Co-Smads	Smad4	60.43	
I-Smads	Smad6	53.49	
	Smad7	46.42	

Table 7 Smad family proteins[§].

[§]The Smad family is divided into three subfamilies. A) Receptor-activated (R-) Smads; B) Common-mediator (Co-) Smads; and C) Inhibitory (I-) Smads. Smads 2/3 signal via the TGFβ receptors and Smads 1/5/8 signal via the BMP receptors and together with Smad4 they participate in gene transcription. I-Smads can block the downstream signaling of the R-Smads by intercepting the complex formation with the Co-Smad.

Canonical TGF β -Smad signaling is initiated by preferential binding of active TGF β 1 to TGF β R2 that then recruits, binds and transphosphorylates TGF β R1 in the GS region, inducing protein kinase activity. Active TGF β R1 then phosphorylates Smad2 and Smad3 which form a complex with Smad4 and translocate to the nucleus, where in combination with various DNA-binding co-activators, co-repressors and transcription factors, they regulate expression of TGF β responsive genes [294]. The Smad canonical signalling is illustrated in **Figure 2** of this thesis' **Publication I**.

Under normal physiological conditions, TGF β -activated Smad2/3/4 complex induces expression of the cyclin-dependent kinase inhibitor p21, which prevents the ability of cells to progress through the cell cycle, thereby stimulating apoptosis or differentiation. During cancer, however, TGF β is known to participate in Smad-independent (non-canonical) pathways whereby it initiates EMT, invasion and metastasis [198],. Various TGF β -Smadindependent signaling pathways include mitogen-activated protein kinase (MAPK), Wnt/ β catenin, PI3K/AKT, RHO/ROCK, Jagged/Notch, and mTOR [198, 241]. TGF β crosstalk data that I have produced covering various MAPKs and Wnt signaling in CRC has been published (please refer to **Publication I** entitled "*Transforming growth factor-\beta, MAPK and Wnt signaling interactions in colorectal cancer*").

1.2.4 Transforming Growth Factor-β and cancer

TGF β signalling through its unique transmembrane receptor system controls crucial development processes during embryogenesis which are very strictly controlled in adult tissues. Given the regulatory role of TGF β in normal tissues (growth inhibitor, tumor suppressor), any alteration in TGF β signalling components could result in tumourigenesis (tumour promoter). Since the majority of cancer cells are genetically unstable they could have the capacity to avoid or adulterate TGF β 's growth suppressive effects. Pathological forms of TGF β signalling are reported to promote tumour growth and invasion, evasion of immune surveillance, and cancer cell dissemination and metastasis [241]. Due to the dual tumour suppressive and promoter properties of TGF β during cancer, it has been referred to as a "double-edged sword" by Akhurst and Derynck [295] or as "Janus, the two-faced god" by Salomon [207]. Given its dual role these terms clearly summarise the duality of its nature. How then does TGF β , a potent tumour-suppressor, so radically deviate from its intended function? The answers could lie in the points of alterations that occur to/in the TGF β signalling components and the context in which these occur.

1.2.5 Genetic alterations in TGF^β pathway components in CRC

Genetic alterations are key to the development of cancer. Alterations to TGF β components are commonly observed in cancer cells. These inactivating mutations occur in response to the tumor-suppressive effects exerted by TGF β -mediated signaling [241]. As a result almost 75% of CRC cell lines are resistant to TGF β -mediated growth inhibition [296, 297]. The range of genetic alterations of TGF β signaling components found in CRC are summarized in **Table 8**.

Genetic alterations in TGF β R2 are the most common and is estimated that almost 15-30% of CRCs harbor this mutation [298]. Biallelic inactivation of TGF β R2 by mutations has been observed in CRC and other cancers [299]. Very often these mutations in TGF β R2 are represented as MSI which is a result of mutation in MMR genes [201, 297]. The TGF β R2 coding region contains a 10-base poly-adenine repeat that is prone to replication errors that insert or delete one or more adenines. These poly(A) errors go uncorrected in tumors with MSI that leads to the expression of inactive or mutated receptors. Poly(A) TGF β R2 mutations are often accumulate in sporadic CRC. Alterations in TGF β R1 is often due to frameshift and missense mutations in the coding region. However, the presence of a common polymorphic variant TGF β R1*6A has been shown to increase the risk of CRC and several other cancers [205, 300].

Protein	Gene name (Locus)	Alteration type in CRC	Frequency (%) reported in the study	Association with CRC	Ref.
LIGANDS					
TGFβ1	TGFB1 (19q13.1)	Polymorphism			
		-509C>T	46	Not associated with increased rink or progression of CRC	[301]
			Adenoma = 50 $CRC = 45$	Protective role in development of CRC	[302]
			56	Risk factor for developing colorectal cancer in Asians	[303]
			NS	Decreased risk of CRC susceptibility in Caucasians	[304]
				Possible risk of CRC	[305]
			42	Increased Risk of advanced CRC adenoma	[306]
		-800G>A	NS	Might contribute to increased risk of CRC	[307]
			17	NS	[306]
		Leu 10 Pro	NS	No risk association with CRC adenomatous polyps and may play a protective role in development of CRC hyperplastic polyps	[308]
			NS	Increased Risk of advanced CRC adenoma	[306]
		Overexpression	71	Disease progression to metastasis	[309, 310]
		Overexpression	58	Prognostic marker for a subgroup of patients	[311]
		High serum levels	nd	Disease progression	[204,
					312,
RECEPTORS					313]

Table 8 Genetic alterations in TGF β signalling components in CRC.

TGFβR2 T

TGFBR2 (3p22) Mutation

		MSI+	61	Better 5-year survival rate	[201]
		MSI+	86	NS	[314]
		MSI-	9	NS	[314]
TGFβR1	<i>TGFBR1</i> (9q33- 9q34.1)	Polymorphism (TGFBR1*A6)			
		CRC metastases	29.5	May help in cancer cell growth in presence of TGF β .	[315]
		CRC tumours	2.5	NS	[315]
SMADS					
Smad2	<i>SMAD2/MADH2</i> (18q21.1)	Homozygous deletion and intragenic mutation	6-10.3	NS	[202, 316, 317]
		Deletion	64	NS	[318]
Smad3	<i>SMAD3/MADH3</i> (15q22.33)	MSI+86NS[31]MSI-9NS[31]Polymorphism (TGFBR1*A6)77CRC metastases29.5May help in cancer cell growth in presence of response[31]CRC tumours2.5NS[31]Homozygous deletion and intragenic mutation6-10.3NS[20]Mutation64NS[31]MutationNSVery rarely seen. Associated with inactivation of resp-induced transcriptional activity.[20]Mutation4Loss of TGFβ-mediated transcriptional activity.[20]Intragenic mutation4Loss of TGFβ-mediated transcriptional activity.[20]Intragenic mutation11Primary invasive carcinoma with no distant metastasis[32]Sporadic15Carcinoma with distant metastasis[32]Deletion66NS[31]	[319- 321]		
		Mutation	4	Loss of TGF β -mediated transcriptional activity.	[206]
Smad4	<i>SMAD4/DPC4</i> (18q21.1)	Intragenic mutation			
		FAP	11	Carcinoma without distant metastasis	[322]
		HNPCC	11		[322]
		Sporadic	15	Carcinoma with distant metastasis	[322]
		Deletion	66	NS	[318]
		Somatic mutation	21	Higher in patients with liver metastasis	[317]

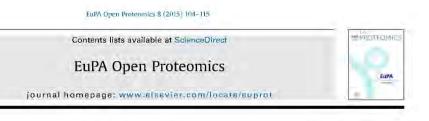
Smad7	<i>SMAD7/MADH7</i> (18q21)	Deletion	48	NS	[318]
		Amplification	10	NS	[318]
		Deletion	43	Better prognosis	[323]
		Amplification	15	Poor prognosis	[323]

ANTACONISTS

Polymorphisms of TGF^β1 have also been associated with CRC neoplasia. Some commonly observed and studied TGF β 1 polymorphisms include -509 C>T, +869 T>C, +915 G>C, -800 G>A, Leu10Pro, Arg25Pro and Thr263Ile [306]. The -509 C>T polymorphism is thought to be present in an YY1 consensus binding site [324] and transfection with a construct containing only the T allele enhanced the promoter activity when compared with the C allele [325]. The -509T allele has been associated with increased TGF β 1 levels in plasma and is observed in approximately 8% plasma samples [326]. The Leu10Pro and Arg25Pro polymorphisms are thought to encode non-synonymous amino acid substitutions within the signal peptide sequence of TGFB1 precursor. The 10Pro allele has been associated with elevated TGFB1 serum levels [327]. Likewise, in vitro studies have associated increased TGFB1 production with the 25Arg allele [328]. The Thr263Ile polymorphism located within the cleaved part of the TGF^{β1} pro-protein is thought to affect the activation of TGFβ1 [329]. Despite numerous studies relating to TGFβ1 polymorphisms in other diseases, the most commonly studied in CRC are -509 C>T, +869 T>C, +915 G>C, -800 G>A. Various reports have reported that the -509 C>T allele is associated with decreased risk of CRC [301], [304]. However, there are reports that associate the C allele of -509 C>T and A allele of -800 G>A are associated with increased CRC risk [307] [305]. However, results from these studies are not consistent and further experimental evidence is required to gauge the role of these polymorphisms in CRC [304, 305, 307].

Smads are crucial for TGF β -mediated signalling and are known to undergo alterations during cancer. Very often Smad mutations are observed on Smad2 and Smad4 and are a result of allelic loss or loss of heterozygosity that is seen in up to 60% of CRCs. The Smad2 and Smad4 genes are located at chromosome 18q21 which also harbours the tumor suppressor gene DCC (deleted in colorectal cancer).The frequency of mutations of Smad2 and Smad4 in CRC are 6% and 16-25% respectively [298]. Smad4 mutations are also found in 11% of FAP and 11% of HNPCC syndromes [299, 322]. Mutations in Smad 2 occur in the MH1 or MH2 domains of the molecule affecting the phosphorylation, nuclear translocation, and/or decreasing protein stability ultimately disturbing TGF β signalling. Rare but similar mutations or LOH of Smad3 gene (located on 15q21-q22) have been reported in a human CRC cell line (SNU-769A) [320]. A study using 36 CRC cell lines and 744 primary CRC patient tumor biopsy samples concluded that approximately 4% of them carried mutations in the Smad3 gene [206].

Interestingly, mutations in TGF β signalling antagonist Smad7 have also been observed. Smad7 along with Smad 6 is a negative regulator of TGF β signalling. However, the overexpression of Smad7 in the immune cells of colonic mucosa leads to chronic inflammation that predisposes the tissue to becoming cancerous. In fact, study by Boulay *et al.*, have shown that the deletion of Smad7 gene has better prognosis than the amplification of Smad7 expression [323]. This suggests that Smad 7 during CRC could act as a promoter instead of an antagonist.


1.2.6 Importance of understanding the role of TGFβ in CRC

TGFβ superfamily of growth factors regulate various pathophysiological aspects including cancer. Particularly TGF^{β1}, has been reported to have a dual or paradoxical or Jekyll-and-Hyde role in cancer. During the early stages of cancer development TGFβ acts as a potent tumour suppressor by cell growth inhibition and by promoting apoptosis and autophagy. However, in the later stages of cancer TGFB switches to promoting cell invasion and metastasis. These responses could be a result of TGF\beta-mediated and/or the acquisition of mutations in the TGFB signalling components to escape the growth inhibitory effects exerted by TGFB. Although these effects have often been observed in many systems exposed to active TGFB during experiments, the Janus-like nature of TGFB switching to promoting cancer progression is poorly understood. This dual nature of TGFB could likely be the product of various interrelations and correlations that simply do not have a single signature and an explanation currently remains elusive. Understanding the TGF β switch to a tumourpromoting outcome remains an important question that is likely to be answered by exploring the in the less established interactions of TGF^β. These interactions can be studied using a combination of cell signalling and/or proteomic technologies, which are primarily used in this thesis.

1.3 Literature reviews

The manuscripts listed here have reviewed the TGF β crosstalk with other signalling pathways and the role of $\beta6$ integrin in CRC. These reviews incorporate intricate details that contribute to understanding their roles in CRC. The manuscripts have been reproduced with permission of the authors and copyright holders

Review 1: Transforming growth factor-β, MAPK and Wnt signaling interactions in colorectal cancer. *EuPA Open proteomics (2015). In press, Available online 2 July 2015. (doi:10.1016/j.euprot.2015.06.004).* [Publication I]

Transforming growth factor-β, MAPK and Wnt signaling interactions in CrossMark colorectal cancer

Harish R. Cheruku^a, Abidali Mohamedali^b, David I, Cantor^a, Sock Hwee Tan^c, Edouard C. Nice^d, Mark S. Baker^{a,}

^a Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Macquarie University, New South Wales 2109, Australia ^b Faculty of Science, Macquarie University, New South Wales 2109, Australia ^c National University of Science, National University of Singapore, Singapore ^d Department of Biochemistry and Molecular Biology, Monush University, Clayton, Victoria 3800, Australia

ARTICLE INFO

ABSTRACT

Article history: Received 27 February 2015 Received in revised form 15 June 2015 Accepted 16 June 2015 Available online 2 July 2015

Keywords: Transforming growth factor-β Colorectal cancer TGFB crosstalk MAPK pathways Wnt

In non-cancerous cells, transforming growth factor- β (TGF β) regulates cellular responses primarily through Smad signaling. However, during cancer progression (including colorectal) TGF β promotes tumoral growth via Smad-independent mechanisms and is involved in crosstalk with various pathways like the mitogen-activated protein kinases (MAPK) and Wnt. Crosstalk between these pathways following activation by TGF β and subsequent downstream signaling activity can be referred to as a crosstalk signaling signature. This review highlights the progress in understanding TGF β signaling crosstalk involving various MAPK pathway members (e.g., extracellular signal-regulated kinase (Erk) 1/2, Ras, c-Jun N-terminal kinases (JNK) and p38) and the Wnt signaling pathway.

© 2015 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/),

1. Introduction

Globally, colorectal cancer (CRC) was the third most commonly diagnosed cancer in 2012 with over 1.36 million new cases (9.7% of all cancers). Then, it led to almost 694,000 deaths (i.e., 8.5% of all cancer deaths) [1]. Australia and New Zealand have one of the highest incidence rates globally (44.8 and 32.2 per 100,000 in men and women respectively), whilst the lowest rates are found in Middle Africa (4.5 and 3.5 respectively per 100,000 in men and women respectively) [1].

Diagnostically, various staging systems have been developed to describe progression of the severity of the disease (e.g., TNM Classification of Malignant Tumours, Australian Clinico-pathological Staging (ACPS) System [2] and Dukes' staging system [3]). These staging tools, usually obtained from patho-histological analyses of CRC biopsies, help clinical oncologists to assess size, location and the spread of the cancerous lesion to other parts of the body and aid in patient treatment and management. Many studies have shown that CRC survival rates primarily dependent on how advanced the cancer

* Corresponding author at: Faculty of Health and Medical Sciences, 2 Technology Place, Macquarie University, New South Wales 2109, Australia. Fax: +61 2 9850 8313. E-mail address: mark.baker@mq.cdu.au (M.S. Baker).

is at initial diagnosis. Despite the availability of numerous screening strategies (Table 1) aggressive surgical therapies and extensive research on the genomic, molecular and cellular basis of CRC. detection at the earliest stages remains elusive.

If detected early, CRC is associated with excellent 5-year survival (>90%) following simple (often curative) surgical resection, while patients diagnosed with later stage cancers (ACPS or Dukes' C or D) experience recurrence and distant metastases leading to particularly poor 5-year survival rates of less than 10% [4]. This progressive decrease in survival rates between early to late stage CRCs (90-10%) has been shown to be associated with the disruption of a number of well-established signaling pathways (Supplementary Table 1). These include, but are not limited to, transforming growth factor-beta (TGFβ)-Smad signaling, mitogen-activated protein kinase (MAPK) signaling pathways and Wnt signaling. This review will briefly discuss TGFB ligands, their receptors, TGFB canonical signaling through Smads and will highlight recent findings concerning its role/s in CRC and extensively focusing on the signaling crosstalk of TGF β with the above-mentioned pathways. TGF β , or proteins in associated pathways, could be used as early detection biomarkers that may, in the long term, improve survival and management of the global CRC health burden. A list of potential early detection biomarkers for CRC is provided in Table 2.

http://dx.doi.org/10.1016/j.euprot.2015.06.004 1876-3820/© 2015 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

H.R. Cheruku et al./EuPA Open Proteomics 8 (2015) 104-115

Test	Sensitivity (%)	Specificity (%)	Frequency	Year developed	Comments	Ref.
Traditional assays					the state of the second second second second second	
Colonoscopy	≻95	95-99	Every 10 years from age 50	1969	The current gold standard, but invasive, expensive and requires bowel preparation	(5)
Sigmoidoscopy	98-100	35-70	5 years	1976	Only screens the distal colon and rectum	[6]
Double contrast barium enema (DCBE)	45	90	5 years	1920s-1930s	Detects only 30-50% of tumors detected by colonoscopy. Recommended only if endoscopic screening options are not available.	[7]
Computed tomography (CT) colonography	90	86	5 years	1994	Becoming accepted as an alternative to colonoscopy.	[8]
Guaiac fecal occult blood test (GFOBT)	16-38	98–99	Yearly	1967	Detects traces of blood released from bowel cancers or their precursors (polyps or adenomas) into the stool. Results may be affected by consumption of red meat and vitamin C. All positive FOBT tests are often followed up with colonoscopy.	[9]
Fecal immunochemical test (FIT)	56-89	.91-98	Yearly	1978	Specific antibodies are used against the globin component of hemoglobin. Unaffected by dietary intake, but the epitope may be destroyed by bacterial enzymes in the stool giving fake negratives	[9]
Fecal DNA	52-91	93-97	3 years	2003	Identifies genetic alterations involved in adenoma-carcinoma progression. Colosure TM test, for example, detects methylation of the vimentin gene, an epigenetic marker.	[10]
Carcinoembryonic antigen (CEA)	43	90	ns	1969	Not suitable for routine detection, but useful for monitoring recurrence.	[11]
Emerging assays						
Colon capsule endoscopy (CCE)	>80	64-95	ns	2006	A non-invasive technique in which a capsule containing a wireless camera is swallowed and transmits images of the inside of the digestive tract to an extracorporeal monitor. Second generation colon capsule endoscopy has a diagnostic sensitivity of 83% or higher to identify polyps >5 mm.	[12,12]
MicroRNA	50-90	>70	ns	2009	miR92 reported as elevated in the plasma of CRC patients compared with controls	(14,15]
Blood RNA. (ColonSentry)	72	70	Anytime	2008	Blood-based test which measures the RNA of seven-gene biomarker panel (ANXA3, CLEC4D, LMNB1, PRRG4, TNFAIP6, VNN1 and IL2RB) extracted from peripheral blood cells	TEL
SEPT9	67-96	81-99	ns	2008	Blood-based test which measures the methylated SEPT9 DNA in plasma	[16]

2. TGFB superfamily ligands

The TGF β superfamily consists of a large family of secreted cytokines that regulate a multitude of cellular functions and disease pathogenesis. The superfamily is divided into three major subfamilies; TGF β , activin/inhibin/nodal branches and BMP/GDF (bone morphogenetic proteins/growth differentiation factors), all of whom possess diverse and complementary physiological effects. The TGF β subfamily members, named for their cell transforming activities (i.e., cell growth and differentiation) from in vitro assays are now unequivocally known to be involved in both tumor suppression and tumor progression (i.e., proliferation, invasion and metastases). Activin and inhibins are well known positive and negative regulators of follicle-stimulating hormone respectively [17]. Nodal along with LEFTY-1 and LEFTY-2 is required for formation of mesoderm and axial patterning during embryonic development [18,19]. The GDF and BMP subfamily proteins have major roles in skeletal development [20], neurogenesis [21], and regulation of ovarian folliculogenesis [22].

The bona fide TGF β subfamily consists of three TGF β isoforms, TGF β 1, TGF β 2 and TGF β 3 encoded by three different genes located on different chromosomes (19q13.1, 1q41 and 14q24 respectively) but which are thought to function through the same receptor signaling systems. All TGF β ligands are produced and secreted *in vivo* as 'latent' inactive zymogen complexes containing a mature TGF β dimer in a non-covalent complex with latency associated peptides (LAP) that are bound to their respective latent TGF β binding proteins [23]. The LAP domain ensures that 'inadvertent' release of TGF β does not occur in normal cells under normal physiological conditions. Latent TGF β can be activated *in vivo* through a variety of mechanisms. These include activation either by proteases (e.g., plasmin) [24] and/or various matrix metalloproteinases (MMP-2 and MMP-9) [25] by cleavage of the LAP. Alternatively, conformational changes in the LAP mediated by integrins ανβ6 [26], ανβ8 [27], and thrombospondin-1 [28] allow the release of active TGFB1 from its associated LAP. The activation of TGF β 1 by integrin $\alpha v \beta 6$ is restricted to epithelial tissues as $\alpha\nu\beta6$ is only expressed in those cells. Equally, the expression of TSP-1 in some epithelial tissues suggests the possibility that $\alpha\nu\beta6$ and TSP-1 may operate in tandem to activate latent TGF β 1. A recent study has shown that methylation of the TSP-1 gene results in suppression of TGFB1 activation in CRC [29]. Integrin avB8mediated activation, however, depends on the presence of MT1-MMP (MMP-14) [27]. It is therefore clear that TGFB1 can be activated via a number of different mechanisms and in various cellular contexts. These allow it to play an important role in different cellular contexts and functions. As such, it is not surprising that alterations in plasmin or plasminogen binding [30] and alterations in expression of MMP-2 and MMP-9 [31], integrin $\alpha\nu\beta 6~[32]$ and active TGFB1 [33] have been found collectively to be associated with poor CRC prognosis and subsequently poor survival.

3. TGFB receptors

The TGF β receptors were identified by methods involving affinity labeling of cells with radio-iodinated TGF β (¹²⁵I-TGF β) ligand and subsequent mapping of receptors to which this bound. Three different receptors, namely type I (53 kDa), type II (73–95 kDa) and type III (110 kDa) were identified depending on their molecular weights [58]. The type I and type II receptors were found to contain serine/threonine kinase domains and activity.

105

106 Table 2

Labre 2					
Potential early	detection	biomarkers for (CRC. nd:	not determined.2	

Candidate biomarker	Sample type	Mechanism of identification	Can discriminate	Sensitivity (%)	Specificity (%)	Kef.
Individual biomarkers				Y		
Alpha 1-antitrypsm	Serum	Protein expression levels		87	73	(34)
Amphiregulin	Blood/serum	Protein expression levels	Controls from Dukes' A CRC	nd	nd	(35)
CEA	Blood/serum	Protein expression levels	Controls from Dukes' A-D stage CRCs	53	93	34- 37
CXCI.II	Blood/serum	Protein expression levels	Controls from Dukes' A CRC	nd	nd	[35]
CXCL5	Blood/serum	Protein expression levels	Controls from Dukes' A CRC	nd	nd	[35,38]
165	Blood/serum	Protein expression levels		27	95	(35)
11.8	Blood/serum	Protein, mRNA expression levels	Controls from Dukes' A CRC	30	95	35,39
Methylated Septin 9 (SEPT9)	Blood	DNA methylation		67 96	81 99	40-44)
MMP7	Serum	mRNA expression levels		58	100	(34)
Suppressor of cytokine signalling (SOCS) 2 and SOCS6	Tumors	Protein expression levels		nd	nd	[45]
uPAR	Serum	mRNA expression levels		nd	nd	[34]
Collagen type X alpha1 (CPL10A1)	Serom	Protein expression levels	Controls from Adenoma and colon cancer	63	85	(46)
Metastasis associated in colon cancer 1 (MACC1)	Tumor samples	Protein expression levels		ńď	nd	[47]
Biomarker panels	and the rest			-		
Tumor associated monocyte genetic finger print	Blood monocyte samples	Gene expression		92.6	92.3	[48]
IGFBP2, DKK3 and PKM2	Blood	Protein expression levels		73	95	(49)
BMP3, NDRG4, VIM, TFPI2 and a mutant KRAS	Stoo)	DNA methylation	Cancer from controls	68-86	77-92	(50- 53)
			Adenoma (size >1 cm) to controls	52-73	85-92	2018
			Adenoma (size >1 cm) to controls	45-62	85 - 92	
miR-19a-3p, miR-223-3p, miR-92a-3p and miR-422a	Serum	mRNA expression levels		84,3	91.5	(54)
miR-601 and miR-760	Plasma	mRNA expression levels	CRC to normal controls	83.3	69.1	(55)
			Adenomas to normal controls	72,1	62.1	(55)
miR-532-3p, miR-33I, miR-195, miR-17, miR-142-3p, miR- 15b, miR-532, and miR-652	Plasma	mRNA expression levels	Polyps from controls	88	64	(56)

⁴ The data presented in this table only summarises biomarkers from research published in the last 5–6 years. For a more detailed review on this topic please see "Biomarkers for Early detection of Colorectal Cancer and Polyps: Systematic Review" by Shah et al. [57].

whilst the type III receptors lacked any similar domain [59]. The detailed structure of these three receptors is illustrated in Fig. 1.

3.1. TGFB type III receptors

The transforming growth factor type III receptor (TGF β R3) betaglycan is the most ubiquitously expressed type III receptor. Betaglycan acts as an accessory receptor by presenting TGF β ligands to the type II receptors and promoting signaling [60]. The short cytoplasmic tail of betaglycan consists of a class I PDZ binding motif that binds to GAIP-interacting protein C-terminus (GIPC). GIPC interaction with betaglycan increases the stability of betaglycan at the cell surface and promotes TGF β 1 and TGF β 2 mediated gene expression in MV1Lu mink lung epithelial and L6 myoblast cells [61]. More recently the GIPC-betaglycan interaction has been shown to inhibit TGF β -mediated Smad signaling and migration in breast cancer cells. However, the exact mechanism/s by which this occurs has yet to be characterized [62].

3.2. TGF^β type II receptor

Transforming growth factor type II receptor (TGF β R2) is a transmembrane serine/threonine kinase receptor with a signal peptide, a cysteine-rich N-glycosylated extracellular domain, a transmembrane domain, and a cytoplasmic serine/threonine kinase domain flanked by a short juxtamembrane domain and C-terminal tail [63]. TGF β R2 can bind to all three TGF β ligands, but cannot participate in downstream signaling in the absence of TGF β R1. The presence of betaglycan is also essential to facilitate high affinity TGF β binding to TGF β R2 which then participates in downstream signaling. As yet, only TGF β s are known to bind to TGF β R2 in any extracellular context.

3.3. TGFB type I receptor

Transforming growth factor type I receptor (TGF β R1) is also a transmembrane serine/threonine kinase receptor and closely resembles TGF β R2 in structure. TGF β R1 contains a signal peptide,

H.R. Cheruku et al./EuPA Open Proteomics 8 (2015) 104-115

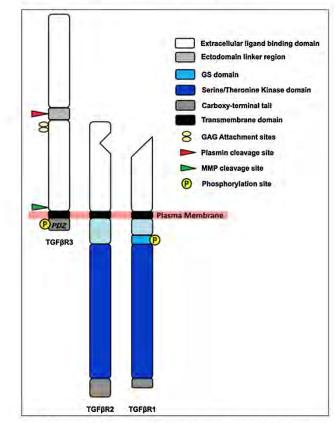


Fig. 1. Structure of TGFB receptors type I (TGFBR1), type II (TGFBR 2) and type III (TGFBR3).

a cysteine-rich N-glycosylated extracellular domain, a cytoplasmic kinase region with 41% sequence homology to TGF β R2 and a very short C-terminal tail [64]. A unique feature of TGF β R1 is its highly conserved 30 amino acid region preceding the cytoplasmic kinase region that is called the GS domain because of the characteristic SGSGSG sequence it contains. Ligand-induced phosphorylation of serine and/or threonine residues in the GS region is required for signaling. TGF β R1 forms a heterodimer with TGF β R2 and this complex collectively takes part in TGF β -mediated downstream signaling [64].

4. Canonical signaling of TGFβ receptors through Smads

Intracellular TGF β signaling is complex and affects various cellular functions, both directly and indirectly. A well-characterized signaling pathway that is initiated by active heterodimeric TGF β receptors is through Smads, although Smad-independent TGF β signaling pathways are also known to exist [65]. TGF β signaling via Smads is facilitated by TGF β R1 and TGF β R2, which form both homodimeric and heterodimeric complexes required for signaling. Dysfunction in one or more components of the functional TGF β complex has been associated with cancers (including CRC) and these are briefly discussed later in this review.

Canonical Smad signaling (Fig. 2) is initiated by preferential binding of active TGF β 1 to TGF β R2 that then recruits, binds and transphosphorylates TGFBR1 in the GS region, inducing protein kinase activity. Active TGFBR1 then phosphorylates Smad2 and Smad3 which form a complex with Smad4 and translocate to the nucleus, where in combination with various DNA-binding co-activators, co-repressors and transcription factors, they regulate expression of TGFB responsive genes [66]. The Smad2/3/4 complex induces expression of the cyclindependent kinase inhibitor p21, which then leads to cell growth arrest. Puzzlingly, Smad4 can only translocate into the nucleus when bound to receptor Smads (Smad1/2/3/5/8) whilst Smad2 and Smad3 can translocate into the nucleus in a Smad4-independent manner [67] implying a regulatory role for Smad4 rather than a simple signal transmission from cytoplasm to nucleus. Studies on various tumor cells suggest that $TGF\beta$ -mediated cell migration is not always dependent on Smad signaling, but also the activation of various mitogen-activated protein kinases (MAPK) and Rho GTPases that can be activated by non-canonical Wnt signaling pathways.

5. Non-canonical signaling of TGF β receptors

Increasing evidence over the past few years has revealed that the complexity of TGF β signaling responses is influenced not only

107

H.R. Cheruku et al./EuPA Open Proteomics 8 (2015) 104-115

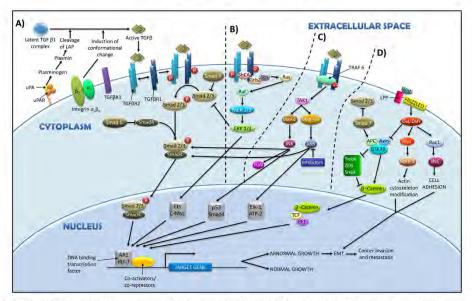


Fig. 2. Outlines the (A) Smad dependent TGFβ pathway. Latent TGFβ is activated through cleavage of LAP by plasmin or by conformational change induced by integrin ανβ6. TGFβR3 presents the active TGFβ to phosphorylated TGFβR2 which recruits, binds and phosphorylates TGFβR1. The active TGFβR1 phosphorylates Smad2 and Smad3. Active Smad2 and Smad3 form a complex with Smad4 (Smad2/3/4) and translocate into the nucleus, where in combination with various DNA-binding co-activators, co-repressors and transcription factors regulate the expression of TGFR target genes. Smad6 can inhibit the formation of Smad2/3/4/2 complex and Smad7 can inhibit the formation of Smad2/3/4 complex and Smad7 can inhibit the formation of Smad2/3/4 complex and Smad7 can inhibit the formation of Smad2/3/4/2 complex and Smad7 can inhibit the formation of Smad2/3/4 complex and Smad7 can inhibit the formation of Smad2/3/4/2 complex and Smad7 can inhibit the formation of Smad2/3/4/2 complex and Smad7 can inhibit the formation of Smad2/3/4/2 complex and Smad7 can inhibit the formation of Smad2/3/4/2 complex and Smad7 can inhibit the formation of Smad2/3/4/2 complex and Smad7 can inhibit the formation of Smad2/3/4/2 complex and Smad7 can inhibit the formation of Smad2/3/4/2 complex and Smad7 can inhibit the formation of Smad2/3/4/2 complex and Smad7 can inhibit the formation of Smad2/3/4/2 complex and Smad7 can inhibit the formation of Smad2/3/6 complex inhibit to formation with GPB/S0 to activate Erk through Ras, Raf and MEC1/2. Erk then regulates downstream transcription factors to control the EMT. (C) INK/p38 then regulate the EMT by controlling the downstream transcription factors (D) Wht pathway via Mark4 and MKS/6 respectively. Active JNK/p38 then regulate the EMT by controlling the downstream transcription factors. (D) Wht pathway interactions. Smad7 and APC-Axin-GSKD3 complex interact which other to either enhance or suppress the activity of Smads. The APC-Axin-GSKB3 complex can activate β-catenin and blocks its inhibitors Twist, Zeb and Sm

by core pathway components including ligands, receptors, Smads and Smad-dependent transcription factors, but also by the ability of TGFB receptors to activate other Smad-independent (i.e., noncanonical) pathways through crosstalk resulting in downstream cellular responses. The mechanisms of crosstalk include, but are not restricted to, regulation of co-activators and co-repressors recruited during the process of transcription, regulation of receptor Smads activity through the mitogen-activated protein kinase (MAPK) pathway, regulation of inhibitory (1)-Smads (Smad6,7) expression and other interactions that could activate or inhibit certain molecules in the pathways [68]. A few pathways associated with TGF β signaling crosstalk in CRC and other cancers include, but are not limited to, MAPK pathways [69] like extracellular signal-regulated kinase (Erk) 1/2 [70]. Ras [70], p38 MAPK and c-Jun N-terminal kinases (JNKs), phosphoinositol-3-kinase (PI3K), protein phosphatase 2A (PP2A), Wnt [71] and RhoA [72]. This review specifically focuses on MAPK and Wnt signaling pathways.

5.1. Mitogen-activated protein kinase (MAPK) cascades

The MAPK cascades are key membrane-to-nucleus signaling modules that respond to various stimuli resulting in the phosphorylation and activation of transcription factors required for gene expression [69]. Downstream activation of distinct MAPK pathways of Erk1/2, stress-activated protein kinases (SAPK)/JNK, Ras and p38 MAPK can be regulated by TGFβ1 in either a slow or a rapid manner. Slow activation (~15 min) of these pathways is mediated by Smad-dependent responses whilst the rapid activation is thought to be mediated by Smad-independent responses [73]. It has been shown that TGF β has the potential to rapidly (within 3–6 min) activate Erk and Ras MAPK pathways [74]. Rapid activation of Ras by TGF β in epithelial cells resulted in increased activity of TGF β -induced Erk MAPK signaling leading to increased invasion and metastasis [74]. The aberrant activation of MAPK pathways by TGF β may therefore play a key role in diverting the TGF β response towards pro-oncogenic outcomes by promoting invasion and metastasis in CRC.

5.1.1. Erk MAPK pathway

The Erk 1/2 pathway is traditionally known to promote cell growth and survival [75], but under certain conditions it can have a pro-apoptotic effects. The Erk pathway is dysregulated in one-third of all human cancers [76] and is involved in pathogenesis, disease progression, and oncogenic behavior [77,78]. During late tumourigenesis, the activation of both Erk and Ras pathways is required for TGF β -induced epithelial mesenchymal transition (EMT) leading to cancer progression.

The Erk/MAPK signaling cascade can be activated by a wide range of effectors including peptide growth factors involved in cell growth and differentiation and integrins [81,82]. Rapid activation of Erk mediated by TGF β has been observed in epithelial cells, breast cancer cells and fibroblasts [83]. Smad-dependent delayed activation of Erk by TGF β is partly accounted for, but does not completely explain the rapid activation of Erk (within 3–6 min) by TGF β [65]. There is evidence that TGF β R1 directly participates in the activation of Erk by recruiting and phosphorylating Src Homology 2 Domain-Containing) Transforming Protein 1 (ShcA) on its serine and tyrosine residues. The phosphorylated ShcA then associates with TGF β R1 via its phosphotyrosine-binding domain and recruits growth factor receptor binding protein 2 (Grb2) and Sos proteins, leading to activation of Erk and Ras MAPK pathways [84,85] (Fig. 2). Erk and Ras then regulate target gene transcription through their downstream transcription factors and Smads to control the EMT [84].

Treatment of TGFB-sensitive (Hs578T) and TGFB-responsive (MDA-MB-231) breast cancer cells with TGFB resulted in different levels of phosphorylation of Erk 2 downstream to Erk 1. TGFBsensitive cells showed a significant increase in phosphorylation within 5 min of treatment as compared to the TCFB-responsive cells, suggesting that the kinetics of Erk phosphorylation induced by TGFB may vary with cell type and/or physiological state of the cell [83]. Interestingly, a recent study by Hough et al. [86] demonstrated that TGF β R-mediated Erk phosphorylation can be cell type specific, occurring in phenotypically normal mesenchymal cells but not in the epithelial cell phenotype. This could help to explain the dysregulated activation of Erk by TGFB observed in epithelial cancers as they are at various stages of the epithelial-mesenchymal transition. The $TGF\beta$ -mediated phosphorylation of Erk, however, was inhibited when a specific PI3K-inhibitor, LY294002, was added. Similar inhibition was observed with the use of the MEK1/2 inhibitor U0126, suggesting that both MEK1/2 and PI3K are required for TGFB-mediated Erk activation [86]. Hough et al. then applied small molecule inhibitors to observe their effect on the activation of the downstream PI3K-activated pathways, Akt and Erk. They found that both pathways were activated through TGFB by PI3K, though only Erk phosphorylation sensitive (understandably) to inhibition by the MEK1/2 inhibitor U0126 [86]. Hough et al. also proposed that TGFβ-mediated Erk phosphorylation primarily follows the PI3K/Pak2/c-Raf/MEK/Erk pathway, supported by a secondary contribution from Ras, although at a greatly reduced level. Furthermore, Erk is known to phosphorylate serine or threonine residues in the PX(S/T)P or (S/T)P motif of the linker regions in receptor Smads (Smad1,2,3,5,8) which cannot migrate into the nucleus, thus inhibiting TGFB-Smad signaling [87]. Phosphorylation of the Smad2 linker region was found to be dependent on MEK activation, which could be increased with the rapid activation of Erk by epidermal growth factor (EGF), highlighting a direct functional connection between Erk and the Smad pathway [86]. Erk induced phosphorylation of the linker region of nuclear Smads and increased the duration of Smad-targeted gene transcription by extending the half-life of C-terminal pSmad2/3 (Ser465/467). A thymidine incorporation assay examining the biological consequences of TGFB-mediated activation of Erk, showed a 6-fold increase in DNA synthesis with TGF β treatment that was attenuated with MEK1/2 inhibition [86].

The TGFBRs also play an important role in the Erk-TGFB crosstalk. Primarily, the expression levels and the ratio of TGF β R2/ TCFBR1 hetero-oligomers contribute to different downstream signaling modules [88], Bandvopadhvay et al. have established that dermal cells with high TGFBR2 expression selectively activate [89]. In contrast, epidermal cells Erk1/2 with high TCFBR1 expression favor canonical TCFBR1-Smad signaling and do not activate Erk. These two findings highlight the influence of TGFBR expression on TGFB-mediated Erk signaling. In the context of cancer, the crosstalk between Erk, TGFBRs and Smads has been shown to directly and indirectly promote cancer growth in the early stages of cancer resulting in metastasis [90-92]. It is also important to note the tyrosine kinase activity of TGFBR1 as well as its serine/threonine kinase activity could be a key to understand the broad spectrum of TGFBR associated signaling in cancer progression.

5.1.2. Ras MAPK signaling

The Ras proteins play a key role in regulating several aspects of both normal cell growth and malignant transformation in cancer signaling. The Ras pathway is deregulated in up to about 30% of tumors [93]. Chaiyapan et al. reported that mutation of K-Ras oncogene occurred in 25-35% of CRCs at early stages of progression [94]. Abnormal activation of Ras leads to increased proliferation and reduced apoptosis, promoting progression, Similar to Erk, TGFB-mediated activation of Ras occurs through the ShcA/Grb2/ Sos complex as described earlier [84] (Fig. 2). The rapid activation of Ras, within (3-6 min) by TGFB1 and TGFB2 during CRC tumourigenesis causes an imbalance between Frk and INK [74]. Ras family proteins are also known to contribute to this imbalance by suppressing JNK activation through active K-Ras or by enhancing Erk activation through H-Ras [95]. Hartsough et al. have shown that Ras activation is required for TGFB-mediated Erk1 activation and partially required for growth inhibitory effects [96]. TGFB growth inhibitory responses in prostate cancer and CRC cells are transmuted to Smad-independent mitogenic responses in the presence of active Ha-Ras and Ki-Ras (97,98), whereby active Ras can induce and enhance the expression of TGFB1, which explains the frequently observed high levels of active TGFB1 during cancer [99].

It is known that most TGFB responses are dependent on cellular context partly due to Smad interactions with cell type specific transcription factors. For instance, active Smad3 cooccupies the genome with Oct4 in human embryonic stem cells, Myod1 in myotubes and PU.1 in pro-B cells [100]. The association between Smad2/3 and transcriptional cofactors can be regulated by the Ras MAPK pathway. Smad2/3 and tumor suppressor protein p53 can directly interact and together regulate several TGFB target genes. Overexpression of p53 in Xenopus animal cap cells showed increased cooperation between endogenous Smads to induce mesoderm markers [101]. This cooperation was lost when the animal cap cells were treated with fibroblast growth factor (FGF)-receptor inhibitor SU5402. indicating a relationship between p53 and FGF. Treatment with FGFefficiently promoted association of p53 and TGFB-activated Smad2 [101]. In this mechanism, FGF signals through Ras to regulate phosphorylation of p53 at its N-terminus, which then interacts with activated Smad2/3 to regulate TGFB-mediated tumor suppression [101]. SW480.7 colon cancer cells deficient in Smad4 having hyperactive Ras signaling do not show TGFBmediated antiproliferative responses, as hyperactive Ras inhibits the function of Smad2/3 by phosphorylating them on their linker regions [102]

During their study of mammary epithelial cells, Oft et al. showed that Ras and TGFB1 are required to work in collaboration to transform benign epithelial cells to induce invasive and metastatic phenotypes [103]. Results from a recent study by Kim et al., clearly support this outcome, demonstrating that Ras expression promoted mesenchymal morphology. Employing normal MCF-10A cells and MCF-10A/Hras cells which express prooncogenic H-Ras, they showed increased invasive potential with TGFB treatment that was exacerbated when H-Ras was expressed [104]. RT-PCR analysis showed that leukotriene B4 receptor-2 (BLT2) expression was increased by H-Ras, and the treatment with BLT2 inhibitor LY255283 or depletion of BLT2 using a BLT2-specific small interfering RNA (siBLT2) greatly reduced the morphological alterations and invasiveness of MCF-10A/Hras cells in response to TGFB treatment. The induction of BLT2 expression in MCF-10A cells showed a marked increase in invasiveness upon TGFB treatment. This study clearly shows that Ras controls the

expression of BLT2, which responds to TGF β treatment to promote the adoption of the mesenchymal phenotype and invasion [104].

Various studies have shown that TGFβ and Ras cooperate to induce invasion. In the intestinal epithelium, the loss/inactivation of TGFβR2 or expression of Kras alone did not result in neoplasia. However, the combination of both lead to colorectal neoplasms and eventual metastasis which were mediated through EGF [105]. Loss of Smad4 and the presence of oncogenic K-Ras can also induce expression of MMP9 and urokinase plasminogen activator (uPA), through the EGFR/NF-κB pathway, which contributes to the invasive phenotype of cancer cells through activedegradation of the extracellular matrix (ECM), liberating the cells from cell-cell interactions and enabling extravasation from the primary site [106].

In summary, there is growing evidence of crosstalk between Ras and TCFB pathways at various levels in cell signaling cascades leading to varying outcomes that can manipulate the EMT and promote metastatic phenotypes.

5.1.3. JNK MAPK pathway

The c-Jun N-terminal kinase (JNK) cascade regulates various transcription and non-transcription factors in response to external stimuli and has been implicated in several biological processes including cell proliferation, apoptosis and tumor development. The TGF β system has the ability to autoregulate its own expression via the JNK pathway making it an important pathway in cancer development. TGF β treatment rapidly increased JNK activity (within 5–10 min) and induced up-regulation of urokinase plasminogen activator receptor (uPAR) by increasing the protein–DNA complex formation at the distal Activator Protein-1 (AP-1) site in the uPAR promoter region [107]. TGF β , however, did not affect JNK protein expression [107]. As TGF β can activate Ras within 3–6 min of TGF β treatment, it is conceivable Ras may be required for TGF β -mediated JNK activation.

JNKs, like Erk, are a third layer of MAPK cascade activated by upstream MKKs-MKK4 and MKK7. The rapid Smad-independent activation of JNK through TGF β is achieved specifically through MKK4-TCFB-activated kinase 1 (TAK1) axis [108,109]. Further upstream, tumor necrosis factor-receptor-associated factor 6 (TRAF6) associates with TGFBR2 and TGFBR1 through its c-terminal TRAF domain to activate TAK1 in a receptor kinaseindependent manner. Yue et al. also reported that TGFBR2 is required for TGFB-mediated activation of [NK which is required for up-regulation of uPAR, suggesting a complex crosstalk between these pathways [107]. Initially, it was thought that TRAFG can only directly interact with TGFBR2. However, the activation of TGFBR2 occurs upon homodimer formation and TGFBR1 is activated by TGFBR2. This suggests that TRAF6 binds to either the active homodimer of TGFBR2 or the hetero-complex of TGFBR2 and TGFBR1 [108]. Furthermore, TGFBR1 has a TRAF6 binding motif (basic residue-X-P-X-E-X-A-aromatic/acidic residue) and the TGF β R1–TRAF6 interaction is required for TRAF6 autoubiquitylation and subsequent activation JNK/p38 pathways via TAK1 [109]. TRAF6 with the help of TGFB induces Lys63-linked polyubiquitination of TGFBR1, which promotes cleavage of the intracellular domain (ICD) of TGFBR1 by TNF-alpha converting enzyme, in a PKCζ-dependent manner [110]. The ICD of TGFBR1 can then translocate into the nucleus, where in association with transcriptional regulator p300 it promotes invasion by inducing the expression of Snail, MMP2 and p300 genes [111]

The TRAF6-TAK1-JNK cascade, in conjunction with the Smads, is known to regulate TGF β -mediated apoptosis and EMT [109,112] suggesting a close link between these cellular responses. Yamashita et al. showed that TRAF6 and TGF β -mediated apoptosis and EMT were abrogated when TRAF6 expression was knocked

down [108]. A similar effect was observed with knock down of expression. Interestingly, TAK1 also Smad3 mediates TGFB-induced signaling by phosphorylating the Smad3 linker region (pSmad3L), a feature that is also observed in CRC [113]. pSmad3L can translocate into the nucleus and regulate gene expression to mediate the development of an invasive phenotype of cancer. TGFB can also activate JNK as part of an accessory pathway, as shown by Ventura et al., who demonstrated that JNKdeficient fibroblasts caused a significant increase in expression of TGFB1 and TGFBR1 and decreased the expression of TGFBR2 and I-Smads [114] suggesting that INK deficiency may cause autocrine signaling of TGFB through a positive feedback loop. Freudlsperger et al. [115] have shown that Smad7 and TAK1 mediate TGF β and nuclear factor-kB (NF-kB) crosstalk in head and neck cancers. TAK1 further enhances the activation of NF-KB through TGFB. Treatment of head and neck squamous cell carcinoma (HNSCC) lines with TGFB1 induced the phosphorylation of TAK1 along with NF-kB family member RELA (p65). RELA and TGFB activation induced Smad7 expression that preferentially suppressed TGFB-induced Smad and NF- κB reporters leading to malignant phenotype in HNSCC [115]. Additionally, the ability of Smad7 to interact with TGF $\beta R1$ using two modes—a three-finger-like structure in the MH2 domain and a basic groove in the MH2 domain, in contrast to only one mode for Smad6, the other I-Smad | 116], suggests a dual role for Smad7: inhibition of TGF[3-Smad signaling and promotion of TGFB-induced activation of JNK and p38 MAPK pathways.

The cooperation of Erk and JNK has been shown to jointly increase the expression of a key late stage molecule, fascin1 in gastric cancer, which promoted TGF β -mediated invasion and metastasis [91]. Fascin1 expression was ablated by \geq 75% when treated with the JNK and Erk specific inhibitors, SP6001125 or PD98059 respectively [91]. In addition to gastric cancer, a recent study by Herbest et al. reported increased fascin1 expression in late stage CRC was induced by β -catenin, an integral member of the Wnt signaling pathway, that has been associated with TGF β -mediated crosstalk during cancer [117].

5.1.4. p38 MAPK pathway

The p38 MAPK pathway is often activated by various stress responses such as heat shock, osmotic shock and hypoxia leading to diverse roles in cell proliferation, differentiation, survival and migration in different cell types. It is unsurprising, therefore, that p38 MAPKs have been implicated in cancer development [78]. p38 signaling is required for cell migration and metastasis in both CRC and breast cancer [118,119]. As for JNKs, p38 MAPKs are activated by MKKs through autophosphorylation: specifically by MKK3 and MKK6 and sometimes by MKK4 [108,109]. Rapid Smadindependent activation of p38 MAPKs is achieved through a TAK1 and TRAF6 module [108,109] (Fig. 2). Knockdown of TRAF6 inhibited TGF β -mediated EMT [108]. TGF β -induced activation of TRAF6-TAK1-INK/p38 pathways has been implicated in cell death, cell proliferation and EMT [110]. In breast cancer, ubiquitinconjugating enzyme Ubc13 was shown to control metastasis through the TAK1-p38 MAPK pathway by activation of MEKK1 and TAK1 [119]. Silencing of Ubc13 resulted in decreased TAK1 phosphorylation, and the silencing of TAK1 or $p38\alpha$ resulted in a dramatic decrease of lung metastasis in a mouse model [119]. Wu et al. also showed that the using the p38 inhibitor, SB203580, resulted in decreased metastasis indicating that p38 inhibitors can be used as potential treatment for established breast cancers [119]. Safina et al. using MDA-MD-231 breast cancer cells, have showed that TCFB-mediated TAK1 regulates MMP9 expression which involves NF-kB signaling, similar to K-Ras. The TAK1-NF-kB-MMP9 pathway as a whole, contributes to TGFB-mediated metastasis [120]. p38 is also known to regulate cell invasion

through up regulation of MMP2 in prostate cancer [110,121]. The blockade of p38 MAPK activity using specific inhibitors, or by genetic alterations or cancer therapies like 5-fluorouracil, leads to cell cycle recovery and induction of autophagic cell death[118,122].

Activation of Smads is an important cellular response for TGFBRs. Cells with mutated TGFBR1 that are defective in Smad activation showed an increase in p38 MAPK signaling response to TGFB1, but did not induce EMT [123]. However, cells lacking the cytoplasmic domain of TGFBR2 did not block TGFB-mediated p38 MAPK activation, resulting in integrin αvβ1 mediated EMT 1241. This confirms that TGFBR2 is important for TGFB-mediated EMT through the p38 MAPK cascade. The phosphorylation of TGFBR2 tyrosine (Tyr248) in the cytoplasmic domain by Src recruits Grb2 and Shc to TGFBR2, which associates these adapter proteins with p38 MAPK activation [125]. Galliher-Beckley and Schiemann also showed that Grb2 binding to Tyr248 of TGFBR2 is required for TGFB-mediated mammary tumor growth and metastasis [126]. Northey et al. showed that ShcA expression and phosphotyrosine-dependent signaling are essential for TGFβ-mediated cell motility and invasion [127]. Galliher-Beckley and Schiemann, and Northey et al. also showed that loss, or reduced expression, of ShcA and/or Grb2, or mutations in their phosphorylation sites, no longer promoted TGF β -mediated migration, invasion, or EMT [126,127]. Rather than the "standard" TCFβ-mediated activation of p38 through MKK3 and MKK6, the possible phosphorylation of TGFBR2 at Tyr248 has the potential to drive Shc and Grb2 through an alternative pathway that is required for TGFB-mediated tumor growth and metastasis. This secondary activation of p38 through a pathway that would normally activate Erk/JNK compounds the complexity of TGFB crosstalk with MAPK pathways in cancer.

5.2. Wht signaling cascade

Along with numerous other transcriptional regulators such as the fibroblast growth factors (FGF) and Forkhead transcription factor families, the interplay between Wnt and TGF β signaling is a feature of gut development and endoderm formation [128]. More recently, genome-wide association studies have found that both the Wnt and TGF β pathways are active in lung cancer [129] and breast cancer cells [130]. It has previously been proposed that crosstalk between the Wnt and TGF β pathways may be more extensive than suggested, especially in the context of malignancy and/or the EMT [128]. This crosstalk may be occurring at several points along the network, notably in the migration of cells as witnessed in cancer and also fibrosis [131,132].

Several studies have demonstrated the role of Smads, with initial studies on homeobox gene promoters showing that TGFB mimics the effects of Wnt signaling on B-catenin, leading to cell cycle arrest through interactions with Smad7 [133]. Axin, a negative regulator of Wnt signaling has also been shown to interact with Smad3 as a putative adaptor, enhancing the efficiency of TGFB signaling [134]. Wnt and FGF regulate the phosphorylation of the Smad4 linker region through glycogen synthase kinase-3 (CSK3) in the canonical MAPK/Erk site (PxTP) [128]. This phosphorylation event did not occur when HaCaT immortalized, human keratinocyte cells were treated with the MEK-specific inhibitor U0126, demonstrating the requirement of MAPK activity for GSK3-induced Smad4 phosphorylation [128]. MAPK/FGF and Wnt/ GSK3 mediated phosphorylation is required for the polyubiquitination and degradation of Smad4 through E3 ligase B-TrCP [128,135,136]. As stated by Demagny et al., the MAPK/Erk and GSK3 trigger the formation of a phosphodegron bound by the E3 ligase β -TrCP, resulting in the polyubiquitination of Smad4. Demangy et al. also showed that treatment of cells expressing the TGFβ-specific reporter CAGA12-luciferase with Wnt3a

FGF2 alone did not affect TGF β signaling activity. However, the addition of both increased TGF β signaling activity, indicating the involvement of GSK3 [128]. This demonstrates that FGF is also required for TGF β and Wnt crosstalk which is enhanced by activation of MAPK signaling. It is important to note that another study reported that TGF β suppresses β -catenin/Wnt signaling and enhances cell adhesion in CRC in a Smad4-independent manner [132]. A similar study to that of Demangy et al., reported the ability of TGF β to promote the EMT and invasion in a p38 MAPK/ β -catenin/peroxisome proliferator-activated receptor γ -dependent manner in non-small cell lung cancers [137].

Numerous canonical and non-canonical Wnt signaling proteins re also been shown to act as co-factors of TGF β signaling, including, but not limited to, Snail, Twist, B-catenin and AP-1 by either activating or suppressing the activity of various Smads (for a comprehensive review refer to [138]). These interactions have not been directly observed in CRC, though this crucial link may bridge the gap between these two signaling pathways (i.e., that of Notch, Wht, and TGFB/Activin signaling) which is in part mediated by the interactions of Dll1 with Smad2/3 and Tcf4 at the promoter sites A further point of interaction between the Wnt and $TGF\beta$ signaling pathways involves the regulation of the same genes independently or cooperatively. Both regulate Lef1/Tcf, which are canonical proteins involved in the EMT [140]: gastrin, a promoter of gastrointestinal cancers [141]; BAMBI, the pseudoreceptor involved in TGFB signaling regulation in CRC [142]; and importantly Snail1 and Snail2, both of which are acknowledged as key switches that initiate the EMT in cells, and have been implicated in CRC [143-146]. Other canonical Wnt signaling molecules such as Twist and KLF8 have also been shown to be regulated by TGFB [138].

Several other proteins involved in Wnt and TGFB signaling have been shown to be perturbed in CRC cell lines and tissues, including Pitx2 [147], a homeodomain transcription factor, and ECM transition remodeling proteins such as heparin-degrading endosulfatases, sulfatase 1 (SULF1) and sulfatase 2 (SULF2). Recent studies have shown that FOXQ1, a member of the forkhead transcription factor family, can promote TGFB expression and the EMT through crosstalk between the Wnt and TGF β signaling pathways [71,148]. Fan et al. [148] showed that silencing FOXQ1 decreased cell migration and invasion which was supported by Peng et al. [71]. Interestingly, treating the cells with TGFβ1 increased FOXQ1 gene expression resulting in TGFβmediated the EMT within 4-days, that was suppressed upon silencing FOXQ1 expression [148]. A similar outcome was reported by Peng et al. wherein treatment of CRC cells with TGFB1 increased FOXQ1 expression and promoted migration and invasive potential. They also demonstrated that FOXO1 suppression by siRNA decreased the invasive and angiogenic potential and resistance to chemotherapy drugs. Peng et al. further showed that FOXQ1 is overexpressed in CRC tissues and correlates with CRC stage [71]. Indeed, other recent studies further support the fact that overexpression of FOXQ1 induces the EMT in various cancers [149-151] and has been shown to be a direct Wnt target in CRC [152]

The overall picture regarding Wnt and TGFβ signaling is that of a highly interconnected system of activators and repressors that serve to maintain cell proliferation and migration. The details of the Wnt and TGFβ pathways continue to be elucidated, with novel players such as FOXQ1 continually changing the models of potential crosstalk between these two pathways. Suffice it to say that in cancers, particularly CRC, the involvement of both these pathways is crucial not only for ECM degradation but also for metastasis as evidenced by the involvement of APC in over 60% of loss of heterozygosity (LOH) positive CRC cases [153,154]. A detailed analysis of this crosstalk system is beyond the scope of this current review. However, there is extensive evidence indicating that such crosstalk strongly influences the EMT and metastasis.

6. Genetic alterations in TGFβ signaling components

Various intracellular signaling pathways, including the ones described above, are frequently dysregulated in CRC. Almost 75% of CRC cell lines are resistant to TGFB-mediated growth inhibition due to the loss or mutation of one or more components of the TGF β signaling pathway [155,156]. A detailed review of the genetic alterations of TGFB signaling components specifically in CRC has been published by Wu et al. [158].

Genetic alterations of TGFBR2 are the most common mechanism leading to the loss of TGF- β signaling in CRC. Inactivation of TCFBR2 frequently occurs due to microsatellite instability (MSI). resulting from DNA mismatch repair defects, causing nucleotide additions or deletions in simple repeated sequences, or microsatellites in the genome [156,159]. Additionally, impairment of TGF β -mediated anti-proliferative responses due to mutation of TGF β R1 has also been observed [160]. However, the presence of a common polymorphic variant TGFBR1*6A has been shown to increase the risk of CRC and several other cancers [161,162].

Genetic polymorphisms of TGFB1 have also been associated with colorectal neoplasia, although meta-analyses of particular alleles demonstrated inconclusive correlation with a single mutation [163,164]. The mostly widely studied TGFB1 genetic alterations are TGFB1 -509 C>T. +869 T>C. +915 G>C. and -800 G > A [164]. Meta-analysis by Liu et al., has shown that the TGF β 1 -509 C > T, +869 T > C, +915 G > C, and -800 G > Apolymorphisms are not associated with colorectal adenoma, but, C allele of -509 C>T and A allele of -800 G>A are associated with increased CRC risk [164]. In addition, the -509 C>T has been reported to be associated with increased risk of developing CRC by Wang et al. [165] and decreased risk of CRC by Liu et al. [163].

Mutation or deletions in Smad genes can also be an important factor during tumor development. Most commonly mutations are seen on Smad4 and Smad2, due to allelic loss or LOH that has been demonstrated in up to 60% of CRCs. Mutations in Smad4 gene (16-25%) and Smad2 gene (6%) have been associated with CRC. Smad4 and Smad2 genes along with tumor suppressor gene DCC (deleted in colorectal cancer) are localized at chromosome 18q21 [166]. Smad4 mutations are found in about 11% of familial adenomatous polyposis and 11% of hereditary non-polyposis colorectal cancer [157,167] syndromes. Smad2 mutations occur in the MH1 or MH2 domains of the molecule affecting the phosphorylation, nuclear translocation, and/or decreasing protein stability ultimately disturbing TGFB signaling. Similar mutations or LOH of Smad3 gene (located on 15q21-q22) were reported in a human CRC cell line (SNU-769A) [160]. A later study using 36CRC cell lines and 744 primary CRC patient tumor biopsy samples concluded that approximately 4% of them carried mutations in the Smad3 gene [168]. Concurrently, the loss of Smad3 expression in gastric cancer tumors/cells has been associated with high susceptibility to cancer [169]. This multitude of genetic mutations in TGF β signaling components, and the signaling crosstalk with various pathways during the development of cancer, enhance its ability to invade and metastasize to various organs, resulting in decreased 5-year survival.

7. Conclusion

TGFB signaling plays major roles in regulating normal cell growth, although various cancer studies have suggested that canonical TGFB signaling is unfaithful. It is promiscuously involved in intracellular signaling crosstalk with various pathways, including, but not limited to, Erk, JNK, Ras, p38 and Wnt. TGFBRs play a

crucial role in non-canonical signaling which collectively result in changes that drive cancer progression and metastasis. The poorly understood lanus-like nature of TGFB in cancer is likely the product of these interrelations and correlations that do not have simply one single signature. This may explain why understanding it remains elusive. This is potentially how a widely accepted tumor suppressor in benign cells "switches" to promote cancer progression. Understanding this switch to a tumor-promoting outcome remains an important question that is likely to be answered in the minutiae of less established interactions.

This review has explored many possible avenues of $TGF\beta$ crosstalk and their consequences in cancer. It is crucial to note that almost no TGF β signaling component has a single function. For instance the dual kinase activity of TGF β R1 and the two modes of Smad7 interaction with TGFBR1 further add to complexity of TGFB-crosstalk that is already poorly understood. This complex crosstalk in CRC, we propose, can be investigated by implementing a combination of sophisticated informatics, -omics technologies and in vivo studies in a spatio-temporal manner, coupled with larger protein tracking and interaction studies. Emerging multiplexed technologies such as SOMAmer® [170], proximity extension assays [35,171] and/or SureFire[®] assays [172] will be crucial in the coming years to perform more elaborate experiments in order to elucidate complex cell signaling behaviors within a matrix of different pathways and the crosstalk between them. It is crucial to remember that in cancer and various diseases, we cannot study these pathways in isolation but instead must transition into a matrix-oriented systems approach that more comprehensively models the spatio-temporal ramifications of signaling activities within the complexity of living cells and tissues. A better understanding of four-dimensional biology is essential to identify in vivo signaling signatures that are of clinical relevance, facilitating the development of more effective, targeted therapeutics to combat a global health burden.

Conflict of interest

All authors have no conflict of interest to declare in this manuscript.

Acknowledgments

The Australian proteomics community enjoyed a marvelous collaborative relationship with our friend and colleague Juan Pablo Albar. We dedicate this review to his memory.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in http://dx.doi.org/10.1016/j. the online version, at euprot.2015.06.004.

References

- J. Ferlay, et al., Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012, Int. J. Cancer 136 (5) (2015) [2359-86.
 N.C. Davis, R.C. Newland, Terminology and classification of colorectal adeonocarcinoma: the Australian clinico-pathological staging system, Aust N. Z. J. Surg. 53 (3) (1983) 211-221.
 C.E. Diskes, The classification of concer of the rectum, J. Pathol. Bacteriol. 35 (3) (1932) 323-332.
 J.A. Meyerhardt, R.J. Mayer, Systemic therapy for colorectal cancer, N. Engl. J. Med. 352 (5) (2003) 476-487.
 P.E. Young, C.M. Womeldorph, Colonoscopy for colorectal cancer screening. J. Cancer 4 (3) (2013) 217-226.
 M. R. Stalawor, Colorectal cancer screening. J. Intern. Med. 270 (2) (2011) 87-98.

- M. Brethauer, Colorectal cancer screening, J. Intern. Med. 270 (2) (2011) 87–98.
 C. Ramos, et al., is barism enema an adequate diagnostic test for the evaluation of patients with positive fecal eccult blood? Bol. Asoc. Med. P. R. 101 (2) (2009) 23–28.

- [8] C.D. Johnson, et al., Accuracy of CT colonography for detection of large adenomas and cancers, N. Engl. J. Med. 359 (12) (2008) 1207–1217.
 [9] F. Stracci, M. Zorzi, G. Grazzini, Colorectal cancer screening: tests, strategies, and perspectives, Front Public Health 2 (2014) p. 210.

olorectal cancer: a potential marker for colorectal cancer screening. Gut 58

10) (2009) 1375-1381.

2011) 343-349

1361-1367

[25] [26]

(10) (2009) 1375–1381.
(16) K.A. Heichman, Blood-based testing for colorectal cancer screening, Mol. Diagn. Then: 18 (2) (2014) 127–135.
(17) N. Ling, et al., Pituitary FSH is released by a heterodimer of the beta-subunits from the two forms of inhibin, Nature 321 (6072) (1986) 779–782.
(18) K. Kosaki, et al., Characterization and mutation analysis of human LEFTY A and LEFTY B, homologues of murine genes implicated in left-right axis development, Am. J. Hum. Genet. 64 (3) (1999) 712–721.
(19) C. Meno, et al., lefty-1 is required for left-right determination as a regulator of lefty-2 and nodd, Cell 94 (3) (1999) 287–297.
(20) G. Karsenty, et al., BMP 7 is required for nephrogenesis, eye development, and skeletal patterning, Ann. N. Y. Acad. Sci. 735 (1996) 98–107.
(21) H.N. Beck, et al., Bome morphogenetic protein- 540HP-5) promotes dendritic growth in cultured sympathetic neurons, BMC Neurosci. 2 (2001) 12.
(22) J. Feng, et al., Growth differentiation factor 9: bone morphogenetic protein-15 heterodimers are potent regulators of ovarian functions, Proc. Natl. Acad. Sci. U. S. A. 110 (8) (2013) E776–E785.
(23) M. Shi, et al., Latent TGF-beta structure and activation, Nature 474 (7351)

[23] M. Shi, et al., Latent TGF-beta structure and activation, Nature 474 (7351)

forming growth factor beta 1 by plasmin, J. Cell Biol. 110 (4) (1990)

1361–1367. Q. Yu, I. Stamenkovic, Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis, Genes Dev. 14 (2) (2000) 163–176. J.S. Munger, et al., The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis, cull oc (2) (2000) 200 acids).

through MT1-MMP-dependent activation of TGF-beta1, J. Cell Biol. 157 (3)

[2011] 545–545.
[24] R.M. Lyons, et al., Mechanism of activation of latent recombinant

- 46000.

256 quiz e25–e26

- [42] J.D. Warren, et al., Septin 9 methylated DNA is a sensitive and specific blood

- [41] K. Toth, et al., Detection of methylated SEPT9 in plasma is a reliable screening method for both left- and right-sided colon cancers, PLoS One 7 (9) (2012)
- [10] J. Agrawal, S. Syngal, Colon cancer screening strategies, Curr. Opin
- [10] J. Agrawal, S. Syngal, Colon cancer screening strategies, Curr. Opin. Gastroenterol. 21 (1) (2005) 59–63.
 [11] M. Carpelan-Holmstrom, et al., Preoperative serum levels of CEA and CA 242 in colorectal cancer, Br. J. Cancer 71 (4) (1995) 868–872.
 [12] C. Spada, et al., Second-generation colon capsule endoscopy compared with colonoscopy, Gastrointest. Endosc. 74 (3) (2011) 581–589.el.
 [13] S.N. Adler, C. Hassan, Colon capsule endoscopy: quo vadis? Colonoscopy and Colorectal Cancer screening–Future Directions, InflechOpen, 2013, doi: http://dx.doi.org/10.5772/53055 ISN: 978-953-51-0949-5.
 [14] M. Di Lena, E. Travaglio, D.F. Altomare, New strategies for colorectal cancer screening. World J. Gastroenterol. 19 (12) (2013) 1855–1860.
 [15] E.K. Ng, et al., Differential expression of microRNAs in plasma of patients with colorectal cancer storeching. Account 2014 and ref for colorectal cancer screening. Cut 58
- - test for colorectal cancer, BMC Med. 9 (2011) 133. [43] T. deVos, et al., Circulating methylated SEPT9 DNA in plasma is a biomarker [43] T. deVos, et al., Circulating methylated SEP19 DNA in plasma is a biomarker for colorectal cancer, Clin. Chem. 55 (7) (2009) 1337–1346.
 [44] R. Grutzmann, et al., Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay, PLoS One 3 (11) (2008) e3759.
 [45] E. Letellier, et al., Identification of SCOS2 and SOCS6 as biomarkers in human colorectal cancer, Br. J. Cancer 111 (4) (2014) 726–735.
 [46] X. Sole, et al., Discovery and validation of new potential biomarkers for early detection of colon cancer, PLoS One 9 (9) (2014) e106748.
 [47] B. Ren, et al., MACC1 is related to colorectal cancer initiation and early-stage invasive growth, CAm. J. Clin Pathol. 140 (5) (2013) 701–707.
 [48] A. Hamm, et al., Tumour-educated circulating monocytes are powerful cancer, Gut (2015), doi:http://dx.doi.org/10.1136/gutjnl-2014-308988.
 [49] K.Y. Eung, et al., Blood-based protein biomarker panel for the detection of

gutjn1-2014-308988.
[49] K.Y. Fung, et al., Blood-based protein biomarker panel for the detection of colorectal cancer, PLoS One 10 (3) (2015) p. e0120425.
[50] T.F. Imperiale, et al., Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med. 370 (14) (2014) 1287–1297.
[51] D.A. Ahlquist, et al., Next-generation stool DNA test accurately detects reference of colorectal cancer screening. colorectal cancer and large adenomas, Gastroenterology 142 (2) (2012) 248-

[52] W.D. Chen. et al., Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene, J. Natl. Cancer Inst. 97 (15) (2005) 1124–1132.

1124-1132.
[53] S.C. Glockner, et al., Methylation of TFPI2 in stool DNA: a potential novel biomarker for the detection of colorectal cancer, Cancer Res. 69 (11) (2009) 4691-4699.
[54] G. Zheng, et al., Serum microRNA panel as biomarkers for early diagnosis of colorectal adenocarcinoma, Br. J. Cancer 111 (10) (2014) 1985–1992.
[55] Q. et al. Wang, Plasma mik-001 and mik-706 are novel biomarkers for the early detection of colorectal cancer, PLoS One 7 (9) (2012) e44398.
[56] Z. Kungan et al., A Supram prioreRPMA panel for direction projected.

- early detection of colorectal cancer, PLoS One 7 (9) (2012) e44398.
 [56] Z. Kanaan, et al., A plasma microRNA panel for detection of colorectal adenomas: a step toward more precise screening for colorectal cancer, Ann. Surg. 258 (3) (2013) 400–408.
 [57] R. Shah, et al., Biomarkers for early detection of colorectal cancer and polyps: systematic review. Cancer Epidemiol. Biomarkers Prev. 23 (9) (2014) 1712–1728.
 [58] F.T. Boyd, J. Massague, Transforming growth factor-beta inhibition of entiplical cell norliferation linked to the expression of a 53-844 membrane.

Cell 96 (3) (1999) 319–328. [27] D. Mu, et al., The integrin alpha(v)beta8 mediates epithelial homeostasis

- [27] D. MU, et al., The integrin alpha(y)oetas mediates epithelial nomeostasis through MT1-MMP-dependent activation of TGF-betal, J. Cell Biol. 157 (3) (2002) 493-507.
 [28] S. Schultz-Cherry, et al., Regulation of transforming growth factor-beta activation by discrete sequences of thrombospondin 1, J. Biol. Chem. 270 (13) (1995) 7304-7310 p.
 [29] A. Rojas, et al., The aberrant methylation of TSP1 suppresses TGF-betal activation in colorectal cancer, Int. J. Cancer 123 (1) (2008) 14-21.
 [30] M. Ranson, et al., Increased plasminogen binding is associated with metastatic breast cancer cells: differential expression of plasminogen binding proteins, Br. J. Cancer 77 (10) (1998) 1586-1597.
 [31] M. Hilska, et al., Prognostic significance of matrix metalloproteinases-1, -2, -3 and -4 in colorectal cancer, Int. J. Cancer 121 (4) (2007) 714-723.
 [32] R.C. Bates, et al., Transcriptional activation of integrin beta6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma, J. Clin. Investig. 115 (2) (2005) 339-347.
 [33] G. Sun, et al., Reviation of alpha 1-antitrypsin and the levels of mRNA expression of matrix metalloproteinase ry persistor and in vivo. Hepatogastroenterology 60 (123) (2012).
- expression of matrix metalloproteinase 7, urokinase type plasminogen activator receptor and COX-2 for the diagnosis of colorectal cancer, PLoS One 3 (1) (2013) e51810.
- 8 (1) (2013) e51810.
 [35] Set al. Mahboob, A novel multiplexed immunoassay identifies CEA, IL-8 and prolactin as prospective markers for Dukes' stages A–D colorectal cancers, Clin. Proteomics 12 (1) (2015) 10.
 [36] D. Japink, et al., CEA in activated macrophages. New diagnostic possibilities for tumor markers in early colorectal cancer, Anticancer Res. 29 (8) (2009) 2245–2361.
- 245-3251.

- 3245-3251.
 3257.
 3265-3251.
 327.
 327.
 327.
 328.
 327.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.
 328.</li colorectal cancer (2014) e98238 9.

- [58] F.T. Boyd, J. Massague, Transforming growth factor-beta inhibition of epithelial cell proliferation linked to the expression of a 53-kDa membrane receptor, J. Biol. Chem. 264 (4) (1989) 2272-2278.
 [59] G. De Crescenzo, et al., Real-time monitoring of the interactions of transforming growth factor-beta lisoforms with latency-associated protein and the ectodomains of the TGF-beta type II and III receptors reveals different kinetic models and stoichiometries of binding, J. Biol. Chem. 276 (32) (2001) 29632–29643.
 [60] F. Lopez-Casillas, et al., Structure and expression of the membrane proteoglycan betaglycan: a component of the TGF-beta receptor system, Cell 67 (4) (1991) 785–795.
 [61] G.C. Blobe, et al., A novel mechanism for regulating transforming growth factor-beta (TGF-beta) signaling. Functional modulation of type III TGF-beta
- [61] G.C. Blobe, et al., A novel mechanism for regulating transforming growth factor beta (TGF-beta) signaling. Functional modulation of type III TGF-beta receptor expression through interaction with the PDZ domain protein: GIPC, J. Biol. Chem. 276 (43) (2001) 39608–39617.
 [62] J.D. Lee, et al., The type III TGF-beta receptor suppresses breast cancer progression through GIPC-mediated inhibition of TGF-beta signaling. Carcinogenesis 31 (2) (2010) 175–183.
 [63] H.V. Lin, et al., Expression cloning of the TGF-beta type II receptor: a functional transmembrane serine/threonine kinase, Cell 58 (4) (1992) 775–785.
 [64] L. Gibbaa, et al., Olicometric structure of type I and type II transforming growth

- //5–/83.
 (64) L. Gilboa, et al., Oligomeric structure of type I and type II transforming growth factor beta receptors: homodimers form in the ER and persist at the plasma membrane, J. Cell Biol. 140 (4) (1998) 767–777.
 (65) Y.E. Zhang, Non-Smad pathways in TGF-beta signaling, Cell Res. 19 (1) (2009)
- 128-139
- [66] J.L. Wrana, et al., TGF beta signals through a heteromeric protein kinase
- [66] J.L. Wrana, et al., 1GF beta signals through a heteromenic protein kinase receptor complex, Cell 71 (6) (1992) 1003–1014.
 [67] S.P. Fink, et al., TGF-beta-induced nuclear localization of Smad2 and Smad3 in Smad4 null cancer cell lines, Oncogene 22 (9) (2003) 1317–1323.
 [68] Y. Zhang, R. Derynck, Regulation of Smad signalling by protein associations and signalling crosstalk, Trends Cell Biol. 9 (7) (1999) 274–279.
 [69] K. Yamaguchi, et al., Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction, Science 270 (5244) (1995) 2008–2011.
- 1995) 2008-2011. [70] L Xie, et al., Activation of the Erk pathway is required for TGF-beta1-induced
- [70] L. Ale et al., and value of the LNS partways is required to 101-bear induces EMT in vitro, Neoplasia 6 (5) (2004) 603–610.
 [71] X. Peng, et al., FOXQ1 mediates the crosstalk between TGF-beta and Wnt signaling pathways in the progression of colorectal cancer, Cancer Biol. The (2015) end.
- [72] N.A. Bhowmick, et al., Transforming growth factor-beta1 mediates epithelial RhoA-dependent to mesenchymal transdifferentiation through a mechanism, Mol. Biol. Cell 12 (1) (2001) 27–36.

- [73] M.T. Hartsough, K.M. Mulder, Transforming growth factor beta activation of p44mapk in proliferating cultures of epithelial cells, J. Biol. Chem. 270 (13) (1995) 7117–7124.
 [74] K.M. Mulder, S.L. Morris, Activation of p21ras by transforming growth factor beta in epithelial cells, J. Biol. Chem. 267 (8) (1992) 5029–5031.
- [75] Z. Lu, S. Xu, ERK1/2 MAP kinases in cell survival and apoptosis, IUBMB Life 58
- [75] Z. Lu, S. Xu, EKK//Z MAP Kinases in cell survival and apoptosis, IUBMB Life 58 (11) (2006) 621–631.
 [76] A.S. Dhillon, et al., MAP kinase signalling pathways in cancer, Oncogene 26 (22) (2007) 3279–3290.
 [77] F. Zhu, et al., Bidirectional signals transduced by TOPK–ERK interaction increase tumorigenesis of HCT116 colorectal cancer cells, Gastroenterology 133 (1) (2007) 219–231.
 [78] J.Y. Fang, B.C. Richardson, The MAPK signalling pathways and colorectal cancer cells. *Gastroenterology Lorence Development* 6, 5(2) (2006) 237, 237.
- cancer, Lancet Oncol. 6 (5) (2005) 322–327.
 (79) V. Ellenrieder, et al., Transforming growth factor beta1 treatment leads to an epithelial-mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation, Cancer Res. 61 (20) (2002) (4202-(4202)) 10) (2001) 4222-4228

- Reput Ing extracted and signal-regulated kinase 2 activation, Catter Res. 61 (10) (2001) 4222–4228.
 M. Davies, et al., Induction of an epithelial to mesenchymal transition in human immortal and malignant keratinocytes by TGF-beta1 involves MAPK: Smad and AP-1 signalling pathways, J. Cell. Biochem. 95 (5) (2005) 918–931.
 K. Yee, V.M. Weaver, D.A. Hammer, Integrin-mediated signalling through the MAP-kinase pathway. IET Syst. Biol. 2 (1) (2008) 8–15.
 M.W. Renshaw, X.D. Ren, M.A. Schwattz, Growth factor activation of MAP kinase requires cell adhesion, EMBO J. 16 (18) (1997) 5592–5599.
 S.S. Frey, K.M. Mulder, TGFbeta regulation of mitogen-activated protein kinases in human breast cancer cells. Cancer Lett. 117 (1) (1997) 41–50.
 M.K. Lee, et al., TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA, EMBO J. 26 (17) (2007) 3957–3967.
 A. Rojas, et al., CF-beta receptor levels regulate the specificity of signaling pathway activation and biological effects of TGF-beta, Biochim. Biophys. Acta 1793 (7) (2009) 1165–1173.
 C. Hough, M. Radu, J.J. Dore, TgF-beta induced Erk phosphorylation of smad linker regulates smad signaling, PloS One 7 (8) (2012) e42513.
 M. Kretzschmar, et al., A mechanism of repression of TGF-beta/Smad signaling

- Iinker région regulates smad signaling, PloS One 7 (8) (2012) e42513.
 [87] M. Kretzschmar, et al., A mechanism of repression of TGFbeta/Smad signaling by oncogenic Ras, Genes Dev. 13 (7) (1999) 804-816.
 [88] T. Huang, et al., TGF-beta signalling is mediated by two autonomously functioning TbetaRki/TbetaRiJ pairs, EMBO J. 30 (7) (2011) 1263-1276.
 [89] B. Bandyopadhyay, et al., TbetaRi/Alk5-independent TbetaRII signaling to ERK1/2 in human skin cells according to distinct levels of TbetaRII expression, J. Cell Sci. 124 (Pt 1) (2011) 19-24.
 [90] B.W. Corn, et al., ERK signaling in colorectal cancer: a preliminary report on the expression of phosphorylated ERK and the effects of radiation therapy, Am. J. Clin. Oncol. 31 (3) (2008) 255-258.
 [91] H. Fu, et al., TGF-beta promotes invasion and metastasis of gastric cancer cells by increasing fascin expression via ERK and JNK signal pathways, Acta
- [91] H. Fu, et al., TGF-beta promotes invasion and metastasis of gastric cancer cells by increasing fascini expression via ERK and JNK signal pathways, Acta Biochim. Biophys. Sin. (Shanghai) 41 (8) (2009) 648–656.
 [92] K. Giehl, Y. Imamichi, A. Menke, Smad4-independent TGF-beta signaling in tumor cell migration. Cells Tissues Organs 185 (1-3) (2007) 123–130.
 [93] S. Pulciani, et al., ras gene amplification and malignant transformation, Mol. Cell. Biol. 5 (10) (1985) 2836–2841.
 [94] W. Chaiyapan, et al., Somatic mutations of K-Ras and BRAF in Thai colorectal cancer and their prognostic value, Asian Pac. J. Cancer Prev. 14 (1) (2013) 329–332.

- 329-332. [95] K. Okumura, et al., Activated Ki-Ras suppresses 12-0-tetradecanoylphorbol-

- [95] K. Okumura, et al., Activated Ki-Ras suppresses 12-O-tetradecanoylphorbol-13-acetate-induced activation of the c-Jun NH2-terminal kinase pathway in human colon cancer cells, Cancer Res. 59 (10) (1999) 2445–2450.
 [96] M.T. Hartsough, et al., Altered transforming growth factor signaling in epithelial cells when ras activation is blocked, J. Bol. Chem. 271 (37) (1996) 22368–22375.
 [97] B.J. Park, et al., Mitogenic conversion of transforming growth factor-beta1 effect by oncogenic Ha-Ras-induced activation of the mitogen-activated protein kinase signaling pathway in human prostate cancer, Cancer Res. 60 (11) (2000) 3031–3038.
 [98] Z. Yan X. Deng. F. Fiedman. Oncogenic Ki-Ras confers a more aggressive
- [98] Z. Yan, X. Deng, E. Friedman, Oncogenic Ki-Ras confers a more aggressive colon cancer phenotype through modification of transforming growth factor beta receptor III, J. Biol. Chem. 276 (2) (2001) 1555–1563. J. Yue, K.M. Mulder, Activation of the mitogen-activated pi
- [99] -activated protein kinas pathway by transforming growth factor-beta, Methods Mol. Biol. 142 (2000) 125-131
- 125-131. A.C. Mullen, et al., Master transcription factors determine cell-type-specific responses to TGF-beta signaling, Cell 147 (3) (2011) 565–576. M. Cordenonsi, et al., Links between tumor suppressors: p53 is required for TGF-beta gene responses by cooperating with Smads, Cell 113 (3) (2003) [100] A [101] M.
- 301–314. [102] M.J. Calonge, J. Massague, Smad4/DPC4 silencing and hyperactive Ras jointly
- [106] M.J. Catolige, J. massager, Jinaely J.C. et an incluing and myper active has joining disrupt transforming growth factor-bet antiproliferative responses in colon cancer cells, J. Biol. Chem. 274 (47) (1999) 33637–33643.
 [103] M. Oft, et al., TGF-betal and Ha-Rass collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells, Genes Dev. 10 (19) (1996) 2462–2477.
- 2462–2477. [094] H. Kim, J.A. Choi, J.H. Kim, Ras promotes transforming growth factor-beta (TGF-beta)-induced epithelial-mesenchymal transition via a leukotriene B4 receptor-2-linked cascade in mammary epithelial cells, J. Biol. Chem. 289 (32) (2014) 22151–22160.

- [105] P. Trobridge, et al., TGF-beta receptor inactivation and mutant Kras induce intestinal neoplasms in mice via a beta-catenin-independent path Gastroenterology 136 (5) (2009) 1680e7-1688e7. [106] A. Bera, et al., Oncogenic K-Ras and loss of Smad4 mediate invasion by
- activating an EGFR/NF-kappaB axis that induces expression of MMP9 and uPA in human pancreas progenitor cells, PLoS One 8 (12) (2013) 82282
- e82282.
 [107] J. Yue, et al., Requirement of TGF-beta receptor-dependent activation of c-Jun N-terminal kinases (JNKs)/stress-activated protein kinases (Sapks) for TGF-beta up-regulation of the urokinase-type plasminogen activator receptor, J. Cell. Physiol. 199 (2) (2004) 284–292.
 [108] M. Yamashita, et al., TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta, Mol. Cell 31 (6) (2008) 918–924.
 [109] A. Sorrentino, et al., The type ITGF-beta receptor engages TRAF6 to activate TAKI in a receptor kinase-independent manner, Nat. Cell Biol. 10 (10) (2008) 1190–1207
- 1199-1207 [110] Y. Mu, et al., TRAF6 ubiquitinates TGFbeta type I receptor to promote its
- [110] Y. Mu, et al., TRAF6 ubiquitinates TGFbeta type I receptor to promote its cleavage and nuclear translocation in cancer, Nat. Commun. 2 (2011) 330.
 [111] R. Sundar, et al., TRAF6 promotes TGFbeta-induced invasion and cell-cycle regulation via Lys63-linked polyubiquitination of Lys178 in TGFbeta type I receptor, Cell Cycle 14 (4) (2015) 554-565.
 [112] Q. Liu, et al., A crosstalk between the Smad and JNK signaling in the TGF-beta-induced epithelial-mesenchymal transition in rat peritoneal mesothelial cells, PloS One 7 (2) (2012) e32009.
 [113] K. Yumoto, et al., TGF-beta-activated kinase 1 (Tak1) mediates agonist-induced Smad Satistican and Infer region phosphorylation in emptyonics.
- induced Smad activation and linker region phosphorylation in emb craniofacial neural crest-derived cells, J. Biol. Chem. 288 (19) (2013) embryonic
- craniolacial neural crest-derived cells, J. Biol. Chem. 288 (19) (2013)
 13467–13480.
 [114] J. J. Ventura, et al., JNK regulates autocrine expression of TGF-beta1, Mol. Cell 15 (2) (2004) 269–278.
 [115] C. Freudlsperger, et al., TGF-beta and NF-kappaB signal pathway cross-talk is mediated through TAK1 and SMAD7 in a subset of head and neck cancers, Oncogene 32 (12) (2013) 1549–1559.
 [116] Y. Kamiya, K. Miyazono, K. Miyazawa, Smad7 inhibits transforming growth factor-heat amily increase in the increase to the subset of bits of interaction.
- [10] I. Kalliya, K. Juyazziki, K. Juyazziki, J. Jukazziki, J. Kalliya, K. Juyazziki, K. Jukazziki, K.
- olorectal carcinoma cell lines with deregulated Wnt/beta-catenin signaling,
- colorectal carcinoma cell lines with deregulated Wnt/beta-catenin signaling. BMC Genomics 15 (2014) 74.
 [118] F. Comes, et al., A novel cell type-specific role of p38alpha in the control of autophagy and cell death in colorectal cancer cells. Cell Death Differ. 14 (4) (2007) 693-702.
 [119] X. Wu, et al., Ubiquitin-conjugating enzyme Ubc13 controls breast cancer metastasis through a TAK1-p38 MAP kinase cascade, Proc. Natl. Acad. Sci. U. S. A. 111 (38) (2014) 13870-13875.
 [120] A. Safina, et al., TAK1 is required for TGF-beta 1-mediated regulation of matrix metalloproteinase-9 and metastasis, Oncogene 27 (9) (2008) 1198-1207.
- 1198-1207
- S. Chen, R.C. Bergan, MAPKAPK2 and HSP27 are downstream effectors of p38 MAP kinase-mediated matrix metalloproteinase type 2 activation and cell invasion in human prostate cancer, Oncogene 25 (21) (2006) 2887–2998.
 S.Y. Yang, et al., Inhibition of the p38 MAPK pathway sensitises human colon cancer cells to 5-fluorouracil treatment, Int. J. Oncol. 38 (6) (2011) 1695–1702.
 L. Yu, M.C. Hebert, Y.E. Zhang, TG-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses, EMBO J. 21 (14) (2002) 3740–3750.
- 3749-3759. [124] N.A. Bhowmick, et al., Integrin beta 1 signaling is necessary for transforming

- 3749-3759.
 3749-3759.
 [124] NA. Bhowmick, et al., Integrin beta 1 signaling is necessary for transforming growth factor-beta activation of p38MAPK and epithelial plasticity. J. Biol. Chem. 276 (50) (2001) 46707-46713.
 [125] AJ. Galliher, W.- Schiemann, Srephosphorylates Tyr284 in TGF-beta type II receptor and regulates TGF-beta stimulation of p38 MAPK during breast cancer cell proliferation GF-beta stimulation of p38 MAPK during breast cancer cell proliferations is 29 (2) (2008) 244-251.
 [127] J.J. Galliher, W.- Schiemann, Grb2 binding to Tyr284 in TbetaR-II is essential for mammary tumor growth and metastasis stimulated by TGF-beta, Carcinogenesis 29 (2) (2008) 244-251.
 [127] J.J. Northey, et al., Signaling through ShcA is required for transforming growth factor beta- and Neu/ErBF-2-induced breast cancer cell motility and invasion, Mol. Cell. Biol. 28 (10) (2003) 3162-3176.
 [128] H. Demagny, T. Araki, E.M. De Robertis, The tumor suppressor Smad4/DPC4 is regulated by phosphorylations that integrate FGF, Wnt, and TGF-beta signaling, Cell Rep. 9 (2) (2014) 688-700.
 [129] S.J. Ahn, et al., Microarray analysis of gene expression in lung cancer cell lines treated by fractionated irradiation, Anticancer Res. 34 (9) (2014) 4939-4948.
 [130] M. Fan, et al., Systematic analysis of metastasis-associated genes identifies miR-17-5p as a metastatic suppressor of basal-like breast cancer. Breast Cancer Res. Treat. 146 (3) (2014) 487-502.
 [131] Y. Liu, New insights into epithelial-mesenchymal transition in kidney fibrosis, J. Am. Soc. Nephrol. 21 (2) (2010) 212-222.
 [132] H. Wang, et al., Transforming growth factor beta suppresses beta-catenin/ Wnt signaling and stimulates an adhesion response in human colon carcinoma cells in a Smad4/DPC4 independent manner, Cancer Lett. 264 (2) (2008) 281-287.
 [133] S. Edlund, et al., Interaction between Smad7 and beta-catenin: importance for transforming growth factor beta-induced apo

114

- [134] M. Furuhashi, et al., Axin facilitates Smad3 activation in the transforming growth factor beta signaling pathway, Mol. Cell. Biol. 21 (15) (2001) 5132-5141.
- [135] M. Wan, et al., SCF(beta-TrCP1) controls Smad4 protein stability in pancreatic

- 132-3141.
 1351 M. Wan, et al., SCF(beta-TrCP1) controls Smad4 protein stability in pancreatic cancer cells, Am. J. Pathol. 166 (5) (2005) 1379-1392.
 1361 M. Wan, et al., Smad4 protein stability is regulated by ubiquitin ligase SCF beta-TrCP1, J. Biol. Chem. 279 (15) (2004) 14484-14487.
 1371 L.C. Lin, et al., TGFbeta can stimulate the p(38)/beta-catenin/PPARgamma signaling pathway to promote the EMT: invasion and migration of non-small cell lung cancer (H460 cells). Clin. Exp. Metastasis 31 (8) (2014) 881-895.
 1381 J. Fuxe, T. Vincent, A. Garcia de Herreros, Transcriptional crosstalk between TGF-beta and stem cell pathways in tumor cell invasion: role of EMT promoting Smad complexes, Cell Cycle 9 (12) (2010) 2363-2374.
 (139] M. Bordonaro, et al., The Notch ligand Delta-like 1 integrates inputs from TGFbeta/Activin and Wnt pathways, Exp. Cell Res. 317 (10) (2011) 1368-1381.
 (140] A. Nawshad, E.D. Hay, TGFbeta3 signaling activates transcription of the LEF1 gene to induce epithelial mesenchymal transformation during mouse palate development, J. Cell Biol. 163 (6) (2003) 1291-1301.
 (141] S. Lei, et al., The murine gastrin promoter is synergistically activated by transforming growth factor-beta/Smad and Wnt signaling pathways, J. Biol. Chem. 279 (41) (2004) 42492-42502.
 (142) T. Sekiya, et al., Transcriptional regulation of the TGF-beta pseudoreceptor BAMBI by TGF-beta signaling. Biochem. Biophys. Res. Commun. 320 (3) (2004) 680-684. (2004) 680-684.
- [143] K. Horiguchi, et al., Role of Ras signaling in the induction of snail by
- (2004) 680-684.
 (2004) 680-684.
 (143) K. Horiguchi, et al., Role of Ras signaling in the induction of snail by transforming growth factor-beta, J. Biol. Chem. 284 (1) (2009) 245-253.
 (144) J. I. Vook, et al., What-dependent regulation of the E-cadherin repressor snail, J. Biol. Chem. 280 (12) (2005) 11740-11748.
 (145) H. Peinado, M. Quintanilla, A. Cano, Iransforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions, J. Biol. Chem. 278 (23) (2003) 21113-21123.
 (146) M.J. Joseph, et al., Slug is a downstream mediator of transforming growth factor-beta1-induced matrix metalloproteinase-9 expression and invasion of oral cancer cells, J. Cell. Biochem. 108 (3) (2009) 726-736.
 (147) H. Hirose, et al., The significance of PITX2 overexpression in human colorectal cancer, Ann. Surg. Oncol. 18 (10) (2011) 3005-3012.
 (148) D.M. Fan, et al., FoxQl overexpression influences poor prognosis in non-small cell ling: cancer, associates with the phenomenon of EMT, PLoS One 7 (6) (2012) e39937.
 (150) J. Feng, et al., Involvement of FoxQ1 in NSCLC through regulating EMT and increasing chemosensitivity. Oncolarget 5 (20) (2014) 9589-9702.

- [150] J. Feng, et al., involvement of FoxQ1 in NSCL: Unrough regulating Evil and increasing chemosensitivity. Oncotarget 5 (20) (2014) 9689–9702.
 [151] Y. Qiao, et al., FOXQ1 regulates epithelial-mesenchymal transition in human cancers, Cancer Res. 71 (8) (2011) 3076–3086.
 [152] J. Christensen, et al., FOXQ1, a novel target of the Wnt pathway and a new marker for activation of Wnt signaling in solid tumors, PLoS One 8 (3) (2013) econot
- marker e60051
- [153] F. Piard, et al., Genetic pathways in colorectal cancer: interest for the pathologist, Ann. Pathol. 22 (4) (2002) 277–288.

- [154] M. Bienz, H. Clevers, Linking colorectal cancer to Wnt signaling, Cell 103 (2) (2000) 311–320.
 [155] L.M. Wakefield, A.B. Roberts, TGF-beta signaling: positive and negative effects on tumorigenesis, Curr. Opin. Genet. Dev. 12 (1) (2002) 22–29.
 [156] W.M. Grady, et al., Mutational inactivation of transforming growth factor beta on Concern Science 100 (2002) 2000 (2002
- receptor type II in microsatellite stable colon cancers, Cancer Res. 59 (2) 1999) 320-324.
- (1999) 320-324.
 [157] L. Levy, C.S. Hill, Alterations in components of the TGF-beta superfamily signaling pathways in human cancer, Cytokine Growth Factor Rev. 17 (1-2) (2006) 41-58.
 [158] W.K. Wu, et al., Dysregulation and crosstalk of cellular signaling pathways in colon carcinogenesis, Crit. Rev. Oncol. Hematol. 86 (3) (2013) 251-277.
 [159] R. Parsons, et al., Microsatellite instability and mutations of the transforming growth forces have thread to superscenario encouncil accore. Generate Dec. 56.
- growth factor beta type II receptor gene in colorectal cancer, Cancer Res. 55 (23) (1995) 5548–5550. [160] J.L. Ku, et al., Genetic alterations of the TGF-beta signaling pathway in
- [160] J.L. Ku, et al., Genetic alterations of the TGF-beta signaling pathway in colorectal cancer cell lines: a novel mutation in Smad3 associated with the inactivation of TGF-beta-induced transcriptional activation, Cancer Lett. 247 (2) (2007) 283–292.
 [161] R.Y. Liao, et al., TGFBR1*6A/9A polymorphism and cancer risk: a meta-analysis of 13,662 cases and 14,147 controls, Mol. Biol. Rep. 37 (7) (2010) 3227–3232.
 [162] D.S. Rosman, et al., TGFBR1*6A enhances the migration and invasion of MCF-7 breast cancer cells through RhoA activation, Cancer Res. 68 (5) (2008) 1310–1328.
- 1319-1328.
- [163] Y. Liu, et al., Transforming growth factor beta-1C-509T polymorphism and [163] Y. Liu, et al., Transforming growth factor beta-1C-509T polymorphism and cancer risk: a meta-analysis of 55 case-control studies, Asian Pac. J. Cancer Prev. 13 (9) (2012) 4683-4688.
 [164] Y. Liu, W. Zhou, D.W. Zhong, Meta-analyses of the associations between four common TGF-betal genetic polymorphisms and risk of colorectal tumor, Tumour Biol. 33 (4) (2012) 1191-1199.
 [165] Y. Wang, et al., An updated meta-analysis on the association of TGF-betal gene promoter -509CJT polymorphism with colorectal cancer risk, Cytokine 61 (1) (2013) 181-187.
 [166] K. Eppert, et al., MADR2 maps to 18q21 and encodes a TGFbeta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma, Cell 86 (4) (1996) 534-552.
 [167] M. Miyaki, et al., Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis, Oncogene 18 (20) (1999) 3098-3103.

- 098-3103
- 3098-3103.
 [168] N.I. Fleming, et al., SMAD2: SMAD3 and SMAD4 mutations in colorectal cancer, Cancer Res. 73 (2) (2013) 725-735.
 [169] S.U. Han, et al., Loss of the Smad3 expression increases susceptibility to tumorigenicity in human gastric cancer, Oncogene 23 (7) (2004) 1333-1341.
 [170] Let al. Gold, Aptamer-based multiplexed proteomic technology for
- biomarker discovery, PLoS One 5 (12) (2010) e15004. [171] L. Christiansson, et al., The tyrosine kinase inhibitors imatinib and dasatinib
- [171] L. Christiansson, et al., The tyrosine kinase initiotors imatinib and dasatinib reduce myeloid suppressor cells and release effector lymphocyte responses, Mol. Cancer Ther. 14 (5) (2015) 1181–1191.
 [172] R.I. Osmond, et al., G-protein-coupled receptor-mediated MAPK and PI3-kinase signaling is maintained in Chinese hamster ovary cells after gamma-irradiation, J. Biomol. Screen 17 (3) (2012) 361–369.

Review 1 - Supplemental files

Supplementary Table 1. List of selected signaling pathways that are disrupted in various cancers

Signaling pathway/components	Cancers in which implicated		
c-MET	Bladder [1], Breast [2], Colorectal [3-5], gastric [6, 7], Head and neck [8, 9], Renal [10]		
HER	Breast [11], Colorectal [12], Prostate [13]		
Hedgehog	Colorectal [14, 15], Gastric [16, 17], Lung [18, 19], Ovarian [20], Pancreatic [21], Prostate [22]		
JAK-STAT	Breast [23, 24], Colorectal [25-27], Esophageal [28], Head and neck [29]		
MAP Kinases	Colorectal [30, 31], Gastric [32], Prostate [33-35],		
NF-kappaB	Gastric [36, 37], Head and neck [38], Liver [39, 40], Lung [41-43], Pancreatic [44, 45], Prostate [35, 46, 47], Renal [48],		
Notch	Breast [23, 49], Colorectal [50], Lung [51], Prostate [52], Pancreatic [53, 54],		
PI3K/AKT/mTOR	Bladder [55], Breast [56, 57], Colorectal [58, 59], Gastric [60], Ovarian [58, 61], Prostate [33, 34], Renal [62], Skin [63]		
TGFβ	Breast [64-66], Colorectal [67-69], Lung [70], Ovarian [71- 73], Pancreatic [74], Prostate [75]		
Smad	Colorectal [76], Ovarian [71], Pancreatic [74]		
Wnt	Breast [77, 78], Colorectal [79-81], Liver [82, 83], Renal [84- 86]		

References

- Yeh, C.Y., et al., Transcriptional activation of the Axl and PDGFR-alpha by c-Met through a ras- and Src-independent mechanism in human bladder cancer. BMC Cancer, 2011. 11: p. 139.
- Ponzo, M.G., et al., Met induces mammary tumors with diverse histologies and is associated with poor outcome and human basal breast cancer. Proc Natl Acad Sci U S A, 2009. 106(31): p. 12903-8.
- Liu, Y., Q. Li, and L. Zhu, Expression of the hepatocyte growth factor and c-Met in colon cancer: correlation with clinicopathological features and overall survival. Tumori, 2012. 98(1): p. 105-12.
- Moore, A.E., et al., HGF/Met signalling promotes PGE(2) biogenesis via regulation of COX-2 and 15-PGDH expression in colorectal cancer cells. Carcinogenesis, 2009. 30(10): p. 1796-804.
- Neklason, D.W., et al., Activating mutation in MET oncogene in familial colorectal cancer. BMC Cancer, 2011. 11: p. 424.
- Houldsworth, J., et al., Gene amplification in gastric and esophageal adenocarcinomas. Cancer Res, 1990. 50(19): p. 6417-22.
- Rege-Cambrin, G., et al., Karyotypic analysis of gastric carcinoma cell lines carrying an amplified c-met oncogene. Cancer Genet Cytogenet, 1992. 64(2): p. 170-3.

- 8. Di Renzo, M.F., et al., Somatic mutations of the MET oncogene are selected during metastatic spread of human HNSC carcinomas. Oncogene, 2000. **19**(12): p. 1547-55.
- Sen, B., et al., Distinct interactions between c-Src and c-Met in mediating resistance to c-Src inhibition in head and neck cancer. Clin Cancer Res, 2010. 17(3): p. 514-24.
- Schmidt, L., et al., Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet, 1997. 16(1): p. 68-73.
- 11. Wulfkuhle, J.D., et al., Molecular analysis of HER2 signaling in human breast cancer by functional protein pathway activation mapping. Clin Cancer Res, 2012. **18**(23): p. 6426-35.
- 12. Half, E., et al., *HER-2 receptor expression, localization, and activation in colorectal cancer cell lines and human tumors.* Int J Cancer, 2004. **108**(4): p. 540-8.
- 13. Craft, N., et al., A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med, 1999. 5(3): p. 280-285.
- 14. Qualtrough, D., et al., *Hedgehog signalling in colorectal tumour cells: induction of apoptosis with cyclopamine treatment.* International journal of cancer. Journal international du cancer, 2004. **110**(6): p. 831-7.
- 15. Varnat, F., et al., Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO molecular medicine, 2009. 1(6-7): p. 338-51.
- 16. Fukaya, M., et al., *Hedgehog signal activation in gastric pit cell and in diffuse-type gastric cancer*. Gastroenterology, 2006. **131**(1): p. 14-29.
- 17. Yanai, K., et al., *Hedgehog signaling pathway is a possible therapeutic target for gastric cancer*. Journal of surgical oncology, 2007. **95**(1): p. 55-62.
- Yuan, Z., et al., Frequent requirement of hedgehog signaling in non-small cell lung carcinoma. Oncogene, 2007. 26(7): p. 1046-55.
- 19. Watkins, D.N., et al., *Hedgehog signalling within airway epithelial progenitors and in smallcell lung cancer.* Nature, 2003. **422**(6929): p. 313-7.
- Bhattacharya, R., et al., Role of hedgehog signaling in ovarian cancer. Clin Cancer Res, 2008. 14(23): p. 7659-66.
- Feldmann, G., et al., Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Research, 2007. 67(5): p. 2187-96.
- 22. Sheng, T., et al., Activation of the hedgehog pathway in advanced prostate cancer. Molecular cancer, 2004. **3**: p. 29.
- 23. Reedijk, M., et al., *High-level Coexpression of JAG1 and NOTCH1 Is Observed in Human Breast Cancer and Is Associated with Poor Overall Survival.* Cancer Research, 2005. **65**(18): p. 8530-8537.
- 24. Reedijk, M., et al., *JAG1 expression is associated with a basal phenotype and recurrence in lymph node-negative breast cancer*. Breast Cancer Research and Treatment, 2008. **111**(3): p. 439-448.
- 25. Xiong, H., et al., Inhibition of JAK1, 2/STAT3 signaling induces apoptosis, cell cycle arrest, and reduces tumor cell invasion in colorectal cancer cells. Neoplasia, 2008. **10**(3): p. 287-97.
- Slattery, M.L., et al., JAK/STAT/SOCS-signaling pathway and colon and rectal cancer. Mol Carcinog, 2013. 52(2): p. 155-66.
- 27. Du, W., et al., Inhibition of JAK2/STAT3 signalling induces colorectal cancer cell apoptosis via mitochondrial pathway. J Cell Mol Med, 2012. **16**(8): p. 1878-88.
- You, Z., et al., JAK/STAT signal pathway activation promotes progression and survival of human oesophageal squamous cell carcinoma. Clin Transl Oncol, 2012. 14(2): p. 143-9.
- Lai, S.Y., et al., Erythropoietin-mediated activation of JAK-STAT signaling contributes to cellular invasion in head and neck squamous cell carcinoma. Oncogene, 2005. 24(27): p. 4442-9.

- Wang, Q., et al., Downregulation of mitogen-activated protein kinases in human colon cancers. Anticancer research, 2000. 20(1A): p. 75-83.
- 31. Gulmann, C., et al., *Quantitative cell signalling analysis reveals down-regulation of MAPK pathway activation in colorectal cancer*. The Journal of pathology, 2009. **218**(4): p. 514-9.
- Liang, B., et al., Increased expression of mitogen-activated protein kinase and its upstream regulating signal in human gastric cancer. World journal of gastroenterology : WJG, 2005. 11(5): p. 623-8.
- Goc, A., et al., PI3 kinase integrates Akt and MAP kinase signaling pathways in the regulation of prostate cancer. International journal of oncology, 2011. 38(1): p. 267-77.
- 34. Dizeyi, N., et al., Serotonin activates MAP kinase and PI3K/Akt signaling pathways in prostate cancer cell lines. Urologic oncology, 2011. **29**(4): p. 436-45.
- 35. Hermani, A., et al., *S100A8 and S100A9 activate MAP kinase and NF-kappaB signaling pathways and trigger translocation of RAGE in human prostate cancer cells.* Experimental cell research, 2006. **312**(2): p. 184-97.
- Sasaki, N., et al., Nuclear factor-kappaB p65 (RelA) transcription factor is constitutively activated in human gastric carcinoma tissue. Clinical cancer research : an official journal of the American Association for Cancer Research, 2001. 7(12): p. 4136-42.
- Wang, W., H.S. Luo, and B.P. Yu, Expression of NF-kappaB and human telomerase reverse transcriptase in gastric cancer and precancerous lesions. World journal of gastroenterology : WJG, 2004. 10(2): p. 177-81.
- Yan, M., et al., Correlation of NF-kappaB signal pathway with tumor metastasis of human head and neck squamous cell carcinoma. BMC Cancer, 2010. 10: p. 437.
- Qiao, L., et al., Constitutive activation of NF-kappaB in human hepatocellular carcinoma: evidence of a cytoprotective role. Human gene therapy, 2006. 17(3): p. 280-90.
- Feng, Y.X., et al., Liver cancer: EphrinA2 promotes tumorigenicity through Rac1/Akt/NFkappaB signaling pathway 120. Hepatology, 2010. 51(2): p. 535-44.
- 41. Tsurutani, J., et al., *Tobacco components stimulate Akt-dependent proliferation and NFkappaB-dependent survival in lung cancer cells.* Carcinogenesis, 2005. **26**(7): p. 1182-95.
- 42. Basseres, D.S., et al., *Requirement of the NF-kappaB subunit p65/RelA for K-Ras-induced lung tumorigenesis.* Cancer Research, 2010. **70**(9): p. 3537-46.
- 43. Tang, X., et al., Nuclear factor-kappaB (NF-kappaB) is frequently expressed in lung cancer and preneoplastic lesions. Cancer, 2006. **107**(11): p. 2637-46.
- Fujioka, S., et al., Function of nuclear factor kappaB in pancreatic cancer metastasis. Clinical cancer research : an official journal of the American Association for Cancer Research, 2003.
 9(1): p. 346-54.
- 45. Lu, Z., et al., *miR-301a as an NF-kappaB activator in pancreatic cancer cells.* The EMBO journal, 2011. **30**(1): p. 57-67.
- 46. Chen, F., et al., *Livin regulates prostate cancer cell invasion by impacting the NF-kappaB signaling pathway and the expression of FN and CXCR4*. IUBMB life, 2012. **64**(3): p. 274-83.
- Garg, R., et al., Activation of nuclear factor kappaB (NF-kappaB) in prostate cancer is mediated by protein kinase C epsilon (PKCepsilon). The Journal of biological chemistry, 2012. 287(44): p. 37570-82.
- Ογa, M., et al., Increased nuclear factor-κB activation is related to the tumor development of renal cell carcinoma. Carcinogenesis, 2003. 24(3): p. 377-384.
- 49. Yamaguchi, N., et al., NOTCH3 signaling pathway plays crucial roles in the proliferation of ErbB2-negative human breast cancer cells. Cancer Res, 2008. **68**(6): p. 1881-8.
- Sikandar, S.S., et al., NOTCH signaling is required for formation and self-renewal of tumorinitiating cells and for repression of secretory cell differentiation in colon cancer. Cancer Res, 2010. 70(4): p. 1469-78.
- 51. Westhoff, B., et al., Alterations of the Notch pathway in lung cancer. Proc Natl Acad Sci ∪ S A, 2009. **106**(52): p. 22293-8.

- Wang, Z., et al., Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-kappaB signaling pathways. J Cell Biochem, 2010. 109(4): p. 726-36.
- 53. Hanlon, L., et al., Notch1 Functions as a Tumor Suppressor in a Model of K-ras–Induced Pancreatic Ductal Adenocarcinoma. Cancer Research, 2010.
- 54. Mazur, P.K., et al., *Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma.* Proceedings of the National Academy of Sciences, 2010.
- 55. Knowles, M.A., et al., *Phosphatidylinositol 3-kinase (PI3K) pathway activation in bladder cancer*. Cancer Metastasis Rev, 2009. **28**(3-4): p. 305-16.
- 56. Gonzalez-Angulo, A.M., et al., *PI3K pathway mutations and PTEN levels in primary and metastatic breast cancer*. Molecular cancer therapeutics, 2011. **10**(6): p. 1093-101.
- 57. Sun, M., et al., Phosphatidylinositol-3-OH Kinase (PI3K)/AKT2, activated in breast cancer, regulates and is induced by estrogen receptor alpha (ERalpha) via interaction between ERalpha and PI3K. Cancer Research, 2001. **61**(16): p. 5985-91.
- Philp, A.J., et al., The phosphatidylinositol 3'-kinase p85alpha gene is an oncogene in human ovarian and colon tumors. Cancer Research, 2001. 61(20): p. 7426-9.
- Johnson, S.M., et al., Novel expression patterns of PI3K/Akt/mTOR signaling pathway components in colorectal cancer. Journal of the American College of Surgeons, 2010. 210(5): p. 767-76, 776-8.
- 60. Shi, J., et al., *Highly frequent PIK3CA amplification is associated with poor prognosis in gastric cancer*. BMC Cancer, 2012. **12**(1): p. 50.
- Soderlund, K., G. Perez-Tenorio, and O. Stal, Activation of the phosphatidylinositol 3kinase/Akt pathway prevents radiation-induced apoptosis in breast cancer cells. International journal of oncology, 2005. 26(1): p. 25-32.
- 62. Hara, S., et al., Akt activation in renal cell carcinoma: contribution of a decreased PTEN expression and the induction of apoptosis by an Akt inhibitor. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO, 2005. 16(6): p. 928-33.
- 63. Slipicevic, A., et al., *Expression of activated Akt and PTEN in malignant melanomas: relationship with clinical outcome.* American journal of clinical pathology, 2005. **124**(4): p. 528-36.
- Scollen, S., et al., *TGF-beta signaling pathway and breast cancer susceptibility*. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 2011. 20(6): p. 1112-9.
- 65. Wiercinska, E., et al., The TGF-beta/Smad pathway induces breast cancer cell invasion through the up-regulation of matrix metalloproteinase 2 and 9 in a spheroid invasion model system. Breast Cancer Research and Treatment, 2011. 128(3): p. 657-66.
- 66. Shim, K.S., et al., *Elevated serum levels of transforming growth factor-beta1 in patients with colorectal carcinoma: its association with tumor progression and its significant decrease after curative surgical resection.* Cancer, 1999. **85**(3): p. 554-61.
- 67. Calon, A., et al., Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer Cell, 2012. 22(5): p. 571-84.
- Slattery, M.L., et al., Genetic variation in the TGF-beta signaling pathway and colon and rectal cancer risk. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 2011. 20(1): p. 57-69.
- 69. Deng, X., et al., Overexpression of Evi-1 oncoprotein represses TGF-beta signaling in colorectal cancer. Molecular carcinogenesis, 2013. **52**(4): p. 255-64.

- Hasegawa, Y., et al., Transforming growth factor-beta1 level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma. Cancer, 2001. 91(5): p. 964-71.
- 71. Yeh, K.T., et al., *Aberrant TGFbeta/SMAD4 signaling contributes to epigenetic silencing of a putative tumor suppressor, RunX1T1 in ovarian cancer.* Epigenetics, 2011. **6**(6): p. 727-39.
- 72. Yin, J., et al., *Genetic variants in TGF-beta pathway are associated with ovarian cancer risk.* PloS one, 2011. **6**(9): p. e25559.
- Antony, M.L., et al., Changes in expression, and/or mutations in TGF-beta receptors (TGFbeta RI and TGF-beta RII) and Smad 4 in human ovarian tumors. Journal of cancer research and clinical oncology, 2010. 136(3): p. 351-61.
- 74. Kleeff, J., et al., Overexpression of Smad2 and colocalization with TGF-beta1 in human pancreatic cancer. Dig Dis Sci, 1999. 44(9): p. 1793-802.
- 75. Glynne-Jones, E., et al., *Transforming growth factor beta 1 expression in benign and malignant prostatic tumors.* Prostate, 1994. **25**(4): p. 210-8.
- 76. Zhang, B., et al., Antimetastatic role of Smad4 signaling in colorectal cancer. Gastroenterology, 2010. **138**(3): p. 969-80 e1-3.
- Khramtsov, A.I., et al., Wnt/β-Catenin Pathway Activation Is Enriched in Basal-Like Breast Cancers and Predicts Poor Outcome. The American Journal of Pathology, 2010. 176(6): p. 2911-2920.
- Matsuda, Y., et al., WNT signaling enhances breast cancer cell motility and blockade of the WNT pathway by sFRP1 suppresses MDA-MB-231 xenograft growth. Breast Cancer Research, 2009. 11(3): p. R32.
- 79. Boon, E.M., et al., *Wnt signaling regulates expression of the receptor tyrosine kinase met in colorectal cancer*. Cancer Research, 2002. **62**(18): p. 5126-8.
- Shitashige, M., et al., Traf2- and Nck-Interacting Kinase Is Essential for Wnt Signaling and Colorectal Cancer Growth. Cancer Research, 2010. 70(12): p. 5024-5033.
- Mologni, L., et al., Colorectal tumors are effectively eradicated by combined inhibition of {beta}-catenin, KRAS, and the oncogenic transcription factor ITF2. Cancer Research, 2010. 70(18): p. 7253-63.
- Lachenmayer, A., et al., Wnt-pathway activation in two molecular classes of hepatocellular carcinoma and experimental modulation by sorafenib. Clinical cancer research : an official journal of the American Association for Cancer Research, 2012. 18(18): p. 4997-5007.
- Chiang, D.Y., et al., Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Research, 2008. 68(16): p. 6779-88.
- 84. Kojima, T., et al., Decreased expression of CXXC4 promotes a malignant phenotype in renal cell carcinoma by activating Wnt signaling. Oncogene, 2009. **28**(2): p. 297-305.
- Peruzzi, B., G. Athauda, and D.P. Bottaro, *The von Hippel-Lindau tumor suppressor gene product represses oncogenic beta-catenin signaling in renal carcinoma cells.* Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(39): p. 14531-6.
- 86. Kim, Y.S., et al., *beta-catenin expression and mutational analysis in renal cell carcinomas.* Pathology international, 2000. **50**(9): p. 725-30.

Review 2: The $\alpha\nu\beta6$ integrin sets the stage for colorectal cancer metastasis. [Publication II]

Cancer Metastasis Rev DOI 10.1007/s10555-015-9591-z

NON-THEMATIC REVIEW

CrossMark

Integrin $\alpha v\beta 6$ sets the stage for colorectal cancer metastasis

D. I. Cantor¹ · H. R. Cheruku¹ · E. C. Nice² · M. S. Baker¹

© Springer Science+Business Media New York 2015

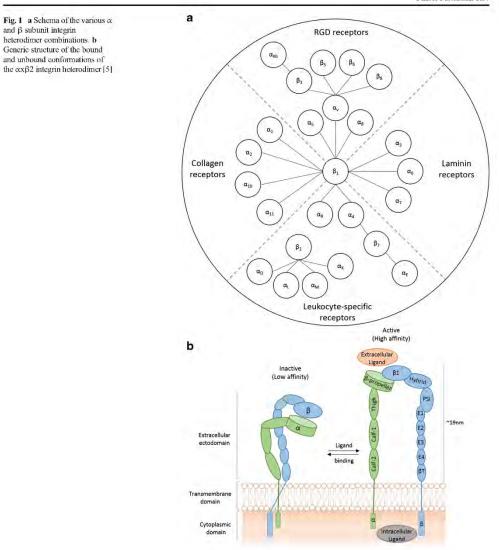
Abstract The ß6 subunit of the αvβ6 integrin heterodimer has long been an enigma in cancer biology though recent research has provided many new insights into its biology. Collectively, these findings include discovery of the transcriptional, translational and cell biological mechanisms by which β6 acts, the identification of the cellular influences β6 exerts upon the cell proteome, the characterisation of multiple \$6centric pro-metastatic signalling systems and the search for pharmacological therapies (industry and academia) targeted against B6. Once expressional restriction is overcome in early colorectal cancer (CRC), epithelial cell surface restricted αvβ6 can physically interact with, and activate, known oncoproteins, and has the potential to enable the cross-talk through non-canonical signal transduction pathways, resulting in the adoption of an invasive/metastatic phenotype. This recent research has identified numerous interconnections and potential feedback loops, highlighting the fact that the expression of the ß6 subunit may initiate a cascade of downstream effects on the CRC cell rather than acting through a single mechanism. We here review these recent studies and postulate that the existence of a cell surface uPAR/avB6/TGFB "metastasome" interactome in/on a proportion of colorectal cancer cells, where ß6 expression sequesters and activates multiple systems at the invasive front of tumour lesions,

M. S. Baker mark baker a mg edu au

Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, F10A Building, 2 Technology

 Place, Sydney, NSW 2109, Australia
 Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 5800, Australia

Published online: 04 September 2015


promoting cancer metastasis and hence explaining why $\beta \delta$ has been correlated with reduced patient survival in CRC.

Keywords Colorectal cancer - $\beta 6$ integrin - Metastatic transformation

1 Introduction

The $\beta 6$ integrin subunit of the $\alpha \nu \beta 6$ integrin heterodimer ($\beta 6$) has long resisted attempts to characterise its molecular biology. Despite a steady stream of insights over the past two decades into the various aspects of its roles and functions, its precise nature continues to remain clusive. The $\beta 6$ subunit is a member of a large family of heterodimeric trans-plasma membrane receptors called integrins that consist of non-covalently bound α and β subunits. Integrins can be composed from 1 of 18 α - and 8 β -subunits to form 24 known heterodimer combinations (Fig. 1a) [1, 2]. Integrin subunits range from between 750 and 1000 amino acid residues in length and are constructed from several domains that are flanked by flexible linker regions, a membrane-spanning helix and a typically short, unstructured cytoplasmic tail (Fig. 1b) [3].

Integrins possess large ectodomains comprised of modular units, a single transmembrane helix and cytoplasmic tail. The external structure of the α -subunits consist of a β -propeller, thigh, calf-1 and calf-2 domains whilst β subunits are composed of a β 1, hybrid, PSI (plexin-semaphorin-integrin), 1-4 1-EGF (integrin-epidermal-growth-factor, E1-4) and a β -tail domain sequence [4]. Integrins exist in an equilibrium between a "contorted" or low-affinity state that places the available ligand-binding domain near the cell membrane and a "raised" or high-affinity state when bound to any extracellular ligand found in the extracellular matrix (ECM). Interestingly, many β integrin subunits are also capable of binding intracellular

ligands on integrin domains located within the flexible cytoplasmic tail domains [5],

Predominantly thought to be cell surface ECM receptors, integrins bind to proteins such as collagen IV, laminin, vitronectin, fibronectin and leukocyte-specific ligands in order to mediate cellular adhesion through cell•ECM and also cell•cell interactions [6]. Each α/β combination confers a particular binding specificity and consequential downstream signalling capabilities which underpin the structural and functional diversity of the integrin family (Fig. 1a) [1]. For example, heterodimers such as $\alpha 5\beta 1$, $\alpha V\beta 3$, $\alpha V\beta 5$ and $\alpha V\beta 6$ mediate cellular adhesion by binding to Arg-Gly-Asp (RGD) sequence motifs found within a number of abundant ECM proteins, such as fibronectin, vitronectin, fibrinogen and von

Willebrand factor, to name a few [6]. Ligand affinity and the specificity of each individual heterodimer combination are primarily influenced by the presence of additional specific residues/sequences outside of that RGD-binding motif [6]. Ganguly et al. have presented evidence that these neighbouring residues may synergistically promote and influence the adhesion of the integrin RGD-binding domain to specific ligands [6]. Whilst the general structural features of all α and β subunits are similar (i.e., sharing 30 and 45 % sequence identity, respectively), sequencing studies have demonstrated no detectable homology between α and β subunits, suggesting flat the variation within each gene family has evolved through gene duplication [6].

In mature integrin heterodimers, the large extracellular domain of the NH2-terminal tails of both subunits form an ellipsoidal head, which is responsible for binding the external ligand. Each subunit possesses a hydrophobic helical, singlepass transmembrane domain of approximately 21 residues in length and a generally short C-terminal cytoplasmic domain that is less than 60 residues in length [6, 7]. No integrin cytoplasmic tail possesses intrinsic enzymatic (kinase) function and thus integrins can only signal across the membrane through recruitment and association with a range of adaptor proteins which anchor integrins to the cytoskeleton (e.g. talin [8]) or transduce the stimulus through membrane-associated growth factor receptors (e.g. focal adhesion kinase (FAK) [9]) or cytoplasmic kinases (e.g. mitogen-activated protein kinase members (MAPK) [10]) [7, 11]. Once expressed and bound to ECM proteins, integrins cluster in-plane at the cell membrane near other heterodimers, allowing their cytoplasmic tails to associate cooperatively with the cytoskeleton [12]. This in turn promotes intracellular actin filament assembly and reorganisation in a manner that promotes further integrin clustering in a positive feedback loop mechanism, potentially enhancing cell adhesion to the ECM [6]. Integrins thereby act as cytoskeletal integrators which aggregate adaptor and cytoskeletal-associated signalling proteins into complexes called focal adhesion complexes or, put more simply, focal contacts. These provide the cell with structural support from the ECM as well as localised bi-directional signal transduction [6, 11, 13]. This transduction across the plasma membrane is mediated by conformational changes of the integrin itself, where ligand-binding to the head domains induces a separation of the cytoplasmic subunit tails (Fig. 1b), enabling interaction of intracellular potentially "signaling" ligands with nascent epitopes expressed on the separated cytoplasmic Ctermini [14]. This type of signal transduction is referred to as "outside-in" signalling [13] and has been observed to involve kindlin-2 [15-17] and the tyrosine kinases of both the Src and Syk pathways [18].

Integrins are also capable of transmitting intracellular signals across the membrane outside to the extracellular environment, termed "inside-out" signalling [6]. Here, the interaction between the C-terminal cytoplasmic tails and ligands such as talin induces a conformational change that promotes the interaction of the integrin head domains with respective extracellular ligands [6, 16, 19]. Conformational changes can also stem from the mutation of a conserved glycine in the B1 domain of the β 1, β 2 or β 3 subunit, resulting in constitutive activation through $\alpha 1/\alpha 1'$ -helix unbending or protection from protein modification [4]. The interplay between ligand interaction and bi-directional signalling at focal adhesion sites generally occurs in a synchronised fashion. This synchronicity is thought to regulate several physiological cell behaviours, importantly including proliferation, survival and differentiation, migration and a process known as epithelial-mesenchymal transition (EMT) [20, 5]. However, as this synchronicity is often damaged or completely lost during pathological and developmental human conditions, like fibrosis, chronic wound healing/ulceration and cancer, these processes can exert highly detrimental effects on an organism [6]. In humans, the loss of cell regulation is a crucial step in cancer progression.

As the global population ages and continues to adopt/ maintain cancer-predisposing lifestyle choices (e.g. diet, smoking, physical inactivity), the cancer burden has grown to 14.1 million new cases and 8.2 million deaths in 2012 [21]. According to the World Health Organisation's estimates for 2011, cancer now causes more deaths than coronary heart disease and stroke combined [21, 22]. One "lifestyle" cancer subtype that contributes significantly to global cancer morbidity and mortality is colorectal cancer (CRC), with over 1.36 million estimated new cases and 608,700 deaths worldwide in 2012 [21]. CRC is the third most commonly diagnosed cancer in males and the second most common in females with the highest incidence rate reported to be in Australia and New Zealand where rates of 44.8 and 32.2 per 100,000 are found respectively [21]. Morbidity and mortality from CRC invariably occurs with advanced cancers due to the progressive deterioration of normal organ function due to invasion by multiple or massive metastases (Fig. 2), as well as the development of acute complications or extensive and complete wasting/ degradation of the patient in a process called cachexia [23]. Essentially, cancer lethality arises from the spread of primary tumours to secondary sites where these induce critical organ failure resulting in patient death. Once a cancer reaches a state where CRC is biologically capable of spreading to distal organs (metastasizing), the likelihood of CRC patient survival rapidly declines.

Numerous proteins and biochemical pathways are thought to enhance CRC progression towards life-threatening metastases. Many studies in the last decade have demonstrated a link hetween integrin subunit expression and CRC progression towards a more aggressive, metastatic phenotype

cosa 🧹	A				
scularis	(C) 3) ((_)) ((
pria 🦯					
osa	-		Lymph Digdes		iver netastasis
	Carcinoma in si	tu Duke's A D	uke's B Duke's C	Duke's D	
Duke's system	TNM system	Primary Tumour (T)	Regional Lymph Nodes (N)	Distal metastasis (M)	5-year survival
1	Stage 0	Tis	No	Ma	
A	Changel	T _t	No	Mo	>90%
в	Stage I	T ₂	No	Mo	>85%
В	Change II	T ₃	No	Mo	80%
в	Stage II	T ₄	No	Mo	72%
с	Charles III	T1, T2	Nt or N2	Mo	42-64%
С	Stage III	T ₃ , T ₄	N ₁ or N ₂	Mo	27-44%
D	Stage IV	$T_1 - T_4$	No- N2	M ₁	<10%
ey: T _x -	primary tumour car	i't be assessed	N _x – lymph nodes can't be assessed	M _x – metastasis can't be as	sessed
T ₀ – no evidence of primary tumour		N ₀ – no lymph node metastasis	M _o – no distant metastasis		
T _{is} – carcinoma in situ T _i – tumour invades submucosa			N1 – metastasis in 1-3 lymph nodes	M ₁ – distant metastasis	
			N2 - metastasis in 4+ lymph nodes		
		scularis propria			

T₄ – tumour directly invades other organs or visceral peritoneum

Fig. 2 Duke's and Turnour-Node-Metastasis staging systems with respective survival data from the European Society for Medical Oncology [72]

[24-27]. The steadily growing numbers of CRC deaths are a reminder that there remain unmet clinical needs for a greater understanding of the molecular biology of CRC metastasis, for the discovery/validation of prognostic biomarkers and the development of improved early detection methods. Several studies have linked expression of the ß6 integrin subunit with a more aggressive, invasive cancer phenotype [24-26, 28-30]. When bound to its sole binding partner αv , the $\beta 6$ subunit is an epithelial cell-restricted antigen whose expression is elevated during tissue remodelling events (e.g. wound healing, fibrosis) and in epithelial cancers during EMT. It is almost invariably localised to the invasive fronts and infiltrating edges of tumour islands in cancer [25, 29, 31]. Elevated ß6 expression has been observed in many cancers, including CRC, gastric, ovarian, liver, thyroid, endometrial and cervical squamous carcinoma, where expression invariably correlates with poor patient survival [32, 33]. Immunohistochemical studies have demonstrated elevated ß6 expression negatively correlates with CRC patient survival [30], which was ascribed to be mediated through \$6's roles in promoting cell proliferation, migration and invasion into proximal tissues eventually leading to metastasis [2, 25, 26, 30, 33-35]. Previous studies have demonstrated that the liver metastases of CRC patients exhibit significantly

Des Springer

elevated $\alpha v \beta 6$ expression when compared to the primary colon cancer site and that those patients whose primary tumours were $\alpha v \beta 6$ -positive had a significantly increased rate of liver metastasis [36].

This review will explore recent developments in the characterisation of $\beta 6$ integrin (as part of the $\alpha \nu \beta 6$ heterodimer) and explore a potential mechanism by which this ECM receptor promotes the metastatic phenotype in CRC, reducing patient survival.

2 Characterisation of the $\beta 6$ gene promoter and Ets-1 transcription factor

Under normal conditions, $\beta 6$ expression is restricted to almost undetectable levels and is only expressed in epithelial tissues during large-scale tissue remodelling events, such as wound healing and carcinogenesis [25]. As such, an exciting development in $\beta 6$ research has been the recent identification by Xu et al. of the previously unknown DNA elements and cognate transcription factors responsible for transcription of the $\beta 6$ coding sequence (ITGB6, Fig. 3) [1].

Interestingly, Xu et al. determined that mutation of the c-Myb and AP1-binding sites did not exert significant effects on promoter activity [1]. They employed 5'-rapid amplification of cDNA ends (5'-RACE) to determine that the transcriptional

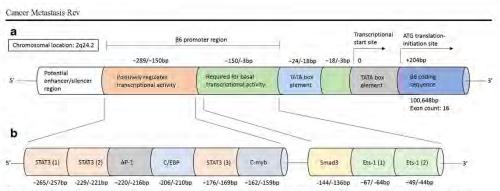


Fig. 3 a Schema of β6 gene transcriptional regions. b Location of putative binding sites for transcription factors based upon mutation analysis

start site was located 204 bp upstream of the ATG translation initiation site [1]. They then investigated the B6 promoter by cloning a series of truncated 5'-deletion fragments within the 5'-flanking region of the ITGB6 coding sequence into pGL2-Basic promoter-deficient luciferase reporter vectors [1]. These vectors were then transfected into a human oral squamous cell carcinoma cell line (TCA8113) and a non-human squamous cell carcinoma cell line (293T) to identify the sequence region that made the greatest contribution to gene expression [1]. Xu et al. stated that "the region between -421 and -150 is the main sequence that positively regulates ITGB6 transcription, whilst the region between -150 and -3 is necessary and minimally required for basal transcriptional activity of human ITGB6 gene" [1]. As well as identifying a functional TATA box element -24 to -18 bp upstream of the transcription start site, multiple putative transcription factor binding sites were predicted within the -289 to -150 region, including Ets-1, STAT3, C/EBPa, c-Myb and Smad3 [1]. Xu et al. then proceeded to verify that both STAT3 and C/EBP are required for positive regulation of ITGB6 mRNA expression [1].

Of those transcription factors identified, Ets-1 and cvB6 have recently been shown by Peng et al. to positively correlate with CRC stage along the tumour-node-metastasis (TNM) grading system and disease relapse whilst negatively correlating with patient survival [37]. Peng et al. demonstrated that out of 158 CRC tissue specimens, 91 (57.6 %) were positive for Ets-1 expression and 57 (36.1 %) positive for avß6 expression, whilst uninvolved colonic mucosa was negative for both Ets-1 and avß6 expression [37]. The Ets-1 and avß6 expression positively correlated with strong immunohistochemistry staining (P=0.000), which was always observed at the invasive front of the turnour islands and where only weak or no staining was found in the centre of tumour masses [37]. An interesting observation from this work was the additive effect of Ets-1 and avß6 expression on each other, wherein patients who were positive for both Ets-1 and $\alpha\nu\beta6$ expression relapsed earlier than patients who are positive for Ets-1 or αvβ6 alone [37]. These findings were supported by previous

work by Bates et al. who also demonstrated the transcriptional activation of 66 by Ets-1 correlated with poor patient survival [30]. Peng et al. investigated the interplay between Ets-1 and ανβ6 expression on the 5-year survival rates of 158 patients from Qilu Hospital (Shandong University, China), though it is important to note that patients with elevated risk factors were encouraged to take adjuvant chemotherapy, of which 87 (55.1 %) received 5-fluorouracil (5-FU)-based adjuvant chemotherapy [37]. Surgery is the preferred method for CRC treatment, though 5-FU-based therapy is the conventional care given to metastatic or lymph node-positive, stage III patients where it can reduce mortality by 25 % compared to resection alone [38]. Patients with liver metastases were encouraged to undergo radiofrequency ablation (RFA) or super γ knife radiotherapy, of which 28 (17.7 %) accepted [37]. With a 100 % follow-up rate, 71 (44.9 %) patients succumbed to cancerspecific death within 5 years of diagnosis, whilst 87 (55.1 %) of patients "were censored as their case follow up was discontinued or patients were alive beyond 60 months or died of reasons other than colon cancer" [37]. From this, Peng et al. have demonstrated that Ets-1 and $\alpha v\beta 6$ predict relapse and poor patient survival across all CRC Duke's stages despite application of fluorouracil-based chemotherapy or RFA. However, there was no significant difference in αvβ6 expression between the clustered groups of Duke's stage A+B and C+D (representing 58.2 and 41.7 % of patients, respectively), meaning that there was no difference in avß6 expression between the benign and metastatic forms of the disease [37].

A similar study by Ahn et al., published just a few months ago, also explored this finding in terms of stage-dependent survival [39]. Ahn et al. assessed surgical resections from 362 rectal cancer patients (168 Duke's stage B and 194 Duke's stage C) from Concord Hospital (Sydney, Australia) that had been obtained between 1988 and 2001 [39]. Tissue microarray immunohistochemistry employed the same mouse antihuman monoclonal antibody against $\alpha v \beta 6$ (6.2A1, Biogen, Cambridge, USA) as used by Peng et al. This study was further supported with extensive clinical data and clinical follow-

Springer

up of patients for a meritorious 25 years [39, 37]. Ahn et al. determined that $\alpha\nu\beta6$ expression is significantly higher in the invasive frontal region of rectal tumours relative to the central region or adjacent non-neoplastic mucosa tissue, as suggested by Peng et al. [39, 37]; xvB6 expression was elevated in the central region relative to normal tissue [39]. As also observed by Peng et al., no difference was seen in αvβ6 expression between Duke's stage B or stage C rectal cancers and overall survival or clinico-pathological features were not significantly related to av β6 expression [39]. As noted by Ahn et al., this contrasts with other literature reports associating avß6 expression with poor survival in multiple cancer subtypes; however, whilst other studies such as those performed by Peng et al. have been performed across multiple stages (Duke's A-D). Ahn et al. focused exclusively on ACPS RC stages B and C with far higher sample sizes and longer followup time [39].

In terms of patient survival, the phenotypic transition from a lymph node negative Duke's stage B tumour to a nodal positive metastasis (Duke's stage C) is a crucial step in disease progression [40], and so this would be one likely transition where one might expect to observe upregulation of poor prognostic indicators [37, 30]. As this was not the case in either study, it is possible that other pro-metastatic factors (e.g. Ets-1 or other known ß6 interactors like P-Erk-2 or urokinase-type plasminogen activator receptor (uPAR)) need to be jointly expressed with av B6 in order to mediate the transition, or that ανβ6 enhances its potency in their presence. This may explain the concomitant effect observed by Peng et al., whilst Ahn et al. did not observe any significant difference in survival as the only variable they measured was $\alpha v\beta 6$ expression. These studies suggest that whilst cv/66 does not correlate with poor survival between Duke's stages B and C without chemotherapy, when adjuvant fluorouracil-based chemotherapy or RFA is offered, avB6 expression does correlate with poor patient survival, suggesting that something more than just antigen expression is responsible for pro-metastatic activity.

3 Translational regulation of the β6 gene by eukaryotic initiation factor 4E

In addition to the identification of the β 6 promoter, an important development in β 6 research has been the discovery of the role that eukaryotic translation initiation factor 4E (eIF4E) plays in regulating β 6 expression at the translational level. Enyu et al. recently identified that $\alpha v \beta 6$ expression positively correlated with the expression of the cap-binding, translational effector eIF4E, which binds to the 5'cap structure of "weak" mRNAs and assists in the delivery of transcripts to the eIF4F translational complex [41]. Normally expressed in lowaburdance and considered to be the time-limiting component of the eIF4F complex [41], eIF4E expression is increased in a

D Springer

dysregulated manner in several cancers including colon [42], lung [43] and breast [44]. eIF4E expression has been associated with TNM-staged colon cancer progression, significantly reducing patient survival and also demonstrated to moderately correlate with ay \$6 expression [45]. Furthermore, when CRC patients were stratified according to low or high avβ6 and eIF4E expression, respectively, patients with high $\alpha\nu\beta6$ and eIF4E expression had a significantly reduced survival rate compared to the other groups where only one or neither protein was upregulated [45], eIF4E overexpression promotes the translation of mRNAs with complex secondary structures or extended 5'-untranslated regions that have central roles in metastatic cancer processes (e.g. c-myc, matrix metalloprotease (MMP)-9, cyclin-D1, fibroblast growth factor (FGF)-2 and vascular endothelial growth factor (VEGF)) [46, 47, 41]. Playing critical roles in mRNA export, stability and translation of transcripts involved in cell proliferation and survival, eIF4E functionality is influenced in concert by the ERK, MAPK, Ras, Akt and mTOR signalling pathways as well as various protein cofactors [47]. Enyu et al. demonstrated by that siRNA inhibition of eIF4E significantly decreased eIF4E mRNA expression whilst not effecting β6 mRNA expression [41]. Whilst this was not surprising, eIF4E siRNA inhibition significantly reduced the expression of both eIF4E and B6 at the protein level [41]. This inhibition was accompanied by a decreased resistance to apoptosis when treated with 5-FU and reduced the migratory capacity for HT-29 and ß6-transfected SW480 (SW480^{B6OE}) CRC cell lines on fibronectin [41]. In the case of SW480^{660E}, eIF4E siRNA inhibition significantly returned cell migration to the same level as the non-ß6expressing wild-type (SW480WT) and mock (SW480Mock) transfectants [41]. As well as inhibiting cell migration, Envu et al. highlighted that translational inhibition of eIF4E could significantly increase tumour sensitivity to 5-FU-based chemotherapies [41]. This finding complements that of Peng et al. [37], suggesting that ß6 expression is regulated by Ets-1 expression at the transcriptional level and eIF4E at the translational level and that B6 expression may convey resistance to 5-FU-based chemotherapies resulting in significantly reduced patient survival.

Interestingly, as eIF4E is considered the limiting component of the eIF4F complex, our group observed that β 6 overexpression in SW480^{66CE} cells was accompanied with a significant upregulation of Eukaryotic translation initiation factor 4 gamma 1 (eIF4G1) which is another component of the eIF4F complex [34], eIF4G1 is the most abundant member of the eIF4G scaffold protein family, whose elevated expression in yeast promoted direct mRNA-ribosome interaction and translation of mRNAs with longer polyA tails, thereby promoting mRNA translation efficiency [48–50]. Despite this, reduced eIF4G1 expression in yeast and mammalian cells did not inhibit the translation of multiple mRNAs, suggesting that the translation of particular mRNAs can be increased with

increased eIF4G expression [48, 51]. Collectively, this suggests that significant upregulation of eIF4G1 with B6 expression may facilitate an altered translational programme, influencing the expression of downstream proteins. eIFG1 is also an effector of mTOR signalling activity (following its phosphorylation) and has been observed to be elevated in breast [52], nasopharyngeal [53] and squamous cell lung cancers [54] where it is associated with metastatic progression and poor patient survival. Badura et al. identified that elevated efF4G1 expression in breast cancer selectively increased the translation of mRNAs involved in promoting cell survival, the prevention of apoptosis and autophagy following genotoxic DNA damage [48]. In nasopharyngeal cancers, Tu et al. demonstrated that eIF4G1 mRNA and protein expression was significantly elevated in the tumour compared to nine surrounding tissue, where it positively correlated with TNM-staged tumour progression and reduced survival time [53]. To et al. also highlighted that inhibiting expression of eIF4G1 by shRNA resulted in the suppression of cell migration/invasion, proliferation/cell cycle progression, colony formation and xenograft tumour growth in vivo [53].

Taken collectively, these studies exemplify the prooncogenic role of $\beta 6$ in cancer as it can facilitate both its own transcription and translation through the positive upregulation of Ets-1 and eIF4E, respectively, whilst upregulating the expression of the pro-oncogenic translation factor component eIF4G1. These studies not only unveil the potential transcriptional/translational mechanism of $\beta 6$ expression but also demonstrate that these processes are required for the promotion of metastatic phenotypes and progression in multiple cancers, including CRC.

4 β6 neo-expression alters the membrane proteome and promotes metastatic phenotypes

The expression of the \$6 subunit is the rate-limiting step in the formation of $\alpha\nu\beta6$ heterodimers at the cell surface, as the $\alpha\nu$ subunit was seen to be constitutively expressed at medium or high levels in 40 of 81 analysed normal tissue cell types, including the colon and rectum [55]. In an attempt to further illuminate the effects of B6 expression during the pivotal stage of CRC progression from Duke's stages B to C, our group recently performed a membrane-enriched proteomic study on the effect of intentional ß6 neo-expression in a nonexpressing cell line [34]. Utilising the SW480^{B6OE} and SW480Mos ^k cell lines, we observed that β6 expression in a Dukes' stage B CRC resulted in a significant change in the expression of 708 proteins, including 54 potential cancer biomarkers identified by the American Society of Clinical Oncology for clinical applications (e.g. diagnosis, prognosis, progression and response to therapy) [34]. One hundred thirtyfour proteins were observed solely in either the B6-transfected SW480^{B6OE} or SW480^{Mock} subclone, potentially indicating a biosignature of proteins expressed/repressed in response to $\beta 6$ expression [34], potentially as a result of an altered transcriptional/translational programme. Ingenuity Pathway Analysis[®] of the proteomic datasets revealed that the protein networks and functions most strongly affected by $\beta 6$ expression were fundamentally involved in cancer metastasis. These functions included the following: (i) cell death, (ii) cellular movement, (iii) cancer phenotype, (iv) cell cycle and (v) cellular growth/proliferation [34].

Based upon the expression of signalling pathway members, the integrin-linked kinase and Ran signalling pathways were identified as being significantly altered between the SW480^{Mock} and SW480^{BOOE} cell lines as well as individual proteins within the MAPK and Wnt/β-catenin signalling pathways [34]. Interestingly, when ß6 was artificially overexpressed, the expression of all other integrin subunits. observable by membrane proteomics (with the exception of α v) were downregulated (α 2, α 6, β 4 and β 5, significantly) [34]. In a previous fluorescence-activated cell analysis study, both SW480^{Mock} and SW480^{66OE} subclones were demonstrated to lack \$3 subunit expression [24]. The significant downregulation of $\beta 5$ with the slight upregulation of αv was an interesting observation as it suggested that ß6 neoexpression inhibits the formation of a competing RGD receptor, $\alpha v \beta 5$ (Fig. 1a) [34]. It is important to note that $\beta 1$ subunit expression was also downregulated, which may reduce the expression of another competing RGD receptor, $\alpha v \beta 1$, though this was not statistically significant [34]. Together, this suggests that once ß6 is initially expressed, it may preferentially capture significant numbers of av subunits and hence modulate formation of other available integrin heterodimers. creating a potential hierarchy. This was also postulated by Koistinen et al. who constructed cDNA coding for a singlechain, intracellular anti-av antibody that was stably transfected into WM-266-4 melanoma subclones [56]. Koistinen et al. found that this antibody significantly reduced av expression, selectively diminishing av ß1 heterodimer expression on the cell surface, although it did not alter the expression of another prominent œv-containing heterodimer, avß3 [56]. Koistinen et al. suggested that the amount of αvβ1 on the cell surface can be selectively regulated, independently of other heterodimers [56]. In essence, avß3 and $\alpha\nu\beta5$ heterodimer expression was regulated at the level of the β3 and β5 genes, respectively, whilst the activity of the αv gene governs the formation of $\alpha v \beta 1$ heterodimers [56]. It is important to note that \$6 expression was not detected on these cells, although in a similar study, $\alpha v \beta 1$ -mediated adhesion to fibronectin was reduced in a ß6-transfected cell line in which av[3] had previously been a major fibronectin receptor [56, 57], This finding was similar to our previous study, in which β6 neo-expression reduced cell adhesion to fibronectin by 14 % as well as vitronectin, collagen I and collagen II by 16,

30 and 15 %, respectively [34]. The reduction in adhesion to fibronectin initially seemed counter-intuitive as B6 has been classically characterised as a receptor for the RGD sequence of fibronectin; however, cx/β6 has a greater binding affinity (pM) for the N-terminal RGD sequences of the latencyassociated peptide (LAP) of latent transforming growth factor β1 (L-TGFβ1) [58] compared to a low nanomolar binding affinity for other ligands, like fibronectin, vitronectin or tenascin [59-62]. The LAP of TGF-B2 does not contain an RGD sequence and so does not bind to avB6. However, ανβ6 can bind and activate TGF-β1 and TGF-β3, whose LAPs do contain an RGD-sequence [63]. Together, this suggests that B6 neo-expression sequesters available av subunits to establish a dominant integrin hierarchy on the cell surface, inhibiting the expression of other integrin subunits, impairing av/31 and av/35 formation and shifting adhesion from ECM constituents towards binding and activation of the LAP of L-TGFB1.

Altered adhesion to the ECM could also help to explain how SW480^{β 60E} were significantly more capable of invasively migrating through an ECM-coated polycarbonate membrane, analogous to the epithelial basement membrane [34]. SW480^{β 60E} cells adopted a gross cellular morphology more akin to mesenchymal cells (i.e. flattened, elongated, pointed and spindly) compared to the more classically rounded, cobble-stoned appearance of SW480^{Mock} cells [34]. β 6 expression also significantly increased proliferation compared to the SW480^{Mock} controls [34]. Together, these results strongly support previous findings that EMT is promoted by β 6 expression [29, 64], exerting pan-cellular consequences on the pre-metastatic CRC cell.

5 Stromal cell-derived factor 1 α (SDF-1) promotes CRC migration through $\alpha\nu\beta6$

Interestingly, the same proteomic study identified that stromal cell-derived factor 2 (SDF-2) was significantly upregulated by 6.1-fold coincident with B6 neo-overexpression [34]. This appeared to contradict the literature as, although poorly characterised and ubiquitously expressed in various cancers, SDF-2 expression inversely correlates with breast cancer survival [65]. The expression of stromal cell-derived factor 1 a (SDF-1) and its unique receptor (Chemokine (C-X-C Motif) Receptor 4; CXCR4) on the other hand has recently been demonstrated to correlate with αvβ6 expression, promoting CRC cell migration [66]. SDF-1 and CXCR4 have been suggested to form a signalling pathway that directs cancer cell migration [66]. Although CXCR4 does not directly contribute to cell adhesion and migration, it transmits SDF-1-induced signalling, altering integrin-dependent cell adhesion and migration [66-68]. Interestingly, recent investigations have entwined the SDF-1/CXCR4 interaction with the avß6

D Springer

heterodimer, whereby $\alpha v \beta 6$ mediates the pro-metastatic activity of the pathway (Fig. 4).

Wang et al. reported a significant correlation between CXCR4 and αvβ6 expression with liver metastasis after a median follow-up of 39 months, and that CXCR4-positive patients exhibited significantly increased av86 expression [66]. No equivocal staining was observed in normal colon or liver tissue specimens [66]. CXCR4 and β6 mRNA and protein levels were elevated in the metastatic WiDr and HT-29 CRC cell lines whilst expressed at far lower levels in the nonmetastatic Caco-2 cell line [66]. Wang et al. demonstrated that treatment of β6-expressing cell lines with SDF-1 increased cell migration on fibronectin which was ablated by antibody or siRNA-based $\alpha v\beta 6$ inhibition [66]. Such inhibition was reported as being comparable with the use of the CXCR4specific inhibitor, AMD3100 [66]. RT-PCR analysis then demonstrated that recombinant human SDF-1 treatment resulted in a dose-dependent increase in β6 mRNA expression in both WiDr and HT-29 cell lines whilst not affecting the mRNA levels of the av subunit [66]. Increased B6 expression on the cell surface was confirmed by Western blotting and flow cytometry. This SDF-1-dependent upregulation of β6 was attenuated by pre-treatment with CXCR4 siRNA or the CXCR4 inhibitor, AMD3100 [66]. Increased ß6 expression following SDF-1 treatment coincided with significantly increased ERK1/2 phosphorylation, which was again nullified following pre-treatment with CXCR4 siRNA, AMD3100 or the ERK-specific inhibitor U0126 [66]. Interestingly, the SDF-1-dependent increase in ß6 expression and cell migration was also nullified following U0126 inhibition of ERK1/2 [66].

Wang et al. then explored whether this novel mechanism could be influenced by Ets-1 expression and function. SDF-1 treatment minimally increased Ets-1 expression; however, it significantly increased Ets-1 Thr38-phosphorylation, which was again attenuable with CXCR4 siRNA or AMD3100 pre-treatment [66]. ERK1/2 inhibition with U0126 treatment prevented the SDF-1-induced upregulation of Ets-1 expression and phosphorylation at the Thr38 residue, demonstrating that this proposed mechanism is ERK1/2-dependent [66].

Wang et al. then performed immunofluorescence analysis to show that SDF-1 treatment significantly increased nuclear levels of Thr38-phosphorylated Ets-1 which is considered as a trigger for increased DNA-binding activity, which was confirmed by an electrophoretic mobility shift assay (EMSA) [66]. The observed increase in nuclear phosphorylated Ets-1 and DNA-binding activity was reduced by AMD3100, U0126 or Ets-1 siRNA treatment [66]. Ets-1 antagonism by siRNA significantly impaired SDF-1-induced $\alpha\nu\beta6$ upregulation and cell migration on a fibronectin substrate, indicating that Ets-1 activation was required for the SDF-1/CXCR4-dependent upregulation of $\alpha\nu\beta6$ expression and the promotion of CRC cell migration [66].

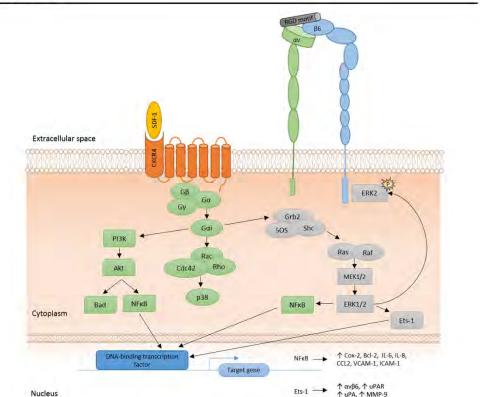


Fig. 4 Relationship between the SDF-1/CXCR4 signal transduction pathway in cancer and the $\alpha\nu\beta\delta$ integrin. CXCR4 is a G-proteincoupled receptor (GPCR) which associates with the heterotrimeric (G α , G β , G γ) subunits upon SDF-1-binding. The G α i subunit inhibits adenylyl cyclase and promotes MAPK activation through Grb2/SOS/

These experiments were repeated using nonmetastatic Caco-2 CRC cells that had been transfected with a CXCR4 expression vector or a mock transfectant control. Wang et al. determined that SDF-1 treatment significantly increased ß6 expression at the mRNA and protein levels, which was attenuable with AMD3100 inhibition of CXCR4 [66]. No difference in migration was observed in parental Caco-2 cells when treated with SDF-1; however, SDF-1 treatment increased the migration of CXCR4-overexpressing transfectants without affecting the mock control cell line [66]. Functional blocking of $\alpha v \beta 6$ with the 10D5 antibody reduced the SDF-1-induced migration of CXCR4-transfected Caco-2 cells, indicating that Caco-2 cells can become migratory with CXCR4 expression, following SDF-1 treatment and the subsequent upregulation of $\alpha v \beta 6$ [66].

Shc. PI3K can be activated by the G $\beta\gamma$ and G α subunits, resulting in the phosphorylation of focal adhesion components (e.g. FAK, prolinerich kinase-2 (Pyk-2), Crk-associated substrate (p130Cas), Crk and paxilin). Modified from [66, 103, 104]

Wang et al. presented a thorough explanation as to how SDF-1/CXCR4 could promote CRC metastasis via the $\alpha v\beta 6$ integrin and this has been expanded upon by Xue et al. who demonstrated that the SDF-1/CXCR4 interaction also induces $\alpha v \beta 6$ expression in ovarian cancer [69]. Xue et al. observed that SDF-1 enhanced ECM degradation and OVCA429 invasion through the upregulation of urokinasetype plasminogen activator (uPA) expression along with its activation of plasminogen into plasmin, all of which was once more ablated with AMD3100 or 10D5 pre-treatment [69]. In addition to mediating xvB6-dependent invasion, SDF-1 treatment was determined to upregulate uPA through the activation of the Akt and MAPK-p38 pathways, as the effect was eliminated by treatment with the Akt inhibitor LY294002 or the p38-MAPK inhibitor SB203580 [69]. av ß6 inhibition by the 10D5 antibody was observed to ablate the increase in uPA

expression following SDF-1 stimulation, confirming that the upregulation of uPA was also ex/β6-dependent [69].

A recent study by Sun et al. has identified yet another novel avenue of signal cross-talk between $\alpha\nu\beta6$ and interleukin 8 (IL-8), where IL-8 promoted $\alpha\nu\beta6$ -dependent migration involving the related receptors CXCR1 and CXCR2 [27]. IL-8 expression was significantly correlated with $\alpha\nu\beta6$ in 139 CRC specimens where it promoted $\alpha\nu\beta6$ expression in a dose-dependent manner through the ERK/Ets-1 signalling pathway [27]. These novel mechanisms both provide new insights into $\beta6$ biology, highlighting extensive cross-talk with multiple signalling and proteolytic pathways, and identify a new ancillary system which is involved in promoting metastatic activity.

6 ανβ6 integrin is intercellularly transported via exosomes and targetable by 5-FU-containing immunoliposomes and the human therapeutic antibody 264RAD

Another recent development in the ß6 research field that may be relevant to CRC has been the discovery by Fedele et al, that the αvβ6 heterodimer is transported between prostate cancer cells by cell-derived vesicles (exosomes), continuously released into the extracellular space [70]. Fedele et al. investigated whether 0xyB6 can be transferred from prostate cancer cells, in which it is highly expressed, to the surrounding "normal" prostate tissue where it is not expressed [70]. Fedele et al, showed that 0xb6 is packaged into exosomes that were isolated from the RWPE and PC3 prostate cancer cell lines, where it can be transferred from a donor cell to an exp6deficient recipient, whereupon it localises to the plasma membrane [70]. This was confirmed to be a result of exosomemediated transfer rather than expression that was induced in the recipient cells as de novo αvβ6 expression as it did not result from altered mRNA expression [70]. An extremely interesting finding of this study was that when incubated with these exosomes, recipient prostate cells migrated using the avß6-specific ligand (TGF-ß LAP) which did not occur when treated with exosomes in which avB6 has been repressed by either shRNA or siRNA [70]. Fedele et al. proposed a novel hypothesis in which these exosomes function to horizontally propagate αvβ6-associated phenotypes to neighbouring "normal" tissues, essentially promoting metastatic behaviour in a paracrine fashion [70]. If this is supported in CRC, it stands to reason that once B6 is expressed in a given cell, it may not require clonal expansion in order to increase the ß6-expressing cell population as traditionally thought. Instead, this subpopulation may be able to "infect" neighbouring cells in the tumour microenvironment, laterally dispersing ανβ6 and potentially its pro-migratory phenotype.

D Springer

Cancer Metastasis Rev

Another aspect of recent vesicle-related cvp6 research has been the use of immunoliposomes targeting \$6 in order to mediate tumour-specific drug delivery in CRC. Unfortunately when used as a stand-alone therapy [71, 72], 5-FU has a patient response rate of only 10-20 % and ß6 expression has been demonstrated to contribute to chemotherapeutic resistance by protecting CRC cells from 5-FU-induced growth inhibition and apoptosis [73]. As a result, the ability to direct 5-FU towards "metastatic" CRC cell populations where it might be efficiently internalised is highly attractive. Liang et al. employed polyethylene glycol containing liposomes that had been conjugated to the anti-human ß6 monoclonal antibody (E7P6) to aid the internalisation of 5-FU, specifically into cells that express $\beta 6$ and not surrounding epithelia where β6 is absent [74]. Liang et al. were able to enhance cellular internalisation of ß6-targeted immunoliposomes into ß6expressing SW480^{B6OE} and HT-29 cell lines compared to control liposomes. This result was dependent on the level of β6 expression found on the cell surface [74]. These immunoliposomes reduced the 5-FU IC50 for SW480^{B6OF} and HT-29 cells by >90 % and induced a ~1.5-fold increase in the rate of 5-FU-induced apoptosis when compared to control liposomes [74]. Liang et al. observed that the growthinhibiting activity of both the immunoliposomes and control liposomes was indistinguishable in non-\$6-expressing SW480^{Mock} cells, indicating that the anti-tumour activity may be attributed to specific binding to \$6 on the cell surface [74]. Interestingly, immunoliposomes or controls did not affect ERK1/2 phosphorylation, suggesting that treatment promoted 5-FU-induced apoptosis through enhanced cellular internalisation and activation of the mitochondrial cytochrome-C and caspase-3 apoptotic pathways rather than inhibiting the pro-proliferative [36+ERK2 interaction [74]. Liang et al. then went on to demonstrate that therapy with these 5-FU-containing immunolinosomes had a significantly greater therapeutic activity in vivo, reducing tumour weight by 25-35 % compared to treatment with 5-FU alone or 5-FU within control liposomes [74]. This study is an exciting development in CRC research, as 5-FU is a hydrophilic drug compound that is internalised into cells at a low efficiency and remains dependent on membrane transporters [74, 75]. The targeted and more efficient delivery of 5-FU to \$6expressing cells, where it exerts greater apoptotic activity, is an exciting leap with obvious clinical utility for treating patients with av\$6" cancers.

Another recent method of targeting β 6-expressing epithelial rumours has been the development and application of the therapeutic human antibody, 246RAD, which functionally inhibits $\alpha\nu\beta6$ [76]. 246RAD inhibits binding to all known ligands, including the LAP of TGF β [76]. 246RAD is cross reactive with the $\alpha\nu\beta8$ heterodimer but does not bind to $\alpha\nu\beta3$, $\alpha\nu\beta5$, $\alpha5\beta1$ or $\alpha4\beta1$ [76]. Eberlein et al. determined through \dot{m} vitro studies that 246RAD was able to prevent

TGFB activation, impair MMP-9 production and inhibit invasion through a Matrigel ECM analogue using NCI-H358, Calu-3 lung and Detroit 562 pharyngeal cancer cells, respectively [76]. When applied to in vivo studies, 246RAD demonstrated a dose-dependent inhibition of Detroit 562 tumour growth that corresponded with a reduction in ERK1/2 phosphorylation, Ki67 and αvβ6 expression, prompting regression of well-established tumours [76]. Eberlein et al. determined that treatment with 20 mg/kg 246RAD reduced the growth and metastasis of orthotonic 4T1 mouse mammary tumours, reducing both primary tumour growth and number of lung metastases [76]. Moore et al. have further explored the use of 246RAD in a later study [77], where they noted that $\alpha\nu\beta6$ expression significantly reduced survival and 246RAD antibody treatment or ß6 siRNA significantly reduced breast cancer cell invasion [77]. These observations were confirmed to be avß6-dependent through the use of an alternative inhibitor, 10D5 [77]. Interestingly, Moore et al. observed that $\alpha v \beta 6$ may co-operate with HER2 to regulate intracellular invasion, and that avß6inhibition using 246RAD could improve HER2targeted antibody therapy with trastuzumab (Herceptin®) [77]. Notably, 246RAD halted BT474 growth and invasion in tumour xenografts whilst the combination of 246RAD and trastuzumab was more effective, reducing tumour size/volume by 98 % compared to trastuzumab alone where the decrease was 78 % [77]. To ensure that avß6-blockade was responsible for increasing the effect of trastuzumab, they repeated the experiment with trastuzumab-resistant HER2-18 xenografts and again demonstrated that joint 246RAD with trastuzumab significantly reduced tumour volume by 76 % [77]. 246RAD or trastuzumab therapy significantly reduced ß6 expression in the BT474 xenografts whilst joint therapy almost completely abolished β6 expression, whilst reducing HER2, HER3, Smad2 and Akt2 expression [77].

Given that $\beta 6$ can be transported between cells through exosomes, influencing cell behaviour, the ability to specifically target $\beta 6$ -expressing cancers through the use of immunoliposomes and thrapeutic antibodies is both an exciting development and attractive area for future clinical application. The adoption and further refinement of these therapies may enhance the efficiency of current treatment methods and ultimately improve the chances of patient survival in the near future.

7 ß6 expression promotes ERK2 activation

The cytoplasmic domain of $\beta 6$ is involved in many important cell functions, including organisation of focal adhesion contacts, compositional regulation of the intermediate filament network, auto-phosphorylation of FAK and expression and phosphorylation of the transcription factors involved in β6 transcription (STAT3 and Notch, respectively) [78]. In addition to the recent discovery of the SDF-1/CXCR4 interaction with cxp66, we strongly suspect that the pro-metastatic activities of ß6 are complemented through interaction/s between the unique structures of the ß6 subunit with uPAR and TGF-B1 (Fig. 5). The possibility of such a concept emerged from earlier work by Agrez et al. who identified that xvB6 enhanced the proliferation of SW480 CRC cells, both in vitro and in vivo, through a unique 11-amino cytoplasmic Cterminal tail sequence [24]. Agrez et al. had previously identified that transfection of non-\$6-expressing SW480 CRC cells with full-length B6 cDNA resulted in avB6 expression at the cell surface, altered cell/colony morphology and increased proliferation [24, 79]. In another study, they repeated their experiment with nine ß6-transfected subclones and five mock controls, observing that all nine ß6-transfected subclones exhibited increased proliferation relative to the mocks [24]. This pro-proliferative effect was ablated by treatment with the ccv-blocking antibody L230, whilst having no effect on the mock-transfected SW480 cells [24]. They then created a new SW480 subclone which expressed a truncated β6 protein that lacked the unique 11-amino acid tail sequence REKQKVDLSTDC¹⁸⁸), completely abolishing the 66dependent increase in proliferation without affecting adhesion to fibronectin or localisation with focal contacts [24]. Extensive deletion of the C-terminal tail did abolish these canabilities, indicating that the regions homologous to the β 1 and β 3 subunits are required to support these functions [24]. Ahmed et al. expanded on this study to identify the signalling pathways responsible for the pro-proliferative effect of \$6 expression in CRC and determined that antisense ß6 suppression inhibited both MAPK activity and tumour growth in immune-deficient mice [28]. Using biotinylated cytoplasmic β6 peptides, they determined that the β6 subunit coimmunoprecipitates with ERK2 and that the increased MAPK activity on stimulation with EGF was accounted for by β6bound ERK [28]. ERK2 did not co-immunoprecipitate with either the β 1 or β 5 integrin subunit [28]. Using a series of overlapping 20-mer peptide fragments corresponding to the β6 cytoplasmic domain (residues 737-788), they tested the ability for these fragments to bind ERK2 in a direct enzymelinked immunosorbent assay (ELISA) and identified the region of interaction as 749RSKAKWQTGTNPLYR763 [28]. The direct B60ERK2 interaction was nullified by alapine substitution, resulting in a complete loss of binding [28]. They then employed a B6 cytoplasmic domain mutant that lacked the sequence ⁷⁴⁶EAFRSKAKWOTGTNPLYRG⁷⁶⁴ (ERK2 binding sequence underlined) to determine the effect of its loss on ERK2 binding and tumour formation [28]. This resulted in similar levels of mutant and wild-type ß6 expression at the cell surface and a <20 % reduction in adhesion to fibronectin

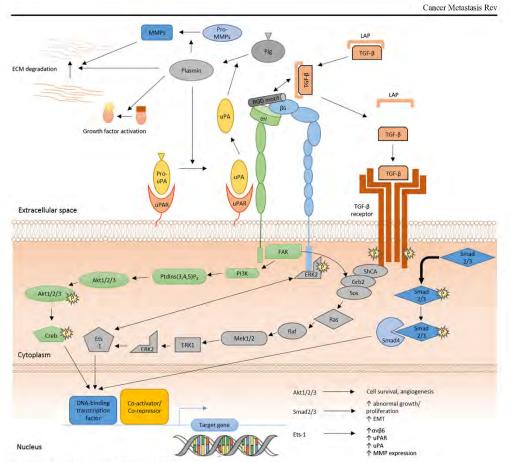


Fig. 5 Schema of the proposed uPAR/ α v β 6/TGF- β metastasome

[28]. Western blotting of the immunoprecipitates with an antibody recognising phosphorylated ERK2 (pERK2) determined that truncation of the ERK2 binding sequence inhibited β 6-ERK2 binding, reducing basal ERK activity in te absence of serum [28]. Deletion of the pERK2-binding sequence also reduced tumour growth by two- to threefold compared to the wild-type β 6 sequence, reverting growth back to that of the non- β 6-expressing SW480^{Mock} control [28]. Interestingly, Ahmed et al. also determined that in the absence of the ERK2 binding sequence or of full-length β 6 expression, ERK2 can bind to the β 5 subunit, although with lower avidly than β 6 as it shares only 50 % homology with the β 6•ERK2 binding sequence [28].

In another study, Ahmed et al. demonstrated that $\beta 6$ -expressing ovarian cancer cell lines exhibited a 3.5-fold

elevation in ERK1/2 phosphorylation relative to non- β 6expressing cell lines [10]. Elevated β 6 expression also correlated with increased cell surface expression of the plasminogen activation (PA) cascade members uPA and uPAR, and also promoted the secretion of zymogen matrix metalloproteases (pro-MMPs)-2 and -9 [10]. Plasmin and MMPs are produced and secreted in their inactive zymogen forms (plasminogen and pro-MMPs, respectively) where they are spatiotemporally activated into mature proteases [80]. Active plasmin is generated from plasminogen by uPA upon binding its cognate receptor, uPAR [80]. Under these conditions, uPA is relatively "shielded" from the specific serpin inhibitors (PAI-1, PAI-2 and protease nexin), as are other proteases on the cell surface in the periplasmic space [81]. Once active, plasmin is capable of driving extensive ECM component degradation

(e.g. fibronectin, fibrin, laminin and the protein core of proteoglycans [80, 81]) and the activation of the pro-MMPs-1, pro-MMPs-3, and pro-MMPs-9, which subsequently degrade additional ECM components [82, 83]. As $\beta \delta$ expression postitively correlates with MMP-9 secretion and activity, this has been suggested to mediate the potential for CRC cells to colonise to, and survive within, liver metastases [36].

Ahmed et al, demonstrated that β 6 expression regulated and enhanced plasminogen-dependent collagen IV degradation, promoting ECM degradation by a mechanism that was inhibited following treatment with antibodies against $\alpha\nu\beta\delta$, MMP-9 and uPA, or the uPA inhibitor amiloride [10]. This increased expression and proteolysis was demonstrated to be MAPK-dependent as it could be completely antagonised following treatment with the MAPK/extracellular signalregulated kinase (MEK 1) inhibitors genistein or U0126 [10]. These two studies were amongst the first to demonstrate that β 6 expression promotes MAPK activation in addition to the PA and MMP cascades [28, 10]. This has now been supported by CRC studies [66, 69] as well as other breast and oral cancer studies [84, 85].

$8 \, \alpha v \beta 6$ interacts with domain III of uPAR through the αv subunit

Employing the same ovarian cancer cell lines, the association between 66. ERK2 and uPAR was further explored by Saldanha et al. who demonstrated by proteomics that αvβ6 co-immunoprecipitated with uPAR when using the monoclonal anti-uPAR antibody, R4 [86]. Saldanha et al. also observed that uPAR co-immunoprecipitated with several proteins of interest, including the putative plasminogen receptors thrombospondin-1, ezrin and ac-enolase, as well as putative MAPK-activating protein and eukaryotic translation initiation factor 4A1 [86]. ß6 co-immunoprecipitation with uPAR was confirmed by Western blotting and reverse co-immunoprecipitation using the monoclonal anti-ß6 antibody, 6.3G9 [86]. As with the B60P-ERK2 interaction [28], the expression of uPA and uPAR [87] and the secretion of soluble uPA were demonstrated to enhance tumour growth [88]. Saldanha et al. explored the effects of antagonising the uPAR+\$6 interaction on cell proliferation. After performing a glycine acid wash to remove bound uPA, 48-h treatment with 10 nM uPA promoted proliferation by 46.5 %, which was not observed when the cells were pre-treated with function blocking antibodies (uPAR; R3 and \$6; 6.3G9, respectively) [86]. Treatment with both antibodies produced no cumulative effect, suggesting the presence of a common pathway by which \$6 supports uPAR-dependent, uPA-initiated proliferation, namely either through an interaction with uPAR and/or uPA [86]. The increase in proliferation following uPA treatment was

accompanied by a 56 % increase in ERK phosphorylation compared to control cells [86]. This uPA-dependent increase in ERK phosphorylation was eliminated following R4 and 6.3G9 pre-treatment wherein the combined antagonism of uPAR and $\beta 6$ produced a synergistic inhibition of ERK1/2 phosphorylation [86]. The physical cross-talk between $\beta 6$ and uPAR and/or uPA was suggested by Saldanha et al. to be an important component of MAPK activity in the OVCA 429 cell model, though they recognised that extended periods of elevated ERK activity may be attributable to the cumulative effect of several signalling pathways rather than simply a unique consequence of the $\beta 6 \bullet uPAR$ interaction [86].

Up until recently, no structural information was available for the complete avß6 heterodimer that could be used to assess the possibility of a xvB6•uPAR interaction. X-ray crystallographic structures of specific domains of other hetcrodimers such as $\alpha v\beta 3$ and $\alpha IIb\beta 3$ are available [89], and these have recently enabled Sowmya et al. to perform structural analyses that relate to the functional significance of these ECM receptors [90]. They performed composite homology modelling to construct a 3D structural model of the large membrane protein αvβ6•uPAR complex that included the transmembrane and cytoplasmic domains of both integrin subunits [90]. Modelled structures were subjected to iterations of stereo-chemical refinements drawn from a pool of randomised potential starting conformations and made to satisfy spatial restraints [90]. The best structural model, based upon lowest current energy and best objective function, was subjected to structural quality assessment [90], providing the first glimpse into the structure of the heterodimer and its complex with uPAR. This showed that approximately 11 % of av and β6 ectodomain residues participated in the ave \$6 interaction and thus formed an obligatory protein-protein interaction complex as the respective subunits were unstable in their monomeric states, and thus had no independent existence [90]. Sowmya et al. also suggested that the qv and ß6 subunits underwent large conformational dynamics upon assembly; after which, polar interactions formed the dominant forces that promoted ave \$6 subunit interface formation as well as protein•protein interaction at the heterodimer surface [90]. Structural docking simulations were then performed between the resolved, glove-like, three-domain, glycosylphosphotidylinositol (GPI)-linked uPAR with the avß6 structural model, which identified a single potential interaction site between the av subunit and the outer surface of uPAR domain III (27 residues: S299-N255) [90]. Sowmya et al. noted that the proposed avouPAR binding site was spatially separated from the RGD-binding site, suggesting that xxβ6 would still be independently able to bind the LAP of L-TGFB1, fibronectin or other RGDligands whilst interfaced with uPAR [90].

The avß6•uPAR interaction originally proposed by Saldanha et al. and Sowmya et al. has now been confirmed by Ahn et al. using two orthogonal techniques: proximity ligation assays (PLA) and overlapping peptide array blots [81]. PLA is an emerging method that allows direct detection of protein protein interactions in cellulo due to the close proximity of interacting proteins (30-40 nm) (refer to Weibrecht et al. for a comprehensive review [91]). Ahn et al. incubated paraformaldehyde-fixed OVCA 429, SW480 and HT29 CRC cell with antibodies 6.4B4 and R4 against αvβ6 and uPAR, respectively [81]. R4 and IgG1 isotype had been conjugated with the PLUS oligonucleotide probe whilst 6.4B4 and its corresponding isotype had been conjugated with the MINUS oligonucleotide probe [81]. When these proximity probes are sufficiently close together, the corresponding oligonucleotides hybridise and ligate, forming a circular DNA molecule [91, 92] which is amplified by rolling circle amplification detectable by confocal microscopy with fluorescently labelled complementary oligonucleotides [91]. Ahn et al. demonstrated that lines that express both xxp36 and uPAR (SW480B600 HT29^{Mock} and OVCA429) display strong interaction signals that were significantly weaker in HT29B6AS, where B6 expression is suppressed (~80 %1) [81]. No interaction signal was observed in SW480^{Mock} in which β6 is not expressed [81]. Ahn et al. cautiously noted that intermediary "bridging" proteins that may directly interact with xxB6 and uPAR could not be excluded [81]. To address this, Ahn et al. employed a series of 108 sequential 15-mer uPAR peptides (with three residue overlap) to map potential sites of the avB6•uPAR interaction as well as to individual av and ß6 subunits [81]. Similar to Sowmya et al. [90], Ahn et al. determined that av \$6 bound to six regions from all three uPAR domains (Domain I: E61-R75 and G82-D96; Domain II: G121-E141, L172-F189 and C193-E207; Domain III: S229-N255), corresponding to ~35 % of the uPAR sequence [81]. The interaction was not observed when individual αv or $\beta 6$ subunits were probed, nor did $\beta 1$ or \$3 bind to the peptide array, suggesting the interaction required the complete xy\$6 heterodimer [81]. In agreement with Sowmya et al. [90], Ahn et al. supported the finding that the S229-N255 region of uPAR Domain III was a favourable site for av B6•uPAR interaction and suggested that significant external regions of uPAR remain available to other ligands such as $\alpha v\beta 1$, $\alpha v\beta 3$ and vitronectin whilst the receptor is bound to uPA [81, 93, 94].

The recent characterisation of the $\alpha\nu\beta6\bullet$ uPAR interaction is a long-awaited development in cancer biology. Both proteins are noted promoters of the metastatic phenotype and EMT in their own right. This interaction with $\alpha\nu\beta6$ adds to the library of proposed integrin interactions and (again) provides a route through which GPI-linked uPAR, which does not possess a transmembrane domain, can laterally signal. Additionally, the interaction potentially provides structural support and/

D Springer

or shields the vulnerable uPAR DI-DII linker region from cleavage by proteases, facilitating persistent expression of the active ligand (uPA) binding form on the cell surface.

9 $\beta6$ interacts with TGF β receptor II and promotes latent TGF $\beta1$ activation

In addition to interacting with pERK2 and uPAR, the av86 integrin relates to the latent TGF-B1 complex (LTGF-B) found in the ECM, where it provides necessary traction to liberate the LAP from the zymogen L-TGFB1 complex [95]. Once released, active TGF-B1 is able to promote cell migration and invasion in late-stage CRC [95, 30, 85]. Active TGF-B1 promotes the phosphorylation of the SMAD2/3 signalling complex and its translocation to the nucleus, where it also cyclically induces target genes that are also involved in cell migration and proliferation, including inducing the de novo expression of more uPAR and xvB6 (Fig. 3) [96, 97]. Antagonism using the 6.3G9 antibody has been demonstrated by Van Aarsen et al, to ablate αvβ6 adhesion to the LAP of LTGF-B, whilst simultaneously inhibiting TGF-B activation by >90 % and significantly reducing TGF-\beta-mediated Smad2/3 phosphorylation in vitro [98], 6.3G9 treatment also reduced basal Smad2/3 phosphorylation although it had no effect following treatment with active TGF-\$1, as the LAP was no longer present. Whilst antibody blockade had no effect on Detroit 562 cell proliferation in vitro, 6.3G9 and a TGF-βinhibitory antibody (rsTGF-BRII-Fc) significantly inhibited xenografi tumour growth in vivo by 50 %, whilst the nonfunction-blocking antibody 6.4B4 had no effect on tumour growth [98]. These findings by Van Aarsen et al. highlight the importance of the complex tumour microenvironment and suggest that the antagonism of avß6 has a greater inhibitory effect on Detroit 562 cell growth than direct TGF-B antagonism, inferring that preventing TGF- β activation by $\alpha v \beta 6$ may be more effective than targeting active TGF-B [98].

In parallel to L-TGF β 1 activation by integrins, L-TGF β 1 can also be activated through the PA cascade where active plasmin can cleave the LAP and activate L-TGF β 1 by proteolysis [86]. Interestingly, MMP-3 and MMP-9 activation was enhanced following treatment with TGF- β 1, indicating even further cross-reactivity within this novel interactome [84]. This finding was expanded upon in two recent prostate cancer studies by Dutta et al., who identified that $\alpha\nu\beta\delta$ selectively induces MMP-2 expression in a Smad3-mediated transcriptional programme following TGF- β 1 activation, leading to osteolysis through increased matrix degradation [99]. Dutta et al. secondly determined that $\alpha\nu\beta\delta$ interacts with TGF β receptor II (TGF β RII) through the $\beta\delta$ cytoplasmic domain, promoting Smad3 activation [83]. This observation has been

furthered by our own (unpublished) study, which identified a potential uPAR•TGF β RII interaction by immunoprecipitation. Both studies by Dutta et al. determined that these observations were β 6-dependent as the $\alpha v\beta 5$ or a chimeric $\beta 6$ construct with a $\beta 3$ cytoplasmic domain failed to elicit a similar response [99, 83].

We suggest that $\alpha\nu\beta\delta$ expression provides a structural foundation, allowing the formation of a pericellular interactome, effectively concentrating and focussing TGF- β 1 and critical components of the PA cascade activity to the cell surface. This interaction axis that we term "the uPAR/ $\alpha\nu\beta\delta$ /

TGF- β metastasome" may function to sequester key metastasis-related proteins to the infiltrating edge of tumour islands, thereby concentrating immediate and downstream signalling and proteolytic activity to the invasive front of CRC tumours (Fig. 5) were co-expressed.

Figure 5 illustrates the potential role that $\alpha\nu\beta6$ plays as the nexus point within these known interactions, collaborating between multiple cell systems that have traditionally been thought of as isolated. Taken in conjunction with the novel SDF-1/CXCR4 signal transduction pathway outlined in Fig. 4, $\alpha\nu\beta6$ appears to influence multiple cell signalling

Table 1 Outline of the metastatic functions of the different signalling pathways connected to the proposed uPAR•axy6•TGF\$1 metastasome

	Cancer/lissue	Pathway/protein	Phenotypic consequence/s	Ref
Akı	CRC, ovarian cancer	Akt1/2/3	Akt expression and phosphorylation correlates with cell proliferation and inhibition of apoptosis. Akt (particularly Akt2) upregulation is an inoportant event in apoptotic inhibition during early colon carcinogenesis ecv/B6 promoted PI3K/Akt and p38 MAPK phosphorylation.	(105, 106, 69
ЦК	CRC	Integrin-linked kinase (ILK)	ILK was expressed in 98 % of primary tumours and in 100 % of metastatic lesions, correlating with tumour invasion, stage, increased Akt and G-creteriar activation.	[107]
МАРК	CRC	Phosphorylated ERK2, p38-MAPK	Binds to evy(56, which promotes ERK1/2 activity as well as the upregulation of cvy(56 and Ets-1 Promotes proliferation and migration Promotes cvy(56 expression on SDF-1 treatment	[10, 66, 69]
of OR	Colorectal fibrosis	Sunad3, av86, peroxisome proliferator-activated receptor-y (PPARy)	Smail3-expression apregulated ev/86, mTOR, TGF/8 and Smail3, and mTOR whilst reducing PPARy during colorectal librosis. mTOR activation promotes phosphorylation of IF40E-binding protein translation, cell growth and senescence	1108, 109]
PI3K	Jurkat, HeLa, T cells	Akt, mTOR and other signalling pathways	Involved in cell cycle control, apoptosis, cell invasion, migration and angiogenesis [3] integrin ligation to collagen apregulates PI3K/Akt, protecting filoroblasts from anoikis.	[110, 111]
Ras	Lung and pancreatic cancer	K-ms	Strong association between B6 expression and a well-differentiated K-Ras-addicted cancer phenotype	(641
Smad	CRC	SMAD2/3	Potential tumour suppressor role although not fully characterised due to signalling cross-talk. Loss of Smad2/4 activity occurs in ~10 % of CRC tumours where it correlates with poor prognosis and the presence of lymph node metastases at diagnosis	[112, 115]
Wnt	Skin tissue	Kindlin-I	Initiates rwB6-mediated TGF-8 release and inhibits Witt-8-caterin signalling The Writvalcium pathway antagonises (3-caterin-dependent signalling, stimulating cell migration.	[17, 114]
Ets-1	CRC	av/36 promoter	Promotes and correlates with av/86 expression. Regulates the expression of genes involved in proliferation, cell differentiation and transformation	[37, 1]
NFKB	CRC	950, c-Jun N-terminal kinases (JNK)	Inhibits apoptosis and regulates gene expression involved in angiogenesis (VEGF, IL-8, COX2), proliferation (c-Myc, cyclin D1) and metastasis (MMP9) following simulation by TNF-c, IL-1 or ToH-like receptor substrates	[115]
Stat3	Prostate epithelial cells	Stat3-C	Constitutively activated Stat3 mediates prostate tumorigenesis and enhances cell motility by downregulating E-cadherin and upregulating β6 expression Positively regulates ITGB6 mRNA expression	[1, 1]6]

Springer

pathways and transcription factors, which may have farreaching consequences within a cancerous cell (some of which are briefly outlined in Table 1). The ability of \$6 to influence these noted pro-oncogenic signalling pathways and transcription factors helps to explain how its expression can have such diverse, pro-metastatic effects on a CRC cell [34]. Far from simply facilitating the classical cell adhesion to fibronectin, the \$6 subunit of the \$\alpha\beta 6 heterodimer exerts farreaching actions across the CRC cell through its direct and indirect interactions with many key metastasis-related proteins. We have investigated this metastatic axis by treating Duke's stage B CRC cells (with varying B6 expression) with relatively low concentrations (10 ng/mL) of latent TGF-B1 and/or Plg at comparable levels to that found in human plasma (LTGF-ß 136 ng/mL [100]; Plg 200 ng/mL [101]). This (unpublished) study identified that even relatively small concentrations of the zymogen ligands found in plasma can significantly enhanced proliferation, invasion/migration and ERK1/2 signalling activity in cells that express the integrin ανβ6.

10 Conclusion

The ß6 integrin subunit of the ανβ6 heterodimer has remained an enigma in cancer biology, resistant to attempts at characterisation. In recent years, there has been a marked increase in understanding its biology, unveiling a wealth of correlations and potential roles in cancer. These include the discovery of its putative transcriptional/translational machinery, its ability to greatly alter the proteome and phenotypes of pre-metastatic CRC, its capability for intercellular transport and its ability to interact with several non-canonical cell systems. We postulate that the potential for B6 to make such potent, pan-cellular changes likely stems from its nature as a tissue remodeler. Integrin avß6 must be beneficial to be evolutionarily conserved, and as ß6 is only expressed in the healthy organism during large-scale tissue remodelling events (e.g. wound healing and embryonic development), it stands to argue that when expressed in the context of cancer, \$6 may in fact facilitate metastatic transformation through the induction of tissue remodelling processes [102]. Tissue remodelling involves the same processes required for a primary tumour cell to spread such as escaping the constrictions of the ECM and neighbouring cell-cell adhesions by proteolysis, infiltrative cell migration, proliferation of new cells, angiogenesis and interaction with both the immune system and tumour microenvironment. We propose that once expressed, avB6 initiates an out-of-context tissue remodelling system whose effects on cell regulation and signalling promote metastatic transformation. Recent investigations into \$6 biology have laid the foundation to unveil the potential mechanisms of its transcription and translation during such an event and how its expression

D Springer

can change the proteome of a pre-malignant cell. These findings help to explain why $\beta 6$ expression correlates with poor patient survival and provides new interactions that could be targeted in the future to unravel its biology. These insights may play an important role when combined with the recent development of more effective therapeutic strategies such as the use of immunoliposomes and therapeutic antibodies that can target $\beta 6$ -expressing tumours. These advances in $\beta 6$ research stand to facilitate more effective clinical intervention and help alleviate a global health burden.

Acknowledgments All authors have made an academic contribution to the preparation of this review and have given approval to the final version of this manuscript. The authors declare no actual or potential conflicts of interest, including any financial, personal or other relationships with other people or organisations.

References

- Xu, M., Chen, X., Yin, H., Yin, L., Liu, F., Fu, Y., et al. (2015). Cloning and characterization of the human integrin beta6 gene promoter. *PloS One*, 10(3), e0121439. doi:10.1371/journal.pone 0121439.
- Ramos, D. M., But, M., Regezi, J., Schmidt, B. L., Atakilit, A., Dang, D., et al. (2002). Expression of integrin heta 6 enhances invasive behavior in oral squamous cell carcinoma. *Matrix Biology*, 21(3), 297-307.
- Arnaout, M. A., Goodman, S. L., & Xiong, J. P. (2007). Structure and mechanics of integrin-based cell adhesion. *Current Opinion in Cell Biology*, 19(5), 495–507. doi:10.1016/j.ceb.2007.08.002.
- Zhang, C., Liu, J., Jiang, X., Haydar, N., Zhang, C., Shan, H., et al. (2013). Modulation of integrin activation and signaling by alpha1/ alpha1/shelix unbending at the junction. *Journal of Cell Science*. 126(Pt 24), 5735–5747. doi:10.1242/jcs.137828.
- Campbell, I. D., & Humphries, M. J. (2011). Integrin structure, activation, and interactions. *Cold Spring Harbor Perspectives in Biology*, 3(3), doi:10.1101/cshperspect.a004994.
- Ganguly, K. K., Pal, S., Moulik, S., & Chatterjee, A. (2013). Integrits and metastasis. *Cell Adhesion & Migration*, 7(3), 251–261. doi:10.4161/cam.23840.
- Zaidel-Bar, R., Itzkovitz, S., Ma'ayan, A., Iyengar, R., & Geiger, B. (2007). Functional atlas of the integrin adhesome. *Nature Cell Biology*, 9(8), 858–867. doi:10.1038/ncb0807-858.
- Bouaouina, M., Harburger, D. S., & Calderwood, D. A. (2012). Talin and signaling through integrins. *Methods in Molecular Biology*, 757, 325–347. doi:10.1007/978-1-61779-166-6_20.
- Mitra, S. K., & Schlaepfer, D. D. (2006). Integrin-regulated FAK-Src signaling in normal and cancer cells. *Current Opinion in Cell* Biology. 18(5), 516–523. doi:10.1016/j.ceb.2006.08.011.
- Ahmed, N., Pausino, F., Baker, M., Rice, G., & Quinn, M. (2002). Association between alphavbeta6 integrin expression, elevated p42/44 kDa MAPK, and plasminogen-dependent matrix degradation in ovarian cancer. *Journal of Cellular Biochemistry*. 84(4), 675–686. doi:10.1002/jcb.10080.
- Giancotti, F. G., & Ruoslahti, E. (1999). Integrin signaling Science, 285(5430), 1028–1032.
- Cabodi, S., Di Stefano, P., Leal Mdel, P., Tinnirello, A., Bisaro, B., Morello, V., et al. (2010). Integrins and signal transduction. Advances in Experimental Medicine and Biology, 674, 43–54.
- Jones, M. C., Hnmphries, J. D., Byron, A., Millon-Fremilton, A., Robertson, J., Paul, N. R., et al. (2015). Isolation of integrn-based

adhesion complexes. Current Protocols in Cell Biology, 66, 981-9815, doi:10.1002/0471143030.cb0908s66.

- Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. *Cell*, 110(6), 673–687.
- Montanez, E., Ussar, S., Schifferer, M., Bosl, M., Zent, R., Moser, M., et al. (2008). Kindlin-2 controls bidirectional signaling of integrins. *Genes and Development*, 22(10), 1325–1330. doi:10. 1101/gad.469408.
- Calderwood, D. A., Campbell, I. D., & Critchley, D. R. (2013). Talins and kindlins: partners in integrin-mediated adhesion. *Nature Reviews Molecular Cell Biology*, 14(8), 503–517. doi:10. 1038/nrm3624.
- Rognoni, E., Widmaier, M., Jakobson, M., Ruppert, R., Ussar, S., Katsougkri, D., et al. (2014). Kindlin-1 controls Wht and TGFbeta availability to regulate cutaneous stem cell proliferation. *Nature Medicine*, 20(4), 350–359. doi:10.1038/am.3490.
- Abram, C. L., & Lowell, C. A. (2009). The instandouts of leukocyte integrin signaling. *Annual Review of Immunology*, 27, 339– 362. doi:10.1146/annurev.immunol.021908.132554.
- Wegener, K. L., Partridge, A. W., Han, J., Pickford, A. R., Liddington, R. C., Ginsberg, M. H., et al. (2007) Structural basis of integrin activation by talin. *Cell*, *128*(1), 171–182. doi:10.1016/ jcell.2006.10.048.
- Morse, E. M., Brahme, N. N., & Calderwood, D. A. (2014). Integrin cytoplasmic tail interactions. *Biochemistry*, 53(5), 810– 820. doi:10.1021/bi401596q.
- Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., et al. (2015). Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. *International Journal of Cancer*, 136(5), E359–E386. doi:10. 1002/lic.29210.
- Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61(2), 69–90. doi:10.3322/caac.20107.
- Dhanapal, R., Saraswathi, T., & Govind, R. N. (2011). Cancer cachexia. Journal of Oral and Maxillofacial Pathology, 15(3), 257–260. doi:10.4103/0973-029X 86670.
- Agrez, M., Chen, A., Cone, R. L., Pytela, R., & Sheppard, D. (1994). The alpha v beta 6 integrin promotes proliferation of colon carcinoma cells through a unique region of the beta 6 cytoplasmic domain. *Journal of Cell Biology*, 127(2), 547–556.
- Hazelbag, S., Kenter, G. G., Gorter, A., Dreef, E. J., Koopman, L. A., Violette, S. M., et al. (2007). Overexpression of the alpha v beta 6 integrin in cervical squantous cell carcinoma is a prognostic factor for decreased survival. *Journal of Pathology*, 212(3), 316– 324. doi:10.1002/path.2168.
- Ramos, D. M., Dang, D., & Sadler, S. (2009). The role of the integrin alpha v beta6 in regulating the epithelial to mesenchymal transition in oral cancer. *Anticancer Research*, 29(1), 125–130.
- Sun, Q., Sun, F., Wang, B., Liu, S., Niu, W., Liu, E., et al. (2014). Interleukin-8 promotes cell migration through integrin alphavbeta6 upregulation in colorectal cancer. *Cancer Letters*. doi:10.1016/j.canlet.2014.08.021.
- Ahmed, N., Niu, J., Dorahy, D. J., Gu, X., Andrews, S., Meldrum, C. J., et al. (2002). Direct integrin alphavbeta6-ERK binding: implications for humour growth. *Oncogene*, 21(9), 1370–1380. doi: 10.1038/sj.onc.1205286.
- Bates, R. C. (2005). Colorectal cancer progression: integrin alphavbeta6 and the epithelial-mesenchymal transition (EMT). *Cell Cycle*, 4(10), 1350–1352.
- Bates, R. C., Bellovin, D. I., Brown, C., Maynard, E., Wu, B., Kawakasu, H., et al. (2005). Transcriptional activation of integrin beta6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma. Journal of Clinical Investigation, 115(2), 339–347. doi:10.1172/JCl23183.

- Binder, M. A. T. M. (2009). Drugs targeting integrins for cancer therapy. Expert Opinion on Drug Discovery, 4(3).
- Liu, S., Liang, B., Gao, H., Zhang, F., Wang, B., Dong, X., et al. (2013). Integrin alphavbeta6 as a novel marker for diagnosis and metastatic potential of thyroid carcinoma. *Head & Neck Oncology*, 5(1), 7.
- Bandyopadhyay, A., & Raghavan, S. (2009). Defining the role of integrin alphavbeta6 in cancer. *Current Drug Targets*, 10(7), 645– 652.
- Cantor, D., Slapetova, I., Kan, A., McQuade, L. R., & Baker, M. S. (2013). Overexpression of alphavbeta6 integrin alters the colorectal cancer cell proteome in favor of elevated proliferation and a switching in cellular adhesion that increases invasion. *Journal of Proteome Research*. 12(6), 2477–2490. doi:10.1021/pt301099F.
- Ahmed, N., Riley, C., Rice, G. E., Quinn, M. A., & Baker, M. S. (2002). Alpha(v)beta(6) integrin-A marker for the malignant potential of epithelial ovarian cancer. *Journal of Histochemistry and Cytochemistry*, 57(10), 1371–1380.
 - Yang, G. Y., Xu, K. S., Pan, Z. Q., Zhang, Z. Y., Mi, Y. T., Wang, J. S., et al. (2008). Integrin alpha v beta 6 mediates the potential for colon cancer cells to colonize in and metastasize to the liver. *Cancer Science*, 99(5), 879–887. doi:10.1111/j.1349-7006.2008. 60762 x.
- Peng, C., Gao, H., Niu, Z., Wang, B., Tan, Z., Niu, W., et al. (2014). Integrin alphavbeta dranscriptional factor Ets-1 act as prognostic indicators in colorectal cancer. *Cell & Bioscience*, 4(1), 53, doi:10.1186/2045-3701.4-53.
- Gill, S., Loprinzi, C. L., Sargent, D. J., Thome, S. D., Alberts, S. R., Haller, D. G., et al. (2004). Pooled analysis of fluorounacilbased adjuvant therapy for stage II and III colon cancer: who benefits and by how much? *Journal of Clinical Oncology*, 22(10), 1797–1806. doi:10.1200/JCO.2004.09.059.
- Ahn, S. B., Mohamedali, A., Chan, C., Fletcher, J., Kwun, S. Y., Clarke, C., et al. (2014). Correlations between integrin alphanubeta6 expression and clinico-pathological features in stage B and stage C rectal cancer. *PloS One*, 9(5), e97248. doi:10.1371/ journal.pone.0097248.
- Davis, N. C., & Newland, R. C. (1983). Terminology and classification of colorectal adenocaroinoma: the Australian clinicopathological staging system. *Australian and New Zealand Journal of Surgery*, 53(3), 211–221.
- Enyu, L., Zhengchuan, N., Jiayong, W., Benjia, L., Qi, S., Rubi, Q., et al. (2015). Integrin beta6 can be translationally regulated by enkaryotic initiation factor 4E: contributing to colonic muror malignmey. *Timour Biology*. doi:10.1007/s13277-015-3348-8.
- Berkel, H. J., Turbat-Herrera, E. A., Shi, R., & de Benedetti, A. (2001). Expression of the translation initiation factor eIF4E in the polyp-cancer sequence in the colon. *Cancer Epidemiology*. *Biomarkers and Prevention*, 10(6), 663–666.
- Seki, N., Takasu, T., Mandai, K., Nakata, M., Saeki, H., Heike, Y., et al. (2002). Expression of eukaryotic initiation factor 4E in atypical adenomatous hyperplasia and adenocarcinoma of the human peripheral lung. *Clinical Cancer Research*, 8(10), 3046-3053.
- Nathan, C. O., Carter, P., Liu, L., Li, B. D., Abreo, F., Tudor, A., et al. (1997). Elevated expression of elF4E and FGF-2 isoforms during vascularization of breast carcinomas. *Oncogene*, 15(9), 1087–1094. doi:10.1038/gi.onc.1201272.
- Niu, Z., Wang, J., Muhamunad, S., Niu, W., Liu, E., Peng, C., et al. (2014). Protein expression of eIF4E and integrin alphavbeta6 in colon cancer can predict clinical significance, reveal their correlation and imply possible mechanism of interaction. *Call & Bioscience*, 4, 23. doi:10.1186/2045-3701-4-23.
- De Benedetti, A., & Graff, J. R. (2004). eIF-4E expression and its role in malignancies and metastases. *Oncogene*, 23(18), 3189-3199. doi:10.1038/sj.onc.1207545.

- Carroll, M., & Borden, K. L. (2013). The oncogene eIF4E: using biochemical insights to target cancer. *Journal of Interferon and Cytokine Research*, 33(5), 227–238. doi:10.1089/jit.2012.0142.
 Badura, M., Brausstein, S., Zavadil, J., & Schneider, R. J. (2012).
- Badura, M., Braunstein, S., Zavadil, J., & Schneider, R. J. (2012). DNA damage and eEF4G1 in breast cancer cells reprogram translation for survival and DNA repair mRNAs. *Proceedings of the National Academy of Sciences of the United States of America*, 109(46), 18767–18772. doi:10.1073/pnas.1203853109.
- (109(46), 18767-18772. doi:10.1073/pnss.1203853109.
 Clarkson, B. K., Gilbert, W. V., & Doudna, J. A. (2010). Functional overlap between eff-4G isoforms in Saccharomyces corrorisiae. PloS One, 5(2), e9114. doi:10.1371/journal.pone. 0009114.
- Park, E. H., Zhang, F., Warringer, J., Sunnerhagen, P., & Hinnebusch, A. G. (2011). Depletion of elF4G from yeast cells narrows the range of translational efficiencies genome-wide. *BMC Genomics*, 12, 68. doi:10.1186/1471-2164-12-68.
- Ramirez-Valle, F., Braunstein, S., Zavadil, J., Formenti, S. C., & Schneider, R. J. (2008). eff-4Cl links nutrient sensing by mTOR to cell proliferation and inhibition of autophagy. *Journal of Cell Biology*, 181(2), 293–307. doi:10.1083/jcb.200710215.
- Silvera, D., Arju, R., Darvishian, F., Levine, P. H., Zolfaghari, L., Goldberg, J., et al. (2009). Essential role for eff-4GI overexpression in the pathogenesis of inflammatory breast cancer. *Nature Cell Biology*, 11(7), 905–908. doi:10.1038/acb1900.
- Tu, L., Liu, Z., He, X., He, Y., Yang, H., Jiang, Q., et al. (2010).
 Tu, L., Liu, Z., He, X., He, Y., Yang, H., Jiang, Q., et al. (2010).
 Over-expression of enkaryotic translation initiation factor 4 gamma 1 correlates with tumor progression and poor prognosis in nasopharyngeal carcinoma. *Molecular Cancer*, 9, 78. doi:10.1186/1476-4598-9-78.
- Comtesse, N., Keller, A., Diesinger, I., Bauer, C., Kayser, K., Huwer, H., et al. (2007). Frequent overexpression of the genes: FXR1, CLAPM1 and EIF4G located on amplicon 3q26-27 in squamous cell carcinema of the lnug. *International Journal of Cancer*, 120(12), 2538–2544. doi:10.1002/ijc.22585.
- Uhlen, M., Fagerberg, L., Hallstrom, B. M., Lindskog, C., Oksvold, P., Mardinoght, A., et al. (2015). Proteomics. Tissnebased map of the human proteome. *Science*, 347(6220), 1260419. doi:10.1126/science.1260419.
 Koistinen, P., & Heino, J. (2002). The selective regulation of alpha
- Koistinen, P., & Heino, J. (2002). The selective regulation of alpha Vbeta 1 integrin expression is based on the hierarchical formation of alpha V-containing heterodimers. *Journal of Biological Chemistry*, 277(27), 24835–24841. doi:10.1074/jbc. M203149200.
- Koivisto, L., Grenman, R., Heino, J., & Larjava, H. (2000). Integrins alpha5beta1, alphavbeta1, and alphavbeta6 collaborate in squamous carcinoma cell spreading and migration on fibronectin. *Experimental Cell Research*, 255(1), 10–17. doi:10.1006/excr. 1999.4769.
- Munger, J. S., Huang, X., Kawakatsu, H., Griffiths, M. J., Dalton, S. L., Wu, J., et al. (1999). The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. *Cell*, 96(3), 319–328.
- Busk, M., Pytela, R., & Sheppard, D. (1992). Characterization of the integrin alpha v beta 6 as a fibronectin-binding protein. *Journal of Biological Chemistry*, 267(9), 5790-5796.
- Prieto, A. L., Edelman, G. M., & Crossin, K. L. (1993). Multiple integrins mediate cell attachment to cytotactin/tenascin. Proceedings of the National Academy of Sciences of the United States of America, 90(21), 10154–10158.
- Huang, X., Wu, J., Spong, S., & Sheppard, D. (1998). The integrin alphavbeta6 is critical for keratinocyte migration on both its known ligand, fibronectin, and on vitronectin. *Journal of Cell Science*, 111(Pt 15), 2189–2195.
- Sheppard, D. (2005). Integrin-mediated activation of latent transforming growth factor beta. *Cancer and Metaxtasix Reviews*, 24(3), 395-402. doi:10.1007/s10555-005-5131-6.

Annes, J. P., Rifkin, D. B., & Munger, J. S. (2002). The integrin alphaVbeta6 binds and activates latent TGFbeta3. *FEBS Letters*, 511(1-3), 65–68.

- Singh, A., Greninger, P., Rhodes, D., Koopman, L., Violette, S., Bardeesy, N., et al. (2009). A gene expression signature associated with "K-Ras addiction" reveals regulators of EMT and nunor cell survival. *Cancer Cell*, 15(6), 489–500. doi:10.1016/j.ccr.2009.03. 022.
- Kang, H., Escudero-Esparza, A., Douglas-Jones, A., Mansel, R. E., & Jiang, W. G. (2009). Transcript analyses of stromal cell derived factors (SDFs): SDF-2, SDF-4 and SDF-5 reveal a different pattern of expression and prognostic association in human breast cancer. International Journal of Oncolory, 35(1), 205-211.
- 66. Wang, B., Wang, W., Niu, W., Liu, E., Liu, X., Wang, J., et al. (2014). SDF-1/CXCR4 axis promotes directional migration of colorectal cancer cells through upregulation of integrin alphavbeta6. Carcinogenesis, 35(2), 282-291. doi:10.1093/ carcinogt331.
- 67 Engl, T., Relja, B., Marian, D., Blumenberg, C., Muller, I., Beecken, W. D., et al. (2006). CXCR4 chemokine receptor mediates prostate tumor cell adhesion through alpha5 and beta3 integrins. *Neoplasia*, 8(4), 290–301. doi:10.1593/neo.05694.
- Jones, J., Marian, D., Weich, E., Engl, T., Wedel, S., Relja, B., et al. (2007). CXCR4 chemokine receptor engagement modifies integrin dependent adhesion of renal carcinoma cells. *Experimental Cell Research*, 313(19), 4051–4065. doi:10.1016/j. yexcr.2007.07.001.
- Xue, B., Wu, W., Huang, K., Xie, T., Xu, X., Zhang, H., et al. (2013). Stromal cell-derived factor-1 (SDF-1) enhances cells invasion by alphawheta6 integrin-mediated signaling in ovarian cancer. *Molecular and Cellular Biochemistry*, 380(1-2), 177–184. doi:10.1007/s11010-013-1671-1.
- Fedele, C., Singh, A., Zerlanko, B. J., lozzo, R. V., & Languino, L. R. (2015). The alphavbeta5 integrin is transferred intercellularly via exosomes. *Journal of Biological Chemistry*, 299(8), 4545– 4551. doi:10.1074/jbc.C114.617662.
- Van Cutsem, E., & Costa, F. (2005). Progress in the adjuvant treatment of colon cancer: has it influenced clinical practice? *JAMA*, 294(21), 2758–2760. doi:10.1001/jama.294.21.2758.
- Van Cutsem, E., Oliveira, J., & Group, E. G. W. (2009). Primary colon cancer: ESMO clinical recommendations for diagnosis, adjuvant treatment and follow-up. *Annals of Oncology*. 20(Suppl 4), 49–50. doi:10.1093/annonc/mdp126.
- Liu, S., Wang, J., Niu, W., Lin, E., Wang, J., Peng, C., et al. (2013). The beta6-integrin-ERK/MAP kinase pathway contributes to chemo resistance in colon cancer. *Cancer Letters*, 328(2), 325–334. doi:10.1016/j.canlet.2012.10.004.
- Liang, B., Shahbaz, M., Wang, Y., Gao, H., Fang, R., Niu, Z., et al. (2015). Integrinbeta6-targeted immunoliposomes mediate tumorspecific drug delivery and enhance therapeutic efficacy in colon carcinoma. *Clinical Cancer Research*, 21(5), 1183–1195. doi:10. 1158/1078-0432. CCR-14-1194.
- Zhao, Y. Z., Dai, D. D., Lu, C. T., Chen, L. J., Lin, M., Shen, X. T., et al. (2013). Epirubicin loaded with propylene glycol liposomes significantly overcomes multidrug resistance in breast cancer. *Cancer Letters*, 336(1), 74–83. doi:10.1016/j.canlet.2012.11.031.
- Eberlein, C., Kendrew, J., McDaid, K., Alfred, A., Kang, J. S., Jacobs, V. N., et al. (2013). A human monoclonal antibody 264RAD targeting alphavbeta6 integrin reduces tumour growth and metastasis, and modulates key biomarkers in vivo. Oncogene, 32(37), 4406–4416. doi:10.1038/onc.2012.460.
- Moore, K. M., Thomas, G. J., Duffy, S. W., Warwick, J., Gabe, R., Chon, P., et al. (2014). Therapeutic targeting of integrin alphaybeta6 in breast cancer. *Journal of the National Cancer Institute*, 106(8), doi:10.1093/jnci/dju169.

- Lee, C., Lee, C., Lee, S., Siu, A., & Ramos, D. M. (2014). The cytoplasmic extension of the integrin beta6 subunit regulates epithelial-to-mesenchymal transition. *Anticancer Research*, 34(2), 659–664.
- Weinacker, A., Chen, A., Agrez, M., Cone, R. I., Nishimura, S., Wayner, E., et al. (1994). Role of the integrin alpha v beta 6 in cell attachment to fibronectin. Heterologous expression of intact and secreted forms of the receptor. *Journal of Biological Chemistry*, 269(9), 6940–6948.
- Cox, G., Steward, W. P., & O'Byrne, K. J. (1999). The plasmin cascade and matrix metalloproteinases in non-small cell lung cancer. *Thorax*, 54(2), 169–179.
- Ahn, S. B., Mohamedali, A., Anand, S., Chernku, H. R., Birch, D., Sowmya, G., et al. (2014). Characterization of the interaction between heterodimeric alphavbeta6 integrin and urokinase plasminogen activator receptor (uPAR) using functional proteomics. *Journal of Proteome Research*, doi:10.1021/pr500849x.
- Pepper, M. S. (2001). Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. *Arteriosclerosis. Thrombosis. and Vascular Biology.* 21(7), 1104–1117.
- Dutta, A., Li, J., Fedele, C., Sayced, A., Singh, A., Violette, S. M., et al. (2015). alphavbeta6 integrin is required for TGFbeta1mediated matrix metalloproteinase2 expression. *Biochemistry Journal*, 466(3), 525–536. doi:10.1042/BJ20140698.
- Dang, D., Yang, Y., Li, X., Atakilit, A., Regezi, J., Eisele, D., et al. (2004). Matrix metalloproteinases and TGFbeta1 modulate oral tumor cell matrix. *Biochemical and Biophysical Research Communications*, 316(3), 937–942. doi:10.1016/j.bbrc.2004.02. 143.
- Allen, M. D., Thomas, G. J., Clark, S. E., Dawoud, M. M., Vallath, S., Payne, S. J., et al. (2013). Altered microenvironment promotes progression of pre-invasive breast cancer: myoepithelial expression of alphavbeta6 integrin in DCIS identifies high-risk patients and predicts resturence. *Clinical Cancer Research*. doi:10.1158/ 1078-0432. (CIR-13-1504).
- 86 Saldanha, R. G., Molloy, M. P., Bdeir, K., Cines, D. B., Song, X., Uitto, P. M., et al. (2007). Proteomic identification of lynchpin urokinase plasminogen activator receptor protein interactions associated with epithelial cancer malignancy. *Journal of Proteome Research*, 6(3), 1016–1028. doi:10.1021/pr060518n.
- Sidenius, N., & Blasi, F. (2003). The urokinase plasminogen activator system in cancer: recent advances and implication for prognosis and therapy. *Cancer and Metastasis Reviews*, 22(2-3), 205–222.
- Fishman, D. A., Kearns, A., Larsh, S., Enghild, J. J., & Stack, M. S. (1999). Autocrine regulation of growth stimulation in human epithelial ovarian carcinoma by serine-proteinase-catalysed release of the urinary-type-plasminogen-activator N-terminal fragment. *Biochemistry Journal*, 341(Pt 3), 765–769.
- Xiong, J. P., Mahalingham, B., Alonso, J. L., Borrelli, L. A., Rui, X., Anand, S., et al. (2009). Crystal structure of the complete integrin alpha/beta3 ecitodomain plus an alpha/beta transmembrane fragment. *Journal of Cell Biology*, 186(4), 589–600. doi: 10.1083/jcb.200905085.
- Sowmya, G., Khan, J. M., Anand, S., Ahn, S. B., Baker, M. S., & Ranganathan, S. (2014). A site for direct integrin alphavbeta6.uPAR interaction from structural modelling and docking. *Journal of Structural Biology*. doi:10.1016/j.jsb.2014. 01.001
- Weibrecht, L. Leuchowius, K. J., Clausson, C. M., Conze, T., Jarvins, M., Howell, W. M., et al. (2010). Proximity ligation assays: a recent addition to the proteomics toolbox. *Expert Review of Proteomics*, 7(3), 401–409. doi:10.1586/ept10.10.
- Thymiakon, E., & Episkopou, V. (2011). Detection of signaling effector-complexes downstream of bmp4 using PLA, a proximity

ligation assay. Journal of Visualized Experiments, (49), doi: 10.3791/2631.

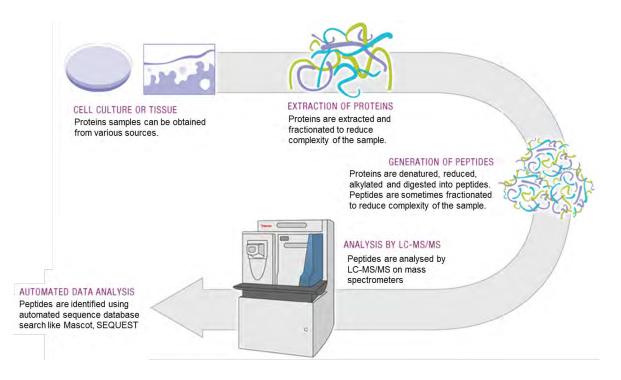
- Blasi, F., & Sidenius, N. (2009). The urokinase receptor: focused cell surface proteolysis, cell adhesion and signaling. *FEBS Letters*. doi:10.1016/j.febslet.2009.12,039.
- Blasi, F., & Carmeliet, P. (2002). uPAR: a versatile signalling orchestrator. Nature Reviews Molecular Cell Biology, 3(12), 932–943. doi:10.1038/nm977.
- Annes, J. P., Chen, Y., Munger, J. S., & Rifkin, D. B. (2004). Integrin alpha/bata6-mediated activation of latent TGF-beta requires the latent TGF-beta binding protein-1. *Journal of Cell Biology*, 165(5), 723–734. doi:10.1083/jcb.200312172.
- Klass, B. R., Grobbelaar, A. O., & Rolfe, K. J. (2009). Transforming growth factor betal signalling, wound healing and repair: a multifunctional cytokine with clinical implications for wound repair, a delicate balance. *Postgraduate Medical Journal*, 85(999), 9–14. doi:10.1136/pgmj.2008.060831.
- Zambruno, G., Marchisio, P. C., Marconi, A., Vaschieri, C., Melchiori, A., Giannetti, A., et al. (1995). Transforming growth factor-beta 1 modulates beta 1 and beta 5 integrin receptors and induces the de novo expression of the alpha v beta 6 heterodimer in normal human keratinocytes: implications for wound healing. *Journal of Cell Biology*, 129(3), 853–865.
- Van Aarsen, L. A., Leone, D. R., Ho, S., Dolinski, B. M., McCoon, P. E., LePage, D. J., et al. (2008). Antibody-mediated blockade of integrin alpha v beta 6 inhibits tumor progression in vivo by a transforming growth factor-beta-regulated mechanism. *Cancer Research*, 68(2), 561–570. doi:10.1158/0008-5472.CAN-07-2307.
- Dutta, A., Li, J., Lu, H., Akech, J., Pratap, J., Wang, T., et al. (2014). Integrin alphavbeta6 promotes an osteolytic program in cancer cells by upregulating MMP2. *Cancer Research*, 74(5), 1598–1608. doi:10.1153/0005-5472.CAN-13-1796.
- Khan, S. A., Joyce, J., & Tsuda, T. (2012). Quantification of active and total transforming growth factor-beta levels in serum and solid organ tissues by bioassay. *BMC Research Notes*, 5, 636. doi:10. 1186/1756-0500-5-636.
- 10). Leipnitz, G., Miyashita, C., Heiden, M., von Blohn, G., Kohler, M., & Wenzel, E. (1988). Reference values and variability of plasminogen in healthy blood donors and its relation to parameters of the fibrinolytic system. *Haemostasis.* 18(Suppl 1), 61–68.
- 102 Dvorak, H. F. (1986). Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. *New England Journal of Medicine*, 315(26), 1650–1659. doi:10. 1056/NEJM198612253152606.
- Teicher, B. A., & Fricker, S. P. (2010). CXCL12 (SDF-1)/CXCR4 pathway in cancer. *Clinical Cancer Research*, 16(11), 2927–2931. doi:10.1158/1078-0432.CCR-09-2329.
- Hoesel, B., & Schmid, J. A. (2013). The complexity of NFkappaB signaling in inflammation and cancer. *Molecular Cancer*, 12, 86. doi:10.1186/1476-4598-12-86.
- 105. Agarwal, E., Brattain, M. G., & Chowdhury, S. (2013). Cell survival and metastasis regulation by Alt signaling in colorectal cancer. *Cellular Signalling*, 25(8), 1711–1719. doi:10.1016/j.cellaig. 2013.03.025.
- 106. Roy, H. K., Olusola, B. F., Clemens, D. L., Karolski, W. J., Ratashak, A., Lynch, H. T., et al. (2002). AKT proto-oncogene overexpression is an early event during sporadic colon carcinogencsis. *Carcinogenesis*, 23(1), 201–205.
- 107. Bravou, V., Klironomos, G., Papadaki, E., Taraviras, S., & Varakis, J. (2006). ILK over-expression in human colon cancer progression correlates with activation of beta-catenin, downregulation of E-cadherin and activation of the Akt-FKHR pathway. *Journal of Pathology. 208*(1), 91–99. doi:10.1002/path. 1860.

- Latella, G., Vetuschi, A., Sferrá, R., Speca, S., & Gandio, E. (2013). Localization of alphanubeta6 integrin-TGF-beta1/ Smad3, mTOR and PPARgamma in experimental colorectal fibrosis. European Journal of Histochemistry, 57(4), e40. doi:10.4081/ cjh.2013.e40.
- Francipane, M. G., & Lagasse, E. (2014). mTOR pathway in colorectal cancer: an update. *Oncotarget.* 5(1), 49–66.
 Arcaro, A., & Guerreiro, A. S. (2007). The phosphoinositide 3-
- Arcaro, A., & Guerreiro, A. S. (2007). The phosphoinositide 3kinase pathway in human cancer: genetic alterations and therapeutic implications. *Current Genomics*, 8(5), 271–306. doi:10.2174/ 138920207782446160.
- Su, C. C., Lin, Y. P., Cheng, Y. J., Huang, J. Y., Chuang, W. J., Shan, Y. S., et al. (2007). Phosphatidylinositol 3-kinase/Akt activation by integrin-tumor matrix interaction suppresses Fasmediated apoptosis in T cells. *Journal of Immunology*. 179(7), 4589–4597.
- Hennine apoptists in Teels. Journal of Immunology, 178(1), 4589–4597.
 Fleming, N. I., Jorissen, R. N., Monradov, D., Christie, M., Sakthianandeswaren, A., Palmieri, M., et al. (2013). SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer. *Cancer*

Research, 73(2), 725-735. doi:10.1158/0008-5472.CAN-12-2706.

- 113. Xie, W., Rimm, D. L., Lin, V., Shih, W. J., & Reiss, M. (2003). Loss of Smad signaling in human colorectal cancer is associated with advanced disease and poor prognosis. *Cancer Journal*, 9(4), 302–312.
- Najdi, R., Holcombe, R. F., & Waterman, M. L. (2011). Wnt signaling and colon carcinogenesis: beyond APC. *Journal of Carcinogenesis*, 10, 5. doi:10.4103/1477-3163.78111.
- 115. Wang, S., Liu, Z., Wang, L., & Zhang, X. (2009). NF-kappaB signaling pathway, inflammation and colorectal cancer. *Cellular* and molecular immunology, 6(5), 327–334, doi:10.1038/emi. 2009-43.
- 116. Azare, J., Leslie, K., Al-Ahmadie, H., Gerald, W., Weinreb, P. H., Violette, S. M., et al. (2007). Constitutively activated Stat3 induces tumorigenesis and enhances cell motility of prostate epithelial cells through integrin beta 6. Molecular and Cellular Biology, 27(12), 4444–4453. doi:10.1128/MCB.02404-06.

▲ Springer


1.4 Mass spectrometry based cancer proteomics

1.4.1 What is proteomics?

The term 'proteome' was used for first time Wasinger et al. in 1995 [330], to describe the entire complement of PROTEins encoded by any genOME. A year later, in 1996, Wilkins et al. [331, 332] used the term 'proteomics' to describe the study of proteomes of a cell or tissue, or an entire organism and their function. Since the coining of these terms, proteomics has evolved on a great scale which is partly attributed to the development of technologies to detect and study the said proteins.

The proteome of any organism is particularly dynamic, unlike the relatively static genome. This dynamic nature of the proteome can partly be ascribed to the ability of a single gene to code for multiple isoforms of a single protein. Gene sequences or even the mRNA expression levels cannot accurately predict this protein-level information. Various post-translational modifications (PTM) such as glycosylation, methylation and phosphorylation further enhance the molecular heterogeneity of the proteome and affect the structure and function of the individual proteins. Adding to the challenge, the composition of the proteome expressed is also affected by environmental factors, physiological state of the cell/organism and their response to stimuli at any given time.

Traditionally (20 years ago), proteins were sequenced by Edman degradation which was based on the principle of chemically cleaving an amino-terminus amino acid residue followed by identification [333]. However, any modifications to the amino-terminus of a protein makes it harder to sequence using Edman degradation and thus reducing its sensitivity of this technique. This lead to the adoption of mass spectrometry (MS) technique, which had existed and was used in chemistry laboratories since its invention by Nobel laureate Sir Joseph John Thomson in 1913 [334], to identify proteins based on their mass. The protein MS came to light with the discovery of Matrix-Assisted Laser Desorption/Ionization (MALDI) [335] and Electrospray Ionization (ESI) [336] methods in the 1980s which enabled identification of intact polypeptides and proteins. The revolution of MS-based proteomics research then was boosted by the development of the nanoscale reversed-phase liquid chromatography (nanoLC) [337], tandem mass spectrometry commonly referred to as MS/MS [338] and automated sequence database search engines like SEQUEST [339] and Mascot [340]. This basic platform allowed researchers to routinely identify and quantify several hundred to thousand proteins from within a complex mixture and is known as 'shotgun' or 'bottom-up' proteomics, Figure 9.

Figure 9 - Basic workflow of LC-MS/MS-based label-free shotgun proteomics. (Adapted from http://planetorbitrap.com/bottom-up-proteomics#.VYDzj_mqq2U).

In the past few decades, MS-based proteomics approaches have been extensively used in cancer research to identify proteins that may potentially be used as biomarker and/or drug targets. Hence, proteomics has become an important tool to discover new candidate biomarkers in CRC that may lead to the development of a diagnostic tools for clinicians and eventually address the complex molecular signatures that are associated with cancer (including CRC) and various diseases.

1.4.2 Colorectal cancer proteomics

Proteomics is capable of analysing the proteome deregulation associated with CRC. This can be achieved by analysing the complete proteome of a variety of samples that could reveal a subset of proteins and/or their associated pathways in CRC development, progression and metastasis. The modern proteomic technologies enable us to quantitate the changes in protein expression, protein modifications (PTM, turnover i.e. synthesis/degradation etc.) and the enzymatic activity related to CRC malignancy. Understanding these biological alterations in CRC using proteomics will allow researchers to map the molecular aspects of this disease in broad detail.

Very often CRC proteomics is performed using CRC cell lines, tissue samples and biological fluids. These studies are either performed alone or in combination to increase the confidence of the results observed. A few examples include: (a) comparison of normal epithelium

against cancerous cell lines; (b) comparison of two pathologically different CRC cell lines; (c) comparison of tissue biopsies and/or blood samples at various stage of disease progression. There could several potential combinations that could be used depending on the availability of the samples.

Human cell lines, tissues and biological fluids have been extensively explored in the quest for CRC-specific proteome changes. Often, but not always, cell lines are used as a starting point for studying cancer. Rarely, cell lines are prone to genotypic and phenotypic changes during culturing require continual assessment of their physiological and pathological relevance. Nevertheless, the unlimited sample availability and self-replicative potential of the cell lines allows researchers to re-examine a protein or pathway of interest to understand its role in CRC. Using cell lines, it is also relatively easy to perform genetic manipulations and study the associated changes. However, patient tissue samples and biological fluids have the highest pathological and physiological relevance to the disease but are hard to obtain, require large sample numbers to account for differences between individuals and have higher protein complexity. Therefore, cell line based studies make for a reasonable foundation on which other *in vivo* studies can be performed to test the performance of important molecules in the disease. This thesis utilizes three primary CRC cell lines (see Table 9) and their subclones to understand the biology of TGFB in CRC. A few important MS-based proteomic studies in the recent years that use the same CRC cell lines in Table 9 and/or CRC patient plasmas are summarised in Table 10.

Cell line	Description	Sub- clones	uPAR	β6	TGFβR1	TGFβR2
SW480	adenocarcinoma	Mock	+	-	+	+
		β6ΟΕ	+	+↑	+	+
HT29	adenocarcinoma,	Mock	+	+	+	+
	tumorigenic	β6AS	+	+↓	+	+
HCT116	carcinoma,	WT	+	-	+	+
	tumorigenic	uPAR-AS	+↓	-	+	+

 Table 9 Colorectal cancer cell lines used in this thesis[§]

[§]+, protein is expressed in the cell line; -, +, protein is not expressed in the cell line + \downarrow , protein expression is stably down-regulated using plasmids; + \uparrow , protein expression is stably up-regulated using plasmids

Table 10 Summary of recent MS-based proteomic studies performed using the CRC cell lines employed in this thesis; and CRC patient plasma/serum samples in the recent years.

Source of protein sample	Aim	Observed results and comments	Ref.
Cell line-based studies			
CRC cell line SW480 (does not express integrin $\beta 6$ and SW480 ^{OE$\beta 6$} (stably expressing $\beta 6$)	To understand how integrin $\alpha\nu\beta6$ mediated the EMT and invasive/metastatic phenotype.	74 and 60 unique proteins were identified in SW480 ^{OEβ6} and SW480 cell lines respectively. Important cell invasion related molecules integrins α 2, α 6, β 1, β 4, & β 5, TGF β 1, CD44 and ephtin-b1 showed increased expression when β 6 was expressed.	[149]
Primary SW480 cell line and lymph node metastatic variant SW620.	To identify differentially expressed proteins in whole cell lysates of SW480 and SW620 to understand molecular events of CRC metastasis.	94 down- regulated and 53 up- regulated in SW620 relative to SW480. Various cell adhesion proteins (β -catenin, NCAM1, L1CAM), cytoskeletal signalling proteins (KRT13, KRT23, tubulin- β 2A and 2B, actinin- α 1, actinin- α 4), cell migration inhibitor, annexin 2, and chaperones and heat shock proteins such as HSP90 α and HSPH1 were down- regulated in the metastatic cell line cell line.	[341]
Primary SW480 cell line and lymph node metastatic variant SW620.	To identify potential CRC serum biomarkers through analysis of secretome of two CRC cell lines from same patient.	Reported 3 proteins TFF3, GDF15 and AGR2 to be secreted by the SW620 cells and TGM2, LCN2 and IGFBP7 were strongly expressed in SW480 cells. TFF3 and GDf15 were further examined using CRC serum and tissue samples and were reported to be associated with lymph node metastasis.	[342]
Five CRC cell lines (HT-29, Caco-2, Colo205, HCT116 and RKO).	Identification of cell surface protein biomarkers for CRC adenoma-to- carcinoma progression.	Identified EPHA1, GLUT1, ICAM1, BCAM, prion protein, SLC1A5 and HSD17B7. IHC analysis showed that GLUT1 and prion proteins to be associated with high-risk adenomas.	[343]

HCT116 cell line and its metastatic derivative E1.	To elucidate molecular mechanisms in metastasis by comparing complete proteome profiles of two CRC cell lines.	Reported over expression of DBN1, ANAX5, Lamin-A/C and TCTP in the E1 cells. High expression of DBN1 was shown by IHC analysis and they proposed further validation of this protein as a metastatic marker for CRC.	[344]
HCT8 (non-metastatic) and HCT116 cell lines.	To discover serological CRC markers by analysing the secretome of the two cell lines.	11 candidate marker proteins identified. Melanotransferrin (TRFM) was further validated in 130 plasma samples (CRC n=80; healthy n=30; other disease=20) which showed up- regulation in stages I & II of CRC compared with stages III & IV. The study suggests TRFM as a potential early serological marker.	[345]
Plasma/serum-based studies			
Serum (CRC n=91; stage I = 21, stage II = 41, stage III = 22 and IV = 7 and 33 healthy individuals).	To identify proteins involved tumourigenesis and non-invasive markers of CRC in serum.	COL1A1 and COL1A2 were most up-regulated in CRC relative to healthy controls and suggested that they might be involved in early CRC tumourigenesis and may serve as prognostic markers for CRC.	[346]
Plasma (n=32) Samples obtained from same patients at early time point (ET; before surgery) and late time point (LT; regular follow-up after surgery when distal metastasis was diagnosed).	To identify novel plasma biomarkers for CRC metastasis and to examine the possible biological relevance of the identified proteins in CRC cell migration.	Gelsolin, SERPINA3, SERPIND1, TF and C3 were increased in LT and PLG, APOA1 and F2 were decreased in LT. Further examination showed Gelsolin to be increased in plasma of more than 80% of CRC patients with distal metastasis and for stage IV vs stage I-III before treatment.	[347]
Plasma (n =90; CRC=31 and Controls=59).	To identify novel plasma biomarkers for early detection of CRC.	APOA1 and the ninth component of complement (C9) proteins were most significantly altered. C9 was proposed as a potential plasma marker for early CRC detection.	[348]

1.4.3 Protein sample preparation and handling

The separation and isolation of proteins from a cell line, tissue, or organism is the initial step in proteomics that is followed by proteolytic digestion, peptide clean-up and LC-MS/MS analysis. It is relatively easy to obtain a whole cell lysate (WCL) sample. However, WCL might be too complex for identification of certain proteins (e.g., membrane restricted proteins) which might by crucial during cancer. One of the challenges, therefore, before performing MS on a protein sample is to reduce its complexity. The complexity of WCL can be reduced by subcellular enrichment/fractionation and protein/peptide separation or both prior to MS.

Enrichment of specific proteome subsets such as proteins residing in the cytosol or membrane organelles or nucleus is important to address some specific research questions. This reduces the biological complexity of the proteome and allows examination of low abundance proteins which would, normally, otherwise not be observed by MS. The downside to this enrichment type proteomic studies is that they only reveal partial proteome. However, they are often the type of experiments that answer key biological questions and slowly but accurately lead to the mapping of key molecular aspects of the disease.

Subcellular fractionation of a WCL sample after homogenization can be efficiently performed through sucrose gradient centrifugation or liquid-liquid extraction method [349, 350]. The concept of liquid-liquid extraction is based on the differential solubility of various proteins in detergent/aqueous phases. For example, the hydrophobic membrane proteins are soluble mostly soluble in the detergent phase. This method is thought to preserve the integrity of the cytoskeletal networks if the enrichment is performed without homogenization of the cells [350]. In order to reduce the complexity of the protein samples, this thesis utilized the liquid-liquid principle to enrich for integral membrane proteins (IMPs). Briefly, the nuclear fraction is initially separated, from the cytosolic and microsomal fraction, by low speed centrifugation (2000g). The separation of microsomes from the cytosol is achieved by high speed centrifugation i.e., ultracentrifugation (120,000g), wherein the microsomes are pelleted. Now, the microsomal fraction can be enriched for IMPs either by 0.1 M sodium carbonate (pH 11.0) [351] or by triton X-114 phase partitioning [352]. The inherent challenges of working with membrane proteins include relatively low abundance, large dynamic protein range and low aqueous solubility. As described above, organic solvents and detergents can effectively solubilize membrane proteins to overcome the low aqueous solubility. However, they may be incompatible with LC-MS/MS and need to be completely removed prior to downstream analysis. Subcellular proteomics has been previously utilised

to study CRC. For instance, microsomes from CRC tissues have been analysed by proteomics [353, 354]. Cantor *et al.*, enriched and analysed the membrane proteome from SW480 CRC cells [149]; Kume *et al.*, enriched and analysed membrane proteins from CRC tissues samples to identify candidate biomarkers [355].

To further reduce the complexity of the protein samples, this thesis utilized strong cation exchange chromatography (SCX) to separate the peptides prior to analysing them on MS. Few other separation strategies include 1D or 2D gel electrophoresis, 2D differential gel electrophoresis (DIGE) and 1D and 2D off-line LC methods. In principle, the SCX stationary phase contains resins that are negatively charged in aqueous solution and therefore bind positively charged peptides or proteins. Most often, researchers use trypsin to proteolytically cleave proteins resulting in "tryptic" peptides. Most tryptic peptides have a net charge of \geq 2+ and therefore can be separated by SCX [356]. The SCX also simultaneously removes any interfering substances (e.g., detergents, excess salts) that might affect the LC-MS/MS which makes it a very efficient method to use in MS-based proteomics.

1.4.4 LC MS/MS based proteomics

MS enables researchers to identify the mass of amino acid sequences and eventual identification of the associated peptide and its corresponding protein. MS can be divided into three main stages: (i) sample preparation (discussed in the previous section), (ii) sample ionization, and (iii) mass analysis.

Sample ionization

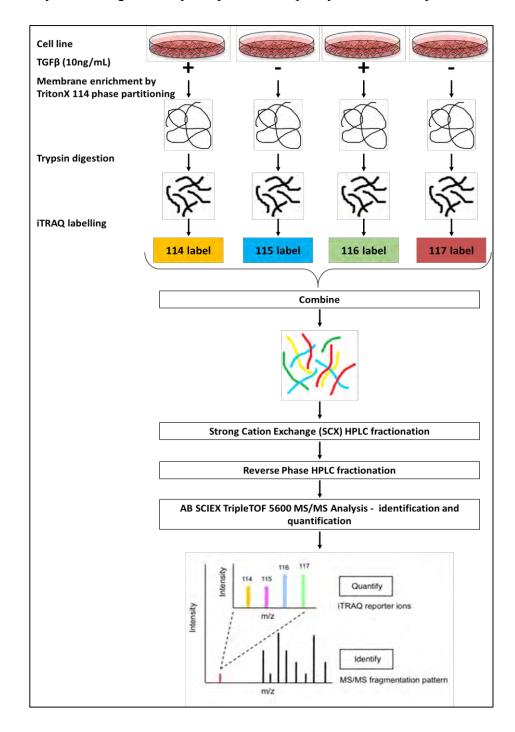
The ionization of biological samples for MS analysis is crucial and will result in charged and dry ions for analysis. Ionization is usually performed under high temperature and an electric field. This is accomplished by two most common methods – electrospray ionization (ESI) and matrix-assisted laser desorption/ionisation (MALDI). ESI was first introduced by Dole M et al., in 1968 [357] and later modified by Fenn *et al.*, in 1989 [336] and MALDI was introduced by Karas in 1987 [358]. ESI is a liquid phase ionization method where the analytes in the solvent are directly sprayed into the mass analysers. MALDI, however, relies on immobilising analytes in a matrix and then desorbed by a high energy laser for analysis. Both these methods rely upon the basic principle of converting peptides into ions by the addition or removal of one or more protons (H+). These methods result in the formation of ions without significant loss of sample integrity that allows accurate mass analysis of the peptides and proteins in their native state. As ESI was the primary method used in this thesis it will be discussed in detail below.

In ESI, the analytes in solvent flow into the orifice of the mass spectrometer through a microcapillary tube. The potential difference between the capillary and the inlet to the mass spectrometer at the orifice results in the generation of a fine mist of charged droplets. As the solvent evaporates it results in the accumulation of charged desolvated ions [359-361]. Most often MS is performed in positive ion mode simply due to the fact that most tryptic peptides are positively charged. The peptides can be doubly (2+) or triply (3+) or have higher positive charges. Furthermore, the commonly used solvent during MS analysis, 0.1% formic acid, acts as a proton donor to the basic functional groups of the peptides. The charged peptides, due to differential pressure and ion gradient, move into the mass analyser where they are separated based on their mass-to charge (m/z) ratio. The sensitivity of the ion detection depends on various factors such as the analyte concentration in the sample. The sensitivity can also be affected by any contaminants such as polymers and salts in the sample which can result in ion suppression and may lead to incorrect mass determination.

Mass Analysers

As the basic principle of mass spectrometry relies upon accurately reporting the mass of a molecule, it is a crucial component of the mass spectrometer. Mass analysers store and resolve the ions on the basis of their mass and charge in a vacuum. There are three types of mass analysers; a) Quadrupole mass analyser, b) time-of-flight (TOF) and c) ion trap (IT). Each mass analyser uses a different principle for measuring the mass of the ion. Quadrupole uses the m/z stability of the ion, the TOF uses the differential ion flight time and IT uses the m/z resonance frequency. Each mass analyser has unique performance characteristics such as resolution, mass accuracy, sensitivity, scan rate, and dynamic range [362]. The proteomic experiments in this were performed on an ABSCIEX 5600 TripleTOF which is a hybrid triple quadrupole TOF platform and therefore, the quadrupole and TOF mass analysers will be further discussed.

Quadrupole analysers are one of the most common mass analysers used. The principle of a quadrupole mass analyzer was first described in the 1950s by Paul Wolfgang [359]. Here, the desolvated ions are pulsed toward the detector by an electric field, in the range of 5 Kv, created by an array of four parallel metal rods called quadrupole [363]. The quadrupoles can also be used as mass filter whereby they only allow ions of certain m/z ratio. Therefore, combining more than one quadrupole allowed researchers to obtain information of sequence of amino acids in a peptide. This lead to the development of triple quadrupoles which had exceptional quantitative capabilities.


The ion separation principle in the TOFs is one of the simplest and was first described in the mid-20th century [364] and it was not until 1995 when it was rediscovered byBrown and Lennon [365]. It simply measures the m/z ratio of an ion by determining the time required for it to traverse the length of a flight tube. Some TOF setups have an ion mirror after the flight tube which can serve to increase the path length and correct for any small energy differences among the ions [366]. These factors contribute to increase in mass resolution when using TOFs. In addition, TOF analysers also allow the analysis of all the ions present in samples, as every ion has a charge and will eventually complete its flight and reach the detector, which is a key advantage [359]. The ABSCIEX 5600 TripleTOF used in this thesis has the quantification capabilities similar to triple quadrupoles and the high resolution with the speed and sensitivity of a TOF making it an excellent tool for proteomic studies.

1.4.5 Shotgun Quantitative proteomics using iTRAQ

The quantitative measurement of proteins along with qualitative information is crucial when comparing different proteomic samples. Quantitation in proteomics can be achieved in two ways – the non-targeted approach, where all the peptides identified by MS can be quantitated; and the targeted approach, where a selected list of peptides are quantitated. Non-targeted approaches generally use data dependant acquisition (DDA) method to analyse the peptides. In the recent years, data independent acquisition (DIA), especially SWATH MS, is being increasingly performed to analyse complete proteome in a sample [367]. Targeted approach methods such as single/multiple reaction monitoring (SRM/MRM) have also seen increasing use in cancer research [355].

Shotgun proteomics has grown to be the most common proteomics methods to analyse complex protein samples. Most often researchers choose to perform label-free proteomics as described previously, which does not require them to label their peptides samples before analysing them on a mass spectrometer and the results are not directly quantifiable. Quantitative proteomics approaches that utilize labelling techniques include isobaric Tag for Relative and Absolute Quantization (iTRAQ) [368], isotope coded protein labels (ICAT) [369], stable isotope labelling by amino acids in culture (SILAC) [370] and 18O-labelling [371]. The proteomic experiments in this thesis were performed using iTRAQ shotgun approach (see **Figure 10**), which enabled high-throughput proteomic analysis. Key advantages of iTRAQ include: a) iTRAQ reporter ions allow simultaneous identification and quantification of peptides/proteins in the sample, which is one of the key advantages; b) it allows multiple sample analysis in single MS run (from a minimum of 2 upto 8 samples); c)

improves MS/MS fragmentation and results in more confident peptide/protein identifications; and e) analysis of PTMs is possible [372]. A key disadvantage of iTRAQ-based proteomics is the requirement of more MS time due to the increased peptide numbers as multiple samples are combined into a single sample [372]. However, this can be easily controlled by decreasing the complexity of the sample by fractionation prior to MS.

Figure 10 - Basic workflow of iTRAQ based proteomics experiments. Image modified from [373].

In brief, crude protein mixture from various samples (2 to 8 samples) is extracted from cultured cells and enriched for membrane proteins. The protein sample is then reduced, alkylated and enzymatically (using trypsin) digested into peptides. These peptides are then labelled on primary amines using 4- or 8-plex isobaric reagents. The labelled samples are then fractionated using SCX. The peptide mixture is then delivered to the ionisation chamber after the HPLC, where the iTRAQ reporter ions are detected and analysed. The MS/MS spectra obtained from the ABSCIEX Triple TOF 5600 were used to simultaneously identify and quantify the peptides and proteins using ProteinPilotTM.

1.4.6 Bioinformatics tools for Data analysis

Proteomic experiments often generate vast amounts of complex data making them complicated to handle. Further adding to the complexity is the origin of the data from a various vendor specific instruments and different acquisition methods. The analysis of large amounts of data form proteomics experiments requires powerful bioinformatics tools to assist in identification, quantitation and other downstream analysis of proteins observed in the experiments. Bioinformatics tools such as protein databases, sequence comparison programs and various statistical tools make the analysis of complex proteomic datasets possible and are briefly discussed. The primary step in after mass spectrometry is to match peptide fragment spectra to their corresponding peptides and subsequently to proteins. This is primarily done by searching the acquired spectra protein against databases that match peptides based on similarity, although other methods do exist. The most commonly used database search engines include SEQUEST, Mascot and X! Tandem. These search engines allow mining for peptide or protein matches from various protein databases like National Center for Biotechnology Information (NCBI), SwissProt, Ensemble and International Protein Index (IPI). The search engines also allow researchers to set various limits prior beginning the search. Some of those limits include peptide mass tolerance, enzyme specificity, inclusion or exclusion of specific modifications and most importantly the target proteome to search against. The search engines then generate list of peptides assigned to the quarried MS/MS spectra and their associated proteins.

This peptide and protein list is usually accompanied by correlation scores (e.g., *Xcorr* for Sequest and *Evalue* for Mascot) which indicate the degree of similarity between the experimental and theoretical data; this assessment provides essentially a measure of confidence of the annotation. However, the database search engines assign peptides to MS/MS spectra irrespective of the data quality. Therefore, identification of peptide and proteins from high quality MS/MS spectra (high signal-to-noise and peptide sequence

coverage) is required to reduce the number of 'false-positive' identifications and obtain a statistical valid list of 'true-positive' identifications. The confidence of identification is measured by determining the false discovery rates (FDR), which is a measure to estimate the annotation error. Typically, FDR is calculated immediately after peptide and protein identification. Very often an FDR of 1-5% is used in proteomics experiments.

In this thesis, ProteinPilotTM that employs a robust ParagonTM algorithm [374] was used for identification of peptides and proteins from the MS/MS spectra obtained from ABSCIEX Triple TOF 5600. Additionally, the integrated FDR analysis reported to us the quality of protein and peptide identifications [375]. A typical result for iTRAQ data from protein pilot will show N: rank of a particular protein in respect to the other proteins identified; Unused: the "protscore" for a particular protein; Total: the "protscore" for a particular protein using all of the available peptides identified for that specific protein; %Cov(95): the number of amino acids matching the identified protein sequence with confidence greater than 95%, divided by the total number of amino acids in the protein; Accessions: protein accession number from SwissProt protein sequence database; Name: protein sequence name; Species: shows the taxonomy of the protein; Peptide(95%): the number of distinct peptides have at least 95% confidence; Protein ratios/fold change: the ratio of average areas measured for the respective protein ions between various labels; and *p*-value: from a paired t-test on the average of the areas measured. Other details such as modifications, precursor molecular weight and precursor m/z can also be obtained by manually selecting the output file options in ProteinPilotTM.

Once the list of proteins is obtained, they can further be used to understand the biological relevance using functional annotation and/or pathway/network analysis tools. Some such tools include, STRING functional protein association networks (http://string-db.org/), Reactome pathway database (http://www.reactome.org/), KEGG pathway database (http://www.genome.jp/kegg/pathway.html), WEGO gene ontology annotation tool (http://wego.genomics.org.cn/cgi-bin/wego/index.pl), Ingenuity pathway analysis (IPA) (http://www.ingenuity.com/products/ipa), DAVID Functional Annotation Tool (http://david.abcc.ncifcrf.gov/), Pathway commons (http://www.pathwaycommons.org/) and ConsensusPathDB (http://cpdb.molgen.mpg.de/). IPA was used for pathway analysis of proteomic data in this thesis. The public repositories such as the ProteomeXchange (PX) (http://www.proteomexchange.org/) consortium (PRoteomics and the PRIDE IDEntifications) database (http://www.ebi.ac.uk/pride/archive/) for MS/MS spectral data

will enable researches to more confidently re-identify or re-assess a data set for more possible outcomes and will be crucial for the growth of proteomics.

1.5 Aims of the thesis

Several studies have also reported the involvement of TGF β in cancer but there was no direct evidence to support this observation in CRC. A previous membrane proteomic study in our group) using SW480 cells which observed differential expression of TGF β 1 (\downarrow 2.9 fold) and TGF β R1 (\uparrow >3.0 fold) when β 6 was expressed. These interesting observations instigated the investigation of TGF β and its role in regulating CRC related processes in a β 6 and uPAR dependent manner.

The overall aim of this thesis was to expand the knowledge on the biology of TGF β in CRC. This was achieved by employing state-of-the-art proteomics, cell signalling assays (i.e., AlphaScreen® SureFire® Assay) and multiplexing technologies (i.e., Proseek Multiplex Oncology I kit), in conjunction with sophisticated bioinformatics. The samples investigated in this thesis comprised of a panel of cultured human CRC cells and clinically staged CRC plasma samples.

Aim I: The first project of this thesis, a signalling study, aimed to evaluate whether expression of the $\beta6$ integrin subunit enhances the ability of CRC cells to activate recombinant zymogen TGF β and plasmin as part the novel uPAR/ $\alpha\nu\beta6$ /TGF $\beta1$ interactome. This study identified that expression of $\beta6$ integrin clearly increased the proliferation and invasion of the cells when treated with L-TGF β and was sustained through increased Erk1/2 signalling. (*Publication IV - This work has been prepared for publication*).

A subsequent iTRAQ-based proteomic approach was employed to explore the effects of TGF β and its signalling on colon cancer cells that express varying levels of β 6 integrin. This study was able to successfully identify various cancer related molecules and networks to be significantly altered upon TGF β treatment. (*Publication III - This work has been prepared for publication*).

Aim II: The subsequent project then aimed to characterise proteome changes of HCT116 colon cancer cells, with differential expression of urokinase-type plasminogen activator receptor (uPAR), treated with active TGF β 1. The results from this study, demonstrate that expression of uPAR induces differential up- and down-regulation of several cancer related proteins and signalling pathways such as eIF2. (*Publication V - This work has been prepared for publication*).

Aim III: The final study of the thesis aimed to investigate the expression of LAP-TGF β 1 using an immune based analysis of EDTA-plasma samples from Dukes' stage A-D patients (n=60) and unaffected controls (n=15). The results showed no significant difference for LAP-TGF β expression. However, the study identified three biomarkers (CEA, IL-8 and prolactin) that can significantly differentiate the unaffected controls from non-malignant (Dukes' A + B) and malignant (Dukes' C + D) stages. The findings from this study (**Publication VI**) have been published the journal of Clinical Proteomics.

During the course of this PhD project, a secondary aim that significantly contributed to determining the interaction site of uPAR and $\beta6$ integrin was also undertaken and these findings have been published in the Journal of Proteome Research (**Publication VII**; **Appendix II**).

Overall, the findings from this thesis (aim I and II) have reported several molecules to be deregulated in favour of or against cancer progression upon TGF β treatments. These results will be crucial to understand the biology of TGF β in the context of uPAR/ $\alpha\nu\beta6$ /TGF $\beta1$ interactome. Additionally, the plasma study (aim III) identified CEA, IL-8 and prolactin as potential CRC biomarkers. It is believed that the results from this thesis will contribute to the effort of understanding the biology of TGF β in cancer and aid in the development of new diagnostic and therapeutic tools to combat global CRC health burden.

CHAPTER 2: METHODS

More detailed information on the methods used in this thesis are available in the respective chapter or its associated publication in that chapter.

Method	Used in Chapter (in publication)
Proliferation assay	3,4 (III, IV, V)
Wound healing assay	3 (III)
Invasion assay	3, 4 (III, IV, V)
Cell culture	3,4 (III, IV, V, VII, VIII)
Triton X-114 phase partitioning	3,4 (III, V)
Ingenuity Pathway Analysis	3,4 (III, V)
iTRAQ-labelling	3,4 (III, V)
Strong cation exchange chromatography	3,4 (III, IV, V)
NanoLC Chromatography	3,4 (III, IV, V)
Western blotting	3,4 (III, IV, V, VII, VIII)
AlphaScreen [®] SureFire [®] assay	3 (IV)
Bio-Plex Pro [™] human cytokine 27-plex immunoassay	5 (VI)
Proseek® Multiplex Oncology I proximity extension assay	5 (VI)
Immunoprecipitation	(VIII)

CHAPTER 3

This chapter incorporates two studies that are crucial for understanding the associations of TGF β and integrin $\beta 6$ in CRC biology.

3.1 - Study I:

The first study in the chapter aimed to explore the ability of β 6 integrin subunit to activate recombinant L-TGF β and plasminogen as part the novel uPAR/ $\alpha\nu\beta6$ /TGF β 1 interactome. This study was performed using SW480 and HT29 subclone cells that differentially express β 6 integrin. This differential expression of β 6 was achieved through stable cDNA transfection. Preliminary cell based studies after addition of L-TGF β and plasminogen (PLG) showed high β 6 expression resulted in increased proliferation and invasion. Surprisingly, the investigation of cell signalling activity using AlphaScreen® SureFire® assays showed higher Erk1/2 activity when the cells expressed any amount β 6. The study also showed a switch in signalling from Smad to Erk when treated with plasminogen. Overall, these observations suggests that $\alpha\nu\beta$ 6 expression can utilize both L-TGF β and plasminogen to induce phenotypic changes involved in cancer progression through sustained Erk1/2 activity.

3.1.1 - Expression of ανβ6 integrin enhances both plasminogen and latent-transforming growth factor-β1 dependant proliferation, invasion and ERK1/2 signalling in colorectal cancer cells. [Publication III] (*Prepared for publication*)

Expression of αvβ6 integrin enhances both plasminogen and latent transforming growth factor-β1 dependent proliferation, invasion and ERK1/2 signalling in colorectal cancer cells

- 4 Cantor DI, Cheruku HR, Ahn SB, Crouch MF[†], Nice EC[§] and Baker MS^{*}.
- 5 Australian School of Advanced Medicine, Macquarie University, NSW, 2109 AUSTRALIA
- [†] TGR Biosciences, Thebarton, South Australia, 5031, AUSTRALIA
- ⁸ Monash University, Clayton, Victoria, 3800
- 8
- 9 *Corresponding Author: Prof. Mark Baker
- 10 Mailing address:
- 11 Level 1, 75 Talavera Rd
- 12 Australian School of Advanced Medicine
- 13 Macquarie University, NSW, 2109
- 14 AUSTRALIA
- 15 Phone: +61 2 9850 8211
- 16 Fax: +61 2 9812 3600
- 17 Email: mark.baker@mq.edu.au
- 18

19 ABSTRACT

The $\alpha\nu\beta6$ integrin, urokinase-type plasminogen activator receptor (uPAR) and 20 transforming growth factor-\beta1 (TGF-\beta1) are crucial proteins involved in the progression of 21 colorectal cancer (CRC) towards metastasis. Commonly upregulated in epithelial cancers, 22 $\alpha\nu\beta6$ enhances metastatic cell attributes including proliferation, invasion, adhesion and the 23 epithelial-mesenchymal transition (EMT). $\alpha v\beta 6$ is suggested to physically interact with 24 uPAR and the latency-associated peptide of TGF-β1, potentially influencing the activation 25 of the latent TGF-B1 (L-TGFB1) and plasminogen (Plg) zymogens. Following activation, 26 the binding of active TGF- β 1 to its receptors can initiate an amplification cascade, 27 upregulating $\alpha v\beta 6$ and uPAR expression through the Ets-1 transcription factor. 28 29 Alternatively, $\alpha\nu\beta6$ can interact with ERK2-P through a unique C-terminal tail, promoting the plasminogen activation (PA) cascade and mitogen-activated protein kinase (MAPK) 30 31 signalling pathways. The present study investigated whether $\alpha\nu\beta6$ expression enabled CRC 32 cells to activate zymogen members of these proteolytic and growth factor pathways, inducing phenotypic changes necessary to facilitate pro-metastatic transformation. Cell-33

based assays and signalling activity studies determined that treatment with recombinant L-34 35 TGF β 1 and/or Plg significantly enhances metastatic activities in a $\alpha\nu\beta$ 6-dependent manner. β6-overexpressing cells treated with L-TGFβ1 and/or Plg were significantly more 36 37 proliferative, invasive and maintained higher ERK1/2 signalling activity compared to untreated control cells. In contrast, stable anti-sense suppression of $\beta 6$ by ~80% did not 38 reduce the β 6-dependent increases in ERK1/2 signalling activity observed when treated with 39 L-TGF^{β1} and/or Plg, indicating that residual ^{β6} could compensate for the activation. This 40 study provides evidence of a "switching" from SMAD to ERK signalling following Plg 41 treatment, promoting the metastatic phenotype. 42

43 KEYWORDS: β6 integrin; colorectal cancer; epithelial-mesenchymal transition;
44 metastasis; latent transforming growth factor-β and plasminogen activation.

45 Abbreviations

46 BME; basement membrane extract. BSA; bovine serum albumin. ECM; extracellular matrix. EDTA; Ethylenediaminetetraacetic acid. EGF; epidermal growth factor. EMT; 47 48 epithelial-mesenchymal transition. ERK1/2; Extracellular signal-regulated kinase 1/2. FBS; foetal bovine serum. HRP; horse radish peroxidase. L-TGFβ1; latent transforming growth 49 factor-β1. MAPK; mitogen-activated protein kinase. MMP; matrix metalloprotease. PA; 50 Plasminogen activation (cascade). Plg; plasminogen. PBS; phosphate buffered saline. 51 52 PVDF; Polyvinylidene fluoride. RPMI; Roswell Park Memorial Institute. SF; serum-free (media). TBS; tris-buffered saline. TGF- β ; transforming growth factor- β . VEGR; vascular 53 endothelial growth factor. uPA; urokinase-type plasminogen activator. uPAR; urokinase-54 type plasminogen activator receptor. 55

56 **1. INTRODUCTION**

57 The $\beta 6$ integrin subunit of the $\alpha \nu \beta 6$ integrin heterodimer ($\beta 6$) has long been implicated as a marker of metastatic progression in colorectal cancer (CRC). Several studies 58 link β 6 expression with progression towards a more aggressive, invasive and/or metastatic 59 phenotype.^[1-6] The $\alpha\nu\beta6$ integrin is a member of a family of heterodimeric cell-surface 60 receptors composed of one of eighteen (18) α - and eight (8) β -subunits^[2] which collectively 61 mediate cellular adhesion to ECM substrates.^[1, 7] Each α/β heterodimer combination confers 62 a particular binding specificity and signalling properties.^[8] The β 6 subunit, when bound to 63 its sole binding partner αv , is an epithelial cell-restricted antigen whose expression is 64

elevated during tissue remodelling events (e.g., wound healing, fibrosis) and in epithelial cancers during EMT, where it is almost invariably localized to the invasive fronts and infiltrating edges of tumour islands.^[1, 5, 9] Recent immunohistochemistry studies have demonstrated that elevated $\beta 6$ expression negatively correlates with CRC patient survival^[6], ascribing this to be mediated through $\beta 6$'s roles promoting cell proliferation, migration and invasion into proximal tissues and eventual metastasis.^[1, 2, 6, 10, 11]

71 A recent membrane-enriched proteomic study by our group identified that deliberate 72 β6 neo-expression into a non-expressing cell line induced a significant change in the expression of 708 proteins, including 54 potential cancer biomarkers flagged by the 73 74 American Society of Clinical Oncology for clinical applications (e.g., diagnosis, prognosis, progression and response to therapy).^[12] We determined that 134 proteins were observed 75 solely in either the β 6-transfected or mock subclone, potentially indicating a biosignature of 76 proteins expressed/repressed in response to β6 expression.^[12] Ingenuity Pathway Analysis[©] 77 of the proteomic datasets revealed that the protein networks and functions most strongly 78 79 affected by $\beta 6$ expression were fundamentally involved in cancer metastasis. These functions included; (i) cell death, (ii) cellular movement, (iii) cancer phenotype, (iv) cell 80 cycle, and (v) cellular growth/proliferation.^[12] Based on the expression of signalling pathway 81 members, the integrin-linked kinase and Ran signalling pathways were identified as being 82 significantly different between the SW480^{Mock} and SW480^{β 60E} colorectal cancer cell lines 83 as well as individual proteins found in the MAPK and Wnt/β-catenin signalling pathways.^[12] 84 Interestingly, expression of all other integrin subunits (with the exception of $\beta 6$'s binding 85 partner αv) decreased (i.e., $\alpha 2$, $\alpha 6$, $\beta 4$ and $\beta 5 \psi$ significantly) indicating the potential 86 87 existence of a subunit hierarchy. Migration and proliferation studies recapitulated previous findings demonstrating that $\beta 6$ integrin expression significantly increased proliferation of 88 SW480 cells.^[12] These cells were observed to adopt a gross cellular morphology more 89 similar to mesenchymal cells (i.e., flattened, elongated, pointed and spindly) when compared 90 with the more classical rounded, cobble-stoned appearance of mock transfectants.^[12] SW480 91 cells expressing $\beta 6$ were significantly more capable of invasively migrating through an 92 93 ECM-coated polycarbonate membrane, analogous to the epithelial tissue basement membrane.^[12] Together, these findings strongly suggest that EMT is promoted by expression 94 of the β6 integrin. This process is suspected to be driven through interaction/s between the 95 $\alpha\nu\beta6$ integrin, uPAR and TGF- $\beta1$. This interaction axis may function to sequester key 96

97 metastasis-related proteins to the infiltrating edge of tumour islands, thereby concentrating
98 immediate and downstream signalling/proteolytic activity to the invasive front of a CRC
99 tumour.

100 The $\alpha\nu\beta6$ integrin anchors the latent TGF- $\beta1$ complex (LTGF- $\beta1$) to the extracellular matrix (ECM), where it provides the necessary traction force to liberate TGFB1 from its 101 zymogen complex.^[13] Once released, active TGF-β1 can promote cellular migration and 102 metastatic transformation in late-stage CRC.^[6, 13, 14] Active TGF-B1 promotes 103 phosphorylation and translocation of the SMAD2/3 signalling complex, which induces 104 target genes involved in cell migration and proliferation, including the *de novo* expression 105 of $\alpha\nu\beta6$.^[15, 16] In parallel to activation by integrins, L-TGF $\beta1$ can also be activated through 106 the PA cascade where uPAR binds urokinase-type Plg activator (uPA) which cleaves Plg 107 into active plasmin which subsequently can cleave and activate L-TGF^{β1} by proteolysis.^[17] 108 Saldanha et *al.* demonstrated that $\alpha v\beta 6$ co-immunoprecipitates with uPAR whilst others 109 have shown that $\alpha\nu\beta6$ co-regulates proliferation through direct interactions with the MAPK 110 signalling pathway^[18] (specifically pERK2). β6 expression promotes the activation of PA 111 and matrix metalloprotease (MMP) cascades through uPA and MMP family members, 112 MMP-2, MMP-3 and MMP-9.^[14, 19] Interestingly, MMP-3 and MMP-9 activation was 113 enhanced following treatment with TGF-B1, indicating even further cross-reactivity within 114 this novel interactome.^[19] We suggest that $\alpha\nu\beta6$ expression forms a structural foundation 115 allowing formation of a pericellular interactome, effectively concentrating TGF-B1 and PA 116 117 cascade activity to the cell surface. To test whether this interactome was present and capable of promoting metastatic activities in $\alpha\nu\beta6$ -expressing cells, we introduced relatively low 118 pathophysiological concentrations (10ng/mL) of LTGF-B1 and/or Plg compared to the 119 normal levels in human plasma (LTGF-β 136ng/mL^[20]; Plg 200ng/mL^[21]). These 120 concentrations were chosen to highlight the potency of the novel interactome and its ability 121 to transform relatively small concentrations of abundant zymogens in plasma into 122 significantly enhanced metastatic activity. This project aimed to determine whether 123 expression of the β6 integrin subunit enhances the ability of CRC cells to activate/implement 124 125 recombinant zymogens as part the novel uPAR/avβ6/TGF-β1 interactome in cellulo resulting in phenotypic changes crucial for metastatic progression. 126

127 2. Methods and Materials

107

128 2.1 Antibodies and reagents

This study used the commercially available ERK1/2, SMAD2 and Akt1/2/3 129 AlphaScreen® SureFire® assay kits (TGR Biosciences, Cat. No.'s TGRES500, 130 TGRSM2S500 and TGRA4S500) to detect relative ERK1/2, SMAD2 and Akt1/2/3 131 phosphorylation respectively. All kits contained a biotinylated antibody that recognises the 132 active phosphorylated epitope (e.g. pERK1/2, phospho-Thr202/Tyr204) and a non-133 biotinvlated antibody that recognises a distal epitope. An anti β-actin monoclonal mouse 134 antibody was purchased from Sigma Aldrich (Cat. No. A3854) and HRP-conjugated in-135 house for loading controls.^[12] A monoclonal rabbit anti-human uPAR antibody was 136 137 purchased from American Diagnostica (Cat. No. 3932). The inhibitors of TGFβ signalling (SB-431542; Cat. No. S4317-5MG) and plasmin (aprotinin; Cat. No. A3428) were 138 purchased from Sigma Aldrich Australia. 139

140 **2.2** Cell lines

Two Duke's stage B epithelial CRC cell lines were employed throughout this project. 141 SW480 cells which lack endogenous β6 expression were initially established by Leibovitz 142 et *al*.^[22] These cells were stably transfected with a vector containing either the full-length $\beta 6$ 143 subunit coding sequence (i.e., SW480^{β 60E}) or an 'empty' vector (i.e., SW480^{Mock}) as 144 previously described.^[3] HT29 cells endogenously express the $\beta 6$ integrin^[4] and have been 145 146 stably transfected with a vector containing either the $\beta 6$ cDNA sequence in an antisense orientation (HT29^{β6AS}) or with an 'empty' vector (HT29^{Mock}) as previously described.^[4] β6 147 expression in HT29^{β 6AS} was found to be reduced by ~80% using flow cytometry.^[4] Each cell 148 line has been determined as "invasive" using Matrigel invasion assays^[23] and has been 149 previously found to express both uPAR and transforming growth factor- β 1 receptor 1/2 150 (TGFβR1/2).^[12, 24] All cell lines tested negative for *Mycoplasma* infection using the PCR-151 based VenorGeM Mycoplasma Detection Kit (Minerva Biolabs).^[12] SW480^{Mock} and 152 SW480^{β6OE} cells were cultured in Dulbecco's Modified Eagle Medium (DMEM; Invitrogen) 153 supplemented with 10% foetal bovine serum (FBS) and 500µg/mL geneticin (G418 sulphate. 154 Life Technologies). HT29^{Mock} and HT29^{β6AS} subclone cells were cultured in Roswell Park 155 Memorial Institute medium (RPMI; Invitrogen) supplemented with 10% FBS and 2.5µg/mL 156 puromycin (Life Technologies). Both cell lines were incubated at 37°C in 5% CO₂. Serum-157 free (SF) media represents 0% FBS but contains selective reagents for respective cell lines. 158

159 **2.3 Recombinant protein treatment protocol**

160 Recombinant, carrier-free, human L-TGF^β1 and Plg were purchased from R & D Systems. Standardised recombinant protein treatments were employed for each assay. 161 162 Freshly passaged CRC subclones were seeded and incubated in serum-containing media for 163 24hr. Cells were washed in 1x phosphate-buffered saline (PBS) and incubated in SF media 164 for 24hrs prior to treatment with recombinant proteins followed by incubation for the time period required for each assay. Four treatment conditions were employed in this study: 1) 165 166 SF media as a negative control; 2) SF media + 10ng/mL L-TGFB1; 3) SF media + 10ng/mL recombinant Plg; and 4) SF media + 10ng/mL L-TGF β 1 + 10ng/mL Plg. All comparisons 167 168 were performed against untreated mock controls and are presented as a percentage of the untreated mock transfectant control. All treatments were performed in biological triplicate 169 and experiments were independently repeated at least two times. Statistical testing for 170 significance was performed using a Student's T-test with a significance cut-off of p<0.05. 171

172 **2.4 Proliferation assay**

Either 1×10^5 (SW480) or 5×10^4 (HT29) cells were seeded into each well of a six-173 well plate and prepared for recombinant protein treatment as outlined above. The cells were 174 175 incubated in the presence of recombinant proteins for either 24hrs or 48hrswithout replacement of the media. Cells were gently detached by trypsinization, mixed (1:1) with 176 0.4% Trypan Blue and the live cells enumerated using a BioRad TC-10TM automated cell 177 178 counter. It should be noted that the trypan blue exclusion measures the steady state balance between cell viability and proliferation does not measure cell death. Proliferation rate and 179 doubling time calculation methods are outlined in Supplementary Information. The 180 proliferation assay was then repeated and SW480 cell lines treated for 24hrs with specific 181 182 inhibitors of TGF_β (SB-431542) and/or plasmin (aprotinin) activity to a final concentration of 10µM and 0.3µM respectively. 183

184 **2.5 Morphology assay by confocal microscopy**

185 Freshly passaged SW480 cells were seeded into each well of a Lab-Tek Chambered 186 coverglass plate (Thermo Fisher) and prepared for recombinant protein treatment as outlined 187 above. After 24hr incubation in the presence of L-TGF β 1 and/or Plg, cells were washed with 188 1x PBS and fixed with 2% paraformaldehyde in PBS for 10min at room temperature. Cells 189 were permeablised with 0.1% Triton X-100 in PBS for 5min before blocking in 1% BSA for

109

190 20min at room temperature. Fixed cells were stained with a 20nM Alexa phalloidin solution 191 for 20min at room temperature and washed in PBS. Nuclei were counterstained with Hoechst solution (2µg/mL) and washed again with PBS. Confocal microscopy was performed using 192 193 an Olympus Fluoview 300 Confocal Laser Scanning system equipped with an inverted microscope (IX70, Olympus Tokyo). 194

195 2.6 Wound-healing assays

Freshlv passaged SW480^{Mock} or SW480^{β6OE} cells were seeded into a six-well plate 196 and incubated in serum media for 24hr as part of the recombinant treatment protocol. After 197 a 24hr incubation in SF media, a confluent monolayer had formed and each well was 198 horizontally scraped with a 10μ L pipette tip (diameter 0.35mm) to create a scratch and gently 199 washed with PBS to remove any suspended cells. PBS was aspirated and replaced with SF 200 media containing the respective zymogen. Cells were incubated in the presence of the 201 recombinant proteins for 24hr and the 'wounds' imaged using 10x objective of a Leica DM-202 203 IL microscope with a Leica DFC280 digital imager. Three images were taken at random along the scratch in each well. Four scratch width measurements were taken at pre-set quarter 204 marks 205 for each image using the ImageJ analysis program (http://rsbweb.nih.gov/ij/index.html). Scratch measurements were taken from the leading 206 cell edge only and cells that had formed islands within the scratch were excluded. Because 207 208 of high variability due to differences in cell shape, the median scratch width measurement was taken for each image and used for statistical analysis as it is less susceptible to outliers. 209

210

2.7 Migration and Matrigel invasion assays

Migration and invasion assays were performed using 6.5mm diameter Transwell® 211 permeable support inserts (8.0µm; 1x10⁵ pores/cm²; Corning). The Transwell inserts were 212 coated with 100µL of 12-18mg/mL Matrigel basement membrane extract (BME; Cultrex® 213 Basement Membrane Extract) for the invasion assay as per manufacturer's instructions. 214 Migration assay inserts were not coated with BME. Freshly passaged SW480 subclones were 215 cultured in serum containing media for 24hr. At ~75% confluence, cells were serum deprived 216 in SF media for 24hr. Cells were then non-enzymatically detached using 1mM EDTA in 217 PBS and 1×10^5 cells were inoculated into the upper chamber of inserts in SF media. L-218 TGFB1 and/or Plg was introduced into the upper chamber to a final concentration of 219 220 10ng/mL, which was then placed into the lower chamber containing 1% FBS serum-media

and incubated for 16hr at 37°C. Following incubation, non-migratory cells were gently scraped away from inside the upper insert chamber with a cotton swab and the insert washed with PBS before fixing with 2% paraformaldehyde for 2min. Excess paraformaldehyde was washed away and cells were stained with 0.2% (w/v) crystal violet in 2% ethanol for 10min at room temperature. Excess stain was washed away before viewing under an inverted light microscope. Five random visual fields were obtained with a 40x objective and the cells that were migrating through the polycarbonate membrane enumerated.

228 2.8 Western blotting

229 Freshly passaged SW480 and HT29 subclones were lysed in the presence of the cOmplete Mini EDTA-free protease inhibitor cocktail (Roche) and phosphatase inhibitor 230 cocktail 2 (Sigma-Aldrich). Crude cell lysates were sheared by six passes through a 27G 231 needle and heated to 70°C for 10min before 1D SDS-PAGE separation on a 4-12% NuPAGE 232 gel (Invitrogen) at 200V for 1hr. Resolved proteins were then electrophoretically transferred 233 to a PVDF membrane (Invitrogen). Non-specific binding was blocked with Tris-buffered 234 saline (TBS) containing 3% (w/v) BSA and 0.5% (v/v) Tween-20 (4°C, 1hr) prior to primary 235 236 antibody probing (4°C, overnight). The membrane was washed with TBS with 0.5% (v/v) Tween-20 and incubated in horseradish peroxidase-conjugated goat or rabbit secondary 237 antibodies (room temperature, 1hr), followed by chemiluminescence detection (SuperSignal 238 239 West Femto Maximum Sensitivity Substrate, Thermo) and image acquisition (LAS 3000, FUJI). MagicMarkTM and Novex Pre-stained (Invitrogen) Western blotting protein standards 240 241 were used to estimate molecular weight. Signal intensity was quantified using ImageJ. Western blots were performed in technical triplicate. 242

243 2.9 AlphaScreen® SureFire® assays

Freshly passaged SW480 cells were seeded into each well of a 96-well plate and 244 cultured using the recombinant protein treatment protocol described above. After 24hr 245 incubation in the presence of L-TGFB1 and/or Plg, SW480 and HT29 subclones were 246 incubated in serum media for either 10 or 30mins immediately prior to cell lysis in the 247 presence of protease and phosphatase inhibitor cocktails. AlphaScreen® SureFire® assays 248 (TGR Biosciences, Australia) were performed according to the manufacturer's instructions 249 in biological triplicate with technical quadruplicates taken from each sample well.^[25] 250 ERK1/2, SMAD2 and Akt1/2/3 SureFire® assays were performed on the same cell lysate 251

111

samples to provide relative signalling changes with treatment. Cell lysate that was either
negative or positive for ERK1/2, SMAD2 or Akt1/2/3 activity was provided as controls. The
phosphorylated epitopes measured in these assays are phospho (p)-Thr202/Tyr204 for
ERK1/2, p-Ser465/467 for SMAD2 and p-Ser473 for AKT1/2/3.

256 **3. RESULTS**

This project determined that treatment of $\alpha\nu\beta6$ -expressing CRC cells with L-TGF $\beta1$ and/or Plg induced or significantly promoted multiple phenotypic changes that are associated with the metastatic progression of an early colorectal cancer. Overall, these results support the formation of a pro-metastatic signalling "switch" involving both L-TGF $\beta1$ and Plg that is supported through elevated expression of the epithelial-restricted integrin $\alpha\nu\beta6$.

3.1 β6 expression facilitates increased proliferation when treated with L-TGFβ1 and/or Plg

Our previous study demonstrated that $\beta 6$ overexpression enhances CRC cell proliferation under standard cell culture conditions.^[12] This project employed similar assays to now determine whether introducing zymogen members of the uPAR/ $\alpha v\beta 6$ /TGF $\beta 1$ interactome into these cultures induced a $\beta 6$ -dependent increase in cell proliferation, firstly within the SW480^{Mock} and SW480^{$\beta 6OE$} cell lines (Figure 1).

Interestingly, the SF media control had an anti-proliferative effect on SW480^{β 60E}, 269 resulting in a 36% longer doubling time at 24hrs relative to SW480^{Mock}. However, L-TGF^β1 270 and/or Plg treatment significantly promoted SW480^{β6OE} proliferation by up to 65% relative 271 to the untreated SW480^{Mock} control. L-TGFβ1 and/or Plg treatment decreased cell doubling 272 times by 19% (LTGFβ1), 24% (Plg) and 35% (L-TGFβ1 + Plg) respectively, increasing the 273 live SW480^{β6OE} cell count relative to SW480^{Mock}. After 48hr, the effect of these zymogens 274 on SW480^{β 60E} proliferation was sustained though less pronounced as a 7% (L-TGF β 1), 10% 275 (Plg) and 20% (L-TGF β 1 + Plg) reduction in doubling time relative to SW480^{Mock}. 276 Comparing treatments within the SW480^{β6OE} cell line only, each zymogen treatment 277 significantly increased proliferation compared to SF control. No significant difference in 278 proliferation was observed between any zymogen protein treatment in SW480^{Mock} cells at 279 either the 24 or 48hr incubation, indicating that $\beta 6$ is required for the elevated proliferation. 280 Interestingly, zymogen treatment of SW480^{β 60E} cells yields nearly the same number of live 281 cells as the SW480^{Mock} line in serum media (data not shown), suggesting that the presence 282

of these zymogens at 10ng/mL matches serum media conditions in the absence of β 6. SW480 cell viability remained at 95.8% even after 72hr in SF media. Similar studies have shown that similar sustained resistance to nutrient deprivation may correspond with increased tumour aggressiveness^[26], suggesting that SW480 cells are immediately pre-metastatic and are a suitable models for early stages of metastasis.

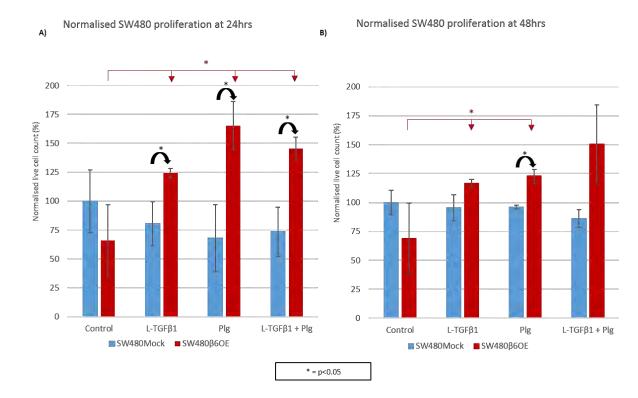


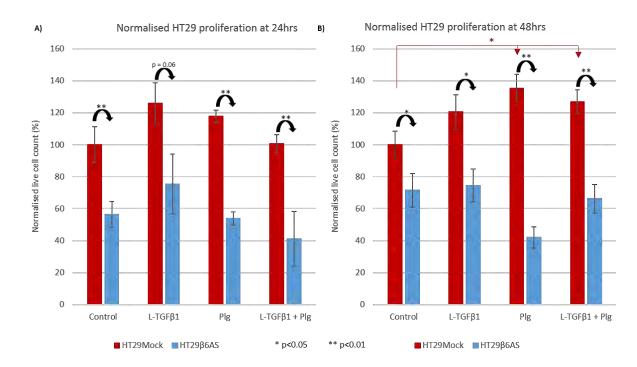
Figure 1. Proliferation of SW480 subclones after 24-48hrs normalised to untreated
 SW480^{Mock} controls. A) Live cell counts between SW480 subclones after 24hr incubation.
 B) Live cell counts between SW480 subclones after 48hr. Error bars display one standard
 deviation and doubling times are listed in Supplementary Table 1.

288

To determine whether these significant increases in proliferation were the direct result of zymogen treatment, we repeated the proliferation assay implementing specific inhibitors of TGFβ1 and plasmin activity (Figure 2).

Again, the SF media exerted an inhibitory effect on SW480^{β 60E} proliferation. Inhibitor treatment reduced SW480 subclone proliferation regardless of β 6 expression, indicating that TGF β 1 and plasmin activity is necessary to maintain basal SW480 cell replication. When treated with one or both inhibitors, SW480^{β 60E} proliferation was significantly reduced compared to the SW480^{Mock} cell line for each treatment except Plg +

aprotinin. This suggests that the growth-promoting effects of zymogen treatment observed 301 in Figure 1 can be ablated when TGF- β 1 and plasmin activity is inhibited. Interestingly, 302 Figure 2 also suggests that without TGF- β 1 and plasmin activity, SW480^{β 60E} cells are no 303 longer significantly more proliferative than SW480^{Mock [12]} and instead become significantly 304 less proliferative than the SW480^{Mock} control. Taken together, this data suggests that the 305 growth-promoting effects of $\beta 6$ expression are conveyed through increased zymogen 306 activation and that without TGF-B1 and plasmin activity, B6 expression exerts an anti-307 proliferative effect on the SW480 cell under normal tissue culture conditions. 308



309

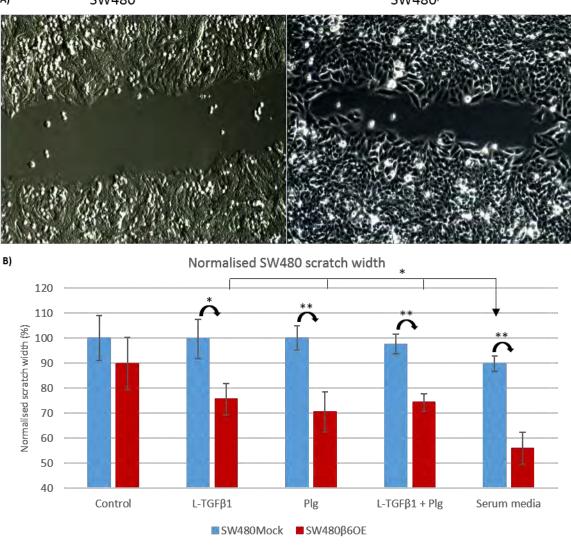
Figure 2. Proliferation of SW480 subclones after incubation with zymogens and/or
 inhibitors for 24hrs, normalised to untreated SW480^{Mock} controls. Error bars display one
 standard deviation.

In order to determine whether these effects could be reversed in a $\beta 6$ antisense cell model, we repeated the experiment using HT29 cell line subclones (Figure 3).

Antisense ß6 suppression in HT29 cells significantly lowers proliferation for nearly 315 all zymogen treatments between subclones and noticeably increases HT29^{β6AS} doubling 316 times. Similar to the SW480^{β 60E} data, β 6 expression in HT29^{Mock} cells significantly 317 increased proliferation when treated for 48hr with either Plg or L-TGF^{β1} with Plg relative 318 to the control. This was not reflected in the HT29^{β 6AS} cell line. Similar to SW480 cells, the 319 pro-proliferative effect of zymogen/s treatment on HT29 cell proliferation diminished after 320 24hr and doubling times increased as HT29 cells became less viable in SF media. Whilst 321 73% of HT29^{Mock} cells were viable after 72hr in SF media, only 33% of HT29^{β 6AS} cells were 322 able to exclude Trypan Blue. As $\beta 6$ overexpression in SW480^{$\beta 6OE$} significantly decreased 323 tumour cell death and apoptosis $^{[12]}$, conversely $\beta 6$ suppression may result in the absence of 324 anti-apoptotic protein networks in $HT29^{\beta 6AS}$. 325

326

Figure 3. Proliferation assay for HT29 subclones after 24 or 48hrs, normalised to untreated HT29^{Mock} controls. A) Live cell counts between HT29 subclones after 24hr incubation. B) Live cell counts between HT29 subclones after 48hr incubation. Error bars display one standard deviation and doubling times are listed in Supplementary Table 2.


These results confirm that β 6 expression positively correlates with proliferation in both CRC models, and that L-TGF β 1 and/or Plg treatment significantly enhances proliferation further in cells which express β 6 while inhibiting or exerting no effect in the absence/suppression of β 6.

335 3.2 β6 expression enables increased wound healing, migration and invasion in the 336 presence of L-TGFβ1 and/or Plg

As $\beta 6$ overexpression increases invasion ^[12], a preliminary 'wound' healing assay was performed to determine whether L-TGF $\beta 1$ and/or Plg treatment increased SW480 cell migration into the freshly-created 'wound' space. $\beta 6$ expression enhanced SW480 cell migration across residual tissue culture surface after scratching, filling in the empty 'wound' (Figure 4).

All SW480^{Mock} 'wound' widths remained equal to those of negative controls, 342 irrespective of zymogen treatment, and even 10% FBS containing media did not significantly 343 reduce the width of 'wounds'. In contrast, the presence of either zymogen increased 344 infiltrative migration of SW480^{β 60E} cells, significantly reducing scratch width over 24hr. 345 Furthermore, zymogen treatment of SW480^{β 60E} cells significantly reduced the scratch width 346 relative to SW480^{Mock} cells in serum media, suggesting that zymogen treatment at 10ng/mL 347 was able to surpass that of the growth factors present in 10% FBS. To confirm that this was 348 349 due increased cell migration and not simply proliferation, further cell migration and invasion assays were performed using Transwell permeable supports (Figure 5). 350

Cell migration and invasion studies supported the previous findings of the 'wound' 351 healing assay, demonstrating that $SW480^{\beta 6OE}$ cells were significantly more invasive 352 compared to SW480^{Mock} cells under each treatment condition. SW480^{β 60E} cells in the 353 presence of L-TGF^β1 and/or Plg migrated faster through uncoated 8µm pores. In the BME-354 coated invasion model, treatment with either Plg or L-TGFB1 with Plg significantly 355 increased SW480^{β6OE} ECM degradation and invasive migration. These changes were not 356 observed with SW480^{Mock} cells, where few cells were observed. As expected, the BME 357 358 barrier did reduce the numbers of cells that successfully crossed through the pore. The subphysiological treatment with 10ng/ml Plg with or without L-TGFβ1 significantly promoted 359 invasion across the BME-coated insert by 3-4 fold. This suggests that greater proteolytic 360 activation is occurring on the SW480^{β 60E} cell surface compared to the SW480^{Mock} cell line, 361 despite Western blotting evidence demonstrating that uPAR expression remains unchanged 362 across these two subclones (Supplementary Figure 1). Collectively, treatment of β 6-363 overexpressing CRC cells with L-TGF^β1 and/or Plg significantly enhances their capacity to 364 degrade an ECM analogue and migrate from nutrient-poor SF conditions towards 365 chemotactic factors. 366

367

Figure 4. β 6 expression significantly increases SW480 cell migration across 'wounds' when treated with L-TGF β 1 and/or Plg, normalised to untreated SW480^{Mock} controls. Error bars are set to standard error for each triplicate. A) Representative inverted light microscope image of 'wounds' after 24hr in serum containing media at 10x magnification. B) Normalised 'wound' width measurements in response to recombinant zymogen treatment.

* p<0.05

** p<0.01

SW480^{β60E}

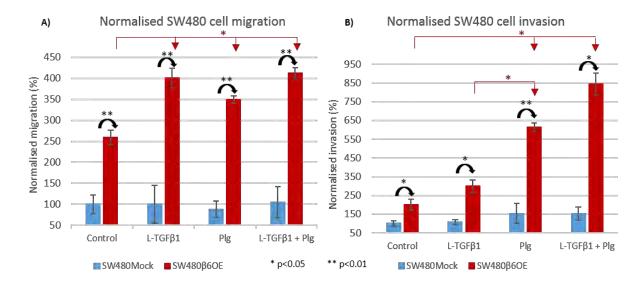
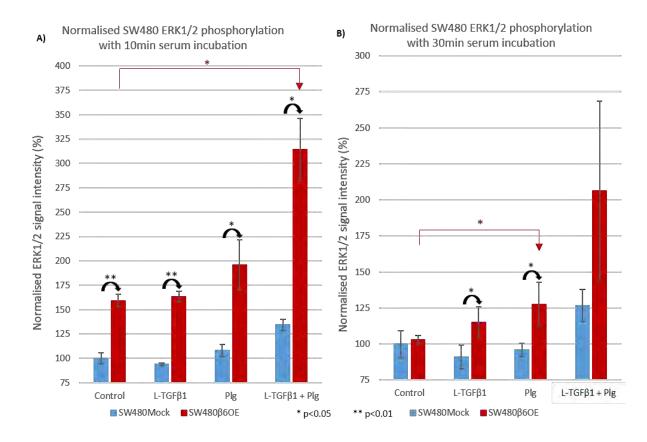


Figure 5. β6 integrin expression in SW480^{β6OE} cells significantly increases both A) chemotactic migration through the pore and B) invasive migration through the pore with an additional BME barrier. Data is normalised to untreated SW480^{Mock} controls. Migration and invasion was significantly increased further with recombinant zymogen protein treatment. Error bars display one standard deviation.


380

374

381 **3.3 Recombinant protein treatment does not alter cell morphology**

Confocal microscopy revealed no distinct differences in cell morphology or 382 383 cytoskeletal organisation between SW480 cell lines for each respective treatment (data not shown). As a result of the treatment procedure, both subclones exhibited highly irregular, 384 385 flattened, elongated and spindly morphologies similar to mesenchymal cells with irregular actin staining. The lack of a distinct cytoskeleton may be indicative of 386 large scale cytoskeletal disruption or reorganisation of the normal support scaffold as 387 suggested by previous proteomic analysis.^[12] This may provide a greater flexibility to 388 accommodate chemotactic migration, though this is more likely a pre-malignant migratory 389 response to serum starvation and not a specific result of $\beta 6$ expression. 390

391

392

Figure 6. Normalised effect of L-TGFβ1 and/or Plg treatment on SW480 ERK1/2
signalling activity after a 10min or 30min incubation in serum media prior to lysis. A)
ERK1/2 phosphorylation of SW480 cell lines in response to recombinant protein treatments
after a 10min incubation in serum media. B) ERK1/2 phosphorylation of SW480 cell lines
in response to recombinant protein treatments after a 30min incubation in serum media. Error
bars display one standard deviation.

3.4 β6 expression increases basal ERK1/2 and SMAD2 signalling activity which is amplified further when stimulated with L-TGFβ1 and/or Plg

As $\beta 6$ expression positively correlates with MAPK activity^[4], we aimed to determine 401 402 whether recombinant L-TGFB1 and/or Plg treatment enhanced MAPK signalling. 403 Preliminary Western blots were first performed to assess any relative change in ERK1/2 phosphorylation under normal cell culture conditions and as a result of the serum starvation 404 405 procedure (Supplementary Figure 2). We identified differences in ERK1/2 phosphorylation between cell lines whilst total ERK1/2 expression remained unchanged. Cell lines 406 expressing ß6 demonstrated increased endogenous ERK2 phosphorylation (end product of 407 the pro-proliferative MAPK pathway and ligand for $\alpha\nu\beta6$).^[4] Although Western blots 408

119

indicated significant differences in ERK1/2 phosphorylation as a result of β 6 expression, they were often not sensitive enough to distinguish subtle differences between subclones or technical variation between gels. Given the number of samples and treatment conditions, we employed the AlphaScreen® SureFire® assay platform to uniformly and simultaneously assess the effect of recombinant protein treatments on ERK1/2 phosphorylation. Firstly, we interrogated the effects of zymogen treatment on ERK1/2 signalling within the SW480 subclones (Figure 6).

The SW480^{β 60E} cell line exhibited a significantly higher surge in ERK1/2 416 phosphorylation compared to SW480^{Mock} after serum media was reintroduced for 10mins 417 418 post-treatment. After 30mins, this difference between cell lines was less pronounced however SW480^{β6OE} ERK1/2 phosphorylation remained significantly higher for the L-419 TGF β 1 and Plg treatments. This suggested that these zymogens sustained elevated ERK1/2 420 phosphorylation after the initial surge that was not observed in the SF control. Due to one 421 low outlier, the difference between cell lines for the L-TGF β 1 + Plg treatment with a 30min 422 serum media incubation was insignificant despite the mean intensity being 80% higher in 423 the SW480^{β 60E} cell line. Within the SW480^{β 60E} cell line there was a general trend towards 424 increased ERK1/2 phosphorylation for each recombinant protein treatment relative to the 425 control. These differences are weakly reflected in SW480^{Mock}, where ERK1/2 activity varied 426 little relative to the control. ERK1/2 phosphorylation was significantly higher for both cell 427 lines when treated with both L-TGF^β1 and Plg prior to serum media incubation relative to 428 the SF control. The combined treatment increased ERK1/2 phosphorylation in the SW480 429 cell, however $\beta 6$ expression significantly increased this difference further. ERK1/2 activity 430 was significantly higher in the SW480^{β 60E} cell line in response to treatment with Plg after a 431 30min incubation period relative to the control. These data suggest that $\beta 6$ expression 432 significantly enhances and possibly prolongs ERK1/2 phosphorylation in SW480 cells after 433 serum starvation and that zymogen treatment can also significantly increase ERK activity 434 435 relative to the SF control.

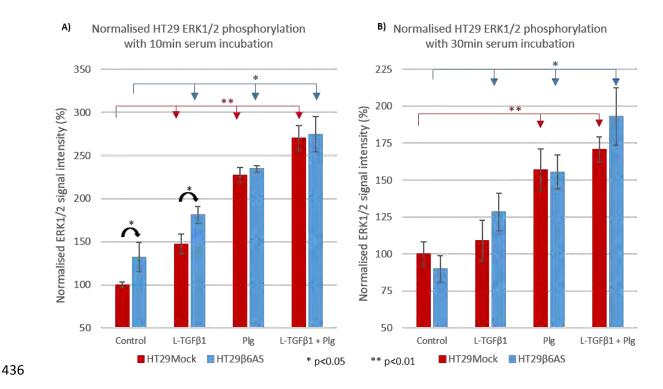


Figure 7. Normalised effect of L-TGFβ1 and/or Plg treatment on HT29 ERK1/2
signalling activity after a 10min or 30min incubation in serum media prior to lysis. A)
ERK1/2 phosphorylation of HT29 cell lines in response to recombinant protein treatments
after a 10min incubation in serum media. B) ERK1/2 phosphorylation of HT29 cell lines in
response to recombinant protein treatments after a 30min incubation in serum media. Error
bars display one standard deviation.

443 To determine whether the converse effect held true in the $\beta6$ antisense cell model, 444 we examined the HT29 subclone datasets for similar differences (Figure 7).

SureFire® assay data for both cell lines suggested that $\beta 6$ expression (even if reduced 445 by antisense mutation) significantly enhanced ERK1/2 phosphorylation when treated with 446 recombinant L-TGFB1 and/or Plg. Given the cross-reactivity of the uPAR/avB6/TGF-B 447 448 interactome, we expanded our study to investigate whether $\beta 6$ expression altered SMAD2 and Akt1/2/3 signalling activity. When we performed SMAD2 and Akt1/2/3 SureFire® 449 450 assays on the same lysate samples, we observed that basal SMAD2 and Akt1/2/3 phosphorylation was lower than that of the HEK293 cell line that is commonly used as a 451 452 standard and as such, interpreted the data conservatively. We firstly assessed SMAD2 phosphorylation to identify differences in TGFβ-dependent signal transduction in response 453 454 to treatment (Figure 8).

The SMAD2 SureFire® assay determined that SMAD2 signalling was significantly 455 higher in the SW480^{β 60E} cell line relative to SW480^{Mock} for each treatment after a 10min 456 incubation in serum media or after a 30min serum media incubation following Plg or L-457 458 TGF β 1 + Plg treatments. Despite the increased basal SMAD2 activity that accompanied β 6 expression, when we compared activity between treatments within the SW480^{β 60E} cell line, 459 we observed that each zymogen treatment had an inhibitory effect on SMAD2 activity. 460 Contrary to expectations, L-TGF^{β1} treatment reduced SMAD2 phosphorylation by 3% 461 relative to the untreated control. Interestingly SMAD2 phosphorylation was further ablated 462 by treatment with Plg, reducing SMAD2 phosphorylation by 13% (Plg) or 17% (L-TGF^β1 463 + Plg) relative to the untreated SW480^{β 60E} control. Combined with the ERK1/2 data, this 464 suggests that although TGFB signalling activity is intrinsically higher in the B6 expressing 465 466 cell line, exposure to recombinant L-TGF^β1 and/or Plg switches signalling activity from SMAD2-dominant to MAPK-dominant signalling. SMAD2 phosphorylation in the HT29 467 subclones was below the limit of detection for this assay. This may suggest that HT29 cell 468 lines preferentially signal through the ERK1/2 pathway, as overall ERK1/2 activity was 469 470 much higher than that observed in the SW480 cell lines.

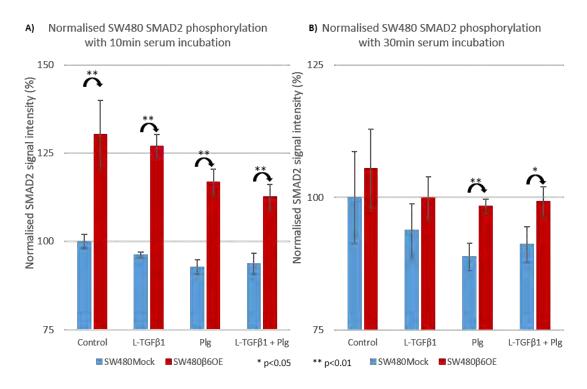
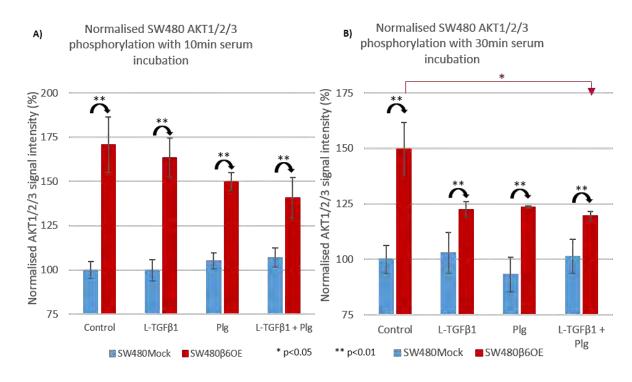



Figure 8. Normalised effect of L-TGFβ1 and/or Plg treatment on SMAD2 signalling
activity of SW480 subclones after an A) 10min or B) 30min incubation in serum media prior
to lysis. Error bars display one standard deviation.

We assessed the same samples once more for relative Akt1/2/3 phosphorylation differences in response to zymogen treatment (Figure 9).

Similar to SMAD2 phosphorylation, the Akt1/2/3 SureFire® assay determined that 477 Akt1/2/3 signalling was significantly higher in the SW480^{β 60E} cell line for every treatment 478 after both a 10min and 30min incubation in serum media prior to lysis. This strongly suggests 479 480 that SW480 cells exhibit significantly elevated and sustained Akt1/2/3 signalling activity when the $\beta 6$ subunit is expressed as it was not reflected in SW480^{Mock}. Within the 481 SW480^{β 60E} cell line we observed that treatment with both zymogens significantly reduced 482 Akt1/2/3 phosphorylation after a 30min incubation in serum media relative to the untreated 483 484 control. This indicated another potential signalling switch from Akt1/2/3 to ERK1/2 signalling when treated with both zymogens. Once again, Akt1/2/3 phosphorylation in the 485 HT29 subclones was below the limit of detection for this assay, suggesting that ERK1/2 486 signalling is dominant in these cell lines. 487

488

Figure 9. Normalised effect of L-TGFβ1 and/or Plg treatment on Akt1/2/3 signalling
activity of SW480 subclones after an A) 10min or B) 30min incubation in serum media prior
to lysis. Error bars display one standard deviation.

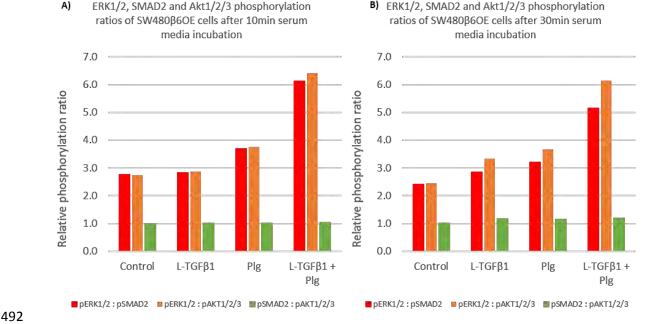


Figure 10. Ratios of ERK1/2-to-SMAD2, ERK1/2-to-Akt1/2/3 and SMAD2-to-Akt1/2/3 signalling activity in the SW480^{β 60E} cell line following treatment and incubation in serum media for A) 10mins or B) 30mins prior to lysis.

Taking the mean intensity data obtained from each of the SureFire® assays, we then
compared these values as ratios of signalling activities following zymogen treatment (Figure
10).

499 SureFire® assay data demonstrated that zymogen treatment promoted ERK1/2 signalling activity with converse inhibitory effects on SMAD2 and Akt1/2/3 activity in the 500 SW480^{β6OE} cell. As ERK1/2 activity significantly increased whilst both SMAD2 and 501 Akt1/2/3 activity decreases with zymogen treatment (Figures 6, 8 and 9), these findings 502 suggest a switch in signalling activity from SMAD2 and Akt1/2/3 to an ERK1/2-dependent 503 system. Plg appears to have exerted the greater individual effect on this switch as L-TGF^β1 504 treatment did not alter the ERK1/2-to-SMAD2 or ERK1/2-to-Akt1/2/3 ratios relative to the 505 SF control, however with the addition of both zymogens, ERK1/2 signalling became at least 506 five times more active than either SMAD2 or Akt1/2/3 signalling. Collectively, ERK1/2, 507 508 SMAD2 and Akt1/2/3 phosphorylation data strongly suggests that $\beta 6$ expression significantly increased basal ERK1/2, SMAD2 and Akt1/2/3 signalling activity, which can 509 510 be switched with L-TGF^{β1} and/or Plg treatment to MAPK-dominant signalling in premetastatic CRC. 511

512 **4. DISCUSSION**

513 The $\alpha\nu\beta6$ integrin can be regarded as a lynchpin protein in the progression of a premetastatic or benign CRC cell towards the fully metastatic phenotype. In the current study, 514 515 we aimed to determine whether $\beta 6$ expression could translate treatment with zymogen forms 516 of proteins we suspected to form a pro-metastatic axis with $\beta 6$ into phenotypic changes. 517 These results demonstrate that $\beta 6$ expression significantly enhances the proliferative, migrative and invasive potential of CRC cells through the activation and implementation of 518 519 recombinant L-TGFβ1 and/or Plg. To highlight the potency of the interactive axis on the pre-metastatic cell membrane, this study used comparatively low concentrations of each 520 521 zymogen. All recombinant protein treatments were at a final concentration of 10ng/mL, whilst the normal concentration of L-TGF^{β1} in healthy human plasma is 136ng/mL and 522 active TGF- β 1 is only 2.1ng/mL.^[20] Treating β 6-expressing CRC cells with less than 10% 523 of the normal level of L-TGFB1 was sufficient to significantly increase proliferation, 524 invasion/migration and ERK1/2 signalling in vitro. Similar trends were observed with the 525 10ng/mL Plg treatment, whose normal concentration in healthy human plasma is 526 200ng/mL.^[21] Here, 5% of this concentration was sufficient to significantly increase 527 proliferation, invasion/migration, ERK1/2 signalling and potentially ablate SMAD2 and 528 529 Akt1/2/3 signalling in vitro.

530 To ensure that these observations were the result of zymogen treatment and were not masked by the various growth factors present in FBS, this study implemented serum 531 532 starvation conditions. Serum starvation prevents variation in the phenotypic response to treatment resulting from the activity of proteases, protease inhibitors, growth factors, 533 534 haemoglobin and bovine serum albumin present in FBS. This allows for direct identification 535 of β6-dependent responses resulting from zymogen treatment. Though nutrient starvation 536 has been demonstrated to enhance tumour aggressiveness by promoting cell migration/invasion, AKT phosphorylation, morphological changes, and anchorage-537 independent growth ^[26], this study investigated how $\beta 6$ expression enhances these hallmark 538 features of the EMT beyond that of the SW480^{Mock} cell line which does not express $\beta 6$. 539

Rather than being a consequence of CRC progression, $\alpha\nu\beta6$ expression may provide a 'signalling scaffold', localising and stabilising pro-metastatic protein•protein interactions. In the case of TGF β signalling and the PA cascade, $\alpha\nu\beta6$ neo-expression on the surface of an early epithelial cancer cell could provide the structural foundation for constructing this

pro-metastatic axis. B6 expression is normally restricted to low or undetectable levels in 544 epithelial tissue.^[1, 6] Once this repression has been ablated in the Duke's stage A or B CRC 545 cell^[6], the β 6 subunit forms a heterodimer with the ubiquitously expressed α v subunit. β 6 546 subunit expression in these SW480 cell lines significantly downregulates the expression of 547 all other observed integrin subunits with the exception of αv .^[12] The significant 548 downregulation of β 5 could liberate available α v subunits, allowing the formation of α v β 6 549 heterodimers on the SW480 cell membrane as no competing \$\beta3\$ or \$\beta8\$ subunits were 550 identified in these subclones by proteomics.^[12] Once expressed, $\alpha\nu\beta6$ interacts with uPAR 551 through binding to the sequestered av subunit.^[27] Ahmed et al. demonstrated that high 552 surface expression of avß6 correlates with high uPAR and uPA expression on the surface of 553 ovarian cancers.^[28] This interaction may stabilise and/or shield the complex from protease 554 or phosphatase activity at the base of the heterodimer whilst leaving the ß6 subunit available 555 556 to bind to the LAP of L-TGF^β1, activating the zymogen through mechanical torsion. Thus the avß6 integrin centralises two pro-metastatic pathways to the SW480 cell surface, the 557 TGF- β 1 pathway through β 6 and the PA cascade through α v. Both pathways are capable of 558 inducing *de novo* αvβ6 expression through activation of the oncogenic transcription factor 559 Ets-1, an end-product of SMAD2/3 signalling.^[6, 29] Additionally, Ets-1 also promotes the 560 expression of uPA, uPAR, epidermal growth factor (EGF), fibroblast growth factor (FGF), 561 matrix metalloproteases and vascular endothelial growth factor (VEGF).^[28-30] By promoting 562 its own expression^[31], $\alpha\nu\beta6$ can promote the expression of itself, its interactors and other 563 key oncogenic proteins, helping to explain its role as a negative prognostic indicator of colon 564 cancer patients in early stage CRC.^[6] Though elevated $\alpha\nu\beta6$ expression does not 565 significantly reduce 5-10 year survival rates of patients with malignant CRC, elevated $\alpha\nu\beta6$ 566 expression in benign CRC resulted in a significant reduction in 5 year survival by ~28% 567 with $\alpha v \beta 6$ expression in distal metastases.^[6] 568

The current study suggests that in these early CRC tumours, $\alpha\nu\beta6$ expression both increases metastatic phenotypes under normal conditions and 'primes' these cells so that they are ready to act upon introduced external stimuli. $\alpha\nu\beta6$ expression significantly increased proliferation, invasion and cell signalling in response to L-TGF $\beta1$ and/or Plg treatment in a manner that was not reflected in the non- $\alpha\nu\beta6$ expressing cell line. We suspect that the formation of the uPAR/ $\alpha\nu\beta6$ /TGF- $\beta1$ interactome at the CRC cell membrane has mediated the rapid translation of zymogen treatment into the significant phenotypic changes

observed. Proliferation and ERK1/2 signalling activity significantly increased in response to 576 each treatment condition, suggesting a joint response akin to those previously demonstrated 577 by Agrez et *al.* through the unique C-terminal tail of the $\beta 6$ subunit.^[3] The increased 578 proliferation is likely driven through sustained ERK2 phosphorylation and additional L-579 TGFβ1 activation that is now no longer acting as an early-stage tumour suppressor. It appears 580 that Plg treatments have the greatest effect on proliferation, potentially due to the continued 581 proteolysis of endogenously produced L-TGF^β1 compared to a single dosage of 10ng/mL. 582 To ensure that these results were due to TGF-β1 signalling and PA cascade activity, we 583 repeated the proliferation study employing specific inhibitors of these systems and observed 584 not only an ablation of pro-proliferative effects but a significant reduction in SW480^{β 60E} 585 proliferation. Aprotinin inhibits multiple serine proteases though primarily plasmin through 586 the formation of enzyme-inhibitor complexes between the lysine-15 residue of aprotinin and 587 the active serine residue of the protease.^[32] SB-431542 inhibits the TGF-β-mediated 588 activation of SMAD proteins, cell proliferation and cell motility, without inhibiting kinases 589 including p38, ERK, or JNK.^[33] 590

Increased proliferation through activated TGF- β 1 also helps to explain the observed 591 increases in cell migration, both within a 'wound' model and through an uncoated physical 592 barrier. The significant increases in invasiveness however are likely attributable to the 593 conversion of Plg into active plasmin, which greatly enhanced the ability for SW480^{β 60E} 594 595 cells to degrade the BME-coated barrier and invasively migrate. The invasion assay was 596 closer to reproducing in vivo conditions as the BME components from an EHS sarcoma include ECM proteins such as collagens and laminin, as well as proteoglycans, proteolytic 597 enzymes/inhibitors and growth factors. Increased proteolytic activity on the SW480^{β 60E} cell 598 surface is the likely explanation for the significantly higher invasion of SW480^{β 60E} cells 599 following generation of active plasmin and potential activation of downstream MMPs (e.g. 600 MMP-9 and MMP-3). The almost significant further increase in invasion when treated with 601 both L-TGF^β1 and Plg once more demonstrates the cross-reactivity within this interactive 602 axis, suggesting a cumulative effect of activating both pathways. This effect was strongly 603 604 observed in ERK1/2 signalling whereby ß6-expressing cells demonstrated dramatic increases in signalling activity in response to combined treatment. Interestingly, the SMAD2 605 activity data did not reveal any significant response to treatment with the exception of the 606 SW480^{β6OE} cell line. We observed that SMAD2 phosphorylation remains unchanged when 607

treated with L-TGF^{β1}, although the addition of sub-physiological Plg with L-TGF^{β1} reduces 608 SMAD2 signalling, whilst significantly increasing ERK1/2 activity. This switching of 609 signalling pathways in response to Plg treatment suggests that ERK1/2 dominates SMAD2 610 611 and Akt1/2/3 signalling even when treated with L-TGF^{β1}. This phenomenon could be an artefact of the pleiotropic nature of TGF-B1, now signalling via SMAD-independent 612 pathways^[34] or SMAD2 signalling may be occurring more slowly than the 30min window 613 required to assess ERK1/2 activity. Slow activation of SMAD2/3 or the PA cascade 614 following zymogen treatment could promote avß6 expression which may explain the 615 significant increase in ERK1/2 phosphorylation when treated with both zymogens, as it 616 617 would increase the number of available pERK2 binding sites that are unique to $\beta 6$. Once bound to β 6, pERK2 may be protected from phosphatases, or non-phosphorylated ERK2 618 may be more efficiently phosphorylated due to conformational changes^[35] resulting in the 619 620 increased phosphorylation observed in this study. There is also evidence that $\alpha\nu\beta6$ -bound ERK2 plays a role in avß6 internalisation, promoting CRC cell migration and increasing 621 MMP-9 production ^[35, 36], again highlighting the potential of this interactive axis for cross-622 reactivity and autocrine self-perpetuation. 623

624 **5. CONCLUSION**

In the current work we have determined that $\alpha\nu\beta6$ expression positively correlates 625 626 with increased metastatic behaviour in pre-malignant CRC cells and that these significant changes can be promoted further with relatively minute treatments with zymogen members 627 628 of potential interacting pathways. The $\alpha\nu\beta6$ integrin may establish and support the novel uPAR/αvβ6/TGF-β1 interactome on the CRC cell surface, enabling the activation of these 629 630 precursor proteins and translating their presence into significant phenotypic changes that are 631 crucial to enhance the metastatic potential of early cancer cells. We strongly suspect that 632 neo-expression of the $\beta 6$ subunit is the first step in the construction of a pro-metastatic autocrine signalling complex that significantly reduces patient's 5-year survival rates when 633 expressed in early stage CRC tumours. 634

635 6. CONFLICT OF INTEREST

The authors declare no actual or potential conflicts of interest; including anyfinancial, personal or other relationships with other people or organizations.

639 ACKNOWLEDGEMENTS

640 This study was supported with funding from Macquarie University, NHMRC, Australian Postgraduate Award (APA), NSW Cancer Council, Cancer Institute NSW and 641 MQ Biofocus Research Centre. We would like to thank our long-term collaborators; Dr 642 643 Michael Crouch of TGR Biosciences for his assistance and continued input in performing the SureFire® assays as well as Prof. Michael Agrez for generously providing us with the 644 cell lines. We would also like to thank Dr Dana Pascovici for her help in designing and 645 646 performing the necessary statistical analysis for this project. The manuscript was written with all authors making academic contributions. All authors have given approval to the final 647 648 version of this manuscript. This work was supported by the National Health and Medical 649 Research Council grant 1010303 and the Cancer Council NSW grant RG-10-04.

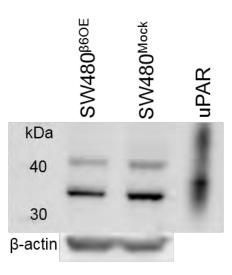
650 **REFERENCES**

- Hazelbag, S., et al., Overexpression of the alpha v beta 6 integrin in cervical squamous cell carcinoma is a prognostic factor for decreased survival. J Pathol, 2007. 212(3): p. 316-24.
- Ramos, D.M., D. Dang, and S. Sadler, *The role of the integrin alpha v beta6 in regulating the epithelial to mesenchymal transition in oral cancer*. Anticancer Res, 2009. 29(1): p. 125-30.
- Agrez, M., et al., *The alpha v beta 6 integrin promotes proliferation of colon carcinoma cells through a unique region of the beta 6 cytoplasmic domain.* J Cell
 Biol, 1994. **127**(2): p. 547-56.
- Ahmed, N., et al., *Direct integrin alphavbeta6-ERK binding: implications for tumour growth*. Oncogene, 2002. 21(9): p. 1370-80.
- Bates, R.C., *Colorectal cancer progression: integrin alphavbeta6 and the epithelial- mesenchymal transition (EMT)*. Cell Cycle, 2005. 4(10): p. 1350-2.
- 664 6. Bates, R.C., et al., *Transcriptional activation of integrin beta6 during the epithelial-*665 *mesenchymal transition defines a novel prognostic indicator of aggressive colon*666 *carcinoma.* J Clin Invest, 2005. 115(2): p. 339-47.
- 667 7. Breuss, J.M., et al., *Expression of the beta 6 integrin subunit in development, neoplasia and tissue repair suggests a role in epithelial remodeling*. J Cell Sci, 1995.
 669 108 (Pt 6): p. 2241-51.
- 8. Yang, G.Y., et al., Integrin alpha v beta 6 mediates the potential for colon cancer *cells to colonize in and metastasize to the liver.* Cancer Sci, 2008. 99(5): p. 879-87.
- Binder, M.a.T., M., *Drugs targeting integrins for cancer therapy*. Expert Opin. Drug Discov., 2009. 4(3).
- Ramos, D.M., et al., *Expression of integrin beta 6 enhances invasive behavior in oral squamous cell carcinoma*. Matrix Biol, 2002. 21(3): p. 297-307.
- Ahmed, N., et al., *Alpha(v)beta(6) integrin-A marker for the malignant potential of epithelial ovarian cancer.* J Histochem Cytochem, 2002. **50**(10): p. 1371-80.
- Cantor, D., et al., Overexpression of alphavbeta6 integrin alters the colorectal *cancer cell proteome in favor of elevated proliferation and a switching in cellular adhesion that increases invasion.* J Proteome Res, 2013. 12(6): p. 2477-90.

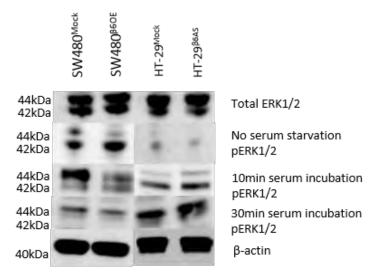
- Annes, J.P., et al., *Integrin alphaVbeta6-mediated activation of latent TGF-beta requires the latent TGF-beta binding protein-1*. J Cell Biol, 2004. 165(5): p. 723-34.
- Allen, M.D., et al., *Altered Microenvironment Promotes Progression of Pre-Invasive Breast Cancer: myoepithelial expression of alphavbeta6 integrin in DCIS identifies high-risk patients and predicts recurrence.* Clin Cancer Res, 2013.
- Klass, B.R., A.O. Grobbelaar, and K.J. Rolfe, *Transforming growth factor betal* signalling, wound healing and repair: a multifunctional cytokine with clinical implications for wound repair, a delicate balance. Postgrad Med J, 2009. 85(999):
 p. 9-14.
- 16. Zambruno, G., et al., *Transforming growth factor-beta 1 modulates beta 1 and beta*5 *integrin receptors and induces the de novo expression of the alpha v beta 6 heterodimer in normal human keratinocytes: implications for wound healing.* J Cell
 Biol, 1995. **129**(3): p. 853-65.
- Saldanha, R.G., et al., *Proteomic identification of lynchpin urokinase plasminogen activator receptor protein interactions associated with epithelial cancer malignancy.*J Proteome Res, 2007. 6(3): p. 1016-28.
- Waltz, D.A., et al., *Plasmin and plasminogen activator inhibitor type 1 promote cellular motility by regulating the interaction between the urokinase receptor and vitronectin.* J Clin Invest, 1997. 100(1): p. 58-67.
- 19. Dang, D., et al., *Matrix metalloproteinases and TGFbeta1 modulate oral tumor cell matrix*. Biochem Biophys Res Commun, 2004. **316**(3): p. 937-42.
- Khan, S.A., J. Joyce, and T. Tsuda, *Quantification of active and total transforming growth factor-beta levels in serum and solid organ tissues by bioassay.* BMC Res Notes, 2012. 5: p. 636.
- Leipnitz, G., et al., *Reference values and variability of plasminogen in healthy blood donors and its relation to parameters of the fibrinolytic system*. Haemostasis, 1988. **18 Suppl 1**: p. 61-8.
- Leibovitz, A., et al., *Classification of human colorectal adenocarcinoma cell lines*.
 Cancer Res, 1976. 36(12): p. 4562-9.
- Feng, B., et al., *Colorectal cancer migration and invasion initiated by microRNA- 106a.* PLoS One, 2012. 7(8): p. e43452.
- Woodford-Richens, K.L., et al., *SMAD4 mutations in colorectal cancer probably occur before chromosomal instability, but after divergence of the microsatellite instability pathway.* Proc Natl Acad Sci U S A, 2001. 98(17): p. 9719-23.
- 715 25. Garbison, K.E., et al., *Phospho-ERK Assays*, in *Assay Guidance Manual*, G.S.
 716 Sittampalam, et al., Editors. 2004: Bethesda (MD).
- 717 26. Osawa, T., et al., Inhibition of histone demethylase JMJD1A improves antiangiogenic therapy and reduces tumor-associated macrophages. Cancer Res, 2013.
 719 73(10): p. 3019-28.
- Sowmya, G., et al., A site for direct integrin alphavbeta6.uPAR interaction from structural modelling and docking. J Struct Biol, 2014.
- Ahmed, N., et al., Overexpression of alpha(v)beta6 integrin in serous epithelial
 ovarian cancer regulates extracellular matrix degradation via the plasminogen
 activation cascade. Carcinogenesis, 2002. 23(2): p. 237-44.
- Koinuma, D., et al., *Chromatin immunoprecipitation on microarray analysis of Smad2/3 binding sites reveals roles of ETS1 and TFAP2A in transforming growth factor beta signaling.* Mol Cell Biol, 2009. 29(1): p. 172-86.

- 30. Span, P.N., et al., *Expression of the transcription factor Ets-1 is an independent prognostic marker for relapse-free survival in breast cancer*. Oncogene, 2002.
 21(55): p. 8506-9.
- 73131.Niu, J., et al., Integrin expression in colon cancer cells is regulated by the732cytoplasmic domain of the beta6 integrin subunit. Int J Cancer, 2002. 99(4): p. 529-73337.
- Kang, H.M., et al., *The kinetics of plasmin inhibition by aprotinin in vivo*. Thromb Res, 2005. 115(4): p. 327-40.
- Inman, G.J., et al., SB-431542 is a potent and specific inhibitor of transforming
 growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors
 ALK4, ALK5, and ALK7. Mol Pharmacol, 2002. 62(1): p. 65-74.
- 739 34. Zhang, Y.E., *Non-Smad pathways in TGF-beta signaling*. Cell Res, 2009. 19(1): p. 128-39.
- Wang, J., et al., *PKC promotes the migration of colon cancer cells by regulating the internalization and recycling of integrin alphavbeta6*. Cancer Lett, 2011. **311**(1): p. 38-47.
- Gu, X., et al., *Integrin alpha(v)beta6-associated ERK2 mediates MMP-9 secretion in colon cancer cells.* Br J Cancer, 2002. 87(3): p. 348-51.

3.1.2 – Supplemental files


Supplementary information

Supplementary Table 1. Respective SW480 doubling times (in hr) for each treatment.


	24hr Treatment			48hr Treatment		
Cell doubling time (hr)	SW480 ^{Mock}	$SW480^{\beta 6OE}$	SW480 ^{β6OE} - SW480 ^{Mock}	SW480 ^{Mock}	$SW480^{\text{pode}}$	SW480 ^{β6OE} - SW480 ^{Mock}
Control	31.9	43.42	11.52	28.01	33.17	5.16
L-TGFβ1	36.99	27.99	-9.00	28.58	26.3	-2.28
Plg	42.37	24.13	-18.24	28.5	25.77	-2.73
L-TGFβ1 + Plg	39.71	25.72	-13.99	29.9	23.9	-6.00

Supplementary Table 2. Respective HT29 doubling times (in hr) for each treatment.

	24hr Treatment					
Cell doubling time (hr)	HT29 ^{Mock}	HT29 ^{β6AS}	$\begin{array}{r} \text{HT29}^{\text{Mock}} \text{-} \\ \text{HT29}^{\beta 6 \text{AS}} \end{array}$	HT29 ^{Mock}	HT29 ^{β6AS}	HT29 ^{Mock} - HT29 ^{β6AS}
Control	29.13	45.74	-16.61	41.34	52.21	-10.87
L-TGFβ1	26.36	67.15	-40.79	37.04	50.61	-13.57
Plg	27.32	47.77	-20.45	34.82	89.84	-55.02
L-TGFβ1 + Plg	29.90	64.48	-34.58	36.01	55.57	-19.56

Supplementary Figure 1. Western blot of SW480 subclones probing against uPAR. 40 μ g of cell lysate was loaded into each lysate well with a β -actin loading control. 100ng of recombinant full-length uPAR was loaded into the uPAR lane as a positive control.

Supplementary Figure 2. Collated images of preliminary ERK1/2 western blots probing against both total ERK1/2 and active, phosphorylated ERK1/2 (pERK1/2). No serum starvation indicates normal levels of ERK phosphorylation under standard culture conditions. $20\mu g$ of cell lysate was loaded into each well with a β -actin loading control.

Proliferation assay calculations

Proliferation rate

$$f = \frac{\left\{\frac{\ln\left(\frac{Nt}{No}\right)}{\ln(2)}\right\}}{t}$$

Nt = Number of cells at a given time (t)

No = Number of cells seeded

t = Given time interval

f = Frequency of cell cycles per time interval

Doubling time = 1/f

f = Frequency of cell cycles per time interval

3.2 - Study II:

The results from the previous study showed that β6 in a TGFβ-dependant manner can induce phenotypic changes that promote cancer progression. This second study aimed to investigate if the phenotypic changes and its associated signalling on colon cancer cells that express varying levels of $\beta 6$ integrin when treated with active TGF β . This study was also undertaken using the SW480 and HT29 subclone cells whose $\beta 6$ expression has been altered using stable transfections. The SW480^{Mock} cells do not express any $\beta 6$ integrin whereas SW480^{$\beta 6OE$} cells have artificially induced overexpression of $\beta 6$ integrin. The HT29^{Mock} cells, however, endogenously express $\beta 6$ integrin and its expression has been artificially reduced by about 80% in the HT29^{β 6AS} cells. These cells were treated with 10ng/mL of TGF β and their membrane proteome was enriched using triton X-114 phase partitioning followed by iTRAQ-based proteomic analysis. The results from this study showed the expression of numerous proteins associated with cytoskeletal remodelling, cell migration/invasion, cell adhesion and cellular stress associated proteins was significantly altered in presence of TGFB and $\beta 6$ expression. Various RAS oncogene associated proteins along with a few uncharacterized proteins were also identified. Further IPA showed eIF2, mTOR and tight junction signalling pathways to be significantly altered. Additionally, upon treatment with TGF β increased proliferation, invasion and wound healing abilities were observed in the cells that expressed $\beta 6$ integrin. In conclusion, the findings from this study suggests that TGFβ in presence of β6 can promote alterations to cancer related molecules and signalling networks.

3.2.1 - Transforming growth factor-β signalling induces differential protein expression in colon cancer cells that varies with the level of integrin β6 expression. [Publication IV] (*Prepared for publication*)

1	Transforming growth factor-β signalling induces differential protein
2	expression in colon cancer cells that varies with the level of integrin β6
3	expression

- 4
- 5 Harish R Cheruku¹, David I Cantor¹, Abidali Mohamedali², Sock Hwee Tan^{2,3}, Edouard
- 6 Nice⁴, Mark S Baker¹*
- 7 ¹Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Macquarie
- 8 University, NSW, 2109, Australia
- 9 ²Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie
- 10 University, NSW, 2109, Australia
- ³Current address: National University Heart Centre, National University of Singapore,
- 12 Singapore, Singapore
- ⁴Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria,
- 14 *3800, Australia*
- 15
- 16 ***Corresponding Author**
- 17 Professor Mark S. Baker
- 18 Faculty of Health and Medical Sciences
- 19 2 Technology Place
- 20 Macquarie University, NSW, 2109
- 21 Australia
- 22 Telephone: +61 2 9850 8211
- 23 Fax: +61 2 9850 8313
- 24 E mail: mark.baker@mq.edu.au
- 25
- 26

27 Abstract

Transforming growth factor- β (TGF β) and the $\alpha\nu\beta6$ integrin are well documented to be 28 involved in the progression of various cancers including colorectal cancer (CRC). Despite 29 decades of research, the role of TGF^β in CRC progression is, at best, poorly understood. 30 Similarly, up-regulation of the integrin $\alpha\nu\beta6$ in CRC has been reported to be an important 31 promoter of metastatic progression in CRC though its mechanism is again not very well 32 understood. TGF β and β 6 have been demonstrated to interact, potentially concomitantly, 33 34 promoting metastatic progression. To explore the role of TGF β and β 6 in CRC, the membrane-enriched proteomes of SW480 and HT29 subclones with artificially modified 35 levels of β 6 subunit expression were analysed following treatment with active TGF β . Using 36 iTRAQ (isobaric tags for relative and absolute quantitation) we identified 2,666 and 2,041 37 unique proteins for SW480 and HT29 subclones respectively. Of these, varying number of 38 proteins were found to be significantly and differentially expressed when treated with TGFB 39 with a positive trend between the number of altered proteins and the level of $\beta 6$ expression. 40 Ingenuity Pathway AnalysisTM revealed that fundamental processes like "cell growth and 41 proliferation" were significantly altered following TGF^β treatment. Differential expression 42 43 of three proteins (ezrin, annexin A2 and S100-A8) was validated by Western blotting to confirm the expression changes observed by iTRAQ. Observed proteomic changes were 44 strongly supported by in vitro studies, which showed increased proliferation and wound 45 healing was associated with elevated levels of $\beta 6$ following TGF β treatment. This study 46 47 demonstrates that TGFB can exert critical proteomic and phenotypic changes within a premetastatic CRC cell to promote functions crucial for metastasis, and that these changes are 48 potentiated by expression of $\alpha v\beta 6$. 49

50

51 **Keywords:** transforming growth factor-β; integrin β6; colorectal cancer; SW480; HT29;

- 52 iTRAQ
- 53
- 54

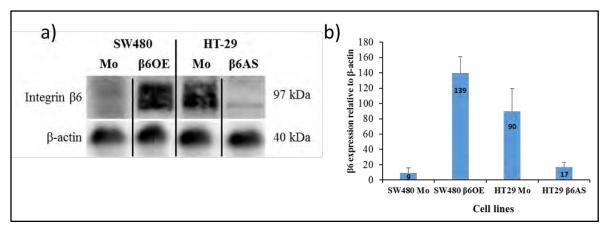
55 1. INTRODUCTION

Transforming Growth Factor- β (TGF β) was first described in 1982, and is a bi-56 functional protein that can positively or negatively regulate cell growth depending on its 57 microenvironment^[1,2]. The three mammalian TGF^β isoforms (TGF^β1, TGF^β2 and TGF^β3) 58 are encoded by genes located on different chromosomes but which have significant structural 59 and functional similarity, and signal through the same receptor system ^[3,4]. *In vivo*, all TGFB 60 ligands are secreted as 'latent' complexes and are primarily activated byeither plasmin, 61 integrins ($\alpha\nu\beta6$, $\alpha\nu\beta8$), or matrix metalloproteinases (MMPs) ^[5]. The biological effects 62 exerted by TGFB are mediated through type I and type II transmembrane serine/threonine 63 kinase receptors (TGF\u00dfR1 and TGF\u00dfR2). Canonical signalling is initiated by binding of 64 active TGF β to TGF β R2, which recruits and transphosphorylates TGF β R1 thereby 65 catalysing Smad2/3 phosphorylation ^[6]. The phosphorylated Smad2/3 associates with 66 Smad4 and the complex translocates to the nucleus where it controls various TGF\beta-mediated 67 gene transcriptional activities with other DNA-binding co-activators, co-repressors and 68 transcription factors ^[6]. In normal cells, TGFB canonical signalling promotes tumour 69 suppression through cytostasis, cell differentiation and apoptosis ^[7]. In cancer however, 70 TGF^β plays dual roles – promoting tumour suppression during the early stages before 71 switching to promote growth, invasion, and metastasis in mid to late stage cancer ^[7, 8]. The 72 73 biological mechanism/s explaining such a switch to promoting tumour growth and metastasis remain highly elusive and poorly characterised. 74

75 High levels of plasma TGF β 1 (14.8 ± 8.4 ng/mL) have previously been reported to 76 occur in Dukes' stage B1-D CRC patients, higher to those observed in normal healthy plasma $(1.9 \pm 1.4 \text{ ng/mL})^{[9]}$. Additionally, Kemik *et al.*, also reported increased TGF β expression 77 in CRC tumor tissue samples ^[10]. These high levels of active TGFβ can be achieved through 78 a number of ways involving activation of latent TGF β , including by the integrin $\alpha\nu\beta6$, which 79 is known to be overexpressed in many cancers ^[11]. Various clinical immunohistochemistry 80 (IHC) studies have demonstrated that elevated integrin $\beta 6$ (herein referred to only as $\beta 6$) 81 expression negatively correlates with patient survival, ascribing this to $\beta 6$'s roles in 82 promoting cell proliferation, migration and invasion into proximal tissues, eventually 83 causing metastasis ^[12-14]. Interestingly, a recent study by Ahn et al. examining the expression 84 of $\alpha\nu\beta6$ in Dukes' stage B and C rectal cancer tissue samples did not show any increase 85 between stages B and C ^[15]. It was suggested that $\alpha\nu\beta6$ overexpression may occur before or 86

during Stage B, where it can assist cancer cells in maintaining the high levels of active TGF β required to promote early tumour progression. Integrin $\alpha\nu\beta6$ is also known to promote the expression of various MMPs including MMP-3 and -9 that can also active latent-TGF β ^[16, 17]. Interestingly, treatment of $\beta6$ -expressing oral squamous cell carcinoma cells (oral SCC9) with active TGF β 1 further enhanced MMP-3 and MMP-9 activation, indicating further cross-reactivity within this TGF β - $\alpha\nu\beta6$ interactome ^[16].

A membrane-enriched proteomic study by Cantor et al. demonstrated that 93 transfection of $\beta 6$ into normally non-expressing cells induced significant changes in 94 expression of 708 distinct proteins ^[18]. The study demonstrated that $\beta 6$ overexpression 95 increased cell proliferation and invasion^[18] and induced differential expression of TGF_{β1} 96 and TGFBR2. Ingenuity Pathway Analysis[©] (IPA) of the significantly altered proteins 97 showed that $\beta 6$ expression greatly affects cell death, cell movement, cell 98 99 growth/proliferation, as well as integrin-linked kinase (ILK) and Ran signalling pathways to be significantly altered, all of which are key facets in cancer metastasis ^[18]. 100


To improve our understanding of TGF^β signalling and ^{β6} in CRC, we have employed 101 a quantitative proteomic protocol using iTRAQ (Isobaric Tag for Relative and Absolute 102 Quantitation). The study compares active TGF_β1-treated colorectal adenocarcinoma cell 103 lines (SW480 and HT29) that were engineered to have increased or decreased expression 104 levels of cell surface $\beta 6$. The use of active TGF β eliminates any molecular changes that are 105 106 associated with β 6-mediated Latent-TGF β 1 activation. This approach allowed us to identify 107 and quantify differentially expressed peptides/proteins in a single step, a significant advantage over label-free approaches. Furthermore, iTRAQ allows multiplexing of up to 8 108 109 samples to identify the relative abundance of proteins in different samples within a single liquid chromatography mass spectrometry (LC/MS) based proteomics experiment. 110

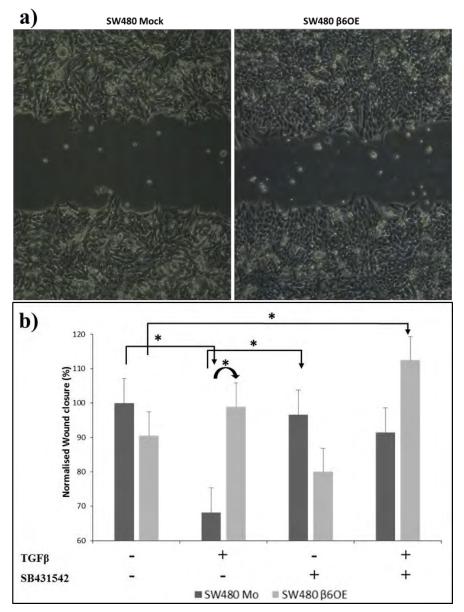
111

112 2. RESULTS AND DISCUSSION

113 **2.1 Validation of integrin β6 expression by Western blotting**

Subclones of the SW480 and HT29 colon carcinoma parental cell lines were used in this study. The subclones have been engineered by stable transfection to over-express or supress production of the $\beta6$ subunit. SW480^{Mock} cells do not express $\beta6$ while SW480^{$\beta60E$} cells overexpress the $\beta6$ subunit ^[19]. The HT29^{Mock} cells endogenously express the $\beta6$ while 118 its expression is strongly reduced in the HT29^{β 6AS} cells ^[20]. Figure 1 illustrates the 119 differences in β 6 subunit expression as detected by Western blot analysis.

120


Figure 1 Validation of $\beta6$ expression in the SW480 and HT29 subclones by Western blot analysis. 10µg of whole cell lysate of was loaded into each well and probed with the sc-6632 (C-19) anti- $\beta6$ polyclonal antibody. β -actin was used as a loading control. **b**) Relative abundance of $\beta6$ expression in SW480 and HT29 subclone cells (mean ± SEM) obtained by quantitative analysis of the Western blot band intensities.

126 **2.2** Active TGFβ1 impairs wound healing without β6 expression

We have previously demonstrated that β 6 overexpression significantly increases cell proliferation and invasion under normal cell culture conditions ^[18]. A wound healing assay was used in this study to determine whether treatment with active TGF β 1 would increase the ability of SW480 cells under stress to migrate into a freshly created wound (Figure 2).

We observed an interesting trend that at first sight seemed somewhat counter-131 132 intuitive to that expected from the literature. In detail, no significant differences in wound closure were observed between $SW480^{\beta 6OE}$ and $SW480^{Mock}$ cells under SF conditions. 133 However, relative to the untreated control, TGF^{β1} treatment significantly decreased the 134 ability of SW480^{Mock} cells to promote wound closure. Conversely, SW480^{β 60E} cells 135 exhibited a significantly faster wound closure when treated with TGF β 1, suggesting that β 6 136 expression was able to ameliorate the prior anti-migrative effect. No significant differences 137 in migration were observed between the untreated and TGF β 1-treated SW480^{β 6OE} cells. 138 Antagonism of TGF\u00dfR1 with SB431542 (a TGF\u00ff receptor I kinase inhibitor) was able to 139 restore SW480^{Mock} cell migration to that of the SF control, whilst not significantly affecting 140 the SW480^{β 60E} cell line. Interestingly, dual treatment with active TGF β 1 and SB431542 141 significantly increased SW480^{β 60E} wound closure by 32% relative to the untreated control, 142

suggesting that active TGF β 1 may promote cell migration through other TGF β R1independent mechanisms.

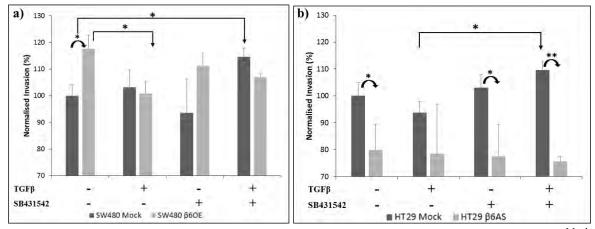


Figure 2 SW480 wound healing assay. (a) Representative micrographs of wound closure observed with TGF β -treated SW480^{Mock} and SW480^{β 60E} cells. (b) Percentage of wound closure normalised to the untreated SW480^{Mock} control. TGF β treatment significantly increased SW480^{β 60E} wound closure relative to the TGF β -treated SW480^{Mock} cells (*p<0.05; **p<0.01). Wound width was calculated using TScratch software ^[21]

150 These results suggest that $\beta 6$ expression influences the ability of SW480^{$\beta 6OE$} cells to 151 migrate into the wound compared to SW480^{Mock} cells, overcoming the significant anti-152 migrative effect of active TGF $\beta 1$.

154 **2.3** β6 expression increases CRC cell invasion through an ECM analogue

Given these results and the notion that β 6 overexpression directly or indirectly increases invasion in various cancers ^[18, 22, 23], we further assessed the influence of TGF β 1 on SW480 and HT29 invasion using Transwell invasion assays to determine whether the level of β 6 expression would influence invasive potential. In addition to the SW480 subclones, in which β 6 is artificially expressed, this study employed HT29 subclones which endogenously express β 6 (HT29^{Mock}) or have had β 6 expression stably reduced by ~80% using antisense suppression (HT29^{β 6AS}) ^[20].

162

Figure 3 a) SW480 and (b) HT29 invasion assay normalised to the untreated SW480^{Mock} and HT29^{Mock} controls respectively (*p<0.05; **p<0.01).

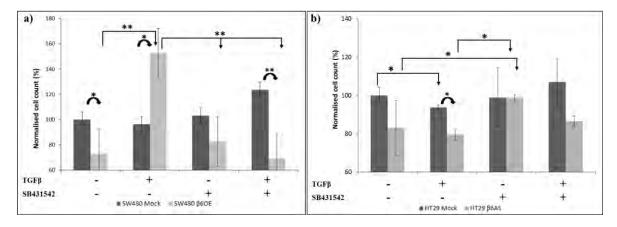
We observed that SW480^{β 60E} cells were significantly more invasive than SW480^{Mock} 165 cells under untreated serum-free conditions (Figure 3a), in agreement with previous 166 observations ^[18]. TGF_{β1} treatment significantly decreased SW480^{β6OE} invasion relative to 167 the untreated control, whilst SW480^{Mock} cells did not show any noticeable change. Similarly, 168 no significant change was observed in either cell line when treated with SB431542 alone. 169 However, SW480^{Mock} cells were significantly more invasive when treated with both TGF_{β1} 170 and SB431542, whilst no change was observed with SW480^{β 60E} cells. These findings 171 initially seemed in contradiction to those observed in the wound healing assay; however it 172 is important to note the two assays interrogate different aspects of cell invasion. Wound-173 healing assays assess cell migration into an unoccupied space on a two-dimensional substrate 174 while Transwell invasion assays assess the ability for cells to actively degrade the ECM 175 components of a basement membrane extract and undergo chemotactic migration. Taken 176 together, these two experiments suggest that $\beta 6$ expression may protect SW480 cells from 177

178 TGF β 1-mediated inhibition of cell movement and significantly enhance invasion through an 179 ECM analogue via a mechanism that can be significantly impaired by active TGF^{β1}.

HT29 subclones which natively express $\beta 6$ were then used to further examine the 180 TGFβ1- and β6-associated invasion. These results (Figure 3b) confirmed that high β6 181 expression promotes HT29 invasion as HT29^{Mock} cells were significantly more invasive than 182 HT29^{β 6AS}. As seen with the SW480 subclones, active TGF β 1 treatment inhibited this 183 increase while TGFBR1 antagonism restored the increase in HT29^{Mock} invasion when treated 184 with TGF_{β1}. Interestingly, dual treatment with TGF_{β1} and SB431542 significantly 185 increased HT29^{Mock} invasion compared to treatment with TGF^{β1} alone, suggesting again 186 that active TGFβ1 may promote cell invasion through a TGFβR1-independent mechanism. 187

These results suggest that treatment of \beta6-expressing CRC cells with TGF\beta1 188 promotes ECM degradation and eventually invasion. This trend was observed even when the 189 cells were treated with SB431542, which inhibits signalling through TGF^β receptors, 190 191 suggesting the presence of an alternative pathway other than the $\alpha\nu\beta6$ -TGF β axis for invasion. This requires further investigation. 192

193


194 2.4 ß6 expression promotes proliferation following active TGFB1 treatment

195 β6 overexpression significantly enhanced SW480 cell proliferation under standard cell culture conditions ^[18]. The ability of TGF^β to alter cell proliferation of CRC cells with 196 varying levels of $\beta 6$ expression was examined by performing proliferation assays. Cell 197 counting identified significant differences in proliferation as a result of $\beta 6$ expression 198 199 following treatment (Figure 4).

Interestingly, in the absence of FBS, $SW480^{\beta 6OE}$ cells were less proliferative than the 200 SW480^{Mock} cells grown in SF media without any treatments. However, TGF_{β1} treatment 201 doubled the number of SW480^{β 60E} cells compared to the untreated control. On the other 202 hand, active TGFB1 treatment exerted no significant effect in the SW480^{Mock} proliferation. 203 When we compared active TGF β 1-treated SW480 β ^{Mock} to similar SW480 β ^{6OE} experiments, 204 β 6 expression was found to induce a ~60% increase in cell number, suggesting the anti-205 proliferative effect of SF conditions on SW480^{β6OE} cells can be reversed with TGFβ1 206 treatment in a ß6-dependent manner. To validate this observation, TGFB antagonism with 207 SB431542 was used to ablate the pro-proliferative effect of TGF β in SW480^{β 60E} cells, 208 significantly decreasing cell numbers by 55% relative to the active TGF_{β1} treatment. While 209

SB431542 had no effect on SW480^{Mock} cell numbers, the dual treatment with TGF β 1 and

- SB431542 significantly increased SW480^{Mock} proliferation by 24%, suggesting that TGF β 1
- 212 may be exerting an anti-proliferative effect in in the absence of $\beta 6$ expression.

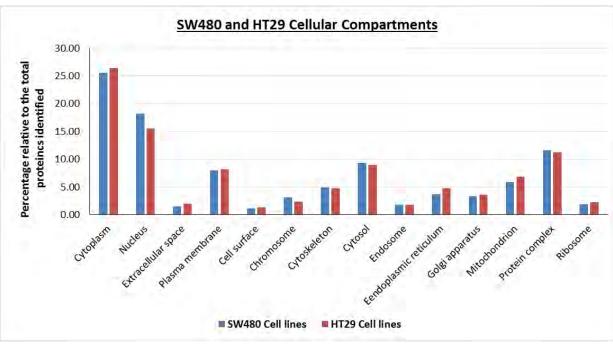
Figure 4 Proliferation assay of SW480 and HT29 subclones normalised to the untreated SW480^{Mock} and HT29^{Mock} controls. (a) Live cell counts of SW480 subclones (b) Live cell counts of HT29 subclones. Active TGF β treatment significantly enhances the proliferation rate of cells expressing β 6 which then regresses back to normal rates when treated with SB431542 (TGF β R1 inhibitor) (*p<0.05; **p<0.01)

219

213

This approach was subsequently repeated using the HT29 subclones. HT29^{Mock} cells 220 constitutively express $\beta6$ which is reduced by ~80% in the HT29^{$\beta6AS$} cell line. Unlike 221 SW480^{β6OE} cells, endogenous β6 expression in HT29^{Mock} cells did not experience an anti-222 proliferative effect. Instead, antisense suppression of $\beta 6$ significantly reduced HT29^{$\beta 6AS$} 223 proliferation. Interestingly, TGFB1 treatment had a significant anti-proliferative effect on 224 HT29^{Mock} cells compared to the untreated control. Again, this initially seemed 225 226 counterintuitive when considering the SW480 data. However, it should be remembered that β6 is endogenously expressed in the parental cell line and so there may be considerable 227 differences in the operative cell biology. In the HT29^{β 6AS} cell line, TGF β 1 treatment did not 228 exert an anti-proliferative effect compared to the untreated control: instead TGFB1 229 antagonism by SB431542 significantly increased proliferation. This was also observed when 230 HT29^{β 6AS} cells were treated with both TGF β 1 and SB431542, although the effect was greatly 231 reduced. TGF_{β1} antagonism had no effect on HT29^{Mock} cell proliferation, suggesting that 232 increased HT29^{Mock} proliferation is mediated by $\beta 6$ expression, albeit in a different 233 234 mechanism to that operating in SW480s, possibly the product of a counterbalance against $\beta 6$ expression. 235

Data obtained from both cell lines affirm that β 6 expression positively correlates with cell proliferation and that TGF β 1 remains "duplicitous". Our data also suggests that TGF β 1 has a pro-proliferative effect on CRC cells in which β 6 expression is induced while having an anti-proliferative effect on CRC cells in which β 6 is endogenously expressed. This, coupled with the increase in invasion observed, prompted us to take a wider view of the effect of TGF β 1 in CRC and therefore we adopted proteomics to gain clear insight into how TGF β and β 6 expression affects CRC.


243

244 2.5 Membrane Proteomic analysis of CRC cell lines by iTRAQ-MS profiling

Having determined that TGF β 1 exerts different effects on cells with varying β 6 expression, we investigated the membrane changes associated with TGF β 1 treatments using proteomics in order to gain a greater insight into the action of TGF β 1. These molecular changes were investigated using iTRAQ-based quantitative membrane proteomic analysis.

249 The protein lists obtained from the individual iTRAQ experiments were used to generate a single 'library' using Stouffer's method, whereby the protein ratios across 250 experiments are combined to obtain a single Stouffer's *p*-value ^[24]. The combined protein 251 list was subjected to strict filtering criteria for the confident identification of differentially 252 expressed proteins. These filter criteria included: (1) a strict cut-off of unused protein score 253 \geq 1.3, which corresponds to a 5% false discovery rate (FDR) at protein level, was used as a 254 255 part of Stouffer's method, (2) a protein p-value ≤ 0.05 , ensuring the proteins identified were seen in replicate MS runs, 3) a minimum average fold change of $\geq 20\%$, which corresponds 256 to a iTRAQ ratio (or fold change) of ≥ 1.2 for up-regulated and ≤ 0.83 for down-regulated 257 proteins. 258

Using the Stouffer method, we identified 2,666 and 2,041 proteins from the iTRAQ 259 MS analysis of SW480 and HT29 subclones respectively. The subcellular locations (%) of 260 the identified proteins was determined using PloGO (Figure 5). Using the workflow detailed 261 262 above, these lists were then used to identify differentially expressed proteins for a combination of treatment comparisons as shown in Table 1. The complete list of 263 264 differentially regulated proteins for all comparisons can be found in the supplementary information. This manuscript will not discuss any results comparing the untreated SW480 265 266 β6OE and SW480 Mock, as this work has been previously published by Cantor *et al.*, [18].

- Figure 5 Cellular distribution of all the proteins identified from SW480 and HT29 iTRAQ
 proteomic experiments.

Table 1 SW480 and HT29 comparisons showing the total number of significant proteins

272 (p:	\leq 0.05) and number	r of differentially	expressed proteins
---------	-------------------------	---------------------	--------------------

Comparison of Cell line (+/- TGFβ)	Total # of proteins with p ≤ 0.05	# up-regulated proteins (iTRAQ fold change ≥1.2)	# down-regulated proteins (iTRAQ fold change ≤0.83)
SW480 subclones			
SW480 Mo+ vs Mo-	41	11	13
SW480 β6OE+ vs β6OE-	129	30	16
SW480 β6OE+ vs Mo+	344	161	150
SW480 β6OE- vs Mo-	369	180	174
HT29 subclones			
HT29 Mo- vs β6AS-	140	69	70
HT29 Mo+ vs Mo-	161	55	70
HT29 β6AS+ vs β6AS-	94	45	35
HT29 Mo+ vs β6AS+	168	84	75

275 2.6 Lack of integrinβ6 expression results in minimal change to the proteome when 276 treated with TGFβ (SW480 Mo+ vs Mo-)

TGFβ treatment of β6-deficient SW480^{Mock} cells resulted in the detectable up- and 277 278 down-regulation of only a small number of proteins (11 and 13 respectively). This included proteins associated with cytoskeleton, cell adhesion and, integrin and MAPK signalling 279 280 (Table 2). Various intermediate filament-associated proteins, keratin, type II cytoskeletal 1 (KRT1), keratin, type II cytoskeletal 8 (KRT8), keratin, type I cytoskeletal 9 (KRT9) and 281 keratin, type I cytoskeletal 10 (KRT10) were identified. Walker et al. showed that KRT8/18 282 expression can be used to differentiate different subtypes of invasive ductal breast carcinoma 283 ^[25]. Desmoplakin, a cell junction-associated protein was found to be slightly down-regulated. 284 Cytoskeleton-associated protein 4 (CKAP4) was down-regulated and has been previously 285 shown to have moderate to strong expression in cancer tissues by IHC [26]. CKAP4 is known 286 to function as a receptor for anti-proliferative factor (APF) and has been shown to regulate 287 tissue plasminogen activator in bladder cancer ^[27]. Actin filament-associated proteins 288 myosin-9 and myosin-10 (MYH9 and MYH10), which play an important role during cell 289 spreading and focal contact formation in the centre of spreading cells, were slightly down-290 regulated. 291

Accession number	Gene name	Protein Name	iTRAQ fold change	Expression pattern
P15924	DSP	desmoplakin	0.79	\downarrow
P35580	MYH10	myosin-10 cytoskeleton-associated protein	0.80	\downarrow
Q07065	CKAP4	4	0.80	\downarrow
P05787	KRT8	keratin, type II cytoskeletal 8	0.81	\downarrow
P35579	MYH9	myosin-9	0.83	\downarrow
P13645	KRT10	keratin, type I cytoskeletal 10	1.36	1
P35527	KRT9	keratin, type I cytoskeletal 9	1.89	1
P04264	KRT1	keratin, type II cytoskeletal 1	1.92	1

Table 2 Differentially expressed proteins observed in the TGF β treated SW480^{Mock} cells relative to the untreated control (SW480 Mo+ vs Mo-)^a

^a Fold change ratios of significantly altered proteins observed in two biological replicates of iTRAQ experiment. These proteins have met the stipulated criteria (i.e., unused protein score >1.3 and change in expression level of at least 1.2 fold for aggressive (SW480^{Mock} treated with TGF β) vs non-aggressive (SW480^{Mock} not reated with TGF β)

IPA analysis of the significantly altered proteins identified two protein networks with 295 296 high scores ["Cellular Development, Cellular Growth and Proliferation, Cell Cycle" (IPA score = 21) and "Protein Synthesis, Cell Morphology, RNA Post-Transcriptional 297 298 Modification" (IPA score = 18)]. Various basic cellular functions involved in cancer, namely (i) cellular assembly and organization, (ii) cell morphology, (iii) cellular function and 299 maintenance, (iv) cellular development, and (v) cellular growth and proliferation^[28] were 300 identified. Additionally, tight junction signalling and ILK signalling canonical pathways, 301 that can also be associated with cancer, were identified. Unfortunately, despite this 302 interesting observation, the number of proteins identified for each of these pathways (< 2%) 303 304 of the total molecules in the pathways) were insufficient for establishing conclusive biological connection. 305

306

307 2.7 Overexpression of integrin β6 increased the number of differentially proteins 308 observed (SW480 OE+ vs OE-)

Treatment of SW480^{β 60E} cells with TGF β resulted in differential up-regulation of 30 309 proteins and down-regulation of 16 proteins (Table 3). Among the differentially expressed 310 proteins integrin beta-1 (β 1) and integrin alpha-v (α v) were identified to be up-regulated in 311 TGF β -treated cells. The up-regulation of integrin αv supports the overexpression of $\beta 6$ 312 which requires integrin av to form a heterodimer and participate in downstream signalling. 313 Increased $\beta 1$ expression could be the result of significantly increased αv expression as a 314 result of the activation of the Ets-1 transcription factor. As shown in a previous membrane 315 proteomic study using the same cell lines ^[18], the number of observed αv peptides far exceeds 316 317 the number of observed $\beta 6$ peptides.

It is known that epithelial cells actively trigger anoikis (cell death triggered by 318 improper or loss of cell adhesion) during metastasis ^[29, 30]. Suppression of anoikis, is an 319 important requirement for tumor cells to metastasize to distant organs ^[31]. Various chaperone 320 321 proteins were identified, of which DnaJ homolog subfamily A member 1 (DNAJA1 or 322 Hsp40) was significantly upregulated. Chaperone proteins play an important role in defence 323 against cellular stress and the up-regulation of Hsp40 could reflect the suppression of anoikis. This was further supported by the fact that BAG family molecular chaperone 324 325 regulator 2 (BAG-2), which directly affects the activity of Hsp70/HSC70 by promoting substrate release, was up-regulated following treatment. 326

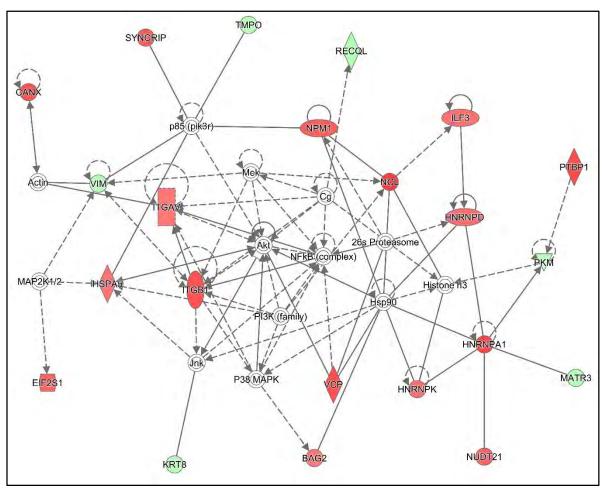
Decreased expression of intermediate filaments keratin, type II cytoskeletal 2 327 328 epidermal (KRT2) and keratin, type II cytoskeletal 8 (KRT8) was observed in the TGF^β treated cells. Interestingly, vimentin, a mesenchymal marker, was slightly down-regulated. 329 330 Ragulator complex protein LAMTOR2 which indirectly regulates mTORC1 signalling and enhances MAPK signalling activity by activating MAPK2^[32], was significantly up-331 332 regulated. Nicastrin, a transmembrane glycoprotein, was also up-regulated. Nicastrin and notch4 are known to promote epithelial to mesenchymal transition (EMT) in breast cancer 333 [33, 34] 334

Table 3 Differentially expressed proteins observed in the TGF β treated SW480^{β 60E} cells

Accession number	Gene name	Protein Name	iTRAQ fold change	Expression pattern
P35908	KRT2	keratin, type II cytoskeletal 2 epidermal	0.25	\downarrow
P05787	KRT8	keratin, type II cytoskeletal 8	0.78	\downarrow
P08670	VIM	vimentin	0.80	\downarrow
Q92542	NCSTN	nicastrin	1.21	1
O95816	BAG2	BAG family molecular chaperone regulator 2	1.21	Ţ
P06756	ITGAV	integrin alpha-V	1.21	1
P31689	DNAJA1	DnaJ homolog subfamily A member 1	1.38	1
P05556	ITGB1	integrin beta-1	1.54	1
Q9Y2Q5	LAMTOR2	Ragulator complex protein LAMTOR2	1.85	1

relative to the untreated control $(SW480 \text{ OE}+ \text{ vs OE}-)^a$

^a Fold change ratios of significantly altered proteins observed in two biological replicates of iTRAQ experiment. These proteins have met the stipulated criteria (i.e., unused protein score >1.3 and change in expression level of at least 1.2 fold for aggressive (SW480^{β 60E} treated with TGF β) vs non-aggressive (SW480^{β 60E} not treated with TGF β)


338 IPA identified only one protein network with score >15: the "Protein Synthesis, Developmental Disorder, Hereditary Disorder" network (IPA score of 49) (Figure 6). This 339 340 network was extrapolated from 22 molecules from the list of significantly altered proteins. The network contained, amongst others, integrins $-\alpha v$, $\beta 1$; molecular chaperones -BAG2, 341 342 HSP5A and ECM molecules - VIM, KRT8, matrin 3. The network showed associations with molecules such as Akt, p38 MAPK, MAP2K1/2 and Mek, all of which have been associated 343 with non-Smad TGF β signalling during cancer ^[35, 36]. 344 IPA also suggested that fundamental cellular functions such as (i) RNA post-345

transcriptional modification, (ii) protein synthesis, (iii) cellular movement, and (iv) cellular
 growth and proliferation were altered with TGFβ1 treatment. Most of the canonical pathways

³³⁷

identified had little to no association with cancer with the exception of Eukaryotic translation
initiation factor 2 (eIF2) signalling. However, only 3 molecules that are part of the eIF2
signalling pathway were identified which is not sufficient to infer any biological relevance.

352

Figure 6 The "Protein Synthesis, Developmental Disorder, Hereditary Disorder" network identified by IPA from comparison of the TGF β -treated SW480^{β 60E} cells relative to untreated controls. The network shows the relationships between various differentially expressed proteins observed by proteomics (red, up-regulated; green, down-regulated; white, not observed by proteomics but crucial to the network).

358 2.8 Integrin β6 overexpression alters a wide variety of cancer-related proteins and 359 functions when treated with TGFβ relative to no integrin β6 expression (SW480 360 β6OE+ vs Mo+)

To examine the effect of TGF β when β 6 is overexpressed, we compared the SW480^{β 60E} and SW480^{Mock} cell lines following treatment with TGF β . This showed 344 proteins to be differentially expressed (161 proteins and 149 proteins up-regulated and down-regulated respectively). These data have been functionally classified help 365 interpretation of the molecular events affected by TGF β treatment when β 6 was 366 overexpressed. Some of the key proteins observed are listed in Table 4.

367 Cytoskeletal signalling proteins such as intermediate and actin filament associated proteins aid in maintaining integrity both in and between cells. Our study identified various 368 intermediate filament associated family proteins to be significantly changed in SW480^{β 60E} 369 cells. Several keratins including, keratin, type II cytoskeletal 5 (KRT5) and keratin, type I 370 cytoskeletal 18 (KRT18), all of which are integral to cytoskeletal arrangement in cells ^[37], 371 were down-regulated. Talin-1 and desmoplakin, which are involved in organising 372 connections between various cytoskeletal structures and plasma membrane [38UniProt, 2015 #113]. 373 were up-regulated. 374

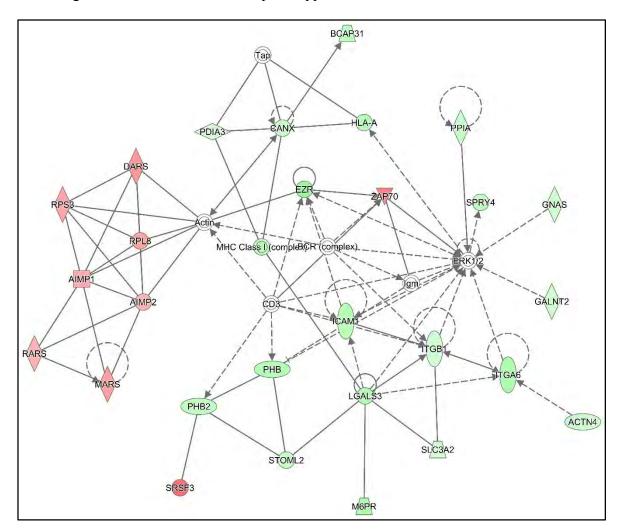
Various actin filament associated proteins such as α -actinin-4, unconventional 375 376 myosin-Ib, unconventional myosin-Id and ezrin (Villin-2) were significantly downregulated. The actin-binding protein, α -actinin-4, has been associated with cell motility and 377 invasion during cancer ^[39]. A recent study by Gosh *et al.* that showed down-regulation of α -378 actinin-4 in the SW620 cell line, which is a metastatic lymph node progenitor of the SW480 379 cell line, supports our results ^[31], suggesting that SW480 cells that express β6 can adopt 380 metastatic cell line behaviour in the presence of TGFβ. Myosin regulatory light chain 12A, 381 a protein known to can play a significant role in cell cell adhesion, proliferation, migration 382 and division ^[40] was significantly up-regulated. Ezrin (villin-2) expression was further 383 validated by Western blot analysis (Figure 11). 384

Increased cell proliferation and migration along with decreased adhesion are 385 important biological/molecular functions required for cancer progression. Our study 386 identified various molecules involved in cell adhesion that were altered with TGFB 387 treatment. Cell surface glycoprotein MUC18 (MCAM), integrin α6, integrin β1 and CD97 388 antigen were down-regulated. Additionally, catenin δ -1 and pinin were significantly up-389 regulated in SW480^{β 60E}. Integrin β 1 is known to affect cell adhesion and migration *in vitro* 390 as it is a receptor for fibronectin and vitronectin ^[41]. Down-regulation of β 1, as a result $\alpha v\beta$ 1, 391 392 could create a shortage of receptors for fibronectin and vitronectin resulting in unstable or loose ECM which may enable cell migration and proliferation ^[41]. 393

Annexin A2, galectin-3, glypican-1, GTPase Kras and Ras GTPase-activating protein-binding protein 1 which are known to regulate cell migration, were all significantly down-regulated. Annexin A2, is known to inhibit cell migration *in vitro* ^[42] and the observed

down-regulation could support the increased cell migration observed in TGFB-treated 397 SW480^{β 60E} cells (Figure 2, 3). The expression of annexin A2 was further validated by 398 Western blot analysis (Figure 11). Liprin β 1 and tight junction protein ZO-2 which are 399 400 involved in the regulation of focal adhesions and tight junctions were also down-regulated. Liprin β 1 could be involved in the regulation of focal adhesion disassembly ^[43] and was 401 shown to be a target for metastasis-associated protein S100-A4^[44]. The down-regulation of 402 various cell migration and adhesion associated molecules indicates that cells may have 403 acquired the ability to spread from the primary cancer site. This is in agreement with the 404 observation that SW480^{β6OE} cells showed increased cell proliferation and migration when 405 treated with TGF β (Figure 2, 3). 406

407 **Table 4** Functional classification of significantly altered proteins observed upon treatment 408 of SW480^{β 60E} cells with TGF β relative to TGF β treated SW480^{Mock} cells (SW480 β 60E+ 409 vs Mo+)^a.


Accession number	Gene name	Protein Name	iTRAQ fold change	Expression pattern		
		Intermediate Filament associated proteins	5			
P35908	KRT2	keratin, type II cytoskeletal 2 epidermal	0.29	\downarrow		
P04264	KRT1	keratin, type II cytoskeletal 1	0.36	\downarrow		
P13647	KRT5	keratin, type II cytoskeletal 5	0.42	\downarrow		
P35527	KRT9	keratin, type I cytoskeletal 9	0.47	\downarrow		
P13645	KRT10	keratin, type I cytoskeletal 10	0.58	\downarrow		
P05783	KRT18	keratin, type I cytoskeletal 18	0.65	\downarrow		
P05787	KRT8	keratin, type II cytoskeletal 8	0.72	\downarrow		
Q9Y490	TLN1	talin-1	1.21	↑		
P15924	DSP	desmoplakin	1.21	1		
Actin filament associated proteins						
O94832	MYO1D	unconventional myosin-Id	0.54	\downarrow		
O43707	ACTN4	alpha-actinin-4	0.70	Ļ		
O43795	MYO1B	unconventional myosin-Ib	0.82	\downarrow		
P19105	MYL12A	myosin regulatory light chain 12A	2.66	1		
	Cell Pro	liferation, migration and adhesion associate	d proteins			
P43121	MCAM	cell surface glycoprotein MUC18	0.24	\downarrow		
P15311	EZR	ezrin (Villin-2)	0.34	Ļ		
P07355	ANXA2	annexin A2	0.39	Ļ		
P23229	ITGA6	integrin alpha-6	0.45	Ļ		
P17931	LGALS3	galectin-3	0.48	Ļ		
P35052	GPC1	glypican-1	0.54	Ļ		
P29317	EPHA2	ephrin type-A receptor 2	0.61	\downarrow		
		150				

Q86W92	PPFIBP1	liprin-beta-1	0.63	I
Q9UDY2	TJP2	tight junction protein ZO-2	0.78	↓
P05556	ITGB1	integrin beta-1	0.79	
P48960	CD97	CD97 antigen	0.82	Ļ
O60716	CTNND1	catenin delta-1	1.24	↓ ↑
Q86UP2	KTN1	kinectin	1.48	Ť
Q9H307	PNN	pinin	1.65	, ↑
		-		
	С	ellular stress and cell death associated proteins	1	
P51572	BCAP31	B-cell receptor-associated protein 31	0.54	\downarrow
P35232	PHB	prohibitin	0.48	\downarrow
P07900	HSP90AA1	heat shock protein HSP 90-alpha	0.49	\downarrow
Q99623	PHB2	prohibitin-2	0.57	\downarrow
P50454	SERPINH1	serpin H1 (47 kDa heat shock protein)	0.71	\downarrow
P08238	HSP90	heat shock protein HSP 90-beta	1.44	↑
O60884	DNAJA2	DnaJ homolog subfamily A member 2	1.63	1
P13010	XRCC5	X-ray repair cross-complementing protein 5	1.89	1
P12956	XRCC6	X-ray repair cross-complementing protein 6	2.09	1
		RAS oncogene family		
P11233	RALA	Ras-related protein Ral-A	0.52	1
P11233 P51149	RAB7A	Ras-related protein Rab-7a	0.52	↓ ↓
P51149 P51148	RAB7A RAB5C	Ras-related protein Rab-5C	0.68	↓ ↓
FJ1140	KADJU	Ras GTPase-activating protein-binding	0.08	\downarrow
Q13283	G3BP1	protein 1	0.72	I
Q15205 P01116	KRAS	GTPase Kras	0.75	↓
101110	ind is		0.70	*
		Other proteins		
O15173	PGRMC2	membrane-associated progesterone receptor component 2	0.68	\downarrow
P02786	TFRC	transferrin receptor protein 1	0.73	\downarrow
Q8N163	KIAA1967	DBIRD complex subunit KIAA1967	0.81	Ļ
		-		

^a Fold change ratios of significantly altered proteins observed in two biological replicates of iTRAQ experiment. These proteins have met the stipulated criteria (i.e., unused protein score >1.3 and change in expression level of at least 1.2 fold for aggressive (SW480^{β 60E} treated with TGF β) vs non-aggressive (SW480^{β 60E} treated with TGF β)

410

This study also identified various molecules that either promote or hinder cell death. Similar to the SW480 β 6OE+ vs β 6OE- comparison, we identified various chaperone and heat shock proteins such as Heat shock protein HSP 90-alpha and serpin H1 (47 kDa heat shock protein) to be down-regulated. B-cell receptor-associated protein 31 (BCAP31), another chaperone protein, which may be involved in CASP-8 mediated apoptosis ^[45] was also down-regulated. Since these proteins play an important role in defence against cellular 417 stress, their down-regulation could be associated with activation of cell death-related 418 pathways. However, other chaperone proteins such as Heat shock protein HSP 90-beta, DnaJ 419 homolog subfamily A member 2, X-ray repair cross-complementing protein 5 (XRCC5) and 420 6 (XRCC6) were significantly up-regulated. XRCC5/6 heterodimer expression shown to be 421 increased in gastric carcinoma and may lead to genome instability ^[46]. This up-regulation of 422 cell repair molecules such as XRCC5 and XRCC6 may promote anoikis suppression and 423 alter the genome towards a metastatic phenotype.

424

Figure 7 "Cellular Movement, Hematological System Development and Function, Immune
Cell Trafficking" network identified by IPA comparing the TGFβ-treated SW480^{β6OE} cells
relative to TGFβ-treated SW480^{Mock} cells. Refer to Figure 6 for legend details.

Various RAS oncogene family related proteins were down-regulated. Ras GTPaseactivating protein-binding protein 1 (G3BP1) and GTPase Kras are known to play an important role in the regulation of cell proliferation ^[47, 48]. G3BPs are overexpressed in a number of cancers, including CRC. In breast cancer cells, G3BP1 is known to affect cell

proliferation though the regulation of PMP22 mRNA expression ^[49]. Interestingly, the 432 membrane-associated progesterone receptor component 2 that is associated with malignant 433 phenotype in breast cancer was observed to be down-regulated in CRC cell lines [50]. 434

IPA analysis of the differentially expressed proteins identified numerous protein 435 networks with IPA scores greater than 15. Important networks include "Cellular Movement, 436 Hematological System Development and Function, Immune Cell Trafficking" (IPA score = 437 40) (Figure 7) and "Cell Cycle, Protein Synthesis, Cellular Development" (IPA score = 28), 438 "Cellular Assembly and Organization, Dermatological Diseases and Conditions, Organismal 439 440 Injury and Abnormalities" (IPA score = 24) and "Cellular Movement, Cell Morphology, Cellular Assembly and Organization" (IPA score = 16). The analysis also identified various 441 fundamental cellular functions that are required for cancer, namely (i) RNA post-442 transcriptional modification, (ii) cell death and survival, (iii) cellular growth and 443 proliferation, (iv) protein synthesis, and (v) cellular development. 444

Table 5 Signalling pathways that are significantly altered in the TGF β -treated SW480^{β 60E} 445 cells, relative to the TGFβ-treated SW480^{Mock} cells. 446

Pathway	Significantly altered proteins (number of molecules)	<i>p</i> value
eIF2 signalling	EIF2S1, RPL7A, RPS10, RPS26, RPS5, RPL26, RPL6, RPS13, RPS19, RPL8, EIF2S2, RPS8, RPS3A, RPL4, RPL14, RPL18A, KRAS , RPS6, RPL17, RPLP2, RPS2, RPL23A, EIF5, RPS3, RPS16, RPL7, EIF2S3, RPS9, RPL18, RPS17, RPL36, RPL34, RPL15, RPL27, RPL10A (35)	2.69E-28
Regulation of eIF4 and p70S6K signalling	EIF2S1, KRAS , RPS6, RPS10, RPS26, RPS5, RPS2, RPS3, RPS19, RPS16, RPS13, EIF2S3, EIF2S2, RPS9, RPS17, ITGB1 , RPS8, RPS3A, PPP2R1B (19)	2.08E-12
mTOR signalling	KRAS , RPS6, RPS10, RPS26, RPS5, RPS2, RPS3, RPS19, RPS16, RPS13, RPS9, RPS17, RPS8, RPS3A, PPP2R1B (15)	3.44E-07

447

448

Three canonical pathways (eIF2 signalling, regulation of eIF4 and p70S6K signalling, and mammalian target of rapamycin (mTOR) signalling) that have previously 449 been implicated in cancer ^[51, 52], were found to be significantly altered (p < 3.44E-07) by 450 IPA, Table 5. Interestingly, KRAS was observed to be involved in all three canonical 451 pathways, suggesting a critical role for KRAS. Additionally, integrin β1 was part of the 452 "regulation of eIF4 and p70S6K signalling" pathway. Proteomic analysis of cells that 453 454 overexpress or do not express the ß6 subunit following treatment with TGFß demonstrated

the differential expression of numerous proteins that regulate a wide variety of molecular 455 mechanisms required for cancer development and progression. IPA analysis identified cell 456 morphology, cellular assembly and organization, cellular movement, cellular growth and 457 proliferation and protein synthesis to be some of the important molecular functions 458 associated with the proteomic data sets. These results show that $\beta 6$ and TGF β together can 459 460 alter various cellular functions related to cancer. To further investigate the effect of TGF β when native expression of $\beta 6$ is greatly reduced we next used the HT29 subclone cell lines 461 as models (HT29^{Mock} cells have endogenous expression of $\beta 6$; HT29^{AS $\beta 6$} cells have the $\beta 6$ 462 expression greatly reduced). 463

464 2.9 Suppressing endogenous β6 expression alters various cancer-related molecules 465 and functions (HT29 Mo- vs AS-)

Prior to examining the effects of TGF β on the HT29 subclones, we compared the proteomes of untreated HT29^{Mock} and HT29^{β 6AS} cells. Significant differences were observed in the expression of 139 proteins, with 69 proteins up-regulated and 70 down-regulated respectively (**Table 6**).

A number of intermediate filament proteins including plectin, KRT18, KRT19 and KRT20 were down-regulated while KRT10 was up-regulated in the HT29^{Mock} cells. Various actin filament associated proteins such as LIM domain and actin-binding protein 1 (LIAM1), α -actinin-4, septin-2, myosin light polypeptide 6 and myosin-9 were found to be upregulated while Myb-binding protein 1A was down-regulated. LIAM1 is known to regulate actin dynamics by cross-linking and stabilizing the filaments ^[53]. Again, α -actinin-4 has previously been implicated in cancer cell motility and invasion ^[39].

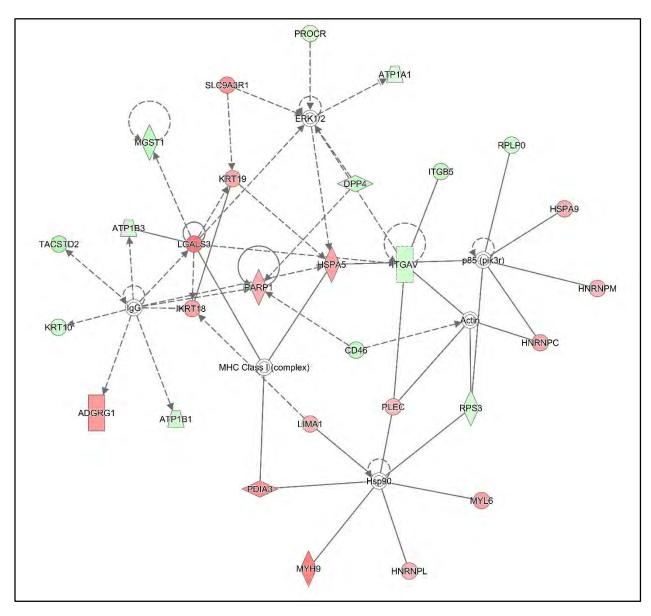
477 **Table 6** Functional classification of significantly altered proteins observed in the untreated 478 HT29^{Mock} cells relative to untreated HT29^{β 6AS} cells (HT29 Mo- vs AS-)^a

Accession number	Gene name	Protein Name	iTRAQ fold change	Expression pattern
		Intermediate Filament associated proteins		
P13645	KRT10	keratin, type I cytoskeletal 10	0.65	\downarrow
Q15149	PLEC	plectin	1.22	↑
P08727	KRT19	keratin, type I cytoskeletal 19	1.49	↑
P05783	KRT18	keratin, type I cytoskeletal 18	1.55	↑
P35900	KRT20	keratin, type I cytoskeletal 20	2.39	1
		Actin filament associated proteins		
Q9BQG0	MYBBP1A	Myb-binding protein 1A	0.47	\downarrow
		450		

Q9UHB6	LIMA1	LIM domain and actin-binding protein 1	1.31	↑
O43707	ACTN4	alpha-actinin-4	1.50	1
P60660	MYL6	myosin light polypeptide 6	1.55	1
Q15019	SEPT2	septin-2	1.63	↑
P35579	MYH9	myosin-9	2.09	1
D (0101		Cell adhesion	0.00	
P43121	MCAM	cell surface glycoprotein MUC18	0.32	\downarrow
P09758	TACSTD2	Tumor-associated calcium signal transducer 2 (Cell surface glycoprotein	0.41	1
107750	TACOID2	Trop-2)	0.71	¥
P18084	ITGB5	integrin beta-5	0.59	\downarrow
		endothelial cell-selective adhesion		
Q96AP7	ESAM	molecule	0.66	\downarrow
P06756	ITGAV	integrin alpha-V	0.71	\downarrow
Q9Y653	GPR56	G-protein coupled receptor 56	1.67	1
		Cell migration		
Q9NX58	LYAR	cell growth-regulating nucleolar protein	0.45	Ţ
P27487	DPP4	dipeptidyl peptidase 4 (CD26)	0.58	ļ
P46013	MKI67	antigen KI-67	1.46	↓ ↑
P17931	LGALS3	galectin-3	2.24	1
P06703	S100A6	S100-A6	3.42	1
		RAS Oncogene family		
Q15907	RAB11B	Ras-related protein Rab-11B	0.41	1
P51149	RAB7A	Ras-related protein Rab-7a	0.55	↓
101117			0.00	*
		ellular stress and cell death associated protei		
P38646	HSPA9	Stress-70 protein, mitochondrial	1.38	↑
Q8WXX5	DNAJC9	DnaJ homolog subfamily C member 9	1.65	1
		Other significantly expressed proteins		
P37059	HSD17B2	estradiol 17-beta-dehydrogenase 2	0.15	\downarrow
Q9Y3A6	TMED5	transmembrane emp24 domain-containing		
-		protein 5	0.35	Ļ
O75695	RP2	XRP2	0.47	\downarrow
P02786	TFRC	transferrin receptor protein 1	0.48	Ļ
Q9UHA4	LAMTOR3	Ragulator complex protein LAMTOR3	0.48	Ļ
P16444	DPEP1	dipeptidase 1	0.53	Ļ
P15529	CD46	membrane cofactor protein	0.53	↓ ↓
Q5ZPR3	CD276	CD276 antigen	0.57	↓ ,
Q9UNN8	PROCR	endothelial protein C receptor	0.70	↓ ,
P07339 Q8N163	CTSD KIAA1967	cathepsin D DBIRD complex subunit KIA A1967	0.79 1.47	↓ ↑
COLLIDS	MIAA190/	DBIRD complex subunit KIAA1967	1.4/	I

^a Fold change ratios of significantly altered proteins observed in two biological replicates of iTRAQ experiment. These proteins have met the stipulated criteria (i.e., unused protein score >1.3 and change in expression level of at least 1.2 fold for aggressive (HT29^{Mock}, endogenous β6 expression) vs non-aggressive (HT29^{β6AS}, artificially reduced β6 expression)
 479

Cellular adhesion molecules such as MCAM, Tumor-associated calcium signal transducer 2 (Cell surface glycoprotein Trop-2), integrins α v and β 5 were down-regulated whereas GPR56 was up-regulated. Trop-2 is a paralog of epithelial cell adhesion molecule (EpCAM) and is overexpressed in ovarian carcinoma and CRC ^[54, 55]. The overexpression of Trop-2 is associated with poor prognosis in ovarian carcinomas ^[54]. The expression of GPR56 has been shown to inhibit tumor cell growth in melanoma and to regulate VEGF production and angiogenesis during melanoma progression ^[56].


487 Cell migration molecules such as cell growth-regulating nucleolar protein and 488 dipeptidyl peptidase 4 (CD26) were down-regulated while Antigen KI-67, Galectin-3 and 489 Protein S100-A6 were up-regulated. S100-A6 is known to be overexpressed in common 490 cancers including colorectal, breast and gastric cancers ^[57, 58]. It is known to affect CRC 491 adenocarcinoma tumourigenesis, invasion and metastasis ^[59] through the ERK and p38 492 MAPK pathways ^[60]. It has also been suggested to be a potential serum prognostic marker 493 for gastric cancer ^[61].

Ras-related proteins Rab-11B and Rab-7a were observed to be down-regulated. The
overexpression of various Ras-related proteins has been associated with increased
proliferation and aggressive cancer phenotypes ^[62]. The expression of Rab-11 in CRC
resulted in increased E-cadherin levels and eventual cell transformation and migration ^[63].
The over-expression of Rab-7, on the other hand, showed tumour suppressor properties in
prostate cancer ^[64]. Cellular stress associated proteins DnaJ homolog subfamily C member
9 and Stress-70 protein, mitochondrial were found to be up-regulated.

501 The current study also showed differential expression of various other proteins such 502 as LAMTOR3, CD276 antigen which were down-regulated while DBIRD complex subunit 503 KIAA1967 (also known as deleted in breast cancer gene 1 protein (DBC1)) and 504 uncharacterized protein KIAA1522 were up-regulated. LAMTOR3, along with LAMTOR2, 505 is part of the Ragulator complex involved in activation of mTORC1 required for MAPK2 506 activation ^[32]. DBC1 has been shown to interact with mutated in colorectal cancer (MCC) 507 and regulates the canonical Wnt signalling pathway through β -catenin ^[65] and has also been

reported to play an important role in tumour suppression by stabilizing the p53/TP53 508 interaction with the murine double minute 2 (MDM2) ubiquitin ligase ^[66]. Expression of 509 DBC1 has been observed in various cancers with varying outcomes ^[67-70]. For instance, 510 DBC1 deficiency in breast cancer cells has been shown to result in apoptosis ^[69]. In CRC 511 specifically, Zhang et al. reported that the overexpression of DBC1 in CRC results in poor 512 prognosis ^[70] whilst Kikuchi *et al.* reported that low expression of DBC1 is associated with 513 poor prognosis ^[71]. Although more evidence from other cancers have shown that 514 overexpression of DBC1, as we have seen, is associated poor prognosis [67-69]. 515 Uncharacterized protein KIAA1522, was observed in this study and although it has not yet 516 been associated with cancer or any related functions been reported to date, a recent study has 517 observed this protein in lung cancer ^[72] and esophageal squamous cell carcinoma ^[73] and 518 indeed Chen et al. reported that KIAA1522 expression was elevated in squamous cell 519 carcinoma compared to squamous cell adenocarcinomas of the lung^[72]. 520

IPA analysis of the entire dataset of the differentially expressed proteins identified 521 522 four protein networks with scores >20 [i.e., "Cellular Function and Maintenance, Small Molecule Biochemistry, Molecular Transport" (IPA score = 53); "Cellular Assembly and 523 Organization, Cell-To-Cell Signaling and Interaction, Reproductive System Development 524 525 and Function" (IPA score = 45); "Cell Cycle, Infectious Diseases, Cancer" (IPA score = 25) and "Cancer, Endocrine System Disorders, Gastrointestinal Disease" (IPA score = 21)]. The 526 combination of all identified networks is shown in Supplementary Figure 1. The "Cellular 527 Function and Maintenance, Small Molecule Biochemistry, Molecular Transport" network 528 contained 29 molecules from the dataset which were involved in these processes, (Figure 8). 529 This network contains various ECM molecules such as keratins (KRT10, KRT18, KRT19), 530 actin associated proteins (MYH9, MYL6), chaperone proteins (HSPA5, HSPA9) which 531 were up-regulated and integrins (αv , $\beta 5$) which were down-regulated. It is important to note 532 that "Cellular Function and Maintenance" was also identified as one of the cellular functions 533 by IPA. Other fundamental cellular functions identified by IPA include (i) RNA post-534 535 transcriptional modification, (ii) cell death and survival, and (iii) cellular growth and proliferation. 536

537

Figure 8 The "Cellular Function and Maintenance, Small Molecule Biochemistry,
 Molecular Transport" network identified by IPA comparing the untreated HT29^{Mock} cells
 relative to the untreated HT29^{β6AS} cells. Refer to Figure 6 for legend details.

IPA also identified two canonical pathways (eIF2 signalling and Granzyme B 541 signalling) to be significantly altered in the dataset. Granzyme B is a cell death-inducing 542 enzyme that is released from the granules of cytotoxic T lymphocytes and natural killer cells 543 when a viral infected cell is marked for elimination ^[74]. The proteolytic cleavage of two key 544 substrates, poly (ADP-ribose) polymerase 1 (PARP1) and lamin B2 (LMNB2), of granzyme 545 B in the nucleus is essential for granzyme B-programmed cell death.^[74]. Interestingly, 546 impairment of granzyme B substrates, including, PARP1, NUMA1 (nuclear mitotic 547 apparatus protein 1), and PRKDC (protein kinase, DNA-activated, catalytic polypeptide) 548

affects its signalling ^[75]. PARP1 and LMNB2 were found to be up-regulated while PRKDC
was observed to be down-regulated in proteomic data.

2.10 TGFβ induced differential expression of more proteins when β6 is natively expressed rather than artificially induced (HT29 Mo+ vs Mo-)

Investigation of HT29^{Mock} cells following treatment with TGFβ showed differential 553 expression of 125 proteins relative to the untreated cells. Among the differentially expressed 554 555 proteins 55 were up-regulated and 70 were down-regulated. Although, this particular comparison can be considered equivalent to $SW480^{\beta 6OE}$ + vs $SW480^{\beta 6OE}$ -, as both these 556 examine the effects of TGF β when β 6 is expressed, the number of differentially expressed 557 proteins was higher in the TGF^β-treated HT29^{Mock} cells (125 proteins) compared to 558 SW480^{β 60E} cells (46 proteins). To facilitate analysis of the data they were functionally 559 classified, and key proteins of interest are listed in Table 7. This comparison identified 560 various intermediary and actin filament proteins, cell proliferation, migration, adhesion and 561 stress-related proteins. 562

563 Keratins have been widely used as immunohistochemical markers in diagnostic pathology. KRT8 and KRT18, have been implicated in breast cancer ^[25] and a wide variety 564 of other cancers, while KRT9 and KRT10 can be used to stain for cervix and squamous skin 565 carcinomas. Up-regulation of KRT10, a downstream molecule of PTEN, was shown to 566 increase cisplatin-resistance in ovarian cancer^[76]. In our current study KRT8 and KRT18 567 were found to be down-regulated while KRT9 and KRT10 were up-regulated. KRT8 down-568 regulation was also observed in the SW480 β 6OE+ vs β 6OE- comparison. LIAM1, which 569 regulates actin dynamics by cross-linking and stabilizing the filaments ^[53], was also down-570 571 regulated.

573	of HT29	9 ^{Mock} cells with	TGF β relative to the untreated control (H	T29 Mo+ vs Mo-) ^a		
_	Accession number	Gene name	Protein Name	iTRAQ fold change	Expression pattern		
Intermediate Filament associated proteins							

Table 7 Functional classification of significantly altered proteins observed upon treatment of HT29^{Mock} cells with TGF β relative to the untreated control (HT29 Mo+ vs Mo-)^a

keratin, type II cytoskeletal 8

keratin, type I cytoskeletal 18

keratin, type I cytoskeletal 10

keratin, type I cytoskeletal 9

P05787

P05783

P13645

P35527

KRT8

KRT18

KRT10

KRT9

Actin filament associated proteins

0.55

0.55

2.07

3.89

↓

↓

1

Q9UHB6	LIMA1	LIM domain and actin-binding protein 1	0.83	\downarrow				
Cell Proliferation, migration and adhesion associated proteins								
P49006	MARCKSL1	MARCKS-related protein	0.45	\downarrow				
P13688	CEACAM1	carcinoembryonic antigen-related cell adhesion molecule 1	0.67	\downarrow				
Q13277	STX3	syntaxin-3	0.72	\downarrow				
Q08431	MFGE8	lactadherin	0.73	\downarrow				
P16422	EPCAM	epithelial cell adhesion molecule	0.75	\downarrow				
Q92542	NCSTN	nicastrin	0.75	\downarrow				
Q86Y82	STX12	syntaxin-12	0.75	\downarrow				
P16070	CD44	CD44 antigen	0.75	\downarrow				
Q13740	ALCAM	CD166 antigen	0.75	\downarrow				
P23229	ITGA6	integrin alpha-6	0.76	\downarrow				
P50895	BCAM	basal cell adhesion molecule	0.78	\downarrow				
P12830	CDH1	cadherin-1 (E-cadherin)	0.80	\downarrow				
P06702	S100A9	protein S100-A9	0.80	\downarrow				
P35613	BSG	basigin (CD147)	0.81	\downarrow				
P27487	DPP4	dipeptidyl peptidase 4 (CD26)	0.81	\downarrow				
Q9UQ80	PA2G4	proliferation-associated protein 2G4	1.34	1				
Q16181	SEPT7	septin-7	1.36	1				
Q9Y653	GPR56	G-protein coupled receptor 56	1.74	1				
Cellular stress and cell death associated proteins								
Q969Q5	RAB24	Ras-related protein Rab-24	0.72	\downarrow				
Q92520	FAM3C	protein FAM3C	0.74	\downarrow				
Q96A26	FAM162A	protein FAM162A	0.80	\downarrow				
P51572	BCAP31	B-cell receptor-associated protein 31	0.81	\downarrow				
P13010	XRCC5	X-ray repair cross-complementing protein 5	1.36	ſ				
P12956	XRCC6	X-ray repair cross-complementing protein 6	1.40	Ť				
		Proteins with unknown function						
Q9BQ61	C19orf43	uncharacterized protein C19orf43	0.58	\downarrow				
^a Fold change	e ratios of significar	ntly altered proteins observed in two biological replicat	tes of iTRAQ exp	eriment. The				

^a Fold change ratios of significantly altered proteins observed in two biological replicates of iTRAQ experiment. These proteins have met the stipulated criteria (i.e., unused protein score >1.3 and change in expression level of at least 1.2 fold for aggressive (HT29^{Mock} treated with TGF β) vs non-aggressive (HT29^{Mock} not treated with TGF β)

574

Various cell adhesion molecules such as CEACAM1 (carcinoembryonic antigenrelated cell adhesion molecule 1), EpCAM, BCAM (basal cell adhesion molecule),
Cadherin-1 (E-cadherin) and lactahedrin were down-regulated following TGFβ treatment
while GPR56 (G-protein coupled receptor 56) was up-regulated in the treated cells. Various

CEACAM molecules including CEACAM1, CEACAM5 and CEACAM6 are now 579 considered valid clinical biomarkers and promising therapeutic targets in colorectal, 580 melanoma, lung, and pancreatic cancers^[77]. E-cadherin is typically expressed in all normal 581 epithelial cells and regulates cell-cell adhesion, mobility and proliferation. Loss or decrease 582 in E-cadherin expression is a well-known diagnostic biomarker for breast cancer and 583 indicates increased invasion and epithelial-to-mesenchymal transition ^[78]. Lactahedrin, 584 which is an RGD-dependent cell adhesion molecule ^[79] and a ligand for integrins $\alpha\nu\beta3$ and 585 $\alpha v\beta 5$, was shown to regulate angiogenesis in mouse models ^[80]. 586

587 Proteins that regulate cellular proliferation and migration such as CD44 antigen, basigin (CD147), Protein S100-A9 and dipeptidyl peptidase 4 (CD26) were down-regulated 588 and Proliferation-associated protein 2G4 (or ErbB3-binding protein 1) were up-regulated. 589 Low preoperative serum levels of CD26 in CRC patients have been shown to correlate with 590 poor prognosis ^[81]. Basigin, has been shown in various cancers to promote the production 591 and/or release of MMPs into the surrounding ECM, which then increase the invasive 592 potential and promotes cancer progression ^[82, 83]. Interestingly, septin-7, which is required 593 for normal organization of the actin cytoskeleton, was also found to be up-regulated while 594 MARCKS-related protein, which regulates cell movement through actin cytoskeleton 595 596 reorganization, was down-regulated. The $\alpha 6$ integrin subunit, a receptor for laminin which is required for the structural integrity of hemidesmosomes, was found to be down-regulated. 597 During prostate cancer, integrin $\alpha 6$ was shown to undergo cleavage in a urokinase-type 598 plasminogen activator (uPA)-dependent manner [84, 85]. This resulted in an increase in 599 laminin-dependant migration, invasion and metastasis. However, blockage of this cleavage 600 resulted in delayed bone metastasis ^[84, 86]. Interestingly, ErbB3-binding protein 1 expression 601 has also been associated with poor prognosis in prostate [87, 88] and breast cancers [89, 90]. A 602 CRC stem cell marker, CD166 (or Activated leukocyte cell adhesion molecule) which is 603 frequently expressed in aggressive tumours was found to be down-regulated ^[91]: it has been 604 reported to be an aggressive marker for breast cancer ^[92] and tumor progression of malignant 605 melanoma^[93]. 606

607 Chaperone protein BCAP31 was found to be down-regulated while XRCC5 and 608 XRCC6 were up-regulated. The decreased expression for XRCC5 has been reported for 609 colon and cervical cancers, and melanoma ^[94].

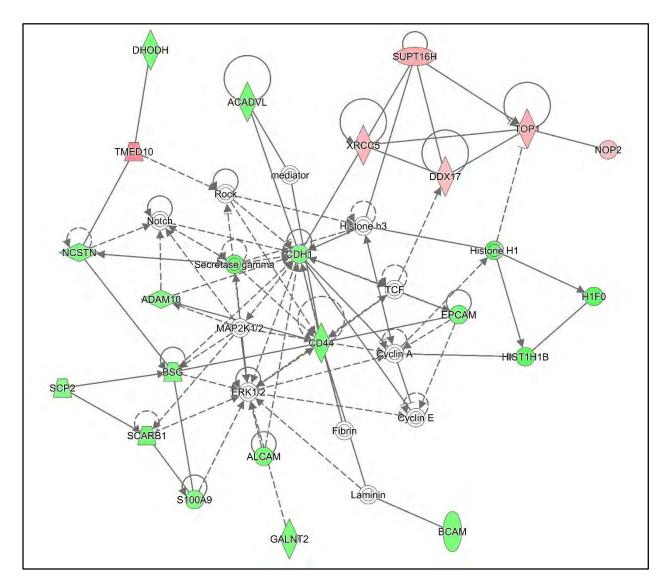


Figure 9 The "Cellular Movement, Cell-To-Cell Signalling and Interaction, Connective
Tissue Development and Function" network identified by IPA comparing the treated
HT29^{Mock} cells relative to the untreated control. Refer to Figure 6 for legend details.

IPA of the differentially expressed proteins identified a total of seven protein 615 networks, six of which has an IPA score ≥ 23 . Amongst these networks were "Cell 616 Morphology, Cellular Assembly and Organization, Cellular Compromise" (IPA score = 64); 617 "Cellular Movement, Cell-To-Cell Signaling and Interaction, Connective Tissue 618 Development and Function" (IPA score = 42) and "Cellular Function and Maintenance, 619 Cellular Assembly and Organization, Cell Cycle" (IPA score = 23). The "Cell Morphology, 620 Cellular Assembly and Organization, Cellular Compromise" network identified 30 proteins 621 involved in these pathway. The jajority of these consisted of various ribosomal proteins, 622 keratins (KRT8, 9, 10, 18) and also integrin α6. Similarly, the "Cellular Movement, Cell-623

To-Cell Signalling and Interaction, Connective Tissue Development and Function" network identified 22 proteins from the dataset. Most of these (Figure 9) contributed to cell adhesion (ALCAM, BCAM, BSG, CD44, CDH1, EpCAM, NCSTN, S100A9, and SCARB1) and were observed to be down-regulated. Interestingly, IPA grouped these various cellular adhesion-related proteins and suggested involvement with ERK1/2, MAP2K1/2 and Notch signalling, all of which have been previously implicated in CRC and other cancers ^[35, 95].

It is clear from the proteomic and IPA results that native expression of integrin β6 induces differential expression of various proteins and affects cellular function when treated with TGFβ. In order to investigate if these TGFβ-induced effects are directly related to integrin β 6 expression, we examined the HT29^{β6AS} cells to determine the effect of treatment following β6 suppression.

635 2.11 β6 suppression reduced the number of differentially expressed proteins upon 636 TGFβ treatment (HT29 AS+ vs AS-)

The HT29^{β 6AS} cells are an ideal model system to investigate the effects of TGF β when only low levels of integrin β 6 are present. Upon treatment with TGF β , HT29^{β 6AS} cells showed significant differences in the expression of 80 proteins, of which 45 proteins were up-regulated and 35 proteins were down-regulated. Key proteins are listed in **Table 8**.

Various intermediate filament associated proteins such as plectin (plectin-1), and 641 642 several keratins were found to be up-regulated. Bausch et al. showed that in pancreatic cancer plectin is expressed only in adenocarcinoma tissue and has been suggested as a 643 potential biomarker to identify primary and metastatic pancreatic ductal adenocarcinoma^[96]. 644 Plectin has been reported to promote migration and invasion in head and neck squamous cell 645 carcinoma (HNCC) through Erk1/2 activation ^[97]. Interestingly, in HNCC the overall 646 survival of patients with higher plectin levels was significantly lower than those with low E-647 cadherin levels ^[97]. In contrast, knockdown of plectin in Chang liver cell resulted in 648 increased cell migration and an increase in focal adhesion kinase (FAK) at the focal 649 adhesions resulting in an invasive phenotype [98]. 650

Actin filament related proteins such as transgelin-2 and septin-2 were observed to be down-regulated. Transgelin-2, which is rarely expressed in normal epithelia, was observed to be overexpressed in lymph nodes and distant metastases, and was associated with decreased overall survival rate in CRC ^[99]. Zhang *et al.* suggested the use of transgelin-2 as a marker for predicting CRC progression and prognosis ^[99]. Huang *et al.* also reported overexpression in gastric cancer tissue samples ^[100]. Interestingly, TGFβ is known to increase transgelin expression via direct binding of Smad3 to the Smad-binding elements within the *TAGLN* promoter region ^[101]. Increased expression resulted in higher cell proliferation and migration rates in the ATII cells ^[101]. Microtubule associated proteins tubulin-β and tubulin-β 4B chains were found to be up-regulated in the TGFβ treated cells.

Table 8 Functional classification of significantly altered proteins observed upon treatment of HT29^{β 6AS} cells with TGF β relative to the untreated control (HT29 AS+ vs AS-)^a

Accession number	Gene name	Protein name	iTRAQ fold change	Expression pattern
	Ι	ntermediate Filament associated pro		•
Q15149	PLEC	plectin (plectin-1)	1.25	↑
P35900	KRT20	keratin, type I cytoskeletal 20	1.31	↑
P04264	KRT1	keratin, type II cytoskeletal 1	2.01	↑
P13645	KRT10	keratin, type I cytoskeletal 10	2.23	↑
P02538	KRT6A	keratin, type II cytoskeletal 6A	4.92	↑
Q04695	KRT17	keratin, type I cytoskeletal 17	5.13	↑
P08779	KRT16	keratin, type I cytoskeletal 16	5.81	1
		Actin filament associated protein	S	
P37802	TAGLN2	transgelin-2	0.78	\downarrow
Q15019	SEPT2	septin-2	0.80	\downarrow
P60660	MYL6	myosin light polypeptide 6	1.35	1
		Microtubule associated proteins		
P07437	TUBB	tubulin beta chain	1.94	Ť
P68371	TUBB4B	tubulin beta-4B	1.97	1
	Cell Prolife	eration, migration and adhesion asso	ciated proteins	
P21926	CD9	CD9 antigen	0.69	\downarrow
P16070	CD44	CD44 antigen	0.73	\downarrow
P17301	ITGA2	integrin alpha-2	1.22	↓ ↑
Q9Y653	GPR56	G-protein coupled receptor 56	2.14	↑
P05109	S100A	protein S100-A8	9.24	\uparrow
		RAS oncogen family		
P20340	RAB6A	Ras-related protein Rab-6A	0.74	\downarrow
Q15907	RAB11B	Ras-related protein Rab-11B	0.76	\downarrow
		Other Significantly expressed prote	ins	
Q96A26	FAM162A	protein FAM162A	0.57	\downarrow
P11279	LAMP1	lysosome-associated membrane glycoprotein 1	0.63	Ţ
		166		•

Q96KN1	FAM84B	protein FAM84B (Breast cancer membrane protein 101)	0.69	\downarrow
Q9BYG3	MKI67IP	MKI67 FHA domain-interacting nucleolar phosphoprotein	1.22	↑
Q8N163	KIAA1967	DBIRD complex subunit KIAA1967 (Deleted in breast cancer 1 (DBC1))	1.60	Ţ

^a Fold change ratios of significantly altered proteins observed in two biological replicates of iTRAQ experiment. These proteins have met the stipulated criteria (i.e., unused protein score >1.3 and change in expression level of at least 1.2 fold for aggressive (HT29^{β 6AS} treated with TGF β) vs non-aggressive (HT29^{β 6AS} not treated with TGF β)

663

CD9 and CD44 antigens were significantly down-regulated. CD9 antigen has been 664 associated with cell adhesion, cell motility and tumor metastasis ^[102, 103]. For example, 665 Murayama et al. have shown that CD9 can bind with epidermal growth factor receptor 666 (EGFR) on human gastric cell line (MKN-28) and two CD9-transfected cell lines -667 668 hepatocellular carcinoma cells (HepG2/CD9) and Chinese hamster ovary cancer cells (CHO-HER/CD9)^[104]. They also showed that CD9 expression in the CHO-HER cells completely 669 attenuates the EGFR signalling and resulted in decreased EGFR expression at the cell surface 670 [104] 671

Integrin $\alpha 2$, GPR56 and protein S100-A8 were up-regulated. Integrin $\alpha 2\beta 1$ is a 672 receptor for laminin, collagen, collagen C-propeptides, fibronectin and E-cadherin. It is 673 674 known to regulate cell adhesion and invasion in prostate cancer through the FAK/src/paxillin/Rac/JNK pathway that leads to increased MMP-2 and -9 activity and 675 eventual invasion ^[105]. Ramierz *et al.* showed that loss of integrin $\alpha 2\beta 1$ promotes breast 676 cancer and is associated with decreased survival in breast and prostate cancers ^[106], 677 suggesting the use of $\alpha 2$ expression as a putative biomarker, particularly for prostate cancer 678 ^[106, 107]. S100-A8 usually forms a heterodimer with S100-A9 that has been shown to be up-679 regulated in various cancers including CRC, gastric cancer and prostate cancer ^[108]. The 680 S100-A8/A9 complex may influence tumor cell migration, invasion and metastasis. In CRC, 681 the complex has been shown to be expressed in the invasive margins of the tumor ^[109]. The 682 co-expression of S100-A8/A9 in ductal carcinomas of the breast has been associated with 683 poor tumor differentiation, vessel invasion and node metastasis ^[110]. The differential 684 expression of Protein S100-A8 in the $HT29^{\beta 6AS}$ cells was validated by Western blotting 685 (Figure 11). Furthermore, we observed the up-regulation of KIAA1967 (or DBC1) and 686 MKI67 FHA domain-interacting nucleolar phosphoprotein. The role of DBC1 has been 687 discussed in the previous sections. 688

To further understand the biological significance of these data the differentially 689 expressed proteins were analysed using IPA. IPA identified three protein networks with 690 scores > 20: "Cell-To-Cell Signalling and Interaction, Protein Synthesis, Cell Death and 691 692 Survival" (IPA score = 47); "Cellular Movement, Hair and Skin Development and Function, Cell-To-Cell Signaling and Interaction" (IPA score = 27) and "Cell Death and Survival, 693 Cancer, Organismal Injury and Abnormalities" (IPA score = 21). Taken together these 694 networks (Supplementary Figure 2) identified several ECM related molecules including 695 plectin, CD44, Keratins (KRT1, 6A, 10, 16, 17), microtubule-associated protein 4 (MAP4), 696 MYL6, protein S100-A8, septin-2, transgelin 2, tubulin- β , tubulin- β 4B, integrin α 2, Rab-697 698 6A and Rab-11B. IPA appropriately grouped these molecules showing interrelations with other molecules such as annexin A2, basigin, caveloin-1, Ras, p38 MAPK, and EGFR, which 699 700 are known cancer associated proteins. The top cellular functions identified by IPA include (i) RNA post-transcriptional modification (ii) cellular assembly and organization, (iii) cell 701 702 growth and proliferation, (iv) cell cycle, and (iv) cell death and survival.

2.12 TGFβ treatment of cells expressing different levels of β6 exhibited differential expression of molecules essential for cancer-related functions (HT29 Mo+ vs AS+)

705 It was clear from the two previous comparisons that $\beta 6$ expression directly affects 706 the number of differentially expressed proteins following treatment with TGFB. The comparison of HT29^{Mock} and HT29^{β6AS} cells when both were treated with TGFβ showed 707 differential expression of 159 proteins, of which 84 proteins were up-regulated and 75 708 proteins were down-regulated. Similar to the previous comparisons a wide range of proteins 709 710 associated with intermediate filaments, actin filaments, microtubules, cell adhesion, cell migration, cellular stress and cell death, and RAS oncogene family proteins were found to 711 712 be differentially expressed (Table 9).

Intermediate filament proteins KRT17 and KRT6A were down-regulated while 713 KRT20 and KRT9 were up-regulated. Various actin filament associated proteins such as 714 Actin, cytoplasmic 2 (γ -actin), α -actinin-4, myosin-9, septin-2, septin-7, and septin-9 were 715 significantly down-regulated. Septin-2, -6 and -7 are required for normal organization of 716 actin cytoskeleton. The expression of these septins is coupled, whereby up-regulation in any 717 one member can induce the expression of the other two ^[111] which is the case in this study. 718 719 The knockdown of these proteins in HeLa cells resulted in disintegration of stress fibres and caused cells to lose polarity ^[112]. Kremer *et al.* showed that these three septins are required 720

for regulation of the actin cytoskeleton and cell-cycle arrest. The cell-cycle arrest is mediated
by NCK which is translocated into the nucleus by SOCS7 (suppressor of cytokine signaling7). The proposed septin-SOCS7-NCK axis can then control the DNA-damage kinase cascade
and induce the activation of Chk2 (checkpoint kinase 2) and p53 required for cell cycle arrest
^[112].

Table 9 Functional classification of significantly altered proteins observed upon TGF β treatment of HT29^{Mock} cells relative to the TGF β treated HT29^{β 6AS} cells (HT29 Mo+ vs AS+)

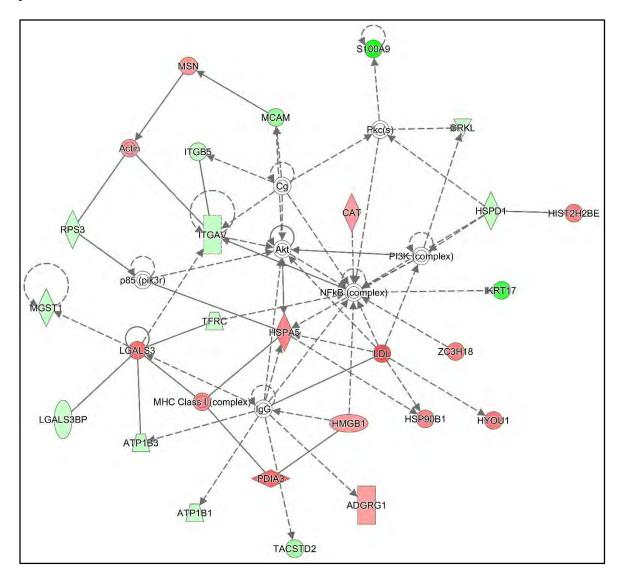
Accession number	Gene name	Protein Name	iTRAQ fold change	Expression pattern
number	папіс	Intermediate Filament associated proteins	e	pattern
Q04695	KRT17	keratin, type I cytoskeletal 17	0.19	I
P02538	KRT6A	keratin, type II cytoskeletal 6A	0.19	¥
P35900	KRT20	keratin, type I cytoskeletal 20	1.60	↓ ↑
P35527	KRT9	keratin, type I cytoskeletal 9	1.92	1
		Actin filement associated proteins		
OODOCO		Actin filament associated proteins	0.55	1
Q9BQG0	MYBBP1A	Myb-binding protein 1A	0.55	\downarrow
P63261	ACTG1	actin, cytoplasmic 2	1.51	^
O43707	ACTN4	alpha-actinin-4	1.70	1
P35579	MYH9	myosin-9	1.74	↑ ↑
Q16181	SEPT7	septin-7	2.12	1
Q9UHD8	SEPT9	septin-9	2.15	↑ ↑
Q15019	SEPT2	septin-2	2.25	Ť
		Microtubule associated proteins		
P07437	TUBB	tubulin beta chain	0.38	\downarrow
Q71U36	TUBA1A	tubulin alpha-1A	0.38	\downarrow
Q00610	CLTC	clathrin heavy chain 1	0.55	\downarrow
P26038	MSN	moesin	1.52	1
		Cell adhesion		
P43121	MCAM	cell surface glycoprotein MUC18	0.36	I
Q96AP7	ESAM	endothelial cell-selective adhesion molecule	0.50	Ļ
P06756	ITGAV	integrin alpha-V	0.63	↓
P18084	ITGRV ITGB5	integrin beta-5	0.66	↓
P17301	ITGD5 ITGA2	integrin alpha-2	0.80	↓
O60716	CTNND1	catenin delta-1 (p120)	1.35	↓ ↑
Q9Y653	GPR56	G-protein coupled receptor 56	1.33	↑ ↑
P35221	CTNNA1	catenin alpha-1	1.38	 ↑
P13688	CEACAM1	carcinoembryonic antigen-related cell adhesion molecule 1	1.41	⊺ ↑

		Cell migration		
P06702	S100A9	protein S100-A9	0.16	\downarrow
P27487	DPP4	dipeptidyl peptidase 4 (CD26)	0.54	\downarrow
Q08380	LGALS3BP	galectin-3-binding protein	0.70	\downarrow
P46013	MKI67	antigen KI-67	1.33	1
P17931	LGALS3	galectin-3	2.05	1
P06703	S100A6	protein S100-A6	2.89	ſ
		RAS Oncogene family		
Q15907	RAB11B	Ras-related protein Rab-11B	0.58	\downarrow
P51149	RAB7A	Ras-related protein Rab-7a	0.62	\downarrow
P57735	RAB25	Ras-related protein Rab-25	0.64	\downarrow
	Cell	ular stress and cell death associated proteins		
P50454	SERPINH1	serpin H1 (47 kDa heat shock protein)	1.52	↑
P14625	HSP90B1	endoplasmin	1.72	ſ
P11021	HSPA5	78 kDa glucose-regulated protein (Heat		
		shock 70 kDa protein 5)	1.75	ſ
Q9Y4L1	HYOU1	hypoxia up-regulated protein 1	1.90	ſ
Q8WXX5	DNAJC9	DnaJ homolog subfamily C member 9	1.98	Î
		Other significantly expressed proteins		
P09758	TACSTD2	tumor-associated calcium signal transducer 2	0.40	\downarrow
P55061	TMBIM6	bax inhibitor 1	0.47	\downarrow
Q9UHA4	LAMTOR3	Ragulator complex protein LAMTOR3	0.54	\downarrow
Q08945	SSRP1	FACT complex subunit SSRP1	1.41	1
Q9HDC9	APMAP	adipocyte plasma membrane-associated protein	1.53	ſ
P04439	HLA-A	HLA class I histocompatibility antigen, A-3 alpha chain	1.66	ſ
Q53GQ0	HSD17B12	estradiol 17-beta-dehydrogenase 12	1.79	ſ

^a Fold change ratios of significantly altered proteins observed in two biological replicates of iTRAQ experiment. These proteins have met the stipulated criteria (i.e., unused protein score >1.3 and change in expression level of at least 1.2 fold for aggressive (HT29^{Mock} treated with TGF β) vs non-aggressive (HT29^{B6AS} treated with TGF β)

728

Several cell adhesion molecules such as MCAM, integrins αv , $\alpha 2$ and $\beta 5$ were downregulated whereas catenin α -1, catenin δ -1 (or p120 catenin), GPR56 and CEACAM1were significantly down-regulated. Catenins are known to associate with and regulate cell adhesion properties of various cadherins that are crucial for cell stability ^[113]. Catenin δ -1 can bind to and inhibit ZBTB33, a transcriptional repressor, which may lead to activation of Wnt target genes ^[114]. Casagolda *et al.* showed that catenin δ -1 can regulate Wnt signalling when complexed with CK1 ϵ (casein kinase 1 ϵ) through the LRP (lipoprotein receptor-related proteins) 5/6 ^[115].

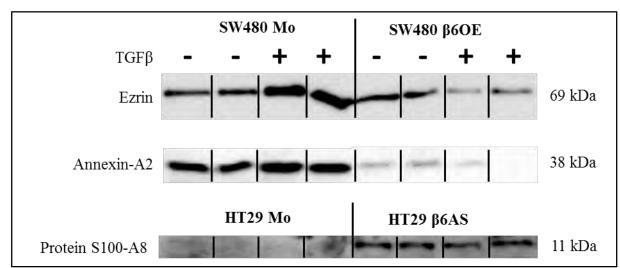

Increased expression of several cellular stress and cell death related proteins
including serpin H1, endoplasmin, 78 kDa glucose-regulated protein (heat shock 70 kDa
protein 5), hypoxia up-regulated protein 1 and DnaJ homolog subfamily C member 9 was
observed. The up-regulation of these proteins could reflect the activation of pathways
required for suppression of anoikis, in turn promoting a malignant phenotype.

Down-regulation of Ras-related proteins Rab-11B, Rab-7a and Rab-25 was observed in the HT29^{Mock} cell line. The roles of Rab-11B and Rab-7a have been discussed above. Rab-25 expression has been shown to be low in human CRC independent of stage. However, studies using mouse models have shown that Rab-25 deficiency promotes development of colonic neoplasia ^[116].

Interestingly, the down-regulation of tumor-associated calcium signal transducer 2, Bax inhibitor 1 (BI-1) and Ragulator complex protein LAMTOR3 was also observed. The low expression of BAX, a downstream effector of p53, in CRC is associated with poor prognosis for patients with resected liver metastases ^[117]. The down-regulation of Bax inhibitor 1 could be a signal to increase the levels of BAX that are associated with better prognosis. Additionally, Grzmil *et al.* showed different levels of BI-1 expression, which is required to avert in apoptosis various breast cancers ^[118].

The biological significance of these data was examined using IPA. IPA of the 754 755 differentially expressed proteins identified multiple protein networks with scores > 20: "Cell-To-Cell Signaling and Interaction, Cellular Movement, Protein Degradation" (IPA 756 score = 41) (Figure 10), "Cancer, Organismal Injury and Abnormalities, Respiratory 757 758 Disease" (IPA score = 41), "Cellular Assembly and Organization, Cell-To-Cell Signaling 759 and Interaction, Reproductive System Development and Function" (IPA score = 24), 760 "Cellular Compromise, Cell Cycle, DNA Replication, Recombination, and Repair" (IPA 761 score = 24) and "Cellular Movement, Hematological System Development and Function, Immune Cell Trafficking" (IPA score = 24). The networks identified potential involvement 762 of a multitude of molecules including integrins (αv , $\beta 5$), keratins (KRT6A, KRT17), heat 763 shock proteins (HSPA5, HSPD1, HSP90B1), chaperonin containing TCP1, subunits (CCT2, 764 CCT3, CCT4, CCT5, CCT6A, CCT7, CCT8), adhesion molecules (MCAM, CEACAM1, 765 DPP4), protein S100-A8 and -A9, and septins (-2, -7, -9). These molecules are known to 766

have crucial cellular functions including (i) cellular growth and proliferation, (ii) cell death
and survival, (iii) cell-to-cell signalling and interaction, (iv) cellular compromise, and (v)
cellular function and maintenance. The entire subset of CCT proteins were found to be
significantly down-regulated by proteomics (iTRAQ fold change was in range of 0.54 –
0.74). It was not surprising to see IPA associate actin, ERK1/2, p38 MAPK, Akt and PI3K
(complex) with these networks as they are known to mediate cancer related cellular
processes.



774

Figure 10 The top IPA network, "Cell-To-Cell Signaling and Interaction, Cellular Movement, Protein Degradation", identified when comparing the TGF β -treated HT29^{Mock} cells relative to TGF β -treated HT29^{β 6AS} cells. The network is illustrates the relationships between various differentially expressed proteins observed by proteomics (red, up-regulated; green, down-regulated; white, not observed by proteomics but crucial to the network).

781 2.13 Validation of proteomic results by Western blotting

To validate the differential expression of ezrin, annexin-A2 and S100-A8 observed by iTRAQ, these proteins were analysed by Western blotting. These results were generally in agreement with the fold changes observed through iTRAQ (Figure 11), although Western blot analysis of protein S100-A8 does not reflect the large fold change (†9.24) observed by proteomics. However, the intensity measurements performed using Image Studio Lite (v5.0) show at least a 20% fold change which was the minimum cut-off used in the iTRAQ proteomic study.

Figure 11 Validation of proteomic results. The differential expression of 3 proteins were

validated by Western-blot analysis. The down-regulation of ezrin and annexin- A2 was
observed in the SW480β6OE cells, relative to the TGFβ-treated SW480Mock cells, by
western-blot studies which confirmed the iTRAQ results shown in Table 4. The upregulation of Protein S100-A8 in the TGFβ-treated HT29β6AS cells, relative to the
untreated, also supported the iTRAQ results.

795 2.14 TGFβ can alter expression of crucial cancer related networks in a β6-dependent 796 manner

From the results obtained from both cell-based and proteomics studies, it is clear that TGF β treatment of cells expressing any amount of $\beta6$ results in differential expression of basic cellular functions required for CRC. IPA provided numerous correlations between the proteomic data and altered cell functions in CRC. These results demonstrate the impact of TGF β and $\beta6$ expression in CRC on many important cell functions in CRC (e.g., apoptosis, cell death, adhesion, proliferation, migration, and invasion). The proteins identified by IPA and significant changes in CRC cell function and listed in supplementary table 1. As would be expected, some of these proteins were observed in our previous proteomics study using
 SW480 subclones ^[18].

806

2.15 TGFβ and β6 together alter expression of potential biomarkers

Using the biomarker function in IPA, we identified 76 proteins in our proteomics 808 study that have been suggested as potential biomarkers by the American Society of Clinical 809 Oncology (ASCO) (Supplementary Table 2). Annexin A2, for example, has been suggested 810 as a diagnostic and prognostic marker for CRC [119, 120] and was also seen to be down-811 regulated in SW620 (lymph node metastatic variant of SW480)^[31]. Our observation of 812 down-regulation of annexin A2 is in agreement with the data of Ghosh *et al.* ^[31]. Various 813 keratins (KRT1, KRT5, KRT6A, KRT8, KRT9, KRT17, KRT18, KRT20) were also 814 identified to be markers for diagnosis, disease progression, prognosis, and efficacy. Karantza 815 et al. have published a detailed review on the role of keratins in cancer, and illustrated the 816 use of keratins as diagnostic and prognostic markers for various cancers including CRC^[37]. 817 The S100 proteins A6, A8 and A9 were also identified as potential markers for diagnosis 818 and efficacy. Yang *et al.* have shown that S100-A6 is up-regulated in gastric cancer^[57] which 819 is supported by the data of Zhang et al. who showed that higher levels of S100-A6 in serum 820 could be used as prognostic marker in gastric cancer [61]. It is interesting to speculate that 821 some of the new potential biomarkers identified in this study could act as markers for 822 823 processes that are altered in a TGFβ- and β6-dependent manner during cancer progression.

824

825 **3. CONCLUSIONS**

TGF β is now known to play key roles in regulating normal cell growth as well as cancer cell growth. Its role in cancer is poorly understood but there are multiple reports suggesting its association with various cancer-related pathways such as Erk, Ras, p38 MAPK, AKT, Wnt and PI3k ^[35, 36]. Similarly, TGF β has also been associated with the integrin $\alpha\nu\beta6$, which is known to activate latent-TGF $\beta1$ and TGF $\beta3$ through the RGD binding domain on their latency associated peptides ^[121]. Interestingly, overexpression of both TGF β and the $\beta6$ have been associated with CRC ^[9, 122].

To the best of our knowledge, this is the first study to examine membrane proteome changes of SW480^{Mock}, SW480^{β 60E}, HT29^{Mock} and HT29^{β 6AS} cell lines after treatments with active TGF β . Our focus was to identify membrane proteomic changes associated with TGF β treatments at a concentration (10 ng/mL) that recapitulates the levels found in CRC plasma ^[9] and tissues ^[10]. This study employed Triton X-114 phase partitioning to enrich for highly hydrophobic integral membrane proteins that were subsequently analysed using iTRAQ. Using this high-throughput quantitative proteomics approach we identified several proteins as significantly altered in a TGF β and $\beta \beta$ dependant manner. The expression changes observed were validated using Western blotting.

IPA of the proteomic data associated TGF β treatment with fundamental cancerrelated functions such as adhesion, proliferation, migration, invasion, apoptosis and cell death. The differential expression of these proteins associated with these functions provides some insight into the TGF β - β 6-dependent pathophysiology of CRC. Additionally, the initial cellbased experiments performed as a part of this study conclusively demonstrated that TGF β mediates cell proliferation, wound healing, and invasion in a β 6-dependent manner in support of the proteomics results.

849 This study also demonstrated that TGF β treatment of β 6-expressing cells alters key cell functions and pathways required for cancer progression. For example, the proteomic 850 data identified that the expression of numerous eIF2 and eIF4 signalling pathway members 851 including eIF2A, eIF2S1, eIF2S2, eIF2S3, and KRAS changed significantly when treated 852 with TGFB. Using these observations, IPA identified eIF2 signalling as one of the top 853 canonical pathways for majority of the comparisons examined. The eIF2 signalling complex, 854 made up of the three essential subunits eIF2S1, eIF2S2, and eIF2S3, controls stress-related 855 signals to regulate both global and specific mRNA translation, and thus protein synthesis 856 ^[123]. The up-regulation of these eIF2 subunits could suggest the need to sustain increased 857 858 protein levels for the abnormal functioning associated with cancer. However, the increased 859 protein levels cannot be achieved without eIF4 which is necessary to deliver the mRNA to eIF3 for translation into polypeptide. Although eIF4 was not observed in this proteomic 860 study, it may be up-regulated during a later stage or have been suppressed in a TGFB-861 dependent manner. Interestingly, eIF4G1 a member of the eIF4 complex was observed to be 862 up-regulated in our previous proteomic study using the SW480 subclones ^[18] and has been 863 reported to be up-regulated in breast ^[124] and lung ^[125] cancers. 864

The loss of cell adhesion is an important prerequisite for cancer cells to be able to proliferate, migrate and invade into other tissues. The proteomic data provided insights into how this could be achieved. Based on differential expression of various adhesion related

molecules identified, including EpCAM, nicastrin, CD44, DPP4, ITGA6, cadherin, MCAM, 868 ezrin, and annexin A2, IPA predicted alterations to cellular functions such as "cell movement 869 of cancer cell lines", "migration of tumour cell lines" and "invasion of tumour cell lines". 870 871 These functions clearly align with the cell-based experiments where treatment increased both cell proliferation and wound healing ability. In contrast to the invasion assay results (Figure 872 3), where no significant change was observed following treatment with TGF β , the 873 proteomics data suggest that the cells may have the ability to invade the ECM. This is 874 supported by the differential expression of various proteins required for cell movement, 875 proliferation, migration and invasion (Supplementary Table 1). Additionally, the differential 876 expression of various integrins such as αv , $\alpha 2$, $\beta 1$ and $\beta 5$ (key receptors for fibronectin, 877 vitronectin and fibrinogen) may contribute to altered ECM stability, potentially modulating 878 cancer cell proliferation, migration and invasion^[41]. 879

The loss of adhesion enables the cancer cells to spread to adjacent tissue and 880 881 eventually metastasise. It is known that cells trigger anoikis when cell adhesion is lost or improper. The suppression of anoikis therefore becomes an important requirement for 882 tumour cells and the proteomic observations provided insights to this process. On the basis 883 of significant up-regulation of many proteins associated with this process (i.e., DNAJA1, 884 885 DNAJA2, Hsp40, HSP90AB1, BAG-2, XRCC5, XRCC6, HSPA5, and HSPD), IPA identified "apoptosis of tumour cell lines" and "cell death of epithelial cell lines" as functions 886 that were altered following TGF β treatment. The cancer cells that survive gain the 887 mesenchymal phenotype (thorough EMT) and metastasise. 888

EMT is an important critereon for CRC progression and metastasis ^[126]. It was 889 890 therefore not surprising to note that the epithelial cell marker, E-cadherin, was shown to be down-regulated by proteomics (Table 7). However, it was interesting to note that vimentin, 891 892 the commonly acknowledged mesenchymal marker, was also observed to be down-regulated (Table 3), as seen in our lab's previous study ^[18]. The down-regulation of these two proteins 893 was observed in cells with high expression of $\beta 6$ (SW480^{$\beta 6OE$} and HT29^{Mock}) and was 894 observed only when treated with active TGF^β. This could suggest a cancer promoting role 895 896 of β6 mediated indirectly through TGFβ receptor system.

This study also identified significant change in the expression of two uncharacterised proteins, KIAA1522 and C19orf43. Interestingly there have been reports of KIAA1552 being involved in lung cancer and esophageal squamous cell carcinoma ^[72, 73]. Our data

supports the previous findings suggesting that KIAA1522 has a potential role to play in 900 cancer. C19orf43 has not been reported by any other cancer proteomic studies thus far. The 901 Human Protein Atlas (HPA) ^[127] shows the presence of both KIAA1522 and C19orf43 in 902 cancer tissues by IHC. Using the HPA032050 antibody against KIAA1522, HPA reports its 903 expression in a wide range of cancers. In CRC specifically, KIAA1522 was observed to have 904 a medium expression in > 50% of the samples (7/12) while high expression was observed in 905 normal tissues. Similarly, using the HPA059965 antibody against C19orf43, HPA has shown 906 that it too is expressed in a wide range of cancers. In CRC, it was observed to have low to 907 medium expression whereas a high to medium expression was observed in normal tissues. 908 909 The HPA data now needs to be further validated by proteomics and other antibody based methods such Western blotting, enzyme-linked 910 as immunosorbent assay, immunoprecipitation and flow cytometry to confirm their role in cancer and other diseases. 911

912 In summary, this study analysed the membrane-enriched proteome of TGFβ-treated CRC cell lines (SW480 and HT29) that exhibit varying levels of $\beta 6$ expression. A 913 consortium of range of molecules that affect various fundamental cellular processes required 914 915 for cancer progression were identified. Among the differentially expressed proteins, 74 have been previously proposed as protein biomarkers for either cancer diagnosis, prognosis, 916 917 progression or response to therapy. These results support the observations from the cellbased experiments where TGF^β treatment in some cases promoted cell proliferation, wound 918 healing and invasion. The down-regulation of vimentin and E-cadherin upon TGFB 919 treatment suggests a cancer-promoting role for TGFB when associated with B6 expression. 920 Through proteomic analysis of membrane enriched samples we have identified significant 921 alteration in numerous proteins and fundamental cellular process required for cancer 922 progression. This allows, we believe, the first significant insight into the joint action of TGF^β 923 and $\beta 6$ expression in CRC, detailing how these molecules can promote metastatic 924 925 phenotypes. This could assist in the development of targeted therapies against CRC 926 metastasis.

927 4. CONFLICT OF INTEREST

The authors declare no actual or potential conflicts of interest; including any financial, personal or other relationships with other people or organizations.

930 **5. ACKNOWLEDGEMENTS**

This study was supported with funding from Faculty of Health and Medical Sciences, 931 Macquarie University, International Macquarie University Research Excellence 932 Scholarships (iMQRES), NSW Cancer Council, Cancer Institute NSW and MQ Biofocus 933 Research Centre. We would also like to thank Dr Dana Pascovici for her help in designing 934 and performing the necessary statistical analysis for this project. The manuscript was written 935 with all authors making significant academic contributions in alignment with the Vancouver 936 937 Protocol. All authors have given approval for the final version of this manuscript to be submitted for review. 938

939 SUPPLEMENTARY INFORMATION

940 Details all the materials and methods used in this study are given in the Supplementary 941 material.

942 The two excel files provided contain the list of all significantly up- or down-regulated943 proteins identified in various comparisons of this study.

Supplementary Figure 1. The top four networks identified for the HT29 Mo- vs β6AS(merged image).

Supplementary Figure 2. The top three networks identified for the HT29 Mo- vs β6AS(merged image).

Supplementary Table 1. Cellular function that were significantly altered in integrin β6 and
TGFβ defendant manner.

Supplementary Table 2. Proteins that are significantly up- or down-regulated in this studyand those that can be used as ASCO cancer biomarkers and their respective applications.

Supplementary Table 3: Complete list of proteins identified within the SW480
comparisons. Fold changes >1.2 are considered up-regulated and <0.83 are considered
down-regulated.

Supplementary Table 3: Complete list of proteins identified within the HT29 comparisons.

Fold changes >1.2 are considered up-regulated and <0.83 are considered down-regulated.

- 957
- 958

959 **REFERENCES**

- Zhang, Q., N. Yu, and C. Lee, *Mysteries of TGF-beta Paradox in Benign and* Malignant Cells. Front Oncol, 2014. 4: p. 94.
- 962 2. Weiss, A. and L. Attisano, *The TGFbeta superfamily signaling pathway*. Wiley
 963 Interdiscip Rev Dev Biol, 2013. 2(1): p. 47-63.
- Massague, J., *The transforming growth factor-beta family*. Annu Rev Cell Biol, 1990. 6: p. 597-641.
- Massague, J., *TGF-beta signal transduction*. Annu Rev Biochem, 1998. 67: p. 753 967 91.
- Annes, J.P., J.S. Munger, and D.B. Rifkin, *Making sense of latent TGFbeta activation*. Journal of cell science, 2003. 116(Pt 2): p. 217-24.
- 970 6. Massague, J. and D. Wotton, *Transcriptional control by the TGF-beta/Smad*971 *signaling system*. EMBO J, 2000. 19(8): p. 1745-54.
- 972 7. Massague, J., *TGFbeta in Cancer*. Cell, 2008. **134**(2): p. 215-30.
- 973 8. Fuxe, J., T. Vincent, and A. Garcia de Herreros, *Transcriptional crosstalk between*974 *TGF-beta and stem cell pathways in tumor cell invasion: role of EMT promoting*975 *Smad complexes.* Cell cycle, 2010. 9(12): p. 2363-74.
- 976
 9. Tsushima, H., et al., *High levels of transforming growth factor beta 1 in patients with colorectal cancer: association with disease progression.* Gastroenterology, 1996.
 978
 110(2): p. 375-82.
- 10. Kemik, O., et al., *Transforming growth factor beta-1 in human colorectal cancer patients*. Eur J Gen Med, 2011. 8(1): p. 53-56.
- 981 11. Munger, J.S., et al., *The integrin alpha v beta 6 binds and activates latent TGF beta*982 *1: a mechanism for regulating pulmonary inflammation and fibrosis.* Cell, 1999.
 983 **96**(3): p. 319-28.
- Yang, G.Y., et al., *Integrin alpha v beta 6 mediates the potential for colon cancer cells to colonize in and metastasize to the liver*. Cancer Sci, 2008. **99**(5): p. 879-87.
- Hazelbag, S., et al., Overexpression of the alpha v beta 6 integrin in cervical squamous cell carcinoma is a prognostic factor for decreased survival. J Pathol, 2007. 212(3): p. 316-24.
- 14. Ahmed, N., et al., *Alpha(v)beta(6) integrin-A marker for the malignant potential of epithelial ovarian cancer*. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society, 2002. **50**(10): p. 1371-80.
- 15. Ahn, S.B., et al., Characterization of the interaction between heterodimeric alphavbeta6 integrin and urokinase plasminogen activator receptor (uPAR) using functional proteomics. J Proteome Res, 2014. 13(12): p. 5956-64.
- 995 16. Dang, D., et al., *Matrix metalloproteinases and TGFbetal modulate oral tumor cell matrix*. Biochem Biophys Res Commun, 2004. **316**(3): p. 937-42.
- 997 17. Allen, M.D., et al., *Altered Microenvironment Promotes Progression of Pre-Invasive*998 *Breast Cancer: myoepithelial expression of alphavbeta6 integrin in DCIS identifies*999 *high-risk patients and predicts recurrence.* Clin Cancer Res, 2013.
- 1000 18. Cantor, D., et al., Overexpression of alphavbeta6 integrin alters the colorectal cancer cell proteome in favor of elevated proliferation and a switching in cellular adhesion that increases invasion. Journal of proteome research, 2013. 12(6): p. 2477-1003 90.
- 1004 19. Agrez, M., et al., *The alpha v beta 6 integrin promotes proliferation of colon*1005 *carcinoma cells through a unique region of the beta 6 cytoplasmic domain.* The
 1006 Journal of cell biology, 1994. **127**(2): p. 547-56.

- Ahmed, N., et al., *Direct integrin alphavbeta6-ERK binding: implications for tumour growth.* Oncogene, 2002. 21(9): p. 1370-80.
- 1009 21. Geback, T., et al., *TScratch: a novel and simple software tool for automated analysis of monolayer wound healing assays.* Biotechniques, 2009. 46(4): p. 265-74.
- 101122.Thomas, G.J., et al., *Expression of the alphavbeta6 integrin promotes migration and invasion in squamous carcinoma cells.* J Invest Dermatol, 2001. **117**(1): p. 67-73.
- 1013 23. Thomas, G.J., et al., *AlphaVbeta6 integrin promotes invasion of squamous*1014 *carcinoma cells through up-regulation of matrix metalloproteinase-9.* Int J Cancer,
 1015 2001. 92(5): p. 641-50.
- Pascovici, D., et al., Combining protein ratio p-values as a pragmatic approach to the analysis of multirun iTRAQ experiments. J Proteome Res, 2015. 14(2): p. 738-46.
- Walker, L.C., et al., *Cytokeratin KRT8/18 expression differentiates distinct subtypes* of grade 3 invasive ductal carcinoma of the breast. Cancer Genet Cytogenet, 2007. **178**(2): p. 94-103.
- Ponten, F., et al., A global view of protein expression in human cells, tissues, and organs. Mol Syst Biol, 2009. 5: p. 337.
- 1024 27. Tuffy, K.M. and S.L. Planey, *Cytoskeleton-Associated Protein 4: Functions Beyond*1025 *the Endoplasmic Reticulum in Physiology and Disease*. ISRN Cell Biology, 2012.
 1026 2012: p. 11.
- 1027 28. Hanahan, D. and R.A. Weinberg, *The hallmarks of cancer*. Cell, 2000. 100(1): p. 57 1028 70.
- 1029 29. Frisch, S.M. and H. Francis, *Disruption of epithelial cell-matrix interactions induces apoptosis*. J Cell Biol, 1994. **124**(4): p. 619-26.
- Meredith, J.E., Jr., B. Fazeli, and M.A. Schwartz, *The extracellular matrix as a cell survival factor*. Mol Biol Cell, 1993. 4(9): p. 953-61.
- 1033 31. Ghosh, D., et al., *Identification of key players for colorectal cancer metastasis by*1034 *iTRAQ quantitative proteomics profiling of isogenic SW480 and SW620 cell lines.* J
 1035 Proteome Res, 2011. 10(10): p. 4373-87.
- 103632.Nada, S., et al., p18/LAMTOR1: a late endosome/lysosome-specific anchor protein1037for the mTORC1/MAPK signaling pathway. Methods Enzymol, 2014. 535: p. 249-103863.
- 1039 33. Lombardo, Y., et al., *Nicastrin and Notch4 drive endocrine therapy resistance and epithelial to mesenchymal transition in MCF7 breast cancer cells.* Breast Cancer 1041 Res, 2014. 16(3): p. R62.
- 104234.Filipovic, A., et al., Biological and clinical implications of nicastrin expression in1043invasive breast cancer. Breast Cancer Res Treat, 2011. 125(1): p. 43-53.
- 1044 35. Cheruku, H.R., et al., *Transforming growth factor-\beta, MAPK and Wnt signaling* 1045 *interactions in colorectal cancer.* EuPA Open Proteomics, 2015(0).
- 1046 36. Zhang, Y.E., *Non-Smad pathways in TGF-beta signaling*. Cell Res, 2009. 19(1): p. 128-39.
- 1048 37. Karantza, V., *Keratins in health and cancer: more than mere epithelial cell markers.*1049 Oncogene, 2011. **30**(2): p. 127-38.
- 1050 38. Baumann, K., *Cell Migration Talin Heads Off.* Nature Reviews Molecular Cell
 1051 Biology, 2009. 10(6).
- Honda, K., et al., *Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion.* J Cell Biol, 1998. 140(6): p. 1383-93.
- 105440.Park, I., et al., Myosin regulatory light chains are required to maintain the stability1055of myosin II and cellular integrity. Biochem J, 2011. 434(1): p. 171-80.

- 1056
 41.
 Ganguly, K.K., et al., Integrins and metastasis. Cell Adh Migr, 2013. 7(3): p. 251

 1057
 61.
- Balch, C. and J.R. Dedman, *Annexins II and V inhibit cell migration*. Exp Cell Res, 1997. 237(2): p. 259-63.
- Serra-Pages, C., et al., *Liprins, a family of LAR transmembrane protein-tyrosine phosphatase-interacting proteins.* J Biol Chem, 1998. 273(25): p. 15611-20.
- Kriajevska, M., et al., *Liprin beta 1, a member of the family of LAR transmembrane tyrosine phosphatase-interacting proteins, is a new target for the metastasis- associated protein S100A4 (Mts1).* J Biol Chem, 2002. 277(7): p. 5229-35.
- 1065 45. Nguyen, M., et al., *Caspase-resistant BAP31 inhibits fas-mediated apoptotic membrane fragmentation and release of cytochrome c from mitochondria*. Mol Cell
 1067 Biol, 2000. 20(18): p. 6731-40.
- Li, W., et al., *Abnormal DNA-PKcs and Ku 70/80 expression may promote malignant pathological processes in gastric carcinoma*. World J Gastroenterol, 2013. 19(40):
 p. 6894-901.
- 1071 47. Zimmermann, G., et al., *Small molecule inhibition of the KRAS-PDEdelta interaction impairs oncogenic KRAS signalling*. Nature, 2013. **497**(7451): p. 638-42.
- 107348.Yang, M.H., et al., Regulation of RAS oncogenicity by acetylation. Proc Natl Acad1074Sci U S A, 2012. 109(27): p. 10843-8.
- 49. Winslow, S., K. Leandersson, and C. Larsson, *Regulation of PMP22 mRNA by*G3BP1 affects cell proliferation in breast cancer cells. Mol Cancer, 2013. 12(1): p.
 1077 156.
- 1078 50. Ji, S., A. Wu, and H. Yang, *[Expression of progesterone receptor membrane component-1 is associated with the malignant phenotypes of breast cancer]*. Nan Fang Yi Ke Da Xue Xue Bao, 2012. **32**(5): p. 635-8.
- 108151.He, Y., et al., The role of PKR/eIF2alpha signaling pathway in prognosis of non-1082small cell lung cancer. PLoS One, 2011. 6(11): p. e24855.
- Sun, S.Y., et al., Activation of Akt and eIF4E survival pathways by rapamycinmediated mammalian target of rapamycin inhibition. Cancer Res, 2005. 65(16): p. 7052-8.
- 108653.Maul, R.S., et al., EPLIN regulates actin dynamics by cross-linking and stabilizing1087filaments. J Cell Biol, 2003. 160(3): p. 399-407.
- 108854.Bignotti, E., et al., Trop-2 overexpression as an independent marker for poor overall1089survival in ovarian carcinoma patients. Eur J Cancer, 2010. 46(5): p. 944-53.
- 1090 55. Ohmachi, T., et al., *Clinical significance of TROP2 expression in colorectal cancer*.
 1091 Clin Cancer Res, 2006. **12**(10): p. 3057-63.
- 1092 56. Xu, L., et al., *GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis.* Proc Natl Acad Sci U S A, 2006. 103(24): p. 9023-8.
- 1095 57. Yang, Y.Q., et al., Upregulated expression of S100A6 in human gastric cancer. J Dig
 1096 Dis, 2007. 8(4): p. 186-93.
- 109758.Cross, S.S., et al., Expression of S100 proteins in normal human tissues and common1098cancers using tissue microarrays: S100A6, S100A8, S100A9 and S100A11 are all1099overexpressed in common cancers. Histopathology, 2005. 46(3): p. 256-69.
- 1100 59. Komatsu, K., et al., *Expression of S100A6 and S100A4 in matched samples of human colorectal mucosa, primary colorectal adenocarcinomas and liver metastases.*1102 Oncology, 2002. **63**(2): p. 192-200.

- 1103 60. Duan, L., et al., *S100A6 stimulates proliferation and migration of colorectal carcinoma cells through activation of the MAPK pathways*. Int J Oncol, 2014. 44(3):
 p. 781-90.
- 1106 61. Zhang, J., et al., *S100A6 as a potential serum prognostic biomarker and therapeutic target in gastric cancer*. Dig Dis Sci, 2014. **59**(9): p. 2136-44.
- Subramani, D. and S.K. Alahari, *Integrin-mediated function of Rab GTPases in cancer progression*. Mol Cancer, 2010. 9: p. 312.
- 1110 63. Chung, Y.C., et al., *Rab11 regulates E-cadherin expression and induces cell transformation in colorectal carcinoma*. BMC Cancer, 2014. 14: p. 587.
- Steffan, J.J., et al., Supporting a role for the GTPase Rab7 in prostate cancer
 progression. PLoS One, 2014. 9(2): p. e87882.
- 111465.Pangon, L., et al., MCC inhibits beta-catenin transcriptional activity by sequestering1115DBC1 in the cytoplasm. Int J Cancer, 2015. 136(1): p. 55-64.
- 1116 66. Qin, B., et al., *DBC1 functions as a tumor suppressor by regulating p53 stability*.
 1117 Cell Rep, 2015. 10(8): p. 1324-34.
- 1118 67. Cho, D., et al., *The expression of DBC1/CCAR2 is associated with poor prognosis of ovarian carcinoma*. J Ovarian Res, 2015. 8(1): p. 2.
- Bae, J.S., et al., *CK2alpha phosphorylates DBC1 and is involved in the progression of gastric carcinoma and predicts poor survival of gastric carcinoma patients*. Int J Cancer, 2015. **136**(4): p. 797-809.
- 112369.Kim, W. and J.E. Kim, Deleted in breast cancer 1 (DBC1) deficiency results in1124apoptosis of breast cancer cells through impaired responses to UV-induced DNA1125damage. Cancer Lett, 2013. 333(2): p. 180-6.
- 112670.Zhang, Y., et al., DBC1 is over-expressed and associated with poor prognosis in1127colorectal cancer. Int J Clin Oncol, 2014. 19(1): p. 106-12.
- 1128 71. Kikuchi, K., et al., *High SIRT1 expression and low DBC1 expression are associated*1129 *with poor prognosis in colorectal cancer.* journal of Cancer Therapeutics and
 1130 Research, 2013. 2(1).
- 1131 72. Liu, Y.Z., et al., *A panel of protein markers for the early detection of lung cancer* 1132 *with bronchial brushing specimens.* Cancer Cytopathol, 2014. **122**(11): p. 833-41.
- 1133 73. Chen, Y., et al., Screening aberrant methylation profile in esophageal squamous cell
 1134 carcinoma for Kazakhs in Xinjiang area of China. Mol Biol Rep, 2015. 42(2): p.
 1135 457-64.
- 1136 74. Chowdhury, D. and J. Lieberman, *Death by a thousand cuts: granzyme pathways of programmed cell death.* Annu Rev Immunol, 2008. 26: p. 389-420.
- 1138 75. Bermejo-Martin, J.F., et al., *Host adaptive immunity deficiency in severe pandemic influenza*. Crit Care, 2010. 14(5): p. R167.
- 1140 76. Wu, H., et al., *PTEN overexpression improves cisplatin-resistance of human ovarian*1141 *cancer cells through upregulating KRT10 expression*. Biochem Biophys Res
 1142 Commun, 2014. 444(2): p. 141-6.
- 1143 77. Beauchemin, N. and A. Arabzadeh, *Carcinoembryonic antigen-related cell adhesion*1144 *molecules (CEACAMs) in cancer progression and metastasis.* Cancer Metastasis
 1145 Rev, 2013. 32(3-4): p. 643-71.
- 1146 78. Singhai, R., et al., *E-Cadherin as a diagnostic biomarker in breast cancer*. N Am J
 1147 Med Sci, 2011. 3(5): p. 227-33.
- Taylor, M.R., et al., Lactadherin (formerly BA46), a membrane-associated glycoprotein expressed in human milk and breast carcinomas, promotes Arg-GlyAsp (RGD)-dependent cell adhesion. DNA Cell Biol, 1997. 16(7): p. 861-9.

- 1151 80. Neutzner, M., et al., MFG-E8/lactadherin promotes tumor growth in an angiogenesis-dependent transgenic mouse model of multistage carcinogenesis.
 1153 Cancer Res, 2007. 67(14): p. 6777-85.
- 1154 81. Cordero, O.J., et al., *Preoperative serum CD26 levels: diagnostic efficiency and predictive value for colorectal cancer*. Br J Cancer, 2000. **83**(9): p. 1139-46.
- 1156 82. Kanekura, T. and X. Chen, *CD147/basigin promotes progression of malignant melanoma and other cancers*. J Dermatol Sci, 2010. **57**(3): p. 149-54.
- 1158 83. Muramatsu, T. and T. Miyauchi, *Basigin (CD147): a multifunctional transmembrane* 1159 protein involved in reproduction, neural function, inflammation and tumor invasion.
 1160 Histopathol, 2003. 18(3): p. 981-7.
- 1161 84. Ports, M.O., et al., *Extracellular engagement of alpha6 integrin inhibited urokinase-*1162 *type plasminogen activator-mediated cleavage and delayed human prostate bone*1163 *metastasis.* Cancer Res, 2009. **69**(12): p. 5007-14.
- 1164 85. Pawar, S.C., et al., *Integrin alpha6 cleavage: a novel modification to modulate cell migration*. Exp Cell Res, 2007. **313**(6): p. 1080-9.
- 1166 86. Rabinovitz, I., R.B. Nagle, and A.E. Cress, *Integrin alpha 6 expression in human*1167 *prostate carcinoma cells is associated with a migratory and invasive phenotype in*1168 *vitro and in vivo*. Clin Exp Metastasis, 1995. **13**(6): p. 481-91.
- 1169 87. Gannon, P.O., et al., *Ebp1 expression in benign and malignant prostate*. Cancer Cell
 1170 Int, 2008. 8: p. 18.
- 1171 88. Zhang, Y., et al., *EBP1, an ErbB3-binding protein, is decreased in prostate cancer*1172 *and implicated in hormone resistance.* Mol Cancer Ther, 2008. 7(10): p. 3176-86.
- 1173 89. Zhang, Y., D. Akinmade, and A.W. Hamburger, *Inhibition of heregulin mediated* 1174 *MCF-7 breast cancer cell growth by the ErbB3 binding protein EBP1*. Cancer Lett, 1175 2008. 265(2): p. 298-306.
- 90. Ou, K., et al., Quantitative profiling of drug-associated proteomic alterations by combined 2-nitrobenzenesulfenyl chloride (NBS) isotope labeling and 2DE/MS identification. J Proteome Res, 2006. 5(9): p. 2194-206.
- 1179 91. Levin, T.G., et al., *Characterization of the intestinal cancer stem cell marker CD166*1180 *in the human and mouse gastrointestinal tract.* Gastroenterology, 2010. 139(6): p.
 1181 2072-2082 e5.
- 1182 92. Tan, F., et al., *Enhanced down-regulation of ALCAM/CD166 in African-American*1183 Breast Cancer. BMC Cancer, 2014. 14: p. 715.
- van Kempen, L.C., et al., Activated leukocyte cell adhesion molecule/CD166, a
 marker of tumor progression in primary malignant melanoma of the skin. Am J
 Pathol, 2000. 156(3): p. 769-74.
- 118794.Korabiowska, M., et al., Differential expression of DNA nonhomologous end-joining1188proteins Ku70 and Ku80 in melanoma progression. Mod Pathol, 2002. 15(4): p. 426-118933.
- Hu, Y.Y., et al., *Notch signaling pathway and cancer metastasis*. Adv Exp Med Biol, 2012. 727: p. 186-98.
- 1192 96. Bausch, D., et al., *Plectin-1 as a novel biomarker for pancreatic cancer*. Clin Cancer
 1193 Res, 2011. 17(2): p. 302-9.
- 1194 97. Katada, K., et al., *Plectin promotes migration and invasion of cancer cells and is a*1195 *novel prognostic marker for head and neck squamous cell carcinoma*. J Proteomics,
 1196 2012. 75(6): p. 1803-15.
- 1197 98. Cheng, C.C., et al., *Transient knockdown-mediated deficiency in plectin alters hepatocellular motility in association with activated FAK and Rac1-GTPase*. Cancer Cell Int, 2015. 15: p. 29.

- 1200 99. Zhang, Y., et al., Identification of transgelin-2 as a biomarker of colorectal cancer
 1201 by laser capture microdissection and quantitative proteome analysis. Cancer Sci,
 1202 2010. 101(2): p. 523-9.
- 100. Huang, Q., et al., *Identification of transgelin as a potential novel biomarker for gastric adenocarcinoma based on proteomics technology*. J Cancer Res Clin Oncol, 2008. **134**(11): p. 1219-27.
- 101. Yu, H., et al., *Transgelin is a direct target of TGF-beta/Smad3-dependent epithelial cell migration in lung fibrosis.* FASEB J, 2008. 22(6): p. 1778-89.
- Masellis-Smith, A. and A.R. Shaw, *CD9-regulated adhesion. Anti-CD9 monoclonal antibody induce pre-B cell adhesion to bone marrow fibroblasts through de novo recognition of fibronectin.* J Immunol, 1994. **152**(6): p. 2768-77.
- 1211 103. Ikeyama, S., et al., Suppression of cell motility and metastasis by transfection with human motility-related protein (MRP-1/CD9) DNA. J Exp Med, 1993. 177(5): p. 1231-7.
- 1214 104. Murayama, Y., et al., *The tetraspanin CD9 modulates epidermal growth factor* 1215 *receptor signaling in cancer cells.* J Cell Physiol, 2008. **216**(1): p. 135-43.
- 1216 105. Van Slambrouck, S., et al., *Reorganization of the integrin alpha2 subunit controls*1217 *cell adhesion and cancer cell invasion in prostate cancer*. Int J Oncol, 2009. 34(6):
 1218 p. 1717-26.
- 1219 106. Ramirez, N.E., et al., *The alpha(2)beta(1) integrin is a metastasis suppressor in mouse models and human cancer.* J Clin Invest, 2011. **121**(1): p. 226-37.
- 107. Marthick, J.R. and J.L. Dickinson, *Emerging putative biomarkers: the role of alpha 2 and 6 integrins in susceptibility, treatment, and prognosis.* Prostate Cancer, 2012.
 2012: p. 298732.
- 1224 108. Salama, I., et al., *A review of the S100 proteins in cancer*. Eur J Surg Oncol, 2008.
 1225 34(4): p. 357-64.
- 109. Stulik, J., et al., *The analysis of S100A9 and S100A8 expression in matched sets of macroscopically normal colon mucosa and colorectal carcinoma: the S100A9 and S100A8 positive cells underlie and invade tumor mass.* Electrophoresis, 1999. 20(4-5): p. 1047-54.
- 1230 110. Arai, K., et al., S100A8 and S100A9 overexpression is associated with poor pathological parameters in invasive ductal carcinoma of the breast. Curr Cancer Drug Targets, 2008. 8(4): p. 243-52.
- 1233 111. Kinoshita, M., et al., *Self- and actin-templated assembly of Mammalian septins*. Dev Cell, 2002. 3(6): p. 791-802.
- 1235 112. Kremer, B.E., L.A. Adang, and I.G. Macara, *Septins regulate actin organization and cell-cycle arrest through nuclear accumulation of NCK mediated by SOCS7*. Cell, 2007. 130(5): p. 837-50.
- 1238 113. Ishiyama, N., et al., Dynamic and static interactions between p120 catenin and E-cadherin regulate the stability of cell-cell adhesion. Cell, 2010. 141(1): p. 117-28.
- 1240 114. UniProt, C., UniProt: a hub for protein information. Nucleic Acids Res, 2015.
 1241 43(Database issue): p. D204-12.
- 1242 115. Casagolda, D., et al., *A p120-catenin-CK1epsilon complex regulates Wnt signaling*.
 1243 J Cell Sci, 2010. **123**(Pt 15): p. 2621-31.
- 1244 116. Nam, K.T., et al., Loss of Rab25 promotes the development of intestinal neoplasia in mice and is associated with human colorectal adenocarcinomas. J Clin Invest, 2010.
 1246 120(3): p. 840-9.

- 1247 117. Sturm, I., et al., Analysis of the p53/BAX pathway in colorectal cancer: low BAX is
 1248 a negative prognostic factor in patients with resected liver metastases. J Clin Oncol,
 1249 1999. 17(5): p. 1364-74.
- 1250 118. Grzmil, M., et al., *Expression and functional analysis of Bax inhibitor-1 in human*1251 *breast cancer cells.* J Pathol, 2006. 208(3): p. 340-9.
- 1252 119. Gurluler, E., et al., Serum annexin A2 levels in patients with colon cancer in comparison to healthy controls and in relation to tumor pathology. Med Sci Monit, 2014. 20: p. 1801-7.
- 1255 120. Yang, T., et al., *Prognostic and diagnostic significance of annexin A2 in colorectal cancer*. Colorectal Dis, 2013. **15**(7): p. e373-81.
- 1257 121. Annes, J.P., D.B. Rifkin, and J.S. Munger, *The integrin alphaVbeta6 binds and activates latent TGFbeta3*. FEBS Lett, 2002. 511(1-3): p. 65-8.
- 1259 122. Ahn, S.B., et al., *Correlations between integrin alphanubeta6 expression and clinico-pathological features in stage B and stage C rectal cancer*. PLoS One, 2014.
 1261 9(5): p. e97248.
- 1262 123. Stolboushkina, E.A. and M.B. Garber, *Eukaryotic type translation initiation factor*1263 2: structure-functional aspects. Biochemistry (Mosc), 2011. 76(3): p. 283-94.
- 1264124.Nathan, C.O., et al., Elevated expression of eIF4E and FGF-2 isoforms during1265vascularization of breast carcinomas. Oncogene, 1997. 15(9): p. 1087-94.
- 1266 125. Seki, N., et al., *Expression of eukaryotic initiation factor 4E in atypical adenomatous*1267 *hyperplasia and adenocarcinoma of the human peripheral lung*. Clin Cancer Res,
 1268 2002. 8(10): p. 3046-53.
- 1269 126. Loboda, A., et al., *EMT is the dominant program in human colon cancer*. BMC Med
 1270 Genomics, 2011. 4: p. 9.
- 1271 127. Uhlen, M., et al., *Proteomics. Tissue-based map of the human proteome.* Science, 2015. 347(6220): p. 1260419.

1 3.2.2 – Supplemental files

2 SUPPLEMENTARY INFORMATION

3 S1. MATERIALS AND METHODS

4 S1.1 Cell lines

Two different colorectal adenocarcinoma cell lines SW480 and HT29 were used in 5 this study. The SW480 cells (ATCC CCL-228[™]) [1] devoid of endogenous β6 expression 6 were employed to engineer two stably transfected subclones used in this study. These cells 7 were stably transfected with a pcDNA1Neo expression vector containing either an 'empty' 8 vector (SW480^{Mock}) or the full-length integrin β6 subunit coding sequence under control of 9 the human cytomegalovirus immediate early enhancer (i.e., $SW480^{\beta 6OE}$) as previously 10 described [2]. HT29 cells (ATCC HTB-38[™]) [371] which endogenously express the β6 11 integrin, were stably transfected with the pEF.PGK.puro vector containing either an 'empty' 12 vector (HT29^{Mock}) or the β 6 cDNA sequence in an antisense orientation (HT29^{β 6AS}) under 13 the control of the human polypeptide chain elongation factor-1a promoter as previously 14 described [3]. HT29^{β 6AS} cells do express β 6 however this is strongly reduced [3]. The stable 15 transfectant clones of these cells were a kind gift from Prof. Michael Agrez (University of 16 17 Newcastle, Australia). Each cell line has been previously found to be invasive by matrigel invasion assays [2-4] and intrinsically express uPAR, TGF\u00b3R1 and TGF\u00b3R2. Cell lines 18 19 tested negative for Mycoplasma infection using the PCR-based VenorGeM Mycoplasma 20 Detection Kit (Minerva Biolabs Cat. No. 11-1050).

SW480 subclone cells were cultured in Dulbecco's Modified Eagle Medium 21 (DMEM; Invitrogen, catalogue number: 19965-092) supplemented with 10% foetal bovine 22 serum (FBS) (Invitrogen) and 500µg/mL geneticin (G418 sulfate, Invitrogen; 11811-031). 23 HT29 subclone cells were cultured in Roswell Park Memorial Institute medium (RPMI; 24 Invitrogen, catalogue number: 11875-093) supplemented with 10% FBS and 2.5µg/mL 25 puromycin (Life Technologies; A11138-02). Both cell lines were incubated at 37°C in 5% 26 CO₂ for each incubation step unless otherwise stated. Serum-free (SF) media for both cell 27 lines contained 0.5% FBS. 28

29 S1.2 Recombinant protein treatment protocol

The recombinant protein treatment method employed during this study remained constant for all the assays. Freshly passaged CRC subclone cells were seeded and incubated in serum-containing media for 24 hrs. Media was then changed to SF media and serum starved for 24 hrs. At this point recombinant proteins were aseptically introduced into respective wells and incubated for the time period required for each assay. Recombinant Human TGFβ1 was purchased from R&D Systems (Minnesota, USA) and SB431542 (TGFβ Receptor I kinase inhibitor) was purchased from Abcam (Cambridge, UK).

Four treatment conditions were employed for this study: 1) SF media as a negative control, 2) SF media + 10ng/mL active TGF β , 3) SF media + 10 μ M SB431542 and 4) SF media + 10ng/mL active TGF β + 10 μ M SB431542. The active TGF β 1 was added to the culture 30min after treating with SB431542. All the cell based experimental comparisons were performed in biological triplicates and experiments were independently repeated at least two times. The data is presented as a percentage of the untreated mock transfectant controls.

44 S1.3 Wound-healing assay

A wound healing assay was performed to mimic cell migration under stress 45 conditions. In brief, 5.0×10^5 freshly passaged SW480 subclone cells were plated in six-well 46 plates and incubated in serum media until a confluent monolayer had formed. The cells were 47 then wounded using a the fine end of a 10µL pipette tip (0.35mm diameter) and stimulated 48 with 10 ng/mL TGFβ1 or 10 μM SB431542 or both in the presence of SF media for 24 h, 49 following prior serum deprivation in SF media for 24h. The pictures of the wounds were 50 taken at 0h and 24h after wounding. The cells were observed using a 10x objective on a 51 Leica DM-IL microscope with a Leica DFC280 digital imager. Three images were taken at 52 random along the 'wound' for each well. The width of the wound before and after treatments 53 was calculated using TScratch software (http://cse-lab.ethz.ch/software/) [5]. The median 54 width measurements were then used for statistical testing. All conditions were performed in 55 56 biological triplicate and statistical testing for significance performed using a Student's t-test with a significance cut-off of p < 0.05. 57

58 S1.4 Invasion assay

The ability of cells to invade through extra-cellular matrix (ECM) was assessed using 59 60 the Chemicon QCM 96-well Invasion Assay Kit (ECM555, CHEMICON, International, CA, USA) and performed according to manufacturer's instructions. Briefly, serum starved (0.5% 61 FBS v/v) CRC subclone cells were non-enzymatically (trypsin/EDTA) detached from the 62 63 growing surface and resuspended in SF media. Then, 5×10^4 cells and recombinant proteins were placed in the invasive chamber and incubated at 37 °C for 18-24 hrs. The cells which 64 migrated through the ECM layer and attached to the bottom of the polycarbonate membrane, 65 66 were dissociated from the membrane after incubation with the 150 µL of Cell Detachment Solution (37 °C for 30 min). Next, 50 µL of lysis buffer/CyQuant GR Dye Solution (1:75) 67 was added to each well and incubated (15 min, room temperature). Finally, 150 µL of this 68 mixture was transferred to a new 96-well plate, and the fluorescence was measured using a 69 FLUOstar OPTIMA microplate spectrophotometer (BMG Labtech) using 480 nm/520 nm 70 filter set. All conditions were performed in biological triplicate and statistical testing for 71 significance performed using a Student's t-test with a significance cut-off of p<0.05. 72

73 S1.5 Cell-proliferation assay

The cells were seeded at a density of 1×10^5 (SW480) or 5×10^4 (HT29) cells into six-74 well plates and prepared for recombinant protein treatment as outlined above. The cells were 75 then incubated in the presence of recombinant proteins for 24hrs. Cells were detached from 76 77 the plate surface by trypsinization, gently mixed in a 1:1 ratio of cell suspension to 0.4% Trypan Blue (Sigma Aldrich) and the live cells enumerated using a BioRad TC-10TM 78 automated cell counter. It should be noted that the trypan blue exclusion measures the steady 79 state balance between cell viability and proliferation does not measure cell death. All 80 conditions were performed in biological triplicate and statistical testing for significance 81 performed using a Student's t-test with a significance cut-off of p<0.05. 82

83 S1.6 Membrane Protein enrichment

Subclones of SW480 and HT29 cell lines were seeded in 15-cm cell culture dishes and at a confluence of 70-75%, were stimulated with 10 ng mL⁻¹ of TGF β 1 in the presence of SF media for 24 h, following prior serum deprivation overnight. The cells were then collected in lysis buffer containing (50 mM Tris-HCl, 100 mM NaCl, protease inhibitor cocktail (Roche Applied Science) and phosphatase inhibitors (Sigma Aldrich)) and left on ice for 30 min before proceeding to membrane enrichment. The cells were stored at -80 °C
 if not used immediately and were thawed on ice before proceeding to membrane enrichment.

Membrane enrichment was performed using a previously published method [6] with 91 slight modifications. In detail, the crude cell lysate was homogenized in the lysis buffer using 92 a probe sonicator (Branson Sonifier 450; www.bransonultrasonics.com) [7]. The 93 homogenized cell lysate was centrifuged at 2000g (20 min, 4 °C) to remove nuclei and cell 94 debris. The supernatant containing the membrane and other cellular proteins was then diluted 95 to 8 mL using binding buffer (20 mM Tris-HCl, 100 mM NaCl) and subjected to 96 ultracentrifugation (Sorvall Discovery; M120 SE, S80AT3 rotor) at 120,000g (90 min, 4 97 °C). The resulting membrane pellet was washed twice with 0.1 M sodium carbonate (pH 98 11.0) and resuspended/homogenized in binding buffer. The homogenized membrane 99 proteins were diluted with 4 volumes of binding buffer containing 1% (v/v) Triton X-114 100 and chilled on ice for 10 min with intermittent vortexing. Samples were then heated at 37 °C 101 for 20 min and phase partitioned by centrifugation at 1000g (3 min). The detergent phase 102 was further diluted with 4 volumes of binding buffer containing 1% (v/v) Trition X-114 and 103 phase partition was repeated. The integral membrane proteins in the Triton X-114 detergent 104 phase were subjected to acetone precipitation. The precipitated membrane proteins were 105 resolubilized in 0.5 M triethylammonium bicarbonate (TEAB) (Sigma-Aldrich, Australia) 106 and 0.1% SDS and stored at -80 °C if not used immediately. Protein samples were 107 quantitated using PierceTM BCA Protein Assay Kit and 100 µg of protein was used to 108 perform the iTRAQ analyses. 109

110 S1.7 iTRAQ labelling

iTRAQ labelling was carried out, using a 4-plex isobaric tagging kit (AB SCIEX), 111 according to manufacturer's instructions with minor modifications. iTRAQ analysis was 112 performed in biological duplicates for each cell line, where in one set of samples were not 113 treated with TGF β 1. Briefly, 100 µg of total membrane protein samples for each replicate 114 were reduced using 5 mM tris-(2-carboxyethyl) phosphine (TCEP) (60 °C, 1 h), alkylated 115 with 10 mM methyl methanethiosulfonate (MMTS) (room temperature, 10 min) and 116 digested with trypsin (Promega; 1:25 w/w, 37°C overnight). The digested peptides were then 117 dried and reconstituted in 0.5 M TEAB and ethanol (70% (v/v) final concentration). They 118 were then labelled with respective 4-plex isobaric tags and incubated at room temperature 119 for 1 h before being combined. Confirmation of labelling and mixing was carried out using 120 121 MALDI-MS. The iTRAQ labelled samples were dried and stored at -80°C if not used immediately. 122

123 S1.8 Strong cation exchange chromatography separation

The strong cation-exchange chromatography (SCX) was performed to remove 124 interfering substances such as dissolution buffer, organic solvents (ethanol, acetonitrile, 125 TEAB), reducing agent (TCEP), alkylating agent (MMTS), SDS and any excess iTRAQ 126 reagents. The samples were fractionated by SCX using an Agilent 1260 quaternary HPLC 127 128 pump with a PolyLC polysulfoethyl aspartamide column (200 mm x 2.1 mm, 5µm, 200 Å; PolyLC, Columbia, MD). The column was equilibrated with buffer A (5mM KH₂PO₄, 25% 129 v/v acetonitrile (ACN), pH 2.72), which was also used for sample resuspension, sample 130 injection and peptide adsorption to the column. Peptide elution was achieved with a step 131 gradient of 10, 45 and 100% (v/v) buffer B (5mM KH₂PO₄, 25% v/v ACN, 350mM KCl pH 132 2.72) at a flow rate of 0.3mL/min. Peptides were collected every 4.5 min between 10 and 28 133 min; 4 min between 28 and 40 min; 2 min between 40 and 70 min and; 4 min between 70 134

and 132.5 min. The resulting SCX fractionated samples were dried in a vacuum centrifuge
 and stored at -20°C until mass spectrometry was performed.

137 **1.9 NanoLC Chromatography**

138 The dried peptides from each SCX fractions were resuspended in loading/desalting solution (0.1% v/v formic acid (FA), 2% v/v ACN) and 40µL of sample was loaded onto a 139 reverse phase peptide Captrap (Michrom Bioresources, USA) for pre-concentration and 140 desalting with 0.1% v/v FA, 2% v/v ACN at 5µL/min for 10 min per fraction. The peptide 141 trap was then switched on line with the Halo C18 column (75µm x 10 cm, 2.7µm, 160Å) 142 (Advanced Materials Technology, USA). The desalted peptides in each fraction were eluted 143 from the C18 column using a linear solvent gradient, with steps, from 98:2 of mobile phase 144 A (0.1% v/v FA): mobile phase B (90% v/v ACN, 0.1% v/v FA) to 65:35, at 300 nL/min 145 over 100 min per fraction. After peptide elution, the column was cleaned with 95% buffer B 146 for 15 min and then equilibrated with buffer A for 25 min before next sample injection. 147

148 S1.10 MS/MS data acquisition

Mass spectra were acquired on an AB SCIEX TripleTOF 5600 mass spectrometer. The reverse phase nanoLC eluent was subjected to positive ion nanoflow electrospray analysis in an information dependant acquisition (IDA) mode. In the IDA mode, TOF-MS survey scan spectra from m/z 400 - 1500 were acquired for each fraction every 0.25 s. The ten most intense multiply charged ions (counts >150) in the survey scan were sequentially subjected to MS/MS analysis. MS/MS spectra were accumulated for 200 milliseconds in the mass range m/z 100 - 1500 with the total cycle time 2.3 seconds.

156 S1.11 Peptide and protein identification

157 The nanoLC ESI MS/MS data set (*.wiff) files were submitted into ProteinPilot software (ver. 4.2b, AB SCIEX) for data processing and protein identification. This program 158 uses the Paragon Algorithm for protein database searching, identification, protein grouping 159 for the removal of redundant hits and quantitative comparisons [372]. The following search 160 parameters were selected: sample type, iTRAQ 4plex (peptide labelled); Cysteine alkylation, 161 MMTS; Digestion, trypsin; Instrument, TripleTOF 5600; Special factors, none; Species, 162 human; ID focus, biological modifications; Database, uniprot sprot2014; and Search effort, 163 thorough. The resulting data set was auto bias corrected ProteinPilot to get rid of any 164 variations imparted due to the unequal mixing during the combination of different labelled 165 samples or loading errors. The detected protein threshold (unused ProtScore) was set to \geq 166 1.3 (95% confidence or better) and a *p*-value (p < 0.05) ensured that protein identifications 167 and subsequent quantitation were not based on single peptide hits. The results were then 168 exported into Microsoft Excel for manual data interpretation. The individual cell line and 169 170 treatment comparisons were performed using Stouffer's method.

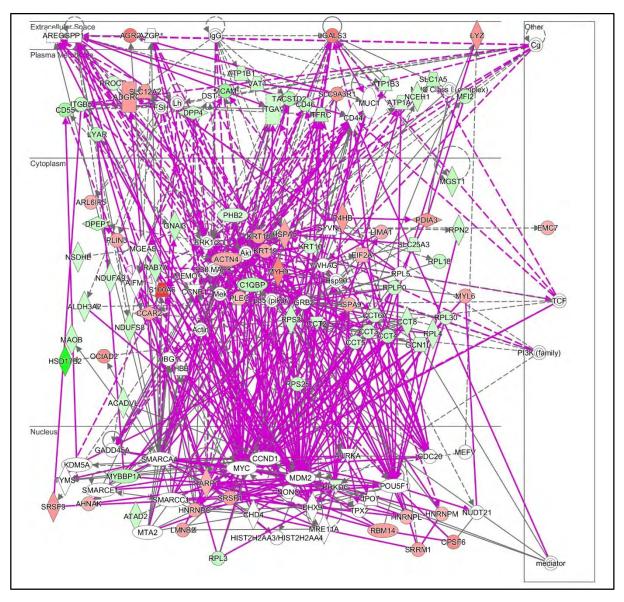
171 S1.12 Bioinformatics analysis of proteomics data

To appreciate the data generated, lists of significantly altered proteins were uploaded 172 into QIAGEN's Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City, 173 www.qiagen.com/ingenuity) software server and analysed using the Core Analysis module 174 to rank the proteins into top biological functions including disease and disorders as well as 175 molecular and cellular functions. The reference set and parameters for IPA on significantly 176 altered protein list was as follows: (i) Reference set, Ingenuity Knowledge Base (Genes 177 Only); (ii) Relationship to include, Direct and Indirect; (iii) Filter Summary, Consider only 178 molecules and/or relationships where (species = Human) AND (cell lines = All Cancer cell 179

lines in ingenuity database). Additionally, cellular location of all the identified proteins was
determined using PloGO, a gene ontology (GO) mapping software [373].

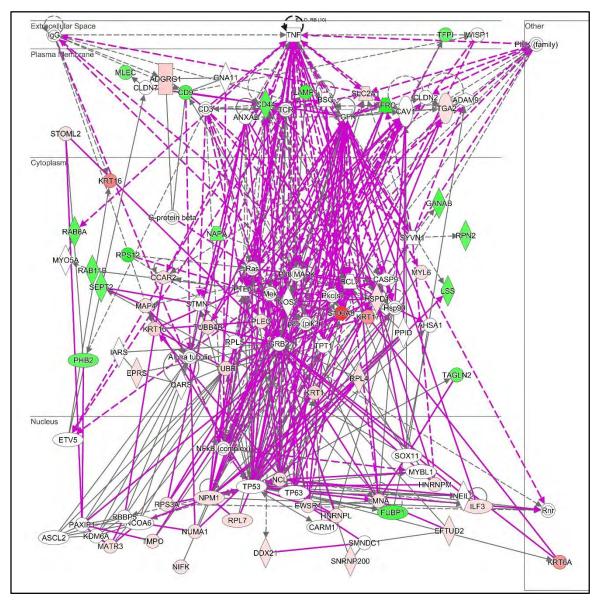
182 S1.13 Western blotting assay

Protein extracts used for iTRAQ analysis were separated using 4-12% NuPAGE gel 183 (Invitrogen) at 200V for 1hr. The resolved proteins were then electrophoretically transferred 184 onto to a PVDF membrane (Invitrogen). After the transfer, the PVDF membranes were 185 immediately incubated in blocking buffer, containing Tris buffered saline (TBS) with 3% 186 (w/v) bovine serum albumin (BSA) and 0.5% (v/v) Tween-20, for 1h at room temperature 187 with gentle shaking. The blots were then incubated with specific primary antibody overnight 188 (4 °C) with gentle shaking. Following this they were then incubated with horseradish 189 190 peroxidase-conjugated mouse, goat or rabbit secondary antibodies (R&D Systems, Minnesota, USA). The imunoreactivity was detected using chemiluminescence substrate 191 (SuperSignal West Femto Maximum Sensitivity Substrate, Thermo) and imaged using LAS 192 3000, FUJI. The following primary antibodies were used: integrin β6 (sc-6632), Ezrin (sc-193 194 58758), and calgranulin A (sc-20174) were purchased from Santa Cruz Biotechnology; and Annexin-A2 (ab41803) was purchased from abcam. Antibody dilutions were applied as per 195 manufacturer's recommendations. Image Studio Lite (ver 5.0) (LI-COR) was used for 196 measurement of band intensities where required. 197


198 S1.14 Statistical Analysis

199 All statistical analyses were performed using R-package and/or Microsoft Excel. All 200 the *p*-values were calculated using student's t-test followed by Bonferroni p-value 201 correction. A p < 0.05 was considered to be statistically significant for each case.

202 **References**


- Leibovitz, A., et al., *Classification of human colorectal adenocarcinoma cell lines*.
 Cancer Res, 1976. 36(12): p. 4562-9.
- 205 2. Agrez, M., et al., *The alpha v beta 6 integrin promotes proliferation of colon carcinoma cells through a unique region of the beta 6 cytoplasmic domain.* The Journal of cell biology, 1994. 127(2): p. 547-56.
- 3. Ahmed, N., et al., *Direct integrin alphavbeta6-ERK binding: implications for tumour growth*. Oncogene, 2002. 21(9): p. 1370-80.
- 4. Cantor, D., et al., Overexpression of alphavbeta6 integrin alters the colorectal cancer cell proteome in favor of elevated proliferation and a switching in cellular adhesion that increases invasion. Journal of proteome research, 2013. 12(6): p. 2477-90.
- 5. Geback, T., et al., *TScratch: a novel and simple software tool for automated analysis of monolayer wound healing assays*. Biotechniques, 2009. 46(4): p. 265-74.
- 6. Lee, A., et al., *Rat liver membrane glycoproteome: enrichment by phase partitioning and glycoprotein capture*. Journal of proteome research, 2009. 8(2): p. 770-81.
- 7. McQuade, L.R., et al., *Improved membrane proteomics coverage of human embryonic stem cells by peptide IPG-IEF*. Journal of proteome research, 2009. 8(12): p. 5642-9.
- 8. Shilov, I.V., et al., *The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra.* Molecular & cellular proteomics MCP, 2007. 6(9): p. 1638-55.
- 9. Pascovici, D., et al., *PloGO: plotting gene ontology annotation and abundance in multi- condition proteomics experiments.* Proteomics, 2012. 12(3): p. 406-10.
- 224

225 2. SUPPLEMENTARY FIGURES

Supplementary Figure 1 The top four networks identified for the HT29 Mo- vs As(merged). The networks include "Cellular Function and Maintenance, Small Molecule
Biochemistry, Molecular Transport" (IPA score = 53); "Cellular Assembly and
Organization, Cell-To-Cell Signaling and Interaction, Reproductive System Development
and Function" (IPA score = 45); "Cell Cycle, Infectious Diseases, Cancer" (IPA score = 25)
and "Cancer, Endocrine System Disorders, Gastrointestinal Disease" (IPA score = 21).

233

Supplementary Figure 2 The top three networks identified for the HT29 Mo- vs As(merged). The networks include "Cell-To-Cell Signalling and Interaction, Protein Synthesis,
Cell Death and Survival" (IPA score = 47); "Cellular Movement, Hair and Skin
Development and Function, Cell-To-Cell Signaling and Interaction" (IPA score = 27) and
"Cell Death and Survival, Cancer, Organismal Injury and Abnormalities" (IPA score = 21).

240 **3. SUPPLEMENTARY TABLES**

Supplementary Table 1 Cellular function that were significantly altered in integrin β6 and
 TGFβ defendant manner

function	differentially expressed proteins	no. of molecules	p-value
apoptosis of	CEACAM1,HSPD1,ITGAV,LGALS3,PARP1,PPIA,SFPQ	7	7.47E-03
colon cancer cell lines	FASN, ITGB1 ,KRAS,KRT18,LGALS3,NAPA,NOC2L,PARP1,PPIA, XRC C5	10	1.37E-02
apoptosis of tumor cell lines	AIMP1,BCLAF1,CBX5,CCAR2,CCT2,CTNND1,CYB5A,EN01,EPHA2,E ZR,FASN,GNAS,H2AFX,HNRNPC,HNRNPK,HSP90AB1,IMMT,ITGB1, KHDRBS1,KRAS,KRT18,LGALS3,MDC1,MYBBP1A,NAPA,NCL,NOC2	45	2.99E-05

	L,NPM1,PARP1,PHB,PHB2,PPIA,PSIP1,RPS19,SLC25A5,SRSF1,SSRP1,S		
cell cycle	TOML2,TFRC,TMED10,TOP2A,VDAC1,VDAC2,XPO1, XRCC5 CD44,DDX17,EWSR1,ITGA2,NOLC1,NPM1,NUMA1,PHB2	8	2.16E-02
progression cell death of epithelial cell	CAT,DDX17,HSPA5,HSPD1, ITGAV ,NDUFAB1,SSRP1,TFRC	8	1.96E-03
cell death of tumor cell lines	AIMP1,ANXA2,APMAP,ATP2A2,ATP5A1,BCLAF1,BUB1B,CBX5,CCA R2,CCT2,CTNND1,CYB5A,DAP3,DHCR24,EIF2S1,ENO1,EPHA2,EZR,F ASN,FDFT1,GNAS,GPC1,H2AFX,HNRNPC,HNRNPK,HSP90AB1,ILF2,I MMT, ITGB1 ,KHDRBS1,KRAS,KRT18,LGALS3,LMNA,MDC1,MYBBP1 A,NAPA,NCL,NOC2L,NPM1,PARP1,PHB,PHB2,PKM,PPIA,PSIP1,RPS19 ,SF3B3,SLC25A5,SLC3A2,SRSF1,SSB,SSRP1,STOML2,TEX10,TFRC,T MED10,TOP2A,VDAC1,VDAC2,XAB2,XPO1, XRCC5 ,XRCC6	64	1.18E-08
cell movement	CD44,CD9,CXADR,HNRNPK,HSPD1,ILF3,ITGA2,KRT16,MFI2,NCL,NP M1,PHB2,RTN4,S100A8,SLC2A1,TAGLN2	16	6.00E-04
cell movement of cancer cells	ADAM10,ALCAM,CD44,CD47,CEACAM1,DPP4	6	5.52E-04
cell movement of colon cancer cell lines	CD44,CD47,CDH1,ITGA6	4	9.57E-03
1 1	ACTN4,AGR2,C1QBP,CAT,CRKL, DPP4 ,ITGA2, ITGAV,ITGB5 ,LGALS 3,LGALS3BP,MCAM,MFI2,MSN,MYH9,PEBP1,PPIA, S100A9 ,SEPT9,SL C12A2,SLC9A3R1,TACSTD2	22	2.69E-05
cell movement of tumor cell	CD44,CD9,HNRNPK,ILF3,ITGA2,MFI2,NCL,PHB2,S100A8,SLC2A1,TA GLN2	11	2.29E-03
lines	ACSL4,ACTN4,ADGRE5,ANXA2,BSG,C1QBP,EPHA2,EZR,GALNT2,G NA13,GNAS,HNRNPK,HSP90AA1,ILF3,ITGA6, ITGB1 ,KHDRBS1,KRA S,KRT8,LGALS3,MCAM,NCL,PA2G4,PHB,PHB2,PPIA,RALA,SLC16A1, TLN1	29	1.99E-03
cell-cell adhesion of tumor cell lines	C1QBP,DSP, ITGB1 ,LGALS3	4	4.08E-03
invasion of	AGR2,CAT,CTNND1, DPP4,ITGAV ,LGALS3,MCAM,PEBP1,RAB25,S10 0A6, S100A9 ,SEPT9,SLC12A2,SLC9A3R1	14	3.69E-03
tumor cell lines	ACSL4,ADGRE5,BSG,CBX5,CTNND1,EPHA2,EZR,GALNT2,GNAS,HSP 90AA1,ILF3, ITGB1 ,KRAS,KRT8,LGALS3,MCAM,PA2G4,PHB,PKM,RA LA,SRRM1	21	1.10E-02
invasion of tumor cells	ADGRE5,EZR,ITGB1,MCAM	4	1.18E-02
migration of cells	ACTN4,C1QBP,CAT,CEACAM1,CRKL,CXADR, DPP4 ,HLA- A,HMGB1,HSPA5,HSPD1,ITGA2, ITGAV,ITGB5 ,LGALS3,LGALS3BP, MCAM,MFI2,MSN,MYH9,PPIA, S100A9 ,SEPT9,SLC12A2,SLC9A3R1,TA CSTD2	26	1.00E-04
	CD44,CD9,CXADR,HNRNPK,HSPD1,ILF3,ITGA2,KRT16,MFI2,NCL,NP M1,PHB2,RTN4,S100A8,SLC2A1	15	5.00E-04
	ACTN4,C1QBP,CAT,CRKL, DPP4 ,ITGA2, ITGAV,ITGB5 ,LGALS3,LGA LS3BP,MCAM,MFI2,MSN,MYH9, S100A9 ,SEPT9,SLC12A2,SLC9A3R1,T ACSTD2	19	6.60E-05
migration of tumor cell	CD44,CD9,HNRNPK,ILF3,ITGA2,MFI2,NCL,PHB2,S100A8,SLC2A1 ACSL4,ACTN4,ADGRE5,ANXA2,BSG,C1QBP,EPHA2,EZR,GALNT2,G	10	2.01E-03
lines	NA13,GNAS,HNRNPK,HSP90AA1,ILF3,ITGA6, ITGB1 ,KHDRBS1,KRA S,KRT8,LGALS3,MCAM,NCL,PHB,PHB2,RALA,SLC16A1	26	1.32E-03
migration of	HNRNPA2B1,HNRNPK,ILF3, ITGAV,ITGB1 ,KRT8,NCL,VCP,VIM	9	1.44E-04
tumor cells proliferation	ACTN4,ADGRE5,EZR, ITGB1 ,LGALS3	5	5.50E-03
of cancer cells	ADAM10,BSG,CD44,NPM1,RPS4X,S100A9,TRIM25,XRCC5	8	4.82E-03
proliferation of cells	ACIN1,ACTG1,ACTN4,ADAR,ADGRG1,ATAD3A,ATP5A1,ATP5B,C1Q BP,CAT,CCT2,CCT3,CCT5,CCT7,CD276,CD55,CEACAM1,CRKL,CTNN	63	1.97E-11

	D1,CXADR,DDX17,DLD, DPP4 ,ETFDH,H2AFY,HIST1H1B,HMGB1,HN		
	RNPC,HNRNPF,HSPA5,HSPD1,IMMT,ITGA2,ITGAV,ITGB5,LGALS3,		
	MCAM,MKI67,MYBBP1A,MYH9,NDUFAB1,PARP1,PDIA3,PEBP1,PLI		
	N3,PPIA,PRKCSH,RAB25,RPS25,S100A6, S100A9 ,SEPT9,SERPINH1,SFP		
	Q,SLC9A3R1,SRSF1,SSBP1,TACSTD2,TFRC,THRAP3,TOP1,TUBB,UBT		
	F		
	ADGRG1, CD44 , CD9, CXADR, DDX17, DDX21, EWSR1, HNRNPK, HNRNP		
	M,HSPD1,ILF3,ITGA2,KRT10,KRT16,LMNA,NCL,NDUFS3,NPM1,NUM	29	2.16E-05
	A1,PLEC,PRKCSH,RPS3A,RTN4,S100A8,SLC2A1,SNRNP200,TAGLN2,	2)	2.101-05
	TFRC,TUBB		
	ACIN1,ADAM10,ADAR,ADGRG1,ALCAM,ALDH1A1,ATP5B,BCAP31,		
	BSG,CD44,CD47,CDH1,CEACAM1,CXADR,DDX17,DPP4,EPCAM,ETF		
	DH,GALNT2,H2AFY,HADHA,HIST1H1B,HNRNPM,HNRNPU,ILF2,ITG	50	1.12E-06
	A6,KRT10,KRT8,LIMA1,LMNB1,MFGE8,NCSTN,NDUFAF2,NDUFV1,N	50	1.121-00
	OP2,NPM1,PA2G4,PLIN3,RPS3A,RPS4X,S100A9,SCARB1,SFPQ,STX3,T		
	OP1,TRIM25,UBTF,VDAC1, XRCC5 ,XRCC6		
	DNAJA1,EEF1A1,HNRNPA1,HNRNPA2B1,HNRNPAB,HNRNPD,HNRN		
	PK,HSPA5,ILF3, ITGAV,ITGB1 ,KRT2,KRT8,LAMTOR2,NCL,NCSTN,N	21	7.84E-06
	PM1,PKM,PTBP1,RTN4,TOP2B		
proliferation	ACIN1,ACTN4,C1QBP,CAT,CEACAM1,CRKL,CTNND1,CXADR,DDX1		
of tumor cell	7, DPP4 ,H2AFY,HMGB1,HSPA5,IMMT,ITGA2, ITGAV,ITGB5 ,LGALS3,	33	2.28E-05
lines	MKI67,MYBBP1A,PARP1,PDIA3,PEBP1,RPS25,S100A6,SEPT9,SFPQ,SL	55	2.261-05
mes	C9A3R1,SSBP1,TACSTD2,TFRC,TOP1,TUBB		
^a Proteins in bol	d are members of various CRC sub-networks discussed in the main body of the n	nanuscript	

Supplementary Table 2 Proteins that are significantly up- or down-regulated in this study
 and those that can be used as ASCO cancer biomarkers and their respective applications

Symbol	Entrez Gene Name	Entrez Gene ID for Human	UniProt ID	Biomarker Application/s
AGR2	anterior gradient 2	10551	O95994	D
AIMP1	aminoacyl tRNA synthetase complex- interacting multifunctional protein 1 activated leukocyte cell adhesion	9255	Q12904	D
ALCAM	molecule	214	Q13740	Р
ALDH1A1	aldehyde dehydrogenase 1 family, member A1	216	P00352	D,DP
ALPL	alkaline phosphatase, liver/bone/kidney	249	P05186	Е
ANXA2	annexin A2	302	P07355	D
ARSE	arylsulfatase E (chondrodysplasia punctata 1) basal cell adhesion molecule (Lutheran	415	P51690	D
BCAM	blood group)	4059	P50895	D
BSG	basigin (Ok blood group)	682	P35613	DP,P,RT
CAT	catalase	847	P04040	D
CD276	CD276 molecule	80381	Q5ZPR3	Р
CD44	CD44 molecule (Indian blood group)	960	P16070	D,DP,P
CD9	CD9 molecule	928	P21926	Е
CDH1	cadherin 1, type 1, E-cadherin (epithelial)	999	P12830	D,DP,E,P
CEACAM1	carcinoembryonic antigen-related cell adhesion molecule 1 (biliary glycoprotein)	634	P13688	D,E
CTNNA1	catenin (cadherin-associated protein), alpha 1, 102kDa	1495	P35221	D

DNMT1	DNA (cytosine-5-)-methyltransferase 1	1786	P26358	D
FIFACI	eukaryotic translation initiation factor	10/7	D05100	E
EIF2S1	2, subunit 1 alpha, 35kDa	1965	P05198	E
ENO1	enolase 1, (alpha)	2023	P06733	D
EPHA2	EPH receptor A2 epoxide hydrolase 1, microsomal	1969	P29317	DP
EPHX1	(xenobiotic)	2052	P07099	D
EZR	ezrin	7430	P15311	Р
FASN	fatty acid synthase	2194	P49327	D,E
CADDU	glyceraldehyde-3-phosphate		D04407	5
GAPDH	dehydrogenase	2597	P04406	D
H2AFX	H2A histone family, member X major histocompatibility complex,	3014	P16104	Е
HLA-A	class I, A	3105	P04439	E,RT
HMGB1	high mobility group box 1	3146	P09429	D
IIIIODI	heterogeneous nuclear	5110	107125	
HNRNPK	ribonucleoprotein K	3190	P61978	Р
	heat shock 60kDa protein 1	2220	D10000	DD
HSPD1	(chaperonin)	3329	P10809	D,P
ICAM1	intercellular adhesion molecule 1	3383	P05362	D,E,P
ITGAV	integrin, alpha V	3685	P06756	D
	integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29			
ITGB1	includes MDF2, MSK12)	3688	P05556	DP,P
ITGB5	integrin, beta 5	3693	P18084	D
	Kirsten rat sarcoma viral oncogene			
KRAS	homolog	3845	P01116	D,E,P,RT
KRT1	keratin 1, type II	3848	P04264	D
KRT17	keratin 17, type I	3872	Q04695	D,E
KRT18	keratin 18, type I	3875	P05783	Е
KRT20	keratin 20, type I	54474	P35900	D,DP,P
KRT5	keratin 5, type II	3852	P13647	D,E
KRT6A	keratin 6A, type II	3853	P02538	D
KRT8	keratin 8, type II	3856	P05787	Р
KRT9	keratin 9, type I	3857	P35527	D
LDLR	low density lipoprotein receptor	3949	P01130	DP
LGALS3	lectin, galactoside-binding, soluble, 3	3958	P17931	D
	lectin, galactoside-binding, soluble, 3			
LGALS3BP	binding protein	3959	Q08380	Р
MAP4	microtubule-associated protein 4	4134	P27816	Е
MCAM	melanoma cell adhesion molecule	4162	P43121	D,P
MCN4	minichromosome maintenance	4172	D22001	
MCM4	complex component 4 minichromosome maintenance	4173	P33991	DP
MCM5	complex component 5	4174	P33992	DP
MKI67	marker of proliferation Ki-67	4288	P46013	D,DP,E,P,RT
NPM1	nucleophosmin (nucleolar phosphoprotein B23, numatrin)	4869	P06748	DP

PARP1	poly (ADP-ribose) polymerase 1	142	P09874	D,E,P
PDIA3	protein disulfide isomerase family A, member 3	2923	P30101	D
PHB	prohibitin	5245	P35232	D
PSIP1	PC4 and SFRS1 interacting protein 1	11168	075475	DP
RPS4X	ribosomal protein S4, X-linked	6191	P62701	D
RPS6	ribosomal protein S6	6194	P62753	E,RT
RTN4	reticulon 4	57142	Q9NQC3	D
S100A6	S100 calcium binding protein A6	6277	P06703	D
S100A8	S100 calcium binding protein A8	6279	P05109	D,E
S100A9	S100 calcium binding protein A9	6280	P06702	D
SEPT9	septin 9	10801	Q9UHD 8	D
SLC16A1	solute carrier family 16 (monocarboxylate transporter), member 1	6566	P53985	D
SLC2A1	solute carrier family 2 (facilitated glucose transporter), member 1	6513	P11166	D,E
SLC2A3	solute carrier family 2 (facilitated glucose transporter), member 3	6515	P11169	Е
STOML2	stomatin (EPB72)-like 2	30968	Q9UJZ1	Р
TFRC	transferrin receptor	7037	P02786	D,E
TOP1	topoisomerase (DNA) I	7150	P11387	Е
TOP2A	topoisomerase (DNA) II alpha 170kDa	7153	P11388	D,E,P,RT
TPI1	triosephosphate isomerase 1	7167	P60174	D
TUBB	tubulin, beta class I	203068	P07437	Е
XPO1	exportin 1	7514	O14980	D,E
ZAP70	zeta-chain (TCR) associated protein kinase 70kDa	7535	P43403	P,RT
^a D: diagnos	is; DP: disease progression; E: efficacy	; P: prognosis; RT:	response to	therapy

Supplementary Table 3: Complete list of proteins identified within the SW480

comparisons. Fold changes >1.2 are considered up-regulated and <0.83 are considered
 down-regulated.

Jniprot	Unused	Total		/480 Mock/untreated SW480 Mock Protein Name; Organism; Gene name	iTRAQ Fold Change	StouffersPva
04264	14.77	18.88	12.89	Keratin, type II cytoskeletal 1 OS=Homo sapiens GN=KRT1 PE=1 SV=6	1.919	0.000
35527	12.44	12.49	20.22	Keratin, type I cytoskeletal 9 OS=Homo sapiens GN=KRT9 PE=1 SV=3	1.890	0.002
9Y2Q5	5.39	5.39	38.4	Ragulator complex protein LAMTOR2 OS=Homo sapiens GN=LAMTOR2 PE=1 SV=1	1.559	0.034
9338	33.5	33.5	26.2	Nucleolin OS=Homo sapiens GN=NCL PE=1 SV=3	1.369	0.002
0900	2.52	2.52	7.317	Proteasome subunit alpha type-6 OS=Homo sapiens GN=PSMA6 PE=1 SV=1	1.368	0.041
3645	8.46	10.92	15.24	Keratin, type I cytoskeletal 10 OS=Homo sapiens GN=KRT10 PE=1 SV=6	1.355	0.002
2234	10.35	10.35	18.82	Multifunctional protein ADE2 OS=Homo sapiens GN=PAICS PE=1 SV=3	1.310	0.021
4406	25.98	25.98	42.99	Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3	1.306	0.000
5072	11.27	13.34	15.76	Transitional endoplasmic reticulum ATPase OS=Homo sapiens GN=VCP PE=1 SV=4	1.243	0.019
50506	32.06	32.06	37.88	Heterogeneous nuclear ribonucleoprotein Q OS=Homo sapiens GN=SYNCRIP PE=1 SV=2	1.233	0.038
9028	9.53	9.57	17.41	Histone-binding protein RBBP4 OS=Homo sapiens GN=RBBP4 PE=1 SV=3	1.218	0.044
5579	111.32	111.32	36.17	Myosin-9 OS=Homo saplens GN=MYH9 PE=1 SV=4	0.826	0.000
4843	30.38	30.38	38.88	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 1 OS=Homo sapiens GN=RPN1 PE=1 SV=1	0.817	0.006
5787	38.55 79.19	40.45	54.24 69.87	Keratin, type II cytoskeletal 8 OS=Homo sapiens GN=KRT8 PE=1 SV=7	0.814	0.000
4618				Pyruvate kinase PKM OS=Homo sapiens GN=PKM PE=1 SV=4		
07065	21.23	21.38	24.58	Cytoskeleton-associated protein 4 OS=Homo sapiens GN=CKAP4 PE=1 SV=2	0.804	0.013
0410	35.87	35.89	27.16	Importin-5 OS=Homo sapiens GN=IPO5 PE=1 SV=4	0.802	0.000
6459	2.45	2.45	3.495	Vesicle-fusing ATPase OS=Homo sapiens GN=NSF PE=1 SV=3	0.799	0.050
5580	48.53	68.41	24.85	Myosin-10 OS=Homo sapiens GN=MYH10 PE=1 SV=3	0.796	0.000
5924	35.73	36.09	11.18	Desmoplakin OS=Homo sapiens GN=DSP PE=1 SV=3	0.794	0.001
0566	7.1	9.32	8.286	Mitotic checkpoint serine/threonine-protein kinase BUB1 beta OS=Homo sapiens GN=BUB1B PE=1 SV=3	0.719	0.035
6RT1	7.5	7.6	4.887	Protein LAP2 OS=Homo sapiens GN=ERBB2IP PE=1 SV=2	0.709	0.040
Y315 NZ01	8.43 5.2	9.08 5.2	23.9 8.766	Putative deoxyribose-phosphate aldolase OS=Homo sapiens GN=DERA PE=1 SV=2	0.703	0.049
				Very-long-chain encyl-CoA reductase OS=Homo sapiens GN=TECR PE=1 SV=1	0.689	0.025
: Com	parison of Unused	TGFβ tre		/480 β6OE/untreated SW480 β6OE Protein Name; Organism; Gene name	iTRAQ Fold Change	StouffersPv
9Y2Q5	5.39			Ragulator complex protein LAMTOR2 OS=Homo sapiens GN=LAMTOR2 PE=1 SV=1	1.855	0.018
5387	22.58			60S acidic ribosomal protein P2 OS=Homo sapiens GN=RPLP2 PE=1 SV=1	1.826	0.023
9338	33.5			Nucleolin OS=Homo sapiens GN=NCL PE=1 SV=3	1.745	0.000
9651	21.27			Heterogeneous nuclear ribonucleoprotein A1 OS=Homo sapiens GN=HNRNPA1 PE=1 SV=5	1.667	0.008
6599	16.06		44.26	Polypyrimidine tract-binding protein 1 OS=Homo sapiens GN=PTBP1 PE=1 SV=1	1.602	0.001
5072	10.00			Transitional endoplasmic reticulum ATPase OS=Homo sapiens GN=VCP PE=1 SV=4	1.557	0.001
7824	22.01	22.01		Calnexin OS=Homo sapiens GN=CANX PE=1 SV=2	1.553	0.002
5556	16.57			Integrin beta-1 OS=Homo sapiens GN=ITGB1 PE=1 SV=2	1.538	0.000
9729	4.52			Heterogeneous nuclear ribonucleoprotein A/B OS=Homo sapiens GN=HNRNPAB PE=1 SV=2	1.499	0.010
0629	4.52			I meterogeneous nuclear noondceoprotein Ayb OS=nomo sapiens GN=nNRNPAB PE=1 SV=2	1.499	0.011
5JVS0	3.9			Intracellular hyaluronan-binding protein 4 OS=Homo sapiens GN=HABP4 PE=1 SV=1	1.475	0.014
50506	32.06		37.00	Heterogeneous nuclear ribonucleoprotein Q OS=Homo sapiens GN=FX0F4 FE=1 SV=1	1.470	0.000
6748	15.94			Nucleophosmin OS=Homo sapiens GN=NPM1 PE=1 SV=2	1.443	0.044
5455	6.17			Lupus La protein OS=Homo sapiens GN=SSB PE=1 SV=2	1.428	0.012
51991	14.55			Heterogeneous nuclear ribonucleoprotein A3 OS=Homo sapiens GN=HNRNPA3 PE=1 SV=2	1.383	0.012
5198	12.85			Eukaryotic translation initiation factor 2 subunit 1 OS=Homo sapiens GN=EIF2S1 PE=1 SV=2	1.380	0.003
43809	8.03			Cleavage and polyadenylation specificity factor subunit 5 OS=Homo sapiens GN=NUDT21 PE=1 SV=1	1.377	0.010
1689	24.48			DnaJ homolog subfamily A member 1 OS=Homo sapiens GN=DNAJA1 PE=1 SV=2	1.375	0.013
9Y2R9	6.75	6.75		28S ribosomal protein S7, mitochondrial OS=Homo sapiens GN=MRPS7 PE=1 SV=2	1.352	0.013
2626	42.26				1.344	0.013
				Heterogeneous nuclear ribonucleoproteins A2/B1 OS=Homo sapiens GN=HNRNPA2B1 PE=1 SV=2		
4103 1978	12.09	12.09		Heterogeneous nuclear ribonucleoprotein D0 OS=Homo sapiens GN=HNRNPD PE=1 SV=1	1.313	0.033
1978 NQC3	5.42			Heterogeneous nuclear ribonucleoprotein K OS=Homo sapiens GN=HNRNPK PE=1 SV=1	1.305	0.001
.2906	18.28			Reticulon-4 OS=Homo sapiens GN=RTN4 PE=1 SV=2 Interleukin enhancer-binding factor 3 OS=Homo sapiens GN=ILF3 PE=1 SV=3	1.301	0.045
.2906 1021					1.281	0.001
1665	15.66			78 kDa glucose-regulated protein OS=Homo sapiens GN=HSPA5 PE=1 SV=2	1.255	0.003
				26S proteasome non-ATPase regulatory subunit 7 OS=Homo sapiens GN=PSMD7 PE=1 SV=2		
1163	7.47			Alpha-centractin OS=Homo sapiens GN=ACTR1A PE=1 SV=1	1.219	0.027
2542 6756	21.69		9.168	: Nicastrin OS=Homo sapiens GN=NCSTN PE=1 SV=2 ! Integrin alpha-V OS=Homo sapiens GN=ITGAV PE=1 SV=2	1.212 1.210	0.013
6756 5816	12.89				1.210	0.001
2167				BAG family molecular chaperone regulator 2 OS=Homo sapiens GN=BAG2 PE=1 SV=1	0.828	0.007
	23.68			Lamina-associated polypeptide 2, isoforms beta/gamma OS=Homo sapiens GN=TMPO PE=1 SV=2		
8104	34.57			Elongation factor 1-alpha 1 OS=Homo sapiens GN=EEF1A1 PE=1 SV=1	0.818	0.004
4618	79.19			Pyruvate kinase PKM OS=Homo sapiens GN=PKM PE=1 SV=4 Sectional statement feature P3 OF=1 (section 2 CM=54 P3 OF=1 CM=54	0.811	0.001
				Scaffold attachment factor B2 OS=Homo sapiens GN=SAFB2 PE=1 SV=1		
3243	23.62			Matrin-3 OS=Homo sapiens GN=MATR3 PE=1 SV=2	0.796	0.003
8670	58.18			Vimentin OS=Homo sapiens GN=VIM PE=1 SV=4	0.795	0.049
7635	11.63			60S ribosomal protein L10 OS=Homo sapiens GN=RPL10 PE=1 SV=4	0.795	0.033
2880	6			DNA topoisomerase 2-beta OS=Homo sapiens GN=TOP2B PE=1 SV=3	0.786	0.023
5787	38.55			Keratin, type II cytoskeletal 8 OS=Homo sapiens GN=KRT8 PE=1 SV=7	0.776	0.011
1158	6.54			Actin-related protein 3 OS=Homo sapiens GN=ACTR3 PE=1 SV=3	0.768	0.039
6063	14.63			ATP-dependent DNA helicase Q1 OS=Homo sapiens GN=RECQL PE=1 SV=3	0.760	0.013
0213	4.68			Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial OS=Homo sapiens GN=IDH3A PE=1 SV=1	0.735	0.042
Z7H5	2.11	9.55		Transmembrane emp24 domain-containing protein 4 OS=Homo sapiens GN=TMED4 PE=1 SV=1	0.672	0.040
evlu	4.14	4.14	4.502	Probable ATP-dependent RNA helicase DDX41 OS=Homo sapiens GN=DDX41 PE=1 SV=2	0.595	0.029
8431	2	11.13	52.21	Histone H3.1 OS=Homo sapiens GN=HIST1H3A PE=1 SV=2	0.458	0.003
35908	13.45	20.41		Keratin, type II cytoskeletal 2 epidermal OS=Homo sapiens GN=KRT2 PE=1 SV=2	0.251	0.017

C: Comparison of TGFβ treated SW480 β6OE/SW480 Mock

Uniprot	Unused	Total	X.Cov.95.	Protein Name; Organism; Gene name	iTRAQ Fold Change	StouffersPval
P62807	18.12	18.12	41.27	Histone H2B type 1-C/E/F/G/I OS=Homo sapiens GN=HIST1H2BC PE=1 SV=4	4.128	0.002
Q16629	9.44	9.44	21.43	Serine/arginine-rich splicing factor 7 OS=Homo sapiens GN=SRSF7 PE=1 SV=1	3.830	0.005
P16104	17.99	17.99	68.53	Histone H2AX OS=Homo sapiens GN=H2AFX PE=1 SV=2	3.341	0.042
P62805	17.02	17.02	56.31	Histone H4 OS=Homo sapiens GN=HIST1H4A PE=1 SV=2	2.800	0.005
P19105	14	14	57.31	Myosin regulatory light chain 12A OS=Homo sapiens GN=MYL12A PE=1 SV=2	2.663	0.000
P62906	21.72	21.72	56.68	60S ribosomal protein L10a OS=Homo sapiens GN=RPL10A PE=1 SV=2	2.645	0.000
Q13242	14.7	14.74	34.39	Serine/arginine-rich splicing factor 9 OS=Homo sapiens GN=SRSF9 PE=1 SV=1	2.618	0.000
P16401	12.33	19.86	26.55	Histone H1.5 OS=Homo sapiens GN=HIST1H1B PE=1 SV=3	2.609	0.002
Q07955	18.6	19.01	44.76	Serine/arginine-rich splicing factor 1 OS=Homo sapiens GN=SRSF1 PE=1 SV=2	2.540	0.000
Q9Y2W1	9.65	9.65	9.634	Thyroid hormone receptor-associated protein 3 OS=Homo sapiens GN=THRAP3 PE=1 SV=2	2.538	0.001
Q86V81	16	16	45.14	THO complex subunit 4 OS=Homo sapiens GN=ALYREF PE=1 SV=3	2.502	0.000
Q07666	7.09	7.09	18.28	KH domain-containing, RNA-binding, signal transduction-associated protein 1 OS=Homo sapiens GN=K	(HDRB51 PE=1 S 2.473	0.000

251

P16403	20.39	20.39	28.17 Histone H1.2 OS=Homo sapiens GN=HIST1H1C PE=1 SV=2	2.440	0.000
P05186	13.1	13.1	24.05 Alkaline phosphatase, tissue-nonspecific isozyme OS=Homo sapiens GN=ALPL PE=1 SV=4	2.397	0.000
P38159	12.07	12.07	17.9 RNA-binding motif protein, X chromosome OS=Homo sapiens GN=RBMX PE=1 SV=3	2.335	0.012
P84103	6.43	8.5	28.66 Serine/arginine-rich splicing factor 3 OS=Homo sapiens GN=SRSF3 PE=1 SV=1	2.319	0.019
P84090	4.86	4.87	47.12 Enhancer of rudimentary homolog OS=Homo sapiens GN=ERH PE=1 SV=1	2.311	0.013
P61353	9.83	9.83	42.65 60S ribosomal protein L27 OS=Homo sapiens GN=RPL27 PE=1 SV=2	2.295	0.001
P62995	6.49	6.49	20.14 Transformer-2 protein homolog beta OS=Homo sapiens GN=TRA2B PE=1 SV=1	2.266	0.003
P62424	25.24	25.68	43.98 60S ribosomal protein L7a OS=Homo sapiens GN=RPL7A PE=1 SV=2	2.175	0.000
Q14980	59.37	59.45	22.84 Nuclear mitotic apparatus protein 1 OS=Homo sapiens GN=NUMA1 PE=1 SV=2	2.108	0.000
075475	9.75	9.75	13.21 PC4 and SFRS1-interacting protein OS=Homo sapiens GN=PSIP1 PE=1 SV=1	2.102	0.002
P12956	33.71	33.89	37.27 X-ray repair cross-complementing protein 6 OS=Homo sapiens GN=XRCC6 PE=1 SV=2	2.094	0.000
Q7Z2K6	6	7.48	6.748 Endoplasmic reticulum metallopeptidase 1 OS=Homo sapiens GN=ERMP1 PE=1 SV=2	2.049	0.002
P14618	79.19	79.19	69.87 Pyruvate kinase PKM OS=Homo sapiens GN=PKM PE=1 SV=4	2.049	0.000
P43403	21.2	21.35	27.79 Tyrosine-protein kinase ZAP-70 OS=Homo sapiens GN=ZAP70 PE=1 SV=1	2.043	0.000
Q15029	32.58	32.66	29.01 115 kDa U5 small nuclear ribonucleoprotein component OS=Homo sapiens GN=EFTUD2 PE=1 SV=1	2.012	0.000
Q71UI9	8.01	11.88	53.91 Histone H2A.V OS=Homo sapiens GN=H2AFV PE=1 SV=3	2.001	0.011
P18621	12.26	12.26	44.02 60S ribosomal protein L17 OS=Homo sapiens GN=RPL17 PE=1 SV=3	1.993	0.003
075494	8	8	19.08 Serine/arginine-rich splicing factor 10 OS=Horno sapiens GN=SRSF10 PE=1 SV=1	1.992	0.001
P51398	11.67	11.67	25.63 285 ribosomal protein S29, mitochondrial OS=Homo sapiens GN=DAP3 PE=1 SV=1	1.991	0.023
075531	4.08	4.13	40.45 Barrier-to-autointegration factor OS=Homo sapiens GN=BANF1 PE=1 SV=1	1.989	0.024
Q92665	8	8.05	15.19 28S ribosomal protein S31, mitochondrial OS=Homo sapiens GN=MRPS31 PE=1 SV=3	1.962	0.001
P62750	10.37	11.54	32.69 60S ribosomal protein L23a OS=Homo sapiens GN=RPL23A PE=1 SV=1	1.947	0.000
P82673	12.63	12.63	33.13 28S ribosomal protein S35, mitochondrial OS=Homo sapiens GN=MRPS35 PE=1 SV=1	1.910	0.001
Q02878	20.83	24.19	42.36 60S ribosomal protein L6 OS=Homo sapiens GN=RPL6 PE=1 SV=3	1.894	0.000
P13010	21.82	21.82	27.05 X-ray repair cross-complementing protein 5 OS=Homo sapiens GN=XRCC5 PE=1 SV=3	1.887	0.000
095400			14.37 CD2 antigen cytoplasmic tail-binding protein 2 OS=Homo sapiens GN=CD2BP2 PE=1 SV=1	1.885	0.047
Q9NYF8	14.65	14.76	11.85 Bcl-2-associated transcription factor 1 OS=Homo sapiens GN=SCLAF1 PE=1 SV=2	1.866	0.000
Q8IYB3	5.28	5.28	8.739 Serine/arginine repetitive matrix protein 1 OS=Homo sapiens GN=SRRM1 PE=1 SV=2	1.860	0.015
P82933	6.9	6.9	15.91 28S ribosomal protein S9, mitochondrial OS=Homo sapiens GN=MRPS9 PE=1 SV=2 16.67 Collect-coll domain-containing protein S6 OS=Homo sapiens GN=CCDC96 PE=1 SV=1	1.835	0.024
Q9H6F5	6.8	6.8 13.15	16.67 Colled-coll domain-containing protein 86 OS=Homo sapiens GN=CCDC86 PE=1 SV=1	1.823	0.023
013724	13.15	13.15	16.61 Mannosyl-oligosaccharide glucosidase OS=Homo sapiens GN=MOGS PE=1 SV=5	1.817	0.000
Q9Y224	9.61	9.61	38.52 UPF0568 protein C14orf166 OS=Homo sapiens GN=C14orf166 PE=1 SV=1	1.816	0.003
Q13243	7.95	8.13	19.49 Serine/arginine-rich splicing factor 5 OS=Homo sapiens GN=SRSF5 PE=1 SV=1	1.782	0.042
Q9ULE6 P45973	12.01 4.37	12.01 4.37	11.1 Paladin OS=Homo sapiens GN=PALD1 PE=1 SV=3 21.47 Chromobox protein homolog 5 OS=Homo sapiens GN=CBX5 PE=1 SV=1	1.775	0.003
095782	2.68	4.37	21.47 Chromobox protein homolog 5 US=Homo sapiens GN=CBX5 PE=1 SV=1 5.732 AP-2 complex subunit alpha-1 OS=Homo sapiens GN=AP2A1 PE=1 SV=3	1.775	0.030
P07910					0.008
Q9Y2R9	12.14 6.75	12.14 6.75	19.61 Heterogeneous nuclear ribonucleoproteins C1/C2 OS=Homo sapiens GN=HNRNPC PE=1 SV=4 21.9 28S ribosomal protein S7, mitochondrial OS=Homo sapiens GN=MRPS7 PE=1 SV=2	1.768	0.004
Q07065	21.23	21.38		1.750	0.000
Q9HD33	3.55	3.55	24.58 Cytoskeleton-associated protein 4 OS=Homo sapiens GN=CKAP4 PE=1. SV=2 8.8 395 ribosomal protein L47, mitochondrial OS=Homo sapiens GN=MRPL47 PE=1. SV=2	1.750	0.009
P61313			23.53 60S ribosomal protein L15 OS=Homo sapiens GN=RPL15 PE=1 SV=2		
	8.98	8.98		1.700	0.002
P14868 P43243	22.49	22.49	29.34 AspartatetRNA ligase, cytoplasmic OS=Homo sapiens GN=DARS PE=1 SV=2 21.96 Matrin-3 OS=Homo sapiens GN=MATR3 PE=1 SV=2	1.674	0.000
09Y3U8	23.62	24.29 10	21.96 Matrin-3 US=Homo sapiens GN=MATR3 PE=1 SV=2 35.24 60S ribosomal protein L36 OS=Homo sapiens GN=RPL36 PE=1 SV=3	1.658	0.008
Q9H308	9.47	9.47		1.647	
			11.3 Pinin OS=Homo sapiens GN=PNN PE=1 SV=4	1.639	0.001
P46782 Q9HCE1	11.88 7.63	11.88 7.63	32.35 40S ribosomal protein S5 OS=Homo sapiens GN=RPS5 PE=1 SV=4 7.079 Putative helicase MOV-10 OS=Homo sapiens GN=MOV10 PE=1 SV=2	1.639	0.026
Q07020	9.92	9.92	30.85 60S ribosomal protein L18 OS=Homo sapiens GN=RPL18 PE=1 SV=2	1.633	0.001
060884	10.95	10.97	25.49 DnaJ homolog subfamily A member 2 OS=Homo sapiens GN=DNAJA2 PE=1 SV=1	1.626	0.007
Q9NUQ3	6.07	6.09	10.04 Gamma-taxilin OS=Homo sapiens GN=TXLNG PE=1 SV=1	1.616	0.008
P62241	6.07	6.09	19.71 40S ribosomal protein S8 OS=Homo sapiens GN=RPS8 PE=1 SV=2	1.608	0.026
P402241	7.34	7.39		1.607	0.017
Q86VM9	6.03	6.05	16.85 Alpha-taxilin OS=Homo sapiens GN=TXLNA PE=1 SV=3 7.45 Zinc finger CCCH domain-containing protein 18 OS=Homo sapiens GN=ZC3H18 PE=1 SV=2	1.605	0.048
POCW22	12.29	12.48	52.59 40S ribosomal protein S17-like OS=Homo sapiens GN=RPS17L PE=1 SV=1	1.603	0.002
076021	18.98	18.98	30.41 Ribosomal L1 domain-containing protein 1 OS=Homo sapiens GN=RSL1D1 PE=1 SV=3	1.598	0.000
P62826	12.55	12.55	35.65 GTP-binding nuclear protein Ran OS=Homo sapiens GN=RAN PE=1 SV=3	1.593	0.000
099848	7.42	7.42	22.22 Probable rRNA-processing protein EBP2 OS=Homo sapiens GN=EBNA1BP2 PE=1 SV=2	1.588	0.008
P50914	8.22	8.89	23.72 60S ribosomal protein L14 OS=Homo sapiens GN=RPL14 PE=1 SV=4	1.584	0.001
P25205	27.5	27.5	28.71 DNA replication licensing factor MCM3 OS=Homo sapiens GN=MCM3 PE=1 SV=3	1.571	0.000
P27816	23.17	23.32	18.66 Microtubule-associated protein 4 OS=Homo sapiens GN=MAP4 PE=1 SV=3	1.567	0.000
P39019	8.02	8.02	28.97 40S ribosomal protein S19 OS=Homo sapiens GN=RPS19 PE=1 SV=2	1.564	0.013
Q9Y5B9	23.07	23.29	18.91 FACT complex subunit SPT16 OS=Homo sapiens GN=SUPT16H PE=1 SV=1	1.561	0.000
043143	34.22	34.72	28.55 Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DHX15 OS=Homo sapiens GN=DHX15 PE=1 SV=2	1.549	0.000
P56192	23.13	23.14	24.33 MethioninetRNA ligase, cytoplasmic OS=Homo sapiens GN=MARS PE=1 SV=2	1.539	0.005
P62277	14.15	14.15	38,41 40S ribosomal protein S13 OS=Homo sapiens GN=RPS13 PE=1 SV=2	1.534	0.001
P07814	41.94	42.1	22.16 Bifunctional glutamate/prolinetRNA ligase OS=Homo sapiens GN=EPRS PE=1 SV=5	1.532	0.000
P18124	16.63	16.63	29.44 60S ribosomal protein L7 OS=Homo sapiens GN=RPL7 PE=1 SV=1	1.526	0.000
P62753	10.24	11.8	22.89 40S ribosomal protein S6 OS=Homo sapiens GN=RPS6 PE=1 SV=1	1.519	0.001
P36578	36.43	36.8	40.28 60S ribosomal protein L4 OS=Homo sapiens GN=RPL4 PE=1 SV=5	1.504	0.000
P62917	7.28	7.28	33.07 60S ribosomal protein L8 OS=Homo sapiens GN=RPL8 PE=1 SV=2	1.497	0.003
Q96EY7	10.32	10.32	11.32 Pentatricopeptide repeat domain-containing protein 3, mitochondrial OS=Homo sapiens GN=PTCD3 PE=1 SV=3	1.497	0.013
P11388	14.19	14.19	10.65 DNA topoisomerase 2-alpha OS=Homo sapiens GN=TOP2A PE=1 SV=3	1.493	0.012
P09874	49.56	49.56	33.33 Poly [ADP-ribose] polymerase 1 OS=Homo sapiens GN=PARP1 PE=1 SV=4	1.492	0.000
Q14257	8.74	8.74	13.88 Reticulocalbin-2 OS=Homo sapiens GN=RCN2 PE=1 SV=1	1.487	0.013
A6NHR9	18.9	18.9	8.229 Structural maintenance of chromosomes flexible hinge domain-containing protein 1 OS=Homo sapiens GN=SMCHD	L 11.485	0.001
Q86UP2	28.29	29.57	15.77 Kinectin OS=Homo sapiens GN=KTN1 PE=1 SV=1	1.480	0.000
P26358	21.95	22.04	11.01 DNA (cytosine-5)-methyltransferase 1 OS=Homo sapiens GN=DNMT1 PE=1 SV=2	1.479	0.001
Q9HCS7	2.76	2.8	2.339 Pre-mRNA-splicing factor SYF1 OS=Homo sapiens GN=XAB2 PE=1 SV=2	1.478	0.045
Q52LJ0	3.28	3.28	12.73 Protein FAM98B OS=Homo sapiens GN=FAM98B PE=1 SV=1	1.465	0.037
P61978	30.81	31.04	43.2 Heterogeneous nuclear ribonucleoprotein K OS=Homo sapiens GN=HNRNPK PE=1 SV=1	1.458	0.000
P49327	117.45	117.45	39.11 Fatty acid synthase OS=Homo sapiens GN=FASN PE=1 SV=3	1.452	0.000
P46783	10.78	10.86	29.09 40S ribosomal protein S10 OS=Homo sapiens GN=RPS10 PE=1 SV=1	1.446	0.001
P23396	16.88	16.88	48.97 405 ribosomal protein 53 OS=Homo sapiens GN=RPS3 PE=1 SV=2	1.441	0.001
P08238	34.19	34.19	29.97 Heat shock protein HSP 90-beta OS=Homo sapiens GN=HSP90AB1 PE=1 SV=4	1.440	0.002
Q08945	13.7	13.8	15.94 FACT complex subunit SSRP1 OS=Homo sapiens GN=SSRP1 PE=1 SV=1	1.432	0.001
Q14558	4.78	6.92	22.47 Phosphoribosyl pyrophosphate synthase-associated protein 1 OS=Homo sapiens GN=PRPSAP1 PE=1 SV=2	1.431	0.048
Q9NY12	6.43	6.44	21.66 H/ACA ribonucleoprotein complex subunit 1 OS=Homo sapiens GN=GAR1 PE=1 SV=1	1.429	0.013
P52272	43.74	43.74	42.74 Heterogeneous nuclear ribonucleoprotein M OS=Homo sapiens GN=HNRNPM PE=1 SV=3	1.428	0.000
P15880	23.36	23.36	36.52 40S ribosomal protein S2 OS=Homo sapiens GN=RPS2 PE=1 SV=2	1.426	0.000
Q8WU90	12.91	13.34	20.42 Zinc finger CCCH domain-containing protein 15 OS=Homo sapiens GN=ZC3H15 PE=1 SV=1	1.421	0.000
Q9Y3Z3	6.78	6.78	10.22 Deoxynucleoside triphosphate triphosphohydrolase SAMHD1 OS=Homo sapiens GN=SAMHD1 PE=1 SV=2	1.420	0.046

Q13268	8.09	8.15	27.14 Dehydrogenase/reductase SDR family member 2, mitochondrial OS=Homo sapiens GN=DHRS2 PE=1 SV=4	1.415	0.008
P48634	14.16	14.16	7.14 Protein PRRC2A OS=Homo sapiens GN=PRRC2A PE=1 SV=3	1.413	0.001
P61163	7.47	7.47	20.48 Alpha-centractin OS=Homo sapiens GN=ACTR1A PE=1 SV=1	1.409	0.005
Q9Y520	9.6	9.6	5.214 Protein PRRC2C OS=Homo sapiens GN=PRRC2C PE=1 SV=4	1.409	0.017
P41250	9.91	9.91	13.4 GlycinetRNA ligase OS=Homo sapiens GN=GARS PE=1 SV=3	1.409	0.023
P46781	10.86	10.91	24.23 405 ribosomal protein 59 OS=Homo sapiens GN=RPS9 PE=1 SV=3	1.408	0.001
Q9NXF1	12	12.89	10.12 Testis-expressed sequence 10 protein OS=Homo sapiens GN=TEX10 PE=1 SV=2	1.407	0.002
P06733	29.98	29.98	46.77 Alpha-enolase OS=Homo sapiens GN=ENO1 PE=1 SV=2	1.406	0.021
P05387	22.58	22.58	92.17 60S acidic ribosomal protein P2 OS=Homo sapiens GN=RPLP2 PE=1 SV=1	1.405	0.003
Q92922	12.9	13.11	10.77 SWI/SNF complex subunit SMARCC1 OS=Homo sapiens GN=SMARCC1 PE=1 SV=3	1.395	0.003
P40939	27.29	27.29	33.55 Trifunctional enzyme subunit alpha, mitochondrial OS=Homo sapiens GN=HADHA PE=1 SV=2	1.387	0.001
Q92499	23.89	23.89	26.08 ATP-dependent RNA helicase DDX1 OS=Homo sapiens GN=DDX1 PE=1 SV=2	1.373	0.000
P33992	12.44	14.53	15.53 DNA replication licensing factor MCM5 OS=Homo sapiens GN=MCM5 PE=1 SV=5	1.372	0.000
P49207	5.92	5.92	20.51 60S ribosomal protein L34 OS=Homo sapiens GN=RPL34 PE=1 SV=3	1.372	0.022
P62249	13.38	13.38	38.36 40S ribosomal protein S16 OS=Homo sapiens GN=RPS16 PE=1 SV=2	1.371	0.000
P06748	15.94	17.65	43.88 Nucleophosmin OS=Homo sapiens GN=NPM1 PE=1 SV=2	1.370	0.046
Q92616	75.38	75.38	24.49 Translational activator GCN1 OS=Homo sapiens GN=GCN1L1 PE=1 SV=6	1.369	0.000
P49790	9.43	9.89	8.542 Nuclear pore complex protein Nup153 OS=Homo sapiens GN=NUP153 PE=1 SV=2	1.360	0.032
Q15393	10.58	10.58	10.27 Splicing factor 3B subunit 3 OS=Homo sapiens GN=SF3B3 PE=1 SV=4	1.358	0.040
Q96AG4	21.97	21.97	47.56 Leucine-rich repeat-containing protein 59 OS=Homo sapiens GN=LRRC59 PE=1 SV=1	1.356	0.000
Q08J23	21.17	21.17	24.9 tRNA (cytosine(34)-C(5))-methyltransferase OS=Homo sapiens GN=NSUN2 PE=1 SV=2	1.352	0.003
P62854	4.77	4.77	33.91 40S ribosomal protein S26 OS=Homo sapiens GN=RPS26 PE=1 SV=3	1.352	0.044
060488	10.18	10.26	16.88 Long-chain-fatty-acidCoA ligase 4 OS=Homo sapiens GN=ACSL4 PE=1 SV=2	1.349	0.002
Q9UKV3	9.15	9.26	6.339 Apoptotic chromatin condensation inducer in the nucleus OS=Homo sapiens GN=ACIN1 PE=1 SV=2	1.347	0.015
Q14676	24.12	24.12	15.27 Mediator of DNA damage checkpoint protein 1 OS=Homo sapiens GN=MDC1 PE=1 SV=3	1.345	0.038
060566	7.1	9.32	8.286 Mitotic checkpoint serine/threonine-protein kinase BUB1 beta OS=Homo sapiens GN=BUB1B PE=1 SV=3	1.339	0.038
Q9P2J5	24.29	24.45	16.5 LeucinetRNA ligase, cytoplasmic OS=Homo sapiens GN=LARS PE=1 SV=2	1.334	0.000
Q12904	15.44	15.44	53.85 Aminoacyl tRNA synthase complex-interacting multifunctional protein 1 OS=Homo sapiens GN=AIMP1 PE=1 SV=2	1.328	0.007
P25705	28.25	28.25	38.7 ATP synthase subunit alpha, mitochondrial OS=Homo sapiens GN=ATP5A1 PE=1 SV=1	1.328	0.000
Q14566	15.89	15.9	13.89 DNA replication licensing factor MCM6 OS=Homo sapiens GN=MCM6 PE=1 SV=1	1.327	0.001
Q92841	21.13	33.42	29.08 Probable ATP-dependent RNA helicase DDX17 OS=Homo sapiens GN=DDX17 PE=1 SV=2	1.322	0.014
Q15084	13.08	13.08	32.5 Protein disulfide-isomerase A6 OS=Homo sapiens GN=PDIA6 PE=1 SV=1	1.320	0.005
P61254	5.7	5.7	16.55 60S ribosomal protein L26 OS=Homo sapiens GN=RPL26 PE=1 SV=1	1.319	0.018
Q02543	7.95	7.95	26.7 60S ribosomal protein L18a OS=Homo sapiens GN=RPL18A PE=1 SV=2	1.308	0.003
Q9BXJ9	10.08	10.08	9.815 N-alpha-acetyltransferase 15, NatA auxiliary subunit OS=Homo sapiens GN=NAA15 PE=1 SV=1	1.307	0.022
Q9Y3I0	19.89	21.77	31.09 tRNA-splicing ligase RtcB homolog OS=Homo sapiens GN=RTCB PE=1 SV=1	1.295	0.008
P61247	21.64	21.64	44.32 40S ribosomal protein S3a OS=Homo sapiens GN=RPS3A PE=1 SV=2	1.281	0.000
Q7L2E3	15.61	16.59	11.47 Putative ATP-dependent RNA helicase DHX30 OS=Homo sapiens GN=DHX30 PE=1 SV=1	1.280	0.011
P35249	12.01	12.01	30.03 Replication factor C subunit 4 OS=Homo sapiens GN=RFC4 PE=1 SV=2	1.278	0.046
Q00839	38.09	38.13	24.73 Heterogeneous nuclear ribonucleoprotein U OS=Homo sapiens GN=HNRNPU PE=1 SV=6	1.277	0.002
Q92896	19.41	19.73	13.66 Golgi apparatus protein 1 OS=Homo sapiens GN=GLG1 PE=1 SV=2	1.271	0.005
P55084	10.74	10.74	20.68 Trifunctional enzyme subunit beta, mitochondrial OS=Homo sapiens GN=HADHB PE=1 SV=3	1.268	0.007
P14866	20.46	20.46	29.37 Heterogeneous nuclear ribonucleoprotein L OS=Homo sapiens GN=HNRNPLPE=1 SV=2	1.267	0.040
Q14683	8.65	8.69	6.488 Structural maintenance of chromosomes protein 1A OS=Homo sapiens GN=SMC1A PE=1 SV=2	1.266	0.042
Q04837	6.47	6.47	38.51 Single-stranded DNA-binding protein, mitochondrial OS=Homo sapiens GN=SSBP1 PE=1 SV=1	1.256	0.046
Q6P2Q9	51.43	51.74	17.39 Pre-mRNA-processing-splicing factor 8 OS=Homo sapiens GN=PRPF8 PE=1 SV=2	1.245	0.000
P02545	23.98	23.98	23.19 Prelamin-A/C OS=Homo sapiens GN=LMNA PE=1 SV=1	1.245	0.015
P41252	32.15	32.82	19.02 IsoleucinetRNA ligase, cytoplasmic OS=Homo sapiens GN=IARS PE=1 SV=2	1.240	0.001
Q13155	10.08	10.12	33.44 Aminoacyl tRNA synthase complex-interacting multifunctional protein 2 OS=Homo sapiens GN=AIMP2 PE=1 SV=2	1.239	0.032
060716	21.81	22.01	20.56 Catenin delta-1 OS=Homo sapiens GN=CTNND1 PE=1 SV=1	1.238	0.010
P20042	20.61	20.62	41.74 Eukaryotic translation initiation factor 2 subunit 2 OS=Homo sapiens GN=EIF2S2 PE=1 SV=2	1.236	0.017
P33991	28.08	28.14	26.42 DNA replication licensing factor MCM4 OS=Homo sapiens GN=MCM4 PE=1 SV=5	1.235	0.014
P41091	14.68	14.73	39.19 Eukaryotic translation initiation factor 2 subunit 3 OS=Homo sapiens GN=EIF2S3 PE=1 SV=3	1.231	0.038
P05198	12.85	12.85	35.24 Eukaryotic translation initiation factor 2 subunit 1 OS=Homo sapiens GN=EIF2S1 PE=1 SV=3	1.227	0.023
Q93009	14.07	14.16	10.44 Ubiquitin carboxyl-terminal hydrolase 7 OS=Homo sapiens GN=USP7 PE=1 SV=2	1.216	0.015
P54136	28.1	28.11	27.12 ArgininetRNA ligase, cytoplasmic OS=Homo sapiens GN=RARS PE=1 SV=2	1.213	0.022
P15924	35.73	36.09	11.18 Desmoplakin OS=Homo sapiens GN=DSP PE=1 SV=3	1.209	0.004
Q9Y490	24.73	24.73	13.73 Talin-1 OS=Homo sapiens GN=TLN1 PE=1 SV=3	1.208	0.000
P46821	26.53	26.57	9.562 Microtubule-associated protein 1B OS=Homo sapiens GN=MAP1B PE=1 SV=2	0.832	0.038
P49748	14.26	14.26	22.6 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS=Homo sapiens GN=ACADVL PE=1 SV=1	0.827	0.027
Q16795	12.05	12.06	24.14 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial OS=Homo sapiens GN=NDUFA9 PE		0.018
043795	11.63	11.75	7.658 Unconventional myosin-Ib OS=Homo sapiens GN=MYO1B PE=1 SV=3	0.823	0.018
Q9NU22	12.87	13.02	2.305 Midasin OS=Homo sapiens GN=MDN1 PE=1 SV=2	0.820	0.006
Q9H0A0	16.76	16.81	14.44 N-acetyltransferase 10 OS=Homo sapiens GN=NAT10 PE=1 SV=2	0.820	0.036
075691	14.75	14.95	4.345 Small subunit processome component 20 homolog OS=Homo sapiens GN=UTP20 PE=1 SV=3	0.817	0.009
P54920	10.3	10.3	25.08 Alpha-soluble NSF attachment protein OS=Homo sapiens GN=NAPA PE=1 SV=3	0.817	0.029
P48960	18.72	18.72	17.49 CD97 antigen OS=Homo sapiens GN=CD97 PE=1 SV=4	0.816	0.001
000299	11.18	11.18	34.85 Chloride intracellular channel protein 1 OS=Homo sapiens GN=CLIC1 PE=1 SV=4	0.811	0.016
Q9Y3T9	5.81	5.87	6.409 Nucleolar complex protein 2 homolog OS=Homo sapiens GN=NOC2L PE=1 SV=4	0.810	0.026
Q8N163	12.59	12.59	18.42 DBIRD complex subunit KIAA1967 OS=Homo sapiens GN=KIAA1967 PE=1 SV=2	0.810	0.025
P05141	25.64	26.21	41.61 ADP/ATP translocase 2 OS=Homo sapiens GN=SLC25A5 PE=1 SV=7	0.810	0.037
Q9BVP2	9.92	10.15	16.58 Guanine nucleotide-binding protein-like 3 OS=Homo sapiens GN=GNL3 PE=1 SV=2	0.809	0.025
P30101	13.34	13.34	20.4 Protein disulfide-isomerase A3 OS=Homo sapiens GN=PDIA3 PE=1 SV=4	0.808	0.001
P08195	48.5	49.33	49.21 4F2 cell-surface antigen heavy chain OS=Homo sapiens GN=SLC3A2 PE=1 SV=3	0.801	0.001
014980	25.36	25.43	18.58 Exportin-1 OS=Homo sapiens GN=XPO1 PE=1 SV=1	0.799	0.002
P49755	14	14.28	34.25 Transmembrane emp24 domain-containing protein 10 OS=Homo sapiens GN=TMED10 PE=1 SV=2	0.798	0.040
Q5JTH9	17.42	17.42	11.1 RRP12-like protein OS=Homo sapiens GN=RRP12 PE=1 SV=2	0.793	0.001
P05556	16.57	16.63	15.04 Integrin beta-1 OS=Homo sapiens GN=ITGB1 PE=1 SV=2	0.792	0.004
	6.05	7.71	6.266 Protein VAC14 homolog OS=Homo sapiens GN=VAC14 PE=1 SV=1	0.789	0.032
QO8AM6	45	45.15	25.32 Leucine-rich PPR motif-containing protein, mitochondrial OS=Homo sapiens GN=LRPPRC PE=1 SV=3	0.785	0.000
P42704		5.13	19.93 NADH-cytochrome b5 reductase 3 OS=Homo sapiens GN=CYB5R3 PE=1 SV=3	0.781	0.047
P42704 P00387	5.13	6.06	5.21 Tight junction protein ZO-2 OS=Homo sapiens GN=TJP2 PE=1 SV=2	0.777	0.039
P42704 P00387 Q9UDY2	6.06		20.11 Myb-binding protein 1A OS=Homo sapiens GN=MYBBP1A PE=1 SV=2	0.773	0.000
P42704 P00387 Q9UDY2 Q9BQG0	6.06 33.01	33.01			
P42704 P00387 Q9UDY2 Q9BQG0 P37268	6.06 33.01 6.63	33.01 6.66	11.03 Squalene synthase OS=Homo sapiens GN=FDFT1 PE=1 SV=1	0.773	0.042
P42704 P00387 Q9UDY2 Q9BQG0 P37268 P50990	6.06 33.01 6.63 22.04	33.01 6.66 22.05	24.64 T-complex protein 1 subunit theta OS=Homo sapiens GN=CCT8 PE=1 SV=4	0.764	0.000
P42704 P00387 Q9UDY2 Q9BQG0 P37268 P50990 Q9H3N1	6.06 33.01 6.63 22.04 6.49	33.01 6.66 22.05 6.49	24.64 T-complex protein 1 subunit theta OS=Homo sapiens GN=CCT8 PE=1 SV=4 16.43 Thioredoxin-related transmembrane protein 1 OS=Homo sapiens GN=TMX1 PE=1 SV=1	0.764 0.764	0.000
P42704 P00387 Q9UDY2 Q9BQG0 P37268 P50990 Q9H3N1 Q5RI15	6.06 33.01 6.63 22.04 6.49 4.1	33.01 6.66 22.05 6.49 4.1	24.64 T-complex protein 1 subunit theta 05-Homo sapiens GN=CCT8 PE-1 SV=4 16.43 Thioredoxin-related transmembrane protein 1 O5-Homo sapiens GN=TMX1 PE-1 SV=1 22.03 Cytochrome coldase protein 20 Amondo GS-Homo sapiens GN=COX20 PE-1 SV=2	0.764 0.764 0.757	0.000 0.010 0.041
P42704 P00387 Q9UDY2 Q9BQG0 P37268 P50990 Q9H3N1 Q5R115 Q5JWF2	6.06 33.01 6.63 22.04 6.49 4.1 14.95	33.01 6.66 22.05 6.49 4.1 14.96	24.64 T-complex protein 1 subunit theta OS=Homo sapiens GN=CCT8 PE=1 SV=4 16.43 Thioredoxin-related transmembrane protein 1 OS=Homo sapiens GN=TMX1 PE=1 SV=1 22.03 Cytochrome c oxidase protein 20 homolog OS=Homo sapiens GN=COX20 PE=1 SV=2 10.32 Guanine nucleotide-binding protein G(g) subunit alpha isoforms XLas OS=Homo sapiens GN=GNAS PE=1 SV=2	0.764 0.764 0.757 0.756	0.000 0.010 0.041 0.002
P42704 P00387 Q9UDY2 Q9BQG0 P37268 P50990 Q9H3N1 Q5RI15 Q5JWF2 P26641	6.06 33.01 6.63 22.04 6.49 4.1 14.95 9.38	33.01 6.66 22.05 6.49 4.1 14.96 9.38	24.64 T-complex protein 1 subunit theta OS+Homo saplens GN=CCT8 PE-1 SV=4 16.43 Thioredoxin related transmembrane protein 1 OS+Homo saplens GN=TMX1 PE-1 SV=1 22.03 Cytochrome c addase protein 20 homolog OS+Homo saplens GN=COX20 PE-1 SV=2 10.32 Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas OS+Homo saplens GN=GNAS PE-1 SV=2 13.99 Elongation factor 1:gamma OS+Homo saplens GN=E1 SV=3	0.764 0.764 0.757 0.756 0.755	0.000 0.010 0.041 0.002 0.011
P42704 P00387 Q9UDY2 Q9BQG0 P37268 P50990 Q9H3N1 Q5RI15 Q5JWF2	6.06 33.01 6.63 22.04 6.49 4.1 14.95	33.01 6.66 22.05 6.49 4.1 14.96	24.64 T-complex protein 1 subunit theta OS=Homo sapiens GN=CCT8 PE=1 SV=4 16.43 Thioredoxin-related transmembrane protein 1 OS=Homo sapiens GN=TMX1 PE=1 SV=1 22.03 Cytochrome c oxidase protein 20 homolog OS=Homo sapiens GN=COX20 PE=1 SV=2 10.32 Guanine nucleotide-binding protein G(g) subunit alpha isoforms XLas OS=Homo sapiens GN=GNAS PE=1 SV=2	0.764 0.764 0.757 0.756	0.000 0.010 0.041 0.002

Q13823	1.81	1.81	1.778 Nucleolar GTP-binding protein 2 OS=Homo sapiens GN=GN	IL2 PE=1 SV=1	0.750	0.038
P01116	4.25	6.5	27.51 GTPase KRas OS=Homo sapiens GN=KRAS PE=1 SV=1		0.747	0.046
P55010	8.16	8.17	12.06 Eukaryotic translation initiation factor 5 OS=Homo sapiens		0.744	0.016
Q12906	18.28	18.4	15.21 Interleukin enhancer-binding factor 3 OS=Homo sapiens G		0.738	0.001
Q99805	13.72	13.72	14.48 Transmembrane 9 superfamily member 2 OS=Homo sapie		0.737	0.008
P28288	12.06	12.14	13.96 ATP-binding cassette sub-family D member 3 OS=Homo sa		0.733	0.007
Q9BSJ8	38.11	38.11	29.62 Extended synaptotagmin-1 OS=Homo sapiens GN=ESYT1 P		0.733	0.000
P02786	44.49	44.49	38.82 Transferrin receptor protein 1 OS=Homo sapiens GN=TFRC		0.733	0.000
095573	6.94	9.68	13.75 Long-chain-fatty-acidCoA ligase 3 OS=Homo sapiens GN=		0.726	0.012
Q15392	5.78	5.81	8.915 Delta(24)-sterol reductase OS=Homo sapiens GN=DHCR24		0.723	0.012
P05787	38.55	40.45	54.24 Keratin, type II cytoskeletal 8 OS=Homo sapiens GN=KRT8		0.722	0.000
Q13283	16.43	16.43	28.76 Ras GTPase-activating protein-binding protein 1 OS=Homo		0.722	0.008
Q8TEM1	10.48	10.67	5.352 Nuclear pore membrane glycoprotein 210 OS=Homo sapie		0.720	0.003
P22234	10.35	10.35	18.82 Multifunctional protein ADE2 OS=Homo sapiens GN=PAICS		0.715	0.000
P53985	11.42	11.42	15.8 Monocarboxylate transporter 1 OS=Homo sapiens GN=SLC	16A1 PE=1 SV=3	0.714	0.020
Q9H9B4	13.66	13.66	39.44 Sideroflexin-1 OS=Homo sapiens GN=SFXN1 PE=1 SV=4		0.711	0.017
096000	4	4	16.86 NADH dehydrogenase [ubiquinone] 1 beta subcomplex sul	ounit 10 OS=Homo sapiens GN=NDUFB10 PE=1 SV=3	0.711	0.031
P50454	22.86	22.86	44.26 Serpin H1 OS=Homo sapiens GN=SERPINH1 PE=1 SV=2		0.709	0.000
P46063	14.63	14.63	17.72 ATP-dependent DNA helicase Q1 OS=Homo sapiens GN=R		0.708	0.001
Q10471	9.93	9.93	16.46 Polypeptide N-acetylgalactosaminyltransferase 2 OS=Hom		0.708	0.004
Q00325	7.59	7.67	9.945 Phosphate carrier protein, mitochondrial OS=Homo sapier	is GN=SLC25A3 PE=1 SV=2	0.705	0.006
043707	12.92	23.52	17.34 Alpha-actinin-4 OS=Homo sapiens GN=ACTN4 PE=1 SV=2		0.704	0.015
Q13308	8.47	8.47	11.87 Inactive tyrosine-protein kinase 7 OS=Homo sapiens GN=P		0.703	0.024
Q9UQ80	21.79	21.79	36.29 Proliferation-associated protein 2G4 OS=Homo sapiens GN		0.703	0.000
Q16891	18.47	18.52	22.82 Mitochondrial inner membrane protein OS=Homo sapiens		0.695	0.002
P04843	30.38	30.38	38.88 Dolichyl-diphosphooligosaccharideprotein glycosyltransf		0.687	0.000
P30519	12	12	33.86 Heme oxygenase 2 OS=Homo sapiens GN=HMOX2 PE=1 SV		0.686	0.001
Q14344	2.52	5.12	11.94 Guanine nucleotide-binding protein subunit alpha-13 OS=		0.686	0.019
P51148	6.35	6.35	26.39 Ras-related protein Rab-5C OS=Homo sapiens GN=RAB5C		0.681	0.046
015173	6.17	7.66	27.35 Membrane-associated progesterone receptor component		0.675	0.008
Q9UBD5	4.79	4.84	5.907 Origin recognition complex subunit 3 OS=Homo sapiens GI		0.675	0.011
P23526	9.75	9.77	13.89 Adenosylhomocysteinase OS=Homo sapiens GN=AHCY PE		0.674	0.002
P50895	5.31	5.32	11.46 Basal cell adhesion molecule OS=Horno sapiens GN=BCAM		0.672	0.027
P62937	16.42	17.72	72.12 Peptidyl-prolyl cis-trans isomerase A OS=Homo saplens GN	I=PPIA PE=1 SV=2	0.671	0.042
Q07021	14.05	14.05	42.91 Complement component 1 Q subcomponent-binding prote			0.004
P45880	18.07	20.39	43.54 Voltage-dependent anion-selective channel protein 2 OS=		0.667	0.000
P10606	9.28	9.28	38.76 Cytochrome c oxidase subunit 5B, mitochondrial OS=Home		0.666	0.030
P30154	5.77	12.46	16.97 Serine/threonine-protein phosphatase 2A 65 kDa regulato	ry subunit A beta isoform OS=Homo sapiens GN=PPP2R1B		0.016
P27824	22.01	22.01	16.72 Calnexin OS=Homo sapiens GN=CANX PE=1 SV=2		0.661	0.000
P78347	11.43	11.45	14.83 General transcription factor II-I OS=Homo sapiens GN=GTF		0.659	0.001
P63241	5.25	5.25	31.17 Eukaryotic translation initiation factor 5A-1 OS=Homo sapi		0.658	0.034
Q92692	6.75	6.75	18.77 Poliovirus receptor-related protein 2 OS=Homo saplens Gr		0.654	0.028
Q9UJZ1	16.67	16.82	41.01 Stomatin-like protein 2, mitochondrial OS=Homo sapiens C		0.650	0.004
P05783	35.95	35.95	54.65 Keratin, type I cytoskeletal 18 OS=Horno sapiens GN=KRT1		0.650	0.000
P01130	9.62	9.67	9.651 Low-density lipoprotein receptor OS=Homo sapiens GN=L		0.646	0.023
096008	13.25	13.34	34.35 Mitochondrial import receptor subunit TOM40 homolog O		0.641	0.000
Q12905	12.13	12.13	38.72 Interleukin enhancer-binding factor 2 OS=Homo sapiens G		0.639	0.004
P16615	14.88	14.88	12.76 Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 OS		0.635	0.000
Q9NYL4	8	8 14.07	47.26 Peptidyl-prolyl cis-trans isomerase FKBP11 OS=Homo sapie		0.634	0.043
000116	14.07		20.36 Alkyldihydroxyacetonephosphate synthase, peroxisomal C		0.633	0.000
P51149	24.75	24.75 8.15	52.66 Ras-related protein Rab-7a OS=Homo sapiens GN=RAB7A I		0.633	0.000
075396 Q86W92	8.15 11.13	11.17	29.77 Vesicle-trafficking protein SEC22b OS=Homo sapiens GN=S 10.10 Lippin bota 1 OS=Homo capiens GN=REFIRE1 RE=1 SV=2	EC228 PE-1 3V-4	0.632	0.020
Q15758	16.94	16.94	10.19 Liprin-beta-1 OS=Homo sapiens GN=PPFIBP1 PE=1 SV=2 29.39 Neutral amino acid transporter B(0) OS=Homo sapiens GN	-61 (1 45 05-1 6)/-2	0.630	0.000
Q13641	6.09	6.14			0.630	0.033
P35613	14.9	14.9	10.48 Trophoblast glycoprotein OS=Homo sapiens GN=TPBG PE= 36.88 Basigin OS=Homo sapiens GN=BSG PE=1 SV=2	1 34-1	0.622	0.000
Q32MZ4	4.1	4.1	5.693 Leucine-rich repeat flightless-interacting protein 1 OS=Hor	no soniens GN-I RREID1 DE-1 SV-7	0.620	0.018
043776	15.36	15.36	20.07 AsparaginetRNA ligase, cytoplasmic OS=Homo sapiens G		0.615	0.002
Q8NCG7	1.52	1.57	 2.679 Sn1-specific diacylglycerol lipase beta OS=Homo sapiens G 		0.613	0.002
Q9Y6M9	4.19	4.19	24.58 NADH dehydrogenase [ubiquinone] 1 beta subcomplex sul	ounit 9 OS=Homo sapiens GN=NDUER9 PE=1 SV=3	0.611	0.033
P29317	15.93	15.93	11.99 Ephrin type-A receptor 2 OS=Homo sapiens GN=EPHA2 PE		0.608	0.000
Q12907	14.48	14.56	33.71 Vesicular integral-membrane protein VIP36 OS=Homo sap	iens GN=LMAN2 PE=1 SV=1	0.605	0.000
Q9Y4W6	14.32	14.39	16.06 AFG3-like protein 2 OS=Homo sapiens GN=AFG3L2 PE=1 5%		0.602	0.000
P13073	7.34	7.34	25.44 Cytochrome c oxidase subunit 4 isoform 1, mitochondrial		0.602	0.008
Q9UGP8	9.02	9.05	10.13 Translocation protein SEC63 homolog OS=Homo sapiens G		0.601	0.000
P09669	8	8	48 Cytochrome c oxidase subunit 6C OS=Homo sapiens GN=C		0.593	0.037
P37108	5.57	5.57	27.21 Signal recognition particle 14 kDa protein OS=Homo sapier		0.590	0.047
Q9NVI7	6	10	13.56 ATPase family AAA domain-containing protein 3A OS=Horr		0.585	0.014
075844	6.04	6.08	10.95 CAAX prenyl protease 1 homolog OS=Homo sapiens GN=ZI		0.579	0.008
P13645	8.46	10.92	15.24 Keratin, type I cytoskeletal 10 OS=Homo sapiens GN=KRT1	0 PE=1 SV=6	0.578	0.000
P04844	22.61	22.61	29.32 Dolichyl-diphosphooligosaccharideprotein glycosyltransf		0.575	0.000
Q99623	9.43	9.43	21.74 Prohibitin-2 OS=Homo sapiens GN=PHB2 PE=1 SV=2		0.571	0.005
Q9C004	5.31	5.31	19.4 Protein sprouty homolog 4 OS=Homo sapiens GN=SPRY4 P	E=1 SV=2	0.566	0.010
Q9HDC9		15.07	27.4 Adipocyte plasma membrane-associated protein OS=Hom		0.563	0.000
000000	15.07		27.00 Unterpresent and an alternative contains a contract of the second	Land CNL CONCERN OF 1 CL 2	0.561	0.000
060506	32.06	32.06	37.88 Heterogeneous nuclear ribonucleoprotein Q OS=Homo sa			0.010
Q9Y4L1	22.00	32.06 10.86	14.61 Hypoxia up-regulated protein 1 OS=Homo sapiens GN=HYO	DU1 PE=1 SV=1	0.561	0.019
	32.06	32.06 10.86 4			0.556	0.019
Q9Y4L1 Q9BRR6 Q96CS3	32.06 10.74	4 6.73	14.61 Hypoxia up-regulated protein 1 OS=Homo sapiens GN=HY	CPE=1 SV=1	0.556 0.555	
Q9Y4L1 Q9BRR6	32.06 10.74 4	4	14.61 Hypoxia up-regulated protein 1 OS=Homo sapiens GN=HYG 7.243 ADP-dependent glucokinase OS=Homo sapiens GN=ADPGH	<pre><pe=1 sv="2</pre"></pe=1></pre>	0.556	0.012
Q9Y4L1 Q9BRR6 Q96CS3	32.06 10.74 4 6.68	4 6.73	14.61 Hypoxia up-regulated protein 10S-Homo saplens 6NH-HY 7.243 ADP-dependent glucokinase 0S-Homo saplens 6NH-APG 16.85 FAS-associated factor 2 0S-Homo saplens 6NH-APZ PE-1 7.25.94 Secretory carrier-associated membrane protein 3 0S-Hom 7.20.55 Cytochome 55 type 8 OS-Homo saplens 6NH-GPB PE-1	<pre>c PE=1 SV=1 SV=2 to sapiens GN=SCAMP3 PE=1 SV=3 SV=2</pre>	0.556 0.555	0.012 0.021
Q9Y4L1 Q9BRR6 Q96CS3 014828	32.06 10.74 4 6.68 9.23	4 6.73 9.23	14.61 Hypoxia up-regulated protein 1 OS=Homo sapiens GN=HYR 7.243 ADP-dependent glucokinase OS=Homo sapiens GN=APGF 16.85 FAS-associated factor 2 OS=Homo sapiens GN=FAF2 PE-1 25.94 Secretory carrier-associated membrane protein 3 OS=Hom	<pre>c PE=1 SV=1 SV=2 to sapiens GN=SCAMP3 PE=1 SV=3 SV=2</pre>	0.556 0.555 0.547	0.012 0.021 0.039
Q9Y4L1 Q9BRR6 Q96CS3 014828 043169 Q9Y320 P35052	32.06 10.74 4 6.68 9.23 8.44	4 6.73 9.23 8.51	14.61 Hypoxia up regulated protein 1.05-Homo spiens GN+HYB 7.243 ADP-dependent glucolinase OS+Homo sapiens GN-H260 16.85 FAS-associated factor 2.05-Homo sapiens GN-FAF2 PE-1 25.94 Secretory carifer-associated duration of the technologies of the technologies 20.05 Cytochrome 54 type 8.05-Homo sapiens SN-CY08B PE-1 8.446 Thioredoxin-related transmembrane protein 2.05-Homo 1.744 Ghybera-1.05-Homo sapiens GN-H67C PE-1 SV-2.	VPE=1SV=1 SV=2 0 sapiens GN=SCAMP3 PE=1 SV=3 SV=2 apiens GN=TMX2 PE=1 SV=1	0.556 0.555 0.547 0.547	0.012 0.021 0.039 0.010
Q9Y4L1 Q9BRR6 Q96CS3 O14828 O43169 Q9Y320 P35052 P51572	32.06 10.74 4 6.68 9.23 8.44 2.77	4 6.73 9.23 8.51 2.78 12.05 12.06	 L6.1 Hypoxia up regulated protein 1.05-Homo sepiens GN+HYP Z43 ADP-dependent glucokinase OS-Homo sepiens GN+ADPGI L6.85 FAS-associated factor 2.05-Homo sepiens GN+AP2 PE-1 S43 Secretory carrier associated membrane protein 3.05-Homo sepiens S2.05 Cytochrome 55 type B.05-Homo sepiens GN+GP82 PE-1 S.446 Thioredoxin-related transmembrane protein 2.05-Homo sepiens L6.02 Pc-BI receptor associated protein 31.05-Homo sepiens L6.02 Pc-BI receptor-associated protein 31.05-Homo sepiens L6.02 Pc-BI receptor-associated protein 31.05-Homo sepiens 	VFE-15V-1 SV-2 ID saplens GN=SCAMP3 PE-1 SV-3 SV-2 aplens GN=TMX2 PE-1 SV-1 V=BCAP31 PE-1 SV-3	0.556 0.555 0.547 0.547 0.545 0.545 0.545 0.539	0.012 0.021 0.039 0.010 0.014 0.011 0.000
Q9Y4L1 Q9BRR6 Q96CS3 O14828 O43169 Q9Y320 P35052 P51572 O94832	32.06 10.74 4 6.68 9.23 8.44 2.77 12.05	4 6.73 9.23 8.51 2.78 12.05	14.61 Hypoxia up-regulated protein 105-Homo sapiens GN+HYPA 7.243 ADP-dependent glucokinase OS+Homo sapiens GN+ADPGH 16.85 FAS-associated factor 205-Homo sapiens GN+AZPE-12 5.93 Secretory camier-associated membrane protein 305-Homo 52.05 Cytochrome 15 type 8 OS-Homo sapiens GN+C2PE-1 8.446 Thioredoxin-related transmembrane protein 205-Homo 17.74 Gyptican-1 OS-Homo sapiens GN+GPC1 PE-1 SP-2 26.02 B-cell receptor-associated protein 31 OS-Homo sapiens GN-MYOSD 27.73 Unconventional myosin-Id OS-Homo sapiens GN-MYOSD	VPE=1SV=1 SV=2 os aplens GN=SCAMP3 PE=1 SV=3 SV=2 aplens GN=TMX2 PE=1 SV=1 N=BCAP31 PE=1 SV=3 PE=1 SV=2	0.556 0.555 0.547 0.547 0.545 0.545	0.012 0.021 0.039 0.010 0.014 0.011
Q9Y4L1 Q9BRR6 Q96CS3 O14828 O43169 Q9Y320 P35052 P51572	32.06 10.74 4 6.68 9.23 8.44 2.77 12.05 12.06	4 6.73 9.23 8.51 2.78 12.05 12.06	 L6.1 Hypoxia up regulated protein 1.05-Homo sepiens GN+HYP Z43 ADP-dependent glucokinase OS-Homo sepiens GN+ADPGI L6.85 FAS-associated factor 2.05-Homo sepiens GN+AP2 PE-1 S43 Secretory carrier associated membrane protein 3.05-Homo sepiens S2.05 Cytochrome 55 type B.05-Homo sepiens GN+GP82 PE-1 S.446 Thioredoxin-related transmembrane protein 2.05-Homo sepiens L6.02 Pc-BI receptor associated protein 31.05-Homo sepiens L6.02 Pc-BI receptor-associated protein 31.05-Homo sepiens L6.02 Pc-BI receptor-associated protein 31.05-Homo sepiens 	VPE=1SV=1 SV=2 os aplens GN=SCAMP3 PE=1 SV=3 SV=2 aplens GN=TMX2 PE=1 SV=1 N=BCAP31 PE=1 SV=3 PE=1 SV=2	0.556 0.555 0.547 0.547 0.545 0.545 0.545 0.539	0.012 0.021 0.039 0.010 0.014 0.011 0.000
Q9Y4L1 Q9BRR6 Q96CS3 O14828 O43169 Q9Y320 P35052 P51572 O94832	32.06 10.74 4 6.68 9.23 8.44 2.77 12.05 12.06 32.77	4 6.73 9.23 8.51 2.78 12.05 12.06 32.98	14.61 Hypoxia up-regulated protein 105-Homo sapiens GN+HYPA 7.243 ADP-dependent glucokinase OS+Homo sapiens GN+ADPGH 16.85 FAS-associated factor 205-Homo sapiens GN+AZPE-12 5.93 Secretory camier-associated membrane protein 305-Homo 52.05 Cytochrome 15 type 8 OS-Homo sapiens GN+C2PE-1 8.446 Thioredoxin-related transmembrane protein 205-Homo 17.74 Gyptican-1 OS-Homo sapiens GN+GPC1 PE-1 SP-2 26.02 B-cell receptor-associated protein 31 OS-Homo sapiens GN-MYOSD 27.73 Unconventional myosin-Id OS-Homo sapiens GN-MYOSD	VFE-1SV=1 SV=2 os apiens GN=SCAMP3 PE=1 SV=3 SV=2 apiens GN=TMX2 PE=1 SV=1 V=BCAP31 PE=1 SV=3 PE=1 SV=2 PF=1 SV=2 PF=1 SV=3	0.556 0.555 0.547 0.547 0.545 0.545 0.545 0.539 0.538	0.012 0.021 0.039 0.010 0.014 0.011 0.000 0.000
Q9Y4L1 Q9BRR6 Q96CS3 O14828 O43169 Q9Y320 P35052 P51572 O94832 Q16850	32.06 10.74 4 6.68 9.23 8.44 2.77 12.05 12.06 32.77 16.22	4 6.73 9.23 8.51 2.78 12.05 12.06 32.98 16.22	14.61 Hypoxia up regulated protein 1.05-Homo sapiens GN+HY 7.243 ADP-dependent glucokinase OS-Homo sapiens GH-AP2 PE-1 1.635 FA3-associated factor 2.05-Homo sapiens GH-AP2 PE-1 25.94 Secretory carrier associated membrane protein 3.05-Hom 52.05 Cytochrome 55 type 8.05-Homo sapiens GN-GNP36 PE-1 8.446 Thioredoxin-related transmembrane protein 2.05-Homo 17.74 Ghylcan-1.05-Homo sapiens GN-GPC1 PE-1.57-2 6.02 B-cell receptor-associated protein 3.105-Homo sapiens GN- 27.30 Unconventional mysim-14 OS-Homo sapiens GN-GNP01D 2.266 Lancetor 114-alpha demethylase OS-Homo sapiens GN-GNP01D	CPE=1SV=1 SV=2 Sv=2 splens GN=SCAMP3 PE=1 SV=3 SV=2 splens GN=TMX2 PE=1 SV=1 N=BCAP31 PE=1 SV=3 PE=1 SV=2 YPS1A1 PE=1 SV=3 AMI PE=1 SV=2	0.556 0.555 0.547 0.547 0.545 0.545 0.539 0.538 0.538	0.012 0.021 0.039 0.010 0.014 0.011 0.000 0.000 0.000
Q9Y4L1 Q9BRR6 Q96C53 O14828 O43169 Q9Y320 P35052 P51572 O94832 Q16850 P05362	32.06 10.74 4 6.68 9.23 8.44 2.77 12.05 12.05 12.06 32.77 16.22 4.84	4 6.73 9.23 8.51 2.78 12.05 12.06 32.98 16.22 4.84	14.61 Hypoxia up-regulated protein 1.05-Homo sepiens GN+HY 7.243 ADP-depender glucokinase OS-Homo sepiens GN+ADPG1 8.85 FAS-associated factor 2 OS-Homo sepiens GN+A2PG1 25.94 Secretory carrier-associated membrane protein 3.05-Hom 25.05 Cytochrome 5 type B OS-Homo sepiens GN+G705B PE-1 8.446 Thioredoxin-related transmembrane protein 2.05-Homo 17.74 Gkpican-1.05-Homo sepiens GN+GPC1 PE-1 SV=2 6.02 B-cell receptor-associated protein 31.05-Homo sepiens GN 27.73 Unconventional myosin-1d OS-Homo sepiens GN+G705B 2.85 Lanosterol 14-alpha demethylase OS-Homo sepiens GN-E 6.391 Intercellular adhesion molecule 1.05-Homo sepiens GN-E	VPE-1SV=1 SV=2 SV=2 aplens GN=TMX2 PE-1 SV=3 SV=2 V=BCAP31 PE-1 SV=3 PE-1 SV=2 VPE11 SV=2 ZM1 PE-1 SV=2 ZM1 PE-1 SV=2 ZM1 PE-1 SV=2 ZM1 PE-1 SV=2	0.556 0.555 0.547 0.547 0.545 0.545 0.539 0.539 0.533 0.533 0.533	0.012 0.021 0.039 0.010 0.014 0.001 0.000 0.000 0.000 0.000 0.013
Q9Y4L1 Q9BRR6 Q96CS3 O14828 O43169 P35052 P51572 O94832 Q16850 P05362 Q90320 Q94320 P105362 Q90577 P11233	32.06 10.74 4 6.68 9.23 8.44 2.77 12.05 12.06 32.77 16.22 4.84 4	4 6.73 9.23 8.51 2.78 12.05 12.06 32.98 16.22 4.84 4	 14.61 Hypoxia up regulated protein 1.05-Homo sapiens GN+HYB 7.243 ADP-dependent glucokinase OS-Homo sapiens GN-APZ PE-1 7.243 ADP-dependent glucokinase OS-Homo sapiens GN-APZ PE-1 7.25.94 Secretory carrier-associated membrane protein 3.05-Homo sapiens 7.26.57 Crichtorme 5 type 8.05-Homo sapiens GN-GN-BYB 8.446 Thioredoxin-related transmembrane protein 3.05-Homo sapiens 7.74 Ghylican 1.05-Homo sapiens GN-GN-BYB 7.75 Unconventional myosin-Id OS-Homo sapiens GN-HWD1D 7.76 Unconventional myosin-Id OS-Homo sapiens GN-HWD1D 7.78 Unconventional myosin-Id OS-Homo sapiens GN-GN-GN-GN-GN-GN-GN-GN-GN-GN-GN-GN-GN-G	PE=1SV=1 SV=2 to sapiens GN=SCAMP3 PE=1 SV=3 SV=2 apiens GN=TMX2 PE=1 SV=1 V=BCAP31 PE=1 SV=3 PE=1 SV=2 VP51A1 PE=1 SV=2 VF18 SV=2 VF18 SV=2	0.556 0.555 0.547 0.547 0.545 0.545 0.539 0.538 0.537 0.534 0.534 0.534	0.012 0.021 0.039 0.010 0.014 0.011 0.000 0.000 0.000 0.000 0.013 0.037
Q9Y4L1 Q9BRR6 Q96C53 014828 043169 Q9Y320 P35052 P51572 Q94832 Q16850 P05362 Q9Y3E0 Q00577	32.06 10.74 4 6.68 9.23 8.44 2.77 12.05 12.05 12.05 32.77 16.22 4.84 4 4	4 6.73 9.23 8.51 2.78 12.05 12.06 32.98 16.22 4.84 4 4.1	 14.61 Hypoxia up regulated protein 1.05-Homo sapiens GN+HY 7.243 ADP-dependent glucokinase OS-Homo sapiens GN+ADPG1 7.243 ADP-dependent glucokinase OS-Homo sapiens GN+ADPG1 7.25 S4 Secretory carrier associated membrane protein 3.05-Homo sapiens 7.26 Synchrone 55 type B.05-Homo sapiens GN+GN2BPE-1 8.446 Holoredoxin-related transmembrane protein 3.05-Homo sapiens 7.46 Glyptian-1.05-Homo sapiens GN+GN2BPE-1 8.426 Holoredoxin-related transmembrane protein 2.05-Homo sapiens 8.02 R-cell receptor-associated protein 31.05-Homo sapiens 8.02 R-cell receptor-associated protein 31.05-Homo sapiens 8.02 R-cell receptor-associated protein 31.05-Homo sapiens 8.427 Jucconventional mysin-1d.05-Homo sapiens 8.431 Intercellular adhesion molecule 1.05-Homo sapiens 8.445 Usciel transport protein GOTIB 05-Homo sapiens 8.457 Holoredoxin-repatient adhesion molecule 1.05-Homo sapiens 	VPE-1SV=1 SV=2 os aplens GN=SCAMP3 PE=1 SV=3 SV=2 aplens GN=TMX2 PE=1 SV=1 >>=8CAP31 PE=1 SV=3 PF=1 SV=2 AMI PE=1 SV=2 DTIB PE=1 SV=1 ens GN=PURA PE=1 SV=2 1 SV=1	0.555 0.555 0.547 0.547 0.545 0.545 0.538 0.538 0.538 0.537 0.534 0.531 0.526	0.012 0.021 0.039 0.010 0.014 0.011 0.000 0.000 0.000 0.000 0.000 0.013 0.037 0.029

P00167	4.33	4.33	25.37 Cytochrome b5 OS=Homo sapiens GN=CYB5A PE=1 SV=2	0.494	0.004
P07900	3.52	12.6	14.34 Heat shock protein HSP 90-alpha OS=Homo sapiens GN=HSP90AA1 PE=1 SV=5	0.490	0.011
Q9UJS0	24.42	24.55	30.22 Calcium-binding mitochondrial carrier protein Aralar2 OS=Homo sapiens GN=SLC25A13 PE=1 SV=2	0.486	0.000
Q09666	37.69	37.71	13.68 Neuroblast differentiation-associated protein AHNAK OS=Homo sapiens GN=AHNAK PE=1 SV=2	0.486	0.000
P17931	8.49	8.49	24 Galectin-3 OS=Homo sapiens GN=LGALS3 PE=1 SV=5	0.481	0.000
P35232	20.42	20.42	56.25 Prohibitin OS=Homo sapiens GN=PHB PE=1 SV=1	0.481	0.000
P16435	12.08	12.08	18.17 NADPHcytochrome P450 reductase OS=Homo sapiens GN=POR PE=1 SV=2	0.480	0.000
35527	12.44	12.49	20.22 Keratin, type I cytoskeletal 9 OS=Homo sapiens GN=KRT9 PE=1 SV=3	0.468	0.004
2081	5.57	5.57	9.234 HistidinetRNA ligase, cytoplasmic OS=Homo sapiens GN=HARS PE=1 SV=2	0.454	0.012
23229	14.19	14.22	10.97 Integrin alpha-6 OS=Homo sapiens GN=ITGA6 PE=1 SV=5	0.449	0.000
21796	24.25	24.25	61.13 Voltage-dependent anion-selective channel protein 1 OS=Homo sapiens GN=VDAC1 PE=1 SV=2	0.439	0.000
20645	10.27	10.79	25.27 Cation-dependent mannose-6-phosphate receptor OS=Homo sapiens GN=M6PR PE=1 SV=1	0.423	0.000
213647	4.5	6.72	6.949 Keratin, type II cytoskeletal 5 OS=Homo sapiens GN=KRT5 PE=1 SV=3	0.417	0.049
49257	14	14	26.27 Protein ERGIC-53 OS=Homo sapiens GN=LMAN1 PE=1 SV=2	0.414	0.001
115836	8	8	41. Vesicle-associated membrane protein 3 OS=Homo sapiens GN=VAMP3 PE=1 SV=3	0.403	0.011
Q8TCT9	4	4	9.019 Minor histocompatibility antigen H13 OS=Homo sapiens GN=HM13 PE=1 SV=1	0.386	0.027
07355	8.6	8.65	19.47 Annexin A2 OS=Homo sapiens GN=ANXA2 PE=1 SV=2	0.386	0.001
05455	6.17	6.23	9.559 Lupus La protein OS=Homo sapiens GN=SSB PE=1 SV=2	0.379	0.002
19338	33.5	33.5	26.2 Nucleolin OS=Homo sapiens GN=NCL PE=1 SV=3	0.370	0.000
04264	14.77	18.88	12.89 Keratin, type II cytoskeletal 1 OS=Horno sapiens GN=KRT1 PE=1 SV=6	0.359	0.000
P15311	7.48	7.51	11.26 Ezrin OS=Homo sapiens GN=EZR PE=1 SV=4	0.342	0.002
235908	13.45	20.41	22.69 Keratin, type II cytoskeletal 2 epidermal OS=Homo sapiens GN=KRT2 PE=1 SV=2	0.290	0.033
43121	7.11	7.11	11.61 Cell surface glycoprotein MUC18 OS=Homo sapiens GN=MCAM PE=1 SV=2	0.244	0.006
P11169	22.06	22.06	11.69 Solute carrier family 2, facilitated glucose transporter member 3 OS=Homo sapiens GN=SLC2A3 PE=1 SV=1	0.161	0.000
Q9BTV4	15.34	15.34	29.5 Transmembrane protein 43 OS=Homo sapiens GN=TMEM43 PE=1 SV=1	0.149	0.000

Supplementary Table 4: Complete list of proteins identified within the HT29 comparisons[§]

iprot Unused	Total	X.Cov.95) Mock/untreated HT29 β6AS . Protein Name; Organism; Gene name	iTRAQ Fold Change	StouffersP
P06703 6.99	7.12	30	Protein S100-A6 OS=Homo sapiens GN=S100A6 PE=1 SV=1	3.421	0.047
P35900 11.54	13.58	20.99	Keratin, type I cytoskeletal 20 OS=Homo sapiens GN=KRT20 PE=1 SV=1	2.387	0.000
0959946.62	6.62	16.57	Anterior gradient protein 2 homolog OS=Homo sapiens GN=AGR2 PE=1 SV=1	2.377	0.021
P16401 19.25	32.15	42.48	Histone H1.5 OS=Homo sapiens GN=HIST1H1B PE=1 SV=3	2.299	0.030
P17931 12.67	12.67	34.4	Galectin-3 OS=Homo sapiens GN=LGALS3 PE=1 SV=5	2.243	0.000
P35579 66.43	66.43	23.62	Myosin-9 OS=Homo sapiens GN=MYH9 PE=1 SV=4	2.089	0.000
P21589 34.93	35.06	39.37	5'-nucleotidase OS=Homo sapiens GN=NT5E PE=1 SV=1	2.024	0.000
210412 2.38	31.26	47.03	Histone H1.4 OS=Homo sapiens GN=HIST1H1E PE=1 SV=2	2.014	0.041
P49756 2.07	2.17	3.559	RNA-binding protein 25 OS=Horno sapiens GN=RBM25 PE=1 SV=3	1.987	0.040
211216 8.98	9.01	9.015	Glycogen phosphorylase, brain form OS=Homo sapiens GN=PYGB PE=1 SV=5	1.986	0.000
Q9HDC:29.18	29.18	38.22	Adipocyte plasma membrane-associated protein OS=Homo sapiens GN=APMAP PE=1 SV=2	1.978	0.002
2166304.12	4.16	6.897	Cleavage and polyadenylation specificity factor subunit 6 OS=Homo sapiens GN=CPSF6 PE=1 SV=2	1.932	0.001
256VL310.19	10.19	31.82	OCIA domain-containing protein 2 OS=Homo sapiens GN=OCIAD2 PE=1 SV=1	1.864	0.000
19HBR(10.74	10.15	9.115	Putative sodium-coupled neutral amino acid transporter 10 OS=Homo sapiens GN=SLC38A10 PE=1 SV=2	1.849	0.009
230101 20.88	20.88	23.17	Protein disulfide-isomerase A3 OS=Homo sapiens GN=PDIA3 PE=1 SV=4	1.837	0.003
23786 26.46	26.46	31.16	Carnitine O-palmitovltransferase 2, mitochondrial OS=Homo sapiens GN=CPT2 PE=1 SV=2	1.825	0.000
19UQ3 2.32	2.32	0.6177	Serine/arginine repetitive matrix protein 2 OS=Homo sapiens GN=SRRM2 PE=1 SV=2	1.822	0.021
49750 2	2.52	0.8713	YLP motif-containing protein 1 OS=Homo sapiens GN=YLPM1 PE=1 SV=3	1.813	0.021
97302 61626 7.35	7.35	39.86		1.808	0.037
010207.35			Lysozyme C OS=Homo sapiens GN=LYZ PE=1 SV=1		
22307 6.9	6.92	5.667	Non-specific lipid-transfer protein OS=Homo sapiens GN=SCP2 PE=1 SV=2	1.770	0.007
13667 6.31	6.34	11.94	Protein disulfide-isomerase A4 OS=Homo sapiens GN=PDIA4 PE=1 SV=2	1.755	0.004
0147454.54	4.54	15.36	Na(+)/H(+) exchange regulatory cofactor NHE-RF1 OS=Homo sapiens GN=SLC9A3R1 PE=1 SV=4	1.748	0.002
2901506.08	6.08	8.741	Calcium-binding mitochondrial carrier protein Aralar2 OS=Homo sapiens GN=SLC25A13 PE=1 SV=2	1.730	0.004
132426.12	6.14	22.62	Serine/arginine-rich splicing factor 9 OS=Homo sapiens GN=SRSF9 PE=1 SV=1	1.719	0.017
07237 17.05	17.05	30.91	Protein disulfide-isomerase OS=Homo sapiens GN=P4HB PE=1 SV=3	1.694	0.009
1976535.16	5.18	7.071	G-protein coupled receptor 56 OS=Homo sapiens GN=GPR56 PE=1 SV=2	1.672	0.000
2055192.78	2.78	5.992	Serine/arginine-rich splicing factor 11 OS=Homo sapiens GN=SRSF11 PE=1 SV=1	1.665	0.016
18WXX7.34	7.36	17.31	DnaJ homolog subfamily C member 9 OS=Homo sapiens GN=DNAJC9 PE=1 SV=1	1.653	0.020
20795515.44	15.45	34.68	Serine/arginine-rich splicing factor 1 OS=Homo sapiens GN=SRSF1 PE=1 SV=2	1.645	0.016
20212723.03	23.03	47.59	Dihydroorotate dehydrogenase (quinone), mitochondrial OS=Homo sapiens GN=DHODH PE=1 SV=3	1.635	0.043
1501920	20	47.09	Septin-2 OS=Homo sapiens GN=SEPT2 PE=1 SV=1	1.634	0.006
0962210	10.01	15.91	Dihydrolipoyl dehydrogenase, mitochondrial OS=Homo sapiens GN=DLD PE=1 SV=2	1.630	0.012
1508418.06	18.06	30.91	Protein disulfide-isomerase A6 OS=Homo sapiens GN=PDIA6 PE=1 SV=1	1.628	0.012
255011 15.1	15.1	11.88	Solute carrier family 12 member 2 OS=Homo sapiens GN=SLC12A2 PE=1 SV=1	1.608	0.010
196PKE 2.03	2.08	3.587	RNA-binding protein 14 OS=Homo sapiens GN=RBM14 PE=1 SV=2	1.604	0.033
28NBS15.04	5.34	10.42	Thioredoxin domain-containing protein 5 OS=Homo sapiens GN=TXNDC5 PE=1 SV=2	1.592	0.017
20028186.1	6.12	12.58	Nucleobindin-1 OS=Homo sapiens GN=NUCB1 PE=1 SV=4	1.587	0.017
196124 9.29	13.45	25.7	Far upstream element-binding protein 3 OS=Homo sapiens GN=FUBP3 PE=1 SV=2	1.581	0.000
10325224.61					0.000
	33.01	36.17	Lamin-B2 OS=Homo sapiens GN=LMNB2 PE=1 SV=3 Serine/arginine repetitive matrix protein 1 OS=Homo sapiens GN=SRRM1 PE=1 SV=2	1.580	0.000
28IYB3 1.58	1.6	3.761			
43304 4.45	4.45	5.089	Glycerol-3-phosphate dehydrogenase, mitochondrial OS=Homo sapiens GN=GPD2 PE=1 SV=3	1.561	0.009
05783 36.65	38.25	51.4	Keratin, type I cytoskeletal 18 OS=Homo sapiens GN=KRT18 PE=1 SV=2	1.554	0.014
60660 11.59	11.59	52.98	Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2	1.553	0.007
06066415.54	15.54	33.18	Perilipin-3 OS=Homo sapiens GN=PLIN3 PE=1 SV=3	1.527	0.000
19P20610.09	10.15	10.24	Uncharacterized protein KIAA1522 OS=Homo sapiens GN=KIAA1522 PE=1 SV=2	1.522	0.014
28N5N 10	10	39.24	39S ribosomal protein L50, mitochondrial OS=Homo sapiens GN=MRPL50 PE=1 SV=2	1.507	0.022
04370722.93	22.93	19.54	Alpha-actinin-4 OS=Homo sapiens GN=ACTN4 PE=1 SV=2	1.504	0.000
11021 32.14	32.14	29.97	78 kDa glucose-regulated protein OS=Homo sapiens GN=HSPA5 PE=1 SV=2	1.501	0.000
207910 16. 4	16.7	28.43	Heterogeneous nuclear ribonucleoproteins C1/C2 OS=Homo sapiens GN=HNRNPC PE=1 SV=4	1.491	0.021
08727 16.72	21.04	38.5	Keratin, type I cytoskeletal 19 OS=Homo sapiens GN=KRT19 PE=1 SV=4	1.485	0.003
28N16:14	14	14.95	DBIRD complex subunit KIAA1967 OS=Homo sapiens GN=KIAA1967 PE=1 SV=2	1.467	0.025
28WXF 13.64	13.74	17.59	Paraspeckle component 1 OS=Homo sapiens GN=PSPC1 PE=1 SV=1	1.460	0.040
46013 25.52	25.52	6.357	Antigen KI-67 OS=Homo sapiens GN=MKI67 PE=1 SV=2	1.455	0.003
11387 19.44	19.44	17.12	DNA topoisomerase 1 OS=Homo sapiens GN=TOP1 PE=1 SV=2	1.438	0.004
19UPT12.44	2.44	2.149	Zinc finger CCCH domain-containing protein 4 OS=Homo sapiens GN=ZC3H4 PE=1 SV=3	1.436	0.024
19BYD: 4.18	4.18	11.25	39S ribosomal protein L4, mitochondrial OS=Homo sapiens GN=MRPL4 PE=1 SV=1	1.418	0.020
38646 8.69	10.77	10.16	Stress-70 protein, mitochondrial OS=Homo sapiens GN=HSPA9 PE=1 SV=2	1.379	0.007
0134056.01	6.01	23.49	39S ribosomal protein L49, mitochondrial OS=Homo sapiens GN=MRPL49 PE=1 SV=1	1.372	0.024
9NPA(7.18	7.37	30.99	ER membrane protein complex subunit 7 OS=Homo sapiens GN=EMC7 PE=1 SV=1	1.360	0.043
7591512	12.02	20.74	PRA1 family protein 3 OS=Homo sapiens GN=ARL6IP5 PE=1 SV=1	1.360	0.018
55265 9.87	9.9	6.607	Double-stranded RNA-specific adenosine deaminase OS=Homo sapiens GN=ADAR PE=1 SV=4	1.352	0.007
19284119.88	19.88	23.05	Probable ATP-dependent RNA helicase DDX17 OS=Homo sapiens GN=DDX17 PE=1 SV=2	1.342	0.003
09874 41.41	41.41	29.78	Poly (ADP-ribose) polymerase 1 OS=Homo sapiens GN=PARP1 PE=1 SV=4	1.340	0.021
9UHB 13.42	13.44	15.28	LIM domain and actin-binding protein 1 OS=Homo sapiens GN=LIMA1 PE=1 SV=1	1.308	0.007
14866 8.54	8.54	13.07	Heterogeneous nuclear ribonucleoprotein L OS=Homo sapiens GN=HNRNPL PE=1 SV=2	1.291	0.027
14000 0.54 19BY444.11	4.11	6.838	Eukaryotic translation initiation factor 2A OS=Homo sapiens GN=EIF2A PE=1 SV=3	1.291	0.045
2957444.11	185.43	42.07	Neuroblast differentiation-associated protein AHNAK OS=Homo sapiens GN=EH2A PE=1 SV=3	1.262	0.005
52272 22.78	22.78	25.21	Heterogeneous nuclear ribonucleoprotein M OS=Homo sapiens GN=HNRNPM PE=1 SV=2	1.242	0.040
1514912.21	12.29	1.601	Plectin OS=Homo sapiens GN=PLEC PE=1 SV=3	1.242	0.040
			Plectin OS=Homo sapiens GN=PLEC PE=1 SV=3 DNA-dependent protein kinase catalytic subunit OS=Homo sapiens GN=PRKDC PE=1 SV=3	0.808	
78527 18.56	19.68	3.852			0.020
1613413.65	13.65	22.69	Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial OS=Homo sapiens GN=ETFDH PE=1 SV=2	0.807	0.029
07339 8.35	8.35	18.69	Cathepsin D OS=Homo sapiens GN=CTSD PE=1 SV=1	0.786	0.028
926162.8	2.9	1.722	Translational activator GCN1 OS=Homo sapiens GN=GCN1L1 PE=1 SV=6	0.785	0.032
05023 15.87	15.87	10.85	Sodium/potassium-transporting ATPase subunit alpha-1 OS=Homo sapiens GN=ATP1A1 PE=1 SV=1	0.776	0.013
9962322.07	22.07	45.82	Prohibitin-2 OS=Homo sapiens GN=PHB2 PE=1 SV=2	0.771	0.001
167959.45	9.45	20.69	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex subunit 9, mitochondrial OS=Homo sapiens GN=NDUFA9 PE		0.004
23396 8.06	8.06	21.4	40S ribosomal protein S3 OS=Homo sapiens GN=RPS3 PE=1 SV=2	0.739	0.014
49368 12.36	12.36	18.35	T-complex protein 1 subunit gamma OS=Homo sapiens GN=CCT3 PE=1 SV=4	0.738	0.027
78371 15.92	15.92	25.98	T-complex protein 1 subunit beta OS=Homo sapiens GN=CCT2 PE=1 SV=4	0.732	0.001
48643 16.66	16.7	21.07	T-complex protein 1 subunit epsilon OS=Homo sapiens GN=CCT5 PE=1 SV=1	0.730	0.024
49748 26.61	26.65	31.76	Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS=Homo sapiens GN=ACADVL PE=1 SV=1	0.709	0.008
06756 33.34	33.34	22.71	Integrin alpha-V OS=Homo sapiens GN=ITGAV PE=1 SV=2	0.706	0.002
19H7Z78.67	8.67	19.1	Prostaglandin E synthase 2 OS=Homo sapiens GN=PTGES2 PE=1 SV=1	0.703	0.012
40227 13.61	13.61	22.03	T-complex protein 1 subunit zeta OS=Homo sapiens GN=CCT6A PE=1 SV=3	0.701	0.011
157385.62	5.62	10.99	Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating OS=Homo sapiens GN=NSDHL PE=1 SV=2	0.695	0.045
19UNN 6.51	6.51	20.59	Endothelial protein C receptor OS=Homo sapiens GN=PROCR PE=1 SV=1	0.695	0.004
62888 3.56	3.56	24.35	60S ribosomal protein L30 OS=Homo sapiens GN=RPL30 PE=1 SV=2	0.694	0.011
		29.33	cos nossenar protein eso os-nomo superis en-ra eso FE-1 3V-2	0.004	0.011

sp P36578 29.26					
Los serves	29.65	36.3	60S ribosomal protein L4 OS=Homo sapiens GN=RPL4 PE=1 SV=5	0.684	0.043
sp P54709 6.32	6.35	21.15	Sodium/potassium-transporting ATPase subunit beta-3 OS=Homo sapiens GN=ATP1B3 PE=1 SV=1	0.684	0.007
sp P51648 5.46	5.47	9.072	Fatty aldehyde dehydrogenase OS=Homo sapiens GN=ALDH3A2 PE=1 SV=1	0.673	0.031
sp Q96AP712.78	12.79	30.77	Endothelial cell-selective adhesion molecule OS=Homo sapiens GN=ESAM PE=1 SV=1	0.657	0.015
sp 07548916.04	16.04	40.91	NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial OS=Homo sapiens GN=NDUFS3 PE=1 SV=1	0.657	0.008
p P13645 17.45	20.69	26.54	Keratin, type I cytoskeletal 10 OS=Homo sapiens GN=KRT10 PE=1 SV=6	0.650	0.003
p P04844 9.52	9.52	12.52	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 2 OS=Homo sapiens GN=RPN2 PE=1 SV=3	0.648	0.005
p Q0032510.49	10.72	13.26	Phosphate carrier protein, mitochondrial OS=Homo sapiens GN=SLC25A3 PE=1 SV=2	0.645	0.010
p 00011615.48	15.48	19.76	Alkyldihydroxyacetonephosphate synthase, peroxisomal OS=Homo sapiens GN=AGPS PE=1 SV=1	0.641	0.004
p Q9953613.69	13.7	26.97	Synaptic vesicle membrane protein VAT-1 homolog OS=Homo sapiens GN=VAT1 PE=1 SV=2	0.640	0.047
p P05026 10.07	10.07	25.41	Sodium/potassium-transporting ATPase subunit beta-1 OS=Homo sapiens GN=ATP1B1 PE=1 SV=1	0.636	0.035
p Q6PIU2 3.53	3.53	11.52	Neutral cholesterol ester hydrolase 1 OS=Homo sapiens GN=NCEH1 PE=1 SV=3	0.631	0.006
p P18621 9.26	9.26	27.72	60S ribosomal protein L17 OS=Homo sapiens GN=RPL17 PE=1 SV=3	0.627	0.034
p P05388 20.75	20.75	47.32	60S acidic ribosomal protein P0 OS=Homo sapiens GN=RPLP0 PE=1 SV=1	0.620	0.015
p Q6PL18 2.01	2.06	1.295	ATPase family AAA domain-containing protein 2 OS=Homo sapiens GN=ATAD2 PE=1 SV=1	0.618	0.041
p P0CW2:10.92	10.92	48.89	40S ribosomal protein S17-like OS=Homo sapiens GN=RPS17L PE=1 SV=1	0.618	0.048
Q0702C5.82	5.82	19.68	60S ribosomal protein L18 OS=Homo sapiens GN=RPL18 PE=1 SV=2	0.604	0.031
p P62851 10.57	10.57	24.8	40S ribosomal protein S25 OS=Homo sapiens GN=RPS25 PE=1 SV=1	0.587	0.005
p P04899 5.71	8.18	21.69	Guanine nucleotide-binding protein G(i) subunit alpha-2 OS=Homo sapiens GN=GNAI2 PE=1 SV=3	0.586	0.021
p P18084 20.32	20.32	16.9	Integrin beta-5 OS=Homo sapiens GN=ITGB5 PE=1 SV=1	0.585	0.002
P27487 15.18	15.18	12.27	Dipeptidyl peptidase 4 OS=Homo sapiens GN=DPP4 PE=1 SV=2	0.579	0.000
p P273384	4	5.962	Amine oxidase [flavin-containing] B OS=Homo sapiens GN=MAOB PE=1 SV=3	0.571	0.020
p Q149748.25	8.25	7.192	Importin subunit beta-1 OS=Homo sapiens GN=KPNB1 PE=1 SV=2	0.568	0.029
0002175.79	5.79	19.05	NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial OS=Homo sapiens GN=NDUFS8 PE=1 SV=1	0.568	0.005
Q5ZPR38.31	8.31	20.97	CD276 antigen OS=Homo sapiens GN=CD276 PE=1 SV=1	0.567	0.002
P06576 42.27	42.27	58.6	ATP synthase subunit beta, mitochondrial OS=Homo sapiens GN=ATP5B PE=1 SV=3	0.565	0.000
P51149 26.13	26.13	62.8	Ras-related protein Rab-7a OS=Homo sapiens GN=RAB7A PE=1 SV=3	0.553	0.000
		12.9			
P39023 6.02	6.08		60S ribosomal protein L3 OS=Homo sapiens GN=RPL3 PE=1 SV=2	0.540	0.013
P08754 5.55	7.72	18.93	Guanine nucleotide-binding protein G(k) subunit alpha OS=Homo sapiens GN=GNAI3 PE=1 SV=3	0.534	0.020
P155294		6.122	Membrane cofactor protein OS=Homo sapiens GN=CD46 PE=1 SV=3	0.533	0.047
P16444 8.23	8.23	23.6	Dipeptidase 1 OS=Homo sapiens GN=DPEP1 PE=1 SV=3	0.527	0.028
Q1416525.13	25.13	48.97	Malectin OS=Homo sapiens GN=MLEC PE=1 SV=1	0.516	0.001
P10620 3.89	3.89	9.032	Microsomal glutathione S-transferase 1 OS=Homo sapiens GN=MGST1 PE=1 SV=1	0.511	0.013
P08582 8.79	8.79	8.672	Melanotransferrin OS=Homo sapiens GN=MH2 PE=1 SV=2	0.505	0.000
P50991 10.25	12.1	19.85	T-complex protein 1 subunit delta OS=Homo sapiens GN=CCT4 PE=1 SV=4	0.495	0.002
Q9UHA 2.31	2.31	12.9	Ragulator complex protein LAMTOR3 OS=Homo sapiens GN=LAMTOR3 PE=1 SV=1	0.478	0.019
P02786 23.45	23.45	21.05	Transferrin receptor protein 1 OS=Homo sapiens GN=TFRC PE=1 SV=2	0.478	0.001
p Q157588.97	8.97	10.72	Neutral amino acid transporter B(0) OS=Homo sapiens GN=SLC1A5 PE=1 SV=2	0.477	0.010
Q2VIR3 4.22	4.22	11.86	Putative eukaryotic translation initiation factor 2 subunit 3-like protein OS=Homo sapiens GN=EIF2S3L PE=5 SV=2	0.468	0.021
Q9BQG 6	6.01	3.012	Myb-binding protein 1A OS=Homo sapiens GN=MYBBP1A PE=1 SV=2	0.466	0.025
0756956.11	6.11	7.429	Protein XRP2 OS=Homo sapiens GN=RP2 PE=1 SV=4	0.466	0.035
Q070218.45	8.45	26.6	Complement component 1 Q subcomponent-binding protein, mitochondrial OS=Homo sapiens GN=C1QBP PE=1 SV=		0.011
Q9NX516.57	6.57	18.21	Cell growth-regulating nucleolar protein OS=Homo sapiens GN=LYAR PE=1 SV=2	0.450	0.026
P09758 4.09	4.09	10.22	Turnor-associated calcium signal transducer 2 OS=Homo sapiens GN=TACSTD2 PE=1 SV=3	0.414	0.028
p Q1590717.56	17.56	46.33	Ras-related protein Rab-11B OS=Homo sapiens GN=RAB11B PE=1 SV=4	0.405	0.000
p Q9Y3A67.47	7.5	22.27	Transmembrane emp24 domain-containing protein 5 OS=Homo sapiens GN=TMED5 PE=1 SV=1	0.354	0.024
p P08174 29.55	29.55	38.06	Complement decay-accelerating factor OS=Homo sapiens GN=CD55 PE=1 SV=4	0.349	0.000
001/425.55					
n P629791147	11 47	41.03	Ubiguitin-40S ribosomal protein S27a OS=Homo saniens GN=RPS27A PE=1 SV=2		
p P62979 11.47	11.47	41.03	Ubiquitin-40S ribosomal protein S27a OS=Homo sapiens GN=RPS27A PE=1 SV=2 Supertorbusin-like protein 1_OS=Homo sapiens GN=SV011 PE=1 SV=1	0.345	0.003
p Q165632.69	2.69	19.69	Synaptophysin-like protein 1 OS=Homo sapiens GN=SYPL1 PE=1 SV=1	0.345 0.338	0.003
p Q165632.69 p P43121 18.25	2.69 18.25	19.69 27.86	Synaptophysin-like protein 1 OS=Homo sapiens GN=SYPL1 PE=1 SV=1 Cell surface glycoprotein MUC18 OS=Homo sapiens GN=MCAM PE=1 SV=2	0.345 0.338 0.323	0.003 0.006 0.001
p Q165632.69	2.69	19.69	Synaptophysin-like protein 1 OS=Homo sapiens GN=SYPL1 PE=1 SV=1	0.345 0.338	0.003
p Q165632.69 p P43121 18.25 p P37059 2	2.69 18.25 2.08	19.69 27.86 3.101	Synaptophysin-like protein 1 OS=Homo saplens GN=SYPL1 PE=1 SV=1 Cell surface glycoprotein MUC18 OS=Homo saplens GN=MCAM PE=1 SV=2 Estradiol 17-beta-dehydrogenase 2 OS=Homo saplens GN=HSD17B2 PE=1 SV=1	0.345 0.338 0.323	0.003 0.006 0.001
p Q165632.69 p P43121 18.25 p P37059 2 B: Comparison (2.69 18.25 2.08	19.69 27.86 3.101 reated H	Synaptophysin-like protein 1 OS-Homo sapiens GN=SYPL1 PE=1 SV=1 Cell surface glycoprotein MUC18 OS=Homo sapiens GN=MCAM PE=1 SV=2 Estradiol 17-beta-dehydrogenase 2 OS=Homo sapiens GN=HSD17B2 PE=1 SV=1 T29 Mock/untreated HT29 Mock	0.345 0.338 0.323 0.149	0.003 0.006 0.001 0.045
2 Q165632.69 2 P43121 18.25 3 P37059 2 Comparison of niprot Unused	2.69 18.25 2.08 of TGFβ t Total	19.69 27.86 3.101 reated H X.Cov.95	SynaptophysinHike protein 1:05=Homo saplens GN=SYPLI PE=1 SV=1 Cell surface ghycoprotein 1:05=Homo saplens GN=MCAM PE=1 SV=2 Estradiol 17-beta-dehydrogenase 2:05=Homo saplens GN=HSD17B2 PE=1 SV=1 T29 Mock/untreated HT29 Mock Protein Name; Organism; Gnen name	0.345 0.338 0.323 0.149 iTRAQ Fold Change	0.003 0.006 0.001 0.045 StouffersPv
DQ165632.69 DP43121 18.25 DP37059 2 Comparison of niprot Unused DP35527 14.04	2.69 18.25 2.08 of TGFβ t Total 14.04	19.69 27.86 3.101 reated H X.Cov.95 20.71	Synaptophysin-like protein 1:05=Homo saplens GN=SYPLI PE=1 SV=1 Cell surface glycoprotein MUC18:05=Homo saplens GN=MCAM PE=1 SV=2 Estradiol 17-beta-dehydrogenase 2:05=Homo saplens GN=HSD17B2 PE=1 SV=1 T29 Mock/untreated HT29 Mock Protein Name; Organism; Gene name Keratin, type I cytoskeletal 9 OS=Homo saplens GN=KR19 PE=1 SV=3	0.345 0.338 0.323 0.149 ITRAQ Fold Change 3.885	0.003 0.006 0.001 0.045 StouffersPv 0.002
0 Q165632.69 0 P43121 18.25 0 P37059 2 • Comparison of niprot Unused 0 P35527 14.04 0 P49755 14.08	2.69 18.25 2.08 of TGFβ t Total 14.04 14.08	19.69 27.86 3.101 reated H X.Cov.95 20.71 38.81	Synaptophysin-like protein 1.05=Homo saplens GN=SPL1 PE=1.SV=1 Cell surface glycoprotein MUC18 05=Homo saplens GN=MCAM PE=1.SV=2 Estradiol 17-beta-dehydragenase 2.05=Homo saplens GN=HSD17D2 PE=1.SV=1 29 Mock/untreated HT29 Mock Protein Name; Organism; Gane name Keratin, type 1 cytoskeletal 9 OS=Homo saplens GN=KR19 PE=1.SV=3 Transmenbrane emp24 domain:-containing protein 10 OS=Homo saplens GN=TMED10 PE=1.SV=2	0.345 0.338 0.323 0.149 ITRAQ Fold Change 3.885 2.133	0.003 0.006 0.001 0.045 StouffersPu 0.002 0.001
Classes P43121 18.25 P37059 2 Comparison of niprot Unused P35527 14.04 P49755 14.08 P13645 17.45	2.69 18.25 2.08 of TGFβ t Total 14.04 14.08 20.69	19.69 27.86 3.101 reated H [*] X.Cov.95 20.71 38.81 26.54	Synaptophysin-like protein 1:05=Homo sapiens GN=SYPL1 PE=1 SV=1 Cell surface ghycoprotein MUC18:05=Homo sapiens GN=MCAM PE=1 SV=2 Estradiol 17-beta-dehydrogenase 2:05=Homo sapiens GN=KD17B2 PE=1 SV=1 T29 Mock/untreated HT29 Mock Protein Name; Organism; Gene name Keratin, type 1 cytoskeletal 9:05=Homo sapiens GN=KRT9 PE=1 SV=3 Transmerbrane emp24 domain-containing protein 10:05=Homo sapiens GN=TMED10 PE=1 SV=2 Keratin, type 1 cytoskeletal 0:05=Homo sapiens GN=KRT10 PE=1 SV=5	0.345 0.338 0.323 0.149 ITRAQ Fold Change 3.885 2.133 2.068	0.003 0.006 0.001 0.045 StouffersPv 0.002 0.001 0.007
DQ165632.69 P43121 18.25 P37059 2 Comparison (niprot Unused 0P35527 14.04 0P49755 14.08 0P13645 17.45 0P62906 17.26	2.69 18.25 2.08 of TGFβ t Total 14.04 14.08 20.69 17.26	19.69 27.86 3.101 reated H [*] X.Cov.95 20.71 38.81 26.54 42.86	Synaptophysin-like protein 1.05=Homo saplens GN=SPL1 PE=1 SV=1 Cell surface gNcportein MUGI S0-Homo saplens GN=KMEN HE=1 SV=2 Estradiol 17-beta-dehydrogenase 2.05=Homo saplens GN=HSD17B2 PE=1 SV=1 T29 Mock/untreated HT29 Mock Protein Name: Organism; Gene name Keratin, type I cytoskeletal 9.05=Homo saplens GN=KRT9 PE=1 SV=3 Transmembrane emp24 domain-conialing protein 10.05=Homo saplens GN=TMED10 PE=1 SV=2 Keratin, type I cytoskeletal 10.05=Homo saplens GN=KRT9 PE=1 SV=6 GS rhossmal protein Lia0.05=Homo saplens GN=KRT9 PE=1 SV=6 GS rhossmal protein Lia0.05=Homo saplens GN=RE10.0FE=1 SV=6 GS rhossmal protein Lia0.05=Homo saplens GN=RE10.0FE=1 SV=2	0.345 0.333 0.323 0.149 ITRAQ Fold Change 3.885 2.133 2.068 1.992	0.003 0.006 0.001 0.045 StouffersPv 0.002 0.001 0.007 0.000
Q165632.69 P43121 18.25 P37059 2 Comparison of the part	2.69 18.25 2.08 of TGFβ t 14.04 14.08 20.69 17.26 5.18	19.69 27.86 3.101 reated H X.Cov.95 20.71 38.81 26.54 42.86 7.071	Synaptophysin-like protein 1.05=Homo sapiens GN=SP(11 PE=1 SV=1 Cell surface glycoprotein MUC18 05=Homo sapiens GN=HCAM PE=1 SV=2 Estradiol 17-beta-dehydrogenase 2.05=Homo sapiens GN=HSD17B2 PE=1 SV=1 T29 Mock/untreated HT29 Mock Protein Name; Organism; Gene name Keratin, type 1 cytoskeletal 9 OS=Homo sapiens GN=KR19 PE=1 SV=3 Transmerbrane emp24 domain:-containing protein 10 OS=Homo sapiens GN=TMED10 PE=1 SV=2 Keratin, type 1 cytoskeletal 10 OS=Homo sapiens GN=RR19 PE=1 SV=2 Keratin, type 1 cytoskeletal 10 OS=Homo sapiens GN=RR10 PE=1 SV=2 Gos ribosomal protein 110a OS=Homo sapiens GN=RR10 PE=1 SV=2 Gos ribosomal protein 10a OS=Homo sapiens GN=GPR50 PE=1 SV=2	0.345 0.333 0.323 0.149 ITRAQ Fold Change 3.885 2.133 2.068 1.992 1.743	0.003 0.006 0.001 0.045 StouffersPv 0.002 0.001 0.007 0.000 0.002
Q165632.69 P37059 2 Comparison of P37059 2 Comparison of P35527 14.04 P43755 14.08 P13645 17.45 P6306 17.26 Q976535.16 P62051	2.69 18.25 2.08 of TGFβ t 14.04 14.08 20.69 17.26 5.18 20.51	19.69 27.86 3.101 reated H X.Cov.95 20.71 38.81 26.54 42.86 7.071 33.08	Synaptophysin-like protein 1:05=Home sapiens GN=SPL1 PE=1 SV=1 Cell surface ghycoprotein MUC18:05=Home sapiens GN=MCAM PE=1 SV=2 Estradiol 17-beta-dehydrogenase 2:05=Home sapiens GN=KED17B2 PE=1 SV=1 129 Mock/untreated HT29 Mock Protein Name; Organism; Gene name Keratin, type 1 cytoskeletal 9:05=Home sapiens GN=KRT9 PE=1 SV=3 Transmerbrare empt 24 domain-containing protein 10:05=Home sapiens GN=KRT9 PE=1 SV=3 Keratin, type 1 cytoskeletal 0:05=Home sapiens GN=RRT10 PE=1 SV=3 Keratin, type 1 cytoskeletal 0:05=Home sapiens GN=RRT10 PE=1 SV=2 605 ribosomal protein 10:05=Home sapiens GN=PR110A PE=1 SV=2 6:protein coupled receptor 56 OS=Home sapiens GN=PR12A PE=1 SV=2 6:St ribosomal protein 10:25=Home sapiens GN=PR12A PE=1 SV=2	0.345 0.333 0.323 0.149 TRAQ Fold Change 3.885 2.133 2.068 1.992 1.743 1.734	0.003 0.006 0.001 0.045 StouffersPv 0.002 0.001 0.007 0.000 0.000 0.000 0.000
Q165612.69 P43121 18.25 P37059 2 : Comparison (niprot Unused P43525 14.08 P43755 14.08 P43755 14.08 P62306 17.26 Q9763 5.16 P62424 20.51 P62424 20.51	2.69 18.25 2.08 of TGFβ t 14.04 14.08 20.69 17.26 5.18 20.51 29.48	19.69 27.86 3.101 reated H' X.Cov.95 20.71 38.81 26.54 42.86 7.071 33.08 38	Synaptophysin-like protein 1.05=Homo sapiens GN=MPL1 PE=1.SV=1 Cell surface glycoprotein MUC18 OS=Homo sapiens GN=MCAM PE=1.SV=2 Estradiol 17-beta-dehydrogenase 2.05=Homo sapiens GN=HSD17B2 PE=1.SV=1 729 Mock/untreated HT29 Mock Protein Name; Organism; Gane name Keratin, type 1 cytoskeletal 9 OS=Homo sapiens GN=KR19 PE=1.SV=3 Transmerbrane emp24 domain-containing protein 10 OS=Homo sapiens GN=RMED10 PE=1.SV=2 Keratin, type 1 cytoskeletal 10.OS=Homo sapiens GN=RMI10 PE=1.SV=3 Gos ribosomal protein LOS=Homo sapiens GN=RMI10 PE=1.SV=2 Keratin, type 1 cytoskeletal 10.OS=Homo sapiens GN=RMI10 PE=1.SV=2 Koratin, type 1 cytoskeletal 10.OS=Homo sapiens GN=RMI10 PE=1.SV=2 Koratin, type 1 cytoskeletal 10.OS=Homo sapiens GN=RMI10 PE=1.SV=2 Koratin, type 1 cytoskeletal 10.OS=Homo sapiens GN=RMI10 PE=1.SV=2 Gos ribosomal protein LI.20.S=Homo sapiens GN=RMI20 PE=1.SV=2 Kobsomal protein LI.20.S=Homo sapiens GN=RMI20 PE=1.SV=2 Kons-POU domain-containing contain of cathere-binding teres thin OS=Homo sapiens GN=PE1.SV=2 Kons-POU domain-containing contain of cathere-binding teres thin OS=Homo sapiens GN=PE1.SV=2	0.345 0.338 0.323 0.149 ITRAQ Fold Change 3.885 2.133 2.058 1.992 1.743 1.734 1.663	0.003 0.006 0.001 0.045 5touffersPv 0.002 0.001 0.007 0.000 0.000 0.000 0.000
Q16562.69 P43121.18.25 P370592 : Comparison of Unused P3552714.04 P4375514.08 P1364517.45 P6290617.26 Q976535.16 P6242420.51 Q152327.2	2.69 18.25 2.08 of TGFβ t Total 14.04 14.08 20.69 17.26 5.18 20.51 29.48 8.07	19.69 27.86 3.101 reated H X.Cov.95 20.71 38.81 26.54 42.86 7.071 33.08 38 38 36.62	Synaptophysin-like protein 1.05=Homo saplens GN=SPL1 PE=1 SV=1 Cell surface ghycoprotein MUC18 OS=Homo saplens GN=MCAM PE=1 SV=2 Estradiol 17-beta dehydrogenase 2.05=Homo saplens GN=HSD17B2 PE=1 SV=1 Protein Name; Organism; Gene name Reratin, type I cytoskeletal 9 OS=Homo saplens GN=HKR19 PE=1 SV=3 Transmerbrane emp24 domain-containing protein 10 OS=Homo saplens GN=TMED10 PE=1 SV=2 Keratin, type I cytoskeletal 9 OS=Homo saplens GN=RKR19 PE=1 SV=3 Transmerbrane emp24 domain-containing protein 10 OS=Homo saplens GN=TMED10 PE=1 SV=2 Keratin, type I cytoskeletal 9 OS=Homo saplens GN=RR10 PE=1 SV=2 Gos ribosomal protein 10 OS=Homo saplens GN=RPL10 PE=1 SV=2 Gos ribosomal protein 10 OS=Homo saplens GN=RPL10 PE=1 SV=2 Strabusch 200 S=Homo saplens GN=RPL7A PE=1 SV=2 GOS ribosomal protein 10 OS=Homo saplens GN=RPL7A PE=1 SV=2 Mon-POU domain-containing cramer-binding protein 0.5=Homo saplens GN=NNON OPE=1 SV=4 AP synthase suburit 0, mitchondrial OS=Homo saplens GN=RPS OPE=1 SV=1	0.345 0.338 0.323 0.149 ITRAQ Fold Change 3.885 2.133 2.068 1.992 1.743 1.774 1.663 1.640	0.003 0.006 0.001 0.045 StouffersPv 0.002 0.001 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(15532.69 P43121 18.25 P37059 2 : Comparison 0 P35527 14.04 P43755 14.08 P13645 17.45 P62906 17.26 Q9Y653 5.16 P62424 20.51 (1523327.2 P48047 8.07 P18124 20.55	2.69 18.25 2.08 of TGFβt Total 14.04 14.08 20.69 17.26 5.18 20.51 29.48 8.07 20.55	19.69 27.86 3.101 reated H x.cov.95 20.71 38.81 26.54 42.86 7.071 33.08 38 38 33.06	Synaptophysin-like protein 1.05-Homo saplens GN=SPL1 PE-1 SV-1 Cell surface gh/copratein MUC18 05-Homo saplens GN=HCMLP HE-1 SV-2 Estradiol 17-beta-dehydrogenase 2.05-Homo saplens GN=HCMLP HE-1 SV-2 Estradiol 17-beta-dehydrogenase 2.05-Homo saplens GN=HSD17B2 PE-1 SV=1 T29 Mock/untreated HT29 Mock Protein Name; Organium; Gene name Keratin, type I cytoskeletal 9.05-Homo saplens GN=KRT9 PE-1 SV=3 Transmembrase emp24 domain-containing protein 10.05-Homo saplens GN=TMED10 PE-1 SV=2 Keratin, type I cytoskeletal 10.05-Homo saplens GN=KRT9 PE-1 SV=3 Gos ribosomal protein L10.05-Homo saplens GN=RPL10A PE-1 SV=2 Gos ribosomal protein L0.05-Homo saplens GN=RPL10A PE-1 SV=2 605 ribosomal protein L0.30-SH-Gmo saplens GN=RPL3A PE-1 SV=2 Non-POU domain-containing citame+ binding protein 05-Homo saplens GN=NNON PE-1 SV=4 AIP synthase subunit0, mitchondrial 05-Homo saplens GN=ARP50 PE-1 SV=1 AIP synthase subunit0, mitchondrial 05-Homo saplens GN=ARP50 PE-1 SV=1	0.345 0.338 0.323 0.149 TIRAQ Fold Change 3.885 2.133 2.068 1.992 1.743 1.663 1.640 1.662	0.003 0.006 0.001 0.045 StouffersPi 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Q15552.69 P43121 18.25 P37059 2 Comparison 0 P35527 14.04 P43755 14.08 P13645 17.45 P62906 17.26 Q996535.16 P62294 20.51 P62294 20.51 P13122 20.55	2.69 18.25 2.08 of TGFβt Total 14.04 14.08 20.69 17.26 5.18 20.51 29.48 8.07 20.55 3.06	19.69 27.86 3.101 reated H X.Cov.95 20.71 38.81 26.54 42.86 7.071 33.08 38 36.62 33.06 7.261	Synaptophysin-like protein 1.05-Homo saplens GN-SPQ11 PE-1 SV-1 Cell surface glycoprotein MUC18 05-Homo saplens GN-MCAM PE-1 SV-2 Estradiol 17-beta-dehydrogenase 2.05-Homo saplens GN-HKD17B2 PE-1 SV-1 T29 Mock/untreated HT29 Mock Protein Name; Organism; Gene name Keratin, type 1 cytoskeletal 9 OS-Homo saplens GN-KR19 PE-1 SV-3 Transmerbrane emp24 domain:containing protein 10 OS-Homo saplens GN-TMED10 PE-1 SV-2 Keratin, type 1 cytoskeletal 10 OS-Homo saplens GN-RR19 PE-1 SV-2 Gos rhosomal protein L03 OS-Homo saplens GN-RR10 PE-1 SV-2 Koratin, type 1 cytoskeletal 10 OS-Homo saplens GN-RR10 PE-1 SV-2 Koratin, type 1 cytoskeletal 10 OS-Homo saplens GN-RPL10 PE-1 SV-2 Koratin, type 1 cytoskeletal 10 OS-Homo saplens GN-RPL10 PE-1 SV-2 Koratin, type 1 cytoskeletal 10 OS-Homo saplens GN-RPL10 PE-1 SV-2 Koratin, type 1 cytoskeletal 10 OS-Homo saplens GN-RPL7 PE-1 SV-2 Konsomal protein L12 OS-Homo saplens GN-RPL7 PE-1 SV-2 Konsomal protein L12 OS-Homo saplens GN-RPL7 PE-1 SV-1 Konsomal protein L7 OS-Homo saplens GN-RPL7 PE-1 SV-1 Kos rhosomal protein L7 OS-Homo saplens GN-RPL7 PE-1 SV-1 Kos rhosomal protein L7 OS-Homo saplens GN-RPL7 PE-1 SV-1 Kos rhosomal protein L7 OS-Homo saplens GN-RPL7 PE-1 SV-1 Kos rhosomal protein L7 OS-Homo saplens GN-RPL7 PE-1 SV-1 Kos rhosomal protein L7 OS-Homo s	0.345 0.323 0.323 0.323 0.149 ITRAQ Fold Change 3.885 2.133 2.068 1.992 1.774 1.774 1.663 1.663 1.640 1.622	0.003 0.006 0.001 0.045 StouffersPP 0.002 0.002 0.001 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.0
(15562.69 P43121 18.25 P37059 2 COmparison c P37059 2 P37059 2 P37059 14.08 P43755 14.08 P13464 17.45 P62906 17.26 P62906 17.26 P62906 17.26 P62424 20.51 (0375367 23.86	2.69 18.25 2.08 of TGFβt Total 14.04 14.08 20.69 17.26 5.18 20.51 29.48 8.07 20.55 3.06 27.99	19.69 27.86 3.101 reated H x.cov.95 20.71 38.81 26.54 42.86 42.86 7.071 33.08 38 36.62 33.06 33.06 45.97	Synaptophysin-like protein 1.05-Homo saplens GN=SPL1 PE-1 SV-1 Cell surface Syloprotein MUCI GS-Homo saplens GN=KGNEH FE-1 SV-2 Estradiol 17-beta-dehydrogenase 2.05-Homo saplens GN=KGNEH FE-1 SV-2 129 Mock/untreated HT29 Mock Protein Name; Organism; Gene name Keratin, type 1 cytoskeletal 30.05-Homo saplens GN=KRT9 PE-1 SV-3 Transmembrane emp24 domain-containing protein 10.05-Homo saplens GN=TMED10 PE-1 SV-2 Keratin, type 1 cytoskeletal 30.05-Homo saplens GN=KRT9 PE-1 SV-3 Transmembrane emp24 domain-containing protein 10.05-Homo saplens GN=TMED10 PE-1 SV-2 Keratin, type 1 cytoskeletal 30.05-Homo saplens GN=KRT9 PE-1 SV-2 GS rhosomal protein 11.03.05-Homo saplens GN=RPL70 PE-1 SV-2 Go protein coupled receptor 56.05-Homo saplens GN=RPL70 PE-1 SV-2 Mon-POU domain-containing octamer-binding protein 0.5-Homo saplens GN=MONO PE-1 SV-4 ATP synthase subunit 0, mitrchondrial 0.5-Homo saplens GN=RPL70 PE-1 SV-1 605 rhosomal protein 17.05-Homo saplens GN=RPL70 PE-1 SV-1 Lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex, mitochondrial CC core histone macro 42A.21.05-Homo saplens GN=H27A PE-1 SV-4	0.345 0.338 0.323 0.149 TIRAQ Fold Change 3.885 2.133 2.068 1.992 1.743 1.663 1.663 1.662 1.666 1.573	0.003 0.006 0.001 0.045 5touffersP4 0.002 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
[135562.69 [P43121 13.25 [P370592 Comparison niprot Unused [P35527 14.04 [P43755 14.08 [P13645 17.45 [P62906 17.26 [P62926 17.26 [P62924 20.51 [P62424 20.51 [P13124 20.55 [P13124 20.55 [P13124 20.55	2.69 18.25 2.08 of TGFβt Total 14.04 14.04 20.69 17.26 5.18 20.51 29.48 8.07 20.55 3.06 27.99 7.28	19.69 27.86 3.101 reated H X.Cov.95 20.71 38.81 26.54 42.86 7.071 33.08 38 36.62 33.06 7.261 45.97	Synaptophysin-like protein 1.05-Homo sapiens GN-SPQL1 PE-1.SV-1 Cell surface glycoprotein MUC18 OS-Homo sapiens GN-MCAM PE-1.SV-2 Estradiol 17-beta-dehydrogenase 2.05-Homo sapiens GN-HSD17b2 PE-1.SV-1 T29 Mock/untreated HT29 Mock Protein Name; Organism; Gene name Keratin, type 1 cytoskeletal 9 OS-Homo sapiens GN-KR19 PE=1 SV-3 Transmerbrane emp24 domain-containing protein 10 OS-Homo sapiens GN-RMD10 PE=1 SV-2 Keratin, type 1 cytoskeletal 9 OS-Homo sapiens GN-RM110 PE=1 SV-3 Gos rbosomal protein 10.05-Homo sapiens GN-RM110 PE=1 SV-2 Keratin, type 1 cytoskeletal 10.05-Homo sapiens GN-RM110 PE=1 SV-2 Gos rbosomal protein 10.20-SHomo sapiens GN-RMP10A PE=1 SV-2 Gos rbosomal protein 10.20-SHomo sapiens GN-RMP10A PE=1 SV-2 Mon POU domain-containing protein 0.53-Homo sapiens GN-RM10 PE=1 SV-2 Gos rbosomal protein 10.20-SHomo sapiens GN-RMP10A PE=1 SV-2 Mon POU domain-containing crutein OS-Homo sapiens GN-RM02 PE=1 SV-2 Mon POU domain-containing crutein SOS-Homo sapiens GN-RMP10A PE=1 SV-2 Mon POU domain-containing crutein SOS-Homo sapiens GN-RMP10A PE=1 SV-2 Mon POU domain-containing crutein SOS-Homo sapiens GN-RMP2 PE=1 SV-1 Lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex, mitochondrial CC Core histone macro+12.AL OS-Homo sapiens GN-RM22 PE=1 SV-4 Tyrosine- protein Kinase PA2LB SOS-Homos GN-RM22 PE=1 SV-4	0.345 0.338 0.333 0.149 TRAQ Fold Change 3.885 2.133 2.068 1.992 1.743 1.663 1.663 1.640 1.663 1.642 2.1666 1.578 1.553	0.003 0.006 0.001 0.045 StouffersP - 0.002 0.001 0.007 0.000 0.000 0.000 0.000 0.000 0.032 0.000 0.032 0.000
[135552.69] [P43121.18.25] [P43121.18.25] [P43121.18.25] [P43121.18.25] [P43121.18.25] [P3527.14.04] [P45527.14.04] [P45527.14.04] [P45527.14.04] [P45527.14.04] [P4527.14.04] [P45242.05.1] [Q62424.05.1] [Q1523327.2] [P48047.8.07] [P41182.3.06] [O753672.3.6] [Q9V581.3.1]	2.69 18.25 2.08 of TGFβt Total 14.04 14.08 20.69 17.26 5.18 20.51 29.48 8.07 20.55 3.06 27.99	19.69 27.86 3.101 reated H x.cov.95 20.71 38.81 26.54 42.86 42.86 7.071 33.08 38 36.62 33.06 33.06 45.97	Synaptophysin-like protein 1.05-Homo saplens GN=SPL1 PE-1 SV-1 Cell surface Syloprotein MUCI GS-Homo saplens GN=KGNH PE-1 SV-2 Estradiol 17-beta-dehydrogenase 2.05-Homo saplens GN=KGNPE-1 SV-2 129 Mock/untreated HT29 Mock Protein Name; Organism; Gene name Keratin, type 1 cytoskeletal 30.05-Homo saplens GN=KRT9 PE-1 SV-3 Transmembrane emp24 domain-containing protein 10.05-Homo saplens GN=TMED10 PE-1 SV-2 Keratin, type 1 cytoskeletal 30.05-Homo saplens GN=KRT9 PE-1 SV-3 Transmembrane emp24 domain-containing protein 10.05-Homo saplens GN=TMED10 PE-1 SV-2 Keratin, type 1 cytoskeletal 30.05-Homo saplens GN=KRT9 PE-1 SV-2 GS rhosomal protein 11.03.05-Homo saplens GN=RPL70 PE-1 SV-2 GS rhosomal protein 12.03.05-Homo saplens GN=KRP1.04 PE-1 SV-2 Mon-POU domain-containing octamer-binding protein 0.5-Homo saplens GN=MONO PE-1 SV-4 ATP synthase subunit 0, mitrchondrial 0.5-Homo saplens GN=HORD PE 0.5V-1 605 rhosomal protein 17.03.5-Homo saplens GN=RPL7 PE-1 SV-1 Lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex, mitochondrial CC core histone macro 42.03.105-Homo saplens GN=H27A PE-1 SV-4	0.345 0.338 0.323 0.149 TIRAQ Fold Change 3.885 2.133 2.068 1.992 1.743 1.663 1.663 1.662 1.666 1.573	0.003 0.004 0.001 0.045 StouffersP 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023
[135562.69 [P43121 13.25 [P370592 Comparison IP370592 Comparison IP35527 14.04 [P43755 14.08 [P43755 14.08 [P43755 14.08 [P43755 14.08 [P63204 17.26 [P63204 27.2 [P45037 2.1 [P45037 2.1 [P45037 2.3 [P13124 20.55 [P13124 20.55	2.69 18.25 2.08 of TGFβt Total 14.04 14.04 20.69 17.26 5.18 20.51 29.48 8.07 20.55 3.06 27.99 7.28	19.69 27.86 3.101 reated H X.Cov.95 20.71 38.81 26.54 42.86 7.071 33.08 38 36.62 33.06 7.261 45.97	Synaptophysin-like protein 1.05-Homo sapiens GN-SPQL1 PE-1.SV-1 Cell surface glycoprotein MUC18 OS-Homo sapiens GN-MCAM PE-1.SV-2 Estradiol 17-beta-dehydrogenase 2.05-Homo sapiens GN-HSD17b2 PE-1.SV-1 T29 Mock/untreated HT29 Mock Protein Name; Organism; Gene name Keratin, type 1 cytoskeletal 9 OS-Homo sapiens GN-KR19 PE=1 SV-3 Transmerbrane emp24 domain-containing protein 10 OS-Homo sapiens GN-RMD10 PE=1 SV-2 Keratin, type 1 cytoskeletal 9 OS-Homo sapiens GN-RM110 PE=1 SV-3 Gos rbosomal protein 10.05-Homo sapiens GN-RM110 PE=1 SV-2 Keratin, type 1 cytoskeletal 10.05-Homo sapiens GN-RM110 PE=1 SV-2 Gos rbosomal protein 10.20-SHomo sapiens GN-RMP10A PE=1 SV-2 Gos rbosomal protein 10.20-SHomo sapiens GN-RMP10A PE=1 SV-2 Mon POU domain-containing protein 0.53-Homo sapiens GN-RM10 PE=1 SV-2 Gos rbosomal protein 10.20-SHomo sapiens GN-RMP10A PE=1 SV-2 Mon POU domain-containing crutein OS-Homo sapiens GN-RM02 PE=1 SV-2 Mon POU domain-containing crutein SO-SHomo sapiens GN-RMP10A PE=1 SV-2 Mon POU domain-containing crutein SO-SHomo sapiens GN-RMP10A PE=1 SV-2 Mon POU domain-containing crutein SO-SHomo sapiens GN-RM10A PE=1 SV-1 Sortbosomal protein 10.53-Homo sapiens GN-RM12 PE=1 SV-1 Lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex, mitochondrial C: Core histone macroH24.A1.OS-Homo sapiens GN-H22KPE=1 SV-4	0.345 0.338 0.323 0.149 ITRAQ Fold Change 3.885 2.133 2.068 1.992 1.743 1.653 1.654 1.654 1.578 1.555 1.555	0.003 0.006 0.001 0.045 StouffersPi 0.002 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.032 0.000 0.032 0.000
[1215632.69 [P43121 18.25 [P43121 18.25 [P37059 2] : Comparison [P37059 2] : Comparison [P3557 14.04 [P43755 14.08 [P43955 14.08 [P43955 14.08 [P43955 1.6] [P63242 420.51 [P63242 420.51 [P11182 3.06 [0353327.2] [P11182 3.06 [0397585 23.86 [0397585 23.86 [0397585 13.1] [039759 9.45	2.69 18.25 2.08 of TGFβ t Total 14.04 14.08 20.69 5.18 20.51 29.48 8.07 20.55 3.06 27.99 13.1	19.69 27.86 3.101 reated H X.Cov.95 20.71 38.81 26.54 42.86 7.071 33.08 38 36.62 33.06 33.06 7.261 45.97 2.9	Synaptophysin-like protein 1.05-Homo saplens GN-SPR11 PE-1 SV-1 Cell surface glycoprotein MUC18 OS-Homo saplens GN-MCAM PE-1 SV-2 Estradiol 17-beta-dehydrogenase 2.05-Homo saplens GN-HSD17B2 PE-1 SV-1 T29 Mock/untreated HT29 Mock Protein Name; Organism; Gene name Keratin, type I cytoskeletal 9 OS-Homo saplens GN-HSD17B2 PE-1 SV-3 Transmerbrane emp24 domain-containing protein 10 OS-Homo saplens GN=TMED10 PE-1 SV-2 Keratin, type I cytoskeletal 9 OS-Homo saplens GN-RR19 PE-1 SV-3 Gos rhosomal protein L0a OS-Homo saplens GN-RR19 PE-1 SV-6 605 rhosomal protein L0a OS-Homo saplens GN-RR10 PE-1 SV-2 Gos rhosomal protein L0a OS-Homo saplens GN-RPR10 PE-1 SV-2 605 rhosomal protein L0a OS-Homo saplens GN-RPR10 PE-1 SV-2 An POU domain-containing othermer-binding protein OS-Homo saplens GN-HONO PE-1 SV-2 Non-POU domain-containing othermer-binding protein OS-Homo saplens GN-HONO PE-1 SV-1 ATP synthase subunit 0, mitchchardial OS-Homo saplens GN-RPR50 PE-1 SV-1 605 rhosomal protein L7 OS-Homo saplens GN-RPL7 PE-1 SV-2 Intercharden de-thain alpha-keto add dehydrogenase complex, mitchchardial O2- Core histone macro+L31.0S-Homo saplens GN-H2K2Y PE-1 SV-4 ATP synthase subunit 0, mitchchardial OS-Homo saplens GN-H2K2Y PE-1 SV-4 If yrosine-protein kinase BAZiB OS-Homo saplens GN-H2K2Y PE-1 SV-4 If yrosine-protein kinase BAZiB OS-Homo saplens GN-H2K2Y PE-1 SV-2	0.345 0.338 0.323 0.149 ITRAQ Fold Change 3.885 2.133 2.068 1.992 1.743 1.653 1.654 1.654 1.578 1.555 1.555	0.003 0.004 0.001 0.045 StouffersP 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023
[135562.69 [P43121 18.25 [P370592] : Comparison of [P370592] : Comparison of [P37057 14.04 [P43755 14.08 [P43755 14.08 [P43755 14.08 [P4375 14.08 [P4375 14.08 [P4375 14.08 [P4375 14.08 [P4375 14.08 [P11182 3.06 [075367 23.86 [097567 23.86 [097567 23.86 [097567 23.86 [097567 23.86] [097567	2.69 18.25 2.08 2.08 of TGFβ t Total 14.08 20.69 17.26 5.18 20.51 29.48 8.07 20.55 3.06 27.99 7.28 13.1 9.45 5.45	19.69 27.86 3.101 reated H' X.Cov.95 20.71 38.81 42.86 7.071 33.08 33.08 33.08 33.08 33.08 33.06 33.06 13.09 7.261 45.97 2.9 10.6 20.69	Synaptophysin-like protein 1.05-Homo sapiens GN-SPR11 PE-1.SV-1 Cell surface glycoprotein MUC18 OS-Homo sapiens GN-MCAM PE-1.SV-2 Estradiol 17-beta-dehydrogenase 2.05-Homo sapiens GN-HSD17B2 PE-1.SV-1 129 Mock/untreated HT29 Mock Protein Name; Organism; Gene name Keratin, type 1 cytoskletel 3 OS-Homo sapiens GN-KR19 PE-1.SV-3 Transmerbrane emp24 domain:containing protein 10 OS-Homo sapiens GN=TMED10 PE-1.SV-2 Keratin, type 1 cytoskletel 3 OS-Homo sapiens GN-RR110 PE-1.SV-3 Transmerbrane emp24 domain:containing protein 10 OS-Homo sapiens GN=TMED10 PE-1.SV-2 Keratin, type 1 cytoskletel 3 OS-Homo sapiens GN-RR110 PE-1.SV-2 GoS ribosomal protein LD3 OS-Homo sapiens GN-RR110 PE-1.SV-2 GoS ribosomal protein LD3 OS-Homo sapiens GN-RPL30 PE-1.SV-2 Lipoanide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex, mitochondrial OS Core histone macro-H23.AL OS-Homo sapiens GN-H32AF VE-1.SV-4 Tyrosine protein hisse BA2LB OS-Homo sapiens GN-H32AF VE-1.SV-4 FACT complex subunit SP116 OS-Homo sapiens GN-H32AF VE-1.SV-4 TACT complex subunit SP116 OS-Homo sapiens GN-H32AF VE-1.SV-1 NADH dehydrogenase [ubiquinne] 1 alpha subcomplex subunit 3, mitochondrial OS-Homo sapiens GN-NDUFA9 PE NADH dehydrogenase [ubiquinne] 1 alpha subcomplex subunit 3, mitochondrial OS-Homo sapiens GN-NDUFA9 PE-1.SV-2	0.345 0.338 0.333 0.149 ITRAQ Fold Change 3.885 2.133 2.068 1.992 1.743 1.774 1.663 1.640 1.622 1.666 1.578 1.578 1.578 1.535 1.335 1.3490	0.003 0.004 0.001 0.045 StouffersP 0.002 0.001 0.007 0.000 0.000 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.032 0.000 0.033 0.000 0.000 0.033 0.000 0.033 0.000 0.033 0.000 0.033 0.000 0.033 0.000 0.033 0.000 0.033 0.000 0.033 0.000 0.033 0.000 0.033 0.000 0.033 0.000 0.000 0.033 0.000 0.000 0.033 0.000 0.000 0.033 0.000 0.000 0.000 0.033 0.000 0.000 0.033 0.000 0.000 0.033 0.000 0.000 0.033 0.000 0.000 0.033 0.000 0.000 0.033 0.000 0.000 0.000 0.000 0.033 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000
[135562.69 [P43121 18.25 [P37059 2] : Comparison (IP37059 2] : Comparison (IP37059 2) : Comparison (IP37527 14.04 [P43755 14.08 [P14375 14.08 [P14375 14.08 [P4375 14.08 [P4387 14.08 [P	2.69 18.25 2.08 of TGFβt Total 14.04 14.08 20.69 17.26 5.18 20.51 29.48 8.07 20.55 3.06 27.99 7.28 13.1 9.45 8.27	19.69 27.86 3.101 reated H' X.Cov.95 20.71 38.81 26.54 42.86 42.86 33.08 38 36.62 33.06 7.261 45 .97 2.9 10.6 20.69 11.42	Synaptophysin-like protein 1.05-Homo saplens GN-SPR12 FE-1 SV-1 Cell surface ghcopratein MUC18 OS-Homo saplens GN-MCM21 FE-1 SV-2 Estradiol 17-beta-dehydrogenase 2.05-Homo saplens GN-HCM21 FE-1 SV-2 T29 Mock/untreated HT29 Mock Protein Name: Organism; Gene name Keratin, type I cytoskeletal 9 OS-Homo saplens GN-KRT9 FE-1 SV-3 Transmenbrane emp24 domain-containing protein 10 OS-Homo saplens GN-TMED10 PE-1 SV-2 Keratin, type I cytoskeletal 9 OS-Homo saplens GN-KRT9 FE-1 SV-3 Transmenbrane emp24 domain-containing protein 10 OS-Homo saplens GN-TMED10 PE-1 SV-2 Keratin, type I cytoskeletal 10 OS-Homo saplens GN-RRE9 FE-1 SV-2 GS rhosomal protein 11.03 OS-Homo saplens GN-RRE9 FE-1 SV-2 G-protein coupled receptor 56 OS-Homo saplens GN-RRE9 FE-1 SV-2 Non-POU domain-containing octamer-binding protein OS-Homo saplens GN-HONO PE-1 SV-4 ATP synthase subunit 0, mitchondrial OS-Homo saplens GN-ATP50 FE-1 SV-1 Lipoamite acyltransferase component of branched-chain alpha-keto add dehydrogenase complex, mitchondrial O2 Core histone march-742A.03 CS-Homo saplens GN-SUTP FE-1 SV-1 Lipoamite acyltransferase component of branched-chain alpha-Keto add dehydrogenase complex, mitchondrial O2 Core histone mort-742A.03 CS-Homo saplens GN-SUTP IG HE-1 SV-2 FACT complex subunit 05-Homo saplens GN-BUTP IG HE-1 SV-2 FACT complex subunit 05-Homo saplens GN-ID FE-1 SV-2 FACT complex subunit 05-Homo saplens GN-SUTI IG HE-1 SV-2 FACT complex subunit 05-Homo saplens GN-ID SUTI IG HE-1 SV-2 FACT complex subunit 05-Homo saplens GN-ID SUTI IG HE-1 SV-2 FACT complex subunit 05-Homo saplens GN-ID SUTI IG HE-1 SV-2 FACT complex subunit 05-Homo saplens GN-ID SUTI IG HE-1 SV-2 FACT complex subunit 05-Homo saplens GN-ID SUTI IG HE-1 SV-2 FACT complex subunit 05-Homo saplens GN-ID SUTI IG HE-1 SV-2	0.345 0.338 0.338 0.323 0.149 ITRAO Fold Change 3.885 2.133 2.058 1.992 1.743 1.734 1.663 1.640 1.653 1.555 1.450 1.450	0.003 0.004 0.001 0.045 StouffersP- 0.002 0.001 0.000 0.001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.
[135562.69 [P43121 13.25 [P370592 Comparison niprot Unused [P370592 14.04 [P49755 14.08 [P1949755 14.08 [P1949755 14.08 [P194975 14.08 [P62206 17.26 [Q97535.16 [P62242 20.51 [P62242 20.51 [P18122 20.55 [P11182 3.06 [O7536723.86 [O7536723.86 [O7536723.86 [O7536723.86 [O7536723.86 [O7536723.86 [O7536723.86 [Q91056.01 [Q91056.01 [Q91056.01 [Q91051 3.12 [Q91051 3.12	2.69 18.25 2.08 2.08 of TGFβ t 14.04 14.03 20.69 17.26 5.18 20.51 29.48 8.07 20.55 3.06 27.99 27.28 13.1 9.45 8.27 19.44 19.44	19.69 27.86 3.101 reated H x.cov.95 20.71 38.81 26.54 42.86 7.071 33.08 38 36.62 33.06 33.06 33.06 33.06 2.9 10.6 2.06 20.69 11.42	Synaptophysin-like protein 1.05-Homo saplens GN-SP(12) FE-1.SV-1 Cell surface glycoprotein MUC18 OS-Homo saplens GN-MCAM PE-1.SV-2 Estradiol 17-beta-dehydrogenase 2.05-Homo saplens GN-HSD17B2 PE-1.SV-1 T29 Mock/untreated HT29 Mock Protein Name; Organism; Gene name Keratin, type 1 cytoskletal 9 OS-Homo saplens GN-KR19 PE-1.SV-3 Transmethrane emp24 domain: containing protein 10 OS-Homo saplens GN-TMED10 PE-1.SV-2 G-protein coupled receptor 56 OS-Homo saplens GN-RP10A PE-1.SV-2 G-protein coupled receptor 56 OS-Homo saplens GN-RP110A PE-1.SV-2 G-protein coupled receptor 56 OS-Homo saplens GN-RP10A PE-1.SV-2 GO-protein Coupled receptor 56 OS-Homo saplens GN-RP10A PE-1.SV-1 GO strosomal protein 1.70 S-Homo saplens GN-RP10A PE-1.SV-1 GO strosomal protein 1.70 S-Homo saplens GN-RP10A PE-1.SV-2 FACT complex subunit SP116 OS-Homo saplens GN-RP10A PE-1.SV-2 FACT complex subunit SP116 OS-Homo saplens GN-RP10A PE-1.SV-2 FACT complex subunit SP116 OS-Homo saplens GN-RP10A PE-1.SV-2 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial OS-Homo saplens GN-NDUFA9 PE NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 3, mitochondrial OS-Homo saplens GN-NDUFA9 PE NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 3, mitochondrial OS-Homo saplens GN-NDUFA9 PE NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 3, S-Homo saplens GN-NDUFA9 PE N	0.345 0.338 0.333 0.149 ITRAQ Fold Change 3.835 2.133 2.068 1.992 1.743 1.640 1.622 1.640 1.652 1.553 1.553 1.553 1.490 1.434	0.003 0.006 0.001 0.045 StouffersP 0.002 0.002 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.000 0.002 0.000 0.003 0.000 0.023 0.000 0.023 0.000 0.023 0.000 0.023 0.000 0.023 0.000 0.032 0.000 0.032 0.000 0.032 0.000 0.032 0.000 0.032 0.000 0.032 0.000 0.032 0.000 0.032 0.000 0.032 0.000 0.032 0.000 0.032 0.000 0.032 0.000 0.032 0.000 0.032 0.000 0.000 0.032 0.000 0.000 0.032 0.000 0.032 0.000 0.032 0.000 0.032 0.000 0.032 0.000 0.032 0.000 0.032 0.000 0.032 0.000 0.000 0.032 0.000 0.032 0.000 0.032 0.000 0.032 0.000 0.032 0.000 0.032 0.000 0.030 0.000 0.032 0.000 0.030 0.000 0.032 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.00000 0.000000 0.00000000
[135562.69 [P43121 18.25 [P43121 18.25 [P43121 18.25 [P43121 18.25 [P43125 14.25 [P43755 14.08 [P43755 14.08 [P43755 14.08 [P43545 17.45 [P43545 17.45 [P43545 17.45 [P43545 17.45 [P43545 17.45 [P43545 17.45 [P43547 18.07 [P43124 20.55 [P11382 3.06 [O9V585 13.1 [O157367 23.86 [O9V585 13.1] [O15795 9.45 [P43821 8.27 [P43821 8.27 [P43821 8.27] [P43821 8.27] [P43821 8.27] [P43821 8.27] [P43821 8.27] [P43821 8.27] [P43821 8.27]	2.69 18.25 2.08 of TGFβt Total 14.04 14.08 20.69 17.26 5.18 20.59 17.26 5.18 20.59 17.28 3.06 27.99 7.28 13.1 13.1 13.1 29.45 8.27 19.44 28.5	19.69 27.86 3.101 reated H x.Cov.95 20.71 38.81 26.54 42.86 7.071 33.08 38 36.62 33.06 7.261 33.06 7.261 45.97 2.9 10.6 20.69 11.42 17.12 29.55	Synaptophysin-like protein 1.05-Homo saplens GN-SPR12 FE-1 SV-1 Cell surface Sylcoprotein MUCI GS-Homo saplens GN-SPR12 FE-1 SV-2 Estradiol 17-beta-dehydrogenase 2.05-Homo saplens GN-HSD17B2 PE-1 SV-2 Estradiol 17-beta-dehydrogenase 2.05-Homo saplens GN-HSD17B2 PE-1 SV-3 TP3 Mock/untreated HT29 Mock Protein Name; Organism; Gene name Keratin, type I cytoskeletal 30.05-Homo saplens GN-KRT9 PE-1 SV-3 Transmembrane emp24 domain-conialing protein 10.05-Homo saplens GN-TMED10 PE-1 SV-2 Keratin, type I cytoskeletal 30.05-Homo saplens GN-KRT9 PE-1 SV-3 GS rhosomal protein 11.00.55-Homo saplens GN-RP120 PE-1 SV-2 G-protein coupled receptor 56.05-Homo saplens GN-RP120 PE-1 SV-2 GOs rhosomal protein 11.00.55-Homo saplens GN-KRT9 PE-1 SV-2 Mon-POU domain-containing octame-binding protein 0.55-Homo saplens GN-MONO PE-1 SV-4 ATP synthase subunit 0, mitochondrial 0.55-Homo saplens GN-APD50 PE-1 SV-1 Lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex, mitochondrial 0C Gren bistome mator 142.0.155-Homo saplens GN-MS120 PF-1 SV-2 FACT complex subunit ST16.05-Homo saplens GN-MS120 PF-1 SV-1 Lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex, mitochondrial 0C Gren bistome mator 142.0.155-Homo saplens GN-MS120 PF-1 SV-2 FACT complex subunit ST16.05-Homo saplens GN-MS120 PF-1 SV-2 FACT complex subunit ST16.05-Homo saplens GN-MS120 PF-1 SV-2 FACT complex subunit ST16.05-Homo saplens GN-MS120 PF-1 SV-2 FACT complex acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex, mitochondrial 0S-Homo saplens GN-MS120 PF-1 SV-2 FACT complex subunit ST16.05-Homo saplens GN-MS120 PF-1 SV-2 FACT complex subunit ST16.05-Homo saplens GN-MS120 PF-1 SV-2 FACT complex subunit ST16.05-Homo saplens GN-MS120 FF-1 SV-2 FACT complex subunit ST16.05-Homo saplens GN-MS120 FF-1 SV-2 FACT complex alpha-alpha-albcomplex subunit 9, nitochondrial 0S-Homo saplens GN-NDUFX1 PF-1 SV-2 FACT complex subunit ST16.05-Homos saplens GN-MS	0.345 0.338 0.323 0.149 0.323 0.149 0.385 2.133 2.133 2.068 1.992 1.743 1.734 1.663 1.663 1.663 1.664 1.578 1.553 1.553 1.553 1.451 1.451 1.451 1.451 1.431	0.003 0.004 0.001 0.045 StouffersP 0.002 0.002 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.002 0.000 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.000 0.000 0.000 0.002 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.0000
[135562.69 [P43121 18.25 [P37059 2] : Comparison (IP37059 2) : Comparison (IP37527 14.04 [P43755 14.08 [P13645 17.45 [P43755 14.08 [P13645 17.45 [P4375 14.08 [P1362 17.26 [P4372 42.051 [P1322 42.051 [P1382 42.055 [P1382 42.055 [P1382 42.055 [P1382 42.055 [P1382 42.055 [P1382 42.055 [P1382 42.055 [P1382 42.055 [P1382 18.27 [P4582 18.27 [P4582 18.27 [P4582 18.27 [P1382 18.47 [P1387 42.055 [P4582 18.27 [P1387 19.44] [P12595 28.5]	2.69 18.25 2.08 of TGFβt Total 14.04 14.04 14.03 20.69 21.26 5.18 20.51 29.48 8.07 20.55 3.06 27.99 7.28 13.1 9.45 8.27 19.44 28.5 8.55 8.55 14.	19.69 27.86 3.101 x.cov.95 20.71 38.81 26.54 42.86 7.071 33.08 33 36.62 33.06 7.261 33.06 7.261 33.06 7.261 10.6 20.69 11.42 29.56 11.42 29.56	Synaptophysin-like protein 1.0.5-Homo sapiens GN-SPR12 FE-1.SV-1 Cell surface gh/copratein MUC18 05-Homo sapiens GN-HCM21 FE-1 SV-2 Estradiol 17-beta-dehydrogenase 2.05-Homo sapiens GN-HSD17B2 FE-1 SV-3 T29 Mock/untreated HT29 Mock I Protein Name; Organium; Gene name Keratin, type I cytoskeletal 9.05-Homo sapiens GN-KRT9 FE-1 SV-3 Transmembrane emp24 domain-containing protein 10.05-Homo sapiens GN-TMED10 PE-1 SV-2 Keratin, type I cytoskeletal 9.05-Homo sapiens GN-KRT9 FE-1 SV-3 Transmembrane emp24 domain-containing protein 10.05-Homo sapiens GN-TMED10 PE-1 SV-2 Keratin, type I cytoskeletal 10.05-Homo sapiens GN-RPE10A PE-1 SV-2 GS ribosomal protein L10.30-SHomo sapiens GN-RPE10A PE-1 SV-2 GS ribosomal protein L0.30-SHomo sapiens GN-RPE10A PE-1 SV-2 GS ribosomal protein L0.30-SHomo sapiens GN-RPE10A PE-1 SV-2 GS ribosomal protein L0.30-SHomo sapiens GN-RPE17A PE-1 SV-2 Non-POU domain-containing catanet-binding protein 0.5-Homo sapiens GN-RNDO PE-1 SV-4 ATP synthase subunit 0, mitchondrial 0.5-Homo sapiens GN-RH250 PE-1 SV-1 Lipoamite acyltraneferase component of branched-chain alpha-keto add dehydrogenase complex, mitchondrial 02 Core histone mator 12A.20-SHomo sapiens GN-RH27 PE-1 SV-1 Tyrodine-protein kinase BA218 05-Homo sapiens GN-BA218 PE-1 SV-2 FACT complex subunit 1971G 0.5-Homo sapiens GN-BA218 PE-1 SV-2 FACT complex subunit 10.5-Homo sapiens GN-BA210 FE-1 SV-2 FACT complex subunit 10.5-Homo sapiens GN-BA210 FE-1 SV-2 FACT complex subunit 10.5-Homo faspiens GN-FDUF10 FE-1 SV-2 FACT complex subunit 1	0.345 0.338 0.333 0.149 ITRAQ Fold Change 3.885 2.133 2.068 1.992 1.743 1.663 1.640 1.652 1.660 1.553 1.456 1.553 1.490 1.451 1.434 1.399 1.337	0.003 0.004 0.001 0.045 5touffersPP 0.002 0.002 0.001 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000
[125562.69 [P43121 13.25 [P370592] : Comparison on hiprot Unused [P370592 14.04 [P43755 14.08 [P43755 14.08 [P43755 14.08 [P43755 14.08 [P43754 20.55 [P62424 20.51 [P62424 20.55 [P13124 20.55 [P13124 20.55 [P13124 20.55 [P13124 20.55 [P13124 20.55 [P13124 20.55 [P13124 20.55 [P13124 20.55 [P13124 20.55 [P13125 20.55 [P13125 20.55 [P13125 20.55 [P13125 20.55] [P13125 20.55 [P13125 20.55] [P13125 20.55 [P13125 20.55] [P13125 20.55] [P13125 20.55] [P13255 20.55] [P1325 20.55]	2.69 18.25 2.08 Total 14.04 14.04 14.04 20.69 17.26 5.18 20.51 29.48 8.07 20.55 3.06 27.99 7.28 13.1 9.45 8.27 19.44 28.5 8.58 14.27 3.27 3.27 3.27 3.27 3.28 3.27 3.27 3.28 3.27 3.28 3.27 3.28 3.27 3.28 3.27 3.27 3.28 3.27 3.27 3.28 3.27 3.28 3.27 3.28 3.27 3.28 3.27 3.28 3.27 3.28 3.27 3.27 3.28 3.27 3.28 3.27 3.27 3.28 3.27 3.27 3.28 3.27 3.27 3.28 3.27 3.27 3.28 3.27 3.27 3.27 3.27 3.28 3.27	19.69 27.86 3.101 reated H x.cov.95 20.71 38.81 26.54 42.86 7.071 33.08 33.08 7.261 42.86 7.071 33.08 33.08 7.261 45.97 10.6 2.9 10.6 2.9 10.6 2.9 10.6 2.9 11.42 2.73	Synaptophysin-like protein 1.05-Homo saplens GN-SPR12 PE-1.5V-1 Cell surface glycoprotein MUCI GO S-Homo saplens GN-SPR12 PE-1.5V-2 Estradiol 17-beta-dehydrogenase 2.05-Homo saplens GN-HSD17B2 PE-1.5V-3 Transmembrane emp24 domain-containing protein 10.05-Homo saplens GN-TMED10 PE-1.5V-2 Keratin, type 1 cytoskeltal 30.25-Homo saplens GN-KRT9 PE-1.5V-3 Transmembrane emp24 domain-containing protein 10.05-Homo saplens GN-TMED10 PE-1.5V-2 Keratin, type 1 cytoskeltal 30.25-Homo saplens GN-KRT9 PE-1.5V-3 Transmembrane emp24 domain-containing protein 10.05-Homo saplens GN-TMED10 PE-1.5V-2 Keratin, type 1 cytoskeltal 30.25-Homo saplens GN-RPL10A PE-1.5V-2 Go thosomal protein 11.00.5-Homo saplens GN-RPL10A PE-1.5V-2 G-protein coupled receptor 56.05-Homo saplens GN-RPL7A PE-1.5V-2 Gost robosomal protein 1.0.35-Homo saplens GN-RPL7A PE-1.5V-2 Mon-POU domain-containing cottame-t-binding protein 0.5-Homo saplens GN-HOMO PE-1.5V-4 ATP synthase subunit 0, mitcohondrial 0.5-Homo saplens GN-RPL7A PE-1.5V-2 Hopanite axyltransferase component of transched chana Japha-keto acid dehydrogenase complex, mitcohondrial O: Torre histome amo-142A.10.5-Homo saplens GN-RPL7A PE-1.5V-4 Tyrosine-protein kinase BA2IB O:5-Homo saplens GN-H27A PE-1.5V-4 ND-10 dehydrogenase Lubiquinone] 1 alpha subcomplex subunit 0, mitcohondrial O:5-Homo saplens GN-H27A PE-1.5V-4 ND-10 dehydrogenase Lubiquinone] 1 alpha subcomplex subunit 0, mitcohondrial O:5-Homo saplens GN-NDUFAP PE ND-10 dehydrogenase Lubiquinone] 1 alpha subcomplex subunit 0, mitcohondrial O:5-Homo saplens GN-NDUFAP PE ND-10 dehydrogenase Lubiquinone] 1 alpha subcomplex subunit 0, mitcohondrial O:5-Homo saplens GN-NDUFAP PE ND-10 dehydrogenase Lubiquinone] 1 alpha subcomplex subunit 0, mitcohondrial O:5-Homo saplens GN-NDUFAP PE ND-10 dehydrogenase Lubiquinone] 1 alpha subcomplex subunit 0, mitcohondrial O:5-Homo saplens GN-NDUFAP PE ND-10 dehydrogenase Lubiquinone] 1 alpha subcomplex subunit 0, mitcohondrial O:5-Homo saplens GN-NDUFAP PE ND-10 dehydrogenase Lubiquino	0.345 0.338 0.333 0.323 0.323 0.323 0.323 0.323 0.323 0.323 0.323 0.323 0.323 0.323 0.325 0.355	0.003 0.004 0.004 0.004 0.045 0.045 0.002 0.002 0.0000 0.000 0.000 0.0000 0.0000 0.0000 0.000000
[135562.69 [P43121 18.25 [P37059 2 : Comparison of [P37059 2 : (P43755 14.08 [P13645 17.45 [P43755 14.08 [P13645 17.45 [P63204 17.26 [P43755 14.08 [P13824 20.51 [P13824 20.51 [P13824 20.51 [P13824 20.55 [P1382 20.55 [P1382 20.55 [P1382 20.55 [P1382 20.55 [P1382 20.55 [P1382 20.55 [P1382 20.55 [P1382 20.55 [P1382 18.27 [P4582 18.27 [P4582 18.27 [P1382 18.27 [P1382 18.27 [P1382 18.27 [P1382 18.27 [P1382 18.27 [P1387 19.44] [P12695 24.5	2.69 18.25 2.08 Total 14.04 14.04 20.69 17.26 5.18 20.51 29.48 20.51 29.48 20.51 29.48 20.51 29.49 17.26 5.18 20.51 29.49 17.26 5.18 20.51 29.49 13.10 9.45 8.27 19.44 28.5 8.55 14.5 12.73 42.27	19.69 27.86 3.101 ***********************************	Synaptophysin-like protein 1.05-Homo saplens GN-SPR12 PE-1.5V-1 Cell surface glocopratein MUCIS 05-Homo saplens GN-HCM2 PE-1.5V-2 Estradiol 17-beta-dehydrogenase 2.05-Homo saplens GN-HCM2 PE-1.5V=1 129 Mock/untreated HT29 Mock Intrasmentrasme, Organism, Gane name Keratin, type I cytoskeletal 9.05-Homo saplens GN-KRT9 PE-1.5V=3 Trasmembrane emp24 domain-containing protein 10.05-Homo saplens GN-TMED10 PE-1.5V=2 Keratin, type I cytoskeletal 9.05-Homo saplens GN-KRT9 PE-1.5V=3 Trasmembrane emp24 domain-containing protein 10.05-Homo saplens GN-TMED10 PE-1.5V=2 Keratin, type I cytoskeletal 10.05-Homo saplens GN-RRT9 PE-1.5V=2 Go protein coupled receptor 56.05-Homo saplens GN-RRT9 XPE-1.5V=2 Go protein coupled receptor 56.05-Homo saplens GN-RRT9 XPE-1.5V=2 Non-POU domain-containing octamer-binding protein 0.5-Homo saplens GN-HONO PE-1.5V=4 ATP synthase subunit 0, mitchondrial 0.5-Homo saplens GN-ARP5.0 FE-1.5V=2 Kore histone macr-12A.20.50-Homo saplens GN-ARP5.0 FE-1.5V=1 Lipoambte syltransferase component of branched-chain ajba-keto add dehydrogenase complex, mitchondrial 02 Core histone macr-12A.20.50-Homo saplens GN-SUP1.0FE-1.5V=1 Tyronine-protein Kinase BA2IB 0.50-Homo saplens GN-SUP1.0FE-1.5V=1 FACT complex subunit 0.50-Homo saplens GN-SUP1.0FE-1.5V=2 FACT complex subunit 0.50-Homo saplens GN-SUP1.0FE-1.5V=2 FACT complex subunit 0.50-Homo saplens GN-SUP1.0FE-1.5V=2 FACT complex subunit 0.50-Homo saplens GN-SUP1.0FE-1.5V=2 NADH dehydrogenase [ubiquinne] 1 ajba subcomplex suburit 3, mitchondrial 0.50-Homo saplens GN-NDUFA9 PE NADH dehydrogenase [ubiquinne] 1 ajba-subcomplex suburit 3, mitchondrial 0.50-Homo saplens GN-NDUFA9 PE NADH dehydrogenase [ubiquinne] 1 ajba subcomplex suburit 3, mitchondrial 0.50-Homo saplens GN-NDUFA9 PE NADH dehydrogenase [ubiquinne] 1 ajba subcomplex suburit 3, mitchondrial 0.50-Homo saplens GN-NDUFA9 PE NADH dehydrogenase [ubiquinne] 1 ajba subcomplex suburit 3, mitchondrial 0.50-Homo saplens GN-NDUFA9 PE NADH dehydrogenase [ubiquinne] 1 ajba subcomplex sub	0.345 0.338 0.333 0.149 ITRAQ Fold Change 3.885 2.133 2.068 1.992 1.743 1.734 1.640 1.622 1.640 1.652 1.553 1.553 1.553 1.553 1.450 1.454 1.454 1.353 1.434 1.339 1.335 1.385 1.	0.003 0.004 0.001 0.045 5touffersPP 0.002 0.001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000
215562.69 P43121 13.25 P370592 Comparison lp370592 Comparison lp370592 Comparison lp43752 14.04 P43753 14.08 P43753 14.08 P43753 14.08 P43753 14.08 P62206 17.26 Q52337.2 P48324 20.51 P13124 20.55 P1132 3.06 O7536723.86 O7536723.86 O7536723.86 O7536723.86 P13124 20.55 P1132 3.06 O7536723.86 P13124 20.55 P1132 3.06 O7536723.86 P13124 20.55 P1132 3.06 P1325 2.36 P1325 2.36 P1325 2.36 P1325 2.35 P122695 14.5 P61247 12.73 P12450 3.31 P13450 3.31	2.69 18.25 2.08 701 5f TGFβt 14.03 14.04 14.03 20.69 17.26 5.18 20.51 20.55 3.06 27.99 7.28 13.11 9.45 8.58 14.5 14.73 14.55 12.73 42.27	19.69 27.86 3.101 reated H' X.Cov.95 20.71 38.81 38.81 26.54 42.86 33.08 38 36.62 33.08 33.06 32.06 33.06 32.06 33.06 32	Synaptophysin-like protein 1.0.5-Homo saplens GN-SPL1 PE-1.SV-1 Cell surface glycoprotein MUC18 OS-Homo saplens GN-MCAM PE-1.SV-2 Estradiol 17-beta-dehydrogenase 2.0.5-Homo saplens GN-HSD17B2 PE-1.SV-1 729 Mock/untreated HT29 Mock Protein Name; Organism; Gene name Keratin, type 1.cytoskletal 9.O.5-Homo saplens GN-KR19 PE-1.SV-3 Transmerbrane emp24 domain-containing protein 10.O.5-Homo saplens GN=TMED10 PE-1.SV-2 Keratin, type 1.cytoskletal 9.O.5-Homo saplens GN-KR19 PE-1.SV-3 Control 10.05-Homo saplens GN-RR10 PE-1.SV-3 Gos rhosomal protein 1.2.0.5-Homo saplens GN-RPL10 PE-1.SV-2 Gos rhosomal protein 1.2.0.5-Homo saplens GN-RPL10 PE-1.SV-1 Gos rhosomal protein 1.2.0.5-Homo saplens GN-RPL10 PE-1.SV-1 Lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex, mitochondrial OS- Homo saplens GN-RPL2 PE-1.SV-2 FACT complex subunit SP116.O.5-Homo saplens GN-RD2.PE-1.SV-2 FACT complex subunit SP116.O.5-Homo saplens GN-RD2.PE-1.SV-2 NADH dehydrogenase [ubiquinone] 1.anha subcomplex subunit SP116.O.5-Homo saplens GN-RD2.PE-1.SV-2 NADH dehydrogenase [ubiquinone] 1.anha subcomplex subunit SP140.SH-100m saplens GN-RD2.PE-1.SV-2 NADH dehydrogenase [ubiquinone] 1.anha subcomplex subunit SP140.SH-100m saplens GN-	0.345 0.338 0.338 0.323 0.149 ITRAO Fold Change 3.885 2.133 2.058 1.992 1.743 1.743 1.744 1.663 1.540 1.553 1.555 1.450 1.553 1.450 1.553 1.451 1.553 1.451 1.353 1.339 1.338 1.338 1.333 1.333 1.333 1.337 1.377	0.003 0.006 0.006 0.001 0.045 520uffarsP- 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.000 0.005 0.001 0.005 0.001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000
[135562.69 [P43121 18.25 [P43121 18.25 [P43759 2 : Comparison on [P43755 14.08 [P43755 14.08 [P43755 14.08 [P43755 14.08 [P43755 14.08 [P63204 27.26 [P4375 12.26 [P4375 12.26 [P4324 20.51 [P4324 20.51 [P4324 20.55 [P1138 23.06 [P4324 20.55 [P1138 23.06 [P3756 23.36 [Q9VIGE 0.01 [Q9V5B 13.1 [Q15795 24.57 [P43824 3.27] [P43824 3.27] [P43824 3.27] [P43824 3.27] [P43824 3.27]	2.69 18.25 18.25 2.08 Total 14.08 14.04 14.08 20.69 17.26 5.18 20.51 29.48 8.07 20.55 3.06 27.99 7.28 13.1 9.45 8.27 19.44 28.57 12.73 12.73 12.73 12.73 12.73 12.77 13.11	19.69 27.86 3.101 ***********************************	Synaptophysin-like protein 1.05-Homo saplens GN-SPR12 PE-1.5V-1 Cell surface glocoprotein MUCI GS-Homo saplens GN-MCMP14F-1.5V-2 Estradiol 17-beta-dehydrogenase 2.05-Homo saplens GN-HCMP14F-1.5V-2 Estradiol 17-beta-dehydrogenase 2.05-Homo saplens GN-HCMP152 PE-1.5V-3 Transmehrane emp24 domain-containing protein 10.05-Homo saplens GN-TMED10 PE-1.5V-2 Keratin, type 1 cytoskeletal 9 OS-Homo saplens GN-KRT9 PE-1.5V-3 Transmehrane emp24 domain-containing protein 10.05-Homo saplens GN-TMED10 PE-1.5V-2 Keratin, type 1 cytoskeletal 9 OS-Homo saplens GN-KRT9 PE-1.5V-2 GS rhosomal protein 12.05-Homo saplens GN-KRT9 PE-1.5V-2 G-protein coupled receptor 56 OS-Homo saplens GN-KRT9 PE-1.5V-2 G-protein coupled receptor 56 OS-Homo saplens GN-KRT9 PE-1.5V-2 Mon-POU domain-containing octamer-binding protein 0.5-Homo saplens GN-HOMO PE-1.5V-4 ATP synthase subunit 0, mitcohondrial OS-Homo saplens GN-APD50 PE-1.5V-2 Lipoamite acyltranisferase component of branched-chain ajha-keto acid dehydrogenase complex, mitcohondrial OS-Homo saplens GN-H27AP PE-1.5V-2 FACT complex subunit S2D-SHomo saplens GN-MEP12AP PE-1.5V-2 FACT complex subunit S2D-SHomo saplens GN-MEP12AP PE-1.5V-2 FACT complex subunit S2D-SHomo saplens GN-MEP12AP PE-1.5V-2 NADH dehydrogenase [ubiquinone] 1 ajha subcomplex subunit 9, mitcohondrial OS-Homo saplens GN-MEP12AP PE-1.5V-2 NADH dehydrogenase [ubiquinone] 1 ajha subcomplex subunit 9, mitcohondrial OS-Homo saplens GN-MDUF12 PE-1.5V-2 NADH dehydrogenase [ubiquinone] 1 ajha subcomplex subunit 9, mitcohondrial OS-Homo saplens GN-MDUF24 PE-1.5V-2 Kray repair cross-complementing protein 0.50-Homo saplens GN-MED052 PE-1.5V-2 Kray repair cross-complementing protein 0.50-Homo saplens GN-MED024 PE-1.5V-2 Kray repair cross-complementing protein 0.50-Homo saplens GN-MED024 PE-1.5V-2 Kray repair cross-complementing protein 0.50-Homo saplens GN-MED0252 PE-1.5V-2 Kray repair cross-complementing protein 0.50-Homo saplens GN-MED0252 PE-1.5V-2 Kray repair cross-complementing protein 0.50-Homo saplens GN-MED	0.345 0.338 0.333 0.323 0.149 TITRAQ Fold Change 3.885 2.133 2.068 1.992 1.743 1.640 1.622 2.1680 1.653 1.653 1.653 1.553 1.4540 1.553 1.4540 1.454 1.454 1.454 1.359 1.454 1.355 1.434 1.338 1.337	0.003 0.004 0.001 0.004 0.004 0.002 0.002 0.002 0.0000 0.0000 0.0000 0.000000
[135562.69 [P43121 18.25 [P370592 Comparison 0 IP370592 Comparison 0 IP35527 14.04 [P43755 14.08 [P43755 14.08 [P43755 14.08 [P63906 17.26 [P63906 17.26 [P63926 17.26 [P63926 17.26 [P63926 17.26 [P63926 17.26 [P63926 17.26 [P63926 17.26 [P43927 2.36 [075367 23.86 [075367 23.86 [075367 23.86 [075367 23.86 [P43921 8.27 [P4392 18.27 [P4392 18.27 [P4392 18.27 [P4392 18.27 [P4392 18.27 [P4392 18.27 [P4392 18.27 [P62576 42.27 [P17480 13.11 [P62588 20.75 [P2397 16.62	2.69 18.25 2.08 5 TGFβt Total 14.04 14.04 14.03 20.69 17.26 5.18 20.51 29.48 8.07 20.55 3.06 27.99 4.08 20.79 3.06 27.99 4.28 5.30 8.57 12.73 4.28 5.58 14.5 14.58 14.58 14.58 14.58 14.58 14.58 14.58 14.58 14.58 14.58 14.58 14.58 15.58 1	19.69 27.86 3.101 reated H' x.Cov.95 20.71 33.81 38.81 42.86 7.071 33.08 38 36.62 33.06 7.261 45.97 2.9 10.6 2.9 10.6 2.9 10.6 2.9 10.6 2.9 10.6 2.9 10.6 2.9 5.6 1.447 2.9.56 11.447 2.9.56 11.447 2.8.48 2.2.73 5.8.6 12.3 47.32	Synaptophysin-like protein 1.0.5-Homo saplens GN-SPLI PE-1.SV-1 Cell surface glycoprotein MUC18 OS-Homo saplens GN-MCM PE-1.SV-2 Estradiol 17-beta-dehydrogenase 2.05-Homo saplens GN-HCD172 PE-1.SV-1 T29 Mock/untreated HT29 Mock Protein Name; Organism; Gene name Keratin, type 1.cytoskeletal 9.OS-Homo saplens GN-KR19 PE-1.SV-3 Transmerbrane emp24 domain-containing protein 10.OS-Homo saplens GN-TMED10 PE-1.SV-2 Keratin, type 1.cytoskeletal 9.OS-Homo saplens GN-KR19 PE-1.SV-3 Transmerbrane emp24 domain-containing protein 10.OS-Homo saplens GN-TMED10 PE-1.SV-2 GS rhosomal protein 10.30-SHomo saplens GN-RPL10A PE-1.SV-2 GS rhosomal protein 10.30-SHomo saplens GN-RPL10A PE-1.SV-2 605 rhosomal protein 10.30-SHomo saplens GN-RPL10A PE-1.SV-2 Non-POU domain-containing octamer-binding protein 0.5+Homo saplens GN-MONO PE-1.SV-4 ATP synthase subunit 0, mitochondrial 0.5-Homo saplens GN-APE9 PE-1.SV-1 GS rhosomal protein 1.20-SHomo saplens GN-RPL17A PE-1.SV-1 Lipoamte acyltraneferase component of branched-chain alpha-keto acid dehydrogenase complex, mitochondrial OC Care histone macro H22A.1.OS-Homo saplens GN-RPL17A PE-1.SV-1 Lipoamte acyltraneferase component of branched-chain alpha-keto acid dehydrogenase complex, mitochondrial OC Care histone macro H2A.1.OS-Homo saplens GN-RAZID PE-1.SV-1 ADDI dehydrogenase [ubliquinone] 1.alpha subcomplex subunit 0, mitochondrial OS-Homo saplens GN-NDUFA9 PE NADH dehydrogenase [ubliquinone] 1.alpha subcomplex subunit 0, mitochondrial OS-Homo saplens GN-NDUFA9 PE NADH dehydrogenase [ubliquinone] 1.alpha subcomplex subunit 0.5-Homo saplens GN-NDUFA9 PE NADH dehydrogenase [ubliquinone] 1.alpha subcomplex subunit 0.5-Homo saplens GN-NDUFA9 PE NADH dehydrogenase [ubliquinone] 1.alpha subcomplex subunit 0.5-Homo saplens GN-NDUFA9 PE-1.SV-1 ADS Hodehydrogenase [ubliquinone] 1.alpha subcomplex subunit 0.5-Homo saplens GN-NDUFA9 PE-1.SV-2 ADAH dehydrogenase [ubliquinone] 1.alpha subcomplex subunit 0.5-Homo saplens GN-NDUFA9 PE-1.SV-2 ADAH dehydrogenase [ubliquinone] 1.alpha subcomplex subunit 0.	0.345 0.338 0.323 0.149 7 ITRAQ.Fold Change 3.885 2.133 2.058 1.992 1.743 1.734 1.663 1.743 1.744 1.663 1.573 1.563 1.553 1.553 1.553 1.553 1.451 1.451 1.451 1.451 1.353 1.337 1.337 1.373	0.003 0.006 0.006 0.001 0.045 5touffersP. 0.002 0.002 0.000 0.000 0.000 0.000 0.002 0.000 0.002 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000
[135562.69] [P43121 18.25] [P43121 18.25] [P43121 18.25] [P43121 18.25] [P43121 18.25] [P43121 18.25] [P3527 14.04] [P43527 14.04] [P43525 14.04] [P43525 14.04] [P4325 14.04] [P62305 17.26] [Q97585 13.1] [Q152327.2] [P48047 8.07] [P18124 20.55] [Q152327.2] [Q97581 3.1] [Q15739 2.45] [Q97581 3.1] [Q15739 2.45] [P1387 19.44] [P1387 19.44] [P1385 19.45] [P2385 21.45] [P61247 12.73] [P0538 20.75] [Q29876 42.27] [P17480 13.11] [P0538 20.75] [Q2987 6.2] [P51643 5.46]	2.69 18.25 2.08 Total 14.04 14.03 20.69 17.26 5.18 20.55 5.18 20.55 5.18 8.07 20.55 5.18 8.07 20.55 8.27 19.44 9.45 8.27 19.44 9.45 8.27 19.44 9.45 8.27 19.44 9.45 8.27 19.45 8.27 19.45 8.27 19.45 8.27 19.45 8.27 19.45 1	19.69 27.86 3.101 ***********************************	Synaptophysin-like protein 1.05-Homo saplens GN-SPR12 FE-1 SV-1 Cell surface glocoprotein MUCI GS-Homo saplens GN-MCMP1 FE-1 SV-2 Estradiol 17-beta-dehydrogenase 2.05-Homo saplens GN-HCM1782 PE-1 SV-3 Transmembrane emp24 domain-containing protein 10.05-Homo saplens GN-TMED10 PE-1 SV-2 Keratin, type 1 cytoskeletal 30.05-Homo saplens GN-KRT9 PE-1 SV-3 Transmembrane emp24 domain-containing protein 10.05-Homo saplens GN-TMED10 PE-1 SV-2 Keratin, type 1 cytoskeletal 30.05-Homo saplens GN-KRT9 PE-1 SV-3 Transmembrane emp24 domain-containing protein 10.05-Homo saplens GN-TMED10 PE-1 SV-2 Keratin, type 1 cytoskeletal 30.05-Homo saplens GN-KRT9 PE-1 SV-2 Go protein coupled receptor 56 OS-Homo saplens GN-KRT9 PE-1 SV-2 Go protein coupled receptor 56 OS-Homo saplens GN-KRT9 PE-1 SV-2 Mon-POU domain-containing octame-thiding protein 0.5-Homo saplens GN-MONO PE-1 SV-4 ATP synthase subunit 0, intrachondrial OS-Homo saplens GN-KRT9 PE-1 SV-2 Lipoanide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex, mitochondrial OS ACT complex subunit ST-Homo saplens GN-KPL2AP PE-1 SV-2 FACT complex subunit ST-Homo saplens GN-KPL2AP PE-1 SV-2 FACT complex subunit ST-Homo saplens GN-KPL2AP PE-1 SV-2 HADH dehydrogenase Lubiquinone] 1 alpha subcomplex subunit 9, mitochondrial OS-Homo saplens GN-NDUFAP PE NADH dehydrogenase Lubiquinone] Havoprotein 1, mitochondrial OS-Homo saplens GN-NDUFAP PE-1 SV-2 K-ray repair cross-complementing protein 0.5-Homo saplens GN-KPL2AP PE-1 SV-2 K-ray repair cross-complementing protein 0.5-Homo saplens GN-NDUFAP PE-1 SV-2 X-ray repair protein Stande Standom saplens GN-KPL2AP PE-1 SV-2 X-ray repair cross-complementing protein 0.5-Homo saplens GN-NDUFAP PE-1 SV-2 X-ray repair cross-complementing protein 0.5-Homo saplens GN-MUQCR 2 PE-1 SV-3 Nucleolar transcription factor 1.05-Homo saplens GN-MDTP3 PE-1 SV-2 ATP synthase subunit 12, mitochondrial OS-Homo saplens GN-MUQCR 2 PE-1 SV-3 Nucleolar transcription factor 1.05-Homo saplens GN-MUPGP PE-1 SV-1 Sister	0.345 0.338 0.338 0.323 0.149 17RAQ Fold Change 3.885 2.133 2.068 1.992 1.743 1.734 1.653 1.540 1.578 1.563 1.553 1.553 1.553 1.553 1.553 1.553 1.553 1.553 1.553 1.553 1.450 1.553 1.335 1.335 1.335 1.335 1.335 1.337 1.337 1.372	0.003 0.004 0.006 0.001 0.045 0.002 0.002 0.002 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.003 0.000 0.003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000
[135562.69 [P43121 18.25 [P37059 2 Comparison of [P37059 2 Comparison of [P37059 2 [P43755 14.08 [P13645 17.45 [P63294 17.26 [P63294 17.26 [P63294 27.26 [P63294 27.27 [P45047 8.07 [P13124 20.55 [P11312 20.55 [P11312 20.55 [P11312 20.55 [P11312 20.55 [P11312 20.55 [P11312 20.55 [P11312 10.53 [P4504 18.37 [P4504 18.37 [P4504 18.37 [P11387 19.44 [P12565 28.5 [P5576 42.27 [P15388 20.75 [P2589 20.75 [P2589 20.75 [P2588 20.75	2.69 18.25 2.08 ff TGFβ t Total 14.04 14.03 20.69 20.55 5.18 20.55 5.18 20.55 5.18 20.55 13.1 20.45 20.55 20.45 20.55 20.45 20.55 20.45 20.55 20.45 20.55 20.45 20.55 20.45 20.55 20.45 20.55 20.45 20.55 20.45 20.55 20.45 20.5	19.69 27.86 3.101 x.cov.95 20.71 38.81 38.81 42.86 7.071 33.08 38 36.62 33.08 33.06 7.261 42.97 10.6 2.9 10.6 2.9 10.6 2.9 10.6 2.9 11.42 17.12 29.56 14.47 22.73 58.6 12.3 47.32 28.48 22.73 58.6 12.3 47.32 28.48 28.49 20.75 20.71 28.48 20.71 29.56 20.71 29.56 20.71 29.56 20.71 20.72 20.72 20.72 20.72 20.73 20.62 20.73 20.62 20.63 20.63 20.73 20.64 20.73 20.64 20.73 20.64 20.73 20.64 20.73 20.64 20.73 20.73 20.64 20.73 20.73 20.73 20.73 20.77 20	Synaptophysin-like protoin 1.05-Homo saplens GN-SPL1 PE-1.SV-1 Cell surface gh/copratein MUC18 OS-Homo saplens GN-HSD17B2 PE-1 SV-2 Estradiol 17-beta-dehydrogenase 2.05-Homo saplens GN-HSD17B2 PE-1 SV-1 T29 Mock/untreated HT29 Mock Protein Name: Organium; Gene name Keratin, type I cytoskeletal 9.05-Homo saplens GN-KRT9 PE-1 SV-3 Transmembrane emp24 domain-containing protein 10.05-Homo saplens GN-TMED10 PE-1 SV-2 Keratin, type I cytoskeletal 9.05-Homo saplens GN-RRT9 PE-1 SV-3 Transmembrane emp24 domain-containing notein 10.05-Homo saplens GN-TMED10 PE-1 SV-2 Keratin, type I cytoskeletal 9.05-Homo saplens GN-RPL10A PE-1 SV-2 Gos ribosomal protein 10.30-SHomo saplens GN-RPL10A PE-1 SV-2 GS ribosomal protein 10.30-SHomo saplens GN-RPL10A PE-1 SV-2 GS ribosomal protein 10.30-SHomo saplens GN-RPL10A PE-1 SV-2 GN rhovOut domain-containing cutamet-binding protein 0.5-Homo saplens GN-RNDO PE-1 SV-4 ATP synthase subunit 0., mitchondrial 0.5-Homo saplens GN-RH20 PE-1 SV-1 Lipoamite acyltraneferase component of branched-chain alpha-keto acid dehydrogenase complex, mitchondrial 02 Core histone macri-12A2.05-Homo saplens GN-RH217 PE-1 SV-1 Lipoamite acyltraneferase component of branched-chain alpha-keto acid dehydrogenase complex, mitchondrial 02 Core histone macri-12A2.05-Homo saplens GN-BAZIB PE-1 SV-2 Tyrodine-protein kinase BAZIB 05-Homo saplens GN-BAZIB PE-1 SV-2 Tyrodine-protein kinase BAZIB 05-Homo saplens GN-BAZIB PE-1 SV-2 TACT complex subunit 9116 05-Homo saplens GN-BAZIB PE-1 SV-2 TACT complex subunit 9116 05-Homo saplens GN-BAZIB PE-1 SV-2 TACT complex subunit 12, mitchondrial 03-Homo saplens GN-NDUFA9 PE NADH dehydrogenase (ubiquinone) Tak-protein 1, mitchondrial 03-Homo saplens GN-NDUFA9 PE NADH dehydrogenase (ubiquinone) Tak-protein 1, mitchondrial 03-Homo saplens GN-NDUFA9 PE-1 SV-2 NADH dehydrogenase (ubiquinone) Tak-protein 1, mitchondrial 03-Homo saplens GN-NDUFA9 PE-1 SV-2 NADH dehydrogenase (ubiquinone) Tak-protein 1, FE-1 SV-3 NADH dehydrogenase (ubiquinone) Tak-protein 1,	0.345 0.338 0.333 0.149 ITRAQ Fold Change 3.385 2.133 2.068 1.743 1.743 1.734 1.640 1.622 1.743 1.653 1.456 1.553 1.459 1.453 1.459 1.454 1.553 1.490 1.434 1.399 1.387 1.387 1.387 1.387 1.337 1.373 1.372 1.370 1.	0.003 0.004 0.001 0.045 5touffersPP 0.002 0.001 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.000000
I (1456:2:6) I (1456:2:6) I (143):21:13:25 I (143):21:13:25 I (143):21:13:25 I (143):25:27:14:04 I (145):25:27:14:04 I (145):25:14:04 I (145):25:14:04 I (145):25:14:04 I (145):25:14:04 I (145):25:14:05 I (145):15:14:05 I (145):15:14:	2.69 18.25 2.08 Total 14.04 14.04 14.03 20.69 20.45 5.18 20.51 20.45 3.06 27.99 3.06 27.99 3.06 27.99 3.06 3.06 27.99 3.06 3.06 3.06 3.06 3.7.28 3.06 3.06 3.7.28 3.06 3.06 3.7.28 3.06 3.06 3.7.28 3.06 3.7.28 3.06 3.7.28 3.06 3.06 3.7.28 3.06 3.06 3.7.28 3.06 3.7.28 3.06 3.7.28 3.06 3.7.28 3.06 3.7.28 3.06 3.7.28 3.06 3.7.28 3.06 3.7.28 3.06 3.7.28 3.06 3.7.28 3.06 3.7.28 3.06 3.7.28 3.06 3.7.28 3.06 3.7.28 3.13 1.3.11 1.2.75 3.5.58	19.69 27.86 3.101 x.Cov.95 20.71 38.81 38.81 36.54 42.86 33.08 38 36.62 33.08 33.06 33.0	Synaptophysin-like protein 1.0.5-Homo saplens GN-SPL1 PE-1.SV-1 Cell surface glycoprotein MUC18 OS-Homo saplens GN-MCAM PE-1.SV-2 Estradiol 17-beta-dehydrogenase 2.05-Homo saplens GN-HCD17D2 PE-1.SV-1 729 Mock/untreated HT29 Mock Protein Name; Organism; Gene name Keratin, type 1.cytoskletal 9.OS-Homo saplens GN-KR19 PE-1.SV-3 Transmerbrane emp24 domain:containing protein 10.OS-Homo saplens GN-TMED10 PE-1.SV-2 Keratin, type 1.cytoskletal 9.OS-Homo saplens GN-KR19 PE-1.SV-3 Contrast of the same served and main containing content in OS-Homo saplens GN-TMED10 PE-1.SV-2 G-protein coupled receptor 56 OS-Homo saplens GN-RPL10 PE-1.SV-2 G-protein coupled receptor 56 OS-Homo saplens GN-RPL10 PE-1.SV-2 G-protein coupled receptor 56 OS-Homo saplens GN-RPL10 PE-1.SV-2 GO strosomal protein 1.20 OS-Homo saplens GN-RPL10 PE-1.SV-2 GO strosomal protein 0.5S-Homo saplens GN-RPL10 PE-1.SV-1 Lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex, mitochondrial OS- Homo saplens GN-RPL2 PE-1.SV-2 FACT complex subunit 9716.OS-Homo saplens GN-R2D2 PE-1.SV-2 ADAH dehydrogenase [ubiquinone] 1.apha subcomplex subunit 9716.FD-SH-GN saplens GN-RDUF1 PE-1.SV-2 ADAH dehydrogenase [ubiquinone] 1.apha subcomplex subunit 9716.FD-SH-GN saplens GN-RDUF2 PE-1.SV-2 ADAH dehydrogenase [ubiquinone] 1.apha subcomplex subunit 9716.FD-SH-GN saplens GN-RDUF2 PE-1.SV-2 ADAH dehydrogenase [ubiquinone] 1.apha subcomplex subuni	0.345 0.338 0.338 0.323 0.149 ITRAQ Fold Change 3.885 2.133 2.068 1.992 2.068 1.992 1.743 1.734 1.734 1.734 1.734 1.663 1.578 1.663 1.578 1.553 1.553 1.450 1.553 1.450 1.553 1.450 1.355 1.385 1.337 1.372 1.370 1.370	0.003 0.006 0.001 0.045 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
IL (115562.69) IL (115562.69) IL (115752) IL (115752)	2.69 18.25 2.08 ff TGFB 1 14.04 14.03 14.03 14.03 14.03 14.03 20.65 5.18 20.55 13.1 29.48 8.07 7.28 13.1 19.44 28.55 13.1 19.44 28.58 13.1 19.44 28.58 13.1 19.44 28.58 12.73 42.27 13.11 9.45 5.12 7.34 2.75 13.14 2.75 2.77 2.75 2.77 2.77 2.77 2.77 2.77	19.69 27.86 3.101 reated H X.cov.95 20.71 38.81 38.81 42.86 3.03 3.08 3.08 3.08 3.08 3.08 3.08 3.08	Synaptophysin-like protein 1.05-Homo sapiens GN-SPR12 PE-1.5V-1 Cell surface glocoprotein MUCI SO-Homo sapiens GN-HCM2 PE-1.5V-2 Estradiol 17-beta-dehydrogenase 2.05-Homo sapiens GN-HCM2 PE-1.5V-3 T29 Mock/untreated HT29 Mock I Protein Name; Organium; Gene name Keratin; type I cytoskeletal 9.05-Homo sapiens GN-KRT9 PE-1.5V-3 Transmenbrane emp24 domain-containing protein 10.05-Homo sapiens GN-TMED10 PE-1.5V-2 Keratin, type I cytoskeletal 9.05-Homo sapiens GN-KRT9 PE-1.5V-3 Transmenbrane emp24 domain-containing protein 10.05-Homo sapiens GN-TMED10 PE-1.5V-2 Keratin, type I cytoskeletal 9.05-Homo sapiens GN-KRT9 PE-1.5V-2 G-protein coupled receptor 56.05-Homo sapiens GN-RPL20 PE-1.5V-2 G-protein coupled receptor 56.05-Homo sapiens GN-ARP2.07 Non-POU domain-containing octamer-binding protein 0.5-Homo sapiens GN-HONO PE-1.5V-4 ATP synthase subunit 0, mitchondrial 0.5-Homo sapiens GN-ARP2.07 Keratin, type I cytoskeletal 9.05-Homo sapiens GN-ARP2.07 Non-POU domain-containing octamer-binding protein 0.5-Homo sapiens GN-HONO PE-1.5V-4 ATP synthase subunit 0, mitchondrial 0.5-Homo sapiens GN-ARP5.07 Keratinse and taba.05-Homo sapiens GN-ARP2.07 FACT complex subunit 0, mitchondrial 0.5-Homo sapiens GN-ARP5.07 FACT complex subunit 0.5-Homo sapiens GN-BU21P FE-1.5V-2 FACT complex subunit 0.2-Homo sapiens GN-BU21P FE-1.5V-	0.345 0.338 0.333 0.323 0.323 0.149 TIRAQ Fold Change 3.885 2.133 2.068 1.992 1.743 1.640 1.622 1.640 1.622 1.653 1.658 1.553 1.4540 1.655 1.459 1.454 1.553 1.454 1.553 1.434 1.399 1.383 1.337 1.337 1.337 1.372 1.370 1.366	0.003 0.004 0.001 0.004 0.004 0.002 0.002 0.002 0.0000 0.0000 0.0000 0.000000
[155632.69 P43121 13.25 P370592 Comparison on P370592 P49755 14.08 P49755 14.08 P49755 14.08 P49755 14.08 P13645 17.45 P62906 17.26 P62907 17.26 P62907 17.26 P1322 17.27 P1327 19.44 P12956 28.5 P6576 12.27 P1480 13.11 P05576 12.27 P1548 5.46 P3710 84.03 P65748 15.46 P3710 84.03	2.69 18.25 2.08 Total 14.04 14.04 14.03 20.69 20.55 5.18 20.51 20.51 20.51 20.51 20.51 20.53 20.55 3.06 27.99 7.28 3.07 9.45 8.27 13.11 20.75 8.27 13.11 20.75 8.58 14.5 5.47 15.84 6.68 8.54 6.68 8.54 6.68 8.54 6.68 8.54 6.68 8.54 6.68 8.54 6.68 8.54 6.68 8.54 6.58 2.55 8.27 15.84 6.68 8.57 15.84 6.68 15.84 6.68 15.84 15.85	19.69 27.86 3.101 reated H' X.Cov.95 20.71 33.81 38.81 26.54 42.86 42.86 7.071 33.08 38 36.62 33.06 7.261 45.97 2.9 10.6 2.9 10.6 2.9 10.6 2.0.69 11.42 17.12 29.56 11.42 17.12 29.56 12.3 44.732 4.637 9.072 19.68 32.65 32.55	Synaptophysin-like protein 1.0.5-Homo saplens GN-SPL1 PE-1.SV-1 Cell surface glycoprotein MUC18 OS-Homo saplens GN-MCM PE-1.SV-2 Estradiol 17-beta-dehydrogenase 2.05-Homo saplens GN-HCD172 PE-1.SV-1 T29 Mock/untreated HT29 Mock Protein Name; Organism; Gene name Keratin, type 1.cytoskletal 9.OS-Homo saplens GN-KR19 PE-1.SV-3 Transmerbrane emp24 domain: containing protein 10.OS-Homo saplens GN-TMED10 PE-1.SV-2 Keratin, type 1.cytoskletal 9.OS-Homo saplens GN-KR19 PE-1.SV-3 Transmerbrane emp24 domain: containing protein 10.OS-Homo saplens GN-TMED10 PE-1.SV-2 GS rhosomal protein 10.20-SHomo saplens GN-RP110A PE-1.SV-2 GS rhosomal protein 10.20-SHomo saplens GN-RP110A PE-1.SV-2 60.5 rhosomal protein 10.20-SHomo saplens GN-RP12 PE-1.SV-2 60.5 rhosomal protein 10.20-SHomo saplens GN-RP12 PE-1.SV-1 60.5 rhosomal protein 10.20-SHomo saplens GN-RP12 PE-1.SV-1 60.5 rhosomal protein 10.20-SHomo saplens GN-RP12 PE-1.SV-1 1.Ljoantide scyltransferase component of branched-chain alpha-keto add dehydrogenase complex, mitochondrial OC Care histone macro H2A.1 OS-Homo saplens GN-RA210 PE-1.SV-1 ADD1 dehydrogenase (ubiquinone) 1 alpha subcomplex subunit 9.rincchondrial OS-Homo saplens GN-NDUFA9 PE NADH dehydrogenase (ubiquinone) 1 alpha subcomplex subunit 9.rincchondrial OS-Homo saplens GN-NDUFA9 PE NADH dehydrogenase (ubiquinone) 1 alpha subcomplex subunit 9.rinchondrial OS-Homo saplens GN-NDUFA9 PE NADH dehydrogenase (ubiquinone) 1 alpha subcomplex subunit 9.rinchondrial OS-Homo saplens GN-NDUFA9 PE NADH dehydrogenase (ubiquinone) 1 alpha subcomplex subunit 9.rinchondrial OS-Homo saplens GN-NDUFA9 PE NADH dehydrogenase (ubiquinone) 1 alpha subcomplex subunit 9.rinchondrial OS-Homo saplens GN-NDUFA9 PE-1.SV-1 MADH dehydrogenase (ubiquinone) 1 alpha subcomplex subunit 9.rinchondrial OS-H	0.345 0.338 0.338 0.323 0.149 7 ITRAO Fold Change 3.385 2.133 2.058 1.992 1.774 1.774 1.774 1.663 1.578 1.563 1.563 1.553 1.450 1.553 1.450 1.553 1.450 1.553 1.450 1.355 1.430 1.355 1.337 1.337 1.337 1.377 1.374 1.372 1.373 1.372 1.368 1.366 1.360	0.003 0.006 0.006 0.001 0.045 5touffersP. 0.002 0.002 0.0000 0.0000 0.0000 0.000000
I](115562.69 IP43121 13.25 I]P43059 2 Comparison IIP37059 2 Comparison I]P35527 14.04 I]P43755 14.08 I]P43755 14.08 I]P43755 14.08 I]P43755 14.08 I]P43755 14.08 I]P4324 20.51 I]045351.16 I]P62204 21.25 I]P4324 20.51 I]04523 27.2 I]P4324 20.51 I]04523 27.2 I]P4324 20.55 I]P13124	2.69 18.25 2.08 ff TGFB 1 14.04 14.03 14.03 14.03 14.03 14.03 20.65 5.18 20.55 13.1 29.48 8.07 7.28 13.1 19.44 28.55 13.1 19.44 28.58 13.1 19.44 28.58 13.1 19.44 28.58 12.73 42.27 13.11 9.45 5.12 7.34 2.75 13.14 2.75 2.77 2.75 2.77 2.77 2.77 2.77 2.77	19.69 27.86 3.101 reated H X.cov.95 20.71 38.81 38.81 42.86 3.03 3.08 3.08 3.08 3.08 3.08 3.08 3.08	Synaptophysin-like protein 1.05-Homo sapiens GN-SPR12 PE-1.5V-1 Cell surface glocoprotein MUCI SO-Homo sapiens GN-HCM2 PE-1.5V-2 Estradiol 17-beta-dehydrogenase 2.05-Homo sapiens GN-HCM2 PE-1.5V-3 T29 Mock/untreated HT29 Mock I Protein Name; Organium; Gene name Keratin; type I cytoskeletal 9.05-Homo sapiens GN-KRT9 PE-1.5V-3 Transmenbrane emp24 domain-containing protein 10.05-Homo sapiens GN-TMED10 PE-1.5V-2 Keratin, type I cytoskeletal 9.05-Homo sapiens GN-KRT9 PE-1.5V-3 Transmenbrane emp24 domain-containing protein 10.05-Homo sapiens GN-TMED10 PE-1.5V-2 Keratin, type I cytoskeletal 9.05-Homo sapiens GN-KRT9 PE-1.5V-2 G-protein coupled receptor 56.05-Homo sapiens GN-RPL20 PE-1.5V-2 G-protein coupled receptor 56.05-Homo sapiens GN-ARP2.07 Non-POU domain-containing octamer-binding protein 0.5-Homo sapiens GN-HONO PE-1.5V-4 ATP synthase subunit 0, mitchondrial 0.5-Homo sapiens GN-ARP2.07 Keratin, type I cytoskeletal 9.05-Homo sapiens GN-ARP2.07 Non-POU domain-containing octamer-binding protein 0.5-Homo sapiens GN-HONO PE-1.5V-4 ATP synthase subunit 0, mitchondrial 0.5-Homo sapiens GN-ARP5.07 Keratinse and taba.05-Homo sapiens GN-ARP2.07 FACT complex subunit 0, mitchondrial 0.5-Homo sapiens GN-ARP5.07 FACT complex subunit 0.5-Homo sapiens GN-BU21P FE-1.5V-2 FACT complex subunit 0.2-Homo sapiens GN-BU21P FE-1.5V-	0.345 0.338 0.333 0.323 0.323 0.149 TITRAQ Fold Change 3.885 2.133 2.068 1.992 1.743 1.640 1.622 1.640 1.622 1.653 1.658 1.553 1.4540 1.655 1.4540 1.454 1.553 1.434 1.399 1.383 1.337 1.337 1.337 1.372 1.370 1.366	0.003 0.004 0.001 0.004 0.004 0.002 0.002 0.002 0.0000 0.0000 0.0000 0.000000
[135562.69 [P43121 18.25 [P43121 18.25 [P43121 18.25 [P43121 18.25 [P43125 14.26 [P43755 14.08 [P43755 14.08 [P43755 14.08 [P43755 14.08 [P43755 14.08 [P4375 17.26 [P4375 17.26][P4375 17.26 [P4375 17.26][P4375 17.	2.69 18.25 2.08 Total 14.04 14.04 14.03 20.69 20.55 5.18 20.51 20.51 20.51 20.51 20.51 20.53 20.55 3.06 27.99 7.28 3.07 9.45 8.27 13.11 20.75 8.27 13.11 20.75 8.58 14.5 5.47 15.84 6.68 8.54 6.68 8.54 6.68 8.54 6.68 8.54 6.68 8.54 6.68 8.54 6.68 8.54 6.68 8.54 6.58 2.55 8.27 15.84 6.68 8.57 15.84 6.68 15.84 6.68 15.84 15.85	19.69 27.86 3.101 reated H' X.Cov.95 20.71 33.81 38.81 26.54 42.86 42.86 7.071 33.08 38 36.62 33.06 7.261 45.97 2.9 10.6 2.9 10.6 2.9 10.6 2.0.69 11.42 17.12 29.56 11.42 17.12 29.56 12.3 44.732 4.637 9.072 19.68 32.65 32.55	Synaptophysin-like protein 1.0.5-Homo saplens GN-SPL1 PE-1.SV-1 Cell surface glycoprotein MUC18 OS-Homo saplens GN-MCM PE-1.SV-2 Estradiol 17-beta-dehydrogenase 2.05-Homo saplens GN-HCD172 PE-1.SV-1 T29 Mock/untreated HT29 Mock Protein Name; Organism; Gene name Keratin, type 1.cytoskletal 9.OS-Homo saplens GN-KR19 PE-1.SV-3 Transmerbrane emp24 domain: containing protein 10.OS-Homo saplens GN-TMED10 PE-1.SV-2 Keratin, type 1.cytoskletal 9.OS-Homo saplens GN-KR19 PE-1.SV-3 Transmerbrane emp24 domain: containing protein 10.OS-Homo saplens GN-TMED10 PE-1.SV-2 GS rhosomal protein 10.20-SHomo saplens GN-RP110A PE-1.SV-2 GS rhosomal protein 10.20-SHomo saplens GN-RP110A PE-1.SV-2 60.5 rhosomal protein 10.20-SHomo saplens GN-RP12 PE-1.SV-2 60.5 rhosomal protein 10.20-SHomo saplens GN-RP12 PE-1.SV-1 60.5 rhosomal protein 10.20-SHomo saplens GN-RP12 PE-1.SV-1 60.5 rhosomal protein 10.20-SHomo saplens GN-RP12 PE-1.SV-1 1.Ljoantide scyltransferase component of branched-chain alpha-keto add dehydrogenase complex, mitochondrial OC Care histone macro H2A.1 OS-Homo saplens GN-RA210 PE-1.SV-1 ADD1 dehydrogenase (ubiquinone) 1 alpha subcomplex subunit 9.rincchondrial OS-Homo saplens GN-NDUFA9 PE NADH dehydrogenase (ubiquinone) 1 alpha subcomplex subunit 9.rincchondrial OS-Homo saplens GN-NDUFA9 PE NADH dehydrogenase (ubiquinone) 1 alpha subcomplex subunit 9.rinchondrial OS-Homo saplens GN-NDUFA9 PE NADH dehydrogenase (ubiquinone) 1 alpha subcomplex subunit 9.rinchondrial OS-Homo saplens GN-NDUFA9 PE NADH dehydrogenase (ubiquinone) 1 alpha subcomplex subunit 9.rinchondrial OS-Homo saplens GN-NDUFA9 PE NADH dehydrogenase (ubiquinone) 1 alpha subcomplex subunit 9.rinchondrial OS-Homo saplens GN-NDUFA9 PE-1.SV-1 MADH dehydrogenase (ubiquinone) 1 alpha subcomplex subunit 9.rinchondrial OS-H	0.345 0.338 0.338 0.323 0.149 7 ITRAO Fold Change 3.385 2.133 2.058 1.992 1.774 1.774 1.774 1.663 1.578 1.563 1.563 1.553 1.450 1.553 1.450 1.553 1.450 1.553 1.450 1.355 1.430 1.355 1.337 1.337 1.337 1.337 1.372 1.374 1.372 1.368 1.366 1.360	0.003 0.006 0.006 0.001 0.045 5touffersP- 0.002 0.002 0.001 0.0000 0.0000 0.0000 0.000000
IQ15552.69 IQ43121 13.25 IP43121 13.25 IP43121 13.25 IP43121 13.25 IP43121 13.25 IP43121 13.25 IP43125 14.08 IP13645 17.45 IP62306 17.26 IQ497535.16 IP62306 17.26 IQ497535.16 IP62302 17.26 IQ497535.16 IQ52424 20.51 IQ1523327.2 IP43047 8.07 IP13124 20.55 IP13124 20.55 IP1	2.69 18.25 2.08 ff TGFB 1 Total 14.04 14.03 14.03 14.03 14.03 14.03 14.03 14.03 14.03 14.03 10.726 5.18 8.07 20.851 20.851 20.851 20.857 20.55 8.27 13.11 9.45 8.27 13.4 19.44 28.58 14.54 5.47 5.47 5.44 14.03 9.73 9.73 14.04 15.44 14.04 15.44 14.04 15.44 14.04 15.44 14.04 15.44 14.04 15.44 14.04 15.44 14.04 15.44 14.04 15.44 14.04 15.44 14.04 15.44 14.04 15.44 15.44 14.04 14.04 15.44 14.04 15.44 14.04 15.44 14.04 15.44 14.04 15.44 14.04 15.44 14.04 14.04 15.44 14.04 15.44 14.04 15.44 15.44 14.04 14.04 15.44 15.44 14.04 14.04 15.44 14.04 15.44 14.04 15.44 14.04 15.44 15.44 14.04 15.44 14.04 15.44 15.44 14.04 15.44 14.04 15.44 14.04 15.44 15.44 14.04 15.44 14.04 15.44 14.04 15.44 14.04 15.44 14.04 15.44 14.04 15.44 14.04 15.44 14.04 15.44 14.04 14.04 15.44 14.04 14.04 15.44 14.04 14.04 15.44 14.04 14.04 15.44 14.04 14.04 14.04 15.44 14.04 14.04 15.44 14.04 14.04 14.04 15.44 14.04 14.04 14.04 14.04 15.44 14.04 14.04 14.04 14.04 14.04 14.04 14.04 14.04 15.44 14.04 14	19.69 27.86 3.101 reated H X.Cov.95 20.71 38.81 42.86 3.03 3.03 3.03 3.06 7.261 45.97 2.9 10.6 20.69 11.42 17.12 29.56 11.42 17.12 29.56 11.42 17.12 29.56 11.42 17.12 29.56 11.42 17.12 29.56 11.42 17.12 29.56 11.42 17.12 29.56 11.42 27.73 46.37 9.072 2.59 18.69 20.59 18.69 20.59 18.79	Synaptophysin-like protein 1 0.5-Homo saplens GN-SPR12 PE-1 SV-1 Cell surface glocoprotein MUCI 05 S-Homo saplens GN-MCMP1 PE-1 SV-2 Estradiol 17-beta-dehydrogenase 2 0.S-Homo saplens GN-HSD1782 PE-1 SV-1 T29 Mock/untreated HT29 Mock Protein Name: Organism; Gene name Keratin, type I cytoskeletal 9 0.S-Homo saplens GN-KRT9 PE-1 SV-3 Transmembrane emp24 domain-conialing protein 10 0.S-Homo saplens GN-TMED10 PE-1 SV-2 Keratin, type I cytoskeletal 9 0.S-Homo saplens GN-KRT9 PE-1 SV-3 Go strobsomal protein 10.0 S-Homo saplens GN-KRT9 PE-1 SV-2 Go strobsomal protein 10.0 S-Homo saplens GN-KRT9 PE-1 SV-2 Go strobsomal protein 10.0 S-Homo saplens GN-KRT9 PE-1 SV-2 Mon-POU domain-conialing octame-binding protein 0.5-Homo saplens GN-MONO PE-1 SV-4 ATP synthase subunit 0, mitachondrial 0.5-Homo saplens GN-KRT9 PE-1 SV-2 Gos ribosomal protein 17.0 S-Homo saplens GN-KRT2 PE-1 SV-2 Gos ribosomal protein 17.0 S-Homo saplens GN-KRT2 PE-1 SV-2 Gos ribosomal protein 17.0 S-Homo saplens GN-KRT2 PE-1 SV-1 Lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex, mitochondrial 0.5 -Homo and rotein 20-Homo saplens GN-KP120 PE-1 SV-1 FACT complex subunit ST16 SO-Homo saplens GN-SP1210 PE-1 SV-2 FACT complex subunit ST16 SO-Homo saplens GN-SP210 PE-1 SV-2 HADH dehydrogenase Lubiquinone] 1 alpha subcomplex subunit 9, mitochondrial 0.5-Homo saplens GN-PD0/F43 PE MADH dehydrogenase Lubiquinone] I alpha subcomplex subunit 9, mitochondrial 0.5-Homo saplens GN-ND0/F43 PE MADH dehydrogenase Lubiquinone] I alpha subcomplex subunit 9, mitochondrial 0.5-Homo saplens GN-PD0/F23 PE-1 SV-2 MADH dehydrogenase Lubiquinone] I alpha subcomplex subunit 9, mitochondrial 0.5-Homo saplens GN-ND0/F34 PE MADH dehydrogenase Lubiquinone] I alpha subcomplex subunit 9, mitochondrial 0.5-Homo saplens GN-ND0/F34 PE-1 SV-2 MADH dehydrogenase Lubiquinone] I for-suffur protein 2, mitochondrial 0.5-Homo saplens GN-ND0/F34 PE-1 SV-2 MADH dehydrogenase Lubiquinone] I for-suffur protein 2, mitochondrial 0.5-Ho	0.345 0.338 0.338 0.323 0.149 17RAQ Fold Change 3.885 2.133 2.068 1.992 1.743 1.734 1.653 1.578 1.540 1.578 1.566 1.578 1.563 1.553 1.553 1.553 1.450 1.553 1.4541 1.454 1.335 1.335 1.337 1.337 1.337 1.337 1.337 1.337 1.337 1.337 1.337 1.336 1.366 1.366 1.360 1.359	0.003 0.004 0.006 0.001 0.045 0.002 0.002 0.002 0.002 0.0000 0.0000 0.0000 0.000000
I (115552.69) I (143121.13.25) I P43121.13.25 I P43121.13.25 I P43121.13.25 I P43121.13.25 I P43021.13.25 I P43025 I P43025 I P43025 I P43025 I P43024.25 I (200753672.32 I P43024.20.51 I (200753672.32 I P43024.20.55 I P430	2.69 18.25 2.08 frGF6 14 14.04 14.03 20.69 20.55 5.18 20.55 5.18 20.55 2.948 8.07 7.28 3.06 5.18 20.55 13.1 2.055 2.055 2.055 2.055 2.055 2.045	19.69 27.86 3.101 reated H x.Cov.95 20.71 38.81 42.86 7.071 33.08 38 36.62 33.06 7.261 42.86 7.261 42.86 7.261 42.99 10.6 2.9 10.6 2.9 10.42 2.9 10.6 2.9 10.42 2.9 2.65 11.42 17.12 2.9.56 11.42 17.12 2.9.56 14.47 2.8.48 2.2.7 2.8.48 2.8.63 1.9.12 2.8.55 2.0.59 1.1.42 17.12 2.8.48 2.8.65 2.8.56 1.2.3 4.637 9.077 1.9.68 2.65 2.0.59 1.9.69 1.9.69 2.55 2.0.59 1.9.69 1.9.69 2.55 2.0.59 1.9.69 1.9.69 2.0.59 1.9.69 1.9.69 2.9.56 1.9.69 1.9.69 2.9.56 1.9.69 1.9.69 2.0.59 1.9.69 2.9.56 1.9.69 1.9.69 2.9.56 1.9.69 2.9.56 1.9.69 2.9.56 1.9.49 2.8.56 2.8.56 2.9.56 1.9.69 2.9.56 1.9.69 2.9.56 1.9.69 2.9.56 1.9.71 2.9.56 1.9.69 2.9.56 1.9.49 2.9.57 2.0.57	Synaptophysin-like protein 1.05-Homo saplens GN-SPR12 PE-1.5V-1 Cell surface glocoprotein MUCI GO S-Homo saplens GN-KMT9 PE-1.5V-2 Estradiol 17-beta-dehydrogenase 2.05-Homo saplens GN-KMT9 PE-1.5V-3 Transmembrane emp24 domain-containing protein 10.05-Homo saplens GN-TMED10 PE-1.5V-2 Keratin, type 1 cytoskeletal 30.05-Homo saplens GN-KMT9 PE-1.5V-3 Transmembrane emp24 domain-containing protein 10.05-Homo saplens GN-TMED10 PE-1.5V-2 Keratin, type 1 cytoskeletal 30.05-Homo saplens GN-KMT9 PE-1.5V-2 Go strobustmal protein 11.06.5-Homo saplens GN-KMT9 PE-1.5V-2 Go protein coupled receptor 56.05-Homo saplens GN-KMT9 PE-1.5V-2 Go strobustmal protein 11.06.5-Homo saplens GN-KMT9 PE-1.5V-2 Mon-POU domain-containing octame-binding protein 0.5-Homo saplens GN-MONO PE-1.5V-4 ATP synthase subunit 0, mtochondrial 0.5-Homo saplens GN-MEPLA PE-1.5V-2 Go strobustmal protein 1.70.05-Homo saplens GN-KMT9 PE-1.5V-2 Hon-POU domain-containing octame-binding protein 0.5-Homo saplens GN-MONO PE-1.5V-4 ATP synthase subunit 70, mtochondrial 0.5-Homo saplens GN-MEPLA PE-1.5V-2 Hom-POU domain-containing octame-binding protein 0.5-Homo saplens GN-MONO PE-1.5V-4 ATP synthase subunit 70, follow saplens GN-RPL2 PE-1.5V-2 HAD-Med bydrogenase Lubiquinone] 1 alpha subcomplex subunit 9, mtochondrial 0.5-Homo saplens GN-MUDF4 PE-1.5V-2 NADH dehydrogenase Lubiquinone] Havoprotein 1, mitochondrial 0.5-Homo saplens GN-NDUF3 PE-1.5V-2 NADH dehydrogenase Lubiquinone] Havoprotein 1, mitochondrial 0.5-Homo saplens GN-NDUF3 PE-1.5V-2 X-ray repair cross-complementing protein 0.5-Homo saplens GN-MIDGA PE-1.5V-1 GoS ribosomal protein PO.5-Homo saplens GN-MIDF3 PE-1.5V-2 MADH dehydrogenase Lubiquinone Homo Saplens GN-MIDF3 PE-1.5V-	0.345 0.338 0.323 0.149 7 ITRAQ.Fold Change 3.885 2.133 2.058 1.992 2.058 1.992 1.774 1.734 1.663 1.743 1.734 1.663 1.573 1.664 1.573 1.553 1.553 1.553 1.451 1.451 1.451 1.451 1.451 1.337 1.338 1.337 1.337 1.337 1.337 1.337 1.372 1.338 1.337 1.372 1.336 1.360 1.356 1.356 1.356 1.356 1.356 1.356 1.356 1.356 1.356 1.356 1.359 1.345	0.003 0.006 0.006 0.001 0.045 5touffersPr 0.002 0.002 0.001 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.000 0.005 0.005 0.005 0.005 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.0000 0.0000 0.0000 0.000000
IL (115562.69) IL (115562.69) IL (1152) IL (1152) I	2.69 2.82 2.08 5 TGFβ t Total 4.04 4.03 4.03 4.04 4.03 2.0.59 5.18 8.07 2.0.51 2.7.39 8.07 2.0.51 3.06 8.07 2.7.99 9.45 8.27 9.44 2.8.5 8.27 9.44 2.8.5 8.27 9.44 2.8.5 8.27 9.44 2.8.5 8.27 9.44 2.8.5 8.27 9.44 2.8.5 8.27 9.44 2.8.5 8.27 9.44 2.8.5 8.27 9.44 2.8.5 8.27 9.44 2.8.5 8.27 9.44 2.8.5 8.27 9.44 2.8.5 8.27 9.44 2.8.5 8.27 9.44 2.8.5 8.27 9.44 2.8.5 8.27 9.44 2.8.5 8.27 9.44 2.7.5 8.27 9.44 2.8.5 8.5 8.5 8.5 8.7 7.28 8.5 8.5 8.7 7.28 8.5 8.5 8.7 7.28 8.5 8.5 8.5 8.5 8.7 7.28 8.5 8.5 8.5 8.7 7.28 8.5 8.5 8.5 8.7 7.28 8.5 8.5 8.7 7.27 9.44 2.75 5.87 7.58 7.57 7.57 7.57 7.58 7.58 7.578 7.578 7.578 7.58 7.578 7.578 7.588 7.588 7.578 7.578 7.588 7.578 7.578 7.588 7.588 7.578 7.578 7.588 7.578 7.578 7.588 7.578 7.578 7.578 7.578 7.588 7.578 7.578 7.578 7.578 7.578 7.578 7.578 7.578 7.588 7.5788 7.578 7.578 7.578 7.578 7.578 7.578 7.578 7.57	19.69 27.86 3.101 x.cov.95 20.71 3.8.81 26.54 42.86 33.08 3.662 33.08 3.662 33.08 3.662 33.08 3.662 33.06 7.261 45.97 10.6 20.69 11.42 29.56 11.42 22.73 58.6 12.3 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57	Synaptophysin-like protein 1.05-Homo saplens GN-SPL1 PE-1.SV-1 Cell surface ghcoprotein MUC18 OS-Homo saplens GN-HCM1 PE-1 SV-2 Estradiol 17-beta-dehydrogenase 2.05-Homo saplens GN-HCM1 PE-1 SV-2 T29 Mock/untreated HT29 Mock Protein Name; Organium; Gene name Keratin, type 1 cytoskeletal 9 OS-Homo saplens GN-KRT9 PE-1 SV-3 Transmenbrane emp24 domain-containing protein 10 OS-Homo saplens GN-TMED10 PE-1 SV-2 Keratin, type 1 cytoskeletal 9 OS-Homo saplens GN-KRT9 PE-1 SV-3 Transmenbrane emp24 domain-containing protein 10 OS-Homo saplens GN-TMED10 PE-1 SV-2 Keratin, type 1 cytoskeletal 9 OS-Homo saplens GN-RRT9 PE-1 SV-2 G-protein coupled receptor 56 OS-Homo saplens GN-RRT9 FE-1 SV-2 G-protein coupled receptor 56 OS-Homo saplens GN-RRT9 FE-1 SV-2 Non-POU domain-containing octamer-binding protein OS-Homo saplens GN-HONO PE-1 SV-4 ATP synthase subunit 0, mitchondrial OS-Homo saplens GN-ARP50 PE-1 SV-1 Lipoamite acyltraneferase component of branched-chain alpha-keto add dehydrogenase complex, mitchondrial OS- Gor hostom emort-N2A.0 SS-Homo saplens GN-SUPI T2 FE-1 SV-1 Lipoamite acyltraneferase component of branched-chain alpha-keto add dehydrogenase complex, mitchondrial OS- Gore histome mort-N2A.0 SS-Homo saplens GN-SUPI T2 FE-1 SV-1 FACT complex subunit 05-Homo saplens GN-SUPI T2 FE-1 SV-2 FACT complex subunit 2, mitchondrial OS-Homo saplens GN-NDUF49 PE NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 3, mitchondrial OS-Homo saplens GN-NDUF49 PE NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 3, mitchondrial OS-Homo saplens GN-NDUF49 PE NADH dehydrogenase [ubiquinone] 1 alpha subcomplex SM-RECE FE-1 SV-2 FAT synthase subunit bt.a, mitchondrial OS-Homo saplens GN-RMDUF29 PE-1 SV-2 FAT synthase subunit bt.a, mitchondrial OS-Homo saplens GN-RMDUF29 PE-1 SV-2 Gos addir (Hobydrogenase GN-RMDUF1 PE-1 SV	0.345 0.338 0.338 0.323 0.149 17RAQ Fold Change 3.885 2.133 2.058 1.992 1.743 1.734 1.663 1.573 1.663 1.563 1.563 1.563 1.563 1.563 1.563 1.563 1.563 1.578 1.399 1.399 1.398 1.337 1.337 1.337 1.337 1.337 1.358 1.366 1.355 1.366 1.355 1.366 1.355 1.366 1.355 1.366 1.355 1.366 1.355 1.366 1.355 1.366 1.355 1.366 1.355 1.366 1.355 1.366 1.355 1.366 1.355 1.339	0.003 0.004 0.005 0.001 0.004 0.004 0.002 0.002 0.002 0.0000 0.0000 0.0000 0.000000
Q165632.69 0 P43121 18.25 0 P37059 2 Comparison (2.69 18.25 2.08 ff TGFβ 1 14.04 14.03 20.69 20.55 5.18 20.55 5.18 20.55 13.1 20.55 13.1 20.55 13.1 27.29 42.79 13.1 19.44 28.55 12.73 13.1 19.44 28.55 12.73 13.1 19.44 28.55 12.73 13.1 19.44 28.55 12.73 13.1 19.44 28.55 12.73 13.1 19.44 28.55 12.73 13.1 19.44 28.55 12.73 13.1 19.44 28.55 12.73 13.1 19.44 28.55 27.99 27.99 27.99 28.55 27.99 27.99 28.55 27.99 27.79 27.7	19.69 27.86 3.101 reated H' x.cov.95 20.71 38.81 42.86 7.071 33.08 38 36.62 33.08 33.06 7.261 45.97 2.9 10.6 45.97 2.9 10.6 20.69 11.42 17.12 29.56 14.47 22.56 14.47 29.56 14.47 29.56 14.47 29.56 14.47 20.59 19.68 32.65 20.59 19.68 32.65 20.59 19.68 32.65 20.59 19.68 32.65 20.59 19.68 32.65 20.59 19.68 32.65 20.55 35.53 35.58 3	Synaptophysin-like protein 1.05-Homo saplens GN-SPR12 PE-1.5V-1 Cell surface glocoprotein MUCI GO S-Homo saplens GN-KMT9 PE-1.5V-2 Estradiol 17-beta-dehydrogenase 2.05-Homo saplens GN-KMT9 PE-1.5V-3 Transmembrane emp24 domain-containing protein 10.05-Homo saplens GN-TMED10 PE-1.5V-2 Keratin, type 1 cytoskeletal 30.05-Homo saplens GN-KMT9 PE-1.5V-3 Transmembrane emp24 domain-containing protein 10.05-Homo saplens GN-TMED10 PE-1.5V-2 Keratin, type 1 cytoskeletal 30.05-Homo saplens GN-KMT9 PE-1.5V-2 Go strobustmal protein 11.06.5-Homo saplens GN-KMT9 PE-1.5V-2 Go protein coupled receptor 56.05-Homo saplens GN-KMT9 PE-1.5V-2 Go strobustmal protein 11.06.5-Homo saplens GN-KMT9 PE-1.5V-2 Mon-POU domain-containing octame-binding protein 0.5-Homo saplens GN-MONO PE-1.5V-4 ATP synthase subunit 0, mtochondrial 0.5-Homo saplens GN-MEPLA PE-1.5V-2 Go strobustmal protein 1.70.05-Homo saplens GN-KMT9 PE-1.5V-2 Hon-POU domain-containing octame-binding protein 0.5-Homo saplens GN-MONO PE-1.5V-4 ATP synthase subunit 70, mtochondrial 0.5-Homo saplens GN-MEPLA PE-1.5V-2 Hom-POU domain-containing octame-binding protein 0.5-Homo saplens GN-MONO PE-1.5V-4 ATP synthase subunit 70, follow saplens GN-RPL2 PE-1.5V-2 HAD-Med bydrogenase Lubiquinone] 1 alpha subcomplex subunit 9, mtochondrial 0.5-Homo saplens GN-MUDF4 PE-1.5V-2 NADH dehydrogenase Lubiquinone] Havoprotein 1, mitochondrial 0.5-Homo saplens GN-NDUF3 PE-1.5V-2 NADH dehydrogenase Lubiquinone] Havoprotein 1, mitochondrial 0.5-Homo saplens GN-NDUF3 PE-1.5V-2 X-ray repair cross-complementing protein 0.5-Homo saplens GN-MIDGA PE-1.5V-1 GoS ribosomal protein PO.5-Homo saplens GN-MIDF3 PE-1.5V-2 MADH dehydrogenase Lubiquinone Homo Saplens GN-MIDF3 PE-1.5V-	0.345 0.338 0.333 0.149 ITRAQ Fold Change 3.885 2.133 2.068 1.992 1.743 1.640 1.652 1.640 1.652 1.640 1.653 1.553 1.434 1.434 1.399 1.383 1.337 1.337 1.337 1.372 1.370 1.374 1.370 1.366 1.359 1.337 1.370 1.366 1.359 1.337 1.370 1.366 1.350 1.361 1.372 1.370 1.366 1.350 1.357 1.374 1.370 1.366 1.350 1.357 1.360 1.357 1.360 1.362 1.360 1.362 1.374 1.370 1.366 1.350 1.360 1.360 1.362 1.360 1.362 1.374 1.370 1.366 1.350 1.360 1.357 1.360 1.360 1.360 1.360 1.360 1.360 1.360 1.360 1.360 1.360 1.370 1.366 1.360 1.360 1.360 1.360 1.370 1.366 1.360 1.360 1.360 1.370 1.366 1.360 1.360 1.370 1.366 1.360 1.360 1.360 1.370 1.366 1.360 1.360 1.360 1.360 1.360 1.370 1.360 1.360 1.360 1.360 1.360 1.370 1.360 1.360 1.360 1.360 1.370 1.360 1.360 1.360 1.370 1.360 1.360 1.360 1.360 1.370 1.360 1.360 1.360 1.360 1.360 1.360 1.360 1.370 1.360 1.324 1.370 1.370 1.360 1.385 1.370 1.360 1.385 1.320 1.324 1.	0.003 0.004 0.004 0.004 0.004 0.002 0.002 0.007 0.000 0.007 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.032 0.000 0.032 0.000 0.032 0.000 0.032 0.000 0.032 0.000 0.032 0.000 0.032 0.000 0.032 0.000 0.032 0.000 0.032 0.000 0.003 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.0000 0.000 0.0000 0.0000 0.000000

sp P55265 9.87	9.9	6.607	Double-stranded RNA-specific adenosine deaminase OS=Homo sapiens GN=ADAR PE=1 SV=4	1.309	0.030
sp P40939 10.95	11.17	13.5	Trifunctional enzyme subunit alpha, mitochondrial OS=Homo sapiens GN=HADHA PE=1 SV=2	1.300	0.002
sp P62277 12.26	12.26	43.05	40S ribosomal protein S13 OS=Homo sapiens GN=RPS13 PE=1 SV=2	1.297	0.029
sp 00056711.19	11.19	13.97	Nucleolar protein 56 OS=Homo sapiens GN=NOP56 PE=1 SV=4	1.296	0.005
sp P18621 9.26	9.26	27.72	60S ribosomal protein L17 OS=Homo sapiens GN=RPL17 PE=1 SV=3	1.296	0.007
sp 0753966.19	6.19	20.93	Vesicle-trafficking protein SEC22b OS=Homo sapiens GN=SEC22B PE=1 SV=4	1.293	0.016
sp P36578 29.26	29.65	36.3	60S ribosomal protein L4 OS=Homo sapiens GN=RPL4 PE=1 SV=5	1.283	0.012
sp P62701 13.01	13.01	32.32	40S ribosomal protein S4, X isoform OS=Homo sapiens GN=RPS4X PE=1 SV=2	1.275	0.001
sp P11216 8.98	9.01	9.015	Glycogen phosphorylase, brain form OS=Homo sapiens GN=PYGB PE=1 SV=5	1.271	0.035
sp P52272 22.78	22.78	25.21	Heterogeneous nuclear ribonucleoprotein M OS=Homo sapiens GN=HNRNPM PE=1 SV=3	1.261	0.000
sp Q9UH9:3.11	3.11	7.252	SUN domain-containing protein 2 OS=Homo sapiens GN=SUN2 PE=1 SV=3	1.259	0.049
sp Q9UKV: 10.33	10.43	5.891	Apoptotic chromatin condensation inducer in the nucleus OS=Homo sapiens GN=ACIN1 PE=1 SV=2	1.248	0.029
sp Q9Y3B76.25	6.25	18.23	395 ribosomal protein L11, mitochondrial OS=Homo sapiens GN=MRPL11 PE=1 SV=1	1.243	0.020
sp Q129058.38	8.38	21.79	Interleukin enhancer-binding factor 2 OS=Homo sapiens GN=ILF2 PE=1 SV=2	1.235	0.008
sp Q9Y3U{5.8	5.8	37.14	60S ribosomal protein L36 OS=Homo sapiens GN=RPL36 PE=1 SV=3	1.232	0.023
sp Q142581.4	1.42	2.222	E3 ubiquitin/ISG15 ligase TRIM25 OS=Homo sapiens GN=TRIM25 PE=1 SV=2	1.228	0.046
sp Q150295.63	5.63	5.041		1.213	0.010
sp P46087 6.86			116 kDa U5 small nuclear ribonucleoprotein component OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 Putative ribosomal RNA methyltransferase NOP2 OS=Homo sapiens GN=NOP2 PE=1 SV=2		
sp P46037 6.68	6.86	4.68		1.207	0.006
sp Q9284119.88	19.88	23.05	Probable ATP-dependent RNA helicase DDX17 OS=Homo sapiens GN=DDX17 PE=1 SV=2	1.205	0.013
sp Q9UHB 13.42	13.44	15.28	LIM domain and actin-binding protein 1 OS=Homo sapiens GN=LIMA1 PE=1 SV=1	0.825	
sp Q96DH(7.55	7.56	17.38	RNA-binding protein Musashi homolog 2 OS=Homo sapiens GN=MSI2 PE=1 SV=1	0.823	0.026
sp Q8IYB3 1.58	1.6	3.761	Serine/arginine repetitive matrix protein 1 OS=Homo sapiens GN=SRRM1 PE=1 SV=2	0.821	0.011
sp P22307 6.9	6.92	5.667	Non-specific lipid-transfer protein OS=Homo sapiens GN=SCP2 PE=1 SV=2	0.819	0.031
sp Q9BTV420.15	20.15	38.5	Transmembrane protein 43 OS=Homo sapiens GN=TMEM43 PE=1 SV=1	0.818	0.001
sp Q8WW 8.03	8.03	8.524	Choline transporter-like protein 1 OS=Homo sapiens GN=SLC44A1 PE=1 SV=1	0.817	0.026
sp 09572116.37	16.37	42.64	Synaptosomal-associated protein 29 OS=Homo sapiens GN=SNAP29 PE=1 SV=1	0.816	0.007
sp 01467218.5	18.5	19.52	Disintegrin and metalloproteinase domain-containing protein 10 OS=Homo sapiens GN=ADAM10 PE=1 SV=1	0.812	0.016
sp P45880 14.43	16.47	38.78	Voltage-dependent anion-selective channel protein 2 OS=Homo sapiens GN=VDAC2 PE=1 SV=2	0.811	0.005
sp P38159 15.08	15.08	21.99	RNA-binding motif protein, X chromosome OS=Homo sapiens GN=RBMX PE=1 SV=3	0.810	0.024
sp P27487 15.18	15.18	12.27	Dipeptidyl peptidase 4 OS=Homo sapiens GN=DPP4 PE=1 SV=2	0.809	0.000
sp Q68D915.41	5.41	17.2	Metallo-beta-lactamase domain-containing protein 2 OS=Homo sapiens GN=MBLAC2 PE=1 SV=3	0.806	0.043
sp P35613 18.02	18.02	31.69	Basigin OS=Homo sapiens GN=BSG PE=1 SV=2	0.806	0.019
sp P51572 25.34	27.67	48.78	B-cell receptor-associated protein 31 OS=Homo sapiens GN=BCAP31 PE=1 SV=3	0.805	0.002
sp P06702 6.02	6.04	44.74	Protein S100-A9 OS=Homo sapiens GN=S100A9 PE=1 SV=1	0.804	0.044
sp P20645 12	12	27.44	Cation-dependent mannose-6-phosphate receptor OS=Homo sapiens GN=M6PR PE=1 SV=1	0.800	0.009
sp Q1613413.65	13.65	22.69	Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial OS=Homo sapiens GN=ETFDH PE=1 SV=2	0.797	0.010
sp P12830 16.12	16.46	11.34	Cadherin-1 OS=Homo sapiens GN=CDH1 PE=1 SV=3	0.796	0.027
sp Q1416525.13	25.13	48.97	Malectin OS=Homo sapiens GN=MLEC PE=1 SV=1	0.796	0.000
sp Q96A2(8.82	8.83	22.73	Protein FAM162A OS=Homo sapiens GN=FAM162A PE=1 SV=2	0.795	0.024
sp P20700 51.8	54.63	47.1	Lamin-B1 OS=Homo sapiens GN=LMNB1 PE=1 SV=2	0.794	0.002
sp P00167 14.09	14.09	47.01	Cytochrome b5 OS=Homo sapiens GN=CYB5A PE=1 SV=2	0.791	0.012
sp P13073 11.21	11.21	31.95	Cytochrome c oxidase subunit 4 isoform 1, mitochondrial OS=Homo sapiens GN=COX4I1 PE=1 SV=1	0.791	0.041
sp Q0212723.03	23.03	47.59	Dihydroorotate dehydrogenase (quinone), mitochondrial OS=Homo sapiens GN=DHODH PE=1 SV=3	0.784	0.001
sp P78310 22.64	22.64	44.11	Coxsackievirus and adenovirus receptor OS=Homo sapiens GN=CXADR PE=1 SV=1	0.782	0.000
sp P4844913.56	13.57	12.98	Lanosteriol synthase OS=Homo sapiens GN=LSS PE=1 SV=1	0.779	0.000
sp P50895 13.45	13.45	22.61	Basal cell adhesion molecule OS=Homo sapiens GN=BCAM PE=1 SV=2	0.776	0.008
sp Q9294515.56	17.61	25.18	Far upstream element-binding protein 2 OS=Homo sapiens GN=KHSRP PE=1 SV=4	0.772	0.004
sp Q104719.07	9.07	16.64	Polypeptide N-acetylgalactosaminyltransferase 2 OS=Homo sapiens GN=GALNT2 PE=1 SV=1	0.770	0.017
			U1 small nuclear ribonucleoprotein 70 kDa OS=Homo sapiens GN=SNRNP70 PE=1 SV=2		
	6.88	10.3			0.018
sp P08621 6.88	6.88	10.3		0.764	0.018
sp P23229 65.85	65.85	38.32	Integrin alpha-6 OS=Homo sapiens GN=ITGA6 PE=1 SV=5	0.764 0.764	0.000
sp P23229 65.85 sp Q9269215	65.85 15	38.32 25.09	Integrin alpha-6 OS=Homo sapiens GN=ITGA6 PE=1 SV=5 Poliovirus receptor-related protein 2 OS=Homo sapiens GN=PVRL2 PE=1 SV=1	0.764 0.764 0.763	0.000
sp P23229 65.85 sp Q9269215 sp O6066415.54	65.85 15 15.54	38.32 25.09 33.18	Integrin alpha-6 OS=Horno sapiens GN=ITCA6 PE=1 SV=5 Pollovirus receptor-related protein 2 OS=Horno sapiens GN=PVRL2 PE=1 SV=1 Perilipin-3 OS=Horno sapiens GN=PUR3 PE=1 SV=3	0.764 0.764 0.763 0.762	0.000 0.015 0.000
sp 23229 65.85 sp Q9269215 sp O6066415.54 sp P49748 26.61	65.85 15 15.54 26.65	38.32 25.09 33.18 31.76	Integrin alpha-6 OS-Homo sapiens GN-ETG6A6 PE=1 SV-5 Poliovirus receptor-related protein 2 OS+Homo sapiens GN-PVRL2 PE=1 SV=1 Perlipin-3 OS-Homo sapiens GN-PUR3 PE=1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Homo sapiens GN=ACADVL PE=1 SV=1	0.764 0.764 0.763 0.762 0.760	0.000 0.015 0.000 0.002
sp P23229 65.85 sp Q9269215 sp O6066415.54 sp P49748 26.61 sp P51690 14.91	65.85 15 15.54 26.65 14.91	38.32 25.09 33.18 31.76 21.05	Integrin alpha-6 OS=Homo sapiens GN=HICA6 PE-1 SV=5 Pollovirus receptor-related group of a QOS+HOM sagiens GN=PVRL2 PE-1 SV=1 Perlipin-3 OS=Homo sapiens GN=PUN3 PE-1 SV=3 Very long-chain specific acyl-CoA deshydrogenase, mitochondrial OS=Homo sapiens GN=ACADVL PE-1 SV=1 Arylusflastes E OS=Homo sapiens GN=M3KS PET-1 SV=2 ZMS-2014 SMS-2014 SMS-2	0.764 0.764 0.763 0.762 0.760 0.759	0.000 0.015 0.000 0.002 0.000
sp P23229 65.85 sp Q9269215 sp O6066415.54 sp P49748 26.61 sp P51690 14.91 sp Q9Y39422.02	65.85 15 15.54 26.65 14.91 22.02	38.32 25.09 33.18 31.76 21.05 39.23	Integrin Japha-6 OS=Homo sapiens GN=ITC6A6 PE-1 SV=5 Pollovirus receptor-related protein 2 OS=Homo sapiens GN=PVRL2 PE=1 SV=1 Perlipin 3 OS=Homo sapiens GN=PUR3 PE-1 SV=3 Verv Jong-chain specific acyl-CoA dehydrogenase, mitochondrial OS=Homo sapiens GN=ACADVL PE=1 SV=1 Anylsulfatase E OS=Homo sapiens GN=ARSE PE=1 SV=2 Dehydrogenase/reductase SDR family member 7 OS=Homo sapiens GN=DHRS7 PE=1 SV=1	0.764 0.764 0.763 0.762 0.760 0.759 0.755	0.000 0.015 0.000 0.002 0.000 0.000 0.002
sp P23229 65.85 sp Q9269215 sp O6066415.54 sp P49748 26.61 sp P51690 14.91 sp Q9Y394 22.02 sp Q1374C 22.75	65.85 15 15.54 26.65 14.91 22.02 22.75	38.32 25.09 33.18 31.76 21.05 39.23 26.24	Integrin alpha-6 OS=Homo sapiens GH=ITGA6 PE=1 SV=5 PolioVirus receptor-related protein 2 OS=Homo sapiens GN=PVRL2 PE=1 SV=1 Perlipin 3 OS=Homo sapiens GN=PUR3 PE=1 SV=3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS=Homo sapiens GN=ACADVL PE=1 SV=1 Arylsuffatase E OS=Homo sapiens GN=ARSE PE=1 SV=2 Dehydrogenase/reductase SDR family member 7 OS=Homo sapiens GN=DHRS7 PE=1 SV=1 CD166 antigen OS=Homo sapiens GN=ALCAM PE=1 SV=2	0.764 0.763 0.763 0.762 0.760 0.759 0.755 0.754	0.000 0.015 0.000 0.002 0.000 0.002 0.002 0.001
sp P23229 65.85 sp Q9269215 sp O60664 15.54 sp P49748 26.61 sp P51690 14.91 sp Q97394 22.02 sp Q1374C 22.75 sp P16070 30.09	65.85 15 15.54 26.65 14.91 22.02 22.75 30.09	38.32 25.09 33.18 31.76 21.05 39.23 26.24 16.85	Integrin alpha-6 OS-Horono sapiens GN-FICA6A PE-1 SV-5 Poliovirus receptor-related protein 2 OS-Horon sapiens GN-PVRL2 PE-1 SV-1 Perligin-3 OS-Horono sapiens GN-PUR3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Horono sapiens GN-ACADVL PE-1 SV-1 Anylsuffastes COS-Horono sapiens GN-ARSE, PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 OS-Horono sapiens GN-DHRS7 PE-1 SV-1 CD166 antigen OS-Horono sapiens GN-R2ALE PL-1 SV-2 CD44 antigen OS-Horono sapiens GN-CD44 PE-1 SV-3	0.764 0.764 0.763 0.762 0.760 0.759 0.755 0.755 0.754 0.753	0.000 0.015 0.000 0.002 0.000 0.002 0.001 0.001 0.002
sp P23229 65.85 sp Q3269215 9 sp C6066415.54 9 sp P4974826.61 9 sp Q9739422.02 9 sp Q33422.02 9 sp P1376207030.09 9 sp Q86Y827.77 9	65.85 15 15.54 26.65 14.91 22.02 22.75 30.09 7.77	38.32 25.09 33.18 31.76 21.05 39.23 26.24 16.85 22.1	Integrin alpha-6 OS=Homo sapiens GN=TICA6 PE-1 SV=5 Poliovirus receptor related protein 2 OS=Homo sapiens GN=PVRL2 PE-1 SV=1 Perlipin 3 OS=Homo sapiens GN=PURL3 PE-1 SV=3 Very long-chain specific acyl-CoA dehydrogenase, nitochondrial OS=Homo sapiens GN=ACADVL PE=1 SV=1 Anylsulfatase E OS=Homo sapiens GN=ARSE PE-1 SV=2 Dehydrogenase/reductase SOR family member 7 OS=Homo sapiens GN=DHRS7 PE=1 SV=1 CDL66 antigen OS=Homo sapiens GN=CM4 PE=1 SV=2 CD44 antigen OS=Homo sapiens GN=CM4 PE=1 SV=3 Syntauh-12 OS=Homo sapiens GN=XI22 PE=1 SV=1	0.764 0.764 0.763 0.762 0.759 0.755 0.754 0.754 0.753 0.752	0.000 0.015 0.000 0.002 0.000 0.000 0.002 0.001 0.002 0.001 0.002 0.002
sp P23229 65.85 sp Q269215 sp O6066415.54 sp P4748 26.61 sp P51690 14.91 sp Q9Y39422.02 sp Q1374C22.75 sp P16070 30.09 sp Q85Y827.77 sp Q0287818.2	65.85 15 15.54 26.65 14.91 22.02 22.75 30.09 7.77 18.2	38.32 25.09 33.18 31.76 21.05 39.23 26.24 16.85 22.1 36.81	Integrin alpha-6 OS-Horom sapiens GN-FICA6 PE-1 SV-5 Pollovirus receptor related protein 2 OS-Horom sapiens GN-PVRL2 PE-1 SV-1 Perlipin-3 OS-Horm sapiens GN-PUR3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Hormo sapiens GN-ACADVL PE-1 SV-1 Arylsuffastes E OS-Hormo sapiens GN-MEX PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 OS-Hormo sapiens GN-DHRS7 PE-1 SV-1 CD156 antigen OS-Hormo sapiens GN-ACAD PE-1 SV-2 CD44 antigen OS-Hormo sapiens GN-STX12 PE-1 SV-3 Syntaxin-12 OS-Hormo sapiens GN-STX12 PE-1 SV-3	0.764 0.764 0.763 0.762 0.760 0.759 0.755 0.754 0.753 0.753 0.753 0.751	0.000 0.015 0.000 0.002 0.000 0.002 0.001 0.002 0.001 0.002 0.009 0.003
sp P23229 65.85 sp Q269215 sp O2666415.54 sp P49748 26.61 sp P51690 14.91 sp Q49748 22.02 sp Q1374722.75 sp P16070 30.09 sp Q2057818.2 sp Q20574211.35	65.85 15 15.54 26.65 14.91 22.02 22.75 30.09 7.77 18.2 11.35	38.32 25.09 33.18 31.76 21.05 39.23 26.24 16.85 22.1 36.81 11.99	Integrin Jpha-6 OS=Homo sapiens GN=TICA6 PE-1 SV=5 Pollovirus receptor-related protein 2 OS=Homo sapiens GN=PVRL2 PE-1 SV=1 Perlipin-3 OS=Homo sapiens GN=PUR3 PE-1 SV=3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS=Homo sapiens GN=ACADVL PE=1 SV=1 Arylsuffasse C SS=Homo sapiens GN=ARS PE-1 SV=2 Dehydrogenase/reductase SDR family member 7 OS=Homo sapiens GN=DHRS7 PE=1 SV=1 CD166 antigen OS=Homo sapiens GN=CH4 PE-1 SV=2 CD44 antigen OS=Homo sapiens GN=CH4 PE-1 SV=3 Syntaah-12 OS=Homo sapiens GN=SIX12 PE=1 SV=1 605 ribosomal protein L6 OS=Homo sapiens GN=RE6 PE=1 SV=3 Nicastrin OS=Homo sapiens GN=NCIX1 PE-1 SV=2	0.764 0.764 0.763 0.760 0.750 0.755 0.755 0.754 0.753 0.752 0.751 0.751	0.000 0.015 0.000 0.002 0.000 0.002 0.001 0.002 0.001 0.002 0.003 0.003 0.021
sp P23229 65.85 sp Q2269215 sp O6666415.54 sp P49748 26.61 sp P5169014.91 sp Q21374C22.75 sp P167030.09 sp Q287513.2 sp Q287421.35 sp Q28721.22	65.85 15 15.54 26.65 14.91 22.02 22.75 30.09 7.77 18.2 11.35 15.21	38.32 25.09 33.18 31.76 21.05 39.23 26.24 16.85 22.1 36.81 11.99 39.49	Integrin alpha-6 05-Horom sapiens GN-ITCA6 PE-1 SV-5 Perliovirus receptor-related grouted z 05-Horom sapiens GN-PVR12 PE-1 SV-1 Perlipin-3 05-Horm sapiens GN-PUR3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Hormo sapiens GN-ACADVL PE-1 SV-1 Aryludifaste S OS-Hormo sapiens GN-MEXE PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 05-Hormo sapiens GN-DHRS7 PE-1 SV-1 CDL66 antigen OS-Hormo sapiens GN-MEXE PE-1 SV-2 CDL64 antigen OS-Hormo sapiens GN-MEXE PE-1 SV-3 Syntashr.2 OS-Hormo sapiens GN-STX12 PE-1 SV-1 605 ribosomal protein L6 OS-Hormo sapiens GN-ERL6 PE-1 SV-3 Nicastrin OS-Hormo sapiens GN-NCSIN PF-1 SV-2 Epithelial cell adhesion molecule OS-Hormo sapiens GN-EPCAM PE-1 SV-2	0.764 0.764 0.762 0.762 0.755 0.755 0.755 0.754 0.752 0.751 0.751 0.751 0.751 0.751 0.751 0.751	0.000 0.015 0.000 0.002 0.000 0.002 0.001 0.002 0.009 0.003 0.021 0.030
$\begin{array}{c} sp \left P23229 65.85 \\ sp \left Q262925 \\ sp \left C6066415.54 \\ sp \left P49748 26.61 \\ sp \left P51590 14.91 \\ sp \left Q3742 20.2 \\ sp \left Q13742 20.2 \\ sp \left Q13742 20.2 \\ sp \left Q13742 20.2 \\ sp \left Q2924 20.2 \\ sp \left Q2924 20.2 \\ sp \left Q29542 11.35 \\ sp \left P16422 15.21 \\ sp \left P19642 15.21 \\ sp \left P19642 13.5 \\ sp \right P10569 13.05 \\ sp \left Sp \left Sp \left Sp \left Sp \left Sp \right Sp \right Sp \left Sp Sp $	65.85 15 15.54 26.65 14.91 22.02 22.75 30.09 7.77 18.2 11.35 15.21 13.05	38.32 25.09 33.18 31.76 21.05 39.23 26.24 16.85 22.1 36.81 11.99 39.49 50.67	Integrin alpha-6 OS-Homo sapiens GN-ITCA6 PE-1 SV-5 Poliovirus receptor related protein 2 OS-Homo sapiens GN-PVRL2 PE-1 SV-1 Perligin-3 OS-Homo sapiens GN-PUR3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Homo sapiens GN-ACADVL PE-1 SV-1 Anylsuffastes CS-Homo sapiens GN-ARS PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 OS-Homo sapiens GN=DHRS7 PE-1 SV-1 CD166 antigen OS-Homo sapiens GN-CD44 PE-1 SV-2 CD44 antigen OS-Homo sapiens GN-STAZ PE-1 SV-3 Syntaxin-12 OS-Homo sapiens GN-STAZ PE-1 SV-1 GS rhosoma Jortein LG OS-Homo sapiens GN-ERF4 PE-1 SV-3 Nicastrin OS-Homo sapiens GN-NCST NPE-1 SV-3 Nicastrin OS-Homo sapiens GN-NCST NPE-1 SV-2 Epithelial cell adhesion molecule OS-Homo sapiens GN-ECX4C PE-1 SV-2 Cytochrome c oxidase subunit & CO-Homo sapiens GN-ECX6C PE-1 SV-2	0.764 0.764 0.763 0.762 0.750 0.759 0.755 0.755 0.753 0.753 0.751 0.751 0.747 0.747 0.747	0.000 0.015 0.000 0.002 0.000 0.001 0.002 0.001 0.002 0.009 0.003 0.021 0.030 0.029
sp P23229 65.85 sp Q2669215 sp Q6666415.54 sp P4974826.61 sp P4974826.61 sp Q4939422.02 sp Q1374C22.75 sp P1285422.02 sp P1285422.77 sp Q20287518.2 sp Q20287518.2 sp Q542411.35 sp P1642215.21 sp P066913.05 sp P10560613.62	65.85 15 15.54 26.65 14.91 22.02 22.75 30.09 7.77 18.2 11.35 15.21 13.05 18.62	38.32 25.09 33.18 31.76 21.05 39.23 26.24 16.85 22.1 36.81 11.99 39.49 50.67 44.96	Integrin alpha-6 OS+Homo sapiens GN+TICA6 PE-1 SV-5 Pollovirus receptor-related protein 2 OS+Homo sapiens GN+PVRL2 PE-1 SV-1 Perlilipin-3 OS+Homo sapiens GN+PURL3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Homo sapiens GN+ACADVL PE-1 SV-1 Anylsuffatase E OS+Homo sapiens GN+R3E PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 OS-Homo sapiens GN=DHRS7 PE-1 SV-1 CD166 antigen OS+Homo sapiens GN+R3E PE-1 SV-2 CD44 antigen OS+Homo sapiens GN-CD44 PE-1 SV-2 CD44 antigen OS+Homo sapiens GN-ED44 PE-1 SV-3 Syntaxin-12 OS+Homo sapiens GN=STX12 PE-1 SV-3 Micastrin OS+Homo sapiens GN=NCTS1 PE-1 SV-2 Epithelial cell adhesion molecule OS+Homo sapiens GN=PCAM PE-1 SV-2 Cytochrome c oxidase subunit & COS+Homo sapiens GN=PCAM PE-1 SV-2 Cytochrome c oxidase subunit & GO-SHomo sapiens GN=COX6CPE-1 SV-2	0.764 0.763 0.762 0.762 0.759 0.755 0.754 0.753 0.753 0.752 0.753 0.753 0.751 0.751 0.751 0.751 0.751 0.751 0.742 0.742	0.000 0.015 0.000 0.002 0.000 0.002 0.001 0.002 0.009 0.003 0.021 0.030 0.021 0.030 0.029 0.001
$\begin{array}{l} {\mathfrak{sp}} 23229 65.85 \\ {\mathfrak{sp}} 23269(15 \\ {\mathfrak{sp}} 05066415.54 \\ {\mathfrak{sp}} 04748 26.61 \\ {\mathfrak{sp}} P51590 14.91 \\ {\mathfrak{sp}} 0139422.02 \\ {\mathfrak{sp}} 0139422.02 \\ {\mathfrak{sp}} 0139422.75 \\ {\mathfrak{sp}} 0139422.75 \\ {\mathfrak{sp}} 01297422.75 \\ {\mathfrak{sp}} 02287421.35 \\ {\mathfrak{sp}} 02287421.35 \\ {\mathfrak{sp}} 02254211.35 \\ {\mathfrak{sp}} P1642215.21 \\ {\mathfrak{sp}} P1666213.21 \\ {\mathfrak{sp}} 0266431.22 \\ {\mathfrak{sp}$	65.85 15 15.54 26.65 14.91 22.02 22.75 30.09 7.77 18.2 11.35 15.21 13.05 13.62 31.22	38.32 25.09 33.18 31.76 21.05 39.23 26.24 16.85 22.1 36.81 11.99 39.49 50.67 44.96 30.12	Integrin alpha-6 OS-Horom sapiens GN-FICA6 PE-1 SV-5 Perlikpin-3 OS-Horm sapiens GN-PUN3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Horm sapiens GN-ACADVL PE-1 SV-1 Arylsuffaste E OS-Horm sapiens GN-MEX PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 OS-Horm sapiens GN-DHBS7 PE-1 SV-1 CD156 antigen OS-Horm sapiens GN-ACAD PE-1 SV-2 CD144 antigen OS-Horm sapiens GN-CD44 PE-1 SV-3 Syntaan-12 OS-Horm sapiens GN-STAZ PE-1 SV-1 GO stroburg anglens GN-STAZ PE-1 SV-2 Ephthelia Cell adhesion molecule OS-Horm sapiens GN-EPK16 PE-1 SV-3 Nicastrin OS-Horm sapiens GN-NCSTN PE-1 SV-2 Ephthelia Cell adhesion molecule OS-Horm sapiens GN-EPCAM PE-1 SV-2 Cytochrome c oxidase subunit 50-SH-IGM anglens GN-EPCAM PE-1 SV-2 Cytochrome c oxidase subunit GO-SH-IGM sapiens GN-EPCAM PE-1 SV-2 Cytochrome c oxidase subunit 60-SH-IGM sapiens GN-EPCAM PE-1 SV-3	0.764 0.763 0.763 0.762 0.750 0.759 0.755 0.754 0.753 0.751 0.751 0.751 0.751 0.751 0.751 0.751 0.742 0.742 0.742	0.000 0.015 0.000 0.002 0.000 0.002 0.002 0.001 0.002 0.002 0.003 0.021 0.030 0.021 0.030 0.029 0.000
sp [P23229 65.85 sp [Q2669115 sp [O6666415.54 sp [P4743 26.61 sp [P4743 26.61 sp [Q393422.02 sp [Q1374 22.75 sp [P15050 30.09 sp [Q38Y82.77 sp [Q254211.35 sp [P16050 31.05 sp [P16060 31.62 sp [P16060 31.62 sp [Q364F43.22 sp [Q364F43.22 sp [Q464F43.22	65.85 15 15.54 26.65 14.91 22.02 22.75 30.09 7.77 18.2 11.35 15.21 13.05 18.62 31.22 12.69	38.32 25.09 33.18 31.76 21.05 39.23 26.24 16.85 22.1 36.81 11.99 39.49 50.67 44.96 30.12 33.48	Integrin alpha-6 OS-Homo sapiens GN-FICA6 PE-1 SV-5 Pollovirus receptor-related protein 2 OS-Homo sapiens GN-PVRL2 PE-1 SV-1 Perligin-3 OS-Homo sapiens GN-PUR3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Homo sapiens GN-ACADVL PE-1 SV-1 Anyluffastes EOS-Homo sapiens GN-ARX PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 OS-Homo sapiens GN-DHRS7 PE-1 SV-1 CD166 antigen OS-Homo sapiens GN-ARX PE-1 SV-2 CD44 antigen OS-Homo sapiens GN-CD44 PE-1 SV-2 CD44 antigen OS-Homo sapiens GN-CD44 PE-1 SV-2 GV44 antigen OS-Homo sapiens GN-CD44 PE-1 SV-3 Syntaxin-12 OS-Homo sapiens GN-STX12 PE-1 SV-1 GS rhosonal protein LO SO-HOmo sapiens GN-EX12 PE-1 SV-3 Nicastrin OS-Homo sapiens GN-STX12 PE-1 SV-2 Epithelial cell adhesion molecule OS-Homo sapiens GN-ECAM PE-1 SV-2 Cytochrome c-oxidase subunit SB, mitochondrial OS-HOmo sapiens GN-CX05B PE-1 SV-2 Far upstream element-binding protein 1 OS-Homo sapiens GN-EGAP PE-1 SV-2 Far upstream element-binding protein 1 OS-Homo sapiens GN-EGAP PE-1 SV-3 Protein FAM3C OS-Homo sapiens GN-FAXI2 PE-1 SV-3	0.764 0.763 0.763 0.762 0.760 0.759 0.754 0.753 0.754 0.753 0.751 0.751 0.751 0.751 0.751 0.747 0.742 0.742 0.737	0.000 0.015 0.000 0.002 0.000 0.002 0.001 0.002 0.003 0.003 0.021 0.003 0.029 0.001 0.000 0.001
sp P23229 65.85 sp C3060715 sp C6066415.54 sp P49743 26.61 sp P5150014.91 sp P102743 26.61 sp P102742 27.55 sp P103703 20.9 sp Q257411.35 sp P104722.75 sp P10275411.35 sp P10495411.35 sp P10460618.62 sp Q252712.67 sp Q252712.613.82 sp Q3525413.80	65.85 15 15.54 26.65 14.91 22.02 22.75 30.09 7.77 18.2 11.35 15.21 13.05 18.22 31.22 31.22 31.22 30.69	38.32 25.09 33.18 31.76 21.05 39.23 26.24 16.85 22.1 36.81 11.99 39.49 50.67 44.96 30.12 33.48 17.83	Integrin alpha-6 OS-Homo sapiens GN-ITCA6 PE-1 SV-5 Perlikpin-3 OS-Homo sapiens GN-PUN3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Homo sapiens GN-ACADVL PE-1 SV-1 Arylsuffaste SC SS-Homo sapiens GN-MEX PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 OS-Homo sapiens GN-DHRS7 PE-1 SV-1 CDL56 antigen OS-Homo sapiens GN-ACAD PE-1 SV-2 CDL46 antigen OS-Homo sapiens GN-STAL2 PE-1 SV-3 Syntaxin 12 OS-Homo sapiens GN-STAL2 PE-1 SV-3 Syntaxin 0S-Homo sapiens GN-STAL2 PE-1 SV-3 Micastrin OS-Homo sapiens GN-NCSTN PE-1 SV-2 Epithelia Cell adhesion molecule OS-Homo sapiens GN-PEADM PE-1 SV-3 Nicastrin OS-Homo sapiens GN-NCSTN PE-1 SV-2 Epithelia Cell adhesion molecule OS-Homo sapiens GN-PCAM PE-1 SV-2 Cytochrome c oxidase ubunit 6C OS-Homo sapiens GN-ECX6C PE-1 SV-2 Far upstream element-binding protein 1 OS-Homo sapiens GN-CX6C PE-1 SV-2 Far upstream element-binding protein 1 OS-Homo sapiens GN-EPLBP1 PE-1 SV-3 Protein FAM3C OS-Homo sapiens GN-MFGE PE-1 SV-2 Far upstream element-binding protein 1 OS-Homo sapiens GN-ECX6C PE-1 SV-3 Protein FAM3C OS-Homo sapiens GN-MFGE PE-1 SV-2	0.764 0.763 0.763 0.762 0.750 0.759 0.755 0.754 0.753 0.754 0.751 0.751 0.751 0.747 0.747 0.742 0.742 0.742 0.742 0.737 0.729	0.000 0.015 0.000 0.002 0.002 0.002 0.002 0.002 0.009 0.003 0.021 0.030 0.021 0.030 0.029 0.001 0.000 0.001 0.000
sp P23229 65.85 sp [29269215 sp P6566415.54 sp P49748 26.61 sp P51505 14.91 sp P51705 20.09 sp P174748 26.61 sp P1707 30.09 sp P1207 30.09 sp Q22542 11.35 sp P16066 13.62 sp P10866 13.05 sp Q2552 (12.67 sp Q2552 (12.67 sp Q2552 (12.67 sp Q2552 (12.67 sp Q252413.25 sp Q2552 (12.67 sp Q2552 (12.67 sp Q2552 (12.67 sp Q2532 (12.67 sp Q2532 (12.67 sp Q2532 (12.67 sp Q2532 (12.67	65.85 15 26.65 14.91 22.02 22.75 30.09 7.77 18.2 11.35 15.21 13.05 18.62 31.22 12.69 8.06 5.29	38.32 25.09 33.18 31.76 21.05 39.23 26.24 16.85 22.1 36.81 11.99 39.49 50.67 44.96 30.12 33.48 5.072	Integrin alpha-6 05+10mo sapiens GN+1TGA6 PE-1 SV-5 Poliovirus receptor related protein 2 O5+10mo sapiens GN+PVRL2 PE-1 SV-1 Perligin-3 O5+10mo sapiens GN+2UR3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial O5-Homo sapiens GN+ACADVL PE-1 SV-1 Anylsuffastes C O5-Homo sapiens GN+ACRA PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 O5-Homo sapiens GN=DHRS7 PE-1 SV-1 CD166 antigen O5-Homo sapiens GN+ACRA PE-1 SV-2 CD44 antigen O5-Homo sapiens GN+CD44 PE-1 SV-3 Syntaxin-12 O5-Homo sapiens GN+CD44 PE-1 SV-3 GN and protein L0 S0-Homo sapiens GN+CD44 PE-1 SV-3 Syntaxin-12 O5-Homo sapiens GN+CD44 PE-1 SV-3 Micastrin O5-Homo sapiens GN+MCST PE-1 SV-2 Epithelial cell adhesion molecule O5-Homo sapiens GN+EOXA PE-1 SV-2 Cytochrome c oxidase subunit 5C O5-Homo sapiens GN+COX6C PE-1 SV-2 Cytochrome c oxidase subunit 5C O5-Homo sapiens GN+COX6C PE-1 SV-2 Cytochrome c oxidase subunit 5C O5-Homo sapiens GN+COX6C PE-1 SV-2 Far upstrame interment-inding protein 1 O5-Homo sapiens GN+COX6C PE-1 SV-2 Protein FAM3C C5-Homo sapiens GN+MCE1 SV-2 Lactadherin O5-Homo sapiens GN+MCE1 SV-2 Lactadherin O5-Homo sapiens GN+MCE1 SV-2 Cytochrome coxidase subunit 5C O5-Homo sapiens GN+COX6C PE-1 SV-2 Explored coxidase subunit 5C O5-Homo sapiens GN+COX6C PE-1 SV-2 Cytochrome coxidase subunit 5C O5-Homo sapiens GN+COX6C PE-1 SV-2 Explored coxidase subunit 5C O5-Homo sapiens GN+COX6C PE-1 SV-2 Explored coxidase subunit 5C O5-Homo sapiens GN+COX6C PE-1 SV-2 Explored coxidase subunit 5C O5-Homo sapiens GN+COX6C PE-1 SV-2 Explored coxidase subunit 5C O5-Homo sapiens GN+COX6C PE-1 SV-2 Explored coxidase subunit 5C O5-Homo sapiens GN+COX6C PE-1 SV-2 Explored coxidase subunit 5C O5-Homo sapiens GN+COX6C PE-1 SV-2 Explored coxidase subunit 5C O5-Homo sapiens GN+COX6C PE-1 SV-2 Explored coxidase subunit 5C O5-Homo sapiens GN+COX6C PE-1 SV-2 Explored coxidase subunit 5C O5-Homo sapiens GN+COX6C PE-1 SV-2 Explored coxidase subunit 5C O5-Homo sapiens GN+COX6C PE-1 SV-2 Explored coxidase subunit 5C O5-Homo sapiens GN+COX6C PE-1 S	0.764 0.763 0.763 0.762 0.760 0.759 0.754 0.753 0.754 0.751 0.751 0.751 0.751 0.751 0.751 0.751 0.744 0.742 0.742 0.737 0.737 0.729 0.725	0.000 0.015 0.000 0.002 0.002 0.002 0.002 0.002 0.001 0.002 0.003 0.004 0.005 0.007 0.008 0.009 0.001 0.021 0.001 0.001 0.001 0.0021 0.023
$\begin{split} & p_{1} 23229 65.85 \\ & g_{1} 2260715 \\ & g_{2} 26065415.54 \\ & g_{1} P49748 26.61 \\ & g_{1} P45169014.91 \\ & g_{1} P5169014.91 \\ & g_{1} 2373422.02 \\ & g_{1} 0137422.75 \\ & g_{1} 116070 30.09 \\ & g_{1} 028742.75 \\ & g_{1} 0297421.135 \\ & g_{1} 02954211.35 \\ & g_{1} 0296421.35 \\ & g_{1} 0296413.22 \\ & g_{1} 0296413.22 \\ & g_{1} 0296413.80 \\ & g_{1} 0296413.80 \\ & g_{1} 0296413.80 \\ & g_{1} 0296413.80 \\ & g_{1} 02964143.80 \\ & g_{1} 0296414.80 \\ \end{split}$	65.85 15 15.54 26.65 14.91 22.02 22.75 30.09 7.77 18.2 11.35 15.21 13.05 18.62 31.22 12.69 8.06 5.29 4.68	38.32 25.09 33.18 31.76 21.05 39.23 26.24 16.85 22.1 36.81 39.49 50.67 44.96 30.12 33.48 17.83 5.072 16.26	Integrin alpha-6 05-Homo sapiens GN-HICA6 PE-1 SV-5 Perliodivus receptor related groups on sopiens CN-PVR12 PE-1 SV-1 Perlipin-3 05-Homo sapiens GN-PUN3 PE-1 SV-3 Very long-chain specific acyl-CaA dehydrogenase, mitochondrial OS-Homo sapiens GN-ACADVL PE-1 SV-1 Aryludifaste S GS-Homo sapiens GN-MEXE PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 05-Homo sapiens GN-DHRS7 PE-1 SV-1 CD156 antigen OS-Homo sapiens GN-MEXE PE-1 SV-2 CD44 antigen OS-Homo sapiens GN-MEXE PE-1 SV-1 GD5 ribosomal protein L6 OS-Homo sapiens GN-EDAP FE-1 SV-3 Micastrin OS-Homo sapiens GN-STA12 PE-1 SV-2 Epithelial cell adhesion molecule OS-Homo sapiens GN-ECAM PE-1 SV-2 Cytochrome covidase subunit 6C OS-Homo sapiens GN-ECAK PE-1 SV-2 Far upstream element-binding protein 1:05-Homo sapiens GN-COXEC PE-1 SV-2 Far upstream element-binding protein 1:05-Homo sapiens GN-FUREP IPE-1 SV-3 Protein FAM3 CS-Homo sapiens GN-MEGB PE-1 SV-2 Lactadherin OS-Homo sapiens GN-MEGB PE-1 SV-2 Cytachrome covidase subunit 6C OS-Homo sapiens GN-ECXEC PE-1 SV-3 Protein FAM3 CS-Homo sapiens GN-FMA2 PE-1 SV-2 Ear upstream element-binding protein 1:05-Homo sapiens GN-COXEC PE-1 SV-3 Protein FAM3 CS-Homo sapiens GN-MEGB PE-1 SV-2 Lactadherin OS-Homo sapiens GN-MEGB PE-1 SV-2 Ear upstream element-binding Homo Homo SAPIENS CM-COXED PE-1 SV-3 Protein FAM3 CS-Homo sapiens GN-FAM3 CF-1 SV-3 Ear upstream element-binding Homo SAPIENS CM-EXEST PE-1 SV-3 Ear upstream element-binding Homo SAPIENS SM-EXEST PE-1 SV-3 Ear upstream element-binding Homo SAPIENS CM-EXEST PE-1 SV-3 Ear upstream element-binding Homo SAPIENS CM-EXEST PE-1 SV-1 Ear context ent Rb-24 OS-Homo sapienS CM-EXEST PE-1 SV-1 Ear context end Rb-24 OS-Homo sapienS CM-EXEST PE-	0.764 0.763 0.763 0.762 0.760 0.759 0.754 0.754 0.754 0.754 0.753 0.751 0.751 0.751 0.751 0.747 0.747 0.746 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.725 0.720	0.000 0.015 0.002 0.002 0.002 0.000 0.001 0.001 0.002 0.003 0.003 0.021 0.029 0.003 0.021 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.0000 0.0000 0.0000 0.000000
$\begin{split} & p_1 23229 65.85 \\ & p_1 23269(215) \\ & s_p 06066415.54 \\ & s_p 06066415.54 \\ & s_p 05169(14.91) \\ & s_p 05159(14.91) \\ & s_p 0519(14.91) \\ & s_p 01374(22.75) \\ & s_p 01374(22.75) \\ & s_p 0107(30.09) \\ & s_p 022574211.35 \\ & s_p 02254211.35 \\ & s_p 02054215.21 \\ & s_p 0966913.05 \\ & s_p 0265212.6.7 \\ & s_p 0265213.05 \\ & s_p 0265212.6.7 \\ & s_p 0265214.05 \\ & s_p 0265214.05 \\ & s_p 0265212.6.7 \\ & s_p 0265214.05 \\ & $	65.85 15 15.54 26.65 14.91 22.02 22.75 30.09 7.77 18.2 11.35 11.35 11.35 13.05 13.62 31.22 12.69 8.06 5.29 8.06 5.29 8.06	38.32 25.09 33.13 31.76 21.05 39.23 26.24 16.85 22.1 36.81 11.99 39.49 50.67 44.96 30.12 33.48 17.83 5.072 33.48 17.83 5.072 33.22	Integrin alpha-6 OS-Homo sapiens GN-FICA6 PE-1 SV-5 Poliovium receptor related profile 2 OS-Homo sapiens GN-PVRL2 PE-1 SV-1 Perlipin-3 OS-Homo sapiens GN-PUR3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Homo sapiens GN-ACADVL PE-1 SV-1 Anylsuffastes C SS-Homo sapiens GN-PKLS PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 OS-Homo sapiens GN-DHBS7 PE-1 SV-1 CDL56 antigen OS-Homo sapiens GN-PCL2 PE-1 SV-2 CDL44 antigen OS-Homo sapiens GN-STAL2 PE-1 SV-3 Syntain-12 OS-Homo sapiens GN-STAL2 PE-1 SV-3 Gos rhosomal protein LG SS-Homo sapiens GN-PKLS PE-1 SV-3 Nicastrin OS-Homo sapiens GN-NCSTN PE-1 SV-2 Ephthelia Cell adhesion molecule OS-Homo sapiens GN-EPCAM PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-EOCAKE PE-1 SV-2 Cytochrome c oxidase subunit 5B, mitochondrial OS-Homo sapiens GN-EOCAKE PE-1 SV-2 Cytochrome c oxidase subunit 5B, mitochondrial OS-Homo sapiens GN-EOCAKE PE-1 SV-2 Protein FAM3C CS-Homo sapiens GN-HORA PE-1 SV-2 Cytochrome c oxidase subunit 5B, mitochondrial OS-Homo sapiens GN-EOCAKE PE-1 SV-3 Protein FAM3C CS-Homo sapies GN-HORA PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-EOCAKE PE-1 SV-3 Protein FAM3C CS-Homo sapies GN-HORA PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-EOCAKE PE-1 SV-3 Protein FAM3C CS-Homo sapies GN-HORA PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-EOCAKE PE-1 SV-3 Protein FAM3C CS-Homo sapies GN-HORA PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-EOCAKE PE-1 SV-3 Protein FAM3C CS-Homo sapies GN-HORA PE-1 SV-2 Cytochrome c oxidase subunit 5L mitochondrial GS-Homo sapiens GN-EOCAKE PE-1 SV-3 Protein FAM3C CS-Homo sapies GN-HORA PE-1 SV-2 Cytochrome c oxidase subunit 5L mitochondrial GS-Homo sapies GN-EOCAKE PE-1 SV-3 Caterdaria for CHAME PE-1 SV-2 Cytochrome c oxidase B member 1 OS-Homo sapiens GN-FACARE PE-1 SV-1 Ras related protein Rab-24 OS-Homo sapiens GN-FACARE PE-1 SV-1 Ras related protein Rab-24 OS-Homo sapies GN-FACARE PE-1 SV-1 Ras related protein Rab-24 OS	0.764 0.763 0.763 0.762 0.760 0.759 0.755 0.751 0.751 0.751 0.751 0.751 0.751 0.751 0.751 0.751 0.751 0.742 0.742 0.742 0.742 0.742 0.737 0.729 0.725 0.720 0.729 0.725 0.720 0.729 0.720 0.739	0.000 0.015 0.002 0.002 0.002 0.002 0.001 0.002 0.009 0.009 0.003 0.021 0.033 0.029 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.029 0.001 0.002 0.001 0.029 0.001 0.002 0.002 0.003 0.033 0.002 0.002 0.003 0.000 0.003 0.000 0.003 0.000 0.000 0.003 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.0000
$\begin{split} & sp \left[23229 65.85 \\ & sp \left[23229 65.85 \\ & sp \left[2666415.54 \\ & sp \left[P45748 26.61 \\ & sp \left[P45748 26.61 \\ & sp \left[P51500 14.91 \\ & sp \left[20739422.02 \\ & sp \left[2037422.75 \\ & sp \left[203742 2.75 \\ & sp \left[2028782.77 \\ & sp \left[2028782.77 \\ & sp \left[2028782.77 \\ & sp \left[202954211.35 \\ & sp \left[20395421.35 \\ & $	65.85 15 15.54 26.65 14.91 22.02 22.75 30.09 7.77 18.2 11.35 18.62 15.21 13.05 18.62 31.22 12.69 8.06 5.29 4.68 29.13 2.79	38.32 25.09 33.18 31.76 21.05 39.23 26.24 16.85 22.1 36.81 36.81 31.99 39.49 50.67 30.12 33.48 50.072 17.83 5.072 16.26 33.22 5.19	Integrin alpha-6 OS-Homo sapiens GN-FICA6 PE-1 SV-5 Poliovirus receptor related protein 2 OS-Homo sapiens GN-PVRL2 PE-1 SV-1 Perligin-3 OS-Homo sapiens GN-PUR3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Homo sapiens GN-ACADVL PE-1 SV-1 Anylsuffastes COS-Homo sapiens GN-ARLE PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 OS-Homo sapiens GN-BCH2PT PE-1 SV-1 CD166 antigen OS-Homo sapiens GN-ARLE PE-1 SV-2 CD44 antigen OS-Homo sapiens GN-CH4 PE-1 SV-2 CD44 antigen OS-Homo sapiens GN-CH4 PE-1 SV-2 CO44 antigen OS-Homo sapiens GN-CH4 PE-1 SV-3 Syntam-12 OS-Homo sapiens GN-STX12 PE-1 SV-3 Nicastrin OS-Homo sapiens GN-STX12 PE-1 SV-3 Nicastrin OS-Homo sapiens GN-STX12 PE-1 SV-3 Cytochrome c-oxidase subunit SB, mitochondrial OS-Homo sapiens GN-EGXEPE-1 SV-2 Explicibial cell adhesion molecule OS-Homo sapiens GN-EGXEP FE-1 SV-3 Fortein FAM3C OS-Homo sapiens GN-MARK2 PE-1 SV-2 Far upstream element-binding protein 1 OS-Homo sapiens GN-EGXEP FE-1 SV-3 Protein FAM3C OS-Homo sapiens GN-MARK2 PE-1 SV-3 Fortein FAM3C OS-Homo sapiens GN-MARK2 PE-1 SV-3 Ras-related protein Rab-24 OS-Homo sapiens GN-EGXER PE-1 SV-1 Ras-related protein Rab-24 OS-Homo sapiens GN-EGXER PE-1 SV-2 Ras-related protein Rab-24 OS-Homo sapiens GN-EGXER PE-1 SV-3 Ras-related protein Rab-24	0.764 0.763 0.763 0.762 0.760 0.759 0.754 0.753 0.754 0.753 0.751 0.751 0.751 0.751 0.751 0.7420	0.000 0.015 0.000 0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.003 0.003 0.021 0.030 0.029 0.001 0.002 0.001 0.021 0.023 0.023 0.023 0.020 0.001 0.021 0.023 0.023 0.024
sp P23229 65.85 sp C3060715 sp C6066415.54 sp P6750714.91 sp P5150714.91 sp P102732.75 sp P102742.75 sp P102742.75 sp P102742.75 sp P102752.13.2 sp P1040613.62 sp P1040613.62 sp P1040613.62 sp P0352712.67 sp P0366913.05 sp P0352413.05 sp Q2952413.05 sp Q2952421.64 sp Q2952421.7.7 sp Q2952421.7.7 sp Q2952421.67 sp Q2952421.67 sp Q2952424.83 sp Q2944.63 sp Q2944.63 sp Q213277.79 sp Q13277.79	65.85 15 26.65 14.91 22.07 30.09 7.77 18.22 11.35 15.21 13.05 15.21 13.05 31.22 31.22 31.22 31.22 31.22 31.22 32.69 8.06 8.09 8.29 9.29 9.76	38.32 25.09 33.18 31.76 21.05 39.23 26.24 16.85 22.1 36.81 11.99 39.49 50.67 44.96 30.12 33.48 17.83 5.072 33.48 17.83 5.072 5.072 5.072 5.072 5.072 5.072 5.072 5.079 5.072 5.075 5.072 5.075 5	Integrin alpha-6 OS-Horom sapiens GN-FICA6 PE-1 SV-5 Perlikpin-3 OS-Horm sapiens GN-PUN3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Horm sapiens GN-ACADVL PE-1 SV-1 Arylsuffaste SC OS-Horm sapiens GN-PEN SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Horm sapiens GN-ACADVL PE-1 SV-1 Arylsuffaste SC OS-Horm sapiens GN-PEN SV-3 Dehydrogenase/reductase SDR family member 7 OS-Horm sapiens GN-DHBS7 PE-1 SV-1 CDL56 antigen OS-Horm sapiens GN-ACAD PE-1 SV-2 CDL44 antigen OS-Horm sapiens GN-ACAD PE-1 SV-3 Syntaan-12 OS-Horm sapiens GN-STX12 PE-1 SV-3 Syntaan-12 OS-Horm sapiens GN-NCSTN PE-1 SV-2 Epithelia Cell adhesion molecule OS-Horm sapiens GN-PEN PE-1 SV-3 Nicastrin OS-Horm sapiens GN-NCSTN PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Horm sapiens GN-FCAM PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Horm sapiens GN-FCAM PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Horm sapiens GN-FCAK PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Horm sapiens GN-FCAK PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Horm sapiens GN-FCAK PE-1 SV-3 Protein FAM3C OS-Horm sapiens SN-FAM3C PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Horm sapiens GN-FCAK PE-1 SV-3 Protein FAM3C OS-Horm sapiens SN-FAM3C PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Horm sapiens SN-FCAR PLUP1 PE-1 SV-3 Protein FAM3C OS-Horm sapiens SN-FAM3C PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Horm sapiens SN-FCAR PLUP1 PE-1 SV-3 Catadherin OS-Horm sapiens SN-FAM3C PE-1 SV-2 Cytochrome condiase subunit 5C OS-Horm sapiens SN-SCAR PLUP1 PE-1 SV-3 Catadherin DS-Horm sapiens SN-FAM3C PE-1 SV-2 Cytochrome condiase subunit 5C OS-Horm sapiens SN-SCAR PLUP1 PE-1 SV-3 Catadherin SHOR SHORM sapiens SN-FAM3C PE-1 SV-3 Cytochrome condiase subunit 5C SN-HORM Sapiens SN-SCAR PLUP1 PE-1 SV-2 Savenger receptor class B member 1.05-Horm sapiens SN-SCAR PLUP1 PE-1 SV-2 Syntaan-3 OS-Horm sapiens GN-STAR PE-1 SV-3 Cytochrome condiated membrane agond protein 1.05-Horm sapiens SN-APMAP PE-1 SV-3 Syntaan-3	0.764 0.763 0.763 0.762 0.752 0.755 0.755 0.754 0.753 0.751 0.751 0.751 0.751 0.747 0.742 0.742 0.742 0.742 0.742 0.737 0.729 0.725 0.725 0.720 0.729 0.725 0.720 0.729 0.725 0.720 0.717 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.751 0.752 0.755 0.757 0.755 0.757 0.757 0.747 0.742 0.725 0.727 0.725 0.727 0.	0.000 0.015 0.002 0.002 0.002 0.000 0.002 0.003 0.001 0.003 0.003 0.003 0.021 0.030 0.029 0.001 0.000 0.001 0.002 0.000 0.001 0.002 0.0000 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000
sp P23229 65.85 sp [29269215 sp P6566415.54 sp P49748 26.61 sp P51505014.91 sp P51505014.91 sp P207302.09 sp P137422.02 sp P137422.75 sp P16050730.09 sp Q2254211.35 sp P20525421.32 sp P205441.32 sp P205441.22 sp Q254241.35 sp Q255421.35 sp Q352421.27 sp Q352421.28 sp Q352421.27 sp Q352421.27 sp Q352421.27 sp Q352421.27 sp Q352422.22 sp Q35924.83 sp Q35924.83 sp Q35924.83 sp Q35924.83 sp Q35924.83 sp Q45924.83 sp Q45924.83 sp	65.85 15 15.54 26.65 22.02 22.75 30.09 7.77 18.2 11.35 15.21 13.05 18.62 31.22 9.16 8.06 5.29 4.68 29.18 2.79 9.76 6.13	38.32 25.09 33.18 31.76 21.05 39.23 26.24 16.85 22.1 36.81 11.99 39.49 50.67 44.96 30.12 50.67 44.96 33.48 17.83 5.072 16.26 38.22 5.19 17.99	Integrin alpha-6 05-Horom sapiens GN-FICA6 PE-1 SV-5 Poliovirus receptor related protein 2 OS-Horom sapiens GN-PVRL2 PE-1 SV-1 Perligin-3 OS-Horom sapiens GN-PUR3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Horom sapiens GN-ACADVL PE-1 SV-1 Anylsuffastes CS-Horom sapiens GN-ACRAP FE-1 SV-2 Dehydrogenase/reductase SDR family member 7 OS-Horom sapiens GN-DHRS7 PE-1 SV-1 CD166 antigen OS-Horom sapiens GN-ACRAP FE-1 SV-2 CD44 antigen OS-Horom sapiens GN-CD44 PE-1 SV-3 Syntaxin-12 OS-Horom sapiens GN-CD44 PE-1 SV-3 GN dosaming Drotein LO SO-Horom sapiens GN-ERVE PE-1 SV-3 Micastrin OS-Horom sapiens GN-NEXT PE-1 SV-2 Epithelial cell adhesion molecule OS-Horom sapiens GN-ECCAM PE-1 SV-3 Cytochrome c oxidase subunit 5C OS-Horom sapiens GN-ECCAM PE-1 SV-3 Protein FAM3C OS-Horom sapiens GN-FMAI2 PE-1 SV-2 Expredienting Solver GN-BAI3C PE-1 SV-2 Expredienting Solver GN-BAI3C PE-1 SV-2 Expredienting Solver GN-BAI3C PE-1 SV-3 Protein FAM3C OS-Horom sapiens GN-FMAI3C PE-1 SV-2 Expredienting Solver GN-BAI3C PE-1 SV-3 Expredienting Solver GN-BAI3C PE-1 SV-3 Expredienting Solver GN-BAI3C PE-1 SV-3 Expred	0.764 0.763 0.763 0.763 0.760 0.759 0.759 0.754 0.753 0.751 0.751 0.751 0.751 0.751 0.744 0.742 0.742 0.742 0.742 0.742 0.737 0.729 0.725 0.720 0.725 0.720 0.717 0.710 0.7200 0.7200 0.7200 0.7200 0.7200 0.7200 0.7200 0.7200 0.720000000000	0.000 0.015 0.000 0.002 0.002 0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.003 0.021 0.023 0.021 0.003 0.001 0.002 0.001 0.021 0.023 0.021 0.023 0.021 0.023 0.024 0.025 0.006 0.006
$\begin{split} & p_{1} p_{2} 23229 65.85 \\ & p_{1} 02660'_{15} \\ & s_{1} 02660'_{15} \\ & s_{1} 02660'_{15} \\ & s_{1} 02660'_{15} \\ & s_{1} 02560'_{14} \\ & s_{1} 02560'_{14} \\ & s_{1} 02560'_{14} \\ & s_{1} 02560'_{14} \\ & s_{1} 02560'_{15} \\ & s_{1} 02560'_{$	65.85 15 26.65 14.91 22.05 22.75 30.09 7.77 18.2 11.35 15.21 13.05 31.22 31.22 31.22 31.22 9.76 6.13 12.05	38.32 25.09 33.18 31.76 21.05 39.23 26.24 16.85 22.1 36.81 11.99 39.49 50.67 44.96 30.12 33.48 17.83 3.48 17.83 5.072 16.26 33.22 5.072 16.26 5.19 17.99 23.38	Integrin alpha-6 OS-Homo sapiens GN-ITCA6 PE-1 SV-5 Perlikpin-3 OS-Homo sapiens GN-PUN3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Homo sapiens GN-ACADVL PE-1 SV-1 Arylsuffaste SC SS-Homo sapiens GN-PUN3 PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 OS-Homo sapiens GN-DHRS7 PE-1 SV-1 CDL56 antigen OS-Homo sapiens GN-ACEA PE-1 SV-2 CDL56 antigen OS-Homo sapiens GN-ACEA PE-1 SV-2 CDL56 antigen OS-Homo sapiens GN-ACEA PE-1 SV-2 CDL56 antigen OS-Homo sapiens GN-ACEA PE-1 SV-3 Syntawin 12 OS-Homo sapiens GN-PEAA PE-1 SV-3 Soft nbosmal protein L6 OS-Homo sapiens GN-PEAP PE-1 SV-3 Nicastrin OS-Homo sapiens GN-NCSTN PE-1 SV-2 Epithelia Cell adhesion molecule OS-Homo sapiens GN-PCAA PE-1 SV-2 Cytochrome c- oxidase wubunt 6C OS-Homo sapiens GN-ECAK PE-1 SV-2 Far upstream element-binding protein 1 OS-Homo sapiens GN-SCARE) PE-1 SV-3 Aractaherin OS-Homo sapiens GN-MCSTN PE-1 SV-2 Scavenger receptor class B member 1 OS-Homo sapiens GN-SCARE) PE-1 SV-3 Adigocyte plasma memberane-associated protein OS-Homo sapiens GN-SCARE) PE-1 Sv-2 Scavenger receptor class B member 1 OS-Homo sapiens GN-SCARE) PE-1 SV-1 Adigocyte plasma membrane-associated protein OS-Homo sapiens GN-SCARE) PE-1 SV-2 Syntawin 3 OS-Homo sapiens GN-MCFI BV-2 Syntawin 3 OS-Homo sapiens GN-BRAZ PE-1 SV-1 Adigocyte plasma membrane-associated protein OS-Homo sapiens GN-ARAD PE-1 SV-2 Syntawin 3 OS-Homo sapiens GN-BTX3 PE-1 SV-3 Peytidy-prok/ ds-trans isomerase FXBP1 IOS-Homo sapiens GN-ARAD PE-1 SV-3 Peytidy-prok/ ds-trans isomerase FXBP1 IOS-Homo sapiens GN	0.764 0.763 0.763 0.762 0.760 0.759 0.754 0.754 0.754 0.753 0.754 0.751 0.751 0.751 0.747 0.747 0.747 0.747 0.747 0.742 0.742 0.742 0.742 0.742 0.725 0.720 0.720 0.720 0.720 0.720 0.710 0.700 0.700 0.701 0.725 0.	0.000 0.015 0.002 0.002 0.002 0.000 0.002 0.003 0.003 0.003 0.003 0.021 0.003 0.021 0.000 0.001 0.001 0.000 0.001 0.001 0.000 0.001 0.000 0.001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 00
$\begin{split} & p_{1} 23229 65.85 \\ & p_{1} 23269(15) \\ & p_{1} 06066415.54 \\ & p_{1} 04748 26.61 \\ & p_{1} p4748 26.61 \\ & p_{1} p51500 14.91 \\ & p_{1} 01374(22.75 \\ & p_{1} 01374(22.75 \\ & p_{1} 01374(22.75 \\ & p_{1} 02054211.35 \\ & p_{1} 02054211.35 \\ & p_{1} 02054213.21 \\ & p_{1} 02054213.21 \\ & p_{1} 02054213.21 \\ & p_{1} 02054213.25 \\ & p_{1} 02054213.65 \\ & p_{1} 02054212.27 \\ & p_{1} 02054212.62 \\ & p_{1} 02054213.65 \\ & p_{1} 02054212.62 \\ & p_{1} 02054212.62 \\ & p_{1} 02054213.65 \\ & p_{1} 02054213.65 \\ & p_{1} 02054213.65 \\ & p_{1} 0205421.22 \\ & p_{1} 0205421.23 \\ & p_{1} 0205421.23 \\ & p_{1} 0205421.25 \\ & p_{1} 0205521.25 \\ & p_{1} 02055521.25 \\ & p_{1} 0$	65.85 15 15.54 26.65 22.02 22.75 30.09 7.77 18.2 11.35 15.21 13.05 18.62 31.22 12.69 8.06 5.29 4.68 29.18 2.79 9.76 6.13 12.05	38.32 25.09 33.18 31.76 21.05 21.05 39.23 39.23 26.24 16.85 22.1 36.81 11.99 39.49 50.67 30.12 33.48 50.072 16.26 33.48 5.072 16.26 38.22 5.19 23.38 12.94	Integrin alpha-6 OS-Homo sapiens GN-HICAGA PE-1 SV-5 Poliovirus receptor related protein 2 OS-Homo sapiens GN-PVRL2 PE-1 SV-1 Perligin-3 OS-Homo sapiens GN-PUR3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Homo sapiens GN-ACADVL PE-1 SV-1 Anylsuffastes CS-Homo sapiens GN-ARSL PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 OS-Homo sapiens GN-DHBS7 PE-1 SV-1 CDL64 antigen OS-Homo sapiens GN-ARSL PE-1 SV-2 CD44 antigen OS-Homo sapiens GN-CD44 PE-1 SV-3 Syntain-12 OS-Homo sapiens GN-SN22 PE-1 SV-3 GO antigen OS-Homo sapiens GN-MSR PE-1 SV-3 Nicastrin OS-Homo sapiens GN-NSR 12 PE-1 SV-3 Nicastrin OS-Homo sapiens GN-NSR 12 PE-1 SV-3 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-ECAAD PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-CCX6C PE-1 SV-2 Cytochrome c oxidase subunit 5R, mitochondrial OS-Homo sapiens GN-CCX6S PE-1 SV-2 Cytochrome c oxidase subunit 5R, mitochondrial OS-Homo sapiens GN-CCX6S PE-1 SV-2 Cytochrome c oxidase subunit 5R, mitochondrial OS-Homo sapiens GN-CCX6S PE-1 SV-2 Cytochrome c oxidase subunit 5R, mitochondrial OS-Homo sapiens GN-SCX81 PE-1 SV-3 Rotexter PE-1 SV-3 Scavenger receptor class B member 1 OS-Homo sapiens GN-SCARB1 PE-1 SV-3 Catedred motelen-thinding OK-MMSGB PE-1 SV-2 Scavenger receptor class B member 1 OS-Homo sapiens GN-SCARB1 PE-1 SV-3 Syntain-3 OS-Homo sapiens GN-FAN3C PE-1 SV-2 Syntain-3 OS-Homo sapiens GN-FAN3C PE-1 SV-2 Syntain-3 OS-Homo sapiens GN-FAN3C PE-1 SV-2 Syntain-3 OS-Homo sapiens GN-FAN3C PE-1 SV-3 Network of the Stream sapiens GN-FAN3C PE-1 SV-2 Syntain-3 OS-Homo sapiens GN-FAN3C PE-1 SV-3 Network of the Stream sapiens GN-FAN3C PE-1 SV-3 Network of the Stream sapiens GN-FAN3C PE-1 SV-3 Syntain-3 OS-Homo sapiens GN-FAN3C PE-1 SV-3 Syntain-3 OS-Homo sapiens GN-FAN3C PE-1 SV-3 Network of the Stream sapiens GN-FAN3C PE-1 S	0.764 0.763 0.763 0.762 0.760 0.759 0.755 0.754 0.751 0.751 0.751 0.751 0.751 0.751 0.751 0.751 0.746 0.742 0.742 0.742 0.742 0.737 0.729 0.725 0.720 0.725 0.720 0.729 0.729 0.720 0.710 0.710 0.710 0.710 0.709 0.701 0.709 0.701 0.709 0.701 0.709 0.701 0.709 0.701 0.701 0.709 0.701 0.701 0.709 0.701 0.709 0.701 0.709 0.701 0.709 0.701 0.709 0.701 0.709 0.701 0.701 0.709 0.701 0.709 0.701 0.701 0.709 0.701 0.709 0.701 0.709 0.701 0.709 0.701 0.709 0.701 0.709 0.701 0.709 0.701 0.709 0.701 0.709 0.701 0.709 0.7010	0.000 0.015 0.002 0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.009 0.003 0.021 0.033 0.029 0.001 0.029 0.001 0.002 0.001 0.002 0.001 0.002 0.002 0.001 0.002 0.0000 0.0000 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.
spl P23229 65.85 spl Q260715 spl Q260715 spl Q260715 spl Q260715 spl Q260715 spl Q260715 spl P5150714.91 spl Q273212.75 spl P1507030.09 spl Q37422.75 spl P1607030.09 spl Q374211.35 spl P1607030.09 spl Q354211.35 spl P1607030.618.62 spl P160603.62 spl P160603.62 spl Q364431.22 spl Q364212.67 spl Q364212.67 spl Q3642431.25 spl Q3642431.25 spl Q3642431.25 spl Q36424.48 spl Q36474.48 spl Q36474.613	65.85 15 15.54 15.54 14.91 22.02 22.75 30.09 7.77 18.2 11.35 21 13.05 18.62 31.23 31.22 31.23 31.24 31.23 31.24 31	38.32 25.09 33.18 31.76 21.05 21.05 21.02 39.23 26.24 16.85 22.1 36.81 11.99 50.67 44.96 30.12 33.48 30.12 33.48 30.12 33.48 17.83 5.072 16.26 33.22 5.19 17.99 23.38 12.94 51.48	Integrin alpha-6 05-Homo sapiens GN-FICA6 PE-1 SV-5 Perlikpin-3 05-Homo sapiens GN-PUIN3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Homo sapiens GN-ACADVL PE-1 SV-1 Aryludifaste S OS-Homo sapiens GN-PUIN3 PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 05-Homo sapiens GN-DHRS7 PE-1 SV-1 CDL56 antigen OS-Homo sapiens GN-M2KE PE-1 SV-2 CDL46 antigen OS-Homo sapiens GN-M2KE PE-1 SV-3 CDL56 antigen OS-Homo sapiens GN-M2KE PE-1 SV-1 GDS ribosomal protein L6 OS-Homo sapiens GN-EDKP PE-1 SV-3 Nicastrin OS-Homo sapiens GN-STA2 PE-1 SV-1 605 ribosomal protein L6 OS-Homo sapiens GN-EDKP PE-1 SV-3 Nicastrin OS-Homo sapiens GN-STA2 PE-1 SV-1 Epithelial cell adhesion molecule OS-Homo sapiens GN-ECX6K PE-1 SV-2 Cytochrome co-didase subunit 6C OS-Homo sapiens GN-ECX6K PE-1 SV-2 Far upstream element-binding protein 1:05-Homo sapiens GN-ECX6K PE-1 SV-2 Far upstream element-binding protein 1:05-Homo sapiens GN-ECX6K PE-1 SV-3 Nicastrin GS-Homo sapiens GN-MAGE PE-1 SV-2 Scavenger receptor class B member 1:05-Homo sapiens GN-ECX6K PE-1 SV-1 Ras-related protein Rb-2405 PE-1 SV-3 Virtatin Rb-240-SHomo sapiens GN-RAB24 PE-1 SV-1 Adipocyte plasma membrane-associated protein 0:5-Homo sapiens GN-ECXAB1 PE-1 SV-2 Lytatam GN-SHomo sapiens GN-M3GE PE-1 SV-3 Lytasom-associated membrane GN-B730 PE-1 SV-3 Lytasom-associated membrane-BYS-1 DS-3 Lytasom-associated membrane GN-B730 PE-1 SV-3 Lytasom-associated membrane GN-B730 PE-1 SV-3 Lytasom-associated membrane GN-B730 PE-1 SV-3 Lytasom-associated membrane GN-B730 PE-1 SV-3 Lytasom-associated membrane-BYEP1 105-Homo sapiens GN-AMAD1 PE-1 SV-3 Lytasom-associated membrane GN-B730 PE-1 SV-3 Lytasom-associ	0.764 0.763 0.763 0.762 0.755 0.754 0.755 0.754 0.753 0.751 0.751 0.751 0.751 0.747 0.746 0.747 0.746 0.742 0.752 0.751 0.742 0.744 0.	0.000 0.015 0.002 0.002 0.000 0.000 0.000 0.001 0.001 0.003 0.003 0.021 0.003 0.021 0.001 0.000 0.001 0.000 0.021 0.023 0.000 0.032 0.0000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.00000 0.000000
sp P23229 65.85 sp 12926915 sp 12636915 sp 12636915 sp 12636915 sp 12636915 sp 1263762 sp 1263762 sp 1263762 sp 1263762 sp 126372 sp 126372 sp 126372 sp 126372 sp 126372 sp 1263732 sp 1263732 sp 1263732 sp 1263732 sp 126372 sp 1263732 sp 126352 sp 126372 sp 126372 sp 128772 sp 1232772 sp 1232772 sp 1232772 sp 1232772 sp 1232772 sp 1232772 sp 1232772 </td <td>65.85 15 15.54 15.54 15.54 26.65 14.91 22.02 22.75 30.09 7.77 18.2 11.35 15.21 13.05 13.62 31.22 2.69 8.06 5.29 4.68 2.79 9.76 6.13 12.05 11.96 14.65</td> <td>38.32 25.09 33.18 31.76 21.05 21.05 21.05 21.05 21.05 22.05 16.85 22.1 36.81 11.99 39.49 30.49 50.67 44.96 30.12 33.48 17.83 5.072 33.48 17.83 5.072 16.25 5.19 17.99 12.94 12</td> <td>Integrin alpha-6 OS-Homo sapiens GN-FICA6 PE-1 SV-5 Poliovius receptor related protein 2 OS-Homo sapiens GN-PVRL2 PE-1 SV-1 Perlipin-3 OS-Homo sapiens GN-PUR3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Homo sapiens GN-ACADVL PE-1 SV-1 Arylsuffastes CS-Homo sapiens GN-PUR3 PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 OS-Homo sapiens GN-DHBS7 PE-1 SV-1 CD156 antigen OS-Homo sapiens GN-CD44 PE-1 SV-2 CD144 antigen OS-Homo sapiens GN-CD44 PE-1 SV-2 CD44 antigen OS-Homo sapiens GN-SN21 PE-1 SV-2 CD44 antigen OS-Homo sapiens GN-SN21 PE-1 SV-2 CD44 antigen OS-Homo sapiens GN-SN21 PE-1 SV-3 Nicastrin OS-Homo sapiens GN-SN21 PE-1 SV-2 CD40 antigen OS-Homo sapiens GN-SN21 PE-1 SV-2 Cytochrome covidase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-2 Cytochrome covidase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-2 Cytochrome covidase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-2 Cytochrome covidase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-2 Cytochrome covidase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-2 Cytochrome covidase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-2 Cytochrome covidase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-2 Cytochrome covidase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-2 Cytochrome covidase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-2 Cytochrome covidase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-2 Cytochrome covidase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-2 Cytochrome covidase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-2 Cytochrome covidase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-2 Cytochrome covidase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-2 Cytochrome covidase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-3 Protein FAM3C CS-Homo sapiens GN-FAB24 PE-1 SV-3 Restript CS-Homo sapiens GN-SCARB1 PE-1 SV-3 Restript CS-Homo sapiens GN-SCARB1 PE-1 SV-3 Caverager receptor dase B member 1 OS-Homo sapiens GN-EXARB1 PE-1 SV-3 Syntam-3 OS-HOmo sapiens GN-EXARB24 PE-1 SV-1 Rapiens CS-HOMA Sapiens GN-EXARB24 PE-1 SV-1 Rapiens CS-HOMA Sapiens GN-FAB24</td> <td>0.764 0.763 0.763 0.762 0.755 0.755 0.754 0.755 0.754 0.753 0.751 0.751 0.751 0.751 0.751 0.747 0.742 0.742 0.742 0.742 0.742 0.742 0.737 0.742 0.737 0.729 0.720 0.729 0.720 0.710 0.710 0.710 0.701 0.666</td> <td>0.000 0.015 0.000 0.002 0.002 0.002 0.001 0.002 0.003 0.001 0.003 0.021 0.030 0.029 0.001 0.029 0.001 0.002 0.001 0.002 0.002 0.002 0.002 0.000 0.001 0.002 0.002 0.000 0.000 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.000 0.009 0.000 0.009 0.000 0.000 0.009 0.000 0.000 0.009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000</td>	65.85 15 15.54 15.54 15.54 26.65 14.91 22.02 22.75 30.09 7.77 18.2 11.35 15.21 13.05 13.62 31.22 2.69 8.06 5.29 4.68 2.79 9.76 6.13 12.05 11.96 14.65	38.32 25.09 33.18 31.76 21.05 21.05 21.05 21.05 21.05 22.05 16.85 22.1 36.81 11.99 39.49 30.49 50.67 44.96 30.12 33.48 17.83 5.072 33.48 17.83 5.072 16.25 5.19 17.99 12.94 12	Integrin alpha-6 OS-Homo sapiens GN-FICA6 PE-1 SV-5 Poliovius receptor related protein 2 OS-Homo sapiens GN-PVRL2 PE-1 SV-1 Perlipin-3 OS-Homo sapiens GN-PUR3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Homo sapiens GN-ACADVL PE-1 SV-1 Arylsuffastes CS-Homo sapiens GN-PUR3 PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 OS-Homo sapiens GN-DHBS7 PE-1 SV-1 CD156 antigen OS-Homo sapiens GN-CD44 PE-1 SV-2 CD144 antigen OS-Homo sapiens GN-CD44 PE-1 SV-2 CD44 antigen OS-Homo sapiens GN-SN21 PE-1 SV-2 CD44 antigen OS-Homo sapiens GN-SN21 PE-1 SV-2 CD44 antigen OS-Homo sapiens GN-SN21 PE-1 SV-3 Nicastrin OS-Homo sapiens GN-SN21 PE-1 SV-2 CD40 antigen OS-Homo sapiens GN-SN21 PE-1 SV-2 Cytochrome covidase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-2 Cytochrome covidase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-2 Cytochrome covidase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-2 Cytochrome covidase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-2 Cytochrome covidase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-2 Cytochrome covidase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-2 Cytochrome covidase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-2 Cytochrome covidase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-2 Cytochrome covidase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-2 Cytochrome covidase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-2 Cytochrome covidase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-2 Cytochrome covidase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-2 Cytochrome covidase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-2 Cytochrome covidase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-2 Cytochrome covidase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-3 Protein FAM3C CS-Homo sapiens GN-FAB24 PE-1 SV-3 Restript CS-Homo sapiens GN-SCARB1 PE-1 SV-3 Restript CS-Homo sapiens GN-SCARB1 PE-1 SV-3 Caverager receptor dase B member 1 OS-Homo sapiens GN-EXARB1 PE-1 SV-3 Syntam-3 OS-HOmo sapiens GN-EXARB24 PE-1 SV-1 Rapiens CS-HOMA Sapiens GN-EXARB24 PE-1 SV-1 Rapiens CS-HOMA Sapiens GN-FAB24	0.764 0.763 0.763 0.762 0.755 0.755 0.754 0.755 0.754 0.753 0.751 0.751 0.751 0.751 0.751 0.747 0.742 0.742 0.742 0.742 0.742 0.742 0.737 0.742 0.737 0.729 0.720 0.729 0.720 0.710 0.710 0.710 0.701 0.666	0.000 0.015 0.000 0.002 0.002 0.002 0.001 0.002 0.003 0.001 0.003 0.021 0.030 0.029 0.001 0.029 0.001 0.002 0.001 0.002 0.002 0.002 0.002 0.000 0.001 0.002 0.002 0.000 0.000 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.000 0.009 0.000 0.009 0.000 0.000 0.009 0.000 0.000 0.009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000
sp P23229 65.85 sp [29269215 sp P6566415.54 sp P49748 26.61 sp P5150914.91 sp P5150914.91 sp P174748 26.61 sp P1747030.09 sp P1207030.09 sp Q285421.32 sp P16066913.05 sp P16666913.05 sp Q265212.67 sp Q265413.22 sp Q265413.22 sp Q265413.22 sp Q265413.22 sp Q265413.22 sp Q36524.88 sp Q36524.82 sp Q485431.22 sp Q485431.25 sp Q48542.29 sp Q48592.212.05 sp Q48552.12.05 sp Q36552.12.05 sp Q36552.12.05 sp Q36552.12.05 sp Q368562.41.55 sp Q36247.15	65.85 15 15.54 15.54 15.54 26.65 14.91 22.02 27.75 30.09 7.77 18.2 11.35 15.21 13.05 31.22 12.69 8.06 5.29 4.68 29.18 2.79 9.76 6.13 12.05 11.96 14.65 6.54 47.15	38.32 25.09 33.18 31.76 21.05 39.23 26.24 16.85 22.1 16.85 22.1 36.81 36.81 36.81 36.97 50.67 30.12 33.48 17.83 30.12 33.48 17.83 38.22 5.077 23.38 12.94 51.48 51.58 51.5555555555	Integrin alpha-6 OS-Homo sapiens GN-HICAGA PE-1 SV-5 Poliovirus receptor related protein 2 OS-Homo sapiens GN-PVRL2 PE-1 SV-1 Perligin-3 OS-Homo sapiens GN-PUR3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Homo sapiens GN-ACADVL PE-1 SV-1 Arylsuffastes CS-Homo sapiens GN-ACRAP FE-1 SV-2 Dehydrogenase/reductase SDR family member 7 OS-Homo sapiens GN-DHRS7 PE-1 SV-1 CD166 antigen OS-Homo sapiens GN-ACRAP FE-1 SV-2 CD44 antigen OS-Homo sapiens GN-CD44 PE-1 SV-3 Syntaxin-12 OS-Homo sapiens GN-CD44 PE-1 SV-3 GN and protein LO S-Homo sapiens GN-BRE PE-1 SV-3 Syntaxin-12 OS-Homo sapiens GN-FX12 PE-1 SV-1 GN and protein LO S-Homo sapiens GN-CD44 PE-1 SV-3 Syntaxin-12 OS-Homo sapiens GN-CD44 PE-1 SV-3 Cytochrome c oxidase subunit 5C OS-HOMO sapiens GN-ECCAM PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-ECCAM PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-CCAM PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-CCAM PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-ECCAM PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-ECCAM PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-ECCAM PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-ECCAM PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-ECCAM PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-ECCAM PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-ECCAM PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-ECCAM PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-ECCAM PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-ECCAM PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-SCARB1 PE-1 SV-3 Protein FAM3C CS-Homo sapiens GN-ECCAM PE-1 SV-3 Cytochrome copiens GN-STAR PE-1 SV-3 Cytochrome copiens GN-STAR PE-1 SV-3 Lycosome associated protein OS-Homo sapiens GN-ECMAP PE-1 SV-3 Lycosome associated protein OS-Homo sapiens GN-ECMAP PE-1 SV-3 Lycosome associated protein OS-Homo sapiens GN-ECMAP PE-1 SV	0.764 0.763 0.763 0.762 0.760 0.759 0.754 0.753 0.753 0.751 0.751 0.751 0.751 0.751 0.742 0.753 0.753 0.753 0.754 0.753 0.751 0.754 0.753 0.751 0.752 0.751 0.752 0.	0.000 0.015 0.000 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.021 0.023 0.021 0.001 0.022 0.001 0.021 0.021 0.021 0.023 0.021 0.026 0.006 0.006 0.006 0.006 0.006 0.002 0.004 0.001 0.004
sp P23229 65.85 sp C3060515 sp C3066415.54 sp P49743 26.61 sp P5150014.91 sp P5150014.91 sp P162703 30.09 sp P263721.32 sp P16070 30.09 sp P263721.32 sp P1627215.21 sp P162613.62 sp P366913.05 sp P3664531.22 sp P362924.83 sp Q3925212.67 sp Q3925242.27 sp Q3925242.27 sp Q3925242.27 sp Q3925242.27 sp Q3925242.27 sp Q3925242.27 sp Q392524.83 sp Q39244.83 sp Q391272.79 sp Q391272.79 sp Q391272.79 sp Q391311.96 sp Q391385.44 sp Q391284.54	65.85 15 15.54 15.54 15.54 15.54 15.54 15.54 26.65 14.91 22.02 27.75 30.09 7.77 18.2 11.35 11.35 13.05 18.62 31.22 5.29 4.68 2.79 9.76 6.13 12.05 11.96 14.65 6.54 47.15% 26.46	38.32 25.09 33.18 31.76 21.05 39.23 26.24 16.85 22.1 36.81 39.23 26.24 16.85 22.1 36.81 39.23 26.24 16.85 22.1 36.81 39.49 30.49 50.67 33.48 33.48 33.48 17.83 5.07 2 5.07 5.07 5.07 5.07 5.07 5.07 5.07 5.07	Integrin alpha-6 OS-Homo sapiens GN-ITCA6 PE-1 SV-5 Perlikpin-3 OS-Homo sapiens GN-PUN3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Homo sapiens GN-ACADVL PE-1 SV-1 Arylsuffaste SC SS-Homo sapiens GN-PEUR5 PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 OS-Homo sapiens GN-DHRS7 PE-1 SV-1 CDL56 antigen OS-Homo sapiens GN-ACEA PE-1 SV-2 CDL56 antigen OS-Homo sapiens GN-ACEA PE-1 SV-3 Syntaxin 12 OS-Homo sapiens GN-ACEA PE-1 SV-2 CDL4 antigen OS-Homo sapiens GN-PEUR5 PE-1 SV-3 Nicastrin OS-Homo sapiens GN-PEUR5 PE-1 SV-3 Nicastrin OS-Homo sapiens GN-NCSTN PE-1 SV-2 Epithelia Cell adhesion molecule OS-Homo sapiens GN-PEUR5 PE-1 SV-3 Nicastrin OS-Homo sapiens GN-NCSTN PE-1 SV-2 Epithelia Cell adhesion molecule OS-Homo sapiens GN-PEUR5 PE-1 SV-3 Nicastrin OS-Homo sapiens GN-NCSTN PE-1 SV-2 Epithelia Cell adhesion molecule OS-Homo sapiens GN-PCAM PE-1 SV-2 Cytochrome c-oxidase ubunit 6C OS-Homo sapiens GN-PCAM PE-1 SV-2 Far upstream element-binding protein 1 OS-Homo sapiens GN-SCAREJ PE-1 SV-2 Far upstream element-binding protein 1 OS-Homo sapiens GN-SCAREJ PE-1 SV-3 Protein FAM3C OS-Homo sapiens GN-FAM3C PE-1 SV-2 Scavenger receptor class B member 1 OS-Homo sapiens GN-SCAREJ PE-1 SV-3 Adipocyte plasma membrane-associated protein OS-Homo sapiens GN-SCAREJ PE-1 SV-1 Adipocyte plasma membrane-associated protein OS-Homo sapiens GN-SCAREJ PE-1 SV-2 Syntaxin 3 OS-Homo sapiens GN-STA PE-1 SV-2 Syntaxin 3 OS-Homo sapiens GN-STA PE-1 SV-3 Peptidy-prot/i ds-trans isomerase FKBP11 OS-Homo sapiens GN-AMAPI PE-1 SV-3 Peptidy-prot/i ds-trans isomerase FKBP11 OS-Homo sapiens GN-AMAPI PE-1 SV-3 Peptidy-prot/i ds-trans isomerase FKBP11 OS-Homo sapiens GN-AMAPI PE-1 SV-3 Peptidy-prot/i ds-trans isomerase FKBP11 OS-Homo sapiens GN-MARX PE-1 SV-3 Peptidy-prot/i ds-trans isomerase FKBP11 OS-Homo sapiens GN-MARX PE-1 SV-3 Mintlin, mitochondrial OS-Homo sapiens GN-MARX PE-1 SV-3 Mintlin, mitochondrial OS-Homo sapiens GN-MARX PE-1 SV-4 Garcinoembryonic antigen-related cel	0.764 0.763 0.763 0.762 0.752 0.755 0.754 0.754 0.753 0.754 0.753 0.754 0.753 0.751 0.751 0.751 0.747 0.747 0.747 0.747 0.747 0.742 0.742 0.742 0.742 0.742 0.737 0.729 0.729 0.729 0.729 0.720 0.729 0.720 0.720 0.737 0.710 0.710 0.710 0.701 0.701 0.701 0.750 0.751 0.751 0.729 0.729 0.729 0.729 0.720 0.729 0.720 0.720 0.720 0.720 0.720 0.720 0.710 0.710 0.701 0.760 0.761 0.760 0.761 0.760 0.761 0.760 0.770 0.710 0.710 0.700 0.666 0.666 0.660 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.	0.000 0.015 0.002 0.002 0.002 0.000 0.002 0.003 0.003 0.003 0.009 0.003 0.021 0.033 0.029 0.001 0.001 0.021 0.021 0.020 0.000 0.001 0.002 0.000 0.001 0.002 0.000 0.001 0.000 0.001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.
sp P23229 65.85 sp 123229 65.85 sp 12636915 sp 12636915 sp 12636915 sp 12636915 sp 1263762 sp 1263762 sp 1263762 sp 1253762 sp 1253762 sp 1263762 sp 1263772 sp 123772.79 sp 1237811.96 sp	65.85 15 15.54 15.54 15.54 15.54 15.54 15.54 22.65 30.09 7.77 18.2 11.35 15.21 13.05 13.22 25.29 4.68 29.18 27.9 9.76 6.13 12.05 11.96 11.96 14.65 6.54 47.15 26.645	38.32 25.09 33.18 31.76 21.05 39.23 26.24 16.85 22.1 16.85 22.1 36.81 36.81 36.81 30.42 30.42 33.48 17.83 30.12 33.48 17.83 30.22 5.07 16.26 30.22 5.07 16.26 30.22 5.07 16.26 5.07 23.34 8.50 27.27 31.15	Integrin alpha-6 OS-Homo sapiens GN-ITCA6 PE-1 SV-5 Poliovirus receptor related protein 2 OS-Homo sapiens GN-PVRL2 PE-1 SV-1 Perligin-3 OS-Homo sapiens GN-PUR3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Homo sapiens GN-ACADVL PE-1 SV-1 Arylsuffastes CS-Homo sapiens GN-ACRA PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 OS-Homo sapiens GN-BLPRS7 PE-1 SV-1 CDL68 antigen OS-Homo sapiens GN-ACRA PE-1 SV-2 CD44 antigen OS-Homo sapiens GN-CD44 PE-1 SV-2 CD44 antigen OS-Homo sapiens GN-CD44 PE-1 SV-2 GN4 antigen OS-Homo sapiens GN-CD44 PE-1 SV-2 Syntam-12 OS-Homo sapiens GN-CD44 PE-1 SV-2 GN4 antigen OS-Homo sapiens GN-CD44 PE-1 SV-2 Epithelial cell adhesion molecule OS-Homo sapiens GN-ECK6 PE-1 SV-2 Epithelial cell adhesion molecule OS-Homo sapiens GN-ECK6 PE-1 SV-2 Cytochrome c oxidase subunit 56. OS-HOmo sapiens GN-ECK6 PE-1 SV-2 Cytochrome c oxidase subunit 65. OS-Homo sapiens GN-CCK6 PE-1 SV-2 Cytochrome c oxidase subunit 65. OS-Homo sapiens GN-ECK6 PE-1 SV-2 Exitable CS-Homo sapiens GN-FK12 PE-1 SV-2 Exitable CS-Homo sapiens GN-FK12 PE-1 SV-2 Exitable CS-Homo sapiens GN-ECK6 PE-1 SV-2 Cytochrome c oxidase subunit 65. OS-Homo sapiens GN-ECK6 PE-1 SV-2 Exitable CS-Homo sapiens GN-FK12 PE-1 SV-2 Exitable CS-Homo sapiens GN-ECK6 PE-1 SV-2 Cytochrome c oxidase subunit 65. OS-Homo sapiens GN-ECK6 PE-1 SV-2 Exitable CS-Homo sapiens GN-FK12 PE-1 SV-2 Exitable CS-Homo sapiens GN-ECK6 PE-1 SV-2 Socenegric receptor class B member 1 OS-Homo sapiens GN-SCARB1 PE-1 SV-3 Res related protein A GS-Homo sapiens GN-FK04 PE-1 SV-2 Syntam-3 OS-Homo sapiens GN-FK12 PE-1 SV-3 Lysosome-associated protein OS-Homo sapiens GN-FK04 PE-1 SV-2 Exitable protein AGS-Homo sapiens GN-FK04 PE-1 SV-2 Exitable protein AGS-Homo sapiens GN-FK04 PE-1 SV-3 Lysosome-associated protein OS-Homo sapiens GN-FK04 PE-1 SV-3 Lysosome-asso	0.764 0.763 0.763 0.763 0.760 0.755 0.754 0.753 0.753 0.754 0.753 0.751 0.751 0.751 0.747 0.751 0.747 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.753 0.725 0.720 0.751 0.720 0.717 0.710 0.710 0.710 0.709 0.709 0.701 0.684 0.666 0.666 0.666 0.658 0.558 0.758 0.758 0.758 0.759 0.751 0.752 0.751 0.751 0.752 0.751 0.752 0.751 0.752 0.	0.000 0.015 0.002 0.002 0.002 0.002 0.001 0.002 0.003 0.002 0.009 0.003 0.021 0.030 0.029 0.001 0.029 0.001 0.029 0.001 0.023 0.021 0.023 0.002 0.000 0.006 0.006 0.006 0.006 0.006 0.006 0.002 0.006 0.006 0.006 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000
sp P23229 65.85 sp C3060515 sp C3066415.54 sp P49743 26.61 sp P5150014.91 sp P1627030.09 sp C307871.32 sp P1627030.09 sp C307871.32 sp P1627030.09 sp C307871.32 sp P1628721.32 sp P162871.32 sp P162871.32 sp P162871.32 sp P163033.62 sp P16431.22 sp P102825212.61 sp P1036913.62 sp Q3044318.05 sp Q3040229.18 sp Q30402321.83 sp Q3040232.12.65 sp Q3040234.83 sp Q3040234.83 sp Q30404.83 sp Q30414.6.13 sp Q3081311.96 sp Q308347.15 sp Q308347.15	65.85 15 15.54 15.54 15.54 15.54 15.54 15.54 26.65 14.91 22.02 27.75 30.09 7.77 18.2 11.35 11.35 13.05 18.62 31.22 5.29 4.68 2.79 9.76 6.13 12.05 11.96 14.65 6.54 47.15% 26.46	$\begin{array}{r} 38.32\\ 33.18\\ 31.76\\ 21.05\\ 39.23\\ 22.02\\ 39.23\\ 22.1\\ 36.81\\ 11.99\\ 30.42\\ 39.49\\ 50.67\\ 44.96\\ 30.12\\ 33.48\\ 30.42\\ 33.48\\ 30.12\\ 33.48\\ 30.12\\ 33.48\\ 30.12\\ 33.48\\ 11.99\\ 30.12\\ 33.48\\ 11.99\\ 17.83\\ 11.98\\ 12.94\\ 51.48\\ 45.18\\ 11.98\\ 27.27\\ 31.16\\ 47\\ 42.48\\ \end{array}$	Integrin alpha-6 OS-Homo sapiens GN-ITCA6 PE-1 SV-5 Perlikpin-3 OS-Homo sapiens GN-PUN3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Homo sapiens GN-ACADVL PE-1 SV-1 Arylsuffaste SC SS-Homo sapiens GN-PEUR5 PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 OS-Homo sapiens GN-DHRS7 PE-1 SV-1 CDL56 antigen OS-Homo sapiens GN-ACEA PE-1 SV-2 CDL56 antigen OS-Homo sapiens GN-ACEA PE-1 SV-3 Syntaxin 12 OS-Homo sapiens GN-ACEA PE-1 SV-2 CDL4 antigen OS-Homo sapiens GN-PEUR5 PE-1 SV-3 Nicastrin OS-Homo sapiens GN-PEUR5 PE-1 SV-3 Nicastrin OS-Homo sapiens GN-NCSTN PE-1 SV-2 Epithelia Cell adhesion molecule OS-Homo sapiens GN-PEUR5 PE-1 SV-3 Nicastrin OS-Homo sapiens GN-NCSTN PE-1 SV-2 Epithelia Cell adhesion molecule OS-Homo sapiens GN-PEUR5 PE-1 SV-3 Nicastrin OS-Homo sapiens GN-NCSTN PE-1 SV-2 Epithelia Cell adhesion molecule OS-Homo sapiens GN-PCAM PE-1 SV-2 Cytochrome c-oxidase ubunit 6C OS-Homo sapiens GN-PCAM PE-1 SV-2 Far upstream element-binding protein 1 OS-Homo sapiens GN-SCAREJ PE-1 SV-2 Far upstream element-binding protein 1 OS-Homo sapiens GN-SCAREJ PE-1 SV-3 Protein FAM3C OS-Homo sapiens GN-FAM3C PE-1 SV-2 Scavenger receptor class B member 1 OS-Homo sapiens GN-SCAREJ PE-1 SV-3 Adipocyte plasma membrane-associated protein OS-Homo sapiens GN-SCAREJ PE-1 SV-1 Adipocyte plasma membrane-associated protein OS-Homo sapiens GN-SCAREJ PE-1 SV-2 Syntaxin 3 OS-Homo sapiens GN-STA PE-1 SV-2 Syntaxin 3 OS-Homo sapiens GN-STA PE-1 SV-3 Peptidy-prot/i ds-trans isomerase FKBP11 OS-Homo sapiens GN-AMAPI PE-1 SV-3 Peptidy-prot/i ds-trans isomerase FKBP11 OS-Homo sapiens GN-AMAPI PE-1 SV-3 Peptidy-prot/i ds-trans isomerase FKBP11 OS-Homo sapiens GN-AMAPI PE-1 SV-3 Peptidy-prot/i ds-trans isomerase FKBP11 OS-Homo sapiens GN-MARX PE-1 SV-3 Peptidy-prot/i ds-trans isomerase FKBP11 OS-Homo sapiens GN-MARX PE-1 SV-3 Mintlin, mitochondrial OS-Homo sapiens GN-MARX PE-1 SV-3 Mintlin, mitochondrial OS-Homo sapiens GN-MARX PE-1 SV-4 Garcinoembryonic antigen-related cel	0.764 0.764 0.763 0.762 0.760 0.759 0.754 0.754 0.754 0.754 0.751 0.751 0.751 0.751 0.751 0.747 0.747 0.746 0.742 0.754 0.752 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.740 0.740 0.759 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.742 0.742 0.740 0.750 0.650 0.656 0.652 0.652 0.652 0.654 0.652 0.654 0.652 0.654 0.654 0.652 0.654 0.654 0.652 0.654 0.655 0.	0.000 0.015 0.002 0.002 0.002 0.000 0.002 0.003 0.003 0.003 0.003 0.021 0.003 0.021 0.003 0.021 0.000 0.001 0.000 0.001 0.000 0.002 0.000 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.000 0.
sp P23229 65.85 sp 123229 65.85 sp 12636915 sp 12636915 sp 12636915 sp 12636915 sp 12637612 sp 1263762 sp 1263762 sp 1253762 sp 1253762 sp 1263762 sp 1263762 sp 1263762 sp 1263763 sp 126376362 sp 126376362 sp 126376362 sp 126376362 sp 126376362 sp 126376362 sp 1263772.79 sp 123772.79 sp 1205857212.05	65.85 15 15.54 15.54 15.54 15.54 15.54 15.54 22.65 30.09 7.77 18.2 11.35 15.21 13.05 13.22 25.29 4.68 29.18 27.9 9.76 6.13 12.05 11.96 11.96 14.65 6.54 47.15 26.645	38.32 25.09 33.18 31.76 21.05 39.23 26.24 16.85 22.1 16.85 22.1 36.81 36.81 36.81 30.42 30.42 33.48 17.83 30.12 33.48 17.83 30.22 5.07 16.26 30.22 5.07 16.26 30.22 5.07 16.26 5.07 23.34 8.50 27.27 31.15	Integrin alpha-6 OS-Homo sapiens GN-ITCA6 PE-1 SV-5 Poliovirus receptor related protein 2 OS-Homo sapiens GN-PVRL2 PE-1 SV-1 Perligin-3 OS-Homo sapiens GN-PUR3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Homo sapiens GN-ACADVL PE-1 SV-1 Arylsuffastes CS-Homo sapiens GN-ACRA PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 OS-Homo sapiens GN-BLPRS7 PE-1 SV-1 CDL68 antigen OS-Homo sapiens GN-ACRA PE-1 SV-2 CD44 antigen OS-Homo sapiens GN-CD44 PE-1 SV-2 CD44 antigen OS-Homo sapiens GN-CD44 PE-1 SV-2 GN4 antigen OS-Homo sapiens GN-CD44 PE-1 SV-2 Syntam-12 OS-Homo sapiens GN-CD44 PE-1 SV-2 GN4 antigen OS-Homo sapiens GN-CD44 PE-1 SV-2 Epithelial cell adhesion molecule OS-Homo sapiens GN-ECK6 PE-1 SV-2 Epithelial cell adhesion molecule OS-Homo sapiens GN-ECK6 PE-1 SV-2 Cytochrome c oxidase subunit 56. OS-HOmo sapiens GN-ECK6 PE-1 SV-2 Cytochrome c oxidase subunit 65. OS-Homo sapiens GN-CCK6 PE-1 SV-2 Cytochrome c oxidase subunit 65. OS-Homo sapiens GN-ECK6 PE-1 SV-2 Exitable CS-Homo sapiens GN-FK12 PE-1 SV-2 Exitable CS-Homo sapiens GN-FK12 PE-1 SV-2 Exitable CS-Homo sapiens GN-ECK6 PE-1 SV-2 Cytochrome c oxidase subunit 65. OS-Homo sapiens GN-ECK6 PE-1 SV-2 Exitable CS-Homo sapiens GN-FK12 PE-1 SV-2 Exitable CS-Homo sapiens GN-ECK6 PE-1 SV-2 Cytochrome c oxidase subunit 65. OS-Homo sapiens GN-ECK6 PE-1 SV-2 Exitable CS-Homo sapiens GN-FK12 PE-1 SV-2 Exitable CS-Homo sapiens GN-ECK6 PE-1 SV-2 Socenegric receptor class B member 1 OS-Homo sapiens GN-SCARB1 PE-1 SV-3 Res related protein A GS-Homo sapiens GN-FK04 PE-1 SV-2 Syntam-3 OS-Homo sapiens GN-FK12 PE-1 SV-3 Lysosome-associated protein OS-Homo sapiens GN-FK04 PE-1 SV-2 Exitable protein AGS-Homo sapiens GN-FK04 PE-1 SV-2 Exitable protein AGS-Homo sapiens GN-FK04 PE-1 SV-3 Lysosome-associated protein OS-Homo sapiens GN-FK04 PE-1 SV-3 Lysosome-asso	0.764 0.763 0.763 0.763 0.760 0.755 0.754 0.753 0.753 0.754 0.753 0.751 0.751 0.751 0.747 0.751 0.747 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.753 0.725 0.720 0.751 0.720 0.717 0.710 0.710 0.710 0.709 0.709 0.701 0.684 0.666 0.666 0.666 0.658 0.558 0.758 0.758 0.758 0.759 0.751 0.752 0.751 0.751 0.752 0.751 0.752 0.751 0.752 0.	0.000 0.015 0.002 0.002 0.002 0.002 0.001 0.002 0.003 0.002 0.009 0.003 0.021 0.030 0.029 0.001 0.029 0.001 0.029 0.001 0.023 0.021 0.023 0.002 0.000 0.006 0.006 0.006 0.006 0.006 0.006 0.002 0.006 0.006 0.006 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000
sp P23229 65.85 sp C3060515 sp C3066415.54 sp P49743 26.61 sp P5150014.91 sp P1627030.09 sp C307871.32 sp P1627030.09 sp C307871.32 sp P1627030.09 sp C307871.32 sp P1628721.32 sp P162871.32 sp P162871.32 sp P162871.32 sp P163033.62 sp P16431.22 sp P102825212.61 sp P1036913.62 sp Q3044318.05 sp Q3040229.18 sp Q30402321.83 sp Q3040232.12.65 sp Q3040234.83 sp Q3040234.83 sp Q30404.83 sp Q30414.6.13 sp Q3081311.96 sp Q308347.15 sp Q308347.15	$\begin{array}{r} 65.85\\ 15\\ 15\\ 15\\ 14\\ 26.65\\ 27.75\\ 30.09\\ 7.77\\ 11.35\\ 12.27\\ 30.09\\ 7.77\\ 11.35\\ 11.23\\ 11.23\\ 12.275\\ 11.36\\ 22.75\\ 11.36\\ 29.18\\ 29.18\\ 20.6\\ 11.26\\ 11.26\\ 11.26\\ 11.26\\ 11.26\\ 11.26\\ 11.26\\ 11.26\\ 11.26\\ 24.68\\ 24.08\\ 24.08\\ 24.08\\ 24.05\\ 23.25\\ 5.55\\ 5.55\\ \end{array}$	$\begin{array}{r} 38.32\\ 33.18\\ 31.76\\ 21.05\\ 39.23\\ 22.02\\ 39.23\\ 22.1\\ 36.81\\ 11.99\\ 30.42\\ 39.49\\ 50.67\\ 44.96\\ 30.12\\ 33.48\\ 30.42\\ 33.48\\ 30.12\\ 33.48\\ 30.12\\ 33.48\\ 30.12\\ 33.48\\ 11.99\\ 30.12\\ 33.48\\ 11.99\\ 17.83\\ 11.98\\ 12.94\\ 51.48\\ 45.18\\ 11.98\\ 27.27\\ 31.16\\ 47\\ 42.48\\ \end{array}$	Integrin alpha-6 OS-Homo saplens GN-FICA6 PE-1 SV-5 Perlikpin-3 OS-Homo saplens GN-PUN3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Homo saplens GN-ACADVL PE-1 SV-1 Arylsuffaste S OS-Homo saplens GN-PUN3 PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 OS-Homo saplens GN-DHRS7 PE-1 SV-1 CDL56 antigen OS-Homo saplens GN-ACAD PE-1 SV-2 CDL64 antigen OS-Homo saplens GN-ACAD PE-1 SV-3 Syntaxin-12 OS-Homo saplens GN-ACAD PE-1 SV-3 Syntaxin-12 OS-Homo saplens GN-ACAD PE-1 SV-3 Syntaxin-12 OS-Homo saplens GN-PUN3 PE-1 SV-3 Epithelia Cell adhesion molecule OS-Homo saplens GN-PDR PE-1 SV-3 Nicastrin OS-Homo saplens GN-NCSIN PE-1 SV-2 Epithelia Cell adhesion molecule OS-Homo saplens GN-PCAD PE-1 SV-3 Nicastrin OS-Homo saplens GN-NCSIN PE-1 SV-2 Cytachrome co-diades ubunit 6 CO-SHomo saplens GN-PCAD PE-1 SV-3 Protein FAM3C COS-Homo saplens GN-FAM3C PE-1 SV-2 Cytachrome co-diades ubunit 6 CO-SHomo saplens GN-FCAD PE-1 SV-2 Far upstream element-hinding protein 1 OS-Homo saplens GN-COX6C PE-1 SV-2 Scavenger receptor class B member 1 OS-Homo saplens GN-SCARB1 PE-1 SV-2 Scavenger receptor class B member 1 OS-Homo saplens GN-SCARB1 PE-1 SV-2 Scavenger receptor class B member 1 OS-Homo saplens GN-SCARB1 PE-1 SV-1 Adipocyte plasma membrane-associated protein OS-Homo saplens GN-MAMP PE-1 SV-3 Lysosme-associated membrane glycoprotein 1 OS-Homo saplens GN-MAMP PE-1 SV-3 Lysosme-associated membrane glycoprotein 1 OS-Homo saplens GN-MAM2 PE-1 SV-3 Lysosme-associated membrane glycoprotein 1 OS-Homo saplens GN-MAM2 PE-1 SV-3 Lysosme-associated membrane glycoprotein 1 OS-Homo saplens GN-MAM2 PE-1 SV-3 Lysosme-associated membrane glycoprotein 1 OS-Homo saplens GN-MARX PE-1 SV-4 Carritine OpalmitoyHrandferze 7 OS-	0.764 0.764 0.763 0.762 0.760 0.759 0.754 0.754 0.754 0.754 0.751 0.751 0.751 0.751 0.751 0.747 0.747 0.746 0.742 0.754 0.752 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.740 0.740 0.759 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.742 0.742 0.740 0.750 0.650 0.656 0.652 0.652 0.652 0.654 0.652 0.654 0.652 0.654 0.654 0.652 0.654 0.654 0.652 0.654 0.655 0.	0.000 0.015 0.002 0.002 0.002 0.000 0.002 0.003 0.003 0.003 0.003 0.021 0.003 0.021 0.003 0.021 0.000 0.001 0.000 0.001 0.000 0.002 0.000 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.000 0.
sp P23229 65.85 sp 123229 65.85 sp 12636915 sp 12636915 sp 12636915 sp 12636915 sp 12637612 sp 1263762 sp 1263762 sp 1253762 sp 1253762 sp 1263762 sp 1263762 sp 1263762 sp 1263763 sp 126376362 sp 126376362 sp 126376362 sp 126376362 sp 126376362 sp 126376362 sp 1263772.79 sp 123772.79 sp 1205857212.05	65.85 15.54 15.54 26.65 22.75 30.09 7.77 11.35 12.22 11.35 13.22 11.35 13.62 13.12 12.64 12.05 12.	38.32 25.09 33.18 31.76 21.76 21.76 21.76 22.1 39.23 26.24 16.85 22.1 16.85 22.1 36.81 30.42 30.42 30.42 30.42 30.42 33.48 17.83 38.22 5.19 17.99 23.38 12.94 51.48 51.48 51.48 51.48 51.48 47 42.48 45.18	Integrin alpha-6 OS-Homo sapiens GN-FICA6 PE-1 SV-5 Poliovius receptor related protein 2 OS-Homo sapiens GN-PUR2 PE-1 SV-1 Perlipin-3 OS-Homo sapiens GN-PUR3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Homo sapiens GN-ACADVL PE-1 SV-1 Arylsuffastes CS-Homo sapiens GN-PUR3 PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 OS-Homo sapiens GN-DHBS7 PE-1 SV-1 CD156 antigen OS-Homo sapiens GN-CD44 PE-1 SV-2 CD44 antigen OS-Homo sapiens GN-CD44 PE-1 SV-2 CD44 antigen OS-Homo sapiens GN-STX12 PE-1 SV-1 GO SHomo sapiens GN-STX12 PE-1 SV-2 CD44 antigen OS-Homo sapiens GN-STX12 PE-1 SV-3 Nicastrin OS-Homo sapiens GN-STX12 PE-1 SV-3 Nicastrin OS-Homo sapiens GN-STX12 PE-1 SV-2 Cytochrome c oxidase subunt 56 OS-Homo sapiens GN-ECX64 PE-1 SV-3 Cytochrome c oxidase subunt 56 OS-Homo sapiens GN-ECX64 PE-1 SV-2 Cytochrome c oxidase subunt 56 OS-Homo sapiens GN-ECX64 PE-1 SV-2 Cytochrome c oxidase subunt 56 OS-Homo sapiens GN-ECX66 PE-1 SV-2 Cytochrome c oxidase subunt 56 OS-Homo sapiens GN-SCARB1 PE-1 SV-2 Cytochrome c oxidase subunt 56 OS-Homo sapiens GN-ECX66 PE-1 SV-2 Cytochrome c oxidase subunt 56 OS-Homo sapiens GN-ECX66 PE-1 SV-2 Cytochrome c oxidase subunt 56 OS-Homo sapiens GN-ECX66 PE-1 SV-2 Cytochrome c oxidase subunt 56 OS-Homo sapiens GN-ECX66 PE-1 SV-2 Cytochrome c oxidase subunt 56 OS-Homo sapiens GN-ECX66 PE-1 SV-2 Cytochrome c oxidase subunt 56 OS-Homo sapiens GN-ECX66 PE-1 SV-2 Cytochrome c oxidase subunt 56 OS-Homo sapiens GN-ECX66 PE-1 SV-2 Cytochrome c oxidase subunt 56 OS-Homo sapiens GN-ECX66 PE-1 SV-2 Cytochrome c oxidase subunt 56 OS-Homo sapiens GN-SCARB1 PE-1 SV-3 Protein FAM3C CS-Homo sapiens GN-SCARB1 PE-1 SV-3 Protein Rab-24 OS-Homo sapiens GN-EXAB24 PE-1 SV-1 Ras-related protein Rab-24 OS-Homo sapiens GN-EXAB24 PE-1 SV-1 Ras-related protein Rab-24 OS-Homo sapiens GN-EXAB1 PE-1 SV-2 Syntam-3 OS-Homo sapiens GN-SCARB1 PE-1 SV-3 Pertidylprolyl ds-trans isomerase FKBP11 OS-Homo sapiens GN-HAM24 PE-1 SV-3 Pertidylprolyl ds-trans isomerase FKBP11 SN-100 SAPIens GN-EXA	0.764 0.763 0.763 0.763 0.763 0.760 0.759 0.754 0.753 0.754 0.752 0.751 0.751 0.751 0.744 0.742 0.744 0.742 0.742 0.744 0.742 0.742 0.744 0.742 0.744 0.742 0.744 0.742 0.744	0.000 0.015 0.000 0.002 0.002 0.002 0.001 0.002 0.003 0.021 0.009 0.003 0.021 0.030 0.029 0.001 0.029 0.001 0.029 0.001 0.020 0.001 0.021 0.023 0.021 0.023 0.023 0.002 0.000 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
sp P23229 65.85 sp Q260715 sp Q260715 sp Q260715 sp Q260715 sp Q260715 sp P14974826.61 sp P14974826.61 sp P14074326.71 sp P1607030.09 sp Q254211.35 sp P1407422.75 sp P1262721.32 sp P1262721.35 sp P126301.43.22 sp P126322.75 sp P126321.25 sp P130561.36.2 sp P1263212.25 sp Q254211.35 sp Q264431.22 sp Q264448 sp Q263212.67 sp Q263212.67 sp Q263212.67 sp Q26324.48 sp Q26324.48 sp Q26324.63 sp Q26324.63 sp Q26324.64 sp <t< td=""><td>$\begin{array}{r} 65.85\\ 15\\ 15\\ 15\\ 14\\ 26.65\\ 27.75\\ 30.09\\ 7.77\\ 11.35\\ 12.27\\ 30.09\\ 7.77\\ 11.35\\ 11.23\\ 11.23\\ 12.275\\ 11.36\\ 22.75\\ 11.36\\ 29.18\\ 29.18\\ 20.6\\ 11.26\\ 11.26\\ 11.26\\ 11.26\\ 11.26\\ 11.26\\ 11.26\\ 11.26\\ 11.26\\ 24.68\\ 24.08\\ 24.08\\ 24.08\\ 24.05\\ 23.25\\ 5.55\\ 5.55\\ \end{array}$</td><td>38.32 25.09 33.18 31.76 21.05 39.23 26.24 16.85 22.1 16.85 22.1 16.85 22.1 39.49 50.67 44.96 30.12 33.48 50.07 17.99 23.38 5.077 16.26 5.19 17.99 23.38 5.19 17.99 23.38 5.19 17.99 23.38 5.19 17.99 23.38 5.19 12.94 51.48 45.18 11.98 27.27 31.16 47 42.48 15.882 5.882</td><td>Integrin alpha-6 OS-Homo sapiens GN-FICA6 PE-1 SV-5 Perlikpin 3 OS-Homo sapiens GN-PUN3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Homo sapiens GN-ACADVL PE-1 SV-1 Aryludifaste S OS-Homo sapiens GN-PUN3 PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 OS-Homo sapiens GN-DHRS7 PE-1 SV-1 CDL56 antigen OS-Homo sapiens GN-M2KE PE-1 SV-2 CDL46 antigen OS-Homo sapiens GN-M2KE PE-1 SV-3 CDL56 antigen OS-Homo sapiens GN-M2KE PE-1 SV-1 605 ribosomal protein L6 OS-Homo sapiens GN-PUN2 PE-1 SV-3 Nicastrin OS-Homo sapiens GN-NCSIN PF-1 SV-2 Cpt4 antigen OS-Homo sapiens GN-M2KE PE-1 SV-1 605 ribosomal protein L6 OS-Homo sapiens GN-ECMA PE-1 SV-2 Cytachrome co-didaese ubunit 6 COS-Homo sapiens GN-ECMA PE-1 SV-2 Cytachrome co-didaese ubunit 6 COS-Homo sapiens GN-ECMA PE-1 SV-2 Far upstream element-binding protein 1:0S-Homo sapiens GN-COXEC PE-1 SV-3 Protein FAM2 COS-Homo sapiens GN-M2KE PE-1 SV-2 Startenger receptor class B member 1:0S-Homo sapiens GN-COXEC PE-1 SV-2 Startenger receptor class B member 1:0S-Homo sapiens GN-CARE PE-1 SV-1 Ras-related protein B-12 GS-Homo sapiens GN-FAD2 PE-1 SV-1 Adipocyte plasma membrane-associated protein 0S-Homo sapiens GN-CARE PE-1 SV-1 Ras-related protein B-12 GS-Homo sapiens GN-FAD2 PE-1 SV-1 Ras-related protein DS-Homo sapiens GN-FAD2 PE-1 SV-2 Perityl-proh dS-Homo sapiens GN-HAUDUF PE-1 SV-3 Perityl-proh dS-Homo sapiens GN-FAD1 PE-1 SV-3 Perityl-proh dS-Homo sapiens GN-FAD2 PE-1 SV-3 Ras-related</td><td>0.764 0.764 0.763 0.762 0.760 0.759 0.754 0.753 0.754 0.753 0.751 0.751 0.747 0.746 0.747 0.746 0.742 0.752 0.751 0.752 0.</td><td>0.000 0.015 0.015 0.002 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.003 0.003 0.021 0.030 0.021 0.001 0.002 0.001 0.001 0.001 0.002 0.003 0.004 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.001 0.004 0.002 0.000 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002</td></t<>	$\begin{array}{r} 65.85\\ 15\\ 15\\ 15\\ 14\\ 26.65\\ 27.75\\ 30.09\\ 7.77\\ 11.35\\ 12.27\\ 30.09\\ 7.77\\ 11.35\\ 11.23\\ 11.23\\ 12.275\\ 11.36\\ 22.75\\ 11.36\\ 29.18\\ 29.18\\ 20.6\\ 11.26\\ 11.26\\ 11.26\\ 11.26\\ 11.26\\ 11.26\\ 11.26\\ 11.26\\ 11.26\\ 24.68\\ 24.08\\ 24.08\\ 24.08\\ 24.05\\ 23.25\\ 5.55\\ 5.55\\ \end{array}$	38.32 25.09 33.18 31.76 21.05 39.23 26.24 16.85 22.1 16.85 22.1 16.85 22.1 39.49 50.67 44.96 30.12 33.48 50.07 17.99 23.38 5.077 16.26 5.19 17.99 23.38 5.19 17.99 23.38 5.19 17.99 23.38 5.19 17.99 23.38 5.19 12.94 51.48 45.18 11.98 27.27 31.16 47 42.48 15.882 5.882	Integrin alpha-6 OS-Homo sapiens GN-FICA6 PE-1 SV-5 Perlikpin 3 OS-Homo sapiens GN-PUN3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Homo sapiens GN-ACADVL PE-1 SV-1 Aryludifaste S OS-Homo sapiens GN-PUN3 PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 OS-Homo sapiens GN-DHRS7 PE-1 SV-1 CDL56 antigen OS-Homo sapiens GN-M2KE PE-1 SV-2 CDL46 antigen OS-Homo sapiens GN-M2KE PE-1 SV-3 CDL56 antigen OS-Homo sapiens GN-M2KE PE-1 SV-1 605 ribosomal protein L6 OS-Homo sapiens GN-PUN2 PE-1 SV-3 Nicastrin OS-Homo sapiens GN-NCSIN PF-1 SV-2 Cpt4 antigen OS-Homo sapiens GN-M2KE PE-1 SV-1 605 ribosomal protein L6 OS-Homo sapiens GN-ECMA PE-1 SV-2 Cytachrome co-didaese ubunit 6 COS-Homo sapiens GN-ECMA PE-1 SV-2 Cytachrome co-didaese ubunit 6 COS-Homo sapiens GN-ECMA PE-1 SV-2 Far upstream element-binding protein 1:0S-Homo sapiens GN-COXEC PE-1 SV-3 Protein FAM2 COS-Homo sapiens GN-M2KE PE-1 SV-2 Startenger receptor class B member 1:0S-Homo sapiens GN-COXEC PE-1 SV-2 Startenger receptor class B member 1:0S-Homo sapiens GN-CARE PE-1 SV-1 Ras-related protein B-12 GS-Homo sapiens GN-FAD2 PE-1 SV-1 Adipocyte plasma membrane-associated protein 0S-Homo sapiens GN-CARE PE-1 SV-1 Ras-related protein B-12 GS-Homo sapiens GN-FAD2 PE-1 SV-1 Ras-related protein DS-Homo sapiens GN-FAD2 PE-1 SV-2 Perityl-proh dS-Homo sapiens GN-HAUDUF PE-1 SV-3 Perityl-proh dS-Homo sapiens GN-FAD1 PE-1 SV-3 Perityl-proh dS-Homo sapiens GN-FAD2 PE-1 SV-3 Ras-related	0.764 0.764 0.763 0.762 0.760 0.759 0.754 0.753 0.754 0.753 0.751 0.751 0.747 0.746 0.747 0.746 0.742 0.752 0.751 0.752 0.	0.000 0.015 0.015 0.002 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.003 0.003 0.021 0.030 0.021 0.001 0.002 0.001 0.001 0.001 0.002 0.003 0.004 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.001 0.004 0.002 0.000 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
sp P23229 65.85 sp Q260715 sp Q260715 sp Q260715 sp Q260715 sp Q260715 sp Q260715 sp P15070312 sp P1507030.09 sp Q2524211.35 sp P1607030.09 sp Q2524211.35 sp P1607030.09 sp P16272.75 sp P1607030.09 sp P1626212.521 sp P1626212.521 sp P1626313.62 sp P12696313.05 sp P1269613.62 sp P1269212.67 sp P1269212.67 sp P1269212.67 sp P12799.78 sp P12799.78 sp P12799.72 sp P12799.72 sp P12799.72 sp P12799.72 sp P1237852.64.45 sp	65.85 15 15 16.54 26.65 17.77 30.09 7.77 13.05 18.2 13.05 18.2 13.05 18.2 13.05 18.62 31.22 12.69 2.79 12.69 9.76 6.13 12.05 11.96 6.12 2.04.65 6.54 44.65 6.54 5.55 6.2 5.55	38.32 25.09 33.18 31.76 21.05 39.23 26.24 16.85 22.1 16.85 22.1 16.85 22.1 10.99 39.49 50.67 44.96 30.12 30.42 30.42 50.67 44.96 30.12 30.42 51.9 17.93 38.22 5.19 17.93 23.38 11.99 23.38 50.72 16.25 5.19 17.93 17.83 38.22 5.19 17.93 17.93 16.25 5.19 17.93 17.93 11.99 23.38 11.99 23.34 50.67 44.96 51.62 51.91 17.83 11.99 23.38 50.72 16.25 51.91 17.83 11.99 23.38 12.94 51.62 51.91 17.83 11.99 23.38 12.94 15.45 11.99 23.38 12.94 15.45 15.95 17.93 17.93 11.99 23.38 12.94 15.95 17.93 17.93 17.93 11.99 23.38 11.99 23.38 15.97 17.93 15.97 17.93 15.97 17.93 15.97 17.93 15.97 17.93 15.97 17.93 15.97 17.93 15.97 17.93 15.97 17.93 15.97 17.93 15.99 17.93 11.99 23.38 11.99 23.38 11.99 23.38 11.99 23.38 11.99 23.38 11.99 23.38 11.99 23.38 27.79 23.38 11.99 23.38 27.79 23.38 27.79 23.38 27.79 23.38 27.79 23.38 27.79 23.38 27.79 23.38 27.79 23.38 27.79 23.48 27.79 23.48 27.79 23.48 27.79 23.38 27.79 23.38 27.79 23.38 27.79 23.38 27.79 23.38 27.79 23.38 27.79 23.16 26 27.79 23.38 27.79 23.38 27.79 23.38 27.79 23.15 25.42 27.79 25.42 27.79 25.42 27.79	Integrin alpha-6 05-Homo sapiens GN-FICA6 PE-1 SV-5 Perlilopins corport-related groups of APSUP 1992 PE-1 SV-1 Perlilopins 105-Homo sapiens GN-PEUR3 PE-1 SV-3 Very long-chain specific asyl-CaA dehydrogenase, mitochondrial OS-Homo sapiens GN-ACADVL PE-1 SV-1 Aryludifaste S OS-Homo sapiens GN-PEUR5 PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 05-Homo sapiens GN-DHRS7 PE-1 SV-1 CDL56 antigen OS-Homo sapiens GN-M2KE PE-1 SV-2 CDL46 antigen OS-Homo sapiens GN-M2KE PE-1 SV-1 GDL56 antigen OS-Homo sapiens GN-M2KE PE-1 SV-3 Very long-S-Homo sapiens GN-M2KE PE-1 SV-3 CDL46 antigen OS-Homo sapiens GN-STA2 PE-1 SV-1 605 ribosomal protein L6 OS-Homo sapiens GN-EQKE PE-1 SV-3 Nicastrin OS-Homo sapiens GN-STA2 PE-1 SV-2 Cytachrome co-didaes ubunit 6C OS-Homo sapiens GN-ECXEK PE-1 SV-3 Protein FAM2 GS-Homo sapiens GN-M2KE PE-1 SV-3 Protein FAM2 GS-Homo sapiens GN-M2KE DS-Homo sapiens GN-CXEK PE-1 SV-2 Cytachrome co-didaes ubunit 6C OS-Homo sapiens GN-ECXEK PE-1 SV-3 Protein FAM2 GS-Homo sapiens GN-M2KE PE-1 SV-2 Far upstream element-hinding protein 1:0S-Homo sapiens GN-CXEK PE-1 SV-2 Far upstream element-hinding protein 1:0S-Homo sapiens GN-CXEK PE-1 SV-1 Ras related protein B:0A-40C FB-1 SV-3 Scavenger receptor class B member 1:0S-Homo sapiens GN-CARB1 PE-1 SV-1 Ras related protein B:0A-30C FM-FIS SV-3 Lysoome-associated membrane associated protein 0S-Homo sapiens GN-CARB1 PE-1 SV-2 Lysoame-associated membrane SKP91 10S-Homo sapiens GN-CARB1 PE-1 SV-3 Hysoame-associated membrane SKP91 10S-Homo sapiens GN	0.764 0.764 0.763 0.762 0.752 0.755 0.755 0.754 0.753 0.754 0.753 0.751 0.751 0.751 0.747 0.747 0.747 0.747 0.747 0.742 0.742 0.742 0.742 0.742 0.737 0.729 0.729 0.729 0.729 0.729 0.729 0.720 0.729 0.720 0.729 0.720 0.729 0.720 0.729 0.720 0.720 0.729 0.720 0.666 0.666 0.662 0.652 0.652 0.6510 0.55100 0.55100 0.55100 0.55100 0.	0.000 0.015 0.002 0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.003 0.004 0.005 0.007 0.008 0.009 0.021 0.030 0.021 0.020 0.001 0.021 0.023 0.021 0.023 0.004 0.005 0.006 0.006 0.006 0.006 0.001 0.002 0.004 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.003 0.004 0.000 0.001 0.002 0.003
sp P23229 65.85 sp C3060215 sp C6066415.54 sp P6306145.54 sp P6306145.54 sp P5150014.91 sp P630722.75 sp P1017030.09 sp P20254211.35 sp P10422.75 sp P104518.32 sp P106618.62 sp Q29524212.67 sp Q2952448.83 sp Q20324.83 sp Q213272.79 sp Q203448.33 sp Q203448.35 sp Q20344.83 sp <	65.85 15 15 15 14.91 22.02 23.039 7.77 18.2 11.35 15.21 13.2 13.3 15.21 13.05 13.05 2.29.13 2.29.13 2.29.13 2.29.13 2.29.13 2.29.13 2.29.13 2.29.13 2.29.13 2.29.13 2.29.13 2.29.13 2.29.14 2.79 9.76 6.13 11.36 12.05 5.54 47.15 26.65 2.2405 5.55 42.34 2.26	38.32 25.09 33.18 31.76 21.76 21.76 23.28 26.24 16.85 22.1 36.81 11.99 39.49 39.49 39.49 39.49 39.49 30.12 33.48 17.83 30.12 33.48 17.83 38.22 5.07 16.26 33.48 17.83 38.22 5.07 16.26 33.48 17.83 38.22 5.07 16.26 39.49 5.072 16.26 5.072 16.26 5.072 16.26 5.072 16.26 5.072 16.26 5.072 16.26 5.072 16.26 5.072 16.26 5.072 16.26 5.072 16.26 5.072 16.26 5.072 16.26 5.072 16.26 5.072 15.38 22.38 12.94 51.48 27.27 31.16 47 47 42.48 15.485 5.882 5.427 14.77 15.75 15.7	Integrin alpha-6 OS-Homo sapiens GN-FICA6 PE-1 SV-5 Perlikpin-3 OS-Homo sapiens GN-FUN3 PE-1 SV-3 Very long-chain specific cayl-CoA dehydrogenase, mitochondrial OS-Homo sapiens GN-ACADVL PE-1 SV-1 Arylsuffaste SC SS-Homo sapiens GN-PEUR3 PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 OS-Homo sapiens GN-DHBS7 PE-1 SV-1 CD156 antigen OS-Homo sapiens GN-ACAD PE-1 SV-2 CD44 antigen OS-Homo sapiens GN-ACAD PE-1 SV-2 CD44 antigen OS-Homo sapiens GN-ACAD PE-1 SV-2 CD44 antigen OS-Homo sapiens GN-STX12 PE-1 SV-3 Syntam-12 OS-Homo sapiens GN-STX12 PE-1 SV-2 Ephthelia Cell adhesion molecule OS-Homo sapiens GN-PEAD PE-1 SV-3 Nicastrin OS-Homo sapiens GN-STX12 PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-FCDAD PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-FCDAD PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-FCDAD PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-FCDAD PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-FCDAD PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-FCDAD PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-FCDAD PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-FCDAD PE-1 SV-3 Protein FAM3C CS-Homo sapiens GN-HOM2 PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-FCDAD PE-1 SV-3 Protein FAM3C CS-Homo sapiens GN-FCAD PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-FCAD PE-1 SV-3 Protein FAM3C CS-Homo sapiens GN-FCAD PE-1 SV-3 Protein FAM3C CS-Homo sapiens GN-FCAD PE-1 SV-1 Adipcxte plasma membrane-associated protein CS-Homo sapiens GN-FCAD PE-1 SV-3 Protein Rb-2 AG2 SH-Homo sapiens GN-FCAD PE-1 SV-1 Adipcxte plasma membrane-associated protein CS-Homo sapiens GN-ADMAP PE-1 SV-3 Peptidylprohl dis-trans isomerase FKBP11 OS-Homo sapiens GN-HAM2 PE-1 SV-3 Peptidylprohl dis-trans isomerase FKBP11 OS-Homo sapiens GN-HAM2 PE-1 SV-3 Peptidylprohl dis-trans isomerase FKBP11 OS-Homo sapiens GN-HAM2 PE-1 SV-3 Peptidylprohl dis-trans isomerase FKBP1 OS-Hom	0.764 0.763 0.763 0.762 0.760 0.759 0.754 0.753 0.753 0.753 0.751 0.751 0.751 0.742 0.751 0.742 0.753 0.750 0.751 0.740 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.753 0.750 0.654 0.654 0.6512 0.612 0.657 0.559 0	0.000 0.015 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.003 0.003 0.021 0.003 0.021 0.030 0.021 0.030 0.021 0.030 0.001 0.029 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.000 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
sp P23229 65.85 sp C3060515 sp C3066415.54 sp P49743 26.61 sp P5150014.91 sp P5150014.91 sp P16703 30.09 sp P263727.77 sp P16070 30.09 sp P2637213.2 sp P1620512.5.1 sp P1630513.62 sp P164613.22 sp P164613.62 sp P104925212.61 sp P104925212.71 sp P03925212.67 sp P04925212.67 sp P04925212.67 sp P04925212.67 sp P0494431.22 sp P04925212.67 sp P0494024.88 sp P0494024.88 sp P0494024.88 sp P049404.81 sp P049404.81 sp P124964.48.13 sp P124964.45.13 sp P143611.92.55	65.85 15 15 15 15 14 26.65 22.07 22.07 30.09 7.77 7.77 13.25 13.25 13.25 13.62 31.227 13.25 13.25 13.62 31.227 13.62 31.227 13.62 31.227 12.64 6.54 47.15 22.64 6.25 5.29 11.95 5.29 12.05 5.5	38.32 25.09 33.18 31.76 21.05 39.23 22.02 16.85 22.1 16.85 22.1 16.85 22.1 16.95 39.49 50.67 44.96 30.12 33.48 11.99 30.12 33.48 17.83 5.072 16.37 17.99 12.94 5.19 17.99 12.94 5.19 11.98 12.94 5.19 5.19 12.94 5.19 5.15 5.19 5.15 5.19 5.19 5.19 5.15 5.19 5.15 5.19 5.15 5.19 5.15 5.19 5.19 5.15 5.19 5.15 5.19 5.15 5.19 5.15 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.	Integrin alpha-6 OS-Homo sapiens GN-FICA6 PE-1 SV-5 Poliovium sceptor related protein 2 OS-Homo sapiens GN-PUR2 PE-1 SV-1 Perligin-3 OS-Homo sapiens GN-PUR3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Homo sapiens GN-ACADVL PE-1 SV-1 Anylsuffastes CS-Homo sapiens GN-PUR3 PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 OS-Homo sapiens GN-DHBS7 PE-1 SV-1 CDL56 antigen OS-Homo sapiens GN-ACBA PE-1 SV-2 CDL44 antigen OS-Homo sapiens GN-ACBA PE-1 SV-2 CDL44 antigen OS-Homo sapiens GN-STA2 PE-1 SV-3 Nicastrin OS-Homo sapiens GN-STA2 PE-1 SV-2 CDL44 antigen OS-Homo sapiens GN-STA2 PE-1 SV-3 Nicastrin OS-Homo sapiens GN-STA2 PE-1 SV-2 Cptochrome c oxidase subunit 5C OS-Homo sapiens GN-ECAM PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-ECAM PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-ECAM PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-ECAM PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-ECAM PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-ECAM PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-ECAM PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-ECAM PE-1 SV-2 Cytochrome c oxidase subunit 5B, mitochondrial OS-Homo sapiens GN-ECAM PE-1 SV-2 Cytochrome c oxidase subunit 5B, mitochondrial OS-Homo sapiens GN-ECAM PE-1 SV-2 Cytochrome c oxidase subunit 5B, mitochondrial OS-Homo sapiens GN-ECAM PE-1 SV-2 Cytochrome c oxidase subunit 5B, mitochondrial OS-Homo sapiens GN-ECAM PE-1 SV-3 Carenger receptor class B member 1 OS-Homo sapiens GN-ECAM PE-1 SV-3 Carenger receptor class B member 1 OS-Homo sapiens GN-ECAM PE-1 SV-2 Syntaxin 3 OS-Homo sapiens GN-STA3 PE-1 SV-3 Cytochrome condicated membra mediane classica direction CS-Homo sapiens GN-ECAM PE-1 SV-3 Pertidylproh/ distrant former SPER PE-1 SV-3 Pertidylproh/ distrant former SPER PE-1 SV-3 Pertidylproh/ distrant former SPER PE-1 SV-3 Carrinomotynoin antigen related cell adhesion molecule 1 OS-Homo sapiens GN-ECACAM1 PE-1 SV-2 Vatage-dependent an	0.764 0.764 0.763 0.762 0.760 0.759 0.754 0.754 0.754 0.754 0.754 0.753 0.751 0.751 0.747 0.747 0.747 0.747 0.747 0.747 0.742 0.744 0.	0.000 0.015 0.002 0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.003 0.004 0.005 0.007 0.008 0.009 0.009 0.001 0.020 0.001 0.021 0.023 0.001 0.023 0.002 0.004 0.005 0.006 0.006 0.006 0.006 0.006 0.006 0.007 0.008 0.000 0.001 0.002 0.003 0.004 0.000 0.018 0.022 0.000 0.023
sp P23229 65.85 sp 123229 65.85 sp 12636915 sp 12636915 sp 12636915 sp 12636915 sp 126372275 sp 126372275 sp 126372275 sp 126372275 sp 126372275 sp 126372275 sp 12637232 sp 12637232 sp 12637332 sp 12637232 sp 12637332 sp 12637232 sp 12637232 sp 12637232 sp 1263613.05 sp 1263623.05 sp 1263624.43.22 sp 1263622.12.67 sp 1263622.12.67 sp 1263622.12.67 sp 126392.46.83 sp 12777.99 sp 12636721.20.55 sp 12085721.20.55 sp <td< td=""><td>65.85 15.54 15.54 26.65 22.75 30.09 7.77 30.09 7.77 13.22 13.30 13.22 13.30 13.22 13.30 13.22 13.05 13.62 13.05 13.62 13.05 13.62 13.22 12.69 13.22 12.69 13.22 12.65 12.05 13.12 12.05 13.22 12.65 12.05 13.22 12.65 12.05 13.65 12.05 13.65 12.05 13.65 12.05 13.65 13.75 13.65 15.5</td><td>38.32 25.09 33.18 31.76 21.76 21.76 22.1 36.81 11.99 22.21 36.81 11.99 39.49 50.67 44.96 30.12 33.48 50.67 44.96 30.12 33.48 50.67 44.96 30.12 33.48 17.83 50.72 16.25 51.48 54.22 14.77 51.4 51.4</td><td>Integrin alpha-6 OS-Homo sapiens GN-FICA6 PE-1 SV-5 Perlikpin-3 OS-Homo sapiens GN-PUN3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Homo sapiens GN-ACADVL PE-1 SV-1 Arylsuffaste S OS-Homo sapiens GN-M2K PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 OS-Homo sapiens GN-DHRS7 PE-1 SV-1 CDL56 antigen OS-Homo sapiens GN-M2K PE-1 SV-2 CDL4 antigen OS-Homo sapiens GN-ACAD PE-1 SV-2 CDL4 antigen OS-Homo sapiens GN-ACAD PE-1 SV-2 CDL4 antigen OS-Homo sapiens GN-M2K PE-1 SV-3 Nicastrin OS-Homo sapiens GN-M2K PE-1 SV-2 Epithelia Cell adhesion molecule OS-Homo sapiens GN-PCM PE-1 SV-2 Cytachrome coddase subunit 6 COS-Homo sapiens GN-PCM PE-1 SV-2 Cytachrome coddase subunit 6 COS-Homo sapiens GN-ECX6K PE-1 SV-2 Far upstream element-hinding protein 1 OS-Homo sapiens GN-COX6K PE-1 SV-2 Cytachrome coddase subunit 6 COS-Homo sapiens GN-ECX6K PE-1 SV-2 Scavenger receptor class B member 1 OS-Homo sapiens GN-ECX6K PE-1 SV-2 Scavenger receptor class B member 1 OS-Homo sapiens GN-ECX6K PE-1 SV-1 Adipocyte plasma membrane-associated protein OS-Homo sapiens GN-APMAP PE-1 SV-3 Lysosme-associated membrane glycoprotein 1 OS-Homo sapiens GN-APMAP PE-1 SV-3 Peptidyl-proM cist-trans tomerase RVB11 PE-1 SV-3 Histone H15.0 CS-Homo sapiens GN-MATCH PE-1 SV-2 Carritine</td><td>0.764 0.763 0.763 0.763 0.760 0.755 0.754 0.755 0.754 0.753 0.751 0.751 0.751 0.747 0.751 0.747 0.742 0.753 0.720 0.751 0.740 0.752 0.720 0.751 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.684 0.666 0.6664 0.6658 0.658 0.622 0.610 0.579 0.550</td><td>0.000 0.015 0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.003 0.004 0.005 0.005 0.007 0.008 0.009 0.001 0.001 0.001 0.002 0.001 0.002 0.004 0.005 0.006 0.006 0.006 0.006 0.007 0.000 0.001 0.002 0.000 0.000 0.001 0.002 0.003 0.004 0.000 0.001 0.002 0.002 0.002 0.002 0.002 0.000 </td></td<>	65.85 15.54 15.54 26.65 22.75 30.09 7.77 30.09 7.77 13.22 13.30 13.22 13.30 13.22 13.30 13.22 13.05 13.62 13.05 13.62 13.05 13.62 13.22 12.69 13.22 12.69 13.22 12.65 12.05 13.12 12.05 13.22 12.65 12.05 13.22 12.65 12.05 13.65 12.05 13.65 12.05 13.65 12.05 13.65 13.75 13.65 15.5	38.32 25.09 33.18 31.76 21.76 21.76 22.1 36.81 11.99 22.21 36.81 11.99 39.49 50.67 44.96 30.12 33.48 50.67 44.96 30.12 33.48 50.67 44.96 30.12 33.48 17.83 50.72 16.25 51.48 54.22 14.77 51.4 51.4	Integrin alpha-6 OS-Homo sapiens GN-FICA6 PE-1 SV-5 Perlikpin-3 OS-Homo sapiens GN-PUN3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Homo sapiens GN-ACADVL PE-1 SV-1 Arylsuffaste S OS-Homo sapiens GN-M2K PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 OS-Homo sapiens GN-DHRS7 PE-1 SV-1 CDL56 antigen OS-Homo sapiens GN-M2K PE-1 SV-2 CDL4 antigen OS-Homo sapiens GN-ACAD PE-1 SV-2 CDL4 antigen OS-Homo sapiens GN-ACAD PE-1 SV-2 CDL4 antigen OS-Homo sapiens GN-M2K PE-1 SV-3 Nicastrin OS-Homo sapiens GN-M2K PE-1 SV-2 Epithelia Cell adhesion molecule OS-Homo sapiens GN-PCM PE-1 SV-2 Cytachrome coddase subunit 6 COS-Homo sapiens GN-PCM PE-1 SV-2 Cytachrome coddase subunit 6 COS-Homo sapiens GN-ECX6K PE-1 SV-2 Far upstream element-hinding protein 1 OS-Homo sapiens GN-COX6K PE-1 SV-2 Cytachrome coddase subunit 6 COS-Homo sapiens GN-ECX6K PE-1 SV-2 Scavenger receptor class B member 1 OS-Homo sapiens GN-ECX6K PE-1 SV-2 Scavenger receptor class B member 1 OS-Homo sapiens GN-ECX6K PE-1 SV-1 Adipocyte plasma membrane-associated protein OS-Homo sapiens GN-APMAP PE-1 SV-3 Lysosme-associated membrane glycoprotein 1 OS-Homo sapiens GN-APMAP PE-1 SV-3 Peptidyl-proM cist-trans tomerase RVB11 PE-1 SV-3 Histone H15.0 CS-Homo sapiens GN-MATCH PE-1 SV-2 Carritine	0.764 0.763 0.763 0.763 0.760 0.755 0.754 0.755 0.754 0.753 0.751 0.751 0.751 0.747 0.751 0.747 0.742 0.753 0.720 0.751 0.740 0.752 0.720 0.751 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.684 0.666 0.6664 0.6658 0.658 0.622 0.610 0.579 0.550	0.000 0.015 0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.003 0.004 0.005 0.005 0.007 0.008 0.009 0.001 0.001 0.001 0.002 0.001 0.002 0.004 0.005 0.006 0.006 0.006 0.006 0.007 0.000 0.001 0.002 0.000 0.000 0.001 0.002 0.003 0.004 0.000 0.001 0.002 0.002 0.002 0.002 0.002 0.000
sp P23229 65.85 sp C300215 sp C6066415.54 sp C40715 sp C6066415.54 sp P5150014.91 sp P5150014.91 sp P102702.75 sp P1017030.09 sp Q2524213.2 sp P10422.75 sp P10422.75 sp P10422.75 sp P10422.75 sp P10254211.35 sp P1060613.62 sp Q2525212.67 sp Q2525212.67 sp Q2524213.05 sp Q252421.83 sp Q252421.83 sp Q25242.05 sp Q25244.83 sp Q291462.21.05 sp Q294463 sp Q2944.63 sp Q2944.63 sp Q21327.29 sp Q2345.21.05 sp Q2345.21.05 sp	65.85 15 15 16.85 17.84 26.65 27.75 30.09 7.77 13.22 11.35 13.21 13.62 31.22 12.69 9.76 6.13 12.05 11.20 12.06 6.13 12.05 12.05 5.29 9.76 6.13 12.05 12.05 5.24 24.05 5.25 5.25 5.25 5.25 5.25 5.25 7.26 7.72 7.82 7.82 7.82 7.82 7.82 7.82	38.32 25.09 33.18 31.76 21.05 39.23 26.24 16.85 22.1 16.85 22.1 16.85 22.1 36.81 11.99 39.49 50.67 44.96 30.12 33.48 50.67 44.96 30.12 33.48 50.77 16.26 51.9 17.93 38.22 5.19 17.93 38.22 5.19 17.93 12.94 51.48 45.18 11.98 27.27 15.44 55.832 54.22 14.77 51.44 63.55 1.4 63.55	Integrin alpha-6 OS-Homo sapiens GN-FICA6 PE-1 SV-5 Poliovium sceptor related protein 2 OS-Homo sapiens GN-PUR2 PE-1 SV-1 Perligin-3 OS-Homo sapiens GN-PUR3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Homo sapiens GN-ACADVL PE-1 SV-1 Anylsuffastes CS-Homo sapiens GN-PUR3 PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 OS-Homo sapiens GN-DHBS7 PE-1 SV-1 CDL56 antigen OS-Homo sapiens GN-PCL4 PE-1 SV-2 CDL44 antigen OS-Homo sapiens GN-STAZ PE-1 SV-3 Syntain-12 OS-Homo sapiens GN-STAZ PE-1 SV-3 GS rhosoma J protein L OS-Homo sapiens GN-PCH4 PE-1 SV-3 CDL44 antigen OS-Homo sapiens GN-NETRI PE-1 SV-3 CDL45 antigen DS-Homo sapiens GN-NETRI PE-1 SV-3 CDL45 antigen dBesison molecule OS-Homo sapiens GN-PCH4 PE-1 SV-3 CdL45 antigen OS-Homo sapiens GN-STAZ PE-1 SV-3 Nicastrin OS-Homo sapiens GN-STAZ PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-ECAM PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-ECAM PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-ECAM PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-ECAM PE-1 SV-2 Cytochrome c oxidase subunit 5C OS-Homo sapiens GN-ECAM PE-1 SV-2 Cytochrome c oxidase subunit 50, mitochondrial OS-Homo sapiens GN-ECAM PE-1 SV-2 Cytochrome c oxidase subunit 50, mitochondrial OS-Homo sapiens GN-ECAM PE-1 SV-2 Cytochrome c oxidase subunit 50, mitochondrial OS-Homo sapiens GN-ECAM PE-1 SV-2 Cytochrome c oxidase subunit 50, mitochondrial OS-Homo sapiens GN-ECAM PE-1 SV-3 Catenter fibral sapiens GN-FISM PE-1 SV-2 Cytochrome c oxidase subunit 50, mitochondrial OS-Homo sapiens GN-ECAM PE-1 SV-3 Catenter fibral sapiens GN-ECAM PE-1 SV-1 Cytochrome c oxidase subunit 50, mitochondrial OS-Homo sapiens GN-ECAM PE-1 SV-2 Cytochrome c oxidase subunit 50, mitochondrial OS-Homo sapiens GN-ECAM PE-1 SV-2 Syntain-3 OS-Homo sapiens GN-STAB PE-1 SV-3 Pertidylprohyl GN-trans isomerase FKBPI1 OS-Homo sapiens GN-EAMAP PE-1 SV-3 Pertidylprohyl GN-trans isomerase FKBPI1 OS-Homo sapiens GN-ECAM PE-1 SV-4 Carchome bynocitated me	0.754 0.764 0.763 0.762 0.752 0.754 0.755 0.754 0.753 0.754 0.753 0.751 0.751 0.751 0.751 0.751 0.751 0.742 0.755 0.755 0.658 0.652 0.6558 0.558 0.558 0.559 0	0.000 0.015 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.021 0.033 0.029 0.001 0.001 0.002 0.001 0.001 0.002 0.002 0.003 0.001 0.023 0.002 0.003 0.004 0.005 0.006 0.006 0.006 0.006 0.006 0.000 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.000 </td
sp P23229 65.85 sp C306715 sp C3066415.54 sp P49743 26.61 sp P5150014.91 sp P1627030.09 sp C30737.275 sp P1627030.09 sp C30747.135 sp P1627030.09 sp P1628727.77 sp P1288727.77 sp P1295211.35 sp P16427.27.5 sp P164215.21 sp P164215.21 sp P12925421.35 sp P12925421.2.67 sp P12925421.2.67 sp P12925421.2.67 sp P12925421.67 sp P12949.48 sp P12949.72.79 sp P12949.72.79 sp P12949.72.79 sp P12949.72.79 sp P1294742.34 sp P12949.72.79 sp P12949.72.79 sp P1294854.48 <	65.85 15 15 16.54 26.65 17.77 30.09 7.77 30.77 11.35 12.21 13.05 18.2 13.05 18.2 12.21 13.05 5.29 4.68 2.79 11.36 5.29 12.05 11.465 6.54 47.15 2.62 2.75 5.55 5.21 2.26 2.25 5.21 5.22 2.32 2.405 5.2 5.55 2.25 5.2 5.25 3.2.25 3.8.18	$\begin{array}{r} 38.32\\ 33.18\\ 31.76\\ 21.05\\ 39.23\\ 22.05\\ 39.23\\ 22.1\\ 16.85\\ 22.1\\ 39.49\\ 50.67\\ 39.49\\ 50.67\\ 39.49\\ 50.67\\ 39.49\\ 50.67\\ 30.12\\ 33.48\\ 30.12\\ 33.48\\ 30.12\\ 33.48\\ 30.12\\ 33.48\\ 30.12\\ 33.48\\ 30.12\\ 33.48\\ 11.99\\ 30.12\\ 33.48\\ 11.99\\ 30.12\\ 33.48\\ 11.99\\ 30.12\\ 33.48\\ 11.99\\ 33.48\\ 11.99\\ 33.48\\ 11.99\\ 33.48\\ 11.99\\ 23.38\\ 11.99\\ 23.38\\ 11.99\\ 23.38\\ 11.99\\ 23.38\\ 11.99\\ 23.38\\ 12.94\\ 13.48\\ 13.48\\ 13.48\\ 15.48\\ 27.27\\ 31.16\\ 47\\ 42.48\\ 15.48\\ 27.27\\ 31.16\\ 47\\ 31.37\\ 51.37\\ 51.37\\ 51.37\\ 51.37\\ 51.55\\ 53.$	Integrin alpha-6 OS-Homo sapiens GN-FICA6 PE-1 SV-5 Perlikpin-3 OS-Homo sapiens GN-FUN3 PE-1 SV-3 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS-Homo sapiens GN-ACADVL PE-1 SV-1 Arylsuffaste E OS-Homo sapiens GN-FUN3 PE-1 SV-2 Dehydrogenase/reductase SDR family member 7 OS-Homo sapiens GN-DHBS7 PE-1 SV-1 CD156 antigen OS-Homo sapiens GN-ACAD PE-1 SV-2 CD144 antigen OS-Homo sapiens GN-ACAD PE-1 SV-2 CD144 antigen OS-Homo sapiens GN-SN21 PE-1 SV-3 Syntam-12 OS-Homo sapiens GN-SN21 PE-1 SV-3 Syntam-12 OS-Homo sapiens GN-SN21 PE-1 SV-3 Syntam-12 OS-Homo sapiens GN-SN21 PE-1 SV-2 CD44 antigen OS-Homo sapiens GN-SN21 PE-1 SV-3 Syntam-12 OS-Homo sapiens GN-SN21 PE-1 SV-2 Cptochrome coddase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-3 Cytochrome c oddase subunit 50 CS-Homo sapiens GN-ECX6C PE-1 SV-2 Cytochrome coddase subunit 50 CS-Homo sapiens GN-FCX81 PE-1 SV-3 Protein FAM3C CS-Homo sapiens CN-FAM3C PE-1 SV-1 Adipocyte plasma membrane-asociated protein OS-Homo sapiens GN-EXAM1P PE-1 SV-2 Scavegar receptor dase B membra 10 S-Homo sapiens GN-EXAM1P PE-1 SV-3 Perlikyl-prol/ dS-trans isomerase FKBP11 CS-Homo sapiens GN-FAMAP PE-1 SV-3 Perli	0.764 0.763 0.763 0.763 0.763 0.763 0.762 0.763 0.752 0.754 0.753 0.754 0.752 0.751 0.751 0.747 0.752 0.751 0.747 0.742 0.74 0.74 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	0.000 0.015 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.002 0.003 0.003 0.021 0.030 0.021 0.030 0.021 0.003 0.021 0.023 0.021 0.023 0.021 0.023 0.004 0.005 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.002 0.003 0.004 0.002 0.003 0.004 0.002 0.003 0.004 0.005 0.006 0.000 0.000 0.000 </td

Iniprot Unused	Total	X.Cov.95.	29 β6AS/untreated HT29 β6AS	iTRAQ Fold Change	StouffersPva
p P05109 2.11	2.11	11.83	Protein Name; Organism; Gene name Protein S100-A8 OS=Homo sapiens GN=S100A8 PE=1 SV=1	9.245	0.050
p P08779 10.07	18.66	28.12	Keratin, type I cytoskeletal 16 OS=Homo sapiens GN=KRT16 PE=1 SV=4	5.810	0.046
p Q0469511.92	21.44	30.56	Keratin, type I cytoskeletal 17 OS=Homo sapiens GN=KRT17 PE=1 SV=2	5.128	0.019
p P02538 30.66	36.56	33.51	Keratin, type II cytoskeletal 6A OS=Homo sapiens GN=KRT6A PE=1 SV=3	4.915	0.002
p P13645 17.45	20.69	26.54	Keratin, type I cytoskeletal 10 OS=Homo sapiens GN=KRT10 PE=1 SV=6	2.233	0.000
p Q9Y6535.16	5.18	7.071	G-protein coupled receptor 56 OS=Homo sapiens GN=GPR56 PE=1 SV=2	2.139	0.000
p PO4264 18.1	22.23	15.68	Keratin, type II cytoskeletal 1 OS=Homo sapiens GN=KRT1 PE=1 SV=6	2.010	0.003
p P68371 4.15	23.87	34.16	Tubulin beta-4B chain OS=Homo sapiens GN=TUBB4B PE=1 SV=1	1.974	0.040
p P07437 26.97	26.97	40.77	Tubulin beta chain OS=Homo sapiens GN=TUBB PE=1 SV=2	1.937	0.017
p Q8N16:14	14	14.95	DBIRD complex subunit KIAA1967 OS=Homo sapiens GN=KIAA1967 PE=1 SV=2	1.595	0.002
p P111666	6	10.16	Solute carrier family 2, facilitated glucose transporter member 1 OS=Homo sapiens GN=SLC2A1 PE=1 SV=2	1.521	0.034
p P19338 43.96	45.54	25.63	Nucleolin OS=Homo sapiens GN=NCL PE=1 SV=3	1.467	0.000
p Q0184411.78	11.78	17.07	RNA-binding protein EWS OS=Homo sapiens GN=EWSR1 PE=1 SV=1	1.432	0.026
p P52272 22.78	22.78	25.21	Heterogeneous nuclear ribonucleoprotein M OS=Homo sapiens GN=HNRNPM PE=1 SV=3	1.431	0.000
p Q9UQ3 2.32	2.32	0.6177	Serine/arginine repetitive matrix protein 2 OS=Homo sapiens GN=SRRM2 PE=1 SV=2	1.410	0.017
P62906 17.26	17.26 29.65	42.86 36.3	50S ribosomal protein L10a OS=Homo sapiens GN=RPL10A PE=1 SV=2	1.401	0.043
p P36578 29.26 p Q926657.51	7.53	15.19	60S ribosomal protein L4 OS=Homo sapiens GN=RPL4 PE=1 SV=5 28S ribosomal protein S31, mitochondrial OS=Homo sapiens GN=MRPS31 PE=1 SV=3	1.356	0.004
Q9NR3(4.94	4.95	5.492	Nucleolar RNA helicase 2 OS=Homo sapiens GN=DDX21 PE=1 SV=5	1.355	0.024
P60660 11.59	11.59	52.98	Myosin light polypeptide 6 OS=Homo sapiens GN=DV21 PE=1 SV=2	1.353	0.022
Q56VL310.19	10.19	31.82	OCIA domain-containing protein 2 OS=Homo sapiens GN=OCIAD2 PE=1 SV=2	1.333	0.001
P42166 44.45	44.45	43.95	Lamina-associated polypeptide 2, isoform alpha OS=Homo sapiens GN=TMPO PE=1 SV=2	1.331	0.001
P43243 13.13	13.13	12.99	Matrin-3 OS=Homo sapiens GN=MATR3 PE=1 SV=2	1.321	0.005
Q150295.63	5.63	5.041	116 kDa US small nuclear ribonucleoprotein component OS=Homo sapiens GN=EFTUD2 PE=1 SV=1	1.320	0.005
Q0821117.96	17.96	10.08	ATP-dependent RNA helicase A OS=Homo sapiens GN=DHX9 PE=1 SV=4	1.319	0.000
P02545 78.13	78.13	56.33	Prelamin-A/C OS=Homo sapiens GN=LMNA PE=1 SV=1	1.315	0.001
P35900 11.54	13.58	20.99	Keratin, type I cytoskeletal 20 OS=Homo sapiens GN=KRT20 PE=1 SV=1	1.314	0.019
P14866 8.54	8.54	13.07	Heterogeneous nuclear ribonucleoprotein L OS=Homo sapiens GN=HNRNPL PE=1 SV=2	1.309	0.010
P18124 20.55	20.55	33.06	60S ribosomal protein L7 OS=Homo sapiens GN=RPL7 PE=1 SV=1	1.309	0.034
P10809 7.98	8.04	17.63	60 kDa heat shock protein, mitochondrial OS=Homo sapiens GN=HSPD1 PE=1 SV=2	1.305	0.042
07548916.04	16.04	40.91	NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial OS=Homo sapiens GN=NDUFS3 PE=1 SV=1	1.305	0.011
P41091 10.01	10.06	17.16	Eukaryotic translation initiation factor 2 subunit 3 OS=Homo sapiens GN=EIF253 PE=1 SV=3	1.303	0.017
Q129068.56	8.56	8.389	Interleukin enhancer-binding factor 3 OS=Homo sapiens GN=ILF3 PE=1 SV=3	1.300	0.013
P61247 12.73	12.73	22.73	40S ribosomal protein S3a OS=Homo sapiens GN=RPS3A PE=1 SV=2	1.288	0.020
0756432.3	3.29	0.9831	U5 small nuclear ribonucleoprotein 200 kDa helicase OS=Homo sapiens GN=SNRNP200 PE=1 SV=2	1.277	0.024
Q9UJZ1 16	16	37.36	Stomatin-like protein 2, mitochondrial OS=Homo sapiens GN=STOML2 PE=1 SV=1	1.273	0.032
Q1498032.5	32.53	14.99	Nuclear mitotic apparatus protein 1 OS=Homo sapiens GN=NUMA1 PE=1 SV=2	1.264	0.001
Q9284119.88	19.88	23.05	Probable ATP-dependent RNA helicase DDX17 OS=Homo sapiens GN=DDX17 PE=1 SV=2	1.261	0.047
P27816 8.42	8.42	9.462	Microtubule-associated protein 4 OS=Homo sapiens GN=MAP4 PE=1 SV=3	1.261	0.046
P06748 15.46	15.46	32.65	Nucleophosmin OS=Homo sapiens GN=NPM1 PE=1 SV=2	1.251	0.031
Q1514912.21	12.29	1.601	Plectin OS=Homo sapiens GN=PLEC PE=1 SV=3	1.251	0.004
P07814 18.15	18.15	10.98	Bifunctional glutamate/prolinetRNA ligase OS=Homo sapiens GN=EPRS PE=1 SV=5	1.248	0.007
P17301 23.24	23.97	18.29	Integrin alpha-2 OS=Homo sapiens GN=ITGA2 PE=1 SV=1	1.222	0.000
P61978 26.64	26.64	35.42	Heterogeneous nuclear ribonucleoprotein K OS=Homo sapiens GN=HNRNPK PE=1 SV=1	1.218	0.010
Q9BYG: 6.22	6.22	20.48	MKI67 FHA domain-interacting nucleolar phosphoprotein OS=Homo sapiens GN=MKI67IP PE=1 SV=1	1.218	0.009
P08582 8.79	8.79	8.672	Melanotransferrin OS=Homo sapiens GN=MFI2 PE=1 SV=2	0.817	0.012
Q1416525.13	25.13	48.97	Malectin OS=Homo sapiens GN=MLEC PE=1 SV=1	0.809	0.017
P51690 14.91	14.91	21.05	Arylsulfatase E OS=Homo sapiens GN=ARSE PE=1 SV=2	0.809	0.040
Q1501920	20	47.09	Septin-2 OS=Homo sapiens GN=SEPT2 PE=1 SV=1	0.803	0.005
P54920 17	17	39.66	Alpha-soluble NSF attachment protein OS=Homo sapiens GN=NAPA PE=1 SV=3	0.798	0.020
P04844 9.52	9.52	12.52	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 2 OS=Homo sapiens GN=RPN2 PE=1 SV=3	0.796	0.020
P10646 9.23	9.23	25	Tissue factor pathway inhibitor OS=Homo sapiens GN=TFPI PE=1 SV=1	0.786	0.043
Q9962322.07	22.07	45.82	Prohibitin-2 OS=Homo sapiens GN=PHB2 PE=1 SV=2	0.778	0.000
Q9Y39422.02	22.02	39.23	Dehydrogenase/reductase SDR family member 7 OS=Homo sapiens GN=DHRS7 PE=1 SV=1	0.778	0.001
P37802 6.03	7.01	25.63	Transgelin-2 OS=Homo sapiens GN=TAGLN2 PE=1 SV=3	0.777	0.014
Q8NBJ72.96	2.96	8.97	Sulfatase-modifying factor 2 OS=Homo sapiens GN=SUMF2 PE=1 SV=2	0.774	0.046
04316917.82	17.82	51.37	Cytochrome b5 type B OS=Homo sapiens GN=CYB5B PE=1 SV=2	0.766	0.015
Q1497814.75	14.75	10.73	Nucleolar and coiled-body phosphoprotein 1 OS=Homo sapiens GN=NOLC1 PE=1 SV=2	0.758	0.009
Q1590717.56	17.56	46.33	Ras-related protein Rab-11B OS=Homo sapiens GN=RAB11B PE=1 SV=4	0.758	0.008
P48449 13.56	13.57	12.98	Lanosterol synthase OS=Homo sapiens GN=LSS PE=1 SV=1	0.757	0.013
Q6PIU2 3.53 P20340 11.39	3.53 11.39	11.52 36.06	Neutral cholesterol ester hydrolase 1 OS=Homo sapiens GN=NCEH1 PE=1 SV=3	0.744	0.007
Q1290724.37	24.37	45.51	Ras-related protein Rab-6A OS=Homo sapiens GN=RAB6A PE=1 SV=3 Vesicular integral-membrane protein VIP36 OS=Homo sapiens GN=LMAN2 PE=1 SV=1	0.741	0.003
P14314 15.33	15.35	20.64	Glucosidase 2 subunit beta OS=Homo sapiens GN=PRKCSH PE=1 SV=1	0.732	0.010
P14314 15.33 P16070 30.09	30.09	16.85	CD44 antigen OS=Homo sapiens GN=CD44 PE=1 SV=3	0.730	0.033
Q1469713.76	13.76	8.263	Neutral alpha-glucosidase AB OS=Homo sapiens GN=GANAB PE=1 SV=3	0.716	0.033
P78310 22.64	22.64	44.11	Coxsackievirus and adenovirus receptor OS=Homo sapiens GN=CXADR PE=1 SV=1	0.708	0.000
09572116.37	16.37	42.64	Synaptosomal-associated protein 29 OS=Homo sapiens GN=SNAP29 PE=1 SV=1	0.706	0.003
P07099 4.03	4.03	8.352	Epoxide hydrolase 1 OS=Homo sapiens GN=EPHX1 PE=1 SV=1	0.705	0.007
Q96HY(12.01	12.01	35.67	DDRGK domain-containing protein 1 OS=Homo sapiens GN=DDRGK1 PE=1 SV=2	0.701	0.003
P21926 2.54	2.54	9.649	CD9 antigen OS=Homo sapiens GN=CD9 PE=1 SV=4	0.688	0.049
Q96KN: 3.2	3.2	13.55	Protein FAM84B OS=Horno sapiens GN=FAM84B PE=1 SV=1	0.686	0.049
Q96AE431.22	31.22	30.12	Far upstream element-binding protein 1 OS=Homo sapiens GN=FUBP1 PE=1 SV=3	0.669	0.000
P14927 16.24	16.24	45.95	Cytochrome b-c1 complex subunit 7 OS=Homo sapiens GN=UQCRB PE=1 SV=2	0.645	0.034
Q9NQC 16.71	16.71	14.18	Reticulon-4 OS=Homo sapiens GN=RTN4 PE=1 SV=2	0.642	0.041
P11279 9.76	9.76	17.99	Lysosome-associated membrane glycoprotein 1 OS=Homo sapiens GN=LAMP1 PE=1 SV=3	0.633	0.008
Q8N4H! 3.25	3.25	27.45	Mitochondrial import receptor subunit TOM5 homolog OS=Homo sapiens GN=TOMM5 PE=1 SV=1	0.599	0.033
P25398 9.32	9.32	49.24	40S ribosomal protein S12 OS=Homo sapiens GN=RPS12 PE=1 SV=3	0.586	0.002
P02786 23.45	23.45	21.05	Transferrin receptor protein 1 OS=Homo sapiens GN=TFRC PE=1 SV=2	0.579	0.000
Q96A2(8.82	8.83	22.73	Protein FAM162A OS=Homo sapiens GN=FAM162A PE=1 SV=2	0.568	0.012
			729 Mock/TGFβ treated HT29 β6AS		
iprot Unused	Total	X.Cov.95.	Protein Name; Organism; Gene name	iTRAQ Fold Change	StouffersP
0959946.62	6.62	16.57	Anterior gradient protein 2 homolog OS=Homo sapiens GN=AGR2 PE=1 SV=1	2.963	0.016
P06703 6.99	7.12	30		2.890	0.018
007030.33		9.015	Protein S100-A6 OS=Homo sapiens GN=S100A6 PE=1 SV=1 Glycogen phosphorylase, brain form OS=Homo sapiens GN=PYGB PE=1 SV=5	2.671	0.023
P11216 8.98 P61626 7.35	9.01 7.35	39.86	Lysozyme C OS=Homo sapiens GN=LYZ PE=1 SV=1	2.427	0.009

Biology Biology <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
IPEDID 2000 2000 Partial Multi-Instrume ALS instem sphere DRPROF (2) 19-4 2.164 0.000 IPEDID 2000 2000 Partial Multi-Instrume and Instrume ALS instem sphere DRPROF (2) 19-4 2.000 IPEDID 2000 2000 Partial Multi-Instrume ALS instrume ALS in	sp Q1501920	20	47.09	Septin-2 OS=Homo sapiens GN=SEPT2 PE=1 SV=1	2.246	0.000
IPED20.288 20.89 20.19 Proof Section and and Conference patter SPERDEFF. 19-4 2.64 0.001 IPED20.298 20.10 Section and and Conference patter SPERDEFF. 19-4 2.647 0.001 IPED20.128 12.20 4.44 6466.10 0.001 0.001 IPED20.128 12.30 12.30 12.30 0.001 0.001 IPED20.128 12.30 12.30 12.30 0.001 0.001 IPED20.128 12.30 12.30 12.30 12.30 0.001 0.001 IPED20.128 12.30 12.30 12.30 12.30 12.30 0.001 0.001 IPED20.128 12.30 12.30 12.30 12.30 0.001		20.28	46.03		2.195	0.017
ISBN 90 Septe 4Q-Mones agence (MAPPER FLY V/C) 2.244 0.03 ISBN 90 ISBN 90 ISBN 90 0.03 <td< td=""><td></td><td>20.88</td><td>23.17</td><td></td><td>2.168</td><td>0.000</td></td<>		20.88	23.17		2.168	0.000
Inc. 2012. 10.1 10.8 September 2014 10.8 Inc. 2017. 10.8 10.8 10.8 10.8 Inc. 2017. 10.8 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
PIPD2102 2.27 3.28 4.80 classics 2.287 4.80 PID2013 1.34 Protect and during humans of all classics proteins of PID4017611792 1.80 0.300 PID2013 2.31 Hand Humans of PID401761792						
IPIPADES 6.44 11.44 Properting Augine Constrained Co						
IDENCOM 7.56 7.37 Part bandling decomposition of Part of Schume suppose (Decomposition C-19940) PLC 1974 1.56 0.502 IDENCOM 3.58 Instrume suppose suppose suppose the Part of Schume suppose of Part of Schume PLC 1974 1.56 0.502 IDENCOM 3.58 Instrume suppose sup						
IGENTAL 4.8 Institution of a status of a stat						
BIGLEDIAT Bits Number Of Department of Depa						
BIP BOD TA144 LA32 LA32 Lase and the protein time and the adverse signer of MATER IT-1970. LA32 LA33 LL33						
BY SMECK 7.3 2.9 Training profile Name MAZE Off-Horn system GHP MC H1 (4) 20 1.93 0.33 BY LINE TAM. 7.3 Max Departments Of Christing system GHP MC H1 (4) 20 1.93 0.33 BY LINE TAM. 7.3 Strong H1 (4) 1.93 0.33 0.33 0.33 BY LINE TAM. 7.3 Strong H1 (4) 1.93 0.33 0.33 0.33 BY LINE TAM. 7.3 Strong H1 (4) 1.93 0.33 0.33 0.33 BY LINE TAM. 6.3 7.4 0.33 0.33 0.33 0.33 BY LINE TAM. 6.3 7.4 0.4 0.33 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
IPIELING 3044 L44 L43 L53 Description of pathoff predicts option of pathoff pat	sp P35527 14.04	14.04				
Bio Display Bio Section of the section	sp Q9UIGC 6.01	7.28	2.9	Tyrosine-protein kinase BAZ1B OS=Homo sapiens GN=BAZ1B PE=1 SV=2	1.913	0.012
IP/EASL-53 I.S. I.S. I.S. I.S. I.S. IP/EASL-53 I.S. 204 International and international patient in the international patient internatinteresearch international patient international patien	sp P11387 19.44	19.44	17.12	DNA topoisomerase 1 OS=Homo sapiens GN=TOP1 PE=1 SV=2	1.899	0.000
IP (2014) 5.1. (1.9)	sp Q9Y4L1 4.11	4.14	2.803	Hypoxia up-regulated protein 1 OS=Homo sapiens GN=HYOU1 PE=1 SV=1	1.899	0.030
IPIPAIDA State Del Description Descriptio		51.95	41.73		1.882	0.000
DEMONAN 4.13 4.52 The finge CCD bardies considing and the CCD Fins caption CACHEM FIC Sync. 1.53 0.031 CEORD ILA 1.53 Finde Construct Finde Construct 1.53 Finde Construct Finde Construct 1.53 Finde Construct 1.53 Finde Construct Finde Construct Finde Construct Finde Construct Finde Constr						
Inc. 2013. Nucleokanin Co+Long agens (<i>Det MCRCB</i>) IP-1 Sy-4 1.522 0.548 Inc. 2013. 1.5 3.50 Nucleokanin Co+Long agens (<i>Det MCRCB</i>) IP-1 Sy-4 0.510 Inc. 2013. 1.7 3.50 Numerical System (<i>Det MCRCB</i>) IP-1 Sy-4 1.75 0.521 Inc. 2013. 1.7 1.7 3.52 Numerical System (<i>Det MCRCB</i>) IP-1 Sy-4 1.75 0.511 Inc. 2013. 1.7 1.7 1.7 1.7 0.524 0.55 <						
IPCIESSEV.21 4.16 4.50 Obsong and polydam/define specificly factor aturals 6.0FM FF1.51V-2 1.91 0.001 IPCIESSEV.23 3.18 Neurol adupt functions of 6.0FM FF1.51V-2 1.95 0.001 IPCIESSEV.23 3.18 Neurol adupt functions of 6.0FM FF1.51V-2 1.95 0.011 IPCIESSEV.23 3.18 Neurol adupt functions of 6.0FM FF1.51V-2 1.95 0.011 IPCIESSEV.23 3.24 4.55 Neurol Trans functions ogene 0.0FH2.0FT FF1.51V-2 1.95 0.021 IPCIESSEV.24 3.24 5.35 Neurol Trans functions ogene 0.0FH2.0FT FF1.51V-2 1.92 0.027 IPCIESSEV.25 7.75 5.35 Continues supero 0.0FH2.0FT FF1.51V-4 1.75 0.035 IPCIESSEV.24 1.2 3.25 1.46 Includents o.0FH2.0FT FF1.51V-4 1.75 0.035 IPCIESSEV.24 1.2 3.25 1.46 Includents o.0FH2.0FT FF1.51V-4 1.75 0.035 IPCIESSEV.24 1.2 3.25 1.46 Includents o.0FH2.0FT FF1.51V-4 1.75 0.031 IPCIESSEV.25 1.46						
Inc. 1.08 1.09 Protein duality is inclusion applies. Chief PCD PT: 15Y-1 1.79 0.001 ICC000103 1.08 1.08 1.08 0.001 1.799 0.001 ICC000103 1.08 1.08 1.08 0.001 1.799 0.001 ICC000103 1.08 1.08 1.08 0.001 1.799 0.001 ICC000103 1.08 1.08 0.001 1.791 0.001 1.791 0.001 ICC000107105 1.08 0.001 0.001 0.001 1.791 0.001 ICC000107105 1.08 0.001 0.001 1.791 0.001 ICC000107105 1.08 0.001 0.001 1.791 0.001 ICC000107107 1.08 0.001 0.001 1.791 0.001 ICC000107107 1.08 0.001 0.001 1.791 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
IDECREPTION 1.378 1.388 1.388 L280 Neurol apha placuatus AB O's mono gales OFE-CAMP FFR: SV-2 1.799 0.201 IDECREPTION 1.384 1.585 Home FAI mp 24 CoNstrem sagins OFE-SV-2 1.784 0.201 IDECREPTION 1.384 1.585 Home FAI mp 24 CoNstrem sagins OFE-SV-2 1.784 0.205 IPETION 1.58 2.58 1.58 2.58 0.207 1.755 0.007 IPETION 1.58 2.58 1.58 2.58 1.75 0.007 IPETION 2.58 2.58 2.58 2.58 1.75 0.007 IPETION 2.58 2.58 2.58 1.68 0.207 1.75 0.007 IPETION 2.58 2.58 1.68 0.508 0.207 1.75 0.007 IPETION 2.58 2.58 4.494 0.508 0.207 1.75 0.007 IPETION 2.58 4.494 0.508 0.508 0.508 0.508 0.508 0.508 0.						
BICBGO 1948 1.048 1.58 Extrade 17 Feed a debraingenes 12 05 44 0000 1.798 0.024 BICBGO 1942 1.24 1.58 Interest Ray 12 44 0000 1.798 0.001 BICBGO 121 11 123 1.24 1.58 Process regulated provide formin system Other MAP 15 15 - 0000 0.794 0.0000 BICBGO 121 11 123 1.58 Process regulated provide formin system Other MAP 15 15 - 0000 0.794 0.0000 BICBGO 121 11 123 1.58 1.58 0.0011 0.0011 0.0011 BICBGO 121 11 123 1.58 1.58 0.0011 0.0011 0.0011 0.0011 0.0011 BICBGO 121 11 123 1.58 1.58 0.0011 0.00						
IQ12772123 32.44 55.55 Nicone 100 page 16 (3-Hord ST2026 FF 15 V-2 1.74 0.000 IP1721712143 64.00 1.75 0.001 0.000 IP1721712143 64.00 1.75 0.000 0.000 IP1721712143 64.00 1.75 0.000 0.000 IP1721712153 75.00 75.00 0.000						
pipting 21.4 21.4 21.4 21.4 21.4 0.000 pipting 21.4 21.4 21.4 0.000 0.000 pipting 21.5 0.40 72.5 1.000 0.000 pipting 21.5 0.40 72.5 0.000 0.000 pipting 21.5 0.000 <						
IPJER2764.3 6.6.4 2.4.2 Myosk 0.02+cmc spins (M+VM PK 1 SV-4 1.7.85 0.000 IPJER216.5 0.5.6 7.5.6 (pointe spins marked chan dipk set and its dering spins (M+VM PK 1 SV-4 1.7.9 0.001 IPJER216.5 1.5.8 1.5.9 Proces spins (M+VM PK 1 SV-4 1.7.9 0.015 IPJER216.5 1.5.3 1.5.4 1.5.5 0.015 0.015 IPJER216.5 1.5.3 1.5.4 Proces spins (M+VM PK 1 SV-4 1.7.9 0.016 IPJER216.5 1.5.3 1.5.4 Proces spins (M+VM PK 1 SV-4 1.7.9 0.016 IPJER216.7 1.5.8 Safe Statistic spins (M+VM PK 1 SV-4 1.5.8 0.012 IPJER216.7 1.5.8 Safe Statistic spins (M+VM PK 1 SV-4 1.5.8 0.021 IPJER217.7 1.5.7 1.5.8 0.021 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
IPIEID2305 3.05 7.262 Upcomits explana/interact Science space (Science space) ID 5789-120 1.075 0.037 ID 7589-1238 27.99 8.57 Carrie Internet Multice Science space (Science space) ID 7589-1237 1.075 0.037 ID 7589-1238 27.99 8.57 Carrie Internet Multice Science space (Science Space) 1.755 0.037 ID 7589-1238 22.9 1.544 Alles Anternet Science Space (Science Space) 1.761 0.039 ID 7589-1238 2.2 1.544 Alles Anternet Science Space (Science Space) 1.761 0.039 ID 7589-1238 2.32 1.544 Alles Anternet Science Space (Science Space) 1.762 0.031 ID 7589-1238 2.32 1.544 Alles Anternet Science Space (Science Anternet Science Space) 1.644 0.044 ID 7589-1238 2.32 1.544 Alles Anternet Science Space (Science Anternet Science Space) 1.654 0.031 ID 7589-1338 1.336 Cardina anternet Science Space (Science Science Space) 1.554 0.032 ID 7589-1338 1.338 2.399 Arternet Science Sciec	sp P11021 32.14	32.14	29.97	78 kDa glucose-regulated protein OS=Homo sapiens GN=HSPA5 PE=1 SV=2	1.754	0.000
IP/E023 17.25 17.05 10.01 Precise during languages of IP/APR PF-1 SV-4 1.75 0.007 IP/C1474 14 4.84 15.85 161(1)/10 container regulations container that IP/C15-15V-4 1.75 0.007 IP/C1474 14 4.84 15.85 161(1)/10 container regulations container that IP/C15-15V-4 1.76 0.007 IP/C1474 12 12.8 Self-14/14 container regulations contained biolic difference signes 01-44/14/14-15V-2 1.66 0.002 IP/C1474 12.9 12.8 Self-14/14 container regulations contained biolic difference signes 01-44/14/14-15V-2 1.66 0.001 IP/C1474 12.9 12.8 12.8 Self-14/14-15V-14 1.66 0.001 IP/C1474 12.9 12.8 13.8 Container theorem container location 10-44/14-15V-2 1.66 0.001 IP/C1474 12.9 12.7 7.7 Prepthyler difference signes 01-44/14-15V-2 1.56 0.020 IP/C1470 12.5 12.8 12.8 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 <	sp P35579 66.43	66.43	23.62	Myosin-9 OS=Homo sapiens GN=MYH9 PE=1 SV=4	1.745	0.000
IP/E023 17.25 7.15 8.031 Freque during the superior splem Superior Sup	sp P11182 3.06	3.06	7.261		rial 051.744	0.005
BJO7805236 27.99 45.97 Core hitsme march/2AL OS-hitsmin spikes CM+2A/PFR-1 SV-4 1.75 0.001 BJO2476544 44 15.56 (hit)/(hit)/(hit) Science spikes CM+2A/PFR-1 SV-4 1.75 0.002 BJO2476544 444 15.56 (hit)/(
ID1247454 4.54 15.35 Ne(1)AP(1) exchange regulatory offstate NPE FES Vi-1 1.719 0.055 ID1252552 23.05 15.45 Apple activity of the origine origine of the origine of the origine origine of the origine or						
IPJE30553 6.35 8.468 Endoplanmin G3-fricon supprises GM-4078 PEr 5 Sv-1 1.719 0.016 IQ [C54722.23 122 8.155 Scrifted interferment forter IG C3-fricon supprises GM-4078 PEr 5 Sv-2 1.659 0.042 IQ [C54722.23 122 125 Machine String IG C3-fricon supprises GM-4078 PEr 5 Sv-2 1.659 0.042 IQ [C54875.23 52 12.56 Machine String IG C3-fricon supprises GM-4078 PEr 5 Sv-2 1.651 0.022 IQ [C3585.44 6.54 1.358 Carnicombryonic antigen of tradit of all machine molecular supprises GM-4078 PEr 5 Sv-2 1.652 0.021 IQ [C3055.63 5.74 Carkame Hoding machine All C3 S-Homo supprises GM-4078 PEr 5 Sv-2 1.558 0.020 IQ [C3057.63 5.74 Carkame Hoding machine All C3 S-Homo supprises GM-4078 PE 4 Sv-2 1.558 0.021 IQ [C3057.153 1.552 5.258 Machine Supprises GM-4078 PE 4 Sv-2 1.558 0.021 IQ [C3075.153 1.525 False Machine Supprises GM-4078 PE 4 Sv-2 1.558 0.021 IQ [C3075.153 1.525 False Machine Supprises GM-4078 PE 4 Sv-2 1.558 0.021						
IDC 1722.39 22.30 13.54 Alpha settine 4.05-torms signes OH-ACT MP Fe1 SV-2 1.751 0.000 IDC 1542.22 8.352 Stafful at Talkommer Store 10.54-torms signes OH-ACT MP Fe1 SV-4 1.859 0.014 IDC 1243.82 8.32 12.75 HLA dest Hubicom graftelly migges Ad alpha chain SHeat SU Stores signes OH-ACT MP Fe1 SV-2 1.654 0.014 IDC 1243.84 8.34 13.95 Carriscentry of the images Advances on SHEAT STOR STORE SU Stores signes OH-ACT ACT MP Fe1 SV-2 1.654 0.021 IDC 1243.84 8.34 13.85 Carriscentry on Stores Store						
IDECREPAT 12 8.825 Seaffied attachment facts PLOSHers ageles OH-VARP FC1 SV-4 1.899 0.042 IDECREPAT 9.24 9.24 9.24 9.24 0.034 0.034 IDECREPAT 9.24 9.24 9.24 0.034 0.034 IDECREPAT 9.24 9.24 0.034 0.034 IDECREPAT 9.24 0.034 0.034 0.034 IDECREPAT 9.27 0.034 0.						
up 17.26 HLA dots Haiscompetiting andigen, A3 alpha chain OS-Home supers OH-HLA PE 15V2 1.654 0.021 up 15.858 1.654 0.024 0.635 0.024 up 15.858 0.644 0.024 0.655 0.022 up 15.858 0.024 0.655 0.022 0.021 up 0.677 0.677 0.676 0.022 0.021 up 0.677 0.677 0.677 0.020 0.011 up 0.027 0.677 0.677 0.020 0.011 up 0.0277 0.021 <						
B[23892.43 0.24 5.83 Gold paperatus protein 1.05 shoren suplem GH-G151PE1 3V-2 1.651 0.022 B[73888.44 6.54 1.36 CarcineemProvide and impersented or dischemic andreue 1.05 shoren suplem GH-GACMM1 FE-1SV-2 1.652 0.022 B[72807.33.7 2.37 6.39 Ferdel part of Arise micromer and Arise Mark PLE 5V-2 1.662 0.040 B[72807.33.7 6.39 6.34 1.74 Charme handre mitch-handre and Carrier protein Arial 2 SH-Gane suplem GH-RESCA13 PF-1 SV-2 1.662 0.040 B[72807.33.7 6.39 6.547 1.552 0.001 1.552 0.001 B[72807.53.7 8.33 1.517 Parageodic comparent 1.0 sH-farm suplem GH-APCIC FF-1 SV-1 1.552 0.001 B[72807.53.7 8.44 Histone H1.5 OS+Gane suplem GH-APCIC FF-1 SV-1 1.552 0.041 B[72807.53.7 8.45 5.36 O-delet stranded Histone Strande GH-GPO 4F-1 SV-3 1.547 0.044 B[72807.53.7 5.5 0.046 T.553 0.041 1.553 0.011 B[72807.53.7 5.5 0.046 T.553 0.021						
p123838.44 6.54 1.138 Carnicombryonic antigen related cell affection necleuk 1.054-torm signes ON-CRACMP, IP-1.59-2 1.635 0.002 p12383713.72 20.77 6.73 Perptidyptidy distrain stammare A OS-torms signes ON-PRA PE-1.59-2 1.635 0.002 p1238713.72 20.77 6.73 Perptidyptidy distrain stammare A OS-torms signes ON-PRA PE-1.59-2 1.565 0.020 p1238716.73 20.78 6.74 1.575 0.020 p1238716.74 1.381 1.38 0.040 1.555 0.020 p1238716.74 1.361 1.577 Perptidyptidyptidyptidyptidyptidyptidyptidy						
ppP2x8013.1 13.1 13.3 Nucleich transcription factor 10-shores agains 0KH-UBT Pr-1.5V-1 1.632 0.001 ppP2x8013.1.5 13.8 0.00 ppP2x8013.1.5 1.532 0.001 ppP2x8013.1.5 13.8 0.00 matching in the holding introchood duct carrier particle Add 20 SHores agains 0KH-2027 Pr-1, V-2 1.585 0.002 ppP2x8013.1.5 13.8 0.00 matching introchood duct carrier particle Add ansign intervent add and add ad						
p1P32371372 20.77 69.7 PeptiP4H proM dot strate incomerase A CS+born suglems GM+PFIA PE-1 SV-2 1.602 0.011 p1P320715.8 0.58 6.74 Calcium Sinding microhandria carrier pretein Analoz CS+10rm suglems GM+SCEX319 PF-1 SV-2 1.585 0.020 p1P320715.8 1.582 20.97 Kernin, type Loptoskelat 20 CS+10rm suglems GM+SCEX09 PF-1 SV-2 1.581 0.015 p1203715.46 1.532 20.57 Perspecific component 10.5+10rm suglems GM+SCEX09 PF-1 SV-2 1.581 0.001 p1203712.46 1.531 3.513 3.513 3.513 3.517 3.517 0.001 p1203712.46 1.584 5.997 Approprint downain suglems GM+APM PF-1 SV-2 1.552 0.003 p1P3034.62 2.183 3.282 Adapport photome suglems GM+APM PF-1 SV-2 1.551 0.003 p120407.237.34 2.438 PA4B Minding protein 4.05+10rm suglems GM+APM PF-1 SV-2 1.551 0.003 p120407.237.34 2.438 PA4B Minding protein 4.05+10rm suglems GM+APM PF-1 SV-2 1.551 0.031 p120407.457.42 2.438 Madiator OMA amage dowlem Mindien PM-1 SV-2 1.5						
BJC200518.08 6.58 8.741 Calcium sinding mitochandial carrie protein Analyz OS+toms septes GH+SIC28A1PR-15V-2 1.595 0.0401 BJC2005125 6.527 Non-specific light-transfer protein OS+toms septes GH+SICPT F-15V-2 1.581 0.015 BJC2005125 5.125 4.248 1.514 1.552 0.0001 BJC2005123 3.013 3.257 4.014 1.552 0.0001 BJC2005123 3.013 3.517 1.552 0.0011 1.552 0.0011 BJC2005123 3.013 5.515 Acport Chronic septem CM+AND PL-15V-2 1.552 0.0031 BJC2005123 7.913 3.922 Algocyce plavma membrane associated protein CS+toms septem CM+AND PL-15V-2 1.551 0.0031 BJC20052318 7.313 3.922 Algocyce plavma membrane associated protein CS+toms septem CM+AND PL-15V-2 1.554 0.0031 BJC2005245.67 1.57 Scrant associated protein CS+toms septem CM+AND PL-15V-2 1.554 0.0031 BJC2005245.67 1.57 Scrant associated PL-15V-1 1.555 0.0031 BJC200545.67 1.57 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
piP23001154 13.88 20.99 Kertalin, type I ortoakeleal 20 C3-form sagless GN+RT20FE-1 SV-1 1.595 0.020 piP2307 15.8 5.32 5.67 Non-specific Right andre proteins Ox1-shorm sagless GN+RT20FE-1 SV-1 1.572 0.031 piP2307 15.8 13.00 8.52 LamM+D2 Ox1-shorm sagless GN+HB2PC1 SV-3 1.552 0.001 piP2301 13.25 3.13 8.42 Histone FLS Ox1-time sagless GN+HB2PC1 SV-3 1.552 0.043 piP2304 13.25 3.13 5.82 Apopticit Known sagless GN+HB2PC1 SV-3 1.554 0.044 piP3204 13.25 3.13 5.82 Apopticit Known sagless GN+HB2PC1 SV-3 1.547 0.004 piP3205 13.7 3.13 8.22 Apopticit Known sagless GN+HB2PC1 Flow 3 1.547 0.003 piP3205 13.7 2.13 BA1 BA1 BA1 BA1 BA1 D.033 piP2035 14.7 2.38 2.461 BA1 BA1 BA1 D.031 D.031 piP2035 14.7 2.78 2.438 PA1 Andre SP1 D.031 D.031 D.031	sp P62937 18.72	20.77	69.7	Peptidyl-prolyl cis-trans isomerase A OS=Homo sapiens GN=PPIA PE=1 SV=2	1.602	0.011
up [22307.5.9. 5.657 Non-specific light transfer protein C5+tion supplex OH-SCP2 FC1 Sv12 1.551 0.016 up [20307.5.3.6. 3.174 1.75 Lambe 20.5+tions supplex OH-SCP2 FC1 Sv12 1.552 0.001 up [20307.5.3.6. 3.5.17 Lambe 20.5+tions supplex OH-SCP2 FC1 Sv13 1.552 0.004 up [20307.5.3.6. 5.157 Lambe 20.5+tions supplex OH-SCP2 FC1 Sv23 1.552 0.044 up [20307.5.3.6. 5.137 Apport Distribute Dehydrogenesis, mitchcherd IG C5-tions supplex OH-ADM FC1 Sv24 1.552 0.013 up [20307.5.3.6. 5.313 8.237 Adaptort pEhydrogenesis dehydrogenesis OH-ADM FC1 Sv24 1.552 0.003 up [20407.5.73.6. 5.467 Double-transfel dehydrogenesis OH-ADM FC1 Sv24 1.552 0.003 up [20407.5.73.6. 5.461 Monton OS-Homo supplex OH-ADM FC1 Sv24 1.552 0.003 up [20407.5.73.6. 7.574 Monton OS-Homo supplex OH-ADM FC1 Sv24 1.552 0.003 up [20407.5.73.6. 7.574 Monton OS-Homo supplex OH-ADM FC1 Sv24 1.550 0.003 up [20407.5.754.7. 7.534 Monton OS-Homo supplex OH-ADM C	sp Q9UJS0 6.08	6.08	8.741	Calcium-binding mitochondrial carrier protein Aralar2 OS=Homo sapiens GN=SLC25A13 PE=1 SV=2	1.596	0.040
BJP22075.9 5.52 Non-aperific light-transfer protein C5+tions spikes OK-S2P XF-15 V-2 1.551 0.015 BJC00257246.1 33.01 84.75 Lambe 20.5+tions spikes OK-14MR2 PF-15 V-3 1.552 0.001 BJC00257246.1 33.01 84.75 Lambe 20.5+tions spikes OK-14MR2 PF-15 V-3 1.552 0.004 BJC0025725.8 7.53 2.15 42.44 5.538 0.041 1.552 0.044 BJC002575.8 7.53 3.537 0.043 1.552 0.013 BJC200767.4 4.45 5.030 Dispect Control approximation control approximatio	sp P35900 11.54	13.58	20.99	Keratin, type I cytoskeletal 20 OS=Homo sapiens GN=KRT20 PE=1 SV=1	1.595	0.020
B[038971364 13.7.9 Parage-kde component 10 S-Homo supers GM-PSCI PE-15V-1 1.572 0.001 B[038272464 3.0.01 3.0.01 5.552 0.004 B[0138272464 3.0.01 5.553 0.041 5.553 0.041 B[0208272464 4.454 Histore Histo 55-Homo supers GM-HMB2 PE-1 SV-3 1.552 0.048 B[0208272464 4.454 5.639 Object-1 System HMB2 PE-1 SV-3 1.552 0.048 B[0208275376 9.3 6.507 Object-1 System HMB2 PE-1 SV-3 1.552 0.033 B[0208774.26 4.24 1.648 HMA Anding period 4.25 -Homo supers GM-HMA2 PE-1 SV-2 1.526 0.033 B[0208774.26 4.24 1.55 0.031 1.555 0.031 B[0208774.27 4.25 2.439 Mediator of GMA dmag periodic Paritin 10-Homo supers GM-HMA2 PE-1 SV-3 1.555 0.031 B[0208774.27 4.24 3.441 Periodic Paritin 20-Homo supers GM-HA21 PE-1 SV-3 1.555 0.031 B[02087174.27 4.24 Addiator of GMA dmag periodic Paritin 10-Homo supers GM-HA21 PE-1 SV-3 1.555	sp P22307 6.9	6.92	5.667		1.581	0.016
B[02522461 33.0. 35.17 Lamie #2 OS+Homo septems GH+AMM2 ZP+15 V/3 1.552 0.001 B[24501] 32.5 32.15 42.48 Histome H: DS-Homo septems GH+AME ZPH B HE* 5 V/3 1.557 0.041 B[25001] 32.5 44.5 5.030 Apportic thromatic condensation inducer in the markers OS+Homo septems GH-ACME PE-15 V/-3 1.552 0.041 B[2505253 87 5.9 6.07 Double-stranded RM-septific downlines OS+Homo septems GH-ACME PE-15 V/-3 1.552 0.031 B[250554 56.5 5.63 1.567 Double-stranded RM-septific downlines OS+Homo septems GH-ACME PE-15 V/-3 1.552 0.031 B[250554 56.5 5.63 1.567 Double-stranded RM-septific downlines GH-MEMA PE-15 V/-1 1.567 0.031 B[25058 16.5 5.7 Brain OS+Homo septems GH+ACME PE-15 V/-3 1.515 0.011 B[25058 17.5 7.8 2.483 Mediator of DNA damage downling torticin 1.05+Homo septems GH+ACME PE-15 V/-3 1.515 0.013 B[25058 17.5 7.28 6.28 Artin, trypholamoline diati trangorise GH+ACME PE-15 V/-3 1.515 0.013 B[12058151 46.1 7.27 Phythrithohaddis		13.74	17.59	Paraspeckle component 1 OS=Homo sapiens GN=PSPC1 PE=1 SV=1	1.572	0.001
pip1e30119.35 21.5 42.48 Histore H1.5 OS+Icono suplems GM+HIST H1P Fe1 SV-3 1.555 0.041 pip20301103 1.04 5.90 Gypercel-3 phosphate dehydrogenase, mitochondrial GS+Horno suplems GM-GPD PF1 SV-3 1.547 0.004 pip2030120 29.3 6.507 Double strandsche deminase OS-Horno suplems GM-GPD PF1 SV-3 1.552 0.019 pip2040120 21.3 3.2.2 Allporte plana meritance-associated protein GS+Horno suplems GM+GPD PF1 SV-2 1.553 0.033 pip2030140.4 44.4 1.6.4 Modein GS+Horno suplems GM+GPM PF1 SV-2 1.553 0.001 pip20301420 24.83 24.83 1.6.51 Modein GS+Horno suplems GM+GPM PF1 SV-3 1.555 0.010 gip203031423 57.1 7.72 2.5.31 Phosphatidylethanoldmit protein 1.05+Horno suplems GM+AGM PF1 SV-3 1.555 0.010 gip203051457.3 57.2 6.2.33 Action cryptopiant 2.05+Horno suplems GM+AGM PF1 SV-3 1.557 0.013 gip20305147.3 57.2 6.2.34 Action cryptopiant 2.05+Horno suplems GM+AGM PF1 SV-3 1.567 0.010 gip20305157.3 57.2.7						
p1(290KV:10.33 10.48 5.81 Approtic Aromatics inducer in the nucleus 05+Horn splens 0H-MDR P+1SV-2 1.547 0.004 p1(2910 C2.33 2.33 8.22 Adjacory the parameter inducer is accident protein 0.5+Horn splens 0H-MDR P+1SV-4 1.532 0.033 p1(290 C2.33 2.333 8.22 Adjacory the parameter inducer is accident protein 0.5+Horn splens 0H-MDR P+1SV-2 1.530 0.033 p1(290 C2.33 2.335 8.23 Adjacory the plana method accident os splens 0H-MDR PH =1SV-3 1.524 0.030 p120308 L3.2 2.436 2.461 Moein 0.5+Horn splens 0H-MERP H1 PE+1SV-3 1.515 0.031 p120308 L3.7 1.57 2.533 Adjacory the plana period 0.5+Horn splens 0H-MPC P1 PE+1SV-3 1.515 0.031 p120308 L3.7 5.73 2.53 Actin, cryptamic 2.65+Horn splens 0H-MPC P1 PE+1SV-3 1.515 0.031 p120308 L3.7 2.133 Actin, cryptamic 2.65+Horn splens 0H-PC P1 PE+1SV-3 1.507 0.033 p120308 L3.7 2.138 Actin, cryptamic 2.65+Horn splens 0H-PC P1 PE+1SV-3 1.507 0.031 p120308 L3.7 2.138 3.48 Pretryptamic and ma						
up1PA3044.45 4.45 5.58 Gleverol-3-phosphot dehydrogenase, mitochondrid OS-Homo saplens GN+2DA PF-1 SV-3 1.547 0.001 up1PS505.53 29.13 32.22 Alipcyck plasma methane-associated protein OS-Homo saplens GN+ADA PF-1 SV-2 1.530 0.003 up1PS505.53 23.33 32.22 Alipcyck plasma methane-associated protein OS-Homo saplens GN+MADA PF-1 SV-1 1.524 0.001 up1PS505.54.27 24.35 24.63 MACh Monsphot SNPF15 SV-3 1.515 0.003 up1PS505.57.23 57.23 Mosphot SNPF15 SV-3 1.515 0.001 up1PS505.57.23 57.23 Align Mosphot SNPF15 SV-3 1.557 0.013 up1PS505.57.23 57.23 Aring, cyclasmic 2 GS-Homo saplens GN+ACTG1 FF-1 SV-3 1.557 0.013 up1DS505.57.23 57.23 Aring, cyclasmic 2 GS-Homo saplens GN+ACTG1 FF-1 SV-3 1.567 0.037 up1DS505.57.23 57.23 Aring, cyclasmic 2 GS-Homo saplens GN+ACTG1 FF-1 SV-3 1.456 0.032 up1DS505.57.23 57.31 Alisa A Hetrogeneous nuclear monunclear mo						
pi [P5555 3.87 9.9 6.67 Double-stranded PM-Specific demonsapers GN-PADM FE-1 SV-4 1.532 0.033 pi (29W 10.4 20.41 30.43 32.22 Adjeccy relams merkmane-associated protein 0.5+horno sapies GN-PAMAP FE-1 SV-2 1.524 0.033 pi (29W 10.44 4.04 1.6.8 RNA-binding protein 0.5+horno sapies GN-PAMAP FE-1 SV-1 1.524 0.030 pi (20308 10.7 1.57 2.5.13 Pospies FSNA-16-35 1.5.15 0.031 pi (20308 10.7 1.57 2.5.13 Pospies FSNA-16-35 1.5.15 0.031 pi (20308 10.7 1.57 2.5.23 2.3.3 Artin, cryptamiz 2.0-shorno sapiers GN-PCRP IFE-1 SV-2 1.5.07 0.033 pi (20378 10.7) 1.3.85 3.1.1 2.2.47 PolyHrC)-binding protein 1.0.5-horno sapiers GN-PCRP IFE-1 SV-2 1.543 0.037 pi (20378 10.3.2 2.3.03 Artin, cryptamiz dehydrogenacy englems GN-PCRP IFE-1 SV-2 1.549 0.034 pi (20378 10.3.2 2.3.03 Artin, cryptamiz dehydrogenacy englems GN-PCRP IFE-1 SV-2 1.459 0.032 pi (20378 10.5.1 1.3.85 3.4.58 Srethor						
p1QB04C23.18 28.22 Adipocyte plasma membrane-associated protein OS+Horno saplens GM+ARAP E1-1SV-2 1.520 0.003 p2[03BWF44] 4.04 1.64 RNA-Minding protein ACS+Horno saplens GM+MBRPE1SV-1 1.524 0.020 p2[2503842.23 24.36 24.61 Mccinic DS+Horno saplens GM+SRPPN12 [F-1SV-2 1.524 0.020 p2[2038742.23 24.38 24.84 24.84 24.84 24.85 25.00 0.001 p2[2038742.23 57.23 57.23 Phosphatidytehandamine-binding protein 10.53-Horno saplens GM+PGP1 [F-1SV-3 1.515 0.037 p2[0358163.26 57.23 57.23 57.24 Phytich-Inding protein 10.53-Horno saplens GM+PGP1 [F-1SV-3 1.560 0.034 p2[04781154.45 1.547 Phytich-Inding protein 10.53-Horno saplens GM+PGP1 [F-1SV-2 1.494 0.034 p1[04781154.45 1.548 3.648 Senter-Granter Instructure saplens GM+PGP1 [F-1SV-2 1.494 0.025 p1[04781154.45 1.548 3.648 Senter-Granter Instructure Saplens GM+HIRMPC [F-1SV-2 1.490 0.025 p1[047811544.15 1.548 3.648 Senter-G						
ID End End End						
pp [P503845.6.8 6.8.6 15.07 Serpin H.1 OS+Horm saglens GN+SRPN11 [Pf-1 SV-2 1.524 0.020 pp [2630824.17 1.6.7 25.13 Phosphatidybethanalamine-binding protein 10.5+Horm saglens GN+PEPI [Pf-1 SV-3 1.515 0.031 pp [2630824.27 27.33 62.93 Attin, cryoplasmic 20.5+Horn saglens GN+ACCI 1Pf-1 SV-1 1.507 0.013 pp [263584.28 3.11 22.47 Pehr(Chanding protein 10.5+Horn saglens GN+ACCI 1Pf-1 SV-2 1.593 0.037 pp [203584.28 3.11 22.47 Pehr(Chanding protein 10.5+Horns saglens GN+MER) 1.593 0.037 pp [203594.28.30 3.13 22.47 Pehr(Chanding protein 10.5+Horns saglens GN+MER) 1.544 0.024 pp [2037951.26.4 1.547 3.468 Seried(ramoundee) protein GN+GN SIG						
p126288 14.3 24.61 Moein OS-Home sapiens GM-MSR PE-1 SV-3 1.523 0.001 p120388 1.57 1.57 25.31 Phosphility dehandlamine hinding protein 10 OS-Home sapiens GM-PERP1 PE-1 SV-3 1.515 0.010 p163268 1.57 57.23 6.233 Actin, cryoplamic 2.05-Home sapiens GM-PCR1 PE-1 SV-3 1.515 0.013 p163261 57.23 57.23 6.233 Actin, cryoplamic 2.05-Home sapiens GM-PCR1 PE-1 SV-3 1.503 0.037 p1039151 4. 1.67 2.843 Hetergeneous nuclear thomucle sproteins GM-PCR1 PE-1 SV-2 1.440 0.024 p10392515.44 1.543 34.65 Serfine/arginine rich splicing factor 1.05-Home sapiens GM-PMCR PE-1 SV-3 1.450 0.029 p10395515.44 1.543 34.68 Serfine/arginine rich splicing factor 1.05-Home sapiens GM-PMCR PE-1 SV-2 1.459 0.006 p10305415.54 5.54 3.1.8 Perlipin 3.05-Home sapiens GM-MINR PE-1 SV-2 1.447 0.002 p104056115.51 1.54 Selfine/arginine rich splicing factor 1.05-Home sapiens GM-HURP PE-1 SV-2 1.442 0.042 p126424.9.29 3.541 1.54 Selfine SH-HOME SPHOME S						
pi Plo20851.67 1.67 25.13 Phosphatike/rehnalamine-binding protein 1.05%-form sapiens GN+/DECI PE-1.5V-3 1.516 0.039 pi Plo3264.57.23 57.24 62.93 Actin, ctroplasmic 2.05%-form sapiens GN+ACCI PE-1.5V-3 1.517 0.013 pi Plo3368.58.31 2.247 Poly(AC)-Hinding protein 1.05%-form sapiens GN+ACCI PE-1.5V-2 1.507 0.013 pi D13568.15.3 1.115 Poly(AC)-Hinding protein 1.05%-form sapiens GN+ACCI PE-1.5V-2 1.494 0.034 pi D3051.54.3 1.547 Pathyle-Hinding protein 1.05%-form sapiens GN+ACCI PE-1.5V-2 1.494 0.034 pi C020221.52.03 2.303 47.59 Divigromoun nuclear riformine circle conserving GN+ACCI PE-1.5V-2 1.496 0.022 pi C020221.52.03 2.303 Protein 1.5%-form sapiens GN+CINCI PE-1.5V-2 1.447 0.000 pi C020221.53.54 3.458 Serving protein 5.0%-Form sapiens GN+GNED PE-1.5V-2 1.447 0.000 pi C050641.55.4 3.484 S.55 Form compleme CN+Minding PE-1.5V-3 1.447 0.000 pi C050641.55.4 3.484 Z.55 Form compleme CN+Minding SN+Der1.5V-3 1.442 0.032 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
p10146774.25 4.38 C.439 Mediator of DNA damage checkpoint protein 10.9-Homo sapiers 6N+MCD1 PE-1 SV-3 1.515 0.010 p103265.127.23 57.23 52.33 62.33 <td>sp P26038 24.32</td> <td>24.36</td> <td>24.61</td> <td></td> <td></td> <td></td>	sp P26038 24.32	24.36	24.61			
pp [62626;57:23 57.23 62.93 Actin, cytoplasmic 2 OS-Homo saplens 6N-ACTG1 PE-1 SV-1 1.507 0.013 pp [02515548: 035 8.11 2.42 Polyf(-) chinding protein 10 SH-Homo saplens 6N-ECG12A1D PE-1 SV-2 1.494 0.037 pp [02510548: 035 1.57 Putative sodum-coupled neutral amina add transporter 10.05+Homo saplens 6N-ECG12A1D PE-1 SV-2 1.447 0.002 pp [02512548: 045 1.545 3.668 Serme graphine Chi Sylling for the coupled neutral amina add transporter 10.05+Homo saplens 6N-EORH DPE-1 SV-3 1.460 0.002 pp [02605641554 1.545 3.68 Serme graphine OS+Homo saplens 6N-HORD PE-1 SV-3 1.447 0.000 pp [02605641554 1.545 3.68 High mobiling group protein B.105+Homo saplens 6N-HORD PE-1 SV-3 1.447 0.002 pp [02604210.07 1.007 2.144 Catalias CS+Homo saplens 6N-HORD PE-1 SV-3 1.446 0.042 pp [0264221.282 1.348 Z7.7 Catenin alpha-1 CS+Homo saplens 6N-HORD PE-1 SV-1 1.446 0.037 pp [026421.282 1.348 Z7.37 Catenin alpha-1 CS+Homo saplens 6N-HORD PE-1 SV-2 1.426 0.042 pp [0264721.4			25.13			
p1033858.03 8.11 22.47 PelyHC3-binding protein 1.05+formo saplers GN+CBP1 PE-1 SV-2 1.503 0.037 p103HB81.02 115 Putative sodium coupled neutral amino add transporter 1005-Hormo saplens GN-SIC33A10 PE-1 SV-2 1.494 0.034 p1021272.03 28.03 47.59 Dihydrocrotate dehydrogenes (quinone), micchondriaIOS-Hormo saplens GN-DHODH PE-1 SV-3 1.460 0.022 p10207521544 1.84.5 Safter organics (quinone), micchondriaIOS-Hormo saplens GN-HOLODH PE-1 SV-3 1.447 0.000 g10666415.54 1.85.4 31.8.5 High mobility group protein 10.05-Hormo saplens GN-HIMG81PE-1 SV-3 1.447 0.000 g10680425.29 5.31 1.8.6 High mobility group protein 3.05-Hormo saplens GN-HIMG81PE-1 SV-3 1.426 0.042 g1080424.29 1.345 25.7 Far upstream element-binding protein 3.05-Hormo saplens GN-HIMG81PE-1 SV-2 1.426 0.036 g10208124.29 1.345 25.7 Far upstream element-binding protein 3.05-Hormo saplens GN-HIMG81PE-1 SV-2 1.426 0.036 g102084212.55 1.255 FAC complex submit SEPP 1.05-HORM saplens GN-SEPP 1.5V-1 1.414 0.013 g102084212.55 <td>sp Q146764.25</td> <td>4.28</td> <td>2.489</td> <td>Mediator of DNA damage checkpoint protein 1 OS=Horno sapiens GN=MDC1 PE=1 SV=3</td> <td>1.515</td> <td>0.010</td>	sp Q146764.25	4.28	2.489	Mediator of DNA damage checkpoint protein 1 OS=Horno sapiens GN=MDC1 PE=1 SV=3	1.515	0.010
pp (2)#RR:10.74 10.85 9.115 Putative sodium-coupled neutral amino add transporter 10.05+iromo sapiens GN=ICI3A10 PE-15V=3 1.436 0.002 pp (2)221223.33 23.33 47.59 Dihydroorotate dehydrogenase (quinone), mitochondrial OS+iromo sapiens GN=INNNE PE-15V=3 1.446 0.002 pp (2)66664125.4 15.54 34.86 Serine/arginine rich splicing factor 1.05+iromo sapiens GN=INNE(RE PE-15V=3 1.447 0.000 pp (2)66664125.4 15.54 31.81 Perlipin-3 OS+iromo sapiens GN=INNE(B1PE-15V=3 1.447 0.000 pp (2)60664125.5 15.51 11.83 Solute carrier family 10 member 2.05+iromo sapiens GN=INNE(B1PE-15V=3 1.446 0.002 pp (2)6010.107 10.07 21.44 Catalase OS+iromo sapiens GN=INNE(B1PE-15V=1 1.426 0.036 pp (2)6012.1 13.48 27.7 Catenin alpha-10S+iromo sapiens GN=INPE3 PE-15V=1 1.426 0.023 pp (2)8012.42 2.36 3.97 Sulfatase-modifying factor 2.05+iromo sapiens GN=SRP1 PE-15V=1 1.440 0.017 pp (2)8012.42 2.36 3.97 Sulfatase-modifying factor 2.05+iromo sapiens GN=SRP1 PE-15V=1 1.402 0.023		57.23	62.93	Actin, cytoplasmic 2 OS=Homo sapiens GN=ACTG1 PE=1 SV=1	1.507	0.013
pp (D=MRH:10.74 10.85 9.115 Putative sodium-coupled neutral amina add transporter 10.05+tioms asplens GN=KINBA10 PE-1.5V=2 1.476 0.002 pp (D2121723.03 23.03 475.9 Dihydrocrotate dehydrogenase (pulnone), mitochondrial OS+tioms asplens GN=KINBNC PE-1.5V=3 1.460 0.022 sp (D2056415.54 1.545 34.88 Serine/raginine-rich splitcing factor 10S+tioms asplens GN=MIA(51 PE-1 SV=2 1.447 0.000 gp (D2046415.54 1.545 31.88 Perlipin 3 OS+tioms asplens GN=MIA(51 PE-1 SV=3 1.447 0.000 gp (D20401.0.07 1.0.07 21.44 Catalase OS+toms asplens GN=KIA(51 PE-1 SV=3 1.446 0.002 gp (D20401.0.07 1.0.07 21.44 Catalase OS+toms asplens GN=KIA(51 PE-1 SV=3 1.426 0.042 gp (D20401.0.07 1.0.07 21.44 Catalase OS+toms asplens GN=KIC122A2PE-1 SV=1 1.426 0.023 gp (D20401.0.27 1.3.48 27.37 Catenin algha-1 OS+toms asplens GN=SNP1 PE-1 SV=1 1.426 0.023 gp (D20412.42 2.34 1.3.37 Catalase OS+toms asplens GN=SNP1 PE-1 SV=1 1.404 0.017 gp (D20412.54 2.	sp Q153658.03	8.11	22.47	Poly(rC)-binding protein 1 OS=Homo sapiens GN=PCBP1 PE=1 SV=2	1.503	0.037
pp P071015.4 16.7 28.43 Heterageneous undear itbonucleoproteins CJ/2 OS-Homo sapiers GN-HNRPC FE-1 SV-4 1.476 0.002 p1 (2022)233.23.3 47.59 Diffudroritat edehydrogenase (quinoe), mitochondrial OS-Homo sapiers GN-UPR FE-1 SV-2 1.459 0.005 p1 (2022)233.25.3 33.18 Pertilipin-3 OS-Homo sapiers GN-HNRP FE-1 SV-3 1.447 0.000 p1 (2022)235.5 5.51 33.18 Pertilipin-3 OS-Homo sapiers GN-HNRP FE-1 SV-3 1.447 0.002 p1 (2022)237.3 1.345 Selfute carrier family 12 member 2 OS-Homo sapiers GN-HSC12A2 PE-1 SV-1 1.430 0.025 p1 (2022)233.3 3.483 2.5.7 Far upstræm element-binding protein 3 OS-Homo sapiers GN-HSC12A2 PE-1 SV-2 1.426 0.042 p1 (2022)233.3 3.483 2.7.7 Cateronia alpha-1 OS-Homo sapiers GN-SUP1 PE-1 SV-2 1.426 0.035 p1 (2034)23.25 1.2.65 1.2.55 FACT complex subunt SSPP1 0S-HOMO sapiers GN-SUP1 PE-1 SV-1 1.400 0.017 p1 (2034)21.26 1.2.65 1.2.55 FACT complex subunt SSPP1 0S-HOMO sapiers GN-SUP1 PE-1 SV-1 1.402 0.023 p1 (2034)21.26 1.2.65 1.2.57	sp Q9HBR(10.74	10.85	9.115	Putative sodium-coupled neutral amino acid transporter 10 OS=Homo sapiens GN=SLC38A10 PE=1 SV=2	1.494	0.034
p1 p1<		16.7	28.43		1.476	0.002
p10079515.44 15.45 34.68 Serine/arginine-rich splicing factor 1 OS+Horn saplens GN=RSF1P.F=1 SV=2 1.459 0.006 p105665112.55 15.54 15.54 31.38 Perlulphan 3OS+Horno saplens GN=HMGB1PE1 SV=3 1.447 0.000 p1P04295.9 5.91 18.6 High mobility group protein B1 OS+Horno saplens GN=K1C12A2 PE-1 SV=1 1.430 0.022 p1P0400107 10.07 21.44 Catabase OS+Horno saplens GN=K1C12A2 PE-1 SV=3 1.426 0.042 p1P3521343 43.83 27.37 Far upstream element-binding protein 3 OS+Horno saplens GN=HMP3 PE-1 SV=2 1.426 0.036 p1P352134343 34.83 27.37 Catahoma saplens GN=SMP1 PE-1 SV=1 1.414 0.018 p1P352134343 34.83 7.73 Catahoma saplens GN=SMP1 PE-1 SV=1 1.409 0.023 p1P35213441 1.41 2.96 8.97 Sulfatase molfyling factor 2 OS+Horno saplens GN=MP2 PE-1 SV-2 1.402 0.023 p1P3607242.84 2.84 7.34 Foldsyntabia densities GN=SMP2 PE-1 SV-1 1.380 0.000 p1P367214311 1.402 0.33 0.34						
pl D6056415.54 15.54 33.18 Perlipin-3 05=Homo sepiens GN=PLIN3 PE-1 SV-3 1.447 0.000 pl P80429.59 5.91 13.6 High mobility group protein B10.5+Homo sepiens GN+SLC12A2 PE-1 SV-3 1.430 0.002 gl P5501115.1 15.1 11.88 Solute carrier family 12 member 2 OS=Homo sepiens GN+SLC12A2 PE-1 SV-2 1.426 0.042 gl P6404010.07 10.07 21.44 Catalase OS=Homo sepiens GN+SLC12A2 PE-1 SV-2 1.426 0.036 gl P3521134.39 34.83 27.37 Catenin alpha-1 0S=Homo sepiens GN+SRP1 PE-1 SV-1 1.441 0.018 gl C380424.25 12.65 12.55 FACT complex subunit SRP1 OS=Homo sepiens GN+SRP1 PE-1 SV-1 1.404 0.017 gl P680742.84 2.84 17.83 Trissephosphate isomerase OS=Homo sepiens GN+SRP1 PE-1 SV-1 1.402 0.023 gl P08744.84 14.41 1.41 2.97 Poly (ADP-rbose) ploymerase 10.5+Homo sepiens GN+CMP1 PE-1 SV-1 1.402 0.023 gl P0877116.37 16.37 42.64 Synaptosomalassociated protein sepiens GN=CMCP1 PE-1 SV-1 1.380 0.000 gl C3SV1310.19 10.13						
pp (P04295.9 5.91 18.6 High mobility group protein B 10.SHomo sapiens GN-HK061 (PC-15 V-3) 1.439 0.025 pp (P3501 115.1 15.1 11.88 Solute carrier family 12 member 20.5Homo sapiens GN-SLC124 2PE-1 SV-1 1.440 0.002 pp (P3401 40.0.07 10.07 21.44 Catalase OS-Homo sapiens GN-SC1224 PE-1 SV-1 1.426 0.042 pp (P3521 34.34) 34.88 27.37 Catana labe-1 OS-Homo sapiens GN-SKP1 PE-1 SV-2 1.426 0.038 pp (P3521 34.34) 34.88 27.37 Catanase modifying factor 2 OS-Homo sapiens GN-SKP1 PE-1 SV-2 1.404 0.017 pp (P3821 34.41 41.41 2.95 PAT constance on sapiens GN-SMP1 PE-1 SV-2 1.404 0.017 pp (P3872 41.41 41.41 2.97.8 Poly (ADP-Hobee) polymerase 10.5Homo sapiens GN-SMP2 PE-1 SV-1 1.380 0.002 pp (P3872 41.41 41.41 2.97.8 Poly (ADP-Hobee) polymerase 10.5Homo sapiens GN-SMP2 PE-1 SV-1 1.380 0.002 pp (P3872 41.55 51.83 7.07.1 6 protino couplet are form sapiens GN-SMP2 PE-1 SV-1 1.380 0.002 pp (P3872 41.55 51.83 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
pp [P501115.1 11.5.1 11.5.8 Solute carrier family 12 member 2 0.5+Horno saplens (NH-SEC12A2 FE-1 SV-1 1.4.30 0.002 pp [P404010.07 10.07 21.44 Catalase OS+Horno saplens (NH-CAT PE-1 SV-3 1.4.26 0.0.42 ap [P35221 34.39 34.83 27.37 Catenin alpha-1 0S+Horno saplens (NH-CMT MH PE-1 SV-1 1.4.14 0.0.13 p [Q389412.55 12.65 12.55 FACT complex subunits SPEP 1.55+Horno saplens (NH-SEP 1.5V-1 1.4.04 0.0.02 p [Q389412.56 2.96 8.97 Sulfatase-modifying factor 2.0S+Horno saplens (NH-SEP 1.5V-1 1.4.04 0.0.02 p [P60712.42 2.84 1.7.33 Triosephosphate isomerase 0.5+Horno saplens (NH-P1 PE =1 SV-2 1.4.04 0.0.02 p [P30741.41 1.41 2.9.78 Pely [ADP rthose] polymerase 1.05+Horno saplens (NH-P2 PE =1 SV-1 1.330 0.000 g [Q55V110.13 10.13 1.3.2 O.C.M domain-containing protein 2.05+Horno saplens (NH-P2 PE =1 SV-1 1.337 0.000 g [Q55V110.13 10.13 1.3.2 O.C.M domain-containing protein 2.05+Horno saplens (NH-P2 PE =1 SV-1 1.3.37 0.004 g [Q55V1210.35 <td>sn100000410.04</td> <td></td> <td></td> <td></td> <td></td> <td></td>	sn100000410.04					
ppP040010.07 10.07 21.44 Catalase CS+Homo sapiens CN+CT PE-1 SV-3 1.426 0.042 pp125212 34.35 25.7 Far upstream element-binding protein 3 OS+Homo sapiens CN+FUBP3 PE-1 SV-2 1.426 0.036 pp125221 34.38 27.37 Caterin alpha-1 OS+Homo sapiens CN+SERP1 PE-1 SV-1 1.404 0.013 pp125221 25.55 FACT complex subunit SSP1 OS+Homo sapiens CN+SERP1 PE-1 SV-2 1.404 0.017 pp128021 24.84 17.83 Triosephosphate isomerase OS+Homo sapiens GN+SMP2 PE-1 SV-2 1.404 0.017 pp109721 16.37 16.37 16.37 1.630 0.002 pp109721 16.37 16.37 1.630 0.002 pp109721 16.37 1.637 1.380 0.000 pp109721 1.537 1.571 CpCentein couplet receptor 50 CS+Homo sapiens GN+SNP29 PE-1 SV-1 1.380 0.002 pp1097521 1.531 Dihydrolipoyi dehydrogenase, mitochondrial OS+Homo sapiens GN+MD20 PE-1 SV-1 1.377 0.004 pp1097521 5.513 S.771 OS Protein couplet receptor 50 CS+Homo sapiens GN+M						
pi (38/24 9.2) 13.45 25.7 Far upstream element-binding protein 3 OS+Homo saplens (NH-UBP 2Fe15V+2) 1.426 0.036 pi (28/21/43) 34.58 27.37 Catenin Japha-1 OS-Homo saplens (NH-CINNAL PE-15V+1) 1.414 0.013 gi (28/94512.65 12.65 12.65 12.65 12.65 14.70 0.028 gi (28/94512.65 12.65 12.55 FACT complex subunit SSP1 OS+Homo saplens (NH-SRP1 FE-15V-2) 1.404 0.017 gi (28/94512.65 12.65 14.73 Tridsphosphate issomerase OS+Homo saplens (NH-SRP1 FE-15V-2) 1.404 0.023 gi (28/974.41.41 14.14 29.78 Poly (ADP-Hobse) polymerase 1 OS+Homo saplens (NH-ARP1 FE-15V-4) 1.380 0.000 gi (29/95721.61 5.1.8 7.071 G-protein coupled receptor 56 OS+Homo saplens (NH-ARP2 PE-15V-1) 1.377 0.004 gi (29/953.16 5.1.8 7.071 G-protein coupled receptor 56 OS+Homo saplens (NH-ARP2 PE-15V-2) 1.353 0.044 gi (29/953.15 5.43 5.43 7.071 G-Brotein colpa-10 Seles (S-Homo saplens (S-M-MP24 PE-15V-1) 1.352 0.024 gi (29/954.13.05	sp1r 55011 15.1					
pp [93221 34.39 34.88 27.37 Catenin alpha-1 0.5-Homo saplens 6M-CINNAI PE-1 SV-1 1.414 0.018 pp [0389412.55 12.55<	spjr04040 10.07			Catalose Controlliti Sapiens Cin-CAT PE-1 3V-5		
pi (Q384212.65 12.77 0.002 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.001 0.001 0.004	sp1Q30124 9.29			r ar upstream element-binding protein 5 OS=nomo saplens GN=FUBP3 PE=1 SV=2		
pp (2080/17.26 2.96 8.97 Sulfatase-modifying factor 2.05-Homo saplens GN-9JWF2 PE-1 SV-2 1.404 0.017 pp (P0372.48 2.84 1.733 Tricsephosphret isomerase 0.5-Homo saplens GN-PIMP1 PE-1 SV-3 1.402 0.023 pp (P0372.41.41 41.41 2.978 Poly (ADP-ribose) polymerase 1 0.5-Homo saplens GN-PAMP1 PE-1 SV-4 1.380 0.000 pp (255V.130.19 10.19 3.12 0.24 domain-consisting protein 0.25 e-Homo saplens GN-OLAD2 PE-1 SV-1 1.379 0.000 pp (265V.130.19 10.13 3.12 0.24 domain-consisting protein 0.25 e-Homo saplens GN-OLAD2 PE-1 SV-1 1.377 0.004 pp (265V.130.19 10.01 5.91 Drivolicopid dehydrogenase, microchondrial 0.5-Homo saplens GN-OLAD2 PE-1 SV-2 1.353 0.044 pp (265V.125 12.52 2.552 6.367 Aningen Ri-670 SeHomo saplens GN-MEP PE-1 SV-1 1.352 0.024 pp (2607.612.52 2.552 6.367 Aningen Ri-670 SeHomo saplens GN-SRFS11 PE-1 SV-1 1.349 0.011 pp (2605.12.78 2.78 5.992 Settion saplens GN-MEP PE-1 SV-2 1.232 0.026 p (20351.12.78						
pp [b0/2742.84 2.84 17.83 Trissephosphate isomerase OS-Homo sapiens GN-TPI PE = 15V-3 1.402 0.023 pp [098744141 41.41 29.78 Poly [ADP ribose] polymerase 10 S-Homo sapiens GN-PAPI PE = 15V-4 1.380 0.000 pp [09872116.37 16.37 24.24 Synaptosomal-associated protein 20 S-Homo sapiens GN-SNAP29 PE=1 SV-1 1.380 0.002 gp [05872116.37 16.37 10.19 31.82 OCA domain-containing protein 20 S-Homo sapiens GN-SNAP29 PE=1 SV-1 1.377 0.004 gp [03872116.37 15.13 7.071 G-protein couplet arceptorts 60 S-Homo sapiens GN-MOLD PE=1 SV-2 1.337 0.004 gp [03852120 10.01 15.31 Dihydrolipot dehydrogenase, mitochondrial OS-Homo sapiens GN-MND PE=1 SV-2 1.352 0.024 gp [046512525 12.45 16.43 Catenin defra: 10S-Homo sapiens GN-MRD PE=1 SV-2 1.352 0.024 gp [02055127 2.78 6.43 Catenin defra: 10S-Homo sapiens GN-MRE PE=1 SV=1 1.349 0.011 gp [02055127 2.78 5.932 Seriforma sapiens GN-MRE PE=1 SV=1 1.316 0.042 gp [02055127 2.	sp Q0894512.65					
pp [09374 41.4 14.1 29.78 Poly [ADP-rhose] polymerase 1.05+tomo sapiens GN-PARP1 PF-1 SV-1 1.380 0.000 pp [0957211.6.37 16.37 46.24 Synapticonal-associated protein 20 SH-tomo sapiens GN-PARP2 PF-1 SV-1 1.380 0.000 sp [056V1310.19 10.19 31.82 OCIA domain-containing protein 2.05+tomo sapiens GN-OCIAD2 PF-1 SV-1 1.377 0.004 sp [056V1310.19 10.19 31.82 OCIA domain-containing protein 2.05+tomo sapiens GN-OCIAD2 PF-1 SV-2 1.357 0.004 gp [0987211.6 6.06 25.73 395 rithosomal protein 4.06, riticohondrial OS-thomo sapiens GN-MEMPIA0 PF-1 SV-1 1.352 0.024 gp [0807512.57 16.43 Catenti deha-1.05-thomo sapiens GN-MEMPIA0 PF-1 SV-1 1.349 0.011 gp [0407512.52 2.52 6.337 Antigen 46 70 S+tomo sapiens GN-MEMPIA0 PF-1 SV-1 1.349 0.011 gp [0205512.78 2.78 5.992 Seriend aghaine GN-MEMER SHS711 PF-1 SV-2 1.328 0.026 gp [0205512.78 2.78 5.992 Seriend aghaine GN-FOXPL SHomo sapiens GN-MEMER SHS711 PF-1 SV-2 1.299 0.039 gp [0285512.78 1.938	sp Q8NBJ7 2.96					
pp [09874 41.4 14.1 29.78 Poly [ADP-those] polymerase 10.5+tomo saplens GN-PAP2 PE-1 SV-1 1.380 0.000 pp [09872 11.53 16.37 42.64 Synapticomal-associated protein 20.5+tomo saplens GN-PAP2 PE-1 SV-1 1.380 0.000 pp [058711.51 10.19 31.32 OCIA domain-containing protein 20.5+tomo saplens GN-PAP2 PE-1 SV-1 1.387 0.000 pp [058721.51 5.18 7.071 G-protein coupled receptor 56 CS+tomo saplens GN-PCRAD PE-1 SV-2 1.357 0.004 pp [058721.51 15.91 Dihydrolipoyl dehydrigongease, mitochondrial OS+tomo saplens GN-PMD PE-1 SV-1 1.352 0.048 pp [0607161.52] 12.95 16.43 Catenti odeha-1.05-tomo saplens GN-PMD PE-1 SV-1 1.349 0.011 pp [0407512.52 2.52 6.337 Antigen 64 70 S+tomo saplens GN-SMSF11 PE-1 SV-1 1.349 0.012 pp [02055152.78 2.78 5.992 Seriend age-10 Seriend Self-SMS GN-SMSF11 PE-1 SV-2 1.238 0.026 pp [02055152.78 2.78 5.992 Seriend age-10 Seriend Self-SMSF11 PE-1 SV-2 1.299 0.039 pp [020573162.54 1.43 2.445	sp P60174 2.84					
pp[QSVI310.9 10.19 31.82 OCIA domain-containing protein 20.5Homo sapiens GN-OCIAD2 PE-1 SV-1 1.379 0.000 p[Q3V65515 5.18 7.071 6-protein coupled receptor \$6.05Homo sapiens GN-OCIAD2 PE-1 SV-2 1.377 0.004 p[Q3V65515 5.18 7.071 6-protein coupled receptor \$6.05Homo sapiens GN-MCIAD PE-1 SV-2 1.353 0.048 p[Q40765155 1.6.36 Caterial deta-1.05Homo sapiens GN-MCIAD PE-1 SV-1 1.522 0.024 p[Q4051255 1.2.55 1.6.33 Caterial deta-1.05Homo sapiens GN-MCIAD PE-1 SV-1 1.3249 0.011 p[Q40551278 2.7.8 2.5.82 6.387 Antigen M-67 OS-Homo sapiens GN-MCIAD PE-1 SV-1 1.328 0.024 p[Q40551278 2.7.8 5.992 Sertin deta-1.05Homo sapiens GN-MCIAD PE-1 SV-1 1.328 0.026 p[Q3254119.38 19.38 23.05 Probable ATP-dependent RNA helicase DN17 OS-Homo sapiens GN-MCIAD PE-1 SV-2 1.299 0.039 p[P2355145.44 2.4.45 31.15 Carnitine O-palmitoyitransferase 2, mitochondial OS-Homo sapiens GN-MCIQ PE FE SV-2 1.266 0.009 p[P2355145.45 1.4.5 <						
pp[QSVI310.9 10.19 31.82 OCIA domain-containing protein 20.5Homo sapiens GN-OCIAD2 PE-1 SV-1 1.379 0.000 p[Q3V65515 5.18 7.071 6-protein coupled receptor \$6.05Homo sapiens GN-OCIAD2 PE-1 SV-2 1.377 0.004 p[Q3V65515 5.18 7.071 6-protein coupled receptor \$6.05Homo sapiens GN-MCIAD PE-1 SV-2 1.353 0.048 p[Q40765155 1.6.36 Caterial deta-1.05Homo sapiens GN-MCIAD PE-1 SV-1 1.522 0.024 p[Q4051255 1.2.55 1.6.33 Caterial deta-1.05Homo sapiens GN-MCIAD PE-1 SV-1 1.3249 0.011 p[Q40551278 2.7.8 2.5.82 6.387 Antigen M-67 OS-Homo sapiens GN-MCIAD PE-1 SV-1 1.328 0.024 p[Q40551278 2.7.8 5.992 Sertin deta-1.05Homo sapiens GN-MCIAD PE-1 SV-1 1.328 0.026 p[Q3254119.38 19.38 23.05 Probable ATP-dependent RNA helicase DN17 OS-Homo sapiens GN-MCIAD PE-1 SV-2 1.299 0.039 p[P2355145.44 2.4.45 31.15 Carnitine O-palmitoyitransferase 2, mitochondial OS-Homo sapiens GN-MCIQ PE FE SV-2 1.266 0.009 p[P2355145.45 1.4.5 <	sp 09572116.37					
p10978535.16 5.18 7.071 C-protein coupled receptor 55 OS-Hom sapiens GN-CPPR56 PE-1 SV-2 1.377 0.004 p10978521.0 10.01 15.91 Diffyrolippol dephytogenase, microhondrial OS-Hom sapiens GN-DEPE1 SV-2 1.383 0.043 sp1030256.06 6.06 25.73 395 ribosomal protein L40, mitochondrial OS-Hom sapiens GN-MRPL40 PE-1 SV-1 1.352 0.024 sp10307.512.95 12.85 16.43 Caterin delta-1 OS-Homo sapiens GN-CINNDI PE-1 SV-1 1.349 0.011 g10307.512.95 25.52 6.537 Antigen Ne47 OS-Homo sapiens GN-CINNDI PE-1 SV-1 1.349 0.026 g10305.512.78 2.78 5.992 Serine/arginine-rich splicing factor 11 OS-Homo sapiens GN-DX17 PE-1 SV-2 1.299 0.039 g1032315327.58 2.54.8 31.16 Carnine O-palmitoyltransferase 2, mitochondrial OS-Homo sapiens GN-DX17 PE-1 SV-2 1.290 0.039 g12323758 2.54.4 31.15 Carnine O-palmitoyltransferase 2, mitochondrial OS-Homo sapiens GN-UCI2 PE-1 SV-2 1.206 0.009 g1291237327 2.43 3.43 1.45 Carnine O-palmitoyltransferase 2, mitochondrial OS-Homo sapiens GN-UCI2 PE-1 SV-2 1.205	sp Q56VL310.19	10.19	31.82		1.379	0.000
pp[0382210 10.01 15.91 Dihydrolipoy dehydrogenase, mitochondrial OS-Homo sapiens GN-MDD PE-1 SV-2 1.353 0.048 pp[038025.06 6.06 25.73 395 rhosomal protein 140, mitochondrial OS-Homo sapiens GN-MDD PE-1 SV-1 1.352 0.024 gp[06071612.95 12.95 16.43 Catenin deha-1.05-Homo sapiens GN-MME/PL0 PE-1 SV-1 1.349 0.011 gp[040512512.75 2.78 5.992 SetHomo sapiens GN-MME/PE-1 SV-1 1.316 0.042 pp[0355127.73 2.78 2.78 S.992 SetHomo sapiens GN-MME/PE-1 SV-2 1.282 0.026 pp[0355127.73 2.78 2.78 S.992 SetHomo sapiens GN-ME/ME/PL-1 SV-2 1.299 0.039 p[0355127.74 2.78 2.48 Cytochrome b-1 complex subunit 2, mitochondrial OS-Homo sapiens GN-MD/X1PE-1 SV-2 1.254 0.019 p[12359514.55 14.5 14.5 2.848 Cytochrome b-1 complex subunit 2, mitochondrial OS-Homo sapiens GN-MD/X1PE-1 SV-2 0.822 0.019 p[1235914.45 14.5 2.848 Cytochrome b-1 complex subunit 2, mitochondrial OS-Homo sapiens GN-MD/X1PE-1 SV-2 0.254 0.026	sp Q9Y6535.16	5.18	7.071		1.377	0.004
pi Q3NQ5 6.06 6.06 25.73 395 ribosonal protein 140, ribochondrial CS-Homo sapiers GN-MPR40 PE-15V-1 1.352 0.024 p()6077151257 12.95 16.43 Catenin defa-10 S-Homo sapiers GN-MPR40 PE-15V-1 1.349 0.011 g()607151257 12.55 16.43 Catenin defa-10 S-Homo sapiers GN-MPR40 PE-15V-1 1.349 0.012 g()263512578 2.78 5.992 Serine/arginine-rich splicing factor 11 OS-Homo sapiers GN-SR511 PE-1 SV-1 1.316 0.042 g()203811388 19.88 2.055 Probable APT-dependent NN helicase DNX 70 S-Homo sapiers GN-CP12 PE-1 SV-2 1.299 0.039 g()203811384 14.81 Carnitine C-palmitoyItransferase 2, mitochondrial OS-Homo sapiers GN-U212 PE-1 SV-2 1.206 0.009 g()203811354 14.5 2.484 CytoArrome b-c1 complex-suburit 2, mitochondrial OS-Homo sapiers GN-U202 PE-1 SV-3 1.206 0.009 g()2037243.89 3.89 3.83 UPF0568 protein C14or(166 OS-Homo sapiers GN-E16V-12 0.313 0.027 g()2037243.89 3.89 UPF0568 protein C14or(166 OS-Homo sapiers GN-E16V-166 OE-15V-1 0.313 0.027 g()2037243.89 3.89	sp P09622 10					
piceOrd21612.95 12.95 16.43 Caterini defici-10.5+Homo saplens GN+GKICTNPD FE-1SV-1 1.349 0.011 piP4601325.52 25.52 6.537 Antigen Rid-70.5-Homo saplens GN+GKICTPE-1SV-2 1.328 0.026 giQ05512.78 2.78 5.992 Settine Arginite-rich splicing factor 11.05+Homo saplens GN=SRF11 FE-1SV-2 1.328 0.042 giQ05212.78 2.78 5.992 Settine Arginite-rich splicing factor 11.05+Homo saplens GN=SRF11 FE-1SV-2 1.299 0.039 giQ02512.78 2.78 2.78 Cytochrome br-1 complex subunit 2, mitochondrial 05-Homo saplens GN=UQCRC2 FE-1SV-2 1.254 0.019 giQ02512.43 1.45 2.848 Cytochrome br-1 complex subunit 2, mitochondrial 05-Homo saplens GN=UQCRC2 FE-1SV-3 1.206 0.009 giQ027302.438 3.83 1.855 UPF0568 protein C140r166 05-Homo saplens GN-C140r166 FE-1SV-1 0.813 0.027 giQ027302.438 3.83 1.855 UPF0568 protein C140r166 05-Homo saplens GN-VDAC2 PE-1SV-2 0.797 0.036 giQ027302.443 1.647 3.878 Volage-dependent anon selective channel protein 2.05+Homo saplens GN-VDAC2 PE-1SV-2 0.795 0.019	sp Q9NQ5 6.06					
pip14601325.52 25.52 6.387 Antigen M 47 O S+itoms spipens GN-MM67 PE-1 SV-2 1.328 0.026 pip10355152.78 2.78 5.992 Serine/arginine-rick splicing factor 11 OS+itoms spipens GN-MM67 PE-1 SV-2 1.316 0.042 gip10355152.78 1.9.83 19.83 23.05 Probable ATP-dependent Nuk helicase DOX17 OS+itoms spilens GN-MDX17 PE-1 SV-2 1.299 0.039 gip10355152.78 2.646 31.16 Carnitine O-palmitoyitransferse 2, mitochondrial OS-itoms spilens GN-UQC2 PE-1 SV-2 1.254 0.019 gip12265514.51 14.52 2.845 Carkotrome b-1 Complex suburit 2, mitochondrial OS-itoms spilens GN-UQC2 PE-1 SV-3 1.206 0.009 gip12265514.31 14.51 2.18.55 UPTOS66 protein Cl-ordrifs OS-itoms spilens GN-UQC2 PE-1 SV-3 0.822 0.018 gip1370123.24 2.397 18.85 UPTOS66 protein Cl-ordrifs OS-itoms spilens GN-UAC167165 PE-1 SV-1 0.797 0.036 gip1730123.24 23.97 18.29 Integrin alpha-2 OS-itoms spilens GN-UAC17616 PE-1 SV-1 0.795 0.038 gip1730123.24 23.97 18.29 Integrin alpha-2 OS-itoms spilens GN-UAC17615 PE-1 SV-1 0.795	sp 06071612.95					
pl Q025152.78 2.78 5.992 Serine/arginine-rich splicing factor 11 05+form spliens 6N+058F1 PE-1 SV=1 1.316 0.042 pl Q0254119.88 19.88 23.05 Probable ATP-dependent RNA helicase DNX17 OS+form spliens GN=0DX17 PE-1 SV=2 1.299 0.039 pl P2376 52.64 25.64 25.64 25.64 25.64 0.15 Carnitine O-palmitrolytransferase 2, mitochondrial OS+form spliens GN=0P12 FE-1 SV=2 1.254 0.019 gp [2376 52.64.6 12.45 28.48 Cytochrome b-c1 complex subunit 2, mitochondrial OS+form spliens GN=0P12 FE-1 SV=2 0.822 0.013 gp [0927361.34) 14.59 28.48 Cytochrome b-c1 complex subunit 2, mitochondrial OS+form spliens GN=0P12 FE-1 SV=3 0.822 0.013 gp [09723143.49 3.89 18.85 UPF0568 protein C14orf166 OS+form spliens GN=0C40PC+E1 SV=1 0.813 0.027 gp [P13301.32.4 23.97 18.37 Voltage-dependent anion-selectic channel protein C14orf166 PE-1 SV=1 0.797 0.038 gp [P13301.22.44 22.64 44.11 Cossackievirus and adenovirus receptor OS+form spliens GN=CADPE+1 SV=1 0.773 0.009 gp [P2575 23.79 23.79 25.88				Antigen KI-67 OS=Homo saniens GN=MKI67 PE=1 SV=?		
p123284119.88 19.88 23.05 Probable ATP-dependent RNA helicase DDX1 05-Homo saplers 6N-HDX1 7FE-15V-2 1.299 0.039 p1233782626.46 26.46 31.16 Carnitine O-palmitolytransferase 2, mitochondrial OS-Homo saplers 6N-HDX1 7FE-15V-2 1.254 0.019 g1P2269514.5 14.5 28.46 31.16 Carnitine O-palmitolytransferase 2, mitochondrial OS-Homo saplers 6N-HDX1 7FE-15V-2 1.254 0.019 g1P2569514.5 14.5 28.48 Cytochrome b-1 complex subunit 2, mitochondrial OS-Homo saplers 6N-UQCR2 FE-15V-3 1.206 0.009 g1P2569514.5 14.5 28.48 Cytochrome b-1 complex subunit 2, mitochondrial OS-Homo saplers 6N-UQCR2 FE-15V-3 0.812 0.013 g1097231323 3.39 18.35 UPTOS68 protein Clarific OS-Homo saplers 6N-Clarific OS-Homo saplers 6N-UDC2 PE-15V-1 0.813 0.027 g1P4588014.43 16.47 38.78 Voltage-dependent nion-selective channel protein 2 OS-Homo saplers 6N-UDC2 PE-15V-1 0.795 0.019 g1P783102.264 22.64 42.11 Cossackievirus and adenovirus receptor OS-Homo saplers 6N-MCA2 PE-15V-1 0.773 0.005 g1P057537.57 3.79 25.86 AT Psynthase	sn10055102.78					
ppl 22356 26.46 26.46 31.16 Carnitine O-palmitoyIranderse 2, mitochondrial OS-Homo sapiens GM=CP12 PE-1 SV-2 1.254 0.019 ppl 22265 12.45 1.45 2.48 Cytokrome b-ct complex suburit 2, mitochondrial OS-Homo sapiens GN=CP12 PE-1 SV-3 1.206 0.009 spl [P51569 014.91 14.91 21.05 Arylsulfatase E OS-Homo sapiens GN=CR40F15 SV-1 0.312 0.032 0.018 spl [P3710 12.32.4 23.89 18.85 UP1568 protein C14orf166 OS-Homo sapiens GN=C14orf165 PE-1 SV-1 0.313 0.027 spl [P3710 12.32.4 23.87 18.29 Integrin alpha-2 OS-Homo sapiens GN=C14orf165 V=1 0.797 0.036 spl [P3810 12.32.4 23.47 18.29 Integrin alpha-2 OS-Homo sapiens GN=C14orf165 V=1 0.797 0.036 spl [P3810 12.43 16.47 38.78 Voltage-dependent anton-selective C3-Homo sapiens GN=CADPC2 PE-1 SV=2 0.795 0.038 spl [P3810 12.42 24.64 41.11 Coscaleroity oS-Homo sapiens GN=CADPC3 PE-1 SV=1 0.775 0.038 spl [P3837 15.39 6.09 4331 Spl (add nor/wirs receptor OS-Homo sapiens GN=CADP PE-1 SV=1 0.773 0.0042 <	sp100001122.70					
p122365145 14.5 28.48 Cytochrome b-c1 complex subunit 2, mitochondrial 05+Homo sapiens GN=UQCRC2 PE=1 SV=3 1.206 0.009 p15150914.91 14.91 21.05 Anylsuffatase E O5+Homo sapiens GN=RSE PE=1 SV=2 0.822 0.018 p109720123.24 23.87 18.85 UPF0568 protein C1Aorf166 O5+Homo sapiens GN=C1Aorf166 PE=1 SV=1 0.813 0.027 p109720123.24 23.97 18.25 UPF0568 protein C1Aorf166 O5+Homo sapiens GN=C1Aorf166 PE=1 SV=1 0.797 0.036 p1P458014.43 16.47 3.78 Voltage-dependent anion-selective channel protein C 05+Homo sapiens GN=VDAC2 PE=1 SV=2 0.795 0.038 p1P458014.43 16.47 3.78 Voltage-dependent anion-selective channel protein C 05+Homo sapiens GN=VCADR PE=1 SV=1 0.795 0.019 p1P458014.43 16.47 4.11 Cossackie/rus and adenovirus receptor O5+Homo sapiens GN=CADR PE=1 SV=1 0.773 0.004 g1[075533.69 6.09 4.31 Splitcing factor 38 abunit 105+Homo sapiens GN=CADR PE=1 SV=1 0.742 0.042 g1[075533.69 6.09 4.31 Splitcing factor 38 abunit 105+Homo sapiens GN=ATPSA PE=1 SV=3 0.727 0.004 <	ap1Q3264113.68					
pp[5350:14:91 14.91 21.05 Arylsuffatset E 05+homo spilens (N-ARES PF-1, SV-2 0.822 0.018 pp[03722139 3.89 1.855 UPT0568 protein (-1074)56 07+bomo spilens (N-ARES PF-1, SV-2 0.797 0.036 pp[1730123.24 23.97 18.29 Integrin alpha-2 O5+homo spilens GN-C14or(156 0F+bmo spilens GN-C14or(156 PF-15V-1) 0.797 0.036 sp[1730123.24 23.97 18.29 Integrin alpha-2 O5+homo spilens GN-C14or(156 PF-15V-1) 0.797 0.036 sp[1730123.24 23.97 18.29 Integrin alpha-2 O5+homo spilens GN-C14or(156 PF-15V-1) 0.795 0.038 pp[1730123.24 24.26 2.64 41.11 Cossackivrius and denovius receptor O5+Homo spilens GN-CADR PF-1 SV-1 0.795 0.019 pp[075533.67 6.09 4.31 Spileng factor 38 subunit 105+homo spilens GN-CADR PF-1 SV-1 0.773 0.005 pp[075531.67 6.09 4.31 Spileng factor 38 subunit 105+homo spilens GN-CC12 PF-1 SV-4 0.741 0.004 sp[17337115.92 15.92 25.88 T-complex protein 1 subunit beta O5+homo spilens GN-CC12 PF-1 SV-4 0.737 0.001 sp[10483375	sp1P23/8626.46					
pp[P22243.89 3.89 18.85 UPF0558 protein C14orf166 OS=Homo saplens GN=C14orf166 PE=1 SV=1 0.813 0.027 sp[P1730123.24 23.97 18.29 Integrin alpha-2 OS=Homo saplens GN=C14orf166 PE=1 SV=1 0.797 0.036 gp[P4580124.34 16.47 38.78 Voltage-dependent anion-selective channel protein 2 OS=Homo saplens GN=VDAC2 PE=1 SV=2 0.795 0.038 gp[P4580124.34 16.47 43.17 Cotage-dependent anion-selective channel protein 2 OS=Homo saplens GN=VDAC2 PE=1 SV=2 0.795 0.038 gp[P3580124.4 26.44 44.11 Coxackievirus and adenovirus receptor OS=Homo saplens GN=ATP651 PE=1 SV=1 0.773 0.005 gp[P3570523.79 23.79 25.68 ATP synthase subunit 10S=Homo saplens GN=ATP551 PE=1 SV=1 0.773 0.004 gp[P3571532.51.09 6.09 4.31 Splicing factor 38 subunit 10S=Homo saplens GN=CTP521 SV=4 0.741 0.004 gp[P657642.27 42.27 58.6 ATP synthase subunit beta OS=Homo saplens GN=ATP58 PE=1 SV=3 0.737 0.001 gp[Qu8337.87 8.79 41.22 Single-stranded DNA-binding protein, mitochondrial OS=Homo saplens GN=ATP58 PE=1 SV=1 0.735 0	sp1P22695 14.5					
pp12330123.24 23.37 18.29 Integrin alpha-2 OS-Homo saplens GN-IGA2 PE-1SV-1 0.797 0.036 pp124580144.43 16.47 38.78 Voltage dependent anion-selective channel protein 2 OS-Homo saplens GN-VDAC2 PE-1SV-2 0.795 0.038 pp124580144.43 16.47 38.78 Voltage dependent anion-selective channel protein 2 OS-Homo saplens GN-VDAC2 PE-1SV-2 0.795 0.038 pp12531022.64 22.64 44.11 Cossacklevirus and adenovirus receptor OS-Homo saplens GN-VDAC2 PE-1SV-1 0.795 0.019 sp1025537.57 27.37 25.68 ATP synthase subunit alpha, mitachondrial OS-Homo saplens GN-STRP54 PE-1SV-1 0.773 0.004 p1075533.04 6.09 4.31 Splitcing factor 38 subunit 1.0S-Homo saplens GN-STRP54 PE-1SV-3 0.741 0.004 p1075533.05 5.92 25.86 T-complex protein 1 subunit beto OS-Homo saplens GN-STRP54 PE-1SV-3 0.737 0.001 sp10657642.27 42.27 58.6 ATP synthase subunit beto, mitochondrial OS-Homo saplens GN-STRP54 PE-1SV-3 0.737 0.001 sp1QuA833.79 8.79 8.79 4.122 Single-stranded DN-Aholinding protein, mitochondrial OS-Homo saplens GN-STRP1 PE						
spl P488014.43 16.47 38.78 Voltage-dependent anion-selective channel protein 2 OS+Homo Saplens CN+VDAC2 PE=1 SV=2 0.795 0.038 spl P7831022.64 22.64 44.11 Coxsacklevirus and adenovirus receptor OS+Homo Saplens CN+VDAC2 PE=1 SV=1 0.795 0.019 gpl P2570523.77 23.79 25.58 ATP synthase subunit alpha, mitchohandrial OS+Homo Saplens CN+VDAC2 PE=1 SV=1 0.773 0.005 spl P375315.52 15.92 25.88 ATP synthase subunit to SHomo saplens CN+ST81 PE=1 SV=3 0.742 0.042 spl P3753115.52 15.92 25.86 ATP synthase subunit to SHomo saplens CN+CT2 PE=1 SV=4 0.741 0.004 gpl P085764.227 42.27 58.6 ATP synthase subunit alos+Homo saplens GN+CT2 PE=1 SV=3 0.737 0.001 spl Q048378.79 8.79 41.22 Single-stranded DNA-Honding DS-Homo saplens GN+STSB1 PE=1 SV=1 0.735 0.015	sp Q9Y2243.89					
pp P28310.22.64 22.64 44.11 Cossackievirus and adenovirus receptor OS+Homo saplens GN-XCARP PE-1SV-1 0.795 0.019 sp [P25705.23.79 23.79 25.68 ATP synthase subunit logha, mitochondrial OS+Homo saplens GN-XCPARP PE-1SV-1 0.773 0.005 sp [P25705.23.79 26.39 4.831 Splicing factor 38 subunit 1OS+Homo saplens GN-XCPARP PE-1SV-3 0.742 0.042 sp [P25705.23.79 5.92 25.88 T-complex protein 1 subunit beat OS+Homo saplens GN-XCP2 PE-1SV-3 0.741 0.004 sp [P26576.42.27 42.27 58.6 ATP synthase subunit DS+Homo saplens GN-XTP2 PE-1SV-3 0.737 0.001 sp [Q4833.79 8.79 41.22 Single-stranded DNA-binding protein, mitochondrial OS+Homo saplens GN-XTP2 PE-1SV-1 0.735 0.015						
pp P28310.22.64 22.64 44.11 Cossackievirus and adenovirus receptor OS+Homo saplens GN-XCARP PE-1SV-1 0.795 0.019 sp [P25705.23.79 23.79 25.68 ATP synthase subunit logha, mitochondrial OS+Homo saplens GN-XCPARP PE-1SV-1 0.773 0.005 sp [P25705.23.79 26.39 4.831 Splicing factor 38 subunit 1OS+Homo saplens GN-XCPARP PE-1SV-3 0.742 0.042 sp [P25705.23.79 5.92 25.88 T-complex protein 1 subunit beat OS+Homo saplens GN-XCP2 PE-1SV-3 0.741 0.004 sp [P26576.42.27 42.27 58.6 ATP synthase subunit DS+Homo saplens GN-XTP2 PE-1SV-3 0.737 0.001 sp [Q4833.79 8.79 41.22 Single-stranded DNA-binding protein, mitochondrial OS+Homo saplens GN-XTP2 PE-1SV-1 0.735 0.015	sp P17301 23.24		38.78			
pp [27575 23.79 23.79 25.88 ATP synthase subunit alpha, mitachondrial OS+Horno sapiens GN+ATPSA1 PE-1 SV=1 0.713 0.005 pp [075533.69 6.09 4.831 Splitding factor 38 subunit 1 OS+Horno sapiens GN+SE18 PE-1 SV=3 0.742 0.042 pp [78371 15.92 15.92 25.98 T-complex protein 1 subunit beta OS+Horno sapiens GN+SE18 PE-1 SV=4 0.741 0.004 pp [708576 42.27 42.27 58.6 ATP synthase subunit beta, mitochondrial OS+Horno sapiens GN+SE18 PE-1 SV=3 0.737 0.001 pp [Qu48373 78 8.79 8.79 8.79 0.735 0.015	sp P45880 14.43			Coversitievirus and adepovirus recentor OS=Homo saniens GN=CXADR PE=1 SV=1	0.705	0.010
pp (D55336.09 6.09 4.831 Splicing factor 38 subunit 1 OS+Homo saplens GN=SF3B1 PE=1 SV=3 0.742 0.042 sp[P7837115.92 15.92 25.98 T-complex protein 1 subunit beta OS+Homo saplens GN=CF2EPE=1 SV=4 0.741 0.004 pp [P05576.42.72 42.27 42.27 45.66 Peritable Teta Subunit 5eta, introchondrial OS-Homo saplens GN=CF2EPE=1 SV=3 0.737 0.001 sp[Q048378.79 8.79 41.22 Single=stranded DNA-binding protein, mitochondrial OS-Homo saplens GN=SSBP1PE=1 SV=1 0.735 0.015	sp P45880 14.43 sp P78310 22.64		44.11		0.795	0.019
pp P8371 15.92 15.92 25.98 T-complex protein 1 suburit beta OS+tomo spiens GN-CCT2 PE-1 SV-4 0.741 0.004 sp P06576 42.27 42.27 58.6 ATP synthase subunit beta, mitochondrial OS+tomo spiens GN-ATP58 PE-1 SV-3 0.737 0.001 gp [Qu8337.879 8.79 41.22 Single-stranded DNA-binding protein, mitochondrial OS+tomo spiens GN-ATP58 PE-1 SV-1 0.735 0.015	sp P45880 14.43 sp P78310 22.64	22.64				
splP06576 42.27 42.27 58.6 ATP synthase subunit beta, mitochondrial OS=Homo sapiens GN=ATP5B PE=1 SV=3 0.737 0.001 splQ043378.79 8.79 41.22 Single-stranded DNA-binding protein, mitochondrial OS=Homo sapiens GN=SSBP1 PE=1 SV=1 0.735 0.015	sp P45880 14.43 sp P78310 22.64 sp P25705 23.79	22.64 23.79	25.68	ATP synthase subunit alpha, mitochondrial OS=Homo sapiens GN=ATP5A1 PE=1 SV=1	0.773	0.005
sp QQ48378.79 8.79 41.22 Single-stranded DNA-binding protein, mitochondrial OS=Homo sapiens GN=SSBP1 PE=1 SV=1 0.735 0.015	sp P45880 14.43 sp P78310 22.64 sp P25705 23.79 sp 0755336.09	22.64 23.79 6.09	25.68 4.831	ATP synthase subunit alpha, mitochondrial OS=Homo sapiens GN=ATP5A1 PE=1 SV=1 Splicing factor 3B subunit 1 OS=Homo sapiens GN=SF3B1 PE=1 SV=3	0.773	0.005 0.042
	sp P45880 14.43 sp P78310 22.64 sp P25705 23.79 sp O755336.09 sp P78371 15.92	22.64 23.79 6.09 15.92	25.68 4.831 25.98	ATP synchase subunit alpha, mitochondrial OS-Horro saplens GN=ATPSAL PE=1 SV=1 Splicing factor 38 subunit 1 OS-Horro saplens GN=SF38L PE=3 SV=3 T-complex protein 1. subunit beta OS=Horro saplens GN=CT2 PE=1 SV=4	0.773 0.742 0.741	0.005 0.042 0.004
ארע 100 21.4 אויז 100 200 21.4 אויז 100 200 21.4 אויז 100 200 100 1	sp P45880 14.43 sp P78310 22.64 sp P25705 23.79 sp O755336.09 sp P78371 15.92 sp P06576 42.27	22.64 23.79 6.09 15.92 42.27	25.68 4.831 25.98 58.6	ATP synthase subunit alpha, mitochondrial OS=Homo saplens GN=ATP5A1 PE=1 SV=1 SplKing factor 38 subunit 1 OS=Homo saplens GN=SF3812 FE=1 SV=3 T-complex protein 1 subunit beta OS=Homo saplens GN=CCT2 PE=1 SV=4 ATP synthase subunit beta, mitochondrial OS=Homo saplens GN=ATP5B PE=1 SV=3	0.773 0.742 0.741 0.737	0.005 0.042 0.004 0.001
	sp P45880 14.43 sp P78310 22.64 sp P25705 23.79 sp 0755336.09 sp P78371 15.92 sp P06576 42.27 sp Q048378.79	22.64 23.79 6.09 15.92 42.27 8.79	25.68 4.831 25.98 58.6 41.22	ATP synthase subunit alpha, mitochondrial OS=Homo sapiens GN=ATP5A1 PE=1 SV=1 Splicing factor 38 subunit 1 OS=Homo sapiens GN=SFB3E, PE=1 SV=3 T-complex protein 1 subunit beta OS=Homo sapiens GN=CT12 PE=1 SV=4 ATP synthase subunit beta, mitochondrial OS=Homo sapiens GN=ATP5B PE=1 SV=3 Single=stranded DNA-binding protein, mitochondrial OS=Homo sapiens GN=SSBP1 PE=1 SV=1	0.773 0.742 0.741 0.737 0.735	0.005 0.042 0.004 0.001 0.015

sp Q1689126.59	26.87	30.34	Mitochondrial inner membrane protein OS=Homo sapiens GN=IMMT PE=1 SV=1	0.727	0.028
sp P50990 11.03	11.03	14.6	T-complex protein 1 subunit theta OS=Homo sapiens GN=CCT8 PE=1 SV=4	0.724	0.008
sp P40227 13.61	13.61	22.03	T-complex protein 1 subunit zeta OS=Homo sapiens GN=CCT6A PE=1 SV=3	0.719	0.037
sp P46109 10.13	10.44	28.05	Crk-like protein OS=Homo sapiens GN=CRKL PE=1 SV=1	0.718	0.005
sp P02786 23.45	23.45	21.05	Transferrin receptor protein 1 OS=Homo sapiens GN=TFRC PE=1 SV=2	0.710	0.001
sp Q998322.41	2.41	7.182	T-complex protein 1 subunit eta OS=Homo sapiens GN=CCT7 PE=1 SV=2	0.709	0.012
sp Q9NVI76.52	6.52	12.3	ATP ase family AAA domain-containing protein 3A OS=Homo sapiens GN=ATAD3A PE=1 SV=2	0.704	0.012
sp P62910 7.98	7.98	29.63	60S ribosomal protein L32 OS=Homo sapiens GN=RPL32 PE=1 SV=2	0.703	0.033
sp Q0838C7.48	7.48	10.26	Galectin-3-binding protein OS=Homo sapiens GN=LGALS3BP PE=1 SV=1	0.702	0.014
sp P48643 16.66	16.7	21.07	T-complex protein 1 subunit epsilon OS=Homo sapiens GN=CCT5 PE=1 SV=1	0.700	0.004
sp P05026 10.07	10.07	25.41	Sodium/potassium-transporting ATPase subunit beta-1 OS=Homo sapiens GN=ATP1B1 PE=1 SV=1	0.699	0.025
sp Q9953613.69	13.7	26.97	Synaptic vesicle membrane protein VAT-1 homolog OS=Homo sapiens GN=VAT1 PE=1 SV=2	0.693	0.006
sp Q9Y39422.02	22.02	39.23	Dehydrogenase/reductase SDR family member 7 OS=Homo sapiens GN=DHRS7 PE=1 SV=1	0.687	0.003
sp Q1613413.65	13.65	22.69	Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial OS=Homo sapiens GN=ETFDH PE=1 SV=2	0.682	0.003
sp Q2VIR3 4.22	4.22	11.86	Putative eukaryotic translation initiation factor 2 subunit 3-like protein OS=Homo sapiens GN=EIF2S3L PE=5 SV=2	0.680	0.042
sp P62851 10.57	10.57	24.8	40S ribosomal protein S25 OS=Homo sapiens GN=RPS25 PE=1 SV=1	0.679	0.045
sp P52597 12.8	12.82	23.37	Heterogeneous nuclear ribonucleoprotein F OS=Homo sapiens GN=HNRNPF PE=1 SV=3	0.675	0.017
sp P49368 12.36	12.36	18.35	T-complex protein 1 subunit gamma OS=Homo sapiens GN=CCT3 PE=1 SV=4	0.665	0.002
sp Q9Y6N: 42.34	42.34	54.22	Sulfide:quinone oxidoreductase, mitochondrial OS=Homo sapiens GN=SQRDL PE=1 SV=1	0.664	0.000
sp P18084 20.32	20.32	16.9	Integrin beta-5 OS=Homo sapiens GN=ITGB5 PE=1 SV=1	0.661	0.001
sp Q134285.67	5.67	6.384	Treacle protein OS=Homo sapiens GN=TCOF1 PE=1 SV=3	0.661	0.036
sp P54709 6.32	6.35	21.15	Sodium/potassium-transporting ATPase subunit beta-3 OS=Homo sapiens GN=ATP1B3 PE=1 SV=1	0.655	0.004
sp Q084318.05	8.06	17.83	Lactadherin OS=Homo sapiens GN=MFGE8 PE=1 SV=2	0.654	0.014
sp P36578 29.26	29.65	36.3	60S ribosomal protein L4 OS=Homo sapiens GN=RPL4 PE=1 SV=5	0.649	0.024
sp P05023 15.87	15.87	10.85	Sodium/potassium-transporting ATPase subunit alpha-1 OS=Homo sapiens GN=ATP1A1 PE=1 SV=1	0.642	0.001
sp P49748 26.61	26.65	31.76	Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS=Homo sapiens GN=ACADVL PE=1 SV=1	0.639	0.000
sp P57735 4.06	5.08	19.72	Ras-related protein Rab-25 OS=Homo sapiens GN=RAB25 PE=1 SV=2	0.638	0.042
sp P42166 44.45	44.45	43.95	Lamina-associated polypeptide 2, isoform alpha OS=Homo sapiens GN=TMPO PE=1 SV=2	0.636	0.000
sp P06756 33.34	33.34	22.71	Integrin alpha-VOS=Homo sapiens GN=ITGAV PE=1 SV=2	0.632	0.000
sp P10620 3.89	3.89	9.032	Microsomal glutathione S-transferase 1 OS=Homo sapiens GN=MGST1 PE=1 SV=1	0.628	0.023
sp P10809 7.98	8.04	17.63	60 kDa heat shock protein, mitochondrial OS=Homo sapiens GN=HSPD1 PE=1 SV=2	0.622	0.005
sp Q96AP712.78	12.79	30.77	Endothelial cell-selective adhesion molecule OS=Homo sapiens GN=ESAM PE=1 SV=1	0.621	0.001
sp P51149 26.13	26.13	62.8	Ras-related protein Rab-7a OS=Homo sapiens GN=RAB7A PE=1 SV=1	0.616	0.002
sp P42167 14.49	33.01	43.39	Lamina-associated polypeptide 2, isoforms beta/gamma OS=Homo sapiens GN=TMPO PE=1 SV=2	0.614	0.008
sp Q5ZPR38.31	8.31	20.97	CD276 antigen OS=Homo sapiens GN=CD276 PE=1 SV=1	0.604	0.005
sp Q157588.97	8.97	10.72	Neutral amino acid transporter B(0) OS=Homo sapiens GN=SLC1A5 PE=1 SV=2	0.587	0.001
sp P13073 11.21	11.21	31.95	Cytochrome c oxidase subunit 4 isoform 1, mitochondrial OS=Homo sapiens GN=COX411 PE=1 SV=1	0.580	0.048
sp Q1590717.56	17.56	46.33	Ras-related protein Rab-11B OS=Homo sapiens GN=RAB11B PE=1 SV=4	0.579	0.002
sp O435703.22	3.23	14.97	Carbonic anhydrase 12 OS=Homo sapiens GN=CA12 PE=1 SV=1	0.578	0.013
sp P08174 29.55	29.55	38.06	Complement decay-accelerating factor OS=Homo sapiens GN=CD55 PE=1. SV=4	0.576	0.000
sp Q0061010.26	10.26	5.134	Clathrin heavy chain 1 OS=Homo sapiens GN=CLTC PE=1 SV=5	0.548	0.013
sp Q9BQG 6	6.01	3.012	Myb-binding protein 1A OS=Homo sapiens GN=MYBBP1A PE=1 SV=2	0.548	0.012
sp Q9UHA 2.31	2.31	12.9	Ragulator complex protein LAMTOR3 OS=Homo sapiens GN=LAMTOR3 PE=1 SV=1	0.544	0.027
sp P50991 10.25	12.1	19.85	T-complex protein 1 subunit delta OS=Homo sapiens GN=CCT4 PE=1 SV=4	0.542	0.001
sp P27487 15.18	15.18	12.27	Dipeptidyl peptidase 4 OS=Homo sapiens GN=DPP4 PE=1 SV=2	0.537	0.000
sp P39023 6.02	6.08	12.9	60S ribosomal protein L3 OS=Homo sapiens GN=RPL3 PE=1 SV=2	0.535	0.013
sp P19224 10.71	10.73	13.16	UDP-glucuronosyltransferase 1-6 OS=Homo sapiens GN=UGT1A6 PE=1 SV=2	0.532	0.033
sp P08582 8.79	8.79	8.672	Melanotransferrin OS=Homo sapiens GN=MFI2 PE=1 SV=2	0.522	0.007
sp Q1416525.13	25.13	48.97	Malectin OS=Homo sapiens GN=MLEC PE=1 SV=1	0.510	0.000
sp P05387 38.18	38.18	85.22	60S acidic ribosomal protein P2 OS=Homo sapiens GN=RPLP2 PE=1 SV=1	0.497	0.025
sp Q8N4H!3.25	3.25	27.45	Mitochondrial import receptor subunit TOM5 homolog OS=Homo sapiens GN=TOMM5 PE=1 SV=1	0.496	0.029
sp 0145616.89	6.89	22.44	Acyl carrier protein, mitochondrial OS=Homo sapiens GN=NDUFAB1 PE=1 SV=3	0.487	0.039
sp P55061 2.16	2.16	3.797	Bax inhibitor 1 OS=Homo sapiens GN=TMBIM6 PE=1 SV=2	0.473	0.040
sp Q9UKS(4.63	4.63	7.075	Protein kinase C and casein kinase substrate in neurons protein 3 OS=Homo sapiens GN=PACSIN3 PE=1 SV=2	0.467	0.031
sp Q070218.45	8.45	26.6	Complement component 1 Q subcomponent-binding protein, mitochondrial OS=Homo sapiens GN=C1QBP PE=1 SV	= 0.463	0.014
sp P09758 4.09	4.09	10.22	Tumor-associated calcium signal transducer 2 OS=Homo sapiens GN=TACSTD2 PE=1 SV=3	0.400	0.028
sp Q71U3(18.86	18.86	39.47	Tubulin alpha-1A chain OS=Homo sapiens GN=TUBA1A PE=1 SV=1	0.381	0.022
sp P07437 26.97	26.97	40.77	Tubulin beta chain OS=Homo sapiens GN=TUBB PE=1 SV=2	0.379	0.026
sp P43121 18.25	18.25	27.86	Cell surface glycoprotein MUC18 OS=Homo sapiens GN=MCAM PE=1 SV=2	0.363	0.000
sp P62979 11.47	11.47	41.03	Ubiquitin-40S ribosomal protein S27a OS=Homo sapiens GN=RPS27A PE=1 SV=2	0.348	0.002
sp 0755316.52	6.52	40.45	Barrier-to-autointegration factor OS=Homo sapiens GN=BANF1 PE=1 SV=1	0.331	0.017
sp P02538 30.66	36.56	33.51	Keratin, type II cytoskeletal 6A OS=Homo sapiens GN=KRT6A PE=1 SV=3	0.195	0.003
sp Q0469511.92	21.44	30.56	Keratin, type I cytoskeletal 17 OS=Homo sapiens GN=KRT17 PE=1 SV=2	0.194	0.003
sp P06702 6.02	6.04	44.74	Protein S100-A9 OS=Homo sapiens GN=S100A9 PE=1 SV=1	0.163	0.033

CHAPTER 4

The subsequent study then aimed to further evaluate the associations of uPAR and TGF^β in the context of CRC using HCT116 colon cancer cells. The HCT116^{WT} cells endogenously express uPAR and this expression has be artificially decreased by 35% in the HCT116^{uPARAS} cells. This study used a similar approach to that of the previous proteomics experiment in Chapter 3, Study II. Preliminary proliferation and invasion assays determined that TGFB did not significantly affect the proliferation or invasion of HCT116 WT cells, although HCT116 ASuPAR cells, with reduced uPAR expression, exhibited significantly decreased proliferation and invasion following TGF^β treatment. The observations when investigated by proteomics showed differential up- and down-regulation of various proteins in a TGFβdependent or -independent manner in HCT116^{WT} cells relative to HCT116^{uPARAS} cells. Some of the cellular process that were associated with these proteins included cell adhesion, migration, invasion and cytoskeletal signalling which were also determined by IPA to be significantly altered. IPA also indicated eIF2 signalling pathway to be significantly altered and cancer was observed to be one of the top three diseases. Overall, the observations from cell-based and proteomic studies demonstrated that cells with endogenous uPAR expression do not respond to TGF^β treatment, whilst inhibiting metastatic phenotypes in cells with decrease in uPAR expression.

4.1 - Does differential expression of cell-surface uPAR alter the effects active TGFβ has on the colorectal cancer cell membrane proteome? [Publication V] (*Prepared for publication*)

Does differential expression of cell-surface uPAR alter the effects active TGFβ has on the colorectal cancer cell membrane proteome?

- 3
- 4 Harish R Cheruku¹, David I Cantor¹, Abidali Mohamedali², Sock Hwee Tan^{2,3}, Edouard C
- 5 Nice⁴, Mark S Baker¹*
- 6 ¹Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Macquarie
- 7 University, NSW, 2109, Australia
- 8 ²Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie
- 9 University, NSW, 2109, Australia
- 10 ³Current address: National University Heart Centre, National University of Singapore,
- 11 Singapore, Singapore
- ⁴Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria,
- 13 *3800, Australia*
- 14

15 *Corresponding Author

- 16 Professor Mark S. Baker
- 17 Faculty of Health and Medical Sciences
- 18 2 Technology Place
- 19 Macquarie University, NSW, 2109
- 20 Australia
- 21 Telephone: +61 2 9850 8211
- 22 Fax: +61 2 9850 8313
- 23 E mail: mark.baker@mq.edu.au
- 24

25 Abstract

Urokinase-type plasminogen activator receptor (uPAR) and transforming growth factor- β 26 (TGFβ) have been widely implicated in different biologies in CRC, wherein the cell-surface 27 28 plasminogen activation cascade (in part mediated by uPAR) has been identified as one means of latent TGF^β activation. However, the effects of TGF^β on uPAR and vice-versa remain 29 poorly understood in CRC. To investigate the biological effect/s of TGF^β when uPAR is 30 artificially suppressed, this study treated wild type HCT116^{WT} and uPAR-suppressed 31 (~35% \downarrow) HCT116^{uPAR-AS} colon cancer cells with active TGF β and then performed cell 32 membrane-enriched quantitative proteomic analysis. Preliminary proliferation and invasion 33 assays determined that TGF^β did not significantly affect either proliferation or invasion of 34 HCT116^{WT} cells, although HCT116^{uPAR-AS} exhibited significantly decreased proliferation 35 $(24\%\downarrow)$ following TGF β treatment and invasion (~20\%\downarrow) following SB431542 inhibition 36 or dual SB431542 and TGFβ treatment. These puzzling differential effects between cell lines 37 were subsequently investigated by proteomics. IPA analyses of the data demonstrated that 38 several proteins related to cytoskeletal signalling, cell adhesion, migration, cell death and 39 survival, protein trafficking and the eIF2 signalling pathway were significantly up- or down-40 regulated in either in a TGFβ-dependent or a TGFβ-independent manner. Three proteins of 41 interest (ezrin, annexin A2 and Ras-related protein Rab-10) were further validated by 42 Western blotting to confirm that expression changes observed by iTRAQ. Overall, cell-based 43 and proteomic studies have demonstrated that when uPAR expression is decreased, active 44 TGF^β suppresses metastatic phenotypes though this effect is lost with increased uPAR 45 expression. These observations demonstrate that elevated uPAR expression promotes 46 47 proliferation and invasion in a TGF\beta-independent manner while TGFβ exerts growth inhibitory effects when uPAR expression is decreased. 48

49

50 Keywords: transforming growth factor- β ; uPAR; colorectal cancer; HCT116; iTRAQ

51

53 1. INTRODUCTION

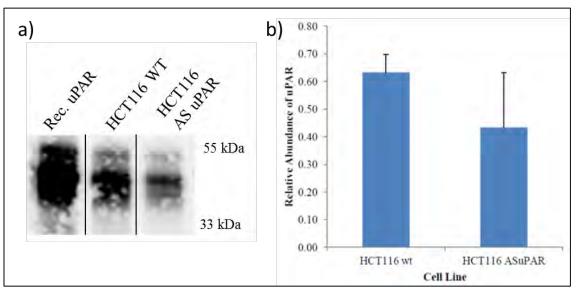
World Health Organisation indicated that colorectal cancer (CRC) is the third most 54 common malignancy (~1.36 million cases worldwide in 2012) with a mortality rate 55% [1]. 55 Metastases, rather than primary tumours, are responsible for the majority (almost 90%) of 56 cancer deaths [2, 3]. Metastasis is a cascade of complex molecular interactions between 57 various proteins that can alter and regulate signalling pathways required for primary tumours 58 to spread to distant organs [2]. Proteins such as urokinase-type plasminogen activator 59 receptor (uPA/uPAR) [4], transforming growth factor-beta (TGFβ) [5], integrin ανβ6 [6], 60 various mitogen-activated protein kinases (i.e., Erk, p38, Jnk, Ras) [7] and MMPs [8, 9] have 61 been widely implicated in CRC. 62

In addition, the epithelial-mesenchymal transition (EMT) a key process for 63 metastasis [10]. EMT is primarily facilitated by the loss/degradation of extracellular matrix 64 (ECM) structure that allows for cancer cells to escape and spread to neighbouring tissues 65 and distant organs [10]. In cancer, changes to ECM structure contribute to altered adhesion 66 67 which is thought to be controlled by proteolysis [11]. uPAR, a cell surface receptor bound 68 to the plasma membrane through a glycosyl phosphatidylinositol (GPI) anchor, is known to regulate ECM proteolysis, cell-ECM interactions and cell signalling [11]. uPAR primarily 69 70 focusses plasminogen activation (PA) to the cell-surface by binding active twin chain uPA 71 (urokinase-type plasminogen activator) as well as its single chain zymogen form sc-uPA [11]. Active uPA catalyses the conversion of zymogen plasminogen to active plasmin (a 72 broad spectrum serine protease), which through positive-feedback can activate both 73 74 zymogen forms of uPA and plasmin. Plasmin can degrade various ECM molecules such as fibrin, fibronectin and laminin while also activating matrix metalloproteinases (MMP)-1, 75 76 MMP-3, MMP-9, MMP-12 and MMP-13 [11]. Interestingly, plasmin and MMPs such as 77 MMP-2 and MMP-9 are both known to activate latent-TGF β (L-TGF β) [8, 12].

The (canonical) TGFβ signalling cascade in normal cells is known to promote tumour 78 suppression through cytostasis, cell differentiation and apoptosis [13]. During cancer, 79 however, TGF^β plays a dual role wherein it either strongly promotes cell growth suppression 80 in the early stages but then switches to promote tumour growth, invasion, and metastasis 81 during mid to late stages [13, 14]. The biological mechanism/s explaining this switch to 82 promote tumour growth and metastasis are poorly characterised. However, it is known that 83 active TGF β during CRC is found at very high levels (14.8 ± 8.4 ng/mL) compared to healthy 84 controls $(1.9 \pm 1.4 \text{ ng/mL})$ [15]. These high active TGF β levels may be required to promote 85

86 cancer related processes and can partly be achieved through increased expression of plasmin, 87 MMPs and integrins, which are then able to activate L-TGF β [8, 16, 17]. A recent study by Ahn et al., examining Dukes' stages B (n=170) and C (n=179) rectal cancer tissues showed 88 89 that expression of uPAR in epithelial and stromal cells differentially correlated with patient survival [4]. Their results showed that elevated epithelial uPAR expression in both the 90 91 central region and invasive tumour front adversely correlated with overall survival of stage B patients while elevated stromal uPAR (detected with a different monoclonal antibodies) 92 at the invasive front favourably correlated with overall survival of stage C patients [4]. In 93 contrast, a study by Boonstra et al., examined CRC tumour tissues (n=262; all stages) and 94 95 showed that stromal uPAR expression was adversely associated with overall survival as well as disease free survival [18]. Another study by Illemann et al., also reported, similar results 96 97 to Boonstra et al., that uPAR expression on tumour-associated macrophages negatively 98 correlated with overall survival in all stages (n=244) [19]. These high levels of uPAR can lead to increased levels of plasmin which can aid in TGFB activation during cancer. 99 Therefore, high levels of plasmin (and other suspected activators) during cancer could 100 101 contribute to developing high active TGF^β levels.

Proteomics, is being widely used to study differential protein expression in response 102 to treatments with agonists or antagonists of certain processes during cancer and other 103 diseases [20]. Some of the most commonly used proteomic methods/technologies in 104 combination with mass spectrometry include one- or two-dimensional electrophoresis 105 (1/2DE) [21], two-dimensional differential in-gel electrophoresis (2D-DIGE) [22], stable 106 isotope labelling by amino acids in cell culture (SILAC) [23], and isobaric tag for relative 107 108 and absolute quantitation (iTRAQ)[24, 25]. This study uses iTRAQ-based technology as it allows for differential labelling of peptides from 2-8 samples which are then combined 109 together and analysed in a single MS/MS run. Additionally, the differential labelling allows 110 for identification and quantitation in a single step which is a key advantage over standard 111 112 label-free approaches.

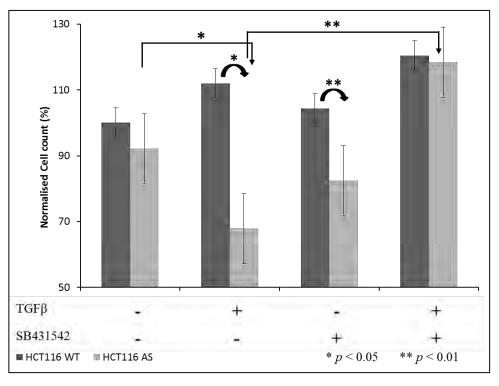

In the current study, the effects of active TGF β on HCT116 cells with differential uPAR expression was investigated. The use of active TGF β removes any molecular changes that are associated with any plasmin-mediated TGF β activation. The study compared membrane enriched proteomes of TGF β -treated and untreated HCT116^{WT} and HCT116^{uPAR-} ^{AS} subclone cells and the biological significance of the proteomic data evaluated using Ingenuity Pathway Analysis (IPA) where a number of basic cellular pathways/functions were found altered significantly. Additionally, prior to proteomic experiments proliferationand invasion assays were performed.

121

122 **2. RESULTS**

123 **2.1 Validation of uPAR expression in HCT116**^{WT} and HCT116^{uPAR-AS} cells

HCT116^{WT} cells used in this study natively express uPAR. However, the HCT116^{uPAR-AS} cell line shows decreased cell surface uPAR expression ($35\%\psi$) through stable transfection [26]. **Figure 1** shows the differential expression differences of uPAR between HCT116^{WT} and HCT116^{uPAR-AS} cell lines that was confirmed through western blot analysis. These results support the reported differential expression of uPAR in these cell lines [26].



130

Figure 1 a) Validation of uPAR expression in HCT116^{WT} and HCT116^{uPAR-AS} cell lines. 100ng of recombinant uPAR and 20µg of cell lysates for both cell lines were separated on SDS-PAGE gel followed by Western blotting using the anti-human uPAR monoclonal AF-807 antibody (R&D Systems) **b**) Relative abundance of uPAR HCT116^{WT} and HCT116^{uPAR-AS} ^{AS} cell lines (mean \pm SEM) obtained by quantitative analysis of the Western blot band intensities. Results indicate that HCT116^{WT} expresses more uPAR than HCT116^{uPAR-AS} cells.

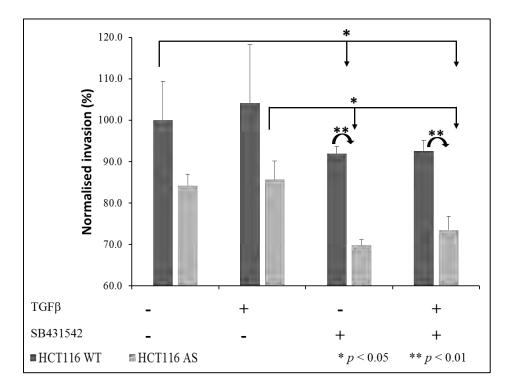
138 2.2 Effects of TGFβ1 on proliferation of HCT116 WT and AS cells

139 uPAR and TGF β are key members for the uPAR/ $\alpha v\beta 6$ /TGF $\beta 1$ hypothetical 140 interactome that was postulated in by group [27]. Research has shown that down-regulation 141 of uPAR correlated with decreased proliferation in papillary thyroid carcinoma cells [28]. In 142 order to evaluate the effects of TGF β on cell proliferation (CP) of HCT116^{WT} and 143 HCT116^{uPAR-AS} colon cancer cells, a simple cell enumeration assay was performed. The assay was performed under serum-free (SF) conditions to avoid interference from any growth factors that might be present in fetal bovine serum (FBS) and that could affect outcomes. The cells were treated with 10 ng/mL active TGF β 1 or 10 μ M SB431542 (a TGF β receptor I kinase inhibitor) or both and incubated for 24 hr, prior to analysis.

148

Figure 2 Proliferation assay of HCT116^{WT} and HCT116^{uPAR-AS} cells normalised to the untreated HCT116^{WT} control. All assays were performed in SF media and in biological triplicate (*p<0.05; **p<0.01).

Both HCT116^{WT} and HCT116^{uPAR-AS} cells showed no significant difference in 152 proliferation under SF conditions, Figure 2. Interestingly, the HCT116^{WT} cells showed a 153 slight increase in cell numbers upon treatment with TGF^β but failed to reach significance. 154 However, HCT116^{uPAR-AS} cells, relative to untreated controls, exhibited significant changes 155 in cell numbers, decreased (24% \downarrow) when treated with TGF β alone or increased (26% \uparrow) 156 when treated with TGF β + SB431542, respectively. It is interesting to note that treatment 157 with TGFB (alone) showed growth inhibitory responses in HCT116^{uPAR-AS} cells that 158 expressed lower levels of uPAR. This growth inhibitory response was lost upon co-treatment 159 with TGF^β and SB431542 (that blocks its downstream signalling receptor TGF^βR1), and 160 HCT116^{uPAR-AS} cells reached high cell numbers similar to HCT116^{WT} cells. Although, a 161 similar effect was observed in the HCT116^{uPAR-AS} cells that were treated only with 162 SB431542, these failed to reach statistical significance. Collectively, these observations 163


164 demonstrate that TGF β exerts tumour suppressive effects on HCT116 cells and this effect is 165 more pronounced when uPAR expression levels are lower.

166

167 2.3 Effects of TGFβ1 on invasion of HCT116 WT and AS cells

Previous studies using the HCT116^{WT} and HCT116^{uPAR-AS} cell lines demonstrated that suppression of uPAR correlated with decreased migration and invasion [26]. In the current study, the possible correlation of uPAR and TGF β that may occur during invasion was evaluated using a Transwell invasion assay where the chambers are pre-coated with a thin layer of ECMatrixTM. Invasion was assessed in the presence of 10% FBS as a chemoattractant in the lower chamber and the cells which migrated through the layer of ECMatrix and through 8µm pores in the invasion chamber were scored as invasive.

Similar to results observed in proliferation assays, there was no significant difference 175 in invasive potential of HCT116^{WT} and HCT116^{uPAR-AS} cells under SF conditions, **Figure 3**. 176 Similarly, both HCT116^{WT} and HCT116^{uPAR-AS} cells relative to their untreated controls, 177 exhibited no significant difference when treated with TGFB. However, upon treatment with 178 SB431542 (alone) or TGF β + SB431542 (together) the HCT116^{uPAR-AS} cells exhibited a 179 significant decrease in their invasive capacity relative to the untreated controls and TGFB 180 treated cells. This decrease in invasion was more pronounced when the HCT116^{uPAR-AS} cells 181 were just treated with SB431542 i.e., 17% and 18.5% relative to untreated control and TGFB 182 treatment respectively. However, upon addition of TGFB to SB431542 treated HCT116^{uPAR-} 183 ^{AS} cells showed only a 12.7% and 14.3% decrease in invasive potential relative to untreated 184 controls and TGF^β treated cells respectively. Despite no significant difference in invasion 185 (relative to untreated control) observed when HCT116^{uPAR-AS} cells were treated with TGFβ 186 (alone) there was some loss of invasive potential upon addition of SB431542 (alone or in 187 188 combination with TGF β). These observations suggest that TGF β R1 is required to regulate invasion and that treatment with SB431542 greatly reduced invasion in both cell lines. 189

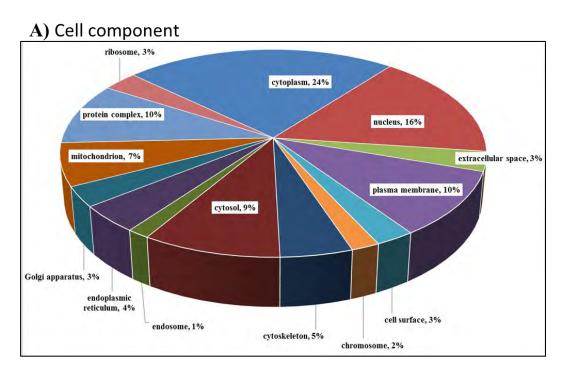
Figure 3 Effect of TGF β on invasion of HCT116^{WT} and HCT116^{uPAR-AS} cells normalised to the untreated HCT116^{WT} control. All assays were performed in SF media and in biological triplicate (*p<0.05; **p<0.01).

194 2.4 Proteomic analysis

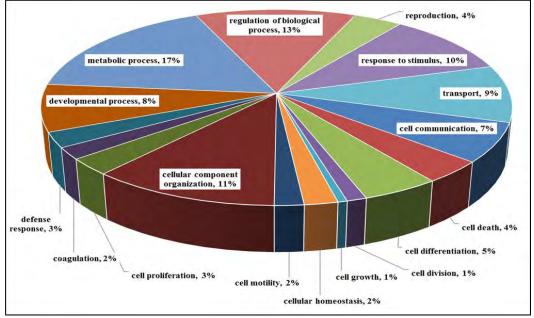
195 The results from cell-based assays demonstrated that TGF β does not affect 196 proliferation <u>or</u> invasion of HCT116^{WT} cells. However, TGF β showed an anti-proliferative 197 responses in the HCT116^{uPAR-AS} cells and this was abrogated upon SB431542 treatment. 198 However, SB431542-treatment seemed to decrease the invasive potential of the 199 HCT116^{uPAR-AS} cells. These interesting observations were then expanded to examine what 200 changes were occurring as assessed by proteomics.

To elucidate the molecular events associated with TGFβ treatment of HCT116^{WT} and 201 HCT116^{uPAR-AS} colon cancer cells, quantitative membrane proteomic analysis was 202 performed using iTRAQ. HCT116^{WT} and HCT116^{uPAR-AS} cells were treated with 10ng/mL 203 TGFβ1 and membrane enrichment was performed using Triton X-114 phase partitioning. 204 Following iTRAQ labelling the samples were then mixed in equal proportions and 205 fractionated by SCX and analysed by nano LC-MS/MS using a TripleTOF mass 206 207 spectrometer. The experiment was designed to examine the biological reproducibility, hence, duplicate samples were obtained for both untreated and TGF β treated HCT116^{WT} and 208 HCT116^{uPAR-AS} cell lines and biological replicates were analysed on separate MS runs. The 209 proteins identified from individual iTRAQ MS runs (biological replicates) were 'combined' 210

into a single list using Stouffer's method [29]. Stouffer's method, based on the observed iTRAQ protein ratios, allows for combining proteins identified across two or more MS runs and return a single combined (Stouffer's) p-value [29]. Using this approach a total of 1726 proteins were identified from two biological replicates (unused protein score \geq 2.0; false discovery rate < 1% at protein level). A filter of minimum average iTRAQ fold change of \geq 1.2 (up-regulated) or \leq 0.83 (down-regulated) with a p < 0.05 was applied to the identified proteins and the ones that met this criteria were selected for further analysis.


Accordingly, the comparison of the untreated HCT116^{WT} against the untreated 218 HCT116^{uPAR-AS} identified 222 proteins to be up- or down-regulated in the HCT116^{WT} cells 219 (Supplementary table 1). Likewise, the comparison of TGFβ-treated HCT116^{WT} against 220 the TGF_β-treated HCT116^{uPAR-AS} identified 279 proteins to be up- or down-regulated 221 (Supplementary table 2). For ease, these two protein lists were manually merged to 222 223 generate a list of 346 proteins between both TGF^β treated and/or untreated conditions of HCT116^{WT} and HCT116^{uPAR-AS}. Furthermore, 155 of the 346 proteins were found to be 224 differentially expressed in both conditions, while 67 and 124 proteins were found to be 225 differentially up- or down-regulated when untreated and TGFB-treated conditions 226 respectively. 227

228 **2.5** Gene ontology mapping of differentially expressed proteins


Gene ontology studies using PloGo [29] script classified the proteins into various 229 groups based on their sub cellular locations, molecular function and biological processes. 230 PloGo analysis of the 346 differentially expressed proteins is shown. These differentially 231 232 expressed proteins were observed to be involved in cellular processes including cell motility, cell proliferation, cell differentiation, cell growth and cellular organisation (Figure 4a). The 233 234 analysis also identified these proteins to be expressed in various membrane organelles including plasma membrane, Golgi apparatus, endoplasmic reticulum and mitochondria 235 236 (Figure 4b).

237 **2.6 Relevance of iTRAQ data to the processes of CRC**

The 346 significantly altered proteins form iTRAQ experiment were functionally analysed and classified to collectively interpret the molecular events associated with CRC pathophysiology. The proteins were classified into four major categories (a) cytoskeletal signalling (b) cellular adhesion and migration (c) cellular stress and cell death and (d) membrane trafficking. For possible involvement in CRC, selected proteins from various classes are listed and described below. All the protein fold changes are reported as observed for HCT116^{WT} cells relative to HCT116^{uPAR-AS} cells (i.e., $\frac{\text{HCT116}^{WT} \text{ fold change}}{\text{HCT116}^{uPAR-AS} \text{ fold change}}$) and are separated based on treatment.

Figure 4 Gene ontology based classification of the 346 differentially up- or down-regulated proteins in the HCT116^{WT} cells for TGF β -treated and untreated conditions of HCT116^{WT} and HCT116^{uPAR-AS}.

252

Cytoskeletal signalling related proteins. The cytoskeletal proteins help maintain
 the integrity of a cell and between cells. From the significantly altered proteins, several actin
 filament, intermediate filament and microtubule associated proteins were identified.

256 Actin and several actin filament associated proteins such as α -actinin-4, myosin-10, septin-2, septin-9, septin-11, myosin regulatory light chain 12A and LIM domain and actin-257 binding protein 1 were found to be significantly up-regulated in HCT116^{WT} cells regardless 258 of TGF^β treatment (Table 1). Myosin-9 and emerin (down-regulated) and spetin-7 (up-259 regulated) were observed to be significantly altered only upon TGFB treatment. 260 Intermediated filament associated proteins keratin, type II cytoskeletal 8, keratin, type I 261 cytoskeletal 18 and keratin, type I cytoskeletal 19 were down regulated in TGF^β treated 262 HCT116^{WT} cells, while keratin, type I cytoskeletal 9 and keratin, type I cytoskeletal 10 were 263 found to be up-regulated (Table 1). Plectin was also found to be down-regulated in TGFB 264 treated HCT116^{WT} cells. Interestingly, lamin-B1, lamin-B2 and lamina-associated 265 polypeptide 2, isoforms beta/gamma were found to be up-regulated in both conditions. 266

267

268	Table 1 Functional classification of significantly altered proteins related to cytoskeletal
269	signalling ^(a)

Accession	Gene		iTRAQ fold	iTRAQ fold change		
number	name	Protein names	Untreated	TGFβ treated	Expression pattern	
		Actin filament associated proteins				
043707	ACTN4	alpha-actinin-4	1.34	1.36	\uparrow	
P35580	MYH10	myosin-10	1.47	n/o	\uparrow	
Q9UHD8	SEPT9	septin-9	1.87	3.19	\uparrow	
P19105	MYL12A	myosin regulatory light chain 12A	1.97	1.56	\uparrow	
Q9NVA2	SEPT11	septin-11	2.02	2.99	\uparrow	
Q15019	SEPT2	septin-2	2.10	3.10	\uparrow	
Q9UHB6	LIMA1	LIM domain and actin-binding protein 1	2.21	2.63	\uparrow	
P63261	ACTG1	actin, cytoplasmic 2	2.70	2.31	\uparrow	
P35579	MYH9	myosin-9	n/o	0.50	\checkmark	
P50402	EMD	emerin	n/o	0.72	\checkmark	
Q16181	SEPT7	septin-7	n/o	2.16	\uparrow	

Intermediate filament associated proteins

P35908	KRT2	keratin, type II cytoskeletal 2 epidermal	0.58	n/o	\checkmark
P04264	KRT1	keratin, type II cytoskeletal 1	0.64	n/o	\downarrow
P42167	тмро	lamina-associated polypeptide 2, isoforms beta/gamma	1.75	2.00	\uparrow
P20700	LMNB1	lamin-B1	2.15	2.39	\uparrow
Q03252	LMNB2	lamin-B2	2.31	1.57	\uparrow
P13645	KRT10	keratin, type I cytoskeletal 10	n/o	1.62	\uparrow
P35527	KRT9	keratin, type I cytoskeletal 9	n/o	1.60	\uparrow
P05783	KRT18	keratin, type I cytoskeletal 18	n/o	0.47	\downarrow
P08727	KRT19	keratin, type I cytoskeletal 19	n/o	0.51	\downarrow
P05787	KRT8	keratin, type II cytoskeletal 8	n/o	0.32	\downarrow
Q15149	PLEC	plectin	n/o	0.60	\downarrow

Microtubule associated proteins

P26038	MSN	moesin	n/o	1.70	\uparrow
Q07065	CKAP4	cytoskeleton-associated protein 4	1.53	1.36	\uparrow
P07437	TUBB	tubulin beta chain	0.37	0.23	\checkmark
P33176	KIF5B	kinesin-1 heavy chain	0.50	0.42	\downarrow
P27816	MAP4	microtubule-associated protein 4	0.77	n/o	\downarrow
Q9BUF5	TUBB6	tubulin beta-6 chain	n/o	0.53	\checkmark

^(a) Fold change ratios of significantly altered proteins observed in two biological replicates of iTRAQ experiment. These proteins have met the stipulated criteria (i.e., unused protein score >2.0 and the change in expression level of at least 1.2 fold for HCT116^{WT}/HCT116^{uPAR-AS} untreated and TGF β -treated conditions. **n**/**o** – not observed in the treatment condition.

270

Tubulin-B and -B6 chains along with kinesin-1 heavy chain were found to be 271 significantly down-regulated upon TGF^β treatment to HCT116^{WT} cells. Additionally, 272 microtubule-associated protein 4 was down-regulated in the untreated HCT116^{WT} cells. 273 Interestingly, cytoskeleton-associated protein 4 (CKAP4) that is a high affinity receptor for 274 antiproliferative factor (APF) was found to be down-regulated upon TGF^β treatment (Table 275 1). Shahjee et al., reported have previously reported that the knockdown of CKAP4 276 expression using siRNA inhibited the APF-CKAP4 driven anti-proliferative responses in 277 T24 bladder carcinoma cells [30]. 278

279

Proteins related to cell adhesion and migration. The balance of cell adhesion is a
 crucial factor during cancer development. The loss of cell adhesion can result in increased
 cell migration and invasion that is required for tumour cells dissipate to surrounding tissue
 and distant organs.

284 Cell adhesion associated molecules such as ALCAM (Activated leukocyte cell 285 adhesion molecule or CD166 antigen), catenin α 1, integrins- α 2, - α 3, and - β 1, and CD44 were found to be up-regulated untreated condition (Table 2). Interestingly, the addition of TGF β resulted further up-regulation of the integrins which are key molecules for maintaining cell adhesion. This TGF β mediated up-regulation of various adhesion related molecules could suggest a growth inhibition associated with TGF β . Coxsackievirus and adenovirus receptor (CXADR) a component of the epithelial apical junction complex and require for tight junction integrity was observed to be up-regulated (Table 2).

Various cellular migration related proteins ezrin, tumour protein D54, galectin-3, 292 galectin-1, alpha-enolase and cell division control protein 42 homolog were observed to be 293 up-regulated (Table 2) in the HCT116^{WT} cells, irrespective of TGF β treatment. Although, 294 some of these proteins showed slight up-regulation upon TGFβ treatment, the change was 295 negligible. Annexin A2 has been reported to inhibit cell migration in vitro [31] was observed 296 to be up-regulated regardless of TGF^β treatment. Additionally, prohibitin and prohibitin-2 297 298 that were shown to be required for cancer cell adhesion and proliferation [32] were observed to be down-regulated significantly which further decrease upon TGF β treatment (Table 2). 299 Once again, these observations indicate a TGF β -mediated growth inhibition in these cells. 300 301 The expression of annexin A2 and ezrin was validated by Western blotting analysis (Figure 302 5).

304	Table 2 Functional classification of significantly altered proteins related to cellular adhesion
305	and migration ^(a)

Accession	Gene		iTRAQ fold change		— Expressior
number	name	Protein names	Untreated	TGFβ treated	pattern
		Cell adhesion related proteins			
P48960	CD97	CD97 antigen	1.32	n/o	\uparrow
P16070	CD44	CD44 antigen	1.37	1.67	\uparrow
P21926	CD9	CD9 antigen	1.76	n/o	\uparrow
P35221	CTNNA1	catenin alpha-1	1.78	1.68	\uparrow
P26006	ITGA3	integrin alpha-3	1.98	3.35	\uparrow
P17301	ITGA2	integrin alpha-2	2.19	2.70	\uparrow
Q13740	ALCAM	CD166 antigen	2.34	2.19	\uparrow
P05556	ITGB1	integrin beta-1	2.70	4.04	\uparrow
P50895	BCAM	basal cell adhesion molecule	n/o	0.67	\checkmark
		Tight junction proteins			
P78310	CXADR	coxsackievirus and adenovirus	1.62	1.56	\uparrow

3310	CXADR	receptor	
------	-------	----------	--

		Cell migration related proteins			
P46013	MKI67	antigen KI-67	1.25	n/o	\uparrow
P15311	EZR	ezrin	1.46	1.99	\uparrow
043399	TPD52L2	tumour protein D54	2.00	3.04	\uparrow
P17931	LGALS3	galectin-3	2.06	2.82	\uparrow
P09382	LGALS1	galectin-1	2.14	2.61	\uparrow
P07355	ANXA2	annexin A2	2.47	2.38	\uparrow
P06733	ENO1	alpha-enolase	2.70	2.37	\uparrow
P60953	CDC42	cell division control protein 42 homolog	4.34	2.48	\uparrow
P51858	HDGF	hepatoma-derived growth factor	n/o	3.96	\uparrow
Q99623	PHB2	prohibitin-2	0.54	0.30	\checkmark
P35232	PHB	prohibitin	0.60	0.46	\checkmark

^(a) Fold change ratios of significantly altered proteins observed in two biological replicates of iTRAQ experiment. These proteins have met the stipulated criteria (i.e., unused protein score >2.0 and the change in expression level of at least 1.2 fold for HCT116^{WT}/HCT116^{uPAR-AS} untreated and TGFβ-treated conditions. n/o – not observed.

306

307 Cell death related proteins. Tumour cells to spread to surrounding tissue and/or 308 distant organs, they require to survive the loss of cell adhesion and the stress that is 309 associated with it. However, it is known that epithelial cells can trigger apoptosis when the 310 cell adhesion is lost (i.e., anoikis) during cancer [33, 34]. Therefore, suppression of anoikis 311 becomes a crucial requirement for cancer cells. This study identified several proteins that 312 are associated with this process.

Various chaperone and heat shock proteins such as DnaJ homolog subfamily A member 1, heat shock 70 kDa protein 1A/1B and heat shock cognate 71 kDa protein were observed to be down regulated whereas DnaJ homolog subfamily B member 11, heat shock 70 kDa protein 4, and DnaJ homolog subfamily C member 9 were found to be downregulated in the TGF β treated HCT116 WT cells (Table 3). Additionally, hypoxia upregulated protein 1, stress-70 protein, mitochondrial, 78 kDa glucose-regulated protein, endoplasmin, and heat shock protein beta-1 were found to be up-regulated in both conditions.

321 Table	3 Functional	classification	of significantl	y altered	l proteins	related to	cell death ^(a)
-----------	---------------------	----------------	-----------------	-----------	------------	------------	---------------------------

Accession	Gene		iTRAQ fold	l change	Expression
number	name	Protein names	Untreated	TGFβ treated	pattern
		Chaperones and heat shock proteins			
P12956	XRCC6	X-ray repair cross-complementing protein 6	1.25	n/o	\uparrow
P38646	HSPA9	stress-70 protein, mitochondrial	1.42	1.39	\uparrow

P11021	HSPA5	78 kDa glucose-regulated protein	1.54	1.43	\uparrow
P14625	HSP90B1	endoplasmin	1.65	1.68	\uparrow
P04792	HSPB1	heat shock protein beta-1	4.44	3.96	\uparrow
Q96EY1	DNAJA3	DnaJ homolog subfamily A member 3, mitochondrial	n/o	1.33	\uparrow
Q9UBS4	DNAJB11	DnaJ homolog subfamily B member 11	n/o	1.58	\uparrow
P34932	HSPA4	heat shock 70 kDa protein 4	n/o	1.70	\uparrow
Q8WXX5	DNAJC9	DnaJ homolog subfamily C member 9	n/o	1.91	\uparrow
P50454	SERPINH1	serpin H1	1.55	n/o	\uparrow
P31689	DNAJA1	DnaJ homolog subfamily A member 1	n/o	0.36	\checkmark
P51572	BCAP31	B-cell receptor-associated protein 31	n/o	0.50	\checkmark
P08107	HSPA1A	heat shock 70 kDa protein 1A/1B	n/o	0.68	\checkmark
P11142	HSPA8	heat shock cognate 71 kDa protein	n/o	0.73	\checkmark
P50991	CCT4	T-complex protein 1 subunit delta	n/o	0.75	\checkmark

		Apoptosis-related proteins			
Q9Y4L1	HYOU1	hypoxia up-regulated protein 1	1.28	1.35	\uparrow
095831	AIFM1	apoptosis-inducing factor 1, mitochondrial	n/o	1.35	\uparrow
Q9UKV3	ACIN1	apoptotic chromatin condensation inducer in the nucleus	n/o	1.65	\uparrow
Q96A26	FAM162A	protein FAM162A	n/o	1.86	\uparrow
(a)					

^(a) Fold change ratios of significantly altered proteins observed in two biological replicates of iTRAQ experiment. These proteins have met the stipulated criteria (i.e., unused protein score >2.0 and the change in expression level of at least 1.2 fold for HCT116^{WT}/HCT116^{uPAR-AS} untreated and TGFβ-treated conditions. n/o – not observed.

322

Interestingly, the apoptotic related molecules apoptosis-inducing factor 1, 323 324 mitochondrial (AIFM1) (or Programmed cell death protein 8; PDCD8), apoptotic chromatin condensation inducer in the nucleus (ACIN1), and protein FAM162A (or human growth and 325 transformation-dependent protein; HGTD-P) were found to be significantly up-regulated in 326 the TGF β treated HCT116^{WT} cells (Table 3). AIFM1 was reported by Kim *et al.*, to induce 327 apoptosis by inhibiting protein synthesis [35]. During apoptotic induction AIFM1 328 329 translocates from the mitochondria into the nucleus where it binds to the eukaryotic translation initiation factor 3 subunit p44 (eIF3g) required for protein synthesis [35]. It is not 330 surprising to see the up-regulation of AIFM1 as IPA showed eIF4 signalling to be the top 331 canonical pathway altered in these cells. Additionally, overexpression of FAM162A a death-332 inducing effector molecule downstream of HIF-1 α (Hypoxia-inducible factor 1 α) was 333 reported by Lee *et al.*, to facilitate cell death by inducing mitochondrial apoptotic pathway 334 [36]. This increased expression of these apoptosis inducing proteins suggests that anoikis 335 has been triggered in the TGF β treated HCT116^{WT} cells. 336

Table 4 Functional classification of significantly altered proteins related to protein

339 trafficking^(a)

mes Untre	ated TGFβ treated	— Expression pattern
rotoinc		
lotenis		
Rab-10 7.54	4.72	\uparrow
Rab-5C 1.87	n/o	\uparrow
Rab-7a 1.73	n/o	\uparrow
Rap-1b 1.57	n/o	\uparrow
Rab-11B n/o	0.69	\checkmark
	Rab-107.54Rab-5C1.87Rab-7a1.73Rap-1b1.57	Rab-107.544.72Rab-5C1.87n/oRab-7a1.73n/oRap-1b1.57n/o

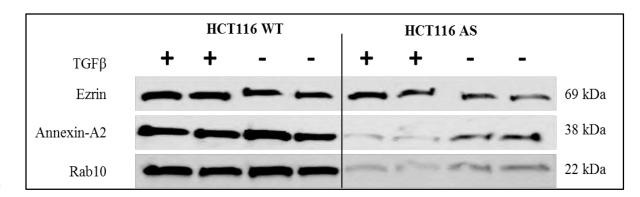
Protein trafficking

Q86Y82	STX12	syntaxin-12	1.38	1.81	\uparrow
015400	STX7	syntaxin-7	1.48	1.56	\uparrow
(a)					

^(a) Fold change ratios of significantly altered proteins observed in two biological replicates of iTRAQ experiment. These proteins have met the stipulated criteria (i.e., unused protein score >2.0 and the change in expression level of at least 1.2 fold for HCT116^{WT}/HCT116^{uPAR-AS} untreated and TGFβ-treated conditions. n/o – not observed

340

Proteins involved in trafficking. Several Ras-related proteins were found to be up-341 regulated in the untreated HCT116^{WT} cells (Table 4). The identified Rab and Rap proteins 342 are GTPases that are required for protein trafficking across the membranous cell organelles 343 including endoplasmic reticulum, Golgi complex, endosomes and plasma membrane. For 344 example, Rab-10 has been reported to be involved in trafficking from the Golgi at early 345 346 stages of epithelial polarization [37, 38]. Additionally, Rab-10 was found to be up-regulated in both untreated (7.54 fold^{\uparrow}) and TGF β -treated (4.72 fold^{\uparrow}) conditions (Table 4). 347 Interestingly, treatment with TGF^β resulted in a 2.8-fold decrease in the expression of Rab-348 349 10 and this differential expression was validated through Western blotting (Figure 5). Surprisingly, there are very few reports that have identified Rab-10 in association with 350 cancer. However, Lee et al., identified Rab-10 in an HMGB1 (high mobility group box 1) 351 pull-down experiment on the same cells we use here, namely HCT116 cells [39]. This 352 observation is interesting as HMGB members have previously been associated with cell 353 migration [40]. Our study would be the second after Lee et al., [39] to report the 354 355 identification of Rab-10 in the context of CRC.


Two other proteins, syntaxin-7 and syntaxin-12, that regulate protein trafficking from the plasma membrane to the early endosomes [41] were observed to be up-regulated (Table Decreased expression of Syntaxin-7 in melanoma is associated with more aggressive tumours [42]. In contrast, up-regulation of Syntaxin-7 in this study could indicate a lessaggressive phenotype or even growth inhibition.

This study also identified other proteins such as plasminogen activator inhibitor 1 361 362 RNA-binding protein, transforming protein RhoA, uncharacterized protein C19orf43, and scavenger receptor class B member 1 to be up-regulated while transferrin receptor protein 1, 363 364 protein FAM3C, Ragulator complex protein LAMTOR1, membrane-associated progesterone receptor component 1, DBIRD complex subunit KIAA1967, and 365 uncharacterized protein KIAA2013 to be down-regulated (Supplementary tables 3). 366 Interestingly, KIAA1967 or deleted in breast cancer gene 1 protein (DBC1) expression has 367 368 been observed in various cancers with varying outcomes [43-46]. Zhang et al., reported that the overexpression of DBC1 in CRC results in poor prognosis [46], which confers with this 369 370 study. However, low expression of DBC1 was associated with poor prognosis in CRC as reported by Kikuchi et al., [47]. In contrast, several studies report the overexpression of 371 DBC1 in other cancers to be associated poor prognosis [43-45]. 372

373 2.7 Validation of selected protein candidates by western blotting

To confirm that the fold changes values of proteins observed through iTRAQ was real, the differential expression of three proteins – ezrin, annexin A2 and Ras-related protein Rab-10, were validated using Western blotting. As shown in Figure 5, the relative expression of these proteins was assayed using specific antibodies. The results observed here were in agreement with the fold changes observed through iTRAQ.

Figure 5 Validation of proteomic results. The differential expression of 3 proteins was validated by Western-blot analysis. 20 μ g of protein sample for TGF β -treated and untreated HCT116^{WT} and HCT116^{uPAR-AS} cells were separated on SDS-PAGE gel followed by Western blotting using ezrin (sc-58758), annexin A2 (ab41803) and Rab-10 (ab181367) antibodies.

Leiphrakpam et al., recently reported that the expression of ezrin and the 387 phosphorylatiaon at its T567 site was increased during CRC liver metastasis [48]. From the 388 Western blot analysis, it is clear that the HCT116^{WT} cells endogenously have higher ezrin 389 levels compared to the HCT116^{uPAR-AS} cells that have lower uPAR expression. However, the 390 addition of TGFB to either cells increased ezrin expression, suggesting a TGFB-mediated 391 392 growth of these cells. Other studies on breast cancer and tongue squamous cell carcinoma have shown that the expression of ezrin is required during proliferation, migration and 393 invasion during cancer [49, 50]. 394

386

Annexin A2 overexpression has been observed in pancreatic, colorectal and brain tumours and correlated with advanced clinical stage [51]. Likewise, high expression of annexin A2 was observed in metastatic CRC cells compared with non-metastatic cells [52]. Similar to ezrin, annexin A2 was found to be expressed at high levels when uPAR was expressed (HCT116^{WT}) and decreased with uPAR expression (HCT116^{uPAR-AS}). However, the addition of TGF β showed very little difference in the expression.

401 The increased expression of these proteins in cells with high uPAR expression, 402 regardless of TGF β treatment, suggests that uPAR primarily could be responsible for the 403 cancer progression propertied observed within these cell lines.

404 **2.8** Network analysis of proteomic data using Ingenuity Pathway Analysis

To examine the biological significance, the proteomic data was examined using IPA server. The differentially expressed proteins from the untreated and TGF β -treated were analysed separately. The untreated dataset contained 222 proteins and the TGF β -treated dataset contained 279 proteins. It is important to note that 155 proteins were found to be observed in both datasets. Despite the large overlap, the network aimed to differentiate changes associated with TGF β treatment. First we examined the untreated dataset.

IPA of untreated dataset. IPA identified various fundamental cellular functions including (i) cellular growth and proliferation (ii) cell death and survival (iii) protein synthesis (iv) cell morphology and (v) cellular function and maintenance to be significantly altered in either of the untreated HCT116 subclone cell lines. Likewise, several networks related to these cellular processes were also seen to be altered significantly. They include, "Protein Synthesis, Cell Death and Survival, Drug Metabolism" (IPA score=41), "Cell-To-Cell Signaling and Interaction, Cancer, Organismal Injury and Abnormalities" (IPA

score=35), "Cell Death and Survival, Cell-To-Cell Signaling and Interaction, Cardiovascular
System Development and Function" (IPA score=31) and "Cell Cycle, Cancer, Organismal
Injury and Abnormalities" (IPA score=25).

421 IPA also showed eIF2 signalling, regulation of eIF4 and p70S6K signalling to be the 422 top two canonical pathways to be altered with this data set. Majority of the molecules that were associated with these pathways were various ribosomal proteins. IPA showed 423 424 eukaryotic translation initiation factor 4 gamma 1 (eIF4G1) to be associated with both these pathways and was observed to be down-regulated by proteomics (iTRAQ-fold change, 425 426 $0.60\downarrow$). eIF4G1 is the most abundant member of the eIF4G scaffold protein family, whose elevated expression in yeast promoted direct mRNA-ribosome interaction and translation of 427 mRNAs with longer polyA tails, thereby promoting mRNA translation efficiency [53-55]. 428 eIF4G1 is a component of the eIF4F complex that is essential for mRNA translation. The 429 down-regulation of eIF4G1 in mammalian and yeast cells showed a decrease in mRNA 430 translation of multiple mRNAs but was not completely inhibited [53, 56]. This suggest that 431 eIF4G1 is crucial for increasing mRNA translation under stress conditions and the observed 432 433 down-regulation in this study could mean a normal functioning of the cells.

434 To further investigate the regulators associated with the proteomic changes observed, the upstream regulator analysis in IPA was implemented. Interestingly, TGFB1 system was 435 436 found to be activated (activation z-score, 2.2; p-value, 0.041), despite any treatment. This shows that TGFβ is endogenously expressed in these cells. Furthermore, IPA associated the 437 438 IgG and TGF^β regulators with several diseases and functions including adhesion of colon cancer cell lines, attachment of tumour cell lines binding of tumour cell lines, and cell 439 440 movement of carcinoma cell lines. Rightly, IPA identified CALR, CD44, EZR, HSPB1, ITGA2, ITGA3, ITGB1, LGALS1, LGALS3, and SCARB1 to be involved in these 441 442 functions.

IPA of TGFβ-treated dataset. IPA identified cancer as the top disease while (i) RNA post-translational modification, (ii) cellular growth and proliferation, (iii) cell death and survival, (iv) protein synthesis and (v) cellular development were found to be the top cellular functions associated with the dataset. IPA also identified several networks associated with these cellular functions. The top three networks are "Protein Synthesis, Cancer, Hematological Disease" (IPA score=43), "RNA Post-Transcriptional Modification, Carbohydrate Metabolism, Cell Morphology" (IPA score=36) and "Cell Death and Survival, 450 Cancer, Organismal Injury and Abnormalities" (IPA score=36). IPA also showed eIF2 451 signalling to be the top canonical pathway that is significantly altered. Interestingly, no eIFs 452 were found to be altered upon treating HCT116^{WT} and HCT116^{uPAR-AS} cells with TGF β . Like 453 the untreated cells, the TGF β 1 system was found to be activated (activation z-score, 2.2) but 454 was not significant.

The IPA showed several basic cellular functions to be altered when uPAR is
differentially expressed in the HCT116 cells. Similar observations were also seen when the
HCT116 cells were treated with TGFβ.

458 **3. DISCUSSION**

Colorectal cancer is the third most common cancer globally with mortality rates over 50% [1] with majority of the deaths being due to metastasis [3]. Several proteins including uPAR and TGF β have been implicated in CRC biology. Likewise, several studies have shown that increased uPAR expression is associated with poor overall survival of cancer patients [4, 18, 19]. However, several reports have implicated TGF β in CRC, but its exact mechanism is not very well understood. This study aimed to investigate the effects of TGF β on HCT116 subclone cells with differential uPAR expression.

466 The observations from initial cell proliferation (CP) and invasion studies showed that TGF^β did not significantly affect these processes. In contrast, the HCT116^{uPAR-AS} cells 467 showed significant decrease in CP upon addition of TGFB alone or with SB431542. 468 Although, the HCT116^{uPAR-AS} showed no difference in invasion upon TGF^β treatment, this 469 invasion was significantly decreased upon treatment with SB431542 alone or with TGFB. 470 These observations suggest that the proliferation of the HCT116^{WT} cells with high uPAR 471 expression could happen independent of TGFB. In contrast, the increased proliferation 472 associated with HCT116^{uPAR-AS} cells upon treatment with SB431542 could be through non-473 TGF^β mediated pathways such as mitogen-activated protein kinases (MAPKs). Overall, the 474 cell based assays showed that high uPAR expression by itself can promote malignant 475 476 phenotypes whereas lower uPAR expressing cells/tumours require assistance to attain the malignant phenotype. Interestingly, Brattain et al., had reported the parent HCT116 cells to 477 478 be tumourigenic, when trypsinized or scrapped cells in tissue culture medium without any 479 serum given as subcutaneous injections, to athymic nude mice [57]. Wang et al., also reported pulmonary metastases to occur in 63-78% of athymic nude mice injected with the 480 parent HCT116 cells [58]. However, injection of the antisense transfected clones, 3'-AS7 481

and 5'-AS, showed pulmonary metastases only in 19% and 9% of the mice respectively [58]. The observations from our cell based studies seem to align with these mice studies, where proliferation and invasion was more pronounced in HCT116^{WT} cells with high uPAR expression and reduced when uPAR expression was artificially decreased by ~50%. These interesting observations were then examined by proteomics.

Our focus in this study was to identify membrane proteomic changes in the 487 HCT116^{WT} and HCT116^{uPAR-AS} cells associated with TGFB treatment at a concentration (10 488 ng/mL) that recapitulates the levels during CRC Dukes' stage B-D [15]. Following Triton 489 490 X-114 phase partitioning for enrichment of highly hydrophobic integral membrane proteins they were subsequently analysed using iTRAQ. Using this high-throughput quantitative 491 proteomics approach we identified several proteins as significantly altered. Proteomic results 492 and the IPA of the data showed several proteins associated with the cytoskeletal signalling, 493 cell adhesion and migration, cell death and survival, and protein trafficking were found to 494 be up- or down-regulated either in a TGFB-dependant or a TGFB-independent manner when 495 uPAR was differentially expressed. Three proteins of interest - ezrin, annexin A2 and Ras-496 related protein Rab-10 were further validated by western blotting. Interestingly, the 497 increased expression of ezrin and annexin A2 was reported to be crucial for metastasis in 498 499 several cancers and their blockade or deficiency significantly reduced cell proliferation, migration and invasiveness [49-51, 59]. Prior to this study, Rab-10 was observed in only one 500 other study in the context of CRC [39], which is an interesting observation. 501

In conclusion, the observations from cell based studies and proteomics study suggest that the cells expressing uPAR (HCT116^{WT}) do not significantly respond to TGF β treatments in contrast to those with lower uPAR levels (HCT116^{uPAR-AS}). These observations suggest a possible malignant phenotype of the HCT116^{WT} cells in a TGF β -independent manner and TGF β dependant growth suppression in the HCT116^{uPAR-AS} cells. Furthermore, the identification of Rab-10 is interesting and it warrants further investigation. Finally, the identification of important protein networks offer valuable information toward future research on role of TGF β in CRC.

509 4. MATERIALS AND METHODS

510 4.1 Cell lines

This study utilised the subclones of HCT116 cells (ATCC® CCL-247[™]). The
 HCT116 wild-type (HCT116^{WT}) and HCT116 uPAR anti-sense (HCT116^{uPAR-AS}) were a
 kind gift from Professor Yao Wang (Orthopaedic Research Institute, St George Hospital,

Sydney, Australia). The HCT116^{uPAR-AS} subclone has shown approximately 35% decreased 514 cell surface uPAR [26]. This decreased expression was achieved by stable transfection of 515 the HCT116^{WT} cells with a pDR2 vector which expresses 5' uPAR cDNA in an antisense 516 orientation [26]. HCT116 WT cells were maintained in complete Dulbecco's Modified 517 Eagle's Medium (DMEM; cat. no. D5796, Sigma-Aldrich Pty. Ltd, NSW, Australia) 518 supplemented with 10% FBS and incubated at 37°C in the presence of 5% CO₂. Complete 519 media for HCT116 AS cells contained an additional 400 µg/mL hygromycin B as a selective 520 antibiotic. Serum-free (SF) media used for both cell lines contained only 0.5% FBS. The 521 primary HCT116 cell has been previously found to be tumourigenic to athymic nude mice 522 523 when they were given subcutaneous injections with trypsinized or scrapped cells in tissue culture medium without any serum [57]. Cell lines tested negative for *Mycoplasma* infection 524 525 using the PCR-based VenorGeM Mycoplasma Detection Kit (Minerva Biolabs Cat. No. 11-526 1050).

527 **4.2 Recombinant protein treatment protocol**

528 The recombinant protein treatment method employed during this study remained constant for all the assays. Freshly passaged HCT116 cells were seeded and incubated in 529 530 complete media for 24 hr and then serum starved using SF media for 24 hrs. At this point recombinant proteins were aseptically added and incubated as required. Recombinant 531 532 Human TGF^β1 was purchased from R&D Systems (Minnesota, USA) and SB431542 (TGF^β 533 Receptor I kinase inhibitor) was purchased from Abcam (Cambridge, UK). Four treatment conditions were employed during this study: 1) SF media as a negative control, 2) SF media 534 + 10ng/mL active TGF β , 3) SF media + 10 μ M SB431542 and 4) SF media + 10ng/mL active 535 TGF β + 10 μ M SB431542. TGF β 1 was added to the cells 30 min after treating with 536 SB431542. All the cell based experimental comparisons were performed in biological 537 triplicates and were repeated at least twice and are presented as a percentage of the untreated 538 HCT116 WT cells. 539

540 **4.3 Cell-proliferation assay**

The cells were seeded at a density of 1×10^5 cells into six-well plates and prepared for recombinant protein treatment as outlined above. The cells were then incubated in presence of recombinant proteins for 24hr. They were then detached from the well surface by trypsinization, gently mixed in a 1:1 ratio of cell suspension to 0.4% Trypan Blue (Sigma Aldrich) and the live cells enumerated using a BioRad TC-10TM automated cell counter. It 546 should be noted that the trypan blue exclusion measures the steady state balance between cell viability and proliferation does not measure cell death. All conditions were performed 547 in biological triplicate and statistical testing for significance performed using a Student's t-548 549 test with a significance cut-off of p<0.05.

4.4 Invasion assay 550

The ability of cells to invade through extra-cellular matrix (ECM) was assessed using 551 552 the Chemicon QCM 96-well Invasion Assay Kit (ECM555, CHEMICON, International, CA, USA) and performed according to manufacturer's instructions. Briefly, serum starved 553 HCT116 cells were non-enzymatically (trypsin/EDTA) detached from the growing surface 554 and resuspended in SF media. Then, 5×10^4 cells and recombinant proteins were placed in 555 the invasive chamber and incubated at 37 °C for 18 hrs. The cells which migrated through 556 the ECM layer and attached to the bottom of the polycarbonate membrane, were dissociated 557 558 from the membrane after incubation with the 150 µL of Cell Detachment Solution (37 °C for 30 min). Next, 50 µL of lysis buffer/CyQuant GR Dye Solution (1:75) was added to each 559 560 well and incubated (15 min, room temperature). Finally, 150 µL of this mixture was transferred to a new 96-well plate, and the fluorescence was measured using a FLUOstar 561 OPTIMA microplate spectrophotometer (BMG Labtech) using 480 nm/520 nm filter set. All 562 conditions were performed in biological triplicate and statistical testing for significance 563 performed using a Student's t-test with a significance cut-off of p<0.05. 564

565

4.5 Membrane Protein Enrichment

The HCT116 cells were seeded in 15-cm cell culture dishes and at a confluence of 566 70-75%, were stimulated with 10 ng mL⁻¹ of TGF β 1 for 24 hrs in the presence of SF media. 567 The cells were then collected in lysis buffer containing 50 mM Tris-HCl, 100 mM NaCl, 568 protease inhibitor cocktail (Roche Applied Science) and phosphatase inhibitors (Sigma 569 570 Aldrich) and left on ice for 30 min before proceeding to membrane enrichment. The cells were stored at -80 °C if not used immediately and were thawed on ice before proceeding to 571 572 membrane enrichment.

Membrane enrichment was performed using a previously published method [60] with 573 574 slight modifications. In detail, the crude cell lysate was homogenized in the lysis buffer using a probe sonicator (Branson Sonifier 450; www.bransonultrasonics.com). The homogenized 575 cell lysate was centrifuged at 2000g (20 min, 4 °C) to remove nuclei and cell debris. The 576

577 supernatant containing the membrane and other cellular proteins was then diluted to 8 mL 578 using binding buffer (20 mM Tris-HCl, 100 mM NaCl) and subjected to ultracentrifugation (Sorvall Discovery; M120 SE, S80AT3 rotor) at 120,000g (90 min, 4 °C). The resulting 579 membrane pellet was washed twice with 0.1 M sodium carbonate (pH 11.0) and 580 resuspended/homogenized in binding buffer. The homogenized membrane proteins were 581 diluted with 4 volumes of binding buffer containing 1% (v/v) Triton X-114 and chilled on 582 ice for 10 min with intermittent vortexing. Samples were then heated at 37 °C for 20 min 583 and phase partitioned by centrifugation at 1000g (3 min). The detergent phase was further 584 diluted with 4 volumes of binding buffer containing 1% (v/v) Triton X-114 and phase 585 586 partition was repeated. The integral membrane proteins in the Triton X-114 detergent phase were subjected to acetone precipitation. The precipitated membrane proteins were 587 588 resolubilized in 0.5 M triethyl ammonium bicarbonate (TEAB) (Sigma-Aldrich, Australia) 589 and 0.1% SDS and stored at -80 °C if not used immediately. Protein samples were quantitated using Pierce[™] BCA Protein Assay Kit and 100 µg of protein was used to 590 591 perform the iTRAQ analyses.

592

4.6 iTRAQ isobaric labelling

iTRAQ labelling was carried out, using a 4-plex isobaric tagging kit (AB SCIEX), 593 according to manufacturer's instructions with minor modifications. iTRAQ analysis was 594 performed in biological duplicates for each cell line, where in one set of samples were not 595 treated with TGFβ1. Briefly, 100 μg of total membrane protein samples for each replicate 596 were reduced using 5 mM Tris-(2-carboxyethyl) phosphine (TCEP) (60 °C, 1 h), alkylated 597 598 with 10 mM methyl methanethiosulfonate (MMTS) (room temperature, 10 min) and digested with trypsin (Promega; 1:25 w/w, 37°C overnight). The digested peptides were then 599 dried and reconstituted in 0.5 M TEAB and ethanol (70% (v/v) final concentration). They 600 601 were then labelled with respective 4-plex isobaric tags and incubated at room temperature 602 for 1 hr before being combined. Confirmation of labelling and mixing was carried out using MALDI-MS. The iTRAQ labelled samples were dried and stored at -80°C if not used 603 604 immediately.

605 4.7 Strong cation exchange chromatography separation

The strong cation-exchange chromatography (SCX) was performed to remove interfering substances such as dissolution buffer, organic solvents (ethanol, acetonitrile,

TEAB), reducing agent (TCEP), alkylating agent (MMTS), SDS and any excess iTRAQ 608 609 reagents. The samples were fractionated by SCX using an Agilent 1260 quaternary HPLC pump with a PolyLC polysulfoethyl aspartamide column (200 mm x 2.1 mm, 5µm, 200 Å; 610 611 PolyLC, Columbia, MD). The column was equilibrated with buffer A (5mM KH₂PO₄, 25% v/v acetonitrile (ACN), pH 2.72), which was also used for sample resuspension, sample 612 613 injection and peptide adsorption to the column. Peptide elution was achieved with a step gradient of 10, 45 and 100% (v/v) buffer B (5mM KH₂PO₄, 25% v/v ACN, 350mM KCl pH 614 2.72) at a flow rate of 0.3mL/min. Peptides were collected every 4.5 min between 10 and 28 615 min; 4 min between 28 and 40 min; 2 min between 40 and 70 min and; 4 min between 70 616 617 and 132.5 min. The resulting SCX fractionated samples were dried in a vacuum centrifuge and stored at -20°C until mass spectrometry was performed. 618

619 4.8 Nano-LC MS/MS analysis

620 The dried peptides from each SCX fractions were resuspended in loading/desalting solution (0.1% v/v formic acid (FA), 2% v/v ACN) and 40µL of sample was loaded onto a 621 reverse phase peptide Captrap (Michrom Bioresources, USA) for pre-concentration and 622 623 desalting with 0.1% v/v FA, 2% v/v ACN at 5µL/min for 10 min per fraction. The peptide trap was then switched on line with the Halo C18 column (75µm x 10 cm, 2.7µm, 160Å) 624 625 (Advanced Materials Technology, USA). The desalted peptides in each fraction were eluted from the C18 column using a linear solvent gradient, with steps, from 98:2 of mobile phase 626 627 A (0.1% v/v FA): mobile phase B (90% v/v ACN, 0.1% v/v FA) to 65:35, at 300 nL/min over 100 min per fraction. After peptide elution, the column was cleaned with 95% buffer B 628 629 for 15 min and then equilibrated with buffer A for 25 min before next sample injection.

Mass spectra were acquired on an AB SCIEX TripleTOF 5600 mass spectrometer. The reverse phase nanoLC eluent was subjected to positive ion nanoflow electrospray analysis in an information dependant acquisition (IDA) mode. In the IDA mode, TOF-MS survey scan spectra from m/z 400 – 1500 were acquired for each fraction every 0.25 s. The ten most intense multiply charged ions (counts >150) in the survey scan were sequentially subjected to MS/MS analysis. MS/MS spectra were accumulated for 200 milliseconds in the mass range m/z 100 – 1500 with the total cycle time 2.3 seconds.

637 **4.9 Protein identification**

The nanoLC ESI MS/MS data set (*.wiff) files were submitted into ProteinPilot 638 639 software (ver. 4.2b, AB SCIEX) for data processing and protein identification. This program uses the Paragon Algorithm for protein database searching, identification, protein grouping 640 641 for the removal of redundant hits and quantitative comparisons [61]. The following search parameters were selected: sample type, iTRAQ 4plex (peptide labelled); Cysteine alkylation, 642 643 MMTS; Digestion, trypsin; Instrument, TripleTOF 5600; Special factors, none; Species, human; ID focus, biological modifications; Database, uniprot sprot2014; and Search effort, 644 thorough. The resulting data set was auto bias corrected ProteinPilot to get rid of any 645 646 variations imparted due to the unequal mixing during the combination of different labelled 647 samples or loading errors. The detected protein threshold (unused ProtScore) was set to \geq 1.3 (95% confidence or better) and a *p*-value (p < 0.05) ensured that protein identifications 648 649 and subsequent quantitation were not based on single peptide hits. The results were then 650 exported into Microsoft Excel for manual data interpretation and other statistical analysis.

651 4.10 Bioinformatics Analysis of Proteomic Data

652 To appreciate the data generated, lists of significantly altered proteins were uploaded 653 into QIAGEN's Ingenuity[®] Pathway Analysis (IPA[®], QIAGEN Redwood City, www.qiagen.com/ingenuity) software server and analysed using the Core Analysis module 654 to rank the proteins into top biological functions including disease and disorders as well as 655 molecular and cellular functions. The reference set and parameters for IPA on significantly 656 altered protein list was as follows: (i) Reference set, Ingenuity Knowledge Base (Genes 657 Only); (ii) Relationship to include, Direct and Indirect; (iii) Filter Summary, Consider only 658 molecules and/or relationships where (species = Human) AND (cell lines = All Cancer cell 659 lines in ingenuity database). Additionally, cellular location of all the identified proteins was 660 661 determined using PloGO, a gene ontology (GO) mapping software [62].

662 4.11 Western blotting assay

Protein extracts used for iTRAQ analysis were separated using 4-12% NuPAGE gel (Invitrogen) at 200V for 1hr. The resolved proteins were then electrophoretically transferred onto to a PVDF membrane (Invitrogen). After the transfer, the PVDF membranes were immediately incubated in blocking buffer, containing Tris buffered saline (TBS) with 3% (w/v) bovine serum albumin (BSA) and 0.5% (v/v) Tween-20, for 1 hr at room temperature with gentle shaking. The blots were then incubated with specific primary antibody overnight

(4 °C) with gentle shaking. Following this they were then incubated with horseradish 669 peroxidase-conjugated mouse, goat or rabbit secondary antibodies (R&D Systems, 670 Minnesota, USA). The imunoreactivity was detected using chemiluminescence substrate 671 672 (SuperSignal West Femto Maximum Sensitivity Substrate, Thermo) and imaged using LAS 3000, FUJI. The following primary antibodies were used: uPAR antibody (AF807) was 673 purchased from R&D Systems; annexin A2 (ab41803) and RAB10 (ab181367) were 674 purchased from abcam; and ezrin (sc-58758) was purchased from Santa Cruz Biotechnology. 675 Antibody dilutions were applied as per manufacturer's recommendations. Image Studio Lite 676 (ver 5.0) (LI-COR, http://www.licor.com/bio/products/software/image studio lite/) was 677 used for measurement of signal intensities where required. 678

679 **4.12 Statistical Analysis**

All statistical analyses were performed using R-package and/or Microsoft Excel. All the p-values were calculated using student's t-test followed by Bonferroni p-value correction. A p<0.05 was considered to be statistically significant for each case.

683 SUPPLEMENTARY INFORMATION

Supplementary Table 1. The complete list of 222 proteins that were significantly up- or down-regulated in the untreated HCT116^{WT} cells relative to the untreated HCT116^{uPAR-AS} cells (HCT116^{WT}-/ HCT116^{uPAR-AS}-); **Supplementary Table 2.** The complete list of 279 proteins that were significantly up- or down-regulated in TGFβ treated HCT116^{WT} cells relative to TGFβ treated HCT116^{uPAR-AS} cells (HCT116^{WT}+/HCT116^{uPAR-AS+}); **Supplementary Table 3.** List of other important proteins identified from untreated and TGFβ treated conditions.

691 CONFLICT OF INTEREST

692 The authors declare no actual or potential conflicts of interest; including any693 financial, personal or other relationships with other people or organizations.

694 ACKNOWLEDGEMENTS

This study was supported with funding from Faculty of Health and Medical Sciences, Macquarie University, International Macquarie University Research Excellence Scholarships (iMQRES), NSW Cancer Council, NHMRC, Cancer Institute NSW and MQ Biofocus Research Centre. We would also like to thank Dr Dana Pascovici for her help in designing and performing the necessary statistical analysis for this project. The manuscript

- 700 was written with all authors making academic contributions. All authors have given approval
- 701 to the final version of this manuscript.
- 702

703 **REFERENCES**

Ferlay, J., et al., Cancer incidence and mortality worldwide: Sources, methods and 704 1. major patterns in GLOBOCAN 2012. Int J Cancer, 2015. 136(5): p. E359-86. 705 706 2. Chambers, A.F., A.C. Groom, and I.C. MacDonald, Dissemination and growth of cancer cells in metastatic sites. Nature reviews. Cancer, 2002. 2(8): p. 563-72. 707 3. Mehlen, P. and A. Puisieux, *Metastasis: a question of life or death*. Nature reviews. 708 709 Cancer, 2006. 6(6): p. 449-58. Ahn, S.B., et al., Epithelial and stromal cell urokinase plasminogen activator 710 4. receptor expression differentially correlates with survival in rectal cancer stages B 711 and C patients. PLoS One, 2015. 10(2): p. e0117786. 712 Bellam, N. and B. Pasche, Tgf-beta signaling alterations and colon cancer. Cancer 713 5. Treat Res, 2010. 155: p. 85-103. 714 Ahn, S.B., et al., Correlations between integrin alphanubeta6 expression and 6. 715 716 clinico-pathological features in stage B and stage C rectal cancer. PLoS One, 2014. 9(5): p. e97248. 717 Urosevic, J., A.R. Nebreda, and R.R. Gomis, MAPK signaling control of colon 718 7. 719 cancer metastasis. Cell Cycle, 2014. 13(17): p. 2641-2. 8. Yu, Q. and I. Stamenkovic, Cell surface-localized matrix metalloproteinase-9 720 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. 721 Genes Dev, 2000. 14(2): p. 163-76. 722 Zeng, Z.S., et al., Matrix metalloproteinase-7 expression in colorectal cancer liver 9. 723 metastases: evidence for involvement of MMP-7 activation in human cancer 724 metastases. Clin Cancer Res, 2002. 8(1): p. 144-8. 725 10. Voulgari, A. and A. Pintzas, *Epithelial-mesenchymal transition in cancer metastasis:* 726 mechanisms, markers and strategies to overcome drug resistance in the clinic. 727 Biochimica et biophysica acta, 2009. 1796(2): p. 75-90. 728 Smith, H.W. and C.J. Marshall, Regulation of cell signalling by uPAR. Nature 729 11. reviews. Molecular cell biology, 2010. 11(1): p. 23-36. 730 12. Lyons, R.M., et al., Mechanism of activation of latent recombinant transforming 731 growth factor beta 1 by plasmin. J Cell Biol, 1990. 110(4): p. 1361-7. 732 13. Massague, J., TGFbeta in Cancer. Cell, 2008. 134(2): p. 215-30. 733 Fuxe, J., T. Vincent, and A. Garcia de Herreros, Transcriptional crosstalk between 734 14. 735 TGF-beta and stem cell pathways in tumor cell invasion: role of EMT promoting Smad complexes. Cell cycle, 2010. 9(12): p. 2363-74. 736 Tsushima, H., et al., *High levels of transforming growth factor beta 1 in patients with* 15. 737 colorectal cancer: association with disease progression. Gastroenterology, 1996. 738 **110**(2): p. 375-82. 739 16. Allen, M.D., et al., Altered Microenvironment Promotes Progression of Pre-Invasive 740 741 Breast Cancer: myoepithelial expression of alphaybeta6 integrin in DCIS identifies high-risk patients and predicts recurrence. Clin Cancer Res, 2013. 742 17. Dang, D., et al., Matrix metalloproteinases and TGFbeta1 modulate oral tumor cell 743 744 matrix. Biochem Biophys Res Commun, 2004. 316(3): p. 937-42.

- 18. Boonstra, M.C., et al., *Expression of uPAR in tumor-associated stromal cells is associated with colorectal cancer patient prognosis: a TMA study.* BMC Cancer, 2014. 14: p. 269.
- 19. Illemann, M., et al., Urokinase-type plasminogen activator receptor (uPAR) on tumor-associated macrophages is a marker of poor prognosis in colorectal cancer.
 750 Cancer Med, 2014. 3(4): p. 855-64.
- Blackstock, W.P. and M.P. Weir, *Proteomics: quantitative and physical mapping of cellular proteins*. Trends Biotechnol, 1999. 17(3): p. 121-7.
- Rabilloud, T. and C. Lelong, *Two-dimensional gel electrophoresis in proteomics: a tutorial.* J Proteomics, 2011. **74**(10): p. 1829-41.
- Friedman, D.B., et al., *Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry*. Proteomics, 2004. 4(3): p. 793-811.
- 758 23. Ong, S.E., et al., *Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics*. Mol Cell Proteomics, 2002.
 760 1(5): p. 376-86.
- 761 24. Ghosh, D., et al., *Identification of key players for colorectal cancer metastasis by*762 *iTRAQ quantitative proteomics profiling of isogenic SW480 and SW620 cell lines.* J
 763 Proteome Res, 2011. 10(10): p. 4373-87.
- Chen, H., et al., *iTRAQ-based proteomic analysis of dioscin on human HCT-116 colon cancer cells.* Proteomics, 2014. 14(1): p. 51-73.
- Ahmed, N., et al., Downregulation of urokinase plasminogen activator receptor
 expression inhibits Erk signalling with concomitant suppression of invasiveness due
 to loss of uPAR-betal integrin complex in colon cancer cells. Br J Cancer, 2003.
 89(2): p. 374-84.
- 27. Saldanha, R.G., et al., *Proteomic identification of lynchpin urokinase plasminogen activator receptor protein interactions associated with epithelial cancer malignancy.*J Proteome Res, 2007. 6(3): p. 1016-28.
- Nowicki, T.S., et al., Downregulation of uPAR inhibits migration, invasion,
 proliferation, FAK/PI3K/Akt signaling and induces senescence in papillary thyroid
 carcinoma cells. Cell Cycle, 2011. 10(1): p. 100-7.
- Pascovici, D., et al., *Combining protein ratio p-values as a pragmatic approach to the analysis of multirun iTRAQ experiments.* J Proteome Res, 2015. 14(2): p. 738-46.
- 30. Shahjee, H.M., et al., Antiproliferative factor decreases Akt phosphorylation and alters gene expression via CKAP4 in T24 bladder carcinoma cells. J Exp Clin Cancer
 Res, 2010. 29: p. 160.
- Balch, C. and J.R. Dedman, *Annexins II and V inhibit cell migration*. Exp Cell Res, 1997. 237(2): p. 259-63.
- 32. Sievers, C., et al., *Prohibitins are required for cancer cell proliferation and adhesion*. PLoS One, 2010. 5(9): p. e12735.
- Meredith, J.E., Jr., B. Fazeli, and M.A. Schwartz, *The extracellular matrix as a cell survival factor*. Mol Biol Cell, 1993. 4(9): p. 953-61.
- Frisch, S.M. and H. Francis, *Disruption of epithelial cell-matrix interactions induces apoptosis*. J Cell Biol, 1994. **124**(4): p. 619-26.
- Kim, J.T., et al., Apoptosis-inducing factor (AIF) inhibits protein synthesis by interacting with the eukaryotic translation initiation factor 3 subunit p44 (eIF3g).
 FEBS Lett, 2006. 580(27): p. 6375-83.

793 36. Lee, M.J., et al., Identification of the hypoxia-inducible factor 1 alpha-responsive HGTD-P gene as a mediator in the mitochondrial apoptotic pathway. Mol Cell Biol, 794 2004. 24(9): p. 3918-27. 795 37. Schuck, S., et al., Rab10 is involved in basolateral transport in polarized Madin-796 Darby canine kidney cells. Traffic, 2007. 8(1): p. 47-60. 797 Babbey, C.M., et al., Rab10 regulates membrane transport through early endosomes 38. 798 of polarized Madin-Darby canine kidney cells. Mol Biol Cell, 2006. 17(7): p. 3156-799 800 75. 39. 801 Lee, H., et al., Analysis of nuclear high mobility group box 1 (HMGB1)-binding proteins in colon cancer cells: clustering with proteins involved in secretion and 802 extranuclear function. J Proteome Res, 2010. 9(9): p. 4661-70. 803 Yanai, H., et al., HMGB proteins function as universal sentinels for nucleic-acid-40. 804 mediated innate immune responses. Nature, 2009. 462(7269): p. 99-103. 805 41. Prekeris, R., et al., Differential roles of syntaxin 7 and syntaxin 8 in endosomal 806 trafficking. Mol Biol Cell, 1999. 10(11): p. 3891-908. 807 42. Stromberg, S., et al., Selective expression of Syntaxin-7 protein in benign 808 melanocytes and malignant melanoma. J Proteome Res, 2009. 8(4): p. 1639-46. 809 Cho, D., et al., The expression of DBC1/CCAR2 is associated with poor prognosis of 810 43. 811 ovarian carcinoma. J Ovarian Res, 2015. 8(1): p. 2. 44. Bae, J.S., et al., CK2alpha phosphorylates DBC1 and is involved in the progression 812 of gastric carcinoma and predicts poor survival of gastric carcinoma patients. Int J 813 Cancer, 2015. 136(4): p. 797-809. 814 45. Kim, W. and J.E. Kim, Deleted in breast cancer 1 (DBC1) deficiency results in 815 apoptosis of breast cancer cells through impaired responses to UV-induced DNA 816 damage. Cancer Lett, 2013. 333(2): p. 180-6. 817 46. Zhang, Y., et al., DBC1 is over-expressed and associated with poor prognosis in 818 colorectal cancer. Int J Clin Oncol, 2014. 19(1): p. 106-12. 819 47. Kikuchi, K., et al., High SIRT1 expression and low DBC1 expression are associated 820 with poor prognosis in colorectal cancer. journal of Cancer Therapeutics and 821 Research, 2013. 2(1). 822 Leiphrakpam, P.D., et al., Ezrin expression and cell survival regulation in colorectal 823 48. cancer. Cell Signal, 2014. 26(5): p. 868-79. 824 49. Ghaffari, A., et al., A novel role for ezrin in breast cancer angio/lymphangiogenesis. 825 Breast Cancer Res, 2014. 16(5): p. 438. 826 50. Saito, S., et al., Mechanisms underlying cancer progression caused by ezrin 827 overexpression in tongue squamous cell carcinoma. PLoS One, 2013. 8(1): p. 828 829 e54881. 830 51. Lokman, N.A., et al., The role of annexin A2 in tumorigenesis and cancer progression. Cancer Microenviron, 2011. 4(2): p. 199-208. 831 52. Yeatman, T.J., et al., *Expression of annexins on the surfaces of non-metastatic and* 832 metastatic human and rodent tumor cells. Clin Exp Metastasis, 1993. 11(1): p. 37-833 44. 834 Badura, M., et al., DNA damage and eIF4G1 in breast cancer cells reprogram 835 53. translation for survival and DNA repair mRNAs. Proc Natl Acad Sci U S A, 2012. 836 **109**(46): p. 18767-72. 837 Clarkson, B.K., W.V. Gilbert, and J.A. Doudna, Functional overlap between eIF4G 838 54. isoforms in Saccharomyces cerevisiae. PLoS One, 2010. 5(2): p. e9114. 839 55. Park, E.H., et al., Depletion of eIF4G from yeast cells narrows the range of 840 translational efficiencies genome-wide. BMC Genomics, 2011. 12: p. 68. 841

- 842 56. Ramirez-Valle, F., et al., *eIF4GI links nutrient sensing by mTOR to cell proliferation*843 *and inhibition of autophagy*. J Cell Biol, 2008. **181**(2): p. 293-307.
- Brattain, M.G., et al., *Heterogeneity of malignant cells from a human colonic carcinoma*. Cancer Res, 1981. 41(5): p. 1751-6.
- 846 58. Wang, Y., et al., Inhibition of colon cancer metastasis by a 3'- end antisense
 847 urokinase receptor mRNA in a nude mouse model. Int J Cancer, 2001. 92(2): p. 257848 62.
- 849 59. Wang, C.Y. and C.F. Lin, Annexin A2: Its Molecular Regulation and Cellular
 850 Expression in Cancer Development. Disease Markers, 2014.
- 60. Lee, A., et al., *Rat liver membrane glycoproteome: enrichment by phase partitioning and glycoprotein capture.* Journal of proteome research, 2009. 8(2): p. 770-81.
- 853 61. Shilov, I.V., et al., *The Paragon Algorithm, a next generation search engine that uses*854 sequence temperature values and feature probabilities to identify peptides from
 855 tandem mass spectra. Molecular & cellular proteomics : MCP, 2007. 6(9): p. 1638856 55.
- Pascovici, D., et al., *PloGO: plotting gene ontology annotation and abundance in multi-condition proteomics experiments.* Proteomics, 2012. 12(3): p. 406-10.

4.2 – Supplemental files

				on of TGFβ untreated HCT116 WT/HCT116AS		
Uniprot	Unused	Total	X.Cov.95.		iTRAQ Fold Change	StouffersPval
P61026	9.45	11.04	33	Ras-related protein Rab-10 OS=Homo sapiens GN=RAB10 PE=1 SV=1	7.542	0.012
P04792 P60953	20.12	20.12	69.76 21.47	Heat shock protein beta-1 OS=Homo sapiens GN=HSPB1 PE=1 SV=2 Cell division control protein 42 homolog OS=Homo sapiens GN=CDC42 PE=1 SV=2	4.443	0.000
Q07021	12.14	12.14	36.17	Complement component 1 Q subcomponent-binding protein, mitochondrial OS=Homo sapiens GN=C1QBP PE=1 SV=:		0.000
P62158	7.65	7.65	57.72	Calmodulin OS=Homo sapiens GN=CALM1 PE=1 SV=2	3.317	0.004
P09429	14.62	14.62	38.6	High mobility group protein B1 OS=Homo sapiens GN=HMGB1 PE=1 SV=3	3.153	0.005
P07602	16.96	16.96	28.05	Proactivator polypeptide OS=Homo sapiens GN=PSAP PE=1 SV=2	3.059	0.000
P09622 P63261	6.16 48.37	6.16 48.37	8.644	Dihydrolipoyl dehydrogenase, mitochondrial OS=Homo sapiens GN=DLD PE=1 SV=2 Actin, cytoplasmic 2 OS=Homo sapiens GN=ACTG1 PE=1 SV=1	2.920	0.014
P05251	27.88	28.34	22.06	Integrin beta-1 OS=Homo sapiens GN=HTGB1 PE=1 SV=2	2.702	0.000
P06733	17.46	17.46	29.03	Alpha-enolase OS=Homo sapiens GN=ENO1 PE=1 SV=2	2.698	0.000
Q02952	25.73	25.73	19.08	A-kinase anchor protein 12 OS=Homo sapiens GN=AKAP12 PE=1 SV=4	2.648	0.000
P06748	17.94	17.94	33.67	Nucleophosmin OS=Homo sapiens GN=NPM1 PE=1 SV=2	2.595	0.000
P50151	6.81	6.81	52.94	Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-10 OS=Homo sapiens GN=GNG10 PE=1 SV=1	2.509	0.029
P62937 P07355	19.61 16.25	19.99	69.09 42.18	Peptidyl-prolyl cis-trans isomerase A OS=Homo sapiens GN=PPIA PE=1 SV=2 Annexin A2 OS=Homo sapiens GN=ANXA2 PE=1 SV=2	2.459	0.000
P07355 P18669	6.2	16.25 6.2	22.05	Phosphoglycerate mutase 1 OS=Homo sapiens GN=PGAM1 PE=1 SV=2	2.441	0.000
P07237	33.59	33.59	40.16	Protein disulfide-isomerase OS=Homo sapiens GN=P4HB PE=1 SV=3	2.438	0.000
P26583	4.37	8.7	25.36	High mobility group protein B2 OS=Homo sapiens GN=HMGB2 PE=1 SV=2	2.382	0.001
Q13740	29.32	29.33	39.62	CD166 antigen OS=Homo sapiens GN=ALCAM PE=1 SV=2	2.338	0.000
P26885	5.92	5.92	49.3	Peptidyl-prolyl cis-trans isomerase FKBP2 OS=Homo sapiens GN=FKBP2 PE=1 SV=2	2.338	0.001
014561 Q03252	9.62 36.98	9.62 43.54	30.13 40.17	Acyl carrier protein, mitochondrial OS=Homo sapiens GN=NDUFAB1 PE=1 SV=3 Lamin-B2 OS=Homo sapiens GN=LMNB2 PE=1 SV=3	2.314	0.019
P15531	2.08	8.49	29.61	Nucleoside diphosphate kinase A OS=Homo sapiens GN=NME1 PE=1 SV=1	2.276	0.040
Q14978	23.05	23.05	18.03	Nucleolar and coiled-body phosphoprotein 1 OS=Homo sapiens GN=NOLC1 PE=1 SV=2	2.262	0.000
Q9UHB6	6.02	6.48	7.378	LIM domain and actin-binding protein 1 OS=Homo sapiens GN=LIMA1 PE=1 SV=1	2.205	0.044
Q09666	38.54	38.61	7.301	Neuroblast differentiation-associated protein AHNAK OS=Homo sapiens GN=AHNAK PE=1 SV=2	2.194	0.000
P17301	11.95	12.3	7.959	Integrin alpha-2 OS=Homo sapiens GN=ITGA2 PE=1 SV=1	2.193	0.000
P27797 P20700	16.02 45.35	16.02 50.54	30.7 45.39	Calreticulin OS=Homo sapiens GN=CALR PE=1 SV=1 Lamin-B1 OS=Homo sapiens GN=LMNB1 PE=1 SV=2	2.177 2.155	0.001
P09382	9.39	9.39	45.39	Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2	2.155	0.000
P49748	14.53	14.53	24.12	Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS=Homo sapiens GN=ACADVL PE=1 SV=1	2.103	0.000
Q15019	18.25	18.35	44.88	Septin-2 OS=Homo sapiens GN=SEPT2 PE=1 SV=1	2.102	0.000
015347	8.12	8.12	30.5	High mobility group protein B3 OS=Homo sapiens GN=HMGB3 PE=1 SV=4	2.101	0.033
P37235	2.32	2.32	14.51	Hippocalcin-like protein 1 OS=Homo sapiens GN=HPCAL1 PE=1 SV=3	2.083	0.024
043181	4.07	4.07	14.29	NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial OS=Homo sapiens GN=NDUFS4 PE=1 SV=1	2.072	0.040
P17931 Q14697	10.44	10.44	32.8 13.35	Galectin-3 OS=Homo sapiens GN=LGALS3 PE=1 SV=5 Neutral alpha-glucosidase AB OS=Homo sapiens GN=GANAB PE=1 SV=3	2.061	0.000
P30040	3.36	3.38	15.33	Endoplasmic reticulum resident protein 29 OS=Homo sapiens GN=ERP29 PE=1 SV=4	2.027	0.002
Q9NVA2	7.19	7.23	11.19	Septin-11 OS=Homo sapiens GN=SEPT11 PE=1 SV=3	2.019	0.002
Q15233	37.63	39.78	46.28	Non-POU domain-containing octamer-binding protein OS=Homo sapiens GN=NONO PE=1 SV=4	2.014	0.000
043399	7.85	7.85	37.86	Tumor protein D54 OS=Homo sapiens GN=TPD52L2 PE=1 SV=2	1.999	0.002
P26006	12.44	12.67	8.278	Integrin alpha-3 OS=Homo sapiens GN=ITGA3 PE=1 SV=5	1.983	0.000
P19105	12.08	12.08	46.78	Myosin regulatory light chain 12A OS=Homo sapiens GN=MYL12A PE=1 SV=2	1.972	0.012
Q99733 O43169	8.8 13.2	8.8 13.5	17.6 63.01	Nucleosome assembly protein 1-like 4 OS=Homo sapiens GN=NAP1L4 PE=1 SV=1. Cytochrome b5 type B OS=Homo sapiens GN=CYB5B PE=1 SV=2.	1.968	0.047
Q8WXF1	13.79	14.5	19.5	Paraspeckle component 1 OS=Homo sapiens GN=PSPC1 PE=1 SV=1	1.909	0.000
P16403	2	23.86	36.62	Histone H1.2 OS=Homo sapiens GN=HIST1H1C PE=1 SV=2	1.900	0.005
Q9UHD8	10.07	10.09	16.89	Septin-9 OS=Homo sapiens GN=SEPT9 PE=1 SV=2	1.870	0.006
P51148	7.03	7.1	32.87	Ras-related protein Rab-5C OS=Homo sapiens GN=RAB5C PE=1 SV=2	1.867	0.005
Q9UGP8	5.27	5.29	5.526	Translocation protein SEC63 homolog OS=Homo sapiens GN=SEC63 PE=1 SV=2	1.863	0.030
Q16630 P23284	8.84 27.01	8.87 27.01	15.43 54.63	Cleavage and polyadenylation specificity factor subunit 6 OS=Homo sapiens GN=CPSF6 PE=1 SV=2 Peptidyl-prolyl cis-trans isomerase B OS=Homo sapiens GN=PPIB PE=1 SV=2	1.857	0.003
060664	16.09	16.09	33.41	Perilipin-3 OS=Homo sapiens GN=PLIN3 PE=1 SV=3	1.805	0.000
P60174	4.32	4.32	17.13	Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3	1.803	0.031
P49821	19.33	19.44	37.72	NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial OS=Homo sapiens GN=NDUFV1 PE=1 SV=4	1.793	0.001
P23246	46.04	46.04	42.29	Splicing factor, proline- and glutamine-rich OS=Homo sapiens GN=SFPQ PE=1 SV=2	1.784	0.000
P35221	18.22	18.22	17.66	Catenin alpha-1 OS=Homo sapiens GN=CTNNA1 PE=1 SV=1	1.779	0.000
P40926 P21926	8.03 7.41	8.03	20.12	Malate dehydrogenase, mitochondrial OS=Homo sapiens GN=MDH2 PE=1 SV=3 CD9 antigen OS=Homo sapiens GN=CD9 PE=1 SV=4	1.774	0.000
P21926 P42167	7.41 6.84	23.82	40.97	Log antigen OS=Homo sapiens GN=CD9 PE=1 SV=4 Lamina-associated polypeptide 2, isoforms beta/gamma OS=Homo sapiens GN=TMPO PE=1 SV=2	1.755	0.034
P09110	11.74	11.74	31.6	3-ketoacyl-CoA thiolase, peroxisomal OS=Homo sapiens GN=ACAA1 PE=1 SV=2	1.739	0.004
P51149	27.08	27.08	66.67	Ras-related protein Rab-7a OS=Homo sapiens GN=RAB7A PE=1 SV=1	1.729	0.000
P63104	6.65	6.65	24.9	14-3-3 protein zeta/delta OS=Homo sapiens GN=YWHAZ PE=1 SV=1	1.725	0.020
P61769	5.88	5.88	28.57	Beta-2-microglobulin OS=Homo sapiens GN=B2M PE=1 SV=1	1.701	0.034
Q13765	5.89	5.89	19.07	Nascent polypeptide-associated complex subunit alpha OS=Homo sapiens GN=NACA PE=1 SV=1	1.694	0.037
Q9Y5B9 P19404	12.47	12.51 10.31	7.832	FACT complex subunit SPT16 OS=Homo sapiens GN=SUPT16H PE=1 SV=1 NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial OS=Homo sapiens GN=NDUFV2 PE=1 SV=2	1.687	0.015
P19404 P14314	20.47	20.47	25.95	Glucosidase 2 subunit beta OS=Homo sapiens GN=PRKCSH PE=1 SV=2	1.682	0.000
P10606	15.58	15.58	46.51	Cytochrome c oxidase subunit 5B, mitochondrial OS=Homo sapiens GN=COX5B PE=1 SV=2	1.675	0.006
P14625	21.02	23.41	21.54	Endoplasmin OS=Homo sapiens GN=HSP90B1 PE=1 SV=1	1.654	0.000
P30101	27.36	27.7	37.03	Protein disulfide-isomerase A3 OS=Homo sapiens GN=PDIA3 PE=1 SV=4	1.649	0.000
P61586	11.89	13.47	45.08	Transforming protein RhoA OS=Homo sapiens GN=RHOA PE=1 SV=1	1.644	0.037
Q13185 P78310	5.55	6.06 10.28	29.51 23.84	Chromobox protein homolog 3 OS=Homo sapiens GN=CBX3 PE=1. SV=4 Coxsackievirus and adenovirus receptor OS=Homo sapiens GN=CXADR PE=1. SV=1	1.628	0.024
P31040	5.82	5.82	8.735	Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial OS=Homo sapiens GN=SDHA PE=1 SV=2	1.604	0.024
P00558	6.6	7.11	11.99	Phosphoglycerate kinase 1 OS=Homo sapiens GN=PGK1 PE=1 SV=3	1.598	0.035
P61224	12.38	14.13	49.46	Ras-related protein Rap-1b OS=Homo sapiens GN=RAP1B PE=1 SV=1	1.573	0.009
P51970	8	8.08	30.23	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8 OS=Homo sapiens GN=NDUFA8 PE=1 SV=3	1.568	0.017
P06576	50.5	50.5	64.08	ATP synthase subunit beta, mitochondrial OS=Homo sapiens GN=ATP5B PE=1 SV=3	1.566	0.000
P17480	13.97	13.97	12.7	Nucleolar transcription factor 1 OS=Homo sapiens GN=UBTF PE=1 SV=1	1.559	0.000
Q8WTV0	5.83	5.89	6.703	Scavenger receptor class B member 1 OS=Homo sapiens GN=SCARB1 PE=1 SV=1	1.550	0.015
P50454 043852	15.62 6.77	15.68 6.82	31.34 14.29	Serpin H1 OS=Homo sapiens GN=SERPINH1 PE=1 SV=2 Calumenin OS=Homo sapiens GN=CALU PE=1 SV=2	1.548	0.001
P11021	42.64	46.82	40.37	Talumenin OS=Homo sapiens GN=CALO PE=1 SV=2 78 kDa glucose-regulated protein OS=Homo sapiens GN=HSPA5 PE=1 SV=2	1.544	0.024
Q07065	12.45	12.45	19.1	Cytoskeleton-associated protein 4 OS=Homo sapiens GN=H5FA5 FE=1 SV=2	1.528	0.000
P28331	16.16	16.22	22.42	NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial OS=Homo sapiens GN=NDUFS1 PE=1 SV=3	1.499	0.000
015400	8	8.05	20.31	Syntaxin-7 OS=Homo sapiens GN=STX7 PE=1 SV=4	1.482	0.004
075915	5.77	5.77	14.36	PRA1 family protein 3 OS=Homo sapiens GN=ARL6IP5 PE=1 SV=1	1.475	0.047

P04040	10.16	10.16	21.44	Catalase OS=Homo sapiens GN=CAT PE=1 SV=3	1.470	0.024
P35580	10.1	25.14	7.743	Myosin-10 OS=Homo sapiens GN=MYH10 PE=1 SV=3	1.469	0.014
Q10471	8.99	9.03	14.36	Polypeptide N-acetylgalactosaminyltransferase 2 OS=Homo sapiens GN=GALNT2 PE=1 SV=1	1.466	0.019
Q06830	11.14	11.14	33.67	Peroxiredoxin-1 OS=Homo sapiens GN=PRDX1 PE=1 SV=1	1.465	0.019
P15311	32.66	32.68	32.94	Ezrin OS=Homo sapiens GN=EZR PE=1 SV=4	1.461	0.002
Q12797	6.55	6.55	10.29	Aspartyl/asparaginyl beta-hydroxylase OS=Homo sapiens GN=ASPH PE=1 SV=3	1.452	0.017
P48739	2.71	2.71	9.225	Phosphatidylinositol transfer protein beta isoform OS=Homo sapiens GN=PITPNB PE=1 SV=2	1.450	0.035
P24534	10.57	10.6	34.67	Elongation factor 1-beta OS=Homo sapiens GN=EEF1B2 PE=1 SV=3	1.449	0.002
Q99986	6.04	6.06	11.62	Serine/threonine-protein kinase VRK1 OS=Homo sapiens GN=VRK1 PE=1 SV=1	1.445	0.030
Q96AG4	18.33	18.33	33.88	Leucine-rich repeat-containing protein 59 OS=Homo sapiens GN=LRRC59 PE=1 SV=1	1.445	0.005
P48047	13.28	13.36	46.95	ATP synthase subunit O, mitochondrial OS=Homo sapiens GN=ATP50 PE=1 SV=1	1.439	0.035
014949	4.55	4.55	37.8	Cytochrome b-c1 complex subunit 8 OS=Homo sapiens GN=UQCRQ PE=1 SV=4	1.430	0.027
Q15637	8	8	11.74	Splicing factor 1 OS=Homo sapiens GN=SF1 PE=1 SV=4	1.428	0.013
075947	11.81	11.97	59.01	ATP synthase subunit d, mitochondrial OS=Homo sapiens GN=ATP5H PE=1 SV=3	1.424	0.001
Q96PD2	11.83	11.83	15.61	Discoidin, CUB and LCCL domain-containing protein 2 OS=Homo sapiens GN=DCBLD2 PE=1 SV=1	1.422	0.004
P38646	12.81	12.81	13.11	Stress-70 protein, mitochondrial OS=Homo sapiens GN=HSPA9 PE=1 SV=2	1.421	0.014
Q99536	8.13	8.13	21.63	Synaptic vesicle membrane protein VAT-1 homolog OS=Homo sapiens GN=VAT1 PE=1 SV=2	1.411	0.028
Q16795	10.76	10.76	27.59	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial OS=Homo sapiens GN=NDUFA9 P		0.004
P14927	9.85	9.85	43.24	Cytochrome b-c1 complex subunit 7 OS=Homo sapiens GN=UQCRB PE=1 SV=2	1.409	0.026
Q8WWI5	9.46	9.46	11.11	Choline transporter-like protein 1 OS=Homo sapiens GN=SLC44A1 PE=1 SV=1	1.408	0.007
P11387	21.58	21.58	15.95	DNA topoisomerase 1 OS=Homo sapiens GN=TOP1 PE=1 SV=2	1.406	0.000
P29692	7.82	7.97	23.13	Elongation factor 1-delta OS=Homo sapiens GN=EEF1D PE=1 SV=5	1.404	0.047
Q08945	10.78	10.78	13.68	FACT complex subunit SSRP1 OS=Homo sapiens GN=SSRP1 PE=1 SV=1	1.390	0.000
Q8NC51	20.51	20.51	22.3	Plasminogen activator inhibitor 1 RNA-binding protein OS=Homo sapiens GN=SERBP1 PE=1 SV=2	1.385	0.009
Q86Y82	10	10.01	28.26	Syntaxin-12 OS=Homo sapiens GN=STX12 PE=1 SV=1	1.380	0.008
P04844	12.95	12.95	18.38	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 2 OS=Homo sapiens GN=RPN2 PE=1 SV=3	1.374	0.017
Q9HDC9	29.54	29.54	44.71	Adipocyte plasma membrane-associated protein OS=Homo sapiens GN=APMAP PE=1 SV=2	1.369	0.025
P13667	9.32	9.52	13.64	Protein disulfide-isomerase A4 OS=Homo sapiens GN=PDIA4 PE=1 SV=2	1.368	0.011
P16070	18.14	18.14	12.13	CD44 antigen OS=Homo sapiens GN=CD44 PE=1 SV=3	1.366	0.002
Q99653	12.67	12.71	54.36	Calcineurin B homologous protein 1 OS=Homo sapiens GN=CHP1 PE=1 SV=3	1.354	0.009
P09874	51.2	51.2	34.02	Poly [ADP-ribose] polymerase 1 OS=Homo sapiens GN=PARP1 PE=1 SV=4	1.349	0.000
043707	12.01	12.01	9,001	Alpha-actinin-4 OS=Homo sapiens GN=ACTN4 PE=1 SV=2	1.343	0.010
075489	13.37	13.37	35.23	NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial OS=Homo sapiens GN=NDUFS3 PE=1 SV=1	1.328	0.003
P62316	11.55	11.55	46.61	Small nuclear ribonucleoprotein Sm D2 OS=Homo sapiens GN=SNRPD2 PE=1 SV=1	1.328	0.028
Q9Y639	8.02	8.02	13.57	Small nuclear ribonucleoprotein Sm D2 US=Homo sapiens GN=SNRPD2 PE=1 SV=1 Neuroplastin OS=Homo sapiens GN=NPTN PE=1 SV=2	1.324	0.028
P48960	9.02	9.02	10.78	CD97 antigen OS=Homo sapiens GN=CD97 PE=1 SV=2	1.323	0.046
P21589	12.23	12.33	20.38	5'-nucleotidase OS=Homo sapiens GN=NT5E PE=1 SV=1	1.319	0.035
Q9BTV4	12.64	12.64	31	Transmembrane protein 43 OS=Homo sapiens GN=TMEM43 PE=1 SV=1	1.313	0.001
Q8IWA5	10.55	10.55	8.64	Choline transporter-like protein 2 OS=Homo sapiens GN=SLC44A2 PE=1 SV=3	1.308	0.023
Q9Y6M1	12.96	12.96	19.2	Insulin-like growth factor 2 mRNA-binding protein 2 OS=Homo sapiens GN=IGF2BP2 PE=1 SV=2	1.301	0.006
P62899	7.83	7.83	31.2	605 ribosomal protein L31 OS=Homo sapiens GN=RPL31 PE=1 SV=1	1.290	0.040
Q9Y4L1	21.83	21.88	18.52	Hypoxia up-regulated protein 1 OS=Homo sapiens GN=HYOU1 PE=1 SV=1	1.276	0.013
P19338	67.49	67.49	34.23	Nucleolin OS=Homo sapiens GN=NCL PE=1 SV=3	1.273	0.005
075367	14.93	15.59	30.11	Core histone macro-H2A.1 OS=Homo sapiens GN=H2AFY PE=1 SV=4	1.269	0.008
Q15084	6.52	7.36	13.18			
	UIDE	7.50	13.18	Protein disulfide-isomerase A6 OS=Homo sapiens GN=PDIA6 PE=1 SV=1	1.262	0.046
P12956	38.3	38.3	39.9	Protein disulfide-isomerase A6 OS=Homo sapiens GN=PUA6 Pt=1 SV=1 X-ray repair cross-complementing protein 6 OS=Homo sapiens GN=XRCC6 PE=1 SV=2	1.252	0.000
P12956 P46013		38.3 30.79	39.9 8.968		1.252 1.248	0.000
P12956	38.3	38.3	39.9	X-ray repair cross-complementing protein 6 OS=Homo sapiens GN=XRCC6 PE=1 SV=2	1.252	0.000
P12956 P46013	38.3 30.79	38.3 30.79	39.9 8.968	X-ray repair cross-complementing protein 6 0S=Homo sapiens GN=KRCC6 PE=1 SV=2 Antigen KI-67 OS=Homo sapiens GN=MKI67 PE=1 SV=2 Malectin OS=Homo sapiens GN=MLEC PE=1 SV=1 Histone-binding protein RBP4 OS=Homo sapiens GN=RBBP4 PE=1 SV=3	1.252 1.248	0.000
P12956 P46013 Q14165	38.3 30.79 17.5	38.3 30.79 17.5	39.9 8.968 26.71	X-ray repair cross-complementing protein 6 0S=Homo sapiens GN=KRCC6 PE=1 SV=2 Antigen KI-67 OS=Homo sapiens GN=MKI67 PE=1 SV=2 Malectin OS=Homo sapiens GN=MLEC PE=1 SV=1 Histone-binding protein RBP4 OS=Homo sapiens GN=RBBP4 PE=1 SV=3	1.252 1.248 1.240	0.000 0.005 0.041
P12956 P46013 Q14165 Q09028	38.3 30.79 17.5 4.55	38.3 30.79 17.5 4.69	39.9 8.968 26.71 11.76	X+ray repair cross-complementing protein 6 OS+Hom o sapiens GN=XRCC6 PE=1 SV=2 Antigen KL+7 OS+Hom o sapiens GN=MKI67 PE=1 SV=2 Malectin OS+Hom o sapiens GN=MKIC PE=1 SV=1	1.252 1.248 1.240 1.225	0.000 0.005 0.041 0.018
P12956 P46013 Q14165 Q09028 Q15029	38.3 30.79 17.5 4.55 17.23	38.3 30.79 17.5 4.69 17.44	39.9 8.968 26.71 11.76 18.72	X+ray repair cross-complementing protein 6 OS+Hom o spiens GN=KRCG6 PE=1 SV=2 Antigen K+G OS+Hom o spiens GN=MK87 EP=1 SV=2 Malectin OS+Homo sapiens GN=MLEC PE=1 SV=1 Histone-binding protein RBIP4 OS+Hom o spiens GN=RBIP4 PE=1 SV=3 116 kDa US small nucker r/bomckeportein component OS+Homo spiens GN=EFTUD2 PE=1 SV=1	1.252 1.248 1.240 1.225 1.212	0.000 0.005 0.041 0.018 0.045
P12956 P46013 Q14165 Q09028 Q15029 Q14444	38.3 30.79 17.5 4.55 17.23 5.1	38.3 30.79 17.5 4.69 17.44 5.26	39.9 8.968 26.71 11.76 18.72 13.12	X+ray repair cross-complementing protein 6 OS+Hom sapiens GN=XRCC6 PE=1 SV=2 Antigen KI+7 OS+Homo sapiens GN=MIEC PE=1 SV=2 Malectin OS+Homo sapiens GN=MIEC PE=1 SV=1 Histone-binding protein RBIP4 OS=Homo sapiens GN=BBP4 PE=1 SV=3 116 kDa US small nuclear ribonucleoprotein component OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 Caprin-1 OS+Homo sapiens GN=CAPINI PE=1 SV=2	1.252 1.248 1.240 1.225 1.212 0.806	0.000 0.005 0.041 0.018 0.045 0.016
P12956 P46013 Q14165 Q09028 Q15029 Q14444 Q01085	38.3 30.79 17.5 4.55 17.23 5.1 2	38.3 30.79 17.5 4.69 17.44 5.26 2	39.9 8.968 26.71 11.76 18.72 13.12 4.8	X+ray repair cross-complementing protein 6 OS-Hom spiens GN-XRCC6 PE-1 SV=2 Antigen K+GOS-Homo spiens GN-MKI6 ZPE-1 SV=2 Malectin OS-Homo sapiens GN-MKI6 ZPE-1 SV=1 Histone-binding protein RBBP4 OS-Homo sapiens GN-RBBP4 PE=1 SV=3 116 kDa US-small nucker ribonucleoprotein component OS-Homo sapiens GN=EFTUD2 PE=1 SV=1 Capitria J OS-Homo sapiens GN-CAPIRIM PE=1 SV=2 Nucleopism THR OS-Homo sapiens GN-TAUE PE=1 SV=1	1.252 1.248 1.240 1.225 1.212 0.806 0.796	0.000 0.005 0.041 0.018 0.045 0.016 0.021
P12956 P46013 Q14165 Q09028 Q15029 Q14444 Q01085 P43304	38.3 30.79 17.5 4.55 17.23 5.1 2 10.6	38.3 30.79 17.5 4.69 17.44 5.26 2 10.6	39.9 8.968 26.71 11.76 18.72 13.12 4.8 12.1	X+ray repair cross-complementing protein 6 OS-Hom o spiens GN=KRCC6 PE=1 SV=2 Antigen KI-67 OS-Hom o spiens GN=MLEC PE=1 SV=2 Malectin OS-Hom o spiens GN=MLEC PE=1 SV=1 Histone-binding protein RBBP4 OS-Hom o spiens GN=RBBP4 PE=1 SV=3 116 kDa US small nucker ribonuckeportein component OS-Hom o spiens GN=EFUD2 PE=1 SV=1 Capirin-1 OS-Homo spiens GN=CAPRINI PE=1 SV=2 Nucleolysin TAR OS-Homo spiens GN=TIAL1 PE=1 SV=1 Glycerol-3-phosphate dehydrogenase, mitochondrial OS=Homo spiens GN=GPD2 PE=1 SV=3	1.252 1.248 1.240 1.225 1.212 0.806 0.796 0.788	0,000 0,005 0,041 0,018 0,045 0,016 0,021 0,002
P12956 P46013 Q14165 Q09028 Q15029 Q14444 Q01085 P43304 P62851 Q9UJZ1	38.3 30.79 17.5 4.55 17.23 5.1 2 10.6 8.66	38.3 30.79 17.5 4.69 17.44 5.26 2 10.6 8.66	39.9 8.968 26.71 11.76 18.72 13.12 4.8 12.1 29.6	X+ray repair cross-complementing protein 6 OS-Hom o spiens GN-KRCC6 PE-1 SV-2 Antigen K+G OS-Hom o spiens GN-MKEC PE-1 SV-2 Malectin OS-Hom o spiens GN-MLEC PE-1 SV-1 Histone-binding protein RBIP4 OS-Hom o spiens GN-RBBP4 PE-1 SV-3 115 Kba US small nucker r/bonce/ceportein component OS-Hom o spiens GN-EFTUD2 PE-1 SV-1 Capitri-1 OS-Hom o spiens GN-CAPRINI PE-1 SV-2 Nucleokyin TLAB OS-Hom o spiens GN-CAPRINI PE-1 SV-2 Glycerol-3-phosphate dehydrogenase, mitochondrial OS-Hom o spiens GN-GPD2 PE-1 SV-3 405 r/bosomal protein S25 OS-Hom o spiens GN-RPS25 PE-1 SV-1 Stomatin-INE protein 2, mitochondrial OS-Hom o spiens GN-GPD2 PE-1 SV-1	1.252 1.248 1.240 1.225 1.212 0.806 0.796 0.788 0.788 0.787 0.773	0.000 0.005 0.041 0.018 0.045 0.016 0.021 0.002 0.041 0.002
P12956 P46013 Q14165 Q09028 Q15029 Q14444 Q01085 P43304 P62851 Q9UJZ1 P62263	38.3 30.79 17.5 4.55 17.23 5.1 2 10.6 8.66 15.85	38.3 30.79 17.5 4.69 17.44 5.26 2 10.6 8.66 15.85 10.29	39.9 8.968 26.71 11.76 18.72 13.12 4.8 12.1 29.6 34.55	X+ray repair cross-complementing protein 6 OS-Hom sapiens GN=XRCC6 PE=1 SV=2 Antigen KL-67 OS-Homo sapiens GN=MLEC PE=1 SV=2 Malectin OS-Homo sapiens GN=MLEC PE=1 SV=1 Histone-binding protein RBBP4 OS-Homo sapiens GN=RBBP4 PE=1 SV=3 116 kDoU Sterall nucker rithourecleoprotein component OS-Homo sapiens GN=EFTUD2 PE=1 SV=1 Caprin=1 OS-Homo sapiens GN=CAPRINI PE=1 SV=2 Nucleohysin TLR OS-Homo sapiens GN=CAPRINI PE=1 SV=2 Glycerol-3-phosphate dehydrogenase, mitochondrial OS-Homo sapiens GN=GPD2 PE=1 SV=3 405 ribosomal protein S25 OS-Homo sapiens GN=PB:52 PE=1 SV=1 Stomatin-like protein 2, mitochondrial OS-Homo sapiens GN=STOML2 PE=1 SV=1 405 ribosomal protein S26 OS-Homo sapiens GN=PB:52 PE=1 SV=1 Stomatin-like protein 2, mitochondrial OS-Homo sapiens GN=STOML2 PE=1 SV=1 405 ribosomal protein S14 OS-Homo sapiens GN=PS:514 PE=1 SV=3	1.252 1.248 1.240 1.225 1.212 0.806 0.796 0.788 0.787 0.773 0.773	0.000 0.005 0.041 0.018 0.045 0.016 0.021 0.002 0.021 0.002 0.041 0.013 0.048
P12956 P46013 Q14165 Q09028 Q15029 Q14444 Q01085 P43304 P62851 Q9UJZ1 P62263 P27816	38.3 30.79 17.5 4.55 17.23 5.1 2 10.6 8.66 15.85 10.29 21.6	38.3 30.79 17.5 4.69 17.44 5.26 2 10.6 8.66 15.85	39.9 8.968 26.71 11.76 18.72 13.12 4.8 12.1 29.6 34.55 48.34	X+ray repair cross-complementing protein 6 OS+Hom sapiens GN-SRCC6 PE=1 SV=2 Antigen K+G OS+Hom sapiens GN+MKI6 PE=1 SV=2 Malectin OS+Hom sapiens GN+MKI6 PE=1 SV=2 Tils Kba US small nucker rhomous/exportein component OS+Hom sapiens GN=EFUD2 PE=1 SV=1 Caprin 1: OS+Hom sapiens GN=CAPRINI PE=1 SV=2 Nucleokyin TLR OS+Hom sapiens GN=CAPRINI PE=1 SV=2 Structory and the OS+Hom sapiens GN=CAPRINI PE=1 SV=2 Structory and protein S2 OS+Hom Sapiens GN=FID2 PE=1 SV=3 OS rhosomal protein S2 OS+Hom sapiens GN=STOML2 PE=1 SV=1 Stomatin-like protein 2, mitochondrial OS+Hom sapiens GN=STOML2 PE=1 SV=1 40S rhosomal protein S14 OS+Hom sapiens GN=K=FIS PE=1 SV=3 Mitrotubule-associated protein 4 OS+Hom sapiens GN=FIS PE=1 SV=3 Mitrotubule-associated protein 4 OS+Hom sapiens GN=MFE1 SV=3	1.252 1.248 1.240 1.225 1.212 0.806 0.796 0.788 0.788 0.787 0.773 0.773 0.773	0.000 0.005 0.041 0.018 0.045 0.045 0.021 0.002 0.002 0.041 0.013 0.048 0.025
P12956 P46013 Q14165 Q09028 Q15029 Q14444 Q01085 P43304 P62851 Q9UJZ1 P62263	38.3 30.79 17.5 4.55 17.23 5.1 2 10.6 8.66 15.85 10.29	38.3 30.79 17.5 4.69 17.44 5.26 2 10.6 8.66 15.85 10.29 21.6 34.25	39.9 8.968 26.71 11.76 18.72 13.12 4.8 12.1 29.6 34.55 48.34 19.7	X+ray repair cross-complementing protein 6 OS+Hom sapiens GN=XRCC6 PE=1 SV=2 Antigen KI+67 OS+Hom sapiens GN+MLEC PE=1 SV=2 Histone-binding protein RBBP4 OS+Hom sapiens (N=RBBP4 PE=1 SV=3 Histone-binding protein RBBP4 OS+Hom sapiens (N=RBBP4 PE=1 SV=3 116 kDa US small nucker rithoureckeportein component OS+Hom sapiens GN=EFUD2 PE=1 SV=1 Capitria-1 OS+Hom sapiens GN=CAPRINI PE=1 SV=2 Nucleolysin TIAR OS+Hom sapiens GN=TIAL1 PE=1 SV=3 Glycerol-3-phosphate dehydrogenase, microchondrial OS+Hom sapiens GN=GPD2 PE=1 SV=3 405 rithosomal protein S25 OS+Hom sapiens GN=PE32 PE=1 SV=1 Stornati-INke protein 2, microchondrial OS+Hom sapiens GN=CNL2 PE=1 SV=1 405 rithosomal protein S14 OS+Hom sapiens GN=PE31 PE=1 SV=3 Microtubule-associated protein 4 OS+Hom sapiens GN=HPA34 PE=1 SV=3 Microtubule-associated protein 4 OS+Hom sapiens GN=HPA34 PE=1 SV=3 Microtubule-associated protein 4 OS+Hom sapiens GN=HNAP4 PE=1 SV=3 Microtubule-associated protein 4 OS+Hom sapiens GN=HNAP4 PE=1 SV=3	1.252 1.248 1.240 1.225 1.212 0.806 0.796 0.788 0.787 0.773 0.773	0.000 0.005 0.041 0.018 0.045 0.016 0.021 0.002 0.021 0.002 0.041 0.013 0.048
P12956 P46013 Q14165 Q09028 Q15029 Q14444 Q01085 P43304 P62851 Q9U121 P62263 P27816 P52272 Q9NR30	38.3 30.79 17.5 4.55 17.23 5.1 2 10.6 8.66 15.85 10.29 21.6 34.25 16.62	38.3 30.79 17.5 4.69 17.44 5.26 2 10.6 8.66 15.85 10.29 21.6 34.25 16.62	39.9 8.968 26.71 11.76 18.72 13.12 4.8 12.1 29.6 34.55 48.34 19.7 31.1 16.73	X ray repair cross-complementing protein 6 OS-Hom spiers GN-SRCC6 PE-1 SV-2 Antigen KF-OS-Hom spiers GN-MKI6 ZPE-1 SV-2 Malectin OS-Hom spiers GN-MKI6 ZPE-1 SV-2 Malectin OS-Hom spiers GN-AUE SPE-1 SV-2 Malectin OS-Hom spiers GN-CAPRINI PE-1 SV-3 T16 kDu US-small nucker ribonucleoprotein component OS-Hom spiers GN-EFTUD2 PE-1 SV-1 Caprin-1 OS-Hom spiers GN-CAPRINI PE-1 SV-2 Nucleokyin TMR OS-Hom spiers GN-TAUE NE-1 SV-3 GN-CAPRINI PE-1 SV-2 Male ribony TMR OS-Hom spiers GN-FADE NE-1 SV-3 GN-CAPRINI PE-1 SV-2 Male ribony TMR OS-Hom spiers GN-FADE NE-PS2 PE-1 SV-3 GN-GN-SPIER DIFFERSION SPIERS GN-FADE NE-PS2 PE-1 SV-1 Stomath-Ilke protein 2, mitochondrial OS-Hom spiers GN-STONL2 PE-1 SV-1 Mitrottubule-associated protein 4 OS-Hom spiers GN-MAP XPE-1 SV-3 Mitrottubule-associated protein 4 OS-Hom spiers GN-MAP XPE-1 SV-3 Heterogeneous nuclear ribonucleoprotein M OS-Hom spiers GN-HINNPM PE-1 SV-3 Hudrels FNA Nelicse 2 OS-Hom spiers GN-FOX2 PE-1 SV-5	1.252 1.248 1.240 1.225 1.212 0.806 0.796 0.796 0.788 0.787 0.773 0.773 0.773 0.7769 0.768 0.766	0.000 0.005 0.041 0.018 0.016 0.021 0.021 0.021 0.041 0.013 0.048 0.025 0.013 0.022
P12956 P46013 Q14165 Q09028 Q15029 Q14044 Q10085 P43004 P62851 Q9U/21 P62263 P27816 P52272 Q9NR30 P38159	38.3 30.79 17.5 4.55 17.23 5.1 2 10.6 8.66 15.85 10.29 21.6 34.25 16.62 8.83	38.3 30.79 17.5 4.69 17.44 5.26 2 10.6 8.66 15.85 10.29 21.6 34.25 16.62 8.83	39.9 8.968 26.71 11.76 18.72 13.12 4.8 12.1 29.6 34.55 48.34 19.7 31.1 16.73 9.719	X-ray repair cross-complementing protein 6 OS-Hom sapiens GN-XRCC6 PE-1 SV-2 Antigen K-67 OS-Hom sapiens GN-MLEC PE-1 SV-2 Histone-binding protein RBIP4 OS-Hom sapiens GN-RBIP4 PE-1 SV-3 Histone-binding protein RBIP4 OS-Hom sapiens GN-RBIP4 PE-1 SV-3 115 KDu US small nucker r/bonzekoprotein component OS-Hom sapiens GN-EFTUD2 PE-1 SV-1 Capitri-1, OS-Hom sapiens GN-CAPRINI PE-1 SV-2 Nucleokyin TLR OS-Hom sapiens GN-CAPRINI PE-1 SV-2 Glycerol-3-phosphate dehydrogenase, mitochondrial OS-Homo sapiens GN-GPD2 PE-1 SV-3 405 r/bosomal protein S25 OS-Hom sapiens GN-RPS25 PE-1 SV-1 Stomatin-INE protein 2, mitochondrial OS-Hom sapiens GN-GPD2 PE-1 SV-3 405 r/bosomal protein S25 OS-Hom sapiens GN-RPS25 PE-1 SV-1 Stomatin-INE sesociated protein 4 OS-Hom sapiens GN-RPF21 PE-1 SV-3 Historsbull-associated protein 4 OS-Hom sapiens GN-RPF21 PE-1 SV-3 Historganeous nuclear r/bonzleoprotein M OS-Homo sapiens GN-HINNPM PE-1 SV-3 Nucleolar NA helicase 2 OS-Hom sapiens GN-RDX21 PE-1 SV-3 Nucleolar NA helicase 2 OS-Hom sapiens GN-RDX21 PE-1 SV-3 Nucleolar NA helicase 2 OS-Hom sapiens GN-RDX21 PE-1 SV-3	1.252 1.248 1.240 1.225 1.212 0.886 0.788 0.788 0.788 0.773 0.773 0.773 0.773 0.769 0.768 0.768 0.766 0.761	0.000 0.005 0.041 0.018 0.045 0.045 0.021 0.002 0.041 0.013 0.041 0.013 0.048 0.025 0.013 0.025 0.013 0.022 0.025
P12956 P46013 Q14165 Q09028 Q15029 Q14444 Q01085 P43304 P62851 Q9U/21 P62263 P27816 P52727 Q9NR30 Q9NR35 Q14204	38.3 30.79 17.5 4.55 17.23 5.1 2 10.6 8.66 15.85 10.29 21.6 34.25 16.62 8.83 33.07	38.3 30.79 17.5 4.69 17.44 5.26 2 10.6 8.66 15.85 10.29 21.6 34.25 16.62 8.83 33.54	39.9 8.968 26.71 11.76 18.72 13.12 4.8 12.1 29.6 34.55 48.34 19.7 31.1 6.73 9.719 6.608	X+ray repair cross-complementing protein 6 OS-Hom sapiens GN=XRCC6 PE=1 SV=2 Antigen KL+7 OS-Hom sapiens GN=MLEC PE=1 SV=2 Histone-binding protein RBBP4 OS-Hom sapiens (N=RBP4 PE=1 SV=3 Lifs Kba US small nucker r/bonucleoprotein component OS-Hom sapiens GN=EFTUD2 PE=1 SV=1 Caprin-1 OS-Hom sapiens GN=CAPRINI PE=1 SV=2 Nucleohysin TLAR OS-Hom sapiens GN=CAPRINI PE=1 SV=2 Caprin-1 OS-Hom sapiens GN=CAPRINI PE=1 SV=2 Nucleohysin TLAR OS-Hom sapiens GN=RPS25 PE=1 SV=1 Stomatin-like protein 2, mitcohondrial OS=Hom sapiens GN=GPD2 PE=1 SV=3 40s r/bosomal protein S25 OS=Hom sapiens GN=RPS25 PE=1 SV=1 Stomatin-like protein 2, mitcohondrial OS=Hom sapiens GN=STORI2 PE=1 SV=1 40s r/bosomal protein S25 OS=Hom sapiens GN=RPS14 PE=1 SV=3 Mitcrotubule-associated protein 4 OS=Hom sapiens GN=MPA914 PE=1 SV=3 Mitcrotubule-associated protein 4 OS=Hom sapiens GN=MPA914 PE=1 SV=3 Nucleolar NNA helicase 2 OS=Hom sapiens GN=DPO21PE=1 SV=5 RNA-binding motif protein, X chromosome OS=Hom sapiens GN=RBMX PE=1 SV=3 RNA-binding motif protein, X chromosome OS=Hom sapiens GN=RBMX PE=1 SV=3 Cytoplasmic dynein 1 heavy chain 1 OS=Hom sapiens GN=RMCH1H PE=1 SV=3	1.252 1.248 1.240 1.225 1.212 0.386 0.796 0.788 0.773 0.773 0.773 0.773 0.773 0.773 0.768 0.768 0.766 0.766 0.766 0.766 0.766	0.000 0.005 0.041 0.041 0.018 0.016 0.021 0.021 0.002 0.041 0.002 0.041 0.025 0.013 0.048 0.025 0.013 0.022 0.022 0.026 0.001
P12956 P46013 Q14165 Q09028 Q15029 Q14444 Q01085 P43304 P62851 Q9U/21 P62263 P27816 P52272 Q9NR30 P38159 Q14204 Q8IYS2	38.3 30.79 17.5 4.55 17.23 5.1 2 10.6 8.66 15.85 10.29 21.6 34.25 16.62 8.83 33.07 10	38.3 30.79 17.5 4.69 17.44 5.26 2 10.6 8.66 15.85 10.29 21.6 34.25 16.62 8.83	39.9 8.968 26.71 11.76 18.72 4.8 12.1 29.6 34.55 48.34 19.7 31.1 16.73 9.719 9.719 9.719	X+ray repair cross-complementing protein 6 OS-Hom sapiens GN-XRCC6 PE-1 SV-2 Antigen K+G OS-Hom sapiens GN-MKI6 ZPE-1 SV-2 Malectin OS-Hom sapiens GN-MKI6 ZPE-1 SV-2 Tils Kba US small nucker ribonic legorotin component OS-Hom sapiens GN-EFTUD2 PE-1 SV-1 Capital - OS-Hom sapiens GN-CAPRINI PE-1 SV-2 Nucleokyin TLR OS-Hom sapiens GN-CAPRINI PE-1 SV-2 Mucleokyin TLR OS-Hom sapiens GN-CAPRINI PE-1 SV-2 Stratistical State	1.252 1.248 1.240 1.225 1.212 0.806 0.796 0.787 0.773 0.773 0.773 0.773 0.779 0.768 0.768 0.768 0.766 0.766 0.761 0.745 0.740	0.000 0.005 0.041 0.018 0.045 0.015 0.021 0.002 0.048 0.013 0.048 0.025 0.013 0.048 0.025 0.022 0.026 0.021 0.026
P12956 P46013 Q14165 Q09028 Q15029 Q14444 Q01085 P43304 P62851 Q9U/21 P62263 P27816 P52272 Q9NR30 P33159 Q14204 Q8IY52 P43686	38.3 30.79 17.5 4.55 17.23 5.1 2 10.6 8.66 15.85 10.29 21.6 34.25 16.62 8.83 33.07	38.3 30.79 17.5 4.69 17.44 5.26 2 10.6 8.66 15.85 10.29 21.6 34.25 16.62 8.83 33.54	39.9 8.968 26.71 11.76 13.12 4.8 12.1 29.6 34.55 48.34 19.7 31.1 16.73 9.719 6.608 11.51 20.1	X+ray repair cross-complementing protein 6 OS+Hom sapiens GN=XRCC6 PE=1 SV=2 Antigen KI+67 OS+Hom sapiens GN+MLEC PE=1 SV=2 Histone-binding protein RBBP4 OS+Hom sapiens GN=RBP4 PE=1 SV=3 116 KDa US small nucker rithorus cleaprotein component OS+Hom sapiens GN=EFUD2 PE=1 SV=1 Capitri-1 OS+Hom sapiens GN+GNLE PE=1 SV=2 Nucleolysin TIAR OS+Hom sapiens GN=TIAL1 PE=1 SV=3 Gyterol-3 phosphate dehydrogenase, micochondrial OS+Hom sapiens GN=GPD2 PE=1 SV=3 405 rithosumal protein S25 OS+Hom sapiens GN=RPS25 PE=1 SV=1 Stornati-Hike protein 2, micochondrial OS+Hom sapiens GN=GPD2 PE=1 SV=3 405 rithosumal protein S14 OS+Hom sapiens GN=RPS25 PE=1 SV=3 405 rithosumal protein S14 OS+Hom sapiens GN=RPS25 PE=1 SV=3 Microtubule-associated protein 4 OS+Hom sapiens GN=MAPA PE=1 SV=3 Microtubule-associated protein 4 OS+Hom sapiens GN=HMAP4 PE=1 SV=3 Nucleolar NNA helicase 2 OS=Hom sapiens GN=DMAP4 PE=1 SV=3 Cytoplasmic dynein 1 heavy chain 1 OS=Hom sapiens GN=RBMX PE=1 SV=3 Cytoplasmic dynein 1 heavy chain 1 OS=Hom sapiens GN=MAPA PE=1 SV=3 Cytoplasmic dynein 1 heavy chain 1 OS=Hom sapiens GN=MAPA PE=1 SV=3 Cytoplasmic dynein 1 heavy chain 1 OS=Hom sapiens GN=MAPA PE=1 SV=3 Cytoplasmic dynein 1 heavy chain 1 OS=Hom sapiens GN=MAPA PE=1 SV=3 Cytoplasmic dynein 1 heavy chain 1 OS=Hom sapiens GN=MAPA PE=1 SV=3 Cytoplasmic dynein 1 KiA2013 OS=Hom sapiens GN=MAPA PE=1 SV=3 Cytoplasmic dynein 1 beavy chain 1 OS=Hom sapiens GN=MAPA PE=1 SV=3 Cytoplasmic dynein 1 heavy chain 1 OS=Hom sapiens GN=MAPA PE=1 SV=3 Cytoplasmic dynein 1 heavy chain 1 OS=Hom sapiens GN=MAPA PE=1 SV=3 Cytoplasmic dynein 1 heavy chain 1 OS=Hom sapiens GN=MAPA PE=1 SV=3 Cytoplasmic dynein 1 heavy chain 1 OS=Hom sapiens GN=MAPA PE=1 SV=3 Cytoplasmic dynein 1 heavy chain 1 OS=Hom sapiens GN=MAPA PE=1 SV=2 Cytoplasmic dynein 1 heavy chain 1 OS=Hom sapiens GN=MAPA PE=1 SV=2 Cytoplasmic dynein 1 heavy chain 1 OS=Hom sapiens GN=MAPA PE=1 SV=2 Cytoplasmic dynein 1 heavy chain 1 OS=Hom sapiens GN=MAPA PE=1 SV=2 Cytoplasmic dynein 1 heavy chain 1	1.252 1.248 1.240 1.240 1.225 1.212 0.806 0.796 0.788 0.787 0.773 0.773 0.773 0.769 0.768 0.766 0.765 0.766 0.765 0.765 0.765 0.765 0.765 0.765 0.766 0.765 0.755 0.	0.000 0.005 0.041 0.041 0.018 0.045 0.021 0.002 0.041 0.002 0.041 0.013 0.048 0.025 0.013 0.022 0.025 0.023
P12956 P46013 Q14165 Q09028 Q15029 Q14444 Q01085 P43304 P62851 Q9U/21 P62253 P52272 Q9NR30 P38159 Q14204 Q8W52 P43686 Q94901	38.3 30.79 17.5 4.55 5.1 2 10.6 8.66 15.85 10.29 21.6 34.25 8.83 33.07 10 9.82 8.27	38.3 30.79 17.5 4.69 17.44 5.26 2 10.6 8.66 15.85 10.29 21.6 34.25 8.83 33.54 10 11.92 8.27	39.9 8.968 26.71 11.76 18.72 13.12 4.8 12.1 29.6 34.55 48.34 19.7 31.1 16.73 9.719 6.608 11.57 10.7 11.573 9.719 8.498	X ray repair cross-complementing protein 6 OS-Hom supplies GN-XRCC6 PE-1 SV-2 Antigen KF-OS-Hom supplies GN-MKI6 ZPE-1 SV-2 Malectin OS-Hom supplies GN-MKI6 ZPE-1 SV-2 Tils Kba US small nucker rhomokegoprotein component OS-Hom supplies GN=EFUD2 ZE-1 SV-1 Caprin-1 OS-Hom supplies GN-CAPRINI PE-1 SV-2 Nucleokyin TLR OS-Hom supplies GN-CAPRINI PE-1 SV-2 GN: Caprin-1 OS-Hom supplies GN-CAPRINI PE-1 SV-3 GN: Caprin-1 OS-Hom supplies GN-CAPRINI PE-1 SV-3 GN: Caprin-1 OS-Hom supplies GN-RHS14 PE-1 SV-3 GN: Caprin Dirole SI2 OS-Hom supplies GN-RHS14 PE-1 SV-3 Microtubule-sociated protein 4 OS-Hom supplies GN-MFAIA PE-1 SV-3 Hietrogeneous nuclear ribonucleoprotein M OS-Hom supplies GN-HIMNPM PE-1 SV-3 Nucleolar RN: helicas 2 OS-Hom supplies GN-HOX21 PE-1 SV-5 SNA hinding motif protein, X Chrom supplies GN-MARA PE-1 SV-5 Nucleolar RN: helicas 2 OS-Hom supplies GN-MARA PE-1 SV-5 Uncharacterized protein XIA-2013 OS-Hom supplies GN-MARA PE-1 SV-3 Nucleolar RN: helicas 2 OS-Hom supplies GN-HOX21 PE-1 SV-5 Uncharacterized protein XIA-2013 OS-Hom supplies GN-MARA PE-1 SV-3 Z6 protesser regulatory subunit 68 OS-Hom supplies GN-MARA PE-1 SV-3 Z05 protesser regulatory subunit 68 OS-Hom supplies GN-MARA PE-1 SV-3 Z05 protesser regulatory subunit 68 OS-Hom supplies GN-MARA PE-1 SV-3 Z05 protesser regulatory subunit 68 OS-Hom supplies GN-MARA PE-1 SV-3 Z05 protesser regulatory subunit 68 OS-Hom supplies GN-M-MARA PE-1 SV-3	1.252 1.248 1.240 1.240 1.225 1.212 0.806 0.796 0.788 0.787 0.773 0.773 0.773 0.769 0.776 0.776 0.766 0.766 0.766 0.761 0.740 0.739 0.738	0.000 0.005 0.041 0.018 0.045 0.045 0.021 0.002 0.001 0.048 0.025 0.013 0.048 0.025 0.025 0.022 0.026 0.026 0.023 0.015 0.015
P12956 P46013 Q14165 Q09028 Q15029 Q14444 Q01085 P43304 P622851 Q9U21 P622851 Q9X7816 P52272 Q9N830 Q14204 Q8IYS2 P43686 Q94901 Q940571	38.3 30.79 17.5 4.55 17.23 5.1 2 10.6 8.66 15.85 10.29 21.6 34.25 16.62 8.83 33.07 10 9.82 8.83 3.07 10 9.82 8.27 6.04	38.3 30.79 17.5 4.69 17.44 5.26 2 10.6 8.66 15.85 10.29 21.6 34.25 16.62 8.83 3.54 10 11.92 8.83 8.83 3.54	39.9 8.968 26.71 11.76 18.72 13.12 4.8 12.1 29.6 34.55 48.34 19.7 31.1 16.73 9.719 6.608 11.51 20.1 20.1 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5	X-ray repair cross-complementing protein 6 OS-Hom sapiens GN-XRCC6 PE-1 SV-2 Antigen KF67 OS-Hom sapiens GN-MLEC PE-1 SV-2 Histone-binding protein RBIP4 OS-Hom sapiens GN-RBIP4 PE-1 SV-3 Histone-binding protein RBIP4 OS-Hom sapiens GN-RBIP4 PE-1 SV-3 I15 KDa US small nucker r/bonzekoprotein component OS-Hom sapiens GN-EFTUD2 PE-1 SV-1 Capitri-1, OS-Hom sapiens GN-CAPRINI PE-1 SV-2 Nucleokyin TLRO GS-Hom sapiens GN-MEE PE-1 SV-3 Glycerol-3-phosphate dehydrogenase, mitochondrial OS-Homo sapiens GN-GPD2 PE-1 SV-3 405 r/bosomal protein S25 OS-Hom sapiens GN-RPS25 PE-1 SV-1 Stomatin-INE sociation sapiens GN-RPS25 PE-1 SV-1 405 r/bosomal protein S25 OS-Hom sapiens GN-RPS25 PE-1 SV-3 Microtubule-sociated protein 4 OS-Hom sapiens GN-HPS40 PE-1 SV-3 Historsubule-associated protein A OS-Hom sapiens GN-HPS40 PE-1 SV-3 Nucleolar INA helicase 2 OS-Hom sapiens GN-HOX21 PE-1 SV-3 Cytoplasmic dynein 1 heavy chain 1 OS-Hom sapiens GN-HPMX PE-1 SV-3 Uncharacterized protein X-Introducid 30 S-Hom sapiens GN-HPMX PE-1 SV-3 SUN domain-containing protein 1 OS-Hom sapiens GN-PSMC4 PE-1 SV-3	1.252 1.248 1.240 1.242 1.212 0.306 0.796 0.773 0.773 0.768 0.766 0.766 0.761 0.764 0.760 0.761 0.773 0.773 0.773 0.768 0.761 0.764 0.779 0.739 0.738 0.729	0.000 0.005 0.041 0.041 0.018 0.045 0.021 0.002 0.041 0.013 0.048 0.025 0.013 0.022 0.013 0.022 0.025 0.023 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.001 0.002 0.001 0.001 0.001 0.002 0.00100000000
P12956 P46013 014165 009028 015029 01444 001085 P43304 P62851 090/21 P62263 P27816 P52272 014204 038/159 014204 038/159 014204 038/159 014204 038/159 014204 038/159 014204 038/159 014204 038/159 014204 038/159 000571 090571	38.3 30.79 17.5 4.55 17.23 5.1 2 10.6 8.66 15.85 10.29 21.6 34.25 16.62 8.83 33.07 10 9.82 8.27 4.63	38.3 30.79 17.5 4.69 17.44 5.26 2 10.6 8.66 15.85 10.29 21.6 34.25 16.62 8.83 33.54 10 11.92 8.27 6.82 4.63	39.9 8.968 26.71 11.76 18.72 13.12 4.8 12.1 29.6 48.34 19.7 31.1 16.73 9.719 6.608 11.51 20.1 8.498 9.063	X ray repair cross-complementing protein 6 OS-Hom suppres GN-XRCC6 PE-1 SV-2 Antigen K470 SD-Hom suppres GN-MK16 ZPE-1 SV-2 Malectin OS-Homo suppres GN-MK16 ZPE-1 SV-2 Malectin OS-Homo suppres GN-MK16 ZPE-1 SV-2 Malectin OS-Homo suppres GN-K16 ZPE-1 SV-2 Malectin DS-Homo suppres GN-CAPRINI PE-1 SV-3 Malectin AIR OS-Homo suppres GN-K16 ZPE-1 SV-3 Malectin AIR OS-Homo suppres GN-K16 ZPE-1 SV-3 Malectin DS-Homo suppres GN-K16 ZPE-1 SV-1 SPE-1 SV-3 Malectin DS-Homo suppres GN-K16 ZPE-1 SV-3 Malectin DS-Homo suppres GN-HOX21 PE-1 SV-3 Malectin DS-Homo suppres GN-HOX21 PE-1 SV-3 Malectin MALEcase 2 OS-Homo suppres GN-K16 ZPE-2 SV-3 Malectin MALEcase 2 OS-Homo suppres GN-K16 ZPE-2 SV-3 Malectin K16 ZPE-1 SV-3 Malectin SPE-1 SV-3 Malectin DS-Homo Suppres GN-K16 ZPE-2 SV-3 Malectin K16 ZPE-1 SV-3 Malectin CAPR Malecase 2 OS-Homo suppres GN-K16 ZPE-2 SV-3 Malectin MALEcase 2 DS-Homo suppres GN-K16 ZPE-2 SV-3 MALECASE ZPE-2 ZPE-1 ZPE-2 ZPE-2 ZPE-2 ZP	1.252 1.248 1.240 1.240 1.225 1.212 0.806 0.796 0.788 0.773 0.773 0.773 0.773 0.773 0.769 0.766 0.766 0.766 0.766 0.766 0.766 0.766 0.765 0.745 0.745 0.739 0.738 0.729 0.738 0.721 0.721	0.000 0.005 0.041 0.041 0.018 0.045 0.016 0.021 0.021 0.021 0.021 0.041 0.048 0.025 0.013 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.001 0.015 0.023 0.015 0.045 0.045 0.041 0.048 0.041 0.045 0.041 0.018 0.018 0.021 0.021 0.025 0.041 0.025 0.021 0.025 0.025 0.041 0.025 0.045 0.
P12956 P46013 Q14165 Q209028 Q15029 Q14028 Q15029 Q14045 Q01085 P43304 P62263 Q9U/21 Q	38.3 30.79 17.5 4.55 17.23 5.1 2 10.6 8.66 15.85 10.29 21.6 34.25 16.62 34.25 16.62 8.83 33.07 10 9.82 8.27 6.04 4.63	38.3 30.79 17.5 4.69 17.44 5.26 2 10.6 8.66 15.85 10.29 21.6 34.25 10.62 8.83 33.54 10 11.92 8.27 6.82 4.63 26.51	39.9 8.968 26.71 11.76 18.72 13.12 4.8 12.1 29.6 34.55 48.34 48.34 19.7 31.1 16.73 9.719 6.608 11.51 20.1 8.498 9.063 6.636 6.636	X-ray repair cross-complementing protein 6 OS-Hom supiers GN-XRCC6 PE-1 SV-2 Antigen KF-OS-Hom supiers GN-MKR0 PE-1 SV-2 Malectin OS-Hom supiers GN-MKR0 PE-1 SV-2 Malectin OS-Hom supiers GN-MKR0 PE-1 SV-2 Malectin OS-Hom supiers GN-MKR0 PE-1 SV-2 Malectin AB OS-Hom supiers GN-CAPRINI PE-1 SV-2 Malectin HB OS-Hom supiers GN-CAPRINI PE-1 SV-2 Malectin HB OS-Hom supiers GN-CAPRINI PE-1 SV-2 Malectin HB OS-Hom supiers GN-CAPRINI PE-1 SV-2 Ghyerol-3-phosphate dehydrogenase, mitochondrial OS-Homo supiers GN-GPD2 PE-1 SV-3 Most of the SD-SHOM support of the SD-SHOM Support of the SD-SHOM Support GN-CAPRINI PE-1 SV-2 Malectin HB OS-Hom supiers GN-HPS14 PE-1 SV-3 Mitoritubil-essociated protein 4 OS-Hom supiers GN-HPS14 PE-1 SV-3 Mitoritubil-essociated protein 4 OS-Hom supiers GN-HPS14 PE-1 SV-3 Mudeolar RNA helicase 2 OS-Hom supiers GN-HPS14 PE-1 SV-3 Nucleolar RNA helicase 2 OS-Hom supiers GN-HPS14 PE-1 SV-3 Nucleolar RNA helicase 2 OS-Hom supiers GN-HPS14 PE-1 SV-3 Mitoritubil-essociated protein 1 OS-Hom supiers GN-HPS14 PE-1 SV-3 Nucleolar RNA helicase 2 OS-Hom supiers GN-HPS14 PE-1 SV-3 Mitoritubil-essociated protein 1 OS-Hom supiers GN-HPS14 PE-1 SV-3 Nucleolar RNA helicase 2 OS-Hom supiers GN-HPS14 PE-1 SV-3 Mitoritubil-essociated protein 1 OS-Hom supiers GN-HPS14 PE-1 SV-3 Mitoritubil-est protein 2, inclusion 3 GN-HOM Supiers GN-HARA PE-1 SV-3 Mitoritubil-est protein 2, inclusion 3 GN-HOM Supiers GN-HARA PE-1 SV-3 Mitoritubil-est protein 1 OS-Hom supiers GN-HARA PE-1 SV-3 Mitoritubil-est protein 1 OS-Hom supiers GN-HARA PE-1 SV-3 SIN domain-containing protein 1 OS-Hom supiers GN-HARA PE-1 SV-3 ATP-dependent RNA helicase DDX34 OS-Hom supiers GN-HARA PE-1 SV-3 ATP-dependent RNA helicase DDX34 OS-Hom supiers GN-HOX24 PE-1 SV-3 ATP-dependent RNA helicase DDX34 OS-Hom supiers GN-HOX24 PE-1 SV-3 ATP-dependent RNA helicase DDX34 OS-Hom supiers GN-DX24 PE-1 SV-3	1.252 1.240 1.240 1.225 1.212 0.306 0.778 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.769 0.768 0.766 0.766 0.761 0.764 0.745 0.745 0.739 0.738 0.729 0.721 0.714	0.000 0.005 0.041 0.018 0.045 0.045 0.021 0.002 0.041 0.013 0.021 0.002 0.041 0.013 0.025 0.013 0.025 0.013 0.025 0.021 0.025 0.013 0.025 0.025 0.013 0.025 0.013 0.025 0.013 0.025 0.013 0.025 0.013 0.025 0.013 0.025 0.013 0.025 0.013 0.025 0.013 0.025 0.013 0.025 0.045 0.014 0.025
P12956 P46013 014165 009028 015029 015429 01444 001085 P43304 P62851 P62851 9290121 P62263 P23716 P52272 09NR30 P38159 014204 039V52 P43686 093991 000571 096287 P08195 P68195 P68195 P68195	38.3 30.79 17.5 4.55 17.23 5.1 2 2 10.6 8.66 15.85 10.29 21.6 34.25 16.62 8.83 33.07 10 9.82 8.82 10.9 8.27 10.9 8.27 10.9 8.27 10.9 8.27 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	38.3 30.79 17.5 4.69 17.44 5.26 2 2 10.6 8.66 15.85 10.29 21.6 34.25 16.62 8.83 33.54 10 11.92 8.27 6.82 4.63 26.55	39.9 8.968 26.71 11.76 13.72 13.12 4.8 12.1 29.6 48.34 19.7 48.34 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7	X+ray repair cross-complementing protein 6 OS-Hom sapiens GN=XRCC6 PE=1 SV=2 Antigen KI-67 OS-Hom sapiens GN=MLEC PE=1 SV=2 Histone-binding protein RBBP4 OS-Hom sapiens GN=RBP4 PE=1 SV=3 116 Kba US small nucker rithorus clearoteria component OS-Hom sapiens GN=EFUD2 PE=1 SV=1 Capital-1 OS-Hom sapiens GN=ANLEC PE=1 SV=2 Nucleolysin TIAR OS-Hom sapiens GN=GN=CAPRINI PE=1 SV=3 Gyrerol-3-phosphate delytdrogenase, mitochondrial OS-Hom sapiens GN=GPD2 PE=1 SV=3 40s rithosomal protein S25 OS-Hom sapiens GN=RPS25 PE=1 SV=1 Storatti-INke protein 2, mitochondrial OS-Hom sapiens GN=GND2 PE=1 SV=3 40s rithosomal protein S14 OS-Hom sapiens GN=RPS25 PE=1 SV=3 Storatti-INke protein 2, mitochondrial OS-Hom sapiens GN=GND4 2PE=1 SV=3 Microtubule-associated protein 4 OS-Hom sapiens GN=MAPA PE=1 SV=3 Microtubule-associated protein 4 OS-Hom sapiens GN=MAPA PE=1 SV=3 Nucleolar RNA helicase 2 OS-Hom sapiens GN=DD21 PE=1 SV=3 Cytoplasmic dynein 1 heavy chain 10S=Hom sapiens GN=RBMX PE=1 SV=3 Cytoplasmic dynein 1 Nors-Hom sapiens GN=RBMA PE=1 SV=3 Cytoplasmic dynein 1 heavy chain 10S=Hom sapiens GN=RBMX PE=1 SV=3 Cytoplasmic dynein 1 Nors-Hom sapiens GN=RM=AQ021 PE=2 SV=1 SUN domain containing protein 1 OS-Hom sapiens GN=RM=AQ021 PE=2 SV=3 ATP-dependent RNA helicase DDX24 OS=Hom sapiens GN=MCAQ021 PE=2 SV=3 ATP-dependent RNA helicase DDX24 OS=Hom sapiens GN=SUN1 PE=1 SV=3 ATP-dependent RNA helicase DDX24 OS=Hom sapiens GN=SUN1 PE=1 SV=3 ATP-dependent RNA helicase DDX24 OS=Hom sapiens GN=DX24 PE=1 SV=3 ATP-dependent RNA helicase DDX24 OS=Hom sapiens GN=D	1.252 1.248 1.240 1.240 1.225 1.212 0.306 0.796 0.788 0.773 0.773 0.773 0.773 0.769 0.768 0.766 0.766 0.766 0.766 0.766 0.766 0.766 0.775 0.773 0.773 0.773 0.773 0.769 0.766 0.766 0.745 0.739 0.739 0.739 0.721 0.721 0.714 0.	0.000 0.005 0.041 0.041 0.018 0.045 0.021 0.002 0.041 0.002 0.041 0.013 0.048 0.025 0.013 0.025 0.013 0.022 0.026 0.020 0.026 0.023 0.023 0.0250
P12956 P46013 Q14165 Q09028 Q15029 Q15029 Q14045 P43304 P62851 P62251 P62263 P527816 P527816 P527816 P527816 P5279 Q9NR30 P38159 Q14204 Q9NY52 P43686 O94901 Q00571 Q9G2R7 P08195 Q6IAA8 Q3BV/6 Q9EV/6	38.3 30.79 17.5 4.55 17.23 5.1 2 10.6 8.66 15.85 10.29 21.6 34.25 16.62 8.83 33.07 10 9.82 8.83 33.07 10 9.82 9.82 6.04 4.63 26.44 16.55 8.04	38.3 30.79 17.5 4.69 17.44 5.26 2 10.6 8.66 15.85 10.29 21.6 34.25 16.62 8.83 33.54 10 11.92 8.27 4.63 26.51 16.55 8.09	39.9 8.968 26.71 11.76 13.12 4.8 12.1 4.8 12.1 4.8 12.1 4.8 34.55 34.55 34.55 34.55 34.55 34.55 31.1 16.73 9.719 6.608 11.51 20.1 8.498 9.063 6.636 29.21 75.16	X ray repair cross-complementing protein 6 OS-Hom supplies GN-SRCC6 PE-1 SV-2 Antigen KF-OS-Hom supplies GN-MKI6 ZPE-1 SV-2 Malectin OS-Hom supplies GN-MKI6 ZPE-1 SV-2 Tis Kba US small nucker rithoric component OS-Hom supplies GN-EFTUD2 PE-1 SV-1 Capital - OS-Hom supplies GN-CAPRINI PE-1 SV-2 Nucleokyin TLAB OS-Hom supplies GN-TALE PE-1 SV-2 GN:erol-3-phosphate dehydrogenase, mitochondrial OS-Homo supplies GN-EFTUD2 PE-1 SV-3 dS ribosomal protein S25 OS-Homo supplies GN-FRDE PE-1 SV-1 Strong and the protein S25 OS-Homo supplies GN-FRDE PE-1 SV-3 Mitochowin Tutochondrial OS-Homo supplies GN-STOML2 PE-1 SV-1 Strong and protein S24 OS-Homo supplies GN-FRDE PE-1 SV-3 Mitochowin Tutochondrial OS-Homo supplies GN-FRDE PE-1 SV-3 Mitochowin Tutochondrial OS-Homo supplies GN-HOMP PE-1 SV-3 Nucleolar Nh Delicase 2 OS-Homo supplies GN-PBAPE PE-1 SV-3 ST Ducharacterized protein MA2013 OS-Homo supplies GN-PBAPE PE-1 SV-3 SUN domain containing protein 1 OS-Homo supplies GN-PBAPE PE-1 SV-3 ATP-dependent RNA helicase DDX30 OS-Homo supplies GN-PBAVE PE-1 SV-3 ATP-dependent RNA helicase DDX30 OS-Homo supplies GN-PDX02 PE-1 SV-3 ATP-dependent RNA helicase DDX30 OS-Homo supplies GN-PDX02 PE-1 SV-3 ATP-dependent RNA helicase DDX30 OS-Homo supplies GN-VDX02 PE-1 SV-3 ATP-dependent RNA helicase DDX30 OS-Homo suplies GN-VDX02 PE-1 SV-3 ATP-dependent RNA helicase DDX30 OS-Homo suplies GN-VDX02 PE-1 SV-3 ATP-depe	1.252 1.240 1.248 1.240 1.225 1.212 0.806 0.798 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.768 0.768 0.766 0.766 0.766 0.766 0.761 0.740 0.739 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.768 0.766 0.761 0.740 0.774 0.	0.000 0.005 0.041 0.018 0.045 0.016 0.021 0.002 0.041 0.013 0.048 0.025 0.021 0.048 0.025 0.022 0.022 0.022 0.022 0.022 0.022 0.025 0.022 0.025 0.025 0.025 0.025 0.048 0.045 0.015 0.045 0.015 0.045 0.015 0.025 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.045 0.045 0.045 0.025 0.045 0.025 0.045 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.045 0.045 0.016 0.016 0.015 0.016 0.016 0.016 0.015 0.016 0.016 0.016 0.016 0.015 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.006 0.06
P12956 P46013 014165 009028 015029 014444 001085 P43304 P62851 09UJ21 P62253 P27816 P52272 09NR30 P38159 014204 08W52 P43566 094901 000571 0962877 P08195 06JAA8 096287	38.3 30.79 17.5 4.55 17.23 5.1 2 10.6 8.66 15.85 10.29 21.6 34.25 16.62 8.83 33.07 10 9.82 8.83 33.07 10 9.82 8.64 4.65 8.27 6.04 4.65 8.04 4.65 8.04	38.3 30.79 17.5 4.69 17.44 5.26 2 10.6 8.66 15.85 10.29 21.6 34.25 16.62 8.83 33.54 10 11.92 8.27 6.82 4.63 26.51 16.55 8.09 6.44	39.9 8.968 26.71 11.76 13.12 4.8 12.1 29.6 34.55 34.55 34.55 34.55 34.55 34.55 34.55 34.55 34.55 34.55 34.55 34.55 34.55 34.8 34.8 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7	X-ray repair cross-complementing protein 6 OS-Hom supiens GN-XRCC6 PE-1 SV-2 Antigen KF67 OS-Hom supiens GN-MLEC PE-1 SV-2 Histone-binding protein RBBP4 OS-Hom supiens GN-RBP4 PE-1 SV-3 Histone-binding protein RBBP4 OS-Hom supiens GN-RBP4 PE-1 SV-3 (2000) A supplementation of the superscription of the super	1.252 1.248 1.240 1.240 1.225 1.212 0.806 0.796 0.773 0.773 0.773 0.773 0.773 0.766 0.766 0.766 0.766 0.766 0.766 0.766 0.766 0.774 0.739 0.739 0.729 0.721 0.721 0.714 0.714 0.713 0.713 0.713	0.000 0.005 0.041 0.041 0.018 0.045 0.021 0.002 0.041 0.013 0.048 0.025 0.013 0.025 0.013 0.022 0.021 0.013 0.022 0.021 0.023 0.021 0.023 0.025 0.021 0.025 0.021 0.025 0.021 0.025 0.025 0.025 0.021 0.025 0.021 0.025 0.021 0.025 0.025 0.021 0.025 0.021 0.025 0.021 0.025 0.021 0.025 0.021 0.025 0.025 0.021 0.025 0.
P12956 P46013 Q14165 Q19028 Q15029 Q15029 Q14045 P43304 P62851 Q9U21 P62281 P527316 P52273 Q9U21 P527316 P52273 Q9NR30 P38159 Q14204 Q9NR30 Q9NR30 Q9NR30 Q9NR30 Q9Q2R7 P08195 Q36287 P62917 P62917	38.3 30.79 17.5 4.55 17.23 5.1 2 10.6 8.66 15.85 10.29 21.6 34.25 16.62 8.83 33.07 10 9.82 8.27 6.04 4.63 26.44 16.55 8.04 6.44 16.55	38.3 30.79 17.5 4.69 17.44 5.26 2 10.6 8.66 15.85 10.29 21.6 34.25 16.62 8.83 33.54 10 11.92 8.27 6.82 4.63 26.51 16.55 16.55 16.55 16.55 16.55	39.9 8.968 26.71 11.76 13.12 4.8 12.1 29.6 34.55 48.34 19.7 31.1 16.73 9.719 6.608 11.51 20.1 8.498 9.063 6.636 29.21 75.16 7.782 29.32	X ray repair cross-complementing protein 6 OS-Hom supplies GN-XRCC6 PE-1 SV-2 Antigen KF-OS-Hom supplies GN-MKI6 ZPE-1 SV-2 Malectin OS-Hom supplies GN-MKI6 ZPE-1 SV-2 Malectin OS-Hom supplies GN-MKI6 ZPE-1 SV-2 Tils Kba US small nucker rhomockeportein component OS-Hom supplies GN-EFFUD2 PE-1 SV-1 Caprin-1 OS-Hom supplies GN-CAPRINI PE-1 SV-2 Nucleokyin TLR OS-Hom supplies GN-CAPRINI PE-1 SV-2 GN: Caprin-1 OS-Hom supplies GN-CAPRINI PE-1 SV-2 Malectin DS-Hom supplies GN-CAPRINI PE-1 SV-2 GN: Caprin-1 OS-Hom supplies GN-CAPRINI PE-1 SV-3 GN: Caprin-1 OS-Hom supplies GN-CAPRINI PE-1 SV-3 GN: Caprin-1 OS-Hom supplies GN-CAPRINI PE-1 SV-3 GN: Caprin-1 OS-Hom supplies GN-REPS2 PE-1 SV-3 GN: Caprin-1 OS-Hom supplies GN-REPS2 PE-1 SV-3 Microtubule-associated protein 4 OS-Hom supplies GN-MFXIA PE-1 SV-3 Hieterogeneous nuclear ribonucleoprotein M OS-Hom supplies GN-MFXIA PE-1 SV-3 Nucleolar RN: Philicise 2 OS-Hom supplies GN-RDV21 PE-1 SV-5 SON domain Caprin SU-CAPRINI A OS-Hom supplies GN-MFXIA PE-1 SV-3 Hieterogeneous nuclear ribonucleoprotein M OS-Hom supplies GN-MFXIA PE-1 SV-3 Nucleolar RN: Philicise 2 OS-Hom supplies GN-PMXIA PE-1 SV-5 Uncharacterized protein KIAA2013 OS-Hom supplies GN-MFXIA PE-1 SV-3 AD-1 Opendemin 1 New ribonus supplies GN-MFXIA PE-1 SV-3 ATP - dependemin 1 New ribonucleoprotein Supplies GN-PMXIA PE-1 SV-3 ATP - dependemin RN: Philase DDX3A OS-Hom supplies GN-PMXIA PE-1 SV-3 ATP - dependemin RN: Philase DDX3A OS-Hom supplies GN-PMXIA PE-1 SV-3 ATP - dependemin RN: Philase DDX3A OS-Hom supplies GN-PMXIA PE-1 SV-3 ATP - dependemin RN: Philase DDX3A OS-Hom supplies GN-PMXIA PE-1 SV-3 Ragulatior complex protein LAMTORI DS-Hom supplies GN-SUA2 PE-1 SV-3 Ragulatior complex protein LAMTORI DS-Hom supplies GN-REPSIA PE-1 SV-3 Ragulatior complex protein LAMTORI DS-Hom supplies GN-REPSIA PE-1 SV-2 SIS	1.252 1.240 1.248 1.240 1.225 1.212 0.806 0.796 0.788 0.773 0.773 0.773 0.773 0.773 0.773 0.768 0.766 0.766 0.766 0.766 0.766 0.761 0.740 0.739 0.729 0.721 0.714 0.714 0.713 0.713 0.714 0.713 0.713 0.713 0.714 0.713 0.713 0.713 0.714 0.713 0.714 0.713 0.713 0.713 0.714 0.713 0.713 0.714 0.713 0.713 0.714 0.713 0.713 0.714 0.713 0.713 0.714 0.713 0.713 0.714 0.713 0.713 0.714 0.713 0.713 0.714 0.713 0.714 0.713 0.713 0.714 0.713 0.713 0.714 0.713 0.714 0.713 0.713 0.714 0.713 0.714 0.713 0.714 0.713 0.714 0.713 0.714 0.713 0.713 0.714 0.713 0.714 0.713 0.714 0.713 0.714 0.713 0.714 0.713 0.713 0.714 0.713 0.713 0.714 0.713 0.713 0.714 0.713 0.713 0.713 0.713 0.714 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.714 0.713 0.714 0.713 0.712 0.714 0.713 0.712 0.714 0.713 0.714 0.713 0.714 0.713 0.712 0.714 0.713 0.714 0.714 0.713 0.714 0.713 0.712 0.714 0.714 0.713 0.714 0.714 0.714 0.713 0.714 0.714 0.714 0.713 0.714 0.715 0.715 0.715 0.715 0.	0.000 0.005 0.041 0.018 0.045 0.045 0.021 0.002 0.001 0.013 0.048 0.025 0.021 0.048 0.025 0.013 0.048 0.025 0.022 0.026 0.021 0.026 0.021 0.023 0.016 0.023 0.015 0.045 0.015 0.023 0.015 0.045 0.015 0.023 0.015 0.023 0.015 0.023 0.015 0.023 0.015 0.023 0.015 0.023 0.015 0.023 0.015 0.023 0.015 0.023 0.015 0.023 0.015 0.023 0.015 0.023 0.015 0.023 0.015 0.023 0.015 0.023 0.015 0.023 0.015 0.025 0.023 0.015 0.023 0.015 0.025 0.023 0.015 0.023 0.015 0.025 0.023 0.015 0.023 0.015 0.023 0.015 0.025 0.023 0.015 0.023 0.015 0.025 0.023 0.015 0.025 0.023 0.015 0.023 0.015 0.025 0.023 0.015 0.025 0.023 0.015 0.025 0.015 0.026 0.015 0.026 0.015 0.026 0.016 0.026 0.015 0.026 0.015 0.026 0.015 0.026 0.015 0.026 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.045 0.045 0.045 0.025 0.
P12956 P46013 Q14165 Q19028 Q15029 Q14444 QD1085 P43304 P62263 P27816 P52272 Q9UJZ1 P62263 P27816 P52272 Q9NR30 P38159 Q14204 Q8IV52 P43686 Q94901 Q14204 Q8IV52 P43686 Q94901 Q14204 Q8IV52 P43686 Q94905 Q14204 Q94905 Q14204 Q94905 Q14204 Q94905 Q14204 Q94905 Q14204 Q94905 Q14204 Q94905 Q14204 Q94905 Q14204 Q14204 Q14204 Q14204 Q14204 Q14204 Q15029 Q14444 Q14021 Q14221 Q1422 Q14221 Q14224 Q14221 Q14224 Q1424 Q1444	38.3 30.79 17.5 4.55 17.23 5.1 2 10.6 8.66 15.35 10.29 21.6 34.25 34.25 33.07 10 9.82 8.83 33.07 10 9.82 8.27 6.04 4.63 26.44 16.65 8.04 4.65 8.04 4.65 8.04 4.63 26.44 10.75 17.86	38.3 30.79 17.5 4.69 17.44 5.26 2 10.6 8.66 15.85 10.29 21.6 34.25 16.62 8.83 33.54 10 34.25 16.62 8.83 33.54 10.92 8.27 6.82 4.63 26.51 16.55 8.69 9.27 6.82 4.63 26.51 16.55 16.55 16.55 16.55 16.55 16.55 17.55 17.75 17.75 17.75 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6	39.9 8.968 26.71 11.76 13.12 13.12 13.12 13.12 13.12 13.12 13.12 13.12 13.12 13.12 13.73 13.1 13.73 9.719 6.608 11.51 20.1 15.73 9.709 11.51 20.1 15.719 6.636 6.636 6.636 6.636 6.6326 29.21 75.16 7.782 29.32 29.32 24.12 37.02	X-ray repair cross-complementing protein 6 OS-Hom sapiens GN-XRCC6 PE-1 SV-2 Antigen KF-0 SS-Hom sapiens GN-MLEC PE-1 SV-2 Histone-binding protein RBIP4 OS-Hom sapiens GN-RBIP4 PE-1 SV-3 T15 KDa US small nucker r/bornou sapiens GN-RBIP4 PE-1 SV-3 Capitri-1 OS-Hom sapiens GN-CAPRINI PE-1 SV-2 Nucleokyin TLAB OS-Hom sapiens GN-CAPRINI PE-1 SV-2 Nucleokyin TLAB OS-Hom sapiens GN-CAPRINI PE-1 SV-2 Glycerol-3-phosphate dehydrogenase, mitochondrial OS-Hom sapiens GN-GPD2 PE-1 SV-3 405 r/bosomal protein S25 OS-Hom sapiens GN-RPS25 PE-1 SV-1 Stomatin-INE oscience sapiens GN-RDE2 PE-1 SV-1 Stomatin-INE socience sapiens GN-RDE2 PE-1 SV-3 Mitorbubil-exosociated protein 4 OS-Hom sapiens GN-HPF12 PE-1 SV-3 Nucleokyin Tusing S40 SS-Hom sapiens GN-RPS25 PE-1 SV-3 Nucleokyin Tusing S40 SS-Hom sapiens GN-RPS26 PE-1 SV-3 Nucleokying S40 SS-Hom sapiens GN-RPS26 PE-1 SV-3 Nucleokying S40 SS-Hom sapiens GN-RPS20 PE-1 SV-3 SUN domain containing protein 1 OS-Hom sapiens GN-RPM201 PE-1 SV-5 SUN domain containing protein 1 OS-Hom sapiens GN-RPS04 PE-1 SV-3 AIP-dependent RNA helicase D0X34 OS-Hom sapiens GN-RPM201 PE-1 SV-3 AIP-dependent RNA helicase D0X34 OS-Hom sapiens GN-RPDX021 PE-2 SV-3 AIP-dependent RNA helicase D0X34 OS-Hom sapiens GN-RPM2021 PE-2 SV-3 AIP-dependent RNA helicase D0X34 OS-Hom sapiens GN-RPM2021 PE-2 SV-3 AIP-dependent RNA helicase D0X34 OS-Hom sapiens GN-RDX24 PE-1 SV-3 AIP-dependent RNA helicase D0X34 OS-Hom sapiens GN-BUN232 PE-1 SV-3 Ragulator complex protein LAUTOR1 OS-Hom sapiens GN-LMX1024 PE-1 SV-3 AIP-dependent RNA helicase D0X34 OS-Hom sapiens GN-BUN232 PE-1 SV-3 Ragulator complex protein LAUTOR1 OS-Hom sapiens GN-LMX1024 PE-1 SV-3 AIP-dependent RNA helicase D0X24 OS-Hom sapiens GN-LMX1024 PE-1 SV-3 AIP-dependent RNA helicase D0X2	1.252 1.240 1.240 1.245 1.212 0.306 0.798 0.788 0.787 0.773 0.773 0.773 0.773 0.773 0.773 0.768 0.766 0.766 0.766 0.766 0.761 0.740 0.739 0.739 0.739 0.729 0.729 0.721 0.714 0.714 0.713 0.712 0.712 0.712 0.712	0.000 0.005 0.041 0.041 0.018 0.045 0.045 0.021 0.002 0.041 0.013 0.041 0.013 0.048 0.025 0.013 0.022 0.026 0.001 0.022 0.001 0.023 0.016 0.023 0.015 0.045 0.045 0.045 0.023 0.015 0.045 0.023 0.015 0.023 0.016 0.023 0.014 0.006 0.001 0.005 0.014 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.005 0.001 0.005 0.001 0.005 0.
P12956 P46013 Q14165 Q09028 Q15029 Q15029 Q14444 Q1085 P43304 P62263 P27316 P52273 Q9U21 P52263 P27316 P52273 Q9NR30 P38159 Q14204 Q3NY52 Q3H204 Q3NY52 Q54901 Q90571 Q96287 P08195 Q54045 Q54901 P622917 Q9EV66 P27708	38.3 30.79 17.5 4.55 17.2 5.1 2 10.6 10.8 8.66 15.85 10.29 21.6 34.25 33.07 10.6 9.82 33.07 10 9.82 8.64 4.63 26.44 10.67 17.78 8.04 6.44 10.07 13.71 13.71	38.3 30.79 17.5 4.69 17.44 5.26 2 10.6 8.66 15.85 10.29 21.6 34.25 16.62 8.83 33.54 10 11.92 8.27 6.82 4.63 26.51 16.55 8.09 6.44 10.07 17.86	39.9 8.9668 26.71 11.76 13.12 4.8 12.1 29.6 34.55 48.34 19.7 31.1 16.73 9.719 6.608 11.51 20.1 8.498 9.636 6.636 6.636 6.636 6.636 6.636 7.782 29.21 75.16 7.782 29.32 24.12 37.02 6.292	X ray repair cross-complementing protein 6 OS-Hom supplies GN-XRCC6 PE-1 SV-2 Antigen K470 SD-Hom supplies GN-MK16 ZPE-1 SV-2 Malectin OS-Homo supplies GN-MK16 ZPE-1 SV-2 Tils Kba US small nucker rhomouckeportein component OS-Homo supliens GN-EFTUD2 PE-1 SV-1 Caprin-1 OS-Homo supplies CN-CAPRINI PE-1 SV-2 Nucleokyin TMR OS-Homo supplies GN-RALE PE-1 SV-2 GN/2001 SPECIAL SPE	1.252 1.248 1.240 1.245 1.240 1.225 1.212 0.806 0.796 0.788 0.773 0.773 0.773 0.773 0.773 0.769 0.766 0.761 0.766 0.761 0.740 0.738 0.729 0.738 0.729 0.738 0.721 0.714 0.714 0.714 0.713 0.712 0.710 0.71 0.71	0.000 0.005 0.041 0.018 0.045 0.045 0.021 0.002 0.001 0.013 0.048 0.025 0.021 0.048 0.025 0.013 0.048 0.025 0.011 0.015 0.021 0.026 0.021 0.015 0.025 0.011 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.021 0.022 0.025 0.021 0.025 0.021 0.025 0.021 0.025 0.021 0.025 0.021 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.014 0.005 0.011 0.015 0.015 0.013 0.015 0.014 0.005 0.001 0.005 0.013 0.005 0.013 0.013 0.013 0.005 0.013 0.013 0.013 0.005 0.013 0.013 0.013 0.013 0.014 0.005 0.013 0.014 0.013 0.013 0.013 0.013 0.014 0.013 0.013 0.013 0.014 0.015 0.013 0.015 0.013 0.015 0.013 0.015 0.013 0.015 0.013 0.015 0.
P12956 P46013 Q14165 Q09028 Q15029 Q14444 Q01085 P43304 P62851 Q90U21 P62263 P27816 P52272 Q9NIZ45 Q9U82 Q9U82 Q9U92 Q9U72 Q9U82 Q9U72 Q9U	38.3 30.79 17.5 4.55 5.1 2 10.6 8.66 15.85 16.62 8.83 33.07 10 9.82 8.83 33.07 10 9.82 8.83 33.07 10 9.82 8.83 33.07 10 9.82 8.83 33.07 10 9.82 8.83 33.07 10 9.82 8.83 33.07 10 9.82 8.83 10.4 6.44 10.64 4.63 26.44 10.07 9.82 8.83 10.79 10.75 10.6 10.75 10.6 10.75 10.6 10.75 10.6 10.75 10	38.3 30.79 17.5 4.69 17.4 5.26 2 10.6 8.66 15.85 10.29 21.6 34.25 8.83 33.54 10 11.92 8.27 6.82 4.63 26.51 16.55 8.89 6.44 10.07 17.86 13.96 6.44	39.9 8.968 26.71 11.76 13.12 4.8 12.1 29.6 34.55 48.34 19.7 34.55 34.55 34.53 11.1 16.73 9.719 9.719 9.719 9.719 9.719 8.498 9.063 6.636 29.21 75.16 7.782 29.32 24.12 37.02 6.292	X ray repair cross-complementing protein 6 OS-Hom supplies GN-XRCC6 PE-1 SV-2 Antigen KF-0 SH-Hom supplies GN-MKI6 ZPE-1 SV-2 Malectin OS-Hom supplies GN-MKI6 ZPE-1 SV-2 Tis Kba US small nucker rhom component OS-Hom supplies GN-EFFUD2 PE-1 SV-1 Capital - 0.5Hom supplies GN-CAPRINI PE-1 SV-2 Nucleokin TMB OS-Hom supplies GN-TALE PE-1 SV-2 GN: Capital - 0.5Hom supplies GN-TALE PE-1 SV-2 Tuckerkin TMB OS-Hom supplies GN-TALE PE-1 SV-2 Storestin-Tike protein 2.5 OS-Hom supplies GN-FBD2 PE-1 SV-3 Most rubus and protein S25 OS-Homo supplies GN-FBD2 PE-1 SV-3 GN: Capital - 0.5Hom supplies GN-TALE PE-1 SV-1 Storestin-Tike protein 2. Intick-hondrial OS-Homo supplies GN-FBD2 PE-1 SV-3 Microtubule-associated protein 4 OS-Hom supplies GN-FBD2 PE-1 SV-3 Microtubule-associated protein 4 OS-Hom supplies GN-FBD2 PE-1 SV-3 Nucleolar NN helicase 2 OS-Homo supplies GN-FBD2 PE-1 SV-3 RNA-binding motif protein 2.5H OS-Hom supplies GN-MAPA PE-1 SV-3 Nucleolar NN helicase 2 OS-Homo supplies GN-MAPA PE-1 SV-3 Nucleolar NN helicase 2 OS-Homo supplies GN-MAPA PE-1 SV-3 RNA-binding motif protein, X chromosume OS-Homo supplies GN-MAPA PE-1 SV-3 Nucleolar NN helicase 2 OS-Homo supplies GN-MAPA PE-1 SV-3 ZS protesser regulatory subunit 60 OS-Homo supplies GN-MAPA PE-1 SV-3 ATP - dependent protein NA2013 OS-Homo supplies GN-MAPA PE-1 SV-3 ATP - dependent RNA helicase DDX3A OS-Homo supplies GN-MAPA PE-1 SV-3 ATP - dependent RNA helicase DDX3A OS-Homo supplies GN-MAPA PE-1 SV-3 ATP - dependent RNA helicase DDX3A OS-Homo supplies GN-MAPA PE-1 SV-3 ATP - dependent RNA helicase DDX3A OS-Homo supplies GN-MAPA PE-1 SV-3 ATP - dependent RNA helicase DDX3A OS-Homo supplies GN-MAPA PE-1 SV-3 ATP - dependent RNA helicase DDX3A OS-Homo supplies GN-MAPA PE-1 SV-3 ATP - dependent RNA helicase DDX3A OS-Homo supplies GN-MAPA PE-1 SV-3 ATP - dependent RNA helicase DDX3A OS-Homo supplies GN-SUNT PE-1 SV-3 ATP - dependent RNA helicase DDX3A OS-Homo supplies GN-MAPA PE-1 SV-3 ATP - dependent RNA helicase DDX3A OS-Homo supplies GN-SUNT PE-1 SV-3 ATP - dependent	1.252 1.240 1.248 1.240 1.225 1.212 0.806 0.788 0.787 0.773 0.773 0.773 0.773 0.773 0.773 0.768 0.766 0.766 0.766 0.766 0.766 0.761 0.774 0.739 0.771 0.714 0.714 0.714 0.712 0.710 0.710 0.710 0.710 0.707	0.000 0.000 0.005 0.041 0.018 0.045 0.021 0.002 0.021 0.002 0.048 0.025 0.013 0.048 0.025 0.013 0.048 0.022 0.022 0.022 0.025 0.022 0.022 0.025 0.022 0.025 0.022 0.025 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.025 0.030 0.035 0.030 0.048 0.030 0.030 0.030 0.048 0.030 0.048 0.030 0.048 0.030 0.048 0.048 0.030 0.048 0.
P12956 P46013 Q14165 Q19028 Q15029 Q125029 Q14444 Q01085 P43304 P62851 Q9U21 P62263 P52272 Q9UR30 P52272 Q9UR30 P52272 Q9UR30 P52816 Q94901 Q00571 Q96287 Q981V55 Q61AAS Q98V/56 P62347 Q98V/56 P62347 P623917 Q98V/56 P62347 P623917 C098V/56 P62347 P623917	38.3 30.79 17.5 4.55 5.1 2 10.6 8.66 15.85 10.29 21.6 8.66 15.85 10.29 21.6 8.83 33.07 10 9.82 8.83 33.07 10 9.82 8.83 33.07 10 9.82 8.83 33.07 10 9.82 8.83 33.07 10 9.82 8.83 33.07 10 9.82 8.83 33.07 10 9.82 8.83 10.92 10 8.03 10 9.82 8.83 10 9.82 8.83 10 9.82 8.83 10 9.82 8.83 10 9.82 8.83 10 9.82 8.83 10 9.82 8.83 10 9.82 8.83 10 9.82 8.83 10 9.82 8.83 10 9.72 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8	383 30.79 17.5 4.69 5.26 2 10.6 8.86 15.85 10.29 21.6 34.25 16.62 16.62 16.62 16.62 16.62 4.8.33 54 4.63 10.9 11.92 4.63 2.551 16.62 16.62 16.62 16.62 10.7 8.83 10.9 11.92 11.5 10.29 11.92 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.	39.9 8.968 26.71 11.76 13.12 4.8 12.1 13.12 4.8 12.1 13.12 4.8 48.34 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7	X-ray repair cross-complementing protein 6 OS-Hom supiens GN-SRCC6 PE-1 SV-2 Antigen KI-67 OS-Hom supiens GN-MILE CPE-1 SV-2 Malectin OS-Hom supiens GN-MILE CPE-1 SV-2 Histone-binding protein RBIP4 OS-Hom supiens GN-RBIP4 PE-1 SV-3 L15 Kba US small nucker r/bonucleoprotein component OS-Hom supiens GN-EFTUD2 PE-1 SV-1 Capitral-3 OS-Hom supiens GN-CAPRINI PE-1 SV-2 Nucleolyin TIAR OS-Hom supiens GN-FILL1 PE-1 SV-1 Gyterol-3-phosphate dehydrogenase, micochondrial OS-Hom supiens GN-GPD2 PE-1 SV-3 405 R/bosomal protein S25 OS-Hom supiens GN-RPS2 PE-1 SV-1 Stomatin-INe susoidared protein S25 OS-Hom supiens GN-RPS2 PE-1 SV-3 405 R/bosomal protein S25 OS-Hom supiens GN-RPS2 PE-1 SV-3 Microtubule-susoidared protein A OS-Hom supiens GN-RPS2 PE-1 SV-3 Microtubule-susoidared protein A OS-Hom supiens GN-RPS2 PE-1 SV-3 Hieterogeneous nuclear ribonucleoprotein M OS-Homo supiens GN-HINNPM PE-1 SV-3 Nucleolar INA helicase 2 OS-Hom supiens GN-RDM2 PE-1 SV-3 Nucleolar INA helicase 2 OS-Hom supiens GN-RDM2 RFE-1 SV-3 Cytoplasmic dynein 1 heavy chain 1 OS-Homo supiens GN-RDM2 RFE-1 SV-3 LINChronic Inter Totin, X. Kormosom OS-Homo supiens GN-RDM2 RFE-1 SV-3 AIP dependent protein N. Antochard S0-S-Homo supiens GN-RDM2 RFE-1 SV-3 AIP dependent protein N. Antochard S0-S-Homo supiens GN-RDM2 RFE-1 SV-3 AIP dependent RNA helicase DX34 OS-Homo supiens GN-RDM2 RFE-1 SV-3 AIP dependent RNA helicase DX34 OS-Homo supiens GN-RDM2 RFE-1 SV-3 AIP dependent RNA helicase DX34 OS-Homo supiens GN-RDM2 RFE-1 SV-3 AIP dependent RNA helicase DX34 OS-Homo supiens GN-RDM2 RFE-1 SV-3 AIP dependent RNA helicase DX34 OS-Homo supiens GN-RDM2 RFE-1 SV-3 AIP dependent RNA helicase DX34 OS-Homo supiens GN-L0X2 RFE-1 SV-3 AIP dependent RNA helicase DX34 OS-Homo supiens GN-L0X2 RFE-1 SV-3 AIP dependent RNA helicase DX34 OS-Homo supiens GN-L0X2 RFE-1 SV-3 AIP dependent RNA helicase DX34 OS-Homo supiens GN-L0X2 RFE-1 SV-3 AIP dependent RNA helicase DX34 CS-Homo supiens GN-L0X2 RFE-1 SV-3 AIP dependent RNA helicase DX34 CS-Homo supiens	1.252 1.248 1.240 1.240 1.225 1.212 0.806 0.796 0.773 0.773 0.773 0.773 0.769 0.768 0.766 0.766 0.766 0.766 0.766 0.766 0.774 0.739 0.729 0.721 0.714 0.714 0.714 0.714 0.712 0.710 0.710 0.710 0.710 0.707 0.706	0.000 0.005 0.005 0.041 0.041 0.018 0.045 0.021 0.002 0.041 0.013 0.048 0.022 0.013 0.048 0.025 0.013 0.022 0.025 0.013 0.022 0.025 0.023 0.023 0.025 0.023 0.025 0.023 0.015 0.023 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.024 0.025 0.024
P12956. P46013 Q14165 Q19023 Q1405 Q19023 Q10405 P62361 Q1021 P62263 Q1021 P62263 Q1021 P62263 Q1021 Q1022 Q102	38.3 30.79 17.5 17.5 5.1 2 10.6 8.66 15.85 10.29 21.6 34.25 16.62 8.83 33.07 10 9.82 8.83 33.07 10 9.82 4.63 26.44 16.55 8.04 4.63 26.44 16.55 10.07 9.82 8.04 4.63 26.44 10.07 7.86 13.71 2.25 2.277	33.3 30.79 17.5 4.69 5.26 2 10.6 8.86 10.29 21.6 15.85 10.29 21.6 21.6 5.85 8.09 6.84 10 11.92 8.27 6.82 6.82 6.82 6.85 8.09 6.44 10.07 17.38 6.82 6.44 10.07 17.39 6.82 6.84 10.07 17.39 6.84 10.07 17.39 6.84 10.07 17.39 6.82 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85	39.9 8.968 26.71 11.76 18.72 4.8 12.1 29.6 4.8 12.1 29.6 4.8 12.1 29.7 13.12 4.8 12.1 29.7 13.12 4.8 12.1 29.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7 1	X ray repair cross-complementing protein 6 OS-Hom supplies GN-XRCC6 PE-1 SV-2 Antigen KF-0 SS-Hom supplies GN-MKI6 ZPE-1 SV-2 Malectin OS-Hom supplies GN-MKI6 ZPE-1 SV-2 Malectin OS-Hom supplies GN-MKI6 ZPE-1 SV-2 Tis Kba US small nucker rithoric regioner on supplies GN-RBBP4 PE-1 SV-3 Tis Kba US small nucker rithoric regioner on SS-Hom supplies GN-EFFUD2 PE-1 SV-1 Capital - OS-Hom supplies GN-CAPRINI PE-1 SV-2 Mucleokin TMB OS-Hom supplies GN-TALE PE-1 SV-1 GN/cro13-phosphate dehydrogenase, mitochondrial OS-Hom supplies GN-EFPD2 PE-1 SV-3 405 ribosomal protein S25 OS-Homo supplies GN-RBP32 PE-1 SV-1 Stomatin-like protein 2, mitochondrial OS-Hom supplies GN-BPD2 PE-1 SV-3 405 ribosomal protein S25 OS-Homo supplies GN-RBP32 PE-1 SV-3 Mitrottuble-associated protein 4 OS-Hom supplies GN-RBP32 PE-1 SV-3 Mitrottuble-associated protein 4 OS-Hom supplies GN-MPAP4 PE-1 SV-3 Mitrottuble-associated protein 4 OS-Hom supplies GN-MPAP4 PE-1 SV-3 Mitrottuble-associated protein 4 OS-Hom supplies GN-MPAP4 PE-1 SV-3 Mitrottuble-associated protein M OS-Hom supplies GN-MPAP4 PE-1 SV-3 Mitrottuble-associated protein MA2013 OS-Hom supplies GN-MPAP4 PE-1 SV-3 Mitrottuble-associated protein MA2013 OS-Hom supplies GN-MOVACI1H PE-1 SV-3 Cytoplasmic dynein 1 heavy dhai 1 OS-Hom supplies GN-MOVACI3 PE-2 SV-1 Z85 protesse regulatory subunit 60 OS-Hom supplies GN-MOVACI3 PE-2 SV-1 Z85 protesse regulatory subunit 60 OS-Hom supplies GN-MOVACI3 PE-2 SV-3 ATP-dependent RNA helicase DDX3 OS-Hom supplies GN-MOVACI3 PE-2 SV-3 ATP-dependent RNA helicase DDX3 OS-Hom supplies GN-MOVACI3 PE-2 SV-3 ATP-dependent RNA helicase DDX3 OS-Hom supplies GN-MOVACI3 PE-1 SV-3 ATP-dependent RNA helicase DDX3 OS-Hom supplies GN-MOVACI3 PE-1 SV-3 ATP-dependent RNA helicase DDX3 OS-Hom supplies GN-SULT PE-1 SV-3 ATP-4dependent RNA helicase D	1.252 1.240 1.248 1.240 1.225 1.212 0.806 0.788 0.787 0.773 0.773 0.773 0.773 0.773 0.768 0.766 0.761 0.745 0.740 0.738 0.729 0.774 0.774 0.714 0.714 0.714 0.714 0.714 0.714 0.712 0.710 0.710 0.706 0.705 0.	0.000 0.000 0.005 0.041 0.018 0.045 0.021 0.002 0.041 0.013 0.048 0.023 0.013 0.048 0.025 0.022 0.022 0.022 0.022 0.025 0.022 0.022 0.022 0.025 0.022 0.025 0.022 0.025 0.024 0.024 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.024 0.025 0.
P12956. P46013 Q141655 Q15029 Q15029 Q13529 P43304 P62851 P43304 P62851 Q10255 P43304 P52853 Q1025 P43304 P52853 Q1025 Q1025 Q1025 Q14204 Q15045 Q10045 Q10045 Q10045 Q10045 Q10045 Q140	38.3 30.79 17.5 4.55 5.1 10.6 8.66 15.85 10.29 11.5 8.66 10.585 10.29 21.6 34.25 16.62 18.83 33.07 9.32 21.6 6.04 4.63 0.9 9.32 2.6.44 10.65 10.79 9.32 2.6.44 10.55 10.79 10.75 10.	33.3 30.79 17.5 4.69 17.7 4.65 2 10.6 8.66 15.85 10.29 34.25 16.62 11.92 8.27 6.82 4.63 33.54 4.63 33.54 4.63 10.27 15.85 8.09 6.44 10.77 8.27 12.78 30.9 6.44 10.78 10.78 10.78 10.79 10.75 10.	$\begin{array}{c} 39.9\\ 8.968\\ 26.71\\ 11.76\\ 4.8\\ 12.1\\ 13.72\\ 4.8\\ 12.1\\ 13.12\\ 4.8\\ 13.72\\ 4.8\\ 13.72\\ 4.8\\ 13.72\\ 13.12\\ 13.1\\ 13.1\\ 10.7\\ 13.1\\ 10.7\\ 1$	X-ray repair cross-complementing protein 6 OS-Hom sapiens GN-XRCC6 PE-1 SV-2 Antigen KF-0 SS-Hom sapiens GN-MLEC PE-1 SV-2 Histone-binding protein RBBP4 OS-Hom sapiens GN-RBP4 PE-1 SV-3 Histone-binding protein RBBP4 OS-Hom sapiens GN-RBP4 PE-1 SV-3 I15 KDa US small nucker r/bonuckeportein component OS-Hom sapiens GN-EFTUD2 PE-1 SV-1 Capital-1 OS-Hom sapiens GN-CAPRINI PE-1 SV-2 Nucleokyin TLAB OS-Hom sapiens GN-MLEC PE-1 SV-3 dVs Hub SS-Hom sapiens GN-CAPRINI PE-1 SV-2 Inderokyin TLAB OS-Hom sapiens GN-MEPS2 PE-1 SV-1 Stomatin-Ike protein 2, mitochondrial OS-Hom sapiens GN-GPD2 PE-1 SV-3 dVs Hub SS-OS-Hom sapiens GN-RPS2 PE-1 SV-1 Stomatin-Ike protein 2, mitochondrial OS-Hom sapiens GN-GPD2 PE-1 SV-3 dVs Hubsomal protein SJ OS-Hom sapiens GN-RPS2 PE-1 SV-3 Mitorotubule-associated protein d-OS-Hom sapiens GN-HPS1 PE-1 SV-3 Heterogeneous nuclear ribonucleoprotein M OS-Hom sapiens GN-HBNX PE-1 SV-3 Huterobal mkh elicase 2 OS-Hom sapiens GN-BPS1 PE-1 SV-3 Huterobal mkh elicase 2 OS-Hom sapiens GN-BPS1 PE-1 SV-3 Huterobal mkh elicase 2 OS-Hom sapiens GN-BPS1 PE-1 SV-3 Indharaterita protein 1, nictod 31 OS-Hom sapiens GN-BNX PE-1 SV-3 ANucleolar NAh helicase 2 OS-Hom sapiens GN-BN2 DX12 PE-1 SV-3 ZY toplasmic dynein 1, heavy chain 1 OS-Hom sapiens GN-BN2 DX12 PE-1 SV-3 Indharateritar protein 1, Artoriasome OS-Hom sapiens GN-BNX PE-1 SV-3 SUN domain-containing protein 1 OS-Hom sapiens GN-BN2 DX12 PE-1 SV-3 ATP-dependent RNA helicase DXX3 OS-Hom sapiens GN-BN2 DX21 PE-1 SV-3 ATP-dependent RNA helicase DXX3 OS-Hom sapiens GN-BN2 DX24 PE-1 SV-3 ATP-dependent RNA helicase DXX3 OS-Hom sapiens GN-BN2 DX24 PE-1 SV-3 ATP-dependent RNA helicase DXX3 OS-Hom sapiens GN-BN2 DX24 PE-1 SV-3 ATP-dependent RNA helicase DXX3 OS-Hom sapiens GN-LXX72 PE-1 SV-3 ATP-4 dependent RNA helicase DXX3 OS-Hom sapiens GN-LXX72 PE-1 SV-3 ATP-4 dependent RNA helicase DXX3 OS-Hom sapiens GN-LXX72 PE-1 SV-3 ATP-4 dependent RNA helicase DXX4 OS-Hom sapiens GN-LXX72 PE-1 SV-3 ATP-4 dependent RNA helicase DXX4 OS-Hom sapie	1.252 1.248 1.240 1.240 1.245 1.212 0.806 0.778 0.778 0.773 0.773 0.773 0.773 0.773 0.773 0.768 0.766 0.766 0.766 0.766 0.766 0.779 0.779 0.729 0.729 0.729 0.721 0.714 0.714 0.714 0.714 0.714 0.712 0.710 0.710 0.710 0.710 0.705 0.	0.000 0.005 0.041 0.041 0.018 0.045 0.021 0.021 0.002 0.041 0.013 0.041 0.013 0.048 0.025 0.013 0.022 0.013 0.022 0.022 0.022 0.022 0.025 0.013 0.022 0.022 0.025 0.021 0.016 0.022 0.015 0.001 0.045 0.001 0.045 0.001 0.045 0.001 0.045 0.001 0.045 0.001 0.045 0.001 0.045 0.001 0.045 0.001 0.045 0.001 0.045 0.001 0.045 0.001 0.045 0.001 0.045 0.001 0.005 0.013 0.045 0.001 0.005 0.013 0.045 0.001 0.005 0.001 0.005 0.001 0.005 0.003 0.005 0.002 0.005 0.003 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.
P12956. 916013 Q14165 Q09028 Q15029 Q14444 Q15029 Q101985 P43304 Q101985 P43304 Q101985 P43204 Q10195 Q127018 Q14204 Q18V52 P43506 Q14204 Q18V52 P43506 Q14204 Q18V52 P43506 Q14204 Q18V52 P43506 Q14204 Q15029 P43505 Q14204 Q15029 P43505 Q14204 Q15029 P43505 Q14204 Q15029 P43505 Q14204 Q15029 P43505 Q14204 Q15029 P43505 Q14204 Q15029 P43505 Q14204 Q15029 P43505 Q14204 Q15029 P43505 Q14204 Q14204 Q15029 P43505 Q14204 Q15029 P43505 Q14204 Q15029 Q14204 Q15029 Q14204 Q14204 Q15029 Q14204 Q14204 Q15029 Q14204 Q14204 Q15029 Q14204 Q14204 Q15029 Q14204 Q14204 Q15029 Q14204 Q15029 Q14204 Q14204 Q15029 Q14204 Q14204 Q15029 Q14204 Q15029 Q14204 Q14204 Q15029 Q14204 Q15029 Q14204 Q15029 Q14204 Q14204 Q15029 Q14204 Q15029 Q14204 Q15029 Q14204 Q15029 Q14204 Q15029 Q14204 Q15029 Q14204 Q15029 Q14204 Q15029 Q14204 Q15029 Q14204 Q15029 Q14204 Q15029 Q15029 Q14204 Q15029 Q	38.3 30.79 30.79 4.55 4.55 5.1 7.7.3 5.1 10.6 8.66 10.29 21.6 34.25 34.25 34.25 4.62 10.62 9.82 21.6 34.25 33.07 10 9.82 7.6.04 4.63 33.07 10.662 8.83 33.07 10.662 8.83 33.07 10.662 8.83 4.65 8.64 4.63 10.65 8.64 4.63 8.27 6.04 8.27 7.25 2.277 12.21 2.277 12.21	38.3 30.79 17.5 4.69 7.74 5.26 8.66 15.85 10.29 21.6 33.54 10.535 33.54 10.535 33.54 10.535 33.54 10.652 8.833 33.54 10.655 8.837 6.827 6.82 6.827 17.386 2.253 2.2277 12.211	$\begin{array}{c} 33.9\\ 3.9.6\\ 3.6.71\\ 1.1.76\\ 3.6.72\\ 3.1.8.72\\ 3.1.8.72\\ 3.1.8.72\\ 3.1.8.72\\ 3.1.8.72\\ 3.1.1\\ 3.1.2.9.6\\ 3.4.55$	X-ray repair cross-complementing protein 6 OS-Hom supplers GN-XRCC6 PE-1 SV-2 Malectin OS-Hom supplers GN-MKI6 ZPE-1 SV-2 Malectin OS-Hom supplers GN-CAPRINI PE-1 SV-2 Nucleokyin TLR OS-Hom supplers GN-TALE PE-1 SV-1 Ghyterol-3-phosphate dehydrogenase, mitochondrial OS-Homo supplers GN-GPD2 PE-1 SV-3 Microtubil-2-Storm supplers GN-FIALE PE-1 SV-1 Stomatin-like protein 2. mitochondrial OS-Homo supplers GN-GPD2 PE-1 SV-3 Microtubil-2-sociated protein 4 OS-Homo supplers GN-MCAPR PE-1 SV-3 Microtubil-2-sociated protein 4 OS-Homo supplers GN-MAPK PE-1 SV-3 Microtubil-2-sociated protein 4 OS-Homo supplers GN-MAPK PE-1 SV-3 Nucleolar RNA helicase 2 OS-Homo supplers GN-MARK PE-1 SV-3 Nucleolar RNA helicase 2 OS-Homo supplers GN-MARK PE-1 SV-3 Vincharacterized protein KIAA2013 OS-Homo supplers GN-MARK PE-1 SV-3 Stortesse regulatory subunit 80 OS-Homo supplers GN-MARK PE-1 SV-3 ATP-dependert RNA helicase DXA3 OS-Homo supplers GN-MSWA2 PE-1 SV-3 ATP-dependert RNA helicase DXA3 OS-Homo supplers GN-SUNT RE-1 SV-3 ATP-dependert RNA helicase DXA3 OS-Homo supplers GN-MSWA2 PE-1 SV-3 ATP-dep	1.252 1.248 1.240 1.248 1.240 1.225 1.212 0.806 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.769 0.768 0.766 0.766 0.766 0.761 0.745 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.740 0.739 0.771 0.714 0.714 0.714 0.713 0.712 0.710 0.710 0.710 0.710 0.707 0.705 0.702 0.702 0.702	0.000 0.005 0.041 0.018 0.045 0.045 0.021 0.002 0.001 0.048 0.025 0.021 0.048 0.025 0.013 0.048 0.025 0.021 0.048 0.025 0.021 0.048 0.025 0.021 0.048 0.025 0.021 0.048 0.025 0.021 0.048 0.025 0.021 0.048 0.025 0.021 0.048 0.025 0.021 0.048 0.025 0.021 0.048 0.025 0.021 0.048 0.025 0.021 0.048 0.025 0.021 0.048 0.025 0.021 0.048 0.025 0.021 0.048 0.025 0.021 0.048 0.025 0.021 0.026 0.021 0.026 0.021 0.015 0.026 0.021 0.026 0.021 0.026 0.020 0.015 0.026 0.021 0.015 0.026 0.021 0.026 0.020 0.015 0.026 0.021 0.026 0.020 0.015 0.026 0.021 0.026 0.020 0.026 0.020 0.015 0.026 0.021 0.026 0.020 0.015 0.026 0.025 0.020 0.015 0.045 0.025 0.014 0.025 0.015 0.045 0.025 0.014 0.005 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.002 0.001 0.005 0.001 0.005 0.002 0.001 0.005 0.001 0.005 0.002 0.005 0.002 0.005 0.002 0.005 0.002 0.005 0.002 0.005 0.002 0.005 0.002 0.005 0.002 0.005 0.002 0.005 0.002 0.005 0.002 0.005 0.002 0.005 0.002 0.005 0.002 0.005 0.002 0.005 0.002 0.005 0.002 0.005 0.002 0.002 0.005 0.002 0.
P12956. P46013 Q14165 Q19028 Q15029 Q15029 Q13444 P62851 Q10195 P43004 P62851 Q10195 P43084 P62851 Q10197 P62851 Q14204 Q00571 Q46287 Q48040 Q00571 Q46287 P43086 Q14904 Q00571 Q49040 Q00571 Q49040 Q00571 Q6287 P43086 Q14029 Q14145 Q19046	38.3 30.79 17.5 4.55 7.7.3 2 10.6 8.66 8.66 10.29 10.5 8.66 10.29 10.5 8.21 6.62 8.33 3.07 9.82 2.16 6.62 8.33 3.07 9.82 2.6 4.63 10.9 9.82 2.6 4.63 10.79 10.66 2.64 10.75 10.76 10.76 10.75 10.72 10.66 10.75 10.72 10.66 10.75 10.72 10.66 10.75 10.72 10.66 10.75 10.72 10.75 10	33.3 30.79 17.5 4.69 7.744 5.26 8.66 15.85 10.29 16.62 16.62 8.83 33.54 10.3 33.54 16.62 8.83 33.54 10.29 16.62 8.83 33.54 10.29 11.92 6.82 4.63 2.651 10.67 11.78 6.82 4.63 2.651 10.07 11.78 6.82 4.63 2.255 11.78 6.80 9 6.44 10.07 11.78 6.82 7 7.85 10.07 11.78 10.67 10.78 10.	$\begin{array}{c} 33.9\\ 3.9.6\\ 3.6.71\\ 11.76\\ 2.6.71\\ 13.12\\ 4.8\\ 13.72\\ 13.12\\ 4.8\\ 13.72\\ 4.8\\ 13.72\\ 13.12\\ 2.9.6\\ 13.72\\ 13.1\\ 16.73\\ 3.73\\ 11.51\\ 16.73\\ 3.71\\ 20.1\\ 1.51\\ 1.51\\ 20.1\\ 1.5$	X ray repair cross-complementing protein 6 OS-Hom supiers GN-XRCC6 PE-1 SV-2 Antigen KF-OS-Hom supiers GN-MKI6 2PE-1 SV-2 Malectin OS-Hom supiers GN-MKI6 2PE-1 SV-2 Malectin OS-Hom supiers GN-MKI6 2PE-1 SV-2 This foo. US small nucker rithorus clearotein component OS-Hom supiers GN-EFTUD2 PE-1 SV-1 Capital_OS-Hom supiers GN-CAPRINI PE-1 SV-2 Mucleoyian TRA OS-Hom supiers GN-RB25 PE-1 SV-1 Glycerol-3-phosphate dehydrogenase, mitochondrial OS-Hom supiers GN-GPD2 PE-1 SV-3 405 ribosomal protein SJ4 OS-Hom supiers GN-RPS25 PE-1 SV-1 Glycerol-3-phosphate dehydrogenase, mitochondrial OS-Hom supiers GN-GPD2 PE-1 SV-3 405 ribosomal protein SJ4 OS-Hom supiers GN-RPS25 PE-1 SV-1 405 ribosomal protein SJ4 OS-Hom supiers GN-RPS25 PE-1 SV-3 Microtubule-associated protein 4 OS-Hom supiers GN-RPS14 PE-1 SV-3 Microtubule-associated protein 4 OS-Hom supiers GN-RPS14 PE-1 SV-3 Nucleolar RNA helicase 2 OS-Hom supiers GN-RPS14 PE-1 SV-3 ATP-dependent RNA helicase DDX33 OS-Hom supiers GN-RPMC114 PE-1 SV-3 ATP-dependent RNA helicase DDX33 OS-Hom supiers GN-RPMC121 PE-1 SV-3 ATP-dependent RNA helicase DDX33 OS-Hom supiers GN-RDX32 PE-1 SV-3 ATP-dependent RNA helicase DDX33 OS-Hom supiers GN-RDX32 PE-1 SV-3 ATP-dependent RNA helicase DDX34 OS-Hom supiers GN-RDX24 PE-1 SV-3 ATP-dependent RNA helicase DDX34 OS-Hom supiers GN-RDX24 PE-1 SV-3 ATP-dependent RNA helicase DDX43 OS-Hom supiers GN-RDX24 PE-1 SV-3 ATP-dependent RNA helicase DDX46 OS-Hom supiers GN-RDX24 PE-1 SV-3 ATP-dependent RNA helicase DDX46 OS-Hom supiers GN-RDX24 PE-1 SV-3 CAD protein LAM CR154 OS-Hom supiers GN-RDX24 PE-1 SV-3 CAD protein LAM CR154 OS-Hom supiers GN-	1.252 1.240 1.248 1.240 1.225 1.212 0.306 0.778 0.773 0.773 0.773 0.773 0.773 0.769 0.768 0.768 0.766 0.766 0.761 0.745 0.745 0.745 0.739 0.729 0.721 0.714 0.714 0.714 0.713 0.712 0.710 0.710 0.706 0.706 0.702 0.702 0.702 0.702 0.702 0.702 0.669 9	0.000 0.0005 0.041 0.041 0.018 0.045 0.041 0.016 0.021 0.002 0.041 0.013 0.041 0.013 0.041 0.041 0.048 0.025 0.041 0.048 0.025 0.041 0.022 0.041 0.025 0.048 0.025 0.015 0.022 0.025 0.015 0.022 0.025 0.015 0.025 0.015 0.025 0.015 0.022 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.001 0.015 0.024 0.005 0.001 0.002 0.001 0.005 0.001 0.002 0.002 0.001 0.005 0.002 0.002 0.002 0.001 0.005 0.002 0
P12956. P12956. Q14145 Q19028 Q15029 Q15029 Q13045 P43304 Q101085 P43304 Q101085 P43304 Q101085 P42381 Q101085 P42381 Q19027816 Q14204 Q18725 P43686 Q14204 Q14204 Q14204 Q14204 Q15029 Q14204 Q14204 Q14204 Q14204 Q14204 Q15029 Q14204 Q14204 Q14204 Q14204 Q15029 Q1005 Q105 Q1	38.3 30.79 17.5 4.55 5.1 17.2 2 10.6 15.85 10.29 21.6 34.25 21.6 34.25 21.6 34.25 10.29 21.6 34.25 10.29 21.6 34.25 10.62 26.44 4.63 26.44 4.63 26.44 4.63 26.44 4.63 27.73 2.7 17.8 4.65 5.1 2.7 17.8 2.7 17.8 2.7 17.8 2.7 17.8 2.7 17.8 2.7 17.8 2.7 17.8 2.7 17.8 2.7 17.8 2.7 17.8 2.7 17.8 2.7 17.8 2.7 17.8 2.7 17.8 2.7 17.9 2.7 17.9 2.7 17.9 2.7 17.9 2.7 17.9 2.7 17.9 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7	38.3 30.79 30.79 4.69 4.69 4.69 2 10.6 5.26 15.85 10.29 21.6 34.25 21.6 34.25 33.54 4.63 33.54 4.63 26.51 10.65 58.80 9 6.44 4.63 26.54 21.75 2.25 2.25,35	39.9 8.968 28.71 1.1.76 18.72 1.3.12 13.12 2.4.12 13.12 2.6.1 13.12 2.6.1 13.12 2.6.1 13.12 2.6.1 13.12 2.6.1 13.12 2.6.1 14.1 1.1.7 15.7 3.1.1 16.73 9.7.1 9.7.9 9.16.5 9.063 2.9.2 2.0.1 3.7.02 2.9.3 7.5.16 7.7.82 2.9.3 2.2.4.12 1.2.4 2.3.23 1.1.94 3.9.11.94 3.9.16	X-ray repair cross-complementing protein 6 OS-Hom supplers GN-XRCC6 PE-1 SV-2 Malectin OS-Homo supplers GN-MKI6 ZPE-1 SV-2 Malectin OS-Homo supplers GN-ANLE ZPE-1 SV-2 Malectin OS-Homo supplers GN-CAPRINI PE-1 SV-2 Nucleovjan TRR OS-Homo supplers GN-FADLE PE-1 SV-3 Gryterol-3-phosphate dehydrogenase, mitochondrial OS-Homo supplers GN-GPD2 PE-1 SV-3 405 ribosomal protein SS 20-Homo supplers GN-PPS2 PE-1 SV-1 Stomatin-like protein 2, mitochondrial OS-Homo supplers GN-STOML2 PE-1 SV-3 405 ribosomal protein SS 40-Homo supplers GN-PPS2 PE-1 SV-3 Microtubule-associated protein 4 OS-Homo supplers GN-MEMP PE-1 SV-3 Mucleolar TIND Netlesse 20-Stomo supplers GN-DX021 PE-1 SV-3 Nucleolar TNA Netlesse 20-Stomo supplers GN-DX021 PE-1 SV-3 Nucleolar TNA Netlesse 20-Stomo supplers GN-DX021 PE-1 SV-3 Nucleolar TNA Netlesse 20-Stomo supplers GN-DX021 PE-1 SV-3 Stomatin-Hiker ADD Stoma Supplers GN-DX021 PE-1 SV-3 Nucleolar TNA Netlesse 20-Stomo supplers GN-DX021 PE-1 SV-3 Nucleolar TNA Netlesse 20-Stomo supplers GN-DX021 PE-1 SV-3 Stomatin containing protein 1 OS-Homo supplers GN-DX021 PE-1 SV-3 ATP-dependert TNA Netlesse DX34 OS-Ho	1.252 1.248 1.240 1.248 1.240 1.225 1.212 0.806 0.796 0.798 0.773 0.773 0.773 0.773 0.773 0.773 0.769 0.768 0.761 0.766 0.761 0.740 0.738 0.729 0.738 0.729 0.738 0.721 0.714 0.714 0.713 0.714 0.713 0.712 0.714 0.713 0.710 0.707 0.705 0.705 0.705 0.702 0.699 0.6696	0.000 0.005 0.041 0.018 0.045 0.045 0.021 0.002 0.001 0.013 0.048 0.025 0.021 0.002 0.013 0.048 0.025 0.013 0.026 0.027 0.026 0.021 0.026 0.021 0.025 0.013 0.026 0.021 0.025 0.013 0.025 0.015 0.021 0.025 0.021 0.025 0.021 0.025 0.021 0.025 0.021 0.025 0.021 0.025 0.021 0.025 0.021 0.025 0.025 0.025 0.025 0.013 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.015 0.025 0.014 0.005 0.013 0.005 0.013 0.005 0.013 0.005 0.013 0.013 0.014 0.005 0.013 0.013 0.013 0.014 0.005 0.013 0.013 0.013 0.013 0.013 0.014 0.005 0.013 0.013 0.025 0.013 0.013 0.012 0.013 0.025 0.013 0.025 0.013 0.025 0.013 0.025 0.013 0.025 0.013 0.025 0.013 0.025 0.013 0.025 0.013 0.025 0.024 0.033 0.035 0.
P12956. P12956. P140013 Q14165 Q19028 Q15029 Q15029 Q13529 P13304 P20108 P27316 P27316 P27316 P27316 P27317 Q14024 P27316 Q14024 P27316 Q14024 P27316 Q14024 P27308 Q14024 P4028 P4029	38.3 30.79 17.5 17.5 2 10.6 8.66 16.82 8.86 10.29 21.6 8.86 10.29 21.6 8.83 33.07 10.6 8.21.6 8.83 33.07 9.82 10.6 9.82 7.6 4.63 10.64 16.65 8.85 10.29 9.82 7.6 4.63 10.64 11.655 10.27 12.21 12.55 13.71 22.77 12.21 12.55 13.75 12.55 13.75 12.55 13.75 12.55 13.75 12.55 13.75 12.55 13.75 12.55 13.75 12.55 13.75 12.55 13.75 12.55 13.75 12.55 13.75 12.55 13.75 12.55 13.75 12.55 13.75 12.55 13.75 12.55 13.75 12.55 13.75 12.55 13.75 13.75 13.75 13.75 14.55 1	38.3 30.79 17.5 4.69 7.74 5.26 8.66 15.85 10.29 16.62 8.83 33.54 10.62 8.83 33.54 10.62 11.92 4.63 33.54 10.07 11.92 4.63 10.62 4.63 10.07 11.92 4.63 10.07 11.92 4.63 10.07 11.92 4.63 10.07 11.93 6.84 10.07 11.95 10.07 11.95 10.07 11.95 10.07 11.95 10.07 11.95 10.07 11.95 10.07 11.95 10.07 11.95 10.07 11.95 10.07 11.95 10.07 10.05 10.05 10.07 10.05 10.07 10.05 10.07 10.05 10.	$\begin{array}{c} 33.9\\ 3.9.6\\ 3.6.71\\ 11.76\\ 3.6.72\\ 3.72\\ 3.72\\ 3.72\\ 3.72\\ 3.72\\ 3.72\\ 3.73\\ 3.73\\ 3.73\\ 3.73\\ 3.74\\ 3.74\\ 3.75\\$	X ray repair cross-complementing protein 6 OS-Hom supplies GN-XRCC6 PE-1 SV-2 Antigen KF-0 SS-Hom supplies GN-MKI6 ZPE-1 SV-2 Malectin OS-Hom supplies GN-MKI6 ZPE-1 SV-2 Table Data US and Inucker rithour cleaprotein component OS-Hom supplies GN-EFTUD2 PE-1 SV-1 Capital - OS-Hom supplies GN-CAPRINI PE-1 SV-2 Mucleokian TLR OS-Hom supplies GN-CAPRINI PE-1 SV-2 Mucleokian TLR OS-Hom supplies GN-TALE PE-1 SV-1 GN/cro1-3-phosphate dehydrogenase, mitochondrial OS-Hom supplies GN-EFD2 PE-1 SV-3 Most Status Capital Sta	1.252 1.240 1.248 1.240 1.225 1.212 0.806 0.798 0.798 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.768 0.766 0.766 0.761 0.745 0.768 0.761 0.745 0.739 0.739 0.721 0.739 0.721 0.714 0.714 0.714 0.714 0.714 0.714 0.712 0.710 0.710 0.705 0.705 0.702 0.702 0.702 0.699 0.696 0.696 0.696 0.696 0.699	0.000 0.000 0.005 0.041 0.018 0.045 0.021 0.002 0.021 0.002 0.041 0.013 0.048 0.025 0.013 0.048 0.022 0.022 0.022 0.026 0.021 0.048 0.022 0.022 0.026 0.021 0.048 0.022 0.025 0.021 0.048 0.025 0.021 0.048 0.025 0.021 0.048 0.025 0.021 0.048 0.025 0.021 0.048 0.025 0.025 0.021 0.048 0.025 0.025 0.026 0.025 0.026 0.025 0.026 0.025 0.026 0.025 0.026 0.015 0.015 0.026 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.045 0.014 0.005 0.013 0.005 0.
P12956. P46013 Q141655 Q15029 Q15029 Q15029 P43304 P62831 P43304 P62831 Q10215 P52732 Q3NR52	38.3 30.79 17.5 4.55 5.1 10.6 8.66 15.55 10.29 10.6 8.66 34.25 10.5 8.21 6.62 4.63 33.07 9.32 21.6 8.27 6.04 4.63 9.32 0 9.32 7.5 8.27 6.04 4.63 8.64 10.55 8.64 11.75 8.04 4.63 13.71 7.75 10.7	33.3 30.79 17.5 4.69 7.74 5.26 8.56 15.85 10.29 34.25 16.62 21.6 34.25 16.62 21.6 34.25 8.27 6.32 4.63 10 11.92 8.27 6.32 4.63 10.27 11.78 8.27 6.32 4.63 10.79 11.78 8.27 12.55 10.29 6.44 10.07 11.78 8.27 12.55 10.29 11.78 10.27 11.78 10.27 11.78 10.27 11.78 10.27 11.78 10.27 11.78 10.27 11.78 10.27	$\begin{array}{c} 39.9\\ 8.968\\ 2.6,71\\ 11.76\\ 4.8\\ 12.1\\ 13.72\\ 13.12\\ 14.1\\ 12.1\\ 12.1\\ 12.1\\ 12.1\\ 12.1\\ 12.1\\ 12.1\\ 13.72\\ 4.8\\ 34.5\\ 13.7\\ 13.7\\ 13.7\\ 13.7\\ 13.7\\ 14.5\\ 13.7\\ 14.5\\ 13.7\\ 14.5\\ 13.7\\ 14.5\\ $	X-ray repair cross-complementing protein 6 OS-Hom suppres GN-XRCC6 PE-1 SV-2 Malectin OS-Homo suppres GN-MKIG PE-1 SV-2 Malectin OS-Homo suppres GN-RBBP4 PE-1 SV-3 Tifs No. US-mail nucker riborucleoprotein component OS-Homo suplens GN-EFTUD2 PE-1 SV-1 Capitri-1 OS-Homo suppres GN-RBBP4 PE-1 SV-1 Chron Suppres GN-TAULT PE-1 SV-1 Malectin DIS-Homo suppres GN-RBD2 PE-1 SV-3 More Nather MR OS-Homo suppres GN-RBP2 SP E-1 SV-1 Stomath-Ilke protein 2, mitochondrial OS-Homo suppres GN-STONL2 PE-1 SV-3 Microtubule-sociated protein 4 OS-Homo suppres GN-PB2 SP E-1 SV-3 Microtubule-sociated protein 4 OS-Homo suppres GN-MENS14 PE-1 SV-3 Nuccelori RNA helicase 2 OS-Homo suppres GN-MDX12 PE-1 SV-5 RNA-hinding motif protein, X chromosome OS-Homo suppres GN-BMX PE-1 SV-3 Vucelosi RNA helicase 2 OS-Homo suppres GN-MOX21 PE-1 SV-3 Vucelosi RNA helicase DXX3 OS-Homo suppres GN-RDX21 PE-1 SV-3 SUM domain-containing protein 10S-Homo suppres GN-RDX21 PE-1 SV-3 SUN domain-containing protein 10S-Homo suppres GN-RDX24 PE-1 SV-3 AIP-dependert RNA helicase DXX3 OS-Homo suppres GN-RDX34 PE-1 SV-3 AIP-dependert RNA helicase DXX3 OS-Homo suppres GN-SU	1.252 1.248 1.240 1.240 1.225 1.212 0.306 0.773 0.773 0.773 0.773 0.773 0.769 0.768 0.761 0.766 0.740 0.739 0.738 0.729 0.721 0.714 0.714 0.710 0.705 0.705 0.705 0.702 0.702 0.702 0.696 0.696	0.000 0.005 0.041 0.041 0.018 0.045 0.021 0.021 0.002 0.041 0.013 0.041 0.013 0.041 0.013 0.048 0.025 0.013 0.022 0.025 0.013 0.022 0.021 0.016 0.021 0.023 0.016 0.021 0.023 0.016 0.021 0.016 0.021 0.013 0.022 0.025 0.016 0.021 0.016 0.021 0.013 0.048 0.021 0.016 0.021 0.013 0.022 0.025 0.016 0.021 0.016 0.021 0.013 0.022 0.025 0.016 0.001 0.023 0.015 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.013 0.023 0.013 0.045 0.013 0.023 0.013 0.023 0.013 0.045 0.013 0.023 0.014 0.005 0.001 0.005 0.023 0.023 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.023 0.045 0.030 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.045 0.030 0.005 0.023 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.024 0.023 0.024 0.023 0.024 0.023 0.023 0.024 0.023 0.024 0.023 0.024 0.023 0.024 0.023 0.023 0.024 0.023 0.024 0.023 0.024 0.023 0.023 0.024 0.023 0.023 0.023 0.024 0.023 0.023 0.023 0.023 0.024 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.025 0.
P12956. 912056. 9140013 Q14165 Q09028 Q15029 Q15029 Q14044 P62051 P43304 P62051 Q10085 P43304 P62051 Q10085 Q1020 Q120 Q120 Q120 Q120 Q10085 Q10085 Q10085 Q10085 Q10387 Q103	38.3 30.79 30.79 4.55 5.1 10.6 8.66 10.29 21.6 8.8.66 10.29 21.6 8.8.3 31.07 10.5 8.307 10.5 8.5 8.307 10.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8	38.3 30.79 30.79 30.79 30.79 30.74 4.69 4.69 3.66 3.66 3.62 3.62 3.54 3.354 10.2 3.54 10.2 3.54 10.2 3.54 10.2 3.54 10.2 3.54 10.2 3.54 4.63 3.54 4.63 3.54 4.63 2.6.55 3.54 4.63 2.2.77 1.2.31 2.2.77 1.2.31 3.3.96 2.2.77 2.5.35 3.9.08 1.5.55 3.9.08 2.5.35 3.9.08 3.5.53 3.5.54 3.5.555 3.5555 3.5555 3.5555 3.5555 3.5555 3.5555 3.55555 3.555555 3.55555555	$\begin{array}{c} 33.9\\ 3.9.6\\ 3.6.71\\ 1.1.76\\ 3.6.72\\ 3.1.3.72\\ 3.1.3.72\\ 3.1.3.72\\ 3.1.3.72\\ 3.1.3.72\\ 3.1.3.72\\ 3.1.3.72\\ 3.1.3.72\\ 3.1.3.73\\ 3.1.3.73\\ 3.1.3.73\\ 3.1.5.73\\ 3.$	X-ray repair cross-complementing protein 6 OS-Hom supplers GN-XRCC6 PE-1 SV-2 Malectin OS-Hom supplers GN-MKIG PE-1 SV-2 Malectin QS-Hom supplers GN-MKIG PE-1 SV-2 Tils fob US small nucker rhom supplers GN-RBBP4 PE-1 SV-3 Tils fob US small nucker rhom supplers GN-RBBP4 PE-1 SV-3 Nucken Visit MB OS-Hom supplers GN-RBBP4 PE-1 SV-3 Shudons State Stat	1.252 1.248 1.240 1.248 1.240 1.225 1.212 0.806 0.778 0.778 0.773 0.773 0.773 0.773 0.773 0.773 0.769 0.768 0.766 0.766 0.766 0.766 0.761 0.745 0.740 0.739 0.739 0.739 0.739 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.768 0.769 0.768 0.766 0.761 0.740 0.739 0.729 0.721 0.714 0.714 0.714 0.714 0.712 0.710 0.705 0.705 0.705 0.702 0.599 0.569 0.699 0.694 0.693 0.694 0.694 0.695 0.	0.000 0.005 0.041 0.018 0.045 0.041 0.016 0.021 0.002 0.041 0.013 0.048 0.025 0.021 0.048 0.025 0.021 0.048 0.025 0.022 0.026 0.021 0.048 0.025 0.021 0.048 0.025 0.013 0.045 0.015 0.045 0.015 0.045 0.015 0.045 0.015 0.045 0.015 0.045 0.015 0.022 0.026 0.021 0.026 0.023 0.015 0.045 0.015 0.023 0.015 0.045 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.005 0.003 0.005 0.005 0.003 0.005 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.
P12956. P46013 Q14165 Q15029 Q15029 Q13529 P43004 P42051 Q10385 P43004 P52731 Q9182 Q9182 Q9182 Q9273 Q91820 Q9282 Q93825 Q94901 Q9539 Q94901 Q9539 Q94901 Q0571 Q9539 Q94901 Q9539 P5297 Q9539 P5297 Q9539 Q9 Q9 Q9 Q9 Q9 Q9 Q9 Q9 Q9 Q	38.3 30.79 17.5 4.55 5.1 10.6 8.66 15.55 10.29 34.26 16.62 34.25 16.62 34.25 16.62 34.25 16.62 34.25 16.62 34.25 16.62 33.07 9.32 21.6 6.04 4.63 33.07 9.32 7 17.56 8.64 10.75 9.32 7 17.56 8.64 10.75	33.3 30.79 17.5 4.69 7.74 5.26 8.56 15.85 10.29 34.25 16.62 21.6 34.25 16.62 21.6 34.25 8.27 6.32 4.63 10 11.92 8.27 6.32 4.63 10.27 11.78 8.27 6.32 4.63 10.79 11.78 8.27 12.55 10.29 6.44 10.07 11.78 8.27 12.78 10.79 11.78 10.78 10.78 10.79 10.78 10.78 10.79 10.78 10.79 10.78 10.79 10.78 10.79 10.78 10.79 10.78 10.79 10.78 10.79 10.78 10.79 10.78 10.79 10.78 10.79 10.78 10.79 10.78 10.78 10.79 10.78 10.78 10.79 10.78 10.79 10.78 10.79 10.78 10.79 10.78 10.79 10.78 10.79 10.78 10.79 10.78 10.79 10.78 10.79 10.78 10.79 10.78 10.79 10.78 10.79 10.78 10.78 10.79 10.78 10.78 10.79 10.78 10.78 10.78 10.79 10.78 10.79 10.78 10.78 10.78 10.79 10.78 10.79 10.78 10.79 10.78 10.79 10.78 10.79 10.78 10.79 10.78 10.79 10.78 10.79 10.79 10.78 10.79	$\begin{array}{c} 39.9\\ 8.968\\ 2.6,71\\ 11.76\\ 4.8\\ 12.1\\ 13.72\\ 13.12\\ 14.1\\ 12.1\\ 12.1\\ 12.1\\ 12.1\\ 12.1\\ 12.1\\ 13.72\\ 4.8\\ 31.7\\ 13.72\\ 13.72\\ 13.72\\ 13.72\\ 13.72\\ 13.72\\ 14.12\\ 15.1\\ 14.51\\ 14$	X-ray repair cross-complementing protein 6 OS-Hom supiers GN-XRCC6 PE-1 SV-2 Antigen KF-OS-Hom supiers GN-MKI6 ZPE-1 SV-2 Histone-binding protein RBIP4 OS-Hom supiers (N-RBIP4 PE-1 SV-3 Lifs Kou US small nucker rithorucelegorotein component OS-Hom supiers GN-EFTUD2 PE-1 SV-1 Capitri-1 OS-Hom supiers (N-CAPRINI PE-1 SV-2 Nucleo)sin TRA OS-Hom supiers (N-CAPRINI PE-1 SV-3 G)/cerol-3-phosphate dehydrogenase, mitochondrial OS-Hom supiers GN-GPD2 PE-1 SV-3 405 ribosomal protein S25 OS-Hom supiers (N-RPS25 PE-1 SV-1 Stomatin-Hkm OS-Hom supiers (N-TALE) PE-1 SV-2 Nucleo)sin TRA OS-Hom supiers (N-RPS25 PE-1 SV-3 405 ribosomal protein S25 OS-Hom supiers (N-RPS25 PE-1 SV-3 405 ribosomal protein S25 OS-Hom supiers (N-RPS25 PE-1 SV-3 Stomatin-Hkm OS-Hom supiers (N-RPS25 PE-1 SV-3 405 ribosomal protein S14 OS-Hom supiers (N-RPS25 PE-1 SV-3 405 ribosomal protein S14 OS-Hom supiers (N-RPS25 PE-1 SV-3 405 ribosomal protein S14 OS-Hom supiers (N-RPS26 PE-1 SV-3 405 ribosomal protein S14 OS-Hom supiers (N-RPS26 PE-1 SV-3 405 ribosomal protein S14 OS-Hom supiers (N-MAP4 PE-1 SV-3 405 ribosomal protein S14 OS-Hom supiers (N-HAP4 PE-1 SV-3 405 ribosomal protein 1 OS-Hom supiers (N-HAP4 PE-1 SV-3 405 ribosomal protein 1 OS-Hom supiers (N-HAP4 PE-1 SV-3 405 ribosomal protein S14 OS-Hom supiers (N-HAP4 PE-1 SV-3 405 ribosomal protein S24 OS-Hom supiers (N-H28 PE-1 SV-2 405 ribosomal protein S24 OS-Hom supiers (N-H28 PE-1 SV-2 405 ribosomal protein S3 OS-Ho	1.252 1.248 1.240 1.240 1.225 1.212 0.306 0.773 0.773 0.773 0.773 0.773 0.768 0.766 0.761 0.740 0.739 0.738 0.729 0.721 0.714 0.714 0.710 0.705 0.705 0.705 0.705 0.702 0.702 0.702 0.696 0.696	0.000 0.005 0.041 0.041 0.018 0.045 0.021 0.021 0.002 0.041 0.013 0.041 0.013 0.041 0.013 0.048 0.025 0.013 0.022 0.025 0.013 0.022 0.021 0.016 0.021 0.023 0.016 0.021 0.023 0.016 0.021 0.016 0.021 0.013 0.022 0.025 0.016 0.021 0.016 0.021 0.013 0.048 0.021 0.016 0.021 0.013 0.022 0.025 0.016 0.021 0.016 0.021 0.013 0.022 0.025 0.016 0.001 0.023 0.015 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.013 0.023 0.013 0.045 0.013 0.023 0.013 0.023 0.013 0.045 0.013 0.023 0.014 0.005 0.001 0.005 0.023 0.023 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.023 0.045 0.030 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.045 0.030 0.005 0.023 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.024 0.023 0.024 0.023 0.024 0.023 0.023 0.024 0.023 0.024 0.023 0.024 0.023 0.024 0.023 0.023 0.024 0.023 0.024 0.023 0.024 0.023 0.023 0.024 0.023 0.023 0.023 0.024 0.023 0.023 0.023 0.023 0.024 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.025 0.
P12956. P12956. Q14145 Q19028 Q19028 Q15029 Q14444 Q15029 Q10085 P43304 Q10085 P43304 Q90271 Q902705 Q14204 Q14404 Q14	38.3 30.79 30.79 4.55 5.1 10.6 8.66 10.29 21.6 8.8.66 10.29 21.6 8.8.3 31.07 10.5 8.307 10.5 8.5 8.307 10.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8	38.3 30.79 30.79 30.79 30.79 30.74 4.69 4.69 3.66 3.66 3.62 3.62 3.54 3.354 10.2 3.354 2.2 5.3 3.354 1.2 3.354 2.2 5.3 3.354 1.2 3.354 2.2 5.3 3.394 2.2 5.3 3.394 2.2 5.3 3.394 2.2 5.3 3.394 2.2 7.5 5.2 3.394 2.2 7.5 5.2 3.394 2.2 3.354 2.2 7.5 5.2 3.394 2.2 7.5 5.2 3.394 3.394 2.2 7.5 5.2 3.394 3.394 3.394 3.394 3.394 3.394 3.394 3.394 3.394 3.394 3.395 3.394 3.395 3.394 3.395 3.394 3.395 3.394 3.395 3.394 3.395 3.394 3.395 3.394 3.395 3.394 3.395 3.394 3.395 3.394 3.395 3.394 3.395 3.394 3.395 3.3	$\begin{array}{c} 33.9\\ 3.9.6\\ 3.6.71\\ 1.1.76\\ 3.6.72\\ 3.1.3.72\\ 3.1.3.72\\ 3.1.3.72\\ 3.1.3.72\\ 3.1.3.72\\ 3.1.3.72\\ 3.1.3.72\\ 3.1.3.72\\ 3.1.3.73\\ 3.1.3.73\\ 3.1.3.73\\ 3.1.5.73\\ 3.$	X-ray repair cross-complementing protein 6 OS-Hom supplers GN-XRCC6 PE-1 SV-2 Malectin OS-Hom supplers GN-MKIG PE-1 SV-2 Malectin QS-Hom supplers GN-MKIG PE-1 SV-2 Tils fob US small nucker rhom supplers GN-RBBP4 PE-1 SV-3 Tils fob US small nucker rhom supplers GN-RBBP4 PE-1 SV-3 Nucken Visit MB OS-Hom supplers GN-RBBP4 PE-1 SV-3 Shudons State Stat	1.252 1.248 1.240 1.248 1.240 1.225 1.212 0.806 0.778 0.778 0.773 0.773 0.773 0.773 0.773 0.773 0.769 0.768 0.766 0.766 0.766 0.766 0.761 0.745 0.740 0.739 0.739 0.739 0.739 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.768 0.769 0.768 0.766 0.761 0.740 0.739 0.729 0.721 0.714 0.714 0.714 0.714 0.712 0.710 0.705 0.705 0.705 0.702 0.599 0.569 0.699 0.694 0.693 0.694 0.694 0.695 0.	0.000 0.000 0.005 0.041 0.018 0.045 0.021 0.002 0.001 0.013 0.048 0.025 0.021 0.021 0.001 0.048 0.025 0.022 0.026 0.021 0.026 0.021 0.048 0.025 0.021 0.048 0.025 0.013 0.048 0.015 0.045 0.015 0.045 0.045 0.015 0.045 0.015 0.045 0.015 0.021 0.026 0.021 0.025 0.022 0.026 0.021 0.026 0.021 0.025 0.021 0.026 0.021 0.026 0.021 0.026 0.021 0.026 0.021 0.026 0.021 0.026 0.021 0.026 0.021 0.026 0.021 0.026 0.021 0.022 0.022 0.022 0.022 0.022 0.022 0.021 0.030 0.022 0.031 0.022 0.022 0.031 0.022 0.022 0.031 0.022 0.022 0.031 0.028 0.028 0.031 0.0300 0.0300 0.0300 0.0300 0.0300 0.03000 0.
P12956. P46013 Q14165 Q15029 Q15029 Q13529 P43004 P42051 Q10385 P43004 P52731 Q9182 Q9182 Q9182 Q9273 Q91820 Q9282 Q93825 Q94901 Q9539 Q94901 Q9539 Q94901 Q0571 Q9539 Q94901 Q9539 P5297 Q9539 P5297 Q9539 Q9 Q9 Q9 Q9 Q9 Q9 Q9 Q9 Q9 Q	38.3 30.79 17.5 4.55 7.7.23 5.1 10.6 8.66 8.66 10.29 10.5 8.5 10.29 10.5 8.21 6.62 16.62 16.62 16.62 16.62 16.62 16.63 10.9 9.82 2.16 6.43 10.9 9.82 2.6,44 10.07 17.86 13.71 17.86 13.71 17.86 13.71 17.86 13.71 17.86 13.71 17.86 13.71 17.86 13.71 17.86 13.71 17.86 13.71 17.86 13.71 17.86 13.71 17.86 13.71 17.86 13.71 17.86 13.72 12.21 17.86 13.72 12.21 13.75 13.75 13.75 13.75 13.75 13.75 14.75 14.75 15.75 15.75 15.75 15.75 16.62 13.75 17.86 13.77 17.86 13.77 12.75 13.75 13.75 13.75 14.75	38.3 30.79 17.5 4.69 7.74 5.26 8.66 15.85 10.29 11.585 10.29 11.585 10.29 11.585 10.29 11.585 10.29 12.63 13.96 8.83 33.54 10.92 11.585 10.652 8.83 33.54 10.07 17.85 13.96 6.44 10.07 17.85 13.96 6.42 2.277 12.53 2.277 12.53 2.277 12.53 2.277 12.54 13.908 15.55 12.21 12.54 15.54 19.4	$\begin{array}{c} 39.9\\ 8.968\\ 26.71\\ 11.76\\ 48\\ 13.72\\ 13.12\\ 48\\ 12.1\\ 12.1\\ 12.1\\ 13.72\\ 48\\ 13.72\\ 13.12\\ 13.12\\ 13.72\\ 13.1\\ 15.1\\ 16.73\\ 9.719\\ 31.1\\ 16.73\\ 9.719\\ 20.1\\ 15.1\\ 15.1\\ 20.1\\ 15.$	X-ray repair cross-complementing protein 6 OS-Hom supiers GN-XRCC6 PE-1 SV-2 Antigen KF-OS-Hom supiers GN-MKI6 ZPE-1 SV-2 Histone-binding protein RBIP4 OS-Hom supiers (N-RBIP4 PE-1 SV-3 Lifs Kou US small nucker rithorucelegorotein component OS-Hom supiers GN-EFTUD2 PE-1 SV-1 Capitri-1 OS-Hom supiers (N-CAPRINI PE-1 SV-2 Nucleo)sin TRA OS-Hom supiers (N-CAPRINI PE-1 SV-3 G)/cerol-3-phosphate dehydrogenase, mitochondrial OS-Hom supiers GN-GPD2 PE-1 SV-3 405 ribosomal protein S25 OS-Hom supiers (N-RPS25 PE-1 SV-1 Stomatin-Hkm OS-Hom supiers (N-TALE) PE-1 SV-2 Nucleo)sin TRA OS-Hom supiers (N-RPS25 PE-1 SV-3 405 ribosomal protein S25 OS-Hom supiers (N-RPS25 PE-1 SV-3 405 ribosomal protein S25 OS-Hom supiers (N-RPS25 PE-1 SV-3 Stomatin-Hkm OS-Hom supiers (N-RPS25 PE-1 SV-3 405 ribosomal protein S14 OS-Hom supiers (N-RPS25 PE-1 SV-3 405 ribosomal protein S14 OS-Hom supiers (N-RPS25 PE-1 SV-3 405 ribosomal protein S14 OS-Hom supiers (N-RPS26 PE-1 SV-3 405 ribosomal protein S14 OS-Hom supiers (N-RPS26 PE-1 SV-3 405 ribosomal protein S14 OS-Hom supiers (N-MAP4 PE-1 SV-3 405 ribosomal protein S14 OS-Hom supiers (N-HAP4 PE-1 SV-3 405 ribosomal protein 1 OS-Hom supiers (N-HAP4 PE-1 SV-3 405 ribosomal protein 1 OS-Hom supiers (N-HAP4 PE-1 SV-3 405 ribosomal protein S14 OS-Hom supiers (N-HAP4 PE-1 SV-3 405 ribosomal protein S24 OS-Hom supiers (N-H28 PE-1 SV-2 405 ribosomal protein S24 OS-Hom supiers (N-H28 PE-1 SV-2 405 ribosomal protein S3 OS-Ho	1.252 1.248 1.240 1.245 1.212 0.306 0.773 0.773 0.773 0.773 0.768 0.766 0.761 0.762 0.763 0.764 0.765 0.761 0.745 0.740 0.738 0.729 0.714 0.714 0.713 0.710 0.706 0.702 0.706 0.702 0.704 0.702 0.699 0.696 0.694 0.693 0.692	0.000 0.0005 0.041 0.041 0.018 0.045 0.041 0.016 0.021 0.002 0.041 0.013 0.025 0.013 0.025 0.013 0.022 0.013 0.022 0.013 0.022 0.025 0.013 0.022 0.021 0.013 0.022 0.025 0.013 0.022 0.025 0.015 0.022 0.026 0.001 0.015 0.023 0.015 0.023 0.045 0.023 0.045 0.014 0.005 0.033 0.024 0.024 0.024 0.023 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.003 0.003 0.005 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.003 0.005 0.005 0.005 0.005 0.003 0.005 0.005 0.003 0.005 0.005 0.003 0.005 0.005 0.003 0.005 0.005 0.003 0.005 0.005 0.003 0.005 0.003 0.005 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.003 0.005 0.003 0.003 0.005 0.003 0.005 0.003 0.003 0.003 0.003 0.005 0.003 0.003 0.005 0.003 0.003 0.005 0.003 0.003 0.005 0.003 0.003 0.005 0.003 0.003 0.005 0.003 0.005 0.003 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.005 0.003 0.005 0
P12956. P12956. Q14145 Q19023 Q14145 Q19023 Q14145 Q19023 Q15029 Q10085 P43304 Q10085 P43304 Q10085 Q12024 Q120	38.3 30.79 17.5 17.5 17.5 17.7 17.7 10.6 15.35 10.29 10.29 10.29 10.29 10.29 10.29 10.62 15.35 10.29 10.62 16.62 16.62 16.62 16.62 16.62 16.62 16.62 17.7 10.6 10.62 10.73 10.5 10.62 10.62 10.62 10.62 10.62 10.62 10.62 10.73 10.62 10.62 10.73 10.62 10.73 10.62 10.73 10.62 10.73 10.62 10.73 10.62 10.73 10.62 10.73 10.62 10.75 10.83 10.75 10.75 10.75 10.75 10.75 10.75 10.75 10.75 10.88 10.75	38.3 30.79 17.5 4.69 17.5 4.69 10.6 15.85 10.29 10.6 15.85 10.29 10.6 15.85 10.29 10.6 22 16.62 8.83 33.54 10.6 25.65 8.09 6.44 10.65 8.09 6.44 10.39 22.53 20.75 20.4 20.4 20.5 20.4 20.5 20.4 20.5 20.4 20.5 20.4 20.5 20.5 20.4 20.5 20.5 20.4 20.5	39.9 8.968 28.71 11.76 18.72 13.12 13.12 29.6 34.55 48.3 12.1 19.7 13.12 29.6 34.55 48.34 10.1 76.6 11.6 71.1 15.7 20.1 9.73 9.11 15.7 20.1 9.063 29.2 20.1 57.16 7.782 29.32 12.204 17.76 23.15 23.42 23.42 23.42 23.42 23.42 23.44 1.194 39.16 40 41.19 38.2	X-ray repair cross-complementing protein 6 OS-Hom supplers GN-XRCC6 PE-1 SV-2 Malectin OS-Hom supplers GN-MKI6 ZPE-1 SV-2 Malectin OS-Hom supplers GN-ACLE ZPE-1 SV-2 Nucleokjan TLR OS-Hom supplers GN-CAPRINI PE-1 SV-2 Nucleokjan TLR OS-Hom supplers GN-TALE PE-1 SV-1 Ghyterol-3-phosphate dehydrogenase, mitochondrial OS-Homo supplers GN-GPD2 PE-1 SV-3 405 ribosomal protein S2 OS-Homo supplers GN-PR25 PE-1 SV-1 405 ribosomal protein S1 40 SS-Homo supplers GN-PR25 PE-1 SV-1 405 ribosomal protein S14 OS-Homo supplers GN-PR26 PE-1 SV-3 Microtubil-esociated protein 4 OS-Homo supplers GN-MARCH PE-1 SV-3 Nucleolar RNA helicase 2 OS-Homo supplers GN-PM20 PE-1 SV-5 RNA binding motif protein, X Chromo supplers GN-PM20 PE-1 SV-5 Nucleolar RNA helicase 2 OS-Homo supplers GN-PM20 PE-1 SV-3 X04 protein 1 hevery chrom supplers GN-PM20 PE-1 SV-3 X04 protein 1 hevery chrom supplers GN-PM20 PE-1 SV-3 X04 protein 1 hevery chrom supplers GN-M20 PE-1 SV-3 X04 dogendert RNA helicase DX34 OS-Hom supplers GN-PM20 PE-1 SV-3 X04 dogendert RNA helicase DX34 OS-Hom supplers GN-PM20 PE-1 SV-3 X04 dogendert RNA helicase DX34 OS-Hom supplers GN-PM20	1.252 1.248 1.248 1.240 1.225 1.212 0.806 0.773 0.773 0.773 0.773 0.773 0.769 0.766 0.761 0.745 0.739 0.734 0.721 0.714 0.714 0.710 0.705 0.705 0.705 0.702 0.596 0.696 0.696 0.696 0.696 0.693 0.692	0.000 0.005 0.041 0.018 0.045 0.041 0.016 0.021 0.002 0.001 0.048 0.025 0.021 0.048 0.025 0.013 0.048 0.025 0.021 0.048 0.025 0.021 0.048 0.025 0.021 0.048 0.025 0.021 0.048 0.025 0.021 0.048 0.025 0.021 0.048 0.025 0.021 0.048 0.025 0.021 0.048 0.025 0.021 0.048 0.025 0.021 0.048 0.025 0.021 0.048 0.025 0.021 0.048 0.025 0.011 0.015 0.023 0.015 0.045 0.014 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.028 0.033 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.
P12956. P129566 P12010	38.3 30.79 17.5 4.55 17.73 2 10.6 8.66 8.66 8.66 10.29 10.29 10.22 10.22 10.22 10.22 10.22 10.22 10.23 10.29 10.23 10.29 10.23 10.29 10.22 10.45 10.29 10.22 10.45 10.29 10.22 10.45 10.29 10.22 10.45 10.25 10.22 10.45 10.25 10.22 10.45 10.25 10.22 10.45 10.27 10.27 10.27	38.3 30.79 17.5 4.69 2 10.6 8.66 15.85 10.29 11.585 10.29 11.585 10.29 10.585 10.29 10.585 10.29 10.585 10.29 10.585 10.29 10.652 8.83 4.63 23.54 10.07 11.92 4.63 23.54 10.07 11.92 4.63 23.54 10.07 17.86 13.96 4.43 22.77 17.86 13.90 4.43 22.77 17.55 20.49 15.55 20.49 15.55 15.25 19.04 19.41 19.41 19.41 19.41	33.9 8.968 26.71 11.76 11.76 13.72 13.12 24.8 12.1 29.6 13.73 13.12 13.74 31.1 16.73 31.1 16.73 37.9 9.663 6.636 6.636 6.636 7.762 29.21 77.62 29.22 21.204 11.51 12.04 12.04 17.76 2.204 23.42 23.15 39.16 23.42 23.35 0.40 40 38.2 30.42 28.9	X ray repair cross-complementing protein 6 OS-Hom supplers GN-XRCC6 PE-1 SV-2 Antigen KF-0 SS-Hom supplers GN-MKI6 ZPE-1 SV-2 Malectin OS-Hom supplers GN-MKI6 ZPE-1 SV-2 Histone-binding protein RBIP4 OS-Hom supplers GN-RBIP4 PE-1 SV-3 I15 k Da. US small nucker rifbourdeoprotein component OS-Hom supplers GN-EFTUD2 PE-1 SV-1 Capital - OS-Hom supplers GN-CAPRINI PE-1 SV-2 Mucleokian TRA OS-Hom supplers GN-CAPRINI PE-1 SV-2 Audit MB OS-Hom supplers GN-CAPRINI PE-1 SV-2 Glycerol-3-phosphate dehydrogenase, mitochondrial OS-Hom supplers GN-GPD2 PE-1 SV-3 405 ribosomal protein S25 OS-Homo supplers GN-RBP32 PE-1 SV-3 Microtubule-associated protein 4 OS-Hom supplers GN-MPS12 PE-1 SV-3 Microtubule-associated protein 4 OS-Hom supplers GN-MPS14 PE-1 SV-3 Nucleolar Nh Delicase 2 OS-Homo supplers GN-MAVA PE-1 SV-3 SV-3 Cytoplasmic dynein 1 heavy chain 1 OS-Homo supplers GN-MAVA DC12 PE-2 SV-5 SN Abainding motif protein, X chromosome OS-Homo supplers GN-MAVA DC12 PE-2 SV-5 SN Abainding notif protein 1 OS-Homo supplers GN-MAVA PE-1 SV-3 ATP-dependent RNA helicase DDX34 OS-Homo suplers GN-MOVA PE-1 SV-3 ATP-dependent RNA helicase DDX34 OS-Homo suplers GN-PDX24 PE-1 SV-3 ATP-dependent RNA helicase DDX34 OS-Homo suplers GN-MOVA PE-1 SV-3 ATP-dependent RNA helicase DDX34 OS-Homo suplers GN-PDX24 PE-1 SV-3 ATP-dependent RNA helicase DDX34 OS-Homo suplers GN-PDX24 PE-1 SV-3 ATP-dependen	1.252 1.240 1.248 1.240 1.225 1.212 0.306 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.769 0.768 0.766 0.766 0.761 0.745 0.764 0.745 0.745 0.739 0.729 0.721 0.714 0.714 0.714 0.714 0.714 0.714 0.714 0.714 0.712 0.705 0.705 0.705 0.702 0.705 0.702 0.669 0.694 0.692 0.686 0.682 0.	0.000 0.0005 0.041 0.041 0.018 0.045 0.041 0.016 0.021 0.002 0.041 0.013 0.021 0.002 0.041 0.013 0.025 0.013 0.025 0.013 0.025 0.013 0.026 0.021 0.021 0.025 0.013 0.025 0.013 0.026 0.021 0.025 0.013 0.026 0.021 0.025 0.013 0.026 0.021 0.025 0.013 0.026 0.021 0.025 0.013 0.026 0.021 0.026 0.021 0.025 0.013 0.026 0.015 0.021 0.026 0.015 0.026 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.014 0.005 0.014 0.005 0.005 0.024 0.003 0.003 0.005 0.005 0
P12956. 912036. Q141455 Q09028 Q15029 Q14444 Q15029 P43304 Q101085 P43304 Q101085 P43304 Q101085 P43304 Q101085 P43304 Q101085 P43305 Q101085 P43207 Q101085 Q12017 Q101085 Q12017 Q101085 Q12017 Q101085 Q12017 Q101085 Q12017 Q101085 Q12017 Q101085 Q101085 Q12017 Q101085 Q10085 Q10085 Q10085 Q10085	38.3 30.79 17.5 17.5 17.5 17.5 1.7.23 2 10.6 15.85 10.29 21.6 34.25 10.29 21.6 34.25 10.29 21.6 34.25 10.622 33.07 10 9.82 26.44 4.63 30.07 10.655 8.04 4.63 22.71 17.52 20.45 39.08 22.752 20.45 39.08 22.752 20.45 39.08 22.752 20.45 39.08 22.752 20.45 39.08 22.752 20.45 39.08 22.752 20.45 39.08 22.752 20.45 39.08 22.752 20.45 39.08 22.752 20.45 39.08 22.752 20.45 39.08 22.752 20.45 39.08 22.752 20.45 39.08 22.752 20.45 39.08 25.55 5.5	38.3 30.79 30.79 4.69 17.44 5.26 10.6 15.85 10.29 21.6 34.25 10.62 34.25 10.62 34.25 3.54 4.63 10.62 2.16 6.32 4.63 10.62 2.16 6.32 4.63 10.65 8.09 6.44 4.63 10.67 17.38 6.44 10.07 17.38 6.44 10.07 17.38 6.44 10.07 17.38 6.44 10.07 17.38 6.44 10.07 17.38 6.44 10.07 17.38 10.27 17.55 10.27 12.21 17.55 15.5 5.62 4 19.41 19.41 15.12 19.41 19	39.9 8.968 28.71 11.76 18.72 13.12 13.12 29.6 34.55 48.3 48.197 31.1 19.7 31.1 10.73 10.1 10.73 10.1 10.73 10.1 10.73 10.1 10.73 10.1 10.73 7.19 9.79 20.1 9.063 29.2 9.063 29.2 11.51 20.1 7.702 29.3 29.3 75.16 7.762 22.3 23.1 11.94 39.16 20.342 23.42 23.42 23.42 23.42 23.42 23.42 23.42 23.42 28.09 30.42 28.09 19.6	X ray repair cross-complementing protein 6 OS-Hom supplers GN-XRCC6 PE-1 SV-2 Antigen KF-OS-Hom supplers GN-MKI6 ZPE-1 SV-2 Malectin OS-Hom supplers GN-MKI6 ZPE-1 SV-2 Malectin OS-Hom supplers GN-MKI6 ZPE-1 SV-2 I bit 6 but Strand Inucker rithorius clearotien incomponent OS-Hom supplers GN-EFTUD2 PE-1 SV-1 Capital - OS-Hom supplers GN-CAPRINI PE-1 SV-2 Nucleokyin TMB OS-Hom supplers GN-TALEP IE-1 SV-2 GN:errol-3-phosphate dehydrogenase, mitochondrial OS-Homo suplers GN-EFD2 PE-1 SV-3 405 ribosomal protein S25 OS-Homo suplers GN-RB25 PE-1 SV-1 Storation-like protein 2, mitochondrial OS-Homo suplers GN-B72 PE-1 SV-3 405 ribosomal protein S25 OS-Homo suplers GN-RB25 PE-1 SV-3 Mitoriubule-associated protein 4 OS-Homo suplers GN-B74 PE-1 SV-3 Mitoriubule-associated protein 4 OS-Homo suplers GN-MAPS PE-1 SV-3 Nucleolar NN helicase 2 OS-Homo suplers GN-MAPS PE-1 SV-3 Nucleolar NN helicase 2 OS-Homo suplers GN-MAPS PE-1 SV-3 RNA-binding motif protein, X Chromosume OS-Homo suplers GN-MAPS PE-1 SV-3 Nucleolar NN helicase 2 OS-Homo suplers GN-MOVAL PE-1 SV-3 Cytoplasmic dynein 1 heavy dhai 1 OS-Homo suplers GN-MOVAL PE-1 SV-3 Cytoplasmic dynein 1 heavy dhai 1 OS-Homo suplers GN-MOVAL PE-1 SV-3 ATP-dependent PRN helicase DDX3 OS-Homo suplers GN-MOVAL PE-1 SV-3 ATP-dependent RNN helicase DDX3 OS-Homo suplers GN-PEVAL PE-1 SV-3 ATP-dependent RNN helicase DDX3 OS-Homo suplers GN-PEVAL PE-1 SV-3 ATP-dependent RNN helicase DDX3 OS-Homo suplers GN-PEVAL PE-1 SV-3 ATP-depen	1.252 1.248 1.240 1.248 1.240 1.225 1.212 0.806 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.769 0.768 0.766 0.761 0.740 0.738 0.721 0.714 0.714 0.714 0.714 0.714 0.713 0.712 0.714 0.712 0.714 0.712 0.710 0.705 0.705 0.705 0.705 0.705 0.705 0.705 0.702 0.699 0.696 0.694 0.693 0.694 0.693 0.692 0.686 0.662 0.662 0.662 0.662 0.662 0.667 0.575	0.000 0.005 0.041 0.018 0.045 0.041 0.016 0.021 0.002 0.001 0.013 0.048 0.025 0.013 0.048 0.025 0.013 0.048 0.025 0.021 0.026 0.021 0.026 0.021 0.026 0.021 0.025 0.013 0.026 0.021 0.025 0.013 0.025 0.015 0.021 0.025 0.021 0.025 0.021 0.025 0.021 0.025 0.025 0.021 0.025 0.025 0.013 0.015 0.025 0.015 0.025 0.014 0.005 0.005 0.024 0.003 0.003 0.003 0.003 0.003 0.005 0.003 0.003 0.003 0.003 0.005 0.003 0.003 0.005 0.003 0.003 0.003 0.003 0.003 0.005 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.
P12956. 912036. 9140013 Q14165 Q09023 Q15029 913030 P12020 P12	38.3 30.79 17.5 17.73 2 10.6 8.66 15.85 10.29 21.6 8.86 10.29 21.6 8.83 33.07 10.5 8.86 10.29 10.6 8.86 10.585 10.29 10.6 8.83 33.07 10.5 8.83 33.07 10.5 8.84 10.585 10.642 10.642 10.642 10.642 10.644 11.554 10.67 12.55 13.71 12.21 12.55 13.908 15.55 10.27 12.55 13.908 15.55 10.27 12.55 13.908 15.55 10.27 12.55 12.77 12.21 12.55 12.75 12.55 12.75	38.3 30.79 17.5 4.69 7.74 5.26 8.66 15.85 10.29 11.52 10.62 8.83 33.54 10 11.92 16.62 8.83 33.54 10 11.92 16.62 8.83 33.54 10 11.92 26.51 16.65 8.83 33.54 10 10.07 11.92 26.51 10.65 8.83 33.54 10.07 11.92 26.55 10.29 26.55 10.29 26.55 10.29 27.75 20.49 25.35 30.03 15.55 20.49 25.35 30.90 15.55 20.49 25.35 30.90 15.55 20.49 25.35 30.90 15.55 20.49 25.35 30.90 31.55 20.49 25.35 30.39 25.35 30.39 25.35 30.39 25.35 30.39 25.35 30.39 25.35 30.39 25.35 30.39 25.35 30.39 25.35 30.39 25.35 30.39 31.55 30.39 31.55 30.39 31.55 30.39 32.77 32.77 32.77 32.77 32.77 33.54 30.65 30.65 30.65 30.65 30.55	$\begin{array}{r} 33.9\\ 3.9.6\\ 3.6.71\\ 1.1.76\\ 3.6.72\\ 3.72\\ 3.1.3.72\\ 3.1.3.72\\ 3.1.3.72\\ 3.1.3.72\\ 3.1.3.72\\ 3.1.3.72\\ 3.1.3.72\\ 3.1.3.73\\ 3.1.3.$	X-ray repair cross-complementing protein 6 OS-Hom supplens GN-XRCC6 PE-1 SV-2 Malectin OS-Homo supplens GN-MKI6 ZPE-1 SV-2 Malectin OS-Homo supplens GN-CAPRINI PE-1 SV-2 Nucleovjan TRR OS-Homo supplens GN-CAPRINI PE-1 SV-2 Mucleovjan TRR OS-Homo supplens GN-FRDED PE-1 SV-3 GY retrol-3-phosphate dehydrogenase, mitochondrial OS-Homo supplens GN-GPD2 PE-1 SV-3 405 ribosomal protein SS 10-Homo supplens GN-PPS2 PE-1 SV-1 Stomatin-like protein 2, mitochondrial OS-Homo supplens GN-STOML2 PE-1 SV-3 405 ribosomal protein SS 40-GN-mon supplens GN-PPS2 PE-1 SV-3 Microtubule-associated protein 4 OS-Homo supplens GN-MAP4 PE-1 SV-3 Mucleolar TIND Netlesse 2 OS-Homo supplens GN-DN21 PE-1 SV-3 Nucleolar TNA Netlesse 2 OS-Homo supplens GN-DN21 PE-1 SV-3 Nucleolar TNA Netlesse 2 OS-Homo supplens GN-DN21 PE-1 SV-3 Nucleolar TNA Netlesse 2 OS-Homo supplens GN-DN21 PE-1 SV-3 Nucleolar TNA Netlesse 2 OS-Homo supplens GN-DN21 PE-1 SV-3 Nucleolar TNA Netlesse 2 DN24 OS-Homo supplens GN-DN24 PE-1 SV-3 Nucleolar TNA Netlesse 2 DN24 OS-Homo supplens GN-DN24 ZPE-1 SV-3 ADP dependert TNA Netlesse DN24 GS-Homo supplens GN-DN24 ZPE-1 SV-3 ADP de	1.252 1.248 1.240 1.248 1.240 1.225 1.212 0.806 0.778 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.768 0.766 0.766 0.766 0.766 0.761 0.745 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.745 0.745 0.745 0.745 0.739 0.771 0.771 0.714 0.714 0.714 0.714 0.712 0.710 0.705 0.699 0.699 0.686 0.682 0.682 0.677 0.677 0.682 0.682 0.677 0.677 0.677 0.682 0.682 0.677 0.677 0.677 0.682 0.682 0.677 0.677 0.677 0.682 0.682 0.677 0.677 0.677 0.682 0.682 0.677 0.677 0.677 0.682 0.687 0.687 0.687 0.677 0.677 0.682 0.687 0.687 0.687 0.687 0.677 0.677 0.687 0.687 0.687 0.687 0.687 0.687 0.687 0.677 0.677 0.687 0.687 0.687 0.687 0.687 0.687 0.687 0.687 0.677 0.	0.000 0.000 0.005 0.041 0.018 0.045 0.021 0.002 0.021 0.002 0.041 0.013 0.048 0.025 0.022 0.021 0.021 0.048 0.025 0.022 0.022 0.025 0.030 0.033 0.005 0.033 0.005 0.033 0.005 0.033 0.005 0.033 0.033 0.033 0.033 0.033 0.033 0.030 0.003 0.003 0.005 0.025 0.
P12956. P46013 Q14165 Q15029 Q15029 Q14445 Q15029 P43034 Q15029 P43034 Q1021 P52731 Q1025 P43036 Q1021 P52731 Q1277 Q3NR32 Q3NR32 Q3NR32 Q4901 Q0571 Q6287 P43085 Q4901 Q10257 Q14204 Q1297 Q6287 P5295 Q14204 Q1297 Q6287 P5295 Q14204 Q1297 Q13895 Q14204 Q1297 Q13895 Q1297 Q13895 Q1297 Q13895 Q1297 Q13895 Q1297 Q13895 Q1297 Q13895 Q1297 Q13895 Q1297 Q13895 Q1297 Q13895 Q1297 Q13895 Q1297 Q13895 Q1297 Q13895 Q1297 Q1297 Q13895 Q1297 Q1297 Q1297 Q13895 Q1297 Q13895 Q1297 Q13895 Q1297 Q13895 Q1297 Q1297 Q13895 Q1297 Q1	38.3 30.79 17.5 17.5 17.5 17.5 17.23 2 10.6 15.85 10.29 21.6 34.25 10.29 21.6 34.25 10.29 21.6 34.25 10.622 33.07 10 6.04 4.63 30.67 10.82 8.83 30.77 10.82 8.83 30.77 10.82 8.83 30.77 10.82 8.83 30.77 10.82 8.83 30.77 10.82 8.83 30.77 10.82 8.83 30.77 10.82 8.83 30.77 10.82 8.84 10.29 21.6 5.1 10.62 2.6 5.1 10.62 2.6 5.1 10.62 2.6 5.1 10.62 2.6 5.1 10.62 2.6 4.63 10.79 2.7 17.86 6.04 17.85 17.27 17.85 17.27 17.85 17.27 17.85 17.27 17.85 17.27 17.85 17.55 15.5	38.3 30.79 30.79 17.5 4.69 17.54 4.59 17.44 5.26 10.6 15.85 10.29 21.6 34.25 10.62 34.25 10.62 34.25 10.62 33.54 4.63 10.29 24.6 33.54 4.63 26.55 20.49 4.63 22.77 17.86 24.63 20.77 25.55 20.49 17.25 39.03 15.55 5.24 19.4 19.44 19.44 19.45 10.75 10.75 10.75 10.75 10.62 1	39.9 8.968 26.71 11.76 11.76 13.72 13.12 13.12 4.8 12.1 12.1 12.1 13.72 13.12 4.8 34.5 5.45.5 7.73 16.73 9.719 6.635 6.636 6.635 6.636 7.782 29.21 7.762 29.32 24.12 22.315 11.94 23.42 23.42 22.23 19.916 33.42 23.44 11.94 33.42 23.15 11.94 23.42 23.44 11.94 23.42 23.45 4.0 13.82 30.42 23.35 14.19 30.42 30.42 30.42 30.42 30.42 30.42 30.42 30.42 30.42 30.42 30.42 30.42	X-ray repair cross-complementing protein 6 OS-Hom supplens GN-XRCC6 PE-1 SV-2 Malectin OS-Homo supplens GN-MKIG ZPE-1 SV-2 Mucleo Nam Bancker riborucleoprotein component OS-Homo suplens GN-EFTUD2 PE-1 SV-1 Capital OS-Homo supplens GN-CAPRINI PE-1 SV-2 Nucleolysin TRR OS-Homo supplens GN-BP22 SPE 3-SV-1 Stomath-Ilke protein 2, mitochondrial OS-Homo suplens GN-GPD2 PE-1 SV-3 405 ribosomal protein S2 OS-Homo supplens GN-PP22 SPE 3-SV-1 Stomath-Ilke protein 2, mitochondrial OS-Homo suplens GN-MTONU2 PE-1 SV-3 Mitortubule-sociated rotein A OS-Homo suplens GN-MP22 SPE 3-SV-1 Stomath-Ilke protein 2, mitochondrial OS-Homo suplens GN-MTONU2 PE-1 SV-3 Muccolar RNA helicase 2 OS-Homo suplens GN-MDX1 PE-1 SV-3 Nuccolar RNA helicase 2 OS-Homo suplens GN-MDX1 PE-1 SV-3 Nuccolar RNA helicase 2 DS-Homo suplens GN-MOX21 PE-1 SV-3 Vacobard RNA helicase DDX4 OS-Homo suplens GN-MDX21 PE-1 SV-3 Nuccolar RNA helicase DDX4 OS-Homo suplens GN-MDX21 PE-1 SV-3 Vacobard RNA helicase DDX4 OS-Homo suplens GN-MDX21 PE-1 SV-3 Nuccolar RNA helicase DDX4 OS-Homo suplens GN-MDX21 PE-1 SV-3 ADP-dependert RNA helicase DDX4 CS-Homo suplens GN-MDX24 PE-1 SV-3	1.252 1.240 1.240 1.248 1.240 1.225 1.212 0.306 0.778 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.766 0.768 0.766 0.761 0.765 0.766 0.761 0.740 0.739 0.738 0.740 0.739 0.745 0.745 0.740 0.739 0.745 0.771 0.772 0.771 0.771 0.772 0.771 0.772 0.772 0.706 0.700 0.699 0.696 0.694 0.692 0.657 0.	0.000 0.005 0.041 0.041 0.018 0.045 0.041 0.016 0.021 0.002 0.041 0.013 0.041 0.013 0.025 0.013 0.022 0.013 0.025 0.021 0.025 0.021 0.025 0.021 0.025 0.025 0.025 0.021 0.025 0.021 0.025 0.025 0.025 0.015 0.023 0.015 0.023 0.015 0.023 0.015 0.023 0.015 0.023 0.015 0.025 0.014 0.005 0.013 0.025 0.013 0.025 0.015 0.045 0.013 0.045 0.013 0.025 0.014 0.005 0.013 0.023 0.013 0.025 0.014 0.005 0.013 0.023 0.013 0.023 0.013 0.024 0.024 0.024 0.024 0.024 0.024 0.023 0.023 0.023 0.033 0.003 0.

P61247	31.73	31.73	45.83	40S ribosomal protein S3a OS=Homo sapiens GN=RPS3A PE=1 SV=2	0.663	0.028
Q9NX63	7.33	7.36	24.23	Colled-coil-helix-coiled-coil-helix domain-containing protein 3, mitochondrial OS=Homo sapiens GN=CHCHD3 PE=1		0.005
P62191	5.16	5.32	9.773	26S protease regulatory subunit 4 OS=Homo sapiens GN=PSMC1 PE=1 SV=1	0.661	0.039
P56192	4.49	4.51	4.556	MethioninetRNA ligase, cytoplasmic OS=Homo sapiens GN=MARS PE=1 SV=2	0.661	0.005
P52292	10.04	10.05	11.34	Importin subunit alpha-1 OS=Homo sapiens GN=KPNA2 PE=1 SV=1	0.657	0.005
P05023	14.63	14.63	11.54	Sodium/potassium-transporting ATPase subunit alpha-1 OS=Homo sapiens GN=ATP1A1 PE=1 SV=1	0.657	0.027
P23396	13.81	13.81	32.1	40S ribosomal protein S3 OS=Homo sapiens GN=RPS3 PE=1 SV=2	0.643	0.027
09ULC5	9.6	9.6	20.06	Long-chain-fatty-acidCoA ligase 5 OS=Homo sapiens GN=ACSL5 PE=1 SV=1	0.641	0.005
P04264	24.35	27.4	21.43	Keratin, type II cytoskeletal 1 OS=Homo sapiens GN=KRT1 PE=1 SV=6	0.641	0.022
Q8WWM		8	6.977	Ataxin-2-like protein OS=Homo sapiens GN=ATXN2L PE=1 SV=0	0.630	0.010
P62277	13.84	13.84	46.36	40S ribosomal protein S13 OS=Homo sapiens GN=RPS13 PE=1 SV=2	0.625	0.014
P54136	15.92	15.94	12.58	ArgininetRNA ligase, cytoplasmic OS=Homo sapiens GN=RARS PE=1 SV=2	0.624	0.000
P62280	7.44	7.44	17.72	40S ribosomal protein S11 OS=Homo sapiens GN=RPS11 PE=1 SV=2	0.619	0.034
Q6ZRP7	2.07	2.13	2.292		0.608	0.034
P46778	11.17	11.61	37.5	Sulfhydryl oxidase 2 OS=Homo sapiens GN=QSOX2 PE=1 SV=3		
				60S ribosomal protein L21 OS=Homo sapiens GN=RPL21 PE=1 SV=2	0.603	0.029
P35232	25.97	25.97	62.13	Prohibitin OS=Homo sapiens GN=PHB PE=1 SV=1	0.597	0.000
Q04637	14.8	14.97	6.504	Eukaryotic translation initiation factor 4 gamma 1 OS=Homo sapiens GN=EIF4G1 PE=1 SV=4	0.595	0.007
Q12904	11.52	11.52	34.62	Aminoacyl tRNA synthase complex-interacting multifunctional protein 1 OS=Homo sapiens GN=AIMP1 PE=1 SV=2	0.590	0.028
P35908	5.14	8.77	14.71	Keratin, type II cytoskeletal 2 epidermal OS=Homo sapiens GN=KRT2 PE=1 SV=2	0.579	0.014
P12532	8	8.2	17.99	Creatine kinase U-type, mitochondrial OS=Homo sapiens GN=CKMT1A PE=1 SV=1	0.573	0.044
P21796	30.29	30.29	70.67	Voltage-dependent anion-selective channel protein 1 OS=Homo sapiens GN=VDAC1 PE=1 SV=2	0.562	0.023
P62241	16	16	38.94	40S ribosomal protein S8 OS=Homo sapiens GN=RPS8 PE=1 SV=2	0.560	0.033
P62266	4.98	5.08	19.58	40S ribosomal protein S23 OS=Homo sapiens GN=RPS23 PE=1 SV=3	0.558	0.023
P32969	8.1	8.31	29.69	60S ribosomal protein L9 OS=Homo sapiens GN=RPL9 PE=1 SV=1	0.556	0.044
Q99623	26.26	26.26	51.51	Prohibitin-2 OS=Homo sapiens GN=PHB2 PE=1 SV=2	0.540	0.000
000264	14.16	14.16	28.72	Membrane-associated progesterone receptor component 1 OS=Homo sapiens GN=PGRMC1 PE=1 SV=3	0.539	0.005
P18621	12.06	12.06	32.07	60S ribosomal protein L17 OS=Homo sapiens GN=RPL17 PE=1 SV=3	0.514	0.001
P33176	4.31	4.32	3.531	Kinesin-1 heavy chain OS=Homo sapiens GN=KIF5B PE=1 SV=1	0.502	0.025
Q92520	21.64	21.64	64.32	Protein FAM3C OS=Homo sapiens GN=FAM3C PE=1 SV=1	0.501	0.001
Q15365	5.9	10.53	27.25	Poly(rC)-binding protein 1 OS=Homo sapiens GN=PCBP1 PE=1 SV=2	0.497	0.005
P49327	33.79	34.14	12.58	Fatty acid synthase OS=Homo sapiens GN=FASN PE=1 SV=3	0.495	0.000
P14618	16.11	16.79	24.67	Pyruvate kinase PKM OS=Homo sapiens GN=PKM PE=1 SV=4	0.453	0.000
Q8N5K1	6.09	6.09	31.11	CDGSH iron-sulfur domain-containing protein 2 OS=Homo sapiens GN=CISD2 PE=1 SV=1	0.435	0.031
P62753	11.11	11.11	19.28	40S ribosomal protein S6 OS=Homo sapiens GN=RPS6 PE=1 SV=1	0.423	0.003
P49792	6.67	6.94	1.055	E3 SUMO-protein ligase RanBP2 OS=Homo sapiens GN=RANBP2 PE=1 SV=2	0.402	0.008
P46781	10.65	10.65	25.26	40S ribosomal protein S9 OS=Homo sapiens GN=RPS9 PE=1 SV=3	0.395	0.001
P07437	42.77	42.91	65.54	Tubulin beta chain OS=Homo sapiens GN=TUBB PE=1 SV=2	0.369	0.047
P62249	12.69	12.69	45.89	40S ribosomal protein S16 OS=Homo sapiens GN=RPS16 PE=1 SV=2	0.351	0.001
P12268	32.34	32.34	37.74	Inosine-5'-monophosphate dehydrogenase 2 OS=Homo sapiens GN=IMPDH2 PE=1 SV=2	0.338	0.000
0.45000	12.14	16.11	40.14	Voltage-dependent anion-selective channel protein 2 OS=Homo sapiens GN=VDAC2 PE=1 SV=2	0.281	0.000
P45880						
P45880 P62244	8.28	8.28	40	40S ribosomal protein S15a OS=Homo sapiens GN=RPS15A PE=1 SV=2	0.279	0.026

Constant		T.I.I. 3.	C	A STORE HERE A CHIEF (HOTA CAR		
Supplei Uniprot	Unused	Table 2: Total	Comparis X.Cov.95.	on of TGFβ treated HCT116 WT/HCT116AS	iTRAQ Fold Change	StouffersPval
P61026	9.45	11.04	33	Protein Name; Organism; Gene name Ras-related protein Rab-10 OS=Homo sapiens GN=RAB10 PE=1 SV=1	4.716	0.026
P62158	7.65	7.65	57.72	Calmodulin OS=Homo sapiens GN=CALM1 PE=1 SV=2	4.508	0.001
P17096	7.15	7.15	41.12	High mobility group protein HMG-I/HMG-Y OS=Homo sapiens GN=HMGA1 PE=1 SV=3	4.280	0.019
P07602	16.96	16.96	28.05	Proactivator polypeptide OS=Homo sapiens GN=PSAP PE=1 SV=2	4.278	0.000
Q07021 P05556	12.14 27.88	12.14 28.34	36.17 22.06	Complement component 1 Q subcomponent-binding protein, mitochondrial OS=Homo sapiens GN=C1QBP PE=1 SV Integrin beta-1 OS=Homo sapiens GN=ITGB1 PE=1 SV=2	4.040	0.000
P18859	11.5	11.57	58.33	ATP synthase-coupling factor 6, mitochondrial OS=Homo sapiens GN=ATP5J PE=1 SV=1	4.036	0.003
P04792	20.12	20.12	69.76	Heat shock protein beta-1 OS=Homo sapiens GN=HSPB1 PE=1 SV=2	3.963	0.000
P51858	3.31	3.31	13.75	Hepatoma-derived growth factor OS=Homo sapiens GN=HDGF PE=1 SV=1	3.960	0.047
Q02952	25.73	25.73	19.08	A-kinase anchor protein 12 OS=Homo sapiens GN=AKAP12 PE=1 SV=4	3.901	0.000
043809	2.03	2.03	7.93	Cleavage and polyadenylation specificity factor subunit 5 OS=Homo sapiens GN=NUDT21 PE=1 SV=1	3.893	0.023
P06748	17.94	17.94	33.67	Nucleophosmin OS=Homo sapiens GN=NPM1 PE=1 SV=2	3.751	0.000
P09429 P26006	14.62 12.44	14.62 12.67	38.6 8.278	High mobility group protein B1 OS=Homo sapiens GN=HMGB1 PE=1 SV=3 Integrin alpha-3 OS=Homo sapiens GN=ITGA3 PE=1 SV=5	3.621 3.354	0.002
P50151	6.81	6.81	52.94	Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-10 OS=Homo sapiens GN=GNG10 PE=1 SV=1	3.350	0.002
Q16630	8.84	8.87	15.43	Cleavage and polyadenylation specificity factor subunit 6 OS=Homo sapiens GN=CPSF6 PE=1 SV=2	3.300	0.000
060664	16.09	16.09	33.41	Perilipin-3 OS=Homo sapiens GN=PLIN3 PE=1 SV=3	3.289	0.002
P16403	2	23.86	36.62	Histone H1.2 OS=Homo sapiens GN=HIST1H1C PE=1 SV=2	3.219	0.002
075531	8	8	48.31	Barrier-to-autointegration factor OS=Homo sapiens GN=BANF1 PE=1 SV=1	3.195	0.001
Q9UHD8 P62857	10.07 3.74	10.09 3.74	16.89 30.43	Septin-9 OS=Homo sapiens GN=SEPT9 PE=1 SV=2 405 ribosomal protein S28 OS=Homo sapiens GN=RPS28 PE=1 SV=1	3.193 3.125	0.000
Q15019	18.25	18.35	44.88	Septin-2 OS=Homo sapiens GN=SEPT2 PE=1 SV=1	3.096	0.000
043399	7.85	7.85	37.86	Tumor protein D54 OS=Homo sapiens GN=TPD52L2 PE=1 SV=2	3.042	0.002
Q9NVA2	7.19	7.23	11.19	Septin-11 OS=Homo sapiens GN=SEPT11 PE=1 SV=3	2.991	0.018
P18669	6.2	6.2	22.05	Phosphoglycerate mutase 1 OS=Homo sapiens GN=PGAM1 PE=1 SV=2	2.963	0.013
P07237	33.59	33.59	40.16	Protein disulfide-isomerase OS=Homo sapiens GN=P4HB PE=1 SV=3	2.935	0.000
P26885	5.92 10.44	5.92	49.3	Peptidyl-prolyl cis-trans isomerase FKBP2 OS=Homo sapiens GN=FKBP2 PE=1 SV=2	2.932	0.023
P17931 Q00588	10.44 6.12	10.44 6.12	32.8	Galectin-3 OS=Homo sapiens GN=LGALS3 PE=1 SV=5 Peptidyl-prolyl cis-trans isomerase FKBP3 OS=Homo sapiens GN=FKBP3 PE=1 SV=1	2.822	0.000
P17301	11.95	12.3	7.959	Integrin alpha-2 OS=Homo sapiens GN=ITGA2 PE=1 SV=1	2.698	0.000
P62937	19.61	19.99	69.09	Peptidyl-prolyl cis-trans isomerase A OS=Homo sapiens GN=PPIA PE=1 SV=2	2.688	0.000
Q01130	2.72	2.87	14.48	Serine/arginine-rich splicing factor 2 OS=Homo sapiens GN=SRSF2 PE=1 SV=4	2.664	0.007
P10606	15.58	15.58	46.51	Cytochrome c oxidase subunit 5B, mitochondrial OS=Homo sapiens GN=COX5B PE=1 SV=2	2.650	0.000
043181	4.07	4.07	14.29	NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial OS=Homo sapiens GN=NDUFS4 PE=1 SV=1		0.008
Q9UHB6	6.02 38.54	6.48 38.61	7.378	LIM domain and actin-binding protein 1 OS=Homo sapiens GN=LIMA1 PE=1 SV=1	2.633	0.017
Q09666 P09382	9.39	9.39	45.19	Neuroblast differentiation-associated protein AHNAK OS=Homo sapiens GN=AHNAK PE=1 SV=2 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2	2.610	0.000
P09622	6.16	6.16	8.644	Dihydrolipoyl dehydrogenase, mitochondrial OS=Homo sapiens GN=DLD PE=1 SV=2	2.602	0.029
P19404	10.31	10.31	33.33	NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial OS=Homo sapiens GN=NDUFV2 PE=1 SV=2	2.525	0.000
P60953	6	6	21.47	Cell division control protein 42 homolog OS=Homo sapiens GN=CDC42 PE=1 SV=2	2.483	0.001
P14314	20.47	20.47	25.95	Glucosidase 2 subunit beta OS=Homo sapiens GN=PRKCSH PE=1 SV=2	2.481	0.000
Q8NBJ4	2.08	2.12	9.726	Golgi membrane protein 1 OS=Homo sapiens GN=GOLM1 PE=1 SV=1	2.447	0.011
P20700 P07355	45.35 16.25	50.54	45.39 42.18	Lamin-B1 OS=Homo saplens GN=LMNB1 PE=1 SV=2	2.392	0.000
P07355 P06733	17.46	16.25 17.46	29.03	Annexin A2 OS=Homo sapiens GN=ANXA2 PE=1 SV=2 Alpha-enolase OS=Homo sapiens GN=ENO1 PE=1 SV=2	2.384 2.370	0.000
P23284	27.01	27.01	54.63	Peptidyl-prolyl cis-trans isomerase B OS=Homo sapiens GN=PPIB PE=1 SV=2	2.340	0.000
P49748	14.53	14.53	24.12	Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS=Homo sapiens GN=ACADVL PE=1 SV=1	2.314	0.005
P63261	48.37	48.37	62.4	Actin, cytoplasmic 2 OS=Homo sapiens GN=ACTG1 PE=1 SV=1	2.311	0.001
015347	8.12	8.12	30.5	High mobility group protein B3 OS=Homo sapiens GN=HMGB3 PE=1 SV=4	2.306	0.040
Q9BQ61	2.59	2.69	14.77 63.01	Uncharacterized protein C19orf43 OS=Homo sapiens GN=C19orf43 PE=1 SV=1	2.294	0.047
O43169 P26583	13.2 4.37	8.7	25.36	Cytochrome b5 type B OS=Homo sapiens GN=CYB5B PE=1 SV=2 High mobility group protein B2 OS=Homo sapiens GN=HMGB2 PE=1 SV=2	2.255	0.004
P61769	5.88	5.88	28.57	Beta-2-microglobulin OS=Homo sapiens GN=B2M PE=1 SV=1	2.239	0.001
P30040	3.36	3.38	15.33	Endoplasmic reticulum resident protein 29 OS=Homo sapiens GN=ERP29 PE=1 SV=4	2.236	0.001
Q13740	29.32	29.33	39.62	CD166 antigen OS=Homo sapiens GN=ALCAM PE=1 SV=2	2.185	0.000
014561	9.62	9.62	30.13	Acyl carrier protein, mitochondrial OS=Homo sapiens GN=NDUFAB1 PE=1 SV=3	2.173	0.021
Q16181	10.1	10.1	17.85	Septin-7 OS=Homo sapiens GN=SEPT7 PE=1 SV=2	2.161	0.002
Q71UI9	5.31 7.05	5.9 7.05	31.25 13.89	Histone H2A.V OS=Homo sapiens GN=H2AFV PE=1 SV=3	2.137 2.110	0.036
P26368 P68431	20.78	20.78	59.56	Splicing factor U2AF 65 kDa subunit OS=Homo sapiens GN=U2AF2 PE=1 SV=4 Histone H3.1 OS=Homo sapiens GN=HIST1H3A PE=1 SV=2	2.106	0.022
P14854	6.53	6.53	47.67	Cytochrome c oxidase subunit 6B1 OS=Homo sapiens GN=COX6B1 PE=1 SV=2	2.052	0.039
P24534	10.57	10.6	34.67	Elongation factor 1-beta OS=Homo sapiens GN=EEF1B2 PE=1 SV=3	2.025	0.004
Q8WXF1	13.79	14.5	19.5	Paraspeckle component 1 OS=Homo sapiens GN=PSPC1 PE=1 SV=1	2.020	0.001
P42167	6.84	23.82	40.97	Lamina-associated polypeptide 2, isoforms beta/gamma OS=Homo sapiens GN=TMPO PE=1 SV=2	2.004	0.003
Q15637 Q8WWI5	8 9.46	8 9.46	11.74 11.11	Splicing factor 1 OS=Homo sapiens GN=SF1 PE=1 SV=4 Choline transporter-like protein 1 OS=Homo sapiens GN=SLC44A1 PE=1 SV=1	2.002	0.002
P15311	32.66	32.68	32.94	Ezrin OS=Homo sapiens GN=EZR PE=1 SV=4	1.995	0.000
P49821	19.33	19.44	37.72	NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial OS=Homo sapiens GN=NDUFV1 PE=1 SV=4	1.988	0.000
Q13765	5.89	5.89	19.07	Nascent polypeptide-associated complex subunit alpha OS=Homo sapiens GN=NACA PE=1 SV=1	1.987	0.016
P09012	6.42	6.42	15.25	U1 small nuclear ribonucleoprotein A OS=Homo sapiens GN=SNRPA PE=1 SV=3	1.984	0.005
P13987	10	10	35.94	CD59 glycoprotein OS=Homo sapiens GN=CD59 PE=1 SV=1	1.977	0.023
Q96AE4 P48739	8.41	17.77	21.74	Far upstream element-binding protein 1 OS=Homo sapiens GN=FUBP1 PE=1 SV=3 Phosphatidylinositol transfer protein beta isoform OS=Homo sapiens GN=PITPNB PE=1 SV=2	1.940	0.011
Q8WXX5	2.71 9.37	2.71 9.37	9.225	Phosphatidylinositol transfer protein beta isoform US=Homo sapiens GN=PH PNB PE=1 SV=2 DnaJ homolog subfamily C member 9 OS=Homo sapiens GN=DNAJC9 PE=1 SV=1	1.931 1.905	0.029
P29966	10.03	10.1	29.52	Myristoylated alanine-rich C-kinase substrate OS=Homo sapiens GN=MARCKS PE=1 SV=4	1.895	0.041
P21579	6.47	6.59	11.14	Synaptotagmin-1 OS=Homo sapiens GN=SYT1 PE=1 SV=1	1.888	0.016
P19338	67.49	67.49	34.23	Nucleolin OS=Homo sapiens GN=NCL PE=1 SV=3	1.882	0.000
P30049	7.35	7.44	37.5	ATP synthase subunit delta, mitochondrial OS=Homo sapiens GN=ATP5D PE=1 SV=2	1.878	0.022
Q14978	23.05	23.05	18.03	Nucleolar and coiled-body phosphoprotein 1 OS=Homo sapiens GN=NOLC1 PE=1 SV=2	1.866	0.000
Q96A26 043852	3.21 6.77	3.21 6.82	16.23 14.29	Protein FAM162A OS=Homo sapiens GN=FAM162A PE=1 SV=2 Calumenin OS=Homo sapiens GN=CALU PE=1 SV=2	1.857	0.035
P51970	8	8.08	30.23	Calumenin OS=Homo saplens GN=CALO PE=1 SV=2 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8 OS=Homo saplens GN=NDUFA8 PE=1 SV=3	1.844	0.001
Q86Y82	10	10.01	28.26	Syntaxin-12 OS=Homo sapiens GN=STX12 PE=1 SV=1	1.811	0.045
Q8NC51	20.51	20.51	22.3	Plasminogen activator inhibitor 1 RNA-binding protein OS=Homo sapiens GN=SERBP1 PE=1 SV=2	1.771	0.000
Q99733	8.8	8.8	17.6	Nucleosome assembly protein 1-like 4 OS=Homo sapiens GN=NAP1L4 PE=1 SV=1	1.763	0.006
075475	7.56	7.56	10.94	PC4 and SFRS1-interacting protein OS=Homo sapiens GN=PSIP1 PE=1 SV=1	1.762	0.006
P52815	7.41	7.41	33.33	39S ribosomal protein L12, mitochondrial OS=Homo sapiens GN=MRPL12 PE=1 SV=2	1.739	0.031
P62316 P04040	11.55 10.16	11.55 10.16	46.61 21.44	Small nuclear ribonucleoprotein Sm D2 OS=Homo sapiens GN=SNRPD2 PE=1 SV=1 Catalase OS=Homo sapiens GN=CAT PE=1 SV=3	1.734 1.728	0.003
104040	10.10	10.10	6.±.99	OCCUPACION CONTRACTOR CONTRACTOR		0.000

P14927	9.85	9.85	43.24	Cytochrome b-c1 complex subunit 7 OS=Homo sapiens GN=UQCRB PE=1 SV=2	1.720	0.001
Q09028 P22307	4.55	4.69	11.76 6.947	Histone-binding protein RBBP4 OS=Homo sapiens GN=RBBP4 PE=1 SV=3	1.709	0.005
P22307 P26038	6.24	6.53		Non-specific lipid-transfer protein OS=Homo sapiens GN=SCP2 PE=1 SV=2		
	6.41 8.04	15.68	15.6 6.971	Moesin OS=Homo sapiens GN=MSN PE=1 SV=3	1.705	0.040
Q9HBR0	8.04	8.59 16.75	13.35	Putative sodium-coupled neutral amino acid transporter 10 OS=Homo sapiens GN=SLC38A10 PE=1 SV=2	1.698	0.015
Q14697				Neutral alpha-glucosidase AB OS=Homo sapiens GN=GANAB PE=1 SV=3		
P34932	4.39	4.41	8.452	Heat shock 70 kDa protein 4 OS=Homo sapiens GN=HSPA4 PE=1 SV=4	1.698	0.035
014949 Q06830	4.55	4.55	37.8	Cytochrome b-c1 complex subunit 8 OS=Homo sapiens GN=UQCRQ PE=1 SV=4	1.696	0.010
Q06830 P08621	11.14	11.14	33.67	Peroxiredoxin-1 OS=Homo sapiens GN=PRDX1 PE=1 SV=1	1.691	0.003
	9.4	9.4	14.87	U1 small nuclear ribonucleoprotein 70 kDa OS=Homo sapiens GN=SNRNP70 PE=1 SV=2	1.689	0.019
P35637	16.6	16.62	15.97	RNA-binding protein FUS OS=Homo sapiens GN=FUS PE=1 SV=1	1.683	0.005
P14625	21.02	23.41	21.54	Endoplasmin OS=Homo sapiens GN=HSP90B1 PE=1 SV=1	1.681	0.002
P35221	18.22	18.22	17.66	Catenin alpha-1 OS=Homo sapiens GN=CTNNA1 PE=1 SV=1	1.678	0.003
P16070	18.14	18.14	12.13	CD44 antigen OS=Homo sapiens GN=CD44 PE=1 SV=3	1.674	0.004
P48730	3.71	3.71	8.916	Casein kinase Lisoform delta OS=Homo sapiens GN=CSNK1D PE=1 SV=2	1.670	0.036
Q13185	5.55	6.06	29.51	Chromobox protein homolog 3 OS=Homo sapiens GN=CBX3 PE=1 SV=4	1.661	0.024
Q9UKV3 P09651	8.15	8.17	6.115	Apoptotic chromatin condensation inducer in the nucleus OS=Homo sapiens GN=ACIN1 PE=1 SV=2	1.652	0.031
	23.02	30.35	38.44	Heterogeneous nuclear ribonucleoprotein A1 OS=Homo sapiens GN=HNRNPA1 PE=1 SV=5	1.648	0.005
P40926 Q8IWA5	8.03	8.03	20.12	Malate dehydrogenase, mitochondrial OS=Homo sapiens GN=MDH2 PE=1 SV=3	1.645	0.004
	10.55	10.55 5.64	8.64 26.56	Choline transporter-like protein 2 OS=Homo sapiens GN=SLC44A2 PE=1 SV=3	1.637	0.009
P28066	5.64			Proteasome subunit alpha type-5 OS=Homo sapiens GN=PSMA5 PE=1 SV=3	1.631	0.030
Q9NX40	22.97	23.35	58.37 15.58	OCIA domain-containing protein 1 OS=Homo sapiens GN=OCIAD1 PE=1 SV=1	1.629	0.008
P13645 P27695	9.86 6.45	14.06 6.48	23.27	Keratin, type I cytoskeletal 10 OS=Homo sapiens GN=KRT10 PE=1 SV=6 DNA-(apurinic or apyrimidinic site) lyase OS=Homo sapiens GN=APEX1 PE=1 SV=2	1.622	0.047
Q9Y639	8.02 6.39	8.02	13.57 17.17	Neuroplastin OS=Homo sapiens GN=NPTN PE=1 SV=2	1.606	0.006
Q99729 P35527	5.39 11.58	13.35	17.17	Heterogeneous nuclear ribonucleoprotein A/B OS=Homo sapiens GN=HNRNPAB PE=1 SV=2 Keratin, type Loutoskeletal 9 OS=Homo sapiens GN=KPT9 PE=1 SV=3	1.504	0.009
	11.58	13.35		Keratin, type I cytoskeletal 9 OS=Homo sapiens GN=KRT9 PE=1 SV=3	1.599	
P37108 000217	4.06	4.06	43.38 13.81	Signal recognition particle 14 kDa protein OS=Homo sapiens GN=SRP14 PE=1 SV=2 NADH debudgegegege liking incode like protein 9, mitschondrial OS=Homo septeme GN=NDUES9, PE=1, SV=1		0.032
Q96PD2	4.05		13.81	NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial OS=Homo sapiens GN=NDUFS8 PE=1 SV=1	1.590	0.010
Q96PD2 P27797	11.83	11.83	30.7	Discoidin, CUB and LCCL domain-containing protein 2 OS=Homo sapiens GN=DCBLD2 PE=1 SV=1	1.589	0.005
Q9UBS4	16.02	16.02 10	23.18	Calreticulin OS=Homo sapiens GN=CALR PE=1 SV=1	1.585	0.008
Q9UBS4 P23246	10 46.04	10 46.04	23.18 42.29	DnaJ homolog subfamily B member 11 OS=Homo sapiens GN=DNAJB11 PE=1 SV=1	1.578	0.045
Q03252	46.04 36.98	46.04	42.29	Splicing factor, proline- and glutamine-rich OS=Homo sapiens GN=SFPQ PE=1 SV=2 Lamin-B2 OS=Homo sapiens GN=LMNB2 PE=1 SV=3	1.575	0.001
Q03252 P78310	36.98	43.54	40.17 23.84	Lamin-B2 OS=Homo sapiens GN=LMNB2 PE=1 SV=3 Coxsackievirus and adenovirus receptor OS=Homo sapiens GN=CXADR PE=1 SV=1	1.568	0.000
	8			Syntaxin-7 OS=Homo sapiens GN=STX7 PE=1 SV=4		
015400		8.05	20.31		1.561	0.033
P19105	12.08	12.08	46.78	Myosin regulatory light chain 12A OS=Homo sapiens GN=MYL12A PE=1 SV=2 Protein lin-7 homolog C OS=Homo sapiens GN=LIN7C PE=1 SV=1	1.555	0.017
Q9NUP9	8.2	3.07 8.2	14.72 11.7		1.544	0.005
P23786				Carnitine O-palmitoyltransferase 2, mitochondrial OS=Homo sapiens GN=CPT2 PE=1 SV=2		
Q9BQ67	6.14	6.14	11.66	Glutamate-rich WD repeat-containing protein 1 OS=Homo sapiens GN=GRWD1 PE=1 SV=1	1.535	0.030
P61586	11.89	13.47	45.08	Transforming protein RhoA OS=Homo sapiens GN=RHOA PE=1 SV=1	1.527	0.003
P09661	5.75	5.75	20.39	U2 small nuclear ribonucleoprotein A' OS=Homo sapiens GN=SNRPA1 PE=1 SV=2	1.527	0.037
Q9NQ50	6.17	6.25	29.61	395 ribosomal protein L40, mitochondrial OS=Homo sapiens GN=MRPL40 PE=1 SV=1	1.527	0.031
Q9P2B2	6.01	6.01	7.964	Prostaglandin F2 receptor negative regulator OS=Homo sapiens GN=PTGFRN PE=1 SV=2	1.513	0.010
Q14011	3.81	3.81	20.35	Cold-inducible RNA-binding protein OS=Homo sapiens GN=CIRBP PE=1 SV=1	1.512	0.047
Q9Y5B9	12.47	12.51	7.832	FACT complex subunit SPT16 OS=Homo sapiens GN=SUPT16H PE=1 SV=1	1.505	0.002
P55209	6.31	8.26	17.39	Nucleosome assembly protein 1-like 1 OS=Horno sapiens GN=NAP1L1 PE=1 SV=1	1.488	0.033
075947	11.81	11.97	59.01	ATP synthase subunit d, mitochondrial OS=Homo sapiens GN=ATP5H PE=1 SV=3	1.477	0.002
014818	6.77	6.77	20.16	Proteasome subunit alpha type-7 OS=Homo sapiens GN=PSMA7 PE=1 SV=1	1.475	0.019
P36873	24.13	24.13	47.37	Serine/threonine-protein phosphatase PP1-gamma catalytic subunit OS=Homo sapiens GN=PPP1CC PE=1 SV=1	1.454	0.050
P62750	10.47		32.69	60S ribosomal protein L23a OS=Homo sapiens GN=RPL23A PE=1 SV=1		
P30101 P13667	27.36	27.7	37.03	Protein disulfide-isomerase A3 OS=Homo sapiens GN=PDIA3 PE=1 SV=4	1.441	0.003
Q99653	9.32 12.67	9.52 12.71	13.64 54.36	Protein disulfide-isomerase A4 OS=Homo sapiens GN=PDIA4 PE=1 SV=2	1.441	0.009
P09110	11.74	11.74		Calcineurin B homologous protein 1 OS=Homo sapiens GN=CHP1 PE=1 SV=3	1.431	0.015
P11021	42.64	46.82	31.6 40.37	3-ketoacyl-CoA thiolase, peroxisomal OS=Homo sapiens GN=ACAA1 PE=1 SV=2	1.429	0.000
P11021 P38646	42.84	46.82	40.37	78 kDa glucose-regulated protein OS=Homo sapiens GN=HSPA5 PE=1 SV=2 Stress-70 protein, mitochondrial OS=Homo sapiens GN=HSPA9 PE=1 SV=2	1.393	0.009
Q92485	14.29	14.29	23.52	Acid sphingomyelinase-like phosphodiesterase 3b OS=Homo sapiens GN=SMPDL3B PE=2 SV=2	1.391	0.003
Q92485 Q9NX58	10.75	10.81	17.94		1.389	0.033
09NX58 P17480	13.97	13.97	17.94	Cell growth-regulating nucleolar protein OS=Homo sapiens GN=LYAR PE=1 SV=2 Nucleolar transcription factor 1 OS=Homo sapiens GN=UBTF PE=1 SV=1	1.379	0.033
Q15233	37.63	39.78	46.28	Non-POU domain-containing octamer-binding protein OS=Homo sapiens GN=NONO PE=1 SV=4	1.376	0.002
043707	37.63	12.01	9.001	Alpha-actinin-4 OS=Homo sapiens GN=ACTN4 PE=1 SV=2	1.375	0.002
Q07065	12.01	12.01	19.1	Cytoskeleton-associated protein 4 OS=Homo sapiens GN=CKAP4 PE=1 SV=2	1.361	0.008
Q9UQB8	9.88	10.15	18.84	Brain-specific angiogenesis inhibitor 1-associated protein 2 OS=Homo sapiens GN=BAIAP2 PE=1 SV=1	1.359	0.014
Q9Y6M1	12.96	12.96	19.2	Insulin-like growth factor 2 mRNA-binding protein 2 OS=Homo sapiens GN=IGF2BP2 PE=1 SV=2	1.358	0.009
Q9Y4L1	21.83	21.88	18.52	Hypoxia up-regulated protein 1 OS=Homo sapiens GN=HYOU1 PE=1 SV=1	1.354	0.024
095831	2.93	2.94	8.646	Apoptosis-inducing factor 1, mitochondrial OS=Homo sapiens GN=AIFM1 PE=1 SV=1	1.351	0.039
Q96EY1	8.13	8.13	11.67	DnaJ homolog subfamily A member 3, mitochondrial OS=Homo sapiens GN=DNAJA3 PE=1 SV=2	1.335	0.018
Q14165	17.5	17.5	26.71	Malectin OS=Homo sapiens GN=MLEC PE=1 SV=1	1.332	0.028
P09874	51.2	51.2	34.02	Poly [ADP-ribose] polymerase 1 OS=Homo sapiens GN=PARP1 PE=1 SV=4	1.297	0.000
Q15459	11.84	11.84	14.25	Splicing factor 3A subunit 1 OS=Homo sapiens GN=SF3A1 PE=1 SV=1	1.286	0.008
P21589	12.23	12.33	20.38	5'-nucleotidase OS=Homo sapiens GN=NT5E PE=1 SV=1	1.284	0.033
Q92945	29.45	29.55	34.32	Far upstream element-binding protein 2 OS=Homo sapiens GN=KHSRP PE=1 SV=4	1.269	0.010
Q9Y224	6.95	6.95	23.36	UPF0568 protein C14orf166 OS=Homo sapiens GN=C14orf166 PE=1 SV=1	1.259	0.038
060506	27,69	27.81	30.82	Heterogeneous nuclear ribonucleoprotein Q OS=Homo saniens GN=SYNCRIP PF=1 SV=2	1.235	0.008
Q9BTV4	12.64	12.64	31	Transmembrane protein 43 OS=Homo sapiens GN=TMEM43 PE=1 SV=1	1.228	0.003
Q9P0J0	8.03	8.03	36.11	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13 OS=Homo sapiens GN=NDUFA13 PE=1 SV=3	0.805	0.047
P55795	10.54	13.02	26.5	Heterogeneous nuclear ribonucleoprotein H2 OS=Homo sapiens GN=HNRNPH2 PE=1 SV=1	0.798	0.046
Q9B5J8	8.97	9.21	10.78	Extended synaptotagmin-1 OS=Homo sapiens GN=ESYT1 PE=1 SV=1	0.790	0.018
P62917	10.07	10.07	24.12	60S ribosomal protein L8 OS=Homo sapiens GN=RPL8 PE=1 SV=2	0.786	0.024
P62317	12.15	12.15	39.47	40S ribosomal protein S18 OS=Homo sapiens GN=RPS18 PE=1 SV=2	0.767	0.019
Q12906	36.26	36.93	25.84	Interleukin enhancer-binding factor 3 OS=Homo sapiens GN=ILF3 PE=1 SV=3	0.762	0.022
Q12906 Q15046	12.53	12.53	17.76	LysinetRNA ligase OS=Homo sapiens GN=KARS PE=1 SV=3	0.761	0.009
Q9BVJ6	8.04	8.09	7.782	U3 small nucleolar RNA-associated protein 14 homolog A OS=Homo sapiens GN=UTP14A PE=1 SV=1	0.750	0.009
P50991	21.28	23.4	34.32	US small nucleolar kina-associated protein 14 nomolog A US=Homo saplens GN=UTP14A PE=1 SV=1 T-complex protein 1 subunit delta OS=Homo saplens GN=CCT4 PE=1 SV=4	0.748	0.030
P05388	21.28	23.4	34.32 49.21	60S acidic ribosomal protein P0 OS=Homo sapiens GN=RPLP0 PE=1 SV=1	0.729	0.030
P05388 P11142	47.94	47.94	49.21	Heat shock cognate 71 kDa protein OS=Homo saplens GN=RPLPO PE=1 SV=1	0.726	0.032
Q13308	15.34	15.34	11.4	Inactive tyrosine-protein kinase 7 OS=Homo sapiens GN=PSFA8 PE=1 SV=2	0.724	0.023
P38159	15.34	8.83	9.719	RNA-binding motif protein, X chromosome OS=Homo sapiens GN=PTK / PE=1 SV=2	0.724	0.023
P50402	6.43	6.43	23.23	Emerin OS=Homo sapiens GN=EMD PE=1 SV=1	0.717	0.025
P04899	14.04	14.1	30.14	Guanine nucleotide-binding protein G(i) subunit alpha-2 OS=Homo sapiens GN=GNAI2 PE=1 SV=3	0.705	0.025
104033	14.04	14.1	30.14	ogenine understore ontonik broteni ofal anogur albua 7.02-10110 sabietis dia-diawis Le-T.3A=2	0.705	0.000

P62424	28.91	29.04	45.11	60S ribosomal protein L7a OS=Homo sapiens GN=RPL7A PE=1 SV=2	0.705	0.009
Q8N163	12.07	12.07	11.48	DBIRD complex subunit KIAA1967 OS=Homo sapiens GN=KIAA1967 PE=1 SV=2	0.701	0.008
Q15717	6.12	6.12	19.02	ELAV-like protein 1 OS=Homo sapiens GN=ELAVL1 PE=1 SV=2	0.698	0.018
Q15907	22.5	22.5	53.67	Ras-related protein Rab-11B OS=Homo sapiens GN=RAB11B PE=1 SV=4	0.694	0.023
P08107	18.15	25.2	29.8	Heat shock 70 kDa protein 1A/1B OS=Homo sapiens GN=HSPA1A PE=1 SV=5	0.685	0.002
Q92499	8.57	8.57	9.189	ATP-dependent RNA helicase DDX1 OS=Homo sapiens GN=DDX1 PE=1 SV=2	0.683	0.001
P62851	8.66	8.66	29.6	40S ribosomal protein S25 OS=Homo sapiens GN=RPS25 PE=1 SV=1	0.683	0.034
P43304	10.6	10.6	12.1	Glycerol-3-phosphate dehydrogenase, mitochondrial OS=Homo sapiens GN=GPD2 PE=1 SV=3	0.671	0.046
P26373	13.33	13.33	30.81	60S ribosomal protein L13 OS=Homo sapiens GN=RPL13 PE=1 SV=4	0.669	0.012
P36578	30.91	30.91	39.58	60S ribosomal protein L4 OS=Homo sapiens GN=RPL4 PE=1 SV=5	0.668	0.001
Q96I24	18.98	19.41	30.42	Far upstream element-binding protein 3 OS=Homo sapiens GN=FUBP3 PE=1 SV=2	0.668	0.035
P50895	10.54	10.54	15.45	Basal cell adhesion molecule OS=Homo sapiens GN=BCAM PE=1 SV=2	0.667	0.017
P61353	8.28	8.28	52.21	60S ribosomal protein L27 OS=Homo sapiens GN=RPL27 PE=1 SV=2	0.652	0.016
P04406	17.41	17.41	42.69	Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3	0.651	0.026
P49257	15.08	15.08	25.49	Protein ERGIC-53 OS=Homo sapiens GN=LMAN1 PE=1 SV=2	0.648	0.012
000116	15.01	15.08	19.3	Alkyldihydroxyacetonephosphate synthase, peroxisomal OS=Homo sapiens GN=AGPS PE=1 SV=1	0.643	0.000
Q9H7Z7	8.19	8.19	23.08	Prostaglandin E synthase 2 OS=Homo sapiens GN=PTGES2 PE=1 SV=1	0.642	0.004
Q9NX63	7.33	7.36	24.23	Coiled-coil-helix-coiled-coil-helix domain-containing protein 3, mitochondrial OS=Homo sapiens GN=CHCHD3 PE=	1 :0.641	0.024
Q9NR30	16.62	16.62	16.73	Nucleolar RNA helicase 2 OS=Homo sapiens GN=DDX21 PE=1 SV=5	0.640	0.037
Q99805	8.75	8.75	11.76	Transmembrane 9 superfamily member 2 OS=Homo sapiens GN=TM9SF2 PE=1 SV=1	0.638	0.028
P18621	12.06	12.06	32.07	60S ribosomal protein L17 OS=Homo sapiens GN=RPL17 PE=1 SV=3	0.637	0.008
P23396	13.81	13.81	32.1	40S ribosomal protein S3 OS=Homo sapiens GN=RPS3 PE=1 SV=2	0.636	0.002
P62191	5.16	5.32	9.773	26S protease regulatory subunit 4 OS=Homo sapiens GN=PSMC1 PE=1 SV=1	0.631	0.015
P48444	1.5	1.5	2.153	Coatomer subunit delta OS=Homo sapiens GN=ARCN1 PE=1 SV=1	0.628	0.030
P52272	34.25	34.25	31.1	Heterogeneous nuclear ribonucleoprotein M OS=Homo sapiens GN=HNRNPM PE=1 SV=3	0.617	0.001
Q9Y3B3	7.61	7.61	24.11	Transmembrane emp24 domain-containing protein 7 OS=Homo sapiens GN=TMED7 PE=1 SV=2	0.613	0.014
P62847	6.44	6.44	29.32	40S ribosomal protein S24 OS=Homo sapiens GN=RPS24 PE=1 SV=1	0.612	0.003
Q14204	33.07	33.54	6.608	Cytoplasmic dynein 1 heavy chain 1 OS=Homo sapiens GN=DYNC1H1 PE=1 SV=5	0.600	0.001
P25705	34.85	34.85	44.48	ATP synthase subunit alpha, mitochondrial OS=Homo sapiens GN=ATP5A1 PE=1 SV=1	0.600	0.000
Q15149	55.27	55.27	10.25	Plectin OS=Homo sapiens GN=PLEC PE=1 SV=3	0.599	0.000
Q92616	16.37	16.66	6.702	Translational activator GCN1 OS=Homo sapiens GN=GCN1L1 PE=1 SV=6	0.594	0.005
Q32010	8.74	8.74	9.648	ATP-dependent RNA helicase DDX54 OS=Homo sapiens GN=0DDX54 PE=1 SV=2	0.592	0.038
P52292	10.04	10.05	11.34	Importin subunit alpha-1 OS=Homo sapiens GN=KPNA2 PE=1 SV=2	0.592	0.033
P54136	15.92	15.94	12.58	ArgininetRNA ligase, cytoplasmic OS=Homo sapiens GN=RARS PE=1 SV=2	0.592	0.001
Q6IAA8	16.55	16.55	75.16	Ragulator complex protein LAMTOR1 OS=Homo sapiens GN=LAMTOR1 PE=1 SV=2	0.592	0.001
P40429	12.21	12.21	23.15	60S ribosomal protein L13a OS=Homo sapiens GN=RPL13A PE=1 SV=2	0.579	0.003
P41252	12.56	12.62	9.271	IsoleucinetRNA ligase, cytoplasmic OS=Homo sapiens GN=IARS PE=1 SV=2	0.578	0.003
P62081	12.95	12.95	39.18	40S ribosomal protein S7 OS=Homo sapiens GN=RPS7 PE=1 SV=1	0.575	0.035
Q8WWM7		8	6.977	Ataxin-2-like protein OS=Homo sapiens GN=ATXN2L PE=1 SV=2	0.566	0.017
P16435	17.06	17.09	23.04	NADPHcytochrome P450 reductase OS=Homo sapiens GN=POR PE=1 SV=2	0.564	0.000
P46778	11.17	11.61	37.5	60S ribosomal protein L21 OS=Homo sapiens GN=RPL21 PE=1 SV=2	0.562	0.006
P00403	2.2	2.2	13.22	Cytochrome c oxidase subunit 2 OS=Homo sapiens GN=MT-CO2 PE=1 SV=1	0.559	0.004
09H9B4	6	6	16.46	Sideroflexin-1 OS=Homo sapiens GN=SFXN1 PE=1 SV=4	0.558	0.003
P04843	9.69	9.72	11.04	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 1 OS=Homo sapiens GN=RPN1 PE=1 SV=1		0.000
Q9BVK6	17.86	17.86	37.02	Transmembrane emp24 domain-containing protein 9 OS=Homo sapiens GN=TMED9 PE=1 SV=2	0.554	0.001
P63096	6	8.09	16.95	Guanine nucleotide-binding protein G(i) subunit alpha-1 OS=Homo sapiens GN=GNAI1 PE=1 SV=2	0.551	0.034
P62701	20.49					
			39.16	405 ribosomal protein 54. X isotorm US=Homo sapiens GN=RP54X PE=1 SV=2	0.550	0.001
000571		20.49		40S ribosomal protein S4, X isoform OS=Homo sapiens GN=RPS4X PE=1 SV=2 ATP-dependent RNA helicase DDX3X OS=Homo sapiens GN=DDX3X PE=1 SV=3	0.550	0.001
000571 Q9BUF5	6.04	6.82	9.063	ATP-dependent RNA helicase DDX3X OS=Homo sapiens GN=DDX3X PE=1 SV=3		
Q9BUF5				ATP-dependent RNA helicase DDX3X OS=Homo saplens GN=DDX3X PE=1 SV=3 Tubulin beta-6 chain OS=Homo sapiens GN=TUBB6 PE=1 SV=1	0.544	0.001
Q9BUF5 Q92544	6.04 6.04	6.82 15.79	9.063 31.17	ATP-dependent. NNA helicase DDX3X OS-Homo sapiens GN=DDX3X PE=1 SV=3 Tubulin beta-6 chain OS-Homo sapiens GN=TUBB6 PE=1 SV=1. Transmembrane 9 superfamily member 4 OS+Homo sapiens GN=TM95F4 PE=1 SV=2	0.544 0.533	0.001 0.029
Q9BUF5 Q92544 P68104	6.04 6.04 3.28	6.82 15.79 3.28	9.063 31.17 5.14	ATP-dependent RNA helicase DDX3X OS=Homo sapiens GN=DDX3X PE=1 SV=3 Tubulin beta-6 chain OS=Homo sapiens GN=TUBB6 PE=1 SV=1 Transmembrane 9 superfamily member 4 OS=Homo sapiens GN=TM9SF4 PE=1 SV=2 Elongation factor 1-alpha 1 OS=Homo sapiens GN=EEFJA1 PE=1 SV=1	0.544 0.533 0.532	0.001 0.029 0.029
Q9BUF5 Q92544 P68104 P36542	6.04 6.04 3.28 25.32 4.23	6.82 15.79 3.28 25.32 4.25	9.063 31.17 5.14 38.1 7.718	ATP-dependent: RNA helicase DDX3X OS-Homo sapiens GN-DDX3X FE-1 SV-3 Tubulin beta-6 shain OS-Homo sapiens GN-UBB6 PE-1 SV-1 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN-TM95F4 PE-1 SV-2 Elongation factor 1-alpha 1 OS-Homo sapiens GN-EEF1XI PE-1 SV-1 ATP synthase subunit gamma, mitochondrial OS-Homo sapiens GN-XTPSC1 PE-1 SV-1	0.544 0.533 0.532 0.531 0.521	0.001 0.029 0.029 0.004 0.040
Q9BUF5 Q92544 P68104 P36542 P08727	6.04 6.04 3.28 25.32 4.23 33.51	6.82 15.79 3.28 25.32 4.25 37.57	9.063 31.17 5.14 38.1 7.718 56.5	ATP-dependent. INA helicase DDX3X OS-Homo sapiens GN=DDX3X PE=1 SV=3 Tubulin beta-6 chain OS-Homo sapiens GN=TUB86 PE=1 SV=1. Transmembrane 9 superfamily member 4 OS-Homo sapiens GN=TM9SF4 PE=1 SV=2 Ebngation factor 1-algha 1 OS-Homo sagiens GN=EFE1A1 PE=1 SV=1. ATP synthase subunit gamma, mitochondrial OS-Homo sapiens GN=ATP5C1 PE=1 SV=1. Keratin, type 1 cytoskeletal 19 OS=Homo sagiens GN=RF13 PE=1 SV=4.	0.544 0.533 0.532 0.531 0.521 0.515	0.001 0.029 0.029 0.004 0.040 0.000
Q9BUF5 Q92544 P68104 P36542 P08727 P62979	6.04 6.04 3.28 25.32 4.23	6.82 15.79 3.28 25.32 4.25	9.063 31.17 5.14 38.1 7.718 56.5 50.64	ATP-dependent RNA helicase DDX3X OS=Homo sapiens GN=DDX3X PE=1 SV=3 Tubulin beta-6 chain OS=Homo sapiens GN=TUBB6 PE=1 SV=1 Transmembrane 9 superfamily member 4 OS+Homo sapiens GN=TM99F4 PE=1 SV=2 Elongation factor 1-alpha 1 OS=Homo sapiens GN=EEF1A1 PE=1 SV=1 ATP synthase subunit gamma, mitochondrial OS=Homo sapiens GN=ATP5C1 PE=1 SV=1 Keratin, type I cytoskeletal 19 OS=Homo sapiens GN=KT19 PE=1 SV=4 Ubiquitin-405 rihosomal protein S27a OS=Homo sapiens GN=RP527 PE=1 SV=2	0.544 0.533 0.532 0.531 0.521 0.515 0.514	0.001 0.029 0.029 0.004 0.040 0.000 0.000 0.043
Q9BUF5 Q92544 P68104 P36542 P08727 P62979 P62854	6.04 6.04 3.28 25.32 4.23 33.51 11.32 6	6.82 15.79 3.28 25.32 4.25 37.57 11.37 6	9.063 31.17 5.14 38.1 7.718 56.5 50.64 33.91	ATP-dependent: NNA helicase DDX3X OS-Homo sapiens GN=DDX3X RE=1 SV=3 Tubulin beta-6 chain OS=Homo sapiens GN=TUB86 PE=1 SV=1 Transmembrane 9 superfamily member 4 OS=Homo sapiens GN=TM9SF4 PE=1 SV=2 Elongation factor 1 -alpha 1 OS=Homo sapiens GN=TR1A1 PE=1 SV=1 ATP synthase subunit gamma, mitochondrial OS=Homo sapiens GN=TR5C1 PE=1 SV=1 Keratin, type 1 cytoskelral 19 OS=Homo sapiens GN=RR19 PE=1 SV=4 Ubiquitin 405 ribosomal protein S27a OS=Homo sapiens GN=RPS2A PE=1 SV=2 405 ribosomal protein S27a OS=Homo sapiens GN=RPS2A PE=1 SV=3	0.544 0.533 0.532 0.531 0.521 0.515 0.514 0.510	0.001 0.029 0.029 0.004 0.040 0.000 0.043 0.022
Q9BUF5 Q92544 P68104 P36542 P08727 P62979 P62854 Q16891	6.04 6.04 3.28 25.32 4.23 33.51 11.32 6 19.86	6.82 15.79 3.28 25.32 4.25 37.57 11.37 6 20.04	9.063 31.17 5.14 38.1 7.718 56.5 50.64 33.91 32.45	ATP-dependent: NNA helicase DDX3X OS-Homo sapiens GN=DDX3X PE=1 SV=3 Tubulin beta-6 chain OS-Homo sapiens GN=TUB86 PE=1 SV=1 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN=TM9SF4 PE=1 SV=2 Ebngation factor 1-algha 1 OS-Homo sagiens GN=EF1A1 PE=1 SV=1 ATP synthase subunit gamma, mitochondrial OS-Homo sapiens GN=ATP5C1 PE=1 SV=1 Keratin, type 1 cytoskeletal 19 OS=Homo sagiens GN=RF13PE=1 SV=4 Ubiquith-40S ribosomal protein S27a OS-Homo sagiens GN=RF237A PE=1 SV=2 40S ribosomal protein S26 OS=Homo sagiens GN=RF232 PE=1 SV=3 Mitochondrial Inner membrane protein CS=Homo sagiens GN=IMT19F=1 SV=1	0.544 0.533 0.532 0.531 0.521 0.515 0.514 0.510 0.507	0.001 0.029 0.029 0.004 0.040 0.040 0.043 0.043 0.022 0.002
Q9BUF5 Q92544 P68104 P36542 P08727 P62979 P62854 Q16891 P51572	6.04 6.04 3.28 25.32 4.23 33.51 11.32 6 19.86 16.06	6.82 15.79 3.28 25.32 4.25 37.57 11.37 6 20.04 16.5	9.063 31.17 5.14 38.1 7.718 56.5 50.64 33.91	ATP-dependent: NNA helicase DDX3X OS-Homo sapiens GN-DDX3X PE-1 SV-3 Tubulin beta 6 chain OS+Homo sapiens GN-IDB8 PE-1 SV-1 Irransmembrane 9 superfamily member 4 OS-Homo sapiens GN-ITM9SF4 PE-1 SV-2 Ekongation factor 1-alpha 1 OS-Homo sapiens GN-ITR13 PE-1 SV-1 ATP synthase subunit gamma, mitochondrial OS-Homo sapiens GN-ATPSC1 PE-1 SV-1 Kenatin, type I cytoskelal 19 OS-Homo sapiens GN-ITR19 PE-1 SV-4 Ubliquitin 405 Ribosomal protein S27a OS+Homo sapiens GN-ITR527a PE-1 SV-2 405 ribosomal protein S27a OS+Homo sapiens GN-ITR527a PE-1 SV-2 Mitochondrial Inner membrane protein GN-IRPS26 PE-1 SV-3 Mitochondrial Inner membrane protein 31 OS-Homo sapiens GN-IRM17 PE-1 SV-3 B-cell receptor-associated protein 31 OS-Homo sapiens GN-IRCA931 PE-1 SV-3	0.544 0.533 0.532 0.531 0.521 0.515 0.514 0.510 0.507 0.504	0.001 0.029 0.029 0.004 0.040 0.000 0.043 0.022 0.022 0.002 0.015
Q9BUF5 Q92544 P68104 P36542 P08727 P62979 P62854 Q16891	6.04 6.04 3.28 25.32 4.23 33.51 11.32 6 19.86	6.82 15.79 3.28 25.32 4.25 37.57 11.37 6 20.04	9.063 31.17 5.14 38.1 7.718 56.5 50.64 33.91 32.45 29.67	ATP-dependent: NNA helicase DDX3X OS-Homo sapiens GN=DDX3X PE=1 SV=3 Tubulin beta-6 chain OS-Homo sapiens GN=TUB86 PE=1 SV=1 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN=TM9SF4 PE=1 SV=2 Ebngation factor 1-algha 1 OS-Homo sagiens GN=EF1A1 PE=1 SV=1 ATP synthase subunit gamma, mitochondrial OS-Homo sapiens GN=ATP5C1 PE=1 SV=1 Keratin, type 1 cytoskeletal 19 OS=Homo sagiens GN=RF13PE=1 SV=4 Ubiquith-40S ribosomal protein S27a OS-Homo sagiens GN=RF237A PE=1 SV=2 40S ribosomal protein S26 OS=Homo sagiens GN=RF232 PE=1 SV=3 Mitochondrial Inner membrane protein CS=Homo sagiens GN=IMT19F=1 SV=1	0.544 0.533 0.532 0.531 0.521 0.515 0.514 0.510 0.507	0.001 0.029 0.029 0.004 0.040 0.040 0.043 0.043 0.022 0.002
Q9BUF5 Q92544 P68104 P36542 P08727 P62979 P62854 Q16891 P51572 P05023	6.04 6.04 3.28 25.32 4.23 33.51 11.32 6 19.86 16.06 14.63	6.82 15.79 3.28 25.32 4.25 37.57 11.37 6 20.04 16.5 14.63	9,063 31.17 5.14 38.1 7.718 56.5 50.64 33.91 32.45 29.67 11.53	ATP-dependent: NNA helicase DDX3X OS-Homo sapiens GN=DDX3X PE=1 SV=3 Tubulin beta-6 chain OS-Homo sapiens GN=TUB86 PE=1 SV=1 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN=TM9SF4 PE=1 SV=2 Elongation factor 1-alpha 1 OS-Homo sapiens GN=EF1A1 PE=1 SV=1 ATP synthase subunit gamma, mitochondrial OS-Homo sapiens GN=ATPSC1 PE=1 SV=1 Keratin, type I cytoskeletal 19 OS=Homo sapiens GN=RF119 PE=1 SV=4 Ubiquitin-40S ribosomal protein S27a OS=Homo sapiens GN=RF227A PE=1 SV=2 40S ribosomal protein S27a OS=Homo sapiens GN=RF252 RF=1 SV=2 Mitochondrial inner membrane protein OS=Homo sapiens GN=BCAP31 PE=1 SV=3 Mitochondrial inner membrane protein OS=Homo sapiens GN=BCAP31 PE=1 SV=3 B-cell receptor-associated protein 31 OS=Homo sapiens GN=BCAP31 PE=1 SV=3 Sodium/potassium-transporting ATPase subunit alpha-1 OS=Homo sapiens GN=GN=ATP1A1 PE=1 SV=3	0.544 0.533 0.532 0.531 0.521 0.515 0.514 0.507 0.504 0.503	0.001 0.029 0.029 0.040 0.040 0.040 0.043 0.022 0.022 0.015 0.004
Q9BUF5 Q92544 P68104 P36542 P08727 P62979 P62854 Q16891 P51572 P05023 O75964	6.04 6.04 3.28 25.32 4.23 33.51 11.32 6 19.86 16.06 14.63 5.81	6.82 15.79 3.28 25.32 4.25 37.57 11.37 6 20.04 16.5 14.63 5.81	9,063 31.17 5.14 38.1 7.718 56.5 50.64 33.91 32.45 29.67 11.53 47.57	ATP-dependent. NNA helicase DDX3X OS-Homo sapiens GN=DDX3X R=1 SV=3 Tubulin beta-6 chain OS-Homo sapiens GN=TUB86 PE=1 SV=1 Transmembrane 3 superfamily member 4 OS-Homo sapiens GN=TM9SF4 PE=1 SV=2 Elongation factor 1 -alpha 1 OS-Homo sapiens GN=TR12 PE=1 SV=1 ATP synthase subunit gamma, mitochondrial OS-Homo sapiens GN=ATPSC1 PE=1 SV=1 Keratin, type 1 cytoskelral 19 OS-Homo sapiens GN=RR527A PE=1 SV=2 Ubiquitin-405 ribosomal protein S27a OS-Homo sapiens GN=RPS27A PE=1 SV=2 dSr ribosomal protein S26 OS-Homo sapiens GN=RPS27A PE=1 SV=3 Mitochondrial Inner membrane protein OS-Homo sapiens GN=RMS27A PE=1 SV=3 Mitochondrial Inner membrane protein OS-Homo sapiens GN=RMS27A PE=1 SV=3 Sodium/potassium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN=ATPS1A ATP synthase subunit g, mitochondrial OS-Homo sapiens GN=ATPS1A PE=1 SV=3 ATP synthase subunit g, mitochondrial OS-Homo sapiens GN=ATPS1A PE=1 SV=3 ATP synthase subunit g, mitochondrial OS-Homo sapiens GN=ATPS1A PE=1 SV=3 Mosin+OS-Homo sapiens GN=ATPS1A PE=1 SV=3 ATP synthase subunit g, mitochondrial OS-Homo sapiens GN=ATPS1A PE=1 SV=3 Mosin+OS-Homo sapiens GN=ATPS1A PE=1 SV=3 ATP synthase subunit g, mitochondrial OS-Homo sapiens GN=ATPS1A PE=1 SV=3 Mosin+OS-Homo sapiens GN=ATPS1A PE=1 SV=3 Mosin+OS-Homo sapiens GN=ATPS1A PE=1 SV=3 ATP synthase subunit g, mitochondrial OS-Homo sapiens GN=ATPS1A PE=1 SV=3 Mosin+OS-Homo sapiens GN=ATPS1A PE=1 SV=4 Mosin+OS-Homo sapiens GN=ATPS1A PE=1 SV=4 MOSIN ADS-HOMO sapiens GN=ATPS1A PE=1 SV=4	0.544 0.533 0.532 0.531 0.515 0.515 0.514 0.510 0.507 0.504 0.503 0.502	0.001 0.029 0.029 0.004 0.040 0.040 0.043 0.022 0.002 0.016 0.004 0.018
Q9BUF5 Q92544 P68104 P36542 P08727 P62979 P62854 Q16891 P51572 P05023 O75964 P35579	6.04 6.04 3.28 25.32 4.23 33.51 11.32 6 19.86 16.06 14.63 5.81 80.73	6.82 15.79 3.28 25.32 4.25 37.57 11.37 6 20.04 16.5 14.63 5.81 80.73	9.063 31.17 5.14 38.1 7.718 56.5 50.64 33.91 32.45 29.67 11.53 47.57 26.99	ATP-dependent: RNA helicase DDX3X OS-Homo sapiens GN-DDX3X FE-1 SV-3 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN-TM95F4 PE-1 SV-2 Ekongation factor 1-alpha 1 OS-Homo sapiens GN-TM19F4 SV-1 ATP synthase subunit gamma, mitochondrial OS-Homo sapiens GN-ATPSC1 PE-1 SV-2 Keratin, type 1 cytosketal 19 OS-Homo sapiens GN-MET19 Fc1 SV-4 Ubliquitin-405 fibosomal protein S2a OS-Homo sapiens GN-MET27A PE-1 SV-2 40s rithosomal protein S2a OS-Homo sapiens GN-MET27A PE-1 SV-2 Mitochondrial Inner merbane protein GS-Homo sapiens GN-MET27A PE-1 SV-2 B-cell receptor-associated protein S1 OS-Homo sapiens GN-BCP37 PE-1 SV-3 Sodium/potasium-transporting AIPase subunit alpha-1 OS-Homo sapiens GN-ATPSL PE-1 SV-3 ATP synthase subunit g, mitochondrial OS-Homo sapiens GN-MET28 PE-1 SV-3	0.544 0.533 0.532 0.531 0.515 0.514 0.510 0.504 0.504 0.502 0.502 0.499	0.001 0.029 0.029 0.004 0.040 0.040 0.043 0.022 0.016 0.002 0.016 0.018 0.018 0.000
Q9BUF5 Q92544 P68104 P36542 P08727 P62979 P62979 P62854 Q16891 P51572 P05023 O75964 P35579 P62266	6.04 6.04 3.28 25.32 4.23 33.51 11.32 6 6 19.86 16.06 14.63 5.81 80.73 4.98	6.82 15.79 3.28 25.32 4.25 37.57 11.37 6 20.04 16.5 14.63 5.81 80.73 5.08	9.063 31.17 5.14 38.1 7.718 56.5 50.64 33.91 32.45 29.67 11.53 47.57 26.99 19.58	ATP-dependent. INA helicase DDX3X OS-Homo sapiens GN=DDX3X PE=1 SV=3 Tubulin beta-6 chain OS-Homo sapiens GN=TUB86 PE=1 SV=1 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN=TM9574 PE=1 SV=2 Ekongation factor 1-alpha 1 OS-Homo sapiens GN=TR1A1 PE=1 SV=1 ATP synthase subunit gamma, mitochondrial OS-Homo sapiens GN=TPS27A PE=1 SV=2 Keratin, Type 1 cytoskeleral 19 OS-Homo sapiens GN=RFS27A PE=1 SV=2 Ubiquith-405 riboscmal protein S27a OS-Homo sapiens GN=RFS27A PE=1 SV=2 405 riboscmal protein S20 -SHomo sapiens GN=RFS27A PE=1 SV=2 Mitochondrial Inner membrane protein OS-Homo sapiens GN=RFS27A PE=1 SV=3 Soldum/proteinssum-transporting ATPaes subunit gha-1 OS-Homo sapiens GN=RCP31 PE=1 SV=3 Soldum/proteinssum-transporting ATPaes subunit gha-1 OS-Homo sapiens GN=ATP1A1 PE=1 SV=3 ATP synthase subunit g, mitochondrial OS-Homo sapiens GN=ATP52 PE=1 SV=3 Myosin-9 OS-Homo sapiens GN=MCP31 PE=1 SV=3 ADS riboscmal protein S20 SOL	0.544 0.533 0.532 0.531 0.521 0.515 0.514 0.507 0.504 0.503 0.502 0.499 0.499	0.001 0.029 0.029 0.004 0.040 0.040 0.042 0.002 0.002 0.002 0.002 0.004 0.018 0.004 0.013
Q9BUF5 Q92544 P68104 P36542 P68727 P62979 P62854 Q16891 P51572 P65023 Q75964 P35579 P62266 Q00410 P49327 Q07020	6.04 6.04 3.28 25.32 4.23 33.51 11.32 6 19.86 16.06 14.63 5.81 80.73 4.98 6.12	6.82 15.79 3.28 25.32 4.25 37.57 11.37 6 20.04 16.5 14.63 5.81 80.73 5.08 6.87	9.063 31.17 5.14 38.1 7.718 56.5 50.64 33.91 32.45 29.67 11.53 47.57 26.99 19.58 5.014	ATP-dependent: NNA helicase DDX3X OS-Homo sapiens GN-DDX3X PE-1 SV-3 Tubulin beta-6 chain OS-Homo sapiens GN-TUBB6 PE-1 SV-1 Irransmembrane 9 superfamily member 4 OS-Homo sapiens GN-TM9SF4 PE-1 SV-2 Ekongation factor 1-alpha 1 OS-Homo sapiens GN-TKT13 PE-1 SV-1 ATP synthase subunit gamma, mitochondrial OS-Homo sapiens GN-ATP5C1 PE-1 SV-1 Keratin, type I cytoskeltal 19 OS-Homo sapiens GN-KRT19 PE-1 SV-4 Ubliquitin 405 Ribosomal protein S270 OS-Homo sapiens GN-RPSZ7A PE-1 SV-2 405 ribosomal protein S270 OS-Homo sapiens GN-RPSZ7A PE-1 SV-2 405 ribosomal protein S26 OS-Homo sapiens GN-RPSZ7A PE-1 SV-3 Mitochondrial Inner membrane protein OS-Homo sapiens GN-RDSZ7A PE-1 SV-3 Sodium/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN-ADP31 PE-1 SV-3 Sodium/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN-ADP31 PE-1 SV-3 Mitoshondrial OS-Homo sapiens GN-ADP31 PE-1 SV-3 Mitoshondrial OS-Homo sapiens GN-ADP31 PE-1 SV-3 Mitosin-9 OS-Homo sapiens GN-MP52 PE-1 SV-4 Mitosin-9 OS-Homo sapiens GN-MP52 PE-1 SV-3 Mi	0.544 0.533 0.532 0.531 0.515 0.514 0.507 0.504 0.503 0.502 0.499 0.499 0.496	0.001 0.029 0.029 0.004 0.040 0.040 0.043 0.022 0.015 0.004 0.018 0.003 0.013 0.003
Q9BUF5 Q92544 P68104 P36542 P08727 P62979 P62979 P62854 Q16891 P51572 P05023 Q75964 P35579 P62266 Q00410 P49327	6.04 6.04 3.28 25.32 4.23 33.51 11.32 6 19.86 16.06 14.63 5.81 4.98 6.12 33.79	6.82 15.79 3.28 25.32 4.25 37.57 11.37 6 20.04 16.5 14.63 5.81 80.73 5.08 6.87 34.14	9.063 31.17 5.14 38.1 7.718 56.5 50.64 33.91 32.45 29.67 11.53 47.57 26.99 19.58 5.014 12.58	ATP-dependent. RNA helicase DDX3X OS-Homo sapiens GN=DDX3X RE=1 SV=3 Tubulin beta-6 chain OS-Homo sapiens GN=TUBB6 PE=1 SV=1 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN=TM9SF4 PE=1 SV=2 Elongation factor 1 -alpha 1 OS-Homo sapiens GN=TRAIX PE=1 SV=1 TAP synthase subunit gamma, mitochondrial OS-Homo sapiens GN=TRSCI PE=1 SV=1 Keratin, type 1 cytoskeletal 19 OS-Homo sapiens GN=RPS2 FIE SV=2 Ubiquitin-405 ribosomal protein S27a OS-Homo sapiens GN=RPS2 FIE SV=2 405 ribosomal protein S2 OS-Homo sapiens GN=RPS2 FIE SV=3 Mitochondrial Inner membrane protein OS-Homo sapiens GN=RPS2 FIE SV=3 Sodium/potassium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN=APS2 FIE SV=3 Sodium/potassium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN=APS2 FIE SV=3 Moscin+OS-Homo sapiens GN=APS2 FIE SV=4 Hopsrin+OS-Homo sapiens GN=APS2 FIE SV=3 Moscin+OS-Homo sapiens GN=APS2 FIE SV=3 Moscin+OS-Homo sapiens GN=APS2 FIE SV=3 Moscin+OS-Homo sapiens GN=APS2 FIE SV=3 Sol Homos down sociens GN=APS2 FIE SV=3 <td>0.544 0.533 0.532 0.531 0.521 0.515 0.514 0.510 0.507 0.504 0.503 0.502 0.499 0.499 0.494</td> <td>0.001 0.029 0.029 0.004 0.040 0.040 0.022 0.022 0.016 0.016 0.016 0.016 0.004 0.018 0.000 0.013 0.000</td>	0.544 0.533 0.532 0.531 0.521 0.515 0.514 0.510 0.507 0.504 0.503 0.502 0.499 0.499 0.494	0.001 0.029 0.029 0.004 0.040 0.040 0.022 0.022 0.016 0.016 0.016 0.016 0.004 0.018 0.000 0.013 0.000
Q9BUF5 Q92544 P68104 P36542 P68727 P62979 P62854 Q16891 P51572 P65023 Q75964 P35579 P62266 Q00410 P49327 Q07020	6.04 5.04 3.28 25.32 4.23 33.51 11.32 6 19.86 16.06 5.81 80.73 4.98 6.12 33.79 9.47	6.82 15.79 3.28 25.32 4.25 37.57 11.37 6 20.04 16.5 14.63 5.81 80.73 5.08 6.87 34.14 9.47	9,063 31.17 5,14 38,1 7,718 56,5 50,64 33,91 32,45 29,67 21,53 47,57 26,99 19,58 5,014 12,58 30,85	ATP-dependent. RNA helicase DDX3X OS-Homo sapiens GN=DDX3X RE=1 SV=3 Tubulin beta-6 chain OS-Homo sapiens GN=TUBB6 PE=1 SV=1 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN=TM9SF4 PE=1 SV=2 Elongation factor 1 -alpha 1 OS-Homo sapiens GN=TRAIX PE=1 SV=1 TAP synthase subunit gamma, mitochondrial OS-Homo sapiens GN=TRSCI PE=1 SV=1 Keratin, type 1 cytoskeletal 19 OS-Homo sapiens GN=RPS2 FIE SV=2 Ubiquitin-405 ribosomal protein S27a OS-Homo sapiens GN=RPS2 FIE SV=2 405 ribosomal protein S2 OS-Homo sapiens GN=RPS2 FIE SV=3 Mitochondrial Inner membrane protein OS-Homo sapiens GN=RPS2 FIE SV=3 Sodium/potassium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN=APS2 FIE SV=3 Sodium/potassium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN=APS2 FIE SV=3 Moscin+OS-Homo sapiens GN=APS2 FIE SV=4 Hopsrin+OS-Homo sapiens GN=APS2 FIE SV=3 Moscin+OS-Homo sapiens GN=APS2 FIE SV=3 Moscin+OS-Homo sapiens GN=APS2 FIE SV=3 Moscin+OS-Homo sapiens GN=APS2 FIE SV=3 Sol Homos down sociens GN=APS2 FIE SV=3 <td>0.544 0.533 0.532 0.531 0.521 0.515 0.514 0.510 0.507 0.503 0.503 0.502 0.499 0.499 0.496 0.483</td> <td>0.001 0.029 0.029 0.040 0.040 0.040 0.043 0.022 0.015 0.002 0.015 0.015 0.015 0.018 0.013 0.013 0.013 0.013 0.004 0.033</td>	0.544 0.533 0.532 0.531 0.521 0.515 0.514 0.510 0.507 0.503 0.503 0.502 0.499 0.499 0.496 0.483	0.001 0.029 0.029 0.040 0.040 0.040 0.043 0.022 0.015 0.002 0.015 0.015 0.015 0.018 0.013 0.013 0.013 0.013 0.004 0.033
Q9BUF5 Q92544 P68104 P36542 P08727 P62354 Q16891 P51572 P65023 P65023 Q75964 P35579 P62266 Q00410 P49327 Q97202 Q973A6	6.04 5.04 3.28 25.32 4.23 33.51 11.32 6 19.36 16.06 5.81 14.63 5.81 80.73 4.98 6.12 33.79 9.47 3.38	6.82 15.79 3.28 25.32 4.25 37.57 11.37 6 20.04 16.5 14.63 5.81 80.73 5.08 6.87 34.14 9.47 3.39	9.063 31.17 5.14 38.1 7.718 56.5 50.64 33.91 32.45 29.67 11.53 47.57 26.99 19.58 5.014 12.58 30.85 13.1	ATP-dependent. NNA helicase DDX3X OS-Homo sapiens GN-DDX3X PE-1 SV-3 Tubulin beta-6 chain OS+Homo sapiens GN-TUBB6 PE-1 SV-1 Irransmembrane 9 superfamily member 4 OS-Homo sapiens GN-TM9SF4 PE-1 SV-2 Elongation factor 1-alpha 1 OS-Homo sapiens GN-TR12 PE-1 SV-1 ATP synthase subunit gamma, mitochondrial OS-Homo sapiens GN-ATPECI PE-1 SV-1 Metatin, type 1 cytoskeletal 19 OS-Homo sapiens GN-RPS22 PE-1 SV-4 Ubiquitin-405 ribosomal protein S27a OS-Homo sapiens GN-RPS22 PE-1 SV-2 405 ribosomal protein S27a OS-Homo sapiens GN-RPS22 PE-1 SV-2 405 ribosomal protein S20 OS-Homo sapiens GN-RPS22 PE-1 SV-3 Mitochondrial Inner membrane protein OS-Homo sapiens GN-RMPS12 PF-1 SV-3 Mitochondrial Inner membrane protein OS-Homo sapiens GN-ROPS1 PF-1 SV-3 Motochondrial OS-Homo sapiens GN-RPS22 PE-1 SV-3 Sodium/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN-ATPS1 PF-1 SV-3 Myosin 9 OS-Homo sapiens GN-MPS2 PF-1 SV-4 405 ribosomal protein S23 OS-Homo sapiens GN-RPS23 PF-1 SV-3 Myosin 9 OS-Homo sapiens GN-MPS3 PF-1 SV-3 Myosin 9 OS-Homo sapiens GN-MPS9 PF-1 SV-4 405 ribosomal protein S23 OS-Homo sapiens GN-RPS12 PF-1 SV-3 Myosin 9 OS-Homo sapiens GN-MPIS9 PF-1 SV-4 Fatty add synthase OS-Homo sapiens GN-RPS13 PF-1 SV-3 GOS ribosomal protein 13 OS-Homo sapiens GN-RPS13 PF-1 SV-2 Transmembrane emp24 domain-containing protein 5 OS-Homo sapiens GN-ATP12B PF-1 SV-1 Sodium/potasium-transporting ATPase subunit bc1-3 OS-Homo sapiens GN-ATP12B PF-1 SV-2 Irransmembrane emp24 domain-containing protein 5 OS-Homo sapiens GN-ATP12B PF-1 SV-2 Notage-deependent ainon-settive to homel protein 1 OS-HOMO sapiens GN-ATP12B PF-1 SV-2 Notage-deependent ainon-settive to homel protein 1 OS-HOMO sapiens GN-ADP12B PF-1 SV-2 Notage-deependent ainon-settive to homel protein 1 OS-HOMO sapiens GN-ADP12B PF-1 SV-2	0.544 0.533 0.532 0.531 0.521 0.515 0.510 0.507 0.503 0.503 0.502 0.499 0.496 0.484 0.484 0.479	0.001 0.029 0.029 0.004 0.040 0.043 0.022 0.015 0.002 0.016 0.018 0.004 0.018 0.000 0.018 0.000 0.013 0.000 0.013 0.004 0.004 0.003 0.003 0.025
Q9BUF5 Q92544 P68104 P36542 P08727 P62979 P62979 P62979 P62979 P62979 P62979 P62979 P62979 P62064 Q16891 P35579 P65286 Q07020 Q0700 Q070	6.04 6.04 5.04 3.28 25.32 33.51 11.32 6 19.86 16.06 14.63 5.81 30.73 6 33.79 9.47 3.38 16.71	6.82 15.79 3.28 25.32 4.25 37.57 11.37 6 20.04 16.5 14.63 5.81 80.73 5.08 6.87 34.14 9.47 3.39	9,063 31.17 5,14 38,1 56,5 50,64 33,91 32,45 29,67 11,53 47,57 26,99 19,58 5,014 12,58 30,85 30,85 13,1 33,69	ATP-dependent: RNA helicase DDX3X OS-Homo sapiens GN-DDX3X FE-1 SV-3 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN-TM95F4 PE-1 SV-2 Ekongation factor 1-alpha 1 OS-Homo sapiens GN-METPA1 PE-1 SV-1 ATP synthase subunit gamma, mitochondrial OS-Homo sapiens GN-ATPSC1 PE-1 SV-2 Keratin, type 1 cytoskelati 19 OS-Homo sapiens GN-METP3 PT-1 SV-4 Ubliquitin-405 fibosomal protein S2a OS-Homo sapiens GN-METP3 PT-1 SV-2 40s: Rhosomal protein S2a OS-Homo sapiens GN-METP3 PT-1 SV-2 40s: Rhosomal protein S2a OS-Homo sapiens GN-METP3 PT-1 SV-2 40s: Rhosomal protein S2a OS-Homo sapiens GN-METP3 PT-1 SV-3 Mitochondrial Inner merbane protein GS-Homo sapiens GN-METP3 PT-1 SV-3 Sodium/potasium: transporting ATPase subunit alpha-1 OS-Homo sapiens GN-ATP3 PT-1 SV-3 Sodium/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN-ATP3 PT-1 SV-3 Mosin 9 OS-Homo sapiens GN-METP8 PT-1 SV-3 Mosin 9 OS-Homo sapiens GN-METP8 PT-1 SV-3 Mosin 9 OS-Homo sapiens GN-METP8 PT-1 SV-3 GS ribosomal protein 13 OS-Homo sapiens GN-RP523 PT-1 SV-3 First add synaism-transporting ATPase subunit bet-3 OS-Homo sapiens GN-ATP1B3 PF-1 SV-1 Votage dependent anion-selective channel protein 15 OS-Homo sapiens GN-ATP1B3 PF-1 SV-2 Votage dependent anion-selective channel protein SO-SHOMO sapiens GN-ATP1B3 PF-1 SV-2 Votage dependent anion-selective channel protein SO-HOMO SO-HONO sapiens GN-ATP1B3 PF-1 SV-2 Votage dependent anion-selective channel protein 105-HOMO sapien SN-M-TATP1B3 PF-1 SV-2 Votage dependent anion-selective channel protein SO-HOMO Sapien SN-ATP1B3 PF-1 SV-2 Votage dependent anion-selective channel protein 105-HOMO Sapien SN-ATP1B3 PF-1 SV-2 Votage depende	0.544 0.533 0.532 0.531 0.515 0.514 0.517 0.504 0.507 0.504 0.503 0.502 0.499 0.499 0.499 0.499 0.484 0.483 0.474	0.001 0.029 0.029 0.004 0.040 0.040 0.043 0.022 0.015 0.002 0.015 0.015 0.015 0.018 0.018 0.013 0.013 0.013 0.001 0.033 0.023 0.023 0.025 0.026
Q9BUF5 Q92544 P68104 P36542 P08727 P62354 Q16891 P51572 P05023 075964 P35579 P62266 000410 P49327 Q07020 Q9Y3A6 P54709 P54709 P21796	6.04 6.04 3.28 25.32 25.32 4.23 33.51 11.32 6 19.86 16.06 14.63 5.81 80.73 4.98 6.12 33.79 9.47 3.38 16.71 30.29	6.82 15.79 3.28 25.32 4.25 37.57 11.37 6 20.04 16.5 14.63 5.81 80.73 5.08 6.87 34.14 9.47 3.39 16.83 30.29	9.063 31.17 5.14 38.1 7.718 56.5 50.64 33.91 32.45 29.67 11.53 26.99 19.58 5.014 47.57 26.99 19.58 5.014 12.58 30.85 13.1 33.69 70.67	ATP-dependent: NNA helicase DDX3X OS-Homo sapiens GN-DDX3X PE-1 SV-3 Tubulin beta 6 chain OS+Homo sapiens GN-TUBB6 PE-1 SV-1 Inrainmenhrane 9 superfamily member 4 OS-Homo sapiens GN-TM9SF4 PE-1 SV-2 Ekongation factor 1-alpha 1 OS+Homo sapiens GN-TK13 PE-1 SV-1 ATP synthase subunit gamma, mitochondrial OS-Homo sapiens GN-ATP5C1 PE-1 SV-1 Keratin, type I cytoskeletal 19 OS-Homo sapiens GN-METS174 PE-1 SV-2 405 ribosomal protein S270 OS+Homo sapiens GN-MES7A PE-1 SV-2 405 ribosomal protein S270 OS+Homo sapiens GN-MES7A PE-1 SV-2 405 ribosomal protein S270 OS+Homo sapiens GN-MES7A PE-1 SV-3 Mitochondrial Inner membrane protein OS-Homo sapiens GN-MES7A PE-1 SV-3 Solium/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN-ADP31 PE-1 SV-3 Solium/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN-ADP31 PE-1 SV-3 Mitochondrial DIS-Homo sapiens GN-MES23 PE-1 SV-3 Mitochondrial DIS-Homo sapiens GN-MES23 PE-1 SV-3 Mosini-9 OS-Homo sapiens GN-MES92 PE-1 SV-4 405 ribosomal protein S23 OS+Homo sapiens GN-ADP32 PE-1 SV-3 Minotin-9 OS-Homo sapiens GN-MES29 PE-1 SV-4 405 ribosomal protein S23 OS-Homo sapiens GN-MES29 PE-1 SV-3 GN-MINTER SCIE-Homo sapiens GN-MES29 PE-1 SV-4 Fatty add synthase OS-Homo sapiens GN-MES3 PE-1 SV-3 Framembrane emp24 domain-containing protein SO-Homo sapiens GN-ATMED5 PE-1 SV-1 Sodium/potasium-transporting ATPase subunit hot-3 OS-Homo sapiens GN-TMED5 PE-1 SV-1 Sodium/potasium-transporting ATPase subunit hot-3 OS-Homo sapiens GN-MED5 PE-1 SV-1 Sodium/potasium-transporting ATPase subunit hot-3 OS-Homo sapiens GN-TMED5 PE-1 SV-2 Transmembrane emp24 domain-containing protein 1 OS-Homo sapiens GN-MADC1 PE-1 SV-2 Keratin, type I cytoskeltal 18 OS-Homo sapiens GN-MADC2 PE-1 SV-2 Keratin, type I cytoskeltal 18 OS-Homo sapiens GN-MADC2 PE-1 SV-2 Keratin, type I cytoskeltal 18 OS-Homo sapiens GN-MADC2 PE-1 SV-2 Keratin, type I cytoskeltal 18 OS-Homo sapiens GN-MADC2 PE-1 SV-2 Keratin, type I cytoskeltal 18 OS-Homo sapiens GN-MADC2 PE-1 SV-2	0.544 0.533 0.532 0.531 0.521 0.515 0.514 0.510 0.507 0.504 0.502 0.499 0.496 0.499 0.496 0.493 0.499 0.496 0.493 0.479 0.474	0.001 0.029 0.029 0.004 0.040 0.043 0.022 0.015 0.015 0.015 0.018 0.018 0.018 0.018 0.001 0.018 0.000 0.013 0.004
Q9BUF5 Q92544 P68104 P36542 P08727 P62979 P62979 P62979 P62979 P62979 P62979 P62979 P62979 P62064 Q16891 P35579 P65286 Q07020 Q0700 Q070	6.04 6.04 3.28 25.32 25.32 4.23 33.51 11.32 6 19.86 16.06 14.63 80.73 4.98 6.12 33.79 9.47 3.38 16.71 30.29 9.47 30.29	6.82 15.79 3.28 25.32 4.25 37.57 11.37 6 20.04 16.5 14.63 5.81 80.73 5.08 6.87 34.14 9.47 3.39 16.83 30.29 41.73	9.063 31.17 5.14 38.1 7.718 56.5 50.64 33.91 32.45 29.67 11.53 47.57 26.99 19.58 5.014 12.58 30.85 13.1 33.69 70.67 59.3	ATP-dependent. NNA helicase DDX3X OS-Homo sapiens GN-DDX3X PE-1 SV-3 Tubulin beta-6 chain OS-Homo sapiens GN-TUBB6 PE-1 SV-1 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN-TM95F4 PE-1 SV-2 Elongation factor 1-alpha 1 OS-Homo sapiens GN-TR13 PE-1 SV-3 ATP synthase subunit gamma, mitochordrial OS-Homo sapiens GN-ATP5C1 PE-1 SV-1 Ubiquitin 405 ribosomal protein S27a OS-Homo sapiens GN-RPS27A PE-1 SV-2 405 ribosomal protein S27a OS-Homo sapiens GN-RPS27A PE-1 SV-2 405 ribosomal protein S27a OS-Homo sapiens GN-RPS27A PE-1 SV-3 Mitochondrial Inner membrane protein OS-Homo sapiens GN-RPS27A PE-1 SV-3 Sodium/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN-ATP51 SV-3 Sodium/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN-ATP51 PE-1 SV-3 Mosin-9 OS-Homo sapiens GN-RPS28 PE-1 SV-3 Mosin-9 OS-Homo sapiens GN-RPS28 PE-1 SV-3 ATP synthase subunit gamma, protein 3.1 OS-Homo sapiens GN-ATP51 PE-1 SV-3 Mosin-9 OS-Homo sapiens GN-MPH3 PE-1 SV-3 ATP synthase subunit alpha-1 OS-Homo sapiens GN-ATP51 PE-1 SV-3 Mosin-9 OS-Homo sapiens GN-MPH3 PE-1 SV-3 606 ribosomal protein S23 OS-Homo sapiens GN-ATP51 PE-1 SV-3 Mosin-9 OS-Homo sapiens GN-MPH3 PE-1 SV-3 Sodium/potasium-transporting ATPase subunit alpha-1 SV-1 Fatty acid synthase OS-Homo sapiens GN-RPE3 PE-1 SV-3 Sodium/potasium-transporting ATPase subunit BAS-Homo sapiens GN-ATP189 PE-1 SV-2 Fransmethrane emp24 domain-containing protein 5 OS-Homo sapiens GN-ATP189 PE-1 SV-2 Keratin, type I cytoskeltal 18 OS-Homo sapiens GN-RPE18 PE-1 SV-2 Transmethrane emp24 domain-containing protein 1 OS-Homo sapiens GN-MPE19 PE-1 SV-2 Keratin, type I cytoskeltal 18 OS-Homo sapiens GN-RPE19 PE-1 SV-2 Keratin, type I cytoskeltal 18 OS-Homo sapiens GN-RPE19 PE-1 SV-2 Keratin, type I cytoskeltal 18 OS-Homo sapiens GN-RPE19 PE-1 SV-2 Transmethrane emp24 domain-containing protein 10 OS-Homo sapiens GN-RPE1010 PE-1 SV-2 Keratin, type I cytoskeltal 18 OS-Homo sapiens GN-RPE19 PE-1 SV-2 Keratin, type I cytoskeltal 18 OS-Homo sapiens GN-	0.544 0.533 0.522 0.531 0.521 0.514 0.515 0.514 0.507 0.504 0.507 0.504 0.502 0.499 0.499 0.499 0.499 0.499 0.499 0.494 0.484 0.484 0.472 0.472	0.001 0.029 0.029 0.004 0.040 0.040 0.022 0.016 0.016 0.004 0.016 0.004 0.018 0.000 0.013 0.000 0.038 0.000 0.038 0.026 0.000 0.013 0.000
Q9BUF5 Q92544 P68104 P36542 P08727 P62979 P62854 Q16891 P551572 P05023 Q75964 P35579 P62256 Q00410 Q933A6 P05753	6.04 6.04 3.28 25.32 4.23 33.51 11.32 6 19.86 16.06 14.63 5.81 80.73 4.98 6.12 33.79 9.47 3.33 16.71 30.29 41.73 3.89	6.82 15.79 3.28 25.32 4.25 37.57 11.37 6 20.04 16.5 14.63 5.81 80.73 5.08 6.87 34.14 9.47 3.39 16.83 30.29 41.73 13.89	9.063 31.17 5.14 38.1 7.718 56.5 50.64 33.91 32.45 29.67 11.53 47.57 26.99 19.58 5.014 12.58 30.85 13.1 33.69 70.67 59.3 39.73	ATP-dependent: NNA helicase DDX3X 05-Homo sapiens GN-DDX3X PE-1 SV-3 Tubulin beta 6 chain OS+Homo sapiens GN-UBB PE-1 SV-1 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN-TM95F4 PE-1 SV-2 Elongation factor 1-alpha 1 OS-Homo sapiens GN-MTX13 PE-1 SV-1 ATP synthase subunit; agrima, mitochondrial OS-Homo sapiens GN-ATPC1 PE-1 SV-2 Keratin, type 1 cytoskeletal 19 OS-Homo sapiens GN-MTX19 PE-1 SV-4 Ubliquitin 405 ribosomal protein S20 oS-Homo sapiens GN-MTS27A PE-1 SV-2 405 ribosomal protein S26 OS-Homo sapiens GN-MTS27A PE-1 SV-4 Ubliquitin 405 ribosomal protein S26 OS-Homo sapiens GN-MTX19 PE-1 SV-4 Mitochondrial Inner membrane protein OS-Homo sapiens GN-MTX19 PE-1 SV-1 B-cell receptor-associated protein 31 OS-Homo sapiens GN-MTX19 FE-1 SV-1 Sodium/potassium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN-ATP14 PE-1 SV-1 ATP synthase subunit z, mitochondrial OS-Homo sapiens GN-MTX19 FE-1 SV-3 Mitochondrial Inter membrane protein OS-Homo sapiens GN-MTX19 FE-1 SV-3 Sodium/potassium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN-ATP14 PE-1 SV-1 ATP synthase ubunit z, mitochondrial OS-Homo sapiens GN-MTX19 FE-1 SV-3 Importin-5 OS-Homo sapiens GN-MTX19 FE-1 SV-3 Mosin-9 OS-Homo sapiens GN-MTX19 FE-1 SV-3 Importin-5 OS-Homo sapiens GN-MTX19 FE-1 SV-3 Importin-5 OS-Homo sapiens GN-MTX19 FE-1 SV-3 Sodium/potasium-transporting ATPase subunit Be-3 OS-Homo sapiens GN-MTX19 SFE-1 SV-1 Transmembrane emp24 domain-containing proteins 10 OS-Homo sapiens GN-MTX19 SFE-1 SV-1 Votage-dependent anion-selective channel protein 10 OS-Homo sapiens GN-MTX19 SFE-1 SV-2 Keratin, type L cytoakeletal 18 OS-Homo sapiens GN-MTX19 FE-1 SV-2 Transmembrane emp24 domain-containing protein 10 OS-Homo sapiens GN-MTX19 SFE-1 SV-2 Transmembrane emp24 domain-containing protein 10 OS-Homo sapiens GN-MTX19 SFE-1 SV-2 Prohibitin OS-Homo sapiens GN-PKPI FE-1 SV-2 Transmembrane emp24 domain-containing protein 10 OS-Homo sapiens GN-MTX19 SFE-1 SV-2 Prohibitin OS-Homo sapiens GN-PKPI SFE-1 SV-2 Prohibitin OS-	0.544 0.532 0.532 0.531 0.515 0.515 0.514 0.507 0.503 0.503 0.503 0.502 0.499 0.496 0.496 0.483 0.474 0.474 0.474 0.465	0.001 0.029 0.029 0.0304 0.040 0.040 0.043 0.022 0.036 0.036 0.036 0.038 0.030 0.038 0.030 0.038 0.030 0.038 0.030 0.038 0.030 0.000 0.030 0.030 0.000 0.030 0.000 0.030 0.000 0.030 0.000 0.030 0.000 0.030 0.000 0.030 0.0000 0.0000 0.0000 0.00000000
Q9BUF5 Q92544 P68104 P68104 P065727 P62979 P62854 Q16891 P51572 P052579 P62254 Q075964 P35579 P62266 Q0943A6 P54709 P21796 P05373 P49755 P35232	6.04 6.04 6.04 3.28 25.32 4.23 33.51 11.32 11.32 16.06 14.63 5.81 80.73 4.98 6.12 33.79 9.47 3.38 16.71 30.29 41.73 13.89 13.89 25.97	6.82 15.79 3.28 25.32 4.25 37.57 11.37 6 20.04 14.63 5.81 80.73 5.08 6.87 34.14 9.47 3.39 16.83 30.29 41.73 13.89 13.89 25.97	9.063 31.17 5.14 38.1 7.718 56.5 50.64 33.91 32.45 29.67 11.53 47.57 26.99 19.58 5.014 12.58 30.85 13.1 33.69 70.67 59.3 39.73 39.73	ATP-dependent. NNA helicase DDX3X OS-Homo sapiens GN-DDX3X PE-1 SV-3 Tubulin beta-6 chain OS-Homo sapiens GN-TUBB6 PE-1 SV-1 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN-TM95F4 PE-1 SV-2 Elongation factor 1-alpha 1 OS-Homo sapiens GN-TR13 PE-1 SV-3 ATP synthase subunit gamma, mitochordrial OS-Homo sapiens GN-ATP5C1 PE-1 SV-1 Ubiquitin 405 ribosomal protein S27a OS-Homo sapiens GN-RPS27A PE-1 SV-2 405 ribosomal protein S27a OS-Homo sapiens GN-RPS27A PE-1 SV-2 405 ribosomal protein S27a OS-Homo sapiens GN-RPS27A PE-1 SV-3 Mitochondrial Inner membrane protein OS-Homo sapiens GN-RPS27A PE-1 SV-3 Sodium/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN-ATP51 SV-3 Sodium/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN-ATP51 PE-1 SV-3 Mosin-9 OS-Homo sapiens GN-RPS28 PE-1 SV-3 Mosin-9 OS-Homo sapiens GN-RPS28 PE-1 SV-3 ATP synthase subunit gamma, protein 3.1 OS-Homo sapiens GN-ATP51 PE-1 SV-3 Mosin-9 OS-Homo sapiens GN-MPH3 PE-1 SV-3 ATP synthase subunit alpha-1 OS-Homo sapiens GN-ATP51 PE-1 SV-3 Mosin-9 OS-Homo sapiens GN-MPH3 PE-1 SV-3 606 ribosomal protein S23 OS-Homo sapiens GN-ATP51 PE-1 SV-3 Mosin-9 OS-Homo sapiens GN-MPH3 PE-1 SV-3 Sodium/potasium-transporting ATPase subunit alpha-1 SV-1 Fatty acid synthase OS-Homo sapiens GN-RPE3 PE-1 SV-3 Sodium/potasium-transporting ATPase subunit BAS-Homo sapiens GN-ATP189 PE-1 SV-2 Fransmethrane emp24 domain-containing protein 5 OS-Homo sapiens GN-ATP189 PE-1 SV-2 Keratin, type I cytoskeltal 18 OS-Homo sapiens GN-RPE18 PE-1 SV-2 Transmethrane emp24 domain-containing protein 1 OS-Homo sapiens GN-MPE19 PE-1 SV-2 Keratin, type I cytoskeltal 18 OS-Homo sapiens GN-RPE19 PE-1 SV-2 Keratin, type I cytoskeltal 18 OS-Homo sapiens GN-RPE19 PE-1 SV-2 Keratin, type I cytoskeltal 18 OS-Homo sapiens GN-RPE19 PE-1 SV-2 Transmethrane emp24 domain-containing protein 10 OS-Homo sapiens GN-RPE1010 PE-1 SV-2 Keratin, type I cytoskeltal 18 OS-Homo sapiens GN-RPE19 PE-1 SV-2 Keratin, type I cytoskeltal 18 OS-Homo sapiens GN-	0.544 0.533 0.532 0.531 0.515 0.514 0.503 0.503 0.503 0.504 0.503 0.504 0.503 0.499 0.499 0.499 0.499 0.499 0.474 0.472 0.472 0.459	0.001 0.029 0.029 0.004 0.040 0.040 0.002 0.015 0.002 0.015 0.004 0.018 0.004 0.018 0.000 0.013 0.004 0.003 0.004 0.003 0.004 0.033 0.004 0.033 0.000
Q9BUF5 Q92544 P68104 P36542 P08727 P62979 P62854 Q16891 P51572 P052379 P622579 P62265 Q00410 P49327 Q07020 Q073A6 P54709 P21796 P05783 P493255 P35232 Q01813	6.04 6.04 3.28 25.32 4.23 33.51 11.32 6 19.86 14.63 5.81 80.73 80.73 33.79 9.47 3.38 16.71 33.79 9.47 3.38 16.71 3.89 25.97 25.97	6.82 15.79 3.28 25.32 4.25 37.57 11.37 6 20.04 16.5 14.63 5.81 80.73 5.08 6.87 3.14 9.47 3.39 16.83 30.29 41.73 13.89 25.97 8.83	9,063 31,17 5,14 38,1 7,718 50,64 33,91 32,45 29,67 11,53 47,57 26,99 19,58 5,014 12,58 30,85 5,014 12,58 30,85 5,014 12,58 30,85 5,014 12,58 30,85 5,014 12,58 30,85 5,014 12,58 30,85 70,67 13,1 33,69 70,67 39,73 39,73 62,13 10,71	ATP-dependent: NNA helicase DDX3X 05-Homo sapiens GN-DDX3X PE-1 SV-3 Tubulin beta 6 chain OS+Homo sapiens GN-UBB PE-1 SV-1 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN-TM95F4 PE-1 SV-2 Elongation factor 1-alpha 1 OS-Homo sapiens GN-MTX13 PE-1 SV-1 ATP synthase subunit; agrima, mitochondrial OS-Homo sapiens GN-ATPC1 PE-1 SV-2 Keratin, type 1 cytoskeletal 19 OS-Homo sapiens GN-MTX19 PE-1 SV-4 Ubliquitin 405 ribosomal protein S20 oS-Homo sapiens GN-MTS27A PE-1 SV-2 405 ribosomal protein S26 OS-Homo sapiens GN-MTS27A PE-1 SV-4 Ubliquitin 405 ribosomal protein S26 OS-Homo sapiens GN-MTX19 PE-1 SV-4 Mitochondrial Inner membrane protein OS-Homo sapiens GN-MTX19 PE-1 SV-1 B-cell receptor-associated protein 31 OS-Homo sapiens GN-MTX19 FE-1 SV-1 Sodium/potassium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN-ATP14 PE-1 SV-1 ATP synthase subunit z, mitochondrial OS-Homo sapiens GN-MTX19 FE-1 SV-3 Mitochondrial Inter membrane protein OS-Homo sapiens GN-MTX19 FE-1 SV-3 Sodium/potassium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN-ATP14 PE-1 SV-1 ATP synthase ubunit z, mitochondrial OS-Homo sapiens GN-MTX19 FE-1 SV-3 Importin-5 OS-Homo sapiens GN-MTX19 FE-1 SV-3 Mosin-9 OS-Homo sapiens GN-MTX19 FE-1 SV-3 Importin-5 OS-Homo sapiens GN-MTX19 FE-1 SV-3 Importin-5 OS-Homo sapiens GN-MTX19 FE-1 SV-3 Sodium/potasium-transporting ATPase subunit Be-3 OS-Homo sapiens GN-MTX19 SFE-1 SV-1 Transmembrane emp24 domain-containing proteins 10 OS-Homo sapiens GN-MTX19 SFE-1 SV-1 Votage-dependent anion-selective channel protein 10 OS-Homo sapiens GN-MTX19 SFE-1 SV-2 Keratin, type L cytoakeletal 18 OS-Homo sapiens GN-MTX19 FE-1 SV-2 Transmembrane emp24 domain-containing protein 10 OS-Homo sapiens GN-MTX19 SFE-1 SV-2 Transmembrane emp24 domain-containing protein 10 OS-Homo sapiens GN-MTX19 SFE-1 SV-2 Prohibitin OS-Homo sapiens GN-PKPI FE-1 SV-2 Transmembrane emp24 domain-containing protein 10 OS-Homo sapiens GN-MTX19 SFE-1 SV-2 Prohibitin OS-Homo sapiens GN-PKPI SFE-1 SV-2 Prohibitin OS-	0.544 0.532 0.532 0.531 0.521 0.515 0.510 0.510 0.510 0.501 0.504 0.503 0.502 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.496 0.483 0.477 0.474 0.474 0.455 0.459 0.474 0.459 0.459 0.459 0.474 0.459 0.455 0.459 0.455 0.459 0.455 0.	0.001 0.029 0.029 0.004 0.040 0.040 0.043 0.042 0.043 0.022 0.015 0.004 0.013 0.013 0.004 0.013 0.004 0.033 0.004 0.033 0.000 0.014 0.000 0.014 0.000 0.014 0.000
Q9UF5 Q92544 P68104 P36542 P08727 P62379 P62354 Q16891 P51572 P05023 Q75964 P35579 P62266 Q0410 P493527 P05720 Q9Y3A6 P54709 P21796 P05753 P35522 Q01813 Q01813 Q02520	6.04 6.04 6.04 3.28 25.32 4.23 33.51 11.32 6 19.86 16.06 14.63 5.81 80.73 4.98 6.12 33.79 9.47 3.38 16.71 30.29 9.47 3.38 16.71 30.29 41.73 8.83 25.97 8.83 21.64	6.82 15.79 3.28 25.32 4.25 37.57 11.37 6 20.04 16.5 14.63 5.81 80.73 5.08 6.87 34.14 9.47 3.39 16.83 30.29 41.73 3.08 6.83 30.29 41.73 5.83 30.29 41.75 3.89 25.97 8.83 21.64	9,063 31,17 5,14 38,1 7,718 56,5 50,64 33,91 32,45 29,67 11,53 47,57 26,99 19,58 5,014 12,58 30,85 13,1 33,69 70,67 59,3 39,73 62,13 10,71 64,32	ATP-dependent. NNA helicase DDX3X OS-Homo sapiens GN=DDX3X PE-1 SV-3 Tubulin beta-6 chain OS+Homo sapiens GN=TUBB6 PE-1 SV-1 Irransmembrane 9 superfamily member 4 OS-Homo sapiens GN=TM9SF4 PE-1 SV-2 Elongation factor 1-alpha 1 OS+Homo sapiens GN=TR12 PE-1 SV-2 IATP synthase subunit gamma, mitochondrial OS-Homo sapiens GN=ATPEC1 PE-1 SV-1 Keratin, type 1 cytoskeletal 19 OS+Homo sapiens GN=RTS12 PE-1 SV-4 Ubiquitin-405 ribosomal protein S27a OS-Homo sapiens GN=RTS27A PE-1 SV-2 405 ribosomal protein S27a OS-Homo sapiens GN=RMS257A PE-1 SV-2 405 ribosomal protein S26 OS-Homo sapiens GN=RMS257A PE-1 SV-3 Mitochondrial Inner membrane protein OS-Homo sapiens GN=RMS27A PE-1 SV-3 Mitochondrial Inner membrane protein OS-Homo sapiens GN=RMS21 SV-3 Sodium/potasium-transporting ATPases subunit alpha-1 OS-Homo sapiens GN=ATPS14 ATP synthase subunit g, mitochondrial OS-Homo sapiens GN=ATPS14 PE-1 SV-3 Myosin 9 OS-Homo sapiens GN=MPS257 PE-1 SV-3 Myosin 9 OS-Homo sapiens GN=MP159 PE-1 SV-3 Myosin 9 OS-Homo sapiens GN=RMP153 PE-1 SV-3 Myosin 9 OS-Homo sapiens GN=MP153 PE-1 SV-3 GN dibosomal protein 152 OS-Homo sapiens GN=RP153 PE-1 SV-3 GN dibosomal protein 153 OS-Homo sapiens GN=ATPS14 PE-1 SV-3 Myosin 9 OS-Homo sapiens GN=MP153 PE-1 SV-3 GN dibosomal protein 153 OS-Homo sapiens GN=RP153 PE-1 SV-3 Motorim/potasium-transporting ATPase subunit be1-3 OS-Homo sapiens GN=ATP128 PE-1 SV-1 Sodium/potasium-transporting ATPase subunit be1-3 OS-Homo sapiens GN=ATP128 PE-1 SV-2 Transmembrane emp24 domain-containing protein 1 OS-Homo sapiens GN=ATP128 PE-1 SV-2 Voltage dependent anion-settien bc anneal protein 1 OS-Homo sapiens GN=ATP128 PE-1 SV-2 Prohibitin OS-Homo sapiens GN=PH18 PE-1 SV-2 Prohi	0.544 0.533 0.532 0.531 0.515 0.515 0.510 0.507 0.503 0.502 0.499 0.499 0.499 0.499 0.499 0.499 0.479 0.474 0.472 0.472 0.455 0.459 0.459 0.448	0.001 0.029 0.029 0.004 0.004 0.004 0.004 0.003 0.015 0.001 0.015 0.004 0.018 0.000 0.013 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.000 0.003 0.000 0.003 0.000
Q9BUF5 Q92544 P68104 P36542 P08727 P62379 P62354 Q16891 P51572 P05023 Q75964 P35579 P62266 Q07020 Q97020 Q973A6 P54709 P21796 P05232 Q018131 Q92520 Q92523	$\begin{array}{c} 6.04 \\ 6.04 \\ 6.04 \\ 3.28 \\ 25.32 \\ 4.23 \\ 33.51 \\ 11.32 \\ 6 \\ 19.86 \\ 16.06 \\ 14.63 \\ 5.81 \\ 80.73 \\ 4.98 \\ 6.12 \\ 33.79 \\ 9.47 \\ 3.38 \\ 16.71 \\ 33.8 \\ 16.71 \\ 33.8 \\ 12.59 \\ 41.73 \\ 13.89 \\ 225.97 \\ 8.83 \\ 21.64 \\ 6 \end{array}$	6.82 15.79 3.28 25.32 4.25 37.57 11.37 6 20.04 16.5 14.63 5.81 80.73 5.08 6.87 34.14 9.47 3.39 16.83 30.29 41.73 3.28 25.97 8.83 21.59 4.05 8.03 13.89 25.97 8.83 25.97 8.83 21.60 25.97 8.83 25.97 8.83 25.97 8.83 21.60 8.97 8.83 25.97 8.83 25.97 8.83 25.97 8.83 25.97 8.83 25.97 8.83 25.97 8.83 25.97 8.83 25.97 8.83 25.97 8.83 25.97 8.83 21.60 8.03 25.97 8.83 21.60 8.03 25.97 8.83 21.60 8.03 25.97 8.83 21.60 8.67 25.97 8.83 21.60 25.97 8.83 21.60 25.97 8.83 21.60 25.97 8.63 25.97 8.63 25.97 8.63 25.97 8.63 25.97 8.63 25.97 8.63 25.97 8.63 25.97 8.63 25.97 8.63 25.97 8.63 21.60 25.97 8.63 21.60	9,063 31,17 5,14 38,1 7,718 56,5 50,64 33,91 32,45 29,67 11,53 32,45 29,67 11,53 50,14 12,58 30,85 13,1 33,69 70,67 59,3 39,73 62,13 10,71 64,32 10	ATP-dependent: RNA helicase DDX3X 05-Homo sapiens GN-DDX3X PE-1 SV-3 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN-TM95F4 PE-1 SV-2 Ekongation factor 1-alpha 1 OS-Homo sapiens GN-MEDF31 PE-1 SV-1 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN-TM95F4 PE-1 SV-2 Ekongation factor 1-alpha 1 OS-Homo sapiens GN-METF31 PE-1 SV-4 Ubliquiti-dSV fibosomal protein S20 OS-Homo sapiens GN-ATPSC1 PE-1 SV-2 AtP synthase subunit gamma, mitochondrial OS-Homo sapiens GN-ATPSC1 PE-1 SV-4 Ubliquiti-dSV fibosomal protein S20 OS-Homo sapiens GN-MESZA PE-1 SV-2 40sr fibosomal protein S26 OS-Homo sapiens GN-MERSZA PE-1 SV-3 Mitochondrial Inner merbane protein OS-Homo sapiens GN-MEMPE PE-1 SV-3 Sodium/pictasium: transporting ATPase subunit alpha-1 OS-Homo sapiens GN-ATPSL PE-1 SV-3 ADP synthase subunit g, mitochondrial OS-Homo sapiens GN-MERDE PE-1 SV-3 Mosin 9 OS-Homo sapiens GN-MEPB PE-1 SV-3 Sodium/pictasium: transporting ATPase subunit alpha-1 OS-Homo sapiens GN-ATPS PE-1 SV-3 Mosin 9 OS-Homo sapiens GN-MERS PE-1 SV-3 Sodium/pictasium: transporting ATPase subunit Be-3 OS-Homo sapiens GN-ATPS PE-1 SV-3 Sodium/pictasium: transporting ATPase SIMENT BE-1 SV-3 Transmembrane emp24 domain-containing	0.544 0.532 0.532 0.531 0.551 0.554 0.550 0.504 0.504 0.503 0.504 0.504 0.503 0.499 0.496 0.483 0.474 0.474 0.472 0.455 0.455 0.448 0.448 0.448 0.448 0.448 0.448 0.448 0.448 0.451 0.451 0.452 0.554 0.456 0.456 0.456 0.456 0.457 0.456 0.457 0.456 0.457 0.456 0.457 0.457 0.457 0.457 0.457 0.457 0.457 0.457 0.457 0.457 0.457 0.457 0.457 0.457 0.457 0.457 0.445 0.445 0.448 0.	0.001 0.002 0.029 0.004 0.004 0.004 0.000 0.043 0.022 0.0016 0.002 0.016 0.001 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.001
OBUF5 Q92544 P68104 P36572 P62979 P62979 P62854 Q16891 Q15572 P51572 P50273 P62279 P62379 P62534 Q15891 Q75964 P35579 P62266 Q00410 Q933A6 P54709 P25733 Q92322 Q01813 Q923220 P27338 Q92463 Q01813 Q924365	6.04 6.04 6.04 3.28 3.28 25.32 4.23 33.51 11.32 6 19.86 16.06 14.63 5.81 33.79 9.47 3.38 16.71 30.29 24.73 13.89 25.97 8.83 21.64 6 9.42	6.82 15.79 3.28 25.32 4.25 37.57 11.37 6 20.04 16.5 5.08 6.87 34.14 9.47 3.39 16.83 30.29 41.73 13.89 25.97 8.83 21.64 6.03 9.42	9.063 31.17 5.14 38.1 7.718 56.5 50.64 33.91 32.45 29.67 11.53 47.57 26.99 19.58 5.014 12.58 30.85 13.1 33.69 70.67 59.3 39.73 62.13 10.71 64.32 10	ATP-dependent: NNA helicase DDX3X OS-Homo sapiens GN-DDX3X PE-1 SV-3 Tubulin beta-6 chain OS-Homo sapiens GN-TUBB6 PE-1 SV-1 Inrainmembrane 9 superfamily member 4 OS-Homo sapiens GN-TM95F4 PE-1 SV-2 Ekongation factor 1-alpha 1 OS-Homo sapiens GN-TK13 PE-1 SV-3 ATP synthase subunit gamma, mitochondrial OS-Homo sapiens GN-ATP5C1 PE-1 SV-4 Ubliquitin 405 Ribosomal protein S270 OS-Homo sapiens GN-RPS27A PE-1 SV-2 405 ribosomal protein S270 OS-Homo sapiens GN-RPS27A PE-1 SV-2 405 ribosomal protein S270 OS-Homo sapiens GN-RPS27A PE-1 SV-3 Mitochondrial Inner membrane protein OS-Homo sapiens GN-RPS27A PE-1 SV-3 Mitochondrial Inner membrane protein OS-Homo sapiens GN-RPS27A PE-1 SV-3 Sodium/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN-RDS1 PE-1 SV-3 Sodium/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN-RDS1 PE-1 SV-3 Mitochondrial DIS-Homo sapiens GN-RPS28 PE-1 SV-3 Mitochondrial DIS-Homo sapiens GN-RDS28 PE-1 SV-3 Mosini-9 OS-Homo sapiens GN-RDS28 PE-1 SV-4 405 ribosomal protein S23 OS-Homo sapiens GN-RMS28 PE-1 SV-3 Mosini-9 OS-Homo sapiens GN-RDS28 PE-1 SV-4 Fatty add synthase OS-Homo sapiens GN-RDS18 PE-1 SV-3 Sodium/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN-RDE5 PE-1 SV-1 Sodium/potasium-transporting ATPase subunit alpha-1 SV-3 Sodium/potasium-transporting ATPase subunit beta-3 OS-Homo sapiens GN-RDE5 PE-1 SV-1 Sodium/potasium-transporting ATPase subunit beta-3 OS-Homo sapiens GN-TME5 PE-1 SV-1 Sodium/potasium-transporting ATPase subunit beta-3 OS-Homo sapiens GN-VDAC1 PE-1 SV-2 Transmembrane emp24 domain-containing protein 1 OS-Homo sapiens GN-VDAC1 PE-1 SV-2 Kreatin, type I cytoskeleral 1 SOS-Homo sapiens GN-VDAC1 PE-1 SV-2 Protein FAM3C OS-Homo sapiens GN-PRE9 FE-1 SV-3 Protein FAM3C OS-Homo sapiens GN-PRE9 FE-1 SV-3 Protein FAM3C OS-Homo sapiens GN-PAM3C PE-1 SV-3 Protein FAM3C OS-	0.544 0.532 0.532 0.531 0.515 0.515 0.516 0.504 0.504 0.504 0.504 0.502 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.494 0.445 0.445 0.435 0.445 0.435 0.445 0.435 0.435 0.435 0.445 0.435 0.445 0.455 0.445 0.455 0.	0.001 0.029 0.029 0.004 0.040 0.043 0.043 0.002 0.043 0.002 0.015 0.004 0.013 0.013 0.004 0.013 0.004 0.038 0.026 0.003 0.013 0.004 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.014 0.000 0.014 0.001
Openufs Q92544 P68104 P365542 P08727 P62979 P62854 Q16891 P51572 P05226 Q02544 P623579 P62266 Q00410 P93327 Q072020 Q07336 P54709 P21796 P35232 Q01813 Q92520 P27338 Q91663 Q16563	$\begin{array}{c} 6.04 \\ 6.04 \\ 6.04 \\ 3.28 \\ 25.32 \\ 4.23 \\ 33.51 \\ 11.32 \\ 6 \\ 19.86 \\ 16.06 \\ 14.63 \\ 5.81 \\ 80.73 \\ 4.98 \\ 6.12 \\ 33.79 \\ 9.47 \\ 3.38 \\ 16.71 \\ 33.79 \\ 9.47 \\ 3.38 \\ 16.71 \\ 1.389 \\ 25.97 \\ 8.83 \\ 21.64 \\ 6 \\ 9.42 \\ 2.39 \\ \end{array}$	6.82 15.79 3.28 25.32 4.25 37.57 11.37 6 20.04 16.5 14.63 5.81 80.73 5.08 6.87 34.14 9.47 3.39 16.83 3.39 16.83 3.29 41.73 13.89 41.73 41.83 13.99 41.73 13.89 41.73 41.63 5.81 13.89 41.73 13.89 41.73 13.89 41.73 25.97 8.83 21.64 21.64 21.64 21.64 21.64 21.64 21.64 21.65	9.063 31.17 5.14 38.1 7.718 56.5 50.64 33.91 32.45 29.67 11.53 47.57 26.99 19.58 5.014 12.58 5.014 12.58 5.014 12.58 5.014 12.58 5.014 12.58 5.014 12.58 5.014 12.57 59.3 39.73 39.73 39.73 20.71 64.32 10.71 64.32 10.71 64.32 10.71	ATP-dependent: RNA helicase DDX3X 05-Homo sapiens GN-DDX3X PE-1 SV-3 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN-TM95F4 PE-1 SV-2 Ekongation factor 1-alpha 1 OS-Homo sapiens GN-MEDF31 PE-1 SV-1 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN-TM95F4 PE-1 SV-2 Ekongation factor 1-alpha 1 OS-Homo sapiens GN-METF31 PE-1 SV-4 Ubliquiti-dSV fibosomal protein S20 OS-Homo sapiens GN-ATPSC1 PE-1 SV-2 AtP synthase subunit gamma, mitochondrial OS-Homo sapiens GN-ATPSC1 PE-1 SV-4 Ubliquiti-dSV fibosomal protein S20 OS-Homo sapiens GN-MESZA PE-1 SV-2 40sr fibosomal protein S26 OS-Homo sapiens GN-MERSZA PE-1 SV-3 Mitochondrial Inner merbane protein OS-Homo sapiens GN-MEMPE PE-1 SV-3 Sodium/pictasium: transporting ATPase subunit alpha-1 OS-Homo sapiens GN-ATPSL PE-1 SV-3 ADP synthase subunit g, mitochondrial OS-Homo sapiens GN-MERDE PE-1 SV-3 Mosin 9 OS-Homo sapiens GN-MEPB PE-1 SV-3 Sodium/pictasium: transporting ATPase subunit alpha-1 OS-Homo sapiens GN-ATPS PE-1 SV-3 Mosin 9 OS-Homo sapiens GN-MERS PE-1 SV-3 Sodium/pictasium: transporting ATPase subunit Be-3 OS-Homo sapiens GN-ATPS PE-1 SV-3 Sodium/pictasium: transporting ATPase SIMENT BE-1 SV-3 Transmembrane emp24 domain-containing	0.544 0.533 0.532 0.531 0.515 0.514 0.515 0.514 0.507 0.503 0.502 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.474 0.472 0.472 0.472 0.455 0.544 0.440 0.445 0.425 0.425	0.001 0.029 0.029 0.004 0.040 0.040 0.002 0.015 0.002 0.016 0.004 0.018 0.000 0.013 0.000 0.013 0.000 0.013 0.000
OBUF5 092544 P68104 P365542 P08727 P62379 P623854 Q16891 P51572 P05223 Q75964 P35579 P62266 Q0410 P49327 Q07020 Q07020 Q07036 P55739 P62265 Q0410 P49327 Q07020 Q07326 Q0755 P35273 P49755 P35232 Q01813 Q92520 P27338 Q91663 Q16634 Q16635 Q3176	6.04 6.04 6.04 3.28 25.32 4.23 33.51 11.32 6 19.86 16.06 5.81 80.73 33.79 33.79 9.47 3.38 16.71 30.29 41.73 41.73 13.89 25.97 6 9.42 2.39	6.82 15.79 3.28 25.32 4.25 37.57 11.37 6 20.04 16.5 14.63 14.63 14.63 14.63 5.81 80.73 5.08 6.87 34.14 9.47 3.39 16.83 30.29 41.73 13.89 25.97 13.89 25.93 21.64 6.03 9.42 2.39 4.32	9.063 31.17 5.14 38.1 7.718 56.5 50.64 33.91 32.45 29.67 47.57 26.9 9 19.58 5.014 12.58 5.014 12.58 30.85 13.1 33.69 70.67 59.3 39.73 62.13 10.71 64.32 10 19.6 10.04	ATP-dependent: NNA helicase DDX3X 05-Homo sapiens GN-DDX3X PE-1 SV-3 Tubulin beta 6 chain OS-Homo sapiens GN-UBB 6 PE-1 SV-1 Elongation factor 1-alpha 1 OS-Homo sapiens GN-TM95F4 PE-1 SV-2 Elongation factor 1-alpha 1 OS-Homo sapiens GN-MTL3 PE-1 SV-4 Molay Theorem 2000 State 100 SH 100 Section Sapiens GN-MTL3 PE-1 SV-4 Ubliquitin 405 ribosomal protein S20 OS-Homo sapiens GN-MTR527A PE-1 SV-2 405 ribosomal protein S20 OS-Homo sapiens GN-MTL3 PE-1 SV-4 Mitochondrial Inner membrane protein OS-Homo sapiens GN-MTDS17A PE-1 SV-4 Mitochondrial Inner membrane protein OS-Homo sapiens GN-MTDS17A PE-1 SV-3 Sodium/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN-MTDS1 PE-1 SV-3 Sodium/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN-ADTS1 PE-1 SV-3 Mitochondrial Inner membrane protein OS-Homo sapiens GN-MTDS1 PE-1 SV-3 Sodium/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN-ADTS1 PE-1 SV-3 Mosin-9 OS-Homo sapiens GN-MTP3 PE-1 SV-4 Mosin-9 OS-Homo sapiens GN-MTDS1 PE-1 SV-3 Mosin-9 OS-Homo sapiens GN-MTDS1 PE-1 SV-3 Mosin-9 OS-Homo sapiens GN-MTS1 PE-1 SV-3 GS ribosomal protein 12 OS-Homo sapiens GN-MTDS1 PE-1 SV-3 Importin-5 OS-Homo sapiens GN-MTS1 PE-1 SV-3 GS ribosomal protein 12 OS-Homo sapiens GN-MTS2 PE-1 SV-3 Mosin-9 CS-Homo sapiens GN-MTS1 PE-1 SV-3 Sodium/potasium-transporting ATPase subunit beta 3 OS-Homo sapiens GN-MTAD1 PE-1 SV-1 Transmembrane emp24 domain-containing protein 10 OS-Homo sapiens GN-MTP113 PE-1 SV-1 Votage dependent anion-selective channel protein 10 OS-Homo sapiens GN-MTDA1 PE-1 SV-2 Transmembrane emp24 domain-containing protein 10 OS-Homo sapiens GN-MTDA1 PE-1 SV-2 Transmethrane emp24 domain-containing protein 10 OS-Homo sapiens GN-MTDA1 PE-1 SV-2 Protein FAM3C OS-Homo sapiens GN-FAM3C PE-1 SV-1 Amine caidas 10 SS-Homo sapiens GN-FAM3C PE-1 SV-2 Protein FAM3C OS-Homo sapiens GN-FAM3C PE-1 SV-2 Protein FAM3C OS-Homo sapiens GN-FAM3C PE-1 SV-3 Prentylysteline caidase 10 SS-Homo sapiens GN-FAM3C PE-1 SV-3 Prentylysteline cai	0.544 0.532 0.532 0.531 0.551 0.515 0.510 0.507 0.507 0.503 0.503 0.503 0.499 0.499 0.499 0.499 0.499 0.496 0.483 0.479 0.474 0.474 0.474 0.455 0.455 0.435 0.448 0.448 0.443 0.445 0.448 0.443 0.445 0.448 0.443 0.445 0.448 0.443 0.445 0.448 0.443 0.442 0.445 0.443 0.442 0.445 0.443 0.442 0.445 0.443 0.442 0.444 0.	0.001 0.029 0.029 0.004 0.040 0.040 0.043 0.022 0.005 0.015 0.005 0.015 0.006 0.013 0.004 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.014 0.001 0.031 0.003 0.013 0.003 0.013 0.003 0.014 0.003 0.013 0.003 0.013 0.003 0.013 0.003 0.014 0.003 0.013 0.003
Openuts Q92544 Q92544 P365104 P36522 P08727 P62979 P62854 Q15594 P35527 P62266 Q075964 Q375964 P62266 Q0410 P49327 Q37202 Q37306 P62766 Q0410 P49327 Q37206 P23736 P54709 P21796 P25220 P233126 Q31216 Q15365	6.04 6.04 7.28 7.532 7.532 7.532 7.5351 7.132 7.5351 7.132 7.13351 7.13351 7.1335 7.1453 7.1453 7.1453 7.14547 7.145477 7.14547777777777777777777777777777777777	6.82 15.79 3.28 25.32 4.25 37.57 11.37 6 20.04 16.5 14.63 5.81 80.73 5.08 6.87 3.39 16.83 3.29 25.97 8.83 21.64 6.03 9.42 2.39 4.32	9.063 31.17 5.14 38.1 7.718 56.5 50.64 33.91 32.45 29.67 11.53 47.57 26.99 19.58 50.014 12.58 30.85 5.014 12.58 30.85 5.014 13.1 33.69 70.57 13.1 33.69 70.57 13.1 13.1 10.71 64.32 10.71 64.32 10.71 64.32 10.64 19.65 10.04 3.51 27.25 10.04 3.51 27.25 10.04 3.51 27.25 10.04 3.51 27.25 10.04 10.04 10.04 10.25 10.04 10.55 10.55 10.04 10.55 10.55 10.55 10.04 10.55	ATP-dependent. NNA helicase DDX3X CS-Homo sapiens GN-DDX3X FE-1 SV-3 Tubulin beta-6 chain OS+Homo sapiens GN-TUBB6 PE-1 SV-1 Transmembrane 9 superfamily member 4 OS+Homo sapiens GN-TM9SF4 PE-1 SV-2 Elongation factor 1-alpha 1 OS+Homo sapiens GN-TRS1X PE-1 SV-3 MTP synthase subunit gamma, mitochondrial OS+Homo sapiens GN-ATPE12 PE-1 SV-4 Ublquith-405 rbosomal protein S27a OS+Homo sapiens GN-MEPS27A PE-1 SV-2 405 ribosomal protein S27a OS-Homo sapiens GN-MEPS27A PE-1 SV-4 Ublquith-405 rbosomal protein S27a OS-Homo sapiens GN-MEPS27A PE-1 SV-2 405 ribosomal protein S27a OS-Homo sapiens GN-MEPS27A PE-1 SV-3 Mitochondrial Inner membrane protein OS-Homo sapiens GN-EMPS17A PE-1 SV-3 Moliny/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN-ADPS1 PE-1 SV-3 Mosin 9 OS-Homo sapiens GN-MEPS12 PE-1 SV-3 Mosin 9 OS-Homo sapiens GN-MEPS2 PE-1 SV-3 Mosin 9 DS-Homo sapiens GN-MEPS2 PE-1 SV-3 Mosin 9 DS-Homo sapiens GN-MEPS2 PE-1 SV-3 Mosin 9 OS-Homo sapiens GN-MEPS2 PE-1 SV-3 Mosin 9 DS-Homo sapiens GN-MEPS2 PE-1 SV-3 Morin/potasium- transporting ATPase subunit be-3 OS-Homo sapiens GN-MAD2 PE-1 SV-2 Transmembrane emp24 domain-containing protein 5 OS-Homo sa	0.544 0.533 0.532 0.531 0.515 0.515 0.510 0.507 0.503 0.503 0.503 0.503 0.502 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.479 0.472 0.474 0.472 0.455 0.455 0.425 0.425 0.425 0.425 0.424	0.001 0.029 0.029 0.004 0.004 0.004 0.003 0.004 0.002 0.015 0.004 0.015 0.004 0.018 0.004 0.018 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.000 0.013 0.000 0.001 0.001 0.000 0.001
C98UF5 Q92544 P35642 P35642 P35642 P42824 Q16891 P52727 P5279 P5278 P5278 P5278 P5278 P5278 P5278 P5278 Q77020 P5279 P5278 Q77020 Q7278 Q778 Q7	6.04 6.04 3.28 25.32 33.51 11.32 6 19.86 6 19.86 5.81 30.73 4.98 6.12 33.79 9.47 3.379 9.47 3.38 16.71 13.89 21.64 15.81 25.97 8.83 21.64 5.94 25.97 8.828	6.82 15.79 3.28 3.28 25.32 4.25 37.57 11.37 6 20.04 16.5 14.63 5.81 80.73 5.08 6.87 34.14 9.47 3.39 9.47 3.39 25.97 16.83 30.29 41.73 3.83 21.64 6.03 9.42 2.39 4.32 10.53 8.28	9.063 31.17 5.14 38.1 7.718 50.64 33.91 32.45 50.64 33.91 32.45 50.64 33.91 32.45 50.64 33.91 32.45 50.64 33.49 19.58 30.85 50.14 12.58 30.85 50.3 33.69 70.67 59.3 39.73 62.13 10.71 10.04 35.31 27.25	ATP-dependent: NNA helicase DDX3X 05-Homo sapiens GN-DDX3X PE-1 SV-3 Tubulin beta 6 chain OS-Homo sapiens GN-UBB 6 PE-1 SV-1 Elongation factor 1-alpha 1 OS-Homo sapiens GN-TM95F4 PE-1 SV-2 Elongation factor 1-alpha 1 OS-Homo sapiens GN-MTL3 PE-1 SV-4 Molay Theorem 2000 State 100 SH 100 Section Sapiens GN-MTL3 PE-1 SV-4 Ubliquitin 405 ribosomal protein S20 OS-Homo sapiens GN-MTR527A PE-1 SV-2 405 ribosomal protein S20 OS-Homo sapiens GN-MTL3 PE-1 SV-4 Mitochondrial Inner membrane protein OS-Homo sapiens GN-MTDS17A PE-1 SV-4 Mitochondrial Inner membrane protein OS-Homo sapiens GN-MTDS17A PE-1 SV-3 Sodium/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN-MTDS1 PE-1 SV-3 Sodium/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN-ADTS1 PE-1 SV-3 Mitochondrial Inner membrane protein OS-Homo sapiens GN-MTDS1 PE-1 SV-3 Sodium/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN-ADTS1 PE-1 SV-3 Mosin-9 OS-Homo sapiens GN-MTP3 PE-1 SV-4 Mosin-9 OS-Homo sapiens GN-MTDS1 PE-1 SV-3 Mosin-9 OS-Homo sapiens GN-MTDS1 PE-1 SV-3 Mosin-9 OS-Homo sapiens GN-MTS1 PE-1 SV-3 GS ribosomal protein 12 OS-Homo sapiens GN-MTDS1 PE-1 SV-3 Importin-5 OS-Homo sapiens GN-MTS1 PE-1 SV-3 GS ribosomal protein 12 OS-Homo sapiens GN-MTS2 PE-1 SV-3 Mosin-9 CS-Homo sapiens GN-MTS1 PE-1 SV-3 Sodium/potasium-transporting ATPase subunit beta 3 OS-Homo sapiens GN-MTAD1 PE-1 SV-1 Transmembrane emp24 domain-containing protein 10 OS-Homo sapiens GN-MTP113 PE-1 SV-1 Votage dependent anion-selective channel protein 10 OS-Homo sapiens GN-MTDA1 PE-1 SV-2 Transmembrane emp24 domain-containing protein 10 OS-Homo sapiens GN-MTDA1 PE-1 SV-2 Transmethrane emp24 domain-containing protein 10 OS-Homo sapiens GN-MTDA1 PE-1 SV-2 Protein FAM3C OS-Homo sapiens GN-FAM3C PE-1 SV-1 Amine caidas 10 SS-Homo sapiens GN-FAM3C PE-1 SV-2 Protein FAM3C OS-Homo sapiens GN-FAM3C PE-1 SV-2 Protein FAM3C OS-Homo sapiens GN-FAM3C PE-1 SV-3 Prentylysteline caidase 10 SS-Homo sapiens GN-FAM3C PE-1 SV-3 Prentylysteline cai	0.544 0.532 0.532 0.531 0.521 0.515 0.514 0.510 0.504 0.500 0.504 0.503 0.504 0.503 0.504 0.504 0.502 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.496 0.483 0.477 0.472 0.474 0.472 0.455 0.425 0.424 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.452 0.423 0.453 0.453 0.454 0.455 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.453 0.453 0.454 0.455 0.423 0.425 0.	0.001 0.029 0.029 0.004 0.040 0.040 0.043 0.022 0.002 0.043 0.022 0.015 0.004 0.013 0.004 0.013 0.004 0.013 0.000 0.013 0.000 0.013 0.000 0.014 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.00 0
QBUF5 Q32544 Q68104 P36542 P603727 P623574 Q16891 P51572 Q35544 Q35543 Q35543 Q35264 Q35266 Q02420 Q393A6 P54709 P21796 P35232 Q312653 Q33176 Q153653 P632544 Q35252 Q33176 Q35244 Q35244 Q35244 Q35244 Q35244 Q35244	6.04 6.04 3.28 25.32 25.32 33.51 11.32 6 19.86 14.63 80.73 4.98 80.73 14.67 13.85 16.67 13.85 16.71 13.89 16.71 13.89 25.81 25.83 25.83 21.54 25.83 25.83 25.83 25.83 25.83 25.83 25.84 25.83 25.83 25.84 25.84 25.	6.82 15.79 3.28 25.32 3.25 25.37 25.37 25.27 3.25 25.27 1.137 1.6 2.0.04 1.6.5 1.4.63 20.04 1.6.5 3.0.29 3.0	9,063 31,17 5,14 38,1 38,1 56,5 50,64 33,91 32,45 50,64 33,91 32,45 72,6,99 19,58 5,014 12,58 5,014 12,58 33,19 19,58 5,014 12,58 33,19 19,57 5,014 12,55 5,014 10,57 5,014 10,57 5,014 10,57 5,014 10,57 5,014 10,57 5,014 10,57 10	ATP-dependent. NNA helicase DDX3X CS-Homo sapiens GN-DDX3X FE-1 SV-3 Tubulin beta-6 chain OS-Homo sapiens GN-TUBB6 PE-1 SV-1 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN-TM9SF4 PE-1 SV-2 Ekongation factor 1-alpha 1 OS-Homo sapiens GN-TK13 PE-1 SV-3 ATP synthase subunit gamma, mitochondrial OS-Homo sapiens GN-ATPSC1 PE-1 SV-4 Ubliquitin 405 Ribosomal protein S270 OS-Homo sapiens GN-RMPSC3 PE-1 SV-4 Ubliquitin 405 Ribosomal protein S270 OS-Homo sapiens GN-RMPSC3 PE-1 SV-4 Displant Advance and protein S270 OS-Homo sapiens GN-RMPSC3 PE-1 SV-4 Displant Advance associate Gravitina 31 OS-Homo sapiens GN-RMPSC3 PE-1 SV-4 Displant Advance associate Gravitina 31 OS-Homo sapiens GN-RMPSC3 PE-1 SV-3 Softum/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN-ACP31 PE-1 SV-3 Softum/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN-ACP31 PE-1 SV-3 Mosini-9 OS-Homo sapiens GN-HPOS PE-1 SV-4 40s ribosomal protein 13 OS-Homo sapiens GN-RMPS23 PE-1 SV-3 Minoptin-9 CS-Homo sapiens GN-HPOS PE-1 SV-4 Fatty add synthase OS-Homo sapiens GN-RMPIS3 PE-1 SV-3 Softum/potasium-transporting ATPase subunit Rendom SRPI13 PE-1 SV-2 Transmembrane emp24 domain-containing protein 10 SS-Homo sapiens GN-TMEDS PE-1 SV-1 Sodium/potasium-transporting ATPase subunit Rendom sapiens GN-MACP PE-1 SV-2 Transmembrane emp24 domain-containing protein 10 SS-Ho	0.544 0.533 0.532 0.531 0.515 0.515 0.510 0.504 0.503 0.504 0.503 0.504 0.503 0.504 0.504 0.504 0.504 0.504 0.504 0.503 0.504 0.499 0.499 0.499 0.499 0.499 0.479 0.474 0.472 0.455 0.459 0.459 0.448 0.442 0.425 0.424 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.423 0.421 0.421 0.421 0.421 0.423 0.421 0.4221 0.422 0.4221 0.422 0.4221 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.	0.001 0.029 0.029 0.004 0.040 0.043 0.022 0.015 0.002 0.015 0.002 0.015 0.003 0.013 0.013 0.004 0.013 0.004 0.013 0.004 0.033 0.004 0.033 0.005 0.001 0.000 0.013 0.000 0.001 0.000 0.013 0.000 0.001 0.001 0.001 0.001 0.001 0.003 0.000 0.003 0.003 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
C98UF5 Q92544 P35642 P35642 P35642 P42824 Q16891 P52727 P5279 P5278 P5278 P5278 P5278 P5278 P5278 Q77020 P5278 Q77020 Q72020 Q72020 Q7278 Q778 Q7	6.04 6.04 3.28 25.32 25.32 3.351 11.32 6 19.965 14.63 16.63 14.63 15.65 15.55 15.55 11.55 15.55 11.55	6.32 15.79 3.28 2.5.32 2.5.32 3.7.57 6 2.0.04 1.1.37 6 2.0.04 1.1.37 6 2.0.04 1.6.5 1.4.63 3.0.29 3.4.14 3.39 3.0.27 3.4.14 3.39 3.0.27 3.4.17 3.39 2.5.94 3.32 2.5.94 3.2.597 3.2.59	9.063 31.17 5.14 38.1 7.713 56.5 50.64 33.91 32.45 29.67 11.55 20.67 20.	ATP-dependent: RNA helicase DDX3X 05-Homo sapiens GN-DDX3X PE-1 SV-3 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN-TM95F4 PE-1 SV-2 Ekongation factor 1-alpha 1 OS-Homo sapiens GN-MEDF3L PE-1 SV-1 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN-TM95F4 PE-1 SV-2 Ekongation factor 1-alpha 1 OS-Homo sapiens GN-METF3L PE-1 SV-4 Ubliquitin 405 fibosomal protein S20 OS-Homo sapiens GN-METF3C1 PE-1 SV-4 Ubliquitin 405 fibosomal protein S20 OS-Homo sapiens GN-METF3C1 PE-1 SV-4 Ubliquitin 405 fibosomal protein S20 OS-Homo sapiens GN-METF3C7 PE-1 SV-2 405 fibosomal protein S26 OS-Homo sapiens GN-METF3C7 PE-1 SV-3 Mitochondrial Inser merbane protein OS-Homo sapiens GN-MENDE PE-1 SV-3 Sodium/potasium-transporting AIPase subunit alpha-1 OS-Homo sapiens GN-ATPL PE, PE-1 SV-3 AMosin-9 OS-Homo sapiens GN-MEDE PE-1 SV-3 Mosin-9 OS-Homo sapiens GN-MEDE PE-1 SV-3 Fatty add synaism-transporting AIPase subunit alpha-1 OS-Homo sapiens GN-MEDE PE-1 SV-3 Sodium/potasium-transporting AIPase subunit Be-3 OS-Homo sapiens GN-MEDE PE-1 SV-3 Fortsmembrane emp24 domain-containing protein 10 SH-GMD sapiens GN-MEDE PE-1 SV-1 Transmembrane emp24 domain-containing protein 10 SH-GMD sapiens GN-MADE PE-1 SV-2	0.544 0.532 0.532 0.531 0.551 0.551 0.554 0.507 0.504 0.504 0.503 0.504 0.503 0.499 0.496 0.483 0.474 0.474 0.474 0.474 0.474 0.474 0.455 0.425 0.424 0.423 0.421 0.423 0.421 0.421 0.421 0.423 0.421 0.421 0.423 0.421 0.423 0.421 0.423 0.421 0.423 0.421 0.423 0.421 0.421 0.423 0.421 0.421 0.423 0.421 0.421 0.423 0.421 0.423 0.421 0.423 0.421 0.423 0.421 0.421 0.421 0.423 0.421 0.421 0.421 0.421 0.423 0.421 0.421 0.421 0.423 0.421 0.	0.001 0.029 0.029 0.004 0.004 0.004 0.002 0.002 0.015 0.002 0.016 0.018 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.000 0.000 0.000 0.001 0.002 0.013 0.003 0.014 0.017 0.003 0.017 0.003 0.003
C98UF5 C98UF4 P68104 P68104 P68104 P68104 P68104 P6977 P62379 P62378 P6377 P6378	6.04 6.04 3.28 25.32 25.32 33.51 11.32 6 19.86 14.63 14.73 13.89 14.73 14.73 14.73 14.73 14.74 15.75 15	$\begin{array}{c} 6.82\\ 5.79\\ 3.28\\ 2.532\\ 3.28\\ 2.532\\ 3.757\\ 6\\ 2.0.04\\ 11.37\\ 6\\ 2.0.04\\ 11.37\\ 6\\ 2.0.04\\ 11.37\\ 6\\ 2.0.04\\ 11.37\\ 6\\ 5.81\\ 30.73\\ 5.08\\ 30.73\\ 30.$	9.063 31.17 5.14 33.1 5.14 33.1 56.5 50.64 33.91 32.45 50.64 33.91 32.45 50.64 13.2 29.67 10.55 10.71 10.71 10.71 10.67 10.63 10.71 10.63 10.71 10.63 10.64 10.76 10.64 10.64 10.64 10.64 10.65 10.64 10.64 10.64 10.65 10.64 10.64 10.65 10.64 10.65 10.64 10.65 10.64 10.65 10.64 10.65 10.75 10.75 10.75 10.75 10.75 10.65 10.65 10.65 10.75 10.75 10.65 10.65 10.65 10.75 10.75 10.65 10.65 10.65 10.65 10.75 10.75 10.65 10.65 10.65 10.65 10.65 10.75 10.65 10.65 10.65 10.65 10.65 10.65 10.65 10.75 10.55 1	ATP-dependent: NNA helicase DDX3X OS-Homo sapiens GN-DDX3X PE-1 SV-3 Tubulin beta 6 chain OS+Homo sapiens GN-TUBB6 PE-1 SV-1 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN-TMS5F4 PE-1 SV-2 Elongation factor 1-alpha 1 OS-Homo sapiens GN-TMS12 PE-1 SV-4 Market 1 (Step 1) Step 1 (Step 1) Step 1) Step 1 Keratin, type 1 cytoskeletal 19 OS-Homo sapiens GN-MTR57A PE-1 SV-2 (ATP synthase subunit gamma, mitochondrial OS-Homo sapiens GN-ATPS12 PE-1 SV-4 Ubliquitin 405 Ribosomal protein S20 OS-Homo sapiens GN-MTR57A PE-1 SV-2 405 ribosomal protein S20 OS-Homo sapiens GN-MTR57A PE-1 SV-4 (Disputine 4) Step 20 Step 1) Step 20	0.544 0.532 0.532 0.531 0.521 0.515 0.515 0.510 0.504 0.507 0.507 0.507 0.507 0.503 0.502 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.474 0.474 0.475 0.455 0.455 0.448 0.445 0.424 0.421 0.421 0.425 0.	0.001 0.029 0.029 0.004 0.040 0.043 0.022 0.043 0.043 0.022 0.016 0.004 0.043 0.013 0.006 0.013 0.004 0.013 0.004 0.033 0.026 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.014 0.000 0.014 0.001 0.035 0.035 0.007 0.003 0.004
C98UF5 Q92544 P3542 P3542 P3542 P3542 P42372 P42372 P42372 P42374 Q1592 P52354 Q1592 P52354 Q1592 P52354 Q1592 P52354 Q17020 Q17020 Q17020 Q17020 Q17020 Q1720 Q17020 Q1720 Q1553 Q1755 Q1	6.04 6.04 3.28 25.32 25.32 3.351 11.32 6 19.965 14.63 16.63 14.73 13.89 9.42 25.97 8.83 21.64 4.31 13.89 6 6 5.9 8.23 21.64 15.55	6.82 15.79 3.28 2.5.27 3.28 2.5.27 3.25 3	9.063 31.17 5.14 38.1 7.713 56.5 50.64 33.91 22.967 7.163 22.967 7.26.99 26.99 7.26.99 26.99 7.067 26.99 26.99 7.067 10.5 33.69 7.067 26.99 33.69 7.067 26.99 33.69 7.067 20.59 33.69 20.59 33.69 20.59 33.69 20.59 33.69 20.59 33.69 20.59 30.5	ATP-dependent: RNA helicase DDX3X 05-Homo sapiens GN-DDX3X PE-1 SV-3 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN-TM95F4 PE-1 SV-2 Ekongation factor 1-alpha 1 OS-Homo sapiens GN-METAJ PE-1 SV-1 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN-TM95F4 PE-1 SV-2 Ekongation factor 1-alpha 1 OS-Homo sapiens GN-METAJ PE-1 SV-4 Ubliquiti-d3V fibosomal protein S20 OS-Homo sapiens GN-METSJ PE-1 SV-4 Ubliquiti-d3V fibosomal protein S20 OS-Homo sapiens GN-METSJ PE-1 SV-4 Ubliquiti-d3V fibosomal protein S20 OS-Homo sapiens GN-METSJ PE-1 SV-3 Mitochondrial inner merbane protein OS-Homo sapiens GN-MERPSJ PE-1 SV-3 Sodium/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN-MERPSJ PE-1 SV-3 AVE rightses subunit g, mitochondrial OS-Homo sapiens GN-MATPSI PE-1 SV-3 Mosin-9 OS-Homo sapiens GN-MERPSJ PE-1 SV-3 Mosin-9 OS-Homo sapiens GN-MERPSI PE-1 SV-3 Mosin-9 OS-Homo sapiens GN-MERPSI PE-1 SV-3 Mosin-9 OS-Homo sapiens GN-MERPSI PE-1 SV-3 Soffmorphasium-transporting ATPase subunit beha 3 OS-Homo sapiens GN-TMEDS PE-1 SV-1 Transmembrane emp24 domain-containing protein 10 OS-Homo sapiens GN-ATP1B3 PE-1 SV-2 Transmembrane emp24 domain-containing protein 10 OS-Homo sapiens GN-MADCL PE-1 SV-2 Vottage dependent anion-selective channel protein 10 OS-Homo sapiens GN-MADCL PE-1 SV-2 Transmembrane emp24 domain-containing protein 10 OS-Homo sapien	0.544 0.533 0.532 0.531 0.515 0.515 0.510 0.507 0.503 0.503 0.503 0.503 0.503 0.502 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.479 0.479 0.472 0.472 0.472 0.455 0.455 0.425 0.425 0.425 0.423 0.421 0.419 0.423 0.421 0.421 0.423 0.421 0.423 0.421 0.423 0.424 0.423 0.424 0.423 0.424 0.423 0.424 0.423 0.424 0.424 0.423 0.424 0.424 0.423 0.424 0.424 0.424 0.424 0.424 0.424 0.424 0.424 0.424 0.424 0.424 0.424 0.424 0.424 0.424 0.424 0.423 0.424 0.425 0.424 0.425 0.424 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.424 0.425 0.424 0.425 0.424 0.424 0.425 0.424 0.424 0.424 0.425 0.424 0.	0.001 0.029 0.029 0.004 0.004 0.000 0.004 0.000 0.015 0.004 0.015 0.004 0.018 0.004 0.018 0.004 0.013 0.004 0.003 0.003 0.005 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.005 0.013 0.005 0.015 0.005 0.015 0.005
C98UF5 C98UF3 P55104 P55104 P55104 P5572 P52372 P52374 P52374 P52374 P55372 P55372 P55572	6.04 6.04 3.28 25.32 25.32 33.51 13.22 6 13.36 14.63 14.63 80.73 33.79 9.47 3.38 6 12.33 79 9.47 3.38 16.71 3.37 9.47 3.38 16.71 3.39 9.47 3.38 16.71 3.39 9.47 3.38 16.71 3.39 9.47 3.38 16.71 1.39 4.98 6.12 2.59 4.13 1.57 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.57	6.82 15.79 3.28 2.5.32 2.5.32 37.57 37.57 6 20.04 16.5 11.37 6 20.04 16.5 14.63 80.73 34.14 3.39 9.47 3.39 9.47 3.39 25.93 8.53 2.53 8.63 9.42 2.39 4.173 10.53 2.39 4.32 10.63 8.28 2.39 4.32 10.63 5.84 10.057 5.54	9.063 31.17 5.14 38.1 7.718 56.5 50.64 32.45 50.64 32.45 50.64 32.45 50.64 11.53 22.45 7.67 919.58 5.014 12.58 5.014 12.58 5.014 12.58 5.03 33.69 9.3 33.69 9.3 33.69 9.3 33.67 10.71 19.58 5.014 10.71 10.7	ATP-dependent: NNA helicase DDX3X 05-Homo sapiens GN-DDX3X PE-1 SV-3 Tubulin beta-6 chain OS-Homo sapiens GN-UBDX3X PE-1 SV-1 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN-TM95F4 PE-1 SV-2 Ekogation factor 1-alpha 1 OS-Homo sapiens GN-META1X PE-1 SV-1 ATP synthase subunit gamma, mitochondrial OS-Homo sapiens GN+ATPSC1 PE-1 SV-2 Keratin, type 1 cytoskeletal 19 OS-Homo sapiens GN+ATRSC1 PE-1 SV-4 Ubliquitin 405 ribosomal protein S20 oS-Homo sapiens GN+ATPSC1 PE-1 SV-4 Ubliquitin 405 ribosomal protein S20 oS-Homo sapiens GN+ATM51 PF-1 SV-4 405 ribosomal protein S26 OS-Homo sapiens GN+MEX27A PE-1 SV-2 406 ribosomal protein S26 OS-Homo sapiens GN+AGNA1 PF-1 SV-1 B-cell receptor-associated protein 31 OS-Homo sapiens GN+ACAP31 PF-1 SV-3 Sodium/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN+ADS1 PF-1 SV-3 Ador ribosomal protein S30 OS-Homo sapiens GN+ACAP31 PF-1 SV-3 Mosin-9 OS-Homo sapiens GN+PB21 PF-1 SV-4 405 ribosomal protein S30 OS-Homo sapiens GN+ADS1 PF21 SV-3 Importin-5 OS-Homo sapiens GN+ADS1 PF-1 SV-4 405 ribosomal protein S30 OS-Homo sapiens GN+ADS1 PF21 SV-3 Importin-5 OS-Homo sapiens GN+ADS1 PF-1 SV-4 405 ribosomal protein S30 OS-Homo SAPE1 SN-4 Sodium/potasium-transporting ATPase subunit beta-3 OS-Homo sapiens GN+ADS1 PF-1 SV-1 Transmembrane emp24 domain-containing protein 1 OS-Hom	0.544 0.532 0.532 0.531 0.521 0.515 0.510 0.510 0.504 0.499 0.499 0.499 0.496 0.483 0.4774 0.4774 0.4774 0.475 0.485 0.448 0.425 0.425 0.424 0.422 0.4224 0.421 0.405 0.405 0.405 0.405 0.405 0.405 0.405 0.424 0.421 0.405 0.405 0.405 0.405 0.405 0.424 0.424 0.424 0.421 0.405 0.405 0.405 0.405 0.405 0.424 0.424 0.424 0.425 0.445 0.425 0.445	0.001 0.002 0.029 0.004 0.004 0.004 0.004 0.003 0.003 0.015 0.001 0.013 0.001 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.014 0.000 0.014 0.003 0.004 0.000 0.004 0.000 0.004 0.000 0.004 0.000 0.004 0.000 0.000 0.004 0.000
C98UF5 Q25544 P35642 P35642 P35642 P3572 P5272 P5272 P5272 P5272 P5272 P5272 Q75964 Q15857 Q75964 Q7020 Q700	6.04 6.04 3.28 25.32 15.32 11.32 11.32 13.35 11.32 13.35 14.63 80.73 14.63 80.73 14.63 16.66 14.63 80.73 14.98 16.67 13.89 16.71 13.82 16.71 13.83 16.71 13.89 25.83 16.71 13.89 25.83 25.94 27.94 27.94 27.94 27.94 27.94 27.94 27.94 27.94 27.97 27.94 27.97	6.82 15.79 3.28 25.32 3.25 25.37 25.37 25.37 25.37 25.37 11.37 16.5 20.04 11.37 16.5 20.04 20.04 16.5 20.04 20.04 20.04 20.04 20.04 20.04 20.04 20.04 20.04 20.04 20.04 20.04 20.04 20.04 20.04 20.04 20.04 20.29 20.4 20.5 20.6 20.5 20.6 20.5 20 20 20 20 20 20 20 20 20 20	$\begin{array}{c} 9,063\\ 3,1,7\\ 5,14\\ 38,1\\ 7,718\\ 56,5\\ 50,64\\ 33,91\\ 32,45\\ 70,718\\ 33,91\\ 32,45\\ 70,718\\ 33,91\\ 32,45\\ 70,67\\ 70,67\\ 70,67\\ 70,67\\ 70,67\\ 70,67\\ 70,67\\ 70,67\\ 10,04\\ 33,31\\ 10,71\\ 10,67\\ 10,04\\ 35,31\\ 10,64\\ 32,725\\ 10,04\\ 35,31\\ 10,57\\ 10,04\\ 35,31\\ 10,57\\ 10,04\\ 35,31\\ 10,04\\ 10,04\\ 35,31\\ 10,04\\ 10,04\\ 35,31\\ 10,04\\ 10$	ATP-dependent: RNA helicase DDX3X 05-Homo sapiens GN-DDX3X PE-1 SV-3 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN-TM95F4 PE-1 SV-2 Ekongation factor 1-alpha 1 OS-Homo sapiens GN-METAJ PE-1 SV-1 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN-TM95F4 PE-1 SV-2 Ekongation factor 1-alpha 1 OS-Homo sapiens GN-METAJ PE-1 SV-4 Ubliquiti-d3V fibosomal protein S20 OS-Homo sapiens GN-METSJ PE-1 SV-4 Ubliquiti-d3V fibosomal protein S20 OS-Homo sapiens GN-METSJ PE-1 SV-4 Ubliquiti-d3V fibosomal protein S20 OS-Homo sapiens GN-METSJ PE-1 SV-3 Mitochondrial inner merbane protein OS-Homo sapiens GN-MERPSJ PE-1 SV-3 Sodium/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN-MERPSJ PE-1 SV-3 AVE rightses subunit g, mitochondrial OS-Homo sapiens GN-MATPSI PE-1 SV-3 Mosin-9 OS-Homo sapiens GN-MERPSJ PE-1 SV-3 Mosin-9 OS-Homo sapiens GN-MERPSI PE-1 SV-3 Mosin-9 OS-Homo sapiens GN-MERPSI PE-1 SV-3 Mosin-9 OS-Homo sapiens GN-MERPSI PE-1 SV-3 Soffmorphasium-transporting ATPase subunit beha 3 OS-Homo sapiens GN-TMEDS PE-1 SV-1 Transmembrane emp24 domain-containing protein 10 OS-Homo sapiens GN-ATP1B3 PE-1 SV-2 Transmembrane emp24 domain-containing protein 10 OS-Homo sapiens GN-MADCL PE-1 SV-2 Vottage dependent anion-selective channel protein 10 OS-Homo sapiens GN-MADCL PE-1 SV-2 Transmembrane emp24 domain-containing protein 10 OS-Homo sapien	0.544 0.533 0.532 0.531 0.515 0.515 0.510 0.504 0.503 0.504 0.503 0.504 0.503 0.504 0.503 0.504 0.503 0.504 0.503 0.504 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.479 0.474 0.472 0.448 0.445 0.445 0.423 0.421 0.419 0.423 0.421 0.419 0.423 0.421 0.423 0.421 0.423 0.421 0.423 0.424 0.423 0.421 0.423 0.424 0.423 0.423 0.424 0.425 0.424 0.425 0.426 0.425 0.426 0.	0.001 0.029 0.029 0.029 0.004 0.004 0.000 0.043 0.002 0.015 0.001 0.013 0.018 0.000 0.013 0.004 0.003 0.003 0.003 0.000 0.000
Openuts 092544 092544 092544 092544 092544 092544 062779 092544 016891 075964 075964 075964 07579 062256 000410 094386 094386 094386 094386 094386 094386 094386 094386 094386 094386 094387 094386 094386 094386 094386 094386 094386 094387 094387 094387 094387 03376 0315365 04441 04438 04431 04431 045433	6.04 6.04 3.28 25.32 25.32 25.32 11.32 6 19.365 11.32 6 19.365 14.63 14.63 14.63 14.63 14.63 14.73 13.89 16.71 13.89 16.71 13.89 25.97 25.97 2.39 4.23 2.5.97 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9	6.82 15.79 3.28 2.5.32 2.5.32 3.7.57 4.25 3.7.57 6 2.0.04 1.1.37 6 2.0.04 1.6.5 1.4.63 3.0.29 3.4.14 9.47 3.39 9.47 3.39 9.47 3.39 9.47 3.39 2.5.97 3.8.33 2.5.97 4.22 3.8.33 2.5.97 4.22 1.5.85 5.63 4.42 5.63 4.42 5.63 4.42 5.63 5.63 4.42 5.63 5.53 5.53 5.54 5.55 5.55 5.57	9.063 31.17 5.14 38.1 7.713 56.5 50.64 33.91 32.45 50.64 33.91 32.45 50.64 33.91 11.53 50.64 43.391 12.56 50.64 47.57 20.67 91.95 50.14 12.56 50.14 12.56 50.33 50.33 50.33 50.33 50.33 50.33 50.33 50.33 50.33 50.33 50.33 50.33 50.33 50.33 50.33 50.33 50.34 50.33 50.34 50.33 50.34 50.33 50.34 50.33 50.34 50.33 50.34 50.33 50.34 50.33 50.34 50.33 50.34 50.35 50.34 50.34 50.35 50.35 50	ATP-dependent: NNA helicase DDX3X 05-Homo sapiens GN-DDX3X PE-1 SV-3 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN-TM95F4 PE-1 SV-2 Ekongation factor 1-alpha 1 OS-Homo sapiens GN-MERTAIX PE-1 SV-1 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN-TM95F4 PE-1 SV-2 Ekongation factor 1-alpha 1 OS-Homo sapiens GN-MERTAIX PE-1 SV-1 ATP synthase subunit gamma, mitochondrial OS-Homo sapiens GN+ATPSCI PE-1 SV-2 405 rithosomal protein S26 OS-Homo sapiens GN+ATPSCI PE-1 SV-4 Ubliquitin 405 ribosomal protein S26 OS-Homo sapiens GN+ATPSCI PE-1 SV-2 405 rithosomal protein S26 OS-Homo sapiens GN+ATPSCI PE-1 SV-3 Mitochondrial Inner membrane protein OS-Homo sapiens GN+ATPSL PE-1 SV-1 ADF synthase subunit g, mitochondrial OS-Homo sapiens GN+ATPSL PE-1 SV-3 Sodium/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN+ATPSL PE-1 SV-3 Mosin 9 OS-Homo sapiens GN-HPSL PE-1 SV-3 Mosin 9 OS-Homo sapiens GN-MP13 PE-1 SV-3 Mosin 9 OS-Homo sapiens GN-MP13 PE-1 SV-3 GS ribosomal protein L13 OS-Homo sapiens GN-MP13 PE-1 SV-3 Sodium/potasium-transporting ATPase subunit Bit-3 OS-Homo sapiens GN-ATPSL PE-1 SV-3 Transmembrane emp24 domain-containing protein SGN-FGN SGN-MTMES PE-1 SV-3 Sodium/potasium-transporting ATPase subunit Bit-3 OS-Homo sapiens GN-ATPL PE-1 SV-1 Transmembrane emp24 domain-containing protein 10 OS-Homo sapiens GN-ATPL PE-1 SV-1	0.544 0.532 0.532 0.531 0.521 0.515 0.514 0.510 0.504 0.502 0.504 0.503 0.504 0.503 0.504 0.503 0.504 0.503 0.504 0.504 0.503 0.504 0.503 0.504 0.499 0.499 0.499 0.499 0.496 0.483 0.474 0.474 0.455 0.448 0.455 0.424 0.424 0.424 0.424 0.421 0.405 0.405 0.405 0.405 0.405 0.424 0.424 0.425 0.405 0.405 0.405 0.424 0.424 0.425 0.424 0.425 0.424 0.425 0.424 0.425 0.425 0.424 0.425 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.455 0.	0.001 0.002 0.029 0.004 0.004 0.004 0.004 0.003 0.003 0.003 0.001 0.003 0.003 0.003 0.003 0.000 0.003 0.000 0.003 0.000 0.003 0.003 0.003 0.000 0.003 0.000
C98UF5 C98UF4 P68104 P68104 P68104 P68104 P68104 P69727 P62379 P62374 P6377 P63274 P6377 P63284 C16891 P51572 P5226 Q75964 Q75964 Q7200 Q7200 Q7200 Q7200 Q7202	6.04 6.04 3.28 25.32 25.32 33.51 11.32 6 19.86 14.63 14.63 80.73 4.98 6.12 14.63 80.73 14.63 14.73 13.89 14.73 13.89 14.73 13.89 14.64 15.81 15.81 15.9	$\begin{array}{r} 6.82\\ 5.79\\ 3.28\\ 2.532\\ 3.28\\ 2.532\\ 3.757\\ 1.137\\ 1.0\\ 1.137\\ 1.0\\ 1.05\\ 1.$	9.063 31.17 5.14 33.1 5.14 33.1 33.1 56.5 50.64 33.91 32.45 50.64 33.91 32.45 50.64 33.91 32.45 50.64 33.91 13.2 50.64 33.91 13.2 50.64 33.91 13.2 50.64 33.91 13.2 50.64 33.91 13.2 50.64 33.91 13.2 50.64 33.91 13.2 50.64 33.91 13.2 50.64 33.91 13.2 50.64 13.2 50.64 13.2 50.64 13.2 50.64 13.2 50.64 13.2 50.64 13.2 50.64 13.2 50.64 13.2 50.64 13.2 50.64 13.2 50.64 13.2 50.7 50.7 19.5 50.7 50	ATP-dependent: NNA helicase DDX3X CS-Homo sapiens GN-DDX3X FE-1 SV-3 Tubulin beta 6 chain OS+Homo sapiens GN-TUBB6 PE-1 SV-1 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN-TM9SF4 PE-1 SV-2 Ekngation factor 1-alpha 1 OS-Homo sapiens GN-TK13 PE-1 SV-4 MID ATP synthase subunit gamma, mitochondrial OS-Homo sapiens GN-ATPSC1 PE-1 SV-4 Ubliquitin 405 Ribosmal protein S27a OS-Homo sapiens GN-MRTS21 PE-1 SV-4 Ubliquitin 405 Ribosmal protein S27a OS-Homo sapiens GN-MRTS21 PE-1 SV-4 Ubliquitin 405 Ribosmal protein S27a OS-Homo sapiens GN-MRTS21 PE-1 SV-4 Distribution of the S27a OS-Homo sapiens GN-MRTS21 PE-1 SV-1 B-cell receptor-associated protein 31 OS-Homo sapiens GN-MCAP31 PE-1 SV-3 Solium/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN-ATP1A1 PE-1 SV-1 ATP synthase subunit alpha-1 OS-Homo sapiens GN-MRCAP31 PE-1 SV-3 Mostin-9 OS-Homo sapiens GN-MRDS2 PE-1 SV-4 405 ribosomal protein 13 OS-Homo sapiens GN-MRDS2 PE-1 SV-3 Importin-5 OS-Homo sapiens GN-MRDS3 PE-1 SV-4 GS ribosomal protein 13 OS-Homo sapiens GN-MRDS2 PE-1 SV-4 Solium/potasium-transporting ATPase subunit Be-3 OS-Homo sapiens GN-TMED5 PE-1 SV-3 Transmethrane emp24 domain-containing protein SO-SHOMO sapiens GN-TMED5 PE-1 SV-1 Solium/potasium-transporting ATPase subunit Be-3 OS-Homo sapiens GN-TMED5 PE-1 SV-1 Voltage-dependent anion-sel	0.544 0.532 0.532 0.531 0.515 0.515 0.515 0.510 0.507 0.507 0.503 0.502 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.479 0.474 0.472 0.472 0.448 0.445 0.445 0.425 0.424 0.424 0.421 0.421 0.421 0.404 0.421 0.404 0.438 0.499 0.499 0.421 0.425 0.421 0.425 0.455 0.	0.001 0.029 0.029 0.029 0.004 0.040 0.043 0.022 0.015 0.018 0.013 0.013 0.013 0.004 0.013 0.004 0.013 0.000 0.013 0.000 0.013 0.000 0.014 0.001 0.000 0.001 0.000
C98UF5 Q92544 P36542 P36542 P36542 P42372 P62373 P62374 Q18971 P51572 Q75764 Q18971 P51572 Q75764 Q18971 P51572 Q75763 Q75764 Q70204 Q77202 Q77206 Q723776 Q72376 Q72376 Q72376 Q72376 Q72376 Q72376 Q72376 Q723777 Q72376 Q723777 Q723777 Q723777 Q723777 Q723777 Q7237777777 Q7237777777777	6.04 6.04 3.28 25.32 25.32 25.32 33.51 11.32 6 19.36 11.32 6 19.36 14.63 14.63 14.63 14.63 14.63 14.63 14.63 14.63 14.63 14.63 14.63 14.63 14.73 3.379 9.47 3.38 15.81 13.89 25.97 25.97 2.39 4.31 5.9 4.31 5.9 4.31 5.9 4.31 5.9 4.31 5.9 6.67 7.52 5.9 8.07 10.585 7.59 8.07 10.585 7.59 8.07 10.585 7.59 9.42 10.585 7.59 9.42 10.585 7.59 9.42 10.585 7.59 9.42 10.585 7.59 9.42 10.585 7.59 9.42 10.585 7.59 9.42 10.585 7.59 9.42 10.585 7.59 9.42 10.585 7.59 9.42 10.585 7.59 9.42 10.585 7.59 9.42 10.585 7.59 9.42 10.585 10.5	6.82 15.79 3.28 2.5.32 2.5.32 3.757 6 2.0.04 11.37 6 2.0.04 11.65 14.63 3.029 3.414 3.39 3.417 3.39 2.5.97 3.63 2.5.97 3.83 2.13 0.65 5.81 10.53 10.54 10.57 10.57 15.88 7.55 16.79 4.94 11.11	9.063 31.17 5.14 38.1 7.713 55.5 50.64 33.91 32.45 29.67 11.53 20.67 20.	ATP-dependent: RNA helicase DDX3X 05-Homo sapiens GN-DDX3X PE-1 SV-3 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN-TM95F4 PE-1 SV-2 Ekongation factor 1-alpha 1 OS-Homo sapiens GN-MEDF1A1 PE-1 SV-1 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN-TM95F4 PE-1 SV-2 Ekongation factor 1-alpha 1 OS-Homo sapiens GN-METF1A1 PE-1 SV-4 Ubliquitin 405 fibosomal protein S20 OS-Homo sapiens GN-METF2A1 PE-1 SV-4 Ubliquitin 405 fibosomal protein S20 OS-Homo sapiens GN-METS2A PE-1 SV-2 405 fibosomal protein S26 OS-Homo sapiens GN-METS2A PE-1 SV-3 Mitochondrial Inner merbane protein OS-Homo sapiens GN-MEMPIE PE-1 SV-3 Sodium/potasium: transporting AIPase subunit alpha-1 OS-Homo sapiens GN-ATP14 PE-1 SV-3 Sodium/potasium: transporting AIPase subunit alpha-1 OS-Homo sapiens GN-ATP14 PE1 FSV-3 Mosini 9 OS-Homo sapiens GN-MENPE PE-1 SV-3 Mosini 9 OS-Homo sapiens GN-MENPE AS PE-1 SV-3 Mosini 9 OS-Homo sapiens GN-MENPE AS PE-1 SV-3 Importin-S OS-Homo sapiens GN-ARPE3 PE-1 SV-3 Sodium/potasium: transporting AIPase subunit bet-3 OS-Homo sapiens GN-ATP18 PE-1 SV-1 Transmembrane emp24 domain-containing proteins 105-Homo sapiens GN-ATP18 PE-1 SV-2 Transmembrane emp24 domain-containing protein 105-Homo sapiens GN-ATP18 PE-1 SV-2 Transmembrane emp24 domain-containing protein 105-Homo sapiens GN-ATP18 PE-1 SV-2 Transmembrane emp24 domain-containing protein 105-	0.544 0.532 0.532 0.531 0.512 0.515 0.554 0.507 0.504 0.507 0.504 0.503 0.504 0.503 0.504 0.503 0.504 0.503 0.504 0.504 0.503 0.504 0.504 0.504 0.503 0.499 0.499 0.496 0.483 0.474 0.474 0.474 0.474 0.474 0.455 0.425 0.425 0.425 0.424 0.423 0.421 0.423 0.421 0.405 0.423 0.421 0.405 0.423 0.421 0.405 0.423 0.421 0.423 0.421 0.405 0.423 0.421 0.405 0.423 0.421 0.423 0.421 0.423 0.421 0.423 0.425 0.424 0.423 0.425 0.426 0.365 0.365 0.350	0.001 0.002 0.029 0.004 0.004 0.004 0.004 0.002 0.043 0.022 0.015 0.001 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.003 0.000
OpBUF5 092544 P68104 P36542 P603727 P62379 P623854 P51572 P050727 P51572 P052874 P052874 P052874 P052874 P052874 P052874 P052874 P052874 P052874 P053879 P62276 P07328 P49755 P33176 Q15355 P52244 P62234 Q394H63 Q15355 P62234 P62273 P33176 Q3237 Q341463 P62913 P14518 P62914 P14518 P62913 P62913 P14518 P62913 P62913 P145189 P1166 P02736	6.04 6.04 3.28 25.32 25.32 33.51 13.62 6 19.36 14.63 14.63 80.73 33.79 14.73 33.79 14.73 33.79 14.73 33.79 14.73 33.79 14.73 33.79 14.73 33.79 14.73 32.59 41.73 15.85 5.9 6 6 7 5.9 15.85 15.8	6.82 15.79 3.28 2.5.32 2.5.32 37.57 37.57 37.57 6 20.04 16.5 11.37 6 20.04 16.5 14.63 80.73 34.14 9.47 3.39 9.47 3.39 25.93 8.28 2.39 4.173 10.63 0.63 9.42 2.39 4.32 10.63 6.64 10.057 7.55 16.79 9.494 1.11 9.22 3.34 9.22 3.54 2.535	9.063 31.17 5.14 38.1 7.718 56.5 50.64 32.45 50.64 32.45 50.64 32.45 50.64 11.53 22.45 7.18 50.64 11.53 22.45 7.19.57 50.64 11.53 20.67 11.53 20.67 11.53 20.67 11.53 20.67 11.53 20.67 11.55 50.64 12.55 50.64 12.55 50.64 12.55 50.64 12.55 50.64 12.55 50.64 12.55 50.64 12.55 50.64 12.55 50.64 12.55 50.64 12.55 50.64 12.55 50.64 12.55 50.64 12.55 50.64 12.55 50.64 12.55 50.64 12.55 50.74 10.71 10.71 10.71 10.71 10.71 10.71 10.71 10.71 10.71 10.71 10.71 10.71 10.71 10.71 10.64 32.55 50.44 10.72 10.75 10.74 10.72 10.72 10.75 10.74 10.72 10.72 10.72 10.75 10.74 10.72 10.75 10.74 10.74 10.55 10.74 10.74 10.74 10.74 10.74 10.75 10.74 10	ATP-dependent: NNA helicase DDX3X 05-Homo sapiens GN-DDX3X PE-1 SV-3 Tubulin beta-6 chain OS-Homo sapiens GN-UBDX3X PE-1 SV-1 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN-TM95F4 PE-1 SV-2 Ekogation factor 1-alpha 1 OS-Homo sapiens GN-METP.1X PE-1 SV-4 Ubliguith adD Tbosomal protein S20 OS-Homo sapiens GN+ATPSCI PE-1 SV-4 Ubliguith adD Tbosomal protein S20 OS-Homo sapiens GN+ATPSCI PE-1 SV-4 Ubliguith adD Tbosomal protein S20 OS-Homo sapiens GN+ATPSCI PE-1 SV-4 Ubliguith adD Tbosomal protein S20 OS-Homo sapiens GN+ADPSCI PE-1 SV-4 Ubliguith adD Tbosomal protein S20 OS-Homo sapiens GN+ADPSCI PE-1 SV-4 Mitochondrial Inner membrane protein OS-Homo sapiens GN+ADPSL PE-1 SV-1 ATP synthase subunit g. mitochondrial OS-Homo sapiens GN+ADPSL PE-1 SV-3 Sofium/potasium-transporting ATPase subunit alpha-1 OS-Homo sapiens GN+ADPSL PE-1 SV-3 Mosin-9 OS-Homo sapiens GN+PDS PE-1 SV-4 405 ribosomal protein S0 Sol+Homo sapiens GN+ADSL PE-1 SV-3 Importin-5 OS-Homo sapiens GN+ADSH PE-1 SV-3 Importin-5 OS-Homo sapiens GN+ADSH PE-1 SV-3 GS ribosomal protein S10 Sol+Homo sapiens GN+ADSH PE-1 SV-1 Transmembrane emp24 domain-containing protein S0 Sol-Homo sapiens GN+ATPLB3 PE-1 SV-1 Totasien-transporting ATPase subunit beta-3 OS-Homo sapiens GN+ATPLB3 PE-1 SV-1 Sodium/potasien-transporting ATPase Sol-Homo tasapiens GN+ATPLB3 PE-1 SV-1	0.544 0.532 0.532 0.531 0.551 0.551 0.515 0.510 0.504 0.504 0.504 0.504 0.504 0.504 0.504 0.504 0.504 0.504 0.504 0.504 0.504 0.504 0.504 0.504 0.499 0.499 0.499 0.499 0.499 0.499 0.496 0.483 0.479 0.474 0.474 0.474 0.474 0.474 0.474 0.475 0.465 0.465 0.425 0.355 0.	0.001 0.002 0.029 0.004 0.004 0.004 0.004 0.003 0.003 0.003 0.015 0.004 0.013 0.004 0.013 0.004 0.013 0.004 0.013 0.000 0.001 0.000
C98UF5 Q25544 P35542 P35542 P3572 P62373 P62373 P62374 Q15927 P5255 P52564 Q15971 P51572 Q75564 Q15972 Q75564 Q15972 Q75564 Q175200 Q175200 Q175200 Q175200 Q175200 Q175200 Q175200 Q175200 Q175200 Q1	6.04 6.04 3.28 25.32 25.32 3.51 11.52 6 19.96 14.63 16.06 14.63 16.06 14.63 16.06 14.63 16.06 14.63 16.06 14.63 16.07 9.47 3.33 79 9.47 3.33 79 9.47 3.33 21.64 4.73 3.379 9.42 5.9 8.83 21.64 6 6.67 10.65 5.9 8.28 2.07 6.67 5.9 10.667 10.585 5.9 8.28 2.07 10.567 10.585 5.9 8.28 2.07 10.567 10.585 5.9 8.28 2.07 10.567 10.585 5.9 8.28 2.07 10.567 10.585 5.9 8.28 2.07 10.567 10.585 5.9 8.28 2.07 10.567 10.585 5.9 8.28 2.07 10.567 10.585 5.9 8.28 2.07 10.567 10.585 5.9 8.28 2.07 10.567 10.585 5.9 8.28 2.07 10.567 5.9 8.28 2.07 10.567 5.9 8.28 2.07 10.567 5.9 8.28 2.07 10.567 5.9 8.28 2.07 10.567 5.51 10.585 5.9 8.28 2.07 10.567 5.9 8.28 2.07 10.567 10.585 10.581 2.07 10.585 10.581 10.595 10.5555 10.5555 10.5555 10.5555 10.5555 10.55555 10.5555 10.55555 10.5555	6.82 15.79 3.28 2.5.32 2.5.32 3.757 3.757 3.757 11.37 6 7.57 14.63 80.73 3.029 3.414 16.63 3.029 3.414 1.6.33 3.029 2.5.97 8.83 2.13 6.94 10.051 1.5.85 7.55 9.42 2.13 6.94 10.071 9.22 3.54	9.063 31.17 5.14 38.1 7.713 55.5 50.64 33.91 32.45 29.67 11.53 20.67 20.	ATP-dependent: RNA helicase DDX3X 05-Homo sapiens GN-DDX3X PE-1 SV-3 Transmembrane 9 superfamily member 4 OS-Homo sapiens GN-TM95F4 PE-1 SV-2 Ekongation factor 1-alpha 1 OS-Homo sapiens GN-MEP1A1 PE-1 SV-4 Ublaubited as ubunit gamma, mitochondrial OS-Homo sapiens GN-ATP5C1 PE-1 SV-2 Keratin, type L cycloskeltal 19 OS-Homo sapiens GN-METP1A1 PE-1 SV-4 Ublaubit-dS fibosomal protein S2a OS-Homo sapiens GN-METP2A PE-1 SV-4 Ublaubit-dS fibosomal protein S2a OS-Homo sapiens GN-METP2A PE-1 SV-4 Mitochondrial Inner merbane protein OS-Homo sapiens GN-MEMAT PE-1 SV-1 B-cell receptor-associated protein S2a OS-Homo sapiens GN-MEMAT PE-1 SV-3 Softum/protasium: transporting ATPase subunit alpha-1 OS-Homo sapiens GN-ATP3L PE-1 SV-3 Softum/protasium: transporting ATPase subunit alpha-1 OS-Homo sapiens GN-ATP3L PE-1 SV-3 Mosin 9 OS-Homo sapiens GN-MEP3 PE-1 SV-3 Softmumptonse OS-Homo sapiens GN-MEP3 PE-1 SV-3 Forthase OS-Homo sapiens GN-MEP3 PE-1 SV-3 Softmostamic transporting ATPase subunit be-3 OS-Homo sapiens GN-ATMED PE-1 SV-1 Transmembrane emp24 domain-containing protein 10 S-Homo sapiens GN-ATMED PE-1 SV-1 Transmembrane emp24 domain-containing protein 10 S-Homo sapiens GN-MTDLB PE-1 SV-2 Voltage depen	0.544 0.532 0.532 0.531 0.512 0.515 0.515 0.554 0.504 0.504 0.504 0.504 0.504 0.504 0.504 0.504 0.504 0.504 0.504 0.504 0.504 0.504 0.504 0.504 0.403 0.499 0.499 0.499 0.499 0.499 0.499 0.474 0.472 0.445 0.474 0.472 0.445 0.440 0.423 0.423 0.424 0.423 0.424 0.423 0.424 0.423 0.424 0.423 0.424 0.423 0.424 0.423 0.425 0.424 0.423 0.425 0.425 0.424 0.423 0.425 0.355 0.355 0.355 0.355 0.355 0.	0.001 0.029 0.029 0.004 0.004 0.004 0.002 0.015 0.002 0.015 0.001 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.003 0.003 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.001 0.0000 0.0000 0.000000

P62241	16	16	38.94	40S ribosomal protein S8 OS=Homo sapiens GN=RPS8 PE=1 SV=2	0.324	0.023
P05787	56.49	56.49	53.42	Keratin, type II cytoskeletal 8 OS=Homo sapiens GN=KRT8 PE=1 SV=7	0.323	0.000
P62249	12.69	12.69	45.89	40S ribosomal protein S16 OS=Homo sapiens GN=RPS16 PE=1 SV=2	0.311	0.000
Q99623	26.26	26.26	51.51	Prohibitin-2 OS=Homo sapiens GN=PHB2 PE=1 SV=2	0.305	0.000
Q15363	5.1	5.1	20.4	Transmembrane emp24 domain-containing protein 2 OS=Homo sapiens GN=TMED2 PE=1 SV=1	0.265	0.026
P46781	10.65	10.65	25.26	40S ribosomal protein S9 OS=Homo sapiens GN=RPS9 PE=1 SV=3	0.260	0.000
P45880	12.14	16.11	40.14	Voltage-dependent anion-selective channel protein 2 OS=Homo sapiens GN=VDAC2 PE=1 SV=2	0.234	0.000
P07437	42.77	42.91	65.54	Tubulin beta chain OS=Homo sapiens GN=TUBB PE=1 SV=2	0.229	0.011

supplem	entary Table 3: The list 346 proteins of manually generated from Suppleme			<u> </u>
Uniprot ID	Protein Name; Organism; Gene name	TGFβ treated fold		-
P62191	26S protease regulatory subunit 4 OS=Homo sapiens GN=PSMC1 PE=1 SV=1	change 0.631	change 0.661	pattern ↓
P02191 P09110	3-ketoacyl-CoA thiolase, peroxisomal OS=Homo sapiens GN=ACAA1 PE=1 SV=2	1.431	1.739	<u></u>
P62244	40S ribosomal protein S15a OS=Homo sapiens GN=RPS15A PE=1 SV=2	0.423	0.279	
P62249	40S ribosomal protein S16 OS=Homo sapiens GN=RPS16 PE=1 SV=2	0.311	0.351	
P62266	40S ribosomal protein S23 OS=Homo sapiens GN=RPS23 PE=1 SV=3	0.499	0.558	4
P62847	40S ribosomal protein S24 OS=Homo sapiens GN=RPS24 PE=1 SV=1	0.612	0.713	\downarrow
P62851	40S ribosomal protein S25 OS=Homo sapiens GN=RPS25 PE=1 SV=1	0.683	0.787	\downarrow
23396	40S ribosomal protein S3 OS=Homo sapiens GN=RPS3 PE=1 SV=2	0.636	0.643	\rightarrow
P62701	40S ribosomal protein S4, X isoform OS=Homo sapiens GN=RPS4X PE=1 SV=2	0.550	0.699	\rightarrow
P62753	40S ribosomal protein S6 OS=Homo sapiens GN=RPS6 PE=1 SV=1	0.365	0.423	\downarrow
P62241	40S ribosomal protein S8 OS=Homo sapiens GN=RPS8 PE=1 SV=2	0.324	0.560	\downarrow
946781	40S ribosomal protein S9 OS=Homo sapiens GN=RPS9 PE=1 SV=3	0.260	0.395	4
P08195	4F2 cell-surface antigen heavy chain OS=Homo sapiens GN=SLC3A2 PE=1 SV=3	0.355	0.714	<u> </u>
21589	5'-nucleotidase OS=Homo sapiens GN=NT5E PE=1 SV=1	1.284	1.319	<u>^</u>
940429 918621	60S ribosomal protein L13a OS=Homo sapiens GN=RPL13A PE=1 SV=2	0.579 0.637	0.702	↓ ↓
P46778	60S ribosomal protein L17 OS=Homo sapiens GN=RPL17 PE=1 SV=3 60S ribosomal protein L21 OS=Homo sapiens GN=RPL21 PE=1 SV=2	0.562	0.514 0.603	$\overline{\checkmark}$
P61353	60S ribosomal protein L21 OS=Homo sapiens GN=RPL27 PE=1 SV=2	0.652	0.670	<u> </u>
P36578	60S ribosomal protein L2 / OS-Homo sapiens GN=RPL4 PE=1 SV=2	0.668	0.674	Ť
P62917	60S ribosomal protein L8 OS=Homo sapiens GN=RPL8 PE=1 SV=2	0.786	0.712	$\overline{\downarrow}$
P11021	78 kDa glucose-regulated protein OS=Homo sapiens GN=HSPA5 PE=1 SV=2	1.429	1.537	^
P63261	Actin, cytoplasmic 2 OS=Homo sapiens GN=ACTG1 PE=1 SV=1	2.311	2.705	<u>^</u>
014561	Acyl carrier protein, mitochondrial OS=Homo sapiens GN=NDUFAB1 PE=1 SV=3	2.173	2.314	\uparrow
202952	A-kinase anchor protein 12 OS=Homo sapiens GN=AKAP12 PE=1 SV=4	3.901	2.648	\uparrow
043707	Alpha-actinin-4 OS=Homo sapiens GN=ACTN4 PE=1 SV=2	1.361	1.343	\uparrow
P06733	Alpha-enolase OS=Homo sapiens GN=ENO1 PE=1 SV=2	2.370	2.698	\uparrow
P07355	Annexin A2 OS=Homo sapiens GN=ANXA2 PE=1 SV=2	2.384	2.466	\uparrow
P54136	ArgininetRNA ligase, cytoplasmic OS=Homo sapiens GN=RARS PE=1 SV=2	0.592	0.624	\downarrow
28WWM7	Ataxin-2-like protein OS=Homo sapiens GN=ATXN2L PE=1 SV=2	0.566	0.630	<u> </u>
075947	ATP synthase subunit d, mitochondrial OS=Homo sapiens GN=ATP5H PE=1 SV=3	1.477	1.424	<u>↑</u>
200571	ATP-dependent RNA helicase DDX3X OS=Homo sapiens GN=DDX3X PE=1 SV=3	0.544	0.729	<u> </u>
P61769	Beta-2-microglobulin OS=Homo sapiens GN=B2M PE=1 SV=1	2.239	1.701	<u>^</u>
Q99653	Calcineurin B homologous protein 1 OS=Homo sapiens GN=CHP1 PE=1 SV=3	1.440	1.354	<u>^</u>
P62158 P27797	Calmodulin OS=Homo sapiens GN=CALM1 PE=1 SV=2	4.508 1.586	3.317 2.177	<u>↑</u>
043852	Calreticulin OS=Homo sapiens GN=CALR PE=1 SV=1 Calumenin OS=Homo sapiens GN=CALU PE=1 SV=2	1.844	1.544	 ↑
P04040	Catalase OS=Homo sapiens GN=CAT PE=1 SV=2	1.728	1.470	<u>^</u>
P35221	Catenin alpha-1 OS=Homo sapiens GN=CTNNA1 PE=1 SV=1	1.678	1.779	<u></u>
Q13740	CD166 antigen OS=Homo sapiens GN=ALCAM PE=1 SV=2	2.185	2.338	 ↑
P16070	CD44 antigen OS=Homo sapiens GN=CD44 PE=1 SV=3	1.674	1.366	<u>^</u>
P60953	Cell division control protein 42 homolog OS=Homo sapiens GN=CDC42 PE=1 SV=2	2.483	4.342	\uparrow
28WWI5	Choline transporter-like protein 1 OS=Homo sapiens GN=SLC44A1 PE=1 SV=1	1.999	1.408	\uparrow
Q8IWA5	Choline transporter-like protein 2 OS=Homo sapiens GN=SLC44A2 PE=1 SV=3	1.637	1.308	\uparrow
Q13185	Chromobox protein homolog 3 OS=Homo sapiens GN=CBX3 PE=1 SV=4	1.661	1.628	\uparrow
Q16630	Cleavage and polyadenylation specificity factor subunit 6 OS=Homo sapiens GN=CPSF6 PE=1 SV	3.300	1.857	\uparrow
Q9NX63	Coiled-coil-helix-coiled-coil-helix domain-containing protein 3, mitochondrial OS=Homo sapien	0.641	0.663	\downarrow
Q07021	Complement component 1 Q subcomponent-binding protein, mitochondrial OS=Homo sapiens	4.111	3.418	\uparrow
P78310	Coxsackievirus and adenovirus receptor OS=Homo sapiens GN=CXADR PE=1 SV=1	1.565	1.623	\uparrow
043169	Cytochrome b5 type B OS=Homo sapiens GN=CYB5B PE=1 SV=2	2.287	1.952	<u>^</u>
P14927	Cytochrome b-c1 complex subunit 7 OS=Homo sapiens GN=UQCRB PE=1 SV=2	1.720	1.409	<u>^</u>
014949	Cytochrome b-c1 complex subunit 8 OS=Homo sapiens GN=UQCRQ PE=1 SV=4	1.696	1.430	<u>^</u>
P10606	Cytochrome c oxidase subunit 5B, mitochondrial OS=Homo sapiens GN=COX5B PE=1 SV=2	2.650	1.675	<u> </u>
214204 207065	Cytoplasmic dynein 1 heavy chain 1 OS=Homo sapiens GN=DYNC1H1 PE=1 SV=5	0.600	0.745	 ↑
207065	Cytoskeleton-associated protein 4 OS=Homo sapiens GN=CKAP4 PE=1 SV=2	2.602	1.528 2.920	<u>↑</u>
296PD2	Dihydrolipoyl dehydrogenase, mitochondrial OS=Homo sapiens GN=DLD PE=1 SV=2 Discoidin, CUB and LCCL domain-containing protein 2 OS=Homo sapiens GN=DCBLD2 PE=1 SV=	1.589	1.422	
290102	E3 SUMO-protein ligase RanBP2 OS=Homo sapiens GN=RANBP2 PE=1 SV=	0.419	0.402	
968104	Elongation factor 1-alpha 1 OS=Homo sapiens GN=EEF1A1 PE=1 SV=1	0.531	0.673	$\frac{\vee}{\downarrow}$
24534	Elongation factor 1-beta OS=Homo sapiens GN=EEF1B2 PE=1 SV=3	2.025	1.449	^
P30040	Endoplasmic reticulum resident protein 29 OS=Homo sapiens GN=ERP29 PE=1 SV=4	2.236	2.027	\uparrow
14625	Endoplasmin OS=Homo sapiens GN=HSP90B1 PE=1 SV=1	1.681	1.654	\uparrow
P15311	Ezrin OS=Homo sapiens GN=EZR PE=1 SV=4	1.995	1.461	\uparrow
Q9Y5B9	FACT complex subunit SPT16 OS=Homo sapiens GN=SUPT16H PE=1 SV=1	1.505	1.687	\uparrow
296124	Far upstream element-binding protein 3 OS=Homo sapiens GN=FUBP3 PE=1 SV=2	0.668	0.686	\downarrow
949327	Fatty acid synthase OS=Homo sapiens GN=FASN PE=1 SV=3	0.484	0.495	\downarrow
P09382	Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2	2.610	2.142	\uparrow
P17931	Galectin-3 OS=Homo sapiens GN=LGALS3 PE=1 SV=5	2.822	2.061	\uparrow
P14314	Glucosidase 2 subunit beta OS=Homo sapiens GN=PRKCSH PE=1 SV=2	2.481	1.682	\uparrow
P43304	Glycerol-3-phosphate dehydrogenase, mitochondrial OS=Homo sapiens GN=GPD2 PE=1 SV=3	0.671	0.788	\downarrow
P50151	Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-10 OS=Homo sapiens GN=C	3.350	2.509	\uparrow

Q14344	Guanine nucleotide-binding protein subunit alpha-13 OS=Homo sapiens GN=GNA13 PE=1 SV=2	0.401	0.702	\downarrow
P04792	Heat shock protein beta-1 OS=Homo sapiens GN=HSPB1 PE=1 SV=2	3.963	4.443	\uparrow
P52272	Heterogeneous nuclear ribonucleoprotein M OS=Homo sapiens GN=HNRNPM PE=1 SV=3	0.617	0.768	\downarrow
09429	High mobility group protein B1 OS=Homo sapiens GN=HMGB1 PE=1 SV=3	3.621	3.153	<u>^</u>
26583	High mobility group protein B2 OS=Homo sapiens GN=HMGB2 PE=1 SV=2	2.255	2.382	<u>^</u>
015347	High mobility group protein B3 OS=Homo sapiens GN=HMGB3 PE=1 SV=4	2.306	2.101	<u>^</u>
16403	Histone H1.2 OS=Homo sapiens GN=HIST1H1C PE=1 SV=2	3.219	1.900	<u>^</u>
	Histone-binding protein RBBP4 OS=Homo sapiens GN=RBBP4 PE=1 SV=3	1.709	1.225	<u> </u>
29Y4L1	Hypoxia up-regulated protein 1 OS=Homo sapiens GN=HYOU1 PE=1 SV=1	1.354	1.276	<u> </u>
52292 12268	Importin subunit alpha-1 OS=Homo sapiens GN=KPNA2 PE=1 SV=1	0.592	0.657	↓ ↓
12208 29Y6M1	Inosine-5'-monophosphate dehydrogenase 2 OS=Homo sapiens GN=IMPDH2 PE=1 SV=2 Insulin-like growth factor 2 mRNA-binding protein 2 OS=Homo sapiens GN=IGF2BP2 PE=1 SV=2	1.358	1.301	 ↑
17301	Integrin alpha-2 OS=Homo sapiens GN=ITGA2 PE=1 SV=1	2.698	2.193	<u> </u>
26006	Integrin alpha-3 OS=Homo sapiens GN=ITGA3 PE=1 SV=5	3.354	1.983	<u> </u>
05556	Integrin Japans OS-Homo sapiens GN-HORS FE-1 SV-5	4.040	2.702	<u></u>
41252	IsoleucinetRNA ligase, cytoplasmic OS=Homo sapiens GN=IARS PE=1 SV=2	0.578	0.675	
33176	Kinesin-1 heavy chain OS=Homo sapiens GN=KIF5B PE=1 SV=1	0.424	0.502	$\overline{\downarrow}$
42167	Lamina-associated polypeptide 2, isoforms beta/gamma OS=Homo sapiens GN=TMPO PE=1 SV	2.004	1.746	^
20700	Lamin-B1 OS=Homo sapiens GN=LMNB1 PE=1 SV=2	2.392	2.155	<u>^</u>
03252	Lamin-B2 OS=Homo sapiens GN=LMNB2 PE=1 SV=3	1.568	2.313	<u></u>
9UHB6	LIM domain and actin-binding protein 1 OS=Homo sapiens GN=LIMA1 PE=1 SV=1	2.633	2.205	<u>^</u>
15046	LysinetRNA ligase OS=Homo sapiens GN=KARS PE=1 SV=3	0.761	0.706	
40926	Malate dehydrogenase, mitochondrial OS=Homo sapiens GN=MDH2 PE=1 SV=3	1.645	1.774	^
14165	Malectin OS=Homo sapiens GN=MLEC PE=1 SV=1	1.332	1.240	<u>^</u>
19105	Myosin regulatory light chain 12A OS=Homo sapiens GN=MYL12A PE=1 SV=2	1.555	1.972	<u>^</u>
51970	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8 OS=Homo sapiens GN=NDUI	1.816	1.568	\uparrow
49821	NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial OS=Homo sapiens GN=NDUF	1.988	1.793	\uparrow
19404	NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial OS=Homo sapiens GN=NDUF	2.525	1.686	\uparrow
43181	NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial OS=Homo sapiens GN=	2.643	2.072	\uparrow
13765	Nascent polypeptide-associated complex subunit alpha OS=Homo sapiens GN=NACA PE=1 SV=	1.987	1.694	\uparrow
09666	Neuroblast differentiation-associated protein AHNAK OS=Homo sapiens GN=AHNAK PE=1 SV=2	2.630	2.194	\uparrow
9Y639	Neuroplastin OS=Homo sapiens GN=NPTN PE=1 SV=2	1.606	1.323	\uparrow
14697	Neutral alpha-glucosidase AB OS=Homo sapiens GN=GANAB PE=1 SV=3	1.698	2.036	\uparrow
15233	Non-POU domain-containing octamer-binding protein OS=Homo sapiens GN=NONO PE=1 SV=4	1.376	2.014	\uparrow
14978	Nucleolar and coiled-body phosphoprotein 1 OS=Homo sapiens GN=NOLC1 PE=1 SV=2	1.866	2.262	\uparrow
9NR30	Nucleolar RNA helicase 2 OS=Homo sapiens GN=DDX21 PE=1 SV=5	0.640	0.766	\downarrow
17480	Nucleolar transcription factor 1 OS=Homo sapiens GN=UBTF PE=1 SV=1	1.379	1.559	\uparrow
19338	Nucleolin OS=Homo sapiens GN=NCL PE=1 SV=3	1.882	1.273	\uparrow
06748	Nucleophosmin OS=Homo sapiens GN=NPM1 PE=1 SV=2	3.751	2.595	\uparrow
99733	Nucleosome assembly protein 1-like 4 OS=Homo sapiens GN=NAP1L4 PE=1 SV=1	1.763	1.968	\uparrow
8WXF1	Paraspeckle component 1 OS=Homo sapiens GN=PSPC1 PE=1 SV=1	2.020	1.909	\uparrow
62937	Peptidyl-prolyl cis-trans isomerase A OS=Homo sapiens GN=PPIA PE=1 SV=2	2.688	2.469	<u>^</u>
23284	Peptidyl-prolyl cis-trans isomerase B OS=Homo sapiens GN=PPIB PE=1 SV=2	2.340	1.835	<u>^</u>
26885	Peptidyl-prolyl cis-trans isomerase FKBP2 OS=Homo sapiens GN=FKBP2 PE=1 SV=2	2.932	2.338	<u>^</u>
60664	Perilipin-3 OS=Homo sapiens GN=PLIN3 PE=1 SV=3	3.289	1.805	<u>^</u>
06830	Peroxiredoxin-1 OS=Homo sapiens GN=PRDX1 PE=1 SV=1	1.691	1.465	<u>^</u>
48739	Phosphatidylinositol transfer protein beta isoform OS=Homo sapiens GN=PITPNB PE=1 SV=2	1.931	1.450	<u>^</u>
18669	Phosphoglycerate mutase 1 OS=Homo sapiens GN=PGAM1 PE=1 SV=2	2.963	2.441	<u>^</u>
8NC51 09874	Plasminogen activator inhibitor 1 RNA-binding protein OS=Homo sapiens GN=SERBP1 PE=1 SV= Poly [ADP-ribose] polymerase 1 OS=Homo sapiens GN=PARP1 PE=1 SV=4	1.771	1.385	<u>↑</u>
15365		0.424	0.497	
9UHG3	Poly(rC)-binding protein 1 OS=Homo sapiens GN=PCBP1 PE=1 SV=2 Prenylcysteine oxidase 1 OS=Homo sapiens GN=PCYOX1 PE=1 SV=3	0.424	0.677	
07602	Proactivator polypeptide OS=Homo sapiens GN=PCFOX1 PE=1 SV=3	4.278	3.059	 ↑
35232	Prohibitin OS=Homo sapiens GN=PHB PE=1 SV=1	0.459	0.597	
99623	Prohibitin OS-Homo sapiens GN=PHB2 PE=1 SV=2	0.305	0.540	
30101	Protein disulfide-isomerase A3 OS=Homo sapiens GN=PDIA3 PE=1 SV=4	1.441	1.649	 ↑
13667	Protein disulfide-isomerase A4 OS=Homo sapiens GN=PDIA4 PE=1 SV=4	1.441	1.368	<u></u>
07237	Protein disulfide-isomerase OS=Homo sapiens GN=P4HB PE=1 SV=3	2.935	2.438	<u></u>
92520	Protein FAM3C OS=Homo sapiens GN=FAM3C PE=1 SV=1	0.448	0.501	
14618	Pyruvate kinase PKM OS=Homo sapiens GN=PKM PE=1 SV=4	0.382	0.453	Ť
6IAA8	Ragulator complex protein LAMTOR1 OS=Homo sapiens GN=LAMTOR1 PE=1 SV=2	0.587	0.714	
51026	Ras-related protein Rab-10 OS=Homo sapiens GN=RAB10 PE=1 SV=1	4.716	7.542	Ť
38159	RNA-binding motif protein, X chromosome OS=Homo sapiens GN=RBMX PE=1 SV=3	0.723	0.761	
9NVA2	Septin-11 OS=Homo sapiens GN=SEPT11 PE=1 SV=3	2.991	2.019	^
15019	Septin-2 OS=Homo sapiens GN=SEPT2 PE=1 SV=1	3.096	2.102	<u></u>
12012	Septin-9 OS=Homo sapiens GN=SEPT9 PE=1 SV=2	3.193	1.870	<u>^</u>
	Small nuclear ribonucleoprotein Sm D2 OS=Homo sapiens GN=SNRPD2 PE=1 SV=1	1.734	1.324	<u></u>
9UHD8				<u> </u>
9UHD8 62316		0.503	0.657	
9UHD8 62316 05023	Sodium/potasium-transporting ATPase subunit alpha-1 OS=Homo sapiens GN=ATP1A1 PE=1 S Solicing factor 1 OS=Homo sapiens GN=SF1 PE=1 SV=4	0.503	1.428	<u>^</u>
9UHD8 62316 05023 15637	Sodium/potassium-transporting ATPase subunit alpha-1 OS=Homo sapiens GN=ATP1A1 PE=1 S Splicing factor 1 OS=Homo sapiens GN=SF1 PE=1 SV=4	2.002	1.428	\uparrow
9UHD8 62316 05023 15637 23246	Sodium/potassium-transporting ATPase subunit alpha-1 OS=Homo sapiens GN=ATP1A1 PE=1 S Splicing factor 1 OS=Homo sapiens GN=SF1 PE=1 SV=4 Splicing factor, proline- and glutamine-rich OS=Homo sapiens GN=SFPQ PE=1 SV=2	2.002 1.575	1.428 1.784	
13019 19UHD8 62316 05023 115637 23246 19UJZ1 38646	Sodium/potassium-transporting ATPase subunit alpha-1 OS=Homo sapiens GN=ATP1A1 PE=1 S Splicing factor 1 OS=Homo sapiens GN=SF1 PE=1 SV=4	2.002	1.428	↑ ↑

Q86Y82	Syntaxin-12 OS=Homo sapiens GN=STX12 PE=1 SV=1	1.811	1.380	\uparrow
015400	Syntaxin-7 OS=Homo sapiens GN=STX7 PE=1 SV=4	1.561	1.482	\uparrow
P02786	Transferrin receptor protein 1 OS=Homo sapiens GN=TFRC PE=1 SV=2	0.353	0.696	\downarrow
P61586	Transforming protein RhoA OS=Homo sapiens GN=RHOA PE=1 SV=1	1.527	1.644	<u>^</u>
Q9BVK6	Transmembrane emp24 domain-containing protein 9 OS=Homo sapiens GN=TMED9 PE=1 SV=2	0.554	0.710	<u> </u>
Q9BTV4 P07437	Transmembrane protein 43 OS=Homo sapiens GN=TMEM43 PE=1 SV=1 Tubulin beta chain OS=Homo sapiens GN=TUBB PE=1 SV=2	0.229	1.313 0.369	<u>↑</u> ↓
043399	Tumor protein D54 OS=Homo sapiens GN=TPD52L2 PE=1 SV=2	3.042	1.999	×
Q9BVJ6	U3 small nucleolar RNA-associated protein 14 homolog A OS=Homo sapiens GN=UTP14A PE=1	0.750	0.714	4
P49748	Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS=Homo sapiens GN=ACADV	2.314	2.103	<u>^</u>
P21796	Voltage-dependent anion-selective channel protein 1 OS=Homo sapiens GN=VDAC1 PE=1 SV=2	0.474	0.562	\downarrow
P45880	Voltage-dependent anion-selective channel protein 2 OS=Homo sapiens GN=VDAC2 PE=1 SV=2	0.234	0.281	\downarrow
P52815	39S ribosomal protein L12, mitochondrial OS=Homo sapiens GN=MRPL12 PE=1 SV=2	1.739	n/o	\uparrow
Q9NQ50	39S ribosomal protein L40, mitochondrial OS=Homo sapiens GN=MRPL40 PE=1 SV=1	1.527	n/o	\uparrow
P62269	40S ribosomal protein S18 OS=Homo sapiens GN=RPS18 PE=1 SV=3	0.767	n/o	
P62854	40S ribosomal protein S26 OS=Homo sapiens GN=RPS26 PE=1 SV=3	0.510	n/o	<u> </u>
P62857 P62081	40S ribosomal protein S28 OS=Homo sapiens GN=RPS28 PE=1 SV=1	3.125	n/o	<u>↑</u> ↓
P05388	40S ribosomal protein S7 OS=Homo sapiens GN=RPS7 PE=1 SV=1 60S acidic ribosomal protein P0 OS=Homo sapiens GN=RPLP0 PE=1 SV=1	0.575	n/o n/o	$\overline{\checkmark}$
P62913	60S ribosomal protein L11 OS=Homo sapiens GN=RPL11 PE=1 SV=1	0.368		$\overline{\checkmark}$
P26373	60S ribosomal protein L13 OS=Homo sapiens GN=RPL13 PE=1 SV=4	0.669	n/o	$\overline{\downarrow}$
Q07020	60S ribosomal protein L18 OS-Homo sapiens GN=RPL18 PE=1 SV=1	0.483	n/o	¥
P62750	60S ribosomal protein L23a OS=Homo sapiens GN=RPL23A PE=1 SV=1	1.449	n/o	^
P62424	60S ribosomal protein L7a OS=Homo sapiens GN=RPL7A PE=1 SV=2	0.705	n/o	4
Q01813	6-phosphofructokinase type C OS=Homo sapiens GN=PFKP PE=1 SV=2	0.450	n/o	\downarrow
Q92485	Acid sphingomyelinase-like phosphodiesterase 3b OS=Homo sapiens GN=SMPDL3B PE=2 SV=2	1.391	n/o	\uparrow
000116	Alkyldihydroxyacetonephosphate synthase, peroxisomal OS=Homo sapiens GN=AGPS PE=1 SV=	0.643	n/o	\downarrow
P27338	Amine oxidase [flavin-containing] B OS=Homo sapiens GN=MAOB PE=1 SV=3	0.440	n/o	\downarrow
095831	Apoptosis-inducing factor 1, mitochondrial OS=Homo sapiens GN=AIFM1 PE=1 SV=1	1.351	n/o	<u>^</u>
Q9UKV3	Apoptotic chromatin condensation inducer in the nucleus OS=Homo sapiens GN=ACIN1 PE=1 S	1.652	n/o	<u>^</u>
P25705	ATP synthase subunit alpha, mitochondrial OS=Homo sapiens GN=ATP5A1 PE=1 SV=1	0.600	n/o	<u> </u>
P30049	ATP synthase subunit delta, mitochondrial OS=Homo sapiens GN=ATP5D PE=1 SV=2	1.878	n/o	<u>^</u>
075964 P36542	ATP synthase subunit g, mitochondrial OS=Homo sapiens GN=ATP5L PE=1 SV=3	0.502	n/o	<u> </u>
P36542 P18859	ATP synthase subunit gamma, mitochondrial OS=Homo sapiens GN=ATP5C1 PE=1 SV=1 ATP synthase-coupling factor 6, mitochondrial OS=Homo sapiens GN=ATP5J PE=1 SV=1	4.036	n/o n/o	 ↑
Q92499	ATP-dependent RNA helicase DDX1 OS=Homo sapiens GN=DDX1 PE=1 SV=1	0.683	n/o	
Q8TDD1	ATP-dependent RNA helicase DDX54 OS=Homo sapiens GN=DDX54 PE=1 SV=2	0.592	n/o	$\overline{\downarrow}$
075531	Barrier-to-autointegration factor OS=Homo sapiens GN=BANF1 PE=1 SV=1	3.195	n/o	Ť
P50895	Basal cell adhesion molecule OS=Homo sapiens GN=BCAM PE=1 SV=2	0.667	n/o	4
P51572	B-cell receptor-associated protein 31 OS=Homo sapiens GN=BCAP31 PE=1 SV=3	0.504	n/o	\downarrow
Q9UQB8	Brain-specific angiogenesis inhibitor 1-associated protein 2 OS=Homo sapiens GN=BAIAP2 PE=:	1.359	n/o	\uparrow
P23786	Carnitine O-palmitoyltransferase 2, mitochondrial OS=Homo sapiens GN=CPT2 PE=1 SV=2	1.538	n/o	\uparrow
P48730	Casein kinase Lisoform delta OS=Homo sapiens GN=CSNK1D PE=1 SV=2	1.670	n/o	<u>↑</u>
P13987	CD59 glycoprotein OS=Homo sapiens GN=CD59 PE=1 SV=1	1.977	n/o	<u>^</u>
Q9NX58	Cell growth-regulating nucleolar protein OS=Homo sapiens GN=LYAR PE=1 SV=2	1.389	n/o	<u>^</u>
O43809 P48444	Cleavage and polyadenylation specificity factor subunit 5 OS=Homo sapiens GN=NUDT21 PE=1	3.893	n/o	<u>^</u>
Q14011	Coatomer subunit delta OS=Homo sapiens GN=ARCN1 PE=1 SV=1 Cold-inducible RNA-binding protein OS=Homo sapiens GN=CIRBP PE=1 SV=1	0.628	n/o n/o	<u>↓</u> ↑
P00403	Cytochrome c oxidase subunit 2 OS=Homo sapiens GN=GKBP PC=1 SV=1	0.559	n/o	
P14854	Cytochrome c oxidase subunit 6B1 OS=Homo sapiens GN=COX6B1 PE=1 SV=1	2.052		<u> </u>
Q8N163	DBIRD complex subunit KIAA1967 OS=Homo sapiens GN=KIAA1967 PE=1 SV=2	0.701	n/o	
P27695	DNA-(apurinic or apyrimidinic site) lyase OS=Homo sapiens GN=APEX1 PE=1 SV=2	1.622	n/o	^
P31689	DnaJ homolog subfamily A member 1 OS=Homo sapiens GN=DNAJA1 PE=1 SV=2	0.360	n/o	\downarrow
Q96EY1	DnaJ homolog subfamily A member 3, mitochondrial OS=Homo sapiens GN=DNAJA3 PE=1 SV=2	1.335	n/o	\uparrow
Q9UBS4	DnaJ homolog subfamily B member 11 OS=Homo sapiens GN=DNAJB11 PE=1 SV=1	1.578	n/o	\uparrow
Q8WXX5	DnaJ homolog subfamily C member 9 OS=Homo sapiens GN=DNAJC9 PE=1 SV=1	1.905	n/o	\uparrow
P04843	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 1 OS=Homo sapiens Gl	0.558	n/o	4
Q15717	ELAV-like protein 1 OS=Homo sapiens GN=ELAVL1 PE=1 SV=2	0.698	n/o	<u> </u>
P50402	Emerin OS=Homo sapiens GN=EMD PE=1 SV=1	0.717	n/o	<u> </u>
Q9BSJ8	Extended synaptotagmin-1 OS=Homo sapiens GN=ESYT1 PE=1 SV=1	0.790	n/o	<u>↓</u>
Q96AE4 Q92945	Far upstream element-binding protein 1 OS=Homo sapiens GN=FUBP1 PE=1 SV=3 Far upstream element-binding protein 2 OS=Homo sapiens GN=KHSRP PE=1 SV=4	1.940	n/o n/o	<u>↑</u>
Q92945 Q9BQ67	Glutamate-rich WD repeat-containing protein 1 OS=Homo sapiens GN=KHSKP PE=1 SV=4	1.535	n/o	 ↑
P04406	Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GRVD1 FE=1 SV=3	0.651	n/o	
Q8NBJ4	Golgi membrane protein 1 OS=Homo sapiens GN=GOLM1 PE=1 SV=1	2.447	n/o	 ↑
P63096	Guanine nucleotide-binding protein G(i) subunit alpha-1 OS=Homo sapiens GN=GNAI1 PE=1 SV	0.551	n/o	4
P04899	Guanine nucleotide-binding protein G(i) subunit alpha-2 OS=Homo sapiens GN=GNAI2 PE=1 SV	0.705	n/o	Ū.
P08107	Heat shock 70 kDa protein 1A/1B OS=Homo sapiens GN=HSPA1A PE=1 SV=5	0.685	n/o	\downarrow
P34932	Heat shock 70 kDa protein 4 OS=Homo sapiens GN=HSPA4 PE=1 SV=4	1.698	n/o	\uparrow
P11142	Heat shock cognate 71 kDa protein OS=Homo sapiens GN=HSPA8 PE=1 SV=1	0.726	n/o	\downarrow
P51858	Hepatoma-derived growth factor OS=Homo sapiens GN=HDGF PE=1 SV=1	3.960	n/o	1
Q99729	Heterogeneous nuclear ribonucleoprotein A/B OS=Homo sapiens GN=HNRNPAB PE=1 SV=2	1.604	n/o	\uparrow
P09651	Heterogeneous nuclear ribonucleoprotein A1 OS=Homo sapiens GN=HNRNPA1 PE=1 SV=5	1.648	n/o	\uparrow

P55795	Heterogeneous nuclear ribonucleoprotein H2 OS=Homo sapiens GN=HNRNPH2 PE=1 SV=1	0.798	n/o	\downarrow
O60506	Heterogeneous nuclear ribonucleoprotein Q OS=Homo sapiens GN=SYNCRIP PE=1 SV=2	1.235	n/o	 ↑
P17096	High mobility group protein HMG-I/HMG-Y OS=Homo sapiens GN=HMGA1 PE=1 SV=3	4.280	n/o	<u>^</u>
Q71UI9	Histone H2A.V OS=Homo sapiens GN=H2AFV PE=1 SV=3	2.137	n/o	<u>^</u>
P68431	Histone H3.1 OS=Homo sapiens GN=HIST1H3A PE=1 SV=2	2.106	n/o	<u>^</u>
O00410	Importin-5 OS=Homo sapiens GN=IPO5 PE=1 SV=4	0.496	n/o	4
Q13308	Inactive tyrosine-protein kinase 7 OS=Homo sapiens GN=PTK7 PE=1 SV=2	0.724	n/o	\downarrow
Q12906	Interleukin enhancer-binding factor 3 OS=Homo sapiens GN=ILF3 PE=1 SV=3	0.762	n/o	\downarrow
P13645	Keratin, type I cytoskeletal 10 OS=Homo sapiens GN=KRT10 PE=1 SV=6	1.623	n/o	\uparrow
P05783	Keratin, type I cytoskeletal 18 OS=Homo sapiens GN=KRT18 PE=1 SV=2	0.472	n/o	\downarrow
P08727	Keratin, type I cytoskeletal 19 OS=Homo sapiens GN=KRT19 PE=1 SV=4	0.515	n/o	\downarrow
P35527	Keratin, type I cytoskeletal 9 OS=Homo sapiens GN=KRT9 PE=1 SV=3	1.599	n/o	\uparrow
P05787	Keratin, type II cytoskeletal 8 OS=Homo sapiens GN=KRT8 PE=1 SV=7	0.323	n/o	\downarrow
Q16891	Mitochondrial inner membrane protein OS=Homo sapiens GN=IMMT PE=1 SV=1	0.507	n/o	\downarrow
P26038	Moesin OS=Homo sapiens GN=MSN PE=1 SV=3	1.705	n/o	\uparrow
P35579	Myosin-9 OS=Homo sapiens GN=MYH9 PE=1 SV=4	0.499	n/o	\downarrow
P29966	Myristoylated alanine-rich C-kinase substrate OS=Homo sapiens GN=MARCKS PE=1 SV=4	1.895	n/o	\uparrow
Q9P0J0	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13 OS=Homo sapiens GN=NDL	0.805	n/o	<u>↓</u>
000217	NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial OS=Homo sapiens GN=	1.590	n/o	\uparrow
P00387	NADH-cytochrome b5 reductase 3 OS=Homo sapiens GN=CYB5R3 PE=1 SV=3	0.405	n/o	<i>↓</i>
P16435	NADPHcytochrome P450 reductase OS=Homo sapiens GN=POR PE=1 SV=2	0.564	n/o	<u> </u>
P22307	Non-specific lipid-transfer protein OS=Homo sapiens GN=SCP2 PE=1 SV=2	1.708	n/o	<u>^</u>
P55209	Nucleosome assembly protein 1-like 1 OS=Homo sapiens GN=NAP1L1 PE=1 SV=1	1.488	n/o	<u>^</u>
Q9NX40	OCIA domain-containing protein 1 OS=Homo sapiens GN=OCIAD1 PE=1 SV=1	1.629	n/o	<u>^</u>
075475 Q00688	PC4 and SFRS1-interacting protein OS=Homo sapiens GN=PSIP1 PE=1 SV=1	2.739	n/o	<u>↑</u> ↑
	Peptidyl-prolyl cis-trans isomerase FKBP3 OS=Homo sapiens GN=FKBP3 PE=1 SV=1		n/o	
Q15149 Q9H7Z7	Plectin OS=Homo sapiens GN=PLEC PE=1 SV=3 Prostaglandin E synthase 2 OS=Homo sapiens GN=PTGES2 PE=1 SV=1	0.599	n/o n/o	↓ ↓
Q9P2B2	Prostaglandin E synthase 2 05=Homo saplens GN=PTGE52 PE=1 5V=1 Prostaglandin F2 receptor negative regulator OS=Homo saplens GN=PTGFRN PE=1 SV=2	1.513	n/o	 ↑
P28066	Proteasome subunit alpha type-5 OS=Homo sapiens GN=PSMA5 PE=1 SV=3	1.631	n/o	<u>^</u>
014818	Proteasome suburit alpha type-7 OS=Homo sapiens GN=PSMA5 FE=1 SV=3	1.475	n/o	<u>^</u>
P49257	Protein ERGIC-53 OS=Homo sapiens GN=LMAN1 PE=1 SV=1	0.648	n/o	
Q96A26	Protein FAM162A OS=Homo sapiens GN=FAM162A PE=1 SV=2	1.857	n/o	 ↑
Q9NUP9	Protein lin-7 homolog C OS=Homo sapiens GN=LIN7C PE=1 SV=1	1.544	n/o	<u>^</u>
Q9HBR0	Putative sodium-coupled neutral amino acid transporter 10 OS=Homo sapiens GN=SLC38A10 P	1.705	n/o	<u>^</u>
Q15907	Ras-related protein Rab-11B OS=Homo sapiens GN=RAB11B PE=1 SV=4	0.694	n/o	4
P35637	RNA-binding protein FUS OS=Homo sapiens GN=FUS PE=1 SV=1	1.683	n/o	^
Q16181	Septin-7 OS=Homo sapiens GN=SEPT7 PE=1 SV=2	2.161	n/o	^
Q01130	Serine/arginine-rich splicing factor 2 OS=Homo sapiens GN=SRSF2 PE=1 SV=4	2.664	n/o	\uparrow
P36873	Serine/threonine-protein phosphatase PP1-gamma catalytic subunit OS=Homo sapiens GN=PPI	1.454	n/o	\uparrow
Q9H9B4	Sideroflexin-1 OS=Homo sapiens GN=SFXN1 PE=1 SV=4	0.558	n/o	\downarrow
P37108	Signal recognition particle 14 kDa protein OS=Homo sapiens GN=SRP14 PE=1 SV=2	1.597	n/o	\uparrow
P54709	Sodium/potassium-transporting ATPase subunit beta-3 OS=Homo sapiens GN=ATP1B3 PE=1 SV	0.474	n/o	\downarrow
P11166	Solute carrier family 2, facilitated glucose transporter member 1 OS=Homo sapiens GN=SLC2A:	0.359	n/o	\rightarrow
Q15459	Splicing factor 3A subunit 1 OS=Homo sapiens GN=SF3A1 PE=1 SV=1	1.286	n/o	\uparrow
P26368	Splicing factor U2AF 65 kDa subunit OS=Homo sapiens GN=U2AF2 PE=1 SV=4	2.110	n/o	\uparrow
Q16563	Synaptophysin-like protein 1 OS=Homo sapiens GN=SYPL1 PE=1 SV=1	0.425	n/o	\downarrow
P21579	Synaptotagmin-1 OS=Homo sapiens GN=SYT1 PE=1 SV=1	1.888	n/o	\uparrow
P50991	T-complex protein 1 subunit delta OS=Homo sapiens GN=CCT4 PE=1 SV=4	0.748	n/o	\downarrow
Q92616	Translational activator GCN1 OS=Homo sapiens GN=GCN1L1 PE=1 SV=6	0.594	n/o	\downarrow
Q99805	Transmembrane 9 superfamily member 2 OS=Homo sapiens GN=TM9SF2 PE=1 SV=1	0.638	n/o	\downarrow
Q92544	Transmembrane 9 superfamily member 4 OS=Homo sapiens GN=TM9SF4 PE=1 SV=2	0.532	n/o	<u> </u>
P49755	Transmembrane emp24 domain-containing protein 10 OS=Homo sapiens GN=TMED10 PE=1 S\	0.465	n/o	<u> </u>
Q15363	Transmembrane emp24 domain-containing protein 2 OS=Homo sapiens GN=TMED2 PE=1 SV=1	0.265	n/o	<u> </u>
Q9Y3A6	Transmembrane emp24 domain-containing protein 5 OS=Homo sapiens GN=TMED5 PE=1 SV=1	0.479	n/o	<u> </u>
Q9Y3B3	Transmembrane emp24 domain-containing protein 7 OS=Homo sapiens GN=TMED7 PE=1 SV=2	0.613	n/o	<u> </u>
Q9BUF5	Tubulin beta-6 chain OS=Homo sapiens GN=TUBB6 PE=1 SV=1	0.533	n/o	<u> </u>
P08621	U1 small nuclear ribonucleoprotein 70 kDa OS=Homo sapiens GN=SNRNP70 PE=1 SV=2	1.689	n/o	<u>^</u>
P09012	U1 small nuclear ribonucleoprotein A OS=Homo sapiens GN=SNRPA PE=1 SV=3	1.984	n/o	<u>^</u>
P09661	U2 small nuclear ribonucleoprotein A' OS=Homo sapiens GN=SNRPA1 PE=1 SV=2	1.527	n/o	<u>^</u>
P62979 Q9BQ61	Ubiquitin-40S ribosomal protein S27a OS=Homo sapiens GN=RPS27A PE=1 SV=2 Uncharacterized protein C19orf43 OS=Homo sapiens GN=C19orf43 PE=1 SV=1	0.514 2.294	n/o	$\frac{\downarrow}{\uparrow}$
Q98Q61	UPF0568 protein C14orf166 OS=Homo sapiens GN=C14orf166 PE=1 SV=1	1.259	n/o n/o	<u>↑</u>
Q15029	116 kDa U5 small nuclear ribonucleoprotein component OS=Homo sapiens GN=EFTUD2 PE=1 S	n/o	1.212	^ ↑
P63104	116 KDa OS small huclear ribonucleoprotein component OS=Homo sapiens GN=EF10D2 PE=1 S 14-3-3 protein zeta/delta OS=Homo sapiens GN=YWHAZ PE=1 SV=1	n/o n/o	1.725	↑
P43686	26S protease regulatory subunit 6B OS=Homo sapiens GN=PSMC4 PE=1 SV=2	n/o	0.739	
P43686 P51665	265 protease regulatory subunit 66 05=Homo saplens GN=PSINC4 PE=1 SV=2 265 proteasome non-ATPase regulatory subunit 7 OS=Homo saplens GN=PSMD7 PE=1 SV=2	n/o n/o	0.682	↓
P51665 P62280	40S ribosomal protein S11 OS=Homo sapiens GN=RPS11 PE=1 SV=2	n/o	0.619	 ↓
P62280 P62277	405 ribosomal protein S11 OS=Homo sapiens GN=RPS13 PE=1 SV=5	n/o	0.625	↓
P62263	405 ribosomal protein S14 OS=Homo sapiens GN=RPS14 PE=1 SV=2	n/o	0.773	<u> </u>
P15880	40S ribosomal protein S2 OS=Homo sapiens GN=RPS2 PE=1 SV=2	n/o	0.705	<u> </u>
P61247	405 ribosomal protein S2 OS=Homo sapiens GN=RPS3 A PE=1 SV=2	n/o	0.663	<u> </u>
P62899	60S ribosomal protein L31 OS=Homo sapiens GN=RPL31 PE=1 SV=2	n/o	1.290	 ↑
		190		

P32969	60S ribosomal protein L9 OS=Homo sapiens GN=RPL9 PE=1 SV=1	n/o	0.556	\downarrow
Q9HDC9	Adipocyte plasma membrane-associated protein OS=Homo sapiens GN=APMAP PE=1 SV=2	n/o	1.369	\uparrow
Q12904	Aminoacyl tRNA synthase complex-interacting multifunctional protein 1 OS=Homo sapiens GN	n/o	0.590	\downarrow
P46013	Antigen KI-67 OS=Homo sapiens GN=MKI67 PE=1 SV=2	n/o	1.248	\uparrow
Q12797	Aspartyl/asparaginyl beta-hydroxylase OS=Homo sapiens GN=ASPH PE=1 SV=3	n/o	1.452	1
P06576	ATP synthase subunit beta, mitochondrial OS=Homo sapiens GN=ATP5B PE=1 SV=3	n/o	1.566	1
P48047	ATP synthase subunit O, mitochondrial OS=Homo sapiens GN=ATP5O PE=1 SV=1	n/o	1.439	<u>^</u>
Q9GZR7	ATP-dependent RNA helicase DDX24 OS=Homo sapiens GN=DDX24 PE=1 SV=1	n/o	0.721	4
Q13895	Bystin OS=Homo sapiens GN=BYSL PE=1 SV=3	n/o	0.693	- Ū
P27708	CAD protein OS=Homo sapiens GN=CAD PE=1 SV=3	n/o	0.710	¥.
Q14444	Caprin-1 OS=Homo sapiens GN=CAPRIN1 PE=1 SV=2	n/o	0.806	¥
P21926	CD9 antigen OS=Homo sapiens GN=CD9 PE=1 SV=4	n/o	1.756	 ^
P48960	CD97 antigen OS=Homo sapiens GN=CD97 PE=1 SV=4	n/o	1.320	<u>^</u>
Q9NZ45	CDGSH iron-sulfur domain-containing protein 1 OS=Homo sapiens GN=CISD1 PE=1 SV=1	n/o	0.707	
Q8N5K1	CDGSH iron-sulfur domain-containing protein 2 OS=Homo sapiens GN=CISD2 PE=1 SV=1	n/o	0.435	$\overline{\downarrow}$
075367	•		1.269	<u>↓</u>
P12532	Core histone macro-H2A.1 OS=Homo sapiens GN=H2AFY PE=1 SV=4	n/o		
	Creatine kinase U-type, mitochondrial OS=Homo sapiens GN=CKMT1A PE=1 SV=1	n/o	0.573	•
Q02127	Dihydroorotate dehydrogenase (quinone), mitochondrial OS=Homo sapiens GN=DHODH PE=1:	n/o	0.694	<u> </u>
P11387	DNA topoisomerase 1 OS=Homo sapiens GN=TOP1 PE=1 SV=2	n/o	1.405	<u>^</u>
P04844	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 2 OS=Homo sapiens GI	n/o	1.374	<u>^</u>
P29692	Elongation factor 1-delta OS=Homo sapiens GN=EEF1D PE=1 SV=5	n/o	1.404	<u> </u>
P49411	Elongation factor Tu, mitochondrial OS=Homo sapiens GN=TUFM PE=1 SV=2	n/o	0.242	\downarrow
Q04637	Eukaryotic translation initiation factor 4 gamma 1 OS=Homo sapiens GN=EIF4G1 PE=1 SV=4	n/o	0.595	\downarrow
Q08945	FACT complex subunit SSRP1 OS=Homo sapiens GN=SSRP1 PE=1 SV=1	n/o	1.390	\uparrow
Q00839	Heterogeneous nuclear ribonucleoprotein U OS=Homo sapiens GN=HNRNPU PE=1 SV=6	n/o	0.696	\downarrow
P37235	Hippocalcin-like protein 1 OS=Homo sapiens GN=HPCAL1 PE=1 SV=3	n/o	2.083	\uparrow
P04264	Keratin, type II cytoskeletal 1 OS=Homo sapiens GN=KRT1 PE=1 SV=6	n/o	0.641	\rightarrow
P35908	Keratin, type II cytoskeletal 2 epidermal OS=Homo sapiens GN=KRT2 PE=1 SV=2	n/o	0.579	\downarrow
Q96AG4	Leucine-rich repeat-containing protein 59 OS=Homo sapiens GN=LRRC59 PE=1 SV=1	n/o	1.445	\uparrow
Q9ULC5	Long-chain-fatty-acidCoA ligase 5 OS=Homo sapiens GN=ACSL5 PE=1 SV=1	n/o	0.641	\downarrow
000264	Membrane-associated progesterone receptor component 1 OS=Homo sapiens GN=PGRMC1 PE	n/o	0.539	\downarrow
P56192	MethioninetRNA ligase, cytoplasmic OS=Homo sapiens GN=MARS PE=1 SV=2	n/o	0.661	\downarrow
P27816	Microtubule-associated protein 4 OS=Homo sapiens GN=MAP4 PE=1 SV=3	n/o	0.769	\downarrow
P35580	Myosin-10 OS=Homo sapiens GN=MYH10 PE=1 SV=3	n/o	1.469	\uparrow
Q16795	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial OS=Homo sa	n/o	1.411	1
075489	NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial OS=Homo sapiens GN=	n/o	1.328	1
P28331	NADH-ubiguinone oxidoreductase 75 kDa subunit, mitochondrial OS=Homo sapiens GN=NDUF:	n/o	1.499	<u>^</u>
Q01085	Nucleolysin TIAR OS=Homo sapiens GN=TIAL1 PE=1 SV=1	n/o	0.796	4
P15531	Nucleoside diphosphate kinase A OS=Homo sapiens GN=NME1 PE=1 SV=1	n/o	2.276	^
P00558	Phosphoglycerate kinase 1 OS=Homo sapiens GN=PGK1 PE=1 SV=3	n/o	1.598	<u></u>
Q10471	Polypeptide N-acetylgalactosaminyltransferase 2 OS=Homo sapiens GN=GALNT2 PE=1 SV=1	n/o	1.466	<u>^</u>
075915	PRA1 family protein 3 OS=Homo sapiens GN=ARL6IP5 PE=1 SV=1	n/o	1.475	
Q15084	Protein disulfide-isomerase A6 OS=Homo sapiens GN=ARLoirS PE=1 SV=1		1.473	↑
P51148	Ras-related protein Rab-5C OS=Homo sapiens GN=RDIA6 PE=1 SV=1	n/o	1.867	
		n/o		
P51149	Ras-related protein Rab-7a OS=Homo sapiens GN=RAB7A PE=1 SV=1	n/o	1.729	<u>^</u>
P61224	Ras-related protein Rap-1b OS=Homo sapiens GN=RAP1B PE=1 SV=1	n/o	1.573	<u>^</u>
Q8WTV0	Scavenger receptor class B member 1 OS=Homo sapiens GN=SCARB1 PE=1 SV=1	n/o	1.550	<u>^</u>
Q99986	Serine/threonine-protein kinase VRK1 OS=Homo sapiens GN=VRK1 PE=1 SV=1	n/o	1.445	\uparrow
P50454	Serpin H1 OS=Homo sapiens GN=SERPINH1 PE=1 SV=2	n/o	1.548	\uparrow
P31040	Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial OS=Homo sapiens	n/o	1.604	\uparrow
O94901	SUN domain-containing protein 1 OS=Homo sapiens GN=SUN1 PE=1 SV=3	n/o	0.738	\downarrow
Q99536	Synaptic vesicle membrane protein VAT-1 homolog OS=Homo sapiens GN=VAT1 PE=1 SV=2	n/o	1.411	\uparrow
Q9UGP8	Translocation protein SEC63 homolog OS=Homo sapiens GN=SEC63 PE=1 SV=2	n/o	1.863	\uparrow
P60174	Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3	n/o	1.803	\uparrow
Q8IYS2	Uncharacterized protein KIAA2013 OS=Homo sapiens GN=KIAA2013 PE=2 SV=1	n/o	0.740	\downarrow
013007	Vesicular integral-membrane protein VIP36 OS=Homo sapiens GN=LMAN2 PE=1 SV=1	n/o	0.692	\downarrow
Q12907	vestediai integral memorane protein vil so os-nomo sapiens ori-entitra re-1 sv-1		0.052	v

Supplementary Table 4: List of other important proteins identified from untreated and TGF β -treated HCT116 WT/HCT116AS comparisions

Uningent ID	Gene name	Protein names	ITRAQ	iTRAQ fold change		
UNIPROLID	Gene name	Protein hames	Untreated	TGFβ treated	pattern	
Q8NC51	SERBP1	Plasminogen activator inhibitor 1 RNA-binding protein	1.385	1.771	\uparrow	
P61586	RHOA	Transforming protein RhoA	1.644	1.527	\uparrow	
Q9BQ61	C19orf43	Uncharacterized protein C19orf43	n/o	2.294	\uparrow	
Q8WTV0	SCARB1	Scavenger receptor class B member 1	1.550	n/o	\uparrow	
P02786	TFRC	Transferrin receptor protein 1	0.696	0.353	\downarrow	
Q92520	FAM3C	Protein FAM3C	0.501	0.448	\downarrow	
Q6IAA8	LAMTOR1	Ragulator complex protein LAMTOR1	0.714	0.587	\downarrow	
Q8N163	KIAA1967	DBIRD complex subunit KIAA1967	n/o	0.701	\downarrow	
O00264	PGRMC1	Membrane-associated progesterone receptor component 1	0.539	n/o	\downarrow	
Q8IYS2	KIAA2013	Uncharacterized protein KIAA2013	0.740	n/o	\downarrow	

n/o - not observed

CHAPTER 5

The observations from studies in the previous chapters clearly indicated that TGF β can promote alterations in cancer related molecules and pathways upon expression of β 6 integrin and uPAR. Therefore, it is important to further understand/investigate the expression levels of these molecules in biological samples. This prompted the investigation of TGF β and uPAR expression levels in a clinical setting using human blood plasma samples from Dukes' stage A-D CRC patients (n=60) and unaffected normal control plasmas (n=15). These samples were analysed using the Proseek Multiplex Oncology I kit that evaluated the expression of 92 putative cancer-related proteins including Latency-associated peptide TGF β 1 (LAP TGF β 1) and uPAR from just 1µL of human plasma. The observations from this study indicated no significant difference in expression of LAP-TGF β 1 and uPAR in plasma between various stages. However, this study identified CEA, IL-8 and prolactin as potential CRC biomarkers that significantly differentiate the unaffected controls from nonmalignant (Dukes' A + B) and malignant (Dukes' C + D) stages. These findings are an important step towards identifying and developing a CRC biomarker panel that can in the future be used for diagnostic and therapeutic purposes.

The study was conducted under Macquarie University Human Ethics Committee approval (Approval No. 5201200702).

5.1 - A novel multiplexed immunoassay identifies CEA, IL-8 and prolactin as prospective markers for Dukes' stages A-D colorectal cancers. *Clin Proteomics*. Apr 8; 12(1):10. doi: 10.1186/s12014-015-9081-x. eCollection 2015. [Publication VI]

RESEARCH

Open Access

A novel multiplexed immunoassay identifies CEA, IL-8 and prolactin as prospective markers for Dukes' stages A-D colorectal cancers

Sadia Mahboob¹, Seong Beom Ahn¹, Harish R Cheruku¹, David Cantor¹, Emma Rennel³, Simon Fredriksson³, Gabriella Edfeldt³, Edmond J Breen⁴, Alamgir Khan⁴, Abidali Mohamedali², Md Golam Muktadir⁵, Shoba Ranganathan², Sock-Hwee Tan¹, Edouard Nice⁶ and Mark S Baker^{1*}

Abstract

Background: Current methods widely deployed for colorectal cancers (CRC) screening lack the necessary sensitivity and specificity required for population-based early disease detection, Cancer-specific protein biomarkers are thought to be produced either by the tumor itself or other tissues in response to the presence of cancers or associated conditions. Equally, known examples of cancer protein biomarkers (e.g., PSA, CA125, CA19-9, CEA, AFP) are frequently tound in plasma at very low concentration (bg/mL-ng/mL). New sensitive and specific assays are therefore urgently required to detect the disease at an early stage when prognosis is good following surgical resection. This study was designed to meet the longstanding unmet clinical need for earlier CRC detection by measuring plasma candidate biomarkers of cancer onset and progression in a clinical stage-specific manner. EDTA plasma samples (1 µL) obtained from 75 patients with Dukes' staged CRC or unaffected controls (age and sex matched with stringent inclusion/exclusion assay. An identical set of plasma samples were analyzed utilizing the Bio-Plex Pro[™] human cytokine 27-plex immunoassay.

Results: Similar quantitative expression patterns for 13 plasma antigens common to both platforms endorsed the potential efficacy of Proseek as an immune-based multiplex assay for proteomic biomarker research. Proseek found that expression of Carcinoembryonic Antigen (CEA), IL-8 and prolactin are significantly correlated with CRC stage.

Conclusions: CEA, IL-8 and prolactin expression were found to identify between control (unaffected), non-malignant (Dukes' A + B) and malignant (Dukes' C + D) stages.

Keywords: Multiplex immunoassay, Plasma biomarker, Colorectal cancer

Background

CRC is the third most commonly diagnosed cancer worldwide with over 694,000 deaths (8.5% of all cancer deaths) in 2012, with Australia and New Zealand having the highest incidence rates (44.8 and 32.2 per 100,000 in men and women respectively) [1].

Various staging systems have been developed to describe the progression of the disease based on the size, location and spread of the tumour to distant organs (e.g., Tumour-Node-Metastasis (TNM) staging systems,

* Correspondence: markbaker@mq.edu.au 'Australian-School of Advariced Medicine, Faculty of Medicine and Human Sciences, Macquarie University, Brut, Level 1, 75-Talaveta Road, Sydney, NSW 2109, Australia

Full list of author information is available at the end of the article

Australian Clinico-pathological staging (ACPS) system and Dukes' staging system [2,3]). Patient prognosis inversely correlates with tumour stage at the time of diagnosis [4,5]. Once metastases becomes clinically observable, prognosis is extremely poor with survival often measured in months [6]. Currently, we are unable to detect patients with clinically silent metastases, possibly linked to poor outcome. Despite the availability of numerous screening strategies, aggressive surgical therapy and extensive research on the molecular basis of CRC, early detection of the disease remains problematic. Population-based CRC screening programmes can reduce morbidity and mortality through the early identification of surgically-treatable disease. However, there is currently a gap in translational

© 2015 Mahboob et al.: licensee BoMed Central This is an Open Access article distributed under the terms of the Creative Ecommons Attribution License (http://creative.commons.org/licenses/by/40), which permits unrearlisted use, distribution, and reproduction in any maßrum, provided the original work is properly credited The Creative Commons Public Domain Dedication waive (http://creative.commons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. research between identification of potential new biomarkers and development of Food and Drug Association (FDA) approved diagnostic tests [7]. Most diagnostic tests available to date are based on a single protein biomarker [8]. This concept is hazardous in the clinical setting as biological systems are interdependent and highly complex with inherent false positives subject to the genomic instability of cancers [9]. It is now widely accepted that panels of biomarkers will be required to achieve the increased sensitivity and specificity necessary for populationbased screening [10]. The use of a pan-cellular field such as proteomics could help identify protein expression profiles associated with CRC progression that may prove to be more reliable than single biomarker based assessment.

Simultaneous assessment using a multiple biomarker strategy necessitates the development of multiplex highthroughput technologies with sufficient sensitivity and specificity to detect CRC early [9]. Multiplexing or simultaneous quantitation of several biomarkers in plasma can indicate the protein expression profiles involved in tumour formation, progression and metastasis. Under carefully controlled experimental conditions, multiplexed assays can identify many (96) low abundance candidate proteins using minimal sample volumes (1 µl) [11]. An example of this technology is the proximity extension assay (PEA) which has recently been developed by Olink Biosciences from Uppsala, Sweden [12].

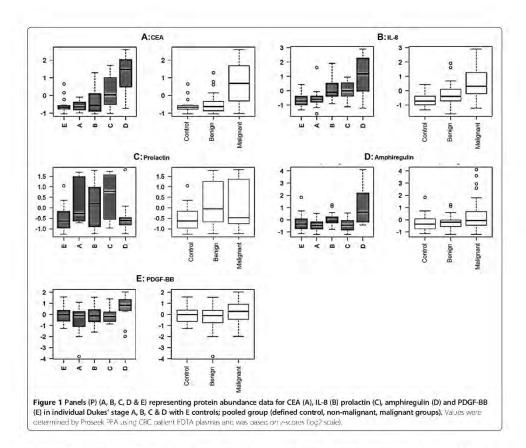
This study was designed to meet a longstanding clinical need for earlier CRC detection by identifying plasma biomarkers of CRC onset and progression using the Proseek* Multiplex Oncology kit I (Proseek assay). In detail, Proseek assay employs PEA technology to quantitate 92 potential oncoproteins using only 1 µL of human plasma [12], where samples are treated with matched antibody pairs that are tagged with DNA reporter molecules. Once the antibodies are bound to their respective antigen the corresponding DNA tails form an amplicon that can be quantified by high-throughput real time PCR which generates a measurable fluorescent signal that directly correlates with abundance [13]. This PEA-based approach provides a platform for accurate quantification of multiple (96) low abundance oncoproteins from biological samples. Here, we aimed to validate PEA results with an existing benchmark multiplexed technology, namely the Bio-Plex Pro" human cytokine 27-plex kit [14] (Bio-Plex), which is a bead-based multiplex immunoassay, measures the concentrations of 27 cytokines, chemokines or growth factors.

Results

Proseek* multiplex oncology I assay

The expression levels of 92 potential protein biomarkers (Additional file 1: Table S3) in each of the 75 plasma samples from CRC patients and healthy controls were evaluated simultaneously using the Proseek assay. The

levels of 8 oncoproteins (CEA, IL-8, prolactin, amphiregulin, PDGF-BB, IL-6, CXCL11 and CXCL5) differed significantly between various individual CRC stages (Table 1). Additional file 1: Tables S3 and S4 list the complete


statistical analyses on this data. Twelve (12) of the target biomarkers were found to have expression levels below the Proseek LOD.

Specifically, CEA was found to be the overexpressed protein measured in stage D when compared with any other CRC stage (i.e., either Dukes' A, B or C) and/or healthy unaffected controls (for all stage D comparisons *Ps* were < 0.0001). In addition, CEA was also overexpressed in stage C when compared with stage A (*P* = 0.0076) and/or healthy controls (*P* = 0.0304). Previous studies have also shown elevated CEA expression in Dukes' stage C and D CRC [15-21].

Differences in IL-8 expression were observed in stage A to D comparisons (P = 2.96E-05) and stage D to healthy control comparisons (P = 1.23E-06). Interestingly, levels of prolactin were elevated in Dukes' stage C compared with stage D (P = 1.24E-05) and healthy controls (P = 2.89E-05). Prolactin levels were found to consistently increase as disease progressed from controls through CRC Dukes' stages A-C (Figure 1, P5). Amphiregulin was overexpressed in stage D when compared with stages A (P = 8.96E-07) and

Table 1 Tukey-honest significant differences post-hoc test for Proseek data [Stage specific (A-D)] and healthy unaffected control (group E)

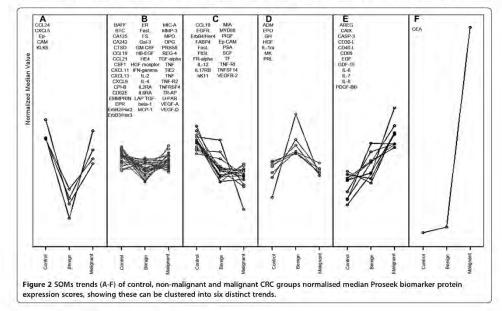
Candidate Biomarker	Comparison	Up/Down of expression	Adjusted p-value	Previous studies referring CRC associations
CEA	D/A	Ť	Q	[15-21]
	D/E	T	1.70E-12	
	D/B	†	4,13E 12	
	D/C	t I	0,0001	
	C/A	†	0.0076	
	C/F	1	0.0304	
IL-8	D/E.	Ť	1,23E-06	(44,47)
	D/A	Ť.	2968-05	
Prolactin	C/D	1	1.24E-05	[49-51]
	c/E	†	2.89E-05	
Amphiregulin	D/A	Ť	8,95E-07	[54]
	D/C	Ť	1.465-06	
PDGF-BB	D/A	î	3.021-05	[22.55]
IL-6	B/A	Ť	0.0024	[43,56]
	.B/E	1	0.0124	
CXCL11	D/C	t	0.0155	(57)
	D/A	1 ·	0.0387	
CXCL5	D/A	1	0.0424	[58-61]

C (*P* = 1.46E-06), while PDGF-BB was elevated in stage D compared with stage A (*P* = 3.02E-05). It was also noted that IL-6 showed a higher expression in stage B when compared to stage A and healthy unaffected controls (*P* ≤ 0.0024). Chemokine (C-X-C motif) ligand CXCL11 and CXCL5 had a higher expression at stage D when compared with stage A (*P* = 0.0155). It was interesting to note that some of the previously reported biomarker oncoproteins (e.g., IL-4, CAIX, TNF- α , MCP-1, GM-CSF, VEGF, TIE2, IL17, IL-6, IFNG) did not display differential expression between Dukes' CRC stages (*P* ≈ 1.0) [22-32].

To determine whether changes were observed when CRC data were pooled into control (group E), nonmalignant (stages A + B combined) or malignant groups (stages C + D combined), a Tukey honest significant differences post-hoc ANOVA (Type II) test was performed and Q values calculated, where Q values are a measure of statistical significance in terms of false discovery rate (Table 2). This study showed expression of three biomarker oncoproteins (CEA, IL-8 and prolactin) were altered when pooled CRC groups (i.e., control, non-malignant, malignant) were considered.

Comparison between pooled controls, non-malignant and malignant groups with individually staged patients indicated CEA and IL-8 were both considerably upregulated in malignant compared to healthy controls. Additionally, as expected [20] CEA was overexpressed in comparisons between non-malignant and malignant groups (Q-value = 0). In contrast, prolactin demonstrated a noticeable Dukes' stage-dependant increase in expression until metastasis occurred beyond lymph nodes (i.e., is elevated up to stage C). Once metastasized to distal organs (Dukes' stage D), plasma prolactin expression levels returned to approximately normal control (group E) levels. Additionally, an increase was found between control and non-malignant pooled groups for prolactin values.

Candidate Biomarker	Comparison	Difference	Lower Cl	Upper Cl	Q-value
CEA	Malignant/Non-malignant	1.97	1.08	2.85	0
CEA	Mal gnant/Hea thy	2.11	1.02	3.19	0
IL.8	Mal gnant/Hea thy	1.22	0.14	2.31	0
Prolactin	Non-malignant/Healliny	1.1	0.02	2/19	0.04


Table 2 Q values of significantly altered potential biomarker proteins between pooled CRC groups

The Proseek multiplexed assay data strongly suggests the combined use of CEA, IL-8 and prolactin expression as potential combined diagnostic indicators of Dukes' stage with their abundance positively correlating with metastatic progression. However, as target proteins display differences in expression trends, SOMs were used to cluster and visualise pooled data into one of six discernible expression trends (Figure 2).

SOMs assembled the data into the six trends (Figure 2), where median values were used as they are less susceptible to variation [33]. The largest differences were observed between either the non-malignant or the malignant patient groups against control patients' plasmas. SOM trend A biomarkers decrease between controls and non-malignant plasmas but increase again to similar levels when malignant plasmas are compared to controls. All trend B biomarkers show no major change irrespective of stage. In an opposite manner to trend A, trend D biomarkers increase in non-malignant but decrease again in malignancy. Trend C biomarkers steadily decreased biomarker expression from healthy to malignant and may be useful to distinguish healthy patients from malignant cancers. A converse trend pattern was observed for both trends E (amphiregulin, CA19, caspase 3, CD30, CD40, CD69, EGF, GDF15, Il-6, Il-7, Il-8, PDGF-BB) and F (CEA) with strong steady increases observed during progression. Data shown in trend F demonstrates the power CEA has over all other protein biomarkers examined in the Proseek panel for distinguishing malignant from either non-malignant CRC and/or healthy patients.

Bio-Plex Pro™ human cytokine 27-plex immunoassay

Where possible the significant differences observed using the Proseek assay were reproduced/validated using an established antibody-based multiplexed detection system, namely the Bio-plex Pro[®] human cytokine 27-plex immunoassay. The Dukes' CRC stage specific analyses identified 6 target proteins (IFN-G, IL-4, IL-8, MCP-1, MIP-1 and PDGF-BB) that were each significantly elevated in stage D plasmas compared with healthy unaffected

controls (P < 0.05) (Table 3). Additional file 1: Tables S5 and S6 summarize the statistical analyses conducted on the Bio-plex data.

In detail, significant differences in IL-8 expression were observed in stage A, B and D when compared to healthy controls (P = 6.00E-05, 6.00E-03 and 2.00E-03 respectively). Additionally, PDGF-BB was significantly elevated in stage D compared with healthy controls or stage A (Ps = 2.00E-07 and 4.00E-03 respectively). It was also noted that monocyte chemotactic protein-1/C-C motif chemokine 2 (CCL2) showed a significantly higher expression in stage D when compared to healthy unaffected controls (P = 5.00E-04). Furthermore, IENG, IL-4 and monocyte chemotactic protein-1/C-C motif chemokine 3 (CCL3) also exhibited significant overexpression in stage D when compared to healthy controls to P = 5.00E-04).

Comparison between pooled control, non-malignant and malignant groups with individually staged patients indicated that four proteins (i.e., G-CSF, IL-4, IL-8 and MCP-1) were more highly expressed between non-malignant and healthy cohorts whilst nine proteins (G-CSF, IFN-G, IL-4, IL-6, IL-8, IL-9, MCP-1, MIP-1B and PDGF-BB) were higher in the metastatic group compared to healthy cohorts (Additional file 1: Table S6). SOM analyses of the same data was performed (Figure 3).

Analysis of the SOM data highlights six different trends (A-F) of patient plasma cytokine response to CRC progression. Trend A shows a variable response, whilst trend B shows an increase in cytokine/chemokine expression in both non-malignant and malignant CRC groups above healthy controls. Trend C also displays increased expression in both cancer groups compared to healthy controls with additional slight increases in malignant above non-malignant groups. The tendency for increased expression as cancers progress was more pronounced in trends D and E, whilst in trend F the increase in non-malignant over control groups was

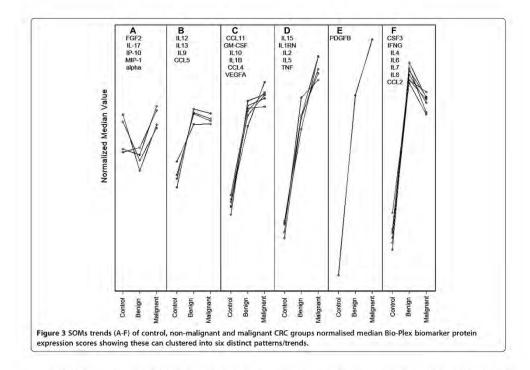
Table 3 Tukey-honest significant differences post-hoc test for Bio-Plex data [Stage specific (A-D)] and healthy unaffected control (group E)

Candidate Biomarker	Comparison	Adjusted p-value	Previous studies referencing CRC association
11-8	D/E	6.001E-05	(44,47)
	A/E	6.00E-03	
	B/E	2.00E-03	
PDGF-BB	D/E	2.006-07	[22,55]
	D/A	4.00E-03	
CC12	D/E	5.00E-04	(61-63)
FNG	D/E	0.002	(63)
11-4	D/E	0.004	[64]
6613	D/E	0.004	[65]

followed by a small decrease when the malignant group was compared to the non-malignant group. Collectively, these observations may hold some prognostic value for evaluation of CRC over healthy controls using Bio-Plex analysis of plasma G-CSF, IFN-G, IL-4, IL-6, IL-8, IL-9, MCP-1, MIP-1B and PDGF-BB in a clinical setting.

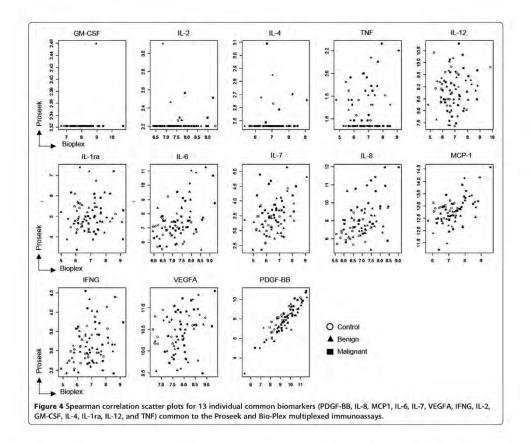
Comparison of Proseek with Bio-plex data

The 13 common proteins that were available across both the Proseek and Bio-Plex platforms were evaluated by pairing and subsequently analysing the combined data by Spearman's rank-order correlation (Figure 4). The X-Y comparisons for the Bio-Plex (X) and Proseek (Y) data for these common 13 plasma proteins are provided in Additional file 1: Table S7.


When comparing the two multiplexed immunoassay platforms, there were significant differences between outputs. For a number of proteins (GM-CSF, IL-2, IL-4 and TNF), the correlation was highly skewed as the target biomarker fell below LOD in one or both of the platforms. However, IL-8 and MCP-1 scatter plots suggested there was a positive correlation between data derived from both platforms. The scatter plot data for plasma IL-7, IFN-g, IL-6, VEGF-A levels also suggested moderate correlation. However, the correlation between Proseek and Bio-Plex analyses for PDGF-BB was particularly strong (p and q values = 0) (Additional file 1: Table S7).

In summary, out of the 13 proteins common to both immunoassay platforms, two proteins were identified whose plasma abundance were differentially correlated with Dukes' CRC clinical stage (IL-8 between samples for Dukes' D/A). The remaining eleven proteins did not show major expression difference (P > 0.05) across all comparisons made between Dukes' stage A-D CRC and themselves or healthy controls. For those proteins only available for assay in a single kit, a small number of proteins showed significantly higher expression profiles (8 proteins by Proseek CEA, IL-8, prolactin, amphiregulin, PDGF-BB, IL-6, CXCL11 & CXCL5 and 6 proteins by Bio-Plex: G-CSF, IFN-G, IL-4, IL-8, MCP-1, MIP-1 & PDGF-BB).

Collectively, these differentially expressed plasma proteins epitomise potential Dukes' stage- and progressionspecific CRC biomarkers. The significant differentially expressed proteins identified in this study should now be progressed to a much larger double-blind, multi-centre biomarker trial for further validation of their potential as "combinatorial signatures" of Dukes' stage-specific CRC.


Discussion

To the best of our knowledge, this study is one of the first to simultaneously evaluate two independent multiplexed biomarker detection technologies using the same

clinical CRC plasma samples. Choi et al., undertook an EDTA (Ethylenediaminetetraacetic acid) plasma proteomic study using 2DE/MALDI MS combined with Milliplex MAP Human 26 Plex Cytokine/Chemokine Kit to investigate CRC biomarker signatures [34], but have been heavily criticized for lacking comparison with age- and other criteria-matched healthy controls [35]. In contrast, the current study reports the expression profile of 92 potential oncoproteins biomarkers from patient EDTA plasmas across the four Dukes' CRC stages combined with an age-, sex-, smoking- and other contraindication-matched healthy group using the recently developed Olink PEA technology. The combined data emanating from the use of this novel multiplexed platform combined with stringent clinical exclusion and inclusion criteria, sample processing and analysis indicates some proteins may be representative of different aspects of progression through Dukes' staging and potentially reflect real differences in CRC biology in vivo during these stages. As such, this study proposes a potential biomarker "signature" of clinical relevance that could be utilised to evaluate Dukes' CRC stage and progression.

The Proseck^{*} Multiplex Oncology I assay is a high throughput, high sensitivity, specific assay developed for cancer research. It is now realised that the limiting factor in multiplexed immunoassays is antibody cross-reactivity that typically limits the degree of assay multiplexing [36]. Problems with cross-reactivity are virtually eliminated in PEA assays since only matched DNA reporter pairs (i.e., mirroring the presence of two distinct epitopes on the protein) are amplified at the real-time PCR step [12]. Additionally, the small sample volume required (1 µL) to simultaneously quantitatively assay 92 oncoproteins in a multiplexed format is significantly lower than required for alternative platforms (e.g., Luminex-based platforms). This is important as clinical samples are frequently volume limited, particularly when multiple assays (e.g., biomarker "signature" panels) are required or only limited plasma sources (e.g. young children/neonates) are available. As the PEA technology has only recently been commercialized, it was important to validate the platform against an existing benchmark technology (e.g., Bio-Plex multiplex immunoassay) which has FDA approval [37]. The expression profiles of 13 common oncoproteins were compared between both platforms. Nine of those common proteins showed reasonable correlation between platforms, thereby supporting/validating the potential use of the Proseek assay for cancer biomarker research (Figure 4).

Typically immunoassays involve conformational/shape recognition. As such, the knowledge of epitope location or structure is crucial for designing targeted, multiple epitope-based immune assays that can tag multiple sequences for antigen detection. Inadequate mapping can yield false positive or negative results. The Proseek assay uses two proximal epitopes to recognize a single antigen thereby reducing false positive rates which then fall below the LOD (GM-CSF, IL2, IL4 & TNF; Figure 4). However, this may not be a general phenomenon. Proseek technology uses unique sequence-based tagging of every antibody in the assay. By contrast, although the Bio-Plex utilizes a dual antibody system, lack of sequence tagging can create a higher possibility of crossreactivity and non-specificity [38]. It should be noted that both platforms employ automated software and calibration updates to reduce the need for operator input.

Investigation of individual CRC stage differences in the expression of 92 oncoproteins assessed by the Proseek assay, identified eight oncoproteins that appear to be differentially expressed in plasma as a result of CRC progression (Table 1). CEA, IL-8 and prolactin demonstrated the greatest potential use as diagnostic CRC Dukes' stage-specific biomarkers (Figure 1). It was interesting to note that except for CEA, none of the other significantly expressed oncoproteins matched with the list of serological CRC indicators identified in a similar study utilizing a 74-plex PEA platform [39]. In that study, Thorsen et al., investigated 74 different protein biomarkers and found carcinoembryonic antigen (CEA), transferrin receptor-1 (TFRC), macrophage migration inhibitory factor (MIF), osteopontin (OPN/SPP1) and cancer antigen 242 (CA242) as CRC discriminators. CEA, TFRC and CA242 were suggested to be early stage CRC indicators. Intriguingly, Choi et al., identified 24 significantly elevated proteins in CRC, of which IL-8, TNF-alpha, and IP-10 (interferon gamma-induced protein) were elevated in the CRC group relative to the adenoma group [34]. Surprisingly, CEA was not a selected as a potential oncoprotein in the Milliplex MAP Human 26 Plex Cytokine/Chemokine Kit used in that study.

CEA is currently employed as a routine marker for CRC prognosis, disease-free survival and therapeutic response [40] and as an independent predictor of patients at higher risk of CRC recurrence and/or metastases during postoperative follow-up [41]. Our study supports aspects of this contention - namely that high plasma CEA expression significantly correlates with the presence of metastatic CRC, though (as previously proposed) it was not found to be an effective plasma biomarker of very early stage disease (Dukes' A). Another differentially expressed protein (IL-8) is recognized as a pro-inflammatory cytokine and an important chemoattractant factor for leukocytes. IL-8 has been reported to contribute to cancer progression through potential motility-stimulating, mitogenic and angiogenic functions [29]. It has been previously demonstrated that IL-8 is elevated at both the mRNA and plasma protein levels and in CRC tumour tissues compared to adjacent normal colonic mucosa [42-44]. IL-8 is a soluble mediator released by tumor cells that functions within the tumor microenvironment [45]. A number of studies have confirmed the effects of elevated IL-8 on signalling that promotes the angiogenic response and that eventually leads to infiltration of neutrophils to the tumor site [46]. IL-8 expression in tumour tissues significantly correlates with tumour size, depth of infiltration, liver metastasis and tumour stage [24,47]. The present study also confirms that plasma IL-8 concentration significantly discriminates Dukes' stage D (those with metastatic disease) from either healthy controls or Dukes' stage A patients.

A number of studies have found that prolactin actively participates in tumorigenesis and that it is overexpressed in several cancer cell lines including those derived from reproductive and non-reproductive tissues [48]. Hence scientists have been interested in developing therapies for controlling tumor growth through suppression of prolactin production [48]. Elevated serum prolactin has been shown to correlate with CRC malignancy [49,50] and is observed in many CRC cell lines and tumour specimens [51,52]. Our data strongly suggests that plasma prolactin significantly correlates with CRC tumour progression through Dukes' stage A, B and C, being continuously upregulated until distal metastasis occurs. Our data encourage further studies on larger clinical cohorts to evaluate the plasma expression of prolactin during CRC progression as a stagespecific biomarker.

Conclusions

New, improved and volume-sparing plasma biomarkers/ biomarker signature panels are urgently required for cancer screening and surveillance using minimally invasive techniques. Multiplexing represents a powerful platform for the qualitative and quantitative assessment of cancer biomarker signatures, giving the opportunity for sensitive and specific detection of multiple oncoproteins in plasma samples, providing a suite of biomarkers with potential for use as stage-specific indicators of CRC progression.

The emerging PEA technology has received increasing interest considering the large number of target biomarkers that can be measured quantitatively with the advantage of minimum cross-reactivity over benchmark multiplexing platforms. This study has identified eight proteins (CEA, IL-8, prolactin, amphiregulin, PDGF-BB, IL-6, CXCL11 and CXCL5) whose expression trends are of great interest for developing a "biosignatures" of CRC progression that could potentially be translated into a diagnostic/prognostic. Finally, we recognized three prospective novel markers of CRC progression (CEA, IL-8 and prolactin) that hold potential to be utilised in clinical oncology, as they significantly increase with CRC progression and correlate with Dukes' stage. We recognize the importance of performing further multicentred large study analysis of marker combinations and in developing new algorithms that confirm improved performance of CEA, perhapsby addition of IL-8 and/or prolactin. As such, we highly recommend the use of these oncoproteins in patient screening as well as for further investigation as potential CRC plasma biomarkers in large multicentric multisample controlled CRC study cohorts.

Materials & methods

Patient plasma samples

Clinically staged CRC (Dukes' A, B, C, D) and control EDTA-plasma samples were obtained from 75 patients. Patients were Dukes' staged CRC (15 patients each stage A-D) or apparently healthy disease unaffected controls at Victoria Cancer Biobank (n = 15, called group E subsequently). Samples were stringently age and sex matched with strict inclusion/exclusion criteria applied to minimize variation within the study population. In detail, the study population was a mixture (50:50) of females/males, aged between 50 and 80 for each CRC stage and for the healthy unaffected controls. Samples were collected from CRC patients diagnosed with nonmalignant/malignant tumors, before they underwent any treatment and surgery for CRC. The control or unaffected plasma samples were collected from 15 individuals who were aged-matched to the clinical CRC plasma and had no apparent evidence of diseases (i.e., with no evidence of inflammation or metastatic conditions, no previous history of tumor, cancer or major therapy. Clinical details about CRC patients are provided in Additional file 1: Table S8).

Plasma handling conditions

The samples were collected in 2 EDTA tubes (9 ml each), centrifuged at room temperature (RT) at 1,200 g for 10 mins and plasma fractions transferred to a single 10 ml tube. The combined plasma fractions were centrifuged at RT 1,800 g for 10 mins and aliquoted into 8 \times 250 µl tubes that were stored and frozen at -800C. The entire process was completed within 2 h of plasma collection to meet the VCB protocols required for proteomic experiments.

Proseek* multiplex oncology I assay

Proseek assays were performed to evaluate the expression of a panel of potential biomarkers within the plasma samples (n = 75) in a 96-well plate. This assay measured 92 potential protein biomarkers (Additional file 1: Table S1) and 4 internal controls generating 9,216 data points per run. The investigation was performed according to manufacturer's instructions (www.olink.com) with minimal changes. The complete experiment was conducted on a single 96 well plate to minimize variation, with one EDTA plasma sample from each group (number 15) examined in duplicate. Briefly, 1 µl of each sample or negative control was incubated with the conjugated antibodies at 4°C overnight. The next day, the extension mixture was added and the products were extended and pre-amplified using PCR (ABI 2720 Thermal cycler, Life Technologies). The detection reagent and a fraction (2.8 µl) of the extended and pre-amplified product were mixed and loaded into an oil-loaded Fluidigm Gene Expression 96 × 96 Dynamic arrays (Fluidigm Corporation) on one side and the Primer plate with specific primers on the other side of the chip. The chip was primed using Fluidigm IFC controller HX (Fluidigm Corporation) and afterwards loaded into a Fluidigm Biomarker system (Fluidigm Corporation).

Raw data was annotated using Real Time PCR software (Fluidigm Corporation). The Proseek assay generated Cq values that represent the cycle values in the PCR amplification where the signal is above background. This is calculated on a log 2 scale as PCR amplification is increased by 2 fold up during each cycle. To even out variation between and within runs, data was normalized using the extension control and a background value. The data used for further statistical analysis were expressed in Normalized Protein eXpression (NPX) units on log2 scale, where a high value corresponded to high protein concentration. The limit of detection (mean negative control plus 3×standard deviation) was determined for each protein assay. Data was normalized and analysed using GenEx software (MultiD, Gothenburg, Sweden). All statistical analyses (dynamic principal component analysis and one way ANOVA) were performed on normalized data. For each biomarker, the limit of detection (LOD) was defined as the mean of negative control plus 3 standard deviations of the 38 negative controls.

Bio-plex Pro[™] human cytokine 27-plex immunoassay

Bio-Plex assay (Bio-Rad, CA, USA, Cat No: M500KCA-FoY) was utilised according to manufacturer's instructions and also as reported earlier [23] to measure the concentrations of 27 target proteins (Additional file 1: Table S2) using identical CRC plasma samples as used in the Proseek assay. Samples were prepared using a robotic liquid handling workstation (epMotion 5075, Eppendorf, Germany) and incubated with antibodycoupled beads for 60 min followed by incubation with a detection antibody for 30 min. The conjugates were then incubated with streptavidin for 10 min, washed using the Bio-Plex Pro II wash station (Bio-Rad, CA, USA), resuspended and vortexed prior to fluorescent measurement on a Bio-Plex® 200 system (Bio-Rad, Hercules, CA). Data were acquired with the Bio-Plex Systems 100. (Bio-Rad, CA, USA), analysed and standard curves (Log (x) - Linear(y)) generated using the Bio-Rad Bio-Plex Manager v6.0 software [53].

Statistical analysis and correlation

Biomarker expression values were analysed using the statistical analytical package RStudio version 0.97.551 across each of stages A-D CRC and E (apparently healthy unaffected controls). In addition, to determine if protein expression could distinguish non-malignant from malignant CRC, individually staged data were pooled into three groups, namely controls (Group E: n = 15), non-malignant. CRC (Groups/stage A and B; n = 30) and malignant CRC (Groups/stage C and D; n = 30). This subsequent analysis was performed to determine if significant protein expression differences were found between non-malignant and malignant CRC or when each group was compared to control patients. A two-way ANOVA using type II sums of squares was used for analysis as the control group was now smaller than the combined non-metastatic and metastatic groups implementing an R notation given as: Log2 (Response) ~ Group*Proteins + Sample, where response is the protein expression value, Group is a factor with 3 levels (control, non-metastatic and metastatic), Proteins is a factor with 92 levels for Proseek data set and 27 levels for the Bio-Plex data set and Sample is a factor with 15levels. Sample represents the plasma samples from CRC patient and unaffected controls that were included in the analysis to allow for any individual differences between patients that might mask the difference in expression

levels between CRC stages. P value < 0.05 was considered significant.

To identify which proteins were differentially expressed between collated CRC groups (control, non-malignant and malignant), a Tukey honest significant differences posthoc test was also performed with respect to the interaction between Protein and Group factors. To discover which proteins exhibited similar expression profiles during CRC progression, self-organizing maps (SOM) were employed to present a discrete representation of the input space of the protein expression values. Raw data was transformed by taking the median expression value for the patient data for each protein within each group. This data was log2 transformed and then each group was normalized by setting each group's mean value to zero. Expression data was clustered into 6 groups using the SOM and displayed as a plot of the normalized median expressions for each protein with respect to its group values.

To investigate the complementarity of Proseek and Bio-Plex data sets, the expression of 13 proteins that are common to both platforms were paired and analysed by Spearman's rank-order correlation. This was performed to investigate any potential differences between multiplexed platforms by pairing the expression values and transforming p-values into q-values using the Benjamini and Hochberg procedure for multiple test correction.

Additional file

Additional file 1: Table S1. List of oncoproteins analyzed by Proseel Assay With Limit of Detection (LOD) in pg/ ml, working range (Lower Limit of Quantification, LLOQ, Upper Limit of Quantification, ULOQ). Table 52. List of ortokines analyzed by Bio-plex Assay with Limit of Detection (LOD) in og/ ml, Lower Limit of Quantification (LLOQ) and Upper Limit of Quantification (ULOQ) (Proteins in bold letters indicate common target proteins between two platforms). Table S3. Q-values calculated for stage specific protein expressions analyzed by PEA technology. Table S4. Anova Table (Type II tests) or 2-Way Anova factor analysis for Proseek Assay. Table S5. p- values tests) or 2-Way Anova factor analysis for Proseek Assay. Table SS. p-values calculated for stage specific protein expressions analyzed by Bio-Plex Assay (Stage specific (A-D, n = 15) and healthy group. Table S6. Tukey honest significant differences post-hoic test for Bio-plex assay (Stoup- specific analysi), Table S7. Spraman Committion between Proceek and Bio plex assay (with p and q-values). Table S8. Clinical Details of CRC patients.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

(i) Conception and design of the study: MS, ASB, CHR, CD, TS-H, NE, BMS (2) Generation, collection, assembly, analysis and/or interpretation of data: MS, AS B, CH R, CD, R E, PS, EG, BE J, KA, RS, MM G, MA, TS-H, NE, BM S, (3) Drafting or revision of the manuscript, MS, AS B, CH R, CD, RE FS, BG, BE J, KA, MM G, MA, T SH, NE, BM S, (4) Approval of the final version of the manuscript MS, AS B, CHR, CD, R E, F S, EG, BE J, KA, RS, MM G, MA, TSH, NE, BM S, All authors read and approved the final manuscript.

Acknowledgments

Acknowledgments This study was supported with project funding from the Australian National Health and Medical Research Council (NHMRC APP1010303), NSW Cancer Council (RG10-04 & RG08-16) and a Macquarie University MQSN grant and supported through the Australian School of Advanced Medicine (ASAM),

Macquarie University BioFocus and Biomolecular Frontiers Research Centres. We sincerely thank the Victorian Cancer Biobank for the collection, supp and provision of inclusion and exclusion criteria matching Dukes-staged CRC EDTA plasmas and for all appropriate clinical data. We also thank for statistician Mr Apury Goel (APAF) for his assistance with data analysis and statistics Some of the research described herein was facilitated by access to the Australian Proteome Analysis Facility (APAI) established under the Australian Government's National Collaborative Research Infrastructure Strategy (NCRIS). The study was conducted under Macquarle University Human Ethics Committee approval (Approval No 5201200702)

Australia School of Advanced Medicine, Faculty of Medicine and Human Sciences, Macquarle University, Rm1, Level 1, 75 Talavera Road, Sydney, NSW 2109, Australia. ²Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, Sydney, NSW 2109, Australia. ²Olink Bioscience, Dag Hammarskjölds Väg, 54A, 75183 Uppsala, Sweden... ⁴Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia. ⁴School of Science and Health, University of Westwar Sydney, NSW, Australia. ⁶School of Science and Health, University of Westwar Sydney, NSW, Australia. ⁶Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, VIC 3800, Australia.

Received: 29 October 2014 Accepted: 4 March 2015 Published online: 08 April 2015

- Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 (Internet). GLOBOCAN 2012, v1.0.
- Dukes CE. The classification of cancer of the rectum. J Pathol Bacteriol: 1032-35-323-32
- Beattle T. Classification of colorectal cancer to aid the stomal therapy nume in practice, Journal of Stomal Therapy Australia 2012, 32.
- Paeters M, Price T, Van Laethern JL. Anti-epidermal growth factor ecoptor monocherapy in the treatment of metastatic colorectal cancer: where are we today? Oncologist. 2009;14:29–39.
- Loberg M, Kalager M, Holme O, Hoff G, Adami HO, Bretthauer M, Long-term coloractal cancer mortality after adenoma removal. N Engl J Med. 5 2014/371/299-807.
- Langan RC, Mullinax JE, Rajii MT, Upham T, Summers T, Stojadinovic A, et al. Colorectal cancer biomarkers and the potential role of cancer stem cells. Cancer 2013:4:241-50
- Heichman KA. Blood-based testing for colorectal cancer screening Mol Diagn Ther. 2014;18:127-35
- Wor Dragn Then, 2014;16:127-33. Duffy MJ, van Dalen A, Haglund C, Hansson L, Klapdor R, Lamerz R, et al. Clinical utility of biochemical markers in colorectal cancer. European Group 8 on Tumour Markers (EGTM) quidelines. Eur 1 Cancer. 2003;39:718-27.
- Ang CS, Rottacker J, Patsiouras H, Gibba P, Burgest AW, Nice IC. Use of multiple reaction monitoring for multiplex analysis of colorectal cancer associated proteins in human feces. Electrophoresis. 2011;32:1926-38.
- Nice E. Biomarker discovery and validation: the tide is turning. Expert Rev Proteomics, 2013;10:505-7. 16.
- Hoteomics, acroptosomics, Lea P, Keystone E, Mudumba S, Kahama A, Ding SF, Hansen J, et al. Advantages of multiples anoteomics in clinical immunology, the case of ineumatolit arthritis: novel IgXPLEX: planar microarray diagnosis, Clin Rev Allergy Immunol. 2011;41:20-35. Assarsson E, Lundberg M, Holmquist G, Björkesten J, Bucht Thorsen S
- Assanador E, Carloberg M, Honrojak G, Sparkettri, Bokar M, Bokar Ekman D, et al. Homogenous 96-Pie PA (immunoassay Exhibiting High Sensitivity, Specificity, and Excellent Scalability. PLoS One. 2014;9:e95192, 13. Hjelm F, Tran B, Predrikson S: Sensitive detection of cytokines in 1-[mil]
- serum samples using Prosect(reg), Nat Meth 2011, B. 14. Li D, Chiu H, Gupta V, Chan DW. Validation of a multiplex immunoassay for
- serum angiogenic factors as biomarkers for aggressive prostate cancer. Clin Chim Acta, 2012;413:1506–11. Nielsen HJ, Brunner N, Jorgensen LN, Olsen J, Kahr HB, Thygesen K, et al.
- 15. Plasma TMP-1 and CEA in detection of primary colorectal cancer a prospective population based study of 4509 high-risk individuals, Scand J Gastroenterol. 2011;46.60-9
- Japink D, Leers MP, Sosef MN, Nap M, CEA in activated macrophages 16. New diagnostic possibilities for tumor markers in early colorectal cancer. Anticancer Res. 2009;29:3245–51.

Mahboob et al. Clinical Proteomics (2015) 12:10

- National Institutes of Health consensus development conference statement CEA (carcinoembryonic antigen): Its role as a marker in the management of cancer. J Ark Med Soc 1981; 7865-64. (Accessed online: 12th March, 2015).
 CEA (Carcinoembryonic Antigen): Its Role as a Marker in the Management
- CEA (Carcinoembryonic Antigen): Its Role as a Marker in the Management of Cancer. NIH Consens Statement Online 1980 Sep 29-Oct 1 [cited 15/03/12]; 3(7):1-4.
- Ahlemann LM, Staab HJ, Koch HL, Anderer FA. Carcinoembryonic antigen (CEA) measurements as an aid to management of patients with lung cancer treated by radiotherapy. Oncodev Biol Med. 1980;1:143–50.
- Bray PF, Wu JT, Madsen AC. Carcinoembryonic antigen (CEA) assay. In diagnosis and management of cancer. Rocky Mt Med J. 1975;72:21–3.
 Hansen HJ, Snyder JJ, Miller E, Vandevoorde JP, Miller ON, Hines LR, et al.
- Hansen HJ, Snyder JJ, Miller E, Vandevoorde JP, Miller ON, Hines LR, et al. Carcinoembryonic antigen (CEA) assay. A laboratory adjunct in the diagnosis and management of cancer. Hurn Pathol. 1974;5:139–47.
- Peterson JE, Zurakowski D, Italiano Jr JE, Michel LV, Connors S, Oenick M, et al. VEGF, PF4 and PDGF are elevated in platelets of colorectal cancer patients. Angiogenesis. 2012;15:265–73.
- Liu J, Duan Y, Cheng X, Chen X, Xie W, Long H, et al. L-17 is associated with poor prognosis and promotes angiogenesis via stimulating VEGF production of cancer cells in colorectal carcinoma. Biochem Biophys Res Commun. 2011;407:348–54.
- Bunger S, Haug U, Kelly FM, Klempt-Giessing K, Cartwright A, Posorski N, et al. Toward standardized high-throughput serum diagnostics: multiplex-protein array identifies IL-8 and VEGF as serum markers for colon cancer. J Biomol Screen. 2011;16:1018–26.
- Kirman I, Belizon A, Balik E, Feingold D, Arnell T, Horst P, et al. Perioperative sargramostim (recombinant human GM-CSF) induces an increase in the level of soluble VEGFR1 in colon cancer patients undergoing minimally invasive surgery. Eur J Surg Oncol. 2007;32:1169–76.
- Malaguarrea L, Imbesi RM, Scuto A, D'Amico F, Licata F, Messina A, et al. Prolactin increases HO-1 expression and induces VEGF production in human macrophages. J Cell Biochem. 2004;93:197–206.
- Chin KF, Greenman J, Reusch P, Gardiner E, Marme D, Monson J. Changes in serum soluble VEGFR-1 and TiP-2 receptors in colorectal cancer patients following surgical resections. Anticancer Res. 2004;24:2353-7.
 Chin KF, Greenman J, Reusch P, Gardiner E, Marme D, Monson JR. Vascular
- Cinn Kr, Greenman J, Keusch Y, Gardiner E, Marme L, Monson JK, Vascular endothelial growth factor and soluble Tie-2 receptor in colorectal cancer: associations with disease recurrence. Eur J Surg Oncol. 2003;29:497–505.
 Kantola T, Klintrup K, Vayrynen JP, Vomanen J, Bloigu R, Karhu T, et al.
- Kantola T, Klintrup K, Vaynynen JP, Vomanen J, Bloigu R, Karhu T, et al. Stage-dependent alterations of the serum cytokine pattern in colorectal carcinoma. Br J Cancer. 2012;107:1729–36.
- TaghipourFardArdekani M, Malekzadeh M, Hosseini SV, Bordbar E, Doroudchi M, Ghaderi A. Evaluation of Pre-Treatment Serum Levels of IL-7 and GM-CSF in Colorectal Cancer Patients. Int J Mol Cell Med. 2014;3:27–34.
- Tilg H, Trehu E, Atkins MB, Dinarello CA, Mier JW. Interleukin-6 (IL-6) as an anti-inflammatory cytokine: induction of circulating IL-1 receptor antagonist and soluble tumor necrosis factor receptor p55. Blood. 1994;83:113–8.
- Ortea I, Roschitzki B, Ovalles JG, Longo JL, de la Tome I, Gonzalez I, et al. Discovery of serum proteomic biomarkers for prediction of response to infliximab (a monocional anti-TNF antibody) treatment in heumatoid arthritis: an exploratory analysis. J Proteomics. 2012;77372–82.
 Georgakis A, Kotropoulos C, Xafopoulos A, Pitas I. Marginal median SOM for
- Georgakis A, Kotropoulos C, Xafopoulos A, Pitas I. Marginal median SOM for document organization and retrieval. Neural Netw. 2004;17:365–77.
 Choi JW, Liu H, Shin DH, Yu GI, Hwang JS, Kim ES, et al. Proteomic and
- Colorin, Edit y and Edit y to de interfection progression from colorectal adenoma to carcinoma in human patients. Proteomics. 2013;13:2361–74.
 Coghlin C, Murray Gl. Progress in the identification of plasma biomarkers of
- colorectal cancer. Proteomics. 2013;13:2227–8. 36. Eilington AA, Kullo IJ, Bailey KR, Klee GG. Antibody-based protein multiplex
- platforms: technical and operational challenges. Clin Chem. 2010;56:186–93. 37. Marianelli P, Bassi Luciani L, Micera S. Electrical potential distribution within
- Maiarielini , Yoshi Colani, Study for Science at Decetibal adaption of Willing the inner ear a preliminary study for extibular prosthesis design. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:3017–20.
 Juncker D, Bergeron S, Lafotte V, Li H. Cross-reactivity in antibody microarrays
- Juncker LJ, Bergeron S, Latotte V, Li H. Cross-reactivity in antibody microarrays and multiplexed sandwich assays: shedding light on the dark side of multiplexing. Curr Opin Chem Biol. 2014;18:29–37.
 Thorsen SB, Lundberg M, Villablanca A, Christensen SL, Belling KC,
- Thorsen SB, Lundberg M, Villablanca A, Christensen SL, Belling KC, Nielsen BS, et al. Detection of serological biomarkers by proximity extension assay for detection of colorectal neoplasias in symptomatic individuals. J Transl Med. 2013;11:253
- Ward U, Primrose JN, Finan PJ, Perren TJ, Selby P, Purves DA, et al. The use of turnour markers CEA, CA-195 and CA-242 in evaluating the response to

- chemotherapy in patients with advanced colorectal cancer. Br J Cancer. 1993;67:1132–5.
- Litvka A, Cercek A, Segal N, Reidy-Lagunes D, Stadler ZK, Yaeger RD, et al. False-positive elevations of carcinoembryonic antigen in patients with a history of resected colorectal cancer. J Natl Compr Canc Netw. 2014;12:907–13.
- Ning Y, Manegold PC, Hong YK, Zhang W, Pohl A, Lurje G, et al. Interleukin-8 is associated with proliferation, migration, anglogenesis and chernosensitivity in vitro and in vivo in colon cancer cell line models. Int J Cancer. 2011;12:2038–49.
- Malicki S, Winiarski M, Matlok M, Kostarczyk W, Guzdek A, Konturek PC. IL-6 and IL-8 responses of colorectal cancer in vivo and in vitro cancer cells subjected to simvastatin. J Physiol Pharmacol. 2009;60:141–6.
- Rubie C, Frick VO, Pfeil S, Wagner M, Kollmar O, Kopp B, et al. Correlation of IL-8 with induction, progression and metastatic potential of colorectal cancer. World J Gastroenterol. 2007;13:4996–5002.
- Fernando RJ, Castillo MD, Litzinger M, Hamilton DH, Palena C. IL-8 signaling plays a critical role in the epithelial-mesenchymal transition of human carcinoma cells. Cancer Res 2011;71:5296–306
- Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res. 2008;14:6735–41.
- Terada H, Urano T, Konno H. Association of interleukin-8 and plasminogen activator system in the progression of colorectal cancer. Eur Surg Res. 2005;72:166–72.
- Ben-Jonathan N, Liby K, McFarland M, Zinger M. Prolactin as an autocrine/ paracrine growth factor in human cancer. Trends Endocrinol Metab. 2002;13:245–50.
- Bhatavdekar JM, Patel DD, Giri DD, Karelia NH, Vora HH, Ghosh N, et al. Comparison of plasma prolactin and CEA in monitoring patients with adenocaritonam of colon and recur. Br J Cancer. 1992;66977–80.
 Bhatavdekar JM, Patel DD, Chikhlikar PR, Shah NG, Vora HH, Ghosh N, et al.
- Bhatavdekar JM, Patel DD, Chikhlikar PR, Shah NG, Vora HH, Ghosh N, et al. Ectopic production of prolactin by colorectal adenocarcinoma. Dis Colon Rectum. 2001;44:119–27.
- Neradugomma NK, Subramaniam D, Tawfik OW, Goffin V, Kumar TR, Jensen RA, et al. Prolactin signaling enhances colon cancer stemness by modulating Notch signaling in a Jak2-STAT3/ERK manner. Carcinogenesis. 2014;35:795–806.
- Notch signaling in a JaK251A13/EKK manner. Carcinogenesis. 2014;35:795–806.
 Sun Q, Sun F, Wang B, Liu S, Niu W, Liu E, et al. Interleukin-8 promotes cell migration through integrin alphavbeta6 upregulation in colorectal cancer. Cancer Lett. 2014;2:161–74.
- Khan A. Detection and quantitation of forty eight cytokines, chemokines, growth factors and nine acute phase proteins in healthy human plasma, saliva and urine. J Proteomics. 2012;75:4802–19.
- Yamada M, Ichikawa Y, Yamagishi S, Momiyama N, Ota M, Fujii S, et al. Amphiregulin is a promising prognostic marker for liver metastases of colorectal cancer. Clin Cancer Res. 2008;14:251–6.
 McCarty MF, Somcio RJ, Stoeltzing O, Wey J, Fan F, Liu W, et al.
- McCarty MF, Somcio RJ, Stoeltzing O, Wey J, Fan F, Liu W, et al. Overexpression of PDGF-8B decreases colorectal and pancreatic cancer growth by increasing tumor pericyte content. J Clin Invest. 2007;117:2114–22.
- Galizia G, Orditura M, Romano C, Lieto E, Castellano P, Pelosio L, et al. Prognostic significance of circulating IL-10 and IL-6 serum levels in colon cancer patients undergoing surgery. Clin Immunol. 2002;102:169–78.
- Rupertus K, Sinistra J, Scheuer C, Nickels RM, Schilling MK, Menger MD, et al. Interaction of the chemokines IFAC (CXCL11) and SDF-1 (CXCL12) in the regulation of turnor angiogenesis of colorectal cancer. Clin Exp Metastasis. 2014;31:447–59.
- Kawamura M, Toiyama Y, Tanaka K, Saigusa S, Okugawa Y, Hiro J, et al. CKCL5, a promoter of cell proliferation, migration and invasion, is a novel serum prognostic marker in patients with colorectal cancer. Eur J Cancer. 2012;48:2244–51.
- Speetjens FM, Kuppen PJ, Sandel MH, Menon AG, Burg D, van de Velde CI, et al. Disrupted expression of CXCL5 in colorectal cancer is associated with rapid tumor formation in rats and poor prognosis in patients. Clin Cancer Res. 2008;14:2276–84.
- Dimberg J, Dierus O, Lofgren S, Hugander A, Wagsater D. Expression and gene polymorphisms of the chemokine CXCL5 in colorectal cancer patients. Int J Oncol. 2007;31:97–102.
- Baier PK, Eggstein S, Wolff-Vorbeck G, Baumgartner U, Hopt UT. Chemokines in human colorectal carcinoma. Anticancer Res. 2005;25:3581–4.
 Crittenden M, Gough M, Harrington K, Olivier K, Thompson J, Vile RG.
- Citterinden M, Gougn M, harrington N, Olivier N, Inompson J, Vile Ka. Expression of inflarmatory chemokines combined with local turnor destruction enhances tumor regression and long-term immunity. Cancer Res. 2003;63:5505–12.

Mahboob et al. Clinical Proteomics (2015) 12:10

- Turner PK, Houghton JA, Petak I, Tillman DM, Douglas L, Schwartzberg L, et al. Interferon-gamma pharmacokinetics and pharmacodynamics in patients with colorectal cancer. Cancer Chemother Pharmacol. 2004;53:253–60.
 Kang M, Edmundson P, Araujo-Perez F, McCoy AN, Galanko J, Keku TO. Association of plasma endotoxin, inflammatory cytokines and risk of colorectal adenomas. BMC Cancer. 2013;13:91.
 Neagu S, Lerescu L, Costara R, Tucureanu C, Caras I, Gangura G, et al. Salageanu A: (Perioperative immunologic changes in colorectal cancer patients). Chirurgia (Bucur). 2012;107:59–65.

Submit your next manuscript to BioMed Central and take full advantage of: • Convenient online submission • Thorough peer review • No space constraints or color figure charges • Immediate publication on acceptance • Inclusion in PubMed, CAS, Scopus and Google Scholar • Research which is freely available for redistribution Submit your manuscript at www.biomedcentral.com/submit

Page 12 of 12

5.2 – Supplemental files

Supplementary Data

Table S1: List o	r oncoprotein	s analyzed by Proseek Assay with Limit o	of Detection (L	OD) in pg/ m	ii, working range (Lowe		
Limit of Quantification, LLOQ, Upper Limit of Quantification, ULOQ)							
Olink	Gene	Target Protein Name	UniProt	LOD	Assay Working Range		
Abbreviations	Name		No	(pg/mL)	(pg/ml)		
Adrenomedullin	ADM	Adrenomedullin	P35318	227.1	976.6-250000		
Amphiregulin	AREG	Amphiregulin	P15514	1.58	15.3-15625		
TIE2	TIE2	Angiopoietin-1 receptor	Q02763	486.3	976.6-250000		
BAFF	BAFF	B-cell activating factor	Q9Y275	56	244.1-250000		
Betacellulin	BTC	Betacellulin	P35070	7.9	61.0-3906		
CA242	CA242	CA242 tumor marker		NR	NR-NR		
CAIX	CAIX	Carbonic Anhydrase IX	Q16790	9.9	61.0-15625		
CEA	CEA	Carcinoembryonic antigen	P06731	46.6	61.0-62500		
Caspase-3	CASP-3	Caspase-3	P42574	18.7	61.0-62500		
Cathepsin D	CTSD	Cathepsin D	P07339	6684.7	15625.0-1000000		
·		·					
CCL19	CCL19	C-C motif chemokine 19	Q99731	5.7	15.3-15625		
CCL21	CCL21	C-C motif chemokine 21	O00585	54.5	244.1-3906		
CCL24	CCL24	C-C motif chemokine 24	O00175	0.44	3.8-3906		
CD40 ligand	CD40-L	CD40 ligand	P29965	0.66	3.8-15625		
CXCL10	CXCL10	C-X-C motif chemokine 10	P02778	4.6	15.3-15625		
CXCL11	CXCL11	C-X-C motif chemokine 11	014625	14	61.0-15625		
CXCL13	CXCL13	C-X-C motif chemokine 13	043927	1.16	15.3-3906		
CXCL5	CXCL5	C-X-C motif chemokine 5	P42830	3	15.3-15625		
CXCL9	CXCL9	C-X-C motif chemokine 9	Q07325	4.2	61.0-62500		
Cystatin B	CPI-B	Cystatin B	P04080	207.7	976.6-250000		
CD69	CD69	Benign activation antigen CD69	Q07108	1.15	15.3-62500		
EGF	EGF	Epidermal growth factor	P01133	0.17	0.95-3906		
EGFR	EGFR	Epidermal growth factor receptor	P00533	149.6	976.6-250000		
HE4	HE4	Epididymal secretory protein E4	Q14508	18.8	61.0-62500		
Epiregulin	EPR	Epiregulin	014944	5.1	61.0-15625		

E:: 0414		E with a light and the discrete sector sector	P16422	0.44	3.8-15625
Ep-CAM	Ep-CAM	Epithelial cell adhesion molecule	P10422	0.44	3.0-15025
EPO	EPO	Erythropoietin	P01588	81.6	244.1-62500
E-selectin	CD62E	E-selectin	P16581	1250.5	3906.3-250000
Estrogen	ER	Estrogen receptor	P03372	375	3906.3-250000
receptor					
EMMPRIN	EMMPRI	Extracellular matrix metalloproteinase inducer	P35613	0.16	3.8-15625
	N				
FasL	FasL	Fas antigen ligand	P48023	2.6	15.3-15625
FABP4	FABP4	Fatty acid binding protein 4 adipocyte	P15090	635.6	976.6-250000
Flt3L	Flt3L	Fms-reMalignantd tyrosine kinase 3 ligand	P49771	0.18	0.95-3906
FR-alpha	FR-alpha	FoMalignant receptor alpha	P15328	8.7	61.0-62500
Follistatin	FS	Follistatin	P19883	31.5	244.1-250000
Galectin-3	Gal-3	Galectin-3	P17931	3584.5	15625.0-1000000
GM-CSF	GM-CSF	Granulocyte-macrophage colonystimulating	P04141	42	244.1-250000
		factor			
Growth	GH	Growth Hormone	P01241	0.34	0.95-15625

Hormone					
GDF-15	GDF-15	Growth/differentiation factor 15	Q99988	21.2	244.1-62500
HB-EGF	HB-EGF	Heparin-binding EGF-like growth factor	Q99075	0.16	3.8-3906
HGF	HGF	Hepatocyte growth factor	P14210	1.85	15.3-15625
HGF receptor	HGF	Hepatocyte growth factor receptor	P08581	20.5	61.0-62500
	receptor				
IFN-gamma	IFN-	Interferon gamma	P01579	14.2	61.0-15625
	gamma				
IL-1ra	IL-1ra	Interleukin 1 receptor antagonist protein	P18510	105.1	244.1-15625
IL-12	IL-12	Interleukin 12	P29460	0.77	3.8-3906
IL17RB	IL17RB	Interleukin 17 receptor B	Q9NRM	3.9	15.3-62500
IL-2	IL-2	Interleukin 2	P60568	55.8	244.1-250000
IL2RA	IL2RA	Interleukin 2 receptor subunit alpha	P01589	0.19	0.95-3906
IL-4	IL-4	Interleukin 4	P05112	0.63	3.8-15625
IL-6	IL-6	Interleukin 6	P05231	0.06	0.24-15625
IL6RA	IL6RA	Interleukin 6 receptor subunit alpha	P08887	121.2	976.6-250000

CA-125	CA-125	Ovarian cancer-reMalignantd tumor marker 125	Q8WXI7	NR	NR-NR
Osteoprotegerin	OPG	Osteoprotegerin	O00300	0.14	0.24-15625
MPO	MPO	Myeloperoxidase	P05164	137.8	976.6-250000
		MyD88			
MYD88	MYD88	Myeloid differentiation primary response protein	Q99836	69.7	244.1-250000
MCP-1	MCP-1	Monocyte chemotactic protein-1	P13500	0.11	0.95-3906
Midkine	MK	Midkine	P21741	232.9	976.6-62500
		sequence A			
MIC-A	MIC-A	MHC class I polypeptide-reMalignantd	Q29983	17.1	61.0-3906
'MIA	MIA	Melanoma-derived growth regulatory protein	Q16674	97.4	244.1-62500
MMP-3	MMP-3	Matrix metalloproteinase-3	P08254	NR	NR-NR
CSF-1	CSF-1	Macrophage colony-stimulating factor 1	P09603	0.09	0.95-15625
Kallikrein-6	KLK6	Kallikrein-6	Q92876	11	61.0-62500
Kallikrein-11	hK11	Kallikrein-11	Q9UBX7	145	244.1-15625
IL-8	IL-8	Interleukin 8	P10145	0.06	0.24-3906
IL-7	IL-7	Interleukin 7	P13232	1.09	3.8-15625

PIGF	PIGF	Placenta Growth Factor	P49763	0.2	0.95-15625
PECAM-1		PMalignantlet endothelial cell adhesion	P16284	463.4	976.6-250000
		molecule			
PDGF subunit B	PDGF	PMalignantlet-derived growth factor subunit B	P01127	92.7	244.1-250000
	subunit B				
Prolactin	PRL	Prolactin	P01236	1925.4	3906.3-1000000
Prostasin	PRSS8	Prostasin	Q16651	9.5	15.3-15625
PSA	PSA	Prostate-specific antigen	P07288	48.6	244.1-62500
ErbB2/Her2	ErbB2/He	Receptor tyrosine-protein kinase ErbB-2	P04626	86.1	244.1-62500
	r2				
ErbB3/Her3	ErbB3/He	Receptor tyrosine-protein kinase ErbB-3	P21860	16.8	61.0-62500
	r3				
ErbB4/Her4	ErbB4/He	Receptor tyrosine-protein kinase ErbB-4	Q15303	11.1	61.0-62500
	r4				
REG-4	REG-4	Regenerating islet-derived protein 4	Q9BYZ8	259.9	3906.3-1000000
Stem cell factor	SCF	Stem cell factor	P21583	6.2	61.0-62500

TR-AP	TR-AP	Tartrate-resistant acid phosphatase type 5	P13686	58.8	244.1-250000
Thrombopoietin	ТНРО	Thrombopoietin	P40225	146.6	244.1-62500
Tissue Factor	TF	Tissue Factor	P13726	0.81	3.8-15625
TGF-alpha	TGF-	Transforming growth factor alpha	P01135	0.8	3.8-15625
	alpha				
LAP TGF-beta-1	LAP	Transforming growth factor beta 1	P01137	56.1	244.1-250000
	TGF-				
	beta-1				
TNF	TNF	Tumor necrosis factor alpha	P01375	77.4	244.1-250000
TNFSF14	TNFSF14	Tumor necrosis factor ligand superfamily	O43557	4.5	15.3-15625
		member 14			
CD30-L	CD30-L	Tumor necrosis factor ligand superfamily	P32971	9.7	61.0-15625
		member 8			
TNF-RI	TNF-RI	Tumor necrosis factor receptor 1	P19438	0.88	3.8-15625
TNF-R2	TNF-R2	Tumor necrosis factor receptor 2	P20333	247.4	976.6-250000
TNFRSF4	TNFRSF4	Tumor necrosis factor receptor superfamily	P43489	4.7	15.3-15625

		member 4			
FAS	FAS	Tumor necrosis factor receptor superfamily	P25445	12.5	244.1-250000
		member 6			
U-PAR	U-PAR	Urokinase plasminogen activator surface	Q03405	0.81	3.8-15625
		receptor			
VEGF-A	VEGF-A	Vascular endothelial growth factor A	P15692	0.32	0.95-15625
VEGF-D	VEGF-D	Vascular endothelial growth factor D	O43915	22.7	61.0-62500
VEGFR-2	VEGFR-2	Vascular endothelial growth factor receptor 2	P35968	12.2	61.0-62500

Tab	ole S2: List o	f cytokines analyzed by Bio-plex Assay w	ith Limit of Detec	tion (LOD) in pg/ ml, Lower Limit of
Quantifica	ation (LLOQ) and Upper Limit of Quantification (ULOG) (Proteins in bol	d letters i	ndicate common target proteins
		between two	olatforms)		
Cytokine	Gene	Target Protein Name	UNIPROT ID	LOD	Assay Working range (pg/ml)
	name				
Eotaxin	CCL11	C-C motif chemokine 11	P51671	2.5	40.9-5,824
FGF	FGF2	Fibroblast growth factor 2	P09038	1.9	27.2-7,581
basic					
G-CSF	CSF3	Granulocyte colony-stimulating factor	P09919	1.7	2.4-11,565
GM-CSF	CSF2	Granulocyte-macrophage colony-	P04141	2.2	63.3-6,039
		stimulating factor			
IFN-	IFNG	Interferon gamma	P01579	6.4	92.6-52,719
gamma					
IL-1 beta	IL1B	Interleukin-1 beta	P01584	0.6	3.2-3,261

IL-1ra	IL1RN	Interleukin 1 receptor antagonist protein	P18510	5.5	81.1-70,487
IL-2	IL2	Interleukin 2	P60568	1.6	2.1-17,772
IL-4	IL4	Interleukin 4	P05112	0.7	2.2-3,467
IL-5	IL5	Interleukin-5	P05113	0.6	3.1-7,380
IL-6	IL6	Interleukin 6	P05231	2.6	2.3-18,880
IL-7	IL7	Interleukin 7	P13232	1.1	3.1-6,001
IL-8	IL8	Interleukin 8	P10145	1	1.9-26,403
IL-9	IL9	Interleukin-9	P15248	2.5	2.1-7,989
IL-10	IL10	Interleukin-10	P22301	0.3	2.2-8,840
IL12	IL12	Interleukin-12	P29460	3.5	3.3-13,099
(p70)					
IL-13	IL13	Interleukin-13	P35225	0.7	3.7-3,137
IL-15	IL15	Interleukin-15	P40933	2.4	2.1-2,799
IL-17	IL17A	Interleukin-17A	Q16552	3.3	4.9-12,235
IP-10	CXCL10	C-X-C motif chemokine 10	P02778	6.1	18.8-26,867
MCP-1	CCL2	Monocyte chemotactic protein-1/ C-C	P13500	1.1	2.1-1,820

		motif chemokine 2			
MIP-1	CCL3	Macrophage inflammatory protein 1-alpha/ C-	P10147	1.6	1.4-836
alpha		C motif chemokine 3			
MIP-1	CCL4	Macrophage inflammatory protein 1-beta/ C-	P13236	2.4	2-1,726
beta		C motif chemokine 4			
PDGF-	PDGFB	PMalignantlet-derived growth factor	P01127	2.9	7-51,933
вв		subunit B			
RANTES	CCL5	C-C motif chemokine 5	P13501	1.8	2.2-8,617
TNF-	TNF	Tumor necrosis factor alpha	P01375	6	5.8-95,484
alpha					
VEGF	VEGFA	Vascular endothelial growth factor A	P15692	3.1	5.5-56,237

Table S3: Q- values calculated for stage specific protein expressions									
analyzed by PEA technology									
Candidate	Comparison	Difference	Lower CI	Upper CI	Q-value				
Biomarker									
Adrenomedullin	A/E	-0.37343	-1.66099	0.914138	1				
Adrenomedullin	B/E	0.042987	-1.24458	1.330551	1				
Adrenomedullin	C/E	-0.22955	-1.51712	1.058009	1				
Adrenomedullin	D/E	-0.17962	-1.46718	1.107945	1				
Adrenomedullin	B/A	0.416413	-0.87115	1.703976	1				
Adrenomedullin	C/A	0.143871	-1.14369	1.431434	1				
Adrenomedullin	D/A	0.193806	-1.09376	1.48137	1				
Adrenomedullin	C/B	-0.27254	-1.56011	1.015022	1				
Adrenomedullin	D/B	-0.22261	-1.51017	1.064957	1				
Adrenomedullin	D/C	0.049936	-1.23763	1.337499	1				
Amphiregulin	A/E	-0.22732	-1.51489	1.06024	1				
Amphiregulin	B/E	0.340724	-0.94684	1.628288	1				
Amphiregulin	C/E	-0.20858	-1.49614	1.078988	1				
Amphiregulin	D/E	1.5605	0.272936	2.848063	0.000236				
Amphiregulin	B/A	0.568048	-0.71952	1.855611	1				
Amphiregulin	C/A	0.018748	-1.26882	1.306311	1				
Amphiregulin	D/A	1.787823	0.50026	3.075387	8.95E-07				
Amphiregulin	C/B	-0.5493	-1.83686	0.738263	1				
Amphiregulin	D/B	1.219775	-0.06779	2.507339	0.138034				
Amphiregulin	D/C	1.769075	0.481512	3.056639	1.46E-06				

BAFF	A/E	-0.42231	-1.70988	0.86525	1
BAFF	B/E	-0.22192	-1.50948	1.065645	1
BAFF	C/E	-0.50774	-1.7953	0.779828	1
BAFF	D/E	0.044072	-1.24349	1.331635	1
BAFF	B/A	0.200395	-1.08717	1.487958	1
BAFF	C/A	-0.08542	-1.37299	1.202141	1
BAFF	D/A	0.466385	-0.82118	1.753948	1
BAFF	C/B	-0.28582	-1.57338	1.001746	1
BAFF	D/B	0.26599	-1.02157	1.553553	1
BAFF	D/C	0.551807	-0.73576	1.83937	1
Betacellulin	A/E	0.017737	-1.26983	1.305301	1
Betacellulin	B/E	0.062329	-1.22523	1.349893	1
Betacellulin	C/E	-4.22E-15	-1.28756	1.287563	1
Betacellulin	D/E	-1.53E-14	-1.28756	1.287563	1
Betacellulin	B/A	0.044592	-1.24297	1.332156	1
Betacellulin	C/A	-0.01774	-1.3053	1.269826	1
Betacellulin	D/A	-0.01774	-1.3053	1.269826	1
Betacellulin	C/B	-0.06233	-1.34989	1.225234	1
Betacellulin	D/B	-0.06233	-1.34989	1.225234	1
Betacellulin	D/C	-1.11E-14	-1.28756	1.287563	1
CA.125	A/E	-0.32782	-1.61538	0.959745	1
CA.125	B/E	-0.33964	-1.62721	0.947919	1
CA.125	C/E	-0.30166	-1.58922	0.985908	1
CA.125	D/E	-0.00804	-1.29561	1.279521	1
L		1	1	1	

CA.125	B/A	-0.01183	-1.29939	1.275738	1
CA.125	C/A	0.026163	-1.2614	1.313727	1
CA.125	D/A	0.319777	-0.96779	1.60734	1
CA.125	C/B	0.037989	-1.24957	1.325552	1
CA.125	D/B	0.331602	-0.95596	1.619166	1
CA.125	D/C	0.293613	-0.99395	1.581177	1
CA242	A/E	0.180915	-1.10665	1.468478	1
CA242	B/E	0.048157	-1.23941	1.335721	1
CA242	C/E	0.148181	-1.13938	1.435744	1
CA242	D/E	0.557591	-0.72997	1.845154	1
CA242	B/A	-0.13276	-1.42032	1.154806	1
CA242	C/A	-0.03273	-1.3203	1.254829	1
CA242	D/A	0.376676	-0.91089	1.664239	1
CA242	C/B	0.100024	-1.18754	1.387587	1
CA242	D/B	0.509434	-0.77813	1.796997	1
CA242	D/C	0.40941	-0.87815	1.696973	1
CAIX	A/E	0.065766	-1.2218	1.35333	1
CAIX	B/E	0.182975	-1.10459	1.470539	1
CAIX	C/E	-0.01831	-1.30587	1.269255	1
CAIX	D/E	0.884121	-0.40344	2.171685	0.998262
CAIX	B/A	0.117209	-1.17035	1.404772	1
CAIX	C/A	-0.08408	-1.37164	1.203488	1
CAIX	D/A	0.818355	-0.46921	2.105919	0.999979
CAIX	C/B	-0.20128	-1.48885	1.08628	1
		1	1	1	

CAIX	D/B	0.701146	-0.58642	1.98871	1
CAIX	D/C	0.90243	-0.38513	2.189994	0.995655
Caspase.3	A/E	-0.30713	-1.59469	0.980435	1
Caspase.3	B/E	0.333613	-0.95395	1.621176	1
Caspase.3	C/E	0.114641	-1.17292	1.402205	1
Caspase.3	D/E	0.670484	-0.61708	1.958048	1
Caspase.3	B/A	0.640741	-0.64682	1.928305	1
Caspase.3	C/A	0.42177	-0.86579	1.709333	1
Caspase.3	D/A	0.977613	-0.30995	2.265176	0.935363
Caspase.3	C/B	-0.21897	-1.50653	1.068592	1
Caspase.3	D/B	0.336872	-0.95069	1.624435	1
Caspase.3	D/C	0.555843	-0.73172	1.843406	1
Cathepsin.D	A/E	-0.50432	-1.79188	0.783243	1
Cathepsin.D	B/E	-0.10476	-1.39232	1.182807	1
Cathepsin.D	C/E	-0.364	-1.65157	0.923561	1
Cathepsin.D	D/E	-0.24864	-1.5362	1.038927	1
Cathepsin.D	B/A	0.399564	-0.888	1.687128	1
Cathepsin.D	C/A	0.140318	-1.14725	1.427881	1
Cathepsin.D	D/A	0.255684	-1.03188	1.543247	1
Cathepsin.D	C/B	-0.25925	-1.54681	1.028317	1
Cathepsin.D	D/B	-0.14388	-1.43144	1.143683	1
Cathepsin.D	D/C	0.115366	-1.1722	1.40293	1
CCL19	A/E	-0.67464	-1.96221	0.61292	1
CCL19	B/E	-0.51097	-1.79853	0.776596	1

CCL19	C/E	-0.57792	-1.86549	0.70964	1
CCL19	D/E	-0.27511	-1.56267	1.012454	1
CCL19	B/A	0.163676	-1.12389	1.451239	1
CCL19	C/A	0.09672	-1.19084	1.384284	1
CCL19	D/A	0.399534	-0.88803	1.687097	1
CCL19	C/B	-0.06696	-1.35452	1.220608	1
CCL19	D/B	0.235858	-1.05171	1.523422	1
CCL19	D/C	0.302814	-0.98475	1.590377	1
CCL21	A/E	-0.15568	-1.44324	1.131884	1
CCL21	B/E	0.141274	-1.14629	1.428837	1
CCL21	C/E	-0.18085	-1.46841	1.106717	1
CCL21	D/E	0.003103	-1.28446	1.290666	1
CCL21	B/A	0.296953	-0.99061	1.584517	1
CCL21	C/A	-0.02517	-1.31273	1.262396	1
CCL21	D/A	0.158782	-1.12878	1.446346	1
CCL21	C/B	-0.32212	-1.60968	0.965443	1
CCL21	D/B	-0.13817	-1.42573	1.149392	1
CCL21	D/C	0.18395	-1.10361	1.471513	1
CCL24	A/E	-0.37707	-1.66464	0.91049	1
CCL24	B/E	-0.52457	-1.81213	0.762996	1
CCL24	C/E	-0.59621	-1.88377	0.691356	1
CCL24	D/E	-0.50964	-1.7972	0.777928	1
CCL24	B/A	-0.14749	-1.43506	1.140069	1
CCL24	C/A	-0.21913	-1.5067	1.068429	1

CCL24	D/A	-0.13256	-1.42013	1.155002	1
CCL24	C/B	-0.07164	-1.3592	1.215923	1
CCL24	D/B	0.014932	-1.27263	1.302496	1
CCL24	D/C	0.086572	-1.20099	1.374136	1
CD30.L	A/E	0.208145	-1.07942	1.495708	1
CD30.L	B/E	0.328648	-0.95892	1.616212	1
CD30.L	C/E	0.256961	-1.0306	1.544525	1
CD30.L	D/E	0.315992	-0.97157	1.603555	1
CD30.L	B/A	0.120503	-1.16706	1.408067	1
CD30.L	C/A	0.048816	-1.23875	1.33638	1
CD30.L	D/A	0.107847	-1.17972	1.39541	1
CD30.L	C/B	-0.07169	-1.35925	1.215877	1
CD30.L	D/B	-0.01266	-1.30022	1.274907	1
CD30.L	D/C	0.05903	-1.22853	1.346594	1
CD40.ligand	A/E	-0.51146	-1.79903	0.776101	1
CD40.ligand	B/E	-0.22448	-1.51204	1.063083	1
CD40.ligand	C/E	-0.44517	-1.73273	0.842397	1
CD40.ligand	D/E	0.327277	-0.96029	1.614841	1
CD40.ligand	B/A	0.286982	-1.00058	1.574545	1
CD40.ligand	C/A	0.066296	-1.22127	1.353859	1
CD40.ligand	D/A	0.838739	-0.44882	2.126303	0.999898
CD40.ligand	C/B	-0.22069	-1.50825	1.066877	1
CD40.ligand	D/B	0.551757	-0.73581	1.839321	1
CD40.ligand	D/C	0.772443	-0.51512	2.060007	1
L					

CD60 N/L 0.5000 1.5000 1.10000 1 CD69 B/E 0.550041 -0.73752 1.837604 1 CD69 C/E 0.281364 -1.0062 1.568927 1 CD69 D/E 0.574976 -0.71259 1.86254 1 CD69 D/E 0.638723 -0.64884 1.926286 1 CD69 C/A 0.370046 -0.91752 1.657609 1 CD69 C/A 0.663658 -0.62391 1.951222 1 CD69 D/A 0.663658 -0.62391 1.951222 1 CD69 D/A 0.663658 -0.62391 1.951222 1 CD69 D/A 0.663658 -0.62331 1.312499 1 CD69 D/C 0.293613 -0.93935 1.581176 1 CEA A/E -0.07688 -1.36444 1.210688 1 CEA D/E 2.899803 1.612239 4.187366 1.7	CD69	A/E	-0.08868	-1.37625	1.198881	1
CD69 C/E 0.281364 -1.0062 1.568927 1 CD69 D/E 0.574976 -0.71259 1.86254 1 CD69 B/A 0.638723 -0.64884 1.926286 1 CD69 C/A 0.370046 -0.91752 1.657609 1 CD69 C/A 0.370046 -0.23311 1.951222 1 CD69 D/A 0.663658 -0.62391 1.951222 1 CD69 C/B -0.26868 -1.55624 1.018886 1 CD69 D/B 0.024935 -1.26263 1.312499 1 CD69 D/C 0.293613 -0.99395 1.581176 1 CEA A/E -0.07688 -1.36444 1.210688 1 CEA D/E 2.899803 1.612239 4.187366 1.70E-12 CEA D/E 2.899803 1.612239 4.187366 1.70E-12 CEA D/A 0.976678 1.689114 4.264241 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
CD69 D/E 0.574976 -0.71259 1.86254 1 CD69 B/A 0.638723 -0.64884 1.926286 1 CD69 C/A 0.370046 -0.91752 1.657609 1 CD69 D/A 0.663658 -0.62391 1.951222 1 CD69 D/A 0.663658 -1.55624 1.018886 1 CD69 D/B 0.024935 -1.26263 1.312499 1 CD69 D/B 0.024935 -1.36444 1.210688 1 CD69 D/C 0.293613 -0.99395 1.581176 1 CEA A/E -0.07688 -1.36444 1.210688 1 CEA B/E 0.357538 -0.93003 1.645101 1 CEA D/E 2.899803 1.612239 4.187366 1.70E-12 CEA D/A 2.976678 1.689114 4.264241 0 CEA D/A 2.976678 1.689114 4.264241	CD69	B/E	0.550041	-0.73752	1.837604	1
CD69B/A0.638723-0.648841.9262861CD69C/A0.370046-0.917521.6576091CD69D/A0.663658-0.623911.9512221CD69C/B-0.26868-1.556241.0188861CD69D/B0.024935-1.262631.3124991CD69D/C0.293613-0.993951.5811761CD69D/C0.293613-0.993951.5811761CEAA/E-0.07688-1.364441.2106881CEAB/E0.357538-0.930031.6451011CEAD/E2.8998031.6122394.1873661.70E-12CEAD/E2.8998031.6122394.1873661.70E-12CEAD/A2.9766781.6891144.2642410CEAD/A2.9766781.6891144.2642410CEAD/B2.5422651.2547013.8298284.13E-12CEAD/B2.5422651.2547013.8298284.13E-12CEAD/C1.5823060.2947432.8698690.000143CSF.1A/E-0.19372-1.481291.093841CSF.1C/E-0.35253-1.64010.9350291	CD69	C/E	0.281364	-1.0062	1.568927	1
CD69C/A0.370046-0.917521.6576091CD69D/A0.663658-0.623911.9512221CD69C/B-0.26868-1.556241.0188861CD69D/B0.024935-1.262631.3124991CD69D/C0.293613-0.993951.5811761CD69D/C0.293613-0.993951.5811761CEAA/E-0.07688-1.364441.2106881CEAB/E0.357538-0.930031.6451011CEAD/E2.8998031.6122394.1873661.70E-12CEAD/E2.8998031.6122394.1873661.70E-12CEAD/A0.434413-0.853151.7219761CEAD/A2.9766781.6891144.2642410CEAD/A2.9766781.6891144.2642410CEAD/A2.9766781.2547013.8298284.13E-12CEAD/B2.5422651.2547013.8298284.13E-12CEAD/C1.5823060.2947432.8698690.000143CSF.1A/E-0.19372-1.481291.093841CSF.1B/E-0.01191-1.294771.2756571CSF.1C/E-0.35253-1.64010.9350291	CD69	D/E	0.574976	-0.71259	1.86254	1
CD69 D/A 0.663658 -0.62391 1.951222 1 CD69 C/B -0.26868 -1.55624 1.018886 1 CD69 D/B 0.024935 -1.26263 1.312499 1 CD69 D/C 0.293613 -0.99395 1.581176 1 CEA A/E -0.07688 -1.36444 1.210688 1 CEA B/E 0.357538 -0.93003 1.645101 1 CEA B/E 0.357538 -0.93003 1.645101 1 CEA D/E 2.899803 1.612239 4.187366 1.70E-12 CEA D/E 2.899803 1.612239 4.187366 1.70E-12 CEA D/A 0.434413 -0.85315 1.721976 1 CEA D/A 2.976678 1.689114 4.264241 0 CEA D/A 2.976678 1.689114 4.264241 0 CEA D/B 2.542265 1.254701 3.829828	CD69	B/A	0.638723	-0.64884	1.926286	1
CD69 C/B -0.26868 -1.55624 1.018886 1 CD69 D/B 0.024935 -1.26263 1.312499 1 CD69 D/C 0.293613 -0.99395 1.581176 1 CEA A/E -0.07688 -1.36444 1.210688 1 CEA B/E 0.357538 -0.93003 1.645101 1 CEA B/E 0.357538 -0.93003 1.645101 1 CEA D/E 2.899803 1.612239 4.187366 1.70E-12 CEA D/E 2.899803 1.612239 4.187366 1.70E-12 CEA D/A 0.434413 -0.85315 1.721976 1 CEA D/A 2.976678 1.689114 4.264241 0 CEA D/A 2.976678 1.689114 4.264241 0 CEA D/A 2.976678 1.689114 4.264241 0 CEA D/B 2.542265 1.254701 3.829828	CD69	C/A	0.370046	-0.91752	1.657609	1
CD69D/B0.024935-1.262631.3124991CD69D/C0.293613-0.993951.5811761CEAA/E-0.07688-1.364441.2106881CEAB/E0.357538-0.930031.6451011CEAC/E1.3174970.0299332.605060.030429CEAD/E2.8998031.6122394.1873661.70E-12CEAD/E2.8998031.6122394.1873661.70E-12CEAD/E2.8998031.6122394.1873661.70E-12CEAD/E2.8998031.6122394.1873661.70E-12CEAD/E2.8998031.6122394.1873661.70E-12CEAD/E2.8998031.6122394.1873661.70E-12CEAD/E2.8998031.6122394.1873661.70E-12CEAD/A2.9766781.6891144.2642410CEAD/A2.9766781.6891144.2642410CEAD/B2.5422651.2547013.8298284.13E-12CEAD/B2.5422651.2547013.8298284.13E-12CEAD/C1.5823060.2947432.8698690.000143CSF.1A/E-0.19372-1.481291.093841CSF.1C/E-0.35253-1.64010.9350291	CD69	D/A	0.663658	-0.62391	1.951222	1
CD69D/C0.293613-0.993951.5811761CEAA/E-0.07688-1.364441.2106881CEAB/E0.357538-0.930031.6451011CEAC/E1.3174970.0299332.605060.030429CEAD/E2.8998031.6122394.1873661.70E-12CEAD/E2.8998031.6122394.1873661.70E-12CEAB/A0.434413-0.853151.7219761CEAC/A1.3943720.1068082.6819350.007576CEAD/A2.9766781.6891144.2642410CEAD/A2.9766781.6891144.2642410CEAD/A2.9766781.2547013.8298284.13E-12CEAD/B2.5422651.2547013.8298284.13E-12CEAD/C1.5823060.2947432.8698690.000143CSF.1A/E-0.19372-1.481291.093841CSF.1C/E-0.35253-1.64010.9350291	CD69	C/B	-0.26868	-1.55624	1.018886	1
CEAA/E-0.07688-1.364441.2106881CEAB/E0.357538-0.930031.6451011CEAC/E1.3174970.0299332.605060.030429CEAD/E2.8998031.6122394.1873661.70E-12CEAB/A0.434413-0.853151.7219761CEAC/A1.3943720.1068082.6819350.007576CEAD/A2.9766781.6891144.2642410CEAD/A2.9766781.2547013.8298284.13E-12CEAD/B2.5422651.2547013.8298284.13E-12CEAD/C1.5823060.2947432.8698690.000143CSF.1A/E-0.19372-1.481291.093841CSF.1C/E-0.35253-1.64010.9350291	CD69	D/B	0.024935	-1.26263	1.312499	1
CEAB/E0.357538-0.930031.6451011CEAC/E1.3174970.0299332.605060.030429CEAD/E2.8998031.6122394.1873661.70E-12CEAB/A0.434413-0.853151.7219761CEAC/A1.3943720.1068082.6819350.007576CEAD/A2.9766781.6891144.2642410CEAD/A2.9766781.6891144.2642410CEAD/A2.9766781.2547013.8298284.13E-12CEAD/B2.5422651.2547013.8298284.13E-12CEAD/C1.5823060.2947432.8698690.000143CSF.1A/E-0.19372-1.481291.093841CSF.1B/E-0.01191-1.299471.2756571CSF.1C/E-0.35253-1.64010.9350291	CD69	D/C	0.293613	-0.99395	1.581176	1
CEAC/E1.3174970.0299332.605060.030429CEAD/E2.8998031.6122394.1873661.70E-12CEAB/A0.434413-0.853151.7219761CEAC/A1.3943720.1068082.6819350.007576CEAD/A2.9766781.6891144.2642410CEAD/A2.9766781.6891144.2642410CEAD/A2.9766781.2547013.8298284.13E-12CEAD/B2.5422651.2547013.8298284.13E-12CEAD/C1.5823060.2947432.8698690.000143CSF.1A/E-0.19372-1.481291.093841CSF.1B/E-0.01191-1.299471.2756571CSF.1C/E-0.35253-1.64010.9350291	CEA	A/E	-0.07688	-1.36444	1.210688	1
CEAD/E2.8998031.6122394.1873661.70E-12CEAB/A0.434413-0.853151.7219761CEAC/A1.3943720.1068082.6819350.007576CEAD/A2.9766781.6891144.2642410CEAD/A2.9766781.6891144.2642410CEAC/B0.959959-0.32762.2475220.960883CEAD/B2.5422651.2547013.8298284.13E-12CEAD/C1.5823060.2947432.8698690.000143CSF.1A/E-0.19372-1.481291.093841CSF.1C/E-0.35253-1.64010.9350291	CEA	B/E	0.357538	-0.93003	1.645101	1
CEAB/A0.434413-0.853151.7219761CEAC/A1.3943720.1068082.6819350.007576CEAD/A2.9766781.6891144.2642410CEAC/B0.959959-0.32762.2475220.960883CEAD/B2.5422651.2547013.8298284.13E-12CEAD/C1.5823060.2947432.8698690.000143CSF.1A/E-0.19372-1.481291.093841CSF.1B/E-0.01191-1.299471.2756571CSF.1C/E-0.35253-1.64010.9350291	CEA	C/E	1.317497	0.029933	2.60506	0.030429
CEAC/A1.3943720.1068082.6819350.007576CEAD/A2.9766781.6891144.2642410CEAC/B0.959959-0.32762.2475220.960883CEAD/B2.5422651.2547013.8298284.13E-12CEAD/C1.5823060.2947432.8698690.000143CSF.1A/E-0.19372-1.481291.093841CSF.1B/E-0.01191-1.299471.2756571CSF.1C/E-0.35253-1.64010.9350291	CEA	D/E	2.899803	1.612239	4.187366	1.70E-12
CEAD/A2.9766781.6891144.2642410CEAC/B0.959959-0.32762.2475220.960883CEAD/B2.5422651.2547013.8298284.13E-12CEAD/C1.5823060.2947432.8698690.000143CSF.1A/E-0.19372-1.481291.093841CSF.1B/E-0.01191-1.299471.2756571CSF.1C/E-0.35253-1.64010.9350291	CEA	B/A	0.434413	-0.85315	1.721976	1
CEAC/B0.959959-0.32762.2475220.960883CEAD/B2.5422651.2547013.8298284.13E-12CEAD/C1.5823060.2947432.8698690.000143CSF.1A/E-0.19372-1.481291.093841CSF.1B/E-0.01191-1.299471.2756571CSF.1C/E-0.35253-1.64010.9350291	CEA	C/A	1.394372	0.106808	2.681935	0.007576
CEA D/B 2.542265 1.254701 3.829828 4.13E-12 CEA D/C 1.582306 0.294743 2.869869 0.000143 CSF.1 A/E -0.19372 -1.48129 1.09384 1 CSF.1 B/E -0.01191 -1.29947 1.275657 1 CSF.1 C/E -0.35253 -1.6401 0.935029 1	CEA	D/A	2.976678	1.689114	4.264241	0
CEA D/C 1.582306 0.294743 2.869869 0.000143 CSF.1 A/E -0.19372 -1.48129 1.09384 1 CSF.1 B/E -0.01191 -1.29947 1.275657 1 CSF.1 C/E -0.35253 -1.6401 0.935029 1	CEA	C/B	0.959959	-0.3276	2.247522	0.960883
CSF.1 A/E -0.19372 -1.48129 1.09384 1 CSF.1 B/E -0.01191 -1.29947 1.275657 1 CSF.1 C/E -0.35253 -1.6401 0.935029 1	CEA	D/B	2.542265	1.254701	3.829828	4.13E-12
CSF.1 B/E -0.01191 -1.29947 1.275657 1 CSF.1 C/E -0.35253 -1.6401 0.935029 1	CEA	D/C	1.582306	0.294743	2.869869	0.000143
CSF.1 C/E -0.35253 -1.6401 0.935029 1	CSF.1	A/E	-0.19372	-1.48129	1.09384	1
	CSF.1	B/E	-0.01191	-1.29947	1.275657	1
CSF.1 D/E -0.03133 -1.3189 1.256229 1	CSF.1	C/E	-0.35253	-1.6401	0.935029	1
	CSF.1	D/E	-0.03133	-1.3189	1.256229	1

CSF.1	B/A	0.181817	-1.10575	1.469381	1
CSF.1	C/A	-0.15881	-1.44638	1.128752	1
CSF.1	D/A	0.162389	-1.12517	1.449952	1
CSF.1	C/B	-0.34063	-1.62819	0.946935	1
CSF.1	D/B	-0.01943	-1.30699	1.268135	1
CSF.1	D/C	0.3212	-0.96636	1.608764	1
CXCL10	A/E	-0.68081	-1.96837	0.606753	1
CXCL10	B/E	-0.47845	-1.76602	0.809112	1
CXCL10	C/E	-0.7874	-2.07496	0.500167	0.9999999
CXCL10	D/E	0.029593	-1.25797	1.317156	1
CXCL10	B/A	0.202359	-1.0852	1.489922	1
CXCL10	C/A	-0.10659	-1.39415	1.180978	1
CXCL10	D/A	0.710403	-0.57716	1.997967	1
CXCL10	C/B	-0.30894	-1.59651	0.978619	1
CXCL10	D/B	0.508045	-0.77952	1.795608	1
CXCL10	D/C	0.816989	-0.47057	2.104552	0.999981
CXCL11	A/E	-0.48886	-1.77642	0.798705	1
CXCL11	B/E	0.259621	-1.02794	1.547184	1
CXCL11	C/E	-0.54156	-1.82912	0.746005	1
CXCL11	D/E	0.814415	-0.47315	2.101979	0.999985
CXCL11	B/A	0.748479	-0.53908	2.036043	1
CXCL11	C/A	-0.0527	-1.34026	1.234863	1
CXCL11	D/A	1.303274	0.01571	2.590837	0.038658
CXCL11	C/B	-0.80118	-2.08874	0.486384	0.999995
·		•	•		

CXCL11	D/B	0.554794	-0.73277	1.842358	1
CXCL11	D/C	1.355974	0.06841	2.643537	0.015472
CXCL13	A/E	-0.62111	-1.90868	0.666451	1
CXCL13	B/E	-0.32926	-1.61682	0.958302	1
CXCL13	C/E	-0.06465	-1.35222	1.222911	1
CXCL13	D/E	0.179172	-1.10839	1.466735	1
CXCL13	B/A	0.291851	-0.99571	1.579415	1
CXCL13	C/A	0.556459	-0.7311	1.844023	1
CXCL13	D/A	0.800284	-0.48728	2.087847	0.999996
CXCL13	C/B	0.264608	-1.02296	1.552172	1
CXCL13	D/B	0.508433	-0.77913	1.795996	1
CXCL13	D/C	0.243825	-1.04374	1.531388	1
CXCL5	A/E	-0.92751	-2.21508	0.360049	0.987274
CXCL5	B/E	-0.13596	-1.42352	1.151606	1
CXCL5	C/E	-0.17444	-1.462	1.113127	1
CXCL5	D/E	0.370127	-0.91744	1.657691	1
CXCL5	B/A	0.791557	-0.49601	2.07912	0.999998
CXCL5	C/A	0.753078	-0.53449	2.040641	1
CXCL5	D/A	1.297642	0.010078	2.585205	0.04243
CXCL5	C/B	-0.03848	-1.32604	1.249084	1
CXCL5	D/B	0.506085	-0.78148	1.793649	1
CXCL5	D/C	0.544564	-0.743	1.832128	1
CXCL9	A/E	-0.31503	-1.60259	0.972536	1
CXCL9	B/E	0.305379	-0.98218	1.592943	1
		·			

CXCL9	C/E	-0.26451	-1.55207	1.023054	1
CXCL9	D/E	0.62695	-0.66061	1.914514	1
CXCL9	B/A	0.620407	-0.66716	1.90797	1
CXCL9	C/A	0.050518	-1.23705	1.338082	1
CXCL9	D/A	0.941978	-0.34559	2.229542	0.978272
CXCL9	C/B	-0.56989	-1.85745	0.717675	1
CXCL9	D/B	0.321571	-0.96599	1.609135	1
CXCL9	D/C	0.89146	-0.3961	2.179023	0.997454
Cystatin.B	A/E	-0.39287	-1.68043	0.894697	1
Cystatin.B	B/E	0.074363	-1.2132	1.361927	1
Cystatin.B	C/E	-0.21858	-1.50615	1.06898	1
Cystatin.B	D/E	-0.04773	-1.33529	1.239836	1
Cystatin.B	B/A	0.46723	-0.82033	1.754793	1
Cystatin.B	C/A	0.174283	-1.11328	1.461847	1
Cystatin.B	D/A	0.34514	-0.94242	1.632703	1
Cystatin.B	C/B	-0.29295	-1.58051	0.994617	1
Cystatin.B	D/B	-0.12209	-1.40965	1.165473	1
Cystatin.B	D/C	0.170856	-1.11671	1.45842	1
E.selectin	A/E	-0.00044	-1.288	1.287128	1
E.selectin	B/E	-0.00074	-1.28831	1.28682	1
E.selectin	C/E	-0.29272	-1.58028	0.994846	1
E.selectin	D/E	0.432712	-0.85485	1.720276	1
E.selectin	B/A	-0.00031	-1.28787	1.287256	1
E.selectin	C/A	-0.29228	-1.57984	0.995282	1
		•	-	•	

E.selectin	D/A	0.433148	-0.85442	1.720712	1
E.selectin	C/B	-0.29197	-1.57954	0.99559	1
E.selectin	D/B	0.433456	-0.85411	1.721019	1
E.selectin	D/C	0.725429	-0.56213	2.012993	1
EGF	A/E	-0.54822	-1.83578	0.739342	1
EGF	B/E	0.081633	-1.20593	1.369197	1
EGF	C/E	-0.15077	-1.43834	1.13679	1
EGF	D/E	0.480911	-0.80665	1.768474	1
EGF	B/A	0.629854	-0.65771	1.917418	1
EGF	C/A	0.397448	-0.89012	1.685011	1
EGF	D/A	1.029132	-0.25843	2.316695	0.803702
EGF	C/B	-0.23241	-1.51997	1.055157	1
EGF	D/B	0.399277	-0.88829	1.686841	1
EGF	D/C	0.631684	-0.65588	1.919247	1
EGFR	A/E	-0.3328	-1.62037	0.954759	1
EGFR	B/E	-0.40615	-1.69371	0.881415	1
EGFR	C/E	-0.41663	-1.70419	0.870933	1
EGFR	D/E	-0.24693	-1.53449	1.040633	1
EGFR	B/A	-0.07334	-1.36091	1.21422	1
EGFR	C/A	-0.08383	-1.37139	1.203738	1
EGFR	D/A	0.085875	-1.20169	1.373438	1
EGFR	C/B	-0.01048	-1.29805	1.277081	1
EGFR	D/B	0.159218	-1.12835	1.446781	1
EGFR	D/C	0.1697	-1.11786	1.457264	1
L				I	

EMMPRIN	A/E	0.320567	-0.967	1.60813	1
EMMPRIN	B/E	-0.15027	-1.43783	1.137292	1
EMMPRIN	C/E	0.34046	-0.9471	1.628023	1
EMMPRIN	D/E	0.333331	-0.95423	1.620895	1
EMMPRIN	B/A	-0.47084	-1.7584	0.816725	1
EMMPRIN	C/A	0.019893	-1.26767	1.307456	1
EMMPRIN	D/A	0.012764	-1.2748	1.300328	1
EMMPRIN	C/B	0.490731	-0.79683	1.778294	1
EMMPRIN	D/B	0.483602	-0.80396	1.771166	1
EMMPRIN	D/C	-0.00713	-1.29469	1.280435	1
Ep.CAM	A/E	-0.48613	-1.7737	0.801431	1
Ep.CAM	B/E	-0.43517	-1.72274	0.852389	1
Ep.CAM	C/E	-0.35947	-1.64704	0.928091	1
Ep.CAM	D/E	0.421201	-0.86636	1.708765	1
Ep.CAM	B/A	0.050958	-1.23661	1.338521	1
Ep.CAM	C/A	0.12666	-1.1609	1.414224	1
Ep.CAM	D/A	0.907334	-0.38023	2.194897	0.994555
Ep.CAM	C/B	0.075703	-1.21186	1.363266	1
Ep.CAM	D/B	0.856376	-0.43119	2.143939	0.999659
Ep.CAM	D/C	0.780673	-0.50689	2.068237	0.9999999
Epiregulin	A/E	3.33E-14	-1.28756	1.287563	1
Epiregulin	B/E	1.27E-14	-1.28756	1.287563	1
Epiregulin	C/E	0.010219	-1.27734	1.297782	1
Epiregulin	D/E	0.027725	-1.25984	1.315289	1

Epiregulin	B/A	-2.07E-14	-1.28756	1.287563	1
Epiregulin	C/A	0.010219	-1.27734	1.297782	1
Epiregulin	D/A	0.027725	-1.25984	1.315289	1
Epiregulin	C/B	0.010219	-1.27734	1.297782	1
Epiregulin	D/B	0.027725	-1.25984	1.315289	1
Epiregulin	D/C	0.017507	-1.27006	1.30507	1
EPO	A/E	-0.14463	-1.43219	1.142938	1
EPO	B/E	0.188557	-1.09901	1.47612	1
EPO	C/E	-0.06631	-1.35387	1.221252	1
EPO	D/E	-0.20288	-1.49044	1.084683	1
EPO	B/A	0.333182	-0.95438	1.620746	1
EPO	C/A	0.078314	-1.20925	1.365878	1
EPO	D/A	-0.05826	-1.34582	1.229308	1
EPO	C/B	-0.25487	-1.54243	1.032696	1
EPO	D/B	-0.39144	-1.679	0.896126	1
EPO	D/C	-0.13657	-1.42413	1.150994	1
ErbB2.Her2	A/E	-0.15048	-1.43805	1.137081	1
ErbB2.Her2	B/E	-0.23611	-1.52368	1.05145	1
ErbB2.Her2	C/E	-0.38065	-1.66822	0.906911	1
ErbB2.Her2	D/E	-0.09415	-1.38171	1.193415	1
ErbB2.Her2	B/A	-0.08563	-1.37319	1.201933	1
ErbB2.Her2	C/A	-0.23017	-1.51773	1.057393	1
ErbB2.Her2	D/A	0.056334	-1.23123	1.343897	1
ErbB2.Her2	C/B	-0.14454	-1.4321	1.143024	1

ErbB2.Her2	D/B	0.141965	-1.1456	1.429528	1
ErbB2.Her2	D/C	0.286504	-1.00106	1.574067	1
ErbB3.Her3	A/E	-0.20242	-1.48998	1.085144	1
ErbB3.Her3	B/E	-0.22752	-1.51509	1.060041	1
ErbB3.Her3	C/E	-0.21303	-1.5006	1.074529	1
ErbB3.Her3	D/E	-0.13316	-1.42072	1.154407	1
ErbB3.Her3	B/A	-0.0251	-1.31267	1.262461	1
ErbB3.Her3	C/A	-0.01061	-1.29818	1.276949	1
ErbB3.Her3	D/A	0.069264	-1.2183	1.356827	1
ErbB3.Her3	C/B	0.014488	-1.27308	1.302051	1
ErbB3.Her3	D/B	0.094366	-1.1932	1.38193	1
ErbB3.Her3	D/C	0.079878	-1.20768	1.367442	1
ErbB4.Her4	A/E	-0.39023	-1.67779	0.897332	1
ErbB4.Her4	B/E	-0.40493	-1.6925	0.882632	1
ErbB4.Her4	C/E	-0.4994	-1.78696	0.788164	1
ErbB4.Her4	D/E	-0.38354	-1.6711	0.904022	1
ErbB4.Her4	B/A	-0.0147	-1.30226	1.272863	1
ErbB4.Her4	C/A	-0.10917	-1.39673	1.178395	1
ErbB4.Her4	D/A	0.00669	-1.28087	1.294253	1
ErbB4.Her4	C/B	-0.09447	-1.38203	1.193096	1
ErbB4.Her4	D/B	0.02139	-1.26617	1.308954	1
ErbB4.Her4	D/C	0.115858	-1.17171	1.403421	1
Estrogen.receptor	A/E	2.31E-14	-1.28756	1.287563	1
Estrogen.receptor	B/E	2.22E-15	-1.28756	1.287563	1
		•	•		

Estas a su	0/5	0.000000	4 00070	4 004 404	
Estrogen.receptor	C/E	0.003838	-1.28373	1.291401	1
Estrogen.receptor	D/E	0.011243	-1.27632	1.298807	1
Estrogen.receptor	B/A	-2.09E-14	-1.28756	1.287563	1
Estrogen.receptor	C/A	0.003838	-1.28373	1.291401	1
Estrogen.receptor	D/A	0.011243	-1.27632	1.298807	1
Estrogen.receptor	C/B	0.003838	-1.28373	1.291401	1
Estrogen.receptor	D/B	0.011243	-1.27632	1.298807	1
Estrogen.receptor	D/C	0.007406	-1.28016	1.294969	1
FABP4	A/E	-0.02496	-1.31252	1.262608	1
FABP4	B/E	0.213661	-1.0739	1.501225	1
FABP4	C/E	0.220405	-1.06716	1.507969	1
FABP4	D/E	-0.22565	-1.51321	1.061914	1
FABP4	B/A	0.238617	-1.04895	1.52618	1
FABP4	C/A	0.245361	-1.0422	1.532924	1
FABP4	D/A	-0.20069	-1.48826	1.086869	1
FABP4	C/B	0.006744	-1.28082	1.294307	1
FABP4	D/B	-0.43931	-1.72687	0.848253	1
FABP4	D/C	-0.44605	-1.73362	0.841509	1
FAS	A/E	-0.36378	-1.65134	0.923786	1
FAS	B/E	-0.20395	-1.49151	1.083614	1
FAS	C/E	-0.34914	-1.6367	0.938426	1
FAS	D/E	-0.18012	-1.46768	1.107444	1
FAS	B/A	0.159829	-1.12773	1.447392	1
FAS	C/A	0.01464	-1.27292	1.302204	1
FAS	C/A	0.01464	-1.27292	1.302204	1

FAS	D/A	0.183658	-1.10391	1.471221	1
FAS	C/B	-0.14519	-1.43275	1.142375	1
FAS	D/B	0.023829	-1.26373	1.311393	1
FAS	D/C	0.169018	-1.11855	1.456581	1
FasL	A/E	-0.03079	-1.31835	1.256778	1
FasL	B/E	-0.04012	-1.32768	1.247448	1
FasL	C/E	0.049413	-1.23815	1.336976	1
FasL	D/E	0.001596	-1.28597	1.28916	1
FasL	B/A	-0.00933	-1.29689	1.278233	1
FasL	C/A	0.080198	-1.20737	1.367761	1
FasL	D/A	0.032381	-1.25518	1.319945	1
FasL	C/B	0.089528	-1.19804	1.377092	1
FasL	D/B	0.041712	-1.24585	1.329275	1
FasL	D/C	-0.04782	-1.33538	1.239747	1
Flt3L	A/E	-0.49858	-1.78614	0.788983	1
Flt3L	B/E	-0.2944	-1.58197	0.993161	1
Flt3L	C/E	-0.59173	-1.8793	0.695832	1
Flt3L	D/E	-0.30745	-1.59502	0.980109	1
Flt3L	B/A	0.204178	-1.08339	1.491742	1
Flt3L	C/A	-0.09315	-1.38071	1.194412	1
Flt3L	D/A	0.191126	-1.09644	1.478689	1
Flt3L	C/B	-0.29733	-1.58489	0.990234	1
Flt3L	D/B	-0.01305	-1.30062	1.274511	1
Flt3L	D/C	0.284277	-1.00329	1.571841	1
			-		

Follistatin	A/E	-0.20524	-1.49281	1.082319	1
Follistatin	B/E	0.316564	-0.971	1.604127	1
Follistatin	C/E	0.137673	-1.14989	1.425237	1
Follistatin	D/E	0.056123	-1.23144	1.343686	1
Follistatin	B/A	0.521808	-0.76576	1.809372	1
Follistatin	C/A	0.342918	-0.94465	1.630482	1
Follistatin	D/A	0.261367	-1.0262	1.548931	1
Follistatin	C/B	-0.17889	-1.46645	1.108673	1
Follistatin	D/B	-0.26044	-1.548	1.027123	1
Follistatin	D/C	-0.08155	-1.36911	1.206013	1
FR.alpha	A/E	-0.3325	-1.62006	0.955062	1
FR.alpha	B/E	-0.12797	-1.41553	1.159598	1
FR.alpha	C/E	-0.35417	-1.64173	0.933396	1
FR.alpha	D/E	-0.32852	-1.61609	0.95904	1
FR.alpha	B/A	0.204536	-1.08303	1.492099	1
FR.alpha	C/A	-0.02167	-1.30923	1.265897	1
FR.alpha	D/A	0.003978	-1.28359	1.291541	1
FR.alpha	C/B	-0.2262	-1.51377	1.061361	1
FR.alpha	D/B	-0.20056	-1.48812	1.087006	1
FR.alpha	D/C	0.025644	-1.26192	1.313208	1
Galectin.3	A/E	-0.39005	-1.67761	0.897516	1
Galectin.3	B/E	-0.23158	-1.51915	1.05598	1
Galectin.3	C/E	-0.20829	-1.49585	1.079276	1
Galectin.3	D/E	0.23005	-1.05751	1.517614	1

Galectin.3	B/A	0.158464	-1.1291	1.446028	1
Galectin.3	C/A	0.18176	-1.1058	1.469323	1
Galectin.3	D/A	0.620098	-0.66747	1.907661	1
Galectin.3	C/B	0.023295	-1.26427	1.310859	1
Galectin.3	D/B	0.461633	-0.82593	1.749197	1
Galectin.3	D/C	0.438338	-0.84923	1.725902	1
GDF.15	A/E	-0.36566	-1.65322	0.921907	1
GDF.15	B/E	0.69645	-0.59111	1.984014	1
GDF.15	C/E	0.075028	-1.21254	1.362591	1
GDF.15	D/E	0.649793	-0.63777	1.937357	1
GDF.15	B/A	1.062107	-0.22546	2.34967	0.679682
GDF.15	C/A	0.440684	-0.84688	1.728248	1
GDF.15	D/A	1.01545	-0.27211	2.303013	0.847039
GDF.15	C/B	-0.62142	-1.90899	0.666141	1
GDF.15	D/B	-0.04666	-1.33422	1.240906	1
GDF.15	D/C	0.574766	-0.7128	1.862329	1
GM.CSF	A/E	0.008594	-1.27897	1.296157	1
GM.CSF	B/E	-3.55E-15	-1.28756	1.287563	1
GM.CSF	C/E	-1.78E-15	-1.28756	1.287563	1
GM.CSF	D/E	-1.24E-14	-1.28756	1.287563	1
GM.CSF	B/A	-0.00859	-1.29616	1.278969	1
GM.CSF	C/A	-0.00859	-1.29616	1.278969	1
GM.CSF	D/A	-0.00859	-1.29616	1.278969	1
GM.CSF	C/B	1.78E-15	-1.28756	1.287563	1

GM.CSF	D/B	-8.88E-15	-1.28756	1.287563	1
GM.CSF	D/C	-1.07E-14	-1.28756	1.287563	1
Growth.Hormone	A/E	0.729487	-0.55808	2.017051	1
Growth.Hormone	B/E	0.576355	-0.71121	1.863919	1
Growth.Hormone	C/E	0.79832	-0.48924	2.085883	0.9999996
Growth.Hormone	D/E	0.362469	-0.92509	1.650033	1
Growth.Hormone	B/A	-0.15313	-1.4407	1.134431	1
Growth.Hormone	C/A	0.068832	-1.21873	1.356396	1
Growth.Hormone	D/A	-0.36702	-1.65458	0.920545	1
Growth.Hormone	C/B	0.221965	-1.0656	1.509528	1
Growth.Hormone	D/B	-0.21389	-1.50145	1.073677	1
Growth.Hormone	D/C	-0.43585	-1.72341	0.851713	1
HB.EGF	A/E	-0.20058	-1.48814	1.086988	1
HB.EGF	B/E	-0.00285	-1.29041	1.284715	1
HB.EGF	C/E	-0.2012	-1.48876	1.086365	1
HB.EGF	D/E	0.358139	-0.92942	1.645702	1
HB.EGF	B/A	0.197728	-1.08984	1.485291	1
HB.EGF	C/A	-0.00062	-1.28819	1.286941	1
HB.EGF	D/A	0.558715	-0.72885	1.846278	1
HB.EGF	C/B	-0.19835	-1.48591	1.089213	1
HB.EGF	D/B	0.360987	-0.92658	1.64855	1
HB.EGF	D/C	0.559337	-0.72823	1.8469	1
HE4	A/E	-0.20184	-1.4894	1.085728	1
HE4	B/E	-0.0913	-1.37886	1.196264	1

HE4 D/E -0.10764 -1.39521 1.179919 1 HE4 B/A 0.110536 -1.17703 1.398099 1 HE4 C/A 0.037009 -1.25055 1.324572 1 HE4 D/A 0.094192 -1.19337 1.381755 1 HE4 D/A 0.094192 -1.19337 1.381755 1 HE4 D/B -0.01634 -1.30391 1.271219 1 HE4 D/B -0.01634 -1.30391 1.271219 1 HE4 D/C 0.057183 -1.26874 1.306387 1 HGF A/E 0.018823 -1.26874 1.306387 1 HGF B/E 0.532771 -0.75479 1.820335 1 HGF D/E -0.06215 -1.34972 1.22541 1 HGF D/A -0.08098 -1.36854 1.206587 1 HGF D/A -0.08098 -1.36854 1.206587 1	HE4	C/E	-0.16483	-1.45239	1.122736	1
HE4 C/A 0.037009 -1.25055 1.324572 1 HE4 D/A 0.094192 -1.19337 1.381755 1 HE4 C/B -0.07353 -1.36109 1.214036 1 HE4 D/B -0.01634 -1.30391 1.271219 1 HE4 D/C 0.057183 -1.23038 1.344747 1 HGF A/E 0.018823 -1.26874 1.306387 1 HGF B/E 0.532771 -0.75479 1.820335 1 HGF D/E -0.06215 -1.34972 1.22541 1 HGF D/E -0.06215 -1.34972 1.22541 1 HGF D/A -0.35909 -1.64665 0.928477 1 HGF D/A -0.08098 -1.36854 1.206587 1 HGF D/A -0.08098 -1.36854 1.206587 1 HGF D/A -0.08098 -1.368249 0.692639 1	HE4	D/E	-0.10764	-1.39521	1.179919	1
HE4 D/A 0.094192 -1.19337 1.381755 1 HE4 C/B -0.07353 -1.36109 1.214036 1 HE4 D/B -0.01634 -1.30391 1.271219 1 HE4 D/C 0.057183 -1.23038 1.344747 1 HE4 D/C 0.057183 -1.26874 1.306387 1 HGF A/E 0.018823 -1.62783 0.947301 1 HGF D/E -0.06215 -1.34972 1.22541 1 HGF D/E -0.06215 -1.34972 1.22541 1 HGF D/A 0.513948 -0.77362 1.801511 1 HGF D/A -0.08098 -1.36854 1.206587 1 HGF D/A -0.08098 -1.36854 1.206587 1 HGF D/A -0.08098 -1.36854 1.206587 1 HGF D/B -0.27811 -1.00945 1.565673 1	HE4	B/A	0.110536	-1.17703	1.398099	1
HE4 C/B -0.07353 -1.36109 1.214036 1 HE4 D/B -0.01634 -1.30391 1.271219 1 HE4 D/C 0.057183 -1.23038 1.344747 1 HGF A/E 0.018823 -1.26874 1.306387 1 HGF B/E 0.532771 -0.75479 1.820335 1 HGF D/E -0.34026 -1.62783 0.947301 1 HGF D/E -0.06215 -1.34972 1.22541 1 HGF B/A 0.513948 -0.77362 1.801511 1 HGF D/A -0.08098 -1.36854 1.206587 1 HGF D/A -0.8098 -1.36854 1.206587 1 HGF D/B -0.59492 -1.88249 0.692639 1 HGF D/C 0.27811 -1.00945 1.565673 1 HGF D/C 0.27811 -1.39782 1.265411 1	HE4	C/A	0.037009	-1.25055	1.324572	1
HE4 D/B -0.01634 -1.30391 1.271219 1 HE4 D/C 0.057183 -1.23038 1.344747 1 HGF A/E 0.018823 -1.26874 1.306387 1 HGF B/E 0.532771 -0.75479 1.820335 1 HGF B/E 0.532771 -0.75479 1.820335 1 HGF D/E -0.34026 -1.62783 0.947301 1 HGF D/E -0.06215 -1.34972 1.22541 1 HGF D/E -0.06215 -1.34972 1.22541 1 HGF D/A -0.051998 -0.77362 1.801511 1 HGF D/A -0.08098 -1.36854 1.206587 1 HGF D/A -0.08098 -1.36854 1.206587 1 HGF D/B -0.27811 -1.00945 1.565673 1 HGF D/C 0.27811 -1.00945 1.565673 1	HE4	D/A	0.094192	-1.19337	1.381755	1
HE4 D/C 0.057183 -1.23038 1.344747 1 HGF A/E 0.018823 -1.26874 1.306387 1 HGF B/E 0.532771 -0.75479 1.820335 1 HGF C/E -0.34026 -1.62783 0.947301 1 HGF D/E -0.06215 -1.34972 1.22541 1 HGF D/E -0.06215 -1.34972 1.22541 1 HGF D/E -0.06215 -1.34972 1.22541 1 HGF D/A 0.513948 -0.77362 1.801511 1 HGF D/A -0.35909 -1.64665 0.928477 1 HGF D/A -0.08098 -1.36854 1.206587 1 HGF D/B -0.59492 -1.88249 0.692639 1 HGF D/C 0.27811 -1.00945 1.565673 1 HGF.receptor A/E -0.02215 -1.30972 1.265411 1<	HE4	C/B	-0.07353	-1.36109	1.214036	1
HGF A/E 0.018823 -1.26874 1.306387 1 HGF B/E 0.532771 -0.75479 1.820335 1 HGF C/E -0.34026 -1.62783 0.947301 1 HGF D/E -0.06215 -1.34972 1.22541 1 HGF D/E -0.06215 -1.34972 1.801511 1 HGF D/E -0.06215 -1.34972 1.801511 1 HGF D/A -0.513948 -0.77362 1.801511 1 HGF D/A -0.35909 -1.64665 0.928477 1 HGF D/A -0.8098 -1.36854 1.206587 1 HGF D/A -0.87303 -2.1606 0.41453 0.99906 HGF D/B -0.59492 -1.88249 0.692639 1 HGF D/C 0.27811 -1.00945 1.565673 1 HGF.receptor A/E -0.02215 -1.30972 1.26541 <	HE4	D/B	-0.01634	-1.30391	1.271219	1
HGF B/E 0.532771 -0.75479 1.820335 1 HGF C/E -0.34026 -1.62783 0.947301 1 HGF D/E -0.06215 -1.34972 1.22541 1 HGF D/E -0.06215 -1.34972 1.22541 1 HGF B/A 0.513948 -0.77362 1.801511 1 HGF C/A -0.35909 -1.64665 0.928477 1 HGF D/A -0.08098 -1.36854 1.206587 1 HGF D/A -0.08098 -1.36854 1.206587 1 HGF D/A -0.08098 -1.36854 1.206587 1 HGF D/A -0.08192 -1.88249 0.692639 1 HGF D/C 0.27811 -1.00945 1.565673 1 HGF.receptor A/E -0.02215 -1.30972 1.26541 1 HGF.receptor B/E -0.1043 -1.39186 1.183263	HE4	D/C	0.057183	-1.23038	1.344747	1
HGF C/E -0.34026 -1.62783 0.947301 1 HGF D/E -0.06215 -1.34972 1.22541 1 HGF B/A 0.513948 -0.77362 1.801511 1 HGF C/A -0.35909 -1.64665 0.928477 1 HGF D/A -0.08098 -1.36854 1.206587 1 HGF D/B -0.59492 -1.88249 0.692639 1 HGF D/C 0.27811 -1.00945 1.565673 1 HGF.receptor A/E -0.02215 -1.30972 1.265411 1 HGF.receptor C/E -0.23358 -1.52115 1.05398	HGF	A/E	0.018823	-1.26874	1.306387	1
HGF D/E -0.06215 -1.34972 1.22541 1 HGF B/A 0.513948 -0.77362 1.801511 1 HGF C/A -0.35909 -1.64665 0.928477 1 HGF D/A -0.08098 -1.36854 1.206587 1 HGF D/A -0.087303 -2.1606 0.41453 0.99906 HGF D/B -0.59492 -1.88249 0.692639 1 HGF D/C 0.27811 -1.00945 1.565673 1 HGF.receptor A/E -0.02215 -1.30972 1.26541 1 HGF.receptor B/E -0.1043 -1.39186 1.183263 1 HGF.receptor D/E -0.11026 -1.39783 1.177	HGF	B/E	0.532771	-0.75479	1.820335	1
HGFB/A0.513948-0.773621.8015111HGFC/A-0.35909-1.646650.9284771HGFD/A-0.08098-1.368541.2065871HGFC/B-0.87303-2.16060.414530.99906HGFD/B-0.59492-1.882490.6926391HGFD/C0.27811-1.009451.5656731HGF.receptorA/E-0.02215-1.309721.265411HGF.receptorB/E-0.1043-1.391861.1832631HGF.receptorC/E-0.23358-1.521151.053981HGF.receptorD/E-0.11026-1.397831.1773011HGF.receptorB/A-0.08215-1.369711.2054171	HGF	C/E	-0.34026	-1.62783	0.947301	1
HGFC/A-0.35909-1.646650.9284771HGFD/A-0.08098-1.368541.2065871HGFC/B-0.87303-2.16060.414530.99906HGFD/B-0.59492-1.882490.6926391HGFD/C0.27811-1.009451.5656731HGF.receptorA/E-0.02215-1.309721.265411HGF.receptorB/E-0.1043-1.391861.1832631HGF.receptorD/E-0.23358-1.521151.053981HGF.receptorD/E-0.11026-1.397831.1773011HGF.receptorB/A-0.08215-1.369711.2054171	HGF	D/E	-0.06215	-1.34972	1.22541	1
HGFD/A-0.08098-1.368541.2065871HGFC/B-0.87303-2.16060.414530.99906HGFD/B-0.59492-1.882490.6926391HGFD/C0.27811-1.009451.5656731HGF.receptorA/E-0.02215-1.309721.265411HGF.receptorB/E-0.1043-1.391861.1832631HGF.receptorC/E-0.23358-1.521151.053981HGF.receptorD/E-0.11026-1.397831.1773011HGF.receptorB/A-0.08215-1.369711.2054171	HGF	B/A	0.513948	-0.77362	1.801511	1
HGFC/B-0.87303-2.16060.414530.99906HGFD/B-0.59492-1.882490.6926391HGFD/C0.27811-1.009451.5656731HGF.receptorA/E-0.02215-1.309721.265411HGF.receptorB/E-0.1043-1.391861.1832631HGF.receptorC/E-0.23358-1.521151.053981HGF.receptorD/E-0.11026-1.397831.1773011HGF.receptorB/A-0.08215-1.369711.2054171	HGF	C/A	-0.35909	-1.64665	0.928477	1
HGF D/B -0.59492 -1.88249 0.692639 1 HGF D/C 0.27811 -1.00945 1.565673 1 HGF.receptor A/E -0.02215 -1.30972 1.26541 1 HGF.receptor B/E -0.1043 -1.39186 1.183263 1 HGF.receptor C/E -0.23358 -1.52115 1.05398 1 HGF.receptor D/E -0.11026 -1.39783 1.177301 1 HGF.receptor B/A -0.08215 -1.36971 1.205417 1	HGF	D/A	-0.08098	-1.36854	1.206587	1
HGF D/C 0.27811 -1.00945 1.565673 1 HGF.receptor A/E -0.02215 -1.30972 1.26541 1 HGF.receptor B/E -0.1043 -1.39186 1.183263 1 HGF.receptor C/E -0.23358 -1.52115 1.05398 1 HGF.receptor D/E -0.11026 -1.39783 1.177301 1 HGF.receptor B/A -0.08215 -1.36971 1.205417 1	HGF	C/B	-0.87303	-2.1606	0.41453	0.99906
HGF.receptor A/E -0.02215 -1.30972 1.26541 1 HGF.receptor B/E -0.1043 -1.39186 1.183263 1 HGF.receptor C/E -0.23358 -1.52115 1.05398 1 HGF.receptor D/E -0.11026 -1.39783 1.177301 1 HGF.receptor B/A -0.08215 -1.36971 1.205417 1	HGF	D/B	-0.59492	-1.88249	0.692639	1
HGF.receptor B/E -0.1043 -1.39186 1.183263 1 HGF.receptor C/E -0.23358 -1.52115 1.05398 1 HGF.receptor D/E -0.11026 -1.39783 1.177301 1 HGF.receptor B/A -0.08215 -1.36971 1.205417 1	HGF	D/C	0.27811	-1.00945	1.565673	1
HGF.receptor C/E -0.23358 -1.52115 1.05398 1 HGF.receptor D/E -0.11026 -1.39783 1.177301 1 HGF.receptor B/A -0.08215 -1.36971 1.205417 1	HGF.receptor	A/E	-0.02215	-1.30972	1.26541	1
HGF.receptor D/E -0.11026 -1.39783 1.177301 1 HGF.receptor B/A -0.08215 -1.36971 1.205417 1	HGF.receptor	B/E	-0.1043	-1.39186	1.183263	1
HGF.receptor B/A -0.08215 -1.36971 1.205417 1	HGF.receptor	C/E	-0.23358	-1.52115	1.05398	1
	HGF.receptor	D/E	-0.11026	-1.39783	1.177301	1
HGF.receptor C/A -0.21143 -1.49899 1.076133 1	HGF.receptor	B/A	-0.08215	-1.36971	1.205417	1
	HGF.receptor	C/A	-0.21143	-1.49899	1.076133	1

HGF.receptor	D/A	-0.08811	-1.37567	1.199454	1
HGF.receptor	C/B	-0.12928	-1.41685	1.15828	1
HGF.receptor	D/B	-0.00596	-1.29353	1.281601	1
HGF.receptor	D/C	0.123321	-1.16424	1.410885	1
IFN.gamma	A/E	0.06658	-1.22098	1.354144	1
IFN.gamma	B/E	0.091151	-1.19641	1.378715	1
IFN.gamma	C/E	0.25105	-1.03651	1.538613	1
IFN.gamma	D/E	0.063843	-1.22372	1.351406	1
IFN.gamma	B/A	0.024571	-1.26299	1.312134	1
IFN.gamma	C/A	0.184469	-1.10309	1.472032	1
IFN.gamma	D/A	-0.00274	-1.2903	1.284826	1
IFN.gamma	C/B	0.159898	-1.12767	1.447462	1
IFN.gamma	D/B	-0.02731	-1.31487	1.260255	1
IFN.gamma	D/C	-0.18721	-1.47477	1.100357	1
IL.12	A/E	-0.41984	-1.7074	0.867725	1
IL.12	B/E	0.306472	-0.98109	1.594036	1
IL.12	C/E	-0.13656	-1.42412	1.151007	1
IL.12	D/E	-0.1022	-1.38976	1.185365	1
IL.12	B/A	0.726311	-0.56125	2.013875	1
IL.12	C/A	0.283283	-1.00428	1.570846	1
IL.12	D/A	0.31764	-0.96992	1.605204	1
IL.12	C/B	-0.44303	-1.73059	0.844535	1
IL.12	D/B	-0.40867	-1.69623	0.878892	1
IL.12	D/C	0.034357	-1.25321	1.321921	1
			I		

IL.1ra	A/E	0.231602	-1.05596	1.519165	1
IL.1ra	B/E	0.401115	-0.88645	1.688678	1
IL.1ra	C/E	-0.29876	-1.58632	0.988808	1
IL.1ra	D/E	0.279447	-1.00812	1.56701	1
IL.1ra	B/A	0.169513	-1.11805	1.457077	1
IL.1ra	C/A	-0.53036	-1.81792	0.757207	1
IL.1ra	D/A	0.047845	-1.23972	1.335409	1
IL.1ra	C/B	-0.69987	-1.98743	0.587694	1
IL.1ra	D/B	-0.12167	-1.40923	1.165895	1
IL.1ra	D/C	0.578202	-0.70936	1.865765	1
IL.2	A/E	-0.00384	-1.2914	1.283726	1
IL.2	B/E	0.072531	-1.21503	1.360095	1
IL.2	C/E	0.037938	-1.24963	1.325501	1
IL.2	D/E	0.007556	-1.28001	1.295119	1
IL.2	B/A	0.076369	-1.21119	1.363932	1
IL.2	C/A	0.041776	-1.24579	1.329339	1
IL.2	D/A	0.011393	-1.27617	1.298957	1
IL.2	C/B	-0.03459	-1.32216	1.25297	1
IL.2	D/B	-0.06498	-1.35254	1.222588	1
IL.2	D/C	-0.03038	-1.31795	1.257181	1
IL.4	A/E	-0.0338	-1.32137	1.25376	1
IL.4	B/E	-0.00952	-1.29708	1.278045	1
IL.4	C/E	0.007073	-1.28049	1.294637	1
IL.4	D/E	0.00135	-1.28621	1.288914	1
L		•	•		

IL.4	B/A	0.024285	-1.26328	1.311849	1
IL.4	C/A	0.040877	-1.24669	1.32844	1
IL.4	D/A	0.035154	-1.25241	1.322717	1
IL.4	C/B	0.016591	-1.27097	1.304155	1
IL.4	D/B	0.010868	-1.2767	1.298432	1
IL.4	D/C	-0.00572	-1.29329	1.28184	1
IL.6	A/E	-0.08436	-1.37193	1.203201	1
IL.6	B/E	1.368284	0.080721	2.655848	0.012356
IL.6	C/E	0.270008	-1.01756	1.557571	1
IL.6	D/E	0.75137	-0.53619	2.038933	1
IL.6	B/A	1.452647	0.165083	2.74021	0.002396
IL.6	C/A	0.35437	-0.93319	1.641933	1
IL.6	D/A	0.835732	-0.45183	2.123295	0.999918
IL.6	C/B	-1.09828	-2.38584	0.189287	0.527659
IL.6	D/B	-0.61691	-1.90448	0.670649	1
IL.6	D/C	0.481362	-0.8062	1.768925	1
IL.7	A/E	-0.18069	-1.46826	1.10687	1
IL.7	B/E	0.150554	-1.13701	1.438117	1
IL.7	C/E	0.346557	-0.94101	1.634121	1
IL.7	D/E	0.491123	-0.79644	1.778686	1
IL.7	B/A	0.331247	-0.95632	1.618811	1
IL.7	C/A	0.527251	-0.76031	1.814814	1
IL.7	D/A	0.671816	-0.61575	1.95938	1
IL.7	C/B	0.196004	-1.09156	1.483567	1
L				1	I

IL.7	D/C				
		0.144565	-1.143	1.432129	1
IL.8	A/E	0.126378	-1.16119	1.413941	1
IL.8	B/E	0.693238	-0.59432	1.980802	1
IL.8	C/E	0.668738	-0.61883	1.956301	1
IL.8	D/E	1.775656	0.488093	3.06322	1.23E-06
IL.8	B/A	0.56686	-0.7207	1.854424	1
IL.8	C/A	0.54236	-0.7452	1.829923	1
IL.8	D/A	1.649278	0.361715	2.936842	2.96E-05
IL.8	C/B	-0.0245	-1.31206	1.263063	1
IL.8	D/B	1.082418	-0.20515	2.369981	0.594911
IL.8	D/C	1.106919	-0.18064	2.394482	0.491408
IL17RB	A/E	-0.3459	-1.63346	0.941665	1
IL17RB	B/E	-0.32447	-1.61203	0.963093	1
IL17RB	C/E	-0.47892	-1.76649	0.808641	1
IL17RB	D/E	-0.27818	-1.56574	1.009386	1
IL17RB	B/A	0.021428	-1.26614	1.308991	1
IL17RB	C/A	-0.13302	-1.42059	1.15454	1
IL17RB	D/A	0.067721	-1.21984	1.355285	1
IL17RB	C/B	-0.15445	-1.44201	1.133112	1
IL17RB	D/B	0.046294	-1.24127	1.333857	1
IL17RB	D/C	0.200745	-1.08682	1.488308	1
IL2RA	A/E	-0.11799	-1.40555	1.169577	1
IL2RA	B/E	-0.06306	-1.35063	1.2245	1

IL2RA	C/E	-0.12032	-1.40789	1.167241	1
IL2RA	D/E	-0.00278	-1.29034	1.284785	1
IL2RA	B/A	0.054923	-1.23264	1.342486	1
IL2RA	C/A	-0.00234	-1.2899	1.285227	1
IL2RA	D/A	0.115208	-1.17236	1.402771	1
IL2RA	C/B	-0.05726	-1.34482	1.230304	1
IL2RA	D/B	0.060285	-1.22728	1.347848	1
IL2RA	D/C	0.117544	-1.17002	1.405108	1
IL6RA	A/E	-0.33998	-1.62754	0.947587	1
IL6RA	B/E	-0.33233	-1.61989	0.955234	1
IL6RA	C/E	-0.49598	-1.78354	0.791583	1
IL6RA	D/E	0.152035	-1.13553	1.439598	1
IL6RA	B/A	0.007647	-1.27992	1.29521	1
IL6RA	C/A	-0.156	-1.44357	1.131559	1
IL6RA	D/A	0.492011	-0.79555	1.779574	1
IL6RA	C/B	-0.16365	-1.45121	1.123912	1
IL6RA	D/B	0.484364	-0.8032	1.771928	1
IL6RA	D/C	0.648016	-0.63955	1.935579	1
Kallikrein.11	A/E	-0.44654	-1.7341	0.841022	1
Kallikrein.11	B/E	-0.31073	-1.5983	0.97683	1
Kallikrein.11	C/E	-0.50939	-1.79696	0.77817	1
Kallikrein.11	D/E	-0.3087	-1.59627	0.978861	1
Kallikrein.11	B/A	0.135808	-1.15176	1.423371	1
Kallikrein.11	C/A	-0.06285	-1.35042	1.224711	1
		1	1	1	

Kallikrein.11	D/A	0.137839	-1.14972	1.425403	1
Kallikrein.11	C/B	-0.19866	-1.48622	1.088903	1
Kallikrein.11	D/B	0.002031	-1.28553	1.289595	1
Kallikrein.11	D/C	0.200692	-1.08687	1.488255	1
Kallikrein.6	A/E	-0.57193	-1.85949	0.715635	1
Kallikrein.6	B/E	-0.23184	-1.51941	1.055719	1
Kallikrein.6	C/E	-0.24759	-1.53516	1.039971	1
Kallikrein.6	D/E	-0.10984	-1.3974	1.177724	1
Kallikrein.6	B/A	0.340084	-0.94748	1.627648	1
Kallikrein.6	C/A	0.324337	-0.96323	1.6119	1
Kallikrein.6	D/A	0.46209	-0.82547	1.749653	1
Kallikrein.6	C/B	-0.01575	-1.30331	1.271816	1
Kallikrein.6	D/B	0.122005	-1.16556	1.409569	1
Kallikrein.6	D/C	0.137753	-1.14981	1.425316	1
LAP.TGF.beta.1	A/E	-0.38507	-1.67264	0.902491	1
LAP.TGF.beta.1	B/E	-0.07898	-1.36654	1.208587	1
LAP.TGF.beta.1	C/E	-0.24775	-1.53532	1.039809	1
LAP.TGF.beta.1	D/E	0.264267	-1.0233	1.551831	1
LAP.TGF.beta.1	B/A	0.306097	-0.98147	1.59366	1
LAP.TGF.beta.1	C/A	0.137319	-1.15024	1.424882	1
LAP.TGF.beta.1	D/A	0.64934	-0.63822	1.936903	1
LAP.TGF.beta.1	C/B	-0.16878	-1.45634	1.118786	1
LAP.TGF.beta.1	D/B	0.343243	-0.94432	1.630807	1
LAP.TGF.beta.1	D/C	0.512021	-0.77554	1.799585	1
		-	-		

A/E B/E C/E	-0.38498	-1.67254 -1.36471	0.902586	1
		-1.36471	1.210416	1
C/E		1	_	I
	-0.25963	-1.54719	1.027937	1
D/E	0.341067	-0.9465	1.62863	1
B/A	0.30783	-0.97973	1.595393	1
C/A	0.12535	-1.16221	1.412914	1
D/A	0.726044	-0.56152	2.013607	1
C/B	-0.18248	-1.47004	1.105084	1
D/B	0.418214	-0.86935	1.705778	1
D/C	0.600694	-0.68687	1.888257	1
A/E	-0.63378	-1.92134	0.653783	1
B/E	-0.64632	-1.93388	0.641247	1
C/E	-0.603	-1.89056	0.684566	1
D/E	-0.2945	-1.58207	0.99306	1
B/A	-0.01254	-1.3001	1.275027	1
C/A	0.030784	-1.25678	1.318347	1
D/A	0.339277	-0.94829	1.62684	1
C/B	0.04332	-1.24424	1.330883	1
D/B	0.351813	-0.93575	1.639376	1
D/C	0.308493	-0.97907	1.596057	1
A/E	-0.34743	-1.63499	0.940134	1
B/E	0.068764	-1.2188	1.356327	1
C/E	-0.82032	-2.10788	0.467242	0.999975
D/E	0.200954	-1.08661	1.488517	1
	B/A C/A D/A C/B D/B D/C A/E B/E C/E B/A C/A D/A C/A D/A C/B D/A C/B D/C A/E B/E C/E	B/A 0.30783 C/A 0.12535 D/A 0.726044 C/B -0.18248 D/B 0.418214 D/C 0.600694 A/E -0.63378 B/E -0.64632 C/E -0.603 D/E -0.2945 B/A -0.01254 C/A 0.030784 D/A 0.339277 C/B 0.04332 D/A 0.308493 A/E -0.34743 B/E 0.068764	B/A0.30783-0.97973C/A0.12535-1.16221D/A0.726044-0.56152C/B-0.18248-1.47004D/B0.418214-0.86935D/C0.600694-0.68687A/E-0.63378-1.92134B/E-0.64632-1.93388C/E-0.603-1.89056D/E-0.2945-1.58207B/A-0.01254-1.3001C/A0.339277-0.94829D/A0.351813-0.93575D/C0.308493-0.97907A/E-0.34743-1.63499B/E0.068764-1.2188C/E-0.82032-2.10788	B/A0.30783-0.979731.595393C/A0.12535-1.162211.412914D/A0.726044-0.561522.013607C/B-0.18248-1.470041.105084D/B0.418214-0.869351.705778D/C0.600694-0.686871.888257A/E-0.63378-1.921340.653783B/E-0.64632-1.933880.641247C/E-0.603-1.890560.684566D/E-0.2945-1.30011.275027C/A0.030784-1.256781.318347D/A0.339277-0.948291.62684C/B0.04332-1.244241.330883D/B0.351813-0.935751.639376D/C0.308493-0.979071.596057A/E-0.34743-1.21881.356327C/E-0.82032-2.107880.467242

MIC.A	B/A	0.416193	-0.87137	1.703757	1
MIC.A	C/A	-0.47289	-1.76046	0.814671	1
MIC.A	D/A	0.548383	-0.73918	1.835947	1
MIC.A	C/B	-0.88909	-2.17665	0.398478	0.997745
MIC.A	D/B	0.13219	-1.15537	1.419754	1
MIC.A	D/C	1.021275	-0.26629	2.308839	0.829279
Midkine	A/E	0.098438	-1.18913	1.386001	1
Midkine	B/E	0.714716	-0.57285	2.00228	1
Midkine	C/E	0.164197	-1.12337	1.451761	1
Midkine	D/E	0.399948	-0.88762	1.687511	1
Midkine	B/A	0.616278	-0.67129	1.903842	1
Midkine	C/A	0.065759	-1.2218	1.353323	1
Midkine	D/A	0.30151	-0.98605	1.589073	1
Midkine	C/B	-0.55052	-1.83808	0.737044	1
Midkine	D/B	-0.31477	-1.60233	0.972795	1
Midkine	D/C	0.235751	-1.05181	1.523314	1
MMP.3	A/E	-0.05737	-1.34493	1.230195	1
MMP.3	B/E	-0.04233	-1.32989	1.245236	1
MMP.3	C/E	-0.04818	-1.33574	1.239386	1
MMP.3	D/E	0.079491	-1.20807	1.367054	1
MMP.3	B/A	0.015041	-1.27252	1.302604	1
MMP.3	C/A	0.009191	-1.27837	1.296754	1
MMP.3	D/A	0.136859	-1.1507	1.424422	1
MMP.3	C/B	-0.00585	-1.29341	1.281713	1
·		•	•		•

MMP.3	D/B	0.121818	-1.16575	1.409382	1
MMP.3	D/C	0.127668	-1.1599	1.415232	1
MPO	A/E	-0.09423	-1.38179	1.193336	1
MPO	B/E	0.001222	-1.28634	1.288785	1
MPO	C/E	-0.17332	-1.46089	1.114242	1
MPO	D/E	0.184051	-1.10351	1.471614	1
MPO	B/A	0.09545	-1.19211	1.383013	1
MPO	C/A	-0.07909	-1.36666	1.20847	1
MPO	D/A	0.278278	-1.00929	1.565842	1
MPO	C/B	-0.17454	-1.46211	1.11302	1
MPO	D/B	0.182829	-1.10473	1.470392	1
MPO	D/C	0.357372	-0.93019	1.644936	1
MYD88	A/E	-0.40192	-1.68948	0.885647	1
MYD88	B/E	0.000381	-1.28718	1.287945	1
MYD88	C/E	-0.24244	-1.53	1.045125	1
MYD88	D/E	-0.14605	-1.43361	1.141514	1
MYD88	B/A	0.402298	-0.88527	1.689862	1
MYD88	C/A	0.159479	-1.12808	1.447042	1
MYD88	D/A	0.255868	-1.0317	1.543431	1
MYD88	C/B	-0.24282	-1.53038	1.044744	1
MYD88	D/B	-0.14643	-1.43399	1.141133	1
MYD88	D/C	0.096389	-1.19117	1.383953	1
Osteoprotegerin	A/E	-0.32379	-1.61136	0.963771	1
Osteoprotegerin	B/E	-0.02155	-1.30911	1.266012	1
		1			

O ata a manta ma nin	0/5	0.07500	4 50040	4 044700	
Osteoprotegerin	C/E	-0.27586	-1.56342	1.011706	1
Osteoprotegerin	D/E	-0.02826	-1.31583	1.259302	1
Osteoprotegerin	B/A	0.302241	-0.98532	1.589805	1
Osteoprotegerin	C/A	0.047936	-1.23963	1.335499	1
Osteoprotegerin	D/A	0.295531	-0.99203	1.583094	1
Osteoprotegerin	C/B	-0.25431	-1.54187	1.033258	1
Osteoprotegerin	D/B	-0.00671	-1.29427	1.280853	1
Osteoprotegerin	D/C	0.247595	-1.03997	1.535159	1
PDGF.subunit.B	A/E	-0.73187	-2.01943	0.555694	1
PDGF.subunit.B	B/E	-0.14729	-1.43485	1.140275	1
PDGF.subunit.B	C/E	-0.23398	-1.52154	1.053586	1
PDGF.subunit.B	D/E	0.916642	-0.37092	2.204206	0.991819
PDGF.subunit.B	B/A	0.584581	-0.70298	1.872144	1
PDGF.subunit.B	C/A	0.497891	-0.78967	1.785455	1
PDGF.subunit.B	D/A	1.648511	0.360948	2.936075	3.02E-05
PDGF.subunit.B	C/B	-0.08669	-1.37425	1.200874	1
PDGF.subunit.B	D/B	1.06393	-0.22363	2.351494	0.672233
PDGF.subunit.B	D/C	1.15062	-0.13694	2.438184	0.322841
PECAM.1	A/E	-0.48737	-1.77494	0.800192	1
PECAM.1	B/E	-0.25059	-1.53815	1.036972	1
PECAM.1	C/E	-0.4692	-1.75676	0.818366	1
PECAM.1	D/E	-0.15511	-1.44267	1.132458	1
PECAM.1	B/A	0.236781	-1.05078	1.524344	1
PECAM.1	C/A	0.018174	-1.26939	1.305738	1

PECAM.1	D/A	0.220066	0.0552	1 610900	1
		0.332266	-0.9553	1.619829	I
PECAM.1	C/B	-0.21861	-1.50617	1.068957	1
PECAM.1	D/B	0.095485	-1.19208	1.383049	1
PECAM.1	D/C	0.314092	-0.97347	1.601655	1
PIGF	A/E	-0.64893	-1.93649	0.638636	1
PIGF	B/E	-0.36402	-1.65158	0.923547	1
PIGF	C/E	-0.56469	-1.85226	0.72287	1
PIGF	D/E	-0.31558	-1.60314	0.971987	1
PIGF	B/A	0.284912	-1.00265	1.572475	1
PIGF	C/A	0.084234	-1.20333	1.371798	1
PIGF	D/A	0.333351	-0.95421	1.620914	1
PIGF	C/B	-0.20068	-1.48824	1.086886	1
PIGF	D/B	0.048439	-1.23912	1.336003	1
PIGF	D/C	0.249117	-1.03845	1.53668	1
Prolactin	A/E	1.228535	-0.05903	2.516098	0.122194
Prolactin	B/E	0.975752	-0.31181	2.263315	0.938496
Prolactin	C/E	1.650283	0.36272	2.937847	2.89E-05
Prolactin	D/E	-0.03449	-1.32206	1.253071	1
Prolactin	B/A	-0.25278	-1.54035	1.03478	1
Prolactin	C/A	0.421749	-0.86581	1.709312	1
Prolactin	D/A	-1.26303	-2.55059	0.024536	0.073555
Prolactin	C/B	0.674532	-0.61303	1.962095	1
Prolactin	D/B	-1.01024	-2.29781	0.277319	0.862
Prolactin	D/C	-1.68478	-2.97234	-0.39721	1.24E-05
				1	

Prostasin	A/E	-0.09506	-1.38262	1.192506	1
Prostasin	B/E	-0.0761	-1.36367	1.211462	1
Prostasin	C/E	-0.21866	-1.50622	1.068907	1
Prostasin	D/E	0.081616	-1.20595	1.36918	1
Prostasin	B/A	0.018956	-1.26861	1.306519	1
Prostasin	C/A	-0.1236	-1.41116	1.163964	1
Prostasin	D/A	0.176673	-1.11089	1.464237	1
Prostasin	C/B	-0.14256	-1.43012	1.145008	1
Prostasin	D/B	0.157718	-1.12985	1.445281	1
Prostasin	D/C	0.300273	-0.98729	1.587836	1
PSA	A/E	0.730205	-0.55736	2.017768	1
PSA	B/E	-0.24568	-1.53324	1.041882	1
PSA	C/E	-0.34369	-1.63125	0.943872	1
PSA	D/E	0.125083	-1.16248	1.412646	1
PSA	B/A	-0.97589	-2.26345	0.311677	0.938273
PSA	C/A	-1.0739	-2.36146	0.213667	0.630876
PSA	D/A	-0.60512	-1.89269	0.682441	1
PSA	C/B	-0.09801	-1.38557	1.189553	1
PSA	D/B	0.370764	-0.9168	1.658327	1
PSA	D/C	0.468774	-0.81879	1.756337	1
REG.4	A/E	-0.01744	-1.30501	1.27012	1
REG.4	B/E	-0.0483	-1.33586	1.239265	1
REG.4	C/E	-0.1459	-1.43346	1.141667	1
REG.4	D/E	0.288647	-0.99892	1.57621	1
L				1	

B/A C/A	-0.03085 -0.12845	-1.31842	1.256709	1
	-0.12845	4 44 000		
- / A		-1.41602	1.15911	1
D/A	0.30609	-0.98147	1.593654	1
C/B	-0.0976	-1.38516	1.189965	1
D/B	0.336945	-0.95062	1.624508	1
D/C	0.434544	-0.85302	1.722107	1
A/E	-0.25866	-1.54622	1.028906	1
B/E	-0.26823	-1.55579	1.019333	1
C/E	-0.44963	-1.73719	0.837933	1
D/E	-0.40021	-1.68778	0.887349	1
B/A	-0.00957	-1.29714	1.27799	1
C/A	-0.19097	-1.47854	1.09659	1
D/A	-0.14156	-1.42912	1.146006	1
C/B	-0.1814	-1.46896	1.106163	1
D/B	-0.13198	-1.41955	1.155579	1
D/C	0.049416	-1.23815	1.336979	1
A/E	0.01454	-1.27302	1.302104	1
B/E	-0.05146	-1.33903	1.2361	1
C/E	-0.2037	-1.49126	1.083867	1
D/E	-0.16417	-1.45173	1.123398	1
B/A	-0.066	-1.35357	1.22156	1
C/A	-0.21824	-1.5058	1.069327	1
D/A	-0.17871	-1.46627	1.108857	1
C/B	-0.15223	-1.4398	1.13533	1
	D/B D/C A/E B/E C/E D/E B/A C/A D/A C/B D/C A/E B/E C/E D/C A/E B/E C/E D/E B/A C/A D/A	D/B 0.336945 D/C 0.434544 A/E -0.25866 B/E -0.26823 C/E -0.44963 D/E -0.40021 B/A -0.00957 C/A -0.19097 D/A -0.1814 D/B -0.13198 D/C 0.049416 A/E 0.01454 B/E -0.05146 C/E -0.2037 D/E -0.16417 B/A -0.066 C/A -0.21824 D/A -0.17871	D/B 0.336945 -0.95062 D/C 0.434544 -0.85302 A/E -0.25866 -1.54622 B/E -0.26823 -1.55579 C/E -0.44963 -1.73719 D/E -0.40021 -1.68778 B/A -0.00957 -1.29714 C/A -0.19097 -1.47854 D/A -0.14156 -1.42912 C/B -0.13198 -1.41955 D/A -0.13198 -1.41955 D/C 0.049416 -1.23815 A/E 0.01454 -1.27302 B/A -0.05146 -1.33903 C/E -0.2037 -1.49126 D/E -0.16417 -1.45173 B/A -0.066 -1.35357 C/A -0.21824 -1.5058 D/A -0.17871 -1.46627	D/B0.336945-0.950621.624508D/C0.434544-0.853021.722107A/E-0.25866-1.546221.028906B/E-0.26823-1.555791.019333C/E-0.44963-1.737190.837933D/E-0.40021-1.687780.887349B/A-0.00957-1.297141.27799C/A-0.19097-1.478541.09659D/A-0.1814-1.468961.106163D/B-0.13198-1.419551.155579D/C0.049416-1.238151.336979A/E0.01454-1.273021.302104B/A-0.05146-1.339031.2361C/E-0.16417-1.451731.123398B/A-0.066-1.353571.22156C/A-0.21824-1.50581.069327D/A-0.17871-1.466271.108857

TGF.alpha	D/B	-0.1127	-1.40027	1.174861	1
TGF.alpha	D/C	0.039531	-1.24803	1.327094	1
Thrombopoietin	A/E	-0.37393	-1.66149	0.913635	1
Thrombopoietin	B/E	-0.14577	-1.43334	1.141791	1
Thrombopoietin	C/E	-0.33228	-1.61984	0.955288	1
Thrombopoietin	D/E	-0.11724	-1.4048	1.170322	1
Thrombopoietin	B/A	0.228157	-1.05941	1.51572	1
Thrombopoietin	C/A	0.041654	-1.24591	1.329217	1
Thrombopoietin	D/A	0.256687	-1.03088	1.544251	1
Thrombopoietin	C/B	-0.1865	-1.47407	1.10106	1
Thrombopoietin	D/B	0.028531	-1.25903	1.316094	1
Thrombopoietin	D/C	0.215034	-1.07253	1.502597	1
TIE2	A/E	-0.22035	-1.50791	1.067217	1
TIE2	B/E	-0.22496	-1.51252	1.062603	1
TIE2	C/E	-0.22292	-1.51048	1.064642	1
TIE2	D/E	0.048792	-1.23877	1.336356	1
TIE2	B/A	-0.00461	-1.29218	1.282949	1
TIE2	C/A	-0.00257	-1.29014	1.284989	1
TIE2	D/A	0.269139	-1.01842	1.556702	1
TIE2	C/B	0.002039	-1.28552	1.289603	1
TIE2	D/B	0.273753	-1.01381	1.561316	1
TIE2	D/C	0.271714	-1.01585	1.559277	1
Tissue.Factor	A/E	-0.39283	-1.68039	0.894736	1
Tissue.Factor	B/E	-0.24589	-1.53345	1.041678	1

Tissue.Factor	C/E	-0.44157	-1.72913	0.845997	1
Tissue.Factor	D/E	-0.44497	-1.73254	0.842591	1
Tissue.Factor	B/A	0.146941	-1.14062	1.434505	1
Tissue.Factor	C/A	-0.04874	-1.3363	1.238824	1
Tissue.Factor	D/A	-0.05215	-1.33971	1.235418	1
Tissue.Factor	C/B	-0.19568	-1.48324	1.091882	1
Tissue.Factor	D/B	-0.19909	-1.48665	1.088477	1
Tissue.Factor	D/C	-0.00341	-1.29097	1.284158	1
TNF	A/E	-0.00529	-1.29286	1.28227	1
TNF	B/E	-0.03084	-1.31841	1.25672	1
TNF	C/E	0.068782	-1.21878	1.356346	1
TNF	D/E	0.112691	-1.17487	1.400255	1
TNF	B/A	-0.02555	-1.31311	1.262014	1
TNF	C/A	0.074076	-1.21349	1.361639	1
TNF	D/A	0.117985	-1.16958	1.405548	1
TNF	C/B	0.099626	-1.18794	1.387189	1
TNF	D/B	0.143535	-1.14403	1.431098	1
TNF	D/C	0.043909	-1.24365	1.331472	1
TNF.R2	A/E	-0.41884	-1.70641	0.868721	1
TNF.R2	B/E	-0.0639	-1.35146	1.223665	1
TNF.R2	C/E	-0.3718	-1.65936	0.915762	1
TNF.R2	D/E	0.006443	-1.28112	1.294006	1
TNF.R2	B/A	0.354944	-0.93262	1.642507	1
TNF.R2	C/A	0.047041	-1.24052	1.334605	1
L					

TNF.R2	D/A	0.425286	-0.86228	1.712849	1
TNF.R2	C/B	-0.3079	-1.59547	0.979661	1
TNF.R2	D/B	0.070342	-1.21722	1.357905	1
TNF.R2	D/C	0.378244	-0.90932	1.665808	1
TNF.RI	A/E	-0.27892	-1.56648	1.008647	1
TNF.RI	B/E	0.016103	-1.27146	1.303666	1
TNF.RI	C/E	-0.18978	-1.47734	1.097785	1
TNF.RI	D/E	-0.06358	-1.35114	1.223986	1
TNF.RI	B/A	0.29502	-0.99254	1.582583	1
TNF.RI	C/A	0.089138	-1.19843	1.376702	1
TNF.RI	D/A	0.21534	-1.07222	1.502903	1
TNF.RI	C/B	-0.20588	-1.49344	1.081682	1
TNF.RI	D/B	-0.07968	-1.36724	1.207883	1
TNF.RI	D/C	0.126201	-1.16136	1.413765	1
TNFRSF4	A/E	-0.45869	-1.74625	0.828874	1
TNFRSF4	B/E	-0.0136	-1.30116	1.273963	1
TNFRSF4	C/E	-0.20048	-1.48805	1.087082	1
TNFRSF4	D/E	-0.05732	-1.34488	1.230248	1
TNFRSF4	B/A	0.445089	-0.84247	1.732652	1
TNFRSF4	C/A	0.258208	-1.02936	1.545771	1
TNFRSF4	D/A	0.401374	-0.88619	1.688937	1
TNFRSF4	C/B	-0.18688	-1.47444	1.100682	1
TNFRSF4	D/B	-0.04371	-1.33128	1.243849	1
TNFRSF4	D/C	0.143166	-1.1444	1.43073	1
		-	-		

A/E	0.040668	-1.2469	1.328231	1
B/E	0.299366	-0.9882	1.58693	1
C/E	0.009446	-1.27812	1.297009	1
D/E	0.276483	-1.01108	1.564047	1
B/A	0.258699	-1.02886	1.546262	1
C/A	-0.03122	-1.31879	1.256341	1
D/A	0.235815	-1.05175	1.523379	1
C/B	-0.28992	-1.57748	0.997643	1
D/B	-0.02288	-1.31045	1.26468	1
D/C	0.267037	-1.02053	1.554601	1
A/E	-0.35322	-1.64079	0.934339	1
B/E	-0.19405	-1.48161	1.093517	1
C/E	-0.28759	-1.57516	0.999971	1
D/E	0.055106	-1.23246	1.34267	1
B/A	0.159178	-1.12839	1.446742	1
C/A	0.065632	-1.22193	1.353196	1
D/A	0.408331	-0.87923	1.695894	1
C/B	-0.09355	-1.38111	1.194017	1
D/B	0.249153	-1.03841	1.536716	1
D/C	0.342699	-0.94486	1.630262	1
A/E	-0.11941	-1.40697	1.168158	1
B/E	-0.00132	-1.28888	1.286246	1
C/E	-0.26198	-1.54954	1.025584	1
D/E	0.0469	-1.24066	1.334463	1
	B/E C/E D/E B/A C/A D/A C/B D/C A/E B/E C/E D/C A/E B/E C/E D/A C/E D/E B/A C/A D/E B/A C/A D/E B/A C/A D/E B/A C/A B/E D/A C/B D/A C/B D/C A/E B/E D/C A/E B/E C/E	B/E 0.299366 C/E 0.009446 D/E 0.276483 B/A 0.258699 C/A -0.03122 D/A 0.235815 C/B -0.28992 D/B -0.28992 D/B -0.28992 D/A 0.267037 A/E -0.35322 B/E -0.19405 C/E -0.28759 D/E 0.055106 B/A 0.159178 C/A 0.065632 D/A 0.408331 C/A 0.249153 D/E 0.342699 A/E -0.11941 B/E -0.00132	B/E0.299366-0.9882C/E0.009446-1.27812D/E0.276483-1.01108B/A0.258699-1.02886C/A-0.03122-1.31879D/A0.235815-1.05175C/B-0.28992-1.57748D/A0.267037-1.02053D/C0.267037-1.02053A/E-0.35322-1.64079B/E-0.19405-1.48161C/E-0.28759-1.57516D/E0.055106-1.23246B/A0.159178-1.12839C/A0.065632-1.22193D/A0.408331-0.87923C/B-0.09355-1.38111D/B0.249153-1.03841D/C0.342699-0.94486A/E-0.11941-1.40697B/E-0.00132-1.28888C/E-0.26198-1.54954	B/E0.299366-0.98821.58693C/E0.009446-1.278121.297009D/E0.276483-1.011081.564047B/A0.258699-1.028861.546262C/A-0.03122-1.318791.256341D/A0.235815-1.051751.523379C/B-0.28992-1.577480.997643D/A0.267037-1.020531.554601A/E-0.35322-1.640790.934339B/E-0.19405-1.481611.093517C/E-0.28759-1.575160.999971D/E0.055106-1.232461.34267B/A0.159178-1.128391.446742C/A0.065632-1.221931.353196D/A0.408331-0.879231.695894C/B-0.09355-1.381111.194017D/B0.249153-1.038411.536716D/C0.342699-0.944861.630262A/E-0.11941-1.406971.168158B/E-0.00132-1.288881.286246C/E-0.26198-1.549541.025584

U.PAR	B/A	0.118089	-1.16947	1.405652	1
U.PAR	C/A	-0.14257	-1.43014	1.14499	1
U.PAR	D/A	0.166306	-1.12126	1.453869	1
U.PAR	C/B	-0.26066	-1.54823	1.026902	1
U.PAR	D/B	0.048217	-1.23935	1.33578	1
U.PAR	D/C	0.308879	-0.97868	1.596442	1
VEGF.A	A/E	-0.38499	-1.67255	0.902576	1
VEGF.A	B/E	-0.01992	-1.30749	1.26764	1
VEGF.A	C/E	-0.24658	-1.53414	1.040988	1
VEGF.A	D/E	0.092884	-1.19468	1.380447	1
VEGF.A	B/A	0.365065	-0.9225	1.652628	1
VEGF.A	C/A	0.138413	-1.14915	1.425976	1
VEGF.A	D/A	0.477872	-0.80969	1.765435	1
VEGF.A	C/B	-0.22665	-1.51422	1.060912	1
VEGF.A	D/B	0.112807	-1.17476	1.40037	1
VEGF.A	D/C	0.339459	-0.9481	1.627022	1
VEGF.D	A/E	-0.16086	-1.44842	1.126708	1
VEGF.D	B/E	-0.23253	-1.52009	1.055032	1
VEGF.D	C/E	-0.17385	-1.46142	1.11371	1
VEGF.D	D/E	-0.1297	-1.41726	1.157868	1
VEGF.D	B/A	-0.07168	-1.35924	1.215887	1
VEGF.D	C/A	-0.013	-1.30056	1.274565	1
VEGF.D	D/A	0.03116	-1.2564	1.318723	1
VEGF.D	C/B	0.058678	-1.22889	1.346242	1
L		1	1	I	

VEGF.D	D/B	0.102836	-1.18473	1.390399	1
VEGF.D	D/C	0.044158	-1.24341	1.331721	1
VEGFR.2	A/E	-0.15969	-1.44725	1.127876	1
VEGFR.2	B/E	-0.26163	-1.5492	1.02593	1
VEGFR.2	C/E	-0.24783	-1.53539	1.039737	1
VEGFR.2	D/E	-0.15742	-1.44499	1.13014	1
VEGFR.2	B/A	-0.10195	-1.38951	1.185617	1
VEGFR.2	C/A	-0.08814	-1.3757	1.199424	1
VEGFR.2	D/A	0.002264	-1.2853	1.289827	1
VEGFR.2	C/B	0.013807	-1.27376	1.301371	1
VEGFR.2	D/B	0.10421	-1.18335	1.391773	1
VEGFR.2	D/C	0.090403	-1.19716	1.377966	1

		SS	Df	F-value	Pr(>F)		Sig
Gr	oup	73	2	6.49E+01	2.20E-16		***
Pro	teins	65377	91	1.28E+03	2.20E-16		***
Sar	nple	766	72	1.89E+01	2.20E-16		***
Group:	Proteins	228	182	2.23E+00	2.20E-16		***
Resi	duals	3942	7012				
		Sig Code:	s: 0 '***',	0.001 '**', 0.0	D1 '*'		
Compariso	on	Protein		Difference	e Lower Cl	Upper CI	Q-value
Malignant	Benign	CEA		1.97	1.08	2.85	0.00
Malignant	Healthy	CEA		2.11	1.02	3.19	0.00
Malignant	Healthy	IL.8		1.22	0.14	2.31	0.00
Benign	Healthy	Prolacti	ı	1.10	0.02	2.19	0.04
Malignant	Benign	IL.8		0.81	-0.07	1.70	0.21
	Benign	PDGF.s	ubunit.B	0.78	-0.10	1.67	0.34
Malignant	Derlight						1

1	Malignant	Benign	CXCL5	0.63	-0.26	1.52	0.98	
٢	Malignant	Benign	Amphiregulin	0.62	-0.27	1.51	0.99	

				I	healthy	group E					
Comparison	Target	p-	Compariso	Target	p-	Compariso	Target	p-	Compariso	Target	p-
	Biomarker	adju	n	Biomarker	adju	n	Biomarker	adju	n	Biomarker	adju
A/E	Hu.IL.854.	0.006	B/E	Hu.IL.854.	0.002	C/E	Hu.MIP.1b18.	0.017	D/E	Hu.PDGF.bb	2E-07
										47.	
A/E	Hu.MCP.1.M	0.053	B/E	Hu.MCP.1.MCAF	0.074	C/E	Hu.IL.854.	0.066	D/E	Hu.IL.854.	6E-05
	CAF53.			.53.							
A/E	Hu.IL.452.	0.113	B/E	Hu.IL.452.	0.210	C/E	Hu.IL.452.	0.215	D/E	Hu.MCP.1.MC	5E-04
										AF53.	
A/E	Hu.G.CSF5	0.275	B/E	Hu.IL.619.	0.223	C/E	Hu.IL.1573.	0.376	D/E	Hu.IFN.g21.	2E-03
	7.										
A/E	Hu.MIP.1b	0.522	B/E	Hu.PDGF.bb47.	0.739	C/E	Hu.IL.238.	0.712	D/E	Hu.IL.452.	4E-03
	18.										
A/E	Hu.IL.774.	0.954	B/E	Hu.G.CSF57.	0.741	C/E	Hu.PDGF.bb4	0.744	D/A	Hu.PDGF.bb	4E-03
							7.			47.	
A/E	Hu.IL.619.	0.978	B/E	Hu.IL.977.	1.000	C/E	Hu.G.CSF57.	0.757	D/E	Hu.MIP.1a55.	4E-03
A/E	Hu.IL.533.	0.986	B/E	Hu.VEGF45.	1.000	C/E	Hu.GM.CSF3	0.796	D/E	Hu.IL.1b39.	1E-02

							4.				
A/E	Hu.VEGF4	0.992	B/E	Hu.IL.774.	1.000	C/E	Hu.MCP.1.MC	0.887	D/E	Hu.IL.977.	2E-02
	5.						AF53.				
A/E	Hu.IL.1351.	0.995	B/E	Hu.GM.CSF34.	1.000	C/E	Hu.IL.977.	0.987	D/E	Hu.IL.619.	3E-02
A/E	Hu.IFN.g21	1.000	B/E	Hu.IFN.g21.	1.000	C/E	Hu.IL.619.	0.993	D/E	Hu.IL.774.	6E-02
A/E	Hu.IL.1056.	1.000	B/E	Hu.MIP.1b18.	1.000	C/E	Hu.VEGF45.	0.998	D/E	Hu.IL.1776.	9E-02
A/E	Hu.IL.1573.	1.000	B/E	Hu.TNF.a36.	1.000	C/E	Hu.IL.533.	0.998	D/A	Hu.MIP.1a55.	9E-02
A/E	Hu.IL.977.	1.000	B/A	Hu.IL.1351.	1.000	C/B	Hu.IL.238.	0.999	D/C	Hu.MIP.1a55.	1E-01
A/E	Hu.GM.CSF.	1.000	B/A	Hu.IL.533.	1.000	C/E	Hu.IL.1ra25.	1.000	D/E	Hu.G.CSF57.	1E-01
	.34.										
A/E	Hu.TNF.a3	1.000	B/E	Hu.IL.1056.	1.000	C/E	Hu.IFN.g21.	1.000	D/E	Hu.MIP.1b18.	2E-01
	6.										
A/E	Hu.Eotaxin	1.000	B/E	Hu.IL.1b39.	1.000	C/B	Hu.MIP.1b18.	1.000	D/E	Hu.TNF.a36.	2E-01
	43.										
A/E	Hu.IL.1b39.	1.000	B/E	Hu.Eotaxin43.	1.000	C/E	Hu.Eotaxin43.	1.000	D/E	Hu.IL.533.	2E-01
A/E	Hu.FGF.basi	1.000	B/A	Hu.Eotaxin43.	1.000	C/E	Hu.IL.1776.	1.000	D/E	Hu.VEGF45.	3E-01
	c44.										
A/E	Hu.IL.12.p70	1.000	B/A	Hu.FGF.basic44.	1.000	C/A	Hu.IL.238.	1.000	D/E	Hu.FGF.basic	5E-01

	75.									44.	
A/E	Hu.IL.1776.	1.000	B/A	Hu.FGF.basic44.	1.000	C/B	Hu.IL.1573.	1.000	D/B	Hu.MIP.1a55.	5E-01
A/E	Hu.IL.1ra2	1.000	B/A	Hu.G.CSF57.	1.000	C/E	Hu.IL.774.	1	D/E	Hu.IL.1ra25.	6E-01
	5.										
A/E	Hu.IL.238.	1.000	B/A	Hu.GM.CSF34.	1.000	C/E	Hu.TNF.a36.	1	D/E	Hu.IL.1056.	8E-01
A/E	Hu.IP.1048	1.000	B/A	Hu.IFN.g21.	1.000	C/E	Hu.IL.1056.	1	D/C	Hu.PDGF.bb	8E-01
										47.	
A/E	Hu.MIP.1a	1.000	B/A	Hu.IL.1056.	1.000	C/E	Hu.IL.1351.	1	D/B	Hu.PDGF.bb	8E-01
	55.									47.	
A/E	Hu.PDGF.bb	1.000	B/E	Hu.IL.12.p7075.	1.000	C/A	Hu.Eotaxin43.	1	D/A	Hu.FGF.basic	9E-01
	47.									44.	
A/E	Hu.RANTES	1.000	B/A	Hu.IL.12.p7075.	1.000	C/B	Hu.Eotaxin43.	1	D/C	Hu.IL.1b39.	1E+00
	37.										
			B/E	Hu.IL.1351.	1.000	C/E	Hu.FGF.basic	1	D/A	Hu.IL.1b39.	1E+00
							44.				
			B/E	Hu.IL.1573.	1.000	C/A	Hu.FGF.basic	1	D/B	Hu.IL.1b39.	1E+00
							44.				
			B/A	Hu.IL.1573.	1.000	C/B	Hu.FGF.basic	1	D/E	Hu.IL.238.	1E+00
							44.				

	B/E	Hu.IL.1776.	1.000	C/A	Hu.G.CSF57.	1	D/E	Hu.GM.CSF3	1E+00
								4.	
	B/A	Hu.IL.1776.	1.000	C/B	Hu.G.CSF57.	1	D/A	Hu.IL.1776.	1E+00
	B/A	Hu.IL.1b39.	1.000	C/A	Hu.GM.CSF3	1	D/C	Hu.FGF.basic	1E+00
					4.			44.	
	B/E	Hu.IL.1ra25.	1.000	C/B	Hu.GM.CSF3	1	D/E	Hu.IL.1573.	1E+00
					4.				
	B/A	Hu.IL.1ra25.	1.000	C/A	Hu.IFN.g21.	1	D/B	Hu.IFN.g21.	1E+00
	B/E	Hu.IL.238.	1.000	C/B	Hu.IFN.g21.	1	D/C	Hu.IFN.g21.	1E+00
	B/A	Hu.IL.238.	1.000	C/A	Hu.IL.1056.	1	D/B	Hu.FGF.basic	1E+00
								44.	
	B/A	Hu.IL.452.	1.000	C/B	Hu.IL.1056.	1	D/A	Hu.IFN.g21.	1E+00
	B/A	Hu.IL.533.	1.000	C/E	Hu.IL.12.p70	1	D/B	Hu.IL.1776.	1E+00
					75.				
	B/A	Hu.IL.619.	1.000	C/A	Hu.IL.12.p70	1	D/A	Hu.IL.977.	1E+00
					75.				
	B/A	Hu.IL.774.	1.000	C/B	Hu.IL.12.p70	1	D/E	Hu.IL.12.p70	1E+00
					75.			75.	
	B/A	Hu.IL.854.	1.000	C/A	Hu.IL.1351.	1	D/C	Hu.MCP.1.MC	1E+00

								AF53.	
	B/A	Hu.IL.977.	1.000	C/B	Hu.IL.1351.	1	D/C	Hu.IL.774.	1E+00
	B/E	Hu.IP.1048.	1.000	C/A	Hu.IL.1573.	1	D/B	Hu.IL.1ra25.	1E+00
	B/A	Hu.IP.1048.	1.000	C/A	Hu.IL.1776.	1	D/B	Hu.IL.977.	1E+00
	B/A	Hu.MCP.1.MCAF.	1.000	C/B	Hu.IL.1776.	1	D/C	Hu.IL.1776.	1E+00
	B/E	.53. Hu.MIP.1a55.	1.000	C/E	Hu.IL.1b39.	1	D/B	Hu.IL.533.	1E+00
	B/A	Hu.MIP.1a55.	1.000	C/A	Hu.IL.1b39.	1	D/A	Hu.TNF.a36.	1E+00
	B/A	Hu.MIP.1b18.	1.000	C/B	Hu.IL.1b39.	1	D/B	Hu.IL.238.	1E+00
	B/A	Hu.PDGF.bb47.	1.000	C/A	Hu.IL.1ra25.	1	D/C	Hu.TNF.a36.	1E+00
	B/E	Hu.RANTES37.	1.000	C/B	Hu.IL.1ra25.	1	D/B	Hu.TNF.a36.	1E+00
	B/A	Hu.RANTES37.	1.000	C/A	Hu.IL.452.	1	D/B	Hu.MIP.1b18.	1E+00
	B/A	Hu.TNF.a36.	1.000	C/B	Hu.IL.452.	1	D/A	Hu.IP.1048.	1E+00
	B/A	Hu.VEGF45.	1.000	C/A	Hu.IL.533.	1	D/B	Hu.IL.774.	1E+00
				C/B	Hu.IL.533.	1	D/E	Hu.Eotaxin43	1E+00
				C/A	Hu.IL.619.	1	D/A	Hu.Eotaxin43	1E+00
				C/B	Hu.IL.619.	1	D/B	Hu.Eotaxin43	1E+00

1		 1						
			C/A	Hu.IL.774.	1	D/C	Hu.Eotaxin43	1E+00
			C/B	Hu.IL.774.	1	D/A	Hu.G.CSF57.	1E+00
			C/A	Hull 8 54	1	D/B	Hu G CSE 57	1E+00
			C/B	Hu.IL.854.	1	D/C	Hu.G.CSF57.	1E+00
			C/A	Hu.IL.977.	1	D/A	Hu.GM.CSF3	1E+00
							4.	
			C/B	Hu.IL.977.	1	D/B	Hu.GM.CSF3	1E+00
							4.	
			C/E	Hu.IP.1048.	1	D/C	Hu.GM.CSF3	1E+00
							4.	
			C/A	Hu.IP.1048.	1	D/A	Hu.IL.1056.	1E+00
		 	C/B		1	D/B	Hull 10 56	1E+00
			C/A	Hu.MCP.1.MC	1	D/C	Hu.IL.1056.	1E+00
				AF53.				
			C/B	Hu.MCP.1.MC	1	D/A	Hu.IL.12.p70	1E+00
				AF53.			75.	
			C/E	Hu.MIP.1a55.	1	D/B	Hu.IL.12.p70	1E+00
				Image: state of the state	Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Secon	Image: Second system Image: Second system <td< td=""><td>Image: Second second</td><td>Image: Constraint of the second se</td></td<>	Image: Second	Image: Constraint of the second se

							75.	
			C/A	Hu.MIP.1a55.	1	D/C	Hu.IL.12.p70	1E+00
							75.	
			C/B	Hu.MIP.1a55.	1	D/E	Hu.IL.1351.	1E+00
			C/A	Hu.MIP.1b18.	1	D/A	Hu.IL.1351.	1E+00
			C/A	Hu.PDGF.bb4	1	D/B	Hu.IL.1351.	1
				7.				
			C/B	Hu.PDGF.bb4	1	D/C	Hu.IL.1351.	1
				7.				
			C/E	Hu.RANTES3	1	D/A	Hu.IL.1573.	1
				7.				
			C/A	Hu.RANTES3	1	D/B	Hu.IL.1573.	1
				7.				
			C/B	Hu.RANTES3	1	D/C	Hu.IL.1573.	1
				7.				
			C/A	Hu.TNF.a36.	1	D/A	Hu.IL.1ra25.	1
			C/B	Hu.TNF.a36.	1	D/C	Hu.IL.1ra25.	1
			C/A	Hu.VEGF45.	1	D/A	Hu.IL.238.	1
			C/B	Hu.VEGF45.	1	D/C	Hu.IL.238.	1

					D/A	Hu.IL.452.	1
					D/B	Hu.IL.452.	1
					D/C	Hu.IL.452.	1
					D/A	Hu.IL.533.	1
					D/C	Hu.IL.533.	1
					D/A	Hu.IL.619.	1
					D/B	Hu.IL.619.	1
					D/C	Hu.IL.619.	1
					D/A	Hu.IL.774.	1
					D/A	Hu.IL.854.	1
					D/B	Hu.IL.854.	1
					D/C	Hu.IL.854.	1
					D/C	Hu.IL.977.	1
					D/E	Hu.IP.1048.	1
					D/B	Hu.IP.1048.	1
					D/C	Hu.IP.1048.	1
					D/A	Hu.MCP.1.MC	1
						AF53.	
					D/B	Hu.MCP.1.MC	1
	1		1			I	1

						AF53.	
					D/A	Hu.MIP.1b18.	1
					D/C	Hu.MIP.1b18.	1
					D/E	Hu.RANTES3	1
						7.	
					D/A	Hu.RANTES3	1
						7.	
					D/B	Hu.RANTES3	1
						7.	
					D/C	Hu.RANTES3	1
						7.	
					D/A	Hu.VEGF45.	1
					D/B	Hu.VEGF45.	1
					D/C	Hu.VEGF45.	1
					D/C	Hu.VEGF45.	1
	1		1			1	1

Comparison		Protein	Difference	Lower CI	Upper CI	Q-value
Malignant	Healthy	Hu.IL.854.	0.95	0.27	1.64	0
Malignant	Healthy	Hu.PDGF.bb47.	0.95	0.26	1.63	0
Benign	Healthy	Hu.IL.854.	0.94	0.25	1.63	0
Malignant	Healthy	Hu.IL.452.	0.85	0.16	1.53	0
Malignant	Healthy	Hu.MIP.1b18.	0.82	0.13	1.51	0
Benign	Healthy	Hu.MCP.1.MCAF53.	0.82	0.13	1.5	0
Malignant	Healthy	Hu.MCP.1.MCAF53.	0.81	0.12	1.5	0
Benign	Healthy	Hu.IL.452.	0.77	0.08	1.46	0.01
Malignant	Healthy	Hu.IFN.g21.	0.71	0.03	1.4	0.03
Malignant	Healthy	Hu.IL.977.	0.71	0.02	1.4	0.03
Malignant	Healthy	Hu.G.CSF57.	0.71	0.02	1.39	0.03
Malignant	Healthy	Hu.IL.619.	0.69	0.01	1.38	0.04
Benign	Healthy	Hu.G.CSF57.	0.69	0	1.37	0.05
Benign	Healthy	Hu.IL.619.	0.65	-0.04	1.34	0.11

Malignant	Healthy	Hu.IL.533.	0.63	-0.06	1.31	0.17
Malignant	Healthy	Hu.IL.1b39.	0.61	-0.07	1.3	0.21
Malignant	Healthy	Hu.VEGF45.	0.61	-0.07	1.3	0.22
Malignant	Healthy	Hu.IL.774.	0.61	-0.08	1.3	0.23
Malignant	Healthy	Hu.IL.1776.	0.61	-0.08	1.29	0.23
Malignant	Healthy	Hu.IL.1573.	0.6	-0.08	1.29	0.25
Malignant	Healthy	Hu.IL.238.	0.59	-0.1	1.27	0.33
Malignant	Benign	Hu.PDGF.bb47.	0.47	-0.09	1.03	0.37
Malignant	Healthy	Hu.TNF.a36.	0.57	-0.11	1.26	0.39

	and q-values)									
Target Protein	Correlation	p.value	q.value							
PDGF.subunit.B	0.87	0.00	0.00							
IL.8	0.45	0.00	0.00							
MCP.1	0.46	0.00	0.00							
IL.6	0.39	0.00	0.00							
IL.7	0.31	0.01	0.02							
VEGF.A	0.28	0.02	0.04							
IFN.gamma	0.25	0.03	0.05							
IL.2	0.21	0.08	0.12							
GM.CSF	0.18	0.13	0.19							
IL.4	0.13	0.28	0.37							
IL.1ra	0.11	0.34	0.41							
IL.12	0.10	0.38	0.41							
TNF	0.04	0.72	0.72							

Dukes' stage	A	В	С	D							
(n=)	(15)	(15)	(15)	(15)							
Age											
Median <u>+</u> SD	65 <u>+</u> 7.2	70 <u>+</u> 7.9	65 <u>+</u> 9.0	62 <u>+</u> 8.0							
Sex											
Male	66.7%	53.3%	46.7%	60%							
Female	22.2%	46.7%	53.3%	40%							
Location of tumor/cancer											
Sigmoid	6 (40%)	6 (40%)	11	8 (53.3%)							
Low Rectal	2 (13.3%)	0	1 (6.7%)	1 (6.7%)							
Caecal	2 (13.3%)	3 (20%)	3 (20%)	3 (20%)							
Ascending colon	2 (13.3%)	2 (13.3%)	0	1 (6.7%)							
Transverse colon	2 (13.3%)	4 (26.7%)	0	0							
Descending colon	0	0	0	2 (13.3%)							
Adenoma	1 (6.7%)	0	0	0							
Metastasis/Location											
Lymph Node	0	0	15	0							
Liver	0	0	0	8							
Gall Bladder/Lung	0	0	0	1							
Ovary	0	0	0	1							
Other Colonic Regions	0	0	0	5							

CHAPTER 6 GENERAL DISCUSSION, FUTURE DIRECTIONS AND CONCLUSION

6.1 General discussion

Colorectal cancer (CRC) is the third most prevalent cancer globally with mortality rates over 50% with cancer spread (metastasis) being responsible for the bulk of these deaths [6, 129]. Like most cancers, CRC advances through various stages altering and/or utilising molecules associated with various biochemical pathways to gradually progress from being a benign polyp through an adenocarcinoma and finally to becoming metastatic cancer.

Several proteins families including growth factors (e.g., TGF β , VEGF, EGFR), integrins (e.g., $\alpha\nu\beta6$, $\alpha\nu\beta1$, $\alpha\nu\beta3$, and $\alpha6\beta4$), proteolytic enzymes and their regulators (e.g., plasmin, uPAR, PAI-1, cathepsins, MMPs to name but a few), MAPK pathway members (e.g., ERK1/2, Ras, JNK, p38), Wnt and Notch signaling have been implicated as dysfunctional in CRC.

The primary aim of this thesis was to contribute to new knowledge regarding the role TGF β has in model systems of cancer where we have artificially reduced the expression levels of two known activator system of TGF β , namely integrin β 6 and the uPA protease receptor uPAR. This was achieved by employing state-of-the-art proteomics, cell signalling assays (i.e., AlphaScreen® SureFire® Assay) and multiplexing technologies (i.e., Proseek Multiplex Oncology I kit), in conjunction with sophisticated bioinformatics using a panel of cultured human CRC cell lines and clinically staged CRC plasma samples.

As outlined in earlier chapters, our group and several others have published that β 6 and uPAR play a significant role in CRC [69, 71, 154, 158, 185, 190-193, 376, 377] as interaction partners. Additionally, β 6 (a direct activator of TGF β) and uPAR (an indirect activator of latent TGF β through the uPA-driven activation of cell-surface plasmin) can influence TGF β activation and subsequent cancer-related biologies. The body of work began in our group after Saldanha *et al.*, using ovarian cancer (OVCA429) cells observed β 6 integrin subunit as the dominant protein in a co-immunoprecipitation (co-IP) experiment with anti-uPAR antibodies. In a subsequent reverse IP using anti- β 6 antibodies co-purification of uPAR was demonstrated, and since then our group has relentlessly shown other evidence confirming the uPAR• β 6 interaction [180].

The uPAR•αvβ6 interaction was recently further investigated by Ahn *et al.*, (our group; Publication VII of this thesis in Appendix II) using proximity ligation assay (PLA) and peptide array studies. This interaction in the ovarian cancer cells (OVCA429) and CRC cell lines (SW480 and HT29 subclones) was first confirmed using PLA and was observed to

occur at cell surface. PLA was performed using the anti-uPAR R4 and anti- $\alpha\nu\beta6$ 6.4B4 monoclonal antibodies. Subsequent, peptide array studies identified six potential $\alpha\nu\beta6$ binding sites spanning across all three domains of uPAR [185]. Further *in silico* analysis of the peptide array data determined that domain II and III of uPAR are accessible for binding with $\alpha\nu\beta6$. Interestingly, Chaurasia *et al.*, had observed that the 9-mer peptide derived from domain III (residues G262-Q270 from Uniprot KB: Q03405) of uPAR bound to $\alpha5\beta1$ [378]. To confirm these observations from PLA and peptide array studies, Sowmya *et al.*, (our group) undertook structural modelling to generate a three-dimensional structure of integrin $\alpha\nu\beta6$. This is quite remarkable as the crystal structure for $\alpha\nu\beta6$ has not been reported and therefore this homology model reported by Sowmya *et al.*, offers a glimpse of the $\alpha\nu\beta6$ structure [186]. Subsequent docking studies, using this homology model, confirmed the site of $\alpha\nu\beta6$ interaction to be in domain III of uPAR [186]. Furthermore, six (S229, E230, T248, G249, T250, E255) out of the 27 residues identified by peptide array study were consistent with the docking results that further strengthens the uPAR• $\alpha\nu\beta6$ interaction.

Furthermore functional blocking of β 6 using Clone 6.3G9 antibody inhibited uPAstimulated ERK1/2 phosphorylation and cell proliferation in OVCA429 cells [180]. However, both β 6 and uPAR cannot participate directly in downstream signalling as they both lack intracellular kinase domains and require accessory/adaptor proteins to exert signalling effects. Saldanha *et al.*, proposed that the $\alpha\nu\beta6$ and uPAR interaction might influence TGF β activation which can then regulate cell proliferation and tumourigenesis [180], as they obtained some (currently unpublished data) suggesting TGFbR2 coimmunoprecipitated as well. This lead to the novel hypothesis of the uPAR• $\alpha\nu\beta6$ •TGF $\beta1$ interactome which is under investigation in this thesis. Another proteomic study (by our research group) using the SW480 CRC cell lines determined TGF $\beta1$ expression to be significantly increased upon the overexpression of $\beta6$ (SW480^{$\beta60E$} cells) [149] adding considerable credence to our proposal. Considering these novel observations collectively, it was crucial to study these proteins in combination in order to fully comprehend their role/s in CRC.

Therefore, this thesis aimed to investigate the role of TGFβ1 in the proposed hypothetical uPAR•αvβ6•TGFβ1 interactome using CRC cell lines that have β6 and uPAR expression artificially altered. This was primarily achieved by performing a combination of cell signalling assays, cancer cell behaviour assays and LC-MS/MS-based proteomics.

323

The first study of this thesis (Chapter 3, Study I) demonstrated that CRC cells that express β6 at varying levels (SW480^{β6OE}, HT29^{Mock}, HT29^{β6AS}) [146, 379] have the ability to incorporate recombinant L-TGFB1 and PLG zymogens as part the hypothetical uPAR•αvβ6•TGFβ1 interactome *in cellulo* and induce phenotypic changes required for cancer progression. Previous studies have shown that expression of $\beta 6$ increases proliferation and invasion through its unique cytoplasmic tail that can mediate ERK1/2 signalling activity [146, 379]. In agreement, treatment of β 6 expressing cells with L-TGF β 1 and/or PLG significantly enhanced proliferation, wound healing, migration and invasion phenotypes. Interestingly, ERK1/2 signalling activity was amplified upon treatment with L-TGFB1 and/or PLG, indicating the additive effects of these molecules through the uPAR•αvβ6•TGFβ1 interactome. These observations align with previous reports by Agrez et al., and Ahmed et al., [146, 379]. Additionally, TGFβ has been implicated in crosstalk with the ERK1/2 pathway [380-382] and the observed amplification of ERK activity could be due to $\beta 6$ expression and TGF $\beta 1$ crosstalk. TGF $\beta 1$ has also been shown to induce ERKmediated phosphorylation of Smad2 and Smad3 [382]. Interestingly, an increased Smad2 and Akt1/2/3 signalling activity was observed when $\beta 6$ was expressed which was not significantly altered upon treatment with L-TGF^{β1} and/or PLG. These results suggest a significant role for $\beta 6$ and TGF $\beta 1$ in the uPAR/ $\alpha v\beta 6/TGF\beta 1$ interactome and highlight the importance of investigating the direct and indirect (as a result of crosstalk) signalling activity associated with various proteins implicated in cancer biology. The current study also demonstrated the diversity and complexity of signalling utilised by cancer cells to survive and eventually metastasise. This study, however, did not reveal the full extent of alterations to proteins required to maintain cancer phenotypes as that necessitated a more detailed proteomic investigation of these cell lines.

The proteomic alterations associated with phenotypic changes observed in the previous study, were subsequently investigated in a high-throughput quantitative proteomic experiment (Chapter 3, Study II). In that study, however, the SW480 and HT29 CRC subclone cells were treated solely with <u>active</u> TGF β 1 as this allowed for an investigation of phenotypic and proteomic changes solely exerted by active TGF β 1 and not associated with activation of normally L-TGF β 1 that could introduce additional variables. Cell-based assays determined that cells expressing β 6 when treated with TGF β 1 exhibited significantly enhanced proliferation, wound healing, migration and invasion and supported some of the observations shown in Chapter 3 as well as those observed by Agrez *et al.*, and Ahmed *et al.*, [146, 379]. The subsequent proteomic study was performed on plasma membrane-

enriched cell samples to elucidate the TGF β -mediated alterations in proteins, cellular pathways, processes, and behaviours when $\beta 6$ is expressed. The high-throughput quantitative proteomics approach using iTRAQ following TGF β treatment identified at least 2,050 proteins for each cell line comparison. Several of the significantly altered proteins were associated with cytoskeletal remodelling, cell migration, invasion, adhesion, and cellular stress were observed to be differentially up- or down-regulated in a TGF β -integrin $\beta 6$ -dependent manner. The biological significance of these results was displayed through Ingenuity Pathway Analysis (IPA) and showed that the eukaryotic translation initiation factor 2 (eIF2) signalling pathway (previously associated with cancer [383-385]) was significantly altered when $\beta 6$ subunit is expressed. These findings further demonstrate that $\beta 6$ in the presence of active TGF $\beta 1$ potentiates pathways that are required to sustain the proliferative and invasive phenotypes required to attain malignancy at a later stage.

The SW480 and HT29 subclone cells endogenously express uPAR and therefore were ideal to investigate the uPAR•αvβ6•TGFβ1 interactome. Although, it was not possible from the two previous studies of this thesis (Chapter 3, Study I & II) to determine if the observed phenotypic and proteomic changes were influenced by any associations between TGFB1 and uPAR or β6 and uPAR. The possible associations between TGFβ1 and uPAR were evaluated using HCT116 CRC cells (Chapter 4) that endogenously express uPAR (HCT116^{WT}) but not β 6 integrin. Additionally, the HCT116^{WT} has a subclone where the uPAR expression has been stably and artificially suppressed by approximately 50% (HCT116^{uPARAS}) [376]. Interestingly, HCT116^{WT} cells upon treatment with TGFβ did not show significant alterations to proliferation or invasion, although HCT116^{uPARAS} cells exhibited a decreased proliferation (~24%) following TGF β treatment and invasion (~20%) following SB431542 (a TGF^β receptor I kinase inhibitor) or dual SB431542 and TGF^β treatment. Interestingly, Brattain et al., reported the parent HCT116 cells to be tumorigenic to athymic nude mice when trypsinised or scrapped cells in tissue culture medium without any serum were given as subcutaneous injections [386]. Likewise, Wang et al., also reported pulmonary metastases to occur in 63-78% of athymic nude mice injected with the HCT116^{WT} cells and injection with the antisense transfected clones, 3'-AS7 and 5'-AS, showed pulmonary metastases in only 19% and 9% of the mice respectively [387]. The observations from the current study clearly align with these mice studies, wherein proliferation and invasion was more pronounced in HCT116^{WT} cells with higher uPAR expression, suggesting a possible tumorigenic activity, which was reduced when uPAR expression was artificially decreased by ~50% [376].

These interesting observations were then validated by proteomics using a similar approach employed in Chapter 3, Study II where the membrane enriched samples following TGF β treatment were analysed using iTRAQ. This high-throughput quantitative proteomics approach identified approximately 1,700 proteins. IPA of the significantly altered proteins demonstrated several related to cytoskeletal signalling, cell adhesion, migration, cell death and survival, protein trafficking and (once again) the eIF2 signalling pathway components as being affected in either in a TGF β -dependent or TGF β -independent manner. This study in particular identified that cells expressing uPAR (HCT116^{WT}) do not respond significantly to TGF β treatments whereas those with lower uPAR levels (HCT116^{WT} cells in a TGF β -independent manner and a possible malignant phenotype of the HCT116^{WT} cells in a TGF β -independent manner and a possible TGF β -dependant growth suppression in the HCT116^{uPAR-AS} cells.

Interestingly, the eIF2 signalling was observed to be significantly altered, in both proteomic studies performed in this thesis, in a TGFβ-β6 or uPAR or TGFβ-uPAR dependent manner. The treatment of β 6-expressing (SW480^{β 6OE} and HT29 subclones) cells with active TGF β 1 identified several eIF2 and eIF4 signalling pathway members including eIF2A, eukaryotic translation initiation factor 2 subunit alpha (eIF2S1), eukaryotic translation initiation factor 2 subunit beta (eIF2S2), eukaryotic translation initiation factor 2 subunit gamma (eIF2S3), and KRAS to be significantly up-regulated. Likewise, several ribosomal proteins related to eIF2 signalling were altered when the HCT116^{uPAR-AS} cells were treated with TGFβ. The eIF2 signalling complex, is made up of the eIF2S1, eIF2S2, and eIF2S3 subunits and controls stress-related signals to regulate global and specific mRNA translation, and thus protein synthesis [388]. The up-regulation of these eIF2 subunits indicates a potential need to sustain increased protein expression levels required for the abnormal functioning of cancer cells. However, the increased protein levels cannot be achieved without eIF4 which is necessary to deliver the mRNA to eIF3 for translation into polypeptide [385]). Although eIF4 related molecules were not observed in the current SW480 and HT29 proteomic study, eukaryotic translation initiation factor 4 gamma 1 (eIF4G1) was observed to be up-regulated in our previous proteomic study using the SW480 subclones [389] and other studies in breast [390] and lung [391] epithelial cancers. Interestingly, TGFβ treatment of the HCT116^{WT} resulted in down-regulation eIF4G1 (0.60 \downarrow). eIF4G1 is the most abundant member of the eIF4G scaffold protein family, whose elevated expression in yeast has been shown to promote direct mRNA-ribosome interaction and translation of mRNAs with longer polyA tails, thereby promoting mRNA translation efficiency [392-394]. It is also a component of the eIF4F complex essential for mRNA translation. Additionally, previous studies have shown that the down-regulation of eIF4G1 in mammalian and yeast cells resulted in decreased mRNA translation of multiple mRNAs but was not completely inhibited [392, 395]. The observations from the HCT116 proteomic study suggests that TGF β may be exerting growth inhibitory effects and the presence of uPAR seems to abrogate those effects to promote growth in an uPAR-dependent manner.

Taken together, the results from the signalling and proteomic studies demonstrate that molecules from the hypothesised uPAR• $\alpha\nu\beta6$ •TGF $\beta1$ interactome contribute to alterations required for malignant phenotype lending more credence to the existence of this hypothetical interactome. TGF $\beta1$ in a $\beta6$ -dependant manner further enhanced the alterations of proteins and signalling activity required to maintain the malignant phenotype essential for progression towards a metastatic stage in the SW480 and HT29 cells, whilst uPAR by itself was able to promote these changes in the HCT116 cells.

Therefore, understanding the expression levels of these molecules through the use of noninvasive tests could be useful as they may serve as potential markers for CRC. This prompted the investigation of TGF β and uPAR expression levels in a clinical setting using human blood plasma samples from Dukes' stage A-D CRC patients (n=60) and unaffected normal control plasmas (n=15) (Chapter 5). These samples were analysed using the Proseek Multiplex Oncology I kit that evaluated the expression of 92 putative cancer-related proteins including Latency-associated peptide TGFB1 (LAP TGFB1) and uPAR from just 1µL of human plasma. The observations from this study indicated no significant difference in expression of LAP-TGFB1 and uPAR in plasma between various stages in this set of samples. However, the study identified 8 oncoproteins (CEA, IL-8, prolactin, amphiregulin, PDGF-BB, IL-6, CXCL11 and CXCL5) to be significantly different amongst various CRC stages. In particular, CEA, IL-8 and prolactin were found to differentiate unaffected controls from non-malignant (Dukes' A + B) and malignant (Dukes' C + D) stages and reported as potential CRC biomarkers in the published manuscript in Chapter 5. These identified biomarkers could potentially be implemented in the development of a multi-protein biomarker panel that could be used for early diagnosis of CRC.

Taken together, the cell signalling assays and high-throughput proteomic studies (Chapter 3 & 4) provided insight into the biomolecular deregulations that can be exerted by TGF β during CRC. The observations reported in these studies opened up avenues for initiating a knowledge-driven search for protein markers. This lead to the identification of three

potential CRC biomarkers (Chapter 5) that could serve as direct targets for developing new diagnostic and therapeutic assays for CRC. Overall, the observations reported in this thesis have enhanced our understanding of how TGF β drives/alters the fundamental cellular processes required for the progression of CRC to a metastatic stage and will pave way to further research to fully elucidate its role in cancer itself.

6.2 Proteins as Biomarkers for CRC

Cancer biomarkers are used to screen for primary cancers, distinguish benign from malignant or different types of malignancies from one another, determine prognosis for patients who have been diagnosed with cancer, and monitor status the disease, either to detect recurrence or determine response or progression to therapy [34]. Various molecules, such as proteins, peptides, microRNAs and DNA amongst others, can be used as biomarkers. A multitude of potential biomarkers for CRC have been identified and reported in the literature (Chapter 1, Table 2). For example, carcinoembryonic antigen (CEA) is employed as a routine marker to monitor CRC recurrence. Most commonly it is used to monitor CRC patients, following adjuvant therapy, with the goal of detecting liver metastases [35, 396].

The modern high-throughput LC-MS/MS-based proteomics, utilized to study the global membrane proteome profiles of TGFB-treated colorectal adenocarcinoma cells with artificially modified ß6 and uPAR expression, identified several altered proteins and perturbed pathways that provided broad insights into the role of TGFβ in CRC biology. The proteomic studies identified several cytoskeletal keratins, actin associated proteins, cell proliferation, migration, adhesion and cellular stress and cell death associated proteins to be significantly altered, amongst which were several proteins that have suggested to be biomarkers by the American Society of Clinical Oncology (ASCO). For instance, annexin A2 was reported to be used a diagnostic and prognostic marker for CRC [397, 398]. The expression of annexin A2 observed in proteomic studies conferred with previous observations reported in [341, 399, 400]. Several keratins (KRT1, KRT2, KRT5, KRT6A, KRT8, KRT9, KRT10, KRT17, KRT18, KRT19, KRT20) were also identified in the proteomic studies and have been previously reported to be markers for diagnosis, disease progression, prognosis, and efficacy of CRC. Karantza et al., has published a detailed review on the role of keratins in cancer and illustrates the use of keratins as diagnostic and prognostic markers for various cancers including CRC [401]. Within the SW480 and HT29 proteomic study three S100 proteins (A6, A8 and A9) were identified and were also listed as potential markers for diagnosis and efficacy by ASCO. Yang et al., have shown that S100-A6 is up-regulated in gastric cancer [402]. Another study by Zhang *et al.*, reported that high levels of S100-A6 in serum could be used as prognostic marker in gastric cancer [403]. It is therefore agreeable that some of the potential biomarkers identified in these proteomic studies could potentially be used as markers for processes that are altered in an uPAR/ $\alpha\nu\beta6$ /TGF β dependent manner during CRC progression. However, a validation of these proteins as potential biomarkers is required to determine the actual the significance and utility in diagnosis and prognosis of CRC.

Utilising emerging Proximity Extension Assay (PEA) technology that is employed in the Proseek Multiplex Oncology I kit, the examination of CRC patient plasmas for 92 putative cancer-related analytes as potential biomarkers of CRC identified 8 oncoproteins (CEA, IL-8, prolactin, amphiregulin, PDGF-BB, IL-6, CXCL11 and CXCL5) to be significantly different amongst various CRC stages. Amongst these, only CEA, IL-8 and prolactin were able to significantly differentiate unaffected controls from non-malignant (Dukes' A + B) and malignant (Dukes' C + D) stages. CEA is currently employed as a routine marker for CRC prognosis, disease-free survival and therapeutic response and monitor CRC recurrence and/or metastases during postoperative follow-up [396, 404]. The observed high plasma CEA levels significantly correlate with the presence of metastatic CRC and is not an effective biomarker for early stage disease (Dukes' A). IL-8 expression was found to significantly correlate with tumour size, depth of infiltration, liver metastases and tumour stage [57, 405, 406] as seen in this study. Interestingly, Sun et al., reported that IL-8 in a dose dependent manner increased cell migration of the HT29 and WiDr colon cancer cell lines through the [ERK1/2]-[Ets-1]-[$\alpha\nu\beta6$] signalling axis [407]. The increased ERK1/2 phosphorylation observed by Sun *et al.*, correlate with the cell signalling study performed in this thesis (Chapter 3, Study I) and also validate the findings reported here. Additional, immunohistochemical analysis of 139 primary CRC samples by Sun et al., demonstrated that IL-8 expression directly proportional to $\alpha\nu\beta6$ expression [407]. Elevated levels of prolactin levels has been observed in serum, several tumour specimens and suggested to correlate with CRC malignancy [408, 409], and the observation in the current study confers with previous reports. These observations from the Olink Proseek study further strengthen the previously suggested role of these molecules as biomarkers for CRC.

In summary, the significantly regulated cancer-associated proteins observed in the proteomic studies are clearly strong biomarker candidates for CRC. However, further work is required to understand their genuine marker potential using a larger cohort of CRC patient samples (e.g., blood, plasma, tissue, stools).

6.3 Future directions

The identification of molecules involved in deregulation of CRC-related biomolecular process presented in this thesis represents exciting findings that are mostly congruent with observations reported in the existing literature. However, many of these findings warrant further exploration and validation by targeted proteomic experiments that will enable a better understanding of the role/s of TGF β , uPAR and $\beta 6$ and their underlying regulatory mechanisms in cancer. Examples of rational follow-up experiments that can be performed following on from the efforts disseminated in this work are briefly described below:

- Co-immunoprecipitation (Co-IP) experiments can be performed to examine the interactions between TGFβ signalling components and uPAR/β6. Co-IP approach that was employed (on OVCA429 cells) by Saldanha *et al.*, [180] should be used to examine the uPAR•β6 interaction in CRC. This can be further extended to examine the interacting partners of TGFβ and its receptor as well. Following, the pull down of the interacting partners using appropriate antibodies as bait proteins they should be identified using SWATH enabled ABSCIEX Triple TOF[®] 6600 mass spectrometer following a 1D SDS-PAGE slice-and-dice protein extraction or SCX separation. These data should allow for determination of the uPAR, β6, TGFβ and TGFβ receptor/s interacting partners in CRC.
- Cross-linking mass spectrometry (X-MS), can be used to stabilise the protein interactions *in cellulo* using various cross linkers such as disuccinimidyl suberate (DSS), bis(sulfosuccinimidyl) suberate (BS3) or sulfo-N-hydroxylsuccinimide-SS-Biotin. The cell lysate obtained after cross-linking should directly or after co-IP experiments be analysed on using a high mass accuracy instrument such as the ABSCIEX Triple TOF[®] 6600. The mass spectra should then be searched using xQuest [410], a search engine for identification of peptides from cross-linked samples.
- Peptide array interaction analysis of TGFβ receptors could also be undertaken to determine their interacting proteins. Peptide arrays containing 15- or 18-mer peptides with at least 8- to 10-mer amino acid overlap should be prepared on PVDF or Nitrocellulose membrane blotting papers with a 0.2 µm pore size. These arrays should then be treated with 'potential' interacting partners identified from co-IP or X-MS experiments to determine the binding specificity, affinity and the site on the receptors.

- Structural modelling or crystal structure analysis should then be performed to analyse the interactions between the TGFβ receptors and partners identified in the previous suggested experiments. The analysis of those using a three-dimensional model will strengthen validity of the observed interactions.
- Mouse models should then be used to validate these interactions in an *in vitro* system. The proposed interactions can be functionally blocked using antibodies, peptide inhibitors, siRNAs or chemical inhibitors to examine the associated downstream effects.
- All CRC cell lines used in this thesis were colorectal adenocarcinomas that were of Dukes' stage B (non-metastatic) and the expression of β6 and uPAR was artificially altered in these cell lines. Although, the observations from these cell lines are helpful to understand their role in CRC, it would be interesting to alter/inhibit the expression of αvβ6, uPAR, TGFβ and TGFβ receptor/s expression in various metastatic CRC cell lines. These observations should then be confirmed using immunocompromised mouse CRC xenograft models.
- Post-translational modifications such as glycosylation is a very common process by which the proteins are stabilised in the cell. It would be very interesting to study the *N* and *O*-glycosylation changes that are associated with treatment of TGFβ to the cell lines used in this thesis. Although, glycoproteomics technologies are fairly new and not yet fully matured (compared to proteomics), they could be applied in their current state to identify and quantitate TGFβ-mediated glycosylation changes. Similar approaches that were used by Sethi *et al.*, [411] can be employed.
- The cancer-associated proteins identified by the global proteomics approach could be accurately quantified using targeted proteomics experiments such as SRM and MRM to complement the iTRAQ quantitative approach used in this thesis. These specific and significantly more sensitive protein quantitation methods could allow for validation of the potential candidate CRC biomarkers suggested in this thesis.
- Determining the (consistent) molecular patterns from a higher number of biological replicates would add confidence to this set of biomarker candidates and establish a more accurate and reliable understanding of these molecular alterations associated with the early stages of CRC where the diagnosis is particularly required.
- The studies performed this thesis used a limited number of cell lines and plasma samples. It would be valuable to perform these experiments using a large cohort of different samples (e.g., tissue, blood, plasma, urine, stools, cell lines) obtained from

normal healthy individuals and CRC patients. Potential variables such as age, gender, ethnic background, disease history, etc should also be taken into consideration. This large scale study will prove to be a significant task yet is crucial to understanding the biology of CRC

6.4 Conclusion

In conclusion, this thesis has demonstrated the capacity of targeted cell signalling assays in combination with high-throughput modern proteomics technologies to better understand the TGF β -associated protein alterations in CRC. Furthermore, the use of the Olink Proseek Oncology kit to identify biomarkers from just 1µL of plasma is remarkable.

The knowledge gleaned from this PhD thesis has opened up a range of unanswered research avenues that need to be explored. This indeed is typically the result of system-wide "discovery type" studies trying to map entire populations of biomolecules from complex set of samples such as partially enriched cell lysate and un-fractionated plasma samples used in this thesis. Modern multiplexing technologies are slowly making their way into the more targeted and hypothesis-driven research areas. However, proteomics will still remain is a powerful tool that enables discovery based understanding of a disease as complex as cancer.

Overall, this thesis has demonstrated the immense power of high-throughput modern proteomic and multiplexing technologies to gain insights into the TGF β associated CRC pathogenesis at detailed molecular level and to identify avenues for disease biomarker exploration. Future initiatives building on the observations reported in this thesis will take us a step closer to understanding the prevalent and fatal disease we have named 'cancer'.

REFERENCES

- Boyle, P., B. Levin, and World Health Organization., *World cancer report 2008*. 2008, Lyon, France: International Agency for Research on Cancer (IARC), Distributed by WHO Press. 510.
- 2. Ruddon, R.W., *Cancer Biology*. 2007: Oxford University Press, USA. 568.
- 3. National Cancer Institute. *What Is Cancer*? [cited 2015 19 May]; Available from: http://www.cancer.gov/cancertopics/cancerlibrary/what-is-cancer.
- 4. Hanahan, D. and R.A. Weinberg, *The hallmarks of cancer*. Cell, 2000. **100**(1): p. 57-70.
- 5. Torre, L.A., et al., *Global cancer statistics, 2012.* CA Cancer J Clin, 2015. **65**(2): p. 87-108.
- 6. Ferlay, J., et al., *Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012.* Int J Cancer, 2015. **136**(5): p. E359-86.
- Stewart, B.W., C.P. Wild, and World Health Organization, *World cancer report 2014*. 2014, Lyon, France: International Agency for Research on Cancer (IARC), Distributed by WHO Press. 630.
- 8. Cunningham, D., et al., *Colorectal cancer*. The Lancet, 2010. **375**(9719): p. 1030-1047.
- 9. Shelton, B.K., *Introduction to colorectal cancer*. Semin Oncol Nurs, 2002. **18**(2 Suppl 2): p. 2-12.
- 10. Health, D.o. *About bowel cancer*. 2015 [cited 2015 07 June]; Available from: <u>http://www.health.gov.au/internet/screening/publishing.nsf/Content/about-bowel-cancer</u>.
- 11. Kim, S.E., et al., *Sex- and gender-specific disparities in colorectal cancer risk*. World J Gastroenterol, 2015. **21**(17): p. 5167-5175.
- 12. Amersi, F., M. Agustin, and C.Y. Ko, *Colorectal cancer: epidemiology, risk factors, and health services.* Clinics in colon and rectal surgery, 2005. **18**(3): p. 133-40.
- Kune, G.A. and L. Vitetta, Alcohol consumption and the etiology of colorectal cancer: a review of the scientific evidence from 1957 to 1991. Nutrition and cancer, 1992. 18(2): p. 97-111.
- 14. Ferrari, P., et al., *Lifetime and baseline alcohol intake and risk of colon and rectal cancers in the European prospective investigation into cancer and nutrition (EPIC).* Int J Cancer, 2007. **121**(9): p. 2065-72.
- 15. Botteri, E., et al., *Smoking and colorectal cancer: a meta-analysis.* JAMA : the journal of the American Medical Association, 2008. **300**(23): p. 2765-78.
- 16. Giovannucci, E., *An updated review of the epidemiological evidence that cigarette smoking increases risk of colorectal cancer*. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 2001. **10**(7): p. 725-31.
- 17. Carr, P.R., et al., *Meat subtypes and their association with colorectal cancer: Systematic review and meta-analysis.* Int J Cancer, 2015.
- 18. Jung, A., *Colon and Rectum Normal Anatomy and Congenital Variants*, in *Abdominal Imaging*, B. Hamm and P. Ros, Editors. 2013, Springer Berlin Heidelberg. p. 785-796.
- 19. *Layers of Bowel Wall*. 2015 14 June; Available from: <u>http://training.seer.cancer.gov/colorectal/anatomy/layers.html</u>.
- 20. Basic Anatomy. 2015 14 June; Available from: http://www.hopkinscoloncancercenter.org/CMS/CMS_Page.aspx?CurrentUDV=59&CMS_ Page_ID=B6ACAEF5-52D3-4CC1-88CC-CEB21F5ABBCD.
- 21. Majumdar, S.R., R.H. Fletcher, and A.T. Evans, *How does colorectal cancer present[quest] symptoms, duration, and clues to location.* Am J Gastroenterol, 1999. **94**(10): p. 3039-3045.
- 22. Astin, M., et al., *The diagnostic value of symptoms for colorectal cancer in primary care: a systematic review.* Br J Gen Pract, 2011. **61**(586): p. e231-43.

- 23. Fijten, G.H., et al., *Predictive value of signs and symptoms for colorectal cancer in patients with rectal bleeding in general practice.* Family Practice, 1995. **12**(3): p. 279-286.
- 24. Mor, V., et al., *Pre-diagnostic symptom recognition and help seeking among cancer patients.* J Community Health, 1990. **15**(4): p. 253-66.
- 25. Irvin, T.T. and M.G. Greaney, *Duration of symptoms and prognosis of carcinoma of the colon and rectum.* Surg Gynecol Obstet, 1977. **144**(6): p. 883-6.
- 26. McDermott, F.T., et al., *Prognosis in relation to symptom duration in colon cancer*. Br J Surg, 1981. **68**(12): p. 846-9.
- 27. Etzioni, R., et al., *The case for early detection*. Nat Rev Cancer, 2003. **3**(4): p. 243-52.
- 28. Meyerhardt, J.A. and R.J. Mayer, *Systemic therapy for colorectal cancer*. N Engl J Med, 2005. **352**(5): p. 476-87.
- 29. Davis, N.C. and R.C. Newland, *Terminology and classification of colorectal adenocarcinoma: the Australian clinico-pathological staging system.* Aust N Z J Surg, 1983.
 53(3): p. 211-21.
- 30. *Esophageal cancer*. 2015 25 June; Available from: <u>http://www.hpvvaccination.com/p/esophageal-cancer.html</u>.
- 31. Weber, T.K. and N.J. Petrelli, *Local excision for rectal cancer: an uncertain future.* Oncology (Williston Park), 1998. **12**(6): p. 933-43; discussion 944, 947.
- 32. Shah, R., et al., *Biomarkers for early detection of colorectal cancer and polyps: systematic review.* Cancer Epidemiol Biomarkers Prev, 2014. **23**(9): p. 1712-28.
- 33. *NCI Dictionary of Cancer Terms*. 2015 14 June; Available from: <u>http://www.cancer.gov/publications/dictionaries/cancer-terms?cdrid=45618</u>.
- 34. Henry, N.L. and D.F. Hayes, *Cancer biomarkers*. Mol Oncol, 2012. 6(2): p. 140-6.
- 35. Locker, G.Y., et al., *ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer.* J Clin Oncol, 2006. **24**(33): p. 5313-27.
- 36. Allegra, C.J., et al., American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol, 2009. **27**(12): p. 2091-6.
- 37. Fung, K.Y., et al., *Colorectal cancer biomarkers: to be or not to be? Cautionary tales from a road well travelled.* World J Gastroenterol, 2014. **20**(4): p. 888-98.
- 38. Fuzery, A.K., et al., *Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges.* Clin Proteomics, 2013. **10**(1): p. 13.
- 39. Vikram, R. and R.B. Iyer, *PET/CT imaging in the diagnosis, staging, and follow-up of colorectal cancer.* Cancer imaging : the official publication of the International Cancer Imaging Society, 2008. **8 Spec No A**: p. S46-51.
- 40. Walsh, J.M. and J.P. Terdiman, *Colorectal cancer screening: scientific review*. JAMA : the journal of the American Medical Association, 2003. **289**(10): p. 1288-96.
- 41. Wickham, R. and Y. Lassere, *The ABCs of Colorectal Cancer*. Seminars in Oncology Nursing, 2007. **23, Supplement 1**(0): p. 1-8.
- 42. Winawer, S.J., *The multidisciplinary management of gastrointestinal cancer. Colorectal cancer screening.* Best practice & research. Clinical gastroenterology, 2007. **21**(6): p. 1031-48.
- 43. Burch, J.A., et al., *Diagnostic accuracy of faecal occult blood tests used in screening for colorectal cancer: a systematic review.* Journal of medical screening, 2007. **14**(3): p. 132-7.
- 44. Ouyang, D.L., et al., *Noninvasive testing for colorectal cancer: a review.* The American journal of gastroenterology, 2005. **100**(6): p. 1393-403.
- 45. Claridge, L.C., *Barium enema and diagnosis of colorectal cancer*. BMJ, 2011. **343**: p. d7704.
- 46. Fung, K.Y., et al., *Blood-based protein biomarker panel for the detection of colorectal cancer*. PLoS One, 2015. **10**(3): p. e0120425.
- 47. Tagi, T., et al., *Dermokine as a novel biomarker for early-stage colorectal cancer.* J Gastroenterol, 2010. **45**(12): p. 1201-11.

- 48. Babel, I., et al., *Identification of MST1/STK4 and SULF1 proteins as autoantibody targets for the diagnosis of colorectal cancer by using phage microarrays.* Mol Cell Proteomics, 2011. **10**(3): p. M110 001784.
- 49. Bujanda, L., et al., *Evaluation of alpha 1-antitrypsin and the levels of mRNA expression of matrix metalloproteinase 7, urokinase type plasminogen activator receptor and COX-2 for the diagnosis of colorectal cancer.* PLoS One, 2013. **8**(1): p. e51810.
- 50. Mahboob, S., et al., A novel multiplexed immunoassay identifies CEA, IL-8 and prolactin as prospective markers for Dukes' stages A-D colorectal cancers. Clin Proteomics, 2015. **12**(1): p. 10.
- 51. Fentz, A.K., et al., *Detection of colorectal adenoma and cancer based on transthyretin and C3a-desArg serum levels.* Proteomics Clin Appl, 2007. **1**(6): p. 536-44.
- 52. Kim, H.J., et al., *Identification of S100A8 and S100A9 as serological markers for colorectal cancer.* J Proteome Res, 2009. **8**(3): p. 1368-79.
- 53. Japink, D., et al., *CEA in activated macrophages. New diagnostic possibilities for tumor markers in early colorectal cancer.* Anticancer Res, 2009. **29**(8): p. 3245-51.
- 54. Nielsen, H.J., et al., *Plasma TIMP-1 and CEA in detection of primary colorectal cancer: a prospective, population based study of 4509 high-risk individuals.* Scand J Gastroenterol, 2011. **46**(1): p. 60-9.
- 55. Sole, X., et al., *Discovery and validation of new potential biomarkers for early detection of colon cancer.* PLoS One, 2014. **9**(9): p. e106748.
- 56. Kawamura, M., et al., CXCL5, a promoter of cell proliferation, migration and invasion, is a novel serum prognostic marker in patients with colorectal cancer. Eur J Cancer, 2012.
 48(14): p. 2244-51.
- 57. Rubie, C., et al., *Correlation of IL-8 with induction, progression and metastatic potential of colorectal cancer.* World J Gastroenterol, 2007. **13**(37): p. 4996-5002.
- 58. Wilson, S., et al., Serum matrix metalloproteinase 9 and colorectal neoplasia: a community-based evaluation of a potential diagnostic test. Br J Cancer, 2012. 106(8): p. 1431-8.
- 59. Mroczko, B., et al., *The diagnostic value of matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of matrix metalloproteinases 1 (TIMP-1) determination in the sera of colorectal adenoma and cancer patients.* Int J Colorectal Dis, 2010. **25**(10): p. 1177-84.
- 60. Pedersen, J.W., et al., *Seromic profiling of colorectal cancer patients with novel glycopeptide microarray.* Int J Cancer, 2011. **128**(8): p. 1860-71.
- 61. Chen, J.S., et al., *Detection of autoantibodies against Rabphilin-3A-like protein as a potential biomarker in patient's sera of colorectal cancer*. Clin Chim Acta, 2011. **412**(15-16): p. 1417-22.
- 62. De Chiara, L., et al., *Serum CD26 is related to histopathological polyp traits and behaves as a marker for colorectal cancer and advanced adenomas.* BMC Cancer, 2010. **10**: p. 333.
- 63. Mulder, S.A., et al., *Tumor pyruvate kinase isoenzyme type M2 and immunochemical fecal occult blood test: performance in screening for colorectal cancer.* Eur J Gastroenterol Hepatol, 2007. **19**(10): p. 878-82.
- 64. Shastri, Y.M., et al., *Comparison of an established simple office-based immunological FOBT* with fecal tumor pyruvate kinase type M2 (M2-PK) for colorectal cancer screening: prospective multicenter study. Am J Gastroenterol, 2008. **103**(6): p. 1496-504.
- 65. Koss, K., D. Maxton, and J.A. Jankowski, *Faecal dimeric M2 pyruvate kinase in colorectal cancer and polyps correlates with tumour staging and surgical intervention.* Colorectal Dis, 2008. **10**(3): p. 244-8.
- 66. Haug, U., et al., *Tumour M2-PK as a stool marker for colorectal cancer: comparative analysis in a large sample of unselected older adults vs colorectal cancer patients.* Br J Cancer, 2007. **96**(9): p. 1329-34.
- 67. Shastri, Y.M., et al., *Prospective multicenter evaluation of fecal tumor pyruvate kinase type M2 (M2-PK) as a screening biomarker for colorectal neoplasia*. Int J Cancer, 2006. 119(11): p. 2651-6.

- 68. Tonus, C., G. Neupert, and M. Sellinger, *Colorectal cancer screening by non-invasive metabolic biomarker fecal tumor M2-PK.* World J Gastroenterol, 2006. **12**(43): p. 7007-11.
- 69. Ahn, S.B., et al., *Correlations between integrin alphanubeta6 expression and clinicopathological features in stage B and stage C rectal cancer.* PLoS One, 2014. **9**(5): p. e97248.
- 70. Magnusson, K., et al., *SATB2 in combination with cytokeratin 20 identifies over 95% of all colorectal carcinomas.* Am J Surg Pathol, 2011. **35**(7): p. 937-48.
- 71. Ahn, S.B., et al., *Epithelial and stromal cell urokinase plasminogen activator receptor expression differentially correlates with survival in rectal cancer stages B and C patients.* PLoS One, 2015. **10**(2): p. e0117786.
- 72. Kanaan, Z., et al., *A plasma microRNA panel for detection of colorectal adenomas: a step toward more precise screening for colorectal cancer.* Ann Surg, 2013. **258**(3): p. 400-8.
- 73. Wang, Q., et al., *Plasma miR-601 and miR-760 are novel biomarkers for the early detection of colorectal cancer*. PLoS One, 2012. **7**(9): p. e44398.
- 74. Ng, E.K., et al., *Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening.* Gut, 2009. **58**(10): p. 1375-81.
- 75. Zheng, G., et al., *Serum microRNA panel as biomarkers for early diagnosis of colorectal adenocarcinoma.* Br J Cancer, 2014. **111**(10): p. 1985-92.
- 76. Kanaan, Z., et al., *Plasma miR-21: a potential diagnostic marker of colorectal cancer.* Ann Surg, 2012. **256**(3): p. 544-51.
- 77. Huang, Z., et al., *Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer.* Int J Cancer, 2010. **127**(1): p. 118-26.
- 78. Takai, T., et al., *Fecal cyclooxygenase 2 plus matrix metalloproteinase 7 mRNA assays as a marker for colorectal cancer screening.* Cancer Epidemiol Biomarkers Prev, 2009. **18**(6): p. 1888-93.
- 79. Lee, B.B., et al., *Aberrant methylation of APC, MGMT, RASSF2A, and Wif-1 genes in plasma as a biomarker for early detection of colorectal cancer.* Clin Cancer Res, 2009. **15**(19): p. 6185-91.
- 80. Azuara, D., et al., *Novel methylation panel for the early detection of colorectal tumors in stool DNA*. Clin Colorectal Cancer, 2010. **9**(3): p. 168-76.
- 81. Han, M., et al., *Novel blood-based, five-gene biomarker set for the detection of colorectal cancer*. Clin Cancer Res, 2008. **14**(2): p. 455-60.
- 82. Cassinotti, E., et al., DNA methylation patterns in blood of patients with colorectal cancer and adenomatous colorectal polyps. Int J Cancer, 2012. **131**(5): p. 1153-7.
- 83. Leung, W.K., et al., *Detection of hypermethylated DNA or cyclooxygenase-2 messenger RNA in fecal samples of patients with colorectal cancer or polyps.* Am J Gastroenterol, 2007. **102**(5): p. 1070-6.
- 84. Tanzer, M., et al., *Performance of epigenetic markers SEPT9 and ALX4 in plasma for detection of colorectal precancerous lesions*. PLoS One, 2010. **5**(2): p. e9061.
- 85. Pack, S.C., et al., *Usefulness of plasma epigenetic changes of five major genes involved in the pathogenesis of colorectal cancer.* Int J Colorectal Dis, 2013. **28**(1): p. 139-47.
- 86. Imperiale, T.F., et al., *Multitarget stool DNA testing for colorectal-cancer screening*. N Engl J Med, 2014. **370**(14): p. 1287-97.
- 87. Ahlquist, D.A., et al., *Next-generation stool DNA test accurately detects colorectal cancer and large adenomas.* Gastroenterology, 2012. **142**(2): p. 248-56; quiz e25-6.
- 88. Chen, W.D., et al., *Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene.* J Natl Cancer Inst, 2005. **97**(15): p. 1124-32.
- 89. Glockner, S.C., et al., *Methylation of TFPI2 in stool DNA: a potential novel biomarker for the detection of colorectal cancer.* Cancer Res, 2009. **69**(11): p. 4691-9.
- 90. Kalimutho, M., et al., *A simplified, non-invasive fecal-based DNA integrity assay and iFOBT for colorectal cancer detection.* Int J Colorectal Dis, 2011. **26**(5): p. 583-92.

- 2hang, J., et al., Detection of methylated tissue factor pathway inhibitor 2 and human long DNA in fecal samples of patients with colorectal cancer in China. Cancer Epidemiol, 2012.
 36(1): p. 73-7.
- 92. Melotte, V., et al., *N-Myc downstream-regulated gene 4 (NDRG4): a candidate tumor suppressor gene and potential biomarker for colorectal cancer.* J Natl Cancer Inst, 2009.
 101(13): p. 916-27.
- 93. Lofton-Day, C., et al., *DNA methylation biomarkers for blood-based colorectal cancer screening.* Clin Chem, 2008. **54**(2): p. 414-23.
- 94. Warren, J.D., et al., *Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer.* BMC Med, 2011. **9**: p. 133.
- 95. Johnson, D.A., et al., *Plasma Septin9 versus fecal immunochemical testing for colorectal cancer screening: a prospective multicenter study.* PLoS One, 2014. **9**(6): p. e98238.
- 96. Toth, K., et al., *Detection of methylated SEPT9 in plasma is a reliable screening method for both left- and right-sided colon cancers.* PLoS One, 2012. **7**(9): p. e46000.
- 97. deVos, T., et al., *Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer*. Clin Chem, 2009. **55**(7): p. 1337-46.
- 98. Grutzmann, R., et al., *Sensitive detection of colorectal cancer in peripheral blood by septin* 9 DNA methylation assay. PLoS One, 2008. **3**(11): p. e3759.
- Wang, D.R. and D. Tang, Hypermethylated SFRP2 gene in fecal DNA is a high potential biomarker for colorectal cancer noninvasive screening. World J Gastroenterol, 2008. 14(4): p. 524-31.
- 100. Zhang, H., Y.C. Song, and C.X. Dang, *Detection of hypermethylated spastic paraplegia-20 in stool samples of patients with colorectal cancer.* Int J Med Sci, 2013. **10**(3): p. 230-4.
- 101. Lind, G.E., et al., *SPG20, a novel biomarker for early detection of colorectal cancer, encodes a regulator of cytokinesis.* Oncogene, 2011. **30**(37): p. 3967-78.
- 102. Lange, C.P., et al., *Genome-scale discovery of DNA-methylation biomarkers for bloodbased detection of colorectal cancer*. PLoS One, 2012. **7**(11): p. e50266.
- 103. Mori, Y., et al., *Novel candidate colorectal cancer biomarkers identified by methylation microarray-based scanning.* Endocr Relat Cancer, 2011. **18**(4): p. 465-78.
- 104. *Treating colon/rectum cancer Topics*. 2015 14 June; Available from: <u>http://www.cancer.org/cancer/colonandrectumcancer/detailedguide/colorectal-cancer-treating-by-stage-colon</u>.
- 105. Andre, T., et al., *Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial.* J Clin Oncol, 2009.
 27(19): p. 3109-16.
- Saridaki, Z., et al., A triplet combination with irinotecan (CPT-11), oxaliplatin (LOHP), continuous infusion 5-fluorouracil and leucovorin (FOLFOXIRI) plus cetuximab as first-line treatment in KRAS wt, metastatic colorectal cancer: a pilot phase II trial. Br J Cancer, 2012.
 107(12): p. 1932-7.
- 107. Cunningham, D., et al., *Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer*. N Engl J Med, 2004. **351**(4): p. 337-45.
- 108. Tabernero, J., et al., *Phase II trial of cetuximab in combination with fluorouracil, leucovorin, and oxaliplatin in the first-line treatment of metastatic colorectal cancer.* J Clin Oncol, 2007. **25**(33): p. 5225-32.
- 109. Tabernero, J., et al., *RAISE: A randomized, double-blind, multicenter phase III study of irinotecan, folinic acid, and 5-fluorouracil (FOLFIRI) plus ramucirumab (RAM) or placebo (PBO) in patients (pts) with metastatic colorectal carcinoma (CRC) progressive during or following first-line combination therapy with bevacizumab (bev), oxaliplatin (ox), and a fluoropyrimidine (fp).* 2015: 2015 Gastrointestinal Cancers Symposium.
- 110. Punt, C.J., *New options and old dilemmas in the treatment of patients with advanced colorectal cancer.* Ann Oncol, 2004. **15**(10): p. 1453-9.
- 111. Vincent, T.L. and R.A. Gatenby, *An evolutionary model for initiation, promotion, and progression in carcinogenesis.* International journal of oncology, 2008. **32**(4): p. 729-37.

- 112. Devi, P.U., *Basics of Carcinogenesis*. Health Adm., 2004. **17**(1): p. 16-24.
- 113. Rous, P. and J.G. Kidd, *Conditional Neoplasms and Subthreshold Neoplastic States : A Study of the Tar Tumors of Rabbits.* The Journal of experimental medicine, 1941. **73**(3): p. 365-90.
- 114. Mottram, J.C., *A sensitising factor in experimental blastogenesis*. The Journal of Pathology and Bacteriology, 1944. **56**(3): p. 391-402.
- 115. Berenblum, I. and P. Shubik, *A new, quantitative, approach to the study of the stages of chemical cartinogenesis in the mouse's skin.* British journal of cancer, 1947. **1**(4): p. 383-91.
- 116. Vogelstein, B., et al., *Genetic alterations during colorectal-tumor development*. The New England journal of medicine, 1988. **319**(9): p. 525-32.
- 117. Fearon, E.R. and B. Vogelstein, *A genetic model for colorectal tumorigenesis*. Cell, 1990.
 61(5): p. 759-67.
- 118. Christie, M. and O. Sieber, *Pathways of Carcinogenesis*, in *ABC of Colorectal Cancer*, A. Young, R. Hobbs, and D. Kerr, Editors. 2011, Wiley-Blackwell.
- 119. Young, A., R. Hobbs, and D. Kerr, *ABC of Colorectal Cancer*. 2011: Blackwell Publishing Ltd.
- 120. Vogelstein, B. and K.W. Kinzler, *The multistep nature of cancer*. Trends Genet, 1993. **9**(4): p. 138-41.
- Stoffel, E.M., et al., Hereditary colorectal cancer syndromes: American Society of Clinical Oncology Clinical Practice Guideline endorsement of the familial risk-colorectal cancer: European Society for Medical Oncology Clinical Practice Guidelines. J Clin Oncol, 2015.
 33(2): p. 209-17.
- 122. Cheah, P.Y., *Hypotheses for the etiology of colorectal cancer--an overview*. Nutr Cancer, 1990. **14**(1): p. 5-13.
- 123. Miyoshi, Y., et al., *Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene.* Hum Mol Genet, 1992. **1**(4): p. 229-33.
- 124. Watson, P. and H.T. Lynch, *Extracolonic cancer in hereditary nonpolyposis colorectal cancer*. Cancer, 1993. **71**(3): p. 677-85.
- 125. Schwitalle, Y., et al., *Immunogenic peptides generated by frameshift mutations in DNA mismatch repair-deficient cancer cells.* Cancer Immun, 2004. **4**: p. 14.
- 126. Boland, C.R., et al., A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res, 1998. **58**(22): p. 5248-57.
- 127. Davies, R.J., R. Miller, and N. Coleman, *Colorectal cancer screening: prospects for molecular stool analysis.* Nat Rev Cancer, 2005. **5**(3): p. 199-209.
- 128. Chambers, A.F., A.C. Groom, and I.C. MacDonald, *Dissemination and growth of cancer cells in metastatic sites*. Nature reviews. Cancer, 2002. **2**(8): p. 563-72.
- 129. Mehlen, P. and A. Puisieux, *Metastasis: a question of life or death.* Nature reviews. Cancer, 2006. **6**(6): p. 449-58.
- 130. Cairns, R.A., R. Khokha, and R.P. Hill, *Molecular mechanisms of tumor invasion and metastasis: an integrated view.* Current molecular medicine, 2003. **3**(7): p. 659-71.
- Sugarbaker, P.H., Metastatic inefficiency: the scientific basis for resection of liver metastases from colorectal cancer. Journal of surgical oncology. Supplement, 1993. 3: p. 158-60.
- 132. Weiss, L., *Metastatic inefficiency*. Advances in cancer research, 1990. **54**: p. 159-211.
- 133. Wittekind, C. and M. Neid, *Cancer invasion and metastasis*. Oncology, 2005. **69 Suppl 1**: p. 14-6.
- 134. Hart, I.R. and I.J. Fidler, *Role of organ selectivity in the determination of metastatic patterns of B16 melanoma.* Cancer research, 1980. **40**(7): p. 2281-7.
- 135. Nicolson, G.L., Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer metastasis reviews, 1988. **7**(2): p. 143-88.

- 136. Yeaman, C., et al., *Cell polarity: Versatile scaffolds keep things in place*. Current biology : CB, 1999. **9**(14): p. R515-7.
- 137. Radisky, D.C., *Epithelial-mesenchymal transition.* Journal of cell science, 2005. **118**(Pt 19): p. 4325-6.
- 138. Klymkowsky, M.W. and P. Savagner, *Epithelial-mesenchymal transition: a cancer researcher's conceptual friend and foe.* The American journal of pathology, 2009. **174**(5): p. 1588-93.
- 139. Voulgari, A. and A. Pintzas, *Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic.* Biochimica et biophysica acta, 2009. **1796**(2): p. 75-90.
- 140. Samarasinghe, B. *The Hallmarks of Cancer 6: Tissue Invasion and Metastasis*. 2013 21 June; Available from: <u>http://blogs.scientificamerican.com/guest-blog/the-hallmarks-of-cancer-6-tissue-invasion-and-metastasis/</u>.
- 141. Kohn, E.C. and L.A. Liotta, *Molecular insights into cancer invasion: strategies for prevention and intervention.* Cancer research, 1995. **55**(9): p. 1856-62.
- 142. Liotta, L.A. and E.C. Kohn, *Invasion and Metastases*, in *Holland-Frei Cancer Medicine*, R.C. Bast, Jr., et al., Editors. 2000, BC Decker: Hamilton.
- 143. nanostring. *Key Features and Genes Involved in Cancer Progression*. 2015 14 June; Available from:

http://www.nanostring.com/products/pancancer_progression/cancer_progression.

- 144. Okegawa, T., et al., *The role of cell adhesion molecule in cancer progression and its application in cancer therapy*. Acta Biochim Pol, 2004. **51**(2): p. 445-57.
- 145. Bendas, G. and L. Borsig, *Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins.* Int J Cell Biol, 2012. **2012**: p. 676731.
- 146. Agrez, M., et al., *The alpha v beta 6 integrin promotes proliferation of colon carcinoma cells through a unique region of the beta 6 cytoplasmic domain.* The Journal of cell biology, 1994. **127**(2): p. 547-56.
- 147. Ahmed, N., et al., *Alpha(v)beta(6) integrin-A marker for the malignant potential of epithelial ovarian cancer.* The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society, 2002. **50**(10): p. 1371-80.
- 148. Brooks, P.C., R.A. Clark, and D.A. Cheresh, *Requirement of vascular integrin alpha v beta 3 for angiogenesis.* Science, 1994. **264**(5158): p. 569-71.
- 149. Cantor, D., et al., *Overexpression of alphavbeta6 integrin alters the colorectal cancer cell proteome in favor of elevated proliferation and a switching in cellular adhesion that increases invasion.* J Proteome Res, 2013. **12**(6): p. 2477-90.
- 150. Huhtala, P., et al., *Cooperative signaling by alpha 5 beta 1 and alpha 4 beta 1 integrins regulates metalloproteinase gene expression in fibroblasts adhering to fibronectin.* The Journal of cell biology, 1995. **129**(3): p. 867-79.
- 151. Seguin, L., et al., *Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance.* Trends Cell Biol, 2015. **25**(4): p. 234-40.
- 152. Gille, J. and R.A. Swerlick, *Integrins: role in cell adhesion and communication*. Annals of the New York Academy of Sciences, 1996. **797**: p. 93-106.
- 153. Hynes, R.O., Integrins: versatility, modulation, and signaling in cell adhesion. Cell, 1992.69(1): p. 11-25.
- 154. Ramos, D.M., D. Dang, and S. Sadler, *The role of the integrin alpha v beta6 in regulating the epithelial to mesenchymal transition in oral cancer*. Anticancer Res, 2009. **29**(1): p. 125-30.
- 155. Ganguly, K.K., et al., Integrins and metastasis. Cell Adh Migr, 2013. **7**(3): p. 251-61.
- 156. Mizejewski, G.J., *Role of integrins in cancer: survey of expression patterns.* Proc Soc Exp Biol Med, 1999. **222**(2): p. 124-38.
- 157. Sheldrake, H.M. and L.H. Patterson, *Strategies to inhibit tumor associated integrin receptors: rationale for dual and multi-antagonists.* J Med Chem, 2014. **57**(15): p. 6301-15.

- 158. Bandyopadhyay, A. and S. Raghavan, *Defining the role of integrin alphavbeta6 in cancer*. Curr Drug Targets, 2009. **10**(7): p. 645-52.
- 159. Giancotti, F.G. and E. Ruoslahti, *Integrin signaling*. Science, 1999. **285**(5430): p. 1028-32.
- 160. Chicurel, M.E., et al., Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions. Nature, 1998. **392**(6677): p. 730-3.
- Schwartz, M.A. and R.K. Assoian, Integrins and cell proliferation: regulation of cyclindependent kinases via cytoplasmic signaling pathways. Journal of cell science, 2001.
 114(Pt 14): p. 2553-60.
- 162. Giancotti, F.G., *Integrin signaling: specificity and control of cell survival and cell cycle progression.* Current opinion in cell biology, 1997. **9**(5): p. 691-700.
- 163. Schwartz, M.A., M.D. Schaller, and M.H. Ginsberg, *Integrins: emerging paradigms of signal transduction.* Annual review of cell and developmental biology, 1995. **11**: p. 549-99.
- 164. Varner, J.A. and D.A. Cheresh, *Integrins and cancer*. Current opinion in cell biology, 1996.
 8(5): p. 724-30.
- 165. Meredith, J.E., Jr. and M.A. Schwartz, *Integrins, adhesion and apoptosis*. Trends in cell biology, 1997. **7**(4): p. 146-50.
- 166. Dedhar, S., *Integrins and tumor invasion*. BioEssays : news and reviews in molecular, cellular and developmental biology, 1990. **12**(12): p. 583-90.
- 167. Akiyama, S.K., K. Olden, and K.M. Yamada, *Fibronectin and integrins in invasion and metastasis*. Cancer metastasis reviews, 1995. **14**(3): p. 173-89.
- 168. Mahabeleshwar, G.H., et al., *Integrin signaling is critical for pathological angiogenesis*. The Journal of experimental medicine, 2006. **203**(11): p. 2495-2507.
- 169. Friedlander, M., et al., *Definition of two angiogenic pathways by distinct alpha v integrins*. Science, 1995. **270**(5241): p. 1500-2.
- 170. Bates, R.C., et al., *Transcriptional activation of integrin beta6 during the epithelialmesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma.* The Journal of clinical investigation, 2005. **115**(2): p. 339-47.
- 171. Niu, J., et al., *Integrin expression in colon cancer cells is regulated by the cytoplasmic domain of the beta6 integrin subunit.* Int J Cancer, 2002. **99**(4): p. 529-37.
- 172. Song, J., et al., *beta1 integrin modulates tumor growth and apoptosis of human colorectal cancer*. Oncol Rep, 2014. **32**(1): p. 302-8.
- 173. Song, J., et al., *beta1 integrin mediates colorectal cancer cell proliferation and migration through regulation of the Hedgehog pathway.* Tumour Biol, 2015. **36**(3): p. 2013-21.
- 174. Oh, B.Y., et al., *Role of beta1-Integrin in Colorectal Cancer: Case-Control Study*. Ann Coloproctol, 2014. **30**(2): p. 61-70.
- 175. Lei, Y., et al., *Proteomics identification of ITGB3 as a key regulator in reactive oxygen species-induced migration and invasion of colorectal cancer cells.* Mol Cell Proteomics, 2011. **10**(10): p. M110 005397.
- 176. Beaulieu, J.F., *Integrin alpha6beta4 in colorectal cancer*. World J Gastrointest Pathophysiol, 2010. **1**(1): p. 3-11.
- 177. Breuss, J.M., et al., *Expression of the beta 6 integrin subunit in development, neoplasia and tissue repair suggests a role in epithelial remodeling.* J Cell Sci, 1995. **108 (Pt 6)**: p. 2241-51.
- 178. Munger, J.S., et al., *The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis.* Cell, 1999. **96**(3): p. 319-28.
- 179. Bristow, R.E., et al., *Altered expression of transforming growth factor-beta ligands and receptors in primary and recurrent ovarian carcinoma.* Cancer, 1999. **85**(3): p. 658-68.
- 180. Saldanha, R.G., et al., *Proteomic identification of lynchpin urokinase plasminogen activator receptor protein interactions associated with epithelial cancer malignancy*. J Proteome Res, 2007. **6**(3): p. 1016-28.

- 181. Morgan, M.R., et al., *The integrin cytoplasmic-tail motif EKQKVDLSTDC is sufficient to promote tumor cell invasion mediated by matrix metalloproteinase (MMP)-2 or MMP-9.* J Biol Chem, 2004. **279**(25): p. 26533-9.
- Huang, X.Z., et al., Inactivation of the integrin beta 6 subunit gene reveals a role of epithelial integrins in regulating inflammation in the lung and skin. J Cell Biol, 1996.
 133(4): p. 921-8.
- 183. Rakoff-Nahoum, S., *Why cancer and inflammation?* Yale J Biol Med, 2006. **79**(3-4): p. 123-30.
- 184. Smith, H.W. and C.J. Marshall, *Regulation of cell signalling by uPAR*. Nature reviews. Molecular cell biology, 2010. **11**(1): p. 23-36.
- 185. Ahn, S.B., et al., *Characterization of the interaction between heterodimeric alphavbeta6 integrin and urokinase plasminogen activator receptor (uPAR) using functional proteomics.* J Proteome Res, 2014. **13**(12): p. 5956-64.
- 186. Sowmya, G., et al., *A site for direct integrin alphavbeta6.uPAR interaction from structural modelling and docking.* J Struct Biol, 2014. **185**(3): p. 327-35.
- 187. Solberg, H., et al., *The murine receptor for urokinase-type plasminogen activator is primarily expressed in tissues actively undergoing remodeling.* J Histochem Cytochem, 2001. **49**(2): p. 237-46.
- 188. Romer, J., et al., *The receptor for urokinase-type plasminogen activator is expressed by keratinocytes at the leading edge during re-epithelialization of mouse skin wounds.* The Journal of investigative dermatology, 1994. **102**(4): p. 519-22.
- 189. de Bock, C.E. and Y. Wang, *Clinical significance of urokinase-type plasminogen activator receptor (uPAR) expression in cancer.* Med Res Rev, 2004. **24**(1): p. 13-39.
- 190. Pyke, C., et al., *Immunohistochemical detection of the receptor for urokinase plasminogen activator in human colon cancer.* Histopathology, 1994. **24**(2): p. 131-8.
- 191. Boonstra, M.C., et al., *Expression of uPAR in tumor-associated stromal cells is associated with colorectal cancer patient prognosis: a TMA study.* BMC Cancer, 2014. **14**: p. 269.
- 192. Illemann, M., et al., Urokinase-type plasminogen activator receptor (uPAR) on tumorassociated macrophages is a marker of poor prognosis in colorectal cancer. Cancer Med, 2014. **3**(4): p. 855-64.
- 193. Guo, H., et al., *Prognostic role of urokinase plasminogen activator receptor in gastric and colorectal cancer: A systematic review and meta-analysis.* Onco Targets Ther, 2015. **8**: p. 1503-9.
- 194. Ranson, M., et al., Increased plasminogen binding is associated with metastatic breast cancer cells: differential expression of plasminogen binding proteins. Br J Cancer, 1998.
 77(10): p. 1586-97.
- 195. Hilska, M., et al., *Prognostic significance of matrix metalloproteinases-1, -2, -7 and -13 and tissue inhibitors of metalloproteinases-1, -2, -3 and -4 in colorectal cancer*. International journal of cancer. Journal international du cancer, 2007. **121**(4): p. 714-23.
- 196. Sun, G., et al., *TGF-beta Promotes Colorectal Cancer Cell Growth In Vitro and In Vivo.* Hepato-gastroenterology, 2012. **60**(123).
- 197. Goustin, A.S., et al., Growth factors and cancer. Cancer Res, 1986. 46(3): p. 1015-29.
- 198. Witsch, E., M. Sela, and Y. Yarden, *Roles for growth factors in cancer progression*. Physiology (Bethesda), 2010. **25**(2): p. 85-101.
- 199. Lyons, R.M., J. Keski-Oja, and H.L. Moses, *Proteolytic activation of latent transforming growth factor-beta from fibroblast-conditioned medium*. The Journal of cell biology, 1988.
 106(5): p. 1659-65.
- 200. Harland, R.M., *The transforming growth factor beta family and induction of the vertebrate mesoderm: bone morphogenetic proteins are ventral inducers.* Proceedings of the National Academy of Sciences of the United States of America, 1994. **91**(22): p. 10243-6.
- 201. Parsons, R., et al., *Microsatellite instability and mutations of the transforming growth factor beta type II receptor gene in colorectal cancer*. Cancer research, 1995. **55**(23): p. 5548-50.

- 202. Eppert, K., et al., *MADR2 maps to 18q21 and encodes a TGFbeta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma.* Cell, 1996. **86**(4): p. 543-52.
- 203. Beck, H.N., et al., *Bone morphogenetic protein-5 (BMP-5) promotes dendritic growth in cultured sympathetic neurons.* BMC neuroscience, 2001. **2**: p. 12.
- 204. Xiong, B., et al., *Transforming growth factor-beta1 in invasion and metastasis in colorectal cancer*. World J Gastroenterol, 2002. **8**(4): p. 674-8.
- 205. Liao, R.Y., et al., *TGFBR1*6A/9A polymorphism and cancer risk: a meta-analysis of 13,662 cases and 14,147 controls.* Molecular biology reports, 2010. **37**(7): p. 3227-32.
- 206. Fleming, N.I., et al., *SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer.* Cancer research, 2013. **73**(2): p. 725-35.
- 207. Salomon, D., *Transforming growth factor beta in cancer: Janus, the two-faced god.* J Natl Cancer Inst, 2014. **106**(2): p. djt441.
- 208. Akhurst, R.J., *TGF beta signaling in health and disease*. Nature genetics, 2004. **36**(8): p. 790-2.
- 209. Hogan, B.L., *Bone morphogenetic proteins: multifunctional regulators of vertebrate development.* Genes & development, 1996. **10**(13): p. 1580-94.
- 210. Risbridger, G.P., J.F. Schmitt, and D.M. Robertson, *Activins and inhibins in endocrine and other tumors.* Endocrine reviews, 2001. **22**(6): p. 836-58.
- 211. Woodruff, T.K. and J.P. Mather, *Inhibin, activin and the female reproductive axis.* Annual review of physiology, 1995. **57**: p. 219-44.
- 212. Ling, N., et al., *Pituitary FSH is released by a heterodimer of the beta-subunits from the two forms of inhibin.* Nature, 1986. **321**(6072): p. 779-82.
- 213. Vale, W., et al., *Purification and characterization of an FSH releasing protein from porcine ovarian follicular fluid.* Nature, 1986. **321**(6072): p. 776-9.
- 214. de Kretser, D.M., *Inhibin*. Molecular and cellular endocrinology, 1990. **69**(2-3): p. C17-20.
- 215. Jones, C.M., et al., *Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation*. Development, 1995. **121**(11): p. 3651-62.
- 216. Meno, C., et al., *lefty-1 is required for left-right determination as a regulator of lefty-2 and nodal.* Cell, 1998. **94**(3): p. 287-97.
- 217. Mehler, M.F., et al., *Bone morphogenetic proteins in the nervous system.* Trends in neurosciences, 1997. **20**(7): p. 309-17.
- 218. Wozney, J.M., et al., *Novel regulators of bone formation: molecular clones and activities.* Science, 1988. **242**(4885): p. 1528-34.
- 219. Daluiski, A., et al., *Bone morphogenetic protein-3 is a negative regulator of bone density.* Nature genetics, 2001. **27**(1): p. 84-8.
- 220. David, L., et al., *Bone morphogenetic protein-9 is a circulating vascular quiescence factor.* Circulation research, 2008. **102**(8): p. 914-22.
- 221. Buxton, P., et al., *Growth/differentiation factor-5 (GDF-5) and skeletal development.* The Journal of bone and joint surgery. American volume, 2001. **83-A Suppl 1**(Pt 1): p. S23-30.
- 222. Francis-West, P.H., et al., *BMP/GDF-signalling interactions during synovial joint development.* Cell and tissue research, 1999. **296**(1): p. 111-9.
- 223. Francis-West, P.H., et al., *Mechanisms of GDF-5 action during skeletal development*. Development, 1999. **126**(6): p. 1305-15.
- 224. O'Keeffe, G.W., P. Dockery, and A.M. Sullivan, *Effects of growth/differentiation factor 5 on the survival and morphology of embryonic rat midbrain dopaminergic neurones in vitro.* Journal of neurocytology, 2004. **33**(5): p. 479-88.
- Settle, S.H., Jr., et al., Multiple joint and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes. Developmental biology, 2003.
 254(1): p. 116-30.
- 226. Lee, K.J., M. Mendelsohn, and T.M. Jessell, *Neuronal patterning by BMPs: a requirement for GDF7 in the generation of a discrete class of commissural interneurons in the mouse spinal cord*. Genes & development, 1998. **12**(21): p. 3394-407.

- 227. McPherron, A.C., A.M. Lawler, and S.J. Lee, *Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member*. Nature, 1997. **387**(6628): p. 83-90.
- 228. Shi, Y. and J.P. Liu, *Gdf11 facilitates temporal progression of neurogenesis in the developing spinal cord*. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2011. **31**(3): p. 883-93.
- 229. Lee, Y.J., et al., *Growth differentiation factor 11 signaling controls retinoic acid activity for axial vertebral development.* Developmental biology, 2010. **347**(1): p. 195-203.
- 230. Gad, J.M. and P.P. Tam, *Axis development: the mouse becomes a dachshund*. Current biology : CB, 1999. **9**(20): p. R783-6.
- McPherron, A.C., A.M. Lawler, and S.J. Lee, *Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11.* Nature genetics, 1999. 22(3): p. 260-4.
- 232. Kedem, A., et al., Growth differentiating factor 9 (GDF9) and bone morphogenetic protein 15 both activate development of human primordial follicles in vitro, with seemingly more beneficial effects of GDF9. The Journal of clinical endocrinology and metabolism, 2011.
 96(8): p. E1246-54.
- 233. Dong, J., et al., *Growth differentiation factor-9 is required during early ovarian folliculogenesis.* Nature, 1996. **383**(6600): p. 531-5.
- 234. Peng, J., et al., *Growth differentiation factor 9:bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions.* Proceedings of the National Academy of Sciences of the United States of America, 2013. **110**(8): p. E776-85.
- 235. Josso, N., et al., *Anti-mullerian hormone: the Jost factor*. Recent progress in hormone research, 1993. **48**: p. 1-59.
- 236. Wu, M.Y. and C.S. Hill, *Tgf-beta superfamily signaling in embryonic development and homeostasis*. Dev Cell, 2009. **16**(3): p. 329-43.
- 237. Feng, X.H. and R. Derynck, *Specificity and versatility in tgf-beta signaling through Smads.* Annu Rev Cell Dev Biol, 2005. **21**: p. 659-93.
- 238. Nawshad, A., et al., *Transforming growth factor-beta signaling during epithelialmesenchymal transformation: implications for embryogenesis and tumor metastasis.* Cells Tissues Organs, 2005. **179**(1-2): p. 11-23.
- 239. Mercado-Pimentel, M.E. and R.B. Runyan, *Multiple transforming growth factor-beta isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart.* Cells Tissues Organs, 2007. **185**(1-3): p. 146-56.
- 240. Moses, H.L., E.Y. Yang, and J.A. Pietenpol, *Regulation of epithelial proliferation by TGFbeta*. Ciba Found Symp, 1991. **157**: p. 66-74; discussion 75-80.
- 241. Massague, J., *TGFbeta in Cancer*. Cell, 2008. **134**(2): p. 215-30.
- 242. Roberts, A.B. and M.B. Sporn, *The Transforming Growth Factor-8s*, in *Peptide Growth Factors and Their Receptors I*, M. Sporn and A. Roberts, Editors. 1990, Springer Berlin Heidelberg. p. 419-472.
- 243. Coffey, R.J., Jr., et al., *Selective inhibition of growth-related gene expression in murine keratinocytes by transforming growth factor beta*. Mol Cell Biol, 1988. **8**(8): p. 3088-93.
- 244. Shi, M., et al., *Latent TGF-beta structure and activation*. Nature, 2011. **474**(7351): p. 343-9.
- 245. Brown, P.D., et al., *Physicochemical activation of recombinant latent transforming growth factor-beta's 1, 2, and 3.* Growth factors, 1990. **3**(1): p. 35-43.
- 246. Jullien, P., T.M. Berg, and D.A. Lawrence, *Acidic cellular environments: activation of latent TGF-beta and sensitization of cellular responses to TGF-beta and EGF.* International journal of cancer. Journal international du cancer, 1989. **43**(5): p. 886-91.
- 247. Barcellos-Hoff, M.H., Radiation-induced transforming growth factor beta and subsequent extracellular matrix reorganization in murine mammary gland. Cancer research, 1993.
 53(17): p. 3880-6.
- 248. Barcellos-Hoff, M.H. and T.A. Dix, *Redox-mediated activation of latent transforming growth factor-beta 1.* Molecular endocrinology, 1996. **10**(9): p. 1077-83.

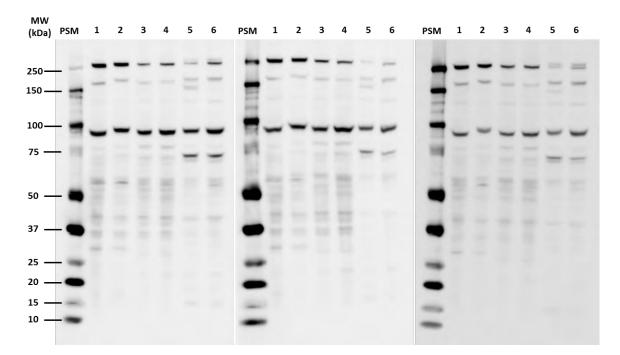
- 249. Barcellos-Hoff, M.H., et al., *Transforming growth factor-beta activation in irradiated murine mammary gland.* The Journal of clinical investigation, 1994. **93**(2): p. 892-9.
- 250. Lyons, R.M., et al., *Mechanism of activation of latent recombinant transforming growth factor beta 1 by plasmin.* The Journal of cell biology, 1990. **110**(4): p. 1361-7.
- Yu, Q. and I. Stamenkovic, *Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis.* Genes Dev, 2000.
 14(2): p. 163-76.
- 252. Horimoto, M., et al., *Identification of a transforming growth factor beta-1 activator derived from a human gastric cancer cell line.* British journal of cancer, 1995. **72**(3): p. 676-82.
- 253. Murphy-Ullrich, J.E. and M. Poczatek, *Activation of latent TGF-beta by thrombospondin-1: mechanisms and physiology.* Cytokine & growth factor reviews, 2000. **11**(1-2): p. 59-69.
- 254. Schultz-Cherry, S. and J.E. Murphy-Ullrich, *Thrombospondin causes activation of latent transforming growth factor-beta secreted by endothelial cells by a novel mechanism.* The Journal of cell biology, 1993. **122**(4): p. 923-32.
- 255. Mu, D., et al., *The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-beta1.* The Journal of cell biology, 2002. **157**(3): p. 493-507.
- 256. Munger, J.S., et al., *Interactions between growth factors and integrins: latent forms of transforming growth factor-beta are ligands for the integrin alphavbeta1.* Mol Biol Cell, 1998. **9**(9): p. 2627-38.
- 257. Laiho, M., et al., *Responsiveness to transforming growth factor-beta (TGF-beta) restored by genetic complementation between cells defective in TGF-beta receptors I and II.* The Journal of biological chemistry, 1991. **266**(14): p. 9108-12.
- 258. Boyd, F.T. and J. Massague, *Transforming growth factor-beta inhibition of epithelial cell proliferation linked to the expression of a 53-kDa membrane receptor.* J Biol Chem, 1989. **264**(4): p. 2272-8.
- 259. O'Grady, P., et al., *Transforming growth factor beta (TGF-beta) type V receptor has a TGF-beta-stimulated serine/threonine-specific autophosphorylation activity.* J Biol Chem, 1992.
 267(29): p. 21033-7.
- 260. O'Grady, P., et al., *Purification of a new type high molecular weight receptor (type V receptor) of transforming growth factor beta (TGF-beta) from bovine liver. Identification of the type V TGF-beta receptor in cultured cells.* J Biol Chem, 1991. **266**(13): p. 8583-9.
- 261. Bilandzic, M. and K.L. Stenvers, *Betaglycan: a multifunctional accessory*. Molecular and cellular endocrinology, 2011. **339**(1-2): p. 180-9.
- 262. Blobe, G.C., et al., *A novel mechanism for regulating transforming growth factor beta* (*TGF-beta*) signaling. Functional modulation of type III TGF-beta receptor expression through interaction with the PDZ domain protein, GIPC. The Journal of biological chemistry, 2001. **276**(43): p. 39608-17.
- 263. Lee, J.D., et al., *The type III TGF-beta receptor suppresses breast cancer progression through GIPC-mediated inhibition of TGF-beta signaling.* Carcinogenesis, 2010. **31**(2): p. 175-83.
- 264. Mitchell, E.J., K. Lee, and M.D. O'Connor-McCourt, *Characterization of transforming* growth factor-beta (TGF-beta) receptors on BeWo choriocarcinoma cells including the identification of a novel 38-kDa TGF-beta binding glycoprotein. Mol Biol Cell, 1992. **3**(11): p. 1295-307.
- 265. Derynck, R. and X.H. Feng, *TGF-beta receptor signaling*. Biochimica et biophysica acta, 1997. **1333**(2): p. F105-50.
- 266. Velasco-Loyden, G., J. Arribas, and F. Lopez-Casillas, *The shedding of betaglycan is regulated by pervanadate and mediated by membrane type matrix metalloprotease-1.* The Journal of biological chemistry, 2004. **279**(9): p. 7721-33.

- 267. Mendoza, V., et al., *Betaglycan has two independent domains required for high affinity TGF-beta binding: proteolytic cleavage separates the domains and inactivates the neutralizing activity of the soluble receptor.* Biochemistry, 2009. **48**(49): p. 11755-65.
- 268. Lin, H.Y., et al., *Expression cloning of the TGF-beta type II receptor, a functional transmembrane serine/threonine kinase.* Cell, 1992. **68**(4): p. 775-85.
- 269. Massague, J., *The transforming growth factor-beta family*. Annu Rev Cell Biol, 1990. **6**: p. 597-641.
- 270. Massague, J., *TGF-beta signal transduction*. Annu Rev Biochem, 1998. **67**: p. 753-91.
- 271. Gilboa, L., et al., *Oligomeric structure of type I and type II transforming growth factor beta receptors: homodimers form in the ER and persist at the plasma membrane.* The Journal of cell biology, 1998. **140**(4): p. 767-77.
- 272. Attisano, L., et al., *Identification of human activin and TGF beta type I receptors that form heteromeric kinase complexes with type II receptors.* Cell, 1993. **75**(4): p. 671-80.
- 273. Oh, S.P., et al., *Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis.* Proceedings of the National Academy of Sciences of the United States of America, 2000. **97**(6): p. 2626-31.
- 274. Ebisawa, T., et al., *Characterization of bone morphogenetic protein-6 signaling pathways in osteoblast differentiation.* Journal of cell science, 1999. **112 (Pt 20)**: p. 3519-27.
- 275. Yamashita, H., et al., *Osteogenic protein-1 binds to activin type II receptors and induces certain activin-like effects.* The Journal of cell biology, 1995. **130**(1): p. 217-26.
- 276. Macias-Silva, M., et al., *Specific activation of Smad1 signaling pathways by the BMP7 type I receptor, ALK2.* The Journal of biological chemistry, 1998. **273**(40): p. 25628-36.
- 277. Visser, J.A., et al., *The serine/threonine transmembrane receptor ALK2 mediates Mullerian inhibiting substance signaling.* Molecular endocrinology, 2001. **15**(6): p. 936-45.
- 278. ten Dijke, P., et al., *Identification of type I receptors for osteogenic protein-1 and bone morphogenetic protein-4.* The Journal of biological chemistry, 1994. **269**(25): p. 16985-8.
- 279. Cheng, S.K., et al., *EGF-CFC proteins are essential coreceptors for the TGF-beta signals Vg1 and GDF1*. Genes & development, 2003. **17**(1): p. 31-6.
- 280. Oh, S.P., et al., *Activin type IIA and IIB receptors mediate Gdf11 signaling in axial vertebral patterning.* Genes & development, 2002. **16**(21): p. 2749-54.
- 281. Yeo, C. and M. Whitman, *Nodal signals to Smads through Cripto-dependent and Cripto-independent mechanisms*. Molecular cell, 2001. **7**(5): p. 949-57.
- 282. Franzen, P., et al., *Cloning of a TGF beta type I receptor that forms a heteromeric complex with the TGF beta type II receptor.* Cell, 1993. **75**(4): p. 681-92.
- 283. Miyazono, K., *TGF-beta receptors and signal transduction*. Int J Hematol, 1997. **65**(2): p. 97-104.
- 284. Nishitoh, H., et al., *Identification of type I and type II serine/threonine kinase receptors for growth/differentiation factor-5.* The Journal of biological chemistry, 1996. **271**(35): p. 21345-52.
- 285. Erlacher, L., et al., *Cartilage-derived morphogenetic proteins and osteogenic protein-1 differentially regulate osteogenesis.* Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 1998. **13**(3): p. 383-92.
- 286. Gouedard, L., et al., *Engagement of bone morphogenetic protein type IB receptor and Smad1 signaling by anti-Mullerian hormone and its type II receptor.* The Journal of biological chemistry, 2000. **275**(36): p. 27973-8.
- 287. Moore, R.K., F. Otsuka, and S. Shimasaki, *Molecular basis of bone morphogenetic protein-15 signaling in granulosa cells.* The Journal of biological chemistry, 2003. **278**(1): p. 304-10.
- 288. Reissmann, E., et al., *The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development*. Genes & development, 2001.
 15(15): p. 2010-22.
- 289. Chapman, S.C., et al., *Properties of inhibin binding to betaglycan, InhBP/p120 and the activin type II receptors.* Molecular and cellular endocrinology, 2002. **196**(1-2): p. 79-93.

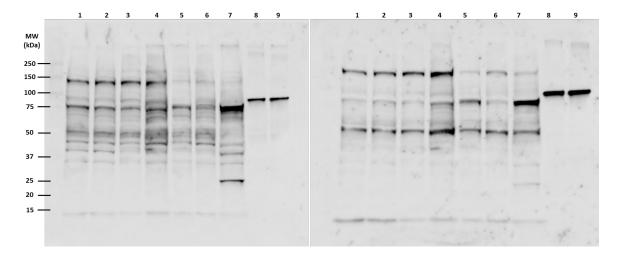
- 290. Wiater, E. and W. Vale, *Inhibin is an antagonist of bone morphogenetic protein signaling.* The Journal of biological chemistry, 2003. **278**(10): p. 7934-41.
- 291. Rosenzweig, B.L., et al., *Cloning and characterization of a human type II receptor for bone morphogenetic proteins.* Proceedings of the National Academy of Sciences of the United States of America, 1995. **92**(17): p. 7632-6.
- 292. Liu, F., et al., *Human type II receptor for bone morphogenic proteins (BMPs): extension of the two-kinase receptor model to the BMPs.* Molecular and cellular biology, 1995. **15**(7): p. 3479-86.
- 293. Lopez-Casillas, F., J.L. Wrana, and J. Massague, *Betaglycan presents ligand to the TGF beta signaling receptor.* Cell, 1993. **73**(7): p. 1435-44.
- 294. Wrana, J.L., et al., *TGF beta signals through a heteromeric protein kinase receptor complex.* Cell, 1992. **71**(6): p. 1003-14.
- 295. Akhurst, R.J. and R. Derynck, *TGF-beta signaling in cancer--a double-edged sword*. Trends Cell Biol, 2001. **11**(11): p. S44-51.
- 296. Wakefield, L.M. and A.B. Roberts, *TGF-beta signaling: positive and negative effects on tumorigenesis.* Curr Opin Genet Dev, 2002. **12**(1): p. 22-9.
- 297. Grady, W.M., et al., *Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers.* Cancer research, 1999. **59**(2): p. 320-4.
- 298. Bellam, N. and B. Pasche, *Tgf-beta signaling alterations and colon cancer*. Cancer Treat Res, 2010. **155**: p. 85-103.
- 299. Levy, L. and C.S. Hill, *Alterations in components of the TGF-beta superfamily signaling pathways in human cancer.* Cytokine & growth factor reviews, 2006. **17**(1-2): p. 41-58.
- 300. Rosman, D.S., et al., *TGFBR1*6A enhances the migration and invasion of MCF-7 breast cancer cells through RhoA activation.* Cancer Res, 2008. **68**(5): p. 1319-28.
- 301. Qi, P., et al., -509C>T polymorphism in the TGF-beta1 gene promoter is not associated with susceptibility to and progression of colorectal cancer in Chinese. Colorectal Dis, 2010.
 12(11): p. 1153-8.
- 302. Chung, S.J., et al., *Transforming growth factor-[beta]1 -509T reduces risk of colorectal cancer, but not adenoma in Koreans.* Cancer Sci, 2007. **98**(3): p. 401-4.
- 303. Fang, F., et al., *TGFB1 509 C/T polymorphism and colorectal cancer risk: a meta-analysis.* Med Oncol, 2010. **27**(4): p. 1324-8.
- 304. Liu, Y., et al., *Transforming growth factor beta-1 C-509T polymorphism and cancer risk: a meta-analysis of 55 case-control studies.* Asian Pacific journal of cancer prevention : APJCP, 2012. **13**(9): p. 4683-8.
- 305. Wang, Y., et al., *An updated meta-analysis on the association of TGF-beta1 gene promoter* -509C/T polymorphism with colorectal cancer risk. Cytokine, 2013. **61**(1): p. 181-7.
- 306. Berndt, S.I., et al., *Transforming growth factor beta 1 (TGFB1) gene polymorphisms and risk of advanced colorectal adenoma*. Carcinogenesis, 2007. **28**(9): p. 1965-70.
- 307. Liu, Y., W. Zhou, and D.W. Zhong, *Meta-analyses of the associations between four common TGF-beta1 genetic polymorphisms and risk of colorectal tumor.* Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine, 2012. 33(4): p. 1191-9.
- 308. Sparks, R., et al., *TGFbeta1 polymorphism (L10P) and risk of colorectal adenomatous and hyperplastic polyps.* Int J Epidemiol, 2004. **33**(5): p. 955-61.
- 309. Xu, W.Q., et al., *Expression of TGF-beta1, TbetaRII and Smad4 in colorectal carcinoma*. Exp Mol Pathol, 2007. **82**(3): p. 284-91.
- 310. Friedman, E., et al., *High levels of transforming growth factor beta 1 correlate with disease progression in human colon cancer.* Cancer Epidemiol Biomarkers Prev, 1995. **4**(5): p. 549-54.
- 311. Robson, H., et al., *Transforming growth factor beta 1 expression in human colorectal tumours: an independent prognostic marker in a subgroup of poor prognosis patients.* Br J Cancer, 1996. **74**(5): p. 753-8.

- 312. Tsushima, H., et al., *High levels of transforming growth factor beta 1 in patients with colorectal cancer: association with disease progression.* Gastroenterology, 1996. **110**(2): p. 375-82.
- 313. Shim, K.S., et al., *Elevated serum levels of transforming growth factor-beta1 in patients with colorectal carcinoma: its association with tumor progression and its significant decrease after curative surgical resection.* Cancer, 1999. **85**(3): p. 554-61.
- 314. Markowitz, S., et al., *Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability.* Science, 1995. **268**(5215): p. 1336-8.
- 315. Pasche, B., et al., *Somatic acquisition and signaling of TGFBR1*6A in cancer*. JAMA, 2005. **294**(13): p. 1634-46.
- 316. Takagi, Y., et al., *Somatic alterations of the SMAD-2 gene in human colorectal cancers.* Br J Cancer, 1998. **78**(9): p. 1152-5.
- 317. Ohtaki, N., et al., Somatic alterations of the DPC4 and Madr2 genes in colorectal cancers and relationship to metastasis. Int J Oncol, 2001. **18**(2): p. 265-70.
- 318. Boulay, J.L., et al., *Combined copy status of 18q21 genes in colorectal cancer shows frequent retention of SMAD7.* Genes Chromosomes Cancer, 2001. **31**(3): p. 240-7.
- 319. Sjoblom, T., et al., *The consensus coding sequences of human breast and colorectal cancers*. Science, 2006. **314**(5797): p. 268-74.
- 320. Ku, J.L., et al., *Genetic alterations of the TGF-beta signaling pathway in colorectal cancer cell lines: a novel mutation in Smad3 associated with the inactivation of TGF-beta-induced transcriptional activation.* Cancer letters, 2007. **247**(2): p. 283-92.
- Fukushima, T., et al., Mutational analysis of TGF-beta type II receptor, Smad2, Smad3, Smad4, Smad6 and Smad7 genes in colorectal cancer. J Exp Clin Cancer Res, 2003. 22(2): p. 315-20.
- 322. Miyaki, M., et al., *Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis.* Oncogene, 1999. **18**(20): p. 3098-103.
- 323. Boulay, J.L., et al., *SMAD7 is a prognostic marker in patients with colorectal cancer*. Int J Cancer, 2003. **104**(4): p. 446-9.
- 324. Pulleyn, L.J., et al., *TGFbeta1 allele association with asthma severity*. Hum Genet, 2001. **109**(6): p. 623-7.
- 325. Silverman, E.S., et al., *Transforming growth factor-beta1 promoter polymorphism C-509T is associated with asthma.* Am J Respir Crit Care Med, 2004. **169**(2): p. 214-9.
- 326. Grainger, D.J., et al., *Genetic control of the circulating concentration of transforming growth factor type beta1.* Hum Mol Genet, 1999. **8**(1): p. 93-7.
- 327. Yokota, M., et al., Association of a T29-->C polymorphism of the transforming growth factor-beta1 gene with genetic susceptibility to myocardial infarction in Japanese. Circulation, 2000. **101**(24): p. 2783-7.
- 328. Awad, M.R., et al., *Genotypic variation in the transforming growth factor-beta1 gene:* association with transforming growth factor-beta1 production, fibrotic lung disease, and graft fibrosis after lung transplantation. Transplantation, 1998. **66**(8): p. 1014-20.
- 329. Cambien, F., et al., *Polymorphisms of the transforming growth factor-beta 1 gene in relation to myocardial infarction and blood pressure. The Etude Cas-Temoin de l'Infarctus du Myocarde (ECTIM) Study.* Hypertension, 1996. **28**(5): p. 881-7.
- 330. Wasinger, V.C., et al., *Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium*. Electrophoresis, 1995. **16**(7): p. 1090-4.
- Wilkins, M.R., et al., From proteins to proteomes: large scale protein identification by twodimensional electrophoresis and amino acid analysis. Biotechnology (N Y), 1996. 14(1): p. 61-5.
- 332. Wilkins, M.R., et al., *Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it.* Biotechnol Genet Eng Rev, 1996. **13**: p. 19-50.
- 333. Edman, P., *A method for the determination of amino acid sequence in peptides.* Arch Biochem, 1949. **22**(3): p. 475.

- 334. Maher, S., F.P.M. Jjunju, and S. Taylor, *Colloquium: 100 years of mass spectrometry: Perspectives and future trends.* Reviews of Modern Physics, 2015. **87**(1): p. 113-135.
- 335. Tanaka, K., et al., *Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry*. Rapid Communications in Mass Spectrometry, 1988. **2**(8): p. 151-153.
- 336. Fenn, J.B., et al., *Electrospray ionization for mass spectrometry of large biomolecules*. Science, 1989. **246**(4926): p. 64-71.
- 337. Deterding, L.J., et al., *Nanoscale separations combined with tandem mass spectrometry.* J Chromatogr, 1991. **554**(1-2): p. 73-82.
- 338. Hunt, D.F., et al., *Protein sequencing by tandem mass spectrometry*. Proc Natl Acad Sci U S A, 1986. **83**(17): p. 6233-7.
- 339. Eng, J.K., A.L. McCormack, and J.R. Yates, *An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database.* J Am Soc Mass Spectrom, 1994. **5**(11): p. 976-89.
- 340. Perkins, D.N., et al., *Probability-based protein identification by searching sequence databases using mass spectrometry data*. Electrophoresis, 1999. **20**(18): p. 3551-3567.
- 341. Ghosh, D., et al., *Identification of key players for colorectal cancer metastasis by iTRAQ quantitative proteomics profiling of isogenic SW480 and SW620 cell lines.* J Proteome Res, 2011. **10**(10): p. 4373-87.
- 342. Xue, H., et al., *Identification of serum biomarkers for colorectal cancer metastasis using a differential secretome approach.* J Proteome Res, 2010. **9**(1): p. 545-55.
- 343. de Wit, M., et al., *Cell surface proteomics identifies glucose transporter type 1 and prion protein as candidate biomarkers for colorectal adenoma-to-carcinoma progression*. Gut, 2012. **61**(6): p. 855-64.
- 344. Lin, Q., et al., *iTRAQ* analysis of colorectal cancer cell lines suggests Drebrin (DBN1) is overexpressed during liver metastasis. Proteomics, 2014. **14**(11): p. 1434-43.
- 345. Shin, J., et al., *Discovery of melanotransferrin as a serological marker of colorectal cancer by secretome analysis and quantitative proteomics.* J Proteome Res, 2014. **13**(11): p. 4919-31.
- 346. Zou, X., et al., *Up-regulation of type I collagen during tumorigenesis of colorectal cancer revealed by quantitative proteomic analysis.* J Proteomics, 2013. **94**: p. 473-85.
- 347. Tsai, M.H., et al., *Identification of secretory gelsolin as a plasma biomarker associated with distant organ metastasis of colorectal cancer.* J Mol Med (Berl), 2012. **90**(2): p. 187-200.
- 348. Murakoshi, Y., et al., *Plasma biomarker discovery and validation for colorectal cancer by quantitative shotgun mass spectrometry and protein microarray.* Cancer Sci, 2011. **102**(3): p. 630-8.
- 349. Huber, L.A., K. Pfaller, and I. Vietor, *Organelle proteomics: implications for subcellular fractionation in proteomics.* Circ Res, 2003. **92**(9): p. 962-8.
- 350. Ramsby, M.L. and G.S. Makowski, *Differential detergent fractionation of eukaryotic cells. Analysis by two-dimensional gel electrophoresis.* Methods Mol Biol, 1999. **112**: p. 53-66.
- 351. McQuade, L.R., et al., *Improved membrane proteomics coverage of human embryonic stem cells by peptide IPG-IEF.* J Proteome Res, 2009. **8**(12): p. 5642-9.
- 352. Wissing, J., et al., *Enrichment of hydrophobic proteins via Triton X-114 phase partitioning and hydroxyapatite column chromatography for mass spectrometry*. Electrophoresis, 2000. **21**(13): p. 2589-93.
- 353. Han, C.L., et al., An informatics-assisted label-free approach for personalized tissue membrane proteomics: case study on colorectal cancer. Mol Cell Proteomics, 2011. 10(4):
 p. M110 003087.
- 354. Chen, J.S., et al., *Comparison of membrane fraction proteomic profiles of normal and cancerous human colorectal tissues with gel-assisted digestion and iTRAQ labeling mass spectrometry*. FEBS J, 2010. **277**(14): p. 3028-38.


- 355. Kume, H., et al., *Discovery of colorectal cancer biomarker candidates by membrane* proteomic analysis and subsequent verification using selected reaction monitoring (SRM) and tissue microarray (TMA) analysis. Mol Cell Proteomics, 2014. **13**(6): p. 1471-84.
- 356. Edelmann, M.J., *Strong cation exchange chromatography in analysis of posttranslational modifications: innovations and perspectives.* J Biomed Biotechnol, 2011. **2011**: p. 936508.
- 357. Dole, M., et al., *Molecular Beams of Macroions*. The Journal of Chemical Physics, 1968. **49**(5): p. 2240-2249.
- 358. Karas, M., et al., *Matrix-assisted ultraviolet laser desorption of non-volatile compounds.* International Journal of Mass Spectrometry and Ion Processes, 1987. **78**(0): p. 53-68.
- 359. El-Aneed, A., A. Cohen, and J. Banoub, Mass Spectrometry, Review of the Basics: Electrospray, MALDI, and Commonly Used Mass Analyzers. Applied Spectroscopy Reviews, 2009. 44(3): p. 210-230.
- 360. Glish, G.L. and R.W. Vachet, *The basics of mass spectrometry in the twenty-first century*. Nat Rev Drug Discov, 2003. **2**(2): p. 140-50.
- 361. Ho, C.S., et al., *Electrospray ionisation mass spectrometry: principles and clinical applications.* Clin Biochem Rev, 2003. **24**(1): p. 3-12.
- 362. Yates, J.R., C.I. Ruse, and A. Nakorchevsky, *Proteomics by mass spectrometry: approaches, advances, and applications.* Annu Rev Biomed Eng, 2009. **11**: p. 49-79.
- 363. Miller, P.E. and M.B. Denton, *The quadrupole mass filter: Basic operating concepts.* Journal of Chemical Education, 1986. **63**(7): p. 617.
- 364. Wolff, M.M. and W.E. Stephens, *A Pulsed Mass Spectrometer with Time Dispersion*. Review of Scientific Instruments, 1953. **24**(8): p. 616-617.
- 365. Brown, R.S. and J.J. Lennon, *Mass resolution improvement by incorporation of pulsed ion extraction in a matrix-assisted laser desorption/ionization linear time-of-flight mass spectrometer*. Anal Chem, 1995. **67**(13): p. 1998-2003.
- 366. Yates, J.R., 3rd, *Mass spectrometry and the age of the proteome.* J Mass Spectrom, 1998. **33**(1): p. 1-19.
- 367. Gillet, L.C., et al., *Targeted data extraction of the MS/MS spectra generated by dataindependent acquisition: a new concept for consistent and accurate proteome analysis.* Mol Cell Proteomics, 2012. **11**(6): p. O111 016717.
- 368. Wiese, S., et al., *Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research.* Proteomics, 2007. **7**(3): p. 340-50.
- 369. Shiio, Y. and R. Aebersold, *Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry.* Nat Protoc, 2006. **1**(1): p. 139-45.
- 370. Ong, S.E., et al., *Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics.* Mol Cell Proteomics, 2002. **1**(5): p. 376-86.
- 371. Stewart, II, T. Thomson, and D. Figeys, *180 labeling: a tool for proteomics*. Rapid Commun Mass Spectrom, 2001. **15**(24): p. 2456-65.
- 372. Shen, Y., N.N. Senzer, and J.J. Nemunaitis, *Use of Proteomics Analysis for Molecular Precision Approaches in Cancer Therapy.* Drug Target Insights, 2008. **3**(DTI-3-Nemunaitiset-al): p. 55-66.
- 373. Tweedie-Cullen, R.Y. and M. Livingstone-Zatchej, *Quantitative analysis of protein expression using iTRAQ and mass spectrometry.* 2008.
- 374. Shilov, I.V., et al., *The Paragon Algorithm, a next generation search engine that uses* sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol Cell Proteomics, 2007. **6**(9): p. 1638-55.
- 375. Tang, W.H., I.V. Shilov, and S.L. Seymour, *Nonlinear fitting method for determining local false discovery rates from decoy database searches.* J Proteome Res, 2008. **7**(9): p. 3661-7.
- 376. Ahmed, N., et al., Downregulation of urokinase plasminogen activator receptor expression inhibits Erk signalling with concomitant suppression of invasiveness due to loss of uPAR-beta1 integrin complex in colon cancer cells. Br J Cancer, 2003. **89**(2): p. 374-84.

- 377. Yang, G.Y., et al., Integrin alpha v beta 6 mediates the potential for colon cancer cells to colonize in and metastasize to the liver. Cancer Sci, 2008. **99**(5): p. 879-87.
- Chaurasia, P., et al., A region in urokinase plasminogen receptor domain III controlling a functional association with alpha5beta1 integrin and tumor growth. J Biol Chem, 2006.
 281(21): p. 14852-63.
- 379. Ahmed, N., et al., *Direct integrin alphavbeta6-ERK binding: implications for tumour growth.* Oncogene, 2002. **21**(9): p. 1370-80.
- 380. Cheruku, H.R., et al., *Transforming growth factor-β, MAPK and Wnt signaling interactions in colorectal cancer*. EuPA Open Proteomics, 2015(0).
- 381. Hayashida, T., M. Decaestecker, and H.W. Schnaper, *Cross-talk between ERK MAP kinase* and Smad signaling pathways enhances *TGF-beta-dependent responses in human* mesangial cells. FASEB J, 2003. **17**(11): p. 1576-8.
- 382. Hough, C., M. Radu, and J.J. Dore, *Tgf-beta induced Erk phosphorylation of smad linker region regulates smad signaling*. PLoS One, 2012. **7**(8): p. e42513.
- 383. Koromilas, A.E., Roles of the translation initiation factor elF2alpha serine 51 phosphorylation in cancer formation and treatment. Biochim Biophys Acta, 2015. 1849(7): p. 871-880.
- 384. Hamamura, K., et al., *Attenuation of malignant phenotypes of breast cancer cells through elF2alpha-mediated downregulation of Rac1 signaling.* Int J Oncol, 2014. **44**(6): p. 1980-8.
- 385. Zheng, Q., J. Ye, and J. Cao, *Translational regulator eIF2alpha in tumor*. Tumour Biol, 2014.
 35(7): p. 6255-64.
- 386. Brattain, M.G., et al., *Heterogeneity of malignant cells from a human colonic carcinoma*. Cancer Res, 1981. **41**(5): p. 1751-6.
- 387. Wang, Y., et al., Inhibition of colon cancer metastasis by a 3'- end antisense urokinase receptor mRNA in a nude mouse model. Int J Cancer, 2001. **92**(2): p. 257-62.
- 388. Stolboushkina, E.A. and M.B. Garber, *Eukaryotic type translation initiation factor 2: structure-functional aspects.* Biochemistry (Mosc), 2011. **76**(3): p. 283-94.
- 389. Cantor, D., et al., *Overexpression of alphavbeta6 integrin alters the colorectal cancer cell proteome in favor of elevated proliferation and a switching in cellular adhesion that increases invasion*. Journal of proteome research, 2013. **12**(6): p. 2477-90.
- 390. Nathan, C.O., et al., *Elevated expression of eIF4E and FGF-2 isoforms during vascularization of breast carcinomas.* Oncogene, 1997. **15**(9): p. 1087-94.
- 391. Seki, N., et al., *Expression of eukaryotic initiation factor 4E in atypical adenomatous hyperplasia and adenocarcinoma of the human peripheral lung.* Clin Cancer Res, 2002.
 8(10): p. 3046-53.
- 392. Badura, M., et al., DNA damage and eIF4G1 in breast cancer cells reprogram translation for survival and DNA repair mRNAs. Proc Natl Acad Sci U S A, 2012. **109**(46): p. 18767-72.
- 393. Clarkson, B.K., W.V. Gilbert, and J.A. Doudna, *Functional overlap between elF4G isoforms in Saccharomyces cerevisiae.* PLoS One, 2010. **5**(2): p. e9114.
- 394. Park, E.H., et al., *Depletion of eIF4G from yeast cells narrows the range of translational efficiencies genome-wide*. BMC Genomics, 2011. **12**: p. 68.
- 395. Ramirez-Valle, F., et al., *eIF4GI links nutrient sensing by mTOR to cell proliferation and inhibition of autophagy.* J Cell Biol, 2008. **181**(2): p. 293-307.
- 396. Litvak, A., et al., *False-positive elevations of carcinoembryonic antigen in patients with a history of resected colorectal cancer.* J Natl Compr Canc Netw, 2014. **12**(6): p. 907-13.
- 397. Gurluler, E., et al., *Serum annexin A2 levels in patients with colon cancer in comparison to healthy controls and in relation to tumor pathology.* Med Sci Monit, 2014. **20**: p. 1801-7.
- 398. Yang, T., et al., *Prognostic and diagnostic significance of annexin A2 in colorectal cancer*. Colorectal Dis, 2013. **15**(7): p. e373-81.
- 399. Bertucci, F., et al., *Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters*. Oncogene, 2004. **23**(7): p. 1377-91.
- 400. Duncan, R., et al., *Characterisation and protein expression profiling of annexins in colorectal cancer*. Br J Cancer, 2008. **98**(2): p. 426-33.


- 401. Karantza, V., *Keratins in health and cancer: more than mere epithelial cell markers.* Oncogene, 2011. **30**(2): p. 127-38.
- 402. Yang, Y.Q., et al., *Upregulated expression of S100A6 in human gastric cancer*. J Dig Dis, 2007. **8**(4): p. 186-93.
- 403. Zhang, J., et al., *S100A6 as a potential serum prognostic biomarker and therapeutic target in gastric cancer.* Dig Dis Sci, 2014. **59**(9): p. 2136-44.
- 404. Fakih, M.G. and A. Padmanabhan, *CEA monitoring in colorectal cancer. What you should know.* Oncology (Williston Park), 2006. **20**(6): p. 579-87; discussion 588, 594, 596 passim.
- 405. Terada, H., T. Urano, and H. Konno, *Association of interleukin-8 and plasminogen activator system in the progression of colorectal cancer.* Eur Surg Res, 2005. **37**(3): p. 166-72.
- 406. Bunger, S., et al., *Toward standardized high-throughput serum diagnostics: multiplex*protein array identifies IL-8 and VEGF as serum markers for colon cancer. J Biomol Screen, 2011. **16**(9): p. 1018-26.
- 407. Sun, Q., et al., *Interleukin-8 promotes cell migration through integrin alphavbeta6 upregulation in colorectal cancer.* Cancer Lett, 2014. **354**(2): p. 245-53.
- 408. Chauhan, A., et al., *Prognostic value of prolactin in postoperative colorectal carcinoma*. Gastrointest Cancer Res, 2008. **2**(5): p. 260-1.
- 409. Soroush, A.R., et al., *Plasma prolactin in patients with colorectal cancer*. BMC Cancer, 2004. **4**: p. 97.
- 410. Pang, S.S., et al., *The structural basis for autonomous dimerization of the pre-T-cell antigen receptor.* Nature, 2010. **467**(7317): p. 844-8.
- 411. Sethi, M.K., et al., Comparative N-glycan profiling of colorectal cancer cell lines reveals unique bisecting GlcNAc and alpha-2,3-linked sialic acid determinants are associated with membrane proteins of the more metastatic/aggressive cell lines. J Proteome Res, 2014.
 13(1): p. 277-88.

APPENDICES

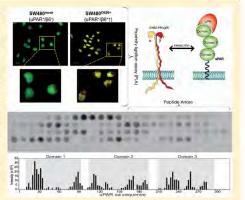
Appendix I – Expression of TGFβ receptors 1 and 2 in the cell lines used in this thesis

Appendix I Figure 1 – **Expression TGF** β receptor 1 (TGF β R1) in all the six cell lines used in this thesis examined by Werstern blotting using anti-TGF β RI antibody (V-22; Cat #: sc-398) from Santa Cruz Biotechnology. 50 µg or whole cell lysate was loaded into each well. All the cell lines were identified to express the TGF β R1 and the dimeric form of the receptors identified in the Western blot. PSM: prestained Western marker; Lane 1: HCT116^{WT}; Lane 2: HT29^{uPARAS}; Lane 3: SW480^{Mock}; Lane 4: SW480^{β 60E}; Lane 5: HT29^{Mock}; and Lane 6: HT29^{β 6AS}

Appendix I Figure 2 – **Expression TGFβ receptor 2** (TGFβR2) in all the six cell lines used in this thesis examined by Werstern blotting using anti-TGFβ RII antibody (c-16; Cat #: sc-220) from Santa Cruz Biotechnology. 50 µg or whole cell lysate was loaded into each well. All the cell lines were identified to express the TGFβR2 around the 75 kDa as reported by the antibody manufacturer (Source: <u>http://datasheets.scbt.com/sc-220.pdf</u>). Breast cancer cell line MCF-7 was used as positive control cell lysate as it is known to express the TGFβR2. Recombinant TGFβR2 was also used. Lane 1: HCT116^{WT}; Lane 2: HT29^{uPARAS}; Lane 3: SW480^{Mock}; Lane 4: SW480^{β6OE}; Lane 5: HT29^{Mock}; Lane 6: HT29^{β6AS}; Lane 7: MCF-7 cell lysate; Lane 8: 180 ng recombinant TGFβR2; and Lane 9: 200 ng recombinant TGFβR2

Appendix II – Characterization of the interaction between heterodimeric alphavbeta6 integrin and urokinase plasminogen activator receptor (uPAR) using functional proteomics. Publication VII of this thesis.

Characterization of the Interaction between Heterodimeric $\alpha v \beta 6$ Integrin and Urokinase Plasminogen Activator Receptor (uPAR) Using Functional Proteomics


Seong Beom Ahn,^{†, ∇} Abidali Mohamedali,^{‡, ∇} Samyuktha Anand,^{‡, ∇} Harish R. Cheruku,[†] Debra Birch,[‡] Gopichandran Sowmya,[‡] David Cantor,[†] Shoba Ranganathan,[‡] David W. Inglis,[§] Ronald Frank,^{II} Michael Agrez,[⊥] Edouard C. Nice,[#] and Mark S. Baker^{*,†}

[†]Australian School of Advanced Medicine, Faculty of Human Sciences, [‡]Department of Chemistry and Biomolecular Sciences, and [§]Department of Engineering, Faculty of Science, Macquarie University, Sydney, NSW 2109, Australia

^{II}Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffen Strasse, 738124 Braunschweig, Germany ^{II}Division of Surgery, John Hunter Hospital, Newcastle, NSW 2310, Australia

"Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia

ABSTRACT: Urokinase plasminogen activator receptor (uPAR) and the epithelial integrin $\alpha v \beta 6$ are thought to individually play critical roles in cancer metastasis. These observations have been highlighted by the recent discovery (by proteomics) of an interaction between these two molecules. which are also both implicated in the epithelial-mesenchymal transition (EMT) that facilitates escape of cells from tissue barriers and is a common signature of cancer metastases. In this study, orthogonal in cellulo and in vitro functional proteomic approaches were used to better characterize the uPAR· $\alpha v \beta 6$ interaction. Proximity ligation assays (PLA) confirmed the uPAR- $\alpha v \beta 6$ interaction on OVCA429 (ovarian cancer line) and four different colon cancer cell lines including positive controls in cells with de novo $\beta 6$ subunit expression. PLA studies were then validated using peptide arrays, which also identified potential physical sites of uPAR interaction with $\alpha\nu\beta\delta$, as well as verifying interactions with other known uPAR ligands (e.g., uPA, vitronectin) and individual integrin subunits (i.e., αv , $\beta 1$, $\beta 3$, and $\beta 6$ alone). Our data suggest that interaction with uPAR requires expression of the complete $\alpha\beta$

heterodimer (e.g., $\alpha v \beta 6$), not individual subunits (i.e., αv , $\beta 1$, $\beta 3$, or $\beta 6$). Finally, using in silico structural analyses in concert with these functional proteomics studies, we propose and demonstrate that the most likely unique sites of interaction between $\alpha v \beta 6$ and uPAR are located in uPAR domains II and III.

KEYWORDS: functional proteomics, uPAR, ανβ6 integrin, proximity ligation assay, peptide array, ovarian cancer, colorectal cancer

5956

■ INTRODUCTION

A hallmark of epithelial cancer metastasis is the ability of cancer cells to migrate and infiltrate distant organs. Key stages during metastasis include detachment of the tumor cell from neighboring cells and the basement membrane, intravasation of cell(s) to the blood or lymphatic system, invasion of the migrated cell into a new environment, readhesion, and finally angiogenesis.¹ At the molecular level, the epithelial–mesenchymal transition (EMT) is thought to be a pivotal biological process that facilitates tissue remodeling and metastatic progression. Normal epithelial cells undergo numerous biochemical alterations during EMT, including loss of cell polarity, loss of cell–cell adhesion, suppression of E-cadherin, and an increase in cell migration and invasiveness.² EMT is facilitated by degradation of extracellular matrix (ECM) structures, allowing cancer cells to escape and potentially colonize secondary sites in the body.² Degradation of ECM is now thought to be one of the most complex and important mechanisms that drives EMT, but how this occurs is not yet fully understood. The matrix metalloproteinase (MMP) family and the serine protease plasminogen activation cascade are two major matrix degrading protease families implicated in epithelial cancer metastasis (e.g., breast, endometrial, hepato-

Received: August 15, 2014 Published: October 16, 2014

ACS Publications © 2014 American Chemical Society

dx.doi.org/10.1021/pr500849x / J. Proteome Res. 2014, 13, 5956 5964

Journal of Proteome Research

cellular, colorectal, pancreatic, gastric, renal, brain, and lung).3 Both the MMPs and the plasmin are found as inactive zymogens (pro-MMPs and plasminogen, respectively), which are spatially and temporally (spatiotemporally) activated in a series of steps.⁴ Inactive plasminogen can be converted to active plasmin by urokinase plasminogen activator (uPA) on its major receptor the uPA-receptor (uPAR), where it is relatively "shielded" from inhibitors when located on the cell surface. Plasmin degrades many ECM components including fibrin, fibronectin, laminin, and the protein core of proteoglycans,⁴ while also activating MMP-1, MMP-3, and MMP-9 among many proteases that consequently degrade additional ECM components.³ To understand the regulation and consequences of ECM degradation in the tumor microenvironment, it was essential to determine cell surface interacting proteins. Using immunoprecipitation and mass spectrometry, we recently elucidated a cell surface uPAR interactome using an ovarian cancer cell line (OVCA429) with the novel discovery of the interaction of uPAR and integrin $\alpha v \beta 6$,⁵ subsequently shown as uPAR· $\alpha v \beta 6$. This was further validated by Western blot analysis. Interestingly, both of these cell surface proteins have been implicated in many aspects of the biology of epithelial cancer and its progression. $^{\rm S}$

From more than 8000 membrane proteins predicted from the human protein-coding genes,6 uPAR has been suggested to be one of a few multifunctional multi-interacting cell surface receptors that is known to be involved in, among other things, ECM degradation, growth factor activation, and downstream cellular signaling.⁷ A glycosylphosphotidylinositol (GPI) linker anchors the three domains (DI, DII, and DIII) of the mature uPAR protein to the extracellular surface of the plasma membrane. These three domains form a thick-fingered glovelike structure that provides a central pocket for the binding of the cognate ligand protease, uPA.⁸ Equally this shape reveals a large contralateral external surface potentially facilitating interactions with other proteins.⁶ While initial studies focused exclusively on regulation of plasmin activation by uPAR, 42 proteins (9 extracellular proteins and 33 lateral interacting partners) have now been proposed to interact with uPAR. This exhaustive list suggests that uPAR may have evolved multiple different ligand specificities involved in the regulation of many biologies, like proteolysis, cell migration, proliferation, cell signaling, as well as other yet to be explored cell behaviors. Indeed, in the past decade, extensive evidence has suggested that uPAR is implicated in cell adhesion, proliferation, migration, tissue remodeling, and regulation of signaling pathways (e.g., MAP kinase, Ras pathways),⁷ which are important features not only of ubiquitous developmental pathways, but more importantly for cancer metastasis. High expression of the uPAR antigen has been observed in many cancers (including breast, ovarian, colon, and lung^{10,11}). In colorectal cancer (CRC), a high level of uPAR has been suggested as a prognostic factor for poor survival.¹¹ Additionally, up-regulation of uPA in metastasis and its subsequent roles in the degradation of the ECM have further suggested uPAR and its interacting partners are central to processes that lead to metastasis, including EMT. 12

As uPAR possesses no intrinsic intracellular domain, it is commonly thought that downstream cellular signaling pathways influenced by uPAR must be mediated through lateral interactions with transmembrane proteins (e.g., integrins). Indeed, 11 integrins (out of a total of 24) have been suggested to directly interact with uPAR,⁹ and many of these studies have implicated these interactions in some role in cancer metastasis.¹³ A major function of integrins that relates them directly to cell adhesion in cancer metastasis is in cellular traction, where the β subunit embeds itself across the cell membrane and mechanically links integrins to the cytoskeleton and ECM.¹³ Integrins also regulate molecular processes related to cell morphology, proliferation, survival, migration, and invasion, mostly by engaging in crucial intracellular signaling.¹³

This study focuses specifically on the $\alpha\nu\beta\delta$ integrin, a transmembrane heterodimer receptor expressed exclusively on the surface of epithelial cells. The $\alpha\nu\beta\delta$ integrin is involved in a bidirectional manner in the signal cascade system, sending signals from the cells to the ECM and vice versa via a series of protein binding partners, which include fibronectin, cytotactin, tenascin, vitronectin (Vn), and TGF β 1.¹⁴ High expression of $\alpha\nu\beta\delta$ has been demonstrated in various cancers including CRC, liver, ovarian, gastric, thyroid, cervical squamous, and endometrial cancer, where its expression is often correlated with poor patient survival.^{15,16} Several studies have implicated $\alpha\nu\beta\delta$ in cell proliferation, migration, and invasion, ^{16,17} with some reports suggesting the involvement of $\alpha\nu\beta\delta$ through activation and up-regulation of various MMP-driven proteolytic pathways.¹⁶ Furthermore, it has been conclusively demonstrated that $\alpha\nu\beta\delta$ activates nascent latent transforming growth factor, TGF- β 1,¹⁸ which can also up-regulate MMP pathways,¹⁹

Our central hypothesis here is that, when coexpressed, uPAR and $\alpha\nu\beta6$ function cooperatively as a single membrane proteomic machine (as uPAR $\alpha\nu\beta6$). In this study, we confirm the originally observed uPAR·ανβ6 interaction by functional proteomics using two orthogonal techniques, proximity ligation assays (PLA) and peptide arrays. In detail, PLA is an in cellulo technique that allows direct detection of protein-protein interactions due to the close proximity of the binding partners, and the in vitro peptide array method was used to locate potential specific interacting sites in uPAR- $\alpha v \beta 6$ using an offset 15-mer sequential array of uPAR peptides across the whole protein sequence to find binding sites using HRP-labeled $\alpha v \beta 6$ or other ligands (i.e., uPA, Vn, and integrin subunits). Furthermore, using an in silico structural analysis tool (ICM bioinformatics software), we were able to map putative sites of uPAR and $\alpha v \beta 6$ interaction. This study not only validates the uPAR- $\alpha v \beta 6$ interactions observed by proteomics in CRC and ovarian cancer cells, but also opens significant new avenues for functional targeting of similar interactions that may play key roles in epithelial cancer metastasis and provide unique therapeutic options.

MATERIALS AND METHODS

Antibodies and Recombinant Proteins

Monoclonal antibodies (mAb) against human uPAR (clone R4, IgG1) were purchased from DAKO (Glostrup, Denmark). The mAb against the $\beta 6$ subunit of the human $\alpha \nu \beta 6$ integrin (clone 6.4B4, IgG1) was obtained from Biogen Idec (Cambridge, MA).²⁰ Isotype control, IgG1, was purchased from R&D Systems (Minneapolis, MN). The full length recombinant proteins that were used for the peptide array were uPA and integrin $\alpha \nu \beta 6$ (R&D Systems); vitronectin (Merck Millipore, MA); and integrin $\alpha \nu$, $\beta 6$, $\beta 1$, and $\beta 3$ (Abnova, Taipei City, Taiwan).

dx.doi.org/10.1021/pr500849x1J. Proteome Res. 2014, 13, 5956-5964

Journal of Proteome Research

Cell Culture

The ovarian and colon cancer cell lines expressing uPAR and varying levels of $\beta 6$ used for the experiments were: ovarian, OVCA429²¹ (uPAR³, $\beta 6^3$); colorectal, HT29^{mock} (uPAR⁴, $\beta 6^3$), HT29^{6AS} (uPAR³, $\beta 6^2$); SW480^{fbOE} (uPAR⁴, $\beta 6^2$), and SW480^{mock} (uPAR⁴, $\beta 6^2$).^{22,23} The OVCA429 cells were cultured in DMEM (Invitrogen) media supplemented with 10% FBS, 100 µg/mL penicillin, 100 µg/mL streptomycin, 10 mM HEPOS, and 6 mM tr-glutamine. The HT29^{mock} and HT29^{6AS} cells were cultured in RPMI media (Invitrogen, San Diego, CA) supplemented with 10% FBS and 2.5 µg/mL puromycin. The SW480^{fbOE} and SW480^{mock} cells were cultured in DMEM supplemented with 4.5 g/L glucose, 10% FBS, and 500 µg/mL Geneticin G418 (Invitrogen). The cells were seeded at 2 × 10⁵ cells/mL and were grown until ~50% confluence prior to immunofluorescence and PLA experiments. All cells were grown at 37 °C in 5% CO₂ (v/v) in biological triplicates.

Immunofluorescence (IF)

The presence and/or absence of uPAR and β 6 in all five cell lines were confirmed using IF. When cell cultures reached ~50% confluence, the cells were fixed using 2% paraformaldehyde for 10 min, washed with 0.1 M glycine in PBS, and incubated with blocking solution (9% goat serum, 1% BSA in PBS) for 1 h at room temperature. The cells were then incubated with anti-uPAR R4 (5 µg/mL) and anti-av/β6 6.4B4 (5 µg/mL) antibodies for 1 h at 37 °C followed by incubation with Alexa Fluor 488 goat Anti-Mouse IgG (H+L) (Invitrogen) as secondary antibody (4 µg/mL), for 1 h at 37 °C. Cell nuclei were counter stained with the blue fluorescent DAPI (Invitrogen) nucleic acid stain (300 nM) for 10 min and mounted on glass slides in Gelmount (ProScitech, Australia). The cells were analyzed using a UPLSAPO 40× objective (NA 0.95) on a fluorescence microscope (BX63, Olympus, Tokyo). All image capture was conducted using a XM10, monochrome cooled CCD camera and CELLSENS dimensions software (Olympus, Tokyo).

Proximity Ligation Assay (PLA)

The assay was performed according to manufacturer's instructions (Olink Bioscience, Uppsala, Sweden). Briefly, the PLUS oligonucleotide probe was conjugated to anti-uPAR R4 and its isotype control (IgG1), while the MINUS oligonucleotide probe was conjugated to anti-av/ β 6 6.4B4 and its corresponding isotype control (IgG1). Cells were fixed using 2% paraformaldehyde in PBS and blocked using blocking solution (9% goat serum, 1% BSA in PBS). Oligonucleotide probe conjugated to the cells and incubated for 1 h, followed by incubation with the ligation solution for 30 min, followed by amplification solution (contains Cy5 fluorophore) for 100 min. Cells were counter stained with SYBR Green1 stain and mounted. The PLUS and MINUS oligonucleotide conjugated IgG1 mAbs were used as negative controls.

PLA Imaging

The cells were imaged using an Olympus Fluoview 300 confocal laser scanning system equipped with an inverted microscope (IX70, Olympus Tokyo). A $40\times$ UPLAN APO objective (NA 0.95) was used for analysis of all slides. SYBR Green1 stain was excited using a 488 nm argon laser and the emission signal detected using 510 and 530 nm interference filters. The Cy5 dye was excited using the 633 nm HeNe laser,

Article

and the emission signal was detected using a long pass 610 barrier filter. Three sets of images, in the X, Y, and Z dimensions (10 optical slices with a spacing of 0.5 μ m), were captured for each replicate and image analysis performed on the extended XYZ images, using Duolink Image Tool software (Olink Bioscience). The number of protein interaction signals (seen as red spots) per cell was calculated for each image. Aggregated cells were counted manually to avoid miscalculation. A student *t* test was performed to establish the statistical significance of uPAR- $\alpha \gamma \beta 6$ for each cell line.

uPAR Peptide Array

A cellulose-bound array of 108 spots of 15-mer peptides covering the complete uPAR sequence of 331 amino acids with a 3 amino acid shift was synthesized using SPOT synthesis.^{24,25} The uPAR peptide arrays were blocked with 5% skim milk followed by incubation with HRP conjugated recombinant proteins (HRP-RPs) for 4 h. HRP-RPs were prepared by a Lightning-Link HRP conjugation kit (Innova Biosciences) as per the manufacturer's instructions. Unbound HRP-RPs was washed off, and bound HRP-RPs was detected using Super-Signal West Femto Chemiluminescent Substrate (Thermo Scientific), Images were captured using a Fujifilm CS3000 imager in chemiluminescence mode with the intensity adjusted such that the darkest spots were slightly below saturation. The images were then analyzed using MultiGuage software (FujiFilm). A quantitative intensity value for each spot was calculated using the following formula:

intensity = (AU - BG)/t

where "AU" is the measured intensity of each spot, "BG" is the background, and "t" is the time of exposure of the imaging. The uPAR peptide array with $\alpha\nu\beta6$ was performed in triplicate to confirm reproducibility.

Bioinformatics Analysis of uPAR Interaction

The known crystal structures (PDB ID: 3BT1) of uPAR, uPA, and Vn complex²⁶ were analyzed using the ICM bioinformatics software (Internal Coordinate Mechanics).²⁷ First, the uPAR regions that bound to $\alpha v \beta 6$ on the peptide array were graphically visualized using ICM. These regions were then subjected to manual analysis to determine residues with favorable side-chain orientations. The residues with favorable side-chain orientations were then reanalyzed to determine $\alpha v \beta 6$ residues potentially accessible to the outer surface of uPAR based on hydrophobicity.

RESULTS AND DISCUSSION

Previous proteomics studies using immunoprecipitation, mass spectrometry, and Western blot analysis, using the ovarian cancer cell line OVCA429.⁵ demonstrated that uPAR potentially interacts with other membrane associated proteins, including the $\alpha\nu\beta6$ integrin heterodimer. Many of the proteins identified in that study had been previously implicated in either the biology of cancer metastasis, the regulation of plasminogen activation, or as prognostic indicators of poor cancer patient survival (e.g., α -enolase, $\alpha\nu\beta6$, uPAR). Specifically, uPAR and $\alpha\nu\beta6$ have been independently implicated in both cancer biology (e.g., proliferation, TGF β activation, cell adhesion, migration, proteolysis, and invasion) and poor epithelial cancer patient prognosis (colorectal, breast, prostate, lung, and ovarian cancer).⁷ Coexpression of uPAR and $\alpha\nu\beta6$ in the OVCA429 and other cell lines is now well established.⁵ Studies using flow cytometry have also independently confirmed the expression of

5958

dx.doi.org/10.1021/pr500849x1J. Proteome Res. 2014, 13, 5956-5964

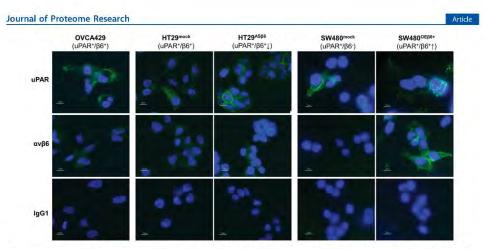


Figure 1. A representation of the cell surface expression of uPAR and $\alpha\nu\beta6$ for five different cell lines as SW480 $\beta6$ OE, SW480 mock, OVCA-429, HT-29 mock, and HT-29 $\beta6$ AS each expressing varying levels of $\beta6$. The third row represents the antibody control (IgG1). Nuclei were stained with DAPI, while proteins were detected with a secondary antibody conjugated to Alexa 488.

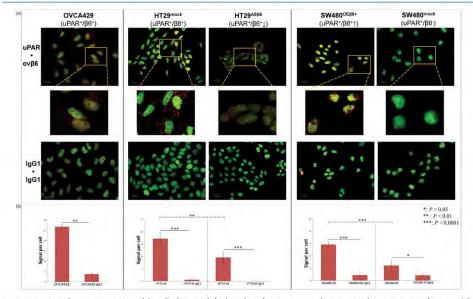


Figure 2. Proximity ligation assay images of the cells shown in (A) where the red spots represent the interaction between uPAR $\alpha\alpha\beta6$. A signal for the interaction of the uPAR $\alpha\alpha\beta6$ corresponding to the level of $\beta6$ in the cell seems to be observed as compared to the IgG1 isotype control. (B) This observation was quantified by measuring the number of spots per cell. The results showed a significant decrease in interaction when the level of $\beta6$ was reduced by 35% (in HT-29 $\beta6$ AS cells) (p < 0.05). Similarly, a significant increase in interactions was observed when $\beta6$ was up-regulated in SW480 $\beta6$ OE cells.

both of these antigens on the cell surface.^{23,28–30} However, correlations of tumor tissue coexpression and relationships with cancer stage, differentiation status, and patient clinical outcomes (including survival) remain to be explored. The confirmation of a direct uPAR- $\alpha x \beta \delta$ interaction would suggest

a novel paradigm that potentially explains how and why these membrane proteins share critical aspects of tumor biology and would assist in the development of novel therapeutics to prevent cancer metastasis.²⁹

dx.doi.org/10.1021/pr500849x | J. Proteome Res. 2014, 13, 5956-5964

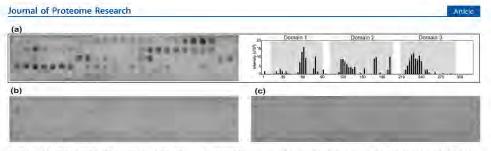


Figure 3. (a) uPAR peptide array incubated with $\alpha\alpha\beta\beta$ and corresponding intensity plot indicating locations of binding on the three domains of uPAR with the more intense spot (semiquantitatively indicated on the bar chart) indicating a stronger affinity for the heterodimer to the corresponding uPAR peptide. The same peptide array incubated with $\alpha\nu$ (b) and $\beta6$ (c) integrins separately, neither of which showed any binding to the array.

The aim of the present study was to functionally validate our previous proteomic studies⁵ on IP pull downs of the specific interacting sites of uPAR-ary $\beta \delta$ by using two diverse orthogonal biochemical techniques: PLA for in cellulo studies and peptide arrays for in vitro analysis of the specific interacting sites. To validate the uPAR-ary $\beta \delta$ interaction, ovarian (OVCA429) and four colon cancer cell lines were employed (HT29^{mock}, HT29^{$\beta \Delta S$}, SW480^{$\beta \Delta G E$}, and SW480^{m ock}). The dysregulation of uPAR and $\beta \delta$ in these cell lines has been previously demonstrated by various techniques not limited to but including flow cytometry, Western blot, and PET analysis.^{29,31–33}

Immunofluorescence and PLA Confirm the Presence of uPAR $\alpha\nu\beta6$ Interactions

In this study, immunofluorescence (IF) was used to demonstrate the presence of uPAR and $\alpha\nu\beta\delta$ on the cell surface using anti-uPAR R4 and anti- $\alpha\nu\beta\delta$ 6.4B4 mAbs. Consistent with previous studies, these results demonstrated that uPAR was expressed on the cell surface of all cell lines, while $\alpha\nu\beta\delta$ was expressed on SW480^{mode}, HT29^{mode}, HT29^{kAS}, and OVCA429, but was not on SW480^{mode} (Figure 1). No binding (no fluorescence) was observed with the negative isotype control IgG1 antibody (Figure 1) as control.

Bodype control is an emerging technology that has been used to visualize and simultaneously quantify P-P interactions occurring in situ.³⁴ Proteins in close proximity (30–40 nm) are fluorescently detected using rolling circle amplification of ligatable DNA primers attached to secondary antibodies that bind a pair of epitope-specific monoclonal antibodies.^{34,35} In our study, primary antibodies were directed against uPAR and *ανβ6*. Expression of integrin *β6* is restricted to epithelia cells, and it is only known to dimerize with the *αν* subunit.³⁶ Therefore, to identify whether interaction with uPAR could be demonstrated quantitatively, we examined other cell lines in which relative expression levels of the *β6* integrin were modulated. The cell lines used expressed uPAR with varying levels of integrin *β6* expression. For example, cells that did not express *β6* (i.e., SW480^{mock}) were compared to those in which integrin *β6* had been engineered to be overexpressed *β6* (HT29^{mock}) were compared to subclones of the same cell line in which *β6* expression had been deliberately and stably reduced by ~80% (i.e., HT29^{β6AS})²⁹ (Figure 2).

To allow statistical analyses, the assay was performed in biological triplicate for all cell lines, and three images were acquired for each replicate. A significant number of positive spots were observed localized to the cell surface as anticipated (Figure 2). The OVCA429, SW480^{960F}, and HT29^{mode} cell lines showed strong signals for the uPAR- $\alpha \nu \beta \delta$ interaction, whereas the HT29^{j/6AS} cell line showed much weaker signals ($\rho < 0.05$) (Figure 2a), which is in agreement with the reduced $\beta \delta$ expression previously reported.²⁵⁷ The SW480^{mode} cell line, where $\beta \delta$ is completely absent, showed no apparent uPAR- $\alpha \nu \beta \delta$ PLA signal (Figure 2a). An analysis of the average signal obtained per cell as compared to the corresponding isotype controls demonstrated that the signals obtained from uPAR- $\alpha \nu \beta \delta$ were significantly greater (p < 0.05) than the control (Figure 2b).

The results for the OVCA429 cell line were similar to those we had obtained previously.⁵ For the colon cancer cell lines, PLA data showed a significant decrease in interaction when the level of $\alpha v/\beta 6$ was reduced; concordantly, a significant increase in interaction was observed when $\alpha v/\beta 6$ was up-regulated.

In all cases, our PLA results were in good agreement with previous expression data,²⁹ showing that quantitative uPAR- $\alpha\nu/\delta$ PLA signal could be altered simply by decreasing or increasing the expression level of $\beta\delta$ present on the cell surface. All isotype controls were negative. However, while collectively these data show close proximity of uPAR and $\beta\delta$ indicative of an interaction, the possibility that other "bridging" proteins may be involved in direct interactions with either partner in uPAR- $\alpha\nu\beta\delta$ could not be conclusively excluded. To eliminate this possibility, direct uPAR- $\alpha\nu/\delta$ was probed using an orthogonal technique, peptide arrays.

Peptide Arrays Map Potential Sites of $uPAR \alpha v \beta 6$ Interaction

Peptide arrays are cost-efficient, accurate, and reliable onedimensional reconstructions that allow mapping of potential peptidyl binding sites of labeled full length interacting proteins.³⁷ They have been widely used to analyze large arrays of synthetic peptides on cellulose membranes, facilitating the rapid screening of diverse biomolecule probes.³⁸ SPOT synthesis²⁴ was used in this study to generate an array composed of 108 sequential overlapping (3 residues) 15-mer peptides (along the linear uPAR expressed protein sequence) arranged successively on a cellulose membrane. This was used to map the potential binding sites of uPAR and the heterodimeric $\alpha \eta \beta \delta$ integrin, as well as the individual integrin subunits (αv and $\beta \delta$). While this method involves a reduction of the three-dimensional uPAR structure into single linear overlapping 15-mer peptides, the method has been used

5960

dx.doi.org/10.1021/pr500849x13. Proteome Res. 2014, 13, 5956-5964

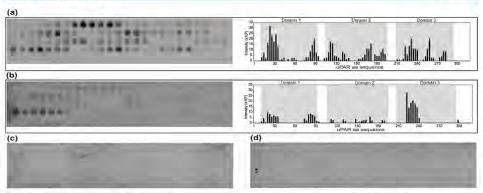


Figure 4. (a) uPAR peptide array incubated with uPA and corresponding intensity plot indicating locations of binding on the three domains of uPAR with the more intense spot (semiquantitatively indicated on the bar chart) indicating a stronger affinity for the heterodimer to the corresponding uPAR peptide. The same peptide array incubated with vitronectin, another known binding partner of uPAR, and its corresponding intensity plot (b) and the $\beta 1$ (c) and $\beta 3$ (d) integrins separately, neither of which again, as monomers, showed any binding to the array.

Table 1. Potential uPAR and Integrin ανβ6 Interaction Sites"

uPAR domain	region identified from peptide array	possible surface residues identified	overlapping residues binding to Vn (uPA)
t.	61 ELVEKSCTHSEKTNRTLS 78	E61, V63, K65, S70, E71, N74, T76, S78	S78 (T76)
	82 GLKITSLTEVVCGLD 96	185, 587, T89, V91, L95	185, S87 (T89)
0	121 GSSDMSCERGRHQSLQCRSPE 141	M125, R129, R131, H132, S134, Q136, R138	Q136, R138
	172LPGCPGSNGFHNNDTFHF 189	\$178, N184, D185, F187, F189	none
	193 CNTTKCNEGPILELE 207	N194, T195, K197, E200, P202, E207, N208	noné
ш	229 SEETFLIDCRGPMNQCLVATGTHEPKN	S229, E230, L234, D236, D238, N242, Q243, V246, T248, T250, T254	noné

^aRegions binding to integrin *av/l6* on the peptide array and possible surface residues were identified by manual analysis of the uPAR crystal structure. The last column lists known overlapping binding residues to Vn and uPA (in parentheses). Amino acid residue numbers correspond to full uPAR sequence from UniProt KB (ID: Q03405).

successfully to identify linear specific binding sequences involved in many P-P interactions.²⁴

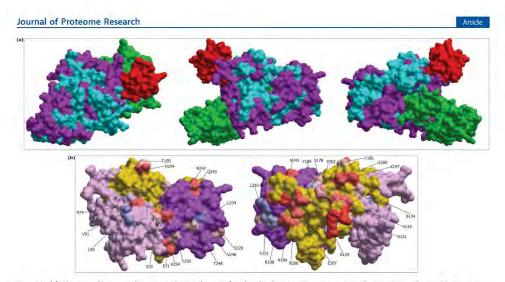
In this study, a GUI (graphical user interface) was developed to semiquantitatively determine the binding affinity of the labeled species (e.g., HRP-labeled $\alpha\nu\beta6$) to the uPAR peptide array based on the intensity of positive spots identified (Figure 3a). Overall, our data showed that integrin $\alpha\nu\beta6$ binds to peptides emanating from all three uPAR domains (DI, DII, and DIII); in particular, positive binding of labeled- $\alpha\nu\beta6$ was located within the following uPAR amino acid sequences: uPAR DI at E61-R75 and G82-D96, uPAR DII at G121-E141, L172-F189, and C193-E207, and uPAR DIII at S229-N255.

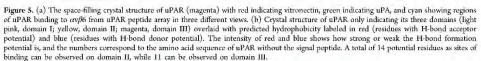
In control experiments using identical protein concentrations, the individual integrin protein subunits αv (Figure 3b) or $\beta 6$ (Figure 3c) did not bind to any region of the uPAR peptide array, in contrast to the $\alpha v/\beta 6$ dimer.

The peptide array was also used to identify the binding sites of other potential uPAR partners, uPAR's cognate protease ligand uPA and the well-established binding partner Vn. The integrin subunits β 1 and β 3 were also examined to determine if they were able to bind as individual integrin subunits in contrast to the data observed for β 6 (Figure 3C).

contrast to the data observed for $\beta 6$ (Figure 3C). These data showed that uPA could bind through domain 1, C16-V51, 185-T108; domain II, S112-H150, C169-P210; and domain III, M226-Y258 and I283-V300, (Figure 4a), while Vn was found to bind to domain I, G22-V51, G82-R105; domain II, L116-H150, L172-E207; and domain III, G226-N255 (Figure 4b). As observed for individual subunits α v and β 6, neither β 1 nor β 3 (Figure 4c and d) showed any detectable binding to the uPAR peptide array.

Article


Structural Mapping of Interacting Sites Reveals Pockets of uPAR- $\alpha\nu\beta6$ Interactions


Six potential binding sites were located on the uPAR sequence from the collective peptide array data. These sites were found to be spread across all three domains of uPAR and covered almost 35% of the uPAR sequence. Interestingly, a number of the sequences found to bind to $\alpha\nu\beta 6$ integrin have previously been implicated in interactions with either Vn and/or uPA (Table 1).⁷ To narrow potential docking/binding sites for integrin $\alpha\nu\beta 6$, an in silico structural analysis of where these six sites were located on the uPAR crystal structure was undertaken and mapped using ICM software (Figure 5a), This was followed by a manual identification of uPAR regions with residues containing favorable side-chain orientations and then investigated for potential residues that could be accessed on the outer surfaces of uPAR (Table 1).

Initial uPAR residue side chain orientation analysis revealed that approximately 39% of the $\alpha v \beta 6$ interacting uPAR residues identified on peptide arrays possessed side chains found in favorable orientations (i.e., surface accessible). However,

5961

dx.doi.org/10.1021/pr500849x1J. Proteome Res. 2014, 13, 5956-5964

further manual analysis revealed that many of these residues were inaccessible. Only the favorable residues were then subjected to physicochemical (hydrophobicity) analysis (Figure 5). Figure 5b illustrates the hydrophobic nature of the residues identified. It was noted that most of the identified residues had hydrogen (H-) bond acceptor potential (red residues) with some residues having the potential to be H-bond donors (blue residues), while very few residues showed any potential to form H-bonds. Those with acceptor or donor H-bond potentials should prove better binding sites than those with low or no Hbond acceptor potential.

It was clear from this analysis that some residues identified in regions of uPAR domain I (E61 to R75 and G82 to D96) that had been previously suggested to be required for interaction with Vn and/or the receptor's cognate protease ligand uPA^{26,39} were buried inside the outer surfaces of uPAR. Residues Q136 and R128, and L172, P173, and H188 in uPAR domain II, which have been previously demonstrated to be required for interaction with Vn and uPA, respectively, were found to be surface accessible.^{26,39}

This study revealed that most of the domain II and III residues identified from the arrays could potentially be sites of $\alpha\nu\beta\delta$ integrin interaction. Interestingly, a previous study addressing interactions between integrin $\alpha 5\beta$ 1 and uPAR suggested that integrin $\alpha 5\beta$ 1 directly interacts with uPAR domain III across the sequence G262-Q270 and the interaction was lost when a single amino acid alanine substitution (S267A) was introduced.⁴⁰ Our data suggest that although domains II and III maybe accessible for integrin binding, domain III appears to be a more favorable site, should other ligands be available.

While binding of uPA to its cognate receptor uPAR is a high affinity interaction $(K_d = 4 \times 10^{-10} \text{ M})$,⁴¹ significant external

regions of uPAR remain available for binding to other potential interacting partners (e.g., Vn and various integrins like $\alpha 3\beta 1$, $\alpha_M\beta 2$, $\alpha v\beta 1$, $\alpha 5\beta 1$, $\alpha v\beta 3^{42}$). The uPA and Vn sites indicated from the peptide array showed ~70% overlap with binding sites already published,^{26,39} including data obtained from alanine scanning mutagenesis experiments.⁹ A detailed structural docking study has been performed to recapitulate and confirm these findings on the interaction of uPAR and $\alpha v\beta 6$.⁴³

■ IMPLICATIONS AND FUTURE DIRECTIONS

The most likely binding sites for $\alpha\nu\beta$ 6 to uPAR, based on the crystal structure of uPAR (bound to uPA and Vn) coupled with information arising from our peptide array data and a manual analysis of potential binding sites by side-chain orientation and hydrophobicity, appeared to be neighboring adjacent integrin binding sites that were previously identified.⁴⁰ An additional advantage of the use of peptide arrays in this study over screening by site directed protein–protein interaction libraries or molecular modeling is that not only are potential binding sites identified, but lead peptide antagonists also determined. These can subsequently be used as tools to address the specific interaction under study.⁴⁴ Structural analysis coupled with the previous study on interaction of uPAR with $\alpha \beta \beta 1^{40}$ suggests that uPAR domain III may be a favorable binding site for "all" uPAR binding integrins. Experiments using blocking peptides against the domain III region of uPAR to determine the precise binding site of uPAR and integrin $\alpha \nu \beta \delta$ are currently ongoing.

For cell motility, invasion, proliferation, and adhesion, it is essential for uPAR to interact with transmembrane proteins for transmission of specific signals across cell membranes to activate appropriate intracellular second messenger systems. Thus, interaction of uPAR with $\alpha \gamma \beta \delta$ and other integrins not

dx.doi.org/10.1021/pr500849x J. Proteome Res. 2014, 13, 5956-5964

Journal of Proteome Research

only couples the proteolytic activation (by binding with uPA) with cell signaling but also localizes the proteolysis to the cell surface.⁷ Interactions between uPAR and $\alpha v\beta 6$ could potentially have profound implications on the promotion of cancer cell metastasis by activating a series of specific signaling pathways. For example, uPAR is involved in the Ras-ERK pathway, which is known to directly induce EMT in cells.⁷ The association of uPAR with integrins like $\alpha 3\beta 1$, $\alpha v\beta 1$, $\alpha 5\beta 1$, $\alpha v \beta 3$ has been studied to varying degrees. It has been shown that uPAR interaction with β 1 activates both FAK and ERK/ MAPK pathways, ⁴⁰ while interaction with β 3 activates the Rac pathway.46 Similarly, studies have shown that disruption of a uPAR and $\alpha\nu\beta3$ integrin interaction selectively inhibits Vn-induced cell migration,^{9,47} implying that $\alpha\nu\beta6$ might also modulate cell migration in some comparable manner.

High expression of $\alpha v \beta 6$ is associated with poor prognosis in many cancer types, including colon cancer.48 Several studies have implicated $\beta 6$ in cell proliferation, migration, and $^{1-51}$ although the mechanisms by which these invasion,4 processes occur remain unclear. Some reports have suggested involvement of $\alpha\nu\beta6$ in MMP pathways as a means by which ECM degradation is facilitated.^{16,52} For example, Fyn kinase, which associates with $\alpha \nu \beta 6$, recruits FAK, thereby activating the Rac/ERK/MAPK pathways, which in turn activate MMP3.50 There is also evidence showing that $\alpha v \beta 6$ activates transforming growth factor TGF β 1 by a mechanism involving torsional stress (not proteolysis), which leads to up-regulation of MMP pathways. 53 In addition, a direct interaction between $\alpha\nu\beta6\text{-P-ERK2}$ has been conclusively established^{29} and shown to mediate MMP-9 secretion in colon cancer cells.^{29}

It is possible that the pathways activated, seemingly independently by uPAR and $\alpha v \beta 6$, could indeed be activated collectively with proteins found in membranes forming the uPAR.avb6 complex. Indeed, in our initial study several other proteins were identified by proteomics to be binding to uPAR.5 Targeting $\alpha v \beta 6$ integrin has the additional benefit that it is exclusively expressed in epithelial restricted tumors. It is possible that by the rapeutically targeting the uPAR- $\alpha v \beta 6$, the $\alpha v \beta 6$ signaling pathway can be uncoupled from the plasmin activity, potentially leading to a disruption of the pathways involved in EMT resulting in decreased metastasis.

This study provides the detailed groundwork for an analysis of the uPAR- $\alpha v \beta 6$ interaction aimed at using it as a potential novel therapeutic cancer target. Further alternative and complementary techniques could be used to elucidate P-P interactions and to identify significant pathways affected by the interaction. When combined with the approaches taken here, methods like cross-linking mass spectrometry⁵⁴ in conjunction with competition studies using peptide arrays and surface plasmon resonance analysis (e.g., BIAcore, Proteon) could be used to analyze the binding kinetics of potential interactants. Indeed, preliminary studies using complementary peptides to block the sites of binding followed by functional assays (migration, proliferation, etc.) on related cell lines have been shown to induce biological and morphological effects (data not shown). The consequences of ablating such interactions can be investigated in mouse models of CRC enabling an in vivo approach.

AUTHOR INFORMATION

Corresponding Author *Phone: +61 2 9850 8211. Fax: +61 2 9812-3600. E-mail:

mark.baker@mq.edu.au. Author Contributions

[∇]These authors contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Paul H. Weinreb and Sheila M. Violette, from Biogen Idec Inc., Cambridge Center, Cambridge, MA 02142, for kindly providing the 6.4B4 antibody against the integrin $\alpha v \beta 6$. This study was supported with research project grant funding from the NHMRC (#1010303), Cancer Council NSW (RG10-04 and RG08-16), and a Macquarie University MQSN grant and supported through the Australian School of Advanced Medicine (ASAM), Macquarie University, MQ Biofocus and Biomolecular Frontiers Research Centres. Some of the research described herein was facilitated by access to the Australian Proteome Analysis Facility (APAF) and Monash University Antibody Technology Facility (MATF), both established under the Australian Government's National Collaborative Research Infrastructure Strategy (NCRIS).

REFERENCES

(1) Nguyen, D. X.; Bos, P. D.; Massague, J. Metastasis: from dissemination to organ-specific colonization. Nat. Rev. Cancer 2009, 9, 274-84

(2) Kalluri, R.; Weinberg, R. A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 2009, 119, 1420-8.
 (3) Pepper, M. S. Role of the matrix metalloproteinase and plasminosystems in angiogenesis. Arterioscher, Thromb., Vasc. Biol. 2001, 21, 1104-17.

(4) Cox, G.; Steward, W. P.; O'Byrne, K. J. The plasmin cascade and

matrix metalloproteinases in non-small cell lung cancer. Thorax 1999, 54, 169-79. (5) Saldanha, R. G.; Molloy, M. P.; Bdeir, K.; Cines, D. B.; Song, X.;

Uitto, P. M.; Weinreb, P. H.; Violette, S. M.; Baker, M. S. Proteomic identification of lynchpin urokinase plasminogen activator receptor protein interactions associated with epithelial cancer malignancy. J. Proteome Res. 2007, 6, 1016–28.

(6) Fagerberg, L.; Jonasson, K.; von Heijne, G.; Uhlen, M.; Berglund, L. Prediction of the human membrane proteome. Proteomics 2010, 10, 1141-9.

(7) Smith, H. W.; Marshall, C. J. Regulation of cell signalling by uPAR. Nat. Rev. Mol. Cell Biol. 2010, 11, 23-36. (8) Llinas, P.; Le Du, M. H.; Gardsvoll, H.; Dano, K.; Ploug, M.;

Gilquin, B.; Stura, E. A.; Menez, A. Crystal structure of the h urokinase plasminogen activator receptor bound to an antagonist peptide. EMBO J. 2005, 24, 1655-63.

(9) Eden, G.; Archinti, M.; Furlan, F.; Murphy, R.; Degryse, B. The (9) Josefi G. Josefi G. J. K. Funda, J. J. Man, J. J. Markov, K. Solyke, B. H. K. Urokinase receptor interactome. *Curr. Pharm. Des.* 2011, 17, 1874–89. (10) Mekkawy, A. H.; Morris, D. L.; Pourgholami, M. H. Urokinase plasminogen activator system as a potential target for cancer therapy. *Curr. Pharm. Des.* 2011, 17, 1874–89. (10) Mekkawy, A. H.; Morris, D. L.; Pourgholami, M. H. Urokinase plasminogen activator system as a potential target for cancer therapy. *Curr. Pharm. Des.* 2011, 17, 1874–89. (10) Mekkawy, A. H.; Morris, D. L.; Pourgholami, M. H. Urokinase plasminogen activator system as a potential target for cancer therapy. *Curr. Pharm. Des.* 2011, 17, 1874–89. (10) Mekkawy, A. H.; Morris, D. L.; Pourgholami, M. H. Urokinase plasminogen activator system as a potential target for cancer therapy. *Curr. Pharm. Des.* 2011, 17, 1874–89. (10) Mekkawy, A. H.; Morris, D. L.; Pourgholami, M. H. Urokinase plasminogen activator system as a potential target for cancer therapy. *Curr. Pharm. Des.* 2011, 17, 1874–89. (10) Mekkawy, A. H.; Morris, D. L.; Pourgholami, M. H. Urokinase plasminogen activator system as a potential target for cancer therapy. *Curr. Pharm. Des.* 2011, 17, 1874–89. (10) Mekkawy, A. H.; Morris, D. L.; Pourgholami, M. H. Urokinase plasminogen activator system as a potential target for cancer therapy. *Curr. Pharm. Des.* 2011, 17, 1874–89. (10) Mekkawy, A. H.; Morris, D. L.; Pourgholami, M. H. Wather M. H. H. H. Wather M. H. Wather Future Oncol 2009, 5, 1487-99.

Seetoo, D. Q.; Crowe, P. J.; Russell, P. J.; Yang, J. L. Quantitative expression of protein markers of plasminogen activation system in prognosis of colorectal cancer. J. Surg. Oncol. 2003, 82, 184-93.

(12) Rabbani, S. A.; Mazar, A. P. The role of the plasminogen activation system in angiogenesis and metastasis. Surg. Oncol. Clin. N. Am. 2001, 10, 393-415.

(13) Hynes, R. O. Integrins: versatility, modulation, and signaling in cell adhesion. *Cell* **1992**, 69, 11–25.

5963

dx.doi.org/10.1021/pr500849x1J. Proteome Res. 2014, 13, 5956-5964

Journal of Proteome Research

(14) Giancotti, F. G.; Ruoslahti, E. Integrin signaling. Science 1999, 285, 1028-32.

(15) Liu, S.; Liang, B.; Gao, H.; Zhang, F.; Wang, B.; Dong, X.; Niu, J. Integrin alphavbeta6 as a novel marker for diagnosis and metastatic potential of thyroid carcinoma. *Head Neck Oncol.* 2013, *5*, 7.

(16) Bandyopadhyay, A.; Raghavan, S. Defining the role of integrin

alphavbeta6 in cancer. Curr. Drug Turgets 2009, 10, 645–52. (17) Bates, R. C. The alphaVbeta6 integrin as a novel molecular target for colorectal cancer. Future Oncol. 2005, 1, 821–8.

(18) Annes, J. P.; Munger, J. S.; Rifkin, D. B. Making sense TGFbeta activation. J. Cell Sci 2003, 116, 217-24.

(19) Gu, X.; Niu, J.; Dorahy, D. J.; Scott, R.; Agrez, M. V. Integrin alpha(v)beta6-associated ERK2 mediates MMP-9 secretion in colon

A.; Sheppard, D.; Violette, S. M. Function-blocking integrin alpha(v)-beta(6) monoclonal antibodies - Distinct ligand-mimetic and non-ligand-mimetic classes. J. Biol. Chem. 2004, 279, 17875-17887.
 (21) Tsao, S. W.; Mok, S. C.; Fey, E. G.; Fletcher, J. A.; Wan, T. S.;

Chew, E. C.; Muto, M. G.; Knapp, R. C.; Berkowitz, R. S. Characterization of human ovarian surface epithelial cells immortalized by human papilloma viral oncogenes (HPV-E6E7 ORFs). Exp. Cell Res. 1995, 218, 499-507.

(22) Agrez, M.; Chen, A.; Cone, R. I.; Pytela, R.; Sheppard, D. The alpha v beta 6 integrin promotes proliferation of colon carcinoma cells through a unique region of the beta 6 cytoplasmic domain. J. Cell Biol. 1994, 127, 547-56.

(23) Weinacker, A.; Chen, A.; Agrez, M.; Cone, R. I.; Nishimura, S.; Wayner, E.; Pytela, R.; Sheppard, D. Role of the integrin alpha v beta 6 in cell attachment to fibronectin. Heterologons expression of intact and secreted forms of the receptor. J. Biol. Chem. 1994, 269, 6940-8. (24) Frank, R. The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports-principles and applications. J. Imm methods 2002, 267, 13-26.

(25) Frank, R. Spot-Synthesis - an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 1992, 48, 9217-9232.

(26) Huai, Q.; Zhou, A.; Lin, L.; Mazar, A. P.; Parry, G. C.; Callahan, J.; Shaw, D. E.; Furie, B.; Furie, B. C.; Huang, M. Crystal structures of two human vitronectin, urokinase and urokinase receptor complexes. Nat. Struct. Mol. Biol. 2008, 15, 422-3. (27) Abagyan, R.; Totrov, M.; Kuznetsov, D. ICM-A new method

for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. J. Comput. Chem. 1994, 15, 488-506.

(28) Li, Y.; Wood, N.; Yellowlees, D.; Donnelly, P. K. Cell surface expression of urokinase receptor in normal mammary epithelial cells

and breast cancer cell lines. Anticancer Res. 1999, 19, 1223-8. (29) Ahmed, N.; Niu, J.; Dorahy, D. J.; Gu, X.; Andrews, S.; Meldrum, C. J.; Scott, R. J.; Baker, M. S.; Macreadie, I. G.; Agrez, M. V. Direct integrin alphavbeta6-ERK binding: implications for tumour growth. Oncogene 2002, 21, 1370-80. (30) Niu, J.; Gu, X.; Ahmed, N.; Andrews, S.; Turton, J.; Bates, R.;

Agrez, M. The alphaVbeta6 integrin regulates its own expression with cell crowding: implications for tumour progression. Int. J. Cancer 2001, 92.40-8.

(31) Moreau, M.; Mourah, S.; Dosquet, C. beta-Catenin and NFkappaB cooperate to regulate the uPA/uPAR system in cancer cells. Int. J. Cancer 2011, 128, 1280–92.

(32) Ronne, E.; Behrendt, N.; Ploug, M.; Nielsen, H. J.; Wollisch, E.; Weidle, U.; Dano, K.; Hoyer-Hansen, G. Quantitation of the receptor for urokinase plasminogen activator by enzyme-linked immunosorbent assay. J. Immunol. Methods 1994, 167, 91–101.

(3) Persson, M.; Madsen, J.; Ostergaard, S.; Jensen, M. M.; Jorgensen, J. T.; Juhl, K.; Lehmann, C.; Ploug, M.; Kjaer, A. Quantitative PET of human urokinase-type plasminogen activator receptor with 64Cu-DOTA-AE105: implications for visualizing cancer invasion. J. Nucl. Med. 2012, 53, 138-45.

(34) Weibrecht, L; Leuchowius, K. J.; Clausson, C. M.; Conze, T.; Jarvius, M.; Howell, W. M.; Kamali-Moghaddam, M.; Soderberg, O. Proximity ligation assays: a recent addition to the proteomics toolbox.

Expert Rev. Proteomics 2010, 7, 401-9. (35) Thymiakou, E.; Episkopou, V. Detection of signaling effectorcomplexes downstream of bmp4 using PLA, a proximity ligation assay. J. Visualized Exp. 2011.

(36) Breuss, J. M.; Gillett, N.; Lu, L.; Sheppard, D.; Pytela, R. Restricted distribution of integrin beta 6 mRNA in primate epithelial tissues, J. Histochem. Cytochem. 1993, 41, 1521-7.
 (37) Li, S. S.; Wu, C. Using peptide array to identify binding motifs

ind interaction networks for modular domains. Methods Mol. Biol. 2009, 570, 67-76.

(38) Maier, R. H.; Maier, C. J.; Rid, R.; Hintner, H.; Bauer, J. W.; Onder, K. Epitope mapping of antibodies using a cell array-based polypeptide library. J. Biomol. Screening 2010, 15, 418-26. (39) Barlinka, C.; Parry, G.; Callaban, J.; Shaw, D. E.; Kuo, A.; Bdeir, K.; Cines, D. B.; Mazar, A.; Lubkowski, J. Structural basis of interaction

between urokinase-type plasminogen activator and its receptor. J. Mol. Biol. 2006, 363, 482–95. (40) Chaurasia, P.; Aguirre-Ghiso, J. A.; Liang, O. D.; Gardsvoll, H.;

Ploug, M.; Ossowski, L. A region in urokinase plasminogen receptor domain III controlling a functional association with alphaSbeta1 integrin and tumor growth. J. Biol. Chem. 2006, 281, 14852-63. (41) Vassalli, J. D.; Baccino, D.; Belin, D. A cellular binding site for

the Mr 55,000 form of the human plasminogen activator, urokinase. J. Cell Biol. 1985, 100, 86-92.

(42) Blasi, F.; Carmeliet, P. uPAR: a versatile signalling orchestrator.
(A3) Sowmya, G.; Khan, J. M.; Anand, S.; Ahn, S. B.; Baker, M. S.;
Ranganathan, S. A site for direct integrin alphavbeta6.uPAR interaction from structural modelling and docking. J. Struct. Biol. 2014, 185, 327-35

(44) Hruby, V. J. Designing peptide receptor agonists and antagonists. Nat. Rev. Drug Discovery 2002, 1, 847–58. (45) Jo, M.; Eastman, B. M.; Webb, D. L.; Stoletov, K.; Klemke, R.;

Gonias, S. L. Cell signaling by urokinase-type plasminogen activator receptor induces stem cell-like properties in breast cancer cells. *Cancer* Res. 2010, 70, 8948-58.

(46) Smith, H. W.; Marra, P.; Marshall, C. J. uPAR promotes formation of the p130Cas-Crk complex to activate Rac through DOCK180. J. Cell Biol. 2008, 182, 777–90.

(47) Degryse, B.; Orlando, S.; Resnati, M.; Rabbani, S. A.; Blasi, F. Urokinase/urokinase receptor and vitronectin/alpha(v)beta(3) integ-rin induce chemotaxis and cytoskeleton reorganization through

 (different signaling pathways. Oncogene 2001, 20, 2032–43.
 (48) Bates, R. C. Colorectal cancer progression: integrin alphavbeta6 and the epithelial-mesenchymal transition (EMT). Coll Cycle 2005, 4, 1350-2.

(49) Ramos, D. M.; But, M.; Regezi, J.; Schmidt, B. L.; Atakilit, A.; Dang, D.; Ellis, D.; Jordan, R.; Li, X. Expression of integrin beta 6 enhances invasive behavior in oral squamous cell carcinoma. Matrix Biol 2002, 21, 297-307.

(50) Li, X.; Yang, Y.; Hu, Y.; Dang, D.; Regezi, J.; Schmidt, B. L.; Atakilit, A.; Chen, B.; Ellis, D.; Ramos, D. M. Alphavbeta6-Fyn signaling promotes oral cancer progression. J. Biol. Chem. 2003, 278, 41646-53.

(51) Ramos, D. M.; Dang, D.; Sadler, S. The role of the integrin

alpha v beta6 in regulating the epithelial to mesenchymal transition in oral cancer. Anticancer Res. 2009, 29, 125–30. (52) Morgan, M. R.; Thomas, G. J.; Russell, A.; Hart, I. R.; Marshall, J. F. The integrin cytoplasmic-tall motif EKQKVDLSTDC is sufficient. to promote tumor cell invasion mediated by matrix metalloproteinase (MMP)-2 or MMP-9. J. Biol. Chem. 2004, 279, 26533-9.

(53) Xu, J.; Lamouille, S.; Derynck, R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 2009, 19, 156-72.

(54) Tang, X.; Bruce, J. E. A new cross-linking strategy: protein interaction reporter (PIR) technology for protein-protein interaction studies. Mol. BioSyst. 2010, 6, 939-47.

5964

tix.doi.org/10.1021/pr500849x1J. Proteome Res. 2014, 13, 5956-5964

Appendix III – An improved method for the detection and enrichment of low-abundant membrane and lipid raft-residing proteins Publication VIII of this thesis

Technical note

An improved method for the detection and enrichment of low-abundant membrane and lipid raft-residing proteins

Alison Kan, Abidali Mohamedali, Sock Hwee Tan, Harish R. Cheruku, Iveta Slapetova¹, Ling Y. Lee, Mark S. Baker*

Department of Chemistry & Biomolecular Sciences, Faculty of Science, Macquarie University, NSW 2109, Australia

ARTICLEINFO

Article history: Received 8 October 2012 Accepted 19 November 2012 Available online 29 November 2012

Keywords: Crosslink co-immunoprecipitation (co-IP) Octyl-glucoside (OG) Lipid rafts (LRs) Urokinase plasminogen activator receptor (uPAR)

ABSTRACT

A high degree of optimisation is required in native co-immunoprecipitation (co-IP) experiments with added challenges for low-abundant membrane proteins and masking by IgG molecules. Although in vivo tagged-protein purification avoids the IgG masking problem, modifying the terminus of the protein may result in conformational and post-translational modification changes. In this paper, we propose a method which combines four key aspects to improve the solubility and enrichment of low-abundant plasma membrane proteins using the urokinase plasminogen activator receptor (uPAR) as an example. As this GPI-linked receptor predominantly resides in lipid rafts (LR), we used a modified RIPA lysis buffer containing the non-ionic detergent, octyl-glucoside which solubilizes LRs to extract uPAR. This is followed by a modified crosslinking co-IP which covalently crosslinks the antibodies to the beads. Crosslinking allowed for a significant increase in the detection of uPAR with minimal IgG contamination using on-bead digestion or acid elution followed by digestion and analysis on high throughput one dimensional (nanoLC) MS/MS instrument (AbSciex 5600). To the best of our knowledge, this method of isolation is the first to be done to increase the yield of a low-abundant membrane protein and may be useful for the purification of other non-raft and raft-residing membrane proteins.

© 2012 Elsevier B.V. All rights reserved.

In conventional co-IP, captured complexes are eluted and separated out on 1D-SDS-PAGE (sodium dodecy) sulphate gel electrophoresis) and several gel pieces (typically between 12-24 per lane) are cut out (slice-and-dice) [1,2] for protein identification by mass spectrometry (MS) [3,4]. Although the co-IP procedure is relatively simple and straightforward, the antibody tends to be eluted off with the bound proteins. As the antibody molecules are one of the most predominant proteins in the co-IP procedure, masking of low abundant proteins on the SDS-PAGE gel is inevitable, making protein detection in this

region near impossible. If the protein happens to reside in the 25 and 55 kDa regions, further masking is observed. In addition, since antibody molecules are heavily glycosylated, the antibody can also be found all along the electrophoresed lane resulting in very high background which affects signal:noise ratio. As such, masking by the antibody poses a significant problem in conventional co-IP experiments.

Carboxyl (C)- or amine (N)-terminal affinity fused-protein purifications have been used to avoid antibody masking and to increase the yield and purity of bait and associating proteins by

http://dx.doi.org/10.1016/j.jprot.2012.11.019

^{*} Corresponding author at: Australian Proteome Analysis Facility, Faculty of Science, Research Park Drive, Macquarie University, 2109, NSW, Australia. Tel.: +61 2 9850 8211; fax: +61 2 9850 8313.

E mail addresses: i slapetova@unsw.edu.au (I. Slapetova), mark.baker@mq.edu.au (M.S. Baker).

¹ Current address: Biomolecular Imaging Facility, Lowy Cancer Research Centre, University of New South Wales, NSW 2052, Australia 1874-3919/\$ – see front matter © 2012 Elsevier B.V. All rights reserved.

the addition of a biological motif such as polyhistidine, glutathione S-transferase (GST), and FLAG [5]. This process involves genetic modification of the bait protein in vivo by the addition of an affinity tag at the C- or N-terminus of the protein with co-IP being performed using either a biological or chemical ligand to the tag. When using a chemical ligand, this procedure avoids the problem of contaminating antibody in the elution and reduces background significantly [6,7]. However as the tagged protein is expressed in vivo, the terminus is no longer accessible for posttranslational modifications (PTMs). For GPI-anchored proteins such as the urokinase plasminogen activator receptor (uPAR), the addition of the glycolipid GPI anchor is inhibited and delivery of the protein to the cell surface for protein: protein interaction cannot occur. Moreover, modification at the N-terminus may result in misfolding of the protein to inhibit other PTMs such as glycosylation or block specific sites of protein interactions. In such situations, native co-IP procedure using crosslinked antibodies to bait native proteins is the preferred choice.

Covalent conjugation of the antibody to the beads in co-IP allows for native proteins to be eluted with minimal antibody interference. Crosslinkers vary in their spacer arms and target specific side groups ranging from carbohydrate to amine and sulfhydrals. DMP is commonly used in co-IP experiments as this chemical is a water-soluble, 9-angstrom (Å) crosslinker which reacts with amine groups but retains an overall neutral charge, thereby allowing for unmodified native binding to the bait protein. DMP is also non-cleavable so the antibody is retained on the beads during elution, allowing for other proteins to be detected which otherwise would have been masked by the antibody.

Non-ionic detergents such as triton X-100, NP-40, and Brij are commonly used to lyse the cell by solubilising the plasma and intracellular membranes to release cytosolic and subcellular organelle proteins. Despite the effectiveness of these detergents in many cell solubilising applications, detergent-resistant membranes (lipid rafts: LR) are insoluble to many non-ionic detergents [8], and as such, downstream quantitative analyses using these detergents may not be sufficient. GPI-linked proteins such as uPAR are known to predominantly reside in LRs [9-12] but also shuttle out [10,11,13]. As such the use of common non-ionic detergents is not suitable for the complete solubilisation of these proteins. For co-IP analysis on LR-residing proteins, it is essential that most (if not all) of the protein is solubilized to allow for a more comprehensive and accurate analysis. Fortunately, nonionic detergents such as octyl-glucoside (OG) has been shown to solubilize LRs [14] and is therefore suitable for cell lysis requiring native conditions. In this study, OG was selected as the detergent of choice for testing due to its superior properties as a lipid raft membrane solubilizing agent compared to other non-ionic detergents such as another excellent membrane-solubilizing detergent, digitonin (8,15-18). Moreover, digitonin is toxic and has been reported to be unsuitable for permeabilization of the membrane in the presence of Ca2+ ions [18], which is required for some protein protein interactions such as those involved in calcium cell signalling pathways in lipid rafts [19,20].

In this paper, we attempted to address the solubility and antibody masking issues in native co-IPs in a three-step approach using uPAR for our analysis. Firstly, we modified the cell lysis buffer for maximal solubility by including OG as one of the key

ingredients. We tested two different commonly used lysis buffers and a modified OG-containing RIPA buffer (see Supplementary data) on uPAR and several other proteins representing three subcellular locations including the plasma membrane, LR, and cytosol. The expression levels of these proteins were determined to provide a comparison of the degree of solubility of the various detergent solutions tested. Conventional RIPA buffer is often used in co-IP experiments due to its ability to reduce background noise (false positives) with no adverse effects on protein degradation [21]. Other detergents containing only NP-40/ Tween-20 or 2% OG were also tested but they were not superior to the triton X-100-containing buffer or the modified RIPA buffer tested, respectively (data not shown). Our results indicate that all of the proteins tested were present in all three buffers but at different levels, representing the amount solubilized. There was a significant increase in intensities of the plasma membrane proteins uPAR and transferring receptor (Tfr) when OGcontaining buffer was used (P<0.05, Fig 1i and ii). This suggests that the presence of 2% OG in the modified RIPA buffer improves solubility of membrane proteins, uPAR protein appears as multiple bands between 35-55 kDa or streaks (at high loading concentrations) in western blots due to the highly Nglycosylated nature of the protein [22]. When the expression of another lipid raft residing protein caveolin-1 (cav-1) was analysed, the levels were significantly lower for triton X-100 lysed cells compared to either RIPA- or OG-lysed cells (P<0.05). No significant differences were observed for the cytosolic protein. B-actin. Unlike cav-1, uPAR [23-25] and Tfr [26] are highly N-linked glycosylated and these high-mannose containing carbohydrates may be affecting the solubility of these proteins. Previous analysis in our lab showed that uPAR and Tfr expression were significantly higher when deglycosyated (data not shown) and suggests that N-plycosylation may restrict solubility to a certain degree in Triton X-100 detergent. There was no preferential solubilising of the various glycosylated forms of uPAR and Tfr: suggesting that modified RIPA buffer containing 2% OG is suitable for solubilising N-glycosylated PM proteins.

Secondly, we covalently conjugated the antibody to the beads using dimethyl pimelimidate dihydrochloride (DMP). Results indicate that samples crosslinked (CL) to the beads immunoprecipitated down a significantly higher proportion of uPAR (P<0.05) with a drastic reduction in lgG molecules (P<0.01) compared to non-crosslinked (NCL) beads (Fig. 2i and ii). Several elution conditions were also tested on CL beads 10-30 mM DMP crosslinking conditions to determine the elution efficiency against background (IgG molecules) (Fig. 2iii-v, Table 2). Results showed that the use of 20 mM DMP was the best for eluting uPAR (Fig 2iii and v, Table 2i). Higher concentrations of DMP (40 or 50 mM) were also tested but there were no differences in relative uPAR signal intensity (uPAR/lgG1) when compared to 30 mM (data not shown). The use of 0.1% formic acid and 0.1% NH4OH at 20 mM DMP eluted significantly more uPAR compared to NCL or at 10 or 30 mM DMP (Fig. 2iv) (P<0.01). Relative uPAR intensity at 10 mM DMP was also significantly higher when compared to the other groups for both of these elutions (P<0.01). At 1× LDS-SB, relative uPAR intensity at 20 mM DMP was only significantly higher when compared to 30 mM and NCL samples. No significant differences were observed across the four treatment groups when eluted with 1×LDS-SB containing DTT.

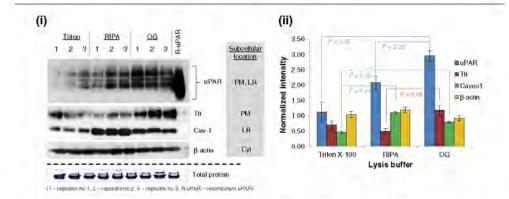


Fig. 1 – Western blotting results of representative proteins in triplicates normally residing within the plasma membrane and cytosol. i. Western immunoblotting images obtained for the three types of lysis buffers denoted as Triton (containing 1% Triton X-100), RIPA (radioimmunoassay buffer), and OG (modified RIPA buffer containing 2% octyl-glucoside). Known subcellular locations of the mature forms of the representative proteins are depicted in the shaded box. PM — plasma membrane, LR — lipid raft, and Cyt — cytosol. R-uPAR: positive control is recombinant His-tagged uPAR. Total protein intensities were derived from cell lysates that were electrophoresed (SDS-PAGE) into the 4% stacking region followed by Goomassie staining. ii. Bar graph denoting the average normalised intensities (protein intensity/total protein intensity) (± SEM) across the triplicate samples. Comparisons were performed on triplicate protein samples across the three lysis buffers where P≤0.05 using Kruskal-Wallis test followed by a posthoc Mann-Whitney U test.

All glycosylated forms of uPAR were identified in the co-IP, indicating that crosslinking did not affect the way the antibodies were associating with uPAR. Despite the recommended 50 mM DMP concentration for crosslinking suggested by the manufacturer, we found that less than half of that concentration (20 mM) gave the highest signal-to-noise ratio (uPAR:IgG1). This ratio significantly decreased when at least 30 mM DMP was used. This may be because at higher DMP concentrations, the crosslinker may be masking regions on the antibody required for uPAR and/or uPAR complex binding, thereby reducing/ preventing these proteins from associating with the antibody. Moreover, the concentration of crosslinker used not only had little or no effect on the binding efficiency of the antibody to the bait protein (uPAR) but also improved the yield. The use of DMP is suitable for co-IP as it is an irreversible, denaturant-resistant chemical and so regions blocked by the crosslinker sites are not exposed to trypsin and enzymatic digestion of the antibody is minimized. When co-IP samples were sequentially eluted, we showed that uPAR eluted much more efficiently in 0.1% formic acid than in 0.1% NH₄OH. Formic acid is an ideal elution buffer for hydrophobic proteins such as PM proteins as it has a strong proton donation ability that solubilizes hydrophobic proteins efficiently [27-29] In addition, proteins dissolved in formic acid maintain their native structure and are metabolically active and so can be used for downstream enzymatic analyses [30,31]. This is ideal as uPAR eluted in 0.1% formic acid at 37 °C with very little IgG and non-specific protein contamination and the CL Ab: IP bead complex can potentially be regenerated and used for future co-IP experiments. In addition, formic acid is compatible with downstream MS analysis and so sample clean-up and purification is not required. Elution of CL samples with $1 \times LDS$ -SB containing DTT is not suitable for downstream MS analysis as a substantial amount of $1gG_1$ molecules, especially $1gG_1$ L chain, were eluted off. This may be because the L chain portion, held together by disulphide bonds, dissociated from the antibody complex in the presence of the reducing agent, DTT. The predominant amount of $1gG_1$ molecules in the NCL sample eluted in the first two elutions (0.1% formic acid and 0.1% NH4OH) but CL samples were more resistant to these conditions and so very little $1gG_1$ molecules eluted off.

Finally, instead of eluting uPAR-bound complexes from beads and performing a slice-and-dice analysis, we performed tryptic digestion directly on the beads for MS analysis. This technique, affinity purification and mass spectrometry (AF-MS), has been successfully applied previously [7] but not in the study of membrane proteins. This technique avoids protein loss during the various stages of the slice-and-dice analysis and hence allows for more proteins to be identified during MS. The use of a high-throughput nanol.C-tandem mass spectrometry (MS/MS) instrument (AbSciex 5600) [32] for the detection of these proteins allows for a one-dimensional (nanoLC) MS/MS analysis, avoiding the initial SDS-PAGE separation step altogether. Our results showed a total of eight unique uPAR peptides (UniProt ID: Q03405 Protein ID: UPAR_HUMAN, M.W.: 37 kDa) were identified in CL uPAR co-IP samples with 32% coverage (Fig. 2vi). No uPAR peptides were observed in IgG samples. For NGL co-IP sample using uPAR antibody R4 (NCL-R4), 12 unique peptides for both IgG1 heavy (gamma) (UniProt ID: P01869, Protein ID: IGH1M_MOUSE, M.W.: 43 kDa) and 2 for light (kappa) chain (UniProt ID: P01837, Protein ID: IGKC_MOUSE,

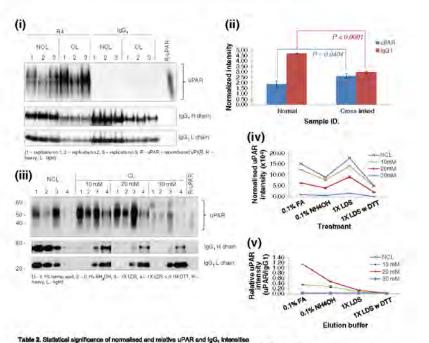


Table & distance significance of normalised and relative of Art and 1904 interfaces

	10 mM 20 mM 30 mM								
	Norm. uPAR	Relatv. uPAR	Norm. IgG,	Norm. uPAR	Relaty. uPAR	Norm. IgG,	Norm.	Relatv. uPAR	Norm. IgG.
NCL	A.B.D	AB	A, B, C', D'	A.B.C.D	A.B.C	A.B.C	A.B.C	(nii)	A.B.D
10 mM	14	- 14 C		C, D*	A,B	(mil)	A, B, C, D	A, B	(nil)
20 mM			1 A. 1	100			A.C.D	A, B, C	(nll)

(A=0,1% formic scid, B=0,1% NH_OH, C=1X LDS, D=1X LDS + 0,1M DT, *P ≤ 0.05 , Normal UPAR = normalized UPAR interaity, Relativ UPAR = relative UPAR interaity, Norm IgO1 = normalized IgO, (sternity)

(vi)

UPAR_HUMAN (105%), 36,877.2 ()a Urokinase plasminagen schyster curtace receptor D&Home sagiens GH=PLAUR PE=1 &V=1

NAPPEILPIL (ICHTELEAS ANTE-NATY NARTAFIES LEGALENTY) VELWERGERI ELVENTCHA SETVETISYA Toli Isla Vy<mark>golo Invo Ghega</mark>nyya Rafyico so osidyyotro pigolocisti Elventcha Setvetisya Nagolicaso Tipochano antajisii Rofusi <mark>Banco Dilicaso Hagdorio.</mark> Bysindose si ili Lorden Nagoliyato: Hephageny Dosalasmod Hahigdefan N-idyslofa **Hebardoy Vin**sdaapur Graassitit Luntalings Tilwi

Fig. 2 - Western immunblotting and mass spectrometry results of co-IP experiments performed on triplicate samples lysed with modified RIPA buffer (containing 2% OG). i. CL and NCL samples were eluted under specified conditions in 1× LDS buffer containing 0.1 M DTT at 95 °C for 10 min. Eluates were from triplicate co-IP experiments were immunoblotted using HRP-anti-uPAR and HRP-anti-mouse antibodies. ii. Bar graph denoting the mean normalised intensities (uPAR intensity/recombinant uPAR intensity/IgG1 intensity) obtained across the triplicate samples for uPAR co-IP and for IgG₁ H and L chains (± SEM, one-tailed t-test). iii. Representative images of CL and NCL co-IP samples that were DSP-crosslinked (10, 20, and 30 mM) and sequentially eluted with various buffers and immunoblotted with anti-mouse-HRP antibodies. The blot was stripped prior to immunblotting with anti-mouse-HRP. iv. Line graph denoting the normalised uPAR intensities (uPAR/recombinant uPAR) obtained across the triplicate samples for CL and NCL uPAR co-IPs (± SEM, one-tailed t-test). Inset table 2 with *figure*. Table representing comparison groups where statistical significance of P≤0.05 was identified using multifactorial ANOVA with Tukey's posthoc test, vi. Protein sequence coverage of the full-length amino acid sequence of uPAR for CL sample. Yellow shading denotes regions of peptide sequences that matched to the uPAR full-length protein sequence. Green shading denotes cysteine residues identified within the matched peptide sequences.

M.W.: 12 kDa) were detected. Only 7 unique peptides for heavy chain were detected for CL sample (CL-R4). For the IgG₁ co-IP samples, there were no differences observed in the number of unique peptides for IgG heavy chain for both CL (CL-IgG₁) and NCL (NCL-IgG₁) samples. There was also an absence of light chain IgG₂ peptides observed.

In summary, using 2% OG in our modified RIPA lysis buffer coupled with crosslinking of the antibody to the beads significantly increased the yield of the bait protein, uPAR and together with on-bead digestion and high resolution MS increased the sensitivity for detection of uPAR with very little interference from IgG₃ molecules. We believe that the modifications made in the co-IP performed can also be applied for the interatomic analysis of other plasma membrane-residing proteins.

Acknowledgments

We thank Thiri Zaw and Xiaomin Song for their technical assistance. This study was funded by the Cancer Council New South Wales in Australia. Some of the study produced herein was facilitated by admission to the Australian Proteome Analysis Facility (APAF) established under the Australian Government's National Collaborative Research Infrastructure Strategy (NCRIS).

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.jptot.2012.11.019.

REFERENCES

- Shevchenko A, Wilm M, Vorm O, Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 1996;68:850-8.
- [2] Shevchenko Λ, Tomas H, Havlis J, Olsen JV, Mann M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 2006;1:2856–60.
- Berggard T, Linse S, James P. Methods for the detection and analysis of protein-protein interactions. Proteomics 2007;7: 2833–42.
- [4] Phizicky EM, Fields S. Protein-protein interactions: methods for detection and analysis. Microbiol Rev 1995;59:94–123.
- [5] Lichty JJ, Malecki JL, Agnew HD, Michelson Horowitz DJ, Tan S. Comparison of affinity tags for protein purification. Protein Expr Purif 2005;41:98–105.
- [6] Gingras A C, Aebersold R, Raught B. Advances in protein complex analysis using mass spectrometry. J Physiol 2005;563:11-21.
- [7] Gingras A-C, Gstaiger M, Raught B, Aebersold R. Analysis of protein complexes using mass spectrometry. Nat Rev Mol Cell Biol 2007;8:645–54.
- [8] Brown DA, Rose JK. Sorting of GPI anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 1992;68:533-44.
- [9] Kiyan J, Smith G, Haller H, Dumler L. Urokinase-receptor-mediated phenotypic changes in vascular smooth muscle cells require the involvement of membrane rafts. Biochem J 2009;423:343–51.

- [10] Gunningham O, Andolfo A, Santovito ML, Iuzzolino L, Blasi F, Sidenius N. Dimerization controls the lipid raft partitioning of uPAR/CD87 and regulates its biological functions. EMBO J 2003;22:5994–6003.
- [11] Ragnu H, Sodadasu PK, Malla RR, Gondi CS, Estes N, Rao JS. Localization of uPAR and MMP-9 in lipid rafts is critical for migration, invasion and angiogenesis in human breast cancer cells. BMG Cancer 2010;10:647.
- [12] Sitrin RG, Johnson DR, Pan PM, Harsh DM, Huang J, Petty HR, et al. Lipid raft compartmentalization of urokinase receptor signaling in human neutrophils. Am J Respir Cell Mol Biol 2004;30:233-41.
- [13] Sahores M, Prinetti A, Chiabrando G, Blasi F, Sonnino S. uPA binding increases UPAR localization to lipid rafts and modifies the receptor microdomain composition. Biochim Biophys Acta 2008;1778:250-9.
- [14] Garner AE, Smith DA, Hooper NM. Visualization of detergent solubilization of membranes: implications for the isolation of rafts. Biophys J 2008;94:1326–40.
- [15] Baron G, Thompson TE. Solubilization of bacterial membrane proteins using alkyl glucosides and dioctanoyl phosphatidylcholine. Biochim Biophys Acta 1975;382: 276-85.
- [16] Stubbs GW, Smith Jr HG, Litman BJ. Alkyl glucosides as effective solubilizing agents for bothe rhodopsin. A comparison with several commonly used detergents. Biochim Biophys Acta 1976;426:46–56.
- [17] Zhang G, Neubert TA. Use of detergents to increase selectivity of immunoprecipitation of tyrosine phosphorylated peptides prior to identification by MALDI quadrupole-TOF MS. Proteomics 2006;6:571–8.
- [18] Karl J, Gottfried C, Tramontina P, Dunkley P, Rodnight R, Goncalves CA: GFAP phosphorylation studied in digitonin-permeabilized astrocytes; standardization of conditions. Brain Res 2000;853:32-40.
- [19] Burgoyne RD, Geisow MJ. The annexin family of calcium-binding proteins. Review article. Cell Calcium 1989;10:1-10.
- [20] Kretsinger RH. Calcium binding proteins. Annu Rev Biochem 1976;45:239–66.
- [21] Harlow E, Lane D. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press; 1988. p. 499.
- Ploug M, Rahbek-Nielsen H, Nielsen PF, Roepstorff P, Dano K. Glycosylation profile of a recombinant unokinase type plasminogen activator receptor expressed in Chinese hamster ovary cells. J Biol Chem 1998;273:13933-43.
 Behrendt N, Ronne E, Ploug M, Petti T, Lober D, Nielsen LS, et al.
- [23] Behrendt N, Ronne E, Ploug M, Petri T, Lober D, Nielsen LS, et al. The human receptor for turokinase plasminogen activator. NH2-terminal amino acid sequence and glycosylation variants. J Biol Chem 1950;265:6433-60.
- [24] Ploug M, Ronne E, Behrendt N, Jensen AL, Blasi F, Dano K. Gellular receptor for urokinase plasminogen activator. Carboxyl-terminal processing and membrane anchoring by glycosyl-phosphatidylinositol. J Biol Chem 1991;266: 1926-33.
- [25] Moller LB, Ploug M, Blasi F. Structural requirements for giycosyl-piosphatidylinositol anchor attachment in the cellular receptor for urokinase plasminogen activator. Eur J Biochem 1992;208:493–500.
- [26] Hayes GR, Williams A, Costello CE, Enns CA, Lucas JJ. The critical glycosylation site of human transferrin receptor contains a high-mannose oligosaccharide. Glycobiology 1995;5:277-32.
- [27] Collinson SK, Emody I., Muller KH, Trust TJ, Kay WW. Purification and characterization of thin, aggregative fimbriae from Salmonella ententidis. J Bacteriol 1991;173:4773–81.
- [28] Sage HJ, Singer SJ. The properties of bovine pancreatic ribonuclease in ethylene glycol solution. Biochemistry 1962;1: 305–17.

- [29] Whittaker GR, Meredith DM. Purification of the structural proteins of herpes simplex virus type 1 by reverse-phase high performance liquid chromatography. Arch Virol 1990;114: 271-6.
 [30] Um IC, Kweon HY, Lee KG, Park YH. The role of formic acid in solution stability and crystallization of silk protein polymer. Int J Biol Macromol 2003;33:203-13.
 [31] Klingman KL, Murphy TF. Purification and characterization of a high-molecular-weight outer membrane protein of

Moraxella (Branhamella) catarrhalis. Infect Immun 1994;62: 1150-5.
[32] Andrews GL, Simons BL, Young JB, Hawkridge AM, Muddiman DC. Performance characteristics of a new hybrid quadrupole time-of-flight tandem mass spectrometer (TripleTOF 5600). Anal Chem 2011;83:5442-6.

Supplementary data

2

Reagents and cell line

- All chemicals were purchased from Sigma-Aldrich (Sydney, Australia) except for octyl-glucoside (OG), which was obtained from Enzo Life Sciences (NY, USA) and DMP (dimethyl pimelimidate dihydrochloride), which
 was from Pierce® (ThermoScientific, IL, USA). For the IP procedure, magnetic protein G beads were used
- (Cat. no. 28-9440-08) (GE Healthcare Biosciences, Uppsala, Sweden) and anti-uPAR antibody Clone R-4
 (mouse IgG1, Abcam Pty Ltd, MA, USA) and mouse IgG1 isotype control antibody (MAB002) were used. For western immunoblotting, the antibodies used included: 3 ug/mL of unconjugated #AF807 for uPAR (goat
- polyclonal, R&D systems, MN, USA), 1 μg/mL of clone H68.4 for transferring receptor (Tfr) (SantaCruz Biotechnology, CA, USA), 1 μg/mL of ab2910 for caveolin-1 (cav-1) (Abcam[®], MA, USA), 1:1000 dilution of
- 12 ab133633 for carcino embryonic antigen (CEA) (Abcam[®], MA, USA), 1:1000 dilution of clone AC-15-HRP for β-actin (Sigma-Aldrich[®], MO, USA) and 1:1000 dilution of donkey anti-goat HRP conjugated secondary
- 14 antibody (HAF109) from R&D systems, MN, USA. The epithelial ovarian cancer cell line, OVCA429, was a kind gift from Dr. Robert Bast (MD Andersen Cancer Research Centre, Houston, USA). Sequencing-grade
- 16 trypsin (Cat. #V511, Promega Corp., MA, USA) was used for tryptic digestion of samples for MS analysis.

18 Lysis conditions

 Cells were grown in Dulbecco's modified eagle medium supplemented with 10% fetal bovine serum in either
 6-well plates or 15-cm cell cultures dishes (for IP) at 37°C with 5% CO₂ till approximately 80% confluent. Media was discarded and washed 3 times with 15 mL ice-cold 1X PBS, pH 7.2 to remove residual medium.

- 22 Two-hundred microliter (for 6-well plates) and 1 mL (for 15cm dishes) of lysis buffer (50 mM Tris, pH 7.0, 150 mM NaCl, 10 mM CaCl₂, 100 uM EDTA) containing 1X protease inhibitor cocktail (P8340; Sigma-
- 24 Aldrich, Sydney, Australia) and 1X phosphatase inhibitor cocktail (P5726; Sigma-Aldrich, Sydney, Australia) with various detergent components (Table S1) were added to the plate/dish and incubated for 30 min at 4°C
- 26 with occasional shaking. OG and the protease and phosphatase inhibitor cocktails were added just prior to cell lysis. Cells were then harvested by scraping into 1.5 mL low-protein binding microfuge tubes and
- 28 centrifuged at 1,500 x g for 15 min at 4°C to pellet nuclei. The supernatant was then transferred into new low-protein binding tubes and frozen at -80°C until used.
- 30

$\textbf{Table S1.} \ \text{Detergent components of the three lysis buffers used} \ddagger$

Triton lysis buffer	1% Triton X-100. 10 mM CaCl ₂
RIPA lysis buffer	1% NP-40, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulphate (SDS), 10 mM CaCl ₂
OG lysis buffer	2% octyl-glucoside, 0.5% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 10 mM CaCl ₂

‡all concentrations are by weight per volume

32

Protein quantification and immunoprecipitation

Cell lysates were diluted 10-fold and protein quantified using Pierce[®] BCA protein assay kit (ThermoScientific, IL, USA) according to manufacturer's instructions. Immunoprecipitation was performed according to manufacturer's instructions (28953763AA) with modifications. Specifically, the pH of the binding and wash buffer (tris buffered saline; TBS) was at pH 7.0 instead of pH 7.5. All mixing steps were performed with gentle end-over-end mixing to allow for homogenous mixing of beads in the solution. All buffers used in the crosslinking procedure were prepared fresh. Briefly, 10 μL of a 20% magnetic bead slurry (2 μL bead volume) was washed with 1 mL TBS. This is followed by incubation with either five μg of R4 antibody or IgG1 isotype control in 500 μL TBS for 1 h at room temperature. The buffer was then removed and washed twice

with 1X PBS, pH 7.2. After this, one millilitre cell lysate was pre-cleared with two μL mouse IgG₁-conjugated beads containing 200 μg total protein for 1 h at 4°C. Subsequently, the antibody was covalently conjugated

44 to the beads via crosslinking as follows. The antibody-bead complex was washed with 500 μL of 200 mM

triethanolamine, pH 8.9 (crosslink solution A). The liquid was then removed and 500 μ L of 10 mM DMP in crosslink solution A was added and incubated for 15 min at room temperature with mixing. The solution was

then replaced with one mL of 100 mM ethanolamine, pH 8.9 (crosslink solution B) and incubated for 15 min
at room temperature with mixing. The liquid was replaced with 500 μL of elution buffer (2 M urea, 0.1 M glycine-HCl, pH 2.5) and immediately washed twice with an equal volume of wash buffer (2 M urea, 50 mM

50 Tris-HCl, pH 7.0, 150 mM NaCl). The pre-cleared lysate was then added to the cross-linked beads and incubated at 4°C for overnight with mixing. The lysate (flow-through) was then removed and the beads

52 washed three times with 1 mL TBS containing 0.01% triton X-100.

54 Western immunoblotting

- Proteins were eluted off the beads by boiling in 10 μL of 4X NuPAGE LDS sample buffer (LDS-SB) (Life
 Technologies Australia Pty Ltd., VIC, Australia) at 95°C for 10 min. Alternatively for serial elution's, the beads were first incubated with 10 μL of 0.1% formic acid at 37°C for 10 min and then neutralized with 1 μL of 0.1M
- ammonium bicarbonate (AMBIC), pH 8.0, followed by another 10 min with 10 μ L of 0.1% ammonium hydroxide (NH₄OH), then with 10 μ L of 1X LDS-SB at 95°C for 10 min, and then finally in 10 μ L of 1X LDS-
- 60 SB containing 100 mM dithiothreitol (DTT) at 95°C for 10 min. The eluants were then loaded onto a 4-12% NuPAGE Bis-Tris precast gel (Life Technologies Australia Pty Ltd., VIC, Australia) and subjected to SDS-
- PAGE under reducing conditions (100 uM DTT) for 45 min at 200V constant till dye front reached the bottom.
 Proteins were transferred onto PVDF membrane using Rapid Transfer buffer (AMRESCO Inc., OH, USA)
- 64 according to manufacturer's instructions at 20 V constant for 20 min. Western immunoblotting was performed using the SNAP i.d.® system (Merck Ltd., VIC, Australia). Briefly, the membrane was blocked with 0.5% ECL
- 66 Advance Blocking Reagent (GE Healthcare Australia Pty. Ltd., NSW, Australia). For IP, two microgram per mL of anti-uPAR antibody conjugated to horseradish peroxidase (HRP) was added and incubated for 20 min
- 68 prior to washing. HRP-conjugation was performed using the Lightning-Link™ HRP conjugation kit (Innova Biosciences Ltd, Cambridge, UK) according to manufacturers instructions. Chemiluminescence detection
- 70 was performed by adding SuperSignal® West Femto maximum sensitivity substrate (Thermo Fisher Scientific, VIC, Australia) and the blot imaged using a Luminescent Image Analyzer LAS-3000 (Fujifilm
- 72 Australia, NSW, Australia). For stripping of blot, Restore[™] western blot stripping buffer (ThermoScientific, IL, USA) was added for 10 min at room temperature with shaking before proceeding to western immunoblotting.
- 74

Tryptic digestion and mass spectrometry analysis

76 The beads (after IP) were resuspended in 100 μL of 25 mM AMBIC and reduced with 10 mM DTT for 90 min at 37°C followed by alkylation with 55 mM iodoacetamide at room temperature for 45 min in the dark.
78 Assuming a 5 μg total protein eluate, a 1:50 ratio (100 ng) of sequencing grade trypsin was then added and the beads incubated at room temperature overnight with gentle rotation. The digested peptides were then

- 80 water bath sonicated for 5 min. The supernatant was then transferred to a new tube. 150 μL of 50 mM triethylammonium bicarbonate buffer (TEAB) was added to the beads and sonicated again before
- transferring to the existing tube containing the digest. A final concentration of 1% formic acid was added to the digest and concentrated down to 10 μ L.
- 84

Digests were analysed on a nano LC-MS/MS (Eksigent Ultra nanoLC system, Eksigent; AB SCIEX™ TripleTOF® 5600 mass spectrometry, MA, USA). The sample was injected onto a peptide trap (Michrome peptide Captrap) for pre-concentration and desalted with 0.1% formic acid, 2% ACN, at 5 µL/min for 10 min.

- 88 The peptide trap was then switched into line with the analytical column. Peptides were eluted from the column using a linear solvent gradient, with steps, from mobile phase A: mobile phase B (98:2) to mobile
- phase A:mobile phase B (60:40) where mobile phase A is 0.1% formic acid and mobile phase B is 90%
 ACN/0.1% formic acid at 600 nL/min over a 140 min period. The reverse phase nanoLC eluent was
 subjected to positive ion nanoflow electrospray analysis in an information dependant acquisition mode (IDA).
- In IDA mode, a TOFMS survey scan was acquired (m/z 350 1500, 0.25 sec) with the 15 most intense 94 multiply charged ions (counts >150) in the survey scan sequentially subjected to MS/MS analysis. MS/MS
- spectra were accumulated for 50 millisec in the mass range m/z 100 1500 with the total cycle time of 1.05 sec.

⁹⁸

100 Data analysis

- For non-parametric analysis, Kruskal-Wallis test was used to compare between the groups followed by a 102 posthoc Mann-Whitney U test. For parametric analysis, multifactorial ANOVA was used with Tukey's posthoc test. Values were considered statistically significant when P ≤ 0.05. The experimental nanoLC ESI MS/MS 104 data were submitted to ProteinPilot V4.2 (AB SCIEX™, MA, USA) for data processing using Homo sapiens and Mus musculus species. Bias correction was selected and the detected protein threshold (unused ProtScore) was set at larger than 1.3 (≥ 95% confidence). FDR (False discovery rate) analysis was selected. 106 Generated MGF files were submitted to Mascot Daemon server (Homo sapiens - SwissProt_2012.fasta, Jun 108 2012; Mus musculus - SwissProt_2012x database selected for Mus musculus, Jun 2012) with monoisotopic fragment and parent tolerance at 0.1 Da and 50 ppm, respectively. Variable modifications were set at +16 on 110 M (oxidation) and +57 on C (carbamidomethyl) with maximum missed cleavage at 1. Generated Mascot log files were then submitted to Scaffold™ (version 3.5.1) (Proteome Software Inc., OR, USA) and 95% peptide
- 112 confidence was selected.

Appendix IV – Ethics approval

Research Office

Ethics Research Hub, Buliding C5C East MACQUARIE UNIVERSITY NSW 2109 AUSTRALIA

 Phone
 +61 (0)2 9850 6848

 Phone 2
 +61 (0)2 9850 8612

 Fax
 +61 (0)2 9850 4465

 Email
 ethics.secretariat@ro.mq.edu.au

30 October 2012

Prof Mark Baker Department of Chemistry and Biomolecular Sciences Faculty of Science MACQUARIE UNIVERSITY

Reference: 5201200702

Dear Prof Baker,

FINAL APPROVAL

Title of project: "Deep drilling of the low abundance human plasma proteome for candidate biomarkers of colorectal cancer onset, Stage and clinical progression" (Ethics Ref: 5201200702)

Thank you for your recent correspondence. Your response has addressed the issues raised by the Human Research Ethics Committee and you may now commence your research.

This research meets the requirements of the National Statement on Ethical Conduct in Human Research (2007). The National Statement is available at the following web site:

http://www.nhmrc.gov.au/_files_nhmrc/publications/attachments/e72.pdf.

The following personnel are authorised to conduct this research:

A/Prof Edouard Nice Dr Charlie Ahn Mr Harish Reddy Cheruku Mrs Sadia Mahboob Ms Sock Tan Prof Mark Baker

NB. STUDENTS: IT IS YOUR RESPONSIBILITY TO KEEP A COPY OF THIS APPROVAL EMAIL TO SUBMIT WITH YOUR THESIS.

Please note the following standard requirements of approval:

1. The approval of this project is conditional upon your continuing compliance with the National Statement on Ethical Conduct in Human Research (2007).

2. Approval will be for a period of five (5) years subject to the provision of annual reports.

Progress Report 1 Due: 30 October 2013 Progress Report 2 Due: 30 October 2014 Progress Report 3 Due: 30 October 2015 Progress Report 4 Due: 30 October 2016 Final Report Due: 30 October 2017

www.research.mq.edu.au/researchers/ethics/human_ethics

NB. If you complete the work earlier than you had planned you must submit a Final Report as soon as the work is completed. If the project has been discontinued or not commenced for any reason, you are also required to submit a Final Report for the project.

Progress reports and Final Reports are available at the following website:

http://www.research.mq.edu.au/for/researchers/how_to_obtain_ethics_approval/human_research_ethics/forms

3. If the project has run for more than five (5) years you cannot renew approval for the project. You will need to complete and submit a Final Report and submit a new application for the project. (The five year limit on renewal of approvals allows the Committee to fully re-review research in an environment where legislation, guidelines and requirements are continually changing, for example, new child protection and privacy laws).

4. All amendments to the project must be reviewed and approved by the Committee before implementation. Please complete and submit a Request for Amendment Form available at the following website:

http://www.research.mq.edu.au/for/researchers/how_to_obtain_ethics_approval/human_research_ethics/forms

5. Please notify the Committee immediately in the event of any adverse effects on participants or of any unforeseen events that affect the continued ethical acceptability of the project.

6. At all times you are responsible for the ethical conduct of your research in accordance with the guidelines established by the University. This information is available at the following websites:

http://www.mq.edu.au/policy/

http://www.research.mq.edu.au/for/researchers/how_to_obtain_ethics_approval/human_research_ethics/policy

If you will be applying for or have applied for internal or external funding for the above project it is your responsibility to provide the Macquarie University's Research Grants Management Assistant with a copy of this email as soon as possible. Internal and External funding agencies will not be informed that you have final approval for your project and funds will not be released until the Research Grants Management Assistant has received a copy of this email.

Please retain a copy of this letter as this is your official notification of final ethics approval.

Yours sincerely

Harlute

Dr Karolyn White Director of Research Ethics Chair, Human Research Ethics Committee

Fwd: Ethics application ref: 5201200702 - Amendment Approved

SADIA MAHBOOB <sadia.mahboob@students.mq.edu.au> To: Harish Cheruku <harish.cheruku@mq.edu.au> Thu, Jul 23, 2015 at 11:15 AM

------- Forwarded message ------From: Ethics Secretariat Date: Mon, Sep 16, 2013 at 1:29 PM Subject: Re: Ethics application ref: 5201200702 - Amendment Approved To: SADIA MAHBOOB <sadia.mahboob@students.mq.edu.au> Cc: Mark Baker <mark.baker@mq.edu.au>

Dear Sadia

Thank you for your email and apologies for the oversight.

The addition of the following personnel to the project has been approved:

- 1. Mr David Cantor
- 2. Ms Bhooma Venkatraman

Please do not hesitate to contact the Ethics Secretariat if you have any questions.

Kind regards Fran

On Mon, Sep 16, 2013 at 1:18 PM, SADIA MAHBOOB <sadia.mahboob@students.mq.edu.au> wrote: | Dear Nicola

Thanks a lot for the approval of amendment. Just wanted to confirm that we have also requested to include two new students in the application. Their details have been included in the amendment form. Please ;et me know if you need any further details about the requested amendments.

Thanks and regards Sadia

On Mon, Sep 16, 2013 at 11:35 AM, Ethics Secretariat <ethics.secretariat@mq.edu.au> wrote:

Dear Professor Baker

RE: "Deep drilling of the low abundance human plasma proteome for candidate biomarkers of colorectal cancer onset, Stage and clinical progression"

Thank you for submitting an amendment to the above application on the 4th September 2013.

The following amendments to the above study have been approved:

1. The application of a new methodology (Proseek technology developed by Olink, Upsala, Sweden) to analyse the samples.

This HREC is constituted and operates in accordance with the National Health and Medical Research Council's (NHMRC) *National Statement on Ethical Conduct in Human Research (2007)* (the National Statement) and the CPMP/ICH Note for Guidance on Good Clinical Practice (Guidance Note).

Please ensure that a copy of this approval correspondence is forwarded to all the investigators listed on

the project.

The HREC wishes you every success in your research.

Regards

Nicola Myton Human Research Ethics Officer (Health)

Ethics Secretariat Research Office Level 3, Research Hub, Building C5C East Macquarie University NSW 2109 Australia T: +61 2 9850 6848 F: +61 2 9850 6848 F: +61 2 9850 4465 http://www.mg.edu.au/research

CRICOS Provider Number 00002.1

Please consider the environment before printing this email.

This email (including all attachments) is confidential. It may be subject to legal professional privilege and/or protected by copyright. If you receive it in error do not use it or disclose it, notify the sender immediately, delete it from your system and destroy any copies. The University does not guarantee that any email or attachment is secure or free from viruses or other defects. The University is not responsible for emails that are personal or unrelated to the University's functions.

Sadia Mahboob PhD Student Cancer Proteomics & Biomarker Group Department of Chemistry & Biomolecular Sciences Faculty of Science Macquarie University Building F7B, Room 233 Office: +61-2-9850-1176 Fax: +61-2-9850-8313

-

Ethics Secretariat Research Office Level 3, Research Hub, Building C5C East Macquarie University NSW 2109 Australia T: +61 2 9850 6848 F: +61 2 9850 6848 F: +61 2 9850 4465 http://www.mq.edu.au/research

CRICOS Provider Number 00002J

Please consider the environment before printing this email.

This email (including all attachments) is confidential. It may be subject to legal professional privilege and/or protected by copyright, if you receive it in error do not use it or disclose it, notify the sender immediately, delete it from your system and destroy any copies. The University does not guarantee that any email or attachment is secure or free from viruses or other defects. The University is not responsible for emails that are personal or unrelated to the University's functions.

Sadia Mahboob PhD Student Cancer Biology & Human Proteomics Research Group Australian School of Advanced Medicine Faculty of Medicine and Health Science 2 Technology Place, Macquarie University. NSW 2109, AUSTRALIA Email: sadia.mahboob@students.mq.edu.au

MACQUARIE UNIVERSITY Biosafety and Bichazards Workshop This is to certify that Harish Cheruku has successfully completed the above workshop which was conducted by the Macquaric University Institutional Biosafety Committee and Bichazards Safety Committee on 10 April 2012 Dr Subra Vemulpad Chair, Institutional Bicsafety Committee April 2012 Espiry Date: April 2015